licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.1 | 91e7a85ba7923e80f9a6bc359abb18b0fe437314 | code | 1355 | module MultiAgentPOMDPs
using POMDPs
abstract type JointMDP{S, A<:AbstractVector} <: MDP{S, A} end
"""
function n_agents(m::JointMDP)
Return the number of agents in the (PO)MDP
"""
function n_agents end
"""
function agent_actions(m::JointMDP, idx::Int64, s::S) where S
Returns the discrete actions for the given agent index.
!!! note
This will be called a LOT so it should not allocate each time....
"""
function agent_actions end
"""
function agent_states(m::JointMDP, idx::Int64)
Returns the discrete states for the given agent index
"""
function agent_states end
"""
function agent_actionindex(m::JointMDP, idx::Int64, a::A) where A
Returns the integer index of action `a` for agent `idx`. Used for discrete models only.
"""
function agent_actionindex end
"""
function agent_actionindex(m::JointMDP, idx::Int64, s::S) where S
Returns the integer index of state `s` for agent `idx`. Used for discrete models only.
"""
function agent_stateindex end
"""
function coordination_graph(m::JointMDP)
function coordination_graph(m::JointMDP, s::S) where S
Returns the LightGraphs.SimpleGraph (or any appropriate structure) for the coordination graph.
"""
function coordination_graph end
export JointMDP, n_agents, agent_actions, agent_states, agent_actionindex, agent_stateindex, agent_reward, coordination_graph
end
| MultiAgentPOMDPs | https://github.com/JuliaPOMDP/MultiAgentPOMDPs.jl.git |
|
[
"MIT"
] | 0.1.1 | 91e7a85ba7923e80f9a6bc359abb18b0fe437314 | code | 612 | using MultiAgentPOMDPs
using POMDPs
using Test
mutable struct X <: JointMDP{Vector{Float64},Vector{Bool}} end
abstract type Z <: JointMDP{Vector{Float64},Vector{Int}} end
mutable struct Y <: Z end
@testset "MultiAgentPOMDPs.jl" begin
@testset "inference" begin
@test_throws ErrorException statetype(Int)
@test_throws ErrorException actiontype(Int)
@test_throws ErrorException obstype(Int)
@test statetype(X) == Vector{Float64}
@test statetype(Y) == Vector{Float64}
@test actiontype(X) == Vector{Bool}
@test actiontype(Y) == Vector{Int}
end
end
| MultiAgentPOMDPs | https://github.com/JuliaPOMDP/MultiAgentPOMDPs.jl.git |
|
[
"MIT"
] | 0.1.1 | 91e7a85ba7923e80f9a6bc359abb18b0fe437314 | docs | 930 | # MultiAgentPOMDPs
[](https://github.com/JuliaPOMDP/MultiAgentPOMDPs.jl/actions/workflows/ci.yml)
[](http://codecov.io/github/JuliaPOMDP/MultiAgentPOMDPs.jl?branch=master)
[](https://JuliaPOMDP.github.io/MultiAgentPOMDPs.jl/stable)
[](https://JuliaPOMDP.github.io/MultiAgentPOMDPs.jl/dev)
This package provides a core interface for working with **multi-agent** [Markov decision processes (MDPs)](https://en.wikipedia.org/wiki/Markov_decision_process). For examples, please see [MultiAgentSysAdmin](https://github.com/JuliaPOMDP/MultiAgentSysAdmin.jl) and [MultiUAVDelivery](https://github.com/JuliaPOMDP/MultiUAVDelivery.jl).
| MultiAgentPOMDPs | https://github.com/JuliaPOMDP/MultiAgentPOMDPs.jl.git |
|
[
"MIT"
] | 0.1.1 | 91e7a85ba7923e80f9a6bc359abb18b0fe437314 | docs | 128 | ```@meta
CurrentModule = MultiAgentPOMDPs
```
# MultiAgentPOMDPs
```@index
```
```@autodocs
Modules = [MultiAgentPOMDPs]
```
| MultiAgentPOMDPs | https://github.com/JuliaPOMDP/MultiAgentPOMDPs.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 17858 | # Imagenet training script based on https://github.com/pytorch/examples/blob/main/imagenet/main.py
using ArgParse # Parse Arguments from Commandline
using Augmentor # Image Augmentation
using CUDA # GPUs <3
using DataLoaders # Pytorch like DataLoaders
using Dates # Printing current time
using ExplicitFluxLayers # Neural Network Framework
using Flux # Only being used for OneHotArrays
using FluxMPI # Distibuted Training
using Formatting # Pretty Printing
using Images # Image Processing
using Metalhead # Image Classification Models
using MLDataUtils # Shuffling and Splitting Data
using NNlib # Neural Network Backend
using Optimisers # Collection of Gradient Based Optimisers
using ParameterSchedulers # Collection of Schedulers for Parameter Updates
using Random # Make things less Random
using Serialization # Serialize Models
using Setfield # Easy Parameter Manipulation
using Zygote # Our AD Engine
import DataLoaders.LearnBase: getobs, nobs # Extending Datasets
# Distributed Training
FluxMPI.Init(;verbose=true)
CUDA.allowscalar(false)
# unsafe_free OneHotArrays
CUDA.unsafe_free!(x::Flux.OneHotArray) = CUDA.unsafe_free!(x.indices)
# Image Classification Models
VGG11_BN(args...; kwargs...) = VGG11(args...; batchnorm=true, kwargs...)
VGG13_BN(args...; kwargs...) = VGG13(args...; batchnorm=true, kwargs...)
VGG16_BN(args...; kwargs...) = VGG16(args...; batchnorm=true, kwargs...)
VGG19_BN(args...; kwargs...) = VGG19(args...; batchnorm=true, kwargs...)
MobileNetv3_small(args...; kwargs...) = MobileNetv3(:small, args...; kwargs...)
MobileNetv3_large(args...; kwargs...) = MobileNetv3(:large, args...; kwargs...)
ResNeXt50(args...; kwargs...) = ResNeXt(50, args...; kwargs...)
ResNeXt101(args...; kwargs...) = ResNeXt(101, args...; kwargs...)
ResNeXt152(args...; kwargs...) = ResNeXt(152, args...; kwargs...)
AVAILABLE_IMAGENET_MODELS = [
AlexNet,
VGG11,
VGG13,
VGG16,
VGG19,
VGG11_BN,
VGG13_BN,
VGG16_BN,
VGG19_BN,
ResNet18,
ResNet34,
ResNet50,
ResNet101,
ResNet152,
ResNeXt50,
ResNeXt101,
ResNeXt152,
GoogLeNet,
DenseNet121,
DenseNet161,
DenseNet169,
DenseNet201,
MobileNetv1,
MobileNetv2,
MobileNetv3_small,
MobileNetv3_large,
ConvMixer,
]
IMAGENET_MODELS_DICT = Dict(string(model) => model for model in AVAILABLE_IMAGENET_MODELS)
function get_model(model_name::String, models_dict::Dict, rng, args...; warmup=true, kwargs...)
model = EFL.transform(models_dict[model_name](args...; kwargs...).layers)
ps, st = EFL.setup(rng, model) .|> EFL.gpu
if warmup
# Warmup for compilation
x__ = randn(rng, Float32, 224, 224, 3, 1) |> EFL.gpu
y__ = Flux.onehotbatch([1], 1:1000) |> EFL.gpu
should_log() && println("$(now()) ==> staring `$model_name` warmup...")
model(x__, ps, st)
should_log() && println("$(now()) ==> forward pass warmup completed")
(l, _, _), back = Zygote.pullback(p -> logitcrossentropyloss(x__, y__, model, p, st), ps)
back((one(l), nothing, nothing))
should_log() && println("$(now()) ==> backward pass warmup completed")
end
if is_distributed()
ps = FluxMPI.synchronize!(ps; root_rank=0)
st = FluxMPI.synchronize!(st; root_rank=0)
should_log() && println("$(now()) ==> models synced across all ranks")
end
return model, ps, st
end
# Parse Training Arguments
function parse_commandline_arguments()
parse_settings = ArgParseSettings("ExplicitFluxLayers ImageNet Training")
@add_arg_table! parse_settings begin
"--arch"
default = "ResNet18"
range_tester = x -> x ∈ keys(IMAGENET_MODELS_DICT)
help = "model architectures: " * join(keys(IMAGENET_MODELS_DICT), ", ", " or ")
"--epochs"
help = "number of total epochs to run"
arg_type = Int
default = 90
"--start-epoch"
help = "manual epoch number (useful on restarts)"
arg_type = Int
default = 0
"--batch-size"
help = "mini-batch size, this is the total batch size across all GPUs"
arg_type = Int
default = 256
"--learning-rate"
help = "initial learning rate"
arg_type = Float32
default = 0.1f0
"--momentum"
help = "momentum"
arg_type = Float32
default = 0.9f0
"--weight-decay"
help = "weight decay"
arg_type = Float32
default = 1.0f-4
"--print-freq"
help = "print frequency"
arg_type = Int
default = 10
"--resume"
help = "resume from checkpoint"
arg_type = String
default = ""
"--evaluate"
help = "evaluate model on validation set"
action = :store_true
"--pretrained"
help = "use pre-trained model"
action = :store_true
"--seed"
help = "seed for initializing training. "
arg_type = Int
default = 0
"data"
help = "path to dataset"
required = true
end
return parse_args(parse_settings)
end
# Loss Function
logitcrossentropyloss(ŷ, y) = mean(-sum(y .* logsoftmax(ŷ; dims=1); dims=1))
function logitcrossentropyloss(x, y, model, ps, st)
ŷ, st_ = model(x, ps, st)
return logitcrossentropyloss(ŷ, y), ŷ, st_
end
# Optimisers / Parameter Schedulers
function update_lr(st::ST, eta) where {ST}
if hasfield(ST, :eta)
@set! st.eta = eta
end
return st
end
update_lr(st::Optimisers.OptimiserChain, eta) = update_lr.(st.opts, eta)
function update_lr(st::Optimisers.Leaf, eta)
@set! st.rule = update_lr(st.rule, eta)
end
update_lr(st_opt::NamedTuple, eta) = fmap(l -> update_lr(l, eta), st_opt)
# Accuracy
function accuracy(ŷ, y, topk=(1,))
maxk = maximum(topk)
pred_labels = partialsortperm.(eachcol(ŷ), (1:maxk,), rev=true)
true_labels = Flux.onecold(y)
accuracies = Vector{Float32}(undef, length(topk))
for (i, k) in enumerate(topk)
accuracies[i] = sum(map((a, b) -> sum(view(a, 1:k) .== b), pred_labels, true_labels))
end
return accuracies .* 100 ./ size(y, ndims(y))
end
# Distributed Utils
is_distributed() = FluxMPI.Initialized() && total_workers() > 1
should_log() = !FluxMPI.Initialized() || local_rank() == 0
# Checkpointing
function save_checkpoint(state, is_best, filename="checkpoint.pth.tar")
if should_log()
serialize(filename, state)
if is_best
cp(filename, "model_best.pth.tar")
end
end
end
# DataLoading
struct ImageDataset
image_files
labels
mapping
augmentation_pipeline
normalization_parameters
end
function ImageDataset(folder::String, augmentation_pipeline, normalization_parameters)
ulabels = readdir(folder)
label_dirs = joinpath.((folder,), ulabels)
@assert length(label_dirs) == 1000 "There should be 1000 subdirectories in $folder"
classes = readlines(joinpath(@__DIR__, "synsets.txt"))
mapping = Dict(z => i for (i, z) in enumerate(ulabels))
istrain = endswith(folder, r"train|train/")
if istrain
image_files = vcat(map((x, y) -> joinpath.((x,), y), label_dirs, readdir.(label_dirs))...)
remove_files = [
"n01739381_1309.JPEG",
"n02077923_14822.JPEG",
"n02447366_23489.JPEG",
"n02492035_15739.JPEG",
"n02747177_10752.JPEG",
"n03018349_4028.JPEG",
"n03062245_4620.JPEG",
"n03347037_9675.JPEG",
"n03467068_12171.JPEG",
"n03529860_11437.JPEG",
"n03544143_17228.JPEG",
"n03633091_5218.JPEG",
"n03710637_5125.JPEG",
"n03961711_5286.JPEG",
"n04033995_2932.JPEG",
"n04258138_17003.JPEG",
"n04264628_27969.JPEG",
"n04336792_7448.JPEG",
"n04371774_5854.JPEG",
"n04596742_4225.JPEG",
"n07583066_647.JPEG",
"n13037406_4650.JPEG",
"n02105855_2933.JPEG"
]
remove_files = joinpath.(
(folder,), joinpath.(first.(rsplit.(remove_files, "_", limit=2)), remove_files)
)
image_files = [setdiff(Set(image_files), Set(remove_files))...]
labels = [mapping[x] for x in map(x -> x[2], rsplit.(image_files, "/", limit=3))]
else
vallist = hcat(split.(readlines(joinpath(@__DIR__, "val_list.txt")))...)
labels = parse.(Int, vallist[2, :]) .+ 1
filenames = [joinpath(classes[l], vallist[1, i]) for (i, l) in enumerate(labels)]
image_files = joinpath.((folder,), filenames)
idxs = findall(isfile, image_files)
image_files = image_files[idxs]
labels = labels[idxs]
end
return ImageDataset(image_files, labels, mapping, augmentation_pipeline, normalization_parameters)
end
nobs(data::ImageDataset) = length(data.image_files)
function getobs(data::ImageDataset, i::Int)
img = Images.load(data.image_files[i])
img = augment(img, data.augmentation_pipeline)
cimg = channelview(img)
if ndims(cimg) == 2
cimg = reshape(cimg, 1, size(cimg, 1), size(cimg, 2))
cimg = vcat(cimg, cimg, cimg)
end
img = Float32.(permutedims(cimg, (3, 2, 1)))
img = (img .- data.normalization_parameters.mean) ./ data.normalization_parameters.std
return img, Flux.onehot(data.labels[i], 1:1000)
end
# Tracking
Base.@kwdef mutable struct AverageMeter
fmtstr
val::Float64 = 0.0
sum::Float64 = 0.0
count::Int = 0
average::Float64 = 0
end
function AverageMeter(name::String, fmt::String)
fmtstr = FormatExpr("$name {1:$fmt} ({2:$fmt})")
return AverageMeter(; fmtstr=fmtstr)
end
function update!(meter::AverageMeter, val, n::Int)
meter.val = val
meter.sum += val * n
meter.count += n
meter.average = meter.sum / meter.count
return meter.average
end
print_meter(meter::AverageMeter) = printfmt(meter.fmtstr, meter.val, meter.average)
struct ProgressMeter{N}
batch_fmtstr
meters::NTuple{N,AverageMeter}
end
function ProgressMeter(num_batches::Int, meters::NTuple{N}, prefix::String="") where {N}
fmt = "%" * string(length(string(num_batches))) * "d"
prefix = prefix != "" ? endswith(prefix, " ") ? prefix : prefix * " " : ""
batch_fmtstr = generate_formatter("$prefix[$fmt/" * sprintf1(fmt, num_batches) * "]")
return ProgressMeter{N}(batch_fmtstr, meters)
end
function print_meter(meter::ProgressMeter, batch::Int)
base_str = meter.batch_fmtstr(batch)
print(base_str)
foreach(x -> (print("\t"); print_meter(x)), meter.meters[1:end])
return println()
end
# Validation
function validate(val_loader, model, ps, st, args)
batch_time = AverageMeter("Batch Time", "6.3f")
losses = AverageMeter("Loss", ".4f")
top1 = AverageMeter("Acc@1", "6.2f")
top5 = AverageMeter("Acc@5", "6.2f")
progress = ProgressMeter(length(val_loader), (batch_time, losses, top1, top5), "Val:")
st_ = EFL.testmode(st)
t = time()
for (i, (x, y)) in enumerate(CuIterator(val_loader))
# Compute Output
ŷ, st_ = model(x, ps, st_)
loss = logitcrossentropyloss(ŷ, y)
# Metrics
acc1, acc5 = accuracy(EFL.cpu(ŷ), EFL.cpu(y), (1, 5))
update!(top1, acc1, size(x, ndims(x)))
update!(top5, acc5, size(x, ndims(x)))
update!(losses, loss, size(x, ndims(x)))
# Measure Elapsed Time
bt = time() - t
update!(batch_time, bt, 1)
# Print Progress
if i % args["print-freq"] == 0 || i == length(val_loader)
print_meter(progress, i)
end
t = time()
end
return top1.average, top5.average, losses.average
end
# Training
function train(train_loader, model, ps, st, optimiser_state, epoch, args)
batch_time = AverageMeter("Batch Time", "6.3f")
data_time = AverageMeter("Data Time", "6.3f")
losses = AverageMeter("Loss", ".4e")
top1 = AverageMeter("Acc@1", "6.2f")
top5 = AverageMeter("Acc@5", "6.2f")
progress = ProgressMeter(length(train_loader), (batch_time, data_time, losses, top1, top5), "Epoch: [$epoch]")
st = EFL.trainmode(st)
t = time()
for (i, (x, y)) in enumerate(CuIterator(train_loader))
update!(data_time, time() - t, size(x, ndims(x)))
# Gradients and Update
(loss, ŷ, st), back = Zygote.pullback(p -> logitcrossentropyloss(x, y, model, p, st), ps)
gs = back((one(loss), nothing, nothing))[1]
optimiser_state, ps = Optimisers.update(optimiser_state, ps, gs)
# Metrics
acc1, acc5 = accuracy(EFL.cpu(ŷ), EFL.cpu(y), (1, 5))
update!(top1, acc1, size(x, ndims(x)))
update!(top5, acc5, size(x, ndims(x)))
update!(losses, loss, size(x, ndims(x)))
# Measure Elapsed Time
bt = time() - t
update!(batch_time, bt, 1)
# Print Progress
if i % args["print-freq"] == 0 || i == length(train_loader)
print_meter(progress, i)
end
t = time()
end
return ps, st, optimiser_state, (top1.average, top5.average, losses.average)
end
# Main Function
function main(args)
best_acc1 = 0
# Seeding
rng = Random.default_rng()
Random.seed!(rng, args["seed"])
# Model Construction
if should_log()
if args["pretrained"]
println("$(now()) => using pre-trained model `$(args["arch"])`")
else
println("$(now()) => creating model `$(args["arch"])`")
end
end
model, ps, st = get_model(args["arch"], IMAGENET_MODELS_DICT, rng; warmup=true, pretrain=args["pretrained"])
normalization_parameters = (
mean=reshape([0.485f0, 0.456f0, 0.406f0], 1, 1, 3),
std=reshape([0.229f0, 0.224f0, 0.225f0], 1, 1, 3)
)
train_data_augmentation = Resize(256, 256) |> FlipX(0.5) |> RCropSize(224, 224)
val_data_augmentation = Resize(256, 256) |> CropSize(224, 224)
train_dataset = ImageDataset(
joinpath(args["data"], "train"),
train_data_augmentation,
normalization_parameters
)
val_dataset = ImageDataset(
joinpath(args["data"], "val"),
val_data_augmentation,
normalization_parameters
)
if is_distributed()
train_dataset = DistributedDataContainer(train_dataset)
val_dataset = DistributedDataContainer(val_dataset)
end
train_loader = DataLoader(shuffleobs(train_dataset), args["batch-size"])
val_loader = DataLoader(val_dataset, args["batch-size"])
# Optimizer and Scheduler
should_log() && println("$(now()) => creating optimiser")
optimiser = Optimisers.OptimiserChain(
Optimisers.Momentum(args["learning-rate"], args["momentum"]),
Optimisers.WeightDecay(args["weight-decay"])
)
if is_distributed()
optimiser = DistributedOptimiser(optimiser)
end
optimiser_state = Optimisers.setup(optimiser, ps)
if is_distributed()
optimiser_state = FluxMPI.synchronize!(optimiser_state)
should_log() && println("$(now()) ==> synced optimiser state across all ranks")
end
scheduler = Step(λ=args["learning-rate"], γ=0.1f0, step_sizes=30)
if args["resume"] != ""
if isfile(args["resume"])
checkpoint = deserialize(args["resume"])
args["start-epoch"] = checkpoint["epoch"]
optimiser_state = checkpoint["optimiser_state"] |> EFL.gpu
ps = checkpoint["model_parameters"] |> EFL.gpu
st = checkpoint["model_states"] |> EFL.gpu
should_log() && println("$(now()) => loaded checkpoint `$(args["resume"])` (epoch $(args["start-epoch"]))")
else
should_log() && println("$(now()) => no checkpoint found at `$(args["resume"])`")
end
end
if args["evaluate"]
@assert !is_distributed() "We are not syncing statistics. For evaluation run on 1 process"
validate(val_loader, model, ps, st, args)
return
end
GC.gc(true)
CUDA.reclaim()
for epoch in args["start-epoch"]:args["epochs"]
# Train for 1 epoch
ps, st, optimiser_state, _ = train(train_loader, model, ps, st, optimiser_state, epoch, args)
# Some Housekeeping
GC.gc(true)
CUDA.reclaim()
# Evaluate on validation set
acc1, _, _ = validate(val_loader, model, ps, st, args)
# ParameterSchedulers
eta_new = scheduler(epoch)
optimiser_state = update_lr(optimiser_state, eta_new)
# Some Housekeeping
GC.gc(true)
CUDA.reclaim()
# Remember Best Accuracy and Save Checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
save_state = Dict(
"epoch" => epoch,
"arch" => args["arch"],
"model_states" => st |> EFL.cpu,
"model_parameters" => ps |> EFL.cpu,
"optimiser_state" => optimiser_state |> EFL.cpu,
)
save_checkpoint(save_state, is_best)
end
end
main(parse_commandline_arguments())
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 5070 | # MNIST Classification using Neural ODEs
## Package Imports
using ExplicitFluxLayers,
DiffEqSensitivity, OrdinaryDiffEq, Random, Flux, CUDA, MLDataUtils, Printf, MLDatasets, Optimisers, ComponentArrays
using Flux.Losses: logitcrossentropy
using Flux.Data: DataLoader
CUDA.allowscalar(false)
## DataLoader
function loadmnist(batchsize, train_split)
# Use MLDataUtils LabelEnc for natural onehot conversion
onehot(labels_raw) = convertlabel(LabelEnc.OneOfK, labels_raw, LabelEnc.NativeLabels(collect(0:9)))
# Load MNIST
imgs, labels_raw = MNIST.traindata()
# Process images into (H,W,C,BS) batches
x_data = Float32.(reshape(imgs, size(imgs, 1), size(imgs, 2), 1, size(imgs, 3)))
y_data = onehot(labels_raw)
(x_train, y_train), (x_test, y_test) = stratifiedobs((x_data, y_data); p=train_split)
return (
# Use Flux's DataLoader to automatically minibatch and shuffle the data
DataLoader(collect.((x_train, y_train)); batchsize=batchsize, shuffle=true),
# Don't shuffle the test data
DataLoader(collect.((x_test, y_test)); batchsize=batchsize, shuffle=false),
)
end
## Define the Neural ODE Layer
struct NeuralODE{M<:EFL.AbstractExplicitLayer,So,Se,T,K} <: EFL.AbstractExplicitContainerLayer{(:model,)}
model::M
solver::So
sensealg::Se
tspan::T
kwargs::K
end
function NeuralODE(
model::EFL.AbstractExplicitLayer;
solver=Tsit5(),
sensealg=InterpolatingAdjoint(; autojacvec=ZygoteVJP()),
tspan=(0.0f0, 1.0f0),
kwargs...,
)
return NeuralODE(model, solver, sensealg, tspan, kwargs)
end
function (n::NeuralODE)(x, ps, st)
function dudt(u, p, t)
u_, st = n.model(u, p, st)
return u_
end
prob = ODEProblem{false}(ODEFunction{false}(dudt), x, n.tspan, ps)
return solve(prob, n.solver; sensealg=n.sensealg, n.kwargs...), st
end
diffeqsol_to_array(x::ODESolution{T,N,<:AbstractVector{<:CuArray}}) where {T,N} = dropdims(EFL.gpu(x); dims=3)
diffeqsol_to_array(x::ODESolution) = dropdims(Array(x); dims=3)
function train()
## Construct the Neural ODE Model
model = EFL.Chain(
EFL.FlattenLayer(),
EFL.Dense(784, 20, tanh),
NeuralODE(
EFL.Chain(EFL.Dense(20, 10, tanh), EFL.Dense(10, 10, tanh), EFL.Dense(10, 20, tanh));
save_everystep=false,
reltol=1.0f-3,
abstol=1.0f-3,
save_start=false,
),
diffeqsol_to_array,
EFL.Dense(20, 10),
)
ps, st = EFL.setup(MersenneTwister(0), model)
ps = ComponentArray(ps) |> EFL.gpu
st = st |> EFL.gpu
## Utility Functions
get_class(x) = argmax.(eachcol(x))
function loss(x, y, model, ps, st)
ŷ, st = model(x, ps, st)
return logitcrossentropy(ŷ, y), st
end
function accuracy(model, ps, st, dataloader)
total_correct, total = 0, 0
st = EFL.testmode(st)
for (x, y) in CuIterator(dataloader)
target_class = get_class(cpu(y))
predicted_class = get_class(cpu(model(x, ps, st)[1]))
total_correct += sum(target_class .== predicted_class)
total += length(target_class)
end
return total_correct / total
end
## Training
train_dataloader, test_dataloader = loadmnist(128, 0.9)
opt = Optimisers.ADAM(0.001f0)
st_opt = Optimisers.setup(opt, ps)
### Warmup the Model
img, lab = EFL.gpu(train_dataloader.data[1][:, :, :, 1:1]), EFL.gpu(train_dataloader.data[2][:, 1:1])
loss(img, lab, model, ps, st)
(l, _), back = Flux.pullback(p -> loss(img, lab, model, p, st), ps)
back((one(l), nothing))
### Lets train the model
nepochs = 10
for epoch in 1:nepochs
stime = time()
for (x, y) in CuIterator(train_dataloader)
(l, _), back = Flux.pullback(p -> loss(x, y, model, p, st), ps)
gs = back((one(l), nothing))[1]
st_opt, ps = Optimisers.update(st_opt, ps, gs)
end
ttime = time() - stime
println(
"[$epoch/$nepochs] \t Time $(round(ttime; digits=2))s \t Training Accuracy: " *
"$(round(accuracy(model, ps, st, train_dataloader) * 100; digits=2))% \t " *
"Test Accuracy: $(round(accuracy(model, ps, st, test_dataloader) * 100; digits=2))%"
)
end
end
train()
# [1/10] Time 23.27s Training Accuracy: 90.88% Test Accuracy: 90.45%
# [2/10] Time 26.2s Training Accuracy: 92.27% Test Accuracy: 91.78%
# [3/10] Time 26.49s Training Accuracy: 93.03% Test Accuracy: 92.58%
# [4/10] Time 25.94s Training Accuracy: 93.57% Test Accuracy: 92.8%
# [5/10] Time 26.86s Training Accuracy: 93.76% Test Accuracy: 93.18%
# [6/10] Time 26.63s Training Accuracy: 94.17% Test Accuracy: 93.48%
# [7/10] Time 25.39s Training Accuracy: 94.41% Test Accuracy: 93.72%
# [8/10] Time 26.17s Training Accuracy: 94.68% Test Accuracy: 93.73%
# [9/10] Time 27.03s Training Accuracy: 94.78% Test Accuracy: 93.65%
# [10/10] Time 26.04s Training Accuracy: 94.97% Test Accuracy: 94.02% | ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 1056 | module ExplicitFluxLayers
const EFL = ExplicitFluxLayers
# Accelerator Support
using CUDA
# Neural Network Backend
using NNlib
import NNlibCUDA: batchnorm
# Julia StdLibs
using Random, Statistics, LinearAlgebra, SparseArrays
# Parameter Manipulation
using Functors, Setfield
import Adapt: adapt, adapt_storage
# Arrays
using FillArrays, ComponentArrays
# Automatic Differentiation
using ChainRulesCore, Zygote
# Optimization
using Optimisers
# Optional Dependency
using Requires
const use_cuda = Ref{Union{Nothing,Bool}}(nothing)
# Data Transfer Utilities
include("adapt.jl")
# Utilities
include("utils.jl")
# Core
include("core.jl")
# Layer Implementations
include("layers/basic.jl")
include("layers/normalize.jl")
include("layers/conv.jl")
include("layers/dropout.jl")
# Neural Network Backend
include("nnlib.jl")
# Pretty Printing
include("layers/display.jl")
# AutoDiff
include("autodiff.jl")
# Transition to Explicit Layers
function __init__()
@require Flux="587475ba-b771-5e3f-ad9e-33799f191a9c" include("transform.jl")
end
export EFL
end
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 1935 | abstract type EFLDeviceAdaptor end
struct EFLCPUAdaptor <: EFLDeviceAdaptor end
struct EFLCUDAAdaptor <: EFLDeviceAdaptor end
adapt_storage(::EFLCUDAAdaptor, x) = CUDA.cu(x)
adapt_storage(::EFLCUDAAdaptor, x::FillArrays.AbstractFill) = CUDA.cu(colelct(x))
adapt_storage(::EFLCUDAAdaptor, x::Zygote.OneElement) = CUDA.cu(collect(x))
adapt_storage(to::EFLCUDAAdaptor, x::ComponentArray) = ComponentArray(adapt_storage(to, getdata(x)), getaxes(x))
adapt_storage(::EFLCUDAAdaptor, rng::AbstractRNG) = rng
function adapt_storage(
::EFLCPUAdaptor,
x::Union{AbstractRange,FillArrays.AbstractFill,Zygote.OneElement,SparseArrays.AbstractSparseArray},
)
return x
end
adapt_storage(::EFLCPUAdaptor, x::AbstractArray) = adapt(Array, x)
adapt_storage(to::EFLCPUAdaptor, x::ComponentArray) = ComponentArray(adapt_storage(to, getdata(x)), getaxes(x))
adapt_storage(::EFLCPUAdaptor, rng::AbstractRNG) = rng
# TODO: SparseArrays
adapt_storage(::EFLCPUAdaptor, x::CUDA.CUSPARSE.CUDA.CUSPARSE.AbstractCuSparseMatrix) = adapt(Array, x)
_isbitsarray(::AbstractArray{<:Number}) = true
_isbitsarray(::AbstractArray{T}) where {T} = isbitstype(T)
_isbitsarray(x) = false
_isleaf(::AbstractRNG) = true
_isleaf(x) = _isbitsarray(x) || Functors.isleaf(x)
cpu(x) = fmap(x -> adapt(EFLCPUAdaptor(), x), x)
function gpu(x)
check_use_cuda()
return use_cuda[] ? fmap(x -> adapt(EFLCUDAAdaptor(), x), x; exclude=_isleaf) : x
end
function check_use_cuda()
if use_cuda[] === nothing
use_cuda[] = CUDA.functional()
if use_cuda[] && !CUDA.has_cudnn()
@warn "CUDA.jl found cuda, but did not find libcudnn. Some functionality will not be available."
end
if !(use_cuda[])
@info """The GPU function is being called but the GPU is not accessible.
Defaulting back to the CPU. (No action is required if you want to run on the CPU).""" maxlog = 1
end
end
end
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 4451 | # Non Differentiable Functions
ChainRulesCore.@non_differentiable replicate(::Any)
ChainRulesCore.@non_differentiable update_statistics(::Any, ::Any, ::Any, ::Any, ::Any, ::Any, ::Any)
ChainRulesCore.@non_differentiable generate_dropout_mask(::Any, ::Any, ::Any)
ChainRulesCore.@non_differentiable compute_adaptive_pooling_dims(::Any, ::Any)
ChainRulesCore.@non_differentiable glorot_normal(::Any...)
ChainRulesCore.@non_differentiable glorot_uniform(::Any...)
ChainRulesCore.@non_differentiable check_use_cuda()
ChainRulesCore.Tangent{P}(; kwargs...) where {P<:AbstractExplicitLayer} = NoTangent()
ChainRulesCore.rrule(::typeof(istraining)) = true, _ -> (NoTangent(),)
function ChainRulesCore.rrule(::typeof(istraining), st::NamedTuple)
return st.training, _ -> (NoTangent(), NoTangent())
end
no_grad(x) = zero(x)
no_grad(nt::NamedTuple) = fmap(no_grad, nt)
no_grad(::Union{AbstractRNG,Bool,AbstractExplicitLayer}) = NoTangent()
ChainRulesCore.rrule(::typeof(Base.broadcasted), ::typeof(identity), x) = x, Δ -> (NoTangent(), NoTangent(), Δ)
# Base Functions
function ChainRulesCore.rrule(::typeof(merge), nt1::NamedTuple{f1}, nt2::NamedTuple{f2}) where {f1,f2}
nt = merge(nt1, nt2)
function merge_pullback(Δ)
return (
NoTangent(),
NamedTuple{f1}(map(k -> k ∈ f2 ? NoTangent() : Δ[k], keys(Δ))),
NamedTuple{f2}(getfield.((Δ,), f2)),
)
end
return nt, merge_pullback
end
function ChainRulesCore.rrule(::typeof(lastindex), nt::NTuple{N,Int64}) where {N}
res = lastindex(nt)
function lastindex_pullback(Δ)
return (NoTangent(), (ntuple(_ -> NoTangent(), N - 1)..., Δ))
end
return res, lastindex_pullback
end
# NNlib Functions
function ChainRulesCore.rrule(::typeof(applydropout), x, mask)
y, broadcast_pullback = rrule_via_ad(Zygote.ZygoteRuleConfig(), broadcast, *, x, mask)
function applydropout_pullback(Δ)
_, _, Δx, _ = broadcast_pullback(Δ)
return (NoTangent(), Δx, NoTangent())
end
return y, applydropout_pullback
end
function ChainRulesCore.rrule(::typeof(dropout), rng, x, prob, dims, training)
@assert training AssertionError("Trying to conpute dropout gradients when `training`=false")
rng = replicate(rng)
mask = generate_dropout_mask(rng, x, prob; dims)
y, broadcast_pullback = rrule_via_ad(Zygote.ZygoteRuleConfig(), broadcast, *, x, mask)
function dropout_pullback(Δ)
_, _, Δx, _ = broadcast_pullback(Δ[1])
return (NoTangent(), NoTangent(), Δx, NoTangent(), NoTangent(), NoTangent())
end
return (y, mask, rng), dropout_pullback
end
# Activation Rrules
function ChainRulesCore.rrule(
::typeof(applyactivation), f::cudnnValidActivationTypes, x::CuArray{T}, inplace # Just ignore this argument
) where {T}
mode = getCUDNNActivationMode(f)
y = CUDA.CUDNN.cudnnActivationForward(x; mode)
function applyactivation_pullback(Δ)
# NOTE: Since this is an internal function, we are violating our pure function standards
# and mutating the input
Δx = Δ
desc = CUDA.CUDNN.cudnnActivationDescriptor(mode, CUDA.CUDNN.CUDNN_NOT_PROPAGATE_NAN, Cdouble(1))
CUDA.CUDNN.cudnnActivationBackward(
CUDA.CUDNN.handle(),
desc,
CUDA.CUDNN.scalingParameter(T, 1),
CUDA.CUDNN.cudnnTensorDescriptor(y),
y,
CUDA.CUDNN.cudnnTensorDescriptor(Δ),
Δ,
CUDA.CUDNN.cudnnTensorDescriptor(x),
x,
CUDA.CUDNN.scalingParameter(T, 0),
CUDA.CUDNN.cudnnTensorDescriptor(Δx),
Δx,
)
return NoTangent(), NoTangent(), Δx, NoTangent()
end
return y, applyactivation_pullback
end
# Zygote Fixes
function Zygote.accum(x::ComponentArray, ys::ComponentArray...)
return ComponentArray(Zygote.accum(getdata(x), getdata.(ys)...), getaxes(x))
end
# Adapt Interface
function ChainRulesCore.rrule(::typeof(Array), x::CUDA.CuArray)
return Array(x), d -> (NoTangent(), CUDA.cu(d),)
end
function ChainRulesCore.rrule(::typeof(adapt_storage), to::EFLCPUAdaptor, x::CUDA.AbstractGPUArray)
return adapt_storage(to, x), d -> (NoTangent(), NoTangent(), adapt_storage(EFLCUDAAdaptor(), d),)
end
function ChainRulesCore.rrule(::typeof(adapt_storage), to::EFLCUDAAdaptor, x::Array)
return adapt_storage(to, x), d -> (NoTangent(), NoTangent(), adapt_storage(EFLCPUAdaptor(), d),)
end
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 3079 | # Base Type
## API:
### initialparameters(rng, l) --> Must return a NamedTuple/ComponentArray
### initialstates(rng, l) --> Must return a NamedTuple
### parameterlength(l) --> Integer
### statelength(l) --> Integer
### l(x, ps, st)
abstract type AbstractExplicitLayer end
initialparameters(::AbstractRNG, ::Any) = NamedTuple()
initialparameters(rng::AbstractRNG, l::NamedTuple) = map(Base.Fix1(initialparameters, rng), l)
initialstates(::AbstractRNG, ::Any) = NamedTuple()
initialstates(rng::AbstractRNG, l::NamedTuple) = map(Base.Fix1(initialstates, rng), l)
parameterlength(l::AbstractExplicitLayer) = parameterlength(initialparameters(Random.default_rng(), l))
parameterlength(nt::Union{NamedTuple,Tuple}) = length(nt) == 0 ? 0 : sum(parameterlength, nt)
parameterlength(a::AbstractArray) = length(a)
parameterlength(x) = 0
statelength(l::AbstractExplicitLayer) = statelength(initialstates(Random.default_rng(), l))
statelength(nt::Union{NamedTuple,Tuple}) = length(nt) == 0 ? 0 : sum(statelength, nt)
statelength(a::AbstractArray) = length(a)
statelength(x::Union{Number,Symbol}) = 1
statelength(x) = 0
setup(rng::AbstractRNG, l::AbstractExplicitLayer) = (initialparameters(rng, l), initialstates(rng, l))
apply(model::AbstractExplicitLayer, x, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple) = model(x, ps, st)
function Base.show(io::IO, x::AbstractExplicitLayer)
__t = rsplit(string(get_typename(x)), "."; limit=2)
T = length(__t) == 2 ? __t[2] : __t[1]
print(io, "$T()")
end
# Abstract Container Layers
abstract type AbstractExplicitContainerLayer{layers} <: AbstractExplicitLayer end
function initialparameters(rng::AbstractRNG, l::AbstractExplicitContainerLayer{layers}) where {layers}
length(layers) == 1 && return initialparameters(rng, getfield(l, layers[1]))
return NamedTuple{layers}(initialparameters.(rng, getfield.((l,), layers)))
end
function initialstates(rng::AbstractRNG, l::AbstractExplicitContainerLayer{layers}) where {layers}
length(layers) == 1 && return initialstates(rng, getfield(l, layers[1]))
return NamedTuple{layers}(initialstates.(rng, getfield.((l,), layers)))
end
parameterlength(l::AbstractExplicitContainerLayer{layers}) where {layers} =
sum(parameterlength, getfield.((l,), layers))
statelength(l::AbstractExplicitContainerLayer{layers}) where {layers} =
sum(statelength, getfield.((l,), layers))
# Test Mode
testmode(st::NamedTuple, mode::Bool=true) = update_state(st, :training, !mode)
trainmode(x::Any, mode::Bool=true) = testmode(x, !mode)
# Utilities to modify global state
function update_state(st::NamedTuple, key::Symbol, value; layer_check=_default_layer_check(key))
function _update_state(st, key::Symbol, value)
return Setfield.set(st, Setfield.PropertyLens{key}(), value)
end
return fmap(_st -> _update_state(_st, key, value), st; exclude=layer_check)
end
function _default_layer_check(key)
_default_layer_check_closure(x) = hasmethod(keys, (typeof(x),)) ? key ∈ keys(x) : false
return _default_layer_check_closure
end
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 5136 | ## TODO: Eventually we want to move all these functions and their adjoints to NNlib.jl
# Normalization Implementation
@inline function update_statistics(::AbstractNormalizationLayer, xmean, xvar, batchmean, batchvar, momentum, m)
batchmean = mean(batchmean; dims=ndims(batchmean))
batchvar = mean(batchvar; dims=ndims(batchvar))
_xmean = @. (1 - momentum) * xmean + momentum * batchmean
_xvar = @. (1 - momentum) * xvar + momentum * batchvar * (m / (m - 1))
return (_xmean, _xvar)
end
@inline function update_statistics(::BatchNorm, xmean, xvar, batchmean, batchvar, momentum, m)
_xmean = @. (1 - momentum) * xmean + momentum * batchmean
_xvar = @. (1 - momentum) * xvar + momentum * batchvar * (m / (m - 1))
return (_xmean, _xvar)
end
## FIXME: Zygote doesn't like these branching. We can compile these away pretty easily
function normalization_forward(
l::AbstractNormalizationLayer{affine,track_stats},
x::AbstractArray{T,N},
xmean::Union{Nothing,AbstractArray{T,N}},
xvar::Union{Nothing,AbstractArray{T,N}},
scale::Union{Nothing,AbstractArray{T,N}},
bias::Union{Nothing,AbstractArray{T,N}},
activation::AT;
training::Bool,
) where {T,N,affine,track_stats,AT}
reduce_dims = get_reduce_dims(l, x)
if !training
# Computing the mean and variance for the batch
if !track_stats
batchmean = mean(x; dims=reduce_dims)
batchvar = var(x; mean=batchmean, dims=reduce_dims, corrected=false)
else
batchmean = xmean
batchvar = xvar
end
else
batchmean = mean(x; dims=reduce_dims)
batchvar = var(x; mean=batchmean, dims=reduce_dims, corrected=false)
if track_stats
xmean, xvar = update_statistics(
l, xmean, xvar, batchmean, batchvar, l.momentum, T(prod(size(x, i) for i in reduce_dims))
)
end
end
if affine
if AT == typeof(identity)
x_normalized = @. scale * (x - batchmean) / √(batchvar + l.ϵ) + bias
else
x_normalized = @. activation(scale * (x - batchmean) / √(batchvar + l.ϵ) + bias)
end
else
if AT == typeof(identity)
x_normalized = @. (x - batchmean) / √(batchvar + l.ϵ)
else
x_normalized = @. activation((x - batchmean) / √(batchvar + l.ϵ))
end
end
# the mean and variance should not be used in any form other than storing
# for future iterations
return x_normalized, xmean, xvar
end
# Convolution
@inline conv_wrapper(x, weight, cdims) = conv(x, weight, cdims)
@inline function conv_wrapper(x::SubArray{T,N,<:CuArray}, weight, cdims) where {T,N}
return conv(copy(x), weight, cdims)
end
# Dropout
_dropout_shape(s, ::Colon) = size(s)
_dropout_shape(s, dims) = tuple((i ∉ dims ? 1 : si for (i, si) ∈ enumerate(size(s)))...)
## TODO: Cache `1 / q` since we never need `q`
_dropout_kernel(y::T, p, q) where {T} = y > p ? T(1 / q) : T(0)
function generate_dropout_mask(rng::AbstractRNG, x, p; dims=:)
realfptype = float(real(eltype(x)))
y = rand!(rng, similar(x, realfptype, _dropout_shape(x, dims)))
y .= _dropout_kernel.(y, p, 1 - p)
return y
end
function dropout(rng::AbstractRNG, x, prob, dims, training)
if training
rng = replicate(rng)
mask = generate_dropout_mask(rng, x, prob; dims)
return applydropout(x, mask), mask, rng
else
# Return `x` for type stability
return x, x, rng
end
end
applydropout(x, mask) = x .* mask
# Adaptive Pooling
function compute_adaptive_pooling_dims(x::AbstractArray, outsize)
insize = size(x)[1:(end - 2)]
stride = insize .÷ outsize
k = insize .- (outsize .- 1) .* stride
pad = 0
return PoolDims(x, k; padding=pad, stride=stride)
end
# Activation Functions
## I think this is handled by NNlibCUDA. But currently leaving here for
## benchmarking larger models
const cudnnValidActivationTypes = Union{
typeof(tanh),typeof(sigmoid),typeof(relu),typeof(elu),typeof(tanh_fast),typeof(sigmoid_fast)
}
getCUDNNActivationMode(::Union{typeof(tanh),typeof(tanh_fast)}) = CUDA.CUDNN.CUDNN_ACTIVATION_TANH
getCUDNNActivationMode(::Union{typeof(sigmoid),typeof(sigmoid_fast)}) = CUDA.CUDNN.CUDNN_ACTIVATION_SIGMOID
getCUDNNActivationMode(::Union{typeof(relu)}) = CUDA.CUDNN.CUDNN_ACTIVATION_RELU
getCUDNNActivationMode(::Union{typeof(elu)}) = CUDA.CUDNN.CUDNN_ACTIVATION_ELU
@inline function applyactivation(f::Function, x::AbstractArray, ::Val{true})
x .= f.(x)
end
@inline applyactivation(f::Function, x::AbstractArray, ::Val{false}) = f.(x)
@inline function applyactivation(f::cudnnValidActivationTypes, x::CuArray, ::Val{true})
return CUDA.CUDNN.cudnnActivationForward!(x, x; mode=getCUDNNActivationMode(f))
end
@inline function applyactivation(f::cudnnValidActivationTypes, x::CuArray, ::Val{false})
return CUDA.CUDNN.cudnnActivationForward(x; mode=getCUDNNActivationMode(f))
end
@inline applyactivation(::typeof(identity), x::AbstractArray, ::Val{true}) = x
@inline applyactivation(::typeof(identity), x::AbstractArray, ::Val{false}) = x
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 2161 | import .Flux
"""
transform(model)
Convert a Flux Model to ExplicitFluxLayers Model.
# Examples
```julia
using ExplicitFluxLayers, Metalhead, Random
m = ResNet(18)
m2 = EFL.transform(m.layers)
x = randn(Float32, 224, 224, 3, 1);
ps, st = EFL.setup(Random.default_rng(), m2);
m2(x, ps, st)
```
"""
transform(::T) where {T} = error("Transformation for type $T not implemented")
transform(model::Flux.Chain) = Chain(transform.(model.layers)...)
function transform(model::Flux.BatchNorm)
return BatchNorm(
model.chs, model.λ; affine=model.affine, track_stats=model.track_stats, ϵ=model.ϵ, momentum=model.momentum
)
end
function transform(model::Flux.Conv)
return Conv(
size(model.weight)[1:(end - 2)],
size(model.weight, ndims(model.weight) - 1) * model.groups => size(model.weight, ndims(model.weight)),
model.σ;
stride=model.stride,
pad=model.pad,
bias=model.bias isa Bool ? model.bias : !(model.bias isa Flux.Zeros),
dilation=model.dilation,
groups=model.groups,
)
end
function transform(model::Flux.SkipConnection)
return SkipConnection(transform(model.layers), model.connection)
end
function transform(model::Flux.Dense)
return Dense(size(model.weight, 2), size(model.weight, 1), model.σ)
end
function transform(model::Flux.MaxPool)
return MaxPool(model.k, model.pad, model.stride)
end
function transform(model::Flux.MeanPool)
return MeanPool(model.k, model.pad, model.stride)
end
function transform(::Flux.GlobalMaxPool)
return GlobalMaxPool()
end
function transform(::Flux.GlobalMeanPool)
return GlobalMeanPool()
end
function transform(p::Flux.AdaptiveMaxPool)
return AdaptiveMaxPool(p.out)
end
function transform(p::Flux.AdaptiveMeanPool)
return AdaptiveMeanPool(p.out)
end
function transform(model::Flux.Parallel)
return Parallel(model.connection, transform.(model.layers)...)
end
function transform(d::Flux.Dropout)
return Dropout(Float32(d.p); dims=d.dims)
end
transform(::typeof(identity)) = NoOpLayer()
transform(::typeof(Flux.flatten)) = FlattenLayer()
transform(f::Function) = WrappedFunction(f)
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 4467 | ## Quite a few of these are borrowed from Flux.jl
# Misc
nfan() = 1, 1 # fan_in, fan_out
nfan(n) = 1, n # A vector is treated as a n×1 matrix
nfan(n_out, n_in) = n_in, n_out # In case of Dense kernels: arranged as matrices
nfan(dims::Tuple) = nfan(dims...)
nfan(dims...) = prod(dims[1:end-2]) .* (dims[end-1], dims[end]) # In case of convolution kernels
# Neural Network Initialization
## NOTE: Would be great if these could be moved into its own package and NN frameworks
## could just import it.
zeros32(rng::AbstractRNG, args...; kwargs...) = zeros(rng, Float32, args...; kwargs...)
ones32(rng::AbstractRNG, args...; kwargs...) = ones(rng, Float32, args...; kwargs...)
Base.zeros(rng::AbstractRNG, args...; kwargs...) = zeros(args...; kwargs...)
Base.ones(rng::AbstractRNG, args...; kwargs...) = ones(args...; kwargs...)
function glorot_uniform(rng::AbstractRNG, dims::Integer...; gain::Real=1)
scale = Float32(gain) * sqrt(24.0f0 / sum(nfan(dims...)))
return (rand(rng, Float32, dims...) .- 0.5f0) .* scale
end
function glorot_normal(rng::AbstractRNG, dims::Integer...; gain::Real=1)
std = Float32(gain) * sqrt(2.0f0 / sum(nfan(dims...)))
return randn(rng, Float32, dims...) .* std
end
# PRNG Handling
replicate(rng::AbstractRNG) = copy(rng)
replicate(rng::CUDA.RNG) = deepcopy(rng)
# Training Check
@inline istraining() = false
@inline istraining(st::NamedTuple) = st.training
# Linear Algebra
@inline _norm(x; dims=Colon()) = sqrt.(sum(abs2, x; dims=dims))
@inline _norm_except(x::AbstractArray{T,N}, except_dim=N) where {T,N} = _norm(x; dims=filter(i -> i != except_dim, 1:N))
# Convolution
function convfilter(rng::AbstractRNG, filter::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer};
init = glorot_uniform, groups = 1) where N
cin, cout = ch
@assert cin % groups == 0 "Input channel dimension must be divisible by groups."
@assert cout % groups == 0 "Output channel dimension must be divisible by groups."
return init(rng, filter..., cin÷groups, cout)
end
expand(N, i::Tuple) = i
expand(N, i::Integer) = ntuple(_ -> i, N)
_maybetuple_string(pad) = string(pad)
_maybetuple_string(pad::Tuple) = all(==(pad[1]), pad) ? string(pad[1]) : string(pad)
# Padding
struct SamePad end
calc_padding(lt, pad, k::NTuple{N,T}, dilation, stride) where {T,N}= expand(Val(2*N), pad)
function calc_padding(lt, ::SamePad, k::NTuple{N,T}, dilation, stride) where {N,T}
# Ref: "A guide to convolution arithmetic for deep learning" https://arxiv.org/abs/1603.07285
# Effective kernel size, including dilation
k_eff = @. k + (k - 1) * (dilation - 1)
# How much total padding needs to be applied?
pad_amt = @. k_eff - 1
# In case amount of padding is odd we need to apply different amounts to each side.
return Tuple(mapfoldl(i -> [cld(i, 2), fld(i,2)], vcat, pad_amt))
end
# Handling ComponentArrays
## NOTE: We should probably upsteam some of these
Base.zero(c::ComponentArray{T,N,<:CuArray{T}}) where {T,N} = ComponentArray(zero(getdata(c)), getaxes(c))
Base.vec(c::ComponentArray{T,N,<:CuArray{T}}) where {T,N} = getdata(c)
Base.:-(x::ComponentArray{T,N,<:CuArray{T}}) where {T,N} = ComponentArray(-getdata(x), getaxes(x))
function Base.similar(c::ComponentArray{T,N,<:CuArray{T}}, l::Vararg{Union{Integer,AbstractUnitRange}}) where {T,N}
return similar(getdata(c), l)
end
function Functors.functor(::Type{<:ComponentArray}, c)
return NamedTuple{propertynames(c)}(getproperty.((c,), propertynames(c))), ComponentArray
end
function Optimisers.update!(st, ps::ComponentArray, gs::ComponentArray)
Optimisers.update!(st, NamedTuple(ps), NamedTuple(gs))
return st, ps
end
function ComponentArrays.make_carray_args(nt::NamedTuple)
data, ax = ComponentArrays.make_carray_args(Vector, nt)
data = length(data) == 0 ? Float32[] : (length(data)==1 ? [data[1]] : reduce(vcat, data))
return (data, ax)
end
## For being able to print empty ComponentArrays
function ComponentArrays.last_index(f::FlatAxis)
nt = ComponentArrays.indexmap(f)
length(nt) == 0 && return 0
return ComponentArrays.last_index(last(nt))
end
ComponentArrays.recursive_length(nt::NamedTuple{(), Tuple{}}) = 0
# Return Nothing if field not present
function safegetproperty(x::Union{ComponentArray,NamedTuple}, k::Symbol)
k ∈ propertynames(x) && return getproperty(x, k)
return nothing
end
# Getting typename
get_typename(::T) where {T} = Base.typename(T).wrapper
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 16826 | """
ReshapeLayer(dims)
Reshapes the passed array to have a size of `(dims..., :)`
"""
struct ReshapeLayer{N} <: AbstractExplicitLayer
dims::NTuple{N,Int}
end
@inline function (r::ReshapeLayer)(x::AbstractArray, ps, st::NamedTuple)
return reshape(x, r.dims..., :), st
end
"""
FlattenLayer()
Flattens the passed array into a matrix.
"""
struct FlattenLayer <: AbstractExplicitLayer end
@inline function (f::FlattenLayer)(x::AbstractArray{T,N}, ps, st::NamedTuple) where {T,N}
return reshape(x, :, size(x, N)), st
end
"""
SelectDim(dim, i)
See the documentation for `selectdim` for more information.
"""
struct SelectDim{I} <: AbstractExplicitLayer
dim::Int
i::I
end
@inline (s::SelectDim)(x, ps, st::NamedTuple) = selectdim(x, s.dim, s.i), st
"""
NoOpLayer()
As the name suggests does nothing but allows pretty printing of layers.
"""
struct NoOpLayer <: AbstractExplicitLayer end
@inline (noop::NoOpLayer)(x, ps, st::NamedTuple) = x, st
"""
WrappedFunction(f)
Wraps a stateless and parameter less function. Might be used when a function is
added to [Chain](@doc). For example, `Chain(x -> relu.(x))` would not work and the
right thing to do would be `Chain((x, ps, st) -> (relu.(x), st))`. An easier thing
to do would be `Chain(WrappedFunction(Base.Fix1(broadcast, relu)))`
"""
struct WrappedFunction{F} <: AbstractExplicitLayer
func::F
end
(wf::WrappedFunction)(x, ps, st::NamedTuple) = wf.func(x), st
function Base.show(io::IO, w::WrappedFunction)
return print(io, "WrappedFunction(", w.func, ")")
end
"""
ActivationFunction(f)
Broadcast `f` on the input but fallback to CUDNN for Backward Pass
"""
struct ActivationFunction{F} <: AbstractExplicitLayer
func::F
end
initialstates(::AbstractRNG, ::ActivationFunction) = (training=true,)
(af::ActivationFunction)(x, ps, st::NamedTuple) = applyactivation(af.func, x, Val(false)), st
function Base.show(io::IO, af::ActivationFunction)
return print(io, "ActivationFunction(", af.func, ")")
end
"""
SkipConnection(layer, connection)
Create a skip connection which consists of a layer or `Chain` of consecutive layers and a shortcut connection linking the block's input to the output through a user-supplied 2-argument callable. The first argument to the callable will be propagated through the given `layer` while the second is the unchanged, "skipped" input.
The simplest "ResNet"-type connection is just `SkipConnection(layer, +)`.
"""
struct SkipConnection{T<:AbstractExplicitLayer,F} <: AbstractExplicitContainerLayer{(:layers,)}
layers::T
connection::F
end
@inline function (skip::SkipConnection)(input, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple)
mx, st = skip.layers(input, ps, st)
return skip.connection(mx, input), st
end
"""
Parallel(connection, layers...)
Behaves differently on different input types:
* If `x` is a Tuple then each element is passed to each layer
* Otherwise, `x` is directly passed to all layers
"""
struct Parallel{F,T<:NamedTuple} <: AbstractExplicitContainerLayer{(:layers,)}
connection::F
layers::T
end
function Parallel(connection, layers...)
names = ntuple(i -> Symbol("layer_$i"), length(layers))
return Parallel(connection, NamedTuple{names}(layers))
end
function Parallel(connection; kw...)
layers = NamedTuple(kw)
if :layers in Base.keys(layers) || :connection in Base.keys(layers)
throw(ArgumentError("a Parallel layer cannot have a named sub-layer called `connection` or `layers`"))
end
isempty(layers) && throw(ArgumentError("a Parallel layer must have at least one sub-layer"))
return Parallel(connection, layers)
end
function (m::Parallel)(x, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple)
return applyparallel(m.layers, m.connection, x, ps, st)
end
@generated function applyparallel(
layers::NamedTuple{names}, connection::C, x::T, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple
) where {names,C,T}
N = length(names)
y_symbols = [gensym() for _ in 1:(N + 1)]
st_symbols = [gensym() for _ in 1:N]
getinput(i) = T <: Tuple ? :(x[$i]) : :x
calls = []
append!(
calls,
[
:(($(y_symbols[i]), $(st_symbols[i])) = layers[$i]($(getinput(i)), ps.$(names[i]), st.$(names[i]))) for
i in 1:N
],
)
append!(calls, [:(st = NamedTuple{$names}((($(Tuple(st_symbols)...),))))])
if C == Nothing
append!(calls, [:($(y_symbols[N + 1]) = tuple($(Tuple(y_symbols[1:N])...)))])
else
append!(calls, [:($(y_symbols[N + 1]) = connection($(Tuple(y_symbols[1:N])...)))])
end
append!(calls, [:(return $(y_symbols[N + 1]), st)])
return Expr(:block, calls...)
end
Base.keys(m::Parallel) = Base.keys(getfield(m, :layers))
"""
BranchLayer(layers...)
Takes an input `x` and passes it through all the `layers` and returns a tuple of the outputs.
This is slightly different from `Parallel(nothing, layers...)`
- If the input is a tuple Parallel will pass each element individually to each layer
- `BranchLayer` essentially assumes 1 input comes in and is branched out into `N` outputs
An easy way to replicate an input to an NTuple is to do
```julia
l = EFL.BranchLayer(
EFL.NoOpLayer(),
EFL.NoOpLayer(),
EFL.NoOpLayer(),
)
```
"""
struct BranchLayer{T<:NamedTuple} <: AbstractExplicitContainerLayer{(:layers,)}
layers::T
end
function BranchLayer(layers...)
names = ntuple(i -> Symbol("layer_$i"), length(layers))
return BranchLayer(NamedTuple{names}(layers))
end
function BranchLayer(; kwargs...)
layers = NamedTuple(kwargs)
if :layers in Base.keys(layers)
throw(ArgumentError("A BranchLayer cannot have a named sub-layer called `layers`"))
end
isempty(layers) && throw(ArgumentError("A BranchLayer must have at least one sub-layer"))
return BranchLayer(layers)
end
(m::BranchLayer)(x, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple) = applybranching(m.layers, x, ps, st)
@generated function applybranching(
layers::NamedTuple{names}, x, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple
) where {names}
N = length(names)
y_symbols = [gensym() for _ in 1:N]
st_symbols = [gensym() for _ in 1:N]
calls = []
append!(
calls, [:(($(y_symbols[i]), $(st_symbols[i])) = layers[$i](x, ps.$(names[i]), st.$(names[i]))) for i in 1:N]
)
append!(calls, [:(st = NamedTuple{$names}((($(Tuple(st_symbols)...),))))])
append!(calls, [:(return tuple($(Tuple(y_symbols)...)), st)])
return Expr(:block, calls...)
end
Base.keys(m::BranchLayer) = Base.keys(getfield(m, :layers))
"""
PairwiseFusion(connection, layers...)
Layer behaves differently based on input type:
1. Input `x` is a tuple of length `N` then the `layers` must be a tuple of length `N`. The computation is as follows
```julia
y = x[1]
for i in 1:N
y = connection(x[i], layers[i](y))
end
```
2. Any other kind of input
```julia
y = x
for i in 1:N
y = connection(x, layers[i](y))
end
```
"""
struct PairwiseFusion{F,T<:NamedTuple} <: AbstractExplicitContainerLayer{(:layers,)}
connection::F
layers::T
end
function PairwiseFusion(connection, layers...)
names = ntuple(i -> Symbol("layer_$i"), length(layers))
return PairwiseFusion(connection, NamedTuple{names}(layers))
end
function PairwiseFusion(connection; kw...)
layers = NamedTuple(kw)
if :layers in Base.keys(layers) || :connection in Base.keys(layers)
throw(ArgumentError("a PairwiseFusion layer cannot have a named sub-layer called `connection` or `layers`"))
end
isempty(layers) && throw(ArgumentError("a PairwiseFusion layer must have at least one sub-layer"))
return PairwiseFusion(connection, layers)
end
function (m::PairwiseFusion)(x, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple)
return applypairwisefusion(m.layers, m.connection, x, ps, st)
end
@generated function applypairwisefusion(
layers::NamedTuple{names}, connection::C, x::T, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple
) where {names,C,T}
N = length(names)
y_symbols = [gensym() for _ in 1:(N + 1)]
st_symbols = [gensym() for _ in 1:N]
getinput(i) = T <: Tuple ? :(x[$i]) : :x
calls = [:($(y_symbols[N + 1]) = $(getinput(1)))]
for i in 1:N
push!(
calls,
:(($(y_symbols[i]), $(st_symbols[i])) = layers[$i]($(y_symbols[N + 1]), ps.$(names[i]), st.$(names[i]))),
)
push!(calls, :($(y_symbols[N + 1]) = connection($(y_symbols[i]), $(getinput(i + 1)))))
end
append!(calls, [:(st = NamedTuple{$names}((($(Tuple(st_symbols)...),))))])
append!(calls, [:(return $(y_symbols[N + 1]), st)])
return Expr(:block, calls...)
end
Base.keys(m::PairwiseFusion) = Base.keys(getfield(m, :layers))
"""
Chain(layers...; disable_optimizations::Bool = false)
Collects multiple layers / functions to be called in sequence on a given input.
Performs a few optimizations to generate reasonable architectures. Can be disabled using keyword argument `disable_optimizations`.
* All sublayers are recursively optimized.
* If a function `f` is passed as a layer and it doesn't take 3 inputs, it is converted to a WrappedFunction(`f`) which takes only one input.
* If the layer is a Chain, it is expanded out.
* `NoOpLayer`s are removed.
* If there is only 1 layer (left after optimizations), then it is returned without the `Chain` wrapper.
* If there are no layers (left after optimizations), a `NoOpLayer` is returned.
"""
struct Chain{T} <: AbstractExplicitContainerLayer{(:layers,)}
layers::T
function Chain(xs...; disable_optimizations::Bool=false)
xs = disable_optimizations ? xs : flatten_model(xs)
length(xs) == 0 && return NoOpLayer()
length(xs) == 1 && return first(xs)
names = ntuple(i -> Symbol("layer_$i"), length(xs))
layers = NamedTuple{names}(xs)
return new{typeof(layers)}(layers)
end
Chain(xs::AbstractVector; disable_optimizations::Bool=false) = Chain(xs...; disable_optimizations)
end
function flatten_model(layers::Union{AbstractVector,Tuple})
new_layers = []
for l in layers
f = flatten_model(l)
if f isa Tuple || f isa AbstractVector
append!(new_layers, f)
elseif f isa Function
if !hasmethod(f, (Any, Union{ComponentArray,NamedTuple}, NamedTuple))
push!(new_layers, WrappedFunction(f))
else
push!(new_layers, f)
end
elseif f isa Chain
append!(new_layers, f.layers)
elseif f isa NoOpLayer
continue
else
push!(new_layers, f)
end
end
return layers isa AbstractVector ? new_layers : Tuple(new_layers)
end
flatten_model(x) = x
(c::Chain)(x, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple) = applychain(c.layers, x, ps, st)
@generated function applychain(
layers::NamedTuple{fields}, x, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple{fields}
) where {fields}
N = length(fields)
x_symbols = [gensym() for _ in 1:N]
st_symbols = [gensym() for _ in 1:N]
calls = [:(($(x_symbols[1]), $(st_symbols[1])) = layers[1](x, ps.layer_1, st.layer_1))]
append!(
calls,
[
:(($(x_symbols[i]), $(st_symbols[i])) = layers[$i]($(x_symbols[i - 1]), ps.$(fields[i]), st.$(fields[i])))
for i in 2:N
],
)
append!(calls, [:(st = NamedTuple{$fields}((($(Tuple(st_symbols)...),))))])
append!(calls, [:(return $(x_symbols[N]), st)])
return Expr(:block, calls...)
end
Base.keys(m::Chain) = Base.keys(getfield(m, :layers))
"""
Dense(in => out, σ=identity; initW=glorot_uniform, initb=zeros32, bias::Bool=true)
Create a traditional fully connected layer, whose forward pass is given by: `y = σ.(weight * x .+ bias)`
* The input `x` should be a vector of length `in`, or batch of vectors represented as an `in × N` matrix, or any array with `size(x,1) == in`.
* The output `y` will be a vector of length `out`, or a batch with `size(y) == (out, size(x)[2:end]...)`
Keyword `bias=false` will switch off trainable bias for the layer.
The initialisation of the weight matrix is `W = initW(rng, out, in)`, calling the function
given to keyword `initW`, with default [`glorot_uniform`](@doc Flux.glorot_uniform).
"""
struct Dense{bias,F1,F2,F3} <: AbstractExplicitLayer
λ::F1
in_dims::Int
out_dims::Int
initW::F2
initb::F3
end
function Base.show(io::IO, d::Dense{bias}) where {bias}
print(io, "Dense($(d.in_dims) => $(d.out_dims)")
(d.λ == identity) || print(io, ", $(d.λ)")
bias || print(io, ", bias=false")
return print(io, ")")
end
function Dense(mapping::Pair{<:Int,<:Int}, λ=identity; initW=glorot_uniform, initb=zeros32, bias::Bool=true)
return Dense(first(mapping), last(mapping), λ; initW=initW, initb=initb, bias=bias)
end
function Dense(in_dims::Int, out_dims::Int, λ=identity; initW=glorot_uniform, initb=zeros32, bias::Bool=true)
λ = NNlib.fast_act(λ)
return Dense{bias,typeof(λ),typeof(initW),typeof(initb)}(λ, in_dims, out_dims, initW, initb)
end
function initialparameters(rng::AbstractRNG, d::Dense{bias}) where {bias}
if bias
return (weight=d.initW(rng, d.out_dims, d.in_dims), bias=d.initb(rng, d.out_dims, 1))
else
return (weight=d.initW(rng, d.out_dims, d.in_dims),)
end
end
parameterlength(d::Dense{bias}) where {bias} = bias ? d.out_dims * (d.in_dims + 1) : d.out_dims * d.in_dims
statelength(d::Dense) = 0
@inline function (d::Dense{false})(x::AbstractArray, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple)
return applyactivation(d.λ, ps.weight * x, Val(false)), st
end
@inline function (d::Dense{false,typeof(identity)})(
x::AbstractArray, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple
)
return ps.weight * x, st
end
@inline function (d::Dense{true})(x::AbstractArray, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple)
return applyactivation(d.λ, ps.weight * x .+ ps.bias, Val(false)), st
end
@inline function (d::Dense{true,typeof(identity)})(
x::AbstractArray, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple
)
return ps.weight * x .+ ps.bias, st
end
@inline function (d::Dense{true})(x::AbstractVector, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple)
return applyactivation(d.λ, ps.weight * x .+ vec(ps.bias), Val(false)), st
end
@inline function (d::Dense{true,typeof(identity)})(
x::AbstractVector, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple
)
return ps.weight * x .+ vec(ps.bias), st
end
"""
Scale(dims, σ=identity; initW=ones32, initb=zeros32, bias::Bool=true)
Create a Sparsely Connected Layer with a very specific structure (only Diagonal Elements are non-zero). The forward pass is given by: `y = σ.(weight .* x .+ bias)`
* The input `x` should be a vector of length `dims`, or batch of vectors represented as an `in × N` matrix, or any array with `size(x,1) == in`.
* The output `y` will be a vector of length `dims`, or a batch with `size(y) == (dims, size(x)[2:end]...)`
Keyword `bias=false` will switch off trainable bias for the layer.
The initialisation of the weight matrix is `W = initW(rng, dims)`, calling the function given to keyword `initW`, with default [`glorot_uniform`](@doc Flux.glorot_uniform).
"""
struct Scale{bias,F1,D,F2,F3} <: AbstractExplicitLayer
λ::F1
dims::D
initW::F2
initb::F3
end
function Base.show(io::IO, d::Scale)
print(io, "Scale($(d.dims)")
(d.λ == identity) || print(io, ", $(d.λ)")
return print(io, ")")
end
function Scale(dims, λ=identity; initW=glorot_uniform, initb=zeros32, bias::Bool=true)
λ = NNlib.fast_act(λ)
return Scale{bias,typeof(λ),typeof(dims),typeof(initW),typeof(initb)}(λ, dims, initW, initb)
end
function initialparameters(rng::AbstractRNG, d::Scale{true})
return (weight=d.initW(rng, d.dims), bias=d.initb(rng, d.dims))
end
initialparameters(rng::AbstractRNG, d::Scale{false}) = (weight=d.initW(rng, d.dims),)
parameterlength(d::Scale{bias}) where {bias} = (1 + bias) * d.dims
statelength(d::Scale) = 0
function (d::Scale{true})(x::AbstractArray, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple)
return applyactivation(d.λ, ps.weight .* x .+ ps.bias, Val(false)), st
end
function (d::Scale{true,typeof(identity)})(x::AbstractArray, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple)
return ps.weight .* x .+ ps.bias, st
end
function (d::Scale{false})(x::AbstractArray, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple)
return applyactivation(d.λ, ps.weight .* x, Val(false)), st
end
function (d::Scale{false,typeof(identity)})(x::AbstractArray, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple)
return ps.weight .* x, st
end
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 11740 | """
Conv(filter, in => out, σ = identity; stride = 1, pad = 0, dilation = 1, groups = 1, [bias, initW])
Standard convolutional layer.
# Arguments
* `filter` is a tuple of integers specifying the size of the convolutional kernel
* `in` and `out` specify the number of input and output channels.
Image data should be stored in WHCN order (width, height, channels, batch). In other words, a 100×100 RGB image would be a `100×100×3×1` array, and a batch of 50 would be a `100×100×3×50` array. This has `N = 2` spatial dimensions, and needs a kernel size like `(5,5)`, a 2-tuple of integers. To take convolutions along `N` feature dimensions, this layer expects as input an array with `ndims(x) == N+2`, where `size(x, N+1) == in` is the number of input channels, and `size(x, ndims(x))` is (as always) the number of observations in a batch.
* `filter` should be a tuple of `N` integers.
* Keywords `stride` and `dilation` should each be either single integer, or a tuple with `N` integers.
* Keyword `pad` specifies the number of elements added to the borders of the data array. It can be
- a single integer for equal padding all around,
- a tuple of `N` integers, to apply the same padding at begin/end of each spatial dimension,
- a tuple of `2*N` integers, for asymmetric padding, or
- the singleton `SamePad()`, to calculate padding such that `size(output,d) == size(x,d) / stride` (possibly rounded) for each spatial dimension.
* Keyword `groups` is expected to be an `Int`. It specifies the number of groups to divide a convolution into.
Keywords to control initialization of the layer:
* `initW` - Function used to generate initial weights. Defaults to `glorot_uniform`.
* `bias` - The initial bias vector is all zero by default. Trainable bias can be disabled entirely by setting this to `false`.
"""
struct Conv{N,bias,M,F1,F2} <: AbstractExplicitLayer
λ::F1
in_chs::Int
out_chs::Int
kernel_size::NTuple{N,Int}
stride::NTuple{N,Int}
pad::NTuple{M,Int}
dilation::NTuple{N,Int}
groups::Int
initW::F2
end
function Conv(
k::NTuple{N,Integer},
ch::Pair{<:Integer,<:Integer},
λ=identity;
initW=glorot_uniform,
stride=1,
pad=0,
dilation=1,
groups=1,
bias=true,
) where {N}
stride = expand(Val(N), stride)
dilation = expand(Val(N), dilation)
pad = calc_padding(Conv, pad, k, dilation, stride)
λ = NNlib.fast_act(λ)
return Conv{N,bias,length(pad),typeof(λ),typeof(initW)}(
λ, first(ch), last(ch), k, stride, pad, dilation, groups, initW
)
end
function initialparameters(rng::AbstractRNG, c::Conv{N,bias}) where {N,bias}
weight = convfilter(rng, c.kernel_size, c.in_chs => c.out_chs; init=c.initW, groups=c.groups)
return bias ? (weight=weight, bias=zeros(eltype(weight), ntuple(_ -> 1, N)..., c.out_chs, 1)) : (weight=weight,)
end
function parameterlength(c::Conv{N,bias}) where {N,bias}
return prod(c.kernel_size) * c.in_chs * c.out_chs ÷ c.groups + (bias ? c.out_chs : 0)
end
@inline function (c::Conv{N,false})(x::AbstractArray, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple) where {N}
cdims = DenseConvDims(x, ps.weight; stride=c.stride, padding=c.pad, dilation=c.dilation, groups=c.groups)
return applyactivation(c.λ, conv_wrapper(x, ps.weight, cdims), Val(false)), st
end
@inline function (c::Conv{N,true})(x::AbstractArray, ps::Union{ComponentArray,NamedTuple}, st::NamedTuple) where {N}
cdims = DenseConvDims(x, ps.weight; stride=c.stride, padding=c.pad, dilation=c.dilation, groups=c.groups)
return applyactivation(c.λ, conv_wrapper(x, ps.weight, cdims) .+ ps.bias, Val(false)), st
end
function Base.show(io::IO, l::Conv)
print(io, "Conv(", l.kernel_size)
print(io, ", ", l.in_chs, " => ", l.out_chs)
_print_conv_opt(io, l)
return print(io, ")")
end
function _print_conv_opt(io::IO, l::Conv{N,bias}) where {N,bias}
l.λ == identity || print(io, ", ", l.λ)
all(==(0), l.pad) || print(io, ", pad=", _maybetuple_string(l.pad))
all(==(1), l.stride) || print(io, ", stride=", _maybetuple_string(l.stride))
all(==(1), l.dilation) || print(io, ", dilation=", _maybetuple_string(l.dilation))
(l.groups == 1) || print(io, ", groups=", l.groups)
(bias == false) && print(io, ", bias=false")
return nothing
end
"""
MaxPool(window::NTuple; pad=0, stride=window)
# Arguments
* Max pooling layer, which replaces all pixels in a block of size `window` with one.
* Expects as input an array with `ndims(x) == N+2`, i.e. channel and batch dimensions, after the `N` feature dimensions, where `N = length(window)`.
* By default the window size is also the stride in each dimension.
* The keyword `pad` accepts the same options as for the [`Conv`](@ref) layer, including `SamePad()`.
See also [`Conv`](@ref), [`MeanPool`](@ref), [`GlobalMaxPool`](@ref).
"""
struct MaxPool{N,M} <: AbstractExplicitLayer
k::NTuple{N,Int}
pad::NTuple{M,Int}
stride::NTuple{N,Int}
end
function MaxPool(k::NTuple{N,Integer}; pad=0, stride=k) where {N}
stride = expand(Val(N), stride)
pad = calc_padding(MaxPool, pad, k, 1, stride)
return MaxPool{N,length(pad)}(k, pad, stride)
end
function (m::MaxPool{N,M})(x, ps, st::NamedTuple) where {N,M}
pdims = PoolDims(x, m.k; padding=m.pad, stride=m.stride)
return maxpool(x, pdims), st
end
function Base.show(io::IO, m::MaxPool)
print(io, "MaxPool(", m.k)
all(==(0), m.pad) || print(io, ", pad=", _maybetuple_string(m.pad))
m.stride == m.k || print(io, ", stride=", _maybetuple_string(m.stride))
return print(io, ")")
end
"""
MeanPool(window::NTuple; pad=0, stride=window)
# Arguments
* Mean pooling layer, which replaces all pixels in a block of size `window` with one.
* Expects as input an array with `ndims(x) == N+2`, i.e. channel and batch dimensions, after the `N` feature dimensions, where `N = length(window)`.
* By default the window size is also the stride in each dimension.
* The keyword `pad` accepts the same options as for the [`Conv`](@ref) layer, including `SamePad()`.
See also [`Conv`](@ref), [`MaxPool`](@ref), [`GlobalMeanPool`](@ref).
"""
struct MeanPool{N,M} <: AbstractExplicitLayer
k::NTuple{N,Int}
pad::NTuple{M,Int}
stride::NTuple{N,Int}
end
function MeanPool(k::NTuple{N,Integer}; pad=0, stride=k) where {N}
stride = expand(Val(N), stride)
pad = calc_padding(MeanPool, pad, k, 1, stride)
return MeanPool{N,length(pad)}(k, pad, stride)
end
function (m::MeanPool{N,M})(x, ps, st::NamedTuple) where {N,M}
pdims = PoolDims(x, m.k; padding=m.pad, stride=m.stride)
return meanpool(x, pdims), st
end
function Base.show(io::IO, m::MeanPool)
print(io, "MeanPool(", m.k)
all(==(0), m.pad) || print(io, ", pad=", _maybetuple_string(m.pad))
m.stride == m.k || print(io, ", stride=", _maybetuple_string(m.stride))
return print(io, ")")
end
"""
Upsample(mode = :nearest; [scale, size])
Upsample(scale, mode = :nearest)
An upsampling layer.
# Arguments
One of two keywords must be given:
* If `scale` is a number, this applies to all but the last two dimensions (channel and batch) of the input. It may also be a tuple, to control dimensions individually.
* Alternatively, keyword `size` accepts a tuple, to directly specify the leading dimensions of the output.
Currently supported upsampling `mode`s and corresponding NNlib's methods are:
- `:nearest` -> [`NNlib.upsample_nearest`](@ref)
- `:bilinear` -> [`NNlib.upsample_bilinear`](@ref)
- `:trilinear` -> [`NNlib.upsample_trilinear`](@ref)
"""
struct Upsample{mode,S,T} <: AbstractExplicitLayer
scale::S
size::T
end
function Upsample(mode::Symbol=:nearest; scale=nothing, size=nothing)
mode in [:nearest, :bilinear, :trilinear] || throw(ArgumentError("mode=:$mode is not supported."))
if !(isnothing(scale) ⊻ isnothing(size))
throw(ArgumentError("Either scale or size should be specified (but not both)."))
end
return Upsample{mode,typeof(scale),typeof(size)}(scale, size)
end
Upsample(scale, mode::Symbol=:nearest) = Upsample(mode; scale)
function (m::Upsample{:nearest})(x::AbstractArray, ps, st::NamedTuple)
return NNlib.upsample_nearest(x, m.scale), st
end
function (m::Upsample{:nearest,Int})(x::AbstractArray{T,N}, ps, st::NamedTuple) where {T,N}
return NNlib.upsample_nearest(x, ntuple(i -> m.scale, N - 2)), st
end
function (m::Upsample{:nearest,Nothing})(x::AbstractArray, ps, st::NamedTuple)
return NNlib.upsample_nearest(x; size=m.size), st
end
function (m::Upsample{:bilinear})(x::AbstractArray, ps, st::NamedTuple)
return NNlib.upsample_bilinear(x, m.scale), st
end
function (m::Upsample{:bilinear,Nothing})(x::AbstractArray, ps, st::NamedTuple)
return NNlib.upsample_bilinear(x; size=m.size), st
end
function (m::Upsample{:trilinear})(x::AbstractArray, ps, st::NamedTuple)
return NNlib.upsample_trilinear(x, m.scale), st
end
function (m::Upsample{:trilinear,Nothing})(x::AbstractArray, ps, st::NamedTuple)
return NNlib.upsample_trilinear(x; size=m.size), st
end
function Base.show(io::IO, u::Upsample{mode}) where {mode}
print(io, "Upsample(")
print(io, ":", mode)
u.scale !== nothing && print(io, ", scale = $(u.scale)")
u.size !== nothing && print(io, ", size = $(u.size)")
return print(io, ")")
end
"""
GlobalMeanPool()
Global Mean Pooling layer. Transforms (w,h,c,b)-shaped input into (1,1,c,b)-shaped output, by performing max pooling on the complete (w,h)-shaped feature maps.
See also [`MeanPool`](@ref), [`GlobalMaxPool`](@ref).
"""
struct GlobalMeanPool <: AbstractExplicitLayer end
function (g::GlobalMeanPool)(x, ps, st::NamedTuple)
return meanpool(x, PoolDims(x, size(x)[1:(end - 2)])), st
end
"""
GlobalMaxPool()
Global Max Pooling layer. Transforms (w,h,c,b)-shaped input into (1,1,c,b)-shaped output, by performing max pooling on the complete (w,h)-shaped feature maps.
See also [`MaxPool`](@ref), [`GlobalMeanPool`](@ref).
"""
struct GlobalMaxPool <: AbstractExplicitLayer end
function (g::GlobalMaxPool)(x, ps, st::NamedTuple)
return maxpool(x, PoolDims(x, size(x)[1:(end - 2)])), st
end
"""
AdaptiveMaxPool(out::NTuple)
Adaptive Max Pooling layer. Calculates the necessary window size such that its output has `size(y)[1:N] == out`. Expects as input an array with `ndims(x) == N+2`, i.e. channel and batch dimensions, after the `N` feature dimensions, where `N = length(out)`.
See also [`MaxPool`](@ref), [`AdaptiveMeanPool`](@ref).
"""
struct AdaptiveMaxPool{S,O} <: AbstractExplicitLayer
out::NTuple{O,Int}
AdaptiveMaxPool(out::NTuple{O,Int}) where {O} = new{O + 2,O}(out)
end
function (a::AdaptiveMaxPool{S})(x::AbstractArray{T,S}, ps, st::NamedTuple) where {S,T}
pdims = compute_adaptive_pooling_dims(x, a.out)
return maxpool(x, pdims), st
end
function Base.show(io::IO, a::AdaptiveMaxPool)
return print(io, "AdaptiveMaxPool(", a.out, ")")
end
"""
AdaptiveMeanPool(out::NTuple)
Adaptive Mean Pooling layer. Calculates the necessary window size such that its output has `size(y)[1:N] == out`. Expects as input an array with `ndims(x) == N+2`, i.e. channel and batch dimensions, after the `N` feature dimensions, where `N = length(out)`.
See also [`MaxPool`](@ref), [`AdaptiveMaxPool`](@ref).
"""
struct AdaptiveMeanPool{S,O} <: AbstractExplicitLayer
out::NTuple{O,Int}
AdaptiveMeanPool(out::NTuple{O,Int}) where {O} = new{O + 2,O}(out)
end
function (a::AdaptiveMeanPool{S})(x::AbstractArray{T,S}, ps, st::NamedTuple) where {S,T}
pdims = compute_adaptive_pooling_dims(x, a.out)
return meanpool(x, pdims), st
end
function Base.show(io::IO, a::AdaptiveMeanPool)
return print(io, "AdaptiveMeanPool(", a.out, ")")
end
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 5314 | function Base.show(io::IO, ::MIME"text/plain", x::AbstractExplicitContainerLayer)
if get(io, :typeinfo, nothing) === nothing # e.g. top level in REPL
_big_show(io, x)
elseif !get(io, :compact, false) # e.g. printed inside a Vector, but not a Matrix
_layer_show(io, x)
else
show(io, x)
end
end
function _big_show(io::IO, obj, indent::Int=0, name=nothing)
pre, post = "(", ")"
children = _get_children(obj)
if obj isa Function
println(io, " "^indent, isnothing(name) ? "" : "$name = ", obj)
elseif all(_show_leaflike, children)
_layer_show(io, obj, indent, name)
else
println(io, " "^indent, isnothing(name) ? "" : "$name = ", nameof(typeof(obj)), pre)
if obj isa Chain{<:NamedTuple}
for k in Base.keys(obj)
_big_show(io, obj.layers[k], indent + 4, k)
end
elseif obj isa Parallel{<:Any,<:NamedTuple}
if obj.connection !== nothing
_big_show(io, obj.connection, indent + 4)
end
for k in Base.keys(obj)
_big_show(io, obj.layers[k], indent + 4, k)
end
elseif obj isa PairwiseFusion
_big_show(io, obj.connection, indent + 4)
for k in Base.keys(obj)
_big_show(io, obj.layers[k], indent + 4, k)
end
elseif obj isa BranchLayer
for k in Base.keys(obj)
_big_show(io, obj.layers[k], indent + 4, k)
end
else
if children isa NamedTuple
for (k, c) in pairs(children)
_big_show(io, c, indent + 4, k)
end
else
for c in children
_big_show(io, c, indent + 4)
end
end
end
if indent == 0 # i.e. this is the outermost container
print(io, rpad(post, 2))
_big_finale(io, obj)
else
println(io, " "^indent, post, ",")
end
end
end
_show_leaflike(x) = Functors.isleaf(x) # mostly follow Functors, except for:
_show_leaflike(x::AbstractExplicitLayer) = false
_show_leaflike(::Tuple{Vararg{<:Number}}) = true # e.g. stride of Conv
_show_leaflike(::Tuple{Vararg{<:AbstractArray}}) = true # e.g. parameters of LSTMcell
function _get_children(l::AbstractExplicitContainerLayer{names}) where {names}
# length(names) == 1 && return getfield(l, names[1])
return NamedTuple{names}(getfield.((l,), names))
end
_get_children(p::Parallel) = p.connection === nothing ? p.layers : (p.connection, p.layers...)
_get_children(s::SkipConnection) = (s.layers, s.connection)
_get_children(s::WeightNorm) = (s.layer,)
_get_children(::Any) = ()
function Base.show(io::IO, ::MIME"text/plain", x::AbstractExplicitLayer)
if !get(io, :compact, false)
_layer_show(io, x)
else
show(io, x)
end
end
function _layer_show(io::IO, layer, indent::Int=0, name=nothing)
_str = isnothing(name) ? "" : "$name = "
str = _str * sprint(show, layer; context=io)
print(io, " "^indent, str, indent == 0 ? "" : ",")
paramlength = parameterlength(layer)
if paramlength > 0
print(io, " "^max(2, (indent == 0 ? 20 : 39) - indent - length(str)))
printstyled(io, "# ", underscorise(paramlength), " parameters"; color=:light_black)
nonparam = statelength(layer)
if nonparam > 0
printstyled(io, ", plus ", underscorise(nonparam), indent == 0 ? " non-trainable" : ""; color=:light_black)
end
end
return indent == 0 || println(io)
end
function _big_finale(io::IO, m)
paramlength = parameterlength(m)
nonparamlength = statelength(m)
pars = underscorise(paramlength)
bytes = Base.format_bytes(Base.summarysize(m))
nonparam = underscorise(nonparamlength)
printstyled(io, " "^08, "# Total: "; color=:light_black)
println(io, pars, " parameters,")
printstyled(io, " "^10, "# plus "; color=:light_black)
print(io, nonparam, " states, ")
printstyled(io, "summarysize "; color=:light_black)
print(io, bytes, ".")
end
_childarray_sum(f, x::AbstractArray{<:Number}) = f(x)
function _childarray_sum(f, x::ComponentArray)
if Flux.Functors.isleaf(x)
return 0
else
c = Flux.Functors.children(x)
if length(c) == 0
return 0
else
return sum(y -> _childarray_sum(f, y), c)
end
end
end
function _childarray_sum(f, x)
if Flux.Functors.isleaf(x)
return 0
else
c = Flux.Functors.children(x)
if length(c) == 0
return 0
else
return sum(y -> _childarray_sum(f, y), c)
end
end
end
# utility functions
underscorise(n::Integer) = join(reverse(join.(reverse.(Iterators.partition(digits(n), 3)))), '_')
function _nan_show(io::IO, x)
if !isempty(x) && _all(iszero, x)
printstyled(io, " (all zero)"; color=:cyan)
elseif _any(isnan, x)
printstyled(io, " (some NaN)"; color=:red)
elseif _any(isinf, x)
printstyled(io, " (some Inf)"; color=:red)
end
end
_any(f, xs::AbstractArray{<:Number}) = any(f, xs)
_any(f, xs) = any(x -> _any(f, x), xs)
_any(f, x::Number) = f(x)
_all(f, xs) = !_any(!f, xs)
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 2543 | """
Dropout(p; dims=:)
Dropout layer.
# Arguments
* To apply dropout along certain dimension(s), specify the `dims` keyword. e.g. `Dropout(p; dims = 3)` will randomly zero out entire channels on WHCN input (also called 2D dropout).
* Each execution of the Layer increments the `seed` and returns it wrapped in the state
Call [`testmode`](@ref) to switch to test mode.
"""
struct Dropout{T,D} <: AbstractExplicitLayer
p::T
dims::D
end
function initialstates(rng::AbstractRNG, ::Dropout)
# FIXME: Take PRNGs seriously
randn(rng, 1)
return (rng=replicate(rng), training=true)
end
function Dropout(p; dims=:)
@assert 0 ≤ p ≤ 1
return Dropout(p, dims)
end
function (d::Dropout{T})(x::AbstractArray{T}, ps, st::NamedTuple) where {T}
y, _, rng = dropout(st.rng, x, d.p, d.dims, istraining(st))
return y, merge(st, (rng=rng,))
end
function Base.show(io::IO, d::Dropout)
print(io, "Dropout(", d.p)
d.dims != Colon() && print(io, ", dims=", d.dims)
return print(io, ")")
end
"""
VariationalHiddenDropout(p; dims=:)
VariationalHiddenDropout layer. The only difference from Dropout is that the `mask` is retained until `EFL.update_state(l, :update_mask, true)` is called.
# Arguments
* To apply dropout along certain dimension(s), specify the `dims` keyword. e.g. `Dropout(p; dims = 3)` will randomly zero out entire channels on WHCN input (also called 2D dropout).
* Each execution of the Layer increments the `seed` and returns it wrapped in the state
Call [`testmode`](@ref) to switch to test mode.
"""
struct VariationalHiddenDropout{T,D} <: AbstractExplicitLayer
p::T
dims::D
end
function initialstates(rng::AbstractRNG, ::VariationalHiddenDropout)
# FIXME: Take PRNGs seriously
randn(rng, 1)
return (rng=replicate(rng), training=true, update_mask=true)
end
function VariationalHiddenDropout(p; dims=:)
@assert 0 ≤ p ≤ 1
return VariationalHiddenDropout(p, dims)
end
function (d::VariationalHiddenDropout{T})(x::AbstractArray{T}, ps, st::NamedTuple) where {T}
if st.update_mask
y, mask, rng = dropout(st.rng, x, d.p, d.dims, istraining(st))
return y, (mask=mask, rng=rng, update_mask=false, training=st.training)
else
if !istraining(st)
return x, st
end
return applydropout(x, st.mask), st
end
end
function Base.show(io::IO, d::VariationalHiddenDropout)
print(io, "VariationalHiddenDropout(", d.p)
d.dims != Colon() && print(io, ", dims=", d.dims)
return print(io, ")")
end
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 11969 | abstract type AbstractNormalizationLayer{affine,track_stats} <: AbstractExplicitLayer end
get_reduce_dims(::AbstractNormalizationLayer, ::AbstractArray) = error("Not Implemented Yet!!")
get_proper_shape(::AbstractNormalizationLayer, ::AbstractArray, y::Nothing, args...) = y
get_proper_shape(::AbstractNormalizationLayer, x::AbstractArray{T,N}, y::AbstractArray{T,N}, args...) where {T,N} = y
"""
BatchNorm(chs::Integer, λ=identity; initβ=zeros32, initγ=ones32,
affine = true, track_stats = true, ϵ=1f-5, momentum= 0.1f0)
[Batch Normalization](https://arxiv.org/abs/1502.03167) layer.
`BatchNorm` computes the mean and variance for each `D_1×...×D_{N-2}×1×D_N` input slice and normalises the input accordingly.
# Arguments
* `chs` should be the size of the channel dimension in your data (see below). Given an array with `N` dimensions, call the `N-1`th the channel dimension. For a batch of feature vectors this is just the data dimension, for `WHCN` images it's the usual channel dimension.
* After normalisation, elementwise activation `λ` is applied.
* If `affine=true`, it also applies a shift and a rescale to the input through to learnable per-channel bias β and scale γ parameters.
* If `track_stats=true`, accumulates mean and var statistics in training phase that will be used to renormalize the input in test phase.
Use [`testmode`](@ref) during inference.
# Examples
```julia
m = EFL.Chain(
EFL.Dense(784 => 64),
EFL.BatchNorm(64, relu),
EFL.Dense(64 => 10),
EFL.BatchNorm(10)
)
```
"""
struct BatchNorm{affine,track_stats,F1,F2,F3,N} <: AbstractNormalizationLayer{affine,track_stats}
λ::F1
ϵ::N
momentum::N
chs::Int
initβ::F2
initγ::F3
end
function BatchNorm(
chs::Int,
λ=identity;
initβ=zeros32,
initγ=ones32,
affine::Bool=true,
track_stats::Bool=true,
ϵ=1.0f-5,
momentum=0.1f0,
)
λ = NNlib.fast_act(λ)
return BatchNorm{affine,track_stats,typeof(λ),typeof(initβ),typeof(initγ),typeof(ϵ)}(
λ, ϵ, momentum, chs, initβ, initγ
)
end
function initialparameters(rng::AbstractRNG, l::BatchNorm{affine}) where {affine}
return affine ? (γ=l.initγ(rng, l.chs), β=l.initβ(rng, l.chs)) : NamedTuple()
end
function initialstates(rng::AbstractRNG, l::BatchNorm{affine,track_stats}) where {affine,track_stats}
return track_stats ? (μ=zeros32(rng, l.chs), σ²=ones32(rng, l.chs), training=true) : (training=true,)
end
parameterlength(l::BatchNorm{affine}) where {affine} = affine ? (l.chs * 2) : 0
statelength(l::BatchNorm{affine,track_stats}) where {affine,track_stats} = (track_stats ? 2 * l.chs : 0) + 1
get_reduce_dims(::BatchNorm, x::AbstractArray{T,N}) where {T,N} = [1:(N - 2); N]
function get_proper_shape(::BatchNorm, x::AbstractArray{T,N}, y::AbstractVector) where {T,N}
return reshape(y, ntuple(i -> i == N - 1 ? length(y) : 1, N)...)
end
function (BN::BatchNorm{affine,track_stats})(x::AbstractArray{T,N}, ps, st::NamedTuple) where {T,N,affine,track_stats}
@assert size(x, N - 1) == BN.chs
@assert !istraining(st) || size(x, N) > 1 "During `training`, `BatchNorm` can't handle Batch Size == 1"
x_normalized, xmean, xvar = normalization_forward(
BN,
x,
get_proper_shape(BN, x, track_stats ? st.μ : nothing),
get_proper_shape(BN, x, track_stats ? st.σ² : nothing),
get_proper_shape(BN, x, affine ? ps.γ : nothing),
get_proper_shape(BN, x, affine ? ps.β : nothing),
BN.λ;
training=istraining(st),
)
st_ = track_stats ? (μ=xmean, σ²=xvar, training=st.training) : st
return (x_normalized, st_)
end
function (BN::BatchNorm{affine,track_stats})(
x::Union{CuArray{T,2},CuArray{T,4},CuArray{T,5}}, ps, st::NamedTuple
) where {T<:Union{Float32,Float64},affine,track_stats}
# NNlibCUDA silently updates μ and σ² so copying them
if istraining(st)
μ2 = track_stats ? copy(st.μ) : nothing
σ²2 = track_stats ? copy(st.σ²) : nothing
else
if track_stats
μ2 = copy(st.μ)
σ²2 = copy(st.σ²)
else
reduce_dims = get_reduce_dims(BN, x)
μ2 = mean(x; dims=reduce_dims)
σ²2 = var(x; mean=μ2, dims=reduce_dims, corrected=false)
end
end
res = applyactivation(
BN.λ,
batchnorm(
affine ? ps.γ : nothing,
affine ? ps.β : nothing,
x,
μ2,
σ²2,
BN.momentum;
eps=BN.ϵ,
training=istraining(st),
),
Val(!istraining(st))
)
if track_stats
st = merge(st, (μ=μ2, σ²=σ²2))
end
return res, st
end
function Base.show(io::IO, l::BatchNorm{affine,track_stats}) where {affine,track_stats}
print(io, "BatchNorm($(l.chs)")
(l.λ == identity) || print(io, ", $(l.λ)")
affine || print(io, ", affine=false")
track_stats || print(io, ", track_stats=false")
return print(io, ")")
end
"""
GroupNorm(chs::Integer, groups::Integer, λ=identity; initβ=zeros32, initγ=ones32,
affine=true, track_stats=false, ϵ=1f-5, momentum=0.1f0)
[Group Normalization](https://arxiv.org/abs/1803.08494) layer.
# Arguments
* `chs` is the number of channels, the channel dimension of your input. For an array of N dimensions, the `N-1`th index is the channel dimension.
* `G` is the number of groups along which the statistics are computed. The number of channels must be an integer multiple of the number of groups.
* After normalisation, elementwise activation `λ` is applied.
* If `affine=true`, it also applies a shift and a rescale to the input through to learnable per-channel bias `β` and scale `γ` parameters.
* If `track_stats=true`, accumulates mean and var statistics in training phase that will be used to renormalize the input in test phase.
!!! warn
GroupNorm doesn't have CUDNN support. The GPU fallback is not very efficient.
"""
struct GroupNorm{affine,track_stats,F1,F2,F3,N} <: AbstractNormalizationLayer{affine,track_stats}
λ::F1
ϵ::N
momentum::N
chs::Int
initβ::F2
initγ::F3
groups::Int
end
function GroupNorm(
chs::Int,
groups::Int,
λ=identity;
initβ=zeros32,
initγ=ones32,
affine::Bool=true,
track_stats::Bool=true,
ϵ=1.0f-5,
momentum=0.1f0,
)
@assert chs % groups == 0 "The number of groups ($(groups)) must divide the number of channels ($chs)"
λ = NNlib.fast_act(λ)
return GroupNorm{affine,track_stats,typeof(λ),typeof(initβ),typeof(initγ),typeof(ϵ)}(
λ, ϵ, momentum, chs, initβ, initγ, groups
)
end
function initialparameters(rng::AbstractRNG, l::GroupNorm{affine}) where {affine}
return affine ? (γ=l.initγ(rng, l.chs), β=l.initβ(rng, l.chs)) : NamedTuple()
end
function initialstates(rng::AbstractRNG, l::GroupNorm{affine,track_stats}) where {affine,track_stats}
return track_stats ? (μ=zeros32(rng, l.groups), σ²=ones32(rng, l.groups), training=true) : (training=true,)
end
parameterlength(l::GroupNorm{affine}) where {affine} = affine ? (l.chs * 2) : 0
statelength(l::GroupNorm{affine,track_stats}) where {affine,track_stats} = (track_stats ? 2 * l.groups : 0) + 1
get_reduce_dims(::GroupNorm, ::AbstractArray{T,N}) where {T,N} = 1:(N - 1)
function get_proper_shape(::GroupNorm, x::AbstractArray{T,N}, y::AbstractVector, mode::Symbol) where {T,N}
if mode == :state
return reshape(y, ntuple(i -> i == N - 1 ? size(x, i) : 1, N)...)
else
return reshape(y, ntuple(i -> i ∈ (N - 2, N - 1) ? size(x, i) : 1, N)...)
end
end
function (GN::GroupNorm{affine,track_stats})(x::AbstractArray{T,N}, ps, st::NamedTuple) where {T,N,affine,track_stats}
sz = size(x)
@assert N > 2
@assert sz[N - 1] == GN.chs
x_ = reshape(x, sz[1:(N - 2)]..., sz[N - 1] ÷ GN.groups, GN.groups, sz[N])
x_normalized, xmean, xvar = normalization_forward(
GN,
x_,
get_proper_shape(GN, x_, track_stats ? st.μ : nothing, :state),
get_proper_shape(GN, x_, track_stats ? st.σ² : nothing, :state),
get_proper_shape(GN, x_, affine ? ps.γ : nothing, :param),
get_proper_shape(GN, x_, affine ? ps.β : nothing, :param),
GN.λ;
training=istraining(st),
)
st_ = if track_stats
(μ=xmean, σ²=xvar, training=st.training)
else
st
end
return reshape(x_normalized, sz), st_
end
function Base.show(io::IO, l::GroupNorm{affine,track_stats}) where {affine,track_stats}
print(io, "GroupNorm($(l.chs), $(l.groups)")
(l.λ == identity) || print(io, ", $(l.λ)")
affine || print(io, ", affine=false")
track_stats || print(io, ", track_stats=false")
return print(io, ")")
end
"""
WeightNorm(layer::AbstractExplicitLayer, which_params::NTuple{N,Symbol}, dims::Union{Tuple,Nothing}=nothing)
Applies [weight normalization](https://arxiv.org/abs/1602.07868) to a parameter in the given layer.
``w = g\\frac{v}{\\|v\\|}``
Weight normalization is a reparameterization that decouples the magnitude of a weight tensor from its direction. This updates the parameters in `which_params` (e.g. `weight`) using two parameters: one specifying the magnitude (e.g. `weight_g`) and one specifying the direction (e.g. `weight_v`).
By default, a norm over the entire array is computed. Pass `dims` to modify the dimension.
"""
struct WeightNorm{which_params,L<:AbstractExplicitLayer,D} <: AbstractExplicitLayer
layer::L
dims::D
end
function WeightNorm(
layer::AbstractExplicitLayer, which_params::NTuple{N,Symbol}, dims::Union{Tuple,Nothing}=nothing
) where {N}
return WeightNorm{Val{which_params},typeof(layer),typeof(dims)}(layer, dims)
end
function initialparameters(rng::AbstractRNG, wn::WeightNorm{Val{which_params}}) where {which_params}
ps_layer = initialparameters(rng, wn.layer)
ps_normalized = []
ps_unnormalized = []
i = 1
for k in propertynames(ps_layer)
v = ps_layer[k]
if k ∈ which_params
dim = wn.dims === nothing ? ndims(v) : wn.dims[i]
push!(ps_normalized, Symbol(string(k) * "_g") => _norm_except(v, dim))
push!(ps_normalized, Symbol(string(k) * "_v") => v)
i += 1
else
push!(ps_unnormalized, k => v)
end
end
ps_unnormalized = length(ps_unnormalized) == 0 ? NamedTuple() : (; ps_unnormalized...)
return (normalized=(; ps_normalized...), unnormalized=ps_unnormalized)
end
initialstates(rng::AbstractRNG, wn::WeightNorm) = initialstates(rng, wn.layer)
function (wn::WeightNorm)(x, ps::Union{ComponentArray,NamedTuple}, s::NamedTuple)
_ps = get_normalized_parameters(wn, wn.dims, ps.normalized)
return wn.layer(x, merge(_ps, ps.unnormalized), s)
end
@inbounds @generated function get_normalized_parameters(
::WeightNorm{Val{which_params}}, dims::T, ps::Union{ComponentArray,NamedTuple}
) where {T,which_params}
parameter_names = string.(which_params)
v_parameter_names = Symbol.(parameter_names .* "_v")
g_parameter_names = Symbol.(parameter_names .* "_g")
normalized_params_symbol = [gensym(p) for p in parameter_names]
function get_norm_except_invoke(i)
return if T <: Tuple
:(_norm_except(ps.$(v_parameter_names[i]), dims[$i]))
else
:(_norm_except(ps.$(v_parameter_names[i])))
end
end
calls = []
for i in 1:length(parameter_names)
push!(
calls,
:(
$(normalized_params_symbol[i]) =
ps.$(v_parameter_names[i]) .* (ps.$(g_parameter_names[i]) ./ $(get_norm_except_invoke(i)))
),
)
end
push!(calls, :(return NamedTuple{$(which_params)}(tuple($(Tuple(normalized_params_symbol)...)))))
return Expr(:block, calls...)
end
function Base.show(io::IO, w::WeightNorm{Val{which_params}}) where {which_params}
return print(io, "WeightNorm{", which_params, "}(", w.layer, ")")
end
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 1667 | using Test, Random, Statistics, Zygote, Metalhead, ExplicitFluxLayers, Functors
import Flux: relu, pullback, sigmoid, gradient
import ExplicitFluxLayers:
apply,
setup,
parameterlength,
statelength,
initialparameters,
initialstates,
update_state,
trainmode,
testmode,
transform,
AbstractExplicitLayer,
AbstractExplicitContainerLayer,
Dense,
BatchNorm,
SkipConnection,
Parallel,
Chain,
WrappedFunction,
NoOpLayer,
Conv,
MaxPool,
MeanPool,
GlobalMaxPool,
GlobalMeanPool,
Upsample
function gradtest(model, input, ps, st)
y, pb = Zygote.pullback(p -> model(input, p, st)[1], ps)
gs = pb(ones(Float32, size(y)))
# if we make it to here with no error, success!
return true
end
function run_model(m::AbstractExplicitLayer, x, mode=:test)
if mode == :test
ps, st = setup(Random.default_rng(), m)
st = testmode(st)
return apply(m, x, ps, st)[1]
end
end
function Base.isapprox(nt1::NamedTuple{fields}, nt2::NamedTuple{fields}) where {fields}
checkapprox(xy) = xy[1] ≈ xy[2]
checkapprox(t::Tuple{Nothing,Nothing}) = true
all(checkapprox, zip(values(nt1), values(nt2)))
end
@testset "ExplicitFluxLayers" begin
@testset "Layers" begin
@testset "Basic" begin
include("layers/basic.jl")
end
@testset "Normalization" begin
include("layers/normalize.jl")
end
end
# Might not want to run always
@testset "Metalhead Models" begin
@testset "ConvNets -- ImageNet" begin
include("models/convnets.jl")
end
end
end
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 5344 | @testset "Dense" begin
@testset "constructors" begin
layer = Dense(10, 100)
ps, st = setup(MersenneTwister(0), layer)
@test size(ps.weight) == (100, 10)
@test size(ps.bias) == (100, 1)
@test layer.λ == identity
layer = Dense(10, 100, relu; bias=false)
ps, st = setup(MersenneTwister(0), layer)
@test !haskey(ps, :bias)
@test layer.λ == relu
end
@testset "dimensions" begin
layer = Dense(10, 5)
ps, st = setup(MersenneTwister(0), layer)
# For now only support 2D/1D input
# @test length(first(apply(layer, randn(10), ps, st))) == 5
# @test_throws DimensionMismatch first(apply(layer, randn(1), ps, st))
# @test_throws MethodError first(apply(layer, 1, ps, st))
@test size(first(apply(layer, randn(10), ps, st))) == (5,)
@test size(first(apply(layer, randn(10, 2), ps, st))) == (5, 2)
# @test size(first(apply(layer, randn(10, 2, 3), ps, st))) == (5, 2, 3)
# @test size(first(apply(layer, randn(10, 2, 3, 4), ps, st))) == (5, 2, 3, 4)
# @test_throws DimensionMismatch first(apply(layer, randn(11, 2, 3), ps, st))
end
@testset "zeros" begin
@test begin
layer = Dense(10, 1, identity; initW=ones)
first(apply(layer, ones(10, 1), setup(MersenneTwister(0), layer)...))
end == 10 * ones(1, 1)
@test begin
layer = Dense(10, 1, identity; initW=ones)
first(apply(layer, ones(10, 2), setup(MersenneTwister(0), layer)...))
end == 10 * ones(1, 2)
@test begin
layer = Dense(10, 2, identity; initW=ones)
first(apply(layer, ones(10, 1), setup(MersenneTwister(0), layer)...))
end == 10 * ones(2, 1)
@test begin
layer = Dense(10, 2, identity; initW=ones)
first(apply(layer, [ones(10, 1) 2 * ones(10, 1)], setup(MersenneTwister(0), layer)...))
end == [10 20; 10 20]
@test begin
layer = Dense(10, 2, identity; initW=ones, bias=false)
first(apply(layer, [ones(10, 1) 2 * ones(10, 1)], setup(MersenneTwister(0), layer)...))
end == [10 20; 10 20]
end
end
@testset "SkipConnection" begin
@testset "zero sum" begin
input = randn(10, 10, 10, 10)
layer = SkipConnection(WrappedFunction(zero), (a, b) -> a .+ b)
@test apply(layer, input, setup(MersenneTwister(0), layer)...)[1] == input
end
@testset "concat size" begin
input = randn(10, 2)
layer = SkipConnection(Dense(10, 10), (a, b) -> hcat(a, b))
@test size(apply(layer, input, setup(MersenneTwister(0), layer)...)[1]) == (10, 4)
end
end
@testset "Parallel" begin
@testset "zero sum" begin
input = randn(10, 10, 10, 10)
layer = Parallel(+, WrappedFunction(zero), NoOpLayer())
@test layer(input, setup(MersenneTwister(0), layer)...)[1] == input
end
@testset "concat size" begin
input = randn(10, 2)
layer = Parallel((a, b) -> cat(a, b; dims=2), Dense(10, 10), NoOpLayer())
@test size(apply(layer, input, setup(MersenneTwister(0), layer)...)[1]) == (10, 4)
layer = Parallel(hcat, Dense(10, 10), NoOpLayer())
@test size(apply(layer, input, setup(MersenneTwister(0), layer)...)[1]) == (10, 4)
end
@testset "vararg input" begin
inputs = randn(10), randn(5), randn(4)
layer = Parallel(+, Dense(10, 2), Dense(5, 2), Dense(4, 2))
@test size(apply(layer, inputs, setup(MersenneTwister(0), layer)...)[1]) == (2,)
end
@testset "connection is called once" begin
CNT = Ref(0)
f_cnt = (x...) -> (CNT[] += 1; +(x...))
layer = Parallel(f_cnt, WrappedFunction(sin), WrappedFunction(cos), WrappedFunction(tan))
apply(layer, 1, setup(MersenneTwister(0), layer)...)
@test CNT[] == 1
apply(layer, (1, 2, 3), setup(MersenneTwister(0), layer)...)
@test CNT[] == 2
layer = Parallel(f_cnt, WrappedFunction(sin))
apply(layer, 1, setup(MersenneTwister(0), layer)...)
@test CNT[] == 3
end
# Ref https://github.com/FluxML/Flux.jl/issues/1673
@testset "Input domain" begin
struct Input
x
end
struct L1 <: AbstractExplicitLayer end
(::L1)(x, ps, st) = (ps.x * x, st)
EFL.initialparameters(rng::AbstractRNG, ::L1) = (x=randn(rng, Float32, 3, 3),)
Base.:*(a::AbstractArray, b::Input) = a * b.x
par = Parallel(+, L1(), L1())
ps, st = setup(MersenneTwister(0), par)
ip = Input(rand(Float32, 3, 3))
ip2 = Input(rand(Float32, 3, 3))
@test par(ip, ps, st)[1] ≈
par.layers[1](ip.x, ps.layer_1, st.layer_1)[1] + par.layers[2](ip.x, ps.layer_2, st.layer_2)[1]
@test par((ip, ip2), ps, st)[1] ≈
par.layers[1](ip.x, ps.layer_1, st.layer_1)[1] + par.layers[2](ip2.x, ps.layer_2, st.layer_2)[1]
gs = gradient((p, x...) -> sum(par(x, p, st)[1]), ps, ip, ip2)
gs_reg = gradient(ps, ip, ip2) do p, x, y
sum(par.layers[1](x.x, p.layer_1, st.layer_1)[1] + par.layers[2](y.x, p.layer_2, st.layer_2)[1])
end
@test gs[1] ≈ gs_reg[1]
@test gs[2].x ≈ gs_reg[2].x
@test gs[3].x ≈ gs_reg[3].x
end
end
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 2190 | @testset "BatchNorm" begin
let m = BatchNorm(2), x = [
1.0f0 3.0f0 5.0f0
2.0f0 4.0f0 6.0f0
]
ps, st = setup(MersenneTwister(0), m)
@test parameterlength(m) == 2 * 2
@test ps.β == [0, 0] # initβ(2)
@test ps.γ == [1, 1] # initγ(2)
y, st_ = pullback(m, x, ps, st)[1]
@test isapprox(y, [-1.22474 0 1.22474; -1.22474 0 1.22474], atol=1.0e-5)
# julia> x
# 2×3 Array{Float64,2}:
# 1.0 3.0 5.0
# 2.0 4.0 6.0
#
# μ of batch will be
# (1. + 3. + 5.) / 3 = 3
# (2. + 4. + 6.) / 3 = 4
#
# ∴ update rule with momentum:
# .1 * 3 + 0 = .3
# .1 * 4 + 0 = .4
@test st_.μ ≈ reshape([0.3, 0.4], 2, 1)
# julia> .1 .* var(x, dims = 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
# 2×1 Array{Float64,2}:
# 1.3
# 1.3
@test st_.σ² ≈ 0.1 .* var(x; dims=2, corrected=false) .* (3 / 2) .+ 0.9 .* [1.0, 1.0]
st_ = testmode(st_)
x′ = m(x, ps, st_)[1]
@test isapprox(x′[1], (1 .- 0.3) / sqrt(1.3), atol=1.0e-5)
@inferred m(x, ps, st)
end
let m = BatchNorm(2; track_stats=false), x = [1.0f0 3.0f0 5.0f0; 2.0f0 4.0f0 6.0f0]
ps, st = setup(MersenneTwister(0), m)
@inferred m(x, ps, st)
end
# with activation function
let m = BatchNorm(2, sigmoid), x = [
1.0f0 3.0f0 5.0f0
2.0f0 4.0f0 6.0f0
]
ps, st = setup(MersenneTwister(0), m)
st = testmode(st)
y, st_ = m(x, ps, st)
@test isapprox(y, sigmoid.((x .- st_.μ) ./ sqrt.(st_.σ² .+ m.ϵ)), atol=1.0e-7)
@inferred m(x, ps, st)
end
let m = BatchNorm(2), x = reshape(Float32.(1:6), 3, 2, 1)
ps, st = setup(MersenneTwister(0), m)
st = trainmode(st)
@test_throws AssertionError m(x, ps, st)[1]
end
let m = BatchNorm(32), x = randn(Float32, 416, 416, 32, 1)
ps, st = setup(MersenneTwister(0), m)
st = testmode(st)
m(x, ps, st)
@test (@allocated m(x, ps, st)) < 100_000_000
@inferred m(x, ps, st)
end
end
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | code | 3192 | @testset "AlexNet" begin
m = AlexNet()
m2 = transform(m.layers)
@test size(run_model(m2, rand(Float32, 256, 256, 3, 1))) == (1000, 1)
end
GC.gc(true)
@testset "VGG" begin
@testset "VGG($sz, batchnorm=$bn)" for sz in [11, 13, 16, 19], bn in [true, false]
m = VGG(sz, batchnorm = bn)
m2 = transform(m.layers)
@test size(run_model(m2, rand(Float32, 224, 224, 3, 1))) == (1000, 1)
GC.gc(true)
end
end
@testset "ResNet" begin
@testset "ResNet($sz)" for sz in [18, 34, 50, 101, 152]
m = ResNet(sz)
m2 = transform(m.layers)
@test size(run_model(m2, rand(Float32, 256, 256, 3, 1))) == (1000, 1)
GC.gc(true)
end
# @testset "Shortcut C" begin
# m = Metalhead.resnet(Metalhead.basicblock, :C; channel_config = [1, 1],
# block_config = [2, 2, 2, 2])
# m2 = transform(m.layers)
# @test_broken size(run_model(m2, rand(Float32, 256, 256, 3, 1))) == (1000, 1)
# GC.gc(true)
# end
end
@testset "ResNeXt" begin
@testset for depth in [50, 101, 152]
m = ResNeXt(depth)
m2 = transform(m.layers)
@test size(run_model(m2, rand(Float32, 224, 224, 3, 1))) == (1000, 1)
GC.gc(true)
end
end
@testset "GoogLeNet" begin
m = GoogLeNet()
m2 = transform(m.layers)
@test size(run_model(m2, rand(Float32, 224, 224, 3, 1))) == (1000, 1)
GC.gc(true)
end
@testset "Inception3" begin
m = Inception3()
m2 = transform(m.layers)
@test size(run_model(m2, rand(Float32, 224, 224, 3, 1))) == (1000, 1)
GC.gc(true)
end
@testset "SqueezeNet" begin
m = SqueezeNet()
m2 = transform(m.layers)
@test size(run_model(m2, rand(Float32, 224, 224, 3, 1))) == (1000, 1)
GC.gc(true)
end
@testset "DenseNet" begin
@testset for sz in [121, 161, 169, 201]
m = DenseNet(sz)
m2 = transform(m.layers)
@test size(run_model(m2, rand(Float32, 224, 224, 3, 1))) == (1000, 1)
GC.gc(true)
end
end
@testset "MobileNet" verbose = true begin
@testset "MobileNetv1" begin
m = MobileNetv1()
m2 = transform(m.layers)
@test size(run_model(m2, rand(Float32, 224, 224, 3, 1))) == (1000, 1)
GC.gc(true)
end
GC.gc()
@testset "MobileNetv2" begin
m = MobileNetv2()
m2 = transform(m.layers)
@test size(run_model(m2, rand(Float32, 224, 224, 3, 1))) == (1000, 1)
GC.gc(true)
end
GC.gc()
@testset "MobileNetv3" verbose = true begin
@testset for mode in [:small, :large]
m = MobileNetv3(mode)
m2 = transform(m.layers)
@test size(run_model(m2, rand(Float32, 224, 224, 3, 1))) == (1000, 1)
GC.gc(true)
end
end
end
GC.gc()
# TODO: ConvNeXt requires LayerNorm Implementation
GC.gc()
@testset "ConvMixer" verbose = true begin
@testset for mode in [:base, :large, :small]
m = ConvMixer(mode)
m2 = transform(m.layers)
@test size(run_model(m2, rand(Float32, 224, 224, 3, 1))) == (1000, 1)
GC.gc(true)
end
end | ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | docs | 6972 | # ExplicitFluxLayers
[](https://www.repostatus.org/#active)
[](https://github.com/avik-pal/ExplicitFluxLayers.jl/actions/workflows/CI.yml)
[](https://codecov.io/gh/avik-pal/ExplicitFluxLayers.jl)
Explicit Parameterization of Flux Layers
## Installation
```julia
] add ExplicitFluxLayers
```
## Getting Started
```julia
using ExplicitFluxLayers, Random, Optimisers
# Seeding
rng = Random.default_rng()
Random.seed!(rng, 0)
# Construct the layer
model = EFL.Chain(
EFL.BatchNorm(128),
EFL.Dense(128, 256, tanh),
EFL.BatchNorm(256),
EFL.Chain(
EFL.Dense(256, 1, tanh),
EFL.Dense(1, 10)
)
)
# Parameter and State Variables
ps, st = EFL.setup(rng, model) .|> EFL.gpu
# Dummy Input
x = rand(rng, Float32, 128, 2) |> EFL.gpu
# Run the model
y, st = EFL.apply(model, x, ps, st)
# Gradients
gs = gradient(p -> sum(EFL.apply(model, x, p, st)[1]), ps)[1]
# Optimization
st_opt = Optimisers.setup(Optimisers.ADAM(0.0001), ps)
st_opt, ps = Optimisers.update(st_opt, ps, gs)
```
## Design Principles
* **Layers must be immutable** -- i.e. they cannot store any parameters/states but rather stores information to construct them
* **Layers return a Tuple containing the result and the updated state**
* **Layers are pure functions**
* **Given same inputs the outputs must be same** -- stochasticity is controlled by seeds passed in the state variables
* **Easily extendible for Custom Layers**: Each Custom Layer should be a subtype of either:
a. `AbstractExplicitLayer`: Useful for Base Layers and needs to define the following functions
1. `initialparameters(rng::AbstractRNG, layer::CustomAbstractExplicitLayer)` -- This returns a `ComponentArray`/`NamedTuple` containing the trainable parameters for the layer.
2. `initialstates(rng::AbstractRNG, layer::CustomAbstractExplicitLayer)` -- This returns a NamedTuple containing the current state for the layer. For most layers this is typically empty. Layers that would potentially contain this include `BatchNorm`, Recurrent Neural Networks, etc.
3. `parameterlength(layer::CustomAbstractExplicitLayer)` & `statelength(layer::CustomAbstractExplicitLayer)` -- These can be automatically calculated, but it is recommended that the user defines these.
b. `AbstractExplicitContainerLayer`: Used when the layer is storing other `AbstractExplicitLayer`s or `AbstractExplicitContainerLayer`s. This allows good defaults of the dispatches for functions mentioned in the previous point.
## Why use ExplicitFluxLayers over Flux?
* **Large Neural Networks**
* For small neural networks we recommend [SimpleChains.jl](https://github.com/PumasAI/SimpleChains.jl).
* For SciML Applications (Neural ODEs, Deep Equilibrium Models) solvers typically expect a monolithic parameter vector. Flux enables this via its `destructure` mechanism, however, it often leads to [weird bugs](https://github.com/FluxML/Flux.jl/issues?q=is%3Aissue+destructure). EFL forces users to make an explicit distinction between state variables and parameter variables to avoid these issues.
* Comes battery-included for distributed training using [FluxMPI.jl](https://github.com/avik-pal/FluxMPI.jl)
* **Sensible display of Custom Layers** -- Ever wanted to see Pytorch like Network printouts or wondered how to extend the pretty printing of Flux's layers. ExplicitFluxLayers handles all of that by default.
* **Less Bug-ridden Code**
* *No arbitrary internal mutations* -- all layers are implemented as pure functions.
* *All layers are deterministic* given the parameter and state -- if the layer is supposed to be stochastic (say `Dropout`), the state must contain a seed which is then updated after the function call.
* **Easy Parameter Manipulation** -- Wondering why Flux doesn't have `WeightNorm`, `SpectralNorm`, etc. The implicit parameter handling makes it extremely hard to pass parameters around without mutations which AD systems don't like. With ExplicitFluxLayers implementing them is outright simple.
## Usage Examples
* Differential Equations + Deep Learning
* [Neural ODEs for MNIST Image Classification](examples/NeuralODE/) -- Example borrowed from [DiffEqFlux.jl](https://diffeqflux.sciml.ai/dev/examples/mnist_neural_ode/)
* [Deep Equilibrium Models](https://github.com/SciML/FastDEQ.jl)
* Image Classification
* [ImageNet](examples/ImageNet/main.jl)
* Distributed Training using [MPI.jl](https://github.com) -- [FluxMPI](https://github.com/avik-pal/FluxMPI.jl) + [FastDEQ](https://github.com/SciML/FastDEQ.jl/examples)
## Recommended Libraries for Various ML Tasks
ExplicitFluxLayers is exclusively focused on designing Neural Network Architectures. All other parts of the DL training/evaluation pipeline should be offloaded to the following frameworks:
* Data Manipulation/Loading -- [Augmentor.jl](https://evizero.github.io/Augmentor.jl/stable/), [DataLoaders.jl](https://lorenzoh.github.io/DataLoaders.jl/docs/dev/), [Images.jl](https://juliaimages.org/stable/)
* Optimisation -- [Optimisers.jl](https://github.com/FluxML/Optimisers.jl), [ParameterSchedulers.jl](https://darsnack.github.io/ParameterSchedulers.jl/dev/README.html)
* Automatic Differentiation -- [Zygote.jl](https://github.com/FluxML/Zygote.jl)
* Parameter Manipulation -- [Functors.jl](https://fluxml.ai/Functors.jl/stable/)
* Model Checkpointing -- [Serialization.jl](https://docs.julialang.org/en/v1/stdlib/Serialization/)
* Activation Functions / Common Neural Network Primitives -- [NNlib.jl](https://fluxml.ai/Flux.jl/stable/models/nnlib/)
* Distributed Training -- [FluxMPI.jl](https://github.com/avik-pal/FluxMPI.jl)
* Training Visualization -- [Wandb.jl](https://github.com/avik-pal/Wandb.jl)
If you found any other packages useful, please open a PR and add them to this list.
## Implemented Layers
We don't have a Documentation Page as of now. But all these functions have docs which can be access in the REPL help mode.
* `Chain`, `Parallel`, `SkipConnection`, `BranchLayer`, `PairwiseFusion`
* `Dense`, `Diagonal`
* `Conv`, `MaxPool`, `MeanPool`, `GlobalMaxPool`, `GlobalMeanPool`, `Upsample`, `AdaptiveMaxPool`, `AdaptiveMeanPool`
* `BatchNorm`, `WeightNorm`, `GroupNorm`
* `ReshapeLayer`, `SelectDim`, `FlattenLayer`, `NoOpLayer`, `WrappedFunction`
* `Dropout`, `VariationalHiddenDropout`
## TODOs
- [ ] Support Recurrent Neural Networks
- [ ] Add wider support for Flux Layers
- [ ] Convolution --> ConvTranspose, CrossCor
- [ ] Upsampling --> PixelShuffle
- [ ] General Purpose --> Maxout, Bilinear, Embedding, AlphaDropout
- [ ] Normalization --> LayerNorm, InstanceNorm
- [ ] Port tests over from Flux
| ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 0.2.0 | 6f46e437e15aa01da5db2bec9d2d85eb5142b9f8 | docs | 3637 | # Imagenet Training using ExplicitFluxLayers
This implements training of popular model architectures, such as ResNet, AlexNet, and VGG on the ImageNet dataset.
## Requirements
* Install [julia](https://julialang.org/)
* In the Julia REPL instantiate the `Project.toml` in the parent directory
* Download the ImageNet dataset from http://www.image-net.org/
- Then, move and extract the training and validation images to labeled subfolders, using [the following shell script](https://github.com/pytorch/examples/blob/main/imagenet/extract_ILSVRC.sh)
## Training
To train a model, run `main.jl` with the desired model architecture and the path to the ImageNet dataset:
```bash
julia main.jl -t 16 -a ResNet18 [imagenet-folder with train and val folders]
```
The default learning rate schedule starts at 0.1 and decays by a factor of 10 every 30 epochs. This is appropriate for ResNet and models with batch normalization, but too high for AlexNet and VGG. Use 0.01 as the initial learning rate for AlexNet or VGG:
```bash
julia main.jl -t 16 -a AlexNet --learning-rate 0.01 [imagenet-folder with train and val folders]
```
## Distributed Data Parallel Training
Ensure that you have a CUDA-Aware MPI Installed (else communication might severely bottleneck training) and [MPI.jl](https://juliaparallel.org/MPI.jl/stable/usage/#CUDA-aware-MPI-support) is aware of this build. Apart from this run the script using `mpiexecjl`.
## Usage
```bash
usage: main.jl [--arch ARCH] [--epochs EPOCHS]
[--start-epoch START-EPOCH] [--batch-size BATCH-SIZE]
[--learning-rate LEARNING-RATE] [--momentum MOMENTUM]
[--weight-decay WEIGHT-DECAY] [--print-freq PRINT-FREQ]
[--resume RESUME] [--evaluate] [--pretrained]
[--seed SEED] [--distributed] [-h] data
ExplicitFluxLayers ImageNet Training
positional arguments:
data path to dataset
optional arguments:
--arch ARCH model architectures: VGG19, ResNet50,
GoogLeNet, ResNeXt152, DenseNet201,
MobileNetv3_small, ResNet34, ResNet18,
DenseNet121, ResNet101, VGG13_BN, DenseNet169,
MobileNetv1, VGG11_BN, DenseNet161,
MobileNetv3_large, VGG11, VGG19_BN, VGG16_BN,
VGG16, ResNeXt50, AlexNet, VGG13, ResNeXt101,
MobileNetv2, ConvMixer or ResNet152 (default:
"ResNet18")
--epochs EPOCHS number of total epochs to run (type: Int64,
default: 90)
--start-epoch START-EPOCH
manual epoch number (useful on restarts)
(type: Int64, default: 0)
--batch-size BATCH-SIZE
mini-batch size, this is the total batch size
across all GPUs (type: Int64, default: 256)
--learning-rate LEARNING-RATE
initial learning rate (type: Float32, default:
0.1)
--momentum MOMENTUM momentum (type: Float32, default: 0.9)
--weight-decay WEIGHT-DECAY
weight decay (type: Float32, default: 0.0001)
--print-freq PRINT-FREQ
print frequency (type: Int64, default: 10)
--resume RESUME resume from checkpoint (default: "")
--evaluate evaluate model on validation set
--pretrained use pre-trained model
--seed SEED seed for initializing training. (type: Int64,
default: 0)
-h, --help show this help message and exit
``` | ExplicitFluxLayers | https://github.com/avik-pal/Lux.jl.git |
|
[
"MIT"
] | 3.0.0 | a8e18eb383b5ecf1b5e6fc237eb39255044fd92b | code | 3224 | module ScientificTypesBase
# Type exports
export Convention
# re-export-able types and methods
export Scientific, Found, Unknown, Known, Finite, Infinite,
OrderedFactor, Multiclass, Count, Continuous,
ScientificTimeType, ScientificDate, ScientificDateTime,
ScientificTime,
Textual, Binary,
ColorImage, GrayImage, Image, Table,
Density, Sampleable,
ManifoldPoint,
Annotated, AnnotationOf, Multiset, Iterator,
Compositional
export elscitype, nonmissing
# -------------------------------------------------------------------
# Scientific Types
abstract type Found end
abstract type Known <: Found end
abstract type Unknown <: Found end
abstract type Annotated{S} <: Known end
abstract type AnnotationOf{S} <: Known end
abstract type Multiset{S} <: Known end
# for iterators over objects with scitype Ω that do not have some
# AbstractVector scitype:
abstract type Iterator{Ω} end
abstract type Infinite <: Known end
abstract type Finite{N} <: Known end
abstract type Image{W,H} <: Known end
abstract type ScientificTimeType <: Known end
abstract type Textual <: Known end
abstract type Table{K} <: Known end
abstract type Continuous <: Infinite end
abstract type Count <: Infinite end
abstract type Multiclass{N} <: Finite{N} end
abstract type OrderedFactor{N} <: Finite{N} end
abstract type ScientificDate <: ScientificTimeType end
abstract type ScientificTime <: ScientificTimeType end
abstract type ScientificDateTime <: ScientificTimeType end
abstract type GrayImage{W,H} <: Image{W,H} end
abstract type ColorImage{W,H} <: Image{W,H} end
# when sampled, objects with these scitypes return objects of scitype Ω:
abstract type Sampleable{Ω} end
abstract type Density{Ω} <: Sampleable{Ω} end
abstract type ManifoldPoint{M} <: Known end
# compositional data with D components, see CoDa.jl
abstract type Compositional{D} <: Known end
# aliases:
const Binary = Finite{2}
const Scientific = Union{Missing,Found} # deprecated (no longer publicized)
# for internal use
const Arr = AbstractArray
const TUPLE_SPECIALIZATION_THRESHOLD = 20
# ------------------------------------------------------------------
# Convention
abstract type Convention end
# -----------------------------------------------------------------
# nonmissing
if VERSION < v"1.3"
# see also discourse.julialang.org/t/get-non-missing-type-in-the-case-of-parametric-type/29109
"""
nonmissingtype(TT)
Return the type `T` if `TT = Union{Missing,T}` for some `T` and return `TT`
otherwise.
"""
function nonmissingtype(::Type{T}) where T
return T isa Union ? ifelse(T.a == Missing, T.b, T.a) : T
end
end
nonmissing = nonmissingtype
# -----------------------------------------------------------------
# Constructor for table scientific type
"""
Table(...)
Constructor for the `Table` scientific type with:
```
Table(S1, S2, ..., Sn) <: Table
```
where `S1, ..., Sn` are the scientific type of the table's columns which
are expected to be represented by abstract vectors.
"""
Table(Ts::Type...) = Table{<:Union{(Arr{<:T,1} for T in Ts)...}}
# -----------------------------------------------------------------
# scitype
include("scitype.jl")
end # module
| ScientificTypesBase | https://github.com/JuliaAI/ScientificTypesBase.jl.git |
|
[
"MIT"
] | 3.0.0 | a8e18eb383b5ecf1b5e6fc237eb39255044fd92b | code | 4546 | # -----------------------------------------------------------------------------------------
# This file introduces `scitype`, `Scitype` methods and associated fallbacks methods.
# It also defines some conveneince methods.
# -----------------------------------------------------------------------------------------
# -----------------------------------------------------------------------------------------
# scitype function (generic) with fallbacks.
"""
scitype(X, C::Convention)
The scientific type (interpretation) of object `X` (distinct from its
machine type) as specified by the convention 'C'.
"""
function scitype end
scitype(X, C::Convention) = fallback_scitype(X, C)
fallback_scitype(X, C) = Unknown
fallback_scitype(::Missing, C) = Missing
fallback_scitype(::Nothing, C) = Nothing
# -----------------------------------------------------------------------------------------
# `Scitype` function (generic) with fallbacks.
# (When implemented can considerably speed-up computation of `scitype` of abstractarrays.)
"""
Scitype(T::Type, C::Convention)
Method for implementers of a convention `C` to enable speed-up of
scitype evaluations for arrays.
In general, one cannot infer the scitype of an object of type
`AbstractArray{T, N}` from the machine type `T` alone.
Nevertheless, for some *restricted* machine types `U`, the statement
`type(X) == AbstractArray{T, N}` for some `T<:U` already allows one
deduce that `scitype(X, C) = AbstractArray{S, N}`, where `S` is determined
by `U`, and convention `C` alone. This is the case in the `DefaultConvention` which is
used by *ScientificTypes.jl* , where for example, if `U = Integer`, then `S = Count`.
Such shortcuts are specified as follows:
```
Scitype(::Type{<:U}, ::C) = S
```
which incurs a considerable speed-up in the computation of `scitype(X, C)`.
There is also a speed-up for the case that `T <: Union{U, Missing}`.
For example, in the `DefaultConvention`, one has
```
Scitype(::Type{<:Integer}, ::DefaultConvention) = Count
```
"""
function Scitype end
Scitype(T, C::Convention) = Fallback_Scitype(T, C)
Fallback_Scitype(::Type, C) = Unknown
# To distinguish between `Any` type and `Union{T, Missing}` for some more
# specialised `T`, we define the `Any` case explicitly.
Fallback_Scitype(::Type{Any}, C) = Unknown
# For the case `Union{T, Missing}` we return `Union{S, Missing}` with `S`
# the scientific type corresponding to `T`.
function Fallback_Scitype(::Type{Union{T, Missing}}, C) where T
return Union{Scitype(Missing, C), Scitype(T, C)}
end
# For the case `Missing` and `Nothing`,
# we return `Missing` and `Nothing` respectively.
Fallback_Scitype(::Type{Missing}, C) = Missing
Fallback_Scitype(::Type{Nothing}, C) = Nothing
# ---------------------------------------------------------------------------------------
# Fallbacks for `scitype` of tuples and abstractarrays.
function fallback_scitype(@nospecialize(t::Tuple), C)
if length(t) <= TUPLE_SPECIALIZATION_THRESHOLD
return _tuple_scitype(t, C)
else
return Tuple{(scitype(el, C) for el in t)...}
end
end
@inline function _tuple_scitype(t::T, C) where {T}
if @generated
stypes = Tuple(
:(scitype(getindex(t, $i), C)) for i in 1:fieldcount(T)
)
return :(Tuple{$(stypes...)})
else
stypes_ = Tuple(
scitype(getindex(t, i), C) for i in 1:fieldcount(T)
)
return Tuple{(stypes_)...}
end
end
function fallback_scitype(A::Arr{T}, C) where T
return arr_scitype(A, Scitype(T, C), C)
end
"""
arr_scitype(A, S, C)
Return the scitype associated with an array `A` of type `{T, N}` assuming an
explicit `Scitype` correspondence exist mapping `T` to `S`.
"""
@inline function arr_scitype(
@nospecialize(A::Arr{T, N}), S::Type, C;
tight::Bool = false
) where {T, N}
if S === Unknown
return Arr{scitype_union(A, C), N}
elseif S === Union{Scitype(Missing, C), Unknown}
return Arr{Union{Scitype(Missing, C), scitype_union(A, C)}, N}
else
return Arr{S, N}
end
end
# -----------------------------------------------------------------------------------------
# internal methods.
"""
scitype_union(A, C::convention)
Return the type union, over all elements `x` generated by the iterable `A`,
of `scitype(x, C)` for a given convention `C`. See also [`scitype`](@ref).
"""
function scitype_union(A, C::Convention)
iterate(A) === nothing && return Unknown
reduce((a, b)->Union{a, b}, (scitype(el, C) for el in A))
end
| ScientificTypesBase | https://github.com/JuliaAI/ScientificTypesBase.jl.git |
|
[
"MIT"
] | 3.0.0 | a8e18eb383b5ecf1b5e6fc237eb39255044fd92b | code | 476 | @testset "nonmissing" begin
U = Union{Missing,Int}
@test nonmissing(U) == Int
end
@testset "table" begin
T0 = Table(Continuous)
@test T0 == Table{K} where K<:AbstractVector{<:Continuous}
T1 = Table(Continuous, Count)
@test T1 == Table{K} where K<:Union{AbstractVector{<:Continuous}, AbstractVector{<:Count}}
T2 = Table(Continuous, Union{Missing,Continuous})
@test T2 == Table{K} where K<:Union{AbstractVector{<:Union{Missing,Continuous}}}
end
| ScientificTypesBase | https://github.com/JuliaAI/ScientificTypesBase.jl.git |
|
[
"MIT"
] | 3.0.0 | a8e18eb383b5ecf1b5e6fc237eb39255044fd92b | code | 156 | using Test, ScientificTypesBase, Tables
import ScientificTypesBase: scitype
const ST = ScientificTypesBase
include("convention.jl")
include("scitype.jl")
| ScientificTypesBase | https://github.com/JuliaAI/ScientificTypesBase.jl.git |
|
[
"MIT"
] | 3.0.0 | a8e18eb383b5ecf1b5e6fc237eb39255044fd92b | code | 1985 | struct MockMLJ <: Convention end
@testset "void types" begin
@test scitype(nothing, MockMLJ()) == Nothing
@test scitype(missing, MockMLJ()) == Missing
@test scitype([nothing, nothing], MockMLJ()) == AbstractVector{Nothing}
end
@testset "scitype" begin
X = [1, 2, 3]
@test scitype(X, MockMLJ()) == AbstractVector{Unknown}
@test scitype(missing, MockMLJ()) == Missing
@test scitype((5, 2), MockMLJ()) == Tuple{Unknown,Unknown}
anyv = Any[5]
@test scitype(anyv[1], MockMLJ()) == Unknown
X = [missing, 1, 2, 3]
@test scitype(X, MockMLJ()) == AbstractVector{Union{Missing, Unknown}}
Xnm = X[2:end]
@test scitype(Xnm, MockMLJ()) == AbstractVector{Union{Missing, Unknown}}
Xm = Any[missing, missing]
@test scitype(Xm, MockMLJ()) == AbstractVector{Missing}
@test scitype([missing, missing], MockMLJ()) == AbstractVector{Missing}
end
@testset "scitype2" begin
ScientificTypesBase.Scitype(::Type{<:Integer}, ::MockMLJ) = Count
X = [1, 2, 3]
@test scitype(X, MockMLJ()) == AbstractVector{Count}
Xm = [missing, 1, 2, 3]
@test scitype(Xm, MockMLJ()) == AbstractVector{Union{Missing,Count}}
Xnm = Xm[2:end]
@test scitype(Xnm, MockMLJ()) == AbstractVector{Union{Missing,Count}}
end
@testset "temporal types" begin
@test ScientificDate <: ScientificTimeType
@test ScientificDateTime <: ScientificTimeType
@test ScientificTime <: ScientificTimeType
end
@testset "compositional" begin
@test Compositional{3} <: Known
end
@testset "Empty array" begin
ScientificTypesBase.Scitype(::Type{<:Integer}, ::MockMLJ) = Count
ScientificTypesBase.Scitype(::Type{Missing}, ::MockMLJ) = Missing
@test scitype(Int[], MockMLJ()) == AbstractVector{Count}
@test scitype(Any[], MockMLJ()) == AbstractVector{Unknown}
@test scitype(Missing[], MockMLJ()) == AbstractVector{Missing}
@test scitype(Vector{Union{Int,Missing}}(), MockMLJ()) == AbstractVector{Union{Missing,Count}}
end
| ScientificTypesBase | https://github.com/JuliaAI/ScientificTypesBase.jl.git |
|
[
"MIT"
] | 3.0.0 | a8e18eb383b5ecf1b5e6fc237eb39255044fd92b | docs | 1115 | MIT License
Copyright (c) 2021- JuliaAI
Copyright (c) until 2020 The Alan Turing Institute
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
| ScientificTypesBase | https://github.com/JuliaAI/ScientificTypesBase.jl.git |
|
[
"MIT"
] | 3.0.0 | a8e18eb383b5ecf1b5e6fc237eb39255044fd92b | docs | 11530 | # ScientificTypesBase.jl
| [Linux] | Coverage |
| :-----------: | :------: |
| [](https://github.com/JuliaAI/ScientificTypesBase.jl/actions)| [](http://codecov.io/github/JuliaAI/ScientificTypesBase.jl?branch=master) |
A light-weight, dependency-free, Julia interface defining a collection
of types (without instances) for implementing conventions about the
scientific interpretation of data.
This package makes a distinction between the **machine type** and
**scientific type** of a Julia object:
* The _machine type_ refers to the Julia type being used to represent
the object (for instance, `Float64`).
* The _scientific type_ is one of the types defined in this package
reflecting how the object should be _interpreted_ (for instance,
`Continuous` or `Multiclass{3}`).
The distinction is useful because the same machine type is often used
to represent data with *differing* scientific interpretations - `Int`
is used for product numbers (a factor) but also for a person's weight
(a continuous variable) - while the same scientific type is frequently
represented by *different* machine types - both `Int` and `Float64`
are used to represent weights, for example.
For implementation of a concrete convention assigning specific
scientific types (interpretations) to julia objects, see instead the
[ScientificTypes.jl](https://github.com/JuliaAI/ScientificTypes.jl)
package.
Formerly "ScientificTypesBase.jl" code lived at "ScientificTypes.jl".
Since version 2.0 the code at "ScientificTypes.jl" is code that
formerly resided at "MLJScientificTypes.jl" (now deprecated).
```
Finite{N}
├─ Multiclass{N}
└─ OrderedFactor{N}
Infinite
├─ Continuous
└─ Count
Image{W,H}
├─ ColorImage{W,H}
└─ GrayImage{W,H}
ScientificTimeType
├─ ScientificDate
├─ ScientificTime
└─ ScientificDateTime
Sampleable{Ω}
└─ Density{Ω}
Annotated{S}
AnnotationFor{S}
Multiset{S}
Table{K}
Textual
ManifoldPoint{MT}
Compositional{D}
Unknown
```
> Figure 1. The type hierarchy defined in ScientificTypesBase.jl (The Julia native `Missing` and `Nothing` type are also regarded as a scientific types).
#### Contents
- [Who is this repository for?](#who-is-this-repository-for)
- [What's provided here?](#what-is-provided-here)
- [Defining a new convention](#defining-a-new-convention)
## Who is this repository for?
This package should only be used by developers who intend to define
their own scientific type convention. The
[ScientificTypes.jl](https://github.com/JuliaAI/ScientificTypes.jl)
package (versions 2.0 and higher) implements such a convention, first
adopted in the [MLJ](https://github.com/JuliaAI/MLJ.jl) universe, but
which can be adopted by other statistical and scientific software.
The purpose of this package is to provide a mechanism for articulating
conventions around the scientific interpretation of data. With such a
convention in place, a numerical algorithm declares its data
requirements in terms of scientific types, the user has a convenient
way to check compliance of his data with that requirement, and the
developer understands precisely the constraints his data specification
places on the actual machine type of the data supplied.
## What is provided here?
#### 1. Scientific types
ScientificTypesBase provides the new julia types appearing in Figure 1
above, signifying "scientific type" for use in method dispatch (e.g.,
for trait values). Instances of the types play no role.
The types `Finite{N}`, `Multiclass{N}` and `OrderedFactor{N}` are all
parametrised by the number of levels `N`, while `Image{W,H}`,
`GrayImage{W,H}` and `ColorImage{W,H}` are all parametrised by the
image width and height dimensions, `(W, H)`. The parameter `Ω` in
`Sampleable{Ω}` and `Density{Ω}` is the scientific type of the sample
space. The type `ManifoldPoint{MT}`, intended for points lying on a
manifold, is parameterized by the type `MT` of the manifold to which
the points belong.
The scientific type `ScientificDate` is for representing dates (for
example, the 23rd of April, 2029), `ScientificTime` represents time
within a 24-hour day, while `ScientificDateTime` represents both a
time of day and date. These types mirror the types `Date`, `Time` and
`DateTime` from the Julia standard library Dates (and indeed, in the
[MLJ
convention](https://github.com/JuliaAI/ScientificTypes.jl)
the difference is only a formal one).
The type parameter `K` in `Table{K}` is for conveying the scientific
type(s) of a table's columns. See [More on the `Table`
type](#more-on-the-table-type).
The julia native types `Missing` and `Nothing` are also regarded as scientific
types.
#### 2. The `scitype` and `Scitype` methods
ScientificTypesBase provides a method `scitype` for articulating a
particular convention: `scitype(X, C())` is the scientific type of object
`X` under convention `C`. For example, in the `DefaultConvention` convention, implemented
by [ScientificTypes](https://github.com/JuliaAI/ScientificTypes.jl),
one has `scitype(3.14, Defaultconvention()) = Continuous` and
`scitype(42, Defaultconvention()) = Count`.
> *Aside.* `scitype` is *not* a mapping of types to types but from
> *instances* to types. This is because one may want to distinguish
> the scientific type of objects having the same machine type. For
> example, in the `DefaultConvention` implemented in ScientificTypes.jl, some
> `CategoricalArrays.CategoricalValue` objects have the scitype
> `OrderedFactor` but others are `Multiclass`. In CategoricalArrays.jl
> the `ordered` attribute is not a type parameter and so it can only
> be extracted from instances.
The developer implementing a particular scientific type convention
[overloads](#defining-a-new-convention) the `scitype` method
appropriately. However, this package provides certain rudimentary
fallback behaviour:
**Property 0.** For any convention `C`, `scitype(missing, C()) == Missing`
and `scitype(nothing, C()) == Nothing` (regarding `Missing` and `Nothing`
as native scientific types).
**Property 1.** For any convention `C` `scitype(X, C()) == Unknown`, unless
`X` is a tuple, an abstract array, `nothing`, or `missing`.
**Property 2.** For any convention `C`, The scitype of a `k`-tuple is
`Tuple{S1, S2, ..., Sk}` where `Sj` is the scitype of the `j`th element under
convention `C`.
For example, in the `Defaultconvention` convention implemented
by [ScientificTypes](https://github.com/JuliaAI/ScientificTypes.jl):
```julia
julia> scitype((1, 4.5), Defaultconvention())
Tuple{Count, Continuous}
```
**Property 3.** For any given convention `C`, the scitype of an
`AbstractArray`, `A`, is always`AbstractArray{U}` where `U` is the union
of the scitypes of the elements of `A` under convention `C`, with one
exception: If `typeof(A) <:AbstractArray{Union{Missing,T}}` for some `T`
different from `Any`, then the scitype of `A` is `AbstractArray{Union{Missing, U}}`,
where `U` is the union over all non-missing elements under convention `C`, **even
if `A` has no missing elements.**
This exception is made for performance reasons. In `DefaultConvention` implemented
by [ScientificTypes](https://github.com/JuliaAI/ScientificTypes.jl):
```julia
julia> v = [1.3, 4.5, missing]
julia> scitype(v, DefaultConvention())
AbstractArray{Union{Missing, Continuous}, 1}
```
```julia
julia> scitype(v[1:2], DefaultConvention())
AbstractArray{Union{Missing, Continuous},1}
```
> *Performance note.* Computing type unions over large arrays is
> expensive and, depending on the convention's implementation and the
> array eltype, computing the scitype can be slow. In the common case
> that the scitype of an array can be determined from the machine type
> of the object alone, the implementer of a new connvention can speed
> up compututations by implementing a `Scitype` method. Do
> `?ScientificTypesBase.Scitype` for details.
#### More on the `Table` type
An object of scitype `Table{K}` is expected to have a notion of
"columns", which are `AbstractVector`s, and the intention of the type
parameter `K` is to encode the scientific type(s) of its
columns. Specifically, developers are requested to adhere to the
following:
**Tabular data convention.** If `scitype(X, C()) <: Table`, for a given
convention `C` then in fact
```julia
scitype(X, C()) == Table{Union{scitype(c1, C), ..., scitype(cn, C)}}
```
where `c1`, `c2`, ..., `cn` are the columns of `X`. With this
definition, common type checks can be performed with tables. For
instance, you could check that each column of `X` has an element
scitype that is either `Continuous` or `Finite`:
```@example 5
scitype(X, C()) <: Table{<:Union{AbstractVector{<:Continuous}, AbstractVector{<:Finite}}}
```
A built-in `Table` constructor provides a shorthand for the right-hand side:
```@example 5
scitype(X, C()) <: Table(Continuous, Finite)
```
Note that `Table(Continuous, Finite)` is a *type* union and not a `Table` *instance*.
## Defining a new convention
If you want to implement your own convention, you can consider the
[ScientificTypes.jl](https://github.com/JuliaAI/ScientificTypes.jl)
as a blueprint.
The steps below summarise the possible steps in defining such a convention:
* declare a new convention,
* add explicit `scitype` (and `Scitype`) definitions,
* optionally define `coerce` methods for your convention
Each step is explained below, taking the MLJ convention as an example.
### Naming the convention
In the module, define a singleton as thus
```julia
struct MyConvention <: ScientificTypesBase.Convention end
```
### Adding explicit `scitype` declarations.
When overloading `scitype` one needs to dipatch over the convention,
as in this example:
```julia
ScientificTypesBase.scitype(::Integer, ::DefaultConvention) = Count
```
To avoid method ambiguities, avoid dispatching only on the first argument.
For example, defining
```julia
ScientificTypesBase.scitype(::AbstractFloat, C) = Continous
```
would lead to ambiguities in another package defining
```julia
ScientificTypesBase.scitype(a, ::DefaultConvention) = Count
```
Since `ScientificTypesBase.jl` does not define a single-argument `scitype(X)` method, an implementation of a new scientific convention will typically want to explicitly implement the single argument method in their package, to save users from needing to explicitly specify a convention. That is, so the user can call `scitype(2.3)` instead of `scitype(2.3, MyConvention())`.
For example, one declares:
```julia
scitype(X) = scitype(X, MyConvention())
```
### Defining a `coerce` function
It may be very useful to define a function to coerce machine types so
as to correct an unintended scientific interpretation, according to a
given convention. In the `DefaultConvention` convention, this is implemented by
defining `coerce` methods (no stub provided by `ScientificTypesBase`)
For instance consider the simplified:
```julia
function coerce(y::AbstractArray{T}, T2::Type{<:Union{Missing, Continuous}}
) where T <: Union{Missing, Real}
return float(y)
end
```
Under this definition, `coerce([1, 2, 4], Continuous)` is mapped to
`[1.0, 2.0, 4.0]`, which has scitype `AbstractVector{Continuous}`.
In the case of tabular data, one might additionally define `coerce`
methods to selectively coerce data in specified columns. See
[ScientificTypes](https://github.com/JuliaAI/ScientificTypes.jl)
for examples.
| ScientificTypesBase | https://github.com/JuliaAI/ScientificTypesBase.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 324 |
using Literate
src_dir = string(@__DIR__,"/../test/Applications/")
out_dir = string(@__DIR__,"/src/Examples/")
mkpath(out_dir)
for file in readdir(src_dir)
if !endswith(file,".jl")
continue
end
in_file = string(src_dir,file)
out_file = string(out_dir,file)
Literate.markdown(
in_file, out_dir
)
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 1495 | using GridapSolvers
using Documenter
include("examples.jl")
DocMeta.setdocmeta!(GridapSolvers, :DocTestSetup, :(using GridapSolvers); recursive=true)
makedocs(;
modules=[GridapSolvers,GridapSolvers.BlockSolvers],
authors="Santiago Badia <[email protected]>, Jordi Manyer <[email protected]>, Alberto F. Martin <[email protected]>",
repo="https://github.com/gridap/GridapSolvers.jl/blob/{commit}{path}#{line}",
sitename="GridapSolvers.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://gridap.github.io/GridapSolvers.jl",
edit_link="main",
assets=String[],
),
pages=[
"Home" => "index.md",
"SolverInterfaces" => "SolverInterfaces.md",
"MultilevelTools" => "MultilevelTools.md",
"LinearSolvers" => "LinearSolvers.md",
"NonlinearSolvers" => "NonlinearSolvers.md",
"BlockSolvers" => "BlockSolvers.md",
"PatchBasedSmoothers" => "PatchBasedSmoothers.md",
"Examples" => [
"Stokes" => "Examples/Stokes.md",
"Navier-Stokes" => "Examples/NavierStokes.md",
"Stokes (GMG)" => "Examples/StokesGMG.md",
"Navier-Stokes (GMG)" => "Examples/NavierStokesGMG.md",
"Darcy (GMG)" => "Examples/DarcyGMG.md",
],
],
warnonly=[:doctest,:example_block,:eval_block]
)
deploydocs(;
repo="github.com/gridap/GridapSolvers.jl",
devbranch="main",
)
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 1547 | module GridapSolvers
include("SolverInterfaces/SolverInterfaces.jl")
include("MultilevelTools/MultilevelTools.jl")
include("BlockSolvers/BlockSolvers.jl")
include("PatchBasedSmoothers/PatchBasedSmoothers.jl")
include("LinearSolvers/LinearSolvers.jl")
include("NonlinearSolvers/NonlinearSolvers.jl")
using GridapSolvers.SolverInterfaces
using GridapSolvers.MultilevelTools
using GridapSolvers.BlockSolvers
using GridapSolvers.LinearSolvers
using GridapSolvers.PatchBasedSmoothers
using GridapSolvers.NonlinearSolvers
# MultilevelTools
export get_parts, generate_level_parts, generate_subparts
export ModelHierarchy, CartesianModelHierarchy, P4estCartesianModelHierarchy
export num_levels, get_level, get_level_parts
export get_model, get_model_before_redist
export FESpaceHierarchy
export get_fe_space, get_fe_space_before_redist
export compute_hierarchy_matrices
export DistributedGridTransferOperator
export RestrictionOperator, ProlongationOperator
export setup_transfer_operators
# BlockSolvers
export BlockDiagonalSolver
# LinearSolvers
export JacobiLinearSolver
export RichardsonSmoother
export SymGaussSeidelSmoother
export GMGLinearSolver
export BlockDiagonalSmoother
export ConjugateGradientSolver
export IS_GMRESSolver
export IS_MINRESSolver
export IS_SSORSolver
export CGSolver
export MINRESSolver
export GMRESSolver
export FGMRESSolver
# PatchBasedSmoothers
export PatchDecomposition
export PatchFESpace
export PatchBasedLinearSolver
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 5570 | """
struct BlockDiagonalSolver{N} <: LinearSolver
Solver representing a block-diagonal solver, i.e
```
│ A11 0 0 │ │ x1 │ │ r1 │
│ 0 A22 0 │ ⋅ │ x2 │ = │ r2 │
│ 0 0 A33 │ │ x3 │ │ r3 │
```
where `N` is the number of diagonal blocks.
# Properties:
- `blocks::AbstractVector{<:SolverBlock}`: Matrix of solver blocks, indicating how
each diagonal block of the preconditioner is obtained.
- `solvers::AbstractVector{<:LinearSolver}`: Vector of solvers,
one for each diagonal block.
"""
struct BlockDiagonalSolver{N,A,B} <: Gridap.Algebra.LinearSolver
blocks :: A
solvers :: B
@doc """
function BlockDiagonalSolver(
blocks :: AbstractVector{<:SolverBlock},
solvers :: AbstractVector{<:LinearSolver}
)
Create and instance of [`BlockDiagonalSolver`](@ref) from its underlying properties.
"""
function BlockDiagonalSolver(
blocks :: AbstractVector{<:SolverBlock},
solvers :: AbstractVector{<:Gridap.Algebra.LinearSolver}
)
N = length(solvers)
@check length(blocks) == N
A = typeof(blocks)
B = typeof(solvers)
return new{N,A,B}(blocks,solvers)
end
end
# Constructors
@doc """
function BlockDiagonalSolver(
solvers::AbstractVector{<:LinearSolver};
is_nonlinear::Vector{Bool}=fill(false,length(solvers))
)
Create and instance of [`BlockDiagonalSolver`](@ref) where all blocks are extracted from
the linear system.
"""
function BlockDiagonalSolver(solvers::AbstractVector{<:Gridap.Algebra.LinearSolver};
is_nonlinear::Vector{Bool}=fill(false,length(solvers)))
blocks = map(nl -> nl ? NonlinearSystemBlock() : LinearSystemBlock(),is_nonlinear)
return BlockDiagonalSolver(blocks,solvers)
end
@doc """
function BlockDiagonalSolver(
funcs :: AbstractArray{<:Function},
trials :: AbstractArray{<:FESpace},
tests :: AbstractArray{<:FESpace},
solvers :: AbstractArray{<:LinearSolver};
is_nonlinear::Vector{Bool}=fill(false,length(solvers))
)
Create and instance of [`BlockDiagonalSolver`](@ref) where all blocks are given by
integral forms.
"""
function BlockDiagonalSolver(
funcs :: AbstractArray{<:Function},
trials :: AbstractArray{<:FESpace},
tests :: AbstractArray{<:FESpace},
solvers :: AbstractArray{<:Gridap.Algebra.LinearSolver};
is_nonlinear::Vector{Bool}=fill(false,length(solvers))
)
blocks = map(funcs,trials,tests,is_nonlinear) do f,trial,test,nl
nl ? TriformBlock(f,trial,test) : BiformBlock(f,trial,test)
end
return BlockDiagonalSolver(blocks,solvers)
end
@doc """
function BlockDiagonalSolver(
mats::AbstractVector{<:AbstractMatrix},
solvers::AbstractVector{<:LinearSolver}
)
Create and instance of [`BlockDiagonalSolver`](@ref) where all blocks are given by
external matrices.
"""
function BlockDiagonalSolver(
mats::AbstractVector{<:AbstractMatrix},
solvers::AbstractVector{<:Gridap.Algebra.LinearSolver}
)
blocks = map(MatrixBlock,mats)
return BlockDiagonalSolver(blocks,solvers)
end
# Symbolic setup
struct BlockDiagonalSolverSS{A,B} <: Gridap.Algebra.SymbolicSetup
solver :: A
block_ss :: B
end
function Gridap.Algebra.symbolic_setup(solver::BlockDiagonalSolver,mat::AbstractBlockMatrix)
mat_blocks = diag(blocks(mat))
block_ss = map(block_symbolic_setup,solver.blocks,solver.solvers,mat_blocks)
return BlockDiagonalSolverSS(solver,block_ss)
end
function Gridap.Algebra.symbolic_setup(solver::BlockDiagonalSolver,mat::AbstractBlockMatrix,x::AbstractBlockVector)
mat_blocks = diag(blocks(mat))
block_ss = map((b,m) -> block_symbolic_setup(b,m,x),solver.blocks,solver.solvers,mat_blocks)
return BlockDiagonalSolverSS(solver,block_ss)
end
# Numerical setup
struct BlockDiagonalSolverNS{A,B,C} <: Gridap.Algebra.NumericalSetup
solver :: A
block_ns :: B
work_caches :: C
end
function Gridap.Algebra.numerical_setup(ss::BlockDiagonalSolverSS,mat::AbstractBlockMatrix)
solver = ss.solver
mat_blocks = diag(blocks(mat))
block_ns = map(block_numerical_setup,ss.block_ss,mat_blocks)
y = mortar(map(allocate_in_domain,block_ns)); fill!(y,0.0)
work_caches = y
return BlockDiagonalSolverNS(solver,block_ns,work_caches)
end
function Gridap.Algebra.numerical_setup(ss::BlockDiagonalSolverSS,mat::AbstractBlockMatrix,x::AbstractBlockVector)
solver = ss.solver
mat_blocks = diag(blocks(mat))
block_ns = map((b,m) -> block_numerical_setup(b,m,x),ss.block_ss,mat_blocks)
y = mortar(map(allocate_in_domain,block_ns)); fill!(y,0.0)
work_caches = y
return BlockDiagonalSolverNS(solver,block_ns,work_caches)
end
function Gridap.Algebra.numerical_setup!(ns::BlockDiagonalSolverNS,mat::AbstractBlockMatrix)
mat_blocks = diag(blocks(mat))
map(block_numerical_setup!,ns.block_ns,mat_blocks)
return ns
end
function Gridap.Algebra.numerical_setup!(ns::BlockDiagonalSolverNS,mat::AbstractBlockMatrix,x::AbstractBlockVector)
mat_blocks = diag(blocks(mat))
map((b,m) -> block_numerical_setup!(b,m,x),ns.block_ns,mat_blocks)
return ns
end
function Gridap.Algebra.solve!(x::AbstractBlockVector,ns::BlockDiagonalSolverNS,b::AbstractBlockVector)
@check blocklength(x) == blocklength(b) == length(ns.block_ns)
y = ns.work_caches
for (iB,bns) in enumerate(ns.block_ns)
xi = blocks(x)[iB]
bi = blocks(b)[iB]
yi = blocks(y)[iB]
solve!(yi,bns.ns,bi)
copy!(xi,yi)
end
return x
end
function LinearAlgebra.ldiv!(x,ns::BlockDiagonalSolverNS,b)
solve!(x,ns,b)
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 5005 |
struct BlockFEOperator{NB,SB,P} <: FEOperator
global_op :: FEOperator
block_ops :: Matrix{<:Union{<:FEOperator,Missing,Nothing}}
is_nonlinear :: Matrix{Bool}
end
const BlockFESpaceTypes{NB,SB,P} = Union{<:MultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}},<:GridapDistributed.DistributedMultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}}
function BlockFEOperator(
res::Matrix{<:Union{<:Function,Missing,Nothing}},
jac::Matrix{<:Union{<:Function,Missing,Nothing}},
trial::BlockFESpaceTypes,
test::BlockFESpaceTypes;
kwargs...
)
assem = SparseMatrixAssembler(test,trial)
return BlockFEOperator(res,jac,trial,test,assem)
end
function BlockFEOperator(
res::Matrix{<:Union{<:Function,Missing,Nothing}},
jac::Matrix{<:Union{<:Function,Missing,Nothing}},
trial::BlockFESpaceTypes{NB,SB,P},
test::BlockFESpaceTypes{NB,SB,P},
assem::MultiField.BlockSparseMatrixAssembler{NB,NV,SB,P};
is_nonlinear::Matrix{Bool}=fill(true,(NB,NB))
) where {NB,NV,SB,P}
@check size(res,1) == size(jac,1) == NB
@check size(res,2) == size(jac,2) == NB
global_res = residual_from_blocks(NB,SB,P,res)
global_jac = jacobian_from_blocks(NB,SB,P,jac)
global_op = FEOperator(global_res,global_jac,trial,test,assem)
trial_blocks = blocks(trial)
test_blocks = blocks(test)
assem_blocks = blocks(assem)
block_ops = map(CartesianIndices(res)) do I
if !ismissing(res[I]) && !isnothing(res[I])
FEOperator(res[I],jac[I],test_blocks[I[1]],trial_blocks[I[2]],assem_blocks[I])
end
end
return BlockFEOperator{NB,SB,P}(global_op,block_ops,is_nonlinear)
end
# BlockArrays API
BlockArrays.blocks(op::BlockFEOperator) = op.block_ops
# FEOperator API
FESpaces.get_test(op::BlockFEOperator) = get_test(op.global_op)
FESpaces.get_trial(op::BlockFEOperator) = get_trial(op.global_op)
Algebra.allocate_residual(op::BlockFEOperator,u) = allocate_residual(op.global_op,u)
Algebra.residual(op::BlockFEOperator,u) = residual(op.global_op,u)
Algebra.allocate_jacobian(op::BlockFEOperator,u) = allocate_jacobian(op.global_op,u)
Algebra.jacobian(op::BlockFEOperator,u) = jacobian(op.global_op,u)
Algebra.residual!(b::AbstractVector,op::BlockFEOperator,u) = residual!(b,op.global_op,u)
function Algebra.jacobian!(A::AbstractBlockMatrix,op::BlockFEOperator{NB},u) where NB
map(blocks(A),blocks(op),op.is_nonlinear) do A,op,nl
if nl
residual!(A,op,u)
end
end
return A
end
# Private methods
function residual_from_blocks(NB,SB,P,block_residuals)
function res(u,v)
block_ranges = MultiField.get_block_ranges(NB,SB,P)
block_u = map(r -> (length(r) == 1) ? u[r[1]] : Tuple(u[r]), block_ranges)
block_v = map(r -> (length(r) == 1) ? v[r[1]] : Tuple(v[r]), block_ranges)
block_contrs = map(CartesianIndices(block_residuals)) do I
if !ismissing(block_residuals[I]) && !isnothing(block_residuals[I])
block_residuals[I](block_u[I[2]],block_v[I[1]])
end
end
return add_block_contribs(block_contrs)
end
return res
end
function jacobian_from_blocks(NB,SB,P,block_jacobians)
function jac(u,du,dv)
block_ranges = MultiField.get_block_ranges(NB,SB,P)
block_u = map(r -> (length(r) == 1) ? u[r[1]] : Tuple(u[r]) , block_ranges)
block_du = map(r -> (length(r) == 1) ? du[r[1]] : Tuple(du[r]), block_ranges)
block_dv = map(r -> (length(r) == 1) ? dv[r[1]] : Tuple(dv[r]), block_ranges)
block_contrs = map(CartesianIndices(block_jacobians)) do I
if !ismissing(block_jacobians[I]) && !isnothing(block_jacobians[I])
block_jacobians[I](block_u[I[2]],block_du[I[2]],block_dv[I[1]])
end
end
return add_block_contribs(block_contrs)
end
return jac
end
function add_block_contribs(contrs)
c = contrs[1]
for ci in contrs[2:end]
if !ismissing(ci) && !isnothing(ci)
c = c + ci
end
end
return c
end
function BlockArrays.blocks(a::MultiField.BlockSparseMatrixAssembler)
return a.block_assemblers
end
function BlockArrays.blocks(f::MultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}) where {NB,SB,P}
block_ranges = MultiField.get_block_ranges(NB,SB,P)
block_spaces = map(block_ranges) do range
(length(range) == 1) ? f[range[1]] : MultiFieldFESpace(f[range])
end
return block_spaces
end
function BlockArrays.blocks(f::GridapDistributed.DistributedMultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}) where {NB,SB,P}
block_gids = blocks(get_free_dof_ids(f))
block_ranges = MultiField.get_block_ranges(NB,SB,P)
block_spaces = map(block_ranges,block_gids) do range, gids
if (length(range) == 1)
space = f[range[1]]
else
global_sf_spaces = f[range]
local_sf_spaces = GridapDistributed.to_parray_of_arrays(map(local_views,global_sf_spaces))
local_mf_spaces = map(MultiFieldFESpace,local_sf_spaces)
vector_type = GridapDistributed._find_vector_type(local_mf_spaces,gids)
space = MultiFieldFESpace(global_sf_spaces,local_mf_spaces,gids,vector_type)
end
space
end
return block_spaces
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 12370 |
"""
abstract type SolverBlock end
Abstract type representing a block in a block solver. More specifically, it
indicates how a block is obtained from the original system matrix.
"""
abstract type SolverBlock end
"""
abstract type LinearSolverBlock <: SolverBlock end
SolverBlock that will not be updated between nonlinear iterations.
"""
abstract type LinearSolverBlock <: SolverBlock end
"""
abstract type NonlinearSolverBlock <: SolverBlock end
SolverBlock that will be updated between nonlinear iterations.
"""
abstract type NonlinearSolverBlock <: SolverBlock end
is_nonlinear(::LinearSolverBlock) = false
is_nonlinear(::NonlinearSolverBlock) = true
struct BlockSS{A,B,C} <: Algebra.SymbolicSetup
block :: A
ss :: B
cache :: C
end
mutable struct BlockNS{A,B,C,D} <: Algebra.NumericalSetup
block :: A
ns :: B
mat :: C
cache :: D
end
is_nonlinear(ss::BlockSS) = is_nonlinear(ss.block)
is_nonlinear(ns::BlockNS) = is_nonlinear(ns.block)
function Algebra.allocate_in_domain(block::BlockNS)
return allocate_in_domain(block.mat)
end
function Algebra.allocate_in_range(block::BlockNS)
return allocate_in_range(block.mat)
end
function restrict_blocks(x::AbstractBlockVector,ids::Vector{Int8})
if isempty(ids)
return x
elseif length(ids) == 1
return blocks(x)[ids[1]]
else
return mortar(blocks(x)[ids])
end
end
"""
block_symbolic_setup(block::SolverBlock,solver::LinearSolver,mat::AbstractMatrix)
block_symbolic_setup(block::SolverBlock,solver::LinearSolver,mat::AbstractMatrix,x::AbstractVector)
Given a SolverBlock, returns the symbolic setup associated to the LinearSolver.
"""
function block_symbolic_setup(block::SolverBlock,solver::LinearSolver,mat::AbstractMatrix)
@abstractmethod
end
function block_symbolic_setup(block::SolverBlock,solver::LinearSolver,mat::AbstractMatrix,x::AbstractVector)
@abstractmethod
end
@inline function block_symbolic_setup(block::LinearSolverBlock,solver::LinearSolver,mat::AbstractMatrix,x::AbstractVector)
return block_symbolic_setup(block,solver,mat)
end
"""
block_numerical_setup(block::SolverBlock,ss::BlockSS,mat::AbstractMatrix)
block_numerical_setup(block::SolverBlock,ss::BlockSS,mat::AbstractMatrix,x::AbstractVector)
Given a SolverBlock, returns the numerical setup associated to it.
"""
function block_numerical_setup(block::SolverBlock,ss::BlockSS,mat::AbstractMatrix)
@abstractmethod
end
function block_numerical_setup(block::SolverBlock,ss::BlockSS,mat::AbstractMatrix,x::AbstractVector)
@abstractmethod
end
@inline function block_numerical_setup(block::LinearSolverBlock,ss::BlockSS,mat::AbstractMatrix,x::AbstractVector)
return block_numerical_setup(block,ss,mat)
end
@inline function block_numerical_setup(ss::BlockSS,mat::AbstractMatrix)
block_numerical_setup(ss.block,ss,mat)
end
@inline function block_numerical_setup(ss::BlockSS,mat::AbstractMatrix,x::AbstractVector)
block_numerical_setup(ss.block,ss,mat,x)
end
"""
block_numerical_setup!(block::SolverBlock,ns::BlockNS,mat::AbstractMatrix)
block_numerical_setup!(block::SolverBlock,ns::BlockNS,mat::AbstractMatrix,x::AbstractVector)
Given a SolverBlock, updates the numerical setup associated to it.
"""
function block_numerical_setup!(block::LinearSolverBlock,ns::BlockNS,mat::AbstractMatrix)
ns
end
function block_numerical_setup!(block::LinearSolverBlock,ns::BlockNS,mat::AbstractMatrix,x::AbstractVector)
ns
end
function block_numerical_setup!(block::NonlinearSolverBlock,ns::BlockNS,mat::AbstractMatrix,x::AbstractVector)
@abstractmethod
end
@inline function block_numerical_setup!(ns::BlockNS,mat::AbstractMatrix)
block_numerical_setup!(ns.block,ns,mat)
end
@inline function block_numerical_setup!(ns::BlockNS,mat::AbstractMatrix,x::AbstractVector)
block_numerical_setup!(ns.block,ns,mat,x)
end
"""
block_offdiagonal_setup(block::SolverBlock,mat::AbstractMatrix)
block_offdiagonal_setup(block::SolverBlock,mat::AbstractMatrix,x::AbstractVector)
Given a SolverBlock, returns the off-diagonal block of associated to it.
"""
function block_offdiagonal_setup(block::SolverBlock,mat::AbstractMatrix)
@abstractmethod
end
function block_offdiagonal_setup(block::NonlinearSolverBlock,mat::AbstractMatrix,x::AbstractVector)
@abstractmethod
end
@inline function block_offdiagonal_setup(block::LinearSolverBlock,mat::AbstractMatrix,x::AbstractVector)
return block_offdiagonal_setup(block,mat)
end
"""
block_offdiagonal_setup!(cache,block::SolverBlock,mat::AbstractMatrix)
block_offdiagonal_setup!(cache,block::SolverBlock,mat::AbstractMatrix,x::AbstractVector)
Given a SolverBlock, updates the off-diagonal block of associated to it.
"""
@inline function block_offdiagonal_setup!(cache,block::LinearSolverBlock,mat::AbstractMatrix)
return cache
end
@inline function block_offdiagonal_setup!(cache,block::LinearSolverBlock,mat::AbstractMatrix,x::AbstractVector)
return cache
end
function block_offdiagonal_setup!(cache,block::NonlinearSolverBlock,mat::AbstractMatrix,x::AbstractVector)
@abstractmethod
end
# MatrixBlock
"""
struct MatrixBlock{A} <: LinearSolverBlock
SolverBlock representing an external, independent matrix.
# Parameters:
- `mat::A`: The matrix.
"""
struct MatrixBlock{A} <: LinearSolverBlock
mat :: A
function MatrixBlock(mat::AbstractMatrix)
A = typeof(mat)
return new{A}(mat)
end
end
function block_symbolic_setup(block::MatrixBlock,solver::LinearSolver,mat::AbstractMatrix)
return BlockSS(block,symbolic_setup(solver,block.mat),nothing)
end
function block_numerical_setup(block::MatrixBlock,ss::BlockSS,mat::AbstractMatrix)
return BlockNS(block,numerical_setup(ss.ss,block.mat),block.mat,nothing)
end
function block_offdiagonal_setup(block::MatrixBlock,mat::AbstractMatrix)
return block.mat
end
# SystemBlocks
"""
struct LinearSystemBlock <: LinearSolverBlock
SolverBlock representing a linear (i.e non-updateable) block that is directly
taken from the system matrix. This block will not be updated between nonlinear
iterations.
"""
struct LinearSystemBlock <: LinearSolverBlock end
"""
struct NonlinearSystemBlock <: LinearSolverBlock
I :: Vector{Int}
end
SolverBlock representing a nonlinear (i.e updateable) block that is directly
taken from the system matrix. This block will be updated between nonlinear
iterations.
# Parameters:
- `ids::Vector{Int8}`: Block indices considered when updating the nonlinear block.
By default, all indices are considered.
"""
struct NonlinearSystemBlock <: NonlinearSolverBlock
ids :: Vector{Int8}
function NonlinearSystemBlock(ids::Vector{<:Integer})
new(convert(Vector{Int8},ids))
end
end
NonlinearSystemBlock() = NonlinearSystemBlock(Int8[])
NonlinearSystemBlock(id::Integer) = NonlinearSystemBlock([Int8(id)])
function block_symbolic_setup(block::LinearSystemBlock,solver::LinearSolver,mat::AbstractMatrix)
return BlockSS(block,symbolic_setup(solver,mat),mat)
end
function block_symbolic_setup(block::NonlinearSystemBlock,solver::LinearSolver,mat::AbstractMatrix,x::AbstractVector)
y = restrict_blocks(x,block.ids)
return BlockSS(block,symbolic_setup(solver,mat,y),mat)
end
function block_numerical_setup(block::LinearSystemBlock,ss::BlockSS,mat::AbstractMatrix)
return BlockNS(block,numerical_setup(ss.ss,mat),mat,nothing)
end
function block_numerical_setup(block::NonlinearSystemBlock,ss::BlockSS,mat::AbstractMatrix,x::AbstractVector)
y = restrict_blocks(x,block.ids)
return BlockNS(block,numerical_setup(ss.ss,mat,y),mat,nothing)
end
function block_numerical_setup!(block::NonlinearSystemBlock,ns::BlockNS,mat::AbstractMatrix,x::AbstractVector)
y = restrict_blocks(x,block.ids)
numerical_setup!(ns.ns,mat,y)
return ns
end
function block_offdiagonal_setup(block::LinearSystemBlock,mat::AbstractMatrix)
return mat
end
function block_offdiagonal_setup(block::NonlinearSystemBlock,mat::AbstractMatrix,x::AbstractVector)
return mat
end
function block_offdiagonal_setup!(cache,block::NonlinearSystemBlock,mat::AbstractMatrix,x::AbstractVector)
return mat
end
# BiformBlock/TriformBlock
"""
struct BiformBlock <: LinearSolverBlock
SolverBlock representing a linear block assembled from a bilinear form.
This block will be not updated between nonlinear iterations.
# Parameters:
- `f::Function`: The bilinear form, i.e f(du,dv) = ∫(...)dΩ
- `trial::FESpace`: The trial space.
- `test::FESpace`: The test space.
- `assem::Assembler`: The assembler to use.
"""
struct BiformBlock <: LinearSolverBlock
f :: Function
trial :: FESpace
test :: FESpace
assem :: Assembler
function BiformBlock(
f::Function,
trial::FESpace,
test::FESpace,
assem=SparseMatrixAssembler(trial,test)
)
return new(f,trial,test,assem)
end
end
"""
struct TriformBlock <: NonlinearSolverBlock
SolverBlock representing a nonlinear block assembled from a trilinear form.
This block will be updated between nonlinear iterations.
# Parameters:
- `f::Function`: The trilinear form, i.e f(u,du,dv) = ∫(...)dΩ
- `param::FESpace`: The parameter space, where `u` lives.
- `trial::FESpace`: The trial space, where `du` lives.
- `test::FESpace`: The test space, where `dv` lives.
- `assem::Assembler`: The assembler to use.
- `ids::Vector{Int8}`: Block indices considered when updating the nonlinear block.
By default, all indices are considered.
"""
struct TriformBlock <: NonlinearSolverBlock
f :: Function
param :: FESpace
trial :: FESpace
test :: FESpace
ids :: Vector{Int8}
assem :: Assembler
function TriformBlock(
f::Function,
param::FESpace,
trial::FESpace,
test::FESpace,
ids::Vector{<:Integer}=Int8[],
assem=SparseMatrixAssembler(trial,test)
)
return new(f,param,trial,test,convert(Vector{Int8},ids),assem)
end
end
function TriformBlock(
f::Function,trial::FESpace,test::FESpace,ids::Vector{<:Integer},assem=SparseMatrixAssembler(trial,test)
)
return TriformBlock(f,trial,trial,test,ids,assem)
end
function TriformBlock(
f::Function,trial::FESpace,test::FESpace,id::Integer,assem=SparseMatrixAssembler(trial,test)
)
return TriformBlock(f,trial,trial,test,[Int8(id)],assem)
end
function block_symbolic_setup(block::BiformBlock,solver::LinearSolver,mat::AbstractMatrix)
A = assemble_matrix(block.f,block.assem,block.trial,block.test)
return BlockSS(block,symbolic_setup(solver,A),A)
end
function block_numerical_setup(block::BiformBlock,ss::BlockSS,mat::AbstractMatrix)
A = ss.cache
return BlockNS(block,numerical_setup(ss.ss,A),A,nothing)
end
function block_symbolic_setup(block::TriformBlock,solver::LinearSolver,mat::AbstractMatrix,x::AbstractVector)
y = restrict_blocks(x,block.ids)
uh = FEFunction(block.param,y)
f(u,v) = block.f(uh,u,v)
A = assemble_matrix(f,block.assem,block.trial,block.test)
return BlockSS(block,symbolic_setup(solver,A,y),A)
end
function block_numerical_setup(block::TriformBlock,ss::BlockSS,mat::AbstractMatrix,x::AbstractVector)
A = ss.cache
y = restrict_blocks(x,block.ids)
return BlockNS(block,numerical_setup(ss.ss,A,y),A,nothing)
end
function block_numerical_setup!(block::TriformBlock,ns::BlockNS,mat::AbstractMatrix,x::AbstractVector)
y = restrict_blocks(x,block.ids)
uh = FEFunction(block.param,y)
f(u,v) = block.f(uh,u,v)
A = assemble_matrix!(f,ns.mat,block.assem,block.trial,block.test)
numerical_setup!(ns.ns,A,y)
return ns
end
function block_offdiagonal_setup(block::BiformBlock,mat::AbstractMatrix)
A = assemble_matrix(block.f,block.assem,block.trial,block.test)
return A
end
function block_offdiagonal_setup(block::TriformBlock,mat::AbstractMatrix,x::AbstractVector)
y = restrict_blocks(x,block.ids)
uh = FEFunction(block.param,y)
f(u,v) = block.f(uh,u,v)
A = assemble_matrix(f,block.assem,block.trial,block.test)
return A
end
function block_offdiagonal_setup!(cache,block::TriformBlock,mat::AbstractMatrix,x::AbstractVector)
y = restrict_blocks(x,block.ids)
uh = FEFunction(block.param,y)
f(u,v) = block.f(uh,u,v)
A = assemble_matrix!(f,cache,block.assem,block.trial,block.test)
return A
end
# CompositeBlock, i.e something that takes from the system matrix and adds another contribution to it.
# How do we deal with different sparsity patterns? Not trivial...
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 717 | module BlockSolvers
using LinearAlgebra
using SparseArrays
using SparseMatricesCSR
using BlockArrays
using IterativeSolvers
using Gridap
using Gridap.Helpers, Gridap.Algebra, Gridap.CellData, Gridap.Arrays, Gridap.FESpaces, Gridap.MultiField
using PartitionedArrays
using GridapDistributed
using GridapSolvers.MultilevelTools
using GridapSolvers.SolverInterfaces
include("BlockFEOperators.jl")
include("BlockSolverInterfaces.jl")
include("BlockDiagonalSolvers.jl")
include("BlockTriangularSolvers.jl")
export BlockFEOperator
export MatrixBlock, LinearSystemBlock, NonlinearSystemBlock, BiformBlock, TriformBlock
export BlockDiagonalSolver
export BlockTriangularSolver
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 7673 | """
struct BlockTriangularSolver{T,N} <: LinearSolver
Solver representing a block-triangular (upper/lower) solver, i.e
```
│ A11 c12⋅A12 c13⋅A13 │ │ x1 │ │ r1 │
│ 0 A22 c23⋅A23 │ ⋅ │ x2 │ = │ r2 │
│ 0 0 A33 │ │ x3 │ │ r3 │
```
where `N` is the number of diagonal blocks and `T` is either `Val{:upper}` or `Val{:lower}`.
# Properties:
- `blocks::AbstractMatrix{<:SolverBlock}`: Matrix of solver blocks, indicating how
each block of the preconditioner is obtained.
- `solvers::AbstractVector{<:LinearSolver}`: Vector of solvers,
one for each diagonal block.
- `coeffs::AbstractMatrix{<:Real}`: Matrix of coefficients, indicating the
contribution of the off-diagonal blocks to the right-hand side of each
diagonal. In particular, blocks can be turned off by setting the corresponding
coefficient to zero.
"""
struct BlockTriangularSolver{T,N,A,B,C} <: Gridap.Algebra.LinearSolver
blocks :: A
solvers :: B
coeffs :: C
@doc """
function BlockTriangularSolver(
blocks :: AbstractMatrix{<:SolverBlock},
solvers :: AbstractVector{<:LinearSolver},
coeffs = fill(1.0,size(blocks)),
half = :upper
)
Create and instance of [`BlockTriangularSolver`](@ref) from its underlying properties.
The kwarg `half` can have values `:upper` or `:lower`.
"""
function BlockTriangularSolver(
blocks :: AbstractMatrix{<:SolverBlock},
solvers :: AbstractVector{<:Gridap.Algebra.LinearSolver},
coeffs = fill(1.0,size(blocks)),
half = :upper
)
N = length(solvers)
@check size(blocks,1) == size(blocks,2) == N
@check size(coeffs,1) == size(coeffs,2) == N
@check half ∈ (:upper,:lower)
A = typeof(blocks)
B = typeof(solvers)
C = typeof(coeffs)
return new{Val{half},N,A,B,C}(blocks,solvers,coeffs)
end
end
@doc """
function BlockTriangularSolver(
solvers::AbstractVector{<:LinearSolver};
is_nonlinear::Matrix{Bool}=fill(false,(length(solvers),length(solvers))),
coeffs=fill(1.0,size(is_nonlinear)),
half=:upper
)
Create and instance of [`BlockTriangularSolver`](@ref) where all blocks are extracted from
the linear system.
The kwarg `half` can have values `:upper` or `:lower`.
"""
function BlockTriangularSolver(
solvers::AbstractVector{<:Gridap.Algebra.LinearSolver};
is_nonlinear::Matrix{Bool}=fill(false,(length(solvers),length(solvers))),
coeffs=fill(1.0,size(is_nonlinear)),
half=:upper
)
blocks = map(nl -> nl ? NonlinearSystemBlock() : LinearSystemBlock(),is_nonlinear)
return BlockTriangularSolver(blocks,solvers,coeffs,half)
end
# Symbolic setup
struct BlockTriangularSolverSS{A,B,C} <: Gridap.Algebra.SymbolicSetup
solver :: A
block_ss :: B
block_off :: C
end
function Gridap.Algebra.symbolic_setup(solver::BlockTriangularSolver,mat::AbstractBlockMatrix)
mat_blocks = blocks(mat)
block_ss = map(block_symbolic_setup,diag(solver.blocks),solver.solvers,diag(mat_blocks))
block_off = map(CartesianIndices(mat_blocks)) do I
if I[1] != I[2]
block_offdiagonal_setup(solver.blocks[I],mat_blocks[I])
else
mat_blocks[I]
end
end
return BlockTriangularSolverSS(solver,block_ss,block_off)
end
function Gridap.Algebra.symbolic_setup(solver::BlockTriangularSolver{T,N},mat::AbstractBlockMatrix,x::AbstractBlockVector) where {T,N}
mat_blocks = blocks(mat)
block_ss = map((b,s,m) -> block_symbolic_setup(b,s,m,x),diag(solver.blocks),solver.solvers,diag(mat_blocks))
block_off = map(CartesianIndices(mat_blocks)) do I
if I[1] != I[2]
block_offdiagonal_setup(solver.blocks[I],mat_blocks[I],x)
else
mat_blocks[I]
end
end
return BlockTriangularSolverSS(solver,block_ss,block_off)
end
# Numerical setup
struct BlockTriangularSolverNS{T,A,B,C,D} <: Gridap.Algebra.NumericalSetup
solver :: A
block_ns :: B
block_off :: C
work_caches :: D
function BlockTriangularSolverNS(
solver::BlockTriangularSolver{T},
block_ns,block_off,work_caches
) where T
A = typeof(solver)
B = typeof(block_ns)
C = typeof(block_off)
D = typeof(work_caches)
return new{T,A,B,C,D}(solver,block_ns,block_off,work_caches)
end
end
function Gridap.Algebra.numerical_setup(ss::BlockTriangularSolverSS,mat::AbstractBlockMatrix)
solver = ss.solver
block_ns = map(block_numerical_setup,ss.block_ss,diag(blocks(mat)))
y = mortar(map(allocate_in_domain,block_ns)); fill!(y,0.0) # This should be removed with PA 0.4
w = allocate_in_range(mat); fill!(w,0.0)
work_caches = w, y
return BlockTriangularSolverNS(solver,block_ns,ss.block_off,work_caches)
end
function Gridap.Algebra.numerical_setup(ss::BlockTriangularSolverSS,mat::AbstractBlockMatrix,x::AbstractBlockVector)
solver = ss.solver
mat_blocks = blocks(mat)
block_ns = map((b,m) -> block_numerical_setup(b,m,x),ss.block_ss,diag(mat_blocks))
y = mortar(map(allocate_in_domain,block_ns)); fill!(y,0.0)
w = allocate_in_range(mat); fill!(w,0.0)
work_caches = w, y
return BlockTriangularSolverNS(solver,block_ns,ss.block_off,work_caches)
end
function Gridap.Algebra.numerical_setup!(ns::BlockTriangularSolverNS,mat::AbstractBlockMatrix)
solver = ns.solver
mat_blocks = blocks(mat)
map(ns.block_ns,diag(mat_blocks)) do nsi, mi
if is_nonlinear(nsi)
block_numerical_setup!(nsi,mi)
end
end
map(CartesianIndices(mat_blocks)) do I
if (I[1] != I[2]) && is_nonlinear(solver.blocks[I])
block_offdiagonal_setup!(ns.block_off[I],solver.blocks[I],mat_blocks[I])
end
end
return ns
end
function Gridap.Algebra.numerical_setup!(ns::BlockTriangularSolverNS,mat::AbstractBlockMatrix,x::AbstractBlockVector)
solver = ns.solver
mat_blocks = blocks(mat)
map(ns.block_ns,diag(mat_blocks)) do nsi, mi
if is_nonlinear(nsi)
block_numerical_setup!(nsi,mi,x)
end
end
map(CartesianIndices(mat_blocks)) do I
if (I[1] != I[2]) && is_nonlinear(solver.blocks[I])
block_offdiagonal_setup!(ns.block_off[I],solver.blocks[I],mat_blocks[I],x)
end
end
return ns
end
function Gridap.Algebra.solve!(x::AbstractBlockVector,ns::BlockTriangularSolverNS{Val{:lower}},b::AbstractBlockVector)
@check blocklength(x) == blocklength(b) == length(ns.block_ns)
NB = length(ns.block_ns)
c = ns.solver.coeffs
w, y = ns.work_caches
mats = ns.block_off
for iB in 1:NB
# Add lower off-diagonal contributions
wi = blocks(w)[iB]
copy!(wi,blocks(b)[iB])
for jB in 1:iB-1
cij = c[iB,jB]
if abs(cij) > eps(cij)
xj = blocks(x)[jB]
mul!(wi,mats[iB,jB],xj,-cij,1.0)
end
end
# Solve diagonal block
nsi = ns.block_ns[iB].ns
xi = blocks(x)[iB]
yi = blocks(y)[iB]
solve!(yi,nsi,wi)
copy!(xi,yi)
end
return x
end
function Gridap.Algebra.solve!(x::AbstractBlockVector,ns::BlockTriangularSolverNS{Val{:upper}},b::AbstractBlockVector)
@check blocklength(x) == blocklength(b) == length(ns.block_ns)
NB = length(ns.block_ns)
c = ns.solver.coeffs
w, y = ns.work_caches
mats = ns.block_off
for iB in NB:-1:1
# Add upper off-diagonal contributions
wi = blocks(w)[iB]
copy!(wi,blocks(b)[iB])
for jB in iB+1:NB
cij = c[iB,jB]
if abs(cij) > eps(cij)
xj = blocks(x)[jB]
mul!(wi,mats[iB,jB],xj,-cij,1.0)
end
end
# Solve diagonal block
nsi = ns.block_ns[iB].ns
xi = blocks(x)[iB]
yi = blocks(y)[iB]
solve!(yi,nsi,wi)
copy!(xi,yi) # Remove this with PA 0.4
end
return x
end
function LinearAlgebra.ldiv!(x,ns::BlockTriangularSolverNS,b)
solve!(x,ns,b)
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 15265 | """
struct GMGLinearSolverFromMatrices <: LinearSolver
...
end
Geometric MultiGrid solver, from algebraic parts.
"""
struct GMGLinearSolverFromMatrices{A,B,C,D,E,F,G} <: Algebra.LinearSolver
mh :: A
smatrices :: B
interp :: C
restrict :: D
pre_smoothers :: E
post_smoothers :: F
coarsest_solver :: G
mode :: Symbol
log :: ConvergenceLog{Float64}
end
@doc """
GMGLinearSolver(
mh::ModelHierarchy,
matrices::AbstractArray{<:AbstractMatrix},
prolongations,
restrictions;
pre_smoothers = Fill(RichardsonSmoother(JacobiLinearSolver(),10),num_levels(mh)-1),
post_smoothers = pre_smoothers,
coarsest_solver = LUSolver(),
mode::Symbol = :preconditioner,
maxiter = 100, atol = 1.0e-14, rtol = 1.0e-08, verbose = false,
)
Creates an instance of [`GMGLinearSolverFromMatrices`](@ref) from the underlying model
hierarchy, the system matrices at each level and the transfer operators and smoothers
at each level except the coarsest.
The solver has two modes of operation, defined by the kwarg `mode`:
- `:solver`: The GMG solver takes a rhs `b` and returns a solution `x`.
- `:preconditioner`: The GMG solver takes a residual `r` and returns a correction `dx`.
"""
function GMGLinearSolver(
mh::ModelHierarchy,
smatrices::AbstractArray{<:AbstractMatrix},
interp,restrict;
pre_smoothers = Fill(RichardsonSmoother(JacobiLinearSolver(),10),num_levels(mh)-1),
post_smoothers = pre_smoothers,
coarsest_solver = Gridap.Algebra.LUSolver(),
mode::Symbol = :preconditioner,
maxiter = 100, atol = 1.0e-14, rtol = 1.0e-08, verbose = false,
)
@check mode ∈ [:preconditioner,:solver]
tols = SolverTolerances{Float64}(;maxiter=maxiter,atol=atol,rtol=rtol)
log = ConvergenceLog("GMG",tols;verbose=verbose)
return GMGLinearSolverFromMatrices(
mh,smatrices,interp,restrict,pre_smoothers,post_smoothers,coarsest_solver,mode,log
)
end
"""
struct GMGLinearSolverFromWeakForm <: LinearSolver
...
end
Geometric MultiGrid solver, from FE parts.
"""
struct GMGLinearSolverFromWeakform{A,B,C,D,E,F,G,H,I} <: Algebra.LinearSolver
mh :: A
trials :: B
tests :: C
biforms :: D
interp :: E
restrict :: F
pre_smoothers :: G
post_smoothers :: H
coarsest_solver :: I
mode :: Symbol
log :: ConvergenceLog{Float64}
is_nonlinear :: Bool
primal_restrictions
end
@doc """
GMGLinearSolver(
mh::ModelHierarchy,
trials::FESpaceHierarchy,
tests::FESpaceHierarchy,
biforms::AbstractArray{<:Function},
interp,
restrict;
pre_smoothers = Fill(RichardsonSmoother(JacobiLinearSolver(),10),num_levels(mh)-1),
post_smoothers = pre_smoothers,
coarsest_solver = Gridap.Algebra.LUSolver(),
mode::Symbol = :preconditioner,
is_nonlinear = false,
maxiter = 100, atol = 1.0e-14, rtol = 1.0e-08, verbose = false,
)
Creates an instance of [`GMGLinearSolverFromMatrices`](@ref) from the underlying model
hierarchy, the trial and test FEspace hierarchies, the weakform lhs at each level
and the transfer operators and smoothers at each level except the coarsest.
The solver has two modes of operation, defined by the kwarg `mode`:
- `:solver`: The GMG solver takes a rhs `b` and returns a solution `x`.
- `:preconditioner`: The GMG solver takes a residual `r` and returns a correction `dx`.
"""
function GMGLinearSolver(
mh::ModelHierarchy,
trials::FESpaceHierarchy,
tests::FESpaceHierarchy,
biforms::AbstractArray{<:Function},
interp,restrict;
pre_smoothers = Fill(RichardsonSmoother(JacobiLinearSolver(),10),num_levels(mh)-1),
post_smoothers = pre_smoothers,
coarsest_solver = Gridap.Algebra.LUSolver(),
mode::Symbol = :preconditioner,
is_nonlinear = false,
maxiter = 100, atol = 1.0e-14, rtol = 1.0e-08, verbose = false,
)
@check mode ∈ [:preconditioner,:solver]
@check matching_level_parts(mh,trials,tests,biforms)
tols = SolverTolerances{Float64}(;maxiter=maxiter,atol=atol,rtol=rtol)
log = ConvergenceLog("GMG",tols;verbose=verbose)
primal_restrictions = is_nonlinear ? setup_restriction_operators(trials,8;mode=:solution,solver=IS_ConjugateGradientSolver(;reltol=1.e-6)) : nothing
return GMGLinearSolverFromWeakform(
mh,trials,tests,biforms,interp,restrict,pre_smoothers,post_smoothers,coarsest_solver,mode,log,is_nonlinear,primal_restrictions
)
end
struct GMGSymbolicSetup{A} <: Algebra.SymbolicSetup
solver :: A
end
function Algebra.symbolic_setup(solver::GMGLinearSolverFromMatrices,::AbstractMatrix)
return GMGSymbolicSetup(solver)
end
function Algebra.symbolic_setup(solver::GMGLinearSolverFromWeakform,::AbstractMatrix)
return GMGSymbolicSetup(solver)
end
struct GMGNumericalSetup{A,B,C,D,E,F,G,H} <: Algebra.NumericalSetup
solver :: A
smatrices :: B
finest_level_cache :: C
pre_smoothers_caches :: D
post_smoothers_caches :: E
coarsest_solver_cache :: F
work_vectors :: G
system_caches :: H
end
function Algebra.numerical_setup(ss::GMGSymbolicSetup,mat::AbstractMatrix)
s = ss.solver
smatrices = gmg_compute_matrices(s,mat)
finest_level_cache = gmg_finest_level_cache(smatrices)
work_vectors = gmg_work_vectors(smatrices)
pre_smoothers_caches = gmg_smoothers_caches(s.pre_smoothers,smatrices)
if !(s.pre_smoothers === s.post_smoothers)
post_smoothers_caches = gmg_smoothers_caches(s.post_smoothers,smatrices)
else
post_smoothers_caches = pre_smoothers_caches
end
coarsest_solver_cache = gmg_coarse_solver_caches(s.coarsest_solver,smatrices,work_vectors)
return GMGNumericalSetup(
s,smatrices,finest_level_cache,pre_smoothers_caches,post_smoothers_caches,coarsest_solver_cache,work_vectors,nothing
)
end
function Algebra.numerical_setup(ss::GMGSymbolicSetup,mat::AbstractMatrix,x::AbstractVector)
s = ss.solver
smatrices, svectors = gmg_compute_matrices(s,mat,x)
system_caches = (smatrices,svectors)
finest_level_cache = gmg_finest_level_cache(smatrices)
work_vectors = gmg_work_vectors(smatrices)
pre_smoothers_caches = gmg_smoothers_caches(s.pre_smoothers,smatrices,svectors)
if !(s.pre_smoothers === s.post_smoothers)
post_smoothers_caches = gmg_smoothers_caches(s.post_smoothers,smatrices,svectors)
else
post_smoothers_caches = pre_smoothers_caches
end
coarsest_solver_cache = gmg_coarse_solver_caches(s.coarsest_solver,smatrices,svectors,work_vectors)
# Update transfer operators
mh, interp, restrict = s.mh, s.interp, s.restrict
nlevs = num_levels(mh)
map(linear_indices(mh),smatrices,svectors) do lev, Ah, xh
if lev != nlevs
if isa(interp[lev],PatchProlongationOperator) || isa(interp[lev],MultiFieldTransferOperator)
MultilevelTools.update_transfer_operator!(interp[lev],xh)
end
if isa(restrict[lev],PatchRestrictionOperator) || isa(restrict[lev],MultiFieldTransferOperator)
MultilevelTools.update_transfer_operator!(restrict[lev],xh)
end
end
end
return GMGNumericalSetup(
s,smatrices,finest_level_cache,pre_smoothers_caches,post_smoothers_caches,coarsest_solver_cache,work_vectors,system_caches
)
end
function Algebra.numerical_setup!(
ns::GMGNumericalSetup{<:GMGLinearSolverFromMatrices},
mat::AbstractMatrix
)
msg = "
GMGLinearSolverFromMatrices does not support updates.\n
Please use GMGLinearSolverFromWeakform instead.
"
@error msg
end
function Algebra.numerical_setup!(
ns::GMGNumericalSetup{<:GMGLinearSolverFromWeakform},
mat::AbstractMatrix,
x::AbstractVector
)
@check ns.solver.is_nonlinear
s = ns.solver
mh, interp, restrict = s.mh, s.interp, s.restrict
pre_smoothers_ns, post_smoothers_ns = ns.pre_smoothers_caches, ns.post_smoothers_caches
coarsest_solver_ns = ns.coarsest_solver_cache
nlevs = num_levels(mh)
# Update smatrices and svectors
smatrices, svectors = gmg_compute_matrices!(ns.system_caches, s,mat,x)
# Update prolongations and smoothers
map(linear_indices(mh),smatrices,svectors) do lev, Ah, xh
if lev != nlevs
if isa(interp[lev],PatchProlongationOperator) || isa(interp[lev],MultiFieldTransferOperator)
MultilevelTools.update_transfer_operator!(interp[lev],xh)
end
if isa(restrict[lev],PatchRestrictionOperator) || isa(restrict[lev],MultiFieldTransferOperator)
MultilevelTools.update_transfer_operator!(restrict[lev],xh)
end
numerical_setup!(pre_smoothers_ns[lev],Ah,xh)
if !(s.pre_smoothers === s.post_smoothers)
numerical_setup!(post_smoothers_ns[lev],Ah,xh)
end
end
if lev == nlevs
numerical_setup!(coarsest_solver_ns,Ah,xh)
end
end
end
function gmg_project_solutions(solver::GMGLinearSolverFromWeakform,x::AbstractVector)
tests = solver.tests
svectors = map(tests) do shlev
Vh = MultilevelTools.get_fe_space(shlev)
return zero_free_values(Vh)
end
return gmg_project_solutions!(svectors,solver,x)
end
function gmg_project_solutions!(
svectors::AbstractVector{<:AbstractVector},
solver::GMGLinearSolverFromWeakform,
x::AbstractVector
)
restrictions = solver.primal_restrictions
copy!(svectors[1],x)
map(linear_indices(restrictions),restrictions) do lev, R
mul!(unsafe_getindex(svectors,lev+1),R,svectors[lev])
end
return svectors
end
function gmg_compute_matrices(s::GMGLinearSolverFromMatrices,mat::AbstractMatrix)
smatrices = s.smatrices
smatrices[1] = mat
return smatrices
end
function gmg_compute_matrices(s::GMGLinearSolverFromWeakform,mat::AbstractMatrix)
@check !s.is_nonlinear
map(linear_indices(s.mh),s.biforms) do l, biform
if l == 1
return mat
end
Ul = MultilevelTools.get_fe_space(s.trials,l)
Vl = MultilevelTools.get_fe_space(s.tests,l)
al(u,v) = biform(u,v)
return assemble_matrix(al,Ul,Vl)
end
end
function gmg_compute_matrices(s::GMGLinearSolverFromWeakform,mat::AbstractMatrix,x::AbstractVector)
@check s.is_nonlinear
svectors = gmg_project_solutions(s,x)
smatrices = map(linear_indices(s.mh),s.biforms,svectors) do l, biform, xl
if l == 1
return mat
end
Ul = MultilevelTools.get_fe_space(s.trials,l)
Vl = MultilevelTools.get_fe_space(s.tests,l)
ul = FEFunction(Ul,xl)
al(u,v) = biform(ul,u,v)
return assemble_matrix(al,Ul,Vl)
end
return smatrices, svectors
end
function gmg_compute_matrices!(caches,s::GMGLinearSolverFromWeakform,mat::AbstractMatrix,x::AbstractVector)
@check s.is_nonlinear
tests, trials = s.tests, s.trials
smatrices, svectors = caches
svectors = gmg_project_solutions!(svectors,s,x)
map(linear_indices(s.mh),s.biforms,smatrices,svectors) do l, biform, matl, xl
if l == 1
copyto!(matl,mat)
else
Ul = MultilevelTools.get_fe_space(trials,l)
Vl = MultilevelTools.get_fe_space(tests,l)
ul = FEFunction(Ul,xl)
al(u,v) = biform(ul,u,v)
assemble_matrix!(al,matl,Ul,Vl)
end
end
return smatrices, svectors
end
function gmg_finest_level_cache(smatrices::AbstractVector{<:AbstractMatrix})
with_level(smatrices,1) do Ah
rh = allocate_in_domain(Ah); fill!(rh,0.0)
return rh
end
end
function gmg_smoothers_caches(
smoothers::AbstractVector{<:LinearSolver},
smatrices::AbstractVector{<:AbstractMatrix}
)
nlevs = num_levels(smatrices)
# Last (i.e., coarsest) level does not need pre-/post-smoothing
caches = map(smoothers,view(smatrices,1:nlevs-1)) do smoother, mat
numerical_setup(symbolic_setup(smoother, mat), mat)
end
return caches
end
function gmg_smoothers_caches(
smoothers::AbstractVector{<:LinearSolver},
smatrices::AbstractVector{<:AbstractMatrix},
svectors ::AbstractVector{<:AbstractVector}
)
nlevs = num_levels(smatrices)
# Last (i.e., coarsest) level does not need pre-/post-smoothing
caches = map(smoothers,view(smatrices,1:nlevs-1),view(svectors,1:nlevs-1)) do smoother, mat, x
numerical_setup(symbolic_setup(smoother, mat, x), mat, x)
end
return caches
end
function gmg_coarse_solver_caches(
solver::LinearSolver,
smatrices::AbstractVector{<:AbstractMatrix},
work_vectors
)
nlevs = num_levels(smatrices)
with_level(smatrices,nlevs) do AH
_, _, dxH, rH = work_vectors[nlevs-1]
cache = numerical_setup(symbolic_setup(solver, AH), AH)
if isa(solver,PETScLinearSolver)
cache = CachedPETScNS(cache, dxH, rH)
end
return cache
end
end
function gmg_coarse_solver_caches(
solver::LinearSolver,
smatrices::AbstractVector{<:AbstractMatrix},
svectors::AbstractVector{<:AbstractVector},
work_vectors
)
nlevs = num_levels(smatrices)
with_level(smatrices,nlevs) do AH
_, _, dxH, rH = work_vectors[nlevs-1]
xH = svectors[nlevs]
cache = numerical_setup(symbolic_setup(solver, AH, xH), AH, xH)
if isa(solver,PETScLinearSolver)
cache = CachedPETScNS(cache, dxH, rH)
end
return cache
end
end
function gmg_work_vectors(smatrices::AbstractVector{<:AbstractMatrix})
nlevs = num_levels(smatrices)
mats = view(smatrices,1:nlevs-1)
work_vectors = map(linear_indices(mats),mats) do lev, Ah
dxh = allocate_in_domain(Ah); fill!(dxh,zero(eltype(dxh)))
Adxh = allocate_in_range(Ah); fill!(Adxh,zero(eltype(Adxh)))
rH, dxH = with_level(smatrices,lev+1;default=(nothing,nothing)) do AH
rH = allocate_in_domain(AH); fill!(rH,zero(eltype(rH)))
dxH = allocate_in_domain(AH); fill!(dxH,zero(eltype(dxH)))
rH, dxH
end
dxh, Adxh, dxH, rH
end
return work_vectors
end
function apply_GMG_level!(lev::Integer,xh::Union{PVector,Nothing},rh::Union{PVector,Nothing},ns::GMGNumericalSetup)
mh = ns.solver.mh
parts = get_level_parts(mh,lev)
if i_am_in(parts)
if (lev == num_levels(mh))
## Coarsest level
solve!(xh, ns.coarsest_solver_cache, rh)
else
## General case
Ah = ns.smatrices[lev]
restrict, interp = ns.solver.restrict[lev], ns.solver.interp[lev]
dxh, Adxh, dxH, rH = ns.work_vectors[lev]
# Pre-smooth current solution
solve!(xh, ns.pre_smoothers_caches[lev], rh)
# Restrict the residual
mul!(rH,restrict,rh)
# Apply next_level
!isa(dxH,Nothing) && fill!(dxH,0.0)
apply_GMG_level!(lev+1,dxH,rH,ns)
# Interpolate dxH in finer space
mul!(dxh,interp,dxH)
# Update solution & residual
xh .= xh .+ dxh
mul!(Adxh, Ah, dxh)
rh .= rh .- Adxh
# Post-smooth current solution
solve!(xh, ns.post_smoothers_caches[lev], rh)
end
end
end
function Gridap.Algebra.solve!(x::AbstractVector,ns::GMGNumericalSetup,b::AbstractVector)
mode = ns.solver.mode
log = ns.solver.log
rh = ns.finest_level_cache
if (mode == :preconditioner)
fill!(x,0.0)
copy!(rh,b)
else
Ah = ns.smatrices[1]
mul!(rh,Ah,x)
rh .= b .- rh
end
res = norm(rh)
done = init!(log,res)
while !done
apply_GMG_level!(1,x,rh,ns)
res = norm(rh)
done = update!(log,res)
end
finalize!(log,res)
return x
end
function LinearAlgebra.ldiv!(x::AbstractVector,ns::GMGNumericalSetup,b::AbstractVector)
solve!(x,ns,b)
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 627 |
# Identity solver, for testing purposes
struct IdentitySolver <: Gridap.Algebra.LinearSolver
end
struct IdentitySymbolicSetup <: Gridap.Algebra.SymbolicSetup
solver
end
function Gridap.Algebra.symbolic_setup(s::IdentitySolver,A::AbstractMatrix)
IdentitySymbolicSetup(s)
end
struct IdentityNumericalSetup <: Gridap.Algebra.NumericalSetup
solver
end
function Gridap.Algebra.numerical_setup(ss::IdentitySymbolicSetup,mat::AbstractMatrix)
s = ss.solver
return IdentityNumericalSetup(s)
end
function Gridap.Algebra.solve!(x::AbstractVector,ns::IdentityNumericalSetup,y::AbstractVector)
copy!(x,y)
return x
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 7123 |
abstract type IterativeLinearSolverType end
struct CGIterativeSolverType <: IterativeLinearSolverType end
struct GMRESIterativeSolverType <: IterativeLinearSolverType end
struct MINRESIterativeSolverType <: IterativeLinearSolverType end
struct SSORIterativeSolverType <: IterativeLinearSolverType end
# Constructors
"""
struct IterativeLinearSolver <: LinearSolver
...
end
Wrappers for [IterativeSolvers.jl](https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl)
krylov-like iterative solvers.
All wrappers take the same kwargs as the corresponding solver in IterativeSolvers.jl.
The following solvers are available:
- [`IS_ConjugateGradientSolver`](@ref)
- [`IS_GMRESSolver`](@ref)
- [`IS_MINRESSolver`](@ref)
- [`IS_SSORSolver`](@ref)
"""
struct IterativeLinearSolver{A} <: Gridap.Algebra.LinearSolver
args
kwargs
function IterativeLinearSolver(type::IterativeLinearSolverType,args,kwargs)
A = typeof(type)
return new{A}(args,kwargs)
end
end
SolverType(::IterativeLinearSolver{T}) where T = T()
"""
IS_ConjugateGradientSolver(;kwargs...)
Wrapper for the [Conjugate Gradient solver](https://iterativesolvers.julialinearalgebra.org/dev/linear_systems/cg/).
"""
function IS_ConjugateGradientSolver(;kwargs...)
options = [:statevars,:initially_zero,:Pl,:abstol,:reltol,:maxiter,:verbose,:log]
@check all(map(opt -> opt ∈ options,keys(kwargs)))
return IterativeLinearSolver(CGIterativeSolverType(),nothing,kwargs)
end
"""
IS_GMRESSolver(;kwargs...)
Wrapper for the [GMRES solver](https://iterativesolvers.julialinearalgebra.org/dev/linear_systems/gmres/).
"""
function IS_GMRESSolver(;kwargs...)
options = [:initially_zero,:abstol,:reltol,:restart,:maxiter,:Pl,:Pr,:log,:verbose,:orth_meth]
@check all(map(opt -> opt ∈ options,keys(kwargs)))
return IterativeLinearSolver(GMRESIterativeSolverType(),nothing,kwargs)
end
"""
IS_MINRESSolver(;kwargs...)
Wrapper for the [MINRES solver](https://iterativesolvers.julialinearalgebra.org/dev/linear_systems/minres/).
"""
function IS_MINRESSolver(;kwargs...)
options = [:initially_zero,:skew_hermitian,:abstol,:reltol,:maxiter,:log,:verbose]
@check all(map(opt -> opt ∈ options,keys(kwargs)))
return IterativeLinearSolver(MINRESIterativeSolverType(),nothing,kwargs)
end
"""
IS_SSORSolver(ω;kwargs...)
Wrapper for the [SSOR solver](https://iterativesolvers.julialinearalgebra.org/dev/linear_systems/stationary/#SSOR).
"""
function IS_SSORSolver(ω::Real;kwargs...)
options = [:maxiter]
@check all(map(opt -> opt ∈ options,keys(kwargs)))
args = Dict(:ω => ω)
return IterativeLinearSolver(SSORIterativeSolverType(),args,kwargs)
end
# Symbolic setup
struct IterativeLinearSolverSS <: Gridap.Algebra.SymbolicSetup
solver
end
function Gridap.Algebra.symbolic_setup(solver::IterativeLinearSolver,A::AbstractMatrix)
IterativeLinearSolverSS(solver)
end
# Numerical setup
struct IterativeLinearSolverNS <: Gridap.Algebra.NumericalSetup
solver
A
caches
end
function Gridap.Algebra.numerical_setup(ss::IterativeLinearSolverSS,A::AbstractMatrix)
solver_type = SolverType(ss.solver)
numerical_setup(solver_type,ss,A)
end
function Gridap.Algebra.numerical_setup(::IterativeLinearSolverType,
ss::IterativeLinearSolverSS,
A::AbstractMatrix)
IterativeLinearSolverNS(ss.solver,A,nothing)
end
function Gridap.Algebra.numerical_setup(::CGIterativeSolverType,
ss::IterativeLinearSolverSS,
A::AbstractMatrix)
x = allocate_in_domain(A); fill!(x,zero(eltype(x)))
caches = IterativeSolvers.CGStateVariables(zero(x), similar(x), similar(x))
return IterativeLinearSolverNS(ss.solver,A,caches)
end
function Gridap.Algebra.numerical_setup(::SSORIterativeSolverType,
ss::IterativeLinearSolverSS,
A::AbstractMatrix)
x = allocate_in_range(A); fill!(x,zero(eltype(x)))
b = allocate_in_domain(A); fill!(b,zero(eltype(b)))
ω = ss.solver.args[:ω]
maxiter = ss.solver.kwargs[:maxiter]
caches = IterativeSolvers.ssor_iterable(x,A,b,ω;maxiter=maxiter)
return IterativeLinearSolverNS(ss.solver,A,caches)
end
function IterativeSolvers.ssor_iterable(x::PVector,
A::PSparseMatrix,
b::PVector,
ω::Real;
maxiter::Int = 10)
iterables = map(own_values(x),own_values(A),own_values(b)) do _xi,_Aii,_bi
xi = Vector(_xi)
Aii = SparseMatrixCSC(_Aii)
bi = Vector(_bi)
return IterativeSolvers.ssor_iterable(xi,Aii,bi,ω;maxiter=maxiter)
end
return iterables
end
# Solve
function LinearAlgebra.ldiv!(x::AbstractVector,ns::IterativeLinearSolverNS,b::AbstractVector)
solve!(x,ns,b)
end
function Gridap.Algebra.solve!(x::AbstractVector,
ns::IterativeLinearSolverNS,
y::AbstractVector)
solver_type = SolverType(ns.solver)
solve!(solver_type,x,ns,y)
end
function Gridap.Algebra.solve!(::IterativeLinearSolverType,
::AbstractVector,
::IterativeLinearSolverNS,
::AbstractVector)
@abstractmethod
end
function Gridap.Algebra.solve!(::CGIterativeSolverType,
x::AbstractVector,
ns::IterativeLinearSolverNS,
y::AbstractVector)
A, kwargs, caches = ns.A, ns.solver.kwargs, ns.caches
return cg!(x,A,y;kwargs...,statevars=caches)
end
function Gridap.Algebra.solve!(::GMRESIterativeSolverType,
x::AbstractVector,
ns::IterativeLinearSolverNS,
y::AbstractVector)
A, kwargs = ns.A, ns.solver.kwargs
return gmres!(x,A,y;kwargs...)
end
function Gridap.Algebra.solve!(::MINRESIterativeSolverType,
x::AbstractVector,
ns::IterativeLinearSolverNS,
y::AbstractVector)
A, kwargs = ns.A, ns.solver.kwargs
return minres!(x,A,y;kwargs...)
end
function Gridap.Algebra.solve!(::SSORIterativeSolverType,
x::AbstractVector,
ns::IterativeLinearSolverNS,
y::AbstractVector)
iterable = ns.caches
iterable.x = x
iterable.b = y
for item = iterable end
return x
end
function Gridap.Algebra.solve!(::SSORIterativeSolverType,
x::PVector,
ns::IterativeLinearSolverNS,
y::PVector)
iterables = ns.caches
map(iterables,own_values(x),own_values(y)) do iterable, xi, yi
iterable.x .= xi
iterable.b .= yi
for item = iterable end
xi .= iterable.x
yi .= iterable.b
end
consistent!(x) |> fetch
return x
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 1628 | """
struct JacobiLinearSolver <: LinearSolver end
Given a matrix `A`, the Jacobi or Diagonal preconditioner is defined as `P = diag(A)`.
"""
struct JacobiLinearSolver <: Gridap.Algebra.LinearSolver
end
struct JacobiSymbolicSetup <: Gridap.Algebra.SymbolicSetup
end
function Gridap.Algebra.symbolic_setup(s::JacobiLinearSolver,A::AbstractMatrix)
JacobiSymbolicSetup()
end
struct JacobiNumericalSetup{A} <: Gridap.Algebra.NumericalSetup
inv_diag :: A
end
function Gridap.Algebra.numerical_setup(ss::JacobiSymbolicSetup,A::AbstractMatrix)
inv_diag = 1.0./diag(A)
return JacobiNumericalSetup(inv_diag)
end
function Gridap.Algebra.numerical_setup!(ns::JacobiNumericalSetup, A::AbstractMatrix)
ns.inv_diag .= 1.0 ./ diag(A)
end
function Gridap.Algebra.numerical_setup(ss::JacobiSymbolicSetup,A::PSparseMatrix)
inv_diag = map(own_values(A)) do A
1.0 ./ diag(A)
end
return JacobiNumericalSetup(inv_diag)
end
function Gridap.Algebra.numerical_setup!(ns::JacobiNumericalSetup, A::PSparseMatrix)
map(ns.inv_diag,own_values(A)) do inv_diag, A
inv_diag .= 1.0 ./ diag(A)
end
return ns
end
function Gridap.Algebra.solve!(x::AbstractVector, ns::JacobiNumericalSetup, b::AbstractVector)
inv_diag = ns.inv_diag
x .= inv_diag .* b
return x
end
function Gridap.Algebra.solve!(x::PVector, ns::JacobiNumericalSetup, b::PVector)
inv_diag = ns.inv_diag
map(inv_diag,own_values(x),own_values(b)) do inv_diag, x, b
x .= inv_diag .* b
end
#consistent!(x) |> wait
return x
end
function LinearAlgebra.ldiv!(x::AbstractVector,ns::JacobiNumericalSetup,b::AbstractVector)
solve!(x,ns,b)
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 1440 | module LinearSolvers
using Printf
using AbstractTrees
using LinearAlgebra
using SparseArrays
using SparseMatricesCSR
using BlockArrays
using IterativeSolvers
using Gridap
using Gridap.Helpers, Gridap.Algebra, Gridap.CellData, Gridap.Arrays, Gridap.FESpaces, Gridap.MultiField
using PartitionedArrays
using GridapPETSc
using GridapDistributed
using GridapSolvers.MultilevelTools
using GridapSolvers.SolverInterfaces
using GridapSolvers.PatchBasedSmoothers
export JacobiLinearSolver
export RichardsonSmoother
export SymGaussSeidelSmoother
export GMGLinearSolver
export BlockDiagonalSmoother
export SchurComplementSolver
# Wrappers for IterativeSolvers.jl
export IS_ConjugateGradientSolver
export IS_GMRESSolver
export IS_MINRESSolver
export IS_SSORSolver
# Krylov solvers
export CGSolver
export GMRESSolver
export FGMRESSolver
export MINRESSolver
include("Krylov/KrylovUtils.jl")
include("Krylov/CGSolvers.jl")
include("Krylov/GMRESSolvers.jl")
include("Krylov/FGMRESSolvers.jl")
include("Krylov/MINRESSolvers.jl")
include("PETSc/PETScUtils.jl")
include("PETSc/PETScCaches.jl")
include("PETSc/ElasticitySolvers.jl")
include("PETSc/HipmairXuSolvers.jl")
include("IdentityLinearSolvers.jl")
include("JacobiLinearSolvers.jl")
include("RichardsonSmoothers.jl")
include("SymGaussSeidelSmoothers.jl")
include("GMGLinearSolvers.jl")
include("IterativeLinearSolvers.jl")
include("SchurComplementSolvers.jl")
include("MatrixSolvers.jl")
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 964 |
struct MatrixSolver <: Algebra.LinearSolver
M::AbstractMatrix
solver::Algebra.LinearSolver
function MatrixSolver(M;solver=LUSolver())
new(M,solver)
end
end
struct MatrixSolverSS <: Algebra.SymbolicSetup
solver::MatrixSolver
ss::Algebra.SymbolicSetup
function MatrixSolverSS(solver::MatrixSolver)
ss = Algebra.symbolic_setup(solver.solver, solver.M)
new(solver, ss)
end
end
Algebra.symbolic_setup(solver::MatrixSolver,mat::AbstractMatrix) = MatrixSolverSS(solver)
struct MatrixSolverNS <: Algebra.NumericalSetup
solver::MatrixSolver
ns::Algebra.NumericalSetup
function MatrixSolverNS(ss::MatrixSolverSS)
solver = ss.solver
ns = Gridap.Algebra.numerical_setup(ss.ss, solver.M)
new(solver, ns)
end
end
Algebra.numerical_setup(ss::MatrixSolverSS,mat::AbstractMatrix) = MatrixSolverNS(ss)
function Algebra.solve!(x::AbstractVector, solver::MatrixSolverNS, b::AbstractVector)
Algebra.solve!(x, solver.ns, b)
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 2835 | """
struct RichardsonSmoother{A} <: LinearSolver
M :: A
niter :: Int64
ω :: Float64
end
Iterative Richardson smoother. Given a solution `x` and a residual `r`, performs
`niter` Richardson iterations with damping parameter `ω` using the linear solver `M`.
A Richardson iteration is given by:
```
dx = ω * inv(M) * r
x = x + dx
r = r - A * dx
```
Updates both the solution `x` and the residual `r` in place.
"""
struct RichardsonSmoother{A} <: Gridap.Algebra.LinearSolver
M :: A
niter :: Int64
ω :: Float64
@doc """
function RichardsonSmoother(M::LinearSolver,niter::Int=1,ω::Float64=1.0)
Returns an instance of [`RichardsonSmoother`](@ref) from its underlying properties.
"""
function RichardsonSmoother(
M::Gridap.Algebra.LinearSolver,
niter::Integer=1,
ω::Real=1.0
)
A = typeof(M)
return new{A}(M,niter,ω)
end
end
struct RichardsonSmootherSymbolicSetup{A,B} <: Gridap.Algebra.SymbolicSetup
smoother :: RichardsonSmoother{A}
Mss :: B
end
function Gridap.Algebra.symbolic_setup(smoother::RichardsonSmoother,mat::AbstractMatrix)
Mss = symbolic_setup(smoother.M,mat)
return RichardsonSmootherSymbolicSetup(smoother,Mss)
end
mutable struct RichardsonSmootherNumericalSetup{A,B,C,D,E} <: Gridap.Algebra.NumericalSetup
smoother :: RichardsonSmoother{A}
A :: B
Adx :: C
dx :: D
Mns :: E
end
function Gridap.Algebra.numerical_setup(ss::RichardsonSmootherSymbolicSetup, A::AbstractMatrix)
Adx = allocate_in_range(A)
dx = allocate_in_domain(A)
Mns = numerical_setup(ss.Mss,A)
return RichardsonSmootherNumericalSetup(ss.smoother,A,Adx,dx,Mns)
end
function Gridap.Algebra.numerical_setup(ss::RichardsonSmootherSymbolicSetup, A::AbstractMatrix, x::AbstractVector)
Adx = allocate_in_range(A)
dx = allocate_in_domain(A)
Mns = numerical_setup(ss.Mss,A,x)
return RichardsonSmootherNumericalSetup(ss.smoother,A,Adx,dx,Mns)
end
function Gridap.Algebra.numerical_setup!(ns::RichardsonSmootherNumericalSetup, A::AbstractMatrix)
numerical_setup!(ns.Mns,A)
ns.A = A
return ns
end
function Gridap.Algebra.numerical_setup!(ns::RichardsonSmootherNumericalSetup, A::AbstractMatrix, x::AbstractVector)
numerical_setup!(ns.Mns,A,x)
ns.A = A
return ns
end
function Gridap.Algebra.solve!(x::AbstractVector,ns::RichardsonSmootherNumericalSetup,r::AbstractVector)
Adx,dx,Mns = ns.Adx,ns.dx,ns.Mns
niter, ω = ns.smoother.niter, ns.smoother.ω
iter = 1
fill!(dx,0.0)
while iter <= niter
solve!(dx,Mns,r)
dx .= ω .* dx
x .= x .+ dx
mul!(Adx, ns.A, dx)
r .= r .- Adx
iter += 1
end
end
function LinearAlgebra.ldiv!(x::AbstractVector,ns::RichardsonSmootherNumericalSetup,b::AbstractVector)
fill!(x,0.0)
aux = copy(b)
solve!(x,ns,aux)
return x
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 2040 |
"""
Schur complement solver
[A B] ^ -1 [Ip -A^-1 B] [A^-1 ] [ Ip ]
[C D] = [ Iq ] ⋅ [ S^-1] ⋅ [-C A^-1 Iq]
where S = D - C A^-1 B
"""
struct SchurComplementSolver{T1,T2,T3,T4} <: Gridap.Algebra.LinearSolver
A :: T1
B :: T2
C :: T3
S :: T4
function SchurComplementSolver(A::Gridap.Algebra.NumericalSetup,
B::AbstractMatrix,
C::AbstractMatrix,
S::Gridap.Algebra.NumericalSetup)
T1 = typeof(A)
T2 = typeof(B)
T3 = typeof(C)
T4 = typeof(S)
return new{T1,T2,T3,T4}(A,B,C,S)
end
end
struct SchurComplementSymbolicSetup <: Gridap.Algebra.SymbolicSetup
solver
end
function Gridap.Algebra.symbolic_setup(s::SchurComplementSolver,A::AbstractMatrix)
SchurComplementSymbolicSetup(s)
end
struct SchurComplementNumericalSetup{A,B,C} <: Gridap.Algebra.NumericalSetup
solver::A
mat ::B
caches::C
end
function get_shur_complement_caches(B::AbstractMatrix,C::AbstractMatrix)
du = allocate_in_domain(C)
bu = allocate_in_domain(C)
bp = allocate_in_domain(B)
return du,bu,bp
end
function Gridap.Algebra.numerical_setup(ss::SchurComplementSymbolicSetup,mat::AbstractMatrix)
s = ss.solver
caches = get_shur_complement_caches(s.B,s.C)
return SchurComplementNumericalSetup(s,mat,caches)
end
function Gridap.Algebra.solve!(x::AbstractBlockVector,ns::SchurComplementNumericalSetup,y::AbstractBlockVector)
s = ns.solver
A,B,C,S = s.A,s.B,s.C,s.S
du,bu,bp = ns.caches
@check blocklength(x) == blocklength(y) == 2
y_u = y[Block(1)]; y_p = y[Block(2)]
x_u = x[Block(1)]; x_p = x[Block(2)]
# Solve Schur complement
solve!(x_u,A,y_u) # x_u = A^-1 y_u
copy!(bp,y_p); mul!(bp,C,du,-1.0,1.0) # bp = C*(A^-1 y_u) - y_p
solve!(x_p,S,bp) # x_p = S^-1 bp
mul!(bu,B,x_p) # bu = B*x_p
solve!(du,A,bu) # du = A^-1 bu
x_u .-= du # x_u = x_u - du
return x
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 4702 |
# Extensions of IterativeSolvers.jl to support parallel matrices
struct DiagonalIndices{Tv,Ti,A,B}
mat :: A
diag :: B
last :: B
function DiagonalIndices(mat ::AbstractSparseMatrix{Tv,Ti},
diag::AbstractVector{Ti},
last::AbstractVector{Ti}) where {Tv,Ti}
A = typeof(mat)
B = typeof(diag)
@check typeof(last) == B
new{Tv,Ti,A,B}(mat,diag,last)
end
end
function DiagonalIndices(A::SparseMatrixCSR{Tv,Ti},row_range) where {Tv,Ti}
@notimplemented
end
function DiagonalIndices(A::SparseMatrixCSC{Tv,Ti},col_range) where {Tv,Ti}
n = length(col_range)
diag = Vector{Ti}(undef, n)
last = Vector{Ti}(undef, n)
for col in col_range
# Diagonal index
r1 = Int(A.colptr[col])
r2 = Int(A.colptr[col + 1] - 1)
r1 = searchsortedfirst(A.rowval, col, r1, r2, Base.Order.Forward)
if r1 > r2 || A.rowval[r1] != col || iszero(A.nzval[r1])
throw(LinearAlgebra.SingularException(col))
end
diag[col] = r1
# Last owned index
r1 = Int(A.colptr[col])
r2 = Int(A.colptr[col + 1] - 1)
r1 = searchsortedfirst(A.rowval, n+1, r1, r2, Base.Order.Forward) - 1
last[col] = r1
end
return DiagonalIndices(A,diag,last)
end
struct LowerTriangular{Tv,Ti,A,B}
mat :: A
diag :: DiagonalIndices{Tv,Ti,A,B}
end
struct UpperTriangular{Tv,Ti,A,B}
mat :: A
diag :: DiagonalIndices{Tv,Ti,A,B}
end
function forward_sub!(L::LowerTriangular{Tv,Ti,<:SparseMatrixCSC},x::AbstractVector) where {Tv,Ti}
A, diag, last = L.mat, L.diag.diag, L.diag.last
n = length(diag)
for col = 1 : n
# Solve for diagonal element
idx = diag[col]
x[col] /= A.nzval[idx]
# Substitute next values involving x[col]
for i = idx + 1 : last[col]
x[A.rowval[i]] -= A.nzval[i] * x[col]
end
end
return x
end
function forward_sub!(L::AbstractArray{<:LowerTriangular},x::PVector)
map(L,own_values(x)) do L, x
forward_sub!(L, x)
end
end
function backward_sub!(U::UpperTriangular{Tv,Ti,<:SparseMatrixCSC}, x::AbstractVector) where {Tv,Ti}
A, diag = U.mat, U.diag.diag
n = length(diag)
for col = n : -1 : 1
# Solve for diagonal element
idx = diag[col]
x[col] = x[col] / A.nzval[idx]
# Substitute next values involving x[col]
for i = A.colptr[col] : idx - 1
x[A.rowval[i]] -= A.nzval[i] * x[col]
end
end
return x
end
function backward_sub!(U::AbstractArray{<:UpperTriangular},x::PVector)
map(U,own_values(x)) do U, x
backward_sub!(U, x)
end
end
# Smoother
struct SymGaussSeidelSmoother <: Gridap.Algebra.LinearSolver
num_iters::Int
end
struct SymGaussSeidelSymbolicSetup <: Gridap.Algebra.SymbolicSetup
solver :: SymGaussSeidelSmoother
end
function Gridap.Algebra.symbolic_setup(s::SymGaussSeidelSmoother,A::AbstractMatrix)
SymGaussSeidelSymbolicSetup(s)
end
# Numerical setup
struct SymGaussSeidelNumericalSetup{A,B,C,D} <: Gridap.Algebra.NumericalSetup
solver :: SymGaussSeidelSmoother
mat :: A
L :: B
U :: C
caches :: D
end
function _gs_get_caches(A::AbstractMatrix)
dx = allocate_in_domain(A)
Adx = allocate_in_range(A)
return dx, Adx
end
function _gs_decompose_matrix(A::AbstractMatrix)
idx_range = 1:minimum(size(A))
D = DiagonalIndices(A,idx_range)
L = LowerTriangular(A, D)
U = UpperTriangular(A, D)
return L,U
end
function _gs_decompose_matrix(A::PSparseMatrix{T,<:AbstractArray{MatType}}) where {T, MatType}
values = partition(A)
indices = isa(PartitionedArrays.getany(values),SparseMatrixCSC) ? partition(axes(A,2)) : partition(axes(A,1))
L,U = map(values,indices) do A, indices
D = DiagonalIndices(A,own_to_local(indices))
L = LowerTriangular(A,D)
U = UpperTriangular(A,D)
return L,U
end |> tuple_of_arrays
return L,U
end
function Gridap.Algebra.numerical_setup(ss::SymGaussSeidelSymbolicSetup,A::AbstractMatrix)
L, U = _gs_decompose_matrix(A)
caches = _gs_get_caches(A)
return SymGaussSeidelNumericalSetup(ss.solver,A,L,U,caches)
end
# Solve
function Gridap.Algebra.solve!(x::AbstractVector, ns::SymGaussSeidelNumericalSetup, r::AbstractVector)
A, L, U, caches = ns.mat, ns.L, ns.U, ns.caches
dx, Adx = caches
niter = ns.solver.num_iters
iter = 1
while iter <= niter
# Forward pass
copy!(dx,r)
forward_sub!(L, dx)
x .= x .+ dx
mul!(Adx, A, dx)
r .= r .- Adx
# Backward pass
copy!(dx,r)
backward_sub!(U, dx)
x .= x .+ dx
mul!(Adx, A, dx)
r .= r .- Adx
iter += 1
end
return x
end
function LinearAlgebra.ldiv!(x::AbstractVector, ns::SymGaussSeidelNumericalSetup, b::AbstractVector)
fill!(x,0.0)
aux = copy(b)
solve!(x,ns,aux)
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 2680 | """
struct CGSolver <: LinearSolver
...
end
CGSolver(Pl;maxiter=1000,atol=1e-12,rtol=1.e-6,flexible=false,verbose=0,name="CG")
Left-Preconditioned Conjugate Gradient solver.
"""
struct CGSolver <: Gridap.Algebra.LinearSolver
Pl :: Gridap.Algebra.LinearSolver
log :: ConvergenceLog{Float64}
flexible :: Bool
end
function CGSolver(Pl;maxiter=1000,atol=1e-12,rtol=1.e-6,flexible=false,verbose=0,name="CG")
tols = SolverTolerances{Float64}(;maxiter=maxiter,atol=atol,rtol=rtol)
log = ConvergenceLog(name,tols;verbose=verbose)
return CGSolver(Pl,log,flexible)
end
AbstractTrees.children(s::CGSolver) = [s.Pl]
struct CGSymbolicSetup <: Gridap.Algebra.SymbolicSetup
solver
end
function Gridap.Algebra.symbolic_setup(solver::CGSolver, A::AbstractMatrix)
return CGSymbolicSetup(solver)
end
mutable struct CGNumericalSetup <: Gridap.Algebra.NumericalSetup
solver
A
Pl_ns
caches
end
function get_solver_caches(solver::CGSolver,A::AbstractMatrix)
w = allocate_in_domain(A); fill!(w,zero(eltype(w)))
p = allocate_in_domain(A); fill!(p,zero(eltype(p)))
z = allocate_in_domain(A); fill!(z,zero(eltype(z)))
r = allocate_in_domain(A); fill!(r,zero(eltype(r)))
return (w,p,z,r)
end
function Gridap.Algebra.numerical_setup(ss::CGSymbolicSetup, A::AbstractMatrix)
solver = ss.solver
Pl_ns = numerical_setup(symbolic_setup(solver.Pl,A),A)
caches = get_solver_caches(solver,A)
return CGNumericalSetup(solver,A,Pl_ns,caches)
end
function Gridap.Algebra.numerical_setup!(ns::CGNumericalSetup, A::AbstractMatrix)
numerical_setup!(ns.Pl_ns,A)
ns.A = A
return ns
end
function Gridap.Algebra.numerical_setup!(ns::CGNumericalSetup, A::AbstractMatrix, x::AbstractVector)
numerical_setup!(ns.Pl_ns,A,x)
ns.A = A
return ns
end
function Gridap.Algebra.solve!(x::AbstractVector,ns::CGNumericalSetup,b::AbstractVector)
solver, A, Pl, caches = ns.solver, ns.A, ns.Pl_ns, ns.caches
flexible, log = solver.flexible, solver.log
w,p,z,r = caches
# Initial residual
mul!(w,A,x); r .= b .- w
fill!(p,zero(eltype(p)))
fill!(z,zero(eltype(z)))
γ = one(eltype(p))
res = norm(r)
done = init!(log,res)
while !done
if !flexible # β = (zₖ₊₁ ⋅ rₖ₊₁)/(zₖ ⋅ rₖ)
solve!(z, Pl, r)
β = γ; γ = dot(z, r); β = γ / β
else # β = (zₖ₊₁ ⋅ (rₖ₊₁-rₖ))/(zₖ ⋅ rₖ)
δ = dot(z, r)
solve!(z, Pl, r)
β = γ; γ = dot(z, r); β = (γ-δ) / β
end
p .= z .+ β .* p
# w = A⋅p
mul!(w,A,p)
α = γ / dot(p, w)
# Update solution and residual
x .+= α .* p
r .-= α .* w
res = norm(r)
done = update!(log,res)
end
finalize!(log,res)
return x
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 5757 |
"""
struct FGMRESSolver <: LinearSolver
...
end
FGMRESSolver(m,Pr;Pl=nothing,restart=false,m_add=1,maxiter=100,atol=1e-12,rtol=1.e-6,verbose=false,name="FGMRES")
Flexible GMRES solver, with right-preconditioner `Pr` and optional left-preconditioner `Pl`.
The solver starts by allocating a basis of size `m`. Then:
- If `restart=true`, the basis size is fixed and restarted every `m` iterations.
- If `restart=false`, the basis size is allowed to increase. When full, the solver
allocates `m_add` new basis vectors at a time.
"""
struct FGMRESSolver <: Gridap.Algebra.LinearSolver
m :: Int
restart :: Bool
m_add :: Int
Pr :: Gridap.Algebra.LinearSolver
Pl :: Union{Gridap.Algebra.LinearSolver,Nothing}
log :: ConvergenceLog{Float64}
end
function FGMRESSolver(m,Pr;Pl=nothing,restart=false,m_add=1,maxiter=100,atol=1e-12,rtol=1.e-6,verbose=false,name="FGMRES")
tols = SolverTolerances{Float64}(maxiter=maxiter,atol=atol,rtol=rtol)
log = ConvergenceLog(name,tols,verbose=verbose)
return FGMRESSolver(m,restart,m_add,Pr,Pl,log)
end
function restart(s::FGMRESSolver,k::Int)
if s.restart && (k > s.m)
print_message(s.log,"Restarting Krylov basis.")
return true
end
return false
end
AbstractTrees.children(s::FGMRESSolver) = [s.Pr,s.Pl]
struct FGMRESSymbolicSetup <: Gridap.Algebra.SymbolicSetup
solver
end
function Gridap.Algebra.symbolic_setup(solver::FGMRESSolver, A::AbstractMatrix)
return FGMRESSymbolicSetup(solver)
end
mutable struct FGMRESNumericalSetup <: Gridap.Algebra.NumericalSetup
solver
A
Pr_ns
Pl_ns
caches
end
function get_solver_caches(solver::FGMRESSolver,A::AbstractMatrix)
m = solver.m
V = [allocate_in_domain(A) for i in 1:m+1]
Z = [allocate_in_domain(A) for i in 1:m]
zl = allocate_in_domain(A)
H = zeros(m+1,m) # Hessenberg matrix
g = zeros(m+1) # Residual vector
c = zeros(m) # Gibens rotation cosines
s = zeros(m) # Gibens rotation sines
return (V,Z,zl,H,g,c,s)
end
function krylov_cache_length(ns::FGMRESNumericalSetup)
V, _, _, _, _, _, _ = ns.caches
return length(V) - 1
end
function expand_krylov_caches!(ns::FGMRESNumericalSetup)
V, Z, zl, H, g, c, s = ns.caches
m = krylov_cache_length(ns)
m_add = ns.solver.m_add
m_new = m + m_add
for _ in 1:m_add
push!(V,allocate_in_domain(ns.A))
push!(Z,allocate_in_domain(ns.A))
end
H_new = zeros(eltype(H),m_new+1,m_new); H_new[1:m+1,1:m] .= H
g_new = zeros(eltype(g),m_new+1); g_new[1:m+1] .= g
c_new = zeros(eltype(c),m_new); c_new[1:m] .= c
s_new = zeros(eltype(s),m_new); s_new[1:m] .= s
ns.caches = (V,Z,zl,H_new,g_new,c_new,s_new)
return H_new,g_new,c_new,s_new
end
function Gridap.Algebra.numerical_setup(ss::FGMRESSymbolicSetup, A::AbstractMatrix)
solver = ss.solver
Pr_ns = numerical_setup(symbolic_setup(solver.Pr,A),A)
Pl_ns = !isnothing(solver.Pl) ? numerical_setup(symbolic_setup(solver.Pl,A),A) : nothing
caches = get_solver_caches(solver,A)
return FGMRESNumericalSetup(solver,A,Pr_ns,Pl_ns,caches)
end
function Gridap.Algebra.numerical_setup(ss::FGMRESSymbolicSetup, A::AbstractMatrix, x::AbstractVector)
solver = ss.solver
Pr_ns = numerical_setup(symbolic_setup(solver.Pr,A,x),A,x)
Pl_ns = !isnothing(solver.Pl) ? numerical_setup(symbolic_setup(solver.Pl,A,x),A,x) : nothing
caches = get_solver_caches(solver,A)
return FGMRESNumericalSetup(solver,A,Pr_ns,Pl_ns,caches)
end
function Gridap.Algebra.numerical_setup!(ns::FGMRESNumericalSetup, A::AbstractMatrix)
numerical_setup!(ns.Pr_ns,A)
if !isa(ns.Pl_ns,Nothing)
numerical_setup!(ns.Pl_ns,A)
end
ns.A = A
return ns
end
function Gridap.Algebra.numerical_setup!(ns::FGMRESNumericalSetup, A::AbstractMatrix, x::AbstractVector)
numerical_setup!(ns.Pr_ns,A,x)
if !isa(ns.Pl_ns,Nothing)
numerical_setup!(ns.Pl_ns,A,x)
end
ns.A = A
return ns
end
function Gridap.Algebra.solve!(x::AbstractVector,ns::FGMRESNumericalSetup,b::AbstractVector)
solver, A, Pl, Pr, caches = ns.solver, ns.A, ns.Pl_ns, ns.Pr_ns, ns.caches
V, Z, zl, H, g, c, s = caches
m = krylov_cache_length(ns)
log = solver.log
fill!(V[1],zero(eltype(V[1])))
fill!(zl,zero(eltype(zl)))
# Initial residual
krylov_residual!(V[1],x,A,b,Pl,zl)
β = norm(V[1])
done = init!(log,β)
while !done
# Arnoldi process
j = 1
V[1] ./= β
fill!(H,0.0)
fill!(g,0.0); g[1] = β
while !done && !restart(solver,j)
# Expand Krylov basis if needed
if j > m
H, g, c, s = expand_krylov_caches!(ns)
m = krylov_cache_length(ns)
end
# Arnoldi orthogonalization by Modified Gram-Schmidt
fill!(V[j+1],zero(eltype(V[j+1])))
fill!(Z[j],zero(eltype(Z[j])))
krylov_mul!(V[j+1],A,V[j],Pr,Pl,Z[j],zl)
for i in 1:j
H[i,j] = dot(V[j+1],V[i])
V[j+1] .= V[j+1] .- H[i,j] .* V[i]
end
H[j+1,j] = norm(V[j+1])
V[j+1] ./= H[j+1,j]
# Update QR
for i in 1:j-1
γ = c[i]*H[i,j] + s[i]*H[i+1,j]
H[i+1,j] = -s[i]*H[i,j] + c[i]*H[i+1,j]
H[i,j] = γ
end
# New Givens rotation, update QR and residual
c[j], s[j], _ = LinearAlgebra.givensAlgorithm(H[j,j],H[j+1,j])
H[j,j] = c[j]*H[j,j] + s[j]*H[j+1,j]; H[j+1,j] = 0.0
g[j+1] = -s[j]*g[j]; g[j] = c[j]*g[j]
β = abs(g[j+1])
j += 1
done = update!(log,β)
end
j = j-1
# Solve least squares problem Hy = g by backward substitution
for i in j:-1:1
g[i] = (g[i] - dot(H[i,i+1:j],g[i+1:j])) / H[i,i]
end
# Update solution & residual
for i in 1:j
x .+= g[i] .* Z[i]
end
krylov_residual!(V[1],x,A,b,Pl,zl)
end
finalize!(log,β)
return x
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 6052 | """
struct GMRESSolver <: LinearSolver
...
end
GMRESSolver(m;Pr=nothing,Pl=nothing,restart=false,m_add=1,maxiter=100,atol=1e-12,rtol=1.e-6,verbose=false,name="GMRES")
GMRES solver, with optional right and left preconditioners `Pr` and `Pl`.
The solver starts by allocating a basis of size `m`. Then:
- If `restart=true`, the basis size is fixed and restarted every `m` iterations.
- If `restart=false`, the basis size is allowed to increase. When full, the solver
allocates `m_add` new basis vectors.
"""
struct GMRESSolver <: Gridap.Algebra.LinearSolver
m :: Int
restart :: Bool
m_add :: Int
Pr :: Union{Gridap.Algebra.LinearSolver,Nothing}
Pl :: Union{Gridap.Algebra.LinearSolver,Nothing}
log :: ConvergenceLog{Float64}
end
function GMRESSolver(m;Pr=nothing,Pl=nothing,restart=false,m_add=1,maxiter=100,atol=1e-12,rtol=1.e-6,verbose=false,name="GMRES")
tols = SolverTolerances{Float64}(maxiter=maxiter,atol=atol,rtol=rtol)
log = ConvergenceLog(name,tols,verbose=verbose)
return GMRESSolver(m,restart,m_add,Pr,Pl,log)
end
function restart(s::GMRESSolver,k::Int)
if s.restart && (k > s.m)
print_message(s.log,"Restarting Krylov basis.")
return true
end
return false
end
AbstractTrees.children(s::GMRESSolver) = [s.Pr,s.Pl]
struct GMRESSymbolicSetup <: Gridap.Algebra.SymbolicSetup
solver
end
function Gridap.Algebra.symbolic_setup(solver::GMRESSolver, A::AbstractMatrix)
return GMRESSymbolicSetup(solver)
end
mutable struct GMRESNumericalSetup <: Gridap.Algebra.NumericalSetup
solver
A
Pr_ns
Pl_ns
caches
end
function get_solver_caches(solver::GMRESSolver,A::AbstractMatrix)
m, Pl, Pr = solver.m, solver.Pl, solver.Pr
V = [allocate_in_domain(A) for i in 1:m+1]
zr = !isnothing(Pr) ? allocate_in_domain(A) : nothing
zl = allocate_in_domain(A)
H = zeros(m+1,m) # Hessenberg matrix
g = zeros(m+1) # Residual vector
c = zeros(m) # Gibens rotation cosines
s = zeros(m) # Gibens rotation sines
return (V,zr,zl,H,g,c,s)
end
function krylov_cache_length(ns::GMRESNumericalSetup)
V, _, _, _, _, _, _ = ns.caches
return length(V) - 1
end
function expand_krylov_caches!(ns::GMRESNumericalSetup)
V, zr, zl, H, g, c, s = ns.caches
m = krylov_cache_length(ns)
m_add = ns.solver.m_add
m_new = m + m_add
for _ in 1:m_add
push!(V,allocate_in_domain(ns.A))
end
H_new = zeros(eltype(H),m_new+1,m_new); H_new[1:m+1,1:m] .= H
g_new = zeros(eltype(g),m_new+1); g_new[1:m+1] .= g
c_new = zeros(eltype(c),m_new); c_new[1:m] .= c
s_new = zeros(eltype(s),m_new); s_new[1:m] .= s
ns.caches = (V,zr,zl,H_new,g_new,c_new,s_new)
return H_new,g_new,c_new,s_new
end
function Gridap.Algebra.numerical_setup(ss::GMRESSymbolicSetup, A::AbstractMatrix)
solver = ss.solver
Pr_ns = !isnothing(solver.Pr) ? numerical_setup(symbolic_setup(solver.Pr,A),A) : nothing
Pl_ns = !isnothing(solver.Pl) ? numerical_setup(symbolic_setup(solver.Pl,A),A) : nothing
caches = get_solver_caches(solver,A)
return GMRESNumericalSetup(solver,A,Pr_ns,Pl_ns,caches)
end
function Gridap.Algebra.numerical_setup(ss::GMRESSymbolicSetup, A::AbstractMatrix, x::AbstractVector)
solver = ss.solver
Pr_ns = !isnothing(solver.Pr) ? numerical_setup(symbolic_setup(solver.Pr,A,x),A,x) : nothing
Pl_ns = !isnothing(solver.Pl) ? numerical_setup(symbolic_setup(solver.Pl,A,x),A,x) : nothing
caches = get_solver_caches(solver,A)
return GMRESNumericalSetup(solver,A,Pr_ns,Pl_ns,caches)
end
function Gridap.Algebra.numerical_setup!(ns::GMRESNumericalSetup, A::AbstractMatrix)
if !isa(ns.Pr_ns,Nothing)
numerical_setup!(ns.Pr_ns,A)
end
if !isa(ns.Pl_ns,Nothing)
numerical_setup!(ns.Pl_ns,A)
end
ns.A = A
return ns
end
function Gridap.Algebra.numerical_setup!(ns::GMRESNumericalSetup, A::AbstractMatrix, x::AbstractVector)
if !isa(ns.Pr_ns,Nothing)
numerical_setup!(ns.Pr_ns,A,x)
end
if !isa(ns.Pl_ns,Nothing)
numerical_setup!(ns.Pl_ns,A,x)
end
ns.A = A
return ns
end
function Gridap.Algebra.solve!(x::AbstractVector,ns::GMRESNumericalSetup,b::AbstractVector)
solver, A, Pl, Pr, caches = ns.solver, ns.A, ns.Pl_ns, ns.Pr_ns, ns.caches
V, zr, zl, H, g, c, s = caches
m = krylov_cache_length(ns)
log = solver.log
fill!(V[1],zero(eltype(V[1])))
!isnothing(zr) && fill!(zr,zero(eltype(zr)))
fill!(zl,zero(eltype(zl)))
# Initial residual
krylov_residual!(V[1],x,A,b,Pl,zl)
β = norm(V[1])
done = init!(log,β)
while !done
# Arnoldi process
j = 1
V[1] ./= β
fill!(H,0.0)
fill!(g,0.0); g[1] = β
while !done && !restart(solver,j)
# Expand Krylov basis if needed
if j > m
H, g, c, s = expand_krylov_caches!(ns)
m = krylov_cache_length(ns)
end
# Arnoldi orthogonalization by Modified Gram-Schmidt
fill!(V[j+1],zero(eltype(V[j+1])))
krylov_mul!(V[j+1],A,V[j],Pr,Pl,zr,zl)
for i in 1:j
H[i,j] = dot(V[j+1],V[i])
V[j+1] .= V[j+1] .- H[i,j] .* V[i]
end
H[j+1,j] = norm(V[j+1])
V[j+1] ./= H[j+1,j]
# Update QR
for i in 1:j-1
γ = c[i]*H[i,j] + s[i]*H[i+1,j]
H[i+1,j] = -s[i]*H[i,j] + c[i]*H[i+1,j]
H[i,j] = γ
end
# New Givens rotation, update QR and residual
c[j], s[j], _ = LinearAlgebra.givensAlgorithm(H[j,j],H[j+1,j])
H[j,j] = c[j]*H[j,j] + s[j]*H[j+1,j]; H[j+1,j] = 0.0
g[j+1] = -s[j]*g[j]; g[j] = c[j]*g[j]
β = abs(g[j+1])
j += 1
done = update!(log,β)
end
j = j-1
# Solve least squares problem Hy = g by backward substitution
for i in j:-1:1
g[i] = (g[i] - dot(H[i,i+1:j],g[i+1:j])) / H[i,i]
end
# Update solution & residual
if isa(Pr,Nothing)
for i in 1:j
x .+= g[i] .* V[i]
end
else
fill!(zl,0.0)
for i in 1:j
zl .+= g[i] .* V[i]
end
solve!(zr,Pr,zl)
x .+= zr
end
krylov_residual!(V[1],x,A,b,Pl,zl)
end
finalize!(log,β)
return x
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 782 |
"""
Computes the Krylov matrix-vector product
`y = Pl⁻¹⋅A⋅Pr⁻¹⋅x`
by solving
```
Pr⋅wr = x
wl = A⋅wr
Pl⋅y = wl
```
"""
function krylov_mul!(y,A,x,Pr,Pl,wr,wl)
solve!(wr,Pr,x)
mul!(wl,A,wr)
solve!(y,Pl,wl)
end
function krylov_mul!(y,A,x,Pr,Pl::Nothing,wr,wl)
solve!(wr,Pr,x)
mul!(y,A,wr)
end
function krylov_mul!(y,A,x,Pr::Nothing,Pl,wr,wl)
mul!(wl,A,x)
solve!(y,Pl,wl)
end
function krylov_mul!(y,A,x,Pr::Nothing,Pl::Nothing,wr,wl)
mul!(y,A,x)
end
"""
Computes the Krylov residual
`r = Pl⁻¹(A⋅x - b)`
by solving
```
w = A⋅x - b
Pl⋅r = w
```
"""
function krylov_residual!(r,x,A,b,Pl,w)
mul!(w,A,x)
w .= b .- w
solve!(r,Pl,w)
end
function krylov_residual!(r,x,A,b,Pl::Nothing,w)
mul!(r,A,x)
r .= b .- r
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 4005 | """
struct MINRESSolver <: LinearSolver
...
end
MINRESSolver(m;Pl=nothing,maxiter=100,atol=1e-12,rtol=1.e-6,verbose=false,name="MINRES")
MINRES solver, with optional left preconditioners `Pl`. The preconditioner must be
symmetric and positive definite.
"""
struct MINRESSolver <: Gridap.Algebra.LinearSolver
Pl :: Union{Gridap.Algebra.LinearSolver,Nothing}
log :: ConvergenceLog{Float64}
end
function MINRESSolver(;Pl=nothing,maxiter=1000,atol=1e-12,rtol=1.e-6,verbose=false,name="MINRES")
tols = SolverTolerances{Float64}(maxiter=maxiter,atol=atol,rtol=rtol)
log = ConvergenceLog(name,tols,verbose=verbose)
return MINRESSolver(Pl,log)
end
AbstractTrees.children(s::MINRESSolver) = [s.Pl]
struct MINRESSymbolicSetup <: Gridap.Algebra.SymbolicSetup
solver
end
function Gridap.Algebra.symbolic_setup(solver::MINRESSolver, A::AbstractMatrix)
return MINRESSymbolicSetup(solver)
end
mutable struct MINRESNumericalSetup <: Gridap.Algebra.NumericalSetup
solver
A
Pl_ns
caches
end
function get_solver_caches(solver::MINRESSolver,A::AbstractMatrix)
V = Tuple([allocate_in_domain(A) for i in 1:3])
W = Tuple([allocate_in_domain(A) for i in 1:3])
Z = Tuple([allocate_in_domain(A) for i in 1:3])
return (V,W,Z)
end
function Gridap.Algebra.numerical_setup(ss::MINRESSymbolicSetup, A::AbstractMatrix)
solver = ss.solver
Pl_ns = isa(solver.Pl,Nothing) ? nothing : numerical_setup(symbolic_setup(solver.Pl,A),A)
caches = get_solver_caches(solver,A)
return MINRESNumericalSetup(solver,A,Pl_ns,caches)
end
function Gridap.Algebra.numerical_setup(ss::MINRESSymbolicSetup, A::AbstractMatrix, x::AbstractVector)
solver = ss.solver
Pl_ns = isa(solver.Pl,Nothing) ? nothing : numerical_setup(symbolic_setup(solver.Pl,A,x),A,x)
caches = get_solver_caches(solver,A)
return MINRESNumericalSetup(solver,A,Pl_ns,caches)
end
function Gridap.Algebra.numerical_setup!(ns::MINRESNumericalSetup, A::AbstractMatrix)
if !isa(ns.Pl_ns,Nothing)
numerical_setup!(ns.Pl_ns,A)
end
ns.A = A
end
function Gridap.Algebra.numerical_setup!(ns::MINRESNumericalSetup, A::AbstractMatrix, x::AbstractVector)
if !isa(ns.Pl_ns,Nothing)
numerical_setup!(ns.Pl_ns,A,x)
end
ns.A = A
return ns
end
function Gridap.Algebra.solve!(x::AbstractVector,ns::MINRESNumericalSetup,b::AbstractVector)
solver, A, Pl, caches = ns.solver, ns.A, ns.Pl_ns, ns.caches
Vs, Ws, Zs = caches
log = solver.log
Vnew, V, Vold = Vs
Wnew, W, Wold = Ws
Znew, Z, Zold = Zs
T = eltype(A)
fill!(W,zero(T))
fill!(Wold,zero(T))
fill!(Vold,zero(T))
fill!(Zold,zero(T))
mul!(Vnew,A,x)
Vnew .= b .- Vnew
fill!(Znew,zero(T))
!isnothing(Pl) ? solve!(Znew,Pl,Vnew) : copy!(Znew,Vnew)
β_r = norm(Znew)
β_p = dot(Znew,Vnew)
@check β_p > zero(T)
γnew, γ, γold = zero(T), sqrt(β_p), one(T)
cnew, c, cold = zero(T), one(T), one(T)
snew, s, sold = zero(T), zero(T), zero(T)
V .= Vnew ./ γ
Z .= Znew ./ γ
η = γ
done = init!(log,β_r)
while !done
# Lanczos process
mul!(Vnew,A,Z)
!isnothing(Pl) ? solve!(Znew,Pl,Vnew) : copy!(Znew,Vnew)
δ = dot(Vnew,Z)
Vnew .= Vnew .- δ .* V .- γ .* Vold
Znew .= Znew .- δ .* Z .- γ .* Zold
β_p = dot(Znew,Vnew)
γnew = sqrt(β_p)
Vnew .= Vnew ./ γnew
Znew .= Znew ./ γnew
# Update QR
α0 = c*δ - cold*s*γ
cnew, snew, α1 = LinearAlgebra.givensAlgorithm(α0,γnew)
α2 = s*δ + cold*c*γ
α3 = sold*γ
# Update solution
Wnew .= (Z .- α2 .* W .- α3 .* Wold) ./ α1
x .= x .+ (cnew*η) .* Wnew
η = - snew * η
# Update residual
β_r = abs(snew) * β_r
# Swap variables
swap3(xnew,x,xold) = xold, xnew, x
Vnew, V, Vold = swap3(Vnew, V, Vold)
Wnew, W, Wold = swap3(Wnew, W, Wold)
Znew, Z, Zold = swap3(Znew, Z, Zold)
γnew, γ, γold = swap3(γnew, γ, γold)
cnew, c, cold = swap3(cnew, c, cold)
snew, s, sold = swap3(snew, s, sold)
done = update!(log,β_r)
end
finalize!(log,β_r)
return x
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 4695 | """
struct ElasticitySolver <: LinearSolver
...
end
GMRES + AMG solver, specifically designed for linear elasticity problems.
Follows PETSc's documentation for [PCAMG](https://petsc.org/release/manualpages/PC/PCGAMG.html)
and [MatNullSpaceCreateRigidBody](https://petsc.org/release/manualpages/Mat/MatNullSpaceCreateRigidBody.html).
"""
struct ElasticitySolver{A} <: Algebra.LinearSolver
space :: A
tols :: SolverTolerances{Float64}
@doc """
function ElasticitySolver(space::FESpace; maxiter=500, atol=1.e-12, rtol=1.e-8)
Returns an instance of [`ElasticitySolver`](@ref) from its underlying properties.
"""
function ElasticitySolver(space::FESpace;
maxiter=500,atol=1.e-12,rtol=1.e-8)
tols = SolverTolerances{Float64}(;maxiter=maxiter,atol=atol,rtol=rtol)
A = typeof(space)
new{A}(space,tols)
end
end
SolverInterfaces.get_solver_tolerances(s::ElasticitySolver) = s.tols
struct ElasticitySymbolicSetup{A} <: SymbolicSetup
solver::A
end
function Gridap.Algebra.symbolic_setup(solver::ElasticitySolver,A::AbstractMatrix)
ElasticitySymbolicSetup(solver)
end
function elasticity_ksp_setup(ksp,tols)
rtol = PetscScalar(tols.rtol)
atol = PetscScalar(tols.atol)
dtol = PetscScalar(tols.dtol)
maxits = PetscInt(tols.maxiter)
@check_error_code GridapPETSc.PETSC.KSPSetType(ksp[],GridapPETSc.PETSC.KSPCG)
@check_error_code GridapPETSc.PETSC.KSPSetTolerances(ksp[], rtol, atol, dtol, maxits)
pc = Ref{GridapPETSc.PETSC.PC}()
@check_error_code GridapPETSc.PETSC.KSPGetPC(ksp[],pc)
@check_error_code GridapPETSc.PETSC.PCSetType(pc[],GridapPETSc.PETSC.PCGAMG)
@check_error_code GridapPETSc.PETSC.KSPView(ksp[],C_NULL)
end
mutable struct ElasticityNumericalSetup <: NumericalSetup
A::PETScMatrix
X::PETScVector
B::PETScVector
ksp::Ref{GridapPETSc.PETSC.KSP}
null::Ref{GridapPETSc.PETSC.MatNullSpace}
initialized::Bool
function ElasticityNumericalSetup(A::PETScMatrix,X::PETScVector,B::PETScVector)
ksp = Ref{GridapPETSc.PETSC.KSP}()
null = Ref{GridapPETSc.PETSC.MatNullSpace}()
new(A,X,B,ksp,null,false)
end
end
function GridapPETSc.Init(a::ElasticityNumericalSetup)
@assert Threads.threadid() == 1
GridapPETSc._NREFS[] += 2
a.initialized = true
finalizer(GridapPETSc.Finalize,a)
end
function GridapPETSc.Finalize(ns::ElasticityNumericalSetup)
if ns.initialized && GridapPETSc.Initialized()
if ns.A.comm == MPI.COMM_SELF
@check_error_code GridapPETSc.PETSC.KSPDestroy(ns.ksp)
@check_error_code GridapPETSc.PETSC.MatNullSpaceDestroy(ns.null)
else
@check_error_code GridapPETSc.PETSC.PetscObjectRegisterDestroy(ns.ksp[].ptr)
@check_error_code GridapPETSc.PETSC.PetscObjectRegisterDestroy(ns.null[].ptr)
end
ns.initialized = false
@assert Threads.threadid() == 1
GridapPETSc._NREFS[] -= 2
end
nothing
end
function Gridap.Algebra.numerical_setup(ss::ElasticitySymbolicSetup,_A::PSparseMatrix)
_num_dims(space::FESpace) = num_cell_dims(get_triangulation(space))
_num_dims(space::GridapDistributed.DistributedSingleFieldFESpace) = getany(map(_num_dims,local_views(space)))
s = ss.solver
# Create ns
A = convert(PETScMatrix,_A)
X = convert(PETScVector,allocate_in_domain(_A))
B = convert(PETScVector,allocate_in_domain(_A))
ns = ElasticityNumericalSetup(A,X,B)
# Compute coordinates for owned dofs
dof_coords = convert(PETScVector,get_dof_coordinates(s.space))
@check_error_code GridapPETSc.PETSC.VecSetBlockSize(dof_coords.vec[],_num_dims(s.space))
# Create matrix nullspace
@check_error_code GridapPETSc.PETSC.MatNullSpaceCreateRigidBody(dof_coords.vec[],ns.null)
@check_error_code GridapPETSc.PETSC.MatSetNearNullSpace(ns.A.mat[],ns.null[])
# Setup solver and preconditioner
@check_error_code GridapPETSc.PETSC.KSPCreate(ns.A.comm,ns.ksp)
@check_error_code GridapPETSc.PETSC.KSPSetOperators(ns.ksp[],ns.A.mat[],ns.A.mat[])
elasticity_ksp_setup(ns.ksp,s.tols)
@check_error_code GridapPETSc.PETSC.KSPSetUp(ns.ksp[])
GridapPETSc.Init(ns)
end
function Gridap.Algebra.numerical_setup!(ns::ElasticityNumericalSetup,A::AbstractMatrix)
ns.A = convert(PETScMatrix,A)
@check_error_code GridapPETSc.PETSC.MatSetNearNullSpace(ns.A.mat[],ns.null[])
@check_error_code GridapPETSc.PETSC.KSPSetOperators(ns.ksp[],ns.A.mat[],ns.A.mat[])
@check_error_code GridapPETSc.PETSC.KSPSetUp(ns.ksp[])
ns
end
function Algebra.solve!(x::AbstractVector{PetscScalar},ns::ElasticityNumericalSetup,b::AbstractVector{PetscScalar})
X, B = ns.X, ns.B
copy!(B,b)
@check_error_code GridapPETSc.PETSC.KSPSolve(ns.ksp[],B.vec[],X.vec[])
copy!(x,X)
return x
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 2349 |
function ADS_Solver(model,tags,order;rtol=1e-8,maxits=300)
@assert (num_cell_dims(model) == 3) "Not implemented for 2D"
@assert (order == 1) "Only works for linear order"
V_H1_sc, V_H1, V_Hdiv, V_Hcurl = get_ads_spaces(model,order,tags)
G, C, Π_div, Π_curl = get_ads_operators(V_H1_sc,V_H1,V_Hcurl,V_Hdiv)
D = num_cell_dims(model)
ksp_setup(ksp) = ads_ksp_setup(ksp,rtol,maxits,D,G,C,Π_div,Π_curl)
return PETScLinearSolver(ksp_setup)
end
function get_ads_spaces(model,order,tags)
reffe_H1_sc = ReferenceFE(lagrangian,Float64,order)
V_H1_sc = FESpace(model,reffe_H1_sc;dirichlet_tags=tags)
reffe_H1 = ReferenceFE(lagrangian,VectorValue{D,Float64},order)
V_H1 = FESpace(model,reffe_H1;dirichlet_tags=tags)
reffe_Hdiv = ReferenceFE(raviart_thomas,Float64,order-1)
V_Hdiv = FESpace(model,reffe_Hdiv;dirichlet_tags=tags)
reffe_Hcurl = ReferenceFE(nedelec,Float64,order-1)
V_Hcurl = FESpace(model,reffe_Hcurl;dirichlet_tags=tags)
return V_H1_sc, V_H1, V_Hdiv, V_Hcurl
end
function get_ads_operators(V_H1_sc,V_H1_vec,V_Hcurl,V_Hdiv)
G = interpolation_operator(u->∇(u),V_H1_sc,V_Hcurl)
C = interpolation_operator(u->cross(∇,u),V_Hcurl,V_Hdiv)
Π_div = interpolation_operator(u->u,V_H1_vec,V_Hdiv)
Π_curl = interpolation_operator(u->u,V_H1_vec,V_Hcurl)
return G, C, Π_div, Π_curl
end
function ads_ksp_setup(ksp,rtol,maxits,dim,G,C,Π_div,Π_curl)
rtol = PetscScalar(rtol)
atol = GridapPETSc.PETSC.PETSC_DEFAULT
dtol = GridapPETSc.PETSC.PETSC_DEFAULT
maxits = PetscInt(maxits)
@check_error_code GridapPETSc.PETSC.KSPSetType(ksp[],GridapPETSc.PETSC.KSPGMRES)
@check_error_code GridapPETSc.PETSC.KSPSetTolerances(ksp[], rtol, atol, dtol, maxits)
pc = Ref{GridapPETSc.PETSC.PC}()
@check_error_code GridapPETSc.PETSC.KSPGetPC(ksp[],pc)
@check_error_code GridapPETSc.PETSC.PCSetType(pc[],GridapPETSc.PETSC.PCHYPRE)
_G = convert(PETScMatrix,G)
_C = convert(PETScMatrix,C)
_Π_div = convert(PETScMatrix,Π_div)
_Π_curl = convert(PETScMatrix,Π_curl)
@check_error_code GridapPETSc.PETSC.PCHYPRESetDiscreteGradient(pc[],_G.mat[])
@check_error_code GridapPETSc.PETSC.PCHYPRESetDiscreteCurl(pc[],_C.mat[])
@check_error_code GridapPETSc.PETSC.PCHYPRESetInterpolations(pc[],dim,_Π_div.mat[],C_NULL,_Π_curl.mat[],C_NULL)
@check_error_code GridapPETSc.PETSC.KSPView(ksp[],C_NULL)
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 1690 |
"""
struct CachedPETScNS <: NumericalSetup
...
end
Wrapper around a PETSc NumericalSetup, providing highly efficiend reusable caches:
When converting julia vectors/PVectors to PETSc vectors, we purposely create aliasing
of the vector values. This means we can avoid copying data from one to another before solving,
but we need to be careful about it.
This structure takes care of this, and makes sure you do not attempt to solve the system
with julia vectors that are not the ones you used to create the solver cache.
"""
struct CachedPETScNS{TM,A}
ns :: GridapPETSc.PETScLinearSolverNS{TM}
X :: PETScVector
B :: PETScVector
owners :: A
@doc """
function CachedPETScNS(ns::PETScLinearSolverNS,x::AbstractVector,b::AbstractVector)
Create a new instance of [`CachedPETScNS`](@ref) from its underlying properties.
Once this structure is created, you can **only** solve the system with the same vectors
you used to create it.
"""
function CachedPETScNS(ns::GridapPETSc.PETScLinearSolverNS{TM},x::AbstractVector,b::AbstractVector) where TM
X = convert(PETScVector,x)
B = convert(PETScVector,b)
owners = (x,b)
A = typeof(owners)
new{TM,A}(ns,X,B,owners)
end
end
function Algebra.solve!(x::AbstractVector,ns::CachedPETScNS,b::AbstractVector)
@assert x === ns.owners[1]
@assert b === ns.owners[2]
solve!(ns.X,ns.ns,ns.B)
consistent!(x)
return x
end
function Algebra.numerical_setup!(ns::CachedPETScNS,mat::AbstractMatrix)
numerical_setup!(ns.ns,mat)
end
function Algebra.numerical_setup!(ns::CachedPETScNS,mat::AbstractMatrix,x::AbstractVector)
numerical_setup!(ns.ns,mat,x)
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 5230 |
# DoF coordinates
"""
get_dof_coordinates(space::FESpace)
Given a lagrangian FESpace, returns the physical coordinates of the DoFs, as required
by some PETSc solvers. See [PETSc documentation](https://petsc.org/release/manualpages/PC/PCSetCoordinates.html).
"""
function get_dof_coordinates(space::GridapDistributed.DistributedSingleFieldFESpace)
coords = map(local_views(space),partition(space.gids)) do space, dof_ids
local_to_own_dofs = local_to_own(dof_ids)
return get_dof_coordinates(space;perm=local_to_own_dofs)
end
ngdofs = length(space.gids)
indices = map(local_views(space.gids)) do dof_indices
owner = part_id(dof_indices)
own_indices = OwnIndices(ngdofs,owner,own_to_global(dof_indices))
ghost_indices = GhostIndices(ngdofs,Int64[],Int32[]) # We only consider owned dofs
OwnAndGhostIndices(own_indices,ghost_indices)
end
return PVector(coords,indices)
end
function get_dof_coordinates(space::FESpace;perm=Base.OneTo(num_free_dofs(space)))
trian = get_triangulation(space)
cell_dofs = get_fe_dof_basis(space)
cell_ids = get_cell_dof_ids(space)
cell_ref_nodes = lazy_map(get_nodes,CellData.get_data(cell_dofs))
cell_dof_to_node = lazy_map(get_dof_to_node,CellData.get_data(cell_dofs))
cell_dof_to_comp = lazy_map(get_dof_to_comp,CellData.get_data(cell_dofs))
cmaps = get_cell_map(trian)
cell_phys_nodes = lazy_map(evaluate,cmaps,cell_ref_nodes)
node_coords = Vector{Float64}(undef,maximum(perm))
cache_nodes = array_cache(cell_phys_nodes)
cache_ids = array_cache(cell_ids)
cache_dof_to_node = array_cache(cell_dof_to_node)
cache_dof_to_comp = array_cache(cell_dof_to_comp)
for cell in 1:num_cells(trian)
ids = getindex!(cache_ids,cell_ids,cell)
nodes = getindex!(cache_nodes,cell_phys_nodes,cell)
dof_to_comp = getindex!(cache_dof_to_comp,cell_dof_to_comp,cell)
dof_to_node = getindex!(cache_dof_to_node,cell_dof_to_node,cell)
for (dof,c,n) in zip(ids,dof_to_comp,dof_to_node)
if (dof > 0) && (perm[dof] > 0)
node_coords[perm[dof]] = nodes[n][c]
end
end
end
return node_coords
end
# Interpolation matrices
function interpolation_operator(op,U_in,V_out;
strat=SubAssembledRows(),
Tm=SparseMatrixCSR{0,PetscScalar,PetscInt},
Tv=Vector{PetscScalar})
out_dofs = get_fe_dof_basis(V_out)
in_basis = get_fe_basis(U_in)
cell_interp_mats = out_dofs(op(in_basis))
local_contr = map(local_views(out_dofs),cell_interp_mats) do dofs, arr
contr = DomainContribution()
add_contribution!(contr,get_triangulation(dofs),arr)
return contr
end
contr = GridapDistributed.DistributedDomainContribution(local_contr)
matdata = collect_cell_matrix(U_in,V_out,contr)
assem = SparseMatrixAssembler(Tm,Tv,U_in,V_out,strat)
I = allocate_matrix(assem,matdata)
takelast_matrix!(I,assem,matdata)
return I
end
function takelast_matrix(a::SparseMatrixAssembler,matdata)
m1 = Gridap.Algebra.nz_counter(get_matrix_builder(a),(get_rows(a),get_cols(a)))
symbolic_loop_matrix!(m1,a,matdata)
m2 = Gridap.Algebra.nz_allocation(m1)
takelast_loop_matrix!(m2,a,matdata)
m3 = Gridap.Algebra.create_from_nz(m2)
return m3
end
function takelast_matrix!(mat,a::SparseMatrixAssembler,matdata)
LinearAlgebra.fillstored!(mat,zero(eltype(mat)))
takelast_matrix_add!(mat,a,matdata)
end
function takelast_matrix_add!(mat,a::SparseMatrixAssembler,matdata)
takelast_loop_matrix!(mat,a,matdata)
Gridap.Algebra.create_from_nz(mat)
end
function takelast_loop_matrix!(A,a::GridapDistributed.DistributedSparseMatrixAssembler,matdata)
rows = get_rows(a)
cols = get_cols(a)
map(takelast_loop_matrix!,local_views(A,rows,cols),local_views(a),matdata)
end
function takelast_loop_matrix!(A,a::SparseMatrixAssembler,matdata)
strategy = Gridap.FESpaces.get_assembly_strategy(a)
for (cellmat,_cellidsrows,_cellidscols) in zip(matdata...)
cellidsrows = Gridap.FESpaces.map_cell_rows(strategy,_cellidsrows)
cellidscols = Gridap.FESpaces.map_cell_cols(strategy,_cellidscols)
@assert length(cellidscols) == length(cellidsrows)
@assert length(cellmat) == length(cellidsrows)
if length(cellmat) > 0
rows_cache = array_cache(cellidsrows)
cols_cache = array_cache(cellidscols)
vals_cache = array_cache(cellmat)
mat1 = getindex!(vals_cache,cellmat,1)
rows1 = getindex!(rows_cache,cellidsrows,1)
cols1 = getindex!(cols_cache,cellidscols,1)
add! = Gridap.Arrays.AddEntriesMap((a,b) -> b)
add_cache = return_cache(add!,A,mat1,rows1,cols1)
caches = add_cache, vals_cache, rows_cache, cols_cache
_takelast_loop_matrix!(A,caches,cellmat,cellidsrows,cellidscols)
end
end
A
end
@noinline function _takelast_loop_matrix!(mat,caches,cell_vals,cell_rows,cell_cols)
add_cache, vals_cache, rows_cache, cols_cache = caches
add! = Gridap.Arrays.AddEntriesMap((a,b) -> b)
for cell in 1:length(cell_cols)
rows = getindex!(rows_cache,cell_rows,cell)
cols = getindex!(cols_cache,cell_cols,cell)
vals = getindex!(vals_cache,cell_vals,cell)
evaluate!(add_cache,add!,mat,vals,rows,cols)
end
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 14690 |
"""
"""
struct DistributedGridTransferOperator{T,R,M,A,B}
sh :: A
cache :: B
function DistributedGridTransferOperator(
op_type::Symbol,redist::Bool,restriction_method::Symbol,sh::FESpaceHierarchy,cache
)
T = typeof(Val(op_type))
R = typeof(Val(redist))
M = typeof(Val(restriction_method))
A = typeof(sh)
B = typeof(cache)
new{T,R,M,A,B}(sh,cache)
end
end
### Constructors
"""
"""
function RestrictionOperator(lev::Int,sh::FESpaceHierarchy,qdegree::Int;kwargs...)
return DistributedGridTransferOperator(lev,sh,qdegree,:restriction;kwargs...)
end
"""
"""
function ProlongationOperator(lev::Int,sh::FESpaceHierarchy,qdegree::Int;kwargs...)
return DistributedGridTransferOperator(lev,sh,qdegree,:prolongation;kwargs...)
end
function DistributedGridTransferOperator(
lev::Int,sh::FESpaceHierarchy,qdegree::Int,op_type::Symbol;
mode::Symbol=:solution,restriction_method::Symbol=:projection,
solver=LUSolver()
)
@check lev < num_levels(sh)
@check op_type ∈ [:restriction, :prolongation]
@check mode ∈ [:solution, :residual]
@check restriction_method ∈ [:projection, :interpolation, :dof_mask]
# Refinement
if (op_type == :prolongation) || (restriction_method ∈ [:interpolation,:dof_mask])
cache_refine = _get_interpolation_cache(lev,sh,qdegree,mode)
elseif mode == :solution
cache_refine = _get_projection_cache(lev,sh,qdegree,mode,solver)
else
cache_refine = _get_dual_projection_cache(lev,sh,qdegree,solver)
restriction_method = :dual_projection
end
# Redistribution
redist = has_redistribution(sh,lev)
cache_redist = _get_redistribution_cache(lev,sh,mode,op_type,restriction_method,cache_refine)
cache = cache_refine, cache_redist
return DistributedGridTransferOperator(op_type,redist,restriction_method,sh,cache)
end
function _get_interpolation_cache(lev::Int,sh::FESpaceHierarchy,qdegree::Int,mode::Symbol)
cparts = get_level_parts(sh,lev+1)
if i_am_in(cparts)
model_h = get_model_before_redist(sh,lev)
Uh = get_fe_space_before_redist(sh,lev)
fv_h = pfill(0.0,partition(Uh.gids))
dv_h = (mode == :solution) ? get_dirichlet_dof_values(Uh) : zero_dirichlet_values(Uh)
UH = get_fe_space(sh,lev+1)
fv_H = pfill(0.0,partition(UH.gids))
dv_H = (mode == :solution) ? get_dirichlet_dof_values(UH) : zero_dirichlet_values(UH)
cache_refine = model_h, Uh, fv_h, dv_h, UH, fv_H, dv_H
else
model_h = get_model_before_redist(sh,lev)
Uh = get_fe_space_before_redist(sh,lev)
cache_refine = model_h, Uh, nothing, nothing, nothing, nothing, nothing
end
return cache_refine
end
function _get_projection_cache(lev::Int,sh::FESpaceHierarchy,qdegree::Int,mode::Symbol,solver)
cparts = get_level_parts(sh,lev+1)
if i_am_in(cparts)
model_h = get_model_before_redist(sh,lev)
Uh = get_fe_space_before_redist(sh,lev)
Ωh = Triangulation(model_h)
fv_h = zero_free_values(Uh)
dv_h = (mode == :solution) ? get_dirichlet_dof_values(Uh) : zero_dirichlet_values(Uh)
model_H = get_model(sh,lev+1)
UH = get_fe_space(sh,lev+1)
VH = get_fe_space(sh,lev+1)
ΩH = Triangulation(model_H)
dΩH = Measure(ΩH,qdegree)
dΩhH = Measure(ΩH,Ωh,qdegree)
aH(u,v) = ∫(v⋅u)*dΩH
lH(v,uh) = ∫(v⋅uh)*dΩhH
assem = SparseMatrixAssembler(UH,VH)
fv_H = zero_free_values(UH)
dv_H = zero_dirichlet_values(UH)
u0 = FEFunction(UH,fv_H,true) # Zero at free dofs
u00 = FEFunction(UH,fv_H,dv_H,true) # Zero everywhere
u_dir = (mode == :solution) ? u0 : u00
u,v = get_trial_fe_basis(UH), get_fe_basis(VH)
data = collect_cell_matrix_and_vector(UH,VH,aH(u,v),lH(v,u00),u_dir)
AH,bH0 = assemble_matrix_and_vector(assem,data)
AH_ns = numerical_setup(symbolic_setup(solver,AH),AH)
xH = allocate_in_domain(AH); fill!(xH,zero(eltype(xH)))
bH = copy(bH0)
cache_refine = model_h, Uh, fv_h, dv_h, VH, AH_ns, lH, xH, bH, bH0, assem
else
model_h = get_model_before_redist(sh,lev)
Uh = get_fe_space_before_redist(sh,lev)
cache_refine = model_h, Uh, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing
end
return cache_refine
end
function _get_dual_projection_cache(lev::Int,sh::FESpaceHierarchy,qdegree::Int,solver)
cparts = get_level_parts(sh,lev+1)
if i_am_in(cparts)
model_h = get_model_before_redist(sh,lev)
Uh = get_fe_space_before_redist(sh,lev)
Ωh = Triangulation(model_h)
dΩh = Measure(Ωh,qdegree)
uh = FEFunction(Uh,zero_free_values(Uh),zero_dirichlet_values(Uh))
model_H = get_model(sh,lev+1)
UH = get_fe_space(sh,lev+1)
ΩH = Triangulation(model_H)
dΩhH = Measure(ΩH,Ωh,qdegree)
Mh = assemble_matrix((u,v)->∫(v⋅u)*dΩh,Uh,Uh)
Mh_ns = numerical_setup(symbolic_setup(solver,Mh),Mh)
assem = SparseMatrixAssembler(UH,UH)
rh = allocate_in_domain(Mh); fill!(rh,zero(eltype(rh)))
cache_refine = model_h, Uh, UH, Mh_ns, rh, uh, assem, dΩhH
else
model_h = get_model_before_redist(sh,lev)
Uh = get_fe_space_before_redist(sh,lev)
cache_refine = model_h, Uh, nothing, nothing, nothing, nothing, nothing, nothing
end
return cache_refine
end
function _get_redistribution_cache(lev::Int,sh::FESpaceHierarchy,mode::Symbol,op_type::Symbol,restriction_method::Symbol,cache_refine)
redist = has_redistribution(sh,lev)
if !redist
cache_redist = nothing
return cache_redist
end
Uh_red = get_fe_space(sh,lev)
model_h_red = get_model(sh,lev)
fv_h_red = pfill(0.0,partition(Uh_red.gids))
dv_h_red = (mode == :solution) ? get_dirichlet_dof_values(Uh_red) : zero_dirichlet_values(Uh_red)
glue = sh[lev].mh_level.red_glue
if (op_type == :prolongation) || (restriction_method ∈ [:interpolation,:dof_mask])
model_h, Uh, fv_h, dv_h, UH, fv_H, dv_H = cache_refine
cache_exchange = get_redistribute_free_values_cache(fv_h_red,Uh_red,fv_h,dv_h,Uh,model_h_red,glue;reverse=false)
elseif restriction_method == :projection
model_h, Uh, fv_h, dv_h, VH, AH, lH, xH, bH, bH0, assem = cache_refine
cache_exchange = get_redistribute_free_values_cache(fv_h,Uh,fv_h_red,dv_h_red,Uh_red,model_h,glue;reverse=true)
else
model_h, Uh, UH, Mh, rh, uh, assem, dΩhH = cache_refine
fv_h = isa(uh,Nothing) ? nothing : get_free_dof_values(uh)
cache_exchange = get_redistribute_free_values_cache(fv_h,Uh,fv_h_red,dv_h_red,Uh_red,model_h,glue;reverse=true)
end
cache_redist = fv_h_red, dv_h_red, Uh_red, model_h_red, glue, cache_exchange
return cache_redist
end
# TODO: Please replace this type of functions by a map functionality over hierarchies
function setup_transfer_operators(sh::FESpaceHierarchy,qdegree;kwargs...)
prolongations = setup_prolongation_operators(sh,qdegree;kwargs...)
restrictions = setup_restriction_operators(sh,qdegree;kwargs...)
return restrictions, prolongations
end
function setup_prolongation_operators(sh::FESpaceHierarchy,qdegree::Integer;kwargs...)
qdegrees = Fill(qdegree,num_levels(sh))
return setup_prolongation_operators(sh,qdegrees;kwargs...)
end
function setup_prolongation_operators(sh::FESpaceHierarchy,qdegrees::AbstractArray{<:Integer};kwargs...)
@check length(qdegrees) == num_levels(sh)
map(view(linear_indices(sh),1:num_levels(sh)-1)) do lev
qdegree = qdegrees[lev]
ProlongationOperator(lev,sh,qdegree;kwargs...)
end
end
function setup_restriction_operators(sh::FESpaceHierarchy,qdegree::Integer;kwargs...)
qdegrees = Fill(qdegree,num_levels(sh))
return setup_restriction_operators(sh,qdegrees;kwargs...)
end
function setup_restriction_operators(sh::FESpaceHierarchy,qdegrees::AbstractArray{<:Integer};kwargs...)
@check length(qdegrees) == num_levels(sh)
map(view(linear_indices(sh),1:num_levels(sh)-1)) do lev
qdegree = qdegrees[lev]
RestrictionOperator(lev,sh,qdegree;kwargs...)
end
end
### Applying the operators:
# A) Prolongation, without redistribution
function LinearAlgebra.mul!(y::PVector,A::DistributedGridTransferOperator{Val{:prolongation},Val{false}},x::PVector)
cache_refine, cache_redist = A.cache
model_h, Uh, fv_h, dv_h, UH, fv_H, dv_H = cache_refine
copy!(fv_H,x) # Matrix layout -> FE layout
uH = FEFunction(UH,fv_H,dv_H)
uh = interpolate!(uH,fv_h,Uh)
copy!(y,fv_h) # FE layout -> Matrix layout
return y
end
# B.1) Restriction, without redistribution, by interpolation
function LinearAlgebra.mul!(y::PVector,A::DistributedGridTransferOperator{Val{:restriction},Val{false},Val{:interpolation}},x::PVector)
cache_refine, cache_redist = A.cache
model_h, Uh, fv_h, dv_h, UH, fv_H, dv_H = cache_refine
copy!(fv_h,x) # Matrix layout -> FE layout
uh = FEFunction(Uh,fv_h,dv_h)
uH = interpolate!(uh,fv_H,UH)
copy!(y,fv_H) # FE layout -> Matrix layout
return y
end
# B.2) Restriction, without redistribution, by projection
function LinearAlgebra.mul!(y::PVector,A::DistributedGridTransferOperator{Val{:restriction},Val{false},Val{:projection}},x::PVector)
cache_refine, cache_redist = A.cache
model_h, Uh, fv_h, dv_h, VH, AH_ns, lH, xH, bH, bH0, assem = cache_refine
copy!(fv_h,x) # Matrix layout -> FE layout
uh = FEFunction(Uh,fv_h,dv_h)
v = get_fe_basis(VH)
vec_data = collect_cell_vector(VH,lH(v,uh))
copy!(bH,bH0)
assemble_vector_add!(bH,assem,vec_data) # Matrix layout
solve!(xH,AH_ns,bH)
copy!(y,xH)
return y
end
# B.3) Restriction, without redistribution, by dof selection (only nodal dofs)
function LinearAlgebra.mul!(y::PVector,A::DistributedGridTransferOperator{Val{:restriction},Val{false},Val{:dof_mask}},x::PVector)
cache_refine, cache_redist = A.cache
model_h, Uh, fv_h, dv_h, UH, fv_H, dv_H = cache_refine
copy!(fv_h,x) # Matrix layout -> FE layout
consistent!(fv_h) |> fetch
restrict_dofs!(fv_H,fv_h,dv_h,Uh,UH,get_adaptivity_glue(model_h))
copy!(y,fv_H) # FE layout -> Matrix layout
return y
end
# C) Prolongation, with redistribution
function LinearAlgebra.mul!(y::PVector,A::DistributedGridTransferOperator{Val{:prolongation},Val{true}},x::Union{PVector,Nothing})
cache_refine, cache_redist = A.cache
model_h, Uh, fv_h, dv_h, UH, fv_H, dv_H = cache_refine
fv_h_red, dv_h_red, Uh_red, model_h_red, glue, cache_exchange = cache_redist
# 1 - Interpolate in coarse partition
if !isa(x,Nothing)
copy!(fv_H,x) # Matrix layout -> FE layout
uH = FEFunction(UH,fv_H,dv_H)
uh = interpolate!(uH,fv_h,Uh)
end
# 2 - Redistribute from coarse partition to fine partition
redistribute_free_values!(cache_exchange,fv_h_red,Uh_red,fv_h,dv_h,Uh,model_h_red,glue;reverse=false)
copy!(y,fv_h_red) # FE layout -> Matrix layout
return y
end
# D.1) Restriction, with redistribution, by interpolation
function LinearAlgebra.mul!(y::Union{PVector,Nothing},A::DistributedGridTransferOperator{Val{:restriction},Val{true},Val{:interpolation}},x::PVector)
cache_refine, cache_redist = A.cache
model_h, Uh, fv_h, dv_h, UH, fv_H, dv_H = cache_refine
fv_h_red, dv_h_red, Uh_red, model_h_red, glue, cache_exchange = cache_redist
# 1 - Redistribute from fine partition to coarse partition
copy!(fv_h_red,x)
consistent!(fv_h_red) |> fetch
redistribute_free_values!(cache_exchange,fv_h,Uh,fv_h_red,dv_h_red,Uh_red,model_h,glue;reverse=true)
# 2 - Interpolate in coarse partition
if !isa(y,Nothing)
uh = FEFunction(Uh,fv_h,dv_h)
uH = interpolate!(uh,fv_H,UH)
copy!(y,fv_H) # FE layout -> Matrix layout
end
return y
end
# D.2) Restriction, with redistribution, by projection
function LinearAlgebra.mul!(y::Union{PVector,Nothing},A::DistributedGridTransferOperator{Val{:restriction},Val{true},Val{:projection}},x::PVector)
cache_refine, cache_redist = A.cache
model_h, Uh, fv_h, dv_h, VH, AH_ns, lH, xH, bH, bH0, assem = cache_refine
fv_h_red, dv_h_red, Uh_red, model_h_red, glue, cache_exchange = cache_redist
# 1 - Redistribute from fine partition to coarse partition
copy!(fv_h_red,x)
consistent!(fv_h_red) |> fetch
redistribute_free_values!(cache_exchange,fv_h,Uh,fv_h_red,dv_h_red,Uh_red,model_h,glue;reverse=true)
# 2 - Solve f2c projection coarse partition
if !isa(y,Nothing)
consistent!(fv_h) |> fetch
uh = FEFunction(Uh,fv_h,dv_h)
v = get_fe_basis(VH)
vec_data = collect_cell_vector(VH,lH(v,uh))
copy!(bH,bH0)
assemble_vector_add!(bH,assem,vec_data) # Matrix layout
solve!(xH,AH_ns,bH)
copy!(y,xH)
end
return y
end
# D.3) Restriction, with redistribution, by dof selection (only nodal dofs)
function LinearAlgebra.mul!(y::Union{PVector,Nothing},A::DistributedGridTransferOperator{Val{:restriction},Val{true},Val{:dof_mask}},x::PVector)
cache_refine, cache_redist = A.cache
model_h, Uh, fv_h, dv_h, UH, fv_H, dv_H = cache_refine
fv_h_red, dv_h_red, Uh_red, model_h_red, glue, cache_exchange = cache_redist
# 1 - Redistribute from fine partition to coarse partition
copy!(fv_h_red,x)
consistent!(fv_h_red) |> fetch
redistribute_free_values!(cache_exchange,fv_h,Uh,fv_h_red,dv_h_red,Uh_red,model_h,glue;reverse=true)
# 2 - Interpolate in coarse partition
if !isa(y,Nothing)
consistent!(fv_h) |> fetch
restrict_dofs!(fv_H,fv_h,dv_h,Uh,UH,get_adaptivity_glue(model_h))
copy!(y,fv_H) # FE layout -> Matrix layout
end
return y
end
###############################################################
function LinearAlgebra.mul!(y::PVector,A::DistributedGridTransferOperator{Val{:restriction},Val{false},Val{:dual_projection}},x::PVector)
cache_refine, cache_redist = A.cache
model_h, Uh, VH, Mh_ns, rh, uh, assem, dΩhH = cache_refine
fv_h = get_free_dof_values(uh)
solve!(rh,Mh_ns,x)
copy!(fv_h,rh)
consistent!(fv_h) |> fetch
v = get_fe_basis(VH)
assemble_vector!(y,assem,collect_cell_vector(VH,∫(v⋅uh)*dΩhH))
return y
end
function LinearAlgebra.mul!(y::Union{PVector,Nothing},A::DistributedGridTransferOperator{Val{:restriction},Val{true},Val{:dual_projection}},x::PVector)
cache_refine, cache_redist = A.cache
model_h, Uh, VH, Mh_ns, rh, uh, assem, dΩhH = cache_refine
fv_h_red, dv_h_red, Uh_red, model_h_red, glue, cache_exchange = cache_redist
fv_h = isa(uh,Nothing) ? nothing : get_free_dof_values(uh)
# 1 - Redistribute from fine partition to coarse partition
copy!(fv_h_red,x)
consistent!(fv_h_red) |> fetch
redistribute_free_values!(cache_exchange,fv_h,Uh,fv_h_red,dv_h_red,Uh_red,model_h,glue;reverse=true)
# 2 - Solve f2c projection coarse partition
if !isa(y,Nothing)
solve!(rh,Mh_ns,fv_h)
copy!(fv_h,rh)
consistent!(fv_h) |> fetch
v = get_fe_basis(VH)
assemble_vector!(y,assem,collect_cell_vector(VH,∫(v⋅uh)*dΩhH))
end
return y
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 6393 | struct FESpaceHierarchyLevel{A,B,C,D,E}
level :: Int
fe_space :: A
fe_space_red :: B
cell_conformity :: C
cell_conformity_red :: D
mh_level :: E
end
"""
const FESpaceHierarchy = HierarchicalArray{<:FESpaceHierarchyLevel}
A `FESpaceHierarchy` is a hierarchical array of `FESpaceHierarchyLevel` objects. It stores the
adapted/redistributed fe spaces and the corresponding subcommunicators.
For convenience, implements some of the API of `FESpace`.
"""
const FESpaceHierarchy = HierarchicalArray{<:FESpaceHierarchyLevel}
FESpaces.get_fe_space(sh::FESpaceHierarchy,lev::Int) = get_fe_space(sh[lev])
FESpaces.get_fe_space(a::FESpaceHierarchyLevel{A,Nothing}) where {A} = a.fe_space
FESpaces.get_fe_space(a::FESpaceHierarchyLevel{A,B}) where {A,B} = a.fe_space_red
get_fe_space_before_redist(sh::FESpaceHierarchy,lev::Int) = get_fe_space_before_redist(sh[lev])
get_fe_space_before_redist(a::FESpaceHierarchyLevel) = a.fe_space
get_cell_conformity(sh::FESpaceHierarchy,lev::Int) = get_cell_conformity(sh[lev])
get_cell_conformity(a::FESpaceHierarchyLevel{A,Nothing}) where A = a.cell_conformity
get_cell_conformity(a::FESpaceHierarchyLevel{A,B}) where {A,B} = a.cell_conformity_red
get_cell_conformity_before_redist(sh::FESpaceHierarchy,lev::Int) = get_cell_conformity_before_redist(sh[lev])
get_cell_conformity_before_redist(a::FESpaceHierarchyLevel) = a.cell_conformity
get_model(sh::FESpaceHierarchy,level::Integer) = get_model(sh[level])
get_model(a::FESpaceHierarchyLevel) = get_model(a.mh_level)
get_model_before_redist(a::FESpaceHierarchy,level::Integer) = get_model_before_redist(a[level])
get_model_before_redist(a::FESpaceHierarchyLevel) = get_model_before_redist(a.mh_level)
has_redistribution(sh::FESpaceHierarchy,level::Integer) = has_redistribution(sh[level])
has_redistribution(a::FESpaceHierarchyLevel) = has_redistribution(a.mh_level)
has_refinement(sh::FESpaceHierarchy,level::Integer) = has_refinement(sh[level])
has_refinement(a::FESpaceHierarchyLevel) = has_refinement(a.mh_level)
# Test/Trial FESpaces for ModelHierarchyLevels
function _cell_conformity(
model::DiscreteModel,
reffe::Tuple{<:Gridap.FESpaces.ReferenceFEName,Any,Any};
conformity=nothing, kwargs...
) :: CellConformity
basis, reffe_args, reffe_kwargs = reffe
cell_reffe = ReferenceFE(model,basis,reffe_args...;reffe_kwargs...)
conformity = Conformity(Gridap.Arrays.testitem(cell_reffe),conformity)
return CellConformity(cell_reffe,conformity)
end
function _cell_conformity(
model::GridapDistributed.DistributedDiscreteModel,args...;kwargs...
) :: AbstractVector{<:CellConformity}
cell_conformities = map(local_views(model)) do model
_cell_conformity(model,args...;kwargs...)
end
return cell_conformities
end
function FESpaces.FESpace(mh::ModelHierarchyLevel,args...;kwargs...)
if has_redistribution(mh)
cparts, _ = get_old_and_new_parts(mh.red_glue,Val(false))
Vh = i_am_in(cparts) ? FESpace(get_model_before_redist(mh),args...;kwargs...) : nothing
Vh_red = FESpace(get_model(mh),args...;kwargs...)
cell_conformity = i_am_in(cparts) ? _cell_conformity(get_model_before_redist(mh),args...;kwargs...) : nothing
cell_conformity_red = _cell_conformity(get_model(mh),args...;kwargs...)
else
Vh = FESpace(get_model(mh),args...;kwargs...)
Vh_red = nothing
cell_conformity = _cell_conformity(get_model(mh),args...;kwargs...)
cell_conformity_red = nothing
end
return FESpaceHierarchyLevel(mh.level,Vh,Vh_red,cell_conformity,cell_conformity_red,mh)
end
function FESpaces.TrialFESpace(a::FESpaceHierarchyLevel,args...;kwargs...)
Uh = !isa(a.fe_space,Nothing) ? TrialFESpace(a.fe_space,args...;kwargs...) : nothing
Uh_red = !isa(a.fe_space_red,Nothing) ? TrialFESpace(a.fe_space_red,args...;kwargs...) : nothing
return FESpaceHierarchyLevel(a.level,Uh,Uh_red,a.cell_conformity,a.cell_conformity_red,a.mh_level)
end
# Test/Trial FESpaces for ModelHierarchies/FESpaceHierarchy
function FESpaces.FESpace(mh::ModelHierarchy,args...;kwargs...)
map(mh) do mhl
TestFESpace(mhl,args...;kwargs...)
end
end
function FESpaces.FESpace(
mh::ModelHierarchy,
arg_vector::AbstractVector{<:Union{ReferenceFE,Tuple{<:ReferenceFEs.ReferenceFEName,Any,Any}}};
kwargs...
)
map(linear_indices(mh),mh) do l, mhl
args = arg_vector[l]
TestFESpace(mhl,args...;kwargs...)
end
end
function FESpaces.TrialFESpace(sh::FESpaceHierarchy,u)
map(sh) do shl
TrialFESpace(shl,u)
end
end
function FESpaces.TrialFESpace(sh::FESpaceHierarchy)
map(TrialFESpace,sh)
end
# MultiField support
function Gridap.MultiField.MultiFieldFESpace(spaces::Vector{<:FESpaceHierarchyLevel};kwargs...)
level = spaces[1].level
Uh = all(map(s -> !isa(s.fe_space,Nothing),spaces)) ? MultiFieldFESpace(map(s -> s.fe_space, spaces); kwargs...) : nothing
Uh_red = all(map(s -> !isa(s.fe_space_red,Nothing),spaces)) ? MultiFieldFESpace(map(s -> s.fe_space_red, spaces); kwargs...) : nothing
cell_conformity = map(s -> s.cell_conformity, spaces)
cell_conformity_red = map(s -> s.cell_conformity_red, spaces)
return FESpaceHierarchyLevel(level,Uh,Uh_red,cell_conformity,cell_conformity_red,first(spaces).mh_level)
end
function Gridap.MultiField.MultiFieldFESpace(spaces::Vector{<:HierarchicalArray};kwargs...)
@check all(s -> isa(s,FESpaceHierarchy),spaces)
map(spaces...) do spaces_i...
MultiFieldFESpace([spaces_i...];kwargs...)
end
end
# Computing system matrices
function compute_hierarchy_matrices(
trials::FESpaceHierarchy,
tests::FESpaceHierarchy,
a::Function,
l::Function,
qdegree::Integer
)
return compute_hierarchy_matrices(trials,tests,a,l,Fill(qdegree,num_levels(trials)))
end
function compute_hierarchy_matrices(
trials::FESpaceHierarchy,
tests::FESpaceHierarchy,
a::Function,
l::Function,
qdegree::AbstractArray{<:Integer}
)
mats, vecs = map(linear_indices(trials)) do lev
model = get_model(trials,lev)
U = get_fe_space(trials,lev)
V = get_fe_space(tests,lev)
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree[lev])
ai(u,v) = a(u,v,dΩ)
if lev == 1
li(v) = l(v,dΩ)
op = AffineFEOperator(ai,li,U,V)
return get_matrix(op), get_vector(op)
else
return assemble_matrix(ai,U,V), nothing
end
end |> tuple_of_arrays
return mats, mats[1], vecs[1]
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 2527 |
"""
function Base.map(::typeof(Gridap.Arrays.testitem),
a::Tuple{<:AbstractVector{<:AbstractVector{<:VectorValue}},<:AbstractVector{<:Gridap.Fields.LinearCombinationFieldVector}})
a2=Gridap.Arrays.testitem(a[2])
a1=Vector{eltype(eltype(a[1]))}(undef,size(a2,1))
a1.=zero(Gridap.Arrays.testitem(a1))
(a1,a2)
end
"""
# MultiField/DistributedMultiField missing API
"""
function Gridap.FESpaces.zero_dirichlet_values(f::MultiFieldFESpace)
map(zero_dirichlet_values,f.spaces)
end
function Gridap.FESpaces.interpolate_everywhere!(objects,free_values::AbstractVector,dirichlet_values::Vector,fe::MultiFieldFESpace)
blocks = SingleFieldFEFunction[]
for (field, (U,object)) in enumerate(zip(fe.spaces,objects))
free_values_i = restrict_to_field(fe,free_values,field)
dirichlet_values_i = dirichlet_values[field]
uhi = interpolate!(object, free_values_i, dirichlet_values_i, U)
push!(blocks,uhi)
end
Gridap.MultiField.MultiFieldFEFunction(free_values,fe,blocks)
end
function Gridap.FESpaces.interpolate!(objects::GridapDistributed.DistributedMultiFieldFEFunction,free_values::AbstractVector,fe::GridapDistributed.DistributedMultiFieldFESpace)
part_fe_fun = map(local_views(objects),partition(free_values),local_views(fe)) do objects,x,f
interpolate!(objects,x,f)
end
field_fe_fun = GridapDistributed.DistributedSingleFieldFEFunction[]
for i in 1:num_fields(fe)
free_values_i = Gridap.MultiField.restrict_to_field(fe,free_values,i)
fe_space_i = fe.field_fe_space[i]
fe_fun_i = FEFunction(fe_space_i,free_values_i)
push!(field_fe_fun,fe_fun_i)
end
GridapDistributed.DistributedMultiFieldFEFunction(field_fe_fun,part_fe_fun,free_values)
end
function Gridap.FESpaces.FEFunction(
f::GridapDistributed.DistributedMultiFieldFESpace,x::AbstractVector,
dirichlet_values::AbstractArray{<:AbstractVector},isconsistent=false
)
free_values = GridapDistributed.change_ghost(x,f.gids;is_consistent=isconsistent,make_consistent=true)
part_fe_fun = map(FEFunction,f.part_fe_space,partition(free_values))
field_fe_fun = GridapDistributed.DistributedSingleFieldFEFunction[]
for i in 1:num_fields(f)
free_values_i = Gridap.MultiField.restrict_to_field(f,free_values,i)
dirichlet_values_i = dirichlet_values[i]
fe_space_i = f.field_fe_space[i]
fe_fun_i = FEFunction(fe_space_i,free_values_i,dirichlet_values_i,true)
push!(field_fe_fun,fe_fun_i)
end
GridapDistributed.DistributedMultiFieldFEFunction(field_fe_fun,part_fe_fun,free_values)
end
""" | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 4353 |
"""
HierarchicalArray{T,A,B} <: AbstractVector{T}
Array of hierarchical (nested) distributed objects.
Each level might live in a different subcommunicator. If a processor does not belong to
subcommunicator `ranks[i]`, then `array[i]` is `nothing`.
However, it assumes:
- The subcommunicators are nested, so that `ranks[i]` contains `ranks[i+1]`.
- The first subcommunicator does not have empty parts.
"""
struct HierarchicalArray{T,A,B} <: AbstractVector{T}
array :: A
ranks :: B
function HierarchicalArray{T}(array::AbstractVector,ranks::AbstractVector) where T
@assert length(array) == length(ranks)
A = typeof(array)
B = typeof(ranks)
new{T,A,B}(array,ranks)
end
end
function HierarchicalArray(array,ranks)
T = typejoin(filter(t -> t != Nothing, map(typeof,array))...)
HierarchicalArray{T}(array,ranks)
end
function HierarchicalArray{T}(::UndefInitializer,ranks::AbstractVector) where T
array = Vector{Union{Nothing,T}}(undef,length(ranks))
HierarchicalArray{T}(array,ranks)
end
Base.length(a::HierarchicalArray) = length(a.array)
Base.size(a::HierarchicalArray) = (length(a),)
function Base.getindex(a::HierarchicalArray,i::Integer)
msg = "Processor does not belong to subcommunicator $i."
@assert i_am_in(a.ranks[i]) msg
a.array[i]
end
function Base.setindex!(a::HierarchicalArray,v,i::Integer)
msg = "Processor does not belong to subcommunicator $i."
@assert i_am_in(a.ranks[i]) msg
a.array[i] = v
return v
end
# Unsafe getindex: Returns the value without
# checking if the processor belongs to the subcommunicator.
unsafe_getindex(a::HierarchicalArray,i::Integer) = getindex(a.array,i)
unsafe_getindex(a::AbstractArray,i::Integer) = getindex(a,i)
function Base.view(a::HierarchicalArray{T},I) where T
return HierarchicalArray{T}(view(a.array,I),view(a.ranks,I))
end
Base.IndexStyle(::Type{HierarchicalArray}) = IndexLinear()
function PartitionedArrays.linear_indices(a::HierarchicalArray)
ids = LinearIndices(a.array)
return HierarchicalArray{eltype(ids)}(ids,a.ranks)
end
function Base.show(io::IO,k::MIME"text/plain",data::HierarchicalArray{T}) where T
println(io,"HierarchicalArray{$T}")
end
num_levels(a::HierarchicalArray) = length(a.ranks)
get_level_parts(a::HierarchicalArray) = a.ranks
get_level_parts(a::HierarchicalArray,lev) = a.ranks[lev]
function matching_level_parts(a::HierarchicalArray,b::HierarchicalArray)
@assert num_levels(a) == num_levels(b)
return all(map(===, get_level_parts(a), get_level_parts(b)))
end
function matching_level_parts(arrays::Vararg{HierarchicalArray,N}) where N
a1 = first(arrays)
return all(a -> matching_level_parts(a1,a), arrays)
end
"""
Base.map(f::Function,args::Vararg{HierarchicalArray,N}) where N
Maps a function to a set of `HierarchicalArrays`. The function is applied only in the
subcommunicators where the processor belongs to.
"""
function Base.map(f,args::Vararg{HierarchicalArray,N}) where N
@assert matching_level_parts(args...)
ranks = get_level_parts(first(args))
arrays = map(a -> a.array, args)
array = map(ranks, arrays...) do ranks, arrays...
if i_am_in(ranks)
f(arrays...)
else
nothing
end
end
return HierarchicalArray(array,ranks)
end
function Base.map(f,a::HierarchicalArray)
array = map(a.ranks, a.array) do ranks, ai
if i_am_in(ranks)
f(ai)
else
nothing
end
end
return HierarchicalArray(array,a.ranks)
end
function Base.map!(f,a::HierarchicalArray,args::Vararg{HierarchicalArray,N}) where N
@assert matching_level_parts(a,args...)
ranks = get_level_parts(a)
arrays = map(a -> a.array, args)
map(ranks, a.array, arrays...) do ranks, ai, arrays...
if i_am_in(ranks)
ai = f(arrays...)
else
nothing
end
end
return a
end
"""
with_level(f::Function,a::HierarchicalArray,lev::Integer;default=nothing)
Applies a function to the `lev`-th level of a `HierarchicalArray`. If the processor does not
belong to the subcommunicator of the `lev`-th level, then `default` is returned.
"""
function with_level(f::Function,a::HierarchicalArray,lev::Integer;default=nothing)
if i_am_in(a.ranks[lev])
return f(a.array[lev])
else
return default
end
end
function with_level(f::Function,a::AbstractArray,lev::Integer;default=nothing)
f(a.array[lev])
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 7727 |
"""
abstract type LocalProjectionMap{T} <: Map end
"""
abstract type LocalProjectionMap{T} <: Map end
## LocalProjectionMap API
function Arrays.evaluate!(
cache,
k::LocalProjectionMap,
u::GridapDistributed.DistributedCellField
)
fields = map(local_views(u)) do u
evaluate!(nothing,k,u)
end
return GridapDistributed.DistributedCellField(fields,u.trian)
end
function Arrays.evaluate!(
cache,k::LocalProjectionMap,u::MultiField.MultiFieldFEBasisComponent
)
nfields, fieldid = u.nfields, u.fieldid
block_fields(fields,::TestBasis) = lazy_map(BlockMap(nfields,fieldid),fields)
block_fields(fields,::TrialBasis) = lazy_map(BlockMap((1,nfields),fieldid),fields)
sf = evaluate!(nothing,k,u.single_field)
sf_data = CellData.get_data(sf)
mf_data = block_fields(sf_data,BasisStyle(u.single_field))
return CellData.similar_cell_field(sf,mf_data,get_triangulation(sf),DomainStyle(sf))
end
function Arrays.evaluate!(
cache,k::LocalProjectionMap,v::SingleFieldFEBasis{<:TestBasis}
)
cell_v = CellData.get_data(v)
cell_u = lazy_map(transpose,cell_v)
u = FESpaces.similar_fe_basis(v,cell_u,get_triangulation(v),TrialBasis(),DomainStyle(v))
data = _compute_local_projections(k,u)
return GenericCellField(data,get_triangulation(u),ReferenceDomain())
end
function Arrays.evaluate!(
cache,k::LocalProjectionMap,u::SingleFieldFEBasis{<:TrialBasis}
)
_data = _compute_local_projections(k,u)
data = lazy_map(transpose,_data)
return GenericCellField(data,get_triangulation(u),ReferenceDomain())
end
function Arrays.evaluate!(
cache,k::LocalProjectionMap,u::SingleFieldFEFunction
)
data = _compute_local_projections(k,u)
return GenericCellField(data,get_triangulation(u),ReferenceDomain())
end
"""
struct ReffeProjectionMap{T} <: LocalProjectionMap{T}
op :: Operation{T}
reffe :: Tuple{<:ReferenceFEName,Any,Any}
qdegree :: Int
end
Map that projects a field/field-basis onto another local reference space
given by a `ReferenceFE`.
Example:
```julia
model = CartesianDiscreteModel((0,1,0,1),(2,2))
reffe_h1 = ReferenceFE(QUAD,lagrangian,Float64,1,space=:Q)
reffe_l2 = ReferenceFE(QUAD,lagrangian,Float64,1,space=:P)
U = FESpace(model,reffe_h1)
u_h1 = interpolate(f,U)
Ω = Triangulation(model)
dΩ = Measure(Ω,2)
Π = LocalProjectionMap(reffe_l2)
u_l2 = Π(u_h1,dΩ)
```
"""
struct ReffeProjectionMap{T,A} <: LocalProjectionMap{T}
op::Operation{T}
reffe::A
qdegree::Int
function ReffeProjectionMap(
op::Function,
reffe::Tuple{<:ReferenceFEName,Any,Any},
qdegree::Integer
)
T = typeof(op)
A = typeof(reffe)
return new{T,A}(Operation(op),reffe,Int(qdegree))
end
end
function LocalProjectionMap(
op::Function,
reffe::Tuple{<:ReferenceFEName,Any,Any},
qdegree::Integer=2*maximum(reffe[2][2])
)
ReffeProjectionMap(op,reffe,qdegree)
end
function LocalProjectionMap(op::Function,basis::ReferenceFEName,args...;kwargs...)
LocalProjectionMap(op,(basis,args,kwargs))
end
function LocalProjectionMap(basis::ReferenceFEName,args...;kwargs...)
LocalProjectionMap(identity,basis,args...;kwargs...)
end
# We expect the input to be in `TrialBasis` style.
function _compute_local_projections(
k::ReffeProjectionMap,u::CellField
)
Ω = get_triangulation(u)
dΩ = Measure(Ω,k.qdegree)
basis, args, kwargs = k.reffe
cell_polytopes = lazy_map(get_polytope,get_cell_reffe(Ω))
cell_reffe = lazy_map(p -> ReferenceFE(p,basis,args...;kwargs...),cell_polytopes)
test_shapefuns = lazy_map(get_shapefuns,cell_reffe)
trial_shapefuns = lazy_map(transpose,test_shapefuns)
p = SingleFieldFEBasis(trial_shapefuns,Ω,TrialBasis(),ReferenceDomain())
q = SingleFieldFEBasis(test_shapefuns,Ω,TestBasis(),ReferenceDomain())
op = k.op.op
lhs_data = get_array(∫(p⋅q)dΩ)
rhs_data = get_array(∫(q⋅op(u))dΩ)
basis_data = CellData.get_data(q)
return lazy_map(k,lhs_data,rhs_data,basis_data)
end
# Note on the caches:
# - We CANNOT overwrite `lhs`: In the case of constant cell_maps and `u` being a `FEFunction`,
# the lhs will be a Fill, but the rhs will not be optimized (regular LazyArray).
# In that case, we will see multiple times the same `lhs` being used for different `rhs`.
# - The converse never happens (I think), so we can overwrite `rhs` since it will always be recomputed.
function Arrays.return_cache(::LocalProjectionMap,lhs::Matrix{T},rhs::A,basis) where {T,A<:Union{Matrix{T},Vector{T}}}
return CachedArray(copy(lhs)), CachedArray(copy(rhs))
end
function Arrays.evaluate!(cache,::LocalProjectionMap,lhs::Matrix{T},rhs::A,basis) where {T,A<:Union{Matrix{T},Vector{T}}}
cmat, cvec = cache
setsize!(cmat,size(lhs))
mat = cmat.array
copyto!(mat,lhs)
setsize!(cvec,size(rhs))
vec = cvec.array
copyto!(vec,rhs)
f = cholesky!(mat,NoPivot();check=false)
@check issuccess(f) "Factorization failed"
ldiv!(f,vec)
return linear_combination(vec,basis)
end
"""
struct SpaceProjectionMap{T} <: LocalProjectionMap{T}
op :: Operation{T}
space :: A
qdegree :: Int
end
Map that projects a CellField onto another `FESpace`. Necessary when the arrival space
has constraints (e.g. boundary conditions) that need to be taken into account.
"""
struct SpaceProjectionMap{T,A} <: LocalProjectionMap{T}
op::Operation{T}
space::A
qdegree::Int
function SpaceProjectionMap(
op::Function,
space::FESpace,
qdegree::Integer
)
T = typeof(op)
A = typeof(space)
return new{T,A}(Operation(op),space,Int(qdegree))
end
end
function LocalProjectionMap(op::Function,space::FESpace,qdegree::Integer)
SpaceProjectionMap(op,space,qdegree)
end
function LocalProjectionMap(space::FESpace,qdegree::Integer)
LocalProjectionMap(identity,space,qdegree)
end
function GridapDistributed.local_views(k::SpaceProjectionMap)
@check isa(k.space,GridapDistributed.DistributedFESpace)
map(local_views(k.space)) do space
SpaceProjectionMap(k.op.op,space,k.qdegree)
end
end
function Arrays.evaluate!(
cache,
k::SpaceProjectionMap,
u::GridapDistributed.DistributedCellField,
)
@check isa(k.space,GridapDistributed.DistributedFESpace)
fields = map(local_views(k),local_views(u)) do k,u
evaluate!(nothing,k,u)
end
return GridapDistributed.DistributedCellField(fields,u.trian)
end
function _compute_local_projections(
k::SpaceProjectionMap,u::CellField
)
space = k.space
p = get_trial_fe_basis(space)
q = get_fe_basis(space)
Ω = get_triangulation(space)
dΩ = Measure(Ω,k.qdegree)
ids = lazy_map(ids -> findall(id -> id > 0, ids), get_cell_dof_ids(space))
op = k.op.op
lhs_data = get_array(∫(p⋅q)dΩ)
rhs_data = get_array(∫(q⋅op(u))dΩ)
basis_data = CellData.get_data(q)
return lazy_map(k,lhs_data,rhs_data,basis_data,ids)
end
function Arrays.return_cache(::LocalProjectionMap,lhs::Matrix{T},rhs::A,basis,ids) where {T,A<:Union{Matrix{T},Vector{T}}}
return CachedArray(copy(lhs)), CachedArray(copy(rhs)), CachedArray(zeros(eltype(rhs),(length(ids),size(rhs,2))))
end
function Arrays.evaluate!(cache,::LocalProjectionMap,lhs::Matrix{T},rhs::A,basis,ids) where {T,A<:Union{Matrix{T},Vector{T}}}
cmat, cvec, cvec2 = cache
n = length(ids)
if iszero(n)
setsize!(cvec,size(rhs))
vec = cvec.array
fill!(vec,zero(eltype(rhs)))
else
setsize!(cmat,(n,n))
mat = cmat.array
copyto!(mat,lhs[ids,ids])
setsize!(cvec2,(n,size(rhs,2)))
vec2 = cvec2.array
copyto!(vec2,rhs[ids,:])
setsize!(cvec,size(rhs))
vec = cvec.array
fill!(vec,zero(eltype(rhs)))
f = cholesky!(mat,NoPivot();check=false)
@check issuccess(f) "Factorization failed"
ldiv!(f,vec2)
vec[ids,:] .= vec2
end
return linear_combination(vec,basis)
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 13860 |
"""
Single level for a ModelHierarchy.
Note that `model_red` and `red_glue` might be of type `Nothing`
whenever there is no redistribution in a given level.
`ref_glue` is of type `Nothing` on the coarsest level.
"""
struct ModelHierarchyLevel{A,B,C,D}
level :: Int
model :: A
ref_glue :: B
model_red :: C
red_glue :: D
end
"""
const ModelHierarchy = HierarchicalArray{<:ModelHierarchyLevel}
A `ModelHierarchy` is a hierarchical array of `ModelHierarchyLevel` objects. It stores the
adapted/redistributed models and the corresponding subcommunicators.
For convenience, implements some of the API of `DiscreteModel`.
"""
const ModelHierarchy = HierarchicalArray{<:ModelHierarchyLevel}
get_model(a::ModelHierarchy,level::Integer) = get_model(a[level])
get_model(a::ModelHierarchyLevel{A,B,Nothing}) where {A,B} = a.model
get_model(a::ModelHierarchyLevel{A,B,C}) where {A,B,C} = a.model_red
get_model_before_redist(a::ModelHierarchy,level::Integer) = get_model_before_redist(a[level])
get_model_before_redist(a::ModelHierarchyLevel) = a.model
has_redistribution(a::ModelHierarchy,level::Integer) = has_redistribution(a[level])
has_redistribution(a::ModelHierarchyLevel{A,B,C,D}) where {A,B,C,D} = true
has_redistribution(a::ModelHierarchyLevel{A,B,C,Nothing}) where {A,B,C} = false
has_refinement(a::ModelHierarchy,level::Integer) = has_refinement(a[level])
has_refinement(a::ModelHierarchyLevel{A,B}) where {A,B} = true
has_refinement(a::ModelHierarchyLevel{A,Nothing}) where A = false
"""
CartesianModelHierarchy(
ranks::AbstractVector{<:Integer},
np_per_level::Vector{<:NTuple{D,<:Integer}},
domain::Tuple,
nc::NTuple{D,<:Integer};
nrefs::Union{<:Integer,Vector{<:Integer},Vector{<:NTuple{D,<:Integer}},NTuple{D,<:Integer}},
map::Function = identity,
isperiodic::NTuple{D,Bool} = Tuple(fill(false,D)),
add_labels!::Function = (labels -> nothing),
) where D
Returns a `ModelHierarchy` with a Cartesian model as coarsest level. The i-th level
will be distributed among `np_per_level[i]` processors. Two consecutive levels are
refined by a factor of `nrefs[i]`.
## Parameters:
- `ranks`: Initial communicator. Will be used to generate subcommunicators.
- `domain`: Tuple containing the domain limits.
- `nc`: Tuple containing the number of cells in each direction for the coarsest model.
- `np_per_level`: Vector containing the number of processors we want to distribute
each level into. Requires a tuple `np = (np_1,...,np_d)` for each level, then each
level will be distributed among `prod(np)` processors with `np_i` processors in the
i-th direction.
- `nrefs`: Vector containing the refinement factor for each level. Has `nlevs-1` entries,
and each entry can either be an integer (homogeneous refinement) or a tuple
with `D` integers (inhomogeneous refinement).
"""
function CartesianModelHierarchy(
ranks::AbstractVector{<:Integer},
np_per_level::Vector{<:NTuple{D,<:Integer}},
domain::Tuple,
nc::NTuple{D,<:Integer};
nrefs::Union{<:Integer,Vector{<:Integer},Vector{<:NTuple{D,<:Integer}},NTuple{D,<:Integer}}=2,
map::Function = identity,
isperiodic::NTuple{D,Bool} = Tuple(fill(false,D)),
add_labels!::Function = (labels -> nothing),
) where D
lnr(x::Integer,n) = fill(Tuple(fill(x,D)),n)
lnr(x::Vector{<:Integer},n) = [Tuple(fill(xi,D)) for xi in x]
lnr(x::NTuple{D,<:Integer},n) = fill(x,n)
lnr(x::Vector{<:NTuple{D,<:Integer}},n) = x
nlevs = length(np_per_level)
level_parts = generate_level_parts(ranks,Base.map(prod,np_per_level))
level_nrefs = lnr(nrefs,length(level_parts)-1)
@assert length(level_parts)-1 == length(level_nrefs)
# Cartesian descriptors for each level
level_descs = Vector{GridapDistributed.DistributedCartesianDescriptor}(undef,nlevs)
ncells = nc
for lev in nlevs:-1:1
level_descs[lev] = GridapDistributed.DistributedCartesianDescriptor(
level_parts[lev],np_per_level[lev],CartesianDescriptor(domain,ncells;map,isperiodic)
)
if lev != 1
ncells = ncells .* level_nrefs[lev-1]
end
end
map_main(ranks) do r
@info "$(nlevs)-level CartesianModelHierarchy:\n$(join([" > Level $(lev): "*repr("text/plain",level_descs[lev]) for lev in 1:nlevs],"\n"))"
end
# Coarsest level
meshes = Vector{ModelHierarchyLevel}(undef,nlevs)
if i_am_in(level_parts[nlevs])
coarsest_model = CartesianDiscreteModel(level_parts[nlevs],np_per_level[nlevs],domain,nc;map,isperiodic)
Base.map(add_labels!,local_views(get_face_labeling(coarsest_model)))
else
coarsest_model = nothing
end
meshes[nlevs] = ModelHierarchyLevel(nlevs,coarsest_model,nothing,nothing,nothing)
# Remaining levels
for lev in nlevs-1:-1:1
fparts = level_parts[lev]
cparts = level_parts[lev+1]
# Refinement
if i_am_in(cparts)
cmodel = get_model(meshes[lev+1])
model_ref = Gridap.Adaptivity.refine(cmodel,level_nrefs[lev])
ref_glue = Gridap.Adaptivity.get_adaptivity_glue(model_ref)
else
model_ref, ref_glue = nothing, nothing, nothing
end
# Redistribution (if needed)
if i_am_in(fparts) && (cparts !== fparts)
_model_ref = i_am_in(cparts) ? Gridap.Adaptivity.get_model(model_ref) : nothing
model_red, red_glue = GridapDistributed.redistribute(_model_ref,level_descs[lev];old_ranks=cparts)
else
model_red, red_glue = nothing, nothing
end
meshes[lev] = ModelHierarchyLevel(lev,model_ref,ref_glue,model_red,red_glue)
end
return HierarchicalArray(meshes,level_parts)
end
"""
P4estCartesianModelHierarchy(
ranks,np_per_level,domain,nc::NTuple{D,<:Integer};
num_refs_coarse::Integer = 0,
add_labels!::Function = (labels -> nothing),
map::Function = identity,
isperiodic::NTuple{D,Bool} = Tuple(fill(false,D))
) where D
Returns a `ModelHierarchy` with a Cartesian model as coarsest level, using GridapP4est.jl.
The i-th level will be distributed among `np_per_level[i]` processors.
The seed model is given by `cmodel = CartesianDiscreteModel(domain,nc)`.
"""
function P4estCartesianModelHierarchy(
ranks,np_per_level,domain,nc::NTuple{D,<:Integer};
num_refs_coarse::Integer = 0,
add_labels!::Function = (labels -> nothing),
map::Function = identity,
isperiodic::NTuple{D,Bool} = Tuple(fill(false,D))
) where D
cparts = generate_subparts(ranks,np_per_level[end])
cmodel = CartesianDiscreteModel(domain,nc;map,isperiodic)
add_labels!(get_face_labeling(cmodel))
coarse_model = OctreeDistributedDiscreteModel(cparts,cmodel,num_refs_coarse)
mh = ModelHierarchy(ranks,coarse_model,np_per_level)
return mh
end
"""
ModelHierarchy(root_parts,model,num_procs_x_level)
- `root_parts`: Initial communicator. Will be used to generate subcommunicators.
- `model`: Initial refinable distributed model. Will be set as coarsest level.
- `num_procs_x_level`: Vector containing the number of processors we want to distribute
each level into. We need `num_procs_x_level[end]` to be equal to
the number of parts of `model`, and `num_procs_x_level[1]` to lower than the total
number of available processors in `root_parts`.
"""
function ModelHierarchy(
root_parts ::AbstractArray,
model ::GridapDistributed.DistributedDiscreteModel,
num_procs_x_level ::Vector{<:Integer};
mesh_refinement = true,
kwargs...
)
# Request correct number of parts from MAIN
model_parts = get_parts(model)
my_num_parts = map(root_parts) do _p
num_parts(model_parts) # == -1 if !i_am_in(my_parts)
end
main_num_parts = PartitionedArrays.getany(emit(my_num_parts))
if main_num_parts == num_procs_x_level[end] # Coarsest model
if mesh_refinement
return _model_hierarchy_by_refinement(root_parts,model,num_procs_x_level;kwargs...)
else
return _model_hierarchy_without_refinement_bottom_up(root_parts,model,num_procs_x_level;kwargs...)
end
end
if main_num_parts == num_procs_x_level[1] # Finest model
if mesh_refinement
return _model_hierarchy_by_coarsening(root_parts,model,num_procs_x_level;kwargs...)
else
return _model_hierarchy_without_refinement_top_down(root_parts,model,num_procs_x_level;kwargs...)
end
end
@error "Model parts do not correspond to coarsest or finest parts!"
end
function _model_hierarchy_without_refinement_bottom_up(
root_parts::AbstractArray{T},
bottom_model::GridapDistributed.DistributedDiscreteModel,
num_procs_x_level::Vector{<:Integer}
) where T
num_levels = length(num_procs_x_level)
level_parts = Vector{Union{typeof(root_parts),GridapDistributed.MPIVoidVector{T}}}(undef,num_levels)
meshes = Vector{ModelHierarchyLevel}(undef,num_levels)
level_parts[num_levels] = get_parts(bottom_model)
meshes[num_levels] = ModelHierarchyLevel(num_levels,bottom_model,nothing,nothing,nothing)
for i = num_levels-1:-1:1
model = get_model(meshes[i+1])
if (num_procs_x_level[i] != num_procs_x_level[i+1])
level_parts[i] = generate_subparts(root_parts,num_procs_x_level[i])
model_red,red_glue = GridapDistributed.redistribute(model,level_parts[i])
else
level_parts[i] = level_parts[i+1]
model_red,red_glue = nothing,nothing
end
meshes[i] = ModelHierarchyLevel(i,model,nothing,model_red,red_glue)
end
mh = HierarchicalArray(meshes,level_parts)
return mh
end
function _model_hierarchy_without_refinement_top_down(
root_parts::AbstractArray{T},
top_model::GridapDistributed.DistributedDiscreteModel,
num_procs_x_level::Vector{<:Integer}
) where T
num_levels = length(num_procs_x_level)
level_parts = Vector{Union{typeof(root_parts),GridapDistributed.MPIVoidVector{T}}}(undef,num_levels)
meshes = Vector{ModelHierarchyLevel}(undef,num_levels)
level_parts[1] = get_parts(top_model)
model = top_model
for i = 1:num_levels-1
if (num_procs_x_level[i] != num_procs_x_level[i+1])
level_parts[i+1] = generate_subparts(root_parts,num_procs_x_level[i+1])
model_red = model
model,red_glue = GridapDistributed.redistribute(model_red,level_parts[i+1])
else
level_parts[i+1] = level_parts[i]
model_red,red_glue = nothing, nothing
end
meshes[i] = ModelHierarchyLevel(i,model,nothing,model_red,red_glue)
end
meshes[num_levels] = ModelHierarchyLevel(num_levels,model,nothing,nothing,nothing)
mh = HierarchicalArray(meshes,level_parts)
return mh
end
function _model_hierarchy_by_refinement(
root_parts::AbstractArray{T},
coarsest_model::GridapDistributed.DistributedDiscreteModel,
num_procs_x_level::Vector{<:Integer};
num_refs_x_level=nothing
) where T
# TODO: Implement support for num_refs_x_level? (future work)
num_levels = length(num_procs_x_level)
level_parts = Vector{Union{typeof(root_parts),GridapDistributed.MPIVoidVector{T}}}(undef,num_levels)
meshes = Vector{ModelHierarchyLevel}(undef,num_levels)
level_parts[num_levels] = get_parts(coarsest_model)
meshes[num_levels] = ModelHierarchyLevel(num_levels,coarsest_model,nothing,nothing,nothing)
for i = num_levels-1:-1:1
modelH = get_model(meshes[i+1])
if (num_procs_x_level[i] != num_procs_x_level[i+1])
# meshes[i+1].model is distributed among P processors
# model_ref is distributed among Q processors, with P!=Q
level_parts[i] = generate_subparts(root_parts,num_procs_x_level[i])
model_ref,ref_glue = Gridap.Adaptivity.refine(modelH)
model_red,red_glue = GridapDistributed.redistribute(model_ref,level_parts[i])
else
level_parts[i] = level_parts[i+1]
model_ref,ref_glue = Gridap.Adaptivity.refine(modelH)
model_red,red_glue = nothing,nothing
end
meshes[i] = ModelHierarchyLevel(i,model_ref,ref_glue,model_red,red_glue)
end
mh = HierarchicalArray(meshes,level_parts)
return convert_to_adapted_models(mh)
end
function _model_hierarchy_by_coarsening(
root_parts::AbstractArray{T},
finest_model::GridapDistributed.DistributedDiscreteModel,
num_procs_x_level::Vector{<:Integer};
num_refs_x_level=nothing
) where T
# TODO: Implement support for num_refs_x_level? (future work)
num_levels = length(num_procs_x_level)
level_parts = Vector{Union{typeof(root_parts),GridapDistributed.MPIVoidVector{T}}}(undef,num_levels)
meshes = Vector{ModelHierarchyLevel}(undef,num_levels)
level_parts[1] = get_parts(finest_model)
model = finest_model
for i = 1:num_levels-1
if (num_procs_x_level[i] != num_procs_x_level[i+1])
level_parts[i+1] = generate_subparts(root_parts,num_procs_x_level[i+1])
model_red = model
model_ref,red_glue = GridapDistributed.redistribute(model_red,level_parts[i+1])
model_H ,ref_glue = Gridap.Adaptivity.coarsen(model_ref)
else
level_parts[i+1] = level_parts[i]
model_red = nothing
model_ref,red_glue = model, nothing
model_H ,ref_glue = Gridap.Adaptivity.coarsen(model_ref)
end
model = model_H
meshes[i] = ModelHierarchyLevel(i,model_ref,ref_glue,model_red,red_glue)
end
meshes[num_levels] = ModelHierarchyLevel(num_levels,model,nothing,nothing,nothing)
mh = HierarchicalArray(meshes,level_parts)
return convert_to_adapted_models(mh)
end
function convert_to_adapted_models(mh::ModelHierarchy)
map(linear_indices(mh),mh) do lev, mhl
if lev == num_levels(mh)
return mhl
end
if i_am_in(get_level_parts(mh,lev+1))
model = get_model_before_redist(mh,lev)
parent = get_model(mh,lev+1)
ref_glue = mhl.ref_glue
model_ref = GridapDistributed.DistributedAdaptedDiscreteModel(model,parent,ref_glue)
else
model_ref = nothing
end
return ModelHierarchyLevel(lev,model_ref,mhl.ref_glue,mhl.model_red,mhl.red_glue)
end
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 2069 |
"""
"""
struct MultiFieldTransferOperator{T,A,B,C,D}
Vh_in :: A
Vh_out :: B
ops :: C
cache :: D
function MultiFieldTransferOperator(
op_type::Symbol,Vh_in::A,Vh_out::B,ops::C,cache::D
) where {A,B,C,D}
T = Val{op_type}
new{T,A,B,C,D}(Vh_in,Vh_out,ops,cache)
end
end
function MultiFieldTransferOperator(lev::Integer,sh::FESpaceHierarchy,operators;op_type=:prolongation)
@check op_type in (:prolongation,:restriction)
cparts = get_level_parts(sh,lev+1)
Vh = get_fe_space(sh,lev)
VH = i_am_in(cparts) ? get_fe_space(sh,lev+1) : nothing
Vh_out, Vh_in = (op_type == :prolongation) ? (Vh,VH) : (VH,Vh)
xh = isnothing(Vh_out) ? nothing : zero_free_values(Vh_out)
yh = isnothing(Vh_in) ? nothing : zero_free_values(Vh_in)
caches = xh, yh
return MultiFieldTransferOperator(op_type,Vh_in,Vh_out,operators,caches)
end
function MultiFieldTransferOperator(sh::FESpaceHierarchy,operators;op_type=:prolongation)
nlevs = num_levels(sh)
@check all(map(a -> length(a) == nlevs-1, operators))
mfops = Vector{MultiFieldTransferOperator}(undef,nlevs-1)
for (lev,ops) in enumerate(zip(operators...))
parts = get_level_parts(sh,lev)
if i_am_in(parts)
mfops[lev] = MultiFieldTransferOperator(lev,sh,ops;op_type)
end
end
return mfops
end
function update_transfer_operator!(op::MultiFieldTransferOperator,x::PVector)
xh, _ = op.cache
if !isnothing(xh)
copy!(x,xh)
end
for (i,op_i) in enumerate(op.ops)
xh_i = isnothing(xh) ? nothing : MultiField.restrict_to_field(op.Vh_out,xh,i)
update_transfer_operator!(op_i,xh_i)
end
end
function LinearAlgebra.mul!(x,op::MultiFieldTransferOperator,y)
xh, yh = op.cache
if !isnothing(yh)
copy!(yh,y)
end
for (i,op_i) in enumerate(op.ops)
xh_i = isnothing(xh) ? nothing : MultiField.restrict_to_field(op.Vh_out,xh,i)
yh_i = isnothing(yh) ? nothing : MultiField.restrict_to_field(op.Vh_in,yh,i)
LinearAlgebra.mul!(xh_i,op_i,yh_i)
end
if !isnothing(xh)
copy!(x,xh)
consistent!(x) |> fetch
end
return x
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 1930 | module MultilevelTools
using MPI
using LinearAlgebra
using FillArrays
using BlockArrays
using Gridap
using Gridap.Helpers, Gridap.Algebra, Gridap.Arrays, Gridap.Fields, Gridap.CellData
using Gridap.ReferenceFEs, Gridap.Geometry, Gridap.FESpaces, Gridap.Adaptivity, Gridap.MultiField
using PartitionedArrays, GridapDistributed, GridapP4est
using Gridap.FESpaces: BasisStyle, TestBasis, TrialBasis, SingleFieldFEBasis
using Gridap.MultiField: MultiFieldFEBasisComponent
using GridapDistributed: redistribute_cell_dofs, redistribute_cell_dofs!, get_redistribute_cell_dofs_cache
using GridapDistributed: redistribute_free_values, redistribute_free_values!, get_redistribute_free_values_cache
using GridapDistributed: redistribute_fe_function
using GridapDistributed: get_old_and_new_parts
using GridapDistributed: i_am_in, num_parts, change_parts, generate_subparts, local_views
export change_parts, num_parts, i_am_in
export generate_level_parts, generate_subparts
export HierarchicalArray
export num_levels, get_level_parts, with_level, matching_level_parts, unsafe_getindex
export ModelHierarchy, CartesianModelHierarchy
export num_levels, get_level, get_level_parts
export get_model, get_model_before_redist, has_refinement, has_redistribution
export FESpaceHierarchy
export get_fe_space, get_fe_space_before_redist
export compute_hierarchy_matrices
export LocalProjectionMap
export DistributedGridTransferOperator
export RestrictionOperator, ProlongationOperator
export setup_transfer_operators, setup_prolongation_operators, setup_restriction_operators
export mul!
export MultiFieldTransferOperator
include("SubpartitioningTools.jl")
include("HierarchicalArrays.jl")
include("GridapFixes.jl")
include("RefinementTools.jl")
include("ModelHierarchies.jl")
include("FESpaceHierarchies.jl")
include("LocalProjectionMaps.jl")
include("DistributedGridTransferOperators.jl")
include("MultiFieldTransferOperators.jl")
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 2079 |
# DistributedAdaptedTriangulations
const DistributedAdaptedTriangulation{Dc,Dp} = GridapDistributed.DistributedTriangulation{Dc,Dp,<:AbstractArray{<:AdaptedTriangulation{Dc,Dp}}}
# Restriction of dofs
function restrict_dofs!(fv_c::PVector,
fv_f::PVector,
dv_f::AbstractArray,
U_f ::GridapDistributed.DistributedSingleFieldFESpace,
U_c ::GridapDistributed.DistributedSingleFieldFESpace,
glue::AbstractArray{<:AdaptivityGlue})
map(restrict_dofs!,local_views(fv_c),local_views(fv_f),dv_f,local_views(U_f),local_views(U_c),glue)
consistent!(fv_c) |> fetch
return fv_c
end
function restrict_dofs!(fv_c::AbstractVector,
fv_f::AbstractVector,
dv_f::AbstractVector,
U_f ::FESpace,
U_c ::FESpace,
glue::AdaptivityGlue)
fine_cell_ids = get_cell_dof_ids(U_f)
fine_cell_values = Gridap.Arrays.Table(lazy_map(Gridap.Arrays.PosNegReindex(fv_f,dv_f),fine_cell_ids.data),fine_cell_ids.ptrs)
coarse_rrules = Gridap.Adaptivity.get_old_cell_refinement_rules(glue)
f2c_cell_values = Gridap.Adaptivity.n2o_reindex(fine_cell_values,glue)
child_ids = Gridap.Adaptivity.n2o_reindex(glue.n2o_cell_to_child_id,glue)
f2c_maps = lazy_map(FineToCoarseDofMap,coarse_rrules)
caches = lazy_map(Gridap.Arrays.return_cache,f2c_maps,f2c_cell_values,child_ids)
coarse_cell_values = lazy_map(Gridap.Arrays.evaluate!,caches,f2c_maps,f2c_cell_values,child_ids)
fv_c = gather_free_values!(fv_c,U_c,coarse_cell_values)
return fv_c
end
struct FineToCoarseDofMap{A}
rr::A
end
function Gridap.Arrays.return_cache(m::FineToCoarseDofMap,fine_cell_vals,child_ids)
return fill(0.0,Gridap.Adaptivity.num_subcells(m.rr))
end
function Gridap.Arrays.evaluate!(cache,m::FineToCoarseDofMap,fine_cell_vals,child_ids)
fill!(cache,0.0)
for (k,i) in enumerate(child_ids)
cache[i] = fine_cell_vals[k][i]
end
return cache
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 1210 |
"""
generate_level_parts(root_parts::AbstractArray,num_procs_x_level::Vector{<:Integer})
From a root communicator `root_parts`, generate a sequence of nested
subcommunicators with sizes given by `num_procs_x_level`.
"""
function generate_level_parts(root_parts::AbstractArray,num_procs_x_level::Vector{<:Integer})
num_levels = length(num_procs_x_level)
T = Union{typeof(root_parts),GridapDistributed.MPIVoidVector{eltype(root_parts)}}
level_parts = Vector{T}(undef,num_levels)
level_parts[1] = generate_subparts(root_parts,num_procs_x_level[1])
for l = 2:num_levels
level_parts[l] = generate_level_parts(root_parts,level_parts[l-1],num_procs_x_level[l])
end
return level_parts
end
function generate_level_parts(root_parts::AbstractArray,last_level_parts::AbstractArray,level_parts_size::Integer)
if level_parts_size == num_parts(last_level_parts)
return last_level_parts
end
return generate_subparts(root_parts,level_parts_size)
end
my_print(x::PVector,s) = my_print(partition(x),s)
function my_print(x::MPIArray,s)
parts = linear_indices(x)
i_am_main(parts) && println(s)
map(parts,x) do p,xi
sleep(p*0.2)
println(" > $p: ", xi)
end
sleep(2)
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 4796 |
"""
NLsolveNonlinearSolver <: NonlinearSolver
NLsolveNonlinearSolver(ls::LinearSolver;kwargs...)
NLsolveNonlinearSolver(;kwargs...)
Wrapper for `NLsolve.jl` nonlinear solvers. It is equivalent to the wrappers in Gridap, but
with support for nonlinear preconditioners. Same `kwargs` as in `nlsolve`.
Due to `NLSolve.jl` not using LinearAlgebra's API, these solvers are not compatible with
`PartitionedArrays.jl`. For parallel computations, use [`NewtonSolver`](@ref) instead.
"""
struct NLsolveNonlinearSolver{A} <: NonlinearSolver
ls::A
kwargs::Dict
function NLsolveNonlinearSolver(
ls::LinearSolver;kwargs...
)
@assert ! haskey(kwargs,:linsolve) "linsolve cannot be used here. It is managed internally"
A = typeof(ls)
new{A}(ls,kwargs)
end
end
function NLsolveNonlinearSolver(;kwargs...)
ls = LUSolver()
NLsolveNonlinearSolver(ls;kwargs...)
end
mutable struct NLSolversCache <: GridapType
f0::AbstractVector
j0::AbstractMatrix
df::OnceDifferentiable
ns::NumericalSetup
cache
result
end
function Algebra.solve!(
x::AbstractVector,nls::NLsolveNonlinearSolver,op::NonlinearOperator,cache::Nothing
)
cache = _new_nlsolve_cache(x,nls,op)
_nlsolve_with_updated_cache!(x,nls,op,cache)
cache
end
function Algebra.solve!(
x::AbstractVector,nls::NLsolveNonlinearSolver,op::NonlinearOperator,cache::NLSolversCache
)
cache = _update_nlsolve_cache!(cache,x,op)
_nlsolve_with_updated_cache!(x,nls,op,cache)
cache
end
function _nlsolve_with_updated_cache!(x,nls::NLsolveNonlinearSolver,op,cache)
df = cache.df
ns = cache.ns
kwargs = nls.kwargs
internal_cache = cache.cache
function linsolve!(p,A,b)
fill!(p,zero(eltype(p))) # Needed because NLSolve gives you NaNs on the 1st iteration...
numerical_setup!(ns,A,internal_cache.x)
solve!(p,ns,b)
end
r = _nlsolve(df,x;linsolve=linsolve!,cache=internal_cache,kwargs...)
cache.result = r
copy_entries!(x,r.zero)
end
function _new_nlsolve_cache(x0,nls::NLsolveNonlinearSolver,op)
f!(r,x) = residual!(r,op,x)
j!(j,x) = jacobian!(j,op,x)
fj!(r,j,x) = residual_and_jacobian!(r,j,op,x)
f0, j0 = residual_and_jacobian(op,x0)
df = OnceDifferentiable(f!,j!,fj!,x0,f0,j0)
ss = symbolic_setup(nls.ls,j0,x0)
ns = numerical_setup(ss,j0,x0)
cache = nlsolve_internal_cache(df,nls.kwargs)
NLSolversCache(f0,j0,df,ns,cache,nothing)
end
function _update_nlsolve_cache!(cache,x0,op)
f!(r,x) = residual!(r,op,x)
j!(j,x) = jacobian!(j,op,x)
fj!(r,j,x) = residual_and_jacobian!(r,j,op,x)
f0 = cache.f0
j0 = cache.j0
ns = cache.ns
residual_and_jacobian!(f0,j0,op,x0)
df = NLsolve.OnceDifferentiable(f!,j!,fj!,x0,f0,j0)
numerical_setup!(ns,j0,x0)
NLSolversCache(f0,j0,df,ns,cache.cache,nothing)
end
nlsolve_internal_cache(df,kwargs) = nlsolve_internal_cache(Val(kwargs[:method]),df,kwargs)
nlsolve_internal_cache(::Val{:newton},df,kwargs) = NLsolve.NewtonCache(df)
nlsolve_internal_cache(::Val{:trust_region},df,kwargs) = NLsolve.NewtonTrustRegionCache(df)
nlsolve_internal_cache(::Val{:anderson},df,kwargs) = NLsolve.AndersonCache(df,kwargs[:m])
# Copied from https://github.com/JuliaNLSolvers/NLsolve.jl/blob/master/src/nlsolve/nlsolve.jl
# We need to modify it so that we can access the internal caches...
function _nlsolve(
df::Union{NLsolve.NonDifferentiable, NLsolve.OnceDifferentiable},
initial_x::AbstractArray;
method::Symbol = :trust_region,
xtol::Real = zero(real(eltype(initial_x))),
ftol::Real = convert(real(eltype(initial_x)), 1e-8),
iterations::Integer = 1_000,
store_trace::Bool = false,
show_trace::Bool = false,
extended_trace::Bool = false,
linesearch = LineSearches.Static(),
linsolve=(x, A, b) -> copyto!(x, A\b),
factor::Real = one(real(eltype(initial_x))),
autoscale::Bool = true,
m::Integer = 10,
beta::Real = 1,
aa_start::Integer = 1,
droptol::Real = convert(real(eltype(initial_x)), 1e10),
cache = nothing
)
if show_trace
println("Iter f(x) inf-norm Step 2-norm")
println("------ -------------- --------------")
end
if method == :newton
NLsolve.newton_(
df, initial_x, xtol, ftol, iterations, store_trace, show_trace, extended_trace, linesearch, linsolve, cache
)
elseif method == :trust_region
NLsolve.trust_region_(
df, initial_x, xtol, ftol, iterations, store_trace, show_trace, extended_trace, factor, autoscale, cache
)
elseif method == :anderson
NLsolve.anderson(
df, initial_x, xtol, ftol, iterations, store_trace, show_trace, extended_trace, beta, aa_start, droptol, cache
)
elseif method == :broyden
NLsolve.broyden(
df, initial_x, xtol, ftol, iterations, store_trace, show_trace, extended_trace, linesearch
)
else
throw(ArgumentError("Unknown method $method"))
end
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 2001 |
# TODO: This should be called NewtonRaphsonSolver, but it would clash with Gridap.
"""
struct NewtonSolver <: Algebra.NonlinearSolver
Newton-Raphson solver. Same as `NewtonRaphsonSolver` in Gridap, but with a couple addons:
- Better logging and verbosity control.
- Better convergence criteria.
- Works with geometric LinearSolvers/Preconditioners.
"""
struct NewtonSolver <: Algebra.NonlinearSolver
ls ::Algebra.LinearSolver
log::ConvergenceLog{Float64}
end
function NewtonSolver(ls;maxiter=100,atol=1e-12,rtol=1.e-6,verbose=0,name="Newton-Raphson")
tols = SolverTolerances{Float64}(;maxiter=maxiter,atol=atol,rtol=rtol)
log = ConvergenceLog(name,tols;verbose=verbose)
return NewtonSolver(ls,log)
end
struct NewtonCache
A::AbstractMatrix
b::AbstractVector
dx::AbstractVector
ns::NumericalSetup
end
function Algebra.solve!(x::AbstractVector,nls::NewtonSolver,op::NonlinearOperator,cache::Nothing)
b = residual(op, x)
A = jacobian(op, x)
dx = allocate_in_domain(A); fill!(dx,zero(eltype(dx)))
ss = symbolic_setup(nls.ls,A)
ns = numerical_setup(ss,A,x)
_solve_nr!(x,A,b,dx,ns,nls,op)
return NewtonCache(A,b,dx,ns)
end
function Algebra.solve!(x::AbstractVector,nls::NewtonSolver,op::NonlinearOperator,cache::NewtonCache)
A,b,dx,ns = cache.A, cache.b, cache.dx, cache.ns
residual!(b, op, x)
jacobian!(A, op, x)
numerical_setup!(ns,A,x)
_solve_nr!(x,A,b,dx,ns,nls,op)
return cache
end
function _solve_nr!(x,A,b,dx,ns,nls,op)
log = nls.log
# Check for convergence on the initial residual
res = norm(b)
done = init!(log,res)
# Newton-like iterations
while !done
# Solve linearized problem
rmul!(b,-1)
solve!(dx,ns,b)
x .+= dx
# Check convergence for the current residual
residual!(b, op, x)
res = norm(b)
done = update!(log,res)
if !done
# Update jacobian and solver
jacobian!(A, op, x)
numerical_setup!(ns,A,x)
end
end
finalize!(log,res)
return x
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 555 | module NonlinearSolvers
using LinearAlgebra
using SparseArrays
using SparseMatricesCSR
using BlockArrays
using NLsolve, LineSearches
using Gridap
using Gridap.Helpers, Gridap.Algebra, Gridap.CellData, Gridap.Arrays, Gridap.FESpaces, Gridap.MultiField
using PartitionedArrays
using GridapDistributed
using GridapSolvers.SolverInterfaces
using GridapSolvers.MultilevelTools
using GridapSolvers.SolverInterfaces
include("NewtonRaphsonSolver.jl")
export NewtonSolver
include("NLsolve.jl")
export NLsolveNonlinearSolver
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 860 | module PatchBasedSmoothers
using FillArrays, BlockArrays
using LinearAlgebra
using Gridap
using Gridap.Helpers, Gridap.Algebra, Gridap.Arrays, Gridap.Fields
using Gridap.Geometry, Gridap.FESpaces, Gridap.ReferenceFEs
using PartitionedArrays
using GridapDistributed
using GridapSolvers.MultilevelTools
export PatchDecomposition
export PatchFESpace
export PatchBasedLinearSolver
export PatchProlongationOperator, PatchRestrictionOperator
export setup_patch_prolongation_operators, setup_patch_restriction_operators
# Geometry
include("seq/PatchDecompositions.jl")
include("mpi/PatchDecompositions.jl")
include("seq/PatchTriangulations.jl")
# FESpaces
include("seq/PatchFESpaces.jl")
include("mpi/PatchFESpaces.jl")
include("seq/PatchMultiFieldFESpaces.jl")
# Solvers
include("seq/PatchBasedLinearSolvers.jl")
include("seq/PatchTransferOperators.jl")
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 3079 |
struct DistributedPatchDecomposition{Dr,Dc,Dp,A,B} <: GridapType
patch_decompositions::A
model::B
end
GridapDistributed.local_views(a::DistributedPatchDecomposition) = a.patch_decompositions
function PatchDecomposition(
model::GridapDistributed.DistributedDiscreteModel{Dc,Dp};
Dr=0,
patch_boundary_style::PatchBoundaryStyle=PatchBoundaryExclude()
) where {Dc,Dp}
mark_interface_facets!(model)
patch_decompositions = map(local_views(model)) do lmodel
PatchDecomposition(
lmodel;
Dr=Dr,
patch_boundary_style=patch_boundary_style,
boundary_tag_names=["boundary","interface"]
)
end
A = typeof(patch_decompositions)
B = typeof(model)
return DistributedPatchDecomposition{Dr,Dc,Dp,A,B}(patch_decompositions,model)
end
function PatchDecomposition(mh::ModelHierarchy;kwargs...)
nlevs = num_levels(mh)
decomps = map(view(mh,1:nlevs-1)) do mhl
model = get_model(mhl)
PatchDecomposition(model;kwargs...)
end
return decomps
end
function Geometry.Triangulation(a::DistributedPatchDecomposition)
trians = map(local_views(a)) do a
Triangulation(a)
end
return GridapDistributed.DistributedTriangulation(trians,a.model)
end
function Geometry.BoundaryTriangulation(a::DistributedPatchDecomposition,args...;kwargs...)
trians = map(local_views(a)) do a
BoundaryTriangulation(a,args...;kwargs...)
end
return GridapDistributed.DistributedTriangulation(trians,a.model)
end
function Geometry.SkeletonTriangulation(a::DistributedPatchDecomposition,args...;kwargs...)
trians = map(local_views(a)) do a
SkeletonTriangulation(a,args...;kwargs...)
end
return GridapDistributed.DistributedTriangulation(trians,a.model)
end
get_patch_root_dim(::DistributedPatchDecomposition{Dr}) where Dr = Dr
function mark_interface_facets!(model::GridapDistributed.DistributedDiscreteModel{Dc,Dp}) where {Dc,Dp}
face_labeling = get_face_labeling(model)
topo = get_grid_topology(model)
map(local_views(face_labeling),local_views(topo)) do face_labeling, topo
tag_to_name = face_labeling.tag_to_name
tag_to_entities = face_labeling.tag_to_entities
d_to_dface_to_entity = face_labeling.d_to_dface_to_entity
# Create new tag & entity
interface_entity = maximum(map(x -> maximum(x;init=0),tag_to_entities)) + 1
push!(tag_to_entities,[interface_entity])
push!(tag_to_name,"interface")
# Interface faces should also be interior
interior_tag = findfirst(x->(x=="interior"),tag_to_name)
push!(tag_to_entities[interior_tag],interface_entity)
# Select interface entities
boundary_tag = findfirst(x->(x=="boundary"),tag_to_name)
boundary_entities = tag_to_entities[boundary_tag]
f2c_map = Geometry.get_faces(topo,Dc-1,Dc)
num_cells_around_facet = map(length,f2c_map)
mx = maximum(num_cells_around_facet)
for (f,nf) in enumerate(num_cells_around_facet)
is_boundary = (d_to_dface_to_entity[Dc][f] ∈ boundary_entities)
if !is_boundary && (nf != mx)
d_to_dface_to_entity[Dc][f] = interface_entity
end
end
end
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 4276 |
const DistributedPatchFESpace = GridapDistributed.DistributedSingleFieldFESpace{<:AbstractVector{<:PatchFESpace}}
function PatchFESpace(
space::GridapDistributed.DistributedSingleFieldFESpace,
patch_decomposition::DistributedPatchDecomposition,
reffe::Union{ReferenceFE,Tuple{<:ReferenceFEs.ReferenceFEName,Any,Any}};
conformity=nothing
)
cell_conformity = MultilevelTools._cell_conformity(patch_decomposition.model,reffe;conformity=conformity)
return PatchFESpace(space,patch_decomposition,cell_conformity)
end
function PatchFESpace(
space::GridapDistributed.DistributedSingleFieldFESpace,
patch_decomposition::DistributedPatchDecomposition,
cell_conformity::AbstractArray{<:CellConformity};
patches_mask = default_patches_mask(patch_decomposition)
)
spaces = map(
local_views(space), local_views(patch_decomposition), cell_conformity, patches_mask
) do space, patch_decomposition, cell_conformity, patches_mask
PatchFESpace(space,patch_decomposition,cell_conformity;patches_mask)
end
# This PRange has no ghost dofs
local_ndofs = map(num_free_dofs,spaces)
global_ndofs = sum(local_ndofs)
patch_partition = variable_partition(local_ndofs,global_ndofs,false)
trian = Triangulation(patch_decomposition)
gids = PRange(patch_partition)
return GridapDistributed.DistributedSingleFieldFESpace(spaces,gids,trian,get_vector_type(space))
end
function default_patches_mask(patch_decomposition::DistributedPatchDecomposition)
model = patch_decomposition.model
root_gids = get_face_gids(model,get_patch_root_dim(patch_decomposition))
patches_mask = map(partition(root_gids)) do partition
patches_mask = fill(false,local_length(partition))
patches_mask[ghost_to_local(partition)] .= true # Mask ghost patch roots
return patches_mask
end
return patches_mask
end
function PatchFESpace(
sh::FESpaceHierarchy,
patch_decompositions::AbstractArray{<:DistributedPatchDecomposition}
)
nlevs = num_levels(sh)
psh = map(view(sh,1:nlevs-1),patch_decompositions) do shl,decomp
space = MultilevelTools.get_fe_space(shl)
cell_conformity = MultilevelTools.get_cell_conformity(shl)
return PatchFESpace(space,decomp,cell_conformity)
end
return psh
end
# x \in PatchFESpace
# y \in SingleFESpace
# x is always consistent at the end since Ph has no ghosts
function prolongate!(
x::PVector,
Ph::DistributedPatchFESpace,
y::PVector;
is_consistent::Bool=false
)
if is_consistent
map(prolongate!,partition(x),local_views(Ph),partition(y))
else
# Transfer ghosts while copying owned dofs
rows = axes(y,1)
t = consistent!(y)
map(partition(x),local_views(Ph),partition(y),own_to_local(rows)) do x,Ph,y,ids
prolongate!(x,Ph,y;dof_ids=ids)
end
# Wait for transfer to end and copy ghost dofs
wait(t)
map(partition(x),local_views(Ph),partition(y),ghost_to_local(rows)) do x,Ph,y,ids
prolongate!(x,Ph,y;dof_ids=ids)
end
end
end
# x \in SingleFESpace
# y \in PatchFESpace
# y is always consistent at the start since Ph has no ghosts
function inject!(
x::PVector,
Ph::DistributedPatchFESpace,
y::PVector;
make_consistent::Bool=true
)
map(partition(x),local_views(Ph),partition(y)) do x,Ph,y
inject!(x,Ph,y)
end
# Exchange local contributions
assemble!(x) |> fetch
if make_consistent
consistent!(x) |> fetch
end
return x
end
function inject!(
x::PVector,
Ph::DistributedPatchFESpace,
y::PVector,
w::PVector,
w_sums::PVector;
make_consistent::Bool=true
)
map(partition(x),local_views(Ph),partition(y),partition(w),partition(w_sums)) do x,Ph,y,w,w_sums
inject!(x,Ph,y,w,w_sums)
end
# Exchange local contributions
assemble!(x) |> fetch
if make_consistent
consistent!(x) |> fetch
end
return x
end
function compute_weight_operators(Ph::DistributedPatchFESpace,Vh)
# Local weights and partial sums
w_values, w_sums_values = map(compute_weight_operators,local_views(Ph),local_views(Vh)) |> tuple_of_arrays
w = PVector(w_values,partition(Ph.gids))
w_sums = PVector(w_sums_values,partition(Vh.gids))
# partial sums -> global sums
assemble!(w_sums) |> fetch # ghost -> owners
consistent!(w_sums) |> fetch # repopulate ghosts with owner info
return w, w_sums
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 6749 | """
struct PatchBasedLinearSolver <: LinearSolver
...
end
Sub-assembled linear solver for patch-based methods. Given a bilinear form `a` and
a space decomposition `V = Σ_i V_i` given by a patch space, returns a global correction
given by aggregated local corrections, i.e
```
dx = Σ_i w_i I_i inv(A_i) (I_i)^* x
```
where `A_i` is the patch-local system matrix defined by
```
(A_i u_i, v_i) = a(u_i,v_i) ∀ v_i ∈ V_i
```
and `I_i` is the natural injection from the patch space
to the global space. The aggregation can be un-weighted (i.e. `w_i = 1`) or weighted, where
`w_i = 1/#(i)`.
"""
struct PatchBasedLinearSolver{A,B,C} <: Gridap.Algebra.LinearSolver
biform :: Function
patch_space :: A
space :: B
local_solver :: C
is_nonlinear :: Bool
weighted :: Bool
@doc """
function PatchBasedLinearSolver(
biform::Function,
patch_space::FESpace,
space::FESpace;
local_solver = LUSolver(),
is_nonlinear = false,
weighted = false
)
Returns an instance of [`PatchBasedLinearSolver`](@ref) from its underlying properties.
Local patch-systems are solved with `local_solver`. If `weighted`, uses weighted
patch aggregation to compute the global correction.
"""
function PatchBasedLinearSolver(
biform::Function, patch_space::FESpace, space::FESpace;
local_solver = LUSolver(),
is_nonlinear = false,
weighted = false
)
A = typeof(patch_space)
B = typeof(space)
C = typeof(local_solver)
return new{A,B,C}(biform,patch_space,space,local_solver,is_nonlinear,weighted)
end
end
struct PatchBasedSymbolicSetup <: Gridap.Algebra.SymbolicSetup
solver :: PatchBasedLinearSolver
end
function Gridap.Algebra.symbolic_setup(ls::PatchBasedLinearSolver,A::AbstractMatrix)
return PatchBasedSymbolicSetup(ls)
end
struct PatchBasedSmootherNumericalSetup{A,B,C,D} <: Gridap.Algebra.NumericalSetup
solver :: PatchBasedLinearSolver
local_A :: A
local_ns :: B
weights :: C
caches :: D
end
function Gridap.Algebra.numerical_setup(ss::PatchBasedSymbolicSetup,A::AbstractMatrix)
@check !ss.solver.is_nonlinear
solver = ss.solver
Ph, Vh = solver.patch_space, solver.space
weights = solver.weighted ? compute_weight_operators(Ph,Vh) : nothing
ap(u,v) = solver.biform(u,v)
assem = SparseMatrixAssembler(Ph,Ph)
Ap = assemble_matrix(ap,assem,Ph,Ph)
Ap_ns = numerical_setup(symbolic_setup(solver.local_solver,Ap),Ap)
# Caches
rp = allocate_in_range(Ap); fill!(rp,0.0)
dxp = allocate_in_domain(Ap); fill!(dxp,0.0)
caches = (rp,dxp)
return PatchBasedSmootherNumericalSetup(solver,nothing,Ap_ns,weights,caches)
end
function Gridap.Algebra.numerical_setup(ss::PatchBasedSymbolicSetup,A::AbstractMatrix,x::AbstractVector)
@check ss.solver.is_nonlinear
solver = ss.solver
Ph, Vh = solver.patch_space, solver.space
weights = solver.weighted ? compute_weight_operators(Ph,Vh) : nothing
u0 = FEFunction(Vh,x)
ap(u,v) = solver.biform(u0,u,v)
assem = SparseMatrixAssembler(Ph,Ph)
Ap = assemble_matrix(ap,assem,Ph,Ph)
Ap_ns = numerical_setup(symbolic_setup(solver.local_solver,Ap),Ap)
# Caches
rp = allocate_in_range(Ap); fill!(rp,0.0)
dxp = allocate_in_domain(Ap); fill!(dxp,0.0)
caches = (rp,dxp)
return PatchBasedSmootherNumericalSetup(solver,Ap,Ap_ns,weights,caches)
end
function Gridap.Algebra.numerical_setup(ss::PatchBasedSymbolicSetup,A::PSparseMatrix)
@check !ss.solver.is_nonlinear
solver = ss.solver
Ph, Vh = solver.patch_space, solver.space
weights = solver.weighted ? compute_weight_operators(Ph,Vh) : nothing
# Patch system solver (only local systems need to be solved)
u, v = get_trial_fe_basis(Vh), get_fe_basis(Vh)
contr = solver.biform(u,v)
matdata = collect_cell_matrix(Ph,Ph,contr)
Ap, Ap_ns = map(local_views(Ph),matdata) do Ph, matdata
assem = SparseMatrixAssembler(Ph,Ph)
Ap = assemble_matrix(assem,matdata)
Ap_ns = numerical_setup(symbolic_setup(solver.local_solver,Ap),Ap)
return Ap, Ap_ns
end |> PartitionedArrays.tuple_of_arrays
# Caches
rp = pfill(0.0,partition(Ph.gids))
dxp = pfill(0.0,partition(Ph.gids))
r = pfill(0.0,partition(Vh.gids))
x = pfill(0.0,partition(Vh.gids))
caches = (rp,dxp,r,x)
return PatchBasedSmootherNumericalSetup(solver,nothing,Ap_ns,weights,caches)
end
function Gridap.Algebra.numerical_setup(ss::PatchBasedSymbolicSetup,A::PSparseMatrix,x::PVector)
@check ss.solver.is_nonlinear
solver = ss.solver
Ph, Vh = solver.patch_space, solver.space
weights = solver.weighted ? compute_weight_operators(Ph,Vh) : nothing
# Patch system solver (only local systems need to be solved)
u0, u, v = FEFunction(Vh,x), get_trial_fe_basis(Vh), get_fe_basis(Vh)
contr = solver.biform(u0,u,v)
matdata = collect_cell_matrix(Ph,Ph,contr)
Ap, Ap_ns = map(local_views(Ph),matdata) do Ph, matdata
assem = SparseMatrixAssembler(Ph,Ph)
Ap = assemble_matrix(assem,matdata)
Ap_ns = numerical_setup(symbolic_setup(solver.local_solver,Ap),Ap)
return Ap, Ap_ns
end |> PartitionedArrays.tuple_of_arrays
# Caches
rp = pfill(0.0,partition(Ph.gids))
dxp = pfill(0.0,partition(Ph.gids))
r = pfill(0.0,partition(Vh.gids))
x = pfill(0.0,partition(Vh.gids))
caches = (rp,dxp,r,x)
return PatchBasedSmootherNumericalSetup(solver,Ap,Ap_ns,weights,caches)
end
function Gridap.Algebra.numerical_setup!(ns::PatchBasedSmootherNumericalSetup,A::PSparseMatrix,x::PVector)
@check ns.solver.is_nonlinear
solver = ns.solver
Ph, Vh = solver.patch_space, solver.space
Ap, Ap_ns = ns.local_A, ns.local_ns
u0, u, v = FEFunction(Vh,x), get_trial_fe_basis(Vh), get_fe_basis(Vh)
contr = solver.biform(u0,u,v)
matdata = collect_cell_matrix(Ph,Ph,contr)
map(Ap, Ap_ns, local_views(Ph), matdata) do Ap, Ap_ns, Ph, matdata
assem = SparseMatrixAssembler(Ph,Ph)
assemble_matrix!(Ap,assem,matdata)
numerical_setup!(Ap_ns,Ap)
end
end
function Gridap.Algebra.solve!(x::AbstractVector,ns::PatchBasedSmootherNumericalSetup,r::AbstractVector)
Ap_ns, weights, caches = ns.local_ns, ns.weights, ns.caches
Ph = ns.solver.patch_space
#w, w_sums = weights
rp, dxp = caches
prolongate!(rp,Ph,r)
solve!(dxp,Ap_ns,rp)
inject!(x,Ph,dxp)
return x
end
function Gridap.Algebra.solve!(x_mat::PVector,ns::PatchBasedSmootherNumericalSetup,r_mat::PVector)
Ap_ns, weights, caches = ns.local_ns, ns.weights, ns.caches
Ph = ns.solver.patch_space
#w, w_sums = weights
rp, dxp, r, x = caches
copy!(r,r_mat)
prolongate!(rp,Ph,r)
map(solve!,partition(dxp),Ap_ns,partition(rp))
inject!(x,Ph,dxp)
copy!(x_mat,x)
return x_mat
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 16993 |
"""
abstract type PatchBoundaryStyle end
struct PatchBoundaryExclude <: PatchBoundaryStyle end
struct PatchBoundaryInclude <: PatchBoundaryStyle end
Controls the boundary consitions imposed at the patch boundaries for the sub-spaces.
- `PatchBoundaryInclude`: No BCs are imposed at the patch boundaries.
- `PatchBoundaryExclude`: Zero dirichlet BCs are imposed at the patch boundaries.
"""
abstract type PatchBoundaryStyle end
struct PatchBoundaryExclude <: PatchBoundaryStyle end
struct PatchBoundaryInclude <: PatchBoundaryStyle end
"""
struct PatchDecomposition{Dr,Dc,Dp} <: DiscreteModel{Dc,Dp}
Represents a patch decomposition of a discrete model, i.e an overlapping cell covering `{Ω_i}`
of `Ω` such that `Ω = Σ_i Ω_i`.
## Properties:
- `Dr::Integer` : Dimension of the patch root
- `model::DiscreteModel{Dc,Dp}` : Underlying discrete model
- `patch_cells::Table` : [patch][local cell] -> cell
- `patch_cells_overlapped::Table` : [patch][local cell] -> overlapped cell
- `patch_cells_faces_on_boundary::Table` : [d][overlapped cell][local face] -> face is on patch boundary
"""
struct PatchDecomposition{Dr,Dc,Dp} <: GridapType
model :: DiscreteModel{Dc,Dp}
patch_cells :: Gridap.Arrays.Table # [patch][local cell] -> cell
patch_cells_overlapped :: Gridap.Arrays.Table # [patch][local cell] -> overlapped cell
patch_cells_faces_on_boundary :: Vector{Gridap.Arrays.Table} # [d][overlapped cell][local face] -> face is on patch boundary
end
num_patches(a::PatchDecomposition) = length(a.patch_cells)
Gridap.Geometry.num_cells(a::PatchDecomposition) = length(a.patch_cells.data)
@doc """
function PatchDecomposition(
model::DiscreteModel{Dc,Dp};
Dr=0,
patch_boundary_style::PatchBoundaryStyle=PatchBoundaryExclude(),
boundary_tag_names::AbstractArray{String}=["boundary"]
)
Returns an instance of [`PatchDecomposition`](@ref) from a given discrete model.
"""
function PatchDecomposition(
model::DiscreteModel{Dc,Dp};
Dr=0,
patch_boundary_style::PatchBoundaryStyle=PatchBoundaryExclude(),
boundary_tag_names::AbstractArray{String}=["boundary"]
) where {Dc,Dp}
Gridap.Helpers.@check 0 <= Dr <= Dc-1
topology = get_grid_topology(model)
patch_cells = Gridap.Geometry.get_faces(topology,Dr,Dc)
patch_facets = Gridap.Geometry.get_faces(topology,Dr,Dc-1)
patch_cells_overlapped = compute_patch_overlapped_cells(patch_cells)
patch_cells_faces_on_boundary = compute_patch_cells_faces_on_boundary(
model, patch_cells, patch_cells_overlapped,
patch_facets, patch_boundary_style, boundary_tag_names
)
return PatchDecomposition{Dr,Dc,Dp}(
model, patch_cells, patch_cells_overlapped, patch_cells_faces_on_boundary
)
end
function compute_patch_overlapped_cells(patch_cells)
num_overlapped_cells = length(patch_cells.data)
data = Gridap.Arrays.IdentityVector(num_overlapped_cells)
return Gridap.Arrays.Table(data,patch_cells.ptrs)
end
# patch_cell_faces_on_boundary ::
# [Df][overlapped cell][lface] -> Face is boundary of the patch
function compute_patch_cells_faces_on_boundary(
model::DiscreteModel,
patch_cells,
patch_cells_overlapped,
patch_facets,
patch_boundary_style,
boundary_tag_names
)
patch_cell_faces_on_boundary = _allocate_patch_cells_faces_on_boundary(model,patch_cells)
if !isa(patch_boundary_style,PatchBoundaryInclude)
_compute_patch_cells_faces_on_boundary!(
patch_cell_faces_on_boundary,
model, patch_cells, patch_cells_overlapped,
patch_facets, patch_boundary_style, boundary_tag_names
)
end
return patch_cell_faces_on_boundary
end
function _allocate_patch_cells_faces_on_boundary(model::DiscreteModel{Dc},patch_cells) where {Dc}
ctype_to_reffe = get_reffes(model)
cell_to_ctype = get_cell_type(model)
patch_cells_faces_on_boundary = Vector{Gridap.Arrays.Table}(undef,Dc)
for d = 0:Dc-1
ctype_to_num_dfaces = map(reffe -> num_faces(reffe,d),ctype_to_reffe)
patch_cells_faces_on_boundary[d+1] =
_allocate_ocell_to_dface(Bool, patch_cells,cell_to_ctype, ctype_to_num_dfaces)
end
return patch_cells_faces_on_boundary
end
function _allocate_ocell_to_dface(::Type{T},patch_cells,cell_to_ctype,ctype_to_num_dfaces) where T<:Number
num_overlapped_cells = length(patch_cells.data)
ptrs = Vector{Int}(undef,num_overlapped_cells+1)
ptrs[1] = 1
for i = 1:num_overlapped_cells
cell = patch_cells.data[i]
ctype = cell_to_ctype[cell]
ptrs[i+1] = ptrs[i] + ctype_to_num_dfaces[ctype]
end
data = zeros(T,ptrs[end]-1)
return Gridap.Arrays.Table(data,ptrs)
end
function _compute_patch_cells_faces_on_boundary!(
patch_cells_faces_on_boundary,
model::DiscreteModel,
patch_cells,
patch_cells_overlapped,
patch_facets,
patch_boundary_style,
boundary_tag_names
)
num_patches = length(patch_cells.ptrs)-1
cache_patch_cells = array_cache(patch_cells)
cache_patch_facets = array_cache(patch_facets)
for patch = 1:num_patches
current_patch_cells = getindex!(cache_patch_cells,patch_cells,patch)
current_patch_facets = getindex!(cache_patch_facets,patch_facets,patch)
_compute_patch_cells_faces_on_boundary!(
patch_cells_faces_on_boundary,
model,
patch,
current_patch_cells,
patch_cells_overlapped,
current_patch_facets,
patch_boundary_style,
boundary_tag_names
)
end
end
function _compute_patch_cells_faces_on_boundary!(
patch_cells_faces_on_boundary,
model::DiscreteModel{Dc},
patch,
patch_cells,
patch_cells_overlapped,
patch_facets,
patch_boundary_style,
boundary_tag_names
) where Dc
face_labeling = get_face_labeling(model)
topology = get_grid_topology(model)
boundary_tags = findall(x -> (x ∈ boundary_tag_names), face_labeling.tag_to_name)
Gridap.Helpers.@check !isempty(boundary_tags)
boundary_entities = vcat(face_labeling.tag_to_entities[boundary_tags]...)
# Cells facets
Df = Dc-1
cell_to_facets = Gridap.Geometry.get_faces(topology,Dc,Df)
cache_cell_to_facets = array_cache(cell_to_facets)
facet_to_cells = Gridap.Geometry.get_faces(topology,Df,Dc)
cache_facet_to_cells = array_cache(facet_to_cells)
d_to_facet_to_dfaces = [Gridap.Geometry.get_faces(topology,Df,d) for d = 0:Df-1]
d_to_cell_to_dfaces = [Gridap.Geometry.get_faces(topology,Dc,d) for d = 0:Df-1]
d_to_dface_to_cells = [Gridap.Geometry.get_faces(topology,d,Dc) for d = 0:Df-1]
# Go over all cells in the current patch
for (lcell,cell) in enumerate(patch_cells)
overlapped_cell = patch_cells_overlapped.data[patch_cells_overlapped.ptrs[patch]+lcell-1]
cell_facets = getindex!(cache_cell_to_facets,cell_to_facets,cell)
# Go over the facets (i.e., faces of dim Dc-1) in the current cell
for (lfacet,facet) in enumerate(cell_facets)
facet_entity = face_labeling.d_to_dface_to_entity[Df+1][facet]
cells_around_facet = getindex!(cache_facet_to_cells,facet_to_cells,facet)
# Check if facet has a neighboring cell that does not belong to the patch
has_nbor_outside_patch = false
for c in cells_around_facet
if c ∉ patch_cells
has_nbor_outside_patch = true
break
end
end
facet_at_global_boundary = (facet_entity ∈ boundary_entities) && (facet ∉ patch_facets)
facet_at_patch_boundary = facet_at_global_boundary || has_nbor_outside_patch
if (facet_at_patch_boundary)
# Mark the facet as boundary
position = patch_cells_faces_on_boundary[Df+1].ptrs[overlapped_cell]+lfacet-1
patch_cells_faces_on_boundary[Df+1].data[position] = true
# Go over the faces of lower dimension on the boundary of the current facet,
# and mark them as boundary as well.
for d = 0:Df-1
for facet_face in d_to_facet_to_dfaces[d+1][facet]
# Locate the local position of the face within the cell (lface)
for cell_around_face in d_to_dface_to_cells[d+1][facet_face]
if cell_around_face ∈ patch_cells
cell_dfaces = d_to_cell_to_dfaces[d+1][cell_around_face]
lface = findfirst(x -> x==facet_face, cell_dfaces)
lcell2 = findfirst(x -> x==cell_around_face, patch_cells)
overlapped_cell2 = patch_cells_overlapped.data[patch_cells_overlapped.ptrs[patch]+lcell2-1]
position = patch_cells_faces_on_boundary[d+1].ptrs[overlapped_cell2]+lface-1
patch_cells_faces_on_boundary[d+1].data[position] = true
end
end
end
end
end
end
end
end
# Patch cell faces:
# patch_faces[pcell] = [face1, face2, ...]
# where face1, face2, ... are the faces of the overlapped cell `pcell` such that
# - they are NOT on the boundary of the patch
# - they are flagged `true` in faces_mask
function get_patch_cell_faces(PD::PatchDecomposition,Df::Integer)
model = PD.model
topo = get_grid_topology(model)
faces_mask = Fill(true,num_faces(topo,Df))
return get_patch_cell_faces(PD,Df,faces_mask)
end
function get_patch_cell_faces(PD::PatchDecomposition{Dr,Dc},Df::Integer,faces_mask) where {Dr,Dc}
model = PD.model
topo = get_grid_topology(model)
c2e_map = Gridap.Geometry.get_faces(topo,Dc,Df)
patch_cells = Gridap.Arrays.Table(PD.patch_cells)
patch_cell_faces = map(Reindex(c2e_map),patch_cells.data)
faces_on_boundary = PD.patch_cells_faces_on_boundary[Df+1]
patch_faces = _allocate_patch_cell_faces(patch_cell_faces,faces_on_boundary,faces_mask)
_generate_patch_cell_faces!(patch_faces,patch_cell_faces,faces_on_boundary,faces_mask)
return patch_faces
end
function _allocate_patch_cell_faces(patch_cell_faces,faces_on_boundary,faces_mask)
num_patch_cells = length(patch_cell_faces)
num_patch_faces = 0
patch_cells_faces_cache = array_cache(patch_cell_faces)
faces_on_boundary_cache = array_cache(faces_on_boundary)
for iC in 1:num_patch_cells
cell_faces = getindex!(patch_cells_faces_cache,patch_cell_faces,iC)
on_boundary = getindex!(faces_on_boundary_cache,faces_on_boundary,iC)
for (iF,face) in enumerate(cell_faces)
if (!on_boundary[iF] && faces_mask[face])
num_patch_faces += 1
end
end
end
patch_faces_data = zeros(Int64,num_patch_faces)
patch_faces_ptrs = zeros(Int64,num_patch_cells+1)
return Gridap.Arrays.Table(patch_faces_data,patch_faces_ptrs)
end
function _generate_patch_cell_faces!(patch_faces,patch_cell_faces,faces_on_boundary,faces_mask)
num_patch_cells = length(patch_cell_faces)
patch_faces_data, patch_faces_ptrs = patch_faces.data, patch_faces.ptrs
pface = 1
patch_faces_ptrs[1] = 1
patch_cells_faces_cache = array_cache(patch_cell_faces)
faces_on_boundary_cache = array_cache(faces_on_boundary)
for iC in 1:num_patch_cells
cell_faces = getindex!(patch_cells_faces_cache,patch_cell_faces,iC)
on_boundary = getindex!(faces_on_boundary_cache,faces_on_boundary,iC)
patch_faces_ptrs[iC+1] = patch_faces_ptrs[iC]
for (iF,face) in enumerate(cell_faces)
if (!on_boundary[iF] && faces_mask[face])
patch_faces_data[pface] = face
patch_faces_ptrs[iC+1] += 1
pface += 1
end
end
end
return patch_faces
end
# Patch faces:
# patch_faces[patch] = [face1, face2, ...]
# where face1, face2, ... are the faces of the patch such that
# - they are NOT on the boundary of the patch
# - they are flagged `true` in faces_mask
# If `reverse` is `true`, the faces are the ones ON the boundary of the patch.
function get_patch_faces(
PD::PatchDecomposition{Dr,Dc},Df::Integer,faces_mask;reverse=false
) where {Dr,Dc}
model = PD.model
topo = get_grid_topology(model)
c2e_map = Gridap.Geometry.get_faces(topo,Dc,Df)
patch_cells = Gridap.Arrays.Table(PD.patch_cells)
patch_cell_faces = map(Reindex(c2e_map),patch_cells.data)
faces_on_boundary = PD.patch_cells_faces_on_boundary[Df+1]
patch_faces = _allocate_patch_faces(patch_cells,patch_cell_faces,faces_on_boundary,faces_mask,reverse)
_generate_patch_faces!(patch_faces,patch_cells,patch_cell_faces,faces_on_boundary,faces_mask,reverse)
return patch_faces
end
function _allocate_patch_faces(
patch_cells,patch_cell_faces,faces_on_boundary,faces_mask,reverse
)
num_patches = length(patch_cells)
touched = Dict{Int,Bool}()
pcell = 1
num_patch_faces = 0
patch_cells_cache = array_cache(patch_cells)
patch_cells_faces_cache = array_cache(patch_cell_faces)
faces_on_boundary_cache = array_cache(faces_on_boundary)
for patch in 1:num_patches
current_patch_cells = getindex!(patch_cells_cache,patch_cells,patch)
for _ in 1:length(current_patch_cells)
cell_faces = getindex!(patch_cells_faces_cache,patch_cell_faces,pcell)
on_boundary = getindex!(faces_on_boundary_cache,faces_on_boundary,pcell)
for (iF,face) in enumerate(cell_faces)
A = xor(on_boundary[iF],reverse) # reverse the flag if needed
if (!A && faces_mask[face] && !haskey(touched,face))
num_patch_faces += 1
touched[face] = true
end
end
pcell += 1
end
empty!(touched)
end
patch_faces_data = zeros(Int64,num_patch_faces)
patch_faces_ptrs = zeros(Int64,num_patches+1)
return Gridap.Arrays.Table(patch_faces_data,patch_faces_ptrs)
end
function _generate_patch_faces!(
patch_faces,patch_cells,patch_cell_faces,faces_on_boundary,faces_mask,reverse
)
num_patches = length(patch_cells)
patch_faces_data, patch_faces_ptrs = patch_faces.data, patch_faces.ptrs
touched = Dict{Int,Bool}()
pcell = 1
pface = 1
patch_faces_ptrs[1] = 1
patch_cells_cache = array_cache(patch_cells)
patch_cells_faces_cache = array_cache(patch_cell_faces)
faces_on_boundary_cache = array_cache(faces_on_boundary)
for patch in 1:num_patches
current_patch_cells = getindex!(patch_cells_cache,patch_cells,patch)
patch_faces_ptrs[patch+1] = patch_faces_ptrs[patch]
for _ in 1:length(current_patch_cells)
cell_faces = getindex!(patch_cells_faces_cache,patch_cell_faces,pcell)
on_boundary = getindex!(faces_on_boundary_cache,faces_on_boundary,pcell)
for (iF,face) in enumerate(cell_faces)
A = xor(on_boundary[iF],reverse) # reverse the flag if needed
if (!A && faces_mask[face] && !haskey(touched,face))
patch_faces_data[pface] = face
patch_faces_ptrs[patch+1] += 1
touched[face] = true
pface += 1
end
end
pcell += 1
end
empty!(touched)
end
return patch_faces
end
# Face connectivity for the patches
# pface_to_pcell[pface] = [pcell1, pcell2, ...]
# This would be the Gridap equivalent to `get_faces(patch_topology,Df,Dc)`.
# On top of this, we also return the local cell index (within the face connectivity) of cell,
# which is needed when a pface touches different cells depending on the patch.
# The argument `patch_faces` allows to select only some pfaces (i.e boundary/skeleton/etc...).
function get_pface_to_pcell(PD::PatchDecomposition{Dr,Dc},Df::Integer,patch_faces) where {Dr,Dc}
model = PD.model
topo = get_grid_topology(model)
faces_to_cells = Gridap.Geometry.get_faces(topo,Df,Dc)
pfaces_to_cells = lazy_map(Reindex(faces_to_cells),patch_faces.data)
patch_cells = Gridap.Arrays.Table(PD.patch_cells)
patch_cells_overlapped = PD.patch_cells_overlapped
num_patches = length(patch_cells)
num_pfaces = length(pfaces_to_cells)
patch_cells_cache = array_cache(patch_cells)
patch_cells_overlapped_cache = array_cache(patch_cells_overlapped)
pfaces_to_cells_cache = array_cache(pfaces_to_cells)
# Maximum length of the data array
k = sum(pface -> length(getindex!(pfaces_to_cells_cache,pfaces_to_cells,pface)),1:num_pfaces)
# Collect patch cells touched by each pface
# Remark: Each pface does NOT necessarily touch all it's neighboring cells, since
# some of them might be outside the patch.
ptrs = zeros(Int64,num_pfaces+1)
data = zeros(Int64,k)
pface_to_lcell = zeros(Int8,k)
k = 1
for patch in 1:num_patches
cells = getindex!(patch_cells_cache,patch_cells,patch)
cells_overlapped = getindex!(patch_cells_overlapped_cache,patch_cells_overlapped,patch)
for pface in patch_faces.ptrs[patch]:patch_faces.ptrs[patch+1]-1
pface_to_cells = getindex!(pfaces_to_cells_cache,pfaces_to_cells,pface)
for (lcell,cell) in enumerate(pface_to_cells)
lid_patch = findfirst(c->c==cell,cells)
if !isnothing(lid_patch)
ptrs[pface+1] += 1
data[k] = cells_overlapped[lid_patch]
pface_to_lcell[k] = Int8(lcell)
k += 1
end
end
end
end
Arrays.length_to_ptrs!(ptrs)
data = resize!(data,k-1)
pface_to_lcell = resize!(pface_to_lcell,k-1)
pface_to_pcell = Gridap.Arrays.Table(data,ptrs)
return pface_to_pcell, pface_to_lcell
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 14438 | # INPUT
# [[1, 2]]
# [[1, 2], [2, 3]]
# [[2, 3], [3, 4]]
# [[3, 4], [4, 5]]
# [[4, 5]]
# OUTPUT
# [[1, 2]]
# [[3, 4], [4, 5]]
# [[6, 7], [7, 8]]
# [[9, 10], [10, 11]]
# [[12, 13]]
# Negative numbers correspond to Dirichlet DoFs
# in the GLOBAL space. In these examples, we
# are neglecting Dirichlet DoFs in the boundary
# of the patches (assuming they are needed)
# INPUT
# [[-1, 1]]
# [[-1, 1], [1, 2]]
# [[1, 2], [2, 3]]
# [[2, 3], [3, -2]]
# [[3, -2]]
# OUTPUT
# [[-1, 1]]
# [[-1, 2], [2, 3]]
# [[4, 5], [5, 6]]
# [[6, 7], [7, -2]]
# [[8, -2]]
"""
struct PatchFESpace <: SingleFieldFESpace
...
end
FESpace representing a patch-based subspace decomposition `V = Σ_i V_i` of a global space `V`.
"""
struct PatchFESpace <: FESpaces.SingleFieldFESpace
Vh :: FESpaces.SingleFieldFESpace
patch_decomposition :: PatchDecomposition
num_dofs :: Int
patch_cell_dofs_ids :: Arrays.Table
dof_to_pdof :: Arrays.Table
end
@doc """
function PatchFESpace(
space::FESpaces.SingleFieldFESpace,
patch_decomposition::PatchDecomposition,
reffe::Union{ReferenceFE,Tuple{<:ReferenceFEs.ReferenceFEName,Any,Any}};
conformity=nothing,
patches_mask=Fill(false,num_patches(patch_decomposition))
)
Constructs a `PatchFESpace` from a global `SingleFieldFESpace` and a `PatchDecomposition`.
The conformity of the FESpace is deduced from `reffe` and `conformity`, which need to be
the same as the ones used to construct the global FESpace.
If `patches_mask[p] = true`, the patch `p` is ignored. Used in parallel.
"""
function PatchFESpace(
space::FESpaces.SingleFieldFESpace,
patch_decomposition::PatchDecomposition,
reffe::Union{ReferenceFE,Tuple{<:ReferenceFEs.ReferenceFEName,Any,Any}};
conformity=nothing,
patches_mask=Fill(false,num_patches(patch_decomposition))
)
cell_conformity = MultilevelTools._cell_conformity(patch_decomposition.model,reffe;conformity=conformity)
return PatchFESpace(space,patch_decomposition,cell_conformity;patches_mask=patches_mask)
end
@doc """
function PatchFESpace(
space::FESpaces.SingleFieldFESpace,
patch_decomposition::PatchDecomposition,
cell_conformity::CellConformity;
patches_mask=Fill(false,num_patches(patch_decomposition))
)
Constructs a `PatchFESpace` from a global `SingleFieldFESpace`, a `PatchDecomposition`
and a `CellConformity` instance.
If `patches_mask[p] = true`, the patch `p` is ignored. Used in parallel.
"""
function PatchFESpace(
space::FESpaces.SingleFieldFESpace,
patch_decomposition::PatchDecomposition,
cell_conformity::CellConformity;
patches_mask = Fill(false,num_patches(patch_decomposition))
)
cell_dofs_ids = get_cell_dof_ids(space)
patch_cell_dofs_ids, num_dofs = generate_patch_cell_dofs_ids(
get_grid_topology(patch_decomposition.model),
patch_decomposition.patch_cells,
patch_decomposition.patch_cells_overlapped,
patch_decomposition.patch_cells_faces_on_boundary,
cell_dofs_ids,cell_conformity,patches_mask
)
dof_to_pdof = generate_dof_to_pdof(space,patch_decomposition,patch_cell_dofs_ids)
return PatchFESpace(space,patch_decomposition,num_dofs,patch_cell_dofs_ids,dof_to_pdof)
end
FESpaces.get_dof_value_type(a::PatchFESpace) = Gridap.FESpaces.get_dof_value_type(a.Vh)
FESpaces.get_free_dof_ids(a::PatchFESpace) = Base.OneTo(a.num_dofs)
FESpaces.get_fe_basis(a::PatchFESpace) = get_fe_basis(a.Vh)
FESpaces.ConstraintStyle(::PatchFESpace) = Gridap.FESpaces.UnConstrained()
FESpaces.ConstraintStyle(::Type{PatchFESpace}) = Gridap.FESpaces.UnConstrained()
FESpaces.get_vector_type(a::PatchFESpace) = get_vector_type(a.Vh)
FESpaces.get_fe_dof_basis(a::PatchFESpace) = get_fe_dof_basis(a.Vh)
function Gridap.CellData.get_triangulation(a::PatchFESpace)
PD = a.patch_decomposition
patch_cells = Gridap.Arrays.Table(PD.patch_cells)
trian = get_triangulation(a.Vh)
return PatchTriangulation(trian,PD,patch_cells,nothing)
end
# get_cell_dof_ids
FESpaces.get_cell_dof_ids(a::PatchFESpace) = a.patch_cell_dofs_ids
FESpaces.get_cell_dof_ids(a::PatchFESpace,::Triangulation) = @notimplemented
function FESpaces.get_cell_dof_ids(a::PatchFESpace,trian::PatchTriangulation)
return get_cell_dof_ids(trian.trian,a,trian)
end
function FESpaces.get_cell_dof_ids(t::Gridap.Adaptivity.AdaptedTriangulation,a::PatchFESpace,trian::PatchTriangulation)
return get_cell_dof_ids(t.trian,a,trian)
end
function FESpaces.get_cell_dof_ids(::Triangulation,a::PatchFESpace,trian::PatchTriangulation)
return a.patch_cell_dofs_ids
end
function FESpaces.get_cell_dof_ids(::BoundaryTriangulation,a::PatchFESpace,trian::PatchTriangulation)
cell_dof_ids = get_cell_dof_ids(a)
pface_to_pcell = trian.pface_to_pcell
pcells = isempty(pface_to_pcell) ? Int[] : lazy_map(x->x[1],pface_to_pcell)
return lazy_map(Reindex(cell_dof_ids),pcells)
end
function FESpaces.get_cell_dof_ids(::SkeletonTriangulation,a::PatchFESpace,trian::PatchTriangulation)
cell_dof_ids = get_cell_dof_ids(a)
pface_to_pcell = trian.pface_to_pcell
pcells_plus = isempty(pface_to_pcell) ? Int[] : lazy_map(x->x[1],pface_to_pcell)
pcells_minus = isempty(pface_to_pcell) ? Int[] : lazy_map(x->x[2],pface_to_pcell)
plus = lazy_map(Reindex(cell_dof_ids),pcells_plus)
minus = lazy_map(Reindex(cell_dof_ids),pcells_minus)
return lazy_map(Fields.BlockMap(2,[1,2]),plus,minus)
end
# scatter dof values
function FESpaces.scatter_free_and_dirichlet_values(f::PatchFESpace,free_values,dirichlet_values)
cell_vals = Fields.PosNegReindex(free_values,dirichlet_values)
return lazy_map(Broadcasting(cell_vals),f.patch_cell_dofs_ids)
end
# Construction of the patch cell dofs ids
function generate_patch_cell_dofs_ids(
topology,
patch_cells,
patch_cells_overlapped,
patch_cells_faces_on_boundary,
cell_dofs_ids,
cell_conformity,
patches_mask
)
patch_cell_dofs_ids = allocate_patch_cell_dofs_ids(patch_cells,cell_dofs_ids)
num_dofs = generate_patch_cell_dofs_ids!(
patch_cell_dofs_ids,topology,
patch_cells,patch_cells_overlapped,
patch_cells_faces_on_boundary,
cell_dofs_ids,cell_conformity,patches_mask
)
return patch_cell_dofs_ids, num_dofs
end
function allocate_patch_cell_dofs_ids(patch_cells,cell_dofs_ids)
cache_cells = array_cache(patch_cells)
cache_cdofs = array_cache(cell_dofs_ids)
num_overlapped_cells = length(patch_cells.data)
ptrs = Vector{Int}(undef,num_overlapped_cells+1)
ptrs[1] = 1; ncells = 1
for patch = 1:length(patch_cells)
cells = getindex!(cache_cells,patch_cells,patch)
for cell in cells
current_cell_dof_ids = getindex!(cache_cdofs,cell_dofs_ids,cell)
ptrs[ncells+1] = ptrs[ncells]+length(current_cell_dof_ids)
ncells += 1
end
end
@check num_overlapped_cells+1 == ncells
data = Vector{Int}(undef,ptrs[end]-1)
return Gridap.Arrays.Table(data,ptrs)
end
function generate_patch_cell_dofs_ids!(
patch_cell_dofs_ids,
topology,
patch_cells,
patch_cells_overlapped,
patch_cells_faces_on_boundary,
cell_dofs_ids,
cell_conformity,
patches_mask
)
cache = array_cache(patch_cells)
num_patches = length(patch_cells)
current_dof = 1
for patch = 1:num_patches
current_patch_cells = getindex!(cache,patch_cells,patch)
current_dof = generate_patch_cell_dofs_ids!(
patch_cell_dofs_ids,
topology,
patch,
current_patch_cells,
patch_cells_overlapped,
patch_cells_faces_on_boundary,
cell_dofs_ids,
cell_conformity;
free_dofs_offset=current_dof,
mask=patches_mask[patch]
)
end
return current_dof-1
end
# TO-THINK/STRESS:
# 1. MultiFieldFESpace case?
# 2. FESpaces which are directly defined on physical space? We think this case is covered by
# the fact that we are using a CellConformity instance to rely on ownership info.
# free_dofs_offset : the ID from which we start to assign free DoF IDs upwards
# Note: we do not actually need to generate a global numbering for Dirichlet DoFs. We can
# tag all as them with -1, as we are always imposing homogenous Dirichlet boundary
# conditions, and thus there is no need to address the result of interpolating Dirichlet
# Data into the FE space.
function generate_patch_cell_dofs_ids!(
patch_cell_dofs_ids,
topology,
patch::Integer,
patch_cells::AbstractVector{<:Integer},
patch_cells_overlapped::Gridap.Arrays.Table,
patch_cells_faces_on_boundary,
global_space_cell_dofs_ids,
cell_conformity;
free_dofs_offset=1,
mask=false
)
o = patch_cells_overlapped.ptrs[patch]
if mask
for lpatch_cell = 1:length(patch_cells)
cell_overlapped_mesh = patch_cells_overlapped.data[o+lpatch_cell-1]
s = patch_cell_dofs_ids.ptrs[cell_overlapped_mesh]
e = patch_cell_dofs_ids.ptrs[cell_overlapped_mesh+1]-1
patch_cell_dofs_ids.data[s:e] .= -1
end
else
g2l = Dict{Int,Int}()
Dc = length(patch_cells_faces_on_boundary)
d_to_cell_to_dface = [Gridap.Geometry.get_faces(topology,Dc,d) for d in 0:Dc-1]
# Loop over cells of the patch (local_cell_id_within_patch)
for (lpatch_cell,patch_cell) in enumerate(patch_cells)
cell_overlapped_mesh = patch_cells_overlapped.data[o+lpatch_cell-1]
s = patch_cell_dofs_ids.ptrs[cell_overlapped_mesh]
e = patch_cell_dofs_ids.ptrs[cell_overlapped_mesh+1]-1
current_patch_cell_dofs_ids = view(patch_cell_dofs_ids.data,s:e)
ctype = cell_conformity.cell_ctype[patch_cell]
# 1) DoFs belonging to faces (Df < Dc)
face_offset = 0
for d = 0:Dc-1
num_cell_faces = length(d_to_cell_to_dface[d+1][patch_cell])
for lface in 1:num_cell_faces
for ldof in cell_conformity.ctype_lface_own_ldofs[ctype][face_offset+lface]
gdof = global_space_cell_dofs_ids[patch_cell][ldof]
face_in_patch_boundary = patch_cells_faces_on_boundary[d+1][cell_overlapped_mesh][lface]
dof_is_dirichlet = (gdof < 0)
if face_in_patch_boundary || dof_is_dirichlet
current_patch_cell_dofs_ids[ldof] = -1
elseif gdof in keys(g2l)
current_patch_cell_dofs_ids[ldof] = g2l[gdof]
else
g2l[gdof] = free_dofs_offset
current_patch_cell_dofs_ids[ldof] = free_dofs_offset
free_dofs_offset += 1
end
end
end
face_offset += cell_conformity.d_ctype_num_dfaces[d+1][ctype]
end
# 2) Interior DoFs
for ldof in cell_conformity.ctype_lface_own_ldofs[ctype][face_offset+1]
current_patch_cell_dofs_ids[ldof] = free_dofs_offset
free_dofs_offset += 1
end
end
end
return free_dofs_offset
end
function generate_dof_to_pdof(Vh,PD,patch_cell_dofs_ids)
dof_to_pdof = _allocate_dof_to_pdof(Vh,PD,patch_cell_dofs_ids)
_generate_dof_to_pdof!(dof_to_pdof,Vh,PD,patch_cell_dofs_ids)
return dof_to_pdof
end
function _allocate_dof_to_pdof(Vh,PD,patch_cell_dofs_ids)
touched = Dict{Int,Bool}()
cell_mesh_overlapped = 1
cache_patch_cells = array_cache(PD.patch_cells)
cell_dof_ids = get_cell_dof_ids(Vh)
cache_cell_dof_ids = array_cache(cell_dof_ids)
ptrs = fill(0,num_free_dofs(Vh)+1)
for patch = 1:length(PD.patch_cells)
current_patch_cells = getindex!(cache_patch_cells,PD.patch_cells,patch)
for cell in current_patch_cells
current_cell_dof_ids = getindex!(cache_cell_dof_ids,cell_dof_ids,cell)
s = patch_cell_dofs_ids.ptrs[cell_mesh_overlapped]
e = patch_cell_dofs_ids.ptrs[cell_mesh_overlapped+1]-1
current_patch_cell_dof_ids = view(patch_cell_dofs_ids.data,s:e)
for (dof,pdof) in zip(current_cell_dof_ids,current_patch_cell_dof_ids)
if pdof > 0 && !(dof ∈ keys(touched))
touched[dof] = true
ptrs[dof+1] += 1
end
end
cell_mesh_overlapped += 1
end
empty!(touched)
end
PartitionedArrays.length_to_ptrs!(ptrs)
data = fill(0,ptrs[end]-1)
return Gridap.Arrays.Table(data,ptrs)
end
function _generate_dof_to_pdof!(dof_to_pdof,Vh,PD,patch_cell_dofs_ids)
touched = Dict{Int,Bool}()
cell_mesh_overlapped = 1
cache_patch_cells = array_cache(PD.patch_cells)
cell_dof_ids = get_cell_dof_ids(Vh)
cache_cell_dof_ids = array_cache(cell_dof_ids)
ptrs = dof_to_pdof.ptrs
data = dof_to_pdof.data
local_ptrs = fill(Int32(0),num_free_dofs(Vh))
for patch = 1:length(PD.patch_cells)
current_patch_cells = getindex!(cache_patch_cells,PD.patch_cells,patch)
for cell in current_patch_cells
current_cell_dof_ids = getindex!(cache_cell_dof_ids,cell_dof_ids,cell)
s = patch_cell_dofs_ids.ptrs[cell_mesh_overlapped]
e = patch_cell_dofs_ids.ptrs[cell_mesh_overlapped+1]-1
current_patch_cell_dof_ids = view(patch_cell_dofs_ids.data,s:e)
for (dof,pdof) in zip(current_cell_dof_ids,current_patch_cell_dof_ids)
if pdof > 0 && !(dof ∈ keys(touched))
touched[dof] = true
idx = ptrs[dof] + local_ptrs[dof]
@check idx < ptrs[dof+1]
data[idx] = pdof
local_ptrs[dof] += 1
end
end
cell_mesh_overlapped += 1
end
empty!(touched)
end
end
# x \in PatchFESpace
# y \in SingleFESpace
function prolongate!(x,Ph::PatchFESpace,y;dof_ids=LinearIndices(y))
dof_to_pdof = Ph.dof_to_pdof
ptrs = dof_to_pdof.ptrs
data = dof_to_pdof.data
for dof in dof_ids
for k in ptrs[dof]:ptrs[dof+1]-1
pdof = data[k]
x[pdof] = y[dof]
end
end
end
# x \in SingleFESpace
# y \in PatchFESpace
function inject!(x,Ph::PatchFESpace,y)
dof_to_pdof = Ph.dof_to_pdof
ptrs = dof_to_pdof.ptrs
data = dof_to_pdof.data
for dof in 1:length(dof_to_pdof)
x[dof] = 0.0
for k in ptrs[dof]:ptrs[dof+1]-1
pdof = data[k]
x[dof] += y[pdof]
end
end
end
function inject!(x,Ph::PatchFESpace,y,w,w_sums)
dof_to_pdof = Ph.dof_to_pdof
ptrs = dof_to_pdof.ptrs
data = dof_to_pdof.data
for dof in 1:length(dof_to_pdof)
x[dof] = 0.0
for k in ptrs[dof]:ptrs[dof+1]-1
pdof = data[k]
x[dof] += y[pdof] * w[pdof]
end
x[dof] /= w_sums[dof]
end
end
function compute_weight_operators(Ph::PatchFESpace,Vh)
w = Fill(1.0,num_free_dofs(Ph))
w_sums = zeros(num_free_dofs(Vh))
inject!(w_sums,Ph,w,Fill(1.0,num_free_dofs(Ph)),Fill(1.0,num_free_dofs(Vh)))
return w, w_sums
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 3396 |
## PatchFESpace from MultiFieldFESpace
@doc """
function PatchFESpace(
space::Gridap.MultiField.MultiFieldFESpace,
patch_decomposition::PatchDecomposition,
cell_conformity::Vector{<:CellConformity};
kwargs...
)
`PatchFESpace` constructor for `MultiFieldFESpace`.
Returns a `MultiFieldFESpace` of `PatchFESpace`s .
"""
function PatchFESpace(
space::Gridap.MultiField.MultiFieldFESpace,
patch_decomposition::PatchDecomposition,
cell_conformity::Vector{<:CellConformity};
kwargs...
)
patch_spaces = map((s,c) -> PatchFESpace(s,patch_decomposition,c;kwargs...),space,cell_conformity)
return MultiFieldFESpace(patch_spaces)
end
function PatchFESpace(
space::GridapDistributed.DistributedMultiFieldFESpace,
patch_decomposition::DistributedPatchDecomposition,
cell_conformity::Vector;
patches_mask = default_patches_mask(patch_decomposition)
)
field_spaces = map((s,c) -> PatchFESpace(s,patch_decomposition,c;patches_mask),space,cell_conformity)
part_spaces = map(MultiFieldFESpace,GridapDistributed.to_parray_of_arrays(map(local_views,field_spaces)))
# This PRange has no ghost dofs
local_ndofs = map(num_free_dofs,part_spaces)
global_ndofs = sum(local_ndofs)
patch_partition = variable_partition(local_ndofs,global_ndofs,false)
gids = PRange(patch_partition)
vector_type = get_vector_type(space)
return GridapDistributed.DistributedMultiFieldFESpace(field_spaces,part_spaces,gids,vector_type)
end
# Inject/Prolongate for MultiField (only for ConsecutiveMultiFieldStyle)
# x \in PatchFESpace
# y \in SingleFESpace
function prolongate!(x,Ph::MultiFieldFESpace,y)
Ph_spaces = Ph.spaces
Vh_spaces = map(Phi -> Phi.Vh, Ph_spaces)
Ph_offsets = Gridap.MultiField._compute_field_offsets(Ph_spaces)
Vh_offsets = Gridap.MultiField._compute_field_offsets(Vh_spaces)
Ph_ndofs = map(num_free_dofs,Ph_spaces)
Vh_ndofs = map(num_free_dofs,Vh_spaces)
for (i,Ph_i) in enumerate(Ph_spaces)
x_i = view(x, Ph_offsets[i]+1:Ph_offsets[i]+Ph_ndofs[i])
y_i = view(y, Vh_offsets[i]+1:Vh_offsets[i]+Vh_ndofs[i])
prolongate!(x_i,Ph_i,y_i)
end
end
# x \in SingleFESpace
# y \in PatchFESpace
function inject!(x,Ph::MultiFieldFESpace,y)
Ph_spaces = Ph.spaces
Vh_spaces = map(Phi -> Phi.Vh, Ph_spaces)
Ph_offsets = Gridap.MultiField._compute_field_offsets(Ph_spaces)
Vh_offsets = Gridap.MultiField._compute_field_offsets(Vh_spaces)
Ph_ndofs = map(num_free_dofs,Ph_spaces)
Vh_ndofs = map(num_free_dofs,Vh_spaces)
for (i,Ph_i) in enumerate(Ph_spaces)
y_i = view(y, Ph_offsets[i]+1:Ph_offsets[i]+Ph_ndofs[i])
x_i = view(x, Vh_offsets[i]+1:Vh_offsets[i]+Vh_ndofs[i])
inject!(x_i,Ph_i,y_i)
end
end
function prolongate!(x::PVector,
Ph::GridapDistributed.DistributedMultiFieldFESpace,
y::PVector;
is_consistent::Bool=false)
if !is_consistent
consistent!(y) |> fetch
end
map(prolongate!,partition(x),local_views(Ph),partition(y))
end
function inject!(x::PVector,
Ph::GridapDistributed.DistributedMultiFieldFESpace,
y::PVector;
make_consistent::Bool=true)
map(partition(x),local_views(Ph),partition(y)) do x,Ph,y
inject!(x,Ph,y)
end
# Exchange local contributions
assemble!(x) |> fetch
if make_consistent
consistent!(x) |> fetch
end
return x
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 10599 |
"""
struct PatchProlongationOperator end
A `PatchProlongationOperator` is a modified prolongation operator such that given a coarse
solution `xH` returns
```
xh = Ih(xH) - yh
```
where `yh` is a subspace-based correction computed by solving local problems on coarse cells
within the fine mesh.
"""
struct PatchProlongationOperator{R,A,B,C}
sh :: A
PD :: B
lhs :: Union{Nothing,Function}
rhs :: Union{Nothing,Function}
is_nonlinear :: Bool
caches :: C
function PatchProlongationOperator{R}(sh,PD,lhs,rhs,is_nonlinear,caches) where R
A, B, C = typeof(sh), typeof(PD), typeof(caches)
new{R,A,B,C}(sh,PD,lhs,rhs,is_nonlinear,caches)
end
end
@doc """
function PatchProlongationOperator(
lev :: Integer,
sh :: FESpaceHierarchy,
PD :: PatchDecomposition,
lhs :: Function,
rhs :: Function;
is_nonlinear=false
)
Returns an instance of `PatchProlongationOperator` for a given level `lev` and a given
FESpaceHierarchy `sh`. The subspace-based correction on a solution `uH` is computed
by solving local problems given by
```
lhs(u_i,v_i) = rhs(uH,v_i) ∀ v_i ∈ V_i
```
where `V_i` is the patch-local space indiced by the PatchDecomposition `PD`.
"""
function PatchProlongationOperator(lev,sh,PD,lhs,rhs;is_nonlinear=false)
cache_refine = MultilevelTools._get_interpolation_cache(lev,sh,0,:residual)
cache_redist = MultilevelTools._get_redistribution_cache(lev,sh,:residual,:prolongation,:interpolation,cache_refine)
cache_patch = _get_patch_cache(lev,sh,PD,lhs,rhs,is_nonlinear,cache_refine)
caches = cache_refine, cache_patch, cache_redist
redist = has_redistribution(sh,lev)
R = typeof(Val(redist))
return PatchProlongationOperator{R}(sh,PD,lhs,rhs,is_nonlinear,caches)
end
function _get_patch_cache(lev,sh,PD,lhs,rhs,is_nonlinear,cache_refine)
model_h, Uh, fv_h, dv_h, UH, fv_H, dv_H = cache_refine
cparts = get_level_parts(sh,lev+1)
if i_am_in(cparts)
# Patch-based correction fespace
glue = sh[lev].mh_level.ref_glue
patches_mask = get_coarse_node_mask(model_h,glue)
cell_conformity = MultilevelTools.get_cell_conformity_before_redist(sh,lev)
Ph = PatchFESpace(Uh,PD,cell_conformity;patches_mask)
# Solver caches
u, v = get_trial_fe_basis(Uh), get_fe_basis(Uh)
contr = is_nonlinear ? lhs(zero(Uh),u,v) : lhs(u,v)
matdata = collect_cell_matrix(Ph,Ph,contr)
Ap_ns, Ap = map(local_views(Ph),matdata) do Ph, matdata
assem = SparseMatrixAssembler(Ph,Ph)
Ap = assemble_matrix(assem,matdata)
Ap_ns = numerical_setup(symbolic_setup(LUSolver(),Ap),Ap)
return Ap_ns, Ap
end |> tuple_of_arrays
Ap = is_nonlinear ? Ap : nothing
duh = zero(Uh)
dxp, rp = zero_free_values(Ph), zero_free_values(Ph)
return Ph, Ap_ns, Ap, duh, dxp, rp
else
return nothing, nothing, nothing, nothing, nothing, nothing
end
end
# Please make this a standard API or something
function MultilevelTools.update_transfer_operator!(op::PatchProlongationOperator,x::Union{PVector,Nothing})
cache_refine, cache_patch, cache_redist = op.caches
model_h, Uh, fv_h, dv_h, UH, fv_H, dv_H = cache_refine
Ph, Ap_ns, Ap, duh, dxp, rp = cache_patch
if !isa(cache_redist,Nothing)
fv_h_red, dv_h_red, Uh_red, model_h_red, glue, cache_exchange = cache_redist
copy!(fv_h_red,x)
consistent!(fv_h_red) |> fetch
GridapDistributed.redistribute_free_values(fv_h,Uh,fv_h_red,dv_h_red,Uh_red,model_h,glue;reverse=true)
else
copy!(fv_h,x)
end
if !isa(fv_h,Nothing)
u, v = get_trial_fe_basis(Uh), get_fe_basis(Uh)
contr = op.is_nonlinear ? op.lhs(FEFunction(Uh,fv_h),u,v) : op.lhs(u,v)
matdata = collect_cell_matrix(Ph,Ph,contr)
map(Ap_ns,Ap,local_views(Ph),matdata) do Ap_ns, Ap, Ph, matdata
assem = SparseMatrixAssembler(Ph,Ph)
assemble_matrix!(Ap,assem,matdata)
numerical_setup!(Ap_ns,Ap)
end
end
end
function LinearAlgebra.mul!(y::PVector,A::PatchProlongationOperator{Val{false}},x::PVector)
cache_refine, cache_patch, cache_redist = A.caches
model_h, Uh, fv_h, dv_h, UH, fv_H, dv_H = cache_refine
Ph, Ap_ns, Ap, duh, dxp, rp = cache_patch
dxh = get_free_dof_values(duh)
copy!(fv_H,x) # Matrix layout -> FE layout
uH = FEFunction(UH,fv_H,dv_H)
interpolate!(uH,fv_h,Uh)
uh = FEFunction(Uh,fv_h,dv_h)
assemble_vector!(v->A.rhs(uh,v),rp,Ph)
map(solve!,partition(dxp),Ap_ns,partition(rp))
inject!(dxh,Ph,dxp)
fv_h .= fv_h .- dxh
copy!(y,fv_h)
return y
end
function LinearAlgebra.mul!(y::PVector,A::PatchProlongationOperator{Val{true}},x::Union{PVector,Nothing})
cache_refine, cache_patch, cache_redist = A.caches
model_h, Uh, fv_h, dv_h, UH, fv_H, dv_H = cache_refine
fv_h_red, dv_h_red, Uh_red, model_h_red, glue, cache_exchange = cache_redist
Ph, Ap_ns, Ap, duh, dxp, rp = cache_patch
dxh = isa(duh,Nothing) ? nothing : get_free_dof_values(duh)
# 1 - Interpolate in coarse partition
if !isa(x,Nothing)
copy!(fv_H,x) # Matrix layout -> FE layout
uH = FEFunction(UH,fv_H,dv_H)
interpolate!(uH,fv_h,Uh)
uh = FEFunction(Uh,fv_h,dv_h)
assemble_vector!(v->A.rhs(uh,v),rp,Ph)
map(solve!,partition(dxp),Ap_ns,partition(rp))
inject!(dxh,Ph,dxp)
fv_h .= fv_h .- dxh
end
# 2 - Redistribute from coarse partition to fine partition
GridapDistributed.redistribute_free_values!(cache_exchange,fv_h_red,Uh_red,fv_h,dv_h,Uh,model_h_red,glue;reverse=false)
copy!(y,fv_h_red) # FE layout -> Matrix layout
return y
end
function setup_patch_prolongation_operators(sh,lhs,rhs,qdegrees;is_nonlinear=false)
map(view(linear_indices(sh),1:num_levels(sh)-1)) do lev
qdegree = isa(qdegrees,Number) ? qdegrees : qdegrees[lev]
cparts = get_level_parts(sh,lev+1)
if i_am_in(cparts)
model = get_model_before_redist(sh,lev)
PD = PatchDecomposition(model)
Ω = Triangulation(PD)
dΩ = Measure(Ω,qdegree)
lhs_i = is_nonlinear ? (u,du,dv) -> lhs(u,du,dv,dΩ) : (u,v) -> lhs(u,v,dΩ)
rhs_i = (u,v) -> rhs(u,v,dΩ)
else
PD, lhs_i, rhs_i = nothing, nothing, nothing
end
PatchProlongationOperator(lev,sh,PD,lhs_i,rhs_i;is_nonlinear)
end
end
function get_coarse_node_mask(fmodel::GridapDistributed.DistributedDiscreteModel,glue)
gids = get_face_gids(fmodel,0)
mask = map(local_views(fmodel),glue,partition(gids)) do fmodel, glue, gids
mask = get_coarse_node_mask(fmodel,glue)
mask[ghost_to_local(gids)] .= true # Mask ghost nodes as well
return mask
end
return mask
end
# Coarse nodes are the ones that are shared by fine cells that do not belong to the same coarse cell.
# Conversely, fine nodes are the ones shared by fine cells that all have the same parent coarse cell.
function get_coarse_node_mask(fmodel::DiscreteModel{Dc},glue) where Dc
ftopo = get_grid_topology(fmodel)
n2c_map = Gridap.Geometry.get_faces(ftopo,0,Dc)
n2c_map_cache = array_cache(n2c_map)
f2c_cells = glue.n2o_faces_map[Dc+1]
is_boundary = get_isboundary_face(ftopo,0)
is_coarse = map(1:length(n2c_map)) do n
nbor_cells = getindex!(n2c_map_cache,n2c_map,n)
parent = f2c_cells[first(nbor_cells)]
return is_boundary[n] || any(c -> f2c_cells[c] != parent, nbor_cells)
end
return is_coarse
end
# PatchRestrictionOperator
struct PatchRestrictionOperator{R,A,B}
Ip :: A
rhs :: Union{Function,Nothing}
caches :: B
function PatchRestrictionOperator{R}(
Ip::PatchProlongationOperator{R},
rhs,
caches
) where R
A = typeof(Ip)
B = typeof(caches)
new{R,A,B}(Ip,rhs,caches)
end
end
function PatchRestrictionOperator(lev,sh,Ip,rhs,qdegree;solver=LUSolver())
cache_refine = MultilevelTools._get_dual_projection_cache(lev,sh,qdegree,solver)
cache_redist = MultilevelTools._get_redistribution_cache(lev,sh,:residual,:restriction,:dual_projection,cache_refine)
cache_patch = Ip.caches[2]
caches = cache_refine, cache_patch, cache_redist
redist = has_redistribution(sh,lev)
R = typeof(Val(redist))
return PatchRestrictionOperator{R}(Ip,rhs,caches)
end
function MultilevelTools.update_transfer_operator!(op::PatchRestrictionOperator,x::Union{PVector,Nothing})
nothing
end
function setup_patch_restriction_operators(sh,patch_prolongations,rhs,qdegrees;kwargs...)
map(view(linear_indices(sh),1:num_levels(sh)-1)) do lev
qdegree = isa(qdegrees,Number) ? qdegrees : qdegrees[lev]
cparts = get_level_parts(sh,lev+1)
if i_am_in(cparts)
model = get_model_before_redist(sh,lev)
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
rhs_i = (u,v) -> rhs(u,v,dΩ)
else
rhs_i = nothing
end
Ip = patch_prolongations[lev]
PatchRestrictionOperator(lev,sh,Ip,rhs_i,qdegree;kwargs...)
end
end
function LinearAlgebra.mul!(y::PVector,A::PatchRestrictionOperator{Val{false}},x::PVector)
cache_refine, cache_patch, _ = A.caches
model_h, Uh, VH, Mh_ns, rh, uh, assem, dΩhH = cache_refine
Ph, Ap_ns, Ap, duh, dxp, rp = cache_patch
fv_h = get_free_dof_values(uh)
dxh = get_free_dof_values(duh)
copy!(fv_h,x)
fill!(rp,0.0)
prolongate!(rp,Ph,fv_h)
map(solve!,partition(dxp),Ap_ns,partition(rp))
inject!(dxh,Ph,dxp)
consistent!(dxh) |> fetch
assemble_vector!(v->A.rhs(duh,v),rh,Uh)
fv_h .= fv_h .- rh
consistent!(fv_h) |> fetch
solve!(rh,Mh_ns,fv_h)
copy!(fv_h,rh)
consistent!(fv_h) |> fetch
v = get_fe_basis(VH)
assemble_vector!(y,assem,collect_cell_vector(VH,∫(v⋅uh)*dΩhH))
return y
end
function LinearAlgebra.mul!(y::Union{PVector,Nothing},A::PatchRestrictionOperator{Val{true}},x::PVector)
cache_refine, cache_patch, cache_redist = A.caches
model_h, Uh, VH, Mh_ns, rh, uh, assem, dΩhH = cache_refine
Ph, Ap_ns, Ap, duh, dxp, rp = cache_patch
fv_h_red, dv_h_red, Uh_red, model_h_red, glue, cache_exchange = cache_redist
fv_h = isa(uh,Nothing) ? nothing : get_free_dof_values(uh)
dxh = isa(duh,Nothing) ? nothing : get_free_dof_values(duh)
copy!(fv_h_red,x)
consistent!(fv_h_red) |> fetch
GridapDistributed.redistribute_free_values!(cache_exchange,fv_h,Uh,fv_h_red,dv_h_red,Uh_red,model_h,glue;reverse=true)
if !isa(y,Nothing)
fill!(rp,0.0)
prolongate!(rp,Ph,fv_h;is_consistent=true)
map(solve!,partition(dxp),Ap_ns,partition(rp))
inject!(dxh,Ph,dxp)
consistent!(dxh) |> fetch
assemble_vector!(v->A.rhs(duh,v),rh,Uh)
fv_h .= fv_h .- rh
consistent!(fv_h) |> fetch
solve!(rh,Mh_ns,fv_h)
copy!(fv_h,rh)
consistent!(fv_h) |> fetch
v = get_fe_basis(VH)
assemble_vector!(y,assem,collect_cell_vector(VH,∫(v⋅uh)*dΩhH))
end
return y
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 6703 | """
struct PatchTriangulation{Dc,Dp} <: Triangulation{Dc,Dp}
...
end
Wrapper around a Triangulation, for patch-based assembly.
"""
struct PatchTriangulation{Dc,Dp,A,B,C,D} <: Gridap.Geometry.Triangulation{Dc,Dp}
trian :: A
PD :: B
patch_faces :: C
pface_to_pcell :: D
function PatchTriangulation(
trian::Triangulation{Dc,Dp},
PD::PatchDecomposition,
patch_faces,
pface_to_pcell
) where {Dc,Dp}
A = typeof(trian)
B = typeof(PD)
C = typeof(patch_faces)
D = typeof(pface_to_pcell)
new{Dc,Dp,A,B,C,D}(trian,PD,patch_faces,pface_to_pcell)
end
end
# Triangulation API
function Geometry.get_background_model(t::PatchTriangulation)
get_background_model(t.trian)
end
function Geometry.get_grid(t::PatchTriangulation)
get_grid(t.trian)
end
function Geometry.get_glue(t::PatchTriangulation,::Val{d}) where d
get_glue(t.trian,Val(d))
end
function Geometry.get_facet_normal(trian::PatchTriangulation)
get_facet_normal(trian.trian)
end
# For now, I am disabling changes from PatchTriangulations to other Triangulations.
# Reason: When the tface_to_mface map is not injective (i.e when we have overlapping),
# the glue is not well defined. Gridap will throe an error when trying to create
# the inverse map mface_to_tface.
# I believe this could technically be relaxed in the future, but for now I don't see a
# scenario where we would need this.
function Geometry.is_change_possible(strian::PatchTriangulation,ttrian::Triangulation)
return strian === ttrian
end
# Constructors
function Geometry.Triangulation(PD::PatchDecomposition)
patch_cells = Gridap.Arrays.Table(PD.patch_cells)
trian = Triangulation(PD.model)
return PatchTriangulation(trian,PD,patch_cells,nothing)
end
# By default, we return faces which are NOT patch-boundary faces. To get the patch-boundary faces,
# set `reverse` to true (see docs for `get_patch_faces`).
function Geometry.BoundaryTriangulation(
PD::PatchDecomposition{Dr,Dc};tags="boundary",reverse=false,
) where {Dr,Dc}
Df = Dc-1
model = PD.model
labeling = get_face_labeling(model)
is_boundary = get_face_mask(labeling,tags,Df)
patch_faces = get_patch_faces(PD,Df,is_boundary;reverse)
pface_to_pcell, pface_to_lcell = get_pface_to_pcell(PD,Df,patch_faces)
trian = OverlappingBoundaryTriangulation(model,patch_faces.data,pface_to_lcell)
return PatchTriangulation(trian,PD,patch_faces,pface_to_pcell)
end
function Geometry.SkeletonTriangulation(PD::PatchDecomposition{Dr,Dc}) where {Dr,Dc}
Df = Dc-1
model = PD.model
labeling = get_face_labeling(model)
is_interior = get_face_mask(labeling,["interior"],Df)
patch_faces = get_patch_faces(PD,Df,is_interior)
pface_to_pcell, _ = get_pface_to_pcell(PD,Df,patch_faces)
nfaces = length(patch_faces.data)
plus = OverlappingBoundaryTriangulation(model,patch_faces.data,fill(Int8(1),nfaces))
minus = OverlappingBoundaryTriangulation(model,patch_faces.data,fill(Int8(2),nfaces))
trian = SkeletonTriangulation(plus,minus)
return PatchTriangulation(trian,PD,patch_faces,pface_to_pcell)
end
# Move contributions
@inline function Geometry.move_contributions(scell_to_val::AbstractArray,strian::PatchTriangulation)
return move_contributions(strian.trian,scell_to_val,strian)
end
function Geometry.move_contributions(
t::Gridap.Adaptivity.AdaptedTriangulation,
scell_to_val::AbstractArray,
strian::PatchTriangulation
)
return move_contributions(t.trian,scell_to_val,strian)
end
function Geometry.move_contributions(
::BodyFittedTriangulation,
scell_to_val::AbstractArray,
strian::PatchTriangulation
)
patch_cells = strian.patch_faces
return lazy_map(Reindex(scell_to_val),patch_cells.data), strian
end
function Geometry.move_contributions(
::Union{<:BoundaryTriangulation,<:SkeletonTriangulation},
scell_to_val::AbstractArray,
strian::PatchTriangulation
)
display(ndims(eltype(scell_to_val)))
return scell_to_val, strian
end
# Overlapping BoundaryTriangulation
#
# This is the situation: I do not see any show-stopper for us to have an overlapping
# BoundaryTriangulation. Within the FaceToCellGlue, the array `bgface_to_lcell` is never
# used for anything else than the constructor.
# So in my mind nothing stops us from creating the glue from a `face_to_lcell` array instead.
#
# The following code does just that, and returns a regular BoundaryTriangulation. It is
# mostly copied from Gridap/Geometry/BoundaryTriangulations.jl
function OverlappingBoundaryTriangulation(
model::DiscreteModel,
face_to_bgface::AbstractVector{<:Integer},
face_to_lcell::AbstractVector{<:Integer}
)
D = num_cell_dims(model)
topo = get_grid_topology(model)
bgface_grid = Grid(ReferenceFE{D-1},model)
face_grid = view(bgface_grid,face_to_bgface)
cell_grid = get_grid(model)
glue = OverlappingFaceToCellGlue(topo,cell_grid,face_grid,face_to_bgface,face_to_lcell)
trian = BodyFittedTriangulation(model,face_grid,face_to_bgface)
return BoundaryTriangulation(trian,glue)
end
function OverlappingFaceToCellGlue(
topo::GridTopology,
cell_grid::Grid,
face_grid::Grid,
face_to_bgface::AbstractVector,
face_to_lcell::AbstractVector
)
Dc = num_cell_dims(cell_grid)
Df = num_cell_dims(face_grid)
bgface_to_cell = get_faces(topo,Df,Dc)
bgcell_to_bgface = get_faces(topo,Dc,Df)
cell_to_lface_to_pindex = Table(get_cell_permutations(topo,Df))
face_to_cell = lazy_map(Reindex(bgface_to_cell), face_to_bgface)
face_to_cell = collect(Int32,lazy_map(getindex,face_to_cell,face_to_lcell))
face_to_lface = overlapped_find_local_index(face_to_bgface,face_to_cell,bgcell_to_bgface)
f = (p)->fill(Int8(UNSET),num_faces(p,Df))
ctype_to_lface_to_ftype = map( f, get_reffes(cell_grid) )
face_to_ftype = get_cell_type(face_grid)
cell_to_ctype = get_cell_type(cell_grid)
Geometry._fill_ctype_to_lface_to_ftype!(
ctype_to_lface_to_ftype,
face_to_cell,
face_to_lface,
face_to_ftype,
cell_to_ctype)
Geometry.FaceToCellGlue(
face_to_bgface,
face_to_lcell,
face_to_cell,
face_to_lface,
face_to_lcell,
face_to_ftype,
cell_to_ctype,
cell_to_lface_to_pindex,
ctype_to_lface_to_ftype)
end
function overlapped_find_local_index(
c_to_a :: Vector{<:Integer},
c_to_b :: Vector{<:Integer},
b_to_lc_to_a :: Table
)
c_to_lc = fill(Int8(-1),length(c_to_a))
for (c,a) in enumerate(c_to_a)
b = c_to_b[c]
pini = b_to_lc_to_a.ptrs[b]
pend = b_to_lc_to_a.ptrs[b+1]-1
for (lc,p) in enumerate(pini:pend)
if a == b_to_lc_to_a.data[p]
c_to_lc[c] = Int8(lc)
break
end
end
end
return c_to_lc
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 4322 |
"""
@enum SolverVerboseLevel begin
SOLVER_VERBOSE_NONE = 0
SOLVER_VERBOSE_LOW = 1
SOLVER_VERBOSE_HIGH = 2
end
SolverVerboseLevel(true) = SOLVER_VERBOSE_HIGH
SolverVerboseLevel(false) = SOLVER_VERBOSE_NONE
"""
@enum SolverVerboseLevel begin
SOLVER_VERBOSE_NONE = 0
SOLVER_VERBOSE_LOW = 1
SOLVER_VERBOSE_HIGH = 2
end
SolverVerboseLevel(verbose::Bool) = (verbose ? SOLVER_VERBOSE_HIGH : SOLVER_VERBOSE_NONE)
"""
mutable struct ConvergenceLog{T}
...
end
ConvergenceLog(
name :: String,
tols :: SolverTolerances{T};
verbose = SOLVER_VERBOSE_NONE,
depth = 0
)
Standarized logging system for iterative linear solvers.
# Methods:
- [`reset!`](@ref)
- [`init!`](@ref)
- [`update!`](@ref)
- [`finalize!`](@ref)
- [`print_message`](@ref)
"""
mutable struct ConvergenceLog{T<:Real}
name :: String
tols :: SolverTolerances{T}
num_iters :: Int
residuals :: Vector{T}
verbose :: SolverVerboseLevel
depth :: Int
end
function ConvergenceLog(
name :: String,
tols :: SolverTolerances{T};
verbose = SOLVER_VERBOSE_NONE,
depth = 0
) where T
residuals = Vector{T}(undef,tols.maxiter+1)
verbose = SolverVerboseLevel(verbose)
return ConvergenceLog(name,tols,0,residuals,verbose,depth)
end
@inline get_tabulation(log::ConvergenceLog) = get_tabulation(log,2)
@inline get_tabulation(log::ConvergenceLog,n::Int) = repeat(' ', n + 2*log.depth)
"""
reset!(log::ConvergenceLog{T})
Resets the convergence log `log` to its initial state.
"""
function reset!(log::ConvergenceLog{T}) where T
log.num_iters = 0
fill!(log.residuals,0.0)
return log
end
"""
init!(log::ConvergenceLog{T},r0::T)
Initializes the convergence log `log` with the initial residual `r0`.
"""
function init!(log::ConvergenceLog{T},r0::T) where T
log.num_iters = 0
log.residuals[1] = r0
if log.verbose > SOLVER_VERBOSE_LOW
header = " Starting $(log.name) solver "
println(get_tabulation(log,0),rpad(string(repeat('-',15),header),55,'-'))
t = get_tabulation(log)
msg = @sprintf("> Iteration %3i - Residuals: %.2e, %.2e ", 0, r0, 1)
println(t,msg)
end
return finished(log.tols,log.num_iters,r0,1.0)
end
"""
update!(log::ConvergenceLog{T},r::T)
Updates the convergence log `log` with the residual `r` at the current iteration.
"""
function update!(log::ConvergenceLog{T},r::T) where T
log.num_iters += 1
log.residuals[log.num_iters+1] = r
r_rel = r / log.residuals[1]
if log.verbose > SOLVER_VERBOSE_LOW
t = get_tabulation(log)
msg = @sprintf("> Iteration %3i - Residuals: %.2e, %.2e ", log.num_iters, r, r_rel)
println(t,msg)
end
return finished(log.tols,log.num_iters,r,r_rel)
end
"""
finalize!(log::ConvergenceLog{T},r::T)
Finalizes the convergence log `log` with the final residual `r`.
"""
function finalize!(log::ConvergenceLog{T},r::T) where T
r_rel = r / log.residuals[1]
flag = finished_flag(log.tols,log.num_iters,r,r_rel)
if log.verbose > SOLVER_VERBOSE_NONE
t = get_tabulation(log,0)
println(t,"Solver $(log.name) finished with reason $(flag)")
msg = @sprintf("Iterations: %3i - Residuals: %.2e, %.2e ", log.num_iters, r, r_rel)
println(t,msg)
if log.verbose > SOLVER_VERBOSE_LOW
footer = " Exiting $(log.name) solver "
println(t,rpad(string(repeat('-',15),footer),55,'-'))
end
end
return flag
end
"""
print_message(log::ConvergenceLog{T},msg::String)
Prints the message `msg` to the output stream of the convergence log `log`.
"""
function print_message(log::ConvergenceLog{T},msg::String) where T
if log.verbose > SOLVER_VERBOSE_LOW
println(get_tabulation(log),msg)
end
end
function Base.show(io::IO,k::MIME"text/plain",log::ConvergenceLog)
println(io,"ConvergenceLog[$(log.name)]")
println(io," > tols: $(summary(log.tols))")
println(io," > num_iter: $(log.num_iters)")
println(io," > residual: $(log.residuals[log.num_iters+1])")
end
function Base.summary(log::ConvergenceLog)
r_abs = log.residuals[log.num_iters+1]
r_rel = r_abs / log.residuals[1]
flag = finished_flag(log.tols,log.num_iters,r_abs,r_rel)
msg = "Convergence[$(log.name)]: conv_flag=$(flag), niter=$(log.num_iters), r_abs=$(r_abs), r_rel=$(r_rel)"
return msg
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 473 |
# LinearSolvers that depend on the non-linear solution
function Gridap.Algebra.symbolic_setup(ns::Gridap.Algebra.LinearSolver,A::AbstractMatrix,x::AbstractVector)
symbolic_setup(ns,A)
end
function Gridap.Algebra.numerical_setup(ns::Gridap.Algebra.SymbolicSetup,A::AbstractMatrix,x::AbstractVector)
numerical_setup(ns,A)
end
function Gridap.Algebra.numerical_setup!(ns::Gridap.Algebra.NumericalSetup,A::AbstractMatrix,x::AbstractVector)
numerical_setup!(ns,A)
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 1421 |
struct SolverInfo
name :: String
data :: Dict{Symbol, Any}
end
SolverInfo(name::String) = SolverInfo(name,Dict{Symbol, Any}())
function get_solver_info(solver::Gridap.Algebra.LinearSolver)
return SolverInfo(string(typeof(solver)))
end
function merge_info!(a::SolverInfo,b::SolverInfo;prefix=b.name)
for (key,val) in b.data
a.data[Symbol(prefix,key)] = val
end
return a
end
function add_info!(a::SolverInfo,key::Union{Symbol,String},val;prefix="")
key = Symbol(prefix,key)
a.data[key] = val
end
function add_convergence_info!(a::SolverInfo,log::ConvergenceLog;prefix="")
prefix = string(prefix,log.name)
add_info!(a,:num_iters,log.num_iters,prefix=prefix)
add_info!(a,:residuals,copy(log.residuals),prefix=prefix)
end
function add_tolerance_info!(a::SolverInfo,tols::SolverTolerances;prefix="")
add_info!(a,:maxiter,tols.maxiter,prefix=prefix)
add_info!(a,:atol,tols.atol,prefix=prefix)
add_info!(a,:rtol,tols.rtol,prefix=prefix)
end
function add_tolerance_info!(a::SolverInfo,log::ConvergenceLog;prefix="")
prefix = string(prefix,log.name)
add_tolerance_info!(a,log.tols,prefix=prefix)
end
Base.summary(info::SolverInfo) = info.name
AbstractTrees.children(s::Gridap.Algebra.LinearSolver) = []
AbstractTrees.nodevalue(s::Gridap.Algebra.LinearSolver) = summary(get_solver_info(s))
function Base.show(io::IO,a::Gridap.Algebra.LinearSolver)
AbstractTrees.print_tree(io,a)
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 445 | module SolverInterfaces
using Gridap
using Gridap.Helpers
using Gridap.Algebra
using AbstractTrees
using Printf
include("GridapExtras.jl")
include("SolverTolerances.jl")
include("ConvergenceLogs.jl")
include("SolverInfos.jl")
export SolverVerboseLevel, SolverConvergenceFlag
export SolverTolerances, get_solver_tolerances, set_solver_tolerances!
export ConvergenceLog, init!, update!, finalize!, reset!, print_message
export SolverInfo
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 3538 | """
@enum SolverConvergenceFlag begin
SOLVER_CONVERGED_ATOL = 0
SOLVER_CONVERGED_RTOL = 1
SOLVER_DIVERGED_MAXITER = 2
SOLVER_DIVERGED_BREAKDOWN = 3
end
Convergence flags for iterative linear solvers.
"""
@enum SolverConvergenceFlag begin
SOLVER_CONVERGED_ATOL = 0
SOLVER_CONVERGED_RTOL = 1
SOLVER_DIVERGED_MAXITER = 2
SOLVER_DIVERGED_BREAKDOWN = 3
end
"""
mutable struct SolverTolerances{T}
...
end
SolverTolerances{T}(
maxiter :: Int = 1000,
atol :: T = eps(T),
rtol :: T = 1.e-5,
dtol :: T = Inf
)
Structure to check convergence conditions for iterative linear solvers.
# Methods:
- [`get_solver_tolerances`](@ref)
- [`set_solver_tolerances!`](@ref)
- [`converged`](@ref)
- [`finished`](@ref)
- [`finished_flag`](@ref)
"""
mutable struct SolverTolerances{T <: Real}
maxiter :: Int
atol :: T
rtol :: T
dtol :: T
end
function SolverTolerances{T}(;maxiter=1000, atol=eps(T), rtol=T(1.e-5), dtol=T(Inf)) where T
return SolverTolerances{T}(maxiter, atol, rtol, dtol)
end
"""
get_solver_tolerances(s::LinearSolver)
Returns the solver tolerances of the linear solver `s`.
"""
get_solver_tolerances(s::Gridap.Algebra.LinearSolver) = @abstractmethod
"""
set_solver_tolerances!(s::LinearSolver;
maxiter = 1000,
atol = eps(T),
rtol = T(1.e-5),
dtol = T(Inf)
)
Modifies tolerances of the linear solver `s`.
"""
function set_solver_tolerances!(s::Gridap.Algebra.LinearSolver;kwargs...)
set_solver_tolerances!(get_solver_tolerances(s);kwargs...)
end
function set_solver_tolerances!(
a::SolverTolerances{T};
maxiter = 1000,
atol = eps(T),
rtol = T(1.e-5),
dtol = T(Inf)
) where T
a.maxiter = maxiter
a.atol = atol
a.rtol = rtol
a.dtol = dtol
return a
end
"""
finished_flag(tols::SolverTolerances,niter,e_a,e_r) :: SolverConvergenceFlag
Computes the solver exit condition given
- the number of iterations `niter`
- the absolute error `e_a`
- and the relative error `e_r`.
Returns the corresponding `SolverConvergenceFlag`.
"""
function finished_flag(tols::SolverTolerances,niter,e_a,e_r) :: SolverConvergenceFlag
if !finished(tols,niter,e_a,e_r)
@warn "finished_flag() called with unfinished solver!"
end
if e_r < tols.rtol
return SOLVER_CONVERGED_RTOL
elseif e_a < tols.atol
return SOLVER_CONVERGED_ATOL
elseif niter >= tols.maxiter
return SOLVER_DIVERGED_MAXITER
else
return SOLVER_DIVERGED_BREAKDOWN
end
end
"""
finished(tols::SolverTolerances,niter,e_a,e_r) :: Bool
Returns `true` if the solver has finished, `false` otherwise.
"""
function finished(tols::SolverTolerances,niter,e_a,e_r) :: Bool
return (niter >= tols.maxiter) || converged(tols,niter,e_a,e_r)
end
"""
converged(tols::SolverTolerances,niter,e_a,e_r) :: Bool
Returns `true` if the solver has converged, `false` otherwise.
"""
function converged(tols::SolverTolerances,niter,e_a,e_r) :: Bool
return (e_r < tols.rtol) || (e_a < tols.atol)
end
function Base.show(io::IO,k::MIME"text/plain",t::SolverTolerances{T}) where T
println(io,"SolverTolerances{$T}:")
println(io," - maxiter: $(t.maxiter)")
println(io," - atol: $(t.atol)")
println(io," - rtol: $(t.rtol)")
println(io," - dtol: $(t.dtol)")
end
function Base.summary(t::SolverTolerances{T}) where T
return "Tolerances: maxiter=$(t.maxiter), atol=$(t.atol), rtol=$(t.rtol), dtol=$(t.dtol)"
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 492 | using GridapSolvers
using Test
@testset "Sequential tests" begin
include("MultilevelTools/seq/runtests.jl")
include("LinearSolvers/seq/runtests.jl")
include("NonlinearSolvers/seq/runtests.jl")
include("BlockSolvers/seq/runtests.jl")
include("Applications/seq/runtests.jl")
end
@testset "MPI tests" begin
include("MultilevelTools/mpi/runtests.jl")
include("LinearSolvers/mpi/runtests.jl")
include("BlockSolvers/mpi/runtests.jl")
include("Applications/mpi/runtests.jl")
end
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 3841 |
module DarcyGMGApplication
using Test
using LinearAlgebra
using FillArrays, BlockArrays
using Gridap
using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces
using Gridap.CellData, Gridap.MultiField, Gridap.Algebra
using PartitionedArrays
using GridapDistributed
using GridapSolvers
using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools, GridapSolvers.PatchBasedSmoothers
using GridapSolvers.BlockSolvers: LinearSystemBlock, BiformBlock, BlockTriangularSolver
function get_patch_smoothers(mh,tests,biform,patch_decompositions,qdegree)
patch_spaces = PatchFESpace(tests,patch_decompositions)
nlevs = num_levels(mh)
smoothers = map(view(tests,1:nlevs-1),patch_decompositions,patch_spaces) do tests, PD, Ph
Vh = get_fe_space(tests)
Ω = Triangulation(PD)
dΩ = Measure(Ω,qdegree)
ap = (u,v) -> biform(u,v,dΩ)
patch_smoother = PatchBasedLinearSolver(ap,Ph,Vh)
return RichardsonSmoother(patch_smoother,10,0.2)
end
return smoothers
end
function get_bilinear_form(mh_lev,biform,qdegree)
model = get_model(mh_lev)
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
return (u,v) -> biform(u,v,dΩ)
end
function main(distribute,np,nc,np_per_level)
parts = distribute(LinearIndices((prod(np),)))
Dc = length(nc)
domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1)
mh = CartesianModelHierarchy(parts,np_per_level,domain,nc)
model = get_model(mh,1)
order = 2
qdegree = 2*(order+1)
reffe_u = ReferenceFE(raviart_thomas,Float64,order-1)
reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P)
u_exact(x) = (Dc==2) ? VectorValue(x[1]+x[2],-x[2]) : VectorValue(x[1]+x[2],-x[2],0.0)
p_exact(x) = 2.0*x[1]-1.0
tests_u = TestFESpace(mh,reffe_u,dirichlet_tags=["boundary"]);
trials_u = TrialFESpace(tests_u,[u_exact]);
U, V = get_fe_space(trials_u,1), get_fe_space(tests_u,1)
Q = TestFESpace(model,reffe_p;conformity=:L2)
mfs = Gridap.MultiField.BlockMultiFieldStyle()
X = MultiFieldFESpace([U,Q];style=mfs)
Y = MultiFieldFESpace([V,Q];style=mfs)
α = 1.e2
f(x) = u_exact(x) + ∇(p_exact)(x)
graddiv(u,v,dΩ) = ∫(α*divergence(u)⋅divergence(v))dΩ
biform_u(u,v,dΩ) = ∫(v⊙u)dΩ + graddiv(u,v,dΩ)
biform((u,p),(v,q),dΩ) = biform_u(u,v,dΩ) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ
liform((v,q),dΩ) = ∫(v⋅f)dΩ
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
a(u,v) = biform(u,v,dΩ)
l(v) = liform(v,dΩ)
op = AffineFEOperator(a,l,X,Y)
A, b = get_matrix(op), get_vector(op);
biforms = map(mhl -> get_bilinear_form(mhl,biform_u,qdegree),mh)
patch_decompositions = PatchDecomposition(mh)
smoothers = get_patch_smoothers(
mh,tests_u,biform_u,patch_decompositions,qdegree
)
prolongations = setup_prolongation_operators(
tests_u,qdegree;mode=:residual
)
restrictions = setup_restriction_operators(
tests_u,qdegree;mode=:residual,solver=IS_ConjugateGradientSolver(;reltol=1.e-6)
)
gmg = GMGLinearSolver(
mh,trials_u,tests_u,biforms,
prolongations,restrictions,
pre_smoothers=smoothers,
post_smoothers=smoothers,
coarsest_solver=LUSolver(),
maxiter=3,mode=:preconditioner,verbose=i_am_main(parts)
)
solver_u = gmg
solver_p = CGSolver(JacobiLinearSolver();maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts))
solver_p.log.depth = 2
bblocks = [LinearSystemBlock() LinearSystemBlock();
LinearSystemBlock() BiformBlock((p,q) -> ∫(-1.0/α*p*q)dΩ,Q,Q)]
coeffs = [1.0 1.0;
0.0 1.0]
P = BlockTriangularSolver(bblocks,[solver_u,solver_p],coeffs,:upper)
solver = FGMRESSolver(20,P;atol=1e-14,rtol=1.e-10,verbose=i_am_main(parts))
ns = numerical_setup(symbolic_setup(solver,A),A)
x = allocate_in_domain(A); fill!(x,0.0)
solve!(x,ns,b)
r = allocate_in_range(A)
mul!(r,A,x)
r .-= b
@test norm(r) < 1.e-5
end
end # module
| GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 4358 | # # Incompressible Navier-Stokes equations in a 2D/3D cavity
#
# This example solves the incompressible Stokes equations, given by
#
# ```math
# \begin{align*}
# -\Delta u + \text{R}_e (u \nabla) u - \nabla p &= f \quad \text{in} \quad \Omega, \\
# \nabla \cdot u &= 0 \quad \text{in} \quad \Omega, \\
# u &= \hat{x} \quad \text{in} \quad \Gamma_\text{top} \subset \partial \Omega, \\
# u &= 0 \quad \text{in} \quad \partial \Omega \backslash \Gamma_\text{top} \\
# \end{align*}
# ```
#
# where $\Omega = [0,1]^d$.
#
# We use a mixed finite-element scheme, with $Q_k \times P_{k-1}^{-}$ elements for the velocity-pressure pair.
#
# To solve the linear system, we use a FGMRES solver preconditioned by a block-triangular
# Shur-complement-based preconditioner. We use an Augmented Lagrangian approach to
# get a better approximation of the Schur complement. Details for this preconditoner can be
# found in [Benzi and Olshanskii (2006)](https://epubs.siam.org/doi/10.1137/050646421).
#
# The velocity block is solved directly using an exact solver.
module NavierStokesApplication
using Test
using LinearAlgebra
using FillArrays, BlockArrays
using Gridap
using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces
using Gridap.CellData, Gridap.MultiField, Gridap.Algebra
using PartitionedArrays
using GridapDistributed
using GridapSolvers
using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools, GridapSolvers.NonlinearSolvers
using GridapSolvers.BlockSolvers: LinearSystemBlock, NonlinearSystemBlock, BiformBlock, BlockTriangularSolver
function add_labels_2d!(labels)
add_tag_from_tags!(labels,"top",[6])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,7,8])
end
function add_labels_3d!(labels)
add_tag_from_tags!(labels,"top",[22])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26])
end
function main(distribute,np,nc)
parts = distribute(LinearIndices((prod(np),)))
Dc = length(nc)
domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1)
model = CartesianDiscreteModel(parts,np,domain,nc)
add_labels! = (Dc == 2) ? add_labels_2d! : add_labels_3d!
add_labels!(get_face_labeling(model))
order = 2
qdegree = 2*(order+1)
reffe_u = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order)
reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P)
u_walls = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0)
u_top = (Dc==2) ? VectorValue(1.0,0.0) : VectorValue(1.0,0.0,0.0)
V = TestFESpace(model,reffe_u,dirichlet_tags=["walls","top"]);
U = TrialFESpace(V,[u_walls,u_top]);
Q = TestFESpace(model,reffe_p;conformity=:L2,constraint=:zeromean)
mfs = Gridap.MultiField.BlockMultiFieldStyle()
X = MultiFieldFESpace([U,Q];style=mfs)
Y = MultiFieldFESpace([V,Q];style=mfs)
Re = 10.0
ν = 1/Re
α = 1.e2
f = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0)
Π_Qh = LocalProjectionMap(divergence,Q,qdegree)
graddiv(u,v,dΩ) = ∫(α*(∇⋅v)⋅Π_Qh(u))dΩ
conv(u,∇u) = (∇u')⋅u
dconv(du,∇du,u,∇u) = conv(u,∇du)+conv(du,∇u)
c(u,v,dΩ) = ∫(v⊙(conv∘(u,∇(u))))dΩ
dc(u,du,dv,dΩ) = ∫(dv⊙(dconv∘(du,∇(du),u,∇(u))))dΩ
lap(u,v,dΩ) = ∫(ν*∇(v)⊙∇(u))dΩ
rhs(v,dΩ) = ∫(v⋅f)dΩ
jac_u(u,du,dv,dΩ) = lap(du,dv,dΩ) + dc(u,du,dv,dΩ) + graddiv(du,dv,dΩ)
jac((u,p),(du,dp),(dv,dq),dΩ) = jac_u(u,du,dv,dΩ) - ∫(divergence(dv)*dp)dΩ - ∫(divergence(du)*dq)dΩ
res_u(u,v,dΩ) = lap(u,v,dΩ) + c(u,v,dΩ) + graddiv(u,v,dΩ) - rhs(v,dΩ)
res((u,p),(v,q),dΩ) = res_u(u,v,dΩ) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
jac_h(x,dx,dy) = jac(x,dx,dy,dΩ)
res_h(x,dy) = res(x,dy,dΩ)
op = FEOperator(res_h,jac_h,X,Y)
solver_u = LUSolver()
solver_p = CGSolver(JacobiLinearSolver();maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts))
solver_p.log.depth = 4
bblocks = [NonlinearSystemBlock() LinearSystemBlock();
LinearSystemBlock() BiformBlock((p,q) -> ∫(-(1.0/α)*p*q)dΩ,Q,Q)]
coeffs = [1.0 1.0;
0.0 1.0]
P = BlockTriangularSolver(bblocks,[solver_u,solver_p],coeffs,:upper)
solver = FGMRESSolver(20,P;atol=1e-11,rtol=1.e-8,verbose=i_am_main(parts))
solver.log.depth = 2
nlsolver = NewtonSolver(solver;maxiter=20,atol=1e-10,rtol=1.e-12,verbose=i_am_main(parts))
xh = solve(nlsolver,op);
@test true
end
end # module | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 6282 | # # Incompressible Navier-Stokes equations in a 2D/3D cavity, using GMG.
#
# This example solves the incompressible Stokes equations, given by
#
# ```math
# \begin{align*}
# -\Delta u + \text{R}_e (u \nabla) u - \nabla p &= f \quad \text{in} \quad \Omega, \\
# \nabla \cdot u &= 0 \quad \text{in} \quad \Omega, \\
# u &= \hat{x} \quad \text{in} \quad \Gamma_\text{top} \subset \partial \Omega, \\
# u &= 0 \quad \text{in} \quad \partial \Omega \backslash \Gamma_\text{top} \\
# \end{align*}
# ```
#
# where $\Omega = [0,1]^d$.
#
# We use a mixed finite-element scheme, with $Q_k \times P_{k-1}^{-}$ elements for the velocity-pressure pair.
#
# To solve the linear system, we use a FGMRES solver preconditioned by a block-triangular
# Shur-complement-based preconditioner. We use an Augmented Lagrangian approach to
# get a better approximation of the Schur complement. Details for this preconditoner can be
# found in [Benzi and Olshanskii (2006)](https://epubs.siam.org/doi/10.1137/050646421).
#
# The velocity block is solved using a Geometric Multigrid (GMG) solver. Due to the kernel
# introduced by the Augmented-Lagrangian operator, we require special smoothers and prolongation/restriction
# operators. See [Schoberl (1999)](https://link.springer.com/article/10.1007/s002110050465) for more details.
module NavierStokesGMGApplication
using Test
using LinearAlgebra
using FillArrays, BlockArrays
using Gridap
using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces
using Gridap.CellData, Gridap.MultiField, Gridap.Algebra
using PartitionedArrays
using GridapDistributed
using GridapP4est
using GridapSolvers
using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools
using GridapSolvers.PatchBasedSmoothers, GridapSolvers.NonlinearSolvers
using GridapSolvers.BlockSolvers: NonlinearSystemBlock, LinearSystemBlock, BiformBlock, BlockTriangularSolver
function get_patch_smoothers(mh,tests,biform,patch_decompositions,qdegree;is_nonlinear=false)
patch_spaces = PatchFESpace(tests,patch_decompositions)
nlevs = num_levels(mh)
smoothers = map(view(tests,1:nlevs-1),patch_decompositions,patch_spaces) do tests, PD, Ph
Vh = get_fe_space(tests)
Ω = Triangulation(PD)
dΩ = Measure(Ω,qdegree)
ap = (u,du,dv) -> biform(u,du,dv,dΩ)
patch_smoother = PatchBasedLinearSolver(ap,Ph,Vh;is_nonlinear)
return RichardsonSmoother(patch_smoother,10,0.2)
end
return smoothers
end
function get_trilinear_form(mh_lev,triform,qdegree)
model = get_model(mh_lev)
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
return (u,du,dv) -> triform(u,du,dv,dΩ)
end
function add_labels_2d!(labels)
add_tag_from_tags!(labels,"top",[6])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,7,8])
end
function add_labels_3d!(labels)
add_tag_from_tags!(labels,"top",[22])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26])
end
function main(distribute,np,nc,np_per_level)
parts = distribute(LinearIndices((prod(np),)))
Dc = length(nc)
domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1)
add_labels! = (Dc == 2) ? add_labels_2d! : add_labels_3d!
mh = CartesianModelHierarchy(parts,np_per_level,domain,nc;add_labels! = add_labels!)
model = get_model(mh,1)
order = 2
qdegree = 2*(order+1)
reffe_u = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order)
reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P)
u_walls = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0)
u_top = (Dc==2) ? VectorValue(1.0,0.0) : VectorValue(1.0,0.0,0.0)
tests_u = TestFESpace(mh,reffe_u,dirichlet_tags=["walls","top"]);
trials_u = TrialFESpace(tests_u,[u_walls,u_top]);
U, V = get_fe_space(trials_u,1), get_fe_space(tests_u,1)
Q = TestFESpace(model,reffe_p;conformity=:L2,constraint=:zeromean)
mfs = Gridap.MultiField.BlockMultiFieldStyle()
X = MultiFieldFESpace([U,Q];style=mfs)
Y = MultiFieldFESpace([V,Q];style=mfs)
Re = 10.0
ν = 1/Re
α = 1.e2
f = (Dc==2) ? VectorValue(1.0,1.0) : VectorValue(1.0,1.0,1.0)
Π_Qh = LocalProjectionMap(divergence,reffe_p,qdegree)
graddiv(u,v,dΩ) = ∫(α*(∇⋅v)⋅Π_Qh(u))dΩ
conv(u,∇u) = (∇u')⋅u
dconv(du,∇du,u,∇u) = conv(u,∇du)+conv(du,∇u)
c(u,v,dΩ) = ∫(v⊙(conv∘(u,∇(u))))dΩ
dc(u,du,dv,dΩ) = ∫(dv⊙(dconv∘(du,∇(du),u,∇(u))))dΩ
lap(u,v,dΩ) = ∫(ν*∇(v)⊙∇(u))dΩ
rhs(v,dΩ) = ∫(v⋅f)dΩ
jac_u(u,du,dv,dΩ) = lap(du,dv,dΩ) + dc(u,du,dv,dΩ) + graddiv(du,dv,dΩ)
jac((u,p),(du,dp),(dv,dq),dΩ) = jac_u(u,du,dv,dΩ) - ∫(divergence(dv)*dp)dΩ - ∫(divergence(du)*dq)dΩ
res_u(u,v,dΩ) = lap(u,v,dΩ) + c(u,v,dΩ) + graddiv(u,v,dΩ) - rhs(v,dΩ)
res((u,p),(v,q),dΩ) = res_u(u,v,dΩ) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
jac_h(x,dx,dy) = jac(x,dx,dy,dΩ)
res_h(x,dy) = res(x,dy,dΩ)
op = FEOperator(res_h,jac_h,X,Y)
biforms = map(mhl -> get_trilinear_form(mhl,jac_u,qdegree),mh)
patch_decompositions = PatchDecomposition(mh)
smoothers = get_patch_smoothers(
mh,trials_u,jac_u,patch_decompositions,qdegree;is_nonlinear=true
)
prolongations = setup_patch_prolongation_operators(
tests_u,jac_u,graddiv,qdegree;is_nonlinear=true
)
restrictions = setup_patch_restriction_operators(
tests_u,prolongations,graddiv,qdegree;solver=IS_ConjugateGradientSolver(;reltol=1.e-6)
)
gmg = GMGLinearSolver(
mh,trials_u,tests_u,biforms,
prolongations,restrictions,
pre_smoothers=smoothers,
post_smoothers=smoothers,
coarsest_solver=LUSolver(),
maxiter=2,mode=:preconditioner,verbose=i_am_main(parts),is_nonlinear=true
)
solver_u = gmg
solver_p = CGSolver(JacobiLinearSolver();maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts))
solver_u.log.depth = 3
solver_p.log.depth = 3
bblocks = [NonlinearSystemBlock([1]) LinearSystemBlock();
LinearSystemBlock() BiformBlock((p,q) -> ∫(-(1.0/α)*p*q)dΩ,Q,Q)]
coeffs = [1.0 1.0;
0.0 1.0]
P = BlockTriangularSolver(bblocks,[solver_u,solver_p],coeffs,:upper)
solver = FGMRESSolver(20,P;atol=1e-11,rtol=1.e-8,verbose=i_am_main(parts))
solver.log.depth = 2
nlsolver = NewtonSolver(solver;maxiter=20,atol=1e-10,rtol=1.e-12,verbose=i_am_main(parts))
xh = solve(nlsolver,op)
@test true
end
end # module | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 3909 | # # Incompressible Stokes equations in a 2D/3D cavity
#
# This example solves the incompressible Stokes equations, given by
#
# ```math
# \begin{align*}
# -\Delta u - \nabla p &= f \quad \text{in} \quad \Omega, \\
# \nabla \cdot u &= 0 \quad \text{in} \quad \Omega, \\
# u &= \hat{x} \quad \text{in} \quad \Gamma_\text{top} \subset \partial \Omega, \\
# u &= 0 \quad \text{in} \quad \partial \Omega \backslash \Gamma_\text{top} \\
# \end{align*}
# ```
#
# where $\Omega = [0,1]^d$.
#
# We use a mixed finite-element scheme, with $Q_k \times P_{k-1}^{-}$ elements for the velocity-pressure pair.
#
# To solve the linear system, we use a FGMRES solver preconditioned by a block-triangular
# Shur-complement-based preconditioner. We use an Augmented Lagrangian approach to
# get a better approximation of the Schur complement. Details for this preconditoner can be
# found in [Benzi and Olshanskii (2006)](https://epubs.siam.org/doi/10.1137/050646421).
#
# The velocity block is solved directly using an exact solver.
module StokesApplication
using Test
using LinearAlgebra
using FillArrays, BlockArrays
using Gridap
using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces
using Gridap.CellData, Gridap.MultiField, Gridap.Algebra
using PartitionedArrays
using GridapDistributed
using GridapSolvers
using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools
using GridapSolvers.BlockSolvers: LinearSystemBlock, BiformBlock, BlockTriangularSolver
function add_labels_2d!(labels)
add_tag_from_tags!(labels,"top",[6])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,7,8])
end
function add_labels_3d!(labels)
add_tag_from_tags!(labels,"top",[22])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26])
end
function main(distribute,np,nc)
parts = distribute(LinearIndices((prod(np),)))
Dc = length(nc)
domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1)
model = CartesianDiscreteModel(parts,np,domain,nc)
add_labels! = (Dc == 2) ? add_labels_2d! : add_labels_3d!
add_labels!(get_face_labeling(model))
order = 2
qdegree = 2*(order+1)
reffe_u = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order)
reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P)
u_walls = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0)
u_top = (Dc==2) ? VectorValue(1.0,0.0) : VectorValue(1.0,0.0,0.0)
V = TestFESpace(model,reffe_u,dirichlet_tags=["walls","top"]);
U = TrialFESpace(V,[u_walls,u_top]);
Q = TestFESpace(model,reffe_p;conformity=:L2,constraint=:zeromean)
mfs = Gridap.MultiField.BlockMultiFieldStyle()
X = MultiFieldFESpace([U,Q];style=mfs)
Y = MultiFieldFESpace([V,Q];style=mfs)
α = 1.e2
f = (Dc==2) ? VectorValue(1.0,1.0) : VectorValue(1.0,1.0,1.0)
Π_Qh = LocalProjectionMap(divergence,Q,qdegree)
graddiv(u,v,dΩ) = ∫(α*(∇⋅v)⋅Π_Qh(u))dΩ
biform_u(u,v,dΩ) = ∫(∇(v)⊙∇(u))dΩ + graddiv(u,v,dΩ)
biform((u,p),(v,q),dΩ) = biform_u(u,v,dΩ) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ
liform((v,q),dΩ) = ∫(v⋅f)dΩ
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
a(u,v) = biform(u,v,dΩ)
l(v) = liform(v,dΩ)
op = AffineFEOperator(a,l,X,Y)
A, b = get_matrix(op), get_vector(op);
solver_u = LUSolver()
solver_p = CGSolver(JacobiLinearSolver();maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts))
solver_p.log.depth = 2
bblocks = [LinearSystemBlock() LinearSystemBlock();
LinearSystemBlock() BiformBlock((p,q) -> ∫(-(1.0/α)*p*q)dΩ,Q,Q)]
coeffs = [1.0 1.0;
0.0 1.0]
P = BlockTriangularSolver(bblocks,[solver_u,solver_p],coeffs,:upper)
solver = FGMRESSolver(20,P;atol=1e-10,rtol=1.e-12,verbose=i_am_main(parts))
ns = numerical_setup(symbolic_setup(solver,A),A)
x = allocate_in_domain(A); fill!(x,0.0)
solve!(x,ns,b)
r = allocate_in_range(A)
mul!(r,A,x)
r .-= b
@test norm(r) < 1.e-7
end
end # module | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 5799 | # # Incompressible Stokes equations in a 2D/3D cavity, using GMG.
#
# This example solves the incompressible Stokes equations, given by
#
# ```math
# \begin{align*}
# -\Delta u - \nabla p &= f \quad \text{in} \quad \Omega, \\
# \nabla \cdot u &= 0 \quad \text{in} \quad \Omega, \\
# u &= \hat{x} \quad \text{in} \quad \Gamma_\text{top} \subset \partial \Omega, \\
# u &= 0 \quad \text{in} \quad \partial \Omega \backslash \Gamma_\text{top} \\
# \end{align*}
# ```
#
# where $\Omega = [0,1]^d$.
#
# We use a mixed finite-element scheme, with $Q_k \times P_{k-1}^{-}$ elements for the velocity-pressure pair.
#
# To solve the linear system, we use a FGMRES solver preconditioned by a block-triangular
# Shur-complement-based preconditioner. We use an Augmented Lagrangian approach to
# get a better approximation of the Schur complement. Details for this preconditoner can be
# found in [Benzi and Olshanskii (2006)](https://epubs.siam.org/doi/10.1137/050646421).
#
# The velocity block is solved using a Geometric Multigrid (GMG) solver. Due to the kernel
# introduced by the Augmented-Lagrangian operator, we require special smoothers and prolongation/restriction
# operators. See [Schoberl (1999)](https://link.springer.com/article/10.1007/s002110050465) for more details.
module StokesGMGApplication
using Test
using LinearAlgebra
using FillArrays, BlockArrays
using Gridap
using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces
using Gridap.CellData, Gridap.MultiField, Gridap.Algebra
using PartitionedArrays
using GridapDistributed
using GridapP4est
using GridapSolvers
using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools, GridapSolvers.PatchBasedSmoothers
using GridapSolvers.BlockSolvers: LinearSystemBlock, BiformBlock, BlockTriangularSolver
function get_patch_smoothers(mh,tests,biform,patch_decompositions,qdegree)
patch_spaces = PatchFESpace(tests,patch_decompositions)
nlevs = num_levels(mh)
smoothers = map(view(tests,1:nlevs-1),patch_decompositions,patch_spaces) do tests, PD, Ph
Vh = get_fe_space(tests)
Ω = Triangulation(PD)
dΩ = Measure(Ω,qdegree)
ap = (u,v) -> biform(u,v,dΩ)
patch_smoother = PatchBasedLinearSolver(ap,Ph,Vh)
return RichardsonSmoother(patch_smoother,10,0.2)
end
return smoothers
end
function get_bilinear_form(mh_lev,biform,qdegree)
model = get_model(mh_lev)
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
return (u,v) -> biform(u,v,dΩ)
end
function add_labels_2d!(labels)
add_tag_from_tags!(labels,"top",[6])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,7,8])
end
function add_labels_3d!(labels)
add_tag_from_tags!(labels,"top",[22])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26])
end
function main(distribute,np,nc,np_per_level)
parts = distribute(LinearIndices((prod(np),)))
Dc = length(nc)
domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1)
add_labels! = (Dc == 2) ? add_labels_2d! : add_labels_3d!
mh = CartesianModelHierarchy(parts,np_per_level,domain,nc;add_labels! = add_labels!)
model = get_model(mh,1)
order = 2
qdegree = 2*(order+1)
reffe_u = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order)
reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P)
u_walls = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0)
u_top = (Dc==2) ? VectorValue(1.0,0.0) : VectorValue(1.0,0.0,0.0)
tests_u = TestFESpace(mh,reffe_u,dirichlet_tags=["walls","top"]);
trials_u = TrialFESpace(tests_u,[u_walls,u_top]);
U, V = get_fe_space(trials_u,1), get_fe_space(tests_u,1)
Q = TestFESpace(model,reffe_p;conformity=:L2,constraint=:zeromean)
mfs = Gridap.MultiField.BlockMultiFieldStyle()
X = MultiFieldFESpace([U,Q];style=mfs)
Y = MultiFieldFESpace([V,Q];style=mfs)
α = 1.e2
f = (Dc==2) ? VectorValue(1.0,1.0) : VectorValue(1.0,1.0,1.0)
Π_Qh = LocalProjectionMap(divergence,reffe_p,qdegree)
graddiv(u,v,dΩ) = ∫(α*(∇⋅v)⋅Π_Qh(u))dΩ
biform_u(u,v,dΩ) = ∫(∇(v)⊙∇(u))dΩ + graddiv(u,v,dΩ)
biform((u,p),(v,q),dΩ) = biform_u(u,v,dΩ) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ
liform((v,q),dΩ) = ∫(v⋅f)dΩ
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
a(u,v) = biform(u,v,dΩ)
l(v) = liform(v,dΩ)
op = AffineFEOperator(a,l,X,Y)
A, b = get_matrix(op), get_vector(op);
biforms = map(mhl -> get_bilinear_form(mhl,biform_u,qdegree),mh)
patch_decompositions = PatchDecomposition(mh)
smoothers = get_patch_smoothers(
mh,tests_u,biform_u,patch_decompositions,qdegree
)
prolongations = setup_patch_prolongation_operators(
tests_u,biform_u,graddiv,qdegree
)
restrictions = setup_patch_restriction_operators(
tests_u,prolongations,graddiv,qdegree;solver=CGSolver(JacobiLinearSolver())
)
gmg = GMGLinearSolver(
mh,trials_u,tests_u,biforms,
prolongations,restrictions,
pre_smoothers=smoothers,
post_smoothers=smoothers,
coarsest_solver=LUSolver(),
maxiter=4,mode=:preconditioner,verbose=i_am_main(parts)
)
solver_u = gmg
solver_p = CGSolver(JacobiLinearSolver();maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts))
solver_u.log.depth = 2
solver_p.log.depth = 2
diag_blocks = [LinearSystemBlock(),BiformBlock((p,q) -> ∫(-1.0/α*p*q)dΩ,Q,Q)]
bblocks = map(CartesianIndices((2,2))) do I
(I[1] == I[2]) ? diag_blocks[I[1]] : LinearSystemBlock()
end
coeffs = [1.0 1.0;
0.0 1.0]
P = BlockTriangularSolver(bblocks,[solver_u,solver_p],coeffs,:upper)
solver = FGMRESSolver(20,P;atol=1e-10,rtol=1.e-12,verbose=i_am_main(parts))
ns = numerical_setup(symbolic_setup(solver,A),A)
x = allocate_in_domain(A); fill!(x,0.0)
solve!(x,ns,b)
xh = FEFunction(X,x);
r = allocate_in_range(A)
mul!(r,A,x)
r .-= b
@test norm(r) < 1.e-7
end
end # module | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 437 | module StokesGMGApplicationMPI
using MPI, PartitionedArrays
include("../DarcyGMG.jl")
with_mpi() do distribute
DarcyGMGApplication.main(distribute,4,(8,8),[(2,2),(1,1)])
DarcyGMGApplication.main(distribute,4,(8,8),[(2,2),(2,1)])
DarcyGMGApplication.main(distribute,4,(8,8),[(2,2),(2,2)])
DarcyGMGApplication.main(distribute,4,(4,4,4),[(2,2,1),(1,1,1)])
DarcyGMGApplication.main(distribute,4,(4,4,4),[(2,2,1),(2,2,1)])
end
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 241 | module NavierStokesApplicationMPI
using MPI, PartitionedArrays
include("../NavierStokes.jl")
with_mpi() do distribute
NavierStokesApplication.main(distribute,(2,2),(8,8))
NavierStokesApplication.main(distribute,(2,2,1),(4,4,4))
end
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 417 | module NavierStokesGMGApplicationMPI
using MPI, PartitionedArrays
include("../NavierStokesGMG.jl")
with_mpi() do distribute
NavierStokesGMGApplication.main(distribute,4,(8,8),[(2,2),(1,1)])
NavierStokesGMGApplication.main(distribute,4,(8,8),[(2,2),(2,2)])
NavierStokesGMGApplication.main(distribute,4,(4,4,4),[(2,2,1),(1,1,1)])
NavierStokesGMGApplication.main(distribute,4,(4,4,4),[(2,2,1),(2,2,1)])
end
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 217 | module StokesApplicationMPI
using MPI, PartitionedArrays
include("../Stokes.jl")
with_mpi() do distribute
StokesApplication.main(distribute,(2,2),(8,8))
StokesApplication.main(distribute,(2,2,1),(4,4,4))
end
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 579 | module StokesGMGApplicationMPI
using MPI, PartitionedArrays
include("../StokesGMG.jl")
with_mpi() do distribute
StokesGMGApplication.main(distribute,4,(8,8),[(2,2),(1,1)])
StokesGMGApplication.main(distribute,4,(8,8),[(2,2),(2,1)])
StokesGMGApplication.main(distribute,4,(8,8),[(2,2),(2,2)])
StokesGMGApplication.main(distribute,4,(4,4),[(2,2),(2,1),(1,1)])
StokesGMGApplication.main(distribute,4,(4,4,4),[(2,2,1),(1,1,1)])
StokesGMGApplication.main(distribute,4,(4,4,4),[(2,2,1),(2,1,1)])
StokesGMGApplication.main(distribute,4,(4,4,4),[(2,2,1),(2,2,1)])
end
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 456 | using Test
using MPI
using GridapSolvers
function run_tests(testdir)
istest(f) = endswith(f, ".jl") && !(f=="runtests.jl")
testfiles = sort(filter(istest, readdir(testdir)))
@time @testset "$f" for f in testfiles
MPI.mpiexec() do cmd
np = 4
cmd = `$cmd -n $(np) --oversubscribe $(Base.julia_cmd()) --project=. $(joinpath(testdir, f))`
@show cmd
run(cmd)
@test true
end
end
end
# MPI tests
run_tests(@__DIR__) | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 300 | module NavierStokesApplicationSequential
using PartitionedArrays
include("../NavierStokes.jl")
with_debug() do distribute
NavierStokesApplication.main(distribute,(1,1),(8,8))
NavierStokesApplication.main(distribute,(2,2),(8,8))
NavierStokesApplication.main(distribute,(2,2,1),(4,4,4))
end
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 270 | module StokesApplicationSequential
using PartitionedArrays
include("../Stokes.jl")
with_debug() do distribute
StokesApplication.main(distribute,(1,1),(8,8))
StokesApplication.main(distribute,(2,2),(8,8))
StokesApplication.main(distribute,(2,2,1),(4,4,4))
end
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 71 | using Test
@testset "Stokes equation" begin
include("Stokes.jl")
end | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
|
[
"MIT"
] | 0.4.1 | 2b09db401471a212fb06a9c2577f4a0be77039c2 | code | 1763 | module BlockDiagonalSolversTests
using Test
using BlockArrays, LinearAlgebra
using Gridap, Gridap.MultiField, Gridap.Algebra
using PartitionedArrays, GridapDistributed
using GridapSolvers
using GridapSolvers.LinearSolvers
function main(distribute,parts)
ranks = distribute(LinearIndices((prod(parts),)))
model = CartesianDiscreteModel(ranks,parts,(0,1,0,1),(8,8))
reffe = ReferenceFE(lagrangian,Float64,1)
V = FESpace(model,reffe)
mfs = BlockMultiFieldStyle()
Y = MultiFieldFESpace([V,V];style=mfs)
Ω = Triangulation(model)
dΩ = Measure(Ω,4)
sol(x) = sum(x)
a((u1,u2),(v1,v2)) = ∫(u1⋅v1 + u2⋅v2)*dΩ
l((v1,v2)) = ∫(sol⋅v1 - sol⋅v2)*dΩ
op = AffineFEOperator(a,l,Y,Y)
A, b = get_matrix(op), get_vector(op);
s = GMRESSolver(10;rtol=1.e-10)
ss = symbolic_setup(s,A)
ns = numerical_setup(ss,A)
x = allocate_in_domain(A); fill!(x,0.0)
solve!(x,ns,b)
# 1) From system blocks
s1 = BlockDiagonalSolver([LUSolver(),LUSolver()])
ss1 = symbolic_setup(s1,A)
ns1 = numerical_setup(ss1,A)
numerical_setup!(ns1,A)
x1 = allocate_in_domain(A); fill!(x1,0.0)
solve!(x1,ns1,b)
@test norm(x1-x) < 1.e-8
# 2) From matrix blocks
s2 = BlockDiagonalSolver([A[Block(1,1)],A[Block(2,2)]],[LUSolver(),LUSolver()])
ss2 = symbolic_setup(s2,A)
ns2 = numerical_setup(ss2,A)
numerical_setup!(ns2,A)
x2 = allocate_in_domain(A); fill!(x2,0.0)
solve!(x2,ns2,b)
@test norm(x2-x) < 1.e-8
# 3) From weakform blocks
aii = (u,v) -> ∫(u⋅v)*dΩ
s3 = BlockDiagonalSolver([aii,aii],[V,V],[V,V],[LUSolver(),LUSolver()])
ss3 = symbolic_setup(s3,A)
ns3 = numerical_setup(ss3,A)
numerical_setup!(ns3,A)
x3 = allocate_in_domain(A); fill!(x3,0.0)
solve!(x3,ns3,b)
@test norm(x3-x) < 1.e-8
end
end # module | GridapSolvers | https://github.com/gridap/GridapSolvers.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.