licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 701 | # example copied from th0br0 with modifications
using CmdStan
y = collect(1:100);
x = [3:3:300 5:5:500];
model = """
data {
int<lower = 0> N;
int<lower = 0> k;
matrix[N, k] x;
real<lower=0> y[N];
}
parameters {
vector[k] beta;
real<lower=0> sigma;
}
model {
y ~ normal(x * beta, sigma);
}
""";
# beta parameters are accessed using beta.[1-9+] syntax
data = Dict("N"=>100, "k" => 2, "x" => x, "y" => y);
stanmodel = Stanmodel(monitors = ["beta.1", "beta.2", "sigma"], model=model,
output_format=:mcmcchains);
rc, sim, cnames = stan(stanmodel, data; diagnostics = false);
cnames |> display
# 3-element Array{String,1}: "beta.1", "beta.2" ,"sigma"
println()
describe(sim)
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 982 | using CmdStan
ProjDir = @__DIR__
cd(ProjDir)
shared_file = "shared_funcs.stan"
bernoulli_model = "
functions{
#include $(shared_file)
//#include shared_funcs.stan // a comment
//#include shared_funcs.stan // a comment
//#include /Users/rob/shared_funcs.stan // a comment
void model_specific_function(){
real x = 1.0;
return;
}
}
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
model_specific_function();
theta ~ beta(my_function(),1);
y ~ bernoulli(theta);
}
";
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
tmpdir = ProjDir*"/tmp"
stanmodel = Stanmodel(name="bernoulli", model=bernoulli_model,
printsummary=true, tmpdir=tmpdir);
rc, chn, cnames = stan(stanmodel, observeddata, ProjDir);
if rc == 0
# Ceate a summary df
summary_df = read_summary(stanmodel)
summary_df[:, [:mean, :ess]]
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1258 | # Experimental threads example. WIP!
using CmdStan
#using Distributed
using Statistics
using StatsBase: sample
ProjDir = mktempdir()
cd(ProjDir) #do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
n = 10;
observeddata = Dict("N" => n, "y" => sample([0,1],n))
sm = Stanmodel(name="bernoulli", model=bernoullimodel;
output_format=:namedtuple);
println("\nThreads loop\n")
p1 = 16 # p1 is the number of models to fit
estimates = Vector(undef, p1)
Threads.@threads for i in 1:p1
pdir = pwd()
while ispath(pdir)
pdir = tempname()
end
println(pdir)
new_model= deepcopy(sm)
new_model.pdir = pdir
new_model.tmpdir = joinpath(splitpath(pdir)...,"tmp")
mkpath(new_model.tmpdir)
CmdStan.update_model_file(joinpath(new_model.tmpdir, "$(new_model.name).stan"), strip(new_model.model))
rc, samples, cnames = stan(new_model, observeddata, new_model.pdir;
# summary=false
);
if rc == 0
estimates[i] = [mean(reshape(samples.theta, 4000)), std(reshape(samples.theta, 4000))]
end
#rm(pdir; force=true, recursive=true)
end
estimates |> display
#end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1002 | # Experimental threads example. WIP!
using CmdStan
using Statistics
using Distributions
ProjDir = @__DIR__
cd(ProjDir) #do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
#isdir(ProjDir * "/tmp") && rm(ProjDir * "/tmp", recursive=true)
tmpdir = ProjDir * "/tmp"
p1 = 24 # p1 is the number of models to fit
n = 100;
p = range(0, stop=1, length=p1)
observeddata = [Dict("N" => n, "y" => Int.(rand(Bernoulli(p[i]), n))) for i in 1:p1]
sm = [Stanmodel(name="bernoulli_m$i", model=bernoullimodel;
output_format=:namedtuple, tmpdir=tmpdir) for i in 1:p1]
println("\nThreads loop\n")
estimates = Vector(undef, p1)
Threads.@threads for i in 1:p1
rc, samples, cnames = stan(sm[i], observeddata[i]; summary=false);
if rc == 0
estimates[i] = [mean(reshape(samples.theta, 4000)), std(reshape(samples.theta, 4000))]
end
end
estimates |> display
#end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1019 | ########################################################################
#Load Stan Model
########################################################################
using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
println(ProjDir)
cd(ProjDir) do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
real empty[0];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1],"empty"=>Float64[])
global stanmodel, rc, sim
stanmodel = Stanmodel(num_samples=1200, thin=2, name="bernoulli",
output_format=:array, model=bernoullimodel);
rc, sim = stan(stanmodel, [observeddata], ProjDir, diagnostics=false,
CmdStanDir=CMDSTAN_HOME);
if rc == 0
println()
println("Test round(mean(theta), digits=1) β 0.3")
@test round(mean(sim[:,8,:]), digits=1) β 0.3
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 4597 | import DiffEqBayes: stan_inference
import DiffEqBayes: StanModel, StanODEData, generate_priors, generate_theta
function stan_inference(prob::DiffEqBase.DEProblem, t, data,
priors=nothing,
stanmodel=nothing;
alg=:rk45, num_samples=1000, num_warmup=1000, reltol=1e-3,
abstol=1e-6, maxiter=Int(1e5),likelihood=Normal,
vars=(StanODEData(),InverseGamma(3,3)),nchains=1,
sample_u0 = false, save_idxs = nothing, diffeq_string = nothing,
printsummary = true)
save_idxs !== nothing && length(save_idxs) == 1 ? save_idxs = save_idxs[1] : save_idxs = save_idxs
length_of_y = length(prob.u0)
save_idxs = something(save_idxs, 1:length_of_y)
length_of_params = length(vars)
if isnothing(diffeq_string)
sys = first(ModelingToolkit.modelingtoolkitize(prob))
length_of_parameter = length(sys.ps) + sample_u0 * length(save_idxs)
else
length_of_parameter = length(prob.p) + sample_u0 * length(save_idxs)
end
if alg ==:rk45
algorithm = "integrate_ode_rk45"
elseif alg == :bdf
algorithm = "integrate_ode_bdf"
else
error("The choices for alg are :rk45 or :bdf")
end
hyper_params = ""
tuple_hyper_params = ""
setup_params = ""
thetas = ""
theta_string = generate_theta(length_of_parameter,priors)
for i in 1:length_of_parameter
thetas = string(thetas,"theta[$i] = theta$i",";")
end
for i in 1:length_of_params
if isa(vars[i], StanODEData)
tuple_hyper_params = string(tuple_hyper_params,"u_hat[t,$save_idxs]",",")
else
dist = stan_string(vars[i])
hyper_params = string(hyper_params,"sigma$(i-1) ~ $dist;")
tuple_hyper_params = string(tuple_hyper_params,"sigma$(i-1)",",")
setup_params = string(setup_params,"row_vector<lower=0>[$(length(save_idxs))] sigma$(i-1);")
end
end
tuple_hyper_params = tuple_hyper_params[1:length(tuple_hyper_params)-1]
priors_string = string(generate_priors(length_of_parameter,priors))
stan_likelihood = stan_string(likelihood)
if sample_u0
nu = length(save_idxs)
if nu < length(prob.u0)
u0 = "{"
for u_ in prob.u0[nu+1:length(prob.u0)]
u0 = u0*string(u_)
end
u0 = u0*"}"
integral_string = "u_hat = $algorithm(sho, append_array(theta[1:$nu],$u0), t0, ts, theta[$(nu+1):$length_of_parameter], x_r, x_i, $reltol, $abstol, $maxiter);"
else
integral_string = "u_hat = $algorithm(sho, theta[1:$nu], t0, ts, theta[$(nu+1):$length_of_parameter], x_r, x_i, $reltol, $abstol, $maxiter);"
end
else
integral_string = "u_hat = $algorithm(sho, u0, t0, ts, theta, x_r, x_i, $reltol, $abstol, $maxiter);"
end
binsearch_string = """
int bin_search(real x, int min_val, int max_val){
int range = (max_val - min_val + 1) / 2;
int mid_pt = min_val + range;
int out;
while (range > 0) {
if (x == mid_pt) {
out = mid_pt;
range = 0;
} else {
range = (range + 1) / 2;
mid_pt = x > mid_pt ? mid_pt + range: mid_pt - range;
}
}
return out;
}
"""
if isnothing(diffeq_string)
diffeq_string = ModelingToolkit.build_function(
sys.eqs,sys.states,
sys.ps,sys.iv,
fname = :sho,
target = ModelingToolkit.StanTarget()
)
end
parameter_estimation_model = "
functions {
$binsearch_string
$diffeq_string
}
data {
real u0[$length_of_y];
int<lower=1> T;
real internal_var___u[T,$(length(save_idxs))];
real t0;
real ts[T];
}
transformed data {
real x_r[0];
int x_i[0];
}
parameters {
$setup_params
$theta_string
}
transformed parameters{
real theta[$length_of_parameter];
$thetas
}
model{
real u_hat[T,$length_of_y];
$hyper_params
$priors_string
$integral_string
for (t in 1:T){
internal_var___u[t,:] ~ $stan_likelihood($tuple_hyper_params);
}
}
generated quantities{
real u_hat[T,2];
u_hat = integrate_ode_rk45(sho, u0, t0, ts, theta, x_r, x_i, 0.001, 1.0e-6, 100000);
}
"
if isnothing(stanmodel)
stanmodel = CmdStan.Stanmodel(num_samples=num_samples,
num_warmup=num_warmup, name="pem",
model=parameter_estimation_model, nchains=nchains,
printsummary = printsummary)
end
parameter_estimation_data = Dict("u0"=>prob.u0, "T" => length(t), "internal_var___u" => view(data, :, 1:length(t))', "t0" => prob.tspan[1], "ts" => t)
return_code, chains, cnames = CmdStan.stan(stanmodel, [parameter_estimation_data]; CmdStanDir=CMDSTAN_HOME)
return StanModel(stanmodel, return_code, chains, cnames)
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 2364 | using CmdStan, DiffEqBayes, OrdinaryDiffEq, ParameterizedFunctions,
ModelingToolkit, RecursiveArrayTools, Distributions, Random, Test
# Uncomment for local testing only, make sure MCMCChains and StatsPlots are available
using MCMCChains, StatsPlots
#Random.seed!(123)
cd(@__DIR__)
isdir("tmp") && rm("tmp", recursive=true)
include("../../stan_inference.jl")
println("\nFour parameter case\n")
f1 = @ode_def begin
dx = a*x - b*x*y
dy = -c*y + d*x*y
end a b c d
u0 = [1.0,1.0]
tspan = (0.0,10.0)
p = [1.5,1.0,3.0,1.0]
prob1 = ODEProblem(f1,u0,tspan,p)
sol = solve(prob1,Tsit5())
t = collect(range(1,stop=10,length=10))
randomized = VectorOfArray([(sol(t[i]) + 0.5randn(2)) for i in 1:length(t)])
data = convert(Array,randomized)
priors = [truncated(Normal(1.0,1),0.1,2),truncated(Normal(1.5,0.5),0.1,1.5),
truncated(Normal(2.0,1),0.1,4),truncated(Normal(1.3,0.5),0.1,2)]
bayesian_result = stan_inference(prob1,t,data,priors;num_samples=2000, nchains=4,
num_warmup=1000,vars =(DiffEqBayes.StanODEData(),InverseGamma(4,1)))
sdf = CmdStan.read_summary(bayesian_result.model)
@test sdf[sdf.parameters .== :theta1, :mean][1] β 1.5 atol=5e-1
@test sdf[sdf.parameters .== :theta2, :mean][1] β 1.0 atol=5e-1
@test sdf[sdf.parameters .== :theta3, :mean][1] β 3.0 atol=5e-1
@test sdf[sdf.parameters .== :theta4, :mean][1] β 1.0 atol=5e-1
# Uncomment for local chain inspection
chn = CmdStan.convert_a3d(bayesian_result.chains, bayesian_result.cnames, Val(:mcmcchains))
plot(chn)
savefig("$(@__DIR__)/four_par_case.png")
v1 = [sdf[sdf.parameters .== Symbol("u_hat[$i,1]"), :mean][1] for i in 1:10]
v2 = [sdf[sdf.parameters .== Symbol("u_hat[$i,2]"), :mean][1] for i in 1:10]
qa_prey = zeros(10, 3);
qa_pred = zeros(10, 3);
achn = Array(chn);
for i in 1:10
qa_prey[i, :] = quantile(achn[:, 10+i], [0.055, 0.5, 0.945])
qa_pred[i, :] = quantile(achn[:, 20+i], [0.055, 0.5, 0.945])
end
p1 = plot(1:10, v1; ribbon=(qa_prey[:, 1], qa_prey[:, 3]), color=:lightgrey, leg=false)
title!("Prey u_hat 89% quantiles")
plot!(v1, lab="prey", xlab="time", ylab="prey", color=:darkred)
p2 = plot(1:10, v2; ribbon=(qa_pred[:, 1], qa_pred[:, 3]), color=:lightgrey, leg=false)
title!("Preditors u_hat 89% quantiles")
plot!(v2, lab="pred", xlab="time", ylab="preditors", color=:darkblue)
plot(p1, p2, layout=(2,1))
savefig("$(@__DIR__)/four_par_pred_prey.png")
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 6576 | using CmdStan, DiffEqBayes, OrdinaryDiffEq, ParameterizedFunctions,
ModelingToolkit, RecursiveArrayTools, Distributions, Random, Test
# Uncomment for local testing only, make sure MCMCChains and StatsPlots are available
using MCMCChains, StatsPlots
#Random.seed!(123)
cd(@__DIR__)
isdir("tmp") && rm("tmp", recursive=true)
include("../../stan_inference.jl")
println("\nOne parameter case 1\n")
f1 = @ode_def begin
dx = a*x - x*y
dy = -3y + x*y
end a
u0 = [1.0,1.0]
tspan = (0.0,10.0)
p = [1.5]
prob1 = ODEProblem(f1,u0,tspan,p)
sol = solve(prob1,Tsit5())
t = collect(range(1,stop=10,length=10))
randomized = VectorOfArray([(sol(t[i]) + .5randn(2)) for i in 1:length(t)])
data = convert(Array,randomized)
priors = [truncated(Normal(0.7,1),0.1,2)]
bayesian_result = stan_inference(prob1,t,data,priors;num_samples=2000, nchains=4,
num_warmup=1000,likelihood=Normal)
sdf = CmdStan.read_summary(bayesian_result.model)
@test sdf[sdf.parameters .== :theta1, :mean][1] β 1.5 atol=3e-1
# Uncomment for local chain inspection
chn = CmdStan.convert_a3d(bayesian_result.chains, bayesian_result.cnames, Val(:mcmcchains))
plot(chn)
!isdir("tmp") && mkdir("tmp")
savefig("$(@__DIR__)/one_par_case_01.png")
v1 = [sdf[sdf.parameters .== Symbol("u_hat[$i,1]"), :mean][1] for i in 1:10]
v2 = [sdf[sdf.parameters .== Symbol("u_hat[$i,2]"), :mean][1] for i in 1:10]
qa_prey = zeros(10, 3);
qa_pred = zeros(10, 3);
achn = Array(chn);
for i in 1:10
qa_prey[i, :] = quantile(achn[:, 4+i], [0.055, 0.5, 0.945])
qa_pred[i, :] = quantile(achn[:, 14+i], [0.055, 0.5, 0.945])
end
p1 = plot(1:10, v1; ribbon=(qa_prey[:, 1], qa_prey[:, 3]), color=:lightgrey, leg=false)
title!("Prey u_hat 89% quantiles")
plot!(v1, lab="prey", xlab="time", ylab="prey", color=:darkred)
p2 = plot(1:10, v2; ribbon=(qa_pred[:, 1], qa_pred[:, 3]), color=:lightgrey, leg=false)
title!("Preditors u_hat 89% quantiles")
plot!(v2, lab="pred", xlab="time", ylab="preditors", color=:darkblue)
plot(p1, p2, layout=(2,1))
savefig("$(@__DIR__)/one_par_pred_prey_01.png")
println("\nOne parameter case 2\n")
priors = [
truncated(Normal(1.,0.5), 0.1, 3),
truncated(Normal(1.,0.5), 0.1, 3),
truncated(Normal(1.5,0.5), 0.1, 4)
]
bayesian_result = stan_inference(prob1,t,data,priors;num_samples=2000, nchains=4,
num_warmup=1000,likelihood=Normal,sample_u0=true)
sdf = CmdStan.read_summary(bayesian_result.model)
@test sdf[sdf.parameters .== :theta1, :mean][1] β 1. atol=3e-1
@test sdf[sdf.parameters .== :theta2, :mean][1] β 1. atol=3e-1
@test sdf[sdf.parameters .== :theta3, :mean][1] β 1.5 atol=3e-1
# Uncomment for local chain inspection
chn = CmdStan.convert_a3d(bayesian_result.chains, bayesian_result.cnames, Val(:mcmcchains))
plot(chn)
!isdir("tmp") && mkdir("tmp")
savefig("$(@__DIR__)/one_par_case_02.png")
v1 = [sdf[sdf.parameters .== Symbol("u_hat[$i,1]"), :mean][1] for i in 1:10]
v2 = [sdf[sdf.parameters .== Symbol("u_hat[$i,2]"), :mean][1] for i in 1:10]
qa_prey = zeros(10, 3);
qa_pred = zeros(10, 3);
achn = Array(chn);
for i in 1:10
qa_prey[i, :] = quantile(achn[:, 8+i], [0.055, 0.5, 0.945])
qa_pred[i, :] = quantile(achn[:, 18+i], [0.055, 0.5, 0.945])
end
p1 = plot(1:10, v1; ribbon=(qa_prey[:, 1], qa_prey[:, 3]), color=:lightgrey, leg=false)
title!("Prey u_hat 89% quantiles")
plot!(v1, lab="prey", xlab="time", ylab="prey", color=:darkred)
p2 = plot(1:10, v2; ribbon=(qa_pred[:, 1], qa_pred[:, 3]), color=:lightgrey, leg=false)
title!("Preditors u_hat 89% quantiles")
plot!(v2, lab="pred", xlab="time", ylab="preditors", color=:darkblue)
plot(p1, p2, layout=(2,1))
savefig("$(@__DIR__)/one_par_pred_prey_02.png")
println("\nOne parameter case 3\n")
sol = solve(prob1,Tsit5(),save_idxs=[1])
randomized = VectorOfArray([(sol(t[i]) + .01 * randn(1)) for i in 1:length(t)])
data = convert(Array,randomized)
priors = [truncated(Normal(1.5,0.5), 0.1,2)]
bayesian_result = stan_inference(prob1,t,data,priors;num_samples=2000, nchains=4,
num_warmup=1000,likelihood=Normal,save_idxs=[1])
sdf = CmdStan.read_summary(bayesian_result.model)
@test sdf[sdf.parameters .== :theta1, :mean][1] β 1.5 atol=3e-1
# Uncomment for local chain inspection
chn = CmdStan.convert_a3d(bayesian_result.chains, bayesian_result.cnames, Val(:mcmcchains))
plot(chn)
savefig("$(@__DIR__)/one_par_case_03.png")
v1 = [sdf[sdf.parameters .== Symbol("u_hat[$i,1]"), :mean][1] for i in 1:10]
v2 = [sdf[sdf.parameters .== Symbol("u_hat[$i,2]"), :mean][1] for i in 1:10]
qa_prey = zeros(10, 3);
qa_pred = zeros(10, 3);
achn = Array(chn);
for i in 1:10
qa_prey[i, :] = quantile(achn[:, 3+i], [0.055, 0.5, 0.945])
qa_pred[i, :] = quantile(achn[:, 13+i], [0.055, 0.5, 0.945])
end
p1 = plot(1:10, v1; ribbon=(qa_prey[:, 1], qa_prey[:, 3]), color=:lightgrey, leg=false)
title!("Prey u_hat 89% quantiles")
plot!(v1, lab="prey", xlab="time", ylab="prey", color=:darkred)
p2 = plot(1:10, v2; ribbon=(qa_pred[:, 1], qa_pred[:, 3]), color=:lightgrey, leg=false)
title!("Preditors u_hat 89% quantiles")
plot!(v2, lab="pred", xlab="time", ylab="preditors", color=:darkblue)
plot(p1, p2, layout=(2,1))
savefig("$(@__DIR__)/one_par_pred_prey_03.png")
println("\nOne parameter case 4\n")
priors = [truncated(Normal(1.,0.5), 0.1, 3),
truncated(Normal(1.5,0.5), 0.1, 4)]
bayesian_result = stan_inference(prob1,t,data,priors;num_samples=2000,
nchains=4, num_warmup=1000,likelihood=Normal,save_idxs=[1],sample_u0=true)
sdf = CmdStan.read_summary(bayesian_result.model)
@test sdf[sdf.parameters .== :theta1, :mean][1] β 1. atol=3e-1
@test sdf[sdf.parameters .== :theta2, :mean][1] β 1.5 atol=3e-1
# Uncomment for local chain inspection
chn = CmdStan.convert_a3d(bayesian_result.chains, bayesian_result.cnames, Val(:mcmcchains))
plot(chn)
savefig("$(@__DIR__)/one_par_case_04.png")
v1 = [sdf[sdf.parameters .== Symbol("u_hat[$i,1]"), :mean][1] for i in 1:10]
v2 = [sdf[sdf.parameters .== Symbol("u_hat[$i,2]"), :mean][1] for i in 1:10]
qa_prey = zeros(10, 3);
qa_pred = zeros(10, 3);
achn = Array(chn);
for i in 1:10
qa_prey[i, :] = quantile(achn[:, 4+i], [0.055, 0.5, 0.945])
qa_pred[i, :] = quantile(achn[:, 14+i], [0.055, 0.5, 0.945])
end
p1 = plot(1:10, v1; ribbon=(qa_prey[:, 1], qa_prey[:, 3]), color=:lightgrey, leg=false)
title!("Prey u_hat 89% quantiles")
plot!(v1, lab="prey", xlab="time", ylab="prey", color=:darkred)
p2 = plot(1:10, v2; ribbon=(qa_pred[:, 1], qa_pred[:, 3]), color=:lightgrey, leg=false)
title!("Preditors u_hat 89% quantiles")
plot!(v2, lab="pred", xlab="time", ylab="preditors", color=:darkblue)
plot(p1, p2, layout=(2,1))
savefig("$(@__DIR__)/one_par_pred_prey_04.png")
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 4300 | using DiffEqBayes, CmdStan, DynamicHMC, DataFrames
using Distributions, BenchmarkTools, Random
using OrdinaryDiffEq, RecursiveArrayTools, ParameterizedFunctions
using StatsPlots
gr(size=(600,900))
ProjDir = @__DIR__
cd(ProjDir)
isdir("tmp") && rm("tmp", recursive=true)
include("../stan_inference.jl")
f = @ode_def LotkaVolterraTest begin
dx = a*x - b*x*y
dy = -c*y + d*x*y
end a b c d
u0 = [1.0,1.0]
tspan = (0.0,10.0)
p = [1.5,1.0,3.0,1,0]
prob = ODEProblem(f,u0,tspan,p)
sol = solve(prob,Tsit5())
t = collect(range(1,stop=10,length=30))
sig = 0.49
data = convert(Array, VectorOfArray([(sol(t[i]) + sig*randn(2)) for i in 1:length(t)]))
scatter(t, data[1,:], lab="#prey (data)")
scatter!(t, data[2,:], lab="#predator (data)")
plot!(sol)
savefig("$(ProjDir)/fig_01.png")
priors = [truncated(Normal(1.5,0.5),0.1,3.0),truncated(Normal(1.2,0.5),0.1,2),
truncated(Normal(3.0,0.5),1,4),truncated(Normal(1.0,0.5),0.1,2)]
# Stan.jl backend
#The solution converges for tolerance values lower than 1e-3, lower tolerance
#leads to better accuracy in result but is accompanied by longer warmup and
#sampling time, truncated normal priors are used for preventing Stan from stepping into negative values.
nchains = 4
num_samples = 800
@time bayesian_result_stan = stan_inference(prob,t,data,priors,
num_samples=num_samples, printsummary=false, nchains=4);
sdf1 = CmdStan.read_summary(bayesian_result_stan.model)
println()
@time bayesian_result_stan = stan_inference(prob,t,data,
priors,bayesian_result_stan.model,
num_samples=num_samples, printsummary=false, nchains=4)
sdf2 = CmdStan.read_summary(bayesian_result_stan.model)
println()
cnames = ["theta1", "theta2", "theta3", "theta4", "sigma1", "sigma2", ]
df = CmdStan.convert_a3d(bayesian_result_stan.chains, bayesian_result_stan.cnames,
Val(:dataframes));
df_stan = append!(append!(df[1], df[2]), append!(df[3], df[4]));
df_stan = df_stan[:, [10, 11, 12, 13, 8, 9]]
rename!(df_stan, Symbol.(cnames))
# DynamicHMC.jl backend
@time bayesian_result_dynamichmc = dynamichmc_inference(prob,Tsit5(),t,data,priors,
num_samples=Int(4*num_samples));
N = length(bayesian_result_dynamichmc.posterior)
res_array = zeros(N, 6);
for i in 1:length(bayesian_result_dynamichmc.posterior)
res_array[i,:] = vcat(
bayesian_result_dynamichmc.posterior[i].parameters,
bayesian_result_dynamichmc.posterior[i].Ο
)
end
df_dhmc = DataFrame(
:theta1 => res_array[:, 1],
:theta2 => res_array[:, 2],
:theta3 => res_array[:, 3],
:theta4 => res_array[:, 4],
:sigma1 => res_array[:, 5],
:sigma2 => res_array[:, 6]
)
sdf1 |> display
sdf2 |> display
println("\nDhmc results\n")
mean(res_array, dims=1) |> display
std(res_array, dims=1) |> display
println()
function plot_theta_results(
dfs::DataFrame,
dfd::DataFrame,
varn::AbstractString,
idx::Int,
priors=priors
)
prior_theta = Symbol("prior_"*varn*string(idx))
theta = Symbol(varn*string(idx))
prior_theta_array = rand(priors[idx], size(dfs, 1))
p1 = plot(prior_theta_array, xlab="prior_theta_$idx", leg=false)
p2 = density(prior_theta_array, xlab="prior_theta_$idx", leg=false)
p3 = plot(dfs[:, theta], xlab="theta_$idx", lab="stan")
plot!(dfs[:, theta], lab="dhmc")
p4 = density(dfs[:, theta], xlab="theta_$idx", lab="stan")
density!(dfd[:, theta], lab="dhmc")
p5 = density(dfs[:, :sigma1], xlab="sigma1", lab="stan")
density!(dfd[:, :sigma1], lab="dhmc")
p6 = density(dfs[:, :sigma2], xlab="sigma2", lab="stan")
density!(dfd[:, :sigma2], lab="dhmc")
plot(p1, p2, p3, p4, p5, p6, layout=(3,2))
savefig("$(ProjDir)/$(varn)_$idx")
end
for i in 1:4
plot_theta_results(df_stan, df_dhmc, "theta", i, priors)
end
original_stan_results ="
mean se_mean sd 10% 50% 90% n_eff Rhat
theta[1] 0.549 0.002 0.065 0.469 0.545 0.636 1163 1
theta[2] 0.028 0.000 0.004 0.023 0.028 0.034 1281 1
theta[3] 0.797 0.003 0.091 0.684 0.791 0.918 1125 1
theta[4] 0.024 0.000 0.004 0.020 0.024 0.029 1170 1
sigma[1] 0.248 0.001 0.045 0.198 0.241 0.306 2625 1
sigma[2] 0.252 0.001 0.044 0.201 0.246 0.310 2808 1
z_init[1] 33.960 0.056 2.909 30.363 33.871 37.649 2684 1
z_init[2] 5.949 0.011 0.533 5.294 5.926 6.644 2235 1
";
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 3864 | using DiffEqBayes, CmdStan, DynamicHMC, DataFrames
using Distributions, BenchmarkTools
using OrdinaryDiffEq, RecursiveArrayTools, ParameterizedFunctions
using StatsPlots, CSV
gr(size=(600,900))
ProjDir = @__DIR__
cd(ProjDir)
isdir("tmp") && rm("tmp", recursive=true)
include("../stan_inference.jl")
df = CSV.read("$(ProjDir)/../lynx_hare.csv", DataFrame; delim=",")
f = @ode_def LotkaVolterraTest begin
dx = a*x - b*x*y
dy = -c*y + d*x*y
end a b c d
u0 = [30.0, 4.0]
tspan = (0.0, 21.0)
p = [0.55, 0.028, 0.84, 0.026]
prob = ODEProblem(f,u0,tspan,p)
sol = solve(prob,Tsit5())
t = collect(range(1,stop=20,length=20))
sig = 0.49
data = convert(Array, VectorOfArray([(sol(t[i]) + sig*randn(2)) for i in 1:length(t)]))
scatter(t, data[1,:], lab="#prey (data)")
scatter!(t, data[2,:], lab="#predator (data)")
plot!(sol)
savefig("$(ProjDir)/fig_01.png")
priors = [truncated(Normal(1,0.5),0.1,3),truncated(Normal(0.05,0.05),0,2),
truncated(Normal(1,0.5),0.1,4),truncated(Normal(0.05,0.05),0,2)]
# Stan.jl backend
#The solution converges for tolerance values lower than 1e-3, lower tolerance
#leads to better accuracy in result but is accompanied by longer warmup and
#sampling time, truncated normal priors are used for preventing Stan from stepping into negative values.
nchains = 4
num_samples = 800
@time bayesian_result_stan = stan_inference(prob,t,data,priors,
num_samples=num_samples, printsummary=false, nchains=nchains);
sdf1 = CmdStan.read_summary(bayesian_result_stan.model)
println()
@time bayesian_result_stan = stan_inference(prob,t,data,
priors, bayesian_result_stan.model,
num_samples=num_samples, printsummary=false, nchains=nchains);
sdf2 = CmdStan.read_summary(bayesian_result_stan.model)
println()
cnames = ["theta1", "theta2", "theta3", "theta4", "sigma1", "sigma2", ]
df = CmdStan.convert_a3d(bayesian_result_stan.chains, bayesian_result_stan.cnames,
Val(:dataframes));
df_stan = append!(append!(df[1], df[2]), append!(df[3], df[4]));
df_stan = df_stan[:, [10, 11, 12, 13, 8, 9]]
rename!(df_stan, Symbol.(cnames))
sdf1 |> display
sdf2 |> display
#=
# DynamicHMC.jl backend
@time bayesian_result_dynamichmc = dynamichmc_inference(prob,Tsit5(),t,data,priors,
num_samples=Int(4*num_samples));
N = length(bayesian_result_dynamichmc.posterior)
res_array = zeros(N, 6);
for i in 1:length(bayesian_result_dynamichmc.posterior)
res_array[i,:] = vcat(
bayesian_result_dynamichmc.posterior[i].parameters,
bayesian_result_dynamichmc.posterior[i].Ο
)
end
df_dhmc = DataFrame(
:theta1 => res_array[:, 1],
:theta2 => res_array[:, 2],
:theta3 => res_array[:, 3],
:theta4 => res_array[:, 4],
:sigma1 => res_array[:, 5],
:sigma2 => res_array[:, 6]
)
println("\nDhmc results\n")
mean(res_array, dims=1) |> display
std(res_array, dims=1) |> display
println()
=#
function plot_theta_results(
dfs::DataFrame,
dfd::DataFrame,
varn::AbstractString,
idx::Int,
priors=priors
)
prior_theta = Symbol("prior_"*varn*string(idx))
theta = Symbol(varn*string(idx))
prior_theta_array = rand(priors[idx], size(dfs, 1))
p1 = plot(prior_theta_array, xlab="prior_theta_$idx", leg=false)
p2 = density(prior_theta_array, xlab="prior_theta_$idx", leg=false)
p3 = plot(dfs[:, theta], xlab="theta_$idx", lab="stan")
#plot!(dfs[:, theta], lab="dhmc")
p4 = density(dfs[:, theta], xlab="theta_$idx", lab="stan")
#density!(dfd[:, theta], lab="dhmc")
p5 = density(dfs[:, :sigma1], xlab="sigma1", lab="stan")
#density!(dfd[:, :sigma1], lab="dhmc")
p6 = density(dfs[:, :sigma2], xlab="sigma2", lab="stan")
#density!(dfd[:, :sigma2], lab="dhmc")
#plot(p1, p2, p3, p4, p5, p6, layout=(3,2))
plot(p1, p2, p3, p4, layout=(2, 2))
savefig("$(ProjDir)/$(varn)_$idx")
end
df_dhmc = DataFrame()
for i in 1:4
plot_theta_results(df_stan, df_dhmc, "theta", i, priors)
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 2423 | using DiffEqBayes, CmdStan, DynamicHMC, DataFrames
using Distributions, BenchmarkTools
using OrdinaryDiffEq, RecursiveArrayTools, ParameterizedFunctions
using StatsPlots, CSV
gr(size=(600,900))
ProjDir = @__DIR__
cd(ProjDir)
isdir("tmp") && rm("tmp", recursive=true)
include("../stan_inference.jl")
df = CSV.read("$(ProjDir)/../lynx_hare.csv", DataFrame; delim=",")
f = @ode_def LotkaVolterraTest begin
dx = a*x - b*x*y
dy = -c*y + d*x*y
end a b c d
u0 = [30.0, 4.0]
tspan = (0.0, 21.0)
p = [0.55, 0.028, 0.84, 0.026]
prob = ODEProblem(f,u0,tspan,p)
sol = solve(prob,Tsit5())
t = collect(range(1,stop=20,length=20))
data = transpose(hcat(df[2:end, :Hare], df[2:end, :Lynx]))
scatter(t, data[1,:], lab="#prey (data)")
scatter!(t, data[2,:], lab="#predator (data)")
plot!(sol)
savefig("$(ProjDir)/fig_01.png")
priors = [truncated(Normal(1,0.5),0.1,3),truncated(Normal(0.05,0.1),0,2),
truncated(Normal(1,0.5),0.1,4),truncated(Normal(0.05,0.1),0,2)]
nchains = 4
num_samples = 800
@time bayesian_result_stan = stan_inference(prob,t,data,priors,
num_samples=num_samples, printsummary=false, nchains=nchains);
sdf1 = CmdStan.read_summary(bayesian_result_stan.model)
println()
@time bayesian_result_stan = stan_inference(prob,t,data,
priors,bayesian_result_stan.model,
num_samples=num_samples, printsummary=false, nchains=nchains);
sdf2 = CmdStan.read_summary(bayesian_result_stan.model)
println()
cnames = ["theta1", "theta2", "theta3", "theta4", "sigma1", "sigma2", ]
df = CmdStan.convert_a3d(bayesian_result_stan.chains, bayesian_result_stan.cnames,
Val(:dataframes));
df_stan = append!(append!(df[1], df[2]), append!(df[3], df[4]));
df_stan = df_stan[:, [10, 11, 12, 13, 8, 9]]
rename!(df_stan, Symbol.(cnames))
function plot_theta_results(
dfs::DataFrame,
varn::AbstractString,
idx::Int,
priors=priors
)
prior_theta = Symbol("prior_"*varn*string(idx))
theta = Symbol(varn*string(idx))
prior_theta_array = rand(priors[idx], size(dfs, 1))
p1 = plot(prior_theta_array, xlab="prior_theta_$idx", leg=false)
p2 = density(prior_theta_array, xlab="prior_theta_$idx",
leg=false)
p3 = plot(dfs[:, theta], xlab="theta_$idx", lab="stan")
p4 = density(dfs[:, theta], xlab="theta_$idx",
lab="stan")
plot(p1, p2, p3, p4, layout=(2,2))
savefig("$(ProjDir)/$(varn)_$idx")
end
for i in 1:4
plot_theta_results(df_stan, "theta", i, priors)
end
sdf2 |> display
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 4515 | using DiffEqBayes, CmdStan, DynamicHMC, DataFrames
using Distributions, BenchmarkTools
using OrdinaryDiffEq, RecursiveArrayTools, ParameterizedFunctions
using ModelingToolkit
using StatsPlots, CSV
gr(size=(600,900))
ProjDir = @__DIR__
cd(ProjDir)
isdir("tmp") && rm("tmp", recursive=true)
include("../stan_inference.jl")
Random.seed!(123)
df = CSV.read("$(ProjDir)/../lynx_hare.csv", DataFrame; delim=",")
f = @ode_def LotkaVolterraTest begin
dx = a*x - b*x*y
dy = -c*y + d*x*y
end a b c d
u0 = [30.0, 4.0]
tspan = (0.0, 21.0)
p = [0.55, 0.028, 0.84, 0.026]
prob = ODEProblem(f,u0,tspan,p)
sol = solve(prob,Tsit5())
t = collect(range(1,stop=20,length=20))
sig = 0.3
data = convert(Array, VectorOfArray([(sol(t[i]) + sig*randn(2)) for i in 1:length(t)]))
#data = transpose(hcat(df[2:end, :Hare], df[2:end, :Lynx]))
scatter(t, data[1,:], lab="#prey (data)")
scatter!(t, data[2,:], lab="#predator (data)")
plot!(sol)
savefig("$(ProjDir)/fig_01.png")
priors = [Truncated(Normal(1,0.5),0,3),Truncated(Normal(0.05,0.05),0,2),
Truncated(Normal(1,0.5),0,3),Truncated(Normal(0.05,0.05),0,2)]
# Stan.jl backend
#The solution converges for tolerance values lower than 1e-3, lower tolerance
#leads to better accuracy in result but is accompanied by longer warmup and
#sampling time, truncated normal priors are used for preventing Stan from stepping into negative values.
nchains = 4
num_samples = 800
@time bayesian_result_stan = stan_inference(prob,t,data,priors,
num_samples=num_samples, printsummary=false, nchains=nchains);
sdf1 = CmdStan.read_summary(bayesian_result_stan.model)
println()
@time bayesian_result_stan = stan_inference(prob,t,data,
priors, bayesian_result_stan.model,
num_samples=num_samples, printsummary=false, nchains=nchains);
sdf2 = CmdStan.read_summary(bayesian_result_stan.model)
println()
cnames = ["theta1", "theta2", "theta3", "theta4", "sigma1", "sigma2", ]
df = CmdStan.convert_a3d(bayesian_result_stan.chains, bayesian_result_stan.cnames,
Val(:dataframes));
df_stan = append!(append!(df[1], df[2]), append!(df[3], df[4]));
df_stan = df_stan[:, [10, 11, 12, 13, 8, 9]]
rename!(df_stan, Symbol.(cnames))
sdf1 |> display
sdf2 |> display
# DynamicHMC.jl backend
@time bayesian_result_dynamichmc = dynamichmc_inference(prob,Tsit5(),t,data,priors,
num_samples=Int(4*num_samples));
N = length(bayesian_result_dynamichmc.posterior)
res_array = zeros(N, 6);
for i in 1:length(bayesian_result_dynamichmc.posterior)
res_array[i,:] = vcat(
bayesian_result_dynamichmc.posterior[i].parameters,
bayesian_result_dynamichmc.posterior[i].Ο
)
end
df_dhmc = DataFrame(
:theta1 => res_array[:, 1],
:theta2 => res_array[:, 2],
:theta3 => res_array[:, 3],
:theta4 => res_array[:, 4],
:sigma1 => res_array[:, 5],
:sigma2 => res_array[:, 6]
)
println("\nDhmc results\n")
mean(res_array, dims=1) |> display
std(res_array, dims=1) |> display
println()
function plot_theta_results(
dfs::DataFrame,
dfd::DataFrame,
varn::AbstractString,
idx::Int,
priors=priors
)
prior_theta = Symbol("prior_"*varn*string(idx))
theta = Symbol(varn*string(idx))
prior_theta_array = rand(priors[idx], size(dfs, 1))
p1 = plot(prior_theta_array, xlab="prior_theta_$idx", leg=false)
p2 = density(prior_theta_array, xlab="prior_theta_$idx", leg=false)
p3 = plot(dfs[:, theta], xlab="theta_$idx", lab="stan")
plot!(dfs[:, theta], lab="dhmc")
p4 = density(dfs[:, theta], xlab="theta_$idx", lab="stan")
density!(dfd[:, theta], lab="dhmc")
p5 = density(dfs[:, :sigma1], xlab="sigma1", lab="stan")
density!(dfd[:, :sigma1], lab="dhmc")
p6 = density(dfs[:, :sigma2], xlab="sigma2", lab="stan")
density!(dfd[:, :sigma2], lab="dhmc")
plot(p1, p2, p3, p4, p5, p6, layout=(3,2))
savefig("$(ProjDir)/$(varn)_$idx")
end
for i in 1:4
plot_theta_results(df_stan, df_dhmc, "theta", i, priors)
end
stan_results = "
mean se_mean sd 10% 50% 90% n_eff Rhat
theta[1] 0.549 0.002 0.065 0.469 0.545 0.636 1163 1
theta[2] 0.028 0.000 0.004 0.023 0.028 0.034 1281 1
theta[3] 0.797 0.003 0.091 0.684 0.791 0.918 1125 1
theta[4] 0.024 0.000 0.004 0.020 0.024 0.029 1170 1
sigma[1] 0.248 0.001 0.045 0.198 0.241 0.306 2625 1
sigma[2] 0.252 0.001 0.044 0.201 0.246 0.310 2808 1
z_init[1] 33.960 0.056 2.909 30.363 33.871 37.649 2684 1
z_init[2] 5.949 0.011 0.533 5.294 5.926 6.644 2235 1
";
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1265 | ######### CmdStan program example ###########
using CmdStan
using MCMCChains
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
global stanmodel, rc, chn, chns, cnames, summary_df
tmpdir = ProjDir*"/tmp"
stanmodel = Stanmodel(Sample(save_warmup=false, num_warmup=1000,
num_samples=2000, thin=1), name="bernoulli", model=bernoullimodel,
printsummary=false, tmpdir=tmpdir, output_format=:mcmcchains);
rc, chns, cnames = stan(stanmodel, observeddata, ProjDir, diagnostics=false,
CmdStanDir=CMDSTAN_HOME);
if rc == 0
# Check if StatsPlots is available
if isdefined(Main, :StatsPlots)
p1 = plot(chns)
savefig(p1, joinpath(tmpdir, "traceplot.pdf"))
p2 = pooleddensity(chns)
savefig(p2, joinpath(tmpdir, "pooleddensity.pdf"))
end
# Describe the results
show(chns)
println()
# Ceate a ChainDataFrame
sdf = read_summary(stanmodel)
sdf[sdf.parameters .== :theta, [:mean, :ess]]
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1969 | ######### CmdStan batch program example ###########
using CmdStan, MCMCChains
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
dyes ="
data {
int BATCHES;
int SAMPLES;
real y[BATCHES, SAMPLES];
// vector[SAMPLES] y[BATCHES];
}
parameters {
real<lower=0> tau_between;
real<lower=0> tau_within;
real theta;
real mu[BATCHES];
}
transformed parameters {
real sigma_between;
real sigma_within;
sigma_between <- 1/sqrt(tau_between);
sigma_within <- 1/sqrt(tau_within);
}
model {
theta ~ normal(0.0, 1E5);
tau_between ~ gamma(.001, .001);
tau_within ~ gamma(.001, .001);
mu ~ normal(theta, sigma_between);
for (n in 1:BATCHES)
y[n] ~ normal(mu[n], sigma_within);
}
generated quantities {
real sigmasq_between;
real sigmasq_within;
sigmasq_between <- 1 / tau_between;
sigmasq_within <- 1 / tau_within;
}
"
dyesdata = Dict("BATCHES" => 6,
"SAMPLES" => 5,
"y" => reshape([
[1545, 1540, 1595, 1445, 1595];
[1520, 1440, 1555, 1550, 1440];
[1630, 1455, 1440, 1490, 1605];
[1595, 1515, 1450, 1520, 1560];
[1510, 1465, 1635, 1480, 1580];
[1495, 1560, 1545, 1625, 1445]
], 6, 5)
)
global stanmodel, rc, sim, cnames, chns
stanmodel = Stanmodel(name="dyes", model=dyes, output_format=:mcmcchains);
@time rc, sim, cnames = stan(stanmodel, dyesdata, ProjDir,
CmdStanDir=CMDSTAN_HOME)
if rc == 0
pi = filter(p -> length(p) > 2 && p[end-1:end] == "__", cnames)
p = filter(p -> !(p in pi), cnames)
chns = set_section(sim,
Dict(
:parameters => ["theta",
"tau_between", "tau_within",
"sigma_between", "sigma_within",
"sigmasq_between", "sigmasq_within"],
:mu => ["mu.$i" for i in 1:6],
:internals => pi
)
)
show(chns)
describe(chns, sections=[:mu])
end
end # cd | CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 2130 | ######### CmdStan batch program example ###########
using CmdStan, MCMCChains, StatsPlots
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
eightschools ="
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
real eta[J];
}
transformed parameters {
real theta[J];
for (j in 1:J)
theta[j] <- mu + tau * eta[j];
}
model {
eta ~ normal(0, 1);
y ~ normal(theta, sigma);
}
"
schools8data = Dict("J" => 8,
"y" => [28, 8, -3, 7, -1, 1, 18, 12],
"sigma" => [15, 10, 16, 11, 9, 11, 10, 18],
"tau" => 25
)
global stanmodel, rc, chn, chns, cnames, tmpdir
tmpdir = mktempdir()
stanmodel = Stanmodel(name="schools8", model=eightschools,
output_format=:mcmcchains, tmpdir=tmpdir);
rc, chn, cnames = stan(stanmodel, schools8data, ProjDir, CmdStanDir=CMDSTAN_HOME)
if rc == 0
chn1 = Chains(chn.value,
[ "accept_stat__", "divergent__", "energy__",
"eta[1]", "eta[2]", "eta[3]", "eta[4]",
"eta[5]", "eta[6]", "eta[7]", "eta[8]",
"lp__",
"mu",
"n_leapfrog__", "stepsize__",
"tau",
"theta[1]", "theta[2]", "theta[3]", "theta[4]",
"theta[5]", "theta[6]", "theta[7]", "theta[8]",
"treedepth__"
]
)
chns = set_section(chn1, Dict(
:parameters => ["mu", "tau"],
:thetas => ["theta[$i]" for i in 1:8],
:etas => ["eta[$i]" for i in 1:8],
:internals => ["lp__", "accept_stat__", "stepsize__", "treedepth__", "n_leapfrog__",
"divergent__", "energy__"]
)
)
show(chns)
println("\n")
summarize(chns, sections=[:thetas])
if isdefined(Main, :StatsPlots)
p1 = plot(chns)
savefig(p1, joinpath(tmpdir, "traceplot.pdf"))
df = DataFrame(chns, [:thetas])
p2 = plot(df[!, Symbol("theta[1]")])
savefig(p2, joinpath(tmpdir, "theta_1.pdf"))
end
end
end # cd | CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 947 | ######### CmdStan program example ###########
using CmdStan
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
global stanmodel, rc, chn, nt, cnames, sdf
tmpdir = ProjDir*"/tmp"
stanmodel = Stanmodel(Sample(save_warmup=false, num_warmup=1000,
num_samples=2000, thin=1), name="bernoulli", model=bernoullimodel,
printsummary=false, tmpdir=tmpdir, output_format=:namedtuple);
rc, nt, cnames = stan(stanmodel, observeddata, ProjDir, diagnostics=false,
CmdStanDir=CMDSTAN_HOME);
if rc == 0
display(nt)
# Ceate a ChainDataFrame
sdf = read_summary(stanmodel)
sdf[sdf.parameters .== :theta, [:mean, :ess]]
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1624 | ######### CmdStan batch program example ###########
using CmdStan
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
dyes ="
data {
int BATCHES;
int SAMPLES;
real y[BATCHES, SAMPLES];
// vector[SAMPLES] y[BATCHES];
}
parameters {
real<lower=0> tau_between;
real<lower=0> tau_within;
real theta;
real mu[BATCHES];
}
transformed parameters {
real sigma_between;
real sigma_within;
sigma_between <- 1/sqrt(tau_between);
sigma_within <- 1/sqrt(tau_within);
}
model {
theta ~ normal(0.0, 1E5);
tau_between ~ gamma(.001, .001);
tau_within ~ gamma(.001, .001);
mu ~ normal(theta, sigma_between);
for (n in 1:BATCHES)
y[n] ~ normal(mu[n], sigma_within);
}
generated quantities {
real sigmasq_between;
real sigmasq_within;
sigmasq_between <- 1 / tau_between;
sigmasq_within <- 1 / tau_within;
}
"
dyesdata = Dict("BATCHES" => 6,
"SAMPLES" => 5,
"y" => reshape([
[1545, 1540, 1595, 1445, 1595];
[1520, 1440, 1555, 1550, 1440];
[1630, 1455, 1440, 1490, 1605];
[1595, 1515, 1450, 1520, 1560];
[1510, 1465, 1635, 1480, 1580];
[1495, 1560, 1545, 1625, 1445]
], 6, 5)
)
global stanmodel, rc, nt
stanmodel = Stanmodel(name="dyes", model=dyes, output_format=:namedtuple);
@time rc, nt, cnames = stan(stanmodel, dyesdata, ProjDir,
CmdStanDir=CMDSTAN_HOME)
if rc == 0
#pi = filter(p -> length(p) > 2 && p[end-1:end] == "__", cnames)
#p = filter(p -> !(p in pi), cnames)
display(nt)
end
end # cd | CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1002 | ######### CmdStan batch program example ###########
using CmdStan
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
eightschools ="
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
real eta[J];
}
transformed parameters {
real theta[J];
for (j in 1:J)
theta[j] <- mu + tau * eta[j];
}
model {
eta ~ normal(0, 1);
y ~ normal(theta, sigma);
}
"
schools8data = Dict("J" => 8,
"y" => [28, 8, -3, 7, -1, 1, 18, 12],
"sigma" => [15, 10, 16, 11, 9, 11, 10, 18],
"tau" => 25
)
global stanmodel, rc, nt
tmpdir = mktempdir()
stanmodel = Stanmodel(name="schools8", model=eightschools,
output_format=:namedtuple, tmpdir=tmpdir);
rc, nt, cnames = stan(stanmodel, schools8data, ProjDir, CmdStanDir=CMDSTAN_HOME)
if rc == 0
display(nt.theta)
end
end # cd | CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 2658 | module CmdStan
using Requires
using DocStringExtensions: FIELDS, SIGNATURES, TYPEDEF
"""
The directory which contains the cmdstan executables such as `bin/stanc` and
`bin/stansummary`. Inferred from the environment variable `JULIA_CMDSTAN_HOME` or `ENV["JULIA_CMDSTAN_HOME"]`
when available.
If these are not available, use `set_cmdstan_home!` to set the value of CMDSTAN_HOME.
Example: `set_cmdstan_home!(homedir() * "/Projects/Stan/cmdstan/")`
Executing `versioninfo()` will display the value of `JULIA_CMDSTAN_HOME` if defined.
"""
CMDSTAN_HOME=""
function __init__()
global CMDSTAN_HOME = if isdefined(Main, :JULIA_CMDSTAN_HOME)
Main.JULIA_CMDSTAN_HOME
elseif haskey(ENV, "JULIA_CMDSTAN_HOME")
ENV["JULIA_CMDSTAN_HOME"]
elseif haskey(ENV, "CMDSTAN_HOME")
ENV["CMDSTAN_HOME"]
else
@warn("Environment variable CMDSTAN_HOME not set. Use set_cmdstan_home!.")
""
end
@require MCMCChains="c7f686f2-ff18-58e9-bc7b-31028e88f75d" include("utilities/require_mcmcchains.jl")
end
"""Set the path for the `CMDSTAN_HOME` environment variable.
Example: `set_cmdstan_home!(homedir() * "/Projects/Stan/cmdstan/")`
"""
set_cmdstan_home!(path) = global CMDSTAN_HOME=path
const src_path = @__DIR__
"""
# `rel_path_cmdstan`
Relative path using the CmdStan.jl src directory. This approach has been copied from
[DynamicHMCExamples.jl](https://github.com/tpapp/DynamicHMCExamples.jl)
### Example to get access to the data subdirectory
```julia
rel_path_cmdstan("..", "data")
```
"""
rel_path_cmdstan(parts...) = normpath(joinpath(src_path, parts...))
include("main/stanmodel.jl")
include("main/stancode.jl")
# preprocessing
include("utilities/update_model_file.jl")
include("utilities/create_r_files.jl")
include("utilities/create_cmd_line.jl")
# run cmdstan
include("utilities/parallel.jl")
# used in postprocessing
include("utilities/read_samples.jl")
include("utilities/read_variational.jl")
include("utilities/read_diagnose.jl")
include("utilities/read_optimize.jl")
include("utilities/convert_a3d.jl")
include("utilities/stan_summary.jl")
include("utilities/read_summary.jl")
include("utilities/findall.jl")
include("utilities/extract.jl")
# type definitions
include("types/sampletype.jl")
include("types/optimizetype.jl")
include("types/diagnosetype.jl")
include("types/variationaltype.jl")
export
# from this file
set_cmdstan_home!,
CMDSTAN_HOME,
rel_path_cmdstan,
# From stanmodel.jl
Stanmodel,
# From stancode.jl
stan,
# From sampletype.jl
Sample,
# From optimizetype.jl
Optimize,
# From diagnosetype.jl
Diagnose,
# From variationaltype.jl
Variational,
# From read_summary.jl
read_summary
end # module
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 8593 |
"""
# stan
Execute a Stan model.
### Method
```julia
rc, sim, cnames = stan(
model::Stanmodel,
data=Nothing,
ProjDir=pwd();
init=Nothing,
summary=true,
diagnostics=false,
CmdStanDir=CMDSTAN_HOME,
file_run_log=true
)
```
### Required arguments
```julia
* `model::Stanmodel` : See ?Method
```
### Optional positional arguments
```julia
* `data=Nothing` : Observed input data dictionary
* `ProjDir=pwd()` : Project working directory
```
### Keyword arguments
```julia
* `init=Nothing` : Initial parameter value dictionary
* `summary=true` : Use CmdStan's stansummary to display results
* `diagnostics=false` : Generate diagnostics file
* `CmdStanDir=CMDSTAN_HOME` : Location of cmdstan directory
* `file_run_log=true` : Create run log file (if false, write log to stdout)
* `file_make_log=true` : Create make log file (if false, write log to stdout)
```
If the type the `data` or `init` arguments are an AbstartcString this is interpreted as
a path name to an existing .R file. This file is copied to the coresponding .R data
and/or init files for for each chain.
### Return values
```julia
* `rc::Int` : Return code from stan(), rc == 0 if all is well
* `samples` : Samples
* `cnames` : Vector of variable names
```
### Examples
```julia
# no data, use default ProjDir (pwd)
stan(mymodel)
# default ProjDir (pwd)
stan(mymodel, mydata)
# specify ProjDir
stan(mymodel, mydata, "~/myproject/")
# keyword arguments
stan(mymodel, mydata, "~/myproject/", diagnostics=true, summary=false)
# use default ProjDir (pwd), with keyword arguments
stan(mymodel, mydata, diagnostics=true, summary=false)
```
### Related help
```julia
?Stanmodel : Create a StanModel
```
"""
function stan(
model::Stanmodel,
data=Nothing,
ProjDir=pwd();
init=Nothing,
summary=true,
diagnostics=false,
CmdStanDir=CMDSTAN_HOME,
file_run_log=true,
file_make_log=true)
# old = pwd()
local rc = 0
local res = Dict[]
cnames = String[]
if length(model.model) == 0
println("\nNo proper model specified in \"$(model.name).stan\".")
println("This file is typically created from a String passed to Stanmodel().\n")
return((-1, res))
end
@assert isdir(ProjDir) "Incorrect ProjDir specified: $(ProjDir)"
@assert isdir(model.tmpdir) "$(model.tmpdir) not created"
local tmpmodelname::String
tmpmodelname = joinpath(model.tmpdir, model.name)
file_paths = [
joinpath(tmpmodelname * "_build.log"),
joinpath(tmpmodelname * "_make.log"),
joinpath(tmpmodelname * "_run.log")]
for path in file_paths
isfile(path) && rm(path)
end
if @static Sys.iswindows() ? true : false
tmpmodelname = replace(tmpmodelname*".exe", "\\" => "/")
end
try
cmd = setenv(`make $(tmpmodelname)`, ENV; dir=CmdStanDir)
if file_make_log
run(pipeline(cmd,
stdout="$(tmpmodelname)_make.log",
stderr="$(tmpmodelname)_build.log"))
else
run(pipeline(cmd,
stderr="$(tmpmodelname)_build.log"))
end
catch
println("\nAn error occurred while compiling the Stan program.\n")
print("Please check your Stan program in variable '$(model.name)' ")
print("and the contents of $(tmpmodelname)_build.log.\n")
println("Note that Stan does not handle blanks in path names.")
error("Return code = -3");
end
if data != Nothing && (typeof(data) <: AbstractString || check_dct_type(data))
if typeof(data) <: AbstractString
data_path = isabspath(data) ? data : joinpath(model.tmpdir, data)
for i in 1:model.nchains
cp(data_path, joinpath(model.tmpdir, "$(model.name)_$(i).data.R"), force=true)
end
else
if typeof(data) <: Array && length(data) == model.nchains
for i in 1:model.nchains
if length(keys(data[i])) > 0
update_R_file(joinpath(model.tmpdir, "$(model.name)_$(i).data.R"), data[i])
end
end
else
if typeof(data) <: Array
for i in 1:model.nchains
if length(keys(data[1])) > 0
update_R_file(joinpath(model.tmpdir, "$(model.name)_$(i).data.R"), data[1])
end
end
else
for i in 1:model.nchains
if length(keys(data)) > 0
update_R_file(joinpath(model.tmpdir, "$(model.name)_$(i).data.R"), data)
end
end
end
end
end
end
if init != Nothing && (typeof(init) <: AbstractString || check_dct_type(init))
if typeof(init) <: AbstractString
init_str = isabspath(init) ? init : joinpath(model.tmpdir, init)
for i in 1:model.nchains
cp(init_str, joinpath(model.tmpdir, "$(model.name)_$(i).init.R"), force=true)
end
else
if typeof(init) <: Array && length(init) == model.nchains
for i in 1:model.nchains
if length(keys(init[i])) > 0
update_R_file(joinpath(model.tmpdir, "$(model.name)_$(i).init.R"), init[i])
end
end
else
if typeof(init) <: Array
for i in 1:model.nchains
if length(keys(init[1])) > 0
update_R_file(joinpath(model.tmpdir, "$(model.name)_$(i).init.R"), init[1])
end
end
else
for i in 1:model.nchains
if length(keys(init)) > 0
update_R_file(joinpath(model.tmpdir, "$(model.name)_$(i).init.R"), init)
end
end
end
end
end
end
for i in 1:model.nchains
model.id = i
model.data_file = joinpath(model.tmpdir, "$(model.name)_$(i).data.R")
if init != Nothing
model.init_file = joinpath(model.tmpdir, "$(model.name)_$(i).init.R")
end
if isa(model.method, Sample)
sample_file = joinpath(model.tmpdir, model.name*"_samples_$(i).csv")
model.output.file = sample_file
isfile(sample_file) && rm(sample_file)
if diagnostics
diagnostic_file = joinpath(model.tmpdir, model.name*"_diagnostics_$(i).csv")
model.output.diagnostic_file = diagnostic_file
isfile(diagnostic_file) && rm(diagnostic_file)
end
elseif isa(model.method, Optimize)
optimize_file = joinpath(model.tmpdir, "$(model.name)_optimize_$(i).csv")
isfile(optimize_file) && rm(optimize_file)
model.output.file = optimize_file
elseif isa(model.method, Variational)
variational_file = joinpath(model.tmpdir, "$(model.name)_variational_$(i).csv")
isfile(variational_file) && rm(variational_file)
model.output.file = variational_file
elseif isa(model.method, Diagnose)
diagnose_file = joinpath(model.tmpdir, "$(model.name)_diagnose_$(i).csv")
isfile(diagnose_file) && rm(diagnose_file)
model.output.file = diagnose_file
end
model.command[i] = cmdline(model)
end
try
if file_run_log
run(pipeline(par(setenv.(model.command, Ref(ENV); dir=model.tmpdir)), stdout="$(model.name)_run.log"))
else
run(par(setenv.(model.command, Ref(ENV); dir=model.tmpdir)))
end
catch e
println("\nAn error occurred while running the previously compiled Stan program.\n")
print("Please check the contents of file $(model.name)_run.log and the")
println("'command' field in the Stanmodel, e.g. stanmodel.command.\n")
error("Return code = -5")
end
local samplefiles = String[]
local ftype
if typeof(model.method) in [Sample, Variational]
if isa(model.method, Sample)
ftype = diagnostics ? "diagnostics" : "samples"
else
ftype = lowercase(string(typeof(model.method)))
end
for i in 1:model.nchains
push!(samplefiles, "$(model.name)_$(ftype)_$(i).csv")
end
if summary
stan_summary(model, par(samplefiles), CmdStanDir=CmdStanDir)
end
(res, cnames) = read_samples(model, diagnostics)
elseif isa(model.method, Optimize)
res, cnames = read_optimize(model)
elseif isa(model.method, Diagnose)
res, cnames = read_diagnose(model)
else
println("\nAn unknown method is specified in the call to stan().")
error("Return code = -10")
end
if model.output_format != :array
start_sample = 1
if isa(model.method, Sample) && !model.method.save_warmup
start_sample = model.method.num_warmup+1
end
res = convert_a3d(res, cnames, Val(model.output_format);
start=start_sample)
end # cd(model.tmpdir)
(rc, res, cnames)
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 5546 | import Base: show
"""
# Available top level Method
### Method
```julia
* Sample::Method : Sampling
* Optimize::Method : Optimization
* Diagnose::Method : Diagnostics
* Variational::Method : Variational Bayes
```
"""
abstract type Method end
const DataDict = Dict{String, Any}
mutable struct Random
seed::Int64
end
Random(;seed::Number=-1) = Random(seed)
mutable struct Output
file::String
diagnostic_file::String
refresh::Int64
end
Output(;file::String="", diagnostic_file::String="", refresh::Number=100) =
Output(file, diagnostic_file, refresh)
mutable struct Stanmodel
name::String
nchains::Int
num_warmup::Int
num_samples::Int
thin::Int
id::Int
model::String
model_file::String
monitors::Vector{String}
data_file::String
command::Vector{Base.AbstractCmd}
method::Method
random::Random
init_file::String
output::Output
printsummary::Bool
pdir::String
tmpdir::String
output_format::Symbol
end
"""
# Method Stanmodel
Create a Stanmodel.
### Constructors
```julia
Stanmodel(
method=Sample();
name="noname",
nchains=4,
num_warmup=1000,
num_samples=1000,
thin=1,
model="",
monitors=String[],
random=Random(),
output=Output(),
printsummary=false,
pdir::String=pwd(),
tmpdir::String=joinpath(pwd(), "tmp"),
output_format=:array
)
```
### Required arguments
```julia
* `method::Method` : See ?Method
```
### Optional arguments
```julia
* `name::String` : Name for the model
* `nchains::Int` : Number of chains
* `num_warmup::Int` : Number of samples used for num_warmup
* `num_samples::Int` : Sample iterations
* `thin::Int` : Stan thinning factor
* `model::String` : Stan program source
* `monitors::String[] ` : Variables saved for post-processing
* `random::Random` : Random seed settings
* `output::Output` : File output options
* `printsummary=true` : Show computed stan summary
* `pdir::String` : Working directory
* `tmpdir::String` : Directory where output files are stored
* `output_format::Symbol ` : Output format
```
### CmdStan.jl supports 3 output_format values:
```julia
1. :array # Returns an array of draws (default)
2. :mcmcchains # Return an MCMCChains.Chains object
3. :dataframes # Return an DataFrames.DataFrame object
4. :namedtuple # Returns a NamedTuple object
The first option (the default) returns an Array{Float64, 3} with ndraws,
nvars, nchains as indices.
The 2nd option returns an MCMCChains.Chains object, the 3rd a DataFrame
object and the final option returns a NamedTuple.
```
### Example
```julia
stanmodel = Stanmodel(num_samples=1200, thin=2, name="bernoulli",
model=bernoullimodel);
```
### Related help
```julia
?stan : Run a Stanmodel
?CmdStan.Sample : Sampling settings
?CmdStan.Method : List of available methods
?CmdStan.Output : Output file settings
?CmdStan.DataDict : Input data
?CmdStan.convert_a3d : Options for output formats
```
"""
function Stanmodel(
method=Sample();
name="noname",
nchains=4,
num_warmup=1000,
num_samples=1000,
thin=1,
model="",
monitors=String[],
random=Random(),
output=Output(),
printsummary=true,
pdir::String=pwd(),
tmpdir::String=joinpath(pwd(), "tmp"),
output_format::Symbol=:array)
if !isdir(tmpdir)
mkdir(tmpdir)
end
model_file = "$(name).stan"
if length(model) > 0
update_model_file(joinpath(tmpdir, "$(name).stan"), strip(model))
end
id::Int=0
data_file::String=""
init_file::String=""
cmdarray = fill(``, nchains)
if num_samples != 1000
method.num_samples=num_samples
end
if num_warmup != 1000
method.num_warmup=num_warmup
end
if thin != 1
method.thin=thin
end
Stanmodel(name, nchains,
num_warmup, num_samples, thin,
id, model, model_file, monitors,
data_file, cmdarray, method, random,
init_file, output, printsummary, pdir, tmpdir, output_format);
end
function model_show(io::IO, m::Stanmodel, compact)
println(io, " name = \"$(m.name)\"")
println(io, " nchains = $(m.nchains)")
println(io, " num_samples = $(m.num_samples)")
println(io, " num_warmup = $(m.num_warmup)")
println(io, " thin = $(m.thin)")
println(io, " monitors = $(m.monitors)")
println(io, " model_file = \"$(m.model_file)\"")
println(io, " data_file = \"$(m.data_file)\"")
println(io, " output = Output()")
println(io, " file = \"$(m.output.file)\"")
println(io, " diagnostics_file = \"$(m.output.diagnostic_file)\"")
println(io, " refresh = $(m.output.refresh)")
println(io, " pdir = \"$(m.pdir)\"")
println(io, " tmpdir = \"$(m.tmpdir)\"")
println(io, " output_format = :$(m.output_format)")
if isa(m.method, Sample)
sample_show(io, m.method, compact)
elseif isa(m.method, Optimize)
optimize_show(io, m.method, compact)
elseif isa(m.method, Variational)
variational_show(io, m.method, compact)
else
diagnose_show(io, m.method, compact)
end
end
show(io::IO, m::Stanmodel) = model_show(io, m, false)
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1610 | """
# Available method diagnostics
Currently limited to Gradient().
"""
abstract type Diagnostics end
"""
# Gradient type and constructor
Settings for diagnostic=Gradient() in Diagnose().
### Method
```julia
Gradient(;epsilon=1e-6, error=1e-6)
```
### Optional arguments
```julia
* `epsilon::Float64` : Finite difference step size
* `error::Float64` : Error threshold
```
### Related help
```julia
?Diagnose : Diagnostic method
```
"""
mutable struct Gradient <: Diagnostics
epsilon::Float64
error::Float64
end
Gradient(;epsilon=1e-6, error=1e-6) = Gradient(epsilon, error)
"""
# Diagnose type and constructor
### Method
```julia
Diagnose(;d=Gradient())
```
### Optional arguments
```julia
* `d::Diagnostics` : Finite difference step size
```
### Related help
```julia
?Diagnostics : Diagnostic methods
?Gradient : Currently sole diagnostic method
```
"""
mutable struct Diagnose <: Method
diagnostic::Diagnostics
end
Diagnose(;d=Gradient()) = Diagnose(d)
#Diagnose(d=Gradient()) = Diagnose(d)
function diagnose_show(io::IO, d::Diagnose, compact::Bool)
if compact
println(io, "Diagnose($(d.diagnostic))")
else
println(io, " method = Diagnose()")
if isa(d.diagnostic, Gradient)
println(io, " diagnostic = Gradient()")
println(io, " epsilon = ", d.diagnostic.epsilon)
println(io, " error = ", d.diagnostic.error)
end
end
end
show(io::IO, d::Diagnose) = diagnose_show(io, d, false)
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 5377 | """
# OptimizeAlgorithm types
### Types defined
```julia
* Lbfgs::OptimizeAlgorithm : Euclidean manifold with unit metric
* Bfgs::OptimizeAlgorithm : Euclidean manifold with unit metric
* Newton::OptimizeAlgorithm : Euclidean manifold with unit metric
```
"""
abstract type OptimizeAlgorithm end
"""
# Lbfgs type and constructor
Settings for method=Lbfgs() in Optimize().
### Method
```julia
Lbfgs(;init_alpha=0.001, tol_obj=1e-8, tol_grad=1e-8, tol_param=1e-8, history_size=5)
```
### Optional arguments
```julia
* `init_alpha::Float64` : Linear search step size for first iteration
* `tol_obj::Float64` : Convergence tolerance for objective function
* `tol_rel_obj::Float64` : Relative change tolerance in objective function
* `tol_grad::Float64` : Convergence tolerance on norm of gradient
* `tol_rel_grad::Float64` : Relative change tolerance on norm of gradient
* `tol_param::Float64` : Convergence tolerance on parameter values
* `history_size::Int` : No of update vectors to use in Hessian approx
```
### Related help
```julia
?OptimizeMethod : List of available optimize methods
?Optimize : Optimize arguments
```
"""
mutable struct Lbfgs <: OptimizeAlgorithm
init_alpha::Float64
tol_obj::Float64
tol_rel_obj::Float64
tol_grad::Float64
tol_rel_grad::Float64
tol_param::Float64
history_size::Int64
end
Lbfgs(;init_alpha=0.001, tol_obj=1e-8, tol_rel_obj=1e4,
tol_grad=1e-8, tol_rel_grad=1e7, tol_param=1e-8, history_size=5) =
Lbfgs(init_alpha, tol_obj, tol_rel_obj, tol_grad, tol_rel_grad,
tol_param, history_size)
"""
# Bfgs type and constructor
Settings for method=Bfgs() in Optimize().
### Method
```julia
Bfgs(;init_alpha=0.001, tol_obj=1e-8, tol_rel_obj=1e4,
tol_grad=1e-8, tol_rel_grad=1e7, tol_param=1e-8)
```
### Optional arguments
```julia
* `init_alpha::Float64` : Linear search step size for first iteration
* `tol_obj::Float64` : Convergence tolerance for objective function
* `tol_rel_obj::Float64` : Relative change tolerance in objective function
* `tol_grad::Float64` : Convergence tolerance on norm of gradient
* `tol_rel_grad::Float64` : Relative change tolerance on norm of gradient
* `tol_param::Float64` : Convergence tolerance on parameter values
```
### Related help
```julia
?OptimizeMethod : List of available optimize methods
?Optimize : Optimize arguments
```
"""
mutable struct Bfgs <: OptimizeAlgorithm
init_alpha::Float64
tol_obj::Float64
tol_rel_obj::Float64
tol_grad::Float64
tol_rel_grad::Float64
tol_param::Float64
end
Bfgs(;init_alpha=0.001, tol_obj=1e-8, tol_rel_obj=1e4,
tol_grad=1e-8, tol_rel_grad=1e7, tol_param=1e-8) =
Bfgs(init_alpha, tol_obj, tol_rel_obj, tol_grad, tol_rel_grad, tol_param)
"""
# Newton type and constructor
Settings for method=Newton() in Optimize().
### Method
```julia
Newton()
```
### Related help
```julia
?OptimizeMethod : List of available optimize methods
?Optimize : Optimize arguments
```
"""
mutable struct Newton <: OptimizeAlgorithm
end
"""
# Optimize type and constructor
Settings for Optimize top level method.
### Method
```julia
Optimize(;
method=Lbfgs(),
iter=2000,
save_iterations=false
)
```
### Optional arguments
```julia
* `method::OptimizeMethod` : Optimization algorithm
* `iter::Int` : Total number of iterations
* `save_iterations::Bool` : Stream optimization progress to output
```
### Related help
```julia
?Stanmodel : Create a StanModel
?OptimizeAlgorithm : Available algorithms
```
"""
mutable struct Optimize <: Method
method::OptimizeAlgorithm
iter::Int64
save_iterations::Bool
end
Optimize(;method::OptimizeAlgorithm=Lbfgs(), iter::Number=2000,
save_iterations::Bool=false) =
Optimize(method, iter, save_iterations)
Optimize(method::OptimizeAlgorithm) = Optimize(method, 2000, false)
function optimize_show(io::IO, o::Optimize, compact::Bool)
if compact
println(io, "Optimize($(o.method), $(o.iter), $(o.save_iterations))")
else
println(io, " method = Optimize()")
if isa(o.method, Lbfgs)
println(io, " algorithm = Lbfgs()")
println(io, " init_alpha = ", o.method.init_alpha)
println(io, " tol_obj = ", o.method.tol_obj)
println(io, " tol_grad = ", o.method.tol_grad)
println(io, " tol_param = ", o.method.tol_param)
println(io, " history_size = ", o.method.history_size)
elseif isa(o.method, Bfgs)
println(io, " algorithm = Bfgs()")
println(io, " init_alpha = ", o.method.init_alpha)
println(io, " tol_obj = ", o.method.tol_obj)
println(io, " tol_grad = ", o.method.tol_grad)
println(io, " tol_param = ", o.method.tol_param)
else
println(io, " algorithm = Newton()")
end
println(io, " iterations = ", o.iter)
println(io, " save_iterations = ", o.save_iterations)
end
end
show(io::IO, o::Optimize) = optimize_show(io, o, false)
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 7637 | """
# Engine types
Engine for Hamiltonian Monte Carlo
### Types defined
```julia
* Nuts : No-U-Turn sampler
* Static : Static integration time
```
"""
abstract type Engine end
"""
# Available sampling algorithms
Currently limited to Hmc().
"""
abstract type SamplingAlgorithm end
"""
# Nuts type and constructor
Settings for engine=Nuts() in Hmc().
### Method
```julia
Nuts(;max_depth=10)
```
### Optional arguments
```julia
* `max_depth::Number` : Maximum tree depth
```
### Related help
```julia
?Sample : Sampling settings
?Engine : Engine for Hamiltonian Monte Carlo
```
"""
mutable struct Nuts <: Engine
max_depth::Int64
end
Nuts(;max_depth::Number=10) = Nuts(max_depth)
"""
# Static type and constructor
Settings for engine=Static() in Hmc().
### Method
```julia
Static(;int_time=2 * pi)
```
### Optional arguments
```julia
* `;int_time::Number` : Static integration time
```
### Related help
```julia
?Sample : Sampling settings
?Engine : Engine for Hamiltonian Monte Carlo
```
"""
mutable struct Static <: Engine
int_time::Float64
end
Static(;int_time::Number=2 * pi) = Static(int_time)
"""
# Metric types
Geometry of base manifold
### Types defined
```julia
* unit_e::Metric : Euclidean manifold with unit metric
* dense_e::Metric : Euclidean manifold with dense netric
* diag_e::Metric : Euclidean manifold with diag netric
```
"""
abstract type Metric end
mutable struct unit_e <: Metric
end
mutable struct dense_e <: Metric
end
mutable struct diag_e <: Metric
end
"""
# Hmc type and constructor
Settings for algorithm=CmdStan.Hmc() in Sample().
### Method
```julia
Hmc(;
engine=CmdStan.Nuts(),
metric=CmdStan.diag_e,
stepsize=1.0,
stepsize_jitter=1.0
)
```
### Optional arguments
```julia
* `engine::Engine` : Engine for Hamiltonian Monte Carlo
* `metric::Metric` : Geometry for base manifold
* `stepsize::Float64` : Stepsize for discrete evolutions
* `stepsize_jitter::Float64` : Uniform random jitter of the stepsize [%]
```
### Related help
```julia
?Sample : Sampling settings
?Engine : Engine for Hamiltonian Monte Carlo
?Nuts : Settings for Nuts
?Static : Settings for Static
?Metric : Base manifold geometries
```
"""
mutable struct Hmc <: SamplingAlgorithm
engine::Engine
metric::Metric
stepsize::Float64
stepsize_jitter::Float64
end
Hmc(;engine::Engine=Nuts(), metric::DataType=diag_e,
stepsize::Number=1.0, stepsize_jitter::Number=1.0) =
Hmc(engine, metric(), stepsize, stepsize_jitter)
Hmc(engine::Engine) = Hmc(engine, diag_e(), 1.0, 1.0)
"""
# Fixed_param type and constructor
Settings for algorithm=CmdStan.Fixed_param() in Sample().
### Method
```julia
Fixed_param()
```
### Related help
```julia
?Sample : Sampling settings
?Engine : Engine for Hamiltonian Monte Carlo
?Nuts : Settings for Nuts
?Static : Settings for Static
?Metric : Base manifold geometries
```
"""
mutable struct Fixed_param <: SamplingAlgorithm end
"""
# Adapt type and constructor
Settings for adapt=CmdStan.Adapt() in Sample().
### Method
```julia
Adapt(;
engaged=true,
gamma=0.05,
delta=0.8,
kappa=0.75,
t0=10.0,
init_buffer=75,
term_buffer=50,
window::25
)
```
### Optional arguments
```julia
* `engaged::Bool` : Adaptation engaged?
* `gamma::Float64` : Adaptation regularization scale
* `delta::Float64` : Adaptation target acceptance statistic
* `kappa::Float64` : Adaptation relaxation exponent
* `t0::Float64` : Adaptation iteration offset
* `init_buffer::Int64` : Width of initial adaptation interval
* `term_buffer::Int64` : Width of final fast adaptation interval
* `window::Int64` : Initial width of slow adaptation interval
```
### Related help
```julia
?Sample : Sampling settings
```
"""
mutable struct Adapt
engaged::Bool
gamma::Float64
delta::Float64
kappa::Float64
t0::Float64
init_buffer::Int64
term_buffer::Int64
window::Int64
end
Adapt(;engaged::Bool=true, gamma::Number=0.05, delta::Number=0.8,
kappa::Number=0.75, t0::Number=10.0,
init_buffer::Number=75, term_buffer::Number=50, window::Number=25) =
Adapt(engaged, gamma, delta, kappa, t0, init_buffer, term_buffer, window)
"""
# Sample type and constructor
Settings for method=Sample() in Stanmodel.
### Method
```julia
Sample(;
num_samples=1000,
num_warmup=1000,
save_warmup=false,
thin=1,
adapt=CmdStan.Adapt(),
algorithm=SamplingAlgorithm()
)
```
### Optional arguments
```julia
* `num_samples::Int64` : Number of sampling iterations ( >= 0 )
* `num_warmup::Int64` : Number of warmup iterations ( >= 0 )
* `save_warmup::Bool` : Include warmup samples in output
* `thin::Int64` : Period between saved samples
* `adapt::Adapt` : Warmup adaptation settings
* `algorithm::SamplingAlgorithm`: Sampling algorithm
```
### Related help
```julia
?Stanmodel : Create a StanModel
?Adapt
?SamplingAlgorithm
```
"""
mutable struct Sample <: Method
num_samples::Int64
num_warmup::Int64
save_warmup::Bool
thin::Int64
adapt::Adapt
algorithm::SamplingAlgorithm
end
Sample(;num_samples::Number=1000, num_warmup::Number=1000,
save_warmup::Bool=false, thin::Number=1,
adapt::Adapt=Adapt(), algorithm::SamplingAlgorithm=Hmc()) =
Sample(num_samples, num_warmup, save_warmup, thin, adapt, algorithm)
function sample_show(io::IO, s::Sample, compact)
println(io, " method = Sample()")
println(io, " num_samples = ", s.num_samples)
println(io, " num_warmup = ", s.num_warmup)
println(io, " save_warmup = ", s.save_warmup)
println(io, " thin = ", s.thin)
if isa(s.algorithm, Hmc)
println(io, " algorithm = HMC()")
if isa(s.algorithm.engine, Nuts)
println(io, " engine = NUTS()")
println(io, " max_depth = ", s.algorithm.engine.max_depth)
elseif isa(s.algorithm.engine, Static)
println(io, " engine = Static()")
println(io, " int_time = ", s.algorithm.engine.int_time)
end
println(io, " metric = ", typeof(s.algorithm.metric))
println(io, " stepsize = ", s.algorithm.stepsize)
println(io, " stepsize_jitter = ", s.algorithm.stepsize_jitter)
else
if isa(s.algorithm, Fixed_param)
println(io, " algorithm = Fixed_param()")
else
println(io, " algorithm = Unknown")
end
end
println(io, " adapt = Adapt()")
println(io, " gamma = ", s.adapt.gamma)
println(io, " delta = ", s.adapt.delta)
println(io, " kappa = ", s.adapt.kappa)
println(io, " t0 = ", s.adapt.t0)
println(io, " init_buffer = ", s.adapt.init_buffer)
println(io, " term_buffer = ", s.adapt.term_buffer)
println(io, " window = ", s.adapt.window)
end
show(io::IO, s::Sample) = sample_show(io, s, false)
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 2703 | mutable struct Variational <: Method
algorithm::Symbol
grad_samples::Int64
elbo_samples::Int64
#eta_adagrad::Float64
iter::Int64
tol_rel_obj::Float64
eval_elbo::Int64
output_samples::Int64
end
"""
# Variational type and constructor
Settings for method=Variational() in Stanmodel.
### Method
```julia
Variational(;
grad_samples=1,
elbo_samples=100,
eta_adagrad=0.1,
iter=10000,
tol_rel_obj=0.01,
eval_elbo=100,
algorithm=:meanfield,
output_samples=10000
)
```
### Optional arguments
```julia
* `algorithm::Symbol` : Variational inference algorithm
: meanfield
: fullrank
* `iter::Int64` : Maximum number of iterations
* `grad_samples::Int` : No of samples for MC estimate of gradients
* `elbo_samples::Int` : No of samples for MC estimate of ELBO
* `eta::Float64` : Step size weighting parameter for adaptive sequence
* `adapt::Adapt` : Warmup adaptations
* `tol_rel_obj::Float64` : Tolerance on the relative norm of objective
* `eval_elbo::Int` : Tolerance on the relative norm of objective
* `output_samples::Int` : Number of posterior samples to draw and save
```
### Related help
```julia
?Stanmodel : Create a StanModel
?Stan.Method : Available top level methods
?Stan.Adapt : Adaptation settings
```
"""
Variational(;grad_samples=1, elbo_samples=100,
eta_adagrad=0.1, iter=10000,
tol_rel_obj=0.01, eval_elbo=100,
algorithm=:meanfield, output_samples=10000) = Variational(algorithm,
grad_samples, elbo_samples,
#eta_adagrad,
iter, tol_rel_obj, eval_elbo, output_samples)
function variational_show(io::IO, v::Variational, compact::Bool)
if compact
println(io, "Variational($(v.algorithm). $(v.grad_samples), $(v.elbo_samples), $(v.eta_adagrad), $(v.iter), $(v.tol_rel_obj), $(v.eval_elbo), $(v.output_samples))")
else
println(io, " method = Variational()")
println(io, " algorithm = ", v.algorithm)
println(io, " grad_samples = ", v.grad_samples)
println(io, " elbo_samples = ", v.elbo_samples)
#println(io, " eta_adagrad = ", v.eta_adagrad)
println(io, " iter = ", v.iter)
println(io, " tol_rel_obj = ", v.tol_rel_obj)
println(io, " eval_elbo = ", v.eval_elbo)
println(io, " output_samples = ", v.output_samples)
end
end
show(io::IO, v::Variational) = variational_show(io, v, false)
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1870 | using DataFrames
# convert_a3d
# Method that allows federation by setting the `output_format` in the Stanmodel().
"""
# convert_a3d
Convert the output file created by cmdstan to the shape of choice.
### Method
```julia
convert_a3d(a3d_array, cnames, ::Val{Symbol}; start=1)
```
### Required arguments
```julia
* `a3d_array::Array{Float64, 3},` : Read in from output files created by cmdstan
* `cnames::Vector{AbstractString}` : Monitored variable names
```
### Optional arguments
```julia
* `::Val{Symbol}` : Output format, default is :mcmcchains
* `::start=1` : First draw for MCMCChains.Chains
```
Method called is based on the output_format defined in the stanmodel, e.g.:
stanmodel = Stanmodel(`num_samples`=1200, thin=2, name="bernoulli",
model=bernoullimodel, `output_format`=:mcmcchains);
Current formats supported are:
1. :array (a3d_array format, the default for CmdStan)
2. :mcmcchains (MCMCChains.Chains object)
3. :dataframes (Array of DataFrames.DataFrame objects)
4. :namedtuple (NamedTuple object)
Option 2 is available if MCMCChains is loaded.
```
### Return values
```julia
* `res` : Draws converted to the specified format.
```
"""
convert_a3d(a3d_array, cnames, ::Val{:array}; start=1) = a3d_array
"""
# convert_a3d
# Convert the output file created by cmdstan to an Array of DataFrames.
$(SIGNATURES)
"""
function convert_a3d(a3d_array, cnames, ::Val{:dataframes}; start=1)
snames = [Symbol(cnames[i]) for i in 1: length(cnames)]
[DataFrame(a3d_array[:,:,i], snames) for i in 1:size(a3d_array, 3)]
end
"""
# convert_a3d
# Convert the output file created by cmdstan to NamedTuples.
$(SIGNATURES)
"""
function convert_a3d(a3d_array, cnames, ::Val{:namedtuple}; start=1)
extract(a3d_array, cnames)
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 2843 | """
# cmdline
Recursively parse the model to construct command line.
### Method
```julia
cmdline(m)
```
### Required arguments
```julia
* `m::Stanmodel` : Stanmodel
```
### Related help
```julia
?Stanmodel : Create a StanModel
```
"""
function cmdline(m)
cmd = ``
if isa(m, Stanmodel)
# Handle the model name field for unix and windows
cmd = @static Sys.isunix() ? `./$(getfield(m, :name))` : `cmd /c $(getfield(m, :name)).exe`
# Method (sample, optimize, variational and diagnose) specific portion of the model
cmd = `$cmd $(cmdline(getfield(m, :method)))`
# Common to all models
cmd = `$cmd $(cmdline(getfield(m, :random)))`
# Init file required?
if length(m.init_file) > 0 && isfile(m.init_file)
cmd = `$cmd init=$(m.init_file)`
end
# Data file required?
if length(m.data_file) > 0 && isfile(m.data_file)
cmd = `$cmd id=$(m.id) data file=$(m.data_file)`
end
# Output options
cmd = `$cmd output`
if length(getfield(m, :output).file) > 0
cmd = `$cmd file=$(string(getfield(m, :output).file))`
end
if length(getfield(m, :output).diagnostic_file) > 0
cmd = `$cmd diagnostic_file=$(string(getfield(m, :output).diagnostic_file))`
end
cmd = `$cmd refresh=$(string(getfield(m, :output).refresh))`
else
# The 'recursive' part
#println(lowercase(string(typeof(m))))
if isa(m, SamplingAlgorithm) || isa(m, OptimizeAlgorithm)
cmd = `$cmd algorithm=$(split(lowercase(string(typeof(m))), '.')[end])`
elseif isa(m, Engine)
cmd = `$cmd engine=$(split(lowercase(string(typeof(m))), '.')[end])`
elseif isa(m, Diagnostics)
cmd = `$cmd test=$(split(lowercase(string(typeof(m))), '.')[end])`
else
cmd = `$cmd $(split(lowercase(string(typeof(m))), '.')[end])`
end
#println(cmd)
for name in fieldnames(typeof(m))
#println("$(name) = $(getfield(m, name)) ($(typeof(getfield(m, name))))")
if isa(getfield(m, name), String) || isa(getfield(m, name), Tuple)
cmd = `$cmd $(name)=$(getfield(m, name))`
elseif length(fieldnames(typeof(getfield(m, name)))) == 0
if isa(getfield(m, name), Bool)
cmd = `$cmd $(name)=$(getfield(m, name) ? 1 : 0)`
else
if name == :metric || isa(getfield(m, name), DataType)
cmd = `$cmd $(name)=$(split(lowercase(string(typeof(getfield(m, name)))), '.')[end])`
else
if name == :algorithm && typeof(getfield(m, name)) == CmdStan.Fixed_param
cmd = `$cmd $(name)=fixed_param`
else
cmd = `$cmd $(name)=$(getfield(m, name))`
end
end
end
else
cmd = `$cmd $(cmdline(getfield(m, name)))`
end
end
end
#println(cmd)
cmd
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 2022 | """
# `check_dct_type(`
Check if dct == Dict[] and has length > 0.
### Method
```julia
check_dct_type((dct)
```
### Required arguments
```julia
* `dct::Dict{String, Any}` : Observed data or parameter init data
```
"""
function check_dct_type(dct)
if typeof(dct) <: Array && length(dct) > 0
if typeof(dct) <: Array{Dict{S, T}} where {S <: AbstractString, T <: Any}
return true
end
else
if typeof(dct) <: Dict{S, T} where {S <: AbstractString, T <: Any}
return true
end
end
@error "Input $(dct) not of type Dict{String, Any}, but $(typeof(dct))"
return false
end
"""
# update_R_file
Rewrite a dictionary of observed data or initial parameter values in R dump file
format to a file.
### Method
```julia
update_R_file{T<:Any}(file, dct)
```
### Required arguments
```julia
* `file::String` : R file name
* `dct::Dict{String, T}` : Dictionary to format in R
```
"""
function update_R_file(file::String, dct::Dict{String, T}) where T <: Any
isfile(file) && rm(file)
open(file, "w") do strmout
str = ""
for entry in dct
str = "\""*entry[1]*"\" <- "
val = entry[2]
if length(val)==0 && length(size(val))==1 # Empty array
str = str*"c()\n"
elseif length(val)==1 && length(size(val))==0 # Scalar
str = str*"$(val)\n"
#elseif length(val)==1 && length(size(val))==1 # Single element vector
#str = str*"$(val[1])\n"
elseif length(val)>=1 && length(size(val))==1 # Vector
str = str*"structure(c("
write(strmout, str)
str = ""
writedlm(strmout, val', ',')
str = str*"), .Dim=c($(length(val))))\n"
elseif length(val)>1 && length(size(val))>1 # Array
str = str*"structure(c("
write(strmout, str)
str = ""
writedlm(strmout, val[:]', ',')
dimstr = "c"*string(size(val))
str = str*"), .Dim=$(dimstr))\n"
end
write(strmout, str)
end
end
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1160 | """
# extract(chns::Array{Float64,3}, cnames::Vector{String})
RStan/PyStan style extract
chns: Array: [draws, vars, chains], cnames: ["lp__", "accept_stat__", "f.1", ...]
Output: name -> [size..., draws, chains]
"""
function extract(chns::Array{Float64,3}, cnames::Vector{String})
draws, vars, chains = size(chns)
ex_dict = Dict{Symbol, Array}()
group_map = Dict{Symbol, Array}()
for (i, cname) in enumerate(cnames)
sp_arr = split(cname, ".")
name = Symbol(sp_arr[1])
if length(sp_arr) == 1
ex_dict[name] = chns[:,i,:]
else
if !(name in keys(group_map))
group_map[name] = Any[]
end
push!(group_map[name], (i, [Meta.parse(i) for i in sp_arr[2:end]]))
end
end
for (name, group) in group_map
max_idx = maximum(hcat([idx for (i, idx) in group]...), dims=2)[:,1]
ex_dict[name] = similar(chns, max_idx..., draws, chains)
end
for (name, group) in group_map
for (i, idx) in group
ex_dict[name][idx..., :, :] = chns[:,i,:]
end
end
return (;ex_dict...)
end
export
extract
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 398 | function _findall(t::Union{AbstractString,Regex}, s::AbstractString; overlap::Bool=false)
found = UnitRange{Int}[]
i, e = firstindex(s), lastindex(s)
while true
r = findnext(t, s, i)
r === nothing && return found
push!(found, r)
j = overlap || isempty(r) ? first(r) : last(r)
j > e && return found
@inbounds i = nextind(s, j)
end
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 968 | """
# par
Rewrite dct to R format in file.
### Method
```julia
par(cmds)
```
### Required arguments
```julia
* `cmds::Array{Base.AbstractCmd,1}` : Multiple commands to concatenate
or
* `cmd::Base.AbstractCmd` : Single command to be
* `n::Number` inserted n times into cmd
or
* `cmd::Array{String, 1}` : Array of cmds as Strings
```
"""
function par(cmds::Array{<:Base.AbstractCmd,1})
if length(cmds) > 2
return(par([cmds[1:(length(cmds)-2)];
Base.AndCmds(cmds[length(cmds)-1], cmds[length(cmds)])]))
elseif length(cmds) == 2
return(Base.AndCmds(cmds[1], cmds[2]))
else
return(cmds[1])
end
end
function par(cmd::Base.AbstractCmd, n::Number)
res = deepcopy(cmd)
if n > 1
for i in 2:n
res = Base.AndCmds(res, cmd)
end
end
res
end
function par(cmd::Array{String, 1})
res = `$(cmd[1])`
for i in 2:length(cmd)
res = `$res $(cmd[i])`
end
res
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1916 | using DelimitedFiles, Unicode
"""
# read_diagnose
Read diagnose output file created by cmdstan.
### Method
```julia
read_diagnose(m::Stanmodel)
```
### Required arguments
```julia
* `m::Stanmodel` : Stanmodel object
```
"""
function read_diagnose(model::Stanmodel)
## Collect the results of a chain in an array ##
cnames = String[]
res_type = "diagnose"
tdict = Dict()
local sstr
for i in 1:model.nchains
file_path = joinpath(model.tmpdir, "$(model.name)_$(res_type)_$(i).csv")
if isfile(file_path)
## A result type file for chain i is present ##
if i == 1
# Extract cmdstan version
str = read(file_path, String)
sstr = split(str)
tdict[:stan_version] = "$(parse(Int, sstr[4])).$(parse(Int, sstr[8])).$(parse(Int, sstr[12]))"
end
# Position sstr at element with with `probability=...`
indx = findall(x -> length(x)>11 && x[1:11] == "probability", sstr)[1]
sstr_lp = sstr[indx]
sstr_lp = parse(Float64, split(sstr_lp, '=')[2])
if :lp in keys(tdict)
append!(tdict[:lp], sstr_lp)
append!(tdict[:var_id], parse(Int, sstr[indx+11]))
append!(tdict[:value], parse(Float64, sstr[indx+12]))
append!(tdict[:model], parse(Float64, sstr[indx+13]))
append!(tdict[:finite_dif], parse(Float64, sstr[indx+14]))
append!(tdict[:error], parse(Float64, sstr[indx+15]))
else
# First time around, create value array
tdict[:lp] = [sstr_lp]
tdict[:var_id] = [parse(Int, sstr[indx+11])]
tdict[:value] = [parse(Float64, sstr[indx+12])]
tdict[:model] = [parse(Float64, sstr[indx+13])]
tdict[:finite_dif] = [parse(Float64, sstr[indx+14])]
tdict[:error] = [parse(Float64, sstr[indx+15])]
end
end
end
(tdict, cnames)
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 2128 | using DelimitedFiles, Unicode
"""
# read_optimize
Read optimize output file created by cmdstan.
### Method
```julia
read_optimize(m::Stanmodel)
```
### Required arguments
```julia
* `m::Stanmodel` : Stanmodel object
```
"""
function read_optimize(model::Stanmodel)
## Collect the results in a Dict
cnames = String[]
res_type = "optimize"
tdict = Dict()
## tdict contains the arrays of values ##
tdict = Dict()
for i in 1:model.nchains
file_path = joinpath(model.tmpdir, "$(model.name)_$(res_type)_$(i).csv")
if isfile(file_path)
# A result type file for chain i is present ##
instream = open(file_path)
if i == 1
open(file_path) do instream
str = read(instream, String)
sstr = split(str)
tdict[:stan_major_version] = [parse(Int, sstr[4])]
tdict[:stan_minor_version] = [parse(Int, sstr[8])]
tdict[:stan_patch_version] = [parse(Int, sstr[12])]
end
end
# After reopening the file, skip all comment lines
open(file_path) do instream
skipchars(isspace, instream, linecomment='#')
line = Unicode.normalize(readline(instream), newline2lf=true)
# Extract samples variable names
idx = split(strip(line), ",")
index = [idx[k] for k in 1:length(idx)]
cnames = convert.(String, idx)
# Read optimized values
for i in 1:model.method.iter
line = Unicode.normalize(readline(instream), newline2lf=true)
flds = Float64[]
if eof(instream) && length(line) < 2
return
else
flds = parse.(Float64, split(strip(line), ","))
for k in 1:length(index)
if index[k] in keys(tdict)
# For all subsequent chains the entry should already be in tdict
append!(tdict[index[k]], flds[k])
else
# First chain
tdict[index[k]] = [flds[k]]
end
end
end
end
end
end
end
(tdict, cnames)
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 2860 | using DelimitedFiles, Unicode
"""
# read_samples
Read sample output files created by cmdstan.
### Method
```julia
read_samples(m::Stanmodel)
```
### Required arguments
```julia
* `m::Stanmodel` : Stanmodel object
```
"""
function read_samples(m::Stanmodel, diagnostics=false, warmup_samples=false)
local monitors, index, idx, indvec, ftype, noofsamples
# a3d will contain the samples such that a3d[s, i, c] where
# s: the sample index (corrected warmup samples and thinning by cmdstan)
# i: variable name (either from monitors or read from .csv file produiced by cmdstan)
# c: chain number (from m.chains)
if isa(m.method, Sample)
ftype = diagnostics ? "diagnostics" : "samples"
# The sample index s runs from 1:noofsamples
if m.method.save_warmup
noofsamples = floor(Int, (m.method.num_samples+m.method.num_warmup)/m.method.thin)
else
noofsamples = floor(Int, m.method.num_samples/m.method.thin)
end
else
ftype = lowercase(string(typeof(m.method)))
if (ftype[1:7] == "cmdstan")
ftype = ftype[9:end]
end
# The noofsamples is obtained from method.output_samples
noofsamples = m.method.output_samples
end
# Read .csv files created by each chain
for i in 1:m.nchains
file_path = joinpath(m.tmpdir, "$(m.name)_$(ftype)_$(i).csv")
if isfile(file_path)
instream = open(file_path)
# Skip initial set of commented lines, e.g. containing
# cmdstan version info, etc.
skipchars(isspace, instream, linecomment='#')
# First non-comment line contains names of variables
line = Unicode.normalize(readline(instream), newline2lf=true)
idx = split(strip(line), ",")
index = [idx[k] for k in 1:length(idx)]
# Only continue with monitored variables
if length(m.monitors) == 0
indvec = 1:length(index)
else
indvec = findall((in)(m.monitors), index)
end
# Preserve cnames and create a3d
if i == 1
global cnames = convert.(String, idx[indvec])
global a3d = fill(0.0, noofsamples, length(indvec), m.nchains)
end
# Read in the samples for all chains
skipchars(isspace, instream, linecomment='#')
for j in 1:noofsamples
skipchars(isspace, instream, linecomment='#')
line = Unicode.normalize(readline(instream), newline2lf=true)
if eof(instream) && length(line) < 2
return
else
flds = parse.(Float64, split(strip(line), ","))
flds = reshape(flds[indvec], 1, length(indvec))
a3d[j,:,i] = flds
end
end # read in samples
end # select next file if it exists
end # loop over all chains
(a3d, cnames)
end # end of read_samples
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 706 | using DataFrames, CSV
"""
# read_summary
Read summary output file created by stansummary.
### Method
```julia
read_summary(m::Stanmodel)
```
### Required arguments
```julia
* `m::Stanmodel` : Stanmodel object
```
"""
function read_summary(m::Stanmodel)
fname = joinpath(m.tmpdir, "$(m.name)_summary.csv")
!isfile(fname) && stan_summary(m)
df = CSV.read(fname, DataFrame; delim=",", comment="#")
cnames = lowercase.(convert.(String, String.(names(df))))
cnames[1] = "parameters"
cnames[4] = "std"
cnames[8] = "ess"
#names!(df, Symbol.(cnames))
rename!(df, Symbol.(cnames), makeunique = true)
df.parameters = Symbol.(df.parameters)
df
end # end of read_samples
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1585 | using DelimitedFiles, Unicode
"""
# read_variational
Read variational sample output files created by cmdstan.
### Method
```julia
read_variational(m::Stanmodel)
```
### Required arguments
```julia
* `m::Stanmodel` : Stanmodel object
```
"""
function read_variational(m::Stanmodel)
local a3d, monitors, index, idx, indvec, ftype
ftype = lowercase(string(typeof(m.method)))
for i in 1:m.nchains
file_path = joinpath(m.tmpdir, "$(m.name)_$(ftype)_$(i).csv")
if isfile(file_path)
open(file_path) do instream
skipchars(isspace, instream, linecomment='#')
line = Unicode.normalize(readline(instream), newline2lf=true)
idx = split(strip(line), ",")
index = [idx[k] for k in 1:length(idx)]
if length(m.monitors) == 0
indvec = 1:length(index)
else
indvec = findall((in)(m.monitors), index)
end
if i == 1
a3d = fill(0.0, m.method.output_samples, length(indvec), m.nchains)
end
skipchars(isspace, instream, linecomment='#')
for j in 1:m.method.output_samples
skipchars(isspace, instream, linecomment='#')
line = Unicode.normalize(readline(instream), newline2lf=true)
if eof(instream) && length(line) < 2
return
else
flds = parse.(Float64, (split(strip(line), ",")))
flds = reshape(flds[indvec], 1, length(indvec))
a3d[j,:,i] = flds
end
end
end
end
end
cnames = convert.(String, idx[indvec])
(a3d, cnames)
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 325 | using .MCMCChains
function convert_a3d(a3d_array, cnames, ::Val{:mcmcchains}; start=1)
pi = filter(p -> length(p) > 2 && p[end-1:end] == "__", cnames)
p = filter(p -> !(p in pi), cnames)
MCMCChains.Chains(a3d_array,
cnames,
Dict(
:parameters => p,
:internals => pi
);
start=start
)
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 2242 | """
# Method stan_summary
Display cmdstan summary
### Method
```julia
stan_summary(
model::StanModel,
file::String;
CmdStanDir=CMDSTAN_HOME
)
```
### Required arguments
```julia
* `model::Stanmodel : Stanmodel
* `file::String` : Name of file with samples
```
### Optional arguments
```julia
* CmdStanDir=CMDSTAN_HOME : cmdstan directory for stansummary program
```
### Related help
```julia
?Stan.stan : Execute a StanModel
```
"""
function stan_summary(model::Stanmodel, file::String;
CmdStanDir=CMDSTAN_HOME)
try
pstring = joinpath("$(CmdStanDir)", "bin", "stansummary")
csvfile = "$(model.name)_summary.csv"
isfile(csvfile) && rm(csvfile)
cmd = setenv(`$(pstring) -c $(csvfile) $(file)`, ENV; dir=model.tmpdir)
resfile = open(cmd; read=true)
println("Setting $(model.printsummary)")
model.printsummary && print(read(resfile, String))
catch e
println(e)
end
end
"""
# Method stan_summary
Display cmdstan summary
### Method
```julia
stan_summary(
model::Stanmodel
filecmd::Cmd;
CmdStanDir=CMDSTAN_HOME
)
```
### Required arguments
```julia
* `model::Stanmodel` : Stanmodel
* `filecmd::Cmd` : Run command containing names of sample files
```
### Optional arguments
```julia
* CmdStanDir=CMDSTAN_HOME : cmdstan directory for stansummary program
```
### Related help
```julia
?Stan.stan : Create a StanModel
```
"""
function stan_summary(model::Stanmodel, filecmd::Cmd;
CmdStanDir=CMDSTAN_HOME)
try
pstring = joinpath("$(CmdStanDir)", "bin", "stansummary")
csvfile = "$(model.name)_summary.csv"
isfile(csvfile) && rm(csvfile)
cmd = setenv(`$(pstring) -c $(csvfile) $(filecmd)`, ENV; dir=model.tmpdir)
if model.printsummary
resfile = open(cmd; read=true)
print(read(resfile, String))
else
run(pipeline(cmd, stdout="out.txt"))
end
catch e
println(e)
println("Stan.jl caught above exception in Stan's 'stansummary' program.")
println("This is a usually caused by the setting:")
println(" Sample(save_warmup=true, thin=n)")
println("in the call to stanmodel() with n > 1.")
println()
end
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1567 | """
# Method `update_model_file`
Update Stan language model file if necessary
### Method
```julia
CmdStan.update_model_file(
file::String,
str::String
)
```
### Required arguments
```julia
* `file::AbstractString` : File holding existing Stan model
* `str::AbstractString` : Stan model string
```
### Related help
```julia
?CmdStan.Stanmodel : Create a StanModel
```
"""
function update_model_file(file::AbstractString, model::AbstractString)
model1 = parse_and_interpolate(model)
model2 = ""
if isfile(file)
model2 = parse_and_interpolate(strip(read(file, String)))
model1 != model2 && rm(file)
end
if model1 != model2
println("\nFile $(file) will be updated.\n")
write(file, model1)
end
end
function parse_and_interpolate(model)
newmodel = ""
lines = split(model, "\n")
for l in lines
ls = String(strip(l))
if VERSION.minor >= 3
replace_strings = findall("#include", ls)
else
replace_strings = CmdStan._findall("#include", ls)
end
if length(replace_strings) == 1 &&
# handle the case the include line is commented out
length(ls) > 2 && !(ls[1:2] == "//")
for r in replace_strings
ls = split(strip(ls[r[end]+1:end]), " ")[1]
func = open(f -> read(f, String), strip(ls))
newmodel *= " "*func*"\n"
end
else
if length(replace_strings) > 1
error("Improper number of includes in line `$l`")
else
newmodel *= l*"\n"
end
end
end
newmodel
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 941 | # This is a test for cmdstan issue #510 (thanks to jonalm)
using Mamba, Stan
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
simplecode = "
data {real sigma;}
parameters {real y;}
model {y ~ normal(0,sigma);}
"
global stanmodel1, rc1, sim1
stanmodel1 = Stanmodel(Sample(save_warmup=false, thin=5), name="simple", model=simplecode);
rc1, sim1 = stan(stanmodel1, [Dict("sigma" => 1.)], CmdStanDir=CMDSTAN_HOME);
describe(sim1)
global stanmodel2, rc2, sim2
stanmodel2 = Stanmodel(Sample(save_warmup=true, thin=1), name="simple",
thin=5, model=simplecode);
rc2, sim2 = stan(stanmodel2, [Dict("sigma" => 1.)], CmdStanDir=CMDSTAN_HOME);
describe(sim2)
global stanmodel3, rc3, sim3
stanmodel3 = Stanmodel(Sample(save_warmup=true, thin=5), name="simple", model=simplecode);
rc3, sim3 = stan(stanmodel3, [Dict("sigma" => 1.)], CmdStanDir=CMDSTAN_HOME);
describe(sim3)
end
# stanmodel3 should not fail. | CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 542 | # This is a test for cmdstan issue #547 (thanks to chris fisher & bob)
using Mamba, Stan
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
simplecode = "
parameters {
real y;
}
model {
y ~ normal(0, 1);
} "
global stanmodel, rc, sim
stanmodel = Stanmodel(Sample(save_warmup=true, thin=1), name="simple", model=simplecode);
rc, sim, cnames = stan(stanmodel, [Dict("y" => 0.)], CmdStanDir=CMDSTAN_HOME);
rc == 0 && describe(sim)
end
# The first sample for y (in e.g. tmp/simple_samples_1.csv, ~line 39) should be 0. | CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1038 | # This script shows stansummary ESS vakues vs. MCMCChains ESS values
using CmdStan, StatsPlots
ProjDir = @__DIR__
cd(ProjDir)
berstanmodel = "
data {
int<lower=0> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
for (n in 1:N)
y[n] ~ bernoulli(theta);
}
"
data = Dict("y" => [0,1,0,0,0,0,0,0,0,1],
"N" => 10)
stanmodel = Stanmodel(
name = "berstanmodel", model = berstanmodel, nchains = 4,
printsummary=false, tmpdir=mktempdir());
ess_array_mcmcchains = []
ess_array_cmdstan = []
for i in 1:100
rc, chns, cnames = stan(stanmodel,
data, summary=true, ProjDir);
dfc = describe(chns)[1]
append!(ess_array_mcmcchains, dfc[:theta, :ess])
rs = read_summary(stanmodel)
append!(ess_array_cmdstan, rs[:theta, :ess])
end
p = Array{Plots.Plot{Plots.GRBackend}}(undef, 1);
p[1] = plot(ess_array_cmdstan, lab="CmdStan", xlim=(0, 170))
p[1] = plot!(ess_array_mcmcchains, lab="MCMCChains")
plot(p..., layout=(1,1))
savefig("ess_comparison_plot.pdf") | CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 580 | datatype = Union{
Dict{String, T} where {T <: Any},
Vector{Dict{String, T}} where {T <: Any}
}
mutable struct Mymodel
data::datatype
init::datatype
end
function Mymodel(;data=Dict{String, Any}(), init=Dict{String,Any}())
Mymodel(mydata, myinit)
end
dd = Dict("theta" => 1, "alpha" => 3.0)
id = Dict("sigma" => 1.0)
m1 = Mymodel(data=dd, init=id)
@show m1
println()
dd2 = [Dict("theta" => 1, "alpha" => 3.0),
Dict("theta" => 1, "alpha" => 3.0)]
id2 = [Dict("sigma" => 1.0)]
m2 = Mymodel(data=dd2, init=id2)
@show m2
println()
m3 = Mymodel(data=dd2)
@show m3
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 853 | function rewrite_file(model, chain, chainno::Int, fname)
isfile("simple_samples_1.csv") && rm("simple_samples_1.csv")
open("simple_samples_1.csv", "w") do fd
count = 1
for name in sim3.names
write(fd, name)
count += 1
count <= length(sim3.names) && write(fd, ",")
end
write(fd, "\n")
count = 1
for i in 1:size(sim3.value, 1)
for j in 1:size(sim3.value, 2)
write(fd, string(sim3.value[i, j, chainno]))
count += 1
if count <= size(sim3.value, 2)
write(fd, ",")
end
end
write(fd, "\n")
end
end
pstring = joinpath("/Users/rob/Projects/Stan/cmdstan", "bin", "stansummary")
cmd = `$(pstring) $(fname)`
println(cmd)
resfile = open(cmd, "r")
print(read(resfile, String))
end
rewrite_file(stanmodel1, sim1, 1, "simple_samples_1.csv")
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1598 | # Top level test script for Stan.jl
using CmdStan, Test, Statistics
if haskey(ENV, "JULIA_CMDSTAN_HOME")
println("\nRunning tests for CmdStan-j1-v5:\n")
code_tests = [
"test_env.jl",
"test_utilities.jl",
"test_cmdtype.jl",
"test_extract.jl"
]
# Run execution_tests only if cmdstan is installed and CMDSTAN_HOME is set correctly.
execution_tests = [
"test_bernoulli.jl",
"test_bernoulli_diagnostics.jl",
"test_bernoulli_optimize.jl",
"test_bernoulli_diagnose.jl",
# Variational often fails on Travis.
#"test_bernoulli_variational.jl",
"test_bernoulliinittheta.jl",
"test_bernoulliinittheta2.jl",
"test_bernoulliinittheta3.jl",
"test_bernoulliscalar.jl",
"test_binomial.jl",
"test_binormal.jl",
"test_schools8.jl",
"test_dyes.jl",
"test_kidscore.jl",
"test_fixed_param.jl",
"test_zerolengtharray.jl",
"test_parse_interpolate.jl",
"test_init_in_stanmodel.jl",
"test_mcmcchains.jl"
]
if CMDSTAN_HOME != ""
println("CMDSTAN_HOME set. Try to run tests.")
@testset "CmdStan.jl" begin
for my_test in code_tests
println("\n\n\n * $(my_test) *")
include(my_test)
end
for my_test in execution_tests
println("\n\n * $(my_test) *\n")
include(my_test)
end
println("\n")
end
else
println("\n\nCMDSTAN_HOME not set or found.")
println("Skipping all tests that depend on CmdStan!\n")
end
println("\n")
else
println("\nJULIA_CMDSTAN_HOME not set. Skipping tests")
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 562 | ######### CmdStan program example ###########
using CmdStan
ProjDir = dirname(@__FILE__)
cd(ProjDir)
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
tmpdir = ProjDir*"/tmp"
stanmodel = Stanmodel(Sample(save_warmup=true, num_warmup=1000,
num_samples=2000, thin=1), name="bernoulli", model=bernoullimodel,
printsummary=false, tmpdir=tmpdir);
println("\nTest for Atom completed, stanmodel should not have been displayed\n") | CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 991 | using CmdStan, Test
ProjDir = dirname(@__FILE__)
cd(ProjDir)
@testset "Bernoulli" begin
isdir("tmp") &&
rm("tmp", recursive=true);
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
global stanmodel, rc, chn, chns, cnames, summary_df
#tmpdir = ProjDir*"/tmp"
stanmodel = Stanmodel(Sample(save_warmup=false, num_warmup=1000,
num_samples=2000, thin=1), name="bernoulli", model=bernoullimodel,
printsummary=false,
#tmpdir=tmpdir
);
rc, a3d, cnames = stan(stanmodel, observeddata, ProjDir, diagnostics=false,
CmdStanDir=CMDSTAN_HOME);
if rc == 0
sdf = read_summary(stanmodel)
@test sdf[sdf.parameters .== :theta, :mean][1] β 0.34 rtol=0.1
end
isdir("tmp") &&
rm("tmp", recursive=true);
end # testset
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 260 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "BernoulliDiagnose")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "bernoulli_diagnose.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 264 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "BernoulliDiagnostics")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "bernoulli_diagnostics.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1272 |
using Test
ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "BernoulliInitTheta")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
bernoullidata = [
Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1]),
Dict("N" => 10, "y" => [0, 1, 0, 0, 0, 0, 1, 0, 0, 1]),
Dict("N" => 10, "y" => [0, 0, 0, 0, 0, 0, 1, 0, 1, 1]),
Dict("N" => 10, "y" => [0, 0, 0, 1, 0, 0, 0, 1, 0, 1])
]
theta_init = [0.1, 0.4, 0.5, 0.9]
bernoulliinit = Dict[
Dict("theta" => theta_init[1]),
Dict("theta" => theta_init[2]),
Dict("theta" => theta_init[3]),
Dict("theta" => theta_init[4]),
]
monitor = ["theta", "lp__", "accept_stat__"]
stanmodel = Stanmodel(name="bernoulli",
model=bernoullimodel,
init=Stan.Init(init=bernoulliinit),
adapt=1);
rc, a3d, cnames = stan(stanmodel, bernoullidata, CmdStanDir=CMDSTAN_HOME)
if rc == 0
sdf = read_summary(stanmodel)
@test sdf[sdf.parameters .== :theta, :mean][1] β 0.34 rtol=0.1
end
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 262 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "BernoulliNamedArray")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "bernoulli_namedarray.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 285 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "BernoulliOptimize")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "bernoulli_optimize.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
println()
println()
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 291 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "BernoulliVariational")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "bernoulli_variational.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
println()
println()
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 259 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "BernoulliInitTheta")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "bernoulliinittheta.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 260 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "BernoulliInitTheta")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "bernoulliinittheta2.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 260 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "BernoulliInitTheta")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "bernoulliinittheta3.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 253 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "BernoulliScalar")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "bernoulliscalar.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 239 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "Binomial")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "binomial.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 239 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "Binormal")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "binormal.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 764 | #=
println("hither : ",Threads.threadid()," : ",pwd()) # hither : 1 : /tmp
Threads.@spawn cd( () -> ( println("tither : ",Threads.threadid(), " : ", pwd()); sleep(3)), "..") # tither : 2 : /
sleep(1);println("hither : ",Threads.threadid(), " : ", pwd());sleep(3) # hither : 1 : /
println("hither : ",Threads.threadid()," : ",pwd()) # hither : 1 : /tmp
=#
cd(@__DIR__)
println("hither : ",Threads.threadid()," : ",pwd()) # hither : 1 : ./CmdStan/test
Threads.@spawn cd( () -> ( println("tither : ",Threads.threadid(), " : ",
pwd()); sleep(3)), "..") # tither : 2 : ./CmdStan
sleep(1)
println("hither : ",Threads.threadid()," : ", pwd()) # hither : 1 : ./CmdStan
sleep(3)
println("hither : ",Threads.threadid()," : ", pwd()) # hither : 1 : ./CmdStan/test
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1616 | using CmdStan
using Test
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
bernoulli = "
data {
int<lower=0> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
data = [
Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1]),
Dict("N" => 10, "y" => [0, 1, 0, 0, 0, 0, 1, 0, 0, 1]),
Dict("N" => 10, "y" => [0, 0, 0, 0, 0, 0, 1, 0, 1, 1]),
Dict("N" => 10, "y" => [0, 0, 0, 1, 0, 0, 0, 1, 0, 1])
]
m = Stanmodel(Optimize(), name="bernoulli", model=bernoulli);
m.command[1] = CmdStan.cmdline(m)
println()
show(IOContext(stdout, :compact => true), m)
println()
show(m)
@assert m.output.refresh == 100
s1 = Sample()
println()
show(IOContext(stdout, :compact => true), s1)
println()
show(s1)
n1 = CmdStan.Lbfgs()
n2 = CmdStan.Lbfgs(history_size=15)
@assert 3*n1.history_size == n2.history_size
b1 = CmdStan.Bfgs()
b2 = CmdStan.Bfgs(tol_obj=1//100000000)
@assert b1.tol_obj == b2.tol_obj
o1 = Optimize()
o2 = Optimize(CmdStan.Newton())
o3 = Optimize(CmdStan.Lbfgs(history_size=10))
o4 = Optimize(CmdStan.Bfgs(tol_obj=1e-9))
o5 = Optimize(method=CmdStan.Bfgs(tol_obj=1e-9), save_iterations=true)
@assert o5.method.tol_obj == o1.method.tol_obj/10
println()
show(IOContext(stdout, :compact => true), o5)
println()
show(o5)
d1 = Diagnose()
@assert d1.diagnostic.error == 1e-6
d2 = Diagnose(CmdStan.Gradient(error=1e-7))
@assert d2.diagnostic.error == 1e-7
println()
show(IOContext(stdout, :compact => true), d2)
println()
show(d2)
println()
m.command
cd(ProjDir)
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 609 | using CmdStan
N1 = 10
data1 = Dict(
"Scalar" => rand(),
"Single_element_vector" => [rand()],
"Vector" => rand(N1),
"Array" => rand(N1,3)
)
N = 100000
data = Dict(
"Scalar" => rand(),
"Single_element_vector" => [rand()],
"Vector" => rand(N),
"Array" => rand(N,3)
)
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
Stan.update_R_file("testdata0", data1)
Stan.update_R_file_jon("testdata1", data1)
@time Stan.update_R_file("testdata0", data)
@time Stan.update_R_file_jon("testdata1", data)
isfile("testdata0") && rm("testdata0");
isfile("testdata1") && rm("testdata1");
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 231 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "Dyes")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "dyes.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 291 | using CmdStan, Test
## testing accessors to CMDSTAN_HOME
let oldpath = CmdStan.CMDSTAN_HOME
newpath = CmdStan.CMDSTAN_HOME * "##test##"
set_cmdstan_home!(newpath)
@test CmdStan.CMDSTAN_HOME == newpath
set_cmdstan_home!(oldpath)
@test CmdStan.CMDSTAN_HOME == oldpath
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 923 | using CmdStan, Test
cnames = ["x", "y.1", "y.2", "z.1.1", "z.2.1", "z.3.1", "z.1.2", "z.2.2", "z.3.2", "k.1.1.1.1.1"]
draws = 100
vars = length(cnames)
chains = 2
chns = randn(draws, vars, chains)
nt = extract(chns, cnames)
@testset "extract" begin
# Write your tests here.
@test size(nt.x) == (draws, chains)
@test size(nt.y) == (2, draws, chains)
@test size(nt.z) == (3, 2, draws, chains)
@test size(nt.k) == (1, 1, 1, 1, 1, draws, chains)
key_to_idx = Dict(name => idx for (idx, name) in enumerate(cnames))
@test nt.x[2,1] == chns[2, key_to_idx["x"], 1]
@test nt.y[2,3,2] == chns[3, key_to_idx["y.2"], 2]
@test nt.z[3, 1, 10, 1] == chns[10, key_to_idx["z.3.1"], 1]
@test nt.k[1,1,1,1,1,draws,2] == chns[draws, key_to_idx["k.1.1.1.1.1"], 2]
@test keys(nt) == (:y, :k, :z, :x)
@test size(values(nt.z)) == (3, 2, 100, 2)
@test size(nt.z) == (3, 2, 100, 2)
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 701 | using CmdStan
ProjDir = dirname(@__FILE__);
cd(ProjDir) do
isdir("tmp") && rm("tmp", recursive=true);
ar1 = "
data {
int T;
real y0;
real phi;
real sigma;
}
parameters{}
model{}
generated quantities {
vector[T] yhat;
yhat[1] = y0;
for (t in 2:T)
yhat[t] = normal_rng(phi*yhat[t-1],sigma);
}
"
#
T = 100;
y0 = 1;
phi = 0.95;
sigma = 1;
# make the data dictionary
dat = Dict("T"=>T,"y0"=>y0,"phi"=>phi,"sigma"=>sigma);
stanmodel= Stanmodel(name = "ar1", model = ar1, Sample(algorithm=CmdStan.Fixed_param()));
rc, sim1 = stan(stanmodel, dat, ProjDir, CmdStanDir=CMDSTAN_HOME);
isdir("tmp") && rm("tmp", recursive=true);
end | CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1587 | using CmdStan, DataFrames, Test, Statistics
tempdir = pwd()
nwarmup, nsamples, nchains = 1000, 1000, 4
stan_code = "
data {
int<lower = 1> J; // number of cases
real<lower = 0> onset_day_reported[J]; //day of illness onset
}
parameters {
real<lower = 0> incubation[J];
real mu;
real<lower = 0> sigma;
}
model {
mu ~ normal(0, 5);
sigma ~ cauchy(0, 5);
incubation ~ lognormal(mu,sigma);
for (j in 1:J) {
target += normal_lpdf(incubation[j] | onset_day_reported[j]+0.5, 0.5);
}
}
generated quantities {
real incubation_mean = exp(mu+sigma^2/2.0);
real incubation_sd = sqrt((exp(sigma^2)-1.0)*exp(2.0*mu+sigma^2));
}
"
df_inc = DataFrame(Dict("n" => [1, 5, 7, 9, 17, 18, 16, 6, 8, 10, 7, 1, 2, 4, 4, 1],
"day" => [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25]))
days_inc = vcat(fill.(df_inc[!,:day],df_inc[!,:n])...)
stan_data = Dict("J" => length(days_inc), "onset_day_reported" => days_inc)
# stan_init = Dict("mu" => 2.5, "sigma" => 0.2, "incubation" => days_inc .+ 0.5)
stan_init = Dict("incubation[$i]"=>v+.5 for (i,v) in enumerate(days_inc))
temp_init = Dict("mu" => 2.5, "sigma" => 1.0)
merge!(stan_init, temp_init)
stanmodel = Stanmodel(
name = "init_array",
model = stan_code,
nchains = nchains,
#init = [stan_init],
num_warmup = nwarmup,
num_samples = nsamples);
rc, a3d, cnames = stan(stanmodel, stan_data,
init = stan_init, summary = true);
if rc == 0
sdf = read_summary(stanmodel)
@test sdf[sdf.parameters .== :mu, :mean][1] β 2.5 rtol=0.1
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 956 | function f(x)
println("Calling f($x)")
end
function f(x, y::Number)
println("Calling y::Number f($x, $y)")
end
function f(x, y::Array)
println("Calling y::Array f($x, $y)")
end
function f(x, y::Matrix)
println("Calling y::Matrix f($x, $y)")
end
function f(x, y::Dict)
println("Calling y::Dict f($x, $y)")
end
function f(x, y::Vector{Dict{Symbol, Any}})
println("Calling y::Vector{Dict{Symbol, Any}} f($x, $y)")
end
function f(x, y::Vector{Dict{String, Any}})
println("Calling y::Vector{Dict{String, Any}} f($x, $y)")
end
f(5)
f(5, 3)
f(5, [2])
f(5, [2.0])
f(5, [1 2;3 4])
dct1 = Dict{Symbol, Any}(:y => 1)
f(5, dct1)
dct2 = Dict{Symbol, Any}[
Dict(:theta => 0.1),
Dict(:theta => [0.4]),
Dict(:theta => [0.1, 0.2, 0.4]),
Dict(:theta => [0.4 0.5; 0.6 0.7]),
]
f(5, dct2)
dct3 = Dict[
Dict("theta" => 0.1),
Dict("theta" => [0.4]),
Dict("theta" => [0.1, 0.2, 0.4]),
Dict("theta" => [0.4 0.5; 0.6 0.7]),
]
f(5, dct3)
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 249 | ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "ARM", "Ch03", "Kid")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "kidscore.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1265 | ######### CmdStan program example ###########
using CmdStan
using MCMCChains
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
global stanmodel, rc, chn, chns, cnames, summary_df
tmpdir = ProjDir*"/tmp"
stanmodel = Stanmodel(Sample(save_warmup=false, num_warmup=1000,
num_samples=2000, thin=1), name="bernoulli", model=bernoullimodel,
printsummary=false, tmpdir=tmpdir, output_format=:mcmcchains);
rc, chns, cnames = stan(stanmodel, observeddata, ProjDir, diagnostics=false,
CmdStanDir=CMDSTAN_HOME);
if rc == 0
# Check if StatsPlots is available
if isdefined(Main, :StatsPlots)
p1 = plot(chns)
savefig(p1, joinpath(tmpdir, "traceplot.pdf"))
p2 = pooleddensity(chns)
savefig(p2, joinpath(tmpdir, "pooleddensity.pdf"))
end
# Describe the results
show(chns)
println()
# Ceate a ChainDataFrame
sdf = read_summary(stanmodel)
sdf[sdf.parameters .== :theta, [:mean, :ess]]
end
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 871 | using CmdStan
ProjDir = @__DIR__
cd(ProjDir)
bernoulli_model = "
functions{
#include model_specific_funcs.stan
#include shared_funcs.stan // a comment
//#include shared_funcs.stan // a comment
}
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
model_specific_function();
theta ~ beta(my_function(),1);
y ~ bernoulli(theta);
}
";
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
stanmodel = Stanmodel(Sample(save_warmup=false, num_warmup=1000,
num_samples=2000, thin=1), name="bernoulli", model=bernoulli_model,
printsummary=false, tmpdir=mktempdir());
rc, a3d, cnames = stan(stanmodel, observeddata, ProjDir);
if rc == 0
sdf = read_summary(stanmodel)
@test sdf[sdf.parameters .== :theta, :mean][1] β 0.34 rtol=0.1
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 1474 | using CmdStan
wd = dirname(@__FILE__)
if !isdefined(Main, :update_R_file)
function update_R_file{T<:Any}(file::String, dct::Dict{String, T};
replaceNaNs::Bool=true)
isfile(file) && rm(file)
open(file, "w") do strmout
str = ""
for entry in dct
str = "\""entry[1]"\""" <- "
val = entry[2]
if length(val)==1 && length(size(val))==0
# Scalar
str = str*"$(val)\n"
elseif length(val)==1 && length(size(val))==1
# Single element vector
#str = str*"$(val[1])\n"
elseif length(val)>1 && length(size(val))==1
# Vector
str = str*"structure(c("
write(strmout, str)
str = ""
writecsv(strmout, val');
str = str*"), .Dim=c($(length(val))))\n"
elseif length(val)>1 && length(size(val))>1
# Array
str = str*"structure(c("
write(strmout, str)
str = ""
writecsv(strmout, val[:]');
dimstr = "c"*string(size(val))
str = str*"), .Dim=$(dimstr))\n"
end
write(strmout, str)
end
end
end
end
dct = Dict[
Dict("theta" => 0.1),
Dict("theta" => [0.4]),
Dict("theta" => [0.1, 0.2, 0.4]),
Dict("theta" => [0.4 0.5; 0.6 0.7]),
]
for i in 1:length(dct)
#for j in ["data", "init"]
for j in ["data"]
file = joinpath(wd, "test_r_$(i)_$(j).R")
isfile(file) && rm(file)
Stan.update_R_file(file, dct[i])
end
end
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 266 | using CmdStan, Test
ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "EightSchools")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
include(joinpath(ProjDir, "schools8.jl"))
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 372 | struct Stop <: Exception end
function run_task(f)
try f()
catch e
if isa(e, Stop)
println("Your program was gracefully terminated.")
else
rethrow()
end
end
end
function f()
throw(Stop())
end
function g()
f()
end
run_task() do
g()
end
println()
run_task() do
error("This is bad.")
end
println("Done!")
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 309 | using CmdStan
cmd1 = `echo`
cmd2 = `2`
sa = ["3", "4"]
s = "5"
#r1 = cmd1 * cmd2; println(r1)
#r2 = cmd1 * sa; println(r2)
#r3 = cmd1 * s; println(r3)
cs = Base.AbstractCmd[]
for i in 1:5
push!(cs, `echo $i`)
end
println()
r = CmdStan.par(cs)
run(r)
println()
r = CmdStan.par(`echo hello`, 6)
run(r)
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 619 | # Test script to test Stan on Windows
try
global CMDSTAN_HOME = @static Sys.iswindows() ? "C:\\cmdstan" : CMDSTAN_HOME
Pkg.rm("Stan")
Pkg.rm("Stan")
Pkg.clone("Stan")
catch e
println(e)
end
# Go to the Stan.jl package directory
ProjDir = joinpath(dirname(@__FILE__), "..", "examples", "Bernoulli")
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
try
include(joinpath(ProjDir, "bernoulli.jl"))
catch e
println(e)
end
println("After include('bernoulli.jl'), CMDSTAN_HOME is set to: $(CMDSTAN_HOME)")
cd(stanmodel.tmpdir)
run(`ls`)
println()
println(stanmodel.command)
println()
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 595 | using DelimitedFiles
ProjDir = @__DIR__
x = [1.0; 2; 3; 4];
y = [5; 6; 7; 8.0];
open(joinpath(ProjDir, "test_delim_file.txt"), "w") do io
writedlm(io, [x y], ',')
end
res = readdlm(joinpath(ProjDir, "test_delim_file.txt"), ',')
println(res)
dct1 = [
Dict("theta" => 0.1),
Dict("theta" => [0.4]),
Dict("theta" => [0.1, 0.2, 0.4]),
Dict("theta" => [0.4 0.5; 0.6 0.7]),
]
for entry in dct1
str = '"' * "$entry" * '"' * " <- "
writedlm(joinpath(ProjDir, "test_delim_file_2.txt"), str, "")
end
strmin = open(joinpath(ProjDir, "test_delim_file_2.txt"), "r")
readdlm(strmin, ',')
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 917 | using CmdStan, Test, Statistics
ProjDir = dirname(@__FILE__)
cd(ProjDir) do
isdir("tmp") &&
rm("tmp", recursive=true);
bernoullimodel = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
real empty[0];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
observeddata = [
Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1],"empty"=>Float64[]),
]
global stanmodel, rc, sim
stanmodel = Stanmodel(num_samples=1200, thin=2, name="bernoulli",
output_format=:array, model=bernoullimodel);
rc, sim = stan(stanmodel, observeddata, ProjDir, diagnostics=false,
CmdStanDir=CMDSTAN_HOME);
if rc == 0
println()
println("Test 0.2 < round(mean(theta), digits=1) < 0.4")
@test 0.2 < round(mean(sim[:,8,:]), digits=1) < 0.4
end
isdir("tmp") &&
rm("tmp", recursive=true);
end # cd
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 716 | using Mamba, Plots
pyplot(size=(800,800))
if !isdefined(Main, :traceplot)
function traceplot(c::AbstractChains; legend::Bool=false, na...)
nrows, nvars, nchains = size(c.value)
plts = Array{Plots.Plot{Plots.PyPlotBackend}}(nvars)
for i in 1:nvars
plts[i] = plot(1:nrows, c.value[:, i, :])
end
plts
end
end
if !isdefined(Main, :meanplot)
function meanplot(c::AbstractChains; legend::Bool=false, na...)
nrows, nvars, nchains = size(c.value)
plts = Array{Plots.Plot{Plots.PyPlotBackend}}(nvars)
val = Mamba.cummean(c.value)
for i in 1:nvars
plts[i] = plot(1:nrows, val[:, i, :], lab="Chain $i")
end
plts
end
end
tp = traceplot(sim)
mp = meanplot(sim)
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | code | 643 | abstract type Metrics end
mutable struct Unit_e <: Metrics
end
mutable struct Diag_e <: Metrics
end
abstract type SamplingAlgorithm end
mutable struct Hmc <: SamplingAlgorithm
# ...
metric::Metrics
end
mutable struct Fixed_param <: SamplingAlgorithm
end
Hmc() = Hmc(Diag_e())
Hmc(m::DataType) = ( m <: Metrics ? Hmc(m()) : "Error: $(m) not a subtype of Metrics" )
Hmc(m::Symbol) = ( eval(m) <: Metrics ? Hmc(eval(m)()) : "Error: $(m) not a subtype of Metrics" )
h = Hmc()
l = Hmc(Diag_e)
k = Hmc(:Unit_e)
@assert isa(h.metric, Metrics)
@assert isa(l.metric, Metrics)
@assert isa(k.metric, Metrics)
@assert typeof(k.metric) <: Metrics
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | docs | 5018 | # CmdStan
| **Project Status** | **Documentation** | **Build Status** |
|:-------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|
|![][project-status-img] | [![][docs-stable-img]][docs-stable-url] [![][docs-dev-img]][docs-dev-url] | ![][CI-build] |
[docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg
[docs-dev-url]: https://stanjulia.github.io/CmdStan.jl/latest
[docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
[docs-stable-url]: https://stanjulia.github.io/CmdStan.jl/stable
[CI-build]: https://github.com/stanjulia/CmdStan.jl/workflows/CI/badge.svg?branch=master
[issues-url]: https://github.com/stanJulia/CmdStan.jl/issues
[project-status-img]: https://img.shields.io/badge/lifecycle-deprecated-orange.svg
## Purpose
*A package to run Stan's cmdstan executable from Julia.*
## Status
CmdStan.jl will be deprecated in 2022. Please switch to StanSample.jl.
Time permitting, Pull Requests will be merged if all tests pass and new fuctionality is tested.
## Prerequisites
For more info on Stan, please go to <http://mc-stan.org>.
The Julia package CmdStan.jl is based on Stan's command line interface, 'cmdstan'.
The 'cmdstan' interface needs to be installed separatedly. Please see [cmdstan installation](https://github.com/StanJulia/CmdStan.jl/blob/master/docs/src/INSTALLATION.md) for further details.
The location of the cmdstan executable and related programs is now obtained from the environment variable JULIA_CMDSTAN_HOME. This used to be CMDSTAN_HOME.
Right now `versioninfo()` will show its setting (if defined).
## Versions
Release 6.2.0 - Thanks to @Byrth.
Switch from using
```
cd(dir) do
# stuff
run(cmd)
end
```
to
# stuff
```run(setenv(cmd, ENV; dir=dir))```
in main functions.
Release 6.0.9
1. Switch to GitHub actions.
Release 6.0.8
1. Thanks to @yiyuezhuo, a function `extract` has been added to simplify grouping variables into a NamedTuple.
2. Stanmodel's output_format argument has been extended with an option to request conversion to a NamedTuple.
3. Updated CSV.read to specify Dataframe argument
Release 6.0.7
1. Compatibility updates
2. Cmdstan version updates.
Release 6.0.2-6
1. Fixed an issue related to naming of created files. Thanks to mkshirazi.
2. Several bumps to deal with package versions.
3. Re-enabling Coverage.
Release 6.0.2
1. Init files were not properly included in cmd. Thanks to ueliwechsler and andrstef.
Release 6.0.1
1. Removed dependency on Documenter.
Release 6.0.0 contains:
1. Revert back to output an array by default.
2. Switch to Requires.jl to delay/prevent loading of MCMCChains if not needed (thanks to suggestions by @Byrth and Stijn de Waele).
3. Updates to documentation.
Release 6.0.0 is a breaking release.
To revert back to v5.x behavior a script needs to include `using MCMCChains` (which thus must be installed) and specify `output_format=:mcmcchains` in the call to `stanmodel()`. This option is not tested on Travis. A sub-directory examples_mcmcchains has been added which demonstrate this usage pattern.
CmdStan.jl tested on cmdstan v2.21.0.
## Documentation
- [**STABLE**][docs-stable-url] — **documentation of the most recently tagged version.**
- [**DEVEL**][docs-dev-url] — *documentation of the in-development version.*
## Questions and issues
Question and contributions are very welcome, as are feature requests and suggestions. Please open an [issue][issues-url] if you encounter any problems or have a question.
## References
There is no shortage of good books on Bayesian statistics. A few of my favorites are:
1. [Bolstad: Introduction to Bayesian statistics](http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118593227.html)
2. [Bolstad: Understanding Computational Bayesian Statistics](http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470046090.html)
3. [Gelman, Hill: Data Analysis using regression and multileve,/hierachical models](http://www.stat.columbia.edu/~gelman/arm/)
4. [McElreath: Statistical Rethinking](http://xcelab.net/rm/statistical-rethinking/)
5. [Gelman, Carlin, and others: Bayesian Data Analysis](http://www.stat.columbia.edu/~gelman/book/)
6. [Lee, Wagenmakers: Bayesian Cognitive Modeling](https://www.cambridge.org/us/academic/subjects/psychology/psychology-research-methods-and-statistics/bayesian-cognitive-modeling-practical-course?format=PB&isbn=9781107603578)
7. [Kruschke:Doing Bayesian Data Analysis](https://sites.google.com/site/doingbayesiandataanalysis/what-s-new-in-2nd-ed)
8. [Betancourt: A Conceptual Introduction to Hamiltonian Monte Carlo](https://arxiv.org/abs/1701.02434)
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | docs | 826 | # cmdstan installation
## Minimal requirement
Note: CmdStan.jl and CmdStan refer to this Julia package. The executable C++ program is 'cmdstan'.
To run this version of the CmdStan.jl package on your local machine, it assumes that the [cmdstan](http://mc-stan.org/interfaces/cmdstan) executable is properly installed.
In order for CmdStan.jl to find the cmdstan you need to set the environment variable `JULIA_CMDSTAN_HOME` to point to the cmdstan directory, e.g. add
```
export JULIA_CMDSTAN_HOME=/Users/rob/Projects/Stan/cmdstan
launchctl setenv JULIA_CMDSTAN_HOME /Users/rob/Projects/Stan/cmdstan
```
to `~/.bash_profile` or add `ENV["JULIA_CMDSTAN_HOME"]="./cmdstan"` to `./julia/etc/startup.jl`.
I typically prefer cmdstan not to include the cmdstan version number so no update is needed when cmdstan is updated.
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | docs | 3002 | # A Julia interface to cmdstan
## CmdStan.jl
[Stan](https://github.com/stan-dev/stan) is a system for statistical modeling, data analysis, and prediction. It is extensively used in social, biological, and physical sciences, engineering, and business. The Stan program language and interfaces are documented [here](http://mc-stan.org/documentation/).
[cmdstan](http://mc-stan.org/interfaces/cmdstan.html) is the shell/command line interface to run Stan language programs.
[CmdStan.jl](https://github.com/StanJulia/CmdStan.jl) wraps cmdstan and captures the samples for further processing.
## StanJulia
CmdStan.jl is part of the [StanJulia Github organization](https://github.com/StanJulia) set of packages. It is one of two options in StanJulia to capture draws from a Stan language program. The other option is *under development* and is illustrated in Stan.jl and [StatisticalRethinking.jl](https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl).
These are not the only options to sample using Stan from Julia. Valid other options are PyCall.jl/PyStan and StanRun.jl.
On a very high level, a typical workflow for using CmdStan.jl looks like:
```
using CmdStan
# Define a Stan language program.
bernoulli = "..."
# Prepare for calling cmdstan.
stanmodel = StanModel(...)
# Compile and run Stan program, collect draws.
rc, samples, cnames = stan(...)
# Cmdstan summary of result
sdf = read_summary(stanmodel)
# Dsplay the summary
sdf |> display
# Show the draws
samples |> display
```
This workflow creates an array of draws, the default value for the `output_format` argument in Stanmodel(). Other options are `:dataframes` and `:mcmcchains`.
If at this point a vector of DataFrames (a DataFrame for each chain) is preferred:
```
df = CmdStan.convert_a3d(samples, cnames, Val(:dataframes))
```
Or, if you know upfront a vector of DataFrames is what you want, you can specify that when creating the Stanmodel:
```
stanmodel = StanModel(..., output_format=:dataframes,...)
```
Version 5 of CmdStan.jl used `:mcmcchains` by default but the dependencies of MCMCChains.jl, including access to plotting features, can lead to long compile times.
## References
There is no shortage of good books on Bayesian statistics. A few of my favorites are:
1. [Bolstad: Introduction to Bayesian statistics](http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118593227.html)
2. [Bolstad: Understanding Computational Bayesian Statistics](http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470046090.html)
3. [Gelman, Hill: Data Analysis using regression and multileve,/hierachical models](http://www.stat.columbia.edu/~gelman/arm/)
4. [McElreath: Statistical Rethinking](http://xcelab.net/rm/statistical-rethinking/)
5. [Gelman, Carlin, and others: Bayesian Data Analysis](http://www.stat.columbia.edu/~gelman/book/)
and a great read (and implementation in DynamicHMC.jl):
5. [Betancourt: A Conceptual Introduction to Hamiltonian Monte Carlo](https://arxiv.org/abs/1701.02434)
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | docs | 4524 | # Version approach and history
## Approach
A version of a Julia package is labeled (tagged) as v"major.minor.patch".
My intention is to update the patch level whenever I make updates which are not visible to any of the existing examples.
New functionality will be introduced in minor level updates. This includes adding new examples, tests and the introduction of new arguments if they default to previous behavior, e.g. in v"4.2.0" the `run_log_file` argument to stan().
Changes that require updates to some examples bump the major level.
Updates for new releases of Julia and cmdstan bump the appropriate level.
## Testing
Versions 6.x of the package has been developed and tested on Mac OSX 10.15.3, Julia 1.3+ and tested on cmdstan v2.21.0.
## Versions
### Release 6.0.2
1. Init files were not properly included in cmd. Thanks to ueliwechsler and andrstef.
### Release 6.0.1
1. Removed dependency on Documenter.
### Version 6.0.0
Release 6.0.0 is a breaking release. To revert back to v5.x behavior a script needs to include `using MCMCChains` (which thus must be installed) and specify `output_format=:mcmcchains` in the call to `stanmodel()`. This option is not tested on Travis, a sub-directory examples_mcmcchains has been added which demonstrate this usage pattern.
1. Revert back to output an array by default.
2. Switch to Requires.jl to delay/prevent loading of MCMCChains if not needed (thanks to suggestions by @Byrth and Stijn de Waele).
3. WIP: Redoing documentation.
### Version 5.6.0
1. Simplification were possible, removal of some older constructs.
2. Removal of NamedArrays. This is mildly breaking. If needed it can be brought back using Requires.
### Version 5.5.0
1. Upper bound fixes.
### Version 5.4.0
1. Removed init and data from Stanmodel. Data and init needs to be specified (if needed) in stan(). This is a breaking change although it wasn't handled properly. Thanks to Andrei R. Akhmetzhanov and Chris Fisher.
### Version 5.2.3
1. Fixed an issue in running read_samples from the REPL (thanks to Graydon Marz).
### Version 5.2.2
1. Made sure by default no files are created in Julia's `package` directory.
2. Removed some DataFrame update warnings.
### Version 5.2.1 contains:
1. Fixed an issue with read_diagnose.jl which failed on either linux or osx because of slightly different .csv file layout.
### Version 5.2.0 contains:
1. Specified Julia 1 dependency in Project
2. Updates from sdewaele to fix resource busy or locked error messages
3. Thanks to Daniel Coutinho an issue was fixed which made running CmdStan using Atom bothersome.
4. Contains a fix in diagnostics testing
### Version 5.1.1 contains:
1. Fixed an issue with ```save_warmup``` in Variational (thanks to fargolo).
2. Fixed a documentation issue in ```rel_path_cmdstan```.
3. Enabled specifying ```data``` and ```init``` using an existing file.
4. Support for Stan's include facility (thanks to Chris Fisher).
CmdStan.jl tested on cmdstan v2.20.0.
### Version 5.1.0 contains:
1. Support for retrieving stansummary data (read_summary()).
2. Support for using mktempdir() (might improve issue #47).
3. Fixed handling of save_warmup.
4. Read all optimization iterations (thanks to sdewaele).
5. Several other minor documentation and type definition updates.
6. Fixeda bug related to Array{Dict} inputs to init and data (thanks to sdewaele).
7. Added a test to compare Stan's ESS values with MCMCChains ESS values.
8. Updated all examples to have a single Dict as data input (suggested by sdewaele).
### Version 4.5.2
1. Mostly minor (but important) fixes in documentation (thanks to Oliver Dechant).
2. Supports non-array versions of input data and inits.
3. Announcement v5.x.x will be based on MCMCChains.jl. StanMCMCChains.jl will also be renamed accordingly (StanMCMCChains.jl) once MCMCChains.jl is registered.
### Version 4.4.0
1. Pkg3 based.
2. Added the output_format option :namedarray which will return a NamesArrays object instead of the a3d array.
### Version 4.2.0/4.3.0
1. Added ability to reformat a3d_array to a TuringLang/MCMCChain object.
2. Added the ability to display the sample drawing progress in stdout (instead of storing these updated in the run_log_file)
### Version 4.1.0
1. Added ability to reformat a3d_array, e.g. to a DataFrame or a Mamba.Chains object using add-on packages such as StanDataFrames and StanMamba.
2. Allowed passing zero-length arrays as input.
### Version 4.0.0
1. Initial Julia 1.0 release of CmdStan.jl (based on Stan.jl).
_
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | docs | 5471 | # A walk-through example
## Bernoulli example
Make CmdStan.jl available:
```
using CmdStan
```
Define a variable, e.g. 'bernoullistanmodel', to hold the Stan model definition:
```
bernoullistanmodel = "
data {
int<lower=0> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
"
```
Create a Stanmodel object by giving the model a name and pass in the Stan model:
```
stanmodel = Stanmodel(name="bernoulli", model=bernoullistanmodel);
```
This creates a default model for sampling. A subsequent call to stan() will return an array of samples.
Other arguments to Stanmodel() can be found in [`Stanmodel`](@ref)
The observed input data is defined below.
```
bernoullidata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
```
Each chain will use this data. If needed, an Array{Dict} can be defined with the same number of entries as the number of chains. This is also true for the optional `init` argument to stan(). Use these features with care, particularly providing different data as the chains are supposed to be from identical observed data.
Run the simulation by calling stan(), passing in the data and the intended working directory.
```
ProjDir = @__DIR__
rc, chns, cnames = stan(stanmodel, bernoullidata, ProjDir, CmdStanDir=CMDSTAN_HOME)
```
More documentation on stan() can be found in [`stan`](@ref)
If the return code rc indicated success (rc == 0), cmdstan execution completed succesfully.
Next possible steps can be:
```
sdf = read_summary(stanmodel)
```
The first time (or when updates to the model have been made) stan() will compile the model and create the executable.
On Windows, the CmdStanDir argument appears needed (this is still being investigated). On OSX/Unix CmdStanDir is obtained from an environment variable (see the Requirements section).
By default stan() will run 4 chains and optionally display a combined summary. Some other CmdStan methods, e.g. optimize, return a dictionary.
If `summary = true`, the default, the stan summary is also written to a .csv file and can be read in using:
```
csd = read_summary(stanmodel)
csd[:theta, :mean] # Select mean as computed by the stansummary binary.
```
Stanmodel has an optional argument `printsummary=false` to have cmdstan create the summary .csv file but not display the stansummary.
## Output format options
CmdStan.jl supports 3 output formats:
1. A 3 dimensional array ("a3d") where the first index refers to samples, the 2nd index to parameters and the 3rd index to chains.
2. A MCMCChains.Chains object, see the examples in subdirectory examples_mcmcchains.
3. A DataFrames object.
The default output format is :array.
To specify options 2 and 3 use:
```
stammodel= Stanmodel(..., output_format=:mcmcchains, ...)
```
or
```
stanmodel = Stanmodel(..., output_format=:dataframes, ...)
```
when creating the Stanmodel.
It is very important that in order to use option 2 the package MCMCChains.jl needs to be installed and loaded in your script, e.g. see the `bernoulli.jl` example in the ```examples_mcmcchains``` directory.
## Running a CmdStan script, some details
CmdStan.jl really only consists of 2 functions, Stanmodel() and stan().
### [`Stanmodel`](@ref)
Stanmodel() is used to define the basic attributes for a model:
```
monitor = ["theta", "lp__", "accept_stat__"]
stanmodel = Stanmodel(name="bernoulli", model=bernoullistanmodel,
monitors=monitor);
stanmodel
```
Above script, in the Julia REPL, shows all parameters in the model, in this case (by default) a sample model.
Compared to the call to Stanmodel() above, the keyword argument monitors has been added. This means that after the simulation is complete, only the monitored variables will be read in from the .csv file produced by Stan. This can be useful if many, e.g. 100s, nodes are being observed.
If the requested result is an MCMCChains.Chains object, another option is available by using ```set_section(chain, section_map_dict)```, e.g. see the example in ```examples_mcmcchains/Dyes/dyes.jl```.
If the samples are stored in a vector of DataFrames, the usual DataFrames selection options are available.
Below an example of updating default model values when creating a model:
```
stanmodel2 = Stanmodel(Sample(adapt=CmdStan.Adapt(delta=0.9)), name="bernoulli2", nchains=6)
```
The format is slightly different from cmdstan, but the parameters are as described in the cmdstan Interface User's Guide. This is also the case for the Stanmodel() optional arguments random, init and output (refresh only).
In the REPL, the stanmodel2 can be shown by:
```
stanmodel2
```
After the Stanmodel object has been created fields can be updated, e.g.
```
stanmodel2.method.adapt.delta=0.85
```
### [`stan`](@ref)
After a Stanmodel has been created, the workhorse function stan() is called to run the simulation. Note that some fields in the Stanmodel are updated by stan().
After the stan() call, the stanmodel.command contains an array of Cmd fields that contain the actual run commands for each chain. These are executed in parallel if that is possible. The call to stan() might update other info in the StanModel, e.g. the names of diagnostics files.
The stan() call uses 'make' to create (or update when needed) an executable with the given model.name, e.g. bernoulli in the above example. If no model AbstractString (or of zero length) is found, a message will be shown.
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | docs | 854 | # Programs
## CMDSTAN_HOME
```@docs
CMDSTAN_HOME
```
## `set_cmdstan_home!`
```@docs
CmdStan.set_cmdstan_home!
CmdStan.rel_path_cmdstan
```
## stanmodel()
```@docs
Stanmodel
CmdStan.update_model_file
```
## stan()
```@docs
stan
```
## Types
```@docs
CmdStan.Method
CmdStan.Sample
CmdStan.Adapt
CmdStan.SamplingAlgorithm
CmdStan.Hmc
CmdStan.Metric
CmdStan.Engine
CmdStan.Nuts
CmdStan.Static
CmdStan.Diagnostics
CmdStan.Gradient
CmdStan.Diagnose
CmdStan.OptimizeAlgorithm
CmdStan.Optimize
CmdStan.Lbfgs
CmdStan.Bfgs
CmdStan.Newton
CmdStan.Variational
```
## Utilities
```@docs
CmdStan.cmdline
CmdStan.check_dct_type
CmdStan.convert_a3d
CmdStan.Fixed_param
CmdStan.par
CmdStan.read_optimize
CmdStan.read_samples
CmdStan.read_variational
CmdStan.read_diagnose
CmdStan.stan_summary
CmdStan.read_summary
CmdStan.update_R_file
```
## Index
```@index
```
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 6.6.0 | 6ed0a91233e7865924037b34ba17671ef1707ec5 | docs | 992 | # LotkaVolterra example in Stan and DiffEqBayes formulations.
This subdirectory contains 6 examples.
1. lv_benchmark is basically the benchmark as in DiffEqBayes
2. lv_benchmark_1 identified the lynx-hare coefficients using the lynx-hare data
3. lv_benchmark_2 uses the DiffEqBayes generated data
4. lv_benchmark_3 also runs a DynamicHMC example
5. diffeqbayes four parameter case
6. diffeqbayes one parameter case
All simulations usually produce results close to the expected solution.
All formulations occasionally have chains that do not converge.
All simulations use a slightly updated stan_inference method (imported from DiffEqBayes). It records the u_hat estimates (in a generated_quantities section) and enables pre-compiling by stanc. Note that current benchmarking tools currently don't work well for CmdStan due to the forced compilation of the Stan language program.
Notice that several additional (not normally required for CmdStan.jl) packages are needed in these scripts.
| CmdStan | https://github.com/StanJulia/CmdStan.jl.git |
|
[
"MIT"
] | 0.4.4 | b8a399e95663485820000f26b6a43c794e166a49 | code | 223 | using Documenter, RandomExtensions
makedocs(
sitename="RandomExtensions.jl",
modules=[RandomExtensions],
authors="Rafael Fourquet",
)
deploydocs(
repo = "github.com/JuliaRandom/RandomExtensions.jl.git",
)
| RandomExtensions | https://github.com/JuliaRandom/RandomExtensions.jl.git |
|
[
"MIT"
] | 0.4.4 | b8a399e95663485820000f26b6a43c794e166a49 | code | 4797 | module RandomExtensions
export make, Uniform, Normal, Exponential, CloseOpen, OpenClose, OpenOpen, CloseClose, Rand,
Bernoulli, Categorical, @rand
# re-exports from Random, which don't overlap with new functionality and not from misc.jl
export rand!, AbstractRNG, MersenneTwister, RandomDevice
import Random: Sampler, rand, rand!, gentype
using Random
using Random: GLOBAL_RNG, SamplerTrivial, SamplerSimple, SamplerTag, SamplerType, Repetition
using SparseArrays: sprand, sprandn, AbstractSparseArray, SparseVector, SparseMatrixCSC
if isdefined(Random, :default_rng)
using Random: default_rng
else
@inline default_rng() = GLOBAL_RNG
end
## a dummy container type to take advangage of SamplerTag constructor
struct Cont{T} end
Base.eltype(::Type{Cont{T}}) where {T} = T
## some helper functions, not to be overloaded, except default_sampling
default_sampling(::Type{X}) where {X} = error("default_sampling($X) not defined")
default_sampling(::X) where {X} = default_sampling(X)
default_gentype(::Type{T}) where {T} = val_gentype(default_sampling(T))
default_gentype(::X) where {X} = default_gentype(X)
val_gentype(X) = gentype(X)
val_gentype(::Type{X}) where {X} = X
## rand! for non-containers
rand!(y, X) = rand!(default_rng(), y, X)
rand!(y, ::Type{X}) where {X} = rand!(default_rng(), y, X)
rand!(rng::AbstractRNG, y, X) = rand!(rng, y, Sampler(rng, X, Val(1)))
rand!(rng::AbstractRNG, y, ::Type{X}) where {X} = rand!(rng, y, Sampler(rng, X, Val(1)))
## includes
include("distributions.jl")
include("sampling.jl")
include("containers.jl")
include("iteration.jl")
include("macros.jl")
## updated rand docstring (TODO: replace Base's one)
"""
rand([rng=GLOBAL_RNG], [S], [C...]) # RandomExtensions
Pick a random element or collection of random elements from the set of values specified by `S`;
`S` can be
* an indexable collection (for example `1:n` or `['x','y','z']`),
* an `AbstractDict` or `AbstractSet` object,
* a string (considered as a collection of characters), or
* a type: the set of values to pick from is then equivalent to `typemin(S):typemax(S)` for
integers (this is not applicable to `BigInt`, and to ``[0, 1)`` for floating
point numbers;
* a `Distribution` object, e.g. `Normal()` for a normal distribution (like `randn()`),
or `CloseOpen(10.0, 20.0)` for uniform `Float64` numbers in the range ``[10.0, 20.0)``;
* a `make` object, which can be e.g. `make(Pair, S1, S2)` or `make(Complex, S1, S2)`,
where `S1` and `S2` are one of the specifications above; `Pair` or `Complex` can optionally be
given as concrete types, e.g. `make(ComplexF64, 1:3, Int)` to generate `ComplexF64` instead
of `Complex{Int}`.
`S` usually defaults to `Float64`.
If `C...` is not specified, `rand` produces a scalar. Otherwise, `C` can be:
* a set of integers, or a tuple of `Int`, which specify the dimensions of an `Array` to generate;
* `(Array, dims...)`: same as above, but with `Array` specified explicitely;
* `(p::AbstractFloat, m::Integer, [n::Integer])`, which produces a sparse array of dimensions `(m, n)`,
in which the probability of any element being nonzero is independently given by `p`;
* `(String, [n=8])`, which produces a random `String` of length `n`; the generated string consists of `Char`
taken from a predefined set like `randstring`, and can be specified with the `S` parameter;
* `(Dict, n)`, which produces a `Dict` of length `n`; if `Dict` is given without type parameters,
then `S` must be specified;
* `(Set, n)` or `(BitSet, n)`, which produces a set of length `n`;
* `(BitArray, dims...)`, which produces a `BitArray` with the specified dimensions.
For `Array`, `Dict` and `Set`, a less abstract type can be specified, e.g. `Set{Float64}`, to force
the type of the result regardless of the `S` parameter. In particular, in the absence of `S`, the
type parameter(s) of the container play the role of `S`; for example, `rand(Dict{Int,Float64}, n)`
is equivalent to `rand(make(Pair, Int, Float64), Dict, n)`.
# Examples
```julia-repl
julia> rand(Int, 2)
2-element Array{Int64,1}:
1339893410598768192
1575814717733606317
julia> rand(MersenneTwister(0), Dict(1=>2, 3=>4))
1=>2
julia> rand("abc", String, 12)
"bccaacaabaac"
julia> rand(1:10, Set, 3)
Set([3, 8, 6])
julia> rand(1:10, Set{Float64}, 3)
Set([10.0, 5.0, 6.0])
```
!!! note
The complexity of `rand(rng, s::Union{AbstractDict,AbstractSet})`
is linear in the length of `s`, unless an optimized method with
constant complexity is available, which is the case for `Dict`,
`Set` and `BitSet`. For more than a few calls, use `rand(rng,
collect(s))` instead, or either `rand(rng, Dict(s))` or `rand(rng,
Set(s))` as appropriate.
"""
rand
end # module
| RandomExtensions | https://github.com/JuliaRandom/RandomExtensions.jl.git |
|
[
"MIT"
] | 0.4.4 | b8a399e95663485820000f26b6a43c794e166a49 | code | 5988 | # generation of some containers filled with random values
if VERSION < v"1.2.0-DEV.257"
Base.:(!=)(x) = Base.Fix2(!=, x)
end
function make_argument(param)
if param isa Symbol
param
else
param::Expr
@assert param.head == :(::)
if param.args[1] isa Symbol
param.args[1]
else
@assert param.args[1].head == :curly
@assert param.args[1].args[1] == :Type
@assert param.args[1].args[2] isa Symbol
param.args[1].args[2]
end
end
end
# arg names must not be "rng" nor "X", already in use
# (this is for nicer output of methods, to avoid cryptic names with gensym)
macro make_container(margs...)
definitions = []
argss = []
for a in margs
push!(argss,
a isa Expr && a.head == :vect ? # optional
[nothing, a.args[1]] :
a isa Expr && a.head == :call && a.args[1] == :(=>) ? # curly
[a.args[2] => a.args[3]] :
[a])
end
pushfirst!(argss, [(), :X, :(::Type{X}) => :X]) # for Sampler
for as0 in Iterators.product(argss...)
as1 = filter(!=(nothing), collect(Any, as0))
curlys = []
replace!(as1) do a
if a isa Pair
push!(curlys, a[2])
a.first
else
a
end
end
for def in (:(rand(rng::AbstractRNG) where {} = rand(rng, make())),
:(rand() where {} = rand(default_rng(), make())))
append!(def.args[1].args[1].args, filter(!=(()), as1))
as2 = copy(as1)
as2[1], as2[2] = as2[2], as2[1]
filter!(!=(()), as2)
append!(def.args[2].args[2].args[3].args, map(make_argument, as2))
append!(def.args[1].args, curlys)
push!(definitions, def)
end
end
esc(Expr(:block, definitions...))
end
@make_container(::Type{String}, [n::Integer])
# we disable smthg like rand(String, 2, 3) because it looks to similar to, but is too different
# than, rand(String, 2) (Array of String vs String)
string_error() = throw(ArgumentError(
"rand([rng], String, d1::Integer, d2::Integer, ...) is unsupported,
use rand(rng, make(String), d1, d2, ...) or rand(rng, String, (d1, d2, ...)) instead"))
rand(rng::AbstractRNG, ::Type{String}, n::Integer...) = string_error()
rand( ::Type{String}, n::Integer...) = string_error()
# sparse vectors & matrices
@make_container(::Type{SparseVector}, p::AbstractFloat, m::Integer)
@make_container(::Type{SparseVector}, p::AbstractFloat, d::Dims{1})
@make_container(::Type{SparseMatrixCSC}, p::AbstractFloat, m::Integer, n::Integer)
@make_container(::Type{SparseMatrixCSC}, p::AbstractFloat, d::Dims{2})
# Tuple as a container
@make_container(T::Type{<:Tuple})
@make_container(::Type{Tuple}, n::Integer)
@make_container(T::Type{NTuple{N,TT} where N} => TT, n::Integer)
@make_container(T::Type{<:NamedTuple{K}} => K)
if VERSION < v"1.1.0"
# disambiguate
rand(rng::AbstractRNG, ::Type{NamedTuple}) = rand(rng, make(NamedTuple))
end
## arrays (same as in Random, but with explicit type specification, e.g. rand(Int, Array, 4)
macro make_array_container(Cont)
definitions =
[ :(rand(rng::AbstractRNG, $Cont, dims::Dims) = rand(rng, _make_cont(t, dims))),
:(rand( $Cont, dims::Dims) = rand(default_rng(), _make_cont(t, dims))),
:(rand(rng::AbstractRNG, $Cont, dims::Integer...) = rand(rng, _make_cont(t, Dims(dims)))),
:(rand( $Cont, dims::Integer...) = rand(default_rng(), _make_cont(t, Dims(dims)))),
:(rand(rng::AbstractRNG, X, $Cont, dims::Dims) = rand(rng, _make_cont(t, X, dims))),
:(rand( X, $Cont, dims::Dims) = rand(default_rng(), _make_cont(t, X, dims))),
:(rand(rng::AbstractRNG, X, $Cont, dims::Integer...) = rand(rng, _make_cont(t, X, Dims(dims)))),
:(rand( X, $Cont, dims::Integer...) = rand(default_rng(), _make_cont(t, X, Dims(dims)))),
:(rand(rng::AbstractRNG, ::Type{X}, $Cont, dims::Dims) where {X} = rand(rng, _make_cont(t, X, dims))),
:(rand( ::Type{X}, $Cont, dims::Dims) where {X} = rand(default_rng(), _make_cont(t, X, dims))),
:(rand(rng::AbstractRNG, ::Type{X}, $Cont, dims::Integer...) where {X} = rand(rng, _make_cont(t, X, Dims(dims)))),
:(rand( ::Type{X}, $Cont, dims::Integer...) where {X} = rand(default_rng(), _make_cont(t, X, Dims(dims)))),
]
esc(Expr(:block, definitions...))
end
_make_cont(args...) = make(args...)
@make_array_container(t::Type{<:Array})
@make_array_container(t::Type{<:BitArray})
@make_array_container(t::AbstractFloat)
_make_cont(t::AbstractFloat, x, dims::Dims{1}) = make(SparseVector, x, t, dims)
_make_cont(t::AbstractFloat, dims::Dims{1}) = make(SparseVector, t, dims)
_make_cont(t::AbstractFloat, x, dims::Dims{2}) = make(SparseMatrixCSC, x, t, dims)
_make_cont(t::AbstractFloat, dims::Dims{2}) = make(SparseMatrixCSC, t, dims)
## sets/dicts
function _rand!(rng::AbstractRNG, A::SetDict, n::Integer, sp::Sampler)
empty!(A)
while length(A) < n
push!(A, rand(rng, sp))
end
A
end
rand!( A::SetDict, X=default_sampling(A)) = rand!(default_rng(), A, X)
rand!(rng::AbstractRNG, A::SetDict, X=default_sampling(A)) = _rand!(rng, A, length(A), sampler(rng, X))
rand!( A::SetDict, ::Type{X}) where {X} = rand!(default_rng(), A, X)
rand!(rng::AbstractRNG, A::SetDict, ::Type{X}) where {X} = rand!(rng, A, Sampler(rng, X))
@make_container(T::Type{<:SetDict}, n::Integer)
| RandomExtensions | https://github.com/JuliaRandom/RandomExtensions.jl.git |
|
[
"MIT"
] | 0.4.4 | b8a399e95663485820000f26b6a43c794e166a49 | code | 8988 | # definition of some distribution types
## Distribution & Make
abstract type Distribution{T} end
Base.eltype(::Type{<:Distribution{T}}) where {T} = T
struct Make{T,X<:Tuple, XX<:Tuple} <: Distribution{T}
# XX is X with Type{A} replaced by Nothing (otherwise, X (e.g. Tuple{Type{Int}}) can't have instances)
x::XX
end
# @inline necessary for one @inferred test on arrays
@inline function Base.getindex(m::Make{T,X}, i::Integer) where {T,X}
i = Int(i)
fieldtype(X, i) <: Type ?
fieldtype(X, i).parameters[1] :
m.x[i]
end
@inline Base.getindex(m::Make, idxs::AbstractVector{<:Integer}) =
ntuple(i->m[idxs[i]], length(idxs))
# seems faster than `Tuple(m[i] for i in idxs)`
Base.lastindex(m::Make) = lastindex(m.x)
@generated function Make{T}(X...) where T
XX = Tuple{(x <: Type ? Nothing : x for x in X)...}
y = [x <: Type ? nothing : :(X[$i]) for (i, x) in enumerate(X)]
:(Make{T,Tuple{$X...},$XX}(tuple($(y...))))
end
Make0{T} = Make{T,Tuple{}}
Make1{T} = Make{T,Tuple{X}} where X
Make2{T} = Make{T,Tuple{X,Y}} where {X, Y}
Make3{T} = Make{T,Tuple{X,Y,Z}} where {X, Y, Z}
Make4{T} = Make{T,Tuple{X,Y,Z,U}} where {X, Y, Z, U}
Make5{T} = Make{T,Tuple{X,Y,Z,U,V}} where {X, Y, Z, U, V}
Make0{T}() where {T} = Make{T}()
Make1{T}(x) where {T} = Make{T}(x)
Make2{T}(x, y) where {T} = Make{T}(x, y)
Make3{T}(x, y, z) where {T} = Make{T}(x, y, z)
Make4{T}(x, y, z, u) where {T} = Make{T}(x, y, z, u)
Make5{T}(x, y, z, u, v) where {T} = Make{T}(x, y, z, u, v)
# default maketype & make & Make(...)
# Make(...) is not meant to be specialized, i.e. Make(a, b, c) always create a Make3,
# and is equal to the *default* make(...)
# (it's a fall-back for client code which can help break recursivity)
# TODO: add tests for Make(...)
maketype(::Type{T}, x...) where {T} = T
Make(::Type{T}, x...) where {T} = Make{maketype(T, x...)}(x...)
make(::Type{T}, x...) where {T} = Make{maketype(T, x...)}(x...)
# make(x) is defined in sampling.jl, and is a special case wrapping already valid
# distributions (explicit or implicit)
Make(x1, x2, xs...) = Make{maketype(x1, x2, xs...)}(x1, x2, xs...)
make(x1, x2, xs...) = Make{maketype(x1, x2, xs...)}(x1, x2, xs...)
find_deduced_type(::Type{T}, ::X, ) where {T,X} = deduce_type(T, gentype(X))
find_deduced_type(::Type{T}, ::Type{X}) where {T,X} = deduce_type(T, X)
find_deduced_type(::Type{T}, ::X, ::Y) where {T,X,Y} = deduce_type(T, gentype(X), gentype(Y))
find_deduced_type(::Type{T}, ::Type{X}, ::Y) where {T,X,Y} = deduce_type(T, X, gentype(Y))
find_deduced_type(::Type{T}, ::X, ::Type{Y}) where {T,X,Y} = deduce_type(T, gentype(X), Y)
find_deduced_type(::Type{T}, ::Type{X}, ::Type{Y}) where {T,X,Y} = deduce_type(T, X, Y)
deduce_type(::Type{T}, ::Type{X}, ::Type{Y}) where {T,X,Y} = _deduce_type(T, Val(isconcretetype(T)), X, Y)
deduce_type(::Type{T}, ::Type{X}) where {T,X} = _deduce_type(T, Val(isconcretetype(T)), X)
_deduce_type(::Type{T}, ::Val{true}, ::Type{X}, ::Type{Y}) where {T,X,Y} = T
_deduce_type(::Type{T}, ::Val{false}, ::Type{X}, ::Type{Y}) where {T,X,Y} = deduce_type(T{X}, Y)
_deduce_type(::Type{T}, ::Val{true}, ::Type{X}) where {T,X} = T
_deduce_type(::Type{T}, ::Val{false}, ::Type{X}) where {T,X} = T{X}
# show(::Make)
function Base.show(io::IO, m::Make{T}) where {T}
M = typeof(m)
P = M.parameters[2].parameters
t = ntuple(length(m.x)) do i
P[i] isa Type{<:Type} ? P[i].parameters[1] : m.x[i]
end
Base.show_type_name(io, M.name)
print(io, "{", T, "}", t)
end
## Uniform
abstract type Uniform{T} <: Distribution{T} end
struct UniformType{T} <: Uniform{T} end
Uniform(::Type{T}) where {T} = UniformType{T}()
Base.getindex(::UniformType{T}) where {T} = T
struct UniformWrap{T,E} <: Uniform{E}
val::T
end
Uniform(x::T) where {T} = UniformWrap{T,gentype(T)}(x)
Base.getindex(x::UniformWrap) = x.val
## Normal & Exponential
abstract type Normal{T} <: Distribution{T} end
struct Normal01{T} <: Normal{T} end
struct NormalΞΌΟ{T} <: Normal{T}
ΞΌ::T
Ο::T
end
const NormalTypes = Union{AbstractFloat,Complex{<:AbstractFloat}}
Normal(::Type{T}=Float64) where {T<:NormalTypes} = Normal01{T}()
Normal(ΞΌ::T, Ο::T) where {T<:NormalTypes} = NormalΞΌΟ(ΞΌ, Ο)
Normal(ΞΌ::T, Ο::T) where {T<:Real} = NormalΞΌΟ(AbstractFloat(ΞΌ), AbstractFloat(Ο))
Normal(ΞΌ, Ο) = Normal(promote(ΞΌ, Ο)...)
abstract type Exponential{T} <: Distribution{T} end
struct Exponential1{T} <: Exponential{T} end
struct ExponentialΞΈ{T} <: Exponential{T}
ΞΈ::T
end
Exponential(::Type{T}=Float64) where {T<:AbstractFloat} = Exponential1{T}()
Exponential(ΞΈ::T) where {T<:AbstractFloat} = ExponentialΞΈ(ΞΈ)
Exponential(ΞΈ::Real) = ExponentialΞΈ(AbstractFloat(ΞΈ))
## floats
abstract type FloatInterval{T<:AbstractFloat} <: Uniform{T} end
abstract type CloseOpen{ T<:AbstractFloat} <: FloatInterval{T} end
abstract type OpenClose{ T<:AbstractFloat} <: FloatInterval{T} end
abstract type CloseClose{T<:AbstractFloat} <: FloatInterval{T} end
abstract type OpenOpen{ T<:AbstractFloat} <: FloatInterval{T} end
struct CloseOpen12{T<:AbstractFloat} <: CloseOpen{T} end # interval [1,2)
struct CloseOpen01{ T<:AbstractFloat} <: CloseOpen{T} end # interval [0,1)
struct OpenClose01{ T<:AbstractFloat} <: OpenClose{T} end # interval (0,1]
struct CloseClose01{T<:AbstractFloat} <: CloseClose{T} end # interval [0,1]
struct OpenOpen01{ T<:AbstractFloat} <: OpenOpen{T} end # interval (0,1)
struct CloseOpenAB{T<:AbstractFloat} <: CloseOpen{T} # interval [a,b)
a::T
b::T
CloseOpenAB{T}(a::T, b::T) where {T} = (check_interval(a, b); new{T}(a, b))
end
struct OpenCloseAB{T<:AbstractFloat} <: OpenClose{T} # interval (a,b]
a::T
b::T
OpenCloseAB{T}(a::T, b::T) where {T} = (check_interval(a, b); new{T}(a, b))
end
struct CloseCloseAB{T<:AbstractFloat} <: CloseClose{T} # interval [a,b]
a::T
b::T
CloseCloseAB{T}(a::T, b::T) where {T} = (check_interval(a, b); new{T}(a, b))
end
struct OpenOpenAB{T<:AbstractFloat} <: OpenOpen{T} # interval (a,b)
a::T
b::T
OpenOpenAB{T}(a::T, b::T) where {T} = (check_interval(a, b); new{T}(a, b))
end
check_interval(a, b) = a >= b && throw(ArgumentError("invalid interval specification"))
const FloatInterval_64 = FloatInterval{Float64}
const CloseOpen01_64 = CloseOpen01{Float64}
const CloseOpen12_64 = CloseOpen12{Float64}
CloseOpen01(::Type{T}=Float64) where {T<:AbstractFloat} = CloseOpen01{T}()
CloseOpen12(::Type{T}=Float64) where {T<:AbstractFloat} = CloseOpen12{T}()
CloseOpen(::Type{T}=Float64) where {T<:AbstractFloat} = CloseOpen01{T}()
CloseOpen(a::T, b::T) where {T<:AbstractFloat} = CloseOpenAB{T}(a, b)
OpenClose(::Type{T}=Float64) where {T<:AbstractFloat} = OpenClose01{T}()
OpenClose(a::T, b::T) where {T<:AbstractFloat} = OpenCloseAB{T}(a, b)
CloseClose(::Type{T}=Float64) where {T<:AbstractFloat} = CloseClose01{T}()
CloseClose(a::T, b::T) where {T<:AbstractFloat} = CloseCloseAB{T}(a, b)
OpenOpen(::Type{T}=Float64) where {T<:AbstractFloat} = OpenOpen01{T}()
OpenOpen(a::T, b::T) where {T<:AbstractFloat} = OpenOpenAB{T}(a, b)
# convenience functions
CloseOpen(a, b) = CloseOpen(promote(a, b)...)
CloseOpen(a::T, b::T) where {T} = CloseOpen(AbstractFloat(a), AbstractFloat(b))
OpenClose(a, b) = OpenClose(promote(a, b)...)
OpenClose(a::T, b::T) where {T} = OpenClose(AbstractFloat(a), AbstractFloat(b))
CloseClose(a, b) = CloseClose(promote(a, b)...)
CloseClose(a::T, b::T) where {T} = CloseClose(AbstractFloat(a), AbstractFloat(b))
OpenOpen(a, b) = OpenOpen(promote(a, b)...)
OpenOpen(a::T, b::T) where {T} = OpenOpen(AbstractFloat(a), AbstractFloat(b))
## Bernoulli
struct Bernoulli{T<:Number} <: Distribution{T}
p::Float64
Bernoulli{T}(p::Real) where {T} = let pf = Float64(p)
0.0 <= pf <= 1.0 ? new(pf) :
throw(DomainError(p, "Bernoulli: parameter p must satisfy 0.0 <= p <= 1.0"))
end
end
Bernoulli(p::Real=0.5) = Bernoulli(Int, p)
Bernoulli(::Type{T}, p::Real=0.5) where {T<:Number} = Bernoulli{T}(p)
## Categorical
struct Categorical{T<:Number} <: Distribution{T}
cdf::Vector{Float64}
function Categorical{T}(weigths) where T
if !isa(weigths, AbstractArray)
# necessary for accumulate
# TODO: will not be necessary anymore in Julia 1.5
weigths = collect(weigths)
end
weigths = vec(weigths)
isempty(weigths) &&
throw(ArgumentError("Categorical requires at least one category"))
s = Float64(sum(weigths))
cdf = accumulate(weigths; init=0.0) do x, y
x + Float64(y) / s
end
@assert isapprox(cdf[end], 1.0) # really?
cdf[end] = 1.0 # to be sure the algo terminates
new{T}(cdf)
end
end
Categorical(weigths) = Categorical{Int}(weigths)
Categorical(n::Number) =
Categorical{typeof(n)}(Iterators.repeated(1.0 / Float64(n), Int(n)))
| RandomExtensions | https://github.com/JuliaRandom/RandomExtensions.jl.git |
|
[
"MIT"
] | 0.4.4 | b8a399e95663485820000f26b6a43c794e166a49 | code | 882 | # iterating over on-the-fly generated random values
## Rand
struct Rand{R<:AbstractRNG,S<:Sampler}
rng::R
sp::S
end
# X can be an explicit Distribution, or an implicit one like 1:10
Rand(rng::AbstractRNG, X) = Rand(rng, Sampler(rng, X))
Rand(rng::AbstractRNG, ::Type{X}=Float64) where {X} = Rand(rng, Sampler(rng, X))
Rand(X) = Rand(default_rng(), X)
Rand(::Type{X}=Float64) where {X} = Rand(default_rng(), X)
(R::Rand)(args...) = rand(R.rng, R.sp, args...)
Base.iterate(iter::Union{Rand,Distribution}, R::Rand=iter) = R(), R
Base.IteratorSize(::Type{<:Rand}) = Base.IsInfinite()
Base.IteratorEltype(::Type{<:Rand}) = Base.HasEltype()
Base.eltype(::Type{<:Rand{R, <:Sampler{T}}}) where {R,T} = T
# convenience iteration over distributions
Base.iterate(d::Distribution) = iterate(Rand(default_rng(), d))
Base.IteratorSize(::Type{<:Distribution}) = Base.IsInfinite()
| RandomExtensions | https://github.com/JuliaRandom/RandomExtensions.jl.git |
|
[
"MIT"
] | 0.4.4 | b8a399e95663485820000f26b6a43c794e166a49 | code | 3418 | macro rand(exp)
rand_macro(exp)
end
function rand_macro(ex)
whereparams = []
ex isa Expr && ex.head β (:(=), :function, :->) ||
throw(ArgumentError("@rand requires an expression defining `rand`"))
sig = ex.args[1]
body = ex.args[2]
if sig.head == :where
append!(whereparams, sig.args[2:end])
sig = sig.args[1]
end
if ex.head == :function && sig.head == :tuple # anonymous function
sig = Expr(:call, :rand, sig.args...)
end
if ex.head == :->
# TODO: check that only one argument is passed
sig = Expr(:call, :rand, sig)
end
sig.head == :call &&
sig.args[1] == :rand || throw(ArgumentError(
"@rand requires a function expression defining `rand`"))
argname = sig.args[2].args[1] # x
namefull = sig.args[2] # x::X
@assert namefull.head == :(::) # TODO: throw exception
# sub-samplers; second argument true forces Val(Inf) for the sampler
sps = Pair{<:Any,Bool}[]
rng = gensym()
body = samplerize!(sps, body, argname, rng)
istrivial = isempty(sps)
exsig = Expr(:call,
:(Random.rand),
:($(esc(rng))::AbstractRNG),
esc(as_sampler(namefull, istrivial)))
if !isempty(whereparams)
exsig = Expr(:where, exsig, map(esc, whereparams)...)
end
ex = Expr(:function, exsig, esc(body))
sp = if istrivial
# we explicitly define Sampler even in the trivial case to handle
# redefinitions, where the old rand/sampler pair (for SamplerSimple)
# is overwritten by a new one (for SamplerTrivial)
quote
Random.Sampler(::Type{RNG}, n::Repetition) where {RNG<:AbstractRNG} =
SamplerTrivial($(esc(argname)))
end
else
quote
Random.Sampler(::Type{RNG}, n::Repetition) where {RNG<:AbstractRNG} =
SamplerSimple($(esc(argname)), tuple(SP))
end
end
@assert sp.args[2].args[1].head == :where
append!(sp.args[2].args[1].args, map(esc, whereparams))
# insert x::X in the argument list, between RNG and n::Repetition
insert!(sp.args[2].args[1].args[1].args, 3, esc(namefull))
# insert inner samplers
if !istrivial
SP = [Expr(:call, :Sampler, :RNG, esc(x), many ? Val{Inf}() : :n) for (x, many) in sps]
@assert :SP == pop!(sp.args[2].args[2].args[2].args[3].args)
append!(sp.args[2].args[2].args[2].args[3].args, SP)
end
quote
$ex
$(sp.args[2]) # unwrap the quote/block around the definition
end
end
function as_sampler(ex, istrivial)
t = istrivial ? :(RandomExtensions.SamplerTrivial) : :(RandomExtensions.SamplerSimple)
Expr(:(::),
ex.args[1],
Expr(:curly, t,
Expr(:(<:), ex.args[2])))
end
function samplerize!(sps, ex, name, rng)
if ex == name
# not within a rand() call
return Expr(:ref, name) # name -> name[]
end
ex isa Expr || return ex
if ex.head == :call && ex.args[1] == :rand
# we assume that if rand has more than one arg, we want
# a Val(Inf) sampler (e.g. rand(1:9, 2, 3)
push!(sps, ex.args[2] => length(ex.args) > 2)
i = length(sps)
Expr(:call, :rand, rng, :($name.data[$i]), ex.args[3:end]...)
else
Expr(ex.head, map(e -> samplerize!(sps, e, name, rng), ex.args)...)
end
end
| RandomExtensions | https://github.com/JuliaRandom/RandomExtensions.jl.git |
|
[
"MIT"
] | 0.4.4 | b8a399e95663485820000f26b6a43c794e166a49 | code | 23298 | # definition of samplers and random generation
# allows to call `Sampler` only when the the arg isn't a Sampler itself
sampler(::Type{RNG}, X, n::Repetition=Val(Inf)) where {RNG<:AbstractRNG} =
Sampler(RNG, X, n)
sampler(::Type{RNG}, ::Type{X}, n::Repetition=Val(Inf)) where {RNG<:AbstractRNG,X} =
Sampler(RNG, X, n)
sampler(::Type{RNG}, X::Sampler, n::Repetition=Val(Inf)) where {RNG<:AbstractRNG} = X
sampler(rng::AbstractRNG, X, n::Repetition=Val(Inf)) = sampler(typeof(rng), X, n)
## defaults
### 0-arg
make() = make(Float64)
### type: handles e.g. rand(make(Int))
# rand(rng, ::SamplerType{Make0{X}}) should not be overloaded, as make(T)
# has this special pass-thru Sampler defined below
Sampler(::Type{RNG}, ::Make0{X}, n::Repetition) where {RNG<:AbstractRNG,X} =
Sampler(RNG, X, n)
### object: handles e.g. rand(make(1:3))
# make(x) where x isn't a type should create a distribution d such that rand(x) is
# equivalent to rand(d); so we need to overload make(x) to give a different type
# than Make1{gentype(x)}, as we can't simply define a generic pass-thru Sampler for
# that Make1 type (because users expect the default to be a SamplerTrivial{<:Make1{...}},
# and might want to define only a rand method on this SamplerTrivial)
# like Make1
struct MakeWrap{T,X} <: Distribution{T}
x::X
end
# make(::Type) is intercepted in distribution.jl
make(x) = MakeWrap{gentype(x),typeof(x)}(x)
Sampler(::Type{RNG}, x::MakeWrap, n::Repetition) where {RNG<:AbstractRNG} =
Sampler(RNG, x.x, n)
## Uniform
Sampler(::Type{RNG}, d::Union{UniformWrap,UniformType}, n::Repetition
) where {RNG<:AbstractRNG} =
Sampler(RNG, d[], n)
## floats
### fall-back on Random definitions
for CO in (:CloseOpen01, :CloseOpen12)
@eval begin
Sampler(::Type{RNG}, ::$CO{T}, n::Repetition) where {RNG<:AbstractRNG,T} =
Sampler(RNG, Random.$CO{T}(), n)
Sampler(::Type{<:AbstractRNG}, ::$CO{BigFloat}, ::Repetition) =
Random.SamplerBigFloat{Random.$CO{BigFloat}}(precision(BigFloat))
end
end
### new intervals 01
# TODO: optimize for BigFloat
for CO = (:OpenClose01, :OpenOpen01, :CloseClose01)
@eval Sampler(::Type{RNG}, I::$CO{T}, n::Repetition) where {RNG<:AbstractRNG,T} =
SamplerSimple(I, CloseOpen01(T))
end
rand(r::AbstractRNG, sp::SamplerSimple{OpenClose01{T}}) where {T} =
one(T) - rand(r, sp.data)
rand(r::AbstractRNG, sp::SamplerSimple{OpenOpen01{T}}) where {T} =
while true
x = rand(r, sp.data)
x != zero(T) && return x
end
# optimizations (TODO: optimize for BigFloat too)
rand(r::AbstractRNG, sp::SamplerSimple{OpenOpen01{Float64}}) =
reinterpret(Float64, reinterpret(UInt64, rand(r, sp.data)) | 0x0000000000000001)
rand(r::AbstractRNG, sp::SamplerSimple{OpenOpen01{Float32}}) =
reinterpret(Float32, reinterpret(UInt32, rand(r, sp.data)) | 0x00000001)
rand(r::AbstractRNG, sp::SamplerSimple{OpenOpen01{Float16}}) =
reinterpret(Float16, reinterpret(UInt16, rand(r, sp.data)) | 0x0001)
# prevfloat(T(2)) - 1 for IEEEFloat
upper01(::Type{Float64}) = 0.9999999999999998
upper01(::Type{Float32}) = 0.9999999f0
upper01(::Type{Float16}) = Float16(0.999)
upper01(::Type{BigFloat}) = prevfloat(one(BigFloat))
rand(r::AbstractRNG, sp::SamplerSimple{CloseClose01{T}}) where {T} =
rand(r, sp.data) / upper01(T)
### CloseOpenAB
for (CO, CO01) = (CloseOpenAB => CloseOpen01,
OpenCloseAB => OpenClose01,
CloseCloseAB => CloseClose01,
OpenOpenAB => OpenOpen01)
@eval Sampler(::Type{RNG}, d::$CO{T}, n::Repetition) where {RNG<:AbstractRNG,T} =
SamplerTag{$CO{T}}((a=d.a, d=d.b - d.a, sp=Sampler(RNG, $CO01{T}(), n)))
@eval rand(rng::AbstractRNG, sp::SamplerTag{$CO{T}}) where {T} =
sp.data.a + sp.data.d * rand(rng, sp.data.sp)
end
## Normal & Exponential
rand(rng::AbstractRNG, ::SamplerTrivial{Normal01{T}}) where {T<:NormalTypes} =
randn(rng, T)
Sampler(::Type{RNG}, d::NormalΞΌΟ{T}, n::Repetition) where {RNG<:AbstractRNG,T} =
SamplerSimple(d, Sampler(RNG, Normal(T), n))
rand(rng::AbstractRNG, sp::SamplerSimple{NormalΞΌΟ{T},<:Sampler}) where {T} =
sp[].ΞΌ + sp[].Ο * rand(rng, sp.data)
rand(rng::AbstractRNG, ::SamplerTrivial{Exponential1{T}}) where {T<:AbstractFloat} =
randexp(rng, T)
Sampler(::Type{RNG}, d::ExponentialΞΈ{T}, n::Repetition) where {RNG<:AbstractRNG,T} =
SamplerSimple(d, Sampler(RNG, Exponential(T), n))
rand(rng::AbstractRNG, sp::SamplerSimple{ExponentialΞΈ{T},<:Sampler}) where {T} =
sp[].ΞΈ * rand(rng, sp.data)
## Bernoulli
Sampler(::Type{RNG}, b::Bernoulli, n::Repetition) where {RNG<:AbstractRNG} =
SamplerTag{typeof(b)}(b.p+1.0)
rand(rng::AbstractRNG, sp::SamplerTag{Bernoulli{T}}) where {T} =
ifelse(rand(rng, CloseOpen12()) < sp.data, one(T), zero(T))
## Categorical
Sampler(::Type{RNG}, c::Categorical, n::Repetition) where {RNG<:AbstractRNG} =
SamplerSimple(c, Sampler(RNG, CloseOpen(), n))
# unfortunately requires @inline to avoid allocating
@inline rand(rng::AbstractRNG, sp::SamplerSimple{Categorical{T}}) where {T} =
let c = rand(rng, sp.data)
T(findfirst(x -> x >= c, sp[].cdf))
end
# NOTE:
# if length(cdf) is somewhere between 150 and 200, the following gets faster:
# T(searchsortedfirst(sp[].cdf, rand(rng, sp.data)))
## random elements from pairs
#= disabled in favor of a special meaning for pairs
Sampler(RNG::Type{<:AbstractRNG}, t::Pair, n::Repetition) =
SamplerSimple(t, Sampler(RNG, Bool, n))
rand(rng::AbstractRNG, sp::SamplerSimple{<:Pair}) =
@inbounds return sp[][1 + rand(rng, sp.data)]
=#
## composite types
### sampler for pairs and complex numbers
maketype(::Type{Pair}, x, y) = Pair{val_gentype(x), val_gentype(y)}
maketype(::Type{Pair{X}}, _, y) where {X} = Pair{X, val_gentype(y)}
maketype(::Type{Pair{X,Y} where X}, x, _) where {Y} = Pair{val_gentype(x), Y}
maketype(::Type{Pair{X,Y}}, _, _) where {X,Y} = Pair{X,Y}
maketype(::Type{Complex}, x) = Complex{val_gentype(x)}
maketype(::Type{T}, _) where {T<:Complex} = T
maketype(::Type{Complex}, x, y) = Complex{promote_type(val_gentype(x), val_gentype(y))}
maketype(::Type{T}, _, _) where {T<:Complex} = T
function Sampler(::Type{RNG}, u::Make2{T}, n::Repetition
) where RNG<:AbstractRNG where T <: Union{Pair,Complex}
sp1 = sampler(RNG, u[1], n)
sp2 = u[1] == u[2] ? sp1 : sampler(RNG, u[2], n)
SamplerTag{Cont{T}}((sp1, sp2))
end
rand(rng::AbstractRNG, sp::SamplerTag{Cont{T}}) where {T<:Union{Pair,Complex}} =
T(rand(rng, sp.data[1]), rand(rng, sp.data[2]))
#### additional convenience methods
# rand(Pair{A,B}) => rand(make(Pair{A,B}, A, B))
if VERSION < v"1.11.0-DEV.618" # now implemented in `Random`
Sampler(::Type{RNG}, ::Type{Pair{A,B}}, n::Repetition) where {RNG<:AbstractRNG,A,B} =
Sampler(RNG, make(Pair{A,B}, A, B), n)
end
# rand(make(Complex, x)) => rand(make(Complex, x, x))
Sampler(::Type{RNG}, u::Make1{T}, n::Repetition) where {RNG<:AbstractRNG,T<:Complex} =
Sampler(RNG, make(T, u[1], u[1]), n)
# rand(Complex{T}) => rand(make(Complex{T}, T, T)) (redundant with implem in Random)
Sampler(::Type{RNG}, ::Type{Complex{T}}, n::Repetition) where {RNG<:AbstractRNG,T<:Real} =
Sampler(RNG, make(Complex{T}, T, T), n)
### sampler for tuples
#### "simple scalar" (non-make) version
Sampler(::Type{RNG}, ::Type{T}, n::Repetition
) where {RNG<:AbstractRNG,T<:Union{Tuple,NamedTuple}} =
Sampler(RNG, make(T), n)
if VERSION >= v"1.11.0-DEV.573"
# now `Random` implements `rand(Tuple{...})`, so be more specific for
# special stuff still not implemented by `Random`
# TODO: we should probably remove this
Sampler(::Type{RNG}, ::Type{Tuple}, n::Repetition) where {RNG <: AbstractRNG} =
Sampler(RNG, make(Tuple), n)
Sampler(::Type{RNG}, ::Type{NTuple{N}}, n::Repetition) where {RNG <: AbstractRNG, N} =
Sampler(RNG, make(NTuple{N}), n)
end
#### make
# implement make(Tuple, S1, S2...), e.g. for rand(make(Tuple, Int, 1:3)),
# and make(NTuple{N}, S)
_maketype(::Type{T}) where {T<:Tuple} =
T === Tuple ?
Tuple{} :
T === NTuple ?
Tuple{} :
T isa UnionAll && Type{T} <: Type{NTuple{N}} where N ?
T{default_gentype(Tuple)} :
T
function _maketype(::Type{T}, args...) where T <: Tuple
types = [t <: Type ? t.parameters[1] : gentype(t) for t in args]
TT = T === Tuple ?
Tuple{types...} :
_isNTuple(T, args...) ?
(T isa UnionAll ? Tuple{fill(types[1], fieldcount(T))...} : T ) :
T
TT
end
_isNTuple(::Type{T}, args...) where {T<:Tuple} =
length(args) == 1 && T !== Tuple && (
T <: NTuple || !isa(T, UnionAll)) # !isa(Tuple, UnionAll) !!
@generated function _make(::Type{T}, args...) where T <: Tuple
isempty(args) && return :(Make0{$(_maketype(T))}())
TT = _maketype(T, args...)
samples = [t <: Type ? :(UniformType{$(t.parameters[1])}()) :
:(args[$i]) for (i, t) in enumerate(args)]
if _isNTuple(T, args...)
:(Make1{$TT}($(samples[1])))
else
quote
if T !== Tuple && fieldcount(T) != length(args)
throw(ArgumentError("wrong number of provided argument with $T (should be $(fieldcount(T)))"))
else
Make1{$TT}(tuple($(samples...)))
end
end
end
end
make(::Type{T}, args...) where {T<:Tuple} = _make(T, args...)
# make(Tuple, X, n::Integer)
default_sampling(::Type{Tuple}) = Uniform(Float64)
make(::Type{Tuple}, X, n::Integer) = make(NTuple{Int(n)}, X)
make(::Type{Tuple}, ::Type{X}, n::Integer) where {X} = make(NTuple{Int(n)}, X)
make(::Type{Tuple}, n::Integer) = make(Tuple, default_sampling(Tuple), Int(n))
# NTuple{N,T} where N
make(::Type{NTuple{N,T} where N}, n::Integer) where {T} = make(NTuple{Int(n),T})
make(::Type{NTuple{N,T} where N}, X, n::Integer) where {T} = make(NTuple{Int(n),T}, X)
make(::Type{NTuple{N,T} where N}, ::Type{X}, n::Integer) where {T,X} = make(NTuple{Int(n),T}, X)
# disambiguate
for Tupl = (Tuple, NamedTuple)
@eval begin
make(::Type{T}, X) where {T<:$Tupl} = _make(T, X)
make(::Type{T}, ::Type{X}) where {T<:$Tupl,X} = _make(T, X)
make(::Type{T}, X, Y) where {T<:$Tupl} = _make(T, X, Y)
make(::Type{T}, ::Type{X}, Y) where {T<:$Tupl,X} = _make(T, X, Y)
make(::Type{T}, X, ::Type{Y}) where {T<:$Tupl,Y} = _make(T, X, Y)
make(::Type{T}, ::Type{X}, ::Type{Y}) where {T<:$Tupl,X,Y} = _make(T, X, Y)
make(::Type{T}, X, Y, Z) where {T<:$Tupl} = _make(T, X, Y, Z)
make(::Type{T}, ::Type{X}, Y, Z) where {T<:$Tupl,X} = _make(T, X, Y, Z)
make(::Type{T}, X, ::Type{Y}, Z) where {T<:$Tupl,Y} = _make(T, X, Y, Z)
make(::Type{T}, ::Type{X}, ::Type{Y}, Z) where {T<:$Tupl,X,Y} = _make(T, X, Y, Z)
make(::Type{T}, X, Y, ::Type{Z}) where {T<:$Tupl,Z} = _make(T, X, Y, Z)
make(::Type{T}, ::Type{X}, Y, ::Type{Z}) where {T<:$Tupl,X,Z} = _make(T, X, Y, Z)
make(::Type{T}, X, ::Type{Y}, ::Type{Z}) where {T<:$Tupl,Y,Z} = _make(T, X, Y, Z)
make(::Type{T}, ::Type{X}, ::Type{Y}, ::Type{Z}) where {T<:$Tupl,X,Y,Z} = _make(T, X, Y, Z)
end
end
#### Sampler for general tuples
@generated function Sampler(::Type{RNG}, c::Make1{T,X}, n::Repetition
) where {RNG<:AbstractRNG,T<:Tuple,X<:Tuple}
@assert fieldcount(T) == fieldcount(X)
sps = [:(sampler(RNG, c[1][$i], n)) for i in 1:length(T.parameters)]
:(SamplerTag{Cont{T}}(tuple($(sps...))))
end
@generated function Sampler(::Type{RNG}, ::Make0{T}, n::Repetition
) where {RNG<:AbstractRNG,T<:Tuple}
d = Dict{DataType,Int}()
sps = []
for t in T.parameters
i = get(d, t, nothing)
if i === nothing
push!(sps, :(Sampler(RNG, $t, n)))
d[t] = length(sps)
else
push!(sps, Val(i))
end
end
:(SamplerTag{Cont{T}}(tuple($(sps...))))
end
@generated function rand(rng::AbstractRNG, sp::SamplerTag{Cont{T},S}) where {T<:Tuple,S<:Tuple}
@assert fieldcount(T) == fieldcount(S)
rands = []
for i = 1:fieldcount(T)
j = fieldtype(S, i) <: Val ?
fieldtype(S, i).parameters[1] :
i
push!(rands, :(convert($(fieldtype(T, i)),
rand(rng, sp.data[$j]))))
end
:(tuple($(rands...)))
end
#### for "NTuple-like"
# should catch Tuple{Integer,Integer} which is not NTuple, or even Tuple{Int,UInt}, when only one sampler was passed
Sampler(::Type{RNG}, c::Make1{T,X}, n::Repetition) where {RNG<:AbstractRNG,T<:Tuple,X} =
SamplerTag{Cont{T}}(sampler(RNG, c[1], n))
@generated function rand(rng::AbstractRNG, sp::SamplerTag{Cont{T},S}) where {T<:Tuple,S<:Sampler}
rands = [:(convert($(T.parameters[i]), rand(rng, sp.data))) for i in 1:fieldcount(T)]
:(tuple($(rands...)))
end
### named tuples
make(::Type{T}, args...) where {T<:NamedTuple} = _make(T, args...)
_make(::Type{NamedTuple{}}) = Make0{NamedTuple{}}()
@generated function _make(::Type{NamedTuple{K}}, X...) where {K}
if length(X) <= 1
NT = NamedTuple{K,_maketype(NTuple{length(K)}, X...)}
:(Make1{$NT}(make(NTuple{length(K)}, X...)))
else
NT = NamedTuple{K,_maketype(Tuple, X...)}
:(Make1{$NT}(make(Tuple, X...)))
end
end
function _make(::Type{NamedTuple{K,V}}, X...) where {K,V}
Make1{NamedTuple{K,V}}(make(V, X...))
end
# necessary to avoid circular defintions
Sampler(::Type{RNG}, m::Make0{NamedTuple}, n::Repetition) where {RNG<:AbstractRNG} =
SamplerType{NamedTuple}()
Sampler(::Type{RNG}, m::Make1{T}, n::Repetition) where {RNG<:AbstractRNG, T <: NamedTuple} =
SamplerTag{Cont{T}}(Sampler(RNG, m[1] , n))
rand(rng::AbstractRNG, sp::SamplerType{NamedTuple{}}) = NamedTuple()
rand(rng::AbstractRNG, sp::SamplerTag{Cont{T}}) where T <: NamedTuple =
T(rand(rng, sp.data))
## collections
### sets/dicts
const SetDict = Union{AbstractSet,AbstractDict}
make(::Type{T}, X, n::Integer) where {T<:SetDict} = Make2{maketype(T, X, n)}(X , Int(n))
make(::Type{T}, ::Type{X}, n::Integer) where {T<:SetDict,X} = Make2{maketype(T, X, n)}(X , Int(n))
make(::Type{T}, n::Integer) where {T<:SetDict} = make(T, default_sampling(T), Int(n))
Sampler(::Type{RNG}, c::Make2{T}, n::Repetition) where {RNG<:AbstractRNG,T<:SetDict} =
SamplerTag{Cont{T}}((sp = sampler(RNG, c[1], n),
len = c[2]))
function rand(rng::AbstractRNG, sp::SamplerTag{Cont{S}}) where {S<:SetDict}
# assuming S() creates an empty set/dict
s = sizehint!(S(), sp.data[2])
_rand!(rng, s, sp.data.len, sp.data.sp)
end
### sets
default_sampling(::Type{<:AbstractSet}) = Uniform(Float64)
default_sampling(::Type{<:AbstractSet{T}}) where {T} = Uniform(T)
#### Set
maketype(::Type{Set}, X, _) = Set{val_gentype(X)}
maketype(::Type{Set{T}}, _, _) where {T} = Set{T}
### BitSet
default_sampling(::Type{BitSet}) = Uniform(Int8) # almost arbitrary, may change
maketype(::Type{BitSet}, _, _) = BitSet
### dicts
# K,V parameters are necessary here
maketype(::Type{D}, _, ::Integer) where {K,V,D<:AbstractDict{K,V}} = D
maketype(::Type{D}, ::Type, ::Integer) where {K,V,D<:AbstractDict{K,V}} = D
#### Dict/ImmutableDict
for D in (Dict, Base.ImmutableDict)
@eval begin
# again same inference bug
# TODO: extend to AbstractDict ? (needs to work-around the inderence bug)
default_sampling(::Type{$D{K,V}}) where {K,V} = Uniform(Pair{K,V})
default_sampling(D::Type{<:$D}) = throw(ArgumentError("under-specified scalar type for $D"))
maketype(::Type{$D{K}}, X, ::Integer) where {K} = $D{K,fieldtype(val_gentype(X), 2)}
maketype(::Type{$D{K,V} where K}, X, ::Integer) where {V} = $D{fieldtype(val_gentype(X), 1),V}
maketype(::Type{$D}, X, ::Integer) = $D{fieldtype(val_gentype(X), 1),fieldtype(val_gentype(X), 2)}
end
end
rand(rng::AbstractRNG, sp::SamplerTag{Cont{S}}) where {S<:Base.ImmutableDict} =
foldl((d, _) -> Base.ImmutableDict(d, rand(rng, sp.data.sp)),
1:sp.data.len,
init=S())
### AbstractArray
default_sampling(::Type{<:AbstractArray{T}}) where {T} = Uniform(T)
default_sampling(::Type{<:AbstractArray}) = Uniform(Float64)
make(::Type{A}, X, d1::Integer, dims::Integer...) where {A<:AbstractArray} =
make(A, X, Dims((d1, dims...)))
make(::Type{A}, ::Type{X}, d1::Integer, dims::Integer...) where {A<:AbstractArray,X} =
make(A, X, Dims((d1, dims...)))
make(::Type{A}, dims::Dims) where {A<:AbstractArray} =
make(A, default_sampling(A), dims)
make(::Type{A}, d1::Integer, dims::Integer...) where {A<:AbstractArray} =
make(A, default_sampling(A), Dims((d1, dims...)))
if VERSION < v"1.1.0"
# to resolve ambiguity
make(A::Type{<:AbstractArray}, X, d1::Integer) = make(A, X, Dims((d1,)))
make(A::Type{<:AbstractArray}, X, d1::Integer, d2::Integer) = make(A, X, Dims((d1, d2)))
end
Sampler(::Type{RNG}, c::Make2{A}, n::Repetition) where {RNG<:AbstractRNG,A<:AbstractArray} =
SamplerTag{A}((sampler(RNG, c[1], n), c[2]))
rand(rng::AbstractRNG, sp::SamplerTag{A}) where {A<:AbstractArray} =
rand!(rng, A(undef, sp.data[2]), sp.data[1])
#### Array
# cf. inference bug https://github.com/JuliaLang/julia/issues/28762
# we have to write out all combinations for getting proper inference
maketype(::Type{Array{T}}, _, ::Dims{N}) where {T, N} = Array{T, N}
maketype(::Type{Array{T,N}}, _, ::Dims{N}) where {T, N} = Array{T, N}
maketype(::Type{Array{T,N} where T}, X, ::Dims{N}) where {N} = Array{val_gentype(X), N}
maketype(::Type{Array}, X, ::Dims{N}) where {N} = Array{val_gentype(X), N}
#### BitArray
default_sampling(::Type{<:BitArray}) = Uniform(Bool)
maketype(::Type{BitArray{N}}, _, ::Dims{N}) where {N} = BitArray{N}
maketype(::Type{BitArray}, _, ::Dims{N}) where {N} = BitArray{N}
#### sparse vectors & matrices
maketype(::Type{SparseVector}, X, p::AbstractFloat, dims::Dims{1}) = SparseVector{ val_gentype(X), Int}
maketype(::Type{SparseMatrixCSC}, X, p::AbstractFloat, dims::Dims{2}) = SparseMatrixCSC{val_gentype(X), Int}
maketype(::Type{SparseVector{X}}, _, p::AbstractFloat, dims::Dims{1}) where {X} = SparseVector{ X, Int}
maketype(::Type{SparseMatrixCSC{X}}, _, p::AbstractFloat, dims::Dims{2}) where {X} = SparseMatrixCSC{X, Int}
# need to be explicit and split these defs in 2 (or 4) to avoid ambiguities
# TODO: check that using T instead of SparseVector in the RHS doesn't have perfs issues
make(T::Type{SparseVector}, X, p::AbstractFloat, d1::Integer) = make(T, X, p, Dims((d1,)))
make(T::Type{SparseVector}, ::Type{X}, p::AbstractFloat, d1::Integer) where {X} = make(T, X, p, Dims((d1,)))
make(T::Type{SparseMatrixCSC}, X, p::AbstractFloat, d1::Integer, d2::Integer) = make(T, X, p, Dims((d1, d2)))
make(T::Type{SparseMatrixCSC}, ::Type{X}, p::AbstractFloat, d1::Integer, d2::Integer) where {X} = make(T, X, p, Dims((d1, d2)))
make(T::Type{SparseVector}, p::AbstractFloat, d1::Integer) = make(T, default_sampling(T), p, Dims((d1,)))
make(T::Type{SparseMatrixCSC}, p::AbstractFloat, d1::Integer, d2::Integer) = make(T, default_sampling(T), p, Dims((d1, d2)))
make(T::Type{SparseVector}, p::AbstractFloat, dims::Dims{1}) = make(T, default_sampling(T), p, dims)
make(T::Type{SparseMatrixCSC}, p::AbstractFloat, dims::Dims{2}) = make(T, default_sampling(T), p, dims)
Sampler(::Type{RNG}, c::Make3{A}, n::Repetition) where {RNG<:AbstractRNG,A<:AbstractSparseArray} =
SamplerTag{Cont{A}}((sp = sampler(RNG, c[1], n),
p = c[2],
dims = c[3]))
rand(rng::AbstractRNG, sp::SamplerTag{Cont{A}}) where {A<:SparseVector} =
sprand(rng, sp.data.dims[1], sp.data.p, (r, n)->rand(r, sp.data.sp, n))
rand(rng::AbstractRNG, sp::SamplerTag{Cont{A}}) where {A<:SparseMatrixCSC} =
sprand(rng, sp.data.dims[1], sp.data.dims[2], sp.data.p, (r, n)->rand(r, sp.data.sp, n), gentype(sp.data.sp))
#### StaticArrays
function random_staticarrays()
@eval using StaticArrays: tuple_length, tuple_prod, SArray, MArray
for Arr = (:SArray, :MArray)
@eval begin
maketype(::Type{<:$Arr{S}} , X) where {S<:Tuple} = $Arr{S,val_gentype(X),tuple_length(S),tuple_prod(S)}
maketype(::Type{<:$Arr{S,T}}, _) where {S<:Tuple,T} = $Arr{S,T,tuple_length(S),tuple_prod(S)}
Sampler(::Type{RNG}, c::Make1{A}, n::Repetition) where {RNG<:AbstractRNG,A<:$Arr} =
SamplerTag{Cont{A}}(Sampler(RNG, c[1], n))
rand(rng::AbstractRNG, sp::SamplerTag{Cont{$Arr{S,T,N,L}}}) where {S,T,N,L} =
$Arr{S,T,N,L}(rand(rng, make(NTuple{L}, sp.data)))
@make_container(T::Type{<:$Arr})
end
end
end
### String as a scalar
let b = UInt8['0':'9';'A':'Z';'a':'z'],
s = Sampler(MersenneTwister, b, Val(Inf)) # cache for the likely most common case
global Sampler, rand, make
make(::Type{String}) = Make2{String}(8, b)
make(::Type{String}, chars) = Make2{String}(8, chars)
make(::Type{String}, ::Type{C}) where C = Make2{String}(8, C)
make(::Type{String}, n::Integer) = Make2{String}(Int(n), b)
make(::Type{String}, chars, n::Integer) = Make2{String}(Int(n), chars)
make(::Type{String}, ::Type{C}, n::Integer) where {C} = Make2{String}(Int(n), C)
make(::Type{String}, n::Integer, chars) = Make2{String}(Int(n), chars)
make(::Type{String}, n::Integer, ::Type{C}) where {C} = Make2{String}(Int(n), C)
Sampler(::Type{RNG}, ::Type{String}, n::Repetition) where {RNG<:AbstractRNG} =
SamplerTag{Cont{String}}((RNG === MersenneTwister ? s : Sampler(RNG, b, n)) => 8)
function Sampler(::Type{RNG}, c::Make2{String}, n::Repetition) where {RNG<:AbstractRNG}
sp = RNG === MersenneTwister && c[2] === b ?
s : sampler(RNG, c[2], n)
SamplerTag{Cont{String}}(sp => c[1])
end
rand(rng::AbstractRNG, sp::SamplerTag{Cont{String}}) = String(rand(rng, sp.data.first, sp.data.second))
end
## X => a / X => (a, as...) syntax as an alternative to make(X, a) / make(X, a, as...)
# this is experimental
pair_to_make((a, b)::Pair) =
b isa Tuple ?
make(a, map(pair_to_make, b)...) :
make(a, pair_to_make(b))
pair_to_make(x) = x
@inline Sampler(::Type{RNG}, p::Pair, r::Repetition) where {RNG<:AbstractRNG} =
Sampler(RNG, pair_to_make(p), r)
# nothing can be inferred when only the pair type is available
@inline gentype(::Type{<:Pair}) = Any
@inline gentype(p::Pair) = gentype(pair_to_make(p))
| RandomExtensions | https://github.com/JuliaRandom/RandomExtensions.jl.git |
|
[
"MIT"
] | 0.4.4 | b8a399e95663485820000f26b6a43c794e166a49 | code | 68 | module RandomExtensionsTests
using ReTest
include("tests.jl")
end
| RandomExtensions | https://github.com/JuliaRandom/RandomExtensions.jl.git |
|
[
"MIT"
] | 0.4.4 | b8a399e95663485820000f26b6a43c794e166a49 | code | 66 | module RandomExtensionsTests
using Test
include("tests.jl")
end
| RandomExtensions | https://github.com/JuliaRandom/RandomExtensions.jl.git |
|
[
"MIT"
] | 0.4.4 | b8a399e95663485820000f26b6a43c794e166a49 | code | 25923 | using RandomExtensions, Random, SparseArrays
using Random: Sampler, gentype
@testset "Distributions" begin
# Normal/Exponential
@test rand(Normal()) isa Float64
@test rand(Normal(0.0, 1.0)) isa Float64
@test rand(Normal(0, 1)) isa Float64
@test rand(Normal(0, 1.0)) isa Float64
@test rand(Exponential()) isa Float64
@test rand(Exponential(1.0)) isa Float64
@test rand(Exponential(1)) isa Float64
@test rand(Normal(Float32)) isa Float32
@test rand(Exponential(Float32)) isa Float32
@test rand(Normal(ComplexF64)) isa ComplexF64
# pairs/complexes
@test rand(make(Pair, 1:3, Float64)) isa Pair{Int,Float64}
@test rand(make(Pair{Int8}, 1:3, Float64)) isa Pair{Int8,Float64}
@test rand(make(Pair{Int8,Float32}, 1:3, Float64)) isa Pair{Int8,Float32}
@test rand(make(Pair{X,Float32} where X, 1:3, Float64)) isa Pair{Int,Float32}
@test rand(Pair{Int,Float64}) isa Pair{Int,Float64}
z = rand(make(Complex, 1:3, 6:9))
@test z.re β 1:3
@test z.im β 6:9
@test z isa Complex{Int}
z = rand(make(ComplexF64, 1:3, 6:9))
@test z.re β 1:3
@test z.im β 6:9
@test z isa ComplexF64
for (C, R) in ((Complex, Int), (ComplexF64, Float64), (Complex{Int}, Int))
z = rand(make(C, 1:3))
@test z.re β 1:3
@test z.im β 1:3
@test z isa Complex{R}
end
@test rand(make(Complex, 1:3, Float64)) isa Complex{Float64} # promote_type should be used
@test rand(ComplexF64) isa ComplexF64
@test rand(make(Complex,Int), 3) isa Vector{Complex{Int}}
@test rand(make(Complex,1:3), 3) isa Vector{Complex{Int}}
# Uniform
@test rand(Uniform(Float64)) isa Float64
@test rand(Uniform(1:10)) isa Int
@test rand(Uniform(1:10)) β 1:10
@test rand(Uniform(Int)) isa Int
# Bernoulli
@test rand(Bernoulli()) β (0, 1)
@test rand(Bernoulli(1)) == 1
@test rand(Bernoulli(0)) == 0
# TODO: do the math to estimate proba of failure:
@test 620 < count(rand(Bernoulli(Bool, 0.7), 1000)) < 780
for T = (Bool, Int, Float64, ComplexF64)
r = rand(Bernoulli(T))
@test r isa T
@test r β (0, 1)
r = rand(Bernoulli(T, 1))
@test r == 1
end
# Categorical
n = rand(1:9)
@test rand(Categorical(n)) β 1:9
@test all(β(1:9), rand(Categorical(n), 10))
@test rand(Categorical(n)) isa Int
c = Categorical(Float64(n))
@test rand(c) isa Float64
@test rand(c) β 1:9
c = Categorical([1, 7, 2])
# cf. Bernoulli tests
@test 620 < count(==(2), rand(c, 1000)) < 780
@test rand(c) isa Int
@test rand(Categorical{Float64}((1, 2, 3, 4))) isa Float64
@test_throws ArgumentError Categorical(())
@test_throws ArgumentError Categorical([])
@test_throws ArgumentError Categorical(x for x in 1:0)
end
const rInt8 = typemin(Int8):typemax(Int8)
const spString = Sampler(MersenneTwister, String)
const RNGS = ([] => "global RNG",
[MersenneTwister(0)] => "MersenneTwister",
[RandomDevice()] => "RandomDevice")
@testset "Containers $name" for (rng, name) in RNGS
# Array
for T = (Int, Int8)
for (A, AT) = ((Array, Int8), (Array{T}, T), (Vector, Int8), (Vector{T}, T))
@inferred rand(rng..., Int8.(1:9), A, 10)
a = rand(rng..., Int8.(1:9), A, 10)
@test a isa Vector{AT}
@test all(in(1:9), a)
@inferred rand(rng..., Int8, A, 10)
a = rand(rng..., Int8, A, 10)
@test a isa Vector{AT}
@test all(in(rInt8), a)
end
end
# Set
for S = (Set{Int}, Set, BitSet)
s = rand(rng..., 1:99, S, 10)
@test s isa (S === BitSet ? BitSet : Set{Int})
@test length(s) == 10
@test rand(s) β 1:99
end
for s = (Set([1, 2]), BitSet([1, 2]))
@test s === rand!(s)
@test s != Set([1, 2]) # very unlikely
@test length(s) == 2
@test s === rand!(s, 3:9) <= Set(3:9)
@test length(s) == 2
end
@test rand(rng..., Pair{Int,Float64}, Set, 3) isa Set{Pair{Int,Float64}}
@test rand(rng..., Pair{Int,Float64}, Set{Pair}, 3) isa Set{Pair}
# BitSet
s = rand(make(BitSet, 1:10, 3))
@test s isa BitSet
@test length(s) == 3
@test s <= Set(1:10)
@testset "default_sampling(::BitSet) == Int8" begin
Random.seed!(0)
rand!(s)
@test s <= Set(rInt8)
Random.seed!(0)
@test s == rand(BitSet, 3)
end
# Dict
for s = (rand(rng..., make(Pair, 1:99, 1:99), Dict, 10),
rand(rng..., make(Pair, 1:99, 1:99), Dict{Int,Int}, 10))
@test s isa Dict{Int,Int}
@test length(s) == 10
p = rand(s)
@test p.first β 1:99
@test p.second β 1:99
end
s = Dict(1=>2, 2=>1)
@test s === rand!(s)
@test length(s) == 2
@test first(s).first β (1, 2) # extremely unlikely
rand!(s, make(Pair, 3:9, Int))
@test length(s) == 2
@test first(s).first β 3:9
d = rand(rng..., Pair{Int,Float64}, Dict, 3)
@test d isa Dict{Int,Float64}
dd = rand!(rng..., d, Pair{Int,Int8})
@test dd === d
delt = pop!(d)
@test delt isa Pair{Int,Float64}
@test delt[2] β rInt8
@test rand(rng..., Pair{Int,Float64}, Dict{Any,Any}, 3) isa Dict{Any,Any}
# sparse
@test rand(rng..., Float64, .5, 10) isa SparseVector{Float64}
@test rand(rng..., Float64, .5, (10,)) isa SparseVector{Float64}
@test rand(rng..., Float64, SparseVector, .5, 10) isa SparseVector{Float64}
@test rand(rng..., Float64, SparseVector, .5, (10,)) isa SparseVector{Float64}
@test rand(rng..., .5, 10) isa SparseVector{Float64}
@test rand(rng..., .5, (10,)) isa SparseVector{Float64}
@test rand(rng..., SparseVector, .5, 10) isa SparseVector{Float64}
@test rand(rng..., SparseVector, .5, (10,)) isa SparseVector{Float64}
@test rand(rng..., Int, .5, 10) isa SparseVector{Int}
@test rand(rng..., Int, .5, (10,)) isa SparseVector{Int}
@test rand(rng..., Int, SparseVector, .5, 10) isa SparseVector{Int}
@test rand(rng..., Int, SparseVector, .5, (10,)) isa SparseVector{Int}
@test rand(rng..., Float64, .5, 10, 3) isa SparseMatrixCSC{Float64}
@test rand(rng..., Float64, .5, (10, 3)) isa SparseMatrixCSC{Float64}
@test rand(rng..., Float64, SparseMatrixCSC, .5, 10, 3) isa SparseMatrixCSC{Float64}
@test rand(rng..., Float64, SparseMatrixCSC, .5, (10, 3)) isa SparseMatrixCSC{Float64}
@test rand(rng..., .5, 10, 3) isa SparseMatrixCSC{Float64}
@test rand(rng..., .5, (10, 3)) isa SparseMatrixCSC{Float64}
@test rand(rng..., SparseMatrixCSC, .5, 10, 3) isa SparseMatrixCSC{Float64}
@test rand(rng..., SparseMatrixCSC, .5, (10, 3)) isa SparseMatrixCSC{Float64}
@test rand(rng..., Int, .5, 10, 3) isa SparseMatrixCSC{Int}
@test rand(rng..., Int, .5, (10, 3)) isa SparseMatrixCSC{Int}
@test rand(rng..., Int, SparseMatrixCSC, .5, 10, 3) isa SparseMatrixCSC{Int}
@test rand(rng..., Int, SparseMatrixCSC, .5, (10, 3)) isa SparseMatrixCSC{Int}
# BitArray
for S = ([], [Bool], [Bernoulli()])
@test rand(rng..., S..., BitArray, 10) isa BitVector
@test rand(rng..., S..., BitVector, 10) isa BitVector
@test_throws MethodError rand(rng..., S..., BitVector, 10, 20) isa BitVector
@test rand(rng..., S..., BitArray, 10, 3) isa BitMatrix
@test rand(rng..., S..., BitMatrix, 10, 3) isa BitMatrix
@test_throws MethodError rand(rng..., S..., BitVector, 10, 3) isa BitMatrix
end
# String
s = rand(rng..., String)
@test s isa String
@test length(s) == 8
s = rand(rng..., String, 10)
@test s isa String
@test length(s) == 10
s = rand(rng..., "asd", String)
@test length(s) == 8
@test Set(s) <= Set("asd")
@test_throws ArgumentError rand(rng..., String, 2, 3)
@test_throws ArgumentError rand(rng..., String, 2, 3, 4)
@test_throws ArgumentError rand(rng..., String, 2, 3, 4, 5)
# Tuple
s = rand(rng..., Int, NTuple{3})
@test s isa NTuple{3,Int}
s = rand(rng..., 1:3, NTuple{3})
@test s isa NTuple{3,Int}
@test all(in(1:3), s)
s = rand(rng..., 1:3, NTuple{3,Int8})
@test s isa NTuple{3,Int8}
@test all(in(1:3), s)
s = rand(rng..., NTuple{3, Int8})
@test s isa NTuple{3,Int8}
s = rand(rng..., Tuple{Int8, UInt8})
@test s isa Tuple{Int8, UInt8}
s = rand(rng..., 1:3, Tuple{Int8, UInt8})
@test s isa Tuple{Int8, UInt8}
@test all(in(1:3), s)
s = rand(rng..., 1:3, Tuple, 4)
@test s isa NTuple{4,Int}
@test all(in(1:3), s)
s = rand(rng..., Tuple, 4)
@test s isa NTuple{4,Float64}
s = rand(rng..., NTuple{3})
@test s isa NTuple{3,Float64}
s = rand(rng..., NTuple{N,UInt8} where N, 3)
@test s isa NTuple{3,UInt8}
s = rand(rng..., 1:3, NTuple{N,UInt8} where N, 3)
@test s isa NTuple{3,UInt8}
@test all(in(1:3), s)
end
@testset "Rand $name" for (rng, name) in RNGS
for XT = zip(([Int], [1:3], []), (Int, Int, Float64))
X, T = XT
r = Rand(rng..., X...)
@test collect(Iterators.take(r, 10)) isa Vector{T}
@test r() isa T
@test r(2, 3) isa Matrix{T}
@test r(.3, 2, 3) isa SparseMatrixCSC{T}
end
for d = (Uniform(1:10), Uniform(Int))
@test collect(Iterators.take(d, 10)) isa Vector{Int}
end
end
struct PairDistrib <: RandomExtensions.Distribution{Pair}
end
Random.rand(rng::AbstractRNG, ::Random.SamplerTrivial{PairDistrib}) = 1=>2
@testset "allow abstract Pair when generating a Dict" begin
d = rand(PairDistrib(), Dict, 1)
@test d == Dict(1=>2)
@test typeof(d) == Dict{Any,Any}
end
@testset "some tight typing" begin
UI = Random.UInt52()
@test eltype(rand(MersenneTwister(), Random.Sampler(MersenneTwister, UI), .6, 1, 0)) == UInt64
@test eltype(rand(UI, Set, 3)) == UInt64
@test eltype(rand(Uniform(UI), 3)) == UInt64
a = rand(make(Pair, Int, UI))
@test fieldtype(typeof(a), 2) == UInt64
end
#=
@testset "rand(::Pair)" begin
@test rand(1=>3) β (1, 3)
@test rand(1=>2, 3) isa Vector{Int}
@test rand(1=>'2', 3) isa Vector{Union{Char, Int}}
end
=#
@testset "rand(::AbstractFloat)" begin
# check that overridden methods still work
m = MersenneTwister()
for F in (Float16, Float32, Float64, BigFloat)
@test rand(F) isa F
sp = Random.Sampler(MersenneTwister, RandomExtensions.CloseOpen01(F))
@test rand(m, sp) isa F
@test 0 <= rand(m, sp) < 1
for (CO, (l, r)) = (CloseOpen => (<=, <),
CloseClose => (<=, <=),
OpenOpen => (<, <),
OpenClose => (<, <=))
f = rand(CO(F))
@test f isa F
@test l(0, f) && r(f, 1)
end
F β (Float64, BigFloat) || continue # only types implemented in Random
sp = Random.Sampler(MersenneTwister, RandomExtensions.CloseOpen12(F))
@test rand(m, sp) isa F
@test 1 <= rand(m, sp) < 2
end
@test CloseOpen(1, 2) === CloseOpen(1.0, 2.0)
@test CloseOpen(1.0, 2) === CloseOpen(1.0, 2.0)
@test CloseOpen(1, 2.0) === CloseOpen(1.0, 2.0)
@test CloseOpen(1.0, Float32(2)) === CloseOpen(1.0, 2.0)
@test CloseOpen(big(1), 2) isa CloseOpen{BigFloat}
for CO in (CloseOpen, CloseClose, OpenOpen, OpenClose)
@test_throws ArgumentError CO(1, 1)
@test_throws ArgumentError CO(2, 1)
@test CO(Float16(1), 2) isa CO{Float16}
@test CO(1, Float32(2)) isa CO{Float32}
end
end
@testset "rand(::Type{<:Tuple})" begin
for types in ([Base.BitInteger_types..., Float16, Float32, Float64, BigFloat, Char, Bool],
[Int, UInt64, Char]) # more repetitions
tlist = rand(types, rand(0:10))
T = Tuple{tlist...}
@test rand(T) isa Tuple{tlist...}
end
@test rand(Tuple{}) === ()
sp = Sampler(MersenneTwister, Tuple)
@test gentype(sp) == Tuple{}
@test rand(sp) == ()
sp = Sampler(MersenneTwister, NTuple{3})
@test gentype(sp) == NTuple{3,Float64}
@test rand(sp) isa NTuple{3,Float64}
sp = Sampler(MersenneTwister, Tuple{Int8,UInt8})
@test gentype(sp) == Tuple{Int8,UInt8}
@test rand(sp) isa Tuple{Int8,UInt8}
end
@testset "rand(make(Tuple, ...))" begin
s = rand([Char, Int, Float64, Bool, 1:3, "abcd", Set([1, 2, 3])], rand(0:10))
@test rand(make(Tuple, s...)) isa Tuple{Random.gentype.(s)...}
# explicit test for corner case:
@test rand(make(Tuple)) == ()
@test rand(make(Tuple{})) == ()
t = rand(make(Tuple, 1:3, Char, Int))
@test t[1] β 1:3
@test t[2] isa Char
@test t[3] isa Int && t[3] β 1:3 # extremely unlikely
t = rand(make(Tuple{Int8,Char,Int128}, 1:3, Char, Int8))
@test t[1] isa Int8 && t[1] β 1:3
@test t[2] isa Char
@test t[3] isa Int128 && t[3] β rInt8
@test_throws ArgumentError make(Tuple{Int}, 1:3, 1:3)
@test_throws ArgumentError make(Tuple{Int,Int,Int}, 1:3, 2:4)
@test rand(make(Tuple, spString, String)) isa Tuple{String,String}
@test rand(make(Tuple{Int8,Int8})) isa Tuple{Int8,Int8}
@test rand(make(Tuple{Int8,UInt})) isa Tuple{Int8,UInt}
# make(Tuple, s, n)
s = rand(make(Tuple, 1:3, 4))
@test s isa NTuple{4,Int}
@test all(in(1:3), s)
s = rand(make(Tuple, Int8, 4))
@test s isa NTuple{4,Int8}
s = rand(make(Tuple, 4))
@test s isa NTuple{4,Float64}
end
@testset "rand(make(NTuple{N}/Tuple{...}, x))" begin
s, N = rand([Char, Int, Float64, Bool, 1:3, "abcd", Set([1, 2, 3])]), rand(0:10)
T = Random.gentype(s)
rand(make(NTuple{N}, s)) isa NTuple{N,T}
@test rand(make(NTuple{3}, spString)) isa NTuple{3,String}
@test rand(make(NTuple{3,UInt8}, 1:3)) isa NTuple{3,UInt8}
@test rand(make(Tuple{Integer,Integer}, 1:3)) isa Tuple{Int,Int}
r = rand(make(Tuple{AbstractFloat,AbstractFloat}, 1:3))
@test r isa Tuple{Float64,Float64}
@test all(β(1.0:3.0), r)
r = rand(make(Tuple{AbstractFloat,Integer}, 1:3))
@test r isa Tuple{Float64,Int64}
@test all(in(1:3), r)
r = rand(make(NTuple{3}))
@test r isa NTuple{3,Float64}
r = rand(make(NTuple{N,UInt8} where N, 3))
@test r isa NTuple{3,UInt8}
r = rand(make(NTuple{N,UInt8} where N, 1:3, 3))
@test r isa NTuple{3,UInt8}
@test all(in(1:3), r)
r = rand(make(NTuple{N,UInt8} where N, UInt8, 3))
@test r isa NTuple{3,UInt8}
end
@testset "NamedTuple" begin
for t = (rand(make(NamedTuple)), rand(NamedTuple))
@test t == NamedTuple()
end
for t = (rand(make(NamedTuple{(:a,)})), rand(NamedTuple{(:a,)}))
@test t isa NamedTuple{(:a,), Tuple{Float64}}
end
for t = (rand(make(NamedTuple{(:a,),Tuple{Int}})),
rand(NamedTuple{(:a,),Tuple{Int}}))
@test t isa NamedTuple{(:a,), Tuple{Int}}
end
t = rand(make(NamedTuple{(:a,)}, 1:3))
@test t isa NamedTuple{(:a,), Tuple{Int}}
@test t.a β 1:3
t = rand(make(NamedTuple{(:a,),Tuple{Float64}}, 1:3))
@test t isa NamedTuple{(:a,), Tuple{Float64}}
@test t.a β 1:3
for t = (rand(make(NamedTuple{(:a, :b)})),
rand(NamedTuple{(:a, :b)}))
@test t isa NamedTuple{(:a, :b), Tuple{Float64,Float64}}
end
for t = (rand(make(NamedTuple{(:a, :b),Tuple{Int,UInt8}})),
rand(NamedTuple{(:a, :b),Tuple{Int,UInt8}}))
@test t isa NamedTuple{(:a, :b), Tuple{Int,UInt8}}
end
t = rand(make(NamedTuple{(:a, :b)}, 1:3))
@test t isa NamedTuple{(:a, :b), Tuple{Int,Int}}
@test t.a β 1:3 && t.b β 1:3
t = rand(make(NamedTuple{(:a, :b),Tuple{Float64,UInt8}}, 1:3))
@test t isa NamedTuple{(:a, :b), Tuple{Float64,UInt8}}
@test t.a β 1:3 && t.b β 1:3
# as container
@test rand(1:3, NamedTuple{(:a,)}) isa NamedTuple{(:a,), Tuple{Int}}
@test rand(1:3, NamedTuple{(:a,), Tuple{Float64}}) isa NamedTuple{(:a,), Tuple{Float64}}
@test rand(1:3, NamedTuple{(:a, :b)}) isa NamedTuple{(:a, :b), Tuple{Int,Int}}
@test rand(1:3, NamedTuple{(:a, :b), Tuple{Float64,Float64}}) isa NamedTuple{(:a, :b), Tuple{Float64,Float64}}
end
@testset "rand(make(String, ...))" begin
b = UInt8['0':'9';'A':'Z';'a':'z']
for (s, c, n) in [(rand(String), b, 8),
(rand(make(String, 3)), b, 3),
(rand(make(String, "asd")), "asd", 8),
(rand(make(String, 3, "asd")), "asd", 3),
(rand(make(String, "qwe", 3)), "qwe", 3)]
@test s β map(Char, c)
@test length(s) == n
end
@test rand(make(String, Char)) isa String
@test rand(make(String, 3, Char)) isa String
@test rand(make(String, Sampler(MersenneTwister, ['a', 'b', 'c']), 10)) isa String
end
@testset "rand(make(Set/BitSet, ...))" begin
for (S, SS, (low, high)) = ((Set{Int}, Set{Int}, (typemin(Int), typemax(Int))),
(Set, Set, (0, 1)),
(BitSet, BitSet, (typemin(Int8), typemax(Int8))))
for (k, l) = ([1:9] => 1:9, [Int8] => rInt8, [] => ())
s = rand(make(S, k..., 3))
@test s isa (SS === Set ? (l == () ? Set{Float64} : Set{eltype(l)}) : SS)
@test length(s) == 3
if l == ()
@test all(x -> low <= x <= high, s)
else
@test all(in(l), s)
end
end
rand(make(S, Sampler(MersenneTwister, 1:99), 9)) isa Union{BitSet, Set{Int}}
end
end
@testset "rand(make(Dict, ...))" begin
for BD = (Dict, Base.ImmutableDict),
(D, S) = (BD{Int16,Int16} => [],
BD{Int16} => [Pair{Int8,Int16}],
BD{K,Int16} where K => [Pair{Int16,Int8}],
BD => [Pair{Int16,Int16}])
d = rand(make(D, S..., 3))
@test d isa BD{Int16,Int16}
@test length(d) == 3
end
end
@testset "rand(make(Array/BitArray, ...))" begin
for (T, Arr) = (Bool => BitArray, Float64 => Array{Float64}),
k = ([], [T], [Bernoulli(T, 0.3)]),
(d, dim) = ([(6,)] => 1,
[(2,3)] => 2,
[6] => 1,
[2, 3] => 2,
[Int8(2), Int16(3)] => 2),
A = (T == Bool ?
(BitArray, BitArray{dim}) :
(Array, Array{Float64}, Array{Float64,dim}, Array{U,dim} where U))
s = rand(make(A, k..., d...))
@test s isa Arr{dim}
@test length(s) == 6
end
@test_throws MethodError rand(make(Matrix, 2))
@test_throws MethodError rand(make(Vector, 2, 3))
@test_throws MethodError rand(make(BitMatrix, 2))
@test_throws MethodError rand(make(BitVector, 2, 3))
@test rand(make(Array, spString, 9)) isa Array{String}
@test rand(make(BitArray, Sampler(MersenneTwister, [0, 0, 0, 1]), 9)) isa BitArray
# TODO: below was testing without explicit `Array` as 1st argument, so this test
# may now be obsolete, redundant with tests above
for dims = ((), (2, 3), (0x2, 3), (2,), (0x2,)),
s = ([], [Int], [1:3])
T = s == [] ? Float64 : Int
if dims != ()
a = rand(make(Array, s..., dims...))
@test a isa Array{T,length(dims)}
if s == [1:3]
@test all(in(1:3), a)
end
end
if dims isa Dims
a = rand(make(Array, s..., dims))
@test a isa Array{T,length(dims)}
if s == [1:3]
@test all(in(1:3), a)
end
end
end
end
@testset "rand(make(Sparse...))" begin
for k = ([], [Float64], [Bernoulli(Float64, 0.3)]),
(d, dim) = ([(6,)] => 1,
[(2,3)] => 2,
[6] => 1,
[2, 3] => 2,
[Int8(2), Int16(3)] => 2)
typ = dim == 1 ? SparseVector : SparseMatrixCSC
s = rand(make(typ, k..., 0.3, d...))
@test s isa (dim == 1 ? SparseVector{Float64,Int} :
SparseMatrixCSC{Float64,Int})
@test length(s) == 6
end
@test rand(make(SparseVector, spString, 0.3, 9)) isa SparseVector{String}
@test rand(make(SparseVector, make(SparseMatrixCSC, 1:9, 0.3, 2, 3), .1, 4)) isa SparseVector{SparseMatrixCSC{Int64,Int64},Int64}
end
@testset "rand(make(default))" begin
@test rand(make()) isa Float64
@test rand(make(1:3)) isa Int
@test rand(make(1:3)) β 1:3
@test rand(make(Float64)) isa Float64
end
@testset "rand(T => x) & rand(T => (x, y, ...))" begin
@test rand(Complex => Int) isa Complex{Int}
@test rand(Pair => (String, Int8)) isa Pair{String,Int8}
@test_throws MethodError rand(1=>2) # calls rand(make(1, 2))
@test rand(Complex => Int, 3) isa Vector{Complex{Int}}
@test rand(Pair => (String, Int8), Set, 3) isa Set{Pair{String,Int8}}
nt = rand(NTuple{4} => Complex => 1:3)
@test nt isa NTuple{4,Complex{Int64}}
end
## make(x1, xs...)
struct MyType
x
end
RandomExtensions.maketype(x::MyType, y) = eltype(x.x:y)
Base.rand(rng::AbstractRNG,
x::Random.SamplerTrivial{<:RandomExtensions.Make2{<:Integer, MyType}}) =
rand(rng, x[][1].x:x[][2])
@testset "rand(make(CustomType(), ...))" begin
m = MyType(3)
@test rand(make(m, 3)) == 3
@test rand(make(m, big(5))) isa BigInt
@test rand(make(m, big(5))) β 3:5
a = rand(make(m, big(6)), 5)
@test a isa Vector{BigInt}
@test length(a) == 5
@test all(β(3:6), a)
end
## Make getindex
@testset "Make getindex" begin
m = make(Pair, 1:2, Bool, make(String, 3))
@test m isa RandomExtensions.Make3
@test m[1] == 1:2
@test m[0x2] == Bool
@test m[3] isa RandomExtensions.Make2
@test m[1:2] == (m[1], m[2])
@test m[[2, 3]] == m[2:end] == (m[2], m[3])
@test m[big(3)][1:end] == m[3][1:2]
end
## @rand
run_once = false
struct Die
n::Int
end
Base.eltype(::Type{Die}) = Int
struct DieT{T}
n::T
end
Base.eltype(::Type{DieT{T}}) where {T} = T
@testset "@rand" begin
must_run = !run_once
global run_once = true
if must_run
# rng0 to be sure rng is not accessed in `esc`aped body of @rand
rng0 = MersenneTwister()
d = Die(6)
@rand function rand(d::Die)
7
end
@test rand(d) == 7
@rand function (d::Die) 7 end
@test rand(d) == 7
@rand (d::Die) -> 7
@test rand(d) == 7
# redefinition
@rand rand(d::Die) = rand(1:d.n)
@test rand(d) β 1:6
@test rand(rng0, d) β 1:6
@test all(β(1:6), rand(rng0, d, 10))
@test eltype(rand(d, 3)) == Int
@rand function (d::Die) rand(1:d.n) end
@test rand(d) β 1:6
@test rand(rng0, d) β 1:6
@test all(β(1:6), rand(rng0, d, 10))
@test eltype(rand(d, 3)) == Int
@rand (d::Die) -> rand(1:d.n)
@test rand(d) β 1:6
@test rand(rng0, d) β 1:6
@test all(β(1:6), rand(rng0, d, 10))
@test eltype(rand(d, 3)) == Int
# redefinition (multiple inner samplers)
@rand rand(d::Die) = rand(10:10) + rand(1:d.n)
@test rand(d) β 11:16
@test all(β(11:16), rand(d, 10))
@rand function (d::Die)
rand(10:10) + rand(1:d.n)
end
@test rand(d) β 11:16
@test all(β(11:16), rand(d, 10))
@rand (d::Die) -> rand(10:10) + rand(1:d.n)
@test rand(d) β 11:16
@test all(β(11:16), rand(d, 10))
# redefinition access to argument not within rand call
@rand rand(d::Die) = rand(1:1) + d.n
@test all(==(7), rand(d, 10))
# redefinition back to SamplerTrivial
@rand rand(d::Die) = d.n
@test all(==(6), rand(d, 100))
# redefinition (Val(Inf) iff rand calls with 2+ arguments)
@rand rand(d::Die) = (rand("asd") + rand("asd", 3)[1]; 1)
s = Sampler(MersenneTwister, d, Val(1))
@test s.data[1] isa Random.SamplerSimple{String}
@test s.data[2] isa Random.SamplerSimple{Vector{Char}} # "proof" of Val(Inf)
s = Sampler(MersenneTwister, d, Val(Inf))
@test s.data[1] isa Random.SamplerSimple{Vector{Char}}
@test s.data[2] isa Random.SamplerSimple{Vector{Char}}
# test esc-correctness
VAR = 100
@rand rand(d::Die) = rand(VAR+1:VAR+d.n) - VAR
@test all(β(1:6), rand(d, 100))
# with type parameters
d = DieT(6)
@rand rand(d::DieT{T}) where {T} = 1
@test rand(d) == 1
@rand function rand(d::DieT{T}) where {T}
2
end
@test rand(d) == 2
@rand function (d::DieT{T}) where {T}
3
end
@test rand(d) == 3
@rand ((d::DieT{T}) where {T}) -> 4
@test rand(d) == 4
@rand rand(d::DieT{Int}) = 0
@test rand(d) == 0
d = DieT(0x0)
@rand rand(d::DieT{T}) where {T<:UInt8} = rand(typemin(T):typemax(T))
@test rand(d) isa UInt8
d = DieT(true)
@rand rand(d::DieT{T}) where {T<:Bool} =
T(typemin(T) + rand(typemin(T):typemax(T)))
@test rand(d) isa Bool
end
end
module TestAtRand
# only using RandomExtensions, not Random, to check we don't depend on
# some imported names like e.g. SamplerTrivial
using RandomExtensions
using ..RandomExtensionsTests: @test, @testset
struct Die n end
@testset "@rand in module" begin
@rand rand(d::Die) = d.n # SamplerTrivial
@test rand(Die(123)) == 123
@test rand(RandomDevice(), Die(123)) == 123
@rand rand(d::Die) = rand(1:d.n) # SamplerSimple
@test rand(Die(1)) == 1
@test rand(RandomDevice(), Die(1)) == 1
end
end # module TestAtRand
| RandomExtensions | https://github.com/JuliaRandom/RandomExtensions.jl.git |
|
[
"MIT"
] | 0.4.4 | b8a399e95663485820000f26b6a43c794e166a49 | docs | 11676 | # RandomExtensions
[](https://github.com/JuliaRandom/RandomExtensions.jl/actions?query=workflow%3ACI)
[](https://JuliaRandom.github.io/RandomExtensions.jl/dev)
This package explores a possible extension of `rand`-related
functionalities (from the `Random` module); the code is initially
taken from https://github.com/JuliaLang/julia/pull/24912.
Note that type piracy is committed!
While hopefully useful, this package is still experimental, and
hence unstable. User feedback, and design or implementation contributions are welcome.
This does essentially 4 things:
1) define distribution objects, to give first-class status to features
provided by `Random`; for example `rand(Normal(), 3)` is equivalent
to `randn(3)`; other available distributions: `Exponential`,
`CloseOpen` (for generation of floats in a close-open range) and friends,
`Uniform` (which can wrap an implicit uniform distribution);
2) define `make` methods, which can combine distributions for objects made of multiple scalars, like
`Pair`, `Tuple`, or `Complex`, or describe how to generate more complex objects, like containers;
3) extend the `rand([rng], [S], dims)` API to allow the generation of other containers than arrays
(like `Set`, `Dict`, `SparseArray`, `String`, `BitArray`);
4) define a `Rand` iterator, which produces lazily random values.
Point 1) defines a `Distribution` type which is incompatible with the
"Distributions.jl" package. Input on how to unify the two approaches is
welcome.
Point 2) is really the core of this package. `make` provides a vocabulary to define the generation
of "scalars" which require more than one argument to be described, e.g. pairs from `1:3` to `Int`
(`rand(make(Pair, 1:3, Int))`) or regular containers (e.g. `make(Array, 2, 3)`). The point of
calling `make` rather than putting all the arguments in `rand` directly is simplicity and
composability: the `make` call always occurs as the second argument to `rand` (or first if the RNG
is omitted). For example, `rand(make(Array, 2, 3), 3)` creates an array of matrices.
Of course, `make` is not necessary, in that the same can be achieved with an ad hoc `struct`,
which in some cases is clearer (e.g. `Normal(m, s)` rather than something like `make(Float64, Val(:Normal), m, s)`).
As an experimental feature, the following alternative API is available:
- `rand(T => x)` is equivalent to `rand(make(T, x))`
- `rand(T => (x, y, ...))` is equivalent to `rand(make(T, x, y, ...))`
This is for convenience only (it may be more readable), but may be less efficient due to the
fact that the type of a pair containing a type doesn't know this exact type (e.g. `Pair => Int`
has type `Pair{UnionAll,DataType}`), so `rand` can't infer the type of the generated value.
Thanks to inlining, the inferred types can however be sufficiently tight in some cases
(e.g. `rand(Complex => Int, 3)` is of type `Vector{Complex{Int64}}` instead of `Vector{Any}`).
Point 3) allows something like `rand(1:30, Set, 10)` to produce a `Set` of length `10` with values
from `1:30`. The idea is that `rand([rng], [S], Cont, etc...)` should always be equivalent to
`rand([rng], make(Cont, [S], etc...))`. This design goes somewhat against the trend in `Base` to create
containers using their constructors -- which by the way may be achieved via the `Rand` iterator from
point 4). Still, I like the terse approach here, as it simply generalizes to other containers the
_current_ `rand` API creating arrays. See the issue linked above for a discussion on these topics.
For convenience, the following names from `Random` are re-exported
in this package: `rand!`, `AbstractRNG`, `MersenneTwister`,
`RandomDevice` (`rand` is in `Base`). Functions like `randn!` or
`randstring` are considered to be obsoleted by this package so are not
re-exported. It's still needed to import `Random` separately in order
to use functions which don't extend the `rand` API, namely
`randsubseq`, `shuffle`, `randperm`, `randcycle`, and their mutating
variants.
There is not much documentation for now: `rand`'s docstring is updated,
and here are some examples:
```julia
julia> rand(CloseOpen(Float64)) # equivalent to rand(Float64)
0.7678877639669386
julia> rand(CloseClose(1.0f0, 10)) # generation in [1.0f0, 10.0f0]
6.62467f0
julia> rand(OpenOpen(2.0^52, 2.0^52+1)) == 2.0^52 # exactness not guaranteed for "unreasonable" values!
true
julia> rand(Normal(0.0, 10.0)) # explicit ΞΌ and Ο parameters
-8.473790458128912
julia> rand(Uniform(1:3)) # equivalent to rand(1:3)
2
julia> rand(make(Pair, 1:10, Normal())) # random Pair, where both members have distinct distributions
5 => 0.674375
julia> rand(make(Pair{Number,Any}, 1:10, Normal())) # specify the Pair type
Pair{Number,Any}(1, -0.131617)
julia> rand(Pair{Float64,Int}) # equivalent to rand(make(Pair, Float64, Int))
0.321676 => -4583276276690463733
julia> rand(make(Tuple, 1:10, UInt8, OpenClose()))
(9, 0x6b, 0.34900083923775505)
julia> rand(Tuple{Float64,Int}) # equivalent to rand(make(Tuple, Float64, Int))
(0.9830769470405203, -6048436354564488035)
julia> rand(make(NTuple{3}, 1:10)) # produces a 3-tuple with values from 1:10
(5, 9, 6)
julia> rand(make(NTuple{N,UInt8} where N, 1:3, 5))
(0x02, 0x03, 0x02, 0x03, 0x02)
julia> rand(make(NTuple{3}, make(Pair, 1:9, Bool))) # make calls can be nested
(2 => false, 8 => true, 7 => false)
julia> rand(make(Complex, Normal())) # each coordinate is drawn from the normal distribution
1.5112317924121632 + 0.723463453534426im
julia> rand(make(Complex, Normal(), 1:10)) # distinct distributions
1.096731587266045 + 8.0im
julia> rand(Normal(ComplexF64)) # equivalent to randn(ComplexF64)
0.9322376894079347 + 0.2812214248483498im
julia> rand(Set, 3)
Set([0.717172, 0.78481, 0.86901])
julia> rand!(ans, Exponential())
Set([0.7935073925105659, 2.593684878770254, 1.629181233597078])
julia> rand(1:9, Set, 3) # if you try `rand(1:3, Set, 9)`, it will take a while ;-)
Set([3, 5, 8])
julia> rand(Dict{String,Int8}, 2)
Dict{String,Int8} with 3 entries:
"vxybIbae" => 42
"bO2fTwuq" => -13
julia> rand(make(Pair, 1:9, Normal()), Dict, 3)
Dict{Int64,Float64} with 3 entries:
9 => 0.916406
3 => -2.44958
8 => -0.703348
julia> rand(SparseVector, 0.3, 9) # equivalent to sprand(9, 0.3)
9-element SparseVector{Float64,Int64} with 3 stored entries:
[1] = 0.173858
[6] = 0.568631
[8] = 0.297207
julia> rand(Normal(), SparseMatrixCSC, 0.3, 2, 3) # equivalent to sprandn(2, 3, 0.3)
2Γ3 SparseMatrixCSC{Float64,Int64} with 2 stored entries:
[2, 1] = 0.448981
[1, 2] = 0.730103
# like for Array, sparse arrays enjoy to be special cased: `SparseVector` or `SparseMatrixCSC`
# can be omitted in the `rand` call (not in the `make` call):
julia> rand(make(SparseVector, 1:9, 0.3, 2), 0.1, 4, 3) # possible, bug ugly output when non-empty :-/
4Γ3 SparseMatrixCSC{SparseVector{Int64,Int64},Int64} with 0 stored entries
julia> rand(String, 4) # equivalent to randstring(4)
"5o75"
julia> rand("123", String, 4) # like above, String creation with the "container" syntax ...
"2131"
julia> rand(make(String, 3, "123")) # ... which is as always equivalent to a call to make
"211"
julia> rand(String, Set, 3) # String considered as a scalar
Set(["0Dfqj6Yr", "ILngfcRz", "HT5IEyK3"])
julia> rand(BitArray, 3) # equivalent to, but unfortunately more verbose than, bitrand(3)
3-element BitArray{1}:
true
true
false
julia> julia> rand(Bernoulli(0.2), BitVector, 10) # using the Bernoulli distribution
10-element BitArray{1}:
false
false
false
false
true
false
true
false
false
true
julia> rand(1:3, NTuple{3}) # NTuple{3} considered as a container, equivalent to rand(make(NTuple{3}, 1:3))
(3, 3, 1)
julia> rand(1:3, Tuple{Int,UInt8, BigFloat}) # works also with more general tuple types ...
(3, 0x02, 2.0)
julia> rand(1:3, NamedTuple{(:a, :b)}) # ... and with named tuples
(a = 3, b = 2)
julia> RandomExtensions.random_staticarrays() # poor man's conditional modules!
# ugly warning
julia> rand(make(MVector{2,AbstractString}, String), SMatrix{3, 2})
3Γ2 SArray{Tuple{3,2},MArray{Tuple{2},AbstractString,1,2},2,6} with indices SOneTo(3)ΓSOneTo(2):
["SzPKXHFk", "1eFXaUiM"] ["RJnHwhb7", "jqfLcY8a"]
["FMTKcBY8", "eoYtNntD"] ["FzdD530L", "ux6sWGMU"]
["fFJuUtJQ", "H2mAQrIV"] ["pt0OYFJw", "O0fCfjjR"]
julia> Set(Iterators.take(Rand(RandomDevice(), 1:10), 3)) # RNG defaults to Random.GLOBAL_RNG
Set([9, 2, 6]) # note that the set could end up with less than 3 elements if `Rand` generates duplicates
julia> collect(Iterators.take(Uniform(1:10), 3)) # distributions can be iterated over, using Random.GLOBAL_RNG implicitly
3-element Array{Int64,1}:
7
10
5
julia> rand(Complex => Int) # equivalent to rand(make(Complex, Int)) (experimental)
4610038282330316390 + 4899086469899572461im
julia> rand(Pair => (String, Int8)) # equivalent to rand(make(Pair, String, Int8)) (experimental)
"ODNXIePK" => 4
```
In some cases, the `Rand` iterator can provide efficiency gains compared to
repeated calls to `rand`, as it uses the same mechanism as array generation.
For example, given `a = zeros(1000)` and `s = BitSet(1:1000)`,
`a .+ Rand(s).()` is three times faster than `a .+ rand.(Ref(s))`.
Note: as seen in the examples above, `String` can be considered as a scalar or as a container (in the `rand` API).
In a call like `rand(String)`, both APIs coincide, but in `rand(String, 3)`, should we construct a `String` of
length `3` (container API), or an array of strings of default length `8` ? Currently, the package chooses
the first interpretation, partly because it was the first implemented, and also because it may actually be the one
most useful (and offers the tersest API to compete with `randstring`).
But as this package is still unstable, this choice may be revisited in the future.
Note that it's easy to get the result of the second interpretation via either `rand(make(String), 3)`,
`rand(String, (3,))` or `rand(String, Vector, 3)`.
How to extend: the `make` function is meant to be extensible, and there are some helper functions
which make it easy, but this is still experimental. By default, `make(T, args...)` will
create a `Make{maketype(T, args...)}` object, say `m`, which contain `args...` as fields. For type
stable code, the `rand` machinery likes to know the exact type of the object which will be generated by
`rand(m)`, and `maketype(T, args...)` is supposed to return that type. For example,
`maketype(Pair, 1:3, UInt) == Pair{Int,UInt}`.
Then just define `rand` for `m` like documented in the `Random` module, e.g.
`rand(rng::AbstractRNG, sp::SamplerTrivial{<:Make{P}}) where {P<:Pair} = P(rand(sp[][1]), rand(sp[][2]))`.
For convenience, `maketype(T, ...)` defaults to `T`, which means that for simple cases, only the
`rand` function has to be defined. But in cases like for `Pair` above, if `maketype` is not
defined, the generated type will be assumed to be `Pair`, which is not a concrete type
(and hence suboptimal).
This package started out of frustration with the limitations of the `Random` module. Besides
generating simple scalars and arrays, very little is supported out of the box. For example,
generating a random `Dict` is too complex. Moreover, there are too many functions for my taste:
`rand`, `randn`, `randexp`, `sprand` (with its exotic `rfn` parameter), `sprandn`, ~~`sprandexp`~~,
`randstring`, `bitrand`, and mutating counterparts (but I believe `randn` will never go away, as
it's so terse). I hope that this package can serve as a starting point towards improving `Random`.
| RandomExtensions | https://github.com/JuliaRandom/RandomExtensions.jl.git |
|
[
"MIT"
] | 0.4.4 | b8a399e95663485820000f26b6a43c794e166a49 | docs | 209 | # RandomExtensions
Most of the "documentation" is still in the
[README](https://github.com/JuliaRandom/RandomExtensions.jl/blob/master/README.md).
Here is the updated docstring for `rand`:
```@docs
rand
```
| RandomExtensions | https://github.com/JuliaRandom/RandomExtensions.jl.git |
|
[
"MIT"
] | 0.1.1 | 91e7a85ba7923e80f9a6bc359abb18b0fe437314 | code | 619 | using MultiAgentPOMDPs
using Documenter
makedocs(;
modules=[MultiAgentPOMDPs],
authors="rejuvyesh <[email protected]>, Shushman <[email protected]> and contributors",
repo="https://github.com/JuliaPOMDP/MultiAgentPOMDPs.jl/blob/{commit}{path}#L{line}",
sitename="MultiAgentPOMDPs.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://juliapomdp.github.io/MultiAgentPOMDPs.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/JuliaPOMDP/MultiAgentPOMDPs.jl",
)
| MultiAgentPOMDPs | https://github.com/JuliaPOMDP/MultiAgentPOMDPs.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.