licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
647
using NeighbourLists using JuLIP using BenchmarkTools include("test_aux.jl") print("N-body energy and forces benchmark: ") println("# Threads = ", Base.Threads.nthreads()) at = bulk(:Cu, cubic=true) * 5 println("bulk :Cu with nat = $(length(at))") r0 = rnn(:Cu) rcut = 2.1 * r0 X = positions(at) C = cell(at) f, f_d = gen_fnbody(rcut, r0) nlist = PairList(X, rcut, C, (false, false, false), sorted = true) for M in [2, 3, 4, 5] println("M = $M") print(" energy: ") @btime n_body($f, $M, $nlist) print(" forces: ") @btime grad_n_body($f_d, $M, $nlist) end lj = LennardJones(r0, 1.0) * C1Shift(cutoff) @btime forces($lj, $at)
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
1945
using NeighbourLists using JuLIP using BenchmarkTools ## # using PyCall # using ASE # using ProfileView # include("../test/test_aux.jl") # @pyimport matscipy.neighbours as matscipy_neighbours # matscipy_neighbours = pyimport("matscipy.neighbours") # function matscipy_nlist(at, cutoff) # pycall(matscipy_neighbours["neighbour_list"], # NTuple{5, PyArray}, "ijdDS", at.po, cutoff) # end println("# Threads = ", Base.Threads.nthreads()) ## println("Neighbourlist assembly benchmark") for L in [2, 4, 10, 30] print("L = $L") # si, non-cubic cell, mixed bc at = bulk(:Si, cubic=true) * L println(", N = $(length(at))") set_pbc!(at, (true, true, true)) C = JMat(cell(at)) X = positions(at) perbc = JVec(pbc(at)) cutoff = 3.5 * rnn(:Si) # println("Julia Nlist") @btime PairList($X, $cutoff, $C, $perbc) # println("Matscipy Nlist") # @btime matscipy_nlist($(ASEAtoms(at)), $cutoff) println("------------------------------------------") end ## # at = bulk(:Si, cubic=true, pbc = true ) * 10 # rcut = 2.5 * rnn(:Si) # C = JMat(cell(at)) # X = positions(at) # perbc = JVec(pbc(at)) # # NeighbourLists._pairlist_(X, C, perbc, rcut, Int, false) # clist = NeighbourLists._celllist_(X, C, perbc, rcut, Int) # @btime NeighbourLists._celllist_($X, $C, $perbc, $rcut, Int) # @btime NeighbourLists._pairlist_($clist) # # @btime NeighbourLists._pairlist_($X, $C, $perbc, $rcut, Int, false) # # clist = _celllist_(X, cell, pbc, cutoff, TI) # # i, j, S = _pairlist_(clist) # @code_warntype NeighbourLists._pairlist_(clist) ## # @profview let clist = clist # for _ = 1:100 # NeighbourLists._pairlist_(clist) # end # end ## # at = bulk(:Si, cubic=true, pbc = true ) * 10 # rcut = 2.5 * rnn(:Si) # @profview let C = JMat(cell(at)), X = positions(at), perbc = JVec(pbc(at)), # rcut = rcut # for _ = 1:30 # PairList(X, rcut, C, perbc) # end # end
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
501
__precompile__() module NeighbourLists const MAX_THREADS = [1] # temporarily hard-coded single thread! set_maxthreads!(n) = (NeighbourLists.MAX_THREADS[1] = n) include("types.jl") # this contains the cell-list data structures and assembly include("cell_list.jl") # this contains the different iterators over sites, bonds, etc include("iterators.jl") # alternative assembly protocol more akin to mapreduce include("mapreduce.jl") # AtomsBase interface include("atoms_base.jl") end # module
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
545
using AtomsBase using StaticArrays: SVector using Unitful function PairList(ab::AtomsBase.AbstractSystem, cutoff::Unitful.Length; length_unit=unit(cutoff)) cell = ustrip.(length_unit, hcat( bounding_box(ab)... )' ) pbc = periodicity(ab) r = map( 1:length(ab) ) do i # Need to have SVector here for PairList to work # if position does not give SVector SVector( ustrip.(length_unit, position(ab,i))...) end nlist = PairList(r, ustrip(length_unit, cutoff), cell, pbc; int_type=Int) return nlist end
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
16246
using Base.Threads, LinearAlgebra export npairs, nsites, maxneigs, max_neighbours, neigs, neighbours, neigs! PairList(X::Vector{SVec{T}}, cutoff::AbstractFloat, cell::AbstractMatrix, pbc; int_type::Type = Int32, fixcell = true) where {T} = _pairlist_(X, SMat{T}(cell), SVec{Bool}(pbc), T(cutoff), int_type, fixcell) PairList(X::Matrix{T}, args...; kwargs...) where {T} = PairList(reinterpret(SVec{T}, X, (size(X,2),)), args...; varargs...) npairs(nlist::PairList) = length(nlist.i) nsites(nlist::PairList) = length(nlist.first) - 1 cutoff(nlist::PairList) = nlist.cutoff # ====================== Cell Index Algebra ===================== "Map i back to the interval [0,n) by shifting by integer multiples of n" @inline function bin_wrap(i::Integer, n::Integer) while i <= 0; i += n; end while i > n; i -= n; end return i; end "apply bin_wrap only if periodic bdry" @inline bin_wrap(i::Integer, pbc::Bool, n::Integer) = pbc ? bin_wrap(i, n) : i "Map i back to the interval [0,n) by assigning edge value if outside interval" @inline function bin_trunc(i::TI, n::TI) where {TI <: Integer} if i <= 0; i = TI(1) elseif i > n; i = n end return i end "apply bin_trunc only if open bdry" @inline bin_trunc(i::TI, pbc::Bool, n::TI) where {TI <: Integer} = pbc ? TI(i) : bin_trunc(i, n) "applies bin_trunc to open bdry and bin_wrap to periodic bdry" @inline bin_wrap_or_trunc(i::Integer, pbc::Integer, n::Integer) = pbc ? bin_wrap(i, n) : bin_trunc(i, n) "Map particle position to a (cartesian) cell index" @inline position_to_cell_index(inv_cell::SMat{T}, x::SVec{T}, ns::SVec{TI} ) where {T, TI <: Integer} = floor.(TI, ((inv_cell' * x) .* ns .+ 1)) # ------------ The next two functions are the only dimension-dependent # parts of the code! # an extension of sub2ind for the case when i is a vector (cartesian index) # @inline Base.sub2ind(dims::NTuple{3,TI}, i::SVec{TI}) where {TI <: Integer} = # sub2ind(dims, i[1], i[2], i[3]) # WARNING: this smells like a performance regression! # WARNING: `LinearIndices` always returnsstores Int, not TI!!! @inline _sub2ind(dims::NTuple{3,TI}, i::SVec{TI}) where {TI <: Integer} = TI( (LinearIndices(dims))[i[1], i[2], i[3]] ) lengths(C::SMat{T}) where {T} = det(C) ./ SVec{T}(norm(C[2,:]×C[3,:]), norm(C[3,:]×C[1,:]), norm(C[1,:]×C[2,:])) # -------------------------------------------------------------------------- function analyze_cell(cell, cutoff, TI) @assert TI <: Integer # check the cell volume (allow only 3D volumes!) volume = abs(det(cell)) if volume < 1e-12 @warn("zero volume detected - proceed at your own risk") @show cell @show volume @show cutoff end # precompute inverse of cell matrix for coordiate transformation inv_cell = inv(cell) # Compute distance of cell faces lens = abs.(lengths(cell)) # Number of cells for cell subdivision _t = floor.(TI, lens / cutoff) ns_vec = max.(_t, one(TI)) return inv_cell, ns_vec, lens end # multi-threading setup function setup_mt(niter::TI, maxnt = MAX_THREADS[1]) where TI <: Integer nt = minimum([6, nthreads(), ceil(TI, niter / 20), maxnt]) # nn = ceil.(TI, linspace(1, niter+1, nt+1)) # range(start, stop=stop, length=length) nn = ceil.(TI, range(1, stop=niter+1, length=nt+1)) return nt, nn end # ==================== CellList Core ================ function _celllist_(X::Vector{<:SVec}, cell::SMat, pbc::SVec{Bool}, cutoff::T, TI) where {T <: Real} @assert TI <: Integer # ----- analyze cell ----- nat = length(X) inv_cell, ns_vec, lens = analyze_cell(cell, cutoff, TI) ns = ns_vec.data if prod(BigInt.(ns_vec)) > typemax(TI) error("""Ratio of simulation cell size to cutoff is very large. Are you using a cell with lots of vacuum? To fix this use a larger integer type (e.g. Int128), a larger cut-off, or a smaller simulation cell.""") end # data structure to store a linked list for each bin ncells = prod(ns_vec) seed = fill(TI(-1), ncells) last = Vector{TI}(undef, ncells) next = Vector{TI}(undef, nat) nats = zeros(TI, ncells) for i = 1:nat # Get cell index c = position_to_cell_index(inv_cell, X[i], ns_vec) # Periodic/non-periodic boundary conditions c = bin_wrap_or_trunc.(c, pbc, ns_vec) # linear cell index # (+1 due to 1-based indexing) ci = _sub2ind(ns, c) # Put atom into appropriate bin (list of linked lists) if seed[ci] < 0 # ci contains no atom yet next[i] = -1 seed[ci] = i last[ci] = i nats[ci] += 1 else next[i] = -1 next[last[ci]] = i last[ci] = i nats[ci] += 1 end end return CellList(X, cell, inv_cell, pbc, cutoff, seed, last, next, nats) end function _pairlist_(clist::CellList{T, TI}) where {T, TI} X, cell, pbc, cutoff, seed, last, next = clist.X, clist.cell, clist.pbc, clist.cutoff, clist.seed, clist.last, clist.next nat = length(X) inv_cell, ns_vec, lens = analyze_cell(cell, cutoff, TI) # guess how many neighbours per atom # atoms in cell x (8 cells) * (ball / cube) max_nat_cell = maximum(clist.nats) nneigs_guess = ceil(TI, 1.5 * max_nat_cell * (π^2/4)) # allocate arrays for the many threads # set number of threads nt, nn = setup_mt(nat) # allocate arrays first_t = Vector{TI}[ Vector{TI}() for n = 1:nt ] # i secnd_t = Vector{TI}[ Vector{TI}() for n = 1:nt ] # j shift_t = Vector{SVec{TI}}[ Vector{SVec{TI}}() for n = 1:nt ] # ~ X[i] - X[j] # give size hints sz = (nat ÷ nt + nt) * nneigs_guess for n = 1:nt sizehint!(first_t[n], sz) sizehint!(secnd_t[n], sz) sizehint!(shift_t[n], sz) end # We need the shape of the bin ( bins[:, i] = cell[i,:] / ns[i] ) # bins = cell' ./ ns_vec bins = hcat( cell[1,:]/ns_vec[1], cell[2,:]/ns_vec[2], cell[3,:] / ns_vec[3] ) # Find out over how many neighbor cells we need to loop (if the box is small) nxyz = ceil.(TI, cutoff * (ns_vec ./ lens)) # cxyz = CartesianIndex(nxyz.data) # WARNING : 3D-specific hack; also potential performance regression # WARNING: `CartesianIndices` always stores Int, not TI!!! xyz_range = CartesianIndices((-nxyz[1]:nxyz[1], -nxyz[2]:nxyz[2], -nxyz[3]:nxyz[3])) # Loop over threads # @threads for it = 1:nt for it = 1:nt for i = nn[it]:(nn[it+1]-1) # current atom position _find_neighbours_!(i, clist, ns_vec, bins, xyz_range, first_t[it], secnd_t[it], shift_t[it]) end # for i = 1:nat end # @threads # piece them back together sz = sum( length(first_t[i]) for i = 1:nt ) first = first_t[1]; sizehint!(first, sz) secnd = secnd_t[1]; sizehint!(secnd, sz) shift = shift_t[1]; sizehint!(shift, sz) for it = 2:nt append!(first, first_t[it]) append!(secnd, secnd_t[it]) append!(shift, shift_t[it]) end # Build return tuple return first, secnd, shift end function _find_neighbours_!(i, clist, ns_vec::SVec{TI}, bins, xyz_range, first, secnd, shift) where TI inv_cell, X, pbc = clist.inv_cell, clist.X, clist.pbc seed, last, next = clist.seed, clist.last, clist.next xi = X[i] # funnily testing with cutoff^2 actually makes a measurable difference # which suggests we are pretty close to the performance limit cutoff_sq = clist.cutoff^2 # cell index (cartesian) of xi ci0 = position_to_cell_index(inv_cell, xi, ns_vec) # Truncate if non-periodic and outside of simulation domain # (here, we don't yet want to wrap the pbc as well) ci = bin_trunc.(ci0, pbc, ns_vec) # dxi is the position relative to the lower left corner of the bin dxi = xi - bins * (ci .- 1) # Apply periodic boundary conditions as well now ci = bin_wrap_or_trunc.(ci0, pbc, ns_vec) for ixyz in xyz_range # Integer # convert cartesian index to SVector xyz = SVec{TI}(ixyz.I) # get the bin index cj = bin_wrap.(ci + xyz, pbc, ns_vec) # skip this bin if not inside the domain all(TI(1) .<= cj .<= ns_vec) || continue # linear cell index ncj = _sub2ind(ns_vec.data, cj) # Offset of the neighboring bins off = bins * xyz # Loop over all atoms in neighbouring bin (all potential # neighbours in the bin with linear index cj1) j = seed[ncj] # the first atom in the ncj cell while j > 0 if i != j || any(xyz .!= 0) xj = X[j] # position of current neighbour # we need to find the cell index again, because this is # not really the cell index, but it could be outside # the domain -> i.e. this only makes a difference for pbc cj = position_to_cell_index(inv_cell, xj, ns_vec) cj = bin_trunc.(cj, pbc, ns_vec) # drj is position relative to lower left corner of the bin dxj = xj - bins * (cj .- 1) # Compute distance between atoms dx = dxj - dxi + off norm_dx_sq = dot(dx, dx) # append to the list if norm_dx_sq < cutoff_sq push!(first, i) push!(secnd, j) push!(shift, (ci0 - cj + xyz) .÷ ns_vec) end end # if i != j || any(xyz .!= 0) # go to the next atom in the current cell j = next[j]; end # while j > 0 (loop over atoms in current cell) end # loop over neighbouring bins end function _pairlist_(X::Vector{SVec{T}}, cell::SMat{T}, pbc::SVec{Bool}, cutoff::T, TI, fixcell::Bool) where {T} @assert TI <: Integer # temporary (?) fix to make sure all atoms are within the cell if fixcell X, cell = _fix_cell_(X, cell, pbc) end clist = _celllist_(X, cell, pbc, cutoff, TI) i, j, S = _pairlist_(clist) first = get_first(i, length(X)) sort_neigs!(j, (S,), first) return PairList(X, cell, cutoff, i, j, S, first) end # ==================== Post-Processing ========================= """ `get_first(i::Vector{TI}, nat::Integer) -> first::Vector{TI} where TI <: Integer` Assumes that `i` is sorted in ascending order. For `n = 1, . . ., nat`, `first[n]` will be the index to the first element of `i` with value `n`. Further, `first[nat+1]` will be `length(i) + 1`. If `first[n] == first[n+1]` then this means that `i` contains no element `n`. """ function get_first(i::Vector{TI}, nat::Integer = i[end]) where {TI} # compute the first index for each site first = Vector{TI}(undef, nat + 1) idx = 1 n = 1 while n <= nat && idx <= length(i) first[n] = idx while i[idx] == n idx += 1 if idx > length(i) break end end n += 1 end first[n:end] .= length(i)+1 return first end """ `sort_neigs!(j, arrays, first)` sorts each sub-range of `j` corresponding to one site in ascending order and applies the same permutation to `r, R, S`. """ function sort_neigs!(j, arrays::Tuple, first) nat = length(first) - 1 nt, nn = setup_mt(nat) @threads for it = 1:nt for n = nn[it]:(nn[it+1]-1) if first[n+1] > first[n] + 1 rg = first[n]:first[n+1]-1 jrg = j[rg] if !issorted(jrg) I = sortperm(j[rg]) rg_perm = rg[I] j[rg] = j[rg_perm] for a in arrays a[rg] .= a[rg_perm] end end end end end end """ `_fix_cell_(X::Vector{SVec{T}}, C::SMat{T}, pbc)` produces new `X`, `C` such that PBC are respected, but all positions are inside the cell. This Potentially involves * wrapping atom positions in the pbc directions * shifting atom positions in the non-pbc directions * enlarging the cell If either `X` or `C` are modified, then they will be copied. """ function _fix_cell_(X::Vector{SVec{T}}, C::SMat{T}, pbc) where {T} invCt = inv(C)' copy_X = false min_lam = @MVector zeros(3) max_lam = @MVector ones(3) for (ix, x) in enumerate(X) λ = Vector(invCt * x) for i = 1:3 update_x = false if !(0.0 <= λ[i] < 1.0) if pbc[i] λ[i] = mod(λ[i], 1.0) update_x = true else min_lam[i] = min(min_lam[i], λ[i]) max_lam[i] = max(max_lam[i], λ[i]) end end if update_x if !copy_X; X = copy(X); copy_X = true end X[ix] = C' * SVec{T}(λ) end end end # check whether we need to adjust the non-PBC directions if (minimum(min_lam) < 0.0) || (maximum(max_lam) > 1.0) # shift vector: if !copy_X; X = copy(X); copy_X = true end t = - C' * min_lam for n = 1:length(X) X[n] += t end # the new min_lam is now zero and the new max_lam is max_lam - min_lam max_lam -= min_lam min_lam .= 0.0 # because of round-off we add a little extra in the non-pbc directions # it doesn't affect any energies etc but creates weirdness otherwise. for i = 1:3 if max_lam[i] > 1 max_lam[i] *= 1.01 end end # we need to multiply the cell by the correct lambda C = hcat( max_lam[1] * C[1,:], max_lam[2] * C[2,:], max_lam[3] * C[3,:])' end return X, C end """ `maxneigs(nlist::PairList) -> Integer` returns the maximum number of neighbours that any atom in the neighbourlist has. """ maxneigs(nlist::PairList) = maximum( nneigs(nlist, n) for n = 1:nsites(nlist) ) # retire max_neigs const max_neigs = maxneigs """ `nneigs(nlist::PairList, i0::Integer) -> Integer` : return number of neighbours of particle with index `i0`. (within cutoff radius + buffer) """ nneigs(nlist::PairList, i0::Integer) = nlist.first[i0+1]-nlist.first[i0] function _getR(nlist, idx) i = nlist.i[idx] j = nlist.j[idx] return _getR(nlist.X[j] - nlist.X[i], nlist.S[idx], nlist.C) end _getR(dX::SVec, S::SVec, C::SMat) = dX + C' * S """ `neigs!(Rtemp, nlist, i) -> j, R` For `nlist::PairList` this returns the interaction neighbourhood of the atom indexed by `i`. E.g., in the standard loop approach one would have ``` Rtemp = zeros(JVecF, maxneigs(nlist)) for (i, j, R) in sites(nlist) (j, R) == neigs(nlist, i) == neigs!(Rtemp, nlist, i) end ``` `R` is a view into `Rtemp` with the correct length, while `j` is a view into `nlist.j`. """ function neigs!(Rs::AbstractVector{<: SVec}, nlist::PairList, i0::Integer) n1, n2 = nlist.first[i0], nlist.first[i0+1]-1 _grow_array!(Rs, n2-n1+1) J = (@view nlist.j[n1:n2]) for n = 1:length(J) Rs[n] = _getR(nlist, n1+n-1) end return J, (@view Rs[1:length(J)]) end function neigs!(Js::AbstractVector{<: SVec}, Rs::AbstractVector{<: SVec}, nlist::PairList, i0::Integer) _grow_array!(Rs, n2-n1+1) _grow_array!(Js, n2-n1+1) j, Rs = neigs!(Rs, nlist, i0) N = length(j) copyto!(Js, j) return (@view Js[1:length(j)]), Rs end function _grow_array!(A::Vector{T}, N) where {T} if length(A) < N append!(A, zeros(T, N-length(A))) end return A end """ `neigss!(Rs, nlist, i0) -> j, R, S` : return neighbourhood as in `neigs!` as well as the corresponding cell shifts. (`R` is a view into `Rs` with the correct length) """ function neigss!(Rs::AbstractVector{<: SVec}, nlist::PairList, i0::Integer) n1, n2 = nlist.first[i0], nlist.first[i0+1]-1 _grow_array!(Rs, n2-n1+1) J = (@view nlist.j[n1:n2]) for n = 1:length(J) Rs[n] = _getR(nlist, n1+n-1) end return J, (@view Rs[1:length(J)]), (@view nlist.S[n1:n2]) end neigs(nlist::PairList{T}, i0::Integer) where {T} = neigs!( zeros(SVec{T}, nneigs(nlist, i0)), nlist, i0 ) neigss(nlist::PairList{T}, i0::Integer) where {T} = neigss!( zeros(SVec{T}, nneigs(nlist, i0)), nlist, i0 ) """ alias for `neigs` """ neighbours = neigs """ alias for `max_neigs` """ max_neighbours = maxneigs
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
1132
import Base: iterate, length, pairs export pairs, sites, site, nbodies abstract type AbstractIterator end inc(i::T) where {T <: Integer} = i + T(1) # -------------- iterator over pairs --------------- pairs(nlist::PairList) = PairIterator(nlist) struct PairIterator{T,TI} <: AbstractIterator nlist::PairList{T,TI} end _item(it::PairIterator, i::Integer) = (it.nlist.i[i], it.nlist.j[i], _getR(it.nlist, i)) iterate(it::PairIterator{T,TI}) where {T,TI} = npairs(it.nlist) > 0 ? (_item(it, 1), TI(1)) : nothing iterate(it::PairIterator, i::Integer) = i >= npairs(it.nlist) ? nothing : (_item(it, inc(i)), inc(i)) length(it::PairIterator) = npairs(it.nlist) # -------------- iterator over sites --------------- sites(nlist::PairList) = SiteIterator(nlist) struct SiteIterator{T,TI} <: AbstractIterator nlist::PairList{T,TI} end _item(it::SiteIterator, i::Integer) = (i, neigs(it.nlist, i)...) iterate(it::SiteIterator{T,TI}) where {T,TI} = _item(it, 1), one(TI) iterate(it::SiteIterator, i::Integer) = i >= length(it) ? nothing : (_item(it, i+1), inc(i)) length(it::SiteIterator) = nsites(it.nlist)
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
2783
using Base.Threads export maptosites!, maptosites_d! function mt_split(niter::TI, maxthreads=MAX_THREADS[1]) where TI nt = minimum([maxthreads, nthreads(), niter]) # nn = ceil.(TI, linspace(1, niter+1, nt+1)) nn = ceil.(TI, range(1, stop=niter+1, length=nt+1)) rgs = [nn[i]:(nn[i+1]-1) for i = 1:nt] return nt, rgs end function mt_split_interlaced(niter::TI, maxthreads=MAX_THREADS[1]) where TI nt = minimum([maxthreads, nthreads(), niter]) rgs = [ j:nt:niter for j = 1:nt ] return nt, rgs end function _mt_map_!(f::FT, out, it, inner_loop) where FT nt, rg = mt_split(length(it)) if nt == 1 inner_loop(f, out, it, 1:length(it)) else OUT = [[out]; [zeros(out) for i = 2:nt]] @threads for i = 1:nt inner_loop(f, OUT[i], it, rg[i]) end for it = 2:nt out .+= OUT[it] end end return out end maptosites!(f, out::AbstractVector, it::AbstractIterator) = _mt_map_!(f, out, it, maptosites_inner!) maptosites_d!(f, out::AbstractVector, it::AbstractIterator) = _mt_map_!(f, out, it, maptosites_d_inner!) # ============ assembly over pairs """ `mapreduce_sym!{S, T}(out::AbstractVector{S}, f, it::PairIterator{T})` symmetric variant of `mapreduce!{S, T}(out::AbstractVector{S}, ...)`, summing only over bonds (i,j) with i < j and adding f(R_ij) to both sites i, j. """ function maptosites_inner!(f::FT, out, it::PairIterator, rg) where FT nlist = it.nlist for n in rg if nlist.i[n] < nlist.j[n] f_ = f(nlist.r[n], nlist.R[n]) / 2 out[nlist.i[n]] += f_ out[nlist.j[n]] += f_ end end return out end """ `mapreduce_antisym!{T}(out::AbstractVector{SVec{T}}, df, it::PairIterator{T})` anti-symmetric variant of `mapreduce!{S, T}(out::AbstractVector{S}, ...)`, summing only over bonds (i,j) with i < j and adding f(R_ij) to site j and -f(R_ij) to site i. """ function maptosites_d_inner!(f::FT, out, it::PairIterator, rg) where FT nlist = it.nlist for n in rg if nlist.i[n] < nlist.j[n] f_ = f(nlist.r[n], nlist.R[n]) out[nlist.j[n]] += f_ out[nlist.i[n]] -= f_ end end return out end # ============ assembly over sites function maptosites!(f::FT, out::AbstractVector, it::SiteIterator) where FT @threads for i = 1:nsites(it.nlist) _, R = neigs(it.nlist, i) out[i] = f(R) end return out end function maptosites_d!(df::FT, out::AbstractVector, it::SiteIterator) where FT nt = nthreads() OUT = [out; [zeros(out) for n = 2:nt]] @threads for i = 1:nsites(it.nlist) j, R = neigs(it.nlist, i) df_ = df(R) OUT[threadid()][j] += df_ OUT[threadid()][i] -= sum(df_) end for it = 2:n out .+= OUT[it] end return out end
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
1624
using StaticArrays const SVec{T} = SVector{3, T} const SMat{T} = SMatrix{3, 3, T, 9} export PairList """ `PairList` stores a neighbourlist as a list of pairs ``` PairList(X, cutoff, cell, pbc) PairList(nlist::CellList) ``` where * `X` : positions, either as 3 x N matrix or as `Vector{SVec}` * `cutoff` : positive real value * `cell` : 3 x 3 matrix, with rows denoting the cell vectors * `pbc` : 3-tuple or array, storing periodicity information ### Kw-args: * `int_type` : default is `Int` * `store_first` : whether to store the array of first indices, default `true` * `sorted` : whether to sort the `j` vector, default `false` ### PairList fields `X, cutoff, i, j, r, R, first`, where `(i[n], j[n])` denotes the indices of a neighbour pair, `r[n]` the distance between those atoms, `R[n]` the vectorial distance, note this is identical to `X[i[n]]-X[j[n]]` without periodic b.c.s, but with periodic boundary conditions it is different. `first[m]` contains the index to the first `(i[n], j[n])` for which `i[n] == first[m]`, i.e., `(j, first)` essentially defines a compressed column storage of the adjacancy matrix. """ struct PairList{T <: Real, TI <: Integer} X::Vector{SVec{T}} C::SMat{T} cutoff::T i::Vector{TI} j::Vector{TI} S::Vector{SVec{TI}} first::Vector{TI} end """ `CellList` : store atoms in cells / bins. Mostly used internally to construct PairLists. """ struct CellList{T <: Real, TI <: Integer} X::Vector{SVec{T}} cell::SMat{T} inv_cell::SMat{T} pbc::SVec{Bool} cutoff::T seed::Vector{TI} last::Vector{TI} next::Vector{TI} nats::Vector{TI} end
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
1263
using NearestNeighbors, Distances, LinearAlgebra import Distances: evaluate struct Periodic{T} <: Metric L::SVec{T} pbc::SVec{Bool} end function evaluate(d::Periodic{T}, x::AbstractVector, y::AbstractVector) where {T} s = 0.0 for i = 1:3 if d.pbc[i] m = mod(x[i]-y[i], d.L[i]) s += min( m, d.L[i]-m )^2 else s += (x[i]-y[i])^2 end end return sqrt(s) end # function nn_list{T, TI}(X::Vector{SVec{T}}, cutoff::T, # cell::SMat{T}, pbc::SVec{Bool}, _::TI) function nn_list(X::Vector{SVec{Float64}}, cutoff, cell, pbc::SVec{Bool}) # WARNING: removed `const` here - will this slow down the code? T = Float64 TI = Int @assert cell == SMat{T}(diagm(0 => diag(cell))) # require cubic cell # construct a periodic metric d = Periodic(SVec{T}(diag(cell)), pbc) # construct the ball tree tree = BallTree(X, d) i = TI[] j = TI[] r = T[] R = SVec{T}[] for n = 1:length(X) neigs = inrange(tree, X[n], cutoff, true) for a = 1:length(neigs) if neigs[a] != n push!(i, n) push!(j, neigs[a]) push!(r, evaluate(d, X[n], X[neigs[a]])) end end end return i, j, r, R end
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
756
using NeighbourLists using Test # ---- FLAGS ----- # whether to run performance tests performance = true # check whether on CI isCI = haskey(ENV, "CI") notCI = !isCI # TODO: switch the JuLIP test to an ASE test # check whether we have JuLIP # hasjulip = true # try # using JuLIP # catch # hasjulip = false # end # ----------------- TESTS ------------------- println("# threads = $(Base.Threads.nthreads())") @testset "NeighbourLists" begin @testset "Aux" begin include("test_aux.jl") end @testset "CellList" begin include("test_celllist.jl") end include("test_atoms_base.jl") # pointless until we switch to comparing against ASE / matscipy # if hasjulip # @testset "JuLIP" begin include("test_julip.jl") end # end end
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
3158
using NeighbourLists using JuLIP # at = set_pbc!(bulk(:Si, cubic=true) * 3, true) # length(at) # cutoff = 3.1 * rnn(:Si) # nlist = CellList(positions(at), cutoff, cell(at), pbc(at)) # # f(r, R) = (exp(-8*(r-1)) - 2 * exp( - 4 * (r - 1))) * 1 / (1+r) # # out = zeros(length(at)) # mapreduce_sym!(out, f, pairs(nlist)) # # @time mapreduce_sym!(out, f, pairs(nlist)); # @time NeighbourLists.tmapreduce_sym!(out, f, pairs(nlist)); macro symm(N, ex) if N isa Symbol N = eval(N) end @assert ex.head == :for @assert length(ex.args) == 2 ex_for = ex.args[1] ex_body = ex.args[2] # iteration symbol i = ex_for.args[1] # lower and upper bound a0 = ex_for.args[2].args[1] a1 = ex_for.args[2].args[2] # create the for-loop without body loopstr = "for $(i)1 = ($a0):(($a1)-$(N-1))" for n = 2:N loopstr *= ", $i$n = $i$(n-1)+1:(($a1)-$(N-n))" end loopstr *= "\n $i = CartesianIndex($(i)1" for n = 2:N loopstr *= ", $i$n" end loopstr *= ") \n end" loopex = Meta.parse(loopstr) append!(loopex.args[2].args, ex_body.args) # return the expression esc(quote $loopex end) end @generated function t(b0, b1, Nval::Val{N}) where N quote @symm $N for j = b0:b1 println(j) end end end t(3, 8, Val(3)) M = 4 @symm M for j = 1:6 println(j) end getN(::Val{N}) where N = N::Int getN(n::Integer) = n getN(::Type{Val{N}}) where N = N::Int macro mm(NN) @show NN @show getN(eval(NN)) end @mm(4) @mm(Val(4)) getN(Val{4}) M = 4 @mm 4 @mm M function m1(::Val{N}) where N @show N @show typeof(N) end m1(Val(4)) @generated function m2(v::T) @mm(T) end function simplex_lengths(I::SVector{N, TI}, X::AbstractVector{T}) where { N, TI <: Integer, T <: AbstractFloat} N2 = (N*(N-1))÷2 a = zeros(TI, N2) b = zeros(TI, N2) s = zeros(T, N2) n = 0 for i = 1:N-1, j = i+1:N n += 1 a[n] = I[i] b[n] = I[j] s[n] = abs(X[a[n]] - X[b[n]]) end return s, a, b end I = SVector(3, 5, 7, 2) X = rand(10) simplex_lengths(I, X) function statalloc(I::SVector{N, TI}) where {N, TI} N2 = (N*(N-1)) ÷ 2 a = zero(MVector{N2, TI}) end statalloc(I) function simplex_lengths!(s, a, b, I::SVector{N, TI}, X) where {N, TI <: Integer} n = 0 for i = 1:N-1, j = i+1:N n += 1 a[n] = I[i] b[n] = I[j] s[n] = norm(X[a[n]] - X[b[n]]) end return SVector(s), SVector(a), SVector(b) end function simplex_lengths2!(s, a, b, I::SVector{N, TI}, X) where {N, TI <: Integer} n = 0 for i = 1:N-1, j = i+1:N n += 1 a[n] = I[i] b[n] = I[j] s[n] = norm(X[a[n]] - X[b[n]]) end return s, a, b end function test(slen, M) I = SVector(3, 50, 74, 22, 10) N = length(I) N2 = (N*(N-1)) ÷ 2 X = rand(SVector{3, Float64}, 100) s = zero(MVector{N2, Float64}) a = zero(MVector{N2, Int}) b = zero(MVector{N2, Int}) for m = 1:M slen(s, a, b, I, X) end end @btime test(simplex_lengths!, 10_000) @btime test(simplex_lengths2!, 10_000) # @btime simplex_lengths2!($s, $a, $b, $I, $X)
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
291
using ASEconvert using NeighbourLists using Test using Unitful @testset "AtomsBase PairList" begin cu = ase.build.bulk("Cu") * pytuple((4, 2, 3)) sys = pyconvert(AbstractSystem, cu) nlist = PairList(sys, 3.5u"Å") id, r = neigs(nlist,1) @test length(id) == 12 end
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
2045
# This file contains some code that is chared across several tests using StaticArrays, Test, ForwardDiff using NeighbourLists: SMat, SVec using Test, StaticArrays, ForwardDiff # ------ generate random configurations ------- function rand_config(N) C = SMat( diagm(0 => 2.0 .+ 0.2 * rand(3)) * N ) X = [ C' * rand(SVec) for i = 1:ceil(Int, abs(det(C))) ÷ 4 + 2 ] pbc = SVec(rand(Bool, 3)) return X, C, pbc end # --------- MANY BODY CODE THAT IS SHARED ACROSS TESTS ------------ sqrt1p(x) = expm1( 0.5 * log1p( x ) ) # sqrt(1 + x) - 1 sqrt1p_d(x) = 0.5 / sqrt(1+x) function fnbody(r, r0, rcut) E = sum( exp.(1.0 .- r./r0) ) F = prod( (r./rcut .- 1.0) .* (r .< rcut) ) return sqrt1p(E) * F^2 end function fnbody_d(r, r0, rcut) E = sum( exp.(1.0 .- r./r0) ) F = prod( (r./rcut .- 1.0) .* (r .< rcut) ) ∇f = (- sqrt1p_d(E) * F^2 / r0) .* (exp.(1.0 .- r./r0)) ∇f += (sqrt1p(E) * 2.0 / rcut * F^2) .* (r./rcut .- 1.0 .- 1e-14).^(-1) return ∇f end # Generate a MODEL N-Body function function gen_fnbody(rcut, r0=1.0) return r->fnbody(r, r0, rcut), r -> fnbody_d(r, r0, rcut) end println("Checking that `fnbody` is correct...") fnbody_ad(rs, r0, rcut) = ForwardDiff.gradient( t -> fnbody(t, r0, rcut), rs ) for n = 1:5 r = rand(SVector{3, Float64}) @test fnbody_d(r, 1.0, 2.0) ≈ fnbody_ad(r, 1.0, 2.0) end # global assembly of n-body energies and forces n_body(X, f, M, rcut, C, pbc = (false, false, false), nlist = PairList(X, rcut, C, pbc, sorted = true)) = n_body(f, M, nlist) n_body(f, M, nlist::PairList) = NeighbourLists.maptosites!(f, zeros(nsites(nlist)), NeighbourLists.nbodies(M, nlist)) |> sum grad_n_body(X, df, M, rcut, C, pbc = (false, false, false), nlist = PairList(X, rcut, C, pbc, sorted = true)) = grad_n_body(df, M, nlist) grad_n_body(df, M, nlist::PairList) = NeighbourLists.maptosites_d!(df, zeros(SVec{Float64}, nsites(nlist)), NeighbourLists.nbodies(M, nlist))
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
1301
using NeighbourLists using NeighbourLists: SMat, SVec using Test using LinearAlgebra include("nn_list.jl") Ns = [3, 3, 4, 4, 5, 5] @info("Testing PairList Correctness: ") for N in Ns C = SMat( diagm(0 => (2.0 .+ 0.2 * rand(3))) * N ) X = [ C' * rand(SVec) for i = 1:ceil(Int, abs(det(C))) ÷ 4 + 2 ] pbc = SVec(rand(Bool, 3)) cutoff = 2.0 # compute a cell list nlist = PairList(X, cutoff, C, pbc) @show typeof(nlist) # compute a NearestNeighbors list i, j, r, R = nn_list(X, cutoff, C, pbc) R = X[j] - X[i] first = NeighbourLists.get_first(i, length(X)) NeighbourLists.sort_neigs!(j, (r, R), first) println(@test (nlist.i == i) && (nlist.j == j)) # check that they are sorted print("sorted: "); println(@test all( issorted(j) for (_i, j, _R) in NeighbourLists.sites(nlist) )) # check that the neighbourhoods produced by `neigs` are correct pass_neigs = true for (i, j, R) in NeighbourLists.sites(nlist) j_, R_ = NeighbourLists.neigs(nlist, i) if j != j_ || !(R ≈ R_) pass_neigs = false break end js, Rs, Ss = NeighbourLists.neigss(nlist, i) if j != js || !(R ≈ Rs) pass_neigs = false break end end print("neigs: "); println(@test pass_neigs) end println()
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
5431
using JuLIP, ASE, StaticArrays, NeighbourLists using Test X_Ti = vecs([0.0 5.19374 2.59687 3.8953 1.29843 6.49217 7.7906 12.9843 10.3875 11.6859 9.08904 14.2828; 0.0 0.918131 1.83626 -1.11022e-16 0.918131 1.83626 -2.22045e-16 0.918131 1.83626 0.0 0.918131 1.83626; 0.0 0.0 0.0 2.24895 2.24895 2.24895 0.0 0.0 0.0 2.24895 2.24895 2.24895]) C_Ti = (@SMatrix [15.5812 2.47895 0.0; 0.0 2.75439 0.0; 0.0 0.0 4.49791]) # -------------- MatSciPy NeighbourList Patch ------------- using PyCall import NeighbourLists matscipy_neighbours = pyimport("matscipy.neighbours") function asenlist(at::Atoms, rcut) pyat = ASEAtoms(at).po return matscipy_neighbours[:neighbour_list]("ijdD", pyat, rcut) end function matscipy_nlist(at::Atoms{T}, rcut::T; recompute=false, kwargs...) where T <: AbstractFloat i, j, r, R = asenlist(at, rcut) i = copy(i) .+ 1 j = copy(j) .+ 1 r = copy(r) R = collect(vecs(copy(R'))) first = NeighbourLists.get_first(i, length(at)) NeighbourLists.sort_neigs!(j, r, R, first) return NeighbourLists.PairList(positions(at), rcut, i, j, r, R, first) end # -------------------------------------------------------- pynlist(at, cutoff) = matscipy_nlist(at, cutoff) jnlist(at, cutoff) = PairList(positions(at), cutoff, cell(at), pbc(at)) function test_nlist_julip(at, cutoff) nlist = jnlist(at, cutoff) py_nlist = pynlist(at, cutoff) return ( (nlist.i == py_nlist.i) && (nlist.j == py_nlist.j) && (nlist.r ≈ py_nlist.r) && (nlist.R ≈ py_nlist.R) ) end test_configs = [ # ( "si, cubic, cluster, short", set_pbc!(bulk(:Si, cubic=true) * 3, false), 1.1 * rnn(:Si) ), # ( "si, cubic, cluster, med", set_pbc!(bulk(:Si, cubic=true) * 3, false), 2.1 * rnn(:Si) ), # ( "si, non-cubic cell, cluster, med", set_pbc!(bulk(:Si) * 5, false), 2.1 * rnn(:Si) ), # ( "si, non-cubic cell, pbc", set_pbc!(bulk(:Si) * 5, false), 2.1 * rnn(:Si) ), # ( "si, non-cubic cell, mixed bc", set_pbc!(bulk(:Si) * 5, false), 2.1 * rnn(:Si) ), # ("Ti, non-symmetric elongated cell, pbc", set_pbc!( set_cell!( Atoms(:Ti, X_Ti), C_Ti ), true ), 1.45 * rnn(:Ti) ), # ("Ti (hcp?) canonical cell, pbc", set_pbc!( bulk(:Ti) * 4, true ), 2.3 * rnn(:Ti) ), ] # ----------- A FEW MORE COMPLEX TESTS THAT FAILED AT SOME POINT --------------- # [1] a left-handed cell orientation # the test that failed during Cas' experiments X = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.92333044e+00 6.63816518e-17 -1.36000000e+00 1.92333044e+00 1.92333044e+00 -2.72000000e+00 3.84666089e+00 1.92333044e+00 -4.08000000e+00 ]' C = [ 3.84666089 0. 0. 0. 3.84666089 0. 0. 0. -5.44 ]' # X = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 # 1.92333044e+00 6.63816518e-17 1.36000000e+00 # 1.92333044e+00 1.92333044e+00 2.72000000e+00 # 3.84666089e+00 1.92333044e+00 4.08000000e+00 ]' # C = [ 3.84666089 0. 0. # 0. 3.84666089 0. # 0. 0. 5.44 ]' at = Atoms(:Si, collect(vecs(X))) set_cell!(at, C) set_pbc!(at, (true,true,true)) atlge = at * (1,1,10) rcut = 2.3*rnn(:Si) push!(test_configs, ("Si left-oriented", at, rcut)) push!(test_configs, ("Si left-oriented, large", atlge, rcut)) test_nlist_julip(at, rcut) test_nlist_julip(atlge, rcut) # # [2] vacancy in bulk Si # # using PyCall # at = bulk(:Si, cubic=true) # @pyimport ase.lattice.cubic as cubic # at2py = cubic.Diamond(symbol = "Si", latticeconstant = 5.43) # at2py[:get_positions]() # @test at2py[:get_cell]() ≈ cell(at1) # @test mat(positions(at1))' ≈ at2py[:get_positions]()[:,[3,2,1]] # # at = bulk(:Si, cubic=true) # at1 = at * 3 # X = mat(positions(at1)) # at1 = deleteat!(at1, 1) # at2 = deleteat!(set_positions!(at * 3, X[[3,2,1],:]), 1) # rcut = 2.3 * rnn(:Si) # test_nlist_julip(at1, rcut) # test_nlist_julip(at2, rcut) # [3] Two Ti configuration that seems to be causing problems C1 = @SMatrix [5.71757 -1.81834e-15 9.74255e-41; -2.85879 4.95156 4.93924e-25; 4.56368e-40 9.05692e-25 9.05629] X1 = vecs([0.00533847 2.85879 -1.42939 1.42939 0.0 2.85879 -1.42939 1.42939 -1.43e-6 2.85878 -1.42939 1.42939 -1.43e-6 2.85878 -1.42939 1.42939; -0.0 -0.0 2.47578 2.47578 0.0 -0.0 2.47578 2.47578 1.65052 1.65052 4.1263 4.1263 1.65052 1.65052 4.1263 4.1263; 0.00845581 0.0 0.0 0.0 4.52815 4.52815 4.52815 4.52815 2.26407 2.26407 2.26407 2.26407 6.79222 6.79222 6.79222 6.79222]) |> collect C2 = @SMatrix [5.71757 0.0 0.0; -2.85879 4.95156 0.0; 0.0 0.0 9.05629] X2 = vecs([0.00534021 2.85879 -1.42939 1.42939 0.0 2.85879 -1.42939 1.42939 0.0 2.85879 -1.4294 1.4294 0.0 2.85879 -1.4294 1.4294; 0.0 0.0 2.47578 2.47578 0.0 0.0 2.47578 2.47578 1.65052 1.65052 4.1263 4.1263 1.65052 1.65052 4.1263 4.1263; 0.00845858 0.0 0.0 0.0 4.52815 4.52815 4.52815 4.52815 2.26407 2.26407 2.26407 2.26407 6.79222 6.79222 6.79222 6.79222]) |> collect at1 = set_cell!(Atoms(:Ti, X1), C1) at2 = set_cell!(Atoms(:Ti, X2), C2) rcut = 2.5 * rnn(:Ti) test_nlist_julip(at1, rcut) test_nlist_julip(at2, rcut) # --------------- ACTUALLY RUNNING THE TESTS ------------------ println("JuLIP Configuration tests:") for (i, (descr, at, cutoff)) in enumerate(test_configs) print("TEST $i: $descr => ") println(@test test_nlist_julip(at, cutoff)) end
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
2645
using ForwardDiff, StaticArrays, NeighbourLists using Test, LinearAlgebra, Printf # uncomment for testing from editor/file # include("test_aux.jl") let rcut = 3.0 fn, fn_d = gen_fnbody(rcut) function naive_n_body(X::Vector{SVec{T}}, f, M, rcut) where {T} N = length(X) E = 0.0 cnt = 0 start = CartesianIndex(ntuple(_->1, M)) stop = CartesianIndex(ntuple(_->N, M)) for j in CartesianIndices(start, stop) s = zeros(T, (M*(M-1))÷2); n = 0 for a = 1:M-1, b = a+1:M n += 1 s[n] = norm(X[j[a]] - X[j[b]]) end if 0 < minimum(s) && maximum(s) <= rcut # each of these terms occur factorial(M) times, i.e. for # every permutation of the indices! E += f(s) / factorial(M) end end return E end vecs(V::Vector{T}) where {T} = reinterpret(SVector{3,T}, V, (length(V) ÷ 3,)) mat(V::Vector{SVector{3,T}}) where {T} = reinterpret(T, V, (3, length(V))) # NOT NEEDED - WE DO FINITE-DIFFERENCE TESTS INSTEAD! # function grad_naive_n_body(X, f, M, rcut) # x = mat(X)[:] # g = ForwardDiff.gradient( y -> naive_n_body(vecs(y), f, M, rcut), x) # return vecs(g) # end println("--------------------------------------") println(" Testing NBodyIterator") println("--------------------------------------") println("Check that the energy is consistent with a naive implementation") MM = [2,2,3,3,3,4,4,5] # body orders println(" N Nat => |Emr-Enaive|") for M in MM # create a not-too-large copper cell X, C, _ = rand_config(2) nat = length(X) # assemble energy via neighbourlist and map-reduce Emr = n_body(X, fn, M, rcut, C) # assemble energy naively Enaive = naive_n_body(X, fn, M, rcut) println(" $M $nat => $(abs(Emr - Enaive))") @test Emr ≈ Enaive end println("--------------------------------------") println("Finite-difference tests") MM = [2,3,4,5] # body orders for M in MM println(" [M = $M]") X, C, pbc = rand_config(2) if M > 3 pbc = [false, false, false] end @show pbc nat = length(X) dE = grad_n_body(X, fn_d, M, rcut, C, pbc) dE = mat(dE)[:] E = n_body(X, fn, M, rcut, C, pbc) @printf(" h | error \n") @printf("---------|----------- \n") x = mat(X)[:] errors = [] for p = 2:11 h = 0.1^p dEh = copy(dE) for n = 1:length(dE) x[n] += h dEh[n] = (n_body(vecs(x), fn, M, rcut, C, pbc) - E) / h x[n] -= h end push!(errors, vecnorm(dE - dEh, Inf)) @printf(" %1.1e | %4.2e \n", h, errors[end]) end @test minimum(errors) <= 1e-3 * maximum(errors) end end # let block
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
docs
1118
# NeighbourLists.jl A Julia port and restructuring of the neighbourlist implemented in [matscipy](https://github.com/libAtoms/matscipy) (with the authors' permission). Single-threaded, the Julia version is faster than matscipy for small systems, probably due to the overhead of dealing with Python, but on large systems it is tends to be slower (up to around a factor 2 for 100,000 atoms). The package is can be used stand-alone, with [JuLIP.jl](https://github.com/libAtoms/JuLIP.jl), or with [AtomsBase.jl](https://github.com/JuliaMolSim/AtomsBase.jl). ## Getting Started ```Julia Pkg.add("NeighbourLists") using NeighbourLists ?PairList ``` ### Usage via `AtomsBase.jl` ```julia using ASEconvert, NeighbourLists, Unitful cu = ase.build.bulk("Cu") * pytuple((4, 2, 3)) sys = pyconvert(AbstractSystem, cu) nlist = PairList(sys, 3.5u"Å") neigs_1, Rs_1 = neigs(nlist, 1) ``` ### Usage via `JuLIP.jl` ```julia using JuLIP at = bulk(:Cu) * (4, 2, 3) nlist = neighbourlist(at, 3.5) neigs_1, Rs_1 = neigs(nlist, 1) ``` Please also look at the tests on how to use this package. Or just open an issue and ask.
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
code
812
module ForestBiometrics const K = 0.005454154 const KMETRIC = 0.00007854 struct Metric end const metric = Metric() include("tree.jl") include("stand.jl") include("density.jl") include("charts.jl") include("height.jl") include("expansion.jl") export Tree export Stand export basal_area, basal_area! export trees_per_area, trees_per_area! export qmd, qmd! export sdi export gingrich_chart export reineke_chart export HeightModel export estimate_height, estimate_height! export curtis, michailoff, meyer, micment, micment2, naslund, naslund2, naslund3, naslund4, power, wyckoff #3 parameter equations, mainly from LMFOR R package #sorted alphabetically export chapman, gompertz, hossfeldIV, korf, logistic, monserud, prodan, ratkowsky, sibbesen, weibull export /, collapse, collapse!, expand, expand! end
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
code
2708
#Gingrich stocking chart calculated using the original upland oak parameters #for more information see:http://oak.snr.missouri.edu/silviculture/tools/gingrich.html using RecipesBase ## eqs for gingrich chart amd_convert(qmd) = -0.259 + 0.973qmd get_tpa(j, i, a) = (1*j*10)/(a[1]+a[2]*amd_convert(i)+a[3]*i^2) function stklines(stk, dia, a) tpa = get_tpa.(stk', dia, Ref(a)) ba = pi * (dia ./ 24).^2 .* tpa tpa, ba end @userplot gingrich_chart @recipe function f(dat::gingrich_chart) #define parameters a = [-0.0507, 0.1698, 0.0317] b = [0.175, 0.205, 0.06] #QMD lines dia = [7, 8, 10, 12, 14, 16, 18, 20, 22] #stocking percent horizontal lines stk_percent= 20:10:110 # plot attributes xlabel --> "Trees Per Acre" ylabel --> "Basal Area (sq ft./acre)" xticks --> 0:50:450 yticks --> 0:20:200 legend := false primary := false tpa, ba = stklines(stk_percent, dia, a) # horizontal lines @series begin linecolor := :black tpa, ba end # vertical lines @series begin linecolor := :black tpa', ba' end # upper red line @series begin linecolor := :red stklines([100], dia, a) end # lower red line @series begin linecolor := :red stklines([100], dia, b) end # the point and the annotations @series begin primary := true seriestype := :scatter annotations := (100:38:442, 20:10:110, ["$i%" for i in 20:10:110]) x,y = dat.args [x], [y] end end function gingrich_chart(s::Stand) gingrich_chart(s.trees_per_area,s.basal_area) end ##Reineke SDI chart @userplot reineke_chart @recipe function f(dat::reineke_chart ; maxsdi=450) diarng = 1:1:50 #tparng = [1,1200] #unusued for now, TODO: figure out how to autoscale plot? maxline() = maxsdi ./ (diarng ./ 10.0).^1.605 # plot attributes xlabel --> "Trees Per Acre" ylabel --> "Quadratic Mean Diameter" xticks --> [1,5,10,50,100,500,1000] yticks --> [1,2,5,10,20] xscale --> :log10 yscale --> :log10 legend := false primary := false formatter --> x -> string(convert(Int,round(x,digits=2))) title --> "Maximum SDI of $maxsdi" #max SDI line @series begin linecolor := :black maxline(), diarng end #competition induced mortality SDI line @series begin linecolor := :orange maxline() * 0.55, diarng end #crown closure SDI line @series begin linecolor := :red maxline() * 0.35, diarng end # the point and the annotations @series begin primary := true seriestype := :scatter #annotations := (100:38:442, 20:10:110, ["$i%" for i in 20:10:110]) x,y = dat.args [x], [y] end end function reineke_chart(s::Stand) reineke_chart(s.trees_per_area, s.qmd) end
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
code
1184
#Reineke SDI calculation function sdi(s::Stand) return s.trees_per_area * ((s.qmd / 10.0) ^ 1.605) end function qmd(s::Stand) sum_d2 = 0.0 @simd for i in eachindex(s.treelist) @inbounds sum_d2 += (s.treelist[i].diameter ^ 2 * s.treelist[i].expansion) end qmd = ismissing(s.trees_per_area) ? sqrt(sum_d2 / s.trees_per_area) : sqrt(sum_d2 / trees_per_area(s)) return qmd end function qmd!(s::Stand) s.qmd = qmd(s) end function basal_area(s::Stand) ba = 0.0 @simd for i in eachindex(s.treelist) @inbounds ba += basal_area(s.treelist[i]) * s.treelist[i].expansion end return ba end function basal_area!(s::Stand) s.basal_area = basal_area(s) end function basal_area!(s::Stand,m::Metric) s.basal_area = basal_area(s, metric) end function basal_area(t::Tree) return ((t.diameter ^ 2) * K) end function basal_area(t::Tree,m::Metric) return ((t.diameter ^ 2) * KMETRIC) end function trees_per_area(s::Stand) tpa = 0.0 @simd for i in eachindex(s.treelist) @inbounds tpa += s.treelist[i].expansion end return tpa end function trees_per_area!(s::Stand) s.trees_per_area = trees_per_area(s) end
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
code
1751
using IterTools #functions to collapse multiple tree records into a single tree record with sum of expansions Base.isless(lhs::Tree, rhs::Tree) = isless((lhs.diameter, lhs.height, lhs.species), (rhs.diameter, rhs.height, rhs.species)) function collapse(ta::Array{Tree,1}) !issorted(ta) && sort(ta) #group by diameter,height,species- needs to be sorted tgroups = groupby(s -> (s.diameter,s.height,s.species),sort(ta)) # Extract the diameter,height,species from the group members trees = imap(s ->(s[1].diameter,s[1].height,s[1].species), tgroups) # Compute the sum of expansion expans = sum.(imap(x -> getfield.(x, :expansion), tgroups)) #combine to new Array{Tree} return [Tree((t...,s)...) for (t,s) in zip(trees,expans)] end function collapse!(s::Stand) s.treelist = collapse(s.treelist) end #functions to split a single Tree instance into many depending on its expansion function expand(t::Tree; min_exp = 1.0) ch = Channel() do c cnt = t.expansion while cnt > 0.0 new_exp = cnt % min_exp != 0.0 ? cnt % min_exp : min_exp put!(c, Tree(t.diameter, t.height, t.species, new_exp)) cnt -= new_exp end end collect(ch) end function expand(ta::Array{Tree,1}; min_exp = 1.0) ch = Channel() do c for t in ta cnt = t.expansion while cnt > 0.0 new_exp = cnt % min_exp != 0.0 ? cnt % min_exp : min_exp put!(c, Tree(t.diameter, t.height, t.species, new_exp)) cnt -= new_exp end end end collect(ch) end function expand!(s::Stand) s.treelist= expand(s.treelist) end function Base.:/(t1::Tree, denom::Number) expand(t1, min_exp =(t1.expansion/denom)) end
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
code
1396
struct HeightModel <: Function formula::Function b end ##named equations #2 parameter equations, mainly from the LMFOR R package #sorted alphabetically curtis=(x,b)->4.5+b[1]*((x/1+x)^b[2]) michailoff=(x,b)->4.5+b[1]*exp(-b[2]*x^(-1)) meyer=(x,b)->4.5+b[1]*(1-exp(-b[2]*x)) micment=(x,b)->4.5+b[1]*x/(b[2]+x) micment2=(x,b)-> 4.5+x/(b[1]+b[2]*x) naslund=(x,b)->4.5+(x^2/(b[1]+b[2]*x)^2) naslund2=(x,b)-> 4.5+x^2/(b[1]+exp(b[2])*x)^2 naslund3=(x,b)-> 4.5+x^2/(exp(b[1]) + b[2]*x)^2 naslund4=(x,b)-> 4.5+x^2/(exp(b[1]) +exp(b[2])*x)^2 power=(x,b)-> 4.5+b[1]*x^b[2] wyckoff=(x,b)->4.5+exp(b[1]+(b[2]/(x+1))) #3 parameter equations, mainly from LMFOR R package #sorted alphabetically chapman=(x,b)->4.5+b[1]*(1-exp(-b[2]*x))^b[3] gompertz=(x,b)->4.5+b[1]*exp(-b[2]*exp(-b[3]*x)) hossfeldIV=(x,b)->4.5+b[1]/(1+1/(b[2]*x^b[3])) korf=(x,b)->4.5+b[1]*exp(-b[2]*x^-b[3]) logistic=(x,b)->4.5+b[1]/(1+b[2]*exp(-b[3]*x)) monserud=(x,b)->4.5+exp(b[1]+(b[2]*x*b[3])) prodan=(x,b)->4.5+x^2/(b[1]+b[2]*x+b[3]*x^2) ratkowsky=(x,b)->4.5+b[1]*exp(-b[2]/(x+b[3])) sibbesen=(x,b)->4.5+b[1]*x^(b[2]*x^(-b[3])) weibull=(x,b)->4.5+b[1]*(1-exp(-b[2]*x^b[3])) function estimate_height(t::Tree,hd::HeightModel) hd.formula(t.diameter, hd.b[t.species]) end function estimate_height!(t::Tree,hd::HeightModel) t.height = ismissing(t.height) ? hd.formula(t.diameter, hd.b[t.species]) : t.height end
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
code
219
mutable struct Stand treelist::Array{Tree,1} basal_area::Union{Real,Missing} trees_per_area::Union{Real,Missing} qmd::Union{Real,Missing} end Stand(tl::Array{Tree,1}) = Stand(tl,missing,missing,missing)
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
code
113
struct Tree diameter::Real height::Union{Real,Missing} species::Union{AbstractString,Real} expansion::Real end
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
code
12976
abstract type Log end mutable struct LogSegment<:Log small_end_diam large_end_diam length #shape #? end abstract type Shape end function area(diameter) a=K * diameter^2 return a end #Table 6.1 form Kershaw et al Forest Mensuration #Equations to compute Cubic Volume of Important Solids # Equation 6.1 #V=AₗL where Aₗ is the area of the base(large end). mutable struct Cylinder length large_end_diam end function volume(solid::Cylinder) V = area(solid.large_end_diam)*solid.length return V end #Equation 6.2 #V= 1/2(AₗH) #Paraboloid mutable struct Paraboloid length large_end_diam end function volume(solid::Paraboloid) V = 1/2(area(solid.large_end_diam))*solid.length V end #Equation 6.3 #V=1/3(AₗL) #Cone #PREDICT CUBIC FOOT VOLUME FOR A CONIC SEGMENT SUCH AS A STEM TIP mutable struct Cone length large_end_diam end function volume(solid::Cone) V = 1/3(area(solid.large_end_diam))*solid.length return V end #Equation 6.4 #V=1/4(AₗL) #Neiloid mutable struct Neiloid length large_end_diam end function volume(solid::Neiloid) V = 1/4(area(solid.large_end_diam))*solid.length return V end #Equation 6.5- Smalian's formula #V=L/2(Aₗ + Aₛ) where L is the length and Aₛ is the area of the upper end (or small end) #Paraboloid frustrum #Equation 6.6 - Huber's formula #V=AₘL where Aₘ is the area at middle point #Paraboloid frustrum #Equation 6.9 - Newton's formula #V=L/6(Aₗ + 4*Aₘ + Aₛ) #Neiloid,Paraboloid or Conic Frustrum mutable struct ParaboloidFrustrum length large_end_diam mid_point_diam #can set to nothing ( or missing in 0.7.0+?) small_end_diam end function volume(solid::ParaboloidFrustrum; huber=false, newton = false) if huber == true V = area(solid.mid_point_diam) * solid.length elseif newton == true V = (solid.length/6) * (area(solid.large_end_diam) + 4*area(solid.mid_point_diam) + area(solid.small_end_diam)) else V = area(solid.large_end_diam) + area(solid.small_end_diam) * (solid.length/2) end return V end #Equation 6.7 #V=L/3(Aₗ + sqrt(Aₗ*Aₛ) + Aₛ) mutable struct ConeFrustrum length large_end_diam mid_point_diam #can set to nothing small_end_diam end function volume(solid::ConeFrustrum; newton=false) if newton == true V = (solid.length/6) * (area(solid.large_end_diam) + 4*area(solid.mid_point_diam) + area(solid.small_end_diam)) else V = area(solid.large_end_diam) + area(solid.small_end_diam) * (solid.length/2) end return V end #Equation 6.8 #V=L/4(Aₗ + cbrt(Aₗ²*Aₛ) + cbrt(Aₗ*Aₛ²) + Aₛ) mutable struct NeiloidFrustrum length large_end_diam mid_point_diam #can set to nothing small_end_diam end function volume(solid::NeiloidFrustrum; newton=false) if newton == true V = (solid.length/6) * (area(solid.large_end_diam) + 4*area(solid.mid_point_diam) + area(solid.small_end_diam)) else V = (solid.length/4) * (cbrt(area(solid.large_end_diam)^2 * area(solid.small_end_diam)) + cbrt((K * solid.large_end_diam^2) * area(solid.small_end_diam)^2) + area(solid.small_end_diam)) end return V end macro LogSegment(a,b,c,d,shape) return :($shape($a,$b,$c,$d)) end #@LogSegment(24,12,nothing,8,ParaboloidFrustrum) #Function to calculate the Scribner scale volume #for more info see: http://oak.snr.missouri.edu/forestry_functions/scribnerbfvolume.php ## Scribner Decimal C table using OffsetArrays scribner_decimal_c=OffsetArray([[5 5 5 5 5 5 10 10 10 10 10 10 20 20 20 20 20]; [5 5 5 5 5 5 10 10 10 10 10 10 20 20 20 20 20]; [5 5 5 10 10 10 10 20 20 20 20 20 30 30 30 30 30]; [5 10 10 10 10 10 20 20 20 20 20 20 30 30 30 30 30]; [10 10 10 20 20 20 30 30 30 30 30 30 40 40 40 40 40]; [10 10 20 20 30 30 30 30 30 40 40 50 60 60 60 60 70]; [10 20 20 20 30 30 40 40 40 50 50 60 70 70 80 80 80]; [20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 100 100]; [20 30 40 40 50 50 60 70 70 80 80 90 100 100 110 120 120]; [30 40 40 50 60 60 70 80 90 90 100 110 110 120 130 140 140]; [40 40 50 60 70 80 90 100 110 120 120 130 140 150 160 170 180]; [40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200]; [50 60 70 80 90 100 120 130 140 150 160 170 180 200 210 220 230]; [50 70 80 90 110 120 130 150 160 170 190 200 210 230 240 260 270]; [60 80 90 100 120 130 150 160 180 190 210 220 240 250 270 280 300]; [70 90 110 120 140 160 170 190 210 230 240 260 280 300 310 330 350]; [80 100 120 130 150 170 190 210 230 250 270 280 300 320 340 360 380]; [80 100 130 150 170 190 210 230 250 270 290 310 330 350 380 400 420]; [90 120 140 160 190 210 230 260 280 310 330 350 380 400 420 440 470]; [100 130 150 180 210 230 250 280 300 330 350 380 400 430 450 480 500]; [110 140 170 200 230 260 290 310 340 370 400 430 460 490 520 540 570]; [120 160 190 220 250 280 310 340 370 410 440 470 500 530 560 590 620]; [140 170 210 240 270 310 340 380 410 440 480 510 550 580 620 650 680]; [150 180 220 250 290 330 360 400 440 470 510 540 580 620 650 690 730]; [150 190 230 270 310 350 380 420 460 490 530 570 610 650 680 720 760]; [160 210 250 290 330 370 410 450 490 530 570 620 660 700 740 780 820]; [180 220 270 310 360 400 440 490 530 580 620 670 710 750 800 840 890]; [180 230 280 320 370 410 460 510 550 600 640 690 740 780 830 880 920]; [200 240 290 340 390 440 490 540 590 640 690 730 780 830 880 930 980]; [200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000]; [220 270 330 380 440 490 550 600 660 710 770 820 880 930 980 1040 1090]; [230 290 350 400 460 520 580 630 690 750 810 860 920 980 1040 1100 1150]; [260 320 390 450 510 580 640 710 770 840 900 960 1030 1090 1160 1220 1290]; [270 330 400 470 540 600 670 730 800 870 930 1000 1070 1130 1200 1260 1330]; [280 350 420 490 560 630 700 770 840 910 980 1050 1120 1190 1260 1330 1400]; [300 380 450 530 600 680 750 830 900 980 1050 1130 1200 1280 1350 1420 1500]; [320 390 480 560 640 720 790 870 950 1030 1110 1190 1270 1350 1430 1510 1590]; [330 420 500 590 670 760 840 920 1010 1090 1170 1260 1340 1430 1510 1600 1680]; [350 430 520 610 700 790 870 960 1050 1130 1220 1310 1400 1480 1570 1660 1740]; [370 460 560 650 740 830 930 1020 1110 1200 1290 1390 1480 1570 1660 1760 1850]; [380 470 570 660 760 850 950 1040 1140 1230 1330 1430 1520 1610 1710 1800 1900]; [390 490 590 690 790 890 990 1090 1190 1290 1390 1490 1590 1690 1780 1880 1980]; [410 520 620 720 830 930 1040 1140 1240 1340 1450 1550 1660 1760 1860 1960 2070]; [430 540 650 760 860 970 1080 1190 1300 1400 1510 1620 1730 1840 1940 2050 2160]; [450 560 670 790 900 1010 1120 1240 1350 1460 1570 1680 1800 1910 2020 2140 2250]; [470 580 700 820 940 1050 1170 1290 1400 1520 1640 1750 1870 1990 2110 2220 2340]],5:50,4:20) function scribner_volume(small_end_diam,length;decimal_C=false) if decimal_C==false log_bf=((0.79*small_end_diam^2)-(2*small_end_diam)-4)*(length/16) return log_bf elseif decimal_C==true # ROUND DIB TO NEAREST INTEGER, ROUND LOGFEET DOWN TO NEXT INTEGER scale_dib=ceil(Int64,small_end_diam) log_feet=floor(Int64,length) println(scale_dib,log_feet) if scale_dib > 5 && scale_dib < 50 && log_feet > 4 && log_feet < 20 #STANDARD SIZE LOG, USE LOOKUP TABLE log_bf=scribner_decimal_c[scale_dib,log_feet]*1.0 else #OVERSIZE LOG, I.E., DIB>50 AND/OR LOGLENGTH>20, USE FORMULA VERSION log_bf=scribner_volume(scale_dib,log_feet,decimal_C=false) return log_bf end end end #Function to calculate the Doyle scale volume #for more info see: http://oak.snr.missouri.edu/forestry_functions/doylebfvolume.php function doyle_volume(small_end_diam,length) volume=((small_end_diam-4.0)/4.0)^2*length return volume end #Function to calculate the International scale volume #for more info see: http://oak.snr.missouri.edu/forestry_functions/int14bfvolume.php function international_volume(small_end_diam,length) if length == 4 volume = 0.22*small_end_diam^2-0.71*small_end_diam elseif length == 8 volume = 0.44*small_end_diam^2-1.20*small_end_diam-0.30 elseif length == 12 volume = 0.66*small_end_diam^2 - 1.47 * small_end_diam - 0.79 elseif length == 16 volume = 0.88 * small_end_diam^2 - 1.52 * small_end_diam - 1.36 elseif length == 20 volume = 1.10 * small_end_diam^2 - 1.35 * small_end_diam - 1.90 elseif length == 24 volume = 1.10 * small_end_diam^2 - 1.35 * small_end_diam - 1.90 + 0.22 * small_end_diam^2 - 0.71 * small_end_diam elseif length == 28 volume = 1.10 * small_end_diam^2 - 1.35 * small_end_diam - 1.90 + 0.44 * small_end_diam^2 - 1.20 * small_end_diam - 0.30 elseif length == 32 volume = 1.10 * small_end_diam^2 - 1.35 * small_end_diam - 1.90 + 0.66 * small_end_diam^2 - 1.47 * small_end_diam - 0.79 elseif length == 36 volume = 1.10 * small_end_diam^2 - 1.35 * small_end_diam - 1.90 + 0.88 * small_end_diam^2 - 1.52 * small_end_diam - 1.36 elseif length == 40 volume = (1.10 * small_end_diam^2 - 1.35 * small_end_diam - 1.90 )*2 return volume end end #### #I don't know what a NVEL/Volume Equations API should look like? #Various attempts below... #introduce abstract super types abstract type VolumeEquation end abstract type MerchSpecs end mutable struct Sawtimber<:MerchSpecs std_length trim min_length max_length min_dib stumpht end s=Sawtimber(16.0,0.5,8.0,20.0,6.0,1.0) mutable struct Fiber<:MerchSpecs min_length std_length min_dib min_dbh end #Fiber(8.0,20.0,2.6,4.6) mutable struct Pulp<:MerchSpecs min_live_dib #pulp sawlogs min_dead_dib #pulp sawlogs end #Pulp(6.0,6.0) ####work in progress #bark thickness separate? function dib_to_dob() end #PREDICT DIAMETER INSIDE BARK AT ANY LOGICAL HEIGHT function get_dib(species,dbh,tht,ht) end #PREDICT THE HEIGHT AT WHICH A SPECIFIED DIAMETER INSIDE BARK OCCURS function get_height_to_dib(species,dbh,tht,dib) end #TO BREAK A SAWTIMBER BOLE INTO LOGS AND POPULATE THE SEGMENT LENGTH function stem_buck(m::Sawtimber) #DETERMINE LENGTH OF BOLE TO DIVIDE INTO LOGS bole_length=52.9815 #bole_length=ht2sawdib-stumpht #DETERMINE THE NUMBER OF FULL STANDARD LENGTH LOGS POSSIBLE n_logs=floor(Int64,bole_length/(m.std_length+m.trim)) #POPULATE SEGLEN WITH STANDARD LOG LENGTHS TO START seg_length=zeros(n_logs) for i in 1:n_logs seg_length[i]=m.std_length+m.trim end #ADJUST LOG LENGTHS ACCORDING TO BUCKING RULE AND AMOUNT OF SAWTIMBER EXCESS saw_excess=bole_length-n_logs*(m.std_length+m.trim) isaw_excess=floor(Int64,saw_excess/2.0)*2 if n_logs == floor(Int64,n_logs/2.0)*2 even=true else even=false end if isaw_excess >=2.0 && isaw_excess<6.0 #EXTRA SAWEXCESS IS 2' OR 4' if even if isaw_excess == 2.0 seg_length[n_logs-1]=seg_length[n_logs-1]+2.0 # Add 2' to last log else seg_length[n_logs-1]=seg_length[n_logs-1]+2.0 # Add 2' to top 2 logs seg_length[n_logs]=seg_length[n_logs]+2.0 end else seg_length[n_logs]=seg_length[n_logs] + isaw_excess #Add 2' or 4' to top log end elseif isaw_excess>=6.0 if (saw_excess-m.trim) >= m.min_length n_logs=n_logs+1 # Create whole new log push!(seg_length,isaw_excess+m.trim) #seg_length[n_logs]=isaw_excess+m.trim else n_logs=n_logs+1 # Create new log, split top saw_excess=saw_excess+seg_length[n_logs-1] seg_length[n_logs]=floor(Int64,saw_excess-(2.0*m.trim)/4.0)*2.0+m.trim seg_length[n_logs-1]=floor(saw_excess-seg_length[n_logs]-m.trim/2.0)*2.0+m.trim end end #FAILSAFE TO ENSURE LOGS ARE OF SUFFICIENT LENGTH (B/T MIN SCALE LEN AND MAXLEN) sawtop=m.stumpht for i in 1:n_logs if seg_length[i]<(m.min_length+m.trim) seg_length[i]=0 elseif seg_length[i] > (m.max_length+m.trim) seg_length[i]=(m.max_length+m.trim) end #DETERMINE SAWTOP sawtop=seg_length[i] return seg_length end end stem_buck(s) function stem_buck(m::Fiber) fiber_bole=30 #DETERMINE THE NUMBER OF FULL STANDARD LENGTH FIBER LOGS POSSIBLE n_logs_fiber=floor(Int64,bole_length/m.std_length) #POPULATE SEGLEN WITH STANDARD LOG LENGTHS TO START for i in n_logs+1:n_logs+n_logs_fiber seg_length[i]=m.std_length end #SEE IF ADDITIONAL FIBER ABOVE STANDARD LENGTH LOGS CONSTITUTES A FIBER LOG fiber_excess=fiber_bole-(n_logs_fiber*m.std_length) if fiber_excess>m.min_length n_logs_fiber=n_logs_fiber+1 seg_length[n_logs+n_logs_fiber] = fiber_excess end end #TO ASSIGN PRODUCT CLASSES TO EACH LOG SEGMENT IN A SINGLE TREE function prod_classify() end #TO MERCHANDIZE AN INDIVIDUAL TREE WITH PREVIOUSLY BUCKED LOGS AND #PRODUCTS ASSIGNED TO INDIVIDUAL LOGS INTO PIECES, AND DEVELOP THE NECESSARY PIECE INFORMATION (DIB,LEN,GRS,NET,NPCS) function merchandize_tree() end
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
code
966
using ForestBiometrics using DelimitedFiles using Test using Plots datapath = joinpath(@__DIR__, "data") data = readdlm(joinpath(datapath,"StandExam_data.csv"),',',header=true) tl = Tree[] for i in eachrow(data[1]) push!(tl,Tree(i[7], i[8], i[6], i[9])) end stand = Stand(tl) @test isapprox(basal_area(stand), 90.58823529) basal_area!(stand) @test isapprox(stand.basal_area, 90.58823529) @test isapprox(trees_per_area(stand), 147.8593658) trees_per_area!(stand) @test isapprox(stand.trees_per_area, 147.8593658) qmd!(stand) @test isapprox(stand.qmd, 10.5985824) @test isapprox(sdi(stand),162.3198113) @test typeof(gingrich_chart(400, 80)) == Plots.Plot{Plots.GRBackend} @test typeof(gingrich_chart(stand)) == Plots.Plot{Plots.GRBackend} @test typeof(reineke_chart(500, 8)) == Plots.Plot{Plots.GRBackend} @test typeof(reineke_chart(stand)) == Plots.Plot{Plots.GRBackend} @test typeof(reineke_chart(500,8;maxsdi=600)) == Plots.Plot{Plots.GRBackend}
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
code
812
using ForestBiometrics tl1 = [ Tree(10.0,65,"WO",1.0), Tree(10.0,65,"WO",1.0), Tree(10.0,65,"WO",1.0), Tree(10.0,65,"WO",1.0)] tl2 = [ Tree(10.0,65,"WO",1.0), Tree(10.0,60,"WO",1.0), Tree(10.0,65,"WO",1.0), Tree(10.0,65,"WO",1.0)] tl3 = [ Tree(10.0,65,"WO",1.0), Tree(10.0,60,"WO",1.0), Tree(10.0,60,"WO",1.0), Tree(10.0,65,"WO",1.0), Tree(10.0,70,"WO",1.0)] @test length(collapse(tl1)) == 1 @test length(collapse(tl2)) == 2 @test length(collapse(tl3)) == 3 t1 = Tree(12.0,65,"WO",4.25) t2 = Tree(12.0,65,"WO",10) tl4 = [Tree(12.0,60,"WO",5), Tree(10.0,65,"WO",5), Tree(12.0,60,"WO",1), Tree(10.0,65,"WO",1)] @test length(expand(t1)) == 5 @test length(expand(t1, min_exp = 2)) == 3 @test length(expand(tl4)) == 12 @test length(t2 / 3.0) == 3 s1 = Stand(tl4) expand!(s1) @test length(s1.treelist) == 12
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
code
2325
using ForestBiometrics using DelimitedFiles datapath = joinpath(@__DIR__, "data") data=readdlm(joinpath(datapath,"IEsubset_Data_CSV.csv"),',',header=true) tl = Tree[] for i in eachrow(data[1]) push!(tl,Tree(i[10], missing, i[9], i[7])) end # 2 parameter Wyckoff coefficients. Default values for IE variant of FVS FVS_IE=Dict{String,Array{Float64}}( "WP"=>[5.19988 -9.26718], "WL"=>[4.97407 -6.78347], "DF"=>[4.81519 -7.29306], "GF"=>[5.00233 -8.19365], "WH"=>[4.97331 -8.19730], "RC"=>[4.89564 -8.39057], "LP"=>[4.62171 -5.32481], "ES"=>[4.9219 -8.30289], "AF"=>[4.76537 -7.61062], "PP"=>[4.9288 -9.32795], "MH"=>[4.77951 -9.31743], "WB"=>[4.97407 -6.78347], "LM"=>[4.19200 -5.16510], "LL"=>[4.76537 -7.61062], "PI"=>[3.20000 -5.00000], "RM"=>[3.20000 -5.00000], "PY"=>[4.19200 -5.16510], "AS"=>[4.44210 -6.54050], "CO"=>[4.44210 -6.54050], "MM"=>[4.44210 -6.54050], "PB"=>[4.44210 -6.54050], "OH"=>[4.44210 -6.54050], "OS"=>[4.77951 -9.31743] ) #using Wyckoff=(x,b)->4.5+exp(b[1]+(b[2]/(x+1))) wyk = HeightModel(wyckoff,FVS_IE) wyckoff_out= [estimate_height(i,wyk) for i in tl] wyckoff_test=[ 100.3704728 61.35043145 11.31948442 11.99184897 71.56773647 75.48849752 4.662859967 38.1318738 86.57926895 89.09331657 83.29702964 82.02991682 59.36359424 92.24130804 80.79924609 95.99589413 89.52703552 73.04225223 95.88342114 59.38502782 4.662859967 4.662859967 97.69440543 96.76176795 106.4984871 75.82474076 100.3704728 105.4603241 92.79168745 78.84582366 79.6182448 77.22661356 92.79168745 86.208065] @test isapprox(wyckoff_out, wyckoff_test) #test custom function p2=HeightModel((x,b)->4.5+x^b[1]^b[2],FVS_IE) user_eq_out = [estimate_height(i,p2) for i in tl] user_eq_test=[ 5.50000110437066 5.50000077727861 5.50000025616043 5.50000027222188 5.50000085504705 5.50000088557174 5.49997579696978 5.50000059480051 5.50000097615539 5.50000099792679 5.50000094851992 5.50002825335774 5.50002185801763 5.50003169790446 5.50000092800344 5.50003314012292 5.50000100174185 5.50000086646161 5.50003309510479 5.50000076242647 5.49997579696978 5.49997579696978 5.50003383536612 5.50003344996446 5.50000117082406 5.50000088821741 5.50000110437066 5.50000115899896 5.50003190202163 5.50002728005371 5.50002751279364 5.50002679851972 5.50003190202163 5.50002959423972] @test isapprox(user_eq_out, user_eq_test) #end test 2
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
code
81
include("density_test.jl") include("height_test.jl") include("expansion_test.jl")
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
0.3.0
a6ba6fb67518ba83b5dcc2f24b2e89d558e2a8cb
docs
4148
![Run CI on master](https://github.com/Crghilardi/ForestBiometrics.jl/workflows/Run%20CI%20on%20master/badge.svg) [![Coverage Status](https://coveralls.io/repos/github/Crghilardi/ForestBiometrics.jl/badge.svg?branch=master)](https://coveralls.io/github/Crghilardi/ForestBiometrics.jl?branch=master) # ForestBiometrics.jl A package for various forest mensuration and biometrics functions in Julia ForestBiometrics.jl is a package for working with forest measurements data and growth and yield modeling. This package was inspired by its R counterpart, the [lmfor package](https://CRAN.R-project.org/package=lmfor) with the addition of equations from the western US. For more info on lmfor, please see http://cs.uef.fi/~lamehtat/rcodes.htm It is my hope that the package not only ports existing functionality from other languages, but also showcases the abilities of Julia as a programming language and how concepts like multiple dispatch and metaprogramming can be used to solve domain-specific problems. ## Installation `] add https://github.com/Crghilardi/ForestBiometrics.jl` If you are interested in this package and would like to contribute, feel free to submit an issue or pull request. ## Design `ForestBiometrics` exports a `Tree` type and a `Stand` type for dispatch. The package was designed with fully expanded treelists in mind and makes no effort to accomodate plot data and plot compilation. A `Tree` is a minimalistic container of fields that are absolutely needed for basic measurements. Future work will focus on the ability to add arbitrary fields as needed. ```julia struct Tree diameter::Real height::Union{Real,Missing} species::Union{AbstractString,Real} expansion::Real end ``` Likewise a `Stand` is mainly an Array of `Tree` objects with some very minimal summary info fields ```julia mutable struct Stand treelist::Array{Tree,1} basal_area::Union{Real,Missing} trees_per_area::Union{Real,Missing} qmd::Union{Real,Missing} end ``` ## Example Usage ```julia using ForestBiometrics using DelimitedFiles using Plots #read csv with tree data (upland HW stand from northeast USA) datapath = joinpath(dirname(pathof(ForestBiometrics)), "..", "test/StandExam_data.csv") data = readdlm(datapath,',',header=true) tl = Tree[] #read data and create array of Tree for i in eachrow(data[1]) push!(tl,Tree(i[7], i[8], i[6], i[9])) end #create a Stand from the array of Tree stand = Stand(tl) ``` If just given a treelist, stand basal area, trees per area and qmd are intialized as missing. Once we have `Tree`s and a `Stand` created we can calculate a number of summary information including: ```julia #basal area of a single tree or the entire stand basal_area(tl[1]) basal_area(stand) #if the diameters are in cm basal_area(tl[1],metric) trees_per_area(stand) qmd(stand) sdi(stand) ``` We can update the Stand object summary field by using the bang version (!) of the functions ```julia basal_area!(stand) trees_per_area!(stand) qmd!(stand) ``` The package also exports a `HeightModel` that generalizes the process of estimating height from diameter using arbitrary model forms and parameters ```julia #create Tree with diameter but no height t1 = Tree(10.0,missing,"DF",1) #make dictionary of species specific parameters FVS_IE=Dict{String,Array{Float64}}( "WP"=>[5.19988 -9.26718], "WL"=>[4.97407 -6.78347], "DF"=>[4.81519 -7.29306], "GF"=>[5.00233 -8.19365]) #create HeightModel object using an named model form (exported by package) and the parameter dict above. #See src/height.jl for full list of existing #model forms. wyk = HeightModel(wyckoff,FVS_IE) estimate_height(t1, wyk) ``` ## Example outputs Gingrich stocking guides `gingrich_chart(stand)` <img src="https://raw.githubusercontent.com/Crghilardi/ForestBiometrics.jl/master/examples/Gingrich_chart_example.png" align="middle" /> SDI chart with lines at 100%, 55% and 35% max SDI `reineke_chart(stand)` `#or can define a max sdi explicity reineke_chart(stand; maxsdi = 250)` <img src="https://raw.githubusercontent.com/Crghilardi/ForestBiometrics.jl/master/examples/SDI_chart_example.png" align="middle" />
ForestBiometrics
https://github.com/Crghilardi/ForestBiometrics.jl.git
[ "MIT" ]
1.0.0
fa3f5f18fc4f7867ed9c92a06b38aac0311bbf95
code
4330
module SimpleBoids struct BoidState positions::Vector{Vector{Float64}} orientations::Vector{Vector{Float64}} end function norm(v1,v2) return sqrt(sum(x->x^2,v1-v2)) end function ruleOrientations!(orientations::Vector{Vector{Float64}},positions::Vector{Vector{Float64}},paramMaxRad::Float64,paramVelWeight::Float64) for i in eachindex(orientations) temp=[0.,0.] for j in eachindex(orientations) if i==j continue end if norm(positions[i],positions[j])>paramMaxRad continue end temp.+=orientations[j] end if temp[1]^2+temp[2]^2==0. continue end orientations[i][1]+=(temp[1]/sqrt(temp[1]^2+temp[2]^2)-orientations[i][1])*paramVelWeight orientations[i][2]+=(temp[2]/sqrt(temp[1]^2+temp[2]^2)-orientations[i][2])*paramVelWeight orientations[i]/=sqrt(orientations[i][1]^2+orientations[i][2]^2) end end function rulePosition!(orientations::Vector{Vector{Float64}},positions::Vector{Vector{Float64}},paramMaxRad::Float64,paramMinRad::Float64,paramPosWeight::Float64,paramRepWeight::Float64) for i in eachindex(orientations) temp=[0.,0.] N=0 temprepulse=[0.,0.] Nr=0 for j in eachindex(positions) if i==j continue end if norm(positions[i],positions[j])>paramMaxRad continue end if norm(positions[i],positions[j])<paramMinRad temprepulse.+=positions[j] Nr+=1 continue end temp.+=positions[j] N+=1 end if temp[1]^2+temp[2]^2!=0. temp/=N temp.-=positions[i] orientations[i][1]+=temp[1]/sqrt(temp[1]^2+temp[2]^2)*paramPosWeight orientations[i][2]+=temp[2]/sqrt(temp[1]^2+temp[2]^2)*paramPosWeight orientations[i]/=sqrt(orientations[i][1]^2+orientations[i][2]^2) end if temprepulse[1]^2+temprepulse[2]^2!=0. temprepulse/=Nr temprepulse.-=positions[i] orientations[i][1]-=temprepulse[1]/sqrt(temprepulse[1]^2+temprepulse[2]^2)*paramRepWeight orientations[i][2]-=temprepulse[2]/sqrt(temprepulse[1]^2+temprepulse[2]^2)*paramRepWeight orientations[i]/=sqrt(orientations[i][1]^2+orientations[i][2]^2) end end end function updateBoidState(state::BoidState,size::Float64,vel::Float64,paramMaxRad::Float64,paramMinRad::Float64,paramPosWeight::Float64,paramRepWeight::Float64,paramVelWeight::Float64) newstate=deepcopy(state) ruleOrientations!(newstate.orientations,newstate.positions,paramMaxRad,paramVelWeight) rulePosition!(newstate.orientations,newstate.positions,paramMaxRad,paramMinRad,paramPosWeight,paramRepWeight) for i in eachindex(newstate.positions) newstate.positions[i].+=newstate.orientations[i]*vel if newstate.positions[i][1]>size newstate.positions[i][1]=2*size-newstate.positions[i][1] newstate.orientations[i][1]*=-1 end if newstate.positions[i][1]<0 newstate.positions[i][1]*=-1 newstate.orientations[i][1]*=-1 end if newstate.positions[i][2]>size newstate.positions[i][2]=2*size-newstate.positions[i][2] newstate.orientations[i][2]*=-1 end if newstate.positions[i][2]<0 newstate.positions[i][2]*=-1 newstate.orientations[i][2]*=-1 end end return newstate end function randomOrientation() th=rand(Float64)*2*π return [cos(th),sin(th)] end function initializeRandomBoidState(numboids::Int64,size::Float64) return BoidState([[rand(Float64)*size,rand(Float64)*size] for i in 1:numboids],[randomOrientation() for i in 1:numboids]) end function runBoids(numboids::Int64,steps::Int64,size::Float64,vel::Float64,paramMaxRad::Float64,paramMinRad::Float64,paramPosWeight::Float64,paramRepWeight::Float64,paramVelWeight::Float64) out=[initializeRandomBoidState(numboids,size)] for i in 1:steps push!(out,updateBoidState(out[i],size,vel,paramMaxRad,paramMinRad,paramPosWeight,paramRepWeight,paramVelWeight)) end return out end end
SimpleBoids
https://github.com/jeanfdp/SimpleBoids.jl.git
[ "MIT" ]
1.0.0
fa3f5f18fc4f7867ed9c92a06b38aac0311bbf95
code
114
using SimpleBoids using Test @testset "SimpleBoids.jl" begin @test SimpleBoids.norm([1.,0.],[1.,0.])==0. end
SimpleBoids
https://github.com/jeanfdp/SimpleBoids.jl.git
[ "MIT" ]
1.0.0
fa3f5f18fc4f7867ed9c92a06b38aac0311bbf95
docs
319
# SimpleBoids A simple, unoptimized implementation of the Boids algorithim. Visualization has to be done seperately. [![Build Status](https://github.com/jeanfdp/SimpleBoids.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/jeanfdp/SimpleBoids.jl/actions/workflows/CI.yml?query=branch%3Amaster)
SimpleBoids
https://github.com/jeanfdp/SimpleBoids.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
code
845
push!(LOAD_PATH, "../src/") using Documenter, MahjongTiles makedocs( sitename="MahjongTiles.jl Documentation", format=Documenter.HTML( prettyurls=get(ENV, "CI", nothing) == "true" ), modules=[MahjongTiles], pages=[ "Home" => "index.md", "Mahjong Rules" => "rules_resources.md", "Anatomy of a Game" => [ "Building the Wall" => "building_wall.md", "Dealing the Hands" => "dealing.md", "Rounds of Gameplay" => "gameplay.md", "Scoring Hands" => "scoring.md", ], "API Reference" => [ "Tiles" => "tiles.md", "Decks/TilePiles" => "decks.md", "Hands" => "hands.md", ], ], ) deploydocs( repo = "github.com/tmthyln/MahjongTiles.jl.git", devbranch = "main", devurl="latest", )
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
code
328
module MahjongTiles export character, bamboo, circle, wind, dragon, flower, season # in addition, all the tiles are programmatically exported in tiles.jl # define the suits and all the tiles include("tiles.jl") # from the tiles, create decks of tiles for games include("decks.jl") # check "hands" include("hands.jl") end
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
code
4149
using Random """ A pile of tiles. An abstraction for a collection of Mahjong tiles, similar to a deque. Some properties: - ordered and unsorted - size only strictly decreases once created """ struct TilePile tiles::Vector{SuitedTile} end @doc """ TilePile(tiles) TilePile(name) Create a particular predefined/standard `TilePile` given the `name`, or create the `TilePile` from a specific list of tiles. ## Supported Names ### `:standard` 4 of each numbered tile from the 3 suits, plus 4 of each wind, 4 of each dragon, and the 8 flowers/seasons """ function TilePile(type::Symbol) if type == :standard tiles = [ SuitedTile(suit, i) for suit in all_suits for i in 1:max_number(suit) for _ in 1:typical_duplication(suit) ] else @warn "Not a recognized type of Mahjong game (don't know how to create a pile for it)" tiles = [] end return TilePile(tiles) end Base.:(==)(this::TilePile, that::TilePile) = this.tiles == that.tiles Base.hash(tp::TilePile, h::UInt) = hash(tp.tiles, h) Base.length(tp::TilePile) = length(tp.tiles) Base.first(tp::TilePile) = first(tp.tiles) Base.first(tp::TilePile, n::Integer) = first(tp.tiles, n) Base.last(tp::TilePile) = last(tp.tiles) Base.last(tp::TilePile, n::Integer) = last(tp.tiles, n) Base.iterate(tilepile::TilePile) = iterate(tilepile.tiles) Base.iterate(tilepile::TilePile, state) = iterate(tilepile.tiles, state) """ popfirst!(tilepile) Remove the "first" tile from the tile pile. Removing from this end is intended to be used for flower/four-of-a-kind replacement (this is to improve average performance). """ Base.popfirst!(tp::TilePile) = popfirst!(tp.tiles) """ popfirst!(tilepile, num_tiles) Remove the "first" `num_tiles` tiles from the tile pile as an array. Removing from this end is intended to be used for flower/four-of-a-kind replacement (this is to improve average performance). """ function Base.popfirst!(tp::TilePile, n::Integer) n < 0 && throw("cannot pop fewer than 0 tiles") return splice!(tp.tiles, 1:min(n, lastindex(tp.tiles))) end """ pop!(tilepile) Remove a tile from the end of the tile pile. Removing from this end is used for the usual pickup of tiles from the deck (not for flower/four-of-a-kind replacement). """ Base.pop!(tp::TilePile) = pop!(tp.tiles) """ pop!(tilepile, num_tiles) Remove `num_tiles` tiles from the end of the tile pile as an array. Removing from this end is used for the usual pickup of tiles from the deck (not for flower/four-of-a-kind replacement). """ function Base.pop!(tp::TilePile, n::Integer) n < 0 && throw("cannot pop fewer than 0 tiles") return splice!(tp.tiles, max(1, lastindex(tp.tiles) - n + 1):lastindex(tp.tiles)) end Random.shuffle!(tp::TilePile) = (shuffle!(tp.tiles); tp) Random.shuffle!(rng, tp::TilePile) = (shuffle!(rng, tp.tiles); tp) Base.circshift(tp::TilePile, shift) = TilePile(circshift(tp.tiles, shift)) function Base.circshift!(tp::TilePile, shift) shift %= length(tp.tiles) shift == 0 && return tp shift < 0 && (shift += length(tp.tiles)) @assert shift > 0 && shift < length(tp.tiles) @inbounds begin temp = tp.tiles[end-shift+1:end] tp.tiles[shift+1:end] = tp.tiles[begin:end-shift] tp.tiles[begin:shift] = temp end return tp end function Base.show(io::IO, mime::MIME"text/plain", tilepile::TilePile) for tile in tilepile.tiles show(io, mime, tile) end end function Base.show(io::IO, tilepile::TilePile) print(io, "TilePile([") for (index, tile) in enumerate(tilepile) print(io, tile) index != length(tilepile) && print(io, ", ") end print(io, "])") end function deal_tiles(tp::TilePile; quadruple_rounds=3, single_rounds=1) player_hands = [SuitedTile[] for _ in 1:4] for _ in 1:quadruple_rounds, player in 1:4 append!(player_hands[player], pop!(tp, 4)) end for _ in 1:single_rounds, player in 1:4 push!(player_hands[player], pop!(tp)) end push!(first(player_hands), pop!(tp)) return Hand.(player_hands) end
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
code
3896
using DataStructures """ Represents the tiles in a single player's hand. """ struct Hand tiles::Vector{SuitedTile} hidden::Vector{SuitedTile} exposed::Vector{SuitedTile} @doc """ Hand() Hand(tiles) Create an empty hand, or one that starts off with the `tiles` given (all hidden). ## Example ```jldoctest julia> using MahjongTiles: character, wind, bamboo, Hand julia> Hand([character(1), character(2), wind(:north), bamboo(5)]) 🀃🀇🀈🀔 ``` """ function Hand(initial_tiles::AbstractVector{<: Tile} = []) hidden_tiles = sort!(initial_tiles) return new(hidden_tiles, hidden_tiles, SuitedTile[]) end end @doc """ push_hidden!(hand, tiles...) Base.push!(hand, tiles...) Add a tile or `tiles` to the hidden part of the hand. """ function push_hidden!(hand::Hand, tile...) push!(hand.hidden, tile...) push!(hand.tiles, tile...) sort!(hand.hidden, alg=InsertionSort()) sort!(hand.tiles, alg=InsertionSort()) return hand end Base.push!(hand::Hand, tile...) = push_hidden!(hand, tile) @doc """ push_exposed!(hand, tiles...) Add a tile or `tiles` to the open/exposed part of the hand. """ function push_exposed!(hand::Hand, tile...) push!(hand.exposed, tile...) push!(hand.tiles, tile...) sort!(hand.exposed, alg=InsertionSort()) sort!(hand.tiles, alg=InsertionSort()) return hand end @doc """ expose!(hand, tiles...) Expose/make open the tiles from the hand. """ function expose!(hand::Hand, tiles...) end Base.first(hand::Hand) = first(hand.tiles) Base.first(hand::Hand, num::Integer) = first(hand.tiles, num) Base.iterate(hand::Hand) = iterate(hand.tiles) Base.iterate(hand::Hand, state) = iterate(hand.tiles, state) function Base.show(io::IO, mime::MIME"text/plain", hand::Hand) for tile in hand.tiles show(io, mime, tile) end end @doc """ is_pure(hand) Determine whether the hand is pure (清). A hand is considered pure if there are no winds or dragons. ## Example ```jldoctest julia> using MahjongTiles: wind, character, dragon, bamboo, circle, Hand, is_pure julia> is_pure(Hand([wind(:east), character(3)])) false julia> is_pure(Hand([character(3), dragon(:green)])) false julia> is_pure(Hand([bamboo(8), character(3), circle(1)])) true ``` """ function is_pure(hand::Hand) return all(!is_suit(tile, Wind) && !is_suit(tile, Dragon) for tile in hand) end @doc """ is_single_suit(hand) Determine whether the hand consists of a single suit (一色), which can include non-suits like winds or flowers. To determine if the hand is only exactly a single suit, excluding winds, dragons, and flowers/seasons, combine this function with `is_pure`. ## Example ```jldoctest julia> using MahjongTiles: wind, flower, character, circle, bamboo, Hand, is_single_suit julia> is_single_suit(Hand([character(1), character(4), character(8), flower(3)])) true julia> is_single_suit(Hand([character(5), circle(5), bamboo(5)])) false julia> is_single_suit(Hand([circle(1), circle(7), wind(:north), wind(:east)])) true ``` """ function is_single_suit(hand::Hand) only_suit = suit(first(hand)) return all(suit(tile) == only_suit || suit(tile) in (Wind, Dragon, Flower, Season) for tile in hand) end @doc """ has_dragon_triple(hand) Determine whether the hand has a triple of any one of the three dragon tiles. ## Example ```jldoctest julia> using MahjongTiles: dragon, wind, bamboo, Hand, has_dragon_triple julia> has_dragon_triple(Hand([dragon(:red), dragon(:red), dragon(:red), bamboo(2), wind(:east)])) true julia> has_dragon_triple(Hand([dragon(:red), dragon(:red), dragon(:green), dragon(:white)])) false ``` """ function has_dragon_triple(hand::Hand) counts = counter(hand.tiles) return counts[dragon(:red)] >= 3 || counts[dragon(:green)] >= 3 || counts[dragon(:white)] >= 3 end
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
code
7523
#=================================== SUITS ===================================# """ The root abstract type for suit types. This is also used to represent "pseudo-suit" types, like the winds, dragons, flowers, etc. """ abstract type Suit end abstract type Character <: Suit end abstract type Bamboo <: Suit end abstract type Circle <: Suit end abstract type Wind <: Suit end abstract type Dragon <: Suit end abstract type Flower <: Suit end abstract type Season <: Suit end @doc """ is_sequential(suit_type) Check whether this suit type (or pseudo-suit) is a sequential one (for the purposes of hands). For example, typically the characters suit is sequential, but the winds suit is not. """ is_sequential(::Type{<:Suit}) = false is_sequential(s::Suit) = is_sequential(typeof(s)) is_sequential(::Type{Character}) = true is_sequential(::Type{Bamboo}) = true is_sequential(::Type{Circle}) = true @doc """ max_number(suit_type) The maximum ("index") number for this suit type (or pseudo-suit). For example, the traditional suited tiles (characters, bamboo, circle) have a max of 9 (starting at 1), whereas the winds pseudo-suit has a max of 4. """ max_number(::Type{<:Suit}) = 1 max_number(s::Suit) = max_number(typeof(s)) max_number(::Type{Character}) = 9 max_number(::Type{Bamboo}) = 9 max_number(::Type{Circle}) = 9 max_number(::Type{Wind}) = 4 max_number(::Type{Dragon}) = 3 max_number(::Type{Flower}) = 4 max_number(::Type{Season}) = 4 @doc """ first_char(suit_type) The character for the first tile in this suit (in Unicode). ## Examples ```julia-repl julia> first_char(Character) 🀇 ``` """ first_char(::Type{<:Suit}) = throw("not implemented") first_char(::Type{Character}) = '🀇' first_char(::Type{Bamboo}) = '🀐' first_char(::Type{Circle}) = '🀙' first_char(::Type{Wind}) = '🀀' first_char(::Type{Dragon}) = '🀄' first_char(::Type{Flower}) = '🀢' first_char(::Type{Season}) = '🀦' @doc """ typical_duplication(suit_type) The number of duplicate tiles usually used for this suit type (this is usually 1 or 4). """ typical_duplication(::Type{<:Suit}) = 1 typical_duplication(::Type{Character}) = 4 typical_duplication(::Type{Bamboo}) = 4 typical_duplication(::Type{Circle}) = 4 typical_duplication(::Type{Wind}) = 4 typical_duplication(::Type{Dragon}) = 4 Base.isless(x::Type{<:Suit}, y::Type{<:Suit}) = first_char(x) < first_char(y) #=================================== TILES ===================================# """ The root tile type for Mahjong tiles. However, the contract for what the Tile interface entails is not well-defined, so most functions dispatch on the `SuitedTile` and not on `Tile`. """ abstract type Tile end """ A tile with a suit (or pseudo-suit). """ struct SuitedTile{SuitType <: Suit} <: Tile number::Int8 """ SuitedTile(suit_type, number=1) Create a tile of a particular suit `suit_type` and `number` (use the default `1` for a "suit" that has only 1 tile). """ function SuitedTile(SuitType::Type{<:Suit}, number::Integer = 1) number < 1 && throw("number must be positive") number > max_number(SuitType) && throw("number is greater than the max allowed for this suit") return new{SuitType}(number) end end suit(::SuitedTile{T}) where T = T number(tile::SuitedTile) = tile.number is_suit(::SuitedTile{T}, suit_type::Type{<:Suit}) where T = T == suit_type is_number(tile::SuitedTile, num::Integer) = tile.number == num function Base.:(==)(x::SuitedTile{T}, y::SuitedTile{S}) where {T, S} return T == S && x.number == y.number end Base.hash(tile::SuitedTile{SuitType}, h::UInt) where SuitType = hash(SuitType, hash(tile.number, h)) function Base.isless(left::SuitedTile{LeftSuit}, right::SuitedTile{RightSuit}) where {LeftSuit, RightSuit} if LeftSuit != RightSuit return isless(LeftSuit, RightSuit) else return left.number < right.number end end function Base.show(io::IO, ::MIME"text/plain", tile::SuitedTile{T}) where T print(io, first_char(T) + tile.number - 1) end function Base.show(io::IO, tile::SuitedTile{T}) where T show(io::IO, MIME"text/plain"(), tile) end #============================== TILE CONSTANTS ===============================# """ List of the "normal" suits: character, bamboo, circles. ```@repl using MahjongTiles MahjongTiles.suits ``` """ const suits = [Character, Bamboo, Circle] """ List of all suits, including "pseudo-suits" like the winds and flowers. """ const all_suits = [suits..., Wind, Dragon, Flower, Season] for suit in [Character, Bamboo, Circle, Wind, Dragon, Flower, Season], i in 1:max_number(suit) tile_name = Symbol(first_char(suit) + i - 1) @eval MahjongTiles, const $tile_name = SuitedTile($suit, $i) @eval MahjongTiles, export $tile_name end @doc """ character(index) Creates a tile of the character suit with the particular number. ## Example ```jldoctest julia> character(5) 🀋 ``` """ character(index::Integer) = SuitedTile(Character, index) @doc """ bamboo(index) Creates a tile of the bamboo suit with the particular number. ## Example ```jldoctest julia> bamboo(2) 🀑 ``` """ bamboo(index::Integer) = SuitedTile(Bamboo, index) @doc """ circle(index) Creates a tile of the circle suit with the particular number. ## Example ```jldoctest julia> circle(9) 🀡 ``` """ circle(index::Integer) = SuitedTile(Circle, index) @doc """ wind(index) wind(direction) Creates a wind tile. If an integer is used, the standard Chinese ordering of the cardinal directions is used (i.e. `1` -> east, `2` -> south, `3` -> west, `4` -> north). Otherwise, symbols can also be used for the names of the directions (e.g. `:east`, `:north`). ## Example ```jldoctest julia> wind(:north) 🀃 julia> wind(2) 🀁 ``` """ wind(index::Integer) = SuitedTile(Wind, index) function wind(name::Symbol) if name === :east return SuitedTile(Wind, 1) elseif name === :south return SuitedTile(Wind, 2) elseif name === :west return SuitedTile(Wind, 3) elseif name === :north return SuitedTile(Wind, 4) else throw("unrecognized cardinal direction") end end @doc """ dragon(index) dragon(name) Creates a wind tile. If an integer is used, the standard ordering is used (i.e. `1` -> red dragon, `2` -> green dragon, `3` -> white dragon). Otherwise, symbols can also be used for their names/colors (e.g. `:red`, `:green`). ## Example ```jldoctest julia> dragon(:red) 🀄 julia> dragon(2) 🀅 ``` """ dragon(index::Integer) = SuitedTile(Dragon, index) function dragon(name::Symbol) if name === :red return SuitedTile(Dragon, 1) elseif name === :green return SuitedTile(Dragon, 2) elseif name === :white return SuitedTile(Dragon, 3) else throw("unrecognized dragon color") end end @doc """ flower(index) Creates a flower tile with the particular number. !!! note While this function (and the `season` function) don't allow using the flower (season) names, they may have this functionality in the future. ## Example ```jldoctest julia> flower(2) 🀣 ``` """ flower(index::Integer) = SuitedTile(Flower, index) @doc """ season(index) Creates a season (flower) tile with the particular number. !!! note While this function (and the `flower` function) don't allow using the season (flower) names, they may have this functionality in the future. ## Example ```jldoctest julia> season(4) 🀩 ``` """ season(index::Integer) = SuitedTile(Season, index)
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
code
128
using MahjongTiles using Test @testset "unit tests" begin include("tile_identities.jl") include("tilepiles.jl") end
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
code
433
using Test using MahjongTiles @testset "tile function aliases" begin @test all([🀇, 🀈, 🀉, 🀊, 🀋, 🀌, 🀍, 🀎, 🀏] .== character.(1:9)) @test all([🀐, 🀑, 🀒, 🀓, 🀔, 🀕, 🀖, 🀗, 🀘] .== bamboo.(1:9)) @test all([🀙, 🀚, 🀛, 🀜, 🀝, 🀞, 🀟, 🀠, 🀡] .== circle.(1:9)) @test all([🀀, 🀁, 🀂, 🀃] .== wind.(1:4)) @test all([🀄, 🀅, 🀆] .== dragon.(1:3)) @test all([🀢, 🀣, 🀤, 🀥] .== flower.(1:4)) @test all([🀦, 🀧, 🀨, 🀩] .== season.(1:4)) end
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
code
2677
using Test using MahjongTiles using MahjongTiles: TilePile @testset "equality" begin @test TilePile(:standard) !== TilePile(:standard) @test TilePile(:standard) == TilePile(:standard) end @testset "circular shifting" begin create_tilepile() = TilePile([character(4), wind(2), circle(7), bamboo(9), dragon(2), flower(1)]) # test non-mutating circshift @test circshift(create_tilepile(), 0) == create_tilepile() @test circshift(create_tilepile(), 1) == TilePile([flower(1), character(4), wind(2), circle(7), bamboo(9), dragon(2)]) @test circshift(create_tilepile(), -1) == TilePile([wind(2), circle(7), bamboo(9), dragon(2), flower(1), character(4)]) @test circshift(create_tilepile(), 7) == TilePile([flower(1), character(4), wind(2), circle(7), bamboo(9), dragon(2)]) @test circshift(create_tilepile(), -7) == TilePile([wind(2), circle(7), bamboo(9), dragon(2), flower(1), character(4)]) @test circshift(create_tilepile(), 2) == TilePile([dragon(2), flower(1), character(4), wind(2), circle(7), bamboo(9)]) @test circshift(create_tilepile(), -2) == TilePile([circle(7), bamboo(9), dragon(2), flower(1), character(4), wind(2)]) @test circshift(create_tilepile(), 8) == TilePile([dragon(2), flower(1), character(4), wind(2), circle(7), bamboo(9)]) @test circshift(create_tilepile(), -8) == TilePile([circle(7), bamboo(9), dragon(2), flower(1), character(4), wind(2)]) # test mutating circshift @test circshift!(create_tilepile(), 0) == create_tilepile() @test circshift!(create_tilepile(), 1) == TilePile([flower(1), character(4), wind(2), circle(7), bamboo(9), dragon(2)]) @test circshift!(create_tilepile(), -1) == TilePile([wind(2), circle(7), bamboo(9), dragon(2), flower(1), character(4)]) @test circshift!(create_tilepile(), 7) == TilePile([flower(1), character(4), wind(2), circle(7), bamboo(9), dragon(2)]) @test circshift!(create_tilepile(), -7) == TilePile([wind(2), circle(7), bamboo(9), dragon(2), flower(1), character(4)]) @test circshift!(create_tilepile(), 2) == TilePile([dragon(2), flower(1), character(4), wind(2), circle(7), bamboo(9)]) @test circshift!(create_tilepile(), -2) == TilePile([circle(7), bamboo(9), dragon(2), flower(1), character(4), wind(2)]) @test circshift!(create_tilepile(), 8) == TilePile([dragon(2), flower(1), character(4), wind(2), circle(7), bamboo(9)]) @test circshift!(create_tilepile(), -8) == TilePile([circle(7), bamboo(9), dragon(2), flower(1), character(4), wind(2)]) # test that the tilepile itself is returned as the modified tilepile tilepile = create_tilepile() @test circshift!(tilepile, 3) == tilepile end
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
docs
2533
# MahjongTiles.jl [![Documentation](https://github.com/tmthyln/MahjongTiles.jl/actions/workflows/docs.yml/badge.svg)](https://github.com/tmthyln/MahjongTiles.jl/actions/workflows/docs.yml) [![Unit Tests](https://github.com/tmthyln/MahjongTiles.jl/actions/workflows/tests.yml/badge.svg)](https://github.com/tmthyln/MahjongTiles.jl/actions/workflows/tests.yml) [![Nightly Tests](https://github.com/tmthyln/MahjongTiles.jl/actions/workflows/nightly.yml/badge.svg)](https://github.com/tmthyln/MahjongTiles.jl/actions/workflows/nightly.yml) Basic utilities for representing and working with Mahjong tiles, hands, and decks (works in a similar way to [PlayingCards.jl](https://juliahub.com/ui/Packages/PlayingCards/I6MLG/0.3.0)). To get started, you can install from the Julia General repository in the usual way: ```julia (env) pkg> add MahjongTiles ``` See the [full documentation](https://tmthyln.github.io/MahjongTiles.jl/latest/) for more details. ## Components ### Tiles Each of the 42 unique standard tiles is represented as a object. To access an individual tile, you can reference the "symbolic" constants that are exported by the package: ```julia julia> using MahjongTiles julia> 🀛 🀛 julia> 🀥 🀥 ``` However, it's hard to type these out without already knowing how to type them, so there are a few convenience functions that can create specific tiles: ```julia julia> using MahjongTiles: character, season, wind, dragon julia> character(3) 🀉 julia> season(4) 🀩 julia> wind(2) 🀁 julia> dragon(1) == dragon(:red) 🀄 ``` ### Decks Depending on the specific variety of Mahjong being played, a deck is composed of 4 of each tile from the 3 standard "suits", plus 4 of each of the winds, 4 of each of the dragons, and sometimes the 8 flowers/seasons. In the code, these are called `TilePile`s. The easiest way to create one is to just use the standard constructor: ```julia using MahjongTiles: TilePile deck = TilePile(:standard) ``` ### Hands Again, depending on the specific variety being played, a hand is usually composed of 13+1 or 16+1 tiles from a game deck. There are also functions to test if hands contain certain arrangements; these are used to count points (for gambling, sure, but also for bragging rights). ## Related There's also a similar project [MahjongEnvironment](https://github.com/coldinjection/MahjongEnvironment); however, this package differs in - more broad scope beyond just reinforcement learning - registered - supporting different variants of Mahjong in a more general way
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
docs
1528
# Building the Wall The first step before the game can be played is that the four "walls" need to be built. Physically, this involves shuffling the deck and stacking the tiles into four rows of a certain length and 2 tiles tall. In code, this is broken up into a few steps: ## Determine the size of the deck Depending on the variation, some of the "suits" are excluded. In the standard variation, there are the following tile quantities: | Suit | Examples | Quantity of Each Tile | | ---------------:|:-------- |:--------------------- | | Character | 🀉🀍🀏 | 4 per number | | Bamboo | 🀐🀑🀗 | 4 per number | | Circle | 🀙🀝🀟 | 4 per number | | Winds | 🀀🀁🀂🀃 | 4 of each | | Dragons | 🀄🀅🀆 | 4 of each | | Flowers/Seasons | 🀢🀤🀦🀩 | 1 of each | ## Create and shuffle the deck For the standard deck, there's a single argument constructor that automatically creates a deck with the correct number of tiles. ```@example deck using MahjongTiles: TilePile deck = TilePile(:standard) ``` Then, we shuffle the deck. ```@example deck using Random shuffle!(deck) ``` In a physical game of Mahjong, dice are rolled to determine where to start distributing tiles. However, this is mostly an anti-cheat measure and doesn't meaningfully affect the game itself. We could roll some dice and then use `circshift!` to adjust the deck, but that's mostly for show (e.g. in a GUI implementation).
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
docs
1195
# Dealing the Hands Having [built the wall](building_wall.md), next we need to deal tiles to each player. ## Distributing tiles to player hands Starting from the **east** seat, sets of 4 tiles are distributed to each seat, and then single tiles are distributed. The **east** seat gets one extra tile to start (effectively, they're just starting their turn early). Depending on the style of Mahjong, there are different numbers of sets of tiles distributed. For example, in 13-tile variants, all seats get 3 sets of 4 tiles and then 1 set of 1 tile. ```@example deal using MahjongTiles: TilePile, deal_tiles using Random deck = TilePile(:standard) shuffle!(deck) hands = deal_tiles(deck, quadruple_rounds=3, single_rounds=1) # default ``` In 16-tile variants, all seats get 4 sets of 4 tiles and no sets of 1 tile. ```@example deal deck = TilePile(:standard) shuffle!(deck) hands16 = deal_tiles(deck, quadruple_rounds=4, single_rounds=0) ``` Note how the first hand (the one for the **east** hand) has an extra tile to start. ## Replacing flowers When playing with flowers, flowers for all players are replaced at the beginning of each game before the first tile is thrown out.
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
docs
1175
# Decks (TilePiles) Tiles can also be collected into an abstract idea of a "pile of tiles." For example, this is intended to be used to represent the four walls of tiles in the game. Decks (called `TilePile`s in code) have several properties: - Ordered (but not sorted) - Size strictly decreases - Removal occurs strictly at the two ends of the pile In this way, a `TilePile` is like a deque that can only be removed from once it's been created. ```@docs MahjongTiles.TilePile MahjongTiles.TilePile(::Symbol) ``` `TilePile`s support a limited set of operations that reflect allowable actions in the game, e.g. shuffling tiles, `circshift` for determining where the ends of the pile are. ## Removing from a `TilePile` ```@docs Base.pop!(::MahjongTiles.TilePile) Base.pop!(::MahjongTiles.TilePile, ::Integer) Base.popfirst!(::MahjongTiles.TilePile) Base.popfirst!(::MahjongTiles.TilePile, ::Integer) ``` ## Other Operations These are other functions supported for the `TilePile` type, which behave similar to the way they do in Julia Base. - `length` - `first` - `last` - `circshift` - `circshift!` (this has a slightly different signature than in Base) - `shuffle!`
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
docs
63
# Playing the Game At this point, the game starts properly.
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
docs
1243
# Hands A `Hand` represents the set of tiles that a particular player has (varies in number, depending on the variety of Mahjong being played). ```@docs MahjongTiles.Hand ``` ## Supported Operations ```@docs MahjongTiles.push_hidden! MahjongTiles.push_exposed! MahjongTiles.expose! ``` `Hand`s also support the following operations that behave similarly to how they do in Julia Base: - iteration - `first` ## Scoring Functions `Hand`s can be checked for whether they have certain configurations/arrangements of tiles (e.g. contain no winds, contain only tiles that are completely green, contain all threes-of-a-kind). There are roughly 2 kinds: - those that describe a property of the entire hand (e.g. all sets must include the number 5), and - those that describe a smaller arrangement of tiles that must be present somewhere in the hand (e.g. two threes-in-a-row of different suits, the other tiles are not considered). The former are generally prefixed with `is_` and the latter with `has_`. In a way, these are not "scoring" functions, as they don't assign a score for each configuration, but only whether the configuration applies. ```@docs MahjongTiles.is_pure MahjongTiles.is_single_suit MahjongTiles.has_dragon_triple ```
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
docs
1399
# MahjongTiles.jl Documentation This is a library package for working with Mahjong games and its primitives, such as tiles, decks, and hands. It's designed to be useful for both simulation or gameplay. ## Getting Started To install, you can use the Julia package manager: ```julia-repl (env) pkg> add MahjongTiles ``` The "Anatomy of a Game" walks through the phases of a typical Mahjong game (using a particular set of rules) and how it would be implemented using this package. For specific structs and function calls available, see the "API" section of the docs. !!! note When tiles are printed (to the console) or shown in the docs, usually (although depending on your setup), the tiles will be very small, which means they can sometimes be difficult to see. In addition, because of the weird position of the "red dragon" tile (🀄), it often appears more emoji-like in many fonts, making it stand out and messing up fixed-width spacing. ## Related There's also a similar project [MahjongEnvironment.jl](https://github.com/coldinjection/MahjongEnvironment); however, this package differs in - having a broader scope than just reinforcement learning - being registered - supporting different variants of Mahjong in a more general way - is not intended to provide the full Mahjong game environment, just a set of useful primitives for potentially doing so
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
docs
851
# Mahjong Rules & Other Resources This is a list of resources for different variants of the game. Of course, even within a variant, there are variations. Feel free to submit a PR with other useful references! ## Cantonese/Hong Kong (most common variant) - [Hong Kong Mahjong, the authentic Chinese mahjong game](https://web.archive.org/web/20160323155914/http://ninedragons.com/mahjong/scoring.html) ## Taiwanese - [Taiwan 16-Tile Mahjong Rules (archive link only)](https://web.archive.org/web/20160422004911/http://www.rag.com/~steve/mahjong/index.html) - [Taiwanese Rules](https://mahjongtime.com/mahjong-taiwanese-rules.html) - [Essence of Taiwanese Mahjong – Introduction](https://www.jiyuulife.net/taiwanese-mahjong-introduction/) ## American - [National Mah Jongg League | The Game](https://www.nationalmahjonggleague.org/game.aspx)
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
docs
594
# Scoring Hands Now that someone has won (or claimed to have won), we need to "score" two parts: - determine whether they've actually won; this is just checking that their hand "works" - if counting points, determine the number of points they have and whether they've reached the win threshold of points It turns out, this is not *that* straightforward, because we need to search through all possible ways to arrange the tiles in a valid way. In general, we also want to combine this with the scoring so that we find the arrangement with the highest point score, and rules can be complex.
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.1.0
10068b287d714f4b968dfbd2aa5809282f38ab19
docs
2639
# Tile API Tiles are sorted in "suits" or "pseudo-suits." Generally speaking, the usual "suited tiles" belong to the character, bamboo, or circle suits. The other tiles are not really in suits, but they can be treated programmatically as if they were. The normal suits are considered *sequential* suits; the other suits are considered *non-sequential* suits. ```@setup mahjong using MahjongTiles ``` ## Suits !!! info This is an internal implementation detail and is subject to change in future versions. This is the current way that suits are implemented. All suit types inherit from a single abstract type ```@docs MahjongTiles.Suit ``` which has the following interface: | Function | Default | Description | | -------------------------------: | :-----: | :------------------------------------------------------------------------- | | `is_sequential(suit_type)` | `false` | Whether this suit can be scored sequentially | | `max_number(suit_type)` | `1` | The max number that this suit has | | `first_char(suit_type)` | - | The Unicode character associated with the number 1 (required) | | `typical_duplication(suit_type)` | `1` | The typical number of tiles included in a deck with each tile in this suit | Note that the `first_char` method is required for printing, and if a new suit has `max_number(suit_type) > 1`, it is assumed that they are consecutive in Unicode. The way that these are currently implemented, each suit type is another `abstract type` that inherits from `Suit`. The required methods operate on the *type* and not instances of the type. ```@docs MahjongTiles.is_sequential MahjongTiles.max_number MahjongTiles.first_char MahjongTiles.typical_duplication ``` There are also 2 additional constants that list all of the implemented suits. ```@docs MahjongTiles.suits MahjongTiles.all_suits ``` ## Tiles ```@docs MahjongTiles.Tile MahjongTiles.SuitedTile ``` ### Accessing Specific Tiles All of the standard tiles are exported as constants from the MahjongTiles module, so they can be directly accessed (e.g. for comparisons). ```@repl mahjong 🀘 🀛 < 🀞 ``` However, this means that it is difficult to type these without already knowing how to type them. To mitigate this, there are helper functions to create tiles of each suit. ```@docs MahjongTiles.character MahjongTiles.bamboo MahjongTiles.circle MahjongTiles.wind MahjongTiles.dragon MahjongTiles.flower MahjongTiles.season ```
MahjongTiles
https://github.com/tmthyln/MahjongTiles.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
code
18583
#== = DomainColoringToy = = Copyright (c) 2023 Evert Provoost. See LICENSE. = = Provided functionality is partially inspired by = = Wegert, Elias. Visual Complex Functions: = An Introduction with Phase Portraits. = Birkhäuser Basel, 2012. =# module DomainColoringToy using Reexport @reexport using GLMakie import DomainColoring as DC """ DomainColoringToy.shadedplot( f :: "Complex -> Complex", shader :: "Complex -> Color", limits = (-1, 1, -1, 1), pixels = (480, 480); kwargs... ) Takes a complex function and a shader and produces a GLMakie plot with auto updating. # Arguments - **`f`** is the complex function to plot. - **`shader`** is the shader function to compute a pixel. - **`limits`** are the initial limits of the plot, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. - **`pixels`** is the size of the output in pixels, respectively, the number of pixels along the real and imaginary axis, taking the same for both if only one number is provided. If either is `:auto`, the viewport resolution is used. Keyword arguments are passed to GLMakie. """ function shadedplot( f, shader, limits = (-1, 1, -1, 1), pixels = (480, 480); kwargs... ) # sanitize input pixels == :auto && (pixels = (:auto, :auto)) length(pixels) == 1 && (pixels = (pixels, pixels)) limits = DC._expandlimits(limits) # parse Makie options defaults = Attributes( interpolate = true, axis = (autolimitaspect = 1,) ) attr = merge(Attributes(; kwargs...), defaults) # setup observables to be used by update img = Observable( # tiny render to catch errors and setup type DC.renderimage(f, shader, limits, (2, 2)) ) xl = Observable([limits[1], limits[2]]) yl = Observable([limits[3], limits[4]]) # setup plot # transpose as x and y are swapped in images # reverse as y is reversed in images plt = heatmap(xl, lift(reverse, yl), lift(adjoint, img); attr...) # set default limits xlims!(plt.axis, limits[1], limits[2]) ylims!(plt.axis, limits[3], limits[4]) # update loop function update(lims, res) # set render limits to viewport axs = (lims.origin[1], lims.origin[1] + lims.widths[1], lims.origin[2], lims.origin[2] + lims.widths[2]) xl[] = [axs[1], axs[2]] yl[] = [axs[3], axs[4]] # get resolution if needed px = map((p, r) -> p == :auto ? ceil(Int, 1.1r) : p, pixels, tuple(res...)) # render new image reusing buffer if possible if size(img.val) != px img.val = DC.renderimage(f, shader, axs, px) else DC.renderimage!(img.val, f, shader, axs) end notify(img) end # initial render lims = plt.axis.finallimits res = plt.axis.scene.camera.resolution update(lims[], res[]) # observe updates onany(update, lims, res) return plt end """ DomainColoringToy.@shadedplot( basename, shaderkwargs, shader ) Macro emitting an implementation of **`fname`** in a similar fashion to the other plotting routines in this library, see for instance [`domaincolor`](@ref). **`shaderkwargs`** is a named tuple setting keyword arguments used in the expression **`shader`**. The result of **`shader`** should be a function `Complex -> Color` and is used to shade the resulting plot. See the source for examples. """ macro shadedplot(fname, shaderkwargs, shader) # interpret shaderkwargs as keyword arguments skwargs = [Expr(:kw, p...) for p in pairs(__module__.eval(shaderkwargs))] @eval __module__ begin function $fname( f :: Function, limits = (-1, 1, -1, 1); pixels = (480, 480), $(skwargs...), kwargs... ) DomainColoringToy.shadedplot( f, $shader, limits, pixels; kwargs...) end end end export domaincolor """ domaincolor( f :: "Complex -> Complex", limits = (-1, 1, -1, 1); pixels = (480, 480), abs = false, grid = false, color = true, all = false, box = nothing, kwargs... ) Takes a complex function and produces its domain coloring plot as an interactive GLMakie plot. Red corresponds to phase ``0``, yellow to ``\\frac{\\pi}{3}``, green to ``\\frac{2\\pi}{3}``, cyan to ``\\pi``, blue to ``\\frac{4\\pi}{3}``, and magenta to ``\\frac{5\\pi}{3}``. # Arguments - **`f`** is the complex function to plot. - **`limits`** are the limits of the rectangle to plot, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. # Keyword Arguments - **`pixels`** is the size of the output in pixels, respectively, the number of pixels along the real and imaginary axis, taking the same for both if only one number is provided. If either is `:auto`, the viewport resolution is used. - **`abs`** toggles the plotting of the natural logarithm of the magnitude as lightness ramps between level curves. If set to a number, this will be used as base of the logarithm instead, if set to `Inf`, zero magnitude will be colored black and poles white. Further granular control can be achieved by passing a named tuple with any of the parameters `base`, `transform`, or `sigma`. `base` changes the base of the logarithm, as before. `transform` is the function applied to the magnitude (`m -> log(base, m)` by default), and `sigma` changes the rate at which zeros and poles are colored and implies `base = Inf`. - **`grid`** plots points with integer real or imaginary part as black dots. More complicated arguments can be passed as a named tuple in a similar fashion to [`checkerplot`](@ref). - **`color`** toggles coloring of the phase angle. Can also be set to either the name of, or a `ColorScheme`, or a function `θ -> Color`. If set to `:print` a desaturated version of the default is used. - **`all`** is a shortcut for `abs = true`, `grid = true`, and `color = true`. - **`box`** if set to `(a, b, s)` shades the area where the output is within the box `a` and `b` in the color `s` when set to `(f, s)` the colored domain is defined by `f(w) == true`. Can also be a list of multiple boxes. Remaining keyword arguments are passed to the plotting backend. """ domaincolor @shadedplot(domaincolor, (abs = false, grid = false, color = true, all = false, box = nothing), begin # issue warning if everything is inactive if Base.all(b -> b isa Bool && !b, (abs, grid, color, all)) @warn "angle, abs, and grid are all false, domain coloring will be a constant color." end w -> DC.domaincolorshader(w; abs, grid, color, all, box) end) export checkerplot """ checkerplot( f :: "Complex -> Complex", limits = (-1, 1, -1, 1); pixels = (480, 480), real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing, hicontrast = false, kwargs... ) Takes a complex function and produces a checker plot as an interactive GLMakie plot. # Arguments - **`f`** is the complex function to plot. - **`limits`** are the limits of the rectangle to plot, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. # Keyword Arguments - **`pixels`** is the size of the output in pixels, respectively, the number of pixels along the real and imaginary axis, taking the same for both if only one number is provided. If either is `:auto`, the viewport resolution is used. If none of the below options are set, the plot defaults to `rect = true`. - **`real`** plots black and white stripes orthogonal to the real axis at a rate of one stripe per unit increase. If set to a number this will be used as width instead. - **`imag`** plots black and white stripes orthogonal to the imaginary axis at a rate of one stripe per unit increase. If set to a number this will be used as width instead. - **`rect`** is a shortcut for `real = true` and `imag = true`. - **`angle`** plots black and white stripes orthogonal to the phase angle at a rate of eight stripes per full rotation. Can be set to an integer to specify a different rate. - **`abs`** plots black and white stripes at a rate of one stripe per unit increase of the natural logarithm of the magnitude. If set to a number this is used as the base of the logarithm. When set to a function, unit increases of its output are used instead. - **`polar`** is a shortcut for `angle = true` and `abs = true`. Can also be set to the basis to use for `abs`, then a suitable rate for `angle` will be selected. - **`box`** if set to `(a, b, s)` shades the area where the output is within the box `a` and `b` in the color `s` when set to `(f, s)` the colored domain is defined by `f(w) == true`. Can also be a list of multiple boxes. - **`hicontrast`** uses black and white instead of the softer defaults. Remaining keyword arguments are passed to the plotting backend. """ checkerplot @shadedplot(checkerplot, (real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing, hicontrast = false), begin # set carthesian grid if no options given if all(b -> b isa Bool && !b, (real, imag, rect, angle, abs, polar)) rect = true end w -> DC.checkerplotshader( w; real, imag, rect, angle, abs, polar, box, hicontrast ) end) export sawplot """ sawplot( f :: "Complex -> Complex", limits = (-1, 1, -1, 1); pixels = (480, 480), real = false, imag = false, rect = false, angle = false, abs = false, polar = false, color = false, box = nothing, kwargs... ) Takes a complex function and produces a saw plot as an interactive GLMakie plot. # Arguments - **`f`** is the complex function to plot. - **`limits`** are the limits of the rectangle to plot, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. # Keyword Arguments - **`pixels`** is the size of the output in pixels, respectively, the number of pixels along the real and imaginary axis, taking the same for both if only one number is provided. If either is `:auto`, the viewport resolution is used. If none of the below options are set, the plot defaults to `rect = true`. - **`real`** plots black to white ramps orthogonal to the real axis at a rate of one ramp per unit increase. If set to a number this will be used as width instead. - **`imag`** plots black to white ramps orthogonal to the imaginary axis at a rate of one ramp per unit increase. If set to a number this will be used as width instead. - **`rect`** is a shortcut for `real = true` and `imag = true`. - **`angle`** plots black to white ramps orthogonal to the phase angle at a rate of eight ramps per full rotation. Can be set to an integer to specify a different rate. - **`abs`** plots black to white ramps at a rate of one ramp per unit increase of the natural logarithm of the magnitude. If set to a number this is used as the base of the logarithm. When set to a function, unit increases of its output are used instead. - **`polar`** is a shortcut for `angle = true` and `abs = true`. Can also be set to the basis to use for `abs`, then a suitable rate for `angle` will be selected. - **`color`** toggles coloring of the phase angle. Can also be set to either the name of, or a `ColorScheme`, or a function `θ -> Color`. If set to `:print` a desaturated version of the default is used. - **`box`** if set to `(a, b, s)` shades the area where the output is within the box `a` and `b` in the color `s` when set to `(f, s)` the colored domain is defined by `f(w) == true`. Can also be a list of multiple boxes. Remaining keyword arguments are passed to the plotting backend. """ sawplot @shadedplot(sawplot, (real = false, imag = false, rect = false, angle = false, abs = false, polar = false, color = false, box = nothing), begin # set carthesian grid if no options given if all(b -> b isa Bool && !b, (real, imag, rect, angle, abs, polar)) rect = true end w -> DC.sawplotshader( w; real, imag, rect, angle, abs, polar, color, box ) end) export pdphaseplot """ pdphaseplot( f :: "Complex -> Complex", limits = (-1, 1, -1, 1); pixels = (480, 480), real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing, kwargs... ) Takes a complex valued function and produces a phase plot using [ColorCET](https://colorcet.com)'s CBC1 cyclic color map for protanopic and deuteranopic viewers as an interactive GLMakie plot. Yellow corresponds to phase ``0``, white to ``\\frac{\\pi}{2}``, blue to ``\\pi``, and black to ``\\frac{3\\pi}{2}``. # Arguments - **`f`** is the complex function to plot. - **`limits`** are the limits of the rectangle to plot, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. # Keyword Arguments - **`pixels`** is the size of the output in pixels, respectively, the number of pixels along the real and imaginary axis, taking the same for both if only one number is provided. If either is `:auto`, the viewport resolution is used. - **`real`** plots black to white ramps orthogonal to the real axis at a rate of one ramp per unit increase. If set to a number this will be used as width instead. - **`imag`** plots black to white ramps orthogonal to the imaginary axis at a rate of one ramp per unit increase. If set to a number this will be used as width instead. - **`rect`** is a shortcut for `real = true` and `imag = true`. - **`angle`** plots black to white ramps orthogonal to the phase angle at a rate of eight ramps per full rotation. Can be set to an integer to specify a different rate. - **`abs`** plots black to white ramps at a rate of one ramp per unit increase of the natural logarithm of the magnitude. If set to a number this is used as the base of the logarithm. When set to a function, unit increases of its output are used instead. - **`polar`** is a shortcut for `angle = true` and `abs = true`. Can also be set to the basis to use for `abs`, then a suitable rate for `angle` will be selected. - **`box`** if set to `(a, b, s)` shades the area where the output is within the box `a` and `b` in the color `s` when set to `(f, s)` the colored domain is defined by `f(w) == true`. Can also be a list of multiple boxes. Remaining keyword arguments are passed to the plotting backend. """ pdphaseplot @shadedplot(pdphaseplot, (real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing), w -> DC.sawplotshader( w; real, imag, rect, angle, abs, polar, color=:CBC1, box )) export tphaseplot """ tphaseplot( f :: "Complex -> Complex", limits = (-1, 1, -1, 1); pixels = (480, 480), real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing, kwargs... ) Takes a complex valued function and produces a phase plot using [ColorCET](https://colorcet.com)'s CBTC1 cyclic color map for titranopic viewers as an interactive GLMakie plot. Red corresponds to phase ``0``, white to ``\\frac{\\pi}{2}``, cyan to ``\\pi``, and black to ``\\frac{3\\pi}{2}``. # Arguments - **`f`** is the complex function to plot. - **`limits`** are the limits of the rectangle to plot, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. # Keyword Arguments - **`pixels`** is the size of the output in pixels, respectively, the number of pixels along the real and imaginary axis, taking the same for both if only one number is provided. If either is `:auto`, the viewport resolution is used. - **`real`** plots black to white ramps orthogonal to the real axis at a rate of one ramp per unit increase. If set to a number this will be used as width instead. - **`imag`** plots black to white ramps orthogonal to the imaginary axis at a rate of one ramp per unit increase. If set to a number this will be used as width instead. - **`rect`** is a shortcut for `real = true` and `imag = true`. - **`angle`** plots black to white ramps orthogonal to the phase angle at a rate of eight ramps per full rotation. Can be set to an integer to specify a different rate. - **`abs`** plots black to white ramps at a rate of one ramp per unit increase of the natural logarithm of the magnitude. If set to a number this is used as the base of the logarithm. When set to a function, unit increases of its output are used instead. - **`polar`** is a shortcut for `angle = true` and `abs = true`. Can also be set to the basis to use for `abs`, then a suitable rate for `angle` will be selected. - **`box`** if set to `(a, b, s)` shades the area where the output is within the box `a` and `b` in the color `s` when set to `(f, s)` the colored domain is defined by `f(w) == true`. Can also be a list of multiple boxes. Remaining keyword arguments are passed to the plotting backend. """ tphaseplot @shadedplot(tphaseplot, (real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing), w -> DC.sawplotshader( w; real, imag, rect, angle, abs, polar, color=:CBTC1, box )) end
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
code
686
using Pkg cd(@__DIR__) Pkg.activate(".") pkg"dev .. ../DomainColoringToy" Pkg.instantiate() Pkg.precompile() using Documenter, DomainColoring import DomainColoringToy makedocs( sitename = "DomainColoring.jl", authors = "Evert Provoost", pages = [ "Home" => "index.md", "Usage" => [ "usage/tutorial.md", "usage/general.md", "usage/cvd.md", "usage/custom.md", ], "Library" => "lib.md", "DomainColoringToy" => "dct.md", "Design Choices" => [ "design/phasewheel.md", ], ] ) deploydocs( repo = "github.com/eprovst/DomainColoring.jl.git", push_preview = true, versions = ["stable" => "v^", "v1.#", "dev" => "dev"], )
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
code
175
using Images import DomainColoring as DC fig = DC.renderimage(z -> im*(z+.1im)^3-1, w -> DC.domaincolorshader(w; all=true), 2.5) save("logo.png", fig)
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
code
631
#== = DomainColoring.jl = = Copyright (c) 2023 Evert Provoost. See LICENSE. = = Provided functionality is partially inspired by = = Wegert, Elias. Visual Complex Functions: = An Introduction with Phase Portraits. = Birkhäuser Basel, 2012. =# module DomainColoring using Requires # load relevant backend include("backends/stub.jl") function __init__() @require MakieCore="20f20a25-4f0e-4fdf-b5d1-57303727442b" include("backends/makie.jl") @require Plots="91a5bcdd-55d7-5caf-9e0b-520d859cae80" include("backends/plots.jl") end include("render.jl") include("shaders.jl") include("plots.jl") end
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
code
15285
""" DomainColoring.@shadedplot(basename, shaderkwargs, shader) Macro emitting implementations of **`basename`** and **`basename!`** in a similar fashion to the other plotting routines in this library, see for instance [`domaincolor`](@ref) and [`domaincolor!`](@ref). **`shaderkwargs`** is a named tuple setting keyword arguments used in the expression **`shader`**. The result of **`shader`** should be a function `Complex -> Color` and is used to shade the resulting plot. See the source for examples. """ macro shadedplot(basename, shaderkwargs, shader) modifname = Symbol(basename, '!') # interpret sargs as keyword arguments skwargs = [Expr(:kw, p...) for p in pairs(__module__.eval(shaderkwargs))] for (fname, sname, target) in ((basename, :shadedplot, ()), (modifname, :shadedplot!, ()), (modifname, :shadedplot!, (:target,))) @eval __module__ begin function $fname( $(target...), f :: Function, limits = (-1, 1, -1, 1); pixels = (720, 720), $(skwargs...), kwargs... ) DomainColoring.$sname($(target...), f, $shader, limits, pixels; kwargs...) end end end end export domaincolor, domaincolor! """ domaincolor( f :: "Complex -> Complex", limits = (-1, 1, -1, 1); pixels = (720, 720), abs = false, grid = false, color = true, all = false, box = nothing, kwargs... ) Takes a complex function and produces its domain coloring plot. Red corresponds to phase ``0``, yellow to ``\\frac{\\pi}{3}``, green to ``\\frac{2\\pi}{3}``, cyan to ``\\pi``, blue to ``\\frac{4\\pi}{3}``, and magenta to ``\\frac{5\\pi}{3}``. # Arguments - **`f`** is the complex function to plot. - **`limits`** are the limits of the rectangle to plot, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. # Keyword Arguments - **`pixels`** is the number of pixels to compute in, respectively, the real and imaginary axis, taking the same for both if only one number is provided. - **`abs`** toggles the plotting of the natural logarithm of the magnitude as lightness ramps between level curves. If set to a number, this will be used as base of the logarithm instead, if set to `Inf`, zero magnitude will be colored black and poles white. Further granular control can be achieved by passing a named tuple with any of the parameters `base`, `transform`, or `sigma`. `base` changes the base of the logarithm, as before. `transform` is the function applied to the magnitude (`m -> log(base, m)` by default), and `sigma` changes the rate at which zeros and poles are colored and implies `base = Inf`. - **`grid`** plots points with integer real or imaginary part as black dots. More complicated arguments can be passed as a named tuple in a similar fashion to [`checkerplot`](@ref). - **`color`** toggles coloring of the phase angle. Can also be set to either the name of, or a `ColorScheme`, or a function `θ -> Color`. If set to `:print` a desaturated version of the default is used. - **`all`** is a shortcut for `abs = true`, `grid = true`, and `color = true`. - **`box`** if set to `(a, b, s)` shades the area where the output is within the box `a` and `b` in the color `s` when set to `(f, s)` the colored domain is defined by `f(w) == true`. Can also be a list of multiple boxes. Remaining keyword arguments are passed to the plotting backend. """ domaincolor, domaincolor! @shadedplot(domaincolor, (abs = false, grid = false, color = true, all = false, box = nothing), begin # issue warning if everything is inactive if Base.all(b -> b isa Bool && !b, (abs, grid, color, all)) @warn "angle, abs, and grid are all false, domain coloring will be a constant color." end w -> domaincolorshader(w; abs, grid, color, all, box) end) export checkerplot, checkerplot! """ checkerplot( f :: "Complex -> Complex", limits = (-1, 1, -1, 1); pixels = (720, 720), real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing, hicontrast = false, kwargs... ) Takes a complex function and produces a checker plot. # Arguments - **`f`** is the complex function to plot. - **`limits`** are the limits of the rectangle to plot, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. # Keyword Arguments - **`pixels`** is the number of pixels to compute in, respectively, the real and imaginary axis, taking the same for both if only one number is provided. If none of the below options are set, the plot defaults to `rect = true`. - **`real`** plots black and white stripes orthogonal to the real axis at a rate of one stripe per unit increase. If set to a number this will be used as width instead. - **`imag`** plots black and white stripes orthogonal to the imaginary axis at a rate of one stripe per unit increase. If set to a number this will be used as width instead. - **`rect`** is a shortcut for `real = true` and `imag = true`. - **`angle`** plots black and white stripes orthogonal to the phase angle at a rate of eight stripes per full rotation. Can be set to an integer to specify a different rate. - **`abs`** plots black and white stripes at a rate of one stripe per unit increase of the natural logarithm of the magnitude. If set to a number this is used as the base of the logarithm. When set to a function, unit increases of its output are used instead. - **`polar`** is a shortcut for `angle = true` and `abs = true`. Can also be set to the basis to use for `abs`, then a suitable rate for `angle` will be selected. - **`box`** if set to `(a, b, s)` shades the area where the output is within the box `a` and `b` in the color `s` when set to `(f, s)` the colored domain is defined by `f(w) == true`. Can also be a list of multiple boxes. - **`hicontrast`** uses black and white instead of the softer defaults. Remaining keyword arguments are passed to the plotting backend. """ checkerplot, checkerplot! @shadedplot(checkerplot, (real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing, hicontrast = false), begin # set carthesian grid if no options given if all(b -> b isa Bool && !b, (real, imag, rect, angle, abs, polar)) rect = true end w -> checkerplotshader( w; real, imag, rect, angle, abs, polar, box, hicontrast ) end) export sawplot, sawplot! """ sawplot( f :: "Complex -> Complex", limits = (-1, 1, -1, 1); pixels = (720, 720), real = false, imag = false, rect = false, angle = false, abs = false, polar = false, color = false, box = nothing, kwargs... ) Takes a complex function and produces a saw plot. # Arguments - **`f`** is the complex function to plot. - **`limits`** are the limits of the rectangle to plot, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. # Keyword Arguments - **`pixels`** is the number of pixels to compute in, respectively, the real and imaginary axis, taking the same for both if only one number is provided. If none of the below options are set, the plot defaults to `rect = true`. - **`real`** plots black to white ramps orthogonal to the real axis at a rate of one ramp per unit increase. If set to a number this will be used as width instead. - **`imag`** plots black to white ramps orthogonal to the imaginary axis at a rate of one ramp per unit increase. If set to a number this will be used as width instead. - **`rect`** is a shortcut for `real = true` and `imag = true`. - **`angle`** plots black to white ramps orthogonal to the phase angle at a rate of eight ramps per full rotation. Can be set to an integer to specify a different rate. - **`abs`** plots black to white ramps at a rate of one ramp per unit increase of the natural logarithm of the magnitude. If set to a number this is used as the base of the logarithm. When set to a function, unit increases of its output are used instead. - **`polar`** is a shortcut for `angle = true` and `abs = true`. Can also be set to the basis to use for `abs`, then a suitable rate for `angle` will be selected. - **`color`** toggles coloring of the phase angle. Can also be set to either the name of, or a `ColorScheme`, or a function `θ -> Color`. If set to `:print` a desaturated version of the default is used. - **`box`** if set to `(a, b, s)` shades the area where the output is within the box `a` and `b` in the color `s` when set to `(f, s)` the colored domain is defined by `f(w) == true`. Can also be a list of multiple boxes. Remaining keyword arguments are passed to the plotting backend. """ sawplot, sawplot! @shadedplot(sawplot, (real = false, imag = false, rect = false, angle = false, abs = false, polar = false, color = false, box = nothing), begin # set carthesian grid if no options given if all(b -> b isa Bool && !b, (real, imag, rect, angle, abs, polar)) rect = true end w -> sawplotshader( w; real, imag, rect, angle, abs, polar, color, box ) end) export pdphaseplot, pdphaseplot! """ pdphaseplot( f :: "Complex -> Complex", limits = (-1, 1, -1, 1); pixels = (720, 720), real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing, kwargs... ) Takes a complex valued function and produces a phase plot using [ColorCET](https://colorcet.com)'s CBC1 cyclic color map for protanopic and deuteranopic viewers. Yellow corresponds to phase ``0``, white to ``\\frac{\\pi}{2}``, blue to ``\\pi``, and black to ``\\frac{3\\pi}{2}``. # Arguments - **`f`** is the complex function to plot. - **`limits`** are the limits of the rectangle to plot, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. # Keyword Arguments - **`pixels`** is the number of pixels to compute in, respectively, the real and imaginary axis, taking the same for both if only one number is provided. - **`real`** plots black to white ramps orthogonal to the real axis at a rate of one ramp per unit increase. If set to a number this will be used as width instead. - **`imag`** plots black to white ramps orthogonal to the imaginary axis at a rate of one ramp per unit increase. If set to a number this will be used as width instead. - **`rect`** is a shortcut for `real = true` and `imag = true`. - **`angle`** plots black to white ramps orthogonal to the phase angle at a rate of eight ramps per full rotation. Can be set to an integer to specify a different rate. - **`abs`** plots black to white ramps at a rate of one ramp per unit increase of the natural logarithm of the magnitude. If set to a number this is used as the base of the logarithm. When set to a function, unit increases of its output are used instead. - **`polar`** is a shortcut for `angle = true` and `abs = true`. Can also be set to the basis to use for `abs`, then a suitable rate for `angle` will be selected. - **`box`** if set to `(a, b, s)` shades the area where the output is within the box `a` and `b` in the color `s` when set to `(f, s)` the colored domain is defined by `f(w) == true`. Can also be a list of multiple boxes. Remaining keyword arguments are passed to the plotting backend. """ pdphaseplot, pdphaseplot! @shadedplot(pdphaseplot, (real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing), w -> sawplotshader( w; real, imag, rect, angle, abs, polar, color=:CBC1, box )) export tphaseplot, tphaseplot! """ tphaseplot( f :: "Complex -> Complex", limits = (-1, 1, -1, 1); pixels = (720, 720), real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing, kwargs... ) Takes a complex valued function and produces a phase plot using [ColorCET](https://colorcet.com)'s CBTC1 cyclic color map for titranopic viewers. Red corresponds to phase ``0``, white to ``\\frac{\\pi}{2}``, cyan to ``\\pi``, and black to ``\\frac{3\\pi}{2}``. # Arguments - **`f`** is the complex function to plot. - **`limits`** are the limits of the rectangle to plot, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. # Keyword Arguments - **`pixels`** is the number of pixels to compute in, respectively, the real and imaginary axis, taking the same for both if only one number is provided. - **`real`** plots black to white ramps orthogonal to the real axis at a rate of one ramp per unit increase. If set to a number this will be used as width instead. - **`imag`** plots black to white ramps orthogonal to the imaginary axis at a rate of one ramp per unit increase. If set to a number this will be used as width instead. - **`rect`** is a shortcut for `real = true` and `imag = true`. - **`angle`** plots black to white ramps orthogonal to the phase angle at a rate of eight ramps per full rotation. Can be set to an integer to specify a different rate. - **`abs`** plots black to white ramps at a rate of one ramp per unit increase of the natural logarithm of the magnitude. If set to a number this is used as the base of the logarithm. When set to a function, unit increases of its output are used instead. - **`polar`** is a shortcut for `angle = true` and `abs = true`. Can also be set to the basis to use for `abs`, then a suitable rate for `angle` will be selected. - **`box`** if set to `(a, b, s)` shades the area where the output is within the box `a` and `b` in the color `s` when set to `(f, s)` the colored domain is defined by `f(w) == true`. Can also be a list of multiple boxes. Remaining keyword arguments are passed to the plotting backend. """ tphaseplot, tphaseplot! @shadedplot(tphaseplot, (real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing), w -> sawplotshader( w; real, imag, rect, angle, abs, polar, color=:CBTC1, box ))
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
code
2379
using ColorTypes # Implements the `limits` expansion typical of the functions in this # module, additionally normalizes to tuples. function _expandlimits(limits) if length(limits) == 1 return Float64.(tuple(-limits, limits, -limits, limits)) elseif length(limits) == 2 return Float64.(tuple(-limits[1], limits[1], -limits[2], limits[2])) else return Float64.(Tuple(limits)) end end """ DomainColoring.renderimage!( out :: Matrix{<: Color}, f :: "Complex -> Complex", shader :: "Complex -> Color", limits = (-1, 1, -1, 1), ) # Arguments - **`out`** is the output image buffer. - **`f`** is the complex function to turn into an image. - **`shader`** is the shader function to compute a pixel. - **`limits`** are the limits of the rectangle to render, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. """ function renderimage!( img::Matrix{C}, f, shader, limits = (-1, 1, -1, 1), ) where C limits = _expandlimits(limits) r = range(limits[1], limits[2], length=size(img, 2)) i = range(limits[4], limits[3], length=size(img, 1)) shd(w) = isnan(w) ? zero(C) : convert(C, shader(w)) broadcast!((r, i) -> shd(f(r + im*i)), img, r', i) end """ DomainColoring.renderimage( f :: "Complex -> Complex", shader :: "Complex -> Color", limits = (-1, 1, -1, 1), pixels = (720, 720), ) # Arguments - **`f`** is the complex function to turn into an image. - **`shader`** is the shader function to compute a pixel. - **`limits`** are the limits of the rectangle to render, in the format `(minRe, maxRe, minIm, maxIm)`, if one or two numbers are provided instead they are take symmetric along the real and imaginary axis. - **`pixels`** is the size of the output in pixels, respectively, the number of pixels along the real and imaginary axis, taking the same for both if only one number is provided. """ function renderimage( f, shader, limits = (-1, 1, -1, 1), pixels = (720, 720), ) length(pixels) == 1 && (pixels = (pixels, pixels)) img = Matrix{RGBA{Float64}}(undef, pixels[1], pixels[2]) renderimage!(img, f, shader, limits) return img end
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
code
8797
using ColorTypes, ColorSchemes """ DomainColoring.labsweep(θ) Maps a phase angle **`θ`** to a color in CIE L\\*a\\*b\\* space by taking ```math \\begin{aligned} L^* &= 67 - 12 \\cos(3\\theta), \\\\ a^* &= 46 \\cos(\\theta + .4) - 3, \\quad\\text{and} \\\\ b^* &= 46 \\sin(\\theta + .4) - 16. \\end{aligned} ``` See [Phase Wheel](@ref) for more information. """ function labsweep(θ) θ = mod(θ, 2π) Lab(67 - 12cos(3θ), 46cos(θ + .4) - 3, 46sin(θ + .4) + 16) end # Grid types supported by _grid @enum GridType begin CheckerGrid LineGrid SawGrid end # Logic for grid like plotting elements, somewhat ugly, but it works. # `w` is the complex value, `type` is the type of grid to make # `checkerplot`. function _grid( type, w; real = false, imag = false, rect = false, angle = false, abs = false, polar = false, ) # carthesian checker plot if rect isa Bool if rect real = true imag = true end elseif length(rect) > 1 real = rect[1] imag = rect[2] else real = rect imag = rect end # polar checker plot if polar isa Bool if polar angle = true abs = true end elseif polar isa Function angle = true abs = polar elseif length(polar) > 1 angle = polar[1] abs = polar[2] else angle = 2max(round(π/log(polar)), 4) abs = polar end # set defaults (real isa Bool && real) && (real = 1) (imag isa Bool && imag) && (imag = 1) (angle isa Bool && angle) && (angle = 8) (abs isa Bool && abs) && (abs = ℯ) # set the transform saw(x) = mod(x, 1) if type == SawGrid trf = saw else trf = sinpi end g = 1.0 if real > 0 r = Base.real(w) / real isfinite(r) && (g *= trf(r)) end if imag > 0 i = Base.imag(w) / imag isfinite(i) && (g *= trf(i)) end if angle > 0 @assert mod(angle, 1) ≈ 0 "Rate of angle has to be an integer." angle = round(angle) (type == CheckerGrid) && @assert iseven(angle) "Rate of angle has to be even." a = angle * Base.angle(w) / 2π isfinite(a) && (g *= trf(a)) end if abs isa Function m = abs(Base.abs(w)) isfinite(m) && (g *= trf(m)) elseif abs > 0 m = log(abs, Base.abs(w)) isfinite(m) && (g *= trf(m)) end if type == CheckerGrid float(g > 0) elseif type == LineGrid Base.abs(g)^0.06 else g end end _grid(type, w, args::NamedTuple) = _grid(type, w; args...) _grid(type, w, arg) = _grid(type, w; rect=arg) # Implements the angle coloring logic for shaders. _color_angle(w, arg::Bool) = arg ? labsweep(angle(w)) : Lab(80.0, 0.0, 0.0) _color_angle(w, arg::Function) = arg(mod(angle(w), 2π)) _color_angle(w, arg::ColorScheme) = get(arg, mod(angle(w) / 2π, 1)) function _color_angle(w, arg::Symbol) if arg == :print c = labsweep(angle(w)) Lab(c.l + 5, .7c.a, .7c.b) elseif arg == :CBC1 || arg == :pd get(ColorSchemes.cyclic_protanopic_deuteranopic_bwyk_16_96_c31_n256, mod(-angle(w) / 2π + .5, 1)) elseif arg == :CBTC1 || arg == :t get(ColorSchemes.cyclic_tritanopic_cwrk_40_100_c20_n256, mod(-angle(w) / 2π + .5, 1)) else _color_angle(w, ColorSchemes.colorschemes[arg]) end end # Implements the magnitude logic for `domaincolorshader` # isnothing(transform) gives the default log, and saves us # from compiling an anonymous function each call. See `domaincolor` # for further argument description. function _add_magnitude( w, c; base = ℯ, transform = nothing, sigma = nothing, ) # add magnitude if requested if base > 0 if isfinite(base) && isnothing(sigma) if isnothing(transform) m = log(base, abs(w)) else m = transform(abs(w)) end isfinite(m) && (c = Lab(c.l + 20mod(m, 1) - 10, c.a, c.b)) else isnothing(sigma) && (sigma = 0.02) m = log(abs(w)) t = isfinite(m) ? exp(-sigma*m^2) : 0.0 g = 100.0(m > 0) c = Lab((1 - t)g + t*c.l, t*c.a, t*c.b) end end return c end _add_magnitude(w, c, args::NamedTuple) = _add_magnitude(w, c; args...) _add_magnitude(w, c, arg::Bool) = arg ? _add_magnitude(w, c) : c _add_magnitude(w, c, arg::Function) = _add_magnitude(w, c; transform=arg) _add_magnitude(w, c, arg) = _add_magnitude(w, c; base=arg) # draw a colored box in a specified area function _add_box(w, c, sqs) if isnothing(sqs) return c end for sq in sqs c = _add_box(w, c, sq) end return c end # domain function function _add_box(w, c::C, sq::Tuple{<:Function, <:Color}) where C <: Color f, s = sq f(w) ? convert(C, s) : c end function _add_box(w, c::C, sq::Tuple{<:Function, <:Any}) where C <: Color f, s = sq _add_box(w, c, (f, parse(C, s))) end # normal box function _add_box(w, c::C, sq::Tuple{<:Number, <:Number, <:Color}) where C <: Color a, b, s = sq mr, Mr = minmax(real(a), real(b)) mi, Mi = minmax(imag(a), imag(b)) r, i = reim(w) (mr <= r <= Mr) && (mi <= i <= Mi) ? convert(C, s) : c end function _add_box(w, c::C, sq::Tuple{<:Number, <:Number, <:Any}) where C <: Color a, b, s = sq _add_box(w, c, (a, b, parse(C, s))) end """ DomainColoring.domaincolorshader( w :: Complex; abs = false, grid = false, color = true, all = false, box = nothing, ) Takes a complex value **`w`** and shades it as in a domain coloring. For documentation of the remaining arguments see [`domaincolor`](@ref). """ function domaincolorshader( w; abs = false, grid = false, color = true, all = false, box = nothing, ) # user wants full domain coloring if all (abs isa Bool) && (abs = true) (grid isa Bool) && (grid = true) (color isa Bool) && (color = true) end # short circuit conversions if (abs isa Bool) && !abs && (grid isa Bool) && !grid return _add_box(w, _color_angle(w, color), box) end # phase color c = convert(Lab, _color_angle(w, color)) # add magnitude c = _add_magnitude(w, c, abs) # add integer grid if requested if !(grid isa Bool) || grid # slightly overattenuate to compensate global darkening g = 1.06_grid(LineGrid, w, grid) c = mapc(x -> g*x, c) end # add boxs c = _add_box(w, c, box) return c end """ DomainColoring.checkerplotshader( w :: Complex; real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing, hicontrast = false, ) Takes a complex value **`w`** and shades it as in a checker plot. For documentation of the remaining arguments see [`checkerplot`](@ref). """ function checkerplotshader( w; real = false, imag = false, rect = false, angle = false, abs = false, polar = false, box = nothing, hicontrast = false, ) g = _grid(CheckerGrid, w; real, imag, rect, angle, abs, polar) if hicontrast c = Gray(g) else c = Gray(0.9g + 0.08) end # add boxs isnothing(box) ? c : _add_box(w, convert(RGB, c), box) end """ DomainColoring.sawplotshader( w :: Complex; real = false, imag = false, rect = false, angle = false, abs = false, polar = false, color = false, box = nothing, ) Takes a complex value **`w`** and shades it as in a saw plot. For documentation of the remaining arguments see [`sawplot`](@ref). """ function sawplotshader( w; real = false, imag = false, rect = false, angle = false, abs = false, polar = false, color = false, box = nothing, ) # shortcut if there is no grid to add if all(b -> (b isa Bool) && !b, (real, imag, rect, angle, abs, polar)) return _add_box(w, _color_angle(w, color), box) end g = _grid(SawGrid, w; real, imag, rect, angle, abs, polar) if color isa Bool && !color c = Gray(0.6g + 0.3) isnothing(box) ? c : _add_box(w, convert(RGB, c), box) else c = convert(Lab, _color_angle(w, color)) _add_box(w, Lab(c.l + 20g - 10, c.a, c.b), box) end end
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
code
1356
import .MakieCore as MC # Makie specific version of `shadedplot` and `shadedplot!` for (modifying, target) in ((false, ()), (true, ()), (true, (:target,))) fname = modifying ? :shadedplot! : :shadedplot hname = modifying ? :heatmap! : :heatmap @eval begin function $fname( $(target...), f :: Function, shader :: Function, limits = (-1, 1, -1, 1), pixels = (720, 720); kwargs... ) limits = _expandlimits(limits) # parse Makie options $(if !modifying :(defaults = MC.Attributes(; interpolate = true, axis = (autolimitaspect = 1, aspect = (limits[2] - limits[1]) / (limits[4] - limits[3])))) else :(defaults = MC.Attributes(; interpolate = true)) end) attr = merge(MC.Attributes(; kwargs...), defaults) # images have inverted y and flip x and y in their storage r = [limits[1], limits[2]] i = [limits[4], limits[3]] MC.$hname($(target...), r, i, renderimage(f, shader, limits, pixels)'; attr...) end end end
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
code
1036
import .Plots # Plots.jl specific version of `shadedplot` and `shadedplot!` for (modifying, target) in ((false, ()), (true, ()), (true, (:target,))) fname = modifying ? :shadedplot! : :shadedplot pname = modifying ? :plot! : :plot @eval begin function $fname( $(target...), f :: Function, shader :: Function, limits = (-1, 1, -1, 1), pixels = (720, 720); kwargs... ) limits = _expandlimits(limits) r = [limits[1], limits[2]] i = [limits[3], limits[4]] # set attributes $(if !modifying :(attr = merge((yflip=false, xlims=r, ylims=i), kwargs)) else :(attr = kwargs) end) Plots.$pname($(target...), r, i, reverse(renderimage(f, shader, limits, pixels), dims=1); attr...) end end end
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
code
608
""" DomainColoring.shadedplot( f :: "Complex -> Complex", shader :: "Complex -> Color", limits = (-1, 1, -1, 1), pixels = (720, 720); kwargs... ) Takes a complex function **`f`** and a **`shader`** and produces a plot. For documentation of the remaining arguments see [`renderimage`](@ref). Keyword arguments are passed to the backend. """ shadedplot, shadedplot! shadedplot(args...) = @error "`shadedplot` is used in an unusual way; did you load a backend?" shadedplot!(args...) = @error "`shadedplot!` is used in an unusual way; did you load a backend?"
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
docs
484
<div align="center"> <img src="docs/src/assets/logo.png" width=210/> <h1>DomainColoring.jl</h1> </div> <p> <a href="https://eprovst.github.io/DomainColoring.jl/stable"> <img src="https://img.shields.io/badge/docs-stable-green.svg"/> </a> <a href="https://eprovst.github.io/DomainColoring.jl/dev"> <img src="https://img.shields.io/badge/docs-dev-blue.svg"/> </a> </p> <p> Domain colorings and checker plots of complex functions in Julia using smooth colors. </p>
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
docs
477
<h1>DomainColoringToy</h1> <p> <a href="https://eprovst.github.io/DomainColoring.jl/stable/dct"> <img src="https://img.shields.io/badge/docs-stable-green.svg"/> </a> <a href="https://eprovst.github.io/DomainColoring.jl/dev/dct"> <img src="https://img.shields.io/badge/docs-dev-blue.svg"/> </a> </p> <p> Interactive domain colorings and checker plots of complex functions in Julia using smooth colors, based on <a href="https://makie.org/">GLMakie</a>. </p>
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
docs
986
# DomainColoringToy `DomainColoringToy` is an auxiliary package building on `DomainColoring.jl` which preloads `GLMakie` and rerenders the plot when the user zooms in or pans around. The exported functions and arguments are identical to `DomainColoring.jl` with the addition of the acceptance of `:auto` in place of an integer in the `pixels` keyword argument. A direction which is set to `:auto` will use the viewport resolution to determine the number of samples. Note that this can make plotting very slow. Finally, in a similar fashion to `DomainColoring.@shadedplot`, one can use `DomainColoringToy.@shadedplot` to create custom plots. ## Installation `DomainColoringToy` is a different package and hence has to be installed separately. Installation is as usual: ``` ]add DomainColoringToy ``` ## Library ### Public Interface ```@autodocs Modules = [DomainColoringToy] Private = false ``` ### Package Internals ```@autodocs Modules = [DomainColoringToy] Public = false ```
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
docs
710
# DomainColoring.jl: Smooth Complex Plotting Welcome to the documentation of the `DomainColoring.jl` package, a small collection of various ways to plot complex functions, supporting [Plots.jl](https://docs.juliaplots.org) and [Makie](https://makie.org). ```@raw html <div align="center"> <img src="assets/logo.png" width=300 /> </div> ``` The plots implemented here are inspired by the wonderful book by Wegert[^1], yet using a smooth (technically analytic) curve through CIE L\*a\*b\* space, yielding a more perceptually uniform representation of the phase (see [Phase Wheel](@ref)). [^1]: Wegert, Elias. Visual Complex Functions: An Introduction with Phase Portraits. Birkhäuser Basel, 2012.
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
docs
174
# Library ## Public Interface ```@autodocs Modules = [DomainColoring] Private = false ``` ## Package Internals ```@autodocs Modules = [DomainColoring] Public = false ```
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
docs
1839
# Phase Wheel Creating a perceptually smooth color wheel is in general a difficult task, and comes with inherent compromises. This document serves to list the design decisions taken for the phase wheel used in our implementation of domain coloring. We carefully selected the following analytical sweep through CIE L\*a\*b\* space: ```math \begin{aligned} L^* &= 67 - 12 \cos(3\theta),\\ a^* &= 46 \cos(\theta + .4) - 3,\quad\text{and}\\ b^* &= 46 \sin(\theta + .4) - 16. \end{aligned} ``` This is implemented by the internal function [`DomainColoring.labsweep`](@ref), giving the following phase wheel. ```@example using DomainColoring, Colors #hide showable(::MIME"text/plain", ::AbstractVector{C}) where {C<:Colorant} = false #hide DomainColoring.labsweep.(0:.01:2π) ``` The main problem in the usually used HSV map is the erratic nature of everything, creating false detail, making certain parts of the phase look longer than others, etc. Unlike, HSV our peaks and troughs are equispaced, and smooth. Lightnesswise the entire range is separated into six equal parts. For usual data analysis it would be better to minimise the number of oscillations, however for our purposes the turning points serve as visual anchors dividing the phase range. Note that some lightness variation is wanted, as our eyes mainly rely on lightness to discern higher frequency information[^1]. The target color space is sRGB, so adding dips in lightness near its red, green, and blue primaries buys us more range in additional lightness variation to show magnitude in more complicated plots. This way we have only slight clipping in sRGB space when adding the lightness variations used to show magnitude changes in [`domaincolor`](@ref). [^1]: Kovesi, Peter. (2015). "Good Colour Maps: How to Design Them." arXiv:abs/1509.03700.
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
docs
1769
# Creating Custom Plots The underlying architecture of DomainColoring is fairly straightforward. A shader function (a map from complex numbers to colors) is applied to the input function `f` applied to some grid. The specification of this grid, the `pixels` option, the axis limiting and the interface with Plots and Makie are identical throughout DomainColoring and stem from the internal macro `@shadedplot`. An example makes this clear. Let's say we want a plot where integer grid lines of the real part and the imaginary part in different colors. A shader implementing this could be: ```julia using DomainColoring, Colors function shader(w, realcol, imagcol) r, i = reim(w) c = weighted_color_mean(abs(sinpi(r))^.06, colorant"white", realcol) weighted_color_mean(abs(sinpi(i))^.06, c, imagcol) end ``` Turning this into a plotting function is then as simple as: ```julia import DomainColoring: @shadedplot @shadedplot(cgridplot, (realcol = colorant"red", imagcol = colorant"blue"), w -> shader(w, realcol, imagcol)) ``` This produces functions `cgridplot` and `cgridplot!`. Which give plots like: ```@example using CairoMakie using DomainColoring, Colors # hide function shader(w, realcol, imagcol) # hide r, i = reim(w) # hide c = colorant"white" # hide c = weighted_color_mean(abs(sinpi(r))^.06, c, realcol) # hide weighted_color_mean(abs(sinpi(i))^.06, c, imagcol) # hide end # hide import DomainColoring: @shadedplot # hide @shadedplot(cgridplot, # hide (realcol = colorant"red", imagcol = colorant"blue"), # hide w -> shader(w, realcol, imagcol)) # hide cgridplot(z -> im*z^3-1, 2.5) resize!(current_figure(), 620, 600) #hide save("example.png", current_figure()) # hide nothing # hide ``` ![](example.png)
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
docs
1852
# Plotting for Color Vision Deficiency To distinguish phase values without introducing a discontinuity we need to use two stimuli. The shading used by [`domaincolor`](@ref) uses green-magenta and blue-yellow color opponents (i.e. a full rainbow), with only slight variation in lightness to enhance local contrast. This leaves lightness to display contour lines of the magnitude, but is problematic for viewers with color vision deficiency. For them, these color opponents are not (fully) distinguishable and hence the plot is rendered unreadable. `DomainColoring.jl` hence provides alternative phase plots that are clearly readable to them, based on color maps developed by [Peter Kovesi](https://peterkovesi.com/papers/ColourMapsForColourBlindIAMG2017.pdf). !!! note These color maps can also be used in the other plots as `:pd`/`:CBC1` and `:t`/`:CBTC1`, respectively. However do note that their use of black and white might interfere with other plotting elements. ## Phase plots for protanopia and deuteranopia For these viewers it is difficult to distinguish red and green hues. The method [`pdphaseplot`](@ref) hence uses lightness and a yellow-blue sweep to display phase instead. ```@example using CairoMakie, DomainColoring # hide pdphaseplot(z -> exp(1/z), 0.5) resize!(current_figure(), 620, 600) #hide save("pdphaseexample.png", current_figure()) # hide nothing # hide ``` ![](pdphaseexample.png) ## Phase plots for titranopia For these viewers it is difficult to distinguish blue and yellow hues. The method [`tphaseplot`](@ref) hence uses lightness and a red-cyan sweep to display phase instead. ```@example using CairoMakie, DomainColoring # hide tphaseplot(z -> exp(1/z), 0.5) resize!(current_figure(), 620, 600) #hide save("tphaseexample.png", current_figure()) # hide nothing # hide ``` ![](tphaseexample.png)
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
docs
12239
# General Overview !!! note `DomainColoring.jl` provides plots on top of either the [Plots.jl](https://docs.juliaplots.org) or [Makie](https://makie.org) frameworks, thus a user will have to additionally install and load a backend. ## Common options All plotting functions require a function ``\mathbb{C} \to \mathbb{C}`` as first argument and accept optionally axis limits as a second. If no limits are provided by default unit length is taken in all four directions. If a list of two numbers is provided the first is used as both limit in the real direction and the second in the imaginary direction. A list of four elements are interpreted as ``({\rm Re}_{\rm min}, {\rm Re}_{\rm max}, {\rm Im}_{\rm min}, {\rm Im}_{\rm max})``. All plots have a keyword argument `pixels` by which one can specify the number of samples in respectively the real and imaginary direction. If only one number is provided it is used for both. Additionally there is also the option to fill in a box, or list of boxes in the output space using the option `box`, which is illustrated in the section on [`checkerplot`](@ref) and [`sawplot`](@ref). Finally, any remaining keywords are passed to the backend. This, together with the modifying variants (`domaincolor!`, `checkerplot!`, etc.), makes the plotting routines in this library behave similarly to other plot types. For more information we refer to the [Plots.jl](https://docs.juliaplots.org) and [Makie](https://docs.makie.org) documentation. The remainder of this page gives a quick overview of the main plotting functions of `DomainColoring.jl`. ## The [`domaincolor`](@ref) function !!! note The phase output of [`domaincolor`](@ref) is generally not suited for those with color vision deficiency, refer to [Plotting for Color Vision Deficiency](@ref) instead. By default [`domaincolor`](@ref) produces a phase plot such as the following. ```@example using CairoMakie, DomainColoring # hide domaincolor(sinc, (3, 1.5)) resize!(current_figure(), 620, 340) #hide save("dcsincphase.png", current_figure()) # hide nothing # hide ``` ![](dcsincphase.png) One can additionally superimpose contour lines of the magnitude as sweeps of increasing lightness by setting `abs = true`. Where this increase of lightness is taken proportional to the fractional part of ``\log|f(z)|``. ```@example using CairoMakie, DomainColoring # hide domaincolor(sinc, (3, 1.5), abs=true) resize!(current_figure(), 620, 340) #hide save("dcsincabs.png", current_figure()) # hide nothing # hide ``` ![](dcsincabs.png) Finally, one can also add a dark grid where the imaginary or real part of ``f(z)`` is integer by setting `grid = true`. ```@example using CairoMakie, DomainColoring # hide domaincolor(sinc, (3, 1.5), grid=true) resize!(current_figure(), 620, 340) #hide save("dcsincgrid.png", current_figure()) # hide nothing # hide ``` ![](dcsincgrid.png) Of course these options can be combined, the common combination of `abs = true` and `grid = true` even has an abbreviation `all = true`. ```@example using CairoMakie, DomainColoring # hide domaincolor(sinc, (3, 1.5), all=true) resize!(current_figure(), 620, 340) #hide save("dcsincall.png", current_figure()) # hide nothing # hide ``` ![](dcsincall.png) The argument interface contains many further options, but we will delay their discussion until after introducing the [`checkerplot`](@ref) and [`sawplot`](@ref) functions. ## The [`checkerplot`](@ref) and [`sawplot`](@ref) functions A checker plot shows limited information and is useful to detect patterns in certain contexts. By default a checker board pattern is used with one stripe for an unit increase in either direction. A checkerplot of the identity function makes this clearer. ```@example using CairoMakie, DomainColoring # hide checkerplot(z -> z, 5) resize!(current_figure(), 620, 600) #hide save("cprect.png", current_figure()) # hide nothing # hide ``` ![](cprect.png) A saw plot is similar but shows ramps instead of solid stripes, to get an idea of the direction of increase. Their interface is almost identical, so we'll use them interchangeably for most examples. The previous example as a saw plot would be: ```@example using CairoMakie, DomainColoring # hide sawplot(z -> z, 5) resize!(current_figure(), 620, 600) #hide save("sprect.png", current_figure()) # hide nothing # hide ``` ![](sprect.png) You can limit the stripes to only show increase in the real or imaginary part by setting `real = true` or `imag = true`, respectively. Again the previous example. ```@example using CairoMakie, DomainColoring # hide checkerplot(z -> z, 5, real=true) resize!(current_figure(), 620, 600) #hide save("cpreal.png", current_figure()) # hide nothing # hide ``` ![](cpreal.png) Setting `real = true` and `imag = true` can be abbreviated to `rect = true`, which is identical to the default behaviour. Alternatively one can also display a polar grid by setting `polar = true`, giving one band per unit increase of ``\log|f(z)|`` and eight bands per ``2\pi`` increase of ``\arg(f(z))``. ```@example using CairoMakie, DomainColoring # hide sawplot(z -> z, 5, polar=true) resize!(current_figure(), 620, 600) #hide save("cppolar.png", current_figure()) # hide nothing # hide ``` ![](cppolar.png) As with `rect = true`, `polar = true` is an abbreviation for `abs = true` and `angle = true`, showing magnitude and phase respectively. Now is a good time to mention that most arguments discussed so far also accept numbers, modifying the width or rate of the stripes. For example, we can change the basis of the logarithm used for the magnitude (alternatively one can also pass a function as in [`domaincolor`](@ref), see next section): ```@example using CairoMakie, DomainColoring # hide checkerplot(z -> z, 5, abs=1.1) resize!(current_figure(), 620, 600) #hide save("cpabs.png", current_figure()) # hide nothing # hide ``` ![](cpabs.png) and for phase: ```@example using CairoMakie, DomainColoring # hide sawplot(z -> z, 5, angle=10) resize!(current_figure(), 620, 600) #hide save("cpangle.png", current_figure()) # hide nothing # hide ``` ![](cpangle.png) Note, that for a [`checkerplot`](@ref) the latter we needs to be an even number. If we set `phase` to a number, this will be used for `abs` and a suitable integer rate will be chosen for `angle`, for instance: ```@example using CairoMakie, DomainColoring # hide checkerplot(sin, (5, 2), polar=1.5) resize!(current_figure(), 620, 280) #hide save("cppolarsin.png", current_figure()) # hide nothing # hide ``` ![](cppolarsin.png) As mentioned before regions of the output plane can be colored using the `box` option, for example: ```@example using CairoMakie, DomainColoring # hide checkerplot(z -> z^2, 2, box=[(1,1im,:red), (-1-2im,-2-1im,:blue)]) resize!(current_figure(), 620, 600) #hide save("cpboxes.png", current_figure()) # hide nothing # hide ``` ![](cpboxes.png) Finally, `hicontrast = true` can be used in [`checkerplot`](@ref) to plot in black and white instead of the slightly softer defaults, and `color = true` mixes phase coloring into a [`sawplot`](@ref) (further possibilities of this option are identical to [`domaincolor`](@ref), as discussed at the end of the next section). ## The [`domaincolor`](@ref) function, revisited Like [`checkerplot`](@ref) and [`sawplot`](@ref), `abs` and `grid` also accept numbers. Respectively, changing the basis of the used logarithm and the rate of the grid. Additionally, we can pass named tuples to open up even more options. For `grid` these options are identical to `checkerplot`, for example an analogous example to the penultimate one of last section, is given by: ```@example using CairoMakie, DomainColoring # hide domaincolor(sin, (5, 2), grid=(polar=1.5,)) resize!(current_figure(), 620, 280) #hide save("dcpolarsin.png", current_figure()) # hide nothing # hide ``` ![](dcpolarsin.png) (Note: unlike before, the rate of `angle` need not be even for grids.) The `abs` argument accepts a different basis from the default ``e``, if we for instance wanted to see orders of magnitude, we could look at: ```@example using CairoMakie, DomainColoring # hide domaincolor(z -> z^3, 5, abs=10) resize!(current_figure(), 620, 600) #hide save("dcordermag.png", current_figure()) # hide nothing # hide ``` ![](dcordermag.png) If one does not want to look at the logarithm of the magnitude, but the magnitude itself, they can use the `transform` option, or pass a function directly to `abs`, for instance: ```@example using CairoMakie, DomainColoring # hide domaincolor(sqrt, (-1, 19, -4, 4), abs=z->z) resize!(current_figure(), 620, 280) #hide save("dclinmag.png", current_figure()) # hide nothing # hide ``` ![](dclinmag.png) Finally, if we set the base to `Inf`, the magnitude is colored from black at zero to white at infinity, which we can use to illustrate the Casorati–Weierstrass theorem: ```@example using CairoMakie, DomainColoring # hide domaincolor(z -> exp(1/z), .1, abs=Inf) resize!(current_figure(), 620, 600) #hide save("cwthm.png", current_figure()) # hide nothing # hide ``` ![](cwthm.png) The harshness of these white an black areas can be changed using the `sigma` parameter, try for instance: ```julia domaincolor(z -> exp(1/z), .1, abs=(sigma=0.001,)) ``` If one wants to change the coloring of the phase angle, they can pass a `ColorScheme` (as an object or by name, see [their documentation](https://juliagraphics.github.io/ColorSchemes.jl/stable/catalogue/)) or a function `θ -> Color`, to `color`. As an example of the latter, we can add a discretization effect: ```@example using CairoMakie, DomainColoring # hide discrangle(θ) = DomainColoring.labsweep(π/10 * floor(10/π * θ)) domaincolor(tan, π/2, color=discrangle) resize!(current_figure(), 620, 600) #hide save("dsccolor.png", current_figure()) # hide nothing # hide ``` ![](dsccolor.png) There is also a `:print` option that uses a desaturated version of the default color scheme, which is more suitable for consumer grade printers. ```@example using CairoMakie, DomainColoring # hide domaincolor(tan, π/2, color=:print) resize!(current_figure(), 620, 600) #hide save("dscprint.png", current_figure()) # hide nothing # hide ``` ![](dscprint.png) Finally, if no coloring of the phase is wanted, we can set `color = false`. ## The Riemann sphere To close, let us demonstrate how you can combine plots in the Makie framework to plot the two hemispheres of the Riemann sphere side to side. Separately these would be for some function `f`, say `sin` ```@example using CairoMakie, DomainColoring # hide f = sin domaincolor(z -> abs(z) <= 1 ? f(z) : NaN) resize!(current_figure(), 620, 600) #hide current_figure() #hide ``` and ```@example using CairoMakie, DomainColoring # hide f = sin #hide domaincolor(z -> abs(z) <= 1 ? f(1/z) : NaN) resize!(current_figure(), 620, 600) #hide current_figure() #hide ``` where we used that `NaN` is shown transparent by the plots of this package. In Makie a layout of `Axis` objects is collected in a `Figure`, we can position them by indexing the figure. Two axes side by side would for instance be: ```@example using CairoMakie fig = Figure() ax11 = Axis(fig[1,1]) ax12 = Axis(fig[1,2]) resize!(fig, 620, 400) #hide fig ``` As a final complication, `domaincolor!` can't change the aspect ratio of a plot, hence we have to set it to square at the time of creation, giving finally the function (where we also pass keyword arguments): ```julia function riemann(f; kwargs...) fig = Figure() ax11 = Axis(fig[1,1], aspect=1) domaincolor!(ax11, z -> abs(z) <= 1 ? f(z) : NaN; kwargs...) ax12 = Axis(fig[1,2], aspect=1) domaincolor!(ax12, z -> abs(z) <= 1 ? f(1/z) : NaN; kwargs...) fig end ``` For the sine function this for instance gives: ```@example using DomainColoring, CairoMakie # hide function riemann(f; kwargs...) # hide fig = Figure() # hide ax11 = Axis(fig[1,1], aspect=1) # hide domaincolor!(ax11, z -> abs(z) <= 1 ? f(z) : NaN; kwargs...) # hide ax12 = Axis(fig[1,2], aspect=1) # hide domaincolor!(ax12, z -> abs(z) <= 1 ? f(1/z) : NaN; kwargs...) # hide fig # hide end # hide riemann(sin, abs=true) resize!(current_figure(), 620, 300) #hide current_figure() #hide ```
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
1.0.1
034b43b4a93702047f2c91670e8df0372d725aca
docs
5023
# Basic Tutorial !!! note If you're experienced with Julia and phase plots, this document might be fairly basic. Continue to the [General Overview](@ref) instead. ## Installation, loading, Makie and Plots.jl `DomainColoring.jl` provides plotting routines for complex functions. These require either the [Makie](https://makie.org/) or [Plots.jl](https://docs.juliaplots.org) plotting libraries. In this tutorial we will use the former. Makie supports multiple backends, one of which has to be loaded to display the resulting plot. There are two main options: - `GLMakie` for interactive plots, and - `CairoMakie` for publication quality plots. In this tutorial we will use `CairoMakie` to provide output for the documentation, but whilst following along you might want to use `GLMakie` instead. To install `DomainColoring.jl` and either of these packages, enter ``` ]add DomainColoring GLMakie ``` or ``` ]add DomainColoring CairoMakie ``` into the Julia REPL. (To return to the Julia REPL after this, simply press backspace.) After installation your session should in general start with either ```julia using GLMakie, DomainColoring ``` for interactive work, or for publication graphics with ```julia using CairoMakie, DomainColoring ``` ## Plotting our first few phase plots Julia supports the passing of functions as arguments, even better, it supports the creation of so called 'anonymous' functions. We can for instance write the function that maps an argument ``z`` to ``2z + 1`` as ```julia z -> 2z + 1 ``` Let us now see how the phase of this function behaves in the complex plane. First, if you haven't already, we need to load `DomainColoring.jl` and an appropriate backend (our suggestion is `GLMakie` if you're experimenting from the Julia REPL): ```@example using CairoMakie, DomainColoring ``` Then a simple phase plot can be made using ```@example using CairoMakie, DomainColoring # hide domaincolor(z -> 2z + 1) resize!(current_figure(), 620, 600) #hide save("simplephaseexample.png", current_figure()) # hide nothing # hide ``` ![](simplephaseexample.png) As expected we see a zero of multiplicity one at ``-0.5``, furthermore we see that `domaincolor` defaults to unit axis limits in each direction. Something useful to know about phase plots, the order of the colors tells you more about the thing you are seeing: - red, green and blue (anticlockwise) is a zero; and - red, blue and green is a pole. The number of times you go through these colors gives you the multiplicity. A pole of multiplicity two gives for instance: ```@example using CairoMakie, DomainColoring # hide domaincolor(z -> 1 / z^2) resize!(current_figure(), 620, 600) #hide save("simplepoleexample.png", current_figure()) # hide nothing # hide ``` ![](simplepoleexample.png) We've now looked at poles and zeroes, another interesting effect to see on a phase plot are [branch cuts](https://en.wikipedia.org/wiki/Branch_point). Julia's implementation of the square root has a branch cut on the negative real axis, as we can see on the following figure. ```@example using CairoMakie, DomainColoring # hide domaincolor(sqrt, [-10, 2, -2, 2]) resize!(current_figure(), 620, 250) #hide save("sqrtexample.png", current_figure()) # hide nothing # hide ``` ![](sqrtexample.png) There are a couple of things of note here. First, Julia allows us to simply pass `sqrt`, which here is equivalent to `z -> sqrt(z)`. Second, `domaincolor` accepts axis limits as an optional second argument (for those familiar with Julia: any indexable object will work). Finally, branch cuts give discontinuities in the phase plot (identifying these is greatly helped by the perceptual uniformity of the [Phase Wheel](@ref) used). We conclude by mentioning that you do not always need to specify all limits explicitly. If you want to take the same limit in all four directions you can simply pass that number. When you pass a vector with only two elements, these will be taken symmetric in the real and imaginary direction respectively. This way we can zoom in on the beauty of the essential singularity of ``e^\frac{1}{z}``. ```@example using CairoMakie, DomainColoring # hide domaincolor(z -> exp(1/z), 0.5) resize!(current_figure(), 620, 600) #hide save("essentialsingexample.png", current_figure()) # hide nothing # hide ``` ![](essentialsingexample.png) ## Plotting the `DomainColoring.jl` logo As a final example, let us show off a few more capabilities of the [`domaincolor`](@ref) function by plotting the `DomainColoring.jl` logo. This is a plot of ``f(z) = z^3i - 1`` with level curves of the logarithm of the magnitude and an integer grid. You can continue by reading the [General Overview](@ref) to learn more about these and other additional options, and the other provided plotting functions. ```@example using CairoMakie, DomainColoring # hide domaincolor(z -> im*z^3-1, 2.5, all=true) resize!(current_figure(), 620, 600) #hide save("logoexample.png", current_figure()) # hide nothing # hide ``` ![](logoexample.png)
DomainColoring
https://github.com/eprovst/DomainColoring.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
604
using Documenter, Ekztazy makedocs(; modules=[Ekztazy], format=Documenter.HTML(), pages=[ "Home" => "index.md", "Types" => "types.md", "Client" => "client.md", "REST API" => "rest.md", "Helpers" => "helpers.md", "Events" => "events.md" ], repo="https://github.com/Humans-of-Julia/Ekztazy.jl/blob/{commit}{path}#L{line}", sitename="Ekztazy.jl", authors="Xh4H <[email protected]>, christopher-dG <[email protected]> Kyando <[email protected]>", ) deploydocs(; repo="github.com/Humans-of-Julia/Ekztazy.jl", )
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
327
module Eval using Ekztazy c = Client() g = ENV["TESTGUILD"] command!(c, g, "eval", "evaluates a string as julia code", legacy=false, options=Options( [String, "str", "the string to evaluate"] )) do ctx, str::String @info "$str" reply(c, ctx, content="```julia\n$(eval(Meta.parse(str)))\n```") end start(c) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
1915
module Ekztazy using Dates using Distributed using HTTP using InteractiveUtils using JSON3 using StructTypes using OpenTrick using Setfield using TimeToLive const D1ZKORD_JL_VERSION = v"0.6.1" const API_VERSION = 9 const DISCORD_API = "https://discordapp.com/api" # Shortcuts for common unions. const Optional{T} = Union{T, Missing} const Nullable{T} = Union{T, Nothing} const OptionalNullable{T} = Union{T, Missing, Nothing} const StringOrChar = Union{AbstractString, AbstractChar} # Shortcut functions . jsonify(x) = JSON3.write(x) # Constant functions. donothing(args...; kwargs...) = nothing alwaystrue(args...; kwargs...) = true alwaysfalse(args...; kwargs...) = false # Run a function with an acquired semaphore. function withsem(f::Function, s::Base.Semaphore) Base.acquire(s) try f() finally Base.release(s) end end # Precompile all methods of a function, running it if force is set. function compile(f::Function, force::Bool; kwargs...) for m in methods(f) types = Tuple(m.sig.types[2:end]) precompile(f, types) force && try f(mock.(types; kwargs...)...) catch end end end function method_argnames(m::Method) argnames = ccall(:jl_uncompress_argnames, Vector{Symbol}, (Any,), m.slot_syms) isempty(argnames) && return argnames return argnames[2:m.nargs] end function method_argtypes(m::Method) return m.sig.types[2:end] end """ method_args(m::Method) -> Vector{Tuple{Symbol, Type}} """ function method_args(m::Method) n, t, v = method_argnames(m), method_argtypes(m), [] for x = 1:length(n) push!(v, (n[x], t[x])) end v end include(joinpath("utils", "consts.jl")) include(joinpath("types", "types.jl")) include(joinpath("client", "client.jl")) include(joinpath("client", "handlers.jl")) include(joinpath("gateway", "gateway.jl")) include(joinpath("rest", "rest.jl")) include(joinpath("utils", "helpers.jl")) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
11316
export Client, me, enable_cache!, disable_cache!, start, add_handler! include("limiter.jl") include("state.jl") # Messages are created regularly, and lose relevance quickly. const DEFAULT_STRATEGIES = Dict{DataType, CacheStrategy}( Guild => CacheForever(), DiscordChannel => CacheForever(), User => CacheForever(), Member => CacheForever(), Presence => CacheForever(), Message => CacheTTL(Hour(6)), ) # A versioned WebSocket connection. mutable struct Conn io v::Int end """ Client( token::String application_id::Snowflake intents::Int; presence::Union{Dict, NamedTuple}=Dict(), strategies::Dict{DataType, <:CacheStrategy}=Dict(), version::Int=$API_VERSION, ) -> Client A Discord bot. `Client`s can connect to the gateway, respond to events, and make REST API calls to perform actions such as sending/deleting messages, kicking/banning users, etc. ### Bot Token A bot token can be acquired by creating a new application [here](https://discordapp.com/developers/applications). Make sure not to hardcode the token into your Julia code! Use an environment variable or configuration file instead. ### Application ID The application id for your bot can be found [here](https://discordapp.com/developers/applications). Make sure not to hardcode the application id into your Julia code! Use an environment variable or configuration file instead. ### Intents Integer representing intents. More information [here](https://discord.com/developers/docs/topics/gateway#gateway-intents). ### Presence The `presence` keyword sets the bot's presence upon connection. It also sets defaults for future calls to [`set_game`](@ref). The schema [here](https://discordapp.com/developers/docs/topics/gateway#update-status-gateway-status-update-structure) must be followed. ### Cache Control By default, most data that comes from Discord is cached for later use. However, to avoid memory leakage, not all of it is kept forever. The default setings are to keep everything but [`Message`](@ref)s, which are deleted after 6 hours, forever. Although the default settings are sufficient for most workloads, you can specify your own strategies per type with the `strategies` keyword. Keys can be any of the following: - [`Guild`](@ref) - [`DiscordChannel`](@ref) - [`Message`](@ref) - [`User`](@ref) - [`Member`](@ref) - [`Presence`](@ref) For potential values, see [`CacheStrategy`](@ref). The cache can also be disabled/enabled permanently and temporarily as a whole with [`enable_cache!`](@ref) and [`disable_cache!`](@ref). ### API Version The `version` keyword chooses the Version of the Discord API to use. Using anything but `$API_VERSION` is not officially supported by the Ekztazy.jl developers. ### Sharding Sharding is handled automatically. The number of available processes is the number of shards that are created. See the [sharding example](https://github.com/Xh4H/Discord.jl/blob/master/examples/sharding.jl) for more details. """ mutable struct Client token::AbstractString # Bot token application_id::Snowflake # Application ID for Interactions commands::Vector{ApplicationCommand} # Commands guild_commands::Dict{Snowflake, Vector{ApplicationCommand}} # Guild commands intents::Int # Intents value handlers::Dict{Symbol, Vector{Handler}} # Handlers for each event hb_interval::Int # Milliseconds between heartbeats. hb_seq::Nullable{Int} # Sequence value sent by Discord for resuming. last_hb::DateTime # Last heartbeat send. last_ack::DateTime # Last heartbeat ack. version::Int # Discord API version. state::State # Client state, cached data, etc. shards::Int # Number of shards in use. shard::Int # Client's shard index. limiter::Limiter # Rate limiter. ready::Bool # Client is connected and authenticated. use_cache::Bool # Whether or not to use the cache. presence::Dict # Default presence options. conn::Conn # WebSocket connection. p_guilds::Dict{Snowflake, String} # Command prefix overrides. no_auto_ack::Vector{String} # No auto ack custom ids. auto_update_ack::Vector{String} # Auto ack for deferred message update custom ids. function Client( token::String, application_id::Snowflake, intents::Int; # kwargs presence::Union{Dict, NamedTuple}=Dict(), strategies::Dict{DataType, <:CacheStrategy}=Dict{DataType, CacheStrategy}(), version::Int=API_VERSION, ) token = startswith(token, "Bot ") ? token : "Bot $token" state = State(merge(DEFAULT_STRATEGIES, strategies)) app_id = application_id conn = Conn(nothing, 0) presence = merge(Dict( "since" => nothing, "game" => nothing, "status" => "online", # Should make a const out of statuses "afk" => false, ), Dict(string(k) => v for (k, v) in Dict(pairs(presence)))) c = new( token, # token app_id, # application_id Vector(), # Commands Dict(), # Guild commands intents, # intents Dict(), # handlers 0, # hb_interval nothing, # hb_seq DateTime(0), # last_hb DateTime(0), # last_ack version, # version state, # state nprocs(), # shards myid() - 1, # shard Limiter(), # limiter false, # ready true, # use_cache presence, # presence conn, # conn Dict(), # p_guilds [], # no_auto_ack [] # auto_update_ack ) return c end end Client(token::String, appid::Int, intents::Int, args...) = Client(token, UInt(appid), intents, args...) Client(in::Int) = Client( ENV["DISCORD_TOKEN"], ENV["APPLICATION_ID"] isa Number ? ENV["APPLICATION_ID"] : parse(UInt, ENV["APPLICATION_ID"]), in ) Client() = Client(intents(GUILDS, GUILD_MESSAGES)) add!(d::Dict{U, Union{Vector{T}}}, k::U, v::T) where T where U = haskey(d, k) ? push!(d[k], v) : d[k] = [v] """ add_handler!(c::Client, handler::Handler) Adds a handler to the client. """ add_handler!(c::Client, handler::Handler) = add!(c.handlers, handlerkind(handler), handler) """ add_handler!(c::Client, handler::Handler) Bulk adds handlers to the client. """ add_handler!(c::Client, args...) = map(h -> add_handler!(c, h), args) add_command!(c::Client; kwargs...) = add_command!(c, ApplicationCommand(; application_id=c.application_id, kwargs...)) add_command!(c::Client, cmd::ApplicationCommand) = push!(c.commands, cmd) add_command!(c::Client, args...) = map(cmd -> add_command!(c, cmd), args) add_command!(c::Client, g::Snowflake; kwargs...) = add_command!(c, g, ApplicationCommand(; application_id=c.application_id, kwargs...)) add_command!(c::Client, g::Snowflake, cmd::ApplicationCommand) = add!(c.guild_commands, g, cmd) add_command!(c::Client, g::Snowflake, args...) = map(cmd -> add_command!(c, g, cmd), args) mock(::Type{Client}; kwargs...) = Client("token") function Base.show(io::IO, c::Client) print(io, "Discord.Client(shard=$(c.shard + 1)/$(c.shards), api=$(c.version), ") isopen(c) || print(io, "not ") print(io, "logged in)") end """ me(c::Client) -> Nullable{User} Get the [`Client`](@ref)'s bot user. """ me(c::Client) = c.state.user """ enable_cache!(c::Client) enable_cache!(f::Function c::Client) Enable the cache. `do` syntax is also accepted. """ enable_cache!(c::Client) = c.use_cache = true enable_cache!(f::Function, c::Client) = set_cache(f, c, true) """ disable_cache!(c::Client) disable_cache!(f::Function, c::Client) Disable the cache. `do` syntax is also accepted. """ disable_cache!(c::Client) = c.use_cache = false disable_cache!(f::Function, c::Client) = set_cache(f, c, false) # Compute some contextual keywords for log messages. function logkws(c::Client; kwargs...) kws = Pair[:time => now()] c.shards > 1 && push!(kws, :shard => c.shard) c.conn.io === nothing || push!(kws, :conn => c.conn.v) for kw in kwargs if kw.second === undef # Delete any keys overridden with undef. filter!(p -> p.first !== kw.first, kws) else # Replace any overridden keys. idx = findfirst(p -> p.first === kw.first, kws) if idx === nothing push!(kws, kw) else kws[idx] = kw end end end return kws end # Parse some data (usually a Dict from JSON), or return the thrown error. function Base.tryparse(c::Client, T::Type, data) return try T <: Vector ? eltype(T).(data) : T(data), nothing catch e kws = logkws(c; T=T, exception=(e, catch_backtrace())) @error "Parsing failed" kws... nothing, e end end # Run some function with the cache enabled or disabled. function set_cache(f::Function, c::Client, use_cache::Bool) old = c.use_cache c.use_cache = use_cache try f() finally # Usually the above function is going to be calling REST endpoints. The cache flag # is checked asynchronously, so by the time it happens there's a good chance we've # already returned and set the cache flag back to its original value. sleep(Millisecond(1)) c.use_cache = old end end """ start(c::Client) Creates a handler to generate [`ApplicationCommand`](@ref)s.\n Creates handlers for GuildCreate events.\n Calls `open` then `wait` on the [`Client`](@ref). """ function start(c::Client) hcreate = OnGuildCreate() do (ctx) put!(c.state, ctx.guild) end hupdate = OnGuildUpdate() do (ctx) put!(c.state, ctx.guild) end hready = OnReady() do (ctx) c.state.user = ctx.user for (g, cmds) in c.guild_commands create(c, Vector{ApplicationCommand}, g, cmds) end create(c, Vector{ApplicationCommand}, c.commands) end add_handler!(c, hcreate, hupdate, hready) try open(c) wait(c) catch err if err isa InterruptException close(c) end rethrow(err) return end end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
8209
export command!, component!, modal!, select! """ command!( f::Function c::Client name::AbstractString description::AbstractString; kwargs... ) Adds a handler for INTERACTION CREATE gateway events where the InteractionData's `name` field matches `name`. Adds this command to `c.commands` or `c.guild_commands` based on the presence of `guild`. The `f` parameter signature should be: ``` (ctx::Context, args...) -> Any ``` Where args is a list of all the Command Options For example a command that takes a user u and a number n as input should have this signature: ``` (ctx::Context, u::User, n::Int) -> Any ``` and the arguments would automatically get converted. **Note:** The argument names **must** match the Option names. The arguments can be ordered in any way. If no type is specified, no conversion will be performed, so Discord objects will be `Snowflake`s. """ function command!(c::Client, f::Function, name::AbstractString, desc::AbstractString, legacy::Bool; auto_ack=true, kwargs...) haskey(kwargs, :options) && check_option.(kwargs[:options]) namecheck(name, r"^[\w-]{1,32}$", 32, "ApplicationCommand Name") namecheck(name, 100, "ApplicationCommand Description") if !auto_ack push!(c.no_auto_ack, name) end legacy ? add_handler!(c, OnInteractionCreate(f; name=name)) : add_handler!(c, OnInteractionCreate(generate_command_func(f); name=name)) end function command!(f::Function, c::Client, name::AbstractString, description::AbstractString; legacy::Bool=true, auto_ack=true, kwargs...) command!(c, f, name, description, legacy; auto_ack=auto_ack, kwargs...) add_command!(c; name=name, description=description, kwargs...) end function command!(f::Function, c::Client, g::Number, name::AbstractString, description::AbstractString; legacy::Bool=true, auto_ack=true, kwargs...) command!(c, f, name, description, legacy; auto_ack=auto_ack, kwargs...) add_command!(c, Snowflake(g); name=name, description=description, kwargs...) end command!(f::Function, c::Client, g::String, name::AbstractString, description::AbstractString; kwargs...) = command!(f, c, parse(Int, g), name, description; kwargs...) function modal!(f::Function, c::Client, custom_id::String, int::Interaction; kwargs...) add_handler!(c, OnInteractionCreate(generate_command_func(f), custom_id=custom_id)) push!(c.no_auto_ack, custom_id) respond_to_interaction_with_a_modal(c, int.id, int.token; custom_id=custom_id, kwargs...) end modal!(f::Function, c::Client, custom_id::String, ctx::Context; kwargs...) = modal!(f, c, custom_id, ctx.interaction; compkwfix(; kwargs...)...) function check_option(o::ApplicationCommandOption) namecheck(o.name, r"^[\w-]{1,32}$", 32, "ApplicationCommandOption Name") namecheck(o.description, 100, "ApplicationCommandOption Description") end namecheck(val::String, patt::Regex, len::Int, of::String) = (!occursin(patt, val) || length(val) > len) && throw(NamingError(val, of)) namecheck(val::String, patt::Regex, of::String) = namecheck(val, patt, 32, of) namecheck(val::String, len::Int, of::String) = namecheck(val, r"", len, of) namecheck(val::String, of::String) = namecheck(val, 32, of) function generate_command_func(f::Function) args = handlerargs(f) @debug "Generating typed args" args=args g = (ctx::Context) -> begin a = makeargs(ctx, args) f(ctx, a...) end g end function generate_select_command_func(f::Function) g = (ctx::Context) -> begin f(ctx, ctx.interaction.data.values) end g end function makeargs(ctx::Context, args) v = [] args = args[2:end] if length(args) == 0 return v end o = opt(ctx) for x = args t = last(x) arg = get(o, string(first(x)), :ERR) push!(v, conv(t, arg, ctx)) end v end function conv(::Type{T}, arg, ctx::Context) where T if T in [String, Int, Bool, Any] return arg end id = snowflake(arg) if T == User return ctx.interaction.data.resolved.users[id] elseif T == Member u = ctx.interaction.data.resolved.users[id] m = ctx.interaction.data.resolved.members[id] m.user = u return m elseif T == Role return ctx.interaction.data.resolved.roles[id] elseif T == DiscordChannel return ctx.interaction.data.resolved.channels[id] end arg end """ component!( f::Function c::Client custom_id::AbstractString kwargs... ) Adds a handler for INTERACTION CREATE gateway events where the InteractionData's `custom_id` field matches `custom_id`. The `f` parameter signature should be: ``` (ctx::Context) -> Any ``` """ function component!(f::Function, c::Client, custom_id::AbstractString; auto_ack::Bool=true, auto_update_ack::Bool=true, kwargs...) add_handler!(c, OnInteractionCreate(f; custom_id=custom_id)) if !auto_ack push!(c.no_auto_ack, custom_id) end if auto_update_ack push!(c.auto_update_ack, custom_id) end return Component(custom_id=custom_id; kwargs...) end """ select!( f::Function c::Client custom_id::AbstractString args::Vector{Tuple} kwargs... ) Adds a handler for INTERACTION CREATE gateway events where the InteractionData's `custom_id` field matches `custom_id`. The `f` parameter signature should be: ``` (ctx::Context, choices::Vector{String}) -> Any ``` """ function select!(f::Function, c::Client, custom_id::AbstractString, args...; auto_ack::Bool=true, auto_update_ack::Bool=true, kwargs...) add_handler!(c, OnInteractionCreate(generate_select_command_func(f); custom_id=custom_id)) if !auto_ack push!(c.no_auto_ack, custom_id) end if auto_update_ack push!(c.auto_update_ack, custom_id) end if length(args) == 0 throw(FieldRequired("options", "SelectOption")) end return Component(custom_id=custom_id; options=[SelectOption(a...) for a in args], type=3, kwargs...) end """ handle( c::Client handlers, data ) Determines whether handlers are appropriate to call and calls them if so. Creates an `AbstractContext` based on the event using the `data` provided and passes it to the handler. """ function handle(c::Client, handlers::Vector{Handler}, data::Dict, t::Symbol) ctx = context(t, data::Dict) hasproperty(ctx, :interaction) && handle_ack(c, ctx) isvalidcommand = (h) -> return (!hasproperty(h, :name) || (!ismissing(ctx.interaction.data.name) && h.name == ctx.interaction.data.name)) isvalidcomponent = (h) -> return (!hasproperty(h, :custom_id) || (!ismissing(ctx.interaction.data.custom_id) && h.custom_id == ctx.interaction.data.custom_id)) isvalid = (h) -> return isvalidcommand(h) && isvalidcomponent(h) @debug "$(repr.(handlers))" currrent = repr(ctx) for hh in handlers isvalid(hh) && (runhandler(c, hh, ctx, t)) end end function handle_ack(c::Client, ctx::Context) iscomp = !ismissing(ctx.interaction.data.custom_id) !ismissing(ctx.interaction.data.type) && ctx.interaction.data.type == 5 && return if !iscomp || !(ctx.interaction.data.custom_id in c.no_auto_ack) @debug "Acking interaction" name=ctx.interaction.data.name custom_id=ctx.interaction.data.custom_id if iscomp && (ctx.interaction.data.custom_id in c.auto_update_ack) update_ack_interaction(c, ctx.interaction.id, ctx.interaction.token) elseif (!ismissing(ctx.interaction.data.name) && !(ctx.interaction.data.name in c.no_auto_ack)) || iscomp ack_interaction(c, ctx.interaction.id, ctx.interaction.token) end end end """ Runs a handler with given context """ function runhandler(c::Client, h::Handler, ctx::Context, t::Symbol) @debug "Running handler" h=Handler type=t @spawn begin try h.f(ctx) catch e kws = logkws(c; handler=t, exception=(e, catch_backtrace())) @warn "Handler errored" kws... end end end """ Calls handle with a list of all found handlers. """ function handle(c::Client, t::Symbol, data::Dict) haskey(c.handlers, t) ? handle(c, c.handlers[t], data, t) : return nothing end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
4545
const MESSAGES_REGEX = r"^/channels/\d+/messages/\d+$" const ENDS_MAJOR_ID_REGEX = r"(?:channels|guilds|webhooks)/\d+$" const ENDS_ID_REGEX = r"/\d+$" const EXCEPT_TRAILING_ID_REGEX = r"(.*?)/\d+$" # A rate limited job queue for one endpoint. mutable struct JobQueue remaining::Nullable{Int} reset::Nullable{DateTime} # UTC. jobs::Channel{Function} # These functions must return an HTTP response. retries::Channel{Function} # Jobs which must be retried (higher priority). function JobQueue(endpoint::AbstractString, limiter) q = new(nothing, nothing, Channel{Function}(Inf), Channel{Function}(Inf)) @spawn while true # Get a job, prioritizing retries. This is really ugly. local f = nothing while true if isready(q.retries) f = take!(q.retries) break elseif isready(q.jobs) f = take!(q.jobs) break end sleep(Millisecond(10)) end # Wait for any existing rate limits. # TODO: Having the shard index would be nice for logging here. n = now(UTC) if limiter.reset !== nothing && n < limiter.reset time = limiter.reset - n @debug "Waiting for global rate limit" time=now() sleep=time sleep(time) end n = now(UTC) if q.remaining == 0 && q.reset !== nothing && n < q.reset time = q.reset - n @debug "Waiting for rate limit" time=now() endpoint=endpoint sleep=time sleep(time) end # Run the job, and get the HTTP response. r = f() @debug "Ran the job!" if r === nothing # Exception from the HTTP request itself, nothing to do. @debug "Got an error" @async put!(q.retries, f) elseif r.status == 429 # Update the rate limiter with the response body. @warn "Rate limited" @async begin n = now(UTC) d = JSON3.read(String(copy(r.body))) reset = n + Millisecond(get(d, "retry_after", 0)) if get(d, "global", false) limiter.reset = reset else q.remaining = 0 q.reset = reset end end # Requeue the job with high priority. put!(q.retries, f) else # Update the rate limiter with the response headers. @debug "Updated limiter" rem = HTTP.header(r, "X-RateLimit-Remaining") isempty(rem) || (q.remaining = parse(Int, rem)) res = HTTP.header(r, "X-RateLimit-Reset") @async begin if !isempty(res) tim = parse(Int, res) q.reset = unix2datetime(tim) end end end @debug "Finished rate limit job handling" end return q end end # A rate limiter for all endpoints. mutable struct Limiter reset::Nullable{DateTime} # API-wide limit. queues::Dict{String, JobQueue} sem::Base.Semaphore Limiter() = new(nothing, Dict(), Base.Semaphore(1)) end # Schedule a job. function enqueue!(f::Function, l::Limiter, method::Symbol, endpoint::AbstractString) endpoint = parse_endpoint(endpoint, method) withsem(l.sem) do haskey(l.queues, endpoint) || (l.queues[endpoint] = JobQueue(endpoint, l)) end put!(l.queues[endpoint].jobs, f) end # Get the endpoint which corresponds to its own rate limit. function parse_endpoint(endpoint::AbstractString, method::Symbol) return if method === :DELETE && match(MESSAGES_REGEX, endpoint) !== nothing # Special case 1: Deleting messages has its own rate limit. first(match(EXCEPT_TRAILING_ID_REGEX, endpoint).captures) * " $method" elseif startswith(endpoint, "/invites/") # Special case 2: Invites are identified by a non-numeric code. "/invites" elseif match(ENDS_MAJOR_ID_REGEX, endpoint) !== nothing endpoint elseif match(ENDS_ID_REGEX, endpoint) !== nothing first(match(EXCEPT_TRAILING_ID_REGEX, endpoint).captures) else endpoint end end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
12019
export CacheForever, CacheNever, CacheTTL, CacheLRU, CacheFilter # TODO: Strategy composition, e.g. TTL eviction with filtered insertion. """ A method of handling cache insertion and eviction. """ abstract type CacheStrategy end """ CacheForever() -> CacheForever Store everything and never evict items from the cache. """ struct CacheForever <: CacheStrategy end """ CacheNever() -> CacheNever Don't store anything in the cache. """ struct CacheNever <: CacheStrategy end """ CacheTTL(ttl::Period) -> CacheTTL Evict items from the cache after `ttl` has elapsed. """ struct CacheTTL <: CacheStrategy ttl::Period end """ CacheLRU(size::Int) -> CacheLRU Evict the least recently used item from the cache when there are more than `size` items. """ struct CacheLRU <: CacheStrategy size::Int end """ CacheFilter(f::Function) -> CacheFilter Only store value `v` at key `k` if `f(v) === true` (`k` is always `v.id`). """ struct CacheFilter <: CacheStrategy f::Function end # A dict-like object with a caching strategy. struct Store{D <: AbstractDict, S <: CacheStrategy} data::D strat::S Store(d::D, s::CacheStrategy) where D = new{D, typeof(s)}(d, s) end Store(::CacheForever, V::Type) = Store(Dict{Snowflake, V}(), CacheForever()) Store(::CacheNever, V::Type) = Store(Dict{Snowflake, V}(), CacheNever()) Store(s::CacheTTL, V::Type) = Store(TTL{Snowflake, V}(s.ttl), s) Store(s::CacheLRU, V::Type) = Store(LRU{Snowflake, V}(s.size), s) Store(s::CacheFilter, V::Type) = Store(Dict{Snowflake, V}(), s) Base.eltype(s::Store) = eltype(s.data) Base.get(s::Store, key, default) = get(s.data, key, default) Base.getindex(s::Store, key) = s.data[key] Base.haskey(s::Store, key) = haskey(s.data, key) Base.isempty(s::Store) = isempty(s.data) Base.keys(s::Store) = keys(s.data) Base.values(s::Store) = values(s.data) Base.length(s::Store) = length(s.data) Base.iterate(s::Store) = iterate(s.data) Base.iterate(s::Store, i) = iterate(s.data, i) Base.touch(s::Store, k) = nothing Base.delete!(s::Store, key) = (delete!(s.data, key); s) Base.empty!(s::Store) = (empty!(s.data); s) Base.filter!(f, s::Store) = (filter!(s.data); s) Base.setindex!(s::Store, value, key) = (setindex!(s.data, value, key); s) Base.touch(s::Store{<:AbstractDict, CacheTTL}, key) = touch(s.data, key) Base.setindex!(s::Store{<:AbstractDict, CacheNever}, value, key) = s function Base.setindex!(s::Store{<:AbstractDict, CacheFilter}, value, key) try s.strat.f(value) === true && setindex!(s.data, value, key) catch # TODO: Log this? end return s end # Container for all client state. mutable struct State v::Int # Discord API version. session_id::String # Gateway session ID. _trace::Vector{String} # Servers (not guilds) connected to. user::Nullable{User} # Bot user. guilds::Store # Guild ID -> guild. channels::Store # Channel ID -> channel. users::Store # User ID -> user. messages::Store # Message ID -> message. presences::Dict{Snowflake, Store} # Guild ID -> user ID -> presence. members::Dict{Snowflake, Store} # Guild ID -> member ID -> member. sem::Base.Semaphore # Internal mutex. strats::Dict{DataType, CacheStrategy} # Caching strategies per type. end function State(strats::Dict{DataType, <:CacheStrategy}) return State( 0, # v "", # session_id [], # _trace nothing, # user Store(strats[Guild], AbstractGuild), # guilds Store(strats[DiscordChannel], DiscordChannel), # channels Store(strats[User], User), # users Store(strats[Message], Message), # messages Dict(), # presences Dict(), # members Base.Semaphore(1), # sem strats, # strats ) end Store(s::State, T::Type) = Store(get(s.strats, T, CacheForever()), T) # Base.get retrieves a value of a given type from the cache, or returns nothing. Base.get(s::State, ::Type; kwargs...) = nothing Base.get(s::State, ::Type{User}; kwargs...) = get(s.users, kwargs[:user], nothing) Base.get(s::State, ::Type{Message}; kwargs...) = get(s.messages, kwargs[:message], nothing) # Get a single channel. function Base.get(s::State, ::Type{DiscordChannel}; kwargs...) return get(s.channels, kwargs[:channel], nothing) end # Get all the channels of a guild. function Base.get(s::State, ::Type{Vector{DiscordChannel}}; kwargs...) guild = kwargs[:guild] haskey(s.guilds, guild) || return nothing channels = map( i -> s.channels[i], Iterators.filter(i -> haskey(s.channels, i), collect(s.guilds[guild].djl_channels)), ) return isempty(channels) ? nothing : channels end function Base.get(s::State, ::Type{Presence}; kwargs...) guild = kwargs[:guild] haskey(s.presences, guild) || return nothing return get(s.presences[guild], kwargs[:user], nothing) end function Base.get(s::State, ::Type{Guild}; kwargs...) haskey(s.guilds, kwargs[:guild]) || return nothing g = s.guilds[kwargs[:guild]] # Guilds are stored with missing channels, members, and presences. g = @set g.channels = map( ch -> s.channels[ch], Iterators.filter(ch -> haskey(s.channels, ch), collect(g.djl_channels)), ) g = @set g.djl_channels = missing ms = get(s.members, g.id, Dict()) g = @set g.members = map( i -> get(s, Member; guild=g.id, user=i), Iterators.filter(i -> haskey(ms, i), collect(coalesce(g.djl_users, Member[]))), ) ps = get(s.presences, g.id, Dict()) g = @set g.presences = map( i -> get(s, Presence; guild=g.id, user=i), Iterators.filter(i -> haskey(ps, i), collect(coalesce(g.djl_users, Presence[]))), ) g = @set g.djl_users = missing return g end function Base.get(s::State, ::Type{Member}; kwargs...) # Members are stored with missing user. haskey(s.members, kwargs[:guild]) || return nothing guild = s.members[kwargs[:guild]] haskey(guild, kwargs[:user]) || return nothing member = guild[kwargs[:user]] haskey(s.users, kwargs[:user]) || return member # With a missing user field. user = s.users[kwargs[:user]] return @set member.user = user end function Base.get(s::State, ::Type{Role}; kwargs...) haskey(s.guilds, kwargs[:guild]) || return nothing roles = coalesce(s.guilds[kwargs[:guild]].roles, Role[]) idx = findfirst(r -> r.id == kwargs[:role], roles) return idx === nothing ? nothing : roles[idx] end # Base.put! inserts a value into the cache, and returns the updated value. Base.put!(s::State, val; kwargs...) = val Base.put!(s::State, g::UnavailableGuild; kwargs...) = insert_or_update!(s.guilds, g) Base.put!(s::State, ms::Vector{Member}; kwargs...) = map(m -> put!(s, m; kwargs...), ms) Base.put!(s::State, u::User; kwargs...) = insert_or_update!(s.users, u) function Base.put!(s::State, m::Message; kwargs...) if ismissing(m.guild_id) && haskey(s.channels, m.channel_id) m = @set m.guild_id = s.channels[m.channel_id].guild_id end insert_or_update!(s.messages, m) touch(s.channels, m.channel_id) touch(s.guilds, m.guild_id) return m end function Base.put!(s::State, g::Guild; kwargs...) # Replace members and presences with IDs that can be looked up later. ms = coalesce(g.members, Member[]) ps = coalesce(g.presences, Presence[]) users = map(m -> m.user.id, Iterators.filter(m -> m.user !== nothing, ms)) unique!(append!(users, map(p -> p.user.id, ps))) g = @set g.members = missing g = @set g.presences = missing g = @set g.djl_users = Set(users) chs = coalesce(g.channels, DiscordChannel[]) channels = map(ch -> ch.id, chs) g = @set g.djl_channels = Set(channels) g = @set g.channels = missing insert_or_update!(s.guilds, g) put!(s, chs; kwargs..., guild=g.id) foreach(m -> put!(s, m; kwargs..., guild=g.id), ms) foreach(p -> put!(s, p; kwargs..., guild=g.id), ps) return get(s, Guild; guild=g.id) end function Base.put!(s::State, ms::Vector{Message}; kwargs...) return map(m -> put!(s, m; kwargs...), ms) end function Base.put!(s::State, ch::DiscordChannel; kwargs...) if ismissing(ch.guild_id) && get(kwargs, :guild, nothing) !== nothing ch = @set ch.guild_id = kwargs[:guild] end foreach(u -> put!(s, u; kwargs...), coalesce(ch.recipients, User[])) haskey(s.guilds, ch.guild_id) && push!(s.guilds[ch.guild_id].djl_channels, ch.id) return insert_or_update!(s.channels, ch) end function Base.put!(s::State, chs::Vector{DiscordChannel}; kwargs...) return map(ch -> put!(s, ch; kwargs...), chs) end function Base.put!(s::State, p::Presence; kwargs...) guild = coalesce(get(kwargs, :guild, missing), p.guild_id) ismissing(guild) && return p if haskey(s.guilds, guild) g = s.guilds[guild] g isa Guild && push!(g.djl_users, p.user.id) end haskey(s.presences, guild) || (s.presences[guild] = Store(s, Presence)) return insert_or_update!(s.presences[guild], p.user.id, p) end function Base.put!(s::State, m::Member; kwargs...) ismissing(m.user) && return m guild = kwargs[:guild] # Members are stored with a missing user field to save memory. user = m.user m = @set m.user = missing # This is a bit ugly, but basically we're updating the member as usual but then # filling in its user field at the same time as the user sync. haskey(s.members, guild) || (s.members[guild] = Store(s, Member)) m = insert_or_update!(s.members[guild], user.id, m) m = @set m.user = insert_or_update!(s.users, user) if haskey(s.guilds, guild) g = s.guilds[guild] g isa Guild && push!(g.djl_users, user.id) end return m end function Base.put!(s::State, r::Role; kwargs...) guild = kwargs[:guild] haskey(s.guilds, guild) || return r g = s.guilds[guild] g isa Guild || return r return if ismissing(g.roles) s.guilds[guild] = @set g.roles = [r] r else insert_or_update!(g.roles, r) end end # This handles emojis being added to a guild. function Base.put!(s::State, es::Vector{Emoji}; kwargs...) guild = kwargs[:guild] haskey(s.guilds, guild) || return es g = s.guilds[guild] g isa Guild || return es s.guilds[guild] = @set g.emojis = es return es end # This handles a single emoji being added as a reaction. function Base.put!(s::State, e::Emoji; kwargs...) message = kwargs[:message] user = kwargs[:user] haskey(s.messages, message) || return e withsem(s.sem) do m = s.messages[message] isclient = !ismissing(s.user) && s.user.id == user if ismissing(m.reactions) s.messages[message] = @set m.reactions = [Reaction(1, isclient, e)] else idx = findfirst(r -> r.emoji.name == e.name, m.reactions) if idx === nothing push!(m.reactions, Reaction(1, isclient, e)) else r = m.reactions[idx] r = @set r.count += 1 r = @set r.me |= isclient r = @set r.emoji = merge(r.emoji, e) m.reactions[idx] = r end end end return e end # Insert or update a value in the cache. insert_or_update!(d, k, v; kwargs...) = d[k] = haskey(d, k) ? merge(d[k], v) : v function insert_or_update!(d::Vector, k, v; key::Function=x -> x.id) idx = findfirst(x -> key(x) == k, d) return if idx === nothing push!(d, v) v else d[idx] = merge(d[idx], v) end end function insert_or_update!(d, v; key::Function=x -> x.id) insert_or_update!(d, key(v), v; key=key) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
12424
export request_guild_members, update_voice_status, update_status, update_presence const conn_properties = Dict( "\$os" => string(Sys.KERNEL), "\$browser" => "Discord.jl", "\$device" => "Discord.jl", ) const OPCODES = Dict( 0 => :DISPATCH, 1 => :HEARTBEAT, 2 => :IDENTIFY, 3 => :STATUS_UPDATE, 4 => :VOICE_STATUS_UPDATE, 6 => :RESUME, 7 => :RECONNECT, 8 => :REQUEST_GUILD_MEMBERS, 9 => :INVALID_SESSION, 10 => :HELLO, 11 => :HEARTBEAT_ACK, ) struct Empty <: Exception end # Connection. """ open(c::Client; delay::Period=Second(7)) Connect a [`Client`](@ref) to the Discord gateway. The `delay` keyword is the time between shards connecting. It can be increased from its default if you are using multiple shards and frequently experiencing invalid sessions upon connection. """ function Base.open(c::Client; resume::Bool=false, delay::Period=Second(7)) isopen(c) && throw(ArgumentError("Client is already connected")) c.ready = false # Clients can only identify once per 5 seconds. resume || sleep(c.shard * delay) @debug "Requesting gateway URL" logkws(c; conn=undef)... resp = try HTTP.get("$DISCORD_API/v$(c.version)/gateway") catch e kws = logkws(c; conn=undef, exception=(e, catch_backtrace())) @error "Getting gateway URL failed" kws... rethrow(e) end data = JSON3.read(String(resp.body)) url = "$(data["url"])?v=$(c.version)&encoding=json" c.conn.v += 1 @debug "Connecting to gateway" logkws(c; conn=c.conn.v, url=url)... c.conn.io = opentrick(HTTP.WebSockets.open, url) @debug "Receiving HELLO" logkws(c)... data, e = readjson(c.conn.io) op = get(OPCODES, data[:op], data[:op]) if op !== :HELLO msg = "Expected opcode HELLO, received $op" @error msg logkws(c)... error(msg) end hello(c, data) data = if resume Dict("op" => 6, "d" => Dict( "token" => c.token, "intents" => c.intents, "session_id" => c.state.session_id, "seq" => c.hb_seq, )) else d = Dict("op" => 2, "s" => c.hb_seq, "d" => Dict( "token" => c.token, "intents" => c.intents, "properties" => conn_properties, )) isempty(c.presence) || (d["d"]["presence"] = c.presence) c.shards > 1 && (d["d"]["shard"] = [c.shard, c.shards]) d end op = resume ? :RESUME : :IDENTIFY @debug "Writing $op" logkws(c)... try writejson(c.conn.io, data) catch e kws = logkws(c; exception=(e, catch_backtrace())) @error "Writing $op failed" kws... rethrow(e) end @debug "Starting background maintenance tasks" logkws(c)... @spawn heartbeat_loop(c) @spawn read_loop(c) c.ready = true end """ isopen(c::Client) -> Bool Determine whether the [`Client`](@ref) is connected to the gateway. """ Base.isopen(c::Client) = c.ready && c.conn.io !== nothing && isopen(c.conn.io) """ close(c::Client) Disconnect the [`Client`](@ref) from the gateway. """ function Base.close(c::Client; statuscode::Int=1000, zombie::Bool=false) isopen(c) || return c.ready = false if zombie # It seems that Discord doesn't send a closing frame for zombie connections # (which makes sense). However, close waits for one forever (see HTTP.jl#350). @async close(c.conn.io; statuscode=statuscode) sleep(1) else close(c.conn.io; statuscode=statuscode) end end """ wait(c::Client) Wait for an open [`Client`](@ref) to close. """ function Base.wait(c::Client) while isopen(c) wait(c.conn.io.cond) # This is an arbitrary amount of time to wait, # but we want to wait long enough to potentially reconnect. sleep(10) end end # Gateway commands. """ request_guild_members( c::Client, guilds::Union{Integer, Vector{<:Integer}; query::AbstractString="", limit::Int=0, ) -> Bool Request offline guild members of one or more [`Guild`](@ref)s. [`on_guild_members_chunk!`](@ref) events are sent by the gateway in response. More details [here](https://discordapp.com/developers/docs/topics/gateway#request-guild-members). """ function request_guild_members( c::Client, guild::Integer; query::AbstractString="", limit::Int=0, ) return request_guild_members(c, [guild]; query=query, limit=limit) end function request_guild_members( c::Client, guilds::Vector{<:Integer}; query::AbstractString="", limit::Int=0, ) e, bt = trywritejson(c.conn.io, Dict("op" => 8, "d" => Dict( "guild_id" => guilds, "query" => query, "limit" => limit, ))) show_gateway_error(c, e, bt) return e === nothing end """ update_voice_state( c::Client, guild::Integer, channel::Nullable{Integer}, mute::Bool, deaf::Bool, ) -> Bool Join, move, or disconnect from a voice channel. A `VoiceStateUpdate` event is sent by the gateway in response. More details [here](https://discordapp.com/developers/docs/topics/gateway#update-voice-state). """ function update_voice_state( c::Client, guild::Integer, channel::Nullable{Integer}, mute::Bool, deaf::Bool, ) e, bt = trywritejson(c.conn.io, Dict("op" => 4, "d" => Dict( "guild_id" => guild, "channel_id" => channel, "self_mute" => mute, "self_deaf" => deaf, ))) show_gateway_error(c, e, bt) return e === nothing end """ update_status( c::Client, since::Nullable{Int}, activity::Nullable{Activity}, status::Union{PresenceStatus, AbstractString}, afk::Bool, ) -> Bool Indicate a presence or status update. A `PresenceUpdate` event is sent by the gateway in response. More details [here](https://discordapp.com/developers/docs/topics/gateway#update-status). """ function update_status( c::Client, since::Nullable{Int}, game::Union{Dict, NamedTuple, Activity, Nothing}, status::Union{Int, AbstractString}, afk::Bool, ) # Update defaults for future calls to set_game. c.presence["since"] = since c.presence["game"] = game c.presence["status"] = status c.presence["afk"] = afk e, bt = trywritejson(c.conn.io, Dict("op" => 3, "d" => Dict( "since" => since, "game" => game, "status" => status, "afk" => afk, ))) show_gateway_error(c, e, bt) return e === nothing end # Client maintenance. # Continuously send the heartbeat. function heartbeat_loop(c::Client) v = c.conn.v try sleep(rand(1:round(Int, c.hb_interval / 1000))) heartbeat(c) || (isopen(c) && @error "Writing HEARTBEAT failed" logkws(c)...) while c.conn.v == v && isopen(c) sleep(c.hb_interval / 1000) if c.last_hb > c.last_ack && isopen(c) && c.conn.v == v @debug "Encountered zombie connection" logkws(c)... reconnect(c; zombie=true) elseif !heartbeat(c) && c.conn.v == v && isopen(c) @error "Writing HEARTBEAT failed" logkws(c)... end end @debug "Heartbeat loop exited" logkws(c; conn=v)... catch e kws = logkws(c; conn=v, exception=(e, catch_backtrace())) @warn "Heartbeat loop exited unexpectedly" kws... end end # Continuously read and respond to messages. function read_loop(c::Client) v = c.conn.v try while c.conn.v == v && isopen(c) data, e = readjson(c.conn.io) if e !== nothing if c.conn.v == v handle_read_exception(c, e) else @debug "Read failed, but the connection is outdated" logkws(c; error=e)... end elseif haskey(HANDLERS, data[:op]) HANDLERS[data[:op]](c, data) else @warn "Unkown opcode" logkws(c; op=data[:op])... end end @debug "Read loop exited" logkws(c; conn=v)... catch e kws = logkws(c; conn=v, exception=(e, catch_backtrace())) @warn "Read loop exited unexpectedly" kws... c.ready && reconnect(c; zombie=true) end end # Dispatch an event to its handlers. function dispatch(c::Client, data::Dict) T = get(EVENT_TYPES, data[:t], :UnknownEvent) handle(c::Client, Symbol("On"*String(T))::Symbol, data[:d]::Dict) end dispatch(c::Client; kwargs...) = dispatch(c::Client, Dict(kwargs)) # Send a heartbeat. function heartbeat(c::Client, ::Dict=Dict()) isopen(c) || return false e, bt = trywritejson(c.conn.io, Dict("op" => 1, "d" => c.hb_seq)) show_gateway_error(c, e, bt) ok = e === nothing ok && (c.last_hb = now()) return ok end # Reconnect to the gateway. function reconnect(c::Client, ::Dict=Dict(); resume::Bool=true, zombie::Bool=false) @info "Reconnecting" logkws(c; resume=resume, zombie=zombie)... try close(c; zombie=zombie, statuscode=resume ? 4000 : 1000) catch ex @warn "Unable to close existing connection" ex end open(c; resume=resume) end # React to an invalid session. function invalid_session(c::Client, data::Dict) @warn "Received INVALID_SESSION" logkws(c; resumable=data[:d])... sleep(rand(1:5)) reconnect(c; resume=data[:d]) end # React to a hello message. hello(c::Client, data::Dict) = c.hb_interval = data[:d][:heartbeat_interval] # React to a heartbeack ack. heartbeat_ack(c::Client, ::Dict) = c.last_ack = now() # Gateway opcodes => handler function. const HANDLERS = Dict( 0 => dispatch, 1 => heartbeat, 7 => reconnect, 9 => invalid_session, 10 => hello, 11 => heartbeat_ack, ) # Error handling. const CLOSE_CODES = Dict( 1000 => :NORMAL, 4000 => :UNKNOWN_ERROR, 4001 => :UNKNOWN_OPCODE, 4002 => :DECODE_ERROR, # Probably a library bug. 4003 => :NOT_AUTHENTICATED, # Probably a library bug. 4004 => :AUTHENTICATION_FAILED, 4005 => :ALREADY_AUTHENTICATED, 4007 => :INVALID_SEQ, # Probably a library bug. 4008 => :RATE_LIMITED, # Probably a library bug. 4009 => :SESSION_TIMEOUT, 4010 => :INVALID_SHARD, 4011 => :SHARDING_REQUIRED, ) # Deal with an error from reading a message. function handle_read_exception(c::Client, e::Exception) @debug "Handling a $(typeof(e))" logkws(c; error=e)... c.ready && handle_specific_exception(c, e) end handle_specific_exception(::Client, ::Empty) = nothing handle_specific_exception(c::Client, ::EOFError) = reconnect(c) function handle_specific_exception(c::Client, e::HTTP.WebSockets.WebSocketError) err = get(CLOSE_CODES, e.status, :UNKNOWN_ERROR) if err === :NORMAL close(c) elseif err === :AUTHENTICATION_FAILED @error "Authentication failed" logkws(c)... close(c) elseif err === :INVALID_SHARD @error "Invalid shard" logkws(c)... close(c) elseif err === :SHARDING_REQUIRED @error "Sharding required" logkws(c)... close(c) else @debug "Gateway connection was closed" logkws(c; code=e.status, error=err)... reconnect(c) end end function handle_specific_exception(c::Client, e::Exception) @error sprint(showerror, e) logkws(c)... isopen(c) || reconnect(c) end # Read a JSON message. function readjson(io) data = readavailable(io) if isempty(data) nothing, Empty() else k , v = JSON3.read(String(data), Dict), nothing symk = symbolize(k) return symk, v end end # Write a JSON message. writejson(::Nothing, body) = error("Tried to write to an uninitialized connection") writejson(io, body) = write(io, jsonify(body)) # Write a JSON message, but don't throw an exception. function trywritejson(io, body) return try writejson(io, body) nothing, nothing catch e e, catch_backtrace() end end # Display a gateway error. show_gateway_error(c::Client, ::Nothing, ::Nothing) = nothing function show_gateway_error(c::Client, e::Exception, bt) kws = logkws(c; exception=(e, bt)) if isopen(c) @error "Gateway error" kws... else @debug "Gateway error" kws... end end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
6302
export fetchval const SHOULD_SEND = Dict(:PATCH => true, :POST => true, :PUT => true) """ A wrapper around a response from the REST API. Every function which wraps a Discord REST API endpoint returns a `Future` which will contain a value of this type. To retrieve the `Response` from the `Future`, use `fetch`. See also: [`fetchval`](@ref). ## Fields - `val::Nullable{T}`: The object contained in the HTTP response. For example, for a call to [`get_channel_message`](@ref), this value will be a [`Message`](@ref). - `ok::Bool`: The state of the request. If `true`, then it is safe to access `val`. - `http_response::Nullable{HTTP.Messages.Response}`: The underlying HTTP response, if a request was made. - `exception::Nullable{Exception}`: The caught exception, if one is thrown. ## Examples Multiple API calls which immediately return `Future`s and can be awaited: ```julia futures = map(i -> create_message(c, channel_id; content=string(i)), 1:10); other_work_here() resps = fetch.(futures) ``` Skipping error checks and returning the value directly: ```julia guild = fetchval(create_guild(c; name="foo")) ``` """ struct Response{T} val::Nullable{T} ok::Bool http_response::Nullable{HTTP.Messages.Response} exception::Nullable{Exception} end # HTTP response with no body. function Response{Nothing}(r::HTTP.Messages.Response) return Response{Nothing}(nothing, r.status < 300, r, nothing) end # HTTP response with body (maybe). function Response{T}(c::Client, r::HTTP.Messages.Response) where T if T == Nothing return Response{Nothing}(r) end r.status == 204 && return Response{T}(nothing, true, r, nothing) r.status >= 300 && return Response{T}(nothing, false, r, nothing) val = if HTTP.header(r, "Content-Type") == "application/json" symbolize(JSON3.read(String(copy(r.body)), T)) else copy(r.body) end return Response{T}(val, true, r, nothing) end # HTTP request with no expected response body. function Response( c::Client, method::Symbol, endpoint::AbstractString; body="", kwargs... ) return Response{Nothing}(c, method, endpoint; body=body, kwargs...) end # HTTP request. function Response{T}( c::Client, method::Symbol, endpoint::AbstractString, cachetest::Function=alwaystrue; headers=Dict(), body=HTTP.nobody, kwargs... ) where T f = Future() @spawn begin kws = ( channel=cap("channels", endpoint), guild=cap("guilds", endpoint), message=cap("messages", endpoint), user=cap("users", endpoint), ) # Retrieve the value from the cache, maybe. @debug "Preparing Request: Looking in cache" Time=now() if c.use_cache && method === :GET val = get(c.state, T; kws...) if val !== nothing try # Only use the value if it satisfies the cache test. if cachetest(val) === true put!(f, Response{T}(val, true, nothing, nothing)) return end catch # TODO: Log this? end end end # Prepare the request. url = "$DISCORD_API/v$(c.version)$endpoint" @debug "Preparing Request: Did not find in cache, preparing request" Time=now() isempty(kwargs) || (url *= "?" * HTTP.escapeuri(kwargs)) headers = merge(Dict( "User-Agent" => "Discord.jl $D1ZKORD_JL_VERSION", "Content-Type" => "application/json", "Authorization" => c.token, ), Dict(headers)) args = [method, url, headers] @debug "Preparing Request: Type of request: $T" Time=now() if get(SHOULD_SEND, method, false) push!(args, headers["Content-Type"] == "application/json" ? JSON3.write(body) : body) end @debug "Preparing Request: Enqueuing request" Time=now() # Queue a job to be run within the rate-limiting constraints. enqueue!(c.limiter, method, endpoint) do @debug "Enqueued job running" http_r = nothing try # Make an HTTP request, and generate a Response. # If we hit an upstream rate limit, return the response immediately. http_r = HTTP.request(args...; status_exception=false) @debug "Sent http request" Time=now() if http_r.status - 200 >= 100 @warn "Got an unexpected response" To=args[2] Code=http_r.status Body=http_r Sent=args[4] end http_r.status == 429 && return http_r r = Response{T}(c, http_r) if r.ok && r.val !== nothing # Cache the value, and also replace any missing data # in the response with data from the cache. r = @set r.val = put!(c.state, r.val; kws...) end # Store the successful Response to the Future. put!(f, r) @debug "Got response" catch e kws = logkws(c; conn=undef, exception=(e, catch_backtrace())) @error "Creating response failed" kws... put!(f, Response{T}(nothing, false, http_r, e)) end @debug "Request completed" url=args[2] return http_r end end @debug "Returning future" Time=now() return f end Base.eltype(::Response{T}) where T = T Base.eltype(::Type{Response{T}}) where T = T """ fetchval(f::Future{Response{T}}) -> Nullable{T} Shortcut for `fetch(f).val`: Fetch a [`Response`](@ref) and return its value. Note that there are no guarantees about the response's success and the value being returned, and it discards context that can be useful for debugging, such as HTTP responses and caught exceptions. """ fetchval(f::Future) = fetch(f).val # Capture an ID from a string. function cap(path::AbstractString, s::AbstractString) m = match(Regex("/$path/(\\d+)"), s) return m === nothing ? nothing : parse(Snowflake, first(m.captures)) end include(joinpath("endpoints", "endpoints.jl")) include(joinpath("crud", "crud.jl"))
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
131
function retrieve(c::Client, ::Type{AuditLog}, g::AbstractGuild; kwargs...) return get_guild_audit_log(c, g.id; kwargs...) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
433
function create(c::Client, ::Type{Ban}, g::AbstractGuild, u::User; kwargs...) return create_guild_ban(c, g.id, u.id; kwargs...) end function retrieve(c::Client, ::Type{Ban}, g::AbstractGuild, u::User) return get_guild_ban(c, g.id, u.id) end retrieve(c::Client, ::Type{Ban}, g::AbstractGuild) = get_guild_bans(c, g.id) function delete(c::Client, b::Ban, g::AbstractGuild) return remove_guild_ban(c, g.id, b.user.id) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
600
function create(c::Client, ::Type{DiscordChannel}, g::AbstractGuild; kwargs...) return create_guild_channel(c, g.id; kwargs...) end function create(c::Client, ::Type{DiscordChannel}, u::User; kwargs...) return create_dm(c; kwargs..., recipient_id=u.id) end retrieve(c::Client, ::Type{DiscordChannel}, channel::Integer) = get_channel(c, channel) retrieve(c::Client, ::Type{DiscordChannel}, g::AbstractGuild) = get_guild_channels(c, g.id) update(c::Client, ch::DiscordChannel; kwargs...) = modify_channel(c, ch.id; kwargs...) delete(c::Client, ch::DiscordChannel) = delete_channel(c, ch.id)
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
2759
export create, retrieve, update, delete, obtain """ create(c::Client, ::Type{T}, args...; kwargs...) -> Future{Response} Create, add, send, etc. ## Examples Sending a [`Message`](@ref): ```julia create(c, Message, channel; content="foo") ``` Creating a new [`DiscordChannel`](@ref): ```julia create(c, DiscordChannel, guild; name="bar") ``` Banning a [`Member`](@ref): ```julia create(c, Ban, guild, member; reason="baz") ``` """ function create end """ retrieve(c::Client, ::Type{T}, args...; kwargs...) -> Future{Response{T}} Retrieve, get, list, etc. ## Examples Getting the [`Client`](@ref)'s [`User`](@ref): ```julia retrieve(c, User) ``` Getting a [`Guild`](@ref)'s [`DiscordChannel`](@ref)s: ```julia retrieve(c, DiscordChannel, guild) ``` Getting an [`Invite`](@ref) to a [`Guild`](@ref) by code: ```julia retrieve(c, Invite, "abcdef") ``` """ function retrieve end """ obtain(c::Client, ::Type{T}, args...; kwargs...) -> T Equivalent to retrieve, but blocks and returns the object of type T """ obtain(args...; kwargs...) = fetch(retrieve(args...; kwargs...)).val """ update(c::Client, x::T, args...; kwargs...) -> Future{Response} Update, edit, modify, etc. ## Examples Editing a [`Message`](@ref): ```julia update(c, message; content="foo2") ``` Modifying a [`Webhook`](@ref): ```julia update(c, webhook; name="bar2") ``` Updating a [`Role`](@ref): ```julia update(c, role, guild; permissions=8) ``` """ function update end """ delete(c::Client, x::T, args...) -> Future{Response} Delete, remove, discard, etc. ## Examples Kicking a [`Member`](@ref): ```julia delete(c, member) ``` Unbanning a [`Member`](@ref): ```julia delete(c, ban, guild) ``` Deleting all [`Reaction`](@ref)s from a [`Message`](@ref) (note: this is the only update/delete method which takes a type parameter): ```julia delete(c, Reaction, message) ``` """ function delete end include("audit_log.jl") include("ban.jl") include("channel.jl") include("emoji.jl") include("guild_embed.jl") include("guild.jl") include("integration.jl") include("invite.jl") include("member.jl") include("message.jl") include("overwrite.jl") include("reaction.jl") include("role.jl") include("user.jl") include("voice_region.jl") include("webhook.jl") include("interaction.jl") #= Functions not covered here: - trigger_typing_indicator - group_dm_add_recipient - group_dm_remove_recipient - modify_guild_channel_positions - modify_current_user_nick - modify_guild_role_positions - get_guild_prune_count - begin_guild_prune - sync_guild_integration (combine with update?) - get_guild_vanity_url - get_guild_widget_image - leave_guild (combine with delete?) - execute_webhook - execute_slack_compatible_webhook - execute_github_compatible_webhook =#
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
580
function create(c::Client, ::Type{Emoji}, g::AbstractGuild; kwargs...) return create_guild_emoji(c, g.id; kwargs...) end function retrieve(c::Client, ::Type{Emoji}, g::AbstractGuild, e::Emoji) return get_guild_emoji(c, g.id, e.id) end function retrieve(c::Client, ::Type{Emoji}, g::AbstractGuild) return list_guild_emojis(c, g.id) end function update(c::Client, e::Emoji, g::AbstractGuild; kwargs...) return modify_guild_emoji(c, g.id, e.id; kwargs...) end function delete(c::Client, e::Emoji, g::AbstractGuild) return delete_guild_emoji(c, g.id, e.id) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
377
create(c::Client, ::Type{Guild}; kwargs...) = create_guild(c; kwargs...) retrieve(c::Client, ::Type{Guild}, guild::Integer) = get_guild(c, guild) retrieve(c::Client, ::Type{Guild}; kwargs...) = get_current_user_guilds(c; kwargs...) update(c::Client, g::AbstractGuild; kwargs...) = modify_guild(c, g.id; kwargs...) delete(c::Client, g::AbstractGuild) = delete_guild(c, g.id)
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
210
retrieve(c::Client, ::Type{GuildEmbed}, g::AbstractGuild) = get_guild_embed(c, g.id) function update(c::Client, ::GuildEmbed, g::AbstractGuild; kwargs...) return modify_guild_embed(c, g.id; kwargs...) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
487
function create(c::Client, ::Type{Integration}, g::AbstractGuild; kwargs...) return create_guild_integration(c, g.id; kwargs...) end retrieve(c::Client, ::Type{Integration}, g::AbstractGuild) = get_guild_integrations(c, g.id) function update(c::Client, i::Integration, g::AbstractGuild; kwargs...) return modify_guild_integration(c, g.id, i.id; kwargs...) end function delete(c::Client, i::Integration, g::AbstractGuild) return delete_guild_integration(c, g.id, i.id) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
1388
create(c::Client, ::Type{ApplicationCommand}, name::AbstractString, description::AbstractString; kwargs...) = create_application_command(c; name=name, description=description, kwargs...) create(c::Client, ::Type{ApplicationCommand}, name::AbstractString, description::AbstractString, g::Snowflake; kwargs...) = create_application_command(c, g; name=name, description=description, kwargs...) create(c::Client, ::Type{Message}, interaction::Interaction; kwargs...) = create_followup_message(c, interaction.id, interaction.token; compkwfix(; kwargs...)...) create(c::Client, ::Type{Vector{ApplicationCommand}}, cmds::Vector{ApplicationCommand}) = bulk_overwrite_application_commands(c, cmds) create(c::Client, ::Type{Vector{ApplicationCommand}}, g::Snowflake, cmds::Vector{ApplicationCommand}) = bulk_overwrite_application_commands(c, g, cmds) retrieve(c::Client, ::Type{Vector{ApplicationCommand}}) = get_application_commands(c) retrieve(c::Client, ::Type{Vector{ApplicationCommand}}, g::Snowflake) = get_application_commands(c, g) update(c::Client, ctx::Context, m::Message; kwargs...) = edit_interaction(c, ctx.interaction.token, m.id; compkwfix(; kwargs...)...) update(c::Client, ctx::Context; kwargs...) = hasproperty(ctx, :interaction) ? update_message_int(c, ctx.interaction.id, ctx.interaction.token; compkwfix(; kwargs...)...) : update(c, ctx.message; compkwfix(; kwargs...)...)
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
489
function create(c::Client, ::Type{Invite}, ch::DiscordChannel; kwargs...) return create_channel_invite(c, ch.id; kwargs...) end retrieve(c::Client, ::Type{Invite}, g::AbstractGuild) = get_guild_invites(c, g.id) retrieve(c::Client, ::Type{Invite}, ch::DiscordChannel) = get_channel_invites(c, ch.id) function retrieve(c::Client, ::Type{Invite}, invite::AbstractString; kwargs...) return get_invite(c, invite; kwargs...) end delete(c::Client, i::Invite) = delete_invite(c, i.code)
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
870
function create(c::Client, ::Type{Member}, g::AbstractGuild, u::User; kwargs...) return add_guild_member(c, g.id, u.id; kwargs...) end function retrieve(c::Client, ::Type{Member}, g::AbstractGuild, u::User) return get_guild_member(c, g.id, u.id) end function retrieve(c::Client, ::Type{Member}, g::AbstractGuild) return list_guild_members(c, g.id) end function update(c::Client, m::Member, g::AbstractGuild; kwargs...) return modify_guild_member(c, g.id, m.user.id; kwargs...) end function update(c::Client, m::Member, r::Role, g::AbstractGuild) return add_guild_member_role(c, g.id, m.user.id, r.id) end function delete(c::Client, m::Member, g::AbstractGuild) return remove_guild_member(c, g.id, m.user.id) end function delete(c::Client, m::Member, r::Role, g::AbstractGuild) return remove_guild_member_role(c, g.id, m.user.id, r.id) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
965
function create(c::Client, ::Type{Message}, ch::DiscordChannel; kwargs...) return create_message(c, ch.id; compkwfix(; kwargs...)...) end function retrieve(c::Client, ::Type{Message}, ch::DiscordChannel, message::Integer) return get_channel_message(c, ch.id, message) end function retrieve( c::Client, ::Type{Message}, ch::DiscordChannel; pinned::Bool=false, kwargs..., ) return if pinned get_pinned_messages(c, ch.id) else get_channel_messages(c, ch.id; kwargs...) end end update(c::Client, m::Message; kwargs...) = edit_message(c, m.channel_id, m.id; kwargs...) function delete(c::Client, m::Message; pinned::Bool=false) return if pinned delete_pinned_channel_message(c, m.channel_id, m.id) else delete_message(c, m.channel_id, m.id) end end function delete(c::Client, ms::Vector{Message}) return bulk_delete_messages(c, ms[1].channel_id; messages=map(m -> m.id, ms)) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
608
function create(c::Client, ::Type{Overwrite}, ch::DiscordChannel, r::Role; kwargs...) return edit_channel_permissions(c, ch.id, r.id; kwargs..., type=OT_ROLE) end function create(c::Client, ::Type{Overwrite}, ch::DiscordChannel, u::User; kwargs...) return edit_channel_permissions(c, ch.id, u.id; kwargs..., type=OT_MEMBER) end function update(c::Client, o::Overwrite, ch::DiscordChannel; kwargs...) return edit_channel_permissions(c, ch.id, o.id; kwargs..., type=o.type) end function delete(c::Client, o::Overwrite, ch::DiscordChannel) return delete_channel_permission(c, ch.id, o.id) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
1102
function create(c::Client, ::Type{Reaction}, m::Message, emoji::StringOrChar) return create_reaction(c, m.channel_id, m.id, emoji) end function create(c::Client, ::Type{Reaction}, m::Message, e::Emoji) emoji = e.id === nothing ? e.name : "$(e.name):$(e.id)" return create_reaction(c, m.channel_id, m.id, emoji) end function retrieve(c::Client, ::Type{Reaction}, m::Message, emoji::StringOrChar) return get_reactions(c, m.channel_id, m.id, emoji) end retrieve(c::Client, ::Type{Reaction}, m::Message, e::Emoji) = get(Reaction, c, m, e.name) function delete(c::Client, ::Type{Reaction}, m::Message) return delete_all_reactions(c, m.channel_id, m.id) end function delete(c::Client, emoji::StringOrChar, m::Message, u::User) return if c.state.user !== nothing && u.id == c.state.user.id delete_own_reaction(c, m.channel_id, m.id, emoji) else delete_user_reaction(c, m.channel_id, m.id, emoji, u.id) end end function delete(c::Client, e::Emoji, m::Message, u::User) emoji = e.id === nothing ? e.name : "$(e.name):$(e.id)" delete(c, emoji, m, u) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
409
function create(c::Client, ::Type{Role}, g::AbstractGuild; kwargs...) return create_guild_role(c, g.id; kwargs...) end retrieve(c::Client, ::Type{Role}, g::AbstractGuild) = get_guild_roles(c, g.id) function update(c::Client, r::Role, g::AbstractGuild; kwargs...) return modify_guild_role(c, g.id, r.id; kwargs...) end delete(c::Client, r::Role, g::AbstractGuild) = delete_guild_role(c, g.id, r.id)
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
307
function retrieve(c::Client, ::Type{User}, user::Integer) return if me(c) !== nothing && me(c).id == user get_current_user(c) else get_user(c, user) end end retrieve(c::Client, ::Type{User}) = get_current_user(c) update(c::Client; kwargs...) = modify_current_user(c; kwargs...)
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
181
function retrieve(c::Client, ::Type{VoiceRegion}, g::AbstractGuild) return get_guild_voice_regions(c, g.id) end retrieve(c::Client, ::Type{VoiceRegion}) = list_voice_regions(c)
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
923
function create(c::Client, ::Type{Webhook}, ch::DiscordChannel; kwargs...) return create_webhook(c, ch.id; kwargs...) end retrieve(c::Client, ::Type{Webhook}, ch::DiscordChannel) = get_channel_webhooks(c, ch.id) retrieve(c::Client, ::Type{Webhook}, g::AbstractGuild) = get_guild_webhooks(c, g.id) retrieve(c::Client, ::Type{Webhook}, webhook::Integer) = get_webhook(c, webhook) function retrieve(c::Client, ::Type{Webhook}, webhook::Integer, token::AbstractString) return get_webhook_with_token(c, webhook, token) end update(c::Client, w::Webhook; kwargs...) = modify_webhook(c, w.id; kwargs...) function update(c::Client, w::Webhook, token::AbstractString; kwargs...) return modify_webhook_with_token(c, w.id, token; kwargs...) end delete(c::Client, w::Webhook) = delete_webhook(c, w.id) function delete(c::Client, w::Webhook, token::AbstractString) return delete_webhook_with_token(c, w.id, token) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
406
export get_guild_audit_log """ get_guild_audit_log(c::Client, guild::Integer; kwargs...) -> AuditLog Get a [`Guild`](@ref)'s [`AuditLog`](@ref). More details [here](https://discordapp.com/developers/docs/resources/audit-log#get-guild-audit-log). """ function get_guild_audit_log(c::Client, guild::Integer; kwargs...) return Response{AuditLog}(c, :GET, "/guilds/$guild/audit-logs"; kwargs...) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
8802
export encode_emoji, get_channel, modify_channel, delete_channel, get_channel_messages, get_channel_message, create_message, create_reaction, delete_own_reaction, delete_user_reaction, get_reactions, delete_all_reactions, edit_message, delete_message, bulk_delete_messages, edit_channel_permissions, get_channel_invites, create_channel_invite, delete_channel_permission, trigger_typing_indicator, get_pinned_messages, add_pinned_channel_message, delete_pinned_channel_message encode_emoji(emoji::AbstractString) = HTTP.escapeuri(emoji) encode_emoji(emoji::AbstractChar) = encode_emoji(string(emoji)) """ get_channel(c::Client, channel::Integer) -> DiscordChannel Get a [`DiscordChannel`](@ref). """ function get_channel(c::Client, channel::Integer) return Response{DiscordChannel}(c, :GET, "/channels/$channel") end """ modify_channel(c::Client, channel::Integer; kwargs...) -> DiscordChannel Modify a [`DiscordChannel`](@ref). More details [here](https://discordapp.com/developers/docs/resources/channel#modify-channel). """ function modify_channel(c::Client, channel::Integer; kwargs...) return Response{DiscordChannel}(c, :PATCH, "/channels/$channel"; body=kwargs) end """ delete_channel(c::Client, channel::Integer) -> DiscordChannel Delete a [`DiscordChannel`](@ref). """ function delete_channel(c::Client, channel::Integer) return Response{DiscordChannel}(c, :DELETE, "/channels/$channel") end """ get_channel_messages(c::Client, channel::Integer; kwargs...) -> Vector{Message} Get a list of [`Message`](@ref)s from a [`DiscordChannel`](@ref). More details [here](https://discordapp.com/developers/docs/resources/channel#get-channel-messages). """ function get_channel_messages(c::Client, channel::Integer; kwargs...) return Response{Vector{Message}}(c, :GET, "/channels/$channel/messages"; kwargs...) end """ get_channel_message(c::Client, channel::Integer, message::Integer) -> Message Get a [`Message`](@ref) from a [`DiscordChannel`](@ref). """ function get_channel_message(c::Client, channel::Integer, message::Integer) return Response{Message}(c, :GET, "/channels/$channel/messages/$message") end """ create_message(c::Client, channel::Integer; kwargs...) -> Message Send a [`Message`](@ref) to a [`DiscordChannel`](@ref). More details [here](https://discordapp.com/developers/docs/resources/channel#create-message). """ function create_message(c::Client, channel::Integer; kwargs...) endpoint = "/channels/$channel/messages" return if haskey(kwargs, :file) # We have to use multipart/form-data for file uploads. d = Dict(pairs(kwargs)) file = pop!(d, :file) form = HTTP.Form(Dict("file" => file, "payload_json" => jsonify(d))) headers = Dict(HTTP.content_type(form)) Response{Message}(c, :POST, endpoint; headers=headers, body=form) else Response{Message}(c, :POST, endpoint; body=kwargs) end end """ create_reaction(c::Client, channel::Integer, message::Integer, emoji::StringOrChar) React to a [`Message`](@ref). If `emoji` is a custom [`Emoji`](@ref), it should be formatted "name:id". """ function create_reaction(c::Client, channel::Integer, message::Integer, emoji::StringOrChar) return Response( c, :PUT, "/channels/$channel/messages/$message/reactions/$(encode_emoji(emoji))/@me", ) end """ delete_own_reaction(c::Client, channel::Integer, message::Integer, emoji::StringOrChar) Delete the [`Client`](@ref) user's reaction to a [`Message`](@ref). """ function delete_own_reaction( c::Client, channel::Integer, message::Integer, emoji::StringOrChar, ) return Response( c, :DELETE, "/channels/$channel/messages/$message/reactions/$(encode_emoji(emoji))/@me", ) end """ delete_user_reaction( c::Client, channel::Integer, message::Integer, emoji::StringOrChar, user::Integer, ) Delete a [`User`](@ref)'s reaction to a [`Message`](@ref). """ function delete_user_reaction( c::Client, channel::Integer, message::Integer, emoji::StringOrChar, user::Integer, ) return Response( c, :DELETE, "/channels/$channel/messages/$message/reactions/$(encode_emoji(emoji))/$user", ) end """ get_reactions( c::Client, channel::Integer, message::Integer, emoji::StringOrChar, ) -> Vector{User} Get the [`User`](@ref)s who reacted to a [`Message`](@ref) with an [`Emoji`](@ref). """ function get_reactions(c::Client, channel::Integer, message::Integer, emoji::StringOrChar) return Response{Vector{User}}( c, :GET, "/channels/$channel/messages/$message/reactions/$(encode_emoji(emoji))", ) end """ delete_all_reactions(c::Client, channel::Integer, message::Integer) Delete all reactions from a [`Message`](@ref). """ function delete_all_reactions(c::Client, channel::Integer, message::Integer) return Response(c, :DELETE, "/channels/$channel/messages/$message/reactions") end """ edit_message(c::Client, channel::Integer, message::Integer; kwargs...) -> Message Edit a [`Message`](@ref). More details [here](https://discordapp.com/developers/docs/resources/channel#edit-message). """ function edit_message(c::Client, channel::Integer, message::Integer; kwargs...) return Response{Message}(c, :PATCH, "/channels/$channel/messages/$message"; body=kwargs) end """ delete_message(c::Client, channel::Integer, message::Integer) Delete a [`Message`](@ref). """ function delete_message(c::Client, channel::Integer, message::Integer) return Response(c, :DELETE, "/channels/$channel/messages/$message") end """ bulk_delete_messages(c::Client, channel::Integer; kwargs...) Delete multiple [`Message`](@ref)s. More details [here](https://discordapp.com/developers/docs/resources/channel#bulk-delete-messages). """ function bulk_delete_messages(c::Client, channel::Integer; kwargs...) return Response(c, :POST, "/channels/$channel/messages/bulk-delete"; body=kwargs) end """ edit_channel_permissions( c::Client, channel::Integer, overwrite::Integer; kwargs..., ) Edit permissions for a [`DiscordChannel`](@ref). More details [here](https://discordapp.com/developers/docs/resources/channel#edit-channel-permissions). """ function edit_channel_permissions( c::Client, channel::Integer, overwrite::Integer; kwargs..., ) return Response(c, :PUT, "/channels/$channel/permissions/$overwrite"; body=kwargs) end """ get_channel_invites(c::Client, channel::Integer) -> Vector{Invite} Get the [`Invite`](@ref)s for a [`DiscordChannel`](@ref). """ function get_channel_invites(c::Client, channel::Integer) return Response{Vector{Invite}}(c, :GET, "/channels/$channel/invites") end """ create_channel_invite(c::Client, channel::Integer; kwargs...) -> Invite Create an [`Invite`](@ref) to a [`DiscordChannel`](@ref). More details [here](https://discordapp.com/developers/docs/resources/channel#create-channel-invite). """ function create_channel_invite(c::Client, channel::Integer, kwargs...) return Response{Invite}(c, :POST, "/channels/$channel/invites"; body=kwargs) end """ delete_channel_permission(c::Client, channel::Integer, overwrite::Integer) Delete an [`Overwrite`](@ref) from a [`DiscordChannel`](@ref). """ function delete_channel_permission(c::Client, channel::Integer, overwrite::Integer) return Response(c, :DELETE, "/channels/$channel/permissions/$overwrite") end """ trigger_typing_indicator(c::Client, channel::Integer) Trigger the typing indicator in a [`DiscordChannel`](@ref). """ function trigger_typing_indicator(c::Client, channel::Integer) return Response(c, :POST, "/channels/$channel/typing") end """ get_pinned_messages(c::Client, channel::Integer) -> Vector{Message} Get the pinned [`Message`](@ref)s in a [`DiscordChannel`](@ref). """ function get_pinned_messages(c::Client, channel::Integer) return Response{Vector{Message}}(c, :GET, "/channels/$channel/pins") end """ add_pinned_channel_message(c::Client, channel::Integer, message::Integer) Pin a [`Message`](@ref) in a [`DiscordChannel`](@ref). """ function add_pinned_channel_message(c::Client, channel::Integer, message::Integer) return Response(c, :PUT, "/channels/$channel/pins/$message") end """ delete_pinned_channel_message(c::Client, channel::Integer, message::Integer) Unpin a [`Message`](@ref) from a [`DiscordChannel`](@ref). """ function delete_pinned_channel_message(c::Client, channel::Integer, message::Integer) return Response(c, :DELETE, "/channels/$channel/pins/$message") end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git