licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.1 | 5aa07104cc57e5aeaaa14891afcac7d0c95f28b7 | code | 4648 | """
make_twospirals(; n_samples::Int = 2000,
start_degrees::Int = 90,
total_degrees::Int = 570,
noise::Float64 = 0.2
Generate two spirals dataset. Return a Nx3 matrix, where each line contains the X,Y coordinates and the class of an instance.
# Arguments
- `n_samples::Int = 2000`: The total number of points generated.
- `start_degrees::Int = 90`: Determines how far from the origin the spirals start.
- `total_degrees::Int = 570`: Controls the lenght of the spirals.
- `noise::Float64 = 0.2`: Determines the noise in the dataset.
Reference: [link](https://la.mathworks.com/matlabcentral/fileexchange/41459-6-functions-for-generating-artificial-datasets)
"""
function make_twospirals(; n_samples::Int = 2000,
start_degrees::Int = 90,
total_degrees::Int = 570,
noise::Float64 = 0.2)
start_degrees = deg2rad(start_degrees);
N1 = floor(Int, n_samples / 2);
N2 = n_samples - N1;
n = start_degrees .+ sqrt.(rand(N1,1)) .* deg2rad(total_degrees);
d1 = [-cos.(n).*n + rand(N1,1).*noise sin.(n).*n+rand(N1,1).*noise];
n = start_degrees .+ sqrt.(rand(N2,1)) .* deg2rad(total_degrees);
d2 = [cos.(n).*n+rand(N2,1)*noise -sin.(n).*n+rand(N2,1)*noise];
features = [d1; d2]
labels = [zeros(Int, N1); ones(Int, N2)]
return convert(features, labels);
end
"""
make_halfkernel(; n_samples::Int = 1000,
minx::Int = -20,
r1::Int = 20,
r2::Int = 35,
noise::Float64 = 4.0,
ratio::Float64 = 0.6)
Generates two half ellipses, one inside the other
# Arguments
- `n_samples::Int = 1000`: The total number of points generated
- `r1::Int = 20`:
- `r2::Int = 35`:
- `minx::Int = -20`:
- `noise::Float64 = 0.2`: Determines the noise in the dataset.
- `ratio::Float64 = 0.6)`:
Reference: [link](https://la.mathworks.com/matlabcentral/fileexchange/41459-6-functions-for-generating-artificial-datasets)
"""
function make_halfkernel(; n_samples::Int = 1000,
minx::Int = -20,
r1::Int = 20,
r2::Int = 35,
noise::Float64 = 4.0,
ratio::Float64 = 0.6)
N = floor(Int, n_samples / 2)
phi1 = rand(N, 1) * pi
inner = [minx .+ r1 .* sin.(phi1) .- .5 .* noise .+ noise .* rand(N, 1) r1 .* ratio .* cos.(phi1) .- .5 .* noise .+ noise .* rand(N,1)]
l1 = ones(Int, N)
phi2 = rand(N,1) * pi
outer = [minx .+ r2 .* sin.(phi2) .- .5 .* noise .+ noise .* rand(N,1) r2 .* ratio .* cos.(phi2) .- .5 .* noise .+ noise .* rand(N,1)]
l2 = zeros(Int, N)
features = [inner; outer]
labels = [l1; l2]
return convert(features, labels)
end
"""
make_outlier(;n_samples::Int = 600,
r::Int = 20,
dist::Int = 30,
outliers::Float64 = 0.04,
noise::Float64 = 5.0)
Generates outlier dataset.
# Arguments
- `n_samples::600 = 1000`: The total number of points generated.
- `r::Int = 20`: Radius of lateral blobs.
- `dist::Int = 30`: Determine the distance between the labels.
- `noise::Float64 = 5.0`: Determines the noise in the dataset.
Reference: [link](https://la.mathworks.com/matlabcentral/fileexchange/41459-6-functions-for-generating-artificial-datasets)
"""
function make_outlier(;n_samples::Int = 600,
r::Int = 20,
dist::Int = 30,
outliers::Float64 = 0.04,
noise::Float64 = 5.0)
n1 = round(Int, (n_samples * (0.5 - outliers)) )
n2 = n1
n3 = round(Int, n_samples * outliers)
n4 = n_samples - n1 - n2 - n3
phi1 = rand(n1, 1) * pi
r1 = sqrt.(rand(n1, 1)) * r
p1 = [ -dist .+ (r1 .* sin.(phi1)) r1 .* cos.(phi1)]
l1 = zeros(Int, n1)
phi2 = rand(n2, 1) * pi
r2 = sqrt.(rand(n2, 1)) * r
p2 = [ dist .- r2.*sin.(phi2) r2.*cos.(phi2)]
l2 = 3 * ones(Int, n2)
p3 = [ rand(n3, 1) * noise dist .+ rand(n3, 1) * noise ]
l3 = 2 * ones(Int, n3)
p4 = [ rand(n4, 1) * noise -dist .+ rand(n4, 1) * noise ]
l4 = ones(Int, n4)
features = [p1; p2; p3; p4]
labels = [l1; l2; l3; l4]
return convert(features, labels)
end
| SyntheticDatasets | https://github.com/ATISLabs/SyntheticDatasets.jl.git |
|
[
"MIT"
] | 0.1.1 | 5aa07104cc57e5aeaaa14891afcac7d0c95f28b7 | code | 26965 | """
make_moons(; n_samples::Union{Tuple{Int, Int}, Int} = 100,
shuffle = true,
noise = nothing,
random_state = nothing)::DataFrame
Make two interleaving half circles. Sklearn interface to make_moons.
# Arguments
- `n_samples::Union{Tuple{Int, Int}, Int} = 100`: If int, the total number of points generated. If two-element tuple, number of points in each of two moons.
- `shuffle::Bool = true`: Whether to shuffle the samples.
- `noise::Union{Nothing, Float64} = nothing`: Standard deviation of Gaussian noise added to the data.
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset shuffling and noise.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html)
"""
function make_moons(; n_samples::Union{Tuple{Int, Int}, Int} = 100,
shuffle::Bool = true,
noise::Union{Nothing, Float64} = nothing,
random_state::Union{Int, Nothing} = nothing)::DataFrame
(features, labels) = datasets.make_moons( n_samples=n_samples,
shuffle = shuffle,
noise = noise,
random_state = random_state)
return convert(features, labels)
end
"""
make_blobs(; n_samples::Union{Int, Array{Int, 1}} = 100,
n_features::Int = 2,
centers::Union{Int, Union{Nothing, Array{Float64, 2}}} = nothing,
cluster_std::Union{Float64, Array{Float64, 1}} = 1.0,
center_box = (-10.0, 10.0),
shuffle::Bool = true,
random_state::Union{Int, Nothing} = nothing)::DataFrame
Generate isotropic Gaussian blobs for clustering. Sklearn interface to make_blobs.
# Arguments
- `n_samples = 100`: If int, it is the total number of points equally divided among clusters. If array-like, each element of the sequence indicates the number of samples per cluster.
- `n_features = 2`: The number of features for each sample.
- `centers::Union{Int, Union{Nothing, Array{Float64, 2}}} = nothing`: The number of centers to generate, or the fixed center locations. If n_samples is an int and centers is None, 3 centers are generated. If n_samples is array-like, centers must be either None or an array of length equal to the length of n_samples.
- `cluster_std::Union{Float64, Array{Float64, 1}} = 1.0`: The standard deviation of the clusters.
- `center_box::Tuple{Float64, Float64} = (-10.0, 10.0)`: The bounding box for each cluster center when centers are generated at random.
- `shuffle::Bool = true`: Shuffle the samples.
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset shuffling and noise.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html)
"""
function make_blobs(; n_samples::Union{Int, Array{Int, 1}} = 100,
n_features::Int = 2,
centers::Union{Int, Union{Nothing, Array{Float64, 2}}} = nothing,
cluster_std::Union{Float64, Array{Float64, 1}} = 1.0,
center_box::Tuple{Float64, Float64} = (-10.0, 10.0),
shuffle::Bool = true,
random_state::Union{Int, Nothing} = nothing)::DataFrame
(features, labels) = datasets.make_blobs( n_samples = n_samples,
n_features = n_features,
centers = centers,
cluster_std = cluster_std,
center_box = center_box,
shuffle = shuffle,
random_state = random_state,
return_centers = false)
return convert(features, labels)
end
"""
make_s_curve(; n_samples::Int = 100,
noise = nothing,
random_state = nothing)::DataFrame
Generate an S curve dataset. Sklearn interface to make_s_curve.
# Arguments
- `n_samples::Int = 100`: The number of sample points on the S curve.
- `noise::Union{Nothing, Float64} = nothing`: Standard deviation of Gaussian noise added to the data.
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html)
"""
function make_s_curve(; n_samples::Int = 100,
noise::Float64 = 0.0,
random_state::Union{Int, Nothing} = nothing)::DataFrame
(features, labels) = datasets.make_s_curve( n_samples = n_samples,
noise = noise,
random_state = random_state)
return convert(features, labels)
end
"""
function make_circles(; n_samples::Int = 100,
shuffle::Bool = true,
noise::Float64 = 0.0,
random_state::Union{Int, Nothing} = nothing,
factor::Float64 = 0.8)::DataFrame
Make a large circle containing a smaller circle in 2d. Sklearn interface to make_circles.
# Arguments
- `n_samples::Union{Int, Tuple{Int, Int}} = 100`: If int, it is the total number of points generated. For odd numbers, the inner circle will have one point more than the outer circle. If two-element tuple, number of points in outer circle and inner circle.
- `shuffle::Bool = true`: Whether to shuffle the samples.
- `noise::Union{Nothing, Float64} = nothing`: Standard deviation of Gaussian noise added to the data.
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset shuffling and noise. Pass an int for reproducible output across multiple function calls.
- `factor::Float64 = 0.8`: Scale factor between inner and outer circle.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html)
"""
function make_circles(; n_samples::Union{Int, Tuple{Int, Int}} = 100,
shuffle::Bool = true,
noise::Union{Nothing, Float64} = nothing,
random_state::Union{Int, Nothing} = nothing,
factor::Float64 = 0.8)::DataFrame
(features, labels) = datasets.make_circles( n_samples = n_samples,
shuffle = shuffle,
noise = noise,
random_state = random_state,
factor = factor)
return convert(features, labels)
end
"""
make_regression(; n_samples::Int = 100,
n_features::Int = 100,
n_informative::Int = 10,
n_targets::Int = 1,
bias::Float64 = 0.0,
effective_rank::Union{Int, Nothing} = nothing,
tail_strength::Float64 = 0.5,
noise::Float64 = 0.0,
shuffle::Bool = true,
coef::Bool = false,
random_state::Union{Int, Nothing}= nothing)
Generate a random regression problem. Sklearn interface to make_regression.
# Arguments
- `n_samples::Int = 100`: The number of samples.
- `n_features::Int = 2`: The number of features.
- `n_informative::Int = 10`: The number of informative features, i.e., the number of features used to build the linear model used to generate the output.
- `n_targets::Int = 1`: The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar.
- `bias::Float = 0.0`: The bias term in the underlying linear model.
- `effective_rank::Union{Int, Nothing} = nothing`: If not `nothing`, the approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. If `nothing`, the input set is well conditioned, centered and gaussian with unit variance.
- `tail_strength::Float = 0.5`: The relative importance of the fat noisy tail of the singular values profile if effective_rank is not None.
- `noise::Union{Nothing, Float64} = nothing`: Standard deviation of Gaussian noise added to the data.
- `shuffle::Bool = true`: Shuffle the samples and the features.
- `coef::Bool = false`: If `true`, the coefficients of the underlying linear model are returned.
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset shuffling and noise.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html)
"""
function make_regression(; n_samples::Int = 100,
n_features::Int = 100,
n_informative::Int = 10,
n_targets::Int = 1,
bias::Float64 = 0.0,
effective_rank::Union{Int, Nothing} = nothing,
tail_strength::Float64 = 0.5,
noise::Float64 = 0.0,
shuffle::Bool = true,
coef::Bool = false,
random_state::Union{Int, Nothing}= nothing)
(features, labels) = datasets.make_regression( n_samples = n_samples,
n_features = n_features,
n_informative = n_informative,
n_targets = n_targets,
bias = bias,
effective_rank = effective_rank,
tail_strength = tail_strength,
noise = noise,
shuffle = shuffle,
coef = coef,
random_state = random_state)
return convert(features, labels)
end
"""
function make_classification(; n_samples::Int = 100,
n_features::Int = 20,
n_informative::Int = 2,
n_redundant::Int = 2,
n_repeated::Int = 0,
n_classes::Int = 2,
n_clusters_per_class::Int = 2,
weights::Union{Nothing, Array{Float64,1}} = nothing,
flip_y::Float64 = 0.01,
class_sep::Float64 = 1.0,
hypercube::Bool = true,
shift::Union{Nothing, Array{Float64,1}} = 0.0,
scale::Union{Nothing, Array{Float64,1}} = 1.0,
shuffle::Bool = true,
random_state::Union{Int, Nothing} = nothing)
Generate a random n-class classification problem. Sklearn interface to make_classification.
#Arguments
- `n_samples::Int = 100`: The number of samples.
- `n_features::Int = 20`: The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant-n_repeated` useless features drawn at random.
- `n_informative::Int = 2`: The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube.
- `n_redundant::Int = 2`: The number of redundant features. These features are generated as random linear combinations of the informative features.
- `n_repeated::Int = 0`: The number of duplicated features, drawn randomly from the informative and the redundant features.
- `n_classes::Int = 2`: The number of classes (or labels) of the classification problem.
- `n_clusters_per_class::Int = 2`: The number of clusters per class.
- `weights::Union{Nothing, Array{Float64,1}} = nothing`:
- `flip_y::Float64 = 0.01`: The fraction of samples whose class is assigned randomly. Larger values introduce noise in the labels and make the classification task harder. Note that the default setting flip_y > 0 might lead to less than n_classes in y in some cases.
- `class_sep::Float64 = 1.0`: The factor multiplying the hypercube size. Larger values spread out the clusters/classes and make the classification task easier.
- `hypercube::Bool = true`: If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope.
- `shift::Union{Nothing, Array{Float64,1}} = 0.0`: Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep].
- `scale::Union{Nothing, Array{Float64,1}} = 1.0`: Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting.
- `shuffle::Bool = true`: Shuffle the samples and the features.
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html)
"""
function make_classification(; n_samples::Int = 100,
n_features::Int = 20,
n_informative::Int = 2,
n_redundant::Int = 2,
n_repeated::Int = 0,
n_classes::Int = 2,
n_clusters_per_class::Int = 2,
weights::Union{Nothing, Array{Float64,1}} = nothing,
flip_y::Float64 = 0.01,
class_sep::Float64 = 1.0,
hypercube::Bool = true,
shift::Union{Nothing, Float64, Array{Float64,1}} = 0.0,
scale::Union{Nothing, Float64, Array{Float64,1}} = 1.0,
shuffle::Bool = true,
random_state::Union{Int, Nothing} = nothing)
(features, labels) = datasets.make_classification( n_samples = n_samples,
n_features = n_features,
n_informative = n_informative,
n_redundant = n_redundant,
n_repeated = n_repeated,
n_classes = n_classes,
n_clusters_per_class = n_clusters_per_class,
weights = weights,
flip_y = flip_y,
class_sep = class_sep,
hypercube = hypercube,
shift = shift,
scale = scale,
shuffle = shuffle,
random_state = random_state)
return convert(features, labels)
end
"""
function make_friedman1(; n_samples::Int = 100,
n_features::Int = 10,
noise::Float64 = 0.0,
random_state::Union{Int, Nothing} = nothing)::DataFrame
Generate the “Friedman #1” regression problem. Sklearn interface to make_regression.
#Arguments
- `n_samples::Int = 100`: The number of samples.
- `n_features::Int = 10`: The number of features. Should be at least 5.
- `noise::Union{Nothing, Float64} = nothing`: The standard deviation of the gaussian noise applied to the output.
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset noise. Pass an int for reproducible output across multiple function calls.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman1.html)
"""
function make_friedman1(; n_samples::Int = 100,
n_features::Int = 10,
noise::Float64 = 0.0,
random_state::Union{Int, Nothing} = nothing)::DataFrame
(features, labels) = datasets.make_friedman1( n_samples = n_samples,
n_features = n_features,
noise = noise,
random_state = random_state)
return convert(features, labels)
end
"""
function make_friedman2(; n_samples::Int = 100,
noise::Float64 = 0.0,
random_state::Union{Int, Nothing} = nothing)::DataFrame
Generate the “Friedman #2” regression problem. Sklearn interface to make_friedman2.
#Arguments
- `n_samples::Int = 100`: The number of samples.
- `n_features::Int = 10`: The number of features. Should be at least 5.
- `noise::Union{Nothing, Float64} = nothing`: The standard deviation of the gaussian noise applied to the output.
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset noise. Pass an int for reproducible output across multiple function calls.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman2.html)
"""
function make_friedman2(; n_samples::Int = 100,
noise::Float64 = 0.0,
random_state::Union{Int, Nothing} = nothing)::DataFrame
(features, labels) = datasets.make_friedman2( n_samples = n_samples,
noise = noise,
random_state = random_state)
return convert(features, labels)
end
"""
function make_friedman3(; n_samples::Int = 100,
noise::Float64 = 0.0,
random_state::Union{Int, Nothing} = nothing)::DataFrame
Generate the “Friedman #3” regression problem. Sklearn interface to make_friedman3.
#Arguments
- `n_samples::Int = 100`: The number of samples.
- `noise::Union{Nothing, Float64} = nothing`: The standard deviation of the gaussian noise applied to the output.
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset noise. Pass an int for reproducible output across multiple function calls.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman3.html)
"""
function make_friedman3(; n_samples::Int = 100,
noise::Float64 = 0.0,
random_state::Union{Int, Nothing} = nothing)::DataFrame
(features, labels) = datasets.make_friedman3( n_samples = n_samples,
noise = noise,
random_state = random_state)
return convert(features, labels)
end
"""
function make_low_rank_matrix(; n_samples::Int =100,
n_features::Int =100,
effective_rank::Int =10,
tail_strength::Float64 =0.5,
random_state::Union{Int, Nothing} = nothing)
Generate a mostly low rank matrix with bell-shaped singular values
#Arguments
- `n_samples::Int = 100`: The number of samples.
- `n_features::Int = 20`: The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant-n_repeated` useless features drawn at random.
- `effective_rank::Int = 10`: The approximate number of singular vectors required to explain most of the data by linear combinations.
- `tail_strength::Float64 = 0.5`: The relative importance of the fat noisy tail of the singular values profile.
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_low_rank_matrix.html)
"""
function make_low_rank_matrix(; n_samples::Int = 100,
n_features::Int = 100,
effective_rank::Int = 10,
tail_strength::Float64 = 0.5,
random_state::Union{Int, Nothing} = nothing)
features = datasets.make_low_rank_matrix( n_samples = n_samples,
n_features = n_features,
effective_rank = effective_rank,
tail_strength = tail_strength,
random_state = random_state)
return features
end
"""
function make_swiss_roll(; n_samples::Int = 100,
noise::Float64 = 0.0,
random_state::Union{Int,Nothing} = nothing)
Generate a swiss roll dataset.
#Arguments
- `n_samples::Int = 100`: The number of samples.
- `noise::Float64 = 0.0 : Standard deviation of Gaussian noise added to the data.
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.htmll)
"""
function make_swiss_roll(; n_samples::Int = 100,
noise::Float64 = 0.0,
random_state::Union{Int,Nothing} = nothing)
(features, labels) = datasets.make_swiss_roll( n_samples = n_samples,
noise = noise,
random_state = random_state)
return convert(features, labels)
end
"""
function make_hastie_10_2(; n_samples::Int = 12000,
random_state::Union{Int,Nothing} = nothing)
Generates data for binary classification used in Hastie et al. 2009, Example 10.2.
#Arguments
- `n_samples::Int = 100`: The number of samples..
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_hastie_10_2.html)
"""
function make_hastie_10_2(; n_samples::Int = 12000,
random_state::Union{Int,Nothing} = nothing)
(features, labels) = datasets.make_hastie_10_2( n_samples = n_samples,
random_state = random_state)
return convert(features, labels)
end
"""
function make_gaussian_quantiles(; mean::Array{<:Union{Number, Nothing}, 1} = [nothing],
cov::Float64 = 1,
n_samples::Int = 100,
n_features::Int = 2,
n_classes::Int = 3,
shuffle::Bool = true,
random_state::Union{Int, Nothing} = nothing)
Generate isotropic Gaussian and label samples by quantile.
#Arguments
- `mean::Union{Array{<:Number, 1}, Nothing} = nothing`: The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, …).
- `cov::Float64 = 1`: The covariance matrix will be this value times the unit matrix.
- `n_samples::Int = 100`: The total number of points equally divided among classes.
- `n_features::Int = 2`: The number of features for each sample.
- `n_classes::Int = 3`: The number of classes.
- `shuffle::Bool = true`: Shuffle the samples.
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
Reference: [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_gaussian_quantiles.html)
"""
function make_gaussian_quantiles(; mean::Union{Array{<:Number, 1}, Nothing} = nothing,
cov::Float64 = 1.0,
n_samples::Int = 100,
n_features::Int = 2,
n_classes::Int = 3,
shuffle::Bool = true,
random_state::Union{Int, Nothing} = nothing)
typeof(mean) != Nothing && length(mean) != n_features && throw(DimensionMismatch("length of mean must be equal to n_features."))
(features, labels) = datasets.make_gaussian_quantiles( mean = mean,
cov = cov,
n_samples = n_samples,
n_features = n_features,
n_classes = n_classes,
shuffle = shuffle,
random_state = random_state)
return convert(features, labels)
end
| SyntheticDatasets | https://github.com/ATISLabs/SyntheticDatasets.jl.git |
|
[
"MIT"
] | 0.1.1 | 5aa07104cc57e5aeaaa14891afcac7d0c95f28b7 | code | 4951 | using SyntheticDatasets
using DataFrames
using Test
@testset "SkLearn Generators" begin
samples = 20000
features = 20
data = SyntheticDatasets.make_blobs(centers = [-1 1;-0.5 0.75],
cluster_std = 0.225,
n_samples = 20000,
center_box = (-1.5, 1.5))
@test size(data)[1] == samples
@test size(data)[2] == 3
samples = 20000
data = SyntheticDatasets.make_moons(n_samples = 20000)
@test size(data)[1] == samples
@test size(data)[2] == 3
data = SyntheticDatasets.make_s_curve( n_samples = samples,
noise = 2.2,
random_state = 5)
@test size(data)[1] == samples
@test size(data)[2] == 4
data = SyntheticDatasets.make_circles(n_samples = samples)
@test size(data)[1] == samples
@test size(data)[2] == 3
data = SyntheticDatasets.make_regression( n_samples = samples,
n_features = features,
noise = 2.2,
random_state = 5)
@test size(data)[1] == samples
@test size(data)[2] == features + 1
data = SyntheticDatasets.make_regression( n_samples = samples,
n_features = features,
n_targets = 2,
noise = 2.2,
random_state = 5)
@test size(data)[1] == samples
@test size(data)[2] == features + 2
data = SyntheticDatasets.make_regression( n_samples = samples,
n_features = features,
n_targets = 3,
noise = 2.2,
random_state = 5)
@test size(data)[1] == samples
@test size(data)[2] == features + 3
data = SyntheticDatasets.make_classification( n_samples = samples,
n_features = features,
n_classes = 1)
@test size(data)[1] == samples
@test size(data)[2] == features + 1
data = SyntheticDatasets.make_friedman1(n_samples = samples,
n_features = features)
@test size(data)[1] == samples
@test size(data)[2] == features + 1
data = SyntheticDatasets.make_friedman2(n_samples = samples)
@test size(data)[1] == samples
@test size(data)[2] == 5
data = SyntheticDatasets.make_friedman3(n_samples = samples)
@test size(data)[1] == samples
@test size(data)[2] == 5
data = SyntheticDatasets.make_low_rank_matrix( n_samples = samples,
n_features = features,
effective_rank = 10,
tail_strength = 0.5,
random_state = 5)
@test size(data)[1] == samples
@test size(data)[2] == features
data = SyntheticDatasets.make_swiss_roll( n_samples = samples,
noise = 2.2,
random_state = 5)
@test size(data)[1] == samples
@test size(data)[2] == 4
data = SyntheticDatasets.make_hastie_10_2( n_samples = samples,
random_state = 5)
@test size(data)[1] == samples
@test size(data)[2] == 11
data = SyntheticDatasets.make_gaussian_quantiles( n_samples = samples,
n_features = features,
random_state = 5)
@test size(data)[1] == samples
@test size(data)[2] == features + 1
@test_throws DimensionMismatch SyntheticDatasets.make_gaussian_quantiles( n_samples = 300,
n_features = 4,
random_state = 5,
mean = [1, 2, 3])
end
@testset "Matlab Generators" begin
samples = 20000
data = SyntheticDatasets.make_twospirals(n_samples = samples,
noise = 2.2)
@test size(data)[1] == samples
data = SyntheticDatasets.make_halfkernel(n_samples = samples)
@test size(data)[1] == samples
data = SyntheticDatasets.make_outlier(n_samples = samples)
@test size(data)[1] == samples
@test size(data)[2] == 3
end
| SyntheticDatasets | https://github.com/ATISLabs/SyntheticDatasets.jl.git |
|
[
"MIT"
] | 0.1.1 | 5aa07104cc57e5aeaaa14891afcac7d0c95f28b7 | docs | 7934 | # SyntheticDatasets.jl
[![][travis-img]][travis-url] [![][codecov-img]][codecov-url] [![][coverage-img]][coverage-url]
The SyntheticDatasets.jl package is a library with functions for generating synthetic artificial datasets.
## Installation
The package can be installed with the Julia package manager.
From the Julia REPL, type `]` to enter the Pkg REPL mode and run:
```
pkg> add SyntheticDatasets
```
Or, equivalently, via the `Pkg` API:
```julia
julia> import Pkg; Pkg.add("SyntheticDatasets")
```
## Examples
A set of pluto notebooks and codes demonstrating the project's current functionality is available in [the examples folder](examples/).
Here are a few examples to show the Package capabilities:
```julia
using StatsPlots, SyntheticDatasets
blobs = SyntheticDatasets.make_blobs( n_samples = 1000,
n_features = 2,
centers = [-1 1; -0.5 0.5],
cluster_std = 0.25,
center_box = (-2.0, 2.0),
shuffle = true,
random_state = nothing);
@df blobs scatter(:feature_1, :feature_2, group = :label, title = "Blobs")
gauss = SyntheticDatasets.make_gaussian_quantiles( mean = [10,1],
cov = 2.0,
n_samples = 1000,
n_features = 2,
n_classes = 3,
shuffle = true,
random_state = 2);
@df gauss scatter(:feature_1, :feature_2, group = :label, title = "Gaussian Quantiles")
spirals = SyntheticDatasets.make_twospirals(n_samples = 2000,
start_degrees = 90,
total_degrees = 570,
noise =0.1);
@df spirals scatter(:feature_1, :feature_2, group = :label, title = "Two Spirals")
kernel = SyntheticDatasets.make_halfkernel( n_samples = 1000,
minx = -20,
r1 = 20,
r2 = 35,
noise = 3.0,
ratio = 0.6);
@df kernel scatter(:feature_1, :feature_2, group = :label, title = "Half Kernel")
```
<p align="center">
<img width="460" height="300" src="https://github.com/ATISLabs/SyntheticDatasets.jl/blob/4b90b37ea57e38c3a7a05f9917912023f8aa5361/examples/subplot.png">
</p>
## Datasets
The SyntheticDatasets.jl is a library with functions for generating synthetic artificial datasets. The package has some functions are interfaces to the dataset generator of the [ScikitLearn](https://scikit-learn.org/stable/modules/classes.html#samples-generator).
### ScikitLearn
List of package datasets:
Dataset | Title | Reference
------------------------|-------------------------------------------------------------------------|--------------------------------------------------
make_blobs | Generate isotropic Gaussian blobs for clustering. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html)
make_moons | Make two interleaving half circles | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html)
make_s_curve | Generate an S curve dataset. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html)
make_regression | Generate a random regression problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html)
make_classification | Generate a random n-class classification problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html)
make_friedman1 | Generate the “Friedman #1” regression problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman1.html)
make_friedman2 | Generate the “Friedman #2” regression problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman2.html)
make_friedman3 | Generate the “Friedman #3” regression problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman3.html)
make_circles | Make a large circle containing a smaller circle in 2d | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html)
make_regression | Generate a random regression problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html)
make_classification | Generate a random n-class classification problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html)
make_low_rank_matrix | Generate a mostly low rank matrix with bell-shaped singular values. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_low_rank_matrix.html)
make_swiss_roll | Generate a swiss roll dataset. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html)
make_hastie_10_2 | Generates data for binary classification used in Hastie et al. |[link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_hastie_10_2.html)
make_gaussian_quantiles | Generate isotropic Gaussian and label samples by quantile. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_gaussian_quantiles.html)
**Disclaimer**: SyntheticDatasets.jl borrows code and documentation from
[scikit-learn](https://scikit-learn.org/stable/modules/classes.html#samples-generator) in the dataset module, but *it is not an official part
of that project*. It is licensed under [MIT](LICENSE).
### Other Functions
Dataset | Title | Reference
-----------------|-------------------------------------------------------------------------|--------------------------------------------------
make_twospirals | Generate two spirals dataset. | [link](https://la.mathworks.com/matlabcentral/fileexchange/41459-6-functions-for-generating-artificial-datasets)
make_halfkernel | Generate two half kernel dataset. | [link](https://la.mathworks.com/matlabcentral/fileexchange/41459-6-functions-for-generating-artificial-datasets)
make_outlier | Generate outlier dataset. | [link](https://la.mathworks.com/matlabcentral/fileexchange/41459-6-functions-for-generating-artificial-datasets)
[travis-img]: https://travis-ci.com/ATISLabs/SyntheticDatasets.jl.svg?branch=master
[travis-url]: https://travis-ci.com/ATISLabs/SyntheticDatasets.jl
[codecov-img]: https://codecov.io/gh/ATISLabs/SyntheticDatasets.jl/branch/master/graph/badge.svg?token=13TrPsgakO
[codecov-url]: https://codecov.io/gh/ATISLabs/SyntheticDatasets.jl
[coverage-img]: https://coveralls.io/repos/github/ATISLabs/SyntheticDatasets.jl/badge.svg?branch=master
[coverage-url]: https://coveralls.io/github/ATISLabs/SyntheticDatasets.jl?branch=master
| SyntheticDatasets | https://github.com/ATISLabs/SyntheticDatasets.jl.git |
|
[
"MIT"
] | 0.1.2 | 523763a2fb599190213f96f2fa860e9295def201 | code | 658 | using RedefStructs
using Documenter
DocMeta.setdocmeta!(RedefStructs, :DocTestSetup, :(using RedefStructs); recursive=true)
makedocs(;
modules=[RedefStructs],
authors="Federico Stra <[email protected]> and contributors",
repo="https://github.com/FedericoStra/RedefStructs.jl/blob/{commit}{path}#{line}",
sitename="RedefStructs.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://FedericoStra.github.io/RedefStructs.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/FedericoStra/RedefStructs.jl",
)
| RedefStructs | https://github.com/FedericoStra/RedefStructs.jl.git |
|
[
"MIT"
] | 0.1.2 | 523763a2fb599190213f96f2fa860e9295def201 | code | 4451 | module RedefStructs
export @redef, @redef_print, @kwredef
@doc """
@redef [mutable] struct S [<: A]
...
end
Define a structure in a manner that allows redefinitions.
Behind the scenes, this creates a "secret" structure with
[`gensym`](https://docs.julialang.org/en/v1/base/base/#Base.gensym)
and assigns `S` to its name.
See also [`@redef_print`](@ref).
# Examples
```jldoctest
julia> using RedefStructs
julia> @redef struct S
s::String
end
julia> S("Hello").s
"Hello"
julia> @redef mutable struct S
n::Int
end
julia> S(42).n
42
```
"""
macro redef(struct_def)
name = struct_def_name(struct_def)
real_name = gensym(name)
struct_def = replace!(struct_def, name, real_name)
fix_name = :(Base.unwrap_unionall($real_name).name.name = $(QuoteNode(name)))
esc(quote
$struct_def
$fix_name
$name = $real_name # this should be `const $name = $real_name`
nothing # avoid returning the new struct
end)
end
@doc """
@redef [mutable] struct S [<: A]
...
end
Define a structure in a manner that allows redefinitions.
Behind the scenes, this creates a "secret" structure with
[`gensym`](https://docs.julialang.org/en/v1/base/base/#Base.gensym)
and defines a specialized method of `Base.show_datatype` which shows `S`.
See also [`@redef`](@ref).
# Examples
```jldoctest
julia> using RedefStructs
julia> @redef_print struct S
s::String
end
julia> S("Hello").s
"Hello"
julia> @redef_print mutable struct S
n::Int
end
julia> S(42).n
42
```
"""
macro redef_print(struct_def)
name = struct_def_name(struct_def)
real_name = gensym(name)
struct_def = replace!(struct_def, name, real_name)
fix_print = :(Base.show_datatype(io::Base.IO, ::Base.Type{Base.unwrap_unionall($real_name)}) = Base.print(io, $(QuoteNode(name))))
esc(quote
$struct_def
$fix_print
$name = $real_name # this should be `const $name = $real_name`
nothing # avoid returning the new struct
end)
end
@doc """
@kwredef [mutable] struct S [<: A]
...
end
Define a structure in a manner that allows redefinitions, using `Base.@kwdef`.
Behind the scenes, this creates a "secret" structure with
[`gensym`](https://docs.julialang.org/en/v1/base/base/#Base.gensym)
and assigns `S` to its name.
See also [`@redef`](@ref) and `Base.@kwdef`.
# Examples
```jldoctest
julia> using RedefStructs
julia> @kwredef struct S
s::String = "<empty>"
end
julia> S("Hello").s
"Hello"
julia> @kwredef mutable struct S
a::Int = 0
b::Int
end
julia> S(b=42).a
0
```
"""
macro kwredef(struct_def)
name = struct_def_name(struct_def)
real_name = gensym(name)
struct_def = :(Base.@kwdef $(replace!(struct_def, name, real_name)))
fix_name = :(Base.unwrap_unionall($real_name).name.name = $(QuoteNode(name)))
esc(quote
$struct_def
$fix_name
$name = $real_name # this should be `const $name = $real_name`
nothing # avoid returning the new struct
end)
end
"""
struct_def_name(struct_def)
Returns the name of the `struct` being defined in a `struct ... end` block.
"""
function struct_def_name(struct_def)
struct_def isa Expr && struct_def.head == :struct || error("expected struct definition")
sig = struct_def.args[2] # signature of the struct: `struct <sig> ... end`
if sig isa Symbol
sig
elseif sig.head == :curly
sig.args[1]
elseif sig.head == :<: # `struct <sig> <: ... ... end`
sig = sig.args[1]
if sig isa Symbol
sig
elseif sig.head == :curly
sig.args[1]
else
error("invalid `<:` signature, expected `S <: AbstractType`")
end
else
error("expected signature `S` or `S <: AbstractType`")
end
end
"""
replace!(code::Expr, old::Symbol, new::Symbol)
Replaces every appearance of `old` in `code` with `new`.
Modifies `code` and returns it.
"""
function replace!(code::Expr, old::Symbol, new::Symbol)
code.head = replace!(code.head, old, new)
for i in eachindex(code.args)
code.args[i] = replace!(code.args[i], old, new)
end
code
end
function replace!(code::Symbol, old::Symbol, new::Symbol)
code === old ? new : code
end
function replace!(code, old::Symbol, new::Symbol)
code
end
end # module
| RedefStructs | https://github.com/FedericoStra/RedefStructs.jl.git |
|
[
"MIT"
] | 0.1.2 | 523763a2fb599190213f96f2fa860e9295def201 | code | 784 | using RedefStructs
using Test
@testset "redef" begin
@testset "valid" begin
abstract type A end
@test (@redef struct S end; true)
@test (@redef struct S <: A end; true)
@test (@redef struct S{T} end; true)
@test (@redef struct S{T} <: A end; true)
end
# @testset "invalid" begin
# abstract type A end
# @test_throws ErrorException @redef S
# @test_throws ErrorException @redef :S
# @test_throws ErrorException @redef 1+2
# end
end
@testset "redef_print" begin
abstract type A end
@test (@redef_print struct S end; true)
@test (@redef_print struct S <: A end; true)
@test_broken (@redef_print struct S{T} end; true)
@test_broken (@redef_print struct S{T} <: A end; true)
end
| RedefStructs | https://github.com/FedericoStra/RedefStructs.jl.git |
|
[
"MIT"
] | 0.1.2 | 523763a2fb599190213f96f2fa860e9295def201 | docs | 1458 | # RedefStructs.jl
<!--




 -->
[](https://FedericoStra.github.io/RedefStructs.jl/stable)
[](https://FedericoStra.github.io/RedefStructs.jl/dev)
[](https://github.com/FedericoStra/RedefStructs.jl/actions)
[](https://github.com/invenia/BlueStyle)
[](https://github.com/SciML/ColPrac)
This package provides the macro `@redef`, which allows to create `struct`ures which are redefinable.
## Example
```julia
julia> using RedefStructs
julia> @redef struct S
s::String
end
julia> S("Hello").s
"Hello"
julia> @redef mutable struct S
n::Int
end
julia> S(42).n
42
```
| RedefStructs | https://github.com/FedericoStra/RedefStructs.jl.git |
|
[
"MIT"
] | 0.1.2 | 523763a2fb599190213f96f2fa860e9295def201 | docs | 1274 | ```@meta
CurrentModule = RedefStructs
```
# RedefStructs.jl
Documentation for [RedefStructs.jl](https://github.com/FedericoStra/RedefStructs.jl).
This package provides the macros [`@redef`](@ref), [`@redef_print`](@ref), and [`@kwredef`](@ref)
which allow to create `struct`ures which are redefinable.
```@contents
Depth = 3
```
## Examples
Using [`@redef`](@ref):
```jldoctest
julia> using RedefStructs
julia> @redef struct S
s::String
end
julia> S("Hello").s
"Hello"
julia> @redef mutable struct S
n::Int
end
julia> S(42).n
42
```
Using [`@redef_print`](@ref):
```jldoctest
julia> using RedefStructs
julia> @redef_print struct S
s::String
end
julia> S("Hello").s
"Hello"
julia> @redef_print mutable struct S
n::Int
end
julia> S(42).n
42
```
Using [`@redef`](@ref):
```jldoctest
julia> using RedefStructs
julia> @kwredef struct S
s::String = "<empty>"
end
julia> S("Hello").s
"Hello"
julia> @kwredef mutable struct S
a::Int = 0
b::Int
end
julia> S(b=42).a
0
```
## Library
```@index
```
### Public
```@autodocs
Modules = [RedefStructs]
Private = false
```
### Private
```@autodocs
Modules = [RedefStructs]
Public = false
```
| RedefStructs | https://github.com/FedericoStra/RedefStructs.jl.git |
|
[
"MIT"
] | 0.1.0 | cc9cbf7252dc1a212d93e0ef510d75e0128dfaff | code | 539 | using StructuralUnits
using Documenter
DocMeta.setdocmeta!(StructuralUnits, :DocTestSetup, :(using StructuralUnits); recursive=true)
makedocs(;
modules=[StructuralUnits],
authors="Cole Miller",
sitename="StructuralUnits.jl",
format=Documenter.HTML(;
canonical="https://co1emi11er2.github.io/StructuralUnits.jl",
edit_link="main",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/co1emi11er2/StructuralUnits.jl",
devbranch="main",
)
| StructuralUnits | https://github.com/co1emi11er2/StructuralUnits.jl.git |
|
[
"MIT"
] | 0.1.0 | cc9cbf7252dc1a212d93e0ef510d75e0128dfaff | code | 2137 | module StructuralUnits
using Reexport
@reexport using Unitful
@reexport using UnitfulLatexify
export ft, inch, kip, ksi, ksf, klf, plf, mph, kcf, pcf, °
Unitful.register(StructuralUnits)
@unit kip "kip" Kip 1000*u"lbf" false
@unit ksi "ksi" KSI 1*u"kip"/(1*u"inch^2") false
@unit ksf "ksf" KSF 1*u"kip"/(1*u"ft^2") false
@unit klf "klf" KLF 1*u"kip"/(1*u"ft") false
@unit plf "plf" PLF 1*u"lbf"/(1*u"ft") false
@unit mph "mph" MPH 1*u"mi"/(1*u"hr") false
@unit kcf "kcf" KCF 1*u"kip"/(1*u"ft^3") false
@unit pcf "pcf" PCF 1*u"lbf"/(1*u"ft^3") false
Unitful.preferunits(u"ft")
@derived_dimension Area Unitful.𝐋^2
@derived_dimension Volume Unitful.𝐋^3
@derived_dimension Density Unitful.𝐋*Unitful.𝐌*Unitful.𝐓^-2*Unitful.𝐋^-3
@derived_dimension Force Unitful.𝐋*Unitful.𝐌*Unitful.𝐓^-2
@derived_dimension Moment Unitful.𝐋^2*Unitful.𝐌*Unitful.𝐓^-2
@derived_dimension Stress Unitful.𝐋*Unitful.𝐌*Unitful.𝐓^-2/Unitful.𝐋^2
@derived_dimension UDLoad Unitful.𝐋*Unitful.𝐌*Unitful.𝐓^-2/Unitful.𝐋
Unitful.promote_unit(::S, ::T) where {S<:StructuralUnits.AreaUnits, T<:StructuralUnits.AreaUnits} = u"inch^2"
Unitful.promote_unit(::S, ::T) where {S<:StructuralUnits.VolumeUnits, T<:StructuralUnits.VolumeUnits} = u"ft^3"
Unitful.promote_unit(::S, ::T) where {S<:StructuralUnits.DensityUnits, T<:StructuralUnits.DensityUnits} = u"kcf"
Unitful.promote_unit(::S, ::T) where {S<:StructuralUnits.ForceUnits, T<:StructuralUnits.ForceUnits} = u"kip"
Unitful.promote_unit(::S, ::T) where {S<:StructuralUnits.MomentUnits, T<:StructuralUnits.MomentUnits} = u"kip*ft"
Unitful.promote_unit(::S, ::T) where {S<:StructuralUnits.StressUnits, T<:StructuralUnits.StressUnits} = u"ksi"
Unitful.promote_unit(::S, ::T) where {S<:StructuralUnits.UDLoadUnits, T<:StructuralUnits.UDLoadUnits} = u"klf"
const ft = u"ft"
const inch = u"inch"
const kip = u"kip"
const ksi = u"ksi"
const ksf = u"ksf"
const klf = u"klf"
const plf = u"plf"
const mph = u"mph"
const kcf = u"kcf"
const pcf = u"pcf"
const ° = u"°"
const localpromotion = copy(Unitful.promotion)
function __init__()
Unitful.register(StructuralUnits)
merge!(Unitful.promotion, localpromotion)
end
end
| StructuralUnits | https://github.com/co1emi11er2/StructuralUnits.jl.git |
|
[
"MIT"
] | 0.1.0 | cc9cbf7252dc1a212d93e0ef510d75e0128dfaff | code | 174 | using StructuralUnits
using Test
@testset "Unit Conversions " begin include("unit_conversions.jl") end
@testset "Unit Promotions " begin include("unit_promotions.jl") end | StructuralUnits | https://github.com/co1emi11er2/StructuralUnits.jl.git |
|
[
"MIT"
] | 0.1.0 | cc9cbf7252dc1a212d93e0ef510d75e0128dfaff | code | 204 | @test 1kip == 1000u"lbf"
@test 1ksi == 1kip/inch^2
@test 1ksf == 1kip/ft^2
@test 1klf == 1kip/ft
@test 1plf == 1u"lbf"/ft
@test 1mph == 1*u"mi"/(1*u"hr")
@test 1kcf == 1kip/ft^3
@test 1pcf ≈ 1u"lbf"/ft^3
| StructuralUnits | https://github.com/co1emi11er2/StructuralUnits.jl.git |
|
[
"MIT"
] | 0.1.0 | cc9cbf7252dc1a212d93e0ef510d75e0128dfaff | code | 437 | # Area and Volume Auto Promotion
@test 1inch^2 + 0ft^2 === 1inch^2
@test 1.0ft^3 + 0.0inch^3 === 1.0ft^3
# Weight Auto Promotion
@test 1.0kip/ft^3 + 0.0kip/inch^3 === 1.0kcf
# Force Auto Promotion
@test 1.0kip + 0.0u"lbf" === 1.0kip
# Moment Auto Promotion
@test 1.0kip*ft + 0.0kip*inch === 1.0kip*ft
# Stress Auto Promotion
@test 1.0ksi + 0.0ksf === 1.0ksi
# Linear Weight Auto Promotion
@test 1.0kip/ft + 0.0kip/inch === 1.0klf
| StructuralUnits | https://github.com/co1emi11er2/StructuralUnits.jl.git |
|
[
"MIT"
] | 0.1.0 | cc9cbf7252dc1a212d93e0ef510d75e0128dfaff | docs | 4372 | # StructuralUnits
<!-- #[](https://co1emi11er2.github.io/StructuralUnits.jl/stable/) -->
<!-- [](https://co1emi11er2.github.io/StructuralUnits.jl/dev/) -->
[](https://github.com/co1emi11er2/StructuralUnits.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://ci.appveyor.com/project/co1emi11er2/StructuralUnits-jl)
[](https://codecov.io/gh/co1emi11er2/StructuralUnits.jl)
[](https://coveralls.io/github/co1emi11er2/StructuralUnits.jl?branch=main)
## Introduction
This is a package for Structural Engineers in the US. It is a small package that extends the [Unitful.jl](https://github.com/PainterQubits/Unitful.jl) package. It exports a few units and changes promotion defaults in the Unitful package. It re-exports [Unitful](https://github.com/PainterQubits/Unitful.jl) and [UnitfulLatexify](https://github.com/gustaphe/UnitfulLatexify.jl), so there is no need to call `Using Unitful`.
## Defined Units
Below are a few tables that specify the constants that are exported by the package. These constants can then be used throughout your project.
### Length
| Constant/Variable | Unitful Definition |
| ---- | ---- |
| `ft` | u"ft"|
| `inch` | u"inch" |
### Force
| Constant/Variable | Unitful Definition |
| ---- | ---- |
| `kip` | 1000u"lbf" |
### Stress
| Constant/Variable | Unitful Definition |
| ---- | ---- |
| `ksi` | 1\*`kip`/(1\*`inch`^2) |
| `ksf` | 1\*`kip`/(1\*`ft`^2) |
### Density
| Constant/Variable | Unitful Definition |
| ---- | ---- |
| `kcf` | 1\*`kip`/(1\*`ft`^3) |
| `pcf` | 1\*u"lbf"/(1\*`ft`^3) |
### Linear Weight
| Constant/Variable | Unitful Definition |
| ---- | ---- |
| `klf` | 1\*`kip`/(1\*`ft`) |
| `plf` | 1\*u"lbf"/(1\*`ft`) |
### Speed
| Constant/Variable | Unitful Definition |
| ---- | ---- |
| `mph` | 1\*u"mi"/(1\*u"hr") |
### Angle
| Constant/Variable | Unitful Definition |
| ---- | ---- |
| `°` | u"°" |
## Promotion
In [Unitful](https://github.com/PainterQubits/Unitful.jl), certain dimensions can automatically promote to a preferred set of units. This package changes those settings to be more in line with prefferences of structural engineers in the US. Note that autopromotion happens mainly with addition or subtraction (not multiplication). Below are a few simple examples of promotion:
### Promotion through addition
Based on the StructuralUnits preferences, `ft` is the preferred unit for a length dimension:
```julia
julia> 1.0ft + 6.0inch
1.5 ft
```
You can see how adding dimensions with two different units will auto promote to the preferred unit (the preferred unit for Unitful is `m` so this has been changed to `ft` for this package).
### Promotion through multiplication
```julia
julia> 1.0ft*6.0inch
6.0 ft inch
```
You can see how multiplying dimensions with different units does not automatically promote the units to the preferred unit for that specific dimension (which in this case would be an area dimension that was derived in this package). You can however promote this manually using the `|>` operator.
```julia
julia> 1.0ft*6.0inch |> ft^2
0.5 ft^2
```
### Preferred Units for Promotion
Below is a list of the preferred units to promote to when auto promotion occurs.
| Dimension | Unitful Definition |
| ---- | ---- |
| Length | `ft`|
| Area | `inch`^2 |
| Volume | `ft`^3 |
| Force | `kip` |
| Stress | `ksi` |
| Density | `kcf` |
| Moment | `kip`*`ft` |
| UDLoad | `klf` |
## Contribution
This package may be somewhat difficult to contribute too given the fact that it is highly opinionated for its preferred units. This tool will mainly be used internally, so prefferences could change as we start to use the package more. Feel free to view the source code as well as use the package if it fits your needs. The source code is less than 100 lines of code, so I am sure you can use it to create your own units package if needed.
| StructuralUnits | https://github.com/co1emi11er2/StructuralUnits.jl.git |
|
[
"MIT"
] | 0.1.0 | cc9cbf7252dc1a212d93e0ef510d75e0128dfaff | docs | 214 | ```@meta
CurrentModule = StructuralUnits
```
# StructuralUnits
Documentation for [StructuralUnits](https://github.com/co1emi11er2/StructuralUnits.jl).
```@index
```
```@autodocs
Modules = [StructuralUnits]
```
| StructuralUnits | https://github.com/co1emi11er2/StructuralUnits.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 371 | using Documenter
using Enlsip
makedocs(
sitename = "Enlsip.jl",
format = Documenter.HTML(),
modules = [Enlsip],
pages = [
"Home" => "index.md",
"Method" => "method.md",
"Usage" => "tutorial.md",
"Reference" => "reference.md"
]
)
deploydocs(
repo = "github.com/UncertainLab/Enlsip.jl.git",
devbranch = "main"
) | Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 212 | module Enlsip
# Packages
using LinearAlgebra, Polynomials, ForwardDiff, Printf
# include source files
for f in ["structures","cnls_model", "enlsip_functions", "solver"]
include("./$f.jl")
end
end # module | Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 19466 | export AbstractCnlsModel, CnlsModel
export constraints_values, equality_constraints_values, inequality_constraints_values, bounds_constraints_values, total_nb_constraints, nb_equality_constraints, nb_inequality_constraints, nb_lower_bounds, nb_upper_bounds
export status, solution, sum_sq_residuals, dict_status_codes
#= Structures where the first two fields are the functions evaluating residuals or constraints and the associated jacobian matrix
=#
abstract type EvaluationFunction end
mutable struct ResidualsFunction <: EvaluationFunction
reseval
jacres_eval
nb_reseval::Int
nb_jacres_eval::Int
end
function ResidualsFunction(eval, jac_eval)
ResidualsFunction(eval, jac_eval, 0, 0)
end
# function ResidualsFunction(eval)
# num_jac_eval(x::Vector{<:AbstractFloat}) = jac_forward_diff(eval,x)
# ResidualsFunction(eval, num_jac_eval,0,0)
# end
ResidualsFunction(eval) = ResidualsFunction(eval, x::Vector -> ForwardDiff.jacobian(eval, x))
mutable struct ConstraintsFunction <: EvaluationFunction
conseval
jaccons_eval
nb_conseval::Int
nb_jaccons_eval::Int
end
function ConstraintsFunction(eval, jac_eval)
ConstraintsFunction(eval, jac_eval, 0, 0)
end
# function ConstraintsFunction(eval)
# num_jac_eval(x::Vector{<:AbstractFloat}) = jac_forward_diff(eval,x)
# ConstraintsFunction(eval, num_jac_eval,0,0)
# end
ConstraintsFunction(eval) = ConstraintsFunction(eval, x::Vector -> ForwardDiff.jacobian(eval, x))
#= Functions to compute in place the residuals, constraints and jacobian matrices of a given EvaluationFunction =#
function res_eval!(r::ResidualsFunction, x::Vector{T}, rx::Vector{T}) where {T<:AbstractFloat}
rx[:] = r.reseval(x)
r.nb_reseval += 1
return
end
function jacres_eval!(r::ResidualsFunction, x::Vector{T}, J::Matrix{T}) where {T<:AbstractFloat}
J[:] = r.jacres_eval(x)
r.nb_jacres_eval += 1
return
end
function cons_eval!(c::ConstraintsFunction, x::Vector{T}, cx::Vector{T}) where {T<:AbstractFloat}
cx[:] = c.conseval(x)
c.nb_conseval += 1
return
end
function jaccons_eval!(c::ConstraintsFunction, x::Vector{T}, A::Matrix{T}) where {T<:AbstractFloat}
A[:] = c.jaccons_eval(x)
c.nb_jaccons_eval += 1
return
end
# Auxialiry funcion to define EvaluationFunction with numerical jacobian
function jac_forward_diff(h_eval, x::Vector{<:AbstractFloat})
δ = sqrt(eps(eltype(x)))
hx = h_eval(x)
n = size(x,1)
m = size(hx,1)
Jh = zeros(eltype(hx),(m,n))
for j=1:n
δ_j = max(abs(x[j]), 1.0) * δ
e_j = [(i == j ? 1.0 : 0.0) for i = 1:n]
x_forward = x + δ_j * e_j
hx_forward = h_eval(x_forward)
Jh[:,j] = (hx_forward - hx) / δ_j
end
return Jh
end
#=
ExecutionInfo
Summarizes information that are given after termination of the algorithm
* iterations_detail: List of `DisplayedInfo`, each element of the list contains the details about a given iteration. The list is stored in chronological order (1st element -> 1st iterration, last element -> last_iteration)
* nb_function_evaluations : number of residuals and constraints evaluations performed during the execution of the algorithm
* nb_jacobian_evaluations : same as above but for Jacobian matrices evaluations
* solving_time : time of execution in seconds
=#
struct ExecutionInfo
iterations_detail::Vector{DisplayedInfo}
nb_function_evaluations::Int
nb_jacobian_evaluations::Int
solving_time::Float64
end
ExecutionInfo() = ExecutionInfo([DisplayedInfo()], 0, 0, 0.0)
"""
AbstractCnlsModel
Abstract type for [`CnlsModel`](@ref) structure.
"""
abstract type AbstractCnlsModel{T<:AbstractFloat} end
"""
CnlsModel{T} where {T<:AbstractFloat}
Structure modeling an instance of a constrainted nonlinear least squares problem.
This structure contains the following attributes:
* `residuals` : function that computes the vector of residuals
* `nb_parameters::Int` : number of variables
* `nb_residuals::Int` : number of residuals
* `stating_point::Vector{T}` : initial solution
* `jacobian_residuals` : function that computes the jacobian matrix of the residuals
* `eq_constraints` : function that computes the vector of equality constraints
* `jacobian_eqcons` : function that computes the jacobian matrix of the equality constraints
* `nb_eqcons` : number of equality constraints
* `ineq_constraints` : function that computes the vector of inequality constraints
* `jacobian_ineqcons` : function that computes the jacobian matrix of the inequality constraints
* `nb_ineqcons::Int` : number of inequality constraints
* `x_low::Vector{T}` and `x_upp::Vector{T}` : respectively vectors of lower and upper bounds
* `status_code::Int` : integer indicating the solving status of the model
"""
mutable struct CnlsModel{T} <: AbstractCnlsModel{T}
residuals
nb_parameters::Int
nb_residuals::Int
starting_point::Vector{T}
jacobian_residuals
eq_constraints
jacobian_eqcons
nb_eqcons::Int
ineq_constraints
jacobian_ineqcons
nb_ineqcons::Int
x_low::Vector{T}
x_upp::Vector{T}
constraints_scaling::Bool
status_code::Int
sol::Vector{T}
obj_value::T
model_info::ExecutionInfo
end
function convert_exit_code(code::Int)
status_code = 0
if code > 0
status_code = 1
elseif code == -2 || code == -11
status_code = code
else
status_code = -1
end
return status_code
end
const dict_status_codes = Dict(
0 => :unsolved,
1 => :found_first_order_stationary_point,
-1 => :failed,
-2 => :maximum_iterations_exceeded,
-11 => :time_limit_exceeded
)
"""
status(model)
This functions returns a `Symbol` that gives brief information on the solving status of `model`.
If a model has been instantiated but the solver has not been called yet, it will return `:unsolved`.
Once the solver has been called and if a first order stationary point satisfying the convergence criteria has been computed, it will return `:found_first_order_stationary_point`.
If the algorithm met an abnormall termination criteria, it will return one of the following:
* `:failed` : the algorithm encoutered a numerical error that triggered termination
* `:maximum_iterations_exceeded` : a solution could not be reached within the maximum number of iterations
* `:time_limit_exceeded` : the algorithm stopped because solving time exceeded the time limit
"""
status(model::CnlsModel) = dict_status_codes[model.status_code]
"""
solution(model)
Once the given `model` has been solved, this function returns the optimal solution, or last solution obtained if no convergence, as a `Vector` of approriate dimension.
"""
solution(model::CnlsModel) = model.sol
"""
sum_sq_residuals(model)
Once the given `model` has been solved, returns the value of the objective function, i.e. sum of squared residuals functions, computed at the optimal solution.
If no convergence, this value is computed at the last solution obtained.
"""
sum_sq_residuals(model::CnlsModel) = model.obj_value
nb_equality_constraints(model::CnlsModel) = model.nb_eqcons
nb_inequality_constraints(model::CnlsModel) = model.nb_ineqcons
nb_lower_bounds(model::CnlsModel) = count(isfinite, model.x_low)
nb_upper_bounds(model::CnlsModel) = count(isfinite, model.x_upp)
"""
total_nb_constraints(model)
Returns the total number of constraints, i.e. equalities, inequalities and bounds, of the given `model`.
See also: [`CnlsModel`](@ref).
"""
total_nb_constraints(model::CnlsModel) = nb_equality_constraints(model) + nb_inequality_constraints(model) + nb_lower_bounds(model) + nb_upper_bounds(model)
"""
equality_constraints_values(model)
Returns the vector of equality constraints values at the solution of `model` (if they are any).
"""
function equality_constraints_values(model::CnlsModel)
sol = solution(model)
hx = Vector{eltype(sol)}(undef, nb_equality_constraints(model))
if model.eq_constraints !== nothing
hx[:] = model.eq_constraints(sol)
end
return hx
end
"""
inequality_constraints_values(model)
Returns the vector of inequality constraints values at the solution of `model` (if they are any).
"""
function inequality_constraints_values(model::CnlsModel)
sol = solution(model)
gx = Vector{eltype(sol)}(undef, nb_inequality_constraints(model))
if model.ineq_constraints !== nothing
gx[:] = model.ineq_constraints(sol)
end
return gx
end
"""
bounds_constraints_values(model)
Returns the vector of box constraints values at the solution `xₛ` of `model` (if they are any).
If `xₗ` and `xᵤ` are respectively the vectors of lower and upper bounds, it will return `[xₛ-xₗ; xᵤ-xₛ]`.
"""
function bounds_constraints_values(model::CnlsModel)
sol = solution(model)
return vcat(sol-model.x_low, model.x_upp-sol)
end
"""
constraints_values(model)
Computes values of all the constraints in `model` at the solution.
The vector returned is the concatenation of equalities, inequalities and box constraints (in that order).
For instance, let `xₛ` be the solution found. If functions `h`, `g` compute equality and inequality constraints and `xₗ, xᵤ` are vectors of lower and lower bounds,
it will return `[h(xₛ); g(xₛ); xₛ-xₗ; xᵤ-xₛ]`.
If one wants to compute each type of constraints seperately, see [`equality_constraints_values`](@ref), [`inequality_constraints_values`](@ref) and [`bounds_constraints_values`](@ref).
"""
function constraints_values(model::CnlsModel)
sol = solution(model)
q, ℓ = model.nb_eqcons, model.nb_ineqcons
cx = Vector{eltype(sol)}(undef, q+ℓ+2*length(sol))
if model.nb_eqcons > 0
cx[1:q] = equality_constraints_values(model)
end
if model.nb_ineqcons > 0
cx[q+1:q+ℓ] = inequality_constraints_values(model)
end
if nb_lower_bounds(model) + nb_upper_bounds(model) > 0
cx[q+ℓ+1:end] = bounds_constraints_values(model)
end
return cx
end
"""
model = CnlsModel(residuals, nb_parameters, nb_residuals)
Constructor for [`CnlsModel`](@ref).
* Positional arguments
- `residuals` : function that computes the vector of residuals
- `nb_parameters` : number of variables
- `nb_residuals` : number of residuals
* Keywords arguments :
- `stating_point::Vector{T}` : initial solution (default is a vector of zeros of appropriate dimension)
- `jacobian_residuals` : function that computes the jacobian matrix of the residuals. If not passed as argument, it is computed numericcaly by forward differences
- `eq_constraints` : function that computes the vector of equality constraints
- `jacobian_eqcons` : function that computes the jacobian matrix of the equality constraints. If not passed as argument, it is computed numericcaly by forward differences
- `nb_eqcons::Int` : number of equality constraints
- `ineq_constraints` : function that computes the vector of inequality constraints
- `jacobian_ineqcons` : function that computes the jacobian matrix of the inequality constraints. If not passed as argument, it is computed numericcaly by forward differences
- `nb_ineqcons::Int` : number of inequality constraints
- `x_low::Vector{T}` and `x_upp::Vector{T}` : respectively vectors of lower and upper bounds
"""
function CnlsModel(
residuals=nothing,
nb_parameters::Int=0,
nb_residuals::Int=0;
starting_point::Vector{T}=zeros(nb_parameters),
jacobian_residuals=nothing,
eq_constraints=nothing,
jacobian_eqcons=nothing,
nb_eqcons::Int=0,
ineq_constraints=nothing,
jacobian_ineqcons=nothing,
scaling::Bool=false,
nb_ineqcons::Int=0,
x_low::Vector{T}=fill!(Vector{eltype(starting_point)}(undef,nb_parameters), -Inf),
x_upp::Vector{T}=fill!(Vector{eltype(starting_point)}(undef,nb_parameters), Inf)) where {T}
# Assertion test on residuals
@assert(typeof(residuals) <: Function, "A function evaluating residuals must be provided")
@assert(nb_parameters > 0 && nb_residuals > 0, "The number of parameters and number of residuals must be strictly positive")
# Assertion tests on constraints
@assert(eq_constraints !== nothing || ineq_constraints !== nothing || any(isfinite,x_low) || any(isfinite,x_upp), "There must be at least one constraint")
@assert(!(eq_constraints===nothing && nb_eqcons != 0) || !(typeof(eq_constraints <: Function) && nb_eqcons == 0), "Incoherent definition of equality constraints")
@assert(!(ineq_constraints===nothing && nb_ineqcons != 0) || !(typeof(ineq_constraints <: Function) && nb_ineqcons == 0), "Incoherent definition of inequality constraints")
rx0 = residuals(starting_point)
initial_obj_value = dot(rx0,rx0)
initial_info = ExecutionInfo()
return CnlsModel(residuals, nb_parameters, nb_residuals, starting_point, jacobian_residuals,
eq_constraints, jacobian_eqcons, nb_eqcons, ineq_constraints, jacobian_ineqcons, nb_ineqcons, x_low, x_upp,
scaling, 0, starting_point, initial_obj_value, initial_info)
end
function box_constraints(x_low::Vector{T}, x_upp::Vector{T}) where {T<:AbstractFloat}
n = size(x_low,1)
@assert(n == size(x_upp,1),"Bounds vectors must have same length")
no_x_low = all(!isfinite,x_low)
no_x_upp = all(!isfinite,x_upp)
@assert(!(no_x_low && no_x_upp), "Bounds vectors are assumed to contain at least one finite element")
if no_x_low && !no_x_upp
cons_w_ubounds(x::Vector{<:AbstractFloat}) = filter(isfinite,x_upp-x)
jaccons_w_ubounds(x::Vector{<:AbstractFloat}) = Matrix{eltype(x_upp)}(-I,n,n)[filter(i-> isfinite(x_upp[i]),1:n),:]
return cons_w_ubounds, jaccons_w_ubounds
elseif !no_x_low && no_x_upp
cons_w_lbounds(x::Vector{<:AbstractFloat}) = filter(isfinite, x-x_low)
jaccons_w_lbounds(x::Vector{<:AbstractFloat}) = Matrix{eltype(x_low)}(I,n,n)[filter(i-> isfinite(x_low[i]),1:n),:]
return cons_w_lbounds, jaccons_w_lbounds
else
cons_w_bounds(x::Vector{<:AbstractFloat}) = vcat(filter(isfinite, x-x_low), filter(isfinite, x_upp-x))
jaccons_w_bounds(x::Vector{<:AbstractFloat}) = vcat(Matrix{eltype(x_low)}(I,n,n)[filter(i-> isfinite(x_low[i]),1:n),:], Matrix{eltype(x_upp)}(-I,n,n)[filter(i-> isfinite(x_upp[i]),1:n),:])
return cons_w_bounds, jaccons_w_bounds
end
end
# Returns a ConstraintsEvaluation function for problems with bound constraints
function instantiate_constraints_w_bounds(eq_constraints, jacobian_eqcons, ineq_constraints, jacobian_ineqcons, x_low, x_upp)
bounds_func, jac_bounds_func = box_constraints(x_low, x_upp)
# Equality and inequality constraints in the model
if eq_constraints !== nothing && ineq_constraints !== nothing
cons(x::Vector) = vcat(eq_constraints(x), ineq_constraints(x), bounds_func(x))
# Jacobian provided
if jacobian_eqcons !== nothing && jacobian_ineqcons !== nothing
jac_cons(x::Vector) = vcat(jacobian_eqcons(x), jacobian_ineqcons(x), jac_bounds_func(x))
constraints_evalfunc = ConstraintsFunction(cons, jac_cons)
# Jacobian not provided for inequality constraints
elseif jacobian_eqcons !== nothing && jacobian_ineqcons === nothing
ad_jac_ineqcons(x::Vector) = vcat(jacobian_eqcons(x), ForwardDiff.jacobian(ineq_constraints, x), jac_bounds_func(x))
constraints_evalfunc = ConstraintsFunction(cons, ad_jac_ineqcons)
# Jacobian not provided for equality constraints
elseif jacobian_eqcons === nothing && jacobian_ineqcons !== nothing
ad_jac_eqcons(x) = vcat(ForwardDiff.jacobian(eq_constraints,x), jacobian_ineqcons(x), jac_bounds_func(x))
constraints_evalfunc = ConstraintsFunction(cons, jac_eqnum)
# Jacobian not provided
else
ad_jac_cons(x::Vector) = vcat(ForwardDiff.jacobian(eq_constraints,x), ForwardDiff.jacobian(ineq_constraints, x), jac_bounds_func(x))
constraints_evalfunc = ConstraintsFunction(cons, ad_jac_cons)
end
# No inequality constraints
elseif eq_constraints !== nothing && ineq_constraints === nothing
eq_cons(x::Vector) = vcat(eq_constraints(x), bounds_func(x))
# Jacobian not provided
if jacobian_eqcons === nothing
jac_eqconsnum(x::Vector) = vcat(ForwardDiff.jacobian(eq_constraints,x), jac_bounds_func(x))
constraints_evalfunc = ConstraintsFunction(eq_cons, jac_eqconsnum)
# Jacobian not provided
else
jac_eqcons(x::Vector) = vcat(jacobian_eq_cons(x), jac_bounds_func(x))
constraints_evalfunc = ConstraintsFunction(eq_cons, jac_eqcons)
end
# No equality constraints
elseif eq_constraints === nothing && ineq_constraints !== nothing
ineq_cons(x::Vector) = vcat(ineq_constraints(x), bounds_func(x))
# Jacobian not provided
if jacobian_ineqcons === nothing
jac_ineqconsnum(x::Vector) = vcat(ForwardDiff.jacobian(ineq_constraints,x), jac_bounds_func(x))
constraints_evalfunc = ConstraintsFunction(ineq_cons, jac_ineqconsnum)
# Jacobian provided
else
jac_ineqcons(x::Vector) = vcat(jacobian_ineqcons(x), jac_bounds_func(x))
constraints_evalfunc = ConstraintsFunction(ineq_cons, jac_ineqcons)
end
else
constraints_evalfunc = ConstraintsFunction(bounds_func, jac_bounds_func)
end
return constraints_evalfunc
end
# Returns a ConstraintsEvaluation function for problems without bound constraints
function instantiate_constraints_wo_bounds(eq_constraints, jacobian_eqcons, ineq_constraints, jacobian_ineqcons)
if eq_constraints !== nothing && ineq_constraints !== nothing
cons(x::Vector) = vcat(eq_constraints(x), ineq_constraints(x))
if jacobian_eqcons !== nothing && jacobian_ineqcons !== nothing
jac_cons(x::Vector) = vcat(jacobian_eqcons(x), jacobian_ineqcons(x))
constraints_evalfunc = ConstraintsFunction(cons, jac_cons)
elseif jacobian_eqcons !== nothing && jacobian_ineqcons === nothing
jac_cons_ineqnum(x::Vector) = vcat(jacobian_eqcons(x), ForwardDiff.jacobian(ineq_constraints, x))
constraints_evalfunc = ConstraintsFunction(cons, jac_ineqnum)
elseif jacobian_eqcons === nothing && jacobian_ineqcons !== nothing
ad_jac_eqcons(x) = vcat(ForwardDiff.jacobian(eq_constraints,x), jacobian_ineqcons(x))
constraints_evalfunc = ConstraintsFunction(cons, jac_eqnum)
else
ad_jac_cons(x::Vector) = vcat(ForwardDiff.jacobian(eq_constraints,x), ForwardDiff.jacobian(ineq_constraints, x))
constraints_evalfunc = ConstraintsFunction(cons, ad_jac_cons)
end
elseif eq_constraints !== nothing && ineq_constraints === nothing
constraints_evalfunc = (jacobian_eqcons === nothing ? ConstraintsFunction(eq_constraints) : ConstraintsFunction(eq_constraints, jacobian_eqcons))
elseif eq_constraints === nothing && ineq_constraints !== nothing
constraints_evalfunc = (jacobian_ineqcons === nothing ? ConstraintsFunction(ineq_constraints) : ConstraintsFunction(ineq_constraints, jacobian_ineqcons))
end
return constraints_evalfunc
end
| Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 79878 |
#=
pseudo_rank (diag_T, ε_rank)
Computes and returns the rank of a triangular matrix T using its diagonal elements placed in decreasing order
according to their absolute value using a certain tolerance `tol`
Parameters :
* `diag_T` is the diagonal of the Triangular matrix T whose rank is estimated
* `ε_rank` is a small positive value used to compute `tol`
- `tol = l_diag * ε_rank` where `l_diag` is the length of `diag_T`, i.e.
the number of rows of matrix `T`.
=#
function pseudo_rank(diag_T::Vector{T}, ε_rank::T) where {T}
if isempty(diag_T) || abs(diag_T[1]) < ε_rank
pseudo_rank = 0
else
l_diag = length(diag_T)
tol = abs(diag_T[1]) * sqrt(T(l_diag)) * ε_rank
r = 1
while r < l_diag && abs(diag_T[r]) > tol
r += 1
end
pseudo_rank = r - ((r == l_diag && abs(diag_T[r]) > tol) ? 0 : 1)
end
return pseudo_rank
end
function new_point!(
x::Vector{T},
r::ResidualsFunction,
c::ConstraintsFunction,
rx::Vector{T},
cx::Vector{T},
J::Matrix{T},
A::Matrix{T}) where {T}
# Evaluate residuals and associated jacobian matrix
res_eval!(r,x,rx)
jacres_eval!(r,x,J)
# Evaluate constraints and associated jacobian matrix
cons_eval!(c,x,cx)
jaccons_eval!(c,x,A)
return
end
#=
sub_search_direction(J1,rx,cx,Q1,L11,P1,F_L11,F_J2,n,t,rankA,dimA,dimJ2,code)
Equivalent Fortran77 routine : SUBDIR
Compute a search direction `p` by solving two triangular systems of equations.
First, for `p1`, either `L11*p1 = -P1' * cx` or `R11*p1 = -Q2' * P1' * cx` is solved.
Then for `p2`, `R22*p2 = -Q3^T * [J1*p1 + rx]` is solved.
`[J1;J2] = J * Q1 * P2` where `J` is the jacobian matrix of residuals.
Finally, the search direction is computed by forming : `p = Q1 * [p1 ; P3*p2]`
# Parameters
* `rx` : residuals vector of size `m`
* `cx` : active constraints vector of size `t`
* `Q1`, `L11`, `P1` : components of the LQ decomposition of active constraints jacobian matrix `A*P1 = Q1 * [L11 ; 0]`
- `Q1` orthogonal `n`x`n` orthogonal matrix
- `L11` `t`x`t` lower triangular matrix
- `P1` `t`x`t` permutation matrix
* `F_L11` : `QRPivoted` object containing infos about QR decomposition of matrix `L11` such that
- `L11 * P2 = Q2 * [R11;0]`
* `F_J2` : `QRPivoted` object containing infos about QR decomposition of matrix `J2`, last `m-rankA` columns of `J*Q1`
- `J2 * P3 = Q3 * [R22;0]`
* `J1` first `rankA` columns of matrix `J*Q1`
* `n` is the number of parameters
* `m` is the number of residuals (size of `rx`)
* `t` is the number of constraint in current working set
* `rankA` : pseudo-rank of matrix `A`
* `dimA` : number of columns of matrix `R11` that should be used when `R11*p1 = -Q2' * P1' * cx` is solved
* `dimJ2` : number of columns of matrix `R22` that should be used when `R22*p2 = -Q3^T * [J1*p1 + rx]` is solved
* `code` : interger indicating which system to solve to compute `p1`
# On return
* `p` : vector of size `n`, contains the computed search direction
* `b` : vector of size `t`, contains the right handside of the system solved to compute `p1`
* `d` : vector of size `m`, contains the right handside of the system solved to compute `p2`
=#
function sub_search_direction(
J1::Matrix{T},
rx::Vector{T},
cx::Vector{T},
F_A::Factorization,
F_L11::Factorization,
F_J2::Factorization,
n::Int,
t::Int,
rankA::Int,
dimA::Int,
dimJ2::Int,
code::Int) where {T}
# Solving without stabilization
if code == 1
b = -cx[F_A.p]
p1 = LowerTriangular(F_A.R') \ b
d_temp = -J1 * p1 - rx
d = F_J2.Q' * d_temp
δp2 = UpperTriangular(F_J2.R[1:dimJ2, 1:dimJ2]) \ d[1:dimJ2]
p2 = [δp2; zeros(T, n - t - dimJ2)][invperm(F_J2.p)]
# Solving with stabilization
elseif code == -1
b_buff = -cx[F_A.p]
b = F_L11.Q' * b_buff
δp1 = UpperTriangular(F_L11.R[1:dimA, 1:dimA]) \ b[1:dimA]
p1 = ([δp1; zeros(T,t - dimA)][invperm(F_L11.p)])[1:rankA]
d_temp = -J1 * p1 - rx
d = F_J2.Q' * d_temp
δp2 = UpperTriangular(F_J2.R[1:dimJ2, 1:dimJ2]) \ d[1:dimJ2]
p2 = [δp2; zeros(T, n - rankA - dimJ2)][invperm(F_J2.p)]
end
p = F_A.Q * [p1; p2]
return p, b, d
end
#=
gn_search_direction(J,rx,cx,Q1,L11,P1,F_L11,rankA,t,ε_rank,current_iter)
Equivalent Fortran77 routine : GNSRCH
Solves for `y` one of the compound systems :
[L11;0] * y = b
J * y = -rx
or
[R11;0] * y = Q2' * B
J * y = -rx
Then, compute the search direction `p = Q1 * y`
If `rankA = t`, the first system is solved, otherwise, the second one is solved.
# Parameters
* `J` : `m`x`n` jacobian matrix of residuals
* `rx` : residuals vector of size `m`
* `cx` : active constraints vector of size `t`
* `Q1`, `L11`, `P1` : components of the LQ decomposition of active constraints jacobian matrix `A*P1 = Q1 * [L11 ; 0]`
- `Q1` orthogonal `n`x`n` orthogonal matrix
- `L11` `t`x`t` lower triangular matrix
- `P1` `t`x`t` permutation matrix
* `F_L11` : `QRPivoted` object containing infos about QR decomposition of matrix `L11` such that
- `L11 * P2 = Q2 * [R11;0]`
* `rankA` : pseudo-rank of matrix `A`
* `ε_rank` : small positive value to compute the pseudo-rank of matrices
# On return
* `p_gn` : vector of size `n`, contains the computed search direction
* `F_J2` : QR decomposition of Matrix `J2` defined in [`sub_search_direction`](@ref)
=#
function gn_search_direction(
J::Matrix{T},
rx::Vector{T},
cx::Vector{T},
F_A::Factorization,
F_L11::Factorization,
rankA::Int,
t::Int,
ε_rank::T,
current_iter::Iteration) where {T}
code = (rankA == t ? 1 : -1)
n = size(J,2)
JQ1 = J * F_A.Q
J1, J2 = JQ1[:, 1:rankA], JQ1[:, rankA+1:end]
F_J2 = qr(J2, ColumnNorm())
rankJ2 = pseudo_rank(diag(F_J2.R), ε_rank)
p_gn, b_gn, d_gn = sub_search_direction(J1, rx, cx, F_A, F_L11, F_J2, n, t, rankA, rankA, rankJ2, code)
current_iter.rankA = rankA
current_iter.rankJ2 = rankJ2
current_iter.dimA = rankA
current_iter.dimJ2 = rankJ2
current_iter.b_gn = b_gn
current_iter.d_gn = d_gn
return p_gn, F_J2
end
# HESSF
# m
# Compute in place the (n x n) matrix B = Σ [r_k(x) * G_k]
# k=1,m
# where G_k is the hessian of residual r_k(x)
function hessian_res!(
r::ResidualsFunction,
x::Vector{T},
rx::Vector{T},
n::Int,
m::Int,
B::Matrix{T}) where {T}
# Data
ε1 = eps(T)^(1.0 / 3.0)
for k in 1:n, j in 1:k
ε_k = max(abs(x[k]), 1.0) * ε1
ε_j = max(abs(x[j]), 1.0) * ε1
e_k = [i == k for i = 1:n]
e_j = [i == j for i = 1:n]
f1, f2, f3, f4 = zeros(T,m), zeros(T,m), zeros(T,m), zeros(T,m)
res_eval!(r,x + ε_j * e_j + ε_k * e_k, f1)
res_eval!(r,x - ε_j * e_j + ε_k * e_k, f2)
res_eval!(r,x + ε_j * e_j - ε_k * e_k, f3)
res_eval!(r,x - ε_j * e_j - ε_k * e_k, f4)
# Compute line j of g_k
g_kj = (f1 - f2 - f3 + f4) / (4 * ε_j * ε_k)
s = dot(g_kj, rx)
B[k, j] = s
if j != k
B[j, k] = s
end
end
end
# HESSH
# t
# Compute in place the (n x n) matrix B = Σ [λ_i * G_k]
# k=1
# where G_k is the hessian of residual c_k(x), k in current working set
# λ = (λ_1,...,λ_t) are the lagrange multipliers estimates
function hessian_cons!(
c::ConstraintsFunction,
x::Vector{T},
λ::Vector{T},
active::Vector{Int},
n::Int,
l::Int,
t::Int,
B::Matrix{T}) where {T}
# Data
ε1 = eps(T)^(1 / 3)
active_indices = @view active[1:t]
for k in 1:n, j in 1:k
ε_k = max(abs(x[k]), 1.0) * ε1
ε_j = max(abs(x[j]), 1.0) * ε1
e_k = [i == k for i = 1:n]
e_j = [i == j for i = 1:n]
f1, f2, f3, f4 = zeros(T,l), zeros(T,l), zeros(T,l), zeros(T,l)
cons_eval!(c,x + ε_j * e_j + ε_k * e_k, f1)
cons_eval!(c,x - ε_j * e_j + ε_k * e_k, f2)
cons_eval!(c,x + ε_j * e_j - ε_k * e_k, f3)
cons_eval!(c,x - ε_j * e_j - ε_k * e_k, f4)
act_f1 = @view f1[active_indices]
act_f2 = @view f2[active_indices]
act_f3 = @view f3[active_indices]
act_f4 = @view f4[active_indices]
# Compute line j of G_k
g_kj = (act_f1 - act_f2 - act_f3 + act_f4) / (4.0 * ε_k * ε_j)
s = dot(g_kj, λ)
B[k, j] = s
if k != j
B[j, k] = s
end
end
end
# NEWTON
# Computes the search direction p by minimizing :
# T T T T
# 0.5*p * (J * J - c_mat + r_mat) * p + (J * r(x)) * p
# s.t.
# A*p + c(x) = 0
#
#
# t
# c_mat = Σ [λ_i * K_i]
# i=1
# where K_i is the hessian of constraint c_i(x), i in current working set
# m
# r_mat = Σ [r_i(x) * G_i]
# i=1
# where G_i is the hessian of residual r_i(x)
function newton_search_direction(
x::Vector{T},
c::ConstraintsFunction,
r::ResidualsFunction,
active_cx::Vector{T},
working_set::WorkingSet,
λ::Vector{T},
rx::Vector{T},
J::Matrix{T},
F_A::Factorization,
F_L11::Factorization,
rankA::Int) where {T}
error = false
# Data
(m,n) = size(J)
t = length(active_cx)
active = working_set.active
t, l = working_set.t, working_set.l
# Computation of p1, first component of the search direction
if t == rankA
b = -active_cx[F_A.p]
p1 = LowerTriangular(F_A.R') \ b
elseif t > rankA
b = F_L11.Q' * (-active_cx[F_A.p])
δp1 = UpperTriangular(F_L11.R[1:rankA, 1:rankA]) \ b[1:rankA]
p1 = F_L11.P[1:rankA, 1:rankA] * δp1
end
if rankA == n
return p1
end
# Computation of J1, J2
JQ1 = J * F_A.Q
J1, J2 = JQ1[:, 1:rankA], JQ1[:, rankA+1:end]
# Computation of hessian matrices
r_mat, c_mat = zeros(T, n, n), zeros(T, n, n)
hessian_res!(r, x, rx, n, m, r_mat)
hessian_cons!(c, x, λ, active, n, l, t, c_mat)
Γ_mat = r_mat - c_mat
E = F_A.Q' * Γ_mat * F_A.Q
if t > rankA
vect_P2 = F_L11.p
E = E[vect_P2,vect_P2]
end
# Forms the system to compute p2
E21 = E[rankA+1:n, 1:rankA]
E22 = E[rankA+1:n, rankA+1:n]
W22 = E22 + transpose(J2) * J2
W21 = E21 + transpose(J2) * J1
d = -W21 * p1 - transpose(J2) * rx
sW22 = (W22 + W22') * (1/2)
if isposdef(sW22)
chol_W22 = cholesky(sW22)
y = chol_W22.L \ d
p2 = chol_W22.U \ y
p = F_A.Q * [p1; p2]
else
p = zeros(T, n)
error = true
end
return p, error
end
#=
first_lagrange_mult_estimate(A,λ,∇fx,cx,scaling_done,diag_scale,F)
Equivalent Fortran77 routine : MULEST
Compute first order estimate of Lagrange multipliers
Solves the system `A' * λ_ls = ∇f(x)` using QR factorisation of `A'` given by :
* `A'*P1 = Q1 * [R;0]`
Then, computes estimates of lagrage multipliers by forming :
`λ = λ_ls - inv(A*A') * cx`
# Parameters
* `A` : `n`x`t` jacobian matrix of constraints in current working set
* `cx` : vector of size `t`, contains evalutations of constraints in current working set
* `λ` : vector of size `t`, represent the lagrange multipliers associated to current actives contraints
* `∇fx`: vector of size `n`, equals the gradient vector of the objective function
* `scaling_done` : Boolean indicating if internal scaling of contraints has been done or not
* `diag_scale` : Vector of size `t`, contains the diagonal elements of the scaling matrix if internal scaling is done
- The i-th element equals ``\\dfrac{1}{\\|\\nabla c_i(x)\\|}`` for ``i = 1,...,t``, which is the inverse of the length of `A` i-th row
- Otherwise, it contains the length of each row in the matrix `A`
# On return
Modifies in place the vector `λ` with the first order estimate of Lagrange multipliers.
=#
function first_lagrange_mult_estimate!(
A::Matrix{T},
λ::Vector{T},
∇fx::Vector{T},
cx::Vector{T},
scaling_done::Bool,
diag_scale::Vector{T},
F::Factorization,
iter::Iteration,
ε_rank::T) where {T}
(t, n) = size(A)
v = zeros(T, t)
vnz = zeros(T, t)
inv_p = invperm(F.p)
prankA = pseudo_rank(diag(F.R), ε_rank)
b = F.Q' * ∇fx
v[1:prankA] = UpperTriangular(F.R[1:prankA, 1:prankA]) \ b[1:prankA]
if prankA < t
v[prankA+1:t] = zeros(T, t - prankA)
end
λ_ls = v[inv_p]
# Compute norm of residual
iter.grad_res = (n > prankA ? norm(b[prankA+1:n]) : 0.0)
# Compute the nonzero first order lagrange multiplier estimate by forming
# -1
# λ = λ_ls - (A*A^T) *cx
b = -cx[F.p]
y = zeros(T, t)
# -1
# Compute y =(L11) * b
y[1:prankA] = LowerTriangular((F.R')[1:prankA, 1:prankA]) \ b[1:prankA]
# -1
# Compute u = R * y
u = zeros(T, t)
u[1:prankA] = UpperTriangular(F.R[1:prankA, 1:prankA]) \ y[1:prankA]
λ[:] = λ_ls + u[inv_p]
# Back transform due to row scaling of matrix A
if scaling_done
λ[:] = λ .* diag_scale
end
return
end
# LEAEST
# Compute second order least squares estimate of Lagrange multipliers
# T T T
# Solves the system A * λ = J(x) (r(x) + J(x) * p_gn))
function second_lagrange_mult_estimate!(
J::Matrix{T},
F_A::Factorization,
λ::Vector{T},
rx::Vector{T},
p_gn::Vector{T},
t::Int,
scaling::Bool,
diag_scale::Vector{T}) where {T}
J1 = (J*F_A.Q)[:, 1:t]
b = J1' * (rx + J * p_gn)
v = UpperTriangular(F_A.R) \ b
λ[:] = v[invperm(F_A.p)]
if scaling
λ[:] = λ .* diag_scale
end
return
end
function minmax_lagrangian_mult(
λ::Vector{T},
working_set::WorkingSet,
active_C::Constraint) where {T}
# Data
q,t = working_set.q, working_set.t
scaling = active_C.scaling
diag_scale = active_C.diag_scale
sq_rel = sqrt(eps(eltype(λ)))
λ_abs_max = 0.0
sigmin = 1e6
if t > q
λ_abs_max = maximum(map(abs,λ))
rows = (scaling ? 1.0 ./ diag_scale : diag_scale)
for i = q+1:t
λ_i = λ[i]
if λ_i*rows[i] <= -sq_rel && λ_i < sigmin
sigmin = λ_i
end
end
end
return sigmin, λ_abs_max
end
# SIGNCH
# Returns the index of the constraint that shall be deleted from the working set
# Returns 0 if no constraint shall be deleted
# Obtainted with the lagrange mulitpliers estimates
function check_constraint_deletion(
q::Int,
A::Matrix{T},
λ::Vector{T},
scaling::Bool,
diag_scale::Vector{T},
grad_res::T) where {T}
t = size(A, 1)
δ = 10.0
τ = 0.5
λ_max = (isempty(λ) ? 1.0 : maximum(map(t -> abs(t), λ)))
sq_rel = sqrt(eps(eltype(λ))) * λ_max
s = 0
if t > q
e = sq_rel
for i = q+1:t
row_i = (scaling ? 1.0 / diag_scale[i] : diag_scale[i])
if row_i * λ[i] <= sq_rel && row_i * λ[i] <= e
e = row_i * λ[i]
s = i
end
end
if grad_res > -e * δ # grad_res - sq_rel > -e * δ
s = 0
end
end
return s
end
# EVADD
# Move violated constraints to the working set
function evaluate_violated_constraints(
cx::Vector{T},
W::WorkingSet,
index_α_upp::Int) where {T}
# Data
ε = sqrt(eps(eltype(cx)))
δ = 0.1
added = false
if W.l > W.t
i = 1
while i <= W.l - W.t
k = W.inactive[i]
if cx[k] < ε || (k == index_α_upp && cx[k] < δ)
add_constraint!(W, i)
added = true
else
i += 1
end
end
end
return added
end
#=
Equivalent Fortran77 routine : WRKSET
First, an estimate the lagrange multipliers is computed.
If there are negative values among the multipliers computed, the constraint associated to the most negative multiplier is deleted from the working set.
Then, compute the search direction using Gauss-Newton method.
# Parameters
* `W` : represents the current working set (see [`WorkingSet`](@ref) for more details). Fields `t`, `active` and `inactive` may be modified when deleting a constraint
* `rx` : vector of size `m` containing residuals evaluations
* `A` : `l`x`n` jacobian matrix of constraints
* `J` = `m`x`n` jacobian matrixe of residuals
* `C` : represents constraints in current working set (see [`Constraint`](@ref) for more details)
* `∇fx` : vector of size `n`, gradient vector of the objective function
* `p_gn` : buffer vector of size `n`, represents the search direction
* `iter_k` : Contains infos about the current iteration (see [`Iteration`](@ref))
# On return
* `P1`, `L11`, `Q1`, `F_L11` and `F_J2` : QR decompositions used to solve linear systems when computing the search direction in [`sub_search_direction`](@ref)
* The fields of `iter_k` related to the computation of the search direction are modified in place
=#
function update_working_set(
W::WorkingSet,
rx::Vector{T},
A::Matrix{T},
C::Constraint,
∇fx::Vector{T},
J::Matrix{T},
p_gn::Vector{T},
iter_k::Iteration,
ε_rank::T) where {T}
λ = Vector{T}(undef, W.t)
F_A = qr(C.A', ColumnNorm())
first_lagrange_mult_estimate!(C.A, λ, ∇fx, C.cx, C.scaling, C.diag_scale, F_A, iter_k, ε_rank)
s = check_constraint_deletion(W.q, C.A, λ, C.scaling, C.diag_scale, iter_k.grad_res)
(m, n) = size(J)
# Constraint number s is deleted from the current working set
if s != 0
# Save s-th element of cx,λ and row s of A to test for feasible direction
cx_s = C.cx[s]
A_s = C.A[s, :]
λ_s = λ[s]
diag_scale_s = C.diag_scale[s]
index_s = W.active[s]
deleteat!(λ, s)
deleteat!(C.cx, s)
deleteat!(C.diag_scale, s)
remove_constraint!(W, s)
iter_k.del = true
iter_k.index_del = index_s
C.A = C.A[setdiff(1:end, s), :]
vect_P1 = F_A.p[:]
F_A = qr((C.A)',ColumnNorm())
rankA = pseudo_rank(diag(F_A.R), ε_rank)
F_L11 = qr(F_A.R', ColumnNorm())
p_gn[:], F_J2 = gn_search_direction(J, rx, C.cx, F_A, F_L11, rankA, W.t, ε_rank, iter_k)
# Test for feasible direction
As_p = (rankA <= W.t ? 0.0 : dot(A_s, p_gn))
feasible = (As_p >= -cx_s && As_p > 0)
if !feasible
insert!(C.cx, s, cx_s)
insert!(λ, s, λ_s)
insert!(C.diag_scale, s, diag_scale_s)
s_inact = findfirst(isequal(index_s), W.inactive)
add_constraint!(W, s_inact)
iter_k.index_del = 0
iter_k.del = false
C.A = (C.scaling ? A[W.active[1:W.t], :] .* C.diag_scale : A[W.active[1:W.t], :])
F_A = qr((C.A)',ColumnNorm())
rankA = pseudo_rank(diag(F_A.R), ε_rank)
F_L11 = qr(F_A.R', ColumnNorm())
p_gn[:], F_J2 = gn_search_direction(J, rx, C.cx, F_A, F_L11, rankA, W.t, ε_rank, iter_k)
if !(W.t != rankA || iter_k.rankJ2 != min(m, n - rankA))
second_lagrange_mult_estimate!(J, F_A, λ, rx, p_gn, W.t, C.scaling, C.diag_scale)
s2 = check_constraint_deletion(W.q, C.A, λ, C.scaling, C.diag_scale, 0.0)
if s2 != 0
index_s2 = W.active[s2]
deleteat!(λ, s2)
deleteat!(C.diag_scale, s2)
C.cx = C.cx[setdiff(1:end, s2)]
remove_constraint!(W, s2)
iter_k.del = true
iter_k.index_del = index_s2
C.A = C.A[setdiff(1:end, s2), :]
vect_P1 = F_A.p[:]
F_A = qr((C.A)',ColumnNorm())
rankA = pseudo_rank(diag(F_A.R), ε_rank)
F_L11 = qr(F_A.R', ColumnNorm())
p_gn[:], F_J2 = gn_search_direction(J, rx, C.cx, F_A, F_L11, rankA, W.t, ε_rank, iter_k)
end
end
end
# No first order estimate implies deletion of a constraint
elseif s == 0
rankA = pseudo_rank(diag(F_A.R), ε_rank)
F_L11 = qr(F_A.R', ColumnNorm())
p_gn[:], F_J2 = gn_search_direction(J, rx, C.cx, F_A, F_L11, rankA, W.t, ε_rank, iter_k)
if !(W.t != rankA || iter_k.rankJ2 != min(m, n - rankA))
second_lagrange_mult_estimate!(J, F_A, λ, rx, p_gn, W.t, C.scaling, C.diag_scale)
s2 = check_constraint_deletion(W.q, C.A, λ, C.scaling, C.diag_scale, 0.0)
if s2 != 0
index_s2 = W.active[s2]
deleteat!(λ, s2)
deleteat!(C.diag_scale, s2)
C.cx = C.cx[setdiff(1:end, s2)]
remove_constraint!(W, s2)
iter_k.del = true
iter_k.index_del = index_s2
vect_P1 = F_A.p[:]
C.A = C.A[setdiff(1:end, s2), :]
F_A = qr((C.A)',ColumnNorm())
rankA = pseudo_rank(diag(F_A.R), ε_rank)
F_L11 = qr(F_A.R', ColumnNorm())
p_gn[:], F_J2 = gn_search_direction(J, rx, C.cx, F_A, F_L11, rankA, W.t, ε_rank, iter_k)
end
end
end
iter_k.λ = λ
return F_A, F_L11, F_J2
end
#=
init_working_set(cx,K,step,q,l)
Equivalent Fortran77 routine : INIALC
Compute the first working set by cheking which inequality constraints are strictly positive.
Then, initialize the penalty constants.
# Parameters
* `cx` : vector of size `l`, contains contraints evaluations
* `K` : array of vectors, contains infos about penalty constants computed throughout the algorithm
* `step` : object of type [`Iteration`](@ref), containts infos about the current iteration, i.e. the first one when this function is called
* `q` : number of equality constraints
* `l` : total number of constraints
# On return
* `first_working_set` : [`WorkingSet`](@ref) object, contains infos about the first working set
=#
function init_working_set(cx::Vector{T}, K::Array{Array{T,1},1},
step::Iteration, q::Int, l::Int) where {T}
δ, ϵ, ε_rel = 0.1, 0.01, sqrt(eps(eltype(cx)))
# Initialisation des pénalités
K[:] = [δ * ones(eltype(cx), l) for i = 1:length(K)]
for i = 1:l
pos = min(abs(cx[i]) + ϵ, δ)
step.w[i] = pos
end
# Determination du premier ensemble actif
active = zeros(typeof(q), l)
inactive = zeros(typeof(l), l - q)
t = q
lmt = 0
# Les contraintes d'égalité sont toujours actives
active[1:q] = [i for i = 1:q]
for i = q+1:l
if cx[i] <= 0.0
t += 1
active[t] = i
else
lmt += 1
inactive[lmt] = i
end
end
step.t = t
first_working_set = WorkingSet(q, t, l, active, inactive)
return first_working_set
end
# PRESUB
# Returns dimension when previous descent direction was computed with subspace minimization
function subspace_min_previous_step(
τ::Vector{T},
ρ::Vector{T},
ρ_prk::T,
c1::T,
pseudo_rk::Int,
previous_dimR::Int,
progress::T,
predicted_linear_progress::T,
prelin_previous_dim::T,
previous_α::T) where {T}
# Data
stepb, pgb1, pgb2, predb, rlenb, c2 = 2e-1, 3e-1, 1e-1, 7e-1, 2.0, 1e2
if ((previous_α < stepb) &&
(progress <= pgb1 * predicted_linear_progress^2) &&
(progress <= pgb2 * prelin_previous_dim^2))
# Bad step
dim = max(1, previous_dimR - 1)
if ((previous_dimR > 1) && (ρ[dim] > c1 * ρ_prk))
return dim
end
end
dim = previous_dimR
if previous_dimR < size(τ,1) && (((ρ[dim] > predb * ρ_prk) && (rlenb * τ[dim] < τ[dim+1])) ||
(c2 * τ[dim] < τ[dim+1]))
suggested_dim = dim
else
i1 = previous_dimR - 1
if i1 <= 0
suggested_dim = pseudo_rk
else
buff = [i for i = i1:previous_dimR if ρ[i] > predb * ρ_prk]
suggested_dim = (isempty(buff) ? pseudo_rk : minimum(buff))
end
end
return suggested_dim
end
# PREGN
# Returns dimension to use when previous descent direction was computed with Gauss-Newton method
function gn_previous_step(
τ::Vector{T},
τ_prk::T,
mindim::Int,
ρ::Vector{T},
ρ_prk::T,
pseudo_rank::Int) where {T}
# Data
τ_max, ρ_min = 2e-1, 5e-1
pm1 = pseudo_rank - 1
if mindim > pm1
suggested_dim = mindim
else
k = pm1
while (τ[k] >= τ_max * τ_prk || ρ[k] <= ρ_min * ρ_prk) && k > mindim
k -= 1
end
suggested_dim = (k > mindim ? k : max(mindim, pm1))
end
return suggested_dim
end
# GNDCHK
# Decides what method should be used to compute the search direction
# This information is told by the value returned by method_code :
# 1 if Gauss-Newton search direction is accepted
# -1 if subspace inimization is suggested
# 2 if the method of Newton is suggested
# β_k = sqrt(||b1||^2 + ||d1||^2) is an information used to compute the convergence rate
function check_gn_direction(
b1nrm::T,
d1nrm::T,
d1nrm_as_km1::T,
dnrm::T,
active_c_sum::T,
iter_number::Int,
rankA::Int,
n::Int,
m::Int,
restart::Bool,
constraint_added::Bool,
constraint_deleted::Bool,
W::WorkingSet,
cx::Vector{T},
λ::Vector{T},
iter_km1::Iteration,
scaling::Bool,
diag_scale::Vector{T}) where {T}
# Data
δ = 1e-1
c1, c2, c3, c4, c5 = 0.5, 0.1, 4.0, 10.0, 0.05
ε_rel = eps(eltype(λ))
β_k = sqrt(d1nrm^2 + b1nrm^2)
method_code = 1
# To accept the Gauss-Newton we must not have used the method of
# Newton before and current step must not be a restart step
newton_or_restart = iter_km1.code == 2 || restart
# If any of the following conditions is satisfied the Gauss-Newton direction is accepted
# 1) The first iteration step
# 2) estimated convergence factor < c1
# 3) the real progress > c2 * predicted linear progress (provided we are not close to the solution)
first_iter = (iter_number == 0)
submin_prev_iter = iter_km1.code == -1
add_or_del = (constraint_added || constraint_deleted)
convergence_lower_c1 = (β_k < c1 * iter_km1.β)
progress_not_close = ((iter_km1.progress > c2 * iter_km1.predicted_reduction) && ((dnrm <= c3 * β_k)))
if newton_or_restart || (!first_iter && (submin_prev_iter || !(add_or_del || convergence_lower_c1 || progress_not_close)))
# Subspace minimization is suggested if one of the following holds true
# 4) There is something left to reduce in subspaces
# 5) Addition and/or deletion to/from current working set in the latest step
# 6) The nonlinearity is too severe
method_code = -1
non_linearity_k = sqrt(d1nrm * d1nrm + active_c_sum)
non_linearity_km1 = sqrt(d1nrm_as_km1 * d1nrm_as_km1 + active_c_sum)
to_reduce = false
if W.q < W.t
sqr_ε = sqrt(eps(eltype(λ)))
rows = zeros(T, W.t - W.q)
for i = W.q+1:W.t
rows[i-W.q] = (scaling ? 1.0 / diag_scale[i] : diag_scale[i])
end
lagrange_mult_cond = any(>=(-sqr_ε), λ[W.q+1:W.t] .* rows) && any(<(0), λ[W.q+1:W.t])
to_reduce = (to_reduce || lagrange_mult_cond)
end
if (W.l - W.t > 0)
inact_c = [cx[W.inactive[j]] for j = 1:((W.l-W.t))]
to_reduce = (to_reduce || any(<(δ), inact_c))
end
newton_previously = iter_km1.code == 2 && !constraint_deleted
cond4 = active_c_sum > c2
cond5 = (constraint_deleted || constraint_added || to_reduce || (W.t == n && W.t == rankA))
ϵ = max(1e-2, 10.0 * ε_rel)
cond6 = !((W.l == W.q) || (rankA <= W.t)) && !((β_k < ϵ * dnrm) || (b1nrm < ϵ && m == n - W.t))
if newton_previously || !(cond4 || cond5 || cond6)
cond7 = (iter_km1.α < c5 && non_linearity_km1 < c2 * non_linearity_k) || m == n - W.t
cond8 = !(dnrm <= c4 * β_k)
if newton_previously || cond7 || cond8
# Method of Newton is the only alternative
method_code = 2
end
end
end
return method_code, β_k
end
# DIMUPP
# Determine suitable dimension for solving the system Rx = y
# (i.e how many columns of R should be used)
# where R is rankR*rankR Upper Triangular
# Returns the dimension and a real scalar containing 1.0 when restart is false
# or L(previous_dimR-1)/L(previous_dimR)
# where L(i) is the length of an estimated search direction computed by using dimension i
function determine_solving_dim(
previous_dimR::Int,
rankR::Int,
predicted_linear_progress::T,
obj_progress::T,
prelin_previous_dim::T,
R::UpperTriangular{Float64,Array{T,2}},
y::Vector{T},
previous_α::T,
restart::Bool) where {T}
# Data
c1 = 0.1
newdim = rankR
η = 1.0
mindim = 1
if rankR > 0
l_estim_sd, l_estim_righthand = zeros(T,rankR), zeros(T,rankR)
l_estim_sd[1] = abs(y[1])
l_estim_righthand[1] = abs(y[1] / R[1, 1])
if rankR > 1
for i = 2:rankR
l_estim_sd[i] = y[i]
l_estim_righthand[i] = y[i] / R[i, i]
l_estim_righthand[i] = norm(l_estim_righthand[i-1:i])
l_estim_sd[i] = norm(l_estim_sd[i-1:i])
end
end
nrm_estim_sd = l_estim_sd[rankR]
nrm_estim_righthand = l_estim_righthand[rankR]
# Determine lowest possible dimension
dsum = 0.0
psimax = 0.0
for i = 1:rankR
dsum += l_estim_sd[i]^2
psi = sqrt(dsum) * abs(R[i, i])
if psi > psimax
psimax = psi
mindim = i
end
end
k = mindim
if !restart
if previous_dimR == rankR || previous_dimR <= 0
# Gauss-Newton at previous step
suggested_dim = gn_previous_step(l_estim_sd, nrm_estim_sd, mindim, l_estim_righthand, nrm_estim_righthand, rankR)
elseif previous_dimR != rankR && previous_dimR > 0
# Subbspace-Minimization at previous step
suggested_dim = subspace_min_previous_step(l_estim_sd, l_estim_righthand, nrm_estim_righthand,
c1, rankR, previous_dimR, obj_progress, predicted_linear_progress,
prelin_previous_dim, previous_α)
end
newdim = max(mindim, suggested_dim)
else
newdim = max(0, min(rankR, previous_dimR))
if newdim != 0
k = max(previous_dimR - 1, 1)
if l_estim_sd[newdim] != 0
η = l_estim_sd[k] / l_estim_sd[newdim]
end
end
end
end
return newdim, η
end
# SUBSPC
# Computes the dimensions of the subspaces where minimization should be done
function choose_subspace_dimensions(
rx_sum::T,
rx::Vector{T},
active_cx_sum::T,
J1::Matrix{T},
t::Int,
rankJ2::Int,
rankA::Int,
b::Vector{T},
F_L11::Factorization,
F_J2::Factorization,
previous_iter::Iteration,
restart::Bool) where {T}
# Data
c1, c2, α_low = 0.1, 0.01, 0.2
previous_α = previous_iter.α
if rankA <= 0
dimA = 0
previous_dimA = 0
η_A = 1.0
d = -rx
elseif rankA > 0
# previous_dimA = abs(previous_iter.rankA) + t - previous_iter.t
previous_dimA = abs(previous_iter.dimA) + t - previous_iter.t
nrm_b_asprev = norm(b[1:previous_dimA])
nrm_b = norm(b)
constraint_progress = dot(previous_iter.cx, previous_iter.cx) - active_cx_sum
# Determine Dimension for matrix R11 to be used
dimA, η_A = determine_solving_dim(previous_dimA, rankA, nrm_b, constraint_progress, nrm_b_asprev, UpperTriangular(F_L11.R), b, previous_α, restart)
# Solve for p1 the system R11*P2*p1 = b
# Using dimA columns of R11
# Forms right hand side d = r(x)+J1*p1
δp1 = UpperTriangular(F_L11.R[1:dimA, 1:dimA]) \ b[1:dimA]
p1 = F_L11.P[1:rankA, 1:rankA] * [δp1; zeros(T,rankA - dimA)]
d = -(rx + J1 * p1)
end
if rankJ2 > 0
d = F_J2.Q' * d
end
# previous_dimJ2 = abs(previous_iter.rankJ2) + previous_iter.t - t
previous_dimJ2 = abs(previous_iter.dimJ2) + previous_iter.t -t
nrm_d_asprev = norm(d[1:previous_dimJ2])
nrm_d = norm(d)
residual_progress = dot(previous_iter.rx, previous_iter.rx) - rx_sum
dimJ2, η_J2 = determine_solving_dim(previous_dimJ2, rankJ2, nrm_d, residual_progress, nrm_d_asprev, UpperTriangular(F_J2.R), d, previous_α, restart)
if !restart && previous_α >= α_low
dimA = max(dimA, previous_dimA)
dimJ2 = max(dimJ2, previous_dimJ2)
end
return dimA, dimJ2
end
#=
search_direction_analys
Equivalent Fortran77 routine : ANALYS
Check if the latest step was sufficientlt good and eventually recompute the search direction by using either subspace minimization or the method of Newton
# On return
* `error_code` : integer indicating if there was an error if computations. In current version, errors can come from the method of Newton
=#
function search_direction_analys(
previous_iter::Iteration,
current_iter::Iteration,
iter_number::Int,
x::Vector{T},
c::ConstraintsFunction,
r::ResidualsFunction,
rx::Vector{T},
cx::Vector{T},
active_C::Constraint,
active_cx_sum::T,
p_gn::Vector{T},
J::Matrix{T},
working_set::WorkingSet,
F_A::Factorization,
F_L11::Factorization,
F_J2::Factorization) where {T}
# Data
(m,n) = size(J)
rx_sum = dot(rx,rx)
active_cx = active_C.cx
scaling = active_C.scaling
diag_scale = active_C.diag_scale
λ = current_iter.λ
constraint_added = current_iter.add
constraint_deleted = current_iter.del
b_gn = current_iter.b_gn
nrm_b1_gn = norm(b_gn[1:current_iter.dimA])
rankA = current_iter.rankA
d_gn = current_iter.d_gn
nrm_d_gn = norm(current_iter.d_gn)
nrm_d1_gn = norm(d_gn[1:current_iter.dimJ2])
rankJ2 = current_iter.rankJ2
prev_dimJ2m1 = previous_iter.dimJ2 + previous_iter.t - working_set.t - 1
nrm_d1_asprev = norm(d_gn[1:prev_dimJ2m1])
restart = current_iter.restart
#Analys of search direction computed with Gauss-Newton method
error_code = 0
method_code, β = check_gn_direction(nrm_b1_gn, nrm_d1_gn, nrm_d1_asprev, nrm_d_gn, active_cx_sum, iter_number, rankA, n, m, restart, constraint_added, constraint_deleted, working_set, cx, λ,
previous_iter, scaling, diag_scale)
# Gauss-Newton accepted
if method_code == 1
dimA = rankA
dimJ2 = rankJ2
p, b, d = p_gn, b_gn, d_gn
# Subspace minimization to recompute the search direction
# using dimA columns of matrix R11 and dimJ2 columns of matrix R22
elseif method_code == -1
JQ1 = J * F_A.Q
J1 = JQ1[:, 1:rankA]
b = F_L11.Q' * (-active_cx[F_A.p])
dimA, dimJ2 = choose_subspace_dimensions(rx_sum, rx, active_cx_sum, J1, working_set.t, rankJ2, rankA, b, F_L11, F_J2, previous_iter, restart)
p, b, d = sub_search_direction(J1, rx, active_cx, F_A, F_L11, F_J2, n, working_set.t, rankA, dimA, dimJ2, method_code)
if dimA == rankA && dimJ2 == rankJ2
method_code = 1
end
# Search direction computed with the method of Newton
elseif method_code == 2
p, newton_error = newton_search_direction(x, c, r, active_cx, working_set, λ, rx, J, F_A, F_L11, rankA)
b, d = b_gn, d_gn
dimA = -working_set.t
dimJ2 = working_set.t - n
current_iter.nb_newton_steps += 1
if newton_error
error_code = -3
end
end
# Update of infos about search direction computation
current_iter.b_gn = b
current_iter.d_gn = d
current_iter.dimA = dimA
current_iter.dimJ2 = dimJ2
current_iter.code = method_code
current_iter.speed = β / previous_iter.β
current_iter.β = β
current_iter.p = p
return error_code
end
#= Update of the penalty weights in the merit function and steplength computation
psi(x,α,p,r,c,w,m,l,t,active,inactive)
Compute and return the evaluation of the merit function at ``(x+\\alpha p,w)`` with current working set ``\\mathcal{W}`` and the set of inactive constraints ``\\mathcal{I}``
``\\psi(x,w) = \\dfrac{1}{2}\\|r(x)\\|^2 + \\dfrac{1}{2}\\sum_{i \\in \\mathcal{W}} w_ic_i(x)^2 + \\dfrac{1}{2} \\sum_{j \\in \\mathcal{I}} w_j\\min(0,c_j(x))^2``
=#
function psi(
x::Vector,
α::T,
p::Vector,
r::ResidualsFunction,
c::ConstraintsFunction,
w::Vector,
m::Int,
l::Int,
t::Int,
active::Vector{Int},
inactive::Vector{Int}) where {T}
rx_new, cx_new = zeros(T, m), zeros(T, l)
penalty_constraint_sum = zero(T)
#Evaluate residuals and constraints at point x+αp
x_new = x + α * p
res_eval!(r,x_new,rx_new)
cons_eval!(c,x_new,cx_new)
# First part of sum with active constraints
for i = 1:t
j = active[i]
penalty_constraint_sum += w[j] * cx_new[j]^2
end
# Second part of sum with inactive constraints
for i = 1:l-t
j = inactive[i]
if cx_new[j] < 0.0
penalty_constraint_sum += w[j] * cx_new[j]^2
end
end
return 0.5 * (dot(rx_new, rx_new) + penalty_constraint_sum)
end
# ASSORT
function assort!(
K::Array{Array{T,1},1},
w::Vector{T},
t::Int,
active::Vector{Int}) where {T}
for i in 1:t, ii in 1:4
k = active[i]
if w[k] > K[ii][k]
for j = 4:-1:ii+1
K[j][k] = K[j-1][k]
end
K[ii][k] = w[k]
end
end
return
end
# EUCMOD
# Solve the problem :
#
# min ||w|| (euclidean norm)
# s.t.
# w_i ≧ w_old_i
#
# <y,w> ≧ τ (if ctrl = 2)
#
# <y,w> = τ (if ctrl = 1)
function min_norm_w!(
ctrl::Int,
w::Vector{T},
w_old::Vector{T},
y::Vector{T},
τ::T,
pos_index::Vector{Int},
nb_pos::Int) where {T}
w[:] = w_old
if nb_pos > 0
y_sum = dot(y, y)
y_norm = norm(y)
# Scale the vector y
if y_norm != 0.0
y /= y_norm
end
τ_new = τ
s = 0.0
n_runch = nb_pos
terminated = false
ε_rel = eps(eltype(y))
while !terminated
τ_new -= s
c = (norm(y, Inf) <= ε_rel ? 1.0 : τ_new / y_sum)
y_sum, s = 0.0, 0.0
i_stop = n_runch
k = 1
while k <= n_runch
i = pos_index[k]
buff = c * y[k] * y_norm
if buff >= w_old[i]
w[i] = buff
y_sum += y[k]^2
k += 1
else
s += w_old[i] * y[k] * y_norm
n_runch -= 1
for j = k:n_runch
pos_index[j] = pos_index[j+1]
y[j] = y[j+1]
end
end
end
y_sum *= y_norm * y_norm
terminated = (n_runch <= 0) || (ctrl == 2) || (i_stop == n_runch)
end
end
return
end
# EUCNRM
# Update the penalty constants using the euclidean norm
function euclidean_norm_weight_update(
vA::Vector{T},
cx::Vector{T},
active::Vector{<:Int},
t::Int,
μ::T,
dimA::Int,
previous_w::Vector{T},
K::Array{Array{T,1},1}) where {T}
# if no active constraints, previous penalty weights are used
w = previous_w[:]
if t != 0
# Compute z = [<∇c_i(x),p>^2]_i for i ∈ active
z = vA .^ 2
# Compute ztw = z(TR)w_old where w_old holds the 4th lowest weights used so far
# for constraints in active set
w_old = K[4]
ztw = dot(z, w_old[active[1:t]])
pos_index = zeros(Int64, t)
if (ztw >= μ) && (dimA < t)
# if ztw ≧ μ, no need to change w_old unless t = dimA
y = zeros(T, t)
# Form vector y and scalar γ (\gamma)
# pos_index holds indeces for the y_i > 0
ctrl, nb_pos, γ = 2, 0, 0.0
for i = 1:t
k = active[i]
y_elem = vA[i] * (vA[i] + cx[k])
if y_elem > 0
nb_pos += 1
pos_index[nb_pos] = k
y[nb_pos] = y_elem
else
γ -= y_elem * w_old[k]
end
end
min_norm_w!(ctrl, w, w_old, y, γ, pos_index, nb_pos)
elseif (ztw < μ) && (dimA < t)
# Form vector e and scalar τ (\tau)
e = zeros(T,t)
ctrl, nb_pos, τ = 2, 0, μ
for i = 1:t
k = active[i]
e_elem = -vA[i] * cx[k]
if e_elem > 0
nb_pos += 1
pos_index[nb_pos] = k
e[nb_pos] = e_elem
else
τ -= e_elem * w_old[k]
end
end
min_norm_w!(ctrl, w, w_old, e, τ, pos_index, nb_pos)
elseif (ztw < μ) && (dimA == t)
# Use vector z already formed (z = [<∇c_i(x),p>^2]_i for i ∈ active)
# pos_index holds the indeces in active since z elements are > 0
ctrl = 1
pos_index[:] = active[1:t]
min_norm_w!(ctrl, w, w_old, z, μ, pos_index, t)
end
assort!(K, w, t, active)
end
return w
end
# MAXNRM
# Update the penalty weights corresponding to the
# constraints in the current working setb
function max_norm_weight_update!(
nrm_Ap::T,
rmy::T,
α_w::T,
δ::T,
w::Vector{T},
active::Vector{Int},
t::Int,
K::Array{Array{T,1},1}) where {T}
μ = (abs(α_w - 1.0) <= δ ? 0.0 : rmy / nrm_Ap)
i1 = (active[1] != 0 ? active[1] : 1)
previous_w = w[i1]
ν = max(μ, K[4][1])
for i = 1:t
k = active[i]
w[k] = ν
end
if μ > previous_w
mu_not_placed = true
i = 1
while i <= 4 && mu_not_placed
if μ > K[i][1]
for j = 4:-1:i+1
K[j][1] = K[j-1][1]
end
K[i][1] = μ
mu_not_placed = false
end
i += 1
end
end
return
end
# WEIGHT
# Determine the penalty constants that should be used in the current linesearch
# where ψ(α) is approximalety minimized
function penalty_weight_update(
w_old::Vector{T},
Jp::Vector{T},
Ap::Vector{T},
K::Array{Array{T,1},1},
rx::Vector{T},
cx::Vector{T},
work_set::WorkingSet,
dimA::Int,
norm_code::Int) where {T}
# Data
δ = 0.25
active = work_set.active
t = work_set.t
nrm_Ap = sqrt(dot(Ap, Ap))
nrm_cx = (isempty(cx[active[1:dimA]]) ? 0.0 : max(0,maximum(map(abs,cx[active[1:dimA]]))))
nrm_Jp = sqrt(dot(Jp, Jp))
nrm_rx = sqrt(dot(rx,rx))
# Scaling of vectors Jp, Ap, rx and cx
if nrm_Jp != 0
Jp = Jp / nrm_Jp
end
if nrm_Ap != 0
Ap = Ap / nrm_Ap
end
if nrm_rx != 0
rx = rx / nrm_rx
end
if nrm_cx != 0
cx = cx / nrm_cx
end
Jp_rx = dot(Jp, rx) * nrm_Jp * nrm_rx
AtwA = 0.0
BtwA = 0.0
if dimA > 0
for i = 1:dimA
k = active[i]
AtwA += w_old[k] * Ap[i]^2
BtwA += w_old[k] * Ap[i] * cx[k]
end
end
AtwA *= nrm_Ap^2
BtwA *= nrm_Ap * nrm_cx
α_w = 1.0
if abs(AtwA + nrm_Jp^2) > eps(eltype(rx))
α_w = (-BtwA - Jp_rx) / (AtwA + nrm_Jp^2)
end
rmy = (abs(Jp_rx + nrm_Jp^2) / δ) - nrm_Jp^2
if norm_code == 0
w = w_old[:]
max_norm_weight_update!(nrm_Ap, rmy, α_w, δ, w, active, t, K)
elseif norm_code == 2
w = euclidean_norm_weight_update(Ap*nrm_Ap, cx*nrm_cx, active, t, rmy, dimA, w_old, K)
end
# T T
# Computation of ψ'(0) = [J(x)p] r(x)+ Σ w_i*[∇c_i(x) p]c_i(x)
# i ∈ active
BtwA = 0.0
AtwA = 0.0
wsum = 0.0
for i = 1:t
k = active[i]
AtwA += w[k] * Ap[i]^2
BtwA += w[k] * Ap[i] * cx[k]
wsum += w[k]
end
BtwA *= nrm_Ap * nrm_cx
AtwA *= nrm_Ap^2
dψ0 = BtwA + Jp_rx
return w, dψ0
end
# CONCAT
# Compute in place the components of vector v used for polynomial minimization
function concatenate!(v::Vector{T},
rx::Vector{T},
cx::Vector{T},
w::Vector{T},
m::Int,
t::Int,
l::Int,
active::Vector{<:Int},
inactive::Vector{<:Int}) where {T}
v[1:m] = rx[:]
if t != 0
for i = 1:t
k = active[i]
v[m+k] = sqrt(w[k]) * cx[k]
end
end
if l != 0
for j = 1:l-t
k = inactive[j]
v[m+k] = (cx[k] > 0 ? 0.0 : sqrt(w[k]) * cx[k])
end
end
return
end
# LINC2
# Compute in place vectors v0 and v2 so that one dimensional minimization in R^m can be done
# Also modifies components of v1 related to constraints
function coefficients_linesearch!(v0::Vector{T},
v1::Vector{T},
v2::Vector{T},
α_k::T,
rx::Vector{T},
cx::Vector{T},
rx_new::Vector{T},
cx_new::Vector{T},
w::Vector{T},
m::Int,
t::Int,
l::Int,
active::Vector{Int},
inactive::Vector{Int}) where {T}
# Compute v0
concatenate!(v0, rx, cx, w, m, t, l, active, inactive)
v_buff = zeros(T,m + l)
concatenate!(v_buff, rx_new, cx_new, w, m, t, l, active, inactive)
# Computation of v2 components
v2[:] = ((v_buff - v0) / α_k - v1) / α_k
return
end
# Equivalent Fortran : QUAMIN in dblreduns.f
function minimize_quadratic(x1::T, y1::T,
x2::T, y2::T,
x3::T, y3::T) where {T}
d1, d2 = y2 - y1, y3 - y1
s = (x3 - x1)^2 * d1 - (x2 - x1)^2 * d2
q = 2 * ((x2 - x1) * d2 - (x3 - x1) * d1)
return x1 - s / q
end
# Equivalent Fortran : MINRN in dblreduns.f
function minrn(x1::T, y1::T,
x2::T, y2::T,
x3::T, y3::T,
α_min::T,
α_max::T,
p_max::T) where {T}
ε = sqrt(eps(typeof(p_max))) / p_max
# α not computable
# Add an error in this case
if abs(x1 - x2) < ε || abs(x3 - x1) < ε || abs(x3 - x2) < ε
α, pα = 0.0, 0.0
else
# Compute minimum of quadradic passing through y1, y2 and y3
# respectively at points x1, x2 and x3
u = minimize_quadratic(x1, y1, x2, y2, x3, y3)
α = clamp(u, α_min, α_max)
t1 = (α - x1) * (α - x2) * y3 / ((x3 - x1) * (x3 - x2))
t2 = (α - x3) * (α - x2) * y1 / ((x1 - x3) * (x1 - x2))
t3 = (α - x3) * (α - x2) * y2 / ((x2 - x1) * (x2 - x3))
# Value of the estimation of ψ(α)
pα = t1 + t2 + t3
end
return α, pα
end
function parameters_rm(
v0::Vector{T},
v1::Vector{T},
v2::Vector{T},
x_min::T,
ds::Polynomial{T},
dds::Polynomial{T}) where {T}
dds_best = dds(x_min)
η, d = 0.1, 1.0
normv2 = dot(v2, v2)
h0 = abs(ds(x_min) / dds_best)
Dm = abs(6 * dot(v1, v2) + 12 * x_min * normv2) + 24 * h0 * normv2
hm = max(h0, 1)
# s'(α) = 0 is solved analytically
if dds_best * η < 2 * Dm * hm
# If t = α+a1 solves t^3 + b*t + c = O then α solves s'(α) = 0
(a3, a2, a1) = coeffs(ds) / (2 * normv2)
b = a2 - (a1^2) / 3
c = a3 - a1 * a2 / 3 + 2 * (a1 / 3)^3
d = (c / 2)^2 + (b / 3)^3
# Two interisting roots
if d < 0
α_hat, β_hat = two_roots(b, c, d, a1, x_min)
# Only one root is computed
else
α_hat = one_root(c, d, a1)
end
# s'(α) = 0 is solved using Newton-Raphson's method
else
α_hat = newton_raphson(x_min, Dm, ds, dds)
end
# If only one root computed
if d >= 0
β_hat = α_hat
end
return α_hat, β_hat
end
function bounds(α_min::T, α_max::T, α::T, s::Polynomial{T}) where {T}
α = min(α, α_max)
α = max(α, α_min)
return α, s(α)
end
function newton_raphson(
x_min::T,
Dm::T,
ds::Polynomial{T},
dds::Polynomial{T}) where {T}
α, newton_iter = x_min, 0
ε, error = 1e-4, 1.0
while error > ε || newton_iter < 3
c = dds(α)
h = -ds(α) / c
α += h
error = (2 * Dm * h^2) / abs(c)
newton_iter += 1
end
return α
end
# Equivalent Fortran : ONER in dblreduns.f
function one_root(c::T, d::T, a::T) where {T}
arg1, arg2 = -c / 2 + sqrt(d), -c / 2 - sqrt(d)
return cbrt(arg1) + cbrt(arg2) - a / 3
end
# Equivalent Fortran : TWOR in dblreduns.f
function two_roots(b::T, c::T, d::T, a::T, x_min::T) where {T}
φ = acos(abs(c / 2) / (-b / 3)^(3 / 2))
t = (c <= 0 ? 2 * sqrt(-b / 3) : -2 * sqrt(-b / 3))
# β1 is the global minimizer of s(α).
# If d is close to zero the root β1 is stable while β2 and β3 become unstable
β1 = t * cos(φ / 3) - a / 3
β2 = t * cos((φ + 2 * π) / 3) - a / 3
β3 = t * cos((φ + 4 * π) / 3) - a / 3
# Sort β1, β2 and β3 so that β1 <= β2 <= β3
β1, β2, β3 = sort([β1, β2, β3])
# β1 or β3 are now the roots of interest
α, β = (x_min <= β2 ? (β1, β3) : (β3, β1))
return α, β
end
# Equivalent Fortran : MINRM in dblreduns.f
function minrm(
v0::Vector{T},
v1::Vector{T},
v2::Vector{T},
x_min::T,
α_min::T,
α_max::T) where {T}
s = Polynomial([0.5 * dot(v0, v0), dot(v0, v1), dot(v0, v2) + 0.5 * dot(v1, v1), dot(v1, v2), 0.5 * dot(v2, v2)])
ds = derivative(s)
dds = derivative(ds)
α_hat, β_hat = parameters_rm(v0, v1, v2, x_min, ds, dds)
sα, sβ = s(α_hat), s(β_hat)
α_old = α_hat
α_hat, sα = bounds(α_min, α_max, α_hat, s)
if α_old == β_hat
β_hat, sβ = α_hat, s(α_hat)
else
β_hat, sβ = bounds(α_min, α_max, β_hat, s)
end
return α_hat, sα, β_hat, sβ
end
# REDC
# Returns true if essential reduction in the objective function is likely
# Otherwise returns false
function check_reduction(
ψ_α::T,
ψ_k::T,
approx_k::T,
η::T,
diff_psi::T) where {T}
# Data
δ = 0.2
if ψ_α - approx_k >= η * diff_psi
reduction_likely = !((ψ_α - ψ_k < η * diff_psi) && (ψ_k > δ * ψ_α))
else
reduction_likely = false
end
return reduction_likely
end
# GAC
# Halfs the value of u until a Goldstein-Armijo condition is satisfied
# or until steplength times search direction is below square root of relative_prevision
function goldstein_armijo_step(
ψ0::T,
dψ0::T,
α_min::T,
τ::T,
p_max::T,
x::Vector{T},
α0::T,
p::Vector{T},
r::ResidualsFunction,
c::ConstraintsFunction,
w::Vector{T},
m::Int,
l::Int,
t::Int,
active::Vector{Int},
inactive::Vector{Int}) where {T}
u = α0
sqr_ε = sqrt(eps(typeof(u)))
exit = (p_max * u < sqr_ε) || (u <= α_min)
ψu = psi(x, u, p, r, c, w, m, l, t, active, inactive)
while !exit && (ψu > ψ0 + τ * u * dψ0)
u *= 0.5
ψu = psi(x, u, p, r, c, w, m, l, t, active, inactive)
exit = (p_max * u < sqr_ε) || (u <= α_min)
end
return u, exit
end
# LINEC
# Linesearch routine for constrained least squares problems
# Compute the steplength α (\alpha) for the iteration x_new = x + αp
# x current point, p search direction
#
# α is close to the solution of the problem
# min ψ(α)
# with α_low <= α <= α_upp
#
# ψ(α) = 0.5 * (||r(x+αp)||^2 + Σ (w_i * c_i(x+αp)^2) + Σ min(0,w_j * c_j(x+αp))^2)
# i j
# i correspond to constraints in current working set, j to inactive constraints
function linesearch_constrained(
x::Vector{T},
α0::T,
p::Vector{T},
r::ResidualsFunction,
c::ConstraintsFunction,
rx::Vector{T},
cx::Vector{T},
JpAp::Vector{T},
w::Vector{T},
work_set::WorkingSet,
ψ0::T,
dψ0::T,
α_low::T,
α_upp::T) where {T}
# Data
m = length(rx)
l, t = work_set.l, work_set.t
active, inactive = work_set.active, work_set.inactive
# LINC1
# Set values of constants and compute α_min, α_max and α_k
η = 0.3 # \eta
τ = 0.25 # \tau
γ = 0.4 # \gamma
α_min, α_max = α_low, α_upp
α_k = min(α0, α_max)
α_km1 = 0.0
ψ_km1 = ψ0
p_max = norm(p, Inf)
gac_error = false
# LINC2
# Computation of v1
v1 = JpAp
if t != 0
for i = 1:t
k = active[i]
v1[m+k] = sqrt(w[k]) * v1[m+k]
end
end
if l - t != 0
for j = 1:l-t
k = inactive[j]
v1[m+k] = (cx[k] > 0 ? 0.0 : sqrt(w[k]) * v1[m+k])
end
end
ψ_k = psi(x, α_k, p, r, c, w, m, l, t, active, inactive)
diff_psi = ψ0 - ψ_k
x_new = x + α_k * p
rx_new, cx_new = zeros(T,m), zeros(T,l)
res_eval!(r,x_new,rx_new)
cons_eval!(c,x_new,cx_new)
v0, v2 = zeros(T,m + l), zeros(m + l)
coefficients_linesearch!(v0, v1, v2, α_k, rx, cx, rx_new, cx_new, w, m, t, l, active, inactive)
# Set x_min = the best of the points 0 and α0
x_min = (diff_psi >= 0 ? α_k : 0.0)
# Minimize in R^m. Use two points 0 and α0
# New suggestion of steplength is α_kp1 (stands for "k+1")
# pk is the value of the approximating function at α_kp1
α_kp1, pk, β, pβ = minrm(v0, v1, v2, x_min, α_min, α_max)
if α_kp1 != β && pβ < pk && β <= α_k
α_kp1 = β
pk = pβ
end
# UPDATE
α_km2 = α_km1
ψ_km2 = ψ_km1
α_km1 = α_k
ψ_km1 = ψ_k
α_k = α_kp1
ψ_k = psi(x, α_k, p, r, c, w, m, l, t, active, inactive)
# Test termination condition at α0
if (-diff_psi <= τ * dψ0 * α_km1) || (ψ_km1 < γ * ψ0)
# Termination condition satisfied at α0
diff_psi = ψ0 - ψ_k
# REDUCE
# Check if essential reduction is likely
reduction_likely = check_reduction(ψ_km1, ψ_k, pk, η, diff_psi)
while reduction_likely
# Value of the objective function can most likely be reduced
# Minimize in R^n using 3 points : α_km2, α_km1 and α_k
# New suggestion of the steplength is α_kp1, pk is its approximated value
α_kp1, pk = minrn(α_k, ψ_k, α_km1, ψ_km1, α_km2, ψ_km2, α_min, α_max, p_max)
# UPDATE
α_km2 = α_km1
ψ_km2 = ψ_km1
α_km1 = α_k
ψ_km1 = ψ_k
α_k = α_kp1
ψ_k = psi(x, α_k, p, r, c, w, m, l, t, active, inactive)
diff_psi = ψ0 - ψ_k
reduction_likely = check_reduction(ψ_km1, ψ_k, pk, η, diff_psi)
end
# Terminate but choose the best point out of α_km1 and α_k
if (ψ_km1 - pk >= η * diff_psi) && (ψ_k < ψ_km1)
α_km1 = α_k
ψ_km1 = ψ_k
end
# Termination condition not satisfied at α0
else
diff_psi = ψ0 - ψ_k
# Test termination condition at α1, i.e. α_k
if (-diff_psi <= τ * dψ0 * α_k) || (ψ_k < γ * ψ0)
# Termination condition satisfied at α1
# Check if α0 is somewhat good
if ψ0 <= ψ_km1
x_min = α_k
x_new = x + α_k * p
res_eval!(r,x_new,rx_new)
cons_eval!(c,x_new,cx_new)
v0, v2 = zeros(T,m + l), zeros(T,m + l)
coefficients_linesearch!(v0, v1, v2, α_k, rx, cx, rx_new, cx_new, w, m, t, l, active, inactive)
α_kp1, pk, β, pβ = minrm(v0, v1, v2, x_min, α_min, α_max)
if α_kp1 != β && pβ < pk && β <= α_k
α_kp1 = β
pk = pβ
end
α_km1 = 0.0
ψ_km1 = ψ0
else
# Minimize in R^n. use 3 points : 0, α0 and α1
# New suggestion of the steplength is α_kp1
# pk is the value of the approximating function at α_kp1
α_kp1, pk = minrn(α_k, ψ_k, α_km1, ψ_km1, α_km2, ψ_km2, α_min, α_max, p_max)
end
diff = ψ0 - ψ_k
# UPDATE
α_km2 = α_km1
ψ_km2 = ψ_km1
α_km1 = α_k
ψ_km1 = ψ_k
α_k = α_kp1
ψ_k = psi(x, α_k, p, r, c, w, m, l, t, active, inactive)
# Check if essential reduction is likely
reduction_likely = check_reduction(ψ_km1, ψ_k, pk, η, diff_psi)
while reduction_likely
# Value of the objective function can most likely be reduced
# Minimize in R^n using 3 points : α_km2, α_km1 and α_k
# New suggestion of the steplength is α_kp1, pk its approximated value
α_kp1, pk = minrn(α_k, ψ_k, α_km1, ψ_km1, α_km2, ψ_km2, α_min, α_max, p_max)
# UPDATE
α_km2 = α_km1
ψ_km2 = ψ_km1
α_km1 = α_k
ψ_km1 = ψ_k
α_k = α_kp1
ψ_k = psi(x, α_k, p, r, c, w, m, l, t, active, inactive)
reduction_likely = check_reduction(ψ_km1, ψ_k, pk, η, diff_psi)
end
# Terminate but choose the best point out of α_km1 and α_k
if (ψ_km1 - pk >= η * diff_psi) && (ψ_k < ψ_km1)
α_km1 = α_k
ψ_km1 = ψ_k
end
else
# Take a pure Goldstein-Armijo step
α_km1, gac_error = goldstein_armijo_step(ψ0, dψ0, α_min, τ, p_max, x, α_k, p, r, c, w, m, l, t, active, inactive)
end
end
α = α_km1
return α, gac_error
end
# UPBND
# Determine the upper bound of the steplength
function upper_bound_steplength(
A::Matrix{T},
cx::Vector{T},
p::Vector{T},
work_set::WorkingSet,
index_del::Int) where {T}
# Data
inactive = work_set.inactive
t = work_set.t
l = work_set.l
α_upper = Inf
index_α_upp = 0
if norm(inactive, Inf) > 0
for i = 1:l-t
j = inactive[i]
if j != index_del
∇cjTp = dot(A[j, :], p)
α_j = -cx[j] / ∇cjTp
if cx[j] > 0 && ∇cjTp < 0 && α_j < α_upper
α_upper = α_j
index_α_upp = j
end
end
end
end
α_upper = min(3.0, α_upper)
return α_upper, index_α_upp
end
#=
compute_steplength
Equivalent Fortran77 routine : STPLNG
Update the penalty weights and compute the steplength using the merit function [`psi`](@ref)
If search direction computed with method of Newton, an undamped step is taken, i.e. ``\\alpha =1``
# On return
* `α` : the computed steplength
* `w` : vector of size `l`, containts the computed penalty constants
=#
function compute_steplength(
iter::Iteration,
previous_iter::Iteration,
x::Vector{T},
r::ResidualsFunction,
rx::Vector{T},
J::Matrix{T},
c::ConstraintsFunction,
cx::Vector{T},
A::Matrix{T},
active_constraint::Constraint,
work_set::WorkingSet,
K::Array{Array{T,1},1},
weight_code::Int) where {T}
# Data
c1 = 1e-3
(m,_) = size(J)
p = iter.p
dimA = iter.dimA
rankJ2 = iter.rankJ2
method_code = iter.code
ind_constraint_del = iter.index_del
previous_α = previous_iter.α
prev_rankJ2 = previous_iter.rankJ2
w_old = previous_iter.w
Jp = J * p
Ap = A * p
JpAp = vcat(Jp, Ap)
active_Ap = (active_constraint.A) * p
active_index = work_set.active[1:work_set.t]
if active_constraint.scaling
active_Ap = active_Ap ./ active_constraint.diag_scale
end
Ψ_error = 0
if method_code != 2
# Compute penalty weights and derivative of ψ at α = 0
w, dψ0 = penalty_weight_update(w_old, Jp, active_Ap, K, rx, cx, work_set, dimA, weight_code)
#
# Compute ψ(0) = 0.5 * [||r(x)||^2 + Σ (w_i*c_i(x)^2)]
# i ∈ active
ψ0 = 0.5 * (dot(rx, rx) + dot(w[active_index], cx[active_index] .^ 2))
# check is p is a descent direction
if dψ0 >= 0
α = 1.0
Ψ_error = -1
iter.index_α_upp = 0
else
# Determine upper bound of the steplength
α_upp, index_α_upp = upper_bound_steplength(A, cx, p, work_set, ind_constraint_del)
α_low = α_upp / 3000.0
# Determine a first guess of the steplength
magfy = (rankJ2 < prev_rankJ2 ? 6.0 : 3.0)
α0 = min(1.0, magfy * previous_α, α_upp)
# Compute the steplength
α, gac_error = linesearch_constrained(x, α0, p, r, c, rx, cx, JpAp, w, work_set, ψ0, dψ0, α_low, α_upp)
if gac_error
ψ_k = psi(x,α,p,r,c,w,m,work_set.l,work_set.t,work_set.active,work_set.inactive)
Ψ_error = check_derivatives(dψ0,ψ0,ψ_k,x,α,p,r,c,w,work_set,m)
end
# Compute the predicted linear progress and actual progress
uppbound = min(1.0, α_upp)
atwa = dot(w[active_index], active_Ap .^ 2)
iter.predicted_reduction = uppbound * (-2.0 * dot(Jp, rx) - uppbound * dot(Jp, Jp) + (2.0 - uppbound^2) * atwa)
# Computation of new point and actual progress
# Evaluate residuals and constraints at the new point
rx_new = zeros(T,m)
cx_new = zeros(T,work_set.l)
x_new = x + α * p
res_eval!(r,x_new,rx_new)
cons_eval!(c,x_new,cx_new)
whsum = dot(w[active_index], cx_new[active_index] .^ 2)
iter.progress = 2 * ψ0 - dot(rx_new, rx_new) - whsum
iter.index_α_upp = (index_α_upp != 0 && abs(α - α_upp) > 0.1 ? 0 : index_α_upp)
end
else
# Take an undamped step
w = w_old
α_upp = 3.0
iter.index_α_upp = 0
α = 1.0
end
return α, w, Ψ_error
end
function check_derivatives(
dψ0::T,
ψ0::T,
ψ_k::T,
x_old::Vector{T},
α::T,
p::Vector{T},
r::ResidualsFunction,
c::ConstraintsFunction,
w::Vector{T},
work_set::WorkingSet,
m::Int) where {T}
# Data
l,t = work_set.l, work_set.t
active, inactive = work_set.active,work_set.inactive
ctrl = -1
ψ_mα = psi(x_old,-α,p,r,c,w,m,l,t,active,inactive)
dψ_forward = (ψ_k - ψ0) / α
dψ_backward = (ψ0 - ψ_mα) / α
dψ_central = (ψ_k - ψ_mα) / (2*α)
max_diff = maximum(map(abs,[dψ_forward-dψ_central , dψ_forward - dψ_backward, dψ_backward - dψ_central]))
inconsistency = abs(dψ_forward-dψ0) > max_diff && abs(dψ_central-dψ0) > max_diff
exit = (inconsistency ? -1 : 0)
return exit
end
function evaluation_restart!(iter::Iteration, error_code::Int)
iter.restart = (error_code < 0)
end
#=
check_termination_criteria(iter::Iteration,prev_iter::Iteration,W::WorkingSet,active_C::Constraint,x,cx,rx_sum,∇fx,max_iter,nb_iter,ε_abs,ε_rel,ε_x,ε_c,error_code)
Equivalent Fortran77 routine : `TERCRI`
This functions checks if any of the termination criteria are satisfied
``\\varepsilon_c,\\varepsilon_x,\\varepsilon_{rel}`` and ``\\varepsilon_{abs}`` are small positive values to test convergence.
There are convergence criteria (conditions 1 to 7) and abnormal termination criteria (conditions 8 to 12)
1. ``\\|c(x_k)\\| < \\varepsilon_c`` for constraints in the working set and all inactive constraints must be strictly positive
2. ``\\|A_k^T \\lambda_k - \\nabla f(x_k)\\| < \\sqrt{\\varepsilon_{rel}}*(1 + \\|\\nabla f(x_k)\\|)``
3. ``\\underset{i}{\\min}\\ \\lambda_k^{(i)} \\geq \\varepsilon_{rel}*\\underset{i}{\\max}\\ |\\lambda_k^{(i)}|``
- or ``\\underset{i}{\\min}\\ \\lambda_k^{(i)} \\geq \\varepsilon_{rel}*(1+\\|r(x_k)\\|^2)`` if there is only one inequality
4. ``\\|d_1\\|^2 \\leq \\varepsilon_x * \\|x_k\\|``
5. ``\\|r(x_k)\\|^2 \\leq \\varepsilon_{abs}^2``
6. ``\\|x_k-x_{k-1}\\| < \\varepsilon_x * \\|x_k\\|``
7. ``\\dfrac{\\sqrt{\\varepsilon_{rel}}}{\\|p_k\\|} > 0.25``
8. number of iterations exceeds `MAX_ITER`
9. Convergence to a non feasible point
10. Second order derivatives not allowed by the user (TODO : not implemented yet)
11. Newton step fails or too many Newton steps done
12. The latest direction is not a descent direction to the merit function (TODO : not implemented yet)
Concitions 1 to 3 are necessary conditions.
This functions returns `exit_code`, an integer containing infos about the termination of the algorithm
* `0` if no termination criterion is satisfied
* `10000` if criterion 4 satisfied
* `2000` if criterion 5 satisfied
* `300` if criterion 6 satisfied
* `40` if criterion 7 satisfied
* `-2` if criterion 8 satisfied
* `-5` if criterion 11 satisfied
* `-9` if the search direction is computed with Newton method at least five times
* `-10` if not possible to satisfy the constraints
* `-11` if time limit exceeded
If multiple convergence criteria are satisfied, their corresponding values are added into `exit_code`.
`exit_code != 0` means the termination of the algorithm
=#
function check_termination_criteria(
iter::Iteration,
prev_iter::Iteration,
W::WorkingSet,
active_C::Constraint,
x::Vector{T},
cx::Vector{T},
rx_sum::T,
∇fx::Vector{T},
max_iter::Int,
nb_iter::Int,
ε_abs::T,
ε_rel::T,
ε_x::T,
ε_c::T,
error_code::Int,
Δ_time::T,
σ_min::T,
λ_abs_max::T,
Ψ_error::Int) where {T}
exit_code = 0
rel_tol = eps(T)
alfnoi = rel_tol / (norm(iter.p) + rel_tol)
# Preliminary conditions
preliminary_cond = !(iter.restart || (iter.code == -1 && alfnoi <= 0.25))
if preliminary_cond
# Check necessary conditions
necessary_crit = (!iter.del) && (norm(active_C.cx) < ε_c) && (iter.grad_res < sqrt(ε_rel) * (1 + norm(∇fx)))
if W.l - W.t > 0
inactive_index = W.inactive[1:(W.l-W.t)]
inactive_cx = cx[inactive_index]
necessary_crit = necessary_crit && (all(>(0), inactive_cx))
end
if W.t > W.q
if W.t == 1
factor = 1 + rx_sum
elseif W.t > 1
factor = λ_abs_max
end
necessary_crit = necessary_crit && (σ_min >= ε_rel * factor)
end
if necessary_crit
# Check the sufficient conditions
d1 = @view iter.d_gn[1:iter.dimJ2]
x_diff = norm(prev_iter.x - x)
# Criterion 4
if dot(d1, d1) <= rx_sum * ε_rel^2
exit_code += 10000
end
# Criterion 5
if rx_sum <= ε_abs^2
exit_code += 2000
end
# Criterion 6
if x_diff < ε_x * norm(x)
exit_code += 300
end
# Criterion 7
if alfnoi > 0.25
exit_code += 40
end
end
end
if exit_code == 0
# Check abnormal termination criteria
x_diff = norm(prev_iter.x - iter.x)
Atcx_nrm = norm(transpose(active_C.A) * active_C.cx)
active_penalty_sum = (W.t == 0 ? 0.0 : dot(iter.w[W.active[1:W.t]], iter.w[W.active[1:W.t]]))
# Criterion 9
if nb_iter >= max_iter
exit_code = -2
# Criterion 12
elseif error_code == -3
exit_code = -5
# Too many Newton steps
elseif iter.nb_newton_steps > 5
exit_code = -9
elseif Ψ_error == -1
exit_code = -6
# test if impossible to satisfy the constraints
elseif x_diff <= 10.0 * ε_x && Atcx_nrm <= 10.0 * ε_c && active_penalty_sum >= 1.0
exit_code = -10
# time limit
elseif Δ_time > 0
exit_code = -11
end
# TODO : implement critera 10-11
end
return exit_code
end
#=
Functions to print details about execution of the algorithm
=#
function print_header(model::CnlsModel, io::IO=stdout)
print(io,"\n\n")
println(io, '*'^64)
println(io, "*",' '^62,"*")
println(io, "*"," "^23,"Enlsip.jl v0.9.7"," "^23,"*")
println(io, "*",' '^62,"*")
println(io, "* This is the Julia version of the ENLSIP algorithm, initially *")
println(io, "* conceived and developed in Fortran77 by Per Lindstrom and *")
println(io, "* Per Ake Wedin from the Institute of Information Processing *")
println(io, "* (University of Umea, Sweden). *")
println(io, "*",' '^62,"*")
println(io, '*'^64)
println(io, "\nCharacteristics of the model\n")
println(io, "Number of parameters.................: ", @sprintf("%5i", model.nb_parameters))
println(io, "Number of residuals..................: ", @sprintf("%5i", model.nb_residuals))
println(io, "Number of equality constraints.......: ", @sprintf("%5i", model.nb_eqcons))
println(io, "Number of inequality constraints.....: ", @sprintf("%5i", model.nb_ineqcons))
println(io, "Number of lower bounds...............: ", @sprintf("%5i", count(isfinite, model.x_low)))
println(io, "Number of upper bounds...............: ", @sprintf("%5i", count(isfinite, model.x_upp)))
println(io, "Constraints internal scaling.........: $(model.constraints_scaling)\n")
end
function print_initialized_model(model::CnlsModel, io::IO=stdout)
print_header(model, io)
println(io, "Model has been initialized.\n\nMethod solve! can be called to execute Enlsip.")
end
function print_iter(k::Int, iter_data::DisplayedInfo; io::IO=stdout)
@printf(io, "%4d %.7e %.2e %.2e %.2e %.3e\n", k, iter_data.objective, iter_data.sqr_nrm_act_cons,
iter_data.nrm_p, iter_data.α, iter_data.reduction)
end
function final_print(model::CnlsModel, exec_info::ExecutionInfo, io::IO=stdout)
@printf(io, "\nNumber of iterations...................: %4d", length(exec_info.iterations_detail))
@printf(io, "\n\nSquare sum of residuals................: %.7e", sum_sq_residuals(model))
@printf(io, "\n\nNumber of function evaluations.........: %4d", exec_info.nb_function_evaluations)
@printf(io, "\nNumber of Jacobian matrix evaluations..: %4d", exec_info.nb_jacobian_evaluations)
@printf(io, "\n\nSolving time (seconds).................: %.3f\n", exec_info.solving_time)
println(io, "Termination status.....................: $(status(model))\n\n")
end
function print_diagnosis(model::CnlsModel, io::IO=stdout)
exec_info = model.model_info
print_header(model, io)
println(io, "\nIteration steps information\n")
println(io, "iter objective ||active_constraints||² ||p|| α reduction")
for (k, detail_iter_k) in enumerate(exec_info.iterations_detail)
print_iter(k, detail_iter_k)
end
final_print(model, exec_info, io)
end
##### Enlsip solver #####
#=
enlsip(x0,r,c,n,m,q,l;scaling = false,weight_code = 2,MAX_ITER = 100,ε_abs = 1e-10,ε_rel = 1e-3,ε_x = 1e-3,ε_c = 1e-3)
Main function for ENLSIP solver.
Must be called with the following arguments:
* `x0::Vector{Foat64}` is the departure point
* `r` is a function to evaluate residuals values and jacobian
* `c` is a function of type to evaluate constraints values and jacobian
* `n::Int` is the number of parameters
* `m::Int` is the number of residuals
* `q::Int` is the number of equality constraints
* `l::Int` is the total number of constraints (equalities and inequalities)
The following arguments are optionnal and have default values:
* `scaling::Bool`
- boolean indicating if internal scaling of constraints value and jacobian must be done or not
- `false` by default
* `weight_code::Int` is an int representing the method used to compute penality weights at each iteration
- `1` represents maximum norm method
- `2` (default value) represents euclidean norm method
* `MAX_ITER::Int`
- int defining the maximum number of iterations
- equals `100` by default
* `ε_abs`, `ε_rel`, `ε_x` and `ε_c`
- small AsbtractFloat positive scalars
- default are the recommended one by the authors, i.e.
- `ε_x = 1e-3`
- `ε_c = 1e-4`
- `ε_rel = 1e-5`
- `ε_abs = ε_rank 1e-10`
=#
function enlsip(x0::Vector{T},
r::ResidualsFunction, c::ConstraintsFunction,
n::Int, m::Int, q::Int, l::Int;
scaling::Bool=false, weight_code::Int=2, MAX_ITER::Int=100, TIME_LIMIT::T=1000.,
ε_abs::T=eps(T), ε_rel::T=√ε_abs, ε_x::T=ε_rel, ε_c::T=ε_rel, ε_rank::T=ε_rel,
) where {T}
enlsip_info = ExecutionInfo()
start_time = time()
nb_iteration = 0
# Vector of penalty constants
K = [zeros(T, l) for i = 1:4]
# Evaluate residuals, constraints and jacobian matrices at starting point
rx, cx = zeros(T,m), zeros(T,l)
J, A = zeros(T,m, n), zeros(T,l, n)
new_point!(x0, r, c, rx, cx, J, A)
# First Iteration
x_opt = x0
f_opt = dot(rx, rx)
first_iter = Iteration(x0, zeros(T,n), rx, cx, l, 1.0, 0, zeros(T,l), zeros(T,l), 0, 0, 0, 0, zeros(T,n), zeros(T,n), 0.0, 0.0, 0.0, 0.0, 0.0, false, true, false, false, 0, 1, 0)
# Initialization of the working set
working_set = init_working_set(cx, K, first_iter, q, l)
first_iter.t = working_set.t
active_C = Constraint(cx[working_set.active[1:working_set.t]], A[working_set.active[1:working_set.t], :], scaling, zeros(T,working_set.t))
# Gradient of the objective function
∇fx = transpose(J) * rx
p_gn = zeros(T, n)
# Estimation of the Lagrange multipliers
# Computation of the Gauss-Newton search direction
evaluate_scaling!(active_C)
F_A, F_L11, F_J2 = update_working_set(working_set, rx, A, active_C, ∇fx, J, p_gn, first_iter, ε_rank)
rx_sum = dot(rx, rx)
active_cx_sum = dot(cx[working_set.active[1:working_set.t]], cx[working_set.active[1:working_set.t]])
first_iter.t = working_set.t
previous_iter = copy(first_iter)
# Analys of the lastly computed search direction
error_code = search_direction_analys(previous_iter, first_iter, nb_iteration, x0, c, r, rx, cx, active_C, active_cx_sum, p_gn, J, working_set, F_A, F_L11, F_J2)
# Computation of penalty constants and steplentgh
α, w, Ψ_error = compute_steplength(first_iter, previous_iter, x0, r, rx, J, c, cx, A, active_C, working_set, K, weight_code)
first_iter.α = α
first_iter.w = w
x = x0 + α * first_iter.p
# Evaluate residuals, constraints and compute jacobians at new point
new_point!(x, r, c, rx, cx, J, A)
∇fx = transpose(J) * rx
rx_sum = dot(rx, rx)
# Check for termination criterias at new point
evaluation_restart!(first_iter, error_code)
σ_min, λ_abs_max = minmax_lagrangian_mult(first_iter.λ, working_set, active_C)
Δ_time = (time()-start_time) - TIME_LIMIT
exit_code = check_termination_criteria(first_iter, previous_iter, working_set, active_C, x, cx, rx_sum,
∇fx, MAX_ITER, nb_iteration, ε_abs, ε_rel, ε_x, ε_c, error_code, Δ_time, σ_min, λ_abs_max, Ψ_error)
# Initialization of the list of collected information to be printed
list_iter_detail = Vector{DisplayedInfo}(undef, 0)
first_iter_detail = DisplayedInfo(f_opt, active_cx_sum, norm(first_iter.p), first_iter.α, first_iter.progress)
push!(list_iter_detail, first_iter_detail)
# Check for violated constraints and add it to the working set
first_iter.add = evaluate_violated_constraints(cx, working_set, first_iter.index_α_upp)
active_C.cx = cx[working_set.active[1:working_set.t]]
active_C.A = A[working_set.active[1:working_set.t], :]
#= Rearrangement of iterations data storage
The iteration that just terminated is stored as previous iteration
The current `iter` can be used for the next iteration
=#
previous_iter = copy(first_iter)
first_iter.x = x
first_iter.rx = rx
first_iter.cx = cx
f_opt = dot(rx, rx)
nb_iteration += 1
iter = copy(first_iter)
iter.first = false
iter.add = false
iter.del = false
# Main loop for next iterations
while exit_code == 0
# println( "\nIter $nb_iteration\n")
p_gn = zeros(T,n)
# Estimation of the Lagrange multipliers
# Computation of the Gauss-Newton search direction
evaluate_scaling!(active_C)
F_A, F_L11, F_J2 = update_working_set(working_set, rx, A, active_C, ∇fx, J, p_gn, iter, ε_rank)
active_cx_sum = dot(cx[working_set.active[1:working_set.t]], cx[working_set.active[1:working_set.t]])
iter.t = working_set.t
# Analys of the lastly computed search direction
error_code = search_direction_analys(previous_iter, iter, nb_iteration, x, c, r, rx, cx, active_C, active_cx_sum, p_gn, J, working_set,F_A, F_L11, F_J2)
# Computation of penalty constants and steplentgh
α, w, Ψ_error = compute_steplength(iter, previous_iter, x, r, rx, J, c, cx, A, active_C, working_set, K, weight_code)
iter.α = α
iter.w = w
x = x + α * iter.p
# Evaluate residuals, constraints and compute jacobians at new point
new_point!(x, r, c, rx, cx, J, A)
rx_sum = dot(rx, rx)
∇fx = transpose(J) * rx
# Check for termination criterias at new point
evaluation_restart!(iter, error_code)
σ_min, λ_abs_max = minmax_lagrangian_mult(iter.λ, working_set, active_C)
Δ_time = (time()-start_time) - TIME_LIMIT
exit_code = check_termination_criteria(iter, previous_iter, working_set, active_C, iter.x, cx, rx_sum, ∇fx, MAX_ITER, nb_iteration,
ε_abs, ε_rel, ε_x, ε_c, error_code, Δ_time, σ_min, λ_abs_max, Ψ_error)
# Another step is required
if (exit_code == 0)
# Print collected informations about current iteration
# Push current iteration data to the list of collected information to be printed
current_iter_detail = DisplayedInfo(f_opt, active_cx_sum, norm(iter.p), iter.α, iter.progress)
push!(list_iter_detail, current_iter_detail)
# Check for violated constraints and add it to the working set
iter.add = evaluate_violated_constraints(cx, working_set, iter.index_α_upp)
active_C.cx = cx[working_set.active[1:working_set.t]]
active_C.A = A[working_set.active[1:working_set.t], :]
# Update iteration data field
nb_iteration += 1
previous_iter = copy(iter)
iter.x = x
iter.rx = rx
iter.cx = cx
iter.del = false
iter.add = false
f_opt = dot(rx, rx)
else
# Algorithm has terminated
x_opt = x
f_opt = dot(rx,rx)
# Execution information stored in a `ExecutionInfo` data structure
solving_time = time() - start_time
func_ev = r.nb_reseval + c.nb_conseval
jac_ev = r.nb_jacres_eval + c.nb_jaccons_eval
enlsip_info = ExecutionInfo(list_iter_detail, func_ev, jac_ev, solving_time)
end
end
return exit_code, x_opt, f_opt, enlsip_info
end
| Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 3903 | export solve!, print_cnls_model
"""
solve!(model{T})
Once a [`CnlsModel`](@ref) has been instantiated, this function solves the optimzation problem associated by using the method implemented in the `Enlsip` solver.
Options:
* `silent::Bool`
- Set to `false` if one wants the algorithm to print details about the iterations and termination of the solver
- Default is `true`, i.e. by default, there is no output. If one wants to print those information afert solving, the [`print_cnls_model`](@ref) method
can be called
* `max_iter::Int`
- Maximum number of iterations allowed
- Default is `100`
* `scaling::Bool`
- Set to `true` if one wants the algorithm to work with a constraints jacobian matrix whose rows are scaled (i.e. all constraints gradients vectors are scaled)
- Default is `false`
* `time_limit::T`
- Maximum elapsed time (i.e. wall time)
- Default is `1000`
Tolerances:
* `abs_tol::T`
- Absolute tolerance for small residuals
- Default is `eps(T)`
* `rel_tol::T`
- Relative tolerance used to measure first order criticality and consistency
- Default is `sqrt(eps(T))`
* `c_tol::T`
- Tolerance used to measure feasability of the constraints
- Default is `sqrt(eps(T))`
* `x_tol::T`
- Tolerance used to measure the distance between two consecutive iterates
- Default is `sqrt(eps(T))`
"""
function solve!(model::CnlsModel{T}; silent::Bool=true, max_iter::Int=100, scaling::Bool=false, time_limit::T=1e3,
abs_tol::T=eps(T), rel_tol::T=√abs_tol, c_tol::T=rel_tol, x_tol::T=rel_tol) where {T}
# Internal scaling
model.constraints_scaling = scaling
# Evaluation functions
residuals_evalfunc = (model.jacobian_residuals === nothing ? ResidualsFunction(model.residuals) : ResidualsFunction(model.residuals, model.jacobian_residuals))
if all(!isfinite,vcat(model.x_low, model.x_upp))
constraints_evalfunc = instantiate_constraints_wo_bounds(model.eq_constraints, model.jacobian_eqcons, model.ineq_constraints, model.jacobian_ineqcons)
else
constraints_evalfunc = instantiate_constraints_w_bounds(model.eq_constraints, model.jacobian_eqcons, model.ineq_constraints, model.jacobian_ineqcons, model.x_low, model.x_upp)
end
nb_constraints = total_nb_constraints(model)
# Call the ENLSIP solver
exit_code, x_opt, f_opt, enlsip_info = enlsip(model.starting_point, residuals_evalfunc, constraints_evalfunc, model.nb_parameters, model.nb_residuals, model.nb_eqcons, nb_constraints;
scaling=scaling, MAX_ITER=max_iter, TIME_LIMIT=time_limit, ε_rel = rel_tol, ε_x = x_tol, ε_c = c_tol, ε_rank=√eps(T))
# Update of solution related fields in model
model.model_info = enlsip_info
model.status_code = convert_exit_code(exit_code)
model.sol = x_opt
model.obj_value = f_opt
!silent && print_diagnosis(model)
return
end
"""
print_cnls_model(model,io)
One can call this function to print information about an instance `model` (see [`CnlsModel`](@ref)).
If `model` has just been instantiated but not solved, it will print general information about the model, such as the dimensions of the residuals, parameters and constraints.
After calling the [`solve!`](@ref) method, the output will be enhanced with details about the iterations performed during the execution of the algorithm.
The following info are also printed:
* number of iterations
* total number of function and Jacobian matrix evaluations for both residuals and contraints
* solving time in seconds
* value of the objective function found by the algorithm
* termination status (see [`status`](@ref))
"""
function print_cnls_model(model::CnlsModel, io::IO=stdout)
model_status = status(model)
if model_status == :unsolved
print_initialized_model(model, io)
else
print_diagnosis(model, io)
end
end | Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 7327 | #=
AbstractIteration{T<:AbstractFloat}
Abstract type for later types defined to store data about an iteration of the Enlsip algorithm
=#
abstract type AbstractIteration{T<:AbstractFloat} end
#=
Iteration{T} <: AbstractIteration
Summarizes the useful informations about an iteration of the Enlsip algorithm
* `x` : Departure point of the iteration
* `p` : Descent direction
* `rx` : vector of size `m`, contains value of residuals at `x`
* `cx` : vector of size `l`, contains value of constraints at `x`
* `t` : Number of constraints in current working set (ie constraints considered active)
* `α` : Value of steplength
* `λ` : Vector of size `t`, containts Lagrange multipliers estimates
* `rankA` : pseudo rank of matrix `A`, jacobian of active constraints
* `rankJ2` : pseudo rank of matrix `J2`, block extracted from `J`, jacobian of residuals
* `b_gn` : right handside of the linear system solved to compute first part of `p`
* `d_gn` : right handside of the linear system solved to compute second part of `p`
* `predicted_reduction` : predicted linear progress
* `progress` : reduction in the objective function
* `β` : scalar used to estimate convergence factor
* `restart` : indicate if current iteration is a restart step or no
* `first` : indicate if current iteration is the first one or no
* `add` : indicate if a constraint has been added to the working set
* `del` : indicate if a constraint has been deleted from the working set
* `index_del` : index of the constraint that has been deleted from working set (`0` if no deletion)
* `code` : Its value caracterizes the method used to compute the search direction `p`
- `1` represents Gauss-Newton method
- `-1` represents Subspace minimization
- `2` represents Newton method
* `nb_newton_steps` : number of search direction computed using the method of Newton
=#
mutable struct Iteration{T} <: AbstractIteration{T}
x::Vector{T}
p::Vector{T}
rx::Vector{T}
cx::Vector{T}
t::Int
α::T
index_α_upp::Int
λ::Vector{T}
w::Vector{T}
rankA::Int
rankJ2::Int
dimA::Int
dimJ2::Int
b_gn::Vector{T}
d_gn::Vector{T}
predicted_reduction::T
progress::T
grad_res::T
speed::T
β::T
restart::Bool
first::Bool
add::Bool
del::Bool
index_del::Int
code::Int
nb_newton_steps::Int
end
Base.copy(s::Iteration) = Iteration(s.x, s.p, s.rx, s.cx, s.t, s.α, s.index_α_upp, s.λ, s.w, s.rankA, s.rankJ2, s.dimA, s.dimJ2, s.b_gn, s.d_gn,
s.predicted_reduction, s.progress, s.grad_res, s.speed, s.β, s.restart, s.first, s.add, s.del, s.index_del, s.code, s.nb_newton_steps)
#=
DisplayedInfo{T}
Contains the specific data on an iteration of Enlsip that are to be displayed in the execution details
* objective : value of the objective function, i.e. sum of squared residuals
* sqr_nrm_act_cons : sum of squared active constraints
* nrm_p : norm of the search direction
* α : value of steplength
* reduction : reduction of the objective function at the end of the iteration
=#
struct DisplayedInfo{T} <: AbstractIteration{T}
objective::T
sqr_nrm_act_cons::T
nrm_p::T
α::T
reduction::T
end
DisplayedInfo() = DisplayedInfo(0.0, 0.0, 0.0, 0.0, 0.0)
#=
Constraint
Struct used to represent the active constraints
Fields are the useful informations about active constraints at a point x :
* `cx` : Vector of size t, contains values of constraints in current working set
* `A` : Matrix of size `t` x `t`, jacobian matrix of constraints in current working set
* `scaling` : Boolean indicating if internal scaling of `cx` and `A` is done
* `diag_scale` : Vector of size `t`, contains the diagonal elements of the scaling matrix if internal scaling is done
- The i-th element equals ``\\dfrac{1}{\\|\\nabla c_i(x)\\|}`` for ``i = 1,...,t``, which is the inverse of the length of `A` i-th row
- Otherwise, it contains the length of each row in the matrix `A`
=#
mutable struct Constraint{T<:AbstractFloat}
cx::Vector{T}
A::Matrix{T}
scaling::Bool
diag_scale::Vector{T}
end
# EVSCAL
# Scale jacobian matrix of active constraints A and active constraints evaluation vector cx if so indicated (ie if scale different from 0) by forming vectors :
# diag*A and diag*cx
# where diag is an array of dimension whose i-th element equals either ||∇c_i(x)|| or (1/||∇c_i(x)|) depending on wether scaling is done or not.
# The vectors are formed by modifying in place matrix A and vector cx
function evaluate_scaling!(C::Constraint)
t = size(C.A, 1)
ε_rel = eps(eltype(C.cx))
C.diag_scale = zeros(t)
for i = 1:t
row_i = norm(C.A[i, :])
C.diag_scale[i] = row_i
if C.scaling
if abs(row_i) < ε_rel
row_i = 1.0
end
C.A[i, :] /= row_i
C.cx[i] /= row_i
C.diag_scale[i] = 1.0 / row_i
end
end
return
end
#=
WorkingSet
In ENLSIP, the working-set is a prediction of the set of active constraints at the solution
It is updated at every iteration thanks to a Lagrangian multipliers estimation
Fields of this structure summarize infos about the qualification of the constraints, i.e. :
* `q` : number of equality constraints
* `t` : number of constraints in current working set (all equalities and some inequalities considered to be active at the solution)
* `l` : total number of constraints (i.e. equalities and inequalities)
* active :
- `Vector` of size `l`
- first `t` elements are indeces of constraints in working set sorted in increasing order, other elements equal `0`
* inactive :
- `Vector` of size `l-q`
- first `l-t` elements are indeces of constraints not in working set sorted in increasing order, other elements equal `0`
=#
mutable struct WorkingSet
q::Int
t::Int
l::Int
active::Vector{Int}
inactive::Vector{Int}
end
#= Constructot for WorkingSet
q : Number of equality constraints
l : Number of inequality constraints
Initial acticve set contains all equality constraints indices
Initial inactive set contains all inequality constraints indices
=#
function WorkingSet(q::Int, l::Int)
active = zeros(Int, l)
inactive = zeros(Int, l-q)
active[1:q] = [i for i=1:q]
inactive[:] = [i for i=q+1:l]
return WorkingSet(q, q, l, active, inactive)
end
# Equivalent Fortran : DELETE in dblreduns.f
# Moves the active constraint number s to the inactive set
function remove_constraint!(W::WorkingSet, s::Int)
l, t = W.l, W.t
# Ajout de la contrainte à l'ensemble inactif
W.inactive[l-t+1] = W.active[s]
sort!(@view W.inactive[1:l-t+1])
# Réorganisation de l'ensemble actif
for i = s:t-1
W.active[i] = W.active[i+1]
end
W.active[t] = 0
W.t -= 1
return
end
# Equivalent Fortran : ADDIT in dblreduns.f
# Add the inactive constraint number s to the active set
function add_constraint!(W::WorkingSet, s::Int)
l, t = W.l, W.t
# s-th inactive constraint moved from inactive to active set
W.active[t+1] = W.inactive[s]
sort!(@view W.active[1:t+1])
# Inactive set reorganized
for i = s:l-t-1
W.inactive[i] = W.inactive[i+1]
end
W.inactive[l-t] = 0
W.t += 1
return
end | Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 236 | using Enlsip
using Test
include("internal/working_set.jl")
include("internal/constraints.jl")
include("problems/HS65.jl")
include("problems/osborne2.jl")
include("problems/chained_rosenbrock.jl")
include("problems/chained_wood.jl")
| Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 1009 | @testset "ConstraintsFunction structure" begin
c(x::Vector) = [3x[1]^3 + 2x[2] - 5 + sin(x[1]-x[2]*sin(x[1]+x[2])),
4x[4] - x[3]*exp(x[3]-x[4]) - 3]
x = zeros(4)
c_func = Enlsip.ConstraintsFunction(c)
@test c_func.nb_conseval == 0 && c_func.nb_jaccons_eval == 0
A = Matrix{Float64}(undef, 2,4)
Enlsip.jaccons_eval!(c_func, x,A)
@test c_func.nb_conseval == 0 && c_func.nb_jaccons_eval == 1
x_low = [-1.0, -Inf, -2.0, -Inf]
x_upp = [Inf, Inf, 5.0, 10.0]
f_bounds, jac_f_bounds = Enlsip.box_constraints(x_low, x_upp)
@test Inf ∉ abs.(f_bounds(x))
@test eltype(jac_f_bounds(x)) <: AbstractFloat && all(isfinite, jac_f_bounds(x))
h_func = Enlsip.instantiate_constraints_w_bounds(c, nothing, nothing, nothing, x_low, x_upp)
hx = Vector{Float64}(undef, 6)
Ah = Matrix{Float64}(undef, 6, 4)
Enlsip.cons_eval!(h_func, x, hx)
Enlsip.jaccons_eval!(h_func, x, Ah)
@test hx ≈ h_func.conseval(x)
@test Ah ≈ h_func.jaccons_eval(x)
end | Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 1385 | # Unitary tests for non exported functions in Enlsip.jl
@testset "Working set structure tests" begin
# Test with 5 equality constraints and 5 inequality constraints
q1, l1 = 5, 10
wrkset1 = Enlsip.WorkingSet(q1, l1)
# Initialization of the working set
@test length(wrkset1.active) == l1 && length(wrkset1.inactive) == l1 - q1
@test wrkset1.t == q1
a1, d1 = 7, 10
Enlsip.add_constraint!(wrkset1, a1 - wrkset1.t)
Enlsip.add_constraint!(wrkset1, d1- wrkset1.t)
Enlsip.remove_constraint!(wrkset1, 7)
@test a1 ∈ wrkset1.active && a1 ∉ wrkset1.inactive
@test d1 ∉ wrkset1.active && d1 ∈ wrkset1.inactive
@test wrkset1.t == q1 + 1
@test count(!=(0), wrkset1.active) + count(!=(0), wrkset1.inactive) == l1
# Test with no equality constraints and 8 inequality constraints
q2, l2 = 0, 8
wrkset2 = Enlsip.WorkingSet(q2,l2)
@test wrkset2.active == zeros(l2) && wrkset2.inactive == [i for i ∈ 1:l2]
# Make constraints 1, 4, 5 and 8 active
Enlsip.add_constraint!(wrkset2, 1)
Enlsip.add_constraint!(wrkset2, 4-wrkset2.t)
Enlsip.add_constraint!(wrkset2, 5-wrkset2.t)
Enlsip.add_constraint!(wrkset2, 8-wrkset2.t)
lmt = wrkset2.l - wrkset2.t
@test wrkset2.t == 4 && lmt == 4
@test all(∈(wrkset2.active[1:wrkset2.t]), [1,4,5,8])
@test all(∈(wrkset2.inactive[1:lmt]), [2,3,6,7])
end | Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 1452 | @testset "Problem 65 from Hock Schittkowski collection" begin
n = 3
m = 3
nb_eq = 0
nb_constraints = 7
r(x::Vector) = [x[1] - x[2]; (x[1]+x[2]-10.0) / 3.0; x[3]-5.0]
jac_r(x::Vector) = [1. -1. 0;
1/3 1/3 0.;
0. 0. 1.]
c(x::Vector) = [48.0 - x[1]^2-x[2]^2-x[3]^2]
jac_c(x::Vector) = [ -2x[1] -2x[2] -2x[3]]
x_l = [-4.5, -4.5, -5.0]
x_u = [4.5, 4.5, 5.0]
x0 = [-5.0, 5.0, 0.0]
hs65_model = Enlsip.CnlsModel(r, n, m ;jacobian_residuals=jac_r, starting_point=x0, ineq_constraints = c, jacobian_ineqcons=jac_c, nb_ineqcons = 1, x_low=x_l, x_upp=x_u)
solve!(hs65_model)
@test size(x0,1) == hs65_model.nb_parameters
@test r(x0) ≈ hs65_model.residuals(x0)
@test jac_r(x0) ≈ hs65_model.jacobian_residuals(x0)
@test vcat(c(x0),x0-x_l,x_u-x0) ≈ vcat(hs65_model.ineq_constraints(x0), x0-hs65_model.x_low, hs65_model.x_upp-x0)
@test nb_constraints == total_nb_constraints(hs65_model)
@test status(hs65_model) in values(dict_status_codes)
@test typeof(solution(hs65_model)) <: Vector && size(solution(hs65_model),1) == n
@test typeof(sum_sq_residuals(hs65_model)) <: Number && isfinite(sum_sq_residuals(hs65_model))
@test length(Enlsip.constraints_values(hs65_model)) == Enlsip.total_nb_constraints(hs65_model)
@test Enlsip.constraints_values(hs65_model) ≈ [c(Enlsip.solution(hs65_model)); Enlsip.solution(hs65_model)-x_l; x_u-Enlsip.solution(hs65_model)]
end | Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 2242 | @testset "Problem Chained Rosenbrock" begin
n = 1000
m = 2(n-1)
nb_eq = n-2
nb_constraints = n-2
function r(x::Vector)
n = length(x)
m = 2(n-1)
rx = Vector{eltype(x)}(undef,m)
rx[1:n-1] = [10(x[i]^2 - x[i+1]) for i=1:n-1]
rx[n:m] = [x[k-n+1] - 1 for k=n:m]
return rx
end
# Constraints
function c(x::Vector)
n = length(x)
cx = [3x[k+1]^3 + 2x[k+2] - 5 + sin(x[k+1]-x[k+2])*sin(x[k+1]+x[k+2]) + 4x[k+1] -
x[k]*exp(x[k]-x[k+1]) - 3 for k=1:n-2]
return cx
end
function jac_res(x::Vector)
n = size(x,1)
m = 2(n-1)
J = zeros(eltype(x), (m,n))
for i=1:n-1
J[i,i] = 20x[i]
J[i,i+1] = -10
end
for i=n:m
J[i,i-n+1] = 1
end
return J
end
function jac_cons(x::Vector)
n = size(x,1)
A = zeros(eltype(x), (n-2,n))
for k=1:n-2
A[k,k] = -(x[k]+1) * exp(x[k]-x[k+1])
A[k,k+1] = 9x[k+1]^2 + cos(x[k+1]-x[k+2])*sin(x[k+1]+x[k+2]) + sin(x[k+1]-x[k+2])*cos(x[k+1]+x[k+2]) + 4 + x[k]*exp(x[k]-x[k+1])
A[k,k+2] = 2 - cos(x[k+1]-x[k+2])*sin(x[k+1]+x[k+2]) + sin(x[k+1]-x[k+2])*cos(x[k+1]+x[k+2])
end
return A
end
x0 = [(mod(i,2) == 1 ? -1.2 : 1.0) for i=1:n]
Crmodel = CnlsModel(r,n,m; starting_point=x0, jacobian_residuals = jac_res, eq_constraints=c, jacobian_eqcons=jac_cons, nb_eqcons=nb_eq)
solve!(Crmodel)
@test size(x0,1) == Crmodel.nb_parameters
@test r(x0) ≈ Crmodel.residuals(x0)
@test jac_res(x0) ≈ Crmodel.jacobian_residuals(x0)
@test c(x0) ≈ Crmodel.eq_constraints(x0)
@test Crmodel.ineq_constraints === nothing
@test all(!isfinite, Crmodel.x_low) && all(!isfinite, Crmodel.x_upp)
@test nb_constraints == total_nb_constraints(Crmodel)
@test status(Crmodel) in values(dict_status_codes)
@test typeof(solution(Crmodel)) <: Vector && size(solution(Crmodel),1) == n
@test typeof(sum_sq_residuals(Crmodel)) <: Number && isfinite(sum_sq_residuals(Crmodel))
# Time limit
solve!(Crmodel; time_limit=-1.0)
@test status(Crmodel) == dict_status_codes[-11]
end | Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 1082 | @testset "ChainedWood problem for local Newton method" begin
# Dimensions
n = 20 # 1000 20, needs to be ≥ 8
m = 6 * (div(n,2)-1)
nb_eq = n-7
nb_constraints = nb_eq
# Residuals
function r(x::Vector)
n = length(x)
N = div(n,2) - 1
s = √(10)
rx1 = [10(x[2i-1]^2 - x[2i]) for i=1:N]
rx2 = [x[2i-1] - 1 for i=1:N]
rx3 = [3s*(x[2i+1]^2 - x[2i+2]) for i=1:N]
rx4 = [x[2i+1]-1 for i=1:N]
rx5 = [s*(x[2i] + x[2i+2] - 2) for i=1:N]
rx6 = [(x[2i] - x[2i+2])*(1/s) for i=1:N]
return [rx1;rx2;rx3;rx4;rx5;rx6]
end
# Constraints
function c(x::Vector)
n = length(x)
cx = [(2+5x[k+5]^2)*x[k+5] + 1 + sum(x[i]*(1+x[i]) for i=max(k-5,1):k+1) for k=1:n-7]
return cx
end
x0 = [(mod(i,2) == 1 ? -2. : 1.) for i=1:n]
CW_model = CnlsModel(r,n,m; starting_point=x0, eq_constraints=c, nb_eqcons=nb_eq)
solve!(CW_model; rel_tol=1e-5, x_tol = 1e-3, c_tol=1e-6)
@test status(CW_model) in values(dict_status_codes)
end | Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | code | 2776 | @testset "Osborne 2: Box constrained problem" begin
n = 11
m = 65
nb_eq = 0
nb_constraints = 22
# DataPoints
dataset = [1 0.0 1.366;
2 0.1 1.191;
3 0.2 1.112;
4 0.3 1.013;
5 0.4 0.991;
6 0.5 0.885;
7 0.6 0.831;
8 0.7 0.847;
9 0.8 0.786;
10 0.9 0.725;
11 1.0 0.746;
12 1.1 0.679;
13 1.2 0.608;
14 1.3 0.655;
15 1.4 0.616;
16 1.5 0.606;
17 1.6 0.602;
18 1.7 0.626;
19 1.8 0.651;
20 1.9 0.724;
21 2.0 0.649;
22 2.1 0.649;
23 2.2 0.694;
24 2.3 0.644;
25 2.4 0.624;
26 2.5 0.661;
27 2.6 0.612;
28 2.7 0.558;
29 2.8 0.533;
30 2.9 0.495;
31 3.0 0.500;
32 3.1 0.423;
33 3.2 0.395;
34 3.3 0.375;
35 3.4 0.538;
36 3.5 0.522;
37 3.6 0.506;
38 3.7 0.490;
39 3.8 0.478;
40 3.9 0.467;
41 4.0 0.457;
42 4.1 0.457;
43 4.2 0.457;
44 4.3 0.457;
45 4.4 0.457;
46 4.5 0.457;
47 4.6 0.457;
48 4.7 0.457;
49 4.8 0.457;
50 4.9 0.457;
51 5.0 0.457;
52 5.1 0.431;
53 5.2 0.431;
54 5.3 0.424;
55 5.4 0.420;
56 5.5 0.414;
57 5.6 0.411;
58 5.7 0.406;
59 5.8 0.406;
60 5.9 0.406;
61 6.0 0.406;
62 6.1 0.406;
63 6.2 0.406;
64 6.3 0.406;
65 6.4 0.406]
t = dataset[1:m,2]
y = dataset[1:m,3]
function r_k(x::Vector, t::T, y::T) where {T}
rx = x[1]*exp(-x[5]*t) + x[2]*exp(-x[6]*(t-x[9])^2) + x[3]*exp(-x[7]*(t-x[10])^2) + x[4]*exp(-x[8]*(t-x[11])^2)
return y - rx
end
r(x::Vector) = [r_k(x,t[k],y[k]) for k=1:m]
low_bounds = [1.31, 0.4314, 0.6336, 0.5, 0.5, 0.6, 1.0, 4.0, 2.0, 4.5689, 5.0]
upp_bounds = [1.4, 0.8, 1.0, 1.0, 1.0, 3.0, 5.0, 7.0, 2.5, 5.0, 6.0]
# Saved starting point
x0 = [1.3344098963722457
0.5572842161127423
0.6757364753061974
0.8291980513226953
0.9233565833014519
0.9588470511477797
1.9610314699563896
4.055321823656234
2.048625993866472
4.60296578920499
5.95212572157736]
osborne2_model = Enlsip.CnlsModel(r,n,m; starting_point = x0, x_low = low_bounds, x_upp = upp_bounds)
solve!(osborne2_model)
bounds_values = Enlsip.constraints_values(osborne2_model)
@test nb_upper_bounds(osborne2_model) == length(upp_bounds) && nb_lower_bounds(osborne2_model) == length(low_bounds)
@test total_nb_constraints(osborne2_model) == nb_constraints
@test osborne2_model.jacobian_residuals === nothing
@test nb_equality_constraints(osborne2_model) == 0 && osborne2_model.eq_constraints === nothing
@test nb_inequality_constraints(osborne2_model) == 0 && osborne2_model.ineq_constraints === nothing
@test length(bounds_values) == length(low_bounds) + length(upp_bounds)
end | Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | docs | 4529 | # Enlsip.jl
[](https://uncertainlab.github.io/Enlsip.jl/stable/) [](https://uncertainlab.github.io/Enlsip.jl/dev/)
Package `Enlsip.jl` is the Julia version of ENLSIP, an open source algorithm originally written in Fortran77 and designed to solve nonlinear least-squares problems subject to nonlinear constraints.
The optimization method implemented in ENLSIP is described in
> Per Lindström and Per-Åke Wedin, *Gauss Newton based algorithms for constrained nonlinear least squares problems*.
> Technical Report S-901 87, Institute of Information processing, University of Umeå, Sweden, 1988.
The source code of the Fortran77 library is available at [https://plato.asu.edu/sub/nonlsq.html](https://plato.asu.edu/sub/nonlsq.html).
Problems that can be solved using `Enlsip.jl` are modeled as follows:
```math
\begin{aligned}
\min_{x \in \mathbb{R}^n} \quad & \dfrac{1}{2} \|r(x)\|^2 \\
\text{s.t.} \quad & c_i(x) = 0, \quad i \in \mathcal{E} \\
& c_i(x) \geq 0, \quad i \in \mathcal{I}, \\
& l_i \leq x_i \leq u_i, \quad i \in \{1,\ldots,n\},
\end{aligned}
```
where:
* the residuals $r_i:\mathbb{R}^n\rightarrow\mathbb{R}$ and the constraints $c_i:\mathbb{R}^n\rightarrow\mathbb{R}$ are assumed to be $\mathcal{C}^2$ functions;
* norm $\|\|\cdot\|\|$ denotes the Euclidean norm;
* $l$ and $u$ are respectively vectors of lower and upper bounds.
In the formulation above, bound constraints are written seperately but they are treated as classical inequality constraints in the method implemented in ENLSIP.
## How to install
To add Enlsip, use Julia's package manager by typing the following command inside the REPL:
```julia
using Pkg
Pkg.add("Enlsip")
```
## How to Use
Solving a problem with Enlsip is organized in two steps.
First, you need to create a model of your problem with the `CnlsModel` structure.
### Creating a model
An object of type `CnlsModel` can be created using a constructor, whose arguments are the following:
* `residuals` : function that computes the vector of residuals
* `nb_parameters` : number of variables
* `nb_residuals` : number of residuals
* `stating_point` : initial solution
* `jacobian_residuals` : function that computes the jacobian matrix of the residuals. If not passed as argument, it is computed numericcaly by forward differences
* `eq_constraints` : function that computes the vector of equality constraints
* `jacobian_eqcons` : function that computes the jacobian matrix of the equality constraints. If not passed as argument, it is computed numericcaly by forward differences
* `nb_eqcons` : number of equality constraints
* `ineq_constraints` : function that computes the vector of inequality constraints
* `jacobian_ineqcons` : function that computes the jacobian matrix of the inequality constraints. If not passed as argument, it is computed numericcaly by forward differences
* `nb_ineqcons` : number of inequality constraints
* `x_low` and `x_upp` : respectively vectors of lower and upper bounds
### Solving a model
Then, once your model is instantiated, you can call the `solve!` function to solve your problem.
### Example with problem 65 from Hock Schittkowski collection[^HS80]
```julia
# Import Enlsip
using Enlsip
# Dimensions of the problem
n = 3 # number of parameters
m = 3 # number of residuals
# Residuals and jacobian matrix associated
r(x::Vector) = [x[1] - x[2]; (x[1]+x[2]-10.0) / 3.0; x[3]-5.0]
jac_r(x::Vector) = [1. -1. 0;
1/3 1/3 0.;
0. 0. 1.]
# Constraints (one nonlinear inequality and box constraints)
c(x::Vector) = [48.0 - x[1]^2-x[2]^2-x[3]^2]
jac_c(x::Vector) = [ -2x[1] -2x[2] -2x[3]]
x_l = [-4.5, -4.5, -5.0]
x_u = [4.5, 4.5, 5.0]
# Starting point
x0 = [-5.0, 5.0, 0.0]
# Instantiate a model associated with the problem
hs65_model = Enlsip.CnlsModel(r, n, m ;jacobian_residuals=jac_r, starting_point=x0,
ineq_constraints = c, jacobian_ineqcons=jac_c, nb_ineqcons = 1, x_low=x_l, x_upp=x_u)
# Call of the `solve!` function
Enlsip.solve!(hs65_model)
# Print solution and objective value
println("Algorithm termination status: ", Enlsip.status(hs65_model))
println("Optimal solution: ", Enlsip.solution(hs65_model))
println("Optimal objective value: ", Enlsip.sum_sq_residuals(hs65_model))
```
[^HS80]: W. Hock and K. Schittkowski. *Test Examples for Nonlinear Programming Codes*, volume 187 of Lecture Notes in Economics and Mathematical Systems. Springer, second edition, 1980.
| Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | docs | 2252 | # [Enlsip.jl documentation](@id Home)
## Introduction
Package `Enlsip.jl` is the Julia version of an eponymous Fortran77 library (ENLSIP standing for Easy Nonlinear Least Squares Inequalities Program) designed to solve nonlinear least-squares problems under nonlinear constraints.
The optimization method implemented in `Enlsip.jl` was conceived in the early 1980s by two Swedish authors named Per Lindström and Per Åke Wedin [^LW88].
It is designed for solve nonlinear least-squares problems subject to (s.t.) nonlinear constraints, which can be modeled as the following optimization problem:
```math
\begin{aligned}
\min_{x \in \mathbb{R}^n} \quad & \dfrac{1}{2} \|r(x)\|^2 \\
\text{s.t.} \quad & c_i(x) = 0, \quad i \in \mathcal{E} \\
& c_i(x) \geq 0, \quad i \in \mathcal{I}, \\
\end{aligned}
```
where:
* the residuals $r_i:\mathbb{R}^n\rightarrow\mathbb{R}$ and the constraints $c_i:\mathbb{R}^n\rightarrow\mathbb{R}$ are assumed to be $\mathcal{C}^2$ functions;
* norm $\|\cdot\|$ denotes the Euclidean norm.
Note that box constraints are modeled as general inequality constraints.
## How to install
To add Enlsip, use Julia's package manager by typing the following command inside the REPL:
```julia
using Pkg
Pkg.add("Enlsip")
```
## How to use
Using `Enlsip.jl` to solve optimization problems consists in, first, instantiating a model and then call the solver on it.
Details and examples with problems from the literature can be found in the [Usage](@ref) page.
## Description of the algorithm
`Enlsip.jl` incorporates an iterative method computing a first order critical point of the problem. A brief description of the method and the stopping criteria is given in [Method](@ref).
## Bug reports and contributions
As this package is a conversion from Fortran77 to Julia, there might be some bugs that we did not encountered yet, so if you think you found one, you can open an [issue](https://github.com/UncertainLab/Enlsip.jl/issues) to report it.
Issues can also be opened to discuss about eventual suggestions of improvement.
[^LW88]: P. Lindström and P.Å. Wedin, *Gauss-Newton based algorithms for constrained nonlinear least squares problems* , Institute of Information processing, University of Umeå Sweden, 1988.
| Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | docs | 6503 | # [Method](@id Method)
In this section, a brief description of the method implemented in `Enlsip.jl` is given.
We recall that the problem to solve is of the form:
```math
\begin{aligned}
\min_{x \in \mathbb{R}^n} \quad & \dfrac{1}{2} \|r(x)\|^2 \\
\text{s.t.} \quad & c_i(x) = 0, \quad i \in \mathcal{E} \\
& c_i(x) \geq 0, \quad i \in \mathcal{I}, \\
\end{aligned}
```
with:
* the residuals $r_i:\mathbb{R}^n\rightarrow\mathbb{R}$ and the constraints $c_i:\mathbb{R}^n\rightarrow\mathbb{R}$ assumed to be $\mathcal{C}^2$ functions;
* norm $\|\cdot\|$ denotes the Euclidean norm.
We introduce the Lagrangian associated to the problem:
```math
L(x,\lambda) = \dfrac{1}{2} \|r(x)\|^2 - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x),
```
where $\lambda = \left(\lambda_i\right)_{i\in \mathcal{E} \cup \mathcal{I}}$ denotes the vector of Lagrange multipliers.
## Conduct of the algorithm
Starting from a point $x_0$, the algorithm builds a sequence $(x_k)_k$ converging to a first order critical point of the problem.
At a given iteration $k$, a search direction $p_k\in\mathbb{R}^n$ and a steplength $\alpha_k\in[0,1]$ are computed such that the next step is $x_{k+1}:=x_k+\alpha_kp_k$.
An estimate $\lambda_{k}\in\mathbb{R}^{|\mathcal{E}| + |\mathcal{I}|}$ of the vector of Lagrange multipliers is then computed and convergence is tested.
### Search direction
The search direction is the solution of a subproblem derived from an approximation of the original problem.
First, the residuals are linearized in a small neighborhood of current point $x_k$:
$$r(x_k+p)\approx J_kp+r_k,$$
where $J_k$ denotes the Jacobian matrix of the residuals function evaluated at $x_k$ and $r_k:=r(x_k)$ . The resulting objective function of the subproblem corresponds to the Gauss-Newton approximation.
The constraints of the subproblem are formed after a subset of the constraints of the original problem. It contains all the equality constraints but only the inequality constraints that are believed to be satisfied with equality at the solution. This subset, often denoted as the working set in the literature, is updated at every iteration and can be seen as a guess of the optimal active set. For more details on the active set strategy implemented in `Enlsip.jl`, see chapters 5 and 6 of *Practical Optimization*[^GMW82].
Noting $\hat{c}_k$ the vector of constraints in the working set evaluated at $x_k$ and $\hat{A}_k$ its Jacobian matrix, the subproblem is then given by:
```math
\begin{aligned}
\min_{p \in \mathbb{R}^n} \quad & \dfrac{1}{2} \|J_kp+r_k\|^2 \\
\text{s.t.} \quad & \hat{A}_kp + \hat{c}_k= 0.
\end{aligned}
```
The subproblem is then solved by a null-space type method.
### Steplength
The steplength aims to maintain feasibility of all of the constraints and to reduce the value of the objective function. In `Enlsip.jl`, this process involves an $\ell_2$-type merit function:
$$\psi_2(x, \mu_k) = \dfrac{1}{2} \|r(x)\|^2 + \mu_k \sum_{i\in\mathcal{E}} c_i(x)^2+ \mu_k \sum_{i\in\mathcal{I}} \min(0,c_i(x))^2,$$
where the scalar $\mu_k > 0$ is a penalty parameter updated at every iteration.
Steplength computation is performed by applying a linesearch method on function $\psi_2$. This consists in minimizing the merit function along the direction from $x_k$ to $x_k+p_k$ , i.e. finding $\alpha_k\in[0,1]$ such that
$$\alpha_k \in \arg\min_{\alpha \in [0,1]} \psi_2(x_k+\alpha_kp_k, \mu_k).$$
The authors of the Fortran77 version of ENLSIP developed a linesearch method in which an approximate, but acceptable, minimizer of the merit function is computed[^LW84].
### Lagrange multipliers estimate
Components of $\lambda_k$ associated to the inequality constraints not in the working set are fixed to zero.
The remaining multipliers, associated to the constraints in the working set, are estimated by the minimum norm solution of the KKT system obtained after cancelling the Lagrange multipliers corresponding to inactive inequality constraints (under strict complementarity). This results into computing the vector $\hat{\lambda}_k^{LS}$ such that:
```math
\hat{\lambda}_k^{LS} \in \arg\min_v \|\hat{A}_k^T v - J_k^Tr_k\|^2.
```
Since this process does not depend from the computation of the search direction, the method implemented in `Enlsip.jl` can be qualified as a primal method.
## [Stopping criteria](@id Stopping)
Termination criteria implemented in `Enlsip.jl` follow the conventions presented in chapter 8 of *Practical Optimization*[^GMW82].
From the Lagrange multipliers estimates $\lambda_k$, we define:
* scalar $\sigma_{min}$: smallest Lagrange multiplier estimate corresponding to an inequality constraint in the working set;
* scalar $\lambda_{max}$: Lagrange multiplier estimate of largest absolute value (among multipliers associated with equality and inequality constraints).
The small positive constants `c_tol`, `rel_tol`, `x_tol` and `abs_tol` are user-specified tolerances. Default values used in `Enlsip.jl` are given in the [Usage](@ref) page (see function [`solve!`](@ref)).
To qualify as a candidate solution, current iterate must first meet the following necessary conditions:
* *Strict Complementarity*: Lagrange multipliers estimates of inequality constraints in the working set are stricly positive;
* *Primal feasability*: $\|\hat{c}_k\| \leq$ `c_tol` and values of the inequality constraints not in the working set are strictly positive at $x_k$;
* *First order criticality*: $\|\nabla_x L(x_k,\lambda_k)\| \leq$ `√rel_tol` $* \left(1+\|J^T_kr_k\|\right)$;
* *Consistency*: $\sigma_{min} \geq$ `rel_tol`$* \lambda_{max}$.
If all criteria above are satisfied, the algorithm stops if one of the following conditions is met:
* *Small distance between the last two setps*: $\|x_{k+1}-x_k\|<$ `x_tol` $ *\|x_k\|$;
* *Small residuals*: $\|r_k\|^2 \leq$ `abs_tol`.
### Convergence
To our knowledge, there is no formal proof of convergence of the method described above, though local convergence with a linear rate is to be expected from the Gauss-Newton paradigm, provided that the initial point is close enough to the solution. Numerical tests confirmed that the efficiency of the method is influenced by the initial point.
[^GMW82]: P.E. Gill, W. Murray and M.H. Wright, *Practical Optimization*, Academic Press, San Diego, CA, USA, 1982.
[^LW84]: P. Lindström and P.Å. Wedin, *A new linesearch algorithm for nonlinear least squares problems*, Mathematical Programming, vol. 29(3), pages 268-296, 1984.
| Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | docs | 116 | # [Reference](@id Reference)
## Index
```@index
Pages = ["reference.md"]
```
```@autodocs
Modules = [Enlsip]
```
| Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.9.7 | 8df29d512dca8aa40b391e645f9278bab4c09d10 | docs | 12343 | # [Usage](@id Usage)
```@meta
CurrentModule = Enlsip
```
```@setup tutorial
using Enlsip, JuMP, Ipopt
```
This section provides details on how to instantiate and solve a constrained least-squares problem with `Enlsip.jl`
As a reminder from [Home](@ref), problems to solve are of the following form:
```math
\begin{aligned}
\min_{x \in \mathbb{R}^n} \quad & \dfrac{1}{2} \|r(x)\|^2 \\
\text{s.t.} \quad & c_i(x) = 0, \quad i \in \mathcal{E} \\
& c_i(x) \geq 0, \quad i \in \mathcal{I}, \\
\end{aligned}
```
with:
* the residuals $r_i:\mathbb{R}^n\rightarrow\mathbb{R}$ and the constraints $c_i:\mathbb{R}^n\rightarrow\mathbb{R}$ assumed to be $\mathcal{C}^2$ functions;
* norm $\|\cdot\|$ denoting the Euclidean norm.
Note that with this formulation, bounds constraints are not distinguished from general inequality constraints. Though, for ease of use, they can be provided directly as vectors of lower and/or upper bounds (see [Instantiate](@ref)).
It should be borne in mind, however, that the method implemented in `Enlsip.jl` has been conceived for nonlinear problems, as there is no other assumption made about the nature of the residuals and constraints functions, apart from being two-time continuously differentiable. The algorithm can still be used to solve linear least squares subject to linear constraints but it will not be as effective as other software where those aspects are taken into account in the design of the optimization method.
## [Instantiate a model](@id Instantiate)
Solving a problem with Enlsip is organized in two steps.
First, a model of type [`CnlsModel`](@ref) must be instantiated.
The `CnlsModel` constructor requires the evaluation functions of residuals, constraints, their associated jacobian matrices and dimensions of the problem.
Although the package enables one to create linear unconstrained least squares, it is recommended to use it on problems with nonlinear residuals and general constraints.
The three following positional arguments are mandatory to create a model:
* `residuals` : function that computes the vector of residuals
* `nb_parameters` : number of variables
* `nb_residuals` : number of residuals
The following keyword arguments are optional and deal with constraints and Jacobian matrices.
If the Jacobian matrix functions are not provided, they are computed numerically by forward differences using automatic differenciation[^Backend].
[^Backend]: `ForwardDiff.jl` [https://juliadiff.org/ForwardDiff.jl/stable/](https://juliadiff.org/ForwardDiff.jl/stable/)
Argument | Details
:---------------------|:----------------------------------------------
`starting_point` | initial solution (can be an infeasbile point)
`jacobian_residuals` | function computing the Jacobian matrix of the residuals
`eq_constraints` | function computing the equality constraints
`jacobian_eqcons` | function computing the Jacobian matrix of the equality constraints
`nb_eqcons` | number of equality constraints
`ineq_constraints` | function computing the inequality constraints
`jacobian_ineqcons` | function computing the Jacobian matrix of the inequality constraints
`nb_ineqcons` | number of inequality constraints
`x_low` | vector of lower bounds
`x_upp` | vector of upper bounds
It is assumed that the the different functions passed as arguments of the `CnlsModel` constructor are called `f(x)`, where `x` is a vector of `nb_parameters` elements and `f` is one of the functions `residuals`, `eq_constraints`, `jacobian_eqcons` etc.
## [Solving](@id Solving a model)
Then, the `Enlsip` solver can be used by calling the [`solve!`](@ref) function on an instantiated model. One can pass keywords arguments to modify some options of the algorithm or adjust the tolerances. For the expression of the termination criteria, see [Method](@ref) page ([Stopping](@ref)).
```@docs
Enlsip.solve!
```
Diagnosis of the conduct of the algorithm can be printed by either setting the `silent` keyword argument of the function [`solve!`](@ref) to `false` or by calling [`print_cnls_model`](@ref) after solving. Here are some details on how to read and understand the different columns of the output:
Column | Description
:------------------------------|:----------------------------------------------
`iter` | iteration number
`objective` | value of the sum of squared residuals (i.e. objective function) at current point
$\vert\vert$ `active_constraints` $\vert\vert^2$ | value of the sum of squared active constraints at current point
$\vert\vert$ `p` $\vert\vert$ | norm of the search direction computed at current iteration
$\alpha$ | value of the steplength computed at current iteration
`reduction` | reduction in the objective function performed after moving to the next iterate
One can get additional info about termination of the algorithm by calling one of the following functions:
Name |
:----------------------------|
[`solution`](@ref) |
[`status`](@ref) |
[`constraints_values`](@ref) |
[`sum_sq_residuals`](@ref) |
```@docs
Enlsip.solution
```
```@docs
Enlsip.status
```
```@docs
Enlsip.constraints_values
```
```@docs
Enlsip.sum_sq_residuals
```
## [Examples](@id Examples)
### Problem 65 from Hock and Schittkowski collection[^HS80]
We show how to implement and solve the following problem:
```math
\begin{aligned}
\min_{x_1, x_2, x_3} \quad & (x_1-x_2)^2 + \dfrac{(x_1+x_2-10)^2}{9}+(x_3-5)^2 \\
\text{s.t.} \quad & 48-x_1^2-x_2^2-x_3^2 \geq 0\\
& -4.5\leq x_i \leq 4.5, \quad i=1,2\\
& -5 \leq x_3 \leq 5.
\end{aligned}.
```
The expected optimal solution is $(3.650461821, 3.65046168, 4.6204170507)$.
Associated value of objective function equals $0.9535288567$.
First, we provide the dimensions of the problems.
```@example tutorial
# Dimensions of the problem
n = 3 # number of parameters
m = 3 # number of residuals
nothing # hide
```
Then, we define the functions required to compute the residuals, constraints, their respective jacobian matrices and a starting point. In this example, we use the
starting point given in the reference[^HS80], i.e. $(-5, 5, 0)$
```@example tutorial
# Residuals and Jacobian matrix associated
r(x::Vector) = [x[1] - x[2]; (x[1]+x[2]-10.0) / 3.0; x[3]-5.0]
jac_r(x::Vector) = [1. -1. 0;
1/3 1/3 0.;
0. 0. 1.]
# Constraints (one nonlinear inequality and box constraints)
c(x::Vector) = [48.0 - x[1]^2-x[2]^2-x[3]^2] # evaluation function for the equality constraint
jac_c(x::Vector) = [ -2x[1] -2x[2] -2x[3]] # Jacobian matrix of the equality constraint
x_l = [-4.5, -4.5, -5.0] # lower bounds
x_u = [4.5, 4.5, 5.0] # upper bounds
# Starting point
x0 = [-5.0, 5.0, 0.0]
nothing # hide
```
A `CnlsModel` can now be instantiated.
```@example tutorial
# Instantiate a model associated with the problem
hs65_model = Enlsip.CnlsModel(r, n, m ;starting_point=x0, ineq_constraints = c,
nb_ineqcons = 1, x_low=x_l, x_upp=x_u, jacobian_residuals=jac_r, jacobian_ineqcons=jac_c)
nothing # hide
```
Finally, the `solve!` function can be called on our model. In this example, keyword arguments remain to default values.
```@example tutorial
Enlsip.solve!(hs65_model)
```
Once `Enlsip` solver has been executed on our problem, a summary of the conduct of the algorithm can be printed by calling [`print_cnls_model`](@ref).
```@example tutorial
Enlsip.print_cnls_model(hs65_model)
```
If one just wants to know about termination of the algorithm, calling [`status`](@ref) will tell if the problem has been successfully solved or not.
```@example tutorial
Enlsip.status(hs65_model)
```
Then, calling [`solution`](@ref) and [`sum_sq_residuals`](@ref) will respectively return the optimal solution obtained and the value of objective function at that point.
```@example tutorial
hs65_solution = Enlsip.solution(hs65_model)
```
```@example tutorial
hs65_objective = Enlsip.sum_sq_residuals(hs65_model)
```
The solution obtained is relatively close to the expected optimal solution, although it differs from more than the tolerance used.
```@example tutorial
maximum(abs.(hs65_solution - [3.650461821, 3.65046168, 4.6204170507])) < sqrt(eps(Float64))
```
However, the difference between the objective value obtained with `Enlsip` and the expected one does not exceed the default tolerance.
```@example tutorial
abs(hs65_objective - 0.9535288567) < sqrt(eps(Float64))
```
[^HS80]: W. Hock and K. Schittkowski. *Test Examples for Nonlinear Programming Codes*, volume 187 of Lecture Notes in Economics and Mathematical Systems. Springer, second edition, 1980.
### Chained Rosenbrock problem[^LV99]
[^LV99]: L. Lukšan and J. Vlček. *Sparse and Partially Separable Test Problems for Unconstrained and Equality Constrained Optimization*. Technical report 767, 1999.
We now consider the following problem:
```math
\begin{aligned}
\min_{x} \quad & \sum_{i=1}^{n-1} 100(x_i^2-x_{i+1})^2 + (x_i-1)^2 \\
\text{s.t.} \quad & 3x_{k+1}^3 + 2x_{k+2}+\sin(x_{k+1}-x_{k+2})\sin(x_{k+1}+x_{k+2})+4x_{k+1} - x_k\exp(x_k-x_{k+1}) - 8 = 0 \\
& k=1,\ldots, n-2,
\end{aligned}
```
for a given natural number $n\geq 3$. In this example, we use $n=1000$. Though analytic Jacobians are easy to define, they will be passed as arguments in the model instantiation, so to let the algorithm use automatic differentiation.
```@example tutorial
# Dimensions
n = 1000 # Number of variables
m = 2(n-1) # Number of residuals
nb_eq = n-2 # Number of equality constraints
# Residuals
function r(x::Vector)
n = length(x)
m = 2(n-1)
rx = Vector{eltype(x)}(undef,m)
rx[1:n-1] = [10(x[i]^2 - x[i+1]) for i=1:n-1]
rx[n:m] = [x[k-n+1] - 1 for k=n:m]
return rx
end
# Constraints
function c(x::Vector)
n = length(x)
cx = [3x[k+1]^3 + 2x[k+2] - 5 + sin(x[k+1]-x[k+2])*sin(x[k+1]+x[k+2]) + 4x[k+1] -
x[k]*exp(x[k]-x[k+1]) - 3 for k=1:n-2]
return cx
end
x0 = [(mod(i,2) == 1 ? -1.2 : 1.0) for i=1:n] # Starting point
# Instantiation of the model
cr_enlsip = CnlsModel(r,n,m; starting_point=x0, eq_constraints=c, nb_eqcons=nb_eq)
# Solving
Enlsip.solve!(cr_enlsip)
# Show solving status
Enlsip.status(cr_enlsip)
```
To give an insight on how the performance of the algorithm scales when dimensions increase, we give a table of the solving time obtained with different values of parameter `n`. For comparison purposes, the calculation times obtained with the Julia version of the [IPOPT](https://github.com/jump-dev/Ipopt.jl) general solver for nonlinear programming [^WB06] are also indicated. Both solvers were used with their respective default tolerances. With the same starting point, both solvers reach similar local solutions despite different stopping criteria.
We show the modeling of the problem with [JuMP](https://jump.dev/JuMP.jl/stable/) and its solving with `IPOPT` for `n=1000`.
```@example tutorial
cr_ipopt = Model(Ipopt.Optimizer); set_silent(cr_ipopt)
@variable(cr_ipopt, x[i=1:n], start = x0[i])
for k=1:n-2
@NLconstraint(cr_ipopt, 3x[k+1]^3 + 2x[k+2] - 5 + sin(x[k+1]-x[k+2])*sin(x[k+1]+x[k+2]) + 4x[k+1] - x[k]*exp(x[k]-x[k+1]) - 3 == 0)
end
@NLobjective(cr_ipopt, Min, sum(100(x[i]^2 - x[i+1])^2 + (x[i]-1)^2 for i=1:n-1))
optimize!(cr_ipopt)
termination_status(cr_ipopt)
```
The two solvers reach similar solutions.
```@example tutorial
Enlsip.sum_sq_residuals(cr_enlsip) ≈ objective_value(cr_ipopt)
```
```@example tutorial
Enlsip.solution(cr_enlsip) ≈ value.(cr_ipopt[:x])
```
The benchmark[^BT] of the solving times (in seconds) for `Enlsip.jl` and `Ipopt.jl` is given in the following table:
Value of `n` | `Enlsip.jl` | `IPOPT`
:-------------|:------------|-----------:
`10` | `3.616e-4` | `2.703e-3`
`100` | `3.322e-2` | `4.759e-3`
`1000` | `2.325e0` | `2.520e-2`
`5000` | `3.172e2` | `1.490e-1`
[^BT]: The values shown in the table were obtained using the `@btime` macro from the [BenchmarkTools.jl](https://juliaci.github.io/BenchmarkTools.jl/stable/) package.
[^WB06]: A. Wächter and L. Biegler, *On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming*, Mathematical Programming, vol. 106(1), pages 25-57, 2006.
| Enlsip | https://github.com/UncertainLab/Enlsip.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 2077 | module LocalSearchSolvers
using Base.Threads
using CompositionalNetworks
using ConstraintDomains
using Constraints
using Dictionaries
using Distributed
using JSON
using Lazy
# Exports internal
export constraint!, variable!, objective!, add!, add_var_to_cons!, add_value!
export delete_value!, delete_var_from_cons!, domain, variable, constraint, objective
export length_var, length_cons, constriction, draw, describe, get_variable
export get_variables, get_constraint, get_constraints, get_objective, get_objectives
export get_cons_from_var, get_vars_from_cons, get_domain, get_name, solution
# export for CBLS.jl
export _set_domain!, is_sat, max_domains_size, get_value, update_domain!, has_solution
export set_option!, get_option, sense, sense!
# Exports Model
export model
# Exports error/predicate/objective functions
export o_dist_extrema, o_mincut
# Exports Solver
export solver, solve!, specialize, specialize!, Options, get_values, best_values
export best_value, time_info, status
# Include utils
include("utils.jl")
# Include model related files
include("variable.jl")
include("constraint.jl")
include("objective.jl")
include("model.jl")
# Include solver state and pool of configurations related files
include("configuration.jl")
include("pool.jl")
include("fluct.jl")
include("state.jl")
# Include strategies
include("strategies/move.jl")
include("strategies/neighbor.jl")
include("strategies/objective.jl")
include("strategies/parallel.jl")
include("strategies/perturbation.jl")
include("strategies/portfolio.jl")
include("strategies/tabu.jl") # precede restart.jl
include("strategies/restart.jl")
include("strategies/selection.jl")
include("strategies/solution.jl")
include("strategies/termination.jl")
include("strategy.jl") # meta strategy methods and structures
# Include solvers
include("options.jl")
include("time_stamps.jl")
include("solver.jl")
include("solvers/sub.jl")
include("solvers/meta.jl")
include("solvers/lead.jl")
include("solvers/main.jl")
# Include usual objectives
include("objectives/extrema.jl")
include("objectives/cut.jl")
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 773 | mutable struct Configuration{T}
solution::Bool
value::Float64
values::Dictionary{Int, T}
end
is_solution(c) = c.solution
get_value(c) = c.value
get_error(c) = is_solution(c) ? 0.0 : get_value(c)
get_values(c) = c.values
get_value(c, x) = get_values(c)[x]
set_value!(c, val) = c.value = val
set_values!(c, values) = c.values = values
set_sat!(c, b) = c.solution = b
compute_cost(m, config::Configuration) = compute_cost(m, get_values(config))
compute_cost!(m, config::Configuration) = set_value!(config, compute_cost(m, config))
function Configuration(m::_Model, X)
values = draw(m)
val = compute_costs(m, values, X)
sol = val ≈ 0.0
opt = sol && !is_sat(m)
return Configuration(sol, opt ? compute_objective(m, values) : val, values)
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 1238 | """
Constraint{F <: Function}
Structure to store an error function and the variables it constrains.
"""
struct Constraint{F <: Function} <: FunctionContainer
f::F
vars::Vector{Int}
end
function Constraint(F, c::Constraint{F2}) where {F2 <: Function}
return Constraint{F}(c.f, c.vars)
end
"""
_get_vars(c::Constraint)
Returns the variables constrained by `c`.
"""
_get_vars(c::Constraint) = c.vars
"""
_add!(c::Constraint, x)
Add the variable of indice `x` to `c`.
"""
_add!(c::Constraint, x) = push!(c.vars, x)
"""
_delete!(c::Constraint, x::Int)
Delete `x` from `c`.
"""
_delete!(c::Constraint, x) = deleteat!(c.vars, findfirst(y -> y == x, c.vars))
"""
_length(c::Constraint)
Return the number of constrained variables by `c`.
"""
_length(c::Constraint) = length(c.vars)
"""
var::Int ∈ c::Constraint
"""
Base.in(var::Int, c::Constraint) = var ∈ c.vars
"""
constraint(f, vars)
DOCSTRING
"""
function constraint(f, vars)
b1 = hasmethod(f, NTuple{1, Any}, (:X,))
b2 = hasmethod(f, NTuple{1, Any}, (:do_not_use_this_kwarg_name,))
g = f
if !b1 || b2
g = (x; X = nothing) -> f(x)
end
return Constraint(g, collect(Int == Int32 ? map(Int, vars) : vars))
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 594 | struct Fluct
cons::Dictionary{Int, Float64}
vars::Dictionary{Int, Float64}
Fluct(cons, vars) = new(zeros(cons), zeros(vars))
end
function reset!(fluct)
zeros! = d -> foreach(k -> set!(d, k, 0.0), keys(d))
zeros!(fluct.cons)
zeros!(fluct.vars)
end
function copy_to!(fluct, cons, vars)
foreach(k -> set!(fluct.cons, k, cons[k]), keys(cons))
foreach(k -> set!(fluct.vars, k, vars[k]), keys(vars))
end
function copy_from!(fluct, cons, vars)
foreach(k -> set!(cons, k, fluct.cons[k]), keys(cons))
foreach(k -> set!(vars, k, fluct.vars[k]), keys(vars))
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 14142 | """
_Model{V <: Variable{<:AbstractDomain},C <: Constraint{<:Function},O <: Objective{<:Function}}
A struct to model a problem as a set of variables, domains, constraints, and objectives.
```
struct _Model{V <: Variable{<:AbstractDomain},C <: Constraint{<:Function},O <: Objective{<:Function}}
variables::Dictionary{Int,V}
constraints::Dictionary{Int,C}
objectives::Dictionary{Int,O}
# counter to add new variables: vars, cons, objs
max_vars::Ref{Int}
max_cons::Ref{Int}
max_objs::Ref{Int}
# Bool to indicate if the _Model instance has been specialized (relatively to types)
specialized::Ref{Bool}
# Symbol to indicate the kind of model for specialized methods such as pretty printing
kind::Symbol
end
```
"""
struct _Model{V <: Variable{<:AbstractDomain},
C <: Constraint{<:Function}, O <: Objective{<:Function}}# <: MOI.ModelLike
variables::Dictionary{Int, V}
constraints::Dictionary{Int, C}
objectives::Dictionary{Int, O}
# counter to add new variables: vars, cons, objs
max_vars::Ref{Int} # TODO: UInt ?
max_cons::Ref{Int}
max_objs::Ref{Int}
# Sense (min = 1, max = -1)
sense::Ref{Int}
# Bool to indicate if the _Model instance has been specialized (relatively to types)
specialized::Ref{Bool}
# Symbol to indicate the kind of model for specialized methods such as pretty printing
kind::Symbol
# Best known bound
best_bound::Union{Nothing, Float64}
# Time of construction (seconds) since epoch
time_stamp::Float64
end
"""
model()
Construct a _Model, empty by default. It is recommended to add the constraints, variables, and objectives from an empty _Model. The following keyword arguments are available,
- `vars=Dictionary{Int,Variable}()`: collection of variables
- `cons=Dictionary{Int,Constraint}()`: collection of constraints
- `objs=Dictionary{Int,Objective}()`: collection of objectives
- `kind=:generic`: the kind of problem modeled (useful for specialized methods such as pretty printing)
"""
function model(;
vars = Dictionary{Int, Variable}(),
cons = Dictionary{Int, Constraint}(),
objs = Dictionary{Int, Objective}(),
kind = :generic,
best_bound = nothing
)
max_vars = Ref(zero(Int))
max_cons = Ref(zero(Int))
max_objs = Ref(zero(Int))
sense = Ref(one(Int)) # minimization
specialized = Ref(false)
_Model(vars, cons, objs, max_vars, max_cons, max_objs,
sense, specialized, kind, best_bound, time())
end
"""
_max_vars(m::M) where M <: Union{Model, AbstractSolver}
Access the maximum variable id that has been attributed to `m`.
"""
_max_vars(m::_Model) = m.max_vars.x
"""
_max_cons(m::M) where M <: Union{Model, AbstractSolver}
Access the maximum constraint id that has been attributed to `m`.
"""
_max_cons(m::_Model) = m.max_cons.x
"""
_max_objs(m::M) where M <: Union{Model, AbstractSolver}
Access the maximum objective id that has been attributed to `m`.
"""
_max_objs(m::_Model) = m.max_objs.x
_best_bound(m::_Model) = m.best_bound
"""
_inc_vars!(m::M) where M <: Union{Model, AbstractSolver}
Increment the maximum variable id that has been attributed to `m`.
"""
_inc_vars!(m::_Model) = m.max_vars.x += 1
"""
_inc_vars!(m::M) where M <: Union{Model, AbstractSolver}
Increment the maximum constraint id that has been attributed to `m`.
"""
_inc_cons!(m::_Model) = m.max_cons.x += 1
"""
_inc_vars!(m::M) where M <: Union{Model, AbstractSolver}
Increment the maximum objective id that has been attributed to `m`.
"""
_inc_objs!(m::_Model) = m.max_objs.x += 1
"""
get_variables(m::M) where M <: Union{Model, AbstractSolver}
Access the variables of `m`.
"""
get_variables(m::_Model) = m.variables
"""
get_constraints(m::M) where M <: Union{Model, AbstractSolver}
Access the constraints of `m`.
"""
get_constraints(m::_Model) = m.constraints
"""
get_objectives(m::M) where M <: Union{Model, AbstractSolver}
Access the objectives of `m`.
"""
get_objectives(m::_Model) = m.objectives
"""
get_kind(m::M) where M <: Union{Model, AbstractSolver}
Access the kind of `m`, such as `:sudoku` or `:generic` (default).
"""
get_kind(m::_Model) = m.kind
"""
get_variable(m::M, x) where M <: Union{Model, AbstractSolver}
Access the variable `x`.
"""
get_variable(m::_Model, x) = get_variables(m)[x]
"""
get_constraint(m::M, c) where M <: Union{Model, AbstractSolver}
Access the constraint `c`.
"""
get_constraint(m::_Model, c) = get_constraints(m)[c]
"""
get_objective(m::M, o) where M <: Union{Model, AbstractSolver}
Access the objective `o`.
"""
get_objective(m::_Model, o) = get_objectives(m)[o]
"""
get_domain(m::M, x) where M <: Union{Model, AbstractSolver}
Access the domain of variable `x`.
"""
get_domain(m::_Model, x) = get_domain(get_variable(m, x))
"""
get_name(m::M, x) where M <: Union{Model, AbstractSolver}
Access the name of variable `x`.
"""
get_name(::_Model, x) = "x$x"
"""
get_cons_from_var(m::M, x) where M <: Union{Model, AbstractSolver}
Access the constraints restricting variable `x`.
"""
get_cons_from_var(m::_Model, x) = _get_constraints(get_variable(m, x))
"""
get_vars_from_cons(m::M, c) where M <: Union{Model, AbstractSolver}
Access the variables restricted by constraint `c`.
"""
get_vars_from_cons(m::_Model, c) = _get_vars(get_constraint(m, c))
"""
get_time_stamp(m::M) where M <: Union{Model, AbstractSolver}
Access the time (since epoch) when the model was created. This time stamp is for internal performance measurement.
"""
get_time_stamp(m::_Model) = m.time_stamp
"""
length_var(m::M, x) where M <: Union{Model, AbstractSolver}
Return the domain length of variable `x`.
"""
length_var(m::_Model, x) = length(get_variable(m, x))
"""
length_cons(m::M, c) where M <: Union{Model, AbstractSolver}
Return the length of constraint `c`.
"""
length_cons(m::_Model, c) = _length(get_constraint(m, c))
"""
length_objs(m::M) where M <: Union{Model, AbstractSolver}
Return the number of objectives in `m`.
"""
length_objs(m::_Model) = length(get_objectives(m))
"""
length_vars(m::M) where M <: Union{Model, AbstractSolver}
Return the number of variables in `m`.
"""
length_vars(m::_Model) = length(get_variables(m))
"""
length_cons(m::M) where M <: Union{Model, AbstractSolver}
Return the number of constraints in `m`.
"""
length_cons(m::_Model) = length(get_constraints(m))
"""
draw(m::M, x) where M <: Union{Model, AbstractSolver}
Draw a random value of `x` domain.
"""
draw(m::_Model, x) = rand(get_variable(m, x))
draw(m::_Model, x, n) = rand(get_variable(m, x), n)
"""
constriction(m::M, x) where M <: Union{Model, AbstractSolver}
Return the constriction of variable `x`.
"""
constriction(m::_Model, x) = _constriction(get_variable(m, x))
"""
delete_value(m::M, x, val) where M <: Union{Model, AbstractSolver}
Delete `val` from `x` domain.
"""
delete_value!(m::_Model, x, val) = delete!(get_variable(m, x), val)
"""
delete_var_from_cons(m::M, c, x) where M <: Union{Model, AbstractSolver}
Delete `x` from the constraint `c` list of restricted variables.
"""
delete_var_from_cons!(m::_Model, c, x) = _delete!(get_constraint(m, c), x)
"""
add_value!(m::M, x, val) where M <: Union{Model, AbstractSolver}
Add `val` to `x` domain.
"""
add_value!(m::_Model, x, val) = add!(get_variable(m, x), val)
"""
add_var_to_cons!(m::M, c, x) where M <: Union{Model, AbstractSolver}
Add `x` to the constraint `c` list of restricted variables.
"""
add_var_to_cons!(m::_Model, c, x) = _add!(get_constraint(m, c), x)
"""
add!(m::M, x) where M <: Union{Model, AbstractSolver}
add!(m::M, c) where M <: Union{Model, AbstractSolver}
add!(m::M, o) where M <: Union{Model, AbstractSolver}
Add a variable `x`, a constraint `c`, or an objective `o` to `m`.
"""
function add!(m::_Model, x::Variable)
_inc_vars!(m)
insert!(get_variables(m), _max_vars(m), x)
end
function add!(m::_Model, c::Constraint)
_inc_cons!(m)
insert!(get_constraints(m), _max_cons(m), c)
foreach(x -> _add_to_constraint!(m.variables[x], _max_cons(m)), c.vars)
end
function add!(m::_Model, o::Objective)
_inc_objs!(m)
insert!(get_objectives(m), _max_objs(m), o)
end
"""
variable!(m::M, d) where M <: Union{Model, AbstractSolver}
Add a variable with domain `d` to `m`.
"""
function variable!(m::_Model, d = domain())
add!(m, variable(d))
return _max_vars(m)
end
"""
constraint!(m::M, func, vars) where M <: Union{Model, AbstractSolver}
Add a constraint with an error function `func` defined over variables `vars`.
"""
function constraint!(m::_Model, func, vars::V) where {V <: AbstractVector{<:Number}}
add!(m, constraint(func, vars))
return _max_cons(m)
end
"""
objective!(m::M, func) where M <: Union{Model, AbstractSolver}
Add an objective evaluated by `func`.
"""
function objective!(m::_Model, func)
add!(m, objective(func, "o" * string(_max_objs(m) + 1)))
end
"""
describe(m::M) where M <: Union{Model, AbstractSolver}
Describe the model.
"""
function describe(m::_Model) # TODO: rewrite _describe
objectives = ""
if Dictionaries.length(m.objectives) == 0
objectives = "Constraint Satisfaction Program (CSP)"
else
objectives = "Constraint Optimization Program (COP) with Objective(s)\n"
objectives *= mapreduce(
o -> "\t\t" * o.name * "\n", *, get_objectives(m); init = "")[1:(end - 1)]
end
variables = mapreduce(
x -> "\t\tx$(x[1]): " * string(get_domain(x[2])) * "\n",
*, pairs(m.variables); init = ""
)[1:(end - 1)]
constraints = mapreduce(c -> "\t\tc$(c[1]): " * string(c[2].vars) * "\n",
*, pairs(m.constraints); init = "")[1:(end - 1)]
str = """
_Model description
$objectives
Variables: $(length(m.variables))
$variables
Constraints: $(length(m.constraints))
$constraints
"""
return str
end
"""
is_sat(m::M) where M <: Union{Model, AbstractSolver}
Return `true` if `m` is a satisfaction model.
"""
is_sat(m::_Model) = length_objs(m) == 0
"""
is_specialized(m::M) where M <: Union{Model, AbstractSolver}
Return `true` if the model is already specialized.
"""
function is_specialized(m::_Model)
return m.specialized.x
end
"""
specialize(m::M) where M <: Union{Model, AbstractSolver}
Specialize the structure of a model to avoid dynamic type attribution at runtime.
"""
function specialize(m::_Model)
vars_types = Set{Type}()
cons_types = Set{Type}()
objs_types = Set{Type}()
foreach(x -> push!(vars_types, typeof(x.domain)), get_variables(m))
foreach(c -> push!(cons_types, typeof(c.f)), get_constraints(m))
foreach(o -> push!(objs_types, typeof(o.f)), get_objectives(m))
vars_union = _to_union(vars_types)
cons_union = _to_union(cons_types)
objs_union = _to_union(objs_types)
vars = similar(get_variables(m), Variable{vars_union})
cons = similar(get_constraints(m), Constraint{cons_union})
objs = similar(get_objectives(m), Objective{objs_union})
foreach(x -> vars[x] = Variable(vars_union, get_variable(m, x)), keys(vars))
foreach(c -> cons[c] = Constraint(cons_union, get_constraint(m, c)), keys(cons))
foreach(o -> objs[o] = Objective(objs_union, get_objective(m, o)), keys(objs))
max_vars = Ref(_max_vars(m))
max_cons = Ref(_max_cons(m))
max_objs = Ref(_max_objs(m))
specialized = Ref(true)
_Model(vars, cons, objs, max_vars, max_cons, max_objs, m.sense, specialized,
get_kind(m), _best_bound(m), get_time_stamp(m))
end
"""
_is_empty(m::Model)
DOCSTRING
"""
function _is_empty(m::_Model)
return length_objs(m) + length_vars(m) == 0
end
"""
_set_domain!(m::Model, x, values)
DOCSTRING
# Arguments:
- `m`: DESCRIPTION
- `x`: DESCRIPTION
- `values`: DESCRIPTION
"""
function _set_domain!(m::_Model, x, values)
d = domain(values)
m.variables[x] = Variable(d, get_cons_from_var(m, x))
end
function _set_domain!(m::_Model, x, a::Tuple, b::Tuple)
d = domain(a, b)
m.variables[x] = Variable(d, get_cons_from_var(m, x))
end
# function _set_domain!(m::_Model, x,r::R) where {R <: AbstractRange}
# d = domain(r)
# m.variables[x] = Variable(d, get_cons_from_var(m, x))
# end
function _set_domain!(m::_Model, x, d::D) where {D <: AbstractDomain}
m.variables[x] = Variable(d, get_cons_from_var(m, x))
end
"""
domain_size(m::Model, x) = begin
DOCSTRING
"""
domain_size(m::_Model, x) = domain_size(get_variable(m, x))
"""
max_domains_size(m::Model, vars) = begin
DOCSTRING
"""
max_domains_size(m::_Model, vars) = maximum(map(x -> domain_size(m, x), vars))
"""
empty!(m::Model)
DOCSTRING
"""
function Base.empty!(m::_Model)
empty!(m.variables)
empty!(m.constraints)
empty!(m.objectives)
m.max_vars[] = 0
m.max_cons[] = 0
m.max_objs[] = 0
m.specialized[] = false
end
# Non modificating cost and objective computations
draw(m::_Model) = map(rand, get_variables(m))
compute_cost(c::Constraint, values, X) = apply(c, map(x -> values[x], c.vars), X)
function compute_costs(m, values, X)
return sum(c -> compute_cost(c, values, X), get_constraints(m); init = 0.0)
end
function compute_costs(m, values, cons, X)
return sum(c -> compute_cost(c, values, X), view(get_constraints(m), cons); init = 0.0)
end
compute_objective(m, values; objective = 1) = apply(get_objective(m, objective), values)
function update_domain!(m, x, d)
if isempty(get_variable(m, x))
old_d = get_variable(m, x).domain
_set_domain!(m, x, d.domain)
else
old_d = get_variable(m, x).domain
are_continuous = typeof(d) <: ContinuousDomain && typeof(old_d) <: ContinuousDomain
new_d = if are_continuous
intersect_domains(old_d, d)
else
intersect_domains(convert(RangeDomain, old_d), convert(RangeDomain, d))
end
_set_domain!(m, x, new_d)
end
end
sense(m::_Model) = m.sense[]
sense!(m::_Model, ::Val{:min}) = m.sense[] = 1
sense!(m::_Model, ::Val{:max}) = m.sense[] = -1
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 681 | """
Objective{F <: Function}
A structure to handle objectives in a solver.
```
struct Objective{F <: Function}
name::String
f::F
end
````
"""
struct Objective{F <: Function} <: FunctionContainer
name::String
f::F
end
"""
Objective(F, o::Objective{F2}) where {F2 <: Function}
Constructor used in specializing a solver. Should never be called externally.
"""
function Objective(F, o::Objective{F2}) where {F2 <: Function}
return Objective{F}(o.name, o.f)
end
"""
objective(func, name)
Construct an objective with a function `func` that should be applied to a collection of variables.
"""
function objective(func, name)
Objective(name, func)
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 6697 | const print_levels = Dict(
:silent => 0,
:minimal => 1,
:partial => 2,
:verbose => 3
)
"""
Options()
# Arguments:
- `dynamic::Bool`: is the model dynamic?
- `iteration::Union{Int, Float64}`: limit on the number of iterations
- `print_level::Symbol`: verbosity to choose among `:silent`, `:minimal`, `:partial`, `:verbose`
- `solutions::Int`: number of solutions to return
- `specialize::Bool`: should the types of the model be specialized or not. Usually yes for static problems. For dynamic in depends if the user intend to introduce new types. The specialized model is about 10% faster.
- `tabu_time::Int`: DESCRIPTION
- `tabu_local::Int`: DESCRIPTION
- `tabu_delta::Float64`: DESCRIPTION
- `threads::Int`: Number of threads to use
- `time_limit::Float64`: time limit in seconds
- `function Options(; dynamic = false, iteration = 10000, print_level = :minimal, solutions = 1, specialize = !dynamic, tabu_time = 0, tabu_local = 0, tabu_delta = 0.0, threads = typemax(0), time_limit = Inf)
```julia
# Setting options in JuMP syntax: print_level, time_limit, iteration
model = Model(CBLS.Optimizer)
set_optimizer_attribute(model, "iteration", 100)
set_optimizer_attribute(model, "print_level", :verbose)
set_time_limit_sec(model, 5.0)
```
"""
mutable struct Options
dynamic::Bool
info_path::String
iteration::Tuple{Bool, Union{Int, Float64}}
print_level::Symbol
process_threads_map::Dict{Int, Int}
solutions::Int
specialize::Bool
tabu_time::Int
tabu_local::Int
tabu_delta::Float64
time_limit::Tuple{Bool, Float64} # seconds
function Options(;
dynamic = false,
info_path = "",
iteration = (false, 100),
print_level = :minimal,
process_threads_map = Dict{Int, Int}(1 => typemax(0)),
solutions = 1,
specialize = !dynamic,
tabu_time = 0,
tabu_local = 0,
tabu_delta = 0.0,
time_limit = (false, 1.0) # seconds
)
ds_str = "The model types are specialized to the starting domains, constraints," *
" and objectives types. Dynamic elements that add a new type will raise an error!"
dynamic && specialize && @warn ds_str
notds_str = "The solver types are not specialized in a static model context," *
" which is sub-optimal."
!dynamic && !specialize && @info notds_str
itertime_str = "Both iteration and time limits are disabled. " *
"Optimization runs will run infinitely."
new_iteration = if iteration isa Tuple{Bool, Union{Int, Float64}}
iteration
else
iteration = (false, iteration)
end
new_time_limit = if time_limit isa Tuple{Bool, Float64}
time_limit
else
time_limit = (false, time_limit)
end
new_iteration[2] == Inf && new_time_limit[2] == Inf && @warn itertime_str
new(
dynamic,
info_path,
new_iteration,
print_level,
process_threads_map,
solutions,
specialize,
tabu_time,
tabu_local,
tabu_delta,
new_time_limit
)
end
end
"""
_verbose(settings, str)
Temporary logging function. #TODO: use better log instead (LoggingExtra.jl)
"""
function _verbose(options, str)
pl = options.print_level
print_levels[pl] ≥ 3 && (@info str)
end
"""
_dynamic(options) = begin
DOCSTRING
"""
_dynamic(options) = options.dynamic
"""
_dynamic!(options, dynamic) = begin
DOCSTRING
"""
_dynamic!(options, dynamic) = options.dynamic = dynamic
"""
_info_path(options, path)
DOCSTRING
"""
_info_path(options) = options.info_path
"""
_info_path!(options, iterations) = begin
DOCSTRING
"""
_info_path!(options, path) = options.info_path = path
"""
_iteration(options) = begin
DOCSTRING
"""
_iteration(options) = options.iteration
"""
_iteration!(options, iterations) = begin
DOCSTRING
"""
_iteration!(options, iterations) = options.iteration = iterations
function _iteration!(options, iterations::Union{Int, Float64})
options.iteration = (false, iterations)
end
"""
_print_level(options) = begin
DOCSTRING
"""
_print_level(options) = options.print_level
"""
_print_level!(options, level) = begin
DOCSTRING
"""
_print_level!(options, level) = options.print_level = level
"""
_process_threads_map(options)
TBW
"""
_process_threads_map(options) = options.process_threads_map
"""
_process_threads_map!(options, ptm)
TBW
"""
_process_threads_map!(options, ptm::AbstractDict) = options.process_threads_map = ptm
function _process_threads_map!(options, ptm::AbstractVector)
return _process_threads_map!(options, Dict(enumerate(ptm)))
end
"""
_solutions(options) = begin
DOCSTRING
"""
_solutions(options) = options.solutions
"""
_solutions!(options, solutions) = begin
DOCSTRING
"""
_solutions!(options, solutions) = options.solutions = solutions
"""
_specialize(options) = begin
DOCSTRING
"""
_specialize(options) = options.specialize
"""
_specialize!(options, specialize) = begin
DOCSTRING
"""
_specialize!(options, specialize) = options.specialize = specialize
"""
_tabu_time(options) = begin
DOCSTRING
"""
_tabu_time(options) = options.tabu_time
"""
_tabu_time!(options, time) = begin
DOCSTRING
"""
_tabu_time!(options, time) = options.tabu_time = time
"""
_tabu_local(options) = begin
DOCSTRING
"""
_tabu_local(options) = options.tabu_local
"""
_tabu_local!(options, time) = begin
DOCSTRING
"""
_tabu_local!(options, time) = options.tabu_local = time
"""
_tabu_delta(options) = begin
DOCSTRING
"""
_tabu_delta(options) = options.tabu_delta
"""
_tabu_delta!(options, time) = begin
DOCSTRING
"""
_tabu_delta!(options, time) = options.tabu_delta = time
"""
_threads(options) = begin
DOCSTRING
"""
_threads(options, p = 1) = get!(options.process_threads_map, p, typemax(0))
"""
_threads!(options, threads) = begin
DOCSTRING
"""
_threads!(options, threads, p = 1) = push!(options.process_threads_map, p => threads)
"""
_time_limit(options)
DOCSTRING
"""
_time_limit(options) = options.time_limit
"""
_time_limit!(options, time::Time) = begin
DOCSTRING
"""
_time_limit!(options, time::Tuple{Bool, Float64}) = options.time_limit = time
_time_limit!(options, time::Float64) = options.time_limit = (false, time)
function set_option!(options, name, value)
eval(Symbol("_" * name * "!"))(options, value)
end
function get_option(options, name, args...)
eval(Symbol("_" * name))(options, args...)
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 919 | abstract type AbstractPool end
struct EmptyPool end
@enum PoolStatus empty_pool=0 halfway_pool unsat_pool mixed_pool full_pool
mutable struct _Pool{T} <: AbstractPool
best::Int
configurations::Vector{Configuration{T}}
status::PoolStatus
value::Float64
end
const Pool = Union{EmptyPool, _Pool}
pool() = EmptyPool()
function pool(config::Configuration)
best = 1
configs = [deepcopy(config)]
status = full_pool
value = get_value(config)
return _Pool(best, configs, status, value)
end
function pool!(s)
has_solution(s) || _draw!(s)
s.pool = pool(s.state.configuration)
end
is_empty(::EmptyPool) = true
is_empty(pool) = isempty(pool.configurations)
best_config(pool) = pool.configurations[pool.best]
best_value(pool) = pool.value
best_values(pool) = get_values(best_config(pool))
has_solution(::EmptyPool) = false
has_solution(pool::_Pool) = is_solution(best_config(pool))
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 15096 | """
AbstractSolver
Abstract type to encapsulate the different solver types such as `Solver` or `_SubSolver`.
"""
abstract type AbstractSolver end
# Dummy method to (not) add a TimeStamps to a solver
add_time!(::AbstractSolver, i) = nothing
function solver(ms, id, role; pool = pool(), strats = MetaStrategy(ms))
mlid = make_id(meta_id(ms), id, Val(role))
return solver(mlid, ms.model, ms.options, pool, ms.rc_report,
ms.rc_sol, ms.rc_stop, strats, Val(role))
end
# Forwards from model field
@forward AbstractSolver.model add!
@forward AbstractSolver.model add_value!
@forward AbstractSolver.model add_var_to_cons!
@forward AbstractSolver.model constraint!
@forward AbstractSolver.model constriction
@forward AbstractSolver.model delete_value!
@forward AbstractSolver.model delete_var_from_cons!
@forward AbstractSolver.model describe
@forward AbstractSolver.model domain_size
@forward AbstractSolver.model draw
@forward AbstractSolver.model get_cons_from_var
@forward AbstractSolver.model get_constraint
@forward AbstractSolver.model get_constraints
@forward AbstractSolver.model get_domain
@forward AbstractSolver.model get_name
@forward AbstractSolver.model get_objective
@forward AbstractSolver.model get_objectives
@forward AbstractSolver.model get_variable
@forward AbstractSolver.model get_variables
@forward AbstractSolver.model get_vars_from_cons
@forward AbstractSolver.model is_sat
@forward AbstractSolver.model is_specialized
@forward AbstractSolver.model length_cons
@forward AbstractSolver.model length_objs
@forward AbstractSolver.model length_var
@forward AbstractSolver.model length_vars
@forward AbstractSolver.model max_domains_size
@forward AbstractSolver.model objective!
@forward AbstractSolver.model sense
@forward AbstractSolver.model sense!
@forward AbstractSolver.model state
@forward AbstractSolver.model update_domain!
@forward AbstractSolver.model variable!
@forward AbstractSolver.model _best_bound
@forward AbstractSolver.model _inc_cons!
@forward AbstractSolver.model _is_empty
@forward AbstractSolver.model _max_cons
@forward AbstractSolver.model _set_domain!
# Forwards from state field
@forward AbstractSolver.state get_error
@forward AbstractSolver.state get_value
@forward AbstractSolver.state get_values
@forward AbstractSolver.state set_error!
@forward AbstractSolver.state set_value!
@forward AbstractSolver.state _best
@forward AbstractSolver.state _best!
@forward AbstractSolver.state _cons_cost
@forward AbstractSolver.state _cons_cost!
@forward AbstractSolver.state _cons_costs
@forward AbstractSolver.state _cons_costs!
@forward AbstractSolver.state _inc_last_improvement!
@forward AbstractSolver.state _last_improvement
@forward AbstractSolver.state _optimizing
@forward AbstractSolver.state _optimizing!
@forward AbstractSolver.state _satisfying!
@forward AbstractSolver.state _set!
@forward AbstractSolver.state _solution
@forward AbstractSolver.state _swap_value!
@forward AbstractSolver.state _reset_last_improvement!
@forward AbstractSolver.state _value
@forward AbstractSolver.state _value!
@forward AbstractSolver.state _values
@forward AbstractSolver.state _values!
@forward AbstractSolver.state _var_cost
@forward AbstractSolver.state _var_cost!
@forward AbstractSolver.state _vars_costs
@forward AbstractSolver.state _vars_costs!
# Forward from options
@forward AbstractSolver.options get_option
@forward AbstractSolver.options set_option!
@forward AbstractSolver.options _verbose
# Forwards from pool (of solutions)
@forward AbstractSolver.pool best_config
@forward AbstractSolver.pool best_value
@forward AbstractSolver.pool best_values
@forward AbstractSolver.pool has_solution
# Forwards from strategies
@forward AbstractSolver.strategies check_restart!
@forward AbstractSolver.strategies decay_tabu!
@forward AbstractSolver.strategies decrease_tabu!
@forward AbstractSolver.strategies delete_tabu!
@forward AbstractSolver.strategies empty_tabu!
@forward AbstractSolver.strategies insert_tabu!
@forward AbstractSolver.strategies length_tabu
@forward AbstractSolver.strategies tabu_list
"""
specialize!(solver)
Replace the model of `solver` by one with specialized types (variables, constraints, objectives).
"""
specialize!(s) = s.model = specialize(s.model)
"""
_draw!(s)
Draw a random (re-)starting configuration.
"""
function _draw!(s)
foreach(x -> _set!(s, x, draw(s, x)), keys(get_variables(s)))
end
"""
_compute_cost!(s, ind, c)
Compute the cost of constraint `c` with index `ind`.
"""
function _compute_cost!(s, ind, c)
old_cost = _cons_cost(s, ind)
new_cost = compute_cost(c, _values(s), s.state.icn_computations)
_cons_cost!(s, ind, new_cost)
foreach(x -> _var_cost!(s, x, _var_cost(s, x) + new_cost - old_cost), c.vars)
end
"""
_compute_costs!(s; cons_lst::Indices{Int} = Indices{Int}())
Compute the cost of constraints `c` in `cons_lst`. If `cons_lst` is empty, compute the cost for all the constraints in `s`.
"""
function _compute_costs!(s; cons_lst = Indices{Int}())
if isempty(cons_lst)
foreach(((id, c),) -> _compute_cost!(s, id, c), pairs(get_constraints(s)))
else
foreach(
((id, c),) -> _compute_cost!(s, id, c),
pairs(view(get_constraints(s), cons_lst))
)
end
set_error!(s, sum(_cons_costs(s)))
end
"""
_compute_objective!(s, o::Objective)
_compute_objective!(s, o = 1)
Compute the objective `o`'s value.
"""
function _compute_objective!(s, o::Objective)
val = sense(s) * apply(o, _values(s).values)
set_value!(s, val)
if is_empty(s.pool) || val < best_value(s)
s.pool = pool(s.state.configuration)
end
end
_compute_objective!(s, o = 1) = _compute_objective!(s, get_objective(s, o))
"""
_compute!(s; o::Int = 1, cons_lst = Indices{Int}())
Compute the objective `o`'s value if `s` is satisfied and return the current `error`.
# Arguments:
- `s`: a solver
- `o`: targeted objective
- `cons_lst`: list of targeted constraints, if empty compute for the whole set
"""
function _compute!(s; o::Int = 1, cons_lst = Indices{Int}())
_compute_costs!(s; cons_lst)
if get_error(s) == 0.0
_optimizing(s) && _compute_objective!(s, o)
is_sat(s) && (s.pool = pool(s.state.configuration))
return true
end
return false
end
"""
_neighbours(s, x, dim = 0)
DOCSTRING
# Arguments:
- `s`: DESCRIPTION
- `x`: DESCRIPTION
- `dim`: DESCRIPTION
"""
function _neighbours(s, x, dim = 0)
if dim == 0
is_discrete = typeof(get_variable(s, x).domain) <: ContinuousDomain
return is_discrete ? map(_ -> draw(s, x), 1:(length_vars(s) * length_cons(s))) :
get_domain(s, x)
else
neighbours = Set{Int}()
foreach(
c -> foreach(
y -> begin
b = _value(s, x) ∈ get_variable(s, y) && _value(s, y) ∈ get_variable(s, x)
b && push!(neighbours, y)
end,
get_vars_from_cons(s, c)),
get_cons_from_var(s, x)
)
return delete!(neighbours, x)
end
end
state!(s) = s.state = state(s)
function _init!(s, ::Val{:global})
if !is_specialized(s) && get_option(s, "specialize")
specialize!(s)
set_option!(s, "specialize", true)
end
put!(s.rc_stop, nothing)
foreach(i -> put!(s.rc_report, nothing), setdiff(workers(), [1]))
end
function _init!(s, ::Val{:meta})
t = min(get_option(s, "threads"), Threads.nthreads())
foreach(id -> push!(s.subs, solver(s, id - 1, :sub)), 2:t)
return nothing
end
function _init!(s, ::Val{:remote})
for w in setdiff(workers(), [1])
ls = remotecall(solver, w, s, w, :lead)
remote_do(set_option!, w, fetch(ls), "print_level", :silent)
t = min(get_option(s, "threads", w), remotecall_fetch(Threads.nthreads, w))
remote_do(set_option!, w, fetch(ls), "threads", t)
push!(s.remotes, w => ls)
end
end
function _init!(s, ::Val{:local})
get_option(s, "tabu_time") == 0 && set_option!(s, "tabu_time", length_vars(s) ÷ 2) # 10?
get_option(s, "tabu_local") == 0 &&
set_option!(s, "tabu_local", get_option(s, "tabu_time") ÷ 2)
get_option(s, "tabu_delta") == 0 && set_option!(
s, "tabu_delta", get_option(s, "tabu_time") - get_option(s, "tabu_local")) # 20-30
state!(s)
pool!(s)
return has_solution(s)
end
_init!(s, role::Symbol) = _init!(s, Val(role))
"""
_restart!(s, k = 10)
Restart a solver.
"""
function _restart!(s, k = 10)
_verbose(s, "\n============== RESTART!!!!================\n")
_draw!(s)
empty_tabu!(s)
δ = ((k - 1) * get_option(s, "tabu_delta")) + get_option(s, "tabu_time") / k
set_option!(s, "tabu_delta", δ)
(_compute!(s) && !is_sat(s)) ? _optimizing!(s) : _satisfying!(s)
end
"""
_check_restart(s)
Check if a restart of `s` is necessary. If `s` has subsolvers, this check is independent for all of them.
"""
function _check_restart(s)
a = _last_improvement(s) > length_vars(s)
b = check_restart!(s; tabu_length = length_tabu(s))
return a || b
end
"""
_select_worse(s::S) where S <: Union{_State, AbstractSolver}
Within the non-tabu variables, select the one with the worse error .
"""
function _select_worse(s)
nontabu = setdiff(keys(_vars_costs(s)), keys(tabu_list(s)))
return _find_rand_argmax(view(_vars_costs(s), nontabu))
end
"""
_move!(s, x::Int, dim::Int = 0)
Perform an improving move in `x` neighbourhood if possible.
# Arguments:
- `s`: a solver of type S <: AbstractSolver
- `x`: selected variable id
- `dim`: describe the dimension of the considered neighbourhood
"""
function _move!(s, x::Int, dim::Int = 0)
best_values = [begin
old_v = _value(s, x)
end]
best_swap = [x]
tabu = true # unless proved otherwise, this variable is now tabu
best_cost = old_cost = get_error(s)
copy_to!(s.state.fluct, _cons_costs(s), _vars_costs(s))
for v in _neighbours(s, x, dim)
dim == 0 && v == old_v && continue
dim == 0 ? _value!(s, x, v) : _swap_value!(s, x, v)
_verbose(s, "Compute costs: selected var(s) x_$x " * (dim == 0 ? "= $v" : "⇆ x_$v"))
cons_x_v = union(get_cons_from_var(s, x), dim == 0 ? [] : get_cons_from_var(s, v))
_compute!(s, cons_lst = cons_x_v)
cost = get_error(s)
if cost < best_cost
_verbose(s, "cost = $cost < $best_cost")
tabu = false
best_cost = cost
dim == 0 ? best_values = [v] : best_swap = [v]
elseif cost == best_cost
_verbose(s, "cost = best_cost = $cost")
push!(dim == 0 ? best_values : best_swap, v)
end
if cost == 0 && is_sat(s)
s.pool == pool(s.state.configuration)
return best_values, best_swap, tabu
end
copy_from!(s.state.fluct, _cons_costs(s), _vars_costs(s))
set_error!(s, old_cost)
# swap/change back the value of x (and y/)
dim == 0 ? _value!(s, x, old_v) : _swap_value!(s, x, v)
end
return best_values, best_swap, tabu
end
"""
_step!(s)
Iterate a step of the solver run.
"""
function _step!(s)
# select worst variables
x = _select_worse(s)
_verbose(s, "Selected x = $x")
# Local move (change the value of the selected variable)
best_values, best_swap, tabu = _move!(s, x)
# _compute!(s)
# If local move is bad (tabu), then try permutation
if tabu
_, best_swap, tabu = _move!(s, x, 1)
_compute!(s)
else # compute the costs changes from best local move
_compute!(s; cons_lst = get_cons_from_var(s, x))
end
# decay tabu list
decay_tabu!(s)
# update tabu list with either worst or selected variable
insert_tabu!(s, x, tabu ? :tabu : :pick)
_verbose(s, "Tabu list: $(tabu_list(s))")
# Inc last improvement if tabu
tabu ? _inc_last_improvement!(s) : _reset_last_improvement!(s)
# Select the best move (value or swap)
if x ∈ best_swap
_value!(s, x, rand(best_values))
_verbose(s, "best_values: $best_values")
else
_swap_value!(s, x, rand(best_swap))
_verbose(s, "best_swap : $best_swap")
end
# Compute costs and possibly evaluate objective functions
# return true if a solution for sat is found
if _compute!(s)
!is_sat(s) ? _optimizing!(s) : return true
end
# Restart if necessary
_check_restart(s) && _restart!(s)
return false # no satisfying configuration or optimizing
end
"""
_check_subs(s)
Check if any subsolver of a main solver `s`, for
- *Satisfaction*, has a solution, then return it, resume the run otherwise
- *Optimization*, has a better solution, then assign it to its internal state
"""
_check_subs(::AbstractSolver) = 0 # Dummy method
"""
stop_while_loop()
Check the stop conditions of the `solve!` while inner loop.
"""
stop_while_loop(::AbstractSolver) = nothing
"""
solve_while_loop!(s, )
Search the space of configurations.
"""
function solve_while_loop!(s, stop, sat, iter, st)
while stop_while_loop(s, stop, iter, st)
iter += 1
_verbose(
s, "\n\tLoop $(iter) ($(_optimizing(s) ? "optimization" : "satisfaction"))")
_step!(s) && sat && break
_verbose(s, "vals: $(length(_values(s)) > 0 ? _values(s) : nothing)")
best_sub = _check_subs(s)
if best_sub > 0
bs = s.subs[best_sub]
s.pool = deepcopy(bs.pool)
sat && break
end
end
end
"""
remote_dispatch!(solver)
Starts the `LeadSolver`s attached to the `MainSolver`.
"""
remote_dispatch!(::AbstractSolver) = nothing # dummy method
"""
solve_for_loop!(solver, stop, sat, iter)
First loop in the solving process that starts `LeadSolver`s from the `MainSolver`, and `_SubSolver`s from each `MetaSolver`.
"""
solve_for_loop!(s, stop, sat, iter, st) = solve_while_loop!(s, stop, sat, iter, st)
function update_pool!(s, pool)
is_empty(pool) && return nothing
if is_sat(s) || best_value(s) > best_value(pool)
s.pool = deepcopy(pool)
end
end
"""
remote_stop!!(solver)
Fetch the pool of solutions from `LeadSolvers` and merge it into the `MainSolver`.
"""
remote_stop!(::AbstractSolver) = nothing
"""
post_process(s::MainSolver)
Launch a series of tasks to round-up a solving run, for instance, export a run's info.
"""
post_process(::AbstractSolver) = nothing
function solve!(s, stop = Atomic{Bool}(false))
start_time = time()
add_time!(s, 1) # only used by MainSolver
iter = 0 # only used by MainSolver
sat = is_sat(s)
_init!(s) && (sat ? (iter = typemax(0)) : _optimizing!(s))
add_time!(s, 2) # only used by MainSolver
solve_for_loop!(s, stop, sat, iter, start_time)
add_time!(s, 5) # only used by MainSolver
remote_stop!(s)
add_time!(s, 6) # only used by MainSolver
post_process(s) # only used by MainSolver
end
"""
solution(s)
Return the only/best known solution of a satisfaction/optimization model.
"""
solution(s) = has_solution(s) ? best_values(s) : _values(s)
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 4623 | abstract type AbstractState end
struct EmptyState <: AbstractState end
"""
GeneralState{T <: Number}
A mutable structure to store the general state of a solver. All methods applied to `GeneralState` are forwarded to `S <: AbstractSolver`.
```
mutable struct GeneralState{T <: Number} <: AbstractState
configuration::Configuration{T}
cons_costs::Dictionary{Int, Float64}
last_improvement::Int
tabu::Dictionary{Int, Int}
vars_costs::Dictionary{Int, Float64}
end
```
"""
mutable struct _State{T} <: AbstractState
configuration::Configuration{T}
cons_costs::Dictionary{Int, Float64}
fluct::Fluct
icn_computations::Matrix{Float64}
optimizing::Bool
last_improvement::Int
vars_costs::Dictionary{Int, Float64}
end
@forward _State.configuration get_values, get_error, get_value, compute_cost!, set_values!
@forward _State.configuration set_value!, set_sat!
const State = Union{EmptyState, _State}
state() = EmptyState()
function state(m::_Model, pool = pool(); opt = false)
X = Matrix{Float64}(undef, m.max_vars[], CompositionalNetworks.max_icn_length())
lc, lv = length_cons(m) > 0, length_vars(m) > 0
config = Configuration(m, X)
cons = lc ? zeros(Float64, get_constraints(m)) : Dictionary{Int, Float64}()
last_improvement = 0
vars = lv ? zeros(Float64, get_variables(m)) : Dictionary{Int, Float64}()
fluct = Fluct(cons, vars)
return _State(config, cons, fluct, X, opt, last_improvement, vars)
end
"""
_cons_costs(s::S) where S <: Union{_State, AbstractSolver}
Access the constraints costs.
"""
_cons_costs(s::_State) = s.cons_costs
"""
_vars_costs(s::S) where S <: Union{_State, AbstractSolver}
Access the variables costs.
"""
_vars_costs(s::_State) = s.vars_costs
"""
_vars_costs(s::S) where S <: Union{_State, AbstractSolver}
Access the variables costs.
"""
_values(s::_State) = get_values(s)
"""
_optimizing(s::S) where S <: Union{_State, AbstractSolver}
Check if `s` is in an optimizing state.
"""
_optimizing(s::_State) = s.optimizing
"""
_cons_costs!(s::S, costs) where S <: Union{_State, AbstractSolver}
Set the constraints costs.
"""
_cons_costs!(s::_State, costs) = s.cons_costs = costs
"""
_vars_costs!(s::S, costs) where S <: Union{_State, AbstractSolver}
Set the variables costs.
"""
_vars_costs!(s::_State, costs) = s.vars_costs = costs
"""
_values!(s::S, values) where S <: Union{_State, AbstractSolver}
Set the variables values.
"""
_values!(s::_State{T}, values) where {T <: Number} = set_values!(s, values)
"""
_optimizing!(s::S) where S <: Union{_State, AbstractSolver}
Set the solver `optimizing` status to `true`.
"""
_optimizing!(s::_State) = s.optimizing = true
"""
_satisfying!(s::S) where S <: Union{_State, AbstractSolver}
Set the solver `optimizing` status to `false`.
"""
_satisfying!(s::_State) = s.optimizing = false
"""
_cons_cost(s::S, c) where S <: Union{_State, AbstractSolver}
Return the cost of constraint `c`.
"""
_cons_cost(s::_State, c) = get!(_cons_costs(s), c, 0.0)
"""
_var_cost(s::S, x) where S <: Union{_State, AbstractSolver}
Return the cost of variable `x`.
"""
_var_cost(s::_State, x) = get!(_vars_costs(s), x, 0.0)
"""
_value(s::S, x) where S <: Union{_State, AbstractSolver}
Return the value of variable `x`.
"""
_value(s::_State, x) = _values(s)[x]
"""
_cons_cost!(s::S, c, cost) where S <: Union{_State, AbstractSolver}
Set the `cost` of constraint `c`.
"""
_cons_cost!(s::_State, c, cost) = _cons_costs(s)[c] = cost
"""
_var_cost!(s::S, x, cost) where S <: Union{_State, AbstractSolver}
Set the `cost` of variable `x`.
"""
_var_cost!(s::_State, x, cost) = _vars_costs(s)[x] = cost
"""
_value!(s::S, x, val) where S <: Union{_State, AbstractSolver}
Set the value of variable `x` to `val`.
"""
_value!(s::_State, x, val) = _values(s)[x] = val
"""
_set!(s::S, x, val) where S <: Union{_State, AbstractSolver}
Set the value of variable `x` to `val`.
"""
_set!(s::_State, x, val) = set!(_values(s), x, val)
"""
_set!(s::S, x, y) where S <: Union{_State, AbstractSolver}
Swap the values of variables `x` and `y`.
"""
function _swap_value!(s::_State, x, y)
aux = _value(s, x)
_value!(s, x, _value(s, y))
_value!(s, y, aux)
end
_last_improvement(s::_State) = s.last_improvement
_inc_last_improvement!(s::_State) = s.last_improvement += 1
_reset_last_improvement!(s::_State) = s.last_improvement = 0
has_solution(s::_State) = is_solution(s.configuration)
function set_error!(s::_State, err)
sat = err ≈ 0.0
set_sat!(s, sat)
!sat && set_value!(s, err)
end
get_error(::EmptyState) = Inf
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 625 | struct MetaStrategy{RS <: RestartStrategy, TS <: TabuStrategy}
restart::RS
tabu::TS
end
function MetaStrategy(model;
tenure = min(length_vars(model) ÷ 2, 10),
tabu = tabu(tenure, tenure ÷ 2),
# restart = restart(tabu, Val(:universal)),
restart = restart(tabu, Val(:random); rp = 0.05)
)
return MetaStrategy(restart, tabu)
end
# forwards from RestartStrategy
@forward MetaStrategy.restart check_restart!
# forwards from TabuStrategy
@forward MetaStrategy.tabu decrease_tabu!, delete_tabu!, decay_tabu!
@forward MetaStrategy.tabu length_tabu, insert_tabu!, empty_tabu!, tabu_list
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 1808 | mutable struct TimeStamps # seconds
ts0::Float64 # model construction start
ts1::Float64 # ts1 ≤ _init!
ts2::Float64 # _init! ≤ ts2 ≤ @threads
ts3::Float64 # @threads ≤ ts3 ≤ remote_start
ts4::Float64 # remote_start ≤ ts4 ≤ main_run
ts5::Float64 # main_run ≤ ts5 ≤ remote_stop
ts6::Float64 # remote_stop ≤ ts6
end
function TimeStamps(ts::Float64 = zero(Float64))
t = zero(Float64)
return TimeStamps(ts, t, t, t, t, t, t)
end
TimeStamps(model::_Model) = TimeStamps(get_time_stamp(model))
add_time!(stamps, ts, ::Val{1}) = stamps.ts1 = ts
add_time!(stamps, ts, ::Val{2}) = stamps.ts2 = ts
add_time!(stamps, ts, ::Val{3}) = stamps.ts3 = ts
add_time!(stamps, ts, ::Val{4}) = stamps.ts4 = ts
add_time!(stamps, ts, ::Val{5}) = stamps.ts5 = ts
add_time!(stamps, ts, ::Val{6}) = stamps.ts6 = ts
add_time!(stamps, i) = add_time!(stamps, time(), Val(i))
get_time(stamps, ::Val{0}) = stamps.ts1
get_time(stamps, ::Val{1}) = stamps.ts1
get_time(stamps, ::Val{2}) = stamps.ts2
get_time(stamps, ::Val{3}) = stamps.ts3
get_time(stamps, ::Val{4}) = stamps.ts4
get_time(stamps, ::Val{5}) = stamps.ts5
get_time(stamps, ::Val{6}) = stamps.ts6
get_time(stamps, i) = get_time(stamps, Val(i))
function time_info(stamps)
info = Dict([
:model => get_time(stamps, 1) - get_time(stamps, 0),
:init => get_time(stamps, 2) - get_time(stamps, 1),
:threads_start => get_time(stamps, 3) - get_time(stamps, 2),
:remote_start => get_time(stamps, 4) - get_time(stamps, 3),
:local_run => get_time(stamps, 5) - get_time(stamps, 4),
:remote_stop => get_time(stamps, 6) - get_time(stamps, 5),
:total_run => get_time(stamps, 6) - get_time(stamps, 1),
:model_and_run => get_time(stamps, 6) - get_time(stamps, 0)
])
return info
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 818 | """
_to_union(datatype)
Make a minimal `Union` type from a collection of data types.
"""
_to_union(datatype) = Union{(isa(datatype, Type) ? [datatype] : datatype)...}
"""
_find_rand_argmax(d::DictionaryView)
Compute `argmax` of `d` and select one element randomly.
"""
function _find_rand_argmax(d::DictionaryView)
max = -Inf
argmax = Vector{Int}()
for (k, v) in pairs(d)
if v > max
max = v
argmax = [k]
elseif v == max
push!(argmax, k)
end
end
return rand(argmax)
end
abstract type FunctionContainer end
apply(fc::FC) where {FC <: FunctionContainer} = fc.f
apply(fc::FC, x, X) where {FC <: FunctionContainer} = convert(Float64, apply(fc)(x; X))
apply(fc::FC, x) where {FC <: FunctionContainer} = convert(Float64, apply(fc)(x))
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 2409 | """
Variable{D <: AbstractDomain}
A structure containing the necessary information for a solver's variables: `name`, `domain`, and `constraints` it belongs.
```
struct Variable{D <: AbstractDomain}
domain::D
constraints::Indices{Int}
end
```
"""
mutable struct Variable{D <: AbstractDomain}
domain::D
constraints::Indices{Int}
end
function Variable(D, x::Variable{D2}) where {D2 <: AbstractDomain}
return Variable{D}(x.domain, x.constraints)
end
# Methods: lazy forwarding from ConstraintDomains.domain.jl
@forward Variable.domain Base.length, Base.rand, Base.delete!, Base.isempty
# @forward Variable.domain get_domain, domain_size
add!(x::Variable, value) = ConstraintDomains.add!(x.domain, value)
get_domain(x::Variable) = ConstraintDomains.get_domain(x.domain)
domain_size(x::Variable) = ConstraintDomains.domain_size(x.domain)
"""
_get_constraints(x::Variable)
Access the list of `constraints` of `x`.
"""
_get_constraints(x::Variable) = x.constraints
"""
_add_to_constraint!(x::Variable, id)
Add a constraint `id` to the list of constraints of `x`.
"""
_add_to_constraint!(x::Variable, id) = set!(_get_constraints(x), id)
"""
_delete_from_constraint!(x::Variable, id)
Delete a constraint `id` from the list of constraints of `x`.
"""
_delete_from_constraint!(x::Variable, id) = delete!(x.constraints, id)
"""
_constriction(x::Variable)
Return the `cosntriction` of `x`, i.e. the number of constraints restricting `x`.
"""
_constriction(x::Variable) = length(x.constraints)
"""
x::Variable ∈ constraint
value ∈ x::Variable
Check if a variable `x` is restricted by a `constraint::Int`, or if a `value` belongs to the domain of `x`.
"""
Base.in(x::Variable, constraint) = constraint ∈ x.constraints
Base.in(value, x::Variable) = value ∈ x.domain
"""
variable(values::AbstractVector{T}, name::AbstractString; domain = :set) where T <: Number
variable(domain::AbstractDomain, name::AbstractString) where D <: AbstractDomain
Construct a variable with discrete domain. See the `domain` method for other options.
```julia
d = domain([1,2,3,4], types = :indices)
x1 = variable(d, "x1")
x2 = variable([-89,56,28], "x2", domain = :indices)
```
"""
variable() = Variable(domain(), Indices{Int}())
variable(domain::D) where {D <: AbstractDomain} = Variable(domain, Indices{Int}())
variable(vals) = isempty(vals) ? variable() : variable(domain(vals))
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 469 | """
o_mincut(graph, values; interdiction = 0)
Compute the capacity of a cut (determined by the state of the solver) with a possible `interdiction` on the highest capacited links.
"""
function o_mincut(graph, values; interdiction = 0)
capacity = Vector{Float64}()
n = size(graph, 1)
for i in 1:n, j in 1:n
(values[i] < values[n + 1] < values[j]) && push!(capacity, graph[i, j])
end
return sum(sort!(capacity)[1:(end - interdiction)])
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 205 | """
dist_extrema(values::T...) where {T <: Number}
Computes the distance between extrema in an ordered set.
"""
function o_dist_extrema(values)
m, M = extrema(values)
return Float64(M - m)
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 1047 | """
LeadSolver <: MetaSolver
Solver managed remotely by a MainSolver. Can manage its own set of local sub solvers.
"""
mutable struct LeadSolver <: MetaSolver
meta_local_id::Tuple{Int, Int}
model::_Model
options::Options
pool::Pool
rc_report::RemoteChannel
rc_sol::RemoteChannel
rc_stop::RemoteChannel
state::State
strategies::MetaStrategy
subs::Vector{_SubSolver}
end
function solver(
mlid, model, options, pool, rc_report, rc_sol, rc_stop, strats, ::Val{:lead})
l_options = deepcopy(options)
set_option!(l_options, "print_level", :silent)
ss = Vector{_SubSolver}()
return LeadSolver(
mlid, model, l_options, pool, rc_report, rc_sol, rc_stop, state(), strats, ss)
end
function _init!(s::LeadSolver)
_init!(s, :meta)
_init!(s, :local)
end
stop_while_loop(s::LeadSolver, ::Atomic{Bool}, ::Int, ::Float64) = isready(s.rc_stop)
function remote_stop!(s::LeadSolver)
isready(s.rc_stop) && take!(s.rc_stop)
put!(s.rc_sol, s.pool)
take!(s.rc_report)
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 4102 | """
MainSolver <: AbstractSolver
Main solver. Handle the solving of a model, and optional multithreaded and/or distributed subsolvers.
# Arguments:
- `model::Model`: A formal description of the targeted problem
- `state::_State`: An internal state to store the info necessary to a solving run
- `options::Options`: User options for this solver
- `subs::Vector{_SubSolver}`: Optional subsolvers
"""
mutable struct MainSolver <: MetaSolver
meta_local_id::Tuple{Int, Int}
model::_Model
options::Options
pool::Pool
rc_report::RemoteChannel
rc_sol::RemoteChannel
rc_stop::RemoteChannel
remotes::Dict{Int, Future}
state::State
status::Symbol
strategies::MetaStrategy
subs::Vector{_SubSolver}
time_stamps::TimeStamps
end
make_id(::Int, id, ::Val{:lead}) = (id, 0)
function solver(model = model();
options = Options(),
pool = pool(),
strategies = MetaStrategy(model)
)
mlid = (1, 0)
rc_report = RemoteChannel(() -> Channel{Nothing}(length(workers())))
rc_sol = RemoteChannel(() -> Channel{Pool}(length(workers())))
rc_stop = RemoteChannel(() -> Channel{Nothing}(1))
remotes = Dict{Int, Future}()
subs = Vector{_SubSolver}()
ts = TimeStamps(model)
return MainSolver(mlid, model, options, pool, rc_report, rc_sol, rc_stop,
remotes, state(), :not_called, strategies, subs, ts)
end
# Forwards from TimeStamps
@forward MainSolver.time_stamps add_time!, time_info, get_time
"""
empty!(s::Solver)
"""
function Base.empty!(s::MainSolver)
empty!(s.model)
s.state = state()
empty!(s.subs)
# TODO: empty remote solvers
end
"""
status(solver)
Return the status of a MainSolver.
"""
status(s::MainSolver) = s.status
function _init!(s::MainSolver)
_init!(s, :global)
_init!(s, :remote)
_init!(s, :meta)
_init!(s, :local)
end
function stop_while_loop(s::MainSolver, ::Atomic{Bool}, iter, start_time)
@debug "debug stop" iter (time()-start_time)
if !isready(s.rc_stop)
s.status = :solution_limit
return false
end
iter_sat = get_option(s, "iteration")[1] && has_solution(s)
iter_limit = iter > get_option(s, "iteration")[2]
if (iter_sat && iter_limit) || iter_limit
s.status = :iteration_limit
return false
end
time_sat = get_option(s, "time_limit")[1] && has_solution(s)
time_limit = time() - start_time > get_option(s, "time_limit")[2]
if (time_sat && time_limit) || time_limit
s.status = :time_limit
return false
end
return true
end
function remote_dispatch!(s::MainSolver)
for (w, ls) in s.remotes
remote_do(solve!, w, fetch(ls))
end
end
function post_process(s::MainSolver)
path = get_option(s, "info_path")
sat = is_sat(s)
if s.status == :not_called
s.status = :solution_limit
end
if !isempty(path)
info = Dict(
:solution => has_solution(s) ? collect(best_values(s)) : nothing,
:time => time_info(s),
:type => sat ? "Satisfaction" : "Optimization"
)
!sat && has_solution(s) && push!(info, :value => best_value(s))
write(path, JSON.json(info))
end
end
function remote_stop!(s::MainSolver)
isready(s.rc_stop) && take!(s.rc_stop)
sat = is_sat(s)
@info "Remote stop: report main pool" best_values(s.pool) has_solution(s) s.rc_report s.rc_sol s.rc_stop length(s.remotes)
if !sat || !has_solution(s)
@warn "debugging remote stop" nworkers() length(s.remotes)
while isready(s.rc_report) || isready(s.rc_sol)
wait(s.rc_sol)
t = take!(s.rc_sol)
@info "Remote stop: report remote pool" best_values(t) length(s.remotes)
update_pool!(s, t)
if sat && has_solution(t)
empty!(s.rc_report)
break
end
@info "mark 1"
isready(s.rc_report) && take!(s.rc_report)
@info "mark 2"
end
end
@info "Remote stop: report best pool" best_values(s.pool) length(s.remotes)
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 1182 | """
Abstract type to encapsulate all solver types that manages other solvers.
"""
abstract type MetaSolver <: AbstractSolver end
meta_id(s) = s.meta_local_id[1]
make_id(meta, id, ::Val{:sub}) = (meta, id)
function _check_subs(s::MetaSolver)
if is_sat(s)
for (id, ss) in enumerate(s.subs)
has_solution(ss) && return id
end
else
for (id, ss) in enumerate(s.subs)
bs = is_empty(s.pool) ? nothing : best_value(s)
bss = is_empty(ss.pool) ? nothing : best_value(ss)
isnothing(bs) && (isnothing(bss) ? continue : return id)
isnothing(bss) ? continue : (bss < bs && return id)
end
end
return 0
end
function solve_for_loop!(s::MetaSolver, stop, sat, iter, st)
@threads for id in 1:min(nthreads(), get_option(s, "threads"))
if id == 1
add_time!(s, 3) # only used by MainSolver
remote_dispatch!(s) # only used by MainSolver
add_time!(s, 4) # only used by MainSolver
solve_while_loop!(s, stop, sat, iter, st)
atomic_or!(stop, true)
else
solve!(s.subs[id - 1], stop)
end
end
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 951 | """
_SubSolver <: AbstractSolver
An internal solver type called by MetaSolver when multithreading is enabled.
# Arguments:
- `id::Int`: subsolver id for debugging
- `model::Model`: a ref to the model of the main solver
- `state::_State`: a `deepcopy` of the main solver that evolves independently
- `options::Options`: a ref to the options of the main solver
"""
mutable struct _SubSolver <: AbstractSolver
meta_local_id::Tuple{Int, Int}
model::_Model
options::Options
pool::Pool
state::State
strategies::MetaStrategy
end
function solver(mlid, model, options, pool, ::RemoteChannel,
::RemoteChannel, ::RemoteChannel, strats, ::Val{:sub})
sub_options = deepcopy(options)
set_option!(sub_options, "print_level", :silent)
return _SubSolver(mlid, model, sub_options, pool, state(), strats)
end
_init!(s::_SubSolver) = _init!(s, :local)
stop_while_loop(::_SubSolver, stop, ::Int, ::Float64) = !(stop[])
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 1979 | abstract type RestartStrategy end
# Random restart
struct RandomRestart <: RestartStrategy
reset_percentage::Float64
end
function restart(::Any, ::Val{:random}; rp = 0.05)
return RandomRestart(rp)
end
function check_restart!(rs::RandomRestart; tabu_length = nothing)
return rand() ≤ rs.reset_percentage
end
# Tabu restart
mutable struct TabuRestart <: RestartStrategy
index::Int
tenure::Int
limit::Int
reset_percentage::Float64
end
function restart(strategy, ::Val{:tabu}; rp = 1.0, index = 1)
limit = tenure(strategy, :tabu) - tenure(strategy, :pick)
return TabuRestart(index, tenure(strategy, :tabu), limit, rp)
end
function check_restart!(rs::TabuRestart; tabu_length)
a = rs.index * (tabu_length + rs.limit - rs.tenure)
b = (rs.index + 1) * rs.limit
# a = tabu_length + rs.limit - rs.tenure
# b = rs.limit
if rand() ≤ a / b
rs.index += 1
return true
end
return false
end
# Restart sequences
mutable struct RestartSequence{F <: Function} <: RestartStrategy
index::Int
current::Int
last_restart::Int
next::F
RestartSequence(seq) = new{typeof(seq)}(1, seq(1), 1, seq)
end
current(r) = r.current
function next!(r)
r.index += 1
r.current = r.next(r.index)
r.last_restart = 1
return r.current
end
inc_last!(rs) = rs.last_restart += 1
function check_restart!(rs::RestartSequence; tabu_length = nothing)
proceed = rs.current > rs.last_restart
proceed ? inc_last!(rs) : next!(rs)
return !proceed
end
## Universal restart sequence
function oeis(n, b, ::Val{:A082850})
m = log(b, n + 1)
return isinteger(m) ? Int(m) : oeis(n - (b^floor(m) - 1), :A082850)
end
oeis(n, b, ::Val{:A182105}) = b^(oeis(n, :A082850) - 1)
oeis(n, ref::Symbol, b = 2) = oeis(n, b, Val(ref))
restart(::Any, ::Val{:universal}) = RestartSequence(n -> oeis(n, :A182105))
# Generic restart constructor
restart(tabu, strategy::Symbol) = restart(tabu, Val(strategy))
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 2398 | abstract type TabuStrategy end
struct NoTabu <: TabuStrategy end
struct KeenTabu <: TabuStrategy
tabu_tenure::Int
tabu_list::Dictionary{Int, Int}
end
struct WeakTabu <: TabuStrategy
tabu_tenure::Int
pick_tenure::Int
tabu_list::Dictionary{Int, Int}
end
tabu() = NoTabu()
function tabu(tabu_tenure)
tabu_list = Dictionary{Int, Int}()
return KeenTabu(tabu_tenure, tabu_list)
end
function tabu(tabu_tenure, pick_tenure)
tabu_list = Dictionary{Int, Int}()
return WeakTabu(tabu_tenure, pick_tenure, tabu_list)
end
tenure(strategy, ::Val{:tabu}) = strategy.tabu_tenure
tenure(strategy::WeakTabu, ::Val{:pick}) = strategy.pick_tenure
tenure(::TabuStrategy, ::Val{:pick}) = zero(Int)
tenure(::NoTabu, ::Val{:tabu}) = zero(Int)
tenure(strategy, field) = tenure(strategy, Val(field))
"""
_tabu(s::S) where S <: Union{_State, AbstractSolver}
Access the list of tabu variables.
"""
tabu_list(ts) = ts.tabu_list
"""
_tabu(s::S, x) where S <: Union{_State, AbstractSolver}
Return the tabu value of variable `x`.
"""
tabu_value(ts, x) = tabu_list(ts)[x]
"""
_decrease_tabu!(s::S, x) where S <: Union{_State, AbstractSolver}
Decrement the tabu value of variable `x`.
"""
decrease_tabu!(ts, x) = tabu_list(ts)[x] -= 1
"""
_delete_tabu!(s::S, x) where S <: Union{_State, AbstractSolver}
Delete the tabu entry of variable `x`.
"""
delete_tabu!(ts, x) = delete!(tabu_list(ts), x)
"""
_empty_tabu!(s::S) where S <: Union{_State, AbstractSolver}
Empty the tabu list.
"""
empty_tabu!(ts) = Dictionaries.empty!(tabu_list(ts))
"""
_length_tabu!(s::S) where S <: Union{_State, AbstractSolver}
Return the length of the tabu list.
"""
length_tabu(ts) = length(tabu_list(ts))
"""
_insert_tabu!(s::S, x, tabu_time) where S <: Union{_State, AbstractSolver}
Insert the bariable `x` as tabu for `tabu_time`.
"""
insert_tabu!(ts, x, ::Val{:tabu}) = insert!(tabu_list(ts), x, max(1, tenure(ts, :tabu)))
insert_tabu!(ts::KeenTabu, x, kind::Symbol) = insert_tabu!(ts, x, Val(kind))
insert_tabu!(ts::WeakTabu, x, kind) = insert!(tabu_list(ts), x, max(1, tenure(ts, kind)))
insert_tabu!(ts, x, kind) = nothing
"""
_decay_tabu!(s::S) where S <: Union{_State, AbstractSolver}
Decay the tabu list.
"""
function decay_tabu!(ts)
foreach(
((x, tabu),) -> tabu == 1 ? delete_tabu!(ts, x) : decrease_tabu!(ts, x),
pairs(tabu_list(ts))
)
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 882 | @testset "Aqua.jl" begin
import Aqua
import LocalSearchSolvers
# TODO: Fix the broken tests and remove the `broken = true` flag
Aqua.test_all(
LocalSearchSolvers;
ambiguities = (broken = true,),
deps_compat = false,
piracies = (broken = false,),
unbound_args = (broken = false)
)
@testset "Ambiguities: LocalSearchSolvers" begin
# Aqua.test_ambiguities(LocalSearchSolvers;)
end
@testset "Piracies: LocalSearchSolvers" begin
Aqua.test_piracies(LocalSearchSolvers;)
end
@testset "Dependencies compatibility (no extras)" begin
Aqua.test_deps_compat(
LocalSearchSolvers;
check_extras = false # ignore = [:Random]
)
end
@testset "Unbound type parameters" begin
# Aqua.test_unbound_args(LocalSearchSolvers;)
end
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 59 | @testset "TestItemRunner" begin
@run_package_tests
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 2682 | d1 = domain([4, 3, 2, 1])
d2 = domain(1:4)
domains = Dictionary(1:2, [d1, d2])
@testset "Internals: Domains" begin
for d in domains
# constructors and ∈
for x in [1, 2, 3, 4]
@test x ∈ d
end
# length
@test length(d) == 4
# draw and ∈
@test rand(d) ∈ d
end
# add!
ConstraintDomains.add!(d1, 5)
@test 5 ∈ d1
# delete!
delete!(d1, 5)
@test 5 ∉ d1
end
x1 = variable([4, 3, 2, 1])
x2 = variable(d2)
x3 = variable() # TODO: tailored test for free variable
vars = Dictionary(1:2, [x1, x2])
@testset "Internals: variables" begin
for x in vars
# add and delete from constraint
LS._add_to_constraint!(x, 1)
LS._add_to_constraint!(x, 2)
LS._delete_from_constraint!(x, 2)
@test x ∈ 1
@test x ∉ 2
@test LS._constriction(x) == 1
@test length(x) == 4
for y in [1, 2, 3, 4]
@test y ∈ x
end
@test rand(x) ∈ x
end
add!(x1, 5)
@test 5 ∈ x1
delete!(x1, 5)
@test 5 ∉ x1
end
values = [1, 2, 3]
inds = [1, 2]
err = (x; X) -> error_f(USUAL_CONSTRAINTS[:all_different])(x)
c1 = constraint(err, inds)
c2 = constraint(err, inds)
cons = Dictionary(1:2, [c1, c2])
@testset "Internals: constraints" begin
for c in cons
LS._add!(c, 3)
@test 3 ∈ c
LS._delete!(c, 3)
@test 3 ∉ c
@test LS._length(c) == 2
c.f(values; X = Matrix{Float64}(undef, 3, CompositionalNetworks.max_icn_length()))
end
end
o1 = objective(sum, "Objective 1: sum")
o2 = objective(prod, "Objective 2: product")
objs = Dictionary(1:2, [o1, o2])
@testset "Internals: objectives" begin
for o in objs
@test o.f(values) == 6
end
end
m = model()
# LocalSearchSolvers.describe(m)
x1 = variable([4, 3, 2, 1])
x2 = variable(d2)
vars = Dictionary(1:2, [x1, x2])
values = [1, 2, 3]
inds = [1, 2]
c1 = constraint(err, inds)
c2 = constraint(err, inds)
cons = Dictionary(1:2, [c1, c2])
o1 = objective(sum, "Objective 1: sum")
o2 = objective(prod, "Objective 2: product")
objs = Dictionary(1:2, [o1, o2])
@testset "Internals: model" begin
for x in vars
add!(m, x)
end
variable!(m, d1)
for c in cons
add!(m, c)
end
constraint!(m, err, [1, 2])
for o in objs
add!(m, o)
end
objective!(m, max)
length_var(m, 1)
length_cons(m, 1)
constriction(m, 1)
draw(m, 1)
get_objective(m, 1)
delete_value!(m, 1, 1)
add_value!(m, 1, 1)
delete_var_from_cons!(m, 1, 1)
add_var_to_cons!(m, 1, 1)
# describe(m)
end
## Test Solver
s1 = solver()
LS.get_error(LS.EmptyState())
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 6303 | function mincut(graph; source, sink, interdiction = 0)
m = model(; kind = :cut)
n = size(graph, 1)
d = domain(0:n)
separator = n + 1 # value that separate the two sides of the cut
# Add variables:
foreach(_ -> variable!(m, d), 0:n)
# Extract error function from usual_constraint
e1 = (x; X) -> error_f(USUAL_CONSTRAINTS[:ordered])(x)
e2 = (x; X) -> error_f(USUAL_CONSTRAINTS[:all_different])(x)
# Add constraint
constraint!(m, e1, [source, separator, sink])
constraint!(m, e2, 1:(n + 1))
# Add objective
objective!(m, (x...) -> o_mincut(graph, x...; interdiction))
return m
end
function golomb(n, L = n^2)
m = model(; kind = :golomb)
# Add variables
d = domain(0:L)
foreach(_ -> variable!(m, d), 1:n)
# Extract error function from usual_constraint
e1 = (x; X) -> error_f(USUAL_CONSTRAINTS[:all_different])(x)
e2 = (x; X) -> error_f(USUAL_CONSTRAINTS[:all_equal])(x; val = 0)
e3 = (x; X) -> error_f(USUAL_CONSTRAINTS[:dist_different])(x)
# # Add constraints
constraint!(m, e1, 1:n)
constraint!(m, e2, 1:1)
for i in 1:(n - 1), j in (i + 1):n, k in i:(n - 1), l in (k + 1):n
(i, j) < (k, l) || continue
constraint!(m, e3, [i, j, k, l])
end
# Add objective
objective!(m, o_dist_extrema)
return m
end
function sudoku(n; start = nothing)
N = n^2
d = domain(1:N)
m = model(; kind = :sudoku)
# Add variables
if isnothing(start)
foreach(_ -> variable!(m, d), 1:(N^2))
else
foreach(((x, v),) -> variable!(m, 1 ≤ v ≤ N ? domain(v) : d), pairs(start))
end
e = (x; X) -> error_f(USUAL_CONSTRAINTS[:all_different])(x)
# Add constraints: line, columns; blocks
foreach(i -> constraint!(m, e, (i * N + 1):((i + 1) * N)), 0:(N - 1))
foreach(i -> constraint!(m, e, [j * N + i for j in 0:(N - 1)]), 1:N)
for i in 0:(n - 1)
for j in 0:(n - 1)
vars = Vector{Int}()
for k in 1:n
for l in 0:(n - 1)
push!(vars, (j * n + l) * N + i * n + k)
end
end
constraint!(m, e, vars)
end
end
return m
end
@testset "Raw solver: internals" begin
models = [
sudoku(2)
]
for m in models
# @info describe(m)
options = Options(
print_level = :verbose,
time_limit = Inf,
iteration = Inf,
info_path = "info.json",
process_threads_map = Dict{Int, Int}(
[2 => 2, 3 => 1]
))
s = solver(m; options)
for x in keys(get_variables(s))
@test get_name(s, x) == "x$x"
for c in get_cons_from_var(s, x)
@test x ∈ get_vars_from_cons(s, c)
end
@test constriction(s, x) == 3
@test draw(s, x) ∈ get_domain(s, x)
end
for c in keys(get_constraints(s))
@test length_cons(s, c) == 4
end
for x in keys(get_variables(s))
add_var_to_cons!(s, 3, x)
delete_var_from_cons!(s, 3, x)
@test length_var(s, x) == 4
end
for c in keys(get_constraints(s))
add_var_to_cons!(s, c, 17)
@test length_cons(s, c) == 5
@test 17 ∈ get_constraint(s, c)
delete_var_from_cons!(s, c, 17)
@test length_cons(s, c) == 4
end
solve!(s)
solution(s)
# TODO: temp patch for coverage, make it nice
for x in keys(LocalSearchSolvers.tabu_list(s))
LocalSearchSolvers.tabu_value(s, x)
end
# LocalSearchSolvers._values!(s, Dictionary{Int,Int}())
# display(solution(s))
@info time_info(s)
rm("info.json")
end
end
@testset "Raw solver: sudoku" begin
sudoku_instance = collect(Iterators.flatten([9 3 0 0 0 0 0 4 0
0 0 0 0 4 2 0 9 0
8 0 0 1 9 6 7 0 0
0 0 0 4 7 0 0 0 0
0 2 0 0 0 0 0 6 0
0 0 0 0 2 3 0 0 0
0 0 8 5 3 1 0 0 2
0 9 0 2 8 0 0 0 0
0 7 0 0 0 0 0 5 3]))
s = solver(sudoku(3; start = sudoku_instance);
options = Options(print_level = :minimal, iteration = Inf, time_limit = 10))
display(Dictionary(1:length(sudoku_instance), sudoku_instance))
solve!(s)
display(solution(s))
display(s.time_stamps)
end
@testset "Raw solver: golomb" begin
s = solver(golomb(5); options = Options(print_level = :minimal, iteration = 1000))
solve!(s)
@info "Results golomb!"
@info "Values: $(get_values(s))"
@info "Sol (val): $(best_value(s))"
@info "Sol (vals): $(!isnothing(best_value(s)) ? best_values(s) : nothing)"
end
@testset "Raw solver: mincut" begin
graph = zeros(5, 5)
graph[1, 2] = 1.0
graph[1, 3] = 2.0
graph[1, 4] = 3.0
graph[2, 5] = 1.0
graph[3, 5] = 2.0
graph[4, 5] = 3.0
s = solver(
mincut(graph, source = 1, sink = 5), options = Options(print_level = :minimal))
solve!(s)
@info "Results mincut!"
@info "Values: $(get_values(s))"
@info "Sol (val): $(best_value(s))"
@info "Sol (vals): $(!isnothing(best_value(s)) ? best_values(s) : nothing)"
s = solver(mincut(graph, source = 1, sink = 5, interdiction = 1),
options = Options(print_level = :minimal))
solve!(s)
@info "Results 1-mincut!"
@info "Values: $(get_values(s))"
@info "Sol (val): $(best_value(s))"
@info "Sol (vals): $(!isnothing(best_value(s)) ? best_values(s) : nothing)"
s = solver(mincut(graph, source = 1, sink = 5, interdiction = 2);
options = Options(print_level = :minimal, time_limit = 15, iteration = Inf))
# @info describe(s)
solve!(s)
@info "Results 2-mincut!"
@info "Values: $(get_values(s))"
@info "Sol (val): $(best_value(s))"
@info "Sol (vals): $(!isnothing(best_value(s)) ? best_values(s) : nothing)"
@info time_info(s)
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | code | 394 | using Distributed
import ConstraintDomains
import CompositionalNetworks
@everywhere using Constraints
using Dictionaries
@everywhere using LocalSearchSolvers
using Test
using TestItemRunner
using TestItems
const LS = LocalSearchSolvers
@testset "LocalSearchSolvers.jl" begin
include("Aqua.jl")
include("TestItemRunner.jl")
include("internal.jl")
include("raw_solver.jl")
end
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.4.9 | e592c828aabfbc829a55af6edbac589681bdf856 | docs | 5469 | # LocalSearchSolvers
[](https://JuliaConstraints.github.io/LocalSearchSolvers.jl/dev)
[](https://JuliaConstraints.github.io/LocalSearchSolvers.jl/stable)
[](https://github.com/JuliaConstraints/LocalSearchSolvers.jl/actions)
[](https://codecov.io/gh/JuliaConstraints/LocalSearchSolvers.jl)
[](https://github.com/invenia/BlueStyle)
# Constraint-Based Local Search Framework
The **LocalSearchSolvers.jl** framework proposes sets of technical components of Constraint-Based Local Search (CBLS) solvers and combine them in various ways. Make your own CBLS solver!
A higher-level *JuMP* interface is available as [CBLS.jl](https://github.com/JuliaConstraints/CBLS.jl) and is the recommended way to use this package. A set of examples is available within [ConstraintModels.jl](https://github.com/JuliaConstraints/ConstraintModels.jl).

### Dependencies
This package makes use of several dependencies from the JuliaConstraints GitHub org:
- [ConstraintDomains.jl](https://github.com/JuliaConstraints/ConstraintDomains.jl): a domains back-end package for all JuliaConstraints front packages
- [Constraints.jl](https://github.com/JuliaConstraints/Constraints.jl): a constraints back-end package for all JuliaConstraints front packages
- [CompositionalNetworks.jl](https://github.com/JuliaConstraints/CompositionalNetworks.jl): a module to learn error functions automatically given a *concept*
- [Garamon.jl](https://github.com/JuliaConstraints/Garamon.jl) (incoming): geometrical constraints
It also relies on great packages from the julialang ecosystem, among others,
- [ModernGraphs.jl](https://github.com/Humans-of-Julia/ModernGraphs.jl) (incoming): a dynamic multilayer framework for complex graphs which allows a fine exploration of entangled neighborhoods
### Related packages
- [JuMP.jl](https://github.com/jump-dev/JuMP.jl): a rich interface for optimization solvers
- [CBLS.jl](https://github.com/JuliaConstraints/CBLS.jl): the actual interface with JuMP for `LocalSearchSolvers.jl`
- [ConstraintModels.jl](https://github.com/JuliaConstraints/ConstraintModels.jl): a dataset of models for Constraint Programming
- [COPInstances.jl](https://github.com/JuliaConstraints/COPInstances.jl) (incoming): a package to store, download, and generate combinatorial optimization instances
### Features
Wanted features list:
- **Strategies**
- [ ] *Move*: local move, permutation between `n` variables
- [ ] *Neighbor*: simple or multiplexed neighborhood, dimension/depth
- [ ] *Objective(s)*: single/multiple objectives, Pareto, etc.
- [ ] *Parallel*: distributed and multi-threaded, HPC clusters
- [ ] *Perturbation*: dynamic, restart, pool of solutions
- [ ] *Portfolio*: portfolio of solvers, partition in sub-problems
- [ ] *Restart*
- [x] restart sequence
- [ ] partial/probabilistic restart (in coordination with perturbation strategies)
- [ ] *Selection* of variables: roulette selection, multi-variables, meta-variables (cf subproblem)
- [ ] *Solution(s)*: management of pool, best versus diverse
- [x] *Tabu*
- [x] No Tabu
- [x] Weak-tabu
- [x] Keen-tabu
- [ ] *Termination*: when, why, how, interactive, results storage (remote)
- **Featured strategies**
- [ ] Adaptive search
- [ ] Extremal optimization
- **Others**
- [ ] Resolution of problems
- [x] SATisfaction
- [x] OPTimisation (single-objective)
- [ ] OPTimisation (multiple-objective)
- [ ] Dynamic problems
- [ ] Domains
- [x] Discrete domains (any type of numbers)
- [x] Continuous domains
- [ ] Arbitrary Objects such as physical ones
- [ ] Domain Specific Languages (DSL)
- [x] Straight Julia `:raw`
- [x] JuMP*ish* | MathOptInterface.jl
- [ ] MiniZinc
- [ ] OR-tools ?
- [ ] Learning settings (To be incorporated in [MetaStrategist.jl](https://github.com/JuliaConstraints/MetaStrategist.jl))
- [x] Compositional Networks (error functions, cost functions)
- [ ] Reinforcement learning for above mentioned learning features
- [ ] Automatic benchmarking and learning from all the possible parameter combination (instance, model, solver, size, restart, hardware, etc.)
### Contributing
Contributions to this package are more than welcome and can be arbitrarily, and not exhaustively, split as follows:
- All features mentioned above
- Adding new constraints and symmetries
- Adding new problems and instances
- Adding new ICNs to learn error of existing constraints
- Creating other compositional networks which target other kind of constraints
- Just making stuff better, faster, user-friendlier, etc.
#### Contact
Do not hesitate to contact me (@azzaare) or other members of JuliaConstraints on GitHub (file an issue), the julialang [Discourse](https://discourse.julialang.org) forum, the julialang [Slack](https://julialang.org/slack/) workspace, the julialang [Zulip](https://julialang.zulipchat.com/) server (*Constraint Programming* stream), or the Humans of Julia [Humans-of-Julia](https://humansofjulia.org/) discord server(*julia-constraint* channel).
| LocalSearchSolvers | https://github.com/JuliaConstraints/LocalSearchSolvers.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 339 | push!(LOAD_PATH, "../src/")
using BellDiagonalQudits
using Documenter
makedocs(
sitename="BellDiagonalQudits.jl",
modules=[BellDiagonalQudits],
pages=[
"Home" => "index.md",
"Manual" => "manual.md",
"Library" => "library.md"
])
deploydocs(;
repo="github.com/kungfugo/BellDiagonalQudits.jl"
)
| BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 1763 | module BellDiagonalQudits
using LinearAlgebra: eigvals, I, Hermitian, tr, dot, normalize, Diagonal, norm, svd
using QuantumInformation: proj, ket, bra, ketbra, max_entangled, ⊗, reshuffle, norm_trace, ppt, fidelity
using Distributions: Uniform, Normal
using Permutations: Permutation
using LazySets: VPolytope, HPolytope, tohrep, tovrep, vertices_list, ∈
using Polyhedra
using Optim
using AbstractAlgebra: inv, residue_ring, ZZ
export
CoordState, StandardBasis, DensityState, BoundedCoordEW, AnalysisSpecification, ClassConflictException, AnalysedCoordState,
uniform_bell_sampler, create_random_coordstates, create_standard_indexbasis, create_densitystate, create_bipartite_weyloperator_basis, create_alt_indexbasis, create_altbellstate,
create_kernel_polytope, extend_vpolytope_by_densitystates,
create_random_bounded_ews, get_bounded_coordew,
generate_symmetries, get_symcoords,
analyse_coordstate, sym_analyse_coordstate, classify_analyzed_states!, concurrence_qp_gendiagonal_check,
create_dictionary_from_basis, create_standard_mub,
tovrep,
FIMAX_routine, P1_P2_routine, DEJMPS_routine, BBPSSW_routine,
iterative_FIMAX_protocol, iterative_P1_P2_protocol, iterative_DEJMPS_protocol, iterative_BBPSSW_protocol,
efficiency
include("structs.jl")
include("Utils/utils.jl")
include("BellStates/bellStates.jl")
include("Parameterization/parameterization.jl")
include("Optimization/optimization.jl")
include("EntanglementWitnesses/eWitnesses.jl")
include("Symmetries/symmetries.jl")
include("EntanglementChecks/concurrence.jl")
include("EntanglementChecks/mub.jl")
include("EntanglementChecks/entanglementChecks.jl")
include("SeparableStates/separableStates.jl")
include("Distillation/stabilizerDistillation.jl")
end
| BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 4588 | """
Represents a Bell basis related to Weyl operators.
- basis: Array with elements containing Bell basis density matrices, Weyl- and flat indices.
"""
struct StandardBasis
basis::Array{Tuple{Int64,Tuple{Int64,Int64},Array{Complex{Float64},2}},1}
end;
"""
Represents a Bell diagonal state in Bell basis.
- coords: Coordinates in Bell basis.
- eClass: Entanglement class of the represented state.
"""
mutable struct CoordState
coords::Array{Float64,1}
eClass::String
end;
"""
Represents a Bell diagonal state.
- coords: Coordinates in Bell basis.
- densityMatrix: Hermitian density matrix in computational basis.
- eClass: Entanglement class of the represented state.
"""
mutable struct DensityState
coords::Array{Float64,1}
densityMatrix::Hermitian{Complex{Float64},Array{Complex{Float64},2}}
eClass::String
end;
"""
Represents an operator to detect Bell diagonal entangled states.
- coords: Coordinates in Bell basis
- operatorMatrix: Hermitian matrix representing the linear operator in computational basis.
"""
mutable struct EntanglementWitness
coords::Array{Float64,1}
operatorMatrix::Hermitian{Complex{Float64},Array{Complex{Float64},2}}
end;
"""
Represents an entanglement witness ``W`` with extrema and extremizers to detect entangled Bell diagonal states.
- coords: Coordinates in Bell basis.
- upperBound: Upper bound of ``tr W \\rho`` satisfied by all separable states ``\\rho``. Violation detects entanglement.
- lowerBound: Lower bound of ``tr W \\rho`` satisfied by all separable states ``\\rho``. Violation detects entanglement.
- maximizingDensityMatrix: Density matrix of separable state ``\\rho`` in computational basis, maximizing ``tr W \\rho``.
- minimizingDensityMatrix: Density matrix of separable state ``\\rho`` in computational basis. minimizing ``tr W \\rho``.
- checkedIterations: Number of iterations used in the optimization of bounds.
"""
mutable struct BoundedEW
coords::Array{Float64,1}
upperBound::Float64
lowerBound::Float64
maximizingDensityMatrix::Hermitian{Complex{Float64},Array{Complex{Float64},2}}
minimizingDensityMatrix::Hermitian{Complex{Float64},Array{Complex{Float64},2}}
checkedIterations::Int64
end;
"""
Represents an entanglement witness ``W`` with extrema to detect entangled Bell diagonal states.
- coords: Coordinates in Bell basis.
- upperBound: Upper bound of ``tr W \\rho`` satisfied by all separable states ``\\rho``. Violation detects entanglement.
- lowerBound: Lower bound of ``tr W \\rho`` satisfied by all separable states ``\\rho``. Violation detects entanglement.
- checkedIterations: Number of iterations used in the optimization of bounds.
"""
mutable struct BoundedCoordEW
coords::Array{Float64,1}
upperBound::Float64
lowerBound::Float64
checkedIterations::Int64
end;
"""
Specification which entanglement checks to use.
- kernel_check
- spinrep_check
- ppt_check
- realignment_check
- concurrence_qp_check
- mub_check
- numeric_ew_check
- useSymmetries
"""
mutable struct AnalysisSpecification
kernel_check::Bool
spinrep_check::Bool
ppt_check::Bool
realignment_check::Bool
concurrence_qp_check::Bool
mub_check::Bool
numeric_ew_check::Bool
useSymmetries::Bool
end
"""
Representing an entanglement analyzed Bell diagonal state.
- coordState: The analyzed `CoordState`
- kernel: `true` if kernel check successful, else `false`. `missing` if entanglement check not applied.
- spinrep: `true` if spinrep check successful, else `false`. `missing` if entanglement check not applied.
- ppt: `true` if ppt check successful, else `false`. `missing` if entanglement check not applied.
- realign: `true` if realignment check successful, else `false`. `missing` if entanglement check not applied.
- concurrence: `true` if concurrence check successful, else `false`. `missing` if entanglement check not applied.
- mub: `true` if mub check successful, else `false`. `missing` if entanglement check not applied.
- numericEW: `true` if numericEW check successful, else `false`. `missing` if entanglement check not applied.
"""
mutable struct AnalysedCoordState
coordState::CoordState
kernel::Union{Missing,Bool}
spinrep::Union{Missing,Bool}
ppt::Union{Missing,Bool}
realign::Union{Missing,Bool}
concurrence::Union{Missing,Bool}
mub::Union{Missing,Bool}
numericEW::Union{Missing,Bool}
end;
"""
Exception for conflicts in analysis results.
- state: The `AnalysedCoordState` for which a conflict occurs.
"""
struct ClassConflictException <: Exception
state::AnalysedCoordState
end; | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 11864 | """
uniform_bell_sampler(n, d, object=:magicSimplex, precision=10)
Create array of `n` uniformly distributed ``d^2`` Bell diagonal states represented as `CoordState` rounded to `precision` digits.
Use `object=:enclosurePolytope` to create CoordStates in the enclosure polytope, having all ``coords \\leq 1/d``.
"""
function uniform_bell_sampler(n, d, object=:magicSimplex, precision=10)
productParams = Array{CoordState}(undef, 0)
nFound = 0
while nFound < n
u = zeros(d^2 + 1)
u[2:(d^2)] = sort(vec(rand(Uniform(0, 1), 1, (d^2 - 1))))
u[d^2+1] = 1
coords = round.(diff(u), digits=precision)
if object != :enclosurePolytope || all(x -> x <= 1 / d, coords)
push!(productParams, CoordState(coords, "UNKNOWN"))
nFound += 1
end
end
return productParams
end
"""
create_random_coordstates(nSamples, d, object=:magicSimplex, precision=10, roundToSteps::Int=0, nTriesMax=10000000)
Return an array of `nSamples` `` d^2 `` dimensional CoordStates.
Use the `object` to specify the coordinate ranges to [0,1] for 'magicSimplex' or [0, 1/d] for 'enclosurePolytope'.
If `roundToSteps` > 0, round the coordinates to the vertices that divide the range in `roundToSteps`` equally sized sections.
Be aware that the resulting distribution of points is generally not uniform.
"""
function create_random_coordstates(nSamples, d, object=:magicSimplex, precision=10, roundToSteps::Int=0)::Array{CoordState}
productParams = Array{CoordState}(undef, 0)
nFound = 0
if object != :enclosurePolytope
while (nFound < nSamples)
# only parameters which build a convex sum relevant
c = vec(rand(Uniform(0, 1), 1, (d^2 - 1)))
# If wanted, move random point to nearest step-point
if roundToSteps > 0
c = round.(roundToSteps * c) / roundToSteps
end
c = round.(c, digits=precision)
if sum(c) <= 1
push!(c, round(1 - sum(c), digits=precision))
paramState = CoordState(c, "UNKNOWN")
push!(productParams, paramState)
nFound += 1
end
end
else
while (nFound < nSamples)
c = vec(rand(Uniform(0, 1 / d), 1, (d^2 - 1)))
if roundToSteps > 0
c = round.(roundToSteps * d * c) / (roundToSteps * d)
end
c = round.(c, digits=precision)
if (1 - 1 / d) <= sum(c) <= 1
push!(c, round(1 - sum(c), digits=precision))
paramState = CoordState(c, "UNKNOWN")
push!(productParams, paramState)
nFound += 1
end
end
end
return productParams
end
"""
create_bipartite_maxentangled(d)
Return maximally entangled pure state of a bipartite system of dimension ``d^2``.
"""
function create_bipartite_maxentangled(d)
return proj(max_entangled(d * d))
end
"""
weyloperator(d, k, l)
Return the ``(d,d)``- dimensional matrix representation of Weyl operator ``W_{k,l}``.
"""
function weyloperator(d, k, l)
weylKetBra = zeros(Complex{Float64}, d, d)
for j in (0:d-1)
weylKetBra = weylKetBra + exp((2 / d * π * im) * j * k) * ketbra(j + 1, mod(j + l, d) + 1, d, d)
end
return weylKetBra
end
"""
get_intertwiner(d, k, l)
Return the tensor product ``W_{k,l} \\otimes \\mathbb{1}_d``.
"""
function get_intertwiner(d, k, l)
w = weyloperator(d, k, l)
Id = I(d)
return w ⊗ Id
end
"""
weyltrf(d, ρ, k, l)
Apply the ``(k,l)``-th Weyl transformation of dimension `d` to the density matrix `ρ`. Return ``W_{k,l} \\rho W_{k,l}^\\dagger``.
"""
function weyltrf(d, ρ, k, l)
@assert size(ρ)[1] == d * d && size(ρ)[2] == d * d
W = get_intertwiner(d, k, l)
ρTrf = W * ρ * W'
return ρTrf
end
"""
create_basis_state_operators(d, bellStateOperator, precision)
Use maximally entangled Bell state `bellStateOperator` of dimension `d` to create Bell basis and return with corresponding flat and Weyl indices.
"""
function create_basis_state_operators(d, bellStateOperator, precision)
mIt = Iterators.product(fill(0:(d-1), 2)...)
basisStates = Array{
Tuple{
Int,
Tuple{Int,Int},
Array{Complex{Float64},2}
},
1}(undef, 0)
for (index, value) in enumerate(mIt)
k = value[1]
l = value[2]
#Weyl transformation to basis states
P_kl = Hermitian(round.(weyltrf(d, bellStateOperator, k, l), digits=precision))
push!(basisStates, (index, value, P_kl))
end
return basisStates
end
"""
create_standard_indexbasis(d, precision)
Return indexed Bell basis for `d` dimensions as `StandardBasis` rounded to `precision` digits.
"""
function create_standard_indexbasis(d, precision)::StandardBasis
maxEntangled = create_bipartite_maxentangled(d)
standardBasis = StandardBasis(create_basis_state_operators(d, maxEntangled, precision))
return standardBasis
end
"""
create_densitystate(coordState::CoordState, standardBasis::StandardBasis)
Return `DensityState`` containing the density matrix in computational basis based on `coordState` coordinates in Bell `standardBasis`.
"""
function create_densitystate(coordState::CoordState, standardBasis::StandardBasis)::DensityState
basisOps = map(x -> x[3], standardBasis.basis)
densityState = DensityState(
coordState.coords,
Hermitian(generic_vectorproduct(coordState.coords, basisOps)),
coordState.eClass
)
return densityState
end
"""
create_weyloperator_basis(d)
Return vector of length ``d^2``, containing the Weyl operator basis for the ``(d,d)`` dimensionalmatrix space.
"""
function create_weyloperator_basis(d)::Vector{Array{Complex{Float64},2}}
weylOperatorBasis = []
for i in (0:(d-1))
for j in (0:(d-1))
push!(weylOperatorBasis, weyloperator(d, i, j))
end
end
return weylOperatorBasis
end
"""
create_bipartite_weyloperator_basis(d)
Return vector of length ``d^4``, containing the product basis of two Weyl operator bases as basis for the ``(d^2,d^2)`` matrix space.
"""
function create_bipartite_weyloperator_basis(d)::Vector{Array{Complex{Float64},2}}
weylOperatorBasis = create_weyloperator_basis(d)
bipartiteWeylOperatorBasis = []
for k in weylOperatorBasis
for l in weylOperatorBasis
push!(bipartiteWeylOperatorBasis, k ⊗ l)
end
end
return bipartiteWeylOperatorBasis
end
"""
create_dimelement_sublattices(d)
Return all sublattices with `d` elements represented as vector of tuples in the ``d^2`` elements discrete phase space induced by Weyl operators.
"""
function create_dimelement_sublattices(d)
propDivs = get_properdivisors(d)
allLattices = Array{Array{Tuple{Int,Int},1},1}(undef, 0)
allPoints = Iterators.product(fill(0:(d-1), 2)...)
for point in allPoints
px = point[1]
py = point[2]
# Get horizontal line through point
sSubLattice = Array{Tuple{Int,Int},1}(undef, 0)
for s in (0:(d-1))
sPoint = ((px + s) % d, py)
push!(sSubLattice, sPoint)
end
push!(allLattices, sSubLattice)
# Get vertical and diagonal lines through point
for k in (0:(d-1))
kSubLattice = Array{Tuple{Int,Int},1}(undef, 0)
for s in (0:(d-1))
ksPoint = ((px + k * s) % d, (py + s) % d)
push!(kSubLattice, ksPoint)
end
push!(allLattices, kSubLattice)
end
# Get sublattices including point
for b in propDivs
for x in (0:b-1)
xbSubLattice = Array{Tuple{Int,Int},1}(undef, 0)
for u in (0:(d/b-1))
for v in (0:(b-1))
xuvbPoint = ((px + u * b + x * b) % d, (py + v * d / b) % d)
push!(xbSubLattice, xuvbPoint)
end
end
push!(allLattices, xbSubLattice)
end
end
end
# remove duplicates
allLattices = unique(sort.(allLattices))
return allLattices
end
"""
create_index_sublattice_state(standardBasis::StandardBasis, subLattice)
Return collection of `standardBasis` elements contributing to the state corresponding to the `sublattice`, coordinates in Bell basis and density matrix in computational basis.
"""
function create_index_sublattice_state(standardBasis::StandardBasis, subLattice)
lengthSub = length(subLattice)
subBasisStates = Array{
Tuple{
Int,
Array{Complex{Float64},2}
},
1}(undef, 0)
#Go through all points and select for each the index and basis state
for point in subLattice
# find basis state that belongs to the given element of the sublattice
foundIndex = findfirst(x -> x[2] == point, standardBasis.basis)
push!(subBasisStates, (foundIndex, standardBasis.basis[foundIndex][3]))
end
indices = Array{Int,1}(undef, 0)
subLatticeState = zeros(Complex{Float64}, size(standardBasis.basis[1][3]))
# Collect indices and add basis state
for state in subBasisStates
push!(indices, state[1])
subLatticeState = subLatticeState + state[2]
end
#Get corresponding coordinates
coordinates = map_indices_to_normcoords(indices, length(standardBasis.basis))
# Collection of indices of basis elements which are equally mixed
indexSubLatticeState = [indices, coordinates, 1 / lengthSub * subLatticeState]
return indexSubLatticeState
end
"""
altbell_creatingoperator(d, k, l, α)
Return the ``(d,d)``- dimensional matrix representation of an alternative operator that is used to create Bell states ``V_{k,l}``.
``V_{k,l} ⊗ Id Ω_00`` creates ``1/√d * ∑ω^(ks)*α_(s,l) ket{s-l} ⊗ ket{s}``
"""
function altbell_creatingoperator(d, k, l, α::Matrix{Complex{Float64}})
operatorKetBra = zeros(Complex{Float64}, d, d)
@assert size(α) == (d, d)
#Normalize
α = map(x -> x / abs(x), α)
for j in (0:d-1)
operatorKetBra = operatorKetBra + (
exp((2 / d * π * im) * (j + l) * k)
* α[mod(j + l, d)+1, l+1]
* ketbra(j + 1, mod(j + l, d) + 1, d, d)
)
end
return operatorKetBra
end
"""
create_altbellstate(state(d,k,l,α, returnDensity)
Return an alternative Bell state in the computational basis.
Return denisty matrix unless returnDensity=false, in which case return state vector.
"""
function create_altbellstate(d, k, l, α::Matrix{Complex{Float64}}, returnDensity::Bool=true)
V_kl = altbell_creatingoperator(d, k, l, α)
IV_kl = V_kl ⊗ I(d)
me = max_entangled(d * d)
if returnDensity
return (proj(IV_kl * me))
else
return (IV_kl * me)
end
end
"""
create_alt_indexbasis(d, l, α, precision)
Return alternative indexed Bell basis for `d` dimensions as `StandardBasis` rounded to `precision` digits.
Elements of secondary index `l` are replaced by alternative Bell state defined by `d`-element vector of phases `α`.
"""
function create_alt_indexbasis(d, α::Matrix{Complex{Float64}}, precision)::StandardBasis
altIndexbasis = create_standard_indexbasis(d, precision)
for (k, l) in Iterators.product(fill(0:(d-1), 2)...)
#Weyl transformation to basis states
P_alt_kl = rounddigits(Hermitian(create_altbellstate(d, k, l, α)), precision)
#Find corresponding standard basis element
elIndex = findfirst(x -> x[2] == (k, l), altIndexbasis.basis)
#Replace element
altIndexbasis.basis[elIndex] = (elIndex, (k, l), P_alt_kl)
end
return (altIndexbasis)
end | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 24759 | """
canonic_eigenbasis_weylprime(d, E)
Create array of eigenvectors-eigenvalue tuples for Weyl operator indexed by tuple `E` in dimension `d`.
"""
function canonic_eigenbasis_weylprime(d, E::Tuple{Int,Int})
(a, b) = E
ES = []
if d == 2
for n in 0:1
if (a, b) == (0, 0)
λ = 0
ev_n = (modket(n, 2), λ)
elseif b == 0
λ = n
ev_n = (modket(n * b, 2), λ)
else
λ = n + 1 / 2 * (mod(a * b, 2))
ev_n = (1 / sqrt(2) * (modket(0, 2) + exp(2 / d * π * im*λ) * modket(1, 2)), λ)
end
push!(ES, ev_n)
end
else
R, = residue_ring(ZZ, d)
for λ in 0:(d-1)
if (a, b) == (0, 0)
ev_λ = (modket(λ, d), 0)
elseif b == 0
inv_a = Int(inv(R(a)).data)
ev_λ = (modket(λ * inv_a, d), λ)
else
inv_b = Int(inv(R(b)).data)
if d == 2
inv_2 = 0
else
>
inv_2 = Int(inv(R(2)).data)
end
ev = 1 / sqrt(d) * modket(0, d)
for j in 1:(d-1)
Γ_λj = Int(R(j * inv_b * λ - j * inv_b * (j * inv_b - 1) * inv_2 * a * b).data)
ev += 1 / sqrt(d) * exp(2 / d * π * im * Γ_λj) * modket(j, d)
end
ev_λ = (ev, λ)
end
push!(ES, ev_λ)
end
end
return (ES)
end
"""
create_canonic_enconding(g, d)
Return unitary matrix as encoding for generating stabilizer element `g` in demension`d`.
"""
function create_canonic_enconding(g::Vector{Tuple{Int,Int}}, d)
@assert length(g) == 2
(i_1, j_1) = g[1]
(i_2, j_2) = g[2]
ES1 = canonic_eigenbasis_weylprime(d, g[1])
ES2 = canonic_eigenbasis_weylprime(d, g[2])
if d == 2
u = []
for b in 0:1
λ = mod(b + 1 / 2 * mod(i_1 * j_1 + i_2 * j_2, 2), 2)
for k1 in 0:1
(k1_v, k1_λ1) = (ES1[k1+1][1], ES1[k1+1][2])
for k2 in 0:1
(k2_v, k2_λ2) = (ES2[k2+1][1], ES2[k2+1][2])
if (mod(k1_λ1 + k2_λ2, 2) == mod(λ, 2))
u_bk = k1_v ⊗ k2_v
push!(u, u_bk)
end
end
end
end
else
u = []
for b in 0:(d-1)
for k1 in 0:(d-1)
(k1_v, k1_b) = (ES1[k1+1][1], ES1[k1+1][2])
for k2 in 0:(d-1)
(k2_v, k2_b) = (ES2[k2+1][1], ES2[k2+1][2])
if (mod(k1_b + k2_b, d) == b)
u_bk = k1_v ⊗ k2_v
push!(u, u_bk)
end
end
end
end
end
@assert length(u) == d^2
U = stack(u)
return (U)
end
#Optional
function create_X_set_from_encodings(U, V)
X_set = []
for m in 0:d-1
X_m = complex(zeros(d, d))
for a in 0:(d-1), b in 0:(d-1)
ma_index = findfirst(modket(m, d) ⊗ modket(a, d) .== 1)
mb_index = findfirst(modket(m, d) ⊗ modket(b, d) .== 1)
u_ma = U[:, ma_index]
v_mb = V[:, mb_index]
X_m += u_ma' * v_mb * modket(a, d) * modbra(b, d)
end
push!(X_set, X_m)
end
return (X_set)
end
"""
get_s_for_generator(g, E)
Return s-value of error element `E`` for stabilzer generator `g` in dimension `d`.
"""
function get_s_for_generator(g::Vector{Tuple{Int,Int}}, E::Vector{Tuple{Int,Int}}, d)
@assert length(g) == length(E)
s = 0
for n in eachindex(g)
s += g[n][2] * E[n][1] - g[n][1] * E[n][2]
end
return (mod(s, d))
end
"""
get_erroroperator_from_errorelement(E, d)
Return error operator in computational basis from error element `E` in dimension `d`.
"""
function get_erroroperator_from_errorelement(E::Vector{Tuple{Int,Int}}, d)
e = first(E)
w = weyloperator(d, e[1], e[2])
for el in E[2:lastindex(E)]
w = w ⊗ weyloperator(d, el[1], el[2])
end
return (w)
end
"""
get_erroraction_from_encoding(U, W, bVec, sVec, d )
Create error action operator for an error `W` in encoding `U` for measurment outcomes `bVec` and `sVec` in dimension `d`.
"""
function get_erroraction_from_encoding(U, W, bVec, sVec, d)
@assert size(U) == size(W)
@assert length(bVec) == length(sVec) == 1
b = bVec[1]
s = sVec[1]
Y = U' * W * U
T = complex(zeros(d, d))
for k in 0:(d-1), l in 0:(d-1)
Tkl = (modbra(b + s, d) ⊗ modbra(k, d)) * Y * (modket(b, d) ⊗ modket(l, d))
T += Tkl * (modket(k, d) ⊗ modbra(l, d))
end
return T
end
"""
get_s_dict_for_generators(gVec, n, d)
Create Dict containing the s-values for each error element (keys) for stabilizer generating elements `gVec` for `n`-copies in dimension `d`.
"""
function get_s_dict_for_generators(gVec::Vector{Vector{Tuple{Int,Int}}}, n, d)
@assert n == 2
@assert length(gVec) == 1
dict = Dict()
for i1 in 0:(d-1), j1 in 0:(d-1), i2 in 0:(d-1), j2 in 0:(d-1)
E = [(i1, j1), (i2, j2)]
sVec = Int[]
for g in gVec
s = get_s_for_generator(g, E, d)
push!(sVec, s)
end
dict[E] = sVec
end
return (dict)
end
"""
get_codespace_errorops_for_meas(U, gVec, aVec, bVec)
For given encoding `U` of a stabilizer with generating elements `gVec` and measurement outcomes `aVec` and `bVec`, return Dict of error elements (keys) and error action operators (values).
"""
function get_codespace_errorops_for_meas(U, gVec::Vector{Vector{Tuple{Int,Int}}}, aVec::Vector{Int}, bVec::Vector{Int}, n, d)
@assert length(aVec) == length(bVec) == 1
@assert n == 2
sVec = map(x -> mod(x, d), aVec - bVec)
s_dict = get_s_dict_for_generators(gVec, n, d)
codespace_errorops_dict = filter(x -> x[2] == sVec, s_dict)
for errorkey in keys(codespace_errorops_dict)
W_errorop = get_erroroperator_from_errorelement(errorkey, d)
cs_errorop = get_erroraction_from_encoding(U, W_errorop, bVec, sVec, d)
codespace_errorops_dict[errorkey] = cs_errorop
end
return (codespace_errorops_dict)
end
"""
get_stdbasis_probabilities(ρ, stdBasis, precision)
Return probability of measuring a Bell `stdBasis` state for `ρ` in `precision`.
"""
function get_stdbasis_probabilities(ρ, stdBasis, precision=10)
basis = stdBasis.basis
probs = map(x -> (x[1], x[2], (tr(ρ * x[3]) |> real |> (y -> rounddigits(y, precision)))), basis)
return (probs)
end
"""
get_prob_for_E(ρ, E, stdBasis)
Return probability of measurment of `stdBasis` corresponding to error element `E` in state `ρ`.
"""
function get_prob_for_E(ρ, E::Vector{Tuple{Int,Int}}, stdbasis)
stdbasisProbs = get_stdbasis_probabilities(ρ, stdbasis, 10)
pE = 1
for Em in E
pEm = real(first(filter(x -> x[2] == Em, stdbasisProbs))[3])
pE *= pEm
end
return (pE)
end
"""
get_s_errorkeys(gVec, sVec, n, d)
Return all errors with `sValue` for `n`-cope stabilizer generators `gVec` in `d` dimenions.
"""
function get_s_errorkeys(gVec, sVec, n, d)
@assert n == 2
sDict = get_s_dict_for_generators(gVec, n, d)
ES = keys(filter(x -> x[2] == sVec, sDict))
return (ES)
end
"""
get_prob_for_errorkeys(ρ, errorKeys, n, stdBasis)
Get total error probability for `n`-copy `errorKeys` defined by `stdBasis` in `rho`.
"""
function get_prob_for_errorkeys(ρ, errorKeys, n, stdbasis)
@assert n == 2
pS = 0
for E in errorKeys
pE = get_prob_for_E(ρ, E, stdbasis)
pS += pE
end
return (pS)
end
"""
get_abelian_subgroup_generators(d, n)
Return all generators of abelian subgroups for the `n`-copy weyl-Heisenberg group in `d` dimensions.
"""
function get_abelian_subgroup_generators(d, n)
@assert n == 2
@assert d ∈ (2, 3)
potentialGenerators = Vector{Tuple{Int,Int}}[]
generators = Vector{Tuple{Int,Int}}[]
for i1 in 0:(d-1), j1 in 0:(d-1), i2 in 0:(d-1), j2 in 0:(d-1)
if (i1, j1, i2, j2) !== (0, 0, 0, 0)
E = [(i1, j1), (i2, j2)]
push!(potentialGenerators, E)
end
end
while !isempty(potentialGenerators)
g = first(potentialGenerators)
push!(generators, g)
gg = add_errorkeys(g, g, d, n)
filter!(x -> x != g, potentialGenerators)
filter!(x -> x != gg, potentialGenerators)
end
return (generators)
end
"""
get_coset_partition(gVec, n, d)
Return coset partition of error elements defined by stabilizer generating elements `gVec` of `n`-copies in `d` dimensions.
"""
function get_coset_partition(gVec, n, d)
@assert n == 2
@assert d ∈ (2, 3)
@assert length(gVec) == 1
@assert gVec[1] !== [(0, 0), (0, 0)]
g = gVec[1]
gg = add_errorkeys(g, g, d, n)
errorKeys = Vector{Tuple{Int,Int}}[]
for i1 in 0:(d-1), j1 in 0:(d-1), i2 in 0:(d-1), j2 in 0:(d-1)
if (i1, j1, i2, j2) !== (0, 0, 0, 0)
E = [(i1, j1), (i2, j2)]
push!(errorKeys, E)
end
end
cosets = Vector{Vector{Tuple{Int,Int}}}[]
while !isempty(errorKeys)
coset = Vector{Tuple{Int,Int}}[]
E = first(errorKeys)
push!(coset, E)
for x in 1:(d-1)
E = add_errorkeys(E, g, d, n)
push!(coset, E)
end
push!(cosets, coset)
filter!(x -> !(x ∈ coset), errorKeys)
end
return (cosets)
end
"""
get_cosets_prob_s(ρ, gVec, n, d, stdbasis)
Return vector of tuples containing the cosets defined by stabilizer generating elements `gVec` for `n`-copies in`d` dimensions together with its s-value and probabilies in the `stdbasis`.
"""
function get_cosets_prob_s(ρ, gVec, n, d, stdbasis)
s_dict = get_s_dict_for_generators(gVec, n, d)
cosets = get_coset_partition(gVec, n, d)
cosetsProbS = map(c -> (c, s_dict[c[1]], get_prob_for_errorkeys(ρ, c, n, stdbasis)), cosets)
return (cosetsProbS)
end
"""
get_s_prob_dict(ρ, gVec, n, d, stdbasis)
Return Dict of `stdbasis` probabilities (values) for each s-value (keys) in `n`-copy state `rho` of subsystem dimension `d`.
"""
function get_s_prob_dict(ρ, gVec, n, d, stdbasis)
s_dict = get_s_dict_for_generators(gVec, n, d)
s_values = unique(values(s_dict))
s_prob_dict = Dict()
for sVec in s_values
ES = get_s_errorkeys(gVec, sVec, n, d)
PS = get_prob_for_errorkeys(ρ, ES, n, stdbasis)
s_prob_dict[sVec] = PS
end
return (s_prob_dict)
end
"""
get_s_normalized_coset_probs(ρ, gVec, n, d, stdbasis)
Return array of tuples containing the cosets and s-values defined by generating `n`-copy stabilizer elements `gVec`
and the coset probabilitiies, normalized coset probabilites and the s-value probabilies for the `stdbasis` in `d` dimensions.
"""
function get_s_normalized_coset_probs(ρ, gVec, n, d, stdbasis)
cosetProbS = get_cosets_prob_s(ρ, gVec, n, d, stdbasis)
sProbDict = get_s_prob_dict(ρ, gVec, n, d, stdbasis)
#remove zero probability sVecs
filter!(x -> x[2] > 0, sProbDict)
filter!(x -> x[2] ∈ keys(sProbDict), cosetProbS)
normCosetProbs = map(x -> (x[1], x[2], x[3], x[3] / sProbDict[x[2]], sProbDict[x[2]]), cosetProbS)
return (sort(normCosetProbs, by=(x -> -x[4])))
end
"""
get_max_fidelity_stabilizer_coset(ρ, n, d, stdbasis)
Returns stabilizer generator, coset of maximal normalized probability and corresponding s-value, coset probabily and s-value probabily for `n`-copy input state `ρ` in `d` dimensions with respect to `stdbasis`.
"""
function get_max_fidelity_stabilizer_coset(ρ, n, d, stdbasis)
allGens = get_abelian_subgroup_generators(d, n)
maxFidelityStabCosets = map(
g -> (g, first(get_s_normalized_coset_probs(ρ, [g], n, d, stdbasis))),
allGens
)
opt = sort(maxFidelityStabCosets, by=(x -> -x[2][4])) |> first
return (opt[1], opt[2][1], opt[2][2], opt[2][4], opt[2][5])
end
"""
stabilizer_routine((ρ, gVec, aVec, bVec, Uenc, n, d, stdbasis)
Return output state and probability of success for one iteration of the stabilizer distillation routine.
The routine is defined by the input state `ρ`, the stabilizer generating element `gVec`, the measurement outcomes `aVec` and `bVec`,
the encoding operator `Uenc`, the number of copies `n`, the dimension of the subsystems `d` and the standard Bell bases `stdbasis`.
"""
function stabilizer_routine(ρ, gVec, aVec, bVec, Uenc, n, d, stdbasis::StandardBasis)
@assert length(stdbasis.basis) == d^2
@assert size(ρ) == (d^2, d^2)
@assert n == 2
@assert length(gVec) == length(aVec) == length(bVec) == 1
sVec = aVec - bVec
ES = get_s_errorkeys(gVec, sVec, n, d)
PS = get_prob_for_errorkeys(ρ, ES, n, stdbasis)
if rounddigits(PS, 10) == 0
return (ρ)
end
TES = get_codespace_errorops_for_meas(Uenc, gVec, aVec, bVec, n, d)
P00 = stdbasis.basis[1][3]
ρ_out = complex(zeros(d^2, d^2))
for E in ES
pE = get_prob_for_E(ρ, E, stdbasis)
TE = TES[E]
ρ_out += pE * (
(TE ⊗ I(d)) * P00 * (TE ⊗ I(d))'
)
end
ρ_out = 1 / PS * ρ_out #Normalization
return (ρ_out, PS)
end
"""
FIMAX_routine(ρ, n, d, stdbasis)
Applies one iteration of FIMAX routine to the `n`-copy input state `'rho` in `d` dimensions. Returns the output state and the probabilies of success with respect to the `stdbasis`.
"""
function FIMAX_routine(ρ, n, d, stdbasis::StandardBasis)
@assert n == 2
@assert d ∈ (2, 3)
maxFidelityStabilizerCoset = get_max_fidelity_stabilizer_coset(ρ, n, d, stdbasis)
(g, cosetRep, sVec, successProb) = (x -> (x[1], x[2][1], x[3], x[5]))(maxFidelityStabilizerCoset)
aVec = sVec
bVec = aVec - sVec
U_canonic = create_canonic_enconding(g, d)
cosetRepOp = get_erroroperator_from_errorelement(cosetRep, d)
cosetRepCodespaceErrorOp = get_erroraction_from_encoding(U_canonic, cosetRepOp, bVec, sVec, d)
ρ_out_raw = stabilizer_routine(ρ, [g], aVec, bVec, U_canonic, n, d, stdbasis)[1]
#Correction operation
correctionOp = cosetRepCodespaceErrorOp'
ρ_out = (correctionOp ⊗ I(d)) * ρ_out_raw * (correctionOp ⊗ I(d))'
return (ρ_out, real(successProb))
end
"""
P1_routine(ρ, n, d, stdbasis)
Applies one iteration of P1 routine to the `n`-copy input state `'rho` in `d` dimensions. Returns the output state and the probabilies of success with respect to the `stdbasis`.
"""
function P1_routine(ρ, n, d, stdbasis::StandardBasis)
g = [(1, 0), (mod(-1, d), 0)]
gVec = [g]
aVec = [0]
bVec = [0]
U = create_canonic_enconding(g, d)
(ρ, succProb) = stabilizer_routine(ρ, gVec, aVec, bVec, U, n, d, stdbasis)
return (ρ, real(succProb))
end
"""
P2_routine(ρ, n, d, stdbasis)
Applies one iteration of P2 routine to the `n`-copy input state `'rho` in `d` dimensions. Returns the output state and the probabilies of success with respect to the `stdbasis`.
"""
function P2_routine(ρ, n, d, stdbasis::StandardBasis)
g = [(1, 0), (mod(-1, d), 0)]
gVec = [g]
aVec = [0]
bVec = [0]
U = create_canonic_enconding(g, d)
bFT = (FT_OP(d) ⊗ conj(FT_OP(d)))
ρ = bFT * ρ * bFT'
(ρ, succProb) = stabilizer_routine(ρ, gVec, aVec, bVec, U, n, d, stdbasis)
ρ = bFT * ρ * bFT'
return (ρ, real(succProb))
end
"""
P1_P2_routine(ρ, n, d, stdbasis)
Applies one iteration of P1_P2 routine to the `n`-copy input state `'rho` in `d` dimensions. Returns the output state and the probabilies of success with respect to the `stdbasis`.
"""
function P1_P2_routine(ρ, n, d, stdbasis::StandardBasis)
basisDict = create_dictionary_from_basis(stdbasis)
bellCoords = belldiagonal_projection(stdbasis, ρ).coords
Z_indices = map(i -> basisDict[1][i], [(k, 0) for k in 0:(d-1)])
X_indices = map(i -> basisDict[1][i], [(0, k) for k in 0:(d-1)])
Z_error_sum = sum(bellCoords[Z_indices])
X_error_sum = sum(bellCoords[X_indices])
if Z_error_sum > X_error_sum
(ρ, succProb) = P2_routine(ρ, n, d, stdbasis)
else
(ρ, succProb) = P1_routine(ρ, n, d, stdbasis)
end
return (ρ, real(succProb))
end
"""
BBPSSW_routine(ρ, n, d, stdbasis)
Applies one iteration of BBPSSW routine to the `n`-copy input state `'rho` in `d` dimensions. Returns the output state and the probabilies of success with respect to the `stdbasis`.
"""
function BBPSSW_routine(ρ, n, d, stdbasis::StandardBasis)
@assert n == 2
basisDict = create_dictionary_from_basis(stdbasis)
densityState = belldiagonal_projection(stdbasis, ρ)
coords = densityState.coords
depol_coords = depolarize_coords(coords)
bellCoords(k, l) = depol_coords[basisDict[1][(k, l)]]
newCoords = zeros(d^2)
for x in 0:(d-1), y in 0:(d-1)
i = basisDict[1][(x, y)]
a_xy = 0.0
for k in 0:(d-1)
a_xy += bellCoords(k, y) * bellCoords(mod(x - k, d), y)
end
newCoords[i] = a_xy
end
succProb = sum(newCoords)
if succProb == 0.0
throw("successProb is zero")
end
normNowCoords = newCoords / succProb
ρ_new = create_densitystate(CoordState(normNowCoords, "UNKNOWN"), stdbasis).densityMatrix
return (ρ_new, real(succProb))
end
"""
DEJMPS_routine(ρ, n, d, stdbasis)
Applies one iteration of DEJMPS routine to the `n`-copy input state `'rho` in `d` dimensions. Returns the output state and the probabilies of success with respect to the `stdbasis`.
"""
function DEJMPS_routine(ρ, n, d, stdbasis::StandardBasis)
g = [(1, 0), (d - 1, 0)]
gVec = [g]
aVec = [0]
bVec = [0]
U = create_canonic_enconding(g, d)
bFT = (FT_OP(d) ⊗ conj(FT_OP(d)))
(ρ, succProb) = stabilizer_routine(ρ, gVec, aVec, bVec, U, n, d, stdbasis)
ρ = bFT * ρ * bFT'
return (ρ, real(succProb))
end
"""
iterative_specific_stabilizer_protocol(ρ, targetFid, gVec, aVec, bVec, U, n, d, stdBasis, maxIts)
Applies iterations of the stabilizer routine to the `n`-copy input state `'rho` in `d` dimensions for stabilizer generating elements `gVec`, encoding `U` and measurement outcomes `aVec` and`bVec`.
Iterates until `targetFid` or maximal number of iterations `maxIts` is reached.
Returns `distillable=true` if `targetFid` could be reached and fidelities and success probabilies with respect to the `stdbasis` for each iteration.
"""
function iterative_specific_stabilizer_protocol(ρ, targetFid, gVec, aVec, bVec, U, n, d, stdbasis::StandardBasis, maxIts=100)
P_00 = stdbasis.basis[1][3]
isPpt = isppt(ρ, d, 10)
F_00 = fidelity(ρ, P_00)
i = 0
iterations = [i]
fidelities = [F_00]
successProbs = [0.0]
while (F_00 <= targetFid) && !isPpt && (i < maxIts)
i += 1
(ρ, succProb) = stabilizer_routine(ρ, gVec, aVec, bVec, U, n, d, stdbasis)
isPpt = isppt(ρ, d, 10)
F_00 = fidelity(ρ, P_00)
push!(iterations, i)
push!(fidelities, F_00)
push!(successProbs, succProb)
end
distillable = false
if F_00 > targetFid && i < maxIts
distillable = true
elseif isPpt || i >= maxIts
distillable = false
end
return (distillable, iterations, fidelities, successProbs)
end
"""
iterative_FIMAX_protocol(ρ, targetFid, n, d, stdBasis, maxIts)
Applies iterations of the FIMAX routine to the `n`-copy input state `ρ` in `d` dimensions.
Iterates until `targetFid` or maximal number of iterations `maxIts` is reached.
Returns `distillable=true` if `targetFid` could be reached and fidelities and success probabilies with respect to the `stdbasis` for each iteration.
"""
function iterative_FIMAX_protocol(ρ, targetFid, n, d, stdbasis, maxIts=100)
P_00 = stdbasis.basis[1][3]
isPpt = isppt(ρ, d, 10)
F_00 = fidelity(ρ, P_00)
i = 0
iterations = [i]
fidelities = [F_00]
successProbs = [0.0]
while (F_00 <= targetFid) && !isPpt && (i < maxIts)
i += 1
(ρ, succProb) = FIMAX_routine(ρ, n, d, stdbasis)
isPpt = isppt(ρ, d, 10)
F_00 = fidelity(ρ, P_00)
push!(iterations, i)
push!(fidelities, F_00)
push!(successProbs, succProb)
end
distillable = false
if F_00 > targetFid && i < maxIts
distillable = true
elseif isPpt || i >= maxIts
distillable = false
end
return (distillable, iterations, fidelities, successProbs)
end
"""
iterative_P1_P2_protocol(ρ, targetFid, n, d, stdBasis, maxIts)
Applies iterations of the P1_P2 routine to the `n`-copy input state `ρ` in `d` dimensions.
Iterates until `targetFid` or maximal number of iterations `maxIts` is reached.
Returns `distillable=true` if `targetFid` could be reached and fidelities and success probabilies with respect to the `stdbasis` for each iteration.
"""
function iterative_P1_P2_protocol(ρ, targetFid, n, d, stdbasis, maxIts=100)
P_00 = stdbasis.basis[1][3]
isPpt = isppt(ρ, d, 10)
F_00 = fidelity(ρ, P_00)
i = 0
iterations = [i]
fidelities = [F_00]
successProbs = [0.0]
while (F_00 <= targetFid) && !isPpt && (i < maxIts)
i += 1
(ρ, succProb) = P1_P2_routine(ρ, n, d, stdbasis)
isPpt = isppt(ρ, d, 10)
F_00 = fidelity(ρ, P_00)
push!(iterations, i)
push!(fidelities, F_00)
push!(successProbs, succProb)
end
distillable = false
if F_00 > targetFid && i < maxIts
distillable = true
elseif isPpt || i >= maxIts
distillable = false
end
return (distillable, iterations, fidelities, successProbs)
end
"""
iterative_BBPSSW_protocol(ρ, targetFid, n, d, stdBasis, maxIts)
Applies iterations of the BBPSSW routine to the `n`-copy input state `ρ` in `d` dimensions.
Iterates until `targetFid` or maximal number of iterations `maxIts` is reached.
Returns `distillable=true` if `targetFid` could be reached and fidelities and success probabilies with respect to the `stdbasis` for each iteration.
"""
function iterative_BBPSSW_protocol(ρ, targetFid, n, d, stdbasis, maxIts=100)
P_00 = stdbasis.basis[1][3]
isPpt = isppt(ρ, d, 10)
F_00 = fidelity(ρ, P_00)
i = 0
iterations = [i]
fidelities = [F_00]
successProbs = [0.0]
while (F_00 <= targetFid) && !isPpt && (i < maxIts)
i += 1
(ρ, succProb) = BBPSSW_routine(ρ, n, d, stdbasis)
isPpt = isppt(ρ, d, 10)
F_00 = fidelity(ρ, P_00)
push!(iterations, i)
push!(fidelities, F_00)
push!(successProbs, succProb)
end
distillable = false
if F_00 > targetFid && i < maxIts
distillable = true
elseif isPpt || i >= maxIts
distillable = false
end
return (distillable, iterations, fidelities, successProbs)
end
"""
iterative_DEJMPS_protocol(ρ, targetFid, n, d, stdBasis, maxIts)
Applies iterations of the DEJMPS routine to the `n`-copy input state `ρ` in `d` dimensions.
Iterates until `targetFid` or maximal number of iterations `maxIts` is reached.
Returns `distillable=true` if `targetFid` could be reached and fidelities and success probabilies with respect to the `stdbasis` for each iteration.
"""
function iterative_DEJMPS_protocol(ρ, targetFid, n, d, stdbasis, maxIts=100)
P_00 = stdbasis.basis[1][3]
isPpt = isppt(ρ, d, 10)
F_00 = fidelity(ρ, P_00)
i = 0
iterations = [i]
fidelities = [F_00]
successProbs = [0.0]
while (F_00 <= targetFid) && !isPpt && (i < maxIts)
i += 1
(ρ, succProb) = DEJMPS_routine(ρ, n, d, stdbasis)
isPpt = isppt(ρ, d, 10)
F_00 = fidelity(ρ, P_00)
push!(iterations, i)
push!(fidelities, F_00)
push!(successProbs, succProb)
end
distillable = false
if F_00 > targetFid && i < maxIts
distillable = true
elseif isPpt || i >= maxIts
distillable = false
end
return (distillable, iterations, fidelities, successProbs)
end
"""
efficiency(distillable, iterations, successProbs, n)
Returns efficiency of `n`-copy distillation protocol with `iterations` iterations of success probabilities `successProbs`.
"""
function efficiency(distillable, iterations, successProbs, n)
if !distillable
return (0.0)
else
nIts = length(iterations[2:end])
totalProb = prod(successProbs[2:end])
if length(nIts) == 0
eff = 0.0
else
eff = 1 / n^nIts * totalProb
end
return (eff)
end
end | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 2722 | """
get_concurrence_qp(coords, d, dictionaries)
Return quasi-pure approximation of the concurrence for a Bell diagonal state represented by coordinates `coords` with respect to a `StandardBasis` and corresponding `dictionaries` in `d` dimensions.
"""
function get_concurrence_qp(coords, d, dictionaries)::Float64
S = Float64[]
D = length(coords)
dict = dictionaries[2]
revDict = dictionaries[1]
(maxCoord, maxIndex) = findmax(coords)
(n, m) = dict[maxIndex]
for i in 1:D
(k, l) = dict[i]
push!(
S,
sqrt(
max(
0,
d / (2 * (d - 1)) * coords[i] * (
(1 - 2 / d) * maxCoord * δ(i, maxIndex)
+
1 / d^2 * coords[revDict[(
mod(2 * n - k, d),
mod(2 * m - l, d)
)]]
)
)
)
)
end
maxS = findmax(S)[1]
cQP = maxS - (sum(S) - maxS)
if cQP > 0
return cQP
else
return 0
end
end
"""
createProjectorOperator(d)
Return concurrence related operator in arbitrary dimension `d`.
"""
function createProjectorOperator(d)
A = proj(0 * ket(1, d^4))
for j in 1:d
for i in 1:(j-1)
for l in 1:d
for k in 1:(l-1)
A += proj(
ket(i, d) ⊗ ket(k, d) ⊗ ket(j, d) ⊗ ket(l, d)
-
ket(j, d) ⊗ ket(k, d) ⊗ ket(i, d) ⊗ ket(l, d)
-
ket(i, d) ⊗ ket(l, d) ⊗ ket(j, d) ⊗ ket(k, d)
+
ket(j, d) ⊗ ket(l, d) ⊗ ket(i, d) ⊗ ket(k, d)
)
end
end
end
end
return 4 * A
end
"""
get_concurrence_qp_gendiagonal(coords, d, basisStates)
Return quasi-pure approximation of the concurrence for a `d`-dimensional Bell diagonal state represented by coordinates `coords` with respect to a set of `basisStates`.
"""
function get_concurrence_qp_gendiagonal(coords, d, basisStates::Array{Vector{ComplexF64}})
maxIndex = findmax(coords)[2]
A = createProjectorOperator(d)
Ω_max = basisStates[maxIndex]
Χ = A * (Ω_max ⊗ Ω_max)
Χ = Χ / norm(Χ)
T = complex(zeros(d^2, d^2))
for i in 1:d^2, j in 1:d^2
μ_i = coords[i]
μ_j = coords[j]
T[i, j] = sqrt(μ_i * μ_j) * (basisStates[i]' ⊗ basisStates[j]') * Χ
end
sV = svd(T).S
maxSv = findmax(sV)[1]
concurrence_qp = max(0, 2 * maxSv - sum(sV))
return (concurrence_qp)
end | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 18126 | """
kernel_check(coordState::CoordState, kernelPolytope::Union{HPolytope{Float64,Array{Float64,1}},VPolytope{Float64,Array{Float64,1}}})
Return `true` if the Euclidean coordinates of the `coordState`` are contained in the `kernelPolytope` represented in V- or H-representation.
"""
function kernel_check(coordState::CoordState, kernelPolytope::Union{HPolytope{Float64,Array{Float64,1}},VPolytope{Float64,Array{Float64,1}}})::Bool
if coordState.coords ∈ kernelPolytope
return true
else
return false
end
end
"""
ppt_check(coordState::CoordState, standardBasis::StandardBasis, precision=10)
Return `true`` if the `coordState` defined via the `standardBasis` has positive partial transposition in the given `precision`.
"""
function ppt_check(coordState::CoordState, standardBasis::StandardBasis, precision=10)::Bool
densityState = create_densitystate(coordState, standardBasis)
ρ = densityState.densityMatrix
d = Int(sqrt(size(ρ, 1)))
return isppt(ρ, d, precision)
end
"""
realignment_check(coordState::CoordState, standardBasis::StandardBasis, precision=10)
Return `true`` if the realigned `coordState` defined via the `standardBasis` has trace norm ``> 1`` in the given `precision`.
"""
function realignment_check(coordState::CoordState, standardBasis::StandardBasis, precision=10)::Bool
densityState = create_densitystate(coordState, standardBasis)
ρ = densityState.densityMatrix
r_ρ = reshuffle(ρ)
return (round(norm_trace(r_ρ), digits=precision) > 1)
end
"""
numeric_ew_check(coordState::CoordState, boundedEWs::Array{BoundedCoordEW}, relUncertainity::Float64)
Return `true` if any entanglement witness of `boundedEWs` detects the density matrix `ρ` as entangled.
An entanglement witness ``E`` of `boundedEWs` detects `ρ`, if the scalar product ``\\rho``.`coords` ``\\cdot E``.`coords` is not in [`lowerBound`, `upperBound`].
If a `relUncertainity` is given, the violation relative to `upperBound-lowerBound` needs to exceed `relUncertainity`` to detect entanglement.
"""
function numeric_ew_check(coordState::CoordState, boundedEWs::Array{BoundedCoordEW}, relUncertainity=0.0)::Bool
anyEntanglementFound = false
for boundedEW in boundedEWs
intervalLength = boundedEW.upperBound - boundedEW.lowerBound
tolerance = intervalLength * relUncertainity
anyEntanglementFound = !(
(boundedEW.lowerBound - tolerance)
<= dot(coordState.coords, boundedEW.coords)
<= (boundedEW.upperBound + tolerance)
)
# If one EW witnesses entanglement, we can stop
if anyEntanglementFound == true
break
end
end
return anyEntanglementFound
end
"""
concurrence_qp_check(coordState::CoordState, d, dictionaries, precision=10)
Return `true` if the quasi-pure concurrence (see `concurrence.jl`) is positive for a `coordState` and given basis `dictionaries` in the given `precision`.
"""
function concurrence_qp_check(coordState::CoordState, d, dictionaries, precision=10)::Bool
coords = coordState.coords
if round(get_concurrence_qp(coords, d, dictionaries), digits=precision) > 0
return true
else
return false
end
end
"""
concurrence_qp_gendiagonal_check(coordState, d, basisStates, precision=10)
Return `true` if the quasi-pure concurrence (see `concurrence.jl`) is positive for a `coordState` and given basis states `basisStates` in the given `precision`.
"""
function concurrence_qp_gendiagonal_check(coordState::CoordState, d, basisStates::Array{Vector{ComplexF64}}, precision=10)::Bool
coords = coordState.coords
if round(get_concurrence_qp_gendiagonal(coords, d, basisStates), digits=precision) > 0
return true
else
return false
end
end
"""
mub_check(coordState::CoordState, d, stdBasis::StandardBasis, mubSet::Vector{Vector{Vector{ComplexF64}}})
Return `true` if the sum of mutual predictibilities for a `mubSet` (see `mub.jl`) of dimension `d` exceeds ``2`` for a `coordState` and given `standardBasis`.
"""
function mub_check(coordState::CoordState, d, stdBasis::StandardBasis, mubSet::Vector{Vector{Vector{ComplexF64}}})::Bool
ρ = create_densitystate(coordState, stdBasis).densityMatrix
if calculate_mub_correlation(d, mubSet, ρ) > 2
return true
else
return false
end
end
"""
spinrep_check(coordState::CoordState, stdBasis::StandardBasis, bipartiteWeylBasis::Vector{Array{Complex{Float64},2}}, precision=10)
Return `true` and detects a `coordState` for a `standardBasis` as separbale, if its coefficiencts in the `bipartiteWeylBasis` have 1-norm smaller than ``2`` in given `precision`.
"""
function spinrep_check(coordState::CoordState, stdBasis::StandardBasis, bipartiteWeylBasis::Vector{Array{Complex{Float64},2}}, precision=10)
ρ = create_densitystate(coordState, stdBasis).densityMatrix
spinRepCoefficients = map(x -> tr(ρ * x'), bipartiteWeylBasis)
absCoeffs = map(x -> real(sqrt(x' * x)), spinRepCoefficients)
return (round(sum(absCoeffs), digits=precision) <= 2)
end
"""
analyse_coordstate(
d,
coordState::CoordState,
anaSpec::AnalysisSpecification,
stdBasis::StandardBasis=missing,
kernelPolytope::Union{HPolytope{Float64,Array{Float64,1}},VPolytope{Float64,Array{Float64,1}},Missing}=missing,
bipartiteWeylBasis::Union{Vector{Array{Complex{Float64},2}},Missing}=missing,
dictionaries::Union{Any,Missing}=missing,
mubSet::Union{Vector{Vector{Vector{ComplexF64}}},Missing}=missing,
boundedEWs::Union{Array{BoundedCoordEW},Missing}=missing,
precision=10,
relUncertainity=0.0
)
Return an `AnalysedCoordState` for a `coordState` in `d` dimensions based on the given `anaSpec` and corresponding analysis objects.
If an entanglement check should not be carried out or if an analysis object in not passed as variable, the corresponding property in `anaSpec` needs to be `false`.
In this case, return the corresponding property of the `AnalysedCoordState` as `missing`.
"""
function analyse_coordstate(
d,
coordState::CoordState,
anaSpec::AnalysisSpecification,
stdBasis::StandardBasis=missing,
kernelPolytope::Union{HPolytope{Float64,Array{Float64,1}},VPolytope{Float64,Array{Float64,1}},Missing}=missing,
bipartiteWeylBasis::Union{Vector{Array{Complex{Float64},2}},Missing}=missing,
dictionaries::Union{Any,Missing}=missing,
mubSet::Union{Vector{Vector{Vector{ComplexF64}}},Missing}=missing,
boundedEWs::Union{Array{BoundedCoordEW},Missing}=missing,
precision=10,
relUncertainity=0.0
)::AnalysedCoordState
anaCoordState = AnalysedCoordState(
coordState,
missing,
missing,
missing,
missing,
missing,
missing,
missing
)
# Kernel check
if anaSpec.kernel_check && !ismissing(kernelPolytope)
anaCoordState.kernel = kernel_check(coordState, kernelPolytope)
end
# Spinrep check
if anaSpec.spinrep_check && !ismissing(stdBasis) && !ismissing(bipartiteWeylBasis)
anaCoordState.spinrep = spinrep_check(coordState, stdBasis, bipartiteWeylBasis, precision)
end
# PPT check
if anaSpec.ppt_check && !ismissing(stdBasis)
anaCoordState.ppt = ppt_check(coordState, stdBasis, precision)
end
# Realign check
if anaSpec.realignment_check && !ismissing(stdBasis)
anaCoordState.realign = realignment_check(coordState, stdBasis, precision)
end
# Concurrence QP check
if anaSpec.concurrence_qp_check && !ismissing(dictionaries)
anaCoordState.concurrence = concurrence_qp_check(coordState, d, dictionaries, precision)
end
# Mub check
if anaSpec.mub_check && !ismissing(stdBasis) && !ismissing(mubSet)
anaCoordState.mub = mub_check(coordState, d, stdBasis, mubSet)
end
# numericEW check
if anaSpec.numeric_ew_check && !ismissing(boundedEWs)
anaCoordState.numericEW = numeric_ew_check(coordState, boundedEWs, relUncertainity)
end
return anaCoordState
end
"""
sym_analyse_coordstate(
d,
coordState::CoordState,
symmetries::Array{Permutation},
anaSpec::AnalysisSpecification,
stdBasis::StandardBasis=missing,
kernelPolytope::Union{HPolytope{Float64,Array{Float64,1}},VPolytope{Float64,Array{Float64,1}},Missing}=missing,
bipartiteWeylBasis::Union{Vector{Array{Complex{Float64},2}},Missing}=missing,
dictionaries::Union{Any,Missing}=missing,
mubSet::Union{Vector{Vector{Vector{ComplexF64}}},Missing}=missing,
boundedCoordEWs::Union{Array{BoundedCoordEW},Missing}=missing,
precision=10,
relUncertainity=0.0
)
Return an `AnalysedCoordState` for a `coordState` in `d` dimensions based on the given `anaSpec` and corresponding analysis objects and symmetry analysis.
If an entanglement check should not be carried out or if an analysis object in not passed as variable, the corresponding property in `anaSpec` needs to be `false`.
In this case, return the corresponding property of the `AnalysedCoordState` as `missing`.
"""
function sym_analyse_coordstate(
d,
coordState::CoordState,
symmetries::Array{Permutation},
anaSpec::AnalysisSpecification,
stdBasis::StandardBasis=missing,
kernelPolytope::Union{HPolytope{Float64,Array{Float64,1}},VPolytope{Float64,Array{Float64,1}},Missing}=missing,
bipartiteWeylBasis::Union{Vector{Array{Complex{Float64},2}},Missing}=missing,
dictionaries::Union{Any,Missing}=missing,
mubSet::Union{Vector{Vector{Vector{ComplexF64}}},Missing}=missing,
boundedCoordEWs::Union{Array{BoundedCoordEW},Missing}=missing,
precision=10,
relUncertainity=0.0
)::AnalysedCoordState
if !anaSpec.useSymmetries
throw("useSymmetries not specified in analysis specification")
end
copyAnaSpec = deepcopy(anaSpec)
kernelCheckPassed = false
spinrepCheckPassed = false
pptCheckPassed = false
realignmentCheckPassed = false
concurrenceQpCheckPassed = false
mubCheckPassed = false
numericEwCheckPassed = false
groupKernel = missing
groupSpinrep = missing
groupPpt = missing
groupRealign = missing
groupConcurrence = missing
groupMub = missing
groupNumericEw = missing
# Create all symmetric states
# Avoid duplicates
if length(coordState.coords) == length(unique(coordState.coords))
symCoordStates = unique(map(
x -> CoordState(x, coordState.eClass),
get_symcoords(coordState.coords, symmetries)
))
else
symCoordStates = map(
x -> CoordState(x, coordState.eClass),
get_symcoords(coordState.coords, symmetries)
)
end
# Analyse all symmetric states
for symCoordState in symCoordStates
analysedSymCoordState = analyse_coordstate(
d,
symCoordState,
copyAnaSpec,
stdBasis,
kernelPolytope,
bipartiteWeylBasis,
dictionaries,
mubSet,
boundedCoordEWs,
precision,
relUncertainity
)
# Update copyAnaSpecs for sym group: Skip analysis for other group states if check was successful for state
# Kernel check implies sep in kernel which is preserved ==> Keep searching if enabled and missing
if copyAnaSpec.kernel_check
kernelCheckPassed = !ismissing(analysedSymCoordState.kernel)
if kernelCheckPassed
groupKernel = analysedSymCoordState.kernel
end
copyAnaSpec.kernel_check = !kernelCheckPassed
end
# Spinrep check implies SEP ==> Keep searching if enabled and (false or missing)
if copyAnaSpec.spinrep_check
spinrepCheckDone = !ismissing(analysedSymCoordState.spinrep)
spinrepCheckPassed = !ismissing(analysedSymCoordState.spinrep) && analysedSymCoordState.spinrep
if spinrepCheckPassed
groupSpinrep = true
elseif spinrepCheckDone
groupSpinrep = false
end
copyAnaSpec.spinrep_check = !spinrepCheckPassed
end
# Ppt check determines PPT/NPT which is preserved under symmetry ==> Keep searching if enabled and missing
if copyAnaSpec.ppt_check
pptCheckPassed = !ismissing(analysedSymCoordState.ppt)
if pptCheckPassed
groupPpt = analysedSymCoordState.ppt
end
copyAnaSpec.ppt_check = !pptCheckPassed
end
# Realignment check implies entanglement which is preserved under symmetry ==> Keep searching if enabled and (false or missing)
if copyAnaSpec.realignment_check
realignmentCheckDone = !ismissing(analysedSymCoordState.realign)
realignmentCheckPassed = !ismissing(analysedSymCoordState.realign) && analysedSymCoordState.realign
if realignmentCheckPassed
groupRealign = true
elseif realignmentCheckDone
groupRealign = false
end
copyAnaSpec.realignment_check = !realignmentCheckPassed
end
# Concurrence check implies entanglement which is preserved under symmetry ==> Keep searching if enabled and (false or missing)
if copyAnaSpec.concurrence_qp_check
concurrenceQpCheckDone = !ismissing(analysedSymCoordState.concurrence)
concurrenceQpCheckPassed = !ismissing(analysedSymCoordState.concurrence) && analysedSymCoordState.concurrence
if concurrenceQpCheckPassed
groupConcurrence = true
elseif concurrenceQpCheckDone
groupConcurrence = false
end
copyAnaSpec.concurrence_qp_check = !concurrenceQpCheckPassed
end
# Mub check implies entanglement which is preserved under symmetry ==> Keep searching if enabled and (false or missing)
if copyAnaSpec.mub_check
mubCheckDone = !ismissing(analysedSymCoordState.mub)
mubCheckPassed = !ismissing(analysedSymCoordState.mub) && analysedSymCoordState.mub
if mubCheckPassed
groupMub = true
elseif mubCheckDone
groupMub = false
end
copyAnaSpec.mub_check = !mubCheckPassed
end
# EW check implies entanglement which is preserved under symmetry ==> Keep searching if enabled and (false or missing)
if copyAnaSpec.numeric_ew_check
numericEwCheckDone = !ismissing(analysedSymCoordState.numericEW)
numericEwCheckPassed = !ismissing(analysedSymCoordState.numericEW) && analysedSymCoordState.numericEW
if numericEwCheckPassed
groupNumericEw = true
elseif numericEwCheckDone
groupNumericEw = false
end
copyAnaSpec.numeric_ew_check = !numericEwCheckPassed
end
allDetermined = !any([
copyAnaSpec.kernel_check,
copyAnaSpec.spinrep_check,
copyAnaSpec.ppt_check,
copyAnaSpec.realignment_check,
copyAnaSpec.concurrence_qp_check,
copyAnaSpec.mub_check,
copyAnaSpec.numeric_ew_check
])
if allDetermined
break
end
end
anaSymCoordState = AnalysedCoordState(
coordState,
groupKernel,
groupSpinrep,
groupPpt,
groupRealign,
groupConcurrence,
groupMub,
groupNumericEw
)
return anaSymCoordState
end
"""
classify_entanglement(analysedCoordState)
Return entanglement class of `analysedCoordState`.
Entanglement class can be "UNKNWON", "PPT_UNKNOWN" for PPT states that can be separable or entangled, "SEP" for separable states, "BOUND" for PPT/bound entangled states or "NPT" for NPT/free entangled states.
"""
function classify_entanglement(analysedCoordState)
class = "UNKNOWN"
if (!ismissing(analysedCoordState.ppt)) && !analysedCoordState.ppt #npt
class = "NPT"
elseif (!ismissing(analysedCoordState.kernel) && analysedCoordState.kernel) || (!ismissing(analysedCoordState.spinrep) && analysedCoordState.spinrep) #separable
class = "SEP"
elseif (
!ismissing(analysedCoordState.ppt)
&& analysedCoordState.ppt
&& !(
(!ismissing(analysedCoordState.kernel) && analysedCoordState.kernel)
||
(!ismissing(analysedCoordState.spinrep) && analysedCoordState.spinrep)
)
) ##ppt not sep
class = "PPT_UNKNOWN"
if !ismissing(analysedCoordState.realign)
if analysedCoordState.realign
class = "BOUND"
end
end
if !ismissing(analysedCoordState.concurrence)
if analysedCoordState.concurrence
class = "BOUND"
end
end
if !ismissing(analysedCoordState.mub)
if analysedCoordState.mub
class = "BOUND"
end
end
if !ismissing(analysedCoordState.numericEW)
if analysedCoordState.numericEW
class = "BOUND"
end
end
end
return class
end
"""
classify_analyzed_states!(anaCoordStates::Array{AnalysedCoordState})
Set entanglement class for array of `analysedCoordStates`.
"""
function classify_analyzed_states!(analysedCoordStates::Array{AnalysedCoordState})
for anaCoordState in analysedCoordStates
derivedClass = classify_entanglement(anaCoordState)
if derivedClass != "UNKNOWN"
if anaCoordState.coordState.eClass == "UNKNOWN"
anaCoordState.coordState.eClass = derivedClass
else
if anaCoordState.coordState.eClass != derivedClass
throw(ClassConflictException(anaCoordState))
end
end
end
end
return analysedCoordStates
end | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 3952 | """
create_standard_mub(d)
Return vector of mutually unbiased bases for dimensions `d` three or four.
"""
function create_standard_mub(d)::Vector{Vector{Vector{ComplexF64}}}
mubSet = Vector{Vector{ComplexF64}}[]
if d == 3
#There are 4 mutually unbiased Bases.
mubSet = Vector{Vector{ComplexF64}}[]
w = exp(2 // 3 * π * im)
B1 = [
ket(1, 3),
ket(2, 3),
ket(3, 3)
]
B2 = [
1 / sqrt(3) * (ket(1, 3) + ket(2, 3) + ket(3, 3)),
1 / sqrt(3) * (ket(1, 3) + w * ket(2, 3) + w^2 * ket(3, 3)),
1 / sqrt(3) * (ket(1, 3) + w^2 * ket(2, 3) + w * ket(3, 3))
]
B3 = [
1 / sqrt(3) * (ket(1, 3) + w * ket(2, 3) + w * ket(3, 3)),
1 / sqrt(3) * (ket(1, 3) + w^2 * ket(2, 3) + ket(3, 3)),
1 / sqrt(3) * (ket(1, 3) + ket(2, 3) + w^2 * ket(3, 3))
]
B4 = [
1 / sqrt(3) * (ket(1, 3) + w^2 * ket(2, 3) + w^2 * ket(3, 3)),
1 / sqrt(3) * (ket(1, 3) + ket(2, 3) + w * ket(3, 3)),
1 / sqrt(3) * (ket(1, 3) + w * ket(2, 3) + ket(3, 3))
]
push!(mubSet, B1)
push!(mubSet, B2)
push!(mubSet, B3)
push!(mubSet, B4)
elseif d == 4
B1 = [
ket(1, 4),
ket(2, 4),
ket(3, 4),
ket(4, 4)
]
B2 = [
1 / 2 * (ket(1, 4) + ket(2, 4) + ket(3, 4) + ket(4, 4)),
1 / 2 * (ket(1, 4) + ket(2, 4) - ket(3, 4) - ket(4, 4)),
1 / 2 * (ket(1, 4) - ket(2, 4) - ket(3, 4) + ket(4, 4)),
1 / 2 * (ket(1, 4) - ket(2, 4) + ket(3, 4) - ket(4, 4))
]
B3 = [
1 / 2 * (ket(1, 4) - im * ket(2, 4) - im * ket(3, 4) - ket(4, 4)),
1 / 2 * (ket(1, 4) - im * ket(2, 4) + im * ket(3, 4) + ket(4, 4)),
1 / 2 * (ket(1, 4) + im * ket(2, 4) + im * ket(3, 4) - ket(4, 4)),
1 / 2 * (ket(1, 4) + im * ket(2, 4) - im * ket(3, 4) + ket(4, 4))
]
B4 = [
1 / 2 * (ket(1, 4) - ket(2, 4) - im * ket(3, 4) - im * ket(4, 4)),
1 / 2 * (ket(1, 4) - ket(2, 4) + im * ket(3, 4) + im * ket(4, 4)),
1 / 2 * (ket(1, 4) + ket(2, 4) + im * ket(3, 4) - im * ket(4, 4)),
1 / 2 * (ket(1, 4) + ket(2, 4) - im * ket(3, 4) + im * ket(4, 4))
]
B5 = [
1 / 2 * (ket(1, 4) - im * ket(2, 4) - ket(3, 4) - im * ket(4, 4)),
1 / 2 * (ket(1, 4) - im * ket(2, 4) + ket(3, 4) + im * ket(4, 4)),
1 / 2 * (ket(1, 4) + im * ket(2, 4) + ket(3, 4) - im * ket(4, 4)),
1 / 2 * (ket(1, 4) + im * ket(2, 4) - ket(3, 4) + im * ket(4, 4))
]
push!(mubSet, B1)
push!(mubSet, B2)
push!(mubSet, B3)
push!(mubSet, B4)
push!(mubSet, B5)
else
throw("Only d=3 and d=4 are supported")
end
return (mubSet)
end
"""
calculate_mub_correlation(d, mubSet::Vector{Vector{Vector{ComplexF64}}}, ρ, s=-1)
Based on complete set of mutually unbiased bases `mubSet`, return sum of mutual predictibilities, shifted by `s`, for density matrix `ρ` in `d` dimensions.
"""
function calculate_mub_correlation(d, mubSet::Vector{Vector{Vector{ComplexF64}}}, ρ, s=-1)
if s == -1
if d == 3
s = 2
elseif d == 4
s = 3
else
s = 0
end
end
C = 0
for k in 1:length(mubSet)
B = mubSet[k]
if k == 1
for i = 1:d
C += tr(
Hermitian(proj(
B[i] ⊗ B[mod((i - 1) + s, d)+1]
) * ρ)
)
end
else
for i = 1:d
C += tr(
Hermitian(proj(
B[i] ⊗ conj(B[i])
) * ρ)
)
end
end
end
return (C)
end | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 6159 | """
create_random_witnesses(standardBasis::StandardBasis, n)
Return array of `n` uniformly distributed random `EntanglementWitness` represented in Bell basis `standardBasis`.
"""
function create_random_witnesses(standardBasis::StandardBasis, n)::Array{EntanglementWitness}
basisOps = map(x -> x[3], standardBasis.basis)
D = length(basisOps)
randomParams = rand(Uniform(-1, 1), n, D)
wits = Array{EntanglementWitness}(undef, 0)
for i in 1:n
push!(wits, EntanglementWitness(randomParams[i, :], Hermitian(generic_vectorproduct(randomParams[i, :], basisOps))))
end
return wits
end
"""
create_halfspheric_witnesses(standardBasis::StandardBasis, n)
Return array of `n` uniformly distributed random `EntanglementWitness` on unit sphere represented in Bell basis `standardBasis`.
"""
function create_halfspheric_witnesses(standardBasis::StandardBasis, n)::Array{EntanglementWitness}
basisOps = map(x -> x[3], standardBasis.basis)
D = length(basisOps)
randomParams = Vector{Float64}[]
for i in 1:n
randomVector = normalize(rand(Normal(), D))
if randomVector[1] < 0
randomVector[1] = -randomVector[1]
end
push!(randomParams, randomVector)
end
wits = Array{EntanglementWitness}(undef, 0)
for i in 1:n
push!(wits, EntanglementWitness(randomParams[i], Hermitian(generic_vectorproduct(randomParams[i], basisOps))))
end
return wits
end
"""
get_direct_functions_for_wit_traceoptimization(wit::EntanglementWitness, d)
Return the function and its negative that calculates ``tr \\rho`` `wit.coords`, the trace of the given witness `wit` multiplied by a parameterized seperable state ``\\rho`` in `d` dimensions.
"""
function get_direct_functions_for_wit_traceoptimization(wit::EntanglementWitness, d)
function getTrace(λ, witOpM, d)
λ1 = λ[1:(2*(d-1))]
λ2 = λ[(2*(d-1)+1):end]
U1 = get_comppar_unitary_from_parvector(λ1, d)
U2 = get_comppar_unitary_from_parvector(λ2, d)
U = U1 ⊗ U2
b = proj(ket(1, d^2))
t = real(tr(witOpM * U * b * U'))
return t
end
function opt_f(x)
return getTrace(x, wit.operatorMatrix, d)
end
function opt_negf(x)
return -getTrace(x, wit.operatorMatrix, d)
end
return (opt_f, opt_negf)
end
"""
get_witness_extrema(d, wit::EntanglementWitness, iterations, method, useConstrainedOpt=false)
Return optimization (see optimization.jl) results for lower and upper bound of `d` dimensional EntanglementWitness `wit` using `iterations` runs and Optim.jl optimization method `method`.
"""
function get_witness_extrema(
d,
wit::EntanglementWitness,
iterations,
method,
useConstrainedOpt=false
)::Vector{Tuple{Float64,Vector{Float64}}}
optFuncs = get_direct_functions_for_wit_traceoptimization(wit, d)
optRes = direct_optimization(
optFuncs[1],
optFuncs[2],
method,
d,
iterations,
useConstrainedOpt
)
return optRes
end
"""
get_bounded_ew(d, wit::EntanglementWitness, iterations, method=Optim.NelderMead, useConstrainedOpt=false)
Return BoundedEW in `d` dimensions based on EntanglementWitness `wit` and `iterations` optimization runs of lower and upper bound for separable states.
"""
function get_bounded_ew(
d,
wit::EntanglementWitness,
iterations,
method=Optim.NelderMead,
useConstrainedOpt=false
)::BoundedEW
witExtremizer = get_witness_extrema(
d,
wit,
iterations,
method,
useConstrainedOpt
)
b = proj(ket(1, d^2))
totalMin = witExtremizer[1][1]
totalMax = witExtremizer[2][1]
minimizingParams = witExtremizer[1][2]
minimizingParams1 = minimizingParams[1:(2*(d-1))]
minimizingParams2 = minimizingParams[(2*(d-1)+1):end]
minimizingU1 = get_comppar_unitary_from_parvector(minimizingParams1, d)
minimizingU2 = get_comppar_unitary_from_parvector(minimizingParams2, d)
minimizingU = minimizingU1 ⊗ minimizingU2
minimizingDensityMatrix = Hermitian(minimizingU * b * minimizingU')
maximizingParams = witExtremizer[2][2]
maximizingParams1 = maximizingParams[1:(2*(d-1))]
maximizingParams2 = maximizingParams[(2*(d-1)+1):end]
maximizingU1 = get_comppar_unitary_from_parvector(maximizingParams1, d)
maximizingU2 = get_comppar_unitary_from_parvector(maximizingParams2, d)
maximizingU = maximizingU1 ⊗ maximizingU2
maximizingDensityMatrix = Hermitian(maximizingU * b * maximizingU')
return BoundedEW(
wit.coords,
totalMax,
totalMin,
maximizingDensityMatrix,
minimizingDensityMatrix,
iterations)
end
"""
create_random_bounded_ews(
d,
standardBasis::StandardBasis,
n,
sphericalOnly::Bool,
iterations::Integer,
method=Optim.NelderMead,
useConstrainedOpt=false
)
Return array of `n` `BoundedEW` with ``d^2`` `standardBasis` coordinates uniformly distributed in [-1, 1] if `sphericalOnly` is false or uniformly distributed on unit sphere otherwise.
Use `iterations` runs to improve optimizatio with Optim.jl optimization method `method`.
"""
function create_random_bounded_ews(
d,
standardBasis::StandardBasis,
n,
sphericalOnly::Bool,
iterations::Integer,
method=Optim.NelderMead,
useConstrainedOpt=false
)::Array{BoundedEW}
if (length(standardBasis.basis) != d^2)
throw("Dimension and basis do not match")
end
if (sphericalOnly)
witnessCreator = create_halfspheric_witnesses
else
witnessCreator = create_random_witnesses
end
randWits = witnessCreator(standardBasis, n)
boundedEWs = map(x -> get_bounded_ew(d, x, iterations, method, useConstrainedOpt), randWits)
return boundedEWs
end
"""
get_bounded_coordew(bEw::BoundedEW)::BoundedCoordEW
Map BoundedEW `bEw` to corresponding `BoundedCoordEW`.
"""
function get_bounded_coordew(bEw::BoundedEW)::BoundedCoordEW
return BoundedCoordEW(bEw.coords, bEw.upperBound, bEw.lowerBound, bEw.checkedIterations)
end | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 2445 | """
direct_optimization(f, negf, method, d, iterations, constrainedOpt=false)
Return total (minimum, minimizer) and (maximum, maximizer) of `iterations` optimization runs of function `f` and its negative `negf` over the set of separale states using Optim.jl optimization mehtod `method`.
Optim.jl is used for optimazation based on `parameterization.jl`, so `f` and `negf` are defined for ``2(d-1)`` parameters. Supported methods include `NelderMead`, `LBFGS` and `NewtonTrustRegion`.
"""
function direct_optimization(f, negf, method, d, iterations, constrainedOpt=false)
lHalf = d - 1
lMax = (2(d - 1))
lowerBoundParam = zeros(2 * (d - 1))
upperBoundParam = zeros(2 * (d - 1))
for k in 1:lHalf
upperBoundParam[k] = π / 2
end
for k in (lHalf+1):lMax
upperBoundParam[k] = 2 * π
end
combinedLowerBounds = [lowerBoundParam; lowerBoundParam]
combinedUpperBounds = [upperBoundParam; upperBoundParam]
detMaxima = Float64[]
detMinima = Float64[]
detMaximizers = []
detMinimizers = []
for it in 1:iterations
x_init_random = zeros(length(combinedUpperBounds))
for i in eachindex(x_init_random)
x_init_random[i] = rand(Uniform(combinedLowerBounds[i], combinedUpperBounds[i]))
end
if (!constrainedOpt)
detOptmin = optimize(f, x_init_random, method())
detOptmax = optimize(negf, x_init_random, method())
detMin = Optim.minimum(detOptmin)
detMax = -Optim.minimum(detOptmax)
else
detOptmin = optimize(f, combinedLowerBounds, combinedUpperBounds, x_init_random, Fminbox(method()))
detOptmax = optimize(negf, combinedLowerBounds, combinedUpperBounds, x_init_random, Fminbox(method()))
detMin = Optim.minimum(detOptmin)
detMax = -Optim.minimum(detOptmax)
end
push!(detMaxima, detMax)
push!(detMinima, detMin)
push!(detMaximizers, detOptmax.minimizer)
push!(detMinimizers, detOptmin.minimizer)
end
# Get total extrema of runs
minimizerIndex = findmin(detMinima)
maximizerIndex = findmax(detMaxima)
totalMin = minimizerIndex[1]
totalMax = maximizerIndex[1]
totalMinimizer = detMinimizers[minimizerIndex[2]]
totalMaximizer = detMaximizers[maximizerIndex[2]]
return [
(totalMin, totalMinimizer),
(totalMax, totalMaximizer)
]
end | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 1908 | """
create_red_parmatrix_from_parvector(x, d)
Return parameter matrix for pure state parameterization from parameter vector `x` of length ``2(d-1)``.
"""
function create_red_parmatrix_from_parvector(x, d)
if length(x) != (2 * (d - 1))
throw("Param vector and dimension mismatch")
end
λ = zeros(d, d)
k = 0
#fill first row with first elements of x
for n in 2:d
k = k + 1
λ[1, n] = x[k]
end
# fill first column with second half elements of x
for n in 2:d
k = k + 1
λ[n, 1] = x[k]
end
return λ
end
"""
create_comppar_unitary(λ, d)
Return `d` dimensional prameterized unitary matrix from parameter matrix `λ`.
"""
function create_comppar_unitary(λ, d)
# create onb
P = Array{
Array{Complex{Float64},2},
1}(undef, 0)
for i in (1:d)
b_i = proj(ket(i, d))
push!(P, b_i)
end
σ = Array{Array{Complex{Float64},2},2}(undef, d, d)
# define factor 1 for global phases
R = I(d)
for l in 1:d
R = R * exp(im * P[l] * λ[l, l])
end
# define factor 2 for rotations and relative phases
L = I(d)
for m in (1:d-1)
for n in (m+1:d)
σ[m, n] = -im * ketbra(m, n, d, d) + im * ketbra(n, m, d, d)
L = L * exp(im * P[n] * λ[n, m]) * exp(im * σ[m, n] * λ[m, n])
end
end
U_C = L * R
return U_C
end
"""
get_comppar_unitary_from_parvector(x, d)
Return parameterized unitatry matrix U of dimension `d` and rank 1 from parameter vector `x` with ``2(d-1)`` elements.
Using the first basis state of the computational basis with density matrix ``e_1``, any pure state ``\\rho`` can be generated as ``\\rho = U e_1 U^\\dagger``.
"""
function get_comppar_unitary_from_parvector(x, d)
λ = create_red_parmatrix_from_parvector(x, d)
U = create_comppar_unitary(λ, d)
return U
end | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 2236 | """
create_kernel_vertexstates(d, standardBasis::StandardBasis)
Return array containing collections of corresponding `standardBasis` indices, coordinates and density matrices for all `d` element sublattices in discrete phase space.
"""
function create_kernel_vertexstates(d, standardBasis::StandardBasis)
allSubLattices = create_dimelement_sublattices(d)
vertexStates = map(x -> create_index_sublattice_state(standardBasis, x), allSubLattices)
return vertexStates
end
"""
create_kernel_hpolytope(vertexCoordinates)
Return LazySets.HPolytope representation of polytope defined by `vertexCoordinates`.
"""
function create_kernel_hpolytope(vertexCoordinates)
#Create polytope in vertex representation
vPt = VPolytope(vertexCoordinates)
#Convert to H-representation
return tohrep(vPt)
end
"""
create_kernel_polytope(d, standardBasis::StandardBasis)
Return LazySets.HPolytope representation of the kernel polytope for dimension `d` and Bell basis `standardBasis`.
"""
function create_kernel_polytope(d, standardBasis::StandardBasis)
# Create kernel vertex states
vertexStates = create_kernel_vertexstates(d, standardBasis)
# Get coordinates
vertexCoords = map(x -> x[2], vertexStates)
# Create kernel polytope
return create_kernel_hpolytope(vertexCoords)
end
"""
extend_vpolytope_by_densitystates(
sepPolytope::VPolytope{Float64,Array{Float64,1}},
sepDensityStates::Array{DensityState},
precision::Integer
)
Return an extended Lazysets.VPolytope representation of polytope of separable states based on given polytope `sepPolytope` and new separable `sepDensityStates` as new vertices.
"""
function extend_vpolytope_by_densitystates(
sepPolytope::VPolytope{Float64,Array{Float64,1}},
sepDensityStates::Array{DensityState},
precision::Integer
)::VPolytope{Float64,Array{Float64,1}}
existingVertices = vertices_list(sepPolytope)
newVertices = unique(map(x -> rounddigits(abs.(x.coords), precision), sepDensityStates))
combinedVertices = [existingVertices; newVertices]
uniqueVertices = unique(map(x -> rounddigits(abs.(x), precision), combinedVertices))
return VPolytope(uniqueVertices)
end | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 4697 | """
get_permutation_from_translation(translation::Tuple{Int,Int}, stdBasis::StandardBasis, d)
Return `Permutations.Permutation` of translation for ``d^2`` dimensional vector of coordinates in Bell basis `standardBasis`.
"""
function get_permutation_from_translation(translation::Tuple{Int,Int}, stdBasis::StandardBasis, d)
myDicts = create_dictionary_from_basis(stdBasis)
dict = myDicts[1] #keys are tuples
reverseDict = myDicts[2] #keys are indices
D = length(myDicts[1])
t = collect(translation)
perm = zeros(D)
for i in 1:D
oldCoords = collect(reverseDict[i])
newCoords = mod.(oldCoords + t, d)
permIndex = dict[Tuple(newCoords)]
perm[i] = permIndex
end
return Permutation(perm)
end
"""
get_permutation_from_momentuminversion(stdBasis::StandardBasis, d)
Return `Permutations.Permutation` of momentum inversion for ``d^2`` dimensional vector of coordinates in Bell basis `standardBasis`.
"""
function get_permutation_from_momentuminversion(stdBasis::StandardBasis, d)
#load dictionary
myDicts = create_dictionary_from_basis(stdBasis)
dict = myDicts[1] #keys are tuples
reverseDict = myDicts[2] #keys are indices
D = length(myDicts[1])
perm = zeros(D)
for i in 1:D
oldCoords = collect(reverseDict[i])
newCoords = mod.([-oldCoords[1], oldCoords[2]], d)
permIndex = dict[Tuple(newCoords)]
perm[i] = permIndex
end
return Permutation(perm)
end
"""
get_permutation_from_quarterrotation(stdBasis::StandardBasis, d)
Return `Permutations.Permutation` of qurater rotation for ``d^2`` dimensional vector of coordinates in Bell basis `standardBasis`.
"""
function get_permutation_from_quarterrotation(stdBasis::StandardBasis, d)
#load dictionary
myDicts = create_dictionary_from_basis(stdBasis)
dict = myDicts[1] #keys are tuples
reverseDict = myDicts[2] #keys are indices
D = length(myDicts[1])
perm = zeros(D)
for i in 1:D
oldCoords = collect(reverseDict[i])
newCoords = mod.([oldCoords[2], -oldCoords[1]], d)
permIndex = dict[Tuple(newCoords)]
perm[i] = permIndex
end
return Permutation(perm)
end
"""
get_permutation_from_verticalshear(stdBasis::StandardBasis, d)
Return `Permutations.Permutation`` of vertical shear for ``d^2`` dimensional vector of coordinates in Bell basis`standardBasis`.
"""
function get_permutation_from_verticalshear(stdBasis::StandardBasis, d)
#load dictionary
myDicts = create_dictionary_from_basis(stdBasis)
dict = myDicts[1] #keys are tuples
reverseDict = myDicts[2] #keys are indices
D = length(myDicts[1])
perm = zeros(D)
for i in 1:D
oldCoords = collect(reverseDict[i])
newCoords = mod.([oldCoords[1] + oldCoords[2], oldCoords[2]], d)
permIndex = dict[Tuple(newCoords)]
perm[i] = permIndex
end
return Permutation(perm)
end
"""
generate_symmetries(stdBasis::StandardBasis, d, orderLimit=0)
Return array of `Permutations.Permutation` of all symmetries up to order `orderLimit` in `d` dimensions generated by the generators represented in `standardBasis`.
"""
function generate_symmetries(stdBasis::StandardBasis, d, orderLimit=0)::Array{Permutation}
allSymmetries = Permutation[]
#Get all translations
for i in 0:(d-1)
for j in 0:(d-1)
push!(allSymmetries, get_permutation_from_translation((i, j), stdBasis, d))
end
end
generators = (
get_permutation_from_quarterrotation(stdBasis, d),
get_permutation_from_momentuminversion(stdBasis, d),
get_permutation_from_verticalshear(stdBasis, d)
)
findNew = true
order = 1
while findNew
foundSims = Permutation[]
for x in generators
generatedSyms = map(s -> s * x, allSymmetries)
newSyms = filter(e -> !(e in allSymmetries), generatedSyms)
append!(foundSims, newSyms)
end
if length(foundSims) > 0
append!(allSymmetries, foundSims)
end
order += 1
findNew = (length(foundSims) > 0 && (orderLimit >= order || orderLimit == 0))
unique!(allSymmetries)
end
return allSymmetries
end
"""
get_symcoords(coords::Array{Float64,1}, symPermutations::Array{Permutation})
Return array containing all symmetric Bell coordinates of given symmetries `symPermutations` applied to Bell coordinates `coords`.
"""
function get_symcoords(coords::Array{Float64,1}, symPermutations::Array{Permutation})
symCoords = map(x -> Matrix(x) * coords, symPermutations)
return symCoords
end | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 5252 | """
ispsd(M, precision)
Return `true` if the smallest eingenvalue of matrix `M` rounded to precision `precision` is not negative.
"""
function ispsd(M, precision)
isPSD = false
realEigvals = real.(eigvals(M))
if round(minimum(realEigvals), digits=precision) >= 0
isPSD = true
end
return isPSD
end
"""
generic_vectorproduct(A,B)
For any vectors of equal length, return ``\\sum_i A[i]B[i]``, the sum of all products of elements with the same index.
"""
function generic_vectorproduct(A, B)
@assert length(A) == length(B)
d = length(A)
Res = 0 * (A[1] * B[1])
for i in (1:d)
Res = Res + A[i] * B[i]
end
return Res
end
"""
rounddigits(A, precision)
Return `A` with all elemets rounded up to `precision` digits.
"""
function rounddigits(A, precision)
(x -> round(x, digits=precision)).(A)
end
"""
isPPTP(ρ, d, precision)
Return `true` if the partial transposition of the Hermitian matrix based on the upper triangular of `ρ` is positive semi-definite in `precision`.
"""
function isppt(ρ, d, precision)
M = Hermitian(ρ)
minEigvalPT = real(ppt(M, [d, d], 2))
return round(minEigvalPT, digits=precision) >= 0
end
"""
create_dictionary_from_basis(stdBasis)
Return vector containing a dictionary and it's inverse, relating the ``d^2`` flat indices to the double indices of `stdBasis`.
"""
function create_dictionary_from_basis(stdBasis::StandardBasis)
basisDict = Dict()
for i in stdBasis.basis
basisDict[i[2]] = i[1]
end
reverseDict = Dict()
for i in stdBasis.basis
reverseDict[i[1]] = i[2]
end
return [basisDict, reverseDict]
end
"""
δ(n,m)
Return 1 if `n`==`m`
"""
function δ(n, m)::Int8
if n == m
return 1
else
return 0
end
end
"""
δ_mod(n,m,x)
Return 1 if `n` and `m` are congruent modulo `x`.
"""
function δ_mod(n, m, x)::Int8
if mod(n, x) == mod(m, x)
return 1
else
return 0
end
end
"""
map_indices_to_normcoords(indices, D)
Return `D` element normalized coordinate vector with equal nonzero values at given `indices`.
"""
function map_indices_to_normcoords(indices, D)
c = zeros(D)
for i in indices
c[i] = 1 / length(indices)
end
return c
end
"""
get_properdivisors(k:Int)
Return vector of proper divisors of `k`.
"""
function get_properdivisors(k::Int)
divisors = Array{Int,1}(undef, 0)
for j in (2:floor(sqrt(k)))
if k % j == 0
push!(divisors, j)
if j != sqrt(k)
push!(divisors, k / j)
end
end
end
return divisors
end
"""
FT_OP(d)
Returns the `d`-dimensional Fourier gate.
"""
function FT_OP(d)
F = complex(zeros(d, d))
for i in 0:(d-1), j in (0:d-1)
F += 1 / sqrt(d) * exp(2 * pi * im / d * j * i) * ketbra(i + 1, j + 1, d)
end
return (F)
end
"""
GXOR_OP_ADD(d)
Returns the `d`-dimensional generalization of the GXOR gate acting as |i>k|j> => |i>|i+j>.
"""
function GXOR_OP_ADD(d)
GXOR = complex(zeros(d^2, d^2))
for i in 0:(d-1), m in 0:(d-1), j in 0:(d-1), n in 0:(d-1)
GXOR += δ(i, j) * δ(m, mod(j + n, d)) * (modket(i, d) ⊗ modket(m, d)) * (modbra(j, d) ⊗ modbra(n, d))
end
return (GXOR)
end
"""
GXOR_OP_SUB(d)
Returns the `d`-dimensional generalization of the GXOR gate acting as |i>k|j> => |i>|i-j>.
"""
function GXOR_OP_SUB(d)
GXOR = complex(zeros(d^2, d^2))
for i in 0:(d-1), m in 0:(d-1), j in 0:(d-1), n in 0:(d-1)
GXOR += δ(i, j) * δ(m, mod(j - n, d)) * (modket(i, d) ⊗ modket(m, d)) * (modbra(j, d) ⊗ modbra(n, d))
end
return (GXOR)
end
"""
depolarize_coords(coords)
Return depolarized elements of a coord probability vector. Leaves the first element invariant. Remaining elements are replaced by their average value.
"""
function depolarize_coords(coords)
l = length(coords)
newCoords = [coords[1]; (sum(coords[2:end]) / (l - 1)) * ones(l - 1)]
return (newCoords)
end
"""
belldiagonal_projection(stdbasis, ρ)
Projects any density matrix to the set of Bell-diagonal densitystates of corresponding dimension as defined by the `stdbasis`.
"""
function belldiagonal_projection(stdBasis::StandardBasis, ρ, eClass="UNKNOWN", precision::Integer=10)::DensityState
coords = Float64[]
for basisOp in stdBasis.basis
push!(coords, real(round(tr(basisOp[3] * ρ), digits=precision)))
end
projState = create_densitystate(CoordState(coords, eClass), stdBasis)
return projState
end
"""
add_errorkeys(x,y,d,n)
Adds two error elements mod d.
"""
function add_errorkeys(x, y, d, n)
@assert n == 2
((x_i1, x_j1), (x_i2, x_j2)) = (x[1], x[2])
((y_i1, y_j1), (y_i2, y_j2)) = (y[1], y[2])
z_i1 = mod((x_i1 + y_i1), d)
z_j1 = mod((x_j1 + y_j1), d)
z_i2 = mod((x_i2 + y_i2), d)
z_j2 = mod((x_j2 + y_j2), d)
return (
[(z_i1, z_j1), (z_i2, z_j2)]
)
end
"""
modket(k,d)
Return the `k`th ket vector modulo `d`.
"""
function modket(k, d)
return (ket(mod(k, d) + 1, d))
end
"""
modbra(k,d)
Return the `k`th bra vector modulo `d`.
"""
function modbra(k, d)
return (bra(mod(k, d) + 1, d))
end
| BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | code | 7839 | using BellDiagonalQudits
using Test
using LazySets: tovrep, vertices_list
using LinearAlgebra: Diagonal, I
testStandardBasis2 = create_standard_indexbasis(2, 10)
testStandardBasis3 = create_standard_indexbasis(3, 10)
testAltBasisStates3 = Vector{ComplexF64}[]
for (k, l) in Iterators.product(fill(0:(2), 2)...)
#Weyl transformation to basis states
state_alt_kl = create_altbellstate(3, k, l, complex(ones(3, 3)), false)
push!(testAltBasisStates3, state_alt_kl)
end
testStandardBasis4 = create_standard_indexbasis(4, 10)
testStandardKernel3 = create_kernel_polytope(3, testStandardBasis3)
testStandardKernel4 = create_kernel_polytope(4, testStandardBasis4)
testExtKernel3 = extend_vpolytope_by_densitystates(tovrep(testStandardKernel3), [create_densitystate(CoordState(1 / 9 * ones(9), "SEP"), testStandardBasis3)], 10)
testBipartiteWeylBasis3 = create_bipartite_weyloperator_basis(3)
testDictionaries3 = create_dictionary_from_basis(testStandardBasis3)
testMub3 = create_standard_mub(3)
testMub4 = create_standard_mub(4)
testRandomCoordWits = map(x -> get_bounded_coordew(x), create_random_bounded_ews(3, testStandardBasis3, 2, true, 20))
testSyms3 = generate_symmetries(testStandardBasis3, 3)
testAnaSpec = AnalysisSpecification(true, true, true, true, true, true, true, false)
testAnaSpecSym = AnalysisSpecification(true, true, true, true, true, true, true, true)
testDistillationState2 = create_densitystate(CoordState([0.6, 0.4 / 3, 0.4 / 3, 0.4 / 3], "UNKNOWN"), testStandardBasis2).densityMatrix
testDistillationState3 = create_densitystate(CoordState([0.5, 0.5 / 8, 0.5 / 8, 0.5 / 8, 0.5 / 8, 0.5 / 8, 0.5 / 8, 0.5 / 8, 0.5 / 8], "UNKNOWN"), testStandardBasis3).densityMatrix
@testset "BellDiagonalQudits.jl" begin
# BellDiagonalQudits/src/BellStates
@test length(uniform_bell_sampler(10, 3)) == 10
@test length(uniform_bell_sampler(10, 3, :enclosurePolytope)) == 10
@test length(create_random_coordstates(10, 3, :magicSimplex)) == 10
@test length(create_random_coordstates(10, 3, :magicSimplex, 10, 5)) == 10
@test length(create_standard_indexbasis(4, 10).basis) == 16
@test length(create_alt_indexbasis(3, complex(ones(3, 3)), 10).basis) == 9
@test testDictionaries3[1][2, 1] == 6
@test create_densitystate(CoordState(1 / 9 * ones(9), "UNKNOWN"), testStandardBasis3).coords ≈ 1 / 9 * ones(9)
@test length(create_bipartite_weyloperator_basis(3)) == 81
# BellDiagonalQudits/src/EntanglementWitness
@test length(testRandomCoordWits) == 2
# BellDiagonalQudits/src/SeparableStates
@test length(vertices_list(tovrep(testStandardKernel3))) == 12
@test length(vertices_list(tovrep(testStandardKernel4))) == 24
@test length(vertices_list(testExtKernel3)) == 13
# BellDiagonalQudits/src/Symmetries
@test length(testSyms3) == 432
@test get_symcoords(
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0],
generate_symmetries(testStandardBasis3, 3)[1:2]
) == [
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0],
[7.0, 8.0, 9.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
]
# BellDiagonalQudits/src/EntanglementChecks
@test length(testMub4) == 5
@test all(
map(
i -> getfield(
analyse_coordstate(
3,
CoordState(1 / 9 * ones(9), "UNKNOWN"),
testAnaSpec,
testStandardBasis3,
testStandardKernel3,
testBipartiteWeylBasis3,
testDictionaries3,
testMub3,
testRandomCoordWits
), i
) == getfield(
AnalysedCoordState(
CoordState(1 / 9 * ones(9), "UNKNOWN"),
true,
true,
true,
false,
false,
false,
false
), i),
propertynames(
AnalysedCoordState(
CoordState(1 / 9 * ones(9), "UNKNOWN"),
true,
true,
true,
false,
false,
false,
false
)
)[2:8]
)
)
@test all(
map(
i -> getfield(
sym_analyse_coordstate(
3,
CoordState(1 / 9 * ones(9), "UNKNOWN"),
testSyms3[1:10],
testAnaSpecSym,
testStandardBasis3,
testStandardKernel3,
testBipartiteWeylBasis3,
testDictionaries3,
testMub3,
testRandomCoordWits
), i
) == getfield(
AnalysedCoordState(
CoordState(1 / 9 * ones(9), "UNKNOWN"),
true,
true,
true,
false,
false,
false,
false
), i),
propertynames(
AnalysedCoordState(
CoordState(1 / 9 * ones(9), "UNKNOWN"),
true,
true,
true,
false,
false,
false,
false
)
)[2:8]
)
)
@test map(
x -> x.coordState.eClass,
classify_analyzed_states!([
AnalysedCoordState(
CoordState(ones(9), "UNKNOWN"),
true,
true,
true,
false,
false,
false,
false
),
AnalysedCoordState(
CoordState(ones(9), "UNKNOWN"),
false,
false,
true,
false,
false,
false,
false
),
AnalysedCoordState(
CoordState(ones(9), "UNKNOWN"),
false,
false,
true,
true,
false,
false,
false
),
AnalysedCoordState(
CoordState(ones(9), "UNKNOWN"),
false,
false,
false,
true,
false,
false,
false
)])
) == ["SEP", "PPT_UNKNOWN", "BOUND", "NPT"]
@test concurrence_qp_gendiagonal_check(
CoordState([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "UNKNOWN"),
3,
testAltBasisStates3
)
#BellDiagonalQudits/src/Distillation
@test FIMAX_routine(testDistillationState2, 2, 2, testStandardBasis2)[2] > 0
@test FIMAX_routine(testDistillationState3, 2, 3, testStandardBasis3)[2] > 0
@test P1_P2_routine(testDistillationState3, 2, 3, testStandardBasis3)[2] > 0
@test DEJMPS_routine(testDistillationState3, 2, 3, testStandardBasis3)[2] > 0
@test BBPSSW_routine(testDistillationState3, 2, 3, testStandardBasis3)[2] > 0
@test iterative_FIMAX_protocol(testDistillationState2, 0.9, 2, 2, testStandardBasis2, 100)[1]
@test iterative_FIMAX_protocol(testDistillationState3, 0.9, 2, 3, testStandardBasis3, 100)[1]
@test iterative_P1_P2_protocol(testDistillationState3, 0.9, 2, 3, testStandardBasis3, 100)[1]
@test iterative_DEJMPS_protocol(testDistillationState3, 0.9, 2, 3, testStandardBasis3, 100)[1]
@test iterative_BBPSSW_protocol(testDistillationState3, 0.9, 2, 3, testStandardBasis3, 100)[1]
@test efficiency(true, [1, 2, 3], [0.5, 0.7, 0.9], 2) > 0
end
| BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | docs | 5202 | # Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the
overall community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or
advances of any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email
address, without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series
of actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within
the community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by [Mozilla's code of conduct
enforcement ladder](https://github.com/mozilla/diversity).
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.
| BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | docs | 3524 | [![CI][ci-img]][ci-url]
[![codecov][cov-img]][cov-url]
[![][docs-dev-img]][docs-dev-url]
[](https://zenodo.org/badge/latestdoi/506929284)
[](https://doi.org/10.21105/joss.04924)
[ci-img]: https://github.com/kungfugo/BellDiagonalQudits.jl/actions/workflows/CI.yml/badge.svg
[ci-url]: https://github.com/kungfugo/BellDiagonalQudits.jl/actions/workflows/CI.yml
[cov-img]: http://codecov.io/github/kungfugo/BellDiagonalQudits.jl/coverage.svg
[cov-url]: https://codecov.io/github/kungfugo/BellDiagonalQudits.jl
[docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg
[docs-dev-url]: https://kungfugo.github.io/BellDiagonalQudits.jl/dev/
# BellDiagonalQudits.jl
_Generate and analyze Bell diagonal Qudits with Julia_
A package for generation and entanglement classification of Bell diagonal quantum states.
Bell diagonal states are generated as mixtures maximally entangled Bell states, which are related by Weyl transformations. The special propterties of these states, e.g. symmetries, allow efficient methods to be leveraged for the detection of entanglement, including its generally hard to detect form of PPT/bound entanglement.
This package provides methods to sample states, to numerically generate entanglement witnesses and to apply and extend further criteria to detect entanglement or separability in general dimension. For a precise description of implemented methods and related research results see [1], [2], [3] and the references therein.
## Package Features
- Create mixtures of maximally entangled Bell states based on Weyl transformations in any dimension
- Classify Bell diagonal states as separable, PPT/bound entangled or NPT/free entangled
- Generate numerical entanglement witnesses for Bell diagonal states
- Generate entanglement conserving symmetries and use them for entanglement classification
## Installation
BellDiagonalQudits can be installed using the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run
```
pkg> add BellDiagonalQudits
```
The package can be loaded via
```julia
julia> using BellDiagonalQudits
```
## Documentation
Documentation is available at [https://kungfugo.github.io/BellDiagonalQudits.jl/dev/](https://kungfugo.github.io/BellDiagonalQudits.jl/dev/)
## References
[1] Popp, C., Hiesmayr, B.C., _Almost complete solution for the NP-hard separability problem of Bell diagonal qutrits_, Sci Rep 12, 12472 (2022), [https://doi.org/10.1038/s41598-022-16225-z](https://doi.org/10.1038/s41598-022-16225-z)
[2] Baumgartner, B., Hiesmayr, B.C., Narrenhofer, H. _A special simplex in the state space for entangled qudits_, J. Phys. A Math. Theor. 40, 7919 (2007), [https://doi.org/10.1088/1751-8113/40/28/s03] (https://doi.org/10.1088/1751-8113/40/28/s03)
[3] Popp, C., Hiesmayr, B.C., _Bound Entanglement of Bell Diagonal Pairs of Qutrits and Ququarts: A Comparison_, arXiv (2022), [https://arxiv.org/abs/2209.15267] (https://arxiv.org/abs/2209.15267)
## Contributions
Any contribution to BellDiagonalQudits.jl is welcome in the following ways:
* Reporting bugs and suggestions in the issues section of the project's Github.
* Modifying the code or documentation with a pull request. To contribute to the package, fork the repository on GitHub, clone it and make modifications on a new branch. Once your changes are made, push them on your fork and create the Pull Request on the main repository.
| BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | docs | 2216 | # BellDiagonalQudits.jl
_Generate and analyze Bell diagonal Qudits with Julia_
A package for generation and entanglement classification of Bell diagonal quantum states.
Bell diagonal states are generated as mixtures maximally entangled Bell states, which are related by Weyl transformations. The special propterties of these states, e.g. symmetries, allow efficient methods to be leveraged for the detection of entanglement, including its generally hard to detect form of PPT/bound entanglement.
This package provides methods to sample states, to numerically generate entanglement witnesses and to apply and extend further criteria to detect entanglement or separability in general dimension. Furthermore, it provides methods for entanglement distillation. For a precise description of implemented methods and related research results see [1] and [2] and the references therein.
## Package Features
- Create mixtures of maximally entangled Bell states based on Weyl transformations in any dimension
- Classify Bell diagonal states as separable, PPT/bound entangled or NPT/free entangled
- Generate numerical entanglement witnesses for Bell diagonal states
- Generate entanglement conserving symmetries and use them for entanglement classification
- Execute recurrence-based entanglement distillation protocols.
## References
[1] Popp, C., Hiesmayr, B.C., _Almost complete solution for the NP-hard separability problem of Bell diagonal qutrits_, Sci Rep 12, 12472 (2022), [https://doi.org/10.1038/s41598-022-16225-z](https://doi.org/10.1038/s41598-022-16225-z)
[2] Baumgartner, B., Hiesmayr, B.C., Narrenhofer, H. _A special simplex in the state space for entangled qudits_, J. Phys. A Math. Theor. 40, 7919 (2007), [https://doi.org/10.1088/1751-8113/40/28/s03] (https://doi.org/10.1088/1751-8113/40/28/s03)
[3] Popp, C., Hiesmayr, B.C., _Bound Entanglement of Bell Diagonal Pairs of Qutrits and Ququarts: A Comparison_, arXiv (2022), [https://arxiv.org/abs/2209.15267] (https://arxiv.org/abs/2209.15267)
[4] Popp, C., Sutter, T.C., Hiesmayr, B.C., _A Novel Stabilizer-based Entanglement Distillation Protocol for Qudits_, arXiv (2024), [https://arxiv.org/abs/2408.02383] (https://arxiv.org/abs/2408.02383) | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | docs | 180 | # Library
```@index
```
## Public
```@autodocs
Modules = [BellDiagonalQudits]
Private = false
```
## Internal
```@autodocs
Modules = [BellDiagonalQudits]
Public = false
```
| BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | docs | 8044 | # Manual
This manual shows how to use the package by using it to sample a set of uniformly distributed Bell diagonal states and to analyse their entanglement properties. Here, we apply criteria for separability and entanglement to determine the entanglement class of generated bipartite qutrits, i.e. `d=3`. In this system, bound entangled states, i.e. entangled states with positive partial transposition (PPT) that cannot be used for entanglement distillation, exist. The entanglement classes are labeled "SEP" for separability, "BOUND" for bound entanglement, "FREE" for entanglement with negative partial transposition (i.e. distillable) and "PPT_UNKNOWN" for PPT states that could not be classified as entangled or separable.
## Package installation
BellDiagonalQudits can be installed using the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run
```
pkg> add BellDiagonalQudits
```
The package can be loaded via
```julia
julia> using BellDiagonalQudits
```
## State generation
Create a basis of maximally entangled bipartite Bell states in `d^2` dimensions. Each Bell basis state is created by applying a certain Weyl transformation to the maximally entangled state. Sample Bell diagonal random mixed states of those Bell states, represented by their `d^2` coordinates (mixing probabilities) in the Bell basis.
\
**Bell basis generation**
Create a Bell basis `myBasis` by applying each of the `d^2` Weyl transformations `W_{k,l} \\otimes \\mathbb{1}_d` to the maximally entangled state.`myBasis.basis` contains the enumerated Bell states in computational basis together with the indices of the corresponding Weyl transformation. `myBasisDict` contains the dictionaries to relate the enumerated `d^2` Bell basis states to the double indices `(k,l)` of the corresponding Weyl transformation.
```julia
d = 3
myBasis = create_standard_indexbasis(d,10)
myBasisDict = create_dictionary_from_basis(myBasis)
```
\
**State sampling**
Create uniformly distributed random representations of quantum states by specifying the coordinates of the state in the created Bell basis. The coordinates represent the mixing probabilities of the Bell basis states. Here, we create only states with Bell coordinates within the "enclosure polytope", which is defined by the limitation of all coordinates (mixing probabilities) to be smaller than or equal to `1/d`. This subset is known to contain all (but not only) states with positive partial transposition (PPT), which can be separable or bound entangled.
```julia
myCoordStates = uniform_bell_sampler(100, d, :enclosurePolytope)
```
Create `DensityState`s including the density matrix of each state in the computational basis, created by mixing the Bell states of `myBasis` according to the `coords` of `myCoordStates`.
```julia
myDensityStates = map(x->create_densitystate(x, myBasis), myCoordStates)
```
## Analysis prerequisites
Now create the analysis objects required for the entanglement classification using several criteria for entanglement or separability.
\
**Separable kernel polytope**
The kernel polytope is known to contain only Bell coordinates that represent separable states. It is defined as the convex hull of vertices related to special separable states called "subgroup states". The related `kernel check` tests if the Bell coordinates of a given unclassified state are contained in this convex hull and thus indicates separability.
```julia
mySepKernel = create_kernel_polytope(d, myBasis)
```
If additional separable states `newSepDensityStates` are known, the kernel polytope can be exteded to a larger convex hull in order to improve the kernel check for separability.
For a (trivial) example, consider the separable, maximally mixed state having all Bell states mixed equally with probability `1/d^2`. First,specify the coordinates in the Bell basis and set the `eClass` of the corresponding `CoordState` to "SEP". Then, calculate the density matrix and create the `DensityState`. Finally, extend the kernel polytope `mySepKernel` by the array containing this separable state.
```julia
maxMixedCoordState = CoordState(1/d^2*ones(d^2), "SEP")
maxMixedDensityState = create_densitystate(maxMixedCoordState, myBasis)
newSepDensityStates = [maxMixedDensityState]
myExtendedKernel = extend_vpolytope_by_densitystates(tovrep(mySepKernel), newSepDensityStates, 10)
```
\
**Weyl operator basis**
Use the Weyl operators to construct a basis of the space of `(d^2,d^2)` matrices. This object is used for the `spinrep check` indicating separability according to the representation of the density matrix of a given state in this basis.
```julia
myWeylOperatorBasis = create_bipartite_weyloperator_basis(d)
```
\
**Mutually unbiased bases (MUBs)**
Create the a set of mutually unbiased bases (MUBs) constructed with the Weyl operators and represented in the computational basis.
```julia
myMub = create_standard_mub(d)
```
\
**Symmetries**
Generate entanglement class conserving symmetries represented as permutations of state coordinates in the Bell basis. Given a classified state, the orbit, i.e. the set of states that are generated by applying all symmetries to the classified state, is known to be of the same entanglement class. The symmetries can be used to improve the entanglement classification.
```julia
mySyms = generate_symmetries(myBasis, d)
```
\
**Entanglement witnesses**
Generate `n` numerical entanglement witnesses by numerical optimization over the set of separable states. Here, the entanglement witnesses are represented by their coordinates in the Bell basis, an upper, and a lower bound. For all separable states, the inner product of the state and witness coordinates obeys these bounds. A violation of the inner product of an unknown state and the witness thus indicates entanglement. Use `iterations` runs to improve the determined upper and lower bounds. Other optimization methods than the default `NelderMead` can be used.
```julia
n = 2
myOptimizedEWs = create_random_bounded_ews(
d,
myBasis,
n,
true,
20
)
```
```julia
myOptimizedCoodEWs = map(x->get_bounded_coordew(x), myOptimizedEWs)
```
## Entanglement classification
**Analysis specification**
Specify, which entanglement checks to use. See properties of type `AnalysisSpecification`. In this case we check separability with the kernel and spinrep check and test for entanglement using the ppt, realignment, concurrence_qp and numeric_ew check.
```julia
myAnaSpec = AnalysisSpecification(
true,
true,
true,
true,
true,
false,
true,
false
)
```
\
**Apply analysis to all generated states**
If `useSymmetries == false` in the analysis specification `myAnaSpec` use `analyse_coordstate`, else use `sym_analyse_coordstate` to leverage the symmetries `mySyms` for improved classification.
```julia
f(x) = analyse_coordstate(
d,
x,
myAnaSpec,
myBasis,
mySepKernel,
myWeylOperatorBasis,
myBasisDict,
missing,
myOptimizedCoodEWs
)
myAnalysedCoordStates = map(x->f(x), myCoordStates)
```
Finally use analysis results to set `CoordState.eClass` to assign the entanglement class to the states.
```julia
classify_analyzed_states!(myAnalysedCoordStates)
```
Identify e.g. bound entangled states as
```julia
myBoundStates = filter(x->x.coordState.eClass == "BOUND", myAnalysedCoordStates)
```
## Entanglement distillation
Create and distill a Bell-diagonal state with the FIMAX protocol. First, create a test state.
```julia
d=3
testBDS = create_densitystate(CoordState([0.5, 0.5 / 8, 0.5 / 8, 0.5 / 8, 0.5 / 8, 0.5 / 8, 0.5 / 8, 0.5 / 8, 0.5 / 8], "UNKNOWN"), myBasis).densityMatrix
```
To execute one iteration of the FIMAX routine, run:
```julia
FIMAX_routine_results = FIMAX_routine(testBDS, 2, d, myBasis)
```
To iterate this procedure until a target fidelity of 0.99 with the maximally entangled state is achieved, execute:
```julia
FIMAX_protocol_results = iterative_FIMAX_protocol(testBDS, 0.99, 2, d, testStandardBasis3, 100)
``` | BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 0.1.7 | 79e541dc38e1b13ceb024af4fb5f87a10bfbea85 | docs | 5509 | ---
title: "BellDiagonalQudits: A package for entanglement analyses of mixed maximally entangled qudits"
tags:
- Julia
- quantum information
- quantum physics
- entanglement
- separability problem
- Bell states
authors:
- name: Christopher Popp
orcid: 0000-0002-2352-3731
affiliation: 1
affiliations:
- name: Faculty of Physics, University of Vienna, Währingerstrasse 17, 1090, Vienna Austria
index: 1
date: 15 December 2022
bibliography: paper.bib
---
# Summary
In the field of quantum information and technology, entanglement in quantum
systems called qudits is regarded as resource for quantum-based or quantum-assisted
information processing tasks. It allows new ways of information processing like
quantum computation or quantum teleportation and provides possibilities for
speedups in a variety of algorithms with applications like search or optimization.
Despite its theoretical and practical relevance, there is no general method to determine whether a given
quantum state is entangled or not due to a special and hard to detect form of
entanglement called bound entanglement. Bipartite Bell states are maximally
entangled states of two qudits and are of high relevance for application in
quantum technologies. Mixtures of those states can be entangled, including its
bound form, or separable. Leveraging their special properties, Bell states can
be numerically generated and analyzed for their entanglement properties by
various methods implemented in this Julia package.
# Statement of need
`BellDiagonalQudits` is an Quantum Information-affiliated Julia package for generation and
entanglement analyses of mixed maximally entangled bipartite qudits in general
dimension. The API for `BellDiagonalQudits` provides an user-friendly interface
to generate representations of Bell diagonal quantum states and to analyze their
entanglement properties with various general or specialized criteria to detect
entanglement or separability. Leveraging geometric properties of a certain class
of mixed Bell states that are related by Weyl transformations,
`BellDiagonalQudits` combines known analytical results by @baumgartner and
numerical methods for quantum state representation and analysis. It leverages
and depends on the Julia package `QuantumInformation`, the convex sets of
`LazySets` [@lazysets] and the optimization methods of `Optim` [@optim].
`BellDiagonalQudits` was designed to be used by researchers in quantum science
and quantum information theory. It has already been used in multiple scientific
publications, e.g. in @PoppACS and @PoppBoundEntComparison in the context of entanglement
classification and detection of bipartite qudits in dimension three and
four. The combination of efficient state generation via random sampling or
deterministic procedures and implementation of both frequently used and
specialized entanglement and separability detectors supports the research of
entanglement in several ways. From a general point of view, entangled Bell
states are well accessible for powerful methods of entanglement and
separability detection, leveraging their symmetries and geometric properties. It
was shown in that a significant share of the group of mixed Bell states related by Weyl transformations
are bound entangled [@PoppACS;@PoppBoundEntComparison;@hiesmayr], offering a systematic way to generate and investigate
those states with respect to the separability problem in different
dimensions. In addition to general methods applicable to any Bell diagonal state,
`BellDiagonalQudits` provides features to generate the special symmetries of Bell
states that are related via Weyl transformations. These symmetries are leveraged
for improved entanglement classification and the numerical generation of specialized
entanglement witnesses in any dimension. Furthermore, the implemented methods
of `BellDiagonalQudits` can be used in various quantum information processing
tasks involving Bell diagonal states in any dimension like Quantum Key Distribution
or entanglement verification. `BellDiagonalQudits` uses and integrates well with
the general interface of `QuantumInformation` allowing the investigation of Bell
states in the context of quantum channels, entanglement measures or entropy.
# Relation to research projects
The methods of `BellDiagonalQudits` to generate and analyze Bell diagonal states
in general dimension are based on analytical properties summarized by
@baumgartner. Extensions of those methods and efficient implementation in
`BellDiagonalQudits` enabled the detailed analysis by @PoppACS of Bell diagonal
qudits in three dimensions (qutrits), providing an operational solution to the
separability problem for those states. Additionally the relative shares of
separable and (bound) entangled states were precisely determined among the Bell
diagonal states. In @PoppBoundEntComparison, higher dimensions were
considered, focusing on a detailed comparison and geometric properties of
separable states in dimension three and four.
# Package information
`BellDiagonalQudits` is available on Github at [https://github.com/kungfugo/BellDiagonalQudits.jl](https://github.com/kungfugo/BellDiagonalQudits.jl). The package
documentation is available at [https://kungfugo.github.io/BellDiagonalQudits.jl/dev/](https://kungfugo.github.io/BellDiagonalQudits.jl/dev/) and
provides examples of usage.
# Acknowledgments
I acknowledge support from Beatrix C. Hiesmayr for review and validation of
implemented methods.
# References
| BellDiagonalQudits | https://github.com/kungfugo/BellDiagonalQudits.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 195 | using Pkg # Load package manager
Pkg.add("JuliaFormatter") # Install JuliaFormatter
using JuliaFormatter # Load JuliaFormatter
format("."; verbose=true) # Format all files
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 785 | using Revise
using SimpleTraits
using Distributions
using Graphs
using MultilayerGraphs
using Documenter
DocMeta.setdocmeta!(
MultilayerGraphs, :DocTestSetup, :(using MultilayerGraphs); recursive=true
)
makedocs(;
modules=[MultilayerGraphs],
authors="Pietro Monticone, Claudio Moroni",
repo="https://github.com/JuliaGraphs/MultilayerGraphs.jl/blob/{commit}{path}#{line}",
sitename="MultilayerGraphs.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://juliagraphs.org/MultilayerGraphs.jl",
assets=String[],
),
pages=["Home" => "index.md", "API" => "API.md"],
clean=false,
)
deploydocs(;
repo="github.com/JuliaGraphs/MultilayerGraphs.jl", devbranch="main", push_preview=true
)
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 15914 | # Install necessary tutorial dependencies
using Pkg
Pkg.add(["Revise", "Distributions", "Graphs", "SimpleValueGraphs",
"LoggingExtras", "StatsBase", "SimpleWeightedGraphs",
"MetaGraphs", "Agents", "MultilayerGraphs"])
# Import necessary tutorial dependencies
using Revise
using StatsBase, Distributions
using Graphs, SimpleWeightedGraphs, MetaGraphs, SimpleValueGraphs
using MultilayerGraphs
# Set the minimum and maximum number of nodes_list and edges for random graphs
const vertextype = Int64
const _weighttype = Float64
const min_vertices = 5
const max_vertices = 7
const n_nodes = max_vertices
# The constructor for nodes (which are immutable) only requires a name (`id`) for the node
const nodes_list = [Node("node_$i") for i in 1:n_nodes]
## Convert nodes to multilayer vertices without metadata
const multilayervertices = MV.(nodes_list)
## Convert nodes multilayer vertices with metadata
const multilayervertices_meta = [MV(node, ("I'm node $(node.id)",)) for node in nodes_list] # `MV` is an alias for `MultilayerVertex`
multilayervertices_meta[1]
# Utility function that returns a random number of vertices and edges each time it is called:
function rand_nv_ne_layer(min_vertices, max_vertices)
_nv = rand(min_vertices:max_vertices)
_ne = rand(1:(_nv*(_nv-1)) ÷ 2 )
return (_nv,_ne)
end
# Utility function that returns two vertices of a Layer that are not adjacent.
function _get_srcmv_dstmv_layer(layer::Layer)
mvs = MultilayerGraphs.get_bare_mv.(collect(mv_vertices(layer)))
src_mv_idx = findfirst(mv -> !isempty(setdiff(
Set(mvs),
Set(
vcat(MultilayerGraphs.get_bare_mv.(mv_outneighbors(layer, mv)), mv)
),
)), mvs)
src_mv = mvs[src_mv_idx]
_collection = setdiff(
Set(mvs),
Set(
vcat(MultilayerGraphs.get_bare_mv.(mv_outneighbors(layer, src_mv)), src_mv)
),
)
dst_mv = MultilayerGraphs.get_bare_mv(rand(_collection))
return mvs, src_mv, dst_mv
end
# An unweighted simple layer:
_nv, _ne = rand_nv_ne_layer(min_vertices,max_vertices)
layer_sg = Layer( :layer_sg,
sample(nodes_list, _nv, replace = false),
_ne,
SimpleGraph{vertextype}(),
_weighttype
)
# A weighted `Layer`
_nv, _ne = rand_nv_ne_layer(min_vertices,max_vertices)
layer_swg = Layer( :layer_swg,
sample(nodes_list, _nv, replace = false),
_ne,
SimpleWeightedGraph{vertextype, _weighttype}(),
_weighttype;
default_edge_weight = (src,dst) -> rand()
)
# A `Layer` with an underlying `MetaGraph`:
_nv, _ne = rand_nv_ne_layer(min_vertices,max_vertices)
layer_mg = Layer( :layer_mg,
sample(nodes_list, _nv, replace = false),
_ne,
MetaGraph{vertextype, _weighttype}(),
_weighttype;
default_edge_metadata = (src,dst) -> (from_to = "from_$(src)_to_$(dst)",)
)
# `Layer` with an underlying `ValGraph` from `SimpleValueGraphs.jl`
_nv, _ne = rand_nv_ne_layer(min_vertices,max_vertices)
layer_vg = Layer( :layer_vg,
sample(nodes_list, _nv, replace = false),
_ne,
MultilayerGraphs.ValGraph(SimpleGraph{vertextype}();
edgeval_types=(Float64, String, ),
edgeval_init=(s, d) -> (s+d, "hi"),
vertexval_types=(String,),
vertexval_init=v -> ("$v",),),
_weighttype;
default_edge_metadata = (src,dst) -> (rand(), "from_$(src)_to_$(dst)",),
default_vertex_metadata = mv -> ("This metadata had been generated via the default_vertex_metadata method",)
)
# Collect all layers in an ordered list. Order will be recorded when instantiating the multilayer graph.
layers = [layer_sg, layer_swg, layer_mg, layer_vg]
# Utilities for Interlayer
## Utility function that returns two vertices of an Interlayer that are not adjacent.
function _get_srcmv_dstmv_interlayer(interlayer::Interlayer)
mvs = get_bare_mv.(collect(mv_vertices(interlayer)))
src_mv = nothing
_collection = []
while isempty(_collection)
src_mv = rand(mvs)
_collection = setdiff(Set(mvs), Set(vcat(get_bare_mv.(mv_outneighbors(interlayer, src_mv)), src_mv, get_bare_mv.(mv_vertices( eval(src_mv.layer) ))) ) )
end
dst_mv = get_bare_mv(rand(_collection))
return mvs, src_mv, dst_mv
end
## Utility function that returns a random number edges between its arguments `layer_1` and `layer_2`:
function rand_ne_interlayer(layer_1, layer_2)
nv_1 = nv(layer_1)
nv_2 = nv(layer_2)
_ne = rand(1: (nv_1 * nv_2 - 1) )
return _ne
end
# Define the random undirected simple Interlayer
_ne = rand_ne_interlayer(layer_sg, layer_swg)
interlayer_sg_swg = Interlayer( layer_sg, # The first layer to be connected
layer_swg, # The second layer to be connected
_ne, # The number of edges to randomly generate
SimpleGraph{vertextype}(), # The underlying graph, passed as a null graph
interlayer_name = :random_interlayer # The name of the interlayer. We will be able to access it as a property of the multilayer graph via its name. This kwarg's default value is given by a combination of the two layers' names.
)
# Define a weighted `Interlayer`
_ne = rand_ne_interlayer(layer_swg, layer_mg)
interlayer_swg_mg = Interlayer( layer_swg,
layer_mg,
_ne,
SimpleWeightedGraph{vertextype, _weighttype}();
default_edge_weight = (x,y) -> rand() # Arguments follow the same rules as in Layer
)
# Define an `Interlayer` with an underlying `MetaGraph`
_ne = rand_ne_interlayer(layer_mg, layer_vg)
interlayer_mg_vg = Interlayer( layer_mg,
layer_vg,
_ne,
MetaGraph{vertextype, _weighttype}();
default_edge_metadata = (x,y) -> (mymetadata = rand(),),
transfer_vertex_metadata = true # This boolean kwarg controls whether vertex metadata found in both connected layers are carried over to the vertices of the Interlayer. NB: not all choice of underlying graph may support this feature. Graphs types that don't support metadata or that pose limitations to it may result in errors.
)
# Define an `Interlayer` with an underlying `ValGraph` from `SimpleValueGraphs.jl`, with diagonal couplings only:
interlayer_multiplex_sg_mg = multiplex_interlayer( layer_sg,
layer_mg,
ValGraph(SimpleGraph{vertextype}(); edgeval_types=(from_to = String,), edgeval_init=(s, d) -> (from_to = "from_$(s)_to_$(d)"));
default_edge_metadata = (x,y) -> (from_to = "from_$(src)_to_$(dst)",)
)
# Finally, An `Interlayer` with no couplings (an "empty" interlayer):
interlayer_empty_sg_vg = empty_interlayer( layer_sg,
layer_vg,
SimpleGraph{vertextype}()
)
# Collect all interlayers. Even though the list is ordered, order will not matter when instantiating the multilayer graph.
interlayers = [interlayer_sg_swg, interlayer_swg_mg, interlayer_mg_vg, interlayer_multiplex_sg_mg, interlayer_empty_sg_vg]
# Nodes
layer_sg_nodes = nodes(layer_sg)
interlayer_sg_swg_nodes = nodes(interlayer_sg_swg)
has_node(layer_sg, layer_sg_nodes[1])
# Vertices
layer_sg_vertices = mv_vertices(layer_sg)
mv_vertices(layer_mg)
interlayer_sg_swg_vertices = mv_vertices(interlayer_sg_swg)
new_node = Node("missing_node")
new_metadata = (meta = "my_metadata",)
new_vertex = MV(new_node, new_metadata)
add_vertex!(layer_mg, new_vertex)
add_vertex!(layer_mg, new_node, metadata = new_metadata)
add_vertex!(layer_mg, new_node, Dict(pairs(new_metadata)))
metagraph = MetaGraph()
add_vertex!(metagraph, Dict(pairs(new_metadata))) # true
rem_vertex!(layer_sg, new_vertex) # Returns true if succeeds
get_metadata(layer_mg, MV(new_node))
# Edges
edgetype(layer_sg)
collect(edges(layer_sg))
# Define a weighted edge for the layer_swg
## Define the weight
_weight = rand()
## Select two non-adjacent vertices in layer_swg
_, src_w, dst_w = _get_srcmv_dstmv_layer(layer_swg)
## Construct a weighted MultilayerEdge
me_w = ME(src_w, dst_w, _weight) # ME is an alias for MultilayerEdge
add_edge!(layer_swg, me_w)
add_edge!(layer_swg, src_w, dst_w, weight = _weight)
add_edge!(layer_swg, src_w, dst_w, _weight)
simpleweightedgraph = SimpleWeightedGraph(SimpleGraph(5, 0))
add_edge!(simpleweightedgraph, 1, 2, _weight)
rem_edge!(layer_swg, src_w, dst_w) # Returns true if succeeds
get_weight(layer_swg, src_w, dst_w)
# Define an edge with metadata for the layer_mg
## Define the metadata
_metadata = (meta = "mymetadata",)
## Select two non-adjacent vertices in layer_mg
_, src_m, dst_m = _get_srcmv_dstmv_layer(layer_mg)
## Construct a MultilayerEdge with metadata
me_m = ME(src_m, dst_m, _metadata)
add_edge!(layer_mg, me_m)
add_edge!(layer_mg, src_m, dst_m, metadata = _metadata)
add_edge!(layer_mg, src_m, dst_m, Dict(pairs(_metadata)))
get_metadata(layer_mg, src_m, dst_m)
add_edge!(layer_swg, me_w)
add_edge!(layer_swg, src_w, dst_w, weight = _weight)
add_edge!(layer_swg, src_w, dst_w, _weight)
rem_edge!(layer_swg, src_w, dst_w)
# Multilayer Graphs
multilayergraph = MultilayerGraph( layers, # The (ordered) list of layers the multilayer graph will have
interlayers; # The list of interlayers specified by the user. Note that the user does not need to specify all interlayers, as the unspecified ones will be automatically constructed using the indications given by the `default_interlayers_null_graph` and `default_interlayers_structure` keywords.
default_interlayers_null_graph = SimpleGraph{vertextype}(), # Sets the underlying graph for the interlayers that are to be automatically specified. Defaults to `SimpleGraph{T}()`, where `T` is the `T` of all the `layers` and `interlayers`. See the `Layer` constructors for more information.
default_interlayers_structure = "multiplex" # Sets the structure of the interlayers that are to be automatically specified. May be "multiplex" for diagonally coupled interlayers, or "empty" for empty interlayers (no edges). "multiplex". See the `Interlayer` constructors for more information.
)
# The configuration model-like constructor will be responsible for creating the edges, so we need to provide it with empty layers and interlayers.
# To create empty layers and interlayers, we will empty the above subgraphs, and, for compatibility reasons, we'll remove the ones having a `SimpleWeightedGraph`s. These lines are not necessary to comprehend the tutorial, they may be skipped. Just know that the variables `empty_layers` and `empty_interlayers` are two lists of, respectively, empty layers and interlayers that do not have `SimpleWeightedGraph`s as their underlying graphs
empty_layers = deepcopy([layer for layer in layers if !(layer.graph isa SimpleWeightedGraphs.AbstractSimpleWeightedGraph)])
empty_layers_names = name.(empty_layers)
empty_interlayers = deepcopy([interlayer for interlayer in interlayers if all(in.(interlayer.layers_names, Ref(empty_layers_names))) && !(interlayer.graph isa SimpleWeightedGraphs.AbstractSimpleWeightedGraph) ])
for layer in empty_layers
for edge in edges(layer)
rem_edge!(layer, edge)
end
end
for interlayer in empty_interlayers
for edge in edges(interlayer)
rem_edge!(interlayer, edge)
end
end
# Construct a multilayer graph that has a normal degree distribution. The support of the distribution must be positive, since negative degrees are not possible
configuration_multilayergraph = MultilayerGraph(empty_layers, empty_interlayers, truncated(Normal(10), 0.0, 20.0));
new_node = Node("new_node")
add_node!(multilayergraph, new_node) # Return true if succeeds
new_vertex = MV(new_node, :layer_sg)
add_vertex!(multilayergraph, new_vertex)
rem_node!(multilayergraph, new_node) # Return true if succeeds
# This will succeed
random_weighted_edge = rand(collect(edges(multilayergraph.layer_swg)))
set_weight!(multilayergraph, src(random_weighted_edge), dst(random_weighted_edge), rand())
# This will not succeed
random_unweighted_edge = rand(collect(edges(multilayergraph.layer_sg)))
set_weight!(multilayergraph, src(random_unweighted_edge), dst(random_unweighted_edge), rand())
# Instantiate a new Layer
_nv, _ne = rand_nv_ne_layer(min_vertices,max_vertices)
new_layer = Layer( :new_layer,
sample(nodes_list, _nv, replace = false),
_ne,
SimpleGraph{vertextype}(),
_weighttype
)
# Add the Layer
add_layer!(
multilayergraph, # the `Multilayer(Di)Graph` which the new layer will be added to;
new_layer; # the new `Layer` to add to the `multilayergraph`
default_interlayers_null_graph = SimpleGraph{vertextype}(), # upon addition of a new `Layer`, all the `Interlayer`s between the new and the existing `Layer`s are immediately created. This keyword argument specifies their `null_graph` See the `Layer` constructor for more information. Defaults to `SimpleGraph{T}()`
default_interlayers_structure = "empty" # The structure of the `Interlayer`s created by default. May either be "multiplex" to have diagonally-coupled only interlayers, or "empty" for empty interlayers. Defaults to "multiplex".
)
# Check that the new layer now exists within the multilayer graph
has_layer(multilayergraph, :new_layer)
# Instantiate a new Interlayer. Notice that its name will be given by default as
_ne = rand_ne_interlayer(layer_sg, new_layer)
new_interlayer = Interlayer( layer_sg,
new_layer,
_ne,
SimpleGraph{vertextype}(),
interlayer_name = :new_interlayer
)
# Modify an existing interlayer with the latter i.e. specify the latter interlayer:
specify_interlayer!( multilayergraph,
new_interlayer)
# Now the interlayer between `layer_sg` and `new_layer` is `new_interlayer`
# Get a layer by name
multilayergraph.new_layer
# Get an Interlayer by name
multilayergraph.new_interlayer
# Get an Interlayer from the names of the two layers that it connects
get_interlayer(multilayergraph, :new_layer, :layer_sg )
# Remove the layer. This will also remove all the interlayers associated to it.
rem_layer!( multilayergraph,
:new_layer;
remove_nodes = false # Whether to also remove all nodes represented in the to-be-removed layer from the multilayer graph
)
wgt = weight_tensor(multilayergraph)
array(wgt)
# Get two random vertices from the MultilayerGraph
mv1, mv2 = rand(mv_vertices(multilayergraph), 2)
# Get the strength of the edge between them (0 for no edge):
wgt[mv1, mv2] | MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 7327 | #################################################
################# ENVIRONMENT ###################
#################################################
# Import the package manager
using Pkg
# Activate the environment
Pkg.activate(@__DIR__)
# Instantiate the environment
Pkg.instantiate()
#################################################
################### PACKAGES ####################
#################################################
# Import necessary dependencies
using Distributions, Graphs, SimpleValueGraphs
using MultilayerGraphs
# Set the number of nodes
const n_nodes = 100
# Create a list of nodes
const node_list = [Node("node_$i") for i in 1:n_nodes]
#################################################
#################### LAYERS #####################
#################################################
# Create a simple directed layer
n_vertices = rand(1:100) # Number of vertices
layer_simple_directed = layer_simpledigraph( # Layer constructor
:layer_simple_directed, # Layer name
sample(node_list, n_vertices; replace=false), # Nodes represented in the layer
Truncated(Normal(5, 5), 0, 20), # Indegree sequence distribution
Truncated(Normal(5, 5), 0, 20), # Outdegree sequence distribution
)
# Create a simple directed weighted layer
n_vertices = rand(1:n_nodes) # Number of vertices
n_edges = rand(n_vertices:(n_vertices * (n_vertices - 1) - 1)) # Number of edges
layer_simple_directed_weighted = layer_simpleweighteddigraph( # Layer constructor
:layer_simple_directed_weighted, # Layer name
sample(node_list, n_vertices; replace=false), # Nodes represented in the layer
n_edges; # Number of randomly distributed edges
default_edge_weight=(src, dst) -> rand(), # Function assigning weights to edges
)
# Create a simple directed value layer
n_vertices = rand(1:n_nodes) # Number of vertices
n_edges = rand(n_vertices:(n_vertices * (n_vertices - 1) - 1)) # Number of edges
default_vertex_metadata = v -> ("vertex_$(v)_metadata",) # Vertex metadata
default_edge_metadata = (s, d) -> (rand(),) # Edge metadata
layer_simple_directed_value = Layer( # Layer constructor
:layer_simple_directed_value, # Layer name
sample(node_list, n_vertices; replace=false), # Nodes represented in the layer
n_edges, # Number of randomly distributed edges
ValDiGraph(
SimpleDiGraph{Int64}();
vertexval_types=(String,),
vertexval_init=default_vertex_metadata,
edgeval_types=(Float64,),
edgeval_init=default_edge_metadata,
),
Float64;
default_vertex_metadata=default_vertex_metadata, # Vertex metadata
default_edge_metadata=default_edge_metadata, # Edge metadata
)
# Create a list of layers
layers = [
layer_simple_directed, layer_simple_directed_weighted, layer_simple_directed_value
]
#################################################
################# INTERLAYERS ###################
#################################################
# Create a simple directed interlayer
n_vertices_1 = nv(layer_simple_directed) # Number of vertices of layer 1
n_vertices_2 = nv(layer_simple_directed_weighted) # Number of vertices of layer 2
n_edges = rand(1:(n_vertices_1 * n_vertices_2 - 1)) # Number of interlayer edges
interlayer_simple_directed = interlayer_simpledigraph( # Interlayer constructor
layer_simple_directed, # Layer 1
layer_simple_directed_weighted, # Layer 2
n_edges, # Number of edges
)
# Create a simple directed meta interlayer
n_vertices_1 = nv(layer_simple_directed_weighted) # Number of vertices of layer 1
n_vertices_2 = nv(layer_simple_directed_value) # Number of vertices of layer 2
n_edges = rand(1:(n_vertices_1 * n_vertices_2 - 1)) # Number of interlayer edges
interlayer_simple_directed_meta = interlayer_metadigraph( # Interlayer constructor
layer_simple_directed_weighted, # Layer 1
layer_simple_directed_value, # Layer 2
n_edges; # Number of edges
default_edge_metadata=(src, dst) -> # Edge metadata
(edge_metadata="metadata_of_edge_from_$(src)_to_$(dst)",),
transfer_vertex_metadata=true, # Boolean deciding layer vertex metadata inheritance
)
# Create a list of interlayers
interlayers = [interlayer_simple_directed, interlayer_simple_directed_meta]
#################################################
################## MULTILAYER ###################
#################################################
# Create a simple directed multilayer graph
multilayerdigraph = MultilayerDiGraph( # Constructor
layers, # The (ordered) collection of layers
interlayers; # The manually specified interlayers
# The interlayers that are left unspecified
# will be automatically inserted according
# to the keyword argument below
default_interlayers_structure="multiplex",
# The automatically specified interlayers will have only diagonal couplings
)
# Layers and interlayer can be accessed as properties using their names
multilayerdigraph.layer_simple_directed_value
# Create a node
new_node_1 = Node("new_node_1")
# Add the node to the multilayer graph
add_node!(multilayerdigraph, new_node_1)
# Create a vertex representing the node
new_vertex_1 = MV( # Constructor (alias for "MultilayerVertex")
new_node_1, # Node represented by the vertex
:layer_simple_directed_value, # Layer containing the vertex
("new_metadata",), # Vertex metadata
)
# Add the vertex
add_vertex!(
multilayerdigraph, # MultilayerDiGraph the vertex will be added to
new_vertex_1, # MultilayerVertex to add
)
# Create another node in another layer
new_node_2 = Node("new_node_2")
# Create another vertex representing the new node
new_vertex_2 = MV(new_node_2, :layer_simple_directed)
# Add the new vertex
add_vertex!(
multilayerdigraph,
new_vertex_2;
add_node=true, # Add the associated node before adding the vertex
)
# Create an edge
new_edge = MultilayerEdge( # Constructor
new_vertex_1, # Source vertex
new_vertex_2, # Destination vertex
("some_edge_metadata",), # Edge metadata
)
# Add the edge
add_edge!(
multilayerdigraph, # MultilayerDiGraph the edge will be added to
new_edge, # MultilayerVertex to add
)
################### METRICS ####################
# Compute the global clustering coefficient
multilayer_global_clustering_coefficient(multilayerdigraph)
# Compute the overlay clustering coefficient
overlay_clustering_coefficient(multilayerdigraph)
# Compute the multilayer eigenvector centrality
eigenvector_centrality(multilayerdigraph)
# Compute the multilayer modularity
modularity(
multilayerdigraph,
rand([1, 2, 3, 4], length(nodes(multilayerdigraph)), length(multilayerdigraph.layers)),
)
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 6807 | # TODO: FIXME:
# SimpleWeightedGraphs cannot be used for the configuration/random multilayergraph until this PR: https://github.com/JuliaGraphs/SimpleWeightedGraphs.jl/pull/14 is merged .
# Default value for metadata should be `nothing` and not `NamedTuple()`? This would be more consistent with how edge weights behave.
# In a future release we may implement Multiplex(Di)Graph
# Implement https://en.wikipedia.org/wiki/Kleitman%E2%80%93Wang_algorithms and https://en.wikipedia.org/wiki/Havel%E2%80%93Hakimi_algorithm for wiring (un)directed configuration models.
# Double check modularity. Also compare with https://juliagraphs.org/Graphs.jl/v1.5/community/#modularity-Tuple{AbstractGraph,%20AbstractVector{%3C:Integer}}. We should (probably) correct its implementation or at least compare it with a simpler one made in terms of unpadded supra adjacency matrix (that we have yet to implement).
# GraphOfGraphs and DiGraphOfGraphs could be improved/redesigned. Also, they don't yet extend Graphs.jl
# The δ_Ω implementation could be moved to a separate file.
# The usage of mutable `MissingVertex`s (although limited to SupraWeightMatrix) points to the fact that Bijections (at least as they are used right now) are not the best way to represent integer label-MultilayerVertex associations. We my implement our own container object or use the existing ons differently.
# We need a quick Multilayer(Di)Graph constructor of the form Multilayer(Di)Graph(nn, nl; nv = rand(0:nn*nl), ne = rand(0:nv*(nv-1)) kwargs...) where kwargs may be used to further specify it.
module MultilayerGraphs
export
# Node.jl
AbstractNode,
Node,
id,
# abstractvertex.jl
AbstractVertex,
# multilayervertex.jl
AbstractMultilayerVertex,
MultilayerVertex,
MV,
node,
layer,
metadata,
# missingvertex.jl
MissingVertex,
# multilayeredge.jl
AbstractMultilayerEdge,
MultilayerEdge,
ME,
weight,
metadata,
# halfedge.jl
# layerdescriptor.jl
# interlayerdescriptor.jl
# abstractsubgraph.jl
AbstractSubGraph,
nodes,
eltype,
has_vertex,
nv,
vertices,
mv_vertices,
inneighbors,
mv_inneighbors,
outneighbors,
mv_outneighbors,
neighbors,
mv_neighbors,
get_v,
edgetype,
has_edge,
ne,
edges,
add_edge!,
rem_edge!,
get_metadata,
get_weight,
is_directed,
adjacency_matrix,
weights,
name,
graph,
# layer.jl
AbstractLayer,
Layer,
layer_simplegraph,
layer_simpledigraph,
layer_simpleweightedgraph,
layer_simpleweighteddigraph,
layer_metadigraph,
layer_valgraph,
layer_valoutdigraph,
layer_valdigraph,
layer_metagraph,
has_node,
add_vertex!,
rem_vertex!,
# interlayer.jl
AbstractInterlayer,
Interlayer,
interlayer_simplegraph,
interlayer_simpleweightedgraph,
interlayer_metagraph,
interlayer_valgraph,
interlayer_simpledigraph,
interlayer_simpleweighteddigraph,
interlayer_metadigraph,
interlayer_valoutdigraph,
interlayer_valdigraph,
multiplex_interlayer,
empty_interlayer,
is_multiplex_interlayer,
get_symmetric_interlayer,
# abstracttensorrepresentation.jl
AbstractTensorRepresentation,
getindex,
array,
# abstractmatrixrrepresentation.jl
AbstractMatrixRepresentation,
# weighttensor.jl
WeightTensor,
# metadatatensor.jl
MetadataTensor,
# supraweightmatrix.jl
SupraWeightMatrix,
# traits.jl
IsWeighted,
is_weighted,
IsMeta,
is_meta,
IsMultiplex,
# abstractmultilayergraph.jl
AbstractMultilayerGraph,
nn,
add_node!,
rem_node!,
set_metadata!,
nl,
nIn,
has_layer,
rem_layer!,
get_interlayer,
indegree,
outdegree,
degree,
weighttype,
weight_tensor,
supra_weight_matrix,
metadata_tensor,
mean_degree,
degree_second_moment,
degree_variance,
multilayer_global_clustering_coefficient,
multilayer_weighted_global_clustering_coefficient,
overlay_clustering_coefficient,
eigenvector_centrality,
modularity,
# undirected.jl
set_weight!,
add_layer!,
specify_interlayer!,
von_neumann_entropy,
# directed.jl
# multilayergraph.jl
MultilayerGraph,
# multilayerdigraph.jl
MultilayerDiGraph,
# abstract_synchronized_edge_colored_graph.jl
AbstractNodeAlignedEdgeColoredGraph,
# synchronized_edge_colored_graph.jl
NodeAlignedEdgeColoredGraph,
# synchronized_edge_colored_di_graph.jl
NodeAlignedEdgeColoredDiGraph,
# utilities
multilayer_kronecker_delta,
δk,
size,
δ_1,
δ_2,
δ_3,
δ_Ω,
havel_hakimi_graph_generator,
kleitman_wang_graph_generator
# tensorfacoriazations.jl
using Base, InteractiveUtils, IterTools, SimpleTraits, Bijections, PrettyTables
using Distributions: Uniform
using LinearAlgebra, Statistics, OMEinsum, TensorOperations, Distributions
using DataStructures, SparseArrays
# import Graphs: AbstractGraph, AbstractEdge, has_vertex, nv, vertices, add_vertex!, rem_vertex!, edgetype, has_edge , ne, edges, inneighbors, outneighbors,neighbors, add_edge!, rem_edge!, src, dst, weights, degree, indegree, outdegree, is_directed, inneighbors, eigenvector_centrality, modularity, SimpleGraphs, SimpleGraph, SimpleDiGraph, IsDirected,isgraphical, isdigraphical, adjacency_matrix
using Graphs, SimpleWeightedGraphs, MetaGraphs, SimpleValueGraphs # Graphs,
include("traits.jl")
include("utilities.jl")
include("node.jl")
include("vertices/abstractvertex.jl")
include("vertices/multilayervertex.jl")
include("vertices/missingvertex.jl")
include("multilayeredge.jl")
include("halfedge.jl")
include("subgraphs/abstractdescriptor.jl")
include("subgraphs/layerdescriptor.jl")
include("subgraphs/interlayerdescriptor.jl")
include("subgraphs/abstractsubgraph.jl")
include("subgraphs/layer.jl")
include("subgraphs/interlayer.jl")
include("graphs_extensions/graphs_extensions.jl")
include("representations/abstracttensorrepresentation.jl")
include("representations/abstractmatrixrepresentation.jl")
include("representations/weighttensor.jl")
include("representations/metadatatensor.jl")
include("representations/supraweightmatrix.jl")
include("abstractmultilayergraph.jl")
include("undirected.jl")
include("directed.jl")
include("multilayergraph.jl")
include("multilayerdigraph.jl")
include(
"special_multilayergraphs/node_aligned_edge_colored/abstract_node_aligned_edge_colored_graph.jl",
)
include(
"special_multilayergraphs/node_aligned_edge_colored/node_aligned_edge_colored_graph.jl"
)
include(
"special_multilayergraphs/node_aligned_edge_colored/node_aligned_edge_colored_di_graph.jl",
)
include("tensorsfactorizations.jl")
end
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 44261 | # ==
# nl
# nIn
# has_layer
# _add_layer!
# rem_layer!
# _specify_interlayer!
# get_interlayer
# get_layer_idx
# Base.eltype
# weighttype
# edgetype
# has_vertex
# multilayer_vertices
# mv_inneighbors
# inneighbors
# mv_outneighbors
# outneighbors
# nv
# nv_withmissing
# vertices
# nodes
"""
AbstractMultilayerGraph{T <: Integer, U <: Real} <: AbstractGraph{T}
An abstract type for multilayer graphs. It is a subtype of AbstractGraph and its concrete subtypes may extend Graphs.jl.
Its concrete subtypes must have the following fields:
- `idx_N_associations::Bijection{Int64,Node}`:;
- `v_V_associations::Bijection{T,<:MultilayerVertex}`:;
- `v_metadata_dict::Dict{T,<:Union{<:Tuple,<:NamedTuple}}`:;
- `layers`: an indexable collection of `Layer`s.
- `interlayers`:a collection of `Interlayer`s;
- `layers_names`: a collection of the names of the layers.
- `subgraphs_names`: a collection of the names of all the subgraphs.
- `fadjlist::Vector{Vector{HalfEdge{<:MultilayerVertex,<:Union{Nothing,U}}}}`: the forward adjacency list.
"""
abstract type AbstractMultilayerGraph{T<:Integer,U<:Real} <: AbstractGraph{T} end
# General MultilayerGraph Utilities
fadjlist(mg::AbstractMultilayerGraph) = mg.fadjlist
# Nodes
"""
nodes(mg::AbstractMultilayerGraph
Return the nodes of the AbstractMultilayerGraph `mg`, in order of addition.
"""
function nodes(mg::AbstractMultilayerGraph)
return [couple[2] for couple in sort(collect(mg.idx_N_associations); by=first)]
end
"""
nn(mg::M) where {M <: AbstractMultilayerGraph }
Return the number of nodes in `mg`.
"""
nn(mg::AbstractMultilayerGraph) = length(nodes(mg))
"""
has_node(mg::AbstractMultilayerGraph, n::Node)
Return true if `n` is a node of `mg`.
"""
has_node(mg::AbstractMultilayerGraph, n::Node) = n in image(mg.idx_N_associations)
"""
_add_node!(mg::AbstractMultilayerGraph, n::Node; add_vertex_to_layers::Union{Vector{Symbol}, Symbol} = Symbol[])
Add node `n` to `mg`. Return true if succeeds. Additionally, add a corresponding vertex to all layers whose name is listed in `add_vertex_to_layers`. If `add_vertex_to_layers == :all`, then a corresponding vertex is added to all layers.
"""
function _add_node!(
mg::AbstractMultilayerGraph,
n::Node;
add_vertex_to_layers::Union{Vector{Symbol},Symbol}=Symbol[],
)
!has_node(mg, n) || return false
maximum_idx =
isempty(domain(mg.idx_N_associations)) ? 0 : maximum(domain(mg.idx_N_associations))
mg.idx_N_associations[maximum_idx + 1] = n
if add_vertex_to_layers == :all
for layer_name in mg.layers_names
_add_vertex!(mg, MV(n, layer_name))
end
elseif add_vertex_to_layers isa Vector{Symbol}
for layer_name in add_vertex_to_layers
_add_vertex!(mg, MV(n, layer_name))
end
end
return true
end
"""
_rem_node!(mg::AbstractMultilayerGraph, n::Node)
Remove node `n` to `mg`. Return true if succeeds.
"""
function _rem_node!(mg::AbstractMultilayerGraph, n::Node)
has_node(mg, n) || return false
Vs_tbr = MultilayerVertex[]
for V in image(mg.v_V_associations)
if V.node == n
push!(Vs_tbr, V)
end
end
for mv in Vs_tbr
_rem_vertex!(mg, mv)
end
idx_tbr = mg.idx_N_associations(n)
delete!(mg.idx_N_associations, idx_tbr)
return true
end
# Vertices
"""
eltype(::M) where {T,M<:AbstractMultilayerGraph{T}}
Return the vertex type of `mg`.
"""
Base.eltype(::M) where {T,M<:AbstractMultilayerGraph{T}} = T
"""
has_vertex(mg::M, v::T) where {T,M <: AbstractMultilayerGraph{T}}
Return true if `v` is in mg, else false.
"""
function Graphs.has_vertex(mg::M, v::T) where {T,M<:AbstractMultilayerGraph{T}}
return v in domain(mg.v_V_associations)
end
"""
has_vertex(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
Return true if `mv` is in `mg`, else false.
"""
function Graphs.has_vertex(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
return get_bare_mv(mv) in image(mg.v_V_associations)
end
"""
mv_vertices(mg::AbstractMultilayerGraph)
Return a list of the `MultilayerVertex`s contained in `mg`.
"""
mv_vertices(mg::AbstractMultilayerGraph) = [get_rich_mv(mg, v) for v in vertices(mg)]
"""
nv(mg::M) where {M <: AbstractMultilayerGraph }
Return the number of vertices in `mg`, excluding the missing vertices.
"""
Graphs.nv(mg::AbstractMultilayerGraph) = length(mg.v_V_associations)
"""
vertices(mg::M) where {M<:AbstractMultilayerGraph}
Return the collection of the vertices of `mg`.
"""
function Graphs.vertices(mg::M) where {M<:AbstractMultilayerGraph}
return sort(collect(domain(mg.v_V_associations)))
end
"""
get_metadata(mg::AbstractMultilayerGraph, bare_mv::MultilayerVertex)
Return the metadata associated to `MultilayerVertex` mv (regardless of metadata assigned to `bare_mv`).
"""
function get_metadata(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
return mg.v_metadata_dict[get_v(mg, mv)]
end
"""
set_metadata!(mg::AbstractMultilayerGraph, mv::MultilayerVertex, metadata::Union{Tuple, NamedTuple})
Set the metadata of vertex `mv` to `metadata`. Return true if succeeds
"""
function set_metadata!(
mg::AbstractMultilayerGraph, mv::MultilayerVertex, metadata::Union{Tuple,NamedTuple}
)
descriptor = mg.layers[get_layer_idx(mg, layer(mv))]
is_meta(descriptor.null_graph) || return false
has_vertex(mg, mv) || return false
mg.v_metadata_dict[get_v(mg, mv)] = metadata
return true
end
# Edges
"""
edgetype(::M) where {T,U,M<:AbstractMultilayerGraph{T,U}}
Return the edge type for `mg`.
"""
Graphs.edgetype(::M) where {T,U,M<:AbstractMultilayerGraph{T,U}} = MultilayerEdge{U}
"""
ne(mg::AbstractMultilayerGraph)
Return the number of edges in `mg`.
"""
Graphs.ne(mg::AbstractMultilayerGraph) = length(edges(mg))
"""
has_edge(mg::AbstractMultilayerGraph, edge::MultilayerEdge)
Return true if `mg` has an edge between the source and the destination of `edge` (does not check edge or vertex metadata).
"""
function Graphs.has_edge(mg::AbstractMultilayerGraph, edge::MultilayerEdge)
return has_edge(mg, get_v(mg, src(edge)), get_v(mg, dst(edge)))
end
"""
has_edge(mg::AbstractMultilayerGraph, src::MultilayerVertex, dst::MultilayerVertex)
Return true if `mg` has edge between the `src` and `dst` (does not check edge or vertex metadata).
"""
function Graphs.has_edge(
mg::AbstractMultilayerGraph, src::MultilayerVertex, dst::MultilayerVertex
)
return has_edge(mg, get_v(mg, src), get_v(mg, dst))
end
"""
add_edge!(mg::M, src::T, dst::T; weight::Union{Nothing, U} = one(U), metadata::Union{Tuple,NamedTuple} = NamedTuple() ) where {T,U, M <: AbstractMultilayerGraph{T,U}}
Internal method. Add a MultilayerEdge between `src` and `dst` with weight `weight` and metadata `metadata`. Return true if succeeds, false otherwise.
"""
function Graphs.add_edge!(
mg::M,
src::T,
dst::T;
weight::Union{Nothing,U}=one(U),
metadata::Union{Tuple,NamedTuple}=NamedTuple(),
) where {T,U,M<:AbstractMultilayerGraph{T,U}}
return add_edge!(
mg, ME(mg.v_V_associations[src], mg.v_V_associations[dst], weight, metadata)
)
end
"""
add_edge!(mg::M, src::V, dst::V; weight::Union{Nothing, U} = one(U), metadata::Union{Tuple,NamedTuple} = NamedTuple() ) where {T,U, M <: AbstractMultilayerGraph{T,U}, V <: MultilayerVertex}
Add a MultilayerEdge between `src` and `dst` with weight `weight` and metadata `metadata`. Return true if succeeds, false otherwise.
"""
function Graphs.add_edge!(
mg::M,
src::V,
dst::V;
weight::Union{Nothing,U}=one(U),
metadata::Union{Tuple,NamedTuple}=NamedTuple(),
) where {T,U,M<:AbstractMultilayerGraph{T,U},V<:MultilayerVertex}
return add_edge!(mg, ME(src, dst, weight, metadata))
end
"""
rem_edge!(mg::M, src::T, dst::T) where {T, M <: AbstractMultilayerGraph{T}}
Remove edge from `src` to `dst` from `mg`. Return true if succeeds, false otherwise.
"""
function Graphs.rem_edge!(mg::M, src::T, dst::T) where {T,M<:AbstractMultilayerGraph{T}}
return rem_edge!(mg, mg.v_V_associations[src], mg.v_V_associations[dst])
end
"""
rem_edge!(mg::AbstractMultilayerGraph, me::MultilayerEdge)
Remove edge from `src(me)` to `dst(me)` from `mg`. Return true if succeeds, false otherwise.
"""
function Graphs.rem_edge!(mg::AbstractMultilayerGraph, me::MultilayerEdge)
return rem_edge!(mg, src(me), dst(me))
end
"""
get_halfegde(mg::M, src::MultilayerVertex, dst::MultilayerVertex) where M <: AbstractMultilayerGraph
Internal function. Return the `HalfEdge`, if it exists, between `src` and `dst`. Error if there is no `HalfEdge`.
"""
function get_halfegde(
mg::M, src::MultilayerVertex, dst::MultilayerVertex
) where {M<:AbstractMultilayerGraph}
has_edge(mg, src, dst) ||
throw(ErrorException("There is no `HalfEdge` from `src` to `dst`"))
halfedges_from_src = fadjlist(mg)[get_v(mg, src)]
return halfedges_from_src[findfirst(
halfedge -> vertex(halfedge) == dst, halfedges_from_src
)]
end
"""
get_metadata(mg::AbstractMultilayerGraph, src::MultilayerVertex, dst::MultilayerVertex)
Return the metadata associated to the `MultilayerEdge` from `src` to `dst`.
"""
function get_metadata(
mg::AbstractMultilayerGraph, src::MultilayerVertex, dst::MultilayerVertex
)
return get_halfegde(mg, src, dst).metadata
end
"""
get_weight(mg::AbstractMultilayerGraph, src::MultilayerVertex, dst::MultilayerVertex)h
Return the weight associated to the `MultilayerEdge` from `src` to `dst`.
"""
function SimpleWeightedGraphs.get_weight(
mg::AbstractMultilayerGraph, src::MultilayerVertex, dst::MultilayerVertex
)
return get_halfegde(mg, src, dst).weight
end
# Layers and Interlayers
"""
nl(mg::AbstractMultilayerGraph)
Return the number of layers in `mg`.
"""
nl(mg::AbstractMultilayerGraph) = length(mg.layers)
"""
nIn(mg::AbstractMultilayerGraph)
Return the number of interlayers in `mg`.
"""
nIn(mg::AbstractMultilayerGraph) = length(mg.interlayers)
"""
has_layer(mg::AbstractMultilayerGraph, layer_name::Symbol)
Return true in `layer_name` is a name of a `[Layer](@ref)` of `mg`.
"""
has_layer(mg::AbstractMultilayerGraph, layer_name::Symbol) = layer_name in mg.layers_names
"""
_add_layer!(mg::M,new_layer::L; new_default_interlayers_type::H) where { T, U, G <: AbstractGraph{T}, H <: AbstractGraph{T}, M <: AbstractMultilayerGraph{T, U}, L <: Layer{T,U,G}
Internal function. It is called by the `add_layer!` API functions, which needs to specify the default interlayer graph type.
"""
function _add_layer!(
mg::M,
new_layer::L;
default_interlayers_null_graph::H,
default_interlayers_structure::String="multiplex",
) where {
T,
U,
M<:AbstractMultilayerGraph{T,U},
G<:AbstractGraph{T},
L<:Layer{T,U,G},
H<:AbstractGraph{T},
}
# Check that the new layer has a name different from all the existing ones
new_layer.name ∉ mg.subgraphs_names || throw(
ErrorException(
"The new layer has the same name as an existing layer within the multilayer graph. Layers' names must be unique. Existing layers names are $(mg.layers_names).",
),
)
# Check that the default_interlayers_null_graph argument is indeed empty
if !(nv(default_interlayers_null_graph) == ne(default_interlayers_null_graph) == 0)
throw(
ErrorException(
"The `default_interlayer_empty_graph` has not been assigned to an empty graph. Expected 0 vertices and 0 edges, found $(nv(default_interlayers_null_graph)) vertices and $(ne(default_interlayers_null_graph)) edges.",
),
)
end
# Add the new layer
push!(mg.layers, new_layer.descriptor)
# Add the new nodes that the new layer represents
new_nodes = setdiff(nodes(new_layer), nodes(mg))
for new_node in new_nodes
add_node!(mg, new_node)
end
# Add vertices
for vertex in mv_vertices(new_layer)
_add_vertex!(mg, vertex)
end
# Add edges
for edge in edges(new_layer)
add_edge!(mg, edge)
end
# Add default interlayers
if default_interlayers_structure == "multiplex"
for layer_descriptor in mg.layers
if layer_descriptor.name != new_layer.name
_specify_interlayer!(
mg,
multiplex_interlayer(
new_layer,
getproperty(mg, layer_descriptor.name),
default_interlayers_null_graph,
),
)
end
end
elseif default_interlayers_structure == "empty"
for layer_descriptor in mg.layers
if layer_descriptor.name != new_layer.name
_specify_interlayer!(
mg,
empty_interlayer(
new_layer,
getproperty(mg, layer_descriptor.name),
default_interlayers_null_graph,
),
)
end
end
else
throw(
ErrorException(
"Default interlayer structured as '$default_interlayers_structure' not yet implemented. Only 'multiplex' and 'null' are available.",
),
)
end
return true
end
"""
rem_layer!(mg::AbstractMultilayerGraph, layer_name::Symbol; remove_nodes::Bool = false)
Remove layer `layer_name` from multilayer graph `mg`. If `remove_nodes` is true, also remove from the multilayer graph all the nodes associated with the layer. Warning: this action has multilayer-wide consequences, amd may inadvertently remove vertices and edges that were meant to be kept.
"""
function rem_layer!(
mg::AbstractMultilayerGraph, layer_name::Symbol; remove_nodes::Bool=false
)
layer_idx = get_layer_idx(mg, layer_name)
isnothing(layer_idx) && return false
layer_tbr = getproperty(mg, layer_name)
if remove_nodes
for node in nodes(layer_tbr)
rem_node!(mg, node)
end
else
for mv in mv_vertices(layer_tbr)
rem_vertex!(mg, mv)
end
end
deleteat!(mg.layers, layer_idx)
keys_tbr = Set{Symbol}[]
for connected_layers_set in keys(mg.interlayers)
if layer_name ∈ connected_layers_set
push!(keys_tbr, connected_layers_set)
end
end
delete!.(Ref(mg.interlayers), keys_tbr)
return true
end
"""
function _specify_interlayer!(
mg::M, new_interlayer::In
) where {T,U,G<:AbstractGraph{T},M<:AbstractMultilayerGraph{T,U},In<:Interlayer{T,U,G}}
Internal function. It is called by the `specify_interlayer!` API functions.
"""
function _specify_interlayer!(
mg::M, new_interlayer::In
) where {T,U,G<:AbstractGraph{T},M<:AbstractMultilayerGraph{T,U},In<:Interlayer{T,U,G}}
all(in.([new_interlayer.layer_1, new_interlayer.layer_2], Ref(mg.layers_names))) ||
# throw(
# ErrorException(
throw(
ErrorException(
"The new interlayer connects two layers that are not (one or both) part of the multilayer graph. Make sure you spelled the `layer_1` and `layer_2` arguments of the `Interlayer` correctly. Available layers are $(mg.layers_names), found $(new_interlayer.layer_1) and $(new_interlayer.layer_2).",
),
)
# ),
# )
# Check that it has the correct number of nodes on both layers
(
isempty(
setdiff(
Set(new_interlayer.layer_1_nodes),
Set(nodes(Base.getproperty(mg, new_interlayer.layer_1))),
),
) && isempty(
setdiff(
Set(new_interlayer.layer_2_nodes),
Set(nodes(Base.getproperty(mg, new_interlayer.layer_2))),
),
)
) || throw(
ErrorException(
"The nodes in the interlayer $(new_interlayer.name) do not correspond to the nodes in the respective layers $(new_interlayer.layer_1) and $(new_interlayer.layer_2). Found $( setdiff(Set(new_interlayer.layer_1_nodes), Set(nodes(Base.getproperty(mg, new_interlayer.layer_1)))) ) and $(setdiff(Set(new_interlayer.layer_2_nodes), Set(nodes(Base.getproperty(mg, new_interlayer.layer_2)))))",
),
)
# A rem_interlayer! function may not exist since there always must be all interlayers. We then proceed to effectively remove the interlayer here
key = Set([new_interlayer.layer_1, new_interlayer.layer_2])
if haskey(mg.interlayers, key)
existing_interlayer = getproperty(mg, mg.interlayers[key].name)
for edge in edges(existing_interlayer)
rem_edge!(mg, edge)
end
end
mg.interlayers[Set([new_interlayer.layer_1, new_interlayer.layer_2])] =
new_interlayer.descriptor
for edge in edges(new_interlayer)
@assert add_edge!(mg, edge)
# assert success
end
return true
end
"""
get_interlayer(
mg::AbstractMultilayerGraph, layer_1_name::Symbol,
layer_2_name::Symbol
)
Return the `Interlayer` between `layer_1` and `layer_2`.
"""
function get_interlayer(
mg::AbstractMultilayerGraph, layer_1_name::Symbol, layer_2_name::Symbol
)
layer_1_name ∈ mg.layers_names || throw(
ErrorException(
"$layer_1_name doesn't belong to the multilayer graph. Available layers are $(mg.layers_names).",
),
)
layer_2_name ∈ mg.layers_names || throw(
ErrorException(
"$layer_2_name doesn't belong to the multilayer graph. Available layers are $(mg.layers_names).",
),
)
layer_1_name != layer_2_name || throw(
ErrorException(
"`layer_1` argument is the same as `layer_2`. There is no interlayer between a layer and itself.",
),
)
names = [layer_1_name, layer_2_name]
for interlayer_descriptor in values(mg.interlayers)
if all(interlayer_descriptor.layers_names .== names) #issetequal(interlayer_descriptor.layers_names, names_set)
return get_subgraph(mg, interlayer_descriptor)
elseif all(interlayer_descriptor.layers_names .== reverse(names))
interlayer = get_subgraph(mg, interlayer_descriptor)
return get_symmetric_interlayer(
interlayer; symmetric_interlayer_name=String(interlayer.name) * "_rev"
)
end
end
end
"""
get_layer_idx(mg::M, layer_name::Symbol) where {T, U, M <: AbstractMultilayerGraph{T, U}}
Return the index of the `Layer` whose name is `layer_name` within `mg.layers`.
"""
function get_layer_idx(
mg::M, layer_name::Symbol
) where {T,U,M<:AbstractMultilayerGraph{T,U}}
idx = findfirst(descriptor -> descriptor.name == layer_name, mg.layers)
if !isnothing(idx)
return idx
else
return nothing
end
end
"""
get_subgraph_descriptor(mg::M, layer_1_name::Symbol, layer_2_name::Symbol) where {T,U,M<:AbstractMultilayerGraph{T,U}}
Return the descriptor associated to the interlayer connecting `layer_1` to `layer_2` (or to the Layer named `layer_1` if `layer_1` == `layer_2`)
"""
function get_subgraph_descriptor(
mg::M, layer_1_name::Symbol, layer_2_name::Symbol
) where {T,U,M<:AbstractMultilayerGraph{T,U}}
if layer_1_name == layer_2_name
idx = get_layer_idx(mg, layer_1_name)
if !isnothing(idx)
return mg.layers[idx]
else
throw(
ErrorException(
"The multilayer graph does not contain any Layer named $(layer_1_name). Available layers are $(mg.layers_names).",
),
)
end
else
layer_1_name ∈ mg.layers_names || throw(
ErrorException(
"$layer_1_name does nto belong to the multilayer graph. Available layers are $(mg.layers_names).",
),
)
layer_2_name ∈ mg.layers_names || throw(
ErrorException(
"$layer_2_name does nto belong to the multilayer graph. Available layers are $(mg.layers_names).",
),
)
return mg.interlayers[Set([layer_1_name, layer_2_name])]
end
end
# Graphs.jl's internals and ecosystem extra overrides
"""
indegree( mg::AbstractMultilayerGraph, v::MultilayerVertex)
Get the indegree of vertex `v` in `mg`.
"""
function Graphs.indegree(mg::AbstractMultilayerGraph, mv::V) where {V<:MultilayerVertex}
return length(inneighbors(mg, mv))
end
"""
indegree( mg::M, vs::AbstractVector{V}=vertices(mg)) where {T,M<:AbstractMultilayerGraph{T,<:Real},V<:MultilayerVertex}
Get the vector of indegrees of vertices `vs` in `mg`.
"""
function Graphs.indegree(
mg::AbstractMultilayerGraph, vs::AbstractVector{<:MultilayerVertex}=mv_vertices(mg)
)
return [indegree(mg, x) for x in vs]
end
"""
outdegree(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
Get the outdegree of vertex `v` in `mg`.
"""
function Graphs.outdegree(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
return length(outneighbors(mg, mv))
end
"""
outdegree(mg::M, vs::AbstractVector{V}=vertices(mg)) where {T,M<:AbstractMultilayerGraph{T,<:Real},V<:MultilayerVertex}
Get the vector of outdegrees of vertices `vs` in `mg`.
"""
function Graphs.outdegree(
mg::AbstractMultilayerGraph, vs::AbstractVector{<:MultilayerVertex}=mv_vertices(mg)
)
return [outdegree(mg, x) for x in vs]
end
"""
degree(mg::AbstractMultilayerGraph, vs::AbstractVector{<:MultilayerVertex}=vertices(mg))
Get the degree of vertices `vs` in `mg`.
"""
function Graphs.degree(
mg::AbstractMultilayerGraph, vs::AbstractVector{<:MultilayerVertex}=mv_vertices(mg)
)
return degree.(Ref(mg), vs)
end
"""
inneighbors( mg::AbstractMultilayerGraph, mv::MultilayerVertex )
Return the list of inneighbors of `mv` within `mg`.
"""
function Graphs.inneighbors(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
return inneighbors(mg, get_v(mg, mv))
end
"""
outneighbors( mg::AbstractMultilayerGraph, mv::MultilayerVertex)
Return the list of outneighbors of `v` within `mg`.
"""
function Graphs.outneighbors(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
return outneighbors(mg, get_v(mg, mv))
end
"""
outneighbors(mg::M, v::T) where {T, M<:AbstractMultilayerGraph{T}}
Return the list of outneighbors of `v` within `mg`.
"""
function Graphs.outneighbors(mg::M, v::T) where {T,M<:AbstractMultilayerGraph{T}}
_outneighbors = T[]
for helfedge in mg.fadjlist[v]
push!(_outneighbors, get_v(mg, vertex(helfedge)))
end
return _outneighbors
end
"""
neighbors(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
Get the neighbors of vertex `mv` in `mg`. Reduces to `outneighbors` for both directed and undirected multilayer graphs.
"""
Graphs.neighbors(mg::AbstractMultilayerGraph, mv::MultilayerVertex) = outneighbors(mg, mv)
"""
weighttype(::M) where {T,U,M<:AbstractMultilayerGraph{T,U}}
Return the weight type of `mg` (i.e. the eltype of the weight tensor or the supra-adjacency matrix).
"""
weighttype(::M) where {T,U,M<:AbstractMultilayerGraph{T,U}} = U
# Multilayer-specific methods
"""
mv_inneighbors(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
Return the list of `MultilayerVertex` inneighbors of `mv` within `mg`.
"""
function mv_inneighbors(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
return getindex.(Ref(mg.v_V_associations), inneighbors(mg, mv))
end
"""
mv_outneighbors(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
Return the list of `MultilayerVertex` outneighbors of `mv` within `mg`.
"""
function mv_outneighbors(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
return getindex.(Ref(mg.v_V_associations), outneighbors(mg, mv))
end
"""
mv_neighbors(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
Return the list of `MultilayerVertex` neighbors of `mv` within `mg`.
"""
function mv_neighbors(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
return getindex.(Ref(mg.v_V_associations), neighbors(mg, mv))
end
"""
get_supra_weight_matrix_from_weight_tensor(weight_tensor::Array{U, 4}) where { U <: Real}
Internal method. Convert a weight tensor into the corresponding supra-adjacency matrix.
"""
function get_supra_weight_matrix_from_weight_tensor(
weight_tensor::Array{U,4}
) where {U<:Real}
N = size(weight_tensor, 1)
L = size(weight_tensor, 3)
supra_weight_matrix = Array{U}(undef, N * L, N * L)
for i in 1:L
for j in 1:L
supra_weight_matrix[(N * (i - 1) + 1):(N * i), (N * (j - 1) + 1):(N * j)] .= weight_tensor[
1:N, 1:N, i, j
]
end
end
return supra_weight_matrix
end
"""
get_weight_tensor_from_supra_weight_matrix(mg::M, supra_weight_matrix::S) where {T, U, S <: Array{U, 2}, M <: AbstractMultilayerGraph{T,U} }
Internal method. Convert a supra-adjacency matrix into the corresponding weight tensor.
"""
function get_weight_tensor_from_supra_weight_matrix(
mg::M, supra_weight_matrix::S
) where {T,U,S<:Array{U,2},M<:AbstractMultilayerGraph{T,U}}
N = nn(mg)
L = nl(mg)
weight_tensor = zeros(U, N, N, L, L)
if N != 0
for i in 1:L
for j in 1:L
weight_tensor[1:N, 1:N, i, j] .= supra_weight_matrix[
(N * (i - 1) + 1):(N * i), (N * (j - 1) + 1):(N * j)
]
end
end
return weight_tensor
else
return weight_tensor
end
end
"""
weight_tensor(mg::M) where {T,U, M <: AbstractMultilayerGraph{T,U}}
Compute the weight tensor of `mg`. Return an object of type `WeightTensor`.
"""
function weight_tensor(mg::M) where {T,U,M<:AbstractMultilayerGraph{T,U}}
N = nn(mg)
L = nl(mg)
_size = (N, N, L, L)
_weight_tensor = zeros(U, _size...)
v_V_associations = Bijection{Int,Union{MissingVertex,MultilayerVertex}}()
for (_src_v, halfedges_from_src) in enumerate(mg.fadjlist)
if !isempty(halfedges_from_src)
src_v = T(_src_v)
src_bare_V = mg.v_V_associations[src_v]
src_n_idx = mg.idx_N_associations(src_bare_V.node)
src_layer_idx = get_layer_idx(mg, src_bare_V.layer)
for halfedge in halfedges_from_src
dst_bare_V = vertex(halfedge)
dst_n_idx = mg.idx_N_associations(dst_bare_V.node)
dst_layer_idx = get_layer_idx(mg, dst_bare_V.layer)
_weight_tensor[src_n_idx, dst_n_idx, src_layer_idx, dst_layer_idx] = weight(
halfedge
)
end
end
end
return WeightTensor(_weight_tensor, mg.layers_names, mg.idx_N_associations)
end
"""
get_v_V_associations_withmissings(mg::M) where {T,U, M <: AbstractMultilayerGraph{T,U}}
Internal function. Return the `v_V_associations` for `mg` taking into account missing vertices (the order of the vertices of each layer is induced by the order of the nodes in `mg.idx_N_associations`).
"""
function get_v_V_associations_withmissings(
mg::M
) where {T,U,M<:AbstractMultilayerGraph{T,U}}
v_V_associations = Bijection{T,Union{MissingVertex,MultilayerVertex}}()
n_nodes = nn(mg)
n_layers = nl(mg)
for i in 1:(n_nodes * n_layers)
v_V_associations[i] = MissingVertex()
end
for V in mv_vertices(mg)
if !(V isa MissingVertex)
layer_idxs = get_layer_idx(mg, V.layer)
v = T(mg.idx_N_associations(V.node) + (layer_idxs[1] - 1) * n_nodes)
delete!(v_V_associations, v)
v_V_associations[v] = get_bare_mv(V)
end
end
return v_V_associations
end
"""
supra_weight_matrix(mg::M) where {T,U, M <: AbstractMultilayerGraph{T,U}}
Compute the supra weight matrix of `mg`. Return an object of type `SupraWeightMatrix`
"""
function supra_weight_matrix(mg::M) where {T,U,M<:AbstractMultilayerGraph{T,U}}
n_nodes = nn(mg)
n_layers = nl(mg)
v_V_associations = get_v_V_associations_withmissings(mg)
_supra_weight_matrix = zeros(U, n_nodes * n_layers, n_nodes * n_layers)
for (_src_v, halfedges) in enumerate(mg.fadjlist)
src_v = v_V_associations(mg.v_V_associations[_src_v])
for halfedge in halfedges
_weight = isnothing(weight(halfedge)) ? one(U) : weight(halfedge)
dst_v = v_V_associations(vertex(halfedge))
# The loop goes through the entire fadjlist, so [dst_v, src_v] will be obtained at some point
_supra_weight_matrix[src_v, dst_v] = _weight
end
end
return SupraWeightMatrix(_supra_weight_matrix, v_V_associations)
end
"""
metadata_tensor(mg::M) where {T,U, M <: AbstractMultilayerGraph{T,U}}
Compute the weight tensor of `mg`. Return an object of type `WeightTensor`.
"""
function metadata_tensor(mg::M) where {T,U,M<:AbstractMultilayerGraph{T,U}}
N = nn(mg)
L = nl(mg)
_metadata_tensor = Array{Union{Nothing,Tuple,NamedTuple}}(nothing, N, N, L, L)
for (_src_v, halfedges_from_src) in enumerate(mg.fadjlist)
if !isempty(halfedges_from_src)
src_v = T(_src_v)
src_bare_V = mg.v_V_associations[src_v]
src_n_idx = mg.idx_N_associations(src_bare_V.node)
src_layer_idx = get_layer_idx(mg, src_bare_V.layer)
for halfedge in halfedges_from_src
dst_bare_V = vertex(halfedge)
dst_n_idx = mg.idx_N_associations(dst_bare_V.node)
dst_layer_idx = get_layer_idx(mg, dst_bare_V.layer)
_metadata_tensor[src_n_idx, dst_n_idx, src_layer_idx, dst_layer_idx] = metadata(
halfedge
)
end
end
end
return MetadataTensor(_metadata_tensor, mg.layers_names, mg.idx_N_associations)
end
"""
mean_degree(mg::AbstractMultilayerGraph)
Return the mean of the degree sequence of `mg`.
"""
mean_degree(mg::AbstractMultilayerGraph) = mean(degree(mg))
"""
degree_second_moment(mg::AbstractMultilayerGraph)
Calculate the second moment of the degree sequence of `mg`.
"""
degree_second_moment(mg::AbstractMultilayerGraph) = mean(degree(mg) .^ 2)
"""
degree_variance(mg::AbstractMultilayerGraph)
Return the variance of the degree sequence of `mg`.
"""
degree_variance(mg::AbstractMultilayerGraph) = var(degree(mg))
"""
multilayer_global_clustering_coefficient(
mg::AbstractMultilayerGraph,
norm_factor::Union{Float64,Symbol}=:max
)
Return the complete multilayer global clustering coefficient, equal to the ratio of realized triplets over all possible triplets, including those whose every or some edges belong to interlayers, normalized by `norm_factor`. If `norm_factor == :max`, then the ratio is normalized by `maximum(array(weight_tensor(mg)))`, else it is not normalized. This function does not override Graphs.jl's `global_clustering_coefficient`, since the latter does not consider cliques where two nodes are the same node but in different layers/interlayers. See [De Domenico et al. (2013)](https://doi.org/10.1103/PhysRevX.3.041022).
"""
function multilayer_global_clustering_coefficient(
mg::AbstractMultilayerGraph, norm_factor::Union{Float64,Symbol}=:max
)
wgt = weight_tensor(mg).array
_normalization_inverse = 1.0
if norm_factor == :max
_normalization_inverse = 1.0 / maximum(wgt)
end
A_right = wgt .- get_diagonal_elements(wgt)
# DeDomenico2013 numerator implementation. Inconsistent with both Wikipedia and Graphs.jl's implementation
num = ein"ijkm,jnmo,niok ->"(A_right, A_right, A_right)[]
# Wikipedia-informed denominator implementation (consistent with Graphs.jl's global_clustering_coefficient)
# ntriangles = 0
# for vertex in vertices(mg)
# k = degree(mg, vertex)
# ntriangles += k * (k - 1)
# end
# DeDomenico2013 denominator implementation
F = ones(size(wgt)...) .- multilayer_kronecker_delta(size(wgt))
den = ein"ijkm,jnmo,niok ->"(A_right, F, A_right)[]
return _normalization_inverse * (num / den)
end
"""
multilayer_weighted_global_clustering_coefficient(mg::M, norm_factor::Union{Float64, Symbol} = :max) where {M <: AbstractMultilayerGraph}
Return the complete multilayer global clustering coefficient, equal to the ratio of realized triplets over all possible triplets, including those whose every or some edges belong to interlayers, normalized by `norm_factor`. Each triplets contributes for `w[1]` if all of its vertices are in one layer, `w[2]` if its vertices span two layers, and `w[3]` if they span 3 layers. If `norm_factor == :max`, then the ratio is normalized by `maximum(array(weight_tensor(mg)))`, else it is not normalized. This function does not override Graphs.jl's `global_clustering_coefficient`, since the latter does not consider cliques where two nodes are the same node but in different layers/interlayers. See [De Domenico et al. (2013)](https://doi.org/10.1103/PhysRevX.3.041022).
"""
function multilayer_weighted_global_clustering_coefficient(
mg::M, w::Vector{Float64}, norm_factor::Union{Float64,Symbol}=:max
) where {M<:AbstractMultilayerGraph} #This is well defined for both weighted and unweighted multilayer graphs
wgt = weight_tensor(mg).array
sum(w) == 1 ||
throw(ErrorException("Weight vector `w` does not sum to 1. Found $(sum(w))."))
_normalization_inverse = 1.0
if norm_factor == :max
_normalization_inverse = 1.0 / maximum(wgt)
end
A_right = wgt .- get_diagonal_elements(wgt)
num_layers = size(wgt, 3)
num = ein"ijkm,jnmo,niok,skmo,s ->"(A_right, A_right, A_right, δ_Ω(num_layers), w)[]
F = ones(size(wgt)...) .- multilayer_kronecker_delta(size(wgt))
den = ein"ijkm,jnmo,niok,skmo,s ->"(A_right, F, A_right, δ_Ω(num_layers), w)[]
return _normalization_inverse * (num / den)
end
"""
overlay_clustering_coefficient(
mg::AbstractMultilayerGraph,
norm_factor::Union{Float64,Symbol}=:max
)
Return the overlay clustering coefficient as calculated in [De Domenico et al. (2013)](https://doi.org/10.1103/PhysRevX.3.041022). If `norm_factor == :max`, then the ratio is normalized by `maximum(array(weight_tensor(mg)))`, else it is not normalized.
"""
function overlay_clustering_coefficient(
mg::AbstractMultilayerGraph, norm_factor::Union{Float64,Symbol}=:max
)
wgt = weight_tensor(mg).array
_normalization_inverse = 1.0
if norm_factor == :max
_normalization_inverse = 1.0 / (maximum(ein"ijkl->ij"(wgt)) / length(mg.layers))
# Check that we are using OMEinsum correctly.
# @assert all(ein"ijkl->ij"(mg.array) .== dropdims(sum(mg.array, dims = (3,4)), dims = (3,4)))
end
num = ein"ij,jm,mi ->"(ein"ijkm->ij"(wgt), ein"ijkm->ij"(wgt), ein"ijkm->ij"(wgt))[]
F = ones(size(wgt)...) - multilayer_kronecker_delta(size(wgt))
den = ein"ij,jm,mi ->"(ein"ijkm->ij"(wgt), ein"ijkm->ij"(F), ein"ijkm->ij"(wgt))[]
return _normalization_inverse * (num / den)
end
"""
eigenvector_centrality(
mg::M;
norm::String = "1",
tol::Float64 = 1e-6,
maxiter::Int64 = 2000
) where {T, U, M <: AbstractMultilayerGraph{T, U}}
Calculate the eigenvector centrality of `mg` via an iterative algorithm. The `norm` parameter may be `"1"` or `"n"`, and respectively the eigenvector centrality will be normalized to 1 or further divided by the number of nodes of `mg`. The `tol` parameter terminates the approximation when two consecutive iteration differ by no more than `tol`. The `maxiters` parameter terminates the algorithm when it goes beyond `maxiters` iterations.
The returned values are: the eigenvector centrality and the relative error at each algorithm iteration, that is, the summed absolute values of the componentwise differences between the centrality computed at the current iteration minus the centrality computed at the previous iteration.
Note: in the limit case of a monoplex graph, this function outputs a eigenvector centrality vector that coincides the one outputted by Graphs.jl's `eigenvector_centrality`.
"""
function Graphs.eigenvector_centrality(
mg::M; weighted::Bool=true, norm::String="1", tol::Float64=1e-6, maxiter::Int64=2000
) where {T,U,M<:AbstractMultilayerGraph{T,U}}
swm_m = nothing
v_V_associations_withmissings = nothing
if weighted
swm = supra_weight_matrix(mg)
swm_m = swm.array
v_V_associations_withmissings = swm.v_V_associations
else
swm = supra_weight_matrix(mg)
swm_m = swm.array .!= zero(U)
v_V_associations_withmissings = swm.v_V_associations
end
num_nodes = length(nodes(mg))
X = ones(Float64, num_nodes * length(mg.layers))
err = 1.0
errs = Float64[]
iter = 0
while err > tol && iter < maxiter
new_X = ein"ij,i -> j"(swm_m, X)
new_X = new_X ./ sqrt(sum(abs2, new_X))
err = sum(abs.(X .- new_X))
push!(errs, err)
X .= new_X
iter += 1
end
if norm == "1"
X = X ./ sum(X)
elseif norm == "n"
X = X ./ (sum(X) / num_nodes)
end
# Reorder centrality values ot march the order multilayer vertices are given in mv_vertices(mg)
layers_mvs_ordered = [
couple[2] for couple in sort(collect(v_V_associations_withmissings); by=first) if
!(couple[2] isa MissingVertex)
]
_sortperm = sortperm(mg.v_V_associations.(layers_mvs_ordered))
X = vec(X)[[
couple[1] for couple in sort(collect(v_V_associations_withmissings); by=first) if
!(couple[2] isa MissingVertex)
]]
X = X[_sortperm]
return X, errs
end
"""
modularity(
mg::M,
c::Matrix{Int64};
null_model::Union{String,Array{U,4}} = "degree"
) where {T, U, M <: AbstractMultilayerGraph{T,U}}
Calculate the modularity of `mg`, as shown in [De Domenico et al. (2013)](https://doi.org/10.1103/PhysRevX.3.041022).
"""
function Graphs.modularity(
mg::M, c::Matrix{Int64}; null_model::Union{String,Array{U,4}}="degree"
) where {T,U,M<:AbstractMultilayerGraph{T,U}}
wgt = weight_tensor(mg).array
# Check that c has the correct size
n_nodes = length(nodes(mg))
n_layers = length(mg.layers)
size(c) == (n_nodes, n_layers) || throw(
ErrorException(
"The size of the community matrix does not match (nn(mg),length(mg.layers)), found $(size(c)) and $((nn(mg),length(mg.layers))).",
),
)
# Build S
n_communities = length(unique(c))
S = Array{Bool}(undef, n_nodes, n_layers, n_communities)
for (i, community) in enumerate(unique(c))
S[:, :, i] .= (c .== community)
end
# Build P
P = Array{Float64}(undef, size(wgt))
tot_links = length(edges(mg))
if typeof(null_model) != String && size(null_model) == size(P)
P .= null_model
elseif typeof(null_model) != String && size(null_model) != size(P)
throw(
ErrorException(
"size of `null_model` does not match the size of the adjacency tensor. Got $(size(null_model)) and $(size(P)) respectively.",
),
)
elseif null_model == "degree"
for cart_idx in CartesianIndices(P)
layer_1_idx = cart_idx[3]
layer_2_idx = cart_idx[4]
mv1 = MultilayerVertex(
mg.idx_N_associations[cart_idx[1]], mg.layers[layer_1_idx].name
)
mv2 = MultilayerVertex(
mg.idx_N_associations[cart_idx[2]], mg.layers[layer_2_idx].name
)
if has_vertex(mg, mv1) && has_vertex(mg, mv2) # haskey(mg.v_V_associations.finv, mv1 ) && haskey(mg.v_V_associations.finv, mv2 )
P[cart_idx] = (degree(mg, mv1) * degree(mg, mv2)) / (2 * tot_links - 1)
else
P[cart_idx] = 0.0
end
end
else
throw(ErrorException("Null model '$null_model' not implemented."))
end
# Build B
B = wgt .- P
# Build K
K = ein"ijkm,jimk -> "(wgt, ones(T, size(wgt)...))[]
return (1 / K) * ein"ija,ikjm,kma->"(S, B, S)[]
end
# Base overloads
"""
Base.(==)(x::AbstractMultilayerGraph, y::AbstractMultilayerGraph)
Overload equality for `AbstractMultilayerGraph`s.
"""
function Base.:(==)(x::AbstractMultilayerGraph, y::AbstractMultilayerGraph)
typeof(x) == typeof(y) || false
for field in fieldnames(typeof(x))
if @eval $x.$field != $y.$field
return false
end
end
return true
end
# Utilities
"""
get_v(mg::AbstractMultilayerGraph, V::MultilayerVertex)
Internal method. Get the Integer label associated to `mv` within `mg.v_V_associations`.
"""
function get_v(mg::AbstractMultilayerGraph, mv::MultilayerVertex)
return mg.v_V_associations(get_bare_mv(mv))
end
"""
get_rich_mv(mg::M, i::T) where {T,U, M <: AbstractMultilayerGraph{T,U}}
Return `V` together with its metadata.
"""
function get_rich_mv(
mg::M, i::T; perform_checks::Bool=false
) where {T,U,M<:AbstractMultilayerGraph{T,U}}
if perform_checks
haskey(mg.v_V_associations, i) ||
throw(ErrorException("$i is not a vertex of the multilayer graph."))
end
bare_V = mg.v_V_associations[i]
return MV(bare_V.node, bare_V.layer, mg.v_metadata_dict[i])
end
# Console print utilities
function to_string(x::AbstractMultilayerGraph)
unionall_type = typeof(x).name.wrapper
parameters = typeof(x).parameters
layers_names = name.(x.layers)
layers_underlying_graphs = typeof.(graph.(x.layers))
layers_table = pretty_table(
String,
hcat(layers_names, layers_underlying_graphs);
title="### LAYERS",
header=(["NAME", "UNDERLYING GRAPH"]),
alignment=:c,
header_alignment=:c,
header_crayon=crayon"yellow bold",
hlines=:all,
)
interlayers_names = name.(values(x.interlayers))
interlayers_underlying_graphs = typeof.(graph.(values(x.interlayers)))
interlayer_layer_1s = getproperty.(values(x.interlayers), Ref(:layer_1))
interlayer_layer_2s = getproperty.(values(x.interlayers), Ref(:layer_2))
interlayer_tranfers =
getproperty.(values(x.interlayers), Ref(:transfer_vertex_metadata))
interlayers_table = pretty_table(
String,
hcat(
interlayers_names,
interlayer_layer_1s,
interlayer_layer_2s,
interlayers_underlying_graphs,
interlayer_tranfers,
);
title="### INTERLAYERS",
header=([
"NAME", "LAYER 1", "LAYER 2", "UNDERLYING GRAPH", "TRANSFER VERTEX METADATA"
]),
alignment=:c,
header_alignment=:c,
header_crayon=crayon"yellow bold",
hlines=:all,
)
return """
`$unionall_type` with vertex type `$(parameters[1])` and weight type `$(parameters[2])`.
$layers_table
$interlayers_table
"""
end
Base.show(io::IO, x::AbstractMultilayerGraph) = print(io, to_string(x))
"""
getproperty(mg::AbstractMultilayerGraph, f::Symbol)
"""
function Base.getproperty(mg::AbstractMultilayerGraph, f::Symbol)
if f in (
:v_V_associations,
:fadjlist,
:idx_N_associations,
:layers,
:interlayers,
:v_metadata_dict,
) # :weight_tensor, :supra_weight_matrix,
Base.getfield(mg, f)
elseif f == :badjlist && is_directed(mg)
Base.getfield(mg, f)
elseif f == :edge_list
return edges(mg)
elseif f == :subgraphs
return merge(mg.layers, mg.interlayers)
elseif f == :layers_names
return [layer.name for layer in mg.layers]
elseif f == :interlayers_names
return [interlayer.name for interlayer in values(mg.interlayers)]
elseif f == :subgraphs_names
return vcat(mg.layers_names, mg.interlayers_names)
else
for descriptor in mg.layers
if descriptor.name == f
return get_subgraph(mg, descriptor)
end
end
for descriptor in values(mg.interlayers)
if descriptor.name == f
return get_subgraph(mg, descriptor)
end
end
end
end
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 18547 | # General MultilayerDiGraph Utilities
@traitfn badjlist(mg::M) where {M <: AbstractMultilayerGraph; IsDirected{M}} = mg.badjlist
# Nodes
# Vertices
"""
_add_vertex!(mg::M, V::MultilayerVertex) where {T, U, M <: AbstractMultilayerDiGraph{T,U}}
Add MultilayerVertex `V` to multilayer graph `mg`. If `add_node` is true and `node(mv)` is not already part of `mg`, then add `node(mv)` to `mg` before adding `mv` to `mg` instead of throwing an error. Return true if succeeds.
"""
@traitfn function _add_vertex!(
mg::M, V::MultilayerVertex; add_node::Bool=true
) where {T,U,M<:AbstractMultilayerGraph{T,U};IsDirected{M}}
has_vertex(mg, V) && return false
if add_node
_node = node(V)
if add_node && !has_node(mg, _node)
add_node!(mg, _node)
end
else
!has_node(mg, node(V)) && return false
end
n_nodes = nn(mg)
# Re-insert the associations with the proper vertex
v = if isempty(domain(mg.v_V_associations))
one(T)
else
maximum(domain(mg.v_V_associations)) + one(T)
end
mg.v_V_associations[v] = get_bare_mv(V)
mg.v_metadata_dict[v] = V.metadata
push!(mg.fadjlist, HalfEdge{MultilayerVertex,U}[])
push!(mg.badjlist, HalfEdge{MultilayerVertex,U}[])
return true
end
"""
_rem_vertex!(mg::AbstractMultilayerDiGraph, V::MultilayerVertex)
Remove [MultilayerVertex](@ref) `mv` from `mg`. Return true if succeeds, false otherwise.
"""
@traitfn function _rem_vertex!(
mg::M, V::MultilayerVertex
) where {M <: AbstractMultilayerGraph; IsDirected{M}}
# Check that the node exists and then that the vertex exists
has_node(mg, V.node) || return false
has_vertex(mg, V) || return false
# Get the v corresponding to V, delete the association and replace it with a MissingVertex. Also substitute the metadata with an empty NamedTuple
v = get_v(mg, V)
forward_halfedges_to_be_deleted = mg.fadjlist[v]
# Loop over the halfedges to be removed in `forward_halfedges_to_be_deleted`, get their v and remove halfedges to `V` in their corresponding arrays
for halfedge_to_be_deleted in forward_halfedges_to_be_deleted
dst_v = get_v(mg, vertex(halfedge_to_be_deleted))
idx_tbr = nothing
# Don't attempt to remove twice a self loop
if dst_v != v
idx_tbr = findfirst(
halfedge -> compare_multilayervertices(vertex(halfedge), V),
mg.badjlist[dst_v],
)
deleteat!(mg.badjlist[dst_v], idx_tbr)
end
end
backward_halfedges_to_be_deleted = mg.badjlist[v]
# Loop over the halfedges to be removed in `backward_halfedges_to_be_deleted`, get their v and remove halfedges to `V` in their corresponding arrays
for halfedge_to_be_deleted in backward_halfedges_to_be_deleted
src_v = get_v(mg, vertex(halfedge_to_be_deleted))
idx_tbr = nothing
# Don't attempt to remove twice a self loop
if src_v != v
idx_tbr = findfirst(
halfedge -> compare_multilayervertices(vertex(halfedge), V),
mg.fadjlist[src_v],
)
deleteat!(mg.fadjlist[src_v], idx_tbr)
end
end
maximum_v = maximum(domain(mg.v_V_associations))
if v != maximum_v
mg.fadjlist[v] = mg.fadjlist[end]
pop!(mg.fadjlist)
mg.badjlist[v] = mg.badjlist[end]
pop!(mg.badjlist)
last_V = mg.v_V_associations[maximum_v]
delete!(mg.v_V_associations, v)
delete!(mg.v_V_associations, maximum_v)
mg.v_V_associations[v] = last_V
mg.v_metadata_dict[v] = mg.v_metadata_dict[maximum_v]
delete!(mg.v_metadata_dict, maximum_v)
else
pop!(mg.fadjlist)
pop!(mg.badjlist)
delete!(mg.v_V_associations, v)
delete!(mg.v_metadata_dict, v)
end
return true
end
# Edges
"""
has_edge(mg::M, src::T, dst::T) where {T,M<:AbstractMultilayerGraph{T}; IsDirected{M}}
Return true if `mg` has edge between the `src` and `dst` (does not check edge or vertex metadata).
"""
@traitfn function Graphs.has_edge(
mg::M, src::T, dst::T
) where {T,M<:AbstractMultilayerGraph{T};IsDirected{M}}
# Returns true if src is a vertex of mg
has_vertex(mg, src) || return false
# Returns true if dst is a vertex of mg
has_vertex(mg, dst) || return false
halfedges_from_src = mg.fadjlist[src]
halfedges_to_dst = mg.badjlist[dst]
if length(halfedges_from_src) >= length(halfedges_to_dst)
dsts_v = get_v.(Ref(mg), vertex.(halfedges_from_src))
return dst in dsts_v
else
srcs_v = get_v.(Ref(mg), vertex.(halfedges_to_dst))
return src in srcs_v
end
end
# Overloads that make AbstractMultilayerDiGraph an extension of Graphs.jl. These are all well-inferred.
"""
edges(mg::M) where {T,U,M<:AbstractMultilayerGraph{T,U}; IsDirected{M}}
Return an list of all the edges of `mg`.
"""
@traitfn function Graphs.edges(
mg::M
) where {T,U,M<:AbstractMultilayerGraph{T,U}; IsDirected{M}}
edge_list = MultilayerEdge{U}[]
for (_src_v, halfedges) in enumerate(mg.fadjlist)
src_v = T(_src_v)
src_V = get_rich_mv(mg, src_v)
for halfedge in halfedges
dst_v = get_v(mg, vertex(halfedge))
dst_V = get_rich_mv(mg, dst_v)
push!(edge_list, ME(src_V, dst_V, weight(halfedge), metadata(halfedge)))
end
end
# Remove duplicate self loops and return
return edge_list
end
"""
_add_edge!(mg::M, me::E) where {T,U,E<:MultilayerEdge{<:Union{U,Nothing}},M<:AbstractMultilayerGraph{T,U}; IsDirected{M}}
Add MultilayerEdge `me` to the AbstractMultilayerDiGraph `mg`. Return true if succeeds, false otherwise.
"""
@traitfn function _add_edge!(
mg::M, me::E
) where {
T,U,E<:MultilayerEdge{<:Union{U,Nothing}},M<:AbstractMultilayerGraph{T,U};IsDirected{M}
}
_src = get_bare_mv(src(me))
_dst = get_bare_mv(dst(me))
has_vertex(mg, _src) ||
throw(ErrorException("Vertex $_src does not belong to the multilayer graph."))
has_vertex(mg, _dst) ||
throw(ErrorException("Vertex $_dst does not belong to the multilayer graph."))
# Add edge to `edge_dict`
src_V_idx = get_v(mg, _src)
dst_V_idx = get_v(mg, _dst)
_weight = isnothing(weight(me)) ? one(U) : weight(me)
_metadata = metadata(me)
if !has_edge(mg, _src, _dst)
push!(mg.fadjlist[src_V_idx], HalfEdge(_dst, _weight, _metadata))
push!(mg.badjlist[dst_V_idx], HalfEdge(_src, _weight, _metadata))
else
@debug "An edge between $(src(me)) and $(dst(me)) already exists"
return false
end
return true
end
"""
_rem_edge!(
mg::M, src::MultilayerVertex, dst::MultilayerVertex
) where {M<:AbstractMultilayerGraph; IsDirected{M}}
Remove edge from `src` to `dst` from `mg`. Return true if succeeds, false otherwise.
"""
@traitfn function _rem_edge!(
mg::M, src::MultilayerVertex, dst::MultilayerVertex
) where {M <: AbstractMultilayerGraph; IsDirected{M}}
# Perform routine checks
has_vertex(mg, src) ||
throw(ErrorException("Vertex $_src does not belong to the multilayer graph."))
has_vertex(mg, dst) ||
throw(ErrorException("Vertex $_dst does not belong to the multilayer graph."))
has_edge(mg, src, dst) || return false
src_V_idx = get_v(mg, src)
dst_V_idx = get_v(mg, dst)
_src = get_bare_mv(src)
_dst = get_bare_mv(dst)
src_idx_tbr = findfirst(halfedge -> vertex(halfedge) == _dst, mg.fadjlist[src_V_idx])
deleteat!(mg.fadjlist[src_V_idx], src_idx_tbr)
dst_idx_tbr = findfirst(halfedge -> halfedge.vertex == _src, mg.badjlist[dst_V_idx])
deleteat!(mg.badjlist[dst_V_idx], dst_idx_tbr)
return true
end
"""
set_weight!(
mg::M, src::MultilayerVertex, dst::MultilayerVertex, weight::U
) where {T,U,M<:AbstractMultilayerGraph{T,U}; IsDirected{M}}
Set the weight of the edge between `src` and `dst` to `weight`. Return true if succeeds (i.e. if the edge exists and the underlying graph chosen for the Layer/Interlayer where the edge lies is weighted under the `IsWeighted` trait).
"""
@traitfn function set_weight!(
mg::M, src::MultilayerVertex, dst::MultilayerVertex, weight::U
) where {T,U,M<:AbstractMultilayerGraph{T,U};IsDirected{M}}
# Get the subgraph descriptor for the layer containing both src and dst
descriptor = get_subgraph_descriptor(mg, layer(src), layer(dst))
# Check if the subgraph is weighted
is_weighted(descriptor.null_graph) || return false
# Check if an edge exists between src and dst
has_edge(mg, src, dst) || return false
# Get the halfedge from src to dst
halfedges_from_src = mg.fadjlist[get_v(mg, src)]
halfedge_from_src = halfedges_from_src[findfirst(
he -> vertex(he) == dst, halfedges_from_src
)]
# Set the weight of the halfedge from src to dst
halfedge_from_src.weight = weight
# Get the halfedge from dst to src
halfedges_to_dst = mg.badjlist[get_v(mg, dst)]
halfedge_to_dst = halfedges_to_dst[findfirst(he -> vertex(he) == src, halfedges_to_dst)]
# Set the weight of the halfedge from dst to src
halfedge_to_dst.weight = weight
return true
end
"""
set_metadata!(
mg::M,
src::MultilayerVertex,
dst::MultilayerVertex,
metadata::Union{Tuple,NamedTuple},
) where {M<:AbstractMultilayerGraph; IsDirected{M}}
Set the metadata of the edge between `src` and `dst` to `metadata`. Return true if succeeds (i.e. if the edge exists and the underlying graph chosen for the Layer/Interlayer where the edge lies supports metadata at the edge level under the `IsMeta` trait).
"""
@traitfn function set_metadata!(
mg::M, src::MultilayerVertex, dst::MultilayerVertex, metadata::Union{Tuple,NamedTuple}
) where {M <: AbstractMultilayerGraph; IsDirected{M}}
# Get the subgraph descriptor that corresponds to the layer of src and dst
descriptor = get_subgraph_descriptor(mg, layer(src), layer(dst))
# If the subgraph descriptor's null graph is true, then the edge does not exist
is_meta(descriptor.null_graph) || return false
# If the edge does not exist, return false
has_edge(mg, src, dst) || return false
# Set the halfedge from src to dst
halfedges_from_src = mg.fadjlist[get_v(mg, src)]
halfedge_from_src = halfedges_from_src[findfirst(
he -> vertex(he) == dst, halfedges_from_src
)]
halfedge_from_src.metadata = metadata
# Set the halfedge from dst to src
halfedges_to_dst = mg.badjlist[get_v(mg, dst)]
halfedge_to_dst = halfedges_to_dst[findfirst(he -> vertex(he) == src, halfedges_to_dst)]
halfedge_to_dst.metadata = metadata
return true
end
# Layers and Interlayers
"""
add_layer_directedness!(
mg::M,
new_layer::L;
default_interlayers_null_graph::H=SimpleGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {
T,
U,
G<:AbstractGraph{T},
L<:Layer{T,U,G},
H<:AbstractGraph{T},
M<:AbstractMultilayerGraph{T,U};
IsDirected{M}
}
Add layer `layer` to `mg`.
# ARGUMENTS
- `mg::M`: the `MultilayerDiGraph` which the new layer will be added to;
- `new_layer::L`: the new `Layer` to add to `mg`;
- `default_interlayers_null_graph::H`: upon addition of a new `Layer`, all the `Interlayer`s between the new and the existing `Layer`s are immediately created. This keyword argument specifies their `null_graph` See the `Layer` constructor for more information. Defaults to `SimpleGraph{T}()`;
- `default_interlayers_structure::String`: The structure of the `Interlayer`s created by default. May either be "multiplex" to have diagonally-coupled only interlayers, or "empty" for empty interlayers. Defaults to "multiplex".
"""
@traitfn function add_layer_directedness!(
mg::M,
new_layer::L;
default_interlayers_null_graph::H=SimpleGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {
T,
U,
G<:AbstractGraph{T},
L<:Layer{T,U,G},
H<:AbstractGraph{T},
M<:AbstractMultilayerGraph{T,U};IsDirected{M},
}
# Check that the layer is directed
istrait(IsDirected{typeof(new_layer.graph)}) || throw(
ErrorException(
"The `new_layer`'s underlying graph $(new_layer.graph) is undirected, so it is not compatible with a `AbstractMultilayerDiGraph`.",
),
)
return _add_layer!(
mg,
new_layer;
default_interlayers_null_graph=default_interlayers_null_graph,
default_interlayers_structure=default_interlayers_structure,
)
end
"""
get_subgraph(
mg::M, descriptor::LD
) where {T,U,LD<:LayerDescriptor{T,U}, M<:AbstractMultilayerGraph{T,U}; IsDirected{M}}
Internal function. Instantiate the Layer described by `descriptor` whose vertices and edges are contained in `mg`.
"""
@traitfn function get_subgraph(
mg::M, descriptor::LD
) where {T,U,LD<:LayerDescriptor{T,U},M<:AbstractMultilayerGraph{T,U};IsDirected{M}}
vs = sort([
v for (v, mv) in collect(mg.v_V_associations) if mv.layer == descriptor.name
])
_vertices = get_rich_mv.(Ref(mg), vs)
edge_list = MultilayerEdge{U}[]
# We may also loop over the badjlist
for (src_v, halfedges_from_src) in zip(vs, getindex.(Ref(mg.fadjlist), vs))
src_bare_V = mg.v_V_associations[src_v]
for halfedge in halfedges_from_src
dst_bare_V = vertex(halfedge)
if dst_bare_V.layer == descriptor.name
push!(
edge_list,
MultilayerEdge(
src_bare_V, dst_bare_V, weight(halfedge), metadata(halfedge)
),
)
else
continue
end
end
end
return Layer(descriptor, _vertices, edge_list)
end
"""
get_subgraph(
mg::M, descriptor::InD
) where {
T,
U,
# G<:AbstractGraph{T},
InD<:InterlayerDescriptor{T,U},# G},
M<:AbstractMultilayerGraph{T,U};
Is
Internal function. Instantiate the Interlayer described by `descriptor` whose vertices and edges are contained in `mg`.
"""
@traitfn function get_subgraph(
mg::M, descriptor::InD
) where {
T,
U,
# G<:AbstractGraph{T},
InD<:InterlayerDescriptor{T,U},# G},
M<:AbstractMultilayerGraph{T,U};IsDirected{M},
}
layer_1_vs = T[]
layer_2_vs = T[]
for (v, mv) in collect(mg.v_V_associations)
if mv.layer == descriptor.layer_1
push!(layer_1_vs, v)
elseif mv.layer == descriptor.layer_2
push!(layer_2_vs, v)
else
continue
end
end
sort!(layer_1_vs)
sort!(layer_2_vs)
layer_1_multilayervertices = get_rich_mv.(Ref(mg), layer_1_vs)
layer_2_multilayervertices = get_rich_mv.(Ref(mg), layer_2_vs)
layers_vs = vcat(layer_1_vs, layer_2_vs)
edge_list = MultilayerEdge{U}[]
for (src_v, halfedges_from_src) in
zip(layer_1_vs, getindex.(Ref(mg.fadjlist), layer_1_vs))
src_bare_V = mg.v_V_associations[src_v]
for halfedge in halfedges_from_src
dst_bare_V = vertex(halfedge)
# dst_v = get_v(mg, dst_bare_V)
# Don't take the same edge twice (except for self-loops: they will be taken twice, but are later removed using `unique`)
if dst_bare_V.layer == descriptor.layer_2
push!(
edge_list,
MultilayerEdge(
src_bare_V, dst_bare_V, weight(halfedge), metadata(halfedge)
),
)
else
continue
end
end
end
for (src_v, halfedges_from_src) in
zip(layer_1_vs, getindex.(Ref(mg.fadjlist), layer_2_vs))
src_bare_V = mg.v_V_associations[src_v]
for halfedge in halfedges_from_src
dst_bare_V = vertex(halfedge)
# dst_v = get_v(mg, dst_bare_V)
# Don't take the same edge twice (except for self-loops: they will be taken twice, but are later removed using `unique`)
if dst_bare_V.layer == descriptor.layer_1
push!(
edge_list,
MultilayerEdge(
src_bare_V, dst_bare_V, weight(halfedge), metadata(halfedge)
),
)
else
continue
end
end
end
return _Interlayer(
layer_1_multilayervertices,
layer_2_multilayervertices,
unique(edge_list),
descriptor,
)
end
# Graphs.jl's internals extra overrides
"""
degree(
mg::M, mv::V
) where {M<:AbstractMultilayerGraph, V<:MultilayerVertex; IsDirected{M}}
Return the degree of MultilayerVertex `v` within `mg`.
"""
@traitfn function Graphs.degree(
mg::M, mv::V
) where {M<:AbstractMultilayerGraph,V<:MultilayerVertex;IsDirected{M}}
return indegree(mg, mv) + outdegree(mg, mv)
end
"""
inneighbors(mg::M, v::T) where {T,M<:AbstractMultilayerGraph; IsDirected{M}}
Return the list of inneighbors of `v` within `mg`.
"""
@traitfn function Graphs.inneighbors(
mg::M, v::T
) where {T,M<:AbstractMultilayerGraph;IsDirected{M}}
_inneighbors = T[]
for helfedge in mg.badjlist[v]
push!(_inneighbors, get_v(mg, vertex(helfedge)))
end
return _inneighbors
end
"""
get_overlay_monoplex_graph(mg::M) where {T,U,M<:AbstractMultilayerGraph{T,U}; IsDirected{M}}
Get overlay monoplex graph (i.e. the graph that has the same nodes as `mg` but the link between node `i` and `j` has weight equal to the sum of all edges weights between the various vertices representing `i` and `j` in `mg`, accounting for both layers and interlayers). See [De Domenico et al. (2013)](https://doi.org/10.1103/PhysRevX.3.041022).
"""
@traitfn function get_overlay_monoplex_graph(
mg::M
) where {T,U,M<:AbstractMultilayerGraph{T,U};IsDirected{M}}
# Convert the multilayer graph to a weight tensor
wgt = weight_tensor(mg).array
# Sum the weights for each edge in the multilayer graph
projected_overlay_adjacency_matrix = sum([wgt[:, :, i, i] for i in 1:size(wgt, 3)])
return SimpleWeightedDiGraph{T,U}(projected_overlay_adjacency_matrix)
# Approach taken from https://github.com/JuliaGraphs/Graphs.jl/blob/7152d540631219fd51c43ab761ec96f12c27680e/src/core.jl#L124
end
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 1392 | """
abstract type AbstractHalfEdge{T ,U} end
An abstract type representing an HelfEdge (i.e. the edge structure to be used in fadjlists/badjlists).
"""
abstract type AbstractHalfEdge{T,U} end
"""
mutable struct HalfEdge{T <: AbstractMultilayerVertex , U<:Union{<:Real,Nothing}} <: AbstractHalfEdge{T,U}
# FIELDS
- `vertex::T`: the `MultilayerVertex` which is source/destination (depending on the backward/forward nature of the adjacency list) of the `HalfEdge`.
- `weight::U`: the weight of the edge.
- `metadata::Union{Tuple, NamedTuple}`: metadata associated to the edge.
"""
mutable struct HalfEdge{T<:AbstractMultilayerVertex,U<:Union{<:Real,Nothing}} <:
AbstractHalfEdge{T,U}
vertex::T
weight::U
metadata::Union{Tuple,NamedTuple}
end
"""
vertex(he::HalfEdge)
Return the `MultilayerVertex` which is source/destination (depending on the backward/forward nature of the adjacency list) of `he`.
"""
vertex(he::HalfEdge) = he.vertex
"""
weight(he::HalfEdge)
Return the weight of the edge.
"""
SimpleWeightedGraphs.weight(he::HalfEdge) = he.weight
"""
metadata(he::HalfEdge)
Return the metadata associated to the edge.
"""
metadata(he::HalfEdge) = he.metadata
# Console print overrides
to_string(x::HalfEdge) = "HalfEdge($(to_string(vertex(x))), $(weight(x)), $(metadata(x)))"
Base.show(io::IO, x::HalfEdge) = print(io, to_string(x))
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 14878 | """
MultilayerDiGraph{T, U, G <: AbstractGraph{T}} <: AbstractMultilayerGraph{T,U}
A concrete type that can represent a general multilayer graph. Its internal fields aren't meant to be modified by the user. Please prefer the provided API.
"""
mutable struct MultilayerDiGraph{T,U} <: AbstractMultilayerGraph{T,U}
layers::Vector{LayerDescriptor{T,U}} # vector containing all the layers of the multilayer graph. Their underlying graphs must be all undirected.
interlayers::OrderedDict{Set{Symbol},InterlayerDescriptor{T,U}} # the ordered dictionary containing all the interlayers of the multilayer graph. Their underlying graphs must be all undirected.
v_V_associations::Bijection{T,<:MultilayerVertex} # A Bijection from Bijections.jl that associates numeric vertices to `MultilayerVertex`s.
idx_N_associations::Bijection{Int64,Node} # A Bijection from Bijections.jl that associates Int64 to `Node`s.
fadjlist::Vector{Vector{HalfEdge{<:MultilayerVertex,<:Union{Nothing,U}}}} # the forward adjacency list of the MultilayerDiGraph. It is a vector of vectors of `HalfEdge`s. Its i-th element are the `HalfEdge`s that originate from `v_V_associations[i]`.
badjlist::Vector{Vector{HalfEdge{<:MultilayerVertex,<:Union{Nothing,U}}}} # the backward adjacency list of the MultilayerDiGraph. It is a vector of vectors of `HalfEdge`s. Its i-th element are the `HalfEdge`s that insist on `v_V_associations[i]`.
v_metadata_dict::Dict{T,<:Union{<:Tuple,<:NamedTuple}} # A Dictionary that associates numeric vertices to their metadata
end
# Traits
@traitimpl IsWeighted{MultilayerDiGraph}
# @traitimpl IsDirected{MultilayerDiGraph}
@traitimpl IsMeta{MultilayerDiGraph}
"""
is_directed(m::M) where { M <: Type{ <: MultilayerDiGraph}}
Return `false`
"""
Graphs.is_directed(mg::M) where {M<:Type{<:MultilayerDiGraph}} = true
# Constructors
"""
MultilayerDiGraph(
layers::Vector{<:Layer{T,U}},
specified_interlayers::Vector{<:Interlayer{T,U}};
default_interlayers_null_graph::H = SimpleGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {T,U, H <: AbstractGraph{T}}
Construct a MultilayerDiGraph with layers given by `layers`. The interlayers will be constructed by default according to `default_interlayer` where only `"multiplex"` and `"empty"` are allowed, except for those specified in `specified_interlayers`. `default_interlayer = "multiplex"` will imply that unspecified interlayers will have only diagonal couplings, while `default_interlayer = "multiplex"` will produced interlayers that have no couplings.
"""
function MultilayerDiGraph(
layers::Vector{<:Layer{T,U}},
specified_interlayers::Vector{<:Interlayer{T,U}};
default_interlayers_null_graph::H=SimpleGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {T,U,H<:AbstractGraph{T}}
multilayerdigraph = MultilayerDiGraph(T, U)
for layer in deepcopy(layers)
add_layer!(
multilayerdigraph,
layer;
default_interlayers_null_graph=default_interlayers_null_graph,
default_interlayers_structure=default_interlayers_structure,
)
end
if !isnothing(specified_interlayers)
for interlayer in deepcopy(specified_interlayers)
specify_interlayer!(multilayerdigraph, interlayer)
end
end
return multilayerdigraph
end
"""
MultilayerDiGraph(
empty_layers::Vector{<:Layer{T,U}},
empty_interlayers::Vector{<:Interlayer{T,U}},
indegree_distribution::UnivariateDistribution,
outdegree_distribution::UnivariateDistribution;
allow_self_loops::Bool = false,
default_interlayers_null_graph::H = SimpleGraph{T}(),
) where {T <: Integer, U <: Real, H <: AbstractGraph{T}}
Return a random MultilayerDiGraph that has `empty_layers` as layers and `empty_interlayers` as specified interlayers. `empty_layers` and `empty_interlayers` must respectively be `Layer`s and `Interlayer`s with whatever number of vertices but no edges (if any edge is found, an error is thrown). The degree distribution of the returned random `MultilayerDiGraph` is given by `degree_distribution`, which must have a support that only contains positive numbers for obvious reasons. `allow_self_loops = true` allows for self loops t be present in the final random MultilayerDiGraph. `default_interlayers_null_graph` controls the `null_graph` argument passed to automatically-generated interlayers.
"""
function MultilayerDiGraph(
empty_layers::Vector{<:Layer{T,U}},
empty_interlayers::Vector{<:Interlayer{T,U}},
indegree_distribution::UnivariateDistribution,
outdegree_distribution::UnivariateDistribution;
allow_self_loops::Bool=false,
default_interlayers_null_graph::H=SimpleGraph{T}(),
) where {T<:Integer,U<:Real,H<:AbstractGraph{T}}
!allow_self_loops || throw(
ErrorException(
"`allow_self_loops` must currently be set to `false`. The configuration model algorithm does not support self-loops yet.",
),
)
empty_multilayerdigraph = MultilayerDiGraph(
empty_layers,
empty_interlayers;
default_interlayers_null_graph=default_interlayers_null_graph,
default_interlayers_structure="empty",
)
n = nv(empty_multilayerdigraph)
indegree_sequence, outdegree_sequence = sample_digraphical_degree_sequences(
indegree_distribution, outdegree_distribution, n
)
return MultilayerDiGraph(
empty_multilayerdigraph,
indegree_sequence,
outdegree_sequence;
allow_self_loops=false,
perform_checks=false,
)
end
"""
MultilayerDiGraph(
empty_multilayerdigraph::MultilayerDiGraph{T,U},
indegree_sequence::Vector{<:Integer},
outdegree_sequence::Vector{<:Integer};
allow_self_loops::Bool = false,
perform_checks::Bool = false
) where {T,U}
Return a random `MultilayerDiGraph` with degree sequence `degree_sequence`. `allow_self_loops` controls the presence of self-loops, while if `perform_checks` is true, the `degree_sequence` os checked to be graphical.
"""
function MultilayerDiGraph(
empty_multilayerdigraph::MultilayerDiGraph{T,U},
indegree_sequence::Vector{<:Integer},
outdegree_sequence::Vector{<:Integer};
allow_self_loops::Bool=false,
perform_checks::Bool=false,
) where {T,U}
(allow_self_loops && perform_checks) &&
@warn "Checks for graphicality and coherence with the provided `empty_multilayerdigraph` are currently performed without taking into account self-loops. Thus said checks may fail event though the provided `indegree_sequence` and `outdegree_sequence` may be graphical when one allows for self-loops within the directed multilayer graph to be present. If you are sure that the provided `indegree_sequence` and `outdegree_sequence` are indeed graphical under those circumstances, you may want to disable checks by setting `perform_checks = false`. We apologize for the inconvenience."
_multilayerdigraph = deepcopy(empty_multilayerdigraph)
ne(_multilayerdigraph) == 0 || throw(
ErrorException(
"The `empty_multilayerdigraph` argument should be an empty MultilayerDiGraph. Found $(ne(_multilayerdigraph)) edges.",
),
)
if perform_checks
n = nv(_multilayerdigraph)
n == length(indegree_sequence) == length(outdegree_sequence) || throw(
ErrorException(
"The number of vertices of the provided empty MultilayerDiGraph does not match the length of the `indegree_sequence` or the `outdegree_sequence`. Found $(nv(_multilayerdigraph)) , $(length(indegree_sequence)) and $(length(outdegree_sequence)).",
),
)
sum(indegree_sequence) == sum(outdegree_sequence) || throw(
ErrorException(
"The sum of the `indegree_sequence` and the `outdegree_sequence` must match. Found $(sum(indegree_sequence)) and $(sum(outdegree_sequence)).",
),
)
isdigraphical(degree_sequence) || throw(
ArgumentError(
"`indegree_sequence` and `outdegree_sequence` must be digraphical."
),
)
end
# edge_list = _random_directed_configuration(_multilayerdigraph, indegree_sequence, outdegree_sequence, allow_self_loops)
equivalent_graph = kleitman_wang_graph_generator(indegree_sequence, outdegree_sequence)
edge_list = [
ME(
_multilayerdigraph.v_V_associations[src(edge)],
_multilayerdigraph.v_V_associations[dst(edge)],
) for edge in edges(equivalent_graph)
]
for edge in edge_list
add_edge!(_multilayerdigraph, edge)
end
return _multilayerdigraph
end
"""
MultilayerDiGraph(n_nodes::Int64, T::Type{ <: Number}, U::Type{ <: Number} )
Return a null MultilayerDiGraph with with vertex type `T` weighttype `U`. Use this constructor and then add Layers and Interlayers via the `add_layer!` and `specify_interlayer!` methods.
"""
function MultilayerDiGraph(T::Type{<:Number}, U::Type{<:Number})
return MultilayerDiGraph{T,U}(
LayerDescriptor{T,U}[],
OrderedDict{Set{Symbol},InterlayerDescriptor{T,U}}(),
Bijection{T,MultilayerVertex}(),
Bijection{Int64,Node}(),
Vector{HalfEdge{MultilayerVertex,<:Union{Nothing,U}}}[],
Vector{HalfEdge{MultilayerVertex,<:Union{Nothing,U}}}[],
Dict{T,Union{Tuple,NamedTuple}}(),
)
end
"""
MultilayerDiGraph(layers::Vector{<:Layer{T,U}}; default_interlayers_null_graph::H = SimpleGraph{T}(), default_interlayers_structure::String="multiplex") where {T,U, H <: AbstractGraph{T}}
Construct a MultilayerDiGraph with layers `layers` and all interlayers with structure `default_interlayers_structure` (only "multiplex" and "empty" are allowed) and type `default_interlayers_null_graph`.
"""
function MultilayerDiGraph(
layers::Vector{<:Layer{T,U}};
default_interlayers_null_graph::H=SimpleGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {T,U,H<:AbstractGraph{T}}
return MultilayerDiGraph(
layers,
Interlayer{T,U}[];
default_interlayers_null_graph=default_interlayers_null_graph,
default_interlayers_structure=default_interlayers_structure,
)
end
# Nodes
"""
add_node!(mg::MultilayerDiGraph, n::Node; add_vertex_to_layers::Union{Vector{Symbol}, Symbol} = Symbol[])
Add node `n` to `mg`. Return true if succeeds. Additionally, add a corresponding vertex to all layers whose name is listed in `add_vertex_to_layers`. If `add_vertex_to_layers == :all`, then a corresponding vertex is added to all layers.
"""
function add_node!(
mg::MultilayerDiGraph,
n::Node;
add_vertex_to_layers::Union{Vector{Symbol},Symbol}=Symbol[],
)
return _add_node!(mg, n; add_vertex_to_layers=add_vertex_to_layers)
end
"""
rem_node!(mg::MultilayerDiGraph, n::Node)
Remove node `n` to `mg`. Return true if succeeds.
"""
rem_node!(mg::MultilayerDiGraph, n::Node) = _rem_node!(mg, n)
# Vertices
"""
add_vertex!(mg::MultilayerDiGraph, mv::MultilayerVertex; add_node::Bool = true)
Add MultilayerVertex `mv` to multilayer graph `mg`. If `add_node` is true and `node(mv)` is not already part of `mg`, then add `node(mv)` to `mg` before adding `mv` to `mg` instead of throwing an error.
"""
function Graphs.add_vertex!(
mg::MultilayerDiGraph, mv::MultilayerVertex; add_node::Bool=true
)
return _add_vertex!(mg, mv; add_node=add_node)
end
"""
rem_vertex!(mg::MultilayerDiGraph, V::MultilayerVertex)
Remove [MultilayerVertex](@ref) `mv` from `mg`. Return true if succeeds, false otherwise.
"""
Graphs.rem_vertex!(mg::MultilayerDiGraph, V::MultilayerVertex) = _rem_vertex!(mg, V)
# Edges
"""
add_edge!(mg::M, me::E) where {T,U, M <: MultilayerDiGraph{T,U}, E <: MultilayerEdge{ <: Union{U,Nothing}}}
Add a MultilayerEdge between `src` and `dst` with weight `weight` and metadata `metadata`. Return true if succeeds, false otherwise.
"""
function Graphs.add_edge!(
mg::M, me::E
) where {T,U,M<:MultilayerDiGraph{T,U},E<:MultilayerEdge{<:Union{U,Nothing}}}
return _add_edge!(mg, me)
end
"""
rem_edge!(mg::MultilayerDiGraph, me::MultilayerEdge)
Remove edge from `src(me)` to `dst(me)` from `mg`. Return true if succeeds, false otherwise.
"""
function Graphs.rem_edge!(
mg::MultilayerDiGraph, src::MultilayerVertex, dst::MultilayerVertex
)
return _rem_edge!(mg, src, dst)
end
# Layers and Interlayers
"""
add_layer!(
mg::M,
new_layer::L;
default_interlayers_null_graph::H=SimpleGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {
T,
U,
G<:AbstractGraph{T},
L<:Layer{T,U,G},
H<:AbstractGraph{T},
M<:MultilayerDiGraph{T,U}
}
Add layer `layer` to `mg`.
# ARGUMENTS
- `mg::M`: the `MultilayerDiGraph` which the new layer will be added to;
- `new_layer::L`: the new `Layer` to add to `mg`;
- `default_interlayers_null_graph::H`: upon addition of a new `Layer`, all the `Interlayer`s between the new and the existing `Layer`s are immediately created. This keyword argument specifies their `null_graph` See the `Layer` constructor for more information. Defaults to `SimpleGraph{T}()`;
- `default_interlayers_structure::String`: The structure of the `Interlayer`s created by default. May either be "multiplex" to have diagonally-coupled only interlayers, or "empty" for empty interlayers. Defaults to "multiplex".
"""
function add_layer!(
mg::M,
new_layer::L;
default_interlayers_null_graph::H=SimpleDiGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {
T,
U,
G<:AbstractGraph{T},
L<:Layer{T,U,G},
H<:AbstractGraph{T},
M<:MultilayerDiGraph{T,U}
}
return add_layer_directedness!(
mg,
new_layer;
default_interlayers_null_graph=default_interlayers_null_graph,
default_interlayers_structure=default_interlayers_structure,
)
end
"""
specify_interlayer!(
mg::M,
new_interlayer::In
) where {T,U,G<:AbstractGraph{T},M<:MultilayerDiGraph{T,U},In<:Interlayer{T,U,G}}
Specify the interlayer `new_interlayer` as part of `mg`.
"""
@traitfn function specify_interlayer!(
mg::M, new_interlayer::In
) where {
T,U,G<:AbstractGraph{T},In<:Interlayer{T,U,G},M<:MultilayerDiGraph{T,U};IsDirected{M}
} # and(istrait(IsDirected{M}), !istrait(IsMultiplex{M}))
is_directed(new_interlayer.graph) || throw( #istrait(IsDirected{typeof(new_interlayer.graph)})
ErrorException(
"The `new_interlayer`'s underlying graphs $(new_interlayer.graph) is undirected, so it is not compatible with a `MultilayerDiGraph`.",
),
)
return _specify_interlayer!(mg, new_interlayer;)
end
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 4090 | """
AbstractMultilayerEdge{T} <: AbstractEdge{T}
An abstract type representing a `MultilayerGraph` edge.
It must have fields: `src`, `dst`, `weight`.
"""
abstract type AbstractMultilayerEdge{U} <: AbstractEdge{AbstractMultilayerVertex} end
"""
struct MultilayerEdge{ T <: MultilayerVertex, U <: Union{ <: Real, Nothing}} <: AbstractMultilayerEdge{T}
Default concrete subtype of AbstractMultilayerEdge.
# FIELDS
- `src::T`: the source vertex of the edge;
- `dst::T`: the destination vertex of the edge;
- `weight::U`: the edge weight.
# CONSTRUCTORS
MultilayerEdge(src::T, dst::T, weight::U) where { T <: MultilayerVertex, U <: Union{ <: Real, Nothing}}
Default constructor.
"""
struct MultilayerEdge{U<:Union{<:Real,Nothing}} <: AbstractMultilayerEdge{U}
src::AbstractMultilayerVertex
dst::AbstractMultilayerVertex
weight::U
metadata::Union{NamedTuple,Tuple}
end
"""
MultilayerEdge(src::AbstractMultilayerVertex, dst::AbstractMultilayerVertex)
Convert to `MultilayerEdge{Nothing}(src, dst, nothing, NamedTuple())`.
"""
function MultilayerEdge(src::AbstractMultilayerVertex, dst::AbstractMultilayerVertex)
return MultilayerEdge{Nothing}(src, dst, nothing, NamedTuple())
end
"""
MultilayerEdge(src::AbstractMultilayerVertex, dst::AbstractMultilayerVertex, weight::U) where {U <: Real}
Convert to `MultilayerEdge{U}(src, dst, weight, NamedTuple())`.
"""
function MultilayerEdge(
src::AbstractMultilayerVertex, dst::AbstractMultilayerVertex, weight::U
) where {U<:Real}
return MultilayerEdge{U}(src, dst, weight, NamedTuple())
end
"""
MultilayerEdge(src::AbstractMultilayerVertex, dst::AbstractMultilayerVertex, metadata::NamedTuple)
Convert to `MultilayerEdge{Nothing}(src, dst, nothing, metadata)`.
"""
function MultilayerEdge(
src::AbstractMultilayerVertex,
dst::AbstractMultilayerVertex,
metadata::Union{Tuple,NamedTuple},
)
return MultilayerEdge{Nothing}(src, dst, nothing, metadata)
end
"""
ME
Shorter alias for MultilayerEdge.
"""
const ME = MultilayerEdge
"""
src(e::AbstractMultilayerEdge)
Return the source `MultilayerVertex` of `e`.
"""
Graphs.src(e::AbstractMultilayerEdge) = e.src
"""
dst(e::AbstractMultilayerEdge)
Return the destination `MultilayerVertex` of `e`.
"""
Graphs.dst(e::AbstractMultilayerEdge) = e.dst
"""
weight(e::AbstractMultilayerEdge)
Return the weight of `e`.
"""
SimpleWeightedGraphs.weight(e::AbstractMultilayerEdge) = e.weight
"""
metadata(e::AbstractMultilayerEdge)
Return the metadata of `e`.
"""
metadata(e::AbstractMultilayerEdge) = e.metadata
"""
reverse(e::MultilayerEdge)
Return and edge between `dst(e)` and `src(e)` with same `weight(e)` and `metadata(e)`.
"""
Base.reverse(e::MultilayerEdge) = MultilayerEdge(dst(e), src(e), weight(e), metadata(e))
# Compare multilayer edges
function compare_multilayeredges(
lhs::MultilayerEdge,
rhs::MultilayerEdge;
check_weight::Bool=false,
check_metadata::Bool=false,
)
# Check source
lhs.src != rhs.src && return false
# check destination
lhs.dst != rhs.dst && return false
# Check weight
_check_weight = false
if check_weight
_check_weight = lhs.weight == rhs.weight ? true : return false
end
# Check metadata
_check_metadata = false
if check_metadata
_check_metadata = lhs.metadata == rhs.metadata ? true : return false
else
_check_metadata = true
end
return true
end
# Base overrides
function Base.:(==)(lhs::MultilayerEdge, rhs::MultilayerEdge)
return (lhs.src == rhs.src) &&
(lhs.dst == rhs.dst) &&
(lhs.weight == rhs.weight) &&
(lhs.metadata == rhs.metadata)
end #
function Base.isequal(lhs::E1, rhs::E2) where {E1<:MultilayerEdge,E2<:MultilayerEdge}
# println("here")
return lhs == rhs
end
# Console print utilities
function to_string(x::MultilayerEdge)
return "ME($(to_string(src(x))) --> $(to_string(dst(x))),\tweight = $(weight(x)),\tmetadata = $(metadata(x)))"
end
Base.show(io::IO, x::MultilayerEdge) = print(io, to_string(x))
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 14456 | """
MultilayerGraph{T, U, G <: AbstractGraph{T}} <: AbstractMultilayerGraph{T,U}
A concrete type that can represent a general multilayer graph. Its internal fields aren't meant to be modified by the user. Please prefer the provided API.
"""
mutable struct MultilayerGraph{T,U} <: AbstractMultilayerGraph{T,U}
layers::Vector{LayerDescriptor{T,U}} # vector containing all the layers of the multilayer graph. Their underlying graphs must be all undirected.
interlayers::OrderedDict{Set{Symbol},InterlayerDescriptor{T,U}} # the ordered dictionary containing all the interlayers of the multilayer graph. Their underlying graphs must be all undirected.
v_V_associations::Bijection{T,<:MultilayerVertex} # A Bijection from Bijections.jl that associates numeric vertices to `MultilayerVertex`s.
idx_N_associations::Bijection{Int64,Node} # A Bijection from Bijections.jl that associates Int64 to `Node`s.
fadjlist::Vector{Vector{HalfEdge{<:MultilayerVertex,<:Union{Nothing,U}}}} # the forward adjacency list of the MultilayerGraph. It is a vector of vectors of `HalfEdge`s. Its i-th element are the `HalfEdge`s that originate from `v_V_associations[i]`.
v_metadata_dict::Dict{T,<:Union{<:Tuple,<:NamedTuple}} # A Dictionary that associates numeric vertices to their metadata.
end
# Traits
@traitimpl IsWeighted{MultilayerGraph}
@traitimpl IsMeta{MultilayerGraph}
"""
is_directed(m::M) where { M <: Type{ <: MultilayerGraph}}
Return `false`
"""
Graphs.is_directed(mg::M) where {M<:Type{<:MultilayerGraph}} = false
# Constructors
"""
MultilayerGraph(
layers::Vector{<:Layer{T,U}},
specified_interlayers::Vector{<:Interlayer{T,U}};
default_interlayers_null_graph::H = SimpleGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {T,U, H <: AbstractGraph{T}}
Construct a MultilayerGraph with layers given by `layers`. The interlayers will be constructed by default according to `default_interlayer` where only `"multiplex"` and `"empty"` are allowed, except for those specified in `specified_interlayers`. `default_interlayer = "multiplex"` will imply that unspecified interlayers will have only diagonal couplings, while `default_interlayer = "multiplex"` will produced interlayers that have no couplings.
# ARGUMENTS
- `layers::Vector{<:Layer{T,U}}`: The (ordered) list of layers the multilayer graph will have;
- `specified_interlayers::Vector{<:Interlayer{T,U}}`: The list of interlayers specified by the user. Note that the user does not need to specify all interlayers, as the unspecified ones will be automatically constructed using the indications given by the `default_interlayers_null_graph` and `default_interlayers_structure` keywords;
- `default_interlayers_null_graph::H = SimpleGraph{T}()`: Sets the underlying graph for the interlayers that are to be automatically specified. Defaults to `SimpleGraph{T}()`. See the `Interlayer` constructors for more information;
- `default_interlayers_structure::String = "multiplex"`: Sets the structure of the interlayers that are to be automatically specified. May be "multiplex" for diagonally coupled interlayers, or "empty" for empty interlayers (no edges). "multiplex". See the `Interlayer` constructors for more information.
"""
function MultilayerGraph(
layers::Vector{<:Layer{T,U}},
specified_interlayers::Vector{<:Interlayer{T,U}};
default_interlayers_null_graph::H=SimpleGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {T,U,H<:AbstractGraph{T}}
multilayergraph = MultilayerGraph(T, U)
for layer in deepcopy(layers)
add_layer!(
multilayergraph,
layer;
default_interlayers_null_graph=default_interlayers_null_graph,
default_interlayers_structure=default_interlayers_structure,
)
end
if !isnothing(specified_interlayers)
for interlayer in deepcopy(specified_interlayers)
specify_interlayer!(multilayergraph, interlayer)
end
end
return multilayergraph
end
"""
MultilayerGraph(
empty_layers::Vector{<:Layer{T,U}},
empty_interlayers::Vector{<:Interlayer{T,U}},
degree_distribution::UnivariateDistribution;
allow_self_loops::Bool = false,
default_interlayers_null_graph::H = SimpleGraph{T}(),
) where {T <: Integer, U <: Real, H <: AbstractGraph{T}}
Return a random MultilayerGraph that has `empty_layers` as layers and `empty_interlayers` as specified interlayers. `empty_layers` and `empty_interlayers` must respectively be `Layer`s and `Interlayer`s with whatever number of vertices but no edges (if any edge is found, an error is thrown). The degree distribution of the returned random `MultilayerGraph` is given by `degree_distribution`, which must have a support that only contains positive numbers for obvious reasons. `allow_self_loops = true` allows for self loops t be present in the final random MultilayerGraph. `default_interlayers_null_graph` controls the `null_graph` argument passed to automatically-generated interlayers.
"""
function MultilayerGraph(
empty_layers::Vector{<:Layer{T,U}},
empty_interlayers::Vector{<:Interlayer{T,U}},
degree_distribution::UnivariateDistribution;
allow_self_loops::Bool=false,
default_interlayers_null_graph::H=SimpleGraph{T}(),
) where {T<:Integer,U<:Real,H<:AbstractGraph{T}}
!allow_self_loops || throw(
ErrorException(
"`allow_self_loops` must currently be set to `false`. The configuration model algorithm does not support self-loops yet.",
),
)
empty_multilayergraph = MultilayerGraph(
empty_layers,
empty_interlayers;
default_interlayers_null_graph=default_interlayers_null_graph,
default_interlayers_structure="empty",
)
n = nv(empty_multilayergraph)
degree_sequence = sample_graphical_degree_sequence(degree_distribution, n)
return MultilayerGraph(
empty_multilayergraph, degree_sequence; allow_self_loops=false, perform_checks=false
)
end
"""
MultilayerGraph(empty_multilayergraph::MultilayerGraph{T,U},
degree_sequence::Vector{<:Integer};
allow_self_loops::Bool = false,
perform_checks::Bool = false) where {T,U}
Return a random `MultilayerGraph` with degree sequence `degree_sequence`. `allow_self_loops` controls the presence of self-loops, while if `perform_checks` is true, the `degree_sequence` os checked to be graphical.
"""
function MultilayerGraph(
empty_multilayergraph::MultilayerGraph{T,U},
degree_sequence::Vector{<:Integer};
allow_self_loops::Bool=false,
perform_checks::Bool=true,
) where {T,U}
(allow_self_loops && perform_checks) &&
@warn "Checks for graphicality and coherence with the provided `empty_multilayergraph` are currently performed without taking into account self-loops. Thus said checks may fail even though the provided `degree_sequence` may be graphical when one allows for self-loops within the multilayer graph to be present. If you are sure that the provided `degree_sequence` is indeed graphical under those circumstances, you may want to disable checks by setting `perform_checks = false`. We apologize for the inconvenient."
_multilayergraph = deepcopy(empty_multilayergraph)
ne(_multilayergraph) == 0 || throw(
ErrorException(
"The `empty_multilayergraph` argument should be an empty MultilayerGraph. Found $(ne(_multilayergraph)) edges.",
),
)
if perform_checks
n = nv(_multilayergraph)
n == length(degree_sequence) || throw(
ErrorException(
"The number of vertices of the provided empty MultilayerGraph does not match the length of the degree sequence. Found $(nv(_multilayergraph)) and $(length(degree_sequence)).",
),
)
isgraphical(degree_sequence) ||
throw(ArgumentError("degree_sequence must be graphical."))
end
# edge_list = _random_undirected_configuration(_multilayergraph, degree_sequence, allow_self_loops)
equivalent_graph = havel_hakimi_graph_generator(degree_sequence)
edge_list = [
ME(
empty_multilayergraph.v_V_associations[src(edge)],
empty_multilayergraph.v_V_associations[dst(edge)],
) for edge in edges(equivalent_graph)
]
for edge in edge_list
add_edge!(_multilayergraph, edge)
end
return _multilayergraph
end
"""
MultilayerGraph(T::Type{<:Number}, U::Type{<:Number})
Return a null MultilayerGraph with with vertex type `T` weighttype `U`. Use this constructor and then add Layers and Interlayers via the `add_layer!` and `specify_interlayer!` methods.
"""
function MultilayerGraph(T::Type{<:Number}, U::Type{<:Number})
return MultilayerGraph{T,U}(
LayerDescriptor{T,U}[],
OrderedDict{Set{Symbol},InterlayerDescriptor{T,U}}(),
Bijection{T,MultilayerVertex}(),
Bijection{Int64,Node}(),
Vector{HalfEdge{MultilayerVertex,<:Union{Nothing,U}}}[],
Dict{T,Union{Tuple,NamedTuple}}(),
)
end
"""
MultilayerGraph(layers::Vector{<:Layer{T,U}}; default_interlayers_null_graph::H = SimpleGraph{T}(), default_interlayers_structure::String="multiplex") where {T,U, H <: AbstractGraph{T}}
Construct a MultilayerGraph with layers `layers` and all interlayers with structure `default_interlayers_structure` (only "multiplex" and "empty" are allowed) and type `default_interlayers_null_graph`.
"""
function MultilayerGraph(
layers::Vector{<:Layer{T,U}};
default_interlayers_null_graph::H=SimpleGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {T,U,H<:AbstractGraph{T}}
return MultilayerGraph(
layers,
Interlayer{T,U}[];
default_interlayers_null_graph=default_interlayers_null_graph,
default_interlayers_structure=default_interlayers_structure,
)
end
# Nodes
"""
add_node!(mg::MultilayerGraph, n::Node; add_vertex_to_layers::Union{Vector{Symbol}, Symbol} = Symbol[])
Add node `n` to `mg`. Return true if succeeds. Additionally, add a corresponding vertex to all layers whose name is listed in `add_vertex_to_layers`. If `add_vertex_to_layers == :all`, then a corresponding vertex is added to all layers.
"""
function add_node!(
mg::MultilayerGraph,
n::Node;
add_vertex_to_layers::Union{Vector{Symbol},Symbol}=Symbol[],
)
return _add_node!(mg, n; add_vertex_to_layers=add_vertex_to_layers)
end
"""
rem_node!(mg::MultilayerGraph, n::Node)
Remove node `n` to `mg`. Return true if succeeds.
"""
rem_node!(mg::MultilayerGraph, n::Node) = _rem_node!(mg, n)
# Vertices
"""
add_vertex!(mg::MultilayerGraph, mv::MultilayerVertex; add_node::Bool = true)
Add MultilayerVertex `mv` to multilayer graph `mg`. If `add_node` is true and `node(mv)` is not already part of `mg`, then add `node(mv)` to `mg` before adding `mv` to `mg` instead of throwing an error.
"""
function Graphs.add_vertex!(mg::MultilayerGraph, mv::MultilayerVertex; add_node::Bool=true)
return _add_vertex!(mg, mv; add_node=add_node)
end
"""
rem_vertex!(mg::MultilayerGraph, V::MultilayerVertex)
Remove [MultilayerVertex](@ref) `mv` from `mg`. Return true if succeeds, false otherwise.
"""
Graphs.rem_vertex!(mg::MultilayerGraph, V::MultilayerVertex) = _rem_vertex!(mg, V)
# Edges
"""
add_edge!(mg::M, me::E) where {T,U, M <: MultilayerGraph{T,U}, E <: MultilayerEdge{ <: Union{U,Nothing}}}
Add a MultilayerEdge between `src` and `dst` with weight `weight` and metadata `metadata`. Return true if succeeds, false otherwise.
"""
function Graphs.add_edge!(
mg::M, me::E
) where {T,U,M<:MultilayerGraph{T,U},E<:MultilayerEdge{<:Union{U,Nothing}}}
return _add_edge!(mg, me)
end
"""
rem_edge!(mg::MultilayerGraph, me::MultilayerEdge)
Remove edge from `src(me)` to `dst(me)` from `mg`. Return true if succeeds, false otherwise.
"""
function Graphs.rem_edge!(mg::MultilayerGraph, src::MultilayerVertex, dst::MultilayerVertex)
return _rem_edge!(mg, src, dst)
end
# Layers and Interlayers
"""
add_layer!(
mg::M,
new_layer::L;
default_interlayers_null_graph::H=SimpleGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {
T,
U,
G<:AbstractGraph{T},
L<:Layer{T,U,G},
H<:AbstractGraph{T},
M<:MultilayerGraph{T,U}
}
Add layer `layer` to `mg`.
# ARGUMENTS
- `mg::M`: the `MultilayerGraph` which the new layer will be added to;
- `new_layer::L`: the new `Layer` to add to `mg`;
- `default_interlayers_null_graph::H = SimpleGraph{T}()`: upon addition of a new `Layer`, all the `Interlayer`s between the new and the existing `Layer`s are immediately created. This keyword argument specifies their `null_graph` See the `Layer` constructor for more information. Defaults to `SimpleGraph{T}()`;
- `default_interlayers_structure::String = "multiplex"`: The structure of the `Interlayer`s created by default. May either be "multiplex" to have diagonally-coupled only interlayers, or "empty" for empty interlayers. Defaults to "multiplex".
"""
function add_layer!(
mg::M,
new_layer::L;
default_interlayers_null_graph::H=SimpleGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {
T,
U,
G<:AbstractGraph{T},
L<:Layer{T,U,G},
H<:AbstractGraph{T},
M<:MultilayerGraph{T,U}
}
return add_layer_directedness!(
mg,
new_layer;
default_interlayers_null_graph=default_interlayers_null_graph,
default_interlayers_structure=default_interlayers_structure,
)
end
"""
specify_interlayer!(
mg::M,
new_interlayer::In
) where {T,U,G<:AbstractGraph{T},In<:Interlayer{T,U,G}, M<:MultilayerGraph{T,U}; !IsDirected{M}}
Specify the interlayer `new_interlayer` as part of `mg`.
"""
@traitfn function specify_interlayer!(
mg::M, new_interlayer::In
) where {
T,U,G<:AbstractGraph{T},In<:Interlayer{T,U,G},M<:MultilayerGraph{T,U};!IsDirected{M}
} # and(!istrait(IsDirected{M}), !istrait(IsMultiplex{M}))
!is_directed(new_interlayer.graph) || throw( # !istrait(IsDirected{typeof(new_interlayer.graph)})
ErrorException(
"The `new_interlayer`'s underlying graphs $(new_interlayer.graph) is directed, so it is not compatible with a `MultilayerGraph`.",
),
)
return _specify_interlayer!(mg, new_interlayer;)
end
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 452 | """
abstract type AbstractNode
An abstract type representing a node.
"""
abstract type AbstractNode end
"""
Node <: AbstractNode
A custom concrete type representing a node of a multilayer graph.
"""
struct Node <: AbstractNode
id::String
end
"""
id(n::Node)
Return the id of `n`.
"""
id(n::Node) = n.id
# Base overrides
Base.:(==)(lhs::Node, rhs::Node) = (lhs.id == rhs.id)
Base.isequal(lhs::Node, rhs::Node) = (lhs.id == rhs.id)
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 6636 | # This script has been copy-pasted from https://github.com/mhauru/TensorFactorizations.jl
"""
tensoreig(A, a, b; chis=nothing, eps=0,
return_error=false, print_error=false,
break_degenerate=false, degeneracy_eps=1e-6,
norm_type=:frobenius, hermitian=false)
Finds the "right" eigenvectors and eigenvalues of A. The indices of A are
permuted so that the indices listed in the Array/Tuple a are on the "left"
side and indices listed in b are on the "right". The resulting tensor is
then reshaped to a matrix, and eig is called on this matrix to get the vector
of eigenvalues E and matrix of eigenvectors U. Finally, U is reshaped to
a tensor that has as its last index the one that enumerates the eigenvectors
and the indices in a as its first indices.
Truncation and error printing work as with tensorsvd.
Note that no iterative techniques are used, which means that choosing to
truncate provides no performance benefits: All the eigenvalues are computed
in any case.
The keyword argument hermitian (false by default) tells the algorithm
whether the reshaped matrix is Hermitian or not. If hermitian=true, then A =
U*diagm(E)*U' up to the truncation error.
Output is E, U, and possibly error, if return_error=true. Here E is a
vector of eigenvalues values and U[:,...,:,k] is the kth eigenvector.
"""
function tensoreig(
A,
a,
b;
chis=nothing,
eps=0,
return_error=false,
print_error=false,
break_degenerate=false,
degeneracy_eps=1e-6,
norm_type=:frobenius,
hermitian=false,
)
# Create the matrix and decompose it.
A, shp_a, shp_b = to_matrix(A, a, b; return_tensor_shape=true)
if hermitian
A = Hermitian((A + A') / 2)
end
fact = eigen(A)
E, U = fact.values, fact.vectors
# Sort the by largest magnitude eigenvalue first.
perm = sortperm(abs.(E); rev=true)
if perm != collect(1:length(E))
E = E[perm]
U = U[:, perm]
end
# Find the dimensions to truncate to and the error caused in doing so.
chi, error = find_trunc_dim(E, chis, eps, break_degenerate, degeneracy_eps, norm_type)
# Truncate
E = E[1:chi]
U = U[:, 1:chi]
if print_error
println("Relative truncation error ($norm_type norm) in eig: $error")
end
# Reshape U to a tensor with a shape matching the shape of A and
# return.
dim = size(E)[1]
U_tens = reshape(U, shp_a..., dim)
retval = (E, U_tens)
if return_error
retval = (retval..., error)
end
return retval
end
"""
Format the bond dimensions listed in chis to a standard format.
"""
function format_trunc_chis(v, chis, eps)
max_dim = length(v)
if chis == nothing
if eps > 0
# Try all possible chis.
chis = collect(1:max_dim)
else
# No truncation.
chis = [max_dim]
end
else
if isa(chis, Number)
# Wrap an individual number in an Array.
chis = [chis]
else
# Make sure chis is an Array, and not, say, a tuple.
chis = collect(chis)
end
if eps == 0
chis = [maximum(chis)]
else
sort!(chis)
end
end
# If some of the chis are larger than max_dim, get rid of them.
for (i, chi) in enumerate(chis)
if chi >= max_dim
chis[i] = max_dim
chis = chis[1:i]
break
end
end
return chis
end
"""
Transpose A so that the indices listed in a are on the left and the indices
listed in b on the right, and reshape A into a matrix.
a and b should be arrays of Integers that together include the numbers from 1
to ndims(A). Alternatively they can be just individual Integers, if only one
index is left on one side.
If return_tensor_shape is true (by default it's not) return, in addition to the
matrix, the shape of the tensor after the transpose but before the reshape.
"""
function to_matrix(A, a, b; return_tensor_shape=false)
# Make sure a and b are Arrays.
if isa(a, Number)
a = [a]
elseif !isa(a, Array)
a = collect(a)
end
if isa(b, Number)
b = [b]
elseif !isa(b, Array)
b = collect(b)
end
# Permute the indices of A to the right order
perm = vcat(a, b)
A = tensorcopy(A, collect(1:ndims(A)), perm)
# The lists shp_a and shp_b list the dimensions of the bonds in a and b
shp = size(A)
shp_a = shp[1:length(a)]
shp_b = shp[(end + 1 - length(b)):end]
# Compute the dimensions of the the matrix that will be formed when
# indices of a and b are joined together.
dim_a = prod(shp_a)
dim_b = prod(shp_b)
A = reshape(A, dim_a, dim_b)
if return_tensor_shape
return A, shp_a, shp_b
else
return A
end
end
"""
Finds the dimension to which v should be truncated, and the error caused in
this truncation. See documentation for tensorsvd for the meaning of the
different arguments.
"""
function find_trunc_dim(
v, chis, eps, break_degenerate=false, degeneracy_eps=1e-6, norm_type=:frobenius
)
# Put chis in a standard format.
chis = format_trunc_chis(v, chis, eps)
v = abs.(v)
if !issorted(v; rev=true)
sort!(v; rev=true)
end
if norm_type == :frobenius
v = v .^ 2
eps = eps^2
elseif norm_type == :trace
# Nothing to be done
else
throw(ArgumentError("Unknown norm_type $norm_type."))
end
sum_all = sum(v)
# Find the smallest chi for which the error is small enough.
# If none is found, use the largest chi.
if sum_all != 0
for i in 1:length(chis)
chi = chis[i]
if !break_degenerate
# Make sure that we don't break degenerate singular values by
# including one but not the other by decreasing chi if
# necessary.
while 0 < chi < length(v)
last_in = v[chi]
last_out = v[chi + 1]
rel_diff = abs(last_in - last_out) / last_in
if rel_diff < degeneracy_eps
chi -= 1
else
break
end
end
end
sum_disc = sum(v[(chi + 1):end])
error = sum_disc / sum_all
if error <= eps
break
end
end
if norm_type == :frobenius
error = sqrt(error)
end
else
error = 0
chi = minimum(chis)
end
return chi, error
end
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 1321 | # Define traits from SimpleTraits.jl. Right now, no trait except `IsDirected` is used by MultilayerGraphs.jl
"""
IsWeighted{X}
Trait that discerns between weighted and unweighted graphs. A graph type should take the `IsWeighted` trait IF AND ONLY IF it implements the signature add_edge!(src,dst,weight). Otherwise it should not.
"""
@traitdef IsWeighted{X}
@traitimpl IsWeighted{SimpleWeightedGraphs.AbstractSimpleWeightedGraph}
"""
is_weighted(g::G) where { G <: AbstractGraph}
Check whether `g` is weighted.
"""
is_weighted(g::G) where {G<:AbstractGraph} = is_weighted(G)
"""
is_weighted(g::G) where {G<:Type{<:AbstractGraph}}
Check whether `g` is weighted.
"""
is_weighted(g::G) where {G<:Type{<:AbstractGraph}} = istrait(IsWeighted{g})
"""
IsMeta{X}
Trait that discerns between graphs that sport edge and vertex metadata.
"""
@traitdef IsMeta{X}
@traitimpl IsMeta{MetaGraphs.AbstractMetaGraph}
@traitimpl IsMeta{SimpleValueGraphs.AbstractValGraph}
"""
is_meta(g::G) where {G <: AbstractGraph}
Check whether `g` supports edge AND vertex metadata.
"""
is_meta(g::G) where {G<:AbstractGraph} = is_meta(G)
"""
is_meta(g::G) where {G<:Type{<:AbstractGraph}}
Check whether `g` supports edge AND vertex metadata.
"""
is_meta(g::G) where {G<:Type{<:AbstractGraph}} = istrait(IsMeta{g})
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 17804 | # Nodes
# Vertices
"""
_add_vertex!(mg::M, V::MultilayerVertex) where {T, U, M <: AbstractMultilayerUGraph{T,U}}
Add MultilayerVertex `V` to multilayer graph `mg`. If `add_node` is true and `node(mv)` is not already part of `mg`, then add `node(mv)` to `mg` before adding `mv` to `mg` instead of throwing an error. Return true if succeeds.
"""
@traitfn function _add_vertex!(
mg::M, V::MultilayerVertex; add_node::Bool=true
) where {T,U,M<:AbstractMultilayerGraph{T,U};!IsDirected{M}}
has_vertex(mg, V) && return false
if add_node
_node = node(V)
if add_node && !has_node(mg, _node)
add_node!(mg, _node)
end
else
!has_node(mg, node(V)) && return false
end
n_nodes = nn(mg)
# Re-insert the associations with the proper vertex
v = if isempty(domain(mg.v_V_associations))
one(T)
else
maximum(domain(mg.v_V_associations)) + one(T)
end
mg.v_V_associations[v] = get_bare_mv(V)
mg.v_metadata_dict[v] = V.metadata
push!(mg.fadjlist, HalfEdge{MultilayerVertex,U}[])
return true
end
"""
_rem_vertex!(mg::AbstractMultilayerUGraph, V::MultilayerVertex)
Remove [MultilayerVertex](@ref) `mv` from `mg`. Return true if succeeds, false otherwise.
"""
@traitfn function _rem_vertex!(
mg::M, V::MultilayerVertex
) where {M <: AbstractMultilayerGraph; !IsDirected{M}}
# Check that the node exists and then that the vertex exists
has_node(mg, node(V)) || return false
has_vertex(mg, V) || return false
# Get the v corresponding to V, delete the association and replace it with a MissingVertex. Also substitute the metadata with an empty NamedTuple
v = get_v(mg, V)
halfedges_to_be_deleted = mg.fadjlist[v]
# Loop over the halfedges to be removed in `halfedges_to_be_deleted`, get their v and remove halfedges to `V` in their corresponding arrays
for halfedge_to_be_deleted in halfedges_to_be_deleted
dst_v = get_v(mg, vertex(halfedge_to_be_deleted))
idx_tbr = nothing
# Don't attempt to remove twice a self loop
if dst_v != v
idx_tbr = findfirst(
halfedge -> compare_multilayervertices(vertex(halfedge), V),
mg.fadjlist[dst_v],
)
deleteat!(mg.fadjlist[dst_v], idx_tbr)
end
end
maximum_v = maximum(domain(mg.v_V_associations))
if v != maximum_v
mg.fadjlist[v] = mg.fadjlist[end]
pop!(mg.fadjlist)
last_V = mg.v_V_associations[maximum_v]
delete!(mg.v_V_associations, v)
delete!(mg.v_V_associations, maximum_v)
mg.v_V_associations[v] = last_V
mg.v_metadata_dict[v] = mg.v_metadata_dict[maximum_v]
delete!(mg.v_metadata_dict, maximum_v)
else
pop!(mg.fadjlist)
delete!(mg.v_V_associations, v)
delete!(mg.v_metadata_dict, v)
end
return true
end
# Edges
"""
has_edge( mg::M, src::T, dst::T) where {T,M<:AbstractMultilayerGraph{T};!IsDirected{M}}
Return true if `mg` has edge between the `src` and `dst` (does not check edge or vertex metadata).
"""
@traitfn function Graphs.has_edge(
mg::M, src::T, dst::T
) where {T,M<:AbstractMultilayerGraph{T};!IsDirected{M}}
has_vertex(mg, src) || return false
has_vertex(mg, dst) || return false
halfedges_from_src = mg.fadjlist[src]
halfedges_from_dst = mg.fadjlist[dst]
if length(halfedges_from_src) >= length(halfedges_from_dst)
dsts_v = get_v.(Ref(mg), vertex.(halfedges_from_src))
return dst in dsts_v
else
srcs_v = get_v.(Ref(mg), vertex.(halfedges_from_dst))
return src in srcs_v
end
end
# Overloads that make AbstractMultilayerUGraph an extension of Graphs.jl. These are all well-inferred .
"""
edges(mg::M) where {T,U,M<:AbstractMultilayerGraph{T,U}; !IsDirected{M}}
Return an list of all the edges of `mg`.
"""
@traitfn function Graphs.edges(
mg::M
) where {T,U,M<:AbstractMultilayerGraph{T,U};!IsDirected{M}}
edge_list = MultilayerEdge{U}[]
for (_src_v, halfedges) in enumerate(mg.fadjlist)
src_v = T(_src_v)
src_V = get_rich_mv(mg, src_v)
for halfedge in halfedges
dst_v = get_v(mg, vertex(halfedge))
# Don't take the same edge twice, except for self loops that are later removed by the unique
if dst_v >= src_v
dst_V = get_rich_mv(mg, dst_v)
push!(edge_list, ME(src_V, dst_V, weight(halfedge), metadata(halfedge)))
end
end
end
# Remove duplicate self loops and return
return unique(edge_list)
end
"""
_add_edge!(mg::M, me::E) where {T,U, M <: AbstractMultilayerUGraph{T,U}, E <: MultilayerEdge{ <: Union{U,Nothing}}}
Add MultilayerEdge `me` to the AbstractMultilayerUGraph `mg`. Return true if succeeds, false otherwise.
"""
@traitfn function _add_edge!(
mg::M, me::E
) where {
T,U,E<:MultilayerEdge{<:Union{U,Nothing}},M<:AbstractMultilayerGraph{T,U};!IsDirected{M}
}
_src = get_bare_mv(src(me))
_dst = get_bare_mv(dst(me))
has_vertex(mg, _src) ||
throw(ErrorException("Vertex $_src does not belong to the multilayer graph."))
has_vertex(mg, _dst) ||
throw(ErrorException("Vertex $_dst does not belong to the multilayer graph."))
# Add edge to `edge_dict`
src_v = get_v(mg, _src)
dst_v = get_v(mg, _dst)
_weight = isnothing(weight(me)) ? one(U) : weight(me)
_metadata = metadata(me)
if !has_edge(mg, _src, _dst)
if src_v != dst_v
push!(mg.fadjlist[src_v], HalfEdge(_dst, _weight, _metadata))
push!(mg.fadjlist[dst_v], HalfEdge(_src, _weight, _metadata))
else
push!(mg.fadjlist[src_v], HalfEdge(_dst, _weight, _metadata))
end
return true
else
@debug "An edge between $(src(me)) and $(dst(me)) already exists"
return false
end
end
"""
_rem_edge!(mg::AbstractMultilayerUGraph, src::MultilayerVertex, dst::MultilayerVertex)
Remove edge from `src` to `dst` from `mg`. Return true if succeeds, false otherwise.
"""
@traitfn function _rem_edge!(
mg::M, src::MultilayerVertex, dst::MultilayerVertex
) where {M <: AbstractMultilayerGraph; !IsDirected{M}}
# Perform routine checks
has_vertex(mg, src) ||
throw(ErrorException("Vertex $_src does not belong to the multilayer graph."))
has_vertex(mg, dst) ||
throw(ErrorException("Vertex $_dst does not belong to the multilayer graph."))
has_edge(mg, src, dst) || return false
src_V_idx = get_v(mg, src)
dst_V_idx = get_v(mg, dst)
_src = get_bare_mv(src)
_dst = get_bare_mv(dst)
if get_bare_mv(src) != get_bare_mv(dst)
src_idx_tbr = findfirst(
halfedge -> vertex(halfedge) == _dst, mg.fadjlist[src_V_idx]
)
deleteat!(mg.fadjlist[src_V_idx], src_idx_tbr)
dst_idx_tbr = findfirst(halfedge -> halfedge.vertex == _src, mg.fadjlist[dst_V_idx])
deleteat!(mg.fadjlist[dst_V_idx], dst_idx_tbr)
else
src_idx_tbr = findfirst(
halfedge -> vertex(halfedge) == _dst, mg.fadjlist[src_V_idx]
)
deleteat!(mg.fadjlist[src_V_idx], src_idx_tbr)
end
return true
end
"""
set_weight!(mg::M, src::MultilayerVertex{L1}, dst::MultilayerVertex{L2}, weight::U) where {L1 <: Symbol, L2 <: Symbol, T,U, M <: AbstractMultilayerGraph{T,U}}
Set the weight of the edge between `src` and `dst` to `weight`. Return true if succeeds (i.e. if the edge exists and the underlying graph chosen for the Layer/Interlayer where the edge lies is weighted under the `IsWeighted` trait).
"""
@traitfn function set_weight!(
mg::M, src::MultilayerVertex, dst::MultilayerVertex, weight::U
) where {T,U,M<:AbstractMultilayerGraph{T,U};!IsDirected{M}}
descriptor = get_subgraph_descriptor(mg, layer(src), layer(dst))
is_weighted(descriptor.null_graph) || return false
has_edge(mg, src, dst) || return false
halfedges_from_src = mg.fadjlist[get_v(mg, src)]
halfedge_from_src = halfedges_from_src[findfirst(
he -> vertex(he) == dst, halfedges_from_src
)]
halfedge_from_src.weight = weight
halfedges_from_dst = mg.fadjlist[get_v(mg, dst)]
halfedge_from_dst = halfedges_from_dst[findfirst(
he -> vertex(he) == src, halfedges_from_dst
)]
halfedge_from_dst.weight = weight
return true
end
"""
set_metadata!(mg::AbstractMultilayerUGraph, src::MultilayerVertex, dst::MultilayerVertex, metadata::Union{Tuple, NamedTuple})
Set the metadata of the edge between `src` and `dst` to `metadata`. Return true if succeeds (i.e. if the edge exists and the underlying graph chosen for the Layer/Interlayer where the edge lies supports metadata at the edge level under the `IsMeta` trait).
"""
@traitfn function set_metadata!(
mg::M, src::MultilayerVertex, dst::MultilayerVertex, metadata::Union{Tuple,NamedTuple}
) where {M <: AbstractMultilayerGraph; !IsDirected{M}}
descriptor = get_subgraph_descriptor(mg, layer(src), layer(dst))
is_meta(descriptor.null_graph) || return false
has_edge(mg, src, dst) || return false
halfedges_from_src = mg.fadjlist[get_v(mg, src)]
halfedge_from_src = halfedges_from_src[findfirst(
he -> vertex(he) == dst, halfedges_from_src
)]
halfedge_from_src.metadata = metadata
halfedges_from_dst = mg.fadjlist[get_v(mg, dst)]
halfedge_from_dst = halfedges_from_dst[findfirst(
he -> vertex(he) == src, halfedges_from_dst
)]
halfedge_from_dst.metadata = metadata
return true
end
# Layers and Interlayers
"""
add_layer_directedness!( mg::M,
new_layer::L;
default_interlayers_null_graph::H = SimpleGraph{T}(),
default_interlayers_structure::String ="multiplex"
) where {T,U,G<:AbstractGraph{T},L<:Layer{T,U,G}, H <: AbstractGraph{T}, M<:AbstractMultilayerGraph{T,U}; !IsDirected{M}}
Add layer `layer` to `mg`.
# ARGUMENTS
- `mg::M`: the `MultilayerGraph` which the new layer will be added to;
- `new_layer::L`: the new `Layer` to add to `mg`;
- `default_interlayers_null_graph::H = SimpleGraph{T}()`: upon addition of a new `Layer`, all the `Interlayer`s between the new and the existing `Layer`s are immediately created. This keyword argument specifies their `null_graph` See the `Layer` constructor for more information. Defaults to `SimpleGraph{T}()`;
- `default_interlayers_structure::String = "multiplex"`: The structure of the `Interlayer`s created by default. May either be "multiplex" to have diagonally-coupled only interlayers, or "empty" for empty interlayers. Defaults to "multiplex".
"""
@traitfn function add_layer_directedness!(
mg::M,
new_layer::L;
default_interlayers_null_graph::H=SimpleGraph{T}(),
default_interlayers_structure::String="multiplex",
) where {
T,
U,
G<:AbstractGraph{T},
L<:Layer{T,U,G},
H<:AbstractGraph{T},
M<:AbstractMultilayerGraph{T,U};!IsDirected{M},
}
# Check that the layer is directed
!istrait(IsDirected{typeof(new_layer.graph)}) || throw(
ErrorException(
"The `new_layer`'s underlying graph $(new_layer.graph) is directed, so it is not compatible with a `AbstractMultilayerUGraph`.",
),
)
return _add_layer!(
mg,
new_layer;
default_interlayers_null_graph=default_interlayers_null_graph,
default_interlayers_structure=default_interlayers_structure,
)
end
"""
get_subgraph(mg::M, descriptor::LD) where {T,U, M <: AbstractMultilayerUGraph{T,U}, LD <: LayerDescriptor{T,U}}
Internal function. Instantiate the Layer described by `descriptor` whose vertices and edges are contained in `mg`.
"""
@traitfn function get_subgraph(
mg::M, descriptor::LD
) where {T,U,LD<:LayerDescriptor{T,U},M<:AbstractMultilayerGraph{T,U};!IsDirected{M}}
vs = sort([
v for (v, mv) in collect(mg.v_V_associations) if mv.layer == descriptor.name
])
_vertices = get_rich_mv.(Ref(mg), vs)
edge_list = MultilayerEdge{U}[]
for (src_v, halfedges_from_src) in zip(vs, getindex.(Ref(mg.fadjlist), vs))
src_bare_V = mg.v_V_associations[src_v]
for halfedge in halfedges_from_src
dst_bare_V = vertex(halfedge)
dst_v = get_v(mg, dst_bare_V)
# Don't take the same edge twice (except for self-loops: they will be taken twice)
if dst_v >= src_v && dst_bare_V.layer == descriptor.name
push!(
edge_list,
MultilayerEdge(
src_bare_V, dst_bare_V, weight(halfedge), metadata(halfedge)
),
)
else
continue
end
end
end
return Layer(descriptor, _vertices, unique(edge_list))
end
"""
get_subgraph(mg::M, descriptor::InD) where {T,U, G<: AbstractGraph{T}, M <: AbstractMultilayerUGraph{T,U}, InD <: InterlayerDescriptor{T,U,G}}
Internal function. Instantiate the Interlayer described by `descriptor` whose vertices and edges are contained in `mg`.
"""
@traitfn function get_subgraph(
mg::M, descriptor::InD
) where {
T,
U,
# G<:AbstractGraph{T},
InD<:InterlayerDescriptor{T,U}, # G},
M<:AbstractMultilayerGraph{T,U};!IsDirected{M},
}
layer_1_vs = T[]
layer_2_vs = T[]
for (v, mv) in collect(mg.v_V_associations)
if mv.layer == descriptor.layer_1
push!(layer_1_vs, v)
elseif mv.layer == descriptor.layer_2
push!(layer_2_vs, v)
else
continue
end
end
sort!(layer_1_vs)
sort!(layer_2_vs)
layer_1_multilayervertices = get_rich_mv.(Ref(mg), layer_1_vs)
layer_2_multilayervertices = get_rich_mv.(Ref(mg), layer_2_vs)
shortest_name, longest_name = if length(layer_1_vs) >= length(layer_2_vs)
(descriptor.layer_2, descriptor.layer_1)
else
(descriptor.layer_1, descriptor.layer_2)
end
shortest_vs = shortest_name == descriptor.layer_1 ? layer_1_vs : layer_2_vs
edge_list = MultilayerEdge{U}[]
for (src_v, halfedges_from_src) in
zip(shortest_vs, getindex.(Ref(mg.fadjlist), shortest_vs))
src_bare_V = mg.v_V_associations[src_v]
for halfedge in halfedges_from_src
dst_bare_V = vertex(halfedge)
# Don't take the same edge twice (except for self-loops: they will be taken twice, but are later removed using `unique`)
if dst_bare_V.layer == longest_name
push!(
edge_list,
MultilayerEdge(
src_bare_V, dst_bare_V, weight(halfedge), metadata(halfedge)
),
)
else
continue
end
end
end
return _Interlayer(
layer_1_multilayervertices,
layer_2_multilayervertices,
unique(edge_list),
descriptor,
)
end
# Graphs.jl's internals extra overrides
"""
degree(mg::M, v::V) where {T,M<:AbstractMultilayerUGraph{T,<:Real},V<:MultilayerVertex}
Return the degree of MultilayerVertex `v` within `mg`.
"""
@traitfn function Graphs.degree(
mg::M, v::V
) where {M<:AbstractMultilayerGraph,V<:MultilayerVertex;!IsDirected{M}}
return indegree(mg, v)
end
"""
inneighbors(mg::M, v::T) where {T,M<:AbstractMultilayerUGraph{T,<:Real}}
Return the list of inneighbors of `v` within `mg`.
"""
@traitfn function Graphs.inneighbors(
mg::M, v::T
) where {T,M<:AbstractMultilayerGraph;!IsDirected{M}}
return outneighbors(mg, v)
end
# Multilayer-specific functions
# function get_overlay_monoplex_graph end #approach taken from https://github.com/JuliaGraphs/Graphs.jl/blob/7152d540631219fd51c43ab761ec96f12c27680e/src/core.jl#L124
"""
get_overlay_monoplex_graph(mg::M) where {M<: AbstractMultilayerUGraph}
Get overlay monoplex graph (i.e. the graph that has the same nodes as `mg` but the link between node `i` and `j` has weight equal to the sum of all edges weights between the various vertices representing `i` and `j` in `mg`, accounting for only within-layer edges). See [De Domenico et al. (2013)](https://doi.org/10.1103/PhysRevX.3.041022).
"""
@traitfn function get_overlay_monoplex_graph(
mg::M
) where {T,U,M<:AbstractMultilayerGraph{T,U};!IsDirected{M}}
wgt = weight_tensor(mg).array
projected_overlay_adjacency_matrix = sum([wgt[:, :, i, i] for i in 1:size(wgt, 3)])
return SimpleWeightedGraph{T,U}(projected_overlay_adjacency_matrix)
end
"""
von_neumann_entropy(mg::M) where {T,U, M <: AbstractMultilayerUGraph{T, U}}
Compute the Von Neumann entropy of `mg`, according to [De Domenico et al. (2013)](https://doi.org/10.1103/PhysRevX.3.041022). Only for undirected multilayer graphs.
"""
@traitfn function von_neumann_entropy(
mg::M
) where {T,U,M<:AbstractMultilayerGraph{T,U};!IsDirected{M}}
wgt = weight_tensor(mg).array
num_nodes = length(nodes(mg))
num_layers = length(mg.layers)
# Multistrength tensor
Δ = ein"ijkm,ik,nj,om -> njom"(
wgt, ones(T, size(wgt)[[1, 3]]), δk(num_nodes), δk(num_layers)
)
# Trace of Δ
tr_Δ = ein"iikk->"(Δ)[]
# Multilayer laplacian tensor
L = Δ .- wgt
# Multilayer density tensor
ρ = (1.0 / tr_Δ) .* L
eigvals, eigvects = tensoreig(ρ, [2, 4], [1, 3])
#= # Check that we are calculating the right eigenvalues
lhs = ein"ijkm,ik -> jm"(ρ,eigvects[:,:,1])
rhs = eigvals[1].*eigvects[:,:,1]
@assert all(lhs .≈ rhs)
# Indeed we are =#
Λ = get_diagonal_weight_tensor(eigvals, size(wgt))
# Correct for machine precision
Λ[Λ .< eps()] .= 0.0
log2Λ = log2.(Λ)
log2Λ[isinf.(log2Λ)] .= 0
return -ein"ijkm,jimk ->"(Λ, log2Λ)[]
end
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 27411 | # Base extensions
# Non package-specific utilities
"""
get_common_type(types::Vector{<: DataType})
Return the minimum common supertype of `types`.
"""
function get_common_type(types::Vector{<:DataType})
promoted_types = DataType[]
if length(types) > 1
for i in 1:(length(types) - 1)
push!(promoted_types, promote_type(types[i], types[i + 1]))
end
else
return types[1]
end
return length(promoted_types) == 1 ? promoted_types[1] : get_common_type(promoted_types)
end
"""
check_unique(vec::Union{Missing, <: Vector, <: Tuple})
Return `true` if all elements in `vec` are unique or if `ismissing(vec)`, else return `false`.
"""
function check_unique(vec::Union{Missing,<:Vector,<:Tuple})
return ismissing(vec) ? true : length(setdiff(unique(vec), vec)) == 0
end
"""
multilayer_kronecker_delta(dims::NTuple{4,Int64})
Return a 4-dimensional Kronecker delta with size equal to `dims`.
"""
function multilayer_kronecker_delta(dims::NTuple{4,Int64})
output = Array{Int64}(undef, dims...)
ranges = [1:dim for dim in dims]
idxs = Iterators.product(ranges...)
for idx in idxs
vertices_indexes = idx[1:2]
layers_indexes = idx[3:4]
output[idx...] =
if all(length(unique(vertices_indexes)) == length(unique(layers_indexes)) .== 1)
1
else
0
end
end
return output
end
"""
get_diagonal_weight_tensor(arr,dims)
Return a tensor whose size is `dims` and has `arr` on the diagonal.
"""
function get_diagonal_weight_tensor(arr::Vector{T}, dims) where {T}
output = Array{T}(undef, dims...)
ranges = [1:dim for dim in dims]
idxs = Iterators.product(ranges...)
i = 1
for idx in idxs
vertices_indexes = idx[1:2]
layers_indexes = idx[3:4]
on_diag = all(
length(unique(vertices_indexes)) == length(unique(layers_indexes)) .== 1
)
if on_diag
output[idx...] = arr[i]
i += 1
else
output[idx...] = zero(T)
end
end
return output
end
"""
mutable struct δk{T} <: AbstractVector{T}
The Kronecker delta.
# FIELDS
- `N::Int64`: the number of dimensions;
- `representation::Matrix{Int64}`: the matrix representing the Kronecker delta;
- `T`: the return type when called `δk[i,j]`.
### CONSTRUCTORS
δk{T}(N::Int64) where {T <: Number}
Inner constructor that only requires `N` and the `eltype`.
"""
mutable struct δk{T} <: AbstractVector{T}
N::Int64
representation::Matrix{Int64}
# Inner constructor that only requires N and the eltype.
function δk{T}(N::Int64) where {T<:Number}
out = new{T}(N)
representation = [out[h, k] for h in 1:N, k in 1:N]
out.representation = representation
return out
end
end
"""
δk(N::Int64)
Outer constructor that only requires `N`.
"""
δk(N::Int64) = δk{Int64}(N)
"""
getindex(d::δk{T}, h::Int64, k::Int64) where T
`getindex` dispatch that allows to easily construct the `representation` field of `δ_Ω` inside its inner constructor.
"""
Base.getindex(d::δk{T}, h::Int64, k::Int64) where {T} = I[h, k] ? one(T) : zero(T)
"""
getindex(d::δk{T}, i::Int) where T
The getindex called by OMEinsum.jl.
"""
Base.getindex(d::δk{T}, i::Int) where {T} = d.representation[i]
"""
size(d::δk)
Override required by OMEinsum.jl.
"""
Base.size(d::δk) = (d.N, d.N)
"""
struct δ_1{T<: Number}
The `δ_1` from [De Domenico et al. (2013)](https://doi.org/10.1103/PhysRevX.3.041022). Evaluate it via the notation `[i,j]`.
# FIELDS
- `N:Int64`: the dimensionality of `δ_1`;
- `T`: the return type.
# CONSTRUCTORS
δ_1{T<: Number}(N::Int64)
"""
struct δ_1{T<:Number}
N::Int64
end
function Base.getindex(d::δ_1{T}, h::Int64, k::Int64, l::Int64) where {T}
return Bool(I[h, l] * I[h, k] * I[k, l]) ? one(T) : zero(T)
end
Base.size(d::δ_1) = (d.N, d.N)
"""
struct δ_2{T<: Number}
The `δ_2` from [De Domenico et al. (2013)](https://doi.org/10.1103/PhysRevX.3.041022). Evaluate it via the notation `[i,j]`.
# FIELDS
- `N:Int64`: the dimensionality of `δ_2`;
- `T`: the return type.
# CONSTRUCTORS
δ_2{T<: Number}(N::Int64)
"""
struct δ_2{T<:Number}
N::Int64
end
function Base.getindex(d::δ_2{T}, h::Int64, k::Int64, l::Int64) where {T}
return if Bool(
(1 - I[h, l]) * I[h, k] + (1 - I[k, l]) * I[h, l] + (1 - I[h, k]) * I[k, l]
)
one(T)
else
zero(T)
end
end
Base.size(d::δ_2) = (d.N, d.N)
"""
struct δ_3{T<: Number}
The `δ_3` from [De Domenico et al. (2013)](https://doi.org/10.1103/PhysRevX.3.041022). Evaluate it via the notation `[i,j]`.
# FIELDS
- `N:Int64`: the dimensionality of `δ_3`;
- `T`: the return type.
# CONSTRUCTORS
δ_3{T<: Number}(N::Int64)
"""
struct δ_3{T<:Number}
N::Int64
end
function Base.getindex(d::δ_3{T}, h::Int64, k::Int64, l::Int64) where {T}
return Bool((1 - I[h, l]) * (1 - I[k, l]) * (1 - I[h, k])) ? one(T) : zero(T)
end
Base.size(d::δ_3) = (d.N, d.N)
"""
δ_Ω{T} <: AbstractVector{T}
Struct that represents the `δ_Ω` defined in [De Domenico et al. (2013)](https://doi.org/10.1103/PhysRevX.3.041022).
# FIELDS
- `δ_1::δ_1{T}`: Instance of `δ_1`;
- `δ_2::δ_2{T}`: Instance of `δ_2`;
- `δ_3::δ_3{T}`: Instance of `δ_3`;
- `N::Int64 ` : Maximum index (number of layers);
- `representation::Array{Int64,4}`: Multidimensional-array representation of `δ_Ω`.
"""
mutable struct δ_Ω{T} <: AbstractVector{T}
δ_1::δ_1{T}
δ_2::δ_2{T}
δ_3::δ_3{T}
N::Int64
representation::Array{Int64,4}
# Inner constructor that only requires N and the eltype.
function δ_Ω{T}(N::Int64) where {T<:Number}
out = new{T}(δ_1{T}(N), δ_2{T}(N), δ_3{T}(N), N)
representation = [out[Ω, h, k, l] for Ω in 1:3, h in 1:N, k in 1:N, l in 1:N]
out.representation = representation
return out
end
end
# Outer constructor that only requires N
δ_Ω(N::Int64) = δ_Ω{Int64}(N)
# getindex dispatch that allows to easily construct the `representation` field of δ_Ω inside its inner constructor
function Base.getindex(d::δ_Ω{T}, Ω::Int64, h::Int64, k::Int64, l::Int64) where {T}
if Ω == 1
return d.δ_1[h, k, l]
elseif Ω == 2
return d.δ_2[h, k, l]
elseif Ω == 3
return d.δ_3[h, k, l]
end
end
# The getindex called by OMEinsum.jl
Base.getindex(d::δ_Ω{T}, i::Int) where {T} = d.representation[i]
# Override required by OMEinsum.jl
Base.size(d::δ_Ω{T}) where {T} = (d.N >= 3 ? 3 : d.N, d.N, d.N, d.N)
"""
get_diagonal_elements(arr::Array{T,N}) where {T,N}
"""
function get_diagonal_elements(arr::Array{T,N}) where {T,N}
output = similar(arr)
for cart_idx in CartesianIndices(arr)
vertices_indexes = Tuple(cart_idx)[1:2]
layers_indexes = Tuple(cart_idx)[3:4]
output[cart_idx] =
if length(unique(vertices_indexes)) == length(unique(layers_indexes)) == 1
arr[cart_idx]
else
0.0
end
end
return output
end
#Taken from https://gist.github.com/Datseris/1b1aa1287041cab1b2dff306ddc4f899
"""
get_concrete_subtypes(type::Type)
Return an array of all concrete subtypes of `type` (which should be abstract).
"""
function get_concrete_subtypes(type::Type)
out = DataType[]
return _subtypes!(out, type)
end
function _subtypes!(out, type::Type)
if isconcretetype(type)
push!(out, type)
else
foreach(T -> _subtypes!(out, T), InteractiveUtils.subtypes(type))
end
return out
end
# Check if struct is completely initialized
"""
iscompletelyinitialized(obj::Any)
Check whether `obj` is completely initialized.
"""
function iscompletelyinitialized(obj::Any)
completely_initialized = true
for field_name in fieldnames(typeof(obj))
try
@eval $obj.$field_name
catch
completely_initialized = false
break
end
end
return completely_initialized
end
"""
get_oom(x::Number)
Get the order of magnitude of `x`.
"""
function get_oom(x::Number)
float_oom = floor(log10(x))
# if float_oom == -Inf
# return 0
if !isinf(float_oom)
return Int64(float_oom)
else
return float_oom
end
end
"""
isapproxsymmetric(A::Matrix{T}) where {T <: Real }
"Check whether `A` is approximately symmetric (within `eps(T)`).
"""
function isapproxsymmetric(A::Matrix{T}) where {T<:Real}
return all(get_oom.(abs.(A .- A')) .<= get_oom(eps(T)))
end
"""
isapproxsymmetric(A::Matrix{T}) where {T <: Real }
Check whether `A` is symmetric (within `zero(T)`).
"""
isapproxsymmetric(A::Matrix{T}) where {T<:Integer} = all(abs.(A .- A') .<= zero(T))
"""
isdigraphical(indegree_sequence::AbstractVector{<:Integer}, outdegree_sequence::AbstractVector{<:Integer},)
Check whether the given indegree sequence and outdegree sequence are digraphical, that is whether they can be the indegree and outdegree sequence of a digraph.
### Implementation Notes
According to Fulkerson-Chen-Anstee theorem, a sequence ``\\{(a_1, b_1), ...,(a_n, b_n)\\}`` (sorted in descending order of a) is graphic iff the sum of vertex degrees is even and ``\\sum_{i = 1}^{n} a_i = \\sum_{i = 1}^{n} b_i\\}`` and the sequence obeys the property -
```math
\\sum_{i=1}^{r} a_i \\leq \\sum_{i=r+1}^n min(r-1,b_i) + \\sum_{i=r+1}^n min(r,b_i)
```
for each integer r <= n-1.
"""
function isdigraphical(
indegree_sequence::AbstractVector{<:Integer},
outdegree_sequence::AbstractVector{<:Integer},
)
# Check whether the degree sequences have the same length
length(indegree_sequence) == length(outdegree_sequence) || throw(
ArgumentError("The indegree and outdegree sequences must have the same length.")
)
# Check whether the degree sequence is empty
!(isempty(indegree_sequence) && isempty(outdegree_sequence)) || return true
# Check whether the degree sequences have only non-negative values
all(indegree_sequence .>= 0) || throw(
ArgumentError("The indegree sequence must contain non-negative integers only.")
)
all(outdegree_sequence .>= 0) || throw(
ArgumentError("The outdegree sequence must contain non-negative integers only.")
)
n = length(indegree_sequence)
n == length(outdegree_sequence) || return false
sum(indegree_sequence) == sum(outdegree_sequence) || return false
_sortperm = sortperm(indegree_sequence; rev=true)
sorted_indegree_sequence = indegree_sequence[_sortperm]
sorted_outdegree_sequence = outdegree_sequence[_sortperm]
indegree_sum = zero(Int64)
outdegree_min_sum = zero(Int64)
cum_min = zero(Int64)
# The following approach, which requires substituting the line
# cum_min = sum([min(sorted_outdegree_sequence[i], r) for i in (1+r):n])
# with the line
# cum_min -= mindeg[r]
# inside the for loop below, work as well, but the values of `cum_min` at each iteration differ. To be on the safe side we implemented it as in https://en.wikipedia.org/wiki/Fulkerson%E2%80%93Chen%E2%80%93Anstee_theorem
#= mindeg = Vector{Int64}(undef, n)
@inbounds for i = 1:n
mindeg[i] = min(i, sorted_outdegree_sequence[i])
end
cum_min = sum(mindeg) =#
# Similarly for `outdegree_min_sum`.
@inbounds for r in 1:(n - 1)
indegree_sum += sorted_indegree_sequence[r]
outdegree_min_sum = sum([min(sorted_outdegree_sequence[i], r - 1) for i in 1:r])
cum_min = sum([min(sorted_outdegree_sequence[i], r) for i in (1 + r):n])
cond = indegree_sum <= (outdegree_min_sum + cum_min)
cond || return false
end
return true
end
#= """
_random_undirected_configuration(empty_mg::M, degree_sequence::Vector{ <: Integer}) where {T,U,M <: MultilayerGraph{T,U}}
Internal function. Returns a `MultilayerEdge` list compatible with `empty_mg`, using a relatively inefficient algorithm.
"""
function _random_undirected_configuration(empty_mg::M, degree_sequence::Vector{ <: Integer}, allow_self_loops::Bool) where {T,U,M <: MultilayerGraph{T,U}}
# Get all MultilayerVertexs
mvs = mv_vertices(empty_mg)
edge_list = MultilayerEdge{U}[]
# Boolean that states if the wiring was successful
success = false
@info "Looping through wirings to find one that works..."
# Loop until a successful wiring is found
while !success
mvs_degree_dict = Dict(mv => deg for (mv,deg) in zip(mvs,degree_sequence) if deg != 0)
edge_list = MultilayerEdge[]
for src in mvs
if src in keys(mvs_degree_dict)
try
dsts = nothing
if allow_self_loops
dsts = sample(collect(keys(mvs_degree_dict)), mvs_degree_dict[src]; replace = false) # This would be correct but we have no "isgraphical" function that takes into account self loops. This section of the code is thus disabled.
else
dsts = sample(collect(setdiff(keys(mvs_degree_dict), [src])), mvs_degree_dict[src]; replace = false)
end
for dst in dsts
mvs_degree_dict[dst] = mvs_degree_dict[dst] - 1
if mvs_degree_dict[dst] == 0
delete!(mvs_degree_dict, dst)
end
descriptor = get_subgraph_descriptor(empty_mg, src.layer, dst.layer)
push!(edge_list, MultilayerEdge(src, dst, descriptor.default_edge_weight(src,dst), descriptor.default_edge_metadata(src,dst)))
end
delete!(mvs_degree_dict, src)
catch e
if cmp(e.msg,"Cannot draw more samples without replacement.") == 0
break
else
throw(e)
end
end
else
continue
end
end
success = length(mvs_degree_dict) == 0
end
return edge_list
end
"""
_random_directed_configuration(empty_mg::M, indegree_sequence::Vector{ <: Integer}, outdegree_sequence::Vector{ <: Integer}, allow_self_loops::Bool) where {T,U,M <: MultilayerDiGraph{T,U}}
Internal function. Returns a `MultilayerEdge` list compatible with `empty_mg`, using a relatively inefficient algorithm.
"""
function _random_directed_configuration(empty_mg::M, indegree_sequence::Vector{ <: Integer}, outdegree_sequence::Vector{<:Integer}, allow_self_loops::Bool) where {T,U,M <: MultilayerDiGraph{T,U}}
# Get all MultilayerVertexs
mvs = mv_vertices(empty_mg)
edge_list = MultilayerEdge{U}[]
# Boolean that states if the wiring was successful
success = false
@info "Looping through wirings to find one that works..."
# Loop until a successful wiring is found
while !success
mvs_indegree_dict = Dict(mv => indeg for (mv,indeg) in zip(mvs,indegree_sequence) if indeg != 0)
mvs_outdegree_dict = Dict(mv => outdeg for (mv,outdeg) in zip(mvs,outdegree_sequence) if outdeg != 0)
edge_list = MultilayerEdge[]
for src in mvs
if src in keys(mvs_outdegree_dict)
try
dsts = nothing
if allow_self_loops
dsts = sample(collect(keys(mvs_indegree_dict)), mvs_outdegree_dict[src]; replace = false) # This would be correct but we have no "isgraphical" function that takes into account self loops. This section of the code is thus disabled.
else
dsts = sample(collect(setdiff(keys(mvs_indegree_dict), [src])), mvs_outdegree_dict[src]; replace = false)
end
for dst in dsts
mvs_indegree_dict[dst] = mvs_indegree_dict[dst] - 1
if mvs_indegree_dict[dst] == 0
delete!(mvs_indegree_dict, dst)
end
descriptor = get_subgraph_descriptor(empty_mg, src.layer, dst.layer)
push!(edge_list, MultilayerEdge(src, dst, descriptor.default_edge_weight(src,dst), descriptor.default_edge_metadata(src,dst)))
end
delete!(mvs_outdegree_dict, src)
catch e
if cmp(e.msg,"Cannot draw more samples without replacement.") == 0
break
else
throw(e)
end
end
else
continue
end
end
success = length(mvs_indegree_dict) == 0 && length(mvs_outdegree_dict) == 0
end
return edge_list
end =#
"""
cartIndexTovecIndex(cart_index::CartesianIndex, tensor_size::NTuple{N, <: Integer} ) where N
Internal function. Converts `cart_index` to an integer index such that it corresponds to the same element under flattening of the tensor whose size is `tensor_size`.
"""
function cartIndexTovecIndex(
cart_index::Union{NTuple{N,Integer},CartesianIndex}, tensor_size::NTuple{N,<:Integer}
) where {N}
return cart_index[1] +
sum(collect(Tuple(cart_index)[2:end] .- 1) .* cumprod(tensor_size[1:(end - 1)]))
end
"""
havel_hakimi_graph_generator(degree_sequence::AbstractVector{<:Integer})
Returns a simple graph with a given finite degree sequence of non-negative integers generated via the Havel-Hakimi algorithm which works as follows:
1. successively connect the node of highest degree to other nodes of highest degree;
2. sort the remaining nodes by degree in decreasing order;
3. repeat the procedure.
## References
1. [Hakimi (1962)](https://doi.org/10.1137/0110037);
2. [Wikipedia](https://en.wikipedia.org/wiki/Havel%E2%80%93Hakimi_algorithm).
"""
function havel_hakimi_graph_generator(degree_sequence::AbstractVector{<:Integer})
# Check whether the degree sequence has only non-negative values
all(degree_sequence .>= 0) ||
throw(ArgumentError("The degree sequence must contain non-negative integers only."))
# Instantiate an empty simple graph
graph = SimpleGraph(length(degree_sequence))
# Create a (vertex, degree) ordered dictionary
vertices_degrees_dict = OrderedDict(
vertex => degree for (vertex, degree) in enumerate(degree_sequence)
)
# Havel-Hakimi algorithm
while (any(values(vertices_degrees_dict) .!= 0))
# Sort the new sequence in non-increasing order
vertices_degrees_dict = OrderedDict(
sort(collect(vertices_degrees_dict); by=last, rev=true)
)
# Remove the first vertex and distribute its stabs
max_vertex, max_degree = popfirst!(vertices_degrees_dict)
# Check whether the new sequence has only positive values
all(collect(values(vertices_degrees_dict))[1:max_degree] .> 0) ||
throw(ErrorException("The degree sequence is not graphical."))
# Connect the node of highest degree to other nodes of highest degree
for vertex in collect(keys(vertices_degrees_dict))[1:max_degree]
add_edge!(graph, max_vertex, vertex)
vertices_degrees_dict[vertex] -= 1
end
end
# Return the simple graph
return graph
end
"""
lexicographical_order_lt(A::Vector{T}, B::Vector{T}) where T
The less than (lt) function that implements lexicographical order.
See [Wikipedia](https://en.wikipedia.org/wiki/Lexicographic_order).
"""
function lexicographical_order_lt(
A::Union{Vector{T},NTuple{N,T}}, B::Union{Vector{T},NTuple{M,T}}
) where {N,M,T}
A_dc = deepcopy(A)
B_dc = deepcopy(B)
diff_length = length(A) - length(B)
if diff_length >= 0
A_dc = vcat(A_dc, repeat([-Inf], diff_length))
else
B_dc = vcat(B_dc, repeat([-Inf], abs(diff_length)))
end
for (a, b) in zip(A_dc, B_dc)
if a != b
a < b
end
end
end
"""
lexicographical_order_ntuple(A::NTuple{N,T}, B::NTuple{M,T}) where {N,T}
The less than (lt) function that implements lexicographical order for `NTuple` of equal length.
See [Wikipedia](https://en.wikipedia.org/wiki/Lexicographic_order).
"""
function lexicographical_order_ntuple(A::NTuple{N,T}, B::NTuple{N,T}) where {N,T}
for (a, b) in zip(A, B)
if a != b
return a < b
end
end
return false
end
"""
kleitman_wang_graph_generator(indegree_sequence::AbstractVector{<:Integer},outdegree_sequence::AbstractVector{<:Integer})
Returns a simple directed graph with given finite in-degree and out-degree sequences of non-negative integers generated via the Kleitman-Wang algorithm, that works like follows:
1. Sort the indegree-outdegree pairs in lexicographical order;
2. Select a pair that has strictly positive outdegree, say the i-th pairs that has outdegree = b_i;
3. Subtract 1 to the first b_i highest indegrees (the i-th being excluded), and set b_i to 0;
4. Repeat from 1. until all indegree-outdegree pairs are of the form (0.0).
## References
- [Wikipedia](https://en.wikipedia.org/wiki/Kleitman%E2%80%93Wang_algorithms);
- [Kleitman and Wang (1973)](https://doi.org/10.1016/0012-365X(73)90037-X).
"""
function kleitman_wang_graph_generator(
indegree_sequence::AbstractVector{<:Integer},
outdegree_sequence::AbstractVector{<:Integer},
)
length(indegree_sequence) == length(outdegree_sequence) || throw(
ArgumentError(
"The provided `indegree_sequence` and `outdegree_sequence` must be of the dame length.",
),
)
# Check whether the indegree_sequence and outdegree_sequence have only non-negative values
all(indegree_sequence .>= 0) || throw(
ArgumentError(
"The `indegree_sequence` sequence must contain non-negative integers only."
),
)
all(outdegree_sequence .>= 0) || throw(
ArgumentError(
"The `outdegree_sequence` sequence must contain non-negative integers only."
),
)
# Instantiate an empty simple graph
graph = SimpleDiGraph(length(indegree_sequence))
# Create a (vertex, degree) ordered dictionary
S = zip(deepcopy(indegree_sequence), deepcopy(outdegree_sequence))
vertices_degrees_dict = OrderedDict(i => tup for (i, tup) in enumerate(S))
# Kleitman-Wang algorithm
while (any(Iterators.flatten(values(vertices_degrees_dict)) .!= 0))
# Sort the new sequence in non-increasing lexicographical order
vertices_degrees_dict = OrderedDict(
sort(
collect(vertices_degrees_dict);
by=last,
lt=lexicographical_order_ntuple,
rev=true,
),
)
# Find a vertex with positive outdegree,a nd temporarily remove it from `vertices_degrees_dict`
i, (a_i, b_i) = 0, (0, 0)
for (_i, (_a_i, _b_i)) in collect(deepcopy(vertices_degrees_dict))
if _b_i != 0
i, a_i, b_i = (_i, _a_i, _b_i)
delete!(vertices_degrees_dict, _i)
break
end
end
# Connect the vertex found above to other nodes of highest degree
for (v, degs) in collect(vertices_degrees_dict)[1:b_i]
add_edge!(graph, i, v)
vertices_degrees_dict[v] = (degs[1] - 1, degs[2])
end
# Check whether the new sequence has only positive values
all(
collect(Iterators.flatten(collect(values(vertices_degrees_dict))))[1:b_i] .>= 0
) || throw(
ErrorException("The in-degree and out-degree sequences are not digraphical."),
)
# Reinsert the vertex, with zero outdegree
vertices_degrees_dict[i] = (a_i, 0)
end
return graph
end
"""
sample_graphical_degree_sequence(degree_distribution::UnivariateDistribution, n::Integer)
Sample a graphical degree sequence for a graph with `n` vertices from `degree_distribution`.
"""
function sample_graphical_degree_sequence(
degree_distribution::UnivariateDistribution, n::Integer
)
minimum(support(degree_distribution)) >= 0 || throw(
ErrorException(
"The `degree_distribution` must have positive support. Found $(support(degree_distribution)).",
),
)
@info "Trying to sample a graphical sequence from the provided distribution $degree_distribution..."
degree_sequence = nothing
acceptable = false
while !acceptable
degree_sequence = round.(Ref(Int), rand(degree_distribution, n))
acceptable = all(0 .<= degree_sequence .< n)
if acceptable
acceptable = isgraphical(degree_sequence)
end
end
return degree_sequence
end
"""
sample_digraphical_degree_sequences(indegree_distribution::UnivariateDistribution, outdegree_distribution::UnivariateDistribution, n::Integer)
Sample a digraphical couple `(indegree_sequence, outdegree_sequence)` for a graph with `n` vertices from respectively `indegree_distribution` and `outdegree_distribution`.
"""
function sample_digraphical_degree_sequences(
indegree_distribution::UnivariateDistribution,
outdegree_distribution::UnivariateDistribution,
n::Integer,
)
minimum(support(indegree_distribution)) >= 0 &&
minimum(support(outdegree_distribution)) >= 0 || throw(
ErrorException(
"Both the `indegree_distribution` and the `outdegree_distribution` must have positive support. Found $(support(indegree_distribution)) and $(support(outdegree_distribution)).",
),
)
indegree_sequence = Vector{Int64}(undef, n)
outdegree_sequence = Vector{Int64}(undef, n)
acceptable = false
@info "Trying to sample a digraphical sequence from the two provided distributions $indegree_distribution and $outdegree_distribution..."
while !acceptable
indegree_sequence .= round.(Ref(Int), rand(indegree_distribution, n))
outdegree_sequence .= round.(Ref(Int), rand(outdegree_distribution, n))
acceptable = all(0 .<= vcat(indegree_sequence, outdegree_sequence) .< n)
if acceptable
acceptable = isdigraphical(indegree_sequence, outdegree_sequence)
end
end
return (indegree_sequence, outdegree_sequence)
end
"""
get_valtypes(init_function::Function)
Return the `vertexval_types` (or `edgeval_types`), deduced from from the `init_function` (which must be the `vertexval_init` or the `edgeval_init` function) for SimpleValueGraphs.jl's structs.
"""
function get_valtypes(init_function::Function)
returned_type = Base.return_types(init_function)[1]
if returned_type <: Tuple
tuple(returned_type.parameters...)
elseif returned_type <: NamedTuple
returned_namedtuple_type = returned_type.parameters
type_pars = tuple(returned_namedtuple_type[end].parameters...)
NamedTuple{returned_namedtuple_type[1]}(type_pars)
end
end
"""
or(conds...)
Evaluate if at least one of the conditions in `conds` is true.
"""
or(conds...) = any(conds)
"""
and(conds...)
Evaluate if all conditions in `conds` is true.
"""
and(conds...) = all(conds)
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
|
[
"MIT"
] | 1.1.4 | bc4b247db8e78a9c9f223e7c4870fd2a43b68fe3 | code | 1532 | function __add_vertex!(
g::Graphs.SimpleGraphs.AbstractSimpleGraph{T};
metadata::Union{Tuple,NamedTuple}=NamedTuple(),
) where {T<:Integer}
!isempty(metadata) && println(
"Trying to add a vertex with metadata to a graph of type $(typeof(g)). Metadata $(metadata) will be ignored.",
)
return add_vertex!(g)
end
function _get_vertex_metadata(
g::Graphs.SimpleGraphs.AbstractSimpleGraph{T}, vertex::T
) where {T}
return NamedTuple()
end
function _add_edge!(
g::Graphs.SimpleGraphs.AbstractSimpleGraph{T},
src::T,
dst::T;
weight::W=nothing,
metadata::Union{Tuple,NamedTuple}=NamedTuple(),
) where {T<:Integer,W<:Union{<:Real,Nothing}}
(isnothing(weight) || weight == 1) ||
@warn "Trying to add a weighted edge to an unweighted graph of type $(typeof(g)). Weight $(weight) will be ignored."
!isempty(metadata) && @warn (
"Trying to add an edge with metadata to a graph of type $(typeof(g)). Metadata $(metadata) will be ignored."
)
return add_edge!(g, src, dst)
end
function _get_edge_weight(
g::Graphs.SimpleGraphs.AbstractSimpleGraph{T}, src::T, dst::T, weighttype::Type{U}
) where {T,U<:Real}
return one(U)
end
# `_get_edge_metadata` must return NamedTuple() (or maybe `nothing` would be better?) instead of throwing an exception in order for `edges` to consistently work on layers and interlayers
function _get_edge_metadata(
g::Graphs.SimpleGraphs.AbstractSimpleGraph{T}, src::T, dst::T
) where {T}
return NamedTuple()
end
| MultilayerGraphs | https://github.com/JuliaGraphs/MultilayerGraphs.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.