licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 375 | if Base.libllvm_version >= v"7.0"
include(joinpath("gcn", "math.jl"))
end
include(joinpath("gcn", "indexing.jl"))
include(joinpath("gcn", "assertion.jl"))
include(joinpath("gcn", "synchronization.jl"))
include(joinpath("gcn", "memory_static.jl"))
include(joinpath("gcn", "memory_dynamic.jl"))
include(joinpath("gcn", "hostcall.jl"))
include(joinpath("gcn", "output.jl"))
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 1609 | # copied from CUDAnative PR 422
# Gets a pointer to a global with a particular name. If the global
# does not exist yet, then it is declared in the global memory address
# space.
@generated function get_global_pointer(::Val{global_name}, ::Type{T})::AMDGPUnative.DevicePtr{T} where {global_name, T}
T_global = convert(LLVMType, T)
T_result = convert(LLVMType, Ptr{T})
# Create a thunk that computes a pointer to the global.
llvm_f, _ = create_function(T_result)
mod = LLVM.parent(llvm_f)
# Figure out if the global has been defined already.
global_set = LLVM.globals(mod)
global_name_string = String(global_name)
if haskey(global_set, global_name_string)
global_var = global_set[global_name_string]
else
# If the global hasn't been defined already, then we'll define
# it in the global address space, i.e., address space one.
global_var = GlobalVariable(mod, T_global, global_name_string, 1)
linkage!(global_var, LLVM.API.LLVMExternalLinkage)
extinit!(global_var, true)
set_used!(mod, global_var)
end
# Generate IR that computes the global's address.
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
position!(builder, entry)
# Cast the global variable's type to the result type.
result = ptrtoint!(builder, global_var, T_result)
ret!(builder, result)
end
# Call the function.
quote
AMDGPUnative.DevicePtr{T, AMDGPUnative.AS.Global}(convert(Csize_t, $(call_function(llvm_f, Ptr{T}))))
end
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 411 | # wrappers for LLVM-specific functionality
@inline trap() = ccall("llvm.trap", llvmcall, Cvoid, ())
@inline debugtrap() = ccall("llvm.debugtrap", llvmcall, Cvoid, ())
@inline assume(cond::Bool) =
Base.llvmcall(("declare void @llvm.assume(i1)",
"%cond = icmp eq i8 %0, 1
call void @llvm.assume(i1 %cond)
ret void"), Nothing, Tuple{Bool}, cond)
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 7037 | # Pointers with address space information
# Address spaces
export AS, addrspace
abstract type AddressSpace end
module AS
import ..AddressSpace
struct Generic <: AddressSpace end
struct Global <: AddressSpace end
struct Region <: AddressSpace end
struct Local <: AddressSpace end
struct Constant <: AddressSpace end
struct Private <: AddressSpace end
end # module
# Device pointer
"""
DevicePtr{T,A}
"""
DevicePtr
if sizeof(Ptr{Cvoid}) == 8
primitive type DevicePtr{T,A} <: Ref{T} 64 end
else
primitive type DevicePtr{T,A} <: Ref{T} 32 end
end
# constructors
DevicePtr{T,A}(x::Union{Int,UInt,Ptr,DevicePtr}) where {T,A<:AddressSpace} = Base.bitcast(DevicePtr{T,A}, x)
DevicePtr{T}(ptr::Ptr{T}) where {T} = DevicePtr{T,AS.Generic}(ptr)
DevicePtr(ptr::Ptr{T}) where {T} = DevicePtr{T,AS.Generic}(ptr)
# getters
Base.eltype(::Type{<:DevicePtr{T}}) where {T} = T
addrspace(x::DevicePtr) = addrspace(typeof(x))
addrspace(::Type{DevicePtr{T,A}}) where {T,A} = A
# conversions
# to and from integers
# pointer to integer
Base.convert(::Type{T}, x::DevicePtr) where {T<:Integer} = T(UInt(x))
# integer to pointer
Base.convert(::Type{DevicePtr{T,A}}, x::Union{Int,UInt}) where {T,A<:AddressSpace} = DevicePtr{T,A}(x)
Int(x::DevicePtr) = Base.bitcast(Int, x)
UInt(x::DevicePtr) = Base.bitcast(UInt, x)
# between host and device pointers
Base.convert(::Type{Ptr{T}}, p::DevicePtr) where {T} = Base.bitcast(Ptr{T}, p)
Base.convert(::Type{DevicePtr{T,A}}, p::Ptr) where {T,A<:AddressSpace} = Base.bitcast(DevicePtr{T,A}, p)
Base.convert(::Type{DevicePtr{T}}, p::Ptr) where {T} = Base.bitcast(DevicePtr{T,AS.Generic}, p)
# between CPU pointers, for the purpose of working with `ccall`
Base.unsafe_convert(::Type{Ptr{T}}, x::DevicePtr{T}) where {T} = reinterpret(Ptr{T}, x)
# between device pointers
Base.convert(::Type{<:DevicePtr}, p::DevicePtr) = throw(ArgumentError("cannot convert between incompatible device pointer types"))
Base.convert(::Type{DevicePtr{T,A}}, p::DevicePtr{T,A}) where {T,A} = p
Base.unsafe_convert(::Type{DevicePtr{T,A}}, p::DevicePtr) where {T,A} = Base.bitcast(DevicePtr{T,A}, p)
# identical addrspaces
Base.convert(::Type{DevicePtr{T,A}}, p::DevicePtr{U,A}) where {T,U,A} = Base.unsafe_convert(DevicePtr{T,A}, p)
# convert to & from generic
Base.convert(::Type{DevicePtr{T,AS.Generic}}, p::DevicePtr) where {T} = Base.unsafe_convert(DevicePtr{T,AS.Generic}, p)
Base.convert(::Type{DevicePtr{T,A}}, p::DevicePtr{U,AS.Generic}) where {T,U,A} = Base.unsafe_convert(DevicePtr{T,A}, p)
Base.convert(::Type{DevicePtr{T,AS.Generic}}, p::DevicePtr{T,AS.Generic}) where {T} = p # avoid ambiguities
# unspecified, preserve source addrspace
Base.convert(::Type{DevicePtr{T}}, p::DevicePtr{U,A}) where {T,U,A} = Base.unsafe_convert(DevicePtr{T,A}, p)
# limited pointer arithmetic & comparison
isequal(x::DevicePtr, y::DevicePtr) = (x === y) && addrspace(x) == addrspace(y)
isless(x::DevicePtr{T,A}, y::DevicePtr{T,A}) where {T,A<:AddressSpace} = x < y
Base.:(==)(x::DevicePtr, y::DevicePtr) = UInt(x) == UInt(y) && addrspace(x) == addrspace(y)
Base.:(<)(x::DevicePtr, y::DevicePtr) = UInt(x) < UInt(y)
Base.:(-)(x::DevicePtr, y::DevicePtr) = UInt(x) - UInt(y)
Base.:(+)(x::DevicePtr, y::Integer) = oftype(x, Base.add_ptr(UInt(x), (y % UInt) % UInt))
Base.:(-)(x::DevicePtr, y::Integer) = oftype(x, Base.sub_ptr(UInt(x), (y % UInt) % UInt))
Base.:(+)(x::Integer, y::DevicePtr) = y + x
# memory operations
@static if Base.libllvm_version < v"7.0"
# Old values (LLVM 6)
Base.convert(::Type{Int}, ::Type{AS.Private}) = 0
Base.convert(::Type{Int}, ::Type{AS.Global}) = 1
Base.convert(::Type{Int}, ::Type{AS.Constant}) = 2
Base.convert(::Type{Int}, ::Type{AS.Local}) = 3
Base.convert(::Type{Int}, ::Type{AS.Generic}) = 4
Base.convert(::Type{Int}, ::Type{AS.Region}) = 5
else
# New values (LLVM 7+)
Base.convert(::Type{Int}, ::Type{AS.Generic}) = 0
Base.convert(::Type{Int}, ::Type{AS.Global}) = 1
Base.convert(::Type{Int}, ::Type{AS.Region}) = 2
Base.convert(::Type{Int}, ::Type{AS.Local}) = 3
Base.convert(::Type{Int}, ::Type{AS.Constant}) = 4
Base.convert(::Type{Int}, ::Type{AS.Private}) = 5
end
function tbaa_make_child(name::String, constant::Bool=false; ctx::LLVM.Context=JuliaContext())
tbaa_root = MDNode([MDString("roctbaa", ctx)], ctx)
tbaa_struct_type =
MDNode([MDString("roctbaa_$name", ctx),
tbaa_root,
LLVM.ConstantInt(0, ctx)], ctx)
tbaa_access_tag =
MDNode([tbaa_struct_type,
tbaa_struct_type,
LLVM.ConstantInt(0, ctx),
LLVM.ConstantInt(constant ? 1 : 0, ctx)], ctx)
return tbaa_access_tag
end
tbaa_addrspace(as::Type{<:AddressSpace}) = tbaa_make_child(lowercase(String(as.name.name)))
@generated function Base.unsafe_load(p::DevicePtr{T,A}, i::Integer=1,
::Val{align}=Val(1)) where {T,A,align}
eltyp = convert(LLVMType, T)
T_int = convert(LLVMType, Int)
T_ptr = convert(LLVMType, DevicePtr{T,A})
T_actual_ptr = LLVM.PointerType(eltyp, convert(Int, A))
# create a function
param_types = [T_ptr, T_int]
llvm_f, _ = create_function(eltyp, param_types)
# generate IR
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
position!(builder, entry)
ptr = inttoptr!(builder, parameters(llvm_f)[1], T_actual_ptr)
ptr = gep!(builder, ptr, [parameters(llvm_f)[2]])
ld = load!(builder, ptr)
if A != AS.Generic
metadata(ld)[LLVM.MD_tbaa] = tbaa_addrspace(A)
end
alignment!(ld, align)
ret!(builder, ld)
end
call_function(llvm_f, T, Tuple{DevicePtr{T,A}, Int}, :((p, Int(i-one(i)))))
end
@generated function Base.unsafe_store!(p::DevicePtr{T,A}, x, i::Integer=1,
::Val{align}=Val(1)) where {T,A,align}
eltyp = convert(LLVMType, T)
T_int = convert(LLVMType, Int)
T_ptr = convert(LLVMType, DevicePtr{T,A})
T_actual_ptr = LLVM.PointerType(eltyp, convert(Int, A))
# create a function
param_types = [T_ptr, eltyp, T_int]
llvm_f, _ = create_function(LLVM.VoidType(JuliaContext()), param_types)
# generate IR
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
position!(builder, entry)
ptr = inttoptr!(builder, parameters(llvm_f)[1], T_actual_ptr)
ptr = gep!(builder, ptr, [parameters(llvm_f)[3]])
val = parameters(llvm_f)[2]
st = store!(builder, val, ptr)
if A != AS.Generic
metadata(st)[LLVM.MD_tbaa] = tbaa_addrspace(A)
end
alignment!(st, align)
ret!(builder)
end
call_function(llvm_f, Cvoid, Tuple{DevicePtr{T,A}, T, Int},
:((p, convert(T,x), Int(i-one(i)))))
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 4027 | # ROCm-specific runtime libraries
## GPU runtime library
# reset the runtime cache from global scope, so that any change triggers recompilation
GPUCompiler.reset_runtime()
# load or build the runtime for the most likely compilation job given a compute capability
function load_runtime(dev_isa::String)
target = GCNCompilerTarget(; dev_isa=dev_isa)
dummy_source = FunctionSpec(()->return, Tuple{})
params = ROCCompilerParams()
job = CompilerJob(target, dummy_source, params)
GPUCompiler.load_runtime(job)
end
#@inline exception_flag() = ccall("extern julia_exception_flag", llvmcall, Ptr{Cvoid}, ())
function signal_exception()
#=
ptr = exception_flag()
if ptr !== C_NULL
unsafe_store!(convert(Ptr{Int}, ptr), 1)
threadfence_system()
else
@rocprintf("""
WARNING: could not signal exception status to the host, execution will continue.
Please file a bug.
""")
end
=#
return
end
function report_exception(ex)
#=
@rocprintf("""
ERROR: a %s was thrown during kernel execution.
Run Julia on debug level 2 for device stack traces.
""", ex)
=#
return
end
report_oom(sz) = nothing #@rocprintf("ERROR: Out of dynamic GPU memory (trying to allocate %i bytes)\n", sz)
function report_exception_name(ex)
#=
@rocprintf("""
ERROR: a %s was thrown during kernel execution.
Stacktrace:
""", ex)
=#
return
end
function report_exception_frame(idx, func, file, line)
#@rocprintf(" [%i] %s at %s:%i\n", idx, func, file, line)
return
end
## ROCm device library
const libcache = Dict{String, LLVM.Module}()
function load_device_libs(dev_isa)
device_libs_path === nothing && return
isa_short = replace(dev_isa, "gfx"=>"")
device_libs = LLVM.Module[]
bitcode_files = (
"hc.amdgcn.bc",
"hip.amdgcn.bc",
"irif.amdgcn.bc",
"ockl.amdgcn.bc",
"oclc_isa_version_$isa_short.amdgcn.bc",
"opencl.amdgcn.bc",
"ocml.amdgcn.bc",
)
for file in bitcode_files
ispath(joinpath(device_libs_path, file)) || continue
name, ext = splitext(file)
lib = get!(libcache, name) do
file_path = joinpath(device_libs_path, file)
open(file_path) do io
parse(LLVM.Module, read(file_path), JuliaContext())
end
end
push!(device_libs, lib)
end
@assert !isempty(device_libs) "No device libs detected!"
return device_libs
end
function link_device_libs!(mod::LLVM.Module, dev_isa::String, undefined_fns)
libs::Vector{LLVM.Module} = load_device_libs(dev_isa)
# TODO: only link if used
# TODO: make these globally/locally configurable
link_oclc_defaults!(mod, dev_isa)
for lib in libs
# override libdevice's triple and datalayout to avoid warnings
triple!(lib, triple(mod))
datalayout!(lib, datalayout(mod))
end
GPUCompiler.link_library!(mod, libs)
end
function link_oclc_defaults!(mod::LLVM.Module, dev_isa::String; finite_only=false,
unsafe_math=false, correctly_rounded_sqrt=true, daz=false)
# link in some defaults for OCLC knobs, to prevent undefined variable errors
lib = LLVM.Module("OCLC")
triple!(lib, triple(mod))
datalayout!(lib, datalayout(mod))
isa_short = replace(dev_isa, "gfx"=>"")
for (name,value) in (
"__oclc_ISA_version"=>parse(Int32, isa_short),
"__oclc_finite_only_opt"=>Int32(finite_only),
"__oclc_unsafe_math_opt"=>Int32(unsafe_math),
"__oclc_correctly_rounded_sqrt32"=>Int32(correctly_rounded_sqrt),
"__oclc_daz_opt"=>Int32(daz))
gvtype = convert(LLVMType, typeof(value))
gv = GlobalVariable(lib, gvtype, name, 4)
init = ConstantInt(Int32(0), JuliaContext())
initializer!(gv, init)
unnamed_addr!(gv, true)
constant!(gv, true)
end
link!(mod, lib)
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 10978 | # Tools for implementing device functionality
# which Julia types map to a given LLVM type
const llvmtypes = Dict{Type,Symbol}(
Nothing => :void,
Int8 => :i8,
Int16 => :i16,
Int32 => :i32,
Int64 => :i64,
Float32 => :float,
Float64 => :double,
)
# which LLVM types map to a given Julia type
const jltypes = Dict{Symbol,Type}(
:void => Nothing,
:i8 => Int8,
:i16 => Int16,
:i32 => Int32,
:i64 => Int64,
:float => Float32,
:double => Float64
)
# which Julia types map to a given ROC lib type
const fntypes = Dict{Type,Symbol}(
Nothing => :void,
Int8 => :i8,
Int16 => :i16,
Int32 => :i32,
Int64 => :i64,
Float16 => :f16,
Float32 => :f32,
Float64 => :f64
)
# Decode an expression of the form:
#
# function(arg::arg_type, arg::arg_type, ... arg::arg_type)::return_type
#
# Returns a tuple containing the function name, a vector of argument, a vector of argument
# types and the return type (all in symbolic form).
function decode_call(e)
@assert e.head == :(::)
# decode the return type expression: single symbol (the LLVM type), or a tuple of 2
# symbols (the LLVM and corresponding Julia type)
retspec = e.args[2]
if isa(retspec, Symbol)
rettype = retspec
else
@assert retspec.head == :tuple
@assert length(retspec.args) == 2
rettype = (retspec.args[1], retspec.args[2])
end
call = e.args[1]
@assert call.head == :call
fn = Symbol(call.args[1])
args = Symbol[arg.args[1] for arg in call.args[2:end]]
argtypes = Symbol[arg.args[2] for arg in call.args[2:end]]
return fn, args, argtypes, rettype
end
# Generate a `llvmcall` statement calling an intrinsic specified as follows:
#
# intrinsic(arg::arg_type, arg::arg_type, ... arg::arg_type)::return_type [attr]
#
# The argument types should be valid LLVM type identifiers (eg. i32, float, double).
# Conversions to the corresponding Julia type are automatically generated; make sure the
# actual arguments are of the same type to make these conversions no-ops. The optional
# argument `attr` indicates which LLVM function attributes (such as `readnone` or `nounwind`)
# to add to the intrinsic declaration.
# For example, the following call:
# `@wrap __some_intrinsic(x::float, y::double)::float`
#
# will yield the following `llvmcall`:
# ```
# Base.llvmcall(("declare float @__somme__intr(float, double)",
# "%3 = call float @__somme__intr(float %0, double %1)
# ret float %3"),
# Float32, Tuple{Float32,Float64},
# convert(Float32,x), convert(Float64,y))
# ```
macro wrap(call, attrs="")
intrinsic, args, argtypes, rettype = decode_call(call)
# decide on intrinsic return type
if isa(rettype, Symbol)
# only LLVM return type specified, match against known LLVM/Julia type combinations
llvm_ret_typ = rettype
julia_ret_typ = jltypes[rettype]
else
# both specified (for when there is a mismatch, eg. i32 -> UInt32)
llvm_ret_typ = rettype[1]
julia_ret_typ = rettype[2]
end
llvm_args = String["%$i" for i in 0:length(argtypes)]
if llvm_ret_typ == :void
llvm_ret_asgn = ""
llvm_ret = "void"
else
llvm_ret_var = "%$(length(argtypes)+1)"
llvm_ret_asgn = "$llvm_ret_var = "
llvm_ret = "$llvm_ret_typ $llvm_ret_var"
end
llvm_declargs = join(argtypes, ", ")
llvm_defargs = join(("$t $arg" for (t,arg) in zip(argtypes, llvm_args)), ", ")
julia_argtypes = (jltypes[t] for t in argtypes)
julia_args = (:(convert($argtype, $(esc(arg)))) for (arg, argtype) in zip(args, julia_argtypes))
dest = ("""declare $llvm_ret_typ @$intrinsic($llvm_declargs)""",
"""$llvm_ret_asgn call $llvm_ret_typ @$intrinsic($llvm_defargs)
ret $llvm_ret""")
return quote
Base.llvmcall($dest, $julia_ret_typ, Tuple{$(julia_argtypes...)}, $(julia_args...))
end
end
# julia.h: jl_datatype_align
Base.@pure function datatype_align(::Type{T}) where {T}
# typedef struct {
# uint32_t nfields;
# uint32_t alignment : 9;
# uint32_t haspadding : 1;
# uint32_t npointers : 20;
# uint32_t fielddesc_type : 2;
# } jl_datatype_layout_t;
field = T.layout + sizeof(UInt32)
unsafe_load(convert(Ptr{UInt16}, field)) & convert(Int16, 2^9-1)
end
# generalization of word-based primitives
# extract bits from a larger value
@inline function extract_word(val, ::Val{i}) where {i}
extract_value(val, UInt32, Val(32*(i-1)))
end
@generated function extract_value(val, ::Type{sub}, ::Val{offset}) where {sub, offset}
T_val = convert(LLVMType, val)
T_sub = convert(LLVMType, sub)
bytes = Core.sizeof(val)
T_int = LLVM.IntType(8*bytes, JuliaContext())
# create function
llvm_f, _ = create_function(T_sub, [T_val])
mod = LLVM.parent(llvm_f)
# generate IR
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
position!(builder, entry)
equiv = bitcast!(builder, parameters(llvm_f)[1], T_int)
shifted = lshr!(builder, equiv, LLVM.ConstantInt(T_int, offset))
# extracted = and!(builder, shifted, 2^32-1)
extracted = trunc!(builder, shifted, T_sub)
ret!(builder, extracted)
end
call_function(llvm_f, UInt32, Tuple{val}, :( (val,) ))
end
# insert bits into a larger value
@inline function insert_word(val, word::UInt32, ::Val{i}) where {i}
insert_value(val, word, Val(32*(i-1)))
end
@generated function insert_value(val, sub, ::Val{offset}) where {offset}
T_val = convert(LLVMType, val)
T_sub = convert(LLVMType, sub)
bytes = Core.sizeof(val)
T_out_int = LLVM.IntType(8*bytes, JuliaContext())
# create function
llvm_f, _ = create_function(T_val, [T_val, T_sub])
mod = LLVM.parent(llvm_f)
# generate IR
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
position!(builder, entry)
equiv = bitcast!(builder, parameters(llvm_f)[1], T_out_int)
ext = zext!(builder, parameters(llvm_f)[2], T_out_int)
shifted = shl!(builder, ext, LLVM.ConstantInt(T_out_int, offset))
inserted = or!(builder, equiv, shifted)
orig = bitcast!(builder, inserted, T_val)
ret!(builder, orig)
end
call_function(llvm_f, val, Tuple{val, sub}, :( (val, sub) ))
end
# split the invocation of a function `op` on a value `val` with non-struct eltype
# into multiple smaller invocations on byte-sized partial values.
@generated function split_value_invocation(op::Function, val, args...)
# TODO: control of lower-limit
ex = quote
Base.@_inline_meta
end
# disassemble into words
words = Symbol[]
for i in 1:Core.sizeof(val)Γ·4
word = Symbol("word$i")
push!(ex.args, :( $word = extract_word(val, Val($i)) ))
push!(words, word)
end
# perform the operation
for word in words
push!(ex.args, :( $word = op($word, args...)) )
end
# reassemble
push!(ex.args, :( out = zero(val) ))
for (i,word) in enumerate(words)
push!(ex.args, :( out = insert_word(out, $word, Val($i)) ))
end
push!(ex.args, :( out ))
return ex
end
# split the invocation of a function `op` on a value `val`
# by invoking the function on each of its fields
@generated function recurse_value_invocation(op::Function, val, args...)
ex = quote
Base.@_inline_meta
end
fields = fieldnames(val)
if isempty(fields)
push!(ex.args, :( split_value_invocation(op, val, args...) ))
else
ctor = Expr(:new, val)
for field in fields
push!(ctor.args, :(
recurse_value_invocation(op, getfield(val, $(QuoteNode(field))), args...) ))
end
push!(ex.args, ctor)
end
return ex
end
# split the invocation of a function `op` on a pointer `ptr` with non-struct eltype
# into multiple smaller invocations on any supported pointer as listed in `supported_ptrs`.
@generated function split_pointer_invocation(op::Function, ptr, ::Type{supported_ptrs},
args...) where {supported_ptrs}
T = eltype(ptr)
elsize(x) = Core.sizeof(eltype(x))
supported_ptrs = reverse(Base.uniontypes(supported_ptrs))
ex = quote
Base.@_inline_meta
end
# disassemble
vals = Tuple{Symbol,Int,Type}[]
offset = 0
while offset < Core.sizeof(T)
val = Symbol("value.$(length(vals)+1)")
# greedy selection of next pointer type
remaining = Core.sizeof(T)-offset
valid = filter(ptr->elsize(ptr)<=remaining, supported_ptrs)
if isempty(valid)
error("Cannot partition $T into values of $supported_typs")
end
ptr = first(sort(collect(valid); by=elsize, rev=true))
push!(vals, (val, offset, ptr))
offset += elsize(ptr)
end
# perform the operation
for (val, offset, ptr) in vals
subptr = :(convert($ptr, ptr+$offset))
push!(ex.args, :( $val = op($subptr, args...)) )
end
# reassemble
push!(ex.args, :( out = zero($T) ))
for (val, offset, ptr) in vals
push!(ex.args, :( out = insert_value(out, $val, Val($offset)) ))
end
push!(ex.args, :( out ))
return ex
end
# split the invocation of a function `op` on a pointer `ptr`
# by invoking the function on a pointer to each of its fields
@generated function recurse_pointer_invocation(op::Function, ptr, ::Type{supported_ptrs},
args...) where {supported_ptrs}
T = eltype(ptr)
ex = quote
Base.@_inline_meta
end
fields = fieldnames(T)
if isempty(fields)
push!(ex.args, :( split_pointer_invocation(op, ptr, supported_ptrs, args...) ))
else
ctor = Expr(:new, T)
for (i,field) in enumerate(fields)
field_typ = fieldtype(T, i)
field_offset = fieldoffset(T, i)
field_ptr_typ = :($(ptr.name.wrapper){$field_typ})
# NOTE: this ctor is a leap of faith
subptr = :(convert($field_ptr_typ, ptr+$field_offset))
push!(ctor.args, :(
recurse_pointer_invocation(op, $subptr, supported_ptrs, args...) ))
end
push!(ex.args, ctor)
end
return ex
end
# calculate the size of an LLVM type
llvmsize(::LLVM.LLVMHalf) = sizeof(Float16)
llvmsize(::LLVM.LLVMFloat) = sizeof(Float32)
llvmsize(::LLVM.LLVMDouble) = sizeof(Float64)
llvmsize(::LLVM.IntegerType) = div(Int(intwidth(GenericValue(LLVM.Int128Type(), -1))), 8)
llvmsize(ty::LLVM.ArrayType) = length*llvmsize(eltype(ty))
# TODO: VectorType, StructType, PointerType
llvmsize(ty) = error("Unknown size for type: $ty, typeof: $(typeof(ty))")
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 2776 | # Assertion (B.19)
export @rocassert
"""
@rocassert cond [text]
Signal assertion failure if `cond` is `false`. Preferred
syntax for writing assertions, mimicking `Base.@assert`. Message `text` is
optionally displayed upon assertion failure.
!!! warning
A failed assertion will crash the GPU, so use sparingly as a debugging
tool. Furthermore, the assertion might be disabled at various
optimization levels, and thus should not cause any side-effects.
"""
macro rocassert(ex, msgs...)
# message handling copied from Base.@assert
msg = isempty(msgs) ? ex : msgs[1]
if isa(msg, AbstractString)
msg = msg # pass-through
elseif !isempty(msgs) && (isa(msg, Expr) || isa(msg, Symbol))
# message is an expression needing evaluating
msg = :(Main.Base.string($(esc(msg))))
elseif isdefined(Main, :Base) && isdefined(Main.Base, :string) && applicable(Main.Base.string, msg)
msg = Main.Base.string(msg)
else
# string() might not be defined during bootstrap
msg = :(Main.Base.string($(Expr(:quote,msg))))
end
return :($(esc(ex)) ? $(nothing)
: rocassert_fail($(Val(Symbol(msg))),
$(Val(__source__.file)),
$(Val(__source__.line))))
end
assert_counter = 0
@generated function rocassert_fail(::Val{msg}, ::Val{file}, ::Val{line}) where
{msg, file, line}
T_void = LLVM.VoidType(JuliaContext())
T_int32 = LLVM.Int32Type(JuliaContext())
T_pint8 = LLVM.PointerType(LLVM.Int8Type(JuliaContext()))
# create function
llvm_f, _ = create_function()
mod = LLVM.parent(llvm_f)
# generate IR
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
position!(builder, entry)
global assert_counter
assert_counter += 1
message = globalstring_ptr!(builder, String(msg), "assert_message_$(assert_counter)")
file = globalstring_ptr!(builder, String(file), "assert_file_$(assert_counter)")
line = ConstantInt(T_int32, line)
func = globalstring_ptr!(builder, "unknown", "assert_function_$(assert_counter)")
charSize = ConstantInt(Csize_t(1), JuliaContext())
# invoke __assertfail and return
# TODO: mark noreturn since we don't use ptxas?
assertfail_typ =
LLVM.FunctionType(T_void,
[T_pint8, T_pint8, T_int32, T_pint8, llvmtype(charSize)])
assertfail = LLVM.Function(mod, "__assertfail", assertfail_typ)
call!(builder, assertfail, [message, file, line, func, charSize])
ret!(builder)
end
call_function(llvm_f, Nothing, Tuple{})
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 9958 | import HSARuntime: HSASignal
export HostCall, hostcall!
const SENTINEL_COUNTER = Ref{Int}(2)
const SENTINEL_LOCK = ReentrantLock()
const DEFAULT_HOSTCALL_LATENCY = 0.01
"""
HostCall{S,RT,AT}
GPU-compatible struct for making hostcalls.
"""
struct HostCall{S,RT,AT}
signal::S
host_sentinel::Int
device_sentinel::Int
buf_ptr::DevicePtr{UInt8,AS.Global}
buf_len::UInt
end
function HostCall(RT::Type, AT::Type{<:Tuple}, signal::S;
agent=HSARuntime.get_default_agent()) where S
@assert S == UInt64
# TODO: Just use atomic_add!
host_sentinel, device_sentinel = lock(SENTINEL_LOCK) do
host_sentinel = SENTINEL_COUNTER[]
SENTINEL_COUNTER[] += 1
device_sentinel = SENTINEL_COUNTER[]
SENTINEL_COUNTER[] += 1
if SENTINEL_COUNTER[] > typemax(Int64)-2
SENTINEL_COUNTER[] = 2
@debug "Sentinel counter wrapped around!"
end
return host_sentinel, device_sentinel
end
buf_len = 0
for T in AT.parameters
@assert isbitstype(T) "Hostcall arguments must be bits-type"
buf_len += sizeof(T)
end
buf_len = max(sizeof(UInt64), buf_len) # make room for return buffer pointer
buf = Mem.alloc(agent, buf_len)
buf_ptr = DevicePtr{UInt8,AS.Global}(Base.unsafe_convert(Ptr{UInt8}, buf))
HostCall{S,RT,AT}(signal, host_sentinel, device_sentinel, buf_ptr, buf_len)
end
## device signal functions
# TODO: device_signal_load, device_signal_add!, etc.
@inline @generated function device_signal_store!(signal::UInt64, value::Int64)
T_nothing = convert(LLVMType, Nothing)
T_i32 = LLVM.Int32Type(JuliaContext())
T_i64 = LLVM.Int64Type(JuliaContext())
# create a function
llvm_f, _ = create_function(T_nothing, [T_i64, T_i64])
mod = LLVM.parent(llvm_f)
# generate IR
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
position!(builder, entry)
T_signal_store = LLVM.FunctionType(T_nothing, [T_i64, T_i64, T_i32])
signal_store = LLVM.Function(mod, "__ockl_hsa_signal_store", T_signal_store)
call!(builder, signal_store, [parameters(llvm_f)[1],
parameters(llvm_f)[2],
# __ATOMIC_RELEASE == 3
ConstantInt(Int32(3), JuliaContext())])
ret!(builder)
end
call_function(llvm_f, Nothing, Tuple{UInt64,Int64}, :((signal,value)))
end
@inline @generated function device_signal_wait(signal::UInt64, value::Int64)
T_nothing = convert(LLVMType, Nothing)
T_i32 = LLVM.Int32Type(JuliaContext())
T_i64 = LLVM.Int64Type(JuliaContext())
# create a function
llvm_f, _ = create_function(T_nothing, [T_i64, T_i64])
mod = LLVM.parent(llvm_f)
# generate IR
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
signal_match = BasicBlock(llvm_f, "signal_match", JuliaContext())
signal_miss = BasicBlock(llvm_f, "signal_miss", JuliaContext())
position!(builder, entry)
br!(builder, signal_miss)
position!(builder, signal_miss)
T_sleep = LLVM.FunctionType(T_nothing, [T_i32])
sleep_f = LLVM.Function(mod, "llvm.amdgcn.s.sleep", T_sleep)
call!(builder, sleep_f, [ConstantInt(Int32(1), JuliaContext())])
T_signal_load = LLVM.FunctionType(T_i64, [T_i64, T_i32])
signal_load = LLVM.Function(mod, "__ockl_hsa_signal_load", T_signal_load)
loaded_value = call!(builder, signal_load, [parameters(llvm_f)[1],
# __ATOMIC_ACQUIRE == 2
ConstantInt(Int32(2), JuliaContext())])
cond = icmp!(builder, LLVM.API.LLVMIntEQ, loaded_value, parameters(llvm_f)[2])
br!(builder, cond, signal_match, signal_miss)
position!(builder, signal_match)
ret!(builder)
end
call_function(llvm_f, Nothing, Tuple{UInt64,Int64}, :((signal,value)))
end
"Calls the host function stored in `hc` with arguments `args`."
@inline @generated function hostcall!(hc::HostCall{UInt64,RT,AT}, args...) where {RT,AT}
ex = Expr(:block)
# Copy arguments into buffer
# Modified from CUDAnative src/device/cuda/dynamic_parallelism.jl
off = 1
for i in 1:length(args)
T = args[i]
sz = sizeof(T)
# TODO: Should we do what CUDAnative does instead?
ptr = :(Base.unsafe_convert(DevicePtr{$T,AS.Global}, hc.buf_ptr+$off-1))
push!(ex.args, :(Base.unsafe_store!($ptr, args[$i])))
off += sz
end
# Ring the doorbell
push!(ex.args, :($device_signal_store!(hc.signal, hc.device_sentinel)))
if RT === Nothing
# Async hostcall
push!(ex.args, :(nothing))
else
# Wait on doorbell (hc.host_sentinel)
push!(ex.args, :($device_signal_wait(hc.signal, hc.host_sentinel)))
# Get return buffer and load first value
ptr = :(Base.unsafe_convert(DevicePtr{DevicePtr{$RT,AS.Global},AS.Global}, hc.buf_ptr))
push!(ex.args, :(Base.unsafe_load(Base.unsafe_load($ptr))))
end
return ex
end
## hostcall
@generated function _hostcall_args(hc::HostCall{UInt64,RT,AT}) where {RT,AT}
ex = Expr(:tuple)
# Copy arguments into buffer
off = 1
for i in 1:length(AT.parameters)
T = AT.parameters[i]
sz = sizeof(T)
# TODO: Should we do what CUDAnative does instead?
ptr = :(Base.unsafe_convert(DevicePtr{$T,AS.Global}, hc.buf_ptr+$off-1))
# FIXME: We should not be using a device intrinsic here, even though it works...
push!(ex.args, :(Base.unsafe_load($ptr)))
off += sz
end
return ex
end
struct HostCallException <: Exception
reason::String
end
"""
HostCall(func, return_type::Type, arg_types::Type{Tuple}) -> HostCall
Construct a `HostCall` that executes `func` with the arguments passed from the
calling kernel. `func` must be passed arguments of types contained in
`arg_types`, and must return a value of type `return_type`, or else the
hostcall will fail with undefined behavior.
Note: This API is currently experimental and is subject to change at any time.
"""
function HostCall(func, rettype, argtypes; return_task=false,
agent=HSARuntime.get_default_agent(), maxlat=DEFAULT_HOSTCALL_LATENCY,
continuous=false)
signal = HSASignal()
hc = HostCall(rettype, argtypes, signal.signal[].handle; agent=agent)
tsk = @async begin
ret_buf = Ref{Mem.Buffer}()
try
while true
try
_hostwait(signal.signal[], hc.device_sentinel; maxlat=maxlat)
catch err
throw(HostCallException("Hostcall: Error during hostwait"))
end
if length(argtypes.parameters) > 0
args = try
_hostcall_args(hc)
catch err
throw(HostCallException("Hostcall: Error getting arguments"))
end
@debug "Hostcall: Got arguments of length $(length(args))"
else
args = ()
end
ret = try
func(args...,)
catch err
throw(HostCallException("Hostcall: Error executing host function"))
end
rettype === Nothing && return
if typeof(ret) != rettype
throw(HostCallException("Hostcall: Host function result of wrong type: $(typeof(ret)), expected $rettype"))
end
if !isbits(ret)
throw(HostCallException("Hostcall: Host function result not isbits: $(typeof(ret))"))
end
@debug "Hostcall: Host function returning value of type $(typeof(ret))"
try
ret_len = sizeof(ret)
ret_buf = Mem.alloc(agent, ret_len)
ret_buf_ptr = Base.unsafe_convert(Ptr{typeof(ret)}, ret_buf)
Base.unsafe_store!(ret_buf_ptr, ret)
ret_buf_ptr = Base.unsafe_convert(Ptr{UInt64}, ret_buf)
args_buf_ptr = convert(Ptr{UInt64}, hc.buf_ptr)
Base.unsafe_store!(args_buf_ptr, ret_buf_ptr)
HSA.signal_store_release(signal.signal[], hc.host_sentinel)
catch err
throw(HostCallException("Hostcall: Error returning hostcall result"))
end
@debug "Hostcall: Host function return completed"
continuous || break
end
catch err
@error "Hostcall error" exception=(err,catch_backtrace())
rethrow(err)
finally
# TODO: This is probably a bad idea to free while the kernel might
# still hold a reference. We should probably have some way to
# reference count these buffers from kernels (other than just
# using a ROCArray, which can't currently be serialized to the
# GPU).
if isassigned(ret_buf)
Mem.free(ret_buf)
end
Mem.free(hc.buf_ptr)
end
end
if return_task
return hc, tsk
else
return hc
end
end
# CPU functions
get_value(hc::HostCall{UInt64,RT,AT} where {RT,AT}) =
HSA.signal_load_scacquire(HSA.Signal(hc.signal))
function _hostwait(signal, sentinel; maxlat=DEFAULT_HOSTCALL_LATENCY)
@debug "Hostcall: Waiting on signal for sentinel: $sentinel"
while true
value = HSA.signal_load_scacquire(signal)
if value == sentinel
@debug "Hostcall: Signal triggered with sentinel: $sentinel"
return
end
sleep(maxlat)
end
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 5822 | # Indexing and dimensions
export workitemIdx, workgroupIdx, workgroupDim, gridDim, gridDimWG
export threadIdx, blockIdx, blockDim
@generated function _index(::Val{fname}, ::Val{name}, ::Val{range}) where {fname, name, range}
T_int32 = LLVM.Int32Type(JuliaContext())
# create function
llvm_f, _ = create_function(T_int32)
mod = LLVM.parent(llvm_f)
# generate IR
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
position!(builder, entry)
# call the indexing intrinsic
intr_typ = LLVM.FunctionType(T_int32)
intr = LLVM.Function(mod, "llvm.amdgcn.$fname.id.$name", intr_typ)
idx = call!(builder, intr)
# attach range metadata
range_metadata = MDNode([ConstantInt(Int32(range.start), JuliaContext()),
ConstantInt(Int32(range.stop), JuliaContext())],
JuliaContext())
metadata(idx)[LLVM.MD_range] = range_metadata
ret!(builder, idx)
end
call_function(llvm_f, UInt32)
end
@generated function _dim(::Val{base}, ::Val{off}, ::Val{range}, ::Type{T}) where {base, off, range, T}
T_int8 = LLVM.Int8Type(JuliaContext())
T_int32 = LLVM.Int32Type(JuliaContext())
_as = Base.libllvm_version < v"7.0" ? 2 : 4
T_ptr_i8 = LLVM.PointerType(T_int8, _as)
T_ptr_i32 = LLVM.PointerType(T_int32, _as)
T_ptr_T = LLVM.PointerType(convert(LLVMType, T), _as)
# create function
llvm_f, _ = create_function(T_int32)
mod = LLVM.parent(llvm_f)
# generate IR
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
position!(builder, entry)
# get the kernel dispatch pointer
intr_typ = LLVM.FunctionType(T_ptr_i8)
intr = LLVM.Function(mod, "llvm.amdgcn.dispatch.ptr", intr_typ)
ptr = call!(builder, intr)
# load the index
offset = base+((off-1)*sizeof(T))
idx_ptr_i8 = inbounds_gep!(builder, ptr, [ConstantInt(offset,JuliaContext())])
idx_ptr_T = bitcast!(builder, idx_ptr_i8, T_ptr_T)
idx_T = load!(builder, idx_ptr_T)
idx = zext!(builder, idx_T, T_int32)
# attach range metadata
range_metadata = MDNode([ConstantInt(T(range.start), JuliaContext()),
ConstantInt(T(range.stop), JuliaContext())],
JuliaContext())
metadata(idx_T)[LLVM.MD_range] = range_metadata
ret!(builder, idx)
end
call_function(llvm_f, UInt32)
end
# TODO: look these up for the current agent/queue
const max_block_size = (x=1024, y=1024, z=1024)
const max_grid_size = (x=65535, y=65535, z=65535)
for dim in (:x, :y, :z)
# Workitem index
fname = Symbol("workitem")
fn = Symbol("workitemIdx_$dim")
intr = Symbol("$dim")
@eval @inline $fn() = Int(_index($(Val(fname)), $(Val(intr)), $(Val(0:max_block_size[dim])))) + 1
cufn = Symbol("threadIdx_$dim")
@eval @inline $cufn() = $fn()
# Workgroup index
fname = Symbol("workgroup")
fn = Symbol("workgroupIdx_$dim")
intr = Symbol("$dim")
@eval @inline $fn() = Int(_index($(Val(fname)), $(Val(intr)), $(Val(0:max_grid_size[dim])))) + 1
cufn = Symbol("blockIdx_$dim")
@eval @inline $cufn() = $fn()
end
_packet_names = fieldnames(HSA.KernelDispatchPacket)
_packet_offsets = fieldoffset.(HSA.KernelDispatchPacket, 1:length(_packet_names))
for (dim,off) in ((:x,1), (:y,2), (:z,3))
# Workitem dimension
fn = Symbol("workgroupDim_$dim")
base = _packet_offsets[findfirst(x->x==:workgroup_size_x,_packet_names)]
@eval @inline $fn() = Int(_dim($(Val(base)), $(Val(off)), $(Val(0:max_block_size[dim])), UInt16))
cufn = Symbol("blockDim_$dim")
@eval @inline $cufn() = $fn()
# Grid dimension (in workitems)
fn = Symbol("gridDim_$dim")
base = _packet_offsets[findfirst(x->x==:grid_size_x,_packet_names)]
@eval @inline $fn() = Int(_dim($(Val(base)), $(Val(off)), $(Val(0:max_grid_size[dim])), UInt32))
# Grid dimension (in workgroups)
fn_wg = Symbol("gridDimWG_$dim")
fn_wi_idx = Symbol("workitemIdx_$dim")
@eval @inline $fn_wg() = $fn()/$fn_wi_idx()
end
"""
workitemIdx()::ROCDim3
Returns the work item index within the work group.
See also: [`threadIdx`](@ref)
"""
@inline workitemIdx() = (x=workitemIdx_x(), y=workitemIdx_y(), z=workitemIdx_z())
"""
workgroupIdx()::ROCDim3
Returns the work group index.
See also: [`blockIdx`](@ref)
"""
@inline workgroupIdx() = (x=workgroupIdx_x(), y=workgroupIdx_y(), z=workgroupIdx_z())
"""
workgroupDim()::ROCDim3
Returns the size of each workgroup in workitems.
See also: [`blockDim`](@ref)
"""
@inline workgroupDim() = (x=workgroupDim_x(), y=workgroupDim_y(), z=workgroupDim_z())
"""
gridDim()::ROCDim3
Returns the size of the grid in workitems.
This behaviour is different from CUDA where `gridDim` gives the size of the grid in blocks.
"""
@inline gridDim() = (x=gridDim_x(), y=gridDim_y(), z=gridDim_z())
"""
gridDimWG()::ROCDim3
Returns the size of the grid in workgroups.
This is equivalent to CUDA's `gridDim`.
"""
@inline gridDimWG() = (x=gridDimWG_x(), y=gridDimWG_y(), z=gridDimWG_z())
# For compat with CUDAnative et. al
"""
threadIdx()::ROCDim3
Returns the thread index within the block.
See also: [`workitemIdx`](@ref)
"""
@inline threadIdx() = (x=threadIdx_x(), y=threadIdx_y(), z=threadIdx_z())
"""
blockIdx()::ROCDim3
Returns the block index within the grid.
See also: [`workgroupIdx`](@ref)
"""
@inline blockIdx() = (x=blockIdx_x(), y=blockIdx_y(), z=blockIdx_z())
"""
blockDim()::ROCDim3
Returns the dimensions of the block.
See also: [`workgroupDim`](@ref)
"""
@inline blockDim() = (x=blockDim_x(), y=blockDim_y(), z=blockDim_z())
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 4578 | @generated function _intr(::Val{fname}, out_arg, inp_args...) where {fname,}
inp_exprs = [:( inp_args[$i] ) for i in 1:length(inp_args)]
inp_types = [inp_args...]
out_type = convert(LLVMType, out_arg.parameters[1])
# create function
param_types = LLVMType[convert.(LLVMType, inp_types)...]
llvm_f, _ = create_function(out_type, param_types)
mod = LLVM.parent(llvm_f)
# generate IR
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
position!(builder, entry)
# call the intrinsic
intr_typ = LLVM.FunctionType(out_type, param_types)
intr = LLVM.Function(mod, string(fname), intr_typ)
value = call!(builder, intr, [parameters(llvm_f)...])
ret!(builder, value)
end
call_function(llvm_f, out_arg.parameters[1], Tuple{inp_args...}, Expr(:tuple, inp_exprs...))
end
struct GCNIntrinsic
jlname::Symbol
rocname::Symbol
isbroken::Bool # please don't laugh...
isinverted::Bool
# FIXME: Input/output types
inp_args::Tuple
out_arg::Type
roclib::Symbol
suffix::Symbol
end
GCNIntrinsic(jlname, rocname=jlname; isbroken=false, isinverted=false,
inp_args=(), out_arg=(), roclib=:ocml, suffix=fntypes[first(inp_args)]) =
GCNIntrinsic(jlname, rocname, isbroken, isinverted, inp_args, out_arg, roclib, suffix)
const MATH_INTRINSICS = GCNIntrinsic[]
for jltype in (
#= TODO: Float16 Broken due to being i16 in Julia=#
Float32, Float64)
append!(MATH_INTRINSICS, GCNIntrinsic.((
:sin, :cos, :tan, :asin, :acos, :atan, :atan2,
:sinh, :cosh, :tanh, :asinh, :acosh, :atanh,
:sinpi, :cospi, :tanpi, :sincospi,
:asinpi, :acospi, :atanpi, :atan2pi,
:sqrt, :rsqrt, :cbrt, :rcbrt, :recip,
:log, :log2, :log10, :log1p, :logb, :ilogb,
:exp, :exp2, :exp10, :expm1,
:erf, :erfinv, :erfc, :erfcinv, :erfcx,
# TODO: :brev, :clz, :ffs, :byte_perm, :popc,
:isnormal, :nearbyint, :nextafter,
:pow, :pown, :powr,
:tgamma, :j0, :j1, :y0, :y1,
); inp_args=(jltype,), out_arg=jltype))
push!(MATH_INTRINSICS, GCNIntrinsic(:sin_fast, :native_sin; inp_args=(jltype,), out_arg=jltype))
push!(MATH_INTRINSICS, GCNIntrinsic(:cos_fast, :native_cos; inp_args=(jltype,), out_arg=jltype))
push!(MATH_INTRINSICS, GCNIntrinsic(:sqrt_fast, :native_sqrt; inp_args=(jltype,), out_arg=jltype))
push!(MATH_INTRINSICS, GCNIntrinsic(:rsqrt_fast, :native_rsqrt; inp_args=(jltype,), out_arg=jltype))
push!(MATH_INTRINSICS, GCNIntrinsic(:recip_fast, :native_recip; inp_args=(jltype,), out_arg=jltype))
push!(MATH_INTRINSICS, GCNIntrinsic(:log_fast, :native_log; inp_args=(jltype,), out_arg=jltype))
push!(MATH_INTRINSICS, GCNIntrinsic(:log2_fast, :native_log2; inp_args=(jltype,), out_arg=jltype))
push!(MATH_INTRINSICS, GCNIntrinsic(:log10_fast, :native_log10; inp_args=(jltype,), out_arg=jltype))
push!(MATH_INTRINSICS, GCNIntrinsic(:exp_fast, :native_exp; inp_args=(jltype,), out_arg=jltype))
push!(MATH_INTRINSICS, GCNIntrinsic(:exp2_fast, :native_exp2; inp_args=(jltype,), out_arg=jltype))
push!(MATH_INTRINSICS, GCNIntrinsic(:exp10_fast, :native_exp10; inp_args=(jltype,), out_arg=jltype))
push!(MATH_INTRINSICS, GCNIntrinsic(:abs, :fabs; inp_args=(jltype,), out_arg=jltype))
# TODO: abs(::Union{Int32,Int64})
# FIXME: Multi-argument functions
#=
push!(MATH_INTRINSICS, = map(intr->GCNIntrinsic(intr), (
:sincos, :frexp, :ldexp, :copysign,
)))
=#
#push!(MATH_INTRINSICS, GCNIntrinsic(:ldexp; inp_args=(jltype,), out_arg=(jltype, Int32), isinverted=true))
end
let jltype=Float32
# TODO: Float64 is broken for some reason, try to re-enable on a newer LLVM
push!(MATH_INTRINSICS, GCNIntrinsic(:isfinite; inp_args=(jltype,), out_arg=Int32))
push!(MATH_INTRINSICS, GCNIntrinsic(:isinf; inp_args=(jltype,), out_arg=Int32))
push!(MATH_INTRINSICS, GCNIntrinsic(:isnan; inp_args=(jltype,), out_arg=Int32))
push!(MATH_INTRINSICS, GCNIntrinsic(:signbit; inp_args=(jltype,), out_arg=Int32))
end
for intr in MATH_INTRINSICS
inp_vars = [gensym() for _ in 1:length(intr.inp_args)]
inp_expr = [:($(inp_vars[idx])::$arg) for (idx,arg) in enumerate(intr.inp_args)]
libname = Symbol("__$(intr.roclib)_$(intr.rocname)_$(intr.suffix)")
@eval @inline function $(intr.jlname)($(inp_expr...))
y = _intr($(Val(libname)), $(intr.out_arg), $(inp_expr...))
return $(intr.isinverted ? :(1-y) : :y)
end
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 64 | export malloc
# Stub implementation
malloc(::Csize_t) = C_NULL
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 1439 | export alloc_special
"Allocates on-device memory statically from the specified address space."
@generated function alloc_special(::Val{id}, ::Type{T}, ::Val{as}, ::Val{len}=Val(0)) where {id,T,as,len}
eltyp = convert(LLVMType, T)
# old versions of GPUArrays invoke _shmem with an integer id; make sure those are unique
if !isa(id, String) || !isa(id, Symbol)
id = "alloc_special_$id"
end
T_ptr = convert(LLVMType, DevicePtr{T,as})
# create a function
llvm_f, _ = create_function(T_ptr)
# create the global variable
mod = LLVM.parent(llvm_f)
gv_typ = LLVM.ArrayType(eltyp, len)
gv = GlobalVariable(mod, gv_typ, string(id), convert(Int, as))
if len > 0
linkage!(gv, LLVM.API.LLVMInternalLinkage)
#initializer!(gv, null(gv_typ))
end
# by requesting a larger-than-datatype alignment, we might be able to vectorize.
# TODO: Make the alignment configurable
alignment!(gv, Base.max(32, Base.datatype_alignment(T)))
# generate IR
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
position!(builder, entry)
ptr_with_as = gep!(builder, gv, [ConstantInt(0, JuliaContext()),
ConstantInt(0, JuliaContext())])
val = ptrtoint!(builder, ptr_with_as, T_ptr)
ret!(builder, val)
end
call_function(llvm_f, DevicePtr{T,as})
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 3937 | export OutputContext, @rocprint, @rocprintln
"Internal representation of a static string."
struct DeviceStaticString{N} end
Base.sizeof(dss::DeviceStaticString{N}) where N = N
function Base.unsafe_load(ptr::DevicePtr{DeviceStaticString{N},AS.Global}) where N
vec_ptr = convert(Ptr{UInt8}, ptr)
vec_raw = Base.unsafe_wrap(Vector{UInt8}, vec_ptr, (N,))
idx = findfirst(x->x==0, vec_raw)
idx = idx === nothing ? N : idx
return vec_raw[1:idx-1]
end
Base.unsafe_store!(ptr::DevicePtr{<:DeviceStaticString}, x) = nothing
struct OutputContext{HC}
hostcall::HC
end
function OutputContext(io::IO=stdout; agent=get_default_agent(), buf_len=2^16, kwargs...)
hc = HostCall(Int64, Tuple{DeviceStaticString{buf_len}}; agent=agent, continuous=true, kwargs...) do bytes
print(io, String(bytes))
Int64(length(bytes))
end
OutputContext(hc)
end
### macros
macro rocprint(oc, str)
rocprint(oc, str)
end
macro rocprintln(oc, str)
rocprint(oc, str, true)
end
### parse-time helpers
function rocprint(oc, str, nl=false)
ex = Expr(:block)
if !(str isa Expr)
str = Expr(:string, str)
end
@assert str.head == :string
for (idx,arg) in enumerate(str.args)
if nl && idx == length(str.args)
arg *= '\n'
end
N = rocprint!(ex, 1, oc, arg)
N = rocprint!(ex, N, oc, '\0')
dstr = DeviceStaticString{N}()
push!(ex.args, :(hostcall!($(esc(oc)).hostcall, $dstr)))
end
return ex
end
function rocprint!(ex, N, oc, str::String)
# TODO: push!(ex.args, :($rocprint!($(esc(oc)), $(Val(Symbol(str))))))
off = N
ptr = :(Base.unsafe_convert(DevicePtr{UInt8,AS.Global}, $(esc(oc)).hostcall.buf_ptr))
for byte in codeunits(str)
push!(ex.args, :(Base.unsafe_store!($ptr, $byte, $off)))
off += 1
end
return off
end
function rocprint!(ex, N, oc, char::Char)
@assert char == '\0' "Non-null chars not yet implemented"
byte = UInt8(char)
ptr = :(Base.unsafe_convert(DevicePtr{UInt8,AS.Global}, $(esc(oc)).hostcall.buf_ptr))
push!(ex.args, :(Base.unsafe_store!($ptr, $byte, $N)))
return N+1
end
function rocprint!(ex, N, oc, iex::Expr)
for arg in iex.args
N = rocprint!(ex, N, oc, arg)
end
return N
end
#= TODO: Support printing arbitrary values?
function rocprint!(ex, N, oc, sym::Symbol)
push!(ex.args, :($rocprint!($(esc(oc)), $(QuoteNode(sym)))))
return N+4
end
=#
### runtime helpers
#= TODO: LLVM hates me, but this should eventually work
# FIXME: Pass N and offset oc.buf_ptr appropriately
@inline @generated function rocprint!(oc::OutputContext, ::Val{str}) where str
T_int1 = LLVM.Int1Type(JuliaContext())
T_int32 = LLVM.Int32Type(JuliaContext())
T_pint8 = LLVM.PointerType(LLVM.Int8Type(JuliaContext()))
T_pint8_global = LLVM.PointerType(LLVM.Int8Type(JuliaContext()), convert(Int, AS.Global))
T_nothing = LLVM.VoidType(JuliaContext())
llvm_f, _ = create_function(T_nothing, [T_pint8_global])
mod = LLVM.parent(llvm_f)
T_intr = LLVM.FunctionType(T_nothing, [T_pint8_global, T_pint8, T_int32, T_int32, T_int1])
intr = LLVM.Function(mod, "llvm.memcpy.p1i8.p0i8.i32", T_intr)
Builder(JuliaContext()) do builder
entry = BasicBlock(llvm_f, "entry", JuliaContext())
position!(builder, entry)
str_ptr = globalstring_ptr!(builder, String(str))
buf_ptr = parameters(llvm_f)[1]
# NOTE: There's a hidden alignment parameter (argument 4) that's not documented in the LangRef
call!(builder, intr, [buf_ptr, str_ptr, ConstantInt(Int32(length(string(str))), JuliaContext()), ConstantInt(Int32(2), JuliaContext()), ConstantInt(T_int1, 0)])
ret!(builder)
end
Core.println(unsafe_string(LLVM.API.LLVMPrintValueToString(LLVM.ref(llvm_f))))
call_function(llvm_f, Nothing, Tuple{DevicePtr{UInt8,AS.Global}}, :((oc.hostcall.buf_ptr,)))
end
=#
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 198 | export sync_workgroup
"""
sync_workgroup()
Waits until all wavefronts in a workgroup have reached this call.
"""
@inline sync_workgroup() = ccall("llvm.amdgcn.s.barrier", llvmcall, Cvoid, ())
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 495 | # OpenCL argument utilities
# Argument accessors
# __agocl_global_offset_x - OpenCL Global Offset X
# __agocl_global_offset_y - OpenCL Global Offset Y
# __agocl_global_offset_z - OpenCL Global Offset Z
# __agocl_printf_addr - OpenCL address of printf buffer
# __agocl_queue_addr - OpenCL address of virtual queue used by enqueue_kernel
# __agocl_aqlwrap_addr - OpenCL address of AqlWrap struct used by enqueue_kernel
# __agocl_multigrid - Pointer argument used for Multi-grid synchronization
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 2285 | @testset "pointer" begin
# inner constructors
voidptr_a = Ptr{Cvoid}(Int(0xDEADBEEF))
generic_voidptr_a = AMDGPUnative.DevicePtr{Cvoid,AS.Generic}(voidptr_a)
global_voidptr_a = AMDGPUnative.DevicePtr{Cvoid,AS.Global}(voidptr_a)
local_voidptr_a = AMDGPUnative.DevicePtr{Cvoid,AS.Local}(voidptr_a)
voidptr_b = Ptr{Cvoid}(Int(0xCAFEBABE))
generic_voidptr_b = AMDGPUnative.DevicePtr{Cvoid,AS.Generic}(voidptr_b)
global_voidptr_b = AMDGPUnative.DevicePtr{Cvoid,AS.Global}(voidptr_b)
local_voidptr_b = AMDGPUnative.DevicePtr{Cvoid,AS.Local}(voidptr_b)
intptr_b = convert(Ptr{Int}, voidptr_b)
generic_intptr_b = AMDGPUnative.DevicePtr{Int,AS.Generic}(intptr_b)
global_intptr_b = AMDGPUnative.DevicePtr{Int,AS.Global}(intptr_b)
local_intptr_b = AMDGPUnative.DevicePtr{Int,AS.Local}(intptr_b)
# outer constructors
@test AMDGPUnative.DevicePtr{Cvoid}(voidptr_a) == generic_voidptr_a
@test AMDGPUnative.DevicePtr(voidptr_a) == generic_voidptr_a
# getters
@test eltype(generic_voidptr_a) == Cvoid
@test eltype(global_intptr_b) == Int
@test AMDGPUnative.addrspace(generic_voidptr_a) == AS.Generic
@test AMDGPUnative.addrspace(global_voidptr_a) == AS.Global
@test AMDGPUnative.addrspace(local_voidptr_a) == AS.Local
# comparisons
@test generic_voidptr_a != global_voidptr_a
@test generic_voidptr_a != generic_intptr_b
@testset "conversions" begin
# between regular and device pointers
@test convert(Ptr{Cvoid}, generic_voidptr_a) == voidptr_a
@test convert(AMDGPUnative.DevicePtr{Cvoid}, voidptr_a) == generic_voidptr_a
@test convert(AMDGPUnative.DevicePtr{Cvoid,AS.Global}, voidptr_a) == global_voidptr_a
# between device pointers
@test_throws ArgumentError convert(typeof(local_voidptr_a), global_voidptr_a)
@test convert(typeof(generic_voidptr_a), generic_voidptr_a) == generic_voidptr_a
@test convert(typeof(global_voidptr_a), global_voidptr_a) == global_voidptr_a
@test Base.unsafe_convert(typeof(local_voidptr_a), global_voidptr_a) == local_voidptr_a
@test convert(typeof(global_voidptr_a), global_intptr_b) == global_voidptr_b
@test convert(typeof(generic_voidptr_a), global_intptr_b) == generic_voidptr_b
@test convert(typeof(global_voidptr_a), generic_intptr_b) == global_voidptr_b
@test convert(AMDGPUnative.DevicePtr{Cvoid}, global_intptr_b) == global_voidptr_b
end
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 1235 | using AMDGPUnative
const AS = AMDGPUnative.AS
using GPUCompiler
using LLVM, LLVM.Interop
using HSARuntime
using InteractiveUtils
using SpecialFunctions
using Test
agent_name = HSARuntime.get_name(get_default_agent())
agent_isa = get_first_isa(get_default_agent())
@info "Testing using device $agent_name with ISA $agent_isa"
@testset "AMDGPUnative" begin
@testset "Core" begin
include("pointer.jl")
end
if AMDGPUnative.configured
@test length(get_agents()) > 0
if length(get_agents()) > 0
include("synchronization.jl")
include("trap.jl")
@testset "Device" begin
include("device/launch.jl")
include("device/vadd.jl")
include("device/memory.jl")
include("device/indexing.jl")
include("device/hostcall.jl")
include("device/output.jl")
include("device/globals.jl")
if Base.libllvm_version >= v"7.0"
include("device/math.jl")
else
@warn "Testing with LLVM 6; some tests will be disabled!"
@test_skip "Math Intrinsics"
end
end
end
else
@warn("AMDGPUnative.jl has not been configured; skipping on-device tests.")
end
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 310 | @testset "Synchronization" begin
# TODO: Remove dummy argument once HSARuntime is fixed
function synckern(x)
sync_workgroup()
nothing
end
iob = IOBuffer()
AMDGPUnative.code_gcn(iob, synckern, Tuple{Int}; kernel=true)
@test occursin("s_barrier", String(take!(iob)))
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 535 | @testset "Trapping" begin
# TODO: Remove dummy argument once HSARuntime is fixed
function trapkern(x)
AMDGPUnative.trap()
nothing
end
function debugtrapkern(x)
AMDGPUnative.debugtrap()
nothing
end
iob = IOBuffer()
AMDGPUnative.code_gcn(iob, trapkern, Tuple{Int}; kernel=true)
@test occursin("s_trap 2", String(take!(iob)))
iob = IOBuffer()
AMDGPUnative.code_gcn(iob, debugtrapkern, Tuple{Int}; kernel=true)
@test occursin("s_trap 3", String(take!(iob)))
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 515 | @testset "Globals" begin
function kernel(X)
ptr = AMDGPUnative.get_global_pointer(Val(:myglobal), Float32)
Base.unsafe_store!(ptr, 3f0)
nothing
end
hk = AMDGPUnative.rocfunction(kernel, Tuple{Int32})
gbl = HSARuntime.get_global(hk.mod.exe, :myglobal)
gbl_ptr = Base.unsafe_convert(Ptr{Float32}, gbl.ptr)
@test Base.unsafe_load(gbl_ptr) == 0f0
Base.unsafe_store!(gbl_ptr, 2f0)
@test Base.unsafe_load(gbl_ptr) == 2f0
wait(@roc groupsize=1 kernel(Int32(1)))
@test Base.unsafe_load(gbl_ptr) == 3f0
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 5104 | @testset "Hostcall" begin
@testset "Call: Async" begin
function kernel(a,b,sig)
hostcall!(sig)
b[1] = a[1]
nothing
end
A = ones(Float32, 1)
B = zeros(Float32, 1)
HA = HSAArray(A)
HB = HSAArray(B)
dref = Ref{Bool}(false)
hc = HostCall(Nothing, Tuple{}) do
dref[] = true
end
wait(@roc kernel(HA, HB, hc))
@test Array(HB)[1] == 1f0
sleep(1)
@test dref[] == true
end
@testset "Call: Async error" begin
function kernel(a,b,sig)
hostcall!(sig)
b[1] = a[1]
nothing
end
A = ones(Float32, 1)
B = zeros(Float32, 1)
HA = HSAArray(A)
HB = HSAArray(B)
dref = Ref{Bool}(false)
# This should throw an exception and the error message should be logged.
@test_logs (:error, "Hostcall error") begin
hc, hc_task = HostCall(Nothing, Tuple{}; return_task=true) do
error("Some error")
dref[] = true
end
wait(@roc kernel(HA, HB, hc))
sleep(1)
@test Array(HB)[1] == 1f0
@test dref[] == false
@test Base.istaskfailed(hc_task)
end
end
@testset "Call: Sync (0 args)" begin
function kernel(a,b,sig)
inc = hostcall!(sig)::Float32
b[1] = a[1] + inc
nothing
end
A = ones(Float32, 1)
B = zeros(Float32, 1)
HA = HSAArray(A)
HB = HSAArray(B)
hc = HostCall(Float32, Tuple{}) do
1f0
end
wait(@roc kernel(HA, HB, hc))
sleep(1)
@test Array(HB)[1] == 2f0
end
@testset "Call: Sync (1 arg)" begin
function kernel(a,b,sig)
inc = hostcall!(sig, 42f0)::Float32
b[1] = a[1] + inc
nothing
end
A = ones(Float32, 1)
B = zeros(Float32, 1)
HA = HSAArray(A)
HB = HSAArray(B)
hc = HostCall(Float32, Tuple{Float32}) do arg1
arg1 + 1f0
end
wait(@roc kernel(HA, HB, hc))
sleep(1)
@test Array(HB)[1] == 44f0
end
@testset "Call: Sync (2 homogeneous args)" begin
function kernel(a,b,sig)
inc = hostcall!(sig, 42f0, 3f0)::Float32
b[1] = a[1] + inc
nothing
end
A = ones(Float32, 1)
B = zeros(Float32, 1)
HA = HSAArray(A)
HB = HSAArray(B)
hc = HostCall(Float32, Tuple{Float32,Float32}) do arg1, arg2
arg1 + arg2 + 1f0
end
wait(@roc kernel(HA, HB, hc))
sleep(1)
@test Array(HB)[1] == 47f0
end
@testset "Call: Sync (2 heterogeneous args)" begin
function kernel(a,b,sig)
inc = hostcall!(sig, 42f0, Int16(3))::Float32
b[1] = a[1] + inc
nothing
end
A = ones(Float32, 1)
B = zeros(Float32, 1)
HA = HSAArray(A)
HB = HSAArray(B)
hc = HostCall(Float32, Tuple{Float32,Int16}) do arg1, arg2
arg1 + Float32(arg2) + 1f0
end
wait(@roc kernel(HA, HB, hc))
sleep(1)
@test Array(HB)[1] == 47f0
end
@testset "Call: Sync (2 heterogeneous args, return homogeneous tuple)" begin
function kernel(a,b,sig)
inc1, inc2 = hostcall!(sig, 42f0, Int16(3))::Tuple{Float32,Float32}
b[1] = a[1] + inc1 + inc2
nothing
end
A = ones(Float32, 1)
B = zeros(Float32, 1)
HA = HSAArray(A)
HB = HSAArray(B)
hc = HostCall(Tuple{Float32,Float32}, Tuple{Float32,Int16}) do arg1, arg2
(arg1 + Float32(arg2) + 1f0, 1f0)
end
wait(@roc kernel(HA, HB, hc))
sleep(1)
@test Array(HB)[1] == 48f0
end
@testset "Call: Sync (2 heterogeneous args, return heterogeneous tuple)" begin
function kernel(a,b,sig)
inc1, inc2 = hostcall!(sig, 42f0, Int16(3))::Tuple{Float32,Int64}
b[1] = a[1] + inc1 + Float32(inc2)
nothing
end
A = ones(Float32, 1)
B = zeros(Float32, 1)
HA = HSAArray(A)
HB = HSAArray(B)
hc = HostCall(Tuple{Float32,Int64}, Tuple{Float32,Int16}) do arg1, arg2
(arg1 + Float32(arg2) + 1f0, 1)
end
wait(@roc kernel(HA, HB, hc))
sleep(1)
@test Array(HB)[1] == 48f0
end
@testset "Call: Sync (2 hostcalls, 1 kernel)" begin
function kernel(a,b,sig1,sig2)
inc1 = hostcall!(sig1, 3f0)::Float32
inc2 = hostcall!(sig2, 4f0)::Float32
b[1] = a[1] + inc1 + inc2
nothing
end
A = ones(Float32, 1)
B = zeros(Float32, 1)
HA = HSAArray(A)
HB = HSAArray(B)
hc1 = HostCall(Float32, Tuple{Float32}) do arg1
arg1 + 1f0
end
hc2 = HostCall(Float32, Tuple{Float32}) do arg1
arg1 + 2f0
end
wait(@roc kernel(HA, HB, hc1, hc2))
sleep(1)
@test Array(HB)[1] == 11f0
end
@testset "Call: Sync (1 hostcall, 2 kernels)" begin
function kernel(a,b,sig)
inc = hostcall!(sig, 3f0)::Float32
b[1] = a[1] + inc
nothing
end
A = ones(Float32, 1)
B = zeros(Float32, 1)
HA = HSAArray(A)
HB = HSAArray(B)
hc = HostCall(Float32, Tuple{Float32}; continuous=true) do arg1
arg1 + 1f0
end
# FIXME: wait() hangs here, probably race condition?
@roc kernel(HA, HB, hc)
@roc kernel(HA, HB, hc)
sleep(1)
@test Array(HB)[1] == 5f0
end
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 694 | @testset "Kernel Indexing" begin
function idx_kern(X)
X[1] = workitemIdx().x
X[2] = workitemIdx().y
X[3] = workitemIdx().z
X[4] = workgroupIdx().x
X[5] = workgroupIdx().y
X[6] = workgroupIdx().z
nothing
end
A = zeros(Int64, 6)
HA = HSAArray(A)
@roc groupsize=(1,2,3) gridsize=(4,5,6) idx_kern(HA)
A = Array(HA)
@test all(A .> 0)
function dim_kern(X)
X[1] = workgroupDim().x
X[2] = workgroupDim().y
X[3] = workgroupDim().z
X[4] = gridDim().x
X[5] = gridDim().y
X[6] = gridDim().z
nothing
end
A = zeros(Int64, 6)
HA = HSAArray(A)
wait(@roc groupsize=(1,2,3) gridsize=(4,5,6) dim_kern(HA))
A = Array(HA)
@test A β [1,2,3,4,5,6]
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 789 | @testset "Launch Configuration" begin
kernel(x) = nothing
device = AMDGPUnative.default_device()
queue = AMDGPUnative.default_queue(device)
# Group/grid size selection and aliases
eval(:(@roc groupsize=2 $kernel(1)))
eval(:(@roc groupsize=2 gridsize=4 $kernel(1)))
eval(:(@roc gridsize=2 $kernel(1)))
eval(:(@roc threads=2 $kernel(1)))
eval(:(@roc blocks=4 $kernel(1)))
eval(:(@roc threads=2 gridsize=4 $kernel(1)))
# Device/queue selection and aliases
eval(:(@roc device=$device $kernel(1)))
eval(:(@roc device=$device queue=$queue $kernel(1)))
eval(:(@roc queue=$queue $kernel(1)))
eval(:(@roc agent=$device $kernel(1)))
eval(:(@roc stream=$queue $kernel(1)))
eval(:(@roc agent=$device queue=$queue $kernel(1)))
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 1441 | @testset "Math Intrinsics" begin
for intr in AMDGPUnative.MATH_INTRINSICS
jlintr = intr.jlname
if intr.isbroken || !(isdefined(Base, jlintr) || isdefined(SpecialFunctions, jlintr))
@test_skip "$jlintr()"
continue
end
modname = (isdefined(Base, jlintr) ? Base : SpecialFunctions)
# FIXME: Handle all input and output args
T = intr.inp_args[1]
intr_kern = Symbol("intr_$(jlintr)_$T")
@eval begin
function $intr_kern(a)
i = threadIdx().x
a[i] = AMDGPUnative.$jlintr(a[i])
return nothing
end
dims = (8,)
a = rand($T, dims)
if $(QuoteNode(jlintr)) == :acosh
a .+= one($T)
end
d_a = HSAArray(a)
len = prod(dims)
@debug begin
aspace = AMDGPUnative.AS.Global
arrdims = ndims(a)
arrT = ROCDeviceArray{Float32,arrdims,aspace}
@debug "LLVM IR"
AMDGPUnative.code_llvm($intr_kern, Tuple{arrT}; kernel=true)
@debug "GCN Device Code"
AMDGPUnative.code_gcn($intr_kern, Tuple{arrT}; kernel=true)
""
end
wait(@roc groupsize=len $intr_kern(d_a))
_a = Array(d_a)
@test $modname.$jlintr.(a) β _a
end
end
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 794 | @testset "Memory: Static" begin
function memory_static_kernel(a,b)
# Local
ptr_local = alloc_special(Val(:local), Float32, Val(AS.Local), Val(1))
unsafe_store!(ptr_local, a[1])
b[1] = unsafe_load(ptr_local)
# Region
#= TODO: AMDGPU target cannot select
ptr_region = alloc_special(Val(:region), Float32, Val(AS.Region), Val(1))
unsafe_store!(ptr_region, a[2])
b[2] = unsafe_load(ptr_region)
=#
# Private
#= TODO
ptr_private = alloc_special(Val(:private), Float32, Val(AS.Private), Val(1))
unsafe_store!(ptr_private, a[3])
b[3] = unsafe_load(ptr_private)
=#
nothing
end
A = ones(Float32, 1)
B = zeros(Float32, 1)
HA = HSAArray(A)
HB = HSAArray(B)
wait(@roc memory_static_kernel(HA, HB))
@test Array(HA) β Array(HB)
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 1171 | @testset "Output" begin
@testset "Plain, no newline" begin
function kernel(oc)
@rocprint oc "Hello World!"
nothing
end
iob = IOBuffer()
oc = OutputContext(iob)
@roc kernel(oc)
sleep(1)
@test String(take!(iob)) == "Hello World!"
end
@testset "Plain, with newline" begin
function kernel(oc)
@rocprintln oc "Hello World!"
nothing
end
iob = IOBuffer()
oc = OutputContext(iob)
@roc kernel(oc)
sleep(1)
@test String(take!(iob)) == "Hello World!\n"
end
@testset "Plain, multiple calls" begin
function kernel(oc)
@rocprint oc "Hello World!"
@rocprintln oc "Goodbye World!"
nothing
end
iob = IOBuffer()
oc = OutputContext(iob)
@roc kernel(oc)
sleep(1)
@test String(take!(iob)) == "Hello World!Goodbye World!\n"
end
#= TODO
@testset "Interpolated string" begin
inner_str = "to the"
function kernel(oc)
@rocprintln oc "Hello $inner_str World!"
nothing
end
iob = IOBuffer()
oc = OutputContext(iob)
@roc kernel(oc)
sleep(1)
@test String(take!(iob)) == "Hello to the World!\n"
end
=#
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | code | 1007 | # The original test :)
@testset "Vector Addition Kernel" begin
function vadd(a,b,c)
i = workitemIdx().x
c[i] = a[i] + b[i]
sync_workgroup()
return nothing
end
dims = (8,)
a = round.(rand(Float32, dims) * 100)
b = round.(rand(Float32, dims) * 100)
d_a = HSAArray(a)
d_b = HSAArray(b)
d_c = similar(d_a)
len = prod(dims)
@debug begin
@show d_a.handle
@show d_b.handle
@show d_c.handle
aspace = AMDGPUnative.AS.Global
arrdims = ndims(a)
arrT = ROCDeviceArray{Float32,arrdims,aspace}
@debug "LLVM IR"
AMDGPUnative.code_llvm(vadd, Tuple{arrT,arrT,arrT}; kernel=true)
@debug "GCN Device Code"
AMDGPUnative.code_gcn(vadd, Tuple{arrT,arrT,arrT}; kernel=true)
""
end
wait(@roc groupsize=len vadd(d_a, d_b, d_c))
@debug begin
@show d_a
@show d_b
@show d_c
""
end
c = Array(d_c)
@test a+b β c
end
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | docs | 2587 | # AMDGPUnative.jl
*Support for compiling and executing native Julia kernels on AMD GPUs.*
| **Documentation** | **Build Status** |
|:---------------------------------------:|:-------------------------------------------------------------:|
| [![][docs-master-img]][docs-master-url] | [![][gitlab-img]][gitlab-url] [![][codecov-img]][codecov-url] |
[gitlab-img]: https://gitlab.com/JuliaGPU/AMDGPUnative.jl/badges/master/pipeline.svg
[gitlab-url]: https://gitlab.com/JuliaGPU/AMDGPUnative.jl/commits/master
[codecov-img]: https://codecov.io/gh/JuliaGPU/AMDGPUnative.jl/branch/master/graph/badge.svg
[codecov-url]: https://codecov.io/gh/JuliaGPU/AMDGPUnative.jl
[docs-master-img]: https://img.shields.io/badge/docs-master-blue.svg
[docs-master-url]: https://juliagpu.gitlab.io/AMDGPUnative.jl/
## Quick start
The package can be installed with the Julia package manager.
From the Julia REPL, type `]` to enter the Pkg REPL mode and run:
```
pkg> add AMDGPUnative
```
Or, equivalently, via the `Pkg` API:
```julia
julia> import Pkg; Pkg.add("AMDGPUnative")
```
## Project Status
The package is tested against, and being developed for, Julia `1.3` and above.
Only 64-bit Linux is supported and working at this time, until ROCm is ported
to other platforms. It is recommended to use a version of Julia with LLVM 9.0
or higher. This package is under active maintenance and is reasonably
complete, however not all features (and especially performance) are up to par
with CUDAnative.
### Supported Functionality
| Feature | Supported | Notes |
|:---|:---:|:---|
| Host-side kernel launches | :heavy_check_mark: | See #58 |
| Dynamic parallelism | :x: |
| Local (shared) memory | :x: |
| Coarse-grained memory | :x: |
| Page-locked (pinned) memory | :x: |
## Questions and Contributions
Usage questions can be posted on the [Julia Discourse
forum](https://discourse.julialang.org/c/domain/gpu) under the GPU domain and/or in the #gpu
channel of the [Julia Slack](https://julialang.org/community/).
Contributions are very welcome, as are feature requests and suggestions. Please open an
[issue](https://github.com/JuliaGPU/AMDGPUnative.jl/issues) if you encounter any problems.
## Acknowledgment
AMDGPUnative would not have been possible without the work by Tim Besard and
contributors to [CUDAnative.jl](https://github.com/JuliaGPU/CUDAnative.jl) and
[LLVM.jl](https://github.com/maleadt/LLVM.jl).
## License
AMDGPUnative.jl is licensed under the [MIT License](LICENSE.md).
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | docs | 574 | # AMDGPUnative API Reference
## Kernel launching
```@docs
@roc
AMDGPUnative.AbstractKernel
AMDGPUnative.HostKernel
AMDGPUnative.rocfunction
```
## Device code API
### Thread indexing
#### HSA nomenclature
```@docs
workitemIdx
workgroupIdx
workgroupDim
gridDim
gridDimWG
```
#### CUDA nomenclature
Use these functions for compatibility with CUDAnative.jl.
```@docs
threadIdx
blockIdx
blockDim
```
### Synchronization
```@docs
sync_workgroup
```
### Pointers
```@docs
AMDGPUnative.DevicePtr
```
### Global Variables
```@docs
AMDGPUnative.get_global_pointer
```
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | docs | 3210 | # Global Variables
Most programmers are familiar with the concept of a "global variable": a
variable which is globally accessible to any function in the user's program. In
Julia, programmers are told to avoid using global variables (also known as
"globals") because of their tendency to introduce type instabilities. However,
they're often useful for sharing data between functions in distinct areas of
the user's program.
In the JuliaGPU ecosystem, globals in the Julia sense are not available unless
their value is constant and inlinable into the function referencing them, as
all GPU kernels must be statically compileable. However, a different sort of
global variable is available which serves a very similar purpose. This variant
of global variable is statically typed and sized, and is accessible from: all
kernels with the same function signature (e.g. `mykernel(a::Int32,
b::Float64)`), the CPU host, and other devices and kernels when accessed by
pointer.
Global variables can be created within kernels with the
[`AMDGPUnative.get_global_pointer`](@ref) function, which both declares the
global variable, and returns a pointer to it (specifically a
[`AMDGPUnative.DevicePtr`](@ref)). Once a kernel which declares a global is
compiled for GPU execution (either by [`@roc`](@ref) or [`rocfunction`](@ref)),
the global is allocated memory and made available to the kernel (during the
linking stage). Globals are unique by name, and so you shouldn't attempt to
call `get_global_pointer` with the same name but a different type; if you do,
undefined behavior will result. Like regular pointers in Julia, you can use
functions like `Base.unsafe_load` and `Base.unsafe_store!` to read from and
write to the global variable, respectively.
As a concrete example of global variable usage, let's define a kernel which
creates a global and uses its value to increment the indices of an array:
```julia
function my_kernel(A)
idx = workitemIdx().x
ptr = AMDGPUnative.get_global_pointer(Val(:myglobal), Int64)
A[idx] += Base.unsafe_load(ptr)
nothing
end
```
Now, let's compile this kernel and get a pointer to this newly-declared global
variable. We'll also create an `HSAArray` that we intend to pass to the kernel:
```julia
HA = HSAArray(ones(Float32, 4))
kern = rocfunction(my_kernel, Tuple{typeof(rocconvert(HA))})
gbl = HSARuntime.get_global(kern.mod.exe, :myglobal)
gbl_ptr = Base.unsafe_convert(Ptr{Int64}, gbl.ptr)
```
And now `gbl_ptr` is a pointer (specifically a `Ptr{Int64}`) to the memory that
represents the global variable `myglobal`. We can't guarantee the initial value
of a newly-initialized global variable, so let's write a value to that global
variable and then read it back:
```julia
Base.unsafe_store!(gbl_ptr, 42)
println(Base.unsafe_load(gbl_ptr))
```
And now `myglobal` has the value 42, of type `Int64`. Now, let's invoke the
kernel with `@roc` (keeping in mind that the kernel's signature must be the
same as in our call to `rocfunction` above:
```julia
wait(@roc groupsize=4 my_kernel(HA))
```
We can then read the values of `HA` and see that it's what we expect:
```julia-repl
julia> A = Array(HA)
4-element HSAArray{Float32,1}:
43.0
43.0
43.0
43.0
```
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | docs | 2541 | # Programming AMD GPUs with Julia
!!! tip
This documentation assumes that you are familiar with the main concepts of GPU programming and mostly describes the specifics of running Julia code on AMD GPUs.
For a much more gentle introduction to GPGPU with Julia consult the well-written [CUDA.jl documentation](https://juliagpu.gitlab.io/CUDA.jl).
## The ROCm stack
ROCm (short for Radeon Open Compute platforM) is AMD's open-source GPU computing platform, supported by most modern AMD GPUs ([detailed hardware support](https://github.com/RadeonOpenCompute/ROCm#hardware-and-software-support)) and some AMD APUs.
ROCm works solely on Linux and no plans to support either Windows or macOS have been announced by AMD.
A necessary prerequisite to use this Julia package is to have a working ROCm stack installed.
A quick way to verify this is to check the output of `rocminfo`.
For more information, consult the official [installation guide](https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html).
Even though the only platforms officially supported by AMD are certain versions of Ubuntu, CentOS, RHEL, and SLES [^1], there are options to install ROCm on other Linux distributions, including:
* Arch Linux - See the [rocm-arch](https://github.com/rocm-arch/rocm-arch) repository or the slightly older PKGBUILDs in the AUR.
* Gentoo - Check Portage for the `rocr-runtime` package and [justxi's rocm repo](https://github.com/justxi/rocm) for unofficial ROCm package ebuilds.
[^1]: <https://github.com/RadeonOpenCompute/ROCm/wiki#supported-operating-systems>
Even though you don't need HIP to use Julia on AMDGPU, it might be wise to make sure that you can build and run simple HIP programs to ensure that your ROCm installation works properly before trying to use it from Julia.
## The Julia AMDGPU stack
Julia support for programming AMD GPUs is currently provided by the following three packages:
* [HSARuntime.jl](https://github.com/jpsamaroo/HSARuntime.jl) - Provides an interface for working with the HSA runtime API, necessary for launching compiled kernels and controlling the GPU.
* [AMDGPUnative.jl](https://github.com/JuliaGPU/AMDGPUnative.jl) - Provides an interface for compiling and running kernels written in Julia through LLVM's AMDGPU backend. Uses and depends on HSARuntime.jl.
* [ROCArrays.jl](https://github.com/jpsamaroo/ROCArrays.jl) - Implements the [GPUArrays.jl](https://github.com/JuliaGPU/GPUArrays.jl) interface, providing high-level array operations on top of AMDGPUnative.jl.
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.3.2 | ded41ceeba656be904da319cce975871831654c6 | docs | 5043 | # Quick Start
## Installation
After making sure that your ROCm stack is installed and working, simply add the required packages to your Julia environment:
```julia
]add HSARuntime, AMDGPUnative
```
If everything ran successfully, you can try loading the `AMDGPUnative` package and running the unit tests:
```julia
using AMDGPUnative
]test AMDGPUnative
```
!!! warning
If you get an error message along the lines of `GLIB_CXX_... not found`, it's possible that the C++ runtime used to build the ROCm stack and the one used by Julia are different.
If you built the ROCm stack yourself this is very likely the case since Julia normally ships with its own C++ runtime.
For more information, check out this [GitHub issue](https://github.com/JuliaLang/julia/issues/34276).
A quick fix is to use the `LD_PRELOAD` environment variable to make Julia use the system C++ runtime library, for example:
```sh
LD_PRELOAD=/usr/lib/libstdc++.so julia
```
Alternatively, you can build Julia from sources as described [here](https://github.com/JuliaLang/julia/blob/master/doc/build/build.md).
You can quickly debug this issue by starting Julia and trying to load a ROCm library:
```julia
using Libdl
Libdl.dlopen("/opt/rocm/hsa/lib/libhsa-runtime64.so")
```
## Running a simple kernel
As a simple test, we will try to add two random vectors and make sure that the results from the CPU and the GPU are indeed the same.
We can start by first performing this simple calculation on the CPU:
```julia
N = 32
a = rand(Float64, N)
b = rand(Float64, N)
c_cpu = a + b
```
To do the same computation on the GPU, we first need to copy the two input arrays `a` and `b` to the device.
Toward that end, we will use the `HSAArray` type from `HSARuntime` to represent our GPU arrays.
We can create the two arrays by passing the host data to the constructor as follows:
```julia
using HSARuntime, AMDGPUnative
a_d = HSAArray(a)
b_d = HSAArray(b)
```
We need to create one additional array `c_d` to store the results:
```julia
c_d = similar(a_d)
```
!!! note
`HSAArray` is a lightweight low-level array type, that does not support the GPUArrays.jl interface.
Production code should instead use `ROCArray` once its ready, in a similar fashion to `CuArray`.
In this example, the postfix `_d` distinguishes a device memory object from its host memory counterpart.
This convention is completely arbitrary and you may name your device-side variables whatever you like; they are regular Julia variables.
Next, we will define the GPU kernel that does the actual computation:
```julia
function vadd!(c, a, b)
i = workitemIdx().x
c[i] = a[i] + b[i]
return
end
```
This simple kernel starts by getting the current thread ID using [`workitemIdx`](@ref) and then performs the addition of the elements from `a` and `b`, storing the result in `c`.
Notice how we explicitly specify that this function does not return a value by adding the `return` statement.
This is necessary for all GPU kernels and we can enforce it by adding a `return`, `return nothing`, or even `nothing` at the end of the kernel.
If this statement is omitted, Julia will attempt to return the value of the last evaluated expression, in this case a `Float64`, which will cause a compilation failure as kernels cannot return values.
The easiest way to launch a GPU kernel is with the [`@roc`](@ref) macro, specifying that we want a single work group with `N` work items and calling it like an ordinary function:
```julia
@roc groupsize=N vadd!(c_d, a_d, b_d)
```
Keep in mind that kernel launches are asynchronous, meaning that you need to do some kind of synchronization before you use the result.
For instance, you can call `wait()` on the returned HSA signal value:
```julia
wait(@roc groupsize=N vadd!(c_d, a_d, b_d))
```
!!! warning "Naming conventions"
Throughout this example we use terms like "work group" and "work item".
These terms are used by the Khronos consortium and their APIs including OpenCL and Vulkan, as well as the HSA foundation.
NVIDIA, on the other hand, uses some different terms in their CUDA API, which might be confusing to some users porting their kernels from CUDAnative to AMDGPUnative.
As a quick summary, here is a mapping of the most common terms:
| AMDGPUnative | CUDAnative |
|:---:|:---:|
| [`workitemIdx`](@ref) | [`threadIdx`](@ref) |
| [`workgroupIdx`](@ref) | [`blockIdx`](@ref) |
| [`workgroupDim`](@ref) | [`blockDim`](@ref) |
| [`gridDim`](@ref) | No equivalent |
| [`gridDimWG`](@ref) | `gridDim` |
| `groupsize` | `threads` |
| `gridsize` | `blocks * threads` |
| `queue` | `stream` |
For compatibilty reasons, the symbols in the CUDAnative column (except for `gridDim`) are also supported by AMDGPUnative.
Finally, we can make sure that the results match, by first copying the data to the host and then comparing it with the CPU results:
```julia
c = Array(c_d)
using Test
@test isapprox(c, c_cpu)
```
| AMDGPUnative | https://github.com/JuliaGPU/AMDGPUnative.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 383 | using Documenter, TinyModia, ModiaPlot
makedocs(
#modules = [TinyModia],
sitename = "TinyModia",
authors = "Hilding Elmqvist (Mogram) and Martin Otter (DLR-SR)",
format = Documenter.HTML(prettyurls = false),
pages = [
"Home" => "index.md",
"TinyModia Tutorial" => "Tutorial.md",
"Functions" => "Functions.md",
"Internal" => "Internal.md"
]
)
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 3377 | module CauerLowPassFilterModel
using TinyModia
using DifferentialEquations
using ModiaPlot
include("../models/Electric.jl")
l1 = 1.304
l2 = 0.8586
c1 = 1.072*1u"F"
c2 = 1/(1.704992^2*l1)*1u"F"
c3 = 1.682*1u"F"
c4 = 1/(1.179945^2*l2)*1u"F"
c5 = 0.7262*1u"F"
CauerLowPassOPVWithoutNodes(i=1) = Model(
# Cauer low pass filter with operational amplifiers
C1 = Capacitor | Map(C=c1 + c2),
C2 = Capacitor | Map(C=c2, v=Var(init=nothing)),
C3 = Capacitor | Map(C=l1*1u"F"),
C4 = Capacitor | Map(C=c4*i, v=Var(init=nothing)),
C5 = Capacitor | Map(C=c2, v=Var(init=nothing)),
R1 = Resistor | Map(R=1u"Ξ©"),
R2 = Resistor | Map(R=1u"Ξ©"),
R3 = Resistor | Map(R=1u"Ξ©"),
Op1 = IdealOpAmp3Pin,
G = Ground,
R4 = Resistor | Map(R=-1u"Ξ©"),
R5 = Resistor | Map(R=-1u"Ξ©"),
Op2 = IdealOpAmp3Pin,
Op3 = IdealOpAmp3Pin,
G1 = Ground,
R6 = Resistor | Map(R=1u"Ξ©"),
R7 = Resistor | Map(R=1u"Ξ©"),
C6 = Capacitor | Map(C=c2 + c3 + c4, v=Var(init=nothing)),
R8 = Resistor | Map(R=-1u"Ξ©"),
R9 = Resistor | Map(R=-1u"Ξ©"),
R10 = Resistor | Map(R=1u"Ξ©"),
Op4 = IdealOpAmp3Pin,
Op5 = IdealOpAmp3Pin,
C7 = Capacitor | Map(C=l2*1u"F"),
C8 = Capacitor | Map(C=c4, i=Var(start=0u"A")),
C9 = Capacitor | Map(C=c4 + c5),
R11 = Resistor | Map(R=1u"Ξ©"),
G2 = Ground,
G3 = Ground,
G4 = Ground,
V = ConstantVoltage | Map(V=1.0u"V"),
Ground1 = Ground,
connect = :[
(Op1.in_p, G.p)
(G1.p, Op2.in_p)
(R1.n, Op1.in_n, C2.n, R2.n, C1.p, R3.p)
(R3.n, C1.n, Op1.out, R4.p, C5.p)
(R4.n, Op2.in_n, C3.p, R5.n)
(C2.p, R5.p, Op3.out, C6.n, R9.p, C8.p)
(C3.n, Op2.out, R2.p, R7.p)
(R7.n, Op3.in_n, C5.n, R6.n, C6.p, C4.n)
(C4.p, R8.p, R11.n, C9.n, Op5.out)
(R9.n, R8.n, Op4.in_n, C7.p)
(R6.p, C7.n, Op4.out, R10.p)
(G2.p, Op3.in_p)
(R11.p, C9.p, R10.n, Op5.in_n, C8.n)
(Op4.in_p, G3.p)
(Op5.in_p, G4.p)
(V.p, Ground1.p)
(V.n, R1.p) ]
)
println("Build array of Cauer low pass filters")
@time Filters = Model(
filters = [CauerLowPassOPVWithoutNodes(0.1*i) for i in 1:10]
)
model = @instantiateModel(Filters, logDetails=false, logTiming=true, unitless=true)
println("Simulate")
@time simulate!(model, Tsit5(), stopTime = 60, requiredFinalStates =
[-0.5000732186007855, -0.5002239998029879, 0.4996923410661849, -0.4996706636198064, -0.5000929741546876, -0.5001255383344897, -0.500147742207576, 0.49981113006573824, -0.4996196061432069, -0.5001392063603706, -0.5001815616147427, -0.5000459266587362, 0.49996685095395915, -0.49958392015463465, -0.5001886259176451, -0.5002389821958331, -0.4999173001411904, 0.5001611780149184, -0.49957016523210945, -0.5002393712119582, -0.5002944833191254, -0.49976183273648583, 0.5003940588092074, -0.49958591550449066, -0.5002887040151874, -0.500343478728503, -0.4995812991530469, 0.5006629055320556, -0.49963969356758026, -0.5003327561376948, -0.50037980690654, -0.49938004306850625, 0.5009615326279456, -0.4997407922705924, -0.5003662177501006, -0.500395375828166, -0.4991659724894459, 0.5012787730322307, -0.4998989295998676, -0.5003819572251011, -0.5003797586125351, -0.49895184523346914, 0.5015966895590688, -0.5001236602409048, -0.5003705619890064, -0.5003197458974357, -0.49875691633150787, 0.5018882791340892, -0.5004234377294563, -0.5003197904255381])
plot(model, ["filters_1.C9.v", "filters_2.C9.v", "filters_3.C9.v"])
println("Total")
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 2434 | module FilterCircuit
using TinyModia
using DifferentialEquations
using ModiaPlot
setLogMerge(false)
include("../models/Electric.jl")
Filter = Model(
R = Resistor | Map(R=0.5u"Ξ©"),
C = Capacitor | Map(C=2.0u"F", v=Var(init=0.1u"V")),
V = ConstantVoltage | Map(V=10.0u"V"),
ground = Ground,
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n, ground.p)
]
)
model = @instantiateModel(Filter, log=false, aliasReduction=true, logCode=false)
@time simulate!(model, Tsit5(), stopTime = 10)
#plot(model, [("R.v", "C.v")])
println("Simulate once more with different R.R")
@time simulate!(model, Tsit5(), stopTime = 10, merge = Map(R = Map(R = 5u"Ξ©")), requiredFinalStates = [6.3579935215716095])
plot(model, [("R.v", "C.v")])
# setLogMerge(true)
println("Filter without ground and parameter propagation")
Filter2 = Model(
r = 2.0u"Ξ©",
c = 1.0u"F",
v = 10u"V",
R = Resistor | Map(R=:r),
C = Capacitor | Map(C=:c),
V = ConstantVoltage | Map(V=:v),
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n)
]
)
# @showModel(Filter2)
model = @instantiateModel(Filter2, log=false, aliasReduction=true, logCode=false)
simulate!(model, Tsit5(), stopTime = 10, requiredFinalStates = [9.932620374719848])
plot(model, [("R.v", "C.v")])
println("Voltage divider by redeclaring capacitor to resistor")
Cpar = Map(C = 5.0u"F")
TwoFilters = Model( f1 = Filter | Map( R = Map(R = 10.0u"Ξ©"), C = Cpar), f2 = Filter)
VoltageDividerAndFilter = TwoFilters | Map(f1 = Map(C = Redeclare | Resistor | (R = 20.0u"Ξ©", v = Var(start = 0u"V"))))
model = @instantiateModel(VoltageDividerAndFilter, log=false, aliasReduction=true, logCode=false)
simulate!(model, Tsit5(), stopTime = 10, requiredFinalStates = [9.999550454584188])
plot(model, [("f1.R.v", "f1.C.v"), ("f2.R.v", "f2.C.v")])
println("Build array of filters")
Filters = Model(
filters = [Filter | Map( R = Map(R = (10.0+5*i)*u"Ξ©")) for i in 1:10]
)
setLogMerge(false)
model = @instantiateModel(Filters, log=false, aliasReduction=true, logCode=false)
simulate!(model, Tsit5(), stopTime = 10, requiredFinalStates =
[2.9063400246452358, 2.2898722474751163, 1.8945655444974656, 1.6198309235728083, 1.4179087924692246, 1.2632806644107324, 1.1410907635368692, 1.0421095614435398, 0.9603029088053439, 0.8915602951695468])
plot(model, [("filters_1.R.v", "filters_1.C.v"), ("filters_2.R.v", "filters_2.C.v")])
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 1573 | module FilterCircuit
using TinyModia
using DifferentialEquations
using ModiaPlot
using Unitful
setLogMerge(true)
include("../models/ElectricTest.jl")
# res = Resistor
# @showModel(res)
@showModel(Capacitor)
Filter = Model(
R = Resistor | Map(R=0.5u"Ξ©"),
C = Capacitor | Map(C=2.0u"F", v=Map(init=0.1u"V")),
V = ConstantVoltage | Map(V=10.0u"V"),
ground = Ground,
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n, ground.p)
]
)
@showModel(Filter)
#=
Filter2 = Model(
r = 1.0u"Ξ©",
c = 1.0u"F",
v = 1.0u"V",
R = Resistor | Map(R=:(up.r)),
C = Capacitor | Map(C=:(up.c)),
V = ConstantVoltage | Map(V=:(up.v)),
ground = Ground,
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n, ground.p)
]
)
Cpar = Map(C = 5.0u"F")
TwoFilters = Model( f1 = Filter | Map( R = Map(R = 10.0u"Ξ©"), C = Cpar), f2 = Filter)
VoltageDividerAndFilter = TwoFilters | Map(f1 = Map(C = Redeclare | Resistor | (R = 20.0u"Ξ©", start = Map(v = 0u"V"))))
println("Build")
@time Filters = Model(
filters = [Filter for i in 1:10]
)
setLogMerge(false)
model = @instantiateModel(Filters, logDetails=false, aliasReduction=false)
println("Simulate")
@time simulate!(model, Tsit5(), stopTime = 50, requiredFinalStates =
[9.999999294887072, 9.999999294887072, 9.999999294887072, 9.999999294887072, 9.999999294887072, 9.999999294887072, 9.999999294887072, 9.999999294887072, 9.999999294887072, 9.999999294887072])
plot(model, [("filters_1.R.v", "filters_1.C.v"), ("filters_2.R.v", "filters_2.C.v")])
=#
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 5035 | module MotorControl
println("\nMotorControl: Demonstrating the ability to simulate hierarchical mixed domain models")
include("../models/Blocks.jl")
include("../models/Electric.jl")
include("../models/Rotational.jl")
using TinyModia
using DifferentialEquations
using ModiaPlot
using Measurements
export MotorControl2
MotorControl1 = Model(
step = Step | Map(height=4.7*u"A", offset=0u"A"),
feedback = Feedback,
PI = PI | Map(T=0.005u"s", k=30, x = Var(init=0.0u"A")),
firstOrder = FirstOrder | Map(k=1u"V/A", T=0.001u"s", x = Var(init=0.0u"V")),
signalVoltage = SignalVoltage,
resistor = Resistor | Map(R=13.8u"Ξ©"),
inductor = Inductor | Map(L=0.061u"H"),
emf = EMF | Map(k=1.016u"N*m/A"),
ground = Ground,
currentSensor = CurrentSensor,
motorInertia = Inertia | Map(J=0.0025u"kg*m^2"),
idealGear = IdealGear | Map(ratio=105),
springDamper = SpringDamper | Map(c=5.0e5u"N*m/rad", d=500u"N*m*s/rad"),
loadInertia = Inertia | Map(J=100u"kg*m^2"),
tload = Torque,
equations = :[
tload.tau = 0.0u"N*m",
],
connect = :[
(step.y, feedback.u1)
(feedback.y, PI.u)
(PI.y, firstOrder.u)
(firstOrder.y, signalVoltage.v)
(signalVoltage.p, resistor.p)
(resistor.n, inductor.p)
(inductor.n, emf.p)
(emf.n, ground.p, currentSensor.p)
(currentSensor.n, signalVoltage.n)
(currentSensor.i, feedback.u2)
(emf.flange, motorInertia.flange_a)
(motorInertia.flange_b, idealGear.flange_a)
(idealGear.flange_b, springDamper.flange_a)
(springDamper.flange_b, loadInertia.flange_a)
(tload.flange, loadInertia.flange_b) ]
)
model = @instantiateModel(MotorControl1, log=false)
println("Simulate")
@time simulate!(model, stopTime=0.1, tolerance=1e-6, log=false, requiredFinalStates =
[3.487844601078223, 106.82874860310305, 4.616087152802267, 2.014120727821878, 41.98048886114646, 0.018332432934516536, 0.3725930536373392])
plot(model, [("currentSensor.i", "step.y"), "loadInertia.w"], figure=1)
# Hierarchical model
ControlledMotor = Model(
refCurrent = input,
feedback = Feedback,
PI = PI | Map(T=0.005u"s", k=30, x = Var(init=0.0u"A")),
firstOrder = FirstOrder | Map(k=1u"V/A", T=0.001u"s", x = Var(init=0.0u"V")),
signalVoltage = SignalVoltage,
resistor = Resistor | Map(R=13.8u"Ξ©"),
inductor = Inductor | Map(L=0.061u"H"),
emf = EMF | Map(k=1.016u"N*m/A"),
ground = Ground,
currentSensor = CurrentSensor,
motorInertia = Inertia | Map(J=0.0025u"kg*m^2"),
flange = Flange,
connect = :[
(refCurrent, feedback.u1)
(feedback.y, PI.u)
(PI.y, firstOrder.u)
(firstOrder.y, signalVoltage.v)
(signalVoltage.p, resistor.p)
(resistor.n, inductor.p)
(inductor.n, emf.p)
(emf.n, ground.p, currentSensor.p)
(currentSensor.n, signalVoltage.n)
(currentSensor.i, feedback.u2)
(emf.flange, motorInertia.flange_a)
(motorInertia.flange_b, flange) ]
)
MotorControl2 = Model(
step = Step | Map(height=4.7*u"A", offset=0u"A"),
controlledMotor = ControlledMotor,
idealGear = IdealGear | Map(ratio=105),
springDamper = SpringDamper | Map(c=5.0e5u"N*m/rad", d=500u"N*m*s/rad"),
loadInertia = Inertia | Map(J=100.0u"kg*m^2"),
tload = Torque,
equations = :[
tload.tau = 0.0u"N*m",
],
connect = :[
(step.y, controlledMotor.refCurrent)
(controlledMotor.flange, idealGear.flange_a)
(idealGear.flange_b, springDamper.flange_a)
(springDamper.flange_b, loadInertia.flange_a)
(tload.flange, loadInertia.flange_b) ]
)
model = @instantiateModel(MotorControl2)
println("Simulate")
@time simulate!(model, stopTime=0.1, tolerance=1e-6, log=false, requiredFinalStates =
[3.487844601078223, 106.82874860310305, 4.616087152802267, 2.014120727821878, 41.98048886114646, 0.018332432934516536, 0.3725930536373392])
plot(model, [("controlledMotor.currentSensor.i", "step.y"), "loadInertia.w"], figure=1)
# Model with uncertainties
MotorControlWithUncertainties = MotorControl2 | Map( loadInertia = Map(J=(100.0 Β± 10)*u"kg*m^2"), controlledMotor = Map(PI = Map(k=30 Β± 3) ) )
model = @instantiateModel(MotorControlWithUncertainties, FloatType = Measurement{Float64})
println("Simulate")
@time simulate!(model, stopTime=0.1, tolerance=1e-6, log=false)
plot(model, [("controlledMotor.currentSensor.i", "step.y"), "loadInertia.w"], figure=1)
end
#=
module MotorControlModuleMonteCarlo
using ModiaBase.TinyModia
using Unitful
using Main.MotorControlModule
include("../test/SimulateAndPlot.jl")
using MonteCarloMeasurements
# Model with Monte Carlo
MotorControlWithUncertainties = MotorControl2 | Map( loadInertia = Map(J=(100.0 β 10)), controlledMotor = Map(PI = Map(k=30 β 3) ) )
model = @instantiateModel(MotorControlWithUncertainties, FloatType = StaticParticles{Float64,100}, unitless=true)
println("Simulate")
@time simulate!(model, stopTime=0.1, tolerance=1e-6, log=false)
plot(model, [("controlledMotor.currentSensor.i", "step.y"), "loadInertia.w"], figure=1)
end
=#
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 4431 | module ServoSystemSimulation
println("\nServoSystem: Demonstrating the ability to simulate hierarchical mixed domain models")
include("../models/Blocks.jl")
include("../models/Electric.jl")
include("../models/Rotational.jl")
using TinyModia
using DifferentialEquations
using ModiaPlot
#using Measurements
using MonteCarloMeasurements
setLogMerge(false)
Gear = Model(
flange_a = Flange,
flange_b = Flange,
gear = IdealGear_withSupport | Map(ratio = 105.0),
fixed = Fixed,
spring = Spring | Map(c=5.84e5u"N*m/rad"),
damper1 = Damper | Map(d=500.0u"N*m*s/rad"),
damper2 = Damper | Map(d=100.0u"N*m*s/rad"),
connect = :[
(flange_a , gear.flange_a)
(fixed.flange , gear.support, damper2.flange_b)
(gear.flange_b, damper2.flange_a, spring.flange_a, damper1.flange_a)
(flange_b , spring.flange_b, damper1.flange_b)]
)
ControlledMotor = Model(
refCurrent = input,
flange = Flange,
feedback = Feedback,
PI = PI | Map(k=30, T=1.0u"s"),
firstOrder = FirstOrder | Map(k=1.0, T=0.001u"s"),
signalVoltage = UnitlessSignalVoltage,
resistor = Resistor | Map(R=13.8u"Ξ©"),
inductor = Inductor | Map(L=0.061u"H"),
emf = EMF | Map(k=1.016u"N*m/A"),
ground = Ground,
currentSensor = UnitlessCurrentSensor,
motorInertia = Inertia | Map(J=0.0025u"kg*m^2"),
connect = :[
(refCurrent, feedback.u1)
(feedback.y, PI.u)
(PI.y, firstOrder.u)
(firstOrder.y, signalVoltage.v)
(signalVoltage.p, resistor.p)
(resistor.n, inductor.p)
(inductor.n, emf.p)
(emf.n, ground.p, currentSensor.p)
(currentSensor.n, signalVoltage.n)
(currentSensor.i, feedback.u2)
(emf.flange, motorInertia.flange_a)
(motorInertia.flange_b, flange) ]
)
SpeedController = Model(
refSpeed = input,
motorSpeed = input,
refCurrent = output,
gain = Gain | Map(k=105.0),
PI = PI | Map(T=1.0u"s", k=1.0),
feedback = Feedback,
connect = :[
(refSpeed , gain.u)
(gain.y , feedback.u1)
(motorSpeed, feedback.u2)
(feedback.y, PI.u)
(PI.y , refCurrent)]
)
Servo = Model(
refSpeed = input,
flange_b = Flange,
speedController = SpeedController | Map(ks=1.0, Ts=1.0u"s", ratio=105.0),
motor = ControlledMotor | Map(km=30.0, Tm=0.005u"s"),
gear = Gear | Map(ratio=105.0),
speedSensor1 = UnitlessSpeedSensor,
speedSensor2 = UnitlessSpeedSensor,
speedError = Feedback,
connect = :[
(refSpeed , speedController.refSpeed, speedError.u1)
(speedController.refCurrent, motor.refCurrent)
(motor.flange , gear.flange_a, speedSensor1.flange)
(speedSensor1.w , speedController.motorSpeed)
(gear.flange_b , flange_b, speedSensor2.flange)
(speedSensor2.w , speedError.u2)]
)
TestServo = Model(
ks = 0.8,
Ts = 0.08u"s",
ramp = Ramp | Map(duration=1.18u"s", height=2.95),
servo = Servo | Map(ks=:(up.ks), Ts=:(up.Ts)),
load = Inertia | Map(J=170u"kg*m^2"),
equations =:[load.flange_b.tau = 0u"N*m"],
connect = :[
(ramp.y , servo.refSpeed)
(servo.flange_b, load.flange_a) ]
)
plotVariables = [("ramp.y", "load.w"), "servo.speedError.y", "servo.motor.currentSensor.i"]
model = @instantiateModel(TestServo)
println("Simulate")
@time simulate!(model, Tsit5(), stopTime=2.0, tolerance=1e-6, log=false, requiredFinalStates =
[7.320842067204029, 9.346410309487013, 355.30389168655955, 2.792544498835712, 429.42665751348284, 311.7812493890421, 4.089776248793499, 2.969353608933471])
plot(model, plotVariables, figure=1)
println("\nModel with uncertainties")
#TestServoWithUncertainties = TestServo | Map( load = Map(J=(110.0 Β± 20)*u"kg*m^2") )
TestServoWithUncertainties = TestServo | Map( load = Map(J=(110.0 β 20) ) ) # u"kg*m^2") ) #Map( ramp = Map(height=3 β 1))
#model = @instantiateModel(TestServoWithUncertainties , FloatType = Measurement{Float64})
model = @instantiateModel(TestServoWithUncertainties , FloatType = StaticParticles{Float64,100}, unitless=true, log=false,
logCode=false, logExecution=false)
println("Simulate")
@time simulate!(model, Tsit5(), stopTime=2.0, tolerance=1e-6, log=false)
plot(model, plotVariables, figure=2)
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 4394 | module ServoSystemSimulation
println("\nServoSystem: Demonstrating the ability to simulate hierarchical mixed domain models")
include("../models/Blocks.jl")
include("../models/Electric.jl")
include("../models/Rotational.jl")
using TinyModia
using DifferentialEquations
using ModiaPlot
using Unitful
#using Measurements
using MonteCarloMeasurements
setLogMerge(false)
Gear = Model(
flange_a = Flange,
flange_b = Flange,
gear = IdealGear_withSupport | Map(ratio = 105),
fixed = Fixed,
spring = Spring | Map(c=5.84e5u"N*m/rad"),
damper1 = Damper | Map(d=500u"N*m*s/rad"),
damper2 = Damper | Map(d=100u"N*m*s/rad"),
connect = :[
(flange_a , gear.flange_a)
(fixed.flange , gear.support, damper2.flange_b)
(gear.flange_b, damper2.flange_a, spring.flange_a, damper1.flange_a)
(flange_b , spring.flange_b, damper1.flange_b)]
)
ControlledMotor = Model(
inputs = :[refCurrent],
flange = Flange,
feedback = Feedback,
PI = PI | Map(k=30, T=1.0u"s", init = Map(x=0.0u"A")),
firstOrder = FirstOrder | Map(k=1u"V/A", T=0.001u"s", init = Map(x=0.0u"V")),
signalVoltage = SignalVoltage,
resistor = Resistor | Map(R=13.8u"Ξ©"),
inductor = Inductor | Map(L=0.061u"H"),
emf = EMF | Map(k=1.016u"N*m/A"),
ground = Ground,
currentSensor = CurrentSensor,
motorInertia = Inertia | Map(J=0.0025u"kg*m^2"),
connect = :[
(refCurrent, feedback.u1)
(feedback.y, PI.u)
(PI.y, firstOrder.u)
(firstOrder.y, signalVoltage.v)
(signalVoltage.p, resistor.p)
(resistor.n, inductor.p)
(inductor.n, emf.p)
(emf.n, ground.p, currentSensor.p)
(currentSensor.n, signalVoltage.n)
(currentSensor.i, feedback.u2)
(emf.flange, motorInertia.flange_a)
(motorInertia.flange_b, flange) ]
)
SpeedController = Model(
inputs = :[refSpeed, motorSpeed],
outputs = :[refCurrent],
gain = Gain | Map(k=105),
PI = PI | Map(T=1.0u"s", k=1.0u"A*s/rad", init = Map(x=0u"rad/s")),
feedback = Feedback,
connect = :[
(refSpeed , gain.u)
(gain.y , feedback.u1)
(motorSpeed, feedback.u2)
(feedback.y, PI.u)
(PI.y , refCurrent)]
)
Servo = Model(
inputs = :[refSpeed],
flange_b = Flange,
speedController = SpeedController | Map(ks=1.0u"A*s/rad", Ts=1.0u"s", ratio=105),
motor = ControlledMotor | Map(km=30.0, Tm=0.005u"s"),
gear = Gear | Map(ratio=105),
speedSensor1 = SpeedSensor,
speedSensor2 = SpeedSensor,
speedError = Feedback,
connect = :[
(refSpeed , speedController.refSpeed, speedError.u1)
(speedController.refCurrent, motor.refCurrent)
(motor.flange , gear.flange_a, speedSensor1.flange)
(speedSensor1.w , speedController.motorSpeed)
(gear.flange_b , flange_b, speedSensor2.flange)
(speedSensor2.w , speedError.u2)]
)
TestServo = Model(
ks = 0.8u"A*s/rad",
Ts = 0.08u"s",
ramp = Ramp | Map(duration=1.18u"s", height=2.95u"rad/s", offset=0.0u"rad/s"),
servo = Servo | Map(ks=:(up.ks), Ts=:(up.Ts)),
load = Inertia | Map(J=170u"kg*m^2"),
equations =:[load.flange_b.tau = 0u"N*m"],
connect = :[
(servo.refSpeed, ramp.y)
(load.flange_a, servo.flange_b) ]
)
plotVariables = [("ramp.y", "load.w"), "servo.speedError.y", "servo.motor.currentSensor.i"]
model = @instantiateModel(TestServo, log=false, logDetails=false)
println("Simulate")
@time simulate!(model, Tsit5(), stopTime=2.0, tolerance=1e-6, log=false)
plot(model, plotVariables, figure=1)
println("\nModel with uncertainties")
#TestServoWithUncertainties = TestServo | Map( load = Map(J=(110.0 Β± 20)*u"kg*m^2") )
TestServoWithUncertainties = TestServo | Map( load = Map(J=(110.0 β 20) ) ) # u"kg*m^2") ) #Map( ramp = Map(height=3 β 1))
#model = @instantiateModel(TestServoWithUncertainties , FloatType = Measurement{Float64})
model = @instantiateModel(TestServoWithUncertainties , FloatType = StaticParticles{Float64,100}, unitless=true, log=false,
logCode=false, logExecution=false)
println("Simulate")
@time simulate!(model, Tsit5(), stopTime=2.0, tolerance=1e-6, log=false)
plot(model, plotVariables, figure=2)
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 1952 | module SimpleFilters
using TinyModia
using DifferentialEquations
using ModiaPlot
SimpleModel = Model(
T = 0.2,
x = Var(init=0.5),
equation = :[T * der(x) + x = 2]
)
# @showModel(SimpleModel)
model = @instantiateModel(SimpleModel)
simulate!(model, Tsit5(), stopTime = 5, requiredFinalStates = [1.9999996962023168])
plot(model, ["x"])
LowPassFilter = Model(
T = 0.2,
u = input,
y = output | Var(:x),
x = Var(init=0.0u"V"),
equations = :[T * der(x) + x = u],
)
# @showModel(LowPassFilter)
HighPassFilter = LowPassFilter | Model(
y = Var(:(-x + u)),
)
# @showModel(HighPassFilter)
# setLogMerge(true)
LowAndHighPassFilter = LowPassFilter | Model(
y = nothing,
low = output | Var(:x),
high = output | Var(:(-x + u)),
)
setLogMerge(false)
# @showModel(LowAndHighPassFilter)
TestLowAndHighPassFilter = LowAndHighPassFilter | Model(
u = :(sin( (time+1u"s")*u"1/s/s" * time)*u"V"),
x = Var(init=0.2u"V")
)
# @showModel(TestLowAndHighPassFilter)
model = @instantiateModel(TestLowAndHighPassFilter, log=false, logCode=false)
simulate!(model, Tsit5(), stopTime = 5, requiredFinalStates = [-0.22633046061014014])
plot(model, ["low", "high"])
TwoFilters = Model(
high = HighPassFilter,
low = LowPassFilter,
)
# @showModel(TwoFilters)
BandPassFilter = Model(
u = input,
y = output,
high = HighPassFilter | Map(T=0.5, x=Var(init=0.1u"V")),
low = LowPassFilter | Map(x=Var(init=0.2u"V")),
equations = :[
high.u = u,
low.u = high.y,
y = low.y]
)
# @showModel(BandPassFilter)
TestBandPassFilter = BandPassFilter | Model(
u = :(sin( (0.05*time+1u"s")*u"1/s/s" * time)*u"V"),
)
# @showModel(TestBandPassFilter)
setLogMerge(false)
model = @instantiateModel(TestBandPassFilter, logDetails=false)
simulate!(model, Tsit5(), stopTime = 50, requiredFinalStates = [-0.25968254453053435, -0.6065869606784539])
plot(model, ["u", "y"])
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 230 | using Test
@testset "TinyModia examples with simulation" begin
include("SimpleFilters.jl")
include("FilterCircuit.jl")
include("CauerLowPassFilter.jl")
include("MotorControl.jl")
include("ServoSystem.jl")
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 68 | include("Blocks.jl")
include("Electric.jl")
include("Rotational.jl") | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 3771 | """
Modia module with block component models (inspired from Modelica Standard Library).
* Developer: Hilding Elmqvist, Mogram AB, Martin Otter, DLR
* Copyright (c) 2016-2021: Hilding Elmqvist, Martin Otter
* License: MIT (expat)
"""
#module Blocks
using TinyModia
using Unitful
#export Gain, FirstOrder, Feedback, PI, Step, Ramp # Sine, Switch, MIMO
# Single-Input-Single-Output continuous control block
SISO = Model(
u = input,
y = output
)
# Gain
Gain = SISO | Model(
k = 1, # (info = "Gain")
equations = :[
y = k*u ]
)
# First-order transfer function block (= 1 pole)
FirstOrder = SISO | Model(
k = 1.0,
T = 1.0*u"s",
x = Var(init=0.0),
equations = :[
der(x) = (k * u - x) / T
y = x ]
)
# Output difference between commanded and feedback input
Feedback = Model(
u1 = input | info"Input 1",
u2 = input | info"Input 2",
y = output | info"Output signal",
equations = :[
y = u1 - u2 ]
)
# Proportional-Integral controller
PI = SISO | Model(
k = 1.0, # (info = "Gain")
T = 1.0u"s", # (min = 1E-10, info = "Time Constant (T>0 required)")
x = Var(init=0.0),
equations = :[
der(x) = u / T
y = k * (x + u) ]
)
# Single-Output continuous control block
SO = Model(
y = output
)
# Base class for a continuous signal source
SignalSource = SO | Model(
offset = 0.0, # info = "Offset of output signal y"
startTime = 0.0*u"s" # info = "Output y = offset for time < startTime")
)
# Step signal
Step = SignalSource | Model(
height = 1.0,
equations = :[
y = offset + (time < startTime ? 0*height : height) ] # 0*height is needed, if height has a unit
)
# Ramp signal
Ramp = SignalSource | Model(
height = 1.0,
duration = 2.0u"s",
equations = :[
y = offset + (time < startTime ? 0.0*height : # 0*height is needed, if height has a unit
(time < startTime + duration ? (time - startTime)*height/duration :
height)) ]
)
# Linear state space system
StateSpace = Model(
A = fill(0.0,0,0),
B = fill(0.0,0,0),
C = fill(0.0,0,0),
D = fill(0.0,0,0),
u = input,
y = output,
x = Var(init = zeros(0)),
equations = :[
der(x) = A*x + B*u
y = C*x + D*u
]
)
# -------------------------------------------------------
#=
# Sinusoidal signal
@model Sine begin
amplitude = Parameter(1.0, info = "Amplitude of sine wave")
freqHz = Parameter(1.0,info = "Frequency of sine wave")
phase = Parameter(0.0, info = "Phase of sine wave")
offset = Parameter(0.0, info = "Offset of output signal y")
startTime = Parameter(0.0, info = "Output y = offset for time < startTime")
SO()
equations
y = offset + if time < startTime; 0 else amplitude*sin(2*pi*freqHz*(time - startTime) + phase) end
end
@model Sine2 begin
# Generate sine signal
amplitude = Parameter(1.0, info = "Amplitude of sine wave")
freqHz = Parameter(1.0,info = "Frequency of sine wave")
phase = Parameter(0.0, info = "Phase of sine wave")
SignalSource()
equations
y = offset + if time < startTime; 0 else amplitude * sin(2 * pi * freqHz * (time - startTime) + phase) end
end
# Switch
@model Switch begin
sw = Input(Boolean(info = "Switch position (if `true`, use `u1`, else use `u2`)"))
u1 = Input(info = "Input 1")
u2 = Input(info = "Input 2")
y = Output(info = "Output signal")
equations
y = if sw; u1 else u2 end
end
# ABCD model
@model ABCD(A = -1, B = 1, C = 1, D = 0) begin
u = Input(info = "Input signal"); y = Output(info = "Output signal")
x = Float(start = 0)
equations
der(x) = A * x + B * u
y = C * x + D * u
end
=#
#end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 4430 | """
Modia module with electric component models (inspired from Modelica Standard Library).
* Developer: Hilding Elmqvist, Mogram AB
* Copyright (c) 2016-2021: Hilding Elmqvist
* License: MIT (expat)
"""
#module Electric
using TinyModia
using Unitful
Pin = Model( v = potential, i = flow )
OnePort = Model( p = Pin, n = Pin, partialEquations = :[
v = p.v - n.v
0 = p.i + n.i
i = p.i ]
)
"""
Resistor(R=1.0u"Ξ©")
Electrical resistor
`R` - Resistance Ξ©
"""
Resistor = OnePort | Model( R = 1.0u"Ξ©", equations = :[ R*i = v ] )
# @showModel(Resistor)
Capacitor = OnePort | Model( C = 1.0u"F", v=Var(init=0.0u"V"), equations = :[ C*der(v) = i ] )
Inductor = OnePort | Model( L = 1.0u"H", i=Var(init=0.0u"A"), equations = :[ L*der(i) = v ] )
ConstantVoltage = OnePort | Model( V = 1.0u"V", equations = :[ v = V ] )
Ground = Model( p = Pin, equations = :[ p.v = 0.0u"V" ] )
# Ideal operational amplifier (norator-nullator pair), but 3 pins
IdealOpAmp3Pin = Model(
in_p = Pin,
in_n = Pin,
out = Pin,
equations = :[
in_p.v = in_n.v
in_p.i = 0u"A"
in_n.i = 0u"A" ]
)
# Partial generic voltage source using the input signal as source voltage
PartialSignalVoltage = Model(
v = input,
p = Pin,
n = Pin
)
# Generic voltage source using the input signal (without and with unit) as source voltage
SignalVoltage = PartialSignalVoltage | Model(
equations = :[
p.v - n.v = v
0 = p.i + n.i
i = p.i ]
)
UnitlessSignalVoltage = PartialSignalVoltage | Model(
equations = :[
p.v - n.v = v*u"V"
0 = p.i + n.i
i = p.i ]
)
# Partial sensor to measure the current in a branch
PartialCurrentSensor = Model(
i = output,
p = Pin, # (info = "Positive pin")
n = Pin, # (info = "Negative pin")
)
# Sensor to measure the current in a branch
CurrentSensor = PartialCurrentSensor | Model(
equations = :[
p.v = n.v
0 = p.i + n.i
i = p.i]
)
UnitlessCurrentSensor = PartialCurrentSensor | Model(
equations = :[
p.v = n.v
0 = p.i + n.i
i = p.i/u"A"]
)
#=
# Step voltage source
@model StepVoltage begin
V = Parameter(1.0, start = 1.0, info = "Voltage") #, T = Unitful.V)
startTime = Parameter(0.0, start = 0.0, info = "Start time") # , T = Unitful.s)
OnePort()
equations
v = if time < startTime; 0 else V end
end
@model VoltageSource begin
OnePort()
offset = Par(0.0) # Voltage offset
startTime = Par(0.0) # Time offset
signalSource = SignalSource(offset=offset, startTime=startTime)
equations
v = signalSource.y
end
#=
@model SineVoltage1 begin
# Sine voltage source
V = Parameter() # Amplitude of sine wave
phase = Par(0.0) # Phase of sine wave
freqHz = Parameter() # Frequency of sine wave
VoltageSource(signalSource=Sine(amplitude=V, freqHz=freqHz, phase=phase))
end
=#
# Sinusoidal voltage source
@model SineVoltage begin
V = Parameter() # Amplitude of sine wave
phase = Par(0.0) # Phase of sine wave
freqHz = Parameter() # Frequency of sine wave
VoltageSource()
equations
v = V*sin(10*time)
end
# Ideal diode
@model IdealDiode begin # Ideal diode
OnePort()
Ron = Par(1.0E-2) # Forward state-on differential resistance (closed diode resistance)
Goff = Par(1.0E-2) # Backward state-off conductance (opened diode conductance)
Vknee = Par(0) # Forward threshold voltage
# off = Variable(start=true) # Switching state
s = Float(start=0.0) # Auxiliary variable for actual position on the ideal diode characteristic
#=
s = 0: knee point
s < 0: below knee point, diode conducting
s > 0: above knee point, diode locking
=#
equations
# off := s < 0
# v = s * if !positive(s); 1 else Ron end + Vknee
# i = s * if !positive(s); Goff else 1 end + Goff * Vknee
v = s * if !(s>0); 1 else Ron end + Vknee
i = s * if !(s>0); Goff else 1 end + Goff * Vknee
end
@model Diode begin
OnePort()
Ids=Par(1.e-6) # "Saturation current";
Vt=Par(0.04) # "Voltage equivalent of temperature (kT/qn)";
Maxexp = Par(15) # "Max. exponent for linear continuation";
R=Par(1.e8) # "Parallel ohmic resistance";
equations
i = if v/Vt > Maxexp; Ids*(exp(Maxexp)*(1 + v/Vt - Maxexp) - 1) else Ids*(exp(v/Vt) - 1) end + v/R
end
=#
#end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 5230 | """
Modia module with electric component models (inspired from Modelica Standard Library).
* Developer: Hilding Elmqvist, Mogram AB
* Copyright (c) 2016-2021: Hilding Elmqvist
* License: MIT (expat)
"""
#module Electric
using TinyModia
using Unitful
Var(args...; kwargs...) = (;args..., kwargs...)
Var(value::Union{Float64, Int64, Bool, String, Expr}, args...; kwargs...) = (;value = value, args..., kwargs...)
parameter = :parameter => true
input = :input => true
output = :output => true
potential = :potential => true
flow = :flow => true
v = Var(potential, nominal=10)
@show v
v = Var(5, parameter, min=0)
@show v
v = Var(potential, min=0, flow, nominal=10)
@show v
Pin = Model( v = Var(potential, nominal=10), i = Var(flow) )
@show Pin
Input(; kwargs...) = (;input=true, kwargs...)
Output(; kwargs...) = (;output=true, kwargs...)
Potential(; kwargs...) = (;potential=true, kwargs...)
Flow(; kwargs...) = (;flow=true, kwargs...)
Pin = Model( v = Potential(nominal=10), i = Flow() )
@show Pin
#Pin = Model( potentials = :[v], flows = :[i] )
Pin = Model( v = Var(;pot), i = Var(;flow) )
OnePort = Model( p = Pin, n = Pin, partialEquations = :[
v = p.v - n.v
0 = p.i + n.i
i = p.i ]
)
"""
Resistor(R=1.0u"Ξ©")
Electrical resistor
`R` - Resistance Ξ©
"""
Resistor = OnePort | Model( R = 1.0u"Ξ©", equations = :[ R*i = v ] )
Capacitor = OnePort | Model( C = 1.0u"F", v = Map(init=0.0u"V"), equations = :[ C*der(v) = i ] )
Inductor = OnePort | Model( L = 1.0u"H", init=Map(i=0.0u"A"), equations = :[ L*der(i) = v ] )
ConstantVoltage = OnePort | Model( V = 1.0u"V", equations = :[ v = V ] )
Ground = Model( p = Pin, equations = :[ p.v = 0.0u"V" ] )
# Ideal operational amplifier (norator-nullator pair), but 3 pins
IdealOpAmp3Pin = Model(
in_p = Pin,
in_n = Pin,
out = Pin,
equations = :[
in_p.v = in_n.v
in_p.i = 0u"A"
in_n.i = 0u"A" ]
)
# Partial generic voltage source using the input signal as source voltage
PartialSignalVoltage = Model(
inputs = :[v],
p = Pin,
n = Pin
)
# Generic voltage source using the input signal (without and with unit) as source voltage
SignalVoltage = PartialSignalVoltage | Model(
equations = :[
p.v - n.v = v
0 = p.i + n.i
i = p.i ]
)
UnitlessSignalVoltage = PartialSignalVoltage | Model(
equations = :[
p.v - n.v = v*u"V"
0 = p.i + n.i
i = p.i ]
)
# Partial sensor to measure the current in a branch
PartialCurrentSensor = Model(
outputs = :[i],
p = Pin, # (info = "Positive pin")
n = Pin, # (info = "Negative pin")
)
# Sensor to measure the current in a branch
CurrentSensor = PartialCurrentSensor | Model(
equations = :[
p.v = n.v
0 = p.i + n.i
i = p.i]
)
UnitlessCurrentSensor = PartialCurrentSensor | Model(
equations = :[
p.v = n.v
0 = p.i + n.i
i = p.i/u"A"]
)
#=
# Step voltage source
@model StepVoltage begin
V = Parameter(1.0, start = 1.0, info = "Voltage") #, T = Unitful.V)
startTime = Parameter(0.0, start = 0.0, info = "Start time") # , T = Unitful.s)
OnePort()
equations
v = if time < startTime; 0 else V end
end
@model VoltageSource begin
OnePort()
offset = Par(0.0) # Voltage offset
startTime = Par(0.0) # Time offset
signalSource = SignalSource(offset=offset, startTime=startTime)
equations
v = signalSource.y
end
#=
@model SineVoltage1 begin
# Sine voltage source
V = Parameter() # Amplitude of sine wave
phase = Par(0.0) # Phase of sine wave
freqHz = Parameter() # Frequency of sine wave
VoltageSource(signalSource=Sine(amplitude=V, freqHz=freqHz, phase=phase))
end
=#
# Sinusoidal voltage source
@model SineVoltage begin
V = Parameter() # Amplitude of sine wave
phase = Par(0.0) # Phase of sine wave
freqHz = Parameter() # Frequency of sine wave
VoltageSource()
equations
v = V*sin(10*time)
end
# Ideal diode
@model IdealDiode begin # Ideal diode
OnePort()
Ron = Par(1.0E-2) # Forward state-on differential resistance (closed diode resistance)
Goff = Par(1.0E-2) # Backward state-off conductance (opened diode conductance)
Vknee = Par(0) # Forward threshold voltage
# off = Variable(start=true) # Switching state
s = Float(start=0.0) # Auxiliary variable for actual position on the ideal diode characteristic
#=
s = 0: knee point
s < 0: below knee point, diode conducting
s > 0: above knee point, diode locking
=#
equations
# off := s < 0
# v = s * if !positive(s); 1 else Ron end + Vknee
# i = s * if !positive(s); Goff else 1 end + Goff * Vknee
v = s * if !(s>0); 1 else Ron end + Vknee
i = s * if !(s>0); Goff else 1 end + Goff * Vknee
end
@model Diode begin
OnePort()
Ids=Par(1.e-6) # "Saturation current";
Vt=Par(0.04) # "Voltage equivalent of temperature (kT/qn)";
Maxexp = Par(15) # "Max. exponent for linear continuation";
R=Par(1.e8) # "Parallel ohmic resistance";
equations
i = if v/Vt > Maxexp; Ids*(exp(Maxexp)*(1 + v/Vt - Maxexp) - 1) else Ids*(exp(v/Vt) - 1) end + v/R
end
=#
#end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 2166 | #=
Modia library with 1D heat transfer component models (inspired from Modelica Standard Library).
Developer: Martin Otter, DLR-SR
Copyright 2021, DLR Institute of System Dynamics and Control
License: MIT (expat)
=#
using TinyModia
using Unitful
HeatPort = Model( T = potential, # Absolute temperature
Q_flow = flow ) # Heat flow into the component
FixedTemperature = Model(
T = 293.15u"K",
port = HeatPort,
equations = :[port.T = T]
)
FixedHeatFlow = Model(
Q_flow = 0.0u"W", # Fixed heat flow into the connected component
port = HeatPort,
equations = :[port.Q_flow = -Q_flow]
)
HeatCapacitor = Model(
C = 1.0u"J/K",
port = HeatPort,
T = Var(init = 293.15u"K"),
equations = :[T = port.T,
der(T) = port.Q_flow/C]
)
ThermalConductor = Model(
G = 1.0u"W/K",
port_a = HeatPort,
port_b = HeatPort,
equations = :[dT = port_a.T - port_b.T
0 = port_a.Q_flow + port_b.Q_flow
port_a.Q_flow = G*dT]
)
# Fully insulated rod with 1D heat transfer and port_a/port_b on left/right side
T_grad1(T,Ta,dx,i) = i == 1 ? (Ta - T[1])/(dx/2) : (T[i-1] - T[i] )/dx
T_grad2(T,Tb,dx,i) = i == length(T) ? (T[i] - Tb)/(dx/2) : (T[i] - T[i+1])/dx
InsulatedRod = Model(
L = 1.0u"m", # Length of rod
A = 0.0004u"m^2", # Rod area
rho = 7500.0u"kg/m^3", # Density of rod material
lambda = 74.0u"W/(m*K)", # Thermal conductivity of rod material
c = 450.0u"J/(kg*K)", # Specific heat capacity of rod material
port_a = HeatPort, # Heat port on left side
port_b = HeatPort, # Heat port on right side
T = Map(init = fill(293.15u"K", 1)), # Initial temperature and number of nodes
equations = :[
n = length(T)
dx = L/n
Ce = c*rho*A*dx
k = lambda*A/Ce
der(T) = k*[T_grad1(T,port_a.T,dx,i) - T_grad2(T,port_b.T,dx,i) for i in eachindex(T)]
port_a.Q_flow = lambda*A*(port_a.T - T[1])/(dx/2)
port_b.Q_flow = lambda*A*(port_b.T - T[n])/(dx/2)
]
)
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 5177 | """
Modia module with rotational component models (inspired from Modelica Standard Library).
* Developer: Hilding Elmqvist, Mogram AB, Martin Otter, DLR
* Copyright (c) 2016-2021: Hilding Elmqvist, Martin Otter
* License: MIT (expat)
"""
#module Rotational
#export Flange, Inertia, Spring, SpringDamper, EMF, IdealGear, Torque, CurrentSensor, Fixed, Damper, IdealGear_withSupport, SpeedSensor
using TinyModia
using Unitful
# Connector for 1D rotational systems
Flange = Model(
phi = potential,
tau = flow
)
# Flange fixed in housing at a given angle
#=
Fixed = Model(
flange = Flange,
phi0 = 0.0u"rad",
equations = :[
flange.phi = 0.0u"rad"]
)
=#
Fixed = Model(
flange = Flange,
equations = :[
flange.phi = 0.0]
)
# 1D-rotational component with inertia
Inertia = Model(
flange_a = Flange, # (info = "Left flange of shaft")
flange_b = Flange, # (info = "Right flange of shaft")
J = 1.0u"kg*m^2", # (0, min=0, info = "Moment of inertia") #, T = u"kg*m^2")
phi = Var(init=0.0u"rad"),
w = Var(init=0.0u"rad/s"),
equations = :[
phi = flange_a.phi
phi = flange_b.phi
w = der(phi)
a = der(w)
J * a = flange_a.tau + flange_b.tau ]
)
# Partial model for the compliant connection of two rotational 1-dim. shaft flanges
PartialCompliant = Model(
flange_a = Flange,
flange_b = Flange,
partialEquations = :[
phi_rel = flange_b.phi - flange_a.phi
flange_b.tau = tau
flange_a.tau = -tau ]
)
# Linear 1D rotational spring
Spring = PartialCompliant | Model(
c = 1.0u"N*m/rad", # (min = 0, info = "Spring constant")
phi_rel0 = 0u"rad", # (info = "Unstretched spring angle")
equations = :[
tau = c * (phi_rel - phi_rel0) ]
)
# Linear 1D rotational spring with damper
SpringDamper = PartialCompliant | Model(
c = 1.0*u"N*m/rad", # (min = 0, info = "Spring constant")
d = 0.0u"N*m*s/rad", # (info = "Damping constant")
phi_rel0 = 0u"rad", # (info = "Unstretched spring angle")
equations = :[
tau = c * (phi_rel - phi_rel0) + d * der(phi_rel) ]
)
# Electromotoric force (electric/mechanic) transformer
EMF = Model(
k = 1.0u"N*m/A", # (info = "Transformation coefficient")
p = Pin,
n = Pin,
flange = Flange,
equations = :[
v = p.v - n.v
0 = p.i + n.i
i = p.i
phi = flange.phi
w = der(phi)
k * w = v
flange.tau = -k * i ]
)
# Ideal gear
IdealGear = Model(
flange_a = Flange, # "Left flange of shaft"
flange_b = Flange, # "Right flange of shaft"
ratio = 1.0, # "Transmission ratio (flange_a.phi/flange_b.phi)"
equations = :[
phi_a = flange_a.phi
phi_b = flange_b.phi
phi_a = ratio * phi_b
0 = ratio * flange_a.tau + flange_b.tau ]
)
# Ideal gear with support
IdealGear_withSupport = Model(
flange_a = Flange, # "Left flange of shaft"
flange_b = Flange, # "Right flange of shaft"
support = Flange, # "Support flange"
ratio = 1.0, # "Transmission ratio"
equations = :[
phi_a = flange_a.phi - support.phi
phi_b = flange_b.phi - support.phi
phi_a = ratio * phi_b
0 = ratio * flange_a.tau + flange_b.tau
0 = flange_a.tau + flange_b.tau + support.tau ]
)
# Partial input signal acting as external torque on a flange
PartialTorque = Model(
tau = input,
flange = Flange
)
# Input signal acting as external torque on a flange
Torque = PartialTorque | Model(equations = :[flange.tau = -tau])
UnitlessTorque = PartialTorque | Model(equations = :[flange.tau = -tau*u"N*m"])
#=
# Partial model for the compliant connection of two rotational 1-dim. shaft flanges where the relative angle and speed are used as preferred states
PartialCompliantWithRelativeStates = Model(
flange_a = Flange,
flange_b = Flange,
init = Map(phi_rel=0.0u"rad", w_rel=0.0u"rad/s"),
equations = :[
phi_rel = flange_b.phi - flange_a.phi
w_rel = der(phi_rel)
a_rel = der(w_rel)
flange_b.tau = tau
flange_a.tau = -tau ]
)
# Linear 1D rotational damper
Damper = PartialCompliantWithRelativeStates | Model(
d = 1.0u"N*m*s/rad", # (info = "Damping constant"),
equation = :[
tau = d * w_rel ]
)
=#
# Linear 1D rotational damper
Damper = Model(
flange_a = Flange,
flange_b = Flange,
phi_rel = Var(start=0.0u"rad"),
d = 1.0u"N*m*s/rad", # (info = "Damping constant"),
equation = :[
phi_rel = flange_b.phi - flange_a.phi
w_rel = der(phi_rel)
flange_b.tau = tau
flange_a.tau = -tau
tau = d * w_rel ]
)
# Partial model to measure a single absolute flange variable
PartialAbsoluteSensor = Model(
flange = Flange,
equation = :[flange.tau = 0]
)
# Ideal sensor to measure the absolute flange angular velocity
SpeedSensor = PartialAbsoluteSensor | Model(w = output, equations = :[w = der(flange.phi)])
UnitlessSpeedSensor = PartialAbsoluteSensor | Model(w = output, equations = :[w = der(flange.phi)*u"s/rad"])
#end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 20923 | # License for this file: MIT (expat)
# Copyright 2020-2021, DLR Institute of System Dynamics and Control
using ModiaBase
using Unitful
using Measurements
import MonteCarloMeasurements
using DataStructures: OrderedDict, OrderedSet
using DataFrames
export SimulationModel, measurementToString, get_lastValue
"""
baseType(T)
Return the base type of a type T.
# Examples
```
baseType(Float32) # Float32
baseType(Measurement{Float64}) # Float64
```
"""
baseType(::Type{T}) where {T} = T
baseType(::Type{Measurements.Measurement{T}}) where {T<:AbstractFloat} = T
baseType(::Type{MonteCarloMeasurements.Particles{T,N}}) where {T<:AbstractFloat,N} = T
baseType(::Type{MonteCarloMeasurements.StaticParticles{T,N}}) where {T<:AbstractFloat,N} = T
"""
str = measurementToString(v)
Return variable `v::Measurements.Measurement{FloatType}` or a vector of such variables
in form of a string will the full number of significant digits.
"""
measurementToString(v::Measurements.Measurement{FloatType}) where {FloatType} =
string(Measurements.value(v)) * " Β± " * string(Measurements.uncertainty(v))
function measurementToString(v::Vector{Measurements.Measurement{FloatType}}) where {FloatType}
str = string(typeof(v[1])) * "["
for (i,vi) in enumerate(v)
if i > 1
str = str * ", "
end
str = str * measurementToString(vi)
end
str = str * "]"
return str
end
"""
simulationModel = SimulationModel{FloatType}(
modelModule, modelName, getDerivatives!, equationInfo, x_startValues,
parameters, variableNames;
modelModule = nothing,
vSolvedWithInitValuesAndUnit::OrderedDict{String,Any}(),
vEliminated::Vector{Int}=Int[],
vProperty::Vector{Int}=Int[],
var_name::Function = v->nothing)
# Arguments
- `modelModule`: Module in which `@instantiateModel` is invoked (it is used for `Core.eval(modelModule, ...)`),
that is evaluation of expressions in the environment of the user.
- `modelName::String`: Name of the model
- `getDerivatives::Function`: Function that is used to evaluate the model equations,
typically generated with [`TinyModia.generate_getDerivatives!`].
- `equationInfo::ModiaBase.EquationInfo`: Information about the states and the equations.
- `x_startValues`:: Deprecated (is no longer used).
- `parameters`: A hierarchical NamedTuple of (key, value) pairs defining the parameter and init/start values.
- variableNames: A vector of variable names. A name can be a Symbol or a String.
"""
mutable struct SimulationModel{FloatType}
modelModule
modelName::String
getDerivatives!::Function
equationInfo::ModiaBase.EquationInfo
linearEquations::Vector{ModiaBase.LinearEquations{FloatType}}
variables::OrderedDict{String,Int} # Dictionary of variables and their result indices (negated alias has negativ index)
zeroVariables::OrderedSet{String} # Set of variables that are identically to zero
vSolvedWithInitValuesAndUnit::OrderedDict{String,Any} # Dictionary of (names, init values with units) for all explicitly solved variables with init-values defined
p::AbstractVector # Parameter and init/start values
# (parameter values are used in getDerivatives!,
# init/start values are extracted and stored in x_start)
separateObjects::OrderedDict{Int,Any} # Dictionary of separate objects
storeResult::Bool
isInitial::Bool
isTerminal::Bool
time::FloatType
nGetDerivatives::Int # Number of getDerivatives! calls
x_start::Vector{FloatType}
der_x::Vector{FloatType}
result::Vector{Tuple}
algorithmType::DataType # Type of integration algorithm (used in default-heading of plot)
function SimulationModel{FloatType}(modelModule, modelName, getDerivatives!, equationInfo, x_startValues,
parameters, variableNames;
vSolvedWithInitValuesAndUnit::AbstractDict = OrderedDict{String,Any}(),
vEliminated::Vector{Int} = Int[],
vProperty::Vector{Int} = Int[],
var_name::Function = v -> nothing) where {FloatType}
# Construct result dictionaries
variables = OrderedDict{String,Int}()
zeroVariables = OrderedSet{String}()
vSolvedWithInitValuesAndUnit2 = OrderedDict{String,Any}( [(string(key),vSolvedWithInitValuesAndUnit[key]) for key in keys(vSolvedWithInitValuesAndUnit)] )
# Store variables
for (i, name) in enumerate(variableNames)
variables[string(name)] = i
end
# Store eliminated variables
for v in vEliminated
name = var_name(v)
if ModiaBase.isZero(vProperty, v)
push!(zeroVariables, name)
elseif ModiaBase.isAlias(vProperty, v)
name2 = var_name( ModiaBase.alias(vProperty, v) )
variables[name] = variables[name2]
else # negated alias
name2 = var_name( ModiaBase.negAlias(vProperty, v) )
variables[name] = -variables[name2]
end
end
# Construct parameter values that are copied into the code
parameterValues = [eval(p) for p in values(parameters)]
# Construct data structure for linear equations
linearEquations = ModiaBase.LinearEquations{FloatType}[]
for leq in equationInfo.linearEquations
push!(linearEquations, ModiaBase.LinearEquations{FloatType}(leq...))
end
# Construct dictionary for separate objects
separateObjects = OrderedDict{Int,Any}()
# Initialize execution flags
isInitial = true
isTerminal = false
storeResult = false
nGetDerivatives = 0
new(modelModule, modelName, getDerivatives!, equationInfo, linearEquations, variables, zeroVariables,
vSolvedWithInitValuesAndUnit2, parameterValues,
separateObjects, storeResult, isInitial, isTerminal, convert(FloatType, 0), nGetDerivatives,
zeros(FloatType,0), zeros(FloatType,0), Tuple[])
end
end
"""
floatType = getFloatType(simulationModel::SimulationModel)
Return the floating point type with which `simulationModel` is parameterized
(for example returns: `Float64, Float32, DoubleFloat, Measurements.Measurement{Float64}`).
"""
getFloatType(m::SimulationModel{FloatType}) where {FloatType} = FloatType
"""
hasParticles(value)
Return true, if `value` is of type `MonteCarloMeasurements.StaticParticles` or
`MonteCarloMeasurements.Particles`.
"""
hasParticles(value) = typeof(value) <: MonteCarloMeasurements.StaticParticles ||
typeof(value) <: MonteCarloMeasurements.Particles
"""
get_value(obj::NamedTuple, name::String)
Return the value identified by `name` from the potentially hierarchically
`NamedTuple obj`. If `name` is not in `obj`, the function returns `missing`.
# Examples
```julia
s1 = (a = 1, b = 2, c = 3)
s2 = (v1 = s1, v2 = (d = 4, e = 5))
s3 = (v3 = s2, v4 = s1)
@show get_value(s3, "v3.v1.b") # returns 2
@show get_value(s3, "v3.v2.e") # returns 5
@show get_value(s3, "v3.v1.e") # returns missing
```
"""
function get_value(obj::NamedTuple, name::String)
if length(name) == 0 || length(obj) == 0
return missing
end
j = findnext('.', name, 1)
if isnothing(j)
key = Symbol(name)
return haskey(obj,key) ? obj[key] : missing
elseif j == 1
return missing
else
key = Symbol(name[1:j-1])
if haskey(obj,key) && typeof(obj[key]) <: NamedTuple && length(name) > j
get_value(obj[key], name[j+1:end])
else
return missing
end
end
end
"""
appendName(path::String, name::Symbol)
Return `path` appended with `.` and `string(name)`.
"""
appendName(path, key) = path == "" ? string(key) : path * "." * string(key)
"""
get_names(obj::NamedTuple)
Return `Vector{String}` containing all the names present in `obj`
# Examples
```julia
s1 = (a = 1, b = 2, c = 3)
s2 = (v1 = s1, v2 = (d = 4, e = 5))
s3 = (v3 = s2, v4 = s1)
@show get_names(s3)
```
"""
function get_names(obj::NamedTuple)
names = String[]
get_names!(obj, names, "")
return names
end
function get_names!(obj::NamedTuple, names::Vector{String}, path::String)::Nothing
for (key,value) in zip(keys(obj), obj)
name = appendName(path, key)
if typeof(value) <: NamedTuple
get_names!(value, names, name)
else
push!(names, name)
end
end
return nothing
end
"""
get_lastValue(model::SimulationModel, name::String; unit=true)
Return the last stored value of variable `name` from `model`.
If `unit=true` return the value with its unit, otherwise with stripped unit.
If `name` is not known or no result values yet available, an info message is printed
and the function returns `nothing`.
"""
function get_lastValue(m::SimulationModel, name::String; unit=true)
if haskey(m.variables, name)
if length(m.result) == 0
@info "get_lastValue(model,\"$name\"): No results yet available."
return nothing
end
resIndex = m.variables[name]
negAlias = false
if resIndex < 0
resIndex = -resIndex
negAlias = true
end
value = m.result[end][resIndex]
if negAlias
value = -value
end
elseif name in m.zeroVariables
# Unit missing (needs to be fixed)
value = 0.0
else
value = get_value(m.p[1], name)
if ismissing(value)
@info "get_lastValue: $name is not known and is ignored."
return nothing;
end
end
return unit ? value : ustrip(value)
end
get_xe(x, xe_info) = xe_info.length == 1 ? x[xe_info.startIndex] : x[xe_info.startIndex:xe_info.startIndex + xe_info.length-1]
function set_xe!(x, xe_info, value)::Nothing
if xe_info.length == 1
x[xe_info.startIndex] = value
else
x[xe_info.startIndex:xe_info.startIndex + xe_info.length-1] = value
end
return nothing
end
"""
success = init!(simulationModel, startTime, tolerance, merge, log, logParameters, logStates)
Initialize `simulationModel::SimulationModel` at `startTime`. In particular:
- Empty result data structure.
- Merge parameter and init/start values into simulationModel.
- Construct x_start.
- Call simulationModel.getDerivatives! once with isInitial = true to
compute and store all variables in the result data structure at `startTime`
and initialize simulationModel.linearEquations.
- Check whether explicitly solved variables that have init-values defined,
have the required value after initialization (-> otherwise error).
If initialization is successful return true, otherwise false.
"""
function init!(m::SimulationModel, startTime, tolerance, merge,
log::Bool, logParameters::Bool, logStates::Bool)::Bool
empty!(m.result)
# Apply updates from merge Map and log parameters
if isnothing(merge)
if logParameters
parameters = m.p[1]
@showModel parameters
end
else
m.p = [recursiveMerge(m.p[1], merge)]
if logParameters
updatedParameters = m.p[1]
@showModel updatedParameters
end
end
# Re-initialize dictionary of separate objects
empty!(m.separateObjects)
# Update startIndex, length in x_info and determine x_start
FloatType = getFloatType(m)
x_start = []
startIndex = 1
for xe_info in m.equationInfo.x_info
xe_info.startIndex = startIndex
# Determine init/start value in m.p[1]
xe_value = get_value(m.p[1], xe_info.x_name)
if ismissing(xe_value)
error("Missing start/init value ", xe_info.x_name)
end
if hasParticles(xe_value)
len = 1
push!(x_start, xe_value)
else
len = length(xe_value)
push!(x_start, xe_value...)
end
if len != xe_info.length
printstyled("Model error: ", bold=true, color=:red)
printstyled("Length of ", xe_info.x_name, " shall be changed from ",
xe_info.length, " to $len\n",
"This is currently not support in TinyModia.", bold=true, color=:red)
return false
end
startIndex += xe_info.length
end
nx = startIndex - 1
m.equationInfo.nx = nx
# Temporarily remove units from x_start
# (TODO: should first transform to the var_unit units and then remove)
converted_x_start = convert(Vector{FloatType}, [ustrip(v) for v in x_start]) # ustrip.(x_start) does not work for MonteCarloMeasurements
m.x_start = deepcopy(converted_x_start)
if logStates
# List init/start values
x_table = DataFrames.DataFrame(state=String[], init=Any[], unit=String[], nominal=Float64[])
for xe_info in m.equationInfo.x_info
xe_init = get_xe(m.x_start, xe_info)
if hasParticles(xe_init)
xe_init = string(minimum(xe_init)) * " .. " * string(maximum(xe_init))
end
push!(x_table, (xe_info.x_name, xe_init, xe_info.unit, xe_info.nominal))
end
show(stdout, x_table; allrows=true, allcols=true, rowlabel = Symbol("#"), summary=false, eltypes=false)
println("\n")
end
m.der_x = zeros(FloatType, nx)
# Initialize model, linearEquations and compute and store all variables at the initial time
if log
println(" Initialization at time = ", startTime, " s")
end
m.nGetDerivatives = 0
m.isInitial = true
m.storeResult = true
# m.getDerivatives!(m.der_x, m.x_start, m, startTime)
Base.invokelatest(m.getDerivatives!, m.der_x, m.x_start, m, startTime)
m.isInitial = false
m.storeResult = false
# Check vSolvedWithInitValuesAndUnit
if length(m.vSolvedWithInitValuesAndUnit) > 0
names = String[]
valuesBeforeInit = Any[]
valuesAfterInit = Any[]
for (name, valueBefore) in m.vSolvedWithInitValuesAndUnit
valueAfterInit = get_lastValue(m, name, unit=false)
valueBeforeInit = ustrip.(valueBefore)
if !isnothing(valueAfterInit) && abs(valueBeforeInit - valueAfterInit) >= max(abs(valueBeforeInit),abs(valueAfterInit),0.01*tolerance)*tolerance
push!(names, name)
push!(valuesBeforeInit, valueBeforeInit)
push!(valuesAfterInit , valueAfterInit)
end
end
if length(names) > 0
v_table = DataFrames.DataFrame(name=names, beforeInit=valuesBeforeInit, afterInit=valuesAfterInit)
#show(stderr, v_table; allrows=true, allcols=true, summary=false, eltypes=false)
#print("\n\n")
ioTemp = IOBuffer();
show(ioTemp, v_table; allrows=true, allcols=true, rowlabel = Symbol("#"), summary=false, eltypes=false)
str = String(take!(ioTemp))
close(ioTemp)
printstyled("Model error: ", bold=true, color=:red)
printstyled("The following variables are explicitly solved for, have init-values defined\n",
"and after initialization the init-values are not respected\n",
"(remove the init-values in the model or change them to start-values):\n",
str, bold=true, color=:red)
return false
end
end
return true
end
"""
terminate!(m::SimulationModel, x, time)
Terminate model.
"""
function terminate!(m::SimulationModel, x, t)::Nothing
m.isTerminal = true
Base.invokelatest(m.getDerivatives!, m.der_x, x, m, t)
m.isTerminal = false
return nothing
end
"""
outputs!(x, t, integrator)
DifferentialEquations FunctionCallingCallback function for `SimulationModel`
that is used to store results at communication points.
"""
function outputs!(x, t, integrator)::Nothing
m = integrator.p
m.storeResult = true
# m.getDerivatives!(m.der_x, x, m, t)
Base.invokelatest(m.getDerivatives!, m.der_x, x, m, t)
m.storeResult = false
return nothing
end
"""
derivatives!(derx, x, m, t)
DifferentialEquations callback function to get the derivatives.
"""
function derivatives!(der_x, x, m, t)::Nothing
# m.getDerivatives!(der_x, x, m, t)
Base.invokelatest(m.getDerivatives!, der_x, x, m, t)
return nothing
end
"""
addToResult!(simulationModel, variableValues...)
Add `variableValues...` to `simulationModel::SimulationModel`.
It is assumed that the first variable in `variableValues` is `time`.
"""
function addToResult!(m::SimulationModel, variableValues...)::Nothing
push!(m.result, variableValues)
return nothing
end
"""
code = generate_getDerivatives!(AST, equationInfo, parameters, variables, functionName;
hasUnits=false)
Return the code of the `getDerivatives!` function as `Expr` using the
Symbol `functionName` as function name. By `eval(code)` or
`fc = @RuntimeGeneratedFunction(code)` the function is compiled and can afterwards be called.
# Arguments
- `AST::Vector{Expr}`: Abstract Syntax Tree of the equations as vector of `Expr`.
- `equationInfo::ModiaBase.EquationInfo`: Data structure returned by `ModiaBase.getSortedAndSolvedAST
holding information about the states.
- `parameters`: Vector of parameter names (as vector of symbols)
- `variables`: Vector of variable names (as vector of symbols). The first entry is expected to be time, so `variables[1] = :time`.
- `functionName::Function`: The name of the function that shall be generated.
# Optional Arguments
- `hasUnits::Bool`: = true, if variables have units. Note, the units of the state vector are defined in equationinfo.
"""
function generate_getDerivatives!(AST::Vector{Expr}, equationInfo::ModiaBase.EquationInfo,
parameters, variables, functionName::Symbol;
hasUnits=false)
# Generate code to copy x to struct and struct to der_x
x_info = equationInfo.x_info
code_x = Expr[]
code_der_x = Expr[]
code_p = Expr[]
if length(x_info) == 1 && x_info[1].x_name == "" && x_info[1].der_x_name == ""
# Explicitly solved pure algebraic variables. Introduce dummy equation
push!(code_der_x, :( _der_x[1] = -_x[1] ))
else
i1 = 0
i2 = 0
for (i, xe) in enumerate(x_info)
i1 = i2 + 1
i2 = i1 + xe.length - 1
indexRange = i1 == i2 ? :($i1) : :( $i1:$i2 )
x_name = xe.x_name_julia
der_x_name = xe.der_x_name_julia
# x_name = Meta.parse("m."*xe.x_name)
# der_x_name = Meta.parse("m."*replace(xe.der_x_name, r"der\(.*\)" => s"var\"\g<0>\""))
if !hasUnits || xe.unit == ""
push!(code_x, :( $x_name = _x[$indexRange] ) )
else
x_unit = xe.unit
push!(code_x, :( $x_name = _x[$indexRange]*@u_str($x_unit)) )
end
if hasUnits
push!(code_der_x, :( _der_x[$indexRange] = ustrip( $der_x_name )) )
else
push!(code_der_x, :( _der_x[$indexRange] = $der_x_name ))
end
end
end
for (i,pi) in enumerate(parameters)
push!(code_p, :( $pi = _m.p[$i] ) )
end
timeName = variables[1]
if hasUnits
code_time = :( $timeName = _time*u"s" )
else
code_time = :( $timeName = _time )
end
# Generate code of the function
code = quote
function $functionName(_der_x, _x, _m, _time)::Nothing
_m.time = _time
_m.nGetDerivatives += 1
simulationModel = _m
$code_time
$(code_p...)
$(code_x...)
$(AST...)
$(code_der_x...)
if _m.storeResult
TinyModia.addToResult!(_m, $(variables...))
end
return nothing
end
end
return code
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 8812 | """
Module to produce incidence plots
* Developer: Hilding Elmqvist, Mogram AB
* First version: December 2020
* License: MIT (expat)
"""
module IncidencePlot
using GLMakie
using AbstractPlotting
using GeometryBasics
using Colors
# include("...ModiaBase/src/Tearing.jl")
# using .Tearing
export showIncidence
removeBlock(ex) = ex
function removeBlock(ex::Expr)
if ex.head in [:block]
ex.args[1]
else
Expr(ex.head, [removeBlock(arg) for arg in ex.args]...)
end
end
AbstractPlotting.inline!(false)
"""
showIncidence(equations, unknowns, G, vActive, substitutions, assigned, assignedVar, blocks; sortVariables=false)
Shows the incidence matrix using the plotting package Makie. If `assigned` is not [], the assigned variable is marked. `blocks` is a vector of vectors
enabling showing of BLT-blocks. After each incidence matrix is output, the user is promted for a RETURN, not to immediately overwriting the plot.
"""
function showIncidence(equations, unknowns, G, vActive, substitutions, assigned, assignedVar, blocks; sortVariables=false)
scene = Scene(camera = campixel!, show_axis = false, resolution = (1000, 800))
margin = 20
size = 600
nVar = length(unknowns)
if sortVariables
sortedVariables = fill(0, nVar)
varCount = 0
for b in blocks
for e in b
varCount += 1
sortedVariables[varCount] = assignedVar[e]
end
end
for i in 1:length(vActive)
if ! vActive[i]
varCount += 1
sortedVariables[varCount] = i
end
end
else
sortedVariables = 1:nVar
end
n=length(equations)
m=length(unknowns)
width = min(div(size, n), 20)
height = min(div(size, m), 20)
function drawText(s, row, column; align=:left, vertical=false)
rot = if ! vertical; 0.0 else pi/2 end
text!(scene, s, position = Vec(margin + column*width + width/2, margin + (n+1-row)*height + height/2),
color = :green, textsize = 15, align = (align, :center), rotation = rot, show_axis = false)
end
# -----------------------------------------------------------------------------
# Draw matrix grid
for i in 1:n+1
poly!([Point2f0(margin + width, margin + i*height), Point2f0(margin + (m+1)*width, margin + i*height)], strokecolor = :black)
end
for j in 1:m+1
poly!([Point2f0(margin + j*width, margin + height), Point2f0(margin + j*width, margin + (n+1)*height)], strokecolor = :black)
end
for j in 1:length(unknowns)
# Draw variable number under matrix
drawText(string(sortedVariables[j]), n+1, j, align=:right, vertical=true)
# Draw variable names above matrix
v = unknowns[sortedVariables[j]]
var = string(v)
if v in keys(substitutions)
subs = replace(replace(replace(string(substitutions[v]), "(" => ""), ")" => ""), "--" => "")
var *= " = " * subs
end
drawText(var, 0, j, vertical=true)
end
row = 0
for b in blocks
for e in b
row += 1
# Draw equation number to the left
drawText(string(e), row, 0, align=:right)
# Draw equation to the right
equ = equations[e]
Base.remove_linenums!(equ)
equ = removeBlock(equ)
equ = string(equ)
equ = replace(equ, "\n" => ";")
if equ != :(0 = 0)
drawText(equ, row, m+1)
end
end
end
row = 0
for b in blocks
if length(b) > 1
#=
println("\nTearing of BLT block")
@show b
es::Array{Int64,1} = b
vs = assignedVar[b]
td = EquationTearing(G, length(unknowns))
(eSolved, vSolved, eResidue, vTear) = tearEquations!(td, (e,v) -> v in G[e], es, vs)
@show eSolved vSolved eResidue vTear
@show equations[eSolved] unknowns[vSolved] equations[eResidue] unknowns[vTear]
b = vcat(eSolved, eResidue)
@show b
blocksVars = vcat(vSolved, vTear)
=#
color = :lightgrey
poly!(Rect(Vec(margin + (row+1)*width, margin + (n+1-row)*height-length(b)*height),
Vec(length(b)*width, length(b)*height)), color = color, strokecolor = :black, transperancy=true)
end
for e in b
row += 1
incidence = fill(false, nVar)
for v in G[e]
if sortedVariables[v] > 0
incidence[sortedVariables[v]] = true
end
end
col = 0
for v in sortedVariables
col += 1
ins = if v == 0 || ! vActive[v]; 0 elseif sortedVariables[v] > 0 && ! incidence[sortedVariables[v]]; 0 elseif v > 0 && v<= length(assigned) && assigned[v] == e; 1 else 2 end
if ins > 0
color = if ins == 1; :red else :blue end
poly!(Rect(Vec(margin + col*width, margin + (n+1-row)*height), Vec(width, height)), color = color, strokecolor = :black)
end
end
end
end
display(scene)
println("Continue?")
readline()
end
function testShowIncidence()
# RCRL circuit
equations = Expr[:(ground.p.v = V.n.v), :(V.p.v = Ri.n.v), :(Ri.p.v = R.p.v), :(R.n.v = C.p.v), :(C.n.v = ground.p.v), :(ground.p.i + V.n.i + C.n.i = 0), :(V.p.i + Ri.n.i = 0), :(Ri.p.i + R.p.i = 0), :(R.n.i + C.p.i = 0), :(Ri.v = Ri.p.v - Ri.n.v), :(0 = Ri.p.i + Ri.n.i), :(Ri.i = Ri.p.i), :(Ri.R * Ri.i = Ri.v), :(R.v = R.p.v - R.n.v), :(0 = R.p.i + R.n.i), :(R.i = R.p.i), :(R.R * R.i = R.v), :(C.v = C.p.v - C.n.v), :(0 = C.p.i + C.n.i), :(C.i = C.p.i), :(C.C * der(C.v) = C.i), :(V.v = V.p.v - V.n.v), :(0 = V.p.i + V.n.i), :(V.i = V.p.i), :(V.v = 10), :(ground.p.v = 0)]
unknowns = Any[:(Ri.v), :(Ri.i), :(Ri.p.i), :(Ri.p.v), :(Ri.n.i), :(Ri.n.v), :(R.v), :(R.i), :(R.p.i), :(R.p.v), :(R.n.i), :(R.n.v), :(C.v), :(der(C.v)), :(C.i), :(C.p.i), :(C.p.v), :(C.n.i), :(C.n.v), :(V.v), :(V.i), :(V.p.i), :(V.p.v), :(V.n.i), :(V.n.v), :(ground.p.i), :(ground.p.v)]
G = [[27, 25], [23, 6], [4, 10], [12, 17], [19, 27], [26, 24, 18], [22, 5], [3, 9], [11, 16], [1, 4, 6], [3, 5], [2, 3], [2, 1], [7, 10, 12], [9, 11], [8, 9], [8, 7], [13, 17, 19], [16, 18], [15, 16], [14, 15], [20, 23, 25], [22, 24], [21, 22], [20], [27]]
vActive = Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
substitutions = Dict{Any,Any}()
assigned = Any[]
assignedVar = Any[]
blocks = [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26]]
sortVariables = false
showIncidence(equations, unknowns, G, vActive, substitutions, assigned, assignedVar, blocks, sortVariables=sortVariables)
# RCRL
equations = Expr[:(ground.p.v = V.n.v), :(V.p.v = Ri.n.v), :(Ri.p.v = R.p.v), :(R.n.v = C.p.v), :(C.n.v = ground.p.v), :(ground.p.i + V.n.i + C.n.i = 0), :(V.p.i + Ri.n.i = 0), :(Ri.p.i + R.p.i = 0), :(R.n.i + C.p.i = 0), :(Ri.v = Ri.p.v - Ri.n.v), :(0 = Ri.p.i + Ri.n.i), :(Ri.i = Ri.p.i), :(Ri.R * Ri.i = Ri.v), :(R.v = R.p.v - R.n.v), :(0 = R.p.i + R.n.i), :(R.i = R.p.i), :(R.R * R.i = R.v), :(C.v = C.p.v - C.n.v), :(0 = C.p.i + C.n.i), :(C.i = C.p.i), :(C.C * der(C.v) = C.i), :(V.v = V.p.v - V.n.v), :(0 = V.p.i + V.n.i), :(V.i = V.p.i), :(V.v = 10), :(ground.p.v = 0)]
unknowns = Any[:(Ri.v), :(Ri.i), :(Ri.p.i), :(Ri.p.v), :(Ri.n.i), :(Ri.n.v), :(R.v), :(R.i), :(R.p.i), :(R.p.v), :(R.n.i), :(R.n.v), :(C.v), :(der(C.v)), :(C.i), :(C.p.i), :(C.p.v), :(C.n.i), :(C.n.v), :(V.v), :(V.i), :(V.p.i), :(V.p.v), :(V.n.i), :(V.n.v), :(ground.p.i), :(ground.p.v)]
G = [[27, 25], [23, 6], [4, 10], [12, 17], [19, 27], [26, 24, 18], [22, 5], [3, 9], [11, 16], [1, 4, 6], [3, 5], [2, 3], [2, 1], [7, 10, 12], [9, 11], [8, 9], [8, 7], [13, 17, 19], [16, 18], [15, 16], [14, 15], [20, 23, 25], [22, 24], [21, 22], [20], [27]]
vActive = Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
substitutions = Dict{Any,Any}()
assigned = [10, 13, 12, 3, 11, 2, 17, 16, 8, 14, 15, 4, 0, 21, 20, 9, 18, 19, 5, 25, 24, 7, 22, 23, 1, 6, 26]
assignedVar = [25, 6, 4, 12, 19, 26, 22, 9, 16, 1, 5, 3, 2, 10, 11, 8, 7, 17, 18, 15, 14, 23, 24, 21, 20, 27, 0]
blocks = [[26], [1], [25], [22], [2], [5], [18], [4], [10, 13, 12, 8, 16, 17, 14, 3], [11], [7], [23], [15], [9], [19], [6], [20], [21], [24]]
sortVariables = true
showIncidence(equations, unknowns, G, vActive, substitutions, assigned, assignedVar, blocks, sortVariables=sortVariables)
end
# testShowIncidence()
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 15685 | #=
Handles models defined as named tuples.
* Developer: Hilding Elmqvist, Mogram AB
* First version: January 2021
* License: MIT (expat)
=#
export mergeModels, recursiveMerge, Redeclare, showModel, @showModel, Model, Map, Par, Var, setLogMerge,
constant, parameter, input, output, potential, flow, interval, @info_str
using Base.Meta: isexpr
using DataStructures: OrderedDict
using Unitful
using ModiaBase.Symbolic: removeBlock, prepend
function stringifyDefinition(v)
if typeof(v) in [Symbol, Expr]
v = removeBlock(v)
v = ":(" * string(v) * ")"
end
return v
end
function showModel(m, level=0)
level += 1
# print(" "^(level-1))
if typeof(m) <: NamedTuple && haskey(m, :class)
print(m.class)
end
println("(")
for (k, v) in zip(keys(m), m)
if typeof(v) <: NamedTuple
print(" "^level, k, " = ")
showModel(v, level)
elseif k != :class
println(" "^level, k, " = ", stringifyDefinition(v), ",")
end
end
println(" "^(level-1), "),")
end
macro showModel(model)
modelName = string(model)
mod = :( print($modelName, " = "); showModel($model); println() )
return esc(mod)
end
global logMerge = false
function setLogMerge(val)
global logMerge
logMerge = val
end
function mergeModels(m1::NamedTuple, m2::NamedTuple, env=Symbol())
mergedModels = OrderedDict{Symbol,Any}(pairs(m1))
for (k,v) in collect(pairs(m2))
if typeof(v) <: NamedTuple
if k in keys(mergedModels) && ! (:_redeclare in keys(v))
if logMerge; print("In $k: ") end
m = mergeModels(mergedModels[k], v, k)
mergedModels[k] = m
elseif :_redeclare in keys(v)
if logMerge; println("Redeclaring: $k = $v") end
mergedModels[k] = v
elseif nothing in values(v) # TODO: Refine
else
if !(:_redeclare in keys(mergedModels))
if logMerge; print("Adding: $k = "); showModel(v, 2) end
end
mergedModels[k] = v
end
elseif v === nothing
if logMerge; println("Deleting: $k") end
delete!(mergedModels, k)
else
if logMerge
if k in keys(mergedModels)
if mergedModels[k] != v
println("Changing: $k = $(stringifyDefinition(mergedModels[k])) to $k = $(stringifyDefinition(v))")
end
elseif !(:_redeclare in keys(mergedModels))
println("Adding: $k = $(stringifyDefinition(v))")
end
end
mergedModels[k] = v
end
end
# delete!(mergedModels, :class)
return (; mergedModels...) # Transform OrderedDict to named tuple
end
Model(; kwargs...) = (; class = :Model, kwargs...)
Map(; kwargs...) = (; class = :Map, kwargs...)
Par(; kwargs...) = Map(; class = :Par, kwargs...)
Var(;kwargs...) = (; class = :Var, kwargs...)
Var(value; kwargs...) = (; class = :Var, value=value, kwargs...)
Redeclare = ( _redeclare = true, )
constant = Var(constant = true)
parameter = Var(parameter = true)
input = Var(input = true)
output = Var(output = true)
potential = Var(potential = true)
flow = Var(flow = true)
interval(min, max) = Var(min=min, max=max)
macro info_str(text)
Var(info=text)
end
Base.:|(m::NamedTuple, n::NamedTuple) = mergeModels(m, n) # TODO: Chane to updated recursiveMerge
Base.:|(m, n) = if !(typeof(n) <: NamedTuple); recursiveMerge(m, (; value=n)) else recursiveMerge(n, (value=m,)) end
recursiveMerge(x, ::Nothing) = x
recursiveMerge(x, y) = y
#recursiveMerge(x::Expr, y::Expr) = begin dump(x); dump(y); Expr(x.head, x.args..., y.args...) end
recursiveMerge(x::Expr, y::Tuple) = begin x = copy(x); xargs = x.args; xargs[y[2]] = y[3]; Expr(x.head, xargs...) end
function recursiveMerge(nt1::NamedTuple, nt2::NamedTuple)
all_keys = union(keys(nt1), keys(nt2))
# all_keys = setdiff(all_keys, [:class])
gen = Base.Generator(all_keys) do key
v1 = get(nt1, key, nothing)
v2 = get(nt2, key, nothing)
key => recursiveMerge(v1, v2)
end
return (; gen...)
end
function unpackPath(path, sequence)
if typeof(path) == Symbol
push!(sequence, path)
elseif isexpr(path, :.)
unpackPath(path.args[1], sequence)
push!(sequence, path.args[2].value)
elseif isexpr(path, :ref)
unpackPath(path.args[1], sequence)
push!(sequence, path.args[2:end]...)
end
end
function collectConnector(model)
potentials = []
flows = []
for (k,v) in zip(keys(model), model)
if typeof(v) <: NamedTuple && :class in keys(v) && v.class == :Var ||
typeof(v) <: NamedTuple && :variable in keys(v) && v.variable
if :potential in keys(v) && v.potential
push!(potentials, k)
end
if :flow in keys(v) && v.flow
push!(flows, k)
end
end
end
return potentials, flows
end
function convertConnections!(connections, model, modelName, logging=false)
# println("\nconvertConnections")
# showModel(model)
# @show connections
# println()
connectEquations = []
alreadyConnected = []
for i in 1:length(connections)
c = connections[i]
if c.head == :tuple
connected = c.args
potential1 = nothing
inflow = 0
outflow = 0
signalFlow1 = nothing
connectedOutput = nothing
potentials1 = []
flows1 = []
for con in connected
if con in alreadyConnected
error("Already connected: $con, found in connection: $connected")
end
push!(alreadyConnected, con)
sequence = []
unpackPath(con, sequence)
mod = model
for s in sequence[1:end-1]
if s in keys(mod)
mod = mod[s]
else
error("Invalid path $con: $s not found in $(keys(mod))")
end
end
if sequence[end] in keys(mod)
mod = mod[sequence[end]]
if :input in keys(mod) && mod.input || :output in keys(mod) && mod.output
signalFlow = con
if signalFlow1 !== nothing
push!(connectEquations, :($signalFlow1 = $signalFlow))
end
signalFlow1 = signalFlow
if :output in keys(mod) && mod.output
if connectedOutput != nothing # TODO: refine logic concerning inner and outer inputs and outputs
# error("It is not allowed to connect two outputs: ", connectedOutput, ", ", con)
end
connectedOutput = con
end
else
potentials, flows = collectConnector(mod)
# Deprecated
if :potentials in keys(mod)
potentials = vcat(potentials, mod.potentials.args)
end
if :flows in keys(mod)
flows = vcat(flows, mod.flows.args)
end
if length(potentials1) > 0 && potentials != potentials1
error("Not compatible potential variables: $potentials1 != $potentials, found in connection: $connected")
end
for p in potentials
potential = append(con, p)
if potential1 != nothing
push!(connectEquations, :($potential1 = $potential))
end
potential1 = potential
end
potentials1 = potentials
if length(flows1) > 0 && flows != flows1
error("Not compatible flow variables: $flows1 != $flows, found in connection: $connected")
end
for f in flows
flowVar = append(con, f)
if length(sequence) == 1
if inflow == 0
inflow = flowVar
else
inflow = :($inflow + $flowVar)
end
else
if outflow == 0
outflow = flowVar
else
outflow = :($outflow + $flowVar)
end
end
end
flows1 = flows
end
else
# Deprecated
signalFlow = con
if signalFlow1 !== nothing
push!(connectEquations, :($signalFlow1 = $signalFlow))
end
signalFlow1 = signalFlow
end
end
if inflow != 0 || outflow != 0
push!(connectEquations, :($inflow = $outflow))
end
end
end
if length(connectEquations) > 0 && logging
println("Connect equations in $modelName:")
for e in connectEquations
println(" ", e)
end
end
return connectEquations
end
function flattenModelTuple!(model, modelStructure, modelName; unitless = false, log=false)
connections = []
extendedModel = merge(model, NamedTuple())
for (k,v) in zip(keys(model), model)
# @show k v typeof(v)
# Deprecated
if k in [:inputs, :outputs, :potentials, :flows, :class]
if k in [:inputs, :outputs, :potentials, :flows]
printstyled(" Deprecated construct in model $modelName: ", color=:yellow)
println("$k = $v\n Use: ... = $(string(k)[1:end-1]) ...")
end
elseif k == :init
printstyled(" Deprecated construct in model $modelName: ", color=:yellow)
println("$k = $v\n Use: ... = Var(init=...) ...")
for (x,x0) in zip(keys(v), v)
if x != :class
if unitless && typeof(x0) != Expr
x0 = ustrip(x0)
end
modelStructure.init[x] = x0
modelStructure.mappedParameters = (;modelStructure.mappedParameters..., x => x0)
end
end
elseif k == :start
printstyled(" Deprecated construct in model $modelName: ", color=:yellow)
println("$k = $v\n Use: ... = Var(start=...) ...")
for (s,s0) in zip(keys(v), v)
if s != :class
if unitless
s0 = ustrip(s0)
end
modelStructure.start[s] = s0
modelStructure.mappedParameters = (;modelStructure.mappedParameters..., s => s0)
end
end
elseif typeof(v) in [Int64, Float64] || typeof(v) <: Unitful.Quantity ||
typeof(v) in [Array{Int64,1}, Array{Int64,2}, Array{Float64,1}, Array{Float64,2}] ||
typeof(v) <: NamedTuple && :class in keys(v) && v.class == :Par ||
typeof(v) <: NamedTuple && :parameter in keys(v) && v.parameter
if unitless && !(typeof(v) <: NamedTuple)
v = ustrip(v)
end
modelStructure.parameters[k] = v
modelStructure.mappedParameters = (;modelStructure.mappedParameters..., k => v)
elseif (typeof(v) <: NamedTuple && :class in keys(v) && v.class in [:Par, :Var] ||
typeof(v) <: NamedTuple && :parameter in keys(v) && v.parameter) &&
:value in keys(v)
v = v.value
if typeof(v) in [Expr, Symbol]
push!(modelStructure.equations, removeBlock(:($k = $v)))
else
modelStructure.parameters[k] = v
modelStructure.mappedParameters = (;modelStructure.mappedParameters..., k => v)
end
elseif typeof(v) <: NamedTuple && :class in keys(v) && v.class in [:Var] ||
typeof(v) <: NamedTuple && :variable in keys(v) && v.variable
if :init in keys(v)
x0 = v.init
if unitless && typeof(x0) != Expr
x0 = ustrip(x0)
end
modelStructure.init[k] = x0
modelStructure.mappedParameters = (;modelStructure.mappedParameters..., k => x0)
end
if :start in keys(v)
s0 = v.start
if unitless && typeof(s0) != Expr
s0 = ustrip(s0)
end
modelStructure.start[k] = s0
modelStructure.mappedParameters = (;modelStructure.mappedParameters..., k => s0)
end
elseif typeof(v) <: NamedTuple # instantiate
subModelStructure = ModelStructure()
flattenModelTuple!(v, subModelStructure, k; unitless, log)
# println("subModelStructure")
# printModelStructure(subModelStructure, k)
mergeModelStructures(modelStructure, subModelStructure, k)
elseif typeof(v) <:Array && length(v) > 0 && typeof(v[1]) <: NamedTuple # array of instances
i = 0
for a in v
i += 1
subModelStructure = ModelStructure()
flattenModelTuple!(a, subModelStructure, k; unitless, log)
mergeModelStructures(modelStructure, subModelStructure, Symbol(string(k)*"_"*string(i)) )
end
elseif isexpr(v, :vect) || isexpr(v, :vcat) || isexpr(v, :hcat)
arrayEquation = false
for e in v.args
if isexpr(e, :(=))
if unitless
e = removeUnits(e)
end
push!(modelStructure.equations, removeBlock(e))
elseif isexpr(e, :tuple)
push!(connections, e)
else
arrayEquation = true
end
end
if arrayEquation
push!(modelStructure.equations, removeBlock(:($k = $(prepend(v, :up)))))
# push!(modelStructure.equations, removeBlock(:($k = $v)))
end
elseif isexpr(v, :(=)) # Single equation
if unitless
v = removeUnits(v)
end
push!(modelStructure.equations, removeBlock(v))
elseif v !== nothing # Binding expression
# println("Binding expression")
# @show k v typeof(v)
if unitless
v = removeUnits(v)
end
push!(modelStructure.equations, :($k = $(prepend(v, :up))))
# push!(modelStructure.equations, :($k = $v))
# @show modelStructure.equations
end
end
# printModelStructure(modelStructure, "flattened")
connectEquations = convertConnections!(connections, extendedModel, modelName, log)
push!(modelStructure.equations, connectEquations...)
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 15539 |
export simulate!, get_result
using ModiaPlot
using Measurements
import MonteCarloMeasurements
using Unitful
using Test
import DifferentialEquations
#---------------------------------------------------------------------
# Simulation
#---------------------------------------------------------------------
"""
convertTimeVariable(t)
The function returns variable `t` in a normalized form:
1. If `t` has a unit, it is transformed to u"s" and the unit is stripped off.
2. `t` is converted to `Float64`.
"""
convertTimeVariable(t) = typeof(t) <: Unitful.AbstractQuantity ? convert(Float64, ustrip(uconvert(u"s", t))) : convert(Float64, t)
"""
simulate!(model [, algorithm]; merge = nothing,
tolerance = 1e-6, startTime = 0.0, stopTime = 1.0, interval = NaN,
adaptive = true, log = true, logParameters = true, logStates = true,
requiredFinalStates = nothing)
Simulate `model::SimulationModel` with `algorithm`
(= `alg` of [ODE Solvers of DifferentialEquations.jl](https://diffeq.sciml.ai/stable/solvers/ode_solve/)).
If the `algorithm` argument is missing, a default algorithm will be chosen from DifferentialEquations
(for details see [https://arxiv.org/pdf/1807.06430](https://arxiv.org/pdf/1807.06430), Figure 3).
The simulation results stored in `model` can be plotted with ModiaPlot.plot and the result values
can be retrieved with [`get_result`](@ref).
# Optional Arguments
- `merge`: Define parameters and init/start values that shall be merged with the previous values
stored in `model`, before simulation is started.
- `tolerance`: Relative tolerance.
- `startTime`: Start time. If value is without unit, it is assumed to have unit [s].
- `stopTime`: Stop time. If value is without unit, it is assumed to have unit [s].
- `interval`: Interval to store result. If `interval=NaN`, it is internally selected as
(stopTime-startTime)/500.
If value is without unit, it is assumed to have unit [s].
- `adaptive`: = true, if the `algorithm` should use step-size control (if available).
= false, if the `algorithm` should use a fixed step-size of `interval` (if available).
- `log`: = true, to log the simulation.
- `logParameters`: = true, to log the parameter and init/start values
- `logStates` : = true, to log the states, its init/start values and its units.
- `requiredFinalStates`: is not `nothing`: Check whether the ODE state vector at the final time instant with `@test`
is in agreement to vector `requiredFinalStates` with respect to some tolerance. If this is not the case, print the
final state vector (so that it can be included with copy-and-paste in the simulate!(..) call).
# Examples
```julia
using ModiaPlot
using DifferentialEquations
# Define model
inputSignal(t) = sin(t)
FirstOrder = Model(
T = 0.2,
x = Var(init=0.3),
equations = :[u = inputSignal(time/u"s"),
T * der(x) + x = u,
y = 2*x]
)
# Modify parameters and initial values of model
FirstOrder2 = FirstOrder | Map(T = 0.4, x = Var(init=0.6))
# Instantiate model
firstOrder = @instantiateModel(FirstOrder2, logCode=true)
# Simulate with automatically selected algorithm and
# modified parameter and initial values
simulate!(firstOrder, stopTime = 1.0, merge = Map(T = 0.6, x = 0.9), logParameters=true)
# Plot variables "x", "u" in diagram 1, "der(x)" in diagram 2, both diagrams in figure 3
plot(firstOrder, [("x","u"), "der(x)"], figure=3)
# Retrieve "time" and "u" values:
get_result(firstOrder, "time")
get_result(firstOrder, "u")
# Simulate with Runge-Kutta 5/4 with step-size control
simulate!(firstOrder, Tsit5(), stopTime = 1.0)
# Simulate with Runge-Kutta 4 with fixed step size
simulate!(firstOrder, RK4(), stopTime = 1.0, adaptive=false)
# Simulate with algorithm that switches between
# Verners Runge-Kutta 6/5 algorithm if non-stiff region and
# Rosenbrock 4 (= A-stable method) if stiff region with step-size control
simulate!(firstOrder, AutoVern6(Rodas4()), stopTime = 1.0)
# Simulate with Sundials CVODE (BDF method with variable order 1-5) with step-size control
using Sundials
simulate!(firstOrder, CVODE_BDF(), stopTime = 1.0)
```
"""
function simulate!(m::Nothing, args...; kwargs...)
@info "The call of simulate!(..) is ignored, since the first argument is nothing."
return nothing
end
function simulate!(m::SimulationModel, algorithm=missing;
tolerance = 1e-6,
startTime = 0.0,
stopTime = 1.0,
interval = NaN,
adaptive::Bool = true,
log::Bool = false,
logParameters::Bool = false,
logStates::Bool = false,
requiredFinalStates = nothing,
merge=nothing)
initialized = false
#try
m.algorithmType = typeof(algorithm)
tolerance = convert(Float64, tolerance)
startTime = convertTimeVariable(startTime)
stopTime = convertTimeVariable(stopTime)
interval = convertTimeVariable(interval)
interval = isnan(interval) ? (stopTime - startTime)/500.0 : interval
# Target type
FloatType = getFloatType(m)
# Initialize/re-initialize SimulationModel
if log || logParameters || logStates
println("... Simulate model ", m.modelName)
end
cpuStart::UInt64 = time_ns()
cpuLast::UInt64 = cpuStart
cpuStartIntegration::UInt64 = cpuStart
success = init!(m, startTime, tolerance, merge, log, logParameters, logStates)
if !success
return nothing
end
initialized = true
# Define problem and callbacks based on algorithm and model type
tspan = (startTime, stopTime)
tspan2 = startTime:interval:stopTime
tdir = startTime <= stopTime ? 1 : -1
abstol = 0.1*tolerance
problem = DifferentialEquations.ODEProblem(derivatives!, m.x_start, tspan, m)
callback = DifferentialEquations.FunctionCallingCallback(outputs!, funcat=tspan2, tdir=tdir)
# Initial step size (the default of DifferentialEquations is too large) + step-size of fixed-step algorithm
dt = adaptive ? interval/10 : interval # initial step-size
# Compute solution
solution = ismissing(algorithm) ? DifferentialEquations.solve(problem, reltol=tolerance, abstol=abstol,
save_everystep=false, save_start=false, save_end=true,
callback=callback, adaptive=adaptive, dt=dt) :
DifferentialEquations.solve(problem, algorithm, reltol=tolerance, abstol=abstol,
save_everystep=false, save_start=false, save_end=true,
callback=callback, adaptive=adaptive, dt=dt)
if ismissing(algorithm)
m.algorithmType = typeof(solution.alg)
end
# Terminate simulation
finalStates = solution[:,end]
terminate!(m, finalStates, solution.t[end])
if log
cpuTimeInitialization = convert(Float64, (cpuStartIntegration - cpuStart) * 1e-9)
cpuTimeIntegration = convert(Float64, (time_ns() - cpuStartIntegration) * 1e-9)
cpuTime = cpuTimeInitialization + cpuTimeIntegration
println(" Termination at time = ", solution.t[end], " s")
println(" cpuTime = ", round(cpuTime, sigdigits=3), " s")
#println(" cpuTime = ", round(cpuTime , sigdigits=3), " s (init: ",
# round(cpuTimeInitialization, sigdigits=3), " s, integration: ",
# round(cpuTimeIntegration , sigdigits=3), " s)")
println(" algorithm = ", typeof(solution.alg))
println(" FloatType = ", FloatType)
println(" interval = ", interval, " s")
println(" tolerance = ", tolerance, " (relative tolerance)")
println(" nEquations = ", length(m.x_start))
println(" nResults = ", length(m.result))
println(" nAcceptedSteps = ", solution.destats.naccept)
println(" nRejectedSteps = ", solution.destats.nreject)
println(" nGetDerivatives = ", m.nGetDerivatives, " (number of getDerivatives! calls)")
println(" nf = ", solution.destats.nf, " (number of getDerivatives! calls from integrator)")
println(" nJac = ", solution.destats.njacs, " (number of Jacobian computations)")
println(" nErrTestFails = ", solution.destats.nreject)
end
if !isnothing(requiredFinalStates)
if length(finalStates) != length(requiredFinalStates)
success = false
else
success = finalStates == requiredFinalStates || isapprox(finalStates, requiredFinalStates, rtol=1e-3)
end
if success
@test success
else
if length(requiredFinalStates) > 0 && typeof(requiredFinalStates[1]) <: Measurements.Measurement
println( "\nrequiredFinalStates = ", measurementToString(requiredFinalStates))
printstyled("finalStates = ", measurementToString(finalStates), "\n\n", bold=true, color=:red)
else
println( "\nrequiredFinalStates = ", requiredFinalStates)
printstyled("finalStates = ", finalStates, "\n\n", bold=true, color=:red)
end
@test finalStates == requiredFinalStates #|| isapprox(finalStates, requiredFinalStates, rtol=1e-3)
end
end
return solution
#=
catch e
if initialized
terminate!(m, m.x_start, m.time)
end
if isa(e, ErrorException)
printstyled("\nError from simulate!:\n", color=:red)
printstyled(e.msg, "\n\n", color=:red)
printstyled("Aborting simulate!\n\n", color=:red)
empty!(m.result)
else
Base.rethrow()
end
end
return nothing
=#
end
#---------------------------------------------------------------------
# Provide ModiaPlot result access functions for SimulationModel
#---------------------------------------------------------------------
"""
ModiaPlot.hasSignal(model::SimulationModel, name::String)
Return true if parameter or time-varying variable `name` (for example `a.b.c`)
is defined in the TinyModia SimulationModel (generated with [`TinyModia.@instantiateModel`](@ref)
that can be accessed and can be used for plotting.
"""
ModiaPlot.hasSignal(m::SimulationModel, name) =
haskey(m.variables, name) ||
name in m.zeroVariables ||
!ismissing(get_value(m.p[1], name))
"""
ModiaPlot.getNames(model::SimulationModel)
Return the variable names (parameters, time-varying variables) of a TinyModia SimulationModel
(generated with [`TinyModia.@instantiateModel`](@ref) that can be accessed
and can be used for plotting.
"""
function ModiaPlot.getNames(m::SimulationModel)
names = get_names(m.p[1])
append!(names, collect(m.zeroVariables))
append!(names, collect( keys(m.variables) ) )
return sort(names)
end
function ModiaPlot.getRawSignal(m::SimulationModel, name)
if haskey(m.variables, name)
resIndex = m.variables[name]
negAlias = false
if resIndex < 0
resIndex = -resIndex
negAlias = true
end
value = m.result[1][resIndex]
signal = Vector{typeof(value)}(undef, length(m.result))
for (i, value_i) in enumerate(m.result)
signal[i] = value_i[resIndex]
end
if negAlias
signal = -signal
end
return (false, signal)
elseif name in m.zeroVariables
return (true, 0.0)
else
value = get_value(m.p[1], name)
if ismissing(value)
error("ModiaPlot.getRawSignal: ", name, " not in result of model ", m.modelName)
end
return (true, value)
end
end
"""
leaveName = get_leaveName(pathName::String)
Return the `leaveName` of `pathName`.
"""
get_leaveName(pathName::String) =
begin
j = findlast('.', pathName);
typeof(j) == Nothing || j >= length(pathName) ? pathName : pathName[j+1:end]
end
function ModiaPlot.getDefaultHeading(m::SimulationModel)
FloatType = get_leaveName( string( typeof( m.x_start[1] ) ) )
algorithmName = string(m.algorithmType)
i1 = findfirst("CompositeAlgorithm", algorithmName)
if !isnothing(i1)
i2 = findfirst("Vern" , algorithmName)
i3 = findfirst("Rodas", algorithmName)
success = false
if !isnothing(i2) && !isnothing(i3)
i2b = findnext(',', algorithmName, i2[1])
i3b = findnext('{', algorithmName, i3[1])
if !isnothing(i2b) && !isnothing(i3b)
algorithmName = algorithmName[i2[1]:i2b[1]-1] * "(" * algorithmName[i3[1]:i3b[1]-1] * "())"
success = true
end
end
if !success
algorithmName = "CompositeAlgorithm"
end
else
i1 = findfirst('{', algorithmName)
if !isnothing(i1)
algorithmName = algorithmName[1:i1-1]
end
i1 = findlast('.', algorithmName)
if !isnothing(i1)
algorithmName = algorithmName[i1+1:end]
end
end
if FloatType == "Float64"
heading = m.modelName * " (" * algorithmName * ")"
else
heading = m.modelName * " (" * algorithmName * ", " * FloatType * ")"
end
return heading
end
"""
signal = get_result(model, name; unit=true)
After a successful simulation of `model::SimulationModel`, return
the result for the signal `name::String` as vector of points
together with its unit. The time vector has path name `"time"`.
If `unit=false`, the signal is returned, **without unit**.
# Example
```julia
using ModiaBase
using Unitful
include("\$(ModiaBase.path)/demos/models/Model_Pendulum.jl")
using .Model_Pendulum
pendulum = simulationModel(Pendulum)
simulate!(pendulum, stopTime=7.0)
time = get_result(pendulum, "time") # vector with unit u"s"
phi = get_result(pendulum, "phi") # vector with unit u"rad"
import PyPlot
PyPlot.figure(4) # Change to figure 4 (or create it, if it does not exist)
PyPlot.clf() # Clear current figure
PyPlot.plot(ustrip(time), ustrip(phi), "b--", label="phi in " * string(unit(phi[1])))
PyPlot.xlabel("time in " * string(unit(time[1])))
PyPlot.legend()
```
"""
function get_result(m::SimulationModel, name::String; unit=true)
#(xsig, xsigLegend, ysig, ysigLegend, yIsConstant) = ModiaPlot.getPlotSignal(m, "time", name)
(isConstant, ysig) = ModiaPlot.getRawSignal(m, name)
ysig = unit ? ysig : ustrip.(ysig)
#=
if yIsConstant
if ndims(ysig) == 1
ysig = fill(ysig[1], length(xsig))
else
ysig = fill(ysig[1,:], length(xsig))
end
end
=#
return ysig
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 33095 | """
Main module of TinyModia.
* Developer: Hilding Elmqvist, Mogram AB
* First version: December 2020
* License: MIT (expat)
"""
module TinyModia
using Reexport
export instantiateModel, @instantiateModel
using Base.Meta: isexpr
using DataStructures: OrderedDict
using ModiaBase.Symbolic
using ModiaBase.Simplify
using ModiaBase.BLTandPantelidesUtilities
using ModiaBase.BLTandPantelides
using ModiaBase.Differentiate
using ModiaBase
export ModiaBase
# using RuntimeGeneratedFunctions
# RuntimeGeneratedFunctions.init(@__MODULE__)
@reexport using Unitful
using Measurements
import MonteCarloMeasurements
include("NamedTupleModels.jl")
include("CodeGeneration.jl")
include("SimulateAndPlot.jl")
# include("IncidencePlot.jl")
# using .IncidencePlot
const drawIncidence = false
const path = dirname(dirname(@__FILE__)) # Absolute path of package directory
const Version = "0.7.1"
const Date = "2021-03-31"
#println(" \n\nWelcome to Modia - Dynamic MODeling and Simulation in julIA")
print(" \n\nWelcome to ")
printstyled("Tiny", color=:light_black)
print("Mod")
printstyled("ia", bold=true, color=:red)
print(" - ")
printstyled("Dynamic ", color=:light_black)
print("Mod")
printstyled("eling and Simulation with Jul", color=:light_black)
printstyled("ia", bold=true, color=:red)
println()
println("Version $Version ($Date)")
function printArray(array, heading; order=1:length(array), log=false, number=true, indent=false, spacing=" ")
if length(array) > 0 && log
println(heading)
n = 0
for v in array
n += 1
if number
print(lpad(order[n], 4), ": ")
end
if indent
print(("|"*spacing)^(n-1))
end
println(replace(replace(string(v), "\n" => " "), " " => " "))
end
end
end
function performConsistencyCheck(G, Avar, vActive, parameters, unknowns, states, equations, log=false)
nUnknowns = length(unknowns) - length(states)
nEquations = length(equations)
if nEquations > 0 && nUnknowns != nEquations
printstyled("The number of unknowns ($nUnknowns) and equations ($nEquations) is not equal!\n", bold=true, color=:red)
printArray(parameters, "Parameters:", log=true)
printArray(states, "Potential states:", log=true)
printArray(setdiff(unknowns,states), "Unknowns:", log=true)
printArray(equations, "Equations:", log=true)
end
ok = nUnknowns == nEquations
# Check consistency
EG::Array{Array{Int,1},1} = [G; buildExtendedSystem(Avar)]
assignEG = matching(EG, length(Avar))
# @assert all(assignEG .> 0) " The DAE is structurally singular\n $assignEG."
assigned = [a > 0 for a in assignEG]
if ! (all(assigned)) || ! ok
if nUnknowns > nEquations
missingEquations = nUnknowns - nEquations
printstyled("\nThe DAE has no unique solution, because $missingEquations equation(s) missing!\n", bold=true, color=:red)
elseif nEquations > nUnknowns
tooManyEquations = nEquations - nUnknowns
printstyled("\nThe DAE has no unique solution, because $tooManyEquations equation(s) too many\n", bold=true, color=:red)
else
printstyled("\nThe DAE has no unique solution, because it is structurally inconsistent\n" *
" (the number of equations is identical to the number of unknowns)\n", bold=true, color=:red)
end
singular = true
hequ = []
# Create dummy equations for printing: integrate(x, der(x)) = 0
for i in 1:length(Avar)
a = Avar[i]
if a > 0
n = unknowns[i]
der = unknowns[a]
push!(hequ, "integrate($n, $der) = 0")
end
end
equationsEG = vcat(equations, hequ)
println("\nAssigned equations after consistency check:")
printAssignedEquations(equationsEG, unknowns, 1:length(EG), assignEG, Avar, fill(0, length(EG)))
unassigned = []
for i in eachindex(assignEG)
if assignEG[i] == 0
push!(unassigned, unknowns[i])
end
end
printArray(unassigned, "Not assigned variables after consistency check:", log=true)
if nUnknowns > nEquations
missingEquations = nUnknowns - nEquations
error("Aborting, because $missingEquations equation(s) missing!")
elseif nEquations > nUnknowns
tooManyEquations = nEquations - nUnknowns
error("Aborting, because $tooManyEquations equation(s) too many!")
else
error("Aborting, because DAE is structurally inconsistent")
end
elseif log
println(" The DAE is structurally nonsingular.")
end
end
function assignAndBLT(equations, unknowns, parameters, Avar, G, states, logDetails, log=false, logTiming=false)
vActive = [a == 0 for a in Avar]
if drawIncidence
showIncidence(equations, unknowns, G, vActive, [], [], [], [[e] for e in 1:length(G)])
end
if false # logAssignmentBeforePantelides
@show G length(Avar) vActive
assign = matching(G, length(Avar), vActive)
@show assign
println("\nAssigned equations:")
Bequ = fill(0, length(G))
printAssignedEquations(equations, unknowns, 1:length(G), assign, Avar, Bequ)
printUnassigned(equations, unknowns, assign, Avar, Bequ, vActive)
end
if logTiming
println("\nCheck consistency of equations by matching extended equation set")
@time performConsistencyCheck(G, Avar, vActive, parameters, unknowns, states, equations, log)
else
performConsistencyCheck(G, Avar, vActive, parameters, unknowns, states, equations, log)
end
if logTiming
println("\nIndex reduction (Pantelides)")
@time assign, Avar, Bequ = pantelides!(G, length(Avar), Avar)
else
assign, Avar, Bequ = pantelides!(G, length(Avar), Avar)
end
if logDetails
@show assign Avar Bequ
end
moreVariables = length(Avar) > length(unknowns)
unknowns = vcat(unknowns, fill(:x, length(Avar) - length(unknowns)))
for i in 1:length(Avar)
if Avar[i] > 0
unknowns[Avar[i]] = derivative(unknowns[i], keys(parameters))
end
end
moreEquations = length(Bequ) > length(equations)
equations = vcat(equations, fill(:(a=b), length(Bequ) - length(equations)))
for i in 1:length(Bequ)
if Bequ[i] > 0
if log
println("Differentiating: ", equations[i])
end
equations[Bequ[i]] = derivative(equations[i], keys(parameters))
if log
println(" Differentiated equation: ", equations[Bequ[i]])
end
end
end
if moreVariables && log
printArray(unknowns, "Unknowns after index reduction:", log=logDetails)
end
if moreEquations && log
printArray(equations, "Equations after index reduction:", log=logDetails)
end
HG = Array{Array{Int64,1},1}()
originalEquationIndex = []
highestDerivativeEquations = []
for i in 1:length(G)
if Bequ[i] == 0
push!(HG, G[i])
push!(highestDerivativeEquations, equations[i])
push!(originalEquationIndex, i)
end
end
vActive = [a == 0 for a in Avar]
if logTiming
println("Assign")
@time assign = matching(HG, length(Avar), vActive)
else
assign = matching(HG, length(Avar), vActive)
end
if logTiming
println("BLT")
@time bltComponents = BLT(HG, assign)
else
bltComponents = BLT(HG, assign)
end
if logDetails
@show HG
@show bltComponents
end
if log
println("\nSorted highest derivative equations:")
printSortedEquations(highestDerivativeEquations, unknowns, bltComponents, assign, Avar, Bequ)
end
if drawIncidence
assignedVar, unAssigned = invertAssign(assign)
showIncidence(equations, unknowns, HG, vActive, [], assign, assignedVar, bltComponents, sortVariables=true)
end
for b in bltComponents
if length(b) > 1 && logDetails
println("\nTearing of BLT block")
@show b
es::Array{Int64,1} = b
assignedVar, unAssigned = invertAssign(assign)
vs = assignedVar[b]
td = TearingSetup(HG, length(unknowns))
(eSolved, vSolved, eResidue, vTear) = tearEquations!(td, (e,v) -> v in HG[e], es, vs)
@show vTear eResidue vSolved eSolved
printArray(unknowns[vTear], "torn variables:", log=logDetails)
printArray(equations[eResidue], "residue equations:", log=logDetails)
printArray(unknowns[vSolved], "solved variables:", log=logDetails)
printArray(equations[eSolved], "solved equations:", log=logDetails)
end
end
blt = Vector{Int}[] # TODO: Change type
for c in bltComponents
push!(blt, originalEquationIndex[c])
end
for i in eachindex(assign)
if assign[i] != 0
assign[i] = originalEquationIndex[assign[i]]
end
end
return (unknowns, equations, G, Avar, Bequ, assign, blt, parameters)
end
function setAvar(unknowns)
Avar = fill(0, length(unknowns))
states = []
derivatives = []
for i in 1:length(unknowns)
v = unknowns[i]
if isexpr(v, :call)
push!(derivatives, v)
x = v.args[2]
ix = findfirst(s -> s==x, unknowns)
Avar[ix] = i
push!(states, unknowns[ix])
end
end
return Avar, states, derivatives
end
mutable struct ModelStructure
parameters::OrderedDict{Any,Any}
mappedParameters::NamedTuple
init::OrderedDict{Any,Any}
start::OrderedDict{Any,Any}
variables::OrderedDict{Any,Any}
flows::OrderedDict{Any,Any}
inputs::OrderedDict{Any,Any}
outputs::OrderedDict{Any,Any}
# components
# extends
equations::Array{Expr,1}
end
ModelStructure() = ModelStructure(OrderedDict(), (;), OrderedDict(), OrderedDict(), OrderedDict(), OrderedDict(), OrderedDict(), OrderedDict(), Expr[])
function printDict(label, d)
if length(d) > 0
print(label)
for (k,v) in d
print(k)
if v != nothing
print(" => ", v)
end
print(", ")
end
println()
end
end
function printModelStructure(m; label="", log=false)
if log
println("ModelStructure ", label)
printDict(" parameters: ", m.parameters)
println(" mappedParameters: ", m.mappedParameters)
printDict(" init: ", m.init)
printDict(" start: ", m.start)
printDict(" variables: ", m.variables)
printDict(" flows: ", m.flows)
printDict(" inputs: ", m.inputs)
printDict(" outputs: ", m.outputs)
println(" equations: ")
for e in m.equations
println(" ", e)
end
end
end
prependDict(dict, prefix) = OrderedDict([prepend(k, prefix) => prepend(v, prefix) for (k,v) in dict])
function mergeModelStructures(parent::ModelStructure, child::ModelStructure, prefix)
merge!(parent.parameters, prependDict(child.parameters, prefix))
if length(keys(child.parameters)) > 0
# @show parent.mappedParameters prefix typeof(prefix) child.mappedParameters child.parameters
parent.mappedParameters = merge(parent.mappedParameters, (;prefix => (;child.mappedParameters...)) )
# @show parent.mappedParameters
end
merge!(parent.init, prependDict(child.init, prefix))
if length(keys(child.init)) > 0
# @show parent.mappedParameters prefix child.init
parent.mappedParameters = recursiveMerge(parent.mappedParameters, (;prefix => (;child.mappedParameters...)) )
end
merge!(parent.start, prependDict(child.start, prefix))
if length(keys(child.start)) > 0
parent.mappedParameters = recursiveMerge(parent.mappedParameters, (;prefix => (;child.mappedParameters...)) )
end
merge!(parent.variables, prependDict(child.variables, prefix))
merge!(parent.flows, prependDict(child.flows, prefix))
merge!(parent.inputs, prependDict(child.inputs, prefix))
merge!(parent.outputs, prependDict(child.outputs, prefix))
push!(parent.equations, prepend(child.equations, prefix)...)
end
function replaceLinearIntegerEquations(Gint, eInt, GcInt, unknowns, equations)
for i = 1:length(Gint)
e = Gint[i]
if length(e) > 0
# Construct equation
rhs = 0
for j = 1:length(e)
v = e[j]
vc = GcInt[i][j]
rhs = add(rhs, mult(vc, unknowns[v]))
end
equ = :(0 = $rhs)
equations[eInt[i]] = equ
else
equations[eInt[i]] = :(0 = 0)
end
end
end
function performAliasReduction(unknowns, equations, Avar, logDetails, log)
variablesIndices = OrderedDict(key => k for (k, key) in enumerate(unknowns))
linearVariables = []
nonlinearVariables = []
linearEquations = Vector{Int}()
nonlinearEquations = []
G = Vector{Int}[] # Array{Array{Int64,1},1}()
Gint = Array{Array{Int64,1},1}()
GcInt = Array{Array{Int64,1},1}()
for i in 1:length(equations)
e = equations[i]
nameIncidence, coefficients, rest, linear = getCoefficients(e)
incidence = [variablesIndices[n] for n in nameIncidence if n in unknowns]
unique!(incidence)
push!(G, incidence)
if linear && all([c == 1 || c == -1 for c in coefficients]) && rest == 0 && all(n in unknowns for n in nameIncidence)
push!(linearVariables, nameIncidence...)
push!(linearEquations, i)
push!(Gint, incidence)
push!(GcInt, coefficients)
else
push!(nonlinearVariables, nameIncidence...)
push!(nonlinearEquations, e)
end
end
if logDetails
@show G
@show Avar
end
unique!(linearVariables)
unique!(nonlinearVariables)
vSolveInLinearEquations = setdiff(linearVariables, nonlinearVariables)
if logDetails
printArray(linearVariables, "linearVariables:", number=false)
printArray(equations[linearEquations], "linearEquations:", number=false)
# printArray(nonlinearVariables, "nonlinearVariables:", number=false)
# printArray(nonlinearEquations, "nonlinearEquations:", number=false)
@show linearEquations vSolveInLinearEquations Gint GcInt
end
GCopy = deepcopy(G)
AvarCopy = deepcopy(Avar)
(vEliminated, vProperty, nvArbitrary, redundantEquations) = simplifyLinearIntegerEquations!(GCopy, linearEquations, GcInt, AvarCopy)
if logDetails
@show vEliminated vProperty nvArbitrary redundantEquations
end
if log
printSimplifiedLinearIntegerEquations(GCopy, linearEquations, GcInt, vEliminated, vProperty, nvArbitrary, redundantEquations, v->string(unknowns[v]), printTest=false)
end
substitutions = OrderedDict()
if length(vEliminated) - nvArbitrary > 0
for v in vEliminated[nvArbitrary+1:end]
if isZero(vProperty, v)
substitutions[unknowns[v]] = 0.0
elseif isAlias(vProperty, v)
substitutions[unknowns[v]] = unknowns[alias(vProperty,v)]
else
substitutions[unknowns[v]] = :(- $(unknowns[negAlias(vProperty,v)]))
end
end
end
replaceLinearIntegerEquations(GCopy[linearEquations], linearEquations, GcInt, unknowns, equations)
# printArray(equations, "new equations:", log=log)
reducedEquations = []
for ei in 1:length(equations)
e = equations[ei]
if e != :(0 = 0)
push!(reducedEquations, substitute(substitutions, e))
end
end
reducedUnknowns = []
for vi in 1:length(unknowns)
if isNotEliminated(vProperty, vi)
push!(reducedUnknowns, unknowns[vi])
end
end
reducedVariablesIndices = OrderedDict(key => k for (k, key) in enumerate(reducedUnknowns))
reducedG = Vector{Int}[] # Array{Array{Int64,1},1}()
for i in 1:length(reducedEquations)
e = reducedEquations[i]
nameIncidence, coefficients, rest, linear = getCoefficients(e)
incidence = [reducedVariablesIndices[n] for n in nameIncidence if n in reducedUnknowns]
unique!(incidence)
push!(reducedG, incidence)
end
reducedAvar, reducedStates, reducedDerivatives = setAvar(reducedUnknowns)
return reducedEquations, reducedUnknowns, reducedAvar, reducedG, reducedStates, vEliminated, vProperty
end
function stateSelectionAndCodeGeneration(modelStructure, name, modelModule, FloatType, init, start, vEliminated, vProperty, unknownsWithEliminated, mappedParameters;
unitless=false, logStateSelection=false, logCode=false, logExecution=false, logTiming=false)
(unknowns, equations, G, Avar, Bequ, assign, blt, parameters) = modelStructure
function getSolvedEquationAST(e, v)
(solution, solved) = solveEquation(equations[e], unknowns[v])
equ = string(equations[e])
@assert solved "Equation not solved for $(unknowns[v]): $(equations[e])"
# sol = string(solution)
# solution = prepend(makeDerivativeVar(solution, components), :m)
if false
# solution = :(begin println("Executing: ", $sol); $solution end)
if sol != equ
solution = :(try $solution; catch e; println("\n\nFailure executing: ", $sol); println("Original equation: ", $equ, "\n\n"); rethrow(e) end)
else
solution = :(try $solution; catch e; println("\n\nFailure executing: ", $sol, "\n\n"); rethrow(e) end)
end
# solution = :(try $solution; catch e; println("Failure executing: ", $sol); println(sprint(showerror,e)); rethrow(e) end)
# solution = :(try $solution; catch e; println("Failure executing: ", $sol); printstyled(stderr,"ERROR: ", bold=true, color=:red);
# printstyled(stderr,sprint(showerror,e), color=:light_red); println(stderr); end)
end
solution = makeDerVar(solution, keys(parameters))
if logExecution
var = string(unknowns[v])
return :($solution; println($var, " = ", upreferred.($(solution.args[1]))))
else
return solution
end
end
function getResidualEquationAST(e, residualName)
eq = equations[e] # prepend(makeDerivativeVar(equations[e], components), :m)
resid = makeDerVar(:(ustrip($(eq.args[2]) - $(eq.args[1]))), keys(parameters))
residual = :($residualName = $resid)
if false #logExecution
return makeDerVar(:(dump($(makeDerVar(eq.args[2]))); dump($(makeDerVar(eq.args[1]))); $residual; println($residualName, " = ", upreferred.(($(eq.args[2]) - $(eq.args[1]))))))
else
return residual
end
end
function isLinearEquation(e_original, v_original)
equ = equations[e_original]
var = unknowns[v_original]
return isLinear(equ, var)
end
function isSolvableEquation(e_original, v_original)
equ = equations[e_original]
var = unknowns[v_original]
(solution, solved) = solveEquation(equ, var)
return solved
end
hasParticles(value) = typeof(value) <: MonteCarloMeasurements.StaticParticles ||
typeof(value) <: MonteCarloMeasurements.Particles
function var_unit(v)
var = unknowns[v]
# @show var init[var]
if var in keys(init)
value = eval(init[var])
# value = 0.0
elseif var in keys(start)
value = eval(start[var])
else
value = 0.0
end
if hasParticles(value) # Units not yet support for particles
return ""
end
# if length(value) == 1
if ! (typeof(value) <: Array)
un = unit(value)
else
un = unit.(value) # un = [unit(v) for v in value] # unit.(value) does not work for MonteCarloMeasurements
@assert all([un[i] == un[1] for i in 2:length(un)]) "The unit of all elements of state vector must be equal: $var::$(value)"
un = un[1]
end
return replace(string(un), " " => "*") # Fix since Unitful removes * in unit strings
end
function var_has_start(v_original)
return unknowns[v_original] in keys(init) || unknowns[v_original] in keys(start)
end
function var_fixed(v_original)
return unknowns[v_original] in keys(init)
end
function var_length(v_original)
v = unknowns[v_original]
if v in keys(init)
value = eval(init[v])
# value = 0.0
len = hasParticles(value) ? 1 : length(value)
else
len = 1
end
return len
end
function eq_equation(e)
return replace(replace(string(equations[e]), "\n" => " "), " " => " ")
end
# ----------------------------------------------------------------------------
solvedAST = []
Gsolvable = copy(G)
juliaVariables = [Symbol(u) for u in unknowns]
stringVariables = [String(Symbol(v)) for v in unknowns]
allEquations = equations
# @show stringVariables equations G blt assign Avar Bequ Gsolvable
stateSelectionFunctions = StateSelectionFunctions(
var_name = v -> stringVariables[v],
var_julia_name = v -> juliaVariables[v],
var_unit = var_unit,
var_has_start = var_has_start,
var_fixed = var_fixed,
var_nominal = v_original -> NaN,
var_unbounded = v_original -> false,
var_length = var_length,
equation = eq_equation,
isSolvableEquation = isSolvableEquation,
isLinearEquation = isLinearEquation,
getSolvedEquationAST = getSolvedEquationAST,
getResidualEquationAST = getResidualEquationAST,
showMessage = (message;severity=0,from="???",details="",variables=Int[],equations=Int[]) ->
ModiaBase.showMessage(message, severity, from, details,
stringVariables[variables],
string.(allEquations[equations]))
)
if length(equations) == 0
return nothing
end
if logTiming
println("Get sorted and solved AST")
@time (success,AST,equationInfo) = getSortedAndSolvedAST(
G, Array{Array{Int64,1},1}(blt), assign, Avar, Bequ, stateSelectionFunctions;
unitless, log = logStateSelection, modelName = name)
else
(success,AST,equationInfo) = getSortedAndSolvedAST(
G, Array{Array{Int64,1},1}(blt), assign, Avar, Bequ, stateSelectionFunctions;
unitless, log = logStateSelection, modelName = name)
end
# equationInfo.nz = nCrossingFunctions
if ! success
error("Aborting")
end
# @show AST
# @show equationInfo
selectedStates = [v.x_name_julia for v in equationInfo.x_info]
startValues = []
for v in selectedStates
v = Meta.parse(string(v))
if v in keys(init)
value = eval(init[v])
# value = [0.0 0.0] # TODO: Fix
# @show value
if hasParticles(value)
push!(startValues, value)
else
push!(startValues, value...)
end
elseif v in keys(start)
value = eval(start[v])
if hasParticles(value)
push!(startValues, value)
else
push!(startValues, value...)
end
else
push!(startValues, 0.0)
end
end
if logCode
println("startValues = ", startValues)
end
vSolvedWithInit = equationInfo.vSolvedWithFixedTrue
vSolvedWithInitValuesAndUnit = OrderedDict{String,Any}()
for name in vSolvedWithInit
nameAsExpr = Meta.parse(name)
if haskey(init, nameAsExpr)
vSolvedWithInitValuesAndUnit[name] = eval( init[nameAsExpr] )
else
@warn "Internal issue of TinyModia: $name is assumed to have an init-value, but it is not found."
end
end
# Generate code
if logTiming
println("Generate code")
# @time code = generate_getDerivatives!(AST, equationInfo, Symbol.(keys(parameters)), vcat(:time, [Symbol(u) for u in unknowns]), :getDerivatives, hasUnits = !unitless)
@time code = generate_getDerivatives!(AST, equationInfo, [:(_p)], vcat(:time, [Symbol(u) for u in unknowns]), :getDerivatives, hasUnits = !unitless)
else
# code = generate_getDerivatives!(AST, equationInfo, Symbol.(keys(parameters)), vcat(:time, [Symbol(u) for u in unknowns]), :getDerivatives, hasUnits = !unitless)
code = generate_getDerivatives!(AST, equationInfo, [:(_p)], vcat(:time, [Symbol(u) for u in unknowns]), :getDerivatives, hasUnits = !unitless)
end
if logCode
@show mappedParameters
showCodeWithoutComments(code)
end
# Compile code
# generatedFunction = @RuntimeGeneratedFunction(modelModule, code)
#getDerivatives = Core.eval(modelModule, code)
Core.eval(modelModule, code)
getDerivatives = modelModule.getDerivatives
# If generatedFunction is not packed inside a function, DifferentialEquations.jl crashes
# getDerivatives(derx,x,m,time) = generatedFunction(derx, x, m, time)
# Execute code
if logExecution
println("\nExecute getDerivatives")
@show startValues
end
convertedStartValues = convert(Vector{FloatType}, [ustrip(v) for v in startValues]) # ustrip.(value) does not work for MonteCarloMeasurements
model = SimulationModel{FloatType}(modelModule, name, getDerivatives, equationInfo, convertedStartValues,
# parameters, vcat(:time, [Symbol(u) for u in unknowns]);
OrderedDict(:(_p) => mappedParameters ), vcat(:time, [Symbol(u) for u in unknowns]);
vSolvedWithInitValuesAndUnit, vEliminated, vProperty,
var_name = (v)->string(unknownsWithEliminated[v]))
if logExecution
derx = deepcopy(convertedStartValues) # To get the same type as for x (deepcopy is needed for MonteCarloMeasurements)
# @time getDerivatives(derx, convertedStartValues, model, convert(FloatType, 0.0))
Base.invokelatest(getDerivatives, derx, convertedStartValues, model, convert(FloatType, 0.0))
@show derx
end
return model
end
"""
modelInstance = @instantiateModel(model; FloatType = Float64, aliasReduction=true, unitless=false,
log=false, logModel=false, logDetails=false, logStateSelection=false, logCode=false, logExecution=false, logTiming=false)
Instantiates a model, i.e. performs structural and symbolic transformations and generates a function for calculation of derivatives suitable for simulation.
* `model`: model (declarations and equations)
* `FloatType`: Variable type for floating point numbers, for example: Float64, Measurements{Float64}, StaticParticles{Float64,100}, Particles{Float64,2000}
* `aliasReduction`: Perform alias elimination and remove singularities
* `unitless`: Remove units (useful while debugging models and needed for MonteCarloMeasurements)
* `log`: Log the different phases of translation
* `logModel`: Log the variables and equations of the model
* `logDetails`: Log internal data during the different phases of translation
* `logStateSelection`: Log details during state selection
* `logCode`: Log the generated code
* `logExecution`: Log the execution of the generated code (useful for finding unit bugs)
* `logTiming`: Log timing of different phases
* `return modelInstance prepared for simulation`
"""
macro instantiateModel(model, kwargs...)
modelName = string(model)
code = :( instantiateModel($model; modelName=$modelName, modelModule=@__MODULE__, source=@__FILE__, $(kwargs...) ) )
return esc(code)
end
"""
See documentation of macro @instatiateModel
"""
function instantiateModel(model; modelName="", modelModule=nothing, source=nothing, FloatType = Float64, aliasReduction=true, unitless=false,
log=false, logModel=false, logDetails=false, logStateSelection=false, logCode=false, logExecution=false, logTiming=false)
try
println("\nInstantiating model $modelModule.$modelName")
modelStructure = ModelStructure()
if typeof(model) <: NamedTuple
if logModel
@showModel(model)
end
if logTiming
println("Flatten")
@time flattenModelTuple!(model, modelStructure, modelName; unitless, log)
else
flattenModelTuple!(model, modelStructure, modelName; unitless, log)
end
printModelStructure(modelStructure, log=logDetails)
name = modelName
else
error("Invalid model format")
end
allVariables = Incidence[]
if logTiming
println("Find incidence")
@time findIncidence!(modelStructure.equations, allVariables)
else
findIncidence!(modelStructure.equations, allVariables)
end
unique!(allVariables)
# @show allVariables
unknowns = setdiff(allVariables, keys(modelStructure.parameters), [:time])
Avar, states, derivatives = setAvar(unknowns)
vActive = [a == 0 for a in Avar]
if log
println("Number of states: ", length(states))
println("Number of unknowns: ", length(unknowns)-length(states))
println("Number of equations: ", length(modelStructure.equations))
end
printArray(modelStructure.parameters, "Parameters:", log=log)
printArray(states, "Potential states:", log=log)
printArray(setdiff(unknowns, states), "Unknowns:", log=log)
printArray(modelStructure.equations, "Equations:", log=log)
if logDetails
@show modelStructure.parameters modelStructure.mappedParameters modelStructure.init modelStructure.start modelStructure.variables modelStructure.flows
end
unknownsWithEliminated = unknowns
if aliasReduction
if log || logTiming
println("Perform alias elimination and remove singularities")
end
if logTiming
@time equations, unknowns, Avar, G, states, vEliminated, vProperty = performAliasReduction(unknowns, modelStructure.equations, Avar, logDetails, log)
println("Number of reduced unknowns: ", length(unknowns)-length(states))
println("Number of reduced equations: ", length(equations))
else
equations, unknowns, Avar, G, states, vEliminated, vProperty = performAliasReduction(unknowns, modelStructure.equations, Avar, logDetails, log)
end
printArray(states, "States:", log=log)
printArray(setdiff(unknowns, states), "Unknowns after alias reduction:", log=log)
printArray(equations, "Equations after alias reduction:", log=log)
else
equations = modelStructure.equations
G = Vector{Int}[] # Array{Array{Int64,1},1}()
variablesIndices = OrderedDict(key => k for (k, key) in enumerate(unknowns))
for i in 1:length(equations)
e = equations[i]
nameIncidence, coefficients, rest, linear = getCoefficients(e)
incidence = [variablesIndices[n] for n in nameIncidence if n in unknowns]
unique!(incidence)
push!(G, incidence)
end
vEliminated = Int[]
vProperty = Int[]
end
modStructure = assignAndBLT(equations, unknowns, modelStructure.parameters, Avar, G, states, logDetails, log, logTiming)
stateSelectionAndCodeGeneration(modStructure, name, modelModule, FloatType, modelStructure.init, modelStructure.start, vEliminated, vProperty, unknownsWithEliminated, modelStructure.mappedParameters;
unitless, logStateSelection, logCode, logExecution, logTiming)
catch e
if isa(e, ErrorException)
println()
printstyled("Model error: ", bold=true, color=:red)
printstyled(e.msg, "\n", bold=true, color=:red)
printstyled("Aborting instantiateModel for $modelName in $modelModule\n", bold=true, color=:red)
println()
# Base.rethrow()
else
Base.rethrow()
end
end
end
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 4779 | module TestDeclarations
using Unitful
using BenchmarkTools
struct Var
var::NamedTuple
Var(; kwargs...) = new((;kwargs...) )
end
struct Model
model::NamedTuple
Model(; kwargs...) = new((;kwargs...) )
end
struct Map
map::NamedTuple
Map(; kwargs...) = new((;kwargs...) )
end
Pin = Model( v = Var(potential=true, nominal=10), i = Var(;flow=true) )
@show Pin
Input(; kwargs...) = Var(;input=true, kwargs...)
Output(; kwargs...) = Var(;output=true, kwargs...)
Potential(; kwargs...) = Var(;potential=true, kwargs...)
Flow(; kwargs...) = Var(;flow=true, kwargs...)
using Base.Meta: isexpr
using DataStructures: OrderedDict
using Unitful
using ModiaBase.Symbolic: removeBlock
function showModel(m, level=0)
println("(")
level += 1
for (k, v) in zip(keys(m), m)
if typeof(v) <: NamedTuple
print(" "^level, k, " = ")
showModel(v, level)
else
println(" "^level, k, " = ", removeBlock(v), ",")
end
end
println(" "^(level-1), "),")
end
macro showModel(model)
modelName = string(model)
mod = :( print($modelName, " = Model"); showModel($model); println() )
return esc(mod)
end
global logMerge = true
function setLogMerge(val)
global logMerge
logMerge = val
end
recursiveMerge(x, ::Nothing) = x
recursiveMerge(x, y) = y
recursiveMerge(x::Expr, y::Expr) = begin dump(x); dump(y); Expr(x.head, x.args..., y.args...) end
recursiveMerge(x::Expr, y::Tuple) = begin x = copy(x); xargs = x.args; xargs[y[2]] = y[3]; Expr(x.head, xargs...) end
function recursiveMerge(nt1::NamedTuple, nt2::NamedTuple)
all_keys = union(keys(nt1), keys(nt2))
gen = Base.Generator(all_keys) do key
v1 = get(nt1, key, nothing)
v2 = get(nt2, key, nothing)
key => recursiveMerge(v1, v2)
end
return (; gen...)
end
function mergeModels(m1::NamedTuple, m2::NamedTuple, env=Symbol())
mergedModels = OrderedDict{Symbol,Any}(pairs(m1))
for (k,v) in collect(pairs(m2))
if typeof(v) <: NamedTuple
if k in keys(mergedModels) && ! (:_redeclare in keys(v))
if logMerge; print("In $k: ") end
m = mergeModels(mergedModels[k], v, k)
mergedModels[k] = m
elseif :_redeclare in keys(v)
if logMerge; println("Redeclaring: $k = $v") end
mergedModels[k] = v
elseif nothing in values(v) # TODO: Refine
else
if !(:_redeclare in keys(mergedModels))
if logMerge; println("Adding: $k = $v") end
end
mergedModels[k] = v
end
elseif v === nothing
if logMerge; println("Deleting: $k") end
delete!(mergedModels, k)
else
if logMerge
if k in keys(mergedModels)
println("Changing: $k = $(mergedModels[k]) to $k = $v")
elseif !(:_redeclare in keys(mergedModels))
println("Adding: $k = $v")
end
end
mergedModels[k] = v
end
end
return (; mergedModels...) # Transform OrderedDict to named tuple
end
mergeModels(m1::Model, m2::Model, env=Symbol()) = recursiveMerge(m1.model, m2.model)
mergeModels(m1::Model, m2::Map, env=Symbol()) = recursiveMerge(m1.model, m2.map)
#Base.:|(m::Model, n::Model) = recursiveMerge(m.model, n.model)
#Base.:|(m::Model, n::Map) = recursiveMerge(m.model, n.map)
#Base.:|(m, n::Map) = recursiveMerge(m, n.map)
Base.:|(m::Model, n::Model) = (:MergeModel, m.model, n.model)
Base.:|(m::Model, n::Map) = (:MergeMap, m.model, n.map)
Base.:|(m, n::Map) = (:MergeMap, m, n.map)
Redeclare = ( _redeclare = true, )
Replace(i, e) = (:replace, i, e)
Final(x) = x
# ----------------------------------------------------------
@time Pin = Model( v = Potential(), i = Flow() )
OnePort = Model( p = Pin, n = Pin, equations = :[
v = p.v - n.v
0 = p.i + n.i
i = p.i ]
)
@showModel(OnePort.model)
@time Resistor = OnePort | Model( R = Final(1.0u"Ξ©"), equations = Replace(1, :( R*i = v ) ))
@showModel(Resistor)
Capacitor = OnePort | Model( C = 1.0u"F", v = Map(init=0.0u"V"), equations = :[ C*der(v) = i ] )
Inductor = OnePort | Model( L = 1.0u"H", i = Map(init=0.0u"A"), equations = :[ L*der(i) = v ] )
ConstantVoltage = OnePort | Model( V = 1.0u"V", equations = :[ v = V ] )
Ground = Model( p = Pin, equations = :[ p.v = 0.0u"V" ] )
@time Filter = Model(
R = Resistor | Map(R=0.5u"Ξ©"),
C = Capacitor | Map(C=2.0u"F", v=Map(init=0.1u"V")),
V = ConstantVoltage | Map(V=10.0u"V"),
ground = Ground,
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n, ground.p)
]
)
@showModel(Filter.model)
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 2138 | module TestFilterCircuit
using TinyModia
using DifferentialEquations
using ModiaPlot
using Test
setLogMerge(false)
include("../models/Electric.jl")
FilterCircuit = Model(
R = Resistor | Map(R=0.5u"Ξ©"),
C = Capacitor | Map(C=2.0u"F", v=Var(init=0.1u"V")),
V = ConstantVoltage | Map(V=10.0u"V"),
ground = Ground,
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n, ground.p)
]
)
filterCircuit = @instantiateModel(FilterCircuit)
simulate!(filterCircuit, Tsit5(), stopTime = 10, merge = Map(R = Map(R = 5u"Ξ©"), C = Map(v = 3.0u"V")),
logParameters = true, logStates = true, requiredFinalStates = [7.424843902110655])
# Test access functions
@testset "Test variable access functions" begin
@test ModiaPlot.getNames(filterCircuit) == ["C.C", "C.class", "C.i", "C.n.i", "C.n.v", "C.p.i", "C.p.v", "C.v",
"C.v", "R.R", "R.class", "R.i", "R.n.i", "R.n.v", "R.p.i", "R.p.v", "R.v", "V.V", "V.i", "V.n.i", "V.n.v", "V.p.i", "V.p.v", "V.v", "class", "der(C.v)", "ground.p.i", "ground.p.v", "time"]
@test ModiaPlot.hasSignal(filterCircuit, "R.v")
@test ModiaPlot.hasSignal(filterCircuit, "C.n.v")
@test ModiaPlot.hasSignal(filterCircuit, "R.R")
@test ModiaPlot.hasSignal(filterCircuit, "ground.p.i")
@test ModiaPlot.hasSignal(filterCircuit, "R.p.vv") == false
@test isapprox(get_lastValue(filterCircuit, "R.v") , 2.5751560978893453u"V" )
@test isapprox(get_lastValue(filterCircuit, "C.n.v"), 0.0u"V")
@test isapprox(get_lastValue(filterCircuit, "R.R") , 5.0u"Ξ©")
@test isapprox(get_lastValue(filterCircuit, "ground.p.i"), 0.0)
end
# Test plotting of variables, zero variables, parameters
plot(filterCircuit, [("R.v", "C.v"), ("R.R", "ground.p.i")], figure=1)
# Simulate with lower precision
filterCircuitLow = @instantiateModel(FilterCircuit, FloatType = Float32)
simulate!(filterCircuitLow, RK4(), adaptive=false, stopTime=10.0, interval=0.01,
merge = Map(R = Map(R = 5u"Ξ©"), C = Map(v = 3.0u"V")),
requiredFinalStates = Float32[7.4248414])
plot(filterCircuitLow, [("R.v", "C.v"), ("R.R", "ground.p.i")], figure=2)
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 570 | module TestFirstOrder
using TinyModia
using DifferentialEquations
using ModiaPlot
# using RuntimeGeneratedFunctions
# RuntimeGeneratedFunctions.init(@__MODULE__)
inputSignal(t) = sin(t)
FirstOrder = Model(
T = 0.2,
x = Var(init=0.3),
equations = :[u = inputSignal(time/u"s"),
T * der(x) + x = u,
y = 2*x]
)
firstOrder = @instantiateModel(FirstOrder, logCode=false)
simulate!(firstOrder, Tsit5(), stopTime = 10, log=false, requiredFinalStates = [-0.3617373025974107])
plot(firstOrder, ["u", "x", "der(x)", "y"])
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 724 | module TestFirstOrder2
using TinyModia
using DifferentialEquations
using ModiaPlot
# using RuntimeGeneratedFunctions
# RuntimeGeneratedFunctions.init(@__MODULE__)
inputSignal(t) = sin(t)
FirstOrder1 = Model(
T = 0.2,
x = Var(init=0.3),
equations = :[u = inputSignal(time/u"s"),
T * der(x) + x = u,
y = 2*x]
)
FirstOrder2 = FirstOrder1 | Map(T = 0.3, x = Var(init=0.6))
firstOrder = @instantiateModel(FirstOrder2, logCode=true)
simulate!(firstOrder, Tsit5(), stopTime = 10, merge = Map(T = 0.4, x = 0.9),
log=true, logParameters=true, logStates=true,
requiredFinalStates = [-0.17964872595554535])
plot(firstOrder, [("u", "x"), "der(x)", "y"])
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 1158 | module TestHeatTransfer
using TinyModia
using Unitful
using ModiaPlot
using DifferentialEquations
include("$(TinyModia.path)/models/HeatTransfer.jl")
SimpleRod = Model(
fixedT = FixedTemperature | Map(T = 393.15u"K"),
C = HeatCapacitor | Map(C = 200u"J/K"),
G = ThermalConductor | Map(G = 100u"W/K"),
connect = :[
(fixedT.port, G.port_a),
(G.port_b , C.port)
]
)
simpleRod = @instantiateModel(SimpleRod)
simulate!(simpleRod, Tsit5(), stopTime = 15, requiredFinalStates = [393.09468783194814])
plot(simpleRod, ("fixedT.port.T", "C.T"), figure=1)
HeatedRod = Model(
fixedT = FixedTemperature | Map(T = 493.15u"K"),
fixedQflow = FixedHeatFlow,
rod = InsulatedRod | Map(T = Var(init = fill(293.15u"K", 5))),
connect = :[
(fixedT.port, rod.port_a),
(rod.port_b , fixedQflow.port)
]
)
heatedRod = @instantiateModel(HeatedRod)
simulate!(heatedRod, Tsit5(), stopTime = 1e5,
requiredFinalStates = [492.9629728925529, 492.607421697723, 492.30480548105595, 492.0850627579106, 491.9694736486912])
plot(heatedRod, ("fixedT.port.T", "rod.T"), figure=2)
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 204 | module TestJSON
import JSON
mutable struct S
a
b
end
mutable struct T
a
b
end
s = S(1,T(10, 25))
JSON.print(s)
n = (a=1, b=(a=10, b=25))
JSON.print(n)
@show JSON.print(s) == JSON.print(n)
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 2157 | module TestMechanics
println("TestMechanics: Tests how 3D mechanics could be combined with TinyModia.")
using TinyModia
using Unitful
using ModiaPlot
using DifferentialEquations
using RuntimeGeneratedFunctions
RuntimeGeneratedFunctions.init(@__MODULE__)
# TinyModia models
include("$(TinyModia.path)/models/Blocks.jl")
include("$(TinyModia.path)/models/Electric.jl")
include("$(TinyModia.path)/models/Rotational.jl")
# Generic TinyModia3D model stubs (always available)
RevoluteStub = Model(
flange = Flange,
equations = :[phi = flange.phi
w = der(phi)
der_w = der(w)
tau = flange.tau]
)
# Generic Modia3D definitions (always available)
mutable struct SimulationModel3D
# Internal memory of 3D model
initial::Bool
SimulationModel3D() = new(true)
end
# Function ..._f1 for 3D mechanics
# function Pendulum_f1(_m::SimulationModel3D, phi::Float64, w::Float64, tau::Float64,
# m::Float64, L::Float64, g::Float64)
function Pendulum_f1(_m::TestMechanics.SimulationModel3D, phi, w, tau, m, L, g)
#function Pendulum_f1(phi, w, tau, m, L, g)
#=
if _m.initial
println("... SimplePendulum_f1 called during initialization")
_m.initial = false
end
=#
der_w = (tau - m*g*L*cos(phi))/m*L*L
return der_w
end
# TinyModia model for the system
Pendulum = Model(
model3D = SimulationModel3D(),
# Parameters
m = 1.0u"kg",
L = 0.5u"m",
g = 9.81u"m/s^2",
# 3D model stubs
rev = RevoluteStub | Map(init = Map(phi=1.5u"rad", w=2u"rad/s")),
# Standard TinyModia models
damper = Damper | Map(d=0.4u"N*m*s/rad"),
support = Fixed,
connect = :[
(rev.flange , damper.flange_b),
(damper.flange_a, support.flange)],
equations = :(rev.der_w = Pendulum_f1(model3D, rev.phi, rev.w, rev.tau, m, L, g))
# equations = :(rev.der_w = Pendulum_f1(rev.phi, rev.w, rev.tau, m, L, g))
)
pendulum = @instantiateModel(Pendulum, logCode=true, logExecution=false, unitless=true)
simulate!(pendulum, Tsit5(), stopTime=20.0, log=true)
plot(pendulum, ["rev.phi", "rev.w"])
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 3079 | module TestSingularLRRL
using TinyModia
using DifferentialEquations
using ModiaPlot
SingularLRRL = Model(
v0 = 10,
L1_L = 0.1,
L2_L = 0.2,
R1_R = 10,
R2_R = 20,
L2_p_i = Var(init = 0.1),
R2_p_i = Var(start = 0.0),
V_n_v = Var(start = 0.0),
equations =:[
# Inductor 1
L1_v = L1_p_v - L1_n_v
0 = L1_p_i + L1_n_i
L1_L*der(L1_p_i) = L1_v
# Inductor 2
L2_v = L2_p_v - L2_n_v
0 = L2_p_i + L2_n_i
L2_L*der(L2_p_i) = L2_v
# Resistor 1
R1_v = R1_p_v - R1_n_v
0 = R1_p_i + R1_n_i
R1_v = R1_R*R1_p_i
# Resistor 2
R2_v = R2_p_v - R2_n_v
0 = R2_p_i + R2_n_i
R2_v = R2_R*R2_p_i
# Voltage source
V_v = V_p_v - V_n_v
0 = V_p_i + V_n_i
# Connect equations
# connect(V.p, L1.p)
# connect(L1.n, R1.p)
# connect(L1.n, R2.p)
# connect(R1.n, L2.p)
# connect(R2.n, L2.p)
# connect(L2.n, V.n)
V_p_v = L1_p_v
0 = V_p_i + L1_p_i
L1_n_v = R1_p_v
L1_n_v = R2_p_v
0 = L1_n_i + R1_p_i + R2_p_i
R1_n_v = L2_p_v
R2_n_v = L2_p_v
0 = R1_n_i + R2_n_i + L2_p_i
L2_n_v = V_n_v
0 = L2_n_i + V_n_i #+ ground_v_i
#V_n_v = 0
V_v = v0 ]
)
singularLRRL = @instantiateModel(SingularLRRL)
simulate!(singularLRRL, Tsit5(), stopTime = 1.0, requiredFinalStates = [1.4999999937318995])
plot(singularLRRL, [("L1_p_i", "L2_p_i", "R1_p_i", "R2_p_i"), ("L1_v", "L2_v", "R1_v", "R2_v")])
include("../models/Electric.jl")
setLogMerge(false)
SingularLRRL2 = Model(
R1 = Resistor | Map(R=10u"β¦"),
R2 = Resistor | Map(R=20u"β¦", start = Map(v=0.0u"V")),
L1 = Inductor | Map(L=0.1u"H", i = Var(init=nothing)),
L2 = Inductor | Map(L=0.2u"H", start = Map(v=0.0u"V")),
V = ConstantVoltage | Map(V=10u"V"),
connections = :[
(V.p, L1.p)
(L1.n, R1.p, R2.p)
(L2.p, R1.n, R2.n)
(L2.n, V.n) ]
)
#=
singularLRRL2 = @instantiateModel(SingularLRRL2, log=true, logCode=true, logExecution=true)
simulate!(singularLRRL2, Tsit5(), stopTime = 1.0)
plot(singularLRRL2, [("L1.p.i", "L2.p.i", "R1.p.i", "R2.p.i"), ("L1.v", "L2.v", "R1.v", "R2.v")])
=#
SingularLRRL3 = Model(
R1 = Resistor | Map(R=1),
R2 = Resistor | Map(R=2),
R3 = Resistor | Map(R=3),
R4 = Resistor | Map(R=4),
L1 = Inductor | Map(L=0.1),
L2 = Inductor | Map(L=0.2, i = Var(init=nothing)),
V = ConstantVoltage | Map(V=10),
# ground = Ground,
connections = :[
(V.p, L1.p)
(L1.n, R1.p, R2.p)
(R1.n, R2.n, R3.p, R4.p)
(L2.p, R3.n, R4.n)
(L2.n, V.n) ] #, ground.p) ]
)
singularLRRL3 = @instantiateModel(SingularLRRL3, unitless=true, log=false, logDetails=false)
simulate!(singularLRRL3, Tsit5(), stopTime = 1.0, requiredFinalStates = [4.198498632779839])
plot(singularLRRL3, [("L1.i", "L2.i", "R1.i", "R2.i", "R3.i", "R4.i"), ("L1.v", "L2.v", "R1.v", "R2.v", "R3.v", "R4.v")])
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 6851 | module TestStateSelection
using TinyModia
using Test
function checkStateSelection(model, x_names, linearEquations=[])
# Check names of the states
for (i, state_i) in enumerate(model.equationInfo.x_info)
@test state_i.x_name == x_names[i]
end
# Check linear equation systems
if length(linearEquations) > 0
@test model.equationInfo.linearEquations == linearEquations
end
end
@testset "\nTest ModiaBase/StateSelection.jl" begin
@testset "... Test FirstOrder" begin
FirstOrder = Model(
T = 0.2,
x = Var(init=0.3),
equations = :[
u = 1.0
der(x) = (u - x)/T
y = 2*x]
)
firstOrder = @instantiateModel(FirstOrder)
checkStateSelection(firstOrder, ["x"])
end
@testset "... Test TwoCoupledInertias" begin
TwoCoupledInertias = Model(
J1_J = 1,
J2_J = 1,
J1_phi = Var(start=1.0),
J1_w = Var(start=0.0),
J2_phi = Var(start=0.0),
J2_w = Var(start=0.0),
equations = :[
J1_w = der(J1_phi)
J1_J * der(J1_w) = J1_tau
J2_w = der(J2_phi)
J2_J * der(J2_w) = J2_tau
J2_phi = J1_phi
J2_tau + J1_tau = 0]
)
twoCoupledInertias = @instantiateModel(TwoCoupledInertias)
checkStateSelection(twoCoupledInertias, ["J1_w", "J1_phi"], [(["J1_tau"], [1], 1, 1)])
end
@testset "... Test ODE with linear equations 1" begin
ODEwithLinearEquations1 = Model(
p1=4,
p2=2,
x6 = Var(start=1.0),
equations = :[
x1 = sin(time)
p2*x2 = p1*x1
2*x3 + 4*x4 = x1
x3 + x5 = 2*x2
4*x4 + 5*x5 = x1 + x2
der(x6) = -x5*x6]
)
oDEwithLinearEquations1 = @instantiateModel(ODEwithLinearEquations1, unitless=true)
checkStateSelection(oDEwithLinearEquations1, ["x6"], [(["x5"], [1], 1, 1)])
end
@testset "... Test ODE with linear equations 2" begin
ODEwithLinearEquations2 = Model(
p1=4,
p2=2,
x6 = Var(start=1.0),
equations = :[
x1 = sin(time)
p2*x2 = p1*x1
p2*x3 + p1*x4 + 5*der(x6) = x1
x3 + x5 = 2*x2
4*x4 + 5*x5 = x1 + x2
3*der(x6) = -5*x3 - 2*x4]
)
oDEwithLinearEquations2 = @instantiateModel(ODEwithLinearEquations2, unitless=true)
checkStateSelection(oDEwithLinearEquations2, ["x6"], [(["x5"], [1], 1, 1)])
end
@testset "... Test Multi-index DAE" begin
MultiIndexDAE = Model(
equations = :[
u1 = sin(1*time)
u2 = sin(2*time)
u3 = sin(3*time)
u4 = sin(4*time)
u5 = sin(5*time)
u6 = sin(6*time)
u7 = sin(7*time)
0 = u1 + x1 - x2
0 = u2 + x1 + x2 - x3 + der(x6)
0 = u3 + x1 + der(x3) - x4
x1d = der(x1)
x2d = der(x2)
x3d = der(x3)
x6d = der(x6)
x6dd = der(x6d)
0 = u4 + 2*der(x1d) + der(x2d) + der(x3d) + der(x4) + der(x6dd)
0 = u5 + 3*der(x1d) + 2*der(x2d) + x5
0 = u6 + 2*x6 + x7
0 = u7 + 3*x6 + 4*x7]
)
multiIndexDAE = @instantiateModel(MultiIndexDAE, unitless=true)
#@show multiIndexDAE.equationInfo.linearEquations
checkStateSelection(multiIndexDAE, ["x2", "x2d"],
[(["x7"], [1], 1, 1),
(["der(x7)"], [1], 1, 1),
(["der(der(x7))"], [1], 1, 1),
(["der(der(der(x7)))"], [1], 1, 1),
(["der(x2d)"], [1], 1, 1)])
end
@testset "... Test free flying mass" begin
FreeFlyingMass = Model(
m =1.0,
f=[1.0,2.0,3.0],
r = Var(init=[0.1, 0.2, 0.3]),
v = Var(init=[-0.1, -0.2, -0.3]),
equations = :[
v = der(r)
m*der(v) = f]
)
freeFlyingMass = @instantiateModel(FreeFlyingMass)
checkStateSelection(freeFlyingMass, ["v", "r"], [])
end
#=
@testset "... Test sliding mass" begin
SlidingMass = Model(
m = 1.0,
c = 1e4,
d = 10.0,
g = 9.81,
n = [1.0, 1.0, 1.0],
s = Var(init=1.0),
equations = :[
r = n*s
v = der(r)
m*der(v) = f + m*g*[0,-1,0] + u
0 = n*f
u = -(c*s + d*der(s))*n]
)
slidingMass = @instantiateModel(SlidingMass, logStateSelection=true)
@show slidingMass.equationInfo.linearEquations
#checkStateSelection(slidingMass, ["x6"], [(["x5"], [1], 1, 1)])
end
=#
end
using Unitful
include("../models/AllModels.jl")
#=
Gear = Model(
flange_a = Flange,
flange_b = Flange,
gear = IdealGear_withSupport | Map(ratio = 105.0),
fixed = Fixed,
spring = Spring | Map(c=5.84e5u"N*m/rad"),
damper1 = Damper | Map(d=500.0u"N*m*s/rad"),
damper2 = Damper | Map(d=100.0u"N*m*s/rad"),
connect = :[
(flange_a , gear.flange_a)
(fixed.flange , gear.support, damper2.flange_b)
(gear.flange_b, damper2.flange_a, spring.flange_a, damper1.flange_a)
(flange_b , spring.flange_b, damper1.flange_b)]
)
Drive = Model(
inertia1 = Inertia,
inertia2 = Inertia,
gear = Gear,
equations = :[
inertia1.flange_a.tau = 0u"N*m"
inertia2.flange_b.tau = 0u"N*m"],
connect = :[
(inertia1.flange_b, gear.flange_a),
(gear.flange_b , inertia2.flange_a)
]
)
=#
# Linear 1D rotational damper
AbsoluteDamper = Model(
flange = Flange,
d = 1.0u"N*m*s/rad", # (info = "Damping constant"),
phi = Var(init=0.0u"rad"),
equation = :[
phi = flange.phi
w = der(phi)
flange.tau = d * w ]
)
Drive = Model(
inertia = Inertia,
damper = AbsoluteDamper,
equations = :[
inertia.flange_a.tau = 0u"N*m"],
connect = :[
(inertia.flange_b, damper.flange)]
)
Drive2 = Drive | Map(damper = Map(phi=Var(init=1.0u"rad")))
drive1 = @instantiateModel(Drive)
drive2 = @instantiateModel(Drive2)
using DifferentialEquations
simulate!(drive1, Tsit5(), stopTime = 4.0)
println("Next simulate! should result in an error:\n")
simulate!(drive2, Tsit5(), stopTime = 4.0)
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 1787 | module TestStateSpace
using TinyModia
using ModiaPlot
using DifferentialEquations
include("$(TinyModia.path)/models/Blocks.jl")
# Second order system:
# w = 1.0
# D = 0.1
# k = 2.0
# der(x1) = x2
# der(x2) = -w^2*x1 - 2*D*w*x2 + w^2*u
# y = k*x1
SecondOrder1 = Model(
w = 20.0,
D = 0.1,
k = 2.0,
sys = StateSpace | Map(A = :([ 0 1;
-w^2 -2*D*w]),
B = :([0; w^2]),
C = :([k 0]),
D = :(zeros(1)),
x = Var(init = zeros(2)) ),
equations = :[sys.u = 1.0]
)
secondOrder1 = @instantiateModel(SecondOrder1, unitless=true)
simulate!(secondOrder1, merge=Map(D=0.3),
requiredFinalStates = [0.9974089572681231, 0.011808652820321723])
plot(secondOrder1, [("sys.u", "sys.y"); "sys.x"], figure = 1)
SecondOrder2 = Model(
sys = StateSpace | Map( A = [ 0.0 1.0;
-100.0 -12.0],
B = [0; 400.0],
C = [2.0 0],
D = zeros(1,1),
x = Var(init = zeros(2))),
equations = :[sys.u = 1.0]
)
secondOrder2 = @instantiateModel(SecondOrder2, unitless=true)
simulate!(secondOrder2, Tsit5(), merge=Map(sys=Map(A = [0.0 1.0; -400.0 -12.0])),
requiredFinalStates = [0.9974089572681231, 0.011808652820321723])
plot(secondOrder2, [("sys.u", "sys.y"); "sys.x"], figure = 2)
simulate!(secondOrder2, Tsit5(), merge=Map(sys=Map(x=[1.0,1.0])),
logParameters=true, logStates=true,
requiredFinalStates = [1.0000295203337868, 0.0022367686372974493])
plot(secondOrder2, [("sys.u", "sys.y"); "sys.x"], figure = 3)
end
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 1362 | module TestTwoInertiasAndIdealGear
using TinyModia
using DifferentialEquations
using ModiaPlot
using Unitful
TwoInertiasAndIdealGearTooManyInits = Model(
J1 = 0.0025,
J2 = 170,
r = 105,
tau_max = 1,
phi1 = Var(init = 0.0),
w1 = Var(init = 1.0),
phi2 = Var(init = 0.5),
w2 = Var(init = 0.0),
equations = :[
tau = if time < 1u"s"; tau_max elseif time < 2u"s"; 0 elseif time < 3u"s"; -tau_max else 0 end,
# inertia1
w1 = der(phi1),
J1*der(w1) = tau - tau1,
# gear
phi1 = r*phi2,
r*tau1 = tau2,
# inertia2]
w2 = der(phi2),
J2*der(w2) = tau2
]
)
TwoInertiasAndIdealGear = TwoInertiasAndIdealGearTooManyInits | Map(phi1 = Var(init=nothing), w1=Var(init=nothing))
twoInertiasAndIdealGearTooManyInits = @instantiateModel(TwoInertiasAndIdealGearTooManyInits)
twoInertiasAndIdealGear = @instantiateModel(TwoInertiasAndIdealGear)
println("Next simulate! should result in an error:\n")
simulate!(twoInertiasAndIdealGearTooManyInits, Tsit5(), stopTime = 4.0, log=true)
simulate!(twoInertiasAndIdealGear, Tsit5(), stopTime = 4.0, log=false,
logParameters=true, logStates=true,
requiredFinalStates=[1.5628074713622309, -6.878080753044174e-5])
plot(twoInertiasAndIdealGear, ["phi2", "w2"])
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 1323 | module TestTwoInertiasAndIdealGearWithMonteCarlo
using TinyModia
using DifferentialEquations
using ModiaPlot
using MonteCarloMeasurements
using Distributions
using Unitful
# The number of particles must be the same as for FloatType
const nparticles = 100
uniform(vmin,vmax) = StaticParticles(nparticles,Distributions.Uniform(vmin,vmax))
TwoInertiasAndIdealGearWithMonteCarlo = Model(
J1 = 0.0025,
J2 = uniform(50, 170),
r = 105,
tau_max = 1,
phi2 = Var(init = uniform(0.5,0.55)),
w2 = Var(init = 0.0),
equations = :[
tau = if time < 1u"s"; tau_max elseif time < 2u"s"; 0 elseif time < 3u"s"; -tau_max else 0 end,
# inertia1
w1 = der(phi1),
J1*der(w1) = tau - tau1,
# gear
phi1 = r*phi2,
r*tau1 = tau2,
# inertia2
w2 = der(phi2),
J2*der(w2) = tau2
]
)
twoInertiasAndIdealGearWithMonteCarlo = @instantiateModel(TwoInertiasAndIdealGearWithMonteCarlo,
FloatType = StaticParticles{Float64,nparticles})
simulate!(twoInertiasAndIdealGearWithMonteCarlo, Tsit5(), stopTime = 4.0,
logParameters=true, logStates=true)
plot(twoInertiasAndIdealGearWithMonteCarlo, ["phi2", "w2"],
MonteCarloAsArea=false)
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 1086 | module TestTwoInertiasAndIdealGearWithUnits
using TinyModia
using DifferentialEquations
using ModiaPlot
using Unitful
TwoInertiasAndIdealGearWithUnits = Model(
J1 = 0.0025u"kg*m^2",
J2 = 170u"kg*m^2",
r = 105,
tau_max = 1u"N*m",
phi2 = Var(start = 0.5u"rad"),
w2 = Var(start = 0.0u"rad/s"),
tau2 = Var(start = 0u"N*m"),
equations = :[
tau = if time < 1u"s"; tau_max elseif time < 2u"s"; 0u"N*m" elseif time < 3u"s"; -tau_max else 0u"N*m" end,
# inertia1
w1 = der(phi1),
J1*der(w1) = tau - tau1,
# gear
phi1 = r*phi2,
r*tau1 = tau2,
# inertia2
w2 = der(phi2),
J2*der(w2) = tau2
]
)
twoInertiasAndIdealGearWithUnits = @instantiateModel(TwoInertiasAndIdealGearWithUnits)
simulate!(twoInertiasAndIdealGearWithUnits, Tsit5(), stopTime = 4.0,
logParameters=true, logStates=true,
requiredFinalStates=[1.5628074713622309, -6.878080753044174e-5])
plot(twoInertiasAndIdealGearWithUnits, ["phi2", "w2", "der(w2)"])
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 1255 | module TestTwoInertiasAndIdealGearWithUnitsAndMonteCarlo
using TinyModia
using DifferentialEquations
using ModiaPlot
using MonteCarloMeasurements
using Distributions
using Unitful
# The number of particles must be the same as for FloatType
const nparticles = 100
uniform(vmin,vmax) = StaticParticles(nparticles,Distributions.Uniform(vmin,vmax))
TwoInertiasAndIdealGearWithUnitsAndMonteCarlo = Model(
J1 = 0.0025u"kg*m^2",
J2 = uniform(50.0, 170.0)u"kg*m^2",
r = 105.0,
tau_max = 1.0u"N*m",
start = Map(phi2 = 0.5u"rad", w2 = 0.0u"rad/s", tau2 = 0.0u"N*m", tau=0.0u"N*m"),
equations = :[
tau = if time < 1u"s"; tau_max elseif time < 2u"s"; 0.0u"N*m" elseif time < 3u"s"; -tau_max else 0.0u"N*m" end,
# inertia1
w1 = der(phi1),
J1*der(w1) = tau - tau1,
# gear
phi1 = r*phi2,
r*tau1 = tau2,
# inertia2
w2 = der(phi2),
J2*der(w2) = tau2
]
)
twoInertiasAndIdealGear = @instantiateModel(TwoInertiasAndIdealGearWithUnitsAndMonteCarlo,
FloatType = StaticParticles{Float64,nparticles})
simulate!(twoInertiasAndIdealGear, Tsit5(), stopTime = 4.0)
plot(twoInertiasAndIdealGear, ["phi2", "w2"])
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 1039 | module TestTwoInertiasAndIdealGearWithUnitsAndUncertainties
using TinyModia
using DifferentialEquations
using ModiaPlot
using Measurements
using Unitful
TwoInertiasAndIdealGear = Model(
J1 = 0.0025u"kg*m^2",
J2 = (150.0 Β± 20.0)u"kg*m^2",
r = 105.0,
tau_max = 1u"N*m",
phi2 = Var(start = (0.5 Β± 0.05)u"rad"),
w2 = Var(start = 0.0u"rad/s"),
tau2 = Var(start = 0u"N*m"),
equations = :[
tau = if time < 1u"s"; tau_max elseif time < 2u"s"; 0u"N*m" elseif time < 3u"s"; -tau_max else 0u"N*m" end,
# inertia1
w1 = der(phi1),
J1*der(w1) = tau - tau1,
# gear
phi1 = r*phi2,
r*tau1 = tau2,
# inertia2
w2 = der(phi2),
J2*der(w2) = tau2
]
)
twoInertiasAndIdealGear = @instantiateModel(TwoInertiasAndIdealGear, FloatType = Measurement{Float64})
simulate!(twoInertiasAndIdealGear, Tsit5(), stopTime = 4.0, logParameters=true, logStates=true)
plot(twoInertiasAndIdealGear, ["phi2", "w2", "der(w2)"])
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 2007 | module TestUncertainties
using TinyModia
using DifferentialEquations
using ModiaPlot
using Measurements
TestModel = Model(
T = 0.2 Β± 0.02, # Cannot convert a particle distribution to a float if not all particles are the same.
u0 = 10 Β± 1, # Cannot convert a particle distribution to a float if not all particles are the same.
k = 1 Β± 0.1,
x = Var(init = 5 Β± 0.5),
v = Var(init = 1 Β± 0.1),
m = 10 Β± 1,
F = 20 Β± 2,
equations = :[
T*der(x) = u0
y = k*x
F = m * a
der(v) = a # Cannot convert a particle distribution to a float if not all particles are the same.
]
)
model = @instantiateModel(TestModel, FloatType = Measurement{Float64})
simulate!(model, stopTime = 1.0, log=false,
requiredFinalStates = Measurements.Measurement{Float64}[54.99999999999998 Β± 7.08872343937891, 2.999999999999999 Β± 0.3])
plot(model, ["T", "x", "der(x)", "y", "a", "der(v)"], figure=1)
include("../models/Electric.jl")
FilterCircuit = Model(
R = Resistor | Map(R = (100Β±10)u"Ξ©"),
C = Capacitor | Map(C = (0.01Β±0.001)u"F", v=Var(init=(0.0Β±1.0)u"V")),
V = ConstantVoltage | Map(V = (10.0Β±1.0)u"V"),
ground = Ground,
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n, ground.p)
]
)
filterCircuit = @instantiateModel(FilterCircuit, FloatType=Measurements.Measurement{Float64})
simulate!(filterCircuit, Tsit5(), stopTime = 3.0, logParameters = true, logStates = true)
plot(filterCircuit, ("V.v", "C.v"), figure=2)
Pendulum = Model(
L = (0.8Β±0.1)u"m",
m = (1.0Β±0.1)u"kg",
d = (0.5Β±0.05)u"N*m*s/rad",
g = 9.81u"m/s^2",
phi = Var(init = (pi/2Β±0.1)*u"rad"),
w = Var(init = 0u"rad/s"),
equations = :[
w = der(phi)
0.0 = m*L^2*der(w) + d*w + m*g*L*sin(phi)
]
)
pendulum = @instantiateModel(Pendulum, FloatType=Measurements.Measurement{Float64})
simulate!(pendulum, Tsit5(), stopTime = 10.0)
plot(pendulum, "phi", figure=4)
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 655 | module TestUnits
using TinyModia
using DifferentialEquations
using ModiaPlot
using Test
using Unitful
UnitTest = Model(
T = 0.2u"s",
u0 = 8.5u"kg",
k = 1u"kg^-1",
m = 10u"kg",
F = 20u"N",
x = Var(init = 5500.0u"g"),
v = Var(init = 1u"m/s"),
equations = :[
T*der(x) + x = u0
y = x
z = x*u"kg^-1"
F = m * a
der(v) = a ]
)
model = @instantiateModel(UnitTest)
simulate!(model, Tsit5(), stopTime = 1.0, requiredFinalStates = [5514.9625624219525, 2.9999999999999996])
#plot(model, ["T", "x", "der(x)", "y", "a", "der(v)"])
plot(model, ["x", "der(x)", "y", "a", "der(v)"])
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 670 | module TestUnitsAndUncertainites
using TinyModia
using DifferentialEquations
using ModiaPlot
using Measurements
using Unitful
TestModel = Model(
T = (0.2 Β± 0.02)u"s",
u0 = 8.5u"kg" Β± 0.85u"kg",
k = (1 Β± 0.1)u"kg^-1",
m = (10 Β± 1)u"kg",
F = (20 Β± 2)u"N",
x = Var(init = (5.5 Β± 0.55)u"kg"),
v = Var(init = (1 Β± 0.1)u"m/s"),
r = Var(init = 1u"m/s"),
equations = :[
T*der(x) + x = u0
y = x
z = x*k
F = m * a
der(v) = a
der(r) = v ]
)
model = @instantiateModel(TestModel, FloatType = Measurement{Float64})
simulate!(model, Tsit5(), stopTime = 1.0)
plot(model, ["T", "x", "der(x)", "y", "a", "v", "r"])
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 1715 | module TestVar
using Measurements
using StaticArrays
Var(;kwargs...) = (;kwargs...)
Var(value; kwargs...) = (;value=value, kwargs...)
#Var(args...; kwargs...) = begin println("1"); (;args..., kwargs...) end
#Var(value, args...; kwargs...) = typeof(value) <: NamedTuple ? begin println("2", value, args, kwargs); (;value..., args..., kwargs...) end : begin println("3"); (;value = value, args..., kwargs...) end
xar(value, args...; kwargs...) = begin
@show value args kwargs merge(value, args[1], args[2], (;kwargs...))
end
var(value, args...; kwargs...) = typeof(value) <: NamedTuple ?
begin println("2", value, args, kwargs); value end : #merge(value, args, kwargs ) end :
begin println("3"); (;value = value, args..., kwargs...) end
#Var(value, args...; kwargs...) = (;value = value, args..., kwargs...)
#Var(value::Union{Number, String, Expr, AbstractArray}, args...; kwargs...) = (;value = value, args..., kwargs...)
#NotPair = Union{Number, String, Expr, AbstractArray} # ..., ....}
#Var(value::NotPair, args...; kwargs...) = (;value = value, args..., kwargs...)
Model(; kwargs...) = (; kwargs...)
constant = Var(constant = true)
parameter = Var(parameter = true)
input = Var(input = true)
output = Var(output = true)
potential = Var(potential = true)
flow = Var(flow = true)
# ---------------------------------------------------------------------
#v = Var(potential, nominal=10)
#@show v
v = input | output | flow | Var(min=0, nominal=10)
@show v
v = parameter | Var(5, min=0)
@show v
v = parameter | Var(5, min=0)
@show v
Pin = Model( v = potential | Var(nominal=10), i = flow )
@show Pin
v2 = Var(2.0)
@show v2
v3 = Var(2.0 Β± 0.1)
@show v3
v4 = Var(SVector(1.0,2.0,3.0))
@show v4
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 3273 | module TestVar
using Measurements
using StaticArrays
using Unitful
struct nnnVar
var::NamedTuple
Var(; kwargs...) = new((; kwargs...) )
end
struct Model
model::NamedTuple
Model(; kwargs...) = new((; kwargs...) )
end
struct Map
map::NamedTuple
Map(; kwargs...) = new((; kwargs...) )
end
Var(;kwargs...) = (;kwargs...)
Var(value; kwargs...) = (; value=value, kwargs...)
#Var(args...; kwargs...) = begin println("1"); (;args..., kwargs...) end
#Var(value, args...; kwargs...) = typeof(value) <: NamedTuple ? begin println("2", value, args, kwargs); (;value..., args..., kwargs...) end : begin println("3"); (;value = value, args..., kwargs...) end
xar(value, args...; kwargs...) = begin
@show value args kwargs merge(value, args[1], args[2], (;kwargs...))
end
var(value, args...; kwargs...) = typeof(value) <: NamedTuple ?
begin println("2", value, args, kwargs); value end : #merge(value, args, kwargs ) end :
begin println("3"); (;value = value, args..., kwargs...) end
#Var(value, args...; kwargs...) = (;value = value, args..., kwargs...)
#Var(value::Union{Number, String, Expr, AbstractArray}, args...; kwargs...) = (;value = value, args..., kwargs...)
#NotPair = Union{Number, String, Expr, AbstractArray} # ..., ....}
#Var(value::NotPair, args...; kwargs...) = (;value = value, args..., kwargs...)
Model(; kwargs...) = (; kwargs...)
constant = Var(constant = true)
parameter = Var(parameter = true)
input = Var(input = true)
output = Var(output = true)
potential = Var(potential = true)
flow = Var(flow = true)
range(min, max) = Var(min=min, max=max)
recursiveMerge(x, ::Nothing) = x
recursiveMerge(x, y) = y
recursiveMerge(x::Expr, y::Expr) = begin dump(x); dump(y); Expr(x.head, x.args..., y.args...) end
recursiveMerge(x::Expr, y::Tuple) = begin x = copy(x); xargs = x.args; xargs[y[2]] = y[3]; Expr(x.head, xargs...) end
function recursiveMerge(nt1::NamedTuple, nt2::NamedTuple)
all_keys = union(keys(nt1), keys(nt2))
gen = Base.Generator(all_keys) do key
v1 = get(nt1, key, nothing)
v2 = get(nt2, key, nothing)
key => recursiveMerge(v1, v2)
end
return Var(; gen...)
end
Base.:|(m::Model, n::Model) = recursiveMerge(m.model, n.model)
Base.:|(m::Model, n::Map) = recursiveMerge(m.model, n.map)
Base.:|(m, n::Map) = recursiveMerge(m, n.map)
Base.:|(m, n) = if !(typeof(n) <: NamedTuple); recursiveMerge(m, (; value=n)) else recursiveMerge(n, (value=m,)) end
#Base.:|(m::Model, n::Model) = (:MergeModel, m.model, n.model)
#Base.:|(m::Model, n::Map) = (:MergeMap, m.model, n.map)
#Base.:|(m, n::Map) = (:MergeMap, m, n.map)
#Base.:|(m::Var, n::Var) = (:MergeModel, m.var, n.var)
# ---------------------------------------------------------------------
#v = Var(potential, nominal=10)
#@show v
v1 = input | output | flow | Var(min=0, nominal=10)
@show v1
v2 = parameter | 5
@show v2
v3 = 10u"m/s" | parameter
@show v3
v4 = parameter | 5.5 | Var(min=0)
@show v4
v5 = parameter | Var(5, min=0)
@show v5
Pin = Model( v = potential | Var(nominal=10), i = flow )
@show Pin
v6 = Var(2.0)
@show v6
v7 = Var(2.0 Β± 0.1)
@show v7
v8 = Var(SVector(1.0,2.0,3.0))
@show v8
v9 = v4 | Var(parameter=false)
@show v9
v10 = v4 | Var(parameter=nothing)
@show v10
v11 = v4 | range(0,10)
@show v11
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 2309 | module TestVar
using Measurements
using StaticArrays
using Unitful
struct Var
var::NamedTuple
Var(; kwargs...) = new((; kwargs...) )
end
struct Model
model::NamedTuple
Model(; kwargs...) = new((; kwargs...) )
end
struct Map
map::NamedTuple
Map(; kwargs...) = new((; kwargs...) )
end
#Var(;kwargs...) = (;kwargs...)
Var(value; kwargs...) = Var(;value=value, kwargs...)
Model(; kwargs...) = (; kwargs...)
constant = Var(constant = true)
parameter = Var(parameter = true)
input = Var(input = true)
output = Var(output = true)
potential = Var(potential = true)
flow = Var(flow = true)
recursiveMerge(x, ::Nothing) = x
recursiveMerge(x, y) = y
recursiveMerge(x::Expr, y::Expr) = begin dump(x); dump(y); Expr(x.head, x.args..., y.args...) end
recursiveMerge(x::Expr, y::Tuple) = begin x = copy(x); xargs = x.args; xargs[y[2]] = y[3]; Expr(x.head, xargs...) end
function recursiveMerge(nt1::NamedTuple, nt2::NamedTuple)
all_keys = union(keys(nt1), keys(nt2))
gen = Base.Generator(all_keys) do key
v1 = get(nt1, key, nothing)
v2 = get(nt2, key, nothing)
key => recursiveMerge(v1, v2)
end
return Var(; gen...)
end
Base.:|(m::Model, n::Model) = recursiveMerge(m.model, n.model)
Base.:|(m::Model, n::Map) = recursiveMerge(m.model, n.map)
Base.:|(m, n::Map) = recursiveMerge(m, n.map)
Base.:|(m::Var, n::Var) = Var(recursiveMerge(m.var, n.var))
Base.:|(m, n) = if !(typeof(n) <: Var); recursiveMerge(m, Var(value=n)) else recursiveMerge(n, Var(value=m)) end
#Base.:|(m::Model, n::Model) = (:MergeModel, m.model, n.model)
#Base.:|(m::Model, n::Map) = (:MergeMap, m.model, n.map)
#Base.:|(m, n::Map) = (:MergeMap, m, n.map)
#Base.:|(m::Var, n::Var) = (:MergeModel, m.var, n.var)
# ---------------------------------------------------------------------
#v = Var(potential, nominal=10)
#@show v
v1 = input | output | flow | Var(min=0, nominal=10)
@show v1
v2 = parameter | 5
@show v2
v3 = 10u"m/s" | parameter
@show v3
v4 = parameter | 5.5 | Var(min=0)
@show v4
v5 = parameter | Var(5, min=0)
@show v5
Pin = Model( v = potential | Var(nominal=10), i = flow )
@show Pin
v6 = Var(2.0)
@show v6
v7 = Var(2.0 Β± 0.1)
@show v7
v8 = Var(SVector(1.0,2.0,3.0))
@show v8
v9 = v4 | Var(parameter=false)
@show v9
v10 = v4 | Var(parameter=nothing)
@show v10
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 1935 | module TestVariables
using TinyModia
using ModiaPlot
using Measurements
using StaticArrays
using Test
@testset "... Test variable declarations" begin
v1 = input | output | flow | Var(min=0, nominal=10, init=5)
@test v1 == (class = :Var, input = true, output = true, flow = true, min = 0, nominal = 10, init = 5)
v2 = parameter | 5 | Var(info="v2 info")
@test v2 == (class = :Var, parameter = true, value = 5, info = "v2 info")
v3 = "string value" | parameter | info"v3 info"
@test v3 == (class = :Var, parameter = true, value = "string value", info = "v3 info")
v4 = parameter | 5.5u"m/s" | Var(min=0)
@test v4 == (class = :Var, parameter = true, value = 5.5u"m*s^-1", min = 0)
v5 = parameter | Var(5, min=0)
@test v5 == (class = :Var, parameter = true, value = 5, min = 0)
Pin = Model( v = potential | Var(nominal=10), i = flow )
@test Pin == (class = :Model, v = (class = :Var, potential = true, nominal = 10), i = (class = :Var, flow = true,))
v6 = Var(2.0)
@test v6 == (class = :Var, value = 2.0,)
v7 = Var(2.0 Β± 0.1)
@test v7 == (class = :Var, value = 2.0 Β± 0.1,)
v8 = Var(SVector(1.0, 2.0, 3.0))
@test v8 == (class = :Var, value = [1.0, 2.0, 3.0],)
v9 = v4 | Var(parameter=false)
@test v9 == (class = :Var, parameter = false, value = 5.5u"m*s^-1", min = 0)
v10 = v4 | Var(parameter=nothing)
@test v10 == (class = :Var, value = 5.5u"m*s^-1", min = 0)
v11 = v4 | interval(1,10)
@test v11 == (class = :Var, parameter = true, value = 5.5u"m*s^-1", min = 1, max = 10)
TestVar1 = Model(
p = parameter | -1 | info"A parameter",
s = parameter | "string value" | info"A string parameter",
x = Var(init=0.1),
y = Var(start=0.1), # Not used
equations = :[
der(x) = p*x+1
]
)
#@showModel TestVar1
model = @instantiateModel(TestVar1, log=false, logCode=false)
simulate!(model, merge=Map(p=-2, x=0.2), requiredFinalStates = [0.4593994150057028]) # x.init is not changed
plot(model, "x")
end
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | code | 918 | module Runtests
using Test
@testset "Test TinyModia with simulation" begin
include("TestVariables.jl")
include("TestFirstOrder.jl")
include("TestFirstOrder2.jl")
include("TestStateSelection.jl")
include("TestFilterCircuit.jl")
include("TestUnits.jl")
include("TestUncertainties.jl")
include("TestUnitsAndUncertainties.jl")
include("TestTwoInertiasAndIdealGear.jl")
include("TestTwoInertiasAndIdealGearWithUnits.jl")
include("TestTwoInertiasAndIdealGearWithUnitsAndUncertainties.jl")
include("TestTwoInertiasAndIdealGearWithMonteCarlo.jl")
#include("TestTwoInertiasAndIdealGearWithUnitsAndMonteCarlo.jl") # MonteCarlo and Unitful not yet supported
include("TestSingularLRRL.jl")
include("TestStateSpace.jl")
include("TestHeatTransfer.jl")
include("../examples/runexamples.jl")
end
end | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | docs | 2028 | # TinyModia
[](https://modiasim.github.io/TinyModia.jl/stable/index.html)
[](https://github.com/ModiaSim/TinyModia.jl/blob/master/LICENSE.md)
TinyModia is a minimalistic environment in form of a Julia package to model and simulate physical systems (electrical, mechanical, thermo-dynamical, etc.) described by differential and algebraic equations. A user defines a model on a high level with model components (like a mechanical body, an electrical resistance, or a pipe) that are physically connected together. A model component is constructed by "expression = expression" equations. The defined model is symbolically processed (for example, equations might be analytically differentiated) with algorithms from package [ModiaBase.jl](https://github.com/ModiaSim/ModiaBase.jl). From the transformed model a Julia function is generated that is used to simulate the model with integrators from [DifferentialEquations.jl](https://github.com/SciML/DifferentialEquations.jl).
The basic type of the floating point variables in the generated function is usually `Float64`,
but can be set to any type `T<:AbstractFloat`, for example
`Float32, DoubleFloat, Measurement{Float64}, StaticParticles{Float64,100}`.
## Installation
The package is registered and is installed with (Julia >= 1.5 is required):
```julia
julia> ]add TinyModia
```
It is recommended to also add the following packages, in order that all tests and examples can be executed in your standard environment:
```julia
julia> ]add ModiaPlot, Unitful, DifferentialEquations, Measurements, MonteCarloMeasurements, Distributions
```
## Main Developers
- [Hilding Elmqvist](mailto:[email protected]), [Mogram](http://www.mogram.net/).
- [Martin Otter](https://rmc.dlr.de/sr/en/staff/martin.otter/),
[DLR - Institute of System Dynamics and Control](https://www.dlr.de/sr/en).
License: MIT (expat)
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | docs | 1199 | # Functions
```@meta
CurrentModule = TinyModia
```
## Instantiation
```@docs
@instantiateModel
instantiateModel
```
## Simulation
```@docs
simulate!
```
## Plotting
The results of a simulation of a model `instantiatedModel` can be visualized with
function [ModiaPlot.plot](https://modiasim.github.io/ModiaPlot.jl/stable/Functions.html#ModiaPlot.plot)
that produces line plots of the result time series.
A variable `a.b.c` is identified by a String key `"a.b.c"`.
The legends/labels of the plots are automatically constructed by the
names and units of the variables. Example:
```julia
using ModiaPlot
instantiatedModel = @instantiatedModel(...)
simulate!(instantiatedModel, ...)
plot(instantiatedModel,
[ ("phi", "r") ("phi", "phi2", "w");
("w", "w2", "phi2") "w" ],
heading="Matrix of plots")
```
generates the following plot:

The underlying line plot is generated by [GLMakie](https://github.com/JuliaPlots/GLMakie.jl).
## Inquiries
```@meta
CurrentModule = TinyModia
```
```@docs
get_result
get_lastValue
```
```@meta
CurrentModule = ModiaPlot
```
```@docs
hasSignal
getNames
```
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | docs | 400 | # Internal
This chapter documents internal functions that are typically only
for use of the developers of package TinyModia.
## Code Generation
This section provides functions to **generate Julia code** of the
transformed equations.
```@meta
CurrentModule = TinyModia
```
```@docs
SimulationModel
generate_getDerivatives!
init!
outputs!
addToResult!
getFloatType
baseType
measurementToString
``` | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | docs | 37966 | # TinyModia Tutorial
# 1 Introduction
This tutorial gives an overview of package [TinyModia](https://github.com/ModiaSim/TinyModia.jl)
to construct component-based and equation-based models with the **TinyModia language**
on a high level, symbolically transforming these models into ODEs
(Ordinary Differential Equations in state space form), simulating them and plotting result variables.
# 2 Modeling
## 2.1 Equation oriented models
A simple differential equation with $x(t) \in \R$
```math
T \cdot \frac{dx}{dt} + x = 2; \;\;\; x(t_0) = 0.5
```
can be defined with a constructor `Model` taking a comma separated
list of name/value pairs:
```julia
using TinyModia
SimpleModel = Model(
T = 0.2,
x = Var(init=0.5),
equation = :[T * der(x) + x = 2],
)
```
The model consist of a definition of a parameter `T` with default value 0.2, constructor `Var` with an `init` key is used to define the initial condition 0.5 of the state `x`, and one equation. Equations can have a Julia expression on both sides of the equal sign and are given as a *quoted* array expression `:[ ]` assigned to a unique identifier such as `equation`. The equation will be symbolically solved for the derivative `der(x)` before simulation, so the following equation will be used for the integration:
```math
\frac{dx}{dt} = (2 - x) / T
```
A low pass filter block with input `u` and output `y`
```math
\begin{aligned}
T \cdot \frac{dx}{dt} + x &= u\\
y &= x \\
x(t_0) &= 0
\end{aligned}
```
can be defined as:
```julia
using ModiaBase
LowPassFilter = Model(
T = 0.2,
u = input,
y = output | Var(:x),
x = Var(init=0),
equation = :[T * der(x) + x = u],
)
```
The symbols `input` and `output` refer to predefined variable constructors to define the input and output variables. If an equation has just a unique variable in the left hand side, `y`, the right hand side can be given as a quoted expression in a Var-constructor `Var(:x)` after the `output` constructor combined with the merge operator, `|`, see below.
## 2.2 Merging models
It is possible to combine models by merging. If we want to change the model to become a highpass filter, an alternative output equation
```math
y = -x + u
```
is defined in an anonymous model `Model( y = :(-x + u) )`. This anonymous model is merged with `LowPassFilter` using the merge operator `|`:
```julia
HighPassFilter = LowPassFilter | Model( y = :(-x + u) )
```
The merging implies that the `output` property of `y` is kept, but the binding expression is changed from `:x` to `:(-x + u)`.
In general, recursive merging is desired and TinyModia provides a `mergeModels` function for that (see appendix [A.3 MergeModels algorithm](@ref)). This function is invoked as a binary operator `|` (also used for merge in Python). Note, that the order of the arguments/operands are important.
Generalizing the block to have two outputs for both low and high pass filtering would be done as follows:
```julia
LowAndHighPassFilter = LowPassFilter | Model(
y = nothing,
low = output | Var(:x),
high = output | Var(:(-x + u)),
)
```
The equation for `y` is removed by "assigning" `nothing` and two variables are defined and declared as outputs.
Model `LowAndHighPassFilter` represents the following equations:
```math
\begin{aligned}
T \cdot \frac{dx}{dt} + x &= u\\
low &= x \\
high &= -x + u \\
x(t_0) &= 0
\end{aligned}
```
By turning on logging of merging `setLogMerge(true)`, the translator gives the log:
```julia
Adding: value = :(x)
Adding: value = :(-x + u)
Deleting: y
Adding: low = Var(
output = true,
value = :(x),
),
Adding: high = Var(
output = true,
value = :(-x + u),
),
```
The resulting model is pretty printed by calling `@showModel(LowAndHighPassFilter)`:
```julia
LowAndHighPassFilter = Model(
T = 0.2,
u = Var(
input = true,
),
x = Var(
init = 0.0 V,
),
equations = :([T * der(x) + x = u]),
low = Var(
output = true,
value = :(x),
),
high = Var(
output = true,
value = :(-x + u),
),
),
```
## 2.3 Functions and tables
In order to test an input/output block as defined in the previous section, an input needs to be defined. This can be made by adding an equation for `u`. Assume we want `u` to be sinousoidial with an increasing frequency:
```julia
using Unitful
TestLowAndHighPassFilter = LowAndHighPassFilter | Model(
u = :(sin( (time+1u"s")*u"1/s/s" * time)*u"V"),
x = Var(init=0.2u"V")
)
```
`time` is a reserved name for the independent variable. It has unit `s` for seconds. The Julia package [Unitful](https://painterqubits.github.io/Unitful.jl/stable/) provides a means for defining units and managing unit inference. Definition of units is done with a string macro `u"..."`. In this case, the input signal was given unit Volt. The state x must then also have consistent unit, that is Volt. If the model equations contain systems of simultaneous equations, then approximate guess values, optionally with units, must be given `start`: `i = Var(start=0.0u"A")`.
The input signal can also be defined by interpolation in a table:
```julia
using Interpolations
table = CubicSplineInterpolation(0:0.5:2.0, [0.0, 0.7, 2.0, 1.8, 1.2])
TestLowAndHighPassFilter2 = TestLowAndHighPassFilter | Map(u = :(table(time*u"1/s"))*u"V"
```
A function cannot return more as one variable and a function cannot modify
one of its arguments:
```
equations = :[
(y1, y1) = fc1(u1,u2) # Error: Two return arguments
fc2!(u,y) # Error: Not known that fc2! computes y
println("This is a test") # Fine
]
```
The first issue can be fixed by rewriting the function call:
```
equations = :[
v = fc1(u1,u2)
y1 = v[1]
y2 = v[2]
]
```
## 2.4 Hierarchical modeling
Sofar, the composition of models have resulted in named tuples with values being numeric values or quoted expressions. Hierarchical models are obtained if the values themself are named tuples. A model with two filters can, for example, be defined as follows:
```julia
TwoFilters = (
high = HighPassFilter,
low = LowPassFilter,
)
```
Note, that the previous definitions of HighPassFilter and LowPassFilter was used instead of making the defintions inline.
A band pass filter is a series connection of a high pass filter and a low pass filter and can be described as:
```julia
BandPassFilter = (
u = input,
y = output,
high = HighPassFilter | Map(T=0.5, x=Var(init=0.1u"V")),
low = LowPassFilter | Map(x=Var(init=0.2u"V")),
equations = :[
high.u = u,
low.u = high.y,
y = low.y]
)
```
A new input have been defined which is propagated to `high.u`. The series connection itself is obtained by the equation `low.u = high.y`. Note, that dot-notation is allowed in equations.
The input and output for the BandPassFilter when using the same input definition as for the TestLowPassFilter is shown below:

The above examples are available in file `SimpleFilters.jl`.
## 2.5 Physically oriented modeling
Sofar, only signal flow modeling has been used, i.e. input/output blocks coupled with equations between outputs and inputs. For object oriented modeling more high level constructs are neccessary. Coupling is then acausal and involves potentials such as electric potential, positions, pressure, etc. and flows such as electric current, forces and torques and mass flow rate.
### 2.5.1 Connectors
Models which contain any flow variable, i.e. a variable having an attribute `flow=true`, are considered connectors. Connectors must have equal number of flow and potential variables, i.e. variables having an attribute `potential=true`, and have matching array sizes. Connectors may not have any equations. An example of an electrical connector with potential (in Volt) and current (in Ampere) is shown below.
```julia
Pin = Model( v = potential, i = flow )
```
`potential` is a shortcut for `Var(potential=true)` and similarly for `flow`.
### 2.5.2 Components
Components are declared in a similar ways as blocks. However, the interfaces between components are defined using connector instances.
An electrical resistor can be descibed as follows:
```julia
Resistor = Model(
R = 1.0u"Ξ©",
p = Pin,
n = Pin,
equations = :[
0 = p.i + n.i
v = p.v - n.v
i = p.i
R*i = v ]
)
```
### 2.5.3 Inheritance
Various physical components sometimes share common properties. One mechanism to handle this is to use inheritance. In TinyModia, merging is used.
Electrical components such as resistors, capacitors and inductors are categorized as oneports which have two pins. Common properties are: constraint on currents at the pins and definitions of voltage over the component and current through the component.
```julia
OnePort = Model(
p = Pin,
n = Pin,
partialEquations = :[
0 = p.i + n.i
v = p.v - n.v
i = p.i ] )
```
Having such a OnePort definition makes it convenient to define electrical component models by merging OnePort with specific parameter definitions with default values and equations:
```julia
Resistor = OnePort | Model( R = 1.0u"Ξ©", equation = :[ R*i = v ], )
Capacitor = OnePort | Model( C = 1.0u"F", v=Map(init=0.0u"V"), equation = :[ C*der(v) = i ] )
Inductor = OnePort | Model( L = 1.0u"H", i=Map(init=0.0u"A"), equation = :[ L*der(i) = v ] )
ConstantVoltage = OnePort | Model( V = 1.0u"V", equation = :[ v = V ] )
```
The merged `Resistor` is shown below:
```julia
Resistor = Model(
p = Model(
v = Var(
potential = true,
),
i = Var(
flow = true,
),
),
n = Model(
v = Var(
potential = true,
),
i = Var(
flow = true,
),
),
partialEquations = :([v = p.v - n.v; 0 = p.i + n.i; i = p.i]),
R = 1.0 Ξ©,
equations = :([R * i = v]),
),
```
### 2.5.4 Connections
Connections are described as an array of tuples listing the connectors that are connected:
```julia
( <connect reference 1>, <connect reference 2>, ... )
```
A connect reference has either the form 'connect instance name' or 'component instance name'.'connect instance name' with 'connect instance name' being either a connector instance, input or output variable.
Examples
```julia
connect = :[
(V.p, R1.p)
(R1.n, p)
(C1.n, V.n, R2.p)
...
]
```
For connectors, all the potentials of the connectors in the same connect tuple are set equal and the sum of all incoming flows to the model are set equal to the sum of the flows into sub-components.
### 2.5.5 Connected models
Having the above electrical component models, enables defining a filter

by instanciating components, setting parameters and defining connections.
```julia
Filter = (
R = Resistor | Map(R=0.5u"Ξ©"),
C = Capacitor | Map(C=2.0u"F"),
V = ConstantVoltage | Map(V=10.0u"V"),
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n)
]
)
```
The connect tuples are translated to:
```julia
V.p.v = R.p.v
0 = V.p.i + R.p.i
R.n.v = C.p.v
0 = R.n.i + C.p.i
C.n.v = V.n.v
0 = C.n.i + V.n.i
```
### 2.5.6 Parameter propagation
Hierarchical modification of parameters is powerful but sometimes a bit inconvenient. It is also possible to propagate parameters intoduced on a high level down in the hierarchy. The following Filter model defines three parameters, `r`, `c` and `v`. The `r` parameter is used to set the resistance of the resistor R: `Map(R=:r)`.
```julia
Filter2 = Model(
r = 2.0u"Ξ©",
c = 1.0u"F",
v = 10u"V",
R = Resistor | Map(R=:r),
C = Capacitor | Map(C=:c),
V = ConstantVoltage | Map(V=:v),
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n)
]
)
```
Two separate filters can then be defined with:
```julia
TwoFilters = Model( f1 = Filter | Map( r = 10.0, c = 2.0), f2 = Filter )
```
### 2.5.7 Redeclarations
It is possible to reuse a particular model topology by redeclaring the model of particular components. For example, changing the filter `f1` to a voltage divider by changing C from a Capacitor to a Resistor. A predefined model `Redeclare` is used for this purpose.
```julia
VoltageDividerAndFilter = TwoFilters | Map(f1 = Map(C = Redeclare | Resistor | Map(R = 20.0)))
```
By using `Redeclare`, a new model based on a Resistor is used for `C` and the usual merge semantics with the previously defined model of `C` is not used.
The above examples are available in file `FilterCircuit.jl`.
### 2.5.8 Drive train example
A larger example that utilizes most of the previously described features of
TinyModia is available as `$(TinyModia.path)/examples/ServoSystem.jl`.
This is a textual (TinyModia) representation of a Modelica model

and demonstrates how to build up a hierarchical, multi-domain model consisting
of a servo-system with a load, where the servo-system consists of
an electric motor with a current and speed controller, as well with a more
detailed model of a gearbox.
## 2.6 Arrays
Model parameters and variables can be arrays. For example a linear state space system with
$\boldsymbol{x}(t) \in \R^{n_x}, \boldsymbol{u}(t) \in \R^{n_u}, \boldsymbol{y}(t) \in \R^{n_y},
\boldsymbol{A} \in \R^{n_x \times n_x}, \boldsymbol{B} \in \R^{n_x \times n_u},
\boldsymbol{C} \in \R^{n_y \times n_x}, \boldsymbol{D} \in \R^{n_y \times n_u}$
```math
\begin{aligned}
\frac{d\boldsymbol{x}}{dt} &= \boldsymbol{A} \cdot \boldsymbol{x} + \boldsymbol{B} \cdot \boldsymbol{u}\\
\boldsymbol{y} &= \boldsymbol{C} \cdot \boldsymbol{x} + \boldsymbol{D} \cdot \boldsymbol{u}
\end{aligned}
```
can be defined as:
```julia
StateSpace = Model(
A = fill(0.0,0,0),
B = fill(0.0,0,0),
C = fill(0.0,0,0),
D = fill(0.0,0,0),
u = input,
y = output,
x = Var(init = zeros(0)),
equations = :[
der(x) = A*x + B*u
y = C*x + D*u
]
)
```
and used as:
```julia
col(args...) = hvcat(1, args...) # Construct a column matrix from a vector
SecondOrder = Model(
w = 20.0,
D = 0.1,
k = 2.0,
sys = StateSpace | Map(A = :([ 0 1;
-w^2 -2*D*w]),
B = :(col([0; w^2])),
C = :([k 0]),
D = :(zeros(1,1)),
x = Var(init = zeros(2)) ),
equations = :[sys.u = [1.0]]
)
```
Variables `sys.u` and `sys.y` are vectors with one element each.
Note, `[0; w^2]` is a vector in Julia and not a column matrix
(see the discussion [here](https://discourse.julialang.org/t/construct-a-2-d-column-array/30617)).
In order that `B` is defined as column matrix, the function `col(..)` is used.
Array equations remain array equations during symbolic transformation and in the generated code,
so the code is both compact and efficient. In order that this is reasonably possible, the definition
of an array cannot be split in different statements:
```julia
equations = :[ # error, vector v is not defined as one symbol
m1*der(v[1]) = 2.0
m2*der(v[2]) = 3.0
]
```
If scalar equations are needed in which arrays are used, then the arrays have
to be first defined and then elements can be used.
```julia
v = Var(init=zeros(2)),
equations = :[
a = der(v)
a1 = a[1]
a2 = a[2]
m1*a1 = 2.0
m2*a2 = 3.0
]
```
## 2.7 Model libraries
TinyModia provides a small set of pre-defined model components in directory
`$(TinyModia.path)/models`:
- `AllModels.jl` - Include all model libraries
- `Blocks.jl` - Input/output control blocks
- `ELectric.jl` - Electric component models
- `HeatTransfer.jl` - 1D heat transfer component models
- `Rotational.jl` - 1D rotational, mechanical component models
The circuit of section [2.5.5 Connected models](@ref) can be for example
constructed with these libraries in the following way:
```julia
using TinyModia
include("$(TinyModia.path)/models/AllModels.jl")
FilterCircuit = Model(
R = Resistor | Map(R=0.5u"Ξ©"),
C = Capacitor | Map(C=2.0u"F", v=Var(init=0.1u"V")),
V = ConstantVoltage | Map(V=10.0u"V"),
ground = Ground,
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n, ground.p)
]
)
filterCircuit = @instantiateModel(FilterCircuit)
```
It is planned to support a much larger set of predefined model components in the future.
# 3 Simulation
A particular model is instantiated, simulated and results plotted with the commands:
```julia
using ModiaBase
using ModiaPlot
filter = @instantiateModel(Filter)
simulate!(filter, stopTime=10.0)
plot(filter, "y", figure=1)
```
## 3.1 Instantiating
The `@instantiateModel` macro takes additional arguments:
```julia
modelInstance = @instantiateModel(model;
FloatType = Float64, aliasReduction=true, unitless=false,
log=false, logModel=false, logDetails=false, logStateSelection=false,
logCode=false, logExecution=false, logTiming=false)
```
The macro performs structural and symbolic transformations, generates a function for
calculation of derivatives suitable for use with [DifferentialEquations.jl](https://github.com/SciML/DifferentialEquations.jl)
and returns `modelInstance::SimulationModel` that can be used in other functions,
for example to simulate or plot results:
* `model`: model (declarations and equations).
* `FloatType`: Variable type for floating point numbers (see below).
* `aliasReduction`: Perform alias elimination and remove singularities.
* `unitless`: Remove units (useful while debugging models and needed for MonteCarloMeasurements).
* `log`: Log the different phases of translation.
* `logModel`: Log the variables and equations of the model.
* `logDetails`: Log internal data during the different phases of translation.
* `logStateSelection`: Log details during state selection.
* `logCode`: Log the generated code.
* `logExecution`: Log the execution of the generated code (useful for finding unit bugs).
* `logTiming`: Log timing of different phases.
* `return modelInstance prepared for simulation`
## 3.2 Simulating
The [`simulate!`](@ref) function performs one simulation with
[DifferentialEquations.jl](https://github.com/SciML/DifferentialEquations.jl) using the default integrator
that this package automatically selects and stores the result in `modelInstance`.
It is also possible to specify the integrator as second argument of `simulate!`:
```julia
using ModiaBase
using DifferentialEquations
using ModiaPlot
filter = @instantiateModel(Filter)
simulate!(filter, Tsit5(), stopTime=10.0, merge=Map(T=0.5, x=0.8))
plot(filter, ["y", "x"], figure=1)
```
Integrator `DifferentialEquations.Tsit5` is an
[adaptive Runge-Kutta method of order 5/4 from Tsitouras](https://www.sciencedirect.com/science/article/pii/S0898122111004706).
There are > 100 ODE integrators provided. For details, see [here](https://docs.sciml.ai/stable/solvers/ode_solve/).
Parameters and init/start values can be changed with the `merge` keyword.
The effect is the same, as if the filter would have been instantiated with:
```julia
filter = @instantiateModel(Filter | Map(T=0.5, x=Var(init=0.8))
```
Note, with the `merge` keyword in simulate!, init/start values are directly
given as a value (`x = 0.8`) and are not defined with `Var(..)`.
Function `simulate!` returns the value that is returned by function
[DifferentialEquations.solve](https://diffeq.sciml.ai/stable/features/ensemble/#Solving-the-Problem).
Functions of `DifferentialEquations` that operate on this return argument can therefore also be
used on the return argument of `simulate!`.
## 3.3 Plotting
The [plot](https://modiasim.github.io/ModiaPlot.jl/stable/Functions.html#ModiaPlot.plot) function
generates a line plot with [GLMakie](https://github.com/JuliaPlots/GLMakie.jl).
A short overview of the most important plot commands is given in section
section [Plotting](@ref)
## 3.4 State selection (DAEs)
TinyModia has a sophisticated symbolic engine to transform high index DAEs
(Differential Algebraic Equations) automatically to ODEs (Ordinary Differential Equations in
state space form). During the transformation, equations might be analytically
differentiated and code might be generated to solve linear equation systems
numerically during simulation. The current engine **cannot** transform a DAE to ODE form, if the
**DAE contains nonlinear algebraic equations**. There is an (internal) prototype available to transform
nearly any DAE system to a special index 1 DAE system that can be solved with standard DAE integrators.
After a clean-up phase, this engine will be made publicly available at some time in the future.
Some of the algorithms used in TinyModia are
described in [Otter and Elmqvist (2017)](https://modelica.org/events/modelica2017/proceedings/html/submissions/ecp17132565_OtterElmqvist.pdf). Some algorithms are not yet published.
Usually, the symbolic engine is only visible to the modeler, when the model has errors,
or when the number of ODE states is less than the number of DAE states. The latter case
is discussed in this section.
The following object diagram shows two rotational inertias that are connected
by an ideal gear. One inertia is actuated with a sinusoidal torque:

In order to most easily understand the issues, this model
is provided in a compact, "flattened" form:
```julia
TwoInertiasAndIdealGearTooManyInits = Model(
J1 = 50,
J2 = 100,
ratio = 2,
f = 3, # Hz
phi1 = Var(init = 0.0), # Absolute angle of inertia1
w1 = Var(init = 0.0), # Absolute angular velocity of inertia1
phi2 = Var(init = 0.0), # Absolute angle of inertia2
w2 = Var(init = 0.0), # Absolute angular velocity of inertia2
equations = :[
tau = 2.0*sin(2*3.14*f*time/u"s")
# inertia1
w1 = der(phi1)
J1*der(w1) = tau - tau1
# ideal gear
phi1 = ratio*phi2
ratio*tau1 = tau2
# inertia2
w2 = der(phi2)
J2*der(w2) = tau2
]
)
drive1 = @instantiateModel(TwoInertiasAndIdealGearTooManyInits)
simulate!(drive1, Tsit5(), stopTime = 1.0, logStates=true)
plot(drive1, [("phi1", "phi2"), ("w1", "w2")])
```
The option `logStates=true` results in the following output:
```
... Simulate model TwoInertiasAndIdealGearTooManyInits
β # β state β init β unit β nominal β
βββββΌβββββββββΌβββββββΌβββββββΌββββββββββ€
β 1 β phi2 β 0.0 β β NaN β
β 2 β w2 β 0.0 β β NaN β
```
This model translates and simulates without problems.
Changing the init-value of `w2` to `1.0` and resimulating:
```julia
simulate!(drive1, Tsit5(), stopTime = 1.0, logStates=true, merge = Map(w2=1.0))
```
results in the following error:
```
... Simulate model TwoInertiasAndIdealGearTooManyInits
β # β state β init β unit β nominal β
βββββΌββββββββΌβββββββΌβββββββΌββββββββββ€
β 1 β phi2 β 0.0 β β NaN β
β 2 β w2 β 1.0 β β NaN β
Error from simulate!:
The following variables are explicitly solved for, have init-values defined
and after initialization the init-values are not respected
(remove the init-values in the model or change them to start-values):
β # β name β beforeInit β afterInit β
βββββΌβββββββΌβββββββββββββΌββββββββββββ€
β 1 β w1 β 0.0 β 2.0 β
```
The issue is the following:
Every variable that is used in the `der` operator is a **potential ODE state**.
When an `init` value is defined for such a variable, then TinyModia either utilizes
this initial condition (so the variable has this value after initialization), or an
error is triggered, as in the example above.
The model contains the equation:
```julia
phi1 = ratio*phi2
```
So the potential ODE states `phi1` and `phi2` are constrained, and only one of them
can be selected as ODE state, and the other variable is computed from this equation.
Since parameter `ratio` can be changed before simulation is started, it can be changed
also to a value of `ratio = 0`. Therefore, only when `phi2` is selected as ODE state,
`phi1` can be uniquely computed from this equation. If `phi1` would be selected as ODE state,
then a division by zero would occur, if `ratio = 0`, since `phi2 = phi1/ratio`. For this
reason, TinyModia selects `phi2` as ODE state. This means the **`init` value of `phi1`
has no effect**. This is uncritical, as long as initialization computes this init value
from the constraint equation above, as done in the example above.
When differentiating the equation above:
```julia
der(phi1) = ratio*der(phi2) # differentiated constraint equation
w1 = der(phi1)
w2 = der(phi2)
```
it becomes obvious, that there is also a hidden constraint equation for `w1, w2`:
```julia
w1 = ratio*w2 # hidden constraint equation
```
Again, TinyModia selects `w2` as ODE state, and ignores the `init` value of `w1`.
In the second simulation, the `init` value of `w1` (= 0.0) is no longer consistent to the
init value of `w2` (= 1.0). Therefore, an error occurs.
The remedy is to remove the `init` values of `phi1, w1` from the model:
```julia
drive2 = @instantiateModel(TwoInertiasAndIdealGearTooManyInits |
Map(phi1 = Var(init=nothing),
w1 = Var(init=nothing)) )
simulate!(drive2, Tsit5(), stopTime = 1.0, logStates=true, merge = Map(w2=1.0))
```
and simulation is successful!
TinyModia tries to respect `init` values during symbolic transformation.
In cases as above, this is not possible and the reported issue occurs.
In some cases, it might not be obvious, why TinyModia selects a particular
variable as an ODE state. You can get more information by setting
`logStateSelection=true`:
```julia
drive1 = @instantiateModel(TwoInertiasAndIdealGearTooManyInits, logStateSelection=true)
```
# 4 Floating point types
The types of the floating point numbers in a TinyModia model can be
parameterized with argument `FloatType` of macro [`@instantiateModel`](@ref):
```julia
filter = @instantiateModel(Filter; FloatType = Float64)
```
By default, a floating point number has type `Float64`.
!!! warning
Using another floating point type requires that
a DifferentialEquations.jl integrator is used that is implemented
in **native Julia**. An integrator that interfaces an integrator
implemented in C (such as `CVODE_BDF()` the popular Sundials BDF method),
cannot be used.
## 4.1 Lower and higher precision
In principal, any floating point type of Julia (so any type that
is derived from `AbstractFloat`) can be used in the model and
the integrators. Examples
| Type | Precision | Package | Usage |
|:---------|:----------|:-------------|:------------------ |
| Float32 | 7 digits | built-in | Embedded system |
| Float64 | 16 digits | built-in | Offline simulation |
| Double64 | 30 digits | [DoubleFloats](https://github.com/JuliaMath/DoubleFloats.jl) | High precision needed |
| BigFloat | arbitrary | [built-in](https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Arbitrary-Precision-Arithmetic) | Very high precision needed (very slow) |
- The `Float32` type might be used to test the execution and numerics of a model
that shall later run on an embedded system target
(there is no automatic way, yet, to translate a TinyModia model to `C`).
- `Double64` is a type that is constructed from two Float64 types.
The execution is much faster as the comparable Julia built-in type
[BigFloat](https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Arbitrary-Precision-Arithmetic-1) when set to 128 bit precision.
The `Double64` type might be used, when simulation
with `Float64` fails due to numerical reasons (for example the model is very
sensitive, or equation systems are close to singularity) or when
very stringent relative tolerances are needed, for example relative tolerance = 1e-15
as needed for some space applications.
In the following example, simulation is performed with a `Float32` floating point type
used for model and integrator and utilizing a Runge-Kutta integrator of
order 4 with a fixed step size of 0.01 s:
```julia
filter = @instantiateModel(Filter, FloatType = Float32)
simulate!(filter, RK4(), adaptive=false, stopTime=10.0, interval=0.01)
```
## 4.2 Uncertainties
Package [Measurements](https://github.com/JuliaPhysics/Measurements.jl)
provides a floating point type designed for error propagation.
A floating point number is defined with a nominal value and an
uncertainty:
```julia
using Measurements
m1 = 2.1 Β± 0.4
m2 = 2*m1 # 4.2 Β± 0.8
m3 = m2 - m1 # 2.1 Β± 0.4
```
The statement `m1 = 2.1 Β± 0.4` defines that `m1` has a nominal value
of `2.1` with a [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation) of `0.4`.
This means that the probability is about 95 % that the value of `m1` is in the
range `1.3 .. 2.9`. Package
[Measurements](https://github.com/JuliaPhysics/Measurements.jl)
computes the error propagation with first-order theory
(so this is typically an **approximation**) by computing
the partial derivatives of all variables with respect to all
source error definitions and computing the propagated error
with this information. The benefit is that the error bounds are typically
reasonably propagated and the computation is reasonably fast.
The drawback is that it is an approximation and will be not correct,
if the uncertainty is too large and/or the signals change too quickly
(for example are discontinuous).
The following model defines a simple pendulum where a mass point is attached via a
rod and a revolute joint to the environment. It is described by the equations
```math
\begin{aligned}
\frac{d\varphi}{dt} &= \omega \\
0 &= m \cdot L^2 \cdot \frac{d\omega}{dt} + d \cdot \omega + m \cdot g \cdot L \cdot sin(\varphi)
\end{aligned}
```
where ``\varphi`` is the rotation angle, ``\omega`` the angular velocity,
``m`` the mass, ``L`` the rod length, ``d`` a damping constant and
``g`` the gravity constant. This model can be defined with the commands:
```julia
Pendulum = Model(
L = (0.8Β±0.1)u"m",
m = (1.0Β±0.1)u"kg",
d = (0.5Β±0.05)u"N*m*s/rad",
g = 9.81u"m/s^2",
phi = Var(init = (pi/2Β±0.1)*u"rad"),
w = Var(init = 0u"rad/s"),
equations = :[
w = der(phi)
0.0 = m*L^2*der(w) + d*w + m*g*L*sin(phi)
]
)
pendulum = @instantiateModel(Pendulum, FloatType=Measurements.Measurement{Float64})
simulate!(pendulum, Tsit5(), stopTime = 10.0)
plot(pendulum, "phi")
```
and simulates the pendulum with uncertain parameter and init values and
results in the following plot:

The area around the nominal value of a variable characterizes the standard deviation.
## 4.3 Monte-Carlo Simulation
The Julia package [MonteCarloMeasurements.jl](https://github.com/baggepinnen/MonteCarloMeasurements.jl)
provides calculations with particles.
A value can be defined with a distribution of say 2000 values randomly chosen according to a desired distribution and then all calculations are performed with 2000 values at the same time (corresponds to 2000 simulations that are carried out).
In the example below, a modest form of 100 particles (100 simulations) with Uniform distributions of some
parameters and init values are defined that correspond roughly to the definition with uncertainties of the
previous section (but using uniform instead for normal distributions):
```julia
using TinyModia
using DifferentialEquations
using ModiaPlot
using MonteCarloMeasurements
using Distributions
using Unitful
const nparticles = 100
uniform(vmin,vmax) = StaticParticles(nparticles,Distributions.Uniform(vmin,vmax))
Pendulum = Model(
L = uniform(0.6, 1.0),
m = uniform(0.8, 1.2),
d = uniform(0.4, 0.6),
g = 9.81,
phi = Var(init = uniform(pi/2-0.2, pi/2+0.2)),
w = Var(init = 0),
equations = :[
w = der(phi)
0.0 = m*L^2*der(w) + d*w + m*g*L*sin(phi)
]
)
pendulum = @instantiateModel(Pendulum,FloatType=StaticParticles{Float64,nparticles})
simulate!(pendulum, Tsit5(), stopTime = 10.0)
plot(pendulum, "phi", MonteCarloAsArea=false)
```
The simulation result is shown in the next figure:

Since plot option `MonteCarloAsArea=false` is used, all 100 simulations are
shown in the plot, together with the mean value of all simulations.
The default plot behavior is to show the mean value and the area in which
all simulations are contained (this is useful, if there are much more simulations,
because GLMakie crashes when there are too many curves in a diagram).
There are currently a few restrictions, in particular units are not yet supported in the combination
of TinyModia and MonteCarloMeasurements, so units are not defined in the model above.
# Appendix A
## A.1 Var constructor
The constructor `Var(..)` defines attributes of a variable with key/value pairs.
In column 1 the keys are shown. The default is that none of the keys are defined
(meaning `key = nothing`). Most of the keys are also provided as predefined constants as shown
in column 2 and 3. These constants can be used as shortcuts:
| Var key | ShortCut | Shortcut value | Description |
|:---------- |:----------|:----------------------|:---------------------------------------------------|
| parameter | parameter | Var(parameter = true) | If true, value is fixed during simulation |
| input | input | Var(input = true) | If true, input signal |
| output | output | Var(output = true) | If true, output signal |
| potential | potential | Var(potential = true) | If true, potential variable |
| flow | flow | Var(flow = true) | If true, flow variable |
| init | -- | -- | Initial value of ODE state (defines unit and size) |
| start | -- | -- | Start value of variable (defines unit and size) |
Example:
```julia
v = output | Var(start = zeros(3)u"N*m")
# Same as: v = Var(output = true, start = zeros(3)u"N*m")
```
An attribute can be removed by using a value of `nothing`. Example:
```julia
System1 = Model(v = input | Var(init = 1.0), ...)
# System2 = Model(v = input, ...)
System2 = System1 | Map(v = Var(init = nothing), ...)
```
The following attributes are also defined for constructor `Var`,
but have **no effect yet**.
Using `min, max, info` already now, might be useful for model libraries:
| Var Key | Shortcut | Shortcut value | Description |
|:--------- |:------------------|:----------------------|:---------------------------------|
| constant | constant | Var(constant = true) | If true, value cannot be changed |
| min, max | interval(a,b) | Var(min = a, max = b) | Allowed variable value range |
| info | info"..." | Var(info="...") | Description |
Example:
```julia
v = output | interval(0.0,1.0) | Var(start = zeros(3)u"N*m") | info"An output variable"
# Same as: v = Var(output = true, min = 0.0, max = 1.0,
# start = zeros(3)u"N*m", info = "An output variable")
```
## A.2 Named tuples and quoted expressions
The fundamental mechanism for defining models in TinyModia are named tuples which is a list of key/value pairs enclosed in parentheses:
```julia
julia> S=(p=5, q=10)
(p = 5, q = 10)
julia> typeof(S)
NamedTuple{(:p, :q),Tuple{Int64,Int64}}
```
Named tuples are conceptually similar to dictionaries (Dict), but the constructor syntax is simpler. Note that if only one key/value pair is given, a comma must preceed the final parentheses: `(p = 5, )`. It is also possible to define named tuples using a keyword argument list, i.e. a list starting with a semi-colon: `z=(;p=5)`.
The values can also be a quoted expression, i.e. an expression enclosed in `:( )`, an array of quoted expressions encloded in `:[ ]` or just a quoted symbol, `:x`. This mechanism is used to encode equations and expressions of the model which needs to be manipulated before the model can be simulated.
Julia defines a very useful merge operation between named tuples (and dictionaries):
```julia
julia> T=(q=100, r=200)
(q = 100, r = 200)
julia> merge(S, T)
(p = 5, q = 100, r = 200)
```
If a key already exists `q` in the first named tuple, it's value is overwritten otherwise it's added, `r`. Such a merge semantics allows for unification of parameter modifications and inheritance as will be demonstrated below.
## A.3 MergeModels algorithm
The `mergeModels` algorithm is defined as follows (without logging):
```julia
function mergeModels(m1::NamedTuple, m2::NamedTuple, env=Symbol())
mergedModels = OrderedDict{Symbol,Any}(pairs(m1)) # Convert the named tuple m1 to an OrderedDict
for (k,v) in collect(pairs(m2))
if typeof(v) <: NamedTuple
if k in keys(mergedModels) && ! (:_redeclare in keys(v))
mergedModels[k] = mergeModels(mergedModels[k], v, k)
else
mergedModels[k] = v
end
elseif v === nothing
delete!(mergedModels, k)
else
mergedModels[k] = v
end
end
return (; mergedModels...) # Transform OrderedDict to named tuple
end
|(m::NamedTuple, n::NamedTuple) = mergeModels(m, n)
Redeclare = ( _redeclare = true, )
```
| TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 0.7.2 | 0d5e2ace5bfe11eca285388d831977baa90ada47 | docs | 2843 | # TinyModia Documentation
[TinyModia](https://github.com/ModiaSim/TinyModia.jl) is a minimalistic environment in form of a Julia package to model and simulate physical systems (electrical, mechanical, thermo-dynamical, etc.) described by differential and algebraic equations. A user defines a model on a high level with model components (like a mechanical body, an electrical resistance, or a pipe) that are physically connected together. A model component is constructed by "expression = expression" equations. The defined model is symbolically processed (for example, equations might be analytically differentiated) with algorithms from package [ModiaBase.jl](https://github.com/ModiaSim/ModiaBase.jl). From the transformed model a Julia function is generated that is used to simulate the model with integrators from [DifferentialEquations.jl](https://github.com/SciML/DifferentialEquations.jl).
The basic type of the floating point variables is usually `Float64`, but can be set to any
type `FloatType<:AbstractFloat` via `@instantiateModel(..., FloatType = xxx)`, for example
it can be set to `Float32, DoubleFloat, Measurement{Float64}, StaticParticles{Float64,100}`.
## Installation
The package is registered and is installed with (Julia >= 1.5 is required):
```julia
julia> ]add TinyModia
```
It is recommended to also add the following packages, in order that all tests and examples can be executed in your standard environment:
```julia
julia> ]add ModiaPlot, Unitful, DifferentialEquations, Measurements, MonteCarloMeasurements, Distributions
```
## Release Notes
### Version 0.7.2
- Missing dependency of Test package added.
### Version 0.7.1
- Variable constructor `Var(...)` introduced. For example:
`v = input | Var(init = 1.2u"m")`.
For details see section [A.1 Var constructor](@ref).
- Functions are called in the scope where macro [`@instantiateModel`](@ref) is called.
- New arguments of function [`simulate!`](@ref):
- Parameter and init/start values can be changed with argument `merge`.
- A simulation can be checked with argument `requiredFinalStates`.
- Argument `logParameters` lists the parameter and init/start values used for the simulation.
- Argument `logStates` lists the states, init, and nominal values used for the simulation.
- `end` in array ranges is supported, for example `v[2:end]`.
- New (small) model library `TinyModia/models/HeatTransfer.jl`.
- [TinyModia Tutorial](@ref) improved.
- [Functions](@ref) docu improved.
### Version 0.7.0
- Initial version, based on code developed for Modia 0.6 and ModiaMath 0.6.
## Main developers
- [Hilding Elmqvist](mailto:[email protected]), [Mogram](http://www.mogram.net/).
- [Martin Otter](https://rmc.dlr.de/sr/en/staff/martin.otter/),
[DLR - Institute of System Dynamics and Control](https://www.dlr.de/sr/en). | TinyModia | https://github.com/ModiaSim/TinyModia.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 779 | using CmdStan, Documenter
DOC_ROOT = rel_path_cmdstan("..", "docs")
DocDir = joinpath(DOC_ROOT, "src")
page_list = Array{Pair{String, Any}, 1}();
append!(page_list, [Pair("Introduction", "INTRO.md")]);
append!(page_list, [Pair("Installation", "INSTALLATION.md")]);
append!(page_list, [Pair("Walkthrough", "WALKTHROUGH.md")]);
append!(page_list, [Pair("Versions", "VERSIONS.md")]);
append!(page_list, [Pair("Functions", "index.md")]);
makedocs(
format = Documenter.HTML(prettyurls = haskey(ENV, "GITHUB_ACTIONS")),
root = DOC_ROOT,
modules = Module[],
sitename = "CmdStan.jl",
authors = "Rob J Goedman",
pages = page_list,
)
deploydocs(
root = DOC_ROOT,
repo = "github.com/StanJulia/CmdStan.jl.git",
devbranch = "master",
push_preview = true,
)
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 12366 | ######### ARM Ch03: kid score example ###########
using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
kid = "
data {
int<lower=0> N;
vector[N] kid_score;
vector[N] mom_hs;
vector[N] mom_iq;
}
parameters {
vector[3] beta;
real<lower=0> sigma;
}
model {
kid_score ~ normal(beta[1] + beta[2] * mom_hs + beta[3] * mom_iq, sigma);
}
"
kiddata = Dict("N" => 434,
"kid_score" => [65, 98, 85, 83, 115, 98, 69, 106, 102, 95, 91, 58, 84, 78, 102,
110, 102, 99, 105, 101, 102, 115, 100, 87, 99, 96, 72, 78, 77, 98, 69, 130, 109,
106, 92, 100, 107, 86, 90, 110, 107, 113, 65, 102, 103, 111, 42, 100, 67, 92,
100, 110, 56, 107, 97, 56, 95, 78, 76, 86, 79, 81, 79, 79, 56, 52, 63, 80, 87,
88, 92, 100, 94, 117, 102, 107, 99, 73, 56, 78, 94, 110, 109, 86, 92, 91, 123,
102, 105, 114, 96, 66, 104, 108, 84, 83, 83, 92, 109, 95, 93, 114, 106, 87, 65,
95, 61, 73, 112, 113, 49, 105, 122, 96, 97, 94, 117, 136, 85, 116, 106, 99, 94,
89, 119, 112, 104, 92, 86, 69, 45, 57, 94, 104, 89, 144, 52, 102, 106, 98, 97,
94, 111, 100, 105, 90, 98, 121, 106, 121, 102, 64, 99, 81, 69, 84, 104, 104,
107, 88, 67, 103, 94, 109, 94, 98, 102, 104, 114, 87, 102, 77, 109, 94, 93, 86,
97, 97, 88, 103, 87, 87, 90, 65, 111, 109, 87, 58, 87, 113, 64, 78, 97, 95, 75,
91, 99, 108, 95, 100, 85, 97, 108, 90, 100, 82, 94, 95, 119, 98, 100, 112, 136,
122, 126, 116, 98, 94, 93, 90, 70, 110, 104, 83, 99, 81, 104, 109, 113, 95, 74,
81, 89, 93, 102, 95, 85, 97, 92, 78, 104, 120, 83, 105, 68, 104, 80, 120, 94,
81, 101, 61, 68, 110, 89, 98, 113, 50, 57, 86, 83, 106, 106, 104, 78, 99, 91,
40, 42, 69, 84, 58, 42, 72, 80, 58, 52, 101, 63, 73, 68, 60, 69, 73, 75, 20, 56,
49, 71, 46, 54, 54, 44, 74, 58, 46, 76, 43, 60, 58, 89, 43, 94, 88, 79, 87, 46,
95, 92, 42, 62, 52, 101, 97, 85, 98, 94, 90, 72, 92, 75, 83, 64, 101, 82, 77,
101, 50, 90, 103, 96, 50, 47, 73, 62, 77, 64, 52, 61, 86, 41, 83, 64, 83, 116,
100, 42, 74, 76, 92, 98, 96, 67, 84, 111, 41, 68, 107, 82, 89, 83, 73, 74, 94,
58, 76, 61, 38, 100, 84, 99, 86, 94, 90, 50, 112, 58, 87, 76, 68, 110, 88, 87,
54, 49, 56, 79, 82, 80, 60, 102, 87, 42, 119, 84, 86, 113, 72, 104, 94, 78, 80,
67, 104, 96, 65, 64, 95, 56, 75, 91, 106, 76, 90, 108, 86, 85, 104, 87, 41, 106,
76, 100, 89, 42, 102, 104, 59, 93, 94, 76, 50, 88, 70],
"mom_hs" => [1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,
1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1,
1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1,
0, 0, 0, 1, 0, 1, 1],
"mom_iq" => [121.117528602603, 89.3618817100663, 115.443164881725,
99.4496394360723, 92.7457099982118, 107.901837758501, 138.893106071162,
125.145119475328, 81.6195261789843, 95.0730686206496, 88.5769977185567,
94.8597081943671, 88.9628008509596, 114.114297012333, 100.534071915245,
120.419145591086, 114.426876891447, 111.592357580831, 133.849227208159,
97.2648010634673, 110.09680614075, 126.72399416984, 97.9115903092628,
99.9257251603133, 97.5950080521511, 121.748013460479, 98.7480786989934,
97.9152543291671, 80.3585564632336, 114.307860633927, 109.138316302971,
101.817179733939, 117.965104313227, 108.633496913048, 96.528619145464,
92.8713754661642, 95.8981342875886, 107.015457730577, 87.1970117452858,
89.3618817100663, 102.530987846246, 130.166860235388, 83.4141025980336,
125.75346623026, 85.8103765615827, 126.520072628695, 79.203048104857,
113.165907175696, 110.33138786508, 99.4092237400546, 102.425526488872,
124.900437749856, 94.8597081943671, 92.3685645501674, 101.817179733939,
79.8335329627323, 96.226139267492, 82.3554723942338, 76.5756473159814,
110.013482886319, 111.592357580831, 113.657407368227, 101.164556773121,
101.341094009698, 101.698163476419, 98.8191545781969, 93.4981963041352,
87.2938898998626, 87.316028002806, 86.2094574206895, 89.8379674343074,
121.870014908527, 127.544378629405, 109.991344783376, 90.4463141892395,
88.8949026973177, 113.046890918176, 78.0131542683097, 95.3896508777613,
83.6164421099846, 86.2462806103944, 95.3896508777613, 111.252314499127,
127.014435946011, 89.951950871924, 99.2731021994947, 81.1655785576865,
110.52128746677, 136.493846917085, 123.862011656634, 134.602392343459,
91.0989371500582, 103.269371773029, 126.287072933559, 127.544378629405,
92.4738903034255, 84.7940885713045, 100.534071915245, 108.003012055173,
78.8071449713118, 121.117528602603, 103.056011346747, 100.437193760669,
88.5548596156134, 85.3055571716597, 119.448617651507, 90.5517755466136,
96.3340383364003, 127.644920803886, 119.856558886853, 112.018920897562,
92.5143059994432, 96.023799755541, 91.4168421288192, 103.07814944969,
100.243630139074, 89.8158293313641, 115.057361749322, 96.650620593512,
105.577950778248, 97.7216907075729, 131.835771186485, 101.817179733939,
93.4981963041352, 104.026539286327, 103.708634307566, 107.368863177393,
92.5511291891481, 94.4425837627742, 93.1447908573186, 83.4141025980336,
71.037405135663, 127.66705890683, 115.687846607198, 90.9762568726337,
132.865336903467, 72.5022963925581, 100.710609151823, 132.688799666889,
98.5457391870425, 115.665708504254, 117.062799760565, 136.493846917085,
106.548478717828, 134.126306619218, 104.657024144202, 99.3785635568688,
100.437193760669, 89.5253875551931, 120.92294779354, 113.143769072753,
126.414746875437, 122.737163481443, 115.375266728083, 91.6067417305091,
88.6603209729875, 107.178963575703, 104.969604023316, 103.8630334412,
110.09680614075, 88.4543174411322, 117.032139577379, 125.656588075683,
122.601041940883, 121.049630448962, 93.1447908573186, 99.3785635568688,
123.892807443936, 113.043226898272, 115.771169861628, 114.938345491802,
93.6208765815597, 121.748013460479, 90.3494360346627, 83.4104385781293,
99.4864626257772, 113.910375471188, 97.5950080521511, 89.8158293313641,
119.584739192066, 97.3816476258686, 84.8774118257353, 102.328648334295,
99.2731021994947, 99.0750497482455, 96.9277000045708, 108.313250636032,
100.534071915245, 99.4864626257772, 113.987614356911, 92.7702011694918,
88.0298361151122, 106.111557481547, 103.232548583324, 99.295240302438,
106.742042339422, 99.1725600250135, 102.447664591815, 92.8677114462598,
116.826136045524, 85.4245734291798, 115.565166329773, 113.174564860055,
106.861058596942, 95.8302361339468, 77.1092540192799, 89.2908058308629,
112.412742040396, 110.643967744195, 109.537397162078, 107.901837758501,
104.969604023316, 107.682765778157, 109.466321282875, 133.532644951047,
128.80901236506, 101.270018130495, 87.316028002806, 118.090769781179,
120.255639745959, 90.3457720147583, 79.9046088419358, 136.577170171515,
102.425526488872, 132.688799666889, 96.2972151466954, 118.209786038699,
118.090769781179, 101.504599854825, 94.3346846938659, 84.67140829388,
86.7688663993614, 129.245933601341, 127.781042344446, 106.861058596942,
105.754488014826, 117.032139577379, 119.35173949693, 102.765569570576,
108.205351567124, 126.414746875437, 101.90050298837, 99.1562556370934,
91.8127452623644, 84.1414656104858, 84.3548260367683, 79.1197248504261,
91.4168421288192, 90.4463141892395, 79.0007085929061, 109.263981770924,
76.7521845525589, 97.5950080521511, 128.80901236506, 113.657407368227,
114.206686337254, 112.513284214877, 75.3368157031739, 81.5226480244075,
102.638886915154, 101.186694876064, 112.222842438706, 123.408064035336,
86.5665268874105, 100.116947483653, 102.328648334295, 87.9465128606813,
80.2580142887524, 80.2580142887524, 91.0767990471149, 85.5789725628141,
113.165907175696, 112.05933659358, 101.270018130495, 81.8328866052668,
81.0945026784831, 81.3290844028133, 120.609045192776, 102.447664591815,
90.9762568726337, 103.708634307566, 102.328648334295, 121.870014908527,
88.6603209729875, 90.0291897576466, 83.5331188555537, 91.9206443312728,
87.1933477253815, 80.4640178206077, 84.3180028470634, 77.7397388771553,
82.272149139803, 77.3826694104343, 89.715287156883, 79.9046088419358,
82.1531328822829, 80.2616783086568, 77.3826694104343, 82.7836177401583,
89.2074825764321, 89.088466318912, 88.9872920222396, 118.923594151005,
83.8510238343148, 84.044587455909, 105.052927277747, 107.999348035269,
97.3816476258686, 103.791957561996, 97.5950080521511, 88.6603209729875,
107.246861729345, 89.8379674343074, 108.906912304203, 100.63953327262,
118.840270896574, 95.5123311551858, 84.7719504683612, 100.747432341528,
87.0034481236916, 77.8587551346754, 85.3018931517554, 92.7702011694918,
74.8607299789328, 115.248584072661, 107.372527197298, 102.202982866342,
97.9115903092628, 96.8566241253673, 111.465674925409, 109.466321282875,
82.2500110368597, 92.7702011694918, 115.568830349677, 84.044587455909,
116.199315207553, 99.295240302438, 87.1933477253815, 76.7117688565413,
80.6985995449379, 82.4633714631422, 85.1798917037074, 93.0737149781151,
88.5769977185567, 103.056011346747, 86.8767654682698, 97.9152543291671,
120.92294779354, 91.7294220079335, 87.5072503261452, 90.4463141892395,
84.1636037134291, 96.6542846134164, 95.703553478525, 88.7682200418959,
92.1397163116164, 108.003012055173, 80.3893522505354, 99.8030448828889,
90.0291897576466, 93.9387815603207, 103.708634307566, 77.1092540192799,
117.55716307788, 79.8335329627323, 83.6164421099846, 88.731396852191,
82.7836177401583, 86.8767654682698, 88.731396852191, 92.2408906082888,
90.5517755466136, 84.1414656104858, 93.0737149781151, 85.8348677328627,
98.8559777679018, 95.5123311551858, 101.067678618544, 85.9323780096308,
82.7836177401583, 98.6647554445626, 82.1494688623785, 85.6157957525191,
79.4376298291872, 75.3368157031739, 80.8921631665322, 115.771169861628,
97.1591040033394, 80.8921631665322, 79.505527982829, 98.0121324837439,
108.866496608185, 80.6985995449379, 100.747432341528, 91.0989371500582,
82.9859572521092, 89.715287156883, 131.010705519546, 124.514634617453,
91.6104057504134, 92.9903917236843, 91.8838211415678, 88.6909811561733,
126.093509311965, 84.9853108946437, 82.9859572521092, 101.795041630996,
100.243630139074, 110.013482886319, 88.5769977185567, 106.742042339422,
95.2921406009932, 108.313250636032, 110.33138786508, 116.829800065428,
86.6855431449306, 96.8566241253673, 90.2482617379903, 89.2908058308629,
74.2302451210575, 91.8838211415678, 96.4607209918222, 97.4037857288119,
131.533291308512, 78.2445582670783, 127.675716591188, 124.514634617453,
80.4640178206077, 74.8607299789328, 84.8774118257353, 92.9903917236843,
94.8597081943671, 96.8566241253673, 91.2533362836924],
"mom_hs_new" => 1,
"mom_iq_new" => 100)
global stanmodel, rc, sim, sdf
stanmodel = Stanmodel(name="kid", model=kid);
rc, sim, cnames = stan(stanmodel, kiddata, ProjDir, CmdStanDir=CMDSTAN_HOME)
if rc == 0
sdf = read_summary(stanmodel)
@test sdf[sdf.parameters .== Symbol("beta[1]"), :mean][1] β 26.0 rtol=0.1
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 878 | ######### CmdStan program example ###########
using CmdStan
ProjDir = @__DIR__
cd(ProjDir) do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
# Preserve these variables outside cd/do block.
global stanmodel, rc, samples, cnames, df
stanmodel = Stanmodel(name="bernoulli", model=bernoullimodel,
printsummary=false);
rc, samples, cnames = stan(stanmodel, observeddata, ProjDir,
CmdStanDir=CMDSTAN_HOME);
if rc == 0
# Fetch cmdstan summary as a DataFrame
df = read_summary(stanmodel)
df |> display
println()
df[df.parameters .== :theta, [:mean, :ess, :r_hat]] |> display
end
end # cd block
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 595 | #pkg"add CmdStan"
using CmdStan, Statistics
bm = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
sm = Stanmodel(name="bernoulli", model=bm, printsummary=false)
sm |> display
rc, samples, cnames = stan(sm, data; CmdStanDir=CMDSTAN_HOME)
if rc == 0
nt = CmdStan.convert_a3d(samples, cnames, Val(:namedtuple))
mean(nt.theta, dims=1) |> display
sdf = read_summary(sm)
sdf |> display
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 872 | ######## CmdStan diagnose example ###########
using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
bernoulli = "
data {
int<lower=0> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
bernoullidata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
global stanmode, rc, diags, cnames
stanmodel = Stanmodel(
Diagnose(CmdStan.Gradient(epsilon=1e-6)),
output_format=:array,
name="bernoulli",
model=bernoulli);
rc, diags, cnames = stan(stanmodel, bernoullidata, ProjDir, CmdStanDir=CMDSTAN_HOME);
if rc == 0
println()
display(diags)
println()
tmp = diags[:error][1]
println("Test round.(diags[:error], digits=6) β 0.0")
@test round.(tmp, digits=6) β 0.0
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 752 | ######### CmdStan program example ###########
using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
global stanmodel, rc, sim
stanmodel = Stanmodel(num_samples=1200, thin=2, name="bernoulli",
output_format=:array, model=bernoullimodel);
rc, sim, cnames = stan(stanmodel, observeddata, ProjDir, diagnostics=true,
CmdStanDir=CMDSTAN_HOME);
if rc == 0
@test -0.9 < round.(mean(sim[:, 8, :]), digits=2) < -0.7
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 869 | ######### CmdStan program example ###########
using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
bernoullidata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
inittheta = Dict("theta" => 0.60)
global stanmodel, sdf
stanmodel = Stanmodel(name="bernoulli", model=bernoullimodel,
random=CmdStan.Random(seed=-1),
num_warmup=1000, printsummary=false);
global rc, sim
rc, a3d, cnames = stan(stanmodel, bernoullidata, ProjDir,
init=inittheta, CmdStanDir=CMDSTAN_HOME)
if rc == 0
sdf = read_summary(stanmodel)
@test sdf[sdf.parameters .== :theta, :mean][1] β 0.34 rtol=0.1
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 967 | ######### CmdStan program example ###########
using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
bernoullidata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
inittheta = [Dict("theta" => 0.6), Dict("theta" => 0.4), Dict("theta" => 0.2), Dict("theta" => 0.1)]
global stanmodel
stanmodel = Stanmodel(name="bernoulli2", model=bernoullimodel,
output_format=:array, num_warmup=1000, random=CmdStan.Random(seed=-1));
global rc, sim
rc, sim, cnames = stan(stanmodel, bernoullidata, ProjDir,
init=inittheta, CmdStanDir=CMDSTAN_HOME, summary=false)
if rc == 0
println()
println("Test 0.2 <= mean(theta[1]) <= 0.5)")
@test 0.2 <= round.(mean(sim[:,8,:]), digits=1) <= 0.5
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 956 | ######### CmdStan program example ###########
using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) #do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
datatheta = rel_path_cmdstan("..", "examples", "BernoulliInitTheta", "bernoulli.data.R")
inittheta = rel_path_cmdstan("..", "examples", "BernoulliInitTheta", "bernoulli.init.R")
global stanmodel
stanmodel = Stanmodel(name="bernoulli3", model=bernoullimodel,
output_format=:array, random=CmdStan.Random(seed=-1));
global rc, sim
rc, sim, cnames = stan(stanmodel, datatheta, ProjDir,
init=inittheta, CmdStanDir=CMDSTAN_HOME, summary=false)
if rc == 0
println()
println("Test 0.2 <= mean(theta[1]) <= 0.5)")
@test 0.2 <= round.(mean(sim[:,8,:]), digits=1) <= 0.5
end
#end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 776 | ######### CmdStan program example ###########
using CmdStan, NamedArrays, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
global stanmodel, rc, sim, cnames
stanmodel = Stanmodel(num_samples=1200, thin=2, name="bernoulli",
model=bernoullimodel, output_format=:namedarray);
rc, sim, cnames = stan(stanmodel, observeddata, ProjDir, diagnostics=false,
CmdStanDir=CMDSTAN_HOME);
if rc == 0
@test round.(mean(sim[1][:, :theta]), digits=1) β 0.3
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1271 | ######### CmdStan optimize program example ###########
using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) #do
bernoulli = "
data {
int<lower=0> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
bernoullidata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
global stanmodel, rc, optim, cnames
stanmodel = Stanmodel(Optimize(), name="bernoulli",
output_format=:array, model=bernoulli);
rc, optim, cnames = stan(stanmodel, bernoullidata, ProjDir, CmdStanDir=CMDSTAN_HOME);
if rc == 0
println()
display(optim)
println()
println("Test round.(mean(optim[1][\"theta\"]), digits=1) β 0.3")
@test round.(mean(optim["theta"]), digits=1) β 0.3
end
# Same with saved iterations
stanmodel = Stanmodel(Optimize(save_iterations=true), name="bernoulli",
nchains=1,output_format=:array, model=bernoulli);
rc, optim, cnames = stan(stanmodel, bernoullidata, ProjDir,
CmdStanDir=CMDSTAN_HOME);
if rc == 0
println()
display(optim)
println()
println("""Test optim["theta"][end] β 0.3 rtol=0.1""")
@test optim["theta"][end] β 0.3 rtol=0.1
end
#end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 800 | ######### CmdStan program example ###########
using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
bernoullidata = Dict("N" => 1, "y" => [0])
global stanmodel, rc, sim
stanmodel = Stanmodel(num_samples=1200, thin=2, name="bernoulli",
output_format=:array, model=bernoullimodel);
rc, sim, cnames = stan(stanmodel, bernoullidata, ProjDir,
diagnostics=false, CmdStanDir=CMDSTAN_HOME);
if rc == 0
println()
println("Test round.(mean(theta), 1) β 0.3 rtol=0.1")
@test round.(mean(sim[:,8,:]), digits=1) β 0.3 rtol=0.1
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 749 | ######### CmndStan program example ###########
using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
bernoulli = "
data {
int<lower=0> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
bernoullidata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
global stanmodel, rc, chns, cnames
stanmodel = Stanmodel(CmdStan.Variational(), name="bernoulli",
model=bernoulli)
rc, chns, cnames = stan(stanmodel, bernoullidata, ProjDir, CmdStanDir=CMDSTAN_HOME)
if rc == 0
sdf = read_summary(stanmodel)
@test sdf[sdf.parameters .== :theta, :mean][1] β 0.34 rtol=0.5
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1227 | ## Binomial Example ####
## Note: Adapted from the Rate_4 example in Bayesian Cognitive Modeling
## https://github.com/stan-dev/example-models/tree/master/Bayesian_Cognitive_Modeling
using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
binomialstanmodel = "
// Inferring a Rate
data {
int<lower=1> n;
int<lower=0> k;
}
parameters {
real<lower=0,upper=1> theta;
real<lower=0,upper=1> thetaprior;
}
model {
// Prior Distribution for Rate Theta
theta ~ beta(1, 1);
thetaprior ~ beta(1, 1);
// Observed Counts
k ~ binomial(n, theta);
}
generated quantities {
int<lower=0> postpredk;
int<lower=0> priorpredk;
postpredk <- binomial_rng(n, theta);
priorpredk <- binomial_rng(n, thetaprior);
}
"
global stanmodel, rc, sim
stanmodel = Stanmodel(name="binomial",
output_format=:array, model=binomialstanmodel)
binomialdata = Dict("n" => 10, "k" => 5)
rc, sim, cnames = stan(stanmodel, binomialdata, ProjDir, diagnostics=false,
CmdStanDir=CMDSTAN_HOME)
if rc == 0
println()
println("Test round.(mean(theta[1]), digits=1) β 0.5")
@test round.(mean(sim[:,8,:]), digits=1) β 0.5
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 786 | ######### CmdStan program example ###########
using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
binorm = "
transformed data {
matrix[2,2] Sigma;
vector[2] mu;
mu[1] <- 0.0;
mu[2] <- 0.0;
Sigma[1,1] <- 1.0;
Sigma[2,2] <- 1.0;
Sigma[1,2] <- 0.10;
Sigma[2,1] <- 0.10;
}
parameters {
vector[2] y;
}
model {
y ~ multi_normal(mu,Sigma);
}
"
global stanmodel, rc, sim
stanmodel = Stanmodel(name="binormal", model=binorm,
output_format=:array, Sample(save_warmup=false));
rc, sim, cnames = stan(stanmodel, CmdStanDir=CMDSTAN_HOME)
if rc == 0
println()
println("Test round.(mean(y[1]), 0) β 0.0")
@test round.(mean(sim[:,8,:]), digits=0) β 0.0
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 2410 | @everywhere using Pkg
@everywhere Pkg.activate(".")
@everywhere using CmdStan, Distributions, Distributed, MCMCChains
ProjDir = @__DIR__
@everywhere mutable struct Job
name::AbstractString
model::AbstractString
data::Dict
output_format::Symbol
tmpdir::AbstractString
nchains::Int
num_samples::Int
num_warmup::Int
save_warmup::Bool
delta::Float64
sm::Union{Nothing, Stanmodel}
end
function Job(
name::AbstractString,
model::AbstractString,
data::Dict;
output_format=:particles,
tmpdir=pwd()
)
nchains=4
num_samples=1000
num_warmup=1000
save_warmup=false
delta=0.85
sm = Stanmodel(
CmdStan.Sample(
num_samples=num_samples,
num_warmup=num_warmup,
save_warmup=save_warmup,
adapt=CmdStan.Adapt(delta=delta)
),
name=name, model=model, nchains=nchains,
tmpdir=tmpdir, output_format=:mcmcchains
)
Job(name, model, data, output_format,
tmpdir, nchains, num_samples, num_warmup,
save_warmup, delta, sm)
end
# Assume we have 2 models, m1 & m2
m1 = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
m2 = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
# Assume we have 4 sets of data
d = Vector{Dict}(undef, 4)
d[1] = Dict("N" => 10, "y" => [0, 1, 0, 0, 0, 0, 0, 0, 0, 1])
d[2] = Dict("N" => 10, "y" => [0, 1, 0, 0, 0, 1, 1, 1, 0, 1])
d[3] = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
d[4] = Dict("N" => 10, "y" => [0, 1, 1, 1, 0, 1, 1, 1, 0, 1])
isdir("$(ProjDir)/tmp") && rm("$(ProjDir)/tmp", recursive=true)
mkdir("$(ProjDir)/tmp")
tmpdir = "$(ProjDir)/tmp/cmd"
@everywhere jobs = Vector{Job}(undef, 4)
jobs[1] = Job("m1.1", m1, d[1]; tmpdir=tmpdir*"1")
jobs[2] = Job("m1.2", m1, d[2]; tmpdir=tmpdir*"2")
jobs[3] = Job("m2.1", m2, d[3]; tmpdir=tmpdir*"3")
jobs[4] = Job("m2.2", m2, d[4]; tmpdir=tmpdir*"4")
@everywhere function runjob(i, jobs)
p = []
rc, chn, _ = stan(jobs[i].sm, jobs[i].data)
if rc == 0
push!(p, chn)
println("Job $i completed")
else
println("Job[i] failed, adjust p indices accordingly.")
end
show(p)
p
end
@time res = pmap(i -> runjob(i, jobs), 1:length(jobs));
for i in 1:length(jobs)
res[i]
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 2301 | # Use `julia -p auto` to activate mp.
using Distributed
@everywhere using CmdStan, Distributions, MCMCChains
ProjDir = @__DIR__
@everywhere mutable struct Job
name::AbstractString
model::AbstractString
data::Dict
output_format::Symbol
tmpdir::AbstractString
nchains::Int
num_samples::Int
num_warmup::Int
save_warmup::Bool
delta::Float64
sm::Union{Nothing, Stanmodel}
end
function Job(
name::AbstractString,
model::AbstractString,
data::Dict;
output_format=:particles,
tmpdir=pwd()
)
nchains=4
num_samples=1000
num_warmup=1000
save_warmup=false
delta=0.85
sm = Stanmodel(
CmdStan.Sample(
num_samples=num_samples,
num_warmup=num_warmup,
save_warmup=save_warmup,
adapt=CmdStan.Adapt(delta=delta)
),
name=name, model=model, nchains=nchains,
tmpdir=tmpdir, output_format=:mcmcchains,
printsummary=false
)
Job(name, model, data, output_format,
tmpdir, nchains, num_samples, num_warmup,
save_warmup, delta, sm)
end
@everywhere M = 3 # No of models
@everywhere D = 10 # No of data sets
@everywhere N = 100 # No of Bernoulli trials
isdir("$(ProjDir)/tmp") && rm("$(ProjDir)/tmp", recursive=true)
# Assume we have M models
model_template = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
m = repeat([model_template], M)
# Assume we have D sets of data
d = Vector{Dict}(undef, D)
p = range(0.1, stop=0.9, length=D)
for i in 1:D
d[i] = Dict("N" => N, "y" => [Int(rand(Bernoulli(p[i]), 1)[1]) for j in 1:N])
end
tmpdir = "$(ProjDir)/tmp"
@everywhere jobs = Vector{Job}(undef, M*D)
jobid = 0
for i in 1:M
for j in 1:D
global jobid += 1
jobs[jobid] = Job("m$(jobid)", m[i], d[j]; output_format=:mcmcchains,
tmpdir=tmpdir)
end
end
@everywhere function runjob(i, jobs)
p = []
rc, chns, _ = stan(jobs[i].sm, jobs[i].data)
if rc == 0
push!(p, (i, chns, jobs[i].sm))
println("Job $i completed")
else
println("Job $i failed.")
end
p
end
println("\nNo of jobs = $(length(jobs))\n")
@time res = pmap(i -> runjob(i, jobs), 1:length(jobs));
for i in 1:length(jobs)
display(mean(res[i][1][2]))
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1602 | ######### CmdStan batch program example ###########
using CmdStan, Statistics, Test
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
dyes ="
data {
int BATCHES;
int SAMPLES;
real y[BATCHES, SAMPLES];
// vector[SAMPLES] y[BATCHES];
}
parameters {
real<lower=0> tau_between;
real<lower=0> tau_within;
real theta;
real mu[BATCHES];
}
transformed parameters {
real sigma_between;
real sigma_within;
sigma_between <- 1/sqrt(tau_between);
sigma_within <- 1/sqrt(tau_within);
}
model {
theta ~ normal(0.0, 1E5);
tau_between ~ gamma(.001, .001);
tau_within ~ gamma(.001, .001);
mu ~ normal(theta, sigma_between);
for (n in 1:BATCHES)
y[n] ~ normal(mu[n], sigma_within);
}
generated quantities {
real sigmasq_between;
real sigmasq_within;
sigmasq_between <- 1 / tau_between;
sigmasq_within <- 1 / tau_within;
}
"
dyesdata = Dict("BATCHES" => 6,
"SAMPLES" => 5,
"y" => reshape([
[1545, 1540, 1595, 1445, 1595];
[1520, 1440, 1555, 1550, 1440];
[1630, 1455, 1440, 1490, 1605];
[1595, 1515, 1450, 1520, 1560];
[1510, 1465, 1635, 1480, 1580];
[1495, 1560, 1545, 1625, 1445]
], 6, 5)
)
global stanmodel, rc, a3d, cnames
stanmodel = Stanmodel(name="dyes", model=dyes);
@time rc, a3d, cnames = stan(stanmodel, dyesdata, ProjDir,
CmdStanDir=CMDSTAN_HOME)
if rc == 0
sdf = read_summary(stanmodel)
@test sdf[sdf.parameters .== :theta, :mean][1] β 1500 rtol=0.1
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1458 | ######### CmdStan batch program example ###########
# Note that this example needs StanMCMCChains.
using CmdStan, Test
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
eightschools ="
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
real eta[J];
}
transformed parameters {
real theta[J];
for (j in 1:J)
theta[j] <- mu + tau * eta[j];
}
model {
eta ~ normal(0, 1);
y ~ normal(theta, sigma);
}
"
schools8data = Dict("J" => 8,
"y" => [28, 8, -3, 7, -1, 1, 18, 12],
"sigma" => [15, 10, 16, 11, 9, 11, 10, 18],
"tau" => 25
)
global stanmodel, rc, chn, chns, cnames, tmpdir
tmpdir = mktempdir()
stanmodel = Stanmodel(name="schools8", model=eightschools,
tmpdir=tmpdir);
rc, chn, cnames = stan(stanmodel, schools8data, ProjDir, CmdStanDir=CMDSTAN_HOME)
if rc == 0
if rc == 0
sdf = read_summary(stanmodel)
@test sdf[sdf.parameters .== Symbol("theta[1]"), :mean][1] β 11.6 rtol=0.1
# using StatsPlots
if isdefined(Main, :StatsPlots)
p1 = plot(chns)
savefig(p1, joinpath(tmpdir, "traceplot.pdf"))
df = DataFrame(chns, [:thetas])
p2 = plot(df[!, Symbol("theta[1]")])
savefig(p2, joinpath(tmpdir, "theta_1.pdf"))
end
end
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1449 | # Another way to include functions.
# See Parse_and_Iterate_Example for the Stan way.
using CmdStan, Distributions, Random
ProjDir = @__DIR__
cd(ProjDir)
function full_model(base_model, functions)
initial_model = open(f->read(f, String), base_model)
funcs = open(f->read(f, String), functions)
"functions{\n$(funcs)}\n"*initial_model
end
function full_model(base_model, shared_functions, local_functions)
initial_model = open(f->read(f, String), base_model)
shared_funcs = open(f->read(f, String), shared_functions)
local_funcs = open(f->read(f, String), local_functions)
"functions{\n$(shared_funcs)\n$(local_funcs)}\n"*initial_model
end
model = full_model("bernoulli.stan", "shared_funcs.stan")
stanmodel = Stanmodel(Sample(save_warmup=true, num_warmup=1000,
num_samples=2000, thin=1), name="bernoulli", model=model,
printsummary=false)
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
rc, chn, cnames = stan(stanmodel, observeddata, ProjDir)
if rc == 0
show(chn)
end
println("\nOn to model2\n")
model2 = full_model("bernoulli2.stan", "shared_funcs.stan", "local_funcs.stan")
stanmodel = Stanmodel(Sample(save_warmup=true, num_warmup=1000,
num_samples=2000, thin=1), name="bernoulli2", model=model2,
printsummary=false)
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
rc, chn, cnames = stan(stanmodel, observeddata, ProjDir)
if rc == 0
read_summary(stanmodel)
end | CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.