licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
3502
# The parenttype function and get_backend were adapted from ArrayInterfaceCore # with the following license. # MIT License # # Copyright (c) 2022 SciML # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ parent_type(::Type{T}) -> Type Returns the parent array that type `T` wraps. """ parenttype(x) = parenttype(typeof(x)) parenttype(::Type{Symmetric{T,S}}) where {T,S} = S parenttype(@nospecialize T::Type{<:PermutedDimsArray}) = fieldtype(T, :parent) parenttype(@nospecialize T::Type{<:Adjoint}) = fieldtype(T, :parent) parenttype(@nospecialize T::Type{<:Transpose}) = fieldtype(T, :parent) parenttype(@nospecialize T::Type{<:SubArray}) = fieldtype(T, :parent) parenttype(@nospecialize T::Type{<:Base.ReinterpretArray}) = fieldtype(T, :parent) parenttype(@nospecialize T::Type{<:Base.ReshapedArray}) = fieldtype(T, :parent) parenttype(@nospecialize T::Type{<:Union{Base.Slice,Base.IdentityUnitRange}}) = fieldtype(T, :indices) parenttype(::Type{Diagonal{T,V}}) where {T,V} = V parenttype(T::Type) = T """ get_backend(::Type{T}) -> Type Returns the KernelAbstractions backend to use with kernels where `A` is an argument. """ get_backend(A) = get_backend(typeof(A)) get_backend(::Type) = nothing get_backend(::Type{T}) where {T<:Array} = CPU(; static = true) get_backend(::Type{T}) where {T<:AbstractArray} = get_backend(parenttype(T)) arraytype(A) = arraytype(typeof(A)) arraytype(::Type) = nothing arraytype(::Type{T}) where {T<:Array} = Array arraytype(::Type{T}) where {T<:AbstractArray} = arraytype(parenttype(T)) """ pin(T::Type, A::Array) Pins the host array A for copying to arrays of type T """ pin(::Type, A::Array) = A """ numbercontiguous(T, A; by = identity) Renumbers `A` contiguously in an `Array{T}` and returns it. The function `by` is a mapping for the elements of `A` used during element comparison, similar to `sort`. # Examples ```jldoctest julia> Raven.numbercontiguous(Int32, [13, 4, 5, 1, 5]) 5-element Vector{Int32}: 4 2 3 1 3 julia> Raven.numbercontiguous(Int32, [13, 4, 5, 1, 5]; by = x->-x) 5-element Vector{Int32}: 1 3 2 4 2 ``` """ function numbercontiguous(::Type{T}, A; by = identity) where {T} p = sortperm(vec(A); by = by) B = similar(A, T) csum = one(T) B[p[begin]] = csum for i in Iterators.drop(eachindex(p), 1) csum += by(A[p[i]]) != by(A[p[i-1]]) B[p[i]] = csum end return B end viewwithghosts(A::AbstractArray) = A viewwithoutghosts(A::AbstractArray) = A
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
575
abstract type AbstractCell{T,A<:AbstractArray,N} end floattype(::Type{<:AbstractCell{T}}) where {T} = T arraytype(::Type{<:AbstractCell{T,A}}) where {T,A} = A Base.ndims(::Type{<:AbstractCell{T,A,N}}) where {T,A,N} = N floattype(cell::AbstractCell) = floattype(typeof(cell)) arraytype(cell::AbstractCell) = arraytype(typeof(cell)) Base.ndims(cell::AbstractCell) = Base.ndims(typeof(cell)) Base.size(cell::AbstractCell, i::Integer) = size(cell)[i] Base.length(cell::AbstractCell) = prod(size(cell)) Base.strides(cell::AbstractCell) = Base.size_to_strides(1, size(cell)...)
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
15609
abstract type AbstractCoarseGrid end abstract type AbstractBrickGrid <: AbstractCoarseGrid end isextruded(::AbstractCoarseGrid) = false columnlength(::AbstractCoarseGrid) = 1 struct MeshImportCoarseGrid{C,V,L,W,U,M} <: AbstractCoarseGrid connectivity::C vertices::V cells::L warp::W unwarp::U MeshImport::AbstractMeshImport end connectivity(g::MeshImportCoarseGrid) = g.connectivity vertices(g::MeshImportCoarseGrid) = g.vertices cells(g::MeshImportCoarseGrid) = g.cells meshimport(g::MeshImportCoarseGrid) = g.MeshImport function coarsegrid(meshfilename::String, warp = identity, unwarp = identity) meshimport = abaqusmeshimport(meshfilename) cg_temp = coarsegrid(meshimport.nodes, meshimport.connectivity) vertices = Raven.vertices(cg_temp) cells = Raven.cells(cg_temp) if length(cells[begin]) == 4 conn = P4estTypes.Connectivity{4}(vertices, cells) elseif length(cells[begin]) == 8 conn = P4estTypes.Connectivity{8}(vertices, cells) end C, V, L, W, U, M = typeof.([conn, vertices, cells, warp, unwarp, meshimport]) return MeshImportCoarseGrid{C,V,L,W,U,M}( conn, vertices, cells, warp, unwarp, meshimport, ) end struct CoarseGrid{C,V,L,W,U} <: AbstractCoarseGrid connectivity::C vertices::V cells::L warp::W unwarp::U end warp(::AbstractCoarseGrid) = identity unwarp(::AbstractCoarseGrid) = identity connectivity(g::CoarseGrid) = g.connectivity vertices(g::CoarseGrid) = g.vertices cells(g::CoarseGrid) = g.cells warp(g::CoarseGrid) = g.warp unwarp(g::CoarseGrid) = g.unwarp function CoarseGrid( vertices::AbstractVector, cells::AbstractVector{<:NTuple{X}}, warp = identity, unwarp = identity, ) where {X} conn = P4estTypes.Connectivity{X}(vertices, cells) C, V, L, W, U = typeof.([conn, vertices, cells, warp, unwarp]) return CoarseGrid{C,V,L,W,U}(conn, vertices, cells, warp, unwarp) end function coarsegrid(vertices, cells, warp = identity, unwarp = identity) return CoarseGrid(vertices, cells, warp, unwarp) end function cubeshellgrid(R::Real, r::Real) @assert R > r "R (outer radius) must be greater that r (inner radius)" T = promote_type(typeof(R), typeof(r)) vertices = zeros(SVector{3,T}, 16) vertices[1] = SVector(+R, +R, -R) vertices[2] = SVector(+R, -R, -R) vertices[3] = SVector(+R, +R, +R) vertices[4] = SVector(+R, -R, +R) vertices[5] = SVector(-R, +R, -R) vertices[6] = SVector(-R, -R, -R) vertices[7] = SVector(-R, +R, +R) vertices[8] = SVector(-R, -R, +R) vertices[9] = SVector(+r, +r, -r) vertices[10] = SVector(+r, -r, -r) vertices[11] = SVector(+r, +r, +r) vertices[12] = SVector(+r, -r, +r) vertices[13] = SVector(-r, +r, -r) vertices[14] = SVector(-r, -r, -r) vertices[15] = SVector(-r, +r, +r) vertices[16] = SVector(-r, -r, +r) cells = [ (1, 2, 3, 4, 9, 10, 11, 12), (2, 6, 4, 8, 10, 14, 12, 16), (6, 5, 8, 7, 14, 13, 16, 15), (5, 1, 7, 3, 13, 9, 15, 11), (3, 4, 7, 8, 11, 12, 15, 16), (1, 2, 5, 6, 9, 10, 13, 14), ] function cubespherewarp(point) # Put the points in reverse magnitude order p = sortperm(abs.(point)) point = point[p] # Convert to angles ξ = π * point[2] / 4point[3] η = π * point[1] / 4point[3] # Compute the ratios y_x = tan(ξ) z_x = tan(η) # Compute the new points x = point[3] / hypot(one(y_x), y_x, z_x) y = x * y_x z = x * z_x # Compute the new points and unpermute point = SVector(z, y, x)[sortperm(p)] return point end function cubesphereunwarp(point) # Put the points in reverse magnitude order p = sortperm(abs.(point)) point = point[p] # Convert to angles ξ = 4atan(point[2] / point[3]) / π η = 4atan(point[1] / point[3]) / π R = sign(point[3]) * hypot(point...) x = R y = R * ξ z = R * η # Compute the new points and unpermute point = SVector(z, y, x)[sortperm(p)] return point end return coarsegrid(vertices, cells, cubespherewarp, cubesphereunwarp) end """ function cubeshell2dgrid(R::Real) This function will construct the CoarseGrid of a cube shell of radius R. A cube shell is a 2D connectivity. """ function cubeshell2dgrid(R::Real) vertices = zeros(SVector{3,typeof(R)}, 8) vertices[1] = SVector(+R, +R, -R) vertices[2] = SVector(+R, -R, -R) vertices[3] = SVector(+R, +R, +R) vertices[4] = SVector(+R, -R, +R) vertices[5] = SVector(-R, +R, -R) vertices[6] = SVector(-R, -R, -R) vertices[7] = SVector(-R, +R, +R) vertices[8] = SVector(-R, -R, +R) cells = [(1, 2, 3, 4), (4, 8, 2, 6), (6, 2, 5, 1), (1, 5, 3, 7), (7, 3, 8, 4), (5, 6, 7, 8)] function cubespherewarp(point) # Put the points in reverse magnitude order p = sortperm(abs.(point)) point = point[p] # Convert to angles ξ = π * point[2] / 4point[3] η = π * point[1] / 4point[3] # Compute the ratios y_x = tan(ξ) z_x = tan(η) # Compute the new points x = point[3] / hypot(one(y_x), y_x, z_x) y = x * y_x z = x * z_x # Compute the new points and unpermute point = SVector(z, y, x)[sortperm(p)] return point end function cubesphereunwarp(point) # Put the points in reverse magnitude order p = sortperm(abs.(point)) point = point[p] # Convert to angles ξ = 4atan(point[2] / point[3]) / π η = 4atan(point[1] / point[3]) / π R = sign(point[3]) * hypot(point...) x = R y = R * ξ z = R * η # Compute the new points and unpermute point = SVector(z, y, x)[sortperm(p)] return point end return coarsegrid(vertices, cells, cubespherewarp, cubesphereunwarp) end struct BrickGrid{T,N,C,D,P} <: AbstractBrickGrid connectivity::C coordinates::D isperiodic::P end Base.ndims(::BrickGrid{T,N}) where {T,N} = N connectivity(g::BrickGrid) = g.connectivity coordinates(g::BrickGrid) = g.coordinates isperiodic(g::BrickGrid) = g.isperiodic function vertices(g::BrickGrid{T,2}) where {T} conn = connectivity(g) coords = coordinates(g) indices = GC.@preserve conn convert.(Tuple{Int,Int,Int}, P4estTypes.unsafe_vertices(conn)) verts = [SVector(coords[1][i[1]+1], coords[2][i[2]+1]) for i in indices] return verts end function vertices(g::BrickGrid{T,3}) where {T} conn = connectivity(g) coords = coordinates(g) indices = GC.@preserve conn convert.(Tuple{Int,Int,Int}, P4estTypes.unsafe_vertices(conn)) verts = [SVector(coords[1][i[1]+1], coords[2][i[2]+1], coords[3][i[3]+1]) for i in indices] return verts end function cells(g::BrickGrid) conn = connectivity(g) GC.@preserve conn map.(x -> x + 1, P4estTypes.unsafe_trees(conn)) end function BrickGrid{T}(coordinates, p) where {T} N = length(coordinates) n = length.(coordinates) .- 0x1 connectivity = P4estTypes.brick(n, p) return BrickGrid{T,N,typeof(connectivity),typeof(coordinates),typeof(p)}( connectivity, coordinates, p, ) end function brick(::Type{T}, coordinates, p) where {T} return BrickGrid{T}(coordinates, p) end function brick(coordinates::Tuple{<:Any,<:Any}, p::Tuple{Bool,Bool} = (false, false)) T = promote_type(eltype.(coordinates)...) return brick(T, coordinates, p) end function brick( coordinates::Tuple{<:Any,<:Any,<:Any}, p::Tuple{Bool,Bool,Bool} = (false, false, false), ) T = promote_type(eltype.(coordinates)...) return brick(T, coordinates, p) end function brick(T::Type, n::Tuple{Integer,Integer}, p::Tuple{Bool,Bool} = (false, false)) coordinates = (zero(T):n[1], zero(T):n[2]) return brick(T, coordinates, p) end function brick( T::Type, n::Tuple{Integer,Integer,Integer}, p::Tuple{Bool,Bool,Bool} = (false, false, false), ) coordinates = (zero(T):n[1], zero(T):n[2], zero(T):n[3]) return brick(T, coordinates, p) end function brick(n::Tuple{Integer,Integer}, p::Tuple{Bool,Bool} = (false, false)) return brick(Float64, n, p) end function brick( n::Tuple{Integer,Integer,Integer}, p::Tuple{Bool,Bool,Bool} = (false, false, false), ) return brick(Float64, n, p) end brick(a::AbstractArray, b::AbstractArray, p::Bool = false, q::Bool = false) = brick((a, b), (p, q)) brick(l::Integer, m::Integer, p::Bool = false, q::Bool = false) = brick(Float64, (l, m), (p, q)) brick(T::Type, l::Integer, m::Integer, p::Bool = false, q::Bool = false) = brick(T, (l, m), (p, q)) function brick( a::AbstractArray, b::AbstractArray, c::AbstractArray, p::Bool = false, q::Bool = false, r::Bool = false, ) return brick((a, b, c), (p, q, r)) end function brick( l::Integer, m::Integer, n::Integer, p::Bool = false, q::Bool = false, r::Bool = false, ) return brick(Float64, (l, m, n), (p, q, r)) end function brick( T::Type, l::Integer, m::Integer, n::Integer, p::Bool = false, q::Bool = false, r::Bool = false, ) return brick(T, (l, m, n), (p, q, r)) end struct ExtrudedBrickGrid{T,N,B,E} <: AbstractBrickGrid basegrid::B coordinates::E isperiodic::Bool end function ExtrudedBrickGrid(coarsegrid::BrickGrid{T,N}, coordinates, isperiodic) where {T,N} B = typeof(coarsegrid) E = typeof(coordinates) return ExtrudedBrickGrid{T,N + 1,B,E}(coarsegrid, coordinates, isperiodic) end function extrude(coarsegrid::BrickGrid, coordinates; isperiodic = false) return ExtrudedBrickGrid(coarsegrid, coordinates, isperiodic) end function extrude(coarsegrid::BrickGrid{T}, n::Integer; isperiodic = false) where {T} coordinates = (zero(T):n) return extrude(coarsegrid, coordinates; isperiodic) end isextruded(::ExtrudedBrickGrid) = true columnlength(g::ExtrudedBrickGrid) = length(g.coordinates) - 0x1 Base.ndims(::ExtrudedBrickGrid{T,N}) where {T,N} = N Base.parent(g::ExtrudedBrickGrid) = g.basegrid connectivity(g::ExtrudedBrickGrid) = connectivity(parent(g)) coordinates(g::ExtrudedBrickGrid) = (coordinates(parent(g))..., g.coordinates) isperiodic(g::ExtrudedBrickGrid) = (isperiodic(parent(g))..., g.isperiodic) function vertices(g::ExtrudedBrickGrid{T,3}) where {T} conn = connectivity(g) coords = coordinates(g) indices = GC.@preserve conn convert.(Tuple{Int,Int,Int}, P4estTypes.unsafe_vertices(conn)) verts = vec([ SVector(coords[1][i[1]+1], coords[2][i[2]+1], coords[3][j]) for j in eachindex(coords[3]), i in indices ]) return verts end function cells(g::ExtrudedBrickGrid{T,3}) where {T} conn = connectivity(g) coords = coordinates(g) GC.@preserve conn begin trees = P4estTypes.unsafe_trees(conn) I = eltype(eltype(trees)) Nextrude = I(length(coords[3]) - 1) c = Vector{NTuple{8,I}}(undef, length(trees) * Nextrude) for i = 1:length(trees) tree = trees[i] .* (Nextrude .+ 0x1) offset = 0x1 for j = 1:Nextrude c[(i-0x1)*Nextrude+j] = ((tree .+ offset)..., (tree .+ offset .+ 0x1)...) offset = offset + 0x1 end end end return c end function Base.show(io::IO, b::BrickGrid{T,N}) where {T,N} print(io, "Raven.BrickGrid{$T, $N}(") Base.show(io, coordinates(b)) print(io, ", ") Base.show(io, isperiodic(b)) print(io, ")") return end function Base.showarg(io::IO, b::BrickGrid{T,N}, toplevel) where {T,N} !toplevel && print(io, "::") print(io, "Raven.BrickGrid{$T, $N}") toplevel && print(io, " with periodicity $(isperiodic(b))") return end function Base.summary(io::IO, b::BrickGrid) n = length.(coordinates(b)) .- 0x1 d = Base.dims2string(n) print(io, "$d ") Base.showarg(io, b, true) end function Base.show(io::IO, b::ExtrudedBrickGrid{T,N}) where {T,N} print(io, "Raven.ExtrudedBrickGrid{$T, $N}(") Base.show(io, b.basegrid) print(io, ", ") Base.show(io, b.coordinates) print(io, ", ") Base.show(io, b.isperiodic) print(io, ")") return end function Base.showarg(io::IO, b::ExtrudedBrickGrid{T,N}, toplevel) where {T,N} !toplevel && print(io, "::") print(io, "Raven.ExtrudedBrickGrid{$T, $N}") if toplevel print(io, " with basegrid ") Base.showarg(io, b.basegrid, toplevel = true) end return end function Base.summary(io::IO, b::ExtrudedBrickGrid) n = length.(coordinates(b)) .- 0x1 d = Base.dims2string(n) print(io, "$d ") Base.showarg(io, b, true) end function Base.show(io::IO, c::CoarseGrid) print(io, "Raven.CoarseGrid(") Base.show(io, vertices(c)) print(io, ", ") Base.show(io, cells(c)) print(io, ", ") Base.show(io, warp(c)) print(io, ", ") Base.show(io, unwarp(c)) print(io, ")") return end function Base.showarg(io::IO, ::CoarseGrid, toplevel) !toplevel && print(io, "::") print(io, "Raven.CoarseGrid") return end function Base.summary(io::IO, c::CoarseGrid) n = length(cells(c)) w = warp(c) === identity ? "unwarped" : "warped" print(io, "$n cell $w ") Base.showarg(io, c, true) end @recipe function f(coarsegrid::AbstractBrickGrid) cs = cells(coarsegrid) vs = vertices(coarsegrid) xlims = extrema(getindex.(vs, 1)) ylims = extrema(getindex.(vs, 2)) zlims = try extrema(getindex.(vs, 3)) catch (zero(eltype(xlims)), zero(eltype(xlims))) end isconstz = zlims[1] == zlims[2] xlabel --> "x" ylabel --> "y" zlabel --> "z" aspect_ratio --> :equal legend --> false grid --> false @series begin seriestype --> :path linecolor --> :gray linewidth --> 1 x = [] y = [] z = [] if length(first(cs)) == 4 for c in cs for i in (1, 2, 4, 3, 1) xs = vs[c[i]] push!(x, xs[1]) push!(y, xs[2]) if !isconstz push!(z, xs[3]) end end push!(x, NaN) push!(y, NaN) if !isconstz push!(z, NaN) end end elseif length(first(cs)) == 8 for c in cs for j in (0, 4) for i in (1 + j, 2 + j, 4 + j, 3 + j, 1 + j) xi, yi, zi = vs[c[i]] push!(x, xi) push!(y, yi) push!(z, zi) end push!(x, NaN) push!(y, NaN) push!(z, NaN) end for j = 0:3 for i in (1 + j, 5 + j) xi, yi, zi = vs[c[i]] push!(x, xi) push!(y, yi) push!(z, zi) end push!(x, NaN) push!(y, NaN) push!(z, NaN) end end end if isconstz x, y else x, y, z end end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
10604
const COMM_MANAGERS = WeakRef[] struct CommPattern{AT,RI,RR,RRI,SI,SR,SRI} recvindices::RI recvranks::RR recvrankindices::RRI sendindices::SI sendranks::SR sendrankindices::SRI end function CommPattern{AT}( recvindices::RI, recvranks::RR, recvrankindices::RRI, sendindices::SI, sendranks::SR, sendrankindices::SRI, ) where {AT,RI,RR,RRI,SI,SR,SRI} return CommPattern{AT,RI,RR,RRI,SI,SR,SRI}( recvindices, recvranks, recvrankindices, sendindices, sendranks, sendrankindices, ) end arraytype(::CommPattern{AT}) where {AT} = AT function Adapt.adapt_structure(to, obj::CommPattern) CommPattern{to}( adapt(to, obj.recvindices), obj.recvranks, obj.recvrankindices, adapt(to, obj.sendindices), obj.sendranks, obj.sendrankindices, ) end function expand(r::UnitRange, factor) a = (first(r) - 0x1) * factor + 0x1 b = last(r) * factor return a:b end @kernel function expand_vector_kernel!(dest, src, factor, offset) i = @index(Global) @inbounds begin b, a = fldmod1(src[i], offset) for f = 1:factor dest[f+(i-0x1)*factor] = a + (f - 0x1) * offset + (b - 0x1) * factor * offset end end end function expand(v::AbstractVector, factor, offset = 1) w = similar(v, length(v) * factor) expand_vector_kernel!(get_backend(w), 256)(w, v, factor, offset, ndrange = length(v)) return w end """ expand(pattern::CommPattern, factor, offset) Create a new `CommPattern` where the `recvindices` and `sendindices` are expanded in size by `factor` entries and offset by `offset`. For example, to expand a `nodecommpattern` to communicate all fields of an array that is indexed via `(node, field, element)` use `expand(nodecommpattern(grid), nfields, nnodes)`. """ function expand(pattern::CommPattern{AT}, factor, offset = 1) where {AT} recvindices = expand(pattern.recvindices, factor, offset) recvranks = copy(pattern.recvranks) recvrankindices = similar(pattern.recvrankindices) @assert eltype(recvrankindices) <: UnitRange for i in eachindex(recvrankindices) recvrankindices[i] = expand(pattern.recvrankindices[i], factor) end sendindices = expand(pattern.sendindices, factor, offset) sendranks = copy(pattern.sendranks) sendrankindices = similar(pattern.sendrankindices) @assert eltype(sendrankindices) <: UnitRange for i in eachindex(sendrankindices) sendrankindices[i] = expand(pattern.sendrankindices[i], factor) end return CommPattern{AT}( recvindices, recvranks, recvrankindices, sendindices, sendranks, sendrankindices, ) end abstract type AbstractCommManager end mutable struct CommManagerBuffered{CP,RBD,RB,SBD,SB} <: AbstractCommManager comm::MPI.Comm pattern::CP tag::Cint recvbufferdevice::RBD recvbuffers::RB recvrequests::MPI.UnsafeMultiRequest sendbufferdevice::SBD sendbuffers::SB sendrequests::MPI.UnsafeMultiRequest end mutable struct CommManagerTripleBuffered{CP,RBC,RBH,RBD,RB,RS,SBC,SBH,SBD,SB,SS} <: AbstractCommManager comm::MPI.Comm pattern::CP tag::Cint recvbuffercomm::RBC recvbufferhost::RBH recvbufferdevice::RBD recvbufferes::RB recvrequests::MPI.UnsafeMultiRequest recvstream::RS sendbuffercomm::SBC sendbufferhost::SBH sendbufferdevice::SBD sendbuffers::SB sendrequests::MPI.UnsafeMultiRequest sendstream::SS end function _get_mpi_buffers(buffer, rankindices) # Hack to make the element type of the buffer arrays concrete @assert eltype(rankindices) == UnitRange{eltype(eltype(rankindices))} T = typeof(view(buffer, 1:length(rankindices))) bufs = Array{MPI.Buffer{T}}(undef, length(rankindices)) for i in eachindex(rankindices) bufs[i] = MPI.Buffer(view(buffer, rankindices[i])) end return bufs end usetriplebuffer(::Type{Array}) = false function commmanager(T, pattern; kwargs...) AT = arraytype(pattern) triplebuffer = usetriplebuffer(AT) commmanager(T, pattern, Val(triplebuffer); kwargs...) end function commmanager( T, pattern, ::Val{triplebuffer}; comm = MPI.COMM_WORLD, tag = 0, ) where {triplebuffer} AT = arraytype(pattern) if tag < 0 || tag > 32767 throw(ArgumentError("The tag=$tag is not in the valid range 0:32767")) end ctag = convert(Cint, tag) recvsize = size(pattern.recvindices) sendsize = size(pattern.sendindices) recvbufferdevice = AT{T}(undef, recvsize) sendbufferdevice = AT{T}(undef, sendsize) recvrequests = MPI.UnsafeMultiRequest(length(pattern.recvranks)) sendrequests = MPI.UnsafeMultiRequest(length(pattern.sendranks)) if triplebuffer recvbufferhost = Array{T}(undef, recvsize) sendbufferhost = Array{T}(undef, sendsize) recvbuffercomm = similar(recvbufferhost) sendbuffercomm = similar(sendbufferhost) else recvbuffercomm = recvbufferdevice sendbuffercomm = sendbufferdevice end recvbuffers = _get_mpi_buffers(recvbuffercomm, pattern.recvrankindices) sendbuffers = _get_mpi_buffers(sendbuffercomm, pattern.sendrankindices) for i in eachindex(pattern.recvranks) #@info "Recv" pattern.recvranks[i] pattern.recvrankindices[i] recvbuffers[i] MPI.Recv_init( recvbuffers[i], comm, recvrequests[i]; source = pattern.recvranks[i], tag = ctag, ) end for i in eachindex(pattern.sendranks) #@info "Send" pattern.sendranks[i] pattern.sendrankindices[i] sendbuffers[i] MPI.Send_init( sendbuffers[i], comm, sendrequests[i]; dest = pattern.sendranks[i], tag = ctag, ) end cm = if triplebuffer backend = get_backend(arraytype(pattern)) recvstream = Stream(backend) sendstream = Stream(backend) CommManagerTripleBuffered( comm, pattern, ctag, recvbuffercomm, recvbufferhost, recvbufferdevice, recvbuffers, recvrequests, recvstream, sendbuffercomm, sendbufferhost, sendbufferdevice, sendbuffers, sendrequests, sendstream, ) else CommManagerBuffered( comm, pattern, ctag, recvbufferdevice, recvbuffers, recvrequests, sendbufferdevice, sendbuffers, sendrequests, ) end finalizer(cm) do cm for reqs in (cm.recvrequests, cm.sendrequests) for req in reqs MPI.free(req) end end end push!(COMM_MANAGERS, WeakRef(cm)) return cm end get_backend(cm::AbstractCommManager) = get_backend(arraytype(cm.pattern)) @kernel function setbuffer_kernel!(buffer, src, Is) i = @index(Global) @inbounds buffer[i] = src[Is[i]] end function setbuffer!(buffer, src, Is) axes(buffer) == axes(Is) || Broadcast.throwdm(axes(buffer), axes(Is)) isempty(buffer) && return setbuffer_kernel!(get_backend(buffer), 256)(buffer, src, Is, ndrange = length(buffer)) return end @kernel function getbuffer_kernel!(dest, buffer, Is) i = @index(Global) @inbounds dest[Is[i]] = buffer[i] end function getbuffer!(dest, buffer, Is) axes(buffer) == axes(Is) || Broadcast.throwdm(axes(buffer), axes(Is)) isempty(buffer) && return getbuffer_kernel!(get_backend(buffer), 256)(dest, buffer, Is, ndrange = length(buffer)) return end function progress(::AbstractCommManager) MPI.Iprobe(MPI.ANY_SOURCE, MPI.ANY_TAG, MPI.COMM_WORLD) return end function start!(A, cm::CommManagerBuffered) if !isempty(cm.sendrequests) setbuffer!(cm.sendbufferdevice, A, cm.pattern.sendindices) end if !isempty(cm.sendrequests) || !isempty(cm.recvrequests) KernelAbstractions.synchronize(get_backend(cm)) end if !isempty(cm.recvrequests) MPI.Startall(cm.recvrequests) end if !isempty(cm.sendrequests) MPI.Startall(cm.sendrequests) end return end function finish!(A, cm::CommManagerBuffered) if !isempty(cm.recvrequests) MPI.Waitall(cm.recvrequests) end if !isempty(cm.sendrequests) MPI.Waitall(cm.sendrequests) end if !isempty(cm.recvrequests) A = viewwithghosts(A) getbuffer!(A, cm.recvbufferdevice, cm.pattern.recvindices) end return end function start!(A, cm::CommManagerTripleBuffered) # We use two host buffers each for send and receive. We do this to have # one buffer pinned by the device stack and one pinned for the network # interface. We see deadlocks if two separate buffers are not used. See, # <https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/> for more # details. if !isempty(cm.recvrequests) MPI.Startall(cm.recvrequests) end if !isempty(cm.sendrequests) backend = get_backend(cm) # Wait for kernels on the main stream to finish before launching # kernels on on different streams. KernelAbstractions.synchronize(backend) stream!(backend, cm.sendstream) do setbuffer!(cm.sendbufferdevice, A, cm.pattern.sendindices) KernelAbstractions.copyto!(backend, cm.sendbufferhost, cm.sendbufferdevice) end end return end function finish!(A, cm::CommManagerTripleBuffered) if !isempty(cm.sendrequests) backend = get_backend(cm) synchronize(backend, cm.sendstream) copyto!(cm.sendbuffercomm, cm.sendbufferhost) MPI.Startall(cm.sendrequests) end if !isempty(cm.recvrequests) MPI.Waitall(cm.recvrequests) copyto!(cm.recvbufferhost, cm.recvbuffercomm) stream!(backend, cm.recvstream) do KernelAbstractions.copyto!(backend, cm.recvbufferdevice, cm.recvbufferhost) getbuffer!(viewwithghosts(A), cm.recvbufferdevice, cm.pattern.recvindices) KernelAbstractions.synchronize(backend) end end if !isempty(cm.sendrequests) MPI.Waitall(cm.sendrequests) end return end function share!(A, cm::AbstractCommManager) start!(A, cm) progress(cm) finish!(A, cm) return end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
305
struct Eye{T} <: AbstractArray{T,2} N::Int end Base.size(eye::Eye{T}) where {T} = (eye.N, eye.N) Base.IndexStyle(::Eye) = IndexCartesian() @inline function Base.getindex(eye::Eye{T}, I::Vararg{Int,2}) where {T} @boundscheck checkbounds(eye, I...) return (I[1] == I[2]) ? one(T) : zero(T) end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
5637
function decode(facecode::UInt8) # Numbering of quadrant in facecode # 2-----3-----3 # | | # |y | # 0^ 1 # || | # |+-->x | # 0-----2-----1 corner = facecode & 0x3 xfaceishanging = (facecode >> 0x2) & 0x1 == 0x1 yfaceishanging = (facecode >> 0x3) & 0x1 == 0x1 hangingface = ( ((corner == 0x0) && xfaceishanging) ? 0x1 : ((corner == 0x2) && xfaceishanging) ? 0x2 : 0x0, ((corner == 0x1) && xfaceishanging) ? 0x1 : ((corner == 0x3) && xfaceishanging) ? 0x2 : 0x0, ((corner == 0x0) && yfaceishanging) ? 0x1 : ((corner == 0x1) && yfaceishanging) ? 0x2 : 0x0, ((corner == 0x2) && yfaceishanging) ? 0x1 : ((corner == 0x3) && yfaceishanging) ? 0x2 : 0x0, ) return hangingface end function decode(facecode::UInt16) # Numbering of octant in facecode # 6-----3-----7 # | | # |z | # 10^ 3 11 # || | # |+-->x | # 6----10-----2-----1-----3----11-----7-----3-----6 # | | | | | # | y|y |y | y| # 6 0 ^4^ 4 5^ 1 7 5 ^6 # | ||| || | || # | z<--+|+-->x |+-->z | x<--+| # 4-----8-----0-----0-----1-----9-----5-----2-----4 # |+-->x | # || | # 8v 2 9 # |z | # | | # 4-----2-----5 xfaceishanging = (facecode >> 0x3) & 0x1 == 0x1 yfaceishanging = (facecode >> 0x4) & 0x1 == 0x1 zfaceishanging = (facecode >> 0x5) & 0x1 == 0x1 xedgeishanging = (facecode >> 0x6) & 0x1 == 0x1 yedgeishanging = (facecode >> 0x7) & 0x1 == 0x1 zedgeishanging = (facecode >> 0x8) & 0x1 == 0x1 corner = facecode & 0x0007 xcornershift = (corner >> 0x0) & 0x1 == 0x1 ycornershift = (corner >> 0x1) & 0x1 == 0x1 zcornershift = (corner >> 0x2) & 0x1 == 0x1 hangingface = ( ((corner === 0x0000) && xfaceishanging) ? 0x1 : ((corner === 0x0002) && xfaceishanging) ? 0x2 : ((corner === 0x0004) && xfaceishanging) ? 0x3 : ((corner === 0x0006) && xfaceishanging) ? 0x4 : 0x0, ((corner === 0x0001) && xfaceishanging) ? 0x1 : ((corner === 0x0003) && xfaceishanging) ? 0x2 : ((corner === 0x0005) && xfaceishanging) ? 0x3 : ((corner === 0x0007) && xfaceishanging) ? 0x4 : 0x0, ((corner === 0x0000) && yfaceishanging) ? 0x1 : ((corner === 0x0001) && yfaceishanging) ? 0x2 : ((corner === 0x0004) && yfaceishanging) ? 0x3 : ((corner === 0x0005) && yfaceishanging) ? 0x4 : 0x0, ((corner === 0x0002) && yfaceishanging) ? 0x1 : ((corner === 0x0003) && yfaceishanging) ? 0x2 : ((corner === 0x0006) && yfaceishanging) ? 0x3 : ((corner === 0x0007) && yfaceishanging) ? 0x4 : 0x0, ((corner === 0x0000) && zfaceishanging) ? 0x1 : ((corner === 0x0001) && zfaceishanging) ? 0x2 : ((corner === 0x0002) && zfaceishanging) ? 0x3 : ((corner === 0x0003) && zfaceishanging) ? 0x4 : 0x0, ((corner === 0x0004) && zfaceishanging) ? 0x1 : ((corner === 0x0005) && zfaceishanging) ? 0x2 : ((corner === 0x0006) && zfaceishanging) ? 0x3 : ((corner === 0x0007) && zfaceishanging) ? 0x4 : 0x0, ) onhangingface = ( hangingface[3] > 0x0 || hangingface[5] > 0x0, hangingface[4] > 0x0 || hangingface[5] > 0x0, hangingface[3] > 0x0 || hangingface[6] > 0x0, hangingface[4] > 0x0 || hangingface[6] > 0x0, hangingface[1] > 0x0 || hangingface[5] > 0x0, hangingface[2] > 0x0 || hangingface[5] > 0x0, hangingface[1] > 0x0 || hangingface[6] > 0x0, hangingface[2] > 0x0 || hangingface[6] > 0x0, hangingface[1] > 0x0 || hangingface[3] > 0x0, hangingface[2] > 0x0 || hangingface[3] > 0x0, hangingface[1] > 0x0 || hangingface[4] > 0x0, hangingface[2] > 0x0 || hangingface[4] > 0x0, ) onhangingedge = ( xedgeishanging && (corner === 0x0000 || corner === 0x0001), xedgeishanging && (corner === 0x0002 || corner === 0x0003), xedgeishanging && (corner === 0x0004 || corner === 0x0005), xedgeishanging && (corner === 0x0006 || corner === 0x0007), yedgeishanging && (corner === 0x0000 || corner === 0x0002), yedgeishanging && (corner === 0x0001 || corner === 0x0003), yedgeishanging && (corner === 0x0004 || corner === 0x0006), yedgeishanging && (corner === 0x0005 || corner === 0x0007), zedgeishanging && (corner === 0x0000 || corner === 0x0004), zedgeishanging && (corner === 0x0001 || corner === 0x0005), zedgeishanging && (corner === 0x0002 || corner === 0x0006), zedgeishanging && (corner === 0x0003 || corner === 0x0007), ) shift = ( xcornershift, xcornershift, xcornershift, xcornershift, ycornershift, ycornershift, ycornershift, ycornershift, zcornershift, zcornershift, zcornershift, zcornershift, ) hangingedge = ntuple(Val(12)) do n onhangingedge[n] ? ((onhangingface[n] ? 0x3 : 0x1) + shift[n]) : (onhangingface[n] ? 0x5 : 0x0) end return (hangingface, hangingedge) end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
5431
abstract type AbstractMeshImport end struct AbaqusMeshImport{N,C,F,I,B,D} <: AbstractMeshImport nodes::Any connectivity::Any face_iscurved::Any face_degree::Int face_interpolation::Any type_boundary::Any type_boundary_map::Any end dimensions(a::AbaqusMeshImport) = length(a.nodes[1]) interpolation_degree(a::AbaqusMeshImport) = a.face_degree interpolation(a::AbaqusMeshImport) = a.face_interpolation interpolationdegree(a::AbaqusMeshImport) = a.face_degree function abaqusmeshimport( nodes, connectivity, face_iscurved, face_degree, face_interpolation, type_boundary, type_boundary_map, ) N, C, F, I, B, D = typeof.([ nodes, connectivity, face_iscurved, face_degree, face_interpolation, type_boundary, type_boundary_map, ]) return AbaqusMeshImport{N,C,F,I,B,D}( nodes, connectivity, face_iscurved, face_degree, face_interpolation, type_boundary, type_boundary_map, ) end """ function AbaqusMeshImport(filename::String) This function will parse an abaqus (.inp) file of 2D or 3D mesh data. Such meshes are generated with HOHQMesh.jl. """ function abaqusmeshimport(filename::String) @assert isfile(filename) "File does not exist" file = open(filename) filelines = readlines(file) # indicate the line with the section header nodes_linenum = findline("*NODE", filelines) elements_linenum = findline("*ELEMENT", filelines) curvature_linenum = findline("HOHQMesh boundary information", filelines) node_count = elements_linenum - nodes_linenum - 1 element_count = curvature_linenum - elements_linenum - 1 type_boundary_linenum = length(filelines) - element_count + 1 @assert 0 < nodes_linenum < elements_linenum < curvature_linenum "Improper abaqus file" @assert findline("mesh polynomial degree", filelines) == curvature_linenum + 1 "Missing Poly degree" # degree of interpolant along curved edges. face_degree = parse(Int8, split(filelines[curvature_linenum+1], " = ")[2]) type = split(filelines[elements_linenum], r", [a-zA-Z]*=")[2] # CPS4 are 2D quads C3D8 are 3D hexs @assert type == "CPS4" || type == "C3D8" dims = (type == "CPS4") ? 2 : 3 FT = Float64 IT = Int # Extract node coords nodes = Vector{SVector{dims,FT}}(undef, node_count) for nodeline in filelines[nodes_linenum+1:elements_linenum-1] temp_data = split(nodeline, ", ") nodenumber = parse(IT, temp_data[1]) nodes[nodenumber] = SVector{dims,FT}(parse.(FT, temp_data[2:dims+1])) end # Extract element coords # HOHQMesh uses right hand rule for node numbering. We need Z order perm will reorder nodes_per_element = (dims == 2) ? 4 : 8 perm = (dims == 2) ? [1, 2, 4, 3] : [1, 2, 4, 3, 5, 6, 8, 7] connectivity = Vector{NTuple{nodes_per_element,IT}}(undef, element_count) for elementline in filelines[elements_linenum+1:curvature_linenum-1] temp_data = split(elementline, ", ") elementnumber = parse(IT, temp_data[1]) connectivity[elementnumber] = Tuple(parse.(IT, temp_data[2:end]))[perm] end # Extract which edges are curved scanningidx = curvature_linenum + 2 faces_per_element = (dims == 2) ? 4 : 6 face_iscurved = Vector{NTuple{faces_per_element,IT}}(undef, element_count) for i = 1:element_count scanningidx += 1 face_iscurved[i] = Tuple(parse.(IT, split(filelines[scanningidx])[2:end])) scanningidx += sum(face_iscurved[i]) * (face_degree + 1)^(dims - 1) + 1 end # Extract interpolation nodes of curved edges face_interpolation = Vector{NTuple{dims,Float64}}( undef, sum(sum.(face_iscurved)) * (face_degree + 1)^(dims - 1), ) scanningidx = curvature_linenum + 2 idx = 1 for i = 1:element_count scanningidx += 2 for node = 1:(sum(face_iscurved[i])*(face_degree+1)^(dims-1)) face_interpolation[idx] = Tuple(parse.(FT, split(filelines[scanningidx])[2:dims+1])) idx += 1 scanningidx += 1 end end # Extract type_boundary data type_boundary = Vector{NTuple{faces_per_element,Int64}}(undef, element_count) # We will use integers to label boundary conditions on each element face for GPU compatibility. # HOHQMesh uses strings so here we create the mapping. zero corresponds an face which is not along a boundary # as does "---" with HOHQMesh temp_key = Vector{String}(["---"]) for line in filelines[type_boundary_linenum:end] append!(temp_key, split(line)[2:end]) end key = unique(temp_key) type_boundary_map = Dict(zip(key, 0:length(key)-1)) for (element, line) in enumerate(filelines[type_boundary_linenum:end]) data = split(line)[2:end] type_boundary[element] = Tuple([type_boundary_map[word] for word in data]) end return abaqusmeshimport( nodes, connectivity, face_iscurved, face_degree, face_interpolation, type_boundary, type_boundary_map, ) end function findline(word::String, filelines::Vector{String}) for (i, line) in enumerate(filelines) if occursin(word, line) return i end end return -1 end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
8483
# The following code was taken and modified from the following packages: # - <https://github.com/JuliaObjects/ConstructionBase.jl> # - <https://github.com/rafaqz/Flatten.jl> # # ConstructionBase.jl is distributed under the following license. # # > Copyright (c) 2019 Takafumi Arakaki, Rafael Schouten, Jan Weidner # > # > Permission is hereby granted, free of charge, to any person obtaining # > a copy of this software and associated documentation files (the # > "Software"), to deal in the Software without restriction, including # > without limitation the rights to use, copy, modify, merge, publish, # > distribute, sublicense, > and/or sell copies of the Software, and to # > permit persons to whom the Software is furnished to do so, subject to # > the following conditions: # > # > The above copyright notice and this permission notice shall be # > included in all copies or substantial portions of the Software. # > # > THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # > EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # > MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # > IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # > CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # > TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # > SOFTWARE OR THE USE OR OTHER # # Flatten.jl is distributed under the following license. # # > Copyright (c) 2018: Rafael Schouten and Robin Deits. # > # > Permission is hereby granted, free of charge, to any person obtaining # > a copy of this software and associated documentation files (the # > "Software"), to deal in the Software without restriction, including # > without limitation the rights to use, copy, modify, merge, publish, # > distribute, sublicense, and/or sell copies of the Software, and to # > permit persons to whom the Software is furnished to do so, subject to # > the following conditions: # > # > The above copyright notice and this permission notice shall be # > included in all copies or substantial portions of the Software. # > # > THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # > EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # > MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # > IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # > CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # > TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # > SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. const USE = Real _fieldnames(::Type{<:Type}) = () _fieldnames(::Type{T}) where {T} = fieldnames(T) # Generalized nested structure walker function nested(name, ::Type{T}, ::Type{U}, expr_builder, expr_combiner) where {T,U} expr_combiner(T, [Expr(:..., expr_builder(name, T, U, fn)) for fn in _fieldnames(T)]) end function flatten_builder(name, ::Type{T}, ::Type{U}, fname) where {T,U} newname = :(getfield($name, $(QuoteNode(fname)))) if fieldtype(T, fname) <: U return Expr(:tuple, newname) else return nested(newname, fieldtype(T, fname), U, flatten_builder, flatten_combiner) end end function flatten_combiner(_, expressions) Expr(:tuple, expressions...) end function flatten_expr(::Type{T}, ::Type{U}) where {T,U} nested(:(obj), T, U, flatten_builder, flatten_combiner) end """ flatten(obj, use=Real) Flattens a hierarchical type to a tuple with elements of type `use`. # Examples ```jldoctest julia> flatten((a=(Complex(1, 2), 3), b=4)) (1, 2, 3, 4) ``` To convert the tuple to a vector, simply use [flatten(x)...], or using static arrays to avoid allocations: `SVector(flatten(x))`. """ @inline @generated function flatten(obj::T, use::Type{U} = USE) where {T,U} if T <: U return :((obj,)) else return flatten_expr(T, U) end end """ constructorof(T::Type) -> constructor Return an object `constructor` that can be used to construct objects of type `T` from their field values. Typically, `constructor` will be the type `T` with all parameters removed: ```jldoctest julia> struct T{A,B} a::A b::B end julia> Raven.constructorof(T{Int,Int}) T ``` The returned constructor is used to `unflatten` objects hierarchical types from a list of their values. For example, in this case `T(1,2)` constructs an object where `T.a==1` an `T.b==2`. The method `constructorof` should be defined for types that are not constructed from a tuple of their values. """ function constructorof end constructorof(::Type{<:Tuple}) = tuple constructorof(::Type{<:Complex}) = complex constructorof(::Type{<:NamedTuple{names}}) where {names} = NamedTupleConstructor{names}() struct NamedTupleConstructor{names} end @inline function (::NamedTupleConstructor{names})(args...) where {names} NamedTuple{names}(args) end constructorof(::Type{T}) where {T<:StaticArray} = T @generated function constructorof(::Type{T}) where {T} getfield(parentmodule(T), nameof(T)) end """ unflatten(T::Type, data, use::Type=Real) Construct an object from Tuple or Vector `data` and a Type `T`. The `data` should be at least as long as the queried fields (of type `use`) in `T`. # Examples ```julia julia> unflatten(Tuple{Tuple{Int,Int},Complex{Int,Int}}, (1, 2, 3, 4)) ((1, 2), 3 + 4im) ``` """ function unflatten end @inline Base.@propagate_inbounds unflatten(datatype, data, use::Type = USE) = _unflatten(datatype, data, use, 1)[1] # Internal type used to generate constructor expressions. # Represents a bi-directional (doubly linked) type tree where # child nodes correspond to fields of composite types. mutable struct TypeNode{T,TChildren} type::Type{T} name::Union{Int,Symbol} parent::Union{Missing,TypeNode} children::TChildren TypeNode( type::Type{T}, name::Union{Int,Symbol}, children::Union{Missing,<:Tuple{Vararg{TypeNode}}} = missing, ) where {T} = new{T,typeof(children)}(type, name, missing, children) end function _buildtree(::Type{T}, name) where {T} if isabstracttype(T) || isa(T, Union) || isa(T, UnionAll) return TypeNode(T, name) elseif T <: Type # treat meta types as leaf nodes return TypeNode(T, name, ()) else names = fieldnames(T) types = fieldtypes(T) children = map(_buildtree, types, names) node = TypeNode(T, name, children) # set parent field on children for child in children child.parent = node end return node end end # Recursive accessor (getfield) expression builder _accessor_expr(::Missing, child::TypeNode) = :obj _accessor_expr(parent::TypeNode, child::TypeNode) = Expr(:call, :getfield, _accessor_expr(parent.parent, parent), QuoteNode(child.name)) # Recursive construct expression builder; # Case 1: Leaf node (i.e., no fields) _unflatten_expr(node::TypeNode{T,Tuple{}}, use::Type{U}) where {T,U} = :(($(_accessor_expr(node.parent, node)), n)) # Case 2: Matched type; value is taken from `data` at index `n`; _unflatten_expr(node::TypeNode{<:U}, use::Type{U}) where {U} = __unflatten_expr(node, U) _unflatten_expr(node::TypeNode{<:U,Tuple{}}, use::Type{U}) where {U} = __unflatten_expr(node, U) function __unflatten_expr(node::TypeNode{<:U}, use::Type{U}) where {U} :(data[n], n + 1) end # Case 3: Composite type fields (i.e., with fields) are constructed recursively; # Recursion is used only at compile time in building the constructor expression. # This ensures type stability. function _unflatten_expr(node::TypeNode{T}, ::Type{U}) where {T,U} expr = Expr(:block) argnames = [] # Generate constructor expression for each child/field for child in node.children flattened_expr = _unflatten_expr(child, U) accessor_expr = _accessor_expr(node, child) name = gensym("arg") child_expr = quote ($name, n) = $flattened_expr end push!(expr.args, child_expr) push!(argnames, name) end # Combine into constructor call callexpr = Expr(:call, :(constructorof($T)), argnames...) # Return result along with current `data` index, `n` push!(expr.args, :(($callexpr, n))) return expr end @inline Base.@propagate_inbounds @generated function _unflatten( ::Type{T}, data, use::Type{U}, n, ) where {T,U} _unflatten_expr(_buildtree(T, :obj), U) end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
9522
function gaussoperators_1d(::Type{T}, M) where {T} oldprecision = precision(BigFloat) # Increase precision of the type used to compute the 1D operators to help # ensure any symmetries. This is not thread safe so an alternative would # be to use ArbNumerics.jl which keeps its precision in the type. setprecision(BigFloat, 2^(max(8, ceil(Int, log2(precision(T))) + 2))) points, weights = legendregauss(BigFloat, M) lobattopoints, _ = legendregausslobatto(BigFloat, M) derivative = spectralderivative(points) weightedderivative = weights .* derivative skewweightedderivative = (weightedderivative - weightedderivative') / 2 equallyspacedpoints = range(-one(BigFloat), stop = one(BigFloat), length = M) toequallyspaced = spectralinterpolation(points, equallyspacedpoints) tolowerhalf = spectralinterpolation(points, (points .- 1) ./ 2) toupperhalf = spectralinterpolation(points, (points .+ 1) ./ 2) togauss = spectralinterpolation(points, points) tolobatto = spectralinterpolation(points, lobattopoints) toboundary = spectralinterpolation(points, [-1, 1]) setprecision(oldprecision) points = Array{T}(points) weights = Array{T}(weights) derivative = Array{T}(derivative) weightedderivative = Array{T}(weightedderivative) skewweightedderivative = Array{T}(skewweightedderivative) toequallyspaced = Array{T}(toequallyspaced) tohalves = (Array{T}(tolowerhalf), Array{T}(toupperhalf)) togauss = Array{T}(togauss) tolobatto = Array{T}(tolobatto) toboundary = Array{T}(toboundary) return (; points, weights, derivative, weightedderivative, skewweightedderivative, toequallyspaced, tohalves, togauss, tolobatto, toboundary, ) end struct GaussCell{T,A,N,S,O,P,D,WD,SWD,M,FM,E,H,TG,TL,TB} <: AbstractCell{T,A,N} size::S points_1d::O weights_1d::O points::P derivatives::D weightedderivatives::WD skewweightedderivatives::SWD mass::M facemass::FM toequallyspaced::E tohalves_1d::H togauss::TG tolobatto::TL toboundary::TB end function Base.similar(::GaussCell{T,A}, dims::Dims) where {T,A} return GaussCell{T,A}(dims...) end function Base.show(io::IO, cell::GaussCell{T,A,N}) where {T,A,N} print(io, "GaussCell{") Base.show(io, T) print(io, ", ") Base.show(io, A) print(io, "}$(size(cell))") end function Base.showarg(io::IO, ::GaussCell{T,A,N}, toplevel) where {T,A,N} !toplevel && print(io, "::") print(io, "GaussCell{", T, ",", A, ",", N, "}") return end function Base.summary(io::IO, cell::GaussCell{T,A,N}) where {T,A,N} d = Base.dims2string(size(cell)) print(io, "$d GaussCell{", T, ",", A, ",", N, "}") end function GaussCell{T,A}(m) where {T,A} o = adapt(A, gaussoperators_1d(T, m)) points_1d = (o.points,) weights_1d = (o.weights,) points = vec(SVector.(points_1d...)) derivatives = (Kron((o.derivative,)),) weightedderivatives = (Kron((o.weightedderivative,)),) skewweightedderivatives = (Kron((o.skewweightedderivative,)),) mass = Diagonal(vec(.*(weights_1d...))) facemass = adapt(A, Diagonal([T(1), T(1)])) toequallyspaced = Kron((o.toequallyspaced,)) tohalves_1d = ((o.tohalves[1], o.tohalves[2]),) togauss = Kron((o.togauss,)) tolobatto = Kron((o.tolobatto,)) toboundary = Kron((o.toboundary,)) args = ( (m,), points_1d, weights_1d, points, derivatives, weightedderivatives, skewweightedderivatives, mass, facemass, toequallyspaced, tohalves_1d, togauss, tolobatto, toboundary, ) GaussCell{T,A,1,typeof(args[1]),typeof.(args[3:end])...}(args...) end function GaussCell{T,A}(m1, m2) where {T,A} o = adapt(A, (gaussoperators_1d(T, m1), gaussoperators_1d(T, m2))) points_1d = (reshape(o[1].points, (m1, 1)), reshape(o[2].points, (1, m2))) weights_1d = (reshape(o[1].weights, (m1, 1)), reshape(o[2].weights, (1, m2))) points = vec(SVector.(points_1d...)) derivatives = (Kron((Eye{T}(m2), o[1].derivative)), Kron((o[2].derivative, Eye{T}(m1)))) weightedderivatives = ( Kron((Eye{T}(m2), o[1].weightedderivative)), Kron((o[2].weightedderivative, Eye{T}(m1))), ) skewweightedderivatives = ( Kron((Eye{T}(m2), o[1].skewweightedderivative)), Kron((o[2].skewweightedderivative, Eye{T}(m1))), ) mass = Diagonal(vec(.*(weights_1d...))) ω1, ω2 = weights_1d facemass = Diagonal(vcat(repeat(vec(ω2), 2), repeat(vec(ω1), 2))) toequallyspaced = Kron((o[2].toequallyspaced, o[1].toequallyspaced)) tohalves_1d = ((o[1].tohalves[1], o[1].tohalves[2]), (o[2].tohalves[1], o[2].tohalves[2])) togauss = Kron((o[2].togauss, o[1].togauss)) tolobatto = Kron((o[2].tolobatto, o[1].tolobatto)) toboundary = Kron((o[2].toboundary, o[1].toboundary)) args = ( (m1, m2), points_1d, weights_1d, points, derivatives, weightedderivatives, skewweightedderivatives, mass, facemass, toequallyspaced, tohalves_1d, togauss, tolobatto, toboundary, ) GaussCell{T,A,2,typeof(args[1]),typeof.(args[3:end])...}(args...) end function GaussCell{T,A}(m1, m2, m3) where {T,A} o = adapt( A, (gaussoperators_1d(T, m1), gaussoperators_1d(T, m2), gaussoperators_1d(T, m3)), ) points_1d = ( reshape(o[1].points, (m1, 1, 1)), reshape(o[2].points, (1, m2, 1)), reshape(o[3].points, (1, 1, m3)), ) weights_1d = ( reshape(o[1].weights, (m1, 1, 1)), reshape(o[2].weights, (1, m2, 1)), reshape(o[3].weights, (1, 1, m3)), ) points = vec(SVector.(points_1d...)) derivatives = ( Kron((Eye{T}(m3), Eye{T}(m2), o[1].derivative)), Kron((Eye{T}(m3), o[2].derivative, Eye{T}(m1))), Kron((o[3].derivative, Eye{T}(m2), Eye{T}(m1))), ) weightedderivatives = ( Kron((Eye{T}(m3), Eye{T}(m2), o[1].weightedderivative)), Kron((Eye{T}(m3), o[2].weightedderivative, Eye{T}(m1))), Kron((o[3].weightedderivative, Eye{T}(m2), Eye{T}(m1))), ) skewweightedderivatives = ( Kron((Eye{T}(m3), Eye{T}(m2), o[1].skewweightedderivative)), Kron((Eye{T}(m3), o[2].skewweightedderivative, Eye{T}(m1))), Kron((o[3].skewweightedderivative, Eye{T}(m2), Eye{T}(m1))), ) mass = Diagonal(vec(.*(weights_1d...))) ω1, ω2, ω3 = weights_1d facemass = Diagonal( vcat(repeat(vec(ω2 .* ω3), 2), repeat(vec(ω1 .* ω3), 2), repeat(vec(ω1 .* ω2), 2)), ) toequallyspaced = Kron((o[3].toequallyspaced, o[2].toequallyspaced, o[1].toequallyspaced)) tohalves_1d = ( (o[1].tohalves[1], o[1].tohalves[2]), (o[2].tohalves[1], o[2].tohalves[2]), (o[3].tohalves[1], o[3].tohalves[2]), ) togauss = Kron((o[3].togauss, o[2].togauss, o[1].togauss)) tolobatto = Kron((o[3].tolobatto, o[2].tolobatto, o[1].tolobatto)) toboundary = Kron((o[3].toboundary, o[2].toboundary, o[1].toboundary)) args = ( (m1, m2, m3), points_1d, weights_1d, points, derivatives, weightedderivatives, skewweightedderivatives, mass, facemass, toequallyspaced, tohalves_1d, togauss, tolobatto, toboundary, ) GaussCell{T,A,3,typeof(args[1]),typeof.(args[3:end])...}(args...) end GaussCell{T}(args...) where {T} = GaussCell{T,Array}(args...) GaussCell(args...) = GaussCell{Float64}(args...) function Adapt.adapt_structure(to, cell::GaussCell{T,A,N}) where {T,A,N} names = fieldnames(GaussCell) args = ntuple(j -> adapt(to, getfield(cell, names[j])), length(names)) B = arraytype(to) GaussCell{T,B,N,typeof(args[1]),typeof.(args[3:end])...}(args...) end const GaussLine{T,A} = GaussCell{Tuple{B},T,A} where {B} const GaussQuad{T,A} = GaussCell{Tuple{B,C},T,A} where {B,C} const GaussHex{T,A} = GaussCell{Tuple{B,C,D},T,A} where {B,C,D} Base.size(cell::GaussCell) = cell.size points_1d(cell::GaussCell) = cell.points_1d weights_1d(cell::GaussCell) = cell.weights_1d points(cell::GaussCell) = cell.points derivatives(cell::GaussCell) = cell.derivatives weightedderivatives(cell::GaussCell) = cell.weightedderivatives skewweightedderivatives(cell::GaussCell) = cell.skewweightedderivatives function derivatives_1d(cell::GaussCell) N = ndims(cell) ntuple(i -> cell.derivatives[i].args[N-i+1], Val(N)) end function weightedderivatives_1d(cell::GaussCell) N = ndims(cell) ntuple(i -> cell.weightedderivatives[i].args[N-i+1], Val(N)) end function skewweightedderivatives_1d(cell::GaussCell) N = ndims(cell) ntuple(i -> cell.skewweightedderivatives[i].args[N-i+1], Val(N)) end mass(cell::GaussCell) = cell.mass facemass(cell::GaussCell) = cell.facemass toequallyspaced(cell::GaussCell) = cell.toequallyspaced tohalves_1d(cell::GaussCell) = cell.tohalves_1d degrees(cell::GaussCell) = size(cell) .- 1 togauss(cell::GaussCell) = cell.togauss tolobatto(cell::GaussCell) = cell.tolobatto toboundary(cell::GaussCell) = cell.toboundary togauss_1d(cell::GaussCell) = reverse(cell.togauss.args) tolobatto_1d(cell::GaussCell) = reverse(cell.tolobatto.args) toboundary_1d(cell::GaussCell) = reverse(cell.toboundary.args)
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
16618
function recursive_fieldtypes(::Type{T}, ::Type{U} = Real) where {T,U} if T <: U return (T,) else return recursive_fieldtypes.(fieldtypes(T), U) end end @inline function insert(I::NTuple{N,Int}, ::Val{M}, i::Int) where {N,M} m = M::Int return (I[1:m-1]..., i, I[m:end]...)::NTuple{N + 1,Int} end """ GridArray{T,N,A,G,F,L,C,D,W} <: AbstractArray{T,N} `N`-dimensional array of values of type `T` for each grid point using a struct-of-arrays like format that is GPU friendly. Type `T` is assumed to be a hierarchical `struct` that can be `flatten`ed into an `NTuple{L,E<:Real}`. The backing data array will be of type `A{E}` and will have the fields of `T` indexed via index `F`. `GridArray` also stores values for the ghost cells of the grid which are accessible if `G==true`. """ struct GridArray{T,N,A,G,F,L,C,D,W} <: AbstractArray{T,N} """MPI.Comm used for communication""" comm::C """View of the backing data array without the ghost cells""" data::D """Backing data array with the ghost cells""" datawithghosts::W """Dimensions of the array without the ghost cells""" dims::NTuple{N,Int} """Dimensions of the array with the ghost cells""" dimswithghosts::NTuple{N,Int} end const GridVecOrMat{T} = Union{GridArray{T,1},GridArray{T,2}} function GridArray{T}( ::UndefInitializer, ::Type{A}, dims::NTuple{N,Int}, dimswithghosts::NTuple{N,Int}, comm, withghosts::Bool, fieldindex::Integer, ) where {T,A,N} if !(all(dims[1:end-1] .== dimswithghosts[1:end-1]) && dims[end] <= dimswithghosts[end]) throw( DimensionMismatch( "dims ($dims) must equal to dimswithghosts ($dimswithghosts) in all but the last dimension where it should be less than", ), ) end types = flatten(recursive_fieldtypes(T), DataType) L = length(types)::Int if L == 0 throw(ArgumentError("Type T has no Real fields")) end E = first(types) if !allequal(types) throw(ArgumentError("Type T has different field types: $types")) end datawithghosts = A{E}(undef, insert(dimswithghosts, Val(fieldindex), L)) data = view(datawithghosts, (ntuple(_ -> Colon(), Val(N))..., Base.OneTo(dims[end]))...) C = typeof(comm) D = typeof(data) W = typeof(datawithghosts) return GridArray{T,N,A,withghosts,fieldindex,L,C,D,W}( comm, data, datawithghosts, dims, dimswithghosts, ) end """ GridArray{T}(undef, grid::Grid) Create an array containing elements of type `T` for each point in the grid (including the ghost cells). The dimensions of the array is `(size(referencecell(grid))..., length(grid))` as the ghost cells are hidden by default. The type `T` is assumed to be able to be interpreted into an `NTuple{M,L}`. Some example types (some using `StructArrays`) are: - `T = NamedTuple{(:E,:B),Tuple{SVector{3,ComplexF64},SVector{3,ComplexF64}}}` - `T = NTuple{5,Int64}` - `T = SVector{5,Int64}` - `T = ComplexF32` - `T = Float32` Instead of using an array-of-struct style storage, a GPU efficient struct-of-arrays like storage is used. For example, instead of storing data like ```julia-repl julia> T = Tuple{Int,Int}; julia> data = Array{T}(undef, 3, 4, 2); a .= Ref((1,2)) 3×4 Matrix{Tuple{Int64, Int64}}: (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) ``` the data would be stored in the order ```julia-repl julia> permutedims(reinterpret(reshape, Int, data), (2,3,1,4)) 3×4×2×2 Array{Int64, 4}: [:, :, 1, 1] = 1 1 1 1 1 1 1 1 1 1 1 1 [:, :, 2, 1] = 2 2 2 2 2 2 2 2 2 2 2 2 [:, :, 1, 2] = 1 1 1 1 1 1 1 1 1 1 1 1 [:, :, 2, 2] = 2 2 2 2 2 2 2 2 2 2 2 2 ``` For a `GridArray` the indices before the ones associated with `T` (the first two in the example above) are associated with the degrees-of-freedoms of the cells. The one after is associated with the number of cells. """ function GridArray{T}(::UndefInitializer, grid::Grid) where {T} A = arraytype(grid) dims = (size(referencecell(grid))..., Int(numcells(grid, Val(false)))) dimswithghosts = (size(referencecell(grid))..., Int(numcells(grid, Val(true)))) F = ndims(referencecell(grid)) + 1 return GridArray{T}(undef, A, dims, dimswithghosts, comm(grid), false, F) end GridArray(::UndefInitializer, grid::Grid) = GridArray{Float64}(undef, grid) function Base.showarg(io::IO, a::GridArray{T,N,A,G,F}, toplevel) where {T,N,A,G,F} !toplevel && print(io, "::") print(io, "GridArray{", T, ",", N, ",", A, ",", G, ",", F, "}") toplevel && print(io, " with data eltype ", eltype(parent(a))) return end """ viewwithoutghosts(A::GridArray) Return a `GridArray` with the same data as `A` but with the ghost cells inaccessible. """ @inline function viewwithoutghosts( a::GridArray{T,N,A,true,F,L,C,D,W}, ) where {T,N,A,F,L,C,D,W} GridArray{T,N,A,false,F,L,C,D,W}( a.comm, a.data, a.datawithghosts, a.dims, a.dimswithghosts, ) end """ viewwithghosts(A::GridArray) Return a `GridArray` with the same data as `A` but with the ghost cells accessible. """ @inline function viewwithghosts(a::GridArray{T,N,A,false,F,L,C,D,W}) where {T,N,A,F,L,C,D,W} GridArray{T,N,A,true,F,L,C,D,W}( a.comm, a.data, a.datawithghosts, a.dims, a.dimswithghosts, ) end """ get_backend(A::GridArray) -> KernelAbstractions.Backend Returns the `KernelAbstractions.Backend` used to launch kernels interacting with `A`. """ @inline get_backend(::GridArray{T,N,A}) where {T,N,A} = get_backend(A) @inline GPUArraysCore.backend(x::GridArray{<:Any,<:Any,<:AbstractGPUArray}) = GPUArraysCore.backend(x.datawithghosts) """ arraytype(A::GridArray) -> DataType Returns the `DataType` used to store the data, e.g., `Array` or `CuArray`. """ @inline arraytype(::GridArray{T,N,A}) where {T,N,A} = A """ showingghosts(A::GridArray) -> Bool Predicate indicating if the ghost layer is accessible to `A`. """ @inline showingghosts(::GridArray{T,N,A,G}) where {T,N,A,G} = G """ fieldindex(A::GridArray{T}) Returns the index used in `A.data` to store the fields of `T`. """ @inline fieldindex(::GridArray{T,N,A,G,F}) where {T,N,A,G,F} = F """ fieldslength(A::GridArray{T}) Returns the number of fields used to store `T`. """ @inline fieldslength(::GridArray{T,N,A,G,F,L}) where {T,N,A,G,F,L} = L """ comm(A::GridArray) -> MPI.Comm MPI communicator used by `A`. """ @inline comm(a::GridArray) = a.comm @inline Base.parent(a::GridArray{T,N,A,G}) where {T,N,A,G} = ifelse(G, a.datawithghosts, a.data) """ parentwithghosts(A::GridArray) Return the underlying "parent array" which includes the ghost cells. """ @inline parentwithghosts(a::GridArray) = a.datawithghosts @inline Base.size(a::GridArray{T,N,A,false}) where {T,N,A} = a.dims @inline Base.size(a::GridArray{T,N,A,true}) where {T,N,A} = a.dimswithghosts """ sizewithghosts(A::GridArray) Return a tuple containing the dimensions of `A` including the ghost cells. """ @inline sizewithghosts(a::GridArray) = a.dimswithghosts """ sizewithoutghosts(A::GridArray) Return a tuple containing the dimensions of `A` excluding the ghost cells. """ @inline sizewithoutghosts(a::GridArray) = a.dims function Base.similar( a::GridArray{S,N,A,G,F}, ::Type{T}, dims::Tuple{Vararg{Int64,M}}, ) where {S,N,A,G,F,T,M} if M == N if (!G && (dims[end] == a.dims[end])) || (G && (dims[end] == a.dimswithghosts[end])) # Create ghost layer dimswithghosts = (dims[1:end-1]..., a.dimswithghosts[end]) else # No ghost layer dimswithghosts = dims end return GridArray{T}(undef, A, dims, dimswithghosts, comm(a), G, F) else return A{T}(undef, dims) end end function Base.checkbounds(::Type{Bool}, a::GridArray, I::NTuple{N,<:Integer}) where {N} @inline Base.checkbounds_indices(Bool, axes(a), I) end @inline function Base.getindex( a::GridArray{T,N,A,G,F,L}, I::Vararg{Int,N}, ) where {T,N,A,G,F,L} @boundscheck checkbounds(a, I) data = parent(a) d = ntuple( i -> (@inbounds getindex(data, insert(I, Val(F), i)...)), Val(L), )::NTuple{L,eltype(data)} return unflatten(T, d) end @generated function _unsafe_setindex!( a::GridArray{T,N,A,G,F,L}, v, I::Vararg{Int,N}, ) where {T,N,A,G,F,L} quote $(Expr(:meta, :inline)) data = parent(a) vt = flatten(convert(T, v)::T) Base.Cartesian.@nexprs $L i -> @inbounds setindex!(data, vt[i], insert(I, Val(F), i)...) return a end end @inline function Base.setindex!(a::GridArray{<:Any,N}, v, I::Vararg{Int,N}) where {N} @boundscheck checkbounds(a, I) return _unsafe_setindex!(a, v, I...) end LinearAlgebra.norm(a::GridArray) = sqrt(MPI.Allreduce(norm(parent(a))^2, +, comm(a))) @kernel function fill_kernel!(a, x) I = @index(Global) @inbounds a[I] = x end function Base.fill!(a::GridArray{T}, x) where {T} fill_kernel!(get_backend(a), 256)(a, convert(T, x)::T, ndrange = length(a)) return a end @kernel function fillghosts_kernel!(a, x, dims) i = @index(Global) @inbounds begin I = CartesianIndices(a)[i] if any(Tuple(I) .> dims) a[i] = x end end end function fillghosts!(a::GridArray{T}, x) where {T} b = viewwithghosts(a) fillghosts_kernel!(get_backend(b), 256)( b, convert(T, x)::T, b.dims, ndrange = length(b), ) return a end function Adapt.adapt_structure(to, a::GridArray{T,N,A,G,F,L}) where {T,N,A,G,F,L} newcomm = Adapt.adapt(to, a.comm) newdatawithghosts = Adapt.adapt(to, a.datawithghosts) newdata = view(newdatawithghosts, Base.OneTo.(insert(a.dims, Val(F), L))...) NA = arraytype(newdatawithghosts) NC = typeof(newcomm) ND = typeof(newdata) NW = typeof(newdatawithghosts) GridArray{T,N,NA,G,F,L,NC,ND,NW}( newcomm, newdata, newdatawithghosts, a.dims, a.dimswithghosts, ) end Base.BroadcastStyle(::Type{<:GridArray}) = Broadcast.ArrayStyle{GridArray}() Base.Broadcast.BroadcastStyle( ::A, ::Base.Broadcast.ArrayStyle{GridArray}, ) where {M,A<:Base.Broadcast.AbstractArrayStyle{M}} = Broadcast.ArrayStyle{GridArray}() Base.Broadcast.BroadcastStyle( ::Base.Broadcast.ArrayStyle{GridArray}, ::A, ) where {M,A<:Base.Broadcast.AbstractArrayStyle{M}} = Broadcast.ArrayStyle{GridArray}() Base.Broadcast.BroadcastStyle( ::A, ::Base.Broadcast.ArrayStyle{GridArray}, ) where {M,A<:Base.Broadcast.DefaultArrayStyle{M}} = Broadcast.ArrayStyle{GridArray}() Base.Broadcast.BroadcastStyle( ::Base.Broadcast.ArrayStyle{GridArray}, ::A, ) where {M,A<:Base.Broadcast.DefaultArrayStyle{M}} = Broadcast.ArrayStyle{GridArray}() Base.Broadcast.BroadcastStyle( ::Base.Broadcast.ArrayStyle{GridArray}, ::A, ) where {A<:Base.Broadcast.ArrayStyle} = Broadcast.ArrayStyle{GridArray}() Base.Broadcast.BroadcastStyle( ::A, ::Base.Broadcast.ArrayStyle{GridArray}, ) where {A<:Base.Broadcast.ArrayStyle} = Broadcast.ArrayStyle{GridArray}() Base.Broadcast.BroadcastStyle( ::Base.Broadcast.ArrayStyle{GridArray}, ::Base.Broadcast.ArrayStyle{GridArray}, ) = Broadcast.ArrayStyle{GridArray}() cat_gridarrays(t::Broadcast.Broadcasted, rest...) = (cat_gridarrays(t.args...)..., cat_gridarrays(rest...)...) cat_gridarrays(t::GridArray, rest...) = (t, cat_gridarrays(rest...)...) cat_gridarrays(::Any, rest...) = cat_gridarrays(rest...) cat_gridarrays() = () function Base.similar( bc::Broadcast.Broadcasted{Broadcast.ArrayStyle{GridArray}}, ::Type{T}, ) where {T} dims = length.(axes(bc)) gridarrays = cat_gridarrays(bc) a = first(gridarrays) A = arraytype(a) G = showingghosts(a) F = fieldindex(a) elemdims = sizewithoutghosts(a)[F:end] elemdimswithghosts = sizewithghosts(a)[F:end] for b in gridarrays if A != arraytype(b) || G != showingghosts(b) || F != fieldindex(b) || MPI.Comm_compare(comm(a), comm(b)) != MPI.IDENT || elemdimswithghosts != sizewithghosts(b)[F:end] throw(ArgumentError("Incompatible GridArray arguments in broadcast")) end end return GridArray{T}( undef, A, (dims[1:F-1]..., elemdims...), (dims[1:F-1]..., elemdimswithghosts...), comm(a), G, F, ) end @kernel function broadcast_kernel!(dest, bc) i = @index(Global) @inbounds I = CartesianIndices(dest)[i] @inbounds dest[I] = bc[I] end @inline function Base.copyto!(dest::GridArray, bc::Broadcast.Broadcasted{Nothing}) axes(dest) == axes(bc) || Broadcast.throwdm(axes(dest), axes(bc)) isempty(dest) && return dest bcprime = Broadcast.preprocess(dest, bc) broadcast_kernel!(get_backend(dest), 256)(dest, bcprime, ndrange = length(dest)) return dest end @inline function Base.copyto!(dest::GridArray, src::GridArray) copyto!(dest.datawithghosts, src.datawithghosts) return dest end function Base.copy(a::GridArray) b = similar(a) copyto!(b, a) end # We follow GPUArrays approach of coping the whole array to the host when # outputting a GridArray backed by GPU arrays. convert_to_cpu(xs) = Adapt.adapt_structure(Array, xs) function Base.print_array(io::IO, X::GridArray{<:Any,0,<:AbstractGPUArray}) X = convert_to_cpu(X) isassigned(X) ? show(io, X[]) : print(io, "#undef") end Base.print_array(io::IO, X::GridArray{<:Any,1,<:AbstractGPUArray}) = Base.print_matrix(io, convert_to_cpu(X)) Base.print_array(io::IO, X::GridArray{<:Any,2,<:AbstractGPUArray}) = Base.print_matrix(io, convert_to_cpu(X)) Base.print_array(io::IO, X::GridArray{<:Any,<:Any,<:AbstractGPUArray}) = Base.show_nd(io, convert_to_cpu(X), Base.print_matrix, true) function Base.show_nd( io::IO, X::Raven.GridArray{<:Any,<:Any,<:AbstractGPUArray}, print_matrix::Function, show_full::Bool, ) Base.show_nd(io, Raven.convert_to_cpu(X), print_matrix, show_full) end @inline components(::Type{T}) where {T} = fieldtypes(T) @inline components(::Type{<:NamedTuple{E,T}}) where {E,T} = NamedTuple{E}(fieldtypes(T)) @inline components(::Type{T}) where {T<:Complex} = NamedTuple{(:re, :im)}(fieldtypes(T)) @inline components(::Type{T}) where {T<:SArray} = fieldtypes(fieldtype(T, 1)) @inline components(::Type{T}) where {T<:Real} = (T,) @inline function componentoffset(::Type{T}, ::Type{E}, i::Int) where {T<:SArray,E} return componentoffset(fieldtype(T, 1), E, i) end @inline function componentoffset(::Type{T}, ::Type{E}, i::Int) where {T,E} if T <: E return 0 else return Int(fieldoffset(T, i) ÷ sizeof(E)) end end @inline function ncomponents(::Type{T}, ::Type{E}) where {T,E} return Int(sizeof(T) ÷ sizeof(E)) end """ components(A::GridArray{T}) Splits `A` into a tuple of `GridArray`s where there is one for each component of `T`. Note, the data for the components is shared with the original array. For example, if `A isa GridArray{SVector{3, Float64}}` then a tuple of type `NTuple{3, GridArray{Float64}}` would be returned. """ function components(a::GridArray{T,N,A,G,F}) where {T,N,A,G,F} componenttypes = components(T) E = eltype(a.datawithghosts) c = comm(a) dims = size(a) dimswithghosts = sizewithghosts(a) comps = ntuple(length(componenttypes)) do n Tn = componenttypes[n] r = (1:ncomponents(Tn, E)) .+ componentoffset(T, E, n) datawithghosts = view(a.datawithghosts, setindex(axes(a.datawithghosts), r, F)...) data = view(a.data, setindex(axes(a.data), r, F)...) L = length(r) C = typeof(c) D = typeof(data) W = typeof(datawithghosts) GridArray{Tn,N,A,G,F,L,C,D,W}(c, data, datawithghosts, dims, dimswithghosts) end if T <: Union{NamedTuple,FieldArray} comps = NamedTuple{fieldnames(T)}(comps) end if T <: SVector if Size(T) == Size(1) comps = NamedTuple{(:x,)}(comps) elseif Size(T) == Size(2) comps = NamedTuple{(:x, :y)}(comps) elseif Size(T) == Size(3) comps = NamedTuple{(:x, :y, :z)}(comps) elseif Size(T) == Size(4) comps = NamedTuple{(:x, :y, :z, :w)}(comps) end end return comps end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
20347
abstract type AbstractGridManager end struct QuadData old_id::P4estTypes.Locidx old_level::Int8 adapt_flag::UInt8 end const AdaptCoarsen = 0x00 const AdaptNone = 0x01 const AdaptRefine = 0x10 const AdaptTouched = 0x11 struct GridManager{C<:AbstractCell,G<:AbstractCoarseGrid,E,V,P} <: AbstractGridManager comm::MPI.Comm referencecell::C coarsegrid::G coarsegridcells::E coarsegridvertices::V forest::P end comm(gm::GridManager) = gm.comm referencecell(gm::GridManager) = gm.referencecell coarsegrid(gm::GridManager) = gm.coarsegrid coarsegridcells(gm::GridManager) = gm.coarsegridcells coarsegridvertices(gm::GridManager) = gm.coarsegridvertices forest(gm::GridManager) = gm.forest isextruded(gm::GridManager) = isextruded(coarsegrid(gm)) function GridManager( referencecell, coarsegrid; comm = MPI.COMM_WORLD, min_level = 0, fill_uniform = true, ) if !MPI.Initialized() MPI.Init() end comm = MPI.Comm_dup(comm) p = P4estTypes.pxest( connectivity(coarsegrid); min_level = first(min_level), data_type = QuadData, comm, fill_uniform, ) coarsegridcells = adapt(arraytype(referencecell), cells(coarsegrid)) coarsegridvertices = adapt(arraytype(referencecell), vertices(coarsegrid)) return GridManager( comm, referencecell, coarsegrid, coarsegridcells, coarsegridvertices, p, ) end Base.length(gm::GridManager) = P4estTypes.lengthoflocalquadrants(forest(gm)) function fill_quadrant_user_data(forest, _, quadrant, quadrantid, treeid, flags) id = quadrantid + P4estTypes.offset(forest[treeid]) P4estTypes.unsafe_storeuserdata!( quadrant, QuadData(id, P4estTypes.level(quadrant), flags[id]), ) end function fill_adapt_flags(::P4estTypes.Pxest{X}, _, quadrant, _, _, flags) where {X} d = P4estTypes.unsafe_loaduserdata(quadrant, QuadData) if d.old_level < P4estTypes.level(quadrant) flags[d.old_id] = AdaptRefine elseif d.old_level > P4estTypes.level(quadrant) flags[d.old_id] = AdaptCoarsen else flags[d.old_id] = AdaptNone end return end function replace_quads(_, _, outgoing, incoming) outd = P4estTypes.unsafe_loaduserdata(first(outgoing), QuadData) for quadrant in incoming P4estTypes.unsafe_storeuserdata!( quadrant, QuadData(outd.old_id, outd.old_level, AdaptTouched), ) end return end function refine_quads(_, _, quadrant) retval = P4estTypes.unsafe_loaduserdata(quadrant, QuadData).adapt_flag == AdaptRefine return retval end function coarsen_quads(_, _, children) coarsen = true for child in children coarsen &= P4estTypes.unsafe_loaduserdata(child, QuadData).adapt_flag == AdaptCoarsen end return coarsen end function adapt!(gm::GridManager, flags) @assert length(gm) == length(flags) P4estTypes.iterateforest(forest(gm); userdata = flags, volume = fill_quadrant_user_data) P4estTypes.coarsen!(forest(gm); coarsen = coarsen_quads, replace = replace_quads) P4estTypes.refine!(forest(gm); refine = refine_quads, replace = replace_quads) P4estTypes.balance!(forest(gm); replace = replace_quads) P4estTypes.iterateforest(forest(gm); userdata = flags, volume = fill_adapt_flags) return end generate(gm::GridManager) = generate(identity, gm) function _offsets_to_ranges(offsets; by = identity) indices = Cint[] ranges = UnitRange{Int}[] for r = 1:length(offsets)-1 if offsets[r+1] - offsets[r] > 0 ids = by(r - 1) push!(indices, ids) push!(ranges, (offsets[r]+1):offsets[r+1]) end end return (indices, ranges) end function materializequadrantcommpattern(forest, ghost) ms = P4estTypes.mirrors(ghost) gs = P4estTypes.ghosts(ghost) GC.@preserve ghost begin mirror_proc_mirrors = P4estTypes.unsafe_mirror_proc_mirrors(ghost) mirror_proc_offsets = P4estTypes.unsafe_mirror_proc_offsets(ghost) num_local = P4estTypes.lengthoflocalquadrants(forest) T = typeof(num_local) num_ghosts = T(length(gs)) sendindices = similar(mirror_proc_mirrors, T) for i in eachindex(sendindices) sendindices[i] = P4estTypes.unsafe_local_num(ms[mirror_proc_mirrors[i]+1]) end (sendranks, sendrankindices) = _offsets_to_ranges(mirror_proc_offsets) proc_offsets = P4estTypes.unsafe_proc_offsets(ghost) recvindices = (num_local+0x1):(num_local+num_ghosts) (recvranks, recvrankindices) = _offsets_to_ranges(proc_offsets) end return CommPattern{Array}( recvindices, recvranks, recvrankindices, sendindices, sendranks, sendrankindices, ) end function materializeforestvolumedata(forest, _, quadrant, quadid, treeid, data) id = quadid + P4estTypes.offset(forest[treeid]) data.quadranttolevel[id] = P4estTypes.level(quadrant) data.quadranttotreeid[id] = treeid data.quadranttocoordinate[id, :] .= P4estTypes.coordinates(quadrant) return end function materializequadrantdata(forest, ghost) ghosts = P4estTypes.ghosts(ghost) localnumberofquadrants = P4estTypes.lengthoflocalquadrants(forest) ghostnumberofquadrants = length(ghosts) totalnumberofquadrants = localnumberofquadrants + ghostnumberofquadrants quadranttolevel = Array{Int8}(undef, totalnumberofquadrants) quadranttotreeid = Array{Int32}(undef, totalnumberofquadrants) quadranttocoordinate = Array{Int32}(undef, totalnumberofquadrants, P4estTypes.quadrantndims(forest)) data = (; quadranttolevel, quadranttotreeid, quadranttocoordinate) # Fill in information for the local quadrants P4estTypes.iterateforest( forest; ghost, userdata = data, volume = materializeforestvolumedata, ) # Fill in information for the ghost layer quadrants for (quadid, quadrant) in enumerate(ghosts) id = quadid + localnumberofquadrants quadranttolevel[id] = P4estTypes.level(quadrant) quadranttotreeid[id] = P4estTypes.unsafe_which_tree(quadrant) quadranttocoordinate[id, :] .= P4estTypes.coordinates(quadrant) end return (quadranttolevel, quadranttotreeid, quadranttocoordinate) end function extrudequadrantdata( unextrudedquadranttolevel, unextrudedquadranttotreeid, unextrudedquadranttocoordinate, columnnumberofquadrants, ) quadranttolevel = repeat(unextrudedquadranttolevel, inner = columnnumberofquadrants) quadranttotreeid = similar(unextrudedquadranttotreeid, size(quadranttolevel)) for i = 1:length(unextrudedquadranttotreeid) treeidoffset = (unextrudedquadranttotreeid[i] - 1) * columnnumberofquadrants for j = 1:columnnumberofquadrants quadranttotreeid[(i-1)*columnnumberofquadrants+j] = treeidoffset + j end end u = unextrudedquadranttocoordinate q = similar(u, (size(u, 1), size(u, 2) + 1)) q[:, 1:size(u, 2)] .= u q[:, size(u, 2)+1] .= zero(eltype(u)) quadranttocoordinate = repeat(q, inner = (columnnumberofquadrants, 1)) return (quadranttolevel, quadranttotreeid, quadranttocoordinate) end """ materializequadranttoglobalid(forest, ghost) Generate the global ids for quadrants in the `forest` and the `ghost` layer. """ function materializequadranttoglobalid(forest, ghost) rank = MPI.Comm_rank(forest.comm) ghosts = P4estTypes.ghosts(ghost) localnumberofquadrants = P4estTypes.lengthoflocalquadrants(forest) ghostnumberofquadrants = length(ghosts) totalnumberofquadrants = localnumberofquadrants + ghostnumberofquadrants GC.@preserve forest ghost ghosts begin global_first_quadrant = P4estTypes.unsafe_global_first_quadrant(forest) gfq = global_first_quadrant[rank+1] T = eltype(global_first_quadrant) proc_offsets = P4estTypes.unsafe_proc_offsets(ghost) globalquadrantids = zeros(T, totalnumberofquadrants) for i = 1:localnumberofquadrants globalquadrantids[i] = i + gfq end for i = 1:ghostnumberofquadrants globalquadrantids[i+localnumberofquadrants] = P4estTypes.unsafe_local_num(ghosts[i]) end for r = 1:length(proc_offsets)-1 for o = (proc_offsets[r]+1):proc_offsets[r+1] globalquadrantids[o+localnumberofquadrants] += global_first_quadrant[r] end end end return globalquadrantids end function extrudequadranttoglobalid(unextrudedquadranttoglobalid, columnnumberofquadrants) unextrudednumberofquadrants = length(unextrudedquadranttoglobalid) quadranttoglobalid = similar( unextrudedquadranttoglobalid, unextrudednumberofquadrants * columnnumberofquadrants, ) for q = 1:unextrudednumberofquadrants p = unextrudedquadranttoglobalid[q] for c = 1:columnnumberofquadrants quadranttoglobalid[(q-1)*columnnumberofquadrants+c] = (p - 1) * columnnumberofquadrants + c end end return quadranttoglobalid end function materializedtoc(forest, ghost, nodes, quadrantcommpattern, comm) localnumberofquadrants = P4estTypes.lengthoflocalquadrants(forest) ghostnumberofquadrants = length(P4estTypes.ghosts(ghost)) totalnumberofquadrants = localnumberofquadrants + ghostnumberofquadrants dtoc_owned = P4estTypes.unsafe_element_nodes(nodes) dtoc = zeros(eltype(dtoc_owned), size(dtoc_owned)[1:end-1]..., totalnumberofquadrants) dtoc[1:length(dtoc_owned)] .= vec(dtoc_owned) dtoc_global = P4estTypes.globalid.(Ref(nodes), dtoc) .+ 0x1 pattern = expand(quadrantcommpattern, prod(size(dtoc_owned)[1:end-1])) cm = commmanager(eltype(dtoc_global), pattern; comm) share!(dtoc_global, cm) dtoc_local = numbercontiguous(eltype(dtoc_owned), dtoc_global) return (dtoc_local, dtoc_global) end function extrudedtoc( unextrudeddtoc::AbstractArray{T,3}, columnnumberofquadrants, columnnumberofcelldofs, columnisperiodic, ) where {T} s = size(unextrudeddtoc) dtoc = similar( unextrudeddtoc, s[1], s[2], columnnumberofcelldofs, columnnumberofquadrants, s[end], ) numccnodes = columnnumberofquadrants * (columnnumberofcelldofs - 1) + !columnisperiodic for q = 1:s[end], c = 1:columnnumberofquadrants for k = 1:columnnumberofcelldofs cnode = (c - 1) * (columnnumberofcelldofs - 1) + k @assert cnode <= numccnodes for j = 1:s[2], i = 1:s[1] dtoc[i, j, k, c, q] = (unextrudeddtoc[i, j, q] - 1) * numccnodes + cnode end end if columnisperiodic for j = 1:s[2], i = 1:s[1] dtoc[i, j, end, end, q] = dtoc[i, j, 1, 1, q] end end end return reshape( dtoc, s[1], s[2], columnnumberofcelldofs, columnnumberofquadrants * s[end], ) end function materializectod(dtoc) dtoc = vec(dtoc) data = similar(dtoc, Bool) fill!(data, true) return sparse(1:length(dtoc), dtoc, data) end materializequadranttofacecode(nodes) = copy(P4estTypes.unsafe_face_code(nodes)) function extrudequadranttofacecode(unextrudedquadranttofacecode, columnnumberofquadrants) return repeat(unextrudedquadranttofacecode, inner = columnnumberofquadrants) end function materializequadrantcommlists(localnumberofquadrants, quadrantcommpattern) communicatingcells = unique!(sort(quadrantcommpattern.sendindices)) noncommunicatingcells = setdiff(0x1:localnumberofquadrants, communicatingcells) return (communicatingcells, noncommunicatingcells) end function generate(warp::Function, gm::GridManager) # Need to get integer coordinates of cells A = arraytype(referencecell(gm)) ghost = P4estTypes.ghostlayer(forest(gm)) nodes = P4estTypes.lnodes(forest(gm); ghost, degree = 3) P4estTypes.expand!(ghost, forest(gm), nodes) localnumberofquadrants = P4estTypes.lengthoflocalquadrants(forest(gm)) (quadranttolevel, quadranttotreeid, quadranttocoordinate) = materializequadrantdata(forest(gm), ghost) quadranttoglobalid = materializequadranttoglobalid(forest(gm), ghost) quadrantcommpattern = materializequadrantcommpattern(forest(gm), ghost) (dtoc_degree3_local, dtoc_degree3_global) = materializedtoc(forest(gm), ghost, nodes, quadrantcommpattern, comm(gm)) quadranttofacecode = materializequadranttofacecode(nodes) if isextruded(coarsegrid(gm)) columnnumberofquadrants = columnlength(coarsegrid(gm)) localnumberofquadrants *= columnnumberofquadrants (quadranttolevel, quadranttotreeid, quadranttocoordinate) = extrudequadrantdata( quadranttolevel, quadranttotreeid, quadranttocoordinate, columnnumberofquadrants, ) quadranttoglobalid = extrudequadranttoglobalid(quadranttoglobalid, columnnumberofquadrants) quadrantcommpattern = expand(quadrantcommpattern, columnnumberofquadrants) dtoc_degree3_local = extrudedtoc( dtoc_degree3_local, columnnumberofquadrants, 4, last(isperiodic(coarsegrid(gm))), ) dtoc_degree3_global = extrudedtoc( dtoc_degree3_global, columnnumberofquadrants, 4, last(isperiodic(coarsegrid(gm))), ) quadranttofacecode = extrudequadranttofacecode(quadranttofacecode, columnnumberofquadrants) end discontinuoustocontinuous = materializedtoc(referencecell(gm), dtoc_degree3_local, dtoc_degree3_global) ctod_degree3_local = materializectod(dtoc_degree3_local) facemaps, quadranttoboundary = materializefacemaps( referencecell(gm), localnumberofquadrants, ctod_degree3_local, dtoc_degree3_local, dtoc_degree3_global, quadranttolevel, quadranttoglobalid, ) continuoustodiscontinuous = materializectod(discontinuoustocontinuous) nodecommpattern = materializenodecommpattern( referencecell(gm), continuoustodiscontinuous, quadrantcommpattern, ) parentnodes = materializeparentnodes( referencecell(gm), continuoustodiscontinuous, quadranttoglobalid, quadranttolevel, ) communicatingquadrants, noncommunicatingquadrants = materializequadrantcommlists(localnumberofquadrants, quadrantcommpattern) # Send data to the device quadranttolevel = A(pin(A, quadranttolevel)) quadranttotreeid = A(pin(A, quadranttotreeid)) quadranttocoordinate = A(pin(A, quadranttocoordinate)) quadranttofacecode = A(pin(A, quadranttofacecode)) quadranttoboundary = A(pin(A, quadranttoboundary)) parentnodes = A(pin(A, parentnodes)) nodecommpattern = Adapt.adapt(A, nodecommpattern) continuoustodiscontinuous = adaptsparse(A, continuoustodiscontinuous) discontinuoustocontinuous = Adapt.adapt(A, discontinuoustocontinuous) communicatingquadrants = Adapt.adapt(A, communicatingquadrants) noncommunicatingquadrants = Adapt.adapt(A, noncommunicatingquadrants) facemaps = Adapt.adapt(A, facemaps) if coarsegrid(gm) isa AbstractBrickGrid points = materializebrickpoints( referencecell(gm), coarsegridcells(gm), coarsegridvertices(gm), quadranttolevel, quadranttotreeid, quadranttocoordinate, localnumberofquadrants, comm(gm), ) elseif coarsegrid(gm) isa MeshImportCoarseGrid meshimport = Raven.meshimport(coarsegrid(gm)) quadranttointerpolation = materializequadranttointerpolation(meshimport) quadranttointerpolation = A(pin(A, quadranttointerpolation)) faceinterpolation = interpolation(meshimport) faceinterpolation = collect( transpose( reinterpret(reshape, eltype(eltype(faceinterpolation)), faceinterpolation), ), ) faceinterpolation = A(pin(A, faceinterpolation)) points = materializepoints( referencecell(gm), coarsegridcells(gm), coarsegridvertices(gm), interpolationdegree(meshimport), faceinterpolation, quadranttointerpolation, quadranttolevel, quadranttotreeid, quadranttocoordinate, localnumberofquadrants, comm(gm), ) else points = materializepoints( referencecell(gm), coarsegridcells(gm), coarsegridvertices(gm), quadranttolevel, quadranttotreeid, quadranttocoordinate, localnumberofquadrants, comm(gm), ) end coarsegrid_warp = Raven.warp(coarsegrid(gm)) points = warp.(coarsegrid_warp.(points)) fillghosts!(points, fill(NaN, eltype(points))) pcm = commmanager(eltype(points), nodecommpattern; comm = comm(gm)) share!(points, pcm) isunwarpedbrick = coarsegrid(gm) isa AbstractBrickGrid && warp == identity volumemetrics, surfacemetrics = materializemetrics( referencecell(gm), points, facemaps, comm(gm), nodecommpattern, isunwarpedbrick, ) part = MPI.Comm_rank(comm(gm)) + 1 nparts = MPI.Comm_size(comm(gm)) GC.@preserve gm begin global_first_quadrant = P4estTypes.unsafe_global_first_quadrant(forest(gm)) offset = global_first_quadrant[part] end if isextruded(coarsegrid(gm)) columnnumberofquadrants = columnlength(coarsegrid(gm)) offset *= columnnumberofquadrants end return Grid( comm(gm), part, nparts, referencecell(gm), offset, convert(Int, localnumberofquadrants), points, volumemetrics, surfacemetrics, quadranttolevel, quadranttotreeid, quadranttofacecode, quadranttoboundary, parentnodes, nodecommpattern, continuoustodiscontinuous, discontinuoustocontinuous, communicatingquadrants, noncommunicatingquadrants, facemaps, ) end function materializequadranttointerpolation(abaqus::AbaqusMeshImport) dims = length(abaqus.connectivity[1]) == 4 ? 2 : 3 nodesperface = (abaqus.face_degree + 1)^(dims - 1) numberofelements = length(abaqus.face_iscurved) facesperelement = length(abaqus.face_iscurved[1]) quadranttointerpolation = Array{Int32}(undef, numberofelements, facesperelement) idx = 1 for element = 1:numberofelements for face = 1:facesperelement if abaqus.face_iscurved[element][face] == 1 quadranttointerpolation[element, face] = idx idx += nodesperface else quadranttointerpolation[element, face] = 0 end end end return quadranttointerpolation end function Base.show(io::IO, g::GridManager) compact = get(io, :compact, false) print(io, "GridManager(") show(io, referencecell(g)) print(io, ", ") show(io, coarsegrid(g)) print(io, "; comm=") show(io, comm(g)) print(io, ")") if !compact nlocal = P4estTypes.lengthoflocalquadrants(forest(g)) nglobal = P4estTypes.lengthofglobalquadrants(forest(g)) print(io, " with $nlocal of the $nglobal global elements") end return end function Base.showarg(io::IO, g::GridManager, toplevel) !toplevel && print(io, "::") print(io, "GridManager{") Base.showarg(io, referencecell(g), false) print(io, ", ") Base.showarg(io, coarsegrid(g), false) print(io, "}") if toplevel nlocal = P4estTypes.lengthoflocalquadrants(forest(g)) nglobal = P4estTypes.lengthofglobalquadrants(forest(g)) print(io, " with $nlocal of the $nglobal global elements") end return end Base.summary(io::IO, g::GridManager) = Base.showarg(io, g, true)
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
5324
abstract type AbstractGrid{C<:AbstractCell} end floattype(::Type{<:AbstractGrid{C}}) where {C} = floattype(C) arraytype(::Type{<:AbstractGrid{C}}) where {C} = arraytype(C) celltype(::Type{<:AbstractGrid{C}}) where {C} = C floattype(grid::AbstractGrid) = floattype(typeof(grid)) arraytype(grid::AbstractGrid) = arraytype(typeof(grid)) celltype(grid::AbstractGrid) = celltype(typeof(grid)) struct Grid{C<:AbstractCell,P,V,S,L,T,F,B,PN,N,CTOD,DTOC,CC,NCC,FM} <: AbstractGrid{C} comm::MPI.Comm part::Int nparts::Int cell::C offset::Int locallength::Int points::P volumemetrics::V surfacemetrics::S levels::L trees::T facecodes::F boundarycodes::B parentnodes::PN nodecommpattern::N continuoustodiscontinuous::CTOD discontinuoustocontinuous::DTOC communicatingcells::CC noncommunicatingcells::NCC facemaps::FM end comm(grid::Grid) = grid.comm referencecell(grid::Grid) = grid.cell points(grid::Grid) = points(grid, Val(false)) points(grid::Grid, withghostlayer::Val{false}) = viewwithoutghosts(grid.points) points(grid::Grid, withghostlayer::Val{true}) = viewwithghosts(grid.points) levels(grid::Grid) = levels(grid, Val(false)) levels(grid::Grid, ::Val{false}) = view(grid.levels, Base.OneTo(grid.locallength)) levels(grid::Grid, ::Val{true}) = grid.levels trees(grid::Grid) = trees(grid, Val(false)) trees(grid::Grid, ::Val{false}) = view(grid.trees, Base.OneTo(grid.locallength)) trees(grid::Grid, ::Val{true}) = grid.trees facecodes(grid::Grid) = facecodes(grid, Val(false)) facecodes(grid::Grid, ::Val{false}) = grid.facecodes facecodes(::Grid, ::Val{true}) = throw(error("Face codes are currently stored for local quadrants.")) boundarycodes(grid::Grid) = boundarycodes(grid, Val(false)) boundarycodes(grid::Grid, ::Val{false}) = grid.boundarycodes boundarycodes(::Grid, ::Val{true}) = throw(error("Boundary codes are currently stored for local quadrants.")) nodecommpattern(grid::Grid) = grid.nodecommpattern continuoustodiscontinuous(grid::Grid) = grid.continuoustodiscontinuous communicatingcells(grid::Grid) = grid.communicatingcells noncommunicatingcells(grid::Grid) = grid.noncommunicatingcells volumemetrics(grid::Grid) = grid.volumemetrics surfacemetrics(grid::Grid) = grid.surfacemetrics facemaps(grid::Grid) = facemaps(grid, Val(false)) facemaps(grid::Grid, ::Val{false}) = grid.facemaps facemaps(::Grid, ::Val{true}) = throw(error("Face maps are currently stored for local quadrants.")) offset(grid::Grid) = grid.offset numcells(grid::Grid) = numcells(grid, Val(false)) numcells(grid::Grid, ::Val{false}) = grid.locallength numcells(grid::Grid, ::Val{true}) = length(grid.levels) Base.length(grid::Grid) = grid.locallength partitionnumber(grid::Grid) = grid.part numberofpartitions(grid::Grid) = grid.nparts @kernel function min_neighbour_distance_kernel( min_neighbour_distance, points, ::Val{S}, ::Val{Np}, ::Val{dims}, ) where {S,Np,dims} I = @index(Global, Linear) @inbounds begin e = (I - 1) ÷ Np + 1 ijk = (I - 1) % Np + 1 md = typemax(eltype(min_neighbour_distance)) x⃗ = points[ijk, e] for d in dims for m in (-1, 1) ijknb = ijk + S[d] * m if 1 <= ijknb <= Np x⃗nb = points[ijknb, e] md = min(norm(x⃗ - x⃗nb), md) end end end min_neighbour_distance[ijk, e] = md end end function min_node_distance(grid::Grid; dims = 1:ndims(referencecell(grid))) A = arraytype(grid) T = floattype(grid) cell = referencecell(grid) if maximum(dims) > ndims(cell) || minimum(dims) < 1 throw(ArgumentError("dims are not valid")) end Np = length(cell) x = reshape(points(grid), (Np, :)) min_neighbour_distance = A{T}(undef, size(x)) min_neighbour_distance_kernel(get_backend(A), 256)( min_neighbour_distance, x, Val(strides(cell)), Val(Np), Val(dims); ndrange = length(grid) * length(cell), ) return MPI.Allreduce(minimum(min_neighbour_distance), min, comm(grid)) end function faceviews(A::AbstractMatrix, cell::AbstractCell) offsets = faceoffsets(cell) facesizes = facedims(cell) num_faces = length(facesizes) if last(offsets) != size(A, 1) throw( ArgumentError( "The first dimension of A needs to contain the face degrees of freedom.", ), ) end return ntuple(Val(num_faces)) do f reshape(view(A, (1+offsets[f]):offsets[f+1], :), facesizes[f]..., :) end end function Base.show(io::IO, g::Grid) compact = get(io, :compact, false) print(io, "Raven.Grid{") show(io, referencecell(g)) print(io, "}()") if !compact nlocal = numcells(g, Val(false)) print(io, " with $nlocal local elements") end return end function Base.showarg(io::IO, g::Grid, toplevel) !toplevel && print(io, "::") print(io, "Raven.Grid{") Base.showarg(io, referencecell(g), true) print(io, "}") if toplevel nlocal = numcells(g, Val(false)) print(io, " with $nlocal local elements") end return end Base.summary(io::IO, g::Grid) = Base.showarg(io, g, true)
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
10685
struct Kron{T} args::T Kron(args::Tuple) = new{typeof(args)}(args) end Adapt.adapt_structure(to, K::Kron) = Kron(map(x -> Adapt.adapt(to, x), K.args)) components(K::Kron) = K.args Base.collect(K::Kron{Tuple{T}}) where {T} = collect(K.args[1]) Base.collect(K::Kron) = collect(kron(K.args...)) Base.size(K::Kron, j::Int) = prod(size.(K.args, j)) import Base.== ==(J::Kron, K::Kron) = all(J.args .== K.args) import Base.* @kernel function kron_D_kernel(r::AbstractArray{T}, d, g, ::Val{L}) where {T,L} (i, j) = @index(Global, NTuple) acc = zero(T) @inbounds begin @unroll for l in L acc = muladd(d[i, l], g[l, j], acc) end r[i, j] = acc end end function (*)(K::Kron{Tuple{D}}, f::F) where {D<:AbstractMatrix,F<:AbstractVecOrMat} (d,) = components(K) g = reshape(f, size(d, 2), :) r = similar(f, size(d, 1), size(g, 2)) backend = get_backend(r) kernel! = kron_D_kernel(backend, size(r, 1)) kernel!(r, d, g, Val(axes(d, 2)); ndrange = size(r)) return F <: AbstractVector ? vec(r) : reshape(r, size(K, 1), size(f, 2)) end function (*)(K::Kron{Tuple{D}}, f::GridArray) where {D<:AbstractMatrix} (d,) = components(K) r = similar(f, size(d, 1), size(f, 2)) backend = get_backend(r) kernel! = kron_D_kernel(backend, size(r, 1)) kernel!(r, d, f, Val(axes(d, 2)); ndrange = size(r)) return r end @kernel function kron_E_D_kernel(r::AbstractArray{T}, d, g, ::Val{L}) where {T,L} (i, j, k) = @index(Global, NTuple) acc = zero(T) @inbounds begin @unroll for l in L acc = muladd(d[i, l], g[l, j, k], acc) end r[i, j, k] = acc end end @inline (*)(::Kron{Tuple{E₂,E₁}}, f::F) where {E₁<:Eye,E₂<:Eye,F<:AbstractVecOrMat} = copy(f) @inline (*)( ::Kron{Tuple{E₃,E₂,E₁}}, f::F, ) where {E₁<:Eye,E₂<:Eye,E₃<:Eye,F<:AbstractVecOrMat} = copy(f) @inline (*)(::Kron{Tuple{E₂,E₁}}, f::F) where {E₁<:Eye,E₂<:Eye,F<:GridVecOrMat} = copy(f) @inline (*)(::Kron{Tuple{E₃,E₂,E₁}}, f::F) where {E₁<:Eye,E₂<:Eye,E₃<:Eye,F<:GridVecOrMat} = copy(f) @inline (*)(::Kron{Tuple{E₂,E₁}}, f::F) where {E₁<:Eye,E₂<:Eye,F<:GridArray} = copy(f) @inline (*)(::Kron{Tuple{E₃,E₂,E₁}}, f::F) where {E₁<:Eye,E₂<:Eye,E₃<:Eye,F<:GridArray} = copy(f) function (*)(K::Kron{Tuple{E,D}}, f::F) where {D<:AbstractMatrix,E<:Eye,F<:AbstractVecOrMat} e, d = components(K) g = reshape(f, size(d, 2), size(e, 1), :) r = similar(f, size(d, 1), size(e, 1), size(g, 3)) backend = get_backend(r) kernel! = kron_E_D_kernel(backend, size(r)[begin:end-1]) kernel!(r, d, g, Val(axes(d, 2)); ndrange = size(r)) return F <: AbstractVector ? vec(r) : reshape(r, size(K, 1), size(f, 2)) end function (*)(K::Kron{Tuple{E,D}}, f::GridArray) where {D<:AbstractMatrix,E<:Eye} e, d = components(K) r = similar(f, size(d, 1), size(e, 1), size(f, 3)) backend = get_backend(r) kernel! = kron_E_D_kernel(backend, size(r)[begin:end-1]) kernel!(r, d, f, Val(axes(d, 2)); ndrange = size(r)) return r end @kernel function kron_D_E_kernel(r::AbstractArray{T}, d, g, ::Val{L}) where {T,L} (i, j, k) = @index(Global, NTuple) acc = zero(T) @inbounds begin @unroll for l in L acc = muladd(d[j, l], g[i, l, k], acc) end r[i, j, k] = acc end end function (*)(K::Kron{Tuple{D,E}}, f::F) where {D<:AbstractMatrix,E<:Eye,F<:AbstractVecOrMat} d, e = components(K) g = reshape(f, size(e, 1), size(d, 2), :) r = similar(f, size(e, 1), size(d, 1), size(g, 3)) backend = get_backend(r) kernel! = kron_D_E_kernel(backend, size(r)[begin:end-1]) kernel!(r, d, g, Val(axes(d, 2)); ndrange = size(r)) return F <: AbstractVector ? vec(r) : reshape(r, size(K, 1), size(f, 2)) end function (*)(K::Kron{Tuple{D,E}}, f::GridArray) where {D<:AbstractMatrix,E<:Eye} d, e = components(K) r = similar(f, size(e, 1), size(d, 1), size(f, 3)) backend = get_backend(r) kernel! = kron_D_E_kernel(backend, size(r)[begin:end-1]) kernel!(r, d, f, Val(axes(d, 2)); ndrange = size(r)) return r end @kernel function kron_B_A_kernel( r::AbstractArray{T}, a, b, g, ::Val{L}, ::Val{M}, ) where {T,L,M} (i, j, k) = @index(Global, NTuple) acc = zero(T) @inbounds begin # TODO: use temporary space to reduce complexity @unroll for m in M @unroll for l in L acc = muladd(b[j, m] * a[i, l], g[l, m, k], acc) end end r[i, j, k] = acc end end function (*)( K::Kron{Tuple{B,A}}, f::F, ) where {A<:AbstractMatrix,B<:AbstractMatrix,F<:AbstractVecOrMat} b, a = components(K) g = reshape(f, size(a, 2), size(b, 2), :) r = similar(f, size(a, 1), size(b, 1), size(g, 3)) backend = get_backend(r) kernel! = kron_B_A_kernel(backend, size(r)[begin:end-1]) kernel!(r, a, b, g, Val(axes(a, 2)), Val(axes(b, 2)); ndrange = size(r)) return F <: AbstractVector ? vec(r) : reshape(r, size(K, 1), size(f, 2)) end function (*)(K::Kron{Tuple{B,A}}, f::GridArray) where {A<:AbstractMatrix,B<:AbstractMatrix} b, a = components(K) r = similar(f, size(a, 1), size(b, 1), size(f, 3)) backend = get_backend(r) kernel! = kron_B_A_kernel(backend, size(r)[begin:end-1]) kernel!(r, a, b, f, Val(axes(a, 2)), Val(axes(b, 2)); ndrange = size(r)) return r end @kernel function kron_E_E_D_kernel(r::AbstractArray{T}, d, g, ::Val{L}) where {T,L} (i, j, k, e) = @index(Global, NTuple) acc = zero(T) @inbounds begin @unroll for l in L acc = muladd(d[i, l], g[l, j, k, e], acc) end r[i, j, k, e] = acc end end function (*)( K::Kron{Tuple{E₃,E₂,D}}, f::F, ) where {D<:AbstractMatrix,E₃<:Eye,E₂<:Eye,F<:AbstractVecOrMat} e₃, e₂, d = components(K) g = reshape(f, size(d, 2), size(e₂, 1), size(e₃, 1), :) r = similar(f, size(d, 1), size(e₂, 1), size(e₃, 1), size(g, 4)) backend = get_backend(r) kernel! = kron_E_E_D_kernel(backend, size(r)[begin:end-1]) kernel!(r, d, g, Val(axes(d, 2)); ndrange = size(r)) return F <: AbstractVector ? vec(r) : reshape(r, size(K, 1), size(f, 2)) end function (*)( K::Kron{Tuple{E₃,E₂,D}}, f::GridArray, ) where {D<:AbstractMatrix,E₃<:Eye,E₂<:Eye} e₃, e₂, d = components(K) r = similar(f, size(d, 1), size(e₂, 1), size(e₃, 1), size(f, 4)) backend = get_backend(r) kernel! = kron_E_E_D_kernel(backend, size(r)[begin:end-1]) kernel!(r, d, f, Val(axes(d, 2)); ndrange = size(r)) return r end @kernel function kron_E_D_E_kernel(r::AbstractArray{T}, d, g, ::Val{L}) where {T,L} (i, j, k, e) = @index(Global, NTuple) acc = zero(T) @inbounds begin @unroll for l in L acc = muladd(d[j, l], g[i, l, k, e], acc) end r[i, j, k, e] = acc end end function (*)( K::Kron{Tuple{E₃,D,E₁}}, f::F, ) where {D<:AbstractMatrix,E₁<:Eye,E₃<:Eye,F<:AbstractVecOrMat} e₃, d, e₁ = components(K) g = reshape(f, size(e₁, 1), size(d, 2), size(e₃, 1), :) r = similar(f, size(e₁, 1), size(d, 1), size(e₃, 1), size(g, 4)) backend = get_backend(r) kernel! = kron_E_D_E_kernel(backend, size(r)[begin:end-1]) kernel!(r, d, g, Val(axes(d, 2)); ndrange = size(r)) return F <: AbstractVector ? vec(r) : reshape(r, size(K, 1), size(f, 2)) end function (*)( K::Kron{Tuple{E₃,D,E₁}}, f::GridArray, ) where {D<:AbstractMatrix,E₁<:Eye,E₃<:Eye} e₃, d, e₁ = components(K) r = similar(f, size(e₁, 1), size(d, 1), size(e₃, 1), size(f, 4)) backend = get_backend(r) kernel! = kron_E_D_E_kernel(backend, size(r)[begin:end-1]) kernel!(r, d, f, Val(axes(d, 2)); ndrange = size(r)) return r end @kernel function kron_D_E_E_kernel(r::AbstractArray{T}, d, g, ::Val{L}) where {T,L} (i, j, k, e) = @index(Global, NTuple) acc = zero(T) @inbounds begin @unroll for l in L acc = muladd(d[k, l], g[i, j, l, e], acc) end r[i, j, k, e] = acc end end function (*)( K::Kron{Tuple{D,E₂,E₁}}, f::F, ) where {D<:AbstractMatrix,E₁<:Eye,E₂<:Eye,F<:AbstractVecOrMat} d, e₂, e₁ = components(K) g = reshape(f, size(e₁, 1), size(e₂, 1), size(d, 2), :) r = similar(f, size(e₁, 1), size(e₂, 1), size(d, 1), size(g, 4)) backend = get_backend(r) kernel! = kron_D_E_E_kernel(backend, size(r)[begin:end-1]) kernel!(r, d, g, Val(axes(d, 2)); ndrange = size(r)) return F <: AbstractVector ? vec(r) : reshape(r, size(K, 1), size(f, 2)) end function (*)( K::Kron{Tuple{D,E₂,E₁}}, f::GridArray, ) where {D<:AbstractMatrix,E₁<:Eye,E₂<:Eye} d, e₂, e₁ = components(K) r = similar(f, size(e₁, 1), size(e₂, 1), size(d, 1), size(f, 4)) backend = get_backend(r) kernel! = kron_D_E_E_kernel(backend, size(r)[begin:end-1]) kernel!(r, d, f, Val(axes(d, 2)); ndrange = size(r)) return r end @kernel function kron_C_B_A_kernel( r::AbstractArray{T}, a, b, c, g, ::Val{L}, ::Val{M}, ::Val{N}, ) where {T,L,M,N} (i, j, k, e) = @index(Global, NTuple) acc = zero(T) @inbounds begin # TODO: use temporary space to reduce complexity @unroll for l in L @unroll for m in M @unroll for n in N acc = muladd(c[k, n] * b[j, m] * a[i, l], g[l, m, n, e], acc) end end end r[i, j, k, e] = acc end end function (*)( K::Kron{Tuple{C,B,A}}, f::F, ) where {A<:AbstractMatrix,B<:AbstractMatrix,C<:AbstractMatrix,F<:AbstractVecOrMat} c, b, a = components(K) g = reshape(f, size(a, 2), size(b, 2), size(c, 2), :) r = similar(f, size(a, 1), size(b, 1), size(c, 1), size(g, 4)) backend = get_backend(r) kernel! = kron_C_B_A_kernel(backend, size(r)[begin:end-1]) kernel!( r, a, b, c, g, Val(axes(a, 2)), Val(axes(b, 2)), Val(axes(c, 2)); ndrange = size(r), ) return F <: AbstractVector ? vec(r) : reshape(r, size(K, 1), size(f, 2)) end function (*)( K::Kron{Tuple{C,B,A}}, f::GridArray, ) where {A<:AbstractMatrix,B<:AbstractMatrix,C<:AbstractMatrix} c, b, a = components(K) r = similar(f, size(a, 1), size(b, 1), size(c, 1), size(f, 4)) backend = get_backend(r) kernel! = kron_C_B_A_kernel(backend, size(r)[begin:end-1]) kernel!( r, a, b, c, f, Val(axes(a, 2)), Val(axes(b, 2)), Val(axes(c, 2)); ndrange = size(r), ) return r end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
84048
function lobattooperators_1d(::Type{T}, M) where {T} oldprecision = precision(BigFloat) # Increase precision of the type used to compute the 1D operators to help # ensure any symmetries. This is not thread safe so an alternative would # be to use ArbNumerics.jl which keeps its precision in the type. setprecision(BigFloat, 2^(max(8, ceil(Int, log2(precision(T))) + 2))) points, weights = legendregausslobatto(BigFloat, M) gausspoints, _ = legendregauss(BigFloat, M) derivative = spectralderivative(points) weightedderivative = weights .* derivative skewweightedderivative = (weightedderivative - weightedderivative') / 2 equallyspacedpoints = range(-one(BigFloat), stop = one(BigFloat), length = M) toequallyspaced = spectralinterpolation(points, equallyspacedpoints) tolowerhalf = spectralinterpolation(points, (points .- 1) ./ 2) toupperhalf = spectralinterpolation(points, (points .+ 1) ./ 2) togauss = spectralinterpolation(points, gausspoints) tolobatto = spectralinterpolation(points, points) toboundary = spectralinterpolation(points, [-1, 1]) setprecision(oldprecision) points = Array{T}(points) weights = Array{T}(weights) derivative = Array{T}(derivative) weightedderivative = Array{T}(weightedderivative) skewweightedderivative = Array{T}(skewweightedderivative) toequallyspaced = Array{T}(toequallyspaced) tohalves = (Array{T}(tolowerhalf), Array{T}(toupperhalf)) togauss = Array{T}(togauss) tolobatto = Array{T}(tolobatto) toboundary = Array{T}(toboundary) return (; points, weights, derivative, weightedderivative, skewweightedderivative, toequallyspaced, tohalves, togauss, tolobatto, toboundary, ) end struct LobattoCell{T,A,N,S,O,P,D,WD,SWD,M,FM,E,H,TG,TL,TB} <: AbstractCell{T,A,N} size::S points_1d::O weights_1d::O points::P derivatives::D weightedderivatives::WD skewweightedderivatives::SWD mass::M facemass::FM toequallyspaced::E tohalves_1d::H togauss::TG tolobatto::TL toboundary::TB end function Base.similar(::LobattoCell{T,A}, dims::Dims) where {T,A} return LobattoCell{T,A}(dims...) end function Base.show(io::IO, cell::LobattoCell{T,A}) where {T,A} print(io, "LobattoCell{") Base.show(io, T) print(io, ", ") Base.show(io, A) print(io, "}$(size(cell))") end function Base.showarg(io::IO, ::LobattoCell{T,A,N}, toplevel) where {T,A,N} !toplevel && print(io, "::") print(io, "LobattoCell{", T, ",", A, ",", N, "}") return end function Base.summary(io::IO, cell::LobattoCell{T,A,N}) where {T,A,N} d = Base.dims2string(size(cell)) print(io, "$d LobattoCell{", T, ",", A, ",", N, "}") end function LobattoCell{T,A}(m) where {T,A} o = adapt(A, lobattooperators_1d(T, m)) points_1d = (o.points,) weights_1d = (o.weights,) points = vec(SVector.(points_1d...)) derivatives = (Kron((o.derivative,)),) weightedderivatives = (Kron((o.weightedderivative,)),) skewweightedderivatives = (Kron((o.skewweightedderivative,)),) mass = Diagonal(vec(.*(weights_1d...))) facemass = adapt(A, Diagonal([T(1), T(1)])) toequallyspaced = Kron((o.toequallyspaced,)) tohalves_1d = ((o.tohalves[1], o.tohalves[2]),) togauss = Kron((o.togauss,)) tolobatto = Kron((o.tolobatto,)) toboundary = Kron((o.toboundary,)) args = ( (m,), points_1d, weights_1d, points, derivatives, weightedderivatives, skewweightedderivatives, mass, facemass, toequallyspaced, tohalves_1d, togauss, tolobatto, toboundary, ) LobattoCell{T,A,1,typeof(args[1]),typeof.(args[3:end])...}(args...) end function LobattoCell{T,A}(m1, m2) where {T,A} o = adapt(A, (lobattooperators_1d(T, m1), lobattooperators_1d(T, m2))) points_1d = (reshape(o[1].points, (m1, 1)), reshape(o[2].points, (1, m2))) weights_1d = (reshape(o[1].weights, (m1, 1)), reshape(o[2].weights, (1, m2))) points = vec(SVector.(points_1d...)) derivatives = (Kron((Eye{T}(m2), o[1].derivative)), Kron((o[2].derivative, Eye{T}(m1)))) weightedderivatives = ( Kron((Eye{T}(m2), o[1].weightedderivative)), Kron((o[2].weightedderivative, Eye{T}(m1))), ) skewweightedderivatives = ( Kron((Eye{T}(m2), o[1].skewweightedderivative)), Kron((o[2].skewweightedderivative, Eye{T}(m1))), ) mass = Diagonal(vec(.*(weights_1d...))) ω1, ω2 = weights_1d facemass = Diagonal(vcat(repeat(vec(ω2), 2), repeat(vec(ω1), 2))) toequallyspaced = Kron((o[2].toequallyspaced, o[1].toequallyspaced)) tohalves_1d = ((o[1].tohalves[1], o[1].tohalves[2]), (o[2].tohalves[1], o[2].tohalves[2])) togauss = Kron((o[2].togauss, o[1].togauss)) tolobatto = Kron((o[2].tolobatto, o[1].tolobatto)) toboundary = Kron((o[2].toboundary, o[1].toboundary)) args = ( (m1, m2), points_1d, weights_1d, points, derivatives, weightedderivatives, skewweightedderivatives, mass, facemass, toequallyspaced, tohalves_1d, togauss, tolobatto, toboundary, ) LobattoCell{T,A,2,typeof(args[1]),typeof.(args[3:end])...}(args...) end function LobattoCell{T,A}(m1, m2, m3) where {T,A} o = adapt( A, ( lobattooperators_1d(T, m1), lobattooperators_1d(T, m2), lobattooperators_1d(T, m3), ), ) points_1d = ( reshape(o[1].points, (m1, 1, 1)), reshape(o[2].points, (1, m2, 1)), reshape(o[3].points, (1, 1, m3)), ) weights_1d = ( reshape(o[1].weights, (m1, 1, 1)), reshape(o[2].weights, (1, m2, 1)), reshape(o[3].weights, (1, 1, m3)), ) points = vec(SVector.(points_1d...)) derivatives = ( Kron((Eye{T}(m3), Eye{T}(m2), o[1].derivative)), Kron((Eye{T}(m3), o[2].derivative, Eye{T}(m1))), Kron((o[3].derivative, Eye{T}(m2), Eye{T}(m1))), ) weightedderivatives = ( Kron((Eye{T}(m3), Eye{T}(m2), o[1].weightedderivative)), Kron((Eye{T}(m3), o[2].weightedderivative, Eye{T}(m1))), Kron((o[3].weightedderivative, Eye{T}(m2), Eye{T}(m1))), ) skewweightedderivatives = ( Kron((Eye{T}(m3), Eye{T}(m2), o[1].skewweightedderivative)), Kron((Eye{T}(m3), o[2].skewweightedderivative, Eye{T}(m1))), Kron((o[3].skewweightedderivative, Eye{T}(m2), Eye{T}(m1))), ) mass = Diagonal(vec(.*(weights_1d...))) ω1, ω2, ω3 = weights_1d facemass = Diagonal( vcat(repeat(vec(ω2 .* ω3), 2), repeat(vec(ω1 .* ω3), 2), repeat(vec(ω1 .* ω2), 2)), ) toequallyspaced = Kron((o[3].toequallyspaced, o[2].toequallyspaced, o[1].toequallyspaced)) tohalves_1d = ( (o[1].tohalves[1], o[1].tohalves[2]), (o[2].tohalves[1], o[2].tohalves[2]), (o[3].tohalves[1], o[3].tohalves[2]), ) togauss = Kron((o[3].togauss, o[2].togauss, o[1].togauss)) tolobatto = Kron((o[3].tolobatto, o[2].tolobatto, o[1].tolobatto)) toboundary = Kron((o[3].toboundary, o[2].toboundary, o[1].toboundary)) args = ( (m1, m2, m3), points_1d, weights_1d, points, derivatives, weightedderivatives, skewweightedderivatives, mass, facemass, toequallyspaced, tohalves_1d, togauss, tolobatto, toboundary, ) LobattoCell{T,A,3,typeof(args[1]),typeof.(args[3:end])...}(args...) end LobattoCell{T}(args...) where {T} = LobattoCell{T,Array}(args...) LobattoCell(args...) = LobattoCell{Float64}(args...) function Adapt.adapt_structure(to, cell::LobattoCell{T,A,N}) where {T,A,N} names = fieldnames(LobattoCell) args = ntuple(j -> adapt(to, getfield(cell, names[j])), length(names)) B = arraytype(to) LobattoCell{T,B,N,typeof(args[1]),typeof.(args[3:end])...}(args...) end const LobattoLine{T,A} = LobattoCell{T,A,1} const LobattoQuad{T,A} = LobattoCell{T,A,2} const LobattoHex{T,A} = LobattoCell{T,A,3} Base.size(cell::LobattoCell) = cell.size points_1d(cell::LobattoCell) = cell.points_1d weights_1d(cell::LobattoCell) = cell.weights_1d points(cell::LobattoCell) = cell.points derivatives(cell::LobattoCell) = cell.derivatives weightedderivatives(cell::LobattoCell) = cell.weightedderivatives skewweightedderivatives(cell::LobattoCell) = cell.skewweightedderivatives function derivatives_1d(cell::LobattoCell) N = ndims(cell) ntuple(i -> cell.derivatives[i].args[N-i+1], Val(N)) end function weightedderivatives_1d(cell::LobattoCell) N = ndims(cell) ntuple(i -> cell.weightedderivatives[i].args[N-i+1], Val(N)) end function skewweightedderivatives_1d(cell::LobattoCell) N = ndims(cell) ntuple(i -> cell.skewweightedderivatives[i].args[N-i+1], Val(N)) end mass(cell::LobattoCell) = cell.mass facemass(cell::LobattoCell) = cell.facemass toequallyspaced(cell::LobattoCell) = cell.toequallyspaced tohalves_1d(cell::LobattoCell) = cell.tohalves_1d degrees(cell::LobattoCell) = size(cell) .- 1 togauss(cell::LobattoCell) = cell.togauss tolobatto(cell::LobattoCell) = cell.tolobatto toboundary(cell::LobattoCell) = cell.toboundary togauss_1d(cell::LobattoCell) = reverse(cell.togauss.args) tolobatto_1d(cell::LobattoCell) = reverse(cell.tolobatto.args) toboundary_1d(cell::LobattoCell) = reverse(cell.toboundary.args) faceoffsets(::LobattoLine) = (0, 1, 2) function faceoffsets(cell::LobattoQuad) Nf = (size(cell, 2), size(cell, 2), size(cell, 1), size(cell, 1)) return cumsum((0, Nf...)) end function faceoffsets(cell::LobattoHex) Nf = ( size(cell, 2) * size(cell, 3), size(cell, 2) * size(cell, 3), size(cell, 1) * size(cell, 3), size(cell, 1) * size(cell, 3), size(cell, 1) * size(cell, 2), size(cell, 1) * size(cell, 2), ) return cumsum((0, Nf...)) end @kernel function quadpoints!( points, ri, si, coarsegridcells, coarsegridvertices, numberofquadrants, quadranttolevel, quadranttotreeid, quadranttocoordinate, ::Val{I}, ::Val{J}, ::Val{Q}, ) where {I,J,Q} i, j, q1 = @index(Local, NTuple) _, _, q = @index(Global, NTuple) @uniform T = eltype(eltype(points)) treecoords = @localmem eltype(points) (2, 2, Q) rl = @localmem eltype(ri) (I,) sl = @localmem eltype(si) (J,) @inbounds begin if q ≤ numberofquadrants if j == 1 && q1 == 1 rl[i] = ri[i] end if i == 1 && q1 == 1 sl[j] = si[j] end if i ≤ 2 && j ≤ 2 treeid = quadranttotreeid[q] vids = coarsegridcells[treeid] treecoords[i, j, q1] = coarsegridvertices[vids[i+2*(j-1)]] end end end @synchronize @inbounds begin if q ≤ numberofquadrants treeid = quadranttotreeid[q] level = quadranttolevel[q] ix = quadranttocoordinate[q, 1] iy = quadranttocoordinate[q, 2] P4EST_MAXLEVEL = 30 P4EST_ROOT_LEN = 1 << P4EST_MAXLEVEL cr = T(ix) / P4EST_ROOT_LEN cs = T(iy) / P4EST_ROOT_LEN h = one(T) / (1 << (level + 1)) r = cr + h * (rl[i] + 1) s = cs + h * (sl[j] + 1) w1 = (1 - r) * (1 - s) w2 = r * (1 - s) w3 = (1 - r) * s w4 = r * s c1 = treecoords[1, 1, q1] c2 = treecoords[2, 1, q1] c3 = treecoords[1, 2, q1] c4 = treecoords[2, 2, q1] points[i, j, q] = w1 * c1 + w2 * c2 + w3 * c3 + w4 * c4 end end end function materializepoints( referencecell::LobattoQuad, coarsegridcells, coarsegridvertices, quadranttolevel, quadranttotreeid, quadranttocoordinate, localnumberofquadrants, comm, ) r = vec.(points_1d(referencecell)) Q = max(512 ÷ prod(length.(r)), 1) IntType = typeof(length(r)) num_local = IntType(localnumberofquadrants) points = GridArray{eltype(coarsegridvertices)}( undef, arraytype(referencecell), (length.(r)..., num_local), (length.(r)..., length(quadranttolevel)), comm, false, length(r) + 1, ) backend = get_backend(points) kernel! = quadpoints!(backend, (length.(r)..., Q)) kernel!( points, r..., coarsegridcells, coarsegridvertices, length(quadranttolevel), quadranttolevel, quadranttotreeid, quadranttocoordinate, Val.(length.(r))..., Val(Q); ndrange = size(points), ) return points end function materializepoints( referencecell::LobattoQuad, coarsegridcells, coarsegridvertices, interpolation_degree, faceinterpolation, quadranttointerpolation, quadranttolevel, quadranttotreeid, quadranttocoordinate, localnumberofquadrants, comm, ) r = vec.(points_1d(referencecell)) FT = floattype(referencecell) AT = arraytype(referencecell) N = (interpolation_degree + 1, interpolation_degree + 1) interp_r = vec.(points_1d(LobattoCell{FT,AT}(N...))) Q = max(512 ÷ prod(length.(r)), 1) IntType = typeof(length(r)) num_local = IntType(localnumberofquadrants) points = GridArray{eltype(coarsegridvertices)}( undef, arraytype(referencecell), (length.(r)..., num_local), (length.(r)..., length(quadranttolevel)), comm, false, length(r) + 1, ) backend = get_backend(points) kernel! = curvedquadpoints!(backend, (length.(r)..., Q)) kernel!( points, r..., interp_r..., coarsegridcells, coarsegridvertices, interpolation_degree, faceinterpolation, quadranttointerpolation, length(quadranttolevel), quadranttolevel, quadranttotreeid, quadranttocoordinate, Val.(length.(r))..., Val(Q); ndrange = size(points), ) return points end @inline function interp(t, n, data, offset, degree) x = zero(t) y = zero(t) t = 2 * t - 1 for i = 1:degree+1 li = one(t) for j = 1:degree+1 if i != j li *= (t - n[j]) / (n[i] - n[j]) end end x += data[offset+i-1, 1] * li y += data[offset+i-1, 2] * li end return x, y end @inline function bary_interp(t, n, data, offset, degree) x = zero(t) y = zero(t) denom = zero(t) t = 2 * t - 1 w = ones(typeof(t), degree + 1) for i = 1:degree+1 for j = 1:degree+1 if i ≠ j w[i] *= (n[i] - n[j]) end end w[i] = 1 / w[i] end for i = 1:degree+1 if i != 1 || i != degree + 1 x += w[i] * data[offset+i-1, 1] / (t - n[i]) y += w[i] * data[offset+i-1, 2] / (t - n[i]) denom += w[i] / (t - n[i]) else x += data[offset+i-1, 1] y += data[offset+i-1, 2] end end return x / denom, y / denom end @inline function interp(t, s, n_t, n_s, data, offset, degree) x = zero(t) y = zero(t) z = zero(t) for i = 1:degree+1 for j = 1:degree+1 li_t = one(t) li_s = one(s) for k = 1:degree+1 if i != k li_t *= (t - n_t[k]) / (n_t[i] - n_t[k]) end end for k = 1:degree+1 if j != k li_s *= (s - n_s[k]) / (n_s[j] - n_s[k]) end end x += data[offset+(j-1)*(degree+1)+i-1, 1] * li_t * li_s y += data[offset+(j-1)*(degree+1)+i-1, 2] * li_t * li_s z += data[offset+(j-1)*(degree+1)+i-1, 3] * li_t * li_s end end return x, y, z end @kernel function curvedquadpoints!( points, ri, si, interp_r, interp_s, coarsegridcells, coarsegridvertices, interpolation_degree, faceinterpolation, quadranttointerpolation, numberofquadrants, quadranttolevel, quadranttotreeid, quadranttocoordinate, ::Val{I}, ::Val{J}, ::Val{Q}, ) where {I,J,Q} i, j, q1 = @index(Local, NTuple) _, _, q = @index(Global, NTuple) @uniform T = eltype(eltype(points)) treecoords = @localmem eltype(points) (2, 2, Q) rl = @localmem eltype(ri) (I,) sl = @localmem eltype(si) (J,) @inbounds begin if q ≤ numberofquadrants if j == 1 && q1 == 1 rl[i] = ri[i] end if i == 1 && q1 == 1 sl[j] = si[j] end if i ≤ 2 && j ≤ 2 treeid = quadranttotreeid[q] vids = coarsegridcells[treeid] treecoords[i, j, q1] = coarsegridvertices[vids[i+2*(j-1)]] end end end @synchronize @inbounds begin if q ≤ numberofquadrants treeid = quadranttotreeid[q] level = quadranttolevel[q] ix = quadranttocoordinate[q, 1] iy = quadranttocoordinate[q, 2] P4EST_MAXLEVEL = 30 P4EST_ROOT_LEN = 1 << P4EST_MAXLEVEL cr = T(ix) / P4EST_ROOT_LEN cs = T(iy) / P4EST_ROOT_LEN h = one(T) / (1 << (level + 1)) r = cr + h * (rl[i] + 1) s = cs + h * (sl[j] + 1) interp_idx1 = quadranttointerpolation[treeid, 1] interp_idx2 = quadranttointerpolation[treeid, 2] interp_idx3 = quadranttointerpolation[treeid, 3] interp_idx4 = quadranttointerpolation[treeid, 4] c1 = treecoords[1, 1, q1] c2 = treecoords[2, 1, q1] c3 = treecoords[1, 2, q1] c4 = treecoords[2, 2, q1] if interp_idx1 != 0 f1x, f1y = interp( r, interp_r, faceinterpolation, interp_idx1, interpolation_degree, ) else f1x, f1y = c1 .+ (r * (c2 - c1)) end if interp_idx2 != 0 f2x, f2y = interp( s, interp_s, faceinterpolation, interp_idx2, interpolation_degree, ) else f2x, f2y = c2 .+ (s * (c4 - c2)) end if interp_idx3 != 0 f3x, f3y = interp( r, interp_r, faceinterpolation, interp_idx3, interpolation_degree, ) else f3x, f3y = c3 .+ (r * (c4 - c3)) end if interp_idx4 != 0 f4x, f4y = interp( s, interp_s, faceinterpolation, interp_idx4, interpolation_degree, ) else f4x, f4y = c1 .+ (s * (c3 - c1)) end x = (1 - s) * f1x + s * f3x + (1 - r) * f4x + r * f2x -(1 - s) * (1 - r) * c1[1] - (1 - s) * r * c3[1] -s * (1 - r) * c2[1] - s * r * c4[1] y = (1 - s) * f1y + s * f3y + (1 - r) * f4y + r * f2y -(1 - s) * (1 - r) * c1[2] - (1 - s) * r * c3[2] -s * (1 - r) * c2[2] - s * r * c4[2] points[i, j, q] = (x / 2, y / 2) end end end @kernel function quadbrickpoints!( points, ri, si, coarsegridcells, coarsegridvertices, numberofquadrants, quadranttolevel, quadranttotreeid, quadranttocoordinate, ::Val{I}, ::Val{J}, ::Val{Q}, ) where {I,J,Q} i, j, q1 = @index(Local, NTuple) _, _, q = @index(Global, NTuple) @uniform T = eltype(eltype(points)) treecoords = @localmem eltype(points) (2, 2, Q) rl = @localmem eltype(ri) (I,) sl = @localmem eltype(si) (J,) @inbounds begin if q ≤ numberofquadrants if j == 1 && q1 == 1 rl[i] = ri[i] end if i == 1 && q1 == 1 sl[j] = si[j] end if i ≤ 2 && j ≤ 2 treeid = quadranttotreeid[q] vids = coarsegridcells[treeid] treecoords[i, j, q1] = coarsegridvertices[vids[i+2*(j-1)]] end end end @synchronize @inbounds begin if q ≤ numberofquadrants treeid = quadranttotreeid[q] level = quadranttolevel[q] ix = quadranttocoordinate[q, 1] iy = quadranttocoordinate[q, 2] P4EST_MAXLEVEL = 30 P4EST_ROOT_LEN = 1 << P4EST_MAXLEVEL cr = T(ix) / P4EST_ROOT_LEN cs = T(iy) / P4EST_ROOT_LEN h = one(T) / (1 << (level + 1)) r = muladd(h, (rl[i] + 1), cr) s = muladd(h, (sl[j] + 1), cs) c1 = treecoords[1, 1, q1] c2 = treecoords[2, 1, q1] c3 = treecoords[1, 2, q1] dx = c2[1] - c1[1] dy = c3[2] - c1[2] points[i, j, q] = SVector(muladd(dx, r, c1[1]), muladd(dy, s, c1[2])) end end end function materializebrickpoints( referencecell::LobattoQuad, coarsegridcells, coarsegridvertices, quadranttolevel, quadranttotreeid, quadranttocoordinate, localnumberofquadrants, comm, ) r = vec.(points_1d(referencecell)) Q = max(512 ÷ prod(length.(r)), 1) IntType = typeof(length(r)) num_local = IntType(localnumberofquadrants) points = GridArray{eltype(coarsegridvertices)}( undef, arraytype(referencecell), (length.(r)..., num_local), (length.(r)..., length(quadranttolevel)), comm, false, length(r) + 1, ) backend = get_backend(points) kernel! = quadbrickpoints!(backend, (length.(r)..., Q)) kernel!( points, r..., coarsegridcells, coarsegridvertices, length(quadranttolevel), quadranttolevel, quadranttotreeid, quadranttocoordinate, Val.(length.(r))..., Val(Q); ndrange = size(points), ) return points end @kernel function hexpoints!( points, ri, si, ti, coarsegridcells, coarsegridvertices, numberofquadrants, quadranttolevel, quadranttotreeid, quadranttocoordinate, ::Val{I}, ::Val{J}, ::Val{K}, ) where {I,J,K} i, j, k = @index(Local, NTuple) q = @index(Group, Linear) @uniform T = eltype(eltype(points)) treecoords = @localmem eltype(points) (2, 2, 2) rl = @localmem eltype(ri) (I,) sl = @localmem eltype(si) (J,) tl = @localmem eltype(ti) (K,) @inbounds begin if q ≤ numberofquadrants if j == 1 && k == 1 rl[i] = ri[i] end if i == 1 && k == 1 sl[j] = si[j] end if i == 1 && j == 1 tl[k] = ti[k] end if i ≤ 2 && j ≤ 2 && k ≤ 2 treeid = quadranttotreeid[q] vids = coarsegridcells[treeid] id = i + 2 * (j - 1) + 4 * (k - 1) treecoords[i, j, k] = coarsegridvertices[vids[id]] end end end @synchronize @inbounds begin if q ≤ numberofquadrants treeid = quadranttotreeid[q] level = quadranttolevel[q] ix = quadranttocoordinate[q, 1] iy = quadranttocoordinate[q, 2] iz = quadranttocoordinate[q, 3] P4EST_MAXLEVEL = 30 P4EST_ROOT_LEN = 1 << P4EST_MAXLEVEL cr = T(ix) / P4EST_ROOT_LEN cs = T(iy) / P4EST_ROOT_LEN ct = T(iz) / P4EST_ROOT_LEN h = one(T) / (1 << (level + 1)) r = cr + h * (rl[i] + 1) s = cs + h * (sl[j] + 1) t = ct + h * (tl[k] + 1) w1 = (1 - r) * (1 - s) * (1 - t) w2 = r * (1 - s) * (1 - t) w3 = (1 - r) * s * (1 - t) w4 = r * s * (1 - t) w5 = (1 - r) * (1 - s) * t w6 = r * (1 - s) * t w7 = (1 - r) * s * t w8 = r * s * t points[i, j, k, q] = w1 * treecoords[1] + w2 * treecoords[2] + w3 * treecoords[3] + w4 * treecoords[4] + w5 * treecoords[5] + w6 * treecoords[6] + w7 * treecoords[7] + w8 * treecoords[8] end end end function materializepoints( referencecell::LobattoHex, coarsegridcells, coarsegridvertices, quadranttolevel, quadranttotreeid, quadranttocoordinate, localnumberofquadrants, comm, ) r = vec.(points_1d(referencecell)) IntType = typeof(length(r)) num_local = IntType(localnumberofquadrants) points = GridArray{eltype(coarsegridvertices)}( undef, arraytype(referencecell), (length.(r)..., num_local), (length.(r)..., length(quadranttolevel)), comm, false, length(r) + 1, ) backend = get_backend(points) kernel! = hexpoints!(backend, length.(r)) kernel!( points, r..., coarsegridcells, coarsegridvertices, length(quadranttolevel), quadranttolevel, quadranttotreeid, quadranttocoordinate, Val.(length.(r))...; ndrange = size(points), ) return points end @kernel function curvedhexpoints!( points, ri, si, ti, interp_r, interp_s, interp_t, coarsegridcells, coarsegridvertices, interpolation_degree, faceinterpolation, quadranttointerpolation, numberofquadrants, quadranttolevel, quadranttotreeid, quadranttocoordinate, ::Val{I}, ::Val{J}, ::Val{K}, ) where {I,J,K} i, j, k = @index(Local, NTuple) q = @index(Group, Linear) @uniform T = eltype(eltype(points)) treecoords = @localmem eltype(points) (2, 2, 2) rl = @localmem eltype(ri) (I,) sl = @localmem eltype(si) (J,) tl = @localmem eltype(ti) (K,) @inbounds begin if q ≤ numberofquadrants if j == 1 && k == 1 rl[i] = ri[i] end if i == 1 && k == 1 sl[j] = si[j] end if i == 1 && j == 1 tl[k] = ti[k] end if i ≤ 2 && j ≤ 2 && k ≤ 2 treeid = quadranttotreeid[q] vids = coarsegridcells[treeid] id = i + 2 * (j - 1) + 4 * (k - 1) treecoords[i, j, k] = coarsegridvertices[vids[id]] end end end @synchronize @inbounds begin if q ≤ numberofquadrants treeid = quadranttotreeid[q] level = quadranttolevel[q] ix = quadranttocoordinate[q, 1] iy = quadranttocoordinate[q, 2] iz = quadranttocoordinate[q, 3] P4EST_MAXLEVEL = 30 P4EST_ROOT_LEN = 1 << P4EST_MAXLEVEL cr = T(ix) / P4EST_ROOT_LEN cs = T(iy) / P4EST_ROOT_LEN ct = T(iz) / P4EST_ROOT_LEN h = one(T) / (1 << (level)) r = (2 * cr - 1) + h * (rl[i] + 1) s = (2 * cs - 1) + h * (sl[j] + 1) t = (2 * ct - 1) + h * (tl[k] + 1) p1 = treecoords[1] p2 = treecoords[2] p3 = treecoords[4] p4 = treecoords[3] p5 = treecoords[5] p6 = treecoords[6] p7 = treecoords[8] p8 = treecoords[7] interp_idx1 = quadranttointerpolation[treeid, 1] interp_idx2 = quadranttointerpolation[treeid, 2] interp_idx3 = quadranttointerpolation[treeid, 3] interp_idx4 = quadranttointerpolation[treeid, 4] interp_idx5 = quadranttointerpolation[treeid, 5] interp_idx6 = quadranttointerpolation[treeid, 6] # Below f1x corresponds to the x component of the interpolation onto the hex face 1. # f1e1x: face 1 edge 1 x coordinate # HOHQMesh data is in rhr vertex order # # 8-----------7 # |\ \ # | \ \ # | \ \ # | 5-----------6 # | | | # 4 | 3 | # \ | | # \ | | # \| | # 1-----------2 # t s # | / # |/ # --->r if interp_idx1 != 0 f1x, f1y, f1z = interp( r, t, interp_r, interp_t, faceinterpolation, interp_idx1, interpolation_degree, ) # edge interpolation on face 1 f1e1x, f1e1y, f1e1z = interp( r, -1, interp_r, interp_t, faceinterpolation, interp_idx1, interpolation_degree, ) f1e2x, f1e2y, f1e2z = interp( 1, t, interp_r, interp_t, faceinterpolation, interp_idx1, interpolation_degree, ) f1e3x, f1e3y, f1e3z = interp( r, 1, interp_r, interp_t, faceinterpolation, interp_idx1, interpolation_degree, ) f1e4x, f1e4y, f1e4z = interp( -1, t, interp_r, interp_t, faceinterpolation, interp_idx1, interpolation_degree, ) else f1x, f1y, f1z = ( p1 * (1 - r) * (1 - t) + p2 * (r + 1) * (1 - t) + p5 * (1 - r) * (t + 1) + p6 * (r + 1) * (t + 1) ) / 4 f1e1x, f1e1y, f1e1z = (p1 * (1 - r) + p2 * (r + 1)) / 2 #edge 1 f1e2x, f1e2y, f1e2z = (p2 * (1 - t) + p6 * (t + 1)) / 2 #edge 2 f1e3x, f1e3y, f1e3z = (p5 * (1 - r) + p6 * (r + 1)) / 2 #edge 3 f1e4x, f1e4y, f1e4z = (p1 * (1 - t) + p5 * (t + 1)) / 2 #edge 4 end if interp_idx2 != 0 f2x, f2y, f2z = interp( r, t, interp_r, interp_t, faceinterpolation, interp_idx2, interpolation_degree, ) # edge interpolation on face 2 f2e1x, f2e1y, f2e1z = interp( r, -1, interp_r, interp_t, faceinterpolation, interp_idx2, interpolation_degree, ) f2e2x, f2e2y, f2e2z = interp( 1, t, interp_r, interp_t, faceinterpolation, interp_idx2, interpolation_degree, ) f2e3x, f2e3y, f2e3z = interp( r, 1, interp_r, interp_t, faceinterpolation, interp_idx2, interpolation_degree, ) f2e4x, f2e4y, f2e4z = interp( -1, t, interp_r, interp_t, faceinterpolation, interp_idx2, interpolation_degree, ) else f2x, f2y, f2z = ( p4 * (1 - r) * (1 - t) + p3 * (r + 1) * (1 - t) + p8 * (1 - r) * (t + 1) + p7 * (r + 1) * (t + 1) ) / 4 f2e1x, f2e1y, f2e1z = (p4 * (1 - r) + p3 * (r + 1)) / 2 #edge 5 f2e2x, f2e2y, f2e2z = (p3 * (1 - t) + p7 * (t + 1)) / 2 #edge 6 f2e3x, f2e3y, f2e3z = (p8 * (1 - r) + p7 * (r + 1)) / 2 #edge 7 f2e4x, f2e4y, f2e4z = (p4 * (1 - t) + p8 * (t + 1)) / 2 #edge 8 end if interp_idx3 != 0 f3x, f3y, f3z = interp( r, s, interp_r, interp_s, faceinterpolation, interp_idx3, interpolation_degree, ) else f3x, f3y, f3z = ( p1 * (1 - r) * (1 - s) + p2 * (r + 1) * (1 - s) + p4 * (1 - r) * (s + 1) + p3 * (r + 1) * (s + 1) ) / 4 end if interp_idx4 != 0 f4x, f4y, f4z = interp( s, t, interp_s, interp_t, faceinterpolation, interp_idx4, interpolation_degree, ) # edge interpolation on face 4 f4e1x, f4e1y, f4e1z = interp( s, -1, interp_s, interp_t, faceinterpolation, interp_idx4, interpolation_degree, ) f4e2x, f4e2y, f4e2z = interp( s, 1, interp_s, interp_t, faceinterpolation, interp_idx4, interpolation_degree, ) else f4x, f4y, f4z = ( p2 * (1 - s) * (1 - t) + p3 * (s + 1) * (1 - t) + p6 * (1 - s) * (t + 1) + p7 * (s + 1) * (t + 1) ) / 4 # edge interpolation on face 4 for linear face f4e1x, f4e1y, f4e1z = (p2 * (1 - s) + p3 * (s + 1)) / 2 # edge 10 f4e2x, f4e2y, f4e2z = (p6 * (1 - s) + p7 * (s + 1)) / 2 # edge 11 end if interp_idx5 != 0 f5x, f5y, f5z = interp( r, s, interp_r, interp_s, faceinterpolation, interp_idx5, interpolation_degree, ) else f5x, f5y, f5z = ( p5 * (1 - r) * (1 - s) + p6 * (r + 1) * (1 - s) + p8 * (1 - r) * (s + 1) + p7 * (r + 1) * (s + 1) ) / 4 end if interp_idx6 != 0 f6x, f6y, f6z = interp( s, t, interp_s, interp_t, faceinterpolation, interp_idx6, interpolation_degree, ) f6e1x, f6e1y, f6e1z = interp( s, -1, interp_s, interp_t, faceinterpolation, interp_idx6, interpolation_degree, ) f6e2x, f6e2y, f6e2z = interp( s, 1, interp_s, interp_t, faceinterpolation, interp_idx6, interpolation_degree, ) else f6x, f6y, f6z = ( p1 * (1 - s) * (1 - t) + p4 * (s + 1) * (1 - t) + p5 * (1 - s) * (t + 1) + p8 * (s + 1) * (t + 1) ) / 4 f6e1x, f6e1y, f6e1z = (p1 * (1 - s) + p4 * (s + 1)) / 2 # edge 9 f6e2x, f6e2y, f6e2z = (p5 * (1 - s) + p8 * (s + 1)) / 2 # edge 12 end x = ( (1 - r) * f6x + (1 + r) * f4x + (1 - s) * f1x + (1 + s) * f2x + (1 - t) * f3x + (1 + t) * f5x ) / 2 y = ( (1 - r) * f6y + (1 + r) * f4y + (1 - s) * f1y + (1 + s) * f2y + (1 - t) * f3y + (1 + t) * f5y ) / 2 z = ( (1 - r) * f6z + (1 + r) * f4z + (1 - s) * f1z + (1 + s) * f2z + (1 - t) * f3z + (1 + t) * f5z ) / 2 x += ( p1[1] * (1 - r) * (1 - s) * (1 - t) + p2[1] * (1 + r) * (1 - s) * (1 - t) + p3[1] * (1 + r) * (1 + s) * (1 - t) + p4[1] * (1 - r) * (1 + s) * (1 - t) + p5[1] * (1 - r) * (1 - s) * (1 + t) + p6[1] * (1 + r) * (1 - s) * (1 + t) + p7[1] * (1 + r) * (1 + s) * (1 + t) + p8[1] * (1 - r) * (1 + s) * (1 + t) ) / 8 y += ( p1[2] * (1 - r) * (1 - s) * (1 - t) + p2[2] * (1 + r) * (1 - s) * (1 - t) + p3[2] * (1 + r) * (1 + s) * (1 - t) + p4[2] * (1 - r) * (1 + s) * (1 - t) + p5[2] * (1 - r) * (1 - s) * (1 + t) + p6[2] * (1 + r) * (1 - s) * (1 + t) + p7[2] * (1 + r) * (1 + s) * (1 + t) + p8[2] * (1 - r) * (1 + s) * (1 + t) ) / 8 z += ( p1[3] * (1 - r) * (1 - s) * (1 - t) + p2[3] * (1 + r) * (1 - s) * (1 - t) + p3[3] * (1 + r) * (1 + s) * (1 - t) + p4[3] * (1 - r) * (1 + s) * (1 - t) + p5[3] * (1 - r) * (1 - s) * (1 + t) + p6[3] * (1 + r) * (1 - s) * (1 + t) + p7[3] * (1 + r) * (1 + s) * (1 + t) + p8[3] * (1 - r) * (1 + s) * (1 + t) ) / 8 x -= ( (1 - s) * (1 - t) * f1e1x + (1 + r) * (1 - s) * f1e2x + (1 - s) * (1 + t) * f1e3x + (1 - r) * (1 - s) * f1e4x + (1 + s) * (1 - t) * f2e1x + (1 + r) * (1 + s) * f2e2x + (1 + s) * (1 + t) * f2e3x + (1 - r) * (1 + s) * f2e4x + (1 - r) * (1 - t) * f6e1x + (1 + r) * (1 - t) * f4e1x + (1 + r) * (1 + t) * f4e2x + (1 - r) * (1 + t) * f6e2x ) / 4 y -= ( (1 - s) * (1 - t) * f1e1y + (1 + r) * (1 - s) * f1e2y + (1 - s) * (1 + t) * f1e3y + (1 - r) * (1 - s) * f1e4y + (1 + s) * (1 - t) * f2e1y + (1 + r) * (1 + s) * f2e2y + (1 + s) * (1 + t) * f2e3y + (1 - r) * (1 + s) * f2e4y + (1 - r) * (1 - t) * f6e1y + (1 + r) * (1 - t) * f4e1y + (1 + r) * (1 + t) * f4e2y + (1 - r) * (1 + t) * f6e2y ) / 4 z -= ( (1 - s) * (1 - t) * f1e1z + (1 + r) * (1 - s) * f1e2z + (1 - s) * (1 + t) * f1e3z + (1 - r) * (1 - s) * f1e4z + (1 + s) * (1 - t) * f2e1z + (1 + r) * (1 + s) * f2e2z + (1 + s) * (1 + t) * f2e3z + (1 - r) * (1 + s) * f2e4z + (1 - r) * (1 - t) * f6e1z + (1 + r) * (1 - t) * f4e1z + (1 + r) * (1 + t) * f4e2z + (1 - r) * (1 + t) * f6e2z ) / 4 points[i, j, k, q] = (x, y, z) end end end function materializepoints( referencecell::LobattoHex, coarsegridcells, coarsegridvertices, interpolation_degree, faceinterpolation, quadranttointerpolation, quadranttolevel, quadranttotreeid, quadranttocoordinate, localnumberofquadrants, comm, ) r = vec.(points_1d(referencecell)) FT = floattype(referencecell) AT = arraytype(referencecell) N = Tuple((interpolation_degree + 1) * ones(Int64, 3)) interp_r = vec.(points_1d(LobattoCell{FT,AT}(N...))) IntType = typeof(length(r)) num_local = IntType(localnumberofquadrants) points = GridArray{eltype(coarsegridvertices)}( undef, arraytype(referencecell), (length.(r)..., num_local), (length.(r)..., length(quadranttolevel)), comm, false, length(r) + 1, ) backend = get_backend(points) kernel! = curvedhexpoints!(backend, length.(r)) kernel!( points, r..., interp_r..., coarsegridcells, coarsegridvertices, interpolation_degree, faceinterpolation, quadranttointerpolation, length(quadranttolevel), quadranttolevel, quadranttotreeid, quadranttocoordinate, Val.(length.(r))...; ndrange = size(points), ) return points end @kernel function hexbrickpoints!( points, ri, si, ti, coarsegridcells, coarsegridvertices, numberofquadrants, quadranttolevel, quadranttotreeid, quadranttocoordinate, ::Val{I}, ::Val{J}, ::Val{K}, ) where {I,J,K} i, j, k = @index(Local, NTuple) q = @index(Group, Linear) @uniform T = eltype(eltype(points)) treecoords = @localmem eltype(points) (2, 2, 2) rl = @localmem eltype(ri) (I,) sl = @localmem eltype(si) (J,) tl = @localmem eltype(ti) (K,) @inbounds begin if q ≤ numberofquadrants if j == 1 && k == 1 rl[i] = ri[i] end if i == 1 && k == 1 sl[j] = si[j] end if i == 1 && j == 1 tl[k] = ti[k] end if i ≤ 2 && j ≤ 2 && k ≤ 2 treeid = quadranttotreeid[q] vids = coarsegridcells[treeid] id = i + 2 * (j - 1) + 4 * (k - 1) treecoords[i, j, k] = coarsegridvertices[vids[id]] end end end @synchronize @inbounds begin if q ≤ numberofquadrants treeid = quadranttotreeid[q] level = quadranttolevel[q] ix = quadranttocoordinate[q, 1] iy = quadranttocoordinate[q, 2] iz = quadranttocoordinate[q, 3] P4EST_MAXLEVEL = 30 P4EST_ROOT_LEN = 1 << P4EST_MAXLEVEL cr = T(ix) / P4EST_ROOT_LEN cs = T(iy) / P4EST_ROOT_LEN ct = T(iz) / P4EST_ROOT_LEN h = one(T) / (1 << (level + 1)) r = muladd(h, (rl[i] + 1), cr) s = muladd(h, (sl[j] + 1), cs) t = muladd(h, (tl[k] + 1), ct) c1 = treecoords[1] c2 = treecoords[2] c3 = treecoords[3] c5 = treecoords[5] dx = c2[1] - c1[1] dy = c3[2] - c1[2] dz = c5[3] - c1[3] points[i, j, k, q] = SVector(muladd(dx, r, c1[1]), muladd(dy, s, c1[2]), muladd(dz, t, c1[3])) end end end function materializebrickpoints( referencecell::LobattoHex, coarsegridcells, coarsegridvertices, quadranttolevel, quadranttotreeid, quadranttocoordinate, localnumberofquadrants, comm, ) r = vec.(points_1d(referencecell)) IntType = typeof(length(r)) num_local = IntType(localnumberofquadrants) points = GridArray{eltype(coarsegridvertices)}( undef, arraytype(referencecell), (length.(r)..., num_local), (length.(r)..., length(quadranttolevel)), comm, false, length(r) + 1, ) backend = get_backend(points) kernel! = hexbrickpoints!(backend, length.(r)) kernel!( points, r..., coarsegridcells, coarsegridvertices, length(quadranttolevel), quadranttolevel, quadranttotreeid, quadranttocoordinate, Val.(length.(r))...; ndrange = size(points), ) return points end function materializedtoc(cell::LobattoCell, dtoc_degree3_local, dtoc_degree3_global) cellsize = size(cell) dtoc = zeros(Int, cellsize..., last(size(dtoc_degree3_local))) if length(dtoc_degree3_global) > 0 # Compute the offsets for the cell node numbering offsets = zeros(Int, maximum(dtoc_degree3_local) + 1) for i in eachindex(IndexCartesian(), dtoc_degree3_local) l = dtoc_degree3_local[i] I = Tuple(i) node = I[1:end-1] if 3 ∈ node # These points are just for orientation continue end # compute the cell dofs for the corner, edge, face or volume identified by node. # This is an exclusive count, so the number of dofs in the volume do not include # the ones that are also on the faces, edges, or corners. ds = ntuple(length(node)) do n m = node[n] if m == 2 d = cellsize[n] - 2 else d = 1 end return d end # is this needed??? if offsets[l+1] == 0 offsets[l+1] = prod(ds) end end cumsum!(offsets, offsets) for i in eachindex(IndexCartesian(), dtoc_degree3_local) l = dtoc_degree3_local[i] I = Tuple(i) node = I[1:end-1] quad = I[end] if 3 ∈ node offset_node = map(x -> x == 3 ? 2 : x, node) offsets[l] = offsets[dtoc_degree3_local[offset_node..., quad]] end end for i in eachindex(IndexCartesian(), dtoc_degree3_local) l = dtoc_degree3_local[i] offset = offsets[l] I = Tuple(i) node = I[1:end-1] quad = I[end] # These points are just for orientation they are not associated # with any dofs. if 3 ∈ node continue end numtwos = sum(node .== 2) dims = ntuple(length(cellsize)) do n # We use a StepRange here so that the return type is the same # whether or not the dim gets reversed. dim = node[n] == 2 ? StepRange(2, Int8(1), cellsize[n] - 1) : node[n] == 1 ? StepRange(1, Int8(1), 1) : StepRange(cellsize[n], Int8(1), cellsize[n]) return dim end unrotatedindices = CartesianIndices(dims) if numtwos == 0 for (j, k) in enumerate(unrotatedindices) dtoc[k, quad] = j + offset end elseif numtwos == 1 twoindex = findfirst(==(2), node) @assert !isnothing(twoindex) # edge shift = ntuple(m -> m == twoindex ? 1 : 0, length(cellsize)) # get canonical orientation of the edge M = ( dtoc_degree3_global[node..., quad]..., dtoc_degree3_global[(node .+ shift)..., quad]..., ) p = orient(Val(2), M) edgedims = (cellsize[twoindex] - 2,) for (j, ei) in enumerate(CartesianIndices(edgedims)) pei = orientindex(p, edgedims, ei) k = unrotatedindices[LinearIndices(edgedims)[pei]] dtoc[k, quad] = j + offset end elseif numtwos == 2 # face twoindex1 = something(findfirst(==(2), node), 0) twoindex2 = something(findnext(==(2), node, twoindex1 + 1), 0) @assert twoindex1 != 0 @assert twoindex2 != 0 ashift = ntuple(m -> m == twoindex1 ? 1 : 0, length(cellsize)) bshift = ntuple(m -> m == twoindex2 ? 1 : 0, length(cellsize)) abshift = ashift .+ bshift M = ( dtoc_degree3_global[node..., quad]..., dtoc_degree3_global[(node .+ ashift)..., quad]..., dtoc_degree3_global[(node .+ bshift)..., quad]..., dtoc_degree3_global[(node .+ abshift)..., quad]..., ) # get canonical orientation of the edge p = orient(Val(4), M) facedims = (cellsize[twoindex1] - 2, cellsize[twoindex2] - 2) for (j, fi) in enumerate(CartesianIndices(facedims)) pfi = orientindex(p, facedims, fi) k = unrotatedindices[LinearIndices(facedims)[pfi]] dtoc[k, quad] = j + offset end elseif numtwos == 3 # volume for (j, k) in enumerate(unrotatedindices) dtoc[k, quad] = j + offset end else error("Not implemented") end end end return dtoc end function _indextoface(::Val{2}, i) degree3facelinearindices = ((5, 9), (8, 12), (2, 3), (14, 15)) f = 0 for (ff, findices) in enumerate(degree3facelinearindices) if i ∈ findices f = ff break end end @assert f != 0 return f end function _indextoface(::Val{3}, i) degree3facelinearindices = ( (21, 25, 37, 41), (24, 28, 40, 44), (18, 19, 34, 35), (30, 31, 46, 47), (6, 7, 10, 11), (54, 55, 58, 59), ) f = 0 for (ff, findices) in enumerate(degree3facelinearindices) if i ∈ findices f = ff break end end @assert f != 0 return f end @inline facedims(cell::LobattoQuad) = ((size(cell, 2),), (size(cell, 2),), (size(cell, 1),), (size(cell, 1),)) @inline facedims(cell::LobattoHex) = ( (size(cell, 2), size(cell, 3)), (size(cell, 2), size(cell, 3)), (size(cell, 1), size(cell, 3)), (size(cell, 1), size(cell, 3)), (size(cell, 1), size(cell, 2)), (size(cell, 1), size(cell, 2)), ) function materializefacemaps( cell::LobattoCell{T,A,N}, numcells_local, ctod_degree3_local, dtoc_degree3_local, dtoc_degree3_global, quadranttolevel, quadranttoglobalid, ) where {T,A,N} numcells = last(size(dtoc_degree3_local)) cellindices = LinearIndices(size(cell)) if cell isa LobattoQuad numfaces = 4 degree3faceindices = (((1, 2), (1, 3)), ((4, 2), (4, 3)), ((2, 1), (3, 1)), ((2, 4), (3, 4))) cellfacedims = ((size(cell, 2),), (size(cell, 1),)) facefaceindices = (LinearIndices((size(cell, 2),)), LinearIndices((size(cell, 1),))) cellfacedims2 = ((size(cell, 2),), (size(cell, 2),), (size(cell, 1),), (size(cell, 1),)) cellfaceindices = ( cellindices[1, 1:end], cellindices[end, 1:end], cellindices[1:end, 1], cellindices[1:end, end], ) elseif cell isa LobattoHex numfaces = 6 degree3faceindices = ( ((1, 2, 2), (1, 3, 2), (1, 2, 3), (1, 3, 3)), ((4, 2, 2), (4, 3, 2), (4, 2, 3), (4, 3, 3)), ((2, 1, 2), (3, 1, 2), (2, 1, 3), (3, 1, 3)), ((2, 4, 2), (3, 4, 2), (2, 4, 3), (3, 4, 3)), ((2, 2, 1), (3, 2, 1), (2, 3, 1), (3, 3, 1)), ((2, 2, 4), (3, 2, 4), (2, 3, 4), (3, 3, 4)), ) cellfacedims = ( (size(cell, 2), size(cell, 3)), (size(cell, 1), size(cell, 3)), (size(cell, 1), size(cell, 2)), ) facefaceindices = ( LinearIndices((size(cell, 2), size(cell, 3))), LinearIndices((size(cell, 1), size(cell, 3))), LinearIndices((size(cell, 1), size(cell, 2))), ) cellfacedims2 = ( (size(cell, 2), size(cell, 3)), (size(cell, 2), size(cell, 3)), (size(cell, 1), size(cell, 3)), (size(cell, 1), size(cell, 3)), (size(cell, 1), size(cell, 2)), (size(cell, 1), size(cell, 2)), ) cellfaceindices = ( cellindices[1, 1:end, 1:end], cellindices[end, 1:end, 1:end], cellindices[1:end, 1, 1:end], cellindices[1:end, end, 1:end], cellindices[1:end, 1:end, 1], cellindices[1:end, 1:end, end], ) else error("Unsupported element type $(typeof(cell))") end numchildfaces = 2^(ndims(cell) - 1) faceoffsets = (0, cumsum(prod.(cellfacedims2))...) faceorientations = zeros(Raven.Orientation{numchildfaces}, numfaces, numcells) for q = 1:numcells for (f, faceindices) in enumerate(degree3faceindices) tmpface = ntuple(numchildfaces) do n dtoc_degree3_global[faceindices[n]..., q] end faceorientations[f, q] = orient(Val(numchildfaces), tmpface) end end # Note that ghost faces will be connected to themselves mapM = reshape(collect(1:(last(faceoffsets)*numcells)), (last(faceoffsets), numcells)) mapP = reshape(collect(1:(last(faceoffsets)*numcells)), (last(faceoffsets), numcells)) quadranttoboundary = zeros(Int, numfaces, numcells_local) numberofnonconfaces = @MVector zeros(Int, ndims(cell)) uniquenonconnfaces = @MVector zeros(Int, ndims(cell)) noncongfacedict = ntuple(ndims(cell)) do _ Dict{NTuple{numchildfaces,eltype(dtoc_degree3_global)},Int}() end for q = 1:numcells_local for (f, faceindices) in enumerate(degree3faceindices) facefirstindex = dtoc_degree3_local[faceindices[1]..., q] kind = length(nzrange(ctod_degree3_local, facefirstindex)) if kind == 1 quadranttoboundary[f, q] = 1 elseif kind == 1 + numchildfaces # Get the canonical orientation of the global face indices fg, _ = fldmod1(f, 2) gfaceindices = ntuple(numchildfaces) do n dtoc_degree3_global[faceindices[n]..., q] end o = faceorientations[f, q] gfaceindices = gfaceindices[perm(o)] get!(noncongfacedict[fg], gfaceindices) do uniquenonconnfaces[fg] += 1 end numberofnonconfaces[fg] += 1 end end end # Not sure why I could not use the following. Type inference # was not working. # # vmapNC = ntuple(Val(ndims(cell))) do n # zeros( # Int, # cellfacedims[n][1:(ndims(cell)-1)]..., # 1 + numchildfaces, # uniquenonconnfaces[n], # ) # end # # so I ended up just explicitly writing it out vmapNC = if ndims(cell) == 2 ( zeros(Int, cellfacedims[1][1], 1 + numchildfaces, uniquenonconnfaces[1]), zeros(Int, cellfacedims[2][1], 1 + numchildfaces, uniquenonconnfaces[2]), ) else ( zeros( Int, cellfacedims[1][1], cellfacedims[1][2], 1 + numchildfaces, uniquenonconnfaces[1], ), zeros( Int, cellfacedims[2][1], cellfacedims[2][2], 1 + numchildfaces, uniquenonconnfaces[2], ), zeros( Int, cellfacedims[3][1], cellfacedims[3][2], 1 + numchildfaces, uniquenonconnfaces[3], ), ) end ncids = ntuple(ndims(cell)) do n zeros(Int, numberofnonconfaces[n]) end nctypes = ntuple(ndims(cell)) do n zeros(Int8, numberofnonconfaces[n]) end nctoface = ntuple(ndims(cell)) do n zeros(Int8, 2, uniquenonconnfaces[n]) end nonconface = zeros(Int, ndims(cell)) rows = rowvals(ctod_degree3_local) for q = 1:numcells_local for (f, faceindices3) in enumerate(degree3faceindices) fg = fld1(f, 2) facefirstindex = dtoc_degree3_local[faceindices3[1]..., q] neighborsrange = nzrange(ctod_degree3_local, facefirstindex) kind = length(neighborsrange) if kind == 1 # boundary face elseif kind == 2 # conforming face nf = 0 nq = 0 for ii in neighborsrange nq, pi = fldmod1(rows[ii], 4^ndims(cell)) nf = _indextoface(Val(N), pi) if nq != q || nf != f break end end # Make sure we found the connecting face @assert nf > 0 @assert nq > 0 # If faces are paired up from different face groups then # make sure that each face has the same number of # degrees-of-freedom @assert fld1(f, ndims(cell)) == fld1(nf, ndims(cell)) || length(cellfaceindices[f]) == length(cellfaceindices[nf]) no = inv(faceorientations[f, q]) ∘ faceorientations[nf, nq] for j in CartesianIndices(cellfacedims[fg]) nfg = fld1(nf, 2) fij = orientindex(no, cellfacedims[fg], j) mapP[faceoffsets[end]*(q-1)+faceoffsets[f]+facefaceindices[fg][j]] = mapM[faceoffsets[end]*(nq-1)+faceoffsets[nf]+facefaceindices[nfg][fij]] end else # non-conforming face @assert kind == 1 + numchildfaces nonconface[fg] += 1 o = faceorientations[f, q] gface = ntuple(numchildfaces) do n dtoc_degree3_global[faceindices3[n]..., q] end gface = gface[perm(o)] ncid = noncongfacedict[fg][gface] ncids[fg][nonconface[fg]] = ncid # compute global quadrant ids that participate in the nonconforming interface qs = fld1.(rows[neighborsrange], 4^ndims(cell)) fs = map( x -> _indextoface(Val(N), x), mod1.(rows[neighborsrange], 4^ndims(cell)), ) # use level to figure out which ones are the smaller ones ls = quadranttolevel[qs] childlevel = maximum(ls) cids = findall(==(childlevel), ls) pids = findall(==(childlevel - 1), ls) @assert length(cids) == numchildfaces @assert length(pids) == 1 childquadrants = qs[cids] childquadrants = childquadrants[sortperm(quadranttoglobalid[childquadrants])] parentquadrant = first(qs[pids]) # use orientation to transform the elements order childface = fs[first(cids)] childorientation = faceorientations[childface, first(childquadrants)] childquadrants = childquadrants[perm(childorientation)] nctype = if q == parentquadrant 1 else something(findfirst(==(q), childquadrants), 0) + 1 end nctypes[fg][nonconface[fg]] = nctype if vmapNC[fg][ntuple((_ -> 1), ndims(cell) - 1)..., 1, ncid] == 0 # fill the non-conforming group parentface = fs[first(pids)] parentorientation = faceorientations[parentface, parentquadrant] nctoface[fg][1, ncid] = parentface nctoface[fg][2, ncid] = childface for j in CartesianIndices(cellfacedims[fg]) pfi = orientindex(parentorientation, cellfacedims[fg], j) cfi = orientindex(childorientation, cellfacedims[fg], j) vmapNC[fg][j, 1, ncid] = cellfaceindices[parentface][pfi] + (parentquadrant - 1) * length(cell) for c = 1:numchildfaces vmapNC[fg][j, c+1, ncid] = cellfaceindices[childface][cfi] + (childquadrants[c] - 1) * length(cell) end end end end end end vmapM = zeros(Int, size(mapM)) for q = 1:numcells, fg = 1:ndims(cell), fn = 1:2, j in CartesianIndices(cellfacedims[fg]) f = 2 * (fg - 1) + fn idx = faceoffsets[end] * (q - 1) + faceoffsets[f] + facefaceindices[fg][j] vmapM[idx] = cellfaceindices[f][j] + (q - 1) * length(cell) end vmapP = zeros(Int, size(mapM)) for n in eachindex(vmapP, vmapM, mapP) vmapP[n] = vmapM[mapP[n]] end return (; vmapM, vmapP, mapM, mapP, vmapNC, nctoface, nctypes, ncids), quadranttoboundary end function materializenodecommpattern(cell::LobattoCell, ctod, quadrantcommpattern) ghostranktompirank = quadrantcommpattern.recvranks ghostranktoindices = expand.( [ quadrantcommpattern.recvindices[ids] for ids in quadrantcommpattern.recvrankindices ], length(cell), ) ranktype = eltype(ghostranktompirank) indicestype = eltype(eltype(ghostranktoindices)) if length(ghostranktompirank) == 0 return CommPattern{Array}( indicestype[], ranktype[], UnitRange{indicestype}[], indicestype[], ranktype[], UnitRange{indicestype}[], ) end dofstarts = zeros(indicestype, length(ghostranktoindices) + 1) for (i, ids) in enumerate(ghostranktoindices) dofstarts[i] = first(ids) end dofstarts[end] = last(last(ghostranktoindices)) + 0x1 senddofs = Dict{ranktype,Set{indicestype}}() recvdofs = Dict{ranktype,Set{indicestype}}() rows = rowvals(ctod) n = size(ctod, 2) remoteranks = Set{ranktype}() for j = 1:n containslocal = false for k in nzrange(ctod, j) i = rows[k] s = searchsorted(dofstarts, i) if last(s) > 0 push!(remoteranks, ghostranktompirank[last(s)]) end if last(s) == 0 containslocal = true end end if !isempty(remoteranks) for k in nzrange(ctod, j) i = rows[k] s = searchsorted(dofstarts, i) if last(s) == 0 for rank in remoteranks # local node we need to send sendset = get!(senddofs, rank) do Set{indicestype}() end push!(sendset, i) end elseif containslocal # remote node we need to recv rank = ghostranktompirank[last(s)] recvset = get!(recvdofs, rank) do Set{indicestype}() end push!(recvset, i) end end end empty!(remoteranks) end numsendindices = 0 for dofs in keys(senddofs) numsendindices += length(dofs) end sendindices = Int[] sendrankindices = UnitRange{Int}[] sendoffset = 0 for r in ghostranktompirank dofs = senddofs[r] append!(sendindices, sort(collect(dofs))) push!(sendrankindices, (1:length(dofs)) .+ sendoffset) sendoffset += length(dofs) end recvindices = Int[] recvrankindices = UnitRange{Int}[] recvoffset = 0 for r in ghostranktompirank dofs = recvdofs[r] append!(recvindices, sort(collect(dofs))) push!(recvrankindices, (1:length(dofs)) .+ recvoffset) recvoffset += length(dofs) end return CommPattern{Array}( recvindices, ghostranktompirank, recvrankindices, sendindices, ghostranktompirank, sendrankindices, ) end function materializeparentnodes( cell::LobattoCell, ctod, quadranttoglobalid, quadranttolevel, ) Np = length(cell) rows = rowvals(ctod) m, n = size(ctod) parentdofs = zeros(eltype(rows), m) for j = 1:n level = typemax(Int8) gid = typemax(eltype(quadranttoglobalid)) pdof = 0 for ii in nzrange(ctod, j) i = rows[ii] e = cld(i, Np) if quadranttolevel[e] ≤ level && quadranttoglobalid[e] < gid level = quadranttolevel[e] gid = quadranttoglobalid[e] pdof = i end end for ii in nzrange(ctod, j) i = rows[ii] @assert pdof != 0 parentdofs[i] = pdof end end return reshape(parentdofs, size(cell)..., :) end @kernel function quadvolumemetrics!( firstordermetrics, secondordermetrics, points, Dr, Ds, wr, ws, ::Val{IR}, ::Val{IS}, ::Val{Q}, ) where {IR,IS,Q} i, j, p = @index(Local, NTuple) _, _, q = @index(Global, NTuple) @uniform T = eltype(points) X = @localmem T (IR, IS, Q) dXdr = @private T (1,) dXds = @private T (1,) @inbounds begin X[i, j, p] = points[i, j, q] @synchronize dXdr[] = -zero(T) dXds[] = -zero(T) @unroll for m = 1:IR dXdr[] += Dr[i, m] * X[m, j, p] end @unroll for n = 1:IS dXds[] += Ds[j, n] * X[i, n, p] end G = SMatrix{2,2,eltype(Dr),4}( dot(dXdr[], dXdr[]), dot(dXdr[], dXds[]), dot(dXdr[], dXds[]), dot(dXds[], dXds[]), ) invG = inv(G) dRdX = invG * [dXdr[] dXds[]]' J = norm(cross(dXdr[], dXds[])) wJ = wr[i] * ws[j] * J wJinvG = wJ * invG firstordermetrics[i, j, q] = (; dRdX, J, wJ) secondordermetrics[i, j, q] = (; wJinvG, wJ) end end @kernel function quadvolumebrickmetrics!( firstordermetrics, secondordermetrics, points, wr, ws, ::Val{IR}, ::Val{IS}, ::Val{Q}, ) where {IR,IS,Q} i, j, p = @index(Local, NTuple) _, _, q = @index(Global, NTuple) @uniform T = eltype(points) X = @localmem T (IR, IS, Q) @inbounds begin X[i, j, p] = points[i, j, q] @synchronize dx = X[end, 1, p][1] - X[1, 1, p][1] dy = X[1, end, p][2] - X[1, 1, p][2] dr = 2 ds = 2 drdx = dr / dx dsdy = ds / dy dRdX = SMatrix{2,2,typeof(dx),4}(drdx, -zero(dx), -zero(dx), dsdy) J = (dx / dr) * (dy / ds) wJ = wr[i] * ws[j] * J # invwJ = inv(wJ) wJinvG = SMatrix{2,2,typeof(dx),4}( SVector(wJ * (drdx)^2, -zero(dx), -zero(dx), wJ * (dsdy)^2), ) firstordermetrics[i, j, q] = (; dRdX, J, wJ) secondordermetrics[i, j, q] = (; wJinvG, wJ) end end @kernel function quadsurfacemetrics!( surfacemetrics, dRdXs, Js, _, vmapM, w, fg, facegroupsize, facegroupoffsets, ) j, fn, _ = @index(Local, NTuple) _, _, q = @index(Global, NTuple) @inbounds begin si = facegroupoffsets[end] * (q - 1) + facegroupoffsets[fg] + (fn - 1) * facegroupsize[1] + j i = vmapM[si] dRdX = dRdXs[i] J = Js[i] sn = fn == 1 ? -1 : 1 n = sn * J * dRdX[fg, :] sJ = norm(n) n = n / sJ if fg == 1 wsJ = sJ * w[2][j] elseif fg == 2 wsJ = sJ * w[1][j] end surfacemetrics[si] = (; n, sJ, wsJ) end end @kernel function quadncsurfacemetrics!(surfacemetrics, dRdXs, Js, _, vmapNC, nctoface, w) j, ft, _ = @index(Local, NTuple) _, _, q = @index(Global, NTuple) @inbounds begin i = vmapNC[j, ft, q] dRdX = dRdXs[i] J = Js[i] f = ft == 1 ? nctoface[1, q] : nctoface[2, q] fg, fn = fldmod1(f, 2) sn = fn == 1 ? -1 : 1 n = sn * J * dRdX[fg, :] sJ = norm(n) n = n / sJ if fg == 1 wsJ = sJ * w[2][j] elseif fg == 2 wsJ = sJ * w[1][j] end surfacemetrics[j, ft, q] = (; n, sJ, wsJ) end end function materializemetrics( cell::LobattoQuad, points::AbstractArray{SVector{N,FT}}, facemaps, comm, nodecommpattern, isunwarpedbrick, ) where {N,FT} Q = max(512 ÷ prod(size(cell)), 1) D = derivatives_1d(cell) w = vec.(weights_1d(cell)) T1 = NamedTuple{(:dRdX, :J, :wJ),Tuple{SMatrix{2,N,FT,2 * N},FT,FT}} firstordermetrics = similar(points, T1) T2 = NamedTuple{(:wJinvG, :wJ),Tuple{SHermitianCompact{2,FT,3},FT}} secondordermetrics = similar(points, T2) backend = get_backend(points) if isunwarpedbrick kernel! = quadvolumebrickmetrics!(backend, (size(cell)..., Q)) kernel!( firstordermetrics, secondordermetrics, points, w..., Val.(size(cell))..., Val(Q); ndrange = size(points), ) else kernel! = quadvolumemetrics!(backend, (size(cell)..., Q)) kernel!( firstordermetrics, secondordermetrics, points, D..., w..., Val.(size(cell))..., Val(Q); ndrange = size(points), ) end fcm = commmanager(eltype(firstordermetrics), nodecommpattern; comm) share!(firstordermetrics, fcm) volumemetrics = (firstordermetrics, secondordermetrics) TS = NamedTuple{(:n, :sJ, :wsJ),Tuple{SVector{N,FT},FT,FT}} # TODO move this to cell cellfacedims = ((size(cell, 2),), (size(cell, 1),)) facegroupsize = cellfacedims facegroupoffsets = (0, cumsum(2 .* prod.(cellfacedims))...) surfacemetrics = GridArray{TS}( undef, arraytype(points), (facegroupoffsets[end], sizewithoutghosts(points)[end]), (facegroupoffsets[end], sizewithghosts(points)[end]), Raven.comm(points), true, 1, ) ncsurfacemetrics = ntuple( n -> similar(points, TS, size(facemaps.vmapNC[n])), Val(length(cellfacedims)), ) for n in eachindex(cellfacedims) J = cellfacedims[n] Q = max(512 ÷ 2prod(J), 1) kernel! = quadsurfacemetrics!(backend, (J..., 2, Q)) kernel!( surfacemetrics, components(viewwithghosts(firstordermetrics))..., facemaps.vmapM, w, n, facegroupsize[n], facegroupoffsets, ndrange = (J..., 2, last(size(surfacemetrics))), ) M = 1 + 2^(ndims(cell) - 1) Q = max(512 ÷ (M * prod(J)), 1) kernel! = quadncsurfacemetrics!(backend, (J..., M, Q)) kernel!( ncsurfacemetrics[n], components(viewwithghosts(firstordermetrics))..., facemaps.vmapNC[n], facemaps.nctoface[n], w, ndrange = size(ncsurfacemetrics[n]), ) end surfacemetrics = (viewwithoutghosts(surfacemetrics), ncsurfacemetrics) return (volumemetrics, surfacemetrics) end @kernel function hexvolumemetrics!( firstordermetrics, secondordermetrics, points, Dr, Ds, Dt, wr, ws, wt, ::Val{IR}, ::Val{IS}, ::Val{IT}, ::Val{Q}, ) where {IR,IS,IT,Q} i, j, p = @index(Local, NTuple) _, _, q = @index(Global, NTuple) @uniform T = eltype(points) @uniform FT = eltype(eltype(points)) vtmp = @localmem T (IR, IS, Q) X = @private T (IT,) dXdr = @private T (IT,) dXds = @private T (IT,) dXdt = @private T (IT,) a1 = @private T (1,) a2 = @private T (1,) a3 = @private T (1,) @inbounds begin @unroll for k = 1:IT dXdr[k] = -zero(T) dXds[k] = -zero(T) dXdt[k] = -zero(T) end @unroll for k = 1:IT X[k] = points[i, j, k, q] vtmp[i, j, p] = X[k] @synchronize @unroll for m = 1:IR dXdr[k] += Dr[i, m] * vtmp[m, j, p] end @unroll for n = 1:IS dXds[k] += Ds[j, n] * vtmp[i, n, p] end @unroll for o = 1:IT dXdt[o] += Dt[o, k] * vtmp[i, j, p] end @synchronize end @unroll for k = 1:IT # Instead of # ```julia # @. invJ = inv(J) # ``` # we use the curl invariant formulation of Kopriva, equation (37) of # <https://doi.org/10.1007/s10915-005-9070-8>. a1[] = -zero(T) # Ds * cross(X, dXdt) - Dt * cross(X, dXds) a2[] = -zero(T) # Dt * cross(X, dXdr) - Dr * cross(X, dXdt) a3[] = -zero(T) # Dr * cross(X, dXds) - Ds * cross(X, dXdr) # Dr * cross(X, dXds) @synchronize vtmp[i, j, p] = cross(X[k], dXds[k]) @synchronize @unroll for m = 1:IR a3[] += Dr[i, m] * vtmp[m, j, p] end # Dr * cross(X, dXdt) @synchronize vtmp[i, j, p] = cross(X[k], dXdt[k]) @synchronize @unroll for m = 1:IR a2[] -= Dr[i, m] * vtmp[m, j, p] end # Ds * cross(X, dXdt) @synchronize vtmp[i, j, p] = cross(X[k], dXdt[k]) @synchronize @unroll for n = 1:IS a1[] += Ds[j, n] * vtmp[i, n, p] end # Ds * cross(X, dXdr) @synchronize vtmp[i, j, p] = cross(X[k], dXdr[k]) @synchronize @unroll for n = 1:IS a3[] -= Ds[j, n] * vtmp[i, n, p] end # Dt * cross(X, dXdr) @unroll for o = 1:IT a2[] += Dt[k, o] * cross(X[o], dXdr[o]) end # Dt * cross(X, dXds) @unroll for o = 1:IT a1[] -= Dt[k, o] * cross(X[o], dXds[o]) end J = [dXdr[k] dXds[k] dXdt[k]] detJ = det(J) invJ = [a1[] a2[] a3[]]' ./ 2detJ invG = invJ * invJ' wJ = wr[i] * ws[j] * wt[k] * detJ wJinvG = wJ * invG firstordermetrics[i, j, k, q] = (; dRdX = invJ, J = detJ, wJ) secondordermetrics[i, j, k, q] = (; wJinvG, wJ) end end end @kernel function hexvolumebrickmetrics!( firstordermetrics, secondordermetrics, points, wr, ws, wt, ::Val{IR}, ::Val{IS}, ::Val{IT}, ::Val{Q}, ) where {IR,IS,IT,Q} i, j, p = @index(Local, NTuple) _, _, q = @index(Global, NTuple) @uniform T = eltype(points) @uniform FT = eltype(eltype(points)) @inbounds begin x = points[1, 1, 1, p] dx = points[end, 1, 1, p][1] - x[1] dy = points[1, end, 1, p][2] - x[2] dz = points[1, 1, end, p][3] - x[3] dr = 2 ds = 2 dt = 2 drdx = dr / dx dsdy = ds / dy dtdz = dt / dz dRdX = SMatrix{3,3,typeof(dx),9}( drdx, -zero(dx), -zero(dx), -zero(dx), dsdy, -zero(dx), -zero(dx), -zero(dx), dtdz, ) J = (dx / dr) * (dy / ds) * (dz / dt) @unroll for k = 1:IT wJ = wr[i] * ws[j] * wt[k] * J # invwJ = inv(wJ) wJinvG = SMatrix{3,3,typeof(dx),9}( wJ * (drdx)^2, -zero(dx), -zero(dx), -zero(dx), wJ * (dsdy)^2, -zero(dx), -zero(dx), -zero(dx), wJ * (dtdz)^2, ) firstordermetrics[i, j, k, q] = (; dRdX, J, wJ) secondordermetrics[i, j, k, q] = (; wJinvG, wJ) end end end @kernel function hexsurfacemetrics!( surfacemetrics, dRdXs, Js, _, vmapM, w, fg, facegroupsize, facegroupoffsets, ) i, j, fn, _ = @index(Local, NTuple) _, _, _, q = @index(Global, NTuple) begin sk = facegroupoffsets[end] * (q - 1) + facegroupoffsets[fg] + (fn - 1) * facegroupsize[1] * facegroupsize[2] + (j - 1) * facegroupsize[1] + i k = vmapM[sk] dRdX = dRdXs[k] J = Js[k] sn = fn == 1 ? -1 : 1 n = sn * J * dRdX[fg, :] sJ = norm(n) n = n / sJ if fg == 1 wsJ = sJ * w[2][i] * w[3][j] elseif fg == 2 wsJ = sJ * w[1][i] * w[3][j] elseif fg == 3 wsJ = sJ * w[1][i] * w[2][j] end surfacemetrics[sk] = (; n, sJ, wsJ) end end @kernel function hexncsurfacemetrics!(surfacemetrics, dRdXs, Js, _, vmapNC, nctoface, w) i, j, ft, _ = @index(Local, NTuple) _, _, _, q = @index(Global, NTuple) @inbounds begin k = vmapNC[i, j, ft, q] dRdX = dRdXs[k] J = Js[k] f = ft == 1 ? nctoface[1, q] : nctoface[2, q] fg, fn = fldmod1(f, 2) sn = fn == 1 ? -1 : 1 n = sn * J * dRdX[fg, :] sJ = norm(n) n = n / sJ if fg == 1 wsJ = sJ * w[2][i] * w[3][j] elseif fg == 2 wsJ = sJ * w[1][i] * w[3][j] elseif fg == 3 wsJ = sJ * w[1][i] * w[2][j] end surfacemetrics[i, j, ft, q] = (; n, sJ, wsJ) end end function materializemetrics( cell::LobattoHex, points::AbstractArray{SVector{3,FT}}, facemaps, comm, nodecommpattern, isunwarpedbrick, ) where {FT} Q = max(512 ÷ (size(cell, 1) * size(cell, 2)), 1) D = derivatives_1d(cell) w = vec.(weights_1d(cell)) T1 = NamedTuple{(:dRdX, :J, :wJ),Tuple{SMatrix{3,3,FT,9},FT,FT}} firstordermetrics = similar(points, T1) T2 = NamedTuple{(:wJinvG, :wJ),Tuple{SHermitianCompact{3,FT,6},FT}} secondordermetrics = similar(points, T2) backend = get_backend(points) if isunwarpedbrick kernel! = hexvolumebrickmetrics!(backend, (size(cell, 1), size(cell, 2), Q)) kernel!( firstordermetrics, secondordermetrics, points, w..., Val.(size(cell))..., Val(Q); ndrange = (size(cell, 1), size(cell, 2), size(points, 4)), ) else kernel! = hexvolumemetrics!(backend, (size(cell, 1), size(cell, 2), Q)) kernel!( firstordermetrics, secondordermetrics, points, D..., w..., Val.(size(cell))..., Val(Q); ndrange = (size(cell, 1), size(cell, 2), size(points, 4)), ) end # We need this to compute the normals and surface Jacobian on the # non-conforming faces. Should we change the nonconforming surface # information to avoid this communication? fcm = commmanager(eltype(firstordermetrics), nodecommpattern; comm) share!(firstordermetrics, fcm) volumemetrics = (firstordermetrics, secondordermetrics) TS = NamedTuple{(:n, :sJ, :wsJ),Tuple{SVector{3,FT},FT,FT}} # TODO move this to cell cellfacedims = ( (size(cell, 2), size(cell, 3)), (size(cell, 1), size(cell, 3)), (size(cell, 1), size(cell, 2)), ) facegroupsize = cellfacedims facegroupoffsets = (0, cumsum(2 .* prod.(cellfacedims))...) surfacemetrics = GridArray{TS}( undef, arraytype(points), (facegroupoffsets[end], sizewithoutghosts(points)[end]), (facegroupoffsets[end], sizewithghosts(points)[end]), Raven.comm(points), false, 1, ) ncsurfacemetrics = ntuple( n -> similar(points, TS, size(facemaps.vmapNC[n])), Val(length(cellfacedims)), ) for n in eachindex(cellfacedims) J = cellfacedims[n] Q = max(512 ÷ prod(J), 1) kernel! = hexsurfacemetrics!(backend, (J..., 2, Q)) kernel!( surfacemetrics, components(viewwithghosts(firstordermetrics))..., facemaps.vmapM, w, n, facegroupsize[n], facegroupoffsets, ndrange = (J..., 2, last(size(surfacemetrics))), ) M = 1 + 2^(ndims(cell) - 1) Q = max(512 ÷ (M * prod(J)), 1) kernel! = hexncsurfacemetrics!(backend, (J..., M, Q)) kernel!( ncsurfacemetrics[n], components(viewwithghosts(firstordermetrics))..., facemaps.vmapNC[n], facemaps.nctoface[n], w, ndrange = size(ncsurfacemetrics[n]), ) end surfacemetrics = (viewwithoutghosts(surfacemetrics), ncsurfacemetrics) return (volumemetrics, surfacemetrics) end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
4410
_numkinds(::Val{2}) = 2 _numkinds(::Val{4}) = 8 #_numkinds(::Val{8}) = 48 struct Orientation{N} kind::Int8 function Orientation{N}(kind) where {N} if kind < 1 || kind > _numkinds(Val(N)) throw(BoundsError(1:_numkinds(Val(N)), kind)) end new{N}(kind) end end kind(o::Orientation) = o.kind perm(o::Orientation{2}) = o.kind == 1 ? SA[1, 2] : SA[2, 1] function perm(o::Orientation{4}) perm = if kind(o) == 1 SA[1, 2, 3, 4] elseif kind(o) == 2 SA[2, 1, 4, 3] elseif kind(o) == 3 SA[3, 4, 1, 2] elseif kind(o) == 4 SA[4, 3, 2, 1] elseif kind(o) == 5 SA[1, 3, 2, 4] elseif kind(o) == 6 SA[2, 4, 1, 3] elseif kind(o) == 7 SA[3, 1, 4, 2] else # kind(o) == 8 SA[4, 2, 3, 1] end return perm end Base.zero(::Type{Orientation{N}}) where {N} = Orientation{N}(1) @inline function orientindex(o::Orientation, dims::Dims, I...) return orientindex(o, dims, CartesianIndex(I)) end function orientindices(o::Orientation, dims::Dims) return orientindex.(Ref(o), Ref(dims), CartesianIndices(dims)) end function orientindices(o::Orientation{4}, dims::Dims{2}) indices = orientindex.(Ref(o), Ref(dims), CartesianIndices(dims)) if fld1(kind(o), 4) != 1 indices = reshape(indices, reverse(dims)) end return indices end @inline function orientindex( o::Orientation{2}, dims::Dims{1}, I::CartesianIndex{1}, ::Bool = false, ) @boundscheck Base.checkbounds_indices(Bool, (Base.OneTo(dims[1]),), Tuple(I)) || throw(BoundsError(o, I)) index = kind(o) == 1 ? I[1] : dims[1] - I[1] + 1 return CartesianIndex(index) end @inline function orientindex(o::Orientation{4}, dims::Dims{2}, I::CartesianIndex{2}) @boundscheck if !Base.checkbounds_indices( Bool, (Base.OneTo(dims[1]), Base.OneTo(dims[2])), Tuple(I), ) throw(BoundsError(o, I)) end div, rem = divrem(kind(o) - 0x1, 4) @inbounds if div != 0 li = LinearIndices(dims)[I] ci = CartesianIndices(reverse(dims))[li] I = CartesianIndex(reverse(Tuple(ci))) end i1 = rem & 0x1 == 0x1 ? dims[1] - I[1] + 1 : I[1] i2 = rem & 0x2 == 0x2 ? dims[2] - I[2] + 1 : I[2] return CartesianIndex(i1, i2) end # function orientindices(o::Orientation{8}, dims::Dims{3}, invert::Bool = false) # is1 = StepRange(1, Int8(1), dims[1]) # is2 = StepRange(1, Int8(1), dims[2]) # is3 = StepRange(1, Int8(1), dims[3]) # # div, rem = divrem(kind(o) - 0x1, 8) # # if rem & 0x1 == 0x1 # is1 = reverse(is1) # end # # if rem & 0x2 == 0x2 # is2 = reverse(is2) # end # # if rem & 0x4 == 0x4 # is3 = reverse(is3) # end # # indices = (is1, is2, is3) # # if div == 0 # perm = (1, 2, 3) # elseif div == 1 # perm = (1, 3, 2) # elseif div == 2 # perm = (2, 1, 3) # elseif div == 3 # perm = (2, 3, 1) # elseif div == 4 # perm = (3, 1, 2) # elseif div == 5 # perm = (3, 2, 1) # else # throw(ArgumentError("Orientation{8}($(kind(o))) is invalid")) # end # # if invert # indices = getindex.(Ref(indices), perm) # perm = invperm(perm) # end # # return PermutedDimsArray(CartesianIndices(indices), perm) # end Base.inv(p::Orientation{2}) = p function Base.inv(p::Orientation{4}) invmap = SA{Int8}[1, 2, 3, 4, 5, 7, 6, 8] return @inbounds Orientation{4}(invmap[kind(p)]) end _permcomposition(::Val{2}) = SA{Int8}[1 2; 2 1] _permcomposition(::Val{4}) = SA{Int8}[ 1 2 3 4 5 6 7 8 2 1 4 3 7 8 5 6 3 4 1 2 6 5 8 7 4 3 2 1 8 7 6 5 5 6 7 8 1 2 3 4 6 5 8 7 3 4 1 2 7 8 5 6 2 1 4 3 8 7 6 5 4 3 2 1 ] function Base.:(∘)(p::Orientation{N}, q::Orientation{N}) where {N} return @inbounds Orientation{N}(_permcomposition(Val(N))[p.kind, q.kind]) end function orient(::Val{2}, src::NTuple{2}) k = src[1] ≤ src[2] ? 1 : 2 return Orientation{2}(k) end function orient(::Val{4}, src::NTuple{4}) i = argmin(src) if i == 1 k = src[2] <= src[3] ? 1 : 5 elseif i == 2 k = src[4] <= src[1] ? 6 : 2 elseif i == 3 k = src[1] <= src[4] ? 7 : 3 else # i == 4 k = src[3] <= src[2] ? 4 : 8 end return Orientation{4}(k) end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
3092
# Based off of code from julia SparseArrays.jl struct GeneralSparseMatrixCSC{ Tv, Ti<:Integer, VTv<:AbstractVector{Tv}, VTi<:AbstractVector{Ti}, } <: SparseArrays.AbstractSparseMatrixCSC{Tv,Ti} m::Int # Number of rows n::Int # Number of columns colptr::VTi # Column i is in colptr[i]:(colptr[i+1]-1) rowval::VTi # Row indices of stored values nzval::VTv # Stored values, typically nonzeros function GeneralSparseMatrixCSC{Tv,Ti,VTv,VTi}( m::Integer, n::Integer, colptr::AbstractVector{Ti}, rowval::AbstractVector{Ti}, nzval::AbstractVector{Tv}, ) where {Tv,Ti<:Integer,VTv<:AbstractVector{Tv},VTi<:AbstractVector{Ti}} new(Int(m), Int(n), colptr, rowval, nzval) end end const AnyGPUGeneralSparseMatrix = GeneralSparseMatrixCSC{<:Any,<:Any,<:AnyGPUArray,<:AnyGPUArray} const AnyGPUGeneralSparseMatrixCSCInclAdjointAndTranspose = Union{ AnyGPUGeneralSparseMatrix, Adjoint{<:Any,<:AnyGPUGeneralSparseMatrix}, Transpose{<:Any,<:AnyGPUGeneralSparseMatrix}, } function GeneralSparseMatrixCSC( m::Integer, n::Integer, colptr::AbstractVector, rowval::AbstractVector, nzval::AbstractVector, ) Tv = eltype(nzval) VTv = typeof(nzval) Ti = promote_type(eltype(colptr), eltype(rowval)) VTi = promote_type(typeof(colptr), typeof(rowval)) GeneralSparseMatrixCSC{Tv,Ti,VTv,VTi}(m, n, colptr, rowval, nzval) end SparseArrays.getcolptr(S::GeneralSparseMatrixCSC) = getfield(S, :colptr) SparseArrays.rowvals(S::GeneralSparseMatrixCSC) = getfield(S, :rowval) SparseArrays.nonzeros(S::GeneralSparseMatrixCSC) = getfield(S, :nzval) function SparseArrays.nnz(S::AnyGPUGeneralSparseMatrix) GPUArraysCore.@allowscalar Int(SparseArrays.getcolptr(S)[size(S, 2)+1]) - 1 end Base.size(S::GeneralSparseMatrixCSC) = (S.m, S.n) function GeneralSparseMatrixCSC(S::SparseArrays.AbstractSparseMatrixCSC) m, n = size(S) colptr = SparseArrays.getcolptr(S) rowval = rowvals(S) nzval = nonzeros(S) return GeneralSparseMatrixCSC(m, n, colptr, rowval, nzval) end function Adapt.adapt_structure(to, S::GeneralSparseMatrixCSC) m, n = size(S) colptr = adapt(to, SparseArrays.getcolptr(S)) rowval = adapt(to, rowvals(S)) nzval = adapt(to, nonzeros(S)) return GeneralSparseMatrixCSC(m, n, colptr, rowval, nzval) end adaptsparse(_, S) = S @static if VERSION >= v"1.7" function Base.print_array( io::IO, S::AnyGPUGeneralSparseMatrixCSCInclAdjointAndTranspose, ) Base.print_array(io, adapt(Array, S)) end function Base.show(io::IO, S::AnyGPUGeneralSparseMatrixCSCInclAdjointAndTranspose) Base.show(io, adapt(Array, S)) end function SparseArrays._goodbuffers(S::AnyGPUGeneralSparseMatrix) (_, n) = size(S) colptr = SparseArrays.getcolptr(S) rowval = rowvals(S) nzval = nonzeros(S) GPUArraysCore.@allowscalar ( length(colptr) == n + 1 && colptr[end] - 1 == length(rowval) == length(nzval) ) end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
119
Stream(_) = nothing synchronize(backend, _) = KernelAbstractions.synchronize(backend) stream!(f::Function, _, _) = f()
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
320
@testset "Arrays" begin A = [13, 4, 5, 1, 5] B = Raven.numbercontiguous(Int32, A) @test eltype(B) == Int32 @test B == [4, 2, 3, 1, 3] B = Raven.numbercontiguous(Int32, A, by = x -> -x) @test eltype(B) == Int32 @test B == [1, 3, 2, 4, 2] A = [1, 2] @test viewwithghosts(A) == A end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
4532
using Raven.StaticArrays: size_to_tuple function cells_testsuite(AT, FT) cell = LobattoCell{FT,AT}(3, 3) @test floattype(typeof(cell)) == FT @test arraytype(typeof(cell)) <: AT @test ndims(typeof(cell)) == 2 @test floattype(cell) == FT @test arraytype(cell) <: AT @test ndims(cell) == 2 @test size(cell) == (3, 3) @test length(cell) == 9 @test sum(mass(cell)) .≈ 4 @test mass(cell) isa Diagonal @test sum(facemass(cell)) .≈ 8 @test facemass(cell) isa Diagonal @test faceoffsets(cell) == (0, 3, 6, 9, 12) @test strides(cell) == (1, 3) D = derivatives(cell) @test Array(D[1] * points(cell)) ≈ fill(SVector(one(FT), zero(FT)), 9) @test Array(D[2] * points(cell)) ≈ fill(SVector(zero(FT), one(FT)), 9) D1d = derivatives_1d(cell) @test length(D1d) == ndims(cell) @test all( Array.(D1d) .== setprecision(BigFloat, 2^(max(8, ceil(Int, log2(precision(FT))) + 2))) do Matrix{ FT, }.(spectralderivative.(first.(legendregausslobatto.(BigFloat, size(cell))))) end, ) h1d = tohalves_1d(cell) @test length(h1d) == ndims(cell) @test all(length.(h1d) .== 2) setprecision(BigFloat, 2^(max(8, ceil(Int, log2(precision(FT))) + 2))) do p, _ = legendregausslobatto(BigFloat, 3) I1 = Matrix{FT}(spectralinterpolation(p, (p .- 1) / 2)) I2 = Matrix{FT}(spectralinterpolation(p, (p .+ 1) / 2)) @test Array(h1d[1][1]) == I1 @test Array(h1d[1][2]) == I2 @test Array(h1d[2][1]) == I1 @test Array(h1d[2][2]) == I2 end @test adapt(Array, cell) isa LobattoCell{FT,Array} S = (3, 4, 2) cell = LobattoCell{FT,AT}(S...) @test floattype(cell) == FT @test arraytype(cell) <: AT @test Base.ndims(cell) == 3 @test size(cell) == S @test length(cell) == prod(S) @test sum(mass(cell)) .≈ 8 @test mass(cell) isa Diagonal @test sum(facemass(cell)) .≈ 24 @test facemass(cell) isa Diagonal @test faceoffsets(cell) == (0, 8, 16, 22, 28, 40, 52) @test strides(cell) == (1, 3, 12) D = derivatives(cell) @test Array(D[1] * points(cell)) ≈ fill(SVector(one(FT), zero(FT), zero(FT)), prod(S)) @test Array(D[2] * points(cell)) ≈ fill(SVector(zero(FT), one(FT), zero(FT)), prod(S)) @test Array(D[3] * points(cell)) ≈ fill(SVector(zero(FT), zero(FT), one(FT)), prod(S)) D1d = derivatives_1d(cell) @test length(D1d) == ndims(cell) @test all( Array.(D1d) .== setprecision(BigFloat, 2^(max(8, ceil(Int, log2(precision(FT))) + 2))) do Matrix{ FT, }.(spectralderivative.(first.(legendregausslobatto.(BigFloat, size(cell))))) end, ) h1d = tohalves_1d(cell) @test length(h1d) == ndims(cell) @test all(length.(h1d) .== 2) setprecision(BigFloat, 2^(max(8, ceil(Int, log2(precision(FT))) + 2))) do for (n, N) in enumerate(size(cell)) p, _ = legendregausslobatto(BigFloat, N) @test Array(h1d[n][1]) == Matrix{FT}(spectralinterpolation(p, (p .- 1) ./ 2)) @test Array(h1d[n][2]) == Matrix{FT}(spectralinterpolation(p, (p .+ 1) ./ 2)) end end @test similar(cell, (3, 4)) isa LobattoCell{FT,AT} cell = LobattoCell{FT,AT}(5) @test floattype(cell) == FT @test arraytype(cell) <: AT @test Base.ndims(cell) == 1 @test size(cell) == (5,) @test length(cell) == 5 @test sum(mass(cell)) .≈ 2 @test mass(cell) isa Diagonal @test sum(facemass(cell)) .≈ 2 @test facemass(cell) isa Diagonal @test faceoffsets(cell) == (0, 1, 2) @test strides(cell) == (1,) D = derivatives(cell) @test Array(D[1] * points(cell)) ≈ fill(SVector(one(FT)), 5) D1d = derivatives_1d(cell) @test length(D1d) == ndims(cell) @test all( Array.(D1d) .== setprecision(BigFloat, 2^(max(8, ceil(Int, log2(precision(FT))) + 2))) do Matrix{ FT, }.(spectralderivative.(first.(legendregausslobatto.(BigFloat, size(cell))))) end, ) h1d = tohalves_1d(cell) @test length(h1d) == ndims(cell) @test all(length.(h1d) .== 2) setprecision(BigFloat, 2^(max(8, ceil(Int, log2(precision(FT))) + 2))) do p, _ = legendregausslobatto(BigFloat, size(cell)[1]) @test Array(h1d[1][1]) == Matrix{FT}(spectralinterpolation(p, (p .- 1) ./ 2)) @test Array(h1d[1][2]) == Matrix{FT}(spectralinterpolation(p, (p .+ 1) ./ 2)) end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
1592
@testset "Communication" begin @test Raven.expand(1:0, 4) == 1:0 @test Raven.expand([], 4) == [] @test Raven.expand(3:4, 4) isa UnitRange @test Raven.expand(3:4, 4) == 9:16 @test Raven.expand([3, 4], 4) == 9:16 let recvindices = [7, 8, 9, 10] recvranks = Cint[1, 2] recvrankindices = [1:1, 2:4] sendindices = [1, 3, 1, 3, 5] sendranks = Cint[1, 2] sendrankindices = [1:2, 3:5] originalpattern = Raven.CommPattern{Array}( recvindices, recvranks, recvrankindices, sendindices, sendranks, sendrankindices, ) pattern = Raven.expand(originalpattern, 3, 5) @test pattern.recvranks == recvranks @test pattern.recvindices == [17, 22, 27, 18, 23, 28, 19, 24, 29, 20, 25, 30] @test pattern.recvrankindices == UnitRange{Int64}[1:3, 4:12] @test pattern.sendranks == sendranks @test pattern.sendindices == [1, 6, 11, 3, 8, 13, 1, 6, 11, 3, 8, 13, 5, 10, 15] @test pattern.sendrankindices == UnitRange{Int64}[1:6, 7:15] pattern = Raven.expand(originalpattern, 3) @test pattern.recvranks == recvranks @test pattern.recvindices == [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] @test pattern.recvrankindices == UnitRange{Int64}[1:3, 4:12] @test pattern.sendranks == sendranks @test pattern.sendindices == [1, 2, 3, 7, 8, 9, 1, 2, 3, 7, 8, 9, 13, 14, 15] @test pattern.sendrankindices == UnitRange{Int64}[1:6, 7:15] end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
1095
# This file was modified from P4est.jl using Pkg Pkg.add("MPIPreferences") Pkg.add("Preferences") Pkg.add("UUIDs") @static if VERSION >= v"1.8" Pkg.compat("MPIPreferences", "0.1") Pkg.compat("Preferences", "1") Pkg.compat("UUIDs", "1") end const RAVEN_TEST = get(ENV, "RAVEN_TEST", "RAVEN_JLL_MPI_DEFAULT") const RAVEN_TEST_LIBP4EST = get(ENV, "RAVEN_TEST_LIBP4EST", "") const RAVEN_TEST_LIBSC = get(ENV, "RAVEN_TEST_LIBSC", "") @static if RAVEN_TEST == "RAVEN_CUSTOM_MPI_CUSTOM" import MPIPreferences MPIPreferences.use_system_binary() end @static if RAVEN_TEST == "RAVEN_CUSTOM_MPI_CUSTOM" import UUIDs, Preferences Preferences.set_preferences!( UUIDs.UUID("7d669430-f675-4ae7-b43e-fab78ec5a902"), # UUID of P4est.jl "libp4est" => RAVEN_TEST_LIBP4EST, force = true, ) Preferences.set_preferences!( UUIDs.UUID("7d669430-f675-4ae7-b43e-fab78ec5a902"), # UUID of P4est.jl "libsc" => RAVEN_TEST_LIBSC, force = true, ) end @info "Raven.jl tests configured" RAVEN_TEST RAVEN_TEST_LIBP4EST RAVEN_TEST_LIBSC
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
2502
function extrude_testsuite(AT, FT) @testset "extrude" begin b = brick(FT, 3, 1) e = extrude(b, 2) @test Raven.coordinates(e) == (zero(FT):3, zero(FT):1, zero(FT):2) @test Raven.vertices(e) == [ SVector{3,FT}(0, 0, 0), # 01 SVector{3,FT}(0, 0, 1), # 02 SVector{3,FT}(0, 0, 2), # 03 SVector{3,FT}(1, 0, 0), # 04 SVector{3,FT}(1, 0, 1), # 05 SVector{3,FT}(1, 0, 2), # 06 SVector{3,FT}(0, 1, 0), # 07 SVector{3,FT}(0, 1, 1), # 08 SVector{3,FT}(0, 1, 2), # 09 SVector{3,FT}(1, 1, 0), # 10 SVector{3,FT}(1, 1, 1), # 11 SVector{3,FT}(1, 1, 2), # 12 SVector{3,FT}(2, 0, 0), # 13 SVector{3,FT}(2, 0, 1), # 14 SVector{3,FT}(2, 0, 2), # 15 SVector{3,FT}(2, 1, 0), # 16 SVector{3,FT}(2, 1, 1), # 17 SVector{3,FT}(2, 1, 2), # 18 SVector{3,FT}(3, 0, 0), # 19 SVector{3,FT}(3, 0, 1), # 20 SVector{3,FT}(3, 0, 2), # 21 SVector{3,FT}(3, 1, 0), # 22 SVector{3,FT}(3, 1, 1), # 23 SVector{3,FT}(3, 1, 2), # 24 ] # z = 2 # 09-----12-----21-----24 # | | | | # | | | | # | | | | # 03-----06-----15-----18 # z = 1 # 08-----11-----20-----23 # | | | | # | | | | # | | | | # 02-----05-----14-----17 # z = 0 # 07-----10-----19-----22 # | | | | # | | | | # | | | | # 01-----04-----13-----16 @test Raven.cells(e) == [ (01, 04, 07, 10, 02, 05, 08, 11) (02, 05, 08, 11, 03, 06, 09, 12) (04, 13, 10, 16, 05, 14, 11, 17) (05, 14, 11, 17, 06, 15, 12, 18) (13, 19, 16, 22, 14, 20, 17, 23) (14, 20, 17, 23, 15, 21, 18, 24) ] c = LobattoCell{FT,AT}(2, 2, 2) gm = GridManager(c, e) grid = generate(gm) pts = points(grid) fm = facemaps(grid) pts = Adapt.adapt(Array, pts) fm = Adapt.adapt(Array, fm) @test isapprox(pts[fm.vmapM], pts[fm.vmapP]) @test isapprox(pts[fm.vmapM[fm.mapM]], pts[fm.vmapM[fm.mapP]]) end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
201646
@testset "Decode face code" begin @test @inferred(decode(0x00)) === (0x0, 0x0, 0x0, 0x0) @test @inferred(decode(0x0000)) === ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ) for (code, val) in Any[ (0x00, (0x0, 0x0, 0x0, 0x0)), (0x01, (0x0, 0x0, 0x0, 0x0)), (0x02, (0x0, 0x0, 0x0, 0x0)), (0x03, (0x0, 0x0, 0x0, 0x0)), (0x04, (0x1, 0x0, 0x0, 0x0)), (0x05, (0x0, 0x1, 0x0, 0x0)), (0x06, (0x2, 0x0, 0x0, 0x0)), (0x07, (0x0, 0x2, 0x0, 0x0)), (0x08, (0x0, 0x0, 0x1, 0x0)), (0x09, (0x0, 0x0, 0x2, 0x0)), (0x0a, (0x0, 0x0, 0x0, 0x1)), (0x0b, (0x0, 0x0, 0x0, 0x2)), (0x0c, (0x1, 0x0, 0x1, 0x0)), (0x0d, (0x0, 0x1, 0x2, 0x0)), (0x0e, (0x2, 0x0, 0x0, 0x1)), (0x0f, (0x0, 0x2, 0x0, 0x2)), ( 0x0000, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0001, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0002, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0003, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0004, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0005, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0006, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0007, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0008, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x0009, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x000a, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x000b, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x000c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x000d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x000e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x000f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x0010, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0011, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0012, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0013, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0014, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0015, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0016, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0017, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0018, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x0019, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x001a, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x001b, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x001c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x001d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x001e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x001f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x0020, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0021, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0022, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0023, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0024, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0025, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0026, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0027, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0028, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x0029, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x002a, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x002b, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x002c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x002d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x002e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x002f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x0030, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0031, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0032, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0033, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0034, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0035, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0036, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0037, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0038, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x0039, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x003a, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x003b, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x003c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x003d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x003e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x003f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x0040, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0041, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0042, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0043, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0044, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0045, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0046, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0047, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0048, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x0049, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x004a, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x004b, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x004c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x004d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x004e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x004f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x0050, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0051, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0052, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0053, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0054, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0055, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0056, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0057, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0058, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x0059, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x005a, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x005b, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x005c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x005d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x005e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x005f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x0060, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0061, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0062, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0063, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0064, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0065, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0066, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0067, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0068, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x0069, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x006a, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x006b, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x006c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x006d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x006e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x006f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x0070, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0071, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0072, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0073, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0074, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0075, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0076, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0077, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0078, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x0079, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x007a, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x007b, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x007c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x007d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x007e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x007f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x0080, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0081, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0082, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0083, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0084, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0085, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0086, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0087, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0088, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x0089, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x008a, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x008b, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x008c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x008d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x008e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x008f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x0090, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x1, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0091, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0092, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0093, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0094, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x1, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0095, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0096, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0097, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0098, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x0099, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x009a, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x009b, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x009c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x009d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x009e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x009f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x00a0, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00a1, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00a2, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00a3, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00a4, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00a5, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00a6, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00a7, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00a8, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x00a9, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x00aa, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x00ab, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x00ac, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x00ad, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x00ae, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x00af, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x00b0, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x00b1, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x00b2, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x00b3, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x00b4, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x00b5, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x00b6, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x00b7, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x00b8, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x00b9, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x00ba, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x00bb, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x00bc, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x00bd, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x3, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x00be, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x00bf, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x00c0, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00c1, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00c2, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00c3, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00c4, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00c5, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00c6, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00c7, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00c8, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x00c9, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x00ca, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x00cb, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x00cc, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x00cd, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x00ce, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x00cf, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x00d0, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x1, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x00d1, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x00d2, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x00d3, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x00d4, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x0, 0x0, 0x1, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x00d5, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x0, 0x1, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x00d6, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x00d7, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x00d8, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x00d9, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x00da, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x00db, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x00dc, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x00dd, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x00de, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x00df, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x00e0, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00e1, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00e2, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00e3, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00e4, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00e5, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00e6, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00e7, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x00e8, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x00e9, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x00ea, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x00eb, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x00ec, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x00ed, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x00ee, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x00ef, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x00f0, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x00f1, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x00f2, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x00f3, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x00f4, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x00f5, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x00f6, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x00f7, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x00f8, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x00f9, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x00fa, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x00fb, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x00fc, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x00fd, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x3, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x00fe, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x00ff, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x0100, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x0101, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x0102, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x0103, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x0104, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x0105, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x0106, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x0107, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x0108, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x0109, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x010a, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x010b, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x010c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x010d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x010e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x010f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x0110, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x0111, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x0112, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x0113, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x0114, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x0115, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x0116, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x0117, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x0118, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x0119, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x011a, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x011b, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x011c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x011d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x011e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x011f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x0120, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x0121, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x0122, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x0123, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x0124, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x0125, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x0126, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x0127, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x0128, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x0129, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x012a, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x012b, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x012c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x012d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x012e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x012f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x0130, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x0131, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x0132, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x0133, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x0134, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x0135, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x0136, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x0137, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x0138, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x0139, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x013a, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x013b, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x013c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x013d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x013e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x013f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x0140, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x0141, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x0142, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x0143, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x0144, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x0145, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x0146, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x0147, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x0148, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x0149, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x014a, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x014b, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x014c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x014d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x014e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x014f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x0150, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x0151, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x0152, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x0153, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x0154, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x0155, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x0156, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x0157, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x0158, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x0159, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x015a, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x015b, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x015c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x015d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x015e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x015f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x0160, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x0161, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x0162, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x0163, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x0164, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x0165, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x0166, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x0167, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x0168, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x0169, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x016a, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x016b, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x016c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x016d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x016e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x016f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x0170, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x0171, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x0172, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x0173, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x0174, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x0175, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x0176, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x0177, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x0178, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x0179, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x017a, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x017b, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x017c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x017d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x017e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x017f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x0180, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x0181, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x0182, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x0183, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x0184, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x0185, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x0186, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x0187, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x0188, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x0189, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x018a, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x018b, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x018c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x3, 0x0, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x018d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x3, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x018e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x018f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x0190, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x1, 0x0, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x0191, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x0192, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x0193, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x0194, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x1, 0x0, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x0195, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x0196, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x0197, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x0198, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x0199, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x3, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x019a, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x019b, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x019c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x019d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x3, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x019e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x019f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x01a0, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x01a1, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x01a2, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x01a3, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x01a4, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x01a5, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x01a6, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x01a7, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x01a8, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x01a9, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x01aa, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x01ab, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x01ac, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x01ad, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x01ae, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x01af, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x01b0, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x01b1, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x01b2, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x01b3, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x01b4, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x01b5, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x01b6, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x01b7, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x01b8, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x01b9, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x01ba, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x01bb, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x01bc, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x01bd, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x3, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x01be, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x01bf, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x01c0, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x01c1, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x01c2, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x01c3, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x01c4, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x01c5, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x01c6, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x01c7, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x01c8, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x01c9, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x01ca, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x01cb, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x01cc, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x5, 0x0, 0x3, 0x0, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x01cd, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x0, 0x3, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x01ce, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x01cf, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x01d0, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x1, 0x0, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x01d1, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x01d2, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x01d3, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x01d4, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x0, 0x0, 0x1, 0x0, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x01d5, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x0, 0x1, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x01d6, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x01d7, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x01d8, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x01d9, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x3, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x01da, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x01db, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x01dc, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x01dd, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x5, 0x0, 0x3, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x01de, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x01df, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x01e0, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x01e1, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x01e2, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x01e3, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x01e4, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x01e5, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x01e6, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x01e7, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x01e8, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x01e9, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x01ea, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x01eb, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x01ec, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x01ed, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x01ee, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x01ef, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x01f0, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x01f1, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x01f2, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x01f3, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x01f4, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x01f5, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x01f6, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x01f7, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x01f8, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x01f9, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x01fa, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x01fb, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x01fc, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x01fd, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x3, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x01fe, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x01ff, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x0200, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0201, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0202, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0203, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0204, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0205, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0206, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0207, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0208, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x0209, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x020a, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x020b, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x020c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x020d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x020e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x020f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x0210, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0211, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0212, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0213, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0214, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0215, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0216, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0217, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0218, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x0219, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x021a, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x021b, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x021c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x021d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x021e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x021f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x0220, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0221, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0222, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0223, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0224, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0225, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0226, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0227, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0228, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x0229, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x022a, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x022b, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x022c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x022d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x022e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x022f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x0230, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0231, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0232, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0233, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0234, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0235, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0236, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0237, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0238, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x0239, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x023a, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x023b, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x023c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x023d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x023e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x023f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x0240, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0241, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0242, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0243, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0244, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0245, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0246, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0247, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0248, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x0249, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x024a, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x024b, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x024c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x024d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x024e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x024f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x0250, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0251, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0252, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0253, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0254, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0255, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0256, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0257, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0258, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x0259, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x025a, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x025b, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x025c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x025d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x025e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x025f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x0260, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0261, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0262, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0263, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0264, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0265, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0266, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0267, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0268, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x0269, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x026a, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x026b, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x026c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x026d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x026e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x026f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x0270, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0271, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0272, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0273, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0274, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0275, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0276, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0277, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0278, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x0279, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x027a, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x027b, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x027c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x027d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x027e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x027f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x0280, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0281, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0282, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0283, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0284, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0285, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0286, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0287, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x0288, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x0289, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x028a, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x028b, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x028c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x028d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x028e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x028f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x0290, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x1, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0291, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0292, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0293, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0294, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x1, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0295, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x0296, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0297, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x0298, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x0299, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x029a, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x029b, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x029c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x029d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x029e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x029f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x02a0, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02a1, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02a2, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02a3, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02a4, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02a5, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02a6, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02a7, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02a8, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x02a9, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x02aa, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x02ab, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x02ac, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x02ad, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x02ae, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x02af, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x02b0, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x02b1, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x02b2, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x02b3, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x02b4, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x02b5, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x02b6, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x02b7, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x02b8, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x02b9, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x02ba, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x02bb, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x02bc, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x02bd, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x3, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x02be, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x02bf, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x02c0, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02c1, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02c2, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02c3, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02c4, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02c5, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02c6, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02c7, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02c8, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x02c9, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x02ca, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x02cb, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x02cc, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x02cd, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x02ce, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x02cf, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x02d0, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x1, 0x0, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x02d1, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x02d2, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x02d3, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x02d4, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x0, 0x0, 0x1, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x02d5, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x0, 0x1, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x02d6, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x02d7, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x02d8, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x02d9, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x02da, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x02db, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x02dc, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x02dd, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x02de, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x02df, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x02e0, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02e1, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02e2, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02e3, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02e4, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02e5, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02e6, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02e7, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0), ), ), ( 0x02e8, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x02e9, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x02ea, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x02eb, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x02ec, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x02ed, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x02ee, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0), ), ), ( 0x02ef, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5), ), ), ( 0x02f0, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x02f1, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x02f2, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x02f3, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x02f4, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x02f5, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x5, 0x5, 0x0, 0x0), ), ), ( 0x02f6, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x02f7, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x5), ), ), ( 0x02f8, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x02f9, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x02fa, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x02fb, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x02fc, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x5, 0x5, 0x0), ), ), ( 0x02fd, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x3, 0x5, 0x5, 0x0, 0x5), ), ), ( 0x02fe, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x5), ), ), ( 0x02ff, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x5), ), ), ( 0x0300, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x0301, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x0302, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x0303, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x0304, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x0305, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x0306, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x0307, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x0308, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x0309, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x030a, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x030b, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x030c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x030d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x030e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x030f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x0310, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x0311, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x0312, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x0313, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x0314, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x0315, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x0316, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x0317, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x0318, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x0319, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x031a, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x031b, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x031c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x031d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x031e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x031f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x0320, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x0321, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x0322, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x0323, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x0324, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x0325, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x0326, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x0327, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x0328, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x0329, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x032a, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x032b, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x032c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x032d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x032e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x032f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x0330, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x0331, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x0332, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x0333, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x0334, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x0335, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x0336, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x0337, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x0338, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x0339, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x033a, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x033b, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x033c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x033d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x033e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x033f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x0340, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x0341, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x0342, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x0343, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x0344, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x0345, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x0346, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x0347, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x0348, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x0349, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x034a, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x034b, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x034c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x034d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x034e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x034f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x0350, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x0351, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x0352, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x0353, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x0354, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x0355, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x0356, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x0357, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x0358, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x0359, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x035a, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x035b, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x035c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x035d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x035e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x035f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x0360, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x0361, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x0362, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x0363, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x0364, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x0365, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x0366, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x0367, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x0368, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x0369, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x036a, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x036b, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x036c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x036d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x036e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x036f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x0370, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x0371, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x0372, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x0373, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x0374, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x5, 0x5, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x0375, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x5, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x0376, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x0377, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x0378, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x0379, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x037a, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x037b, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x037c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x037d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x5, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x037e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x037f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x0380, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x0381, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x0382, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x0383, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x0384, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x0385, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x0386, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x0387, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x0388, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x0389, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x038a, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x038b, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x038c, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x3, 0x0, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x038d, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x3, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x038e, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x038f, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x0, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x0390, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x1, 0x0, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x0391, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x0392, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x0393, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x0394, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x1, 0x0, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x0395, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x0396, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x0397, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x0398, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x0399, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x3, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x039a, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x039b, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x039c, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x039d, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x5, 0x0, 0x0, 0x5, 0x0, 0x3, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x039e, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x039f, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x5, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x03a0, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x03a1, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x03a2, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x03a3, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x03a4, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x03a5, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x03a6, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x03a7, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x03a8, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x03a9, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x03aa, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x03ab, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x03ac, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x03ad, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x03ae, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x5, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x03af, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x03b0, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x03b1, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x03b2, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x03b3, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x03b4, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x3, 0x5, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x03b5, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x0, 0x5, 0x3, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x03b6, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x03b7, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x03b8, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x03b9, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x5, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x03ba, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x5, 0x0, 0x5, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x03bb, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x03bc, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x5, 0x5, 0x5, 0x0, 0x3, 0x5, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x03bd, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x5, 0x5, 0x0, 0x5, 0x5, 0x3, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x03be, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x5, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x03bf, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x5, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x03c0, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x03c1, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x03c2, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x03c3, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x03c4, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x03c5, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x03c6, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x03c7, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x03c8, ( (0x1, 0x0, 0x0, 0x0, 0x0, 0x0), (0x1, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x03c9, ( (0x0, 0x1, 0x0, 0x0, 0x0, 0x0), (0x2, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x03ca, ( (0x2, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x1, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x03cb, ( (0x0, 0x2, 0x0, 0x0, 0x0, 0x0), (0x0, 0x2, 0x0, 0x0, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x03cc, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x1, 0x0, 0x5, 0x0, 0x3, 0x0, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x03cd, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x0, 0x3, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x03ce, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x1, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x03cf, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x0), (0x0, 0x0, 0x0, 0x2, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x03d0, ( (0x0, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x1, 0x0, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x03d1, ( (0x0, 0x0, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x03d2, ( (0x0, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x03d3, ( (0x0, 0x0, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x03d4, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x0, 0x0, 0x1, 0x0, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x03d5, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x0, 0x1, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x03d6, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x03d7, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x03d8, ( (0x1, 0x0, 0x1, 0x0, 0x0, 0x0), (0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x03d9, ( (0x0, 0x1, 0x2, 0x0, 0x0, 0x0), (0x4, 0x0, 0x5, 0x0, 0x0, 0x3, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x03da, ( (0x2, 0x0, 0x0, 0x1, 0x0, 0x0), (0x0, 0x3, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x03db, ( (0x0, 0x2, 0x0, 0x2, 0x0, 0x0), (0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x03dc, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x0), (0x5, 0x0, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x03dd, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x0), (0x5, 0x0, 0x4, 0x0, 0x0, 0x5, 0x0, 0x3, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x03de, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x0), (0x0, 0x5, 0x0, 0x3, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x03df, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x0), (0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x0, 0x4, 0x0, 0x5, 0x5, 0x4), ), ), ( 0x03e0, ( (0x0, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0), ), ), ( 0x03e1, ( (0x0, 0x0, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0), ), ), ( 0x03e2, ( (0x0, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0), ), ), ( 0x03e3, ( (0x0, 0x0, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1), ), ), ( 0x03e4, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x2, 0x0, 0x0, 0x0), ), ), ( 0x03e5, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x2, 0x0, 0x0), ), ), ( 0x03e6, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x2, 0x0), ), ), ( 0x03e7, ( (0x0, 0x0, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x0, 0x2), ), ), ( 0x03e8, ( (0x1, 0x0, 0x0, 0x0, 0x1, 0x0), (0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x0, 0x5, 0x0), ), ), ( 0x03e9, ( (0x0, 0x1, 0x0, 0x0, 0x2, 0x0), (0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x0, 0x5, 0x0, 0x3, 0x0, 0x5), ), ), ( 0x03ea, ( (0x2, 0x0, 0x0, 0x0, 0x3, 0x0), (0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x0), ), ), ( 0x03eb, ( (0x0, 0x2, 0x0, 0x0, 0x4, 0x0), (0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x0, 0x3), ), ), ( 0x03ec, ( (0x3, 0x0, 0x0, 0x0, 0x0, 0x1), (0x0, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x4, 0x0, 0x5, 0x0), ), ), ( 0x03ed, ( (0x0, 0x3, 0x0, 0x0, 0x0, 0x2), (0x0, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x3, 0x0, 0x4, 0x0, 0x5), ), ), ( 0x03ee, ( (0x4, 0x0, 0x0, 0x0, 0x0, 0x3), (0x0, 0x0, 0x5, 0x3, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x4, 0x0), ), ), ( 0x03ef, ( (0x0, 0x4, 0x0, 0x0, 0x0, 0x4), (0x0, 0x0, 0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x4), ), ), ( 0x03f0, ( (0x0, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x0, 0x0), ), ), ( 0x03f1, ( (0x0, 0x0, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x0, 0x5, 0x3, 0x0, 0x0), ), ), ( 0x03f2, ( (0x0, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x4, 0x5, 0x0, 0x0, 0x0, 0x0, 0x3, 0x5), ), ), ( 0x03f3, ( (0x0, 0x0, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x0, 0x0, 0x5, 0x3), ), ), ( 0x03f4, ( (0x0, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x0, 0x0, 0x3, 0x5, 0x4, 0x5, 0x0, 0x0), ), ), ( 0x03f5, ( (0x0, 0x0, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x0, 0x5, 0x3, 0x5, 0x4, 0x0, 0x0), ), ), ( 0x03f6, ( (0x0, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x0, 0x0, 0x4, 0x5, 0x0, 0x0, 0x4, 0x5), ), ), ( 0x03f7, ( (0x0, 0x0, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x0, 0x5, 0x4, 0x0, 0x0, 0x5, 0x4), ), ), ( 0x03f8, ( (0x1, 0x0, 0x1, 0x0, 0x1, 0x0), (0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x5, 0x0), ), ), ( 0x03f9, ( (0x0, 0x1, 0x2, 0x0, 0x2, 0x0), (0x4, 0x5, 0x5, 0x0, 0x5, 0x3, 0x0, 0x5, 0x5, 0x3, 0x0, 0x5), ), ), ( 0x03fa, ( (0x2, 0x0, 0x0, 0x1, 0x3, 0x0), (0x5, 0x3, 0x0, 0x5, 0x4, 0x5, 0x5, 0x0, 0x5, 0x0, 0x3, 0x5), ), ), ( 0x03fb, ( (0x0, 0x2, 0x0, 0x2, 0x4, 0x0), (0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x0, 0x5, 0x5, 0x3), ), ), ( 0x03fc, ( (0x3, 0x0, 0x3, 0x0, 0x0, 0x1), (0x5, 0x0, 0x3, 0x5, 0x5, 0x0, 0x3, 0x5, 0x4, 0x5, 0x5, 0x0), ), ), ( 0x03fd, ( (0x0, 0x3, 0x4, 0x0, 0x0, 0x2), (0x5, 0x0, 0x4, 0x5, 0x0, 0x5, 0x5, 0x3, 0x5, 0x4, 0x0, 0x5), ), ), ( 0x03fe, ( (0x4, 0x0, 0x0, 0x3, 0x0, 0x3), (0x0, 0x5, 0x5, 0x3, 0x5, 0x0, 0x4, 0x5, 0x5, 0x0, 0x4, 0x5), ), ), ( 0x03ff, ( (0x0, 0x4, 0x0, 0x4, 0x0, 0x4), (0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x4, 0x0, 0x5, 0x5, 0x4), ), ), ] @test decode(code) === val end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
1165
function flatten_testsuite(AT, FT) obj = (a = (Complex(FT(1), FT(2)), FT(3)), b = FT(4), c = SVector(FT(5))) obj_flattened = (FT(1), FT(2), FT(3), FT(4), FT(5)) @test @inferred(flatten(obj)) == obj_flattened @test @inferred(unflatten(typeof(obj), obj_flattened)) == obj @test @inferred(flatten(zero(FT))) == (zero(FT),) @test @inferred(unflatten(FT, (zero(FT),))) == zero(FT) @kernel function foo!(y, @Const(x), ::Type{T}) where {T} @inbounds begin z = (x[1], x[2], x[3]) y[1] = unflatten(T, z) end end @kernel function bar!(x, @Const(y)) @inbounds begin z = flatten(y[1]) (x[1], x[2], x[3]) = z end end T = Tuple{SVector{1,Complex{FT}},FT} xh = [FT(1), FT(2), FT(3)] x = AT(xh) y = AT{T}([(SVector(complex(zero(FT), zero(FT))), zero(FT))]) backend = get_backend(x) foo!(backend, 1, 1)(y, x, T) KernelAbstractions.synchronize(backend) @test Array(y)[1] == unflatten(T, xh) fill!(x, 0.0) bar!(backend, 1, 1)(x, y) KernelAbstractions.synchronize(backend) @test Array(x) == xh return end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
617
function gridarrays_testsuite(AT, FT) let N = (3, 2) K = (2, 3) L = 1 gm = GridManager(LobattoCell{FT,AT}(N...), Raven.brick(FT, K); min_level = L) grid = generate(gm) x = points(grid) @test x isa GridArray @test size(x) == (N..., prod(K) * 4^L) y = AT(x) @test y isa AT F = Raven.fieldindex(x) xp = parent(x) nonfielddims = SVector((1:(F-1))..., ((F+1):ndims(xp))...) perm = insert(nonfielddims, 1, F) xp = permutedims(xp, perm) @test reinterpret(reshape, FT, y) == xp end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
20228
@testset "Grid Numbering" begin function isisomorphic(a, b) f = Dict{eltype(a),eltype(b)}() g = Dict{eltype(b),eltype(a)}() for i in eachindex(a, b) if a[i] in keys(f) if f[a[i]] != b[i] @error "$(a[i]) -> $(f[a[i]]) exists when adding $(a[i]) -> $(b[i])" return false end else f[a[i]] = b[i] end if b[i] in keys(g) if g[b[i]] != a[i] @error "$(g[b[i]]) <- $(b[i]) exists when adding $(a[i]) <- $(b[i])" return false end else g[b[i]] = a[i] end end return true end function istranspose(ctod, dtoc) rows = rowvals(ctod) vals = nonzeros(ctod) _, n = size(ctod) for j = 1:n for k in nzrange(ctod, j) if vals[k] == false return false end i = rows[k] if j != dtoc[i] return false end end end return true end let # Coarse Grid # y # ^ # 4 | 7------8------9 # | | | | # | | | | # | | | | # 2 | 3------4------6 # | | | | # | | | | # | | | | # 0 | 1------2------5 # | # +------------------> x # 0 2 4 vertices = [ SVector(0.0, 0.0), # 1 SVector(2.0, 0.0), # 2 SVector(0.0, 2.0), # 3 SVector(2.0, 2.0), # 4 SVector(4.0, 0.0), # 5 SVector(4.0, 2.0), # 6 SVector(0.0, 4.0), # 7 SVector(2.0, 4.0), # 8 SVector(4.0, 4.0), # 9 ] cells = [ (1, 2, 3, 4), # 1 (6, 4, 5, 2), # 2 (3, 4, 7, 8), # 3 (4, 6, 8, 9), # 4 ] cg = coarsegrid(vertices, cells) forest = P4estTypes.pxest(Raven.connectivity(cg)) P4estTypes.refine!(forest; refine = (_, tid, _) -> tid == 4) P4estTypes.balance!(forest) ghost = P4estTypes.ghostlayer(forest) nodes = P4estTypes.lnodes(forest; ghost, degree = 3) P4estTypes.expand!(ghost, forest, nodes) quadranttoglobalids = Raven.materializequadranttoglobalid(forest, ghost) @test quadranttoglobalids == 1:7 quadrantcommpattern = Raven.materializequadrantcommpattern(forest, ghost) @test quadrantcommpattern.recvindices == 8:7 @test quadrantcommpattern.recvranks == [] @test quadrantcommpattern.recvrankindices == [] @test quadrantcommpattern.sendindices == 8:7 @test quadrantcommpattern.sendranks == [] @test quadrantcommpattern.sendrankindices == [] # 21 32 33 33 36 37 # 18 30 31 31 34 35 # 9 24 25 25 28 29 # # 19 20 21 21 24 25 25 28 29 # 16 17 18 18 22 23 23 26 27 # 7 8 9 9 11 10 9 11 10 # # 7 8 9 9 11 10 # 4 5 6 6 13 12 # 1 2 3 3 15 14 (dtoc_degree_3_local, dtoc_degree_3_global) = Raven.materializedtoc(forest, ghost, nodes, quadrantcommpattern, MPI.COMM_WORLD) @test dtoc_degree_3_local == dtoc_degree_3_global @test dtoc_degree_3_local == P4estTypes.unsafe_element_nodes(nodes) .+ 0x1 cell_degree_3 = LobattoCell{Float64,Array}(4, 4) dtoc_degree_3 = Raven.materializedtoc(cell_degree_3, dtoc_degree_3_local, dtoc_degree_3_global) @test isisomorphic(dtoc_degree_3, dtoc_degree_3_global) ctod_degree_3 = Raven.materializectod(dtoc_degree_3) @test ctod_degree_3 isa AbstractSparseMatrix @test istranspose(ctod_degree_3, dtoc_degree_3) quadranttolevel = Int8[ P4estTypes.level.(Iterators.flatten(forest)) P4estTypes.level.(P4estTypes.ghosts(ghost)) ] parentnodes = Raven.materializeparentnodes( cell_degree_3, ctod_degree_3, quadranttoglobalids, quadranttolevel, ) Np = length(cell_degree_3) for lid in eachindex(parentnodes) pid = parentnodes[lid] qlid = cld(lid, Np) qpid = cld(pid, Np) @test quadranttolevel[qpid] <= quadranttolevel[qlid] if quadranttolevel[qlid] == quadranttolevel[qpid] @test quadranttoglobalids[qlid] >= quadranttoglobalids[qpid] end @test dtoc_degree_3[pid] == dtoc_degree_3[lid] end GC.@preserve nodes begin @test Raven.materializequadranttofacecode(nodes) == P4estTypes.unsafe_face_code(nodes) end end let # Coarse Grid # z = 0: # y # ^ # 4 | 7------8------9 # | | | | # | | | | # | | | | # 2 | 3------4------6 # | | | | # | | | | # | | | | # 0 | 1------2------5 # | # +------------------> x # 0 2 4 # # z = 2: # y # ^ # 4 | 16-----17-----18 # | | | | # | | | | # | | | | # 2 | 12-----13-----15 # | | | | # | | | | # | | | | # 0 | 10-----11-----14 # | # +------------------> x # 0 2 4 vertices = [ SVector(0.0, 0.0, 0.0), # 1 SVector(2.0, 0.0, 0.0), # 2 SVector(0.0, 2.0, 0.0), # 3 SVector(2.0, 2.0, 0.0), # 4 SVector(4.0, 0.0, 0.0), # 5 SVector(4.0, 2.0, 0.0), # 6 SVector(0.0, 4.0, 0.0), # 7 SVector(2.0, 4.0, 0.0), # 8 SVector(4.0, 4.0, 0.0), # 9 SVector(0.0, 0.0, 2.0), # 10 SVector(2.0, 0.0, 2.0), # 11 SVector(0.0, 2.0, 2.0), # 12 SVector(2.0, 2.0, 2.0), # 13 SVector(4.0, 0.0, 2.0), # 14 SVector(4.0, 2.0, 2.0), # 15 SVector(0.0, 4.0, 2.0), # 16 SVector(2.0, 4.0, 2.0), # 17 SVector(4.0, 4.0, 2.0), # 18 ] cells = [ (1, 2, 3, 4, 10, 11, 12, 13), # 1 (6, 4, 5, 2, 15, 13, 14, 11), # 2 (3, 4, 7, 8, 12, 13, 16, 17), # 3 (4, 6, 8, 9, 13, 15, 17, 18), # 4 ] cg = coarsegrid(vertices, cells) forest = P4estTypes.pxest(Raven.connectivity(cg)) P4estTypes.refine!(forest; refine = (_, tid, _) -> tid == 4) P4estTypes.balance!(forest) ghost = P4estTypes.ghostlayer(forest) nodes = P4estTypes.lnodes(forest; ghost, degree = 3) P4estTypes.expand!(ghost, forest, nodes) quadranttoglobalids = Raven.materializequadranttoglobalid(forest, ghost) @test quadranttoglobalids == 1:11 quadrantcommpattern = Raven.materializequadrantcommpattern(forest, ghost) @test quadrantcommpattern.recvindices == 12:11 @test quadrantcommpattern.recvranks == [] @test quadrantcommpattern.recvrankindices == [] @test quadrantcommpattern.sendindices == 12:11 @test quadrantcommpattern.sendranks == [] @test quadrantcommpattern.sendrankindices == [] (dtoc_degree_3_local, dtoc_degree_3_global) = Raven.materializedtoc(forest, ghost, nodes, quadrantcommpattern, MPI.COMM_WORLD) @test dtoc_degree_3_local == dtoc_degree_3_global @test dtoc_degree_3_local == P4estTypes.unsafe_element_nodes(nodes) .+ 0x1 cell_degree_3 = LobattoCell{Float64,Array}(4, 4, 4) dtoc_degree_3 = Raven.materializedtoc(cell_degree_3, dtoc_degree_3_local, dtoc_degree_3_global) @test isisomorphic(dtoc_degree_3, dtoc_degree_3_global) ctod_degree_3 = Raven.materializectod(dtoc_degree_3) @test ctod_degree_3 isa AbstractSparseMatrix @test istranspose(ctod_degree_3, dtoc_degree_3) quadranttolevel = Int8[ P4estTypes.level.(Iterators.flatten(forest)) P4estTypes.level.(P4estTypes.ghosts(ghost)) ] parentnodes = Raven.materializeparentnodes( cell_degree_3, ctod_degree_3, quadranttoglobalids, quadranttolevel, ) Np = length(cell_degree_3) for lid in eachindex(parentnodes) pid = parentnodes[lid] qlid = cld(lid, Np) qpid = cld(pid, Np) @test quadranttolevel[qpid] <= quadranttolevel[qlid] if quadranttolevel[qlid] == quadranttolevel[qpid] @test quadranttoglobalids[qlid] >= quadranttoglobalids[qpid] end @test dtoc_degree_3[pid] == dtoc_degree_3[lid] end GC.@preserve nodes begin @test Raven.materializequadranttofacecode(nodes) == P4estTypes.unsafe_face_code(nodes) end end let FT = Float64 AT = Array N = 4 cell = LobattoCell{FT,AT}(N, N) # 4--------5--------6 # | | | # | | | # | | | # | | | # 1--------2--------3 vertices = [ SVector{2,FT}(-1, -1), # 1 SVector{2,FT}(0, -1), # 2 SVector{2,FT}(1, -1), # 3 SVector{2,FT}(-1, 1), # 4 SVector{2,FT}(0, 1), # 5 SVector{2,FT}(1, 1), # 6 ] for cells in [[(1, 2, 4, 5), (2, 3, 5, 6)], [(1, 2, 4, 5), (5, 6, 2, 3)]] cg = coarsegrid(vertices, cells) gm = GridManager(cell, cg) grid = generate(gm) A = continuoustodiscontinuous(grid) pts = points(grid) rows = rowvals(A) vals = nonzeros(A) _, n = size(A) ncontinuous = 0 ndiscontinuous = 0 for j = 1:n x = pts[rows[first(nzrange(A, j))]] if length(nzrange(A, j)) > 0 ncontinuous += 1 end for ii in nzrange(A, j) ndiscontinuous += 1 @test pts[rows[ii]] ≈ x end end @test ncontinuous == 2N^2 - N @test ndiscontinuous == 2N^2 pts = Adapt.adapt(Array, pts) fm = Adapt.adapt(Array, facemaps(grid)) @test isapprox(pts[fm.vmapM], pts[fm.vmapP]) @test isapprox(pts[fm.vmapM[fm.mapM]], pts[fm.vmapM[fm.mapP]]) bc = boundarycodes(grid) vmapM = reshape(fm.vmapM, (N, 4, :)) for q = 1:numcells(grid) for f = 1:4 if bc[f, q] == 1 @test all( isapprox.( one(FT), map(x -> maximum(abs.(x)), pts[vmapM[:, f, q]]), ), ) else @test !all( isapprox.( one(FT), map(x -> maximum(abs.(x)), pts[vmapM[:, f, q]]), ), ) end end end end end let cell = LobattoCell(2, 2, 2) cg = brick((1, 1, 1), (true, true, true)) gm = GridManager(cell, cg) grid = generate(gm) fm = facemaps(grid) @test fm.vmapP == [2; 4; 6; 8; 1; 3; 5; 7; 3; 4; 7; 8; 1; 2; 5; 6; 5; 6; 7; 8; 1; 2; 3; 4;;] end let cell = LobattoCell(2, 2) cg = brick((1, 1), (true, true)) gm = GridManager(cell, cg) grid = generate(gm) fm = facemaps(grid) @test fm.vmapP == [2; 4; 1; 3; 3; 4; 1; 2;;] end let FT = Float64 AT = Array N = 5 cell = LobattoCell(N, N, N) # 10-------11-------12 # /| /| /| # / | / | / | # / | / | / | # 7--------8--------9 | # | 4----|---5----|---6 # | / | / | / # | / | / | / # |/ |/ |/ # 1--------2--------3 # vertices = [ SVector{3,FT}(-1, -1, -1), # 1 SVector{3,FT}(0, -1, -1), # 2 SVector{3,FT}(1, -1, -1), # 3 SVector{3,FT}(-1, 1, -1), # 4 SVector{3,FT}(0, 1, -1), # 5 SVector{3,FT}(1, 1, -1), # 6 SVector{3,FT}(-1, -1, 1), # 7 SVector{3,FT}(0, -1, 1), # 8 SVector{3,FT}(1, -1, 1), # 9 SVector{3,FT}(-1, 1, 1), #10 SVector{3,FT}(0, 1, 1), #12 SVector{3,FT}(1, 1, 1), #13 ] for cells in [ # 2--------6 55 4--------2 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 8--------6 | # | 1----|---5 54 | 3----|---1 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 7--------5 [(4, 10, 1, 7, 5, 11, 2, 8), (6, 12, 5, 11, 3, 9, 2, 8)], # # 2--------6 55 7--------5 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 3--------1 | # | 1----|---5 54 | 8----|---6 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 4--------2 [(4, 10, 1, 7, 5, 11, 2, 8), (9, 3, 8, 2, 12, 6, 11, 5)], # # 2--------6 55 8--------6 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 7--------5 | # | 1----|---5 54 | 4----|---2 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 3--------1 [(4, 10, 1, 7, 5, 11, 2, 8), (3, 6, 2, 5, 9, 12, 8, 11)], # # 2--------6 55 3--------1 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 4--------2 | # | 1----|---5 54 | 7----|---5 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 8--------6 [(4, 10, 1, 7, 5, 11, 2, 8), (12, 9, 11, 8, 6, 3, 5, 2)], # # 2--------6 55 5--------7 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 6--------8 | # | 1----|---5 54 | 1----|---3 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 2--------4 [(4, 10, 1, 7, 5, 11, 2, 8), (5, 2, 6, 3, 11, 8, 12, 9)], # # 2--------6 55 5--------1 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 8--------3 | # | 1----|---5 54 | 6----|---2 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 7--------4 [(4, 10, 1, 7, 5, 11, 2, 8), (12, 6, 9, 3, 11, 5, 8, 2)], # # 2--------6 55 8--------4 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 6--------2 | # | 1----|---5 54 | 7----|---3 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 5--------1 [(4, 10, 1, 7, 5, 11, 2, 8), (3, 9, 6, 12, 2, 8, 5, 11)], # # 2--------6 55 6--------2 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 5--------1 | # | 1----|---5 54 | 8----|---4 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 7--------3 [(4, 10, 1, 7, 5, 11, 2, 8), (9, 12, 3, 6, 8, 11, 2, 5)], ] cg = coarsegrid(vertices, cells) gm = GridManager(cell, cg) grid = generate(gm) A = grid.continuoustodiscontinuous pts = points(grid) rows = rowvals(A) vals = nonzeros(A) _, n = size(A) ncontinuous = 0 ndiscontinuous = 0 for j = 1:n x = pts[rows[first(nzrange(A, j))]] if length(nzrange(A, j)) > 0 ncontinuous += 1 end for ii in nzrange(A, j) ndiscontinuous += 1 @test pts[rows[ii]] ≈ x end end @test ncontinuous == 2N^3 - N^2 @test ndiscontinuous == 2N^3 pts = Adapt.adapt(Array, pts) fm = Adapt.adapt(Array, facemaps(grid)) @test isapprox(pts[fm.vmapM], pts[fm.vmapP]) @test isapprox(pts[fm.vmapM[fm.mapM]], pts[fm.vmapM[fm.mapP]]) bc = boundarycodes(grid) vmapM = reshape(fm.vmapM, (N, N, 6, :)) for q = 1:numcells(grid) for f = 1:6 if bc[f, q] == 1 @test all( isapprox.( one(FT), map(x -> maximum(abs.(x)), pts[vmapM[:, :, f, q]]), ), ) else @test !all( isapprox.( one(FT), map(x -> maximum(abs.(x)), pts[vmapM[:, :, f, q]]), ), ) end end end end end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
28369
using ReadVTK function min_node_dist_warpfun(x⃗::SVector{2}) FT = eltype(x⃗) ξ1, ξ2 = x⃗ ξ1 ≥ FT(1 / 2) && (ξ1 = FT(1 / 2) + 2 * (ξ1 - FT(1 / 2))) ξ2 ≥ FT(3 / 2) && (ξ2 = FT(3 / 2) + 2 * (ξ2 - FT(3 / 2))) return SVector(ξ1, ξ2) end function min_node_dist_warpfun(x⃗::SVector{3}) FT = eltype(x⃗) ξ1, ξ2, ξ3 = x⃗ ξ1 ≥ FT(1 / 2) && (ξ1 = FT(1 / 2) + 2 * (ξ1 - FT(1 / 2))) ξ2 ≥ FT(1 / 2) && (ξ2 = FT(1 / 2) + 2 * (ξ2 - FT(1 / 2))) ξ3 ≥ FT(3 / 2) && (ξ3 = FT(3 / 2) + 2 * (ξ3 - FT(3 / 2))) return SVector(ξ1, ξ2, ξ3) end function grids_testsuite(AT, FT) rng = StableRNG(37) let N = (3, 2) K = (2, 3) coordinates = ntuple(d -> range(-one(FT), stop = one(FT), length = K[d] + 1), length(K)) gm = GridManager(LobattoCell{FT,AT}(N...), Raven.brick(coordinates); min_level = 2) indicator = rand(rng, (Raven.AdaptNone, Raven.AdaptRefine), length(gm)) adapt!(gm, indicator) warp(x::SVector{2}) = SVector( x[1] + cospi(3x[2] / 2) * cospi(x[1] / 2) * cospi(x[2] / 2) / 5, x[2] + sinpi(3x[1] / 2) * cospi(x[1] / 2) * cospi(x[2] / 2) / 5, ) grid = generate(warp, gm) @test grid isa Raven.Grid @test issparse(grid.continuoustodiscontinuous) mktempdir() do tmpdir vtk_grid("$tmpdir/grid", grid) do vtk vtk["CellNumber"] = (1:length(grid)) .+ offset(grid) P = toequallyspaced(referencecell(grid)) x = P * points(grid) vtk["x"] = Adapt.adapt(Array, x) end @test isfile("$tmpdir/grid.pvtu") @test isdir("$tmpdir/grid") @test_nowarn VTKFile("$tmpdir/grid/grid_1.vtu") end end let N = (3, 3, 3) R = FT(2) r = FT(1) coarse_grid = Raven.cubeshellgrid(R, r) gm = GridManager(LobattoCell{FT,AT}(N...), coarse_grid, min_level = 2) indicator = rand(rng, (Raven.AdaptNone, Raven.AdaptRefine), length(gm)) adapt!(gm, indicator) grid = generate(gm) @test grid isa Raven.Grid @test issparse(grid.continuoustodiscontinuous) mktempdir() do tmpdir vtk_grid("$tmpdir/grid", grid) do vtk vtk["CellNumber"] = (1:length(grid)) .+ offset(grid) P = toequallyspaced(referencecell(grid)) x = P * reshape(points(grid), size(P, 2), :) vtk["x"] = Adapt.adapt(Array, x) end @test isfile("$tmpdir/grid.pvtu") @test isdir("$tmpdir/grid") @test_nowarn VTKFile("$tmpdir/grid/grid_1.vtu") end end let N = (3, 3) R = FT(1) coarse_grid = Raven.cubeshell2dgrid(R) gm = GridManager(LobattoCell{FT,AT}(N...), coarse_grid, min_level = 2) indicator = rand(rng, (Raven.AdaptNone, Raven.AdaptRefine), length(gm)) adapt!(gm, indicator) grid = generate(gm) @test grid isa Raven.Grid @test issparse(grid.continuoustodiscontinuous) mktempdir() do tmpdir vtk_grid("$tmpdir/grid", grid) do vtk vtk["CellNumber"] = (1:length(grid)) .+ offset(grid) P = toequallyspaced(referencecell(grid)) x = P * reshape(points(grid), size(P, 2), :) vtk["x"] = Adapt.adapt(Array, x) end @test isfile("$tmpdir/grid.pvtu") @test isdir("$tmpdir/grid") @test_nowarn VTKFile("$tmpdir/grid/grid_1.vtu") end end let N = (4, 4) K = (2, 1) coordinates = ntuple(d -> range(-one(FT), stop = one(FT), length = K[d] + 1), length(K)) cell = LobattoCell{FT,AT}(N...) gm = GridManager(cell, brick(coordinates, (true, true))) grid = generate(gm) @test all(boundarycodes(grid) .== 0) end let N = (3, 2, 4) K = (2, 3, 1) coordinates = ntuple(d -> range(-one(FT), stop = one(FT), length = K[d] + 1), length(K)) gm = GridManager(LobattoCell{FT,AT}(N...), Raven.brick(coordinates); min_level = 1) indicator = rand(rng, (Raven.AdaptNone, Raven.AdaptRefine), length(gm)) adapt!(gm, indicator) warp(x::SVector{3}) = x grid = generate(warp, gm) @test grid isa Raven.Grid @test issparse(grid.continuoustodiscontinuous) mktempdir() do tmpdir vtk_grid("$tmpdir/grid", grid) do vtk vtk["CellNumber"] = (1:length(grid)) .+ offset(grid) P = toequallyspaced(referencecell(grid)) x = P * points(grid) vtk["x"] = Adapt.adapt(Array, x) end @test isfile("$tmpdir/grid.pvtu") @test isdir("$tmpdir/grid") @test_nowarn VTKFile("$tmpdir/grid/grid_1.vtu") end end let cell = LobattoCell{FT,AT}(4, 4) vertices = [ SVector{2,FT}(0, 0), # 1 SVector{2,FT}(2, 0), # 2 SVector{2,FT}(0, 2), # 3 SVector{2,FT}(2, 2), # 4 SVector{2,FT}(4, 0), # 5 SVector{2,FT}(4, 2), # 6 ] cells = [(1, 2, 3, 4), (4, 2, 6, 5)] cg = coarsegrid(vertices, cells) gm = GridManager(cell, cg) grid = generate(gm) @test grid isa Raven.Grid @test issparse(grid.continuoustodiscontinuous) mktempdir() do tmpdir vtk_grid("$tmpdir/grid", grid) do vtk vtk["CellNumber"] = (1:length(grid)) .+ Raven.offset(grid) P = toequallyspaced(referencecell(grid)) x = P * points(grid) vtk["x"] = Adapt.adapt(Array, x) end @test isfile("$tmpdir/grid.pvtu") @test isdir("$tmpdir/grid") @test_nowarn VTKFile("$tmpdir/grid/grid_1.vtu") end end let cell = LobattoCell{FT,AT}(3, 3, 3) vertices = [ SVector{3,FT}(0, 0, 0), # 1 SVector{3,FT}(2, 0, 0), # 2 SVector{3,FT}(0, 2, 0), # 3 SVector{3,FT}(2, 2, 0), # 4 SVector{3,FT}(0, 0, 2), # 5 SVector{3,FT}(2, 0, 2), # 6 SVector{3,FT}(0, 2, 2), # 7 SVector{3,FT}(2, 2, 2), # 8 SVector{3,FT}(4, 0, 0), # 9 SVector{3,FT}(4, 2, 0), # 10 SVector{3,FT}(4, 0, 2), # 11 SVector{3,FT}(4, 2, 2), # 12 ] cells = [(1, 2, 3, 4, 5, 6, 7, 8), (4, 2, 10, 9, 8, 6, 12, 11)] cg = coarsegrid(vertices, cells) gm = GridManager(cell, cg) grid = generate(gm) @test grid isa Raven.Grid @test issparse(grid.continuoustodiscontinuous) mktempdir() do tmpdir vtk_grid("$tmpdir/grid", grid) do vtk vtk["CellNumber"] = (1:length(grid)) .+ Raven.offset(grid) P = toequallyspaced(referencecell(grid)) x = P * points(grid) vtk["x"] = Adapt.adapt(Array, x) end @test isfile("$tmpdir/grid.pvtu") @test isdir("$tmpdir/grid") @test_nowarn VTKFile("$tmpdir/grid/grid_1.vtu") end end @testset "2D metrics" begin f(x) = SA[ 9*x[1]-(1+x[1])*x[2]^2+(x[1]-1)^2*(1-x[2]^2+x[2]^3), 10*x[2]+x[1]*x[1]^3*(1-x[2])+x[1]^2*x[2]*(1+x[2]), ] f11(x) = 7 + x[2]^2 - 2 * x[2]^3 + 2 * x[1] * (1 - x[2]^2 + x[2]^3) f12(x) = -2 * (1 + x[1]) * x[2] + (-1 + x[1])^2 * x[2] * (-2 + 3 * x[2]) f21(x) = -4 * x[1]^3 * (-1 + x[2]) + 2 * x[1] * x[2] * (1 + x[2]) f22(x) = 10 - x[1] * x[1]^3 + x[1]^2 * (1 + 2 * x[2]) fJ(x, dx1, dx2, l) = SA[ f11(x)*(dx1/2^(l+1)) f12(x)*(dx2/2^(l+1)) f21(x)*(dx1/2^(l+1)) f22(x)*(dx2/2^(l+1)) ] coordinates = ( range(-one(FT), stop = one(FT), length = 6), range(-one(FT), stop = one(FT), length = 5), ) L = 10 M = 12 level = 2 gm = GridManager( LobattoCell{FT,AT}(L, M), Raven.brick(coordinates); min_level = level, ) unwarpedgrid = generate(gm) grid = generate(f, gm) wr, ws = weights_1d(referencecell(gm)) ux = points(unwarpedgrid) uJ = fJ.(ux, step.(coordinates)..., level) uwJ = wr .* ws .* det.(uJ) uinvJ = inv.(uJ) invJ, J, wJ = components(first(volumemetrics(grid))) @test all(adapt(Array, J .≈ det.(uJ))) @test all(adapt(Array, wJ .≈ uwJ)) @test all(adapt(Array, invJ .≈ uinvJ)) wJinvG, wJ = components(last(volumemetrics(grid))) @test all(adapt(Array, wJ .≈ uwJ)) g(x) = x * x' @test all(adapt(Array, wJinvG) .≈ adapt(Array, uwJ .* g.(uinvJ))) uJ = adapt(Array, uJ) wr = adapt(Array, wr) ws = adapt(Array, ws) sm, _ = surfacemetrics(grid) sm = adapt(Array, sm) n, sJ, wsJ = components(sm) a = n .* wsJ @test all( a[1:M, 1:numcells(grid)] ./ vec(ws) .≈ map(g -> SA[-g[2, 2], g[1, 2]], uJ[1, :, :]), ) @test all( a[M.+(1:M), :] ./ vec(ws) .≈ map(g -> SA[g[2, 2], -g[1, 2]], uJ[end, :, :]), ) @test all( a[2M.+(1:L), 1:numcells(grid)] ./ vec(wr) .≈ map(g -> SA[g[2, 1], -g[1, 1]], uJ[:, 1, :]), ) @test all( a[2M.+L.+(1:L), 1:numcells(grid)] ./ vec(wr) .≈ map(g -> SA[-g[2, 1], g[1, 1]], uJ[:, end, :]), ) a = n .* sJ @test all(a[1:M, 1:numcells(grid)] .≈ map(g -> SA[-g[2, 2], g[1, 2]], uJ[1, :, :])) @test all(a[M.+(1:M), :] .≈ map(g -> SA[g[2, 2], -g[1, 2]], uJ[end, :, :])) @test all( a[2M.+(1:L), 1:numcells(grid)] .≈ map(g -> SA[g[2, 1], -g[1, 1]], uJ[:, 1, :]), ) @test all( a[2M.+L.+(1:L), 1:numcells(grid)] .≈ map(g -> SA[-g[2, 1], g[1, 1]], uJ[:, end, :]), ) @test all(norm.(n) .≈ 1) end @testset "2D spherical shell" begin L = 6 level = 1 R = FT(3) gm = GridManager( # Polynomial orders need to be the same to match up faces. # We currently do not support different polynomial orders for # joining faces. LobattoCell{FT,AT}(L, L), Raven.cubeshell2dgrid(R); min_level = level, ) grid = generate(gm) _, _, wJ = components(first(volumemetrics(grid))) @test sum(adapt(Array, wJ)) ≈ pi * R^2 * 4 pts = points(grid) fm = facemaps(grid) pts = Adapt.adapt(Array, pts) fm = Adapt.adapt(Array, fm) @test isapprox(pts[fm.vmapM], pts[fm.vmapP]) @test isapprox(pts[fm.vmapM[fm.mapM]], pts[fm.vmapM[fm.mapP]]) end @testset "2D constant preserving" begin f(x) = SA[ 9*x[1]-(1+x[1])*x[2]^2+(x[1]-1)^2*(1-x[2]^2+x[2]^3), 10*x[2]+x[1]*x[1]^3*(1-x[2])+x[1]^2*x[2]*(1+x[2]), ] coordinates = ( range(-one(FT), stop = one(FT), length = 3), range(-one(FT), stop = one(FT), length = 5), ) L = 3 M = 4 level = 0 gm = GridManager( LobattoCell{FT,AT}(L, M), Raven.brick(coordinates); min_level = level, ) grid = generate(f, gm) invJ, J, _ = components(first(volumemetrics(grid))) invJ11, invJ21, invJ12, invJ22 = components(invJ) Dr, Ds = derivatives(referencecell(grid)) cp1 = (Dr * (J .* invJ11) + Ds * (J .* invJ21)) cp2 = (Dr * (J .* invJ12) + Ds * (J .* invJ22)) @test norm(adapt(Array, cp1), Inf) < 200 * eps(FT) @test norm(adapt(Array, cp2), Inf) < 200 * eps(FT) end @testset "3D metrics" begin f(x) = SA[ 3x[1]+x[2]/5+x[3]/10+x[1]*x[2]^2*x[3]^3/3, 4x[2]+x[1]^3*x[2]^2*x[3]/4, 2x[3]+x[1]^2*x[2]*x[3]^3/2, ] f11(x) = 3 * oneunit(eltype(x)) + x[2]^2 * x[3]^3 / 3 f12(x) = oneunit(eltype(x)) / 5 + 2 * x[1] * x[2] * x[3]^3 / 3 f13(x) = oneunit(eltype(x)) / 10 + 3 * x[1] * x[2]^2 * x[3]^2 / 3 f21(x) = 3 * x[1]^2 * x[2]^2 * x[3] / 4 f22(x) = 4 * oneunit(eltype(x)) + 2 * x[1]^3 * x[2] * x[3] / 4 f23(x) = x[1]^3 * x[2]^2 / 4 f31(x) = 2 * x[1] * x[2] * x[3]^3 / 2 f32(x) = x[1]^2 * x[3]^3 / 2 f33(x) = 2 * oneunit(eltype(x)) + 3 * x[1]^2 * x[2] * x[3]^2 / 2 fJ(x, dx1, dx2, dx3, l) = SA[ f11(x)*(dx1/2^(l+1)) f12(x)*(dx2/2^(l+1)) f13(x)*(dx3/2^(l+1)) f21(x)*(dx1/2^(l+1)) f22(x)*(dx2/2^(l+1)) f23(x)*(dx3/2^(l+1)) f31(x)*(dx1/2^(l+1)) f32(x)*(dx2/2^(l+1)) f33(x)*(dx3/2^(l+1)) ] coordinates = ( range(-one(FT), stop = one(FT), length = 3), range(-one(FT), stop = one(FT), length = 2), range(-one(FT), stop = one(FT), length = 4), ) L = 6 M = 8 N = 7 level = 0 gm = GridManager( LobattoCell{FT,AT}(L, M, N), Raven.brick(coordinates); min_level = level, ) unwarpedgrid = generate(gm) grid = generate(f, gm) wr, ws, wt = weights_1d(referencecell(gm)) ux = points(unwarpedgrid) uJ = fJ.(ux, step.(coordinates)..., level) uwJ = wr .* ws .* wt .* det.(uJ) uinvJ = inv.(uJ) invJ, J, wJ = components(first(volumemetrics(grid))) @test all(adapt(Array, J .≈ det.(uJ))) @test all(adapt(Array, wJ .≈ uwJ)) @test all(adapt(Array, invJ .≈ uinvJ)) wJinvG, wJ = components(last(volumemetrics(grid))) @test all(adapt(Array, wJ .≈ uwJ)) g(x) = x * x' @test all(adapt(Array, wJinvG) .≈ adapt(Array, uwJ .* g.(uinvJ))) uJ = adapt(Array, uJ) uinvJ = adapt(Array, uinvJ) wr = adapt(Array, wr) ws = adapt(Array, ws) wt = adapt(Array, wt) sm, _ = surfacemetrics(grid) sm = adapt(Array, sm) b = det.(uJ) .* uinvJ n, sJ, wsJ = components(sm) a = n .* wsJ @test all( reshape(a[1:M*N, 1:numcells(grid)], (M, N, numcells(grid))) ./ (vec(ws) .* vec(wt)') .≈ map(g -> -g[1, :], b[1, :, :, :]), ) @test all( reshape(a[M*N.+(1:M*N), 1:numcells(grid)], (M, N, numcells(grid))) ./ (vec(ws) .* vec(wt)') .≈ map(g -> g[1, :], b[end, :, :, :]), ) @test all( reshape(a[2*M*N.+(1:L*N), 1:numcells(grid)], (L, N, numcells(grid))) ./ (vec(wr) .* vec(wt)') .≈ map(g -> -g[2, :], b[:, 1, :, :]), ) @test all( reshape(a[2*M*N.+L*N.+(1:L*N), 1:numcells(grid)], (L, N, numcells(grid))) ./ (vec(wr) .* vec(wt)') .≈ map(g -> g[2, :], b[:, end, :, :]), ) @test all( reshape(a[2*L*N+2*M*N.+(1:L*M), 1:numcells(grid)], (L, M, numcells(grid))) ./ (vec(wr) .* vec(ws)') .≈ map(g -> -g[3, :], b[:, :, 1, :]), ) @test all( reshape( a[2*L*N+2*M*N.+L*M.+(1:L*M), 1:numcells(grid)], (L, M, numcells(grid)), ) ./ (vec(wr) .* vec(ws)') .≈ map(g -> g[3, :], b[:, :, end, :]), ) a = n .* sJ @test all( reshape(a[1:M*N, 1:numcells(grid)], (M, N, numcells(grid))) .≈ map(g -> -g[1, :], b[1, :, :, :]), ) @test all( reshape(a[M*N.+(1:M*N), 1:numcells(grid)], (M, N, numcells(grid))) .≈ map(g -> g[1, :], b[end, :, :, :]), ) @test all( reshape(a[2*M*N.+(1:L*N), 1:numcells(grid)], (L, N, numcells(grid))) .≈ map(g -> -g[2, :], b[:, 1, :, :]), ) @test all( reshape(a[2*M*N.+L*N.+(1:L*N), 1:numcells(grid)], (L, N, numcells(grid))) .≈ map(g -> g[2, :], b[:, end, :, :]), ) @test all( reshape(a[2*L*N+2*M*N.+(1:L*M), 1:numcells(grid)], (L, M, numcells(grid))) .≈ map(g -> -g[3, :], b[:, :, 1, :]), ) @test all( reshape( a[2*L*N+2*M*N.+L*M.+(1:L*M), 1:numcells(grid)], (L, M, numcells(grid)), ) .≈ map(g -> g[3, :], b[:, :, end, :]), ) @test all(norm.(n) .≈ 1) end @testset "3D constant preserving" begin f(x) = SA[ 3x[1]+x[2]/5+x[3]/10+x[1]*x[2]^2*x[3]^3/3, 4x[2]+x[1]^3*x[2]^2*x[3]/4, 2x[3]+x[1]^2*x[2]*x[3]^3/2, ] coordinates = ( range(-one(FT), stop = one(FT), length = 3), range(-one(FT), stop = one(FT), length = 5), range(-one(FT), stop = one(FT), length = 4), ) L = 3 M = 4 N = 2 level = 0 gm = GridManager( LobattoCell{FT,AT}(L, M, N), Raven.brick(coordinates); min_level = level, ) grid = generate(f, gm) invJ, J, _ = components(first(volumemetrics(grid))) invJc = components(invJ) Dr, Ds, Dt = derivatives(referencecell(grid)) cp1 = (Dr * (J .* invJc[1]) + Ds * (J .* invJc[2]) + Dt * (J .* invJc[3])) cp2 = (Dr * (J .* invJc[4]) + Ds * (J .* invJc[5]) + Dt * (J .* invJc[6])) cp3 = (Dr * (J .* invJc[7]) + Ds * (J .* invJc[8]) + Dt * (J .* invJc[9])) @test norm(adapt(Array, cp1), Inf) < 200 * eps(FT) @test norm(adapt(Array, cp2), Inf) < 200 * eps(FT) @test norm(adapt(Array, cp3), Inf) < 200 * eps(FT) end @testset "2D uniform brick grid" begin cell = LobattoCell{FT,AT}(4, 5) xrange = range(-FT(1000), stop = FT(1000), length = 21) yrange = range(-FT(2000), stop = FT(2000), length = 11) grid = generate(GridManager(cell, Raven.brick((xrange, yrange)))) # TODO get Cartesian ordering to check symmetry # p = adapt(Array, points(grid)) # p = reshape(p, size(cell)..., size(grid)...) # x₁, x₂ = components(p) # @test all(x₁ .+ reverse(x₁, dims = (1, 3)) .== 0) # @test all(x₂ .- reverse(x₂, dims = (1, 3)) .== 0) # @test all(x₁ .- reverse(x₁, dims = (2, 4), cell) .== 0) # @test all(x₂ .+ reverse(x₂, dims =, cell (2, 4)) .== 0) g, J, wJ = adapt(Array, components(first(volumemetrics(grid)))) wr, ws = adapt(Array, weights_1d(cell)) @test all(J .== (step(xrange) * step(yrange) / 4)) @test all(wJ .== (step(xrange) * step(yrange) / 4) .* (wr .* ws)) @test all(getindex.(g, 1) .== 2 / step(xrange)) @test all(getindex.(g, 2) .== 0) @test all(getindex.(g, 3) .== 0) @test all(getindex.(g, 4) .== 2 / step(yrange)) n, sJ, swJ = adapt(Array, components(first(surfacemetrics(grid)))) n₁, n₂, n₃, n₄ = faceviews(n, cell) @test all(n₁ .== Ref(SVector(-1, 0))) @test all(n₂ .== Ref(SVector(1, 0))) @test all(n₃ .== Ref(SVector(0, -1))) @test all(n₄ .== Ref(SVector(0, 1))) swJ₁, swJ₂, swJ₃, swJ₄ = faceviews(swJ, cell) @test all(isapprox.(swJ₁, (step(yrange) / 2) .* vec(ws), rtol = 10eps(FT))) @test all(isapprox.(swJ₂, (step(yrange) / 2) .* vec(ws), rtol = 10eps(FT))) @test all(isapprox.(swJ₃, (step(xrange) / 2) .* vec(wr), rtol = 10eps(FT))) @test all(isapprox.(swJ₄, (step(xrange) / 2) .* vec(wr), rtol = 10eps(FT))) sJ₁, sJ₂, sJ₃, sJ₄ = faceviews(sJ, cell) @test all(isapprox.(sJ₁, (step(yrange) / 2), rtol = 10eps(FT))) @test all(isapprox.(sJ₂, (step(yrange) / 2), rtol = 10eps(FT))) @test all(isapprox.(sJ₃, (step(xrange) / 2), rtol = 10eps(FT))) @test all(isapprox.(sJ₄, (step(xrange) / 2), rtol = 10eps(FT))) end @testset "3D uniform brick grid" begin cell = LobattoCell{FT,AT}(4, 5, 6) xrange = range(-FT(1000), stop = FT(1000), length = 21) yrange = range(-FT(2000), stop = FT(2000), length = 11) zrange = range(-FT(3000), stop = FT(3000), length = 6) grid = generate(GridManager(cell, Raven.brick((xrange, yrange, zrange)))) # TODO get Cartesian ordering to check symmetry # p = adapt(Array, points(grid)) # p = reshape(p, size(cell)..., size(grid)...) # x₁, x₂, x₃ = components(p) # @test all(x₁ .+ reverse(x₁, dims = (1, 4)) .== 0) # @test all(x₂ .- reverse(x₂, dims = (1, 4)) .== 0) # @test all(x₃ .- reverse(x₃, dims = (1, 4)) .== 0) # @test all(x₁ .- reverse(x₁, dims = (2, 5)) .== 0) # @test all(x₂ .+ reverse(x₂, dims = (2, 5)) .== 0) # @test all(x₃ .- reverse(x₃, dims = (2, 5)) .== 0) # @test all(x₁ .- reverse(x₁, dims = (3, 6)) .== 0) # @test all(x₂ .- reverse(x₂, dims = (3, 6)) .== 0) # @test all(x₃ .+ reverse(x₃, dims = (3, 6)) .== 0) g, J, wJ = adapt(Array, components(first(volumemetrics(grid)))) wr, ws, wt = adapt(Array, weights_1d(cell)) @test all(J .== (step(xrange) * step(yrange) * step(zrange) / 8)) @test all( wJ .== (step(xrange) * step(yrange) * step(zrange) / 8) .* (wr .* ws .* wt), ) @test all(getindex.(g, 1) .== 2 / step(xrange)) @test all(getindex.(g, 2) .== 0) @test all(getindex.(g, 3) .== 0) @test all(getindex.(g, 4) .== 0) @test all(getindex.(g, 5) .== 2 / step(yrange)) @test all(getindex.(g, 6) .== 0) @test all(getindex.(g, 7) .== 0) @test all(getindex.(g, 8) .== 0) @test all(getindex.(g, 9) .== 2 / step(zrange)) n, sJ, swJ = adapt(Array, components(first(surfacemetrics(grid)))) n₁, n₂, n₃, n₄, n₅, n₆ = faceviews(n, cell) @test all(n₁ .== Ref(SVector(-1, 0, 0))) @test all(n₂ .== Ref(SVector(1, 0, 0))) @test all(n₃ .== Ref(SVector(0, -1, 0))) @test all(n₄ .== Ref(SVector(0, 1, 0))) @test all(n₅ .== Ref(SVector(0, 0, -1))) @test all(n₆ .== Ref(SVector(0, 0, 1))) # TODO Make check exact swJ₁, swJ₂, swJ₃, swJ₄, swJ₅, swJ₆ = faceviews(swJ, cell) @test all( isapprox.( swJ₁, (step(yrange) * step(zrange) / 4) .* (vec(ws) .* vec(wt)'), rtol = 10eps(FT), ), ) @test all( isapprox.( swJ₂, (step(yrange) * step(zrange) / 4) .* (vec(ws) .* vec(wt)'), rtol = 10eps(FT), ), ) @test all( isapprox.( swJ₃, (step(xrange) * step(zrange) / 4) .* (vec(wr) .* vec(wt)'), rtol = 10eps(FT), ), ) @test all( isapprox.( swJ₄, (step(xrange) * step(zrange) / 4) .* (vec(wr) .* vec(wt)'), rtol = 10eps(FT), ), ) @test all( isapprox.( swJ₅, (step(xrange) * step(yrange) / 4) .* (vec(wr) .* vec(ws)'), rtol = 10eps(FT), ), ) @test all( isapprox.( swJ₆, (step(xrange) * step(yrange) / 4) .* (vec(wr) .* vec(ws)'), rtol = 10eps(FT), ), ) sJ₁, sJ₂, sJ₃, sJ₄, sJ₅, sJ₆ = faceviews(sJ, cell) @test all(isapprox.(sJ₁, (step(yrange) * step(zrange) / 4), rtol = 10eps(FT))) @test all(isapprox.(sJ₂, (step(yrange) * step(zrange) / 4), rtol = 10eps(FT))) @test all(isapprox.(sJ₃, (step(xrange) * step(zrange) / 4), rtol = 10eps(FT))) @test all(isapprox.(sJ₄, (step(xrange) * step(zrange) / 4), rtol = 10eps(FT))) @test all(isapprox.(sJ₅, (step(xrange) * step(yrange) / 4), rtol = 10eps(FT))) @test all(isapprox.(sJ₆, (step(xrange) * step(yrange) / 4), rtol = 10eps(FT))) end @testset "min_node_distance" begin Kh = 10 Kv = 4 Nqs = (((5, 5), (5, 4), (3, 4)), ((5, 5, 5), (3, 4, 5), (5, 4, 3), (5, 3, 4))) for dim in (2, 3) for Nq in Nqs[dim-1] if dim == 2 brickrange = ( range(FT(0); length = Kh + 1, stop = FT(1)), range(FT(1); length = Kv + 1, stop = FT(2)), ) elseif dim == 3 brickrange = ( range(FT(0); length = Kh + 1, stop = FT(1)), range(FT(0); length = Kh + 1, stop = FT(1)), range(FT(1); length = Kv + 1, stop = FT(2)), ) end gm = GridManager( LobattoCell{FT,AT}(Nq...), Raven.brick(brickrange, ntuple(_ -> true, dim)), ) grid = generate(min_node_dist_warpfun, gm) ξ = Array.(points_1d(referencecell(grid))) Δξ = ntuple(d -> ξ[d][2] - ξ[d][1], dim) hmnd = minimum(Δξ[1:(dim-1)]) / (2Kh) vmnd = Δξ[end] / (2Kv) @test hmnd ≈ min_node_distance(grid) @test vmnd ≈ min_node_distance(grid, dims = (dim,)) @test hmnd ≈ min_node_distance(grid, dims = 1:(dim-1)) end end end @testset "curvedquadpoints" begin N = (2, 2) vertices = [ SVector{2,FT}(1.0, -1.0), #1 SVector{2,FT}(1.0, 1.0), #2 SVector{2,FT}(2.0, 0.0), #3 SVector{2,FT}(0.0, 0.0), #4 ] cells = [(4, 1, 2, 3)] cg = coarsegrid(vertices, cells) coarse_grid = coarsegrid("curvedboxmesh2d.inp") gm = GridManager(LobattoCell{FT,AT}(N...), cg, min_level = 1) gmcurved = GridManager(LobattoCell{FT,AT}(N...), coarse_grid, min_level = 1) grid = generate(gm) gridcurved = generate(gmcurved) @test coarse_grid.vertices ≈ cg.vertices cg1 = coarsegrid("flatGingerbreadMan.inp") gm1 = GridManager(LobattoCell{FT,AT}(N...), cg1, min_level = 1) grid = generate(gm1) cg2 = coarsegrid("GingerbreadMan.inp") gm2 = GridManager(LobattoCell{FT,AT}(N...), cg2, min_level = 1) grid2 = generate(gm2) @test cg1.vertices ≈ cg2.vertices err = norm(parent(points(grid)) - parent(points(grid2)), Inf) @test maximum(err) < 1 // 5 end @testset "curvedHexpoints" begin N = (2, 2, 2) vertices = [ SVector{3,FT}(-0.4350800364851, -0.7033148310153, 0.0000000000000), #1 SVector{3,FT}(-0.2553059615836, -0.7194290918162, 0.0000000000000), #2 SVector{3,FT}(-0.5200431460828, -0.5200432080034, 0.0000000000000), #3 SVector{3,FT}(-0.2494272390808, -0.4937247409923, 0.0000000000000), #4 SVector{3,FT}(-0.4350800364851, -0.7033148310153, 0.3750000000000), #5 SVector{3,FT}(-0.2553059615836, -0.7194290918162, 0.3750000000000), #6 SVector{3,FT}(-0.5200431460828, -0.5200432080034, 0.3750000000000), #7 SVector{3,FT}(-0.2494272390808, -0.4937247409923, 0.3750000000000), #8 ] cells = [(1, 2, 3, 4, 5, 6, 7, 8)] cg = coarsegrid(vertices, cells) coarse_grid = coarsegrid("curvedboxmesh3d.inp") gm = GridManager(LobattoCell{FT,AT}(N...), cg, min_level = 1) gmcurved = GridManager(LobattoCell{FT,AT}(N...), coarse_grid, min_level = 1) grid = generate(gm) gridcurved = generate(gmcurved) @test coarse_grid.vertices ≈ cg.vertices cg1 = coarsegrid("flatHalfCircle3DRot.inp") gm1 = GridManager(LobattoCell{FT,AT}(N...), cg1, min_level = 1) grid = generate(gm1) cg2 = coarsegrid("HalfCircle3DRot.inp") gm2 = GridManager(LobattoCell{FT,AT}(N...), cg2, min_level = 1) grid2 = generate(gm2) @test cg1.vertices ≈ cg2.vertices err = norm(parent(points(grid)) - parent(points(grid2)), Inf) @test err < 1 // 5 end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
3289
function kron_testsuite(AT, FT) rng = StableRNG(37) a = adapt(AT, rand(rng, FT, 3, 2)) b = adapt(AT, rand(rng, FT, 4, 5)) c = adapt(AT, rand(rng, FT, 1, 7)) for args in ( (a,), (a, Raven.Eye{FT}(5)), (Raven.Eye{FT}(2), b), (a, b), (Raven.Eye{FT}(3), Raven.Eye{FT}(2), c), (Raven.Eye{FT}(2), b, Raven.Eye{FT}(7)), (a, Raven.Eye{FT}(4), Raven.Eye{FT}(7)), (a, b, c), ) K = adapt(AT, collect(Raven.Kron(adapt(Array, args)))) d = adapt(AT, rand(SVector{2,FT}, size(K, 2), 12)) e = adapt(AT, rand(SVector{2,FT}, size(K, 2))) @test Array(Raven.Kron(args) * e) ≈ Array(K) * Array(e) @test Array(Raven.Kron(args) * d) ≈ Array(K) * Array(d) g = adapt(AT, rand(FT, 4, size(K, 2), 6)) gv1 = @view g[1, :, :] gv2 = @view g[1, :, 1] @test Array(Raven.Kron(args) * gv1) ≈ Array(K) * Array(gv1) @test Array(Raven.Kron(args) * gv2) ≈ Array(K) * Array(gv2) if isbits(FT) f = rand(rng, FT, size(K, 2), 3, 2) f = adapt( AT, reinterpret(reshape, SVector{2,FT}, PermutedDimsArray(f, (3, 1, 2))), ) @test Array(Raven.Kron(args) * f) ≈ Array(K) * Array(f) end @test adapt(Array, Raven.Kron(args)) == Raven.Kron(adapt.(Array, args)) end end function kron2dgridarray_testsuite(AT, FT) rng = StableRNG(37) A = adapt(AT, rand(rng, FT, 5, 2)) B = adapt(AT, rand(rng, FT, 2, 3)) cell = LobattoCell{FT,AT}(2, 3) gm = GridManager(cell, Raven.brick(2, 1); min_level = 1) grid = generate(gm) EntryType = SVector{2,FT} v = GridArray{EntryType}(undef, grid) v .= adapt(AT, rand(rng, EntryType, size(v))) for args in ((Raven.Eye{FT}(3), A), (B, Raven.Eye{FT}(2)), (B, A)) K = adapt(AT, collect(Raven.Kron(adapt(Array, args)))) Kv1 = adapt(Array, Raven.Kron(args) * v) dimsIn = (prod(size(v)[1:end-1]), size(v)[end]) dimsOut = (size.(reverse(args), 1)..., size(v)[end]) Kv2 = reshape(Array(K) * reshape(adapt(Array, v), dimsIn), dimsOut) @test isapprox(Kv1, Kv2) end end function kron3dgridarray_testsuite(AT, FT) rng = StableRNG(37) A = adapt(AT, rand(rng, FT, 5, 2)) B = adapt(AT, rand(rng, FT, 2, 3)) C = adapt(AT, rand(rng, FT, 3, 5)) cell = LobattoCell{FT,AT}(2, 3, 5) gm = GridManager(cell, Raven.brick(2, 1, 1); min_level = 1) grid = generate(gm) EntryType = SVector{2,FT} v = GridArray{EntryType}(undef, grid) v .= adapt(AT, rand(rng, EntryType, size(v))) for args in ( (Raven.Eye{FT}(5), Raven.Eye{FT}(3), A), (Raven.Eye{FT}(5), B, Raven.Eye{FT}(2)), (C, Raven.Eye{FT}(3), Raven.Eye{FT}(2)), (Raven.Eye{FT}(5), B, A), (C, Raven.Eye{FT}(3), A), (C, B, Raven.Eye{FT}(2)), (C, B, A), ) K = adapt(AT, collect(Raven.Kron(adapt(Array, args)))) Kv1 = adapt(Array, Raven.Kron(args) * v) dimsIn = (prod(size(v)[1:end-1]), size(v)[end]) dimsOut = (size.(reverse(args), 1)..., size(v)[end]) Kv2 = reshape(Array(K) * reshape(adapt(Array, v), dimsIn), dimsOut) @test isapprox(Kv1, Kv2) end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
75
using MPI using Test MPI.Init() @test MPI.Comm_size(MPI.COMM_WORLD) == 2
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
1495
using CUDA using MPI using Test using Raven using Raven.StaticArrays using Raven.Adapt MPI.Init() function test(::Type{FT}, ::Type{AT}) where {FT,AT} @testset "Communicate GridArray ($AT, $FT)" begin N = (3, 2) K = (2, 1) min_level = 1 cell = LobattoCell{Float64,AT}(N...) gm = GridManager(cell, Raven.brick(K...); min_level) grid = generate(gm) T = SVector{2,FT} cm = Raven.commmanager(T, nodecommpattern(grid); comm = Raven.comm(grid), tag = 1) A = GridArray{T}(undef, grid) nan = convert(FT, NaN) viewwithghosts(A) .= Ref((nan, nan)) A .= Ref((MPI.Comm_rank(Raven.comm(grid)) + 1, 0)) Raven.share!(A, cm) @test all(A.data[:, :, 1, :] .== MPI.Comm_rank(Raven.comm(grid)) + 1) @test all(A.data[:, :, 2, :] .== 0) @test MPI.Comm_size(Raven.comm(grid)) == 2 r = MPI.Comm_rank(Raven.comm(grid)) if r == 0 @test all(A.datawithghosts[2:3, :, :, 5:6] .=== nan) @test all(A.datawithghosts[1, :, 1, 5:6] .== 2) @test all(A.datawithghosts[1, :, 2, 5:6] .== 0) elseif r == 1 @test all(A.datawithghosts[1:2, :, :, 5:6] .=== nan) @test all(A.datawithghosts[3, :, 1, 5:6] .== 1) @test all(A.datawithghosts[3, :, 2, 5:6] .== 0) end end end function main() test(Float64, Array) if CUDA.functional() test(Float32, CuArray) end end main()
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
13066
using CUDA using CUDA.CUDAKernels using MPI using Test using Raven using Raven.StaticArrays using Raven.P4estTypes using Raven.SparseArrays MPI.Init() let FT = Float64 AT = Array N = 4 cell = LobattoCell{FT,AT}(N, N) # 4--------5--------6 # | | | # | | | # | | | # | | | # 1--------2--------3 vertices = [ SVector{2,FT}(-1, -1), # 1 SVector{2,FT}(0, -1), # 2 SVector{2,FT}(1, -1), # 3 SVector{2,FT}(-1, 1), # 4 SVector{2,FT}(0, 1), # 5 SVector{2,FT}(1, 1), # 6 ] for cells in [[(1, 2, 4, 5), (2, 3, 5, 6)], [(1, 2, 4, 5), (5, 6, 2, 3)]] min_level = 0 cg = coarsegrid(vertices, cells) gm = GridManager(cell, cg; min_level) grid = generate(gm) A = continuoustodiscontinuous(grid) pts = points(grid, Val(true)) rows = rowvals(A) vals = nonzeros(A) _, n = size(A) ci = CartesianIndices(pts) for j = 1:n x = pts[rows[first(nzrange(A, j))]] for ii in nzrange(A, j) p = pts[rows[ii]] @test x ≈ p || (all(isnan.(x)) && all(isnan.(p))) # make sure all points that have all NaNs are in the # ghost layer if (all(isnan.(x)) && all(isnan.(p))) i = rows[ii] @test fld1(i, length(cell)) > numcells(grid) end end end cp = nodecommpattern(grid) commcells = communicatingcells(grid) noncommcells = noncommunicatingcells(grid) for i in cp.sendindices q = fld1(i, length(cell)) @test q ∈ commcells end @test noncommcells == setdiff(0x1:numcells(grid), commcells) fm = facemaps(grid) @test isapprox( pts[fm.vmapM[:, 1:numcells(grid)]], pts[fm.vmapP[:, 1:numcells(grid)]], ) @test isapprox( pts[fm.vmapM[fm.mapM[:, 1:numcells(grid)]]], pts[fm.vmapM[fm.mapP[:, 1:numcells(grid)]]], ) bc = boundarycodes(grid) vmapM = reshape(fm.vmapM, (N, 4, :)) for q in numcells(grid) for f = 1:4 if bc[f, q] == 1 @test all( isapprox.(one(FT), map(x -> maximum(abs.(x)), pts[vmapM[:, f, q]])), ) else @test !all( isapprox.(one(FT), map(x -> maximum(abs.(x)), pts[vmapM[:, f, q]])), ) end end end indicator = map(tid -> (tid == 1 ? Raven.AdaptNone : Raven.AdaptRefine), trees(grid)) adapt!(gm, indicator) grid = generate(gm) fm = facemaps(grid) tohalves = tohalves_1d(cell) pts = points(grid, Val(true)) fgdims = ((2,), (1,)) _, ncsm = surfacemetrics(grid) for fg in eachindex(fm.vmapNC) for i = 1:last(size(fm.vmapNC[fg])) ppts = pts[fm.vmapNC[fg][:, 1, i]] c1pts = pts[fm.vmapNC[fg][:, 2, i]] c2pts = pts[fm.vmapNC[fg][:, 3, i]] @assert isapprox(tohalves[fgdims[fg][1]][1] * ppts, c1pts) @assert isapprox(tohalves[fgdims[fg][1]][2] * ppts, c2pts) end if length(ncsm[fg]) > 0 n, wsJ = components(ncsm[fg]) @test all(n[:, 1, :] .≈ Ref(SA[1, 0])) @test all(n[:, 2:end, :] .≈ Ref(SA[-1, 0])) @test sum(wsJ[:, 1, :]) .≈ sum(wsJ[:, 2:end, :]) end end end end let FT = Float64 AT = Array N = 3 cell = LobattoCell(N, N, N) # 10-------11-------12 # /| /| /| # / | / | / | # / | / | / | # 7--------8--------9 | # | 4----|---5----|---6 # | / | / | / # | / | / | / # |/ |/ |/ # 1--------2--------3 # vertices = [ SVector{3,FT}(-1, -1, -1), # 1 SVector{3,FT}(0, -1, -1), # 2 SVector{3,FT}(1, -1, -1), # 3 SVector{3,FT}(-1, 1, -1), # 4 SVector{3,FT}(0, 1, -1), # 5 SVector{3,FT}(1, 1, -1), # 6 SVector{3,FT}(-1, -1, 1), # 7 SVector{3,FT}(0, -1, 1), # 8 SVector{3,FT}(1, -1, 1), # 9 SVector{3,FT}(-1, 1, 1), #10 SVector{3,FT}(0, 1, 1), #12 SVector{3,FT}(1, 1, 1), #13 ] for cells in [ # 2--------6 55 4--------2 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 8--------6 | # | 1----|---5 54 | 3----|---1 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 7--------5 [(4, 10, 1, 7, 5, 11, 2, 8), (6, 12, 5, 11, 3, 9, 2, 8)], # # 2--------6 55 7--------5 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 3--------1 | # | 1----|---5 54 | 8----|---6 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 4--------2 [(4, 10, 1, 7, 5, 11, 2, 8), (9, 3, 8, 2, 12, 6, 11, 5)], # # 2--------6 55 8--------6 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 7--------5 | # | 1----|---5 54 | 4----|---2 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 3--------1 [(4, 10, 1, 7, 5, 11, 2, 8), (3, 6, 2, 5, 9, 12, 8, 11)], # # 2--------6 55 3--------1 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 4--------2 | # | 1----|---5 54 | 7----|---5 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 8--------6 [(4, 10, 1, 7, 5, 11, 2, 8), (12, 9, 11, 8, 6, 3, 5, 2)], # # 2--------6 55 5--------7 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 6--------8 | # | 1----|---5 54 | 1----|---3 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 2--------4 [(4, 10, 1, 7, 5, 11, 2, 8), (5, 2, 6, 3, 11, 8, 12, 9)], # # 2--------6 55 5--------1 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 8--------3 | # | 1----|---5 54 | 6----|---2 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 7--------4 [(4, 10, 1, 7, 5, 11, 2, 8), (12, 6, 9, 3, 11, 5, 8, 2)], # # 2--------6 55 8--------4 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 6--------2 | # | 1----|---5 54 | 7----|---3 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 5--------1 [(4, 10, 1, 7, 5, 11, 2, 8), (3, 9, 6, 12, 2, 8, 5, 11)], # # 2--------6 55 6--------2 # /| /| /| /| # / | / | / | / | # / | / | / | / | # 4--------8 | 59 5--------1 | # | 1----|---5 54 | 8----|---4 # | / | / | / | / # | / | / | / | / # |/ |/ |/ |/ # 3--------7 58 7--------3 [(4, 10, 1, 7, 5, 11, 2, 8), (9, 12, 3, 6, 8, 11, 2, 5)], ] min_level = 1 cg = coarsegrid(vertices, cells) gm = GridManager(cell, cg; min_level) grid = generate(gm) A = continuoustodiscontinuous(grid) pts = points(grid, Val(true)) rows = rowvals(A) vals = nonzeros(A) _, n = size(A) ci = CartesianIndices(pts) for j = 1:n x = pts[rows[first(nzrange(A, j))]] for ii in nzrange(A, j) p = pts[rows[ii]] @test x ≈ p || (all(isnan.(x)) && all(isnan.(p))) # make sure all points that have all NaNs are in the # ghost layer if (all(isnan.(x)) && all(isnan.(p))) i = rows[ii] @test fld1(i, length(cell)) > numcells(grid) end end end cp = nodecommpattern(grid) commcells = communicatingcells(grid) noncommcells = noncommunicatingcells(grid) for i in cp.sendindices q = fld1(i, length(cell)) @test q ∈ commcells end @test noncommcells == setdiff(0x1:numcells(grid), commcells) fm = facemaps(grid) @test isapprox( pts[fm.vmapM[:, 1:numcells(grid)]], pts[fm.vmapP[:, 1:numcells(grid)]], ) @test isapprox( pts[fm.vmapM[fm.mapM[:, 1:numcells(grid)]]], pts[fm.vmapM[fm.mapP[:, 1:numcells(grid)]]], ) bc = boundarycodes(grid) vmapM = reshape(fm.vmapM, (N, N, 6, :)) for q in numcells(grid) for f = 1:6 if bc[f, q] == 1 @test all( isapprox.( one(FT), map(x -> maximum(abs.(x)), pts[vmapM[:, :, f, q]]), ), ) else @test !all( isapprox.( one(FT), map(x -> maximum(abs.(x)), pts[vmapM[:, :, f, q]]), ), ) end end end indicator = map(tid -> (tid == 1 ? Raven.AdaptNone : Raven.AdaptRefine), trees(grid)) adapt!(gm, indicator) grid = generate(gm) fm = facemaps(grid) tohalves = tohalves_1d(cell) pts = points(grid, Val(true)) fgdims = ((2, 3), (1, 3), (1, 2)) _, ncsm = surfacemetrics(grid) for fg in eachindex(fm.vmapNC) for i = 1:last(size(fm.vmapNC[fg])) ppts = pts[fm.vmapNC[fg][:, :, 1, i]] c1pts = pts[fm.vmapNC[fg][:, :, 2, i]] c2pts = pts[fm.vmapNC[fg][:, :, 3, i]] c3pts = pts[fm.vmapNC[fg][:, :, 4, i]] c4pts = pts[fm.vmapNC[fg][:, :, 5, i]] @assert isapprox( tohalves[fgdims[fg][1]][1] * ppts * tohalves[fgdims[fg][2]][1]', c1pts, ) @assert isapprox( tohalves[fgdims[fg][1]][2] * ppts * tohalves[fgdims[fg][2]][1]', c2pts, ) @assert isapprox( tohalves[fgdims[fg][1]][1] * ppts * tohalves[fgdims[fg][2]][2]', c3pts, ) @assert isapprox( tohalves[fgdims[fg][1]][2] * ppts * tohalves[fgdims[fg][2]][2]', c4pts, ) end if length(ncsm[fg]) > 0 n, wsJ = components(ncsm[fg]) @test all(n[:, :, 1, :] .≈ Ref(SA[1, 0, 0])) @test all(n[:, :, 2:end, :] .≈ Ref(SA[-1, 0, 0])) @test sum(wsJ[:, :, 1, :]) .≈ sum(wsJ[:, :, 2:end, :]) end end end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
2827
using CUDA using CUDA.CUDAKernels using MPI using Test using Raven MPI.Init() let mpisize = MPI.Comm_size(MPI.COMM_WORLD) mpirank = MPI.Comm_rank(MPI.COMM_WORLD) @test mpisize == 3 if mpirank == 0 datalength = 10 recvindices = [7, 8, 9, 10] recvranks = Cint[1, 2] recvrankindices = [1:1, 2:4] sendindices = [1, 3, 1, 3, 5] sendranks = Cint[1, 2] sendrankindices = [1:2, 3:5] datacomm = [1, 2, 3, 4, 5, 6, 102, 201, 202, 203] elseif mpirank == 1 datalength = 16 recvindices = [11, 12, 13, 14, 15, 16] recvranks = Cint[0, 2] recvrankindices = [1:2, 3:6] sendindices = [2, 2, 4, 6, 8, 10] sendranks = Cint[0, 2] sendrankindices = [1:1, 2:6] datacomm = [101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 1, 3, 202, 203, 204, 205] elseif mpirank == 2 datalength = 20 recvindices = [8, 9, 10, 14, 15, 16, 17, 18] recvranks = Cint[0, 1] recvrankindices = [1:3, 4:8] sendindices = [1, 2, 3, 2, 3, 4, 5] sendranks = Cint[0, 1] sendrankindices = [1:3, 4:7] datacomm = [ 201, 202, 203, 204, 205, 206, 207, 1, 3, 5, 211, 212, 213, 102, 104, 106, 108, 110, 219, 220, ] end to2(A) = Float64.(2A) data1 = collect((1:datalength) .+ (100mpirank)) data2 = to2(data1) data3 = data1 data4 = data2 pattern = Raven.CommPattern{Array}( recvindices, recvranks, recvrankindices, sendindices, sendranks, sendrankindices, ) cm1 = Raven.commmanager(eltype(data1), pattern, Val(false); tag = 1) cm2 = Raven.commmanager(eltype(data2), pattern, Val(true); tag = 2) Raven.start!(data2, cm2) Raven.share!(data1, cm1) Raven.finish!(data2, cm2) @test data1 == datacomm @test data2 == to2(datacomm) if CUDA.functional() data3 = CuArray(data3) data4 = CuArray(data4) pattern = Raven.CommPattern{CuArray}( CuArray(recvindices), recvranks, recvrankindices, CuArray(sendindices), sendranks, sendrankindices, ) cm3 = Raven.commmanager(eltype(data3), pattern; tag = 1) cm4 = Raven.commmanager(eltype(data4), pattern, Val(true); tag = 2) Raven.start!(data4, cm4) Raven.share!(data3, cm3) Raven.finish!(data4, cm4) @test Array(data3) == datacomm @test Array(data4) == to2(datacomm) end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
16846
using MPI using Test using Raven using Raven.Adapt using Raven.StaticArrays using Raven.SparseArrays MPI.Init() let FT = Float32 AT = Array b = brick(FT, 3, 1) e = extrude(b, 2) @test Raven.coordinates(e) == (zero(FT):3, zero(FT):1, zero(FT):2) @test Raven.vertices(e) == [ SVector{3,FT}(0, 0, 0), # 01 SVector{3,FT}(0, 0, 1), # 02 SVector{3,FT}(0, 0, 2), # 03 SVector{3,FT}(1, 0, 0), # 04 SVector{3,FT}(1, 0, 1), # 05 SVector{3,FT}(1, 0, 2), # 06 SVector{3,FT}(0, 1, 0), # 07 SVector{3,FT}(0, 1, 1), # 08 SVector{3,FT}(0, 1, 2), # 09 SVector{3,FT}(1, 1, 0), # 10 SVector{3,FT}(1, 1, 1), # 11 SVector{3,FT}(1, 1, 2), # 12 SVector{3,FT}(2, 0, 0), # 13 SVector{3,FT}(2, 0, 1), # 14 SVector{3,FT}(2, 0, 2), # 15 SVector{3,FT}(2, 1, 0), # 16 SVector{3,FT}(2, 1, 1), # 17 SVector{3,FT}(2, 1, 2), # 18 SVector{3,FT}(3, 0, 0), # 19 SVector{3,FT}(3, 0, 1), # 20 SVector{3,FT}(3, 0, 2), # 21 SVector{3,FT}(3, 1, 0), # 22 SVector{3,FT}(3, 1, 1), # 23 SVector{3,FT}(3, 1, 2), # 24 ] # z = 2 # 09-----12-----21-----24 # | | | | # | | | | # | | | | # 03-----06-----15-----18 # z = 1 # 08-----11-----20-----23 # | | | | # | | | | # | | | | # 02-----05-----14-----17 # z = 0 # 07-----10-----19-----22 # | | | | # | | | | # | | | | # 01-----04-----13-----16 @test Raven.cells(e) == [ (01, 04, 07, 10, 02, 05, 08, 11) (02, 05, 08, 11, 03, 06, 09, 12) (04, 13, 10, 16, 05, 14, 11, 17) (05, 14, 11, 17, 06, 15, 12, 18) (13, 19, 16, 22, 14, 20, 17, 23) (14, 20, 17, 23, 15, 21, 18, 24) ] c = LobattoCell{FT,AT}(2, 2, 2) comm = MPI.COMM_WORLD rank = MPI.Comm_rank(comm) gm = GridManager(c, e; comm) grid = generate(gm) fm = facemaps(grid) ncp = nodecommpattern(grid) if rank == 0 # Grid point numbering aka LinearIndices(points(grid, Val(true))) # [:, :, 1, 1] = # 1 3 # 2 4 # # [:, :, 2, 1] = # 5 7 # 6 8 # # [:, :, 1, 2] = # 9 11 # 10 12 # # [:, :, 2, 2] = # 13 15 # 14 16 # # [:, :, 1, 3] = # 17 19 # 18 20 # # [:, :, 2, 3] = # 21 23 # 22 24 # # [:, :, 1, 4] = # 25 27 # 26 28 # # [:, :, 2, 4] = # 29 31 # 30 32 @test levels(grid, Val(false)) == Int8[0, 0] @test levels(grid, Val(true)) == Int8[0, 0, 0, 0] @test trees(grid, Val(false)) == Int32[1, 2] @test trees(grid, Val(true)) == Int32[1, 2, 3, 4] @test points(grid) == SVector{3,FT}[ (0, 0, 0) (0, 1, 0); (1, 0, 0) (1, 1, 0);;; (0, 0, 1) (0, 1, 1); (1, 0, 1) (1, 1, 1);;;; (0, 0, 1) (0, 1, 1); (1, 0, 1) (1, 1, 1);;; (0, 0, 2) (0, 1, 2); (1, 0, 2) (1, 1, 2) ] @test facecodes(grid, Val(false)) == Int8[0, 0] @test boundarycodes(grid) == [1 1; 0 0; 1 1; 1 1; 1 0; 0 1] @test ncp.recvranks == Int32[1] @test ncp.recvrankindices == UnitRange{Int64}[1:8] @test ncp.recvindices == [17, 19, 21, 23, 25, 27, 29, 31] @test ncp.sendranks == Int32[1] @test ncp.sendrankindices == UnitRange{Int64}[1:8] @test ncp.sendindices == [2, 4, 6, 8, 10, 12, 14, 16] #! format: off @test continuoustodiscontinuous(grid) == sparse( [ 1, 5, 9, 13, 2, 17, 6, 10, 21, 25, 14, 29, 3, 7, 11, 15, 4, 19, 8, 12, 23, 27, 16, 31, 18, 22, 26, 30, 20, 24, 28, 32, ], [ 1, 2, 2, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 11, 11, 11, 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, ], Bool[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ], 32, 18, ) #! format: on @test communicatingcells(grid) == [1, 2] @test noncommunicatingcells(grid) == Int64[] @test numcells(grid) == 2 @test numcells(grid, Val(true)) == 4 @test offset(grid) == 0 @test Raven.partitionnumber(grid) == 1 @test Raven.numberofpartitions(grid) == 3 @test fm.vmapM == [ 01 09 17 25 ######### 03 11 19 27 05 13 21 29 07 15 23 31 02 10 18 26 ######### 04 12 20 28 06 14 22 30 08 16 24 32 01 09 17 25 ######### 02 10 18 26 05 13 21 29 06 14 22 30 03 11 19 27 ######### 04 12 20 28 07 15 23 31 08 16 24 32 01 09 17 25 ######### 02 10 18 26 03 11 19 27 04 12 20 28 05 13 21 29 ######### 06 14 22 30 07 15 23 31 08 16 24 32 ] @test fm.vmapP == [ 01 09 17 25 ######### 03 11 19 27 05 13 21 29 07 15 23 31 17 25 18 26 ######### 19 27 20 28 21 29 22 30 23 31 24 32 01 09 17 25 ######### 02 10 18 26 05 13 21 29 06 14 22 30 03 11 19 27 ######### 04 12 20 28 07 15 23 31 08 16 24 32 01 05 17 25 ######### 02 06 18 26 03 07 19 27 04 08 20 28 09 13 21 29 ######### 10 14 22 30 11 15 23 31 12 16 24 32 ] elseif rank == 1 # Grid point numbering aka LinearIndices(points(grid, Val(true))) # [:, :, 1, 1] = # 1 3 # 2 4 # # [:, :, 2, 1] = # 5 7 # 6 8 # # [:, :, 1, 2] = # 9 11 # 10 12 # # [:, :, 2, 2] = # 13 15 # 14 16 # # [:, :, 1, 3] = # 17 19 # 18 20 # # [:, :, 2, 3] = # 21 23 # 22 24 # # [:, :, 1, 4] = # 25 27 # 26 28 # # [:, :, 2, 4] = # 29 31 # 30 32 # # [:, :, 1, 5] = # 33 35 # 34 36 # # [:, :, 2, 5] = # 37 39 # 38 40 # # [:, :, 1, 6] = # 41 43 # 42 44 # # [:, :, 2, 6] = # 45 47 # 46 48 @test levels(grid, Val(false)) == Int8[0, 0] @test levels(grid, Val(true)) == Int8[0, 0, 0, 0, 0, 0] @test trees(grid, Val(false)) == Int32[3, 4] @test trees(grid, Val(true)) == Int32[3, 4, 1, 2, 5, 6] @test points(grid) == SVector{3,FT}[ (1, 0, 0) (1, 1, 0); (2, 0, 0) (2, 1, 0);;; (1, 0, 1) (1, 1, 1); (2, 0, 1) (2, 1, 1);;;; (1, 0, 1) (1, 1, 1); (2, 0, 1) (2, 1, 1);;; (1, 0, 2) (1, 1, 2); (2, 0, 2) (2, 1, 2) ] @test facecodes(grid, Val(false)) == Int8[0, 0] @test boundarycodes(grid) == [0 0; 0 0; 1 1; 1 1; 1 0; 0 1] @test ncp.recvranks == Int32[0, 2] @test ncp.recvrankindices == UnitRange{Int64}[1:8, 9:16] @test ncp.recvindices == [18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 41, 43, 45, 47] @test ncp.sendranks == Int32[0, 2] @test ncp.sendrankindices == UnitRange{Int64}[1:8, 9:16] @test ncp.sendindices == [1, 3, 5, 7, 9, 11, 13, 15, 2, 4, 6, 8, 10, 12, 14, 16] #! format: off @test continuoustodiscontinuous(grid) == sparse( [ 17, 21, 25, 29, 1, 18, 5, 9, 22, 26, 13, 30, 19, 23, 27, 31, 3, 20, 7, 11, 24, 28, 15, 32, 2, 33, 6, 10, 37, 41, 14, 45, 4, 35, 8, 12, 39, 43, 16, 47, 34, 38, 42, 46, 36, 40, 44, 48, ], [ 1, 2, 2, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 16, 16, 17, 17, 17, 17, 18, 18, 19, 20, 20, 21, 22, 23, 23, 24, ], Bool[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ], 48, 24, ) #! format: on @test communicatingcells(grid) == [1, 2] @test noncommunicatingcells(grid) == Int64[] @test numcells(grid) == 2 @test numcells(grid, Val(true)) == 6 @test offset(grid) == 2 @test Raven.partitionnumber(grid) == 2 @test Raven.numberofpartitions(grid) == 3 @test fm.vmapM == [ 01 09 17 25 33 41 ######### 03 11 19 27 35 43 05 13 21 29 37 45 07 15 23 31 39 47 02 10 18 26 34 42 ######### 04 12 20 28 36 44 06 14 22 30 38 46 08 16 24 32 40 48 01 09 17 25 33 41 ######### 02 10 18 26 34 42 05 13 21 29 37 45 06 14 22 30 38 46 03 11 19 27 35 43 ######### 04 12 20 28 36 44 07 15 23 31 39 47 08 16 24 32 40 48 01 09 17 25 33 41 ######### 02 10 18 26 34 42 03 11 19 27 35 43 04 12 20 28 36 44 05 13 21 29 37 45 ######### 06 14 22 30 38 46 07 15 23 31 39 47 08 16 24 32 40 48 ] @test fm.vmapP == [ 18 26 17 25 33 41 ######### 20 28 19 27 35 43 22 30 21 29 37 45 24 32 23 31 39 47 33 41 18 26 34 42 ######### 35 43 20 28 36 44 37 45 22 30 38 46 39 47 24 32 40 48 01 09 17 25 33 41 ######### 02 10 18 26 34 42 05 13 21 29 37 45 06 14 22 30 38 46 03 11 19 27 35 43 ######### 04 12 20 28 36 44 07 15 23 31 39 47 08 16 24 32 40 48 01 05 17 25 33 41 ######### 02 06 18 26 34 42 03 07 19 27 35 43 04 08 20 28 36 44 09 13 21 29 37 45 ######### 10 14 22 30 38 46 11 15 23 31 39 47 12 16 24 32 40 48 ] elseif rank == 2 # Grid point numbering aka LinearIndices(points(grid, Val(true))) # [:, :, 1, 1] = # 1 3 # 2 4 # # [:, :, 2, 1] = # 5 7 # 6 8 # # [:, :, 1, 2] = # 9 11 # 10 12 # # [:, :, 2, 2] = # 13 15 # 14 16 # # [:, :, 1, 3] = # 17 19 # 18 20 # # [:, :, 2, 3] = # 21 23 # 22 24 # # [:, :, 1, 4] = # 25 27 # 26 28 # # [:, :, 2, 4] = # 29 31 # 30 32 @test levels(grid, Val(false)) == Int8[0, 0] @test levels(grid, Val(true)) == Int8[0, 0, 0, 0] @test trees(grid, Val(false)) == Int32[5, 6] @test trees(grid, Val(true)) == Int32[5, 6, 3, 4] @test points(grid) == SVector{3,FT}[ (2, 0, 0) (2, 1, 0); (3, 0, 0) (3, 1, 0);;; (2, 0, 1) (2, 1, 1); (3, 0, 1) (3, 1, 1);;;; (2, 0, 1) (2, 1, 1); (3, 0, 1) (3, 1, 1);;; (2, 0, 2) (2, 1, 2); (3, 0, 2) (3, 1, 2) ] @test facecodes(grid, Val(false)) == Int8[0, 0] @test boundarycodes(grid) == [0 0; 1 1; 1 1; 1 1; 1 0; 0 1] @test ncp.recvranks == Int32[1] @test ncp.recvrankindices == UnitRange{Int64}[1:8] @test ncp.recvindices == [18, 20, 22, 24, 26, 28, 30, 32] @test ncp.sendranks == Int32[1] @test ncp.sendrankindices == UnitRange{Int64}[1:8] @test ncp.sendindices == [1, 3, 5, 7, 9, 11, 13, 15] #! format: off @test continuoustodiscontinuous(grid) == sparse( [ 17, 21, 25, 29, 19, 23, 27, 31, 1, 18, 5, 9, 22, 26, 13, 30, 3, 20, 7, 11, 24, 28, 15, 32, 2, 6, 10, 14, 4, 8, 12, 16, ], [ 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, ], Bool[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ], 32, 18, ) #! format: on @test communicatingcells(grid) == [1, 2] @test noncommunicatingcells(grid) == Int64[] @test numcells(grid) == 2 @test numcells(grid, Val(true)) == 4 @test offset(grid) == 4 @test Raven.partitionnumber(grid) == 3 @test Raven.numberofpartitions(grid) == 3 @test fm.vmapM == [ 01 09 17 25 ######### 03 11 19 27 05 13 21 29 07 15 23 31 02 10 18 26 ######### 04 12 20 28 06 14 22 30 08 16 24 32 01 09 17 25 ######### 02 10 18 26 05 13 21 29 06 14 22 30 03 11 19 27 ######### 04 12 20 28 07 15 23 31 08 16 24 32 01 09 17 25 ######### 02 10 18 26 03 11 19 27 04 12 20 28 05 13 21 29 ######### 06 14 22 30 07 15 23 31 08 16 24 32 ] @test fm.vmapP == [ 18 26 17 25 ######### 20 28 19 27 22 30 21 29 24 32 23 31 02 10 18 26 ######### 04 12 20 28 06 14 22 30 08 16 24 32 01 09 17 25 ######### 02 10 18 26 05 13 21 29 06 14 22 30 03 11 19 27 ######### 04 12 20 28 07 15 23 31 08 16 24 32 01 05 17 25 ######### 02 06 18 26 03 07 19 27 04 08 20 28 09 13 21 29 ######### 10 14 22 30 11 15 23 31 12 16 24 32 ] end # Note that vmapP can point into the ghost layer so we need to get the # points including the ghost layer. pts = points(grid, Val(true)) @test isapprox(pts[fm.vmapM[:, 1:numcells(grid)]], pts[fm.vmapP[:, 1:numcells(grid)]]) @test isapprox( pts[fm.vmapM[fm.mapM[:, 1:numcells(grid)]]], pts[fm.vmapM[fm.mapP[:, 1:numcells(grid)]]], ) end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
4062
using CUDA using CUDA.CUDAKernels using MPI using Test using Raven using Raven.StaticArrays using LinearAlgebra using Raven.Adapt MPI.Init() struct Stiffness <: FieldArray{Tuple{2,2},Float64,2} xx::Float64 yx::Float64 xy::Float64 yy::Float64 end function test(N, K, ::Type{FT}, ::Type{AT}) where {FT,AT} @testset "GridArray ($N, $AT, $FT)" begin minlvl = 1 cell = LobattoCell{Float64,AT}(N...) gm = GridManager(cell, Raven.brick(K...); min_level = minlvl) grid = generate(gm) A = GridArray(undef, grid) @test A isa GridArray{Float64} @test arraytype(A) <: AT T = NamedTuple{(:E, :B),Tuple{SVector{3,Complex{FT}},SVector{3,Complex{FT}}}} A = GridArray{T}(undef, grid) @test eltype(A) == T val = (E = SA[1, 3, 5], B = SA[7, 9, 11]) A .= Ref(val) @test CUDA.@allowscalar A[1] == val Adata = AT(parent(A)) colons = ntuple(_ -> Colon(), Val(length(N))) for i = 1:2:11 @test all(Adata[colons..., i, :] .== i) end for i = 2:2:12 @test all(Adata[colons..., i, :] .== 0) end val = (E = SA[2, 1, 3], B = SA[0, 2, 1]) fill!(A, val) @test CUDA.@allowscalar A[1] == val val2 = (E = SVector{3,Complex{FT}}(2, 6, 10), B = SVector{3,Complex{FT}}(14, 18, 22)) B = Raven.viewwithghosts(A) B .= Ref(val2) @test CUDA.@allowscalar B[end] == val2 Adatadata = parentwithghosts(A) colons = ntuple(_ -> Colon(), Val(length(N))) for i = 1:2:11 @test all(Adatadata[colons..., i, :] .== 2i) end for i = 2:2:12 @test all(Adatadata[colons..., i, :] .== 0) end cval = convert(T, val) L = length(flatten(cval)) @test arraytype(A) <: AT @test Raven.showingghosts(A) == false @test Raven.fieldindex(A) == length(N) + 1 @test Raven.fieldslength(A) == L @test size(A) == (size(cell)..., numcells(grid)) @test sizewithghosts(A) == (size(cell)..., numcells(grid, Val(true))) @test size(parent(A)) == (size(cell)..., L, numcells(grid)) @test size(parentwithghosts(A)) == (size(cell)..., L, numcells(grid, Val(true))) C = components(A) @test length(C) == 2 @test C isa NamedTuple{(:E, :B)} @test C[1] isa GridArray{typeof(cval[1])} @test C[2] isa GridArray{typeof(cval[2])} D = components(C[1]) @test length(D) == 3 @test D[1] isa GridArray{Complex{FT}} @test D[2] isa GridArray{Complex{FT}} @test D[3] isa GridArray{Complex{FT}} E = components(D[1]) @test length(E) == 2 @test E[1] isa GridArray{FT} @test E[2] isa GridArray{FT} F = components(E[1]) @test length(F) == 1 @test F[1] isa GridArray{FT} val3 = ( E = SVector{3,Complex{FT}}(1 + 1im, 1 + 1im, 1 + 1im), B = SVector{3,Complex{FT}}(1 + 1im, 1 + 1im, 1 + 1im), ) L = length(flatten(cval)) B = Raven.viewwithghosts(A) B .= Ref(val3) normA = sqrt(FT(L * prod(N) * prod(K) * (2^(length(K) * minlvl)))) @test isapprox(norm(A), normA) A = GridArray{Stiffness}(undef, grid) @test eltype(A) == Stiffness @test components(A) isa NamedTuple{(:xx, :yx, :xy, :yy)} A = GridArray{FT}(undef, grid) A .= FT(2) B = 1 ./ A @test all(adapt(Array, (B .== FT(0.5)))) B = copy(A) @test all(adapt(Array, (B .== A))) C = AT{FT}(undef, size(A)) C .= -zero(FT) @test all(adapt(Array, (A .== (A .+ C)))) @test all(adapt(Array, (A .== (C .+ A)))) end end function main() test((2, 3), (2, 1), Float64, Array) test((2, 3, 2), (1, 2, 1), Float64, Array) if CUDA.functional() test((2, 3), (2, 1), Float32, CuArray) test((2, 3, 2), (1, 2, 1), Float32, CuArray) end end main()
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
16643
using CUDA using CUDA.CUDAKernels using MPI using Test using Raven using Raven.StaticArrays using Raven.P4estTypes MPI.Init() function isisomorphic(a, b) f = Dict{eltype(a),eltype(b)}() g = Dict{eltype(b),eltype(a)}() for i in eachindex(a, b) if a[i] in keys(f) if f[a[i]] != b[i] return false end else f[a[i]] = b[i] end if b[i] in keys(g) if g[b[i]] != a[i] return false end else g[b[i]] = a[i] end end return true end let # Coarse Grid # y # ^ # 4 | 7------8------9 # | | | | # | | | | # | | | | # 2 | 3------4------6 # | | | | # | | | | # | | | | # 0 | 1------2------5 # | # +------------------> x # 0 2 4 vertices = [ SVector(0.0, 0.0), # 1 SVector(2.0, 0.0), # 2 SVector(0.0, 2.0), # 3 SVector(2.0, 2.0), # 4 SVector(4.0, 0.0), # 5 SVector(4.0, 2.0), # 6 SVector(0.0, 4.0), # 7 SVector(2.0, 4.0), # 8 SVector(4.0, 4.0), # 9 ] cells = [ (1, 2, 3, 4), # 1 (6, 4, 5, 2), # 2 (3, 4, 7, 8), # 3 (4, 6, 8, 9), # 4 ] cg = coarsegrid(vertices, cells) rank = MPI.Comm_rank(MPI.COMM_WORLD) forest = P4estTypes.pxest(Raven.connectivity(cg); comm = MPI.COMM_WORLD) P4estTypes.refine!(forest; refine = (_, tid, _) -> tid == 4) P4estTypes.balance!(forest) ghost = P4estTypes.ghostlayer(forest) nodes = P4estTypes.lnodes(forest; ghost, degree = 3) P4estTypes.expand!(ghost, forest, nodes) forest_self = P4estTypes.pxest(Raven.connectivity(cg); comm = MPI.COMM_SELF) P4estTypes.refine!(forest_self; refine = (_, tid, _) -> tid == 4) P4estTypes.balance!(forest_self) ghost_self = P4estTypes.ghostlayer(forest_self) nodes_self = P4estTypes.lnodes(forest_self; ghost = ghost_self, degree = 3) P4estTypes.expand!(ghost_self, forest_self, nodes_self) quadranttoglobalids = Raven.materializequadranttoglobalid(forest, ghost) if rank == 0 @test quadranttoglobalids == [1, 2, 3, 4, 5, 6] elseif rank == 1 @test quadranttoglobalids == [2, 1, 3, 4, 5, 6] elseif rank == 2 @test quadranttoglobalids == [3, 4, 5, 6, 7, 1, 2] end quadrantcommpattern = Raven.materializequadrantcommpattern(forest, ghost) if rank == 0 @test quadrantcommpattern.recvindices == 2:6 @test quadrantcommpattern.recvranks == [1, 2] @test quadrantcommpattern.recvrankindices == [1:1, 2:5] @test quadrantcommpattern.sendindices == [1, 1] @test quadrantcommpattern.sendranks == [1, 2] @test quadrantcommpattern.sendrankindices == [1:1, 2:2] elseif rank == 1 @test quadrantcommpattern.recvindices == 2:6 @test quadrantcommpattern.recvranks == [0, 2] @test quadrantcommpattern.recvrankindices == [1:1, 2:5] @test quadrantcommpattern.sendindices == [1, 1] @test quadrantcommpattern.sendranks == [0, 2] @test quadrantcommpattern.sendrankindices == [1:1, 2:2] elseif rank == 2 @test quadrantcommpattern.recvindices == 6:7 @test quadrantcommpattern.recvranks == [0, 1] @test quadrantcommpattern.recvrankindices == [1:1, 2:2] @test quadrantcommpattern.sendindices == [1, 2, 3, 4, 1, 2, 3, 4] @test quadrantcommpattern.sendranks == [0, 1] @test quadrantcommpattern.sendrankindices == [1:4, 5:8] end (dtoc_degree_3_local, dtoc_degree_3_global) = Raven.materializedtoc(forest, ghost, nodes, quadrantcommpattern, MPI.COMM_WORLD) quadrantcommpattern_self = Raven.materializequadrantcommpattern(forest_self, ghost_self) (dtoc_degree_3_local_self, dtoc_degree_3_global_self) = Raven.materializedtoc( forest_self, ghost_self, nodes_self, quadrantcommpattern_self, MPI.COMM_SELF, ) @test dtoc_degree_3_local == Raven.numbercontiguous(Int32, dtoc_degree_3_global) @test eltype(dtoc_degree_3_local) == Int32 if rank == 0 @test isisomorphic( dtoc_degree_3_global[:, :, 1:1], dtoc_degree_3_global_self[:, :, 1:1], ) @test isisomorphic( dtoc_degree_3_global[:, :, 2:6], dtoc_degree_3_global_self[:, :, 2:6], ) elseif rank == 1 @test isisomorphic( dtoc_degree_3_global[:, :, 1:1], dtoc_degree_3_global_self[:, :, 2:2], ) @test isisomorphic( dtoc_degree_3_global[:, :, 2:6], dtoc_degree_3_global_self[:, :, vcat(1:1, 3:6)], ) elseif rank == 2 @test isisomorphic( dtoc_degree_3_global[:, :, 1:5], dtoc_degree_3_global_self[:, :, 3:7], ) @test isisomorphic( dtoc_degree_3_global[:, :, 6:7], dtoc_degree_3_global_self[:, :, [1, 2]], ) end cell_degree_3 = LobattoCell{Float64,Array}(4, 4) dtoc_degree_3 = Raven.materializedtoc(cell_degree_3, dtoc_degree_3_local, dtoc_degree_3_global) if rank == 0 @test isisomorphic(dtoc_degree_3[:, :, 1:1], dtoc_degree_3_global_self[:, :, 1:1]) @test isisomorphic(dtoc_degree_3[:, :, 2:6], dtoc_degree_3_global_self[:, :, 2:6]) elseif rank == 1 @test isisomorphic(dtoc_degree_3[:, :, 1:1], dtoc_degree_3_global_self[:, :, 2:2]) @test isisomorphic( dtoc_degree_3[:, :, 2:6], dtoc_degree_3_global_self[:, :, vcat(1:1, 3:6)], ) elseif rank == 2 @test isisomorphic(dtoc_degree_3[:, :, 1:5], dtoc_degree_3_global_self[:, :, 3:7]) @test isisomorphic( dtoc_degree_3[:, :, 6:7], dtoc_degree_3_global_self[:, :, [1, 2]], ) end ctod_degree_3 = Raven.materializectod(dtoc_degree_3) nodecommpattern_degree_3 = Raven.materializenodecommpattern(cell_degree_3, ctod_degree_3, quadrantcommpattern) if rank == 0 @test nodecommpattern_degree_3.recvindices == [20, 24, 28, 32, 33, 34, 35, 36, 49, 65, 81] @test nodecommpattern_degree_3.recvranks == Int32[1, 2] @test nodecommpattern_degree_3.recvrankindices == UnitRange{Int64}[1:4, 5:11] @test nodecommpattern_degree_3.sendindices == [4, 8, 12, 16, 13, 14, 15, 16] @test nodecommpattern_degree_3.sendranks == Int32[1, 2] @test nodecommpattern_degree_3.sendrankindices == UnitRange{Int64}[1:4, 5:8] elseif rank == 1 @test nodecommpattern_degree_3.recvindices == [20, 24, 28, 32, 36, 49, 50, 51, 52, 65, 66, 67, 68, 81] @test nodecommpattern_degree_3.recvranks == Int32[0, 2] @test nodecommpattern_degree_3.recvrankindices == UnitRange{Int64}[1:4, 5:14] @test nodecommpattern_degree_3.sendindices == [4, 8, 12, 16, 1, 2, 3, 4] @test nodecommpattern_degree_3.sendranks == Int32[0, 2] @test nodecommpattern_degree_3.sendrankindices == UnitRange{Int64}[1:4, 5:8] elseif rank == 2 @test nodecommpattern_degree_3.recvindices == [93, 94, 95, 96, 97, 98, 99, 100] @test nodecommpattern_degree_3.recvranks == Int32[0, 1] @test nodecommpattern_degree_3.recvrankindices == UnitRange{Int64}[1:4, 5:8] @test nodecommpattern_degree_3.sendindices == [1, 2, 3, 4, 17, 33, 49, 4, 17, 18, 19, 20, 33, 34, 35, 36, 49] @test nodecommpattern_degree_3.sendranks == Int32[0, 1] @test nodecommpattern_degree_3.sendrankindices == UnitRange{Int64}[1:7, 8:17] end end let # Coarse Grid # z = 0: # y # ^ # 4 | 7------8------9 # | | | | # | | | | # | | | | # 2 | 3------4------6 # | | | | # | | | | # | | | | # 0 | 1------2------5 # | # +------------------> x # 0 2 4 # # z = 2: # y # ^ # 4 | 16-----17-----18 # | | | | # | | | | # | | | | # 2 | 12-----13-----15 # | | | | # | | | | # | | | | # 0 | 10-----11-----14 # | # +------------------> x # 0 2 4 vertices = [ SVector(0.0, 0.0, 0.0), # 1 SVector(2.0, 0.0, 0.0), # 2 SVector(0.0, 2.0, 0.0), # 3 SVector(2.0, 2.0, 0.0), # 4 SVector(4.0, 0.0, 0.0), # 5 SVector(4.0, 2.0, 0.0), # 6 SVector(0.0, 4.0, 0.0), # 7 SVector(2.0, 4.0, 0.0), # 8 SVector(4.0, 4.0, 0.0), # 9 SVector(0.0, 0.0, 2.0), # 10 SVector(2.0, 0.0, 2.0), # 11 SVector(0.0, 2.0, 2.0), # 12 SVector(2.0, 2.0, 2.0), # 13 SVector(4.0, 0.0, 2.0), # 14 SVector(4.0, 2.0, 2.0), # 15 SVector(0.0, 4.0, 2.0), # 16 SVector(2.0, 4.0, 2.0), # 17 SVector(4.0, 4.0, 2.0), # 18 ] cells = [ (1, 2, 3, 4, 10, 11, 12, 13), # 1 (6, 4, 5, 2, 15, 13, 14, 11), # 2 (3, 4, 7, 8, 12, 13, 16, 17), # 3 (4, 6, 8, 9, 13, 15, 17, 18), # 4 ] cg = coarsegrid(vertices, cells) rank = MPI.Comm_rank(MPI.COMM_WORLD) forest = P4estTypes.pxest(Raven.connectivity(cg)) P4estTypes.refine!(forest; refine = (_, tid, _) -> tid == 4) P4estTypes.balance!(forest) ghost = P4estTypes.ghostlayer(forest) nodes = P4estTypes.lnodes(forest; ghost, degree = 3) P4estTypes.expand!(ghost, forest, nodes) forest_self = P4estTypes.pxest(Raven.connectivity(cg); comm = MPI.COMM_SELF) P4estTypes.refine!(forest_self; refine = (_, tid, _) -> tid == 4) P4estTypes.balance!(forest_self) ghost_self = P4estTypes.ghostlayer(forest_self) nodes_self = P4estTypes.lnodes(forest_self; ghost = ghost_self, degree = 3) P4estTypes.expand!(ghost_self, forest_self, nodes_self) quadranttoglobalids = Raven.materializequadranttoglobalid(forest, ghost) if rank == 0 @test quadranttoglobalids == [1, 2, 3, 4, 5, 6, 8, 9, 10] elseif rank == 1 @test quadranttoglobalids == [2, 1, 3, 4, 5, 6, 8, 9, 10] elseif rank == 2 @test quadranttoglobalids == [3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2] end quadrantcommpattern = Raven.materializequadrantcommpattern(forest, ghost) if rank == 0 @test quadrantcommpattern.recvindices == 2:9 @test quadrantcommpattern.recvranks == [1, 2] @test quadrantcommpattern.recvrankindices == [1:1, 2:8] @test quadrantcommpattern.sendindices == [1, 1] @test quadrantcommpattern.sendranks == [1, 2] @test quadrantcommpattern.sendrankindices == [1:1, 2:2] elseif rank == 1 @test quadrantcommpattern.recvindices == 2:9 @test quadrantcommpattern.recvranks == [0, 2] @test quadrantcommpattern.recvrankindices == [1:1, 2:8] @test quadrantcommpattern.sendindices == [1, 1] @test quadrantcommpattern.sendranks == [0, 2] @test quadrantcommpattern.sendrankindices == [1:1, 2:2] elseif rank == 2 @test quadrantcommpattern.recvindices == 10:11 @test quadrantcommpattern.recvranks == [0, 1] @test quadrantcommpattern.recvrankindices == [1:1, 2:2] @test quadrantcommpattern.sendindices == [1, 2, 3, 4, 6, 7, 8, 1, 2, 3, 4, 6, 7, 8] @test quadrantcommpattern.sendranks == [0, 1] @test quadrantcommpattern.sendrankindices == [1:7, 8:14] end (dtoc_degree_3_local, dtoc_degree_3_global) = Raven.materializedtoc(forest, ghost, nodes, quadrantcommpattern, MPI.COMM_WORLD) quadrantcommpattern_self = Raven.materializequadrantcommpattern(forest_self, ghost_self) (dtoc_degree_3_local_self, dtoc_degree_3_global_self) = Raven.materializedtoc( forest_self, ghost_self, nodes_self, quadrantcommpattern_self, MPI.COMM_SELF, ) @test dtoc_degree_3_local == Raven.numbercontiguous(Int32, dtoc_degree_3_global) @test eltype(dtoc_degree_3_local) == Int32 if rank == 0 @test isisomorphic( dtoc_degree_3_global[:, :, :, 1:1], dtoc_degree_3_global_self[:, :, :, 1:1], ) @test isisomorphic( dtoc_degree_3_global[:, :, :, 2:9], dtoc_degree_3_global_self[:, :, :, [2, 3, 4, 5, 6, 8, 9, 10]], ) elseif rank == 1 @test isisomorphic( dtoc_degree_3_global[:, :, :, 1:1], dtoc_degree_3_global_self[:, :, :, 2:2], ) @test isisomorphic( dtoc_degree_3_global[:, :, :, 2:9], dtoc_degree_3_global_self[:, :, :, [1, 3, 4, 5, 6, 8, 9, 10]], ) elseif rank == 2 @test isisomorphic( dtoc_degree_3_global[:, :, :, 1:9], dtoc_degree_3_global_self[:, :, :, 3:11], ) @test isisomorphic( dtoc_degree_3_global[:, :, :, 10:11], dtoc_degree_3_global_self[:, :, :, [1, 2]], ) end cell_degree_3 = LobattoCell{Float64,Array}(4, 4, 4) dtoc_degree_3 = Raven.materializedtoc(cell_degree_3, dtoc_degree_3_local, dtoc_degree_3_global) if rank == 0 @test isisomorphic( dtoc_degree_3[:, :, :, 1:1], dtoc_degree_3_global_self[:, :, :, 1:1], ) @test isisomorphic( dtoc_degree_3[:, :, :, 2:9], dtoc_degree_3_global_self[:, :, :, [2, 3, 4, 5, 6, 8, 9, 10]], ) elseif rank == 1 @test isisomorphic( dtoc_degree_3[:, :, :, 1:1], dtoc_degree_3_global_self[:, :, :, 2:2], ) @test isisomorphic( dtoc_degree_3[:, :, :, 2:9], dtoc_degree_3_global_self[:, :, :, [1, 3, 4, 5, 6, 8, 9, 10]], ) elseif rank == 2 @test isisomorphic( dtoc_degree_3[:, :, :, 1:9], dtoc_degree_3_global_self[:, :, :, 3:11], ) @test isisomorphic( dtoc_degree_3[:, :, :, 10:11], dtoc_degree_3_global_self[:, :, :, [1, 2]], ) end ctod_degree_3 = Raven.materializectod(dtoc_degree_3) nodecommpattern_degree_3 = Raven.materializenodecommpattern(cell_degree_3, ctod_degree_3, quadrantcommpattern) dnodes = LinearIndices(dtoc_degree_3) if rank == 0 recv_1 = vec(dnodes[end, :, :, 2]) recv_2 = vcat( vec(dnodes[:, 1, :, 3]), dnodes[1, 1, :, 4], dnodes[1, 1, :, 5], dnodes[1, 1, :, 6], dnodes[1, 1, :, 7], dnodes[1, 1, :, 8], dnodes[1, 1, :, 9], ) send_1 = vec(dnodes[end, :, :, 1]) send_2 = vec(dnodes[:, end, :, 1]) sendrecv_ranks = Int32[1, 2] elseif rank == 1 recv_1 = vec(dnodes[end, :, :, 2]) recv_2 = vcat( dnodes[end, 1, :, 3], vec(dnodes[:, 1, :, 4]), vec(dnodes[:, 1, :, 5]), dnodes[1, 1, :, 6], vec(dnodes[:, 1, :, 7]), vec(dnodes[:, 1, :, 8]), dnodes[1, 1, :, 9], ) send_1 = vec(dnodes[end, :, :, 1]) send_2 = vec(dnodes[:, 1, :, 1]) sendrecv_ranks = Int32[0, 2] elseif rank == 2 recv_1 = vec(dnodes[:, end, :, 10]) recv_2 = vec(dnodes[:, 1, :, 11]) send_1 = vcat( vec(dnodes[:, 1, :, 1]), dnodes[1, 1, :, 2], dnodes[1, 1, :, 3], dnodes[1, 1, :, 4], dnodes[1, 1, :, 6], dnodes[1, 1, :, 7], dnodes[1, 1, :, 8], ) send_2 = vcat( dnodes[end, 1, :, 1], vec(dnodes[:, 1, :, 2]), vec(dnodes[:, 1, :, 3]), dnodes[1, 1, :, 4], vec(dnodes[:, 1, :, 6]), vec(dnodes[:, 1, :, 7]), dnodes[1, 1, :, 8], ) sendrecv_ranks = Int32[0, 1] end @test nodecommpattern_degree_3.recvindices == vcat(recv_1, recv_2) @test nodecommpattern_degree_3.recvranks == sendrecv_ranks @test nodecommpattern_degree_3.recvrankindices == UnitRange{Int64}[1:length(recv_1), (1:length(recv_2)).+length(recv_1)] @test nodecommpattern_degree_3.sendindices == vcat(send_1, send_2) @test nodecommpattern_degree_3.sendranks == sendrecv_ranks @test nodecommpattern_degree_3.sendrankindices == UnitRange{Int64}[1:length(send_1), (1:length(send_2)).+length(send_1)] end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
9961
function findorient(::Val{2}, dest::AbstractArray{<:Any,1}, src::AbstractArray{<:Any,1}) if size(dest) != (2,) && size(src) != (2,) throw(ArgumentError("Arguments dest=$dest src=$src need to be of size (2,)")) end k = dest == src ? 1 : 2 return Raven.Orientation{2}(k) end function findorient(::Val{4}, dest::AbstractArray{<:Any,2}, src::AbstractArray{<:Any,2}) if size(dest) != (2, 2) && size(src) != (2, 2) throw(ArgumentError("Arguments dest=$dest src=$src need to be of size (2,2)")) end k = 0 for (i, perm) in enumerate(( (1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1), (1, 3, 2, 4), (2, 4, 1, 3), (3, 1, 4, 2), (4, 2, 3, 1), )) if src[perm[1]] == dest[1] && src[perm[2]] == dest[2] && src[perm[3]] == dest[3] && src[perm[4]] == dest[4] k = i break end end if k == 0 throw(ArgumentError("Orientation from $src to $dest is unknown")) end return Raven.Orientation{4}(k) end # function findorient(::Val{8}, dest::AbstractArray{<:Any,3}, src::AbstractArray{<:Any,3}) # if size(dest) != (2, 2, 2) && size(src) != (2, 2, 2) # throw(ArgumentError("Arguments dest=$dest src=$src need to be of size (2,2,2)")) # end # # k = 0 # # for (i, perm) in enumerate(( # (1, 2, 3, 4, 5, 6, 7, 8), # (2, 1, 4, 3, 6, 5, 8, 7), # (3, 4, 1, 2, 7, 8, 5, 6), # (4, 3, 2, 1, 8, 7, 6, 5), # (5, 6, 7, 8, 1, 2, 3, 4), # (6, 5, 8, 7, 2, 1, 4, 3), # (7, 8, 5, 6, 3, 4, 1, 2), # (8, 7, 6, 5, 4, 3, 2, 1), # (1, 2, 5, 6, 3, 4, 7, 8), # (2, 1, 6, 5, 4, 3, 8, 7), # (3, 4, 7, 8, 1, 2, 5, 6), # (4, 3, 8, 7, 2, 1, 6, 5), # (5, 6, 1, 2, 7, 8, 3, 4), # (6, 5, 2, 1, 8, 7, 4, 3), # (7, 8, 3, 4, 5, 6, 1, 2), # (8, 7, 4, 3, 6, 5, 2, 1), # (1, 3, 2, 4, 5, 7, 6, 8), # (2, 4, 1, 3, 6, 8, 5, 7), # (3, 1, 4, 2, 7, 5, 8, 6), # (4, 2, 3, 1, 8, 6, 7, 5), # (5, 7, 6, 8, 1, 3, 2, 4), # (6, 8, 5, 7, 2, 4, 1, 3), # (7, 5, 8, 6, 3, 1, 4, 2), # (8, 6, 7, 5, 4, 2, 3, 1), # (1, 3, 5, 7, 2, 4, 6, 8), # (2, 4, 6, 8, 1, 3, 5, 7), # (3, 1, 7, 5, 4, 2, 8, 6), # (4, 2, 8, 6, 3, 1, 7, 5), # (5, 7, 1, 3, 6, 8, 2, 4), # (6, 8, 2, 4, 5, 7, 1, 3), # (7, 5, 3, 1, 8, 6, 4, 2), # (8, 6, 4, 2, 7, 5, 3, 1), # (1, 5, 2, 6, 3, 7, 4, 8), # (2, 6, 1, 5, 4, 8, 3, 7), # (3, 7, 4, 8, 1, 5, 2, 6), # (4, 8, 3, 7, 2, 6, 1, 5), # (5, 1, 6, 2, 7, 3, 8, 4), # (6, 2, 5, 1, 8, 4, 7, 3), # (7, 3, 8, 4, 5, 1, 6, 2), # (8, 4, 7, 3, 6, 2, 5, 1), # (1, 5, 3, 7, 2, 6, 4, 8), # (2, 6, 4, 8, 1, 5, 3, 7), # (3, 7, 1, 5, 4, 8, 2, 6), # (4, 8, 2, 6, 3, 7, 1, 5), # (5, 1, 7, 3, 6, 2, 8, 4), # (6, 2, 8, 4, 5, 1, 7, 3), # (7, 3, 5, 1, 8, 4, 6, 2), # (8, 4, 6, 2, 7, 3, 5, 1), # )) # if src[perm[1]] == dest[1] && # src[perm[2]] == dest[2] && # src[perm[3]] == dest[3] && # src[perm[4]] == dest[4] && # src[perm[5]] == dest[5] && # src[perm[6]] == dest[6] && # src[perm[7]] == dest[7] && # src[perm[8]] == dest[8] # k = i # break # end # end # # if k == 0 # throw(ArgumentError("Orientation from $src to $dest is unknown")) # end # # return Raven.Orientation{8}(k) # end @testset "Orientation" begin @testset "Orientation{2}" begin @test Raven.orientindices(Raven.Orientation{2}(1), (3,)) == [CartesianIndex(1), CartesianIndex(2), CartesianIndex(3)] @test Raven.orientindices(Raven.Orientation{2}(2), (3,)) == [CartesianIndex(3), CartesianIndex(2), CartesianIndex(1)] L = LinearIndices((1:2,)) for j = 1:2 p = Raven.Orientation{2}(j) pL = L[Raven.orientindices(p, (2,))] for i = 1:2 q = Raven.Orientation{2}(i) qpL = pL[Raven.orientindices(q, (2,))] qp = findorient(Val(2), qpL, L) @test qp == q ∘ p end end @test inv(Raven.Orientation{2}(1)) == Raven.Orientation{2}(1) @test inv(Raven.Orientation{2}(2)) == Raven.Orientation{2}(2) L = LinearIndices((1:2,)) for j = 1:2 p = Raven.Orientation{2}(j) pL = L[Raven.orientindices(p, (2,))] q = Raven.orient(Val(2), Tuple(pL)) @test q == inv(p) end A = [1, -1] for i = 1:2 o = Raven.Orientation{2}(i) p = findorient(Val(2), A[Raven.orientindices(o, size(A))], A) @test o == p end @test Raven.perm(Raven.Orientation{2}(1)) == SA[1, 2] @test Raven.perm(Raven.Orientation{2}(2)) == SA[2, 1] end @testset "Orientation{4}" begin dims = (3, 4) A = reshape(1:prod(dims), dims) L = LinearIndices((1:2, 1:2)) for j = 1:8 p = Raven.Orientation{4}(j) pL = L[Raven.orientindices(p, (2, 2))] for i = 1:8 q = Raven.Orientation{4}(i) qpL = pL[Raven.orientindices(q, (2, 2))] qp = findorient(Val(4), qpL, L) @test qp == q ∘ p end end @test inv(Raven.Orientation{4}(1)) == Raven.Orientation{4}(1) @test inv(Raven.Orientation{4}(2)) == Raven.Orientation{4}(2) @test inv(Raven.Orientation{4}(3)) == Raven.Orientation{4}(3) @test inv(Raven.Orientation{4}(4)) == Raven.Orientation{4}(4) @test inv(Raven.Orientation{4}(5)) == Raven.Orientation{4}(5) @test inv(Raven.Orientation{4}(6)) == Raven.Orientation{4}(7) @test inv(Raven.Orientation{4}(7)) == Raven.Orientation{4}(6) @test inv(Raven.Orientation{4}(8)) == Raven.Orientation{4}(8) L = LinearIndices((1:2, 1:2)) for j = 1:8 p = Raven.Orientation{4}(j) pL = L[Raven.orientindices(p, (2, 2))] q = Raven.orient(Val(4), Tuple(pL)) @test q == inv(p) end A = reshape([1, 30, 23, -1], (2, 2)) for i = 1:8 o = Raven.Orientation{4}(i) p = findorient(Val(4), A[Raven.orientindices(o, size(A))], A) @test o == p end for (o, perm) in enumerate(( SA[1, 2, 3, 4], SA[2, 1, 4, 3], SA[3, 4, 1, 2], SA[4, 3, 2, 1], SA[1, 3, 2, 4], SA[2, 4, 1, 3], SA[3, 1, 4, 2], SA[4, 2, 3, 1], )) src = reshape(1:4, (2, 2)) dest = reshape(perm, (2, 2)) @test findorient(Val(4), dest, src) == Raven.Orientation{4}(o) @test perm == Raven.perm(Raven.Orientation{4}(o)) end end # @testset "Orientation{8}" begin # dims = (3, 4, 5) # A = reshape(1:prod(dims), dims) # # for i = 1:48 # o = Raven.Orientation{8}(i) # B = A[Raven.orientindices(o, dims)] # C = B[Raven.orientindices(o, dims, true)] # @test A == C # end # # A = reshape([1, 30, 23, 32, 4, 9, 99, -1], (2, 2, 2)) # for i = 1:48 # o = Raven.Orientation{8}(i) # p = findorient(Val(8), A[Raven.orientindices(o, size(A))], A) # @test o == p # end # # for (o, perm) in enumerate(( # SA[1, 2, 3, 4, 5, 6, 7, 8], # SA[2, 1, 4, 3, 6, 5, 8, 7], # SA[3, 4, 1, 2, 7, 8, 5, 6], # SA[4, 3, 2, 1, 8, 7, 6, 5], # SA[5, 6, 7, 8, 1, 2, 3, 4], # SA[6, 5, 8, 7, 2, 1, 4, 3], # SA[7, 8, 5, 6, 3, 4, 1, 2], # SA[8, 7, 6, 5, 4, 3, 2, 1], # SA[1, 2, 5, 6, 3, 4, 7, 8], # SA[2, 1, 6, 5, 4, 3, 8, 7], # SA[3, 4, 7, 8, 1, 2, 5, 6], # SA[4, 3, 8, 7, 2, 1, 6, 5], # SA[5, 6, 1, 2, 7, 8, 3, 4], # SA[6, 5, 2, 1, 8, 7, 4, 3], # SA[7, 8, 3, 4, 5, 6, 1, 2], # SA[8, 7, 4, 3, 6, 5, 2, 1], # SA[1, 3, 2, 4, 5, 7, 6, 8], # SA[2, 4, 1, 3, 6, 8, 5, 7], # SA[3, 1, 4, 2, 7, 5, 8, 6], # SA[4, 2, 3, 1, 8, 6, 7, 5], # SA[5, 7, 6, 8, 1, 3, 2, 4], # SA[6, 8, 5, 7, 2, 4, 1, 3], # SA[7, 5, 8, 6, 3, 1, 4, 2], # SA[8, 6, 7, 5, 4, 2, 3, 1], # SA[1, 3, 5, 7, 2, 4, 6, 8], # SA[2, 4, 6, 8, 1, 3, 5, 7], # SA[3, 1, 7, 5, 4, 2, 8, 6], # SA[4, 2, 8, 6, 3, 1, 7, 5], # SA[5, 7, 1, 3, 6, 8, 2, 4], # SA[6, 8, 2, 4, 5, 7, 1, 3], # SA[7, 5, 3, 1, 8, 6, 4, 2], # SA[8, 6, 4, 2, 7, 5, 3, 1], # SA[1, 5, 2, 6, 3, 7, 4, 8], # SA[2, 6, 1, 5, 4, 8, 3, 7], # SA[3, 7, 4, 8, 1, 5, 2, 6], # SA[4, 8, 3, 7, 2, 6, 1, 5], # SA[5, 1, 6, 2, 7, 3, 8, 4], # SA[6, 2, 5, 1, 8, 4, 7, 3], # SA[7, 3, 8, 4, 5, 1, 6, 2], # SA[8, 4, 7, 3, 6, 2, 5, 1], # SA[1, 5, 3, 7, 2, 6, 4, 8], # SA[2, 6, 4, 8, 1, 5, 3, 7], # SA[3, 7, 1, 5, 4, 8, 2, 6], # SA[4, 8, 2, 6, 3, 7, 1, 5], # SA[5, 1, 7, 3, 6, 2, 8, 4], # SA[6, 2, 8, 4, 5, 1, 7, 3], # SA[7, 3, 5, 1, 8, 4, 6, 2], # SA[8, 4, 6, 2, 7, 3, 5, 1], # )) # src = reshape(1:8, (2, 2, 2)) # dest = reshape(perm, (2, 2, 2)) # @test findorient(Val(8), dest, src) == Raven.Orientation{8}(o) # end # end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
2352
using CUDA using CUDA.CUDAKernels using MPI using Pkg using Raven import Raven.Adapt import Raven.P4estTypes using Raven.StaticArrays using Raven.SparseArrays using Test using Aqua Aqua.test_all(Raven; stale_deps = (ignore = [:Requires],)) function runmpitests() test_dir = @__DIR__ istest(f) = endswith(f, ".jl") && startswith(f, "mpitest_") testfiles = sort(filter(istest, readdir(test_dir))) mktempdir() do tmp_dir base_dir = joinpath(@__DIR__, "..") # Change to temporary directory so that any files created by the # example get cleaned up after execution. cd(tmp_dir) test_project = Pkg.Types.projectfile_path(test_dir) tmp_project = Pkg.Types.projectfile_path(tmp_dir) cp(test_project, tmp_project) # Copy data files to temporary directory # test_data_dir = joinpath(test_dir, "data") # tmp_data_dir = joinpath(tmp_dir, "data") # mkdir(tmp_data_dir) # for f in readdir(test_data_dir) # cp(joinpath(test_data_dir, f), joinpath(tmp_data_dir, f)) # end # Setup MPI and P4est preferences code = "import Pkg; Pkg.develop(path=raw\"$base_dir\"); Pkg.instantiate(); Pkg.precompile(); include(joinpath(raw\"$test_dir\", \"configure_packages.jl\"))" cmd = `$(Base.julia_cmd()) --startup-file=no --project=$tmp_project -e "$code"` @info "Initializing MPI and P4est with" cmd @test success(pipeline(cmd, stderr = stderr, stdout = stdout)) @info "Running MPI tests..." @testset "$f" for f in testfiles nprocs = parse(Int, first(match(r"_n(\d*)_", f).captures)) cmd = `$(mpiexec()) -n $nprocs $(Base.julia_cmd()) --startup-file=no --project=$tmp_project $(joinpath(test_dir, f))` @test success(pipeline(cmd, stderr = stderr, stdout = stdout)) end end end MPI.Initialized() || MPI.Init() include("arrays.jl") include("communication.jl") include("facecode.jl") include("gridnumbering.jl") include("orientation.jl") include("sparsearrays.jl") include("testsuite.jl") Testsuite.testsuite(Array, Float64) Testsuite.testsuite(Array, BigFloat) if CUDA.functional() @info "Running test suite with CUDA" CUDA.versioninfo() CUDA.allowscalar(false) Testsuite.testsuite(CuArray, Float32) end runmpitests()
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
708
@testset "Sparse Arrays" begin S = sparse([1], [2], [3]) G = Raven.GeneralSparseMatrixCSC(S) AT = CUDA.functional() ? CuArray : Array H = Adapt.adapt(AT, G) for A in (G, H) @test size(S) == size(A) @test SparseArrays.getcolptr(S) == Array(SparseArrays.getcolptr(A)) @test rowvals(S) == Array(rowvals(A)) @test nonzeros(S) == Array(nonzeros(A)) @test nnz(S) == nnz(A) @static if VERSION >= v"1.7" ioS = IOBuffer() ioA = IOBuffer() show(ioS, S) show(ioA, A) @test take!(ioS) == take!(ioA) @test_nowarn show(IOBuffer(), MIME"text/plain"(), A) end end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
code
1381
module Testsuite using Raven using Raven.Adapt using Raven.KernelAbstractions using Raven.LinearAlgebra using Raven.OneDimensionalNodes import Raven.P4estTypes using Raven.SparseArrays using Raven.StaticArrays using StableRNGs using Test using WriteVTK include("cells.jl") include("flatten.jl") include("grids.jl") include("gridarrays.jl") include("kron.jl") include("extrude.jl") function testsuite(AT, FT) @testset "Cells ($AT, $FT)" begin cells_testsuite(AT, FT) end @testset "Flatten ($AT, $FT)" begin flatten_testsuite(AT, FT) end # Unfortunately, our KernelAbstractions kernels do not work # when FT is not an `isbitstype`. if isbitstype(FT) @testset "Grid generation ($AT, $FT)" begin grids_testsuite(AT, FT) end @testset "Grid arrays ($AT, $FT)" begin gridarrays_testsuite(AT, FT) end @testset "Grid extrude ($AT, $FT)" begin extrude_testsuite(AT, FT) end @testset "Kronecker operators (GridArray 2D) ($AT, $FT)" begin kron2dgridarray_testsuite(AT, FT) end @testset "Kronecker operators (GridArray 3D) ($AT, $FT)" begin kron3dgridarray_testsuite(AT, FT) end end @testset "Kronecker operators (primitive) ($AT, $FT)" begin kron_testsuite(AT, FT) end end end
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
docs
1009
# Raven 𓅂 <p align="center"> <a href="https://HorribleSanity.github.io/Raven.jl/dev/">Documentation</a> • <a href="#contributing">Contributing</a> </p> [Raven](https://github.com/HorribleSanity/Raven.jl) is a toolbox for adapted discontinuous spectral element discretizations of partial differential equations that supports execution on distributed manycore devices (via [KernelAbstractions](https://github.com/JuliaGPU/KernelAbstractions.jl) and [MPI](https://github.com/JuliaParallel/MPI.jl)). Some of our previous efforts in this area resulted in [Canary](https://github.com/Clima/Canary.jl), [Bennu](https://github.com/lcw/Bennu.jl), and [Atum](https://github.com/mwarusz/Atum.jl). ## Contributing Contributions are encouraged. If there are additional features you would like to use, please open an [issue](https://github.com/HorribleSanity/Raven.jl/issues) or [pull request](https://github.com/HorribleSanity/Raven.jl/pulls). Additional examples and documentation improvements are also welcome.
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
docs
863
# Raven 𓅂 [Raven](https://github.com/HorribleSanity/Raven.jl) is a toolbox for adapted discontinuous spectral element discretizations of partial differential equations that supports execution on distributed manycore devices (via [KernelAbstractions](https://github.com/JuliaGPU/KernelAbstractions.jl) and [MPI](https://github.com/JuliaParallel/MPI.jl)). Some of our previous efforts in this area resulted in [Canary](https://github.com/Clima/Canary.jl), [Bennu](https://github.com/lcw/Bennu.jl), and [Atum](https://github.com/mwarusz/Atum.jl). ## Contributing Contributions are encouraged. If there are additional features you would like to use, please open an [issue](https://github.com/HorribleSanity/Raven.jl/issues) or [pull request](https://github.com/HorribleSanity/Raven.jl/pulls). Additional examples and documentation improvements are also welcome.
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
0.2.3
a630dec3c3d292bda4ab57468fda5f832772fa0e
docs
88
# API reference ```@meta CurrentModule = Raven ``` ```@autodocs Modules = [Raven] ```
Raven
https://github.com/HorribleSanity/Raven.jl.git
[ "MIT" ]
3.7.5
8836d8846919670cec877e4002d972c23e9dde29
code
619
using Documenter using DynamicSumTypes println("Documentation Build") makedocs( modules = [DynamicSumTypes], sitename = "DynamicSumTypes.jl", warnonly = [:doctest, :missing_docs, :cross_references], pages = [ "API" => "index.md", ], ) @info "Deploying Documentation" CI = get(ENV, "CI", nothing) == "true" || get(ENV, "GITHUB_TOKEN", nothing) !== nothing if CI deploydocs( repo = "github.com/JuliaDynamics/DynamicSumTypes.jl.git", target = "build", push_preview = true, devbranch = "main", ) end println("Finished boulding and deploying docs.")
DynamicSumTypes
https://github.com/JuliaDynamics/DynamicSumTypes.jl.git
[ "MIT" ]
3.7.5
8836d8846919670cec877e4002d972c23e9dde29
code
6368
module DynamicSumTypes using MacroTools: namify export @sumtype, variant, variantof, allvariants, is_sumtype unwrap(sumt) = getfield(sumt, :variants) """ @sumtype SumTypeName(Types) [<: AbstractType] The macro creates a sumtypes composed by the given types. It optionally accept also an abstract supertype. ## Example ```julia julia> using DynamicSumTypes julia> struct A x::Int end; julia> struct B end; julia> @sumtype AB(A, B) ``` """ macro sumtype(typedef) if typedef.head === :call abstract_type = :Any type_with_variants = typedef elseif typedef.head === :(<:) abstract_type = typedef.args[2] type_with_variants = typedef.args[1] else error("Invalid syntax") end type = type_with_variants.args[1] typename = namify(type) typeparams = type isa Symbol ? [] : type.args[2:end] variants = type_with_variants.args[2:end] !allunique(variants) && error("Duplicated variants in sumtype") variants_with_P = [v for v in variants if v isa Expr && !isempty(intersect(typeparams, v.args[2:end]))] variants_bounded = [v in variants_with_P ? namify(v) : v for v in variants] check_if_typeof(v) = v isa Expr && v.head == :call && v.args[1] == :typeof variants_names = namify.([check_if_typeof(v) ? v.args[2] : v for v in variants]) for vname in unique(variants_names) inds = findall(==(vname), variants_names) length(inds) == 1 && continue for (k, i) in enumerate(inds) variant_args = check_if_typeof(variants[i]) ? variants[i].args[2] : variants[i].args variants_names[i] = Symbol([i == length(variant_args) ? a : Symbol(a, :_) for (i, a) in enumerate(variant_args)]...) end end constructors = [:(@inline $(namify(type))(v::Union{$(variants...)}) where {$(typeparams...)} = $(branchs(variants, variants_with_P, :(return new{$(typeparams...)}(v)))...))] constructors_extra = [:($Base.adjoint(SumT::Type{$typename}) = $(Expr(:tuple, (:($nv = (args...; kwargs...) -> $DynamicSumTypes.constructor($typename, $v, args...; kwargs...)) for (nv, v) in zip(variants_names, variants_bounded))...)))] if type isa Expr push!( constructors, :(@inline $type(v::Union{$(variants...)}) where {$(typeparams...)} = $(branchs(variants, variants_with_P, :(return new{$(typeparams...)}(v)))...)) ) push!( constructors_extra, :($Base.adjoint(SumT::Type{$type}) where {$(typeparams...)} = $(Expr(:tuple, (:($nv = (args...; kwargs...) -> $DynamicSumTypes.constructor($type, $v, args...; kwargs...)) for (nv, v) in zip(variants_names, variants))...))) ) end esc(quote struct $type <: $(abstract_type) variants::Union{$(variants...)} $(constructors...) end $(constructors_extra...) @inline function $Base.getproperty(sumt::$typename, s::Symbol) v = $DynamicSumTypes.unwrap(sumt) $(branchs(variants, variants_with_P, :(return $Base.getproperty(v, s)))...) end @inline function $Base.setproperty!(sumt::$typename, s::Symbol, value) v = $DynamicSumTypes.unwrap(sumt) $(branchs(variants, variants_with_P, :(return $Base.setproperty!(v, s, value)))...) end function $Base.propertynames(sumt::$typename) v = $DynamicSumTypes.unwrap(sumt) $(branchs(variants, variants_with_P, :(return $Base.propertynames(v)))...) end function $Base.hasproperty(sumt::$typename, s::Symbol) v = $DynamicSumTypes.unwrap(sumt) $(branchs(variants, variants_with_P, :(return $Base.hasproperty(v, s)))...) end function $Base.copy(sumt::$typename) v = $DynamicSumTypes.unwrap(sumt) $(branchs(variants, variants_with_P, :(return $type(Base.copy(v))))...) end @inline $DynamicSumTypes.variant(sumt::$typename) = $DynamicSumTypes.unwrap(sumt) @inline function $DynamicSumTypes.variant_idx(sumt::$typename) v = $DynamicSumTypes.unwrap(sumt) $(branchs(variants, variants_with_P, [:(return $i) for i in 1:length(variants)])...) end $DynamicSumTypes.variantof(sumt::$typename) = typeof($DynamicSumTypes.variant(sumt)) $DynamicSumTypes.allvariants(sumt::Type{$typename}) = $(Expr(:tuple, (:($nv = $(v in variants_with_P ? namify(v) : v)) for (nv, v) in zip(variants_names, variants))...)) $DynamicSumTypes.is_sumtype(sumt::Type{$typename}) = true nothing end) end function branchs(variants, variants_with_P, outputs) !(outputs isa Vector) && (outputs = repeat([outputs], length(variants))) branchs = [Expr(:if, :(v isa $(variants[1] in variants_with_P ? namify(variants[1]) : variants[1])), outputs[1])] for i in 2:length(variants) push!(branchs, Expr(:elseif, :(v isa $(variants[i] in variants_with_P ? namify(variants[i]) : variants[i])), outputs[i])) end push!(branchs, :(error("THIS_SHOULD_BE_UNREACHABLE"))) return branchs end constructor(T, V, args::Vararg{Any, N}; kwargs...) where N = T(V(args...; kwargs...)) """ variant(inst) Returns the variant enclosed in the sum type. ## Example ```julia julia> using DynamicSumTypes julia> struct A x::Int end; julia> struct B end; julia> @sumtype AB(A, B) julia> a = AB(A(0)) AB'.A(0) julia> variant(a) A(0) ``` """ function variant end """ allvariants(SumType) Returns all the enclosed variants types in the sum type in a namedtuple. ## Example ```julia julia> using DynamicSumTypes julia> struct A x::Int end; julia> struct B end; julia> @sumtype AB(A, B) julia> allvariants(AB) (A = A, B = B) ``` """ function allvariants end """ variantof(inst) Returns the type of the variant enclosed in the sum type. """ function variantof end """ is_sumtype(T) Returns true if the type is a sum type otherwise returns false. """ is_sumtype(T::Type) = false function variant_idx end include("deprecations.jl") end
DynamicSumTypes
https://github.com/JuliaDynamics/DynamicSumTypes.jl.git
[ "MIT" ]
3.7.5
8836d8846919670cec877e4002d972c23e9dde29
code
32442
using MacroTools using ExprTools export @sum_structs export @pattern export @finalize_patterns export export_variants export kindof export allkinds export variant_constructor const __modules_cache__ = Set{Module}() const __variants_types_cache__ = Dict{Module, Dict{Any, Any}}() const __variants_types_with_params_cache__ = Dict{Module, Dict{Any, Vector{Any}}}() """ kindof(instance) Return a symbol representing the conceptual type of an instance: ```julia julia> @sum_structs AB begin struct A x::Int end struct B y::Int end end julia> a = AB'.A(1); julia> kindof(a) :A ``` """ function kindof end """ allkinds(type) Return a `Tuple` containing all kinds associated with the overarching type defined with `@sum_structs` ```julia julia> @sum_structs AB begin struct A x::Int end struct B y::Int end end julia> allkinds(AB) (:A, :B) ``` """ function allkinds end """ variant_constructor(instance) Return the constructor of an instance in a more efficient way than doing `typeof(inst)'[kindof(inst)]`: ```julia julia> @sum_structs AB begin struct A x::Int end struct B y::Int end end julia> a = AB'.A(1) AB'.A(1) julia> typeof(a)'[kindof(a)] AB'.A julia> variant_constructor(a) AB'.A ``` """ function variant_constructor end """ export_variants(T) Export all variants types into the module the function it is called into. ## Example ```julia julia> @sum_structs AB begin struct A x::Int end struct B y::Int end end julia> AB'.A(1) AB'.A(1) julia> export_variants(AB) julia> A(1) # now this also works AB'.A(1) ``` """ function export_variants end """ @pattern(function_definition) This macro allows to pattern on types created by [`@sum_structs`](@ref). Notice that this only works when the kinds in the macro are not wrapped by any type containing them. ## Example ```julia julia> @sum_structs AB begin struct A x::Int end struct B y::Int end end julia> @pattern f(::AB'.A) = 1; julia> @pattern f(::AB'.B) = 2; julia> @pattern f(::Vector{AB}) = 3; # this works julia> @pattern f(::Vector{AB'.B}) = 3; # this doesn't work ERROR: LoadError: It is not possible to dispatch on a variant wrapped in another type ... julia> f(AB'.A(0)) 1 julia> f(AB'.B(0)) 2 julia> f([AB'.A(0), AB'.B(0)]) 3 ``` """ macro pattern(f_def) vtc = __variants_types_cache__[__module__] vtwpc = __variants_types_with_params_cache__[__module__] f_sub, f_super_dict, f_cache = _pattern(f_def, vtc, vtwpc) if f_super_dict == nothing return Expr(:toplevel, esc(f_sub)) end if __module__ in __modules_cache__ is_first = false else is_first = true push!(__modules_cache__, __module__) end if is_first expr_m = quote const __pattern_cache__ = Dict{Any, Any}() const __finalized_methods_cache__ = Set{Expr}() end else expr_m = :() end expr_d = :(DynamicSumTypes.define_f_super($(__module__), $(QuoteNode(f_super_dict)), $(QuoteNode(f_cache)))) expr_fire = quote if isinteractive() && (@__MODULE__) == Main DynamicSumTypes.@finalize_patterns $(f_super_dict[:name]) end end return Expr(:toplevel, esc(f_sub), esc(expr_m), esc(expr_d), esc(expr_fire)) end function _pattern(f_def, vtc, vtwpc) macros = [] while f_def.head == :macrocall f_def_comps = rmlines(f_def.args) push!(macros, f_def.args[1]) f_def = f_def.args[end] end is_arg_no_name(s) = s isa Expr && s.head == :(::) && length(s.args) == 1 f_comps = ExprTools.splitdef(f_def; throw=true) f_args = f_comps[:args] f_args = [x isa Symbol ? :($x::Any) : x for x in f_args] f_args_t = [is_arg_no_name(a) ? a.args[1] : a.args[2] for a in f_args] f_args_n = [dotted_arg(a) for a in f_args_t] idxs_mctc = findall(a -> a in values(vtc), f_args_n) idxs_mvtc = findall(a -> a in keys(vtc), f_args_n) f_args = [restructure_arg(f_args[i], i, idxs_mvtc) for i in 1:length(f_args)] f_args_t = [is_arg_no_name(a) ? a.args[1] : a.args[2] for a in f_args] for k in keys(vtc) if any(a -> inexpr(a[2], k) && !(a[1] in idxs_mvtc), enumerate(f_args_t)) error("It is not possible to dispatch on a variant wrapped in another type") end end if !isempty(idxs_mctc) && !isempty(idxs_mvtc) error("Using `@pattern` with signatures containing sum types and variants at the same time is not supported") end if isempty(idxs_mvtc) && isempty(idxs_mctc) return f_def, nothing, nothing end new_arg_types = [vtc[f_args_n[i]] for i in idxs_mvtc] transform_name(v) = v isa Expr && v.head == :. ? v.args[2].value : v is_variant_symbol(s, variant) = s isa Symbol && s == variant whereparams = [] if :whereparams in keys(f_comps) whereparams = f_comps[:whereparams] end f_args_name = Symbol[] for i in idxs_mvtc variant = f_args_n[i] type = vtc[variant] if f_args_t[i] isa Symbol v = transform_name(variant) f_args[i] = MacroTools.postwalk(s -> is_variant_symbol(s, v) ? type : s, f_args[i]) else y, y_w = f_args_t[i], [] arg_abstract, type_abstract = vtwpc[f_args_n[i]] type_abstract = deepcopy(type_abstract) type_abstract_args = type_abstract.args[2:end] arg_abstract = arg_abstract.args[2:end] arg_abstract = [x isa Expr && x.head == :(<:) ? x.args[1] : x for x in arg_abstract] pos_args = [] if y.head == :where y_w = y.args[2:end] y = y.args[1] end arg_concrete = y.args[2:end] for x in arg_abstract[1:length(arg_concrete)] j = findfirst(t -> t == x, type_abstract_args) push!(pos_args, j) end pos_no_args = [i for i in 1:length(type_abstract_args) if !(i in pos_args) && ( type_abstract_args[i] != :(DynamicSumTypes.Uninitialized) && type_abstract_args[i] != :(DynamicSumTypes.SumTypes.Uninit))] @capture(y, _{t_params__}) for (p, q) in enumerate(pos_args) type_abstract_args[q] = MacroTools.postwalk(s -> s isa Symbol && s == arg_abstract[p] ? arg_concrete[p] : s, type_abstract_args[q]) end idx = is_arg_no_name(f_args[i]) ? 1 : 2 ps = [y_w..., type_abstract_args[pos_no_args]...] if !(isempty(ps)) f_args[i].args[idx] = :($(type_abstract.args[1]){$(type_abstract_args...)} where {$(ps...)}) else f_args[i].args[idx] = :($(type_abstract.args[1]){$(type_abstract_args...)}) end end a = gensym(:argv) f_args[i] = MacroTools.postwalk(s -> is_arg_no_name(s) ? (pushfirst!(s.args, a); s) : s, f_args[i]) push!(f_args_name, f_args[i].args[1]) end for i in 1:length(f_args) if f_args[i] isa Expr && f_args[i].head == :(::) && length(f_args[i].args) == 1 push!(f_args[i].args, gensym(:a)) f_args[i].args[1], f_args[i].args[2] = f_args[i].args[2], f_args[i].args[1] end end g_args = deepcopy(f_args) for i in 1:length(f_args) a = Symbol("##argv#563487$i") if !(g_args[i] isa Symbol) g_args[i].args[1] = a else g_args[i] = a end end g_args_names = Any[namify(a) for a in g_args] if g_args[end] isa Expr && namify(g_args[end].args[2]) == :(Vararg) g_args_names[end] = :($(g_args_names[end])...) end idx_and_variant0 = collect(zip(idxs_mvtc, map(i -> transform_name(f_args_n[i]), idxs_mvtc))) idx_and_type = collect(zip(idxs_mctc, map(i -> f_args_n[i], idxs_mctc))) all_types_args0 = idx_and_variant0 != [] ? sort(idx_and_variant0) : sort(idx_and_type) all_types_args1 = sort(collect(zip(idxs_mvtc, map(i -> vtc[f_args_n[i]], idxs_mvtc)))) f_args_cache = deepcopy(f_args) for i in eachindex(f_args_cache) for p in whereparams p_n = p isa Symbol ? p : p.args[1] p_t = p isa Symbol ? :Any : (p.head == :(<:) ? p.args[2] : error()) if f_args_cache[i] isa Symbol f_args_cache[i] = MacroTools.postwalk(s -> s isa Symbol && s == p_n ? p_t : s, f_args_cache[i]) else f_args_cache[i] = MacroTools.postwalk(s -> s isa Symbol && s == p_n ? :(<:($p_t)) : s, f_args_cache[i]) end i == length(f_args_cache) && (f_args_cache[i] = MacroTools.postwalk(s -> sub_vararg_any(s), f_args_cache[i])) end end f_args_cache = map(MacroTools.splitarg, f_args_cache) f_args_cache = [(x[2], x[3]) for x in f_args_cache] f_cache = f_args_cache f_sub_dict = define_f_sub(whereparams, f_comps, all_types_args0, f_args) f_sub = ExprTools.combinedef(f_sub_dict) f_super_dict = Dict{Symbol, Any}() f_super_dict[:name] = f_comps[:name] f_super_dict[:args] = g_args a_cond = [:(DynamicSumTypes.kindof($(g_args[i].args[1])) === $(Expr(:quote, x))) for (i, x) in idx_and_variant0] new_cond = nothing if length(a_cond) == 1 new_cond = a_cond[1] elseif length(a_cond) > 1 new_cond = Expr(:&&, a_cond[1], a_cond[2]) for x in a_cond[3:end] new_cond = Expr(:&&, x, new_cond) end end f_super_dict[:whereparams] = whereparams f_super_dict[:kwargs] = :kwargs in keys(f_comps) ? f_comps[:kwargs] : [] f_super_dict[:macros] = macros f_super_dict[:condition] = new_cond f_super_dict[:subcall] = :(return $(f_sub_dict[:name])($(g_args_names...))) f_sub_name_default = Symbol(Symbol("##"), f_comps[:name], :_, collect(Iterators.flatten(all_types_args1))...) f_super_dict[:subcall_default] = :(return $(f_sub_name_default)($(g_args_names...))) return f_sub, f_super_dict, f_cache end function dotted_arg(a) while true a isa Symbol && return a a.head == :. && a.args[1] isa Expr && a.args[1].head == Symbol("'") && return a a = a.args[1] end end function restructure_arg(a, i, idxs_mvtc) (!(i in idxs_mvtc) || a isa Symbol) && return a return MacroTools.postwalk(s -> s isa Expr && s.head == :. ? s.args[2].value : s, a) end function sub_vararg_any(s) s isa Symbol && return s length(s.args) != 3 && return s return s.args[1] == :(Vararg) && s.args[3] == :(<:Any) ? :Any : s end function define_f_sub(whereparams, f_comps, all_types_args0, f_args) f_sub_dict = Dict{Symbol, Any}() f_sub_name = Symbol(Symbol("##"), f_comps[:name], :_, collect(Iterators.flatten(all_types_args0))...) f_sub_dict[:name] = f_sub_name f_sub_dict[:args] = f_args f_sub_dict[:kwargs] = :kwargs in keys(f_comps) ? f_comps[:kwargs] : [] f_sub_dict[:body] = f_comps[:body] whereparams != [] && (f_sub_dict[:whereparams] = whereparams) return f_sub_dict end function inspect_sig end function define_f_super(mod, f_super_dict, f_cache) f_name = f_super_dict[:name] cache = mod.__pattern_cache__ if !(f_name in keys(cache)) cache[f_name] = Dict{Any, Any}(f_cache => [f_super_dict]) else never_same = true f_sig = Base.signature_type(mod.DynamicSumTypes.inspect_sig, Tuple(Base.eval(mod, :(tuple($(map(x -> x[1], f_cache)...)))))) for sig in keys(cache[f_name]) k_sig = Base.signature_type(mod.DynamicSumTypes.inspect_sig, Tuple(Base.eval(mod, :(tuple($(map(x -> x[1], sig)...)))))) same_sig = f_sig == k_sig if same_sig same_cond = findfirst(f_prev -> f_prev[:condition] == f_super_dict[:condition], cache[f_name][sig]) same_cond === nothing && push!(cache[f_name][sig], f_super_dict) never_same = false break end end if never_same cache[f_name][f_cache] = [f_super_dict] end end end function generate_defs(mod) cache = mod.__pattern_cache__ return generate_defs(mod, cache) end function generate_defs(mod, cache) defs = [] for f in keys(cache) for ds in values(cache[f]) new_d = Dict{Symbol, Any}() new_d[:args] = ds[end][:args] new_d[:name] = ds[end][:name] !allequal(d[:whereparams] for d in ds) && error("Parameters in where {...} should be the same for all @pattern methods with same signature") new_d[:whereparams] = ds[end][:whereparams] !allequal(d[:kwargs] for d in ds) && error("Keyword arguments should be the same for all @pattern methods with same signature") new_d[:kwargs] = ds[end][:kwargs] default = findfirst(d -> d[:condition] == nothing, ds) subcall_default = nothing if default != nothing subcall_default = ds[default][:subcall] ds[default], ds[end] = ds[end], ds[default] end body = nothing if default != nothing && length(ds) == 1 body = subcall_default else body = Expr(:if, ds[1][:condition], ds[1][:subcall]) body_prev = body for d in ds[2:end-(default != nothing)] push!(body_prev.args, Expr(:elseif, d[:condition], d[:subcall])) body_prev = body_prev.args[end] end f_end = ds[1][:subcall_default] push!(body_prev.args, f_end) end new_d[:body] = quote $body end new_df = mod.DynamicSumTypes.ExprTools.combinedef(new_d) !allequal(d[:macros] for d in ds) && error("Applied macros should be the same for all @pattern methods with same signature") for m in ds[end][:macros] new_df = Expr(:macrocall, m, :(), new_df) end push!(defs, [new_df, ds[1][:subcall_default].args[1].args[1]]) end end return defs end """ @finalize_patterns Calling `@finalize_patterns` is needed to define at some points all the functions `@pattern` constructed in that module. If you don't need to call any of them before the functions are imported, you can just put a single invocation at the end of the module. """ macro finalize_patterns() quote defs = DynamicSumTypes.generate_defs($__module__) for (d, f_default) in defs if d in $__module__.__finalized_methods_cache__ continue else !isdefined($__module__, f_default) && evaluate_func($__module__, :(function $f_default end)) push!($__module__.__finalized_methods_cache__, d) $__module__.DynamicSumTypes.evaluate_func($__module__, d) end end end end function evaluate_func(mod, d) @eval mod $d end struct Uninitialized end const uninit = Uninitialized() """ @sum_structs [version] type_definition begin structs_definitions end This macro allows to combine multiple types in a single one. The default version is `:on_fields` which has been built to yield a performance almost identical to having just one type. Using `:on_types` consumes less memory at the cost of being a bit slower. ## Example ```julia julia> @sum_structs AB begin struct A x::Int end struct B y::Int end end julia> a = AB'.A(1) AB'.A(1) julia> a.x 1 ``` """ macro sum_structs(new_type, struct_defs) @warn "@sum_structs is deprecated in v3 in favour of a much simpler methodology using @sumtype. Please update your package to use that." vtc = get!(__variants_types_cache__, __module__, Dict{Any, Any}()) vtwpc = get!(__variants_types_with_params_cache__, __module__, Dict{Any, Vector{Any}}()) return esc(_compact_structs(new_type, struct_defs, vtc, vtwpc)) end function _compact_structs(new_type, struct_defs, vtc, vtwpc) if new_type isa Expr && new_type.head == :(<:) new_type, abstract_type = new_type.args else new_type, abstract_type = new_type, :(Any) end structs_specs = decompose_struct_base(struct_defs) structs_specs_new = [] is_kws = [] for x in structs_specs v1 = @capture(x, @kwdef d_) v1 == false && (v2 = @capture(x, Base.@kwdef d_)) if d == nothing push!(structs_specs_new, x) push!(is_kws, false) else push!(structs_specs_new, d) push!(is_kws, true) end end structs_specs = structs_specs_new is_mutable = [] for x in structs_specs push!(is_mutable, x.args[1]) end if !allequal(is_mutable) return error("`@sum_structs :on_fields` does not accept mixing mutable and immutable structs.") end is_mutable = all(x -> x == true, is_mutable) types_each, fields_each, default_each = [], [], [] for struct_spec in structs_specs a_comps = decompose_struct_no_base(struct_spec) push!(types_each, a_comps[1]) push!(fields_each, a_comps[2][1]) push!(default_each, a_comps[2][2]) end common_fields = intersect(fields_each...) all_fields = union(fields_each...) all_fields_n = retrieve_fields_names(all_fields) noncommon_fields = setdiff(all_fields, common_fields) all_fields_transf = [transform_field(x, noncommon_fields) for x in all_fields] gensym_type = gensym(:(_kind)) field_type = is_mutable ? Expr(:const, :($(gensym_type)::Symbol)) : (:($(gensym_type)::Symbol)) types_each_vis = types_each types_each = [t isa Symbol ? Symbol("###", namify(new_type), "###", t) : :($(Symbol("###", namify(new_type), "###", t.args[1])){$(t.args[2:end]...)}) for t in types_each] expr_comp_types = [Expr(:struct, false, t, :(begin sdfnsdfsdfak() = 1 end)) for t in types_each] type_name = new_type isa Symbol ? new_type : new_type.args[1] type_no_constr = MacroTools.postwalk(s -> s isa Expr && s.head == :(<:) ? s.args[1] : s, new_type) type_params = new_type isa Symbol ? [] : [x isa Expr && x.head == :(<:) ? x.args[1] : x for x in new_type.args[2:end]] uninit_val = :(DynamicSumTypes.Uninitialized) compact_t = MacroTools.postwalk(s -> s isa Expr && s.head == :(<:) ? make_union_uninit(s, type_name, uninit_val) : s, new_type) expr_new_type = Expr(:struct, is_mutable, :($compact_t <: $abstract_type), :(begin $field_type $(all_fields_transf...) end)) expr_params_each = [] expr_functions = [] for (struct_t, kind_t, struct_f, struct_d, is_kw) in zip(types_each, types_each_vis, fields_each, default_each, is_kws) struct_spec_n = retrieve_fields_names(struct_f) struct_spec_n_d = [d != "#32872248308323039203329" ? Expr(:kw, n, d) : (:($n)) for (n, d) in zip(struct_spec_n, struct_d)] f_params_kwargs = struct_spec_n_d f_params_kwargs = Expr(:parameters, f_params_kwargs...) f_params_args = struct_spec_n f_params_args_with_T = retrieve_fields_names(struct_f, true) @capture(new_type, new_type_n_{new_type_p__}) if new_type_p === nothing new_type_n, new_type_p = new_type, [] end new_type_p = [t isa Expr && t.head == :(<:) ? t.args[1] : t for t in new_type_p] f_params_args_with_T = [!any(p -> inexpr(x, p), new_type_p) ? (x isa Symbol ? x : x.args[1]) : x for x in f_params_args_with_T] struct_spec_n2_d = [d != "#32872248308323039203329" ? Expr(:kw, n, d) : (:($n)) for (n, d) in zip(f_params_args_with_T, struct_d)] f_params_kwargs_with_T = struct_spec_n2_d f_params_kwargs_with_T = Expr(:parameters, f_params_kwargs_with_T...) type = Symbol(string(namify(kind_t))) f_inside_args = all_fields_n conv_maybe = [x isa Symbol ? :() : x.args[2] for x in retrieve_fields_names(all_fields, true)] f_inside_args_no_t = maybe_convert_fields(conv_maybe, f_inside_args, new_type_p, struct_spec_n) f_inside_args2_no_t = maybe_convert_fields(conv_maybe, f_inside_args, new_type_p, struct_spec_n; with_params=true) f_inside_args = [Expr(:quote, type), f_inside_args_no_t...] f_inside_args2 = [Expr(:quote, type), f_inside_args2_no_t...] @capture(struct_t, struct_t_n_{struct_t_p__}) struct_t_p === nothing && (struct_t_p = []) struct_t_p_no_sup = [p isa Expr && p.head == :(<:) ? p.args[1] : p for p in struct_t_p] struct_t_arg = struct_t_p_no_sup != [] ? :($struct_t_n{$(struct_t_p_no_sup...)}) : struct_t new_type_p = [t in struct_t_p_no_sup ? t : (:(DynamicSumTypes.Uninitialized)) for t in new_type_p] expr_function_kwargs = :() expr_function_kwargs2 = :() expr_function_args = :() expr_function_args2 = :() struct_t_p_in = [p for p in struct_t_p if any(x -> inexpr(x, p isa Expr && p.head == :(<:) ? p.args[1] : p), f_params_args_with_T)] struct_t_p_in_no_sup = [p isa Expr && p.head == :(<:) ? p.args[1] : p for p in struct_t_p_in] new_type_p_in = [t in struct_t_p_in_no_sup ? t : (:(DynamicSumTypes.Uninitialized)) for t in new_type_p] push!(expr_params_each, :($new_type_n{$(new_type_p...)})) if isempty(new_type_p) expr_function_args = :( function $(namify(struct_t))($(f_params_args...)) return $(namify(new_type))($(f_inside_args...)) end) if is_kw expr_function_kwargs = :( function $(namify(struct_t))($f_params_kwargs) return $(namify(new_type))($(f_inside_args...)) end) end else expr_function_args = :( function $(namify(struct_t))($(f_params_args_with_T...)) where {$(struct_t_p_in...)} return $new_type_n{$(new_type_p_in...)}($(f_inside_args...)) end) if !isempty(struct_t_p) expr_function_args2 = :(function $(struct_t_arg)($(f_params_args...)) where {$(struct_t_p...)} return $new_type_n{$(new_type_p...)}($(f_inside_args2...)) end) end if is_kw expr_function_kwargs = :( function $(namify(struct_t))($f_params_kwargs_with_T) where {$(struct_t_p_in...)} return $new_type_n{$(new_type_p_in...)}($(f_inside_args...)) end) if !isempty(struct_t_p) expr_function_kwargs2 = :( function $(struct_t_arg)($f_params_kwargs) where {$(struct_t_p...)} return $new_type_n{$(new_type_p...)}($(f_inside_args2...)) end) end end end push!(expr_functions, expr_function_kwargs) push!(expr_functions, expr_function_args) push!(expr_functions, expr_function_kwargs2) push!(expr_functions, expr_function_args2) end add_types_to_cache(type_name, types_each_vis, vtc) add_types_params_to_cache(expr_params_each, types_each_vis, type_name, vtwpc) expr_kindof = :(DynamicSumTypes.kindof(a::$(namify(new_type))) = getfield(a, $(Expr(:quote, gensym_type)))) expr_allkinds = [] expr_allkinds1 = :(DynamicSumTypes.allkinds(a::Type{$(namify(new_type))}) = $(Tuple(namify.(types_each_vis)))) push!(expr_allkinds, expr_allkinds1) if namify(type_no_constr) !== type_no_constr expr_allkinds2 = :(DynamicSumTypes.allkinds(a::Type{$type_no_constr} where {$(type_params...)}) = $(Tuple(namify.(types_each_vis)))) push!(expr_allkinds, expr_allkinds2) end branching_constructor = generate_branching_types(namify.(types_each_vis), [:(return $v) for v in namify.(types_each)]) expr_constructor = :(function DynamicSumTypes.variant_constructor(a::$(namify(new_type))) kind = kindof(a) $(branching_constructor...) end) expr_show = :(function Base.show(io::IO, a::$(namify(new_type))) f_vals = [getfield(a, x) for x in fieldnames(typeof(a))[2:end] if getfield(a, x) != DynamicSumTypes.uninit] vals = join([DynamicSumTypes.print_transform(x) for x in f_vals], ", ") params = [x for x in typeof(a).parameters if x != DynamicSumTypes.Uninitialized] if isempty(params) print(io, $(namify(new_type)), "'.", string(kindof(a)), "($vals)") else print(io, $(namify(new_type)), "'.", string(kindof(a), "{", join(params, ", "), "}"), "($vals)") end end ) expr_getprop = :(function Base.getproperty(a::$(namify(new_type)), s::Symbol) f = getfield(a, s) if f isa DynamicSumTypes.Uninitialized return error(lazy"type $(kindof(a)) has no field $s") end return f end) if is_mutable expr_setprop = :(function Base.setproperty!(a::$(namify(new_type)), s::Symbol, v) f = getfield(a, s) if f isa DynamicSumTypes.Uninitialized return error(lazy"type $(kindof(a)) has no field $s") end setfield!(a, s, v) end) else expr_setprop = :() end fields_each_symbol = [:(return $(Tuple(f))) for f in retrieve_fields_names.(fields_each)] branching_propnames = generate_branching_types(namify.(types_each_vis), fields_each_symbol) expr_propnames = :(function Base.propertynames(a::$(namify(new_type))) kind = kindof(a) $(branching_propnames...) $(fields_each_symbol[end]) end) expr_copy = :(function Base.copy(a::$(namify(new_type))) A = typeof(a) return A((getfield(a, x) for x in fieldnames(A))...) end) expr_adjoint = :(Base.adjoint(::Type{<:$(namify(new_type))}) = $NamedTuple{$(Expr(:tuple, QuoteNode.(namify.(types_each_vis))...))}($(Expr(:tuple, namify.(types_each)...)))) fake_prints = [:($Base.show(io::IO, ::MIME"text/plain", T::Type{<:$(namify(fn))}) = print(io, $(string(namify(new_type), "'.", namify(v))))) for (fn, v) in zip(types_each, types_each_vis)] expr_exports = def_export_variants(new_type) expr = quote $(expr_comp_types...) $(fake_prints...) $(Base.@__doc__ expr_new_type) $(expr_functions...) $(expr_kindof) $(expr_allkinds...) $(expr_getprop) $(expr_setprop) $(expr_propnames) $(expr_copy) $(expr_constructor) $(expr_show) $(expr_adjoint) $(expr_exports) nothing end return expr end function decompose_struct_base(struct_repr) @capture(struct_repr, begin new_fields__ end) return new_fields end function decompose_struct_no_base(struct_repr, split_default=true) @capture(struct_repr, struct new_type_ new_fields__ end) new_fields == nothing && @capture(struct_repr, mutable struct new_type_ new_fields__ end) if split_default new_fields_with_defs = [[], []] for f in new_fields if !@capture(f, const t_ = k_) if !@capture(f, t_ = k_) @capture(f, t_) k = "#32872248308323039203329" end end push!(new_fields_with_defs[1], t) push!(new_fields_with_defs[2], k) end new_fields = new_fields_with_defs end return new_type, new_fields end function maybe_convert_fields(conv_maybe, f_inside_args, new_type_p, struct_spec_n; with_params=false) f_inside_args_new = [] i = 1 for f in f_inside_args if f in struct_spec_n t = conv_maybe[i] if (with_params || !any(p -> inexpr(t, p), new_type_p)) && t != :() new_f = :(Base.convert($t, $f)) else new_f = f end else new_f = :(DynamicSumTypes.uninit) end i += 1 push!(f_inside_args_new, new_f) end return f_inside_args_new end function retrieve_fields_names(fields, only_consts = false) field_names = [] for f in fields if f isa Symbol push!(field_names, f) else f.head == :const && (f = f.args[1]) !only_consts && (f = namify(f)) push!(field_names, f) end end return field_names end function generate_branching_types(variants_types, res) if !(res isa Vector) res = repeat([res], length(variants_types)) end branchs = [Expr(:if, :(kind === $(Expr(:quote, variants_types[1]))), res[1])] for i in 2:length(variants_types) push!(branchs, Expr(:elseif, :(kind === $(Expr(:quote, variants_types[i]))), res[i])) end push!(branchs, :(error("unreacheable"))) return branchs end function transform_field(x, noncommon_fields) x isa Symbol && return x const_x = x.head == :const if const_x x_args = x.args[1] else x_args = x end if x_args isa Symbol return x else if x in noncommon_fields name, T = x_args.args f = :($name::Union{DynamicSumTypes.Uninitialized, $T}) if const_x f = Expr(:const, f) end return f else return x end end end function add_types_to_cache(type, variants, vtc) type = namify(type) variants = namify.(variants) for v in variants vtc[:(($type)'.$v)] = type end end function add_types_params_to_cache(params, variants, type, vtwpc) type = namify(type) variants_n = namify.(variants) for (v1, v2, p) in zip(variants, variants_n, params) vtwpc[:(($type)'.$v2)] = [v1, p] end end function def_export_variants(type) t = namify(type) return quote function DynamicSumTypes.export_variants(T::Type{<:$t}) Ts = $(QuoteNode(t)) vtc = DynamicSumTypes.__variants_types_cache__[@__MODULE__] vtwpc = DynamicSumTypes.__variants_types_with_params_cache__[@__MODULE__] for V in allkinds(T) eval(:(const $V = ($(Ts))'.$V)) for k in collect(keys(vtc)) b = DynamicSumTypes.MacroTools.inexpr(k, :(($Ts)')) b == true && (vtc[V] = vtc[k]) end for k in collect(keys(vtwpc)) b = DynamicSumTypes.MacroTools.inexpr(k, :(($Ts)')) b == true && (vtwpc[k.args[2].value] = vtwpc[k]) end end end end end macro sum_structs(version, type, struct_defs) return esc(:(DynamicSumTypes.@sum_structs $type $struct_defs)) end function print_transform(x) x isa String && return "\"$x\"" x isa Symbol && return QuoteNode(x) return x end function make_union_uninit(s, type_name, uninit_val) s.args[1] == type_name && return s s.args[2] = :(Union{$(s.args[2]), $uninit_val}) return s end
DynamicSumTypes
https://github.com/JuliaDynamics/DynamicSumTypes.jl.git
[ "MIT" ]
3.7.5
8836d8846919670cec877e4002d972c23e9dde29
code
123
using Aqua @testset "Code quality" begin Aqua.test_all(DynamicSumTypes, ambiguities = true, unbound_args = true) end
DynamicSumTypes
https://github.com/JuliaDynamics/DynamicSumTypes.jl.git
[ "MIT" ]
3.7.5
8836d8846919670cec877e4002d972c23e9dde29
code
158
using Test using DynamicSumTypes @testset "DynamicSumTypes.jl Tests" begin include("package_sanity_tests.jl") include("sumtype_macro_tests.jl") end
DynamicSumTypes
https://github.com/JuliaDynamics/DynamicSumTypes.jl.git
[ "MIT" ]
3.7.5
8836d8846919670cec877e4002d972c23e9dde29
code
4112
struct ST1 end @sumtype SingleT1(ST1) Base.copy(x::ST1) = ST1() @kwdef mutable struct F{X<:Integer} a::Tuple{X, X} b::Tuple{Float64, Float64} const c::Symbol end @kwdef mutable struct G{X} a::Tuple{X, X} d::Int e::Int const c::Symbol end @kwdef mutable struct H{X,Y<:Real} a::Tuple{X, X} f::Y g::Tuple{Complex, Complex} const c::Symbol end abstract type AbstractE end @sumtype E(F,G,H) <: AbstractE @sumtype FF(F{Int32}, F{Int64}) @kwdef mutable struct Wolf{T,N} energy::T = 0.5 ground_speed::N const fur_color::Symbol end @kwdef mutable struct Hawk{T,N,J} energy::T = 0.1 ground_speed::N flight_speed::J end @sumtype Animal(Wolf, Hawk) abstract type AbstractSimple end struct SimpleA x z::Int end struct SimpleB y q::String end @sumtype Simple(SimpleA, SimpleB) <: AbstractSimple struct Some{T} val::T end struct None end @sumtype Option{T}(None, Some{T}) @testset "@sumtype" begin st = SingleT1(ST1()) @test propertynames(st) == () @test copy(st) == st f = E(F((1,1), (1.0, 1.0), :s)) g1 = E(G((1,1), 1, 1, :c)) g2 = E(G(; a = (1,1), d = 1, e = 1, c = :c)) g3 = E'.G((1,1), 1, 1, :c) g4 = E'.G(; a = (1,1), d = 1, e = 1, c = :c) h = E(H((1,1), 1, (im, im), :j)) @test_throws "" eval(:(@sumtype Z.E)) @test_throws "" E(F((1.0,1.0), (1.0, 1.0), :s)) @test_throws "" E(G((1,1), im, (im, im), :d)) @test_throws "" E(G((im,im), 1, (im, im), :d)) @test f.a == (1,1) @test f.b == (1.0, 1.0) @test f.c == :s @test g1.d === g2.d === 1 @test g1.e === g2.e === 1 @test hasproperty(g1, :e) == true @test hasproperty(g1, :w) == false @test is_sumtype(typeof(g1)) == true @test is_sumtype(G) == false @test variantof(g1) == G{Int} f.a = (3, 3) @test f.a == (3, 3) @test variant(f) isa F @test propertynames(f) == (:a, :b, :c) @test allvariants(E) == allvariants(typeof(f)) == (F = F, G = G, H = H) ff1 = FF(F((1,1), (1.0, 1.0), :s)) ff2 = FF(F((Int32(1),Int32(1)), (1.0, 1.0), :s)) @test allvariants(FF) == (F_Int32 = F{Int32}, F_Int64 = F{Int64}) hawk_1 = Animal(Hawk(1.0, 2.0, 3)) hawk_2 = Animal(Hawk(; ground_speed = 2.3, flight_speed = 2)) wolf_1 = Animal(Wolf(2.0, 3.0, :black)) wolf_2 = Animal(Wolf(; ground_speed = 2.0, fur_color = :white)) wolf_3 = Animal(Wolf{Int, Float64}(2.0, 3.0, :black)) wolf_4 = Animal(Wolf{Float64, Float64}(; ground_speed = 2.0, fur_color = :white)) @test hawk_1.energy == 1.0 @test hawk_2.energy == 0.1 @test wolf_1.energy == 2.0 @test wolf_2.energy == 0.5 @test wolf_3.energy === 2 && wolf_4.energy === 0.5 @test hawk_1.flight_speed == 3 @test hawk_2.flight_speed == 2 @test wolf_1.fur_color == :black @test wolf_2.fur_color == :white @test_throws "" hawk_1.fur_color @test_throws "" wolf_1.flight_speed @test variant(hawk_1) isa Hawk @test variant(wolf_1) isa Wolf @test allvariants(Animal) == allvariants(typeof(wolf_3)) == (Wolf = Wolf, Hawk = Hawk) b = Simple(SimpleA(1, 3)) c = Simple(SimpleB(2, "a")) @test b.x == 1 && b.z == 3 @test c.y == 2 && c.q == "a" @test_throws "" b.y @test_throws "" b.q @test_throws "" c.x @test_throws "" c.z @test variant(b) isa SimpleA @test variant(c) isa SimpleB @test Simple <: AbstractSimple @test b isa Simple && c isa Simple @test allvariants(Simple) == allvariants(typeof(b)) == (SimpleA = SimpleA, SimpleB = SimpleB) option_none = Option{Int}(None()) option_none2 = Option{Int}'.None() option_some = Option(Some(1)) option_some2 = Option{Int}(Some(1)) option_some3 = Option{Int}'.Some(1) option_some4 = Option'.Some(1) @test variant(option_none) isa None @test variant(option_some) isa Some{Int} @test variant(option_some2) isa Some{Int} @test variant(option_some3) isa Some{Int} @test variant(option_some4) isa Some{Int} @test allvariants(Option) == (None = None, Some = Some) @test option_some.val == 1 end
DynamicSumTypes
https://github.com/JuliaDynamics/DynamicSumTypes.jl.git
[ "MIT" ]
3.7.5
8836d8846919670cec877e4002d972c23e9dde29
docs
7014
# DynamicSumTypes.jl [![CI](https://github.com/JuliaDynamics/DynamicSumTypes.jl/workflows/CI/badge.svg)](https://github.com/JuliaDynamics/DynamicSumTypes.jl/actions?query=workflow%3ACI) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliadynamics.github.io/DynamicSumTypes.jl/stable/) [![codecov](https://codecov.io/gh/JuliaDynamics/DynamicSumTypes.jl/graph/badge.svg?token=rz9b1WTqCa)](https://codecov.io/gh/JuliaDynamics/DynamicSumTypes.jl) [![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl) [![DOI](https://zenodo.org/badge/745234998.svg)](https://zenodo.org/doi/10.5281/zenodo.12826686) This package allows to combine multiple heterogeneous types in a single one. This helps to write type-stable code by avoiding `Union` performance drawbacks when many types are unionized. Another aim of this library is to provide a syntax as similar as possible to standard Julia structs to facilitate its integration within other libraries. The `@sumtype` macro takes inspiration from [SumTypes.jl](https://github.com/MasonProtter/SumTypes.jl), but it offers a much more simple and idiomatic interface. Working with it is almost like working with `Union` types. ## Definition To define a sum type you can just take an arbitrary number of types and enclose them in it like so: ```julia julia> using DynamicSumTypes julia> abstract type AbstractS end julia> struct A{X} x::X end julia> mutable struct B{Y} y::Y end julia> struct C z::Int end julia> @sumtype S{X}(A{X},B{Int},C) <: AbstractS ``` ## Construction Then constructing instances is just a matter of enclosing the type constructed in the predefined sum type: ```julia julia> a = S(A(1)) S{Int64}(A{Int64}(1)) julia> b = S{Int}(B(1)) S{Int64}(B{Int64}(1)) julia> c = S{Int}(C(1)) S{Int64}(C(1)) ``` a different syntax is also provided for convenience: ```julia julia> a = S'.A(1) S{Int64}(A{Int64}(1)) julia> b = S{Int}'.B(1) S{Int64}(B{Int64}(1)) julia> c = S{Int}'.C(1) S{Int64}(C(1)) ``` ## Access and Mutation This works like if they were normal Julia types: ```julia julia> a.x 1 julia> b.y = 3 3 ``` ## Dispatch For this, you can simply access the variant inside the sum type and then dispatch on it: ```julia julia> f(x::S) = f(variant(x)) julia> f(x::A) = 1 julia> f(x::B) = 2 julia> f(x::C) = 3 julia> f(a) 1 julia> f(b) 2 julia> f(c) 3 ``` ## Micro-benchmarks <details> <summary>Benchmark code</summary> ```julia using BenchmarkTools using DynamicSumTypes struct A end struct B end struct C end struct D end struct E end struct F end @sumtype S(A, B, C, D, E, F) f(s::S) = f(variant(s)); f(::A) = 1; f(::B) = 2; f(::C) = 3; f(::D) = 4; f(::E) = 5; f(::F) = 6; vals = rand((A(), B(), C(), D(), E(), F()), 1000); tuple_manytypes = Tuple(vals); vec_manytypes = collect(Union{A, B, C, D, E, F}, vals); iter_manytypes = (x for x in vec_manytypes); tuple_sumtype = Tuple(S.(vals)); vec_sumtype = S.(vals); iter_sumtype = (x for x in vec_sumtype) @benchmark sum($f, $tuple_manytypes) @benchmark sum($f, $tuple_sumtype) @benchmark sum($f, $vec_manytypes) @benchmark sum($f, $vec_sumtype) @benchmark sum($f, $iter_manytypes) @benchmark sum($f, $iter_sumtype) ``` </details> ```julia julia> @benchmark sum($f, $tuple_manytypes) BenchmarkTools.Trial: 10000 samples with 1 evaluation. Range (min … max): 81.092 μs … 1.267 ms ┊ GC (min … max): 0.00% … 90.49% Time (median): 85.791 μs ┊ GC (median): 0.00% Time (mean ± σ): 87.779 μs ± 18.802 μs ┊ GC (mean ± σ): 0.35% ± 1.67% ▂ ▃▇█▆▆▅▃▂▂▂▁▁ ▂ █████████████████▇▇▇▅▆▅▄▅▅▅▄▄▄▄▄▄▅▄▄▄▄▄▄▄▃▄▅▅▄▃▅▄▅▅▅▄▅▅▄▅▅▅ █ 81.1 μs Histogram: log(frequency) by time 130 μs < Memory estimate: 13.42 KiB, allocs estimate: 859. julia> @benchmark sum($f, $tuple_sumtype) BenchmarkTools.Trial: 10000 samples with 107 evaluations. Range (min … max): 770.514 ns … 4.624 μs ┊ GC (min … max): 0.00% … 0.00% Time (median): 823.514 ns ┊ GC (median): 0.00% Time (mean ± σ): 826.188 ns ± 42.968 ns ┊ GC (mean ± σ): 0.00% ± 0.00% █ ▁ ▂ ▂ ▂▁▂▂▂▂▂▂▂▂▂▂▂▂▂▂▇▂█▃██▃█▅█▄▂██▂█▅▃▃▂▂▃▂▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ ▃ 771 ns Histogram: frequency by time 900 ns < Memory estimate: 0 bytes, allocs estimate: 0. julia> @benchmark sum($f, $vec_manytypes) BenchmarkTools.Trial: 10000 samples with 207 evaluations. Range (min … max): 367.164 ns … 566.816 ns ┊ GC (min … max): 0.00% … 0.00% Time (median): 389.280 ns ┊ GC (median): 0.00% Time (mean ± σ): 390.919 ns ± 9.984 ns ┊ GC (mean ± σ): 0.00% ± 0.00% ▁ ▇▁ ▃ ▁ █ ▂ ▂▂▃▂▁▁▂▁▁▂▂▁▂▂▄█▃██▃█▃▄█▂█▇▃█▅▃█▃▃▃▂▃▂▂▃▂▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ ▃ 367 ns Histogram: frequency by time 424 ns < Memory estimate: 0 bytes, allocs estimate: 0. julia> @benchmark sum($f, $vec_sumtype) BenchmarkTools.Trial: 10000 samples with 254 evaluations. Range (min … max): 297.016 ns … 464.575 ns ┊ GC (min … max): 0.00% … 0.00% Time (median): 308.811 ns ┊ GC (median): 0.00% Time (mean ± σ): 306.702 ns ± 7.518 ns ┊ GC (mean ± σ): 0.00% ± 0.00% ▁ ▆█▅ ▅█▆▁▁▅▄ ▂▂ ▁ ▁▄▄▁ ▂▁ ▂ ▇██████▇▅▅▄▅▅▄▄▄▃▄▄▅▅▅▆████████▇▆██▆▅▇██▅███████▇██▇▃▄▅▆▅▅▄▃▅ █ 297 ns Histogram: log(frequency) by time 326 ns < Memory estimate: 0 bytes, allocs estimate: 0. julia> @benchmark sum($f, $iter_manytypes) BenchmarkTools.Trial: 10000 samples with 10 evaluations. Range (min … max): 1.323 μs … 3.407 μs ┊ GC (min … max): 0.00% … 0.00% Time (median): 1.390 μs ┊ GC (median): 0.00% Time (mean ± σ): 1.389 μs ± 54.987 ns ┊ GC (mean ± σ): 0.00% ± 0.00% ▅▄▁▂ ▃█▇▇ ▃▄▆████▅▄▇████▆▇▆▅▄▄▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▂▁▂▂▂▂▁▁▂▂▁▂▂▂▂▂▂▂▂▂ ▃ 1.32 μs Histogram: frequency by time 1.67 μs < Memory estimate: 0 bytes, allocs estimate: 0. julia> @benchmark sum($f, $iter_sumtype) BenchmarkTools.Trial: 10000 samples with 258 evaluations. Range (min … max): 310.236 ns … 370.112 ns ┊ GC (min … max): 0.00% … 0.00% Time (median): 318.971 ns ┊ GC (median): 0.00% Time (mean ± σ): 319.347 ns ± 5.859 ns ┊ GC (mean ± σ): 0.00% ± 0.00% ▁ ▄▇▆▁▃▆█▃ ▃▆▅ ▄▆▄ ▃▆▇▃▁▄▇▇▃▁▂▅▄▁ ▁▂▁ ▁ ▁▁ ▁ ▃ ▅█▂▆████████▇███▅███████████████████▇██████████████████▇▅█▆▇▅ █ 310 ns Histogram: log(frequency) by time 338 ns < Memory estimate: 0 bytes, allocs estimate: 0. ``` <sub>*These benchmarks have been run on Julia 1.11*</sub> ## Contributing Contributions are welcome! If you encounter any issues, have suggestions for improvements, or would like to add new features, feel free to open an issue or submit a pull request.
DynamicSumTypes
https://github.com/JuliaDynamics/DynamicSumTypes.jl.git
[ "MIT" ]
3.7.5
8836d8846919670cec877e4002d972c23e9dde29
docs
70
# API ```@docs @sumtype variant allvariants variantof is_sumtype ```
DynamicSumTypes
https://github.com/JuliaDynamics/DynamicSumTypes.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
1434
# Case insensitive Dict - a simple wrapper over Dict struct CIDict{K, T} dct::Dict{K, T} # type checking check(K) = K <: AbstractString || K <: Symbol || throw(ArgumentError("Key must be Symbol or String type")) # constructors CIDict{K, T}() where {K,T} = (check(K); new(Dict{K,T}())) CIDict{K, T}(d::Dict{K,T}) where {K,T} = begin check(K) d2 = Dict{K,T}() for k in keys(d) d2[lcase(k)] = d[k] end new(d2) end end lcase(s::Symbol) = Symbol(lowercase(String(s))) lcase(s::AbstractString) = lowercase(s) Base.getindex(d::CIDict, s::Symbol) = d.dct[lcase(s)] Base.getindex(d::CIDict, s::String) = d.dct[lcase(s)] Base.setindex!(d::CIDict, v, s::Symbol) = d.dct[lcase(s)] = v Base.setindex!(d::CIDict, v, s::String) = d.dct[lcase(s)] = v Base.haskey(d::CIDict, s::Symbol) = haskey(d.dct, lcase(s)) Base.haskey(d::CIDict, s::String) = haskey(d.dct, lcase(s)) Base.keys(d::CIDict) = keys(d.dct) Base.values(d::CIDict) = values(d.dct) Base.iterate(d::CIDict) = Base.iterate(d.dct) Base.iterate(d::CIDict, state) = Base.iterate(d.dct, state) Base.length(d::CIDict) = length(d.dct) issym(x) = typeof(x) == Symbol function Base.show(io::IO, d::SASLib.CIDict) print(io, "CIDict(") for (i, (k,v)) in enumerate(d.dct) i > 1 && print(io, ", ") print(io, issym(k) ? ":" : "", k, " => ", v) end print(io, ")") end
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
2509
export metadata """ Metadata contains information about a SAS data file. *Fields* - `filename`: file name/path of the SAS data set - `encoding`: file encoding e.g. "ISO8859-1" - `endianness`: either `:LittleEndian`` or `:BigEndian` - `compression`: could be `:RLE`, `:RDC`, or `:none` - `pagesize`: size of each data page in bytes - `npages`: number of pages in the file - `nrows`: number of data rows in the file - `ncols`: number of data columns in the file - `columnsinfo`: vector of column symbols and their respective types """ struct Metadata filename::AbstractString encoding::AbstractString # e.g. "ISO8859-1" endianness::Symbol # :LittleEndian, :BigEndian compression::Symbol # :RDC, :RLE pagesize::Int npages::Int nrows::Int ncols::Int columnsinfo::Vector{Pair{Symbol, Type}} end """ Return metadata of a SAS data file. See `SASLib.Metadata`. """ function metadata(fname::AbstractString) h = nothing try h = SASLib.open(fname, verbose_level = 0) rs = read(h, 1) _metadata(h, rs) finally h !== nothing && SASLib.close(h) end end # construct Metadata struct using handler & result set data function _metadata(h::Handler, rs::ResultSet) cmp = h.compression == compression_method_rle ? :RLE : (h.compression == compression_method_rdc ? :RDC : :none) Metadata( h.config.filename, h.file_encoding, h.file_endianness, cmp, h.page_length, h.page_count, h.row_count, h.column_count, [Pair(x, eltype(rs[x])) for x in names(rs)] ) end # pretty print function Base.show(io::IO, md::Metadata) println(io, "File: ", md.filename, " (", md.nrows, " x ", md.ncols, ")") displaytable(io, colfmt(md); index=true) end # Column display format function colfmt(md::Metadata) [string(first(p), "(", typesfmt(typesof(last(p))), ")") for p in md.columnsinfo] end # Compact types format # e.g. (Date, Missing) => "Date/Missing" function typesfmt(ty::Tuple; excludemissing = false) ar = excludemissing ? collect(Iterators.filter(x -> x != Missing, ty)) : [ty...] join(string.(ar), "/") end # Extract types from a Union # e.g. # Union{Int64, Int32, Float32} => (Int64, Int32, Float32) # Int32 => (Int32,) function typesof(ty::Type) if ty isa Union y = typesof(ty.b) y isa Tuple ? (ty.a, y...) : (ty.a, y) else (ty,) end end
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
3743
""" ObjectPool is a fixed-size one-dimensional array that does not store any duplicate copies of the same object. So the benefit is space-efficiency. The tradeoff is the time used to maintain the index. This is useful for denormalized data frames where string values may be repeated many times. An ObjectPool must be initialize with a default value and a fixed array size. If your requirement does not fit such assumptions, you may want to look into using `PooledArrays` or `CategoricalArrays` package instead. The implementation is very primitive and is tailor for application that knows exactly how much memory to allocate. """ mutable struct ObjectPool{T, S <: Unsigned} <: AbstractArray{T, 1} pool::Array{T} # maintains the pool of unique things idx::Array{S} # index references into `pool` indexcache::Dict{T, S} # dict for fast lookups (K=object, V=index) uniqueitemscount::Int64 # how many items in `pool`, always start with 1 itemscount::Int64 # how many items perceived in this array capacity::Int64 # max number of items in the pool end # Initially, there is only one item in the pool and the `idx` array has # elements all pointing to that one default vaue. The dictionary `indexcache` # also has one item that points to that one value. Hence `uniqueitemcount` # would be 1 and `itemscount` would be `n`. function ObjectPool{T, S}(val::T, n::Integer) where {T, S <: Unsigned} # Note: 64-bit case is constrainted by Int64 type (for convenience) maxsize = ifelse(S == UInt8, 2 << 7 - 1, ifelse(S == UInt16, 2 << 15 - 1, ifelse(S == UInt32, 2 << 31 - 1, 2 << 62 - 1))) ObjectPool{T, S}([val], fill(1, n), Dict(val => 1), 1, n, maxsize) end # If the value already exist in the pool then just the index value is stored. function Base.setindex!(op::ObjectPool, val::T, i::Integer) where T if haskey(op.indexcache, val) # The value `val` already exists in the cache. # Just set the array element to the index value from cache. op.idx[i] = op.indexcache[val] else if op.uniqueitemscount >= op.capacity throw(BoundsError("Exceeded pool capacity $(op.capacity). Consider using a larger pool size e.g. UInt32.")) end # Encountered a new value `val`: # 1. add ot the object pool array # 2. increment the number of unique items # 3. store the new index in the cache # 4. set the array element with the new index value push!(op.pool, val) op.uniqueitemscount += 1 op.indexcache[val] = op.uniqueitemscount op.idx[i] = op.uniqueitemscount end op end # AbstractArray trait # Base.IndexStyle(::Type{<:ObjectPool}) = IndexLinear() # single indexing Base.getindex(op::ObjectPool, i::Integer) = op.pool[op.idx[convert(Int, i)]] # general sizes Base.size(op::ObjectPool) = (op.itemscount, ) # Base.length(op::ObjectPool) = op.itemscount # Base.endof(op::ObjectPool) = op.itemscount # typing #Base.eltype(op::ObjectPool) = eltype(op.pool) # make it iterable # Base.start(op::ObjectPool) = 1 # Base.next(op::ObjectPool, state) = (op.pool[op.idx[state]], state + 1) # Base.done(op::ObjectPool, state) = state > op.itemscount # custom printing # function Base.show(io::IO, op::ObjectPool) # L = op.itemscount # print(io, "$L-element ObjectPool with $(op.uniqueitemscount) unique items:\n") # if L > 20 # for i in 1:10 print(io, " ", op[i], "\n") end # print(io, " ⋮\n") # for i in L-9:L print(io, " ", op[i], "\n") end # else # for i in 1:L print(io, " ", op[i], "\n") end # end # end
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
3932
#using IteratorInterfaceExtensions, TableTraits, TableTraitsUtils """ ResultSet is the primary object that represents data returned from reading a SAS data file. ResultSet implements the Base.Iteration interface as well as the IterableTables.jl interface. *Fields* - `columns`: a vector of columns, each being a vector itself - `names`: a vector of column symbols - `size`: a tuple (nrows, ncols) *Accessors* - `columns(::ResultSet)` - `names(::ResultSet)` - `size(::ResultSet)` - `size(::ResultSet, dim::Integer)` *Single Row/Column Indexing* - `rs[i]` returns a tuple for row `i` - `rs[:c]` returns a vector for column `c` *Multiple Row/Column Indexing* - `rs[i:j]` returns a view of ResultSet with rows between `i` and `j` - `rs[:c...]` returns a view of ResultSet with columns specified e.g. `rs[:A, :B]` *Cell Indexing* - `rs[i,j]` returns a single value for row `i` column `j` - `rs[i,:c]` returns a single value for row `i` column `c` - Specific cell can be assigned using the above indexing methods """ struct ResultSet columns::AbstractVector{AbstractVector} names::AbstractVector{Symbol} size::NTuple{2, Int} ResultSet() = new([], [], (0,0)) # special case ResultSet(c,n,s) = new(c, n, s) end # exports export columns # accessors columns(rs::ResultSet) = getfield(rs, :columns) Base.names(rs::ResultSet) = getfield(rs, :names) Base.size(rs::ResultSet) = getfield(rs, :size) Base.size(rs::ResultSet, i::Integer) = getfield(rs, :size)[i] Base.length(rs::ResultSet) = getfield(rs, :size)[1] # Size displayed as a string sizestr(rs::ResultSet) = string(size(rs, 1)) * " rows x " * string(size(rs, 2)) * " columns" # find index for the column symbol function symindex(rs::ResultSet, s::Symbol) n = findfirst(x -> x == s, names(rs)) n == 0 && error("column symbol not found: $s") n end # Direct cell access Base.getindex(rs::ResultSet, i::Integer, j::Integer) = columns(rs)[j][i] Base.getindex(rs::ResultSet, i::Integer, s::Symbol) = columns(rs)[symindex(rs, s)][i] Base.setindex!(rs::ResultSet, val, i::Integer, j::Integer) = columns(rs)[j][i] = val Base.setindex!(rs::ResultSet, val, i::Integer, s::Symbol) = columns(rs)[symindex(rs, s)][i] = val # Return a single row as a named tuple Base.getindex(rs::ResultSet, i::Integer) = NamedTuple{Tuple(names(rs))}([c[i] for c in columns(rs)]) # Return a single column Base.getindex(rs::ResultSet, c::Symbol) = columns(rs)[symindex(rs, c)] # index by row range => returns ResultSet object function Base.getindex(rs::ResultSet, r::UnitRange{Int}) ResultSet(map(x -> view(x, r), columns(rs)), names(rs), (length(r), size(rs, 2))) end # index by columns => returns ResultSet object function Base.getindex(rs::ResultSet, ss::Symbol...) v = Int[] for (idx, nam) in enumerate(names(rs)) nam in ss && push!(v, idx) end ResultSet(columns(rs)[v], names(rs)[v], (size(rs, 1), length(v))) end # Each property must represent a column to satisfy Tables.jl Columns interface Base.propertynames(rs::ResultSet) = names(rs) function Base.getproperty(rs::ResultSet, s::Symbol) s ∈ names(rs) && return rs[s] error("Column $s not found") end # Iterators Base.iterate(rs::ResultSet, i=1) = i > size(rs,1) ? nothing : (rs[i], i+1) # Display ResultSet object function Base.show(io::IO, rs::ResultSet) println(io, "SASLib.ResultSet (", sizestr(rs), ")") max_rows = 5 max_cols = 10 n = min(size(rs, 1), max_rows) m = min(size(rs, 2), max_cols) (n < 1 || m < 1) && return print(io, "Columns ") for i in 1:m i > 1 && print(io, ", ") print(io, i, ":", names(rs)[i]) end m < length(names(rs)) && print(io, " …") println(io) for i in 1:n print(io, i, ": ") for j in 1:m j > 1 && print(io, ", ") print(io, columns(rs)[j][i]) end println(io) end n < size(rs, 1) && println(io, "⋮") end
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
68455
module SASLib using StringEncodings using TabularDisplay using Tables using Dates import IteratorInterfaceExtensions, TableTraits export readsas, REGULAR_STR_ARRAY import Base: show, size include("constants.jl") include("utils.jl") include("ObjectPool.jl") include("CIDict.jl") include("Types.jl") include("ResultSet.jl") include("Metadata.jl") include("tables.jl") function _open(config::ReaderConfig) # println("Opening $(config.filename)") handler = Handler(config) init_handler(handler) read_header(handler) read_file_metadata(handler) populate_column_names(handler) check_user_column_types(handler) read_first_page(handler) return handler end """ open(filename::AbstractString; encoding::AbstractString = "", convert_dates::Bool = true, include_columns::Vector = [], exclude_columns::Vector = [], string_array_fn::Dict = Dict(), number_array_fn::Dict = Dict(), column_types::Dict = Dict{Symbol,Type}(), verbose_level::Int64 = 1) Open a SAS7BDAT data file. Returns a `SASLib.Handler` object that can be used in the subsequent `SASLib.read` and `SASLib.close` functions. """ function open(filename::AbstractString; encoding::AbstractString = "", convert_dates::Bool = true, include_columns::Vector = [], exclude_columns::Vector = [], string_array_fn::Dict = Dict(), number_array_fn::Dict = Dict(), column_types::Dict = Dict{Symbol,Type}(), verbose_level::Int64 = 1) return _open(ReaderConfig(filename, encoding, default_chunk_size, convert_dates, include_columns, exclude_columns, string_array_fn, number_array_fn, column_types, verbose_level)) end """ read(handler::Handler, nrows=0) Read data from the `handler` (see `SASLib.open`). If `nrows` is not specified, read the entire file content. When called again, fetch the next `nrows` rows. """ function read(handler::Handler, nrows=0) # println("Reading $(handler.config.filename)") elapsed = @elapsed result = read_chunk(handler, nrows) elapsed = round(elapsed, digits = 5) println1(handler, "Read $(handler.config.filename) with size $(size(result, 1)) x $(size(result, 2)) in $elapsed seconds") return result end """ close(handler::Handler) Close the `handler` object. This function effectively closes the underlying iostream. It must be called after the program finished reading data. This function is needed only when `SASLib.open` and `SASLib.read` functions are used instead of the more convenient `readsas` function. """ function close(handler::Handler) # println("Closing $(handler.config.filename)") Base.close(handler.io) end """ readsas(filename::AbstractString; encoding::AbstractString = "", convert_dates::Bool = true, include_columns::Vector = [], exclude_columns::Vector = [], string_array_fn::Dict = Dict(), number_array_fn::Dict = Dict(), column_types::Dict = Dict{Symbol,Type}(), verbose_level::Int64 = 1) Read a SAS7BDAT file. `Encoding` may be used as an override only if the file cannot be read using the encoding specified in the file. If you receive a warning about unknown encoding then check your system's supported encodings from the iconv library e.g. using the `iconv --list` command. If `convert_dates == false` then no conversion is made and you will get the number of days for Date columns (or number of seconds for DateTime columns) since 1-JAN-1960. By default, all columns will be read. If you only need a subset of the columns, you may specify either `include_columns` or `exclude_columns` but not both. They are just arrays of columns indices or symbols e.g. [1, 2, 3] or [:employeeid, :firstname, :lastname] String columns by default are stored in `SASLib.ObjectPool`, which is an array-like structure that is more space-efficient when there is a high number of duplicate values. However, if there are too many unique items (> 10%) then it's automatically switched over to a regular Array. If you wish to use a different kind of array, you can pass your array constructor via the `string_array_fn` dict. The constructor must take a single integer argument that represents the size of the array. The convenient `REGULAR_STR_ARRAY` function can be used if you just want to use the regular Array{String} type. For examples, `string_array_fn = Dict(:column1 => (n)->CategoricalArray{String}((n,)))` or `string_array_fn = Dict(:column1 => REGULAR_STR_ARRAY)`. For numeric columns, you may specify your own array constructors using the `number_array_fn` parameter. Perhaps you have a different kind of array to store the values e.g. SharedArray. Specify `column_type` argument if any conversion is required. It should be a Dict, mapping column symbol to a data type. For debugging purpose, `verbose_level` may be set to a value higher than 1. Verbose level 0 will output nothing to the console, essentially a total quiet option. """ function readsas(filename::AbstractString; encoding::AbstractString = "", convert_dates::Bool = true, include_columns::Vector = [], exclude_columns::Vector = [], string_array_fn::Dict = Dict(), number_array_fn::Dict = Dict(), column_types::Dict = Dict{Symbol,Type}(), verbose_level::Int64 = 1) handler = nothing try handler = _open(ReaderConfig(filename, encoding, default_chunk_size, convert_dates, include_columns, exclude_columns, string_array_fn, number_array_fn, column_types, verbose_level)) return read(handler) finally isdefined(handler, :string_decoder) && Base.close(handler.string_decoder) handler !== nothing && close(handler) end end # Read a single float of the given width (4 or 8). function _read_float(handler, offset, width) if !(width in [4, 8]) throw(ArgumentError("invalid float width $(width)")) end buf = _read_bytes(handler, offset, width) value = reinterpret(width == 4 ? Float32 : Float64, buf)[1] if (handler.byte_swap) value = bswap(value) end return value end # Read a single signed integer of the given width (1, 2, 4 or 8). @inline function _read_int(handler, offset, width) b = _read_bytes(handler, offset, width) width == 1 ? Int64(b[1]) : (handler.file_endianness == :BigEndian ? convertint64B(b...) : convertint64L(b...)) end @inline function _read_bytes(handler, offset, len) return handler.cached_page[offset+1:offset+len] #offset is 0-based # => too conservative.... we expect cached_page to be filled before this function is called # if handler.cached_page == [] # @warn("_read_byte function going to disk") # seek(handler.io, offset) # try # return Base.read(handler.io, len) # catch # throw(FileFormatError("Unable to read $(len) bytes from file position $(offset)")) # end # else # if offset + len > length(handler.cached_page) # throw(FileFormatError( # "The cached page $(length(handler.cached_page)) is too small " * # "to read for range positions $offset to $len")) # end # return handler.cached_page[offset+1:offset+len] #offset is 0-based # end end # Get file properties from the header (first page of the file). # # At least 2 i/o operation is required: # 1. First 288 bytes contain some important info e.g. header_length # 2. Rest of the bytes in the header is just header_length - 288 # function read_header(handler) # read header section seekstart(handler.io) handler.cached_page = Base.read(handler.io, 288) # Check magic number if handler.cached_page[1:length(magic)] != magic throw(FileFormatError("magic number mismatch (not a SAS file?)")) end # println("good magic number") # Get alignment debugrmation align1, align2 = 0, 0 buf = _read_bytes(handler, align_1_offset, align_1_length) if buf == u64_byte_checker_value align2 = align_2_value handler.U64 = true handler.int_length = 8 handler.page_bit_offset = page_bit_offset_x64 handler.subheader_pointer_length = subheader_pointer_length_x64 else handler.U64 = false handler.int_length = 4 handler.page_bit_offset = page_bit_offset_x86 handler.subheader_pointer_length = subheader_pointer_length_x86 end # println2(handler, "U64 = $(handler.U64)") buf = _read_bytes(handler, align_2_offset, align_2_length) if buf == align_1_checker_value align1 = align_2_value end total_align = align1 + align2 # println("successful reading alignment debugrmation") # println3(handler, "align1 = $align1, align2 = $align2, total_align=$total_align") # println3(handler, "header[33 ] = $([handler.cached_page[33]]) (align1)") # println3(handler, "header[34:35] = $(handler.cached_page[34:35]) (unknown)") # println3(handler, "header[36 ] = $([handler.cached_page[36]]) (align2)") # println3(handler, "header[37 ] = $([handler.cached_page[37]]) (unknown)") # println3(handler, "header[41:56] = $([handler.cached_page[41:56]]) (unknown)") # println3(handler, "header[57:64] = $([handler.cached_page[57:64]]) (unknown)") # println3(handler, "header[65:84] = $([handler.cached_page[65:84]]) (unknown)") # Get endianness information buf = _read_bytes(handler, endianness_offset, endianness_length) if buf == b"\x01" handler.file_endianness = :LittleEndian else handler.file_endianness = :BigEndian end # println2(handler, "file_endianness = $(handler.file_endianness)") # Detect system-endianness and determine if byte swap will be required handler.sys_endianness = ENDIAN_BOM == 0x04030201 ? :LittleEndian : :BigEndian # println2(handler, "system endianess = $(handler.sys_endianness)") handler.byte_swap = handler.sys_endianness != handler.file_endianness # println2(handler, "byte_swap = $(handler.byte_swap)") # Get encoding information buf = _read_bytes(handler, encoding_offset, 1)[1] if haskey(encoding_names, buf) handler.file_encoding = "$(encoding_names[buf])" else handler.file_encoding = FALLBACK_ENCODING # hope for the best handler.config.verbose_level > 0 && @warn("Unknown file encoding value ($buf), defaulting to $(handler.file_encoding)") end #println2(handler, "file_encoding = $(handler.file_encoding)") # User override for encoding if handler.config.encoding != "" handler.config.verbose_level > 0 && @warn("Encoding has been overridden from $(handler.file_encoding) to $(handler.config.encoding)") handler.file_encoding = handler.config.encoding end # println2(handler, "Final encoding = $(handler.file_encoding)") # remember if Base.transcode should be used handler.use_base_transcoder = uppercase(handler.file_encoding) in ENCODINGS_OK_WITH_BASE_TRANSCODER # println2(handler, "Use base encoder = $(handler.use_base_transcoder)") # prepare string decoder if needed if !handler.use_base_transcoder println2(handler, "creating string buffer/decoder for with $(handler.file_encoding)") handler.string_decoder_buffer = IOBuffer() handler.string_decoder = StringDecoder(handler.string_decoder_buffer, handler.file_encoding) end # Get platform information buf = _read_bytes(handler, platform_offset, platform_length) if buf == b"1" handler.platform = "Unix" elseif buf == b"2" handler.platform = "Windows" else handler.platform = "Unknown" end # println("platform = $(handler.platform)") buf = _read_bytes(handler, dataset_offset, dataset_length) handler.name = transcode_metadata(brstrip(buf, zero_space)) buf = _read_bytes(handler, file_type_offset, file_type_length) handler.file_type = transcode_metadata(brstrip(buf, zero_space)) # Timestamp is epoch 01/01/1960 epoch = DateTime(1960, 1, 1, 0, 0, 0) x = _read_float(handler, date_created_offset + align1, date_created_length) handler.date_created = epoch + Millisecond(round(x * 1000)) # println("date created = $(x) => $(handler.date_created)") x = _read_float(handler, date_modified_offset + align1, date_modified_length) handler.date_modified = epoch + Millisecond(round(x * 1000)) # println("date modified = $(x) => $(handler.date_modified)") handler.header_length = _read_int(handler, header_size_offset + align1, header_size_length) # Read the rest of the header into cached_page. # println3(handler, "Reading rest of page, header_length=$(handler.header_length) willread=$(handler.header_length - 288)") buf = Base.read(handler.io, handler.header_length - 288) append!(handler.cached_page, buf) if length(handler.cached_page) != handler.header_length throw(FileFormatError("The SAS7BDAT file appears to be truncated.")) end # debug # println3(handler, "header[209+a1+a2] = $([handler.cached_page[209+align1+align2:209+align1+align2+8]]) (unknown)") # println3(handler, "header[289+a1+a2] = $([handler.cached_page[289+align1+align2:289+align1+align2+8]]) (unknown)") # println3(handler, "header[297+a1+a2] = $([handler.cached_page[297+align1+align2:297+align1+align2+8]]) (unknown)") # println3(handler, "header[305+a1+a2] = $([handler.cached_page[305+align1+align2:305+align1+align2+8]]) (unknown)") # println3(handler, "header[313+a1+a2] = $([handler.cached_page[313+align1+align2:313+align1+align2+8]]) (unknown)") handler.page_length = _read_int(handler, page_size_offset + align1, page_size_length) # println("page_length = $(handler.page_length)") handler.page_count = _read_int(handler, page_count_offset + align1, page_count_length) # println("page_count = $(handler.page_count)") buf = _read_bytes(handler, sas_release_offset + total_align, sas_release_length) handler.sas_release = transcode_metadata(brstrip(buf, zero_space)) # println2(handler, "SAS Release = $(handler.sas_release)") # determine vendor - either SAS or STAT_TRANSFER _determine_vendor(handler) # println2(handler, "Vendor = $(handler.vendor)") buf = _read_bytes(handler, sas_server_type_offset + total_align, sas_server_type_length) handler.server_type = transcode_metadata(brstrip(buf, zero_space)) # println("server_type = $(handler.server_type)") buf = _read_bytes(handler, os_version_number_offset + total_align, os_version_number_length) handler.os_version = transcode_metadata(brstrip(buf, zero_space)) # println2(handler, "os_version = $(handler.os_version)") buf = _read_bytes(handler, os_name_offset + total_align, os_name_length) buf = brstrip(buf, zero_space) if length(buf) > 0 handler.os_name = transcode_metadata(buf) else buf = _read_bytes(handler, os_maker_offset + total_align, os_maker_length) handler.os_name = transcode_metadata(brstrip(buf, zero_space)) end # println("os_name = $(handler.os_name)") end # Read all pages to find metadata # TODO however, this is inefficient since it reads a lot of data from disk # TODO can we tell if metadata is complete and break out of loop early? function read_file_metadata(handler) # println3(handler, "IN: _parse_metadata") i = 1 while true # println3(handler, " filepos=$(position(handler.io)) page_length=$(handler.page_length)") handler.cached_page = Base.read(handler.io, handler.page_length) if length(handler.cached_page) <= 0 break end if length(handler.cached_page) != handler.page_length throw(FileFormatError("Failed to read a meta data page from the SAS file.")) end # println("page $i = $(current_page_type_str(handler))") _process_page_meta(handler) i += 1 end end # Check user's provided column types has keys that matches column symbols in the file function check_user_column_types(handler) # save a copy of column types in a case insensitive dict handler.column_types_dict = CIDict{Symbol,Type}(handler.config.column_types) # check column_types for k in keys(handler.config.column_types) if !case_insensitive_in(k, handler.column_symbols) @warn("Unknown column symbol ($k) in column_types. Ignored.") end end end function _process_page_meta(handler) # println3(handler, "IN: _process_page_meta") _read_page_header(handler) pt = vcat([page_meta_type, page_amd_type], page_mix_types) # println(" pt=$pt handler.current_page_type=$(handler.current_page_type)") if handler.current_page_type in pt # println3(handler, " current_page_type = $(current_page_type_str(handler))") # println3(handler, " current_page = $(handler.current_page)") # println3(handler, " $(concatenate(stringarray(currentpos(handler))))") _process_page_metadata(handler) end # println(" condition var #1: handler.current_page_type=$(handler.current_page_type)") # println(" condition var #2: page_mix_types=$(page_mix_types)") # println(" condition var #3: handler.current_page_data_subheader_pointers=$(handler.current_page_data_subheader_pointers)") return ((handler.current_page_type in vcat([256], page_mix_types)) || (handler.current_page_data_subheader_pointers != [])) end function _read_page_header(handler) # println3(handler, "IN: _read_page_header") bit_offset = handler.page_bit_offset tx = page_type_offset + bit_offset handler.current_page_type = _read_int(handler, tx, page_type_length) # println(" bit_offset=$bit_offset tx=$tx handler.current_page_type=$(handler.current_page_type)") tx = block_count_offset + bit_offset handler.current_page_block_count = _read_int(handler, tx, block_count_length) # println3(handler, " tx=$tx handler.current_page_block_count=$(handler.current_page_block_count)") tx = subheader_count_offset + bit_offset handler.current_page_subheaders_count = _read_int(handler, tx, subheader_count_length) # println3(handler, " tx=$tx handler.current_page_subheaders_count=$(handler.current_page_subheaders_count)") end function _process_page_metadata(handler) # println3(handler, "IN: _process_page_metadata") bit_offset = handler.page_bit_offset # println(" bit_offset=$bit_offset") # println3(handler, " filepos=$(Base.position(handler.io))") # println3(handler, " loop from 0 to $(handler.current_page_subheaders_count-1)") for i in 0:handler.current_page_subheaders_count-1 # println3(handler, " i=$i") pointer = _process_subheader_pointers(handler, subheader_pointers_offset + bit_offset, i) # ignore subheader when no data is present (variable QL == 0) if pointer.length == 0 # println3(handler, " pointer.length==0, ignoring subheader") continue end # subheader with truncated compression flag may be ignored (variable COMP == 1) if pointer.compression == subheader_comp_truncated # println3(handler, " subheader truncated, ignoring subheader") continue end subheader_signature = _read_subheader_signature(handler, pointer.offset) subheader_index = _get_subheader_index(handler, subheader_signature, pointer.compression, pointer.shtype) # println3(handler, " subheader_index = $subheader_index") if subheader_index == index_end_of_header break end _process_subheader(handler, subheader_index, pointer) end end function _process_subheader_pointers(handler, offset, subheader_pointer_index) # println3(handler, "IN: _process_subheader_pointers") # println3(handler, " offset=$offset (beginning of the pointers array)") # println3(handler, " subheader_pointer_index=$subheader_pointer_index") # deference the array by index # handler.subheader_pointer_length is 12 or 24 (variable SL) total_offset = (offset + handler.subheader_pointer_length * subheader_pointer_index) # println3(handler, " handler.subheader_pointer_length=$(handler.subheader_pointer_length)") # println3(handler, " total_offset=$total_offset") # handler.int_length is either 4 or 8 (based on u64 flag) # subheader_offset contains where to find the subheader subheader_offset = _read_int(handler, total_offset, handler.int_length) # println3(handler, " subheader_offset=$subheader_offset") total_offset += handler.int_length # println3(handler, " total_offset=$total_offset") # subheader_length contains the length of the subheader (variable QL) # QL is sometimes zero, which indicates that no data is referenced by the # corresponding subheader pointer. When this occurs, the subheader pointer may be ignored. subheader_length = _read_int(handler, total_offset, handler.int_length) # println3(handler, " subheader_length=$subheader_length") total_offset += handler.int_length # println3(handler, " total_offset=$total_offset") # subheader_compression contains the compression flag (variable COMP) subheader_compression = _read_int(handler, total_offset, 1) # println3(handler, " subheader_compression=$subheader_compression") total_offset += 1 # println3(handler, " total_offset=$total_offset") # subheader_type contains the subheader type (variable ST) subheader_type = _read_int(handler, total_offset, 1) return SubHeaderPointer( subheader_offset, subheader_length, subheader_compression, subheader_type) end # Read the subheader signature from the first 4 or 8 bytes. # `offset` contains the offset from the start of page that contains the subheader function _read_subheader_signature(handler, offset) # println("IN: _read_subheader_signature (offset=$offset)") bytes = _read_bytes(handler, offset, handler.int_length) return bytes end # Identify the type of subheader from the signature function _get_subheader_index(handler, signature, compression, shtype) # println3(handler, "IN: _get_subheader_index") # println3(handler, " signature=$signature") # println3(handler, " compression=$compression <-> subheader_comp_compressed=$subheader_comp_compressed") # println3(handler, " shtype=$shtype <-> subheader_comp_compressed=$subheader_comp_compressed") val = get(subheader_signature_to_index, signature, nothing) # if the signature is not found then it's likely storing binary data. # RLE (variable COMP == 4) # Uncompress (variable COMP == 0) if val === nothing if compression == subheader_comp_uncompressed || compression == subheader_comp_compressed val = index_dataSubheaderIndex else val = index_end_of_header end end return val end function _process_subheader(handler, subheader_index, pointer) # println3(handler, "IN: _process_subheader") offset = pointer.offset length = pointer.length # println3(handler, " $(tostring(pointer))") if subheader_index == index_rowSizeIndex processor = _process_rowsize_subheader elseif subheader_index == index_columnSizeIndex processor = _process_columnsize_subheader elseif subheader_index == index_columnTextIndex processor = _process_columntext_subheader elseif subheader_index == index_columnNameIndex processor = _process_columnname_subheader elseif subheader_index == index_columnAttributesIndex processor = _process_columnattributes_subheader elseif subheader_index == index_formatAndLabelIndex processor = _process_format_subheader elseif subheader_index == index_columnListIndex processor = _process_columnlist_subheader elseif subheader_index == index_subheaderCountsIndex processor = _process_subheader_counts elseif subheader_index == index_dataSubheaderIndex # do not process immediately and just accumulate the pointers push!(handler.current_page_data_subheader_pointers, pointer) return else throw(FileFormatError("unknown subheader index")) end processor(handler, offset, length) end function _process_rowsize_subheader(handler, offset, length) println3(handler, "IN: _process_rowsize_subheader") int_len = handler.int_length lcs_offset = offset lcp_offset = offset if handler.U64 lcs_offset += 682 lcp_offset += 706 else lcs_offset += 354 lcp_offset += 378 end handler.row_length = _read_int(handler, offset + row_length_offset_multiplier * int_len, int_len) handler.row_count = _read_int(handler, offset + row_count_offset_multiplier * int_len, int_len) handler.col_count_p1 = _read_int(handler, offset + col_count_p1_multiplier * int_len, int_len) handler.col_count_p2 = _read_int(handler, offset + col_count_p2_multiplier * int_len, int_len) mx = row_count_on_mix_page_offset_multiplier * int_len handler.mix_page_row_count = _read_int(handler, offset + mx, int_len) handler.lcs = _read_int(handler, lcs_offset, 2) handler.lcp = _read_int(handler, lcp_offset, 2) # println3(handler, " handler.row_length=$(handler.row_length)") # println3(handler, " handler.row_count=$(handler.row_count)") # println3(handler, " handler.mix_page_row_count=$(handler.mix_page_row_count)") end function _process_columnsize_subheader(handler, offset, length) # println("IN: _process_columnsize_subheader") int_len = handler.int_length offset += int_len handler.column_count = _read_int(handler, offset, int_len) if (handler.col_count_p1 + handler.col_count_p2 != handler.column_count) @warn("Warning: column count mismatch ($(handler.col_count_p1) + $(handler.col_count_p2) != $(handler.column_count))") end end # Unknown purpose function _process_subheader_counts(handler, offset, length) # println("IN: _process_subheader_counts") end function _process_columntext_subheader(handler, offset, length) # println3(handler, "IN: _process_columntext_subheader") p = offset + handler.int_length text_block_size = _read_int(handler, p, text_block_size_length) # println3(handler, " text_block_size=$text_block_size") # println(" before reading buf: offset=$offset") # TODO this buffer includes the text_block_size itself in the beginning... buf = _read_bytes(handler, p, text_block_size) cname_raw = brstrip(buf[1:text_block_size], zero_space) # println3(handler, " cname_raw=$cname_raw") cname = cname_raw # println3(handler, " decoded=$(transcode_metadata(cname))") push!(handler.column_names_strings, cname) #println3(handler, " handler.column_names_strings=$(handler.column_names_strings)") # println(" type=$(typeof(handler.column_names_strings))") # println(" content=$(handler.column_names_strings)") # println3(handler, " content=$(size(handler.column_names_strings, 2))") # figure out some metadata if this is the first column if size(handler.column_names_strings, 2) == 1 # check if there's compression signature if contains(cname_raw, rle_compression) compression_method = compression_method_rle elseif contains(cname_raw, rdc_compression) compression_method = compression_method_rdc else compression_method = compression_method_none end # println3(handler, " handler.lcs = $(handler.lcs)") # println3(handler, " handler.lcp = $(handler.lcp)") # save compression info in the handler handler.compression = compression_method # look for the compression & creator proc offset (16 or 20) offset1 = offset + 16 if handler.U64 offset1 += 4 end # per doc, if first 8 bytes are _blank_ then file is not compressed, set LCS = 0 # howver, we will use the above signature identification method instead. # buf = _read_bytes(handler, offset1, handler.lcp) # compression_literal = brstrip(buf, b"\x00") # if compression_literal == "" if compression_method == compression_method_none handler.lcs = 0 offset1 = offset + 32 if handler.U64 offset1 += 4 end buf = _read_bytes(handler, offset1, handler.lcp) creator_proc = buf[1:handler.lcp] # println3(handler, " uncompressed: creator proc=$creator_proc decoded=$(transcode_metadata(creator_proc))") elseif compression_method == compression_method_rle offset1 = offset + 40 if handler.U64 offset1 += 4 end buf = _read_bytes(handler, offset1, handler.lcp) creator_proc = buf[1:handler.lcp] # println3(handler, " RLE compression: creator proc=$creator_proc decoded=$(transcode_metadata(creator_proc))") elseif handler.lcs > 0 handler.lcp = 0 offset1 = offset + 16 if handler.U64 offset1 += 4 end buf = _read_bytes(handler, offset1, handler.lcs) creator_proc = buf[1:handler.lcp] # println3(handler, " LCS>0: creator proc=$creator_proc decoded=$(transcode_metadata(creator_proc))") else creator_proc = nothing end end end function _process_columnname_subheader(handler, offset, length) # println3(handler, "IN: _process_columnname_subheader") int_len = handler.int_length # println(" int_len=$int_len") # println(" offset=$offset") offset += int_len # println(" offset=$offset (after adding int_len)") column_name_pointers_count = fld(length - 2 * int_len - 12, 8) # println(" column_name_pointers_count=$column_name_pointers_count") for i in 1:column_name_pointers_count text_subheader = offset + column_name_pointer_length * i + column_name_text_subheader_offset # println(" i=$i text_subheader=$text_subheader") col_name_offset = offset + column_name_pointer_length * i + column_name_offset_offset # println(" i=$i col_name_offset=$col_name_offset") col_name_length = offset + column_name_pointer_length * i + column_name_length_offset # println(" i=$i col_name_length=$col_name_length") idx = _read_int(handler, text_subheader, column_name_text_subheader_length) # println(" i=$i idx=$idx") col_offset = _read_int(handler, col_name_offset, column_name_offset_length) # println(" i=$i col_offset=$col_offset") col_len = _read_int(handler, col_name_length, column_name_length_length) # println(" i=$i col_len=$col_len") cnp = ColumnNamePointer(idx + 1, col_offset, col_len) push!(handler.column_name_pointers, cnp) end end function _process_columnattributes_subheader(handler, offset, length) # println("IN: _process_columnattributes_subheader") int_len = handler.int_length N = fld(length - 2 * int_len - 12, int_len + 8) # println(" column_attributes_vectors_count = $column_attributes_vectors_count") ty = fill(column_type_none, N) len = fill(0::Int64, N) off = fill(0::Int64, N) # handler.column_types = fill(column_type_none, column_attributes_vectors_count) # handler.column_data_lengths = fill(0::Int64, column_attributes_vectors_count) # handler.column_data_offsets = fill(0::Int64, column_attributes_vectors_count) for i in 0:N-1 col_data_offset = (offset + int_len + column_data_offset_offset + i * (int_len + 8)) col_data_len = (offset + 2 * int_len + column_data_length_offset + i * (int_len + 8)) col_types = (offset + 2 * int_len + column_type_offset + i * (int_len + 8)) j = i + 1 off[j] = _read_int(handler, col_data_offset, int_len) len[j] = _read_int(handler, col_data_len, column_data_length_length) x = _read_int(handler, col_types, column_type_length) ty[j] = (x == 1) ? column_type_decimal : column_type_string end push!(handler.column_types, ty...) push!(handler.column_data_lengths, len...) push!(handler.column_data_offsets, off...) end function _process_columnlist_subheader(handler, offset, length) # println("IN: _process_columnlist_subheader") # unknown purpose end function _process_format_subheader(handler, offset, length) # println3(handler, "IN: _process_format_subheader") int_len = handler.int_length col_format_idx = offset + 22 + 3 * int_len col_format_offset = offset + 24 + 3 * int_len col_format_len = offset + 26 + 3 * int_len col_label_idx = offset + 28 + 3 * int_len col_label_offset = offset + 30 + 3 * int_len col_label_len = offset + 32 + 3 * int_len format_idx = _read_int(handler, col_format_idx, 2) # println3(handler, " format_idx=$format_idx") # TODO julia bug? must reference Base.length explicitly or else we get MethodError: objects of type Int64 are not callable format_idx = min(format_idx, Base.length(handler.column_names_strings) - 1) format_start = _read_int(handler, col_format_offset, 2) format_len = _read_int(handler, col_format_len, 2) # println3(handler, " format_idx=$format_idx, format_start=$format_start, format_len=$format_len") format_names = handler.column_names_strings[format_idx+1] column_format = transcode_metadata(format_names[format_start+1: format_start + format_len]) push!(handler.column_formats, column_format) # The following code isn't used and it's not working for some files e.g. topical.sas7bdat from AHS # label_idx = _read_int(handler, col_label_idx, 2) # # TODO julia bug? must reference Base.length explicitly or else we get MethodError: objects of type Int64 are not callable # label_idx = min(label_idx, Base.length(handler.column_names_strings) - 1) # label_start = _read_int(handler, col_label_offset, 2) # label_len = _read_int(handler, col_label_len, 2) # println3(handler, " label_idx=$label_idx, label_start=$label_start, label_len=$label_len") # println3(handler, " handler.column_names_strings=$(size(handler.column_names_strings[1], 1))") # label_names = handler.column_names_strings[label_idx+1] # column_label = label_names[label_start+1: label_start + label_len] # println3(handler, " column_label=$column_label decoded=$(transcode_metadata(column_label))") # current_column_number = size(handler.columns, 2) # println3(handler, " current_column_number=$current_column_number") # col = Column( # current_column_number, # handler.column_names[current_column_number], # column_label, # column_format, # handler.column_types[current_column_number], # handler.column_data_lengths[current_column_number]) # push!(handler.columns, col) end function read_chunk(handler, nrows=0) if !isdefined(handler, :column_types) @warn("No columns to parse from file") return ResultSet() end # println("column_types = $(handler.column_types)") if handler.row_count == 0 @warn("File has no data") return ResultSet() end # println("IN: read_chunk") #println(handler.config) if (nrows == 0) && (handler.config.chunk_size > 0) nrows = handler.config.chunk_size elseif nrows == 0 nrows = handler.row_count end # println("nrows = $nrows") # println("row_count = $(handler.row_count)") m = handler.row_count - handler.current_row_in_file_index if nrows > m nrows = m end # println("nrows = $(nrows)") #info("Reading $nrows x $(length(handler.column_types)) data set") # TODO not the most efficient but normally it should be ok for non-wide tables nd = count(x -> x == column_type_decimal, handler.column_types) ns = count(x -> x == column_type_string, handler.column_types) # println("nd = $nd (number of decimal columns)") # println("ns = $ns (number of string columns)") # ns > 0 && !handler.use_base_transcoder && # info("Note: encoding incompatible with UTF-8, reader will take more time") populate_column_indices(handler) # allocate columns handler.byte_chunk = Dict() handler.string_chunk = Dict() for (k, name, ty) in handler.column_indices if ty == column_type_decimal handler.byte_chunk[name] = fill(UInt8(0), Int64(8 * nrows)) # 8-byte values elseif ty == column_type_string handler.string_chunk[name] = createstrarray(handler, name, nrows) else throw(FileFormatError("unknown column type: $ty for column $name")) end end # don't do this or else the state is polluted if user wants to # read lines separately. # handler.current_page = 0 handler.current_row_in_chunk_index = 0 perf_read_data = @elapsed(read_data(handler, nrows)) perf_chunk_to_data_frame = @elapsed(rslt = _chunk_to_dataframe(handler, nrows)) if handler.config.verbose_level > 1 println("Read data in ", perf_read_data, " msec") println("Converted data in ", perf_chunk_to_data_frame, " msec") end column_symbols = [sym for (k, sym, ty) in handler.column_indices] return ResultSet([rslt[s] for s in column_symbols], column_symbols, (nrows, length(column_symbols))) end # not extremely efficient but is a safe way to do it function createstrarray(handler, column_symbol, nrows) if haskey(handler.config.string_array_fn, column_symbol) handler.config.string_array_fn[column_symbol](nrows) elseif haskey(handler.config.string_array_fn, :_all_) handler.config.string_array_fn[:_all_](nrows) else if nrows + 1 < 2 << 7 ObjectPool{String, UInt8}(EMPTY_STRING, nrows) elseif nrows < 2 << 15 ObjectPool{String, UInt16}(EMPTY_STRING, nrows) elseif nrows < 2 << 31 ObjectPool{String, UInt32}(EMPTY_STRING, nrows) else ObjectPool{String, UInt64}(EMPTY_STRING, nrows) end end end # create numeric array function createnumarray(handler, column_symbol, nrows) if haskey(handler.config.number_array_fn, column_symbol) handler.config.number_array_fn[column_symbol](nrows) elseif haskey(handler.config.number_array_fn, :_all_) handler.config.number_array_fn[:_all_](nrows) else zeros(Float64, nrows) end end function _read_next_page_content(handler) # println3(handler, "IN: _read_next_page_content") # println3(handler, " positions = $(concatenate(stringarray(currentpos(handler))))") handler.current_page += 1 # println3(handler, " current_page = $(handler.current_page)") # println3(handler, " file position = $(Base.position(handler.io))") # println3(handler, " page_length = $(handler.page_length)") handler.current_page_data_subheader_pointers = [] handler.cached_page = Base.read(handler.io, handler.page_length) if length(handler.cached_page) <= 0 return true elseif length(handler.cached_page) != handler.page_length throw(FileFormatError("Failed to read complete page from file ($(length(handler.cached_page)) of $(handler.page_length) bytes")) end _read_page_header(handler) if handler.current_page_type == page_meta_type _process_page_metadata(handler) end # println3(handler, " type=$(current_page_type_str(handler))") if ! (handler.current_page_type in page_meta_data_mix_types) # println3(handler, "page type not found $(handler.current_page_type)... reading next one") return _read_next_page_content(handler) end return false end # test -- copied from _read_next_page_content function my_read_next_page(handler) handler.current_page += 1 handler.current_page_data_subheader_pointers = [] handler.cached_page = Base.read(handler.io, handler.page_length) _read_page_header(handler) handler.current_row_in_page_index = 0 end # convert Float64 value into Date object function date_from_float(x::Vector{Float64}) v = Vector{Union{Date, Missing}}(undef, length(x)) for i in 1:length(x) v[i] = isnan(x[i]) ? missing : (sas_date_origin + Dates.Day(round(Int64, x[i]))) end v end # convert Float64 value into DateTime object function datetime_from_float(x::Vector{Float64}) v = Vector{Union{DateTime, Missing}}(undef, length(x)) for i in 1:length(x) v[i] = isnan(x[i]) ? missing : (sas_datetime_origin + Dates.Second(round(Int64, x[i]))) end v end # Construct Dict object that holds the columns. # For date or datetime columns, convert from numeric value to Date/DateTime type column. # The resulting dictionary uses column symbols as the key. function _chunk_to_dataframe(handler, nrows) # println("IN: _chunk_to_dataframe") n = handler.current_row_in_chunk_index m = handler.current_row_in_file_index rslt = Dict() # println("handler.column_names=$(handler.column_names)") for (k, name, ty) in handler.column_indices if ty == column_type_decimal # number, date, or datetime # println(" String: size=$(size(handler.byte_chunk))") # println(" Decimal: column $j, name $name, size=$(size(handler.byte_chunk[jb, :]))") bytes = handler.byte_chunk[name] #if j == 1 && length(bytes) < 100 #debug only # println(" bytes=$bytes") #end values = createnumarray(handler, name, nrows) convertfloat64f!(values, bytes, handler.file_endianness) #println(length(bytes)) #rslt[name] = bswap(rslt[name]) rslt[name] = values if handler.config.convert_dates if handler.column_formats[k] in sas_date_formats rslt[name] = date_from_float(rslt[name]) elseif handler.column_formats[k] in sas_datetime_formats # TODO probably have to deal with timezone somehow rslt[name] = datetime_from_float(rslt[name]) end end convert_column_type_if_needed!(handler, rslt, name) elseif ty == column_type_string # println(" String: size=$(size(handler.string_chunk))") # println(" String: column $j, name $name, size=$(size(handler.string_chunk[js, :]))") rslt[name] = handler.string_chunk[name] else throw(FileFormatError("Unknown column type: $ty")) end end return rslt end # If the user specified a type for the column, try to convert the column data. function convert_column_type_if_needed!(handler, rslt, name) if haskey(handler.column_types_dict, name) type_wanted = handler.column_types_dict[name] #println("$name exists in config.column_types, type_wanted=$type_wanted") if type_wanted != Float64 try rslt[name] = convert(Vector{type_wanted}, rslt[name]) catch ex @warn("Unable to convert column to type $type_wanted, error=$ex") end end end end # Simple loop that reads data row-by-row. function read_data(handler, nrows) # println("IN: read_data, nrows=$nrows") for i in 1:nrows done = readline(handler) if done break end end end function read_next_page(handler) done = _read_next_page_content(handler) if done handler.cached_page = [] else handler.current_row_in_page_index = 0 end return done end # Return `true` when there is nothing else to read function readline(handler) # println("IN: readline") subheader_pointer_length = handler.subheader_pointer_length # If there is no page, go to the end of the header and read a page. # TODO commented out for performance reason... do we really need this? # if handler.cached_page == [] # println(" no cached page... seeking past header") # seek(handler.io, handler.header_length) # println(" reading next page") # done = read_next_page(handler) # if done # println(" no page! returning") # return true # end # end # Loop until a data row is read # println(" start loop") while true if handler.current_page_type == page_meta_type #println(" page type == page_meta_type") flag = handler.current_row_in_page_index >= length(handler.current_page_data_subheader_pointers) if flag # println(" reading next page") done = read_next_page(handler) if done # println(" all done, returning #1") return true end continue end current_subheader_pointer = handler.current_page_data_subheader_pointers[handler.current_row_in_page_index+1] # println3(handler, " current_subheader_pointer = $(current_subheader_pointer)") # println3(handler, " handler.compression = $(handler.compression)") cm = compression_method_none if current_subheader_pointer.compression == subheader_comp_compressed if handler.compression != compression_method_none cm = handler.compression else cm = compression_method_rle # default to RLE if handler doesn't have the info yet end end process_byte_array_with_data(handler, current_subheader_pointer.offset, current_subheader_pointer.length, cm) return false elseif (handler.current_page_type == page_mix_types[1] || handler.current_page_type == page_mix_types[2]) # println3(handler, " page type == page_mix_types_1/2") offset = handler.page_bit_offset offset += subheader_pointers_offset offset += (handler.current_page_subheaders_count * subheader_pointer_length) align_correction = offset % 8 offset += align_correction # hack for stat_transfer files if align_correction == 4 && handler.vendor == VENDOR_STAT_TRANSFER # println3(handler, "alignment hack, vendor=$(handler.vendor) align_correction=$align_correction") offset -= align_correction end # locate the row offset += handler.current_row_in_page_index * handler.row_length process_byte_array_with_data(handler, offset, handler.row_length, handler.compression) mn = min(handler.row_count, handler.mix_page_row_count) # println(" handler.current_row_in_page_index=$(handler.current_row_in_page_index)") # println(" mn = $mn") if handler.current_row_in_page_index == mn # println(" reading next page") done = read_next_page(handler) if done # println(" all done, returning #2") return true end end return false elseif handler.current_page_type == page_data_type #println(" page type == page_data_type") process_byte_array_with_data(handler, handler.page_bit_offset + subheader_pointers_offset + handler.current_row_in_page_index * handler.row_length, handler.row_length, handler.compression) # println(" handler.current_row_in_page_index=$(handler.current_row_in_page_index)") # println(" handler.current_page_block_count=$(handler.current_page_block_count)") flag = (handler.current_row_in_page_index == handler.current_page_block_count) #println("$(handler.current_row_in_page_index) $(handler.current_page_block_count)") if flag # println(" reading next page") done = read_next_page(handler) if done # println(" all done, returning #3") return true end end return false else throw(FileFormatError("unknown page type: $(handler.current_page_type)")) end end end function process_byte_array_with_data(handler, offset, length, compression) # println("IN: process_byte_array_with_data, offset=$offset, length=$length") # Original code below. Julia type is already Vector{UInt8} # source = np.frombuffer( # handler.cached_page[offset:offset + length], dtype=np.uint8) source = handler.cached_page[offset+1:offset+length] # TODO decompression # if handler.decompress != NULL and (length < handler.row_length) # println(" length=$length") # println(" handler.row_length=$(handler.row_length)") if length < handler.row_length if compression == compression_method_rle # println3(handler, "decompress using rle_compression method, length=$length, row_length=$(handler.row_length)") source = rle_decompress(handler.row_length, source) elseif compression == compression_method_rdc # println3(handler, "decompress using rdc_compression method, length=$length, row_length=$(handler.row_length)") source = rdc_decompress(handler.row_length, source) else # println3(handler, "process_byte_array_with_data") # println3(handler, " length=$length") # println3(handler, " handler.row_length=$(handler.row_length)") # println3(handler, " source=$source") throw(FileFormatError("Unknown compression method: $(handler.compression)")) end end current_row = handler.current_row_in_chunk_index s = 8 * current_row # TODO PERF there's not reason to deference by name everytime. # Ideally, we can still go by the result's column index # and then only at the very end (outer loop) we assign them to # the column symbols @inbounds for (k, name, ty) in handler.column_indices lngt = handler.column_data_lengths[k] start = handler.column_data_offsets[k] ct = handler.column_types[k] if ct == column_type_decimal # The data may have 3,4,5,6,7, or 8 bytes (lngt) # and we need to copy into an 8-byte destination. # Hence endianness matters - for Little Endian file # copy it to the right side, else left side. if handler.file_endianness == :LittleEndian m = s + 8 - lngt else m = s end # if current_row == 0 && k == 1 # println3(handler, "First cell:") # println3(handler, " k=$k name=$name ty=$ty") # println3(handler, " s=$s m=$m lngt=$lngt start=$start") # println3(handler, " source =$(source[start+1:start+lngt])") # end dst = handler.byte_chunk[name] for i in 1:lngt @inbounds dst[m + i] = source[start + i] end # @inbounds handler.byte_chunk[name][m+1:m+lngt] = source[start+1:start+lngt] #println3(handler, "byte_chunk[$name][$(m+1):$(m+lngt)] = source[$(start+1):$(start+lngt)] => $(source[start+1:start+lngt])") elseif ct == column_type_string # issue 12 - heuristic for switching to regular Array type ar = handler.string_chunk[name] if handler.current_row_in_chunk_index > 2000 && handler.current_row_in_chunk_index % 200 == 0 && isa(ar, ObjectPool) && ar.uniqueitemscount / ar.itemscount > 0.10 println2(handler, "Bumping column $(name) to regular array due to too many unique items $(ar.uniqueitemscount) out of $(ar.itemscount)") ar = Array(ar) handler.string_chunk[name] = ar end pos = lastcharpos(source, start, lngt) @inbounds ar[current_row+1] = # rstrip2(transcode_data(handler, source, start+1, start+lngt, lngt)) transcode_data(handler, source, start+1, start+pos, pos) end end handler.current_row_in_page_index += 1 handler.current_row_in_chunk_index += 1 handler.current_row_in_file_index += 1 end # Notes about performance enhancement related to stripping off space characters. # # Apparently SAS always use 0x20 (space) even for non-ASCII encodings # but what if 0x20 happens to be there as part of a multi-byte encoding? # ``` # julia> decode([0x02, 0x20], "UTF-16") # "Ƞ" # ```` # # Knowing that we can only understand a certain set of char encodings as in # the constants.jl file, we just need to make sure that the ones that we # support does not use 0x20 as part of any multi-byte chars. # # Seems ok. Some info available at # https://www.debian.org/doc/manuals/intro-i18n/ch-codes.en.html # # find the last char position that is not space function lastcharpos(source::Vector{UInt8}, start::Int64, lngt::Int64) i = lngt while i ≥ 1 if source[start + i] != 0x20 break end i -= 1 end return i end # TODO possible issue with the 7-bit check... maybe not all encodings are ascii compatible for 7-bit values? # Use unsafe_string to avoid bounds check for performance reason # Use custom decode_string function with our own decoder/decoder buffer to avoid unncessary objects creation @inline transcode_data(handler::Handler, source::Vector{UInt8}, startidx::Int64, endidx::Int64, lngt::Int64) = handler.use_base_transcoder || seven_bit_data(source, startidx, endidx) ? unsafe_string(pointer(source) + startidx - 1, lngt) : decode_string(source, startidx, endidx, handler.string_decoder_buffer, handler.string_decoder) #decode_string2(source[startidx:endidx], handler.file_encoding) # metadata is always ASCII-based (I think) @inline transcode_metadata(bytes::Vector{UInt8}) = Base.transcode(String, bytes) # determine if string data contains only 7-bit characters @inline function seven_bit_data(source::Vector{UInt8}, startidx::Int64, endidx::Int64) for i in startidx:endidx if source[i] > 0x7f return false end end true end @inline function decode_string(source::Vector{UInt8}, startidx::Int64, endidx::Int64, io::IOBuffer, decoder::StringDecoder) truncate(io, 0) for i in startidx:endidx write(io, source[i]) end seek(io, 0) str = String(Base.read(decoder)) # println("decoded ", str) str end # @inline function decode_string2(bytes, encoding) # decode(bytes, encoding) # end # Courtesy of ReadStat project # https://github.com/WizardMac/ReadStat const SAS_RLE_COMMAND_COPY64 = 0 const SAS_RLE_COMMAND_INSERT_BYTE18 = 4 const SAS_RLE_COMMAND_INSERT_AT17 = 5 const SAS_RLE_COMMAND_INSERT_BLANK17 = 6 const SAS_RLE_COMMAND_INSERT_ZERO17 = 7 const SAS_RLE_COMMAND_COPY1 = 8 const SAS_RLE_COMMAND_COPY17 = 9 const SAS_RLE_COMMAND_COPY33 = 10 # 0x0A const SAS_RLE_COMMAND_COPY49 = 11 # 0x0B const SAS_RLE_COMMAND_INSERT_BYTE3 = 12 # 0x0C const SAS_RLE_COMMAND_INSERT_AT2 = 13 # 0x0D const SAS_RLE_COMMAND_INSERT_BLANK2 = 14 # 0x0E const SAS_RLE_COMMAND_INSERT_ZERO2 = 15 # 0x0F function rle_decompress(output_len, input::Vector{UInt8}) #error("stopped for debugging $output_len $input") input_len = length(input) output = zeros(UInt8, output_len) # logdebug("rle_decompress: output_len=$output_len, input_len=$input_len") ipos = 1 rpos = 1 while ipos <= input_len control = input[ipos] ipos += 1 command = (control & 0xF0) >> 4 dlen = (control & 0x0F) copy_len = 0 insert_len = 0 insert_byte = 0x00 if command == SAS_RLE_COMMAND_COPY64 # logdebug(" SAS_RLE_COMMAND_COPY64") copy_len = input[ipos] + 64 + dlen * 256 ipos += 1 elseif command == SAS_RLE_COMMAND_INSERT_BYTE18 # logdebug(" SAS_RLE_COMMAND_INSERT_BYTE18") insert_len = input[ipos] + 18 + dlen * 16 ipos += 1 insert_byte = input[ipos] ipos += 1 elseif command == SAS_RLE_COMMAND_INSERT_AT17 # logdebug(" SAS_RLE_COMMAND_INSERT_AT17") insert_len = input[ipos] + 17 + dlen * 256 insert_byte = 0x40 # char: @ ipos += 1 elseif command == SAS_RLE_COMMAND_INSERT_BLANK17 # logdebug(" SAS_RLE_COMMAND_INSERT_BLANK17") insert_len = input[ipos] + 17 + dlen * 256 insert_byte = 0x20 # char: <space> ipos += 1 elseif command == SAS_RLE_COMMAND_INSERT_ZERO17 # logdebug(" SAS_RLE_COMMAND_INSERT_ZERO17") insert_len = input[ipos] + 17 + dlen * 256 insert_byte = 0x00 ipos += 1 elseif command == SAS_RLE_COMMAND_COPY1 # logdebug(" SAS_RLE_COMMAND_COPY1") copy_len = dlen + 1 elseif command == SAS_RLE_COMMAND_COPY17 # logdebug(" SAS_RLE_COMMAND_COPY17") copy_len = dlen + 17 elseif command == SAS_RLE_COMMAND_COPY33 # logdebug(" SAS_RLE_COMMAND_COPY33") copy_len = dlen + 33 elseif command == SAS_RLE_COMMAND_COPY49 # logdebug(" SAS_RLE_COMMAND_COPY49") copy_len = dlen + 49 elseif command == SAS_RLE_COMMAND_INSERT_BYTE3 # logdebug(" SAS_RLE_COMMAND_INSERT_BYTE3") insert_len = dlen + 3 insert_byte = input[ipos] ipos += 1 elseif command == SAS_RLE_COMMAND_INSERT_AT2 # logdebug(" SAS_RLE_COMMAND_INSERT_AT2") insert_len = dlen + 2 insert_byte = 0x40 # char: @ elseif command == SAS_RLE_COMMAND_INSERT_BLANK2 # logdebug(" SAS_RLE_COMMAND_INSERT_BLANK2") insert_len = dlen + 2 insert_byte = 0x20 # char: <space> elseif command == SAS_RLE_COMMAND_INSERT_ZERO2 # logdebug(" SAS_RLE_COMMAND_INSERT_ZERO2") insert_len = dlen + 2 insert_byte = 0x00 # char: @ end if copy_len > 0 # logdebug(" ipos=$ipos rpos=$rpos copy_len=$copy_len => output[$rpos:$(rpos+copy_len-1)] = input[$ipos:$(ipos+copy_len-1)]") for i in 0:copy_len-1 output[rpos + i] = input[ipos + i] #output[rpos:rpos+copy_len-1] = input[ipos:ipos+copy_len-1] end rpos += copy_len ipos += copy_len end if insert_len > 0 # logdebug(" ipos=$ipos rpos=$rpos insert_len=$insert_len insert_byte=0x$(hex(insert_byte))") for i in 0:insert_len-1 output[rpos + i] = insert_byte #output[rpos:rpos+insert_len-1] = insert_byte end rpos += insert_len end end output end # rdc_decompress decompresses data using the Ross Data Compression algorithm: # # http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/CUJ/1992/9210/ross/ross.htm function rdc_decompress(result_length, inbuff::Vector{UInt8}) ctrl_bits = UInt16(0) ctrl_mask = UInt16(0) ipos = 1 rpos = 1 outbuff = zeros(UInt8, result_length) while ipos <= length(inbuff) ctrl_mask = ctrl_mask >> 1 if ctrl_mask == 0 ctrl_bits = (UInt16(inbuff[ipos]) << 8) + UInt16(inbuff[ipos + 1]) ipos += 2 ctrl_mask = 0x8000 end if ctrl_bits & ctrl_mask == 0 outbuff[rpos] = inbuff[ipos] ipos += 1 rpos += 1 continue end cmd = (inbuff[ipos] >> 4) & 0x0F cnt = UInt16(inbuff[ipos] & 0x0F) ipos += 1 # short RLE if cmd == 0 cnt += 3 for k in 0:cnt-1 outbuff[rpos + k] = inbuff[ipos] end rpos += cnt ipos += 1 # long RLE elseif cmd == 1 cnt += UInt16(inbuff[ipos]) << 4 cnt += 19 ipos += 1 for k in 0:cnt-1 outbuff[rpos + k] = inbuff[ipos] end rpos += cnt ipos += 1 # long pattern elseif cmd == 2 ofs = cnt + 3 ofs += UInt16(inbuff[ipos]) << 4 ipos += 1 cnt = UInt16(inbuff[ipos]) ipos += 1 cnt += 16 for k in 0:cnt-1 outbuff[rpos + k] = outbuff[rpos - ofs + k] end rpos += cnt # short pattern elseif (cmd >= 3) & (cmd <= 15) ofs = cnt + 3 ofs += UInt16(inbuff[ipos]) << 4 ipos += 1 for k in 0:cmd-1 outbuff[rpos + k] = outbuff[rpos - ofs + k] end rpos += cmd else throw(FileFormatError("unknown RDC command")) end end if length(outbuff) != result_length throw(FileFormatError("RDC: $(length(outbuff)) != $result_length")) end return outbuff end # ---- Debugging methods ---- # verbose printing. 1=little verbose, 2=medium verbose, 3=very verbose, 4=very very verbose :-) @inline println1(handler::Handler, msg::String) = handler.config.verbose_level >= 1 && println(msg) @inline println2(handler::Handler, msg::String) = handler.config.verbose_level >= 2 && println(msg) @inline println3(handler::Handler, msg::String) = handler.config.verbose_level >= 3 && println(msg) logdebug = println # string representation of the SubHeaderPointer structure # function tostring(x::SubHeaderPointer) # "<SubHeaderPointer: offset=$(x.offset), length=$(x.length), compression=$(x.compression), type=$(x.shtype)>" # end # Return the current position in various aspects (file, page, chunk) # This is useful for debugging purpose especially during incremental reads. # function currentpos(handler) # d = Dict() # if isdefined(handler, :current_row_in_file_index) # d[:current_row_in_file] = handler.current_row_in_file_index # end # if isdefined(handler, :current_row_in_page_index) # d[:current_row_in_page] = handler.current_row_in_page_index # end # if isdefined(handler, :current_row_in_chunk_index) # d[:current_row_in_chunk] = handler.current_row_in_chunk_index # end # return d # end # case insensitive column mapping Base.lowercase(s::Symbol) = Symbol(lowercase(String(s))) case_insensitive_in(s::Symbol, ar::AbstractArray) = lowercase(s) in [x isa Symbol ? lowercase(x) : x for x in ar] # fill column indices as a dictionary (key = column index, value = column symbol) function populate_column_indices(handler) handler.column_indices = Vector{Tuple{Int64, Symbol, UInt8}}() inflag = length(handler.config.include_columns) > 0 exflag = length(handler.config.exclude_columns) > 0 inflag && exflag && throw(ConfigError("You can specify either include_columns or exclude_columns but not both.")) processed = [] # println("handler.column_symbols = $(handler.column_symbols) len=$(length(handler.column_symbols))") # println("handler.column_types = $(handler.column_types) len=$(length(handler.column_types))") for j in 1:length(handler.column_symbols) name = handler.column_symbols[j] if inflag if j in handler.config.include_columns || case_insensitive_in(name, handler.config.include_columns) push!(handler.column_indices, (j, name, handler.column_types[j])) push!(processed, lowercase(name)) end elseif exflag if !(j in handler.config.exclude_columns || case_insensitive_in(name, handler.config.exclude_columns)) push!(handler.column_indices, (j, name, handler.column_types[j])) else push!(processed, lowercase(name)) end else push!(handler.column_indices, (j, name, handler.column_types[j])) end end if inflag && length(processed) != length(handler.config.include_columns) diff = setdiff(handler.config.include_columns, processed) for c in diff @warn("Unknown include column $c") end end if exflag && length(processed) != length(handler.config.exclude_columns) diff = setdiff(handler.config.exclude_columns, processed) for c in diff @warn("Unknown exclude column $c") end end # println2(handler, "column_indices = $(handler.column_indices)") end function _determine_vendor(handler::Handler) # convert a release string into "9.0401M1" into 3 separate numbers (version, revision) = split(handler.sas_release, "M") (major, minor) = split(version, ".") (major, minor, revision) = parse.(Int, (major, minor, revision)) if major == 9 && minor == 0 && revision == 0 # A bit of a hack, but most SAS installations are running a minor update handler.vendor = VENDOR_STAT_TRANSFER else handler.vendor = VENDOR_SAS end end # Populate column names after all meta info is read function populate_column_names(handler) for cnp in handler.column_name_pointers if cnp.index > length(handler.column_names_strings) name = "unknown_$(cnp.index)_$(cnp.offset)" else name_str = handler.column_names_strings[cnp.index] name = transcode_metadata(name_str[cnp.offset+1:cnp.offset + cnp.length]) end push!(handler.column_names, name) push!(handler.column_symbols, Symbol(name)) end # println("column_names=", handler.column_names) # println("column_symbols=", handler.column_symbols) end # Returns current page type as a string at the current state function current_page_type_str(handler) pt = _read_int(handler, handler.page_bit_offset, page_type_length) return page_type_str(pt) end # Convert page type value to human readable string function page_type_str(pt) if pt == page_meta_type return "META" elseif pt == page_amd_type return "AMD" elseif pt == page_data_type return "DATA" elseif pt in page_mix_types return "MIX" else return "UNKNOWN $(pt)" end end # Go back and read the first page again and be ready for read # This is needed after all metadata is written and the system needs to rewind function read_first_page(handler) seek(handler.io, handler.header_length) my_read_next_page(handler) end # Initialize handler object function init_handler(handler) handler.compression = compression_method_none handler.column_names_strings = [] handler.column_names = [] handler.column_symbols = [] handler.column_name_pointers = [] handler.column_formats = [] handler.column_types = [] handler.column_data_lengths = [] handler.column_data_offsets = [] handler.current_page_data_subheader_pointers = [] handler.current_row_in_file_index = 0 handler.current_row_in_chunk_index = 0 handler.current_row_in_page_index = 0 handler.current_page = 0 end Base.show(io::IO, h::Handler) = print(io, "SASLib.Handler[", h.config.filename, "]") end # module
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
3133
struct FileFormatError <: Exception message::AbstractString end struct ConfigError <: Exception message::AbstractString end struct ReaderConfig filename::AbstractString encoding::AbstractString chunk_size::Int64 convert_dates::Bool include_columns::Vector exclude_columns::Vector string_array_fn::Dict{Symbol, Function} number_array_fn::Dict{Symbol, Function} column_types::Dict{Symbol, Type} verbose_level::Int64 end struct Column id::Int64 name::AbstractString label::Vector{UInt8} # really? format::AbstractString coltype::UInt8 length::Int64 end struct ColumnNamePointer index::Int offset::Int length::Int end # technically these fields may have lower precision (need casting?) struct SubHeaderPointer offset::Int64 length::Int64 compression::Int64 shtype::Int64 end mutable struct Handler io::IOStream config::ReaderConfig compression::UInt8 column_names_strings::Vector{Vector{UInt8}} column_names::Vector{AbstractString} column_symbols::Vector{Symbol} column_types::Vector{UInt8} column_formats::Vector{AbstractString} columns::Vector{Column} # column indices being read/returned # tuple of column index, column symbol, column type column_indices::Vector{Tuple{Int64, Symbol, UInt8}} column_name_pointers::Vector{ColumnNamePointer} current_page_data_subheader_pointers::Vector{SubHeaderPointer} cached_page::Vector{UInt8} column_data_lengths::Vector{Int64} column_data_offsets::Vector{Int64} current_row_in_file_index::Int64 current_row_in_page_index::Int64 file_endianness::Symbol sys_endianness::Symbol byte_swap::Bool U64::Bool int_length::Int8 page_bit_offset::Int8 subheader_pointer_length::UInt8 file_encoding::AbstractString platform::AbstractString name::Union{AbstractString,Vector{UInt8}} file_type::Union{AbstractString,Vector{UInt8}} date_created::DateTime date_modified::DateTime header_length::Int64 page_length::Int64 page_count::Int64 sas_release::Union{AbstractString,Vector{UInt8}} server_type::Union{AbstractString,Vector{UInt8}} os_version::Union{AbstractString,Vector{UInt8}} os_name::Union{AbstractString,Vector{UInt8}} row_length::Int64 row_count::Int64 col_count_p1::Int64 col_count_p2::Int64 mix_page_row_count::Int64 lcs::Int64 lcp::Int64 current_page_type::Int64 current_page_block_count::Int64 # number of records in current page current_page_subheaders_count::Int64 column_count::Int64 # creator_proc::Union{Void, Vector{UInt8}} byte_chunk::Dict{Symbol, Vector{UInt8}} string_chunk::Dict{Symbol, AbstractVector{String}} current_row_in_chunk_index::Int64 current_page::Int64 vendor::UInt8 use_base_transcoder::Bool string_decoder_buffer::IOBuffer string_decoder::StringDecoder column_types_dict::CIDict{Symbol,Type} Handler(config::ReaderConfig) = new( Base.open(config.filename), config) end
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
8273
# default settings const default_chunk_size = 0 const default_verbose_level = 1 # interesting... using semicolons would make it into a 1-dimensional array const magic = [ b"\x00\x00\x00\x00\x00\x00\x00\x00" ; b"\x00\x00\x00\x00\xc2\xea\x81\x60" ; b"\xb3\x14\x11\xcf\xbd\x92\x08\x00" ; b"\x09\xc7\x31\x8c\x18\x1f\x10\x11" ] const align_1_checker_value = b"3" const align_1_offset = 32 const align_1_length = 1 const align_1_value = 4 const u64_byte_checker_value = b"3" const align_2_offset = 35 const align_2_length = 1 const align_2_value = 4 const endianness_offset = 37 const endianness_length = 1 const platform_offset = 39 const platform_length = 1 const encoding_offset = 70 const encoding_length = 1 const dataset_offset = 92 const dataset_length = 64 const file_type_offset = 156 const file_type_length = 8 const date_created_offset = 164 const date_created_length = 8 const date_modified_offset = 172 const date_modified_length = 8 const header_size_offset = 196 const header_size_length = 4 const page_size_offset = 200 const page_size_length = 4 const page_count_offset = 204 const page_count_length = 4 const sas_release_offset = 216 const sas_release_length = 8 const sas_server_type_offset = 224 const sas_server_type_length = 16 const os_version_number_offset = 240 const os_version_number_length = 16 const os_maker_offset = 256 const os_maker_length = 16 const os_name_offset = 272 const os_name_length = 16 const page_bit_offset_x86 = 16 const page_bit_offset_x64 = 32 const subheader_pointer_length_x86 = 12 const subheader_pointer_length_x64 = 24 const page_type_offset = 0 const page_type_length = 2 const block_count_offset = 2 const block_count_length = 2 const subheader_count_offset = 4 const subheader_count_length = 2 const page_meta_type = 0 const page_data_type = 256 const page_amd_type = 1024 const page_metc_type = 16384 const page_comp_type = -28672 const page_mix_types = [512, 640] const page_meta_data_mix_types = vcat(page_meta_type, page_data_type, page_mix_types) const subheader_pointers_offset = 8 const subheader_comp_uncompressed = 0 const subheader_comp_truncated = 1 const subheader_comp_compressed = 4 const text_block_size_length = 2 const row_length_offset_multiplier = 5 const row_count_offset_multiplier = 6 const col_count_p1_multiplier = 9 const col_count_p2_multiplier = 10 const row_count_on_mix_page_offset_multiplier = 15 const column_name_pointer_length = 8 const column_name_text_subheader_offset = 0 const column_name_text_subheader_length = 2 const column_name_offset_offset = 2 const column_name_offset_length = 2 const column_name_length_offset = 4 const column_name_length_length = 2 const column_data_offset_offset = 8 const column_data_length_offset = 8 const column_data_length_length = 4 const column_type_offset = 14 const column_type_length = 1 const sas_date_origin = Date(1960, 1, 1) const sas_datetime_origin = DateTime(sas_date_origin) const rle_compression = b"SASYZCRL" const rdc_compression = b"SASYZCR2" const compression_method_none = 0x00 const compression_method_rle = 0x01 const compression_method_rdc = 0x02 # Courtesy of Evan Miller's ReadStat project # Source: https://github.com/WizardMac/ReadStat/blob/master/src/sas/readstat_sas.c const encoding_names = Dict( 20 => "UTF-8", 28 => "US-ASCII", 29 => "ISO-8859-1", 30 => "ISO-8859-2", 31 => "ISO-8859-3", 34 => "ISO-8859-6", 35 => "ISO-8859-7", 36 => "ISO-8859-8", 39 => "ISO-8859-11", 40 => "ISO-8859-9", 60 => "WINDOWS-1250", 61 => "WINDOWS-1251", 62 => "WINDOWS-1252", 63 => "WINDOWS-1253", 64 => "WINDOWS-1254", 65 => "WINDOWS-1255", 66 => "WINDOWS-1256", 67 => "WINDOWS-1257", 118 => "CP950", 119 => "EUC-TW", 123 => "BIG5-HKSCS", 125 => "GB18030", 126 => "CP936", 134 => "EUC-JP", 138 => "CP932", 140 => "EUC-KR", 141 => "CP949" ) const index_rowSizeIndex = 0 const index_rowSizeIndex = 0 const index_columnSizeIndex = 1 const index_subheaderCountsIndex = 2 const index_columnTextIndex = 3 const index_columnNameIndex = 4 const index_columnAttributesIndex = 5 const index_formatAndLabelIndex = 6 const index_columnListIndex = 7 const index_dataSubheaderIndex = 8 const index_end_of_header = 100 const subheader_signature_to_index = Dict( b"\xF7\xF7\xF7\xF7" => index_rowSizeIndex, b"\xF7\xF7\xF7\xF7\x00\x00\x00\x00" => index_rowSizeIndex, b"\x00\x00\x00\x00\xF7\xF7\xF7\xF7" => index_rowSizeIndex, b"\xF7\xF7\xF7\xF7\xFF\xFF\xFB\xFE" => index_rowSizeIndex, b"\xF6\xF6\xF6\xF6" => index_columnSizeIndex, b"\x00\x00\x00\x00\xF6\xF6\xF6\xF6" => index_columnSizeIndex, b"\xF6\xF6\xF6\xF6\x00\x00\x00\x00" => index_columnSizeIndex, b"\xF6\xF6\xF6\xF6\xFF\xFF\xFB\xFE" => index_columnSizeIndex, b"\x00\xFC\xFF\xFF" => index_subheaderCountsIndex, b"\xFF\xFF\xFC\x00" => index_subheaderCountsIndex, b"\x00\xFC\xFF\xFF\xFF\xFF\xFF\xFF" => index_subheaderCountsIndex, b"\xFF\xFF\xFF\xFF\xFF\xFF\xFC\x00" => index_subheaderCountsIndex, b"\xFD\xFF\xFF\xFF" => index_columnTextIndex, b"\xFF\xFF\xFF\xFD" => index_columnTextIndex, b"\xFD\xFF\xFF\xFF\xFF\xFF\xFF\xFF" => index_columnTextIndex, b"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFD" => index_columnTextIndex, b"\xFF\xFF\xFF\xFF" => index_columnNameIndex, b"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" => index_columnNameIndex, b"\xFC\xFF\xFF\xFF" => index_columnAttributesIndex, b"\xFF\xFF\xFF\xFC" => index_columnAttributesIndex, b"\xFC\xFF\xFF\xFF\xFF\xFF\xFF\xFF" => index_columnAttributesIndex, b"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFC" => index_columnAttributesIndex, b"\xFE\xFB\xFF\xFF" => index_formatAndLabelIndex, b"\xFF\xFF\xFB\xFE" => index_formatAndLabelIndex, b"\xFE\xFB\xFF\xFF\xFF\xFF\xFF\xFF" => index_formatAndLabelIndex, b"\xFF\xFF\xFF\xFF\xFF\xFF\xFB\xFE" => index_formatAndLabelIndex, b"\xFE\xFF\xFF\xFF" => index_columnListIndex, b"\xFF\xFF\xFF\xFE" => index_columnListIndex, b"\xFE\xFF\xFF\xFF\xFF\xFF\xFF\xFF" => index_columnListIndex, b"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFE" => index_columnListIndex ) # List of frequently used SAS date and datetime formats # http://support.sas.com/documentation/cdl/en/etsug/60372/HTML/default/viewer.htm#etsug_intervals_sect009.htm # https://github.com/epam/parso/blob/master/src/main/java/com/epam/parso/impl/SasFileConstants.java const sas_date_formats = ["DATE", "DAY", "DDMMYY", "DOWNAME", "JULDAY", "JULIAN", "MMDDYY", "MMYY", "MMYYC", "MMYYD", "MMYYP", "MMYYS", "MMYYN", "MONNAME", "MONTH", "MONYY", "QTR", "QTRR", "NENGO", "WEEKDATE", "WEEKDATX", "WEEKDAY", "WEEKV", "WORDDATE", "WORDDATX", "YEAR", "YYMM", "YYMMC", "YYMMD", "YYMMP", "YYMMS", "YYMMN", "YYMON", "YYMMDD", "YYQ", "YYQC", "YYQD", "YYQP", "YYQS", "YYQN", "YYQR", "YYQRC", "YYQRD", "YYQRP", "YYQRS", "YYQRN", "YYMMDDP", "YYMMDDC", "E8601DA", "YYMMDDN", "MMDDYYC", "MMDDYYS", "MMDDYYD", "YYMMDDS", "B8601DA", "DDMMYYN", "YYMMDDD", "DDMMYYB", "DDMMYYP", "MMDDYYP", "YYMMDDB", "MMDDYYN", "DDMMYYC", "DDMMYYD", "DDMMYYS", "MINGUO"] const sas_datetime_formats = ["DATETIME", "DTWKDATX", "B8601DN", "B8601DT", "B8601DX", "B8601DZ", "B8601LX", "E8601DN", "E8601DT", "E8601DX", "E8601DZ", "E8601LX", "DATEAMPM", "DTDATE", "DTMONYY", "DTMONYY", "DTWKDATX", "DTYEAR", "TOD", "MDYAMPM"] const zero_space = b"\x00 " const column_type_none = 0x00 const column_type_decimal = 0x01 const column_type_string = 0x02 const VENDOR_STAT_TRANSFER = 0x00 const VENDOR_SAS = 0x01 const FALLBACK_ENCODING = "UTF-8" const ENCODINGS_OK_WITH_BASE_TRANSCODER = [ "UTF-8" , "US-ASCII" ] const REGULAR_STR_ARRAY(n) = Array{String}(undef, n) const EMPTY_STRING = ""
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
864
# This file implements Tables interface and provide compatibility # to the Queryverse ecosystem. # ----------------------------------------------------------------------------- # Tables.jl implementation Tables.istable(::Type{<:ResultSet}) = true # AbstractColumns interface Tables.columnaccess(::Type{<:ResultSet}) = true Tables.columns(rs::ResultSet) = rs Tables.getcolumn(rs::ResultSet, i::Int) = rs[names(rs)[i]] # AbstractRow interface Tables.rowaccess(::Type{<:ResultSet}) = true Tables.rows(rs::ResultSet) = rs # Schema definition Tables.schema(rs::ResultSet) = Tables.Schema(names(rs), eltype.(columns(rs))) # ----------------------------------------------------------------------------- # Queryverse compatibility IteratorInterfaceExtensions.getiterator(rs::ResultSet) = Tables.datavaluerows(rs) TableTraits.isiterabletable(x::ResultSet) = true
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
8415
""" Strip from the right end of the `bytes` array for any byte that matches the ones specified in the `remove` argument. See Python's bytes.rstrip function. """ function brstrip(bytes::AbstractVector{UInt8}, remove::AbstractVector{UInt8}) for i in length(bytes):-1:1 x = bytes[i] found = false for m in remove if x == m found = true break end end if !found return bytes[1:i] end end return Vector{UInt8}() end # """ # Faster version of rstrip (slightly modified version from julia master branch) # """ # function rstrip2(s::String) # i = endof(s) # while 1 ≤ i # c = s[i] # j = prevind(s, i) # c == ' ' || return s[1:i] # i = j # end # EMPTY_STRING # end """ Find needle in the haystack with both `Vector{UInt8}` type arguments. """ function contains(haystack::AbstractVector{UInt8}, needle::AbstractVector{UInt8}) hlen = length(haystack) nlen = length(needle) if hlen >= nlen for i in 1:hlen-nlen+1 if haystack[i:i+nlen-1] == needle return true end end end return false end # Fast implementation to `reinterpret` int/floats # See https://discourse.julialang.org/t/newbie-question-convert-two-8-byte-values-into-a-single-16-byte-value/7662/5 # Version a. Original implementation... slow. # """ # Byte swap is needed only if file the array represent a different endianness # than the system. This function does not make any assumption and the caller # is expected to pass `true` to the `swap` argument when needed. # """ # function convertfloat64a(bytes::Vector{UInt8}, swap::Bool) # # global count_a # # count_a::Int64 += 1 # values = [bytes[i:i+8-1] for i in 1:8:length(bytes)] # values = map(x -> reinterpret(Float64, x)[1], values) # swap ? bswap.(values) : values # end # Version b. Should be a lot faster. # julia> @btime convertfloat64b(r, :LittleEndian); # 370.677 μs (98 allocations: 395.41 KiB) # """ # It turns out that `reinterpret` consider a single UInt64 as BigEndian # Hence it's necessary to swap bytes if the array is in LittleEndian convention. # This function does not make any assumption and the caller # is expected to pass `true` to the `swap` argument when needed. # """ # function convertfloat64b(bytes::Vector{UInt8}, endianess::Symbol) # # global count_b # # count_b::Int64 += 1 # v = endianess == :LittleEndian ? reverse(bytes) : bytes # c = convertint64.(v[1:8:end],v[2:8:end],v[3:8:end],v[4:8:end], # v[5:8:end], v[6:8:end], v[7:8:end], v[8:8:end]) # r = reinterpret.(Float64, c) # endianess == :LittleEndian ? reverse(r) : r # end # Version c # julia> @btime convertfloat64c(r, :LittleEndian); # 75.835 μs (2 allocations: 78.20 KiB) # function convertfloat64c(bytes::Vector{UInt8}, endianess::Symbol) # L = length(bytes) # n = div(L, 8) # numbers to convert # r = zeros(Float64, n) # results # j = 1 # result index # @inbounds for i in 1:8:L # if endianess == :LittleEndian # r[j] = reinterpret(Float64, convertint64( # bytes[i+7], bytes[i+6], bytes[i+5], bytes[i+4], # bytes[i+3], bytes[i+2], bytes[i+1], bytes[i])) # else # r[j] = reinterpret(Float64, convertint64( # bytes[i], bytes[i+1], bytes[i+2], bytes[i+3], # bytes[i+4], bytes[i+5], bytes[i+6], bytes[i+7])) # end # j += 1 # end # r # end # Version d # julia> @btime convertfloat64d(r, :LittleEndian); # 184.463 μs (4 allocations: 156.47 KiB) # function convertfloat64d(bytes::Vector{UInt8}, endianess::Symbol) # if endianess == :LittleEndian # v = reverse(bytes) # else # v = bytes # end # L = length(bytes) # n = div(L, 8) # numbers to convert # r = zeros(Float64, n) # results # j = n # result index # for i in 1:8:L # r[j] = reinterpret(Float64, convertint64( # v[i], v[i+1], v[i+2], v[i+3], # v[i+4], v[i+5], v[i+6], v[i+7])) # j -= 1 # end # r # end # Version e - same as version c except that it does bit-shifting # inline here in a new way. # julia> @btime convertfloat64e(r, :LittleEndian); # 174.685 μs (2 allocations: 78.20 KiB) # function convertfloat64e(bytes::Vector{UInt8}, endianess::Symbol) # L = length(bytes) # n = div(L, 8) # numbers to convert # r = zeros(Float64, n) # results # j = 1 # result index # for i in 1:8:L # v = UInt64(0) # if endianess == :LittleEndian # for k in 7:-1:1 # v = (v | bytes[i + k]) << 8 # end # v |= bytes[i] # else # for k in 0:6 # v = (v | bytes[i + k]) << 8 # end # v |= bytes[i + 7] # end # r[j] = reinterpret(Float64, v) # j += 1 # end # r # end # Version f. Best one so far! # julia> @btime convertfloat64f(r, :LittleEndian) # 35.132 μs (2 allocations: 78.20 KiB) # # results will be updated directly in the provided array `r` function convertfloat64f!(r::AbstractVector{Float64}, bytes::Vector{UInt8}, endianess::Symbol) L = length(bytes) n = div(L, 8) # numbers to convert j = 1 # result index @inbounds for i in 1:8:L if endianess == :LittleEndian r[j] = reinterpret(Float64, UInt64(bytes[i+7]) << 56 | UInt64(bytes[i+6]) << 48 | UInt64(bytes[i+5]) << 40 | UInt64(bytes[i+4]) << 32 | UInt64(bytes[i+3]) << 24 | UInt64(bytes[i+2]) << 16 | UInt64(bytes[i+1]) << 8 | UInt64(bytes[i])) else r[j] = reinterpret(Float64, UInt64(bytes[i]) << 56 | UInt64(bytes[i+1]) << 48 | UInt64(bytes[i+2]) << 40 | UInt64(bytes[i+3]) << 32 | UInt64(bytes[i+4]) << 24 | UInt64(bytes[i+5]) << 16 | UInt64(bytes[i+6]) << 8 | UInt64(bytes[i+7])) end j += 1 end r end # Conversion routines for 1,2,4,8-byte words into a single 64-bit integer @inline function convertint64B(a::UInt8,b::UInt8,c::UInt8,d::UInt8,e::UInt8,f::UInt8,g::UInt8,h::UInt8) (Int64(a) << 56) | (Int64(b) << 48) | (Int64(c) << 40) | (Int64(d) << 32) | (Int64(e) << 24) | (Int64(f) << 16) | (Int64(g) << 8) | Int64(h) end @inline function convertint64L(a::UInt8,b::UInt8,c::UInt8,d::UInt8,e::UInt8,f::UInt8,g::UInt8,h::UInt8) (Int64(h) << 56) | (Int64(g) << 48) | (Int64(f) << 40) | (Int64(e) << 32) | (Int64(d) << 24) | (Int64(c) << 16) | (Int64(b) << 8) | Int64(a) end @inline function convertint64B(a::UInt8,b::UInt8,c::UInt8,d::UInt8) (Int64(a) << 24) | (Int64(b) << 16) | (Int64(c) << 8) | Int64(d) end @inline function convertint64L(a::UInt8,b::UInt8,c::UInt8,d::UInt8) (Int64(d) << 24) | (Int64(c) << 16) | (Int64(b) << 8) | Int64(a) end @inline function convertint64B(a::UInt8,b::UInt8) (Int64(a) << 8) | Int64(b) end @inline function convertint64L(a::UInt8,b::UInt8) (Int64(b) << 8) | Int64(a) end # this version is slightly slower # function convertint64b(a::UInt8,b::UInt8,c::UInt8,d::UInt8,e::UInt8,f::UInt8,g::UInt8,h::UInt8) # v = UInt64(a) << 8 # v |= b ; v <<= 8 # v |= c ; v <<= 8 # v |= d ; v <<= 8 # v |= e ; v <<= 8 # v |= f ; v <<= 8 # v |= g ; v <<= 8 # v |= h # v # end # TODO cannot use AbstractString for some reasons # """ # Concatenate an array of strings to a single string # """ # concatenate(strArray::Vector{T} where T <: AbstractString, separator=",") = # foldl((x, y) -> *(x, y, separator), "", strArray)[1:end-length(separator)] # """ # Convert a dictionary to an array of k=>v strings # """ # stringarray(dict::Dict) = # ["$x => $y" for (x, y) in dict]
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
878
using SASLib, PooledArrays, BenchmarkTools versioninfo() opfn(size) = SASLib.ObjectPool{String}{UInt32}("", size) pafn(size) = PooledArray{String,UInt32}(fill("", size)) rafn(size) = fill("", size) size = 100000 dishes = ["food$i" for i in 1:size] assignitems = (x::AbstractArray, y::AbstractArray) -> x[1:end] = y[1:end] nsamples = 5000 nseconds = 600 println("** Regular Array **") bra = @benchmarkable assignitems(x, y) setup=((x,y)=($rafn($size), $dishes)) samples=nsamples seconds=nseconds display(run(bra)) println("\n\n** Pooled Array (Dict Pool) **") bpa = @benchmarkable assignitems(x, y) setup=((x,y)=($pafn($size), $dishes)) samples=nsamples seconds=nseconds display(run(bpa)) println("\n\n** Object Pool **") bop = @benchmarkable assignitems(x, y) setup=((x,y)=($opfn($size), $dishes)) samples=nsamples seconds=nseconds display(run(bop)) println() println()
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
370
using BenchmarkTools using InteractiveUtils using Printf if length(ARGS) != 2 println("Usage: $PROGRAM_FILE <filename> <count>") exit() end versioninfo() println() load_time = @elapsed using SASLib @printf "Loaded library in %.3f seconds\n" load_time b = @benchmark readsas($ARGS[1], verbose_level=0) samples=parse(Int, ARGS[2]) display(b) println() println()
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
3809
using BenchmarkTools using SASLib using ReadStat using Printf if length(ARGS) != 1 println("Usage: julia ", PROGRAM_FILE, " <output-dir>") exit(1) end dir = ARGS[1] if !isdir(dir) println("Error: ", dir, " does not exist") exit(2) end function performtest(io, f, samples, seconds) println(io, "\n\n================ $f =================") mime = MIME("text/plain") try @info("testing $f with ReadStat") println(io, "ReadStat:") b1 = @benchmark read_sas7bdat($f) samples=samples seconds=seconds show(io, mime, b1) println(io) @info("testing $f with SASLib") println(io, "SASLib:") b2 = @benchmark readsas($f, verbose_level=0) samples=samples seconds=seconds show(io, mime, b2) println(io) @info("testing $f with SASLib regular string") println(io, "SASLib (regular string):") b3 = @benchmark readsas($f, string_array_fn=Dict(:_all_ => REGULAR_STR_ARRAY), verbose_level=0) samples=samples seconds=seconds show(io, mime, b3) println(io) md = metadata(f) nd = count(x -> last(x) == Float64, md.columnsinfo) ns = count(x -> last(x) == String, md.columnsinfo) nt = md.ncols - ns - nd println("debug: meta nd=$nd ns=$ns nt=$nt") t1 = minimum(b1).time / 1000000 t2 = minimum(b2).time / 1000000 t3 = minimum(b3).time / 1000000 p2 = round(Int, t2/t1*100) p3 = round(Int, t3/t1*100) comp = md.compression @info("Results: ", join(string.([f,t1,t2,p2,t3,p3,nd,ns,nt,comp]), ",")) @printf io "%-40s: %8.3f ms %8.3f ms (%3d%%) %8.3f ms (%3d%%) %4d %4d %4d %4s\n" f t1 t2 p2 t3 p3 nd ns nt comp catch ex println(ex) b = " " @printf io "%-40s: %8s ms %8s ms (%3s%%) %8s ms (%3s%%) %4s %4s %4s %4s\n" f b b b b b b b b b finally flush(io) end end open("$dir/saslib_vs_readstat.log", "w") do io @printf io "%-40s: %8s %8s %3s %8s %3s %4s %4s %4s %4s\n" "Filename" "ReadStat" "SASLib" "S/R" "SASLibA" "SA/R" "F64" "STR" "DT" "COMP" files = [ ("data_pandas/test3.sas7bdat", 10000, 5), ("data_misc/numeric_1000000_2.sas7bdat", 100, 5), ("data_misc/types.sas7bdat", 10000, 5), ("data_AHS2013/homimp.sas7bdat", 10000, 5), ("data_AHS2013/omov.sas7bdat", 10000, 5), ("data_AHS2013/owner.sas7bdat", 10000, 5), ("data_AHS2013/ratiov.sas7bdat", 10000,5), ("data_AHS2013/rmov.sas7bdat", 10000, 5), ("data_AHS2013/topical.sas7bdat", 10000, 30), ("data_pandas/airline.sas7bdat", 10000, 5), ("data_pandas/datetime.sas7bdat", 10000, 5), ("data_pandas/productsales.sas7bdat", 10000, 10), ("data_pandas/test1.sas7bdat", 10000, 5), ("data_pandas/test2.sas7bdat", 10000, 5), ("data_pandas/test4.sas7bdat", 10000, 5), ("data_pandas/test5.sas7bdat", 10000, 5), ("data_pandas/test6.sas7bdat", 10000, 5), ("data_pandas/test7.sas7bdat", 10000, 5), ("data_pandas/test8.sas7bdat", 10000, 5), ("data_pandas/test9.sas7bdat", 10000, 5), ("data_pandas/test11.sas7bdat", 10000, 5), ("data_pandas/test10.sas7bdat", 10000, 5), ("data_pandas/test12.sas7bdat", 10000, 5), ("data_pandas/test13.sas7bdat", 10000, 5), ("data_pandas/test14.sas7bdat", 10000, 5), ("data_pandas/test15.sas7bdat", 10000, 5), ("data_pandas/test16.sas7bdat", 10000, 5), ("data_pandas/zero_variables.sas7bdat", 10000, 5), ("data_reikoch/barrows.sas7bdat", 10000, 5), ("data_reikoch/binary.sas7bdat", 10000, 5), ("data_reikoch/extr.sas7bdat", 10000, 5), ("data_reikoch/ietest2.sas7bdat", 10000, 5), ] for (f, x, y) in files performtest(io, f, x, y) end end
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
366
using BenchmarkTools if length(ARGS) != 2 println("Usage: $PROGRAM_FILE <filename> <count>") exit() end versioninfo() println() tic() using SASLib @printf "Loaded library in %.3f seconds\n" toq() b = @benchmark readsas($ARGS[1], verbose_level=0, string_array_fn=Dict(:_all_ => REGULAR_STR_ARRAY)) samples=parse(Int, ARGS[2]) display(b) println() println()
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
3161
# Compare loading one file in Python vs Julia using Dates using InteractiveUtils: versioninfo if length(ARGS) != 3 println("Usage: $PROGRAM_FILE <filename> <count> <outputdir>") exit() end using SASLib, BenchmarkTools using Humanize: datasize file = ARGS[1] cnt = ARGS[2] dir = ARGS[3] basename = split(file, "/")[end] shortname = replace(basename, r"\.sas7bdat" => "") output = "$dir/py_jl_$(shortname)_$(cnt).md" prt(msg...) = println(now(), " ", msg...) # run python part # result is minimum time in seconds prt("Running python test for file ", file, " ", cnt, " times") pyver_cmd = `python -V` pyres_cmd = `python perf_test1.py $file $cnt` pyver = readlines(open(pyver_cmd))[1] pyres = readlines(open(pyres_cmd))[1] # first line of result is Minimum py = parse(Float64, match(r"[0-9]*\.[0-9]*", pyres).match) # read metadata prt("Reading metadata of data file") meta = metadata(file) nrows = meta.nrows ncols = meta.ncols nnumcols = count(x -> x == Float64, [ty for (name, ty) in meta.columnsinfo]) nstrcols = ncols - nnumcols # run julia part prt("Running julia test") jlb1 = @benchmark readsas(file, verbose_level=0) samples=parse(Int, cnt) jl1 = jlb1.times[1] / 1e9 # convert nanoseconds to seconds # run julia part using regular string array if nstrcols > 0 prt("Running julia test (regular string array)") jlb2 = @benchmark readsas(file, string_array_fn=Dict(:_all_=>REGULAR_STR_ARRAY), verbose_level=0) samples=parse(Int, cnt) jl2 = jlb2.times[1] / 1e9 # convert nanoseconds to seconds jl = min(jl1, jl2) # pick faster run jltitle = "Julia (ObjectPool)" else jl = jl1 jltitle = "Julia" end # analysis direction = jl < py ? "faster" : "slower" ratio = round(direction == "faster" ? py/jl : jl/py, digits = 1) io = nothing try io = open(output, "w") println(io, "# Julia/Python Performance Test Result") println(io) println(io, "## Summary") println(io) println(io, "Julia is ~$(ratio)x $direction than Python/Pandas") println(io) println(io, "## Test File") println(io) println(io, "Iterations: $cnt") println(io) println(io, "Filename|Size|Rows|Columns|Numeric Columns|String Columns") println(io, "--------|----|----|-------|---------------|--------------") println(io, "$basename|$(datasize(lstat(file).size))|$nrows|$ncols|$nnumcols|$nstrcols") println(io, "") println(io, "## Python") println(io, "```") println(io, "\$ $(join(pyver_cmd.exec, " "))") println(io, pyver) println(io, "\$ $(join(pyres_cmd.exec, " "))") println(io, pyres) println(io, "```") println(io) println(io, "## $jltitle") println(io, "```") versioninfo(io) println(io) show(io, MIME"text/plain"(), jlb1) println(io, "\n```") if nstrcols > 0 println(io) println(io, "## Julia (Regular String Array)") println(io, "```") versioninfo(io) println(io) show(io, MIME"text/plain"(), jlb2) println(io, "\n```") end catch err println(err) finally io !== nothing && try close(io) catch e println(e) end end prt("Written file $output")
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
155
using SASLib files = filter(x -> endswith(x, "sas7bdat"), Base.Filesystem.readdir()) for f in files println("=== $f ===") result = readsas(f) end
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
code
18418
using Test using SASLib using Dates using Statistics: mean using SharedArrays: SharedArray using Tables import IteratorInterfaceExtensions, TableTraits using StringEncodings: encode,decode function getpath(dir, file) path = joinpath(dir, file) #println("================ $path ================") path end readfile(dir, file; kwargs...) = readsas(getpath(dir, file); kwargs...) openfile(dir, file; kwargs...) = SASLib.open(getpath(dir, file), kwargs...) getmetadata(dir, file; kwargs...) = metadata(getpath(dir, file), kwargs...) # Struct used for column type conversion test case below struct YearStr year::String end Base.convert(::Type{YearStr}, v::Float64) = YearStr(string(round(Int, v))) @testset "SASLib" begin @testset "object pool" begin println("Testing object pool...") # string pool default = "" x = SASLib.ObjectPool{String, UInt8}(default, 5) @test length(x) == 5 @test size(x) == (5, ) @test lastindex(x) == 5 @test count(v -> v == default, x) == 5 @test count(v -> v === default, x) == 5 @test map(v -> "x$v", x) == [ "x", "x", "x", "x", "x" ] x[1] = "abc" @test x[1] == "abc" @test x.uniqueitemscount == 2 x[2] = "abc" @test x[2] == "abc" @test x.uniqueitemscount == 2 x[3] = "xyz" @test x.uniqueitemscount == 3 @test x.itemscount == 5 @test_throws BoundsError x[6] == "" # tuple pool y = SASLib.ObjectPool{Tuple, UInt8}((1,1,1), 100) y[1:100] = [(v, v, v) for v in 1:100] @test y[1] == (1,1,1) @test y[2] == (2,2,2) @test y[100] == (100,100,100) @test y.uniqueitemscount == 100 # first one is the same as the default # more error conditions z = SASLib.ObjectPool{Int, UInt8}(0, 1000) @test_throws BoundsError z[1:300] = 1:300 end @testset "object pool datatype" begin println("Testing object pool datatype selection...") # should not error when nrow = 255 due to incorrect datatype selected for ObjectPool s = SASLib.readsas("data_objectpool/pooltest255.sas7bdat") @test size(s, 1) == 255 end @testset "case insensitive dict" begin function testdict(lowercase_key, mixedcase_key, second_lowercase_key) T = typeof(lowercase_key) d = SASLib.CIDict{T,Int}() # getindex/setindex! d[lowercase_key] = 99 @test d[lowercase_key] == 99 @test d[mixedcase_key] == 99 d[mixedcase_key] = 88 # should replace original value @test length(d) == 1 # still 1 element @test d[lowercase_key] == 88 @test d[mixedcase_key] == 88 # haskey @test haskey(d, lowercase_key) == true @test haskey(d, mixedcase_key) == true # iteration d[second_lowercase_key] = 77 ks = T[] vs = Int[] for (k,v) in d push!(ks, k) push!(vs, v) end @test ks == [lowercase_key, second_lowercase_key] @test vs == [88, 77] # keys/values @test collect(keys(d)) == [lowercase_key, second_lowercase_key] @test collect(values(d)) == [88, 77] # show @test show(d) == nothing end testdict(:abc, :ABC, :def) testdict("abc", "ABC", "def") end @testset "open and close" begin handler = openfile("data_pandas", "test1.sas7bdat") @test typeof(handler) == SASLib.Handler @test handler.config.filename == getpath("data_pandas", "test1.sas7bdat") @test SASLib.close(handler) == nothing end @testset "read basic test files (test*.sas7bdat)" begin dir = "data_pandas" files = filter(x -> endswith(x, "sas7bdat") && startswith(x, "test"), Base.Filesystem.readdir("$dir")) for f in files result = readfile(dir, f) @test size(result) == (10, 100) end end @testset "incremental read" begin handler = openfile("data_pandas", "test1.sas7bdat") @test handler.config.filename == getpath("data_pandas", "test1.sas7bdat") result = SASLib.read(handler, 3) # read 3 rows @test size(result, 1) == 3 result = SASLib.read(handler, 4) # read 4 rows @test size(result, 1) == 4 result = SASLib.read(handler, 5) # should read only 3 rows even though we ask for 5 @test size(result, 1) == 3 end @testset "various data types" begin rs = readfile("data_pandas", "test1.sas7bdat") @test sum(rs[:Column1][1:5]) == 2.066 @test count(isnan, rs[:Column1]) == 1 @test rs[:Column98][1:3] == [ "apple", "dog", "pear" ] @test rs[:Column4][1:3] == [Date("1965-12-10"), Date("1977-03-07"), Date("1983-08-15")] end @testset "datetime with missing values" begin rs = readfile("data_pandas", "datetime.sas7bdat") @test size(rs) == (5, 4) @test rs[:mtg][1] == Date(2017, 11, 24) @test rs[:dt][5] == DateTime(2018, 3, 31, 14, 20, 33) @test count(ismissing, rs[:mtg]) == 1 @test count(ismissing, rs[:dt]) == 3 end @testset "include/exclude columns" begin fname = getpath("data_pandas", "productsales.sas7bdat") rs = readsas(fname, include_columns=[:MONTH, :YEAR]) @test size(rs, 2) == 2 @test sort(names(rs)) == sort([:MONTH, :YEAR]) rs = readsas(fname, include_columns=[1, 2, 7]) @test size(rs, 2) == 3 @test sort(names(rs)) == sort([:ACTUAL, :PREDICT, :PRODUCT]) rs = readsas(fname, exclude_columns=[:DIVISION]) @test size(rs, 2) == 9 @test !(:DIVISION in names(rs)) rs = readsas(fname, exclude_columns=collect(2:10)) @test size(rs, 2) == 1 @test sort(names(rs)) == sort([:ACTUAL]) # case insensitive include/exclude rs = readsas(fname, include_columns=[:month, :Year]) @test size(rs, 2) == 2 rs = readsas(fname, exclude_columns=[:diVisiON]) @test size(rs, 2) == 9 # test bad include/exclude param # see https://discourse.julialang.org/t/test-warn-doesnt-work-with-warn-in-0-7/9001 @test_logs (:warn, "Unknown include column blah") (:warn, "Unknown include column Year") readsas(fname, include_columns=[:blah, :Year]) @test_logs (:warn, "Unknown exclude column blah") (:warn, "Unknown exclude column Year") readsas(fname, exclude_columns=[:blah, :Year]) # error handling @test_throws SASLib.ConfigError readsas(fname, include_columns=[1], exclude_columns=[1]) end @testset "ResultSet" begin rs = readfile("data_pandas", "productsales.sas7bdat") # metadata for result set @test size(rs) == (1440, 10) @test size(rs,1) == 1440 @test size(rs,2) == 10 @test length(columns(rs)) == 10 @test length(names(rs)) == 10 # cell indexing @test rs[1][1] ≈ 925.0 @test rs[1,1] ≈ 925.0 @test rs[1,:ACTUAL] ≈ 925.0 # row/column indexing @test typeof(rs[1]) == NamedTuple{ (:ACTUAL, :PREDICT, :COUNTRY, :REGION, :DIVISION, :PRODTYPE, :PRODUCT, :QUARTER, :YEAR, :MONTH), Tuple{Float64,Float64,String,String,String,String,String,Float64,Float64,Dates.Date}} @test typeof(rs[:ACTUAL]) == Array{Float64,1} @test sum(rs[:ACTUAL]) ≈ 730337.0 # iteration @test sum(r[1] for r in rs) ≈ 730337.0 # portion of result set @test typeof(rs[1:2]) == SASLib.ResultSet @test typeof(rs[:ACTUAL, :PREDICT]) == SASLib.ResultSet @test rs[1:2][1][1] ≈ 925.0 @test rs[:ACTUAL, :PREDICT][1][1] ≈ 925.0 # setindex! let rscopy = deepcopy(rs) rs[1,1] = 100.0 @test rs[1,1] ≈ 100.0 rs[1,:ACTUAL] = 200.0 @test rs[1,:ACTUAL] ≈ 200.0 end # display related @test show(rs) == nothing @test SASLib.sizestr(rs) == "1440 rows x 10 columns" # Tables.jl let twocols = rs[:ACTUAL, :PREDICT] # General @test Tables.istable(typeof(rs)) @test Tables.rowaccess(typeof(rs)) @test Tables.columnaccess(typeof(rs)) # AbstractRow interface let row = twocols[3] # (ACTUAL = 608.0, PREDICT = 846.0) @test Tables.getcolumn(row, 1) ≈ 608.0 @test Tables.getcolumn(row, :ACTUAL) ≈ 608.0 @test Tables.columnnames(row) === (:ACTUAL, :PREDICT) end # AbstractColumns interface let tab = Tables.columns(twocols) @test Tables.getcolumn(tab, 1) isa Array{Float64,1} @test Tables.getcolumn(tab, 1) |> size === (1440,) @test Tables.getcolumn(tab, :ACTUAL) isa Array{Float64,1} @test Tables.getcolumn(tab, :ACTUAL) |> size === (1440,) @test Tables.columnnames(tab) === propertynames(twocols) end # Usages @test size(Tables.matrix(twocols)) == (1440, 2) end # old tests #@test Tables.schema(rs).names == Tuple(names(rs)) #@test Tables.schema(rs).types == Tuple(eltype.([rs[s] for s in names(rs)])) #@test length(Tables.rowtable(rs)) == 1440 #@test length(Tables.columntable(rs)) == 10 #@test size(Tables.matrix(rs[:ACTUAL, :PREDICT])) == (1440,2) #@test Tables.rows(rs) |> first |> propertynames |> Tuple == Tuple(names(rs)) #@test Tables.columns(rs) |> propertynames |> Tuple == Tuple(names(rs)) # Queryverse integration @test TableTraits.isiterabletable(rs) == true @test eltype(IteratorInterfaceExtensions.getiterator(rs)) <: NamedTuple @test IteratorInterfaceExtensions.getiterator(rs) |> first |> propertynames |> Tuple == Tuple(names(rs)) end @testset "metadata" begin md = getmetadata("data_pandas", "test1.sas7bdat") @test md.filename == getpath("data_pandas", "test1.sas7bdat") @test md.encoding == "WINDOWS-1252" @test md.endianness == :LittleEndian @test md.compression == :none @test md.pagesize == 65536 @test md.npages == 1 @test md.nrows == 10 @test md.ncols == 100 @test length(md.columnsinfo) == 100 @test md.columnsinfo[1] == Pair(:Column1, Float64) md = getmetadata("data_pandas", "productsales.sas7bdat") @test show(md) == nothing println() # convenient comparison routine since v0.6/v0.7 displays different order same(x,y) = sort(string.(collect(x))) == sort(string.(collect(y))) @test same(SASLib.typesof(Int64), (Int64,)) @test same(SASLib.typesof(Union{Int64,Int32}), (Int64,Int32)) @test same(SASLib.typesof(Union{Int64,Int32,Missing}), (Int64,Int32,Missing)) @test SASLib.typesfmt((Int64,)) == "Int64" @test SASLib.typesfmt((Int64,Int32)) == "Int64/Int32" @test SASLib.typesfmt((Int64,Int32,Missing)) == "Int64/Int32/Missing" @test SASLib.typesfmt((Int64,Int32); excludemissing=true) == "Int64/Int32" @test SASLib.typesfmt((Int64,Int32,Missing); excludemissing=true) == "Int64/Int32" @test SASLib.colfmt(md)[1] == "ACTUAL(Float64)" end @testset "stat_transfer" begin rs = readfile("data_misc", "types.sas7bdat") @test sum(rs[:vbyte][1:2]) == 9 @test sum(rs[:vint][1:2]) == 9 @test sum(rs[:vlong][1:2]) == 9 @test sum(rs[:vfloat][1:2]) ≈ 10.14000010 @test sum(rs[:vdouble][1:2]) ≈ 10.14000000 end # topical.sas7bdat contains columns labels which should be ignored anywas @testset "AHS2013" begin handler = openfile("data_AHS2013", "topical.sas7bdat") rs = SASLib.read(handler, 1000) @test size(rs) == (1000, 114) @test show(handler) == nothing SASLib.close(handler) # @test result[:page_count] == 10 # @test result[:page_length] == 16384 # @test result[:system_endianness] == :LittleEndian @test count(x -> x == "B", rs[:DPEVVEHIC]) == 648 @test mean(filter(!isnan, rs[:PTCOSTGAS])) ≈ 255.51543209876544 end @testset "file encodings" begin rs = readfile("data_reikoch", "extr.sas7bdat") # @test result[:file_encoding] == "CP932" @test rs[:AETXT][1] == "眠気" rs = readfile("data_pandas", "test1.sas7bdat", encoding = "US-ASCII") # @test result[:file_encoding] == "US-ASCII" @test rs[:Column42][3] == "dog" end @testset "taiwan encodings" begin # check cp950 support , the most prevalent encoding on traditional Han characters ;compatible with big5-2003 @test encode("€","CP950")==[0xa3, 0xe1] # check big5-hkscs 2008 support, stringencodings is based on iconv but old version iconv had problem on east asian character esp. on hkscs @test encode("鿋","big5-hkscs") == [0x87, 0xdf] # big5-hkscs is compatible with big5-2003 but not fully compatible with CP950 # cp950 encoding rs = readfile("data_big5", "cp950.sas7bdat") @test rs[1,1] == "我愛你" # wlatin1 encoding , this works on winxp ansi system but not in new unicode system rs = readfile("data_big5", "testbig5.sas7bdat", encoding = "cp950") @test rs[1,1] == "我愛你" # wlatin1 encoding , format on winxp ansi system rs = readfile("data_big5", "testbig5.sas7bdat") @test decode(encode(rs[1,1],"cp1252"),"cp950") == "我愛你" end @testset "handler object" begin handler = openfile("data_reikoch", "binary.sas7bdat") @test handler.U64 == true @test handler.byte_swap == true @test handler.column_data_lengths == [8,8,8,8,8,8,8,8,8,8,14] @test handler.column_data_offsets == [0,8,16,24,32,40,48,56,64,72,80] @test handler.column_names == ["I","I1","I2","I3","I4","I5","I6","I7","I8","I9","CHAR"] @test handler.column_symbols == [:I,:I1,:I2,:I3,:I4,:I5,:I6,:I7,:I8,:I9,:CHAR] @test handler.compression == 0x02 @test handler.file_encoding == "ISO-8859-1" @test handler.file_endianness == :BigEndian @test handler.header_length == 8192 @test handler.page_length == 8192 @test handler.row_count == 100 @test handler.vendor == 0x01 @test handler.config.convert_dates == true @test handler.config.include_columns == [] @test handler.config.exclude_columns == [] @test handler.config.encoding == "" end @testset "array constructors" begin rs = readfile("data_AHS2013", "homimp.sas7bdat") @test typeof(rs[:RAS]) == SASLib.ObjectPool{String,UInt16} # string_array_fn test for specific string columns rs = readfile("data_AHS2013", "homimp.sas7bdat", string_array_fn = Dict(:RAS => REGULAR_STR_ARRAY)) @test typeof(rs[:RAS]) == Array{String,1} @test typeof(rs[:RAH]) != Array{String,1} # string_array_fn test for all string columns rs = readfile("data_AHS2013", "homimp.sas7bdat", string_array_fn = Dict(:_all_ => REGULAR_STR_ARRAY)) @test typeof(rs[:RAS]) == Array{String,1} @test typeof(rs[:RAH]) == Array{String,1} @test typeof(rs[:JRAS]) == Array{String,1} @test typeof(rs[:JRAD]) == Array{String,1} @test typeof(rs[:CONTROL]) == Array{String,1} # number_array_fn test by column name makesharedarray(n) = SharedArray{Float64}(n) rs = readfile("data_misc", "numeric_1000000_2.sas7bdat", number_array_fn = Dict(:f => makesharedarray)) @test typeof(rs[:f]) == SharedArray{Float64,1} @test typeof(rs[:x]) == Array{Float64,1} # number_array_fn test for all numeric columns rs = readfile("data_misc", "numeric_1000000_2.sas7bdat", number_array_fn = Dict(:_all_ => makesharedarray)) @test typeof(rs[:f]) == SharedArray{Float64,1} @test typeof(rs[:x]) == SharedArray{Float64,1} end # column type conversion @testset "user specified column types" begin # normal use case rs = readfile("data_pandas", "productsales.sas7bdat"; verbose_level = 0, column_types = Dict(:YEAR => Int16, :QUARTER => Int8)) @test eltype(rs[:YEAR]) == Int16 @test eltype(rs[:QUARTER]) == Int8 # error handling - warn() when a column cannot be converted rs = readfile("data_pandas", "productsales.sas7bdat"; verbose_level = 0, column_types = Dict(:YEAR => Int8, :QUARTER => Int8)) @test eltype(rs[:YEAR]) == Float64 @test eltype(rs[:QUARTER]) == Int8 #TODO expect warning for :YEAR conversion # case insensitive column symbol rs = readfile("data_pandas", "productsales.sas7bdat"; verbose_level = 0, column_types = Dict(:Quarter => Int8)) @test eltype(rs[:QUARTER]) == Int8 # conversion to custom types rs = readfile("data_pandas", "productsales.sas7bdat"; verbose_level = 0, column_types = Dict(:Year => YearStr)) @test eltype(rs[:YEAR]) == YearStr # test Union type let T = Union{Int,Missing} rs = readfile("data_pandas", "productsales.sas7bdat"; verbose_level = 0, column_types = Dict(:Year => T)) @test eltype(rs[:YEAR]) == T end end # see output; keep this for coverage reason @testset "verbosity" begin rs = readfile("data_pandas", "test1.sas7bdat"; verbose_level = 2) @test size(rs, 1) > 0 end @testset "just reads" begin for dir in ["data_pandas", "data_reikoch", "data_AHS2013", "data_misc"] for f in readdir(dir) if endswith(f, ".sas7bdat") && !(f in ["zero_variables.sas7bdat"]) rs = readfile(dir, f) @test size(rs, 1) > 0 end end end end @testset "exception" begin @test_throws SASLib.FileFormatError readsas("runtests.jl") end end
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
3213
# Contributor Covenant Code of Conduct ## Our Pledge In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation. ## Our Standards Examples of behavior that contributes to creating a positive environment include: * Using welcoming and inclusive language * Being respectful of differing viewpoints and experiences * Gracefully accepting constructive criticism * Focusing on what is best for the community * Showing empathy towards other community members Examples of unacceptable behavior by participants include: * The use of sexualized language or imagery and unwelcome sexual attention or advances * Trolling, insulting/derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or electronic address, without explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Our Responsibilities Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior. Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful. ## Scope This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at [email protected]. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately. Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at [http://contributor-covenant.org/version/1/4][version] [homepage]: http://contributor-covenant.org [version]: http://contributor-covenant.org/version/1/4/
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
160
# Contribution Guidelines Thank you for considering contribution to this project! Any help is greatly appreciated, no matter how small your pull request is.
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
158
Please write a concise summary of the issue. Include expected & actual results for bug reports and attach any relevant data files for reproducing the issue.
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
16008
# SASLib.jl [![Build Status](https://github.com/tk3369/SASLib.jl/workflows/CI/badge.svg)](https://github.com/tk3369/SASLib.jl/actions?query=workflow%3ACI) [![Appveyor Build status](https://ci.appveyor.com/api/projects/status/rdg5h988aifn7lvg/branch/master?svg=true)](https://ci.appveyor.com/project/tk3369/saslib-jl/branch/master) [![codecov.io](http://codecov.io/github/tk3369/SASLib.jl/coverage.svg?branch=master)](http://codecov.io/github/tk3369/SASLib.jl?branch=master) ![Project Status](https://img.shields.io/badge/status-mature-green) SASLib is a fast reader for sas7bdat files. The goal is to allow easier integration with SAS processes. Only `sas7bdat` format is supported. SASLib is licensed under the MIT Expat license. ## Installation ``` Pkg.add("SASLib") ``` ## Read Performance I did benchmarking mostly on my Macbook Pro laptop. In general, the Julia implementation is somewhere between 10-100x faster than the Python Pandas. Test results are documented in the `test/perf_results_<version>` folders. Latest performance [test results for v1.0.0](test/perf_results_1.0.0) is as follows: Test|Result| ----|------| py\_jl\_homimp\_50.md |30x faster than Python/Pandas| py\_jl\_numeric\_1000000\_2\_100.md |10x faster than Python/Pandas| py\_jl\_productsales\_100.md |50x faster than Python/Pandas| py\_jl\_test1\_100.md |120x faster than Python/Pandas| py\_jl\_topical\_30.md |30x faster than Python/Pandas| ## User Guide ``` julia> using SASLib ``` ### Reading SAS Files Use the `readsas` function to read a SAS7BDAT file. ```julia julia> rs = readsas("productsales.sas7bdat") Read productsales.sas7bdat with size 1440 x 10 in 0.00256 seconds SASLib.ResultSet (1440 rows x 10 columns) Columns 1:ACTUAL, 2:PREDICT, 3:COUNTRY, 4:REGION, 5:DIVISION, 6:PRODTYPE, 7:PRODUCT, 8:QUARTER, 9:YEAR, 10:MONTH 1: 925.0, 850.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-01-01 2: 999.0, 297.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-02-01 3: 608.0, 846.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-03-01 4: 642.0, 533.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 2.0, 1993.0, 1993-04-01 5: 656.0, 646.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 2.0, 1993.0, 1993-05-01 ⋮ ``` ### Accessing Results There are several ways to access the data conveniently without using any third party packages. Each cell value may be retrieved directly via the regular `[i,j]` index. Accessing an entire row or column returns a tuple and a vector respectively. #### Direct cell access ``` julia> rs[4,2] 533.0 julia> rs[4, :PREDICT] 533.0 ``` #### Indexing by row number returns a named tuple ``` julia> rs[1] (ACTUAL = 925.0, PREDICT = 850.0, COUNTRY = "CANADA", REGION = "EAST", DIVISION = "EDUCATION", PRODTYPE = "FURNITURE", PRODUCT = "SOFA", QUARTER = 1.0, YEAR = 1993.0, MONTH = 1993-01-01) ``` #### Columns access by name via indexing or as a property ``` julia> rs[:ACTUAL] 1440-element Array{Float64,1}: 925.0 999.0 608.0 ⋮ julia> rs.ACTUAL 1440-element Array{Float64,1}: 925.0 999.0 608.0 ⋮ ``` #### Slice a range of rows ``` julia> rs[2:4] SASLib.ResultSet (3 rows x 10 columns) Columns 1:ACTUAL, 2:PREDICT, 3:COUNTRY, 4:REGION, 5:DIVISION, 6:PRODTYPE, 7:PRODUCT, 8:QUARTER, 9:YEAR, 10:MONTH 1: 999.0, 297.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-02-01 2: 608.0, 846.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-03-01 3: 642.0, 533.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 2.0, 1993.0, 1993-04-01 ``` #### Slice a subset of columns ``` julia> rs[:ACTUAL, :PREDICT, :YEAR, :MONTH] SASLib.ResultSet (1440 rows x 4 columns) Columns 1:ACTUAL, 2:PREDICT, 3:YEAR, 4:MONTH 1: 925.0, 850.0, 1993.0, 1993-01-01 2: 999.0, 297.0, 1993.0, 1993-02-01 3: 608.0, 846.0, 1993.0, 1993-03-01 4: 642.0, 533.0, 1993.0, 1993-04-01 5: 656.0, 646.0, 1993.0, 1993-05-01 ⋮ ``` ### Mutation You may assign values at the cell level, causing a side effect in memory: ``` julia> srs = rs[:ACTUAL, :PREDICT, :YEAR, :MONTH][1:2] SASLib.ResultSet (2 rows x 4 columns) Columns 1:ACTUAL, 2:PREDICT, 3:YEAR, 4:MONTH 1: 925.0, 850.0, 1993.0, 1993-01-01 2: 999.0, 297.0, 1993.0, 1993-02-01 julia> srs[2,2] = 3 3 julia> rs[1:2] SASLib.ResultSet (2 rows x 10 columns) Columns 1:ACTUAL, 2:PREDICT, 3:COUNTRY, 4:REGION, 5:DIVISION, 6:PRODTYPE, 7:PRODUCT, 8:QUARTER, 9:YEAR, 10:MONTH 1: 925.0, 850.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-01-01 2: 999.0, 3.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-02-01 ``` ### Iteration ResultSet implements the usual standard iteration interface, so it's easy to walk through the results: ``` julia> mean(r.ACTUAL - r.PREDICT for r in rs) 16.695833333333333 ``` ### Metadata There are simple functions to retrieve meta information about a ResultSet. ``` names(rs) size(rs) length(rs) ``` ### Tables.jl / DataFrame It may be beneficial to convert the result set to DataFrame for more complex queries and manipulations. The `SASLib.ResultSet` object implements the [Tables.jl](https://github.com/JuliaData/Tables.jl) interface, so you can directly create a DataFrame as shown below: ```julia julia> df = DataFrame(rs); julia> first(df, 5) 5×10 DataFrame │ Row │ ACTUAL │ PREDICT │ COUNTRY │ REGION │ DIVISION │ PRODTYPE │ PRODUCT │ QUARTER │ YEAR │ MONTH │ │ │ Float64 │ Float64 │ String │ String │ String │ String │ String │ Float64 │ Float64 │ Dates…⍰ │ ├─────┼─────────┼─────────┼─────────┼────────┼───────────┼───────────┼─────────┼─────────┼─────────┼────────────┤ │ 1 │ 925.0 │ 850.0 │ CANADA │ EAST │ EDUCATION │ FURNITURE │ SOFA │ 1.0 │ 1993.0 │ 1993-01-01 │ │ 2 │ 999.0 │ 297.0 │ CANADA │ EAST │ EDUCATION │ FURNITURE │ SOFA │ 1.0 │ 1993.0 │ 1993-02-01 │ │ 3 │ 608.0 │ 846.0 │ CANADA │ EAST │ EDUCATION │ FURNITURE │ SOFA │ 1.0 │ 1993.0 │ 1993-03-01 │ │ 4 │ 642.0 │ 533.0 │ CANADA │ EAST │ EDUCATION │ FURNITURE │ SOFA │ 2.0 │ 1993.0 │ 1993-04-01 │ │ 5 │ 656.0 │ 646.0 │ CANADA │ EAST │ EDUCATION │ FURNITURE │ SOFA │ 2.0 │ 1993.0 │ 1993-05-01 │ ``` ### Inclusion/Exclusion of Columns **Column Inclusion** It is always faster to read only the columns that you need. The `include_columns` argument comes in handy: ``` julia> rs = readsas("productsales.sas7bdat", include_columns=[:YEAR, :MONTH, :PRODUCT, :ACTUAL]) Read productsales.sas7bdat with size 1440 x 4 in 0.00151 seconds SASLib.ResultSet (1440 rows x 4 columns) Columns 1:ACTUAL, 2:PRODUCT, 3:YEAR, 4:MONTH 1: 925.0, SOFA, 1993.0, 1993-01-01 2: 999.0, SOFA, 1993.0, 1993-02-01 3: 608.0, SOFA, 1993.0, 1993-03-01 4: 642.0, SOFA, 1993.0, 1993-04-01 5: 656.0, SOFA, 1993.0, 1993-05-01 ⋮ ``` **Column Exclusion** Likewise, you can read all columns except the ones you don't want as specified in `exclude_columns` argument: ``` julia> rs = readsas("productsales.sas7bdat", exclude_columns=[:YEAR, :MONTH, :PRODUCT, :ACTUAL]) Read productsales.sas7bdat with size 1440 x 6 in 0.00265 seconds SASLib.ResultSet (1440 rows x 6 columns) Columns 1:PREDICT, 2:COUNTRY, 3:REGION, 4:DIVISION, 5:PRODTYPE, 6:QUARTER 1: 850.0, CANADA, EAST, EDUCATION, FURNITURE, 1.0 2: 297.0, CANADA, EAST, EDUCATION, FURNITURE, 1.0 3: 846.0, CANADA, EAST, EDUCATION, FURNITURE, 1.0 4: 533.0, CANADA, EAST, EDUCATION, FURNITURE, 2.0 5: 646.0, CANADA, EAST, EDUCATION, FURNITURE, 2.0 ⋮ ``` **Case Sensitivity and Column Number** Column symbols are matched in a case insensitive manner with SAS column names. Both `include_columns` and `exclude_columns` accept column number. In fact, you can mixed column symbols and column numbers as such: ``` julia> readsas("productsales.sas7bdat", include_columns=[:actual, :predict, 8, 9, 10]) Read productsales.sas7bdat with size 1440 x 5 in 0.16378 seconds SASLib.ResultSet (1440 rows x 5 columns) Columns 1:ACTUAL, 2:PREDICT, 3:QUARTER, 4:YEAR, 5:MONTH 1: 925.0, 850.0, 1.0, 1993.0, 1993-01-01 2: 999.0, 297.0, 1.0, 1993.0, 1993-02-01 3: 608.0, 846.0, 1.0, 1993.0, 1993-03-01 4: 642.0, 533.0, 2.0, 1993.0, 1993-04-01 5: 656.0, 646.0, 2.0, 1993.0, 1993-05-01 ⋮ ``` ### Incremental Reading If you need to read files incrementally, you can use the `SASLib.open` function to obtain a handle of the file. Then, use the `SASLib.read` function to fetch a number of rows. Remember to close the handler with `SASLib.close` to avoid memory leak. ```julia julia> handler = SASLib.open("productsales.sas7bdat") SASLib.Handler[productsales.sas7bdat] julia> rs = SASLib.read(handler, 2) Read productsales.sas7bdat with size 2 x 10 in 0.06831 seconds SASLib.ResultSet (2 rows x 10 columns) Columns 1:ACTUAL, 2:PREDICT, 3:COUNTRY, 4:REGION, 5:DIVISION, 6:PRODTYPE, 7:PRODUCT, 8:QUARTER, 9:YEAR, 10:MONTH 1: 925.0, 850.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-01-01 2: 999.0, 297.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-02-01 julia> rs = SASLib.read(handler, 3) Read productsales.sas7bdat with size 3 x 10 in 0.00046 seconds SASLib.ResultSet (3 rows x 10 columns) Columns 1:ACTUAL, 2:PREDICT, 3:COUNTRY, 4:REGION, 5:DIVISION, 6:PRODTYPE, 7:PRODUCT, 8:QUARTER, 9:YEAR, 10:MONTH 1: 608.0, 846.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-03-01 2: 642.0, 533.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 2.0, 1993.0, 1993-04-01 3: 656.0, 646.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 2.0, 1993.0, 1993-05-01 julia> SASLib.close(handler) ``` Note that there is no facility at the moment to jump and read a subset of rows. SASLib always read from the beginning. ### String Column Constructor By default, string columns are read into a special AbstractArray structure called `ObjectPool` in order to conserve memory space that might otherwise be wasted for duplicate string values. SASLib tries to be smart -- when it encounters too many unique values (> 10%) in a large array (> 2000 rows), it falls back to a regular Julia array. You can use a different array type (e.g. [CategoricalArray](https://github.com/JuliaData/CategoricalArrays.jl) or [PooledArray](https://github.com/JuliaComputing/PooledArrays.jl)) for any columns as you wish by specifying a `string_array_fn` parameter when reading the file. This argument must be a Dict that maps a column symbol into a function that takes an integer argument and returns any array of that size. Here's the normal case: ``` julia> rs = readsas("productsales.sas7bdat", include_columns=[:COUNTRY, :REGION]); Read productsales.sas7bdat with size 1440 x 2 in 0.00193 seconds julia> typeof.(columns(rs)) 2-element Array{DataType,1}: SASLib.ObjectPool{String,UInt16} SASLib.ObjectPool{String,UInt16} ``` If you really want a regular String array, you can force SASLib to do so as such: ``` julia> rs = readsas("productsales.sas7bdat", include_columns=[:COUNTRY, :REGION], string_array_fn=Dict(:COUNTRY => (n)->fill("",n))); Read productsales.sas7bdat with size 1440 x 2 in 0.00333 seconds julia> typeof.(columns(rs)) 2-element Array{DataType,1}: Array{String,1} SASLib.ObjectPool{String,UInt16} ``` For convenience, `SASLib.REGULAR_STR_ARRAY` is a function that does exactly that. In addition, if you need all columns to be configured the same then the key of the `string_array_fn` dict may be just the symbol `:_all_`. ``` julia> rs = readsas("productsales.sas7bdat", include_columns=[:COUNTRY, :REGION], string_array_fn=Dict(:_all_ => REGULAR_STR_ARRAY)); Read productsales.sas7bdat with size 1440 x 2 in 0.00063 seconds julia> typeof.(columns(rs)) 2-element Array{DataType,1}: Array{String,1} Array{String,1} ``` ### Numeric Columns Constructor In general, SASLib allocates native arrays when returning numerical column data. However, you can provide a custom constructor so you would be able to either pre-allcoate the array or construct a different type of array. The `number_array_fn` parameter is a `Dict` that maps column symbols to the custom constructors. Similar to `string_array_fn`, this Dict may be specified with a special symbol `:_all_` to indicate such constructor be used for all numeric columns. Example - create `SharedArray`: ``` julia> rs = readsas("productsales.sas7bdat", include_columns=[:ACTUAL,:PREDICT], number_array_fn=Dict(:ACTUAL => (n)->SharedArray{Float64}(n))); Read productsales.sas7bdat with size 1440 x 2 in 0.00385 seconds julia> typeof.(columns(rs)) 2-element Array{DataType,1}: SharedArray{Float64,1} Array{Float64,1} ``` Example - preallocate arrays: ``` julia> A = zeros(1440, 2); julia> f1(n) = @view A[:, 1]; julia> f2(n) = @view A[:, 2]; julia> readsas("productsales.sas7bdat", include_columns=[:ACTUAL,:PREDICT], number_array_fn=Dict(:ACTUAL => f1, :PREDICT => f2)); Read productsales.sas7bdat with size 1440 x 2 in 0.00041 seconds julia> A[1:5,:] 5×2 Array{Float64,2}: 925.0 850.0 999.0 297.0 608.0 846.0 642.0 533.0 656.0 646.0 ``` ### Column Type Conversion Often, you want a column to be an integer but the SAS7BDAT stores everything as Float64. Specifying the `column_type` argument does the conversion for you. ``` julia> rs = readsas("productsales.sas7bdat", column_types=Dict(:ACTUAL=>Int)) Read productsales.sas7bdat with size 1440 x 10 in 0.08043 seconds SASLib.ResultSet (1440 rows x 10 columns) Columns 1:ACTUAL, 2:PREDICT, 3:COUNTRY, 4:REGION, 5:DIVISION, 6:PRODTYPE, 7:PRODUCT, 8:QUARTER, 9:YEAR, 10:MONTH 1: 925, 850.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-01-01 2: 999, 297.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-02-01 3: 608, 846.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-03-01 4: 642, 533.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 2.0, 1993.0, 1993-04-01 5: 656, 646.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 2.0, 1993.0, 1993-05-01 julia> typeof(rs[:ACTUAL]) Array{Int64,1} ``` ### File Metadata You may obtain meta data for a SAS data file using the `metadata` function. ```julia julia> md = metadata("productsales.sas7bdat") File: productsales.sas7bdat (1440 x 10) 1:ACTUAL(Float64) 5:DIVISION(String) 9:YEAR(Float64) 2:PREDICT(Float64) 6:PRODTYPE(String) 10:MONTH(Date/Missings.Missing) 3:COUNTRY(String) 7:PRODUCT(String) 4:REGION(String) 8:QUARTER(Float64) ``` It's OK to access the fields directly. ```julia julia> fieldnames(SASLib.Metadata) 9-element Array{Symbol,1}: :filename :encoding :endianness :compression :pagesize :npages :nrows :ncols :columnsinfo julia> md = metadata("test3.sas7bdat"); julia> md.compression :RDC ``` ## Related Packages [ReadStat.jl](https://github.com/davidanthoff/ReadStat.jl) uses the [ReadStat C-library](https://github.com/WizardMac/ReadStat). However, ReadStat-C does not support reading RDC-compressed binary files. [StatFiles.jl](https://github.com/davidanthoff/StatFiles.jl) is a higher-level package built on top of ReadStat.jl and implements the [FileIO](https://github.com/JuliaIO/FileIO.jl) interface. [Python Pandas](https://github.com/pandas-dev/pandas) package has an implementation of SAS file reader that SASLib borrows heavily from. ## Credits - Jared Hobbs, the author of the SAS reader code from Pandas. See LICENSE_SAS7BDAT.md. - [Evan Miller](https://github.com/evanmiller), the author of ReadStat C/C++ library. See LICENSE_READSTAT.md. - [David Anthoff](https://github.com/davidanthoff), who provided many valuable ideas at the early stage of development. - [Tyler Beason](https://github.com/tbeason) - [susabi](https://github.com/xiaodaigh) I also want to thank all the active members at the [Julia Discourse community](https://discourse.julialang.org). This project wouldn't be possible without all the help I got from the community. That's the beauty of open-source development.
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
207
The data sets here are borrowed from US Census American Housing Survey (AHS) https://www.census.gov/programs-surveys/ahs/data/2013/ahs-2013-public-use-file--puf-/ahs-2013-national-public-use-file--puf-.html
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
182
The data sets here are borrowed from the Pandas package http://pandas.pydata.org/ The files are located at https://github.com/pandas-dev/pandas/tree/master/pandas/tests/io/sas/data
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
150
The data sets here are borrowed from https://github.com/reikoch/testfiles/ Note: The file `tt.sas7bdat` isn't used here as it seems to be corrupted.
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1425
# Performance Test 1 ## Summary Python is approximately 10% faster than the Julia implementation. ## Test File Filename|Rows|Columns|Numeric Columns|String Columns --------|----|-------|---------------|-------------- numeric_1000000_2.sas7bdat|1,000,000|2|2|0 ## Test Environment Test system information: ``` julia> versioninfo() Julia Version 0.6.1 Commit 0d7248e (2017-10-24 22:15 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) ``` ## Python ``` $ python perf_test1.py numeric_1000000_2.sas7bdat 1: elapsed 1.844023 seconds 2: elapsed 1.806474 seconds 3: elapsed 1.795621 seconds 4: elapsed 1.812769 seconds 5: elapsed 1.850064 seconds 6: elapsed 1.882453 seconds 7: elapsed 1.863802 seconds 8: elapsed 1.871220 seconds 9: elapsed 1.874004 seconds 10: elapsed 1.861223 seconds Average: 1.8462 seconds ``` ## Julia ``` $ julia perf_test1.jl numeric_1000000_2.sas7bdat Loaded library in 0.225 seconds Bootstrap elapsed 4.569 seconds Elapsed 2.133 seconds Elapsed 2.107 seconds Elapsed 2.146 seconds Elapsed 1.995 seconds Elapsed 2.072 seconds Elapsed 2.103 seconds Elapsed 2.040 seconds Elapsed 2.082 seconds Elapsed 2.070 seconds Elapsed 2.013 seconds Average: 2.076054688 seconds ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1358
# Performance Test 2 ## Summary Julia is 8x faster than Python! ## Test File Filename |Rows|Columns|Numeric Columns|String Columns --------------|----|-------|---------------|-------------- test1.sas7bdat|10 |100 |73 |27 ## Test Environment ``` julia> versioninfo() Julia Version 0.6.1 Commit 0d7248e (2017-10-24 22:15 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) ``` ## Python ``` $ python perf_test1.py test1.sas7bdat 1: elapsed 0.127801 seconds 2: elapsed 0.104040 seconds 3: elapsed 0.115647 seconds 4: elapsed 0.102978 seconds 5: elapsed 0.100335 seconds 6: elapsed 0.101916 seconds 7: elapsed 0.099474 seconds 8: elapsed 0.097988 seconds 9: elapsed 0.102512 seconds 10: elapsed 0.097088 seconds Average: 0.1050 seconds ``` ## Julia ``` $ julia perf_test1.jl test1.sas7bdat Loaded library in 0.224 seconds Bootstrap elapsed 2.829 seconds Elapsed 0.010 seconds Elapsed 0.017 seconds Elapsed 0.011 seconds Elapsed 0.015 seconds Elapsed 0.010 seconds Elapsed 0.010 seconds Elapsed 0.014 seconds Elapsed 0.024 seconds Elapsed 0.009 seconds Elapsed 0.012 seconds Average: 0.0131050582 seconds ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1411
# Performance Test 3 ## Summary Julia is 3.5x _slower_ than Python! ## Test File Filename |Rows |Columns|Numeric Columns|String Columns ---------------------|------|-------|---------------|-------------- productsales.sas7bdat|1440 |10 |4 |6 ## Test Environment ``` julia> versioninfo() Julia Version 0.6.1 Commit 0d7248e (2017-10-24 22:15 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) ``` ## Python ``` $ python perf_test1.py productsales.sas7bdat 1: elapsed 0.038040 seconds 2: elapsed 0.030986 seconds 3: elapsed 0.039832 seconds 4: elapsed 0.031767 seconds 5: elapsed 0.041312 seconds 6: elapsed 0.033195 seconds 7: elapsed 0.039814 seconds 8: elapsed 0.030574 seconds 9: elapsed 0.040095 seconds 10: elapsed 0.031431 seconds Average: 0.0357 seconds ``` ## Julia ``` $ julia perf_test1.jl productsales.sas7bdat Loaded library in 0.212 seconds Bootstrap elapsed 2.920 seconds Elapsed 0.129 seconds Elapsed 0.128 seconds Elapsed 0.126 seconds Elapsed 0.123 seconds Elapsed 0.126 seconds Elapsed 0.128 seconds Elapsed 0.129 seconds Elapsed 0.128 seconds Elapsed 0.124 seconds Elapsed 0.125 seconds Average: 0.12677397689999997 seconds ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1396
# Performance Test 1 ## Summary Julia is ~4.8x faster than Python. ## Test File Filename|Rows|Columns|Numeric Columns|String Columns --------|----|-------|---------------|-------------- numeric_1000000_2.sas7bdat|1,000,000|2|2|0 ## Test Environment Test system information: ``` julia> versioninfo() Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) ``` ## Python ``` $ python perf_test1.py numeric_1000000_2.sas7bdat 1: elapsed 1.904393 seconds 2: elapsed 1.862869 seconds 3: elapsed 1.849762 seconds 4: elapsed 1.869796 seconds 5: elapsed 1.851429 seconds 6: elapsed 1.847917 seconds 7: elapsed 1.858680 seconds 8: elapsed 1.897174 seconds 9: elapsed 1.877440 seconds 10: elapsed 1.860925 seconds Average: 1.8680 seconds ``` ## Julia ``` $ julia perf_test1.jl numeric_1000000_2.sas7bdat Loaded library in 2.387 seconds Bootstrap elapsed 3.018 seconds Elapsed 0.456 seconds Elapsed 0.455 seconds Elapsed 0.466 seconds Elapsed 0.364 seconds Elapsed 0.468 seconds Elapsed 0.464 seconds Elapsed 0.366 seconds Elapsed 0.464 seconds Elapsed 0.459 seconds Elapsed 0.367 seconds Average: 0.432819138 seconds ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1351
# Performance Test 2 ## Summary Julia is 7.6x faster than Python. ## Test File Filename |Rows|Columns|Numeric Columns|String Columns --------------|----|-------|---------------|-------------- test1.sas7bdat|10 |100 |73 |27 ## Test Environment ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) ``` ## Python ``` $ python perf_test1.py test1.sas7bdat 1: elapsed 0.160085 seconds 2: elapsed 0.102635 seconds 3: elapsed 0.106069 seconds 4: elapsed 0.099819 seconds 5: elapsed 0.097443 seconds 6: elapsed 0.096373 seconds 7: elapsed 0.104192 seconds 8: elapsed 0.096230 seconds 9: elapsed 0.103648 seconds 10: elapsed 0.099993 seconds Average: 0.1066 seconds ``` ## Julia ``` $ julia perf_test1.jl test1.sas7bdat Loaded library in 0.233 seconds Bootstrap elapsed 2.821 seconds Elapsed 0.011 seconds Elapsed 0.010 seconds Elapsed 0.011 seconds Elapsed 0.017 seconds Elapsed 0.022 seconds Elapsed 0.012 seconds Elapsed 0.012 seconds Elapsed 0.014 seconds Elapsed 0.010 seconds Elapsed 0.021 seconds Average: 0.013979034499999998 seconds ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1382
# Performance Test 3 ## Summary Julia is 4.1x faster than Python ## Test File Filename |Rows |Columns|Numeric Columns|String Columns ---------------------|------|-------|---------------|-------------- productsales.sas7bdat|1440 |10 |4 |6 ## Test Environment ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) ``` ## Python ``` $ python perf_test1.py productsales.sas7bdat 1: elapsed 0.034272 seconds 2: elapsed 0.030726 seconds 3: elapsed 0.036244 seconds 4: elapsed 0.031315 seconds 5: elapsed 0.036770 seconds 6: elapsed 0.028680 seconds 7: elapsed 0.038459 seconds 8: elapsed 0.033905 seconds 9: elapsed 0.036311 seconds 10: elapsed 0.031037 seconds Average: 0.0338 seconds ``` ## Julia ``` $ julia perf_test1.jl productsales.sas7bdat Loaded library in 0.222 seconds Bootstrap elapsed 2.571 seconds Elapsed 0.007 seconds Elapsed 0.006 seconds Elapsed 0.007 seconds Elapsed 0.006 seconds Elapsed 0.007 seconds Elapsed 0.018 seconds Elapsed 0.008 seconds Elapsed 0.008 seconds Elapsed 0.007 seconds Elapsed 0.010 seconds Average: 0.0082903935 seconds ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1305
# Read performance when reading only half of the data ## Results Read time is reduced by 40% when reading half of the data. ## Test Scenario This test file has just 2 numeric columns. We would like to know the performance of reading only 1 column from this file. Filename|Rows|Columns|Numeric Columns|String Columns --------|----|-------|---------------|-------------- numeric_1000000_2.sas7bdat|1,000,000|2|2|0 ## Test Log ``` julia> @benchmark readsas("numeric_1000000_2.sas7bdat", verbose_level=0) BenchmarkTools.Trial: memory estimate: 399.04 MiB allocs estimate: 3031083 -------------- minimum time: 358.695 ms (9.31% GC) median time: 442.709 ms (25.96% GC) mean time: 427.870 ms (20.97% GC) maximum time: 482.786 ms (25.29% GC) -------------- samples: 12 evals/sample: 1 julia> @benchmark readsas("numeric_1000000_2.sas7bdat", include_columns=[:f], verbose_level=0) BenchmarkTools.Trial: memory estimate: 261.71 MiB allocs estimate: 2031028 -------------- minimum time: 222.832 ms (9.67% GC) median time: 235.396 ms (9.70% GC) mean time: 261.782 ms (20.75% GC) maximum time: 327.359 ms (33.53% GC) -------------- samples: 20 evals/sample: 1 julia> 262/428 0.6121495327102804 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1397
# Performance Test 1 ## Summary SASLib is ~4.3x faster than Pandas. ## Test File Filename|Rows|Columns|Numeric Columns|String Columns --------|----|-------|---------------|-------------- numeric_1000000_2.sas7bdat|1,000,000|2|2|0 ## Test Environment Test system information: ``` julia> versioninfo() Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) ``` ## Python ``` $ python perf_test1.py numeric_1000000_2.sas7bdat 1: elapsed 1.976702 seconds 2: elapsed 1.984404 seconds 3: elapsed 2.266284 seconds 4: elapsed 1.978403 seconds 5: elapsed 1.946053 seconds 6: elapsed 1.919336 seconds 7: elapsed 1.918322 seconds 8: elapsed 1.926547 seconds 9: elapsed 1.962013 seconds 10: elapsed 1.939654 seconds Average: 1.9818 seconds ``` ## Julia ``` $ julia perf_test1.jl numeric_1000000_2.sas7bdat Loaded library in 0.343 seconds Bootstrap elapsed 4.211 seconds Elapsed 0.481 seconds Elapsed 0.462 seconds Elapsed 0.414 seconds Elapsed 0.480 seconds Elapsed 0.473 seconds Elapsed 0.472 seconds Elapsed 0.473 seconds Elapsed 0.479 seconds Elapsed 0.401 seconds Elapsed 0.463 seconds Average: 0.4598392924 seconds ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1344
# Performance Test 2 ## Summary SASLib is 16.9x faster than Pandas. ## Test File Filename |Rows|Columns|Numeric Columns|String Columns --------------|----|-------|---------------|-------------- test1.sas7bdat|10 |100 |73 |27 ## Test Environment ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) ``` ## Python ``` $ python perf_test1.py test1.sas7bdat 1: elapsed 0.099821 seconds 2: elapsed 0.116454 seconds 3: elapsed 0.095141 seconds 4: elapsed 0.100083 seconds 5: elapsed 0.100060 seconds 6: elapsed 0.098249 seconds 7: elapsed 0.101819 seconds 8: elapsed 0.099673 seconds 9: elapsed 0.096865 seconds 10: elapsed 0.109412 seconds Average: 0.1018 seconds ``` ## Julia ``` $ julia perf_test1.jl test1.sas7bdat Loaded library in 0.326 seconds Bootstrap elapsed 3.606 seconds Elapsed 0.011 seconds Elapsed 0.004 seconds Elapsed 0.004 seconds Elapsed 0.004 seconds Elapsed 0.004 seconds Elapsed 0.004 seconds Elapsed 0.010 seconds Elapsed 0.013 seconds Elapsed 0.004 seconds Elapsed 0.004 seconds Average: 0.0060341937 seconds ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1393
# Performance Test 3 ## Summary SASLib is 5.2x faster than Pandas. ## Test File Filename |Rows |Columns|Numeric Columns|String Columns ---------------------|------|-------|---------------|-------------- productsales.sas7bdat|1440 |10 |4 |6 ## Test Environment ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) ``` ## Python ``` $ python perf_test1.py productsales.sas7bdat 1: elapsed 0.035160 seconds 2: elapsed 0.031523 seconds 3: elapsed 0.041026 seconds 4: elapsed 0.033476 seconds 5: elapsed 0.045547 seconds 6: elapsed 0.030253 seconds 7: elapsed 0.038022 seconds 8: elapsed 0.032196 seconds 9: elapsed 0.046579 seconds 10: elapsed 0.033603 seconds Average: 0.0367 seconds ``` ## Julia ``` $ julia perf_test1.jl productsales.sas7bdat Loaded library in 0.328 seconds Bootstrap elapsed 3.613 seconds Elapsed 0.013 seconds Elapsed 0.005 seconds Elapsed 0.005 seconds Elapsed 0.004 seconds Elapsed 0.007 seconds Elapsed 0.008 seconds Elapsed 0.007 seconds Elapsed 0.011 seconds Elapsed 0.007 seconds Elapsed 0.005 seconds Average: 0.0071251584000000005 seconds ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1189
# Performance Test 1 ## Summary SASLib is ~11x faster than Pandas. ## Test File Filename|Rows|Columns|Numeric Columns|String Columns --------|----|-------|---------------|-------------- numeric_1000000_2.sas7bdat|1,000,000|2|2|0 ## Python ``` $ python perf_test1.py data_misc/numeric_1000000_2.sas7bdat 30 Minimum: 1.8642 seconds Median: 2.0716 seconds Mean: 2.1451 seconds Maximum: 2.7522 seconds ``` ## Julia ``` $ julia perf_test1.jl data_misc/numeric_1000000_2.sas7bdat 30 Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) Loaded library in 0.655 seconds BenchmarkTools.Trial: memory estimate: 155.12 MiB allocs estimate: 1035407 -------------- minimum time: 161.779 ms (3.74% GC) median time: 211.446 ms (22.19% GC) mean time: 211.389 ms (22.93% GC) maximum time: 259.749 ms (34.46% GC) -------------- samples: 24 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1172
# Performance Test 2 ## Summary SASLib is 24x faster than Pandas. ## Test File Filename |Rows|Columns|Numeric Columns|String Columns --------------|----|-------|---------------|-------------- test1.sas7bdat|10 |100 |73 |27 ## Python ``` $ python perf_test1.py data_pandas/test1.sas7bdat 100 Minimum: 0.0811 seconds Median: 0.0871 seconds Mean: 0.0890 seconds Maximum: 0.1208 seconds ``` ## Julia ``` $ julia perf_test1.jl data_pandas/test1.sas7bdat 100 Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) Loaded library in 0.705 seconds BenchmarkTools.Trial: memory estimate: 2.72 MiB allocs estimate: 35788 -------------- minimum time: 3.384 ms (0.00% GC) median time: 3.561 ms (0.00% GC) mean time: 4.190 ms (8.75% GC) maximum time: 9.082 ms (39.94% GC) -------------- samples: 100 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
2030
# Performance Test 3 ## Summary SASLib is ~7x faster than Pandas. ## Test File Filename |Rows |Columns|Numeric Columns|String Columns ---------------------|------|-------|---------------|-------------- productsales.sas7bdat|1440 |10 |4 |6 ## Python ``` $ python perf_test1.py data_pandas/productsales.sas7bdat 100 Minimum: 0.0281 seconds Median: 0.0324 seconds Mean: 0.0357 seconds Maximum: 0.1242 seconds ``` ## Julia (ObjectPool string array) ``` $ julia perf_test1.jl data_pandas/productsales.sas7bdat 100 Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) Loaded library in 0.630 seconds BenchmarkTools.Trial: memory estimate: 2.33 MiB allocs estimate: 38737 -------------- minimum time: 3.984 ms (0.00% GC) median time: 4.076 ms (0.00% GC) mean time: 4.547 ms (7.03% GC) maximum time: 8.595 ms (43.79% GC) -------------- samples: 100 evals/sample: 1 ``` ## Julia (regular string array) ``` $ julia perf_test_regarray.jl data_pandas/productsales.sas7bdat 100 Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) Loaded library in 0.619 seconds BenchmarkTools.Trial: memory estimate: 2.31 MiB allocs estimate: 38664 -------------- minimum time: 3.299 ms (0.00% GC) median time: 3.725 ms (0.00% GC) mean time: 4.223 ms (9.15% GC) maximum time: 9.616 ms (43.66% GC) -------------- samples: 100 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1376
``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) ** Regular Array ** BenchmarkTools.Trial: memory estimate: 781.33 KiB allocs estimate: 2 -------------- minimum time: 170.532 μs (0.00% GC) median time: 368.824 μs (0.00% GC) mean time: 630.629 μs (21.69% GC) maximum time: 23.323 ms (0.00% GC) -------------- samples: 5000 evals/sample: 1 ** Pooled Array (Dict Pool) ** BenchmarkTools.Trial: memory estimate: 9.43 MiB allocs estimate: 65 -------------- minimum time: 35.474 ms (0.00% GC) median time: 42.527 ms (0.00% GC) mean time: 43.822 ms (5.10% GC) maximum time: 110.314 ms (0.00% GC) -------------- samples: 5000 evals/sample: 1 ** Object Pool ** BenchmarkTools.Trial: memory estimate: 7.10 MiB allocs estimate: 51 -------------- minimum time: 28.510 ms (0.00% GC) median time: 34.356 ms (0.00% GC) mean time: 35.081 ms (3.44% GC) maximum time: 80.241 ms (0.00% GC) -------------- samples: 5000 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
2688
``` Summary data_misc/numeric_1000000_2.sas7bdat : 207.649 ms , 188.812 ms ( 91%), 180.369 ms ( 87%) Summary data_misc/types.sas7bdat : 0.093 ms , 0.410 ms (441%), 0.408 ms (439%) Summary data_AHS2013/homimp.sas7bdat : 40.031 ms , 78.469 ms (196%), 66.235 ms (165%) Summary data_AHS2013/omov.sas7bdat : 2.562 ms , 12.410 ms (484%), 10.991 ms (429%) Summary data_AHS2013/owner.sas7bdat : 13.667 ms , 23.267 ms (170%), 17.216 ms (126%) Summary data_AHS2013/ratiov.sas7bdat : 4.742 ms , 11.082 ms (234%), 7.611 ms (161%) Summary data_AHS2013/rmov.sas7bdat : 56.492 ms , 202.621 ms (359%), 210.545 ms (373%) Summary data_AHS2013/topical.sas7bdat : 2417.321 ms , 4157.654 ms (172%), 5371.401 ms (222%) Summary data_pandas/airline.sas7bdat : 0.106 ms , 0.413 ms (389%), 0.419 ms (395%) Summary data_pandas/datetime.sas7bdat : 0.080 ms , 0.425 ms (529%), 0.425 ms (529%) Summary data_pandas/productsales.sas7bdat : 2.277 ms , 4.046 ms (178%), 3.309 ms (145%) Summary data_pandas/test1.sas7bdat : 0.837 ms , 3.344 ms (399%), 3.322 ms (397%) Summary data_pandas/test2.sas7bdat : 0.855 ms , 3.234 ms (378%), 3.197 ms (374%) Summary data_pandas/test4.sas7bdat : 0.839 ms , 3.381 ms (403%), 3.327 ms (396%) Summary data_pandas/test5.sas7bdat : 0.855 ms , 3.310 ms (387%), 3.167 ms (371%) Summary data_pandas/test7.sas7bdat : 0.841 ms , 3.365 ms (400%), 3.299 ms (392%) Summary data_pandas/test9.sas7bdat : 0.857 ms , 3.233 ms (377%), 3.169 ms (370%) Summary data_pandas/test10.sas7bdat : 0.840 ms , 3.433 ms (409%), 3.399 ms (405%) Summary data_pandas/test12.sas7bdat : 0.858 ms , 3.325 ms (388%), 3.280 ms (382%) Summary data_pandas/test13.sas7bdat : 0.840 ms , 3.450 ms (411%), 3.384 ms (403%) Summary data_pandas/test15.sas7bdat : 0.859 ms , 3.328 ms (387%), 3.279 ms (382%) Summary data_pandas/test16.sas7bdat : 0.851 ms , 6.301 ms (740%), 6.242 ms (733%) Summary data_pandas/zero_variables.sas7bdat : 0.052 ms , 0.254 ms (491%), 0.252 ms (487%) Summary data_reikoch/barrows.sas7bdat : 6.991 ms , 10.496 ms (150%), 10.496 ms (150%) Summary data_reikoch/extr.sas7bdat : 0.177 ms , 3.202 ms (1814%), 3.186 ms (1805%) Summary data_reikoch/ietest2.sas7bdat : 0.060 ms , 0.266 ms (441%), 0.268 ms (443%) ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1243
# Performance Test 1 ## Summary SASLib is ~12x faster than Pandas. ## Test File Filename|Rows|Columns|Numeric Columns|String Columns --------|----|-------|---------------|-------------- numeric_1000000_2.sas7bdat|1,000,000|2|2|0 ## Python ``` $ python -V Python 3.6.3 :: Anaconda custom (64-bit) $ python perf_test1.py data_misc/numeric_1000000_2.sas7bdat 30 Minimum: 1.8377 seconds Median: 1.9093 seconds Mean: 1.9168 seconds Maximum: 2.0423 seconds ``` ## Julia ``` $ julia perf_test1.jl data_misc/numeric_1000000_2.sas7bdat 30 Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) Loaded library in 0.656 seconds BenchmarkTools.Trial: memory estimate: 153.16 MiB allocs estimate: 1002726 -------------- minimum time: 151.382 ms (3.41% GC) median time: 235.003 ms (35.13% GC) mean time: 202.453 ms (23.83% GC) maximum time: 272.253 ms (35.25% GC) -------------- samples: 25 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1988
# Performance Test 2 ## Summary SASLib is 24-72x faster than Pandas. ## Test File Filename |Rows|Columns|Numeric Columns|String Columns --------------|----|-------|---------------|-------------- test1.sas7bdat|10 |100 |73 |27 ## Python ``` $ python perf_test1.py data_pandas/test1.sas7bdat 100 Minimum: 0.0800 seconds Median: 0.0868 seconds Mean: 0.0920 seconds Maximum: 0.1379 seconds ``` ## Julia (ObjectPool String Array) ``` $ julia perf_test1.jl data_pandas/test1.sas7bdat 100 Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) Loaded library in 0.664 seconds BenchmarkTools.Trial: memory estimate: 988.28 KiB allocs estimate: 9378 -------------- minimum time: 1.149 ms (0.00% GC) median time: 1.222 ms (0.00% GC) mean time: 1.358 ms (6.98% GC) maximum time: 4.425 ms (55.85% GC) -------------- samples: 100 evals/sample: 1 ``` ## Julia (Regular String Array) ``` $ julia perf_test_regarray.jl data_pandas/test1.sas7bdat 100 Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) Loaded library in 0.680 seconds BenchmarkTools.Trial: memory estimate: 949.63 KiB allocs estimate: 8967 -------------- minimum time: 1.106 ms (0.00% GC) median time: 1.339 ms (0.00% GC) mean time: 1.482 ms (6.61% GC) maximum time: 4.545 ms (57.52% GC) -------------- samples: 100 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
2019
# Performance Test 3 ## Summary SASLib is ~14-22x faster than Pandas. ## Test File Filename |Rows |Columns|Numeric Columns|String Columns ---------------------|------|-------|---------------|-------------- productsales.sas7bdat|1440 |10 |4 |6 ## Python ``` $ python -V Python 3.6.3 :: Anaconda custom (64-bit) $ python perf_test1.py data_pandas/productsales.sas7bdat 100 Minimum: 0.0286 seconds Median: 0.0316 seconds Mean: 0.0329 seconds Maximum: 0.0894 seconds ``` ## Julia (ObjectPool string array) ``` $ julia perf_test1.jl data_pandas/productsales.sas7bdat 100 Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) Loaded library in 4.693 seconds BenchmarkTools.Trial: memory estimate: 1.07 MiB allocs estimate: 18573 -------------- minimum time: 2.088 ms (0.00% GC) median time: 2.133 ms (0.00% GC) mean time: 2.320 ms (4.10% GC) maximum time: 5.123 ms (47.12% GC) -------------- samples: 100 evals/sample: 1 ``` ## Julia (regular string array) ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) Loaded library in 0.651 seconds BenchmarkTools.Trial: memory estimate: 1.05 MiB allocs estimate: 18500 -------------- minimum time: 1.337 ms (0.00% GC) median time: 1.385 ms (0.00% GC) mean time: 1.556 ms (8.02% GC) maximum time: 5.486 ms (69.40% GC) -------------- samples: 100 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
3316
## SASLib vs ReadStat results Key | Description | --------|-------------------------| F64 | number of Float64 columns| STR | number of String columns| DT | number of date/time coumns| COMP | compression method| S/R | SASLib time divided by ReadStat time| SA/R | SASLib time (regular string arrays) divided by ReadStat time| SASLibA | SASLib (regular string arrays)| ``` Filename : ReadStat SASLib S/R SASLibA SA/R F64 STR DT COMP data_misc/numeric_1000000_2.sas7bdat : 205.002 ms 152.764 ms ( 75%) 154.288 ms ( 75%) 2 0 0 None data_misc/types.sas7bdat : 0.093 ms 0.179 ms (194%) 0.180 ms (194%) 5 1 0 None data_AHS2013/homimp.sas7bdat : 40.138 ms 51.994 ms (130%) 24.975 ms ( 62%) 1 5 0 None data_AHS2013/omov.sas7bdat : 2.557 ms 5.136 ms (201%) 3.485 ms (136%) 3 5 0 RLE data_AHS2013/owner.sas7bdat : 13.859 ms 17.104 ms (123%) 9.272 ms ( 67%) 0 3 0 None data_AHS2013/ratiov.sas7bdat : 4.820 ms 8.170 ms (169%) 3.577 ms ( 74%) 0 9 0 None data_AHS2013/rmov.sas7bdat : 56.358 ms 101.530 ms (180%) 70.293 ms (125%) 2 21 0 RLE data_AHS2013/topical.sas7bdat : 2609.437 ms 2876.122 ms (110%) 1104.849 ms ( 42%) 8 106 0 RLE data_pandas/airline.sas7bdat : 0.105 ms 0.170 ms (161%) 0.172 ms (164%) 6 0 0 None data_pandas/datetime.sas7bdat : 0.080 ms 0.235 ms (293%) 0.234 ms (291%) 1 1 2 None data_pandas/productsales.sas7bdat : 2.276 ms 2.374 ms (104%) 1.355 ms ( 60%) 4 5 1 None data_pandas/test1.sas7bdat : 0.831 ms 1.162 ms (140%) 1.101 ms (132%) 73 25 2 None data_pandas/test2.sas7bdat : 0.846 ms 1.029 ms (122%) 0.971 ms (115%) 73 25 2 RLE data_pandas/test4.sas7bdat : 0.829 ms 1.162 ms (140%) 1.103 ms (133%) 73 25 2 None data_pandas/test5.sas7bdat : 0.848 ms 1.034 ms (122%) 0.974 ms (115%) 73 25 2 RLE data_pandas/test7.sas7bdat : 0.832 ms 1.182 ms (142%) 1.111 ms (133%) 73 25 2 None data_pandas/test9.sas7bdat : 0.850 ms 1.057 ms (124%) 0.993 ms (117%) 73 25 2 RLE data_pandas/test10.sas7bdat : 0.833 ms 1.166 ms (140%) 1.102 ms (132%) 73 25 2 None data_pandas/test12.sas7bdat : 0.849 ms 1.038 ms (122%) 0.974 ms (115%) 73 25 2 RLE data_pandas/test13.sas7bdat : 0.831 ms 1.180 ms (142%) 1.110 ms (134%) 73 25 2 None data_pandas/test15.sas7bdat : 0.852 ms 1.048 ms (123%) 0.988 ms (116%) 73 25 2 RLE data_pandas/test16.sas7bdat : 0.842 ms 2.236 ms (265%) 2.152 ms (255%) 73 25 2 None data_reikoch/barrows.sas7bdat : 6.923 ms 6.031 ms ( 87%) 6.047 ms ( 87%) 72 0 0 RLE data_reikoch/extr.sas7bdat : 0.177 ms 0.381 ms (215%) 0.368 ms (208%) 0 1 0 None data_reikoch/ietest2.sas7bdat : 0.061 ms 0.139 ms (229%) 0.138 ms (228%) 0 1 0 RLE ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1891
# Julia/Python Performance Test Result ## Summary Julia is ~10.7x faster than Python/Pandas ## Test File Iterations: 50 Filename|Size|Rows|Columns|Numeric Columns|String Columns --------|----|----|-------|---------------|-------------- homimp.sas7bdat|1.2 MB|46641|6|1|5 ## Python ``` $ python -V Python 3.6.3 :: Anaconda custom (64-bit) $ python perf_test1.py data_AHS2013/homimp.sas7bdat 50 Minimum: 0.2720 seconds Median: 0.3014 seconds Mean: 0.3140 seconds Maximum: 0.4728 seconds ``` ## Julia (ObjectPool) ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) BenchmarkTools.Trial: memory estimate: 20.56 MiB allocs estimate: 513299 -------------- minimum time: 47.109 ms (0.00% GC) median time: 56.312 ms (11.21% GC) mean time: 57.920 ms (10.72% GC) maximum time: 78.471 ms (9.23% GC) -------------- samples: 50 evals/sample: 1 ``` ## Julia (Regular String Array) ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) BenchmarkTools.Trial: memory estimate: 19.37 MiB allocs estimate: 512178 -------------- minimum time: 25.528 ms (0.00% GC) median time: 39.970 ms (33.88% GC) mean time: 41.932 ms (35.10% GC) maximum time: 113.933 ms (76.81% GC) -------------- samples: 50 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1208
# Julia/Python Performance Test Result ## Summary Julia is ~11.8x faster than Python/Pandas ## Test File Iterations: 100 Filename|Size|Rows|Columns|Numeric Columns|String Columns --------|----|----|-------|---------------|-------------- numeric_1000000_2.sas7bdat|16.3 MB|1000000|2|2|0 ## Python ``` $ python -V Python 3.6.3 :: Anaconda custom (64-bit) $ python perf_test1.py data_misc/numeric_1000000_2.sas7bdat 100 Minimum: 1.7937 seconds Median: 1.8426 seconds Mean: 1.8485 seconds Maximum: 2.0821 seconds ``` ## Julia ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) BenchmarkTools.Trial: memory estimate: 153.16 MiB allocs estimate: 1002737 -------------- minimum time: 152.629 ms (3.05% GC) median time: 231.873 ms (35.79% GC) mean time: 203.540 ms (23.47% GC) maximum time: 257.027 ms (38.52% GC) -------------- samples: 25 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1892
# Julia/Python Performance Test Result ## Summary Julia is ~21.1x faster than Python/Pandas ## Test File Iterations: 100 Filename|Size|Rows|Columns|Numeric Columns|String Columns --------|----|----|-------|---------------|-------------- productsales.sas7bdat|148.5 kB|1440|10|5|5 ## Python ``` $ python -V Python 3.6.3 :: Anaconda custom (64-bit) $ python perf_test1.py data_pandas/productsales.sas7bdat 100 Minimum: 0.0292 seconds Median: 0.0316 seconds Mean: 0.0325 seconds Maximum: 0.0572 seconds ``` ## Julia (ObjectPool) ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) BenchmarkTools.Trial: memory estimate: 1.07 MiB allocs estimate: 18583 -------------- minimum time: 2.084 ms (0.00% GC) median time: 2.188 ms (0.00% GC) mean time: 2.408 ms (3.88% GC) maximum time: 5.143 ms (47.78% GC) -------------- samples: 100 evals/sample: 1 ``` ## Julia (Regular String Array) ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) BenchmarkTools.Trial: memory estimate: 1.05 MiB allocs estimate: 18510 -------------- minimum time: 1.382 ms (0.00% GC) median time: 1.430 ms (0.00% GC) mean time: 1.608 ms (7.05% GC) maximum time: 5.258 ms (65.43% GC) -------------- samples: 100 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1881
# Julia/Python Performance Test Result ## Summary Julia is ~72.8x faster than Python/Pandas ## Test File Iterations: 100 Filename|Size|Rows|Columns|Numeric Columns|String Columns --------|----|----|-------|---------------|-------------- test1.sas7bdat|131.1 kB|10|100|75|25 ## Python ``` $ python -V Python 3.6.3 :: Anaconda custom (64-bit) $ python perf_test1.py data_pandas/test1.sas7bdat 100 Minimum: 0.0806 seconds Median: 0.0861 seconds Mean: 0.0872 seconds Maximum: 0.1226 seconds ``` ## Julia (ObjectPool) ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) BenchmarkTools.Trial: memory estimate: 989.53 KiB allocs estimate: 9388 -------------- minimum time: 1.147 ms (0.00% GC) median time: 1.233 ms (0.00% GC) mean time: 1.439 ms (6.35% GC) maximum time: 4.053 ms (56.94% GC) -------------- samples: 100 evals/sample: 1 ``` ## Julia (Regular String Array) ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) BenchmarkTools.Trial: memory estimate: 950.88 KiB allocs estimate: 8977 -------------- minimum time: 1.107 ms (0.00% GC) median time: 1.194 ms (0.00% GC) mean time: 1.379 ms (7.08% GC) maximum time: 4.468 ms (61.84% GC) -------------- samples: 100 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1890
# Julia/Python Performance Test Result ## Summary Julia is ~16.1x faster than Python/Pandas ## Test File Iterations: 30 Filename|Size|Rows|Columns|Numeric Columns|String Columns --------|----|----|-------|---------------|-------------- topical.sas7bdat|13.6 MB|84355|114|8|106 ## Python ``` $ python -V Python 3.6.3 :: Anaconda custom (64-bit) $ python perf_test1.py data_AHS2013/topical.sas7bdat 30 Minimum: 18.1696 seconds Median: 19.7381 seconds Mean: 20.0185 seconds Maximum: 23.0960 seconds ``` ## Julia (ObjectPool) ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) BenchmarkTools.Trial: memory estimate: 632.37 MiB allocs estimate: 18653672 -------------- minimum time: 2.296 s (9.82% GC) median time: 2.422 s (11.51% GC) mean time: 2.388 s (11.26% GC) maximum time: 2.445 s (11.40% GC) -------------- samples: 3 evals/sample: 1 ``` ## Julia (Regular String Array) ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) BenchmarkTools.Trial: memory estimate: 596.26 MiB allocs estimate: 18608580 -------------- minimum time: 1.129 s (0.00% GC) median time: 2.220 s (47.16% GC) mean time: 1.953 s (41.51% GC) maximum time: 2.511 s (55.19% GC) -------------- samples: 3 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
3316
## SASLib vs ReadStat results Key | Description | --------|-------------------------| F64 | number of Float64 columns| STR | number of String columns| DT | number of date/time coumns| COMP | compression method| S/R | SASLib time divided by ReadStat time| SA/R | SASLib time (regular string arrays) divided by ReadStat time| SASLibA | SASLib (regular string arrays)| ``` Filename : ReadStat SASLib S/R SASLibA SA/R F64 STR DT COMP data_AHS2013/homimp.sas7bdat : 39.610 ms 46.910 ms (118%) 25.087 ms ( 63%) 1 5 0 None data_AHS2013/omov.sas7bdat : 2.590 ms 4.736 ms (183%) 3.485 ms (135%) 3 5 0 RLE data_AHS2013/owner.sas7bdat : 13.884 ms 15.026 ms (108%) 9.513 ms ( 69%) 0 3 0 None data_AHS2013/ratiov.sas7bdat : 4.853 ms 6.950 ms (143%) 3.715 ms ( 77%) 0 9 0 None data_AHS2013/rmov.sas7bdat : 57.023 ms 84.570 ms (148%) 63.294 ms (111%) 2 21 0 RLE data_AHS2013/topical.sas7bdat : 2175.098 ms 2433.403 ms (112%) 1123.849 ms ( 52%) 8 106 0 RLE data_misc/numeric_1000000_2.sas7bdat : 222.189 ms 154.134 ms ( 69%) 157.427 ms ( 71%) 2 0 0 None data_misc/types.sas7bdat : 0.094 ms 0.184 ms (196%) 0.183 ms (196%) 5 1 0 None data_pandas/airline.sas7bdat : 0.108 ms 0.177 ms (164%) 0.181 ms (167%) 6 0 0 None data_pandas/datetime.sas7bdat : 0.082 ms 0.243 ms (295%) 0.243 ms (295%) 1 1 2 None data_pandas/productsales.sas7bdat : 2.305 ms 2.119 ms ( 92%) 1.360 ms ( 59%) 4 5 1 None data_pandas/test1.sas7bdat : 0.841 ms 1.167 ms (139%) 1.113 ms (132%) 73 25 2 None data_pandas/test10.sas7bdat : 0.843 ms 1.173 ms (139%) 1.117 ms (132%) 73 25 2 None data_pandas/test12.sas7bdat : 0.860 ms 1.047 ms (122%) 0.990 ms (115%) 73 25 2 RLE data_pandas/test13.sas7bdat : 0.845 ms 1.189 ms (141%) 1.132 ms (134%) 73 25 2 None data_pandas/test15.sas7bdat : 0.862 ms 1.058 ms (123%) 1.006 ms (117%) 73 25 2 RLE data_pandas/test16.sas7bdat : 0.854 ms 2.329 ms (273%) 2.295 ms (269%) 73 25 2 None data_pandas/test2.sas7bdat : 0.860 ms 1.042 ms (121%) 0.990 ms (115%) 73 25 2 RLE data_pandas/test4.sas7bdat : 0.842 ms 1.171 ms (139%) 1.113 ms (132%) 73 25 2 None data_pandas/test5.sas7bdat : 0.861 ms 1.034 ms (120%) 0.982 ms (114%) 73 25 2 RLE data_pandas/test7.sas7bdat : 0.843 ms 1.185 ms (141%) 1.125 ms (133%) 73 25 2 None data_pandas/test9.sas7bdat : 0.858 ms 1.063 ms (124%) 1.006 ms (117%) 73 25 2 RLE data_reikoch/barrows.sas7bdat : 7.449 ms 6.059 ms ( 81%) 6.063 ms ( 81%) 72 0 0 RLE data_reikoch/extr.sas7bdat : 0.178 ms 0.388 ms (218%) 0.382 ms (215%) 0 1 0 None data_reikoch/ietest2.sas7bdat : 0.061 ms 0.142 ms (231%) 0.141 ms (230%) 0 1 0 RLE ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1881
# Julia/Python Performance Test Result ## Summary Julia is ~10.5x faster than Python/Pandas ## Test File Iterations: 50 Filename|Size|Rows|Columns|Numeric Columns|String Columns --------|----|----|-------|---------------|-------------- homimp.sas7bdat|1.2 MB|46641|6|1|5 ## Python ``` $ python -V Python 3.6.3 :: Anaconda, Inc. $ python perf_test1.py data_AHS2013/homimp.sas7bdat 50 Minimum: 0.2726 seconds Median: 0.2953 seconds Mean: 0.2944 seconds Maximum: 0.3236 seconds ``` ## Julia (ObjectPool) ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) BenchmarkTools.Trial: memory estimate: 20.56 MiB allocs estimate: 513212 -------------- minimum time: 45.918 ms (0.00% GC) median time: 52.767 ms (10.15% GC) mean time: 53.208 ms (9.78% GC) maximum time: 60.720 ms (14.54% GC) -------------- samples: 50 evals/sample: 1 ``` ## Julia (Regular String Array) ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) BenchmarkTools.Trial: memory estimate: 19.38 MiB allocs estimate: 512257 -------------- minimum time: 25.901 ms (0.00% GC) median time: 39.589 ms (34.18% GC) mean time: 40.855 ms (34.82% GC) maximum time: 121.562 ms (76.55% GC) -------------- samples: 50 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git
[ "MIT" ]
1.3.1
c0f87a4a459e6ac5eb4fa8eea7b1357a4b5fc10b
docs
1198
# Julia/Python Performance Test Result ## Summary Julia is ~11.3x faster than Python/Pandas ## Test File Iterations: 100 Filename|Size|Rows|Columns|Numeric Columns|String Columns --------|----|----|-------|---------------|-------------- numeric_1000000_2.sas7bdat|16.3 MB|1000000|2|2|0 ## Python ``` $ python -V Python 3.6.3 :: Anaconda, Inc. $ python perf_test1.py data_misc/numeric_1000000_2.sas7bdat 100 Minimum: 1.7591 seconds Median: 1.8164 seconds Mean: 1.8219 seconds Maximum: 1.9256 seconds ``` ## Julia ``` Julia Version 0.6.2 Commit d386e40c17 (2017-12-13 18:08 UTC) Platform Info: OS: macOS (x86_64-apple-darwin14.5.0) CPU: Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz WORD_SIZE: 64 BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell) LAPACK: libopenblas64_ LIBM: libopenlibm LLVM: libLLVM-3.9.1 (ORCJIT, haswell) BenchmarkTools.Trial: memory estimate: 153.16 MiB allocs estimate: 1002641 -------------- minimum time: 155.898 ms (3.20% GC) median time: 239.698 ms (36.41% GC) mean time: 203.995 ms (24.49% GC) maximum time: 254.561 ms (35.91% GC) -------------- samples: 25 evals/sample: 1 ```
SASLib
https://github.com/tk3369/SASLib.jl.git