licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.7
f58443e5ffa3df2e1b28e4ac37ad5a1f25c22454
code
40
using Telegrambot using Test @test true
Telegrambot
https://github.com/Moelf/Telegrambot.jl.git
[ "MIT" ]
0.1.7
f58443e5ffa3df2e1b28e4ac37ad5a1f25c22454
docs
2055
# Telegrambot.jl A Julia Telegram Bot Api wapper [check out telegram bot api](https://core.telegram.org/bots/api) api (mostly built around commands with text). | **Build Status** | |:-----------------------------------------------------------------------------------------------:| |[![Build Status](https://travis-ci.org/Moelf/Telegrambot.jl.svg?branch=master)](https://travis-ci.org/Moelf/Telegrambot.jl)| ## Installation The package is registered in `METADATA.jl` and can be installed with `Pkg.add`, or in `REPL` by pressing `] add Telegrambot`. ```julia julia> Pkg.add("Telegrambot") ``` ## Basic Usage For guide on telegram bot creation and api, check [this](https://core.telegram.org/bots#3-how-do-i-create-a-bot) out. **NOTICE**: Due to the way `botfather` present you key, don't forget to add "bot", I shall add a warning and try to be smart. ```julia using Telegrambot botApi = "<your_api_key>" welcomeMsg(incoming::AbstractString, params::Dict{String,Any}) = "Welcome to my awesome bot @" * string(params["from"]["username"]) echo(incoming::AbstractString, params::Dict{String,Any}) = incoming txtCmds = Dict() txtCmds["repeat_msg"] = echo #this will respond to '/repeat_msg <any thing>' txtCmds["start"] = welcomeMsg # this will respond to '/start' txtCmdsMessage = Dict() txtCmdsMessage["start_response"] = welcomeMsg #this will quote reply to a message respond to '/start_response' inlineOpts = Dict() #Title, result pair inlineOpts["Make Uppercase"] = uppercase #this will generate an pop-up named Make Uppercase and upon tapping return uppercase(<user_input>) #uppercase is a function that takes a string and return the uppercase version of that string startBot(botApi; textHandle = txtCmds, textHandleReplyMessage = txtCmdsMessage, inlineQueryHandle=inlineOpts) ``` ## To-Do - [x] Add Inline query respond - [ ] Add function to quote reply to a message - [ ] Add function to reply with a file/image - [ ] Add function to serve as a IRC-Tg bot
Telegrambot
https://github.com/Moelf/Telegrambot.jl.git
[ "MIT" ]
0.4.2
59786d90d750f1c18029a3903e8c1bc49d0e55a8
code
445
# Copyright (c) 2016: Joey Huchette and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. module PiecewiseLinearOpt using JuMP import LinearAlgebra import MathOptInterface as MOI import Random export PWLFunction, UnivariatePWLFunction, BivariatePWLFunction, piecewiselinear include("types.jl") include("jump.jl") end # module
PiecewiseLinearOpt
https://github.com/jump-dev/PiecewiseLinearOpt.jl.git
[ "MIT" ]
0.4.2
59786d90d750f1c18029a3903e8c1bc49d0e55a8
code
43093
# Copyright (c) 2016: Joey Huchette and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. # TODO: choose method based on problem size defaultmethod() = :Logarithmic mutable struct PWLData counter::Int PWLData() = new(0) end function initPWL!(m::JuMP.Model) if !haskey(m.ext, :PWL) m.ext[:PWL] = PWLData() end return end const VarOrAff = Union{JuMP.VariableRef,JuMP.AffExpr} function piecewiselinear( m::JuMP.Model, x::VarOrAff, d, f::Function; method = defaultmethod(), ) initPWL!(m) fd = [f(xx) for xx in d] return piecewiselinear(m, x, d, fd; method = method) end function piecewiselinear( m::JuMP.Model, x::VarOrAff, d, fd; method = defaultmethod(), ) return piecewiselinear(m, x, UnivariatePWLFunction(d, fd); method = method) end function piecewiselinear( m::JuMP.Model, x::VarOrAff, pwl::UnivariatePWLFunction; method = defaultmethod(), ) initPWL!(m) counter = m.ext[:PWL].counter counter += 1 m.ext[:PWL].counter = counter d = [_x[1] for _x in pwl.x] fd = pwl.z n = length(d) if n != length(fd) error( "You provided a different number of breakpoints ($n) and function values at the breakpoints ($(length(fd)))", ) end if n == 0 error( "I don't know how to handle a piecewise linear function with no breakpoints", ) end z = JuMP.@variable( m, lower_bound = minimum(fd), upper_bound = maximum(fd), base_name = "z_$counter" ) if n == 1 JuMP.@constraint(m, x == d[1]) JuMP.@constraint(m, z == fd[1]) return z end if method == :Incremental δ = JuMP.@variable( m, [1:n], lower_bound = 0, upper_bound = 1, base_name = "δ_$counter" ) y = JuMP.@variable(m, [1:n-1], Bin, base_name = "y_$counter") JuMP.@constraint( m, x == d[1] + sum(δ[i] * (d[i+1] - d[i]) for i in 1:n-1) ) JuMP.@constraint( m, z == fd[1] + sum(δ[i] * (fd[i+1] - fd[i]) for i in 1:n-1) ) for i in 1:n-1 JuMP.@constraint(m, δ[i+1] ≤ y[i]) JuMP.@constraint(m, y[i] ≤ δ[i]) end elseif method == :MC x̂ = JuMP.@variable(m, [1:n-1], base_name = "x̂_$counter") ẑ = JuMP.@variable(m, [1:n-1], base_name = "ẑ_$counter") y = JuMP.@variable(m, [1:n-1], Bin, base_name = "y_$counter") JuMP.@constraint(m, sum(y) == 1) JuMP.@constraint(m, sum(x̂) == x) JuMP.@constraint(m, sum(ẑ) == z) Δ = [(fd[i+1] - fd[i]) / (d[i+1] - d[i]) for i in 1:n-1] for i in 1:n-1 JuMP.@constraints( m, begin x̂[i] ≥ d[i] * y[i] x̂[i] ≤ d[i+1] * y[i] ẑ[i] == fd[i] * y[i] + Δ[i] * (x̂[i] - d[i] * y[i]) end ) end elseif method in (:DisaggLogarithmic, :DLog) γ = JuMP.@variable( m, [i = 1:n, j = max(1, i - 1):min(n - 1, i)], lower_bound = 0, upper_bound = 1 ) JuMP.@constraint(m, sum(γ) == 1) JuMP.@constraint( m, γ[1, 1] * d[1] + sum((γ[i, i-1] + γ[i, i]) * d[i] for i in 2:n-1) + γ[n, n-1] * d[n] == x ) JuMP.@constraint( m, γ[1, 1] * fd[1] + sum((γ[i, i-1] + γ[i, i]) * fd[i] for i in 2:n-1) + γ[n, n-1] * fd[n] == z ) r = ceil(Int, log2(n - 1)) H = reflected_gray_codes(r) y = JuMP.@variable(m, [1:r], Bin) for j in 1:r JuMP.@constraint( m, sum((γ[i, i] + γ[i+1, i]) * H[i][j] for i in 1:(n-1)) == y[j] ) end else # V-formulation methods λ = JuMP.@variable( m, [1:n], lower_bound = 0, upper_bound = 1, base_name = "λ_$counter" ) JuMP.@constraint(m, sum(λ) == 1) JuMP.@constraint(m, sum(λ[i] * d[i] for i in 1:n) == x) JuMP.@constraint(m, sum(λ[i] * fd[i] for i in 1:n) == z) if method in (:Logarithmic, :Log) sos2_logarithmic_formulation!(m, λ) elseif method in (:LogarithmicIB, :LogIB) sos2_logarithmic_IB_formulation!(m, λ) elseif method == :CC sos2_cc_formulation!(m, λ) elseif method in (:ZigZag, :ZZB) sos2_zigzag_formulation!(m, λ) elseif method in (:ZigZagInteger, :ZZI) sos2_zigzag_general_integer_formulation!(m, λ) elseif method == :GeneralizedCelaya sos2_generalized_celaya_formulation!(m, λ) elseif method == :SymmetricCelaya sos2_symmetric_celaya_formulation!(m, λ) elseif method == :SOS2 JuMP.@constraint(m, λ in MOI.SOS2([i for i in 1:n])) else error("Unrecognized method $method") end end return z end function sos2_cc_formulation!(m::JuMP.Model, λ) counter = m.ext[:PWL].counter n = length(λ) y = JuMP.@variable(m, [1:n-1], Bin, base_name = "y_$counter") JuMP.@constraint(m, sum(y) == 1) JuMP.@constraint(m, λ[1] ≤ y[1]) for i in 2:n-1 JuMP.@constraint(m, λ[i] ≤ y[i-1] + y[i]) end JuMP.@constraint(m, λ[n] ≤ y[n-1]) return end # function sos2_mc_formulation!(m::JuMP.Model, λ) # not currently used # counter = m.ext[:PWL].counter # n = length(λ) # γ = JuMP.@variable(m, [1:n-1, 1:n], base_name="γ_$counter") # y = JuMP.@variable(m, [1:n-1], Bin, base_name="y_$counter") # JuMP.@constraint(m, sum(y) == 1) # JuMP.@constraint(m, sum(γ[i,:] for i in 1:n-1) .== λ) # for i in 1:n-1 # JuMP.@constraint(m, γ[i,i] + γ[i,i+1] ≥ y[i]) # end # return # end function sos2_logarithmic_formulation!(m::JuMP.Model, λ) counter = m.ext[:PWL].counter n = length(λ) - 1 k = ceil(Int, log2(n)) y = JuMP.@variable(m, [1:k], Bin, base_name = "y_$counter") sos2_encoding_constraints!( m, λ, y, reflected_gray_codes(k), unit_vector_hyperplanes(k), ) return end function sos2_logarithmic_IB_formulation!(m::JuMP.Model, λ) # IB: independent branching counter = m.ext[:PWL].counter n = length(λ) - 1 k = ceil(Int, log2(n)) y = JuMP.@variable(m, [1:k], Bin, base_name = "y_$counter") _H = reflected_gray_codes(k) d = length(_H) H = Dict(i => _H[i] for i in 1:d) H[0] = H[1] H[d+1] = H[d] for j in 1:k JuMP.@constraints( m, begin sum(λ[i] for i in 1:(n+1) if H[i-1][j] == H[i][j] == 1) ≤ y[j] sum(λ[i] for i in 1:(n+1) if H[i-1][j] == H[i][j] == 0) ≤ 1 - y[j] end ) end return end function sos2_zigzag_formulation!(m::JuMP.Model, λ) counter = m.ext[:PWL].counter n = length(λ) - 1 k = ceil(Int, log2(n)) y = JuMP.@variable(m, [1:k], Bin, base_name = "y_$counter") sos2_encoding_constraints!(m, λ, y, zigzag_codes(k), zigzag_hyperplanes(k)) return end function sos2_zigzag_general_integer_formulation!(m::JuMP.Model, λ) counter = m.ext[:PWL].counter n = length(λ) - 1 k = ceil(Int, log2(n)) # TODO: tighter upper_bounds y = JuMP.@variable( m, [i = 1:k], Int, lower_bound = 0, upper_bound = 2^(k - i), base_name = "y_$counter" ) sos2_encoding_constraints!( m, λ, y, integer_zigzag_codes(k), unit_vector_hyperplanes(k), ) return end function sos2_generalized_celaya_formulation!(m::JuMP.Model, λ) counter = m.ext[:PWL].counter n = length(λ) - 1 k = ceil(Int, log2(n)) codes = generalized_celaya_codes(k) lb = [minimum(t[i] for t in codes) for i in 1:k] ub = [maximum(t[i] for t in codes) for i in 1:k] y = JuMP.@variable( m, [i = 1:k], Int, lower_bound = lb[i], upper_bound = ub[i], base_name = "y_$counter" ) sos2_encoding_constraints!( m, λ, y, codes, generalized_celaya_hyperplanes(k), ) return end function sos2_symmetric_celaya_formulation!(m::JuMP.Model, λ) counter = m.ext[:PWL].counter n = length(λ) - 1 k = ceil(Int, log2(n)) codes = symmetric_celaya_codes(k) lb = [minimum(t[i] for t in codes) for i in 1:k] ub = [maximum(t[i] for t in codes) for i in 1:k] y = JuMP.@variable( m, [i = 1:k], Int, lower_bound = lb[i], upper_bound = ub[i], base_name = "y_$counter" ) sos2_encoding_constraints!(m, λ, y, codes, symmetric_celaya_hyperplanes(k)) return end function sos2_encoding_constraints!(m, λ, y, h, B) n = length(λ) - 1 for b in B JuMP.@constraints( m, begin LinearAlgebra.dot(b, h[1]) * λ[1] + sum( min( LinearAlgebra.dot(b, h[v]), LinearAlgebra.dot(b, h[v-1]), ) * λ[v] for v in 2:n ) + LinearAlgebra.dot(b, h[n]) * λ[n+1] ≤ LinearAlgebra.dot(b, y) LinearAlgebra.dot(b, h[1]) * λ[1] + sum( max( LinearAlgebra.dot(b, h[v]), LinearAlgebra.dot(b, h[v-1]), ) * λ[v] for v in 2:n ) + LinearAlgebra.dot(b, h[n]) * λ[n+1] ≥ LinearAlgebra.dot(b, y) end ) end return end function reflected_gray_codes(k::Int) if k == 0 return Vector{Int}[] elseif k == 1 return [[0], [1]] else codes′ = reflected_gray_codes(k - 1) return vcat( [vcat(code, 0) for code in codes′], [vcat(code, 1) for code in reverse(codes′)], ) end end function zigzag_codes(k::Int) if k <= 0 error("Invalid code length $k") elseif k == 1 return [[0], [1]] else codes′ = zigzag_codes(k - 1) return vcat( [vcat(code, 0) for code in codes′], [vcat(code, 1) for code in codes′], ) end end function integer_zigzag_codes(k::Int) if k <= 0 error("Invalid code length $k") elseif k == 1 return [[0], [1]] else codes′ = integer_zigzag_codes(k - 1) offset = [2^(j - 2) for j in k:-1:2] return vcat( [vcat(code, 0) for code in codes′], [vcat(code .+ offset, 1) for code in codes′], ) end end function generalized_celaya_codes(k::Int) if k <= 0 error("Invalid code length $k") elseif k == 1 return [[0], [1]] elseif k == 2 return [[0, 0], [1, 1], [1, 0], [0, 1]] else codes′ = generalized_celaya_codes(k - 1) n = length(codes′) hp = Int(n / 2) firstcodes = [codes′[i] for i in 1:hp] secondcodes = [codes′[i] for i in (hp+1):n] return vcat( [vcat(codes′[i], 0) for i in 1:n], [vcat(codes′[i], 1) for i in 1:hp], [vcat(codes′[i], -1) for i in (hp+1):n], ) end end function symmetric_celaya_codes(k::Int) if k <= 0 error("Invalid code length $k") elseif k == 1 return [[0], [1]] else codes′ = generalized_celaya_codes(k - 1) n = length(codes′) hp = Int(n / 2) firstcodes = [codes′[i] for i in 1:hp] secondcodes = [codes′[i] for i in (hp+1):n] return vcat( [vcat(codes′[i], 0) for i in 1:n], [vcat(codes′[i], 1) for i in 1:hp], [vcat(codes′[i], -1) for i in (hp+1):n], ) end end function zigzag_hyperplanes(k::Int) hps = Vector{Int}[] for i in 1:k hp = zeros(Int, k) hp[i] = 1 for j in (i+1):k hp[j] = 2^(j - i - 1) end push!(hps, hp) end return hps end function unit_vector_hyperplanes(k::Int) hps = Vector{Int}[] for i in 1:k hp = zeros(Int, k) hp[i] = 1 push!(hps, hp) end return hps end function generalized_celaya_hyperplanes(k::Int) return compute_hyperplanes(generalized_celaya_codes(k)) end function symmetric_celaya_hyperplanes(k::Int) return compute_hyperplanes(symmetric_celaya_codes(k)) end function compute_hyperplanes(C::Vector{Vector{T}}) where {T<:Number} n = length(C) k = length(C[1]) d = zeros(n - 1, k) for i in 1:n-1 d[i, :] = C[i+1] - C[i] end if k <= 1 error("Cannot process codes of length $k") elseif k == 2 @assert n == 4 spanners = Vector{Float64}[] for i in 1:n-1 v = canonical!(d[i, :]) v = [v[2], -v[1]] push!(spanners, v) end indices = [1] approx12 = isapprox(spanners[1], spanners[2]) approx13 = isapprox(spanners[1], spanners[3]) approx23 = isapprox(spanners[2], spanners[3]) if !approx12 push!(indices, 2) end if !approx13 && !(!approx12 && approx23) push!(indices, 3) end return spanners[indices] end indices = [1, 2] spanners = Vector{Float64}[] while !isempty(indices) if indices == [n - 1] break end if LinearAlgebra.rank(d[indices, :]) == length(indices) && length(indices) <= k - 1 if length(indices) == k - 1 nullsp = LinearAlgebra.nullspace(d[indices, :]) @assert size(nullsp, 2) == 1 v = vec(nullsp) push!(spanners, canonical!(v)) end if indices[end] != n - 1 push!(indices, indices[end] + 1) else pop!(indices) indices[end] += 1 end else if indices[end] != n - 1 indices[end] += 1 else pop!(indices) indices[end] += 1 end end end keepers = [1] for i in 2:length(spanners) alreadyin = false for j in keepers if isapprox(spanners[i], spanners[j]) alreadyin = true break end end if !alreadyin push!(keepers, i) end end return spanners[keepers] end function canonical!(v::Vector{Float64}) LinearAlgebra.normalize!(v) for j in 1:length(v) if abs(v[j]) < 1e-8 v[j] = 0 end end sgn = sign(v[findfirst([x != 0 for x in v])]) for j in 1:length(v) if abs(v[j]) < 1e-8 v[j] = 0 else v[j] *= sgn end end return v end function optimal_IB_scheme!(m::JuMP.Model, λ, pwl, subsolver) # IB: independent branching m.ext[:OptimalIB] = Int[] if !haskey(m.ext, :OptimalIBCache) m.ext[:OptimalIBCache] = Dict() end T = pwl.T n = maximum(maximum(t) for t in T) J = 1:n E = fill(false, n, n) for t in T for i in t, j in t E[i, j] = true end end if haskey(m.ext[:OptimalIBCache], pwl.T) xx, yy = m.ext[:OptimalIBCache][pwl.T] t = size(xx, 1) else t = ceil(Int, log2(length(T))) xx = Array{Float64,2}(undef, 0, 0) yy = Array{Float64,2}(undef, 0, 0) while true model = JuMP.Model(; solver = subsolver) JuMP.@variable(model, x[1:t, 1:n], Bin) JuMP.@variable(model, y[1:t, 1:n], Bin) JuMP.@variable(model, z[1:t, 1:n, 1:n], Bin) for j in 1:t for r in J, s in J if r >= s continue end JuMP.@constraints( model, begin z[j, r, s] <= x[j, r] + x[j, s] z[j, r, s] <= x[j, r] + y[j, r] z[j, r, s] <= x[j, s] + y[j, s] z[j, r, s] <= y[j, r] + y[j, s] z[j, r, s] >= x[j, r] + y[j, s] - 1 z[j, r, s] >= x[j, s] + y[j, r] - 1 end ) end for r in J JuMP.@constraint(model, x[j, r] + y[j, r] <= 1) end end for r in J, s in J if r >= s continue end if E[r, s] JuMP.@constraint(model, sum(z[j, r, s] for j in 1:t) == 0) else JuMP.@constraint(model, sum(z[j, r, s] for j in 1:t) >= 1) end end JuMP.@objective(model, Min, sum(x) + sum(y)) stat = JuMP.solve(model) xx = JuMP.getvalue(x) yy = JuMP.getvalue(y) if any(isnan, xx) || any(isnan, yy) t += 1 else break end end m.ext[:OptimalIBCache][pwl.T] = (xx, yy) end y = JuMP.@variable(m, [1:t], Bin) dˣ = [_x[1] for _x in pwl.x] dʸ = [_x[2] for _x in pwl.x] uˣ, uʸ = unique(dˣ), unique(dʸ) @assert issorted(uˣ) @assert issorted(uʸ) nˣ, nʸ = length(uˣ), length(uʸ) ˣtoⁱ = Dict(uˣ[i] => i for i in 1:nˣ) ʸtoʲ = Dict(uʸ[i] => i for i in 1:nʸ) for i in 1:t JuMP.@constraints( m, begin sum( λ[ˣtoⁱ[pwl.x[j][1]], ʸtoʲ[pwl.x[j][2]]] for j in J if xx[i, j] == 1 ) ≤ y[i] sum( λ[ˣtoⁱ[pwl.x[j][1]], ʸtoʲ[pwl.x[j][2]]] for j in J if yy[i, j] == 1 ) ≤ 1 - y[i] end ) end push!(m.ext[:OptimalIB], t) return end function piecewiselinear( m::JuMP.Model, x::VarOrAff, y::VarOrAff, dˣ, dʸ, f::Function; method = defaultmethod(), ) return piecewiselinear( m, x, y, BivariatePWLFunction(dˣ, dʸ, f); method = method, ) end function piecewiselinear( m::JuMP.Model, x₁::VarOrAff, x₂::VarOrAff, pwl::BivariatePWLFunction; method = defaultmethod(), subsolver = nothing, ) if (method == :OptimalIB) && (subsolver === nothing) error( "No MIP solver provided to construct optimal IB scheme. Pass a solver object to the piecewiselinear function, e.g. piecewiselinear(m, x₁, x₂, bivariatefunc, method=:OptimalIB, subsolver=GurobiSolver())", ) end initPWL!(m) counter = m.ext[:PWL].counter counter += 1 m.ext[:PWL].counter = counter dˣ = [_x[1] for _x in pwl.x] dʸ = [_x[2] for _x in pwl.x] uˣ, uʸ = unique(dˣ), unique(dʸ) @assert issorted(uˣ) @assert issorted(uʸ) T = pwl.T nˣ, nʸ = length(uˣ), length(uʸ) if nˣ == 0 || nʸ == 0 error( "I don't know how to handle a piecewise linear function with zero breakpoints", ) elseif nˣ == 1 @assert length(dʸ) == nʸ == length(pwl.z) return piecewiselinear( m, x₂, UnivariatePWLFunction(dʸ, [pwl.z[i] for i in 1:nʸ]), ) elseif nʸ == 1 @assert length(dˣ) == nˣ == length(pwl.z) return piecewiselinear( m, x₁, UnivariatePWLFunction(dˣ, [pwl.z[i] for i in 1:nˣ]), ) end ˣtoⁱ = Dict(uˣ[i] => i for i in 1:nˣ) ʸtoʲ = Dict(uʸ[i] => i for i in 1:nʸ) fd = Array{Float64}(undef, nˣ, nʸ) for (v, fv) in zip(pwl.x, pwl.z) # i is the linear index into pwl.x...really want (i,j) pair fd[ˣtoⁱ[v[1]], ʸtoʲ[v[2]]] = fv end z = JuMP.@variable( m, lower_bound = minimum(fd), upper_bound = maximum(fd), base_name = "z_$counter" ) if method == :MC x̂₁ = JuMP.@variable(m, [T], base_name = "x̂₁_$counter") x̂₂ = JuMP.@variable(m, [T], base_name = "x̂₂_$counter") ẑ = JuMP.@variable(m, [T], base_name = "ẑ_$counter") y = JuMP.@variable(m, [T], Bin, base_name = "y_$counter") JuMP.@constraint(m, sum(y) == 1) JuMP.@constraint(m, sum(x̂₁) == x₁) JuMP.@constraint(m, sum(x̂₂) == x₂) JuMP.@constraint(m, sum(ẑ) == z) for t in T @assert length(t) == 3 r¹, r², r³ = pwl.x[t[1]], pwl.x[t[2]], pwl.x[t[3]] fz¹, fz², fz³ = pwl.z[t[1]], pwl.z[t[2]], pwl.z[t[3]] for P in ([1, 2, 3], [2, 3, 1], [3, 1, 2]) p¹, p², p³ = [r¹, r², r³][P] # p¹, p², p³ = pwl.x[t[P[1]]], pwl.x[t[P[2]]], pwl.x[t[P[3]]] A = [ p¹[1] p¹[2] 1 p²[1] p²[2] 1 p³[1] p³[2] 1 ] @assert LinearAlgebra.rank(A) == 3 b = [0, 0, 1] q = A \ b @assert isapprox( q[1] * p¹[1] + q[2] * p¹[2] + q[3], 0, atol = 1e-4, ) @assert isapprox( q[1] * p²[1] + q[2] * p²[2] + q[3], 0, atol = 1e-4, ) @assert isapprox( q[1] * p³[1] + q[2] * p³[2] + q[3], 1, atol = 1e-4, ) JuMP.@constraint( m, q[1] * x̂₁[t] + q[2] * x̂₂[t] + q[3] * y[t] ≥ 0 ) end A = [ r¹[1] r¹[2] 1 r²[1] r²[2] 1 r³[1] r³[2] 1 ] b = [fz¹, fz², fz³] q = A \ b @assert isapprox( q[1] * r¹[1] + q[2] * r¹[2] + q[3], fz¹, atol = 1e-4, ) @assert isapprox( q[1] * r²[1] + q[2] * r²[2] + q[3], fz², atol = 1e-4, ) @assert isapprox( q[1] * r³[1] + q[2] * r³[2] + q[3], fz³, atol = 1e-4, ) JuMP.@constraint( m, ẑ[t] == q[1] * x̂₁[t] + q[2] * x̂₂[t] + q[3] * y[t] ) end elseif method in (:DisaggLogarithmic, :DLog) T = pwl.T X = pwl.x Z = pwl.z n = length(X) γ = JuMP.@variable( m, [t = T, v = t], lower_bound = 0, upper_bound = 1, base_name = "γ_$counter" ) Tv = Dict(v => Any[] for v in 1:n) for t in T, v in t push!(Tv[v], t) end JuMP.@constraint(m, sum(γ) == 1) JuMP.@constraint( m, sum(sum(γ[t, i] for t in Tv[i]) * X[i][1] for i in 1:n) == x₁ ) JuMP.@constraint( m, sum(sum(γ[t, i] for t in Tv[i]) * X[i][2] for i in 1:n) == x₂ ) JuMP.@constraint( m, sum(sum(γ[t, i] for t in Tv[i]) * Z[i] for i in 1:n) == z ) r = ceil(Int, log2(length(T))) H = reflected_gray_codes(r) y = JuMP.@variable(m, [1:r], Bin, base_name = "y_$counter") for j in 1:r JuMP.@constraint( m, sum( sum(γ[T[i], v] for v in T[i]) * H[i][j] for i in 1:length(T) ) == y[j] ) end else # V-formulation methods λ = JuMP.@variable( m, [1:nˣ, 1:nʸ], lower_bound = 0, upper_bound = 1, base_name = "λ_$counter" ) JuMP.@constraint(m, sum(λ) == 1) JuMP.@constraint(m, sum(λ[i, j] * uˣ[i] for i in 1:nˣ, j in 1:nʸ) == x₁) JuMP.@constraint(m, sum(λ[i, j] * uʸ[j] for i in 1:nˣ, j in 1:nʸ) == x₂) JuMP.@constraint( m, sum(λ[i, j] * fd[i, j] for i in 1:nˣ, j in 1:nʸ) == z ) if method == :CC T = pwl.T y = JuMP.@variable(m, [T], Bin, base_name = "y_$counter") JuMP.@constraint(m, sum(y) == 1) Ts = Dict((i, j) => Vector{Int}[] for i in 1:nˣ, j in 1:nʸ) for t in T, ind in t rˣ, rʸ = pwl.x[ind] i, j = ˣtoⁱ[rˣ], ʸtoʲ[rʸ] push!(Ts[(i, j)], t) end for i in 1:nˣ, j in 1:nʸ JuMP.@constraint(m, λ[i, j] ≤ sum(y[t] for t in Ts[(i, j)])) end elseif method == :Incremental error( "Incremental formulation for bivariate functions is not currently implemented.", ) # TODO: implement algorithm of Geissler et al. (2012) elseif method == :OptimalIB error( "Optimal IB formulation has not yet been updated for JuMP v0.19.", ) optimal_IB_scheme!(m, λ, pwl, subsolver) else # formulations with SOS2 along each dimension Tx = [sum(λ[tˣ, tʸ] for tˣ in 1:nˣ) for tʸ in 1:nʸ] Ty = [sum(λ[tˣ, tʸ] for tʸ in 1:nʸ) for tˣ in 1:nˣ] if method in (:Logarithmic, :Log) sos2_logarithmic_formulation!(m, Tx) sos2_logarithmic_formulation!(m, Ty) elseif method in (:LogarithmicIB, :LogIB) sos2_logarithmic_IB_formulation!(m, Tx) sos2_logarithmic_IB_formulation!(m, Ty) elseif method in (:ZigZag, :ZZB) sos2_zigzag_formulation!(m, Tx) sos2_zigzag_formulation!(m, Ty) elseif method in (:ZigZagInteger, :ZZI) sos2_zigzag_general_integer_formulation!(m, Tx) sos2_zigzag_general_integer_formulation!(m, Ty) elseif method == :GeneralizedCelaya sos2_generalized_celaya_formulation!(m, Tx) sos2_generalized_celaya_formulation!(m, Ty) elseif method == :SymmetricCelaya sos2_symmetric_celaya_formulation!(m, Tx) sos2_symmetric_celaya_formulation!(m, Ty) elseif method == :SOS2 γˣ = JuMP.@variable( m, [1:nˣ], lower_bound = 0, upper_bound = 1, base_name = "γˣ_$counter" ) γʸ = JuMP.@variable( m, [1:nʸ], lower_bound = 0, upper_bound = 1, base_name = "γʸ_$counter" ) JuMP.@constraint( m, [tˣ in 1:nˣ], γˣ[tˣ] == sum(λ[tˣ, tʸ] for tʸ in 1:nʸ) ) JuMP.@constraint( m, [tʸ in 1:nʸ], γʸ[tʸ] == sum(λ[tˣ, tʸ] for tˣ in 1:nˣ) ) JuMP.@constraint(m, γˣ in MOI.SOS2([k for k in 1:nˣ])) JuMP.@constraint(m, γʸ in MOI.SOS2([k for k in 1:nʸ])) else error("Unrecognized method $method") end pattern = pwl.meta[:structure] if pattern == :UnionJack numT = 0 minˣ, minʸ = uˣ[1], uʸ[1] # find the index of the bottom-left point idx = findfirst(pwl.x) do w return w == (minˣ, minʸ) end for t in pwl.T if idx in t numT += 1 end end @assert 1 <= numT <= 2 w = JuMP.@variable(m, binary = true, base_name = "w_$counter") # if numT==1, then bottom-left is contained in only one point, and so needs separating; otherwise numT==2, and need to offset by one JuMP.@constraints( m, begin sum(λ[tx, ty] for tx in 1:2:nˣ, ty in numT:2:nʸ) ≤ w sum(λ[tx, ty] for tx in 2:2:nˣ, ty in (3-numT):2:nʸ) ≤ 1 - w end ) elseif pattern == :K1 # assumption is that the triangulation is uniform, as defined in types.jl w = JuMP.@variable(m, [1:2], Bin, base_name = "w_$counter") JuMP.@constraints( m, begin sum( λ[tx, ty] for tx in 1:nˣ, ty in 1:nʸ if mod(tx, 2) == mod(ty, 2) && (tx + ty) in 2:4:(nˣ+nʸ) ) ≤ w[1] sum( λ[tx, ty] for tx in 1:nˣ, ty in 1:nʸ if mod(tx, 2) == mod(ty, 2) && (tx + ty) in 4:4:(nˣ+nʸ) ) ≤ 1 - w[1] sum( λ[tx, ty] for tx in 1:nˣ, ty in 1:nʸ if mod(tx, 2) != mod(ty, 2) && (tx + ty) in 3:4:(nˣ+nʸ) ) ≤ w[2] sum( λ[tx, ty] for tx in 1:nˣ, ty in 1:nʸ if mod(tx, 2) != mod(ty, 2) && (tx + ty) in 5:4:(nˣ+nʸ) ) ≤ 1 - w[2] end ) elseif pattern == :OptimalTriangleSelection error( "Optimal triangle selection formulation has not yet been updated for JuMP v0.19.", ) m.ext[:OptimalTriSelect] = Int[] if !haskey(m.ext, :OptimalTriSelectCache) m.ext[:OptimalTriSelectCache] = Dict() end J = [(i, j) for i in 1:nˣ, j in 1:nʸ] E = Set{Tuple{Tuple{Int,Int},Tuple{Int,Int}}}() for t in T @assert length(t) == 3 IJ = [(ˣtoⁱ[pwl.x[i][1]], ʸtoʲ[pwl.x[i][2]]) for i in t] im = minimum(ij[1] for ij in IJ) iM = maximum(ij[1] for ij in IJ) jm = minimum(ij[2] for ij in IJ) jM = maximum(ij[2] for ij in IJ) @assert im < iM @assert im < iM if ((im, jm) in IJ) && ((iM, jM) in IJ) push!(E, ((im, jM), (iM, jm))) elseif ((im, jM) in IJ) && ((iM, jm) in IJ) push!(E, ((im, jm), (iM, jM))) else error() end end if haskey(m.ext[:OptimalTriSelectCache], E) xx, yy = m.ext[:OptimalTriSelectCache][E] t = JuMP.size(xx, 1) else if subsolver === nothing error( "No MIP solver provided to construct optimal triangle selection. Pass a solver object to the piecewiselinear function, e.g. piecewiselinear(m, x₁, x₂, bivariatefunc, method=:Logarithmic, subsolver=GurobiSolver())", ) end t = 1 xx, yy = Array(Float64, 0, 0), Array(Float64, 0, 0) while true subm = JuMP.Model(; solver = subsolver) JuMP.@variable(subm, xˢᵘᵇ[1:t, J], Bin) JuMP.@variable(subm, yˢᵘᵇ[1:t, J], Bin) JuMP.@variable(subm, zˢᵘᵇ[1:t, J, J], Bin) for j in 1:t for r in J, s in J # lexicographic ordering on points on grid if r[1] > s[1] || (r[1] == s[1] && r[2] >= s[2]) continue end JuMP.@constraints( subm, begin zˢᵘᵇ[j, r, s] <= xˢᵘᵇ[j, r] + xˢᵘᵇ[j, s] zˢᵘᵇ[j, r, s] <= xˢᵘᵇ[j, r] + yˢᵘᵇ[j, r] zˢᵘᵇ[j, r, s] <= xˢᵘᵇ[j, s] + yˢᵘᵇ[j, s] zˢᵘᵇ[j, r, s] <= yˢᵘᵇ[j, r] + yˢᵘᵇ[j, s] zˢᵘᵇ[j, r, s] >= xˢᵘᵇ[j, r] + yˢᵘᵇ[j, s] - 1 zˢᵘᵇ[j, r, s] >= xˢᵘᵇ[j, s] + yˢᵘᵇ[j, r] - 1 end ) end for r in J JuMP.@constraint( subm, xˢᵘᵇ[j, r] + yˢᵘᵇ[j, r] <= 1 ) end end for r in J, s in J # lexicographic ordering on points on grid (r[1] > s[1] || (r[1] == s[1] && r[2] >= s[2])) && continue if (r, s) in E JuMP.@constraint( subm, sum(zˢᵘᵇ[j, r, s] for j in 1:t) >= 1 ) elseif max(abs(r[1] - s[1]), abs(r[2] - s[2])) == 1 JuMP.@constraint( subm, sum(zˢᵘᵇ[j, r, s] for j in 1:t) == 0 ) end end JuMP.@objective(subm, Min, sum(xˢᵘᵇ) + sum(yˢᵘᵇ)) stat = JuMP.solve(subm) if any(isnan, subm.colVal) t += 1 else xx = JuMP.getvalue(xˢᵘᵇ) yy = JuMP.getvalue(yˢᵘᵇ) m.ext[:OptimalTriSelectCache][E] = (xx, yy) break end end end y = JuMP.@variable( m, [1:t], Bin, base_name = "Δselect_$counter" ) for i in 1:t JuMP.@constraints( m, begin sum(λ[v[1], v[2]] for v in J if xx[i, v] ≈ 1) ≤ y[i] sum(λ[v[1], v[2]] for v in J if yy[i, v] ≈ 1) ≤ 1 - y[i] end ) end push!(m.ext[:OptimalTriSelect], t) elseif pattern in (:Stencil, :Stencil9) w = JuMP.@variable(m, [1:3, 1:3], Bin, base_name = "w_$counter") for oˣ in 1:3, oʸ in 1:3 innoT = fill(true, nˣ, nʸ) for (i, j, k) in pwl.T xⁱ, xʲ, xᵏ = pwl.x[i], pwl.x[j], pwl.x[k] iiˣ, iiʸ = ˣtoⁱ[xⁱ[1]], ʸtoʲ[xⁱ[2]] jjˣ, jjʸ = ˣtoⁱ[xʲ[1]], ʸtoʲ[xʲ[2]] kkˣ, kkʸ = ˣtoⁱ[xᵏ[1]], ʸtoʲ[xᵏ[2]] # check to see if one of the points in the triangle falls on the grid if (mod1(iiˣ, 3) == oˣ && mod1(iiʸ, 3) == oʸ) || (mod1(jjˣ, 3) == oˣ && mod1(jjʸ, 3) == oʸ) || (mod1(kkˣ, 3) == oˣ && mod1(kkʸ, 3) == oʸ) innoT[iiˣ, iiʸ] = false innoT[jjˣ, jjʸ] = false innoT[kkˣ, kkʸ] = false end end JuMP.@constraints( m, begin sum(λ[i, j] for i in oˣ:3:nˣ, j in oʸ:3:nʸ) ≤ 1 - w[oˣ, oʸ] sum( λ[i, j] for i in 1:nˣ, j in 1:nʸ if innoT[i, j] ) ≤ w[oˣ, oʸ] end ) end else @assert pattern in (:Upper, :Lower, :BestFit, :Random) # Eⁿᵉ[i,j] = true means that we must cover the edge {(i,j),(i+1,j+1)} Eⁿᵉ = fill(false, nˣ - 1, nʸ - 1) for (i, j, k) in pwl.T xⁱ, xʲ, xᵏ = pwl.x[i], pwl.x[j], pwl.x[k] iiˣ, iiʸ = ˣtoⁱ[xⁱ[1]], ʸtoʲ[xⁱ[2]] jjˣ, jjʸ = ˣtoⁱ[xʲ[1]], ʸtoʲ[xʲ[2]] kkˣ, kkʸ = ˣtoⁱ[xᵏ[1]], ʸtoʲ[xᵏ[2]] IJ = [(iiˣ, iiʸ), (jjˣ, jjʸ), (kkˣ, kkʸ)] im = min(iiˣ, jjˣ, kkˣ) iM = max(iiˣ, jjˣ, kkˣ) jm = min(iiʸ, jjʸ, kkʸ) jM = max(iiʸ, jjʸ, kkʸ) if ((im, jM) in IJ) && ((iM, jm) in IJ) Eⁿᵉ[im, jm] = true else @assert (im, jm) in IJ && (iM, jM) in IJ end end # diagonal lines running from SW to NE. Grouped with an offset of 3. wⁿᵉ = JuMP.@variable(m, [0:2], Bin, base_name = "wⁿᵉ_$counter") for o in 0:2 Aᵒ = Set{Tuple{Int,Int}}() Bᵒ = Set{Tuple{Int,Int}}() for offˣ in o:3:(nˣ-2) SWinA = true # whether we put the SW corner of the next triangle to cover in set A for i in (1+offˣ):(nˣ-1) j = i - offˣ if !(1 ≤ i ≤ nˣ - 1) continue end if !(1 ≤ j ≤ nʸ - 1) continue # should never happen end if Eⁿᵉ[i, j] # if we need to cover the edge... if SWinA # figure out which set we need to put it in; this depends on previous triangle in our current line push!(Aᵒ, (i, j)) push!(Bᵒ, (i + 1, j + 1)) else push!(Aᵒ, (i + 1, j + 1)) push!(Bᵒ, (i, j)) end SWinA = !SWinA end end end for offʸ in (3-o):3:(nʸ-1) SWinA = true for j in (offʸ+1):(nʸ-1) i = j - offʸ if !(1 ≤ i ≤ nˣ - 1) continue end if Eⁿᵉ[i, j] if SWinA push!(Aᵒ, (i, j)) push!(Bᵒ, (i + 1, j + 1)) else push!(Aᵒ, (i + 1, j + 1)) push!(Bᵒ, (i, j)) end SWinA = !SWinA end end end JuMP.@constraints( m, begin sum(λ[i, j] for (i, j) in Aᵒ) ≤ wⁿᵉ[o] sum(λ[i, j] for (i, j) in Bᵒ) ≤ 1 - wⁿᵉ[o] end ) end wˢᵉ = JuMP.@variable(m, [0:2], Bin, base_name = "wˢᵉ_$counter") for o in 0:2 Aᵒ = Set{Tuple{Int,Int}}() Bᵒ = Set{Tuple{Int,Int}}() for offˣ in o:3:(nˣ-2) SEinA = true # for i in (1+offˣ):-1:1 # j = offˣ - i + 2 for j in 1:(nʸ-1) i = nˣ - j - offˣ if !(1 ≤ i ≤ nˣ - 1) continue end if !Eⁿᵉ[i, j] if SEinA push!(Aᵒ, (i + 1, j)) push!(Bᵒ, (i, j + 1)) else push!(Aᵒ, (i, j + 1)) push!(Bᵒ, (i + 1, j)) end SEinA = !SEinA end end end for offʸ in (3-o):3:(nʸ-1) SEinA = true for j in (offʸ+1):(nʸ-1) i = nˣ - j + offʸ if !(1 ≤ i ≤ nˣ - 1) continue end if !Eⁿᵉ[i, j] if SEinA push!(Aᵒ, (i + 1, j)) push!(Bᵒ, (i, j + 1)) else push!(Aᵒ, (i, j + 1)) push!(Bᵒ, (i + 1, j)) end SEinA = !SEinA end end end JuMP.@constraints( m, begin sum(λ[i, j] for (i, j) in Aᵒ) ≤ wˢᵉ[o] sum(λ[i, j] for (i, j) in Bᵒ) ≤ 1 - wˢᵉ[o] end ) end end end end return z end
PiecewiseLinearOpt
https://github.com/jump-dev/PiecewiseLinearOpt.jl.git
[ "MIT" ]
0.4.2
59786d90d750f1c18029a3903e8c1bc49d0e55a8
code
3911
# Copyright (c) 2016: Joey Huchette and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. struct PWLFunction{D} x::Vector{NTuple{D,Float64}} z::Vector{Float64} T::Vector{Vector{Int}} meta::Dict end function PWLFunction{D}( x::Vector{NTuple{D}}, z::Vector, T::Vector{Vector}, meta::Dict, ) where {D} @assert length(x) == length(z) for t in T @assert minimum(t) > 0 && maximum(t) <= length(x) end return PWLFunction{D}(x, z, T, meta) end PWLFunction(x, z, T) = PWLFunction(x, z, T, Dict()) const UnivariatePWLFunction = PWLFunction{1} function UnivariatePWLFunction(x, z) @assert issorted(x) return PWLFunction( Tuple{Float64}[(xx,) for xx in x], convert(Vector{Float64}, z), [[i, i + 1] for i in 1:length(x)-1], ) end function UnivariatePWLFunction(x, fz::Function) @assert issorted(x) return PWLFunction( Tuple{Float64}[(xx,) for xx in x], map(t -> convert(Float64, fz(t)), x), [[i, i + 1] for i in 1:length(x)-1], ) end const BivariatePWLFunction = PWLFunction{2} function BivariatePWLFunction( x, y, fz::Function; pattern = :BestFit, seed = hash((length(x), length(y))), ) @assert issorted(x) @assert issorted(y) X = vec(collect(Base.product(x, y))) # X = vec(Tuple{Float64,Float64}[(_x,_y) for _x in x, _y in y]) Z = map(t -> convert(Float64, fz(t...)), X) T = Vector{Vector{Int}}() m = length(x) n = length(y) mt = Random.MersenneTwister(seed) # run for each square on [x[i],x[i+1]] × [y[i],y[i+1]] for i in 1:length(x)-1, j in 1:length(y)-1 SWt, NWt, NEt, SEt = LinearIndices((m, n))[i, j], LinearIndices((m, n))[i, j+1], LinearIndices((m, n))[i+1, j+1], LinearIndices((m, n))[i+1, j] xL, xU, yL, yU = x[i], x[i+1], y[j], y[j+1] @assert xL == X[SWt][1] == X[NWt][1] @assert xU == X[SEt][1] == X[NEt][1] @assert yL == X[SWt][2] == X[SEt][2] @assert yU == X[NWt][2] == X[NEt][2] SW, NW, NE, SE = Z[SWt], Z[NWt], Z[NEt], Z[SEt] mid1 = 0.5 * (SW + NE) mid2 = 0.5 * (NW + SE) if pattern == :Upper if mid1 > mid2 t1 = [SWt, NWt, NEt] t2 = [SWt, NEt, SEt] else t1 = [SWt, NWt, SEt] t2 = [SEt, NWt, NEt] end elseif pattern == :Lower if mid1 > mid2 t1 = [SWt, NWt, SEt] t2 = [SEt, NWt, NEt] else t1 = [SWt, NWt, NEt] t2 = [SWt, NEt, SEt] end elseif pattern == :BestFit mid3 = fz(0.5 * (xL + xU), 0.5 * (yL + yU)) if abs(mid1 - mid3) < abs(mid2 - mid3) t1 = [SWt, NWt, NEt] t2 = [SWt, NEt, SEt] else t1 = [SWt, NWt, SEt] t2 = [SEt, NWt, NEt] end elseif pattern == :UnionJack t1 = [SWt, SEt] t2 = [NWt, NEt] if iseven(i + j) push!(t1, NWt) push!(t2, SEt) else push!(t1, NEt) push!(t2, SWt) end elseif pattern == :K1 t1 = [SEt, SWt, NWt] t2 = [NWt, NEt, SEt] elseif pattern == :Random if rand(mt, Bool) t1 = [NWt, NEt, SEt] t2 = [SEt, SWt, NWt] else t1 = [SWt, NWt, NEt] t2 = [NEt, SEt, SWt] end else error("pattern $pattern not currently supported") end push!(T, t1) push!(T, t2) end return PWLFunction{2}(X, Z, T, Dict(:structure => pattern)) end
PiecewiseLinearOpt
https://github.com/jump-dev/PiecewiseLinearOpt.jl.git
[ "MIT" ]
0.4.2
59786d90d750f1c18029a3903e8c1bc49d0e55a8
code
4995
# Copyright (c) 2016: Joey Huchette and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. # using Cbc # slow, not recommended # solver = CbcSolver(logLevel=0, integerTolerance=1e-9, primalTolerance=1e-9, ratioGap=1e-8) using Gurobi solver = GurobiSolver(; OutputFlag = 0) # using CPLEX # solver = CplexSolver(CPX_PARAM_SCRIND=0) using JuMP using PiecewiseLinearOpt using Base.Test using HDF5 methods_1D = ( :CC, :MC, :Logarithmic, :LogarithmicIB, :ZigZag, :ZigZagInteger, :SOS2, :GeneralizedCelaya, :SymmetricCelaya, :Incremental, :DisaggLogarithmic, ) methods_2D = ( :CC, :MC, :Logarithmic, :LogarithmicIB, :ZigZag, :ZigZagInteger, :SOS2, :GeneralizedCelaya, :SymmetricCelaya, :DisaggLogarithmic, ) # methods_2D = (:OptimalIB,) # very slow on all solvers patterns_2D = (:Upper, :Lower, :UnionJack, :K1, :Random) # not :BestFit because requires function values at midpoints, :OptimalTriangleSelection and :Stencil not supported currently # tests on network flow model with piecewise-linear objective # instance data loaded from .h5 files instance_data_1D = joinpath(dirname(@__FILE__), "1D-pwl-instances.h5") instance_data_2D = joinpath(dirname(@__FILE__), "2D-pwl-instances.h5") println("\nunivariate tests") @testset "instance $instance" for instance in ["10104_1_concave_1"] demand = h5read(instance_data_1D, string(instance, "/demand")) supply = h5read(instance_data_1D, string(instance, "/supply")) ndem = size(demand, 1) nsup = size(supply, 1) rawd = h5read(instance_data_1D, string(instance, "/d")) d = rawd[1, :] rawfd = h5read(instance_data_1D, string(instance, "/fd")) fd = rawfd[1, :] objval1 = NaN @testset "1D: $method" for method in methods_1D model = Model(; solver = solver) @variable(model, x[1:nsup, 1:ndem] ≥ 0) @constraint( model, [j in 1:ndem], sum(x[i, j] for i in 1:nsup) == demand[j] ) @constraint( model, [i in 1:nsup], sum(x[i, j] for j in 1:ndem) == supply[i] ) @objective( model, Min, sum( piecewiselinear(model, x[i, j], d, fd; method = method) for i in 1:nsup, j in 1:ndem ) ) @test solve(model) == :Optimal if isnan(objval1) objval1 = getobjectivevalue(model) else @test getobjectivevalue(model) ≈ objval1 rtol = 1e-4 end end end println("\nbivariate tests") # @testset "numpieces $numpieces, variety $variety, objective $objective" for numpieces in [4,8], variety in 1:5, objective in 1:20 @testset "numpieces $numpieces, variety $variety, objective $objective" for numpieces in [4], variety in 1:1, objective in 1:1 instance = string(numpieces, "_", variety, "_", objective) demand = h5read(instance_data_2D, string(instance, "/demand")) supply = h5read(instance_data_2D, string(instance, "/supply")) ndem = size(demand, 1) nsup = size(supply, 1) rawd = h5read(instance_data_2D, string(instance, "/d")) d = rawd[1, :] rawfd = h5read(instance_data_2D, string(instance, "/fd")) fˣ = reshape(rawfd[1, :], length(d), length(d)) ˣtoⁱ = Dict(d[p] => p for p in 1:length(d)) f = (pˣ, pʸ) -> fˣ[ˣtoⁱ[pˣ], ˣtoⁱ[pʸ]] objval1 = NaN @testset "2D: $method, $pattern" for method in methods_2D, pattern in patterns_2D model = Model(; solver = solver) @variable(model, x[1:nsup, 1:ndem] ≥ 0) @constraint( model, [j in 1:ndem], sum(x[i, j] for i in 1:nsup) == demand[j] ) @constraint( model, [i in 1:nsup], sum(x[i, j] for j in 1:ndem) == supply[i] ) @variable(model, y[1:nsup, 1:ndem] ≥ 0) @constraint( model, [j in 1:ndem], sum(y[i, j] for i in 1:nsup) == demand[j] ) @constraint( model, [i in 1:nsup], sum(y[i, j] for j in 1:ndem) == supply[i] ) @objective( model, Min, sum( piecewiselinear( model, x[i, j], y[i, j], BivariatePWLFunction(d, d, f; pattern = pattern); method = method, subsolver = solver, ) for i in 1:nsup, j in 1:ndem ) ) @test solve(model) == :Optimal if isnan(objval1) objval1 = getobjectivevalue(model) else @test getobjectivevalue(model) ≈ objval1 rtol = 1e-4 end end end
PiecewiseLinearOpt
https://github.com/jump-dev/PiecewiseLinearOpt.jl.git
[ "MIT" ]
0.4.2
59786d90d750f1c18029a3903e8c1bc49d0e55a8
code
4601
# Copyright (c) 2016: Joey Huchette and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. using PiecewiseLinearOpt using Test import Cbc import JuMP import LinearAlgebra import MathOptInterface as MOI methods_1D = ( :CC, :MC, :Logarithmic, :LogarithmicIB, :ZigZag, :ZigZagInteger, :GeneralizedCelaya, :SymmetricCelaya, :Incremental, :DisaggLogarithmic, # :SOS2, not supported by Cbc ) methods_2D = ( :CC, :Logarithmic, :LogarithmicIB, :ZigZag, :ZigZagInteger, :GeneralizedCelaya, :SymmetricCelaya, :DisaggLogarithmic, # :SOS2, not supported by Cbc # TODO: Add :MC to this list, Cbc (but not Gurobi) gives a different answer # below, only for :MC (maybe a bug in Cbc?) ) patterns_2D = ( :Upper, :Lower, :BestFit, :UnionJack, :K1, :Random, # :OptimalTriangleSelection not supported currently # :Stencil ) optimizer = JuMP.optimizer_with_attributes(Cbc.Optimizer, MOI.Silent() => true) @testset "Univariate tests" begin @testset "1D: $method" for method in methods_1D model = JuMP.Model(optimizer) JuMP.@variable(model, x) z = piecewiselinear( model, x, range(1; stop = 2π, length = 8), sin; method = method, ) JuMP.@objective(model, Max, z) JuMP.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.value(x) ≈ 1.75474 rtol = 1e-4 @test JuMP.value(z) ≈ 0.98313 rtol = 1e-4 JuMP.@constraint(model, x ≤ 1.5z) JuMP.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.value(x) ≈ 1.36495 rtol = 1e-4 @test JuMP.value(z) ≈ 0.90997 rtol = 1e-4 @test JuMP.objective_value(model) ≈ 0.90997 rtol = 1e-4 @test JuMP.objective_value(model) ≈ JuMP.value(z) rtol = 1e-4 end end @testset "Bivariate tests " begin @testset "2D: $method, $pattern" for method in methods_2D, pattern in patterns_2D model = JuMP.Model(optimizer) JuMP.@variable(model, x[1:2]) d = range(0; stop = 1, length = 8) f = (x1, x2) -> 2 * (x1 - 1 / 3)^2 + 3 * (x2 - 4 / 7)^4 z = piecewiselinear( model, x[1], x[2], BivariatePWLFunction(d, d, f; pattern = pattern); method = method, ) JuMP.@objective(model, Min, z) JuMP.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.value(x[1]) ≈ 0.285714 rtol = 1e-4 @test JuMP.value(x[2]) ≈ 0.571429 rtol = 1e-4 @test JuMP.value(z) ≈ 0.004535 rtol = 1e-3 @test JuMP.objective_value(model) ≈ 0.004535 rtol = 1e-3 @test JuMP.objective_value(model) ≈ JuMP.value(z) rtol = 1e-3 JuMP.@constraint(model, x[1] ≥ 0.6) JuMP.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.value(x[1]) ≈ 0.6 rtol = 1e-4 @test JuMP.value(x[2]) ≈ 0.571428 rtol = 1e-4 @test JuMP.value(z) ≈ 0.148753 rtol = 1e-4 @test JuMP.objective_value(model) ≈ 0.148753 rtol = 1e-3 @test JuMP.objective_value(model) ≈ JuMP.value(z) rtol = 1e-3 end end # println("\nbivariate optimal IB scheme tests") # @testset "2D: optimal IB, UnionJack" begin # model = JuMP.Model(JuMP.with_optimizer(Cbc.Optimizer)) # JuMP.@variable(model, x) # JuMP.@variable(model, y) # d = range(0,stop=1,length=3) # f = (x,y) -> 2*(x-1/3)^2 + 3*(y-4/7)^4 # z = piecewiselinear(model, x, y, BivariatePWLFunction(d, d, f, pattern=:UnionJack), method=:OptimalIB, subsolver=solver) # JuMP.@objective(model, Min, z) # JuMP.optimize!(model) # @test JuMP.termination_status(model) == MOI.OPTIMAL # @test JuMP.value(x) ≈ 0.5 rtol=1e-4 # @test JuMP.value(y) ≈ 0.5 rtol=1e-4 # @test JuMP.value(z) ≈ 0.055634 rtol=1e-3 # @test getobjectivevalue(model) ≈ 0.055634 rtol=1e-3 # @test getobjectivevalue(model) ≈ JuMP.value(z) rtol=1e-3 # JuMP.@constraint(model, x ≥ 0.6) # JuMP.optimize!(model) # @test JuMP.termination_status(model) == MOI.OPTIMAL # @test JuMP.value(x) ≈ 0.6 rtol=1e-4 # @test JuMP.value(y) ≈ 0.5 rtol=1e-4 # @test JuMP.value(z) ≈ 0.222300 rtol=1e-3 # @test JuMP.objective_value(model) ≈ 0.222300 rtol=1e-3 # @test JuMP.objective_value(model) ≈ JuMP.value(z) rtol=1e-3 # end
PiecewiseLinearOpt
https://github.com/jump-dev/PiecewiseLinearOpt.jl.git
[ "MIT" ]
0.4.2
59786d90d750f1c18029a3903e8c1bc49d0e55a8
docs
2984
# PiecewiseLinearOpt [![Build Status](https://github.com/jump-dev/PiecewiseLinearOpt.jl/workflows/CI/badge.svg)](https://github.com/jump-dev/PiecewiseLinearOpt.jl/actions?query=workflow%3ACI) [![codecov](https://codecov.io/gh/jump-dev/PiecewiseLinearOpt.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/jump-dev/PiecewiseLinearOpt.jl) A package for modeling optimization problems containing piecewise linear functions. Current support is for (the graphs of) continuous univariate functions. This package is an accompaniment to a paper entitled [_Nonconvex piecewise linear functions: Advanced formulations and simple modeling tools_](https://arxiv.org/abs/1708.00050), by Joey Huchette and Juan Pablo Vielma. This package offers helper functions for the [JuMP algebraic modeling language](https://github.com/jump-dev/JuMP.jl). Consider a piecewise linear function. The function is described in terms of the breakpoints between pieces, and the function value at those breakpoints. Consider a JuMP model ```julia using JuMP, PiecewiseLinearOpt m = Model() @variable(m, x) ``` To model the graph of a piecewise linear function ``f(x)``, take ``d`` as some set of breakpoints along the real line, and ``fd = [f(x) for x in d]`` as the corresponding function values. You can model this function in JuMP using the following function: ```julia z = piecewiselinear(m, x, d, fd) @objective(m, Min, z) # minimize f(x) ``` For another example, think of a piecewise linear approximation for the function $f(x,y) = exp(x+y)$: ```julia using JuMP, PiecewiseLinearOpt m = Model() @variable(m, x) @variable(m, y) z = piecewiselinear(m, x, y, 0:0.1:1, 0:0.1:1, (u,v) -> exp(u+v)) @objective(m, Min, z) ``` Current support is limited to modeling the graph of a continuous piecewise linear function, either univariate or bivariate, with the goal of adding support for the epigraphs of lower semicontinuous piecewise linear functions. Supported univariate formulations: * Convex combination (``:CC``) * Multiple choice (``:MC``) * Native SOS2 branching (``:SOS2``) * Incremental (``:Incremental``) * Logarithmic (``:Logarithmic``; default) * Disaggregated Logarithmic (``:DisaggLogarithmic``) * Binary zig-zag (``:ZigZag``) * General integer zig-zag (``:ZigZagInteger``) Supported bivariate formulations for entire constraint: * Convex combination (``:CC``) * Multiple choice (``:MC``) * Dissaggregated Logarithmic (``:DisaggLogarithmic``) Also, you can use any univariate formulation for bivariate functions as well. They will be used to impose two axis-aligned SOS2 constraints, along with the "6-stencil" formulation for the triangle selection portion of the constraint. See the associated paper for more details. In particular, the following are also acceptable bivariate formulation choices: * Native SOS2 branching (``:SOS2``) * Incremental (``:Incremental``) * Logarithmic (``:Logarithmic``) * Binary zig-zag (``:ZigZag``) * General integer zig-zag (``:ZigZagInteger``)
PiecewiseLinearOpt
https://github.com/jump-dev/PiecewiseLinearOpt.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
1199
using Documenter, Mango, Test, Logging logger = Test.TestLogger(min_level=Info); with_logger(logger) do makedocs( modules=[Mango], format=Documenter.HTML(; prettyurls=get(ENV, "CI", nothing) == "true"), authors="mango Team", sitename="Mango.jl", pages=Any["Home"=>"index.md", "Getting Started"=>"getting_started.md", "Agents"=>"agent.md", "Container"=>"container.md", "Roles"=>"role.md", "Simulation"=>"simulation.md", "Codecs"=>"encode_decode.md", "Scheduling"=>"scheduling.md", "Topologies"=>"topology.md", "API"=>"api.md", "Legals"=>"legals.md",], repo="https://github.com/OFFIS-DAI/Mango.jl", ) end for record in logger.logs @info record.message # Check if @example blocks did not succeed -> fail then if record.level == Warn && occursin("failed to run `@example` block", record.message) throw("Some Documentation example did not work, check the logs and fix the error.") end end deploydocs( repo="github.com/OFFIS-DAI/Mango.jl.git", push_preview=true, devbranch="development" )
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
628
""" Placeholder for a short summary about mango. """ module Mango include("util/error_handling.jl") include("util/datastructures_util.jl") include("util/scheduling.jl") include("util/encode_decode.jl") include("agent/api.jl") include("container/api.jl") include("agent/role.jl") include("agent/core.jl") include("world/core.jl") include("container/protocol.jl") include("container/tcp.jl") include("container/mqtt.jl") include("simulation/communication.jl") include("simulation/tasks.jl") include("container/simulation.jl") include("container/core.jl") include("world/topology.jl") include("express/api.jl") end # module
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
6130
export Agent, send_message, send_tracked_message, reply_to, address, aid, send_and_handle_answer """ Supertype of all address types """ abstract type Address end """ Supertype of the Agent Base type representing an interface, on which methods can be defined, which should be accessable from the outside, especially from the roles contained in the specific agent. """ abstract type AgentInterface end """ Base-type for all agents in mango. Generally exists for type-safety and default implementations across all agents. """ abstract type Agent <: AgentInterface end function subscribe_message_handle(agent::AgentInterface, role::Any, condition::Any, handler::Any) end """ subscribe_send_handle(agent::AgentInterface, role::Any, handler::Any) Used internally by the RoleContext to subscribe send handler to the agent. """ function subscribe_send_handle(agent::AgentInterface, role::Any, handler::Any) end """ subscribe_event_handle(agent::AgentInterface, role::Any, event_type::Any, event_handler::Any; condition::Function=(a, b) -> true) Used internally by the RoleContext to subscribe to role agent events. """ function subscribe_event_handle(agent::AgentInterface, role::Any, event_type::Any, event_handler::Any; condition::Function=(a, b) -> true) end """ emit_event_handle(agent::AgentInterface, role::Any, event::Any; event_type::Any=nothing) Used internally by the RoleContext to subscribe to role agent events. """ function emit_event_handle(agent::AgentInterface, role::Any, event::Any; event_type::Any=nothing) end """ get_model_handle(agent::AgentInterface, type::DataType) Used internally by the RoleContext to subscribe to role agent events. """ function get_model_handle(agent::AgentInterface, type::DataType) end """ address(agent) Return the agent address of the agent as [`AgentAddress`](@ref) or [`MQTTAddress`](@ref) depending on the protocol. """ function address(agent::AgentInterface) end """ aid(agent) Return the aid of the agent. """ function aid(agent::AgentInterface) end """ send_message( agent::AgentInterface, content::Any, agent_address::Address; kwargs..., ) Send a message with the content `content` to the agent represented by `agent_address`. This method will always set a sender_id. Additionally, further keyword arguments can be defined to fill the internal meta data of the message. """ function send_message( agent::AgentInterface, content::Any, agent_address::Address; kwargs..., ) @warn "The API send_message definition has been called, this should never happen. There is most likely an import error." end """ send_tracked_message( agent::AgentInterface, content::Any, agent_address::Address; response_handler::Function=(agent, message, meta) -> nothing, calling_object::Any=nothing, kwargs..., ) Send a message with the content `content` to the agent represented by `agent_address`. This function will set a generated tracking_id to the address, which allows the identification of the dialog. It is possible to define a `response_handler`, to which a function can be assigned, which handles the answer to this message call. Note that the resonding agent needs to use the same tracking id in the response, ideally [`reply_to`](@ref) is used to achieve this automatically. This method will always set a sender_id. Additionally, further keyword arguments can be defines to fill the internal meta data of the message. """ function send_tracked_message( agent::AgentInterface, content::Any, agent_address::Address; response_handler::Function=(agent, message, meta) -> nothing, calling_object::Any=nothing, kwargs..., ) @warn "The API send_tracked_message definition has been called, this should never happen. There is most likely an import error." end """ send_and_handle_answer( response_handler::Function, agent::AgentInterface, content::Any, agent_address::Address; calling_object::Any=nothing, kwargs...) Convenience method for sending tracked messages with response handler to the answer. Sends a tracked message with a required response_handler to enable to use the syntax ``` send_and_handle_answer(...) do agent, message, meta # handle the answer end ``` """ function send_and_handle_answer( response_handler::Function, agent::AgentInterface, content::Any, agent_address::Address; calling_object::Any=nothing, kwargs...) @warn "The API send_and_handle_answer definition has been called, this should never happen. There is most likely an import error." end """ reply_to( agent::AgentInterface, content::Any, received_meta::AbstractDict, ) Convenience method to reply to a received message using the meta the agent received. This reduces the regular `send_message` as response `send_message(agent, "Pong", AgentAddress(aid=meta["sender_id"], address=meta["sender_addr"]))` to `reply_to(agent, "Pong", meta)` Furthermore it guarantees that agent address (including the tracking id, which is part of the address!) is correctly passed to the mango container. """ function reply_to( agent::AgentInterface, content::Any, received_meta::AbstractDict, ) @warn "The API reply_to definition has been called, this should never happen. There is most likely an import error." end """ forward_to(agent, content, forward_to_address, received_meta; kwargs...) Forward the message to a specific agent using the metadata received on handling the message. This method essentially simply calls send_message on the input given, but also adds and fills the correct metadata fields to mark the message as forwarded. For this the following meta data is set. * 'forwarded=true', * 'forwarded_from_address=address of the original sender', * 'forwarded_from_id=id of the original sender' """ function forward_to(agent::AgentInterface, content::Any, forward_to_address::Address, received_meta::AbstractDict; kwargs...) @warn "The API forward_to definition has been called, this should never happen. There is most likely an import error." end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
15473
export @agent, AgentContext, AgentRoleHandler, handle_message, add, schedule, stop_and_wait_for_all_tasks, shutdown, on_ready, on_start, roles, forward_to, add_forwarding_rule, delete_forwarding_rule, ForwardingRule, service_of_type, add_service!, services using UUIDs using Dates: Dates FORWARDED_FROM_ADDR = "forwarded_from_address" FORWARDED_FROM_ID = "forwarded_from_id" """ Context of the agent. Represents the environment for the specific agent. Therefore it includes a connection to the container, including all functions used for interacting with the environment for the agent. """ struct AgentContext container::ContainerInterface end """ Internal data regarding the roles. """ struct AgentRoleHandler roles::Vector{Role} handle_message_subs::Vector{Tuple{Role,Function,Function}} send_message_subs::Vector{Tuple{Role,Function}} event_subs::Dict{Any,Vector{Tuple{Role,Function,Function}}} models::Dict{DataType,Any} end struct ForwardingRule from_address::AgentAddress to_address::AgentAddress forward_replies::Bool end """ All baseline fields added by the @agent macro are listed in this vector. They are added in the same order defined here. """ AGENT_BASELINE_FIELDS::Vector = [ :(lock::ReentrantLock = ReentrantLock()), :(context::Union{Nothing,AgentContext} = nothing), :(role_handler::Union{AgentRoleHandler} = AgentRoleHandler(Vector(), Vector(), Vector(), Dict(), Dict())), :(scheduler::AbstractScheduler = Scheduler()), :(aid::Union{Nothing,String} = nothing), :(transaction_handler::Dict{String,Tuple} = Dict{String,Tuple}()), :(forwarding_rules::Vector{ForwardingRule} = Vector{ForwardingRule}()), :(services::Dict{DataType,Any} = Dict{DataType,Any}()) ] """ Macro for defining an agent struct. Expects a struct definition as argument. The macro does 3 things: 1. It adds all baseline fields, defined in `AGENT_BASELINE_FIELDS` (the agent context `context`, the role handler `role_handler`, and the `aid`) 2. It adds the supertype `Agent` to the given struct. 3. It applies [`@with_def`](@ref) for default construction, the baseline fields are assigned to default values # Example For example the usage could like this. ```julia @agent struct MyAgent my_own_field::String end # results in @with_def mutable struct MyAgent <: Agent # baseline fields... my_own_field::String my_own_field_with_default::String = "Default" end # so you would construct your agent like this my_agent = MyAgent("own value", my_own_field_with_default="OtherValue") ``` """ macro agent(struct_def) struct_head = struct_def.args[2] struct_name = struct_head if typeof(struct_name) != Symbol struct_name = struct_head.args[1] end struct_fields = struct_def.args[3].args # Add the agents baseline fields for field in reverse(AGENT_BASELINE_FIELDS) pushfirst!(struct_fields, field) end # Create the new struct definition new_struct_def = Expr(:macrocall, Symbol("@with_def"), LineNumberNode(0, Symbol("none")), Expr( :struct, true, Expr(:(<:), struct_head, :(Agent)), Expr(:block, struct_fields...), )) esc(Expr(:block, new_struct_def)) end function build_forwarded_address_from_meta(meta::AbstractDict) return AgentAddress(aid=meta["reply_to_forwarded_from_id"], address=meta["reply_to_forwarded_from_address"], tracking_id=get(meta, TRACKING_ID, nothing)) end """ Internal API used by the container to dispatch an incoming message to the agent. In this function the message will be handed over to the different handlers in the agent. """ function dispatch_message(agent::Agent, message::Any, meta::AbstractDict) # check if auto forwarding is applicable sender_addr = get(meta, SENDER_ADDR, nothing) sender_id = get(meta, SENDER_ID, nothing) forwarded = false for rule::ForwardingRule in agent.forwarding_rules if rule.from_address.aid == sender_id && rule.from_address.address == sender_addr wait(forward_to(agent, message, rule.to_address, meta)) forwarded = true end # if reply to a forwarded message and replies shall be forwarded, forward this message to the original sender if rule.to_address.address == sender_addr && rule.to_address.aid == sender_id && get(meta, "reply_to_forwarded", false) && rule.forward_replies wait(forward_to(agent, message, build_forwarded_address_from_meta(meta), meta)) forwarded = true end end if forwarded return end lock(agent.lock) do # check if part of a transaction if haskey(meta, TRACKING_ID) && haskey(agent.transaction_handler, meta[TRACKING_ID]) caller, response_handler = agent.transaction_handler[meta[TRACKING_ID]] delete!(agent.transaction_handler, meta[TRACKING_ID]) response_handler(caller, message, meta) else for role in agent.role_handler.roles handle_message(role, message, meta) end for (role, call, condition) in agent.role_handler.handle_message_subs if condition(message, meta) call(role, message, meta) end end handle_message(agent, message, meta) end end end """ handle_message(agent::Agent, message::Any, meta::Any) Defines a function for an agent, which will be called when a message is dispatched to the agent. This methods will be called with any arriving message (according to the multiple dispatch of julia). """ function handle_message(agent::Agent, message::Any, meta::Any) # do nothing by default end function notify_start(agent::Agent) on_start(agent) for role in roles(agent) on_start(role) end end function notify_ready(agent::Agent) on_ready(agent) for role in roles(agent) on_ready(role) end end """ on_start(agent::Agent) Lifecycle Hook-in function called when the container of the agent has been started, depending on the container type it may not be called (if there is no start at all, f.e. the simulation container) """ function on_start(agent::Agent) # do nothing by default end """ on_ready(agent::Agent) Lifecycle Hook-in function called when the agent system as a whole is ready, the hook-in has to be manually activated using notify_ready(container::Container). If you use the `activate` function, it is called automatically. """ function on_ready(agent::Agent) # do nothing by default end function aid(agent::Agent) return agent.aid end """ add(agent::Agent, role::Role) Add a role to the agent. This will add the role to the internal RoleHandler of the agent and it will bind the RoleContext to the role, which enables the role to interact with its environment. """ function add(agent::Agent, role::Role) push!(agent.role_handler.roles, role) bind_context(role, RoleContext(agent)) end """ roles(agent) Return all roles of the given agent """ function roles(agent::Agent) return agent.role_handler.roles end """ shutdown(agent) Will be called on shutdown of the container, in which the agent is living """ function shutdown(agent::Agent) for role in agent.role_handler.roles shutdown(role) end stop_and_wait_for_all_tasks(agent.scheduler) end function subscribe_message_handle( agent::Agent, role::Role, condition::Function, handler::Function, ) push!(agent.role_handler.handle_message_subs, (role, condition, handler)) end function subscribe_send_handle(agent::Agent, role::Role, handler::Function) push!(agent.role_handler.send_message_subs, (role, handler)) end function subscribe_event_handle(agent::Agent, role::Role, event_type::Any, event_handler::Function; condition::Function=(a, b) -> true) if !haskey(agent.role_handler.event_subs, event_type) agent.role_handler.event_subs[event_type] = Vector() end push!(agent.role_handler.event_subs[event_type], (role, condition, event_handler)) end function emit_event_handle(agent::Agent, src::Role, event::Any; event_type::Any=nothing) key = !isnothing(event_type) ? event_type : typeof(event) if haskey(agent.role_handler.event_subs, key) for (role, condition, func) in agent.role_handler.event_subs[key] if condition(src, event) func(role, src, event, event_type) end end end for role in roles(agent) handle_event(role, src, event, event_type=event_type) end end function get_model_handle(agent::Agent, type::DataType) if !haskey(agent.role_handler.models, type) agent.role_handler.models[type] = type() end return agent.role_handler.models[type] end """ add_forwarding_rule(agent, from_addr::AgentAddress, to_address::AgentAddress, forward_replies::Bool) Add a rule for message forwarding. After calling the agent will auto-forward every message coming from `from_addr` to `to_address`. If forward_replies is set, all replies from `to_address` are forwarded back to `from_addr`. """ function add_forwarding_rule(agent::Agent, from_addr::AgentAddress, to_address::AgentAddress, forward_replies::Bool) push!(agent.forwarding_rules, ForwardingRule(from_addr, to_address, forward_replies)) end """ delete_forwarding_rule(agent, from_addr::AgentAddress, to_address::Union{Nothing,AgentAddress}) Delete an added forwarding rule. If `to_address` is not set, all rules are removed matching `from_addr`. If it set, both addresses need to match. """ function delete_forwarding_rule(agent::Agent, from_addr::AgentAddress, to_address::Union{Nothing,AgentAddress}) for i in length(agent.forwarding_rules):-1:1 rule = agent.forwarding_rules[i] if rule.from_address == from_addr && (isnothing(to_address) || to_address == rule.to_address) deleteat!(agent.forwarding_rules, i) end end end """ schedule(f::Function, agent::Agent, data::TaskData) Delegates to the scheduler `Scheduler` """ function schedule(f::Function, agent::Agent, data::TaskData) schedule(f, agent.scheduler, data) end """ stop_and_wait_for_all_tasks(agent::Agent) Delegates to the scheduler `Scheduler` """ function stop_and_wait_for_all_tasks(agent::Agent) stop_and_wait_for_all_tasks(agent.scheduler) end """ stop_task(agent::Agent, t::Task) Delegates to the scheduler `Scheduler` """ function stop_task(agent::Agent, t::Task) stop_task(agent.scheduler, t) end """ wait_for_all_tasks(agent::Agent) Delegates to the scheduler `Scheduler` """ function wait_for_all_tasks(agent::Agent) wait_for_all_tasks(agent.scheduler) end """ stop_all_tasks(agent::Agent) Delegates to the scheduler `Scheduler` """ function stop_all_tasks(agent::Agent) stop_all_tasks(agent.scheduler) end function address(agent::Agent) addr::Any = nothing if !isnothing(agent.context) addr = protocol_addr(agent.context.container) end return AgentAddress(aid=aid(agent), address=addr) end function send_message( agent::Agent, content::Any, agent_adress::AgentAddress; kwargs..., ) for (role, handler) in agent.role_handler.send_message_subs handler(role, content, agent_adress; kwargs...) end return send_message( agent.context.container, content, agent_adress, agent.aid; kwargs..., ) end function send_message( agent::Agent, content::Any, mqtt_address::MQTTAddress; kwargs..., ) for (role, handler) in agent.role_handler.send_message_subs handler(role, content, mqtt_address; kwargs...) end return send_message( agent.context.container, content, mqtt_address; kwargs..., ) end function send_tracked_message( agent::Agent, content::Any, agent_address::AgentAddress; response_handler::Union{Function,Nothing}=nothing, calling_object::Any=nothing, kwargs..., ) tracking_id = string(uuid1()) if !isnothing(agent_address.tracking_id) tracking_id = agent_address.tracking_id end if !isnothing(response_handler) caller = agent if !isnothing(calling_object) caller = calling_object end agent.transaction_handler[tracking_id] = (caller, response_handler) end return send_message(agent, content, AgentAddress(agent_address.aid, agent_address.address, tracking_id); kwargs...) end function send_and_handle_answer( response_handler::Function, agent::Agent, content::Any, agent_address::AgentAddress; calling_object::Any=nothing, kwargs...) return send_tracked_message(agent, content, agent_address; response_handler=response_handler, calling_object=calling_object, kwargs...) end function reply_to(agent::Agent, content::Any, received_meta::AbstractDict; response_handler::Union{Function,Nothing}=nothing, calling_object::Any=nothing, kwargs...) return send_tracked_message(agent, content, AgentAddress(received_meta[SENDER_ID], received_meta[SENDER_ADDR], get(received_meta, TRACKING_ID, nothing)); response_handler=response_handler, calling_object=calling_object, reply=true, reply_to_forwarded=get(received_meta, "forwarded", false), reply_to_forwarded_from_address=get(received_meta, FORWARDED_FROM_ADDR, nothing), reply_to_forwarded_from_id=get(received_meta, FORWARDED_FROM_ID, nothing), kwargs...) end function forward_to(agent::Agent, content::Any, forward_to_address::AgentAddress, received_meta::AbstractDict; kwargs...) return send_message(agent, content, forward_to_address; forwarded=true, forwarded_from_address=received_meta[SENDER_ADDR], forwarded_from_id=received_meta[SENDER_ID]) end """ services(agent)::Dict{DataType,Any} Return a list of services, which were added to the agent. """ function services(agent::Agent)::Dict{DataType,Any} return agent.services end """ service_of_type(agent, type::Type{T}, default=nothing)::Union{T,Nothing} where {T} Return the current agent service of the type `type`. If a default is set, this default service will be added to the agent as service of te type `type. The function is especially useful if you want to extend the functionality of the agent without having to change the internals of the agent, as this functions enables the user to add arbitrary data to the agent on which functions can be defined. """ function service_of_type(agent::Agent, type::Type{T}, default::Union{T,Nothing}=nothing)::Union{T,Nothing} where {T} for pair in services(agent) if isa(pair[1], type) || pair[1] == type return pair[2] end end if !isnothing(default) add_service!(agent, default) end return default end """ add_service!(agent, service) Add a service to the agent. Every service can exists exactly one time (stored by type). """ function add_service!(agent::Agent, service::Any) agent.services[typeof(service)] = service end """ Base.getindex(agent::T, index::Int) where {T<:Agent} Return the `index`'th role of the agent. """ function Base.getindex(agent::T, index::Int) where {T<:Agent} return roles(agent)[index] end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
9669
export Role, RoleContext, handle_event, @role, @shared, subscribe_message, subscribe_send, bind_context, emit_event, get_model, subscribe_event, setup """ Defines the type Role, which is the common base types for all roles in mango. A Role is a bundled behavivor of an agent, which shall fulfill exactly one responsibility of an agent - the role. Technically speaking roles are the way to implement the composition pattern for agents, and to introduce modular archetypes, which shall be reused in different contexts. """ abstract type Role end """ The `RoleContext` connects the role with its environment, which is mostly its agents. This is abstracted using the `AgentInterface`. """ mutable struct RoleContext agent::AgentInterface end """ List of all baseline fields of every role, which will be inserted by the macro @role. """ ROLE_BASELINE_FIELDS::Vector = [:(context::Union{RoleContext,Nothing} = nothing), :(shared_vars::Vector{Any} = Vector())] """ Macro for defining a role struct. Expects a struct definition as argument. The macro does 3 things: 1. It adds all baseline fields, defined in `ROLE_BASELINE_FIELDS` (the role context) 2. It adds the supertype `Role` to the given struct. 3. It applies [`@with_def`](@ref) for default construction, the baseline fields are assigned to default values For example the usage could like this. ```julia @role struct MyRole my_own_field::String end # results in @with_def mutable struct MyRole <: Role # baseline fields... my_own_field::String my_own_field_with_default::String = "Default" end # so youl would construct your role like this my_roel = MyRole("own value", my_own_field_with_default="OtherValue") ``` """ macro role(struct_def) Base.remove_linenums!(struct_def) struct_head = struct_def.args[2] struct_name = struct_head if typeof(struct_name) != Symbol struct_name = struct_head.args[1] end struct_fields = struct_def.args[3].args # Add the roles baseline fields for field in reverse(ROLE_BASELINE_FIELDS) pushfirst!(struct_fields, field) end # Remove all @shared declarations from the struct definition shared_names = [] new_struct_fields = [] modified_struct_fields = Vector(struct_fields) for i in length(struct_fields):-1:1 struct_field = struct_fields[i] name = struct_field.args[1] if name == Symbol("@shared") struct_field = struct_fields[i+1] field_name = struct_field.args[1] field_type = struct_field.args[2] # evaluates to field_name::field_type = field_type() new_expr_decl = Expr(:(=), Expr(:(::), field_name, field_type), Expr(:call, Symbol(field_type))) push!(new_struct_fields, new_expr_decl) push!(shared_names, Expr(:tuple, String(field_name), field_type)) deleteat!(modified_struct_fields, i + 1) deleteat!(modified_struct_fields, i) end end struct_fields = modified_struct_fields # Create the new struct definition new_struct_def = Expr(:macrocall, Symbol("@with_def"), LineNumberNode(0, Symbol("none")), Expr( :struct, true, Expr(:(<:), struct_head, :(Role)), Expr(:block, cat(struct_fields, new_struct_fields, dims=(1, 1))...), )) esc(Expr(:block, new_struct_def)) end """ Mark the field as shared across roles. This only works on structs with empty default constructor. Internally the marked field will be initialized with a model created by [`get_model`](@ref). The model will be set when the Role is added to an agent. # Example ```julia @kwdef struct Model field::Int = 0 end @role struct MyRole @shared my_model::Model # per agent the exact same in every agent. end ``` """ macro shared(field_declaration) return esc(field_declaration) end """ setup(role::Role) Hook-in function to setup the role, after it has been added to its agent. """ function setup(role::Role) # default nothing end """ Default function for arriving messages, which get dispatched to the role. This function will be called for every message arriving at the agent of the role. """ function handle_message(role::Role, message::Any, meta::Any) # do nothing by default end """ handle_event(role::Role, src::Role, event::Any; event_type::Any) Default function for arriving events, which get dispatched to the role. """ function handle_event(role::Role, src::Role, event::Any; event_type::Any) # do nothing by default end """ Internal function, used to initialize to role for a specified agent """ function bind_context(role::Role, context::RoleContext) role.context = context for shared_var in role.shared_vars shared_model = get_model(role, eval(shared_var[2])) setproperty!(role, Symbol(shared_var[1]), shared_model) end setup(role) end """ context(role::Role) Return the context of role """ function context(role::Role) return role.context end function shutdown(role::Role) # default nothing end function on_start(role::Role) # do nothing by default end function on_ready(role::Role) # do nothing by default end """ subscribe_message(role::Role, handler::Function, condition::Function) Subscribe a message handler function (it need to have the signature (role, message, meta)) to the message dispatching. This handler function will be called everytime the given condition function ((message, meta) -> boolean) evaluates to true when a message arrives at the roles agent. """ function subscribe_message(role::Role, handler::Function, condition::Function) subscribe_message_handle(role.context.agent, role, handler, condition) end """ subscribe_send(role::Role, handler::Function) Subscribe a `send_message` hook in function (signature, (role, content, receiver_id, receiver_addr; kwargs...)) to the message sending. The hook in function will be called every time a message is sent by the agent. """ function subscribe_send(role::Role, handler::Function) subscribe_send_handle(role.context.agent, role, handler) end """ subscribe_event(role::Role, event_type::Any, event_handler::Any, condition::Function) Subscribe to specific types of events. The types of events are determined by the `condition` function (accepting `src` and `event`) and by the `event_type`. # Example ```julia struct MyEvent end function custom_handler(role::Role, src::Role, event::Any, event_type::Any) # do your thing end subscribe_event(my_role, MyEvent, custom_handler, (src, event) -> aid(src) == "agent0") ``` """ function subscribe_event(role::Role, event_type::Any, event_handler::Any, condition::Function=(a, b) -> true) subscribe_event_handle(role.context.agent, role, event_type, event_handler; condition=condition) end """ emit_event(role::Role, event::Any; event_type::Any=nothing) Emit an event to their subscriber. """ function emit_event(role::Role, event::Any; event_type::Any=nothing) emit_event_handle(role.context.agent, role, event, event_type=event_type) end """ get_model(role::Role, type::DataType) Get a shared model from the pool. If the model does not exist yet, it will be created. Only types with default constructor are allowed! # Example ```julia @kwdef struct ExampleModel my_field::Int = 0 end role = ExampleRole() model::ExampleModel = get_model(role, ExampleModel) model.my_field = 1 model2::ExampleModel = get_model(role, ExampleModel) # model == model2, it will also be the same for every role! ``` """ function get_model(role::Role, type::DataType) get_model_handle(role.context.agent, type) end function schedule(f::Function, role::Role, data::TaskData) schedule(f, role.context.agent, data) end function aid(role::Role) return address(role.context.agent).aid end function address(role::Role) return address(role.context.agent) end function add_forwarding_rule(role::Role, from_addr::AgentAddress, to_address::AgentAddress, forward_replies::Bool) add_forwarding_rule(role.context.agent, from_addr, to_address, forward_replies) end function delete_forwarding_rule(role::Role, from_addr::AgentAddress, to_address::Union{Nothing,AgentAddress}) delete_forwarding_rule(role.context.agent, from_addr, to_address) end function send_message( role::Role, content::Any, agent_adress::AgentAddress; kwargs..., ) return send_message(role.context.agent, content, agent_adress; kwargs...) end function send_tracked_message( role::Role, content::Any, agent_adress::AgentAddress; response_handler::Function=(role, message, meta) -> nothing, kwargs..., ) return send_tracked_message(role.context.agent, content, agent_adress; response_handler=response_handler, calling_object=role, kwargs...) end function send_and_handle_answer( response_handler::Function, role::Role, content::Any, agent_address::AgentAddress; kwargs...) return send_and_handle_answer(response_handler, role.context.agent, content, agent_address; calling_object=role, kwargs...) end function reply_to(role::Role, content::Any, received_meta::AbstractDict; response_handler::Function=(agent, message, meta) -> nothing, kwargs...) return reply_to(role.context.agent, content, received_meta; response_handler=response_handler, calling_object=role, kwargs...) end function forward_to(role::Role, content::Any, forward_to_address::AgentAddress, received_meta::AbstractDict; kwargs...) return forward_to(role.context.agent, content, forward_to_address, received_meta; kwargs...) end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
3362
export ContainerInterface, send_message, register, start, shutdown, protocol_addr, agents, Address, AgentAddress, MQTTAddress, SENDER_ADDR, SENDER_ID, TRACKING_ID """ Key for the sender address in the meta dict """ SENDER_ADDR::String = "sender_addr" """ Key for the sender in the meta dict """ SENDER_ID::String = "sender_id" """ Key for the tracking number used for dialogs in the meta dict """ TRACKING_ID::String = "tracking_id" """ Supertype of every container implementation. This acts as an interface to be used by the agents in their contexts. """ abstract type ContainerInterface end """ Default AgentAddress base type, where the agent identifier is based on the container created agent id (aid). Used with the TCP protocol. """ @kwdef struct AgentAddress <: Address aid::Union{String,Nothing} address::Any = nothing tracking_id::Union{String,Nothing} = nothing end """ Connection information for an MQTT topic on a given broker. Used with the MQTT protocol. """ @kwdef struct MQTTAddress <: Address broker::Any = nothing topic::String end """ send_message( container::ContainerInterface, content::Any, address::Address, sender_id::Union{Nothing,String}=nothing; kwargs..., ) Send a message `message` using the given container `container` to the given address. Additionally, further keyword arguments can be defines to fill the internal meta data of the message. """ function send_message( container::ContainerInterface, content::Any, address::Address, sender_id::Union{Nothing,String}=nothing; kwargs..., ) @warn "The API send_message definition has been called, this should never happen. There is most likely an import error." end """ protocol_addr(container) Return technical address of the container. """ function protocol_addr(container::ContainerInterface) end """ start(container) Start the container. It is recommended to use [`activate`](@ref) instead of starting manually. What exactly happend highly depends on the protocol and the container implmentation. For example, for TCP the container binds on IP and port, and the listening loop started. """ function start(container::ContainerInterface) end """ shutdown(container) Shutdown the container. Here all loops are closed, resources freed. It is recommended to use [`activate`](@ref) instead of shutting down manually. """ function shutdown(container::ContainerInterface) end """ register( container, agent, suggested_aid::Union{String,Nothing}=nothing; kwargs..., ) Register the agent to the container. Retun the agent itself for convenience. Normally the aid is generated, however it is possible to suggest an aid, which will be used if it has not been used yet and if it is not conflicting with the default naming pattern (agent0, agent1, ...) """ function register( container::ContainerInterface, agent::AgentInterface, suggested_aid::Union{String,Nothing}=nothing; kwargs..., ) end """ agents(container) Return the agents of the container. The agents have a fixed order. """ function agents(container::ContainerInterface) end """ notify_ready(container::Container) Mark the agent system as ready. """ function notify_ready(container::ContainerInterface) for agent in values(agents(container)) notify_ready(agent) end end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
6980
export Container, notify_ready using Parameters using OrderedCollections using Base.Threads # id key for the receiver RECEIVER_ID::String = "receiver_id" # prefix for the generated aid's AGENT_PREFIX::String = "agent" # id key for mqtt broker BROKER::String = "broker" # id key for mqtt topic TOPIC::String = "topic" """ The default container struct, representing the container as actor. The container is implemented by composition. This means the container consists of different implementations of base types, which define the behavior of the container itself. That being said, the same container generally able to send messages via different protocols using different codecs. """ @kwdef mutable struct Container <: ContainerInterface agents::OrderedDict{String,Agent} = OrderedDict() agent_counter::Integer = 0 protocol::Union{Nothing,Protocol} = nothing codec::Any = (encode, decode) shutdown::Bool = false loop::Any = nothing tasks::Any = nothing end function agents(container::Container)::Vector{Agent} return [t[2] for t in collect(container.agents)] end """ Internal representation of a message in mango """ struct MangoMessage content::Any meta::Dict{String,Any} end """ Process the message data after rawly receiving them. """ function process_message(container::Container, msg_data::Any, sender_addr::Any; receivers=nothing) msg = container.codec[2](msg_data) content, meta = msg["content"], msg["meta"] if haskey(meta, SENDER_ADDR) meta[SENDER_ADDR] = parse_id(container.protocol, meta[SENDER_ADDR]) else meta[SENDER_ADDR] = nothing end forward_message(container, content, meta; receivers=receivers) end function protocol_addr(container::Container) if isnothing(container.protocol) return nothing end return id(container.protocol) end function start(container::Container) if !isnothing(container.protocol) container.loop, container.tasks = init( container.protocol, () -> container.shutdown, (msg_data, sender_addr; receivers=nothing) -> process_message(container, msg_data, sender_addr; receivers=receivers), ) end for agent in values(container.agents) notify_start(agent) end end function shutdown(container::Container) container.shutdown = true if !isnothing(container.protocol) close(container.protocol) end if !isnothing(container.tasks) for task in container.tasks wait(task) end end for agent in values(container.agents) shutdown(agent) end end function register( container::Container, agent::Agent, suggested_aid::Union{String,Nothing}=nothing; kwargs..., ) actual_aid::String = "$AGENT_PREFIX$(container.agent_counter)" if !isnothing(suggested_aid) && !haskey(container.agents, suggested_aid) actual_aid = suggested_aid end container.agents[actual_aid] = agent agent.aid = actual_aid agent.context = AgentContext(container) container.agent_counter += 1 if !isnothing(container.protocol) notify_register(container.protocol, actual_aid; kwargs...) end return agent end """ Internal function of the container, which forward the message to the correct agent in the container. At this point it has already been evaluated the message has to be routed to an agent in control of the container. """ function forward_message(container::Container, msg::Any, meta::AbstractDict; receivers=nothing) # if not multicast: single cast if isnothing(receivers) receivers = RECEIVER_ID in keys(meta) ? [meta[RECEIVER_ID]] : nothing end send_tasks = [] if isnothing(receivers) @warn "Got a message missing an agent id!" else for receiver in receivers if !haskey(container.agents, receiver) @warn "Container at $(protocol_addr(container)) has no agent with id: $receiver. Known agents are: $(container.agents)" else agent = container.agents[receiver] @debug "Dispatch a message to agent $(aid(agent))" typeof(msg) get(meta, SENDER_ID, "") protocol_addr(container) push!(send_tasks, @spawnlog dispatch_message(agent, msg, meta)) end end end # return the single wait task syncing all sends # so we can wait for the full message action to be done outside if isempty(send_tasks) # return an empty finished task so this function # can always be waited on return @async begin end end return @sync(send_tasks)[1] end function to_external_message(content::Any, meta::AbstractDict) return MangoMessage(content, meta) end function send_message( container::Container, content::Any, agent_adress::AgentAddress, sender_id::Union{Nothing,String}=nothing; kwargs..., ) receiver_id = agent_adress.aid receiver_addr = agent_adress.address tracking_id = agent_adress.tracking_id meta = OrderedDict{String,Any}() for (key, value) in kwargs meta[string(key)] = value end meta[RECEIVER_ID] = receiver_id meta[SENDER_ID] = sender_id meta[TRACKING_ID] = tracking_id if !isnothing(container.protocol) meta[SENDER_ADDR] = id(container.protocol) else meta[SENDER_ADDR] = nothing end if isnothing(receiver_addr) || receiver_addr == id(container.protocol) return forward_message(container, content, meta) end @debug "Send a message to ($receiver_id, $receiver_addr), from $sender_id" typeof(content) return @spawnlog send( container.protocol, receiver_addr, container.codec[1](to_external_message(content, meta)), ) end """ send_message( container::Container, content::Any, mqtt_address::MQTTAddress, kwargs..., ) Send message version for MQTT topics. Note that there is no local message forwarding here because messages always get pushed to a broker and are not directly addressed to an agennt. """ function send_message( container::Container, content::Any, mqtt_address::MQTTAddress, kwargs..., ) broker = mqtt_address.broker topic = mqtt_address.topic meta = OrderedDict{String,Any}() for (key, value) in kwargs meta[string(key)] = value end meta[BROKER] = broker meta[TOPIC] = topic if !isnothing(container.protocol) meta[SENDER_ADDR] = id(container.protocol) end return @spawnlog send( container.protocol, topic, container.codec[1](to_external_message(content, meta)), ) end """ Base.getindex(container::Container, index::String) Return the agent indexed by `index` (aid). """ function Base.getindex(container::Container, index::String) return container.agents[index] end function Base.getindex(container::Container, index::Int) return agents(container)[index] end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
6268
export MQTTProtocol, get_messages_channel, disconnect, subscribe import Mosquitto using Mosquitto: Client, get_messages_channel, get_connect_channel, publish, disconnect using Sockets: InetAddr """ Protocol that abstracts a [Mosquitto.jl](https://github.com/denglerchr/Mosquitto.jl) client for Mango agents. # Creation MQTTProtocol(client_id::String, broker_addr::InetAddr) Create an MQTT client that connects to the broker at `broker_addr` with a `client_id`. # Fields * client - Mosquitto.jl client * broker_addr - address of the MQTT broker to connect to * connected - internal flag indicating connection status * active - internal flag indicating listen loop activity * msg_channel - message channel of the MQTT client * conn_channel - connection channel of the MQTT client * topic_to_aid - internal dictionary to track which registered agent is subscribed to which topic """ mutable struct MQTTProtocol <: Protocol{String} client::Client broker_addr::InetAddr connected::Bool active::Bool msg_channel::Channel conn_channel::Channel topic_to_aid::Dict{String,Vector{String}} function MQTTProtocol(client_id::String, broker_addr::InetAddr) # Have to cast types for the MQTT client constructor. c = Client(string(broker_addr.host), Int64(broker_addr.port); id=client_id) msg_channel = get_messages_channel(c) conn_channel = get_connect_channel(c) return new(c, broker_addr, false, false, msg_channel, conn_channel, Dict{String,Vector{String}}()) end end """ init(protocol::MQTTProtocol, stop_check::Function, data_handler::Function) Initialize the Mosquitto looping task for the provided `protocol` and forward incoming messages to `data_handler`. """ function init(protocol::MQTTProtocol, stop_check::Function, data_handler::Function) tasks = [] listen_task = errormonitor( Threads.@spawn begin try run_mosquitto_loop(protocol, data_handler) catch err if isa(err, InterruptException) || isa(err, Base.IOError) # nothing else @error "Caught an unexpected error in listen" exception = (err, catch_backtrace()) end finally close(protocol) end end ) return listen_task, tasks end """ run_mosquitto_loop(protocol::MQTTProtocol, data_handler::Function) Endlessly loops over incoming messages on the `msg_channel` and `conn_channel`` and process their contents. Loop is stopped by setting the `protocol.active` flag to false. """ function run_mosquitto_loop(protocol::MQTTProtocol, data_handler::Function) Mosquitto.loop_start(protocol.client) protocol.active = true # listen for incoming messages and run callback while protocol.active handle_msg_channel(protocol, data_handler) handle_conn_channel(protocol) yield() end end """ handle_msg_channel(protocol::MQTTProtocol, data_handler::Function) Check `protocol.msg_channel`` for new messages and forward their contents to the `data_handler`. """ function handle_msg_channel(protocol::MQTTProtocol, data_handler::Function) # handle incoming content messages while !isempty(protocol.msg_channel) msg = take!(protocol.msg_channel) topic = msg.topic message = msg.payload # guaranteed to be a key in the dict unless something went seriously wrong on registration @spawnlog data_handler(message, topic; receivers=protocol.topic_to_aid[topic]) end end """ handle_conn_channel(protocol::MQTTProtocol) Check `protocol.conn_chnnel` for new messages and update the protocols connection status accordingly. """ function handle_conn_channel(protocol::MQTTProtocol) # handle incoming connection status updates while !isempty(protocol.conn_channel) conncb = take!(protocol.conn_channel) if conncb.val == 1 protocol.connected = true elseif conncb.val == 0 protocol.connected = false end end end """ send(protocol::MQTTProtocol, destination::String, message::Any) Send a `message` to topic `destination` on the clients MQTT broker. # Returns Return value and message id from MQTT library. """ function send(protocol::MQTTProtocol, destination::String, message::Any) publish(protocol.client, destination, message) end """ id(protocol::MQTTProtocol) Return the name the client is registered with at its broker. """ function id(protocol::MQTTProtocol) return protocol.client.id end """ subscribe(protocol::MQTTProtocol, topic::String; qos::Int=1) Subscribe the MQTT client of the `protocol` to `topic` with the given `qos` setting. # Returns The Mosquitto error code and the message id. """ function subscribe(protocol::MQTTProtocol, topic::String; qos::Int=1) Mosquitto.subscribe(protocol.client, topic; qos=qos) end """ close(protocol::MQTTProtocol) Disconnect the client from the broker and stop the message loop. """ function close(protocol::MQTTProtocol) if protocol.connected disconnect(protocol.client) Mosquitto.loop_stop(protocol.client) end protocol.active = false end """ parse_id(_::MQTTProtocol, id::Any)::String Return the `id` of the protocol as string (for compliance with container core). """ function parse_id(_::MQTTProtocol, id::Any)::String return string(id) end """ notify_register(protocol::MQTTProtocol, aid::String; kwargs...) Notify the `protocol` MQTT client that a new agent with `aid` has been registered. Registration expects a kwarg `topics` to subscribe the agent to. If any topic is not yet subscribed by the client `subscribe` is called for it. """ function notify_register(protocol::MQTTProtocol, aid::String; kwargs...) topics = :topics in keys(kwargs) ? kwargs[:topics] : [] for topic ∈ topics if topic ∉ keys(protocol.topic_to_aid) protocol.topic_to_aid[topic] = [aid] subscribe(protocol, topic) continue end if aid ∉ protocol.topic_to_aid[topic] push!(protocol.topic_to_aid[topic], aid) end end end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
2714
export Protocol, send, start, close, id, notify_register, init """ Type for all implementations of protocols, acts like an interface. A protocol defines the way message are processed and especially sent and received to an other peer. F.E. A protocol could be to send messages using a plain TCP connection, which would indicate that an internet address (host + port) is required for the communication. The parameterized type T indicates type, which defines the address data of the receiver and sender. Every protocol has to define two methods. 1. send: defines the behavior of the protocol when an agents sends a messages 2. init: defines the necessary steps to initialize (especially) the receiver loop and therefore accepts a stop check and a data handler function to indicate when the receiver should stop, respectively how to dispatch the received message to the correct agent """ abstract type Protocol{T} end """ send(protocol::Protocol{T}, destination::T, message::Any) where {T} Send the message `message` to the agent known by the adress `destination`. How the message is exactly handled is determined by the protocol invoked. The type of the destination has to match with the protocol. The function returns a boolean indicating whether the message was successfull sent """ function send(protocol::Protocol{T}, destination::T, message::Any) where {T} end """ init(protocol::Protocol{T}, stop_check::Function, data_handler::Function) where {T} Initialized the protocols internal loops (if exists). In most implementation this would mean that the receiver loop is started. To handle received messages the `data_handler` function can be passed `(msg, sender) -> your handling code`. To control the lifetime of the loops a stop_check should be passed (() -> boolean). If the stop check is true the loops will terminate. The exact behavior depends on the implementation though. """ function init(protocol::Protocol{T}, stop_check::Function, data_handler::Function) where {T} end """ id(protocol::Protocol{T}) where {T} Return the external identifier associated with the protocol (e.g. it could be the host+port, dns name, ...) """ function id(protocol::Protocol{T}) where {T} end """ parse_id(protocol::Protocol{T}, id_data::Any)::T where {T} Parse different types to the correct type (if required). Should be implemented if the id type is not trivial. """ function parse_id(protocol::Protocol{T}, id_data::Any)::T where {T} end """ notify_register(protocol::Protocol{T}, aid::String; kwargs...) where {T} Protocol specific updates called when a new agent is registered. """ function notify_register(protocol::Protocol{T}, aid::String; kwargs...) where {T} end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
12856
export SimulationContainer, register, send_message, shutdown, protocol_addr, create_simulation_container, step_simulation, SimulationResult, CommunicationSimulationResult, TaskSimulationResult, on_step using Base.Threads using Dates using ConcurrentCollections using OrderedCollections """ Id key for the receiver in the meta dict """ RECEIVER_ID::String = "receiver_id" """ Prefix for the generated aid's """ AGENT_PREFIX::String = "agent" """ DISCRETE EVENT STEP SIZE """ DISCRETE_EVENT::Real = -1 """ create_simulation_container(start_time::DateTime; communication_sim::Union{Nothing,CommunicationSimulation}=nothing, task_sim::Union{Nothing,TaskSimulation}=nothing) Create a simulation container. The container is intitialized with `start_time`. Per default the [`SimpleCommunicationSimulation`](@ref) is used for communication simulation, and [`SimpleTaskSimulation`](@ref) for simulating the tasks of agents. To replace these, `communication_sim` and respectively `task_sim` can be set. """ function create_simulation_container(start_time::DateTime; communication_sim::Union{Nothing,CommunicationSimulation}=nothing, task_sim::Union{Nothing,TaskSimulation}=nothing) container = SimulationContainer() container.clock.simulation_time = start_time if !isnothing(communication_sim) container.communication_sim = communication_sim end if !isnothing(task_sim) container.task_sim = task_sim end return container end """ Represents a message data package including the arriving time of the package. """ struct MessageData content::Any meta::AbstractDict arriving_time::DateTime end """ The SimulationContainer used as a base struct to enable simulations in Mango.jl. Shall be created using [`create_simulation_container`](@ref). """ @kwdef mutable struct SimulationContainer <: ContainerInterface world::World = World() clock::Clock = Clock(DateTime(0)) task_sim::TaskSimulation = SimpleTaskSimulation(clock=clock) agents::OrderedDict{String,Agent} = OrderedDict() agent_counter::Integer = 0 shutdown::Bool = false communication_sim::CommunicationSimulation = SimpleCommunicationSimulation() message_queue::ConcurrentQueue{MessageData} = ConcurrentQueue{MessageData}() end function agents(container::SimulationContainer)::Vector{Agent} return [t[2] for t in collect(container.agents)] end """ on_step(agent::Agent, world::World, clock::Clock, step_size_s::Real) Hook-in, called on every step of the simulation container for every `agent`. Further, the `world` is passed, which represents a common view on the environment in which agents can interact with eachother. Besides, the `clock` and the `step_size_s` can be used to read the current simulation time and the time which passes in the current step. """ function on_step(agent::Agent, world::World, clock::Clock, step_size_s::Real) # default nothing end function on_step(role::Role, world::World, clock::Clock, step_size_s::Real) # default nothing end """ Internal, call on_step on all agents. """ function step_agent(agent::Agent, world::World, clock::Clock, step_size_s::Real) on_step(agent, world, clock, step_size_s) for role in roles(agent) on_step(role, world, clock, step_size_s) end end """ Contains the result of the communication simulation and whether the state of the container has changed """ struct MessagingIterationResult communication_result::CommunicationSimulationResult state_changed::Bool end """ Result of all messaging simulation iterations. """ @kwdef struct MessagingSimulationResult results::Vector{MessagingIterationResult} = Vector() end """ Result of all task simulation iterations. """ @kwdef struct TaskSimulationResult results::Vector{TaskIterationResult} = Vector() end """ Result of one simulation step. """ struct SimulationResult time_elapsed::Real messaging_result::MessagingSimulationResult task_result::TaskSimulationResult simulation_step_size_s::Real end """ Internal """ function to_message_package(message_data::MessageData)::MessagePackage sender_aid = message_data.meta[SENDER_ID] receiver_aid = message_data.meta[RECEIVER_ID] return MessagePackage(sender_aid, receiver_aid, message_data.arriving_time, (message_data.content, message_data.meta)) end """ Internal """ function to_cs_input!(message_queue::ConcurrentQueue{MessageData})::Vector{MessagePackage} messages_packages = Vector() while true some_message = maybepopfirst!(message_queue) if isnothing(some_message) break end message::MessageData = something(some_message) push!(messages_packages, to_message_package(message)) end return messages_packages end """ Internal """ function to_cs_input(message_queue::ConcurrentQueue{MessageData})::Vector{MessagePackage} messages_packages = Vector() next = message_queue.head.next while !isnothing(next) message::MessageData = next.value push!(messages_packages, to_message_package(message)) next = next.next end return messages_packages end """ Internal """ function cs_step_iteration(container::SimulationContainer, step_size_s::Real, pre_communication_result::Union{Nothing,CommunicationSimulationResult})::MessagingIterationResult message_packages = to_cs_input!(container.message_queue) communication_result = pre_communication_result if isnothing(communication_result) communication_result = calculate_communication(container.communication_sim, container.clock, message_packages) end state_changed = false @sync begin for (mp, pr) in sort([z for z in zip(message_packages, communication_result.package_results)], by=t -> add_seconds(t[1].sent_date, t[2].delay_s)) if add_seconds(mp.sent_date, pr.delay_s) <= add_seconds(container.clock.simulation_time, step_size_s) && pr.reached state_changed = true @spawnlog process_message(container, mp.content[1], mp.content[2]) else # process it later push!(container.message_queue, MessageData(mp.content[1], mp.content[2], mp.sent_date)) end end end return MessagingIterationResult(communication_result, state_changed) end """ Internal """ function determine_time_step(container::SimulationContainer) message_packages = to_cs_input(container.message_queue) communication_result = calculate_communication(container.communication_sim, container.clock, message_packages) # earliest message or -1 if no message arrives message_arrival_times = [add_seconds(t[1].sent_date, t[2].delay_s) for t in zip(message_packages, communication_result.package_results)] time_to_next_message_s = nothing if length(message_arrival_times) > 0 time_to_next_message_s = (findmin(message_arrival_times)[1] - container.clock.simulation_time).value / 1000 end @debug "Next message in $time_to_next_message_s" # ealiest task or -1 if no task scheduled next_event_s = determine_next_event_time(container.task_sim) @debug "Next event in $next_event_s" # check whether one is absent and the other is present if isnothing(time_to_next_message_s) && isnothing(next_event_s) return nothing, communication_result elseif isnothing(next_event_s) return time_to_next_message_s, communication_result elseif isnothing(time_to_next_message_s) return next_event_s, communication_result end # return earliest return min(time_to_next_message_s, next_event_s), communication_result end """ step_simulation(container::SimulationContainer, step_size_s::Real=DISCRETE_EVENT)::Union{SimulationResult,Nothing} Step the simulation using a continous time-span or until the next event happens. For the continous simulation a `step_size_s` can be freely chosen, for the discrete event type DISCRETE_EVENT has to be set for the `step_size_s`. """ function step_simulation(container::SimulationContainer, step_size_s::Real=DISCRETE_EVENT)::Union{SimulationResult,Nothing} # Init world if uninitialized if !initialized(container.world) initialize(container.world, [v for v in values(container.agents)]) end state_changed = true @debug "Time" container.clock task_sim_result = TaskSimulationResult() messaging_sim_result = MessagingSimulationResult() first_step = true time_step_s = step_size_s # We are in discrete event mode, so we need to determine # the time until the next event occurs, this time will # be used to execute the time-based simulation comm_result = nothing if time_step_s == DISCRETE_EVENT time_step_s, comm_result = determine_time_step(container) @debug "Determined the size to be $time_step_s" if isnothing(time_step_s) return nothing end end elapsed = @elapsed begin # now we process everything which happened in the steps, # tasks and previous iterations while state_changed @debug "Start simulation iteration" task_iter_result = nothing comm_iter_result = nothing @sync begin Threads.@spawn comm_iter_result = cs_step_iteration(container, time_step_s, first_step ? comm_result : nothing) Threads.@spawn task_iter_result = step_iteration(container.task_sim, time_step_s, first_step) end first_step = false push!(task_sim_result.results, task_iter_result) push!(messaging_sim_result.results, comm_iter_result) state_changed = comm_iter_result.state_changed || task_iter_result.state_changed @debug "Finish simulation iteration" state_changed end # agents act on the stepping hook for agent in values(container.agents) step_agent(agent, container.world, container.clock, time_step_s) end end @debug "The simulation step needed $elapsed seconds" container.clock.simulation_time = add_seconds(container.clock.simulation_time, time_step_s) @debug "new time", container.clock.simulation_time return SimulationResult(elapsed, messaging_sim_result, task_sim_result, time_step_s) end function protocol_addr(container::SimulationContainer) return nothing end function shutdown(container::SimulationContainer) container.shutdown = true for agent in values(container.agents) shutdown(agent) end end function register( container::SimulationContainer, agent::Agent, suggested_aid::Union{String,Nothing}=nothing; kwargs..., ) actual_aid::String = "$AGENT_PREFIX$(container.agent_counter)" if !isnothing(suggested_aid) && !haskey(container.agents, suggested_aid) actual_aid = suggested_aid end container.agents[actual_aid] = agent agent.aid = actual_aid agent.context = AgentContext(container) container.agent_counter += 1 if !isnothing(container.task_sim) agent.scheduler = create_agent_scheduler(container.task_sim) end return agent end function process_message(container::SimulationContainer, msg::Any, meta::AbstractDict) receiver_id = meta[RECEIVER_ID] if !haskey(container.agents, meta[RECEIVER_ID]) @warn "Container $(keys(container.agents)) has no agent with id: $receiver_id" msg meta else agent = container.agents[receiver_id] return dispatch_message(agent, msg, meta) end end struct NonWaitable end function Base.wait(waitable::NonWaitable) end function forward_message(container::SimulationContainer, msg::Any, meta::AbstractDict) push!(container.message_queue, MessageData(msg, meta, container.clock.simulation_time)) return NonWaitable() end function send_message( container::SimulationContainer, content::Any, agent_adress::AgentAddress, sender_id::Union{Nothing,String}=nothing; kwargs..., ) receiver_id = agent_adress.aid tracking_id = agent_adress.tracking_id meta = OrderedDict{String,Any}() for (key, value) in kwargs meta[string(key)] = value end meta[RECEIVER_ID] = receiver_id meta[SENDER_ID] = sender_id meta[TRACKING_ID] = tracking_id meta[SENDER_ADDR] = nothing @debug "Send a message to ($receiver_id), from $sender_id" typeof(content) return forward_message(container, content, meta) end """ Base.getindex(container::SimulationContainer, index::String) Return the agent indexed by `index` (aid). """ function Base.getindex(container::SimulationContainer, index::String) return container.agents[index] end function Base.getindex(container::SimulationContainer, index::Int) return agents(container)[index] end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
7344
export TCPProtocol, init, parse_id, acquire_tcp_connection, release_tcp_connection using Sockets: connect, write, getpeername, read, listen, accept, IPAddr, TCPSocket, TCPServer, @ip_str, InetAddr using ConcurrentUtilities: Pool, acquire, release, drain!, ReadWriteLock, readlock, readunlock, lock, unlock using Dates: Dates import Base.close mutable struct AtomicCounter @atomic counter::Int end """ Describes a connection pool for tcp connections. It supports `keep_alive_time_ms` which specifies the time a connection is kept without usage before closing the connection. All methods defined on the pool are thread-safe. """ @kwdef mutable struct TCPConnectionPool keep_alive_time_ms::Int32 connections::Pool{InetAddr,Tuple{TCPSocket,Dates.DateTime}} = Pool{InetAddr,Tuple{TCPSocket,Dates.DateTime}}(100) lock::ReadWriteLock = ReadWriteLock() closed::Bool = false acquired_connections::AtomicCounter = AtomicCounter(0) end """ Defines the tcp protocol. It holds a binding to an IP+Port and a tcp connection pool. """ @kwdef mutable struct TCPProtocol <: Protocol{InetAddr} address::InetAddr server::Union{Nothing,TCPServer} = nothing pool::TCPConnectionPool = TCPConnectionPool(keep_alive_time_ms=100000) end """ close(pool::TCPConnectionPool) Close the pool. This closes all connections. Further, this function will wait until all connection are released. """ function close(pool::TCPConnectionPool) lock(pool.lock) pool.closed = true # Waiting until all acquired connections are released wait(Threads.@spawn begin while pool.acquired_connections.counter > 0 sleep(0.0001) end end) for (_, v) in pool.connections.keyedvalues for (connection, __) in v close(connection) end end drain!(pool.connections) unlock(pool.lock) end """ Internal, checks whether a connection shall be kept alive """ function is_valid(connection::Tuple{TCPSocket,Dates.DateTime}, keep_alive_time_ms::Int32) if (Dates.now() - connection[2]).value > keep_alive_time_ms close(connection[1]) return false end return true end """ acquire_tcp_connection(tcp_pool::TCPConnectionPool, key::InetAddr)::Union{TCPSocket,Nothing} Acquire a tcp connection from the pool for the key (IP+Port). Return a TCPSocket if the pool is not closed yet, otherwise `nothing` will be returned """ function acquire_tcp_connection(tcp_pool::TCPConnectionPool, key::InetAddr)::Union{TCPSocket,Nothing} readlock(tcp_pool.lock) if tcp_pool.closed readunlock(tcp_pool.lock) return nothing end connection, _ = acquire( tcp_pool.connections, key, forcenew=false, isvalid=c -> is_valid(c, tcp_pool.keep_alive_time_ms), ) do result = (connect(key.host, key.port), Dates.now()) return result end @atomic tcp_pool.acquired_connections.counter += 1 readunlock(tcp_pool.lock) return connection end """ release_tcp_connection( tcp_pool::TCPConnectionPool, key::InetAddr, connection::TCPSocket, ) Release the given tcp `connection` indexed by the `key`. This will put the connection back to the pool. """ function release_tcp_connection( tcp_pool::TCPConnectionPool, key::InetAddr, connection::TCPSocket, ) release(tcp_pool.connections, key, (connection, Dates.now())) @atomic tcp_pool.acquired_connections.counter -= 1 end """ send(protocol::TCPProtocol, destination::InetAddr, message::Vector{UInt8}) Send a message `message` over plain TCP using `destination` as destination address. The message has to be provided as a form, which is writeable to an arbitrary IO-Stream. Return true if successfull. """ function send(protocol::TCPProtocol, destination::InetAddr, message::Vector{UInt8}) @debug "Attempt to connect to $(destination.host):$(destination.port)" connection = acquire_tcp_connection(protocol.pool, destination) if isnothing(connection) return false end try length_bytes = reinterpret(UInt8, [length(message)]) write(connection, [length_bytes; message]) flush(connection) finally @debug "Release $(destination.host):$(destination.port)" release_tcp_connection(protocol.pool, destination, connection) end return true end """ parse_id(_::TCPProtocol, id::Any)::InetAddr """ function parse_id(_::TCPProtocol, id::Any)::InetAddr if typeof(id) == InetAddr return id end if typeof(id) == Dict{String,Any} return InetAddr(string(id["host"]["host"]), id["port"]) end if typeof(id) == String ip, port = split(id, ":") return InetAddr(ip, parse(UInt16, port)) end end """ Internal function for handling incoming connections """ function handle_connection(data_handler::Function, connection::TCPSocket) try while !eof(connection) # Get the client address @debug "Process $connection" client_address = getpeername(connection) client_ip, client_port = client_address message_length = reinterpret(Int64, read(connection, 8))[1] message_bytes = read(connection, message_length) data_handler(message_bytes, InetAddr(client_ip, client_port)) end catch err if !isa(err, Base.IOError) @error "connection job exited with unexpected error" exception = (err, catch_backtrace()) end finally close(connection) end end """ init(protocol::TCPProtocol, stop_check::Function, data_handler::Function) Initialized the tcp protocol. This starts the receiver and stop loop. The receiver loop will call the data_handler with every incoming message. Further it provides as sender adress a InetAddr object. """ function init(protocol::TCPProtocol, stop_check::Function, data_handler::Function) server = listen(protocol.address.host, protocol.address.port) @debug "Listen on $(protocol.address.host):$(protocol.address.port)" protocol.server = server tasks = [] listen_task = errormonitor( Threads.@spawn begin try while isopen(server) connection = accept(server) push!( tasks, @spawnlog handle_connection(data_handler, connection) ) end catch err if isa(err, InterruptException) || isa(err, Base.IOError) # nothing else @error "Caught an unexpected error in listen" exception = (err, catch_backtrace()) end finally close(server) end end ) return listen_task, tasks end """ id(protocol::TCPProtocol) Return the technical address of the protocol (ip + port) """ function id(protocol::TCPProtocol)::InetAddr return protocol.address end """ close(protocol::TCPProtocol) Release all tcp resources (binding on port and connections in the pool). """ function close(protocol::TCPProtocol) close(protocol.pool) close(protocol.server) end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
12905
export create_tcp_container, create_mqtt_container, GeneralAgent, add_agent_composed_of, agent_composed_of, activate, run_in_real_time, run_in_simulation, run_with_mqtt, run_with_tcp, PrintingAgent function _set_codec(container::Container, codec::Union{Nothing,Tuple{Function,Function}}) if !isnothing(codec) container.codec = codec end end """ create_tcp_container(host, port; codec=nothing) Create a container using an TCP protocol. The `host` is expected to be the IP-adress to bind on, `port` is the port to bind on. Optionally you can also provide a codec as tuple of functions (first encode, second decode, see [`encode`](@ref) and [`decode`](@ref)). # Examples ```julia agent = create_mqtt_container("127.0.0.1", 5555, "MyClient") ``` """ function create_tcp_container(host::String="127.0.0.1", port::Int=5555; codec::Union{Nothing,Tuple{Function,Function}}=nothing) container = Container() container.protocol = TCPProtocol(address=InetAddr(host, port)) _set_codec(container, codec) return container end """ create_mqtt_container(host, port, client_id; codec=nothing) Create a container using an MQTT protocol. The `host` is expected to be the IP-adress of the broker, `port` is the port of the broker, the `client_id` is the id of the client which will be created and connected to the broker. Optionally you can also provide a codec as tuple of functions (first encode, second decode, see [`encode`](@ref) and [`decode`](@ref)). # Examples ```julia agent = create_mqtt_container("127.0.0.1", 5555, "MyClient") ``` """ function create_mqtt_container(host::String="127.0.0.1", port::Int=1883, client_id::String="default"; codec::Union{Nothing,Tuple{Function,Function}}=nothing) container = Container() container.protocol = MQTTProtocol(client_id, InetAddr(host, port)) _set_codec(container, codec) return container end @agent struct GeneralAgent end """ agent_composed_of(roles::Role...; base_agent::Union{Nothing,Agent}=nothing) Create an agent which is composed of the given roles `roles...`. If no `base_agent` is provided the agent struct used is an empty struct, which is only used as a container for the roles. The agent will be returned by the function. # Examples ```julia agent = agent_composed_of(RoleA(), RoleB(), RoleC()) ``` """ function agent_composed_of(roles::Role...; base_agent::Union{Nothing,Agent}=nothing) agent = isnothing(base_agent) ? GeneralAgent() : base_agent for role in roles add(agent, role) end return agent end """ add_agent_composed_of(container, roles::Role...; suggested_aid::Union{Nothing,String}=nothing, base_agent::Union{Nothing,Agent}=nothing) Create an agent which is composed of the given roles `roles...` and register the agent to the `container`. If no `base_agent` is provided the agent struct used is an empty struct, which is only used as a container for the roles. The agent will be returned by the function. # Examples ```julia agent = add_agent_composed_of(your_container, RoleA(), RoleB(), RoleC()) ``` """ function add_agent_composed_of(container::ContainerInterface, roles::Role...; suggested_aid::Union{Nothing,String}=nothing, base_agent::Union{Nothing,Agent}=nothing) agent = agent_composed_of(roles...; base_agent=base_agent) register(container, agent, suggested_aid) return agent end """ activate(runnable, container_list) Actvate the container(s), which includes starting the containers and shutting them down after the runnable has been executed. In most cases the runnable will execute code, which starts some process (e.g. some distributed negotiation) in the system to define the objective of the agent system. Generally this function is a convenience function and is equivalent to starting all containers in the list, executing the code represented by `runnable` and shuting down the container again. Further, this function will handle errors occuring while running the `runnable` and ensure the containers are shutting down. # Examples ```julia activate(your_containers) do # Send the first message to start the system send_message(defined_agent, "Starting somethin", address(other_defined_agent)) # wait some time wait(some_stopping_condition) end ``` """ function activate(runnable_simulation_code::Function, container_list::Vector{T}) where {T<:ContainerInterface} @sync begin for container in container_list Threads.@spawn start(container) end end for container in container_list notify_ready(container) end try runnable_simulation_code() catch e @error "A nested error ocurred while running a mango simulation" exception = (e, catch_backtrace()) finally @sync begin for container in container_list Threads.@spawn shutdown(container) end end end end function activate(runnable_simulation_code::Function, container::ContainerInterface) activate(runnable_simulation_code, [container]) end """ run_in_real_time(runnable::Function, n_container::Int, container_list_creator::Function, agent_tuple::Tuple...) Let the agents run in containers (real time). Distributes the given agents contained in the `agent_tuple` to `n_container` (real time container) and execute the `runnable` (takes the container list as argument) while the container are active to run. It is possible to add supplementary information per agent as Tuple. For example `(Agent, :aid => "my_aid")`. The type of the containers are determined by the `container_list_creator` (n_container as argument, has to return a list of container with n_container entries). """ function run_in_real_time(runnable::Function, n_container::Int, container_list_creator::Function, agent_tuples::Tuple...) actual_number_container = n_container if n_container > length(agent_tuples) actual_number_container = length(agent_tuples) end container_list = container_list_creator(actual_number_container) for (i, agent_tuple) in enumerate(agent_tuples) container_id = ((i - 1) % actual_number_container) + 1 actual_agent = agent_tuple[1] agent_params::Dict = Dict(agent_tuple[2]) register(container_list[container_id], actual_agent, get(agent_params, :aid, nothing), topics=get(agent_params, :topics, [])) end activate(container_list) do runnable(container_list) end end function _agents_to_agent_tuples(agents::Agent...) return [(a, Dict()) for a in agents] end """ run_in_real_time(runnable::Function, n_container::Int, container_list_creator::Function, agents::Agent...) Let the agents run in containers (real time). Distributes the given `agents` contained in the agent_tuple to `n_container` (real time container) and execute the `runnable` (takes the container list as argument) while the container are active to run. """ function run_in_real_time(runnable::Function, n_container::Int, container_list_creator::Function, agents::Agent...) return run_in_real_time(runnable, n_container, container_list_creator, _agents_to_agent_tuples(agents...)...) end function _create_tcp_container_list_creator(host::String, start_port::Int, codec::Union{Nothing,Tuple{Function,Function}}) return n -> [create_tcp_container(host, start_port + (i - 1), codec=codec) for i in 1:n] end """ run_with_tcp(runnable::Function, n_container::Int, agent_tuples::Union{Tuple,Agent}...; host::String="127.0.0.1", start_port::Int=5555, codec::Union{Nothing,Tuple{Function,Function}}=(encode, decode)) Let the agents run in tcp containers (real time). Distributes the given `agent_tuples` to `n_container` (real time container) and execute the `runnable` (takes the container list as argument) while the container are active to run. It is possible to add supplementary information per agent as Tuple. For example `(Agent, :aid => "my_aid")`. Here, TCP container are created on `host` starting with the port `start_port`. """ function run_with_tcp(runnable::Function, n_container::Int, agent_tuples::Tuple...; host::String="127.0.0.1", start_port::Int=5555, codec::Union{Nothing,Tuple{Function,Function}}=(encode, decode)) run_in_real_time(runnable, n_container, _create_tcp_container_list_creator(host, start_port, codec), agent_tuples...) end """ run_with_tcp(runnable::Function, n_container::Int, agents::Agent...; host::String="127.0.0.1", start_port::Int=5555, codec::Union{Nothing,Tuple{Function,Function}}=(encode, decode)) Let the `agents` run in tcp containers (real time). Distributes the given `agents` to `n_container` (real time container) and execute the `runnable` (takes the container list as argument) while the container are active to run. Here, TCP container are created on `host` starting with the port `start_port`. """ function run_with_tcp(runnable::Function, n_container::Int, agents::Agent...; host::String="127.0.0.1", start_port::Int=5555, codec::Union{Nothing,Tuple{Function,Function}}=(encode, decode)) run_in_real_time(runnable, n_container, _create_tcp_container_list_creator(host, start_port, codec), agents...) end function _create_mqtt_container_list_creator(host::String, port::Int, codec::Union{Nothing,Tuple{Function,Function}}) return n -> [create_mqtt_container(host, port, "client" * string(i), codec=codec) for i in 1:n] end """ run_with_mqtt(runnable::Function, n_container::Int, agent_tuples::Tuple...; broker_host::String="127.0.0.1", broker_port::Int=1883, codec::Union{Nothing,Tuple{Function,Function}}=(encode, decode)) Let the agents run in mqtt containers (real time). Distributes the given `agents` to `n_container` (real time container) and execute the `runnable` (takes the container list as argument) while the container are active to run. It is possible to add supplementary information per agent as Tuple. For example `(Agent, :aid => "my_aid", :topics => ["topic"])`. Here, MQTT container are created with the broker on `broker_host` and at the port `broker_port`. The containers are assignede client ids (client1 client2 ...) """ function run_with_mqtt(runnable::Function, n_container::Int, agent_tuples::Tuple...; broker_host::String="127.0.0.1", broker_port::Int=1883, codec::Union{Nothing,Tuple{Function,Function}}=(encode, decode)) run_in_real_time(runnable, n_container, _create_mqtt_container_list_creator(broker_host, broker_port, codec), agent_tuples...) end """ run_with_mqtt(runnable::Function, n_container::Int, agents::Agent...; broker_host::String="127.0.0.1", broker_port::Int=1883, codec::Union{Nothing,Tuple{Function,Function}}=(encode, decode)) Let the agents run in mqtt containers (real time). Distributes the given `agents` to `n_container` (real time container) and execute the `runnable` (takes the container list as argument) while the container are active to run. Here, MQTT container are created with the broker on `broker_host` and at the port `broker_port`. The containers are assignede client ids (client1 client2 ...) """ function run_with_mqtt(runnable::Function, n_container::Int, agents::Agent...; broker_host::String="127.0.0.1", broker_port::Int=1883, codec::Union{Nothing,Tuple{Function,Function}}=(encode, decode)) run_in_real_time(runnable, n_container, _create_mqtt_container_list_creator(broker_host, broker_port, codec), agents...) end """ run_in_simulation(runnable::Function, agents::Agent, n_steps::Int; start_time::DateTime=DateTime(2000, 1, 1), step_size_s::Int=DISCRETE_EVENT) Let the agents run as simulation in a simulation container. Execute the `runnable` in [`SimulationContainer`](@ref) while the container is active to run. After the runnable the simulation container is stepped `n_steps` time with a `step_size_s` (default is discrete event). The start time can be specified using `start_time`. """ function run_in_simulation(runnable::Function, n_steps::Int, agents::Agent...; start_time::DateTime=DateTime(2000, 1, 1), step_size_s::Int=DISCRETE_EVENT, communication_sim::Union{Nothing,CommunicationSimulation}=nothing) sim_container = create_simulation_container(start_time, communication_sim=communication_sim) for agent in agents register(sim_container, agent) end results = [] activate(sim_container) do runnable(sim_container) for _ in 1:n_steps push!(results, step_simulation(sim_container, step_size_s)) end end return results end """ Simple agent just printing every message to @info. """ @agent struct PrintingAgent end function handle_message(agent::PrintingAgent, message::Any, meta::Any) @info "Got" message, meta end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
2391
export CommunicationSimulation, PackageResult, CommunicationSimulationResult, MessagePackage, calculate_communication, SimpleCommunicationSimulation using Dates """ Interface to implement a communication simulation. """ abstract type CommunicationSimulation end """ Package result """ struct PackageResult reached::Bool delay_s::UInt64 end """ List of package results """ struct CommunicationSimulationResult package_results::Vector{PackageResult} end """ Struct describing a mesage between two agents. """ struct MessagePackage sender_id::Union{String,Nothing} receiver_id::String sent_date::DateTime content::Any end """ calculate_communication(communication_sim::CommunicationSimulation, clock::Clock, messages::Vector{MessagePackage})::CommunicationSimulationResult Calculate the communication using the specific communication simulation type. the current simulation time `clock` and the message which shall be sent in this step `messages` """ function calculate_communication(communication_sim::CommunicationSimulation, clock::Clock, messages::Vector{MessagePackage})::CommunicationSimulationResult throw(ErrorException("Please implement calculate_communication(...)")) end """ Default Implementation Communication Sim. Implements a default delay which determines the delay of all messages if not specified in `delay_s_directed_edge_dict`. The dict can contain a mapping (aid_sender, aid_receiver) -> delay, such that the delay is specified for every link between agents. """ @kwdef struct SimpleCommunicationSimulation <: CommunicationSimulation default_delay_s::Real = 0 delay_s_directed_edge_dict::Dict{Tuple{Union{String,Nothing},String},Real} = Dict() end """ Implementation for SimpleCommunicationSimulation """ function calculate_communication(communication_sim::SimpleCommunicationSimulation, clock::Clock, messages::Vector{MessagePackage})::CommunicationSimulationResult results::Vector{PackageResult} = Vector() for message in messages key = (message.sender_id, message.receiver_id) delay_s = communication_sim.default_delay_s if haskey(communication_sim.delay_s_directed_edge_dict, key) delay_s = communication_sim.delay_s_directed_edge_dict[key] end push!(results, PackageResult(true, delay_s)) end return CommunicationSimulationResult(results) end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
8950
export TaskIterationResult, TaskResult, TaskSimulation, create_agent_scheduler, step_iteration, SimulationScheduler, SimpleTaskSimulation using UUIDs using Dates using ConcurrentCollections """ Defines the result of a task. """ struct TaskResult done::Bool finish_time::DateTime raw_result::Any end """ Define the result of an whole iteration of the task simulation """ @kwdef mutable struct TaskIterationResult task_to_result::Dict{UUID,TaskResult} = Dict() state_changed::Bool = false end """ Abstract type to define a TaskSimulation """ abstract type TaskSimulation end """ create_agent_scheduler(task_sim::TaskSimulation) Create the scheduler used in the agents by the given `task_sim`. """ function create_agent_scheduler(task_sim::TaskSimulation) throw(ErrorException("Please implement create_agent_scheduler(...)")) end """ step_iteration(task_sim::TaskSimulation, step_size_s::Real)::TaskIterationResult Execute an iteration for a step of the simulation, which time is stepped with the `step_size_s`. Can be called repeatedly if new tasks are spawn as a result of other tasks or as result of arriving messages. """ function step_iteration(task_sim::TaskSimulation, step_size_s::Real)::TaskIterationResult throw(ErrorException("Please implement step_iteration(...)")) end """ determine_next_event_time(task_sim::TaskSimulation) Determines the time of the next event, which shall occur. Used for the discrete event simulation type. """ function determine_next_event_time(task_sim::TaskSimulation) throw(ErrorException("Please implement determine_next_event_time(...)")) end """ Specific scheduler, defined to be injected to the agents and intercept scheduling calls and especially the sleep calls while scheduling. This struct manages all necessary times and events, which shall fulfill the purpose to step the tasks only for a given step_size. """ @kwdef struct SimulationScheduler <: AbstractScheduler clock::Clock events::ConcurrentDict{Task,Tuple{Base.Event,DateTime}} = ConcurrentDict{Task,Tuple{Base.Event,DateTime}}() tasks::ConcurrentDict{Task,Tuple{TaskData,Base.Event}} = ConcurrentDict{Task,Tuple{TaskData,Base.Event}}() queue::ConcurrentQueue{Union{Tuple{Function,TaskData,Base.Event},Task}} = ConcurrentQueue{Union{Tuple{Function,TaskData,Base.Event},Task}}() wait_queue::ConcurrentQueue{Task} = ConcurrentQueue{Task}() end """ Internal struct, signaling the state of the tasks which has been waited on. """ struct WaitResult cont::Bool result::Any end function determine_next_event_time_with(scheduler::SimulationScheduler, simulation_time::DateTime) lowest = nothing # normal queue next = scheduler.queue.head.next while !isnothing(next) if isa(next.value, Tuple) return 0 else throw("This should not happen! Did you schedule a task with zero sleep time?") end next = next.next end # wait queue next = scheduler.wait_queue.head.next while !isnothing(next) t = scheduler.events[next.value][2] if isnothing(lowest) || t < lowest lowest = t end next = next.next end if isnothing(lowest) return nothing end return (lowest - simulation_time).value / 1000 end function wait_for_finish_or_sleeping(scheduler::SimulationScheduler, task::Task, step_size_s::Real, timeout_s::Real=10, check_delay_s=0.001)::WaitResult remaining = timeout_s while remaining > 0 sleep(check_delay_s) remaining -= check_delay_s if !istaskdone(task) if haskey(scheduler.events, task) event_time = scheduler.events[task] @debug "not done, found event" event_time[2] add_seconds(scheduler.clock.simulation_time, step_size_s) if event_time[2] <= add_seconds(scheduler.clock.simulation_time, step_size_s) return WaitResult(true, nothing) else return WaitResult(false, nothing) end end else return WaitResult(false, Some(task.result)) end end throw("Simulation encountered a task timeout!") end function now(scheduler::SimulationScheduler) return scheduler.clock.simulation_time end function sleep(scheduler::SimulationScheduler, time_s::Real) event = Base.Event() ctime = scheduler.clock.simulation_time if haskey(scheduler.events, current_task()) ctime = scheduler.events[current_task()][2] end scheduler.events[current_task()] = (event, add_seconds(ctime, time_s)) @debug "Sleep task with" current_task() event add_seconds(ctime, time_s) wait(event) end function wait(scheduler::SimulationScheduler, timer::Timer, delay_s::Real) sleep(scheduler, delay_s) end function tasks(scheduler::SimulationScheduler) return scheduler.tasks end function schedule(f::Function, scheduler::SimulationScheduler, data::TaskData) event = Base.Event() push!(scheduler.queue, (f, data, event)) return event end function do_schedule(f::Function, scheduler::SimulationScheduler, data::TaskData, event::Base.Event) task = Threads.@spawn execute_task(f, scheduler, data) tasks(scheduler)[task] = (data, event) return task end """ Default implementation of the interface. """ @kwdef mutable struct SimpleTaskSimulation <: TaskSimulation clock::Clock agent_schedulers::Vector{SimulationScheduler} = Vector{SimulationScheduler}() end function determine_next_event_time(task_sim::SimpleTaskSimulation) event_times = [determine_next_event_time_with(scheduler, task_sim.clock.simulation_time) for scheduler in task_sim.agent_schedulers] event_times = event_times[event_times.!=nothing] if length(event_times) <= 0 return nothing end return findmin(event_times)[1] end function create_agent_scheduler(task_sim::SimpleTaskSimulation) scheduler = SimulationScheduler(clock=task_sim.clock) push!(task_sim.agent_schedulers, scheduler) return scheduler end function transfer_wait_queue(scheduler::SimulationScheduler) while true next_task = maybepopfirst!(scheduler.wait_queue) if isnothing(next_task) break end push!(scheduler.queue, something(next_task)) end end function step_iteration(task_sim::SimpleTaskSimulation, step_size_s::Real, first_step=false)::TaskIterationResult # Transfer Tasks from the previous iteration which are still running # Only if, this was the last iteration of a step if first_step for scheduler in task_sim.agent_schedulers transfer_wait_queue(scheduler) end end result = TaskIterationResult() @sync begin for scheduler in task_sim.agent_schedulers # Execute all tasks subsequently until no task can or is allowed to run # based on the simulation time Threads.@spawn begin while true next_task = maybepopfirst!(scheduler.queue) if isnothing(next_task) break end # Every time a task is running the state can change, so another iteration has to be calced result.state_changed = true task = something(next_task) if isa(task, Task) @debug "Continue the old Task!" task notify(scheduler.events[task][1]) else @debug "Processing new Task!" func, td, event = task task = do_schedule(func, scheduler, td, event) end @debug "Waiting..." out = wait_for_finish_or_sleeping(scheduler, task, step_size_s) @debug "Finished..." if !isnothing(out.result) notify(scheduler.tasks[task][2]) result.task_to_result[uuid4()] = TaskResult(true, task_sim.clock.simulation_time, out) # clean up task data maybepop!(scheduler.tasks, task) if haskey(scheduler.events, task) maybepop!(scheduler.events, task) end @debug "A task has been finished" out.result elseif out.cont push!(scheduler.queue, task) @debug "The task $task needs another iteration!" else push!(scheduler.wait_queue, task) @debug "The task will be proccesed in the next step_iteration" end end end end end @debug "Done with task iteration" return result end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
4750
export @with_def using ConcurrentCollections import Base.length using Dates function count_nodes(queue::ConcurrentQueue{T})::Real where {T} next = queue.head.next count = 0 while !isnothing(next) next = next.next count += 1 end return count end function add_seconds(date_time::DateTime, inc_s::Real)::DateTime return date_time + Millisecond(trunc(Int, inc_s * 1000)) end function length(queue::ConcurrentQueue{T})::Real where {T} return count_nodes(queue) end function find_tuple(tuples::Vector, index::Int, value::Any)::Union{Tuple,Nothing} for tuple in tuples if tuple[index] == value return tuple end end return nothing end function get_types(type_curly_expr::Expr) type_args = [] type_args_full = [] for i in 2:length(type_curly_expr.args) type_arg = type_curly_expr.args[i] push!(type_args_full, type_arg) if typeof(type_arg) == Symbol push!(type_args, type_arg) else push!(type_args, type_arg.args[1]) end end return type_args, type_args_full end """ This macro can be applied to struct definitions and adds the possibility to define default values on field declaration. In contrast to @kwdef or @with_kw, this macro will create normal parameters for construction if no default value has been provided. # Example ```julia @with_def struct ExampleStruct abc::Int = 0 def::String end # can be constructed as follows es = ExampleStruct("mydefstring") # abc == 0 es = ExampleStruct("mydefstring", abc=3) # abc == 3 ``` """ macro with_def(struct_def) Base.remove_linenums!(struct_def) struct_head = struct_def.args[2] struct_name = struct_head type_clause = nothing type_args = [] type_args_full = [] # If there are type parameters and/or type inheritance then the struct_name is deeper in the Expr-hierarchy if typeof(struct_name) != Symbol struct_name = struct_head.args[1] # If there is a type inheritance it is one level deeper if typeof(struct_name) != Symbol struct_head_sub = struct_name struct_name = struct_head_sub.args[1] # Get the information for type arguments if struct_head_sub.head == :curly type_clause = struct_head_sub.args[2] type_args, type_args_full = get_types(struct_head_sub) end end # Get the information for type arguments if struct_head.head == :curly type_clause = struct_head.args[2] type_args, type_args_full = get_types(struct_head) end end struct_fields = struct_def.args[3].args new_struct_field = [] new_struct_field_default = [] struct_field_names = [] struct_fields_without_def = [] # Fill the field vectors divided by having a default and don't having a default for field in struct_fields # has default if field.head == :(=) push!(new_struct_field_default, (field.args[1], field.args[2])) push!(struct_field_names, field.args[1].args[1]) push!(struct_fields_without_def, field.args[1]) else push!(new_struct_field, field) push!(struct_field_names, field.args[1]) push!(struct_fields_without_def, field) end end args_with_default = [ Expr(:kw, field, field_default) for (field, field_default) in new_struct_field_default ] args = new_struct_field args_compl = length(type_args) == 0 ? Symbol(:new) : Expr(:curly, Symbol(:new), type_args...) args_names_new = length(struct_field_names) == 0 ? Expr(:call, args_compl) : Expr(:call, args_compl, struct_field_names...) call_clause = length(args) == 0 ? Expr(:call, Symbol(struct_name), length(args_with_default) == 0 ? Expr(:parameters,) : Expr(:parameters, args_with_default...) ) : Expr(:call, Symbol(struct_name), length(args_with_default) == 0 ? Expr(:parameters,) : Expr(:parameters, args_with_default...), args... ) with_where_clause = length(type_args) == 0 ? call_clause : Expr(:where, call_clause, type_args_full...) default_constructor = Expr(:function, with_where_clause, Expr(:block, args_names_new) ) # Create the new struct definition new_struct_def = Expr( :struct, true, struct_head, length(struct_fields_without_def) == 0 ? Expr(:block) : Expr(:block, struct_fields_without_def..., default_constructor), ) esc(Expr(:block, new_struct_def)) end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
1201
export encode, decode using LightBSON using OrderedCollections """ encode(data::OrderedDict{String,Any}) Encode `data` into a UInt8 buffer using LightBSON. # Examples ```julia-repl julia> data = OrderedDict(["test" => 10]) OrderedDict{String, Int64} with 1 entry: "test" => 10 julia> encode(data) 19-element Vector{UInt8}: 0x13 0x00 0x00 0x00 0x12 ⋮ 0x00 0x00 0x00 0x00 0x00 ``` """ function encode(data::Any)::Vector{UInt8} buf = Vector{UInt8}() LightBSON.bson_write(buf, data) return buf end function encode(data::OrderedDict{String,Any})::Vector{UInt8} buf = Vector{UInt8}() LightBSON.bson_write(buf, data) return buf end """ decode(buf::Vector{UInt8}, t::Type=OrderedDict{String, Any}) Decode the data in `buf` into an object of type `t` using `LightBSON.bson_read`. # Examples ```julia-repl julia> data = OrderedDict(["test" => 10]) OrderedDict{String, Int64} with 1 entry: "test" => 10 julia> decode(encode(data)) OrderedDict{String, Any} with 1 entry: "test" => 10 ``` """ function decode( buf::Vector{UInt8}, t::Type=OrderedDict{String,Any}, )::Union{OrderedDict{String,Any},Any} return LightBSON.bson_read(t, buf) end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
234
macro spawnlog(expr) quote Threads.@spawn try $(esc(expr)) catch ex bt = stacktrace(catch_backtrace()) showerror(stderr, ex, bt) rethrow(ex) end end end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
7362
export TaskData, PeriodicTaskData, InstantTaskData, DateTimeTaskData, AwaitableTaskData, ConditionalTaskData, stop_task, stop_all_tasks, wait_for_all_tasks, stop_and_wait_for_all_tasks, schedule, Clock, Scheduler, SimulationScheduler, AbstractScheduler, sleep_until using Dates using ConcurrentCollections import Base.schedule, Base.sleep, Base.wait """ Abstract type of a clock, which holds the time of a simulation """ abstract type AbstractClock end """ Default clock implementation, in which a static DateTime field is used. """ @kwdef mutable struct Clock <: AbstractClock simulation_time::DateTime end """ Clock implmentation using the real time and therefore not holding any time information """ struct DateTimeClock <: AbstractClock end struct Stop end struct Continue end """ TaskData type, which is the supertype for all data structs, which shall describe a specific task type. Together with a new method execute task for the inherting struct, new types of tasks can be introduced. # Example ```julia struct InstantTaskData <: TaskData end function execute_task(f::Function, scheduler::AbstractScheduler, data::InstantTaskData) f() end ``` """ abstract type TaskData end """ Abstract type for a scheduler """ abstract type AbstractScheduler end """ now(scheduler::AbstractScheduler) Internal, return the time on which the scheduler is working on """ function now(scheduler::AbstractScheduler) return DateTime.now() end """ sleep(scheduler::AbstractScheduler, time_s::Real) Sleep for `time_s`. The way how the sleep is performed is determined by the type of scheduler used. """ function sleep(scheduler::AbstractScheduler, time_s::Real) return sleep(time_s) end """ wait(scheduler::AbstractScheduler, timer::Timer, delay_s::Real) Wait for `timer`. """ function wait(scheduler::AbstractScheduler, timer::Timer, delay_s::Real) return wait(timer) end """ clock(scheduler::AbstractScheduler) Return the internal time representation, the `clock`. """ function clock(scheduler::AbstractScheduler)::AbstractClock throw("unimplemented") end """ tasks(scheduler::AbstractScheduler) Return the tasks currently on schedule and managed by the scheduler. """ function tasks(scheduler::AbstractScheduler) throw("unimplemented") end """ Default scheduler for the real time applications of Mango.jl. """ @kwdef struct Scheduler <: AbstractScheduler tasks::AbstractDict{Task,TaskData} = ConcurrentDict{Task,TaskData}() clock::DateTimeClock = DateTimeClock() end function clock(scheduler::Scheduler) return scheduler.clock end function tasks(scheduler::Scheduler) return scheduler.tasks end function is_stopable(data::TaskData)::Bool return false end function stop_single_task(data::TaskData)::Nothing end """ Task data describing a periodic task. A periodic task is defined by an `interval_s` and optionally by a `condition`. The interval determines how long the delay is between the recurring action. The condition is a stopping condition (no argument) which shall return true if the task shall stop. """ mutable struct PeriodicTaskData <: TaskData interval_s::Real condition::Function timer::Timer function PeriodicTaskData(interval_s::Real, condition::Function=() -> true) return new(interval_s, condition, Timer(interval_s; interval=interval_s)) end end function is_stopable(data::PeriodicTaskData)::Bool return true end function stop_single_task(data::PeriodicTaskData)::Nothing close(data.timer) end """ Instant task data. Functions scheduled with this data is scheduled instantly. """ struct InstantTaskData <: TaskData end """ Schedule the function at a specific time determined by the date::DateTime. """ struct DateTimeTaskData <: TaskData date::Dates.DateTime end """ Schedule the function when the given `awaitable` is finished. Can be used with any type for which `wait` is defined. """ struct AwaitableTaskData <: TaskData awaitable::Any end """ Schedule the function when the `condition` is fulfilled. To check whether it is fulfilled the condition function is called every `check_interval_s`. """ struct ConditionalTaskData <: TaskData condition::Function check_interval_s::Float64 end function execute_task(f::Function, scheduler::AbstractScheduler, data::PeriodicTaskData) while data.condition() f() wait(scheduler, data.timer, data.interval_s) end end function execute_task(f::Function, scheduler::AbstractScheduler, data::InstantTaskData) f() end function execute_task(f::Function, scheduler::AbstractScheduler, data::DateTimeTaskData) sleep(scheduler, (data.date - Dates.now()).value / 1000) f() end function execute_task(f::Function, scheduler::AbstractScheduler, data::AwaitableTaskData) wait(data.awaitable) f() end function execute_task(f::Function, scheduler::AbstractScheduler, data::ConditionalTaskData) while !data.condition() sleep(scheduler, data.check_interval_s) end f() end """ schedule(f::Function, scheduler, data::TaskData) Schedule a function (no arguments) using the specific scheduler (mostly the agent scheduler). The functino `f` is scheduled using the information in `data`, which specifies the way `f` will be scheduled. """ function schedule(f::Function, scheduler::AbstractScheduler, data::TaskData) task = Threads.@spawn execute_task(f, scheduler, data) tasks(scheduler)[task] = data return task end """ stop_task(scheduler::AbstractScheduler, t::Task) Stop the task `t` managed by `scheduler`. This only works if the task has been scheduled with the scheduler using a stoppable TaskData. """ function stop_task(scheduler::AbstractScheduler, t::Task) data = tasks(scheduler)[t] if is_stopable(data) stop_single_task(data) return end @warn "Attempted to stop a non-stopable task." return end """ stop_all_tasks(scheduler::AbstractScheduler) Stopps all stoppable tasks managed by `scheduler`. """ function stop_all_tasks(scheduler::AbstractScheduler) for data in values(tasks(scheduler)) if is_stopable(data) stop_single_task(data) end end end """ wait_for_all_tasks(scheduler::AbstractScheduler) Wait for all tasks managed by `scheduler`. """ function wait_for_all_tasks(scheduler::AbstractScheduler) for task in keys(tasks(scheduler)) try wait(task) catch err if isa(task.result, InterruptException) || isa(task.result, EOFError) # ignore, task has been interrupted by the scheduler else @error "An error occurred while waiting for $task" exception = (err, catch_backtrace()) end end end end """ stop_and_wait_for_all_tasks(scheduler::AbstractScheduler) Stopps all stoppable tasks and then wait for all tasks in `scheduler`. """ function stop_and_wait_for_all_tasks(scheduler::AbstractScheduler) stop_all_tasks(scheduler) wait_for_all_tasks(scheduler) end """ sleep_until(condition::Function) Sleep until the condition (no args -> bool) is met. """ function sleep_until(condition::Function; interval_s::Real=0.01) while !condition() sleep(interval_s) end end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
1473
export World, Space, Position, Position2D, Area2D, location, move, initialize, initialized abstract type Position end abstract type Space{P<:Position} end struct Position2D <: Position x::Real y::Real end @kwdef struct Area2D <: Space{Position2D} width::Real height::Real to_position::Dict{String,Position2D} = Dict() end @kwdef struct World{S<:Space} space::S = Area2D(width=10, height=10) initialized::Bool = false end function location(space::Space{P}, agent::Agent)::P where {P<:Position} throw("Position on the space $space not defined!") end function location(space::Area2D, agent::Agent)::Position2D return space.to_position[aid(agent)] end function move(space::Space{P}, agent::Agent, position::P) where {P<:Position} throw("Move on the space $space not defined!") end function move(space::Area2D, agent::Agent, position::Position2D) space.to_position[aid(agent)] = position end function initialize(space::Space, agents::Vector{A}) where {A<:Agent} throw("Initialization for $space is not defined!") end function initialize(space::Area2D, agents::Vector{A}) where {A<:Agent} for agent in agents space.to_position[aid(agent)] = Position2D(rand() * space.width, rand() * space.height) end end function initialize(world::World{S}, agents::Vector{A}) where {S<:Space} where {A<:Agent} initialize(world.space, agents) end function initialized(world::World) return world.initialized end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
8756
export complete_topology, star_topology, cycle_topology, graph_topology, per_node, add!, topology_neighbors, create_topology, add_node!, add_edge!, Topology, modify_topology, choose_agent, assign_agent, NORMAL, BROKEN, INACTIVE, set_edge_state!, remove_edge!, remove_node! using MetaGraphsNext using Graphs import Graphs.add_edge! @kwdef struct Node id::Int agents::Vector{Agent} = Vector() end struct Topology graph::MetaGraph end @enum State begin NORMAL # normal neighbor INACTIVE # neighbor link exists but link is not active (could be activated/used) BROKEN # neighbor link exists but link is not usable (can not be activated) end @kwdef mutable struct TopologyService state_to_neighbors::Dict{State,Vector{AgentAddress}} = Dict() end function neighbors(service::TopologyService, state::State=NORMAL) return get(service.state_to_neighbors, state, Vector()) end function _create_meta_graph_with(graph::AbstractGraph) vertices_description = [i => Node(id=i) for i in vertices(graph)] edges_description = [(e.src, e.dst) => NORMAL for e in edges(graph)] return MetaGraph(graph, vertices_description, edges_description) end """ complete_topology(number_of_nodes) Create a fully-connected topology. """ function complete_topology(number_of_nodes::Int)::Topology graph = complete_graph(number_of_nodes) return Topology(_create_meta_graph_with(graph)) end """ star_topology(number_of_nodes) Create a star topology. """ function star_topology(number_of_nodes::Int) graph = star_graph(number_of_nodes) return Topology(_create_meta_graph_with(graph)) end """ cycle_topology(number_of_nodes) Create a cycle topology. """ function cycle_topology(number_of_nodes::Int) graph = cycle_graph(number_of_nodes) return Topology(_create_meta_graph_with(graph)) end """ graph_topology(graph) Create a topology based on a Graphs.jl (abstract) graph. """ function graph_topology(graph::AbstractGraph) return Topology(_create_meta_graph_with(graph)) end """ add_edge!(topology, node_id_from, node_id_to, directed=false) Add an edge to the topology from `node_id_from` to `node_id_to`. If `directed` is true a directed edge is added, otherwise an undirected edge is added. """ function add_edge!(topology::Topology, node_id_from::Int, node_id_to::Int, state::State=NORMAL; directed::Bool=false) if directed topology.graph[node_id_from, node_id_to] = state else topology.graph[node_id_to, node_id_from] = state topology.graph[node_id_from, node_id_to] = state end end """ remove_edge!(topology::Topology, node_id_from::Int, node_id_to::Int) Remove the edge between `node_id_from` and `node_id_to`. """ function remove_edge!(topology::Topology, node_id_from::Int, node_id_to::Int) return rem_edge!(topology.graph, node_id_from, node_id_to) end """ remove_node!(topology::Topology, node_id::Int) Remove the node with the id `node_id`. """ function remove_node!(topology::Topology, node_id::Int) return rem_vertex!(topology.graph, node_id) end """ add_node!(topology, agents::Agent...)::Int Add a node to the topology with a list (or a single) of agents attached. """ function add_node!(topology::Topology, agents::Agent...; id::Union{Int,Nothing}=nothing)::Int vid = isnothing(id) ? nv(topology.graph) + 1 : id topology.graph[vid] = Node(vid, [a for a in agents]) return vid end """ set_state!(topology::Topology, node_id_from::Int, node_id_to::Int, state::State) Set the state of the state of the edge `(node_id_from, node_id_to)` to `state`. """ function set_edge_state!(topology::Topology, node_id_from::Int, node_id_to::Int, state::State) topology.graph[node_id_from, node_id_to] = state end """ create_topology(create_runnable)::Topology Create a topology using the `create_runnable` function which is a one-argument function with an initially empty topology as argument. # Example ```julia topology = create_topology() do topology agent = register(container, TopologyAgent()) agent2 = register(container, TopologyAgent()) agent3 = register(container, TopologyAgent()) n1 = add_node!(topology, agent) n2 = add_node!(topology, agent2) n3 = add_node!(topology, agent3) add_edge!(topology, n1, n2) add_edge!(topology, n1, n3) end ``` """ function create_topology(create_runnable::Function; directed::Bool=false) topology = Topology(_create_meta_graph_with(directed ? DiGraph() : Graph())) create_runnable(topology) _build_neighborhoods_and_inject(topology) return topology end """ modify_topology(modify_runnable::Functino, topology::Topology) Modify a topology using the `modify_runnable` function which is a one-argument function with the provided topology as argument. # Example ```julia modify_topology(my_topology) do topology agent = register(container, TopologyAgent()) agent2 = register(container, TopologyAgent()) agent3 = register(container, TopologyAgent()) n1 = add_node!(topology, agent) n2 = add_node!(topology, agent2) n3 = add_node!(topology, agent3) add_edge!(topology, n1, n2) add_edge!(topology, n1, n3) end ``` """ function modify_topology(modify_runnable::Function, topology::Topology) modify_runnable(topology) _build_neighborhoods_and_inject(topology) return topology end function _build_neighborhoods_and_inject(topology::Topology) # 2nd pass, build the neighborhoods and add it to agents for label in labels(topology.graph) node = topology.graph[label] state_to_neighbors::Dict{State,Vector{AgentAddress}} = Dict{State,Vector{AgentAddress}}() for n_label in neighbor_labels(topology.graph, label) n_node = topology.graph[n_label] state = topology.graph[node.id, n_node.id] neighbor_addresses = get!(state_to_neighbors, state, Vector()) append!(neighbor_addresses, [address(agent) for agent in n_node.agents]) end for agent in node.agents topology_service = service_of_type(agent, TopologyService, TopologyService()) topology_service.state_to_neighbors = state_to_neighbors end end end """ per_node(assign_runnable, topology) Loops over the nodes of the `topology`, calls `assign_runnable` on every node to enable the caller to populate the node. After the loop finished the neighborhoods are created and injected into the agent. # Example ```julia per_node(topology) do node add!(node, register(container, TopologyAgent())) end ``` """ function per_node(assign_runnable::Function, topology::Topology) # 1st pass, let the user assign the agents for label in labels(topology.graph) node = topology.graph[label] assign_runnable(node) end _build_neighborhoods_and_inject(topology) end """ add!(node, agent::Agent...) Add an `agents` to the `node`. """ function add!(node::Node, agents::Agent...) for a in agents push!(node.agents, a) end end """ assign_agent(assign_condition::Function, topology::Topology, container::ContainerInterface) Assign all agents of the `container` to the nodes based on the given `assign_condition`, this condition takes as `Agent` and a `Node` (node.id for the identifier of the node) and shall return a boolean indicating whether the agent shall be assigned to the node. """ function assign_agent(assign_condition::Function, topology::Topology, container::ContainerInterface) per_node(topology) do node for agent in agents(container) if assign_condition(agent, node) add!(node, agent) end end end end """ choose_agent(choose_agent_function::Function, topology::Topology) Choose the agents, which shall be assigned to the nodes. For this the `choose_agent_function` has to be provided. This function expects `Node` as argument and shall return an `Agent` or `Agent...`. The returned agent will be assigned to the node. """ function choose_agent(choose_agent_function::Function, topology::Topology) per_node(topology) do node agent = choose_agent_function(node) add!(node, agent) end end """ topology_neighbors(agent) Retrieve the neighbors of the `agent`, represented by their addresses. These vaues will be updated when a topology is applied using `per_node` or `create_topology`. """ function topology_neighbors(agent::Agent, state::State=NORMAL)::Vector{AgentAddress} return neighbors(service_of_type(agent, TopologyService, TopologyService()), state) end function topology_neighbors(role::Role, state::State=NORMAL)::Vector{AgentAddress} return neighbors(service_of_type(role.context.agent, TopologyService, TopologyService()), state) end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
2126
using Mango using Test using Dates import Mango.on_step @agent struct ModellingAgent counter::Real end function on_step(agent::ModellingAgent, world::World, clock::Clock, step_size_s::Real) agent.counter += step_size_s end @testset "TestAgentIsStepped" begin container = create_simulation_container(DateTime(Millisecond(23)), communication_sim=SimpleCommunicationSimulation(default_delay_s=0)) agent1 = ModellingAgent(0) agent2 = ModellingAgent(0) register(container, agent1) register(container, agent2) stepping_result = step_simulation(container, 7.1) shutdown(container) @test agent1.counter == 7.1 end @role struct ModellingRole counter::Real end function on_step(role::ModellingRole, world::World, clock::Clock, step_size_s::Real) role.counter += step_size_s end @testset "TestAgentIsSteppedRole" begin container = create_simulation_container(DateTime(Millisecond(23)), communication_sim=SimpleCommunicationSimulation(default_delay_s=0)) agent = ModellingAgent(0) role = ModellingRole(0) register(container, agent) add(agent, role) stepping_result = step_simulation(container, 7.1) shutdown(container) @test role.counter == 7.1 end @agent struct ModellingMovingAgent target::Position2D prev_position::Position2D position::Position2D end function on_step(agent::ModellingMovingAgent, world::World, clock::Clock, step_size_s::Real) agent.prev_position = location(world.space, agent) move(world.space, agent, agent.target) agent.position = location(world.space, agent) end @testset "TestAgentStepPosition" begin container = create_simulation_container(DateTime(Millisecond(23)), communication_sim=SimpleCommunicationSimulation(default_delay_s=0)) given_initial = Position2D(-1, -1) given_target = Position2D(1, 1) agent = ModellingMovingAgent(given_target, given_initial, given_initial) register(container, agent) stepping_result = step_simulation(container, 1) shutdown(container) @test agent.prev_position != given_initial @test agent.position == given_target end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
8784
using Mango using Test using Parameters using Sockets: InetAddr, @ip_str import Mango.handle_message @agent struct MyAgent counter::Integer got_msg::Bool end MyAgent(c::Integer) = MyAgent(c, false) @role struct MyRole counter::Integer invoked::Bool end MyRole(counter::Integer) = MyRole(counter, false) function handle_message(agent::MyAgent, message::Any, meta::Any) agent.counter += 10 agent.got_msg = true end function handle_message(role::MyRole, message::Any, meta::Any) role.counter += 10 end @testset "AgentRoleMessage" begin container = Container() agent1 = MyAgent(0) agent2 = MyAgent(0) role1 = MyRole(0) add(agent2, role1) register(container, agent1) register(container, agent2) wait(send_message(container, "Hello Roles, this is RSc!", AgentAddress(aid=agent2.aid))) @test agent2.role_handler.roles[1] === role1 @test agent2.counter == 10 @test agent2.role_handler.roles[1].counter == 10 end function handle_specific_message(role::MyRole, message::Any, meta::Any) role.counter += 5 end @testset "AgentRoleSubscribe" begin container = Container() agent1 = MyAgent(0) agent2 = MyAgent(0) role1 = MyRole(0) add(agent2, role1) subscribe_message(role1, handle_specific_message, (msg, meta) -> typeof(msg) == String) register(container, agent1) register(container, agent2) wait(send_message(container, "Hello Roles, this is RSc!", AgentAddress(aid=agent2.aid))) @test agent2.role_handler.roles[1] === role1 @test agent2.role_handler.roles[1].counter == 15 end function on_send_message( role::MyRole, content::Any, agent_adress::AgentAddress; kwargs..., ) role.invoked = true end @testset "AgentRoleSendSubscribe" begin container = Container() agent1 = MyAgent(0) agent2 = MyAgent(0) role1 = MyRole(0) add(agent2, role1) subscribe_send(role1, on_send_message) register(container, agent1) register(container, agent2) wait(send_message(agent2, "Hello Roles, this is RSc!", AgentAddress(aid=agent1.aid))) @test agent2.role_handler.roles[1] === role1 @test agent2.role_handler.roles[1].invoked end @testset "AgentSendMessage" begin container = Container() agent1 = MyAgent(0) agent2 = MyAgent(0) register(container, agent1) register(container, agent2) wait(send_message(agent1, "Hello Agents, this is RSc!", AgentAddress(aid=agent2.aid))) @test agent2.counter == 10 end @testset "AgentSendMessageWithKwargs" begin container = Container() agent1 = MyAgent(0) agent2 = MyAgent(0) register(container, agent1) register(container, agent2) wait(send_message(agent1, "Hello Agents, this is RSc!", AgentAddress(aid=agent2.aid); kw=1, kw2=2)) @test agent2.counter == 10 end @testset "RoleSendMessage" begin container = Container() agent1 = MyAgent(0) agent2 = MyAgent(0) role1 = MyRole(0) role2 = MyRole(0) add(agent2, role1) add(agent1, role2) register(container, agent1) register(container, agent2) wait(send_message(role2, "Hello Roles, this is RSc!", AgentAddress(aid=agent2.aid))) @test agent2.role_handler.roles[1] === role1 @test agent2.counter == 10 @test agent2.role_handler.roles[1].counter == 10 end @testset "AgentSchedulerInstantThread" begin agent = MyAgent(0) result = 0 schedule(agent, InstantTaskData()) do result = 10 end stop_and_wait_for_all_tasks(agent) @test result == 10 end @agent struct MyRespondingAgent counter::Integer other::AgentAddress end @agent struct MyTrackedAgent counter::Integer end function handle_message(agent::MyRespondingAgent, message::Any, meta::Any) agent.counter += 10 wait(reply_to(agent, "Hello Agents, this is DialogRespondingRico", meta)) end function handle_response(agent::MyTrackedAgent, message::Any, meta::Any) agent.counter = 1337 end @testset "AgentDialog" begin container = Container() agent1 = MyTrackedAgent(0) agent2 = MyRespondingAgent(0, AgentAddress(aid=agent1.aid)) register(container, agent1) register(container, agent2) wait(send_tracked_message(agent1, "Hello Agent, this is DialogRico", AgentAddress(aid=agent2.aid); response_handler=handle_response)) @test agent2.counter == 10 @test agent1.counter == 1337 end @role struct MyTrackedRole counter::Integer end @role struct MyRespondingRole counter::Integer end function handle_message(role::MyRespondingRole, message::Any, meta::Any) role.counter += 10 wait(reply_to(role, "Hello Roles, this is DialogRespondingRico", meta)) end function handle_response(role::MyTrackedRole, message::Any, meta::Any) role.counter = 1337 end @testset "RoleAgentDialog" begin container = Container() agent1 = MyAgent(0) agent2 = MyAgent(0) role1 = MyTrackedRole(0) role2 = MyRespondingRole(0) add(agent2, role1) add(agent1, role2) register(container, agent1) register(container, agent2) wait(send_tracked_message(role1, "Hello Agent, this is DialogRico", AgentAddress(aid=aid(role2)); response_handler=handle_response)) @test role2.counter == 10 @test role1.counter == 1337 end @testset "RoleAgentDialogWithDoSyntax" begin container = Container() agent1 = MyAgent(0) agent2 = MyAgent(0) role1 = MyTrackedRole(0) role2 = MyRespondingRole(0) add(agent2, role1) add(agent1, role2) register(container, agent1) register(container, agent2) wait(send_and_handle_answer(role1, "Hello Agent, this is DialogRico", AgentAddress(aid=aid(role2))) do role, message, meta role.counter = 1111 end) @test role2.counter == 10 @test role1.counter == 1111 end @testset "AgentMQTTMessaging" begin broker_addr = InetAddr(ip"127.0.0.1", 1883) c1 = Container() p1 = MQTTProtocol("C1", broker_addr) c2 = Container() p2 = MQTTProtocol("C2", broker_addr) c1.protocol = p1 c2.protocol = p2 # topic names ALL_AGENTS = "all" NO_AGENTS = "no" SET_A = "set_a" SET_B = "set_b" a1 = MyAgent(0) a2 = MyAgent(0) b1 = MyAgent(0) # no subs agent b2 = MyAgent(0) register(c1, a1; topics=[SET_A, ALL_AGENTS]) register(c1, a2; topics=[SET_A, ALL_AGENTS]) register(c2, b1; topics=[SET_B, ALL_AGENTS]) register(c2, b2; topics=[]) reset_events() = begin for a in [a1, a2, b1, b2] a.got_msg = false end end # start listen loop wait(Threads.@spawn start(c1)) wait(Threads.@spawn start(c2)) sleep(0.5) if !c1.protocol.connected return end # check loopback message on C1 --- should reach a1 and a2 # NOTE: we sleep after send_message because handle_message logic happens on receive and there is no # loopback shortcut for MQTT messages like there is for TCP. # This means we have to wait for the message to return to us from the broker. wait(send_message(a1, "Test", MQTTAddress(broker_addr, SET_A))) timedwait(() -> a1.got_msg, 0.5) timedwait(() -> a2.got_msg, 0.5) reset_events() @test (a1.counter == a1.counter == 10) && (b1.counter == b2.counter == 0) # check SET_A message on c2 wait(send_message(b1, "Test", MQTTAddress(broker_addr, SET_A))) timedwait(() -> a1.got_msg, 0.5) timedwait(() -> a2.got_msg, 0.5) reset_events() @test (a1.counter == a1.counter == 20) && (b1.counter == b2.counter == 0) # check SET_B message wait(send_message(a1, "Test", MQTTAddress(broker_addr, SET_B))) timedwait(() -> b1.got_msg, 0.5) reset_events() @test (a1.counter == a1.counter == 20) && b1.counter == 10 && b2.counter == 0 # check ALL_AGENTS message wait(send_message(a1, "Test", MQTTAddress(broker_addr, NO_AGENTS))) # check NO_AGENTS message wait(send_message(a1, "Test", MQTTAddress(broker_addr, ALL_AGENTS))) # both conditions checked here because for no_agents we have nothing nice to wait on # and the resulting counts should be the same in both cases timedwait(() -> a1.got_msg, 0.5) timedwait(() -> a2.got_msg, 0.5) timedwait(() -> b1.got_msg, 0.5) reset_events() @test (a1.counter == a1.counter == 30) && b1.counter == 20 && b2.counter == 0 # shutdown wait(Threads.@spawn shutdown(c1)) wait(Threads.@spawn shutdown(c2)) end @agent struct MyAgentVar{T} counter::T end @agent struct MyAgentVarVar{T<:AbstractFloat,D} other::D the_float::T end @testset "TestTypedAgents" begin agent_var = MyAgentVar(1) @test agent_var.counter == 1 agent_var_var = MyAgentVarVar(2, 3.3) @test agent_var_var.other == 2 @test agent_var_var.the_float == 3.3 end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
5426
using Mango using Test using Parameters using Sockets: InetAddr, @ip_str using Base.Threads using OrderedCollections import Mango.handle_message, Mango.on_start, Mango.on_ready @agent struct MyAgent counter::Integer got_msg::Bool end MyAgent(c::Integer) = MyAgent(c, false) function handle_message(agent::MyAgent, message::Any, meta::AbstractDict) agent.counter += 10 end @testset "InternalContainerMessaging" begin container = Container() agent1 = MyAgent(0) agent2 = MyAgent(0) register(container, agent1) register(container, agent2) wait(Threads.@spawn send_message(container, "Hello Friends, this is RSc!", AgentAddress(aid=agent1.aid))) @test agent1.counter == 10 end @testset "TCPContainerMessaging" begin container = Container() container.protocol = TCPProtocol(address=InetAddr(ip"127.0.0.1", 2939)) agent1 = MyAgent(0) register(container, agent1) container2 = Container() container2.protocol = TCPProtocol(address=InetAddr(ip"127.0.0.1", 2940)) agent2 = MyAgent(0) register(container2, agent2) agent3 = MyAgent(0) register(container2, agent3) activate([container, container2]) do wait( send_message( container2, "Hello Friends2, this is RSc!", AgentAddress(aid=agent3.aid, address=InetAddr(ip"127.0.0.1", 2940)) ), ) wait(Threads.@spawn begin while agent3.counter != 10 sleep(1) end end) end @test agent3.counter == 10 end @agent struct PingPongAgent counter::Int end function handle_message(agent::PingPongAgent, message::Any, meta::AbstractDict) if message == "Ping" && agent.counter < 5 agent.counter += 1 send_message(agent, "Pong", AgentAddress(aid=meta["sender_id"], address=meta["sender_addr"])) elseif message == "Pong" && agent.counter < 5 agent.counter += 1 send_message(agent, "Ping", AgentAddress(aid=meta["sender_id"], address=meta["sender_addr"])) end end @testset "TCPContainerPingPong" begin container = Container() container.protocol = TCPProtocol(address=InetAddr(ip"127.0.0.1", 2939)) container2 = Container() container2.protocol = TCPProtocol(address=InetAddr(ip"127.0.0.1", 2940)) ping_agent = PingPongAgent(0) pong_agent = PingPongAgent(0) register(container2, ping_agent) register(container, pong_agent) activate([container, container2]) do wait(send_message(ping_agent, "Ping", AgentAddress(aid=pong_agent.aid, address=InetAddr(ip"127.0.0.1", 2939)))) wait(Threads.@spawn begin while ping_agent.counter < 5 sleep(1) end end) end @test ping_agent.counter >= 5 end @agent struct MyRespondingAgentTCP counter::Integer end @agent struct MyTrackedAgentTCP counter::Integer end function handle_message(agent::MyRespondingAgentTCP, message::Any, meta::Any) agent.counter += 10 reply_to(agent, "Hello Agents, this is DialogRespondingRico", meta) end function handle_response(agent::MyTrackedAgentTCP, message::Any, meta::Any) agent.counter = 1337 end @testset "TCPTrackedMessages" begin container = Container() container.protocol = TCPProtocol(address=InetAddr(ip"127.0.0.1", 2939)) container2 = Container() container2.protocol = TCPProtocol(address=InetAddr(ip"127.0.0.1", 2940)) tracked_agent = MyTrackedAgentTCP(0) responding_agent = MyRespondingAgentTCP(0) register(container2, tracked_agent) register(container, responding_agent) activate([container, container2]) do wait(send_tracked_message(tracked_agent, "Hello Agent, this is DialogRico", AgentAddress(aid=responding_agent.aid, address=InetAddr(ip"127.0.0.1", 2939)); response_handler=handle_response)) wait(Threads.@spawn begin while tracked_agent.counter == 0 sleep(1) end end) end @test responding_agent.counter == 10 @test tracked_agent.counter == 1337 end @agent struct MyHookedAgent counter::Integer end @role struct MyHookedRole counter::Integer end function on_start(agent::MyHookedAgent) agent.counter += 1 end function on_ready(agent::MyHookedAgent) agent.counter += 10 end function on_start(role::MyHookedRole) role.counter += 1 end function on_ready(role::MyHookedRole) role.counter += 10 end @testset "ContainerTestHookIns" begin container = Container() hooked_agent = MyHookedAgent(0) hooked_role = MyHookedRole(0) add(hooked_agent, hooked_role) register(container, hooked_agent) wait(Threads.@spawn start(container)) notify_ready(container) @test hooked_agent.counter == 11 @test hooked_role.counter == 11 end @testset "ContainerUnknownAgentForward" begin c1_addr = InetAddr(ip"127.0.0.1", 5555) c1 = Container() c1.protocol = TCPProtocol(address=c1_addr) activate(c1) do unknown_addr = AgentAddress("unknown", c1_addr, nothing) # send some messages wait(send_message(c1, "hello", unknown_addr)) end # we only care that this does not throw an exception @test true end @testset "ContainerGetIndex" begin c1_addr = InetAddr(ip"127.0.0.1", 5555) c1 = Container() a = MyAgent(0) register(c1, a) @test c1[aid(a)] == a end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
600
using Mango using Test using ConcurrentCollections @testset "TestLengthConcurrentQueue" begin queue = ConcurrentQueue() push!(queue, 1) push!(queue, 2) push!(queue, 3) @test length(queue) == 3 end @with_def struct ABC{T} abc::T i::Int = 0 end abstract type AbstractTypeAbc end @with_def struct ABC2 <: AbstractTypeAbc abc::Int i::Int = 0 end @testset "TestSimpleTypeParam" begin abc = ABC("H") @test abc.abc == "H" @test abc.i == 0 end @testset "TestTypeInheritanceWithDef" begin abc = ABC2(0) @test abc.abc == 0 @test abc.i == 0 end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
1938
using Test using LightBSON using OrderedCollections using Sockets: InetAddr include("../src/util/encode_decode.jl") import Base.== struct MangoMessage content::Any meta::Dict{String,Any} end function ==(x::MangoMessage, y::MangoMessage) return x.content == y.content && x.meta == y.meta end struct MyComposite x::Float64 y::String z::OrderedDict{String,Any} end function ==(x::MyComposite, y::MyComposite) return x.x == y.x && x.y == y.y && x.z == y.z end @testset "EncodeDecode" begin #= things that will not pass the simple equality check: - imaginary numbers (get cast to ordered dicts with "re" and "im" keys) - nested structures - anything self referential =# test_dict1 = OrderedDict([ "1" => 1.0, "2" => "two", "3" => 1, "4" => [1, 2, 3, 5, 6, 7], "5" => [1.0, 2.0, Inf, NaN], "6" => ["a", "b", "c", "d"], "7" => Any["a", 1.0, NaN, Inf, zeros(Float64, 10)], "8" => Any[OrderedDict{String,Any}(["a" => "nested"])], ]) test_dict2 = OrderedDict{String,Any}() encoded = encode(test_dict1) decoded = decode(encoded) @test isequal(decoded, test_dict1) encoded = encode(test_dict2) decoded = decode(encoded) @test isequal(decoded, test_dict2) composite = MyComposite(10.0, "some string", OrderedDict(["abc" => 123, "def" => 456])) encoded = encode(composite) decoded = decode(encoded, MyComposite) @test isequal(decoded, composite) mango_msg = MangoMessage( "some_message", Dict(["test" => 123, "blubb" => "bla", "addr" => InetAddr(ip"127.0.0.2", 2981)]), ) expected_output = MangoMessage( "some_message", Dict(["test" => 123, "blubb" => "bla", "addr" => "127.0.0.2:2981"]), ) encoded = encode(mango_msg) decoded = decode(encoded, MangoMessage) @test isequal(decoded, expected_output) end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
3357
""" This file contains all examples given in the documentation enclosed in julia testsets. This is to catch example code breaking on changes to the framework. """ using Mango using Test using Parameters # Define the ping pong agent @agent struct TCPPingPongAgent counter::Int end # Override the default handle_message function for ping pong agents function Mango.handle_message(agent::TCPPingPongAgent, message::Any, meta::Any) agent.counter += 1 if message == "Ping" reply_to(agent, "Pong", meta) elseif message == "Pong" reply_to(agent, "Ping", meta) end end @testset "TCP_AGENT" begin # Create the container instances with TCP protocol container = create_tcp_container("127.0.0.1", 5555) container2 = create_tcp_container("127.0.0.1", 5556) # Define the ping pong agent # Create instances of ping pong agents # And register the agents ping_agent = register(container, TCPPingPongAgent(0)) pong_agent = register(container2, TCPPingPongAgent(0)) # Start the Mango.jl system. At this point the TCP-server is created and bound # to their addresses. After that, the runnable is executed (do ... end). at the # end the container and therefor the TCP server are shut down again. Using this # method it is not possible to forget starting or stopping containers. activate([container, container2]) do # Send the first message to start the exchange send_message(ping_agent, "Ping", address(pong_agent)) # wait for 5 messages to have been sent sleep_until(() -> ping_agent.counter >= 5) end @test ping_agent.counter >= 5 end # Define the ping pong agent @agent struct MQTTPingPongAgent counter::Int end # Override the default handle_message function for ping pong agents function Mango.handle_message(agent::MQTTPingPongAgent, message::Any, meta::Any) broker_addr = agent.context.container.protocol.broker_addr if message == "Ping" agent.counter += 1 send_message(agent, "Pong", MQTTAddress(broker_addr, "pongs")) elseif message == "Pong" agent.counter += 1 send_message(agent, "Ping", MQTTAddress(broker_addr, "pings")) end end @testset "MQTT_AGENT" begin c1 = create_mqtt_container("127.0.0.1", 1883, "PingContainer") c2 = create_mqtt_container("127.0.0.1", 1883, "PongContainer") # Define the ping pong agent # Create instances of ping pong agents ping_agent = register(c1, MQTTPingPongAgent(0); topics=["pongs"]) pong_agent = register(c2, MQTTPingPongAgent(0); topics=["pings"]) # register each agent to a container # For the MQTT protocol, topics for each agent have to be passed here. mqtt_not_test_here = false activate([c1, c2]) do sleep(0.5) if !c1.protocol.connected mqtt_not_test_here = true return end # Send the first message to start the exchange wait(send_message(ping_agent, "Ping", MQTTAddress(c1.protocol.broker_addr, "pings"))) # Wait for a moment to see the result # In general you want to use a Condition() instead to # Define a clear stopping signal for the agents sleep_until(() -> ping_agent.counter >= 5) end if mqtt_not_test_here return end @test ping_agent.counter >= 5 end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
6276
using Mango using Test using Logging import Mango.handle_message using Sockets: InetAddr @agent struct ExpressAgent counter::Int end function handle_message(agent::ExpressAgent, content::Any, meta::Any) agent.counter += 1 end @testset "TestCreateTCPContainerWithActivate" begin container = create_tcp_container("127.0.0.1", 5555, codec=(encode, decode)) container2 = create_tcp_container("127.0.0.1", 5556) express_one = register(container, ExpressAgent(0)) express_two = register(container2, ExpressAgent(0)) activate([container, container2]) do wait(send_message(express_one, "TestMessage", address(express_two))) wait(Threads.@spawn begin while express_two.counter != 1 sleep(0.01) end end) end @test express_two.counter == 1 end @testset "TestCreateTCPContainerWithActivateError" begin container = create_tcp_container("127.0.0.1", 5555, codec=(encode, decode)) container2 = create_tcp_container("127.0.0.1", 5556) express_one = register(container, ExpressAgent(0)) express_two = register(container2, ExpressAgent(0)) @test_logs (:error, "A nested error ocurred while running a mango simulation") min_level = Logging.Error begin activate([container, container2]) do throw("MyError") end end end @role struct ExpressRole counter::Int end function handle_message(role::ExpressRole, content::Any, meta::Any) role.counter += 1 end @testset "TestAgentComposedBaseAgent" begin base_agent = ExpressAgent(0) agent = agent_composed_of(ExpressRole(0), ExpressRole(0), base_agent=base_agent) @test agent == base_agent end @testset "TestRoleComposedAgents" begin container = create_tcp_container("127.0.0.1", 5555, codec=(encode, decode)) container2 = create_tcp_container("127.0.0.1", 5556) express_one = add_agent_composed_of(container, ExpressRole(0), ExpressRole(0)) express_two = add_agent_composed_of(container2, ExpressRole(0), ExpressRole(0), suggested_aid="test") activate([container, container2]) do wait(send_message(express_one, "TestMessage", address(express_two))) wait(Threads.@spawn begin while roles(express_two)[1].counter != 1 sleep(0.01) end end) end @test roles(express_two)[1].counter == 1 @test roles(express_two)[2].counter == 1 @test aid(express_two) == "test" end @testset "TestRunTcpContainerExpressAPI" begin # Create agents based on roles express_one = agent_composed_of(ExpressRole(0), ExpressRole(0)) express_two = agent_composed_of(ExpressRole(0), ExpressRole(0)) run_with_tcp(2, express_one, express_two) do cl wait(send_message(express_one, "TestMessage", address(express_two))) wait(Threads.@spawn begin while express_two[1].counter != 1 sleep(0.01) end end) end @test roles(express_two)[1].counter == 1 @test roles(express_two)[2].counter == 1 @test address(express_one).address == InetAddr("127.0.0.1", 5555) @test address(express_two).address == InetAddr("127.0.0.1", 5556) @test aid(express_two) == "agent0" end @testset "TestRunTcpContainerExpressAPICustomAIDS" begin # Create agents based on roles express_one = agent_composed_of(ExpressRole(0), ExpressRole(0)) express_two = agent_composed_of(ExpressRole(0), ExpressRole(0)) run_with_tcp(2, (express_one, :aid => "Ex1"), (express_two, :aid => "Ex2")) do cl wait(send_message(express_one, "TestMessage", address(express_two))) wait(Threads.@spawn begin while express_two[1].counter != 1 sleep(0.01) end end) end @test aid(express_one) == "Ex1" @test aid(express_two) == "Ex2" end @testset "TestRunTcpContainerExpressAPITooMuchContainer" begin # Create agents based on roles express_one = agent_composed_of(ExpressRole(0), ExpressRole(0)) express_two = agent_composed_of(ExpressRole(0), ExpressRole(0)) run_with_tcp(3, express_one, express_two) do cl wait(send_message(express_one, "TestMessage", address(express_two))) wait(Threads.@spawn begin while express_two[1].counter != 1 sleep(0.01) end end) @test length(cl) == 2 end @test roles(express_two)[1].counter == 1 @test roles(express_two)[2].counter == 1 @test address(express_one).address == InetAddr("127.0.0.1", 5555) @test address(express_two).address == InetAddr("127.0.0.1", 5556) @test aid(express_two) == "agent0" end @testset "TestRunMQTTContainerExpressAPI" begin # Create agents based on roles express_one = agent_composed_of(ExpressRole(0), ExpressRole(0)) express_two = agent_composed_of(ExpressRole(0), ExpressRole(0)) agent_desc = (express_one, :topics => ["Uni"], :something => "") agent2_desc = (express_two, :topics => ["Uni"]) container_list = nothing mqtt_not_test_here = false run_with_mqtt(2, agent_desc, agent2_desc, broker_port=1883) do cl if !cl[1].protocol.connected mqtt_not_test_here = true return end wait(send_message(express_one, "TestMessage", MQTTAddress(cl[1].protocol.broker_addr, "Uni"))) wait(Threads.@spawn begin while express_two[1].counter != 1 sleep(0.01) end end) container_list = cl end if mqtt_not_test_here return end @test roles(express_two)[1].counter == 1 @test roles(express_two)[2].counter == 1 @test container_list[1][1] == agent_desc[1] @test container_list[2][1] == agent2_desc[1] @test aid(express_two) == "agent0" end @testset "TestRunSimulationContainerExpress" begin # Create agents based on roles express_one = agent_composed_of(ExpressRole(0), ExpressRole(0)) express_two = agent_composed_of(ExpressRole(0), ExpressRole(0)) result = run_in_simulation(1, express_one, express_two) do container wait(send_message(express_one, "TestMessage", address(express_two))) end @test length(result) == 1 @test length(result[1].messaging_result.results) == 2 end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
6643
using Mango using Test using Parameters import Mango.handle_event, Mango.handle_message @agent struct RoleTestAgent counter::Integer end @role struct RoleTestRole counter::Integer src::Union{Role,Nothing} end struct TestEvent end function handle_event(role::Role, src::Role, event::TestEvent; event_type::Any) role.counter = 1 role.src = src end @testset "RoleEmitEventSimpleHandle" begin agent = RoleTestAgent(0) role1 = RoleTestRole(0, nothing) role2 = RoleTestRole(0, nothing) add(agent, role1) add(agent, role2) emit_event(role1, TestEvent()) @test role1.counter == 1 @test role2.counter == 1 @test role1.src == role1 @test role2.src == role1 end struct TestEvent2 id::Int64 end function custom_handler(role::Role, src::Role, event::Any, event_type::Any) role.counter += event.id role.src = src end @testset "RoleEmitEventSubHandle" begin agent = RoleTestAgent(0) role1 = RoleTestRole(0, nothing) role2 = RoleTestRole(0, nothing) add(agent, role1) add(agent, role2) subscribe_event(role1, TestEvent2, custom_handler, (src, event) -> event.id == 2) emit_event(role2, TestEvent2(2)) emit_event(role2, TestEvent2(3)) @test role1.counter == 2 @test role1.src == role2 end struct TestModel c::Int64 end TestModel() = TestModel(42) @testset "RoleGetModel" begin agent = RoleTestAgent(0) role1 = RoleTestRole(0, nothing) role2 = RoleTestRole(0, nothing) add(agent, role1) add(agent, role2) shared_model = get_model(role1, TestModel) shared_model2 = get_model(role2, TestModel) @test shared_model.c == 42 @test shared_model == shared_model2 end struct SharedTestEvent end @role struct SharedFieldTestRole @shared shared_event::SharedTestEvent end @testset "SharedFieldTestRole" begin agent = RoleTestAgent(0) role1 = SharedFieldTestRole() role2 = SharedFieldTestRole() add(agent, role1) add(agent, role2) @test !isnothing(role1.shared_event) @test role1.shared_event === role2.shared_event end struct SharedTestEvent2 end @role struct SharedFieldsTestRole @shared shared_event::SharedTestEvent @shared shared_event2::SharedTestEvent2 end @testset "SharedFieldsTestRole" begin agent = RoleTestAgent(0) role1 = SharedFieldsTestRole() role2 = SharedFieldsTestRole() add(agent, role1) add(agent, role2) @test !isnothing(role1.shared_event) @test !isnothing(role1.shared_event2) @test role1.shared_event2 === role2.shared_event2 @test role1.shared_event === role2.shared_event end @testset "RoleSchedulerInstantThread" begin agent = RoleTestAgent(0) role1 = RoleTestRole(0, nothing) add(agent, role1) result = 0 schedule(role1, InstantTaskData()) do result = 10 end stop_and_wait_for_all_tasks(agent.scheduler) @test result == 10 end @testset "RoleGetAddress" begin agent = RoleTestAgent(0) role1 = RoleTestRole(0, nothing) add(agent, role1) addr = address(role1) @test addr.aid == aid(agent) @test isnothing(addr.address) end @role struct ForwardingTestRole forwarded_from::AgentAddress forward_to::AgentAddress forward_is_here::Bool end function handle_message(role::ForwardingTestRole, content::Any, meta::Any) if !get(meta, "forwarded", false) wait(forward_to(role, content, role.forward_to, meta)) else role.forward_is_here = true @test meta["forwarded_from_address"] == role.forwarded_from.address @test meta["forwarded_from_id"] == role.forwarded_from.aid end end @testset "RoleForwardMessage" begin container = Container() agent1 = RoleTestAgent(0) agent2 = RoleTestAgent(0) agent3 = RoleTestAgent(0) register(container, agent1) register(container, agent2) register(container, agent3) role1 = ForwardingTestRole(address(agent1), address(agent3), false) role2 = ForwardingTestRole(address(agent1), address(agent3), false) role3 = ForwardingTestRole(address(agent1), address(agent3), false) add(agent1, role1) add(agent2, role2) add(agent3, role3) wait(send_message(role1, "Hey, forward me!", address(role2))) @test role3.forward_is_here end @role struct AutoForwarder end @role struct ForwardTarget forward_arrived::Bool forwarded_from::AgentAddress end function handle_message(role::ForwardTarget, content::Any, meta::Any) role.forward_arrived = meta["forwarded"] role.forwarded_from = AgentAddress(aid=meta["forwarded_from_id"], address=meta["forwarded_from_address"]) end @testset "RoleAutoForwardMessage" begin container = Container() agent1 = RoleTestAgent(0) agent2 = RoleTestAgent(0) agent3 = RoleTestAgent(0) register(container, agent1) register(container, agent2) register(container, agent3) role1 = AutoForwarder() role2 = AutoForwarder() role3 = ForwardTarget(false, address(agent3)) add(agent1, role1) add(agent2, role2) add(agent3, role3) add_forwarding_rule(role2, address(role1), address(role3), false) wait(send_message(role1, "Hey, forward me!", address(role2))) @test role3.forward_arrived @test role3.forwarded_from == address(role1) end @role struct Replier end function handle_message(role::Replier, content::Any, meta::Any) wait(reply_to(role, "Reply!", meta)) end @testset "RoleAutoForwardMessageWithReply" begin container = Container() agent1 = RoleTestAgent(0) agent2 = RoleTestAgent(0) agent3 = RoleTestAgent(0) register(container, agent1) register(container, agent2) register(container, agent3) role1 = ForwardTarget(false, address(agent1)) role2 = AutoForwarder() role3 = ForwardTarget(false, address(agent3)) add(agent1, role1) add(agent2, role2) add(agent3, role3) add(agent3, Replier()) add_forwarding_rule(role2, address(role1), address(role3), true) wait(send_message(role1, "Hey, forward me!", address(role2))) @test role3.forward_arrived @test role3.forwarded_from == address(role1) @test role1.forward_arrived @test role1.forwarded_from == address(role3) delete_forwarding_rule(role2, address(role1), nothing) role3.forward_arrived = false role1.forward_arrived = false wait(send_message(role1, "Hey, forward me!", address(role2))) @test !role3.forward_arrived @test !role1.forward_arrived end @role struct MyRoleVar{T} counter::T end @testset "TestTypedRoles" begin role_var = MyRoleVar(1) @test role_var.counter == 1 end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
505
using Test using Documenter @testset "Mango Tests" begin include("datastructure_util_tests.jl") include("scheduler_tests.jl") include("agent_tests.jl") include("role_tests.jl") include("container_tests.jl") include("encode_decode_tests.jl") include("simulation_container_tests.jl") include("examples.jl") include("tcp_protocol_tests.jl") include("agent_modeling_tests.jl") include("express_api_tests.jl") include("topology_tests.jl") doctest(Mango) end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
1492
using Mango using Test import Dates @testset "AgentSchedulerInstantThread" begin scheduler = Scheduler() result = 0 schedule(scheduler, InstantTaskData()) do result = 10 end stop_and_wait_for_all_tasks(scheduler) @test result == 10 end @testset "AgentSchedulerPeriodicThread" begin scheduler = Scheduler() result = 0 task = schedule(scheduler, PeriodicTaskData(0.1)) do result += 10 end sleep(0.51) stop_and_wait_for_all_tasks(scheduler) # windows is kinda slow on this, but it should work better for longer delays @test result == 60 || result == 50 end @testset "AgentSchedulerDateTimeThread" begin scheduler = Scheduler() result = 0 schedule(scheduler, DateTimeTaskData(Dates.now() + Dates.Second(1))) do result = 10 end stop_and_wait_for_all_tasks(scheduler) @test result == 10 end @testset "AgentSchedulerAwaitableThread" begin scheduler = Scheduler() result = 0 event = Base.Event() task = schedule(scheduler, AwaitableTaskData(event)) do result = 10 end yield() notify(event) stop_and_wait_for_all_tasks(scheduler) @test result == 10 end @testset "AgentSchedulerConditionalThread" begin scheduler = Scheduler() result = 0 r = 0 task = schedule(scheduler, ConditionalTaskData(() -> r == 1, 0.01)) do result = 10 end r = 1 stop_and_wait_for_all_tasks(scheduler) @test result == 10 end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
12895
using Mango using Test using Logging using Dates import Mango.handle_message @agent struct SimAgent counter::Int end function handle_message(agent::SimAgent, message::Any, meta::AbstractDict) agent.counter += 10 if haskey(meta, "test") agent.counter += 1 end end @testset "SimulationContainerKwargs" begin container = create_simulation_container(DateTime(Millisecond(23)), communication_sim=SimpleCommunicationSimulation(default_delay_s=0)) agent1 = SimAgent(0) agent2 = SimAgent(0) register(container, agent1) register(container, agent2) send_message(container, "Hello Friends, this is RSc!", AgentAddress(aid=agent1.aid), test=2) stepping_result = step_simulation(container, 1) shutdown(container) @test agent1.counter == 11 end @testset "SimulationContainerNoProtocolSpecificAddr" begin container = create_simulation_container(DateTime(Millisecond(23)), communication_sim=SimpleCommunicationSimulation(default_delay_s=0)) @test isnothing(protocol_addr(container)) end @testset "SimulationContainerNoValidTargetCustomAid" begin container = create_simulation_container(DateTime(Millisecond(23)), communication_sim=SimpleCommunicationSimulation(default_delay_s=0)) agent1 = SimAgent(0) agent2 = SimAgent(0) register(container, agent1) register(container, agent2, "a1") send_message(container, "Hello Friends, this is RSd!", AgentAddress(aid="abc")) @test_logs (:warn, "Container $(keys(container.agents)) has no agent with id: abc") min_level = Logging.Warn begin stepping_result = step_simulation(container, 1) end @test agent1.counter == 0 @test agent2.counter == 0 @test aid(agent2) == "a1" end @testset "SimpleInternalSimulationWithoutDelayContainerTest" begin container = create_simulation_container(DateTime(Millisecond(23)), communication_sim=SimpleCommunicationSimulation(default_delay_s=0)) agent1 = SimAgent(0) agent2 = SimAgent(0) register(container, agent1) register(container, agent2) send_message(container, "Hello Friends, this is RSc!", AgentAddress(aid=agent1.aid)) send_message(container, "Hello Friends, this is RSd!", AgentAddress(aid=agent2.aid)) stepping_result = step_simulation(container, 1) shutdown(container) @test agent1.counter == 10 @test agent2.counter == 10 @test container.shutdown end @testset "SimpleInternalSimulationDelayGreaterStepSize" begin container = create_simulation_container(DateTime(Millisecond(23)), communication_sim=SimpleCommunicationSimulation(default_delay_s=2)) agent1 = SimAgent(0) agent2 = SimAgent(0) register(container, agent1) register(container, agent2) send_message(container, "Hello Friends, this is RSc!", AgentAddress(aid=agent1.aid)) send_message(container, "Hello Friends, this is RSd!", AgentAddress(aid=agent2.aid)) stepping_result = step_simulation(container, 1) @test agent1.counter == 0 @test agent2.counter == 0 stepping_result = step_simulation(container, 1) @test agent1.counter == 10 @test agent2.counter == 10 end @testset "SimpleInternalSimulationDelayMixedGreaterStepSize" begin container = create_simulation_container(DateTime(Millisecond(23)), communication_sim=SimpleCommunicationSimulation(default_delay_s=2)) agent1 = SimAgent(0) agent2 = SimAgent(0) register(container, agent1) register(container, agent2) send_message(container, "Hello Friends, this is RSc!", AgentAddress(aid=agent1.aid)) send_message(container, "Hello Friends, this is RSd!", AgentAddress(aid=agent2.aid)) stepping_result = step_simulation(container, 1) @test agent1.counter == 0 @test agent2.counter == 0 send_message(container, "Hello Friends, this is RSc!", AgentAddress(aid=agent1.aid)) send_message(container, "Hello Friends, this is RSd!", AgentAddress(aid=agent2.aid)) stepping_result = step_simulation(container, 1) @test agent1.counter == 10 @test agent2.counter == 10 stepping_result = step_simulation(container, 1) @test agent1.counter == 20 @test agent2.counter == 20 end @testset "SimpleInternalSimulationLinkSpecificDelay" begin com_sim = SimpleCommunicationSimulation(default_delay_s=0) container = create_simulation_container(DateTime(Millisecond(0)), communication_sim=com_sim) agent1 = SimAgent(0) agent2 = SimAgent(0) register(container, agent1) register(container, agent2) com_sim.delay_s_directed_edge_dict[(nothing, aid(agent1))] = 1 com_sim.delay_s_directed_edge_dict[(nothing, aid(agent2))] = 2 send_message(container, "Hello Friends, this is RSc!", AgentAddress(aid=agent1.aid)) send_message(container, "Hello Friends, this is RSd!", AgentAddress(aid=agent2.aid)) stepping_result = step_simulation(container, 1) @test agent1.counter == 10 @test agent2.counter == 0 stepping_result = step_simulation(container, 1) @test agent1.counter == 10 @test agent2.counter == 10 end @agent struct SimSchedulingAgent counter::Int scheduled_counter::Int end function handle_message(agent::SimSchedulingAgent, message::Any, meta::AbstractDict) agent.counter += 1 end @testset "SimulationWithSpecificDelaysAndScheduledTasks" begin com_sim = SimpleCommunicationSimulation(default_delay_s=0) container = create_simulation_container(DateTime(0), communication_sim=com_sim) agent1 = SimSchedulingAgent(0, 0) agent2 = SimSchedulingAgent(0, 0) register(container, agent1) register(container, agent2) com_sim.delay_s_directed_edge_dict[(nothing, aid(agent1))] = 1 com_sim.delay_s_directed_edge_dict[(nothing, aid(agent2))] = 2 schedule(agent1, PeriodicTaskData(0.1)) do agent1.scheduled_counter += 1 end schedule(agent1, InstantTaskData()) do agent1.scheduled_counter += 100 end send_message(container, "Hello Friends, this is RSc!", AgentAddress(aid=agent1.aid)) send_message(container, "Hello Friends, this is RSd!", AgentAddress(aid=agent2.aid)) stepping_result = step_simulation(container, 1) @test agent1.counter == 1 @test agent1.scheduled_counter == 111 @test agent2.counter == 0 stepping_result = step_simulation(container, 1) @test agent1.counter == 1 @test agent1.scheduled_counter == 121 @test agent2.counter == 1 end @agent struct ComplexSimSchedulingAgent counter::Int scheduled_counter::Int end function handle_message(agent::ComplexSimSchedulingAgent, message::Any, meta::AbstractDict) agent.counter += 1 schedule(agent, InstantTaskData()) do agent.scheduled_counter += 100 end end @testset "SimulationWithSpecificDelaysAndScheduledTasksOnHandle" begin com_sim = SimpleCommunicationSimulation(default_delay_s=0) container = create_simulation_container(DateTime(0), communication_sim=com_sim) agent1 = ComplexSimSchedulingAgent(0, 0) agent2 = ComplexSimSchedulingAgent(0, 0) register(container, agent1) register(container, agent2) com_sim.delay_s_directed_edge_dict[(nothing, aid(agent1))] = 1 com_sim.delay_s_directed_edge_dict[(nothing, aid(agent2))] = 2 schedule(agent1, PeriodicTaskData(0.1)) do agent1.scheduled_counter += 1 end send_message(container, "Hello Friends, this is RSc!", AgentAddress(aid=agent1.aid)) send_message(container, "Hello Friends, this is RSd!", AgentAddress(aid=agent2.aid)) stepping_result = step_simulation(container, 1) @test agent1.counter == 1 @test agent1.scheduled_counter == 111 @test agent2.counter == 0 @test agent2.scheduled_counter == 0 stepping_result = step_simulation(container, 1) @test agent1.counter == 1 @test agent1.scheduled_counter == 121 @test agent2.counter == 1 @test agent2.scheduled_counter == 100 end @agent struct MoreComplexSimSchedulingAgent counter::Int scheduled_counter::Int end function handle_message(agent::MoreComplexSimSchedulingAgent, message::Any, meta::AbstractDict) agent.counter += 1 schedule(agent, InstantTaskData()) do agent.scheduled_counter += 100 if message == "Hello Friends, this is RSc!" reply_to(agent, "ABC", meta) end end end @testset "SimulationWithSpecificDelaysWithReplyOnHandle" begin com_sim = SimpleCommunicationSimulation(default_delay_s=0) container = create_simulation_container(DateTime(0), communication_sim=com_sim) agent1 = MoreComplexSimSchedulingAgent(0, 0) agent2 = MoreComplexSimSchedulingAgent(0, 0) register(container, agent1) register(container, agent2) com_sim.delay_s_directed_edge_dict[(nothing, aid(agent1))] = 1 com_sim.delay_s_directed_edge_dict[(nothing, aid(agent2))] = 2 schedule(agent1, PeriodicTaskData(0.1)) do agent1.scheduled_counter += 1 end send_message(container, "Hello Friends, this is RSc!", AgentAddress(aid=agent1.aid), agent2.aid) send_message(container, "Hello Friends, this is RSd!", AgentAddress(aid=agent2.aid)) stepping_result = step_simulation(container, 1) @test agent1.counter == 1 @test agent1.scheduled_counter == 111 @test agent2.counter == 1 @test agent2.scheduled_counter == 100 stepping_result = step_simulation(container, 1) @test agent1.counter == 1 @test agent1.scheduled_counter == 121 @test agent2.counter == 2 @test agent2.scheduled_counter == 200 end @testset "SimulationWithSpecificDelaysWithReplyOnHandleDiscreteEvent" begin com_sim = SimpleCommunicationSimulation(default_delay_s=0) container = create_simulation_container(DateTime(0), communication_sim=com_sim) agent1 = MoreComplexSimSchedulingAgent(0, 0) agent2 = MoreComplexSimSchedulingAgent(0, 0) register(container, agent1) register(container, agent2) com_sim.delay_s_directed_edge_dict[(aid(agent2), aid(agent1))] = 1 com_sim.delay_s_directed_edge_dict[(nothing, aid(agent2))] = 2 schedule(agent1, InstantTaskData()) do agent1.scheduled_counter += 1 end schedule(agent1, InstantTaskData()) do agent1.scheduled_counter += 1 end send_message(container, "Hello Friends, this is RSc!", AgentAddress(aid=agent1.aid), agent2.aid) send_message(container, "Hello Friends, this is RSd!", AgentAddress(aid=agent2.aid)) stepping_result = step_simulation(container) @test stepping_result.simulation_step_size_s == 0 @test agent1.counter == 0 @test agent1.scheduled_counter == 2 @test agent2.counter == 0 @test agent2.scheduled_counter == 0 stepping_result = step_simulation(container) @test stepping_result.simulation_step_size_s == 1 @test agent1.counter == 1 @test agent1.scheduled_counter == 102 @test agent2.counter == 1 @test agent2.scheduled_counter == 100 stepping_result = step_simulation(container) @test stepping_result.simulation_step_size_s == 1 @test agent1.counter == 1 @test agent1.scheduled_counter == 102 @test agent2.counter == 2 @test agent2.scheduled_counter == 200 stepping_result = step_simulation(container) @test isnothing(stepping_result) schedule(agent1, PeriodicTaskData(0.1)) do agent1.scheduled_counter += 1 end schedule(agent1, PeriodicTaskData(3)) do # nothing end stepping_result = step_simulation(container) @test stepping_result.simulation_step_size_s == 0 @test agent1.counter == 1 @test agent1.scheduled_counter == 103 @test agent2.counter == 2 @test agent2.scheduled_counter == 200 stepping_result = step_simulation(container) @test stepping_result.simulation_step_size_s == 0.1 @test agent1.counter == 1 @test agent1.scheduled_counter == 104 @test agent2.counter == 2 @test agent2.scheduled_counter == 200 end import Mango @testset "SimulationSchedulerDetermineError" begin s = SimulationScheduler(clock=Clock(DateTime(0))) push!(s.queue, Task("")) @test_throws "This should not happen! Did you schedule a task with zero sleep time?" Mango.determine_next_event_time_with(s, DateTime(0)) end struct TestTaskSim <: TaskSimulation end @testset "SimulationSchedulerDetermineNoImplent" begin @test_throws "Please implement determine_next_event_time(...)" Mango.determine_next_event_time(TestTaskSim()) end @testset "SimulationContainerAgentsAreOrdered" begin container = create_simulation_container(DateTime(0)) a1 = register(container, SimAgent(0)) a2 = register(container, SimAgent(1)) a3 = register(container, SimAgent(2)) a4 = register(container, SimAgent(3)) @test agents(container)[1] == a1 @test agents(container)[2] == a2 @test agents(container)[3] == a3 @test agents(container)[4] == a4 @test container[aid(a1)] == a1 @test container[1] == a1 end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
1130
""" This file contains all examples given in the documentation enclosed in julia testsets. This is to catch example code breaking on changes to the framework. """ using Mango using Test using Parameters using Sockets: InetAddr, @ip_str @testset "SEND_AFTER_CLOSE" begin addr = InetAddr(ip"127.0.0.1", 5555) protocol = TCPProtocol(address=addr) loop, tasks = init( protocol, () -> nothing, (msg_data, sender_addr; receivers=nothing) -> nothing, ) close(protocol) res = send(protocol, addr, Vector{UInt8}()) @test !res end @testset "CLOSE_WHILE_AC" begin addr = InetAddr(ip"127.0.0.1", 5555) protocol = TCPProtocol(address=addr) loop, tasks = init( protocol, () -> nothing, (msg_data, sender_addr; receivers=nothing) -> nothing, ) connection = acquire_tcp_connection(protocol.pool, addr) task = Threads.@spawn begin sleep(0.1) release_tcp_connection(protocol.pool, addr, connection) end close(protocol) @test length(protocol.pool.connections.keyedvalues[InetAddr(ip"127.0.0.1", 5555)]) == 0 end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
code
6961
using Mango using Test using Graphs @agent struct TopologyAgent end @testset "TestTopologyInjectsService" begin topology = complete_topology(3) container = create_tcp_container("127.0.0.1", 3333) agent = nothing per_node(topology) do node agent = register(container, TopologyAgent()) add!(node, agent) end activate(container) do send_message(container, "Yo", address(agent)) end @test topology_neighbors(agent) == [address(container[1]), address(container[2])] end @testset "TestCreateTopology" begin container = create_tcp_container("127.0.0.1", 3333) agent = nothing create_topology() do topology agent = register(container, TopologyAgent()) agent2 = register(container, TopologyAgent()) agent3 = register(container, TopologyAgent()) n1 = add_node!(topology, agent) n2 = add_node!(topology, agent2) n3 = add_node!(topology, agent3) add_edge!(topology, n1, n2) add_edge!(topology, n1, n3) end @test topology_neighbors(agent) == [address(agents(container)[2]), address(agents(container)[3])] @test topology_neighbors(agents(container)[2]) == [address(agents(container)[1])] @test topology_neighbors(agents(container)[3]) == [address(agents(container)[1])] end @testset "TestModifyTopology" begin container = create_tcp_container("127.0.0.1", 3333) agent = nothing topology = cycle_topology(4) modify_topology(topology) do topology agent = register(container, TopologyAgent()) agent2 = register(container, TopologyAgent()) agent3 = register(container, TopologyAgent()) n1 = add_node!(topology, agent) n2 = add_node!(topology, agent2) n3 = add_node!(topology, agent3) add_edge!(topology, n1, n2) add_edge!(topology, n1, n3) end @test topology_neighbors(agent) == [address(agents(container)[2]), address(agents(container)[3])] @test topology_neighbors(agents(container)[2]) == [address(agents(container)[1])] @test topology_neighbors(agents(container)[3]) == [address(agents(container)[1])] end @testset "TestCreateTopologyDirected" begin container = create_tcp_container("127.0.0.1", 3333) agent = nothing create_topology(directed=true) do topology agent = register(container, TopologyAgent()) agent2 = register(container, TopologyAgent()) agent3 = register(container, TopologyAgent()) n1 = add_node!(topology, agent) n2 = add_node!(topology, agent2) n3 = add_node!(topology, agent3) add_edge!(topology, n1, n2, directed=true) add_edge!(topology, n1, n3, directed=true) end @test topology_neighbors(agent) == [address(agents(container)[2]), address(agents(container)[3])] @test length(topology_neighbors(agents(container)[2])) == 0 @test length(topology_neighbors(agents(container)[3])) == 0 end @testset "TestOtherBuiltInTopologies" begin topology = star_topology(4) container = create_tcp_container("127.0.0.1", 3333) per_node(topology) do node add!(node, register(container, TopologyAgent())) end topology = cycle_topology(4) per_node(topology) do node add!(node, register(container, TopologyAgent())) end @test length(topology_neighbors(agents(container)[5])) == 2 @test length(topology_neighbors(agents(container)[6])) == 2 @test length(topology_neighbors(agents(container)[7])) == 2 @test length(topology_neighbors(agents(container)[8])) == 2 end @testset "TestCustomGraphTopology" begin cd = complete_digraph(5) topology = graph_topology(cd) container = create_tcp_container("127.0.0.1", 3333) per_node(topology) do node add!(node, register(container, TopologyAgent())) end @test length(topology_neighbors(agents(container)[1])) == 4 @test length(topology_neighbors(agents(container)[2])) == 4 @test length(topology_neighbors(agents(container)[3])) == 4 @test length(topology_neighbors(agents(container)[4])) == 4 @test length(topology_neighbors(agents(container)[5])) == 4 end @role struct TopologyRole end @testset "TestCustomGraphTopologyRole" begin cd = complete_digraph(5) topology = graph_topology(cd) container = create_tcp_container("127.0.0.1", 3333) tr = TopologyRole() per_node(topology) do node add!(node, add_agent_composed_of(container, tr)) end @test length(topology_neighbors(tr)) == 4 end @testset "TestTopologyChooseAgent" begin topology = cycle_topology(4) container = create_tcp_container("127.0.0.1", 3333) choose_agent(topology) do node return register(container, TopologyAgent()) end @test length(topology_neighbors(agents(container)[1])) == 2 @test length(topology_neighbors(agents(container)[2])) == 2 @test length(topology_neighbors(agents(container)[3])) == 2 @test length(topology_neighbors(agents(container)[4])) == 2 end @testset "TestTopologyAssignAgent" begin topology = cycle_topology(4) container = create_tcp_container("127.0.0.1", 3333) register(container, TopologyAgent()) register(container, TopologyAgent()) register(container, TopologyAgent()) register(container, TopologyAgent()) assign_agent(topology, container) do agent, node return aid(agent) == "agent" * string(node.id - 1) end @test length(topology_neighbors(agents(container)[1])) == 2 @test length(topology_neighbors(agents(container)[2])) == 2 @test length(topology_neighbors(agents(container)[3])) == 2 @test length(topology_neighbors(agents(container)[4])) == 2 end @testset "TestSetEdgeState" begin container = create_tcp_container("127.0.0.1", 3333) agent = nothing topology = cycle_topology(4) modify_topology(topology) do topology agent = register(container, TopologyAgent()) agent2 = register(container, TopologyAgent()) agent3 = register(container, TopologyAgent()) n1 = add_node!(topology, agent) n2 = add_node!(topology, agent2) n3 = add_node!(topology, agent3) add_edge!(topology, n1, n2) add_edge!(topology, n1, n3) set_edge_state!(topology, n1, n2, BROKEN) end @test topology_neighbors(agent) == [address(agents(container)[3])] @test topology_neighbors(agents(container)[2]) == [] @test topology_neighbors(agents(container)[3]) == [address(agents(container)[1])] end @testset "TestTopologyRemoveEdgeRemoveNode" begin topology = complete_topology(5) container = create_tcp_container("127.0.0.1", 3333) per_node(topology) do node add!(node, register(container, TopologyAgent())) end modify_topology(topology) do topology remove_edge!(topology, 1, 2) remove_node!(topology, 3) end @test length(topology_neighbors(container["agent0"])) == 2 end
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
3122
# Code of Conduct - Mango.jl ## Our Pledge In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to make participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. ## Our Standards Examples of behavior that contributes to a positive environment for our community include: * Demonstrating empathy and kindness toward other people * Being respectful of differing opinions, viewpoints, and experiences * Giving and gracefully accepting constructive feedback * Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience * Focusing on what is best not just for us as individuals, but for the overall community Examples of unacceptable behavior include: * The use of sexualized language or imagery, and sexual attention or advances * Trolling, insulting or derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or email address, without their explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Our Responsibilities Project maintainers are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any instances of unacceptable behavior. Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful. ## Scope This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at <[email protected]>. All complaints will be reviewed and investigated promptly and fairly. All community leaders are obligated to respect the privacy and security of the reporter of any incident. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant](https://contributor-covenant.org/), version [1.4](https://www.contributor-covenant.org/version/1/4/code-of-conduct/code_of_conduct.md) and [2.0](https://www.contributor-covenant.org/version/2/0/code_of_conduct/code_of_conduct.md), and was generated by [contributing-gen](https://github.com/bttger/contributing-gen).
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
9171
<!-- omit in toc --> # Contributing to Mango.jl First off, thanks for taking the time to contribute! ❤️ All types of contributions are encouraged and valued. See the [Table of Contents](#table-of-contents) for different ways to help and details about how this project handles them. Please make sure to read the relevant section before making your contribution. It will make it a lot easier for us maintainers and smooth out the experience for all involved. The community looks forward to your contributions. 🎉 > And if you like the project, but just don't have time to contribute, that's fine. There are other easy ways to support the project and show your appreciation, which we would also be very happy about: > - Star the project > - Tweet about it > - Refer this project in your project's readme > - Mention the project at local meetups and tell your friends/colleagues > - Send your feedback (e.g. at [email protected] or directly on github if appropriate) <!-- omit in toc --> ## Table of Contents - [Code of Conduct](#code-of-conduct) - [I Have a Question](#i-have-a-question) - [I Want To Contribute](#i-want-to-contribute) - [Reporting Bugs](#reporting-bugs) - [Suggesting Enhancements](#suggesting-enhancements) - [Your First Code Contribution](#your-first-code-contribution) - [Improving The Documentation](#improving-the-documentation) - [Styleguide](#styleguides) ## Code of Conduct This project and everyone participating in it is governed by the [Mango.jl Code of Conduct](https://github.com/OFFIS-DAI/Mango.jl/blob/master/CODE_OF_CONDUCT.md). By participating, you are expected to uphold this code. Please report unacceptable behavior to <[email protected]>. ## I Have a Question > If you want to ask a question, we assume that you have read the available [Documentation](https://offis-dai.github.io/Mango.jl/stable/). Before you ask a question, it is best to search for existing [Issues](https://github.com/OFFIS-DAI/Mango.jl/issues) that might help you. In case you have found a suitable issue and still need clarification, you can write your question in this issue. It is also advisable to search the internet for answers first. If you then still feel the need to ask a question and need clarification, we recommend the following: - Open an [Issue](https://github.com/OFFIS-DAI/Mango.jl/issues/new) with the label `question`. - Provide as much context as you can about what you're running into. - Provide project and platform versions (julia version, os, etc), depending on what seems relevant. We will then take care of the issue as soon as possible. ## I Want To Contribute > ### Legal Notice <!-- omit in toc --> > When contributing to this project, you must agree that you have authored 100% of the content, that you have the necessary rights to the content and that the content you contribute may be provided under the project license. ### Reporting Bugs <!-- omit in toc --> #### Before Submitting a Bug Report A good bug report shouldn't leave others needing to chase you up for more information. Therefore, we ask you to investigate carefully, collect information and describe the issue in detail in your report. Please complete the following steps in advance to help us fix any potential bug as fast as possible. - Make sure that you are using the latest version. - Determine if your bug is really a bug and not an error on your side e.g. using incompatible environment components/versions (Make sure that you have read the [documentation](https://offis-dai.github.io/Mango.jl/stable/). If you are looking for support, you might want to check [this section](#i-have-a-question)). - To see if other users have experienced (and potentially already solved) the same issue you are having, check if there is not already a bug report existing for your bug or error in the [bug tracker](https://github.com/OFFIS-DAI/Mango.jl/issues?q=label%3Abug). - Also make sure to search the internet (including Stack Overflow) to see if users outside of the GitHub community have discussed the issue. - Collect information about the bug: - Stack trace (Traceback) - OS, Platform and Version (Windows, Linux, macOS, x86, ARM) - Version of the julia executables, maybe dependencies, whatever seems relevant. - Possibly your console input and the output - Can you reliably reproduce the issue? (And can you also reproduce it with older versions?) <!-- omit in toc --> #### How Do I Submit a Good Bug Report? We use GitHub issues to track bugs and errors. If you run into an issue with the project: - Open an [Issue](https://github.com/OFFIS-DAI/Mango.jl/issues/new). (Since we can't be sure at this point whether it is a bug or not, we ask you not to talk about a bug yet and not to label the issue.) - Explain the behavior you would expect and the actual behavior. - Please provide as much context as possible and describe the *reproduction steps* that someone else can follow to recreate the issue on their own. This usually includes your code. For good bug reports you should isolate the problem and create a reduced test case. - Provide the information you collected in the previous section. Once it's filed: - The project team will label the issue accordingly. - A team member will try to reproduce the issue with your provided steps. If there are no reproduction steps or no obvious way to reproduce the issue, the team will ask you for those steps and mark the issue as `needs-repro`. Bugs with the `needs-repro` tag will not be addressed until they are reproduced. - If the team is able to reproduce the issue, it will be marked `needs-fix`, as well as possibly other tags (such as `critical`), and the issue will be left to be [implemented by someone](#your-first-code-contribution). ### Suggesting Enhancements This section guides you through submitting an enhancement suggestion for Mango.jl, **including completely new features and minor improvements to existing functionality**. Following these guidelines will help maintainers and the community to understand your suggestion and find related suggestions. <!-- omit in toc --> #### Before Submitting an Enhancement - Make sure that you are using the latest version. - Read the [documentation](https://offis-dai.github.io/Mango.jl/stable/) carefully and find out if the functionality is already covered, maybe by an individual configuration. - Perform a [search](https://github.com/OFFIS-DAI/Mango.jl/issues) to see if the enhancement has already been suggested. If it has, add a comment to the existing issue instead of opening a new one. - Find out whether your idea fits with the scope and aims of the project. It's up to you to make a strong case to convince the project's developers of the merits of this feature. Keep in mind that we want features that will be useful to the majority of our users and not just a small subset. If you're just targeting a minority of users, consider writing an add-on/plugin library. <!-- omit in toc --> #### How Do I Submit a Good Enhancement Suggestion? Enhancement suggestions are tracked as [GitHub issues](https://github.com/OFFIS-DAI/Mango.jl/issues). - Use a **clear and descriptive title** for the issue to identify the suggestion. - Provide a **step-by-step description of the suggested enhancement** in as many details as possible. - **Describe the current behavior** and **explain which behavior you expected to see instead** and why. At this point you can also tell which alternatives do not work for you. - **Explain why this enhancement would be useful** to most Mango.jl users. You may also want to point out the other projects that solved it better and which could serve as inspiration. ### Your First Code Contribution Mango.jl follows the typical guidelines for Julia-projects and it is mainly developed using the vscode julia extension. The necessary steps for every contribution are: * Fork the repository. * Make your changes, ideally connected to an issue. * Make sure you followed the styleguide below. * Make sure you have written unit and integration tests. * Execute the Mango.jl tests locally! Some tests require a running MQTT broker, for details take a look at (https://github.com/OFFIS-DAI/Mango.jl/blob/development/.github/workflows/test-mango.yml). * Create a pull request. * Look at the output of github actions, we require that all tests pass and that the code-coverage of the diff is at least on par with the existing codebase * If all checks look fine, a maintainer will start to handle the pull request ### Improving The Documentation For improving the documentation you can either create an issue (advised if you would not be able to create or update the documentation yourself) or improve the documentation by yourself. Minor documentation improvements generally do not need a separate issue. For bigger reworks it is advisable to create an issue first and discuss the changes which need to be made. ## Styleguides Generally we follow the general julia style-guide (https://docs.julialang.org/en/v1/manual/style-guide/). <!-- omit in toc --> ## Attribution This guide is based on the **contributing-gen**. [Make your own](https://github.com/bttger/contributing-gen)!
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
6611
<p align="center"> ![logo](docs/src/Logo_mango_ohne_sub.svg#gh-light-mode-only) ![logo](docs/src/Logo_mango_ohne_sub_white.svg#gh-dark-mode-only) </p> [Docs](https://offis-dai.github.io/Mango.jl/stable) | [GitHub](https://github.com/OFFIS-DAI/Mango.jl) | [mail](mailto:[email protected]) <!-- Tidyverse lifecycle badges, see https://www.tidyverse.org/lifecycle/ Uncomment or delete as needed. --> ![lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg) [![MIT License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/OFFIS-DAI/Mango.jl/blob/development/LICENSE) [![Test Mango.jl](https://github.com/OFFIS-DAI/Mango.jl/actions/workflows/test-mango.yml/badge.svg)](https://github.com/OFFIS-DAI/Mango.jl/actions/workflows/test-mango.yml) [![codecov](https://codecov.io/gh/OFFIS-DAI/Mango.jl/graph/badge.svg?token=JRZB5T2T2M)](https://codecov.io/gh/OFFIS-DAI/Mango.jl) <!-- ![lifecycle](https://img.shields.io/badge/lifecycle-experimental-orange.svg) ![lifecycle](https://img.shields.io/badge/lifecycle-stable-green.svg) ![lifecycle](https://img.shields.io/badge/lifecycle-retired-orange.svg) ![lifecycle](https://img.shields.io/badge/lifecycle-archived-red.svg) ![lifecycle](https://img.shields.io/badge/lifecycle-dormant-blue.svg) --> Mango.jl allows the user to create simple agents with little effort and in the same time offers options to structure agents with complex behaviour. The agents agents can run in two different ways: in **real-time**, or **simulated**. In real-time, the agents will run as fast as possible and communicate as specified by the protocol ("they run as developed"). In the simulation mode, the agent system and their specified tasks will be scheduled and stepped (continous or discrete) and the communication will be simulated using articial delays. One big unique characteristic of Mango.jl is that both ways use the same agent-api, meaning you can develop, evaluate your agent system in a controlled simulated environment and then transfer it to a real-time setting without (majorly) changing the implementation of your agents, as both execution ways use the same API with different environments (and containers). **Note:** _This project is still in an early development stage. We appreciate constructive feedback and suggestions for improvement._ ## Features * Container mechanism to speedup local message exchange * Structuring complex agents with loose coupling and agent roles * Built-in codecs * Supports communication between agents directly via TCP and MQTT * Built-in tasks mechanisms for proactive agent actions * Continous and discrete stepping simulation using an external clock to rapidly run and inspect simulations designed for longer time-spans * Integrated communication and task simulation modules * Integrated environment with which the agents can interact in a common space ## Installation `Mango.jl` is registered to JuliaHub. To add it to your Julia installation or project you can use the Julia REPL by calling `]add Mango` or `import Pkg; Pkg.add("Mango")` directly: ``` > julia --project=.  ✔ _ _ _ _(_)_ | Documentation: https://docs.julialang.org (_) | (_) (_) | _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help. | | | | | | |/ _` | | | | |_| | | | (_| | | Version 1.10.4 (2024-06-04) _/ |\__'_|_|_|\__'_| | |__/ | (project_name) pkg> add Mango Updating registry at `~/.julia/registries/General.toml` [...] ``` ## Example The following simple showcase demonstrates how you can define agents in Mango. Jl, assign them to containers and send messages via a TCP connection. For more information on the specifics and other features (e.g. MQTT, modular agent using roles, simulation, tasks), please have a look at our [Documentation](https://offis-dai.github.io/Mango.jl/stable)! ```julia using Mango # Create the container instances with TCP protocol container = create_tcp_container("127.0.0.1", 5555) container2 = create_tcp_container("127.0.0.1", 5556) # An agent in `Mango.jl` is a struct defined with the `@agent` macro. # We define a `TCPPingPongAgent` that has an internal counter for incoming messages. @agent struct TCPPingPongAgent counter::Int end # Create instances of ping pong agents ping_agent = TCPPingPongAgent(0) pong_agent = TCPPingPongAgent(0) # register each agent to a container and give them a name register(container, ping_agent, "Agent_1") register(container2, pong_agent, "Agent_2") # When an incoming message is addressed at an agent, its container will call the `handle_message` function for it. # Using Julias multiple dispatch, we can define a new `handle_message` method for our agent. function Mango.handle_message(agent::TCPPingPongAgent, message::Any, meta::Any) agent.counter += 1 println( "$(agent.aid) got a message: $message." * "This is message number: $(agent.counter) for me!" ) # doing very important work sleep(0.5) if message == "Ping" reply_to(agent, "Pong", meta) elseif message == "Pong" reply_to(agent, "Ping", meta) end end # With all this in place, we can send a message to the first agent to start the repeated message exchange. # To do this, we need to start the containers so they listen to incoming messages and send the initating message. # The best way to start the container message loops and ensure they are correctly shut down in the end is the # `activate(containers)` function. activate([container, container2]) do send_message(ping_agent, "Ping", address(pong_agent)) # wait for 5 messages to have been sent while ping_agent.counter < 5 sleep(1) end end ``` ## License Mango.jl is developed and published under the MIT license. <!-- travis-ci.com badge, uncomment or delete as needed, depending on whether you are using that service. --> <!-- [![Build Status](https://travis-ci.com/mango/mango.jl.svg?branch=master)](https://travis-ci.com/mango/mango.jl) --> <!-- Coverage badge on codecov.io, which is used by default. --> <!-- Documentation -- uncomment or delete as needed --> <!-- [![Documentation](https://img.shields.io/badge/docs-stable-blue.svg)](https://mango.github.io/mango.jl/stable) [![Documentation](https://img.shields.io/badge/docs-master-blue.svg)](https://mango.github.io/mango.jl/dev) --> <!-- Aqua badge, see test/runtests.jl --> <!-- [![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl) -->
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
688
## Checklist - [ ] Did you read the [contributing guide](https://github.com/OFFIS-DAI/Mango.jl/blob/contribution-guidelines/CONTRIBUTING.md) - [ ] Do you have a meaningful commit history? - [ ] Do follow the style guide meantioned in the contribution guidelines? - [ ] Did you execute the tests locally? ## Description * Reference the issue you are working on (except for minor contributions it is preferred to open an issue first before the code contributions!) or * **OR** Describe the issue you tackled and why it should be merged to Mango.jl ## Implementation details Share any implementation details/decisions/reasonings you think are relevant for reviewing the pull request.
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
686
--- name: Bug report about: Create a report to help us improve title: '' labels: '' assignees: '' --- **Describe the bug** A clear and concise description of what the bug is. **To Reproduce** Steps to reproduce the behavior: 1. Full code to reproduce the issue 2. The console input **The console output** Add the full console output, especially the stack trace (if applicable) **Expected behavior** A clear and concise description of what you expected to happen. **Environment (please complete the following information):** - OS: [e.g. GNU-Linux-OS/macOS] - OS-Version [e.g. 22] - Julia Version: [e.g. 1.9] **Additional context** Add any other context about the problem here.
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
557
--- name: Feature request about: Suggest an idea for this project title: '' labels: '' assignees: '' --- **Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Statement of need** A clear and concise description of why you think this feature is necessary. **Additional context** Add any other context or screenshots about the feature request here.
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
6731
# Agents Agents are autonomous entities that can perceive their environment, make decisions, and interact with other agents and the system they inhabit. They are the building blocks of Mango.jl, representing the individual entities or actors within a larger system. ## Agent Definition with @agent Macro To define an agent the [`@agent`](@ref) macro can be used. It simplifies the process of defining an agent struct and automatically adds necessary baseline fields. Here's how you can define an agent: ```@example using Mango # Define your agent struct using @agent macro @agent struct MyAgent my_own_field::String end # Create an instance of the agent my_agent = MyAgent("MyValue") ``` The [`@agent`](@ref) macro adds some internal baseline fields to the struct. You can initialize the agent with exclusive fields like `my_own_field` in the example. ## Role Management Agents can have multiple roles associated with them. Roles can be added using the [`add`](@ref) function, allowing the agent to interact with its environment based on different roles. Here's how you can add roles to an agent: ```@example using Mango # Define your role struct using @role macro @role struct MyRole my_own_field::String end # Assume you have already defined roles using Mango.AgentRole module role1 = MyRole("Role1") role2 = MyRole("Role2") # Define your agent struct using @agent macro @agent struct MyContainerAgent end # Create an instance of the agent my_agent = MyContainerAgent() # Add roles to the agent add(my_agent, role1) add(my_agent, role2) # Now you can interact with the roles as neededs ``` As this can be clunky at some time, there is the possibility to create an agent using only roles and add it to the container using [`add_agent_composed_of`](@ref) or without a container [`agent_composed_of`](@ref). ```@example using Mango c = create_tcp_container() @role struct RoleA end @role struct RoleB end @role struct RoleC end # internally an empty agent definition is used, the roles are added and the agent # is added to the given container created_agent = add_agent_composed_of(c, RoleA(), RoleB(), RoleC()) ``` For more information on roles, take a look at [Role definition](@ref) ## Message Handling Agents and Roles can handle incoming messages through the [`handle_message`](@ref) function. By default, it does nothing, but you can override it to define message-specific behavior. You can also add custom message handlers for specific roles using the [`subscribe_message`](@ref) function. Here's how to handle messages: ```@example using Mango @agent struct MySecondContainerAgent end @role struct MyHandlingRole end # Override the default handle_message function for custom behavior function Mango.handle_message(agent::MySecondContainerAgent, message::Any, meta::Any) println("Received message @agent: ", message) end # Override the default handle_message function for custom behavior function Mango.handle_message(role::MyHandlingRole, message::Any, meta::Any) println("Received message @role: ", message) end # Use the express API to show the effect run_with_tcp(1, agent_composed_of(MyHandlingRole(), base_agent=MySecondContainerAgent())) do cl wait(send_message(cl[1], "Message", address(cl[1][1]))) sleep(0.1) end ``` Besides the ability to handle messages, there also must be a possibility to send messages. This is implemented using the [`send_message`](@ref) function, defined on roles and agents. ```@example using Mango # Define your agent struct using @agent macro @agent struct MySendingAgent my_own_field::String end @role struct MySendingRole my_own_field::String end agent = MySendingAgent("") role = MySendingRole("") run_with_tcp(1, agent_composed_of(role, base_agent=agent), PrintingAgent()) do cl wait(send_message(agent, "Message", address(cl[1][2]))) wait(send_message(role, "Message", address(cl[1][2]))) sleep(0.1) end ``` Further, there are several specialized methods for sending messages, (1) [`send_tracked_message`](@ref), (2) [`send_and_handle_answer`](@ref), (3) [`reply_to`](@ref), (4) [`forward_to`](@ref). (1) This function can be used to send a message with an automatically generated tracking id (uuid1) and it also accepts a response handler, which will automatically be called when a response arrives to the tracked message (care to include the tracking id when responding or just use [`reply_to`](@ref)). (2) Variant of (1) which requires a response handler and enables the usage of the `do` syntax (see following code snippet). (3) Convenience function to respond to a received message without the need to create the AgentAddress by yourself. (4) Convenience function to forward messages to another agent. This function will set the approriate fields in the meta container to identify that a message has been forwarded and from which address it has been forwarded. ```@example using Mango @agent struct MyMessageAgent end @agent struct ReplyAgent end agent1 = MyMessageAgent() agent2 = PrintingAgent() # defined in Mango agent3 = ReplyAgent() function Mango.handle_message(agent::ReplyAgent, message::Any, meta::Any) # agent 3 reply_to(agent, "Hello Agent, this is a response", meta) # (3) @info "Reply" end function handle_response(agent::MyMessageAgent, message::Any, meta::Any) # agent 1 forward_to(agent, "Forwarded message", address(agent2), meta) # (4) @info "Handled response and forwarded the message" message end run_with_tcp(1, agent1, agent2, agent3) do cl wait(send_tracked_message(agent1, "Hello Agent, this is a tracked message", address(agent3); response_handler=handle_response)) # (1) wait(send_and_handle_answer(agent2, "Hello Agent, this is a different tracked message", address(agent3)) do agent, message, meta # (2) @info "Got an answer!" end) sleep(0.1) end ``` There is also a possibility to enable automatic forwarding with adding so-called forwarding rules. For this you can use the function [`add_forwarding_rule`](@ref). To delete these rules the function [`delete_forwarding_rule`](@ref) exists. ## Task Scheduling Agents can schedule tasks using the [`schedule`](@ref) function, which delegates to the [`Mango.schedule`](@ref) function. You can wait for all scheduled tasks to be completed using [`wait_for_all_tasks`](@ref). Here's how to schedule tasks: ```@example using Mango # Define your agent struct using @agent macro @agent struct MyTaskAgent my_own_field::String end function my_task_function() @info "Task completed" end # Create an instance of the agent my_agent = MyTaskAgent("MyValue") # Schedule a task for the agent wait(schedule(my_task_function, my_agent, InstantTaskData())) ```
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
1592
# API # Express This part contains basic convenience functions for creating and running Mango.jl simulations. ```@autodocs Modules = [Mango] Private = false Pages = ["express/api.jl"] ``` # Agent and Roles Here, the API for the agent structs created with @agent/@role is listed. ```@autodocs Modules = [Mango] Private = false Pages = ["agent/api.jl", "agent/core.jl", "agent/role.jl"] Order = [:macro, :function, :constant, :type, :module] ``` # Real time container This part contains the API related to the container construction, access and management. ```@autodocs Modules = [Mango] Private = false Pages = ["container/api.jl", "container/core.jl", "container/mqtt.jl", "container/protocol.jl", "container/tcp.jl"] ``` # Simulation In the following the APIs regarding the simulation container are listed. ```@autodocs Modules = [Mango] Private = false Pages = ["container/simulation.jl", "simulation/communication.jl", "simulation/tasks.jl"] ``` # Scheduling In the following the APIs for scheduling TaskData is listed. ```@autodocs Modules = [Mango] Private = false Pages = ["util/scheduling.jl"] ``` # Topology In the following the APIs for creating, aplying and using topologies is listed. ```@autodocs Modules = [Mango] Private = false Pages = ["world/topology.jl"] ``` # Encoding/Decoding In the following the built-in functions for encoding and decoding messages are listed. ```@autodocs Modules = [Mango] Private = false Pages = ["util/encode_decode.jl"] ``` # Misc ```@autodocs Modules = [Mango] Private = false Pages = ["util/datastructures_util.jl"] ```
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
7170
# Real Time Container The real time container feature in Mango.jl allows you to create and manage a container, which acts as the communication layer within the environment. A container is responsible for handling messages, forwarding them to the appropriate agents, and managing agent registration. The real time component means that the container acts on a real time clock, and does not differentiate between a simulation time and the execution time, which essentially means everything executed withing the real time container is executed immediately as stated in the code. In contrast, there is also a "simulation" container, which maintains an interal simulation time and only executes tasks and delivers messages according to the requested step_sizes (next event time). More on the simulation container can be found under [Simulation Container](@ref). Note, that both container types implement the methods for the [`ContainerInterface`](@ref) and can therefore be drop-in replacements for the each other with slight differences in usage. ## Container Struct The [`Container`](@ref) struct represents the container as an actor within the environment. It is implemented using composition, making it flexible to use different protocols and codecs for message communication. The key components of the [`Container`](@ref) struct are: - `protocol`: The protocol used for message communication (e.g., TCP). - `codec`: A pair of functions for encoding and decoding messages in the container. ## Start and Shutdown Before using the container for message handling and agent management, you need to start the container using the [`start`](@ref) function. This function initializes the container's components and enables it to act as the communication layer. After you are done with the container, [`shutdown`](@ref) has to be called. ```@example using Mango # Create a container instance container = Container() # ... setup the container, agents, define handles, ... # Start the container wait(Threads.@spawn start(container)) # Execute some functionality to e.g. trigger the agent system # Shut down the container shutdown(container) @info "Agent container and agents shutdown" ``` However, this approach can be error-prone for multiple reasons. Besides simply forgetting to call shutdown, an exception may occur between the start and shutdown calls on the containers, leading to resource leaks. For this reason, we recommend using [`activate`](@ref) instead. With this function, the above `start/shutdown' pair translates to... ```julia # Start the container and shut it down after the runnable (do ... end) has been executed. activate(container) do # Execute some functionality to e.g. trigger the agent system end ``` ## Registering Agents To enable the container to manage agents and handle their messaging activities, you can register agents using the [`register`](@ref) function. This function associates an agent with a unique agent ID (AID) and adds the agent to the container's internal list. ```@example using Mango # Create a container instance container = Container() # Define and create an agent @agent struct MyAgent # Your agent's fields and methods here end my_agent = MyAgent() # Register the agent with the container register(container, my_agent) ``` ## Sending Messages To send messages between agents within the container, you can use the [`send_message`](@ref) function. The container routes the message to the specified receiver agent based on the receiver's AID. ```@example using Mango # Create a container instance container = Container() agent = register(container, PrintingAgent()) # ... Register agents ... # Sending a message from one agent to another wait(send_message(container, "Hello from Agent 1!", address(agent))) ``` ## TCP This protocol allows communication over plain TCP connections, enabling message exchange between different entities within the Mango.jl simulation environment. ### Introduction The TCP Protocol in Mango.jl is a communication protocol used to exchange messages over plain TCP connections. It enables agents within the simulation environment to communicate with each other by establishing and managing TCP connections. ### TCPProtocol Struct The [`TCPProtocol`](@ref) struct represents the TCP Protocol within Mango.jl. It encapsulates the necessary functionalities for communication via TCP connections. Key features of the [`TCPProtocol`](@ref) struct are: - `address`: The `InetAddr` represents the address on which the TCP server listens. - `server`: A `TCPServer` instance used for accepting incoming connections. ### Usage To use the tcp protocol you need to construct a TCPProtocol struct and assign it to the `protocol` field in the container. ```@example using Mango, Sockets container2 = Container() container2.protocol = TCPProtocol(address=Sockets.InetAddr("127.0.0.2", 2940)) ``` It is also possible to use the convenience function [`create_tcp_container`](@ref). ```@example using Mango container2 = create_tcp_container("127.0.0.2", 2940) ``` ## MQTT ### Introduction The MQTT protocol enables sending via an MQTT message broker. It allows a container to subscribe to different topics on a broker and publish messages to them. Currently, one container may only connect to a single broker. Subscribed topics for each agent are set on agent registration and tracked by the container. Incoming messages on these topics are distributed to the subscribing agents by the container. ### MQTTProtocol Struct The [`MQTTProtocol`](@ref) contains the status and channels of the underlying mosquitto C library (as abstracted to Julia by the Mosquitto.jl package). The constructor takes a `client_id` and the `broker_addr`. Internally it also tracks the `msg_channel` and `conn_channel`, internal flags, the information to map topics to subscribing agents. `protocol = MQTTProtocol(cliant_id, broker_addr)` - `client_id` - `String` id the container will communicate to the MQTT broker. - `broker_addr` - `InetAddr` of the MQTT broker ### Usage To use the mqtt protocol you need to construct a MQTTProtocol struct and assign it to the `protocol` field in the container. Further it is possible to use a convenience function for this It is also possible to use the convenience function [`create_mqtt_container`](@ref). ```julia using Mango, Sockets container2 = Container() container2.protocol = MQTTProtocol("my_id", Sockets.InetAddr(ip"127.0.0.2", 2940)) ``` !!! note "Running MQTT broker expected" The MQTT protocol expects an MQTT broker to run at the specified host and port. Subscribing an agent to a topic can happen only as registration time and is not allowed otherwise. When registering a new agent to the container the topics to subscribe are passed by the `topics` keyword argument, taking a collection of `String` topic names. NOTE: It is recommended you pass a `Vector{String}` as this is what is tested. Other collections could work but no guarantees are given. ```julia using Mango container2 = create_mqtt_container("127.0.0.2", 2940, "MyMqttClient") a1 = PrintingAgent() register(container2, a1; topics=["topic1", "topic2"]) ```
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
985
# Mango.jl Encoding and Decoding (codec) Feature User Documentation Codecs provide functions for serializing and deserializing data to Mango containers. They use [LightBSON.jl](https://github.com/ancapdev/LightBSON.jl) as their backend. As of now, the [`encode`](@ref) and [`decode`](@ref) functions forward their inputs directly to `bson_read` and `bson_write`. For most cases, we expect to pass messages as `OrderedDict{String, Any}`. We also forward an optional type field when decoding that is passed to `bson_write` to make use of the existing type-casting functionality here. For full information on what will work with this type of inference, we refer to the LightBSON.jl documentation. For future versions, we plan on adding a more convenient (but likely slower) type inference variant of the codec that saves necessary type information when encoding and iterates the output data while decoding to restore it exactly as it was before encoding (including type information).
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
6647
# Getting Started with Mango.jl In this getting started guide, we will explore the essential features of Mango.jl, starting with a simple example using the express-api, followed by a more in-depth example of two ping pong agents that exchange messages in a container. Here, we will manually set up a container with the TCP protocol, define ping pong agents, and enable them to exchange messages. This way allows better customization but may need more boilerplate code. You can also find working examples of the following code in [examples.jl](../../test/examples.jl). ## 0. Quickstart In Mango.jl, you can define agents using a number of roles using [`@role`](@ref) and [`agent_composed_of`](@ref), or directly using [`@agent`](@ref). To define the behavior of the agents, [`handle_message`](@ref) can be defined, and messages can be send using [`send_message`](@ref). To run the agents with a specific protocol in real time the fastest way is to use [`run_with_tcp`](@ref), which will distribute the agents to tcp-containers and accepts a function in which some agent intializiation and/or trigger-code could be put. The following example illustrates the basic usage of the functions. ```jldoctest using Mango @role struct PrintingRole out::Any = "" end function Mango.handle_message(role::PrintingRole, msg::Any, meta::AbstractDict) role.out = msg end express_one = agent_composed_of(PrintingRole()) express_two = agent_composed_of(PrintingRole(), PrintingRole()) run_with_tcp(2, express_one, express_two) do container_list wait(send_message(express_one, "Ping", address(express_two))) sleep_until(() -> express_two[1].out == "Ping") end # evaluating express_two[1].out # output "Ping" ``` ## Step-by-step (manual container creation) Alternatively you can create the container yourself. This is the more flexible approach, but also wordier. ### 1. Creating a Container with a TCP Protocol we need to create a container to manage ping pong agents and facilitate communication using the TCP protocol: ```@example tcp_gs using Mango, Sockets # Create the container instances with TCP protocol container = create_tcp_container("127.0.0.1", 5555) container2 = create_tcp_container("127.0.0.1", 5556) ``` ### 2. Defining Ping Pong Agents Let's define agent structs to represent the ping pong agents. Every new agent struct should be defined using the @agent macro to ensure compatibility with the mango container: ```@example tcp_gs # Define the ping pong agent @agent struct TCPPingPongAgent counter::Int end ``` ### 3. Sending and Handling Messages Ping pong agents can exchange messages and they can keep track of the number of messages received. Let's implement message handling for the agents. To achieve this a new method [`handle_message`](@ref) from `Mango` has to be added: ```@example tcp_gs # Override the default handle_message function for ping pong agents function Mango.handle_message(agent::TCPPingPongAgent, message::Any, meta::Any) agent.counter += 1 println( "$(agent.aid) got a message: $message." * "This is message number: $(agent.counter) for me!" ) # doing very important work sleep(0.5) if message == "Ping" reply_to(agent, "Pong", meta) elseif message == "Pong" reply_to(agent, "Ping", meta) end end ``` ### 4. Sending Messages Now let's simulate the ping pong exchange by sending messages between the ping pong agents. Addresses are provided to the [`send_message`](@ref) function via the [`AgentAddress`](@ref) struct. The struct consists of an `aid` and the more technical `address` field. Further an AgentAddress can contain a `tracking_id`, which can identify the dialog agents are having. The [`send_message`](@ref) method here will automatically insert the agent as sender: ```@example tcp_gs # Define the ping pong agent # Create instances of ping pong agents ping_agent = register(container, TCPPingPongAgent(0)) pong_agent = register(container2, TCPPingPongAgent(0)) activate([container, container2]) do # Send the first message to start the exchange send_message(ping_agent, "Ping", address(pong_agent)) # wait for 5 messages to have been sent sleep_until(() -> ping_agent.counter >= 5) end ``` In this example, the ping pong agents take turns sending "Ping" and "Pong" messages to each other, incrementing their counters. After a short moment, we can see the result of the ping pong process. ### 5. Using the MQTT Protocol To use an MQTT messsage broker instead of a direkt TCP connection, you can use the MQTT protocol. This protocol requires a running MQTT broker. For this you can, for example, use Mosquitto as broker. On most linux-based systems mosquitto exists as package in the public repostories. For example for debian systems: ```bash sudo apt install mosquitto sudo service mosquitto start ``` After, you can create MQTT container. ```julia using Mango c1 = create_mqtt_container("127.0.0.1", 1883, "PingContainer") c2 = create_mqtt_container("127.0.0.1", 1883, "PongContainer") ``` The topics each agent subscribes to on the broker are provided during registration to the container. All messages on these topics will then be forwarded as messages to the agent. ```julia # Define the ping pong agent @agent struct MQTTPingPongAgent counter::Int end # Define the ping pong agent # Create instances of ping pong agents # register each agent to a container # For the MQTT protocol, topics for each agent have to be passed here. ping_agent = register(c1, MQTTPingPongAgent(0); topics=["pongs"]) pong_agent = register(c2, MQTTPingPongAgent(0); topics=["pings"]) ``` Just like the TCPProtocol, the MQTTProtocol has an associated struct for providing address information: * the broker address * the topic Thus, sending of the first message and the handle_message definition becomes: Lastly, [`handle_message`](@ref) has to be altered to send the corresponding answers correctly: ```julia # Override the default handle_message function for ping pong agents function handle_message(agent::MQTTPingPongAgent, message::Any, meta::Any) broker_addr = agent.context.container.protocol.broker_addr if message == "Ping" agent.counter += 1 send_message(agent, "Pong", MQTTAddress(broker_addr, "pongs")) elseif message == "Pong" agent.counter += 1 send_message(agent, "Ping", MQTTAddress(broker_addr, "pings")) end end activate([c1, c2]) do # Send the first message to start the exchange send_message(ping_agent, "Ping", MQTTAddress(broker_addr, "pings")) sleep_until(() -> ping_agent.counter >= 5) end ```
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
1284
# Mango.jl ## Welcome to mango's documentation! Mango.jl allows the user to create simple agents with little effort and at the same time offers options to structure agents with complex behaviour. The main features of mango are listed below. Mango.jl as a package is partly based on the ideas of [mango-agents](https://mango-agents.readthedocs.io), but will also contain new concepts and techniques. It was made with the picture of scalable agent simulations in mind. ## Features * Container mechanism to speedup local message exchange * Structuring complex agents with loose coupling and agent roles * Built-in codecs * Supports communication between agents directly via TCP and MQTT * Built-in tasks mechanisms for proactive agent actions * Continous and discrete stepping simulation using an external clock to rapidly run and inspect simulations designed for longer time-spans * Integrated communication and task simulation modules * Integrated environment with which the agents can interact in a common space ## Development state Mango.jl is in an early development state. Feel free to try out the framework if you are interested and be aware that there might be some unexpected edges here and there. ## License Mango.jl is developed and published under the MIT license.
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
1134
# Legals **Address** OFFIS e. V. Escherweg 2 26121 Oldenburg Germany Phone +49 441 9722-0 Fax +49 441 9722-102 Email: [institut [ A T ] offis.de](<[email protected]>) Internet: [www.offis.de](http://www.offis.de) **Board Members** Prof. Dr. Sebastian Lehnhoff (Chairman) Prof. Dr. techn. Susanne Boll-Westermann Prof. Dr.-Ing. Andreas Hein Prof. Dr.-Ing. Astrid Nieße **Register Court** Amtsgericht Oldenburg Registernumber VR 1956 **VAT Identification Number** DE 811582102 **Responsible in the sense of press law** Dr. Ing. Jürgen Meister (Director) OFFIS e.V. Escherweg 2 26121 Oldenburg **Disclaimer** Despite careful control OFFIS assumes no liability for the content of external links. The operators of such a website are solely responsible for its content. At the time of linking the concerned sites were checked for possible violations of law. Illegal contents were not identifiable at that time. A permanent control of the linked pages is not reasonable without specific indications of a violation. Upon notification of violations, OFFIS will remove such links immediately.
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
3932
# Roles Roles are used to provide a mechanism for reusability and modularization of functionsalities provided/implemented by agents. Every agent can contain and unlimited number of roles, which are separate structs on which typical agent functionalitites (like send_message) can be defined. All roles of an agent share the same address and agent id, as they are part of the agent and no autonomous unit for themself. ## Role definition A role can be defined using the [`@role`](@ref) macro. This macro adds some baselinefields to the following struct definition. The struct can be defined like any other Julia struct. ```@example using Mango # Define your role struct using @role macro @role struct MyRole my_own_field::String end # Assume you have already defined roles using Mango.AgentRole module role1 = MyRole("Role1") ``` Most functions, used for agent development can also be used with roles (e.g. [`handle_message`](@ref), [`address`](@ref), [`schedule`](@ref), [`send_message`](@ref) (plus variants) and the lifecycle methods). Additionally, roles can define the [`setup`](@ref) function to define actions to take when the roles are added to the agent. It is also possible to subscribe to specific messages using a boolean expression with the [`subscribe_message`](@ref) function. With the @role macro, the role context is added to the role, which contains the reference to the agent. However, it is recommended to use the equivalent methods defined on the role to execute actions like scheduling and sending messages. Further with roles it is possible to listen to all messages sent from within the agent. For this [`subscribe_send`](@ref) can be used. ## Role communication Besides the message subscriptions there are functionalities to communicate/work together with other roles. There are two different mechanisms for this: * Data sharing * An event system ### Data sharing The data sharing can be used using ordinary Julia structs with default constructors. There are two ways to share the data, first you can create the model you want share with [`get_model`](@ref) ```@example model_example using Mango @role struct SharedModelTestRole end struct TestModel c::Int64 end TestModel() = TestModel(42) agent = agent_composed_of(SharedModelTestRole()) shared_model = get_model(agent[1], TestModel) ``` Mango.jl will create a TestModel instance and manage this instance such that every role can access it. Although this is a straightforward method it can be very clumsy to use. For this reason there is the macro [`@shared`](@ref), which can be used within a role definition to mark a field as shared model. Then, Mango.jl will ensure that a shared instance of the declared type will be created and assigned to the struct field. ```@example model_example @role struct SharedFieldTestRole @shared test_model::TestModel end agent_including_test_role = agent_composed_of(SharedFieldTestRole()) agent_including_test_role[1].test_model ``` ### Event system Roles can emit events using [`emit_event`](@ref). If `event_type` is nothing, the type of `event` will be used as `event_type`. To handle these events roles can subscribe using [`subscribe_event`](@ref) or add a method to [`handle_event`](@ref). ```@example using Mango struct TestEvent end function Mango.handle_event(role::Role, src::Role, event::TestEvent; event_type::Any) @info "Event is arriving!" role.name end function custom_handler(role::Role, src::Role, event::Any, event_type::Any) @info "Event is also arriving!" end @agent struct RoleTestAgent end @role struct MyEventRole name::String end role_emitter = MyEventRole("emitter") role_handler = MyEventRole("handler") agent = agent_composed_of(role_emitter, role_handler; base_agent=RoleTestAgent()) subscribe_event(role_handler, TestEvent, custom_handler, (src, event) -> true) # condition is optional emit_event(role_emitter, TestEvent()) ```
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
4164
# Scheduling The `Scheduling` module exports several types and functions to facilitate task scheduling and execution. Let's briefly review the main components of this module. ## Task Data Types The module provides different [`TaskData`](@ref) types, each catering to specific scheduling requirements: 1. [`PeriodicTaskData`](@ref): For tasks that need to be executed periodically, it holds the time interval in seconds between task executions. 2. [`InstantTaskData`](@ref): For tasks that need to be executed instantly, without any delay. 3. [`DateTimeTaskData`](@ref): For tasks that need to be executed at a specific date and time. 4. [`AwaitableTaskData`](@ref): For tasks that require waiting for an awaitable object to complete before execution. 5. [`ConditionalTaskData`](@ref): For tasks that execute based on a specific condition at regular intervals. ## Typical usage Typically the scheduler is used within methods from the agent. To schedule a task the function [`schedule`](@ref) can be used. It takes two inputs: The agent (which forwards the call to its scheduler) and the TaskData object of the task. ```@example scheduling using Mango @agent struct MyAgent end agent = MyAgent() result = 0 t = schedule(agent, InstantTaskData()) do # some expensive calculation result = 10 end wait(t) ``` [`PeriodicTaskData`](@ref) creates tasks that get executed repeatedly forever. This means that calling `wait` on such a task will generally simply block forever. For this reason a periodic task has to be stopped before it can be waited on. ```@example scheduling delay_in_s = 0.1 # delay between executions of the task in seconds result = 0 t = schedule(agent, PeriodicTaskData(delay_in_s)) do # some expensive calculation println("iterated") end sleep(0.2) stop_task(agent, t) wait_for_all_tasks(agent) ``` Alternatively, you can stop all `stopable` tasks simultaneously with the [`stop_all_tasks`](@ref) function. ```@example scheduling delay_in_s = 0.1 # delay between executions of the task in seconds for i in 1:10 schedule(agent, PeriodicTaskData(delay_in_s)) do # some expensive calculation println("iterated") end end sleep(0.2) stop_all_tasks(agent) wait_for_all_tasks(agent) ``` Finally, [`stop_and_wait_for_all_tasks`](@ref) is a convenience methods combining both [`stop_all_tasks`](@ref) and [`wait_for_all_tasks`](@ref). ## Scheduler The [`Scheduler`](@ref) type is an internal structure that holds a collection of tasks to be scheduled and executed. Every agent contains such a scheduler struct by default and implements methods for convenient delegation. ```julia struct Scheduler tasks::Vector{Task} end ``` The [`execute_task`](@ref) function executes a task with a specific [`TaskData`](@ref). ```julia execute_task(f::Function, data::PeriodicTaskData) execute_task(f::Function, data::InstantTaskData) execute_task(f::Function, data::DateTimeTaskData) execute_task(f::Function, data::AwaitableTaskData) execute_task(f::Function, data::ConditionalTaskData) ``` The [`schedule`](@ref) function adds a task to the scheduler with the specified [`TaskData`](@ref) and scheduling type. ```julia schedule(f::Function, scheduler::Union{Scheduler,Agent}, data::TaskData, scheduling_type::SchedulingType=ASYNC) ``` The [`wait_for_all_tasks`](@ref) function waits for all the scheduled tasks in the provided scheduler to complete. ```julia wait_for_all_tasks(scheduler::Scheduler) ``` The [`stop_task`](@ref) function sends the stop signal to a task `t`. This will result in its completion once the next execution cycle is finished. If `t` is not stopable this will output a warning. ```julia stop_task(scheduler::Scheduler, t::Task) ``` The [`stop_all_tasks`](@ref) function sends the stop signal to all stopable tasks. This will result in their completion once the next execution cycle is finished. ```julia stop_all_tasks(scheduler::Scheduler) ``` The [`stop_and_wait_for_all_tasks`](@ref) function sends the stop signal to all stopable tasks. It then waits for all scheduled tasks to finish. ```julia stop_and_wait_for_all_tasks(scheduler::Scheduler) ```
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
5630
# Simulation Container The simulation container has the same role as the real-time container and therefore acts as communication and interaction interface to the environment. The simulation container maintains an interal simulation time and only executes tasks and delivers messages according to the requested step_sizes. It can be stepped in the continous mode or the discrete event mode. Further the container manages a common environment the agents can interact with as base structure for agent-based modeling simulations. ## Create and stepping a simulation container To create a simulation container, it is advised to use `create_simulation_container`. This method will create a clock with the given simulation time and set default for the communication simulation and the general task simulation. In most cases the default task simulation will be what you desire. The communication simulation object (based on the abstract type `CommunicationSimulation`) is used to determine the delays of the messages in the simulation, while the task simulation determines the way the tasks are scheduled (within a time step, using parallelization etc.) in the simulation. In the following example a simple simulation is executed. ```@example using Mango, Dates # Arbitrary agent definition @agent struct SimAgent end # Create a communication simulator, the simple communication simulator works with static delays between specific agents and a global default, here 0 comm_sim = SimpleCommunicationSimulation(default_delay_s=0) # Set the simulation time to an initial value container = create_simulation_container(DateTime(Millisecond(10)), communication_sim=comm_sim) # Creating agents and registering, no difference here to the real time container agent1 = register(container, SimAgent()) agent2 = register(container, SimAgent()) # Send a message from agent2 to agent1, the message will be written to a queue instead of processed by some protocol send_message(agent2, "Hello Friends, this is RSc!", AgentAddress(aid=agent1.aid)) # in this stepping call the message will be delivered and handled to/by the agent1 # step_size=1, if no size is specified the simulation will work as discrete event simulation, executing all tasks occurring on the next event time. stepping_result = step_simulation(container, 1) @info stepping_result.time_elapsed @info container.clock ``` ## Discrete event vs continous stepping Mango.jl support discrete event and continous stepping. Discrete event stepping means that no advance time is provided instead the simulation jumps to the next event time and executes every tasks, delivers every message scheduled at this next event time. For example, you set up a simultion in which three tasks are in the queue at the event times 1,1,3; then the next step would execute the first two, and the following would execute the last task (given no new tasks are created). With continous stepping the user has to provide a step_size (in seconds), which will be used to execute every task until `simulation_time + step_size` ordered by the time of the individual tasks. It is also possible to mix both styles. ```julia # function call examples for # continous stepping_result = step_simulation(container, 1.23) # and # discrete event stepping_result = step_simulation(container) ``` If you do not require to mix both styles and you do not want to create very specific simulations containers, you might prefer to use the express way: ```@example using Mango, Dates # Arbitrary agent definition @agent struct SteppingAgent end # number of steps, agents..., start_time=Start time of simulation results = run_in_simulation(1, SteppingAgent(), PrintingAgent(), start_time=DateTime(2000)) do container send_message(container, "MyMessageForTheSimulation", address(container[2])) end ``` ## Communication simulation Mango.jl is generally designed to be extenable, this is also true for the usage of a communication simulator in a Mango.jl-Simulation. To use a custom communication simulator, you can simply set the keyword argument `communication_sim` to a struct of the abstract type `CommunicationSimulation`. To implement this type, you need to add a fitting method to `Mango.calculate_communication::CommunicationSimulation, clock::Clock, messages::Vector{MessagePackage})::CommunicationSimulationResult`. This method will then be called in the simulation loop at least once and repeatedly when new messages arrive and therefore a new state has to be determined. The default communication simulator is [SimpleCommunicationSimulation](@ref). This simulator uses a default static delay together with a dictionary containing delays per link between individual agents. ## Agent-based modeling The simulation container can also be used for simple agent-based modeling simulations. In agent-based modeling, units (e.g. people, cars, ...) are modeled using agents and their interaction between these agents and further units in a common world/environment. To support this the simulation container provides `on_step(agent::Agent, world::World, clock::Clock, step_size_s::Real)` (also defined on `Role`). The `World` can contain common objects to interact with and contains a `Space` struct which can define the type of world modeled (2D/3D/Graph/...). This struct also contains the positions of all agents. Currently there is only the `Space2D` implementation with simple cartesian coordinates. Please note that Mango.jl focuses on agent-based control, agent-based communication and therefore currently does not provide much supporting implementations for complex agent-based modeling simulations.
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
2358
# Topologies In Mango.jl agents usually communicate with each other based on a topology. The topology determines which agent can communicate with which agent. To implement this, every agent has access to a neighborhood, which is the set of all agents it can communicate with. As it can be pretty clunky to create every neighborhood-list manually, Mango.jl provides several functions to make your life easier. For this it relys on `Graphs.jl` and `MetaGraphsNext.jl` as datastructure and for graph-construction # Creating topologies First, there are several pre-defined topologies. It is also possible to use an arbitrary Graphs.jl graph. After the creation of the topology, the agents need to be added to the topology. This can be done with `per_node(topology) do node ... end`. In the do-block it is possible to add agents to nodes, the do-block will be executed per vertex of your graph. ```@example using Mango, Graphs @agent struct MyAgent end topology = star_topology(3) # star topology = cycle_topology(3) # cycle topology = complete_topology(3) # fully connected topology = graph_topology(complete_digraph(3)) # based on arbitrary Graphs.jl AbstractGraph per_node(topology) do node add!(node, MyAgent()) end # resulting topology graph topology.graph ``` However, often this approach is not feasible, because you create a specific agent system with agents which need to be linked in a very specific way, such that it is not possible to assign the same agent type to every node. For this reason you can define the topology manually: ```@example using Mango @agent struct TopologyAgent end container = Container() topology = create_topology() do topology agent0 = register(container, TopologyAgent()) agent1 = register(container, TopologyAgent()) agent2 = register(container, TopologyAgent()) n1 = add_node!(topology, agent0) n2 = add_node!(topology, agent1) n3 = add_node!(topology, agent2) add_edge!(topology, n1, n2) add_edge!(topology, n1, n3) end # neighbors of `agent` topology_neighbors(container[1]) ``` # Using the topology At this point we know how to create topologies and how to populate them. To actually use them, the function [`topology_neighbors`](@ref) exists. The function returns a vector of AgentAddress objects, which represent all other agents in the neighborhood of `agent`.
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
0.4.0
c0d116e0108169c0bcd41928f378ead3d2c55233
docs
9347
--- title: 'Mango.jl: A Julia-Based Multi-Agent Simulation Framework' tags: - Julia - Agent - Multi-Agent System - Simulation Framework authors: - name: Jens Sager orcid: 0000-0001-6352-4213 equal-contrib: true affiliation: "1, 2" # (Multiple affiliations must be quoted) - name: Rico Schrage orcid: 0000-0001-5339-6553 equal-contrib: true affiliation: "1, 2" # (Multiple affiliations must be quoted) affiliations: - name: Digitalized Energy Systems Group, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany index: 1 - name: Energy Division, OFFIS Institute for Information Technology, 26121 Oldenburg, Germany index: 2 date: 31 July 2024 bibliography: paper.bib # Optional fields if submitting to a AAS journal too, see this blog post: # https://blog.joss.theoj.org/2018/12/a-new-collaboration-with-aas-publishing # aas-doi: 10.3847/xxxxx <- update this with the DOI from AAS once you know it. # aas-journal: Astrophysical Journal <- The name of the AAS journal. --- # Summary Multi-agent simulations are inherently complex, making them difficult to implement, maintain, and optimize. An agent, as defined by [@russel:2010], is software that perceives its environment through sensors and acts upon it using actuators. `Mango.jl` is a simulation framework for multi-agent systems implemented in Julia [@julia:2017]. It enables quick implementations of multiple communicating agents, either spanning multiple devices or in a single local environment. For the design process, `Mango.jl` provides a general structure and a role concept to help develop modular and loosely coupled agents. This is aided by the built-in task scheduler, with convenience methods to easily schedule timed and repeated tasks that are executed asynchronously. Agents communicate with each other via message exchange. Each agent is associated with a container that handles network operations for one or more agents. Messages may be sent directly via TCP connections or indirectly using an MQTT broker. This way, `Mango.jl` makes it easy to set up multi-agent simulations on multiple hardware devices. Mango agents can run in real-time or using simulated time, with either discrete event or stepped time versions. This is useful for simulations, where simulated time should run much faster than real-time. These non-real-time simulation modes also enable the user to simulate the communication to validate the robustness of multi-agent systems against communication issues. # Statement of need Applications of multi-agent systems can be found in various fields, such as in distributed optimization [@yang:2019], reinforcement learning [@gronauer:2022], robotics [@chen:2019] and more. Many of these systems are highly complex and feature heterogeneous and interacting actors. This makes them inherently difficult to model and develop. Therefore, a structured development framework to support this process is a valuable asset. While `Mango.jl` is a general purpose multi-agent framework, we will focus on energy systems in the following as this is the domain the authors are most familiar with. Many of the ideas for `Mango.jl` are based on the existing Python framework `mango` [@schrage:2024]. The main reason for this julia-based version is to allow better focus on simulation performance, enabling larger scales of multi-agent simulations. This is especially relevant in the energy domain, where an increasing amount of energy resources (e.g. batteries and PV-generators) have distributed ownership, competing goals and contribute to the same power grid. Large scale multi-agent simulations allow researchers to study the behavior of these participants in energy markets and grid simulations. The Python version of `mango` has already been successfully applied to various research areas in the energy domain, including coalition formation in multi-energy networks [@schrage:2023], distributed market participation of battery storage units [@tiemann:2022], distributed black start [@stark:2021], and investigating the impact of communication topologies on distributed optimization heuristics [@holly:2021]. New Julia-based projects using `Mango.jl` are in active development. # Related Frameworks To our knowledge, there is no Julia-based multi-agent framework with a focus on agent communication and distributed operation like `Mango.jl`. `Agents.jl` [@agents:2022] is a multi-agent framework for modeling agent interactions in a defined space to observe emergent properties like in animal flocking behavior or the spreading of diseases. This puts it in line with frameworks like mesa [@mesa:2020] or NetLogo [@netlogo:2004]. These have a different scope than `Mango.jl` which is more focused on agent communication and internal agent logic for software applications. JADE [@JADE:2001] and JIAC [@jiac:2013] are Java frameworks of similar scope but are not actively developed anymore. JACK [@jack:2005] provides a language and tools to implement communicating agents but is discontinued and proprietary. The agentframework [@agentframework:2022] is based on JavaScript and has less focus on communication than `Mango.jl`. Lastly, the original Python version of mango [@schrage:2024] is of course most similar in scope, but makes it more difficult to write high performance simulations, due to the use of `asyncio` and the lack of native multi-threading in Python. # Performance ![Performance comparison of Python and Julia mango. \label{fig:benchmark}](benchmark.png) The performance of the Python and Julia versions of mango were benchmarked against each other. The results are shown in \autoref{fig:benchmark} and the relevant code is available at [mango_benchmark](https://github.com/OFFIS-DAI/mango_benchmark). The aim of these scenarios is to measure the performance of the frameworks core features. This mainly means it measures how efficiently tasks are scheduled and messages are sent and handled. To achieve this, benchmark scenarios have agents set up in a small world topology communicating a fixed number of messages between each other while performing simulated workloads. All workloads in the agents is entirely simulated by static delays. Thus, the benchmarks assumes that workloads in Python and Julia are identical. The main advantage of `Mango.jl` is in the ease of parallelization. Python can in some cases reach similar performance using subprocesses for parallel execution to circumvent the limitations of the Python global interpreter lock. Compared to native threads in Julia, however, this is more prone to issues with the operating system, because it requires large amounts of file handles to operate the subprocesses. Overall, it is easier to get high performance from `Mango.jl`. # Basic Example > **_NOTE:_** All code examples were tested with Mango.jl v0.4.0 > The version also has the tag `joss_paper` on the repository. In this example, we define two agents in two containers (i.e. at different addresses) that pass messages to each other directly via TCP. Containers can be set up and equipped with the necessary TCP protocol. ```julia using Mango # Create the container instances with TCP protocol container = create_tcp_container("127.0.0.1", 5555) container2 = create_tcp_container("127.0.0.1", 5556) ``` Now, we need to define the agents. An agent in `Mango.jl` is a struct defined with the `@agent` macro. We define a `TCPPingPongAgent` that has an internal counter for incoming messages. ```julia @agent struct TCPPingPongAgent counter::Int end ``` After creation, agents have to be registered to their respective container. ```julia # Create instances of ping pong agents ping_agent = TCPPingPongAgent(0) pong_agent = TCPPingPongAgent(0) # register each agent to a container and give them a name register(container, ping_agent, "Agent_1") register(container2, pong_agent, "Agent_2") ``` When an incoming message is addressed at an agent, its container will call the `handle_message` function for it. Using Julia's multiple dispatch, we can define a new `handle_message` method for our agent. ```julia # Override the default handle_message function for ping pong agents function Mango.handle_message(agent::TCPPingPongAgent, message::Any, meta::Any) agent.counter += 1 println( "$(agent.aid) got a message: $message." * "This is message number: $(agent.counter) for me!" ) # doing very important work sleep(0.5) if message == "Ping" reply_to(agent, "Pong", meta) elseif message == "Pong" reply_to(agent, "Ping", meta) end end ``` With all this in place, we can send a message to the first agent to start the repeated message exchange. To do this, we need to start the containers so that they listen for incoming messages and send the initiating message. The best way to start the container message loops and ensure they are correctly shut down in the end is the `activate(containers)` function. ```julia activate([container, container2]) do send_message(ping_agent, "Ping", address(pong_agent)) # wait for 5 messages to have been sent while ping_agent.counter < 5 sleep(1) end end ``` # Acknowledgements This work has been partly funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 359941476. # References
Mango
https://github.com/OFFIS-DAI/Mango.jl.git
[ "MIT" ]
1.0.1
2dcb38ae6bfd59177731066c0dcdbf7c42776fff
code
585
using MatrixFunctionDiff using Documenter makedocs(; modules=[MatrixFunctionDiff], authors="Xue Quan <[email protected]>", sitename="MatrixFunctionDiff.jl", format=Documenter.HTML(; canonical="https://xuequan818.github.io/MatrixFunctionDiff.jl", edit_link="master", assets=String[], ), pages=[ "Home" => "index.md", "Background" => "background.md", "Examples" => "examples.md", "API" => "api.md" ], ) deploydocs(; repo="github.com/xuequan818/MatrixFunctionDiff.jl", devbranch="master", )
MatrixFunctionDiff
https://github.com/xuequan818/MatrixFunctionDiff.jl.git
[ "MIT" ]
1.0.1
2dcb38ae6bfd59177731066c0dcdbf7c42776fff
code
205
module MatrixFunctionDiff using Combinatorics using DividedDifferences using LinearAlgebra using PermutationSymmetricTensors export mat_fun_frechet include("frechet.jl") end # module MatrixFunctionDiff
MatrixFunctionDiff
https://github.com/xuequan818/MatrixFunctionDiff.jl.git
[ "MIT" ]
1.0.1
2dcb38ae6bfd59177731066c0dcdbf7c42776fff
code
2979
""" mat_fun_frechet(f, eigs, Ψ::AbstractMatrix, h::Vector{AbstractMatrix}) mat_fun_frechet(f, H::AbstractMatrix, h::Vector{AbstractMatrix}) Return the n-th order Fréchet derivative `d^nf(H)h[1]…h[n]`, assuming `f` is called as `f(x)`. """ @inline function mat_fun_frechet(f::Function, eigs::Vector{Float64}, Ψ::AbstractMatrix, h::Vector{V}; kwargs...) where {V<:AbstractMatrix} N = length(eigs) order = length(h) DD_F = DD_tensor(f, eigs, order; kwargs...) h = map(x -> inv(Ψ) * x * Ψ, h) # F_1 = h_1 ∘ Λ^{0,1} if order == 1 return Ψ * (h[1] .* DD_F) * inv(Ψ) end N0 = N^(order - 2) DD_F = reshape(DD_F, N, N, N, N0) T = promote_type(eltype(Ψ), eltype(V)) val = zeros(T, N, N) h12 = zeros(T, N, N, N) # loop for the permutations pert = collect(permutations(1:order)) for p in pert @views hp = h[p] # compute {h}^{1,2}_{:,i,:} := (h_1)_{:,i}(h_2)_{i,:} @. h12 = zero(T) @views for i = 1:N h12[:, i, :] = hp[1][:, i] * transpose(hp[2][i, :]) end # compute {F}^{0,2,…,n}_{:,:,j_3,…,j_n} := ∑_{i=1}^N ({h}^{1,2} ∘ Λ^{0,1,…,n}_{:,:,:,j_3,…,j_n})_{:,i,:} hF = zeros(T, N, N, N0) @views for i = 1:N0 hF[:, :, i] = dropdims(sum(h12 .* DD_F[:, :, :, i], dims=2); dims=2) end hF = reshape(hF, ntuple(x -> N, order)) hF = permutedims(hF, tuple(2:order..., 1)) # compute the recursion # {F}^{m,…,n,0}_{:,j_m,…,j_n} = ∑_{i=1}^N (h_m ∘ {F}^{m-1,…,n,0}_{:,:,j_m,…,j_n})_{i,:} for k = 3:order Nk = N^(order + 1 - k) DD_Fk = reshape(hF, N, N, Nk) hF = zeros(T, N, Nk) @views for i = 1:Nk hF[:, i] = dropdims(sum(hp[k] .* DD_Fk[:, :, i], dims=1), dims=1) end end val += hF end Ψ * transpose(val) * inv(Ψ) end @inline function mat_fun_frechet(f::Function, H::AbstractMatrix, h::Vector{V}; kwargs...) where {V<:AbstractMatrix} # compute the full eigen decomposition # H = Ψ * diagm(eigs) * inv(Ψ) eigs, Ψ = eigen(H) # compute the frechet derivative by eigen pairs mat_fun_frechet(f, eigs, Ψ, h; kwargs...) end # Generate the divided difference tensor # DD_F = f[λ_i0, λ_i2, ..., λ_in] # By the permutation symmetry of the divided difference, # we just calculate the irreducible vals function DD_tensor(f::Function, eigs::Vector{T}, order::Integer; kwargs...) where {T} N = length(eigs) dim = order + 1 eigs_take(ind) = map(x -> eigs[x], ind) DD_F_sym_index = find_full_indices(N, dim) DD_F_sym_val = @. div_diff(f, eigs_take(DD_F_sym_index); kwargs...) DD_F = SymmetricTensor(DD_F_sym_val, Val(N), Val(dim)) return Array(DD_F) end
MatrixFunctionDiff
https://github.com/xuequan818/MatrixFunctionDiff.jl.git
[ "MIT" ]
1.0.1
2dcb38ae6bfd59177731066c0dcdbf7c42776fff
code
2381
module FrechetTest using Test using MatrixFunctionDiff using DividedDifferences using LinearAlgebra using Combinatorics # compute the frechet derivative by element loop function frechet_naive(f::Function, eigs::Vector{Float64}, Ψ::AbstractMatrix, hs::Vector{V}; kwargs...) where {V<:AbstractMatrix} N = length(eigs) order = length(hs) hs = map(x -> inv(Ψ) * x * Ψ, hs) pert = collect(permutations(1:order)) T = promote_type(eltype(Ψ), eltype(V)) val = zeros(T, N, N) for i = 1:N, j = 1:N ktr = ones(Int, order - 1) for k = 1:N^(order-1) kind = vcat(i, ktr, j) hval = zero(T) for p in pert hval += prod(l -> hs[p[l]][kind[l], kind[l+1]], 1:order) end ΛF = div_diff(f, eigs[kind]; kwargs...) val[i, j] += hval * ΛF if length(ktr) > 0 ktr[1] += 1 for ℓ = 1:order-2 if ktr[ℓ] == N + 1 ktr[ℓ] = 1 ktr[ℓ+1] += 1 end end end end end return Ψ * val * inv(Ψ) end const N = 10 Funs = [ x -> 1.0 / (1.0 + exp(10*x))] @testset "Real symmetric matrix" begin X = rand(N, N); H = 0.5 * (X + X'); eigs, Ψ = eigen(H); for order in 1:4 h = [rand(N, N) for i = 1:order] hs = [0.5 * (x + x') for x in h] for f in Funs fd_test = frechet_naive(f, eigs, Ψ, hs); fd = mat_fun_frechet(f, eigs, Ψ, hs); @test isapprox(fd_test, fd) end end end @testset "Complex hermitian matrix" begin X = rand(ComplexF64, N, N) H = 0.5 * (X + X') eigs, Ψ = eigen(H) for order in 1:4 h = [rand(ComplexF64, N, N) for i = 1:order] hs = [0.5 * (x + x') for x in h] for f in Funs fd_test = frechet_naive(f, eigs, Ψ, hs) fd = mat_fun_frechet(f, eigs, Ψ, hs) @test isapprox(fd_test, fd) end end end @testset "Non-hermitian matrix" begin H = 0.1.*reshape(collect(-60:39),10,10) + diagm(collect(-4:5)) eigs, Ψ = eigen(H) for order in 1:4 h = [rand(10, 10) for i = 1:order] for f in Funs fd_test = frechet_naive(f, eigs, Ψ, h) fd = mat_fun_frechet(f, eigs, Ψ, h) @test isapprox(fd_test, fd) end end end end
MatrixFunctionDiff
https://github.com/xuequan818/MatrixFunctionDiff.jl.git
[ "MIT" ]
1.0.1
2dcb38ae6bfd59177731066c0dcdbf7c42776fff
code
396
using MatrixFunctionDiff using Test @testset "MatrixFunctionDiff.jl" begin t0 = time() @testset "Fréchet Derivative" begin println("##### Testing Fréchet derivative functionality...") t = @elapsed include("FrechetTest.jl") println("##### done (took $t seconds).") end println("##### Running all MatrixFunctionDiff tests took $(time() - t0) seconds.") end
MatrixFunctionDiff
https://github.com/xuequan818/MatrixFunctionDiff.jl.git
[ "MIT" ]
1.0.1
2dcb38ae6bfd59177731066c0dcdbf7c42776fff
docs
2215
[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://xuequan818.github.io/MatrixFunctionDiff.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://xuequan818.github.io/MatrixFunctionDiff.jl/dev/) [![Build Status](https://github.com/xuequan818/MatrixFunctionDiff.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/xuequan818/MatrixFunctionDiff.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/xuequan818/MatrixFunctionDiff.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/xuequan818/MatrixFunctionDiff.jl) # MatrixFunctionDiff.jl A julia package for computing **Fréchet derivatives** of scalar functions with matricies as variables. The higher order Fréchet derivatives are first written in a formula similar to the [Daleskii-Krein theorem](https://www.ams.org/books/trans2/047/), and then computed by the [divided difference](https://github.com/xuequan818/DividedDifferences.jl). #### Usage ```julia julia> using MatrixFunctionDiff julia> using DividedDifferences julia> f = heaviside; # Heaviside step function julia> order = 2; # 2nd order Fréchet derivative julia> H = 0.1 .* reshape(collect(-4:11), 4, 4) + diagm(collect(-2:1)) 4×4 Matrix{Float64}: -2.4 0.0 0.4 0.8 -0.3 -0.9 0.5 0.9 -0.2 0.2 0.6 1.0 -0.1 0.3 0.7 2.1 julia> h = map(x -> Array(reshape(x, 4, 4)) .+ diagm(0.1*ones(4)), [-0.2:0.05:0.55, -1:0.2:2]); julia> mat_fun_frechet(f, H, h) 4×4 Matrix{Float64}: 0.00483228 -0.00766712 -0.0402159 -0.0588928 0.0098505 -0.0152527 -0.0825338 -0.0813227 0.0412279 -0.0186076 0.00722674 0.00971879 0.0189937 -0.0209538 0.00616146 0.00319365 ``` MatrixFunctionDiff can also compute the Fréchet derivatives by the eigenpairs of `H`: ```julia using LinearAlgebra julia> eigs, Ψ = eigen(H); julia> mat_fun_frechet(f, eigs, Ψ, h) 4×4 Matrix{Float64}: 0.00483228 -0.00766712 -0.0402159 -0.0588928 0.0098505 -0.0152527 -0.0825338 -0.0813227 0.0412279 -0.0186076 0.00722674 0.00971879 0.0189937 -0.0209538 0.00616146 0.00319365 ``` For more details, please see the [documentation](https://xuequan818.github.io/MatrixFunctionDiff.jl/dev/).
MatrixFunctionDiff
https://github.com/xuequan818/MatrixFunctionDiff.jl.git
[ "MIT" ]
1.0.1
2dcb38ae6bfd59177731066c0dcdbf7c42776fff
docs
185
# Matrix Functions Differentiation API ```@meta CurrentModule = MatrixFunctionDiff ``` ## Fréchet derivatives of `f(x::Number)::Number` ```@docs MatrixFunctionDiff.mat_fun_frechet ```
MatrixFunctionDiff
https://github.com/xuequan818/MatrixFunctionDiff.jl.git
[ "MIT" ]
1.0.1
2dcb38ae6bfd59177731066c0dcdbf7c42776fff
docs
5160
## Fréchet derivative of Matrix functions Let $\mathcal{H}:=\mathbb{C}^{N\times N}_{\rm diag}$ be the vector space of $N\times N$ diagonalizable matrices. For $H\in\mathcal{H}$ and $h_1,...h_n\in\mathcal{H}$, and $f$ is an $n$ times continuously differentiable function on a subset of $\mathbb{C}$ containing the spectrum of $H+t_1h_1+\cdots + t_nh_n$, the $n$-th order Fréchet derivative of $f(H)$ is ```math \begin{align*} &{{\rm d}}^{n}f(H)h_1\cdots h_n =\\ &\frac{1}{2\pi i}\oint_\mathcal{C} f(z) \sum_{p\in\mathcal{P}_n}(z-H)^{-1}h_{p(1)}(z-H)^{-1}\cdots(z-H)^{-1}h_{p(n)}(z-H)^{-1}\; dz, \end{align*} ``` where $\mathcal{C}$ is a contour in the complex plane enclosing all the eigenvalues of $H$, and $p\in\mathcal{P}_n$ is an arbitrary permutation of $\{1,\cdots,n\}$. This can be proved by induction. For $n = 1$, we have ```math \begin{align*} {\rm d} f(H)h&=\lim_{t\to 0} \frac{f(H+th)-f(H)}{t}\\&=\frac{1}{2\pi i}\oint_\mathcal{C} f(z)\lim_{t\to 0}\frac{(z-H-th)^{-1}-(z-H)^{-1}}{t}\;dz. \end{align*} ``` Note that ```math \begin{align*} (z-H-th)^{-1} &= (I-t(z-H)^{-1}h)^{-1}(z-H)^{-1} \\&= (I+t(z-H)^{-1}h+O(t^2))(z-H)^{-1}, \end{align*} ``` we have ```math \begin{align*} {\rm d} f(H)h=\frac{1}{2\pi i}\oint_\mathcal{C} f(z)(z-H)^{-1}h(z-H)^{-1}\;dz, \end{align*} ``` which satisfies the formula. Assume the $n-1$-th order derivative satisfies the formula. Then we have the $n$-th order derivative ```math \begin{align*} {{\rm d}}^{n}f(H)h_1\cdots h_n &=\lim_{t\to 0} \frac{{{\rm d}}^{n-1}f(H+th_n)h_1\cdots h_{n-1}-{{\rm d}}^{n-1}f(H)h_1\cdots h_{n-1}}{t}\\ &=\frac{1}{2\pi i}\oint_\mathcal{C} f(z)\lim_{t\to 0}\sum_{p\in\mathcal{P}_{n-1}}\frac{1}{t}\Big((z-H-th_n)^{-1}h_{p(1)}\cdots h_{p(n-1)}(z-H-th_n)^{-1}\\ &\qquad -(z-H)^{-1}h_{p(1)}\cdots h_{p(n-1)}(z-H)^{-1}\Big)\;dz. \end{align*} ``` Similarly, we have ```math \begin{align*} (z&-H-th_n)^{-1}h_{p(1)}\cdots h_{p(n-1)}(z-H-th_n)^{-1}\\ &=(I+t(z-H)^{-1}h_n)(z-H)^{-1}h_{p(1)}\cdots h_{p(n-1)}(z-H)^{-1}(I+th_n(z-H)^{-1}) + O(t^2)\\ &=(z-H)^{-1}h_{p(1)}\cdots h_{p(n-1)}(z-H)^{-1} \\ &\quad+ t\Big((z-H)^{-1}h_n(z-H)^{-1}h_{p(1)}\cdots h_{p(n-1)}(z-H)^{-1}\\ &\qquad\quad+(z-H)^{-1}h_{p(1)}(z-H)^{-1}h_n\cdots h_{p(n-1)}(z-H)^{-1}\\ &\qquad\quad+(z-H)^{-1}h_{p(1)}(z-H)^{-1}h_{p(2)}\cdots h_n(z-H)^{-1}\Big) + O(t^2). \end{align*} ``` Therefore, we can obtain the formula. ## Divided difference form Let $H=\Phi \Lambda\Phi^{-1}=\sum_i^N\lambda_i\phi_i\phi_i^{-1}$, where $\phi_i$ is the $i$-th column of $\Phi$ and $\phi_i^{-1}$ is the $i$-th row of $\Phi^{-1}$, and assume there is no degeneration. Then for $p\in\mathcal{P}_n$ we have ```math \begin{align*} (z-&H)^{-1}h_{p(1)}(z-H)^{-1}\cdots(z-H)^{-1}h_{p(n)}(z-H)^{-1}\\ &=\sum_{i_0,\cdots,i_{n}=1}^N\phi_{i_0}(h_{p(1)})_{i_0,i_1}\cdots (h_{p(n)})_{i_{n-1},i_n}\phi_{i_{n}}^{-1}(z-\lambda_{i_0})^{-1}\cdots (z-\lambda_{i_{n}})^{-1}, \end{align*} ``` where $(h_{p(k)})_{i,j}=\phi_i^{-1}h_{p(k)}\phi_j$. We let ```math (z-\lambda_{i_0})^{-1}\cdots (z-\lambda_{i_{n}})^{-1} = \sum_{k=0}^{n}C_k (z-\lambda_{i_k})^{-1}, ``` then ```math \sum_{k=0}^{n}C_k \prod_{\ell\neq k}(z-\lambda_{i_\ell})=1. ``` Let $z=\lambda_{i_k}$, we can obtain ```math C_k = \frac{1}{\prod_{\ell\neq k}(\lambda_{i_k}-\lambda_{i_\ell})}. ``` Therefore, we have ```math \begin{align*} \frac{1}{2\pi i}\oint_\mathcal{C} f(z)(z-\lambda_{i_0})^{-1}\cdots (z-\lambda_{i_{n}})^{-1}\;dz = \sum_{k=0}^{n}\frac{f(\lambda_{i_k})}{\prod_{\ell\neq k}(\lambda_{i_k}-\lambda_{i_\ell})}=f[\lambda_{i_0},\cdots,\lambda_{i_{n}}]. \end{align*} ``` Finally, we obtain ```math \begin{equation} {{\rm d}}^{n}f(H)h_1\cdots h_n =\sum_{i_0,\cdots,i_{n}=1}^N\phi_{i_0}\Bigg(\sum_{p\in\mathcal{P}_n}(h_{p(1)})_{i_0,i_1}\cdots (h_{p(n)})_{i_{n-1},i_{n}}\Bigg)f[\lambda_{i_0},\cdots,\lambda_{i_{n}}]\phi_{i_{n}}^{-1}, \end{equation} ``` which can be also written as ```math \begin{equation} (\Phi^{-1}[{{\rm d}}^{n}f(H)h_1\cdots h_n]\Phi)_{k\ell}=\sum_{i_1,\cdots,i_{n-1}=1}^N\Bigg(\sum_{p\in\mathcal{P}_n}(h_{p(1)})_{k,i_1}\cdots (h_{p(n)})_{i_{n-1},\ell}\Bigg)f[\lambda_k,\lambda_{i_1},\cdots,\lambda_{i_{n-1}},\lambda_\ell]. \end{equation} ``` ## Array operations Use array operations to efficiently compute the Fréchet derivative. For simplicity, just consider the no permutation case and define ```math (F_n)_{kℓ}:=∑_{i_1,⋯,i_{n-1}=1}^N(h_1)_{k,i_1}⋯ (h_n)_{i_{n-1},ℓ}Λ^{0,1,…,n-1,n}_{k,i_1,…,i_{n-1},ℓ}, ``` where $Λ^{0,…,n}_{i_0,…,i_n} := f[λ_{i_0},⋯,λ_{i_n}]$. It is immediately to obtain that ```math F_1 = h_1 ∘ Λ^{0,1}, ``` and ```math F_2 = ∑_{i=1}^N (\mathfrak{h}^{1,2} ∘ Λ^{0,1,2})_{:,i,:}, ``` with $\mathfrak{h}^{1,2}_{:,i,:} := (h_1)_{:,i}(h_2)_{i,:}$. For $n ≥ 3$, first compute ```math \mathfrak{F}^{0,2,…,n}_{:,:,j_3,…,j_n} := ∑_{i=1}^N (\mathfrak{h}^{1,2} ∘ Λ^{0,1,…,n}_{:,:,:,j_3,…,j_n})_{:,i,:} ``` and permute such that the $0$-dimension is at the end $\mathfrak{F}^{2,…,n,0}$. Then for $m ≥ 3$, there is the recursion ```math \mathfrak{F}^{m,…,n,0}_{:,j_m,…,j_n} = ∑_{i=1}^N (h_m ∘ \mathfrak{F}^{m-1,…,n,0}_{:,:,j_m,…,j_n})_{i,:} ``` and $F_n = (\mathfrak{F}^{n,0})^T$.
MatrixFunctionDiff
https://github.com/xuequan818/MatrixFunctionDiff.jl.git
[ "MIT" ]
1.0.1
2dcb38ae6bfd59177731066c0dcdbf7c42776fff
docs
875
# Examples The [`mat_fun_frechet`](@ref) function computes the higher order Fréchet derivatives ${{\rm d}}^{n}f(H)h[1]\cdots h[n]$. It requires that the matrix `H` can be diagonalizable, the function `f` be a scalar function, and `h` be a vector consisting of diagonalizable matrices. The order of the derivative is equal to the length of `h`. ```julia julia> using MatrixFunctionDiff julia> f(x) = 1.0 / (1.0 + exp(100 * (x - 0.1))); # Fermi Dirac function julia> order = 3; # 3rd order Fréchet derivative julia> N = 10; # dimension of matrix julia> X = rand(N, N); julia> H = 0.5 * (X + X'); julia> h = [rand(N, N) for i = 1:order]; julia> map!(x->0.5 * (x + x'), h, h); ``` MatrixFunctionDiff can also compute the Fréchet derivatives by the eigenpairs of `H`: ```julia using LinearAlgebra julia> eigs, Ψ = eigen(H); julia> mat_fun_frechet(f, eigs, Ψ, h); ```
MatrixFunctionDiff
https://github.com/xuequan818/MatrixFunctionDiff.jl.git
[ "MIT" ]
1.0.1
2dcb38ae6bfd59177731066c0dcdbf7c42776fff
docs
660
# MatrixFunctionDiff.jl A julia package for computing **Fréchet derivatives** of scalar functions with matricies as variables. The higher order Fréchet derivatives are first written in a formula similar to the [Daleskii-Krein theorem](https://www.ams.org/books/trans2/047/), and then computed by the [divided difference](https://github.com/xuequan818/DividedDifferences.jl). --- ## Installation MatrixFunctionDiff.jl is a registered package, so it can be installed by running ```julia julia> Pkg.add("MatrixFunctionDiff") ``` ## Related packages - [DividedDifferences.jl](https://github.com/xuequan818/DividedDifferences.jl): Divided difference for Julia
MatrixFunctionDiff
https://github.com/xuequan818/MatrixFunctionDiff.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
1850
using HighVoronoi using Documenter DocMeta.setdocmeta!(HighVoronoi, :DocTestSetup, :(using HighVoronoi); recursive=true) makedocs(; modules=[HighVoronoi], authors="Martin Heida", repo="https://github.com/martinheida/HighVoronoi.jl/blob/{commit}{path}#{line}", sitename="HighVoronoi.jl", #versions = ["dev", # "stable",], #version = "stable", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://martinheida.github.io/HighVoronoi.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", "Manual Voronoi" => Any[ "Examples Voronoi Generation" => "man/short.md", "man/workflowmesh.md", "man/geometry.md", "man/raycast.md", "man/multithread.md", "man/database.md", "man/improving.md", "man/boundaries.md", "Advanced Options" => "man/advanced.md", "man/periodic.md", "man/refine.md", "Projection operators" => "man/projection.md", "man/metapost.md", "Sources of errors and loss in performance" => "man/errors.md", ], "Manual Finite Volume" => Any[ "Finite Volume Examples" => "man/finitevolumeexample.md", "man/workflowfv.md", "Finite Volume Tutorial" => "man/finitevolume.md", "Functions" => "man/functions.md", "man/integrals.md", "man/toyfvfile.md", ], "Intentions of use (EXAMPLES)" => "showcase.md", ], ) deploydocs(; repo="github.com/martinheida/HighVoronoi.jl", devbranch="main", devurl = "v1.3.0",#"v1.0.2", # versions = ["stable" => "v^", "v#.#.#",], )
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
17464
########################################################################################################### ## Compound Meshes... ########################################################################################################### # Modified CompoundMesh struct struct CompoundMesh{P <: Point, VDB <: VertexDB{P}, T <: AbstractMesh{P}, V <: Union{StaticTrue,StaticFalse,Bool}} <: AbstractMesh{P,VDB} mesh::T visible::V data::CompoundData # Modified constructor for CompoundMesh function CompoundMesh(mesh::AbstractMesh{P}, visible=true, s=1, _s=1) where {P} lm = length(mesh) _lm = internal_length(mesh) new{P,ptype(mesh),typeof(mesh), typeof(visible)}(mesh, visible, CompoundData(s, _s, lm, _lm)) end end @inline Base.length(m::CompoundMesh) = length(m.mesh) @inline nodes(m::CompoundMesh) = nodes(m.mesh) @inline internal_index(m::CM,index::Int64) where CM<:CompoundMesh = internal_index(m.mesh,index) @inline external_index(m::CM,index::Int64) where CM<:CompoundMesh = external_index(m.mesh,index) @inline external_index(m::CM,inds::AVI) where {CM<:CompoundMesh,AVI<:AbstractVector{Int64}} = external_index(m.mesh,inds) @inline internal_index(m::CM,inds::AVI) where {CM<:CompoundMesh,AVI<:AbstractVector{Int64}} = internal_index(m.mesh,inds) @inline internal_sig(mesh::CM,sig::AVI,static::StaticTrue) where {CM<:CompoundMesh,AVI<:AbstractVector{Int64}} = internal_sig(mesh.mesh,sig,static) @inline internal_sig(mesh::CM,sig::AVI,static::StaticFalse) where {CM<:CompoundMesh,AVI<:AbstractVector{Int64}} = internal_sig(mesh.mesh,sig,static) @inline vertices_iterator(m::CM, index::Int64, internal::StaticFalse) where CM<:CompoundMesh = vertices_iterator(m.mesh, index, internal) @inline vertices_iterator(m::CM, index::Int64, internal::StaticTrue) where CM<:CompoundMesh = vertices_iterator(m.mesh, index, internal) @inline all_vertices_iterator(m::CM, index::Int64, internal::StaticTrue) where CM<:CompoundMesh = all_vertices_iterator(m.mesh, index, internal) @inline number_of_vertices(m::CM,i::Int64,static) where CM<:CompoundMesh = number_of_vertices(m.mesh,i,static) @inline push!(mesh::CM, p::Pair{Vector{Int64},T},index) where {T<:Point,CM<:CompoundMesh{T}} = push!(mesh.mesh, p, index) @inline push_ref!(mesh::CM, ref,index) where {T<:Point,CM<:CompoundMesh{T}} = push_ref!(mesh.mesh, ref, index) @inline haskey(mesh::CM,sig::AbstractVector{Int64},index::Int) where CM<:CompoundMesh = haskey(mesh.mesh, sig, index) @inline copy(cm::CM;kwargs...) where CM<:CompoundMesh = CompoundMesh(copy(cm.mesh),cm.visible,cm.data.start,cm.data._start) ########################################################################################################### ## Serial Meshes... ########################################################################################################### # Define the SerialMesh struct CompoundData struct SerialMesh{P <: Point, VDB <: VertexDB{P}, T , D , PARAMS,RT} <: AbstractMesh{P,VDB} meshes::T dimensions::D buffer_sig::Vector{Int64} data::MVector{1,Int64} parameters::PARAMS rt::RT end @inline copy_sig(mesh::LM,sig) where {LM<:SerialMesh} = _copy_indeces(mesh,sig,mesh.buffer_sig) const SerialMeshVector{P <: Point, VDB <: VertexDB{P},MType,PARAMS,RT} = SerialMesh{P, VDB , Vector{MType} , Vector{CompoundData} , PARAMS,RT} where {MType <: AbstractMesh{P,VDB}} function copy(m::SM;kwargs...) where {P,SM<:SerialMesh{P}} crt(::Nothing) = nothing crt(i) = copy(i) m2 = map(x->copy(x;kwargs...),m.meshes) for k in 1:length(m2) if typeof(m2[k])!=typeof(m.meshes[k]) println(typeof(m2[k].mesh)) println(typeof(m.meshes[k].mesh)) error("") end end dims = map(x->x.data,m2) return SerialMesh{P,ptype(m),typeof(m2),typeof(dims),typeof(m.parameters),typeof(m.rt)}(m2, dims, Int64[],copy(m.data),m.parameters,crt(m.rt)) end const SerialMeshTuple{P <: Point, VDB <: VertexDB{P},PARAMS,RT} = SerialMesh{P, VDB , T , D , PARAMS,RT} where {T <: Tuple{Vararg{AbstractMesh{P,VDB}}}, D <: Tuple{Vararg{CompoundData}}} #= #FlexibleMeshContainer(m::M) where M<:SerialMeshTuple = MeshContainer #FlexibleMeshContainer(m::M) where M<:SerialMeshVector = ExplicitMeshContainer function SerialMeshTuple(m::SerialMeshTuple{P,VDB}, n::AbstractMesh{P,VDB}, isvisible=true) where {P,VDB} _l = sum(getfield(mesh, :data)._length for mesh in m.meshes) l = sum(getfield(mesh, :data).length for mesh in m.meshes) visible = StaticBool(isvisible) newcompound = CompoundMesh(n, visible, l + 1, _l + 1) set_offset(n,_l) m2 = (m.meshes..., newcompound) dims = (m.dimensions...,newcompound.data) SerialMesh{P,ptype(m),typeof(m2),typeof(dims),typeof(m.parameters),typeof(m.rt)}(m2, dims, Int64[],MVector{1,Int64}([length(m)+length(newcompound)]),m.parameters,m.rt) end function SerialMeshTuple(m::AM, isvisible=true;parameters = nothing,references = Int64[]) where {P,VDB, AM<:AbstractMesh{P,VDB} } visible = StaticBool(isvisible) cm = CompoundMesh(m, StaticBool(visible), 1, 1) meshes = (cm,) data = (cm.data,) SerialMesh{P,ptype(m),typeof(meshes),typeof(data),typeof(parameters),typeof(references)}( (cm,), (cm.data,), Int64[],MVector{1,Int64}([length(cm)]), parameters, references ) end function SerialMeshTuple(xs::HVN, visible=true;parameters = nothing,references = Int64[]) where {P, HVN<:HVNodes{P}} m = Voronoi_MESH(xs,references,parameters) cm = CompoundMesh(m, visible, 1, 1) meshes = (cm,) data = (cm.data,) SerialMesh{P,ptype(m),typeof(meshes),typeof(data),typeof(parameters),typeof(references)}( meshes, data, Int64[],MVector{1,Int64}([length(cm)]), parameters, references ) end function SerialMeshTuple(m::SerialMeshTuple{P,VDB},xs::P2,isvisible=true) where {P,P2<:HVNodes,VDB} refmode(n::Nothing) = nothing refmode(n) = copy(n) return SerialMeshTuple(m,Voronoi_MESH(xs,refmode(m.rt),m.parameters),isvisible) end @inline append(m::SerialMeshTuple,d,visible=true) = SerialMeshTuple(m,d,visible) SearchTree(nodes::SerialNodes{P,SM},type=HVKDTree) where {P,SM<:SerialMeshTuple} = error("please implement") #HVTree(nodes,type) =# function SerialMeshVector(xs::HV,visible::Bool=true; parameters = nothing, references = Int64[]) where {P, HV<:HVNodes{P}} m = Voronoi_MESH(xs,references,parameters) SerialMeshVector(m,visible) #= m = Voronoi_MESH(xs,references,vertex_storage=parameters) cm = CompoundMesh(m, visible, 1, 1) meshes = [cm] data = [cm.data] SerialMesh{P,ptype(m),typeof(meshes),typeof(data),typeof(parameters),typeof(references)}( meshes, data, Int64[],MVector{1,Int64}([length(cm)]), parameters, references )=# end function SerialMeshVector(m::AM,visible::Bool=true) where {P, AM<:AbstractMesh{P}} cm = CompoundMesh(m, visible, 1, 1) meshes = [cm] data = [cm.data] SerialMesh{P,ptype(m),typeof(meshes),typeof(data),typeof(m.parameters),typeof(m.references)}( meshes, data, Int64[],MVector{1,Int64}([length(cm)]), m.parameters, m.references ) end function append!(m::SM,n::MType,visible=true) where {SM<:SerialMeshVector,MType<:AbstractMesh}#P <: Point, VDB <: VertexDB{P},MType<:AbstractMesh{P,VDB},PARAMS,RT, SM<:SerialMeshVector{P,VDB,MType,PARAMS,RT}} _l = sum(mesh.data._length for mesh in m.meshes) l = sum(mesh.data.length for mesh in m.meshes) newcompound = CompoundMesh(n, visible, l + 1, _l + 1) set_offset(n,_l) push!(m.meshes, newcompound) push!(m.dimensions,newcompound.data) m.data[1] += length(n) return m end @inline append(m::SerialMeshVector,d,visible=true) = append!(m,d,visible) function append!(m::SerialMeshVector,xs::HVNodes,visible = true)# where {P <: Point, HVN<:HVNodes{P},VDB <: VertexDB{P},MType<:AbstractMesh{P,VDB},PARAMS,RT, SM<:SerialMeshVector{P,VDB,MType,PARAMS,RT}} refmode(n::Nothing) = nothing refmode(n) = copy(n) append!(m,Voronoi_MESH(xs,refmode(m.rt),m.parameters),visible) end @inline Base.getproperty(cd::SerialMesh, prop::Symbol) = dyncast_get(cd,Val(prop)) @inline @generated dyncast_get(cd::SerialMesh, ::Val{:length}) = :(getfield(cd,:data)[1]) @inline @generated dyncast_get(cd::SerialMesh, d::Val{S}) where S = :( getfield(cd, S)) @inline @generated dyncast_get(cd::SerialMesh, d::Val{:boundary_Vertices}) where S = :( getfield(cd, :meshes)[1].mesh.boundary_Vertices) @inline Base.setproperty!(cd::SerialMesh, prop::Symbol, val) = dyncast_set(cd,Val(prop),val) @inline @generated dyncast_set(cd::SerialMesh, ::Val{:length},val) = :(getfield(cd,:data)[1]=val) @inline @generated dyncast_set(cd::SerialMesh, d::Val{S},val) where S = :( setfield(cd, S,val)) @inline length(m::SM) where SM<:SerialMesh = sum(cd->cd.length,m.dimensions)#m.length @inline internal_length(m::SM) where SM<:SerialMesh = sum(cd->cd._length,m.dimensions) """takes an internal index and returns the meshindex it belongs to""" @inline @Base.propagate_inbounds function meshindex_from_internal(m::AM,index) where AM<:SerialMesh found = 1 i=2 ld = length(m.dimensions) while i<=ld m.dimensions[i].start >index && break found = i i += 1 end return found end """takes an official index and returns the meshindex it belongs to""" @inline function meshindex_from_external(m,index) found = 1 for i in 2:(length(m.dimensions)) m.dimensions[i]._start >index && break found = i end return found end function internal_index(m::SM,index::Int64) where SM<:SerialMesh if index<=m.length found = meshindex_from_external(m,index) _index = index + 1 - m.dimensions[found].start return internal_index(m.meshes[found],_index) + m.dimensions[found]._start - 1 else return maxInt - (index - m.length) end end @Base.propagate_inbounds function external_index(m::SM,index::Int64) where SM<:SerialMesh if index<=m.length found = meshindex_from_internal(m,index) _index = index + 1 - m.dimensions[found]._start return external_index(m.meshes[found],_index) + m.dimensions[found].start - 1 else return (maxInt - index) + m.length end end @inline external_index(m::SM,inds::AVI) where {SM<:SerialMesh,AVI<:AbstractVector{Int64}} = _external_indeces(m,inds,m.buffer_sig) @inline internal_index(m::SM,inds::AVI) where {SM<:SerialMesh,AVI<:AbstractVector{Int64}} = _internal_indeces(m,inds,m.buffer_sig) @inline internal_sig(mesh::SM,sig::AVI,static::StaticTrue) where {SM<:SerialMesh,AVI<:AbstractVector{Int64}} = sort!(_internal_indeces(mesh,sig,mesh.buffer_sig)) @inline function internal_sig(mesh::SM,sig::AVI,static::StaticFalse) where {SM<:SerialMesh,AVI<:AbstractVector{Int64}} sig .= _internal_indeces(mesh,sig,mesh.buffer_sig) return sort!(sig) end @inline external_sig(mesh::SM,sig::AVI,static::StaticTrue) where {SM<:SerialMesh,AVI<:AbstractVector{Int64}} = sort!(_external_indeces(mesh,sig,mesh.buffer_sig)) @inline function external_sig(mesh::SM,sig::AVI,static::StaticFalse) where {SM<:SerialMesh,AVI<:AbstractVector{Int64}} sig .= _external_indeces(mesh,sig,mesh.buffer_sig) return sig end #=function vertices_iterator(m::SM, index::Int64, internal::StaticFalse) where SM<:SerialMesh found = meshindex_from_external(m,index) _index = index + 1 - m.dimensions[found].start return vertices_iterator(m.meshes[found],_index,internal) end=# @inline function get_vertex(m::SerialMesh, ref::VertexRef) found = meshindex_from_internal(m,ref.cell) _cell = ref.cell + 1 - m.dimensions[found]._start get_vertex(m.meshes[found].mesh,VertexRef(_cell,ref.index)) end @inline function mark_delete_vertex!(m::SM,sig,i,ii) where {SM<:SerialMesh} found = meshindex_from_internal(m,i) mark_delete_vertex!(m.meshes[found].mesh,sig,i-m.meshes[found].data._start+1,ii) end @inline function delete_reference(m::SM,s,ref) where SM<:SerialMesh found = meshindex_from_internal(m,s) delete_reference(m.meshes[found].mesh,s-m.meshes[found].data._start+1,ref) end @inline function cleanupfilter!(m::S,i) where S<:SerialMesh found = meshindex_from_internal(m,i) cleanupfilter!(m.meshes[found].mesh,i-m.meshes[found].data._start+1) end function vertices_iterator(m::SM, index::Int64, internal::StaticTrue) where SM<:SerialMesh found = meshindex_from_internal(m,index) _index = index + 1 - m.dimensions[found]._start #println(_index," from ",index) return vertices_iterator(m.meshes[found],_index,internal) end function all_vertices_iterator(m::SM, index::Int64, internal::StaticTrue) where SM<:SerialMesh found = meshindex_from_internal(m,index) _index = index + 1 - m.dimensions[found]._start return all_vertices_iterator(m.meshes[found],_index,internal) end @inline function number_of_vertices(m::SM, index::Int64, internal::StaticTrue) where SM<:SerialMesh found = meshindex_from_internal(m,index) _index = index + 1 - m.dimensions[found]._start return number_of_vertices(m.meshes[found],_index,internal) end #=function number_of_vertices(m::SM, index::Int64, internal::StaticFalse) where SM<:SerialMesh found = meshindex_from_external(m,index) _index = index + 1 - m.dimensions[found].start return number_of_vertices(m.meshes[found],_index,internal) end=# function testint(mesh::SM,index) where {T<:Point,SM<:SerialMesh{T}} found = meshindex_from_internal(mesh,index) _index = index + 1 - mesh.dimensions[found]._start return found,_index end function push!(mesh::SM, p::Pair{Vector{Int64},T},index) where {T<:Point,SM<:SerialMesh{T}} found = meshindex_from_internal(mesh,index) _index = index + 1 - mesh.dimensions[found]._start push!(mesh.meshes[found],p,_index) end @inline function push_ref!(mesh::SM, ref,index) where {T<:Point,SM<:SerialMesh{T}} found = meshindex_from_internal(mesh,index) _index = index + 1 - mesh.dimensions[found]._start #print("$index, $ref, ## $_index") push_ref!(mesh.meshes[found],ref,_index) #println(" ---> $(get_vertex(mesh,ref))") end function haskey(mesh::SM,sig::AbstractVector{Int64},index::Int) where SM<:SerialMesh found = meshindex_from_internal(mesh,index) _index = index + 1 - mesh.dimensions[found]._start haskey(mesh.meshes[found],sig,_index) end function reset(mesh::SerialMesh) s = 1 for i in 1:length(mesh.mesh) m = mesh.mesh[i] m.data.start = s m.data.length = length(m.mesh) s += m.data.length end mesh.length = sum(cd->cd.length,mesh.dimensions) end struct SerialMesh_Store_1{P, VDB, T , D , PARAMS,RT} meshes::T #dimensions::D #buffer_sig::Vector{Int64} data::MVector{1,Int64} parameters::PARAMS rt::RT end JLD2.writeas(::Type{SerialMesh{P, VDB, T , D , PARAMS,RT}}) where {P, VDB, T , D , PARAMS,RT} = SerialMesh_Store_1{P, VDB, T , D , PARAMS,RT} JLD2.wconvert(::Type{SerialMesh_Store_1{P, VDB, T , D , PARAMS,RT}},m::SerialMesh{P, VDB, T , D , PARAMS,RT} ) where {P, VDB, T , D , PARAMS,RT} = SerialMesh_Store_1{P, VDB, T , D , PARAMS,RT}(m.meshes,m.data,m.parameters,m.rt) function JLD2.rconvert(::Type{SerialMesh{P, VDB, T , D , PARAMS,RT}},m::SerialMesh_Store_1{P, VDB, T , D , PARAMS,RT}) where {P, VDB, T , D , PARAMS,RT} dims = map(x->x.data,m.meshes) SerialMesh{P, VDB, T , D , PARAMS,RT}(m.meshes,dims,Int64[],m.data,m.parameters,m.rt) end ########################################################################################################### ## Serial Nodes... ########################################################################################################### struct SerialNodes{P<:Point,SM<:SerialMesh{P}} <: HVNodes{P} mesh::SM len::Int64 end SerialNodes(m::SerialMesh) = SerialNodes{PointType(m),typeof(m)}(m,m.dimensions[end].start + m.dimensions[end].length - 1) nodes(m::SerialMesh) = SerialNodes(m) @inline Base.size(n::SerialNodes) = (n.len,) function Base.getindex(nodes::SerialNodes, index) m = nodes.mesh found = meshindex_from_external(m,index) _index = index + 1 - m.dimensions[found].start getindex(HighVoronoi.nodes(m.meshes[found].mesh),_index) end function Base.setindex!(nodes::SerialNodes, val, index) m = nodes.mesh found = meshindex_from_external(m,index) _index = index + 1 - m.dimensions[found].start setindex!(HighVoronoi.nodes(m.meshes[found].mesh),val,_index) end @inline Base.length(nodes::SerialNodes) = nodes.len #function Base.length(nodes::SerialNodes) # d = nodes.mesh.bufferdata[end] # return d.start+d.length-1 #end function Base.iterate(sn::SerialNodes, state=1) if state>length(sn) return nothing else return (getindex(sn,state),state+1) end end SearchTree(nodes::SerialNodes{P,SM},type=HVKDTree) where {P,SM<:SerialMeshVector} = HVTree(nodes,type)
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
7854
module HighVoronoi #using IterTools using SpecialFunctions using LinearAlgebra using NearestNeighbors using Printf using IterativeSolvers using SparseArrays using StaticArrays using Crayons using JLD2 using Polyhedra using GLPK using Plots using Distances using ProgressMeter #using Cthulhu using Base.Threads using Base.Threads: Atomic, atomic_cas! #using Traceur const maxInt = typemax(Int64) const Point{T} = AbstractVector{T} where T<:Real const Points{T} = AbstractVector{<:Point{T}} where T<:Real const Sigma = AbstractVector{<:Integer} # Encoded the vertex by the ids of its generators. const Vertex = Tuple{<:Sigma, <: Point} const Vertices = Dict{<:Sigma, <:Point} const ListOfVertices = AbstractVector{<:Vertices} const SigmaView = typeof(view([1, 2, 3, 4], 2:3)) const UseNeighborFinderDimension = 3 const Edge = Vector{Int64} #SVector{S,Int64} where S MakeVertex(sig::Sigma) = sig """ struct MultiThread node_threads::Int64 sub_threads::Int64 MultiThread() = new(Threads.nthreads(), 1) MultiThread(node_threads, sub_threads) = new(node_threads, sub_threads) The `MultiThread` struct is used to initiate a multi-threaded computation where the grid is divided into a maximum of `node_threads` sub-grids. Each sub-grid is processed using up to `sub_threads` threads, depending on the maximum number of threads provided by Julia. # Constructors ## `MultiThread()` The default constructor initializes `node_threads` using the system's available number of threads and sets `sub_threads` to 1. ## `MultiThread(node_threads, sub_threads)` This constructor allows for manual specification of `node_threads` and `sub_threads`. """ struct MultiThread node_threads::Int64 sub_threads::Int64 MultiThread() = new(Threads.nthreads(),1) #MultiThread(node_threads,sub_threads) = new(min(node_threads,Threads.nthreads()),sub_threads) MultiThread(node_threads,sub_threads) = new(node_threads,sub_threads) end """ struct SingleThread end The `SingleThread` struct forces the computation to be performed on a single thread. The algorithm is internally optimized for single-thread execution, which is different from using `MultiThread(1, 1)`. """ struct SingleThread end """ AutoThread() -> Union{MultiThread, SingleThread} This function automatically selects the appropriate threading strategy based on the number of threads available in Julia. If Julia provides more than one thread, the function returns a `MultiThread` instance with the number of threads set to the maximum available (`Threads.nthreads()`) and `sub_threads` set to 1. If only one thread is available, it returns a `SingleThread` instance. This allows the computation to adapt dynamically to the threading capabilities of the system. """ AutoThread() = Threads.nthreads()>1 ? MultiThread(Threads.nthreads(),1) : SingleThread() # the following methods will be overwritten vor meshes, integrals and integrators import Base.prepend! import Base.append! import Base.copy import Base.length import Base.push! import Base.pop! import Base.haskey import Base.keepat! import Base.filter! import Base.show import Base.rehash! import Base.merge import Base.lock import Base.unlock import Base.delete! struct Call_HEURISTIC_MC end const VI_HEURISTIC_MC=Call_HEURISTIC_MC() struct Call_HEURISTIC_INTERNAL end const VI_HEURISTIC_INTERNAL=Call_HEURISTIC_INTERNAL() struct Call_HEURISTIC end const VI_HEURISTIC=Call_HEURISTIC() struct Call_GEO end const VI_GEOMETRY=Call_GEO() struct Call_POLYGON end const VI_POLYGON=Call_POLYGON() struct Call_FAST_POLYGON end const VI_FAST_POLYGON=Call_FAST_POLYGON() struct Call_MC end const VI_MONTECARLO=Call_MC() struct Call_NO end const VI_NOTHING=Call_NO() #import show #StaticBool, FunWithTuples, StaticArray-stuff include("hvlocks.jl") include("tools.jl") include("sparsewrapper.jl") include("threaddict.jl") include("queuehashing.jl") include("parallellocks.jl") include("queues.jl") include("hvdatabase.jl") include("NearestNeighborModified/NearestNeighbors.jl") include("edgehashing.jl") include("indexhash.jl") #include("staticparams.jl") #include("database.jl") include("quicksort.jl") include("searchtrees.jl") #HVView and descendant SwitchView include("hvview.jl") # boundary type include("boundary.jl") include("nodes.jl") # HVNodes, AbstractCombinedNodes, NodesContainer, UnsortedNodes, # ExtendedNodes, SortedNodes, NodesView include("extended.jl") include("abstractmesh.jl") # AbstractMesh, MeshContainer include("filter.jl") include("vdbexplicitheap.jl") include("vdbvertexref.jl") include("vdbdatabaseref.jl") include("abstractintegral.jl") include("voronoinodes.jl") include("voronoi_mesh.jl") include("meshview.jl") include("parallelmesh.jl") include("edgeiteratebase.jl") # only meaningful for debugging include("exceptions.jl") # edge iterators for periodic grids / non-general verteces include("edgeiterate.jl") # composing functions include("composer.jl") # neighbor iterator include("neighbors.jl") # iterator to set up distriubutions according to given density include("densityrange.jl") # node types # The Voronoi mesh include("FVmesh.jl") # Storing integral data include("vertexchecker.jl") include("integral.jl") include("serialintegral.jl") include("parallelintegral.jl") # handling mesh on the level of the user include("voronoidomain.jl") include("serialdomain.jl") include("geometry.jl") # VoronoiGeometry include("voronoidata.jl") include("discretefunctions.jl") include("substitute.jl") # refinement by substitution # Functions for diplay of progress include("progress.jl") # 2D MetaPost output include("draw.jl") # integrate functions and volume include("integrate.jl") include("polyintegrator.jl") include("fastpolyintegrator.jl") #include("polyintegrator_general.jl") include("heuristic.jl") include("mcintegrator.jl") include("heuristic_mc.jl") include("integrator.jl") include("cleanup_cell.jl") # calculate voronoi mesh on the very lowes levels include("raycast-types.jl") include("raycast.jl") include("sysvoronoi.jl") #include("find_delaunay.jl") include("improving.jl") include("meshrefine.jl") include("periodicmesh.jl") include("cubicmesh.jl") # calculations on domain level include("domain.jl") include("domainrefine.jl") # refinement of domains # needed for exact and fast volume calculation in the polyintegrator algorithms include("Leibnitzrule.jl") # L1 projection onto subgrids include("l1projection_new.jl") include("R-projection.jl") include("finitevolume.jl") include("statistics.jl") #include("chull.jl") # What will be exported: export DensityRange export VoronoiNodes export VoronoiNode export VoronoiGeometry export PeriodicVoronoiBasis export integrate! export Voronoi_MESH export Voronoi_Integral export VoronoiData export CompactVoronoiData export VoronoiFV export refine! export refine export indeces_in_subset export substitute! export interactionmatrix export memory_allocations export Boundary export cuboid export center_cube export BC_Dirichlet export BC_Neumann export BC_Periodic export MetaPostBoard export PlotBoard export draw2D export draw3D export write_jld export load_Voronoi_info export FunctionComposer export VoronoiFVProblem export linearVoronoiFVProblem export FVevaluate_boundary export VoronoiKDTree export StepFunction export DiameterFunction export InterfaceFunction export PeriodicFunction export FunctionFromData export R_projection export get_Bulkintegral export get_Fluxintegral export show export VI_GEOMETRY export VI_HEURISTIC export VI_HEURISTIC_MC export VI_MONTECARLO export VI_POLYGON export VI_FAST_POLYGON export RaycastParameter export RCOriginal export RCCombined export RCNonGeneral export MultiThread export SingleThread export AutoThread export DatabaseVertexStorage export ClassicVertexStorage export ReferencedVertexStorage end # module
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
3648
######################################################################################################## # calculate a determinant iteratively according to the Leibnitz Minor method. ######################################################################################################## struct Minors HASH::Matrix{Int64} data::Vector{Vector{Float64}} Index::Vector{Int64} dimension::Int64 _buffer::Vector{Vector{Int64}} function Minors(dim) H=hash_matrix(dim) d=Vector{Vector{Float64}}(undef,dim) b=Vector{Vector{Int64}}(undef,dim) for col in 1:dim d[col]=zeros(Float64,hash_column(H,col,dim)) b[col]=zeros(Int64,col) end Ind=zeros(Int64,dim) new(H,d,Ind,dim,b) end end function hash_matrix(dim) HASH=zeros(Int64,dim,dim) for j in 1:dim HASH[1,j]=1 end for i in 2:dim for j in 1:(dim-(i-1)) for l in (j+1):(dim-(i-1)+1) HASH[i,j]+=HASH[i-1,l] end end end return HASH end function vor_minor_determinant(minors,vectors) for i in 1:(minors.dimension) k_minor(minors,i,vectors[i]) #println(all_determinants[i]) end return (minors.data[end])[1] end function hash_column(hash,col,dim) _sum=0 for i in 1:dim _sum+=hash[col,i] end return _sum end function k_minor(minors::Minors,k,V) #offset=0 dim=minors.dimension #println(k) if k==1 data=minors.data[1] for i in 1:dim data[i]=V[i] end else #for i in 1:k offset+=hash_column(minors.HASH,i,dim) end _minor=minors._buffer[k] # This represents a minor of k rows (sorted) and the last k columns for j in 1:k _minor[j]=j end # minor has the numbers (1,2,3,....,k) index=1 #println(_minor) while true result=0.0 #println(_minor) DATAk_m_one=(minors.data[k-1]) sign=(-1) for j in 1:k sign*=(-1) # same as factor (-1)^(j+1) result+=V[_minor[j]]*(DATAk_m_one[get_minor(minors,_minor,j,k-1)])*sign #println("V($(_minor[j]))*M($_minor,$j)=$(V[_minor[j]])*$(((minors.data[k-1])[get_minor(minors,_minor,j,k-1)]))") end #(minors.data[k])[get_minor(minors,_minor,0,k)]=result (minors.data[k])[index]=result # same result, but faster.... index+=1 if !next_minor(_minor,dim) break end end end end function next_minor(minor,dim) k=length(minor) column=k while true if column<=0 return false end minor[column]+=1 if minor[column]<=dim-k+column for _cc in (column+1):k minor[_cc]=minor[_cc-1]+1 end return true else column-=1 end end end function get_minor(minors::Minors,indeces,skip,top_col) # minors: list of minors, indeces: array storing current indeces, # _cancel: position in ideces which is not considered, _length: length of sublock, i.e. length(indeces)-1 index=1 storage=0 col=top_col old_row=0 while col>0 if index==skip index+=1 end for i in (old_row+1):indeces[index]-1 storage+=minors.HASH[col,i] end old_row=indeces[index] storage+= col==1 ? 1 : 0 col-=1 index+=1 end #println("ind: $indeces, skip: $skip, storage: $storage") return storage end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
1101
R_proj_tree(tree::Nothing,VG) = VoronoiKDTree(VG) R_proj_tree(tree,VG) = tree R_proj_diam(diameters::Nothing,VG,tree) = DiameterFunction(VG,tree=tree) R_proj_diam(diameters,VG,tree) = diameters function R_projection(u::Function,VG::VoronoiGeometry; rays=100, tree=nothing, diameters=nothing, factor=1.0,only_vector=false) tree = R_proj_tree(tree,VG) diams = R_proj_diam(diameters,VG,tree) factor = abs(min(1.0,factor)) points = Vector{Vector{Float64}}(undef,rays) nodes = VG.Integrator.Integral.MESH.nodes dim = length(nodes[1]) lmesh = length(nodes) count = 0 while count<rays r = randn(dim) if norm(r)<1 count+=1 points[count] = factor*r end end values = zeros(Float64,lmesh) for i in 1:lmesh x0 = nodes[i] r = diams(x0)[1] for k in 1:rays values[i] += u(x0+r*points[k]) end end values ./= rays if only_vector return values else return StepFunction(VG,values,tree=tree) end end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
11869
abstract type HVIntegral{P<:Point} end PointType(d::HVIntegral{P}) where P = P @inline function enable(inte::III; neighbors=false,volume=false,integral=false,kwargs...) where III<:HVIntegral volume |= integral neighbors |= volume neighbors && enable_neighbor_data(inte) volume && enable_geo_data(inte) integral && enable_integral_data(inte) end @inline dimension(i::HVI) where {P,HVI<:HVIntegral{P}} = size(P)[1] @inline function set_neighbors(Inte::HV,i,neigh,proto_bulk,proto_interface) where HV<:HVIntegral mInte = mesh(Inte) set_neighbors(Inte,internal_index(mInte,i),sort!(_internal_indeces(mInte,neigh)),proto_bulk,proto_interface,staticfalse) end @inline function get_neighbors(Inte::HV,i) where HV<:HVIntegral mInte = mesh(Inte) external_index(mInte,copy(get_neighbors(Inte,internal_index(mInte,i),staticfalse))) end @inline hascelldata(I::HVI,_Cell) where HVI<:HVIntegral = _has_cell_data(I,internal_index(mesh(I),_Cell)) @inline function cell_data_writable(I::HVI,_Cell,vec,vecvec;printshit=false,get_integrals=statictrue) where HVI<:HVIntegral cdw = cell_data_writable(I,internal_index(mesh(I),_Cell),vec,vecvec,staticfalse,get_integrals=get_integrals) new_neigh = copy(cdw.neighbors) indices = collect(1:length(cdw.neighbors)) printshit && println(new_neigh) _external_indeces(mesh(I),new_neigh) printshit && println(new_neigh) quicksort!(new_neigh,indices,indices) printshit && println(indices) #println(typeof(cdw.area)) #println(typeof(cdw.interface_integral)) return (volumes = cdw.volumes, area = ShuffleViewVector(indices,cdw.area), bulk_integral = get_integrals==true ? cdw.bulk_integral : nothing, interface_integral=get_integrals==true ? ShuffleViewVector(indices,cdw.interface_integral) : nothing, neighbors = new_neigh,indices=indices) end @inline get_area(I::HV,c,n) where HV<:HVIntegral = get_area(I,c,n,staticfalse) @inline function get_area(I::HV,c,n,::StaticFalse) where HV<:HVIntegral m = mesh(I) get_area(I,internal_index(m,c),internal_index(m,n),statictrue) end @inline get_integral(I::HV,c,n) where HV<:HVIntegral = get_integral(I,c,n,staticfalse) @inline function get_integral(I::HV,c,n,::StaticFalse) where HV<:HVIntegral m = mesh(I) get_integral(I,internal_index(m,c),internal_index(m,n),statictrue) end @inline neighbors(i::AI,k) where AI<:HVIntegral = isassigned(i.neighbors,k) ? i.neighbors[k] : Int64[] @inline volumes(i::AI,k) where AI<:HVIntegral = isassigned(i.volumes,k) ? i.volumes[k] : 0 @inline area(i::AI,k) where AI<:HVIntegral = isassigned(i.area,k) ? i.area[k] : Float64[] @inline bulk_integral(i::AI,k) where AI<:HVIntegral = isassigned(i.bulk_integral,k) ? i.bulk_integral[k] : Float64[] @inline interface_integral(i::AI,k) where AI<:HVIntegral = isassigned(i.interface_integral,k) ? i.interface_integral[k] : Vector{Vector{Float64}}() #= function compare(i::I1,ii::I2) where {I1<:HVIntegral,I2<:HVIntegral} _sum(A,B) = length(B)>0 ? sum(A,B) : 0.0 result = true if enabled_volumes(i) && enabled_volumes(ii) && length(i.volumes)==length(ii.volumes) differ = sum(k->norm(volumes(i,k)-volumes(ii,k)),1:length(i.volumes)) result &= differ<0.1 println("Total volumes error: $differ") elseif enabled_volumes(i) || enabled_volumes(ii) result = false println("i enabled volumes: $(enabled_volumes(i)), ii enabled volumes: $(enabled_volumes(ii)) ; Lengths: $(length(i.volumes)) vs. $(length(ii.volumes))") end if enabled_bulk(i) && enabled_bulk(ii) && length(i.bulk_integral)==length(ii.bulk_integral) try differ = sum(k->norm(bulk_integral(i,k)-bulk_integral(ii,k)),1:length(i.bulk_integral)) result &= differ<0.1 println("Total bulk_integral error: $differ") catch e if isa(e, DimensionMismatch) println("dimensions of integrals do not match") result = false else rethrow(e) # Rethrow the exception if it's not a DimensionMismatch error end end elseif enabled_bulk(i) || enabled_bulk(ii) result = false println("i enabled bulk_integral: $(enabled_bulk(i)), ii enabled bulk_integral: $(enabled_bulk(ii)) ; Lengths: $(length(i.bulk_integral)) vs. $(length(ii.bulk_integral))") end neighs = true if enabled_neighbors(i) && enabled_neighbors(ii) && length(i.neighbors)==length(ii.neighbors) differ = sum(k->norm(neighbors(i,k)-neighbors(ii,k)),1:length(i.neighbors)) result &= differ<0.1 neighs &= differ<0.1 println("Total neighbors error: $differ") elseif enabled_neighbors(i) || enabled_neighbors(ii) neighs = false result = false println("i enabled neighbors: $(enabled_neighbors(i)), ii enabled neighbors: $(enabled_neighbors(ii)) ; Lengths: $(length(i.neighbors)) vs. $(length(ii.neighbors))") end if !neighs println("Error in neighbors, cannot compare area and interface_integral") return false end if enabled_area(i) && enabled_area(ii) && length(i.area)==length(ii.area) differ = sum(k->norm(area(i,k)-area(ii,k)),1:length(i.area)) result &= differ<0.1 println("Total area error: $differ") elseif enabled_area(i) || enabled_area(ii) result = false println("i enabled area: $(enabled_area(i)), ii enabled area: $(enabled_area(ii)) ; Lengths: $(length(i.area)) vs. $(length(ii.area))") end if enabled_interface(i) && enabled_interface(ii) && length(i.interface_integral)==length(ii.interface_integral) try differ = _sum(k->_sum(kk->norm(interface_integral(i,k)[kk]-interface_integral(ii,k)[kk]),1:length(interface_integral(ii,k))),1:length(i.interface_integral)) result &= differ<0.1 println("Total interface_integral error: $differ") catch e if isa(e, DimensionMismatch) println("dimensions of integrals do not match") result = false else rethrow(e) # Rethrow the exception if it's not a DimensionMismatch error end end elseif enabled_interface(i) || enabled_interface(ii) result = false println("i enabled interface_integral: $(enabled_interface(i)), ii enabled interface_integral: $(enabled_interface(ii)) ; Lengths: $(length(i.interface_integral)) vs. $(length(ii.interface_integral))") end return result end =# function resize_integrals(i::AI,_size) where AI<:HVIntegral error("you may need to reactivate the following code") #=if enabled_bulk(i) for k in 1:length(i) inte = bulk_integral(i,k) length(inte)>0 && resize!(inte,_size) end end if enabled_interface(i) for k in 1:length(i) inte = interface_integral(i,k) for kk in 1:length(inte) length(inte[kk])>0 && resize!(inte[kk],_size) end end end=# end ############################################################################################################ ## NoIntegral ############################################################################################################ #=struct NoIntegral{P<:Point} <: HVIntegral{P} end NoIntegral(mesh::AbstractMesh{P}) where P = NoIntegral{P}() add_virtual_points(Integral::NoIntegral, xs) = Integral =# ############################################################################################################ ## IntegralContainer ############################################################################################################ mutable struct IntegralContainer{P<:Point} <: HVIntegral{P} integral::HVIntegral{P} end mutable struct ExplicitIntegralContainer{P<:Point,HI<:HVIntegral{P}} <: HVIntegral{P} integral::HI end #FlexibleIntegralContainer(m::M) where M<:SerialIntegralTuple = IntegralContainer #FlexibleIntegralContainer(m::M) where M<:SerialIntegralVector = ExplicitIntegralContainer ############################################################################################################ ## IntegralView ############################################################################################################ struct IntegralView{P<:Point, HVI<:HVIntegral{P}, V<:HVView, AM<:AbstractMesh{P},SN,SV,SA,SII,SBI} <: HVIntegral{P} neighbors::SN volumes::SV area::SA interface_integral::SII bulk_integral::SBI data::HVI view::V int_data::MVector{3, Int64} mesh::AM end function IntegralView(d::HVI, v::V) where {P<:Point, HVI<:HVIntegral{P}, V<:HVView} mv = MeshView(mesh(d),v) #new{P, HVI, V, typeof(mv)} IntegralView( MeshViewVector(d.neighbors,mv), # neighbors MeshViewVector(d.volumes,mv), # volumes MeshViewVector(d.area,mv),# area MeshViewVector(d.interface_integral,mv), # interface MeshViewVector(d.bulk_integral,mv), # bulk d, # data v, # view MVector{3, Int64}(zeros(Int64, 3)),# int_data initialized with zeros mv #mesh_view ) end #function IntegralView(d::HVIntegral, v::HV) where HV<:HVView # IntegralView{PointType(d), typeof(d), typeof(v)}(d, v) #end mesh(iv::IntegralView) = iv.mesh #MeshView(mesh(iv.data), iv.view) @inline Base.getproperty(cd::IntegralView, prop::Symbol) = dyncast_get(cd,Val(prop)) @inline @generated dyncast_get(cd::IntegralView, ::Val{:number_of_neighbors}) = :(getfield(cd,:int_data)[1]) @inline @generated dyncast_get(cd::IntegralView, ::Val{:length_neighbors}) = :(getfield(cd,:int_data)[2]) @inline @generated dyncast_get(cd::IntegralView, ::Val{:_Cell}) = :(getfield(cd,:int_data)[3]) @inline @generated dyncast_get(cd::IntegralView, d::Val{S}) where S = :( getfield(cd, S)) @inline Base.setproperty!(cd::IntegralView, prop::Symbol, val) = dyncast_set(cd,Val(prop),val) @inline @generated dyncast_set(cd::IntegralView, ::Val{:number_of_neighbors},val) = :(getfield(cd,:int_data)[1]=val) @inline @generated dyncast_set(cd::IntegralView, ::Val{:length_neighbors},val) = :(getfield(cd,:int_data)[2]=val) @inline @generated dyncast_set(cd::IntegralView, ::Val{:_Cell},val) = :(getfield(cd,:int_data)[3]=val) @inline @generated dyncast_set(cd::IntegralView, d::Val{S},val) where S = :( setfield(cd, S,val)) @inline _has_cell_data(I::IntegralView,_Cell) = _has_cell_data(I.data,_Cell) @inline cell_data_writable(I::IntegralView,_Cell,vec,vecvec,::StaticFalse;get_integrals=statictrue) = cell_data_writable(I.data,_Cell,vec,vecvec,staticfalse,get_integrals=get_integrals) @inline get_neighbors(I::IntegralView,_Cell,::StaticFalse) = get_neighbors(I.data,_Cell,staticfalse) @inline set_neighbors(I::IntegralView,_Cell,new_neighbors,proto_bulk,proto_interface,::StaticFalse) = set_neighbors(I.data,_Cell,new_neighbors,proto_bulk,proto_interface,staticfalse) @inline enable(iv::IV;kwargs...) where IV<:IntegralView = enable(iv.data;kwargs...) @inline enabled_volumes(Integral::IntegralView) = enabled_volumes(Integral.data) @inline enabled_area(Integral::IntegralView) = enabled_area(Integral.data) @inline enabled_bulk(Integral::IntegralView) = enabled_bulk(Integral.data) @inline enabled_interface(Integral::IntegralView) = enabled_interface(Integral.data) @inline get_area(iv::IntegralView,c,n,::StaticTrue) = get_area(iv.data,c,n,statictrue) @inline get_integral(iv::IntegralView,c,n,::StaticTrue) = get_integral(iv.data,c,n,statictrue)
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
26594
struct VertexRef cell::Int64 index::Int64 end abstract type VertexDB{P <: Point} end abstract type VertexDBExplicit{P <: Point} <: VertexDB{P} end abstract type VertexDBReference{P <: Point} <: VertexDB{P} end abstract type VertexDBCentral{P <: Point} <: VertexDB{P} end @inline ptype(vdb::VertexDBExplicit{P}) where P = VertexDBExplicit{P} @inline ptype(vdb::VertexDBReference{P}) where P = VertexDBReference{P} @inline ptype(vdb::VertexDBCentral{P}) where P = VertexDBCentral{P} # Abstract class AbstractMesh abstract type AbstractMesh{P <: Point,VDB<:VertexDB{P}} end @inline PointType(d::AbstractMesh{P}) where P = P @inline dimension(m::AbstractMesh{P}) where P = size(P)[1] @inline ptype(m::AbstractMesh{P, VDB}) where {P <: Point, VDB <: VertexDBExplicit{P}} = VertexDBExplicit{P} @inline ptype(m::AbstractMesh{P, VDB}) where {P <: Point, VDB <: VertexDBReference{P}} = VertexDBReference{P} @inline ptype(m::AbstractMesh{P, VDB}) where {P <: Point, VDB <: VertexDBCentral{P}} = VertexDBCentral{P} @inline number_of_vertices(m::AM,i::Int64) where {AM<:AbstractMesh} = number_of_vertices(m,i,staticfalse) @inline function number_of_vertices(m::AM,i::Int64,::StaticFalse) where {AM<:AbstractMesh} number_of_vertices(m,internal_index(m,i),statictrue) end struct _IterationIndex index::Int64 end IterationIndex(i::II) where {II<:Int} = _IterationIndex(i) IterationIndex(i) = nothing IterationIndex() = nothing #@inline internal_length(m::M) where M<:AbstractMesh = length(m) Queue(m::AbstractMesh{P,VDB},is::Int64) where {P,VDB<:VertexDBExplicit} = VertexQueue(m,Vector{Pair{Vector{Int64},P}}(undef,0),is) Queue(m::AbstractMesh{P,VDB},is::Int64) where {P,VDB<:VertexDBReference} = VertexQueue(m,Vector{VertexRef}(undef,0),is) @inline get_vertex(::AbstractMesh{P},ref::Pair{AV,P}) where {P,AV<:AbstractVector{Int64}} = ref function _copy_indeces(m::AM,inds::AVI,buffer::AVII) where {AM<:AbstractMesh,AVI<:AbstractVector{Int64},AVII<:AbstractVector{Int64}} li = length(inds) if (li>length(buffer)) resize!(buffer,li) end ret = view(buffer,1:li) ret .= inds return ret end function _external_indeces(m::AM,inds::AVI,buffer::AVII) where {AM<:AbstractMesh,AVI<:AbstractVector{Int64},AVII<:AbstractVector{Int64}} li = length(inds) if (li>length(buffer)) resize!(buffer,li) end ret = view(buffer,1:li) for i in 1:li ret[i] = external_index(m,inds[i]) end return ret end @inline function _external_indeces_fit(m::AM,inds::AVI,buffer::AVII) where {AM<:AbstractMesh,AVI<:AbstractVector{Int64},AVII<:AbstractVector{Int64}} li = length(inds) #ret = buffer for i in 1:li buffer[i] = external_index(m,inds[i]) end sort!(buffer) end @inline function _external_indeces(m::AM,inds::AVI) where {AM<:AbstractMesh,AVI<:AbstractVector{Int64}} _external_indeces(m,inds,inds) return inds end @inline function _internal_indeces(m::AM,inds::AVI) where {AM<:AbstractMesh,AVI<:AbstractVector{Int64}} _internal_indeces(m,inds,inds) return inds end function _internal_indeces(m::AM,inds::AVI,buffer::AVII) where {AM<:AbstractMesh,AVI<:AbstractVector{Int64},AVII<:AbstractVector{Int64}} li = length(inds) if (li>length(buffer)) resize!(buffer,li) end ret = view(buffer,1:li) for i in 1:li ret[i] = internal_index(m,inds[i]) end return ret end @inline function _transform_indeces(from::AM1,to::AM2,inds::AVI,buffer::AVII) where {AM1<:AbstractMesh,AM2<:AbstractMesh,AVI<:AbstractVector{Int64},AVII<:AbstractVector{Int64}} inds2 = _internal_indeces(from,inds,buffer) return _external_indeces(to,inds2) end @inline _transform_indeces(from::AM1,to::AM2,inds::AVI) where {AM1<:AbstractMesh,AM2<:AbstractMesh,AVI<:AbstractVector{Int64}} = _transform_indeces(from,to,inds,inds) copy_sig(m,sig) = copy(m,sig) """ push!(mesh::M, p::Pair{Vector{Int64},T}) where {T<:Point, M<:AbstractMesh{T}} Add a vertex to the mesh `mesh` using the provided pair `p`, where `p` is of the form `sig => r`. The `sig` part will be transformed into internal numeration, and the resulting vertex will be stored in the mesh. # Arguments - `mesh::M`: The mesh to which the vertex will be added. - `p::Pair{Vector{Int64},T}`: A pair containing a signature (`sig`) and a point (`r`) where `sig` will be transformed to internal numeration and `r` will be stored as a vertex. # Warning After storing the vertex, the original `sig` will be modified. If you do not want to modify the original `sig`, provide a copy using `copy!(sig)` before calling this function. """ @inline function push!(mesh::M, p::Pair{Vector{Int64},T}) where {T<:Point, M<:AbstractMesh{T}} sig = internal_sig(mesh,copy(p[1])) #copy_sig(mesh,p[1])) #=if typeof(mesh)<:MeshView print("$(p[1]) -> $sig / $(external_sig(mesh,copy(sig),statictrue)) ; ") end=# ref = push!(mesh,sig=>p[2],sig[1]) i = 2 lsig = length(sig) while i <= lsig push_ref!(mesh,ref,sig[i]) i += 1 end return ref end """ haskey(m::AM, v::AbstractVector{Int64}) where AM<:AbstractMesh Check whether the external representation `v` exists within the mesh `m`. # Arguments - `m::AM`: The mesh to search within. - `v::AbstractVector{Int64}`: An external representation of a vertex that is being searched for within the mesh. # Returns - `true` if the external representation `v` exists in the mesh `m`, otherwise `false`. This function checks if the provided external representation `v` corresponds to a vertex already present in the mesh `m` and returns `true` if found. It is a convenient way to check for the existence of vertices within the mesh based on their external representation. """ @inline function haskey(m::AM, v::AVI) where {AM<:AbstractMesh, AVI<:AbstractVector{Int64}} iv = internal_sig(m,v,statictrue) return haskey(m,iv,iv[1]) end @inline function haskey_multithread(m::AM, v::AVI) where {AM<:AbstractMesh, AVI<:AbstractVector{Int64}} c = copy(v) _internal_indeces(m,v,c) sort!(c) return haskey(m,c,c[1]) end """ internal_sig(mesh::M, sig::AVI) where {M<:AbstractMesh, AVI<:AbstractVector{Int64}} Compute the internal signature `sig` for a mesh `mesh`. Standard is a call to `internal_sig(mesh, sig, staticfalse)` # Arguments - `mesh::M`: The mesh for which the internal signature is being computed. - `sig::AVI`: An abstract vector representing the external signature. - `static=staticfalse`: A parameter of type `StaticTrue` or `StaticFalse` to specify whether to write the modified internal signature to an internal buffer (StaticTrue) or directly into `sig` (StaticFalse). Default is `staticfalse`. # Returns - If `static` is StaticTrue, it returns the modified internal signature as an abstract vector. - If `static` is StaticFalse, it modifies `sig` in place and returns nothing. This function computes the internal signature for the given mesh `mesh` based on the external signature `sig`. The `static` parameter determines whether the modified internal signature is stored in an internal buffer (StaticTrue) or written directly within `sig` (StaticFalse). By default, it uses `staticfalse` as the default behavior. """ @inline internal_sig(mesh::M,sig::AVI) where {M<:AbstractMesh, AVI<:AbstractVector{Int64}} = internal_sig(mesh,sig,staticfalse) @inline vertices_iterator(m::M, i::Int64) where {M<:AbstractMesh} = vertices_iterator(m,i,staticfalse) @inline all_vertices_iterator(m::M,i::Int64) where {M<:AbstractMesh} = all_vertices_iterator(m,i,staticfalse) "yields vertices iterator over all vertices of this cell in external view" @inline vertices_iterator(m::M, i::Int64,::StaticFalse) where {M<:AbstractMesh} = begin inind = internal_index(m,i) VertexIterator(m,vertices_iterator(m,inind,statictrue),inind) end "yields iterator over vertices associated primarily with this node in external view. Call with 'statictrue' for internal view!" @inline all_vertices_iterator(m::M, i::Int64,::StaticFalse) where {M<:AbstractMesh} = begin inind = internal_index(m,i) VertexIterator(m,all_vertices_iterator(m,inind,statictrue),inind) end @inline mark_delete_vertex!(m::AM,sig,index::U) where {AM<:AbstractMesh,U<:Union{Nothing,_IterationIndex}} = mark_delete_vertex!(m,sig,sig[1],index) @inline function pushray!(mesh::AM,full_edge,r,u,_Cell) where AM<:AbstractMesh push!(mesh.boundary_Vertices,_internal_indeces(mesh,full_edge)=>boundary_vertex(r,u,internal_index(mesh,_Cell))) end struct Public_BV_Iterator{M<:AbstractMesh} mesh::M buffer::Vector{Int64} Public_BV_Iterator(m) = new{typeof(m)}(m,Int64[]) end function Base.iterate(pbi::PBI,state=1) where {PBI<:Public_BV_Iterator} modify(n::Nothing) = nothing function modify(data) (edge,info) = data[1] edge2 = _external_indeces(pbi.mesh,edge,pbi.buffer) return (ReadOnlyView(edge2),boundary_vertex(info.base,info.direction,external_index(pbi.mesh,info.node))), data[2] end return modify(iterate(pbi.mesh.boundary_Vertices, state...)) end convert_to_vector(pbi::PBI) where {PBI<:Public_BV_Iterator} = begin ret = Vector{Pair{Vector{Int64},boundary_vertex{PointType(pbi.mesh)}}}(undef,length(pbi.mesh.boundary_Vertices)) count = 1 for (sig,bv) in pbi.mesh.boundary_Vertices ret[count] = copy(sig)=>bv count += 1 end return ret end function verify_mesh(mesh,boundary) searcher = Raycast(copy(nodes(mesh)),domain=boundary) c1 = 0 c2 = 0 for i in 1:length(mesh) searcher.tree.active .= false activate_cell( searcher, i, collect((searcher.lmesh+1):(searcher.lmesh+searcher.lboundary) )) for (sig,r) in vertices_iterator(mesh,i) if length(sig)==0 || sig[1]==0 error("") end if !verify_vertex(sig,r,searcher.tree.extended_xs,searcher,true) xs = searcher.tree.extended_xs idx = sort!(_inrange(searcher.tree,r,norm(r-xs[sig[1]])*(1+1E-8))) neigh = Int64[] count = 0 for (sig,r) in vertices_iterator(mesh,idx[1]) append!(neigh,sig) count += 1 end #unique!(sort!(neigh)) error("$i, $sig, $idx, $r, $(nn(searcher.tree.tree,r)), $count, $neigh") c1 += 1 else c2 += 1 end if c1>20 return false end end end return true end function compare(mesh1::AM1,mesh2::AM2,full=false) where {AM1<:AbstractMesh,AM2<:AbstractMesh} println("comparing meshes: "*(full ? "full list of vertices per cell" : "local list of vertices per cell only")) if length(mesh1)!=length(mesh2) println("$(length(mesh1))≠$(length(mesh2)): The meshes have different length") return false end tree = SearchTree(copy(nodes(mesh2))) mynodes = nodes(mesh2) numberOfNodes = length(mesh2) c=0 for i in 1:length(mesh1) for (sig,r) in (full ? vertices_iterator(mesh1,i) : all_vertices_iterator(mesh1,i))#.All_Vertices[i] b = false for (sig2,r2) in (full ? vertices_iterator(mesh2,i) : all_vertices_iterator(mesh2,i))#.All_Vertices[i] sig==sig2 && (b=true) if b && norm(r-r2)>1E-6 println("distance violation: $sig, $(norm(r-r2))") end b==true && break end if !b c+=1 measure = 0.0 pos = 0 for s in sig s>numberOfNodes && break measure = max(norm(mynodes[s]-r),measure) pos += 1 end idx = sort!(inrange(tree,r,(1+1.0E-8)*measure)) println("$i: $sig not in mesh2 but $idx and $(haskey(mesh2,sig)), $r")#, in mesh1: $(haskey(mesh1,sig)), $(haskey(mesh1.All_Vertices[sig[1]],sig)), $(mesh1.All_Vertices[sig[1]])") end end for (sig,r) in (full ? vertices_iterator(mesh2,i) : all_vertices_iterator(mesh2,i))#.All_Vertices[i] b = false for (sig2,_) in (full ? vertices_iterator(mesh1,i) : all_vertices_iterator(mesh1,i))#.All_Vertices[i] sig==sig2 && (b=true) b==true && break end if !b c+=1 println("$i: $sig not in mesh1, mesh2=$(haskey(mesh2,sig)) but mesh1=$(haskey(mesh1,sig)) ")#, in mesh1: $(haskey(mesh1,sig)), $(haskey(mesh1.All_Vertices[sig[1]],sig)), $(mesh1.All_Vertices[sig[1]])") end end c>50 && break end return c==0 end #=function compare(mesh1::AbstractMesh,mesh2::AbstractMesh,m3) length(mesh1)!=length(mesh2) && return false tree = SearchTree(nodes(mesh2)) tree3 = SearchTree(nodes(m3)) mynodes = nodes(mesh2) numberOfNodes = length(mesh2) delta = length(mesh1)-length(m3) c=0 lm1 = 0 lm2 = 0 lm3 = 0 for i in 1:length(m3) lm3 += length(m3.All_Vertices[i]) end for i in 1:length(mesh1) lm1 += length(mesh1.All_Vertices[i]) for (sig,r) in mesh1.All_Vertices[i] b = false for (sig2,_) in mesh2.All_Vertices[i] sig==sig2 && (b=true) b==true && break end if !b c+=1 measure = 0.0 pos = 0 for s in sig s>numberOfNodes && break measure = max(norm(mynodes[s]-r),measure) pos += 1 end idx = sort!(inrange(tree,r,(1+1.0E-8)*measure)) idx3 = sort!(inrange(tree3,r,(1+1.0E-8)*measure)) sig_c = copy(sig) sig_c .-= delta println(sig," ",r) #println("$sig not in mesh2 but $idx, $sig_c: $(haskey(m3,sig_c)), but $idx3 ")#, in mesh1: $(haskey(mesh1,sig)), $(haskey(mesh1.All_Vertices[sig[1]],sig)), $(mesh1.All_Vertices[sig[1]])") end end lm2 += length(mesh2.All_Vertices[i]) for (sig,r) in mesh2.All_Vertices[i] b = false for (sig2,_) in mesh1.All_Vertices[i] sig==sig2 && (b=true) b==true && break end if !b c+=1 #println("$i: $sig not in mesh1, mesh2=$(haskey(mesh2,sig)) but mesh1=$(haskey(mesh1,sig)) ")#, in mesh1: $(haskey(mesh1,sig)), $(haskey(mesh1.All_Vertices[sig[1]],sig)), $(mesh1.All_Vertices[sig[1]])") end end # c>20 && break end c>0 && println("Discrepancy $c of $lm1 vs $lm2 vs $lm3") return c==0 end =# # Mutable struct MeshContainer mutable struct MeshContainer{P <: Point, VDB <: VertexDB{P}} <: AbstractMesh{P,VDB} data::AbstractMesh{P,VDB} end @inline mesh(m::MeshContainer) = m.data mutable struct ExplicitMeshContainer{P <: Point, VDB <: VertexDB{P},AM<:AbstractMesh{P,VDB}} <: AbstractMesh{P,VDB} data::AM end @inline mesh(m::ExplicitMeshContainer) = m.data ########################################################################################################### ## VertexIterator ########################################################################################################### struct BufferVertexData_Dict{VRA<:AbstractVector{VertexRef},SI} in_cell::SI in_mesh::VRA end struct BufferVertexData_Vec{VRA<:AbstractVector{VertexRef},SI<:AbstractVector{Int64}} in_cell::SI in_mesh::VRA end const BufferVertexData_Dict_Vector{VRA,SI} = BufferVertexData_Dict{VRA,SI} where {VRA<:AbstractVector{VertexRef},SI<:AbstractVector{Pair}} BufferVertexData(c::SI,m::VRA) where {VRA<:AbstractVector{VertexRef},SI} = BufferVertexData_Dict(c,m) BufferVertexData(c::SI,m::VRA) where {VRA<:AbstractVector{VertexRef},SI<:AbstractVector{Int64}} = BufferVertexData_Vec(c,m) struct VertexRefIterator{AM<:AbstractMesh,AVR<:AbstractVector{VertexRef},L} m::AM refs::AVR l::Int64 lock::L function VertexRefIterator(m::AM1,r::AVR1) where {AM1,AVR1} lock = ReadWriteLock(m) new{AM1,AVR1,typeof(lock)}(m,r,length(r),lock) end end @inline Base.length(vi::VI) where {VI<:VertexRefIterator} = vi.l @inline Base.iterate(vi::VI, state=1) where {VI<:VertexRefIterator} = _iterate(vi,state,nothing) @inline function _iterate(vi::VI, state,default) where {VI<:VertexRefIterator} index = state miss = 0 readlock(vi.lock) while index<=vi.l ref = vi.refs[index] if ref.cell == 0 index += 1 continue end ret = get_vertex(vi.m,ref) readunlock(vi.lock) return ret , index+1 end readunlock(vi.lock) return default end struct VertexIndIterator{AM<:AbstractMesh,AVR<:AbstractVector{Int64},L} m::AM refs::AVR l::Int64 cell::Int64 lock::L function VertexIndIterator(m::AM1,r::AVR1,c) where {AM1,AVR1} lock = ReadWriteLock(m) new{AM1,AVR1,typeof(lock)}(m,r,length(r),c,lock) end end @inline Base.length(vi::VI) where {VI<:VertexIndIterator} = vi.l @inline Base.iterate(vi::VI, state=1) where {VI<:VertexIndIterator} = _iterate(vi,state,nothing) @inline function _iterate(vi::VI, state, default) where {VI<:VertexIndIterator} index = state readlock(vi.lock) while index<=vi.l sig,r = get_vertex(vi.mesh,VertexRef(vi.cell,vi.refs[index])) if length(sig)==0 || sig[1]==0 index += 1 continue end readunlock(vi.lock) return (sig,r), index+1 end readunlock(vi.lock) return default end struct VertexDictIterator{T,AVR<:AbstractVector{Pair{Vector{Int64},T}},L} pairs::AVR l::Int64 lock::L function VertexDictIterator(m,r::AVR1) where {T,AVR1<:AbstractVector{Pair{Vector{Int64},T}}} lock = ReadWriteLock(m) new{T,AVR1,typeof(lock)}(r,length(r),lock) end function VertexDictIterator(m,r::AVR1,l) where {T,AVR1<:AbstractVector{Pair{Vector{Int64},T}}} lock = ReadWriteLock(m) new{T,AVR1,typeof(lock)}(r,l,lock) end end @inline Base.length(vi::VI) where {VI<:VertexDictIterator} = vi.l @Base.propagate_inbounds Base.iterate(vi::VI, state=1) where {VI<:VertexDictIterator} = _iterate(vi,state,nothing) @Base.propagate_inbounds function _iterate(vi::VI, state=1,default=nothing) where {VI<:VertexDictIterator} index = state miss = 0 readlock(vi.lock) while index<=vi.l (sig,r) = vi.pairs[index] if length(sig)==0 || sig[1]==0 index += 1 continue end readunlock(vi.lock) return (sig,r), index+1 end readunlock(vi.lock) return default end #=dictmodify(::Nothing,default) = default dictmodify(a,default) = default @inline function _iterate(vi::D, state=1,default=nothing) where {D<:Dict} index = state return dictmodify(iterate(vi,state),default) end=# ################################################################################################################################################################ ## MyFlatten ################################################################################################################################################################ #=struct MyFlatten{A,B,T,D} iter1::A iter2::B mode::MVector{1,Bool} default::D function MyFlatten(i1::I1,i2::I2,::Type{T}) where {I1,I2,T} d = ((Int64[-1],zeros(T)),-1) new{I1,I2,T,typeof(d)}(i1,i2,MVector{1,Bool}([true]),d) end end @inline function Base.iterate(vi::MF, state=1) where {MF<:MyFlatten} index = state if vi.mode[1]==true if state<=length(vi.iter1) return _iterate(vi.iter1,state,vi.default) else vi.mode[1] = false return iterate(vi,1) end else if state<=length(vi.iter2) return _iterate(vi.iter2,state,vi.default) else vi.mode[1] = true return nothing end end return nothing #_iterate(vi.iter2,state,vi.default) end @inline Base.length(mf::MF) where {MF<:MyFlatten} = length(mf.iter1)+length(mf.iter2) =# @inline function VertexIterator(m::AM,i::BufferVertexData_Dict{VRA,SI}, index::Int64, s::S=statictrue) where {T,AM<:AbstractMesh{T},VRA,SI,S<:StaticBool} #println("a") return VertexIterator(m,Iterators.Flatten((VertexDictIterator(m,i.in_cell),VertexRefIterator(m,i.in_mesh))),index,s) end @inline function VertexIterator(m::AM,i::BufferVertexData_Vec{VRA,SI}, index::Int64, s::S=statictrue) where {T,AM<:AbstractMesh{T},VRA,SI,S<:StaticBool} #println("b") return VertexIterator(m,Iterators.Flatten((VertexIndIterator(m,i.in_cell,index),VertexRefIterator(m,i.in_mesh))),index,s) end @inline function VertexIterator(m::AM,i::II,index::Int64, s::S=statictrue) where {T,AM<:AbstractMesh{T},II<:AbstractVector{Int64},S<:StaticBool} #println("c") return VertexIterator(m,VertexIndIterator(m,i,index),index,s) end @inline VertexIterator(m::AM,i::II,index::Int64, s::S=statictrue) where {T,AM<:AbstractMesh{T},II,S<:StaticBool} = HeapVertexIterator(m,i,[0],s) #=@inline VertexIterator(m::AM,i::II, index::Int64, s::S=statictrue) where {AM<:AbstractMesh,II,S<:StaticBool} = VertexIterator(m,i,index,s,eltype(i)) @inline VertexIterator(m::AM,i::II,index::Int64, s::S,::Type{P}) where {AM<:AbstractMesh,II,S<:StaticBool,SV<:StaticArray, P<: Pair{Vector{Int64},SV}} = HeapVertexIterator(m,i,Int64[],s) @inline VertexIterator(m::AM,i::II,index::Int64, s::S,::Type{VertexRef}) where {AM<:AbstractMesh,II,S<:StaticBool} = BufferVertexIterator(m,i,Int64[]) =# ########################################################################################################### ## HeapVertexIterator ########################################################################################################### struct HeapVertexIterator{AM<:AbstractMesh, II,S<:StaticBool} mesh::AM iterator::II buffer::Vector{Int64} readonly::S lbuf::MVector{1,Int64} end @inline IterationIndex(i::HVI) where {HVI<:HeapVertexIterator} = IterationIndex(i.iterator) #const allowwrite = StaticTrue() HeapVertexIterator(m::AM,i::II,s::S=statictrue) where {AM<:AbstractMesh,II,S<:StaticBool} = HeapVertexIterator(m,i,[0],s,MVector{1,Int64}([1])) HeapVertexIterator(a,b,c,d) = HeapVertexIterator(a,b,c,d,MVector{1,Int64}([1])) @inline Base.iterate(vi::VI, state...) where {VI<:HeapVertexIterator{AM,II,StaticFalse} where {AM,II}} = iterate(vi.iterator, state...) HVImodify(n::Nothing,vi) = nothing HVImodify(n::Nothing,vi,a,b) = nothing @Base.propagate_inbounds function HVImodify(data,vi,a,b) (sig,r) = data[1] lsig=length(sig) bb = vi.lbuf[1] if lsig>bb resize!(vi.buffer,lsig+1) vi.lbuf[1] = lsig end sig2 = view(vi.buffer,2:(lsig+1)) sig2 .= external_sig(vi.mesh,sig,statictrue) #_external_indeces_fit(vi.mesh,sig,sig2) #typeof(data[2])!=Int64 && error("Bla $(typeof(data[2])) \n $(typeof(data)) \n $(typeof(vi.iterator))") return (ReadOnlyView(sig2),r), data[2] end @inline function Base.iterate(vi::VI, state...) where {VI<:HeapVertexIterator{AM,II,StaticTrue} where {AM,II}} # Delegate to the `iterator` field's `iterate` method #println(vi.iterator) #println(typeof(vi.iterator)) #@descend iterate(vi.iterator, state...) #error("") iter = iterate(vi.iterator, state...) # The GC flag won't vanish because it has something to do with returning `nothing` return HVImodify(iter,vi,vi.iterator,state) end @inline Base.IteratorSize(::Type{HeapVertexIterator{AM, II}}) where {AM<:AbstractMesh, II} = Base.IteratorSize(II) @inline Base.IteratorEltype(::Type{HeapVertexIterator{AM, II}}) where {AM<:AbstractMesh, II} = Base.HaseEltype() @inline Base.eltype(::Type{HeapVertexIterator{AM, II}}) where {AM<:AbstractMesh, II} = SigmaView @inline Base.length(vi::HeapVertexIterator) = length(vi.iterator) ################################################################################################################################################################ ## ThreadsafeHeapVertexIterator ################################################################################################################################################################ #= struct ThreadsafeHeapVertexIterator{AM<:AbstractMesh, II, S<:StaticBool} mesh::AM iterator::II buffer::Vector{Int64} readonly::S lbuf::MVector{1,Int64} rwl::ReadWriteLock function ThreadsafeHeapVertexIterator(hvi::HeapVertexIterator{AM, II, S}, rwl::ReadWriteLock) where {AM<:AbstractMesh, II, S<:StaticBool} new{AM, II, S}(hvi.mesh, hvi.iterator, hvi.buffer, hvi.readonly, hvi.lbuf, rwl) end end # Inline functions and methods for ThreadsafeHeapVertexIterator @inline Base.iterate(vi::VI, state...) where {VI<:ThreadsafeHeapVertexIterator{AM,II,StaticFalse} where {AM,II}} = iterate(vi.iterator, state...) @inline function Base.iterate(vi::VI, state...) where {VI<:ThreadsafeHeapVertexIterator{AM,II,StaticTrue} where {AM,II}} id = readlock(vi.rwl) result = HVImodify(iterate(vi.iterator, state...), vi) readunlock(vi.rwl,id) return result end @inline Base.IteratorSize(::Type{ThreadsafeHeapVertexIterator{AM, II}}) where {AM<:AbstractMesh, II} = Base.IteratorSize(II) @inline Base.IteratorEltype(::Type{ThreadsafeHeapVertexIterator{AM, II}}) where {AM<:AbstractMesh, II} = Base.IteratorEltype(II) @inline Base.eltype(::Type{ThreadsafeHeapVertexIterator{AM, II}}) where {AM<:AbstractMesh, II} = Base.eltype(II) @inline Base.length(vi::ThreadsafeHeapVertexIterator) = length(vi.iterator) =#
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
17042
const Dirichlet=0 const Neumann=-1 import Base.in ################################################################################################################# ## struct Boundary and related operators on it ################################################################################################################# @doc raw""" Plane{T} provides a 'base' vector and a 'normal' vector of type 'T' to describe a plane. BC=Dirichlet or BC=Neumann indicate Dirichlet- resp. Neumann- boundary condition on the plane. BC='any positive number' indicates periodic boundary conditions with the complementary plane given by the index BC """ struct Plane base::Vector{Float64} normal::Vector{Float64} BC::Int16 function Plane(b,n,bc) return new(b,n,bc) end end function planeToString(plane::Plane) return "[ Plane($(plane.BC)): base=$(plane.base), normal=$(plane.normal) ] " end function BC_Dirichlet(b,n) return Plane(b,n,Dirichlet) end function BC_Neumann(b,n) return Plane(b,n,Neumann) end struct BC_Periodic up::Plane down::Plane function BC_Periodic(u,d) return new(u,d) end function BC_Periodic(base1,base2,normal1) return new(Plane(base1,normal1,0),Plane(base2,(-1).*normal1,0)) end end ################################################################################################################# ## struct Boundary and related operators on it ################################################################################################################# """ Boundary provides the data structure for boundaries of VoronoiGeometry. Its most important feature is the vector planes::Vector{Plane} which stores every flat part of the boundary as struct Plane base::Vector{Float64} # base of the plane normal::Vector{Float64} # outer normal of the domain on this plane BC::Int16 # 0 for Dirichlet, -1 for Neumann and >0 for the index of the other correspondant in case this is supposed to be periodic end """ struct Boundary planes::Vector{Plane} convex::Bool #childs::Vector{Vector{Int64}} function Boundary(_planes::Vector,_convex::Bool) return new(_planes,_convex)#,_convex,(Vector{Int64})[]) end end function copy(b::Boundary) planes = Vector{Plane}(undef,length(b)) for i in 1:length(b) planes[i] = Plane(copy(b.planes[i].base),copy(b.planes[i].normal),b.planes[i].BC) end return Boundary(planes,b.convex) end """ Boundary(planes...) is the constructor for Boundaries. planes... is a list of planes generated by either one of the following functions: BC_Dirichlet(b,n) BC_Neumann(b,n) generating Dirichlet resp. Neumann boundaries with base `b` and normal `n`. BC_Periodic(base1,base2,normal1) generating two periodic boundaries with `base1` and `normal1` resp. with `base2` and `normal = -normal1` """ function Boundary(planes...) count=0 for p in planes if typeof(p)==BC_Periodic count+=2 else count+=1 end end newplanes=Vector{Plane}(undef,count) count=1 for p in planes if typeof(p)==BC_Periodic newplanes[count]=Plane(p.up.base,p.up.normal,count+1) newplanes[count+1]=Plane(p.down.base,p.down.normal,count) count+=2 else newplanes[count]=p count+=1 end end return Boundary(newplanes,true) end function Boundary() return Boundary(Plane[],true) end #################### OUTPUT REPRESENTATION #################################################################### function boundaryToString(B::Boundary;offset=0) result="\u1b[($offset)CBOUNDARY in $(length(B.planes[1].normal)) dimensions with $(length(B.planes)) planes:\n" for i in 1:(length(B.planes)) plane=B.planes[i] result*="\u1b[($offset)C $i: base=$(plane.base), normal=$(plane.normal) ; " if (plane.BC==Neumann) result*="Neumann\n" elseif plane.BC==Dirichlet result*="Dirichlet\n" else result*="periodic with neighbor $(plane.BC)\n" end end return result end function Base.show(B::Boundary) print(boundaryToString(B)) end function vp_print(B::Boundary;offset=0) vp_print(offset,"BOUNDARY:") vp_line() for i in 1:(length(B.planes)) plane=B.planes[i] vp_print(offset+4,"$i: base=$(plane.base), normal=$(plane.normal) ; ") if (plane.BC==Neumann) println("Neumann") elseif plane.BC==Dirichlet println("Dirichlet") else println("periodic with neighbor $(plane.BC)") end end end @doc raw""" edge_representation2D(B::Boundary) provides a representation for each plane of 'B' in terms of two verteces """ function edge_representation2D(B::Boundary) result = EmptyDictOfType(1=>(B.planes[1].base,B.planes[1].base)) for edge in 1:(length(B.planes)) intersections=EmptyDictOfType(1=>(1.0,B.planes[1].base)) x_0=B.planes[edge].base v= [0 1;-1 0]*B.planes[edge].normal#zeros(Float64,2) for i in 1:(length(B.planes)) i==edge && continue new_t=intersect(B.planes[i],x_0,v) new_t==Inf && continue point=x_0+new_t*v push!(intersections,i=>(dot(B.planes[i].base-point,B.planes[i].base),point)) # key always non-positive but zero only for the two intersection points at boundary end e1=-Inf64 e2=-Inf64 x1=copy(x_0) x2=copy(x_0) while length(intersections)>0 (_,(e,x))=pop!(intersections) if e>=e1 e2=e1 e1=e x2=x1 x1=x end end push!(result,edge=>(x1,x2)) end return result end ####################### GEOMETRIC OPERATIONS ###################################################################### @inline reflect(node,boundary::Boundary,plane,indeces) = reflect(node,boundary::Boundary,boundary.planes[indeces[plane]]) function reflect(node,boundary::Boundary,plane) _plane=boundary.planes[plane] normal=_plane.normal base=_plane.base return node+normal .*(2*dot(normal,base.-node)) end @doc raw""" intersect(P::Plane,x_0,v) calculates the scalar solution t to the problem (y-P.base)*P.normal=0 , x_0+t*v=y eg: (P.base-x_0)*P.normal == t v*P.normal """ function intersect(P::Plane,x_0,v) return dot(P.base-x_0,P.normal)/dot(v,P.normal) end @doc raw""" intersect(B::Boundary,x_0,v) calculates intersect(P,x_0,v) for every plane P in B and returns (i,t), the index 'i' of the minimal result as well as the minimal result 't' """ function intersect(B::Boundary,x_0,v,condition=(x->true)) index=0::Int64 t=Inf64::Float64 for i in 1:(length(B.planes)) if !condition(i) continue end new_t=intersect(B.planes[i],x_0,v) if 0<new_t<t t=new_t index=i end end return index,t end function intersection_exists(B::Boundary,x_0,v) p = intersect_point(B,x_0,v) for i in 1:length(B.planes) if dot(p-B.planes[i].base,B.planes[i].normal)>1.0E-5 return false end end return true end function intersect_point(B::Boundary,x_0,v) index, t = intersect(B,x_0,v) return t>0 ? x_0+t*v : x_0 end @doc raw""" intersections(B::Boundary,x_0,v) calculates for every plane p_i of B the value t_i with x_0+t_i*v_ in p_i . results will store a sorted list of t_i and indeces stores the corresponding list of i. The return value is the entry i of indeces such that x_0 +0.5*(t_i + t_(i+1)) in B """ function intersections!(B::Boundary,x_0,v; results=zeros(Float64,length(B.planes)), indeces=collect(1:length(B.planes)), condition=(x->true)) sort!(indeces) for i in 1:(length(B.planes)) if !condition(B.planes[i].BC) continue end results[i]=intersect(B.planes[i],x_0,v) end quicksort!(results,indeces,indeces) found=0 r=results for i in 1:(length(results)-1) if (results[i]>-Inf && results[i+1]<Inf) point=x_0+0.5*(r[i]+r[i+1])*v if point in B found=i break end end end return found end ############# HANDLING BOUNDARIES ############################### function compare(B1::Boundary,B2::Boundary,bc=false) length(B1)==length(B2) && length(B1)==0 && (return true) (length(B1)==0 || length(B2)==0) && (return false) (length(B1)!=length(B2) || length(B1.planes[1].normal)!=length(B2.planes[1].normal)) && (return false) lB = length(B1) identified = zeros(Bool,lB) for k in 1:lB for i in 1:lB identified[i] && continue if abs(dot(B1.planes[k].normal,B2.planes[i].normal)-1.0)<1.0E-10 if abs(dot(B1.planes[k].base-B2.planes[i].base,B1.planes[k].normal))<1.0E-8 identified[i] = true if bc B1.planes[k].BC>0 && B2.planes[k].BC<=0 && (return false) B1.planes[k].BC<=0 && B2.planes[k].BC>0 && (return false) end else return false end end end end return true end function same(boundary1::Boundary, boundary2::Boundary, i::Int) plane1 = boundary1.planes[i] plane2 = boundary2.planes[i] normal_match = norm(plane1.normal - plane2.normal) < 1e-5 b1, b2 = plane1.base, plane2.base if norm(b1 + b2) > 1e-5 base_match = norm(b1 - b2) / norm(b1 + b2) < 1e-5 else base_match = norm(b1 - b2) < 1e-5 end return normal_match && base_match end function same(boundary1::Boundary, boundary2::Boundary) length(boundary1)!=length(boundary2) && return false ret = true for i in 1:length(boundary1) ret &= same(boundary1,boundary2,i) !ret && break end return ret end function split_boundary_indeces(B::Boundary) inds=collect(1:length(B)) dir = keepat!(copy(inds),map(k->(B.planes[k].BC==0),inds)) neu = keepat!(copy(inds),map(k->(B.planes[k].BC<0),inds)) per = keepat!(copy(inds),map(k->!((k in dir) || (k in neu)),inds)) return per, neu, dir end "provides the non-periodic part of the boundary" function reduce_periodic_part(B::Boundary) count=0 for i in 1:length(B.planes) if B.planes[i].BC<=0 count+=1 end end new_planes=Vector{Plane}(undef,count) indeces=Vector{Int64}(undef,count) count=0 for i in 1:length(B.planes) if B.planes[i].BC<=0 count+=1 indeces[count]=i new_planes[count]=B.planes[i] end end return Boundary(new_planes,B.convex),indeces end function reduce_to_periodic(B::Boundary) count=0 skipped=zeros(Int64,length(B.planes)) skip=0 for i in 1:length(B.planes) if B.planes[i].BC>0 count+=1 else skip+=1 end skipped[i]=skip end new_planes=Vector{Plane}(undef,count) count=0 for i in 1:length(B.planes) if B.planes[i].BC>0 count+=1 new_planes[count]=Plane(B.planes[i].base,B.planes[i].normal,B.planes[i].BC-skipped[B.planes[i].BC]) end end return Boundary(new_planes,B.convex) end function remove_periodicity(B::Boundary) new_planes = Vector{Plane}(undef,length(B.planes)) for i in 1:length(B.planes) new_planes[i]=Plane(B.planes[i].base ,B.planes[i].normal,0) end return Boundary(new_planes,B.convex) end function extend_periodic_part(B::Boundary,xs::Points,indeces = false) lxs = length(xs) _indeces = collect(1:length(B)) for i in 1:length(B.planes) if B.planes[i].BC>0 #bestpos=0 d=0.0 for j in 1:lxs #d=max(d,dot(B.planes[i].normal, xs[j] - (bestpos==0 ? B.planes[i].base : xs[bestpos]))) d=max(d,dot(B.planes[i].normal, xs[j] - B.planes[i].base )) end if d>0.0 B.planes[i].base .+= (1.01*d) .* B.planes[i].normal else _indeces[i] = 0 end else _indeces[i] = 0 end end return keepat!(_indeces,map(x->(x!=0),_indeces)) end function in(x,B::Boundary) l=length(B.planes) l==0 && return true for i in 1:l plane=B.planes[i] if dot(plane.base-x,plane.normal)<0 return false end end return true end function check_boundary(nodes,b::Boundary) for x in nodes !(x in b) && error("$x does not lie in the domain given by the boundary object\n"*boundaryToString(b,offset=4)) end end @inline function adjust_boundary_vertex(x,B::Boundary,sig,lmesh,lsig=length(sig),tolerance=1.0E-10) return x end function show_in(x,B::Boundary) l=length(B.planes) l==0 && return true for i in 1:l plane=B.planes[i] if dot(plane.base-x,plane.normal)<0 println(i,": ",plane.base-x," , ",plane.normal," , ",dot(plane.base-x,plane.normal)) return false end end return true end function project(x,B::Boundary) x2=x l=length(B.planes) l==0 && return x for i in 1:l plane=B.planes[i] d=dot(plane.base-x,plane.normal) if d<0 x2=x2+d*plane.normal end end return x2 end function length(b::Boundary) return length(b.planes) end function push!(boundary::Boundary,plane::Plane) push!(boundary.planes,plane) end function push!(boundary::Boundary,per::BC_Periodic) l=length(boundary.planes) push!(boundary.planes,Plane(per.up.base,per.up.normal,l+2)) push!(boundary.planes,Plane(per.down.base,per.down.normal,l+1)) end ###################### GENERATING CUBES ############################################### center_cube(dim,size)=cuboid(dim,dimensions=size*ones(Float64,dim),offset=-0.5*size*ones(Float64,dim)) """ cuboid(dim;dimensions=ones(Float64,dim),periodic=collect(1:dim),neumann=Int64[],offset=zeros(Float64,dim)) or simply `cuboid(dim)` generates a cube of type `Boundary`. - dim : This is the dimension of the cuboid - dimensions : provides the size of the cuboid in each dimension - periodic : this is a (sorted!!) list of dimensions in which the cube is assumed to have periodic boundary conditions - neumann : every dimension k=1...dim which is not periodic my be put here with positive sign for the right hand side or negative sign (i.e. -k) for the left hand side - offset : shifts the cube in space A particular application is the following method provided by HighVoronoi. center_cube(dim,size) = cuboid(dim,dimensions=size*ones(Float64,dim),offset=-0.5*size*ones(Float64,dim)) Relying on `cuboid(...)` it generates a cube with center `0` and edge length `size`. """ function cuboid(dim;dimensions=ones(Float64,dim),periodic=collect(1:dim),neumann=Int64[],offset=zeros(Float64,dim)) planes=Vector{Plane}(undef,2*dim) unit=zeros(Float64,dim) _zeros=zeros(Float64,dim) for i in 1:dim unit.*=0 unit[i]=1 if i in periodic planes[(2*i)-1]=Plane(offset.+dimensions[i] .*unit,copy(unit),2*i) planes[2*i]=Plane(copy(offset),(-1).*unit,(2*i)-1) continue end if i in neumann planes[(2*i)-1]=Plane(offset.+dimensions[i].*unit,copy(unit),Neumann) else planes[(2*i)-1]=Plane(offset.+dimensions[i].*unit,copy(unit),Dirichlet) end if -i in neumann planes[2*i]=Plane(copy(offset),(-1).*unit,Neumann) else planes[2*i]=Plane(copy(offset),(-1).*unit,Dirichlet) end end return Boundary(planes,true) end function testboundary() p1 = BC_Dirichlet([1.0,0.0],[1.0,0.0]) p2 = BC_Neumann([0.0,0.0],[-1.0,0.0]) p3 = BC_Periodic([0.0,1.0],[0.0,0.0],[0.0,1.0]) b = Boundary(p1,p2,p3) println(boundaryToString(b)) show(b) intersections!(b,[0.5,0.5],[1.0,0.0]) c = cuboid(2,periodic=[1]) c2 = cuboid(2,periodic=[2]) show_in([0.5,0.5],c) same(c,c2) reduce_periodic_part(c) reduce_to_periodic(c2) push!(c,p1) push!(c,p3) return true end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
4609
function cleanup_cell(vol,ar,bulk,inter,_Cell,iterate, calculate, data,Integrator::II) where {II<:Geometry_Integrator} return 0.0 end function cleanup_cell(vol,ar,bulk,inter,_Cell,iterate, calculate, data,Integrator::II) where {II<:Montecarlo_Integrator} dfvb=data.float_vec_buffer dfvvb=data.float_vec_vec_buffer Integral = Integrator.Integral cdw = cell_data_writable(Integral,_Cell,dfvb,dfvvb) old_neighbors = cdw.neighbors activate_data_cell(data,_Cell,old_neighbors) xs = data.extended_xs vector = xs[_Cell] dim = length(vector) V = 0.0 for i in 1:length(old_neighbors) n = old_neighbors[i] #hascelldata(Integrator.Integral,n) if !(n in calculate) && hascelldata(Integrator.Integral,n) neigh_data = cell_data_writable(Integrator.Integral,n,dfvb,dfvvb) _Cell_index = findfirstassured(_Cell,neigh_data.neighbors) distance=0.5*norm(vector-xs[n]) neigh_area = neigh_data.area[_Cell_index] if neigh_area>0 # otherwise pointless factor = distance/dim vol2 = 0.5*( neigh_area-cdw.area[i]) vol = vol2*factor cdw.volumes[1] += vol neigh_data.volumes[1] -= vol #V+=vol cdw.area[i] += vol2 neigh_data.area[_Cell_index] -= vol2 if !(typeof(Integrator.interface)==Nothing || length(neigh_data.interface_integral)<length(neigh_data.neighbors) || Integrator.heuristic) cdw.bulk_integral .-= cdw.interface_integral[i] .* factor neigh_data.bulk_integral .-= neigh_data.interface_integral[_Cell_index] .* factor cdw.interface_integral[i] .+= neigh_data.interface_integral[_Cell_index] cdw.interface_integral[i] .*= 0.5 neigh_data.interface_integral[_Cell_index] .= cdw.interface_integral[i] cdw.bulk_integral .+= cdw.interface_integral[i] .* factor neigh_data.bulk_integral .+= neigh_data.interface_integral[_Cell_index] .* factor end end end end return V end function cleanup_cell(vol,ar,bulk,inter,_Cell,iterate, calculate, data,Integrator::II) where {II<:Union{Polygon_Integrator,Fast_Polygon_Integrator}} dfvb=data.float_vec_buffer dfvvb=data.float_vec_vec_buffer Integral = Integrator.Integral cdw = cell_data_writable(Integral,_Cell,dfvb,dfvvb) old_neighbors = cdw.neighbors activate_data_cell(data,_Cell,old_neighbors) xs = data.extended_xs vector = xs[_Cell] dim = length(vector) V = 0.0 for i in 1:length(old_neighbors) n = old_neighbors[i] if !(n in calculate) distance=0.5*norm(vector-xs[n]) has_area_data = cdw.area[i]>0 vol2 = has_area_data ? cdw.area[i] : get_area(Integral,n,_Cell) vol = vol2*distance/dim cdw.volumes[1] += vol V+=vol cdw.area[i] = vol2 if inter AA = has_area_data ? cdw.interface_integral[i] : get_integral(Integral,n,_Cell) cdw.interface_integral[i] .= AA cdw.bulk_integral .+= AA.*(distance/dim) end end end return V end function cleanup_cell(vol,ar,bulk,inter,_Cell,iterate, calculate, data,Integrator::II) where {II<:Union{Heuristic_Integrator}} dfvb=data.float_vec_buffer dfvvb=data.float_vec_vec_buffer Integral = Integrator.Integral cdw = cell_data_writable(Integral,_Cell,dfvb,dfvvb) old_neighbors = cdw.neighbors activate_data_cell(data,_Cell,old_neighbors) xs = data.extended_xs vector = xs[_Cell] dim = length(vector) V = 0.0 for i in 1:length(old_neighbors) n = old_neighbors[i] if !(n in calculate) && hascelldata(Integrator.Integral,n) distance=0.5*norm(vector-xs[n]) AA = get_integral(Integral,n,_Cell) cdw.interface_integral[i] .= AA cdw.bulk_integral .+= AA.*(distance/dim) end end return V end @inline function cleanup_cell(vol,ar,bulk,inter,_Cell,iterate, calculate, data,Integrator::II) where {II<:Union{HeuristicMCIntegrator}} cleanup_cell(vol,ar,bulk,inter,_Cell,iterate, calculate, data,Integrator.mc) cleanup_cell(vol,ar,bulk,inter,_Cell,iterate, calculate, data,Integrator.heuristic) end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
1710
struct FunctionComposer{FT,LT,TT} functions::FT total::Int64 length_index_data::LT Type::TT reference_value::Vector{Float64} end """ FunctionComposer(;reference_argument, super_type, _functions...) The composer takes the following arguments: - `_functions`: This is a list of named funcions. - `super_type`: suppose your functions return values of type `T` and `Vector{T}` you should set `super_type=T` - `reference_argument`: Your functions take values of type `Float` and are well defined in `0.0`? Then you can put e.g. `0.0` here. If your function accepts `StaticArray{3,Float64}` put e.g. `SVector{3,Float64}([0.0,1.2,3.4])` """ function FunctionComposer(;reference_argument, super_type, _functions...) #println(values(_functions)) join = x->vcat( super_type[], map( f->f(x), values(_functions) )... ) ref_val = join(reference_argument) _total=length(ref_val) counter=[1] mylengths=map( f->_mycounter( f(reference_argument), counter ), values(_functions) ) return FunctionComposer{typeof(join),typeof(mylengths),typeof(super_type)}(join,_total,mylengths,super_type,ref_val) end function _data_length(FC::FunctionComposer,symbol) return FC.length_index_data[symbol][2] end function _mycounter(x,counter) l=length(x) c=counter[1] counter[1]+=l return Pair(c,l) end function decompose(F::FunctionComposer,val;scalar=false) if scalar return map( inds->__simplify_discrete(view(val,(inds.first):(inds.first+inds.second-1) )) , F.length_index_data ) else return map( inds->view(val,(inds.first):(inds.first+inds.second-1) ) , F.length_index_data ) end end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
10333
function integrate_cube(_Cell, data,Integrator,Integral,proto,_function) if (length(proto)==0) return end cdw = cell_data_writable(Integral,_Cell,proto,[proto]) neigh = cdw.neighbors verteces = vertices_iterator(mesh(Integral),_Cell) # xs=data.extended_xs dim = data.dimension # (full) Spatial dimension activate_data_cell(data,_Cell,neigh) inter_inte = cdw.interface_integral bulk_inte = cdw.bulk_integral ar = cdw.area # get all neighbors of this current cell _length=length(neigh) # flexible data structure to store the sublists of verteces at each iteration step 1...dim-1 emptydict=EmptyDictOfType([0]=>xs[1]) # empty buffer-list to create copies from # empty_vector will be used to locally store the center at each level of iteration. This saves # a lot of "memory allocation time" empty_vector=zeros(Float64,dim) # do the integration I=Integrator heuristic_Cube_integral(_function, true, _Cell, bulk_inte, ar, inter_inte, dim, neigh, _length,verteces,emptydict,xs[_Cell],empty_vector,xs) return cdw.volumes[1] end function heuristic_Cube_integral(_function, _bulk, _Cell::Int64, y, A, Ay, dim,neigh,_length,verteces, emptylist,vector,empty_vector,xs) # dd will store to each remaining neighbor N a sublist of verteces which are shared with N dd=Vector{typeof(emptylist)}(undef,_length) for i in 1:_length dd[i]=copy(emptylist) end for (sig,r) in verteces # iterate over all verteces for _neigh in sig # iterate over neighbors in vertex _neigh==_Cell && continue index=_neigh_index(neigh,_neigh) if index!=0 && (_neigh>_Cell || isempty(dd[index])) # make sure for every neighbor the dd-list is not empty push!( dd[index] , sig =>r) # push vertex to the corresponding list end end end for k in 1:_length buffer=neigh[k] # if !(buffer in calculate) && !(_Cell in calculate) continue end bufferlist=dd[k] isempty(bufferlist) && continue AREA_Int = Ay[k] # always: typeof(_function)!=Nothing AREA_Int.*=0 _Center = midpoint_points(bufferlist,emptylist,empty_vector,vector) _Center .+= vector # midpoint shifts the result by -vector, so we have to correct that .... count = 0 while !(isempty(bufferlist)) _,r=pop!(bufferlist) AREA_Int .+= _function(r) count+=1 end AREA_Int .*= (dim-1)/(dim*count) AREA_Int .+= (1/dim).*_function(_Center) thisarea = A[k] AREA_Int .*= thisarea distance= 0.5*norm(vector-xs[buffer]) #abs(dot(normalize(vector-xs[buffer]),vert)) _y=_function(vector) _y.*=(thisarea/(dim+1)) _y.+=(AREA_Int*(dim/(dim+1))) # there is hidden a factor dim/dim which cancels out _y.*=(distance/dim) y.+=_y end end ######################################################################################################################################## ######################################################################################################################################## ## CubicVoronoiGeometry ######################################################################################################################################## ######################################################################################################################################## function cubic_voronoi_copy_verteces(Integral,deviation,counter,extended_cube,get_volumes,vol1,vol2,indeces,proto) mesh = HighVoronoi.mesh(Integral) dim = dimension(mesh) _NON = counter.data.number_of_nodes lmesh = length(mesh) # lboundary = length(extended_cube) new_index = counter.cell_index current_dim = 0 # the old block from which we copy.... for i in 1:length(counter.data.repeat) if counter.cell_array[i]>2 current_dim = i if counter.cell_array[i]<counter.data.repeat[i] break end end if counter.cell_array[i]>1 && current_dim==0 current_dim = i end end old_array = copy(counter.cell_array) old_array[current_dim] += -1 old_index = index_from_array(old_array,counter.data) right_frame = counter.cell_array[current_dim]==counter.data.repeat[current_dim] right_cells, count_right_cells = right_frame ? right_indeces(copy(counter.cell_array),counter.data,current_dim,dim,indeces) : (Int64[],0) right_cells = view(indeces,1:count_right_cells) nodeshift = ( new_index - old_index )*_NON coordinateshift = counter.cell_offset - offset(old_array,counter.data) if right_frame coordinateshift[current_dim] -= deviation[current_dim] end c1 = lmesh+(2*current_dim-1) # RIGHT c2 = lmesh+(2*current_dim) # LEFT # now transfer non-affected nodes for (sig,r) in vertices_iterator(mesh,old_index)# mesh.All_Verteces[old_index] sig[1]!=old_index && continue sig2 = copy(sig) stopp = false for ikk in 1:length(sig) if sig2[ikk]==c2 stopp = true end if right_frame && sig2[ikk] in right_cells sig2[ikk]=0 elseif sig2[ikk]<=lmesh sig2[ikk] += nodeshift end end stopp && continue if right_frame append!(sig2,c1) sort!(filter!(x->x!=0,sig2)) end r2 = adjust_boundary_vertex(r + coordinateshift,extended_cube,sig2,lmesh,length(sig2)) push!(mesh, sig2=>r2) end # error("") cdw = cell_data_writable(Integral,old_index,nothing,nothing;get_integrals=staticfalse) neigh = copy(cdw.neighbors) area = get_volumes ? copy(cdw.area) : Float64[] stretchright = counter.cell_array[current_dim]==counter.data.repeat[current_dim] stretchleft = counter.cell_array[current_dim]==2 volume = 0.0 for ii in 1:length(neigh) if neigh[ii]==c2 neigh[ii]=old_index elseif stretchright && neigh[ii]==new_index neigh[ii]=c1 else stretchleft && get_volumes && neigh[ii]!=new_index && (area[ii]/=vol1[current_dim]) if neigh[ii]<=lmesh neigh[ii] += nodeshift end stretchright && get_volumes && neigh[ii]!=old_index && (area[ii]*=vol2[current_dim]) end end quicksort!(neigh,neigh,get_volumes ? area : neigh) set_neighbors(Integral,new_index,neigh,proto,proto) cdw2 = cell_data_writable(Integral,new_index,nothing,nothing,get_integrals=staticfalse) if get_volumes volume = cdw.volumes[1] stretchleft && (volume/=vol1[current_dim]) stretchright && (volume*=vol2[current_dim]) cdw2.volumes[1] = volume cdw2.area .= area end end function first_cube(mesh,deviation,cell_size,searcher) xs = nodes(mesh) dim = length(xs[1]) x0 = xs[1]-deviation-0.5*cell_size periodicity = PeriodicData(2*ones(Int64,dim),cell_size+deviation,1,zeros(Float64,dim)) MM = x0 verteces = periodicgeodata([MM],periodicity) left_boundary = 2*collect(1:dim) left_boundary .+= length(xs) activate_cell( searcher, 1, left_boundary) for r in verteces sig = _inrange(searcher.tree,r,norm(r-xs[1])*(1+1.0E-10)) sort!(sig) push!(mesh,sig=>r) end end function cubic_voronoi(domain,periodicity,deviation,cell_size,search,my_integrator,integrand,periodicview) extended_cube = internal_boundary(domain) Integral = IntegralView(HighVoronoi.integral(domain),periodicview) mesh = HighVoronoi.mesh(Integral) xs = copy(nodes(mesh)) dim = length(xs[1]) searcher = Raycast(xs; domain = extended_cube, options=search) lmesh = length(xs) area = zeros(MVector{2*size(eltype(xs))[1],Float64}) #=_I,_ = voronoi( xs, Iter=[1], searcher=searcher, intro="Calculate unit cell: ",compact=true) Integrator = my_integrator(_I.Integral.MESH)=# vp_print(0,"Calculate first cell...") first_cube(mesh,deviation,cell_size,searcher) Integrator = my_integrator(Integral) proto = prototype_bulk(Integrator) _function = integrand get_volumes = enabled_volumes(Integral) data = IntegrateData(xs,extended_cube,Integrator) # data for first cell: vol_vector = deviation + cell_size vol_vector2 = cell_size - deviation neighbors = Vector{Int64}(undef,2*dim) index = ones(Int64,dim) bit = BitVector(ones(Int8,dim)) for i in 1:dim if get_volumes bit[i] = 0 area[2*i-1] = area[2*i] = prod(view(vol_vector,bit)) bit[i]=1 end neighbors[2*i] = lmesh + 2*i index[i]=2 neighbors[2*i-1] = index_from_array(index,periodicity) index[i]=1 end set_neighbors(Integral,1,copy(neighbors),proto,proto) quicksort!(neighbors,neighbors,area) cdw = cell_data_writable(Integral,1,proto,[proto]) cdw.area .= area if get_volumes cdw.volumes[1] = prod(vol_vector) end integrate_cube(1, data,Integrator,Integral,proto,_function) println(cell_data_writable(Integral,1,proto,[proto])) pc = Periodic_Counter(periodicity) increase(pc) indeces = zeros(Int64,3^(dim-1)) vp_print(0,"Copy Data to cell: ") print_count = round(Int64,pc.maxindex/100)+1 count=0 while !eol(pc) count+=1 if count>=print_count vp_print(20,"$(pc.cell_index)") count=0 end cubic_voronoi_copy_verteces(Integral,deviation,pc,extended_cube,get_volumes,vol_vector./cell_size,vol_vector2./cell_size,indeces,proto) integrate_cube(pc.cell_index, data, Integrator,Integral,proto,_function) increase(pc) end return Integrator end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
5240
""" DensityRange{S} provides a rectangular grid of points in a `S`-dimensional space. It is initialized as follows: DensityRange(mr::AbstractVector{<:Integer},range) Here, `range` can be of the following types: - `AbstractVector{Tuple{<:Real,<:Real}}`: It is assumed that each entry of `range` is a tuple `(a_i,b_i)` so the range is defined in the cuboid `(a_1,b_1)\times...\times(a_{dim},b_{dim})` `mr` is assumed to have the same dimension as `range` and the interval `(a_i,b_i)` will be devided into `mr[i]` intervalls - `AbstractVector{<:Real}`: if e.g. `range=[1.0,1.0]` this will be transferred to `range=[(0.0,1.0),(0.0,1.0)]` and the first instance of the method is called - `Float64`: `range` will be set `range*ones(Float64,length(mr))` and the second instance is called - `Tuple{<:Real,<:Real}`: range will be set to an array of identical tuple entries and the first version is called Alternatively, one may call the following method: DensityRange(mr::Int,range,dimension=length(range)) it is assumed that `range` is an array or tuple of correct length and `mr` is replaced by `mr*ones(Int64,dimension)`. If range is not an array, then `dimension` has to be provided the correct value. """ struct DensityRange{S} dimensions::SVector{S,Float64} number_of_cells::SVector{S,Int64} x::MVector{S,Float64} function DensityRange(mr::AbstractVector{<:Integer},dimensions = AbstractVector{Tuple{<:Real,<:Real}}) dim = length(mr) length(dimensions)!=dim && error("The dimensions of first and second vector have to coincide") for k in 1:dim dimensions[k][2]<dimensions[k][1] && error("second entry of each coordinate needs to be larger than first entry, but $(dimensions[k][2])>=$(dimensions[k][1]) in dimension $k. ") end mycubes = map(k->dimensions[k][2]-dimensions[k][1],1:dim) mycubes ./= mr offset = map(k->dimensions[k][1]+0.5*mycubes[k],1:dim) return new{dim}(SVector{dim,Float64}(mycubes),SVector{dim,Int64}(mr),MVector{dim,Float64}(offset)) end function DensityRange(mr::AbstractVector{<:Integer},dimensions::AbstractVector{<:Real}) dim = length(mr) length(dimensions)!=dim && error("The dimensions of first and second vector have to coincide") for k in 1:dim dimensions[k]<0 && error("second argument is only allowed to contain positive entries, contains $(dimensions[k]).") end return DensityRange(mr,map(k->(0.0,dimensions[k]),1:dim)) end function DensityRange(mr::AbstractVector{<:Integer},dimensions::Float64) return DensityRange(mr,dimensions*ones(Float64,length(mr))) end function DensityRange(mr::AbstractVector{<:Integer},dimensions::Tuple{<:Real,<:Real}) dim = length(mr) dimensions[2]<dimensions[1] && error("invalid tuple $dimensions.") return DensityRange(mr,map(k->dimensions,1:dim)) end function DensityRange(mr::Int,b;dimension=length(b)) return DensityRange(mr*ones(Int64,dimension),b) end end DIMENSION(dr::DensityRange) = typeof(dr).parameters[1] get_density(ρ,crit,range::DensityRange) = _get_density(ρ,crit,range,1,copy(range.x)) function _get_density(ρ,crit,range::DensityRange,level,x, count = 0) my_sum = 0.0 x0 = x[level] for k in 1:range.number_of_cells[level] x[level] += range.dimensions[level] if level<DIMENSION(range) ms, count = _get_density(ρ,crit,range,level+1,x,count) my_sum += ms elseif crit(x) count += 1 my_sum += ρ(x) end end x[level] = x0 if level==1 my_sum *= prod(range.dimensions) return x->ρ(x)/my_sum else return my_sum, count end end function _get_nodes(crit::Function,range::DensityRange,level,nodes,x,count) x0 = x[level] for k in 1:range.number_of_cells[level] if level<DIMENSION(range) _, count = _get_nodes(crit,range,level+1,nodes,x,count) else if rand()<crit(x) count += 1 l = length(nodes) if l<count resize!(nodes,l+100) end y = normalize!(randn(DIMENSION(range))) nn = x .+ (0.1 .* y .* range.dimensions) #=for k in 1:DIMENSION(range) if nn[k]<0 || nn[k]>1 println("$count: $nn") break end end=# nodes[count] = VoronoiNode(nn) if count%100==0 vp_print(30,count) end end end x[level] += range.dimensions[level] end x[level] = x0 if level==1 return resize!(nodes,count) else return nodes, count end end get_nodes(crit::Function,range::DensityRange) = _get_nodes(crit,range,1,VoronoiNodes(undef,DIMENSION(range),1000),copy(range.x),0) #println() get_nodes(mr::Int,dim::Int,crit) = get_nodes(crit,DensityRange(mr,1.0,dimension=dim))
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
7765
############################################################################################################################### ## Discrete functions ..... ############################################################################################################################### function periodic_projection(x,b::Boundary,buffer) planes = b.planes buffer .= x for p in planes p.BC<=0 && continue d = dot(p.normal,x-p.base) d<=0 && continue width = dot(p.normal,p.base-planes[p.BC].base) delta = -(trunc(d/width)+1)*width buffer .+= delta .* p.normal end return buffer end function PeriodicFunction(f::Function,b::Boundary) #length(b.planes)==0 && (return f) dim = length(b.planes[1].base) buffer = MVector{dim}( zeros(Float64,dim)) return x->f(periodic_projection(x,b,buffer)) end function PeriodicFunction(f::Function,VG::VoronoiGeometry) return PeriodicFunction(f,VG.domain.boundary) end struct VoronoiKDTree{T,TT} tree::T references::TT offset::Int64 end function VoronoiKDTree(VG::VoronoiGeometry;restrict_to_periodic=true) VD = VoronoiData(VG,reduce_to_periodic=false) tree = NearestNeighbors.KDTree(VD.nodes)#.Integral.MESH.nodes) ref = VD.references off = restrict_to_periodic ? length(VD.references) : 0 return VoronoiKDTree{typeof(tree),typeof(ref)}(tree,ref,off) end function nn_id(vt::VoronoiKDTree,x) return VoronoiDataShift(NearestNeighbors.nn(vt.tree,x)[1],vt.offset,vt.references) end function nn_id(tree::NearestNeighbors.KDTree,x) return NearestNeighbors.nn(tree,x)[1] end function __StepFunction(u,tree,domain,BC,project) if BC!=nothing return x->x in domain ? u[nn_id(tree,x)] : BC(project ? project(x,domain) : x) else return x->u[nn_id(tree,x)] end end function StepFunction(VG::VoronoiGeometry,u::AbstractVector; tree = VoronoiKDTree(VG),BC=nothing,project=false) vd = VoronoiData(VG,reduce_to_periodic=false) ln = length(vd.nodes) if length(u)!=length(vd.nodes)-length(vd.references)#.references) @warn "number of nodes $(ln-length(vd.references)) and length of u=$(length(u)) do not match, return empty function" return x->Float64[] end return __StepFunction(u,tree,vd.boundary,BC,project) end function StepFunction(VG::VoronoiGeometry; tree = VoronoiKDTree(VG),BC=nothing,project=false) _val = VoronoiData(VG).bulk_integral # data without references in front if length(_val)>0 val = Vector{Vector{Float64}}(undef,length(_val)) for i in 1:(length(val)) val[i] = copy(_val[i]) end return StepFunction(VG,val,tree=tree,BC=BC,project=project) else @warn "dimensions of nodes and stored bulkintegrals do not match, return empty function" return x->Float64[] end end function StepFunction(nodes::Points,u::AbstractVector; tree = KDTree(nodes),domain=Boundary(),BC=nothing,project=false) #=if length(u)!=length(nodes) @warn "dimensions of nodes and u do not match, return empty function" return x->nothing end=# return __StepFunction(u,tree,domain,BC,project) end function StepFunction(VG::VoronoiGeometry, f::Function; tree = VoronoiKDTree(VG),BC=f, project=false) _nodes = VoronoiData(VG).nodes return StepFunction(VG,map(x->f(x),_nodes),tree=tree,BC=BC,project=project) end function DiameterFunction(VG::VoronoiGeometry; tree = VoronoiKDTree(VG)) return DiameterFunction(VoronoiData(VG,reduce_to_periodic=false), tree = tree) end @inline function InterfaceFunction(VD::VoronoiData,range=:all,symbol=nothing;scalar=true) return InterfaceFunction(VD.geometry,range,symbol,scalar=scalar) end function InterfaceFunction(VG::VoronoiGeometry,range=:all,symbol=nothing;scalar=true) #function InterfaceFunction(nodes::Points,values,neighbors,range,symbol=nothing;scalar=true, tree = KDTree(nodes)) vd = VoronoiData(VG,reduce_to_periodic=false)#,getinterface_integral=true) # want integral values as true duplicate so I can modify them without harm dom = vd.boundary # internal_boundary of periodic domain xs = vd.nodes lxs = length(xs) lb = length(dom) boundary_range = collect((lxs+1):(lxs+lb)) lref = length(vd.references) xtree = ExtendedTree(copy(xs),dom)#,VI_KD) rc_ = MiniRaycast(xtree,dom) activate_cell(rc_,1,boundary_range) # make sure that initial "boundary nodes" are outside the internal_boundary function _if(_x, rc, lref, vd, boundary_range,_scalar,range) ret(n,i,j,r,::StaticTrue) = view(n[i][j],r)[1] ret(n,i,j,r,::StaticFalse) = copy(view(n[i][j],r)) x = _x _next = nn(rc.tree, x)[1] if _next <= lref x -= vd.reference_shifts[_next] _next = vd.references[_next] end activate_cell(rc, _next, boundary_range) _next2 = nn(rc.tree, x, i -> i == _next)[1] pos = findfirst(k -> k == _next2, vd.neighbors[_next]) return ret(vd.interface_integral,_next,pos,range,_scalar) end le = 0 if range==:all range = 1:length(vd.interface_integral[end][1]) end if typeof(range)<:UnitRange{Int} || typeof(range)<:AbstractArray{Int} le = length(range) elseif typeof(range)<:FunctionComposer range, le = _data_length(range,symbol) if le>1 || scalar==false range = range:(range+le-1) end elseif typeof(range)<:Int le = 1 if scalar==false range = range:range end else error("InterfaceFunction: `range` should be UnitRange, AbstractArray or FunctionComposer. Have a look at the manual for more information.") end _scalar = StaticBool(scalar && length(range)==1) # Übergabe der Parameter an _if return x -> _if(x, rc_, lref, vd, boundary_range,_scalar,range) end """ FunctionFromData(args...) comes in to variations: FunctionFromData(vg::VoronoiGeometry,tree=VoronoiKDTree(vg),composer=nothing; function_generator) generates a function x->function_generator( data=VoronoiData(vg), composer=composer, _Cell=nearest_neighbor_of(x) ) from `vg`, `tree` and a function function_generator(;data ,composer , _Cell ) which takes `data::VoronoiData` generated from `vg`, `composer` from above and `_Cell::Int` for the number of the current node and returns a `Float64` or a `Vector{Float64}` or anything else if you do not plan to hand it over to the routines of `HighVoronoi`. You can access every entry of VoronoiData to generate the value you want to be associated with the Voronoi cell belonging to `vd.nodes[_Cell]`. FunctionFromData(vd::VoronoiData,tree::VoronoiKDTree,composer=nothing; function_generator) basically does the same but takes a `vd::VoronoiData` and `tree` mandatorily and passes `vd` to the `function_generator`. """ function FunctionFromData(vg::VoronoiGeometry,tree=VoronoiKDTree(vg),composer=nothing; function_generator) return FunctionFromData(VoronoiData(vg),tree,composer,function_generator=function_generator) end function FunctionFromData(vd::VoronoiData,tree::VoronoiKDTree,composer=nothing; function_generator) val1 = function_generator(data=vd,composer=composer,_Cell=1) lmesh = length(vd.nodes) u = Vector{typeof(val1)}(undef,lmesh) u[1] = val1 for i = 2:lmesh u[i] = function_generator(data=vd,composer=composer,_Cell=i) end return StepFunction(vd.nodes,u,tree=tree) end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
14682
############################################################################################################################ ## The following are service for other parts.... ############################################################################################################################ function periodic_shifts(boundary::Boundary,dim) numberOfPlanes = length(boundary) shifts=Vector{Vector{Float64}}(undef,numberOfPlanes) for i in 1:numberOfPlanes other=boundary.planes[i].BC # other>0 iff periodic BC and points to the other part of periodic plane if other>0 normal=boundary.planes[i].normal base=boundary.planes[i].base shifts[i]=round.(dot(normal,boundary.planes[other].base .- base).*normal,digits=10) else shifts[i]=zeros(Float64,dim) end end return shifts end ## return boundary nodes for a given discrete domain #=function get_boundary_nodes!(_bn,nodes,domain,neighbors,onboundary) lnodes=length(nodes) for i in 1:(length(nodes)) if neighbors[i][end]>lnodes k=length(neighbors[i]) em=EmptyDictOfType(1=>nodes[1]) while k>0 && neighbors[i][k]>lnodes plane=neighbors[i][k]-lnodes if onboundary push!(em,neighbors[i][k]=>0.5*(nodes[i]+reflect(nodes[i],boundary(domain),plane))) else push!(em,neighbors[i][k]=>reflect(nodes[i],boundary(domain),plane)) end k=k-1 end push!(_bn,i=>em) end end end=# ############################################################################################################################ ## ############################################################################################################################ function add_virtual_points(domain::AD,new_xs::ReflectedNodes;search_settings::RP=RaycastParameter(Float64),do_refine=statictrue,kwargs...) where {AD<:AbstractDomain,RP<:RaycastParameter} length(new_xs)==0 && return Int64[] expand_internal_boundary(domain,new_xs) prepend!(domain,new_xs) #println(references(domain)) #println(reference_shifts(domain)) retrieve_reflections(domain,new_xs) if do_refine==true return systematic_refine!(mesh(domain),new_xs.data,internal_boundary(domain);settings=search_settings,kwargs...) else return Int64[] end end function periodize_mirrors(domain::VD) where VD <: AbstractDomain known_reflections = reflections(domain) planes = boundary(domain).planes mesh = HighVoronoi.mesh(domain) reference_shifts = HighVoronoi.reference_shifts(domain) lp = length(planes) lrs = length(reference_shifts) mirrors=Dict{Int64,Vector{Int64}}() myshifts=BitVector(zeros(Int8,lp)) for k in (lrs+1):length(mesh) myshifts .= false neigh=neighbors_of_cell(k,mesh,adjacents=true) for n in neigh if n in 1:lrs myshifts .|= reference_shifts[n] end end b=true for i in 1:lp if myshifts[i] && !known_reflections[k-lrs][planes[i].BC] b=false break end end b && (myshifts.=false) number_of_shifts=sum(myshifts) if number_of_shifts>0 list=zeros(Int64,number_of_shifts) count=0 for i in 1:lp if myshifts[i] count+=1 list[count]=planes[i].BC end end push!(mirrors,k=>list) end end return mirrors end function _good_vertex(sig,r,modified_planes,modified,lref,max) track = false #=if sig==[5, 192, 193, 196, 197, 199] || sig == [ 29, 31, 75, 191, 194, 198] println("hier!! $modified_planes, $r") track = true end=# for s in sig if s in modified_planes for s2 in sig s2>lref && s2<=max && (modified[s2-lref] = true) end return false end end return true end function retrieve_reflections( domain::AD,new_xs::ReflectedNodes) where {AD<:AbstractDomain} references = HighVoronoi.references(domain) lref = length(references) bv = reflections(domain) reference_shifts = HighVoronoi.reference_shifts(domain) iterate=1:(length(new_xs)) for k in iterate bv[references[k]-lref] .|= reference_shifts[k] end return bv end function periodize!(domain::VD,sr_offset=0;returnitems=staticfalse,iter=Int64[],search_settings=RaycastParameter(Float64)) where VD<:AbstractDomain #known_reflections = retrieve_reflections(domain) for _ in 1:2 lref = internaly_precise(domain) ? 0 : length(references(domain)) mesh = HighVoronoi.mesh(domain) lint = length(mesh) new_xs = reflect_nodes(domain,periodize_mirrors(domain)) modified_planes = expand_internal_boundary(domain,new_xs) # shifts the periodic part of the boundary such that new_xs lies completely inside the modified_planes .+= lint modified = falses(lint-lref) filter!((sig,r)->_good_vertex(sig,r,modified_planes,modified,lref,lint),mesh)#,affected=1:length(domain.references)) obligatories2 = findall(modified) #append!(iter,add_virtual_points(domain,new_xs,intro="",subroutine_offset=sr_offset, obligatories = obligatories2 )) #println("periodize:") new_iter = add_virtual_points(domain,new_xs,intro="Include $(length(new_xs)) new nodes",subroutine_offset=sr_offset, obligatories = obligatories2, search_settings=search_settings ) if returnitems==true append!(iter,new_iter) end vp_print(sr_offset,"$(length(new_xs)) new nodes included in grid ") println("") end if returnitems==true return sort!(unique!(iter)) else return nothing end end ## main routine to set up the discrete domain function Create_Discrete_Domain(mesh,_boundary::Boundary; offset=0,intro="Adjusting mesh to boundary conditions...",search_settings=RaycastParameter(Float64)) c_offset=offset+BC_offset vp_print(offset,intro) vp_line() boundary=_boundary # mesh = HighVoronoi.mesh(Integral) #println("first here: ",verify_mesh(mesh,_boundary)) #println(typeof(mesh)) domain = Domain(mesh,boundary) periodic_bc=false for i in 1:length(boundary.planes) if boundary.planes[i].BC>0 periodic_bc=true end end if periodic_bc vp_print(c_offset,"Calculating nodes on periodic boundary part: ",c_offset+45,"...") # reflect the boundary nodes according to boundary_cells PN = periodic_nodes(mesh,boundary) #println(PN) new_xs = reflect_nodes(domain,PN) vp_print(c_offset+45," $(length(new_xs)) new nodes to be included... ") vp_line() iter_BC = remove_periodic_BC_verteces!(mesh,boundary) #println(iter_BC) add_virtual_points(domain,new_xs,search_settings=search_settings, subroutine_offset=c_offset,obligatories=iter_BC) #return #systematic_refine!(Integral,new_xs,internal_boundary(domain),settings=search_settings, subroutine_offset=c_offset,obligatories=iter_BC) periodize!(domain,c_offset,search_settings=search_settings) else println("No periodic boundaries....") end return domain end ##################################################################################################################################### ## Manage boundary verteces ##################################################################################################################################### # removes all verteces that lie on one of the periodic boundaries function remove_periodic_BC_verteces!(mesh::AM,boundary::Boundary) where {AM<:AbstractMesh} lm=length(mesh) lb=length(boundary) count=0 modified = BitVector(zeros(Int8,length(mesh))) for i in 1:lb count+=boundary.planes[i].BC>0 ? 1 : 0 end global_list=zeros(Int64,count) count=0 for i in 1:lb if boundary.planes[i].BC>0 count+=1 global_list[count]=i+lm end end function condition(sig,r) for k in (length(sig)):-1:1 if (sig[k] in global_list) for i in 1:k sig[i]<=lm && (modified[sig[i]] = true) end sig[1]=0 break elseif sig[k]<=lm break end end return sig[1]!=0 end filter!(condition,mesh) return keepat!(collect(1:lm),modified) end # returns a Dict(0=>[1]) that contains for every node all adjacent periodic boundaries function periodic_nodes(mesh::AM,boundary::Boundary) where {AM<:AbstractMesh} lm=length(mesh) lb=length(boundary) mirrors=EmptyDictOfType(0=>[1]) periodic_boundary=BitVector(zeros(Int8,lb)) for i in 1:lb periodic_boundary[i]=boundary.planes[i].BC>0 end this_boundary=BitVector(zeros(Int8,lb)) for i in 1:lm this_boundary .= false for (sig,r) in vertices_iterator(mesh,i) for k in (length(sig)):-1:1 if sig[k]>lm this_boundary[sig[k]-lm]=true else break end end end this_boundary .&= periodic_boundary # only periodic boundaries are of interest list=zeros(Int64,sum(this_boundary)) count=1 for k in 1:lb if this_boundary[k] list[count]=k count+=1 end end push!(mirrors, i=>list) end return mirrors end # Takes the BitVector reference_shifts to calculate a shift based on the vectorlist "shifts" """ function periodic_shift(reference_shifts,shifts) result=zeros(Float64,length(shifts[1])) for i in 1:length(reference_shifts) if !reference_shifts[i] continue end result.+=shifts[i] end return result end ##################################################################################################################################### ## Reflecting Methods for points at boundaries ##################################################################################################################################### # uses an iteration algorithm to calculate for each node all shifted versions according to reference_shifts """ function iteratively_reflected_points!(new_xs,reference,reference_shifts,current_shift,_count,shifts,planes,original_node,list,start_plane,taboo,node_index) count=_count #print("N->") if start_plane<=length(planes) for current_plane in start_plane:length(planes) (taboo[current_plane] || !(current_plane in list)) && continue other=planes[current_plane].BC if other>0 taboo[other] = true current_shift[current_plane] = true count = iteratively_reflected_points!(new_xs,reference,reference_shifts,current_shift,count,shifts,planes,original_node,list,current_plane+1,taboo,node_index) current_shift[current_plane] = false taboo[other] = false end end end if start_plane>1 reference_shifts[count] = copy(current_shift) reference[count] = node_index shift = periodic_shift(reference_shifts[count],shifts) new_xs[count] = original_node+shift count += 1 end return count end """ returns a ReflectedNodes(new_xs,reference,reference_shifts), where `reference` is list of reference nodes in external representation. """ function reflect_nodes(domain::AD,mirrors) where AD<:AbstractDomain numberOfNewNodes = 0 nodes = HighVoronoi.nodes(mesh(domain)) numberOfPlanes = length(boundary(domain)) shifts = HighVoronoi.shifts(domain) for (_,sig) in mirrors numberOfNewNodes+=(2^length(sig))-1 # this is the number of new nodes that the point _ generates end # println("Maximally $numberOfNewNodes new nodes will be created") # collect in new_xs all new points new_xs = Vector{eltype(nodes)}(undef,numberOfNewNodes) reference = Vector{Int64}(undef,numberOfNewNodes) reference_shifts = Vector{BitVector}(undef,numberOfNewNodes) count=1 # Take care!: In boundary_cells[...] and in mirrors, k=1....length(xs) refer to "old points", # while k=length(xs+1),..... refer to newly created points taboo = BitVector(falses(numberOfPlanes)) current_shift = BitVector(falses(numberOfPlanes)) for (k,list) in mirrors taboo .= false current_shift .= false #c_old=count count = iteratively_reflected_points!(new_xs,reference,reference_shifts,current_shift,count,shifts,boundary(domain).planes, nodes[k],list,1,taboo,k) end resize!(new_xs,count-1) resize!(reference,count-1) resize!(reference_shifts,count-1) if length(references(domain))>0 keeps = BitVector(ones(Int8,length(reference))) oldrefs = references(domain) l_oldrefs = length(oldrefs) oldshifts = HighVoronoi.reference_shifts(domain) for i in 1:length(reference) pos=1 while pos<=l_oldrefs while pos<=l_oldrefs && oldrefs[pos]!=reference[i] pos += 1 end if pos<=l_oldrefs && oldrefs[pos]==reference[i] && oldshifts[pos]==reference_shifts[i] pos=0 break end pos += 1 end keeps[i] = pos>0 end keepat!(new_xs,keeps) keepat!(reference,keeps) keepat!(reference_shifts,keeps) end return ReflectedNodes(new_xs,reference,reference_shifts) end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
1565
function systematic_refine!(domain::AD,_new_xs::Points;intro="Refine discrete domain with $(length(_new_xs)) points",offset=0,short_log=true,search_settings=()) where AD<:AbstractDomain vp_print(offset,intro) vp_line() sr_offset = offset+4 lnxs = length(_new_xs) old_length = length(mesh(domain)) extended_boundary = internal_boundary(domain)# extend_periodic_part(domain.boundary,Integral.MESH.nodes[1:(length(domain.references))]) MESH = append!(domain,_new_xs) iter = systematic_refine!(MESH,_new_xs,extended_boundary,intro="refine with $(length(_new_xs)) points: ",subroutine_offset=sr_offset) #_internal_indeces(MESH,iter) ### `iter` already IS in INTERNAL representation!!! #sort!(iter) iter = periodize!(domain,sr_offset,iter =iter, returnitems=statictrue) #return iter return iter #_my_modified_cells(Integrator.Integral.MESH,old_length,old_references,length(domain.references),length(_new_xs)) end ## seemingly the following is no longer needed #=function repair_periodic_structure!(domain,Integral,iter,sr_offset=0) known_reflections = retrieve_reflections(domain,Integral) lref1 = length( domain.references ) iter2=periodize!(domain,Integral,known_reflections,sr_offset) lref2 = length(domain.references) iter .+= lref2-lref1 append!(iter,iter2) iter2=periodize!(domain,Integral,known_reflections,sr_offset) lref3 = length( domain.references ) iter .+= lref3-lref2 append!(iter,iter2) sort!(iter) unique!(iter) end =#
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
25607
struct Board2D{F1<:Function,F2<:Function,F3<:Function,F4<:Function} _board::Boundary draw_nodes::F1 draw_vertices::F2 draw_edges::F3 d_line::F4 end """ draw2D(VG::VoronoiGeometry, filename=""; board=PlotBoard(), drawNodes=true, drawVerteces=true, drawEdges=true) Generates MetaPost of VG output in the file with name filename for a two-dimensional VoronoiGeometry. - `board` : The `PlotBoard` or `MetaPostBoard` to be used. - `drawNodes` : Set this value to "false" in order to not show the nodes in the output - `drawVerteces` : Set this value to "false" in order to not show the verteces in the output - `drawEdges` : Set this value to "false" in order to not show the edges in the output """ function draw2D(VG::VoronoiGeometry, filename=""; public_only=true, board=PlotBoard(board = boundary(VG.domain)), drawNodes=true, drawVerteces=true, drawEdges=true) if filename=="" && typeof(board)!=PlotBoard println("MetaPost makes only sense when filename is provided...") return end my_boundary = boundary(VG.domain) board_boundary = public_only ? boundary(VG.domain) : internal_boundary(VG.domain) kwargs = (domain=my_boundary,draw_nodes=drawNodes,draw_verteces=drawVerteces,draw_edges=drawEdges) Integral = integrate_view(VG.domain).integral if filename!="" && typeof(board)<:MetaPostBoard open(filename,"w") do f draw2D(Integral,board=my_board(board,f,board_boundary);kwargs...) end elseif typeof(board)<:MetaPostBoard draw2D(Integral,board=my_board(board,stdio,board_boundary);kwargs...) else my_plot = plot(legend = false, aspect_ratio = 1) draw2D(Integral,board=my_board(board,board_boundary);kwargs...) if filename!="" try savefig(filename) catch @warn "writing to file failed. Maybe use other backend for Plots." end end display(my_plot) end end """ draw2D(Integral::Voronoi_Integral, filename::String; domain=nothing, board=PlotBoard(), drawNodes=true, drawVerteces=true, drawEdges=true) Almost the same as for a `VoronoiGeometry`. It has one additional parameter: - `domain`: A domain of type `Boundary` can be passed here. This will be shown in the color specified by `domain_color`. """ function draw2D(Integral::HVI; domain=nothing, board, draw_nodes=true, draw_verteces=true, draw_edges=true) where HVI<:HVIntegral if dimension(Integral)>2 println("dimension of Integral to large to be plottet in 2D") return end if draw_nodes draw_nodes_2D(Integral,board) end if draw_edges draw_edges_2D(Integral,board) end if draw_verteces draw_verteces_2D(Integral,board) end draw_Boundary_2D(domain,board) end ############################################################################################################################ ## MetapostBoard ############################################################################################################################ """ MetaPostBoard Provides a board to display a two-dimensional `VoronoiGeometry` in MetaPost text format using draw2D. """ struct MetaPostBoard n_size v_size scale n_color::String v_color::String e_color::String d_color::String _board end function my_board(board::MetaPostBoard,f,boundary) n = p->write(f,metapost_cross(p[1],p[2],color=board.n_color,scale=board.scale,size=board.n_size)) v = p->write(f,metapost_cross(p[1],p[2],color=board.v_color,scale=board.scale,size=board.v_size)) e = (r1,r2)->write(f,metapost_line(r1[1],r1[2],r2[1],r2[2],color=board.e_color,scale=board.scale)) d = (x1,x2)->write(f,metapost_line(x1[1],x1[2],x2[1],x2[2],scale=board.scale,color=board.d_color)) return Board2D(boundary,n,v,e,d) end """ The constructor MetaPostBoard() Generates a MetapostBoard where the following `<:Real`-type arguments may be passed (=standard value) - `scaling=100`: denotes a factor by which every object is magnified (also applies to the coordinates of points) - `node_size=0.01`: nodes are drawn as a cross. This variable is the size of a cross BEFORE scaling - `vertex_size=0.003`: same for verteces Additionally, the following colors may be passed as a `<:String`. note that an empty string implies the usage of the MetaPost standard pen color. - `nodes_color=""`: the color at which nodes are draw. Empty string implies standard color (typically black) - `vertex_color="red"`: color verteces - `edge_color="blue"`: color of edges - `domain_color=""`: color the domain, in case a `domain` argument is passed to the `draw2D`-function. Also it displays the domain that was passed to a `VoronoiGeometry` during instatiation - board::Boundary: provides a board: every node or vertex outside this board is not drawn """ function MetaPostBoard(;node_size=0.01, vertex_size=0.003, scaling=100, nodes_color="", vertex_color="red", edge_color="blue", domain_color="", board=cuboid(2,dimensions=3*ones(Float64,2),offset=-0.5*ones(Float64,2))) return MetaPostBoard(node_size,vertex_size,scaling,nodes_color,vertex_color,edge_color,domain_color,board) end # For developping and testing. Only reactivate for that purpose! #=function draw2D(Integral::Voronoi_Integral, D, filename::String; domain=nothing, board=MetaPostBoard(), draw_nodes=true, draw_verteces=true, draw_edges=true) if dimension(Integral)>2 error("dimension of Integral to large to be plottet in 2D") end open(filename,"w") do f if typeof(domain)!=Nothing draw_Boundary_2D(domain,f,board,color=board.d_color) else println("No domain provided...") end if draw_nodes draw_nodes_2D(Integral,f,board) end if draw_edges draw_edges_2D(Integral,f,board) end if draw_verteces draw_verteces_2D(Integral,f,board) end for (_,r) in D write(f,metapost_cross(r[1],r[2],color="green",scale=board.scale,size=board.v_size)) end end end=# function metapost_line(x1,y1,x2,y2;color="",scale=100) s="" if length(color)>0 s*=" withcolor $color; \n" else s*="; \n" end return "draw ($(scale*x1),$(scale*y1))--($(scale*x2),$(scale*y2))$s" end function metapost_cross(x1,y1;color="",scale=100,size=0.02) return metapost_line(x1-size,y1,x1+size,y1,color=color,scale=scale)*metapost_line(x1,y1-size,x1,y1+size,color=color,scale=scale) end function draw_Boundary_2D(domain,board) edges=edge_representation2D(domain) while !isempty(edges) (_,(x1,x2))=pop!(edges) board.d_line(x1,x2) end end function draw_nodes_2D(Integral::HVI,board,max_range=length(mesh(Integral))) where HVI<:HVIntegral nod = nodes(mesh(Integral)) for i in 1:max_range #Integral.MESH.nodes p = nod[i] !(p in board._board) && continue # if p lies outside the domain _board it will not be shown board.draw_nodes(p) end end #=function draw_nodes_2D(nodes::Points,f,board::MetaPostBoard,withcolor="green") for p in nodes !(p in board._board) && continue # if p lies outside the domain _board it will not be shown write(f,metapost_cross(p[1],p[2],color=withcolor,scale=board.scale,size=board.n_size)) end end=# function draw_verteces_2D(Integral,board,max_range=length(mesh(Integral))) MESH = mesh(Integral) for i in 1:max_range V=vertices_iterator(MESH,i) for (sig,p) in V sig[1]!=i && continue !(p in board._board) && continue board.draw_vertices(p) end end end function draw_edges_2D(Integral::HVI,board) where {P,HVI<:HVIntegral{P}} emptylist=Dict{Vector{Int64},P}() MESH = mesh(Integral) dd=Vector{typeof(emptylist)}(undef,1) dd[1]=copy(emptylist) for i in 1:(length(MESH)) _Cell=i neigh=neighbors_of_cell(i,MESH) _length=length(neigh) while length(neigh)>length(dd) push!(dd,copy(emptylist)) end for (sig,r) in vertices_iterator(MESH,i)#Iterators.flatten((verteces,verteces2)) # iterate over all verteces for _neigh in sig # iterate over neighbors in vertex _neigh<=_Cell && continue index = _neigh_index(neigh,_neigh) index!=0 && (push!( dd[index] , sig =>r)) # push vertex to the corresponding list end end for k in 1:_length neigh[k]<=_Cell && continue s1,r1=pop!(dd[k]) if !isempty(dd[k]) s2,r2=pop!(dd[k]) if !(r1 in board._board) r1,r2 = r2,r1 end if !(r1 in board._board) direction = r2-r1 if intersection_exists(board._board,r1,direction) && intersection_exists(board._board,r2,-direction) _r1 = intersect_point(board._board,r1,direction) _r2 = intersect_point(board._board,r2,-direction) board.draw_edges(_r1,_r2) end elseif r2 in board._board board.draw_edges(r1,r2) else direction = r2-r1 board.draw_edges(r1,intersect_point(board._board,r1,direction)) end end while !isempty(dd[k]) pop!(dd[k]) end end end end ############################################################################################################################### ## PlotBoard ############################################################################################################################### """ PlotBoard Provides a board to display a two-dimensional `VoronoiGeometry` in the Julia `Plots` format using `draw2D` or `draw3D`. """ struct PlotBoard n_size v_size scale n_color::Symbol v_color::Symbol e_color::Symbol d_color::Symbol _board end function my_board(board::PlotBoard,boundary) n = p->plot_cross(p[1],p[2],color=board.n_color,scale=board.scale,size=board.n_size) v = p->plot_cross(p[1],p[2],color=board.v_color,scale=board.scale,size=board.v_size) e = (r1,r2)->plot_line(r1[1],r1[2],r2[1],r2[2],color=board.e_color,scale=board.scale) d = (r1,r2)->plot_line(r1[1],r1[2],r2[1],r2[2],color=board.d_color,scale=board.scale) return Board2D(boundary,n,v,e,d) end """ The constructor PlotBoard() Generates a MetapostBoard where the following `<:Real`-type arguments may be passed (=standard value) - `scaling=1`: The width argument for lines in plot. Only for compatibility with MetapostBoard - `node_size=0.01`: nodes are drawn as a cross. This variable is the size of a cross - `vertex_size=0.003`: same for vertices Additionally, the following colors may be passed as a `Symbol`. - `nodes_color=:black`: the color at which nodes are draw. - `vertex_color=:red`: color verteces - `edge_color=:blue`: color of edges - `domain_color=:black`: color the domain, in case a `domain` argument is passed to the `draw2D`-function. Also it displays the domain that was passed to a `VoronoiGeometry` during instatiation - board::Boundary: provides a board: every node or vertex outside this board is not drawn """ function PlotBoard(;node_size=0.01, vertex_size=0.003, scaling=1, nodes_color=:black, vertex_color=:red, edge_color=:blue, domain_color=:black, board=cuboid(2,dimensions=3*ones(Float64,2),offset=-0.5*ones(Float64,2))) return PlotBoard(node_size,vertex_size,scaling,nodes_color,vertex_color,edge_color,domain_color,board) end function plot_line(x1,y1,x2,y2;color=:black,scale=1) plot!([x1, x2], [y1, y2], seriestype = :line, line = (color, scale)) end function plot_cross(x1,y1;color=:black,scale=1,size=0.02) plot_line(x1-size,y1,x1+size,y1,color=color,scale=scale) plot_line(x1,y1-size,x1,y1+size,color=color,scale=scale) end ######################################################################################### # 3d ######################################################################################### function draw3D(VG::VoronoiGeometry, filename=""; board=PlotBoard(board=boundary(VG.domain)), drawNodes=true, drawVerteces=true, drawEdges=true) draw3D(integral(VG.domain),filename,domain=boundary(VG.domain),draw_nodes=drawNodes,draw_verteces=drawVerteces,draw_edges=drawEdges, board=board) end """ draw3D(Integral::Voronoi_Integral, filename::String; domain=nothing, board=MetaPostBoard(), drawNodes=true, drawVerteces=true, drawEdges=true) Writes MetaPost code for the internal type Voronoi_Integral, which may be assessed via `VoronoiGeometry.Integrator.Integral`. It has one additional parameter: - `domain`: A domain of type `Boundary` can be passed here. This will be shown in the color specified by `domain_color`. """ function draw3D(Integral::HVI, filename::String; domain=nothing, board=PlotBoard(), draw_nodes=true, draw_verteces=true, draw_edges=true) where HVI<:HVIntegral if dimension(Integral)!=3 error("dimension of Integral should be 3, is $(dimension(Integral))") end if typeof(board)==PlotBoard my_plot = plot(legend = false, aspect_ratio = 1) f = 0 if draw_nodes draw_nodes_3D(Integral,f,board) end if draw_edges draw_edges_3D(Integral,f,board) end if draw_verteces draw_verteces_3D(Integral,f,board) end if filename!="" try savefig(filename) catch @warn "writing to file failed. Maybe use other backend for Plots" end end display(my_plot) else error("works only with a PlotBoard") end end function plot_line(x1,y1,z1,x2,y2,z2;color=:black,scale=1) plot!([x1, x2], [y1, y2], [z1,z2], seriestype = :line, line = (color, scale)) end function plot_cross(x1,y1,z1;color=:black,scale=1,size=0.02) plot_line(x1-size,y1,z1,x1+size,y1,z1,color=color,scale=scale) plot_line(x1,y1-size,z1,x1,y1+size,z1,color=color,scale=scale) plot_line(x1,y1,z1-size,x1,y1,z1+size,color=color,scale=scale) end #=function draw_Boundary_2D(domain,f,board::PlotBoard;color=:black) edges=edge_representation2D(domain) while !isempty(edges) (_,(x1,x2))=pop!(edges) plot_line(x1[1],x1[2],x2[1],x2[2],scale=board.scale,color=color) end end=# function draw_nodes_3D(Integral,f,board::PlotBoard) for p in nodes(mesh(Integral)) !(p in board._board) && continue # if p lies outside the domain _board it will not be shown plot_cross(p[1],p[2],p[3],color=board.n_color,scale=board.scale,size=board.n_size) end end function draw_verteces_3D(Integral,f,board::PlotBoard) MESH = mesh(Integral) for i in 1:length(MESH) V=vertices_iterator(MESH,i) for (sig,p) in V sig[1]!=i && continue !(p in board._board) && continue plot_cross(p[1],p[2],p[3],color=board.v_color,scale=board.scale,size=board.v_size) end end end function draw_edges_3D(Integral,f,board::PlotBoard) MESH = mesh(Integral) nodes = HighVoronoi.nodes(MESH) for _Cell in 1:length(nodes) draw_edges_3D_cell(Integral,_Cell,neighbors_of_cell(_Cell,MESH),board.e_color) end end function draw_edges_3D_cell(Integral::HVI,_Cell,neighbors,color) where {P,HVI<:HVIntegral{P}} MESH = mesh(Integral) nodes = HighVoronoi.nodes(MESH) dim = dimension(Integral) # get all neighbors of this current cell neigh=neighbors _length=length(neigh) verteces = vertices_iterator(MESH,_Cell) # flexible data structure to store the sublists of verteces at each iteration step 1...dim-1 emptydict=Dict{Vector{Int64},P}() # empty buffer-list to create copies from listarray=(typeof(emptydict))[] # will store to each remaining neighbor N a sublist of verteces # which are shared with N all_dd=(typeof(listarray))[] for _ in 1:dim-1 push!(all_dd,copy(listarray)) end # do the integration taboo = zeros(Int64,dim) iterative_3D_edge( _Cell, dim, dim, neigh, _length,verteces,emptydict,emptydict,all_dd,taboo,color) end function iterative_3D_edge(_Cell, dim, space_dim, neigh, _length,verteces,verteces2,emptylist,all_dd,taboo,color) if (dim==1) # this is the case if and only if we arrived at an edge if length(verteces)>1 _,r = pop!(verteces) _,r2 = pop!(verteces) empty!(verteces) plot_line(r[1],r[2],r[3],r2[1],r2[2],r2[3],color=color) end elseif dim==space_dim dd=Vector{typeof(emptylist)}(undef,_length) for i in 1:_length dd[i]=copy(emptylist) end for (sig,r) in verteces # iterate over all verteces for _neigh in sig # iterate over neighbors in vertex _neigh==_Cell && continue index=_neigh_index(neigh,_neigh) index==0 && continue push!( dd[index] , sig =>r) # push vertex to the corresponding list end end #=for (sig,r) in verteces2 # repeat in case verteces2 is not empty for _neigh in sig _neigh==_Cell && continue index=_neigh_index(neigh,_neigh) index==0 && continue if (_neigh>_Cell || isempty(dd[index])) # make sure for every neighbor the dd-list is not empty push!( dd[index] , sig =>r) # push vertex to the corresponding list end end end=# taboo[dim]=_Cell for k in 1:_length buffer=neigh[k] # this is the (further) common node of all verteces of the next iteration bufferlist=dd[k] isempty(bufferlist) && continue taboo[dim-1] = buffer neigh[k]=0 if buffer>_Cell # in this case the interface (_Cell,buffer) has not yet been investigated iterative_3D_edge(_Cell, dim-1, space_dim, neigh, _length,bufferlist,emptylist,emptylist,all_dd,taboo,color) neigh[k]=buffer else empty!(bufferlist) end end else _count=1 for k in 1:_length _count+=neigh[k]!=0 ? 1 : 0 # only if neigh[k] has not been treated earlier in the loop end _my_neigh=Vector{Int64}(undef,_count-1) dd=all_dd[dim-1] # dd will store to each remaining neighbor N a sublist of verteces which are shared with N while length(dd)<_count push!(dd,copy(emptylist)) end _count=1 for k in 1:_length if (neigh[k]!=0) # only if neigh[k] has not been treated earlier in the loop _my_neigh[_count]=neigh[k] _count+=1 end end ll=(length(verteces)) for _ii in 1:(ll) # iterate over all verteces (sig,r) = _ii==ll ? first(verteces) : pop!(verteces) count = 0 for _neigh in sig # iterate over neighbors in vertex ( _neigh in taboo) && continue # if _N is a valid neighbor (i.e. has not been treated in earlier recursion) index = _neigh_index(_my_neigh,_neigh) (index==0 || count==dim) && continue push!( dd[index] , sig =>r) # push vertex to the corresponding list end end _count=1 for k in 1:_length buffer=neigh[k] # this is the (further) common node of all verteces of the next iteration buffer==0 && continue bufferlist=dd[_count] _count+=1 isempty(bufferlist) && continue neigh[k]=0 taboo[dim-1]=buffer iterative_3D_edge(_Cell, dim-1, space_dim, neigh, _length,bufferlist,emptylist,emptylist,all_dd,taboo,color) neigh[k]=buffer taboo[dim-1]=0 if !isempty(bufferlist) empty!(bufferlist) end end end end #= emptylist=EmptyDictOfType([0]=>Integral.MESH.nodes[1]) dd=Vector{typeof(emptylist)}(undef,1) dd[1]=copy(emptylist) All_Verteces=Integral.MESH.All_Verteces Buffer_Verteces=Integral.MESH.Buffer_Verteces for i in 1:(length(Integral)) _Cell=i neigh=neighbors_of_cell(i,Integral.MESH) _length=length(neigh) while length(neigh)>length(dd) push!(dd,copy(emptylist)) end verteces=All_Verteces[i] verteces2=Buffer_Verteces[i] for (sig,r) in Iterators.flatten((verteces,verteces2)) # iterate over all verteces for _neigh in sig # iterate over neighbors in vertex #_neigh<=_Cell && continue index = _neigh_index(neigh,_neigh) index!=0 && (push!( dd[index] , sig =>r)) # push vertex to the corresponding list end end for k in 1:_length #neigh[k]<=_Cell && continue s1,r1=pop!(dd[k]) if !isempty(dd[k]) #&& r1 in board._board s2,r2=pop!(dd[k]) r2 in board._board && plot_line(r1[1],r1[2],r1[3],r2[1],r2[2],r2[3],color=board.e_color,scale=board.scale) end while !isempty(dd[k]) pop!(dd[k]) end end end end =# # For developing and testing #= function check_2d(mesh::Voronoi_MESH) for i in 1:length(mesh) neigh=neighbors_of_cell(i,mesh.All_Verteces[i],mesh.Buffer_Verteces[i]) count=0 for (sig,r) in mesh.All_Verteces[i] count+=1 end for (sig,r) in mesh.Buffer_Verteces[i] count+=1 end if count!=length(neigh) println("error in $i: $(mesh.nodes[i]) , $count<>$(length(neigh))") end end end=# #= struct Draw2DLine p1 p2 end struct Draw2dPlotsBoard whiteboard scale end struct Draw2DCell _Cell verteces end struct Draw2DCells All_Verteces Buffer_Verteces end struct Draw2DVerteces All_Verteces end function Draw2DMesh(mesh;edges=true,nodes=true,verteces=true,edgecolor=nothing,nodecolor=nothing,vertexcolor=nothing) a=() if edges a = (a...,(Draw2DCells(mesh.All_Verteces,mesh.Buffer_Verteces),edgecolor)) end if nodes a = (a...,(mesh.nodes,nodecolor)) end if verteces a = (a...,(Draw2DVerteces(mesh.All_Verteces),vertexcolor)) end return a end function plot_point!(B::Draw2dPlotsBoard, x, y, color=nothing) color==nothing && (color=(0,0,0)) s=B.scale plot!(B.whiteboard, x + s*cos.(0:0.01:2π), y + s*sin.(0:0.01:2π), fill=true, color=color) end function plot_line!(B::Draw2dPlotsBoard, x1, y1, x2, y2, color=nothing) color==nothing && (color=(0,0,0)) plot!(B.whiteboard, [x1, x2], [y1, y2], color=color) end function Draw2D(whiteboard, args...) emptylist=EmptyDictOfType([0]=>Integral.MESH.nodes[1]) dd=Vector{typeof(emptylist)}(undef,1) dd[1]=copy(emptylist) for e in args obj = (length(e) > 1) ? e[1] : e col = (length(e) > 1) ? e[2] : nothing if typeof(obj)<:Point plot_point!(B, obj[1], obj[2], col) elseif typeof(obj)==Draw2DLine plot_line!(B, obj.p1[1], obj.p1[2], obj.p2[1], obj.p2[2], col) elseif typeof(obj)<:Points for i in 1:length(obj) plot_point!(B, obj[i][1], obj[i][2], col) end elseif typeof(obj)==Drwa2DCell plot_cell!(B,obj._Cell,obj.verteces,dd,emptylist,col) elseif typeof(obj)==Drwa2DCells for i in 1:length(obj.All_Verteces) plot_cell!(B,i,Iterators.flatten((obj.All_Verteces[i],obj.Buffer_Verteces[i])),dd,emptylist,col) end elseif typeof(obj)==Boundary edges=edge_representation2D(obj) while !isempty(edges) (_,(x1,x2))=pop!(edges) plot_line!(B, x1[1],x1[2],x2[1],x2[2], col) end elseif typeof(obj)==Draw2DVerteces for i in 1:length(obj.Verteces) for (_,r) in obj.Verteces[i] plot_point!(B, r[1], r[2], col) end end end end end function plot_cell!(B,_Cell,verteces,dd,emptylist,col) neigh = _old_neighbors_of_cell(_Cell,verteces) _length = length(neigh) while length(neigh)>length(dd) push!(dd,copy(emptylist)) end for (sig,r) in verteces # iterate over all verteces for _neigh in sig # iterate over neighbors in vertex _neigh==_Cell && continue index = _neigh_index(neigh,_neigh) index!=0 && (push!( dd[index] , sig =>r)) # push vertex to the corresponding list end end for k in 1:_length neigh[k]==_Cell && continue s1,r1=pop!(dd[k]) if !isempty(dd[k]) && r1 in board._board s2,r2=pop!(dd[k]) r2 in board._board && plot_line!(B, r1[1], r1[2], r2[1], r2[2], col) end while !isempty(dd[k]) pop!(dd[k]) end end end =#
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
14168
#following code is for using this file individually or testing #= @inline FNV_OFFSET_BASIS(::Type{UInt64}) = UInt64(14695981039346656037) @inline FNV_PRIME(::Type{UInt64}) = UInt64(1099511628211) @inline FNV_OFFSET_BASIS(::Type{UInt128}) = UInt128(144066263297769815596495629667062367629) @inline FNV_PRIME(::Type{UInt128}) = UInt128(309485009821345068724781371) # FNV-1a hash function function fnv1a_hash(vec::VI,::Type{T}) where {T,VI<:AbstractVector{Int}} hash = FNV_OFFSET_BASIS(T) for value in vec # XOR the bottom with the current octet hash = xor(hash, UInt64(value)) # Multiply by the 64-bit FNV magic prime mod 2^64 hash *= FNV_PRIME(T) #& 0xFFFFFFFFFFFFFFFF end return hash end using StaticArrays =# next_power_of_two(n::Int64) = next_power_of_two(reinterpret(UInt64,n)) function next_power_of_two(n::UInt64) if n == 0 return UInt64(1) end n -= 1 n |= n >> 1 n |= n >> 2 n |= n >> 4 n |= n >> 8 n |= n >> 16 n |= n >> 32 return n + 1 end struct HashedEdge value::UInt128 value2::UInt64 cell1::Int64 cell2::Int64 end @inline HashedEdge() = HashedEdge(0,0,0,0) # Definition der mutable EdgeHashTable Struktur für HashedEdge mutable struct EdgeHashTable{V<:AbstractVector{HashedEdge},R} table::V mylength::MVector{1,UInt64} occupied::BitVector lock::R function EdgeHashTable(v::A, len::Int64,lock=SingleThread()) where A len2 = next_power_of_two(len) resize!(v, len2) l = locktype(lock) #typeof(l)!=Nothing && error("") new{A,typeof(l)}(v, MVector{1,UInt64}([len2-1]),falses(len2),l) end EdgeHashTable(len::Int64,lock=SingleThread()) = EdgeHashTable(Vector{HashedEdge}(undef, len), len,lock) end # Methode zum Einfügen in die EdgeHashTable function pushedge!(ht::EdgeHashTable, key::K, cell::Int64, mode=true) where K value = fnv1a_hash(key, UInt128) value_ = UInt64(value & UInt128(0x7FFFFFFFFFFFFFFF)) index1 = value_ & ht.mylength[1] index2 = fnv1a_hash(key, UInt64) i = UInt64(0) ret = false lock(ht.lock) #print("$value, $index2") while true idx = reinterpret(Int64,(index1 + i * index2) & ht.mylength[1] + 1) # try bitcast( ) instead #print(" $idx $(ht.occupied[idx] ? 1 : 0) ") @inbounds data = ht.occupied[idx] ? ht.table[idx] : HashedEdge() ht.occupied[idx] = true if data.value == 0 ht.table[idx] = HashedEdge(value, index2, cell, 0) break #return false elseif data.value == value && data.value2==index2 && data.cell1 == 0 ht.table[idx] = HashedEdge(value, index2, cell, 0) break #return false elseif data.value == value && data.value2==index2 if data.cell2 != 0 ret = true break end if mode || data.cell1 != cell ht.table[idx] = HashedEdge(value, index2, data.cell1, cell) break #return false else break #return false end end i += 1 if i >= ht.mylength[1] extend(ht) ret = pushedge!(ht, key, cell, mode) break end end unlock(ht.lock) return ret end @inline clearhashvector(::Vector{HashedEdge}) = nothing @inline similaredgehash(::Type{HashedEdge}, len2::Int64) = Vector{HashedEdge}(undef, len2) # Funktion zum Erweitern der EdgeHashTable function extend(ht::EdgeHashTable) len2 = 2 * (ht.mylength[1]+1) V2 = similaredgehash(HashedEdge, reinterpret(Int64,len2)) new_occupied = falses(len2) len2 -= 1 pos = 0 for data in ht.table pos += 1 !ht.occupied[pos] && continue value_ = UInt64(data.value & UInt128(0x7FFFFFFFFFFFFFFF)) index1 = value_ & len2 index2 = data.value2 i = 0 while true idx = reinterpret(Int64,(index1 + i * index2) & len2 + 1) # try bitcast( ) instead i+=1 if !new_occupied[idx] #V2[idx].value==0 V2[idx] = data new_occupied[idx] = true break end end end clearhashvector(ht.table) ht.table = V2 ht.occupied = new_occupied ht.mylength[1] = len2 end # Methode zum Leeren der EdgeHashTable function Base.empty!(ht::EdgeHashTable) lock(ht.lock) fill!(ht.occupied,false) unlock(ht.lock) end #= # Methode zum Prüfen, ob ein Schlüssel in der EdgeHashTable vorhanden ist function Base.haskey(ht::EdgeHashTable, key) value = fnv1a_hash(key, UInt128) index1 = Int64(value % ht.mylength[1]) index2 = fnv1a_hash(key, UInt64) i = 0 while true idx = (index1 + i * index2) % ht.mylength[1] + 1 data = ht.table[idx] if data.value == 0 return false elseif data.value == value return true end i += 1 if i >= ht.mylength[1] return false end end end =# struct HashedVertex value::UInt128 value2::UInt64 cell::Int64 end @inline HashedVertex() = HashedVertex(0, 0, 0) # Definition der mutable VertexHashTable Struktur für HashedVertex mutable struct VertexHashTable{V<:AbstractVector{HashedVertex}} table::V mylength::MVector{1,UInt64} occupied::BitVector function VertexHashTable(v::A, len::Int64) where A len2 = next_power_of_two(len) resize!(v, len2) new{A}(v, MVector{1,UInt64}([len2-1]), falses(len2)) end VertexHashTable(len::Int64) = VertexHashTable(Vector{HashedVertex}(undef, len), len) end # Methode zum Einfügen in die VertexHashTable function pushvertex!(ht::VertexHashTable, key::K, cell::Int64, mode=true) where K value = fnv1a_hash(key, UInt128) value_ = UInt64(value & UInt128(0x7FFFFFFFFFFFFFFF)) index1 = value_ & ht.mylength[1] index2 = fnv1a_hash(key, UInt64) i = UInt64(0) while true idx = reinterpret(Int64, (index1 + i * index2) & ht.mylength[1] + 1) if !ht.occupied[idx] ht.occupied[idx] = true ht.table[idx] = HashedVertex(value, index2, cell) return true end data = ht.table[idx] if data.value == value && data.value2 == index2 return false end i += 1 if i >= ht.mylength[1] extend(ht) return pushvertex!(ht, key, cell, mode) end end end function haskey(ht::VertexHashTable, key::K, cell::Int64, mode=true) where K value = fnv1a_hash(key, UInt128) value_ = UInt64(value & UInt128(0x7FFFFFFFFFFFFFFF)) index1 = value_ & ht.mylength[1] index2 = fnv1a_hash(key, UInt64) i = UInt64(0) while true idx = reinterpret(Int64, (index1 + i * index2) & ht.mylength[1] + 1) if ht.occupied[idx] data = ht.table[idx] if data.value == value && data.value2 == index2 return true end else return false end i += 1 if i >= ht.mylength[1] return false end end end @inline clearhashvector(::Vector{HashedVertex}) = nothing @inline similarvertexhash(::Type{HashedVertex}, len2::Int64) = Vector{HashedVertex}(undef, len2) # Funktion zum Erweitern der VertexHashTable function extend(ht::VertexHashTable) println("extending...") len2 = 2 * (ht.mylength[1] + 1) V2 = similarvertexhash(HashedVertex, reinterpret(Int64, len2)) new_occupied = falses(len2) len2 -= 1 pos = 0 for data in ht.table pos += 1 !ht.occupied[pos] && continue value_ = UInt64(data.value & UInt128(0x7FFFFFFFFFFFFFFF)) index1 = value_ & len2 index2 = data.value2 i = 0 while true idx = reinterpret(Int64, (index1 + i * index2) & len2 + 1) i += 1 if !new_occupied[idx] V2[idx] = data new_occupied[idx] = true break end end end clearhashvector(ht.table) ht.table = V2 ht.occupied = new_occupied ht.mylength[1] = len2 end # Methode zum Leeren der VertexHashTable function Base.empty!(ht::VertexHashTable) fill!(ht.occupied, false) end function test_EdgeHashTable() len = 3 ht = EdgeHashTable(len) println(ht) empty!(ht) # Beispiel für das Einfügen mit Vector{Int64} keys println(pushedge!(ht, [1, 2, 3], 1)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushedge!(ht, [1, 2, 3], 1,false)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushedge!(ht, [1, 2, 3], 2)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushedge!(ht, [1, 2, 3], 4)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushedge!(ht, [1, 2, 3], 2)) # sollte true zurückgeben, da der Schlüssel bereits vorhanden ist println(pushedge!(ht, [4, 5, 6], 3)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushedge!(ht, [4, 7, 6], 3)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushedge!(ht, [4, 8, 6], 3)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushedge!(ht, [4, 9, 6], 3)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushedge!(ht, [4, 10, 6], 3)) # sollte false zurückgeben, da es ein neuer Eintrag ist # Beispiel für das Prüfen mit Vector{Int64} keys empty!(ht) return true end function test_VertexHashTable() len = 3 ht = VertexHashTable(len) println(ht) empty!(ht) # Beispiel für das Einfügen mit Vector{Int64} keys println(pushvertex!(ht, [1, 2, 3], 1)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushvertex!(ht, [1, 2, 3], 2)) # sollte true zurückgeben, da der Schlüssel bereits vorhanden ist println(pushvertex!(ht, [4, 5, 6], 3)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushvertex!(ht, [4, 7, 6], 3)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushvertex!(ht, [4, 8, 6], 3)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushvertex!(ht, [4, 9, 6], 3)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(pushvertex!(ht, [4, 10, 6], 3)) # sollte false zurückgeben, da es ein neuer Eintrag ist println(haskey(ht,[1,2,3],1)) println(haskey(ht,[10,2,3],10)) # Beispiel für das Prüfen mit Vector{Int64} keys empty!(ht) return true end #= Needs following methods: hash_entry{T}(data,mode)::T first_hashing()::Bool modify_hashing(data::T,_data,mode)::(T,Bool) =# #= struct HashedEntry{T} value::UInt128 value2::UInt64 data::T HashedEntry(a,b,t::T) where T = new{T}(a,b,t) HashedEntry{T}(v,v2,d,m) = new{T}(v,v2,hash_entry{T}(d,m)) end @inline HashedEntry(d::T) where T = HashedEdge{T}(0,0,d) # Definition der mutable EdgeHashTable Struktur für HashedEdge mutable struct HashTable{T,V<:AbstractVector{HashedEdge{T}}} table::V mylength::MVector{1,UInt64} occupied::BitVector function HashTable(v::A, len::Int64) where {T,A<:AbstractVector{T}} len2 = next_power_of_two(len) resize!(v, len2) new{T,A}(v, MVector{1,UInt64}([len2-1]),falses(len2)) end HashTable(::Type{TT},len::Int64) where TT = HashTable(Vector{HashedEntry{T}}(undef, len), len) end # Methode zum Einfügen in die EdgeHashTable function Base.push!(ht::HT, key::K, _data, mode=true) where {T,HT<:HashTable{T},K} value = fnv1a_hash(key, UInt128) value_ = UInt64(value & UInt128(0x7FFFFFFFFFFFFFFF)) index1 = value_ & ht.mylength[1] index2 = fnv1a_hash(key, UInt64) i = UInt64(0) while true idx = reinterpret(Int64,(index1 + i * index2) & ht.mylength[1] + 1) # try bitcast( ) instead occupied = ht.occupied[idx] @inbounds data = occupied ? ht.table[idx] : HashedEntry{T}(value, index2, _data,mode) ht.occupied[idx] = true if !occupied ht.table[idx] = data return first_hashing(data) elseif data.value == value && data.value2==index2 t, ret = modify_hashing(data.data,_data,mode) ht.table[idx] = HashedEntry(value,index2,t) return ret end i += 1 if i >= ht.mylength[1] extend(ht) return push!(ht, key, _data, mode) end end end @inline clearhashvector(::Vector{HashedEntry}) = nothing @inline similarhash(::Vector{HashedEntry}, len2::Int64) = Vector{HashedEntry}(undef, len2) # Funktion zum Erweitern der EdgeHashTable function extend(ht::HashTable) len2 = 2 * (ht.mylength[1]+1) V2 = similarhash(ht.table, reinterpret(Int64,len2)) new_occupied = falses(len2) len2 -= 1 pos = 0 for data in ht.table pos += 1 !ht.occupied[pos] && continue value_ = UInt64(data.value & UInt128(0x7FFFFFFFFFFFFFFF)) index1 = value_ & len2 index2 = data.value2 i = 0 while true idx = reinterpret(Int64,(index1 + i * index2) & len2 + 1) # try bitcast( ) instead i+=1 if !new_occupied[idx] #V2[idx].value==0 V2[idx] = data new_occupied[idx] = true break end end end clearhashvector(ht.table) ht.table = V2 ht.occupied = new_occupied ht.mylength[1] = len2 end # Methode zum Leeren der EdgeHashTable function Base.empty!(ht::HashTable) fill!(ht.occupied,false) # @simd for i in 1:ht.mylength[1] # @inbounds ht.table[i] = HashedEdge(0, 0, 0, 0) # end end =#
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
25720
VoronoiNodesM(x::Matrix) = map(MVector{size(x,1)}, eachcol(x)) VoronoiNodesM(x::Vector{<:Vector}) = map(MVector{size(eltype(x))[1]}, x) VoronoiNodesM(x::Vector{<:MVector}) = x VoronoiNodesM(p::AbstractVector{Float64}) = VoronoiNodesM([p]) VoronoiNodesM(p::AbstractVector{Float32}) = VoronoiNodesM([p]) const EI_valid_rays = 1 const EI_currentprimary = 2 const EI_currentsecondary = 3 const EI_currentplane = 4 struct FEIData{T,TT,TTT,TTTT,FT} dim::Int64 current_dim::Int64 sig::Vector{Int64} r::T vals::Vector{FT} # seems not used, was a buffer local_xs::TTTT #Vector{T} local_cone::TTTT #Vector{T} rays::TTTT #Vector{T} new_node::Vector{Int64} # now stores indeces of active sigma index::Vector{Int64} # index to current position in plane vector free_nodes::Vector{Bool} valid_nodes::Vector{Bool} active_nodes::TT planes::Vector{BitVector} # seems not used current_edge::T # seems not used proto::TTT end function FEIData(pp,cdim) get_dim(i::Int) = i get_dim(p::Point) = size(p)[1] dim = get_dim(pp) return FEIData{MVector{get_dim(pp),eltype(pp)},MVector{get_dim(pp),Int64},SVector{get_dim(pp),Int64},Vector{MVector{get_dim(pp),eltype(pp)}},eltype(pp)}(dim,cdim,Int64[],zeros(MVector{get_dim(pp),eltype(pp)}),eltype(pp)[],VoronoiNodesM(rand(eltype(pp),dim,dim)),VoronoiNodesM(rand(eltype(pp),dim,dim)),VoronoiNodesM(rand(eltype(pp),dim,dim)),[0],[1,0,0,0],[true],[true],zeros(MVector{dim,Int64}),[BitVector([1])],MVector{dim,eltype(pp)}(zeros(eltype(pp),dim)),zeros(SVector{dim,Int64})) end DimFEIData{S,FLOAT} = FEIData{MVector{S, FLOAT}, MVector{S, Int64}, SVector{S, Int64}, Vector{MVector{S, FLOAT}},FLOAT} #FEIData{MVector{S,Float64},MVector{S,Int64}} struct FEIStorage{TT} index::MVector{5,Int64} # index to current position in plane vector free_nodes::Vector{Bool} valid_nodes::Vector{Bool} active_nodes::TT end DimFEIStorage{S} = FEIStorage{MVector{S, Int64}} function FEIStorage(sig,r) lsig = length(sig) index = MVector{5,Int64}(zeros(Int64,5)) free_nodes = Vector{Bool}(undef,lsig) valid_nodes = Vector{Bool}(undef, lsig) active_nodes = MVector{length(r), Int64}(zeros(Int64,length(r))) return FEIStorage(index,free_nodes,valid_nodes,active_nodes) end function reset(f::FEIStorage) f.index[5] = 0 return f end ### Maybe useful in future #=function reset(fei::FEIStorage,sig,_Cell,neighbors,sig_neigh_iterator) reset(sig_neigh_iterator,sig,neighbors) lsig = length(sig) resize!(fei.free_nodes,lsig) resize!(fei.valid_nodes,lsig) fei.free_nodes .= false fei.valid_nodes .= false for (a,b) in sig_neigh_iterator fei.valid_nodes[a] = true end first_index = findfirstassured(_Cell,sig) fei.index[5] = _Cell view(fei.index,1:4) .= 0 _swap(1,first_index,fei.valid_nodes) fei.active_nodes[1] = 1 return fei end=# struct FastEdgeIterator{T,FLOAT} iterators::T ray_tol::FLOAT function FastEdgeIterator(p_data,tol=1.0E-12) get_dim(i::Int) = i get_dim(p) = size(p)[1] dim = get_dim(p_data) proto = FEIData(p_data,dim) its = Vector{typeof(proto)}(undef,dim-1) for i in 1:(dim-1) its[i] = FEIData(p_data,dim-i+1) end return new{typeof(its),typeof(tol)}(its,tol) end end function ray(NF_::FastEdgeIterator{T}) where {T} return NF_.iterators[1].rays[NF_.iterators[1].dim] end function Base.iterate(itr::FastEdgeIterator, state=1) b, edge, gen = update_edge(itr) return b ? ( (edge,gen), state+1 ) : nothing end function get_full_edge(sig,r,edge,NF_::FastEdgeIterator,xs) NF=NF_.iterators[1] fullview,count = get_full_edge(NF.rays,NF.local_cone,NF.new_node,NF.active_nodes[1],length(NF.sig),NF.dim,NF_.ray_tol) return Vector{Int64}(view(NF.sig, fullview[1:count])), convert_SVector( -1 .* ray(NF_) ) end #=function get_full_edge_indexing(sig,r,edge,NF_::FastEdgeIterator,xs) NF=NF_.iterators[1] fullview, count = get_full_edge_indexing(NF.rays,NF.local_cone,NF.new_node,NF.active_nodes[1],length(NF.sig),NF.dim,NF_.ray_tol) return view(NF.sig, fullview[1:count]) end =# function update_edge(NF_::FastEdgeIterator,searcher,edge,all_edges=false) # print("U") # print(" ") NF = NF_.iterators[1] dim = NF.dim first_entry = NF.active_nodes[1] my_cone = NF.local_cone my_valid_nodes = NF.valid_nodes my_minimal = NF.active_nodes data = NF.index lsig = NF.sig[end]==0 ? findfirstassured(0,NF.sig)-1 : length(NF.sig) angle_condition(x) = x>1.0E-12 nu = NF.rays if data[EI_valid_rays]<dim-1 return false, data end full_edge = Int64[] lfull_edge = 0 old_broken_index = dim+1 while lfull_edge==0 start_index = 1 if my_minimal[2]==0 my_minimal[2] = first_entry fill_up_edge(my_minimal,my_valid_nodes,2,dim) else start_index = old_broken_index +1 while start_index>old_broken_index for i in dim:-1:1 i==1 && (return false,data) nv = next_valid(my_valid_nodes,my_minimal[i]) if (dim==i ? nv!=0 : nv!=my_minimal[i+1]) fill_up_edge(my_minimal,my_valid_nodes,i,dim) start_index = i-1 break end end end end # adjust orthogonal basis nu[dim] .= my_cone[first_entry] b = true # print("$(my_minimal)") for i in 1:(start_index-1) rotate(nu,i,dim) rotate(nu,i,dim) end for i in start_index:(dim-1) nu[i] .= my_cone[my_minimal[i+1]] if abs(dot(nu[i],nu[dim]))<1.0E-12 #print("|") old_broken_index = i b = false break end # if i>1 rotate(nu,i,dim) rotate(nu,i,dim) # end end # print("|") b==false && continue # print("|") my_angle = searcher.ray_tol # min(10*searcher.ray_tol,max_angle(nu,dim)) # error("has to change `edge` argument to disposable vector") full_edge, lfull_edge = get_full_edge(nu,my_cone,NF.new_node,first_entry,lsig,dim,my_angle) # length(full_edge)>0 && print("(success) ") # length(full_edge)==0 && println() nu[dim] .*= -1.0 end # print("ES") #length(full_edge)==1 && error("") return true, view(full_edge,1:lfull_edge) end @inline function swap(i,j,args...) for k in 1:length(args) @inbounds args[k][i], args[k][j] = args[k][j], args[k][i] end end @inline function _swap(i,j,args) @inbounds args[i], args[j] = args[j], args[i] end @inline function ortho_project!(nu,i,range) for j in range if i!=j @inbounds nu[i] .-= dot(nu[i], nu[j]) .* nu[j] @inbounds normalize!(nu[i]) end end end @inline function update_normal!(nu,i,dim) @inbounds nor_i = dot(nu[dim],nu[i]) @inbounds nu[dim] .-= nor_i .*nu[i] @inbounds normalize!(nu[dim]) end @inline function ortho_project2!(nu,i,range) for j in range if i!=j @inbounds nu[i] .-= dot(nu[i], nu[j]) .* nu[j] @inbounds nu[i] .-= dot(nu[i], nu[j]) .* nu[j] @inbounds normalize!(nu[i]) end end end @inline function update_normal2!(nu,i,dim) @inbounds nor_i = dot(nu[dim],nu[i]) @inbounds nu[dim] .-= nor_i .*nu[i] @inbounds nor_i = dot(nu[dim],nu[i]) @inbounds nu[dim] .-= nor_i .*nu[i] @inbounds normalize!(nu[dim]) end function max_angle(nu,dim) m = 0.0 for i in 1:(dim-1) for j in (i+1):dim @inbounds m = max(m,abs(dot(nu[i],nu[j]))) end end return 10*m end function rotate(nu,i,dim) ortho_project!(nu,i,1:(i-1)) update_normal!(nu,i,dim) end function rotate2(nu,i,dim) ortho_project2!(nu,i,1:(i-1)) update_normal2!(nu,i,dim) end function reset(NF_::FastEdgeIterator,_first,sig,searcher,r) reset(NF_,sig,r,searcher.tree.extended_xs,sig[_first],searcher) end fraud_vertex(dim,sig,r,lsig,searcher::Nothing,xs) = false function reset(NF_::FastEdgeIterator,sig::Sigma,r,xs,_Cell,searcher,fstore::FEIStorage=FEIStorage(sig,r),nu=0,old_cone=0,step=1;allrays = false, _Cell_first=false) dim = NF_.iterators[1].dim NF = NF_.iterators[step] cdim = NF.current_dim _Cell_entry = findfirstassured(_Cell,sig) lsig = length(sig) if dim==cdim && _Cell_entry>lsig-dim && !allrays NF.index[EI_valid_rays] = 1 return false end if length(NF.sig)<lsig # resize data structure if necessary lnfsig = length(NF.sig) resize!(NF.sig,lsig) resize!(NF.vals,lsig) resize!(NF.local_cone,lsig) resize!(NF.local_xs,lsig) resize!(NF.free_nodes,lsig) resize!(NF.valid_nodes,lsig) #resize!(NF.index,lsig) resize!(NF.new_node,lsig) for i in (lnfsig+1):lsig NF.local_cone[i] = MVector{length(NF.local_cone[1]),Float64}(zeros(Float64,length(NF.local_cone[1]))) NF.local_xs[i] = MVector{length(NF.local_cone[1]),Float64}(zeros(Float64,length(NF.local_cone[1]))) end for k in 1:length(NF.planes) resize!(NF.planes[k],lsig) end end NF.sig[1:lsig] .= sig if length(NF.sig)>lsig NF.sig[(lsig+1):end] .= 0 end _swap(1,_Cell_entry,NF.sig) first_entry = 1 #findfirst(x->x==_Cell,sig) resize!(NF.sig,lsig) resize!(NF.vals,lsig) resize!(NF.local_cone,lsig) resize!(NF.local_xs,lsig) resize!(NF.free_nodes,lsig) resize!(NF.valid_nodes,lsig) #resize!(NF.index,lsig) resize!(NF.new_node,lsig) my_cone = NF.local_cone my_xs = NF.local_xs my_vals = NF.vals my_sig = NF.sig my_freenodes = NF.free_nodes my_minimal = NF.active_nodes my_data = NF.index #identify fraud indices far away from actual cloud if dim==cdim && fraud_vertex(dim,sig,r,lsig,searcher,xs) # see particular fraud_vertex definition above NF.index[EI_valid_rays] = 0 return false end # local coordinates for potential active nodes if length(nu)>1 for i in 1:dim NF.rays[i] .= nu[i] end for i in 1:lsig my_cone[i] .= old_cone[my_sig[i]] i==first_entry && continue my_xs[i] .= xs[my_sig[i]] end my_cone[first_entry] .-= dot(my_cone[first_entry],nu[cdim+1]) .* nu[cdim+1] normalize!(my_cone[first_entry]) my_cone[first_entry] .-= dot(my_cone[first_entry],nu[cdim+1]) .* nu[cdim+1] normalize!(my_cone[first_entry]) NF.r .= r NF.r .-= dot(NF.r,nu[cdim+1]) .* nu[cdim+1] NF.r .-= dot(NF.r,nu[cdim+1]) .* nu[cdim+1] else x0 = xs[my_sig[first_entry]] NF.r .= r .- x0 for i in 1:lsig i==first_entry && continue my_xs[i] .= xs[my_sig[i]] .- x0 end # local tangential normalized vectors for i in 1:lsig i==first_entry && continue my_cone[i] .= my_xs[i] #my_xs[i] normalize!(my_cone[i]) end my_cone[first_entry] .= NF.r # my_xs[first_entry] my_xs[first_entry] .= 0 normalize!(my_cone[first_entry]) # set up normal vector map!(k->abs(dot(my_cone[first_entry],my_cone[k])),my_vals,1:lsig) vmin = minimum(view(my_vals,1:lsig)) vmin /= 10*dim for i in 1:dim my_cone[first_entry][i] += vmin*rand() end normalize!(my_cone[first_entry]) end my_freenodes[1:lsig] .= true my_freenodes[first_entry] = false if fstore.index[5] == 0 my_minimal[1] = first_entry my_data[EI_currentprimary] = 1 + first_entry if dim==2 NF.valid_nodes .= false max_cos = 2.0 i, j = 0, 0 for k1 in 1:(lsig-1) k1==first_entry && continue for k2 in k1:lsig k2==first_entry && continue mc2 = dot(my_cone[k1],my_cone[k2]) if mc2<max_cos i, j, max_cos = k1, k2, mc2 end end end for k in 1:lsig if k==i || k== j NF.valid_nodes[k] = true end end elseif cdim==3 valid_nodes(NF_,NF_.ray_tol) else NF.valid_nodes .= false b, edge,full_edge_count = scan_for_edge(NF,NF.new_node,NF_.ray_tol) i = 0 while b i+=1 lsub_sig = full_edge_count if lsub_sig>cdim fe = findfirstassured(first_entry,edge,1:full_edge_count) #println("passing: $cdim -> $(NF.sub_iterator.current_dim), $(NF.rays), -- $(my_cone[first_entry]), $edge") reset(NF_,view(edge,fe:full_edge_count),NF.r,my_xs,first_entry,searcher,fstore,NF.rays, my_cone,step+1) NF2 = NF_.iterators[step+1] sub_sig = view(NF2.sig,1:lsub_sig) # Following modification saves ≈ 10-12% for the reset(...) function for kk in eachindex(sub_sig) NF.valid_nodes[sub_sig[kk]] = NF2.valid_nodes[kk] end #NF.valid_nodes[sub_sig] .|= NF2.valid_nodes[1:lsub_sig] else for __kk in 1:full_edge_count NF.valid_nodes[edge[__kk]] = true end end #println(off_str,NF.valid_nodes) b, edge, full_edge_count = scan_for_edge(NF,NF.new_node,NF_.ray_tol) #println(off_str,"$edge, $b") end NF.valid_nodes[first_entry] = false end if dim==cdim fstore.index[5]=_Cell # important! transfer_values!(fstore.index,NF.index,4) # actually not necessary to store any more transfer_values!(fstore.free_nodes,NF.free_nodes,lsig) # actually not necessary to store any more transfer_values!(fstore.valid_nodes,NF.valid_nodes,lsig) transfer_values!(fstore.active_nodes,NF.active_nodes,dim) # ...[1]=first_entry, rest will be nullified later end else transfer_values!(NF.index,fstore.index,4) transfer_values!(NF.free_nodes,fstore.free_nodes,lsig) transfer_values!(NF.valid_nodes,fstore.valid_nodes,lsig) transfer_values!(NF.active_nodes,fstore.active_nodes,dim) end my_minimal[2:end] .= 0 if !_Cell_first my_minimal[1] = _Cell_entry _swap(1,_Cell_entry, NF.sig, ) _swap(1,_Cell_entry, NF.valid_nodes) _swap(1,_Cell_entry, my_xs) _swap(1,_Cell_entry, my_cone) else _Cell_entry = 1 end my_data[EI_valid_rays] = sum(ii->NF.valid_nodes[ii],_Cell_entry:lsig) (!allrays) && (NF.valid_nodes[1:_Cell_entry] .= false) return true end function minimal_edge(NF_::FastEdgeIterator,searcher) return NF_.iterators[1].active_nodes end function next_ray_try(data,my_freenodes,lsig) while data[EI_currentprimary]<=lsig my_freenodes[data[EI_currentprimary]] && break data[EI_currentprimary] += 1 end return data[EI_currentprimary]<=lsig end function update_edge(NF_::FastEdgeIterator) # print("U") # print(" ") NF = NF_.iterators[1] dim = NF.dim first_entry = NF.active_nodes[1] my_cone = NF.local_cone my_valid_nodes = NF.valid_nodes my_minimal = NF.active_nodes data = NF.index lsig = NF.sig[end]==0 ? findfirstassured(0,NF.sig)-1 : length(NF.sig) angle_condition(x) = x>1.0E-12 nu = NF.rays if data[EI_valid_rays]<dim-1 return false, NF.proto,0 end full_edge = Int64[] old_broken_index = dim+1 full_edge_count = 0 while full_edge_count==0 start_index = 1 if my_minimal[2]==0 my_minimal[2] = first_entry fill_up_edge(my_minimal,my_valid_nodes,2,dim) else start_index = old_broken_index +1 while start_index>old_broken_index for i in dim:-1:1 i==1 && (return false,NF.proto,0) nv = next_valid(my_valid_nodes,my_minimal[i]) if (dim==i ? nv!=0 : nv!=my_minimal[i+1]) fill_up_edge(my_minimal,my_valid_nodes,i,dim) start_index = i-1 break end end end end # adjust orthogonal basis nu[dim] .= my_cone[first_entry] b = true # print("$(my_minimal)") for i in 1:(start_index-1) rotate(nu,i,dim) rotate(nu,i,dim) end for i in start_index:(dim-1) my_minimal[i+1]==0 && (return false,NF.proto,0) nu[i] .= my_cone[my_minimal[i+1]] if abs(dot(nu[i],nu[dim]))<1.0E-12 #print("|") old_broken_index = i b = false break end # if i>1 rotate(nu,i,dim) rotate(nu,i,dim) # end end # print("|") b==false && continue # print("|") my_angle = NF_.ray_tol # min(10*searcher.ray_tol,max_angle(nu,dim)) full_edge, full_edge_count = get_full_edge(nu,my_cone,NF.new_node,first_entry,lsig,dim,my_angle) # length(full_edge)>0 && print("(success) ") # length(full_edge)==0 && println() nu[dim] .*= -1.0 end # print("ES") #length(full_edge)==1 && error("") dropped = 1 u = NF_.iterators[1].rays[NF_.iterators[1].dim] t = dot(u,NF_.iterators[1].local_xs[1]) for i in eachindex(NF_.iterators[1].local_xs) t2 = dot(u,NF_.iterators[1].local_xs[i]) dropped = t2<t ? i : dropped t = min(t2,t) end return true, mystaticview(NF.sig,my_minimal,NF.proto), dropped end function fill_up_edge(my_minimal,my_valid_nodes,index,dim) for i in index:dim my_minimal[i] = next_valid(my_valid_nodes,my_minimal[i]) i<dim && (my_minimal[i+1]=my_minimal[i]) end end function next_valid(my_valid_nodes,index) for i in (index+1):length(my_valid_nodes) if my_valid_nodes[i] return i end end return 0 end function valid_nodes(NF_::FastEdgeIterator{T},maxmaxangle::Float64) where {T} dim = NF_.iterators[1].dim NF = NF_.iterators[dim-2] #dim = NF.dim cdim = NF.current_dim cdim!=3 && error("") first_entry = NF.active_nodes[1] my_cone = NF.local_cone #println(" Free nodes: $(NF.free_nodes)") NF.valid_nodes .= false b, edge, full_edge_count = scan_for_edge(NF,NF.new_node,maxmaxangle,true) while b le = full_edge_count i = j = 0 #println(" "^(dim-cdim+2),"edge: ",present_xs(NF.local_xs[edge])) if le==3 NF.valid_nodes[NF.active_nodes[2]] = true NF.valid_nodes[NF.active_nodes[3]] = true else max_cos = 2.0 for k1 in 1:(le-1) edge[k1]==first_entry && continue for k2 in k1:full_edge_count edge[k2]==first_entry && continue mc2 = dot(my_cone[edge[k1]],my_cone[edge[k2]]) if mc2<max_cos i, j, max_cos = k1, k2, mc2 end end end for k in 1:length(edge) if k==i || k== j NF.valid_nodes[edge[k]] = true end end end b, edge, full_edge_count = scan_for_edge(NF,NF.new_node,maxmaxangle,true) end end function scan_for_edge(NF::FEIData,edge::Vector{Int64},maxmaxangle::Float64,all_edges=false) dim = NF.dim cdim = NF.current_dim first_entry = NF.active_nodes[1] my_cone = NF.local_cone my_vals = NF.vals my_sig = NF.sig my_freenodes = NF.free_nodes my_minimal = NF.active_nodes data = NF.index nu = NF.rays lsig = NF.sig[end]==0 ? findfirstassured(0,NF.sig)-1 : length(NF.sig) angle_condition(x) = x>1.0E-12 while true if !next_ray_try(data,my_freenodes,lsig) # pick first/next ray candidate. If no left, terminate with false return false, data, 0 end nu[cdim] .= my_cone[first_entry] nu[1] .= my_cone[data[EI_currentprimary]] rotate2(nu,1,cdim) #rotate(nu,1,cdim) my_minimal[2] = data[EI_currentprimary] cdim>2 && (my_minimal[3:end] .= 0) active_condition(i) = !(i in my_minimal) max_cos, max_ind = max_angle(nu,my_cone,lsig,my_vals,angle_condition,active_condition,cdim) # positive = max_cos > 0 broken = false for i in 2:(cdim-1) # if (max_cos<0 && positive) || max_ind==0 # broken = true # break # end nu[i] .= my_cone[max_ind] rotate2(nu,i,cdim) #rotate(nu,i,cdim) my_minimal[i+1] = max_ind max_cos, max_ind = max_angle(nu,my_cone,lsig,my_vals,angle_condition,active_condition,cdim) # positive |= max_cos>0 # if positive only once, keep this information alive end # broken = broken || max_cos<0 #println(broken) full_edge, full_edge_count = edge, 0 try full_edge, full_edge_count = get_full_edge(nu,my_cone,edge,first_entry,lsig,cdim,max(max_angle(nu,cdim),maxmaxangle)) catch println(get_full_edge(nu,my_cone,edge,first_entry,lsig,cdim,max(max_angle(nu,cdim),maxmaxangle))) rethrow() end broken = full_edge_count==0 if broken #= for k in 1:dim if my_minimal[k]!=0 my_freenodes[my_minimal[k]] = false else break end end=# my_freenodes[my_minimal[2]] = false continue end #println(" $full_edge") # view(my_freenodes,full_edge[1:full_edge_count]) .= false for kk in 1:full_edge_count my_freenodes[full_edge[kk]] = false end #println("final free nodes: $my_freenodes") if all_edges || full_edge[1]==first_entry nu[cdim] .*= -1 #sort!(my_minimal) return true, full_edge, full_edge_count end end end function get_full_edge(nu,my_cone,edge,first_entry,lsig,dim,_max_angle=1.0E-12) #println("hier") count = 0 _max = 0.0 _min = 0.0 for k in 1:lsig dnc = dot(nu[dim],my_cone[k]) inplane = abs(dnc)<10*_max_angle _max = max(_max, k!=first_entry && !inplane ? dnc : 0.0) _min = min(_min, k!=first_entry && !inplane ? dnc : 0.0) if k==first_entry || inplane count += 1 edge[count] = k end end # print("$_max > $_min") (_max>_max_angle) && (_min<-_max_angle) && (return Int64[],0) if _min<-_max_angle nu[dim] .*= -1 end return edge, count end #= function get_full_edge_indexing(nu,my_cone,edge,first_entry,lsig,dim,_max_angle=1.0E-12) #println("hier") count = 0 _max = 0.0 _min = 0.0 for k in 1:lsig dnc = dot(nu[dim],my_cone[k]) inplane = abs(dnc)<10*_max_angle _max = max(_max, k!=first_entry && !inplane ? dnc : 0.0) _min = min(_min, k!=first_entry && !inplane ? dnc : 0.0) if k==first_entry || inplane count += 1 edge[count] = k end end return edge, count end =# @Base.propagate_inbounds function max_angle(nu,my_cone,lsig,my_vals,angle_condition,active_condition,dim) #map!(k->dot(nu[dim],my_cone[k]),my_vals,1:lsig) max_cos = 2.0 max_ind = 0 for i in 1:lsig amv = dot(nu[dim],my_cone[i])#my_vals[i] if angle_condition(abs(amv)) && active_condition(i) && amv<max_cos max_cos = amv max_ind = i end end return max_cos, max_ind end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
4609
struct General_EdgeIterator{S} sig::MVector{S,Int64} a::Int64 b::Int64 proto::SVector{S,Int64} end #= function General_EdgeIterator(_sig,_Cell) a::Int64 = 1 sig = SVector{length(_sig),Int64}(_sig) while sig[a]!=_Cell a += 1 end (a,b) = a>1 ? (a-1,1::Int64) : (2,length(_sig)) return General_EdgeIterator(sig,a,b) end function General_EdgeIterator(_sig,r,_Cell) a::Int64 = 1 sig = MVector{length(r)+1,Int64}(_sig) try while sig[a]!=_Cell a += 1 end catch println("$a, $sig, $_Cell") rethrow() end (a,b) = a>1 ? (a-1,1::Int64) : (1,length(_sig)) return General_EdgeIterator(sig,a,b,SVector{length(r)+1,Int64}(_sig)) end =# function General_EdgeIterator(_sig,r,_Cell,EI::General_EdgeIterator{S}) where {S} a::Int64 = 1 sig = EI.sig if _sig[1]==_Cell for i in 1:S @inbounds sig[i] = _sig[i] end return General_EdgeIterator{S}(sig,1,S,EI.proto) elseif _sig[2]==_Cell for i in 1:S @inbounds sig[i] = _sig[i] end return General_EdgeIterator{S}(sig,1,1,EI.proto) else return EI end end @inline General_EdgeIterator(dim::INT) where {INT<:Integer} = General_EdgeIterator(MVector{dim+1,Int64}(zeros(Int64,dim+1)),dim+1,0,SVector{dim+1,Int64}(zeros(Int64,dim+1))) function General_EdgeIterator(x::Point) return General_EdgeIterator(MVector{length(x)+1,Int64}(zeros(Int64,length(x)+1)),length(x)+1,0,SVector{length(x)+1,Int64}(zeros(Int64,length(x)+1))) end function Base.iterate(itr::General_EdgeIterator, state=itr.a) if state>itr.b return nothing else return (_mydeleteat(itr.sig,state,itr.proto),itr.sig[state]), state+1 end end struct OnSysVoronoi end struct OnQueueEdges end function get_EdgeIterator(sig,r,searcher,_Cell,xs,O::OnSysVoronoi) if (length(sig)==length(r)+1) return General_EdgeIterator(sig,r,_Cell,searcher.general_edgeiterator) else my_iterator = searcher.edgeiterator fei = get!(searcher.FEIStorage_global,sig,FEIStorage(sig,r)) HighVoronoi.reset(my_iterator,sig,r,searcher.tree.extended_xs,_Cell,searcher,fei) return my_iterator end end function get_EdgeIterator(sig,r,searcher,_Cell,xs,O::OnQueueEdges) if (length(sig)==length(r)+1) return General_EdgeIterator(sig,r,_Cell,searcher.find_general_edgeiterator) else my_iterator = searcher.edgeiterator2 #@descend get!(searcher.FEIStorage_global,sig,FEIStorage(sig,r)) #error("") #print("P") fei = reset(get!(searcher.FEIStorage_global,sig,FEIStorage(sig,r))) HighVoronoi.reset(my_iterator,sig,r,searcher.tree.extended_xs,_Cell,searcher,fei) return my_iterator end end #= function get_EdgeIterator(sig,r,searcher,_Cell,xs,neighbors) # special version for fast_polygon if (length(sig)==length(r)+1) return General_EdgeIterator(sig,r,_Cell,searcher.general_edgeiterator) else my_iterator = searcher.fast_edgeiterator fei = reset(searcher.fei,sig,_Cell,neighbors,searcher.sig_neigh_iterator) println(" $(fei.valid_nodes), $(fei.active_nodes)") HighVoronoi.reset(my_iterator,sig,r,xs,_Cell,nothing,fei) # `nothing` makes sure that `fraud_vertex` will not error return my_iterator end end =# function queue_edges_general_position(sig,r,searcher,_Cell,xs,edgecount,EI) length(sig)==(length(r)+1) && sig[2]<_Cell && (return true) all_edges_exist = true for (edge,skip) in EI all_edges_exist &= pushedge!(edgecount,edge,skip,false) #= info = get(edgecount, edge, (0::Int64,0::Int64)) if !(skip in info) && info[2]==0 #_fulledge = get_full_edge_indexing(sig,r,edge,EI,xs) edgecount[edge] = (skip,info[1]) end=# end return all_edges_exist end function queue_edges_OnCell(sig,r,searcher,_Cell,xs,edgecount) EI = get_EdgeIterator(sig,r,searcher,_Cell,xs,OnQueueEdges()) queue_edges_general_position(sig,r,searcher,_Cell,xs,edgecount,EI) end function queue_edges_OnFind(sig,r,searcher,_Cell,xs,edgecount) EI = get_EdgeIterator(sig,r,searcher,_Cell,xs,OnQueueEdges()) queue_edges_general_position(sig,r,searcher,_Cell,xs,edgecount,EI) end function lowerbound(k, d) 2 * pi^(k/2) * d^(k-1) / (k*(k+1)) * beta(d*k/2, (d-k+1)/2) ^ (-1) * (gamma(d/2) / gamma((d+1)/2))^k end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
249
function exception_raycast(t,r,sig,edge,u,searcher) end function exception_walray_correct_vertex(b,vv,searcher,sig,r) end function exception_identify_multivertex(searcher,r,sig,measure,idx) end function walkray_failure_exception() end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
6471
abstract type AbstractExtendedNodes{P<:Point} <: HVNodes{P} end ##################################################################################################################### ## ExtendedNodes ##################################################################################################################### struct ExtendedNodes{S, TT<:Point{S},T<:HVNodes{TT}} <: AbstractExtendedNodes{TT} data::T extended::Vector{TT} boundary::Boundary length_d::Int64 length_b::Int64 length::Int64 function ExtendedNodes(d,b::Boundary=Boundary()) ex = Vector{eltype(d)}(undef, length(b)) return new{eltype(eltype(d)),eltype(d),typeof(d)}(d,ex,b,length(d),length(b),length(d)+length(b)) end end Base.size(nodes::ExtendedNodes) = (nodes.length,) inner_length(nodes::ExtendedNodes) = nodes.length_d #Base.eltype(nodes::ExtendedNodes) = eltype(nodes.data) # Get element at index i function Base.getindex(nodes::ExtendedNodes, i::Int) # i>nodes.length && error("no valid index $i in Vector of length $(nodes.length).") if i <= nodes.length_d return nodes.data[i] else return nodes.extended[i - nodes.length_d] end end function Base.getindex(nodes::ExtendedNodes, i_vec::AbstractVector{Int}) _result = Vector{eltype(nodes)}(undef,length(i_vec)) for i in 1:length(i_vec) _result[i] = nodes[i_vec[i]] end return _result end # Set element at index i function Base.setindex!(nodes::ExtendedNodes, value, i) if i <= nodes.length_d error("ExtendedNodes currently not meant to be modified inside domain.") nodes.data[i] = value else nodes.extended[i - nodes.length_d] = value end end # Iterate over elements function Base.iterate(nodes::ExtendedNodes, state=1) if state <= nodes.length return getindex(nodes, state), state + 1 else return nothing end end Base.length(nodes::ExtendedNodes) = nodes.length SearchTree(nodes::ExtendedNodes,type=HVKDTree()) = ExtendedTree(nodes,type) struct ExtendedTree{P<:Point,T<:AbstractTree{P},TTT<:AbstractExtendedNodes{P}} <: AbstractTree{P} tree::T extended_xs::TTT active::BitVector size::Int64 mirrors::Int64 function ExtendedTree(exs::ExtendedNodes,type=HVKDTree()) t = SearchTree(exs.data,type) #println(type(t)) #println(type(exs.data)) l = length(exs.boundary) a = BitVector(zeros(Int8,l)) return new{eltype(exs),typeof(t),typeof(exs)}(t,exs,a,inner_length(exs),l) end function ExtendedTree(xs::HVNodes,b::Boundary,type=HVKDTree()) exs = ExtendedNodes(xs,b) return ExtendedTree(exs,type) end #=function ExtendedTree(tree::T) where {T<:ExtendedTree} exs = ExtendedNodes(tree.extended_xs.data,tree.extended_xs.boundary) t = tree.tree l = length(exs.boundary) a = BitVector(zeros(Int8,l)) return new{eltype(exs),typeof(t),typeof(exs)}(t,exs,a,inner_length(exs),l) end=# function ExtendedTree(old::ExtendedTree{P,T,TTT}) where {P<:Point,T<:AbstractTree{P},TTT<:AbstractExtendedNodes{P}} return new{P,T,TTT}(UnstructuredTree(old.tree),old.extended_xs,old.active,old.size,old.mirrors) end end function nn(tree::ExtendedTree,x::Point,skip=(x->false))::Tuple{Int64,Float64} index, dist = nn(tree.tree,x,skip) #= index2, dist2 = nn(tree.tree2,x,skip) if index2!=index nt = HVTree(tree.extended_xs.data.data,HVKDTree()) println(x) println("$index vs. $index2 and $(nn(tree.tree,tree.extended_xs[index2])) - $(nn(tree.tree2,tree.extended_xs[index2])) - $(nn(tree.tree,x))") idx , dists = nn(tree.tree.tree,x,skip) idx2 , dists = nn(tree.tree.tree,x) println("$idx vs $(tree.tree.nodes.view*idx) vs. $(idx2) vs. $(tree.tree.nodes.view*idx2) ") println(nn(nt,x,skip)) println(nn(nt,x)) println(tree.extended_xs[index2]) println(tree.extended_xs[index]) println(tree.tree.nodes.data[index]) println(tree.tree.nodes.data[index2]) println(tree.tree.nodes.data[idx]) println(tree.tree.nodes.data[idx2]) for k in 1:37 println(tree.extended_xs[tree.tree.nodes.view*idx]-tree.tree.nodes.data[idx]) end error("") end=# lm=tree.mirrors if lm==0 return index, dist end for i in 1:lm ( !tree.active[i] || skip(tree.size+i) ) && continue d=norm(x-tree.extended_xs[i+tree.size]) if d<dist index=i+tree.size dist=d end end return index, dist end #=function search_vertex(tree::ExtendedTree,point::MV,skip,idx,dist,bv) where {S,MV<:Union{MVector{S,Float64},SVector{S,Float64}}} dist2(a,b) = sum(i->(a[i]-b[i])^2,1:S) search_vertex(tree.tree,SVector(point),skip,idx,dist,tree.tree.data) lm=tree.mirrors for i in 1:lm skip(tree.size+i)#,dist2(tree.extended_xs[tree.size+i],point)) #skip(tree.size+i,dist2(tree.extended_xs[tree.size+i],point)) end end=# function search_vertex2(tree::ExtendedTree,point::MV,idx,dist) where {S,FLOAT<:Real,MV<:Union{MVector{S,FLOAT},SVector{S,FLOAT}}} #(a,b) = sum(i->(a[i]-b[i])^2,1:S) data = tree.tree.data exs = tree.extended_xs s = tree.size lm=tree.mirrors for j in 1:lm #b_skip(s+j) x_new = exs[s+j] mydist = sum(abs2, data.new_r - x_new) skip_nodes_on_search(data,x_new,s+j,mydist,statictrue) end #=for j in 1:6 #b_skip(s+j) x_new = exs[j] mydist = sum(abs2, data.new_r - x_new) skip_nodes_on_search(data,x_new,j,mydist,statictrue) end=# search_vertex(tree.tree,data.r,idx,dist,data) return #error("") end function _nn(tree::ExtendedTree,x::Point,skip=(x->false))::Tuple{Int64,Float64} nn(tree,x,skip) end function _inrange(tree::ExtendedTree,x,r) idx = inrange(tree.tree,x,r) lm=tree.mirrors if lm==0 return idx end for i in 1:lm ( !tree.active[i] ) && continue d=norm(x-tree.extended_xs[i+tree.size]) if d<r append!(idx,i+tree.size) end end return idx end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
25339
# We provide the Fast_Polygon_Integrator. It is defined and initialized similar to # the MC struct Fast_Polygon_Integrator{T,TT,IDC<:IterativeDimensionChecker,D} _function::T bulk::Bool # If i!=nothing, then area has to be true. Otherwise values are taken as given Integral::TT iterative_checker::IDC data::D function Fast_Polygon_Integrator{T,TT,IDC}(f::T,b::Bool,I::TT,Itc::IDC) where {T,TT,IDC} data = DictHierarchy(zeros(PointType(I))) D = typeof(data) return new{T,TT,IDC,D}(f,b,I,Itc,data) end #=function Fast_Polygon_Integrator(mesh,integrand=nothing, bulk_integral=false) b_int=(typeof(integrand)!=Nothing) ? bulk_integral : false i_int=(typeof(integrand)!=Nothing) ? true : false Integ=Voronoi_Integral(mesh,integrate_bulk=b_int, integrate_interface=i_int) idc = IterativeDimensionChecker(dimension(mesh)) PI=Fast_Polygon_Integrator{typeof(integrand),typeof(Integ),typeof(idc)}( integrand, b_int, Integ, idc ) return PI end=# function Fast_Polygon_Integrator(Integ::HVIntegral,integrand=nothing, bulk_integral=false) b_int=(typeof(integrand)!=Nothing) ? bulk_integral : false enable(Integ,volume=true,integral=b_int) idc = IterativeDimensionChecker(dimension(mesh(Integ))) PI=Fast_Polygon_Integrator{typeof(integrand),typeof(Integ),typeof(idc)}( integrand, b_int, Integ, idc ) return PI end function Fast_Polygon_Integrator(fpi::FPI,d::D) where {T,TT,IDC,FPI<:Fast_Polygon_Integrator{T,TT,IDC},D} return new{T,TT,IDC,D}(fpi._function,fpi.bulk,fpi.Integral,fpi.iterative_checker,d) end end function parallelize_integrators(myintes2::AVI) where {I<:Fast_Polygon_Integrator,AVI<:AbstractVector{I}} meshes = map(i->mesh(i.Integral),myintes2) tmdh = ThreadsafeMeshDictHierarchy(meshes,zeros(PointType(myintes2[1].Integral))) return map(i->Fast_Polygon_Integrator(myintes2[i],tmdh[i]),1:length(meshes)) end function copy(I::Fast_Polygon_Integrator) return Fast_Polygon_Integrator{typeof(I._function),typeof(I.Integral)}(I._function,I.bulk,copy(I.Integral)) end @inline function integrate(Integrator::Fast_Polygon_Integrator; domain, relevant, modified,progress) _integrate(Integrator, domain=domain, calculate=modified, iterate=relevant,progress=progress) end function prototype_bulk(Integrator::Fast_Polygon_Integrator) y = (typeof(Integrator._function)!=Nothing && Integrator.bulk) ? Integrator._function(nodes(mesh(Integrator.Integral))[1]) : Float64[] return 0.0*y end function prototype_interface(Integrator::Fast_Polygon_Integrator) return 0.0*(typeof(Integrator._function)!=Nothing ? Integrator._function(nodes(mesh(Integrator.Integral))[1]) : Float64[]) end struct PolyBufferData volume::Float64 integral::Vector{Float64} end struct NoPolyBuffer end struct MeshDict{K, V, AM<:AbstractMesh, MV, D<:AbstractDict{K, V}} <: AbstractDict{K, V} mesh::AM buffer::MV dict::D function MeshDict(mesh::AM, dict::D) where {K, V, AM<:AbstractMesh, D<:AbstractDict{K, V}} buffer = MVector(zeros(K)) return new{K, V, AM, typeof(buffer), D}(mesh, buffer, dict) end end function Base.push!(md::MeshDict{K, V, AM, MV, D}, pairs::Pair{K, V}) where {K, V, AM<:AbstractMesh, MV, D<:AbstractDict{K, V}} md.buffer .= pairs[1] push!(md.dict,K(sort!(_internal_indeces(md.mesh,md.buffer)))=>pairs[2]) end function Base.haskey(md::MD, key) where {K,MD<:MeshDict{K}} md.buffer .= key sort!(_internal_indeces(md.mesh,md.buffer)) return haskey(md.dict,K(md.buffer)) end function Base.getindex(md::MeshDict{K, V, AM, MV, D}, key::K) where {K, V, AM<:AbstractMesh, MV, D<:AbstractDict{K, V}} md.buffer .= key getindex(md.dict,K(sort!(_internal_indeces(md.mesh,md.buffer)))) end struct DictHierarchy{D,S} dict::D sub::S DictHierarchy(x::P) where {P<:Point} = DictHierarchy(x,StaticArrays.deleteat(x,1)) DictHierarchy(x::SV2) where {R<:Real,SV2<:SVector{2,R}} = DictHierarchy(x,x) function DictHierarchy(x,dim_vec) proto = SVector{length(x)-length(dim_vec)+2,Int64}(zeros(Int64,length(x)-length(dim_vec)+2)) facets = Dict{typeof(proto),PolyBufferData}() #Dict{typeof(proto),PolyBufferData}() sub = DictHierarchy(x,StaticArrays.deleteat(dim_vec,1)) return new{typeof(facets),typeof(sub)}(facets,sub) end function DictHierarchy(x,dim_vec::SV2) where {R<:Real,SV2<:SVector{2,R}} proto = SVector{length(x)-length(dim_vec)+2,Int64}(zeros(Int64,length(x)-length(dim_vec)+2)) facets = Dict{typeof(proto),PolyBufferData}() #Dict{typeof(proto),PolyBufferData}() return new{typeof(facets),Nothing}(facets,nothing) end end struct ThreadsafeDictHierarchy{D<:Union{AbstractDict,MultiKeyDict},S} dict::D sub::S end ThreadsafeDictHierarchy(x::P) where {P<:Point} = ThreadsafeDictHierarchy(x,StaticArrays.deleteat(x,1)) ThreadsafeDictHierarchy(x::SV2) where {R<:Real,SV2<:SVector{2,R}} = ThreadsafeDictHierarchy(x,x) function ThreadsafeDictHierarchy(x::P,dim_vec) where {P<:Point} proto = SVector{length(x)-length(dim_vec)+2,Int64}(zeros(Int64,length(x)-length(dim_vec)+2)) facets = ThreadsafeDict(Dict{typeof(proto),PolyBufferData}()) sub = ThreadsafeDictHierarchy(x,StaticArrays.deleteat(dim_vec,1)) return ThreadsafeDictHierarchy{typeof(facets),typeof(sub)}(facets,sub) end function ThreadsafeDictHierarchy(x,dim_vec::SV2) where {R<:Real,SV2<:SVector{2,R}} proto = SVector{length(x)-length(dim_vec)+2,Int64}(zeros(Int64,length(x)-length(dim_vec)+2)) facets = ThreadsafeDict(Dict{typeof(proto),PolyBufferData}()) return ThreadsafeDictHierarchy{typeof(facets),Nothing}(facets,nothing) end ThreadsafeMeshDictHierarchy(meshes,x::P) where {P<:Point} = ThreadsafeMeshDictHierarchy(meshes,x,StaticArrays.deleteat(x,1)) function ThreadsafeMeshDictHierarchy(meshes,x,dim_vec) proto = SVector{length(x)-length(dim_vec)+2,Int64}(zeros(Int64,length(x)-length(dim_vec)+2)) tsd = MultiKeyDict{typeof(proto),PolyBufferData}() facets = map(m->MeshDict(m,tsd),meshes) subs = ThreadsafeMeshDictHierarchy(meshes,x,StaticArrays.deleteat(dim_vec,1)) return map(i->ThreadsafeDictHierarchy{typeof(facets[i]),typeof(subs[i])}(facets[i],subs[i]),1:length(meshes)) end function ThreadsafeMeshDictHierarchy(meshes,x,dim_vec::SV2) where {R<:Real,SV2<:SVector{2,R}} proto = SVector{length(x)-length(dim_vec)+2,Int64}(zeros(Int64,length(x)-length(dim_vec)+2)) tsd = MultiKeyDict{typeof(proto),PolyBufferData}() facets = map(m->MeshDict(m,tsd),meshes) return map(i->ThreadsafeDictHierarchy{typeof(facets[i]),Nothing}(facets[i],nothing),1:length(meshes)) end struct PolyBuffer{SUB,DIC,P,T,TT} facets::DIC sub::SUB integral_buffer::Vector{Float64} proto::P center::T current_path::TT generators::BitVector buffer_generators::BitVector end PolyBuffer(xs::HVN) where {P,HVN<:HVNodes{P}} = PolyBuffer(xs[1]) PolyBuffer(x::P) where {P<:Point} = PolyBuffer(x,StaticArrays.deleteat(x,1)) PolyBuffer(x::P,data) where {P<:Point} = PolyBuffer(x,StaticArrays.deleteat(x,1),data) function PolyBuffer(x,dim_vec,data) proto = SVector{length(x)-length(dim_vec)+2,Int64}(zeros(Int64,length(x)-length(dim_vec)+2)) current = MVector{length(x)-length(dim_vec)+2,Int64}(zeros(Int64,length(x)-length(dim_vec)+2)) facets = data.dict return PolyBuffer(facets,PolyBuffer(x,StaticArrays.deleteat(dim_vec,1),data.sub),Float64[],proto,MVector{length(x)}(x),current,falses(2^length(x)),falses(2^length(x))) end function PolyBuffer(x,dim_vec::SV2,data) where {R<:Real,SV2<:SVector{2,R}} proto = SVector{length(x)-length(dim_vec)+2,Int64}(zeros(Int64,length(x)-length(dim_vec)+2)) current = MVector{length(x)-length(dim_vec)+2,Int64}(zeros(Int64,length(x)-length(dim_vec)+2)) facets = data.dict return PolyBuffer(facets,NoPolyBuffer(),Float64[],proto,MVector{length(x)}(x),current,falses(2^length(x)),falses(2^length(x))) end PolyBuffer(_,::SV1,d) where {R<:Real,SV1<:SVector{1,R}} = NoPolyBuffer() get_Edge_Level(pb::PolyBuffer) = get_Edge_Level(pb,pb.sub) get_Edge_Level(pb::PolyBuffer,sub::PolyBuffer) = get_Edge_Level(sub,sub.sub) get_Edge_Level(pb::PolyBuffer,sub) = pb get_Edge_Level(pb::NoPolyBuffer) = pb function reset(pb::PolyBuffer,lneigh) if lneigh>length(pb.generators) resize!(pb.generators,lneigh) resize!(pb.buffer_generators,lneigh) end reset(pb.sub,lneigh) end reset(pb::NoPolyBuffer,lneigh) = nothing IntegrateData(xs::HV,dom,tt::FPI) where {P,HV<:HVNodes{P},FPI<:Fast_Polygon_Integrator} = _IntegrateData(xs,dom,PolyBuffer(zeros(P),tt.data)) function facett_identifier(dc,buffer::PolyBuffer,_Cell,facett) current = buffer.current_path for k in 1:(length(current)-2) current[k] = dc.current_path[k] end current[length(current)-1] = facett current[end] = _Cell sort!(current) return SVector{length(current),Int64}(current) end #=find_fast_poly_edges(dic::NoPolyBuffer,neighbors,iterator,container,xs) = nothing function find_fast_poly_edges(dic,neighbors,iterator,container,xs) # `container ∼ searcher` for (sig,r) in iterator my_iterator = get_EdgeIterator(sig,r,container,_Cell,xs,neighbors) store_edges(my_iterator,dic,neighbors,xs,sig,r) end end function store_edges(my_iterator,dic,neighbors,xs,sig,r) for (edge,skip) in my_iterator full_edge, _ = get_full_edge(sig,r,edge,my_iterator,xs) intersect!(full_edge,neighbors) data = get!(dic,full_edge,FastPolyEdge(r)) dic[full_edge] = FastPolyEdge(data,r) end end=# """ initialize_integrator(xs,_Cell,verteces,edges,integrator::Fast_Polygon_Integrator) The integrator is initialized at beginning of systematic_voronoi(....) if an MC_Function_Integrator is passed as a last argument This buffer version of the function does nothing but return two empty arrays: - The first for Volume integrals. The first coordinate of the vector in each node corresponds to the volume of the Voronoi cell - The second for Area integrals. The first coordinate of the vector on each interface corresponds to the d-1 dimensional area of the Voronoi interface """ #function integrate(domain,_Cell,iter,calcul,searcher,Integrator::Fast_Polygon_Integrator) function integrate(neighbors,_Cell,iterate, calculate, data,Integrator::Fast_Polygon_Integrator,ar,bulk_inte,inter_inte,vvvol) Integral = Integrator.Integral # verteces2 = Integral.MESH.Buffer_Verteces[_Cell] verteces = vertices_iterator(mesh(Integral),_Cell) xs=data.extended_xs # !(typeof(data.buffer_data)<:PolyBuffer) && !(typeof(data.buffer_data)<:NoPolyBuffer) && error("") dim = data.dimension # (full) Spatial dimension # get all neighbors of this current cell neigh=neighbors _length=length(neigh) # flexible data structure to store the sublists of verteces at each iteration step 1...dim-1 emptydict=Vector{Int64}()#EmptyDictOfType([0]=>xs[1]) # empty buffer-list to create copies from listarray=(typeof(emptydict))[] # will store to each remaining neighbor N a sublist of verteces # which are shared with N all_dd=(typeof(listarray))[] for _ in 1:dim-1 push!(all_dd,copy(listarray)) end # create a data structure to store the minors (i.e. sub-determinants) buffer_data = data.buffer_data # empty_vector will be used to locally store the center at each level of iteration. This saves # a lot of "memory allocation time" empty_vector=zeros(Float64,dim) # Bulk computations: V stores volumes y stores function values in a vector format V = Vector([0.0]) # do the integration I=Integrator taboo = zeros(Int64,dim) iterative_volume_fast(I,I._function, I.bulk, _Cell, V, bulk_inte, ar, inter_inte, dim, neigh, _length,verteces,emptydict,emptydict,xs[_Cell],empty_vector,all_dd,buffer_data,calculate,Integral,xs,taboo,I.iterative_checker) #error("") return V[1] end function iterative_volume_fast(I,_function, _bulk, _Cell::Int64, V, y, A, Ay, dim,neigh,_length,verteces,verteces2, emptylist,vector,empty_vector,all_dd,buffer_data,calculate,Full_Matrix,xs,taboo,dc,data = Vector{Pair{Vector{Int64},eltype(xs)}}())#::Tuple{Float64,Vector{Float64}} space_dim=length(vector) if (dim==1) # this is the case if and only if we arrived at an edge #b, r, r2 = getedge(dc,verteces,space_dim,xs,_Cell) #if !b # return 0.0, Float64[] #end if length(verteces)<2 empty!(verteces) return 0.0, Float64[] end r = data[verteces[1]][2] r2 = data[verteces[2]][2] vol = norm(r-r2) #println(_Cell," vol ",vol) A[1]+=vol if (typeof(_function)!=Nothing) return vol, 0.5*(_function(r)+_function(r2))*vol end return vol, Float64[] elseif dim==space_dim # get the center of the current dim-dimensional face. this center is taken # as the new coordinate to construct the currenct triangle. The minors are stored in place space_dim-dim+1 #_Center=midpoint_points(verteces,verteces2,empty_vector,vector) # dd will store to each remaining neighbor N a sublist of verteces which are shared with N dd=Vector{Vector{Int64}}(undef,_length) reset(buffer_data,length(neigh)) #println("Berechne $_Cell, $neigh") for i in 1:_length dd[i]=Int64[] end reset(dc,neigh,xs,_Cell,verteces,false) for (sig2,r) in verteces # iterate over all verteces sig = copy(sig2) push!(data,sig=>r) iii = length(data) for _neigh in sig # iterate over neighbors in vertex _neigh==_Cell && continue index=_neigh_index(neigh,_neigh) index==0 && continue push!( dd[index] , iii) # push vertex to the corresponding list end end taboo[dim]=_Cell AREA=zeros(Float64,1) vol = 0.0 base = typeof(_function)!=Nothing ? _function(vector) : Float64[] integral = 0.0*base for k in 1:_length buffer=neigh[k] # this is the (further) common node of all verteces of the next iteration # in case dim==space_dim the dictionary "bufferlist" below will contain all # verteces that define the interface between "_Cell" and "buffer" # However, when it comes to A and Ay, the entry "buffer" is stored in place "k". #if !(buffer in calculate) && !(_Cell in calculate) continue end if !(buffer in calculate) empty!(dd[k]) continue end bufferlist=dd[k] isempty(bufferlist) && continue taboo[dim-1] = buffer neigh[k]=0 AREA[1]=0.0 AREA_Int=(typeof(_function)!=Nothing) ? Ay[k] : Float64[] # now get area and area integral either from calculation or from stack if (buffer>_Cell) # in this case the interface (_Cell,buffer) has not yet been investigated set_dimension(dc,1,_Cell,buffer) #test_idc(dc,_Cell,buffer,1) AREA_Int.*= (buffer in calculate) ? 0 : 1 _Center=midpoint_points_fast(bufferlist,data,empty_vector,vector) _Center.+=vector # midpoint shifts the result by -vector, so we have to correct that .... vol2, integral2 = iterative_volume_fast(I,_function, _bulk, _Cell, V, y, AREA, AREA_Int, dim-1, neigh, _length, bufferlist, emptylist, emptylist,vector,empty_vector,all_dd,buffer_data,nothing,Full_Matrix,xs,taboo,dc,data) neigh[k]=buffer # Account for dimension (i.e. (d-1)! to get the true surface volume and also consider the distance="height of cone") empty!(bufferlist) # the bufferlist is empty distance= 0.5*norm(vector-xs[buffer]) #abs(dot(normalize(vector-xs[buffer]),vert)) vol += vol2*distance integral .+= integral2 .* distance AREA_Int .= integral2 A[k] = vol2 else # the interface (buffer,_Cell) has been calculated in the systematic_voronoi - cycle for the cell "buffer" #greife auf Full_Matrix zurück empty!(bufferlist) #empty!(bufferlist) distance=0.5*norm(vector-xs[buffer])#abs(dot(normalize(vector-xs[buffer]),vert)) vol2 = get_area(Full_Matrix,buffer,_Cell) # !!!!! if you get an error at this place, it means you probably forgot to include the boundary planes into "calculate" vol += vol2*distance A[k]=vol2 if typeof(_function)!=Nothing AREA_Int.*=0 try AREA_Int.+=get_integral(Full_Matrix,buffer,_Cell) catch println(neigh,buffer," k=$k, _Cell=$_Cell") rethrow() end end integral .+= AREA_Int .* distance end neigh[k]=buffer end vol /= dim integral .+= vol .* base integral ./= (dim+1) V[1] = vol y .= integral return vol, integral else # the next three lines get the center of the current dim-dimensional face. this center is taken # as the new coordinate to construct the currenct triangle. The minors are stored in place space_dim-dim+1 dd=all_dd[dim-1] # dd will store to each remaining neighbor N a sublist of verteces which are shared with N buffer_data.center .= empty_vector all_neighbors = dc.neighbors lneigh = length(neigh) _count=1 for k in 1:_length _count+=neigh[k]!=0 ? 1 : 0 # only if neigh[k] has not been treated earlier in the loop end _my_neigh=Vector{Int64}(undef,_count-1) while length(dd)<_count push!(dd,Int64[]) end _count=1 for k in 1:_length if (neigh[k]!=0) # only if neigh[k] has not been treated earlier in the loop _my_neigh[_count]=neigh[k] _count+=1 end end ll=(length(verteces)) for _ii in 1:(ll) # iterate over all verteces (sig,r) = data[verteces[_ii]] count = 0 for _neigh in sig # iterate over neighbors in vertex (_neigh in taboo) && continue # if _N is a valid neighbor (i.e. has not been treated in earlier recursion) index = _neigh_index(_my_neigh,_neigh) #(index==0 ) && continue index==0 && continue push!( dd[index] , verteces[_ii]) # push vertex to the corresponding list end end l_mn = length(_my_neigh) for k in 1:(l_mn-1) #neigh[k]==0 && continue clear_double_lists_iterative_vol(buffer_data.sub,dd,k,data,_my_neigh) end _count=1 vol = 0.0 base = typeof(_function)!=Nothing ? _function(buffer_data.center) : Float64[] integral = 0.0*base next_ortho_dim = space_dim-dim+1 for k in 1:_length buffer=neigh[k] # this is the (further) common node of all verteces of the next iteration # in case dim==space_dim the dictionary "bufferlist" below will contain all # verteces that define the interface between "_Cell" and "buffer" # However, when it comes to A and Ay, the entry "buffer" is stored in place "k". buffer==0 && continue # bufferlist=dd[_neigh_index(_my_neigh,buffer)] # this one can be replaced by a simple counting of neigh!=0 bufferlist=dd[_count] _count+=1 isempty(bufferlist) && continue #clear_double_lists_iterative_vol(buffer_data.sub,dd,_count,) valid = set_dimension(dc,next_ortho_dim,_Cell,buffer) if !valid empty!(bufferlist) continue end fi = facett_identifier(dc,buffer_data,_Cell,buffer) distance = projected_distance(dc,buffer_data.center,empty_vector,data[bufferlist[1]][2],next_ortho_dim) # ✓ #distance==0 && error("\n $(buffer_data.center), $(empty_vector), $(first(bufferlist)[2]), $next_ortho_dim \n $(dc.local_basis[1]), $(dc.local_basis[2])") vol2, integral2 = 0.0, Float64[] if !haskey(buffer_data.facets,fi) _Center = midpoint_points_fast(bufferlist,data,empty_vector,vector) # ✓ _Center .+= vector neigh[k]=0 taboo[dim-1]=buffer vol2, integral2 = iterative_volume_fast(I,_function, _bulk, _Cell, V, y, A, Ay , dim-1, neigh, _length, bufferlist, emptylist, emptylist,vector,empty_vector,all_dd,buffer_data.sub,nothing,Full_Matrix,xs,taboo,dc,data) neigh[k]=buffer taboo[dim-1]=0 push!(buffer_data.facets,fi=>PolyBufferData(vol2,integral2)) else pbd = buffer_data.facets[fi] vol2 = pbd.volume integral2 = pbd.integral end empty!(bufferlist) vol += vol2*distance if vol2!=0.0 integral .+= integral2 .* distance end end vol /= dim integral .+= vol .* base integral ./= (dim+1) return vol, integral end end function projected_distance(dc,center,empty_vector,plane,dim) dist = 0.0 empty_vector .= center empty_vector .-= plane for k in 1:dim dist += abs2(dot(dc.local_basis[k],empty_vector)) end return sqrt(dist) end function joint_neighs(vertices) v1 = copy(first(vertices)[1]) intersect!(v1,keys(vertices)...) return v1 end function clear_double_lists_iterative_vol(::PolyBuffer,dd,_count,data,_my_neigh) length(dd[_count])==0 && return generators = copy(data[dd[_count][1]][1]) keep_similars!(generators,view(data,dd[_count])) #intersect!(generators,keys(dd[_count])...) # for (sig,r) in dd[_count] # intersect!(generators,sig) # end v = dd[_count] for k in (_count+1):length(_my_neigh) ( !(_my_neigh[k] in generators)) && continue b = true for index in dd[k] #iii = searchsortedfirst(v, x) #iii <= length(v) && v[iii] == x if !(index in dd[_count]) b=false break end end b && empty!(dd[k]) end end function keep_similars!(sig::Vector{Int64},sig2::Vector{Int64},lsig=length(sig)) k=1 lsig2=length(sig2) for i in 1:lsig sig[i]==0 && continue while k<=lsig2 && sig2[k]<sig[i] k += 1 end (k>lsig2 || sig[i]<sig2[k]) && (sig[i]=0) end return sig end function keep_similars!(sig::Vector{Int64},itr) lsig = length(sig) for tup in itr sig2 = tup[1] k=1 lsig2=length(sig2) for i in 1:lsig sig[i]==0 && continue while k<=lsig2 && sig2[k]<sig[i] k += 1 end (k>lsig2 || sig[i]<sig2[k]) && (sig[i]=0) end end return sig end function clear_double_lists_iterative_vol(::NoPolyBuffer,dd,k,data,_my_neigh) l_mn = length(_my_neigh) if length(dd[k])!=2 empty!(dd[k]) return end for i in (k+1):l_mn length(dd[i])!=2 && continue count = 0 for s1 in dd[k] count += s1 in dd[i] ? 1 : 0 end if count==2 empty!(dd[i]) end end end #= function dist_to_facett(Center,Midpoint,base) difference=Center-Midpoint dist=(-1)*sum(x->x^2,difference) for i in 1:length(base) dist+=dot(base[i],difference)^2 end return sqrt(abs(dist)) end =#
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
3987
struct Filter{M <: AbstractMesh, F<:Function, II<:AbstractVector{Int64}} mesh::M iterate::II affected::BitVector condition::F lm::Int64 lm_internal::Int64 function Filter(m::M, i::II,f::F) where {M <: AbstractMesh, F<:Function, II<:AbstractVector{Int64}} _affected = falses(length(m)) _affected[i] .= true new{M,F,II}(m, i, _affected, f, length(m),0)#internal_length(m)) end end @inline function mark_sig(_filter,sig) for s in sig (s>_filter.lm || s==0) && continue _filter.affected[s] = true end end function filter_data( condition, mesh,_depsig,_depr, affected) depsig = StaticBool(_depsig) depr = StaticBool(_depr) parameter(sig,r,dep_sig::StaticTrue,dep_r::StaticTrue) = (sig,r) parameter(sig,r,dep_sig::StaticTrue,dep_r::StaticFalse) = (sig,) parameter(sig,r,dep_sig::StaticFalse,dep_r::StaticTrue) = (r,) f = (sig,r)->condition(parameter(sig,r,depsig,depr)...) getaffected(aff::AbstractVector{Bool},m) = view(1:length(m),aff) getaffected(aff,m) = aff getaffected(aff::UnitRange{Int},m) = collect(aff) myaffected = getaffected(affected,mesh) _filter = Filter(mesh,myaffected,condition) return myaffected,_filter end #= filtermesh!(mesh,my_affected,_filter) cleanupfilter!(mesh,internal_index(mesh,i)) mark_sig(_filter,sig) mark_delete_vertex!(_filter,vdb,sig) mark_delete_bv!(mesh,edge,bv) cleanupfilter_bv!(mesh) boundary_vertices_iterator(mesh) =# @inline mark_delete_ref(_filter,sig,ref::Nothing) = nothing #@inline mark_delete_ref(_filter,sig,ref::Int) = nothing function mark_delete_ref(_filter,sig,ref::U) where {U<:Union{VertexRef,Int}} il = internal_length(_filter.mesh) for i in 2:length(sig) s = sig[i] s>il && continue delete_reference(_filter.mesh,s,ref) end end function filter!( condition, mesh::M,_depsig=StaticBool{true}(),_depr=StaticBool{true}(), _sig_internal=!_depsig; affected = 1:length(mesh),searcher=nothing) where {M<:AbstractMesh} my_affected, _filter = filter_data( condition, mesh,_depsig,_depr, affected) range = typeof(searcher)==Nothing ? (1:2) : ((length(mesh)+1):length(mesh)+length(searcher.domain)) #println("filter start") for i in my_affected #print("1") activate_cell(searcher,i,range) avi = all_vertices_iterator(_filter.mesh,internal_index(_filter.mesh,i),statictrue) #print("2") for (sig,r) in avi #print("a") ext_sig = external_sig(_filter.mesh,sig,statictrue) #print("b") if _sig_internal==statictrue ? !_filter.condition(sig,r) : !_filter.condition(ext_sig,r) #print("A") mark_sig(_filter,ext_sig) #print("B") ref = mark_delete_vertex!(_filter.mesh,sig,IterationIndex(avi)) #print("C") mark_delete_ref(_filter,sig,ref) #print("D") end #print("c") end #print("3") end #println("filter mitte") for i in 1:_filter.lm _filter.affected[i] && cleanupfilter!(mesh,internal_index(mesh,i)) # provide second arg in internal representation end #println("filter ende") #return my_affected end """ filters verteces of `affected` according to `condition`. Does NOT reduce number of points. This must be done manually""" function filter_bv!( condition, mesh::M,_depsig=StaticBool{true}(),_depr=StaticBool{true}(); affected = nodes_iterator(mesh) ) where {M<:AbstractMesh} myaffected, _filter = filter_data( condition, mesh,_depsig,_depr, affected) for (edge,bv) in boundary_vertices_iterator(mesh) if !_filter.condition(edge,bv) # if sig consists only of affected cells mark_delete_bv!(mesh,edge,bv) end end cleanupfilter_bv!(mesh) end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
23786
#function remove_symbol(sym, kwargs) function FVevaluate_boundary(f) result(;kw...)=f(kw[:x_j]) return result end """ struct VoronoiFVProblem{...} after initialization the struct contains the following information: - `Geometry` : a `VoronoiGeometry` containing mesh and integrated information - `Coefficients` : Not advised to be accessed by user - `Parent` : Not advised to be accessed by user - `projection_down` : Not advised to be accessed by user - `projection_up` : Not advised to be accessed by user - `parameters` : Not advised to be accessed by user """ struct VoronoiFVProblem{TC,TP,TPA,TDI,TDJ,VG<:VoronoiGeometry,VD<:VoronoiData} Geometry::VG Coefficients::TC Parent::TP parameters::TPA voronoidata::VD my_data_i::TDI my_data_j::TDJ end function VoronoiFVProblem_validate(;discretefunctions=NamedTuple(), integralfunctions=NamedTuple(), fluxes=NamedTuple(), rhs_functions=NamedTuple()) if typeof(fluxes)!=Nothing if !(typeof(fluxes)<:NamedTuple) error("The field `fluxes` must be given as a NamedTuple") end for f in fluxes array = typeof(f)<:Tuple && length(f)>1 ? f[2] : Int64[] for i in array if boundary.planes[i].BC>0 error("boundary #$i is periodic but you want to prescribe Neumann conditions there") end end end end typeof(integralfunctions)!=Nothing && !(typeof(integralfunctions)<:NamedTuple) && error("The field 'integralfunctions' must be given as a NamedTuple") typeof(discretefunctions)!=Nothing && !(typeof(discretefunctions)<:NamedTuple) && error("The field 'discretefunctions' must be given as a NamedTuple") end function VoronoiFVProblem(Geo::VoronoiGeometry; discretefunctions=NamedTuple(), integralfunctions=NamedTuple(), fluxes=NamedTuple(), rhs_functions=NamedTuple(), parent=nothing, integrator=Integrator_Type(Geo.Integrator), flux_integrals=NamedTuple(), bulk_integrals=NamedTuple(), kwargs...) VoronoiFVProblem_validate(discretefunctions=discretefunctions, integralfunctions=integralfunctions, fluxes=fluxes, rhs_functions=rhs_functions) if !(Geo.Integrator in [VI_HEURISTIC,VI_MONTECARLO,VI_POLYGON,VI_FAST_POLYGON,VI_HEURISTIC_MC]) error("The Geometry comes up with an integrator of type $(Integrator_Name(Geo.Integrator)). This type does not provide relyable volume or area data.") end points=nodes(mesh(integral(Geo.domain)))#integral.MESH.nodes #= i_functions = nothing i_composer = undef ref_function_length = 0 if typeof(integralfunctions)!=Nothing=# i_composer = FunctionComposer(;(integralfunctions...,reference_argument= points[1],super_type=Float64)...) i_functions = i_composer.functions ref_function_length = i_composer.total #length(i_functions(points[1])) # end data=VoronoiData(Geo,copyall=true) # adjust data from mean to "pointwise": if length(data.bulk_integral)>0 for i in 1:length(data.nodes) data.bulk_integral[i].*=(1.0/data.volume[i]) end for i in 1:length(data.nodes) # check if integral data is OK. if isdefined(data.bulk_integral,i) if length(data.bulk_integral[i])!=ref_function_length println("WARNING: length of bulk_integral[...] does not match the size of function data ...") end break end end end if length(data.interface_integral)>0 for i in 1:length(data.nodes) for j in 1:length(data.area[i]) if (data.area[i][j]>0) data.interface_integral[i][j].*=(1.0/data.area[i][j]) end end end for i in 1:length(data.nodes) # check if integral data is ok if isdefined(data.interface_integral,i) && length(data.interface_integral[i])>0 if length(data.interface_integral[i][1])!=ref_function_length println("WARNING: length of interface_integral[...] does not match the size of function data ...") end break end end end # i_func = typeof(i_functions)!=Nothing ? HighVoronoi.extract_discretefunctions(data,i_composer) : (bulk=i->NamedTuple{}(),interface=(i,j)->NamedTuple{}()) # d_func = typeof(discretefunctions)!=Nothing ? HighVoronoi.extract_discretefunctions(data;discretefunctions...) : (bulk=i->NamedTuple{}(),interface=(i,j)->NamedTuple{}()) #@descend HighVoronoi.extract_discretefunctions(data,i_composer) # i_func = HighVoronoi.extract_discretefunctions(data,i_composer) d_func = HighVoronoi.extract_discretefunctions(data;discretefunctions...) _bb = length(data.bulk_integral)>0 _bbb = length(data.interface_integral)>0 && length(data.interface_integral[1])>0 b_funcs = i->Base.merge(d_func[:bulk](i), map(__simplify_discrete,decompose(i_composer,_bb ? data.bulk_integral[i] : i_composer.reference_value))) i_funcs = (i,j)->Base.merge(d_func[:interface](i,j),map(__simplify_discrete,decompose(i_composer,_bbb ? data.interface_integral[i][j] : i_composer.reference_value)) ) ##=# # b_funcs = i->merge(i_func[:bulk](i),d_func[:bulk](i)) # i_funcs = (i,j)->merge(i_func[:interface](i,j),d_func[:interface](i,j)) my_data_i(i) = get_data_i(b_funcs,i_funcs,data,i) my_data_j(i,n) = get_data_j(b_funcs,i_funcs,data,i,n,Geo.domain.boundary.planes) VoronoiFVProblemCoefficients(data, Geo.domain.boundary, my_data_i, my_data_j, fluxes=fluxes, functions=rhs_functions, flux_integrals=flux_integrals, bulk_integrals=bulk_integrals) coefficients = VoronoiFVProblemCoefficients(data, Geo.domain.boundary, my_data_i, my_data_j, fluxes=fluxes, functions=rhs_functions, flux_integrals=flux_integrals, bulk_integrals=bulk_integrals) parameters = (; kwargs..., discretefunctions=discretefunctions, integralfunctions=integralfunctions, fluxes=fluxes, rhs_functions=rhs_functions, integrator=integrator) return VoronoiFVProblem(Geo,coefficients,parent,parameters,data,my_data_i,my_data_j) end function VoronoiFVProblem(points, boundary=Boundary(); discretefunctions=nothing, integralfunctions=nothing, fluxes=nothing, rhs_functions=nothing, flux_integrals=nothing, bulk_integrals=nothing, integrator=VI_POLYGON, integrand=nothing, kwargs...) VoronoiFVProblem_validate(discretefunctions=discretefunctions, integralfunctions=integralfunctions, fluxes=fluxes, rhs_functions=rhs_functions) !(integrator in [VI_POLYGON,VI_MONTECARLO]) && error("Calculating area or volume is not provided by $(Integrator_Name(integrator)).") i_functions = nothing i_composer = undef if typeof(integralfunctions)!=Nothing i_composer = FunctionComposer(;(integralfunctions...,reference_argument=points[1],super_type=Float64)...) i_functions = i_composer.functions end Geo = VoronoiGeometry(points,boundary; kwargs..., integrand=i_functions, integrator=integrator) return VoronoiFVProblem(Geo,discretefunctions=discretefunctions, integralfunctions=integralfunctions, fluxes=fluxes, rhs_functions=rhs_functions ; kwargs..., integrand=i_functions, integrator=integrator, flux_integrals=flux_integrals, bulk_integrals=bulk_integrals) end function get_Bulkintegral(VP::VoronoiFVProblem,symb) return VP.Coefficients.bulkintegrals[symb] end function get_Fluxintegral(VP::VoronoiFVProblem,symb) return VP.Coefficients.fluxintegrals[symb] end """ VoronoiFVProblem(Geo::VoronoiGeometry; parent = nothing) # first variant VoronoiFVProblem(points, boundary; integrator = VI_POLYGON, kwargs...) # second variant Generates Finite Volume data for fluxes and right hand sides given either a `VoronoiGeometry` object or a set of points and a boundary, which will serve to internally create a `VoronoiGeometry`. Allows for the following parameters: - `kwargs...` : arguments that are not listed explicitly below will be passed to the VoronoiGeometry. `integrand` will be overwritten. - `parent`: If `parent` is generated from `Geo_p` and `Geo` is a refined version of `Geo_p` this parameter will initiate the calculation of an ``L^{1}`` projection operator between the spaces of piecewise constant functions on the respective Voronoi Tessellations. - `discretefunctions=nothing` : A named tuple of form `(alpha=x->norm(x),f=x->-x,)`. Will be evaluated pointwise. - `integralfunctions=nothing` : A named tuple of form `(alpha=x->norm(x),f=x->-x,)`. It will make the algoritm calculate the integrals over the given functions or it will associate values to the list of functions based on integrated data present in `Geo` - `fluxes=nothing` : this is assumed to be named tuple, e.g. like the following:\n fluxes = (alpha = f1, beta = f2, eta = f3, zeta = f4, ) and every of the given fluxes `alpha`, `beta`, `eta`, `zeta`, has the following structure: It is one single flux-function accessing the following named data (see also [here in the Documentation](@ref parameter_names)):\n x_i, x_j, para_i, para_j, para_ij, mass_i, mass_j, mass_ij, normal and returning two values. Functions `f1`, `f2` ... should hence be defined similar to the following:\n function f1(;x_i,x_j,para_ij, kwargs...) # some code return something_i, something_j end Refer to the examples in the documentation. !!! note "standard settings" if the array of Neumann-planes is not provided, the standard list given in `boundary` resp. the boundary in `Geo` will be used. - `rhs_functions=nothing`: same as for fluxes. However, functions can only access the variables\n x_i, mass_i, para_i, """ VoronoiFVProblem() ####################################################################################################################### ## VoronoiFV_Problem_Parameters ####################################################################################################################### struct VoronoiFVProblemCoefficients{TF,TFU,TFI,BFI,TI} rows::Vector{Int64} cols::Vector{Int64} firstindex::Vector{Int64} fluxes::TF functions::TFU fluxintegrals::TFI bulkintegrals::BFI index::TI end function VoronoiFVProblemCoefficients(data::VoronoiData, boundary, my_data_i, my_data_j; fluxes=NamedTuple(), functions=NamedTuple, flux_integrals=NamedTuple(), bulk_integrals=NamedTuple()) nodes = data.nodes neighbors = data.neighbors lnodes = length(nodes) lboundary = length(boundary) r=Int64[] c=Int64[] f=Vector{Int64}(undef,lnodes+lboundary) neighbors_of_boundary = Vector{SparseVector{Int64,Int64}}(undef,lboundary) for i in 1:lboundary neighbors_of_boundary[i] = sparsevec(Int64[],Int64[],lnodes) end _f=1 for i in 1:lnodes f[i] = _f _r, _c = setindeces(i,neighbors[i],neighbors_of_boundary,lnodes) # warning: assumes that neighbors are sorted ! append!(r,_r) append!(c,_c) _f += length(_c) end for i in 1:lboundary f[i+lnodes] = _f _r=nonzeros(neighbors_of_boundary[i]) append!(r,_r) append!(c,(lnodes+i).*ones(Int64,length(_r))) _f += length(_r) end #println(f) #println(c) #println(r) index(i,j) = get_data_index(r,c,f,i,j,lnodes,lboundary) #_neumann_planes = split_boundary_indeces(boundary)[2] myfluxes = map(f->conservative_flux(f,data,boundary,index,length(r),my_data_i,my_data_j),fluxes) myrhs = map(f->right_hand_side(f,length(nodes),my_data_i),functions) myfluxint = map(f->flux_integral(f,data,boundary,index,length(r),my_data_i,my_data_j),flux_integrals) mybulkint = map(f->bulk_integral(f,length(nodes),my_data_i),bulk_integrals) return VoronoiFVProblemCoefficients{typeof(myfluxes),typeof(myrhs),typeof(myfluxint),typeof(mybulkint),typeof(index)}(r,c,f,myfluxes,myrhs,myfluxint,mybulkint,index) end function get_data_index(rows,cols,firstindex,i,j,lnodes,lboundary) ret = firstindex[j] maxindex = j<lnodes+lboundary ? firstindex[j+1] : length(rows) while rows[ret]!=i && ret<=maxindex ret+=1 end return ret end function get_data_i(bulkfunctions,interfacefunctions,data,i,j=0) hasbulk = typeof(bulkfunctions)!=Nothing bf_i = bulkfunctions(i) result = (x_i=data.nodes[i], para_i=bf_i, mass_i=data.volume[i],cell=i) return result end function get_data_j(bulkfunctions,interfacefunctions,data,i,n,planes) j=data.neighbors[i][n] nodes = data.nodes lmesh = length(data.nodes) hasbulk = typeof(bulkfunctions)!=Nothing hasinterface = typeof(interfacefunctions)!=Nothing bf_j = bulkfunctions(j<=lmesh ? j : i) bf_ij = interfacefunctions(i,n) ## not clear if n or j is the correct choice. j fails.... b = j>lmesh on_b = data.boundary_nodes_on_boundary xj = b ? data.boundary_nodes[i][j] : nodes[j] vj = b ? data.volume[i] : data.volume[j] result = (x_j=xj, para_j=bf_j, para_ij=bf_ij, mass_j=vj, mass_ij=data.area[i][n],normal=data.orientations[i][n], points_onboundary=on_b, onboundary=b,neighbor=j, bc=j>lmesh ? planes[j-lmesh].BC : 1) return result end function setindeces(_Cell,neighbors,neighbors_of_boundary,lmesh) r = zeros(Int64, length(neighbors) + 1) for i in 1:length(neighbors) r[i]=neighbors[i] if neighbors[i]>lmesh neighbors_of_boundary[neighbors[i]-lmesh][_Cell]=_Cell end end r[length(neighbors)+1]=_Cell sort!(unique!(r)) c = _Cell .* ones(Int64,length(r)) return r, c end function get_Int_Array(list,preset) return typeof(list)<:Vector{Int} ? list : (typeof(list)<:Int ? [list] : Int64[]) end function conservative_flux(my_flux,data::VoronoiData,boundary,index,size,my_data_i,my_data_j,_NEUMANN=Int64[]) nodes = data.nodes lmesh = length(nodes) flux = my_flux values=zeros(Float64,size) for i in 1:lmesh neigh=data.neighbors[i] _para_i = my_data_i(i) for n in 1:length(neigh) j=neigh[n] if j<i continue end _para_j = my_data_j(i,n) part_i, part_j = flux(;_para_i...,_para_j...) #values[index(i,i)]+=part_i values[index(i,j)]+=(-1)*part_j values[index(j,i)]+=(-1)*part_i end end return values end function flux_integral(my_flux,data::VoronoiData,boundary,index,size,my_data_i,my_data_j,_NEUMANN=Int64[]) nodes = data.nodes lmesh = length(nodes) flux = my_flux integral = 0.0 for i in 1:lmesh neigh=data.neighbors[i] _para_i = my_data_i(i) for n in 1:length(neigh) j=neigh[n] if j<i continue end _para_j = my_data_j(i,n) integral += flux(;_para_i...,_para_j...) end end return integral end function right_hand_side(f,size,my_data_i) rhs(i) = f(;my_data_i(i)...) values=Vector{typeof(rhs(1))}(undef,size) for i in 1:size values[i]=rhs(i) end return values end function bulk_integral(f,size,my_data_i) rhs(i) = f(;my_data_i(i)...) integral = 0.0 *rhs(1) for i in 1:size integral += rhs(i) end return integral end ####################################################################################################################### ## VoronoiFVLinear ####################################################################################################################### "extracts for each boundary index the correct neumann or dirichlet function from two normed lists" function extract_BC(neumann,dirichlet,len) harmonic = x->0.0 funcs = Vector{Any}(undef,len) funcs.=harmonic f = list->map( tup->( map( k-> ( funcs[k] = tup[2]), tup[1] ) ) ,list) #f = list->map( tup->( println(tup) ) ,list) f(neumann) f(dirichlet) return funcs end """ linearVoronoiFVProblem(vd::VoronoiFVProblem;flux) Takes a `VoronoiFVProblem` and a `flux::Symbol` and creates a linear problem. `flux` has to refer to a flux created in `vd`. # Optional arguments - `rhs`: a `Symbol` referring to one of the `rhs_functions` or a vector of `Float64` of the same length as the number of nodes. If not provided, the system assumes `rhs=zeros(Float64,number_of_nodes)`. - `Neumann`: Can be provided in the forms * `(Int,Function,Int[.],Function,(Int[.],Function),...)`. Every `Function` depends on `(;kwargs...)` and represents ``J*ν`` on a single boundary plane `Int` or multiple planes `Int[.]`. * `Function` then it takes the Neumann boundaries given by the definition of the boundary of the domain, unless nothing is reinterpreted as Dirichlet boundary. - `Dirichlet`: Can be provided in the form `(Int,Function,Int[.],Function,(Int[.],Function),...)`. Every `Function` depends on `(;kwargs...)` and represents ``u_0`` on a single boundary plane `Int` or multiple planes `Int[.]`. !!! note "`FVevaluate_boundary`" Use `FVevaluate_boundary(f)` if you simply want `f` to be evaluated pointwise at the boundary nodes. !!! note "Standard boundary conditions and consistency" The algorithm will take zero Neumann resp. zero Dirichlet as standard in case no other information is provided by the user. However, it is the users responsibility to make sure there are no double specifications given in `Neumann` and `Dirichlet`. # Return values rows, cols, vals, rhs = linearVoronoiFVProblem(vd::VoronoiFVProblem;flux,kwargs...) - `rows, cols, vals` are the row and coloumn indeces of values. Create e.g. `A=sparse(rows,cols,vals)` and sovle\n ``A*u=rhs`` """ function linearVoronoiFVProblem(vd::VoronoiFVProblem;flux,rhs=nothing,Neumann=nothing,Dirichlet=nothing,bulk=(1:(length(vd.voronoidata.nodes))),enforcement_node=1) if !(typeof(flux)<:Symbol) || !haskey(vd.Coefficients.fluxes,flux) error("linearVoronoiFVProblem: you need to provide a flux as Symbol in the VoronoiFVProblem data. You provided flux=$flux instead.") end data = vd.voronoidata myrhs=Float64[] if typeof(rhs)<:AbstractVector && length(rhs)==length(vd.voronoidata.nodes) myrhs=copy(rhs) elseif typeof(rhs)==Nothing myrhs=zeros(Float64,length(vd.voronoidata.nodes)) elseif typeof(rhs)<:Symbol && haskey(vd.Coefficients.functions,rhs) myrhs=copy(vd.Coefficients.functions[rhs]) #mrhs.*=vd.voronoidata.volume else error("linearVoronoiFVProblem: if you provide `rhs` it needs to be <:AbstractVector or a Symbol in the VoronoiFVProblem data. You provided rhs=$rhs instead.") end values = vd.Coefficients.fluxes[flux] index = vd.Coefficients.index datamax = vd.Coefficients.firstindex[length(vd.voronoidata.nodes)+1]-1 myvalues = copy(view(values,1:datamax)) rows = copy(view(vd.Coefficients.rows,1:datamax)) cols = copy(view(vd.Coefficients.cols,1:datamax)) keep = map(k->(rows[k] in bulk),collect(1:length(rows))) flux_data = vd.parameters[:fluxes][flux] boundary = vd.Geometry.domain.boundary lmesh = length(data.nodes) harmonic = FVevaluate_boundary(x->0.0) # println(Neumann) _PERIODIC, _NEUMANN, _DIRICHLET = split_boundary_indeces(boundary) neumann_bc, neurange = unify_BC_format(Neumann,_NEUMANN, typeof(Neumann)<:Function ? Neumann : harmonic) dirichlet_bc, dirrange = unify_BC_format(Dirichlet,_DIRICHLET, typeof(Dirichlet)<:Function ? Dirichlet : harmonic) # println("first:") # println(neurange) # println(dirrange) deleteat!( neumann_bc[1][1], map( k->(neumann_bc[1][1][k] in dirrange), collect(1:length(neumann_bc[1][1])) ) ) deleteat!( dirichlet_bc[1][1], map( k->(dirichlet_bc[1][1][k] in neurange), collect(1:length(dirichlet_bc[1][1])) ) ) # println("second:") # println(neurange) # println(dirrange) _NEUMANN = neurange #println(neumann_bc) #println(dirichlet_bc) # calculate the boundary functions and store the boundary conditions in a unified sparse vector data structure bc_functions = sparsevec(collect(1:length(boundary)).+length(data.nodes), extract_BC(neumann_bc,dirichlet_bc,length(boundary)), length(data.nodes)+length(boundary) ) bc_conditions = sparsevec(_NEUMANN.+length(data.nodes),-1.0*ones(Float64,length(_NEUMANN)),length(data.nodes)+length(boundary)) # println(bc_conditions) #return keepat!(rows,keep), keepat!(cols,keep), keepat!(myvalues,keep) , myrhs need_enforcement = true for k in 1:length(boundary) if !((k in _PERIODIC) || (bc_conditions[lmesh+k]<0)) need_enforcement = false break end end for i in 1:length(vd.voronoidata.nodes) neighbors = vd.voronoidata.neighbors[i] my_i = vd.my_data_i(i) index_ii = index(i,i) for j in 1:length(neighbors) n = neighbors[j] if (n in bulk) #println(values[index(n,i)]) # print("|$(round(values[index(n,i)]))") myvalues[index_ii] += (-1)*values[index(n,i)] continue end my_j = vd.my_data_j(i,j) u = (-1)*(bc_functions[n])(;my_i...,my_j...) if bc_conditions[n]<0 # Neumann case myrhs[i] += u * my_j[:mass_ij] #print("|$u $(round(values[index(n,i)]))") #myvalues[index_ii] += (-1)*values[index(n,i)] else #Dirichlet case # abs(u)!=0 && println("$u, $(values[index(i,n)])") myrhs[i] += values[index(i,n)] * u # n==401 && print("*$(round(values[index(i,n)] * u)) $(round(values[index(n,i)]))") myvalues[index_ii] += (-1)*values[index(n,i)] end end end if need_enforcement neighbors = vd.voronoidata.neighbors[enforcement_node] for i in neighbors i==enforcement_node && continue myvalues[index(i,enforcement_node)] = 0.0 myvalues[index(enforcement_node,i)] = 0.0 end myvalues[index(enforcement_node,enforcement_node)] = 1.0 myrhs[enforcement_node] = 0.0 end return keepat!(rows,keep), keepat!(cols,keep), keepat!(myvalues,keep) , myrhs end "takes a tuple of form ([1], x->0.0, ([3],x->x^2), ) and returns a formated tuple of type ( ( [1], x->0.0 ), ). Also prepends a (range,standard) tuple." function unify_BC_format(BC,range,standard) list = ((range,standard),) myrange = Int64[] if typeof(BC)<:Tuple for i in 1:length(BC) if typeof(BC[i])<:Tuple && length(BC[i])>1 !(typeof(BC[i][2])<:Function) && continue my_BC = typeof(BC[i][1])<:Vector{Int} ? BC[i][1] : [BC[i][1]] list = (list...,(my_BC,BC[i][2])) append!(myrange,my_BC) elseif length(BC)>i && typeof(BC[i+1])<:Function my_BC = typeof(BC[i])<:Vector{Int} ? BC[i] : (typeof(BC[i])<:Int ? [BC[i]] : continue) list = (list...,(my_BC,BC[i+1])) append!(myrange,my_BC) end end end return list, myrange end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
31706
""" VoronoiGeometry{T} This is the fundamental struct to store information about the generated Voronoi grid. The geometric data can be accessed using the type `VoronoiData`. However, there is always the possibility to access the data also via the following fields: - Integrator.Integral: stores the integrated values in terms of a `Voronoi_Integral` - basic_mesh: stores the fundamental data of nodes and verteces. also stored in Integrator.Integral.MESH - nodes: direct reference to the nodes. Also provided in basic_mesh.nodes !!! warning "Avoid direct access to the data" Accessing the data directly, that is without calling `VoronoiData`, is likely to cause confusion or to provide "wrong" information. The reason is that particularly for periodic boundary conditions, the mesh is enriched by a periodization of the boundary nodes. These nodes are lateron dropped by the VoronoiData-Algorithm. """ struct VoronoiGeometry{T,TT,SNP,DT,MC,HVF}#<:Union{HVFile,NoFile}} Integrator::T adress::Vector{Int64} domain::DT integrand::TT status::Vector{Bool} searcher::SNP mc_accurate::MC file::HVF function VoronoiGeometry(Integrator,domain,integrand,searcher,mc_accurate,file) return new{typeof(Integrator),typeof(integrand),typeof(searcher),typeof(domain),typeof(mc_accurate),typeof(file)}(Integrator,[0],domain,integrand,[false],searcher,mc_accurate,file) end end const PGeometry{P} = VoronoiGeometry{T,TT,SNP,DT,MC,HVF} where {P,T,TT,SNP,DT<:AbstractDomain{P},MC,HVF} const ClassicGeometry = VoronoiGeometry{T,TT,SNP,DT,MC,HVF} where {T,TT,SNP,DT<:Voronoi_Domain,MC,HVF} @inline Base.getproperty(cd::VoronoiGeometry, prop::Symbol) = dyncast_get(cd,Val(prop)) @inline @generated dyncast_get(cd::VoronoiGeometry, ::Val{:nodes}) = :(nodes(mesh(integral(getfield(cd,:domain))))) @inline @generated dyncast_get(cd::VoronoiGeometry, ::Val{:mesh}) = :(mesh(integral(getfield(cd,:domain)))) @inline @generated dyncast_get(cd::VoronoiGeometry, ::Val{:integral}) = :(integral(getfield(cd,:domain))) @inline @generated dyncast_get(cd::VoronoiGeometry, ::Val{:refined}) = :(getfield(cd,:status)[1]) @inline @generated dyncast_get(cd::VoronoiGeometry, d::Val{S}) where S = :( getfield(cd, S)) @inline Base.setproperty!(cd::VoronoiGeometry, prop::Symbol, val) = dyncast_set(cd,Val(prop),val) @inline @generated dyncast_set(cd::VoronoiGeometry, ::Val{:refined},val) = :(getfield(cd,:status)[1]=val) @inline @generated dyncast_set(cd::VoronoiGeometry, d::Val{S},val) where S = :( setfield(cd, S,val)) @inline mesh(vg::VoronoiGeometry) = mesh(vg.domain) @inline integral(vg::VoronoiGeometry) = integral(vg.domain) @inline function Base.open(func::Function,vg::VG) where {VG<:VoronoiGeometry} #open(vg.file) do ff func(vg) #end end function show(vg::VoronoiGeometry) lrf = length(vg.refined) println("VoronoiGeometry with Integrator ",Integrator_Name(vg.Integrator)," on $(length(vg.Integrator.Integral.MESH.nodes)-lrf) nodes.") println(" $lrf additional internal nodes.") println(" search options: ", vg.searcher) println(boundaryToString(vg.domain.boundary,offset=5)) end """ VoronoiGeometry(xs::Points,b::Boundary) This creates a Voronoi mesh from the points `xs` given e.g. as an array of `SVector` and a boundary `b` that might be constructed using the commands in the Boundaries section. You have the following optional commands: - `silence`: Suppresses output to the command line when `true`. The latter will speed up the algorithm by a few percent. default is `false`. - `integrator`: can be either one of the following values: * `VI_GEOMETRY`: Only the basic properties of the mesh are provided: the verteces implying a List of neighbors of each node * `VI_MONTECARLO`: Volumes, interface areas and integrals are calculated using a montecarlo algorithm. This particular integrator comes up with the following additional paramters: + `mc_accurate=(int1,int2,int3)`: Montecarlo integration takes place in `int1` directions, over `int2` volumetric samples (vor volume integrals only). It reuses the same set of directions `int3`-times to save memory allocation time. Standard setting is: `(1000,100,20)`. * `VI_POLYGON`: We use the polygon structure of the mesh to calculate the exact values of interface area and volume. The integral over functions is calculated using the values at the center, the verteces and linear interpolation between. * `VI_HEURISTIC`: When this integrator is chosen, you need to provide a fully computed Geometry including volumes and interface areas. `VI_HEURISTIC` will then use this information to derive the integral values. * `VI_HEURISTIC_MC`: This combines directly `VI_MONTECARLO` calculations of volumes and interfaces and calculates integral values of functions based on those volumes and areas. In particular, it also relies on `mc_accurate`! - `integrand`: This is a function `f(x)` depending on one spatial variable `x` returning a `Vector{Float64}`. The integrated values will be provided for each cell and for each pair of neighbors, i.e. for each interface - `periodic_grid`: This will initiate a special internal routine to fastly create a periodic grid. Look up the section in the documentation. # With density distribution: VoronoiGeometry(number::Int,b=Boundary();density, kwargs...) this call genertates a distribution of approsximately `number` nodes and generates a `VoronoiGeometry`. It takes as parameters all of the above mentioned keywords (though `periodic_grid` makes no sense) and all keywords valid for a call of VoronoiNodes(number;domain=b,density=density, ....) In future versions, there will be an implementation of the parameter `cubic=true`, where the grid will be generated based on a distribution of "cubic" cells. In the current version there will be a warning that this is not yet implemented. # Advanced methods VoronoiGeometry(file::String) VoronoiGeometry(VG::VoronoiGeometry) Loads a Voronoi mesh from the `file` or copies it from the original data `VG`. If `integrator` is not provided, it will use the original integrator stored to the file. In the second case, if integrand is not provided explicitly, it will use `integrand = VG.integrand` as standard. Additionally it has the following options: - `_myopen=jldopen`: the method to use to open the file. See the section on `write_jld`. - `vertex_storage`: Defines the way data is stored internally. standard is the most recent and most efficient method `DatabaseVertexStorage()`. Other options are the `ReferencedVertexStorage()` which is slower but may be useful in low dimensions and the `ClassicVertexStorage()` which is fast for integration algorithms in low dimensions and which was the first database structure underlying the computations. This parameter can of course only be set upon the very first creation of the geometry and cannot be modified afterwards. - `search_settings`: a `NamedTuple` mostly to provide `(method = ... ,threading = ...)` where `method` chooses the Raycast method and `threading` provides information on the multithreading - `offset`: See the section on `write_jld`. - `integrate=false`: This will or will not call the integration method after loading/copying the data. Makes sense for using `VI_HEURISTIC` together with `volume=true`, `area=true` and providing values for `integrand` and `integrand`. If `integrand != nothing` but `bulk==false` or `interface==false` this parameter will internally be set `true`. - `volume=true`: Load volume data from file - `area=true`: Load interface area data from file - `bulk=false`: Load integrated function values on the cell volumes from file. When set `true` and `integrand=f` is provided the method will compare the dimension of `f` and of the stored data. - `interface=false`: Load integrated function values on the interfaces. When set `true` and `integrand=f` is provided the method will compare the dimension of `f` and of the stored data. """ VoronoiGeometry() function VoronoiGeometry(number::Int,b=Boundary();cubic=false,bounding_box=Boundary(),criterium = x->true, density=x->1.0, range=nothing ,periodic_grid=nothing,kwargs...) if cubic @warn "cubic mesh generation based on density currently not implemented" end return VoronoiGeometry(VoronoiNodes(number,domain=b,bounding_box=bounding_box,criterium = criterium, density=density, range=range),b;kwargs...) end function cast_mesh(gs,xs::HVNodes{P}) where {P} __get_refs(::Nothing) = nothing __get_refs(i) = Int64[] mesh = Voronoi_MESH(xs,__get_refs(gs),gs) #println(typeof(mesh.references)) get_mesh(::Nothing,m) = m get_mesh(i,m) = SerialMeshVector(m) return get_mesh(gs,mesh) end function VoronoiGeometry(xs::Points,b=Boundary(); vertex_storage=DatabaseVertexStorage(),improving=(max_iterations=0, tolerance=1.0,), search_settings::NamedTuple=NamedTuple(), integrator=VI_GEOMETRY,integrand=nothing,mc_accurate=(1000,5,20),periodic_grid=nothing,silence=false,printevents=false,integrate=true) oldstd = stdout result = nothing check_boundary(xs,b) #xs=UnsortedNodes(xs) try if typeof(periodic_grid)!=Nothing return PeriodicVoronoiGeometry(xs,vertex_storage=vertex_storage, integrator=integrator,integrand=integrand,mc_accurate=mc_accurate,search_settings=search_settings,silence=silence;periodic_grid...) else myintegrator = replace_integrator(IntegratorType(integrator)) redirect_stdout(silence ? devnull : oldstd) #vertex_storage = haskey(search_settings,:threading) ? change_db_type(vertex_storage,search_settings.threading) : vertex_storage !silence && println(Crayon(foreground=:red,underline=true), "Initialize bulk mesh with $(length(xs)) points",Crayon(reset=true)) search=RaycastParameter(eltype(eltype(xs));search_settings...) #println(typeof(search)) mmm = cast_mesh(vertex_storage,copy(xs)) voronoi(mmm,searcher=Raycast(xs;domain=b,options=search),intro="",printsearcher=printevents, silence=silence) d2 = Create_Discrete_Domain(mmm,b,intro="",search_settings=search) # periodized version including all boundary data improve_mesh(d2; improving..., printevents=printevents,search=search) lboundary = length(b) integrate_geo(integrate,d2,myintegrator,integrand,mc_accurate,collect(1:public_length(d2)),collect(1:(length(mesh(d2))+lboundary)),silence) result = VoronoiGeometry(myintegrator,d2,integrand,search,mc_accurate,nothing)#NoFile()) end catch err redirect_stdout(oldstd) rethrow() end redirect_stdout(oldstd) return result end function integrate_geo(threading::MultiThread,d2,myintegrator,integrand,mc_accurate,relevant,modified,silence=false) integral = integrate_view(d2).integral ref_mesh = mesh(integral) _threads = create_multithreads(threading,true) list , tops = partition_indices(length(relevant),_threads) # new views on integral for parallel computation integrals = map(i->IntegralView(integral,SwitchView(list[i],tops[i])),1:length(_threads)) # pulls the current nodes list[i]...tops[i] to the first places parallel_integrals = Parallel_Integrals(integrals,myintegrator) # transformation of relevants for respective computation relevants = map(i->copy(view(relevant,list[i]:tops[i])),1:length(list)) #println(relevants) map(i->sort!(_transform_indeces(ref_mesh,mesh(integrals[i]),relevants[i])),1:length(relevants)) #println(relevants) #list2 = copy(list) #list2 .= modified[1] # transformation of modifieds for respective computation m1 = modified[1] tops2 = copy(tops) for i in 1:(length(list)-1) tops2[i] = searchsortedlast(modified,relevant[tops[i]]) end modifieds_ = map(i->copy(view(modified,m1:tops2[i])),1:length(tops2)) rest = copy(view(modified,(tops2[end]+1):length(modified))) #println(modifieds_) #println(rest) modifieds = map(i->CombinedSortedVector(sort!(_transform_indeces(ref_mesh,mesh(integrals[i]),modifieds_[i])),rest),1:length(modifieds_)) #println(modifieds) add_sync(synchronizer(parallel_integrals[1]),length(parallel_integrals)) # this sets the number of sync waits to the number of threads that will be called. II2s = map(inte->Integrator(inte,myintegrator,integrand=integrand,mc_accurate=mc_accurate),parallel_integrals) myintes2 = map(ii2->backup_Integrator(ii2,true),II2s) myintes = parallelize_integrators(myintes2) intro="$(Integrator_Name(myintes[1]))-integration over $(length(relevant)) cells:" progress = ThreadsafeProgressMeter(2*length(relevant),silence,intro) Threads.@threads for i in 1:length(parallel_integrals) #for i in 4:-1:1 HighVoronoi.integrate(myintes[i],domain=internal_boundary(d2),relevant=relevants[i],modified=modifieds[i],progress=progress) end end parallelize_integrators(myintes2) = myintes2 @inline integrate_geo(integrate::SingleThread,d2,myintegrator,integrand,mc_accurate,relevant,modified,silence=false) = integrate_geo(true,d2,myintegrator,integrand,mc_accurate,relevant,modified,silence) @inline function integrate_geo(integrate::Bool,d2,myintegrator,integrand,mc_accurate,relevant,modified,silence=false) !integrate && return II2=Integrator(integrate_view(d2).integral,myintegrator,integrand=integrand,mc_accurate=mc_accurate) myinte=backup_Integrator(II2,true) intro="$(Integrator_Name(myinte))-integration over $(length(relevant)) cells:" HighVoronoi.integrate(myinte,domain=internal_boundary(d2),relevant=relevant,modified=modified,progress=ThreadsafeProgressMeter(2*length(relevant),false,intro)) end function VoronoiGeometry(file::String,proto=nothing; _myopen=jldopen, offset="", search_settings=(__useless=0,), integrate=false, volume=true,area=true,bulk=false,interface=false,integrator=VI_GEOMETRY,integrand=nothing,mc_accurate=(1000,100,20),periodic_grid=nothing,silence=false) oldstd = stdout result = nothing try if typeof(periodic_grid)!=Nothing @warn "The parameter 'periodic_grid' makes no sense when a geometry is loaded..." end println(Crayon(foreground=:red,underline=true), "Load geometry from file $file:",Crayon(reset=true)) myintegrator = replace_integrator(IntegratorType(integrator)) I2=UndefInitializer _domain=UndefInitializer xs=UndefInitializer mesh=UndefInitializer _myopen(file, "r") do myfile if read(myfile, offset*"version")!=1 error("The version of this file format is not compatible with your HighVoronoi distribution. It is recommended to update your version.") end mesh=load_MESH(myfile,offset,proto) xs=mesh._nodes println(" mesh with $(length(xs)) nodes loaded") _domain=load_Domain(myfile,mesh,offset) vp_print(_domain.boundary,offset=4) println(" Load Data: ", volume ? "volumes, " : "", area ? "areas, " : "", bulk ? "bulk integrals, " : "", interface ? "interface integrals, " : "") redirect_stdout(silence ? devnull : oldstd) load_Integral(myfile,_domain._integral,volume,area,bulk,interface,offset) end d2 = _domain b = boundary(_domain) II2=Integrator(integrate_view(d2).integral,myintegrator,integrand=integrand,mc_accurate=mc_accurate) lboundary = length(b) myinte = backup_Integrator(II2,true) integrate && HighVoronoi.integrate(myinte,domain=internal_boundary(d2),relevant=collect(1:public_length(d2)),modified=collect(1:(length(mesh(d2))+lboundary))) result = VoronoiGeometry(myintegrator,d2,integrand,RaycastParameter(Float64),mc_accurate,nothing)#NoFile()) redirect_stdout(oldstd) catch redirect_stdout(oldstd) rethrow() end return result end @inline Base.copy(VG::VoronoiGeometry) = VoronoiGeometry(VG,silence=true,integrate=false) function VoronoiGeometry(VG::VoronoiGeometry; search_settings=NamedTuple(), periodic_grid=nothing, integrate=false, volume=true,area=true,bulk=false,interface=false, integrator=VG.Integrator,integrand=VG.integrand,mc_accurate=VG.mc_accurate,silence=false) oldstd = stdout result = nothing try if typeof(periodic_grid)!=Nothing warning("feature 'periodic_grid' not implemented for 'VoronoiGeometry(VG::VoronoiGeometry;kwargs...)'. I will simply ignore this...") end search = merge(VG.searcher,search_settings) myintegrator = replace_integrator(IntegratorType(integrator)) println(Crayon(foreground=:red,underline=true), "Copy geometry ...",Crayon(reset=true)) _integrate = integrate # || (typeof(integrand)!=Nothing ) println(" mesh with $(length(mesh(VG.domain))) nodes copied") d2 = deepcopy(VG.domain) b = boundary(d2) vp_print(boundary(d2),offset=4) redirect_stdout(silence ? devnull : oldstd) II2=Integrator(integrate_view(d2).integral,myintegrator,integrand=integrand,mc_accurate=mc_accurate) lboundary = length(b) myinte=backup_Integrator(II2,true) integrate && HighVoronoi.integrate(myinte,domain=internal_boundary(d2),relevant=collect(1:public_length(d2)),modified=collect(1:(length(mesh(d2))+lboundary))) result = VoronoiGeometry(myintegrator,d2,integrand,search,mc_accurate,VG.file) redirect_stdout(oldstd) catch redirect_stdout(oldstd) rethrow() end return result end #=function VoronoiGeometry(NON::Int,ρ;search_settings=[], periodic_grid=nothing, integrate=false, integrator=VI_GEOMETRY,return_unkown=false, integrand=nothing,mc_accurate=(1000,100,20),silence=false) samplenodes = VoronoiNodes() end =# ############################################################################################################################### ## Memory usage inside VoronoiGeometry ..... ############################################################################################################################### #=function memory_allocations(vg::VoronoiGeometry;verbose=false) return memory_usage(vg,verbose) end function memory_usage(x,verbose=false,step=0) size = sizeof(x) typeof(x)==HighVoronoi.Boundary && (verbose=false) mystring = "" if typeof(x) <: AbstractArray # Check if it's an array for item in x size += memory_usage(item,verbose,step+1)[1] end elseif typeof(x) <: AbstractDict # Check if it's a dictionary for (key, value) in x size += memory_usage(key,verbose,step+1)[1] size += memory_usage(value,verbose,step+1)[1] end elseif isstructtype(typeof(x)) # Check if it's a struct for field in fieldnames(typeof(x)) mysize = 0 newstring = "" if field==:Buffer_Verteces bv = getfield(x, field) mysize = sizeof(bv)+2*length(bv)*8 elseif field==:searcher mysize = sizeof(getfield(x, field)) else mysize, newstring = memory_usage(getfield(x, field),verbose,step+1) end size += mysize mystring *= verbose ? (" "^step)*"$field: $mysize \n"*newstring : "" end end if step==0 verbose && println("Total size: $size") verbose && println(mystring) return size end return size, mystring end =# ############################################################################################################################### ## Refine, Integrate, Copy ..... ############################################################################################################################### function refine!(VG::VoronoiGeometry,xs::Points,update=true;silence=false,search_settings=NamedTuple()) println(Crayon(foreground=:red,underline=true), "Refine discrete geometry with $(length(xs)) points:",Crayon(reset=true)) domain = VG.domain oldstd = stdout old_length = public_length(VG.domain) redirect_stdout(silence ? devnull : oldstd) try my_settings = RaycastParameter(VG.searcher,search_settings) _modified=systematic_refine!(domain,xs,intro="",search_settings=my_settings) VG.refined=true if typeof(update)<:Union{SingleThread,MultiThread} || (update==true) println("updating...") println(Crayon(foreground=:red,underline=true), "Start integration on refined cells:",Crayon(reset=true)) MESH, Integral = integrate_view(domain) sort!(_external_indeces(MESH,_modified)) lmesh = length(MESH) append!(_modified,collect((1+lmesh):(lmesh+length(boundary(domain)))),collect((old_length+1):(old_length+length(xs)))) sort!(unique!(_modified)) _relevant=Base.intersect(_modified,collect(1:public_length(domain))) sort!(_relevant) integrate_geo(update,VG.domain,VG.Integrator,VG.integrand,VG.mc_accurate,_relevant,_modified,silence) VG.refined=false end catch redirect_stdout(oldstd) rethrow() end redirect_stdout(oldstd) return VG end function refine(VG::VoronoiGeometry,xs::Points,update=true;silence=false,search_settings=(__useless=0,)) return refine!(copy(VG),xs,update,silence=silence,search_settings=search_settings) end function periodic_bc_filterfunction(sig,periodic) for i in length(sig):-1:1 # (sig[i]<periodic[1]) && (return true) (sig[i] in periodic) && (return false) end return true end """ indeces_in_subset(VG::VoronoiGeometry,B::Boundary) returns all indeces of `VG` lying within `B`. """ function indeces_in_subset(VG::VoronoiGeometry,B::Boundary) nodes = HighVoronoi.nodes(mesh(VG.domain))#Integrator.Integral.MESH.nodes lref = length(VG.domain.references) li = length(nodes) indeces = collect(1:(li-lref)) for i in (lref+1):li (!(nodes[i] in B)) && (indeces[i-lref] = 0) end return filter!(i->i!=0,indeces) end function shift_boundarynodes(sig,lmesh,offset) for k in 1:length(sig) n = sig[k] if n> lmesh sig[k] += offset end end end function integrate!(VG::VoronoiGeometry) integrate(backup_Integrator(VG.Integrator,VG.refined[1]),domain=VG.domain.boundary,relevant=(1+length(VG.domain.references)):(length(VG.Integrator.Integral)+length(VG.domain.boundary))) VG.refined[1]=false end function copy_Integral_content(Inte,I2,volume,area,bulk,interface) Inte2=I2.Integral empty!(Inte2.neighbors) append!(Inte2.neighbors,deepcopy(Inte.neighbors)) if volume empty!(Inte2.volumes) append!(Inte2.volumes,copy(Inte.volumes)) end # println(Inte.area) if area empty!(Inte2.area) append!(Inte2.area,deepcopy(Inte.area)) end #println(Inte2.area) if bulk empty!(Inte2.bulk_integral) append!(Inte2.bulk_integral,deepcopy(Inte.bulk_integral)) end if interface empty!(Inte2.interface_integral) append!(Inte2.interface_integral,deepcopy(Inte.interface_integral)) end end ############################################################################################################################### ## Store and Load Data ############################################################################################################################### """ The data can be stored using the `write_jld` method: write_jld(Geo::VoronoiGeometry,filename,offset="";_myopen=jldopen) write_jld(Geo::VoronoiGeometry,file,offset="") stores the complete information of a VoronoiGeometry object to a file. This information can later be retrieved using the `VoronoiGeometry(file::String, args...)` function. - `Geo`: The Voronoi geometry object to be stored - `filename`: name of file to store in - `file`: A file given in a format supporting `write(file,"tagname",content)` and `read(file,"tagname",content)` - `offset`: If several Geometry objects are to be stored in the same file, this will be the possibility to identify each one by a unique name. In particular, this is the key to store several objects in one single file. - `_myopen`: a method that allows the syntax `_myopen(filename,"w") do myfile ....... end`. By default the method uses the `JLD2` library as this (at the point of publishing this package) has the least problems with converting internal data structure to an output format. !!! warning "Filname extension" If you want to use the default method, then the filename should end on `.jld`. Otherwise there might be confusion by the abstract built in julia loading algorithm. """ function write_jld() end function write_jld(Geo::ClassicGeometry,filename::String,offset="";_myopen=jldopen) _myopen(filename, "w") do file write_jld(Geo,file,offset) end end function write_jld(Geo::ClassicGeometry,file,offset="") #_myopen(filename, "w") do file I=integral(Geo.domain) storevalues=BitVector([length(I.volumes)>0,length(I.area)>0,length(I.bulk_integral)>0,length(I.interface_integral)>0]) write(file,offset*"version",1) write(file, offset*"type", Integrator_Number(Geo.Integrator)) write(file, offset*"compactdata", CompactVoronoiData(length(mesh(integral(Geo.domain)))-length(references(Geo.domain)),length(references(Geo.domain)),length(dimension(Geo.domain)),1)) #write(file, "onenode", I.MESH.nodes[1]) write(file, offset*"nodes", I.MESH._nodes) write(file, offset*"All_Verteces", I.MESH.All_Vertices) write(file, offset*"neighbors", I.neighbors) write(file, offset*"storevalues", storevalues) write(file, offset*"volumes", I.volumes) write(file, offset*"area", I.area) write(file, offset*"bulk_integral", I.bulk_integral) write(file, offset*"interface_integral", I.interface_integral) write(file, offset*"boundary", Geo.domain.boundary) write(file, offset*"boundary_Verteces", I.MESH.boundary_Vertices) write(file, offset*"internal_boundary", Geo.domain.internal_boundary) write(file, offset*"shifts", Geo.domain.shifts) write(file, offset*"reference_shifts", Geo.domain.reference_shifts) write(file, offset*"references", Geo.domain.references) end """ If you want to make sure that the data you load will be rich enough, compact information can be retrieved as follows: load_Voronoi_info(filname,offset="") This will print out compact information of the data stored in file `filename` and the offset `offset`. Yields dimension, number of nodes, number of internal nodes and the dimension of the stored integrated data. Note that the latter information is of particular importance since here is the highest risk for the user to mess up stored data with the algorithm. """ function load_Voronoi_info(filename::String,offset="") l = nothing jldopen(filename, "r") do myfile l = load_Voronoi_info(myfile,offset) end return l end """ returns CompactData on stored Geometry """ load_Voronoi_info(file,offset="") = read(file, offset*"compactdata") function load_MESH(file,offset="",proto=nothing) return load_MESH(file,offset) end function load_MESH(file,offset::String) nodes = read(file, offset*"nodes") av = read(file, offset*"All_Verteces") bv = VectorOfDict([0]=>nodes[1],length(nodes)) bounV = read(file, offset*"boundary_Verteces") mesh = _ClassicMesh(nodes, av, bv, bounV) return mesh end function load_Boundary(file,str)::Boundary return read(file, str) end function load_Domain(filename::String,mesh,offset="",_myopen=jldopen) domain = UndefInitializer _myopen(filename, "r") do file domain = load_Domain(file,mesh,offset) end return domain end function load_Domain(file,mesh,offset="") return Voronoi_Domain(mesh,load_Boundary(file, offset*"boundary"), read(file, offset*"shifts"), read(file, offset*"reference_shifts"), read(file, offset*"references"), load_Boundary(file, offset*"internal_boundary")) end function load_Integral(filename::String,I2,volume,area,bulk,interface,offset="") Inte=I2.Integral jldopen(filename, "r") do file Inte = load_Integral(file,I2,volume,area,bulk,interface,offset) end return Inte end function load_Integral(file,Inte,volume,area,bulk,interface,offset="") empty!(Inte.neighbors) append!(Inte.neighbors,read(file,offset*"neighbors")) storevalues=read(file,offset*"storevalues") if volume if !(storevalues[1]) println(" WARNING: you want to load volumes but there are no volumes stored") else vol=read(file,offset*"volumes") empty!(Inte.volumes) append!(Inte.volumes,vol) end end if area if !(storevalues[2]) println(" WARNING: you want to load areas but there are no areas stored") else ar=read(file,offset*"area") empty!(Inte.area) append!(Inte.area,ar) end end if bulk if !(storevalues[3]) println(" WARNING: you want to load bulk integral data but there are no such data stored") else bu=read(file,offset*"bulk_integral") empty!(Inte.bulk_integral) append!(Inte.bulk_integral,bu) end end if interface if !(storevalues[4]) println(" WARNING: you want to load interface integral data but there are no such data stored") else bu=read(file,offset*"interface_integral") empty!(Inte.interface_integral) append!(Inte.interface_integral,bu) end end return Inte end ############################################################################################################################### ## CompactData ############################################################################################################################### struct CompactVoronoiData numberOfNodes::Int64 numberOfInternalNodes::Int64 dimension::Int64 integrand::Int64 end function Base.show(io::IO, C::CompactVoronoiData) println(io," entry ",offset,":") println(io," dimension: $(C.dimension) ; nodes: $(C.numberOfNodes) ; internal nodes: $(C.numberOfInternalNodes) ; dimension of integral data: $(C.integrand) ") end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
7455
# We provide the Heuristic_Integrator. It is defined and initialized similar to # the MC struct Heuristic_Integrator{T,TT} _function::T bulk::Bool Integral::TT function Heuristic_Integrator{T,TT}(f::T,b::Bool,I::TT) where {T,TT} return new(f,b,I) end #=function Heuristic_Integrator(mesh::AbstractMesh,integrand=nothing, bulk_integral=false) b_int=(typeof(integrand)!=Nothing) ? bulk_integral : false i_int=(typeof(integrand)!=Nothing) ? true : false Integ=Voronoi_Integral(mesh,integrate_bulk=b_int, integrate_interface=i_int) PI=Heuristic_Integrator{typeof(integrand),typeof(Integ)}( integrand, b_int, Integ ) return PI end=# function Heuristic_Integrator(Integ::HVIntegral,integrand=nothing, bulk_integral=false) b_int = bulk_integral || (typeof(integrand) != Nothing) enable(Integ,integral=b_int) PI=Heuristic_Integrator{typeof(integrand),typeof(Integ)}( integrand, b_int, Integ ) return PI end end function backup_Integrator(I::Heuristic_Integrator,b) return b ? Polygon_Integrator(I._function,I.bulk,I.Integral) : I end function copy(I::Heuristic_Integrator) return Heuristic_Integrator{typeof(I._function),typeof(I.Integral)}(I._function,I.bulk,copy(I.Integral)) end @inline function integrate(Integrator::Heuristic_Integrator; progress=ThreadsafeProgressMeter(0,true,""), domain=Boundary(), relevant=1:(length(Integrator.Integral)+length(domain)), modified=1:(length(Integrator.Integral))) _integrate(Integrator; domain=domain, calculate=modified, iterate=relevant,progress=progress) end #function integrate(Integrator::Heuristic_Integrator; domain=Boundary(), relevant=1:(length(Integrator.Integral)+length(domain)), modified=1:(length(Integrator.Integral))) #println("PolyInt: ")#$(length(relevant)), $(length(modified))") # _integrate(Integrator; domain=domain, calculate=relevant, iterate=Base.intersect(union(modified,relevant),1:(length(Integrator.Integral)))) #end function prototype_bulk(Integrator::Heuristic_Integrator) y = (typeof(Integrator._function)!=Nothing && Integrator.bulk) ? Integrator._function(nodes(mesh(Integrator.Integral))[1]) : Float64[] y.*= 0.0 return y end function prototype_interface(Integrator::Heuristic_Integrator) return 0.0*(typeof(Integrator._function)!=Nothing ? Integrator._function(nodes(mesh(Integrator.Integral))[1]) : Float64[]) end """ initialize_integrator(xs,_Cell,verteces,edges,integrator::Heuristic_Integrator) The integrator is initialized at beginning of systematic_voronoi(....) if an MC_Function_Integrator is passed as a last argument This buffer version of the function does nothing but return two empty arrays: - The first for Volume integrals. The first coordinate of the vector in each node corresponds to the volume of the Voronoi cell - The second for Area integrals. The first coordinate of the vector on each interface corresponds to the d-1 dimensional area of the Voronoi interface """ #function integrate(domain,_Cell,iter,calcul,searcher,Integrator::Heuristic_Integrator) function integrate(neighbors,_Cell,iterate, calculate, data,Integrator::Heuristic_Integrator,ar,bulk_inte,inter_inte,_) #println(bulk_inte) #println(inter_inte) #println(ar) Integral = Integrator.Integral (typeof(Integrator._function) == Nothing) && (return Integral.volumes[_Cell]) verteces = vertices_iterator(mesh(Integral),_Cell) #println(verteces) xs=data.extended_xs dim = data.dimension # (full) Spatial dimension # get all neighbors of this current cell neigh=neighbors _length=length(neigh) # flexible data structure to store the sublists of verteces at each iteration step 1...dim-1 emptydict=EmptyDictOfType([0]=>xs[1]) # empty buffer-list to create copies from # empty_vector will be used to locally store the center at each level of iteration. This saves # a lot of "memory allocation time" empty_vector=zeros(Float64,dim) # do the integration I=Integrator bulk_inte .= 0.0 _heuristic_integral(I._function, I.bulk, _Cell, bulk_inte, ar, inter_inte, dim, neigh, _length,verteces,emptydict,xs[_Cell],empty_vector,calculate,Integral,xs) #println(bulk_inte) #println(inter_inte) #println(ar) try cdw = cell_data_writable(Integral,_Cell,nothing,nothing,get_integrals=staticfalse) return cdw.volumes[1] catch return 0.0 end end function _heuristic_integral(_function, _bulk, _Cell::Int64, y, A, Ay, dim,neigh,_length,verteces, emptylist,vector,empty_vector,calculate,Full_Matrix,xs) # dd will store to each remaining neighbor N a sublist of verteces which are shared with N dd=Vector{typeof(emptylist)}(undef,_length) for i in 1:_length dd[i]=copy(emptylist) end for (sig,r) in verteces # iterate over all verteces for _neigh in sig # iterate over neighbors in vertex _neigh==_Cell && continue index=_neigh_index(neigh,_neigh) index==0 && continue #(push!( dd[index] , sig =>r)) # push vertex to the corresponding list if (_neigh>_Cell || isempty(dd[index])) # make sure for every neighbor the dd-list is not empty push!( dd[index] , sig =>r) # push vertex to the corresponding list end end end #= for (sig,r) in verteces2 # repeat in case verteces2 is not empty for _neigh in sig _neigh==_Cell && continue index=_neigh_index(neigh,_neigh) index==0 && continue if (_neigh>_Cell || isempty(dd[index])) # make sure for every neighbor the dd-list is not empty push!( dd[index] , sig =>r) # push vertex to the corresponding list end end end=# for k in 1:_length buffer=neigh[k] if !(buffer in calculate) empty!(dd[k]) continue end bufferlist=dd[k] isempty(bufferlist) && continue AREA_Int = Ay[k] # always: typeof(_function)!=Nothing AREA_Int.*=0 _Center = midpoint_points(bufferlist,emptylist,empty_vector,vector) _Center .+= vector # midpoint shifts the result by -vector, so we have to correct that .... count = 0 while !(isempty(bufferlist)) _,r=pop!(bufferlist) AREA_Int .+= _function(r) count+=1 end AREA_Int .*= (dim-1)/(dim*count) AREA_Int .+= (1/dim).*_function(_Center) #println(AREA_Int) data = cell_data_writable(Full_Matrix,_Cell,nothing,nothing,get_integrals=staticfalse) thisarea = data.area[k] AREA_Int .*= thisarea # print("*") if _bulk # and finally the bulk integral, if whished # print("b") distance= 0.5*norm(vector-xs[buffer]) #abs(dot(normalize(vector-xs[buffer]),vert)) _y=_function(vector) _y.*=(thisarea/(dim+1)) _y.+=(AREA_Int*(dim/(dim+1))) # there is hidden a factor dim/dim which cancels out _y.*=(distance/dim) y.+=_y end end end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
2379
struct HeuristicMCIntegrator{T,I1,I2<:Heuristic_Integrator,I3<:Montecarlo_Integrator} Integral::I1 heuristic::I2 mc::I3 f::T end function HeuristicMCIntegrator(mesh::Voronoi_MESH,f, mc_accurate=(1000,1,20)) mc_accurate = (mc_accurate[1],1,mc_accurate[3]) mc = Integrator(mesh,VI_MONTECARLO,mc_accurate=mc_accurate,integrand=nothing) heu = Integrator(mesh,VI_HEURISTIC_INTERNAL,integrand=f,mc_accurate=mc_accurate,integral=mc.Integral) lmesh = length(mesh) resize!(mc.Integral.interface_integral,lmesh) resize!(mc.Integral.bulk_integral,lmesh) resize!(mc.Integral.area,lmesh) return HeuristicMCIntegrator(mc.Integral,heu,mc,f) end function HeuristicMCIntegrator(Inte::HVIntegral,f, mc_accurate=(1000,1,20)) mc_accurate = (mc_accurate[1],1,mc_accurate[3]) mc = Integrator(Inte,VI_MONTECARLO,mc_accurate=mc_accurate,integrand=f) heu = Integrator(Inte,VI_HEURISTIC_INTERNAL,integrand=f,mc_accurate=mc_accurate) return HeuristicMCIntegrator(Inte,heu,mc,f) end backup_Integrator(I::HeuristicMCIntegrator,b) = I function copy(I::HeuristicMCIntegrator) mc2 = copy(I.mc) heu2 = Integrator(mc.Integral,type=VI_HEURISTIC_INTERNAL,integrand=I.f) return HeuristicMCIntegrator{typeof(I.f)}(mc2.Integral,heu2,mc2,I.f) end function integrate(Integrator::HeuristicMCIntegrator; progress=ThreadsafeProgressMeter(0,true,""), domain=Boundary(), relevant=1:(length(Integrator.Integral)+length(domain)), modified=1:(length(Integrator.Integral))) _integrate(Integrator; domain=domain, calculate=modified, progress=progress, iterate=relevant) end function prototype_bulk(Integrator::HeuristicMCIntegrator) return prototype_bulk(Integrator.heuristic) end function prototype_interface(Integrator::HeuristicMCIntegrator) return prototype_interface(Integrator.heuristic) end @inline function integrate(neighbors,_Cell,iterate, calculate, data,Integrator::HeuristicMCIntegrator,ar,bulk_inte,inter_inte,vol) #=println(neighbors) println(ar) println(inter_inte)=# vol[1] = integrate(neighbors,_Cell,iterate, calculate, data,Integrator.mc,ar,bulk_inte,inter_inte,vol) #println(ar) #println(inter_inte) return integrate(neighbors,_Cell,iterate, calculate, data,Integrator.heuristic,ar,bulk_inte,inter_inte,vol) end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
6715
# Definiere einen abstrakten Datentyp HVDataBase abstract type HVDataBase{P<:Point, IV<:AbstractVector{Int64}} end PointType(::Type{HVD}) where {P, IV, HVD<:HVDataBase{P, IV}} = P VectorType(::Type{HVD}) where {P, IV, HVD<:HVDataBase{P, IV}} = IV PointType(::HVD) where {P, IV, HVD<:HVDataBase{P, IV}} = P VectorType(::HVD) where {P, IV, HVD<:HVDataBase{P, IV}} = IV blocksize(::Type{HVD}) where {P, IV, HVD<:HVDataBase{P, IV}} = begin dimension = size(P)[1] return (1+2*dimension) * round(Int,lowerbound(dimension,dimension)) end blocksize(::HVD) where {P, IV, HVD<:HVDataBase{P, IV}} = begin dimension = size(P)[1] return (1+2*dimension) * round(Int,lowerbound(dimension,dimension)) end ################ Expected Functionality: ## push!(::HKD, sig=>r) : returns Int64 - Index ## get(::HKD, index) : returns sig=>r for index ## haskey(::HKD, sig) : returns whether has key or not. ############################################################################################################################################################## ############################################################################################################################################################## ## HeapDataBase ############################################################################################################################################################## ############################################################################################################################################################## mutable struct HeapDataBase{P, RI, Q<:QueueHashTable} <: HVDataBase{P, Vector{Int64}} data::Vector{Vector{Int64}} floatview::Vector{RI} keys::Q blocksize::Int64 position::Int64 buffer_sig::Vector{Vector{Int64}} buffer_r::Vector{Vector{Float64}} lock::ReadWriteLock nthreads::Int64 # Konstruktor für HeapDataBase function HeapDataBase(::Type{P},_blocksize::Int64) where {P} data = Vector{Vector{Int64}}() # Initialisiere leeres data RI = typeof(Base.reinterpret(Float64,Int64[])) floatview = Vector{RI}() # Initialisiere leeres floatview queue = QueueHashTable(_blocksize,SingleThread()) nth = Threads.nthreads() #new{P, RI, typeof(queue)}(data, floatview, queue, _blocksize,_blocksize #=position=blocksize??=#,[Int64[] for i in 1:nth],[Float64[] for i in 1:nth],ReadWriteLock(),nth) new{P, RI, typeof(queue)}(data, floatview, queue, _blocksize,_blocksize,[Int64[] for i in 1:nth],[Float64[] for i in 1:nth],ReadWriteLock(),nth) end end indexvector(::HDB) where {HDB<:HeapDataBase} = Vector{Int64}() @inline function push_entry!(hdb::HDB,d::Float64) where {HDB<:HeapDataBase} hdb.position +=1 if hdb.position>hdb.blocksize push!(hdb.data,Vector{Int64}(undef,hdb.blocksize)) push!(hdb.floatview,Base.reinterpret(Float64,hdb.data[end])) hdb.position = 1 end hdb.floatview[end][hdb.position] = d end @inline function push_entry!(hdb::HDB,d::Int64) where {HDB<:HeapDataBase} hdb.position +=1 if hdb.position>hdb.blocksize push!(hdb.data,Vector{Int64}(undef,hdb.blocksize)) push!(hdb.floatview,Base.reinterpret(Float64,hdb.data[end])) hdb.position = 1 end hdb.data[end][hdb.position] = d end function push!(hdb::HDB,d::AV) where {HDB<:HeapDataBase,R<:Real,AV<:AbstractVector{R}} @inline db(::Type{Float64},hd) = hd.floatview[end] @inline db(::Type{Int64},hd) = hd.data[end] l = length(d) if (l>hdb.blocksize-hdb.position) for dd in d push_entry!(hdb,dd) end else mydb = db(R,hdb) view(mydb,(hdb.position+1):(hdb.position+l)) .= d hdb.position += l end end function push!(hdb::HDB,pair::P) where {HDB<:HeapDataBase,P<:Pair} sig = pair[1] r = pair[2] writelock(hdb.lock) pushqueue!(hdb.keys,sig) push_entry!(hdb,length(sig)) pos = hdb.position + hdb.blocksize*(length(hdb.data)-1) push!(hdb,sig) push!(hdb,r) writeunlock(hdb.lock) if pos==0 open("protokol.txt","a") do f write(f,"hier geht's shon los in push!(HDB) \n") end end return pos end @inline haskey(hdb::HDB,key::K) where {HDB<:HeapDataBase,K} = begin readlock(hdb.lock) r = haskey(hdb.keys,key) readunlock(hdb.lock) return r end function read_from_db(data,buffer_,pos,block,l,blocksize) if length(buffer_)<l resize!(buffer_,l) end sig = view(buffer_,1:l) l1 = blocksize-pos if (l<=l1) sig .= view(data[block],(pos+1):(pos+l)) else view(buffer_,1:l1) .= view(data[block],(pos+1):(pos+l1)) #try view(buffer_,(l1+1):l) .= view(data[block+1],1:(l-l1)) #catch # error("$(length(data[block+1])), $blocksize") #end end return sig end function rescale_db(hdb::HDB) where {P,HDB<:HeapDataBase{P}} writelock(hdb.lock) nth = Threads.nthreads() resize(hdb.buffer_sig,nth) resize(hdb.buffer_r,nth) for i in (hdb.nthreads+1):nth hdb.buffer_sig = Int64[] hdb.buffer_r = Float64[] end hdb.nthreads = nth writeunlock(hdb.lock) end function get_entry(hdb::HDB,index) where {P,HDB<:HeapDataBase{P}} id = Threads.threadid() id>hdb.nthreads && rescale_db(hdb) pos = mod(index,hdb.blocksize) block = div(index,hdb.blocksize)+1 if pos==0 pos = hdb.blocksize block -= 1 end readlock(hdb.lock) #if pos==0 || block==0 # open("protokol.txt","a") do f # write(f,"Pos: $pos, Block: $block, Index: $index \n") # end #end @inbounds l = hdb.data[block][pos] if l<0 readunlock(hdb.lock) return (view(hdb.buffer_sig[id],1:0),zeros(P)) end sig = read_from_db(hdb.data,hdb.buffer_sig[id],pos,block,l,hdb.blocksize) pos2 = pos + l if (pos2>=hdb.blocksize) pos2 -= hdb.blocksize block += 1 end r = P(read_from_db(hdb.floatview,hdb.buffer_r[id],pos2,block,length(P),hdb.blocksize)) readunlock(hdb.lock) return (sig,r) end function Base.delete!(hdb::HDB,index,key) where {P,HDB<:HeapDataBase{P}} pos = mod(index,hdb.blocksize) block = div(index,hdb.blocksize)+1 if pos==0 pos = hdb.blocksize block -= 1 end #print("*") writelock(hdb.lock) hdb.data[block][pos]*=-1 delete!(hdb.keys,key) writeunlock(hdb.lock) #print("/") end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
7880
Base.islocked(::Nothing) = false @inline function active_wait(i) ii = 0 for _ in 1:rand(1:min(i,10)) ii+=1 end end struct BusyLock locked::Atomic{Bool} function BusyLock() new(Atomic{Bool}(false)) end end # @inline Base.lock @inline function Base.lock(bl::BusyLock) ii = UInt64(0) while atomic_cas!(bl.locked, false, true) for j in (1:(rand(1:100))) ii+=1 end end end # @inline Base.unlock @inline function Base.unlock(bl::BusyLock) bl.locked[] = false end # @inline Base.trylock @inline function Base.trylock(bl::BusyLock) return !atomic_cas!(bl.locked, false, true) end # @inline Base.islocked @inline function Base.islocked(bl::BusyLock) return bl.locked[] end struct BusyFIFOLock head::Atomic{Int64} tail::Atomic{Int64} function BusyFIFOLock() new(Atomic{Int64}(0), Atomic{Int64}(0)) end end @inline function Base.lock(bfl::BusyFIFOLock) #speedlock(bfl.lock) #lock(bfl.lock) my_tail = atomic_add!(bfl.tail, 1) i = 1 while (my_tail != bfl.head[]) active_wait(100*i) i += 1 end #unlock(bfl.lock) end @inline function Base.unlock(bfl::BusyFIFOLock) #speedlock(bfl.lock) bfl.head[] += 1 #unlock(bfl.lock) end @inline function Base.trylock(bfl::BusyFIFOLock) #speedlock(bfl.lock) if bfl.tail[] == bfl.head[] tail = atomic_add!(bfl.tail, 1) if (bfl.head[] != tail) atomic_add!(bfl.head, 1) end # unlock(bfl.lock) return true else # unlock(bfl.lock) return false end end @inline function Base.islocked(bfl::BusyFIFOLock) return bfl.head[]<bfl.tail[] end #_abbort::Threads.Atomic{Bool} = Threads.Atomic{Bool}(false) const _abbort = Threads.Atomic{Bool}(false) un_abbort() = atomic_and!(_abbort,false) abbort() = atomic_or!(_abbort,true) const _threads_waiting = Threads.Atomic{Int64}(0) const number_of_locks = Threads.Atomic{Int64}(0) function reset_lock_counter() atomic_xchg!(_threads_waiting,0) atomic_xchg!(number_of_locks,0) end #=struct ReadWriteLock lock::ReentrantLock ReadWriteLock() = new(ReentrantLock()) end @inline readlock(r::ReadWriteLock) = lock(r.lock) @inline writelock(r::ReadWriteLock) = lock(r.lock) @inline Base.lock(r::ReadWriteLock) = lock(r.lock) @inline readunlock(r::ReadWriteLock) = unlock(r.lock) @inline writeunlock(r::ReadWriteLock) = unlock(r.lock) @inline Base.unlock(r::ReadWriteLock) = unlock(r.lock)=# const RWLCounter = Threads.Atomic{Int64}(1) struct RWLTrace thread::Int64 OP::Int64 all::Int64 end Base.show(io::IO, trace::RWLTrace) = print(io, "(", trace.thread, ",", trace.OP, ",", trace.all, ")") struct ReadWriteLock head::Threads.Atomic{Int64} tail::Threads.Atomic{Int64} reads_count::Threads.Atomic{Int64} all::Threads.Atomic{Int64} index::Int64 trace::Vector{RWLTrace} lock::SpinLock #counts_read::Vector{Threads.Atomic{Int64}} #counts_write::Vector{Threads.Atomic{Int64}} #lock::ReentrantLock end @inline readlock(::Nothing) = nothing @inline readunlock(::Nothing) = nothing @inline writelock(::Nothing) = nothing @inline writeunlock(::Nothing) = nothing @inline ReadWriteLock(::T) where T = nothing function ReadWriteLock() #nn = Threads.nthreads() #cr = [Threads.Atomic{Int64}(0) for i in 1:nn] #cw = [Threads.Atomic{Int64}(0) for i in 1:nn] return ReadWriteLock(Threads.Atomic{Int64}(0),Threads.Atomic{Int64}(0),Threads.Atomic{Int64}(0),Threads.Atomic{Int64}(0),atomic_add!(HighVoronoi.RWLCounter,1),Vector{RWLTrace}(undef,100),SpinLock())#,cr,cw,ReentrantLock()) end @inline function readlock(rwl::ReadWriteLock) #check(rwl) # lock(rwl.lock) ti = time_ns() this_tail = atomic_add!(rwl.tail,1) # a = atomic_add!(rwl.all,1) # rwl.trace[mod(a,100)+1] = RWLTrace(Threads.threadid(),1,a) # unlock(rwl.lock) ii = 0 while atomic_add!(rwl.head,0)<this_tail active_wait(100) ii += 1 mod(ii,100)==0 && yield() if time_ns()-ti>1000000000 # lock(rwl.lock) # a = atomic_add!(rwl.all,1) # rwl.trace[mod(a,100)+1] = RWLTrace(Threads.threadid(),-1,a) # s = "$(rwl.index): $(atomic_add!(rwl.head,0)), $(this_tail), $(atomic_add!(rwl.reads_count,0)), $ti \n", rwl.trace,"\n" # unlock(rwl.lock) error(s) end end atomic_add!(rwl.reads_count,1) atomic_add!(rwl.head,1) end @inline function writelock(rwl::ReadWriteLock) #check(rwl) # lock(rwl.lock) ti = time_ns() this_tail = atomic_add!(rwl.tail,1) #print("$this_tail, $(rwl.head[]), $(rwl.reads_count[])") # a = atomic_add!(rwl.all,1) # rwl.trace[mod(a,100)+1] = RWLTrace(Threads.threadid(),3,a) # unlock(rwl.lock) ii = 0 while atomic_add!(rwl.head,0)<this_tail || atomic_add!(rwl.reads_count,0)>0 active_wait(100) ii += 1 mod(ii,100)==0 && yield() if time_ns()-ti>1000000000 # lock(rwl.lock) # a = atomic_add!(rwl.all,1) # rwl.trace[mod(a,100)+1] = RWLTrace(Threads.threadid(),-3,a) # s = "$(rwl.index): $(atomic_add!(rwl.head,0)), $(this_tail), $(atomic_add!(rwl.reads_count,0)), $ti \n", rwl.trace,"\n" # unlock(rwl.lock) error(s) end #atomic_fence() end end @inline function readunlock(rwl::ReadWriteLock) # lock(rwl.lock) atomic_sub!(rwl.reads_count,1) # a = atomic_add!(rwl.all,1) # rwl.trace[mod(a,100)+1] = RWLTrace(Threads.threadid(),2,a) # unlock(rwl.lock) #atomic_sub!(rwl.counts_read[Threads.threadid()],1) end @inline function writeunlock(rwl::ReadWriteLock) # lock(rwl.lock) atomic_add!(rwl.head,1) # a = atomic_add!(rwl.all,1) # rwl.trace[mod(a,100)+1] = RWLTrace(Threads.threadid(),4,a) # unlock(rwl.lock) #atomic_sub!(rwl.counts_write[Threads.threadid()],1) end @inline Base.lock(rwl::ReadWriteLock) = writelock(rwl) @inline Base.unlock(rwl::ReadWriteLock) = writeunlock(rwl) #= @inline function check(rwl::ReadWriteLock) cw = rwl.counts_write[Threads.threadid()][] cr = rwl.counts_read[Threads.threadid()][] if cw>0 lock(rwl.lock) println("Fehler write") atomic_sub!(rwl.counts_write[Threads.threadid()],cw) unlock(rwl.lock) end if cr>0 lock(rwl.lock) println("Fehler read") atomic_sub!(rwl.counts_read[Threads.threadid()],cr) unlock(rwl.lock) end end =# #=struct SyncLock locks::Threads.Atomic{Int64} SyncLock() = new(Threads.Atomic{Int64}(0)) end @inline add_sync(lock::SyncLock,i) = atomic_add!(lock.locks,i) @inline add_sync(::Nothing,_) = nothing @inline sync(::Nothing) = nothing @inline sync(lock::SyncLock) = begin a = atomic_sub!(lock.locks,1) println("Thread $(Threads.threadid()), $a vs. $(lock.locks[])",) while lock.locks[]>0 active_wait(100) end return a end=# struct SyncLock locks::Threads.Atomic{Int64} event::Event SyncLock() = new(Threads.Atomic{Int64}(0),Event()) end @inline add_sync(lock::SyncLock,i) = atomic_add!(lock.locks,i) @inline add_sync(::Nothing,_) = nothing @inline sync(::Nothing) = nothing @inline sync(lock::SyncLock) = begin a = atomic_sub!(lock.locks,1) if a<=1 notify(lock.event) else wait(lock.event) end # println("Thread $(Threads.threadid()), $a vs. $(lock.locks[])",) # while lock.locks[]>0 # active_wait(100) # end return a end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
7928
abstract type HVView{T} end # `length` Methode: Definiert die Länge des SwitchView als 1. @inline Base.length(v::SVT) where {T<:Int, SVT<:HVView{T}} = 1 # `getindex` Methode: Gibt das Objekt selbst zurück, da `SwitchView` als Ganzes behandelt wird. @inline Base.getindex(v::SVT, i::Int) where {T<:Int, SVT<:HVView{T}} = v # `broadcastable` Methode: Behandelt `SwitchView` als Skalare, um korrektes Broadcasting zu ermöglichen. @inline Base.broadcastable(v::SVT) where {T<:Int, SVT<:HVView{T}} = Ref(v) # Behandelt SwitchView als Skalare und verhindert unerwünschtes Broadcasting @inline Base.:*(v::SVT, indices::AbstractVector{T}) where {T<:Int, SVT<:HVView{T}} = [v * i for i in indices] @inline Base.:/(v::SVT, indices::AbstractVector{T}) where {T<:Int, SVT<:HVView{T}} = [v / i for i in indices] function Base.:*(v::SVT, indices_and_output::Tuple{AbstractVector{T}, AbstractVector{T}}) where {T<:Int, SVT<:HVView{T}} indices, output = indices_and_output @inbounds for i in eachindex(indices) output[i] = v * indices[i] end return output end function Base.:/(v::SVT, indices_and_output::Tuple{AbstractVector{T}, AbstractVector{T}}) where {T<:Int, SVT<:HVView{T}} indices, output = indices_and_output @inbounds for i in eachindex(indices) output[i] = v / indices[i] end return output end function copy(v::HVV) where {HVV<:HVView} error("copy is not implemented for type $(typeof(v))") end ############################################################################################################################# ## SwitchView ############################################################################################################################# struct SwitchView{T<:Int} <: HVView{T} b1::T b2::T b3::T function SwitchView{T}(b1::T, b2::T) where T<:Int if b2 < b1 error("b2 must be greater than b1") end new{T}(b1-1, b2, b2 - b1+1) end end SwitchView(b1::T, b2::T) where T<:Int = SwitchView{T}(b1,b2) @inline Base.:*(v::SwitchView{T}, i::T) where T<:Int = i<=v.b2 ? (i > v.b1 ? i - v.b1 : i + v.b3) : i @inline Base.:/(v::SwitchView{T}, i::T) where T<:Int = i<=v.b2 ? ( i > v.b3 ? i - v.b3 : i + v.b1) : i @inline copy(sv::SwitchView{T}) where T = SwitchView{T}(sv.b1, sv.b2) ############################################################################################################################# ## SortedView ############################################################################################################################# struct ShiftData{T} old_start::T old_end::T new_start::T new_end::T shift::T end #=function process_compound_meshes(A) #::Tuple{Vararg{CompoundMesh}}) start_visible = start_invisible = 1 #bv = falses(length(A)) new_inds = [Int64[0, 0] for _ in 1:length(A)] for i in 1:length(A) a = A[i] if a.visible==true new_inds[i][1] = start_visible new_inds[i][2] = start_visible + a.data.length - 1 start_visible += a.data.length else new_inds[i][1] = start_invisible new_inds[i][2] = start_invisible + a.data.length - 1 start_invisible += a.data.length end end start_invisible -= 1 for i in 1:length(A) a = A[i] if a.visible==true new_inds[i] .+= start_invisible end end data = map(1:length(A)) do i a = A[i] ShiftData(a.data.start, a.data.start + a.data.length - 1, new_inds[i][1], new_inds[i][2], new_inds[i][1] - a.data.start) end #println(data) return Tuple(data), start_invisible end=# function process_compound_meshes(A) #::Tuple{Vararg{CompoundMesh}}) start_visible = start_invisible = 1 #bv = falses(length(A)) new_inds = [Int64[0, 0] for _ in 1:length(A)] for i in 1:length(A) a = A[i] if a.visible==true new_inds[i][1] = start_visible new_inds[i][2] = start_visible + a.data.length - 1 start_visible += a.data.length else new_inds[i][2] = -start_invisible new_inds[i][1] = -start_invisible - a.data.length + 1 start_invisible += a.data.length end end for i in 1:length(A) if new_inds[i][1]<0 new_inds[i][1] += start_invisible new_inds[i][2] += start_invisible end end start_invisible -= 1 for i in 1:length(A) a = A[i] if a.visible==true new_inds[i] .+= start_invisible end end data = map(1:length(A)) do i a = A[i] ShiftData(a.data.start, a.data.start + a.data.length - 1, new_inds[i][1], new_inds[i][2], new_inds[i][1] - a.data.start) end #println(data) return data end function process_compound_meshes2(A) #::Tuple{Vararg{CompoundMesh}}) d = process_compound_meshes(A) return Tuple(d) end struct SortedView{T, TUP<:Union{Tuple{Vararg{ShiftData{T}}},Vector{ShiftData{T}}}} <: HVView{T} data::TUP SortedView(m) = SortedView(process_compound_meshes(m)) SortedView(m::TUPP) where {T2, TUPP<:Union{Tuple{Vararg{ShiftData{T2}}},Vector{ShiftData{T2}}}} = new{T2,TUPP}(m) end const SortedViewTuple{T} = SortedView{T,TUP} where {T,TUP<:Tuple{Vararg{ShiftData{T}}}} const SortedViewVector{T} = SortedView{T,Vector{ShiftData{T}}} where {T} SortedViewTuple(m) = SortedView(process_compound_meshes2(m)) SortedViewVector(m) = SortedView(process_compound_meshes(m)) function update(sv::SV,A) where SV<:SortedViewVector empty!(sv.data) append!(sv.data,process_compound_meshes(A)) end function Base.:*(v::SortedView{T}, val::T) where T<:Int for shift_data in v.data if shift_data.old_start <= val <= shift_data.old_end return val + shift_data.shift end end return val #error("Value not within any shift range") end @Base.propagate_inbounds function Base.:/(v::SortedView{T}, val::T) where T<:Int len = length(v.data) i = 1 while i<=len shift_data = v.data[i] i+=1 if shift_data.new_start <= val <= shift_data.new_end return val - shift_data.shift end end return val #error("Value not within any shift range") end ############################################################################################################################# ## CombinedView ############################################################################################################################# struct CombinedView{T,T1, T2 } <: HVView{T} outer::T1 inner::T2 end CombinedView(outer::T1,inner::T2) where {T, T1<:HVView{T}, T2<:HVView{T}}= CombinedView{T,typeof(outer),typeof(inner)}(outer,inner) @inline Base.:*(cv::CV,val::T) where {T,CV<:CombinedView{T}} = cv.outer*(cv.inner*val) @inline Base.:/(cv::CV,val::T) where {T,CV<:CombinedView{T}} = cv.inner/(cv.outer/val) ################################################################################################################ ## ShuffleView ################################################################################################################ struct ShuffleView{T,T1, T2 } <: HVView{T} externalindices::T1 internalindices::T2 lmesh::Int64 ShuffleView(external::T1,internal::T2,l=length(external)) where {T,T1<:AbstractVector{T},T2<:AbstractVector{T}} = new{T,T1,T2}(external,internal,l) end @inline Base.:*(cv::CV,val::T) where {T,CV<:ShuffleView{T}} = val<=cv.lmesh ? cv.externalindices[val] : val @inline Base.:/(cv::CV,val::T) where {T,CV<:ShuffleView{T}} = val<=cv.lmesh ? cv.internalindices[val] : val
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git
[ "MIT" ]
1.3.1
bc1b8bfb168b8850d28c935b20a545882a9a078e
code
4347
############################################################################################################################### ## Mesh improving ..... ############################################################################################################################### function improve_mesh(_domain; max_iterations=0, tolerance=1.0, printevents,search) b = internal_boundary(_domain) mesh, integral = integrate_view(_domain) Integrator = HighVoronoi.Integrator(integral,VI_GEOMETRY) nodes = HighVoronoi.nodes(mesh) dim = length(nodes[1]) lmesh = length(mesh) plmesh = public_length(_domain) official_mesh = HighVoronoi.mesh(_domain) references = HighVoronoi.references(_domain) ref_shifts = reference_shifts(_domain) shifts = HighVoronoi.shifts(_domain) for iter in 1:max_iterations nodes = HighVoronoi.nodes(mesh) official_nodes = HighVoronoi.nodes(official_mesh) modified = zeros(Bool,lmesh) modified_i = zeros(Bool,lmesh) buffer = zeros(Float64,dim) integrate(Integrator,domain=b,relevant=1:plmesh,modified=1:plmesh) for i in 1:plmesh modified_i .= false buffer .= 0.0 count = 0 x_0 = nodes[i] for (sig,r) in vertices_iterator(mesh,i) buffer .+= r count+=1 for s in sig s>lmesh && break modified_i[s] = true end end buffer /= count neighs = get_neighbors(integral,i) dist = Inf64 for n in neighs n>lmesh && break dist = min(dist,norm(nodes[n]-x_0)) end dist *= 0.5 norm(buffer-x_0)/dist <= tolerance && continue nodes[i] = VoronoiNode(buffer) modified[i] = true #modified .|= modified_i end if sum(modified)==0 break end # make a list of all "modified" nodes in official numbering modified_nodes = keepat!(collect(1:lmesh),modified) _internal_indeces(mesh,modified_nodes) _external_indeces(official_mesh,modified_nodes) modified .= false modified[modified_nodes] .= true for i in 1:length(references) if modified[references[i]] modified[i] = true official_nodes[i] = official_nodes[references[i]]+periodic_shift(ref_shifts[i],shifts) end end modified_nodes = keepat!(collect(1:lmesh),modified) modified_planes = expand_internal_boundary(_domain,view(official_nodes,modified)) modified_planes .+= lmesh append!(modified_nodes,modified_planes) searcher = Raycast(copy(official_nodes);domain=b,options=search) function condition(sig,r,searcher) keep = true for s in sig !keep && break (s in modified_nodes) && (keep=false) end if keep #=n,_ = nn(searcher.tree, r) lsig = length(sig) keep &= (n in sig) && vertex_variance(sig,r,searcher.tree.extended_xs,lsig-1,view(searcher.ts,1:lsig))<1E-20 =# idx = _inrange(searcher.tree, r,norm(r-searcher.tree.extended_xs[sig[1]])) lsig = length(sig) keep &= (sig==sort!(idx)) && vertex_variance(sig,r,searcher.tree.extended_xs,lsig-1,view(searcher.ts,1:lsig))<1E-20 #keep &= verify_vertex(sig,r,searcher.tree.extended_xs,searcher) end if !keep for s in sig s>lmesh && break modified[s] = true end end return keep end filter!((sig,r)->condition(sig,r,searcher),official_mesh,searcher=searcher) verify_mesh(official_mesh,b) voronoi(official_mesh,Iter = keepat!(collect(1:lmesh),modified),searcher=searcher,intro="IMPROVING MESH: Iteration $iter of $max_iterations",printsearcher=printevents) verify_mesh(official_mesh,b) end end
HighVoronoi
https://github.com/martinheida/HighVoronoi.jl.git