licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
1373
using Test using BlockArrays, LinearAlgebra using Gridap, Gridap.MultiField, Gridap.Algebra using PartitionedArrays, GridapDistributed using GridapSolvers, GridapSolvers.BlockSolvers function same_block_array(A,B) map(blocks(A),blocks(B)) do A, B t = map(partition(A),partition(B)) do A, B A ≈ B end reduce(&,t) end |> all end np = (2,2) ranks = with_debug() do distribute distribute(LinearIndices((prod(np),))) end model = CartesianDiscreteModel(ranks,np,(0,1,0,1),(8,8)) reffe = ReferenceFE(lagrangian,Float64,1) V = FESpace(model,reffe) mfs = BlockMultiFieldStyle() Y = MultiFieldFESpace([V,V];style=mfs) Ω = Triangulation(model) dΩ = Measure(Ω,4) u0 = zero(Y) sol(x) = sum(x) # Reference operator a_ref((u1,u2),(v1,v2)) = ∫(u1⋅v1 + u2⋅v2)*dΩ l_ref((v1,v2)) = ∫(sol⋅v1 + sol⋅v2)*dΩ res_ref(u,v) = a_ref(u,v) - l_ref(v) jac_ref(u,du,dv) = a_ref(du,dv) op_ref = FEOperator(res_ref,jac_ref,Y,Y) A_ref = jacobian(op_ref,u0) b_ref = residual(op_ref,u0) # Block operator a(u,v) = ∫(u⋅v)*dΩ l(v) = ∫(sol⋅v)*dΩ res(u,v) = a(u,v) - l(v) jac(u,du,dv) = a(du,dv) res_blocks = collect(reshape([res,missing,missing,res],(2,2))) jac_blocks = collect(reshape([jac,missing,missing,jac],(2,2))) op = BlockFEOperator(res_blocks,jac_blocks,Y,Y) A = jacobian(op,u0) b = residual(op,u0) @test same_block_array(A,A_ref) @test same_block_array(b,b_ref)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
1212
module BlockTriangularSolversTests using BlockArrays, LinearAlgebra using Gridap, Gridap.MultiField, Gridap.Algebra using PartitionedArrays, GridapDistributed using GridapSolvers, GridapSolvers.BlockSolvers function main(distribute,parts) ranks = distribute(LinearIndices((prod(parts),))) model = CartesianDiscreteModel(ranks,parts,(0,1,0,1),(8,8)) reffe = ReferenceFE(lagrangian,Float64,1) V = FESpace(model,reffe) mfs = BlockMultiFieldStyle() Y = MultiFieldFESpace([V,V];style=mfs) Ω = Triangulation(model) dΩ = Measure(Ω,4) sol(x) = sum(x) a((u1,u2),(v1,v2)) = ∫(u1⋅v1 + u2⋅v2 + u1⋅v2 - u2⋅v1)*dΩ l((v1,v2)) = ∫(sol⋅v1 - sol⋅v2)*dΩ op = AffineFEOperator(a,l,Y,Y) A, b = get_matrix(op), get_vector(op); # Upper s1 = BlockTriangularSolver([LUSolver(),LUSolver()];half=:upper) ss1 = symbolic_setup(s1,A) ns1 = numerical_setup(ss1,A) numerical_setup!(ns1,A) x1 = allocate_in_domain(A); fill!(x1,0.0) solve!(x1,ns1,b) # Lower s2 = BlockTriangularSolver([LUSolver(),LUSolver()];half=:lower) ss2 = symbolic_setup(s2,A) ns2 = numerical_setup(ss2,A) numerical_setup!(ns2,A) x2 = allocate_in_domain(A); fill!(x2,0.0) solve!(x2,ns2,b) end end # module
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
193
module BlockDiagonalSolversMPITests using MPI, PartitionedArrays include("../BlockDiagonalSolversTests.jl") with_mpi() do distribute BlockDiagonalSolversTests.main(distribute,(2,2)) end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
199
module BlockTriangularSolversMPITests using MPI, PartitionedArrays include("../BlockTriangularSolversTests.jl") with_mpi() do distribute BlockTriangularSolversTests.main(distribute,(2,2)) end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
457
using Test using MPI using GridapSolvers function run_tests(testdir) istest(f) = endswith(f, ".jl") && !(f=="runtests.jl") testfiles = sort(filter(istest, readdir(testdir))) @time @testset "$f" for f in testfiles MPI.mpiexec() do cmd np = 4 cmd = `$cmd -n $(np) --oversubscribe $(Base.julia_cmd()) --project=. $(joinpath(testdir, f))` @show cmd run(cmd) @test true end end end # MPI tests run_tests(@__DIR__)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
250
module BlockDiagonalSolversSequentialTests using PartitionedArrays include("../BlockDiagonalSolversTests.jl") with_debug() do distribute BlockDiagonalSolversTests.main(distribute, (1,1)) BlockDiagonalSolversTests.main(distribute, (2,2)) end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
259
module BlockTriangularSolversSequentialTests using PartitionedArrays include("../BlockTriangularSolversTests.jl") with_debug() do distribute BlockTriangularSolversTests.main(distribute, (1,1)) BlockTriangularSolversTests.main(distribute, (2,2)) end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
180
using Test @testset "BlockDiagonalSolvers" begin include("BlockDiagonalSolversTests.jl") end @testset "BlockTriangularSolvers" begin include("BlockTriangularSolversTests.jl") end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
9672
module GMGTests using MPI using Test using LinearAlgebra using IterativeSolvers using FillArrays using Gridap using Gridap.ReferenceFEs, Gridap.Algebra using PartitionedArrays using GridapDistributed using GridapP4est using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools using GridapSolvers.PatchBasedSmoothers function get_patch_smoothers(mh,tests,biform,qdegree) patch_decompositions = PatchDecomposition(mh) patch_spaces = PatchFESpace(tests,patch_decompositions) nlevs = num_levels(mh) smoothers = map(view(tests,1:nlevs-1),patch_decompositions,patch_spaces) do tests, PD, Ph Vh = get_fe_space(tests) Ω = Triangulation(PD) dΩ = Measure(Ω,qdegree) ap = (u,v) -> biform(u,v,dΩ) patch_smoother = PatchBasedLinearSolver(ap,Ph,Vh) return RichardsonSmoother(patch_smoother,10,0.2) end return smoothers end function get_jacobi_smoothers(mh) nlevs = num_levels(mh) smoothers = Fill(RichardsonSmoother(JacobiLinearSolver(),10,2.0/3.0),nlevs-1) level_parts = view(get_level_parts(mh),1:nlevs-1) return HierarchicalArray(smoothers,level_parts) end function get_bilinear_form(mh_lev,biform,qdegree) model = get_model(mh_lev) Ω = Triangulation(model) dΩ = Measure(Ω,qdegree) return (u,v) -> biform(u,v,dΩ) end function gmg_driver_from_mats(t,parts,mh,spaces,qdegree,smoothers,biform,liform,u) tests, trials = spaces restrictions, prolongations = setup_transfer_operators( trials, qdegree; mode=:residual, solver=IS_ConjugateGradientSolver(;reltol=1.e-6) ) smatrices, A, b = compute_hierarchy_matrices(trials,tests,biform,liform,qdegree) gmg = GMGLinearSolver( mh,smatrices, prolongations,restrictions, pre_smoothers=smoothers, post_smoothers=smoothers, coarsest_solver=LUSolver(), maxiter=1,mode=:preconditioner ) solver = CGSolver(gmg;maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts)) #solver = FGMRESSolver(5,gmg;maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts)) ns = numerical_setup(symbolic_setup(solver,A),A) # Solve tic!(t;barrier=true) x = pfill(0.0,partition(axes(A,2))) solve!(x,ns,b) # Error if !isa(u,Nothing) model = get_model(mh,1) Uh = get_fe_space(trials,1) Ω = Triangulation(model) dΩ = Measure(Ω,qdegree) uh = FEFunction(Uh,x) eh = u-uh e_l2 = sum(∫(eh⋅eh)dΩ) if i_am_main(parts) println("L2 error = ", e_l2) end end end function gmg_driver_from_weakform(t,parts,mh,spaces,qdegree,smoothers,biform,liform,u) tests, trials = spaces restrictions, prolongations = setup_transfer_operators( trials, qdegree; mode=:residual, solver=IS_ConjugateGradientSolver(;reltol=1.e-6) ) A, b = with_level(mh,1) do _ model = get_model(mh,1) U = get_fe_space(trials,1) V = get_fe_space(tests,1) Ω = Triangulation(model) dΩ = Measure(Ω,qdegree) al(du,dv) = biform(du,dv,dΩ) ll(dv) = liform(dv,dΩ) op = AffineFEOperator(al,ll,U,V) return get_matrix(op), get_vector(op) end biforms = map(mhl -> get_bilinear_form(mhl,biform,qdegree),mh) gmg = GMGLinearSolver( mh,trials,tests,biforms, prolongations,restrictions, pre_smoothers=smoothers, post_smoothers=smoothers, coarsest_solver=LUSolver(), maxiter=1,mode=:preconditioner ) solver = CGSolver(gmg;maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts)) #solver = FGMRESSolver(5,gmg;maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts)) ns = numerical_setup(symbolic_setup(solver,A),A) # Solve x = pfill(0.0,partition(axes(A,2))) solve!(x,ns,b) # Error if !isa(u,Nothing) model = get_model(mh,1) Uh = get_fe_space(trials,1) Ω = Triangulation(model) dΩ = Measure(Ω,qdegree) uh = FEFunction(Uh,x) eh = u-uh e_l2 = sum(∫(eh⋅eh)dΩ) if i_am_main(parts) println("L2 error = ", e_l2) end end end function gmg_poisson_driver(t,parts,mh,order) tic!(t;barrier=true) u(x) = x[1] + x[2] f(x) = -Δ(u)(x) biform(u,v,dΩ) = ∫(∇(v)⋅∇(u))dΩ liform(v,dΩ) = ∫(v*f)dΩ qdegree = 2*order+1 reffe = ReferenceFE(lagrangian,Float64,order) smoothers = get_jacobi_smoothers(mh) tests = TestFESpace(mh,reffe,dirichlet_tags="boundary") trials = TrialFESpace(tests,u) spaces = tests, trials toc!(t,"FESpaces") tic!(t;barrier=true) gmg_driver_from_mats(t,parts,mh,spaces,qdegree,smoothers,biform,liform,u) toc!(t,"Solve with matrices") tic!(t;barrier=true) gmg_driver_from_weakform(t,parts,mh,spaces,qdegree,smoothers,biform,liform,u) toc!(t,"Solve with weakforms") end function gmg_laplace_driver(t,parts,mh,order) tic!(t;barrier=true) α = 1.0 u(x) = x[1] + x[2] f(x) = u(x) - α * Δ(u)(x) biform(u,v,dΩ) = ∫(v*u)dΩ + ∫(α*∇(v)⋅∇(u))dΩ liform(v,dΩ) = ∫(v*f)dΩ qdegree = 2*order+1 reffe = ReferenceFE(lagrangian,Float64,order) smoothers = get_jacobi_smoothers(mh) tests = TestFESpace(mh,reffe,dirichlet_tags="boundary") trials = TrialFESpace(tests,u) spaces = tests, trials toc!(t,"FESpaces") tic!(t;barrier=true) gmg_driver_from_mats(t,parts,mh,spaces,qdegree,smoothers,biform,liform,u) toc!(t,"Solve with matrices") tic!(t;barrier=true) gmg_driver_from_weakform(t,parts,mh,spaces,qdegree,smoothers,biform,liform,u) toc!(t,"Solve with weakforms") end function gmg_vector_laplace_driver(t,parts,mh,order) tic!(t;barrier=true) Dc = num_cell_dims(get_model(mh,1)) α = 1.0 u(x) = (Dc==2) ? VectorValue(x[1],x[2]) : VectorValue(x[1],x[2],x[3]) f(x) = (Dc==2) ? VectorValue(x[1],x[2]) : VectorValue(x[1],x[2],x[3]) biform(u,v,dΩ) = ∫(v⋅u)dΩ + ∫(α*∇(v)⊙∇(u))dΩ liform(v,dΩ) = ∫(v⋅f)dΩ qdegree = 2*order+1 reffe = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order) smoothers = get_jacobi_smoothers(mh) tests = TestFESpace(mh,reffe,dirichlet_tags="boundary") trials = TrialFESpace(tests,u) spaces = tests, trials toc!(t,"FESpaces") tic!(t;barrier=true) gmg_driver_from_mats(t,parts,mh,spaces,qdegree,smoothers,biform,liform,u) toc!(t,"Solve with matrices") tic!(t;barrier=true) gmg_driver_from_weakform(t,parts,mh,spaces,qdegree,smoothers,biform,liform,u) toc!(t,"Solve with weakforms") end function gmg_hdiv_driver(t,parts,mh,order) tic!(t;barrier=true) Dc = num_cell_dims(get_model(mh,1)) α = 1.0 u(x) = (Dc==2) ? VectorValue(x[1],x[2]) : VectorValue(x[1],x[2],x[3]) f(x) = (Dc==2) ? VectorValue(x[1],x[2]) : VectorValue(x[1],x[2],x[3]) biform(u,v,dΩ) = ∫(v⋅u)dΩ + ∫(α*divergence(v)⋅divergence(u))dΩ liform(v,dΩ) = ∫(v⋅f)dΩ qdegree = 2*(order+1) reffe = ReferenceFE(raviart_thomas,Float64,order-1) tests = TestFESpace(mh,reffe,dirichlet_tags="boundary") trials = TrialFESpace(tests,u) spaces = tests, trials toc!(t,"FESpaces") tic!(t;barrier=true) smoothers = get_patch_smoothers(mh,tests,biform,qdegree) toc!(t,"Patch Decomposition") tic!(t;barrier=true) gmg_driver_from_mats(t,parts,mh,spaces,qdegree,smoothers,biform,liform,u) toc!(t,"Solve with matrices") tic!(t;barrier=true) gmg_driver_from_weakform(t,parts,mh,spaces,qdegree,smoothers,biform,liform,u) toc!(t,"Solve with weakforms") end function gmg_multifield_driver(t,parts,mh,order) tic!(t;barrier=true) Dc = num_cell_dims(get_model(mh,1)) @assert Dc == 3 β = 1.0 γ = 1.0 B = VectorValue(0.0,0.0,1.0) f = VectorValue(fill(1.0,Dc)...) biform((u,j),(v_u,v_j),dΩ) = ∫(β*∇(u)⊙∇(v_u) -γ*(j×B)⋅v_u + j⋅v_j - (u×B)⋅v_j)dΩ liform((v_u,v_j),dΩ) = ∫(v_u⋅f)dΩ reffe_u = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order) tests_u = FESpace(mh,reffe_u;dirichlet_tags="boundary"); trials_u = TrialFESpace(tests_u); reffe_j = ReferenceFE(raviart_thomas,Float64,order-1) tests_j = FESpace(mh,reffe_j;dirichlet_tags="boundary"); trials_j = TrialFESpace(tests_j); trials = MultiFieldFESpace([trials_u,trials_j]); tests = MultiFieldFESpace([tests_u,tests_j]); spaces = tests, trials toc!(t,"FESpaces") tic!(t;barrier=true) qdegree = 2*(order+1) smoothers = get_patch_smoothers(mh,tests,biform,qdegree) toc!(t,"Patch Decomposition") tic!(t;barrier=true) gmg_driver_from_mats(t,parts,mh,spaces,qdegree,smoothers,biform,liform,nothing) toc!(t,"Solve with matrices") tic!(t;barrier=true) gmg_driver_from_weakform(t,parts,mh,spaces,qdegree,smoothers,biform,liform,nothing) toc!(t,"Solve with weakforms") end function main_gmg_driver(parts,mh,order,pde) t = PTimer(parts,verbose=true) if pde == :poisson gmg_poisson_driver(t,parts,mh,order) elseif pde == :laplace gmg_laplace_driver(t,parts,mh,order) elseif pde == :vector_laplace gmg_vector_laplace_driver(t,parts,mh,order) elseif pde == :hdiv gmg_hdiv_driver(t,parts,mh,order) elseif pde == :multifield gmg_multifield_driver(t,parts,mh,order) else error("Unknown PDE") end end function get_mesh_hierarchy(parts,nc,np_per_level) Dc = length(nc) domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1) mh = CartesianModelHierarchy(parts,np_per_level,domain,nc) return mh end function main(distribute,np::Integer,nc::Tuple,np_per_level::Vector) parts = distribute(LinearIndices((np,))) mh = get_mesh_hierarchy(parts,nc,np_per_level) Dc = length(nc) for pde in [:poisson,:laplace,:vector_laplace,:hdiv,:multifield] if (pde != :multifield) || (Dc == 3) if i_am_main(parts) println(repeat("=",80)) println("Testing GMG with Dc=$(length(nc)), PDE=$pde") end order = 1 main_gmg_driver(parts,mh,order,pde) end end end end # module GMGTests
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
2084
module IterativeSolversWrappersTests using Test using Gridap, Gridap.Algebra using IterativeSolvers using LinearAlgebra using SparseArrays using PartitionedArrays using GridapDistributed using GridapSolvers using GridapSolvers.LinearSolvers sol(x) = x[1] + x[2] f(x) = -Δ(sol)(x) function test_solver(solver,op,Uh,dΩ) A, b = get_matrix(op), get_vector(op); ns = numerical_setup(symbolic_setup(solver,A),A) x = allocate_in_domain(A); fill!(x,zero(eltype(x))) solve!(x,ns,b) u = interpolate(sol,Uh) uh = FEFunction(Uh,x) eh = uh - u E = sum(∫(eh*eh)*dΩ) @test E < 1.e-6 end function get_mesh(parts,np) Dc = length(np) if Dc == 2 domain = (0,1,0,1) nc = (8,8) else @assert Dc == 3 domain = (0,1,0,1,0,1) nc = (8,8,8) end if prod(np) == 1 model = CartesianDiscreteModel(domain,nc) else model = CartesianDiscreteModel(parts,np,domain,nc) end return model end function main(distribute,np) parts = distribute(LinearIndices((prod(np),))) model = get_mesh(parts,np) verbose = i_am_main(parts) order = 1 qorder = order*2 + 1 reffe = ReferenceFE(lagrangian,Float64,order) Vh = TestFESpace(model,reffe;conformity=:H1,dirichlet_tags="boundary") Uh = TrialFESpace(Vh,sol) u = interpolate(sol,Uh) Ω = Triangulation(model) dΩ = Measure(Ω,qorder) a(u,v) = ∫(∇(v)⋅∇(u))*dΩ l(v) = ∫(v⋅f)*dΩ op = AffineFEOperator(a,l,Uh,Vh) verbose && println("> Testing CG") cg_solver = IS_ConjugateGradientSolver(;maxiter=100,reltol=1.e-12,verbose=verbose) test_solver(cg_solver,op,Uh,dΩ) if prod(np) == 1 verbose && println("> Testing SSOR") ssor_solver = IS_SSORSolver(2.0/3.0;maxiter=1000) test_solver(ssor_solver,op,Uh,dΩ) verbose && println("> Testing GMRES") gmres_solver = IS_GMRESSolver(;maxiter=100,reltol=1.e-12,verbose=verbose) test_solver(gmres_solver,op,Uh,dΩ) verbose && println("> Testing MINRES") minres_solver = IS_MINRESSolver(;maxiter=100,reltol=1.e-12,verbose=verbose) test_solver(minres_solver,op,Uh,dΩ) end end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
2320
module KrylovTests using Test using Gridap, Gridap.Algebra using GridapDistributed using PartitionedArrays using IterativeSolvers using GridapSolvers using GridapSolvers.LinearSolvers sol(x) = x[1] + x[2] f(x) = -Δ(sol)(x) function test_solver(solver,op,Uh,dΩ) A, b = get_matrix(op), get_vector(op); ns = numerical_setup(symbolic_setup(solver,A),A) x = allocate_in_domain(A); fill!(x,0.0) solve!(x,ns,b) u = interpolate(sol,Uh) uh = FEFunction(Uh,x) eh = uh - u E = sum(∫(eh*eh)*dΩ) @test E < 1.e-6 end function get_mesh(parts,np) Dc = length(np) if Dc == 2 domain = (0,1,0,1) nc = (8,8) else @assert Dc == 3 domain = (0,1,0,1,0,1) nc = (8,8,8) end if prod(np) == 1 model = CartesianDiscreteModel(domain,nc) else model = CartesianDiscreteModel(parts,np,domain,nc) end return model end function main(distribute,np) parts = distribute(LinearIndices((prod(np),))) model = get_mesh(parts,np) order = 1 qorder = order*2 + 1 reffe = ReferenceFE(lagrangian,Float64,order) Vh = TestFESpace(model,reffe;conformity=:H1,dirichlet_tags="boundary") Uh = TrialFESpace(Vh,sol) u = interpolate(sol,Uh) Ω = Triangulation(model) dΩ = Measure(Ω,qorder) a(u,v) = ∫(∇(v)⋅∇(u))*dΩ l(v) = ∫(v⋅f)*dΩ op = AffineFEOperator(a,l,Uh,Vh) P = JacobiLinearSolver() verbose = i_am_main(parts) # GMRES with left and right preconditioner gmres = LinearSolvers.GMRESSolver(40;Pr=P,Pl=P,rtol=1.e-8,verbose=verbose) test_solver(gmres,op,Uh,dΩ) # GMRES without preconditioner gmres = LinearSolvers.GMRESSolver(10;rtol=1.e-8,verbose=verbose) test_solver(gmres,op,Uh,dΩ) gmres = LinearSolvers.GMRESSolver(10;restart=true,rtol=1.e-8,verbose=verbose) test_solver(gmres,op,Uh,dΩ) fgmres = LinearSolvers.FGMRESSolver(10,P;rtol=1.e-8,verbose=verbose) test_solver(fgmres,op,Uh,dΩ) fgmres = LinearSolvers.FGMRESSolver(10,P;restart=true,rtol=1.e-8,verbose=verbose) test_solver(fgmres,op,Uh,dΩ) pcg = LinearSolvers.CGSolver(P;rtol=1.e-8,verbose=verbose) test_solver(pcg,op,Uh,dΩ) fpcg = LinearSolvers.CGSolver(P;flexible=true,rtol=1.e-8,verbose=verbose) test_solver(fpcg,op,Uh,dΩ) minres = LinearSolvers.MINRESSolver(;Pl=P,rtol=1.e-8,verbose=verbose) test_solver(minres,op,Uh,dΩ) end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
2984
module SchurComplementSolversTests using Test using BlockArrays using Gridap using Gridap.MultiField, Gridap.Algebra using Gridap.Algebra using Gridap.Geometry using Gridap.FESpaces using Gridap.ReferenceFEs using PartitionedArrays using GridapDistributed using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools function l2_error(xh,sol,dΩ) eh = xh - sol e = sum(∫(eh⋅eh)dΩ) return e end function l2_error(x,sol,X,dΩ) xh = FEFunction(X,x) return l2_error(xh,sol,dΩ) end function get_mesh(parts,np) Dc = length(np) if Dc == 2 domain = (0,1,0,1) nc = (8,8) else @assert Dc == 3 domain = (0,1,0,1,0,1) nc = (8,8,8) end if prod(np) == 1 model = CartesianDiscreteModel(domain,nc) else model = CartesianDiscreteModel(parts,np,domain,nc) end return model end # Darcy solution const β_U = 50.0 const γ = 100.0 u_ref(x) = VectorValue(x[1]+x[2],-x[2]) p_ref(x) = 2.0*x[1]-1.0 f_ref(x) = u_ref(x) + ∇(p_ref)(x) function main(distribute,np) parts = distribute(LinearIndices((prod(np),))) model = get_mesh(parts,np) labels = get_face_labeling(model) add_tag_from_tags!(labels,"dirichlet",[1,2,3,4,5,6,7]) add_tag_from_tags!(labels,"newmann",[8,]) order = 0 reffeᵤ = ReferenceFE(raviart_thomas,Float64,order) V = TestFESpace(model,reffeᵤ,conformity=:HDiv,dirichlet_tags="dirichlet") U = TrialFESpace(V,u_ref) reffeₚ = ReferenceFE(lagrangian,Float64,order;space=:P) Q = TestFESpace(model,reffeₚ,conformity=:L2) P = TrialFESpace(Q,p_ref) mfs = BlockMultiFieldStyle() Y = MultiFieldFESpace([V, Q];style=mfs) X = MultiFieldFESpace([U, P];style=mfs) qdegree = 4 Ω = Triangulation(model) dΩ = Measure(Ω,qdegree) Γ_N = BoundaryTriangulation(model;tags="newmann") dΓ_N = Measure(Γ_N,qdegree) n_Γ_N = get_normal_vector(Γ_N) a(u,v) = ∫(v⊙u)dΩ + ∫(γ*(∇⋅v)*(∇⋅u))dΩ b(p,v) = ∫(-(∇⋅v)*p)dΩ c(u,q) = ∫(- q*(∇⋅u))dΩ biform((u,p),(v,q)) = a(u,v) + b(p,v) + c(u,q) liform((v,q)) = ∫(f_ref⋅v)dΩ - ∫((v⋅n_Γ_N)⋅p_ref)dΓ_N op = AffineFEOperator(biform,liform,X,Y) sysmat, sysvec = get_matrix(op), get_vector(op); ############################################################################################ # Solve by GMRES preconditioned with inexact Schur complement s(p,q) = ∫(γ*p*q)dΩ PS = assemble_matrix(s,P,Q) PS_solver = LUSolver() PS_ns = numerical_setup(symbolic_setup(PS_solver,PS),PS) A = sysmat[Block(1,1)] A_solver = LUSolver() A_ns = numerical_setup(symbolic_setup(A_solver,A),A) B = sysmat[Block(1,2)]; C = sysmat[Block(2,1)] psc_solver = SchurComplementSolver(A_ns,B,C,PS_ns); gmres = GMRESSolver(20;Pr=psc_solver,rtol=1.e-10,verbose=i_am_main(parts)) gmres_ns = numerical_setup(symbolic_setup(gmres,sysmat),sysmat) x = allocate_in_domain(sysmat) solve!(x,gmres_ns,sysvec) xh = FEFunction(X,x) uh, ph = xh #@test l2_error(uh,u_ref,dΩ) < 1.e-4 #@test l2_error(ph,p_ref,dΩ) < 1.e-4 end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
2225
module SmoothersTests using Test using MPI using Gridap, Gridap.Algebra using GridapDistributed using PartitionedArrays using IterativeSolvers using GridapSolvers using GridapSolvers.LinearSolvers function smoothers_driver(parts,model,P) sol(x) = x[1] + x[2] f(x) = -Δ(sol)(x) order = 1 qorder = order*2 + 1 reffe = ReferenceFE(lagrangian,Float64,order) Vh = TestFESpace(model,reffe;conformity=:H1,dirichlet_tags="boundary") Uh = TrialFESpace(Vh,sol) u = interpolate(sol,Uh) Ω = Triangulation(model) dΩ = Measure(Ω,qorder) a(u,v) = ∫(∇(v)⋅∇(u))*dΩ l(v) = ∫(v⋅f)*dΩ op = AffineFEOperator(a,l,Uh,Vh) A, b = get_matrix(op), get_vector(op) ss = symbolic_setup(P,A) ns = numerical_setup(ss,A) x = allocate_in_domain(A); ; fill!(x,zero(eltype(x))) x, history = IterativeSolvers.cg!(x,A,b; verbose=i_am_main(parts), reltol=1.0e-8, Pl=ns, log=true) u = interpolate(sol,Uh) uh = FEFunction(Uh,x) eh = uh - u E = sum(∫(eh*eh)*dΩ) if i_am_main(parts) println("L2 Error: ", E) end @test E < 1.e-8 end function main_smoother_driver(parts,model,smoother) if smoother === :richardson P = RichardsonSmoother(JacobiLinearSolver(),5,2.0/3.0) elseif smoother === :sym_gauss_seidel P = SymGaussSeidelSmoother(5) else error("Unknown smoother") end smoothers_driver(parts,model,P) end function get_mesh(parts,np) Dc = length(np) if Dc == 2 domain = (0,1,0,1) nc = (8,8) else @assert Dc == 3 domain = (0,1,0,1,0,1) nc = (8,8,8) end if prod(np) == 1 model = CartesianDiscreteModel(domain,nc) else model = CartesianDiscreteModel(parts,np,domain,nc) end return model end function main(distribute,np) parts = distribute(LinearIndices((prod(np),))) model = get_mesh(parts,np) for smoother in [:richardson,:sym_gauss_seidel] if i_am_main(parts) println(repeat("=",80)) println("Testing smoother $smoother with Dc=$(length(np))") end main_smoother_driver(parts,model,smoother) end end end # module SmoothersTests
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
238
module GMGTestsMPI using MPI, PartitionedArrays include("../GMGTests.jl") with_mpi() do distribute GMGTests.main(distribute,4,(4,4),[(2,2),(2,1),(1,1)]) # 2D GMGTests.main(distribute,4,(2,2,2),[(2,2,1),(2,1,1),(1,1,1)]) # 3D end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
203
module KrylovTestsMPI using MPI, PartitionedArrays include("../KrylovTests.jl") with_mpi() do distribute KrylovTests.main(distribute,(2,2)) # 2D KrylovTests.main(distribute,(2,2,1)) # 3D end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
199
module SchurComplementSolversTestsMPI using PartitionedArrays, MPI include("../SchurComplementSolversTests.jl") with_mpi() do distribute SchurComplementSolversTests.main(distribute,(2,2)) end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
214
module SmoothersTestsMPI using MPI, PartitionedArrays include("../SmoothersTests.jl") with_mpi() do distribute SmoothersTests.main(distribute,(2,2)) # 2D SmoothersTests.main(distribute,(2,2,1)) # 3D end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
457
using Test using MPI using GridapSolvers function run_tests(testdir) istest(f) = endswith(f, ".jl") && !(f=="runtests.jl") testfiles = sort(filter(istest, readdir(testdir))) @time @testset "$f" for f in testfiles MPI.mpiexec() do cmd np = 4 cmd = `$cmd -n $(np) --oversubscribe $(Base.julia_cmd()) --project=. $(joinpath(testdir, f))` @show cmd run(cmd) @test true end end end # MPI tests run_tests(@__DIR__)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
221
module GMGTestsSeq using PartitionedArrays include("../GMGTests.jl") with_debug() do distribute GMGTests.main(distribute,4,(4,4),[(2,2),(1,1)]) # 2D GMGTests.main(distribute,4,(2,2,2),[(2,2,1),(1,1,1)]) # 3D end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
420
module IterativeSolversWrappersTestsSequential using PartitionedArrays include("../IterativeSolversWrappersTests.jl") with_debug() do distribute IterativeSolversWrappersTests.main(distribute,(1,1)) # 2D - serial IterativeSolversWrappersTests.main(distribute,(2,2)) # 2D IterativeSolversWrappersTests.main(distribute,(1,1,1)) # 3D - serial IterativeSolversWrappersTests.main(distribute,(2,2,1)) # 3D end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
312
module KrylovTestsSequential using PartitionedArrays include("../KrylovTests.jl") with_debug() do distribute KrylovTests.main(distribute,(1,1)) # 2D - serial KrylovTests.main(distribute,(2,2)) # 2D KrylovTests.main(distribute,(1,1,1)) # 3D - serial KrylovTests.main(distribute,(2,2,1)) # 3D end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
256
module SchurComplementSolversTestsSequential using PartitionedArrays include("../SchurComplementSolversTests.jl") with_debug() do distribute SchurComplementSolversTests.main(distribute,(1,1)) SchurComplementSolversTests.main(distribute,(2,2)) end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
330
module SmoothersTestsSequential using PartitionedArrays include("../SmoothersTests.jl") with_debug() do distribute SmoothersTests.main(distribute,(1,1)) # 2D - serial SmoothersTests.main(distribute,(2,2)) # 2D SmoothersTests.main(distribute,(1,1,1)) # 3D - serial SmoothersTests.main(distribute,(2,2,1)) # 3D end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
134
using Test include("KrylovTests.jl") include("IterativeSolversWrappersTests.jl") include("SmoothersTests.jl") include("GMGTests.jl")
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
5190
module DistributedGridTransferOperatorsTests using MPI using PartitionedArrays using Gridap, Gridap.Algebra using GridapDistributed using GridapP4est using Test using GridapSolvers using GridapSolvers.MultilevelTools using GridapDistributed: change_ghost function get_model_hierarchy(parts,Dc,num_parts_x_level) mh = GridapP4est.with(parts) do if Dc == 2 domain = (0,1,0,1) nc = (2,2) else @assert Dc == 3 domain = (0,1,0,1,0,1) nc = (2,2,2) end num_refs_coarse = 2 num_levels = length(num_parts_x_level) cparts = generate_subparts(parts,num_parts_x_level[num_levels]) cmodel = CartesianDiscreteModel(domain,nc) coarse_model = OctreeDistributedDiscreteModel(cparts,cmodel,num_refs_coarse) return ModelHierarchy(parts,coarse_model,num_parts_x_level) end return mh end function get_hierarchy_matrices(trials,tests,a,l,qdegree) mats, vecs = map(trials,tests) do trials,tests U = get_fe_space(trials) V = get_fe_space(tests) Ω = get_triangulation(U) dΩ = Measure(Ω,qdegree) ai(u,v) = a(u,v,dΩ) li(v) = l(v,dΩ) op = AffineFEOperator(ai,li,U,V) return get_matrix(op), get_vector(op) end |> tuple_of_arrays return mats, vecs end function main_driver(parts,mh,sol,trials,tests,mats,vecs,qdegree,rm,mode) # Create Operators: ops = setup_transfer_operators(trials, qdegree; restriction_method=rm, mode=mode) restrictions, prolongations = ops nlevs = num_levels(mh) for lev in 1:nlevs-1 parts_h = get_level_parts(mh,lev) parts_H = get_level_parts(mh,lev+1) if i_am_in(parts_h) i_am_main(parts) && println(" >> Level: ", lev) Ah = mats[lev] bh = vecs[lev] Uh = get_fe_space(trials,lev) Vh = get_fe_space(tests,lev) uh_ref = interpolate(sol,Uh) xh_ref = change_ghost(get_free_dof_values(uh_ref),axes(Ah,2);make_consistent=true) rh_ref = similar(xh_ref); mul!(rh_ref,Ah,xh_ref); rh_ref .= bh .- rh_ref; yh = similar(xh_ref) if mode == :solution xh = copy(xh_ref) yh_ref = xh_ref else xh = copy(rh_ref) yh_ref = rh_ref end if i_am_in(parts_H) AH = mats[lev+1] bH = vecs[lev+1] UH = get_fe_space(trials,lev+1) VH = get_fe_space(tests,lev+1) uH_ref = interpolate(sol,UH) xH_ref = change_ghost(get_free_dof_values(uH_ref),axes(AH,2);make_consistent=true) rH_ref = similar(xH_ref); mul!(rH_ref,AH,xH_ref); rH_ref .= bH .- rH_ref; yH = similar(xH_ref) if mode == :solution xH = copy(xH_ref) yH_ref = xH_ref else xH = copy(rH_ref) yH_ref = rH_ref end else xH_ref = nothing xH = nothing yH_ref = nothing yH = nothing end # ---- Restriction ---- i_am_main(parts) && println(" >>> Restriction") R = restrictions[lev] mul!(yH,R,xh) if i_am_in(parts_H) errors = map(own_values(yH_ref),own_values(yH)) do y_ref,y e = norm(y-y_ref) i_am_main(parts) && println(" - Error = ", e) return e < 1.e-3 end @test PartitionedArrays.getany(errors) end # ---- Prolongation ---- i_am_main(parts) && println(" >>> Prolongation") P = prolongations[lev] mul!(yh,P,xH) errors = map(own_values(yh_ref),own_values(yh)) do y_ref,y e = norm(y-y_ref) i_am_main(parts) && println(" - Error = ", e) return e < 1.e-3 end @test PartitionedArrays.getany(errors) end end end u_hdiv(x) = VectorValue([x[2]-x[1],x[1]-x[2]]) u_h1(x) = x[1]+x[2] #u_h1(x) = x[1]*(1-x[1])*x[2]*(1-x[2]) #u_hdiv(x) = VectorValue([x[1]*(1.0-x[1]),-x[2]*(1.0-x[2])]) function main(distribute,np,Dc,np_x_level) parts = distribute(LinearIndices((np,))) mh = get_model_hierarchy(parts,Dc,np_x_level) conformities = [:h1,:hdiv] solutions = [u_h1,u_hdiv] for order in [1,2] reffes = [ReferenceFE(lagrangian,Float64,order),ReferenceFE(raviart_thomas,Float64,order)] for (conf,u,reffe) in zip(conformities,solutions,reffes) tests = TestFESpace(mh,reffe;dirichlet_tags="boundary") trials = TrialFESpace(tests,u) for mode in [:solution]#,:residual] for rm in [:projection]#,:interpolation] qdegree = 2*order + 1 fx = zero(u(VectorValue(0.0,0.0))) a(u,v,dΩ) = ∫(v⋅u)*dΩ l(v,dΩ) = ∫(v⋅fx)*dΩ mats, vecs = get_hierarchy_matrices(trials,tests,a,l,qdegree) if i_am_main(parts) println(repeat("=",80)) println("> Testing transfers for") println(" - order = ", order) println(" - conformity = ", conf) println(" - transfer_mode = ", mode) println(" - restriction_method = ", rm) end main_driver(parts,mh,u,trials,tests,mats,vecs,qdegree,rm,mode) end end end end end with_mpi() do distribute main(distribute,4,2,[4,2,2]) end end # module DistributedGridTransferOperatorsTests
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
1354
module ModelHierarchiesTests using MPI using Gridap using Gridap.FESpaces, Gridap.Algebra using GridapDistributed using PartitionedArrays using GridapP4est using GridapSolvers using GridapSolvers.MultilevelTools function main(distribute,np,num_parts_x_level) parts = distribute(LinearIndices((prod(np),))) GridapP4est.with(parts) do # Start from coarse, refine models domain = (0,1,0,1) num_levels = length(num_parts_x_level) cparts = generate_subparts(parts,num_parts_x_level[num_levels]) cmodel = CartesianDiscreteModel(domain,(2,2)) coarse_model = OctreeDistributedDiscreteModel(cparts,cmodel,2) mh = ModelHierarchy(parts,coarse_model,num_parts_x_level) sol(x) = x[1] + x[2] reffe = ReferenceFE(lagrangian,Float64,1) tests = TestFESpace(mh,reffe,conformity=:H1) trials = TrialFESpace(tests,sol) # Start from fine, coarsen models domain = (0,1,0,1) fparts = generate_subparts(parts,num_parts_x_level[1]) fmodel = CartesianDiscreteModel(domain,(2,2)) fine_model = OctreeDistributedDiscreteModel(fparts,fmodel,8) mh = ModelHierarchy(parts,fine_model,num_parts_x_level) sol(x) = x[1] + x[2] reffe = ReferenceFE(lagrangian,Float64,1) tests = TestFESpace(mh,reffe,conformity=:H1) trials = TrialFESpace(tests,sol) end end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
2481
module RedistributeToolsTests using MPI using PartitionedArrays using Gridap, Gridap.Algebra using GridapDistributed using GridapP4est using Test using GridapSolvers using GridapSolvers.MultilevelTools using GridapDistributed: redistribute_cell_dofs, redistribute_fe_function, redistribute_free_values function get_model_hierarchy(parts,Dc,num_parts_x_level) mh = GridapP4est.with(parts) do if Dc == 2 domain = (0,1,0,1) nc = (2,2) else @assert Dc == 3 domain = (0,1,0,1,0,1) nc = (2,2,2) end num_refs_coarse = 2 num_levels = length(num_parts_x_level) cparts = generate_subparts(parts,num_parts_x_level[num_levels]) cmodel = CartesianDiscreteModel(domain,nc) coarse_model = OctreeDistributedDiscreteModel(cparts,cmodel,num_refs_coarse) return ModelHierarchy(parts,coarse_model,num_parts_x_level) end return mh end function main_driver(parts,mh) level_parts = get_level_parts(mh) old_parts = level_parts[2] new_parts = level_parts[1] # FE Spaces order = 2 u(x) = x[1]^2 + x[2]^2 - 3.0*x[1]*x[2] reffe = ReferenceFE(lagrangian,Float64,order) glue = mh[1].red_glue model_old = get_model_before_redist(mh[1]) if i_am_in(old_parts) VOLD = TestFESpace(model_old,reffe,dirichlet_tags="boundary") UOLD = TrialFESpace(VOLD,u) else VOLD = nothing UOLD = nothing end model_new = get_model(mh[1]) VNEW = TestFESpace(model_new,reffe,dirichlet_tags="boundary") UNEW = TrialFESpace(VNEW,u) # Triangulations qdegree = 2*order+1 Ω_new = Triangulation(model_new) dΩ_new = Measure(Ω_new,qdegree) uh_new = interpolate(u,UNEW) if i_am_in(old_parts) Ω_old = Triangulation(model_old) dΩ_old = Measure(Ω_old,qdegree) uh_old = interpolate(u,UOLD) else Ω_old = nothing dΩ_old = nothing uh_old = nothing end # Old -> New uh_old_red = redistribute_fe_function(uh_old,UNEW,model_new,glue) n = sum(∫(uh_old_red)*dΩ_new) if i_am_in(old_parts) o = sum(∫(uh_old)*dΩ_old) @test o ≈ n end # New -> Old uh_new_red = redistribute_fe_function(uh_new,UOLD,model_old,glue;reverse=true) n = sum(∫(uh_new)*dΩ_new) if i_am_in(old_parts) o = sum(∫(uh_new_red)*dΩ_old) @test o ≈ n end end function main(distribute,np,Dc,np_x_level) parts = distribute(LinearIndices((np,))) mh = get_model_hierarchy(parts,Dc,np_x_level) main_driver(parts,mh) end end # module RedistributeToolsTests
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
3222
module RefinementToolsTests using MPI using PartitionedArrays using Gridap, Gridap.Algebra using GridapDistributed using GridapP4est using Test using IterativeSolvers using GridapSolvers using GridapSolvers.MultilevelTools function get_model_hierarchy(parts,Dc,num_parts_x_level) mh = GridapP4est.with(parts) do if Dc == 2 domain = (0,1,0,1) nc = (2,2) else @assert Dc == 3 domain = (0,1,0,1,0,1) nc = (2,2,2) end num_refs_coarse = 2 num_levels = length(num_parts_x_level) cparts = generate_subparts(parts,num_parts_x_level[num_levels]) cmodel = CartesianDiscreteModel(domain,nc) coarse_model = OctreeDistributedDiscreteModel(cparts,cmodel,num_refs_coarse) return ModelHierarchy(parts,coarse_model,num_parts_x_level) end return mh end function main_driver(parts,mh) # FE Spaces order = 2 sol(x) = x[1]^2 + x[2]^2 - 3.0*x[1]*x[2] reffe = ReferenceFE(lagrangian,Float64,order) tests = TestFESpace(mh,reffe;conformity=:H1,dirichlet_tags="boundary") trials = TrialFESpace(tests,sol) nlevs = num_levels(mh) quad_order = 2*order+1 for lev in 1:nlevs-1 fparts = get_level_parts(mh,lev) cparts = get_level_parts(mh,lev+1) if i_am_in(cparts) model_h = get_model_before_redist(mh,lev) Vh = get_fe_space_before_redist(tests,lev) Uh = get_fe_space_before_redist(trials,lev) Ωh = get_triangulation(model_h) dΩh = Measure(Ωh,quad_order) uh = interpolate(sol,Uh) model_H = get_model(mh,lev+1) VH = get_fe_space(tests,lev+1) UH = get_fe_space(trials,lev+1) ΩH = get_triangulation(model_H) dΩH = Measure(ΩH,quad_order) uH = interpolate(sol,UH) dΩhH = Measure(ΩH,Ωh,quad_order) # Coarse FEFunction -> Fine FEFunction, by projection ah(u,v) = ∫(v⋅u)*dΩh lh(v) = ∫(v⋅uH)*dΩh oph = AffineFEOperator(ah,lh,Uh,Vh) Ah = get_matrix(oph) bh = get_vector(oph) xh = pfill(0.0,partition(axes(Ah,2))) IterativeSolvers.cg!(xh,Ah,bh;verbose=i_am_main(parts),reltol=1.0e-08) uH_projected = FEFunction(Uh,xh) _eh = uh-uH_projected eh = sum(∫(_eh⋅_eh)*dΩh) i_am_main(parts) && println("Error H2h: ", eh) @test eh < 1.0e-10 # Fine FEFunction -> Coarse FEFunction, by projection aH(u,v) = ∫(v⋅u)*dΩH lH(v) = ∫(v⋅uH_projected)*dΩhH opH = AffineFEOperator(aH,lH,UH,VH) AH = get_matrix(opH) bH = get_vector(opH) xH = pfill(0.0,partition(axes(AH,2))) IterativeSolvers.cg!(xH,AH,bH;verbose=i_am_main(parts),reltol=1.0e-08) uh_projected = FEFunction(UH,xH) _eH = uH-uh_projected eH = sum(∫(_eH⋅_eH)*dΩH) i_am_main(parts) && println("Error h2H: ", eH) @test eh < 1.0e-10 # Coarse FEFunction -> Fine FEFunction, by interpolation uH_i = interpolate(uH,Uh) _eh = uH_i-uh eh = sum(∫(_eh⋅_eh)*dΩh) i_am_main(parts) && println("Error h2H: ", eh) @test eh < 1.0e-10 end end end function main(distribute,np,Dc,np_x_level) parts = distribute(LinearIndices((np,))) mh = get_model_hierarchy(parts,Dc,np_x_level) main_driver(parts,mh) end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
315
module DistributedGridTransferOperatorsTestsMPI using MPI, PartitionedArrays include("../DistributedGridTransferOperatorsTests.jl") with_mpi() do distribute DistributedGridTransferOperatorsTests.main(distribute,4,2,[4,2,2]) # 2D #DistributedGridTransferOperatorsTests.main(distribute,4,3,[4,2,2]) # 3D end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
187
module ModelHierarchiesTestsMPI using MPI, PartitionedArrays include("../ModelHierarchiesTests.jl") with_mpi() do distribute ModelHierarchiesTests.main(distribute,4,[4,4,2,2]) end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
251
module RedistributeToolsTestsMPI using MPI, PartitionedArrays include("../RedistributeToolsTests.jl") with_mpi() do distribute RedistributeToolsTests.main(distribute,4,2,[4,2]) # 2D #RedistributeToolsTests.main(distribute,4,3,[4,2]) # 3D end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
247
module RefinementToolsTestsMPI using MPI, PartitionedArrays include("../RefinementToolsTests.jl") with_mpi() do distribute RefinementToolsTests.main(distribute,4,2,[4,2,2]) # 2D #RefinementToolsTests.main(distribute,4,3,[4,2,2]) # 3D end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
457
using Test using MPI using GridapSolvers function run_tests(testdir) istest(f) = endswith(f, ".jl") && !(f=="runtests.jl") testfiles = sort(filter(istest, readdir(testdir))) @time @testset "$f" for f in testfiles MPI.mpiexec() do cmd np = 4 cmd = `$cmd -n $(np) --oversubscribe $(Base.julia_cmd()) --project=. $(joinpath(testdir, f))` @show cmd run(cmd) @test true end end end # MPI tests run_tests(@__DIR__)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
1785
module NonlinearSolversTests using Test using LinearAlgebra using FillArrays, BlockArrays using LineSearches: BackTracking using GridapDistributed, PartitionedArrays using Gridap using Gridap.Algebra using GridapSolvers using GridapSolvers.NonlinearSolvers, GridapSolvers.LinearSolvers function main(ranks,model,solver) u_sol(x) = sum(x) order = 1 reffe = ReferenceFE(lagrangian,Float64,order) Vh = TestFESpace(model,reffe,dirichlet_tags=["boundary"]) Uh = TrialFESpace(Vh,u_sol) degree = 4*order Ω = Triangulation(model) dΩ = Measure(Ω,degree) α(u) = (1 + u + u^2) f(x) = α(u_sol(x)) res(u,v) = ∫((α∘u)⋅v - f*v)dΩ op = FEOperator(res,Uh,Vh) ls = GMRESSolver(10,Pr=JacobiLinearSolver(),maxiter=50,verbose=false) if solver == :nlsolvers_newton nls = NLsolveNonlinearSolver(ls; show_trace=true, method=:newton, linesearch=BackTracking(), iterations=20) elseif solver == :nlsolvers_trust_region nls = NLsolveNonlinearSolver(ls; show_trace=true, method=:trust_region, linesearch=BackTracking(), iterations=20) elseif solver == :nlsolvers_anderson nls = NLsolveNonlinearSolver(ls; show_trace=true, method=:anderson, linesearch=BackTracking(), iterations=40, m=10) elseif solver == :newton nls = NewtonSolver(ls,maxiter=20,verbose=true) else @error "Unknown solver" end solver = FESolver(nls) uh0 = interpolate(0.01,Uh) uh, = solve!(uh0,solver,op) @test norm(residual(op,uh)) < 1e-6 end # Serial function main(solver) model = CartesianDiscreteModel((0,1,0,1),(8,8)) ranks = DebugArray([1]) main(ranks,model,solver) end # Distributed function main(distribute,solver) ranks = distribute(LinearIndices((4,))) model = CartesianDiscreteModel((0,1,0,1),(8,8)) main(ranks,model,solver) end end #module
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
356
using Test include("../NonlinearSolversTests.jl") @testset "NonlinearSolvers" begin @testset "NLSolvers" begin NonlinearSolversTests.main(:nlsolvers_newton) NonlinearSolversTests.main(:nlsolvers_trust_region) NonlinearSolversTests.main(:nlsolvers_anderson) end @testset "Newton" begin NonlinearSolversTests.main(:newton) end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
267
using PartitionedArrays using GridapDistributed macro pdebug(parts,msg) return quote if i_am_main($parts) @debug $msg end end end np = 4 parts = with_mpi() do distribute distribute(LinearIndices((prod(np),))) end @pdebug(parts,"Hello, world!")
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
3053
using Test using LinearAlgebra using FillArrays, BlockArrays using Gridap using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces using Gridap.CellData, Gridap.MultiField, Gridap.Algebra using PartitionedArrays using GridapDistributed using GridapSolvers using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools, GridapSolvers.NonlinearSolvers using GridapSolvers.BlockSolvers: LinearSystemBlock, NonlinearSystemBlock, TriformBlock, BlockTriangularSolver function add_labels_2d!(labels) add_tag_from_tags!(labels,"top",[3,4,6]) add_tag_from_tags!(labels,"bottom",[1,2,5]) add_tag_from_tags!(labels,"walls",[7,8]) end function add_labels_3d!(labels) add_tag_from_tags!(labels,"top",[5,6,7,8,11,12,15,16,22]) add_tag_from_tags!(labels,"bottom",[1,2,3,4,9,10,13,14,21]) add_tag_from_tags!(labels,"walls",[17,18,23,25,26]) end np = (1,1) nc = (4,4) parts = with_mpi() do distribute distribute(LinearIndices((prod(np),))) end # Geometry Dc = length(nc) domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1) model = CartesianDiscreteModel(parts,np,domain,nc) add_labels! = (Dc == 2) ? add_labels_2d! : add_labels_3d! add_labels!(get_face_labeling(model)) # FE spaces order = 2 qdegree = 2*(order+1) reffe_u = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order) reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P) u_bottom = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0) u_top = (Dc==2) ? VectorValue(1.0,0.0) : VectorValue(1.0,0.0,0.0) V = TestFESpace(model,reffe_u,dirichlet_tags=["bottom","top"]); U = TrialFESpace(V,[u_bottom,u_top]); Q = TestFESpace(model,reffe_p;conformity=:L2,constraint=:zeromean) mfs = Gridap.MultiField.BlockMultiFieldStyle() X = MultiFieldFESpace([U,Q];style=mfs) Y = MultiFieldFESpace([V,Q];style=mfs) # Weak formulation Ω = Triangulation(model) dΩ = Measure(Ω,qdegree) p = 3 _ν(∇u) = norm(∇u)^(p-2) _dν(∇u) = (p-2)*norm(∇u)^(p-4) _flux(∇u) = _ν(∇u)*∇u _dflux(∇du,∇u) = _dν(∇u)*(∇u⊙∇du)*∇u + _ν(∇u)*∇du ν(u) = _ν∘(∇(u)) flux(u) = _flux∘(∇(u)) dflux(du,u) = _dflux∘(∇(du),∇(u)) f = (Dc==2) ? VectorValue(1.0,1.0) : VectorValue(1.0,1.0,1.0) res_u(u,v) = ∫(∇(v)⊙flux(u))dΩ - ∫(v⋅f)dΩ res((u,p),(v,q)) = res_u(u,v) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ jac_u(u,du,v) = ∫(∇(v)⊙dflux(du,u))dΩ jac((u,p),(du,dq),(v,q)) = jac_u(u,du,v) - ∫(divergence(v)*dq)dΩ - ∫(divergence(du)*q)dΩ op = FEOperator(res,jac,X,Y) # Solver solver_u = LUSolver() solver_p = CGSolver(JacobiLinearSolver();maxiter=30,atol=1e-14,rtol=1.e-6,verbose=false) solver_p.log.depth = 2 bblocks = [NonlinearSystemBlock() LinearSystemBlock(); LinearSystemBlock() TriformBlock(((u,p),dp,q) -> ∫(-ν(u)*dp*q)dΩ,X,Q,Q)] coeffs = [1.0 1.0; 0.0 1.0] P = BlockTriangularSolver(bblocks,[solver_u,solver_p],coeffs,:upper) ls_solver = FGMRESSolver(20,P;atol=1e-14,rtol=1.e-8,verbose=i_am_main(parts)) nls_solver = NewtonSolver(ls_solver;maxiter=5,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts)) xh = interpolate([VectorValue(1.0,1.0),0.0],X); solve!(xh,nls_solver,op)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
4475
using PartitionedArrays using Gridap, GridapPETSc, GridapSolvers, GridapDistributed, GridapP4est using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools import GridapSolvers.PatchBasedSmoothers as PBS using Gridap.ReferenceFEs, Gridap.Geometry function get_mesh_hierarchy(parts,Dc,np_per_level,nrefs_coarse) if Dc == 2 domain = (0,1,0,1) nc = (2,2) else @assert Dc == 3 domain = (0,1,0,1,0,1) nc = (2,2,2) end num_levels = length(np_per_level) cparts = generate_subparts(parts,np_per_level[num_levels]) cmodel = CartesianDiscreteModel(domain,nc) coarse_model = OctreeDistributedDiscreteModel(cparts,cmodel,nrefs_coarse) mh = ModelHierarchy(parts,coarse_model,np_per_level) return mh end function test_solver(s,D_j) ns = numerical_setup(symbolic_setup(s,D_j),D_j) b = allocate_in_domain(D_j) x = allocate_in_domain(D_j) fill!(b,1.0) solve!(x,ns,b) err = norm(b - D_j*x) return err end function test_smoother(s,D_j) ns = numerical_setup(symbolic_setup(s,D_j),D_j) b = allocate_in_domain(D_j) x = allocate_in_domain(D_j) r = allocate_in_range(D_j) fill!(b,1.0) fill!(x,1.0) mul!(r,D_j,x) r .= b .- r solve!(x,ns,r) err = norm(b - D_j*x) return err end function get_hierarchy_matrices(mh,tests,trials,biform) mats = Vector{AbstractMatrix}(undef,num_levels(mh)) A = nothing b = nothing for lev in 1:num_levels(mh) model = get_model(mh,lev) U_j = get_fe_space(trials,lev) V_j = get_fe_space(tests,lev) Ω = Triangulation(model) dΩ = Measure(Ω,2*k) ai(j,v_j) = biform(j,v_j,dΩ) if lev == 1 Dc = num_cell_dims(model) f = (Dc==2) ? VectorValue(1.0,1.0) : VectorValue(1.0,1.0,1.0) li(v) = ∫(v⋅f)*dΩ op = AffineFEOperator(ai,li,U_j,V_j) A, b = get_matrix(op), get_vector(op) mats[lev] = A else mats[lev] = assemble_matrix(ai,U_j,V_j) end end return mats, A, b end function get_patch_smoothers(tests,patch_spaces,patch_decompositions,biform,qdegree) mh = tests.mh nlevs = num_levels(mh) smoothers = Vector{RichardsonSmoother}(undef,nlevs-1) for lev in 1:nlevs-1 parts = get_level_parts(mh,lev) if i_am_in(parts) PD = patch_decompositions[lev] Ph = get_fe_space(patch_spaces,lev) Vh = get_fe_space(tests,lev) Ω = Triangulation(PD) dΩ = Measure(Ω,qdegree) a_j(j,v_j) = biform(j,v_j,dΩ) local_solver = LUSolver() # IS_ConjugateGradientSolver(;reltol=1.e-6) patch_smoother = PatchBasedLinearSolver(a_j,Ph,Vh,local_solver) smoothers[lev] = RichardsonSmoother(patch_smoother,1000,1.0) end end return smoothers end ############################################################################################ np = 1 ranks = with_mpi() do distribute distribute(LinearIndices((np,))) end # Geometry Dc = 2 mh = get_mesh_hierarchy(ranks,Dc,[1,1],3); model = get_model(mh,1) println("Number of cells: ",num_cells(model)) # FESpaces k = 1 qdegree = 2*k+2 j_bc = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0) reffe_j = ReferenceFE(raviart_thomas,Float64,k) tests = TestFESpace(mh,reffe_j;dirichlet_tags="boundary"); trials = TrialFESpace(tests,j_bc); biform(j,v_j,dΩ) = ∫(j⋅v_j + (∇⋅j)⋅(∇⋅v_j))*dΩ # Patch solver patch_decompositions = PBS.PatchDecomposition(mh) patch_spaces = PBS.PatchFESpace(mh,reffe_j,DivConformity(),patch_decompositions,tests); smoothers = get_patch_smoothers(tests,patch_spaces,patch_decompositions,biform,qdegree) restrictions, prolongations = setup_transfer_operators(trials,qdegree;mode=:residual); smatrices, A, b = get_hierarchy_matrices(mh,tests,trials,biform); println("System size: ",size(A)) gmg = GMGLinearSolver(mh, smatrices, prolongations, restrictions, pre_smoothers=smoothers, post_smoothers=smoothers, maxiter=4, rtol=1.0e-8, verbose=true, mode=:preconditioner) solver = FGMRESSolver(100,gmg;rtol=1e-6,verbose=true) ns = numerical_setup(symbolic_setup(solver,A),A) x = allocate_in_domain(A) solve!(x,ns,b) test_smoother(smoothers[1],A) Pl = LinearSolvers.IdentitySolver() solver2 = GMRESSolver(1000;Pl=Pl,rtol=1e-6,verbose=true) ns2 = numerical_setup(symbolic_setup(solver2,A),A) x2 = allocate_in_domain(A) solve!(x2,ns2,b)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
4639
using LinearAlgebra using Gridap using PartitionedArrays using GridapDistributed using GridapP4est using Gridap.FESpaces using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools using GridapSolvers.PatchBasedSmoothers u_exact_2d(x) = VectorValue(x[1]^2,-2.0*x[1]*x[2]) u_exact_3d(x) = VectorValue(x[1]^2,-2.0*x[1]*x[2],1.0) function Gridap.cross(a::VectorValue{2},b::VectorValue{3}) @assert iszero(b[1]) && iszero(b[2]) VectorValue(a[2]*b[3],-a[1]*b[3]) end function get_patch_smoothers( mh,tests,biform,qdegree; w=0.2, is_nonlinear=false, patch_decompositions = PatchDecomposition(mh) ) patch_spaces = PatchFESpace(tests,patch_decompositions) nlevs = num_levels(mh) smoothers = map(view(tests,1:nlevs-1),patch_decompositions,patch_spaces) do tests, PD, Ph Vh = get_fe_space(tests) Ω = Triangulation(PD) dΩ = Measure(Ω,qdegree) ap = is_nonlinear ? (u,du,dv) -> biform(u,du,dv,dΩ) : (u,v) -> biform(u,v,dΩ) patch_smoother = PatchBasedLinearSolver(ap,Ph,Vh;is_nonlinear=is_nonlinear) return RichardsonSmoother(patch_smoother,5,w) end return smoothers end function get_patch_smoothers_bis( mh,tests,biform,qdegree; niter = 10, is_nonlinear=false, patch_decompositions = PatchDecomposition(mh) ) patch_spaces = PatchFESpace(tests,patch_decompositions) nlevs = num_levels(mh) smoothers = map(view(tests,1:nlevs-1),patch_decompositions,patch_spaces) do tests, PD, Ph Vh = get_fe_space(tests) Ω = Triangulation(PD) dΩ = Measure(Ω,qdegree) ap = is_nonlinear ? (u,du,dv) -> biform(u,du,dv,dΩ) : (u,v) -> biform(u,v,dΩ) patch_smoother = PatchBasedLinearSolver(ap,Ph,Vh;is_nonlinear=is_nonlinear) gmres = GMRESSolver(niter;Pr=patch_smoother,maxiter=niter,atol=1e-14,rtol=1.e-10,verbose=false); return RichardsonSmoother(gmres,1,1.0) end return smoothers end function get_bilinear_form(mh_lev,biform,qdegree) model = get_model(mh_lev) Ω = Triangulation(model) dΩ = Measure(Ω,qdegree) return (u,v) -> biform(u,v,dΩ) end ############################################################################################ Dc = 3 np = 1 nc = Tuple(fill(4,Dc)) np_per_level = [np,np] parts = with_mpi() do distribute distribute(LinearIndices((np,))) end domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1) mh = CartesianModelHierarchy(parts,np_per_level,domain,nc) B = VectorValue(0.0,0.0,1.0) u_exact(x) = (Dc == 2) ? u_exact_2d(x) : u_exact_3d(x) j_exact(x) = cross(u_exact(x),B) f(x) = -Δ(u_exact)(x) - cross(j_exact(x),B) order = 2 qdegree = 2*(order+1) reffe_h1 = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order) reffe_hdiv = ReferenceFE(raviart_thomas,Float64,order-1) tests_u = TestFESpace(mh,reffe_h1,dirichlet_tags="boundary"); tests_j = TestFESpace(mh,reffe_hdiv,dirichlet_tags="boundary"); trials_u = TrialFESpace(tests_u,u_exact); trials_j = TrialFESpace(tests_j,j_exact); tests = MultiFieldFESpace([tests_u,tests_j]); trials = MultiFieldFESpace([trials_u,trials_j]); Ha = 1.0e3 β = 1/Ha^2 # Laplacian coefficient η = 1000 poly = (Dc == 2) ? QUAD : HEX Π = LocalProjectionMap(divergence,lagrangian,Float64,order-1;space=:P) mass(x,v_x,dΩ) = ∫(v_x⋅x)dΩ lap(x,v_x,dΩ) = ∫(β*∇(v_x)⊙∇(x))dΩ graddiv(x,v_x,dΩ) = ∫(η*divergence(v_x)⋅divergence(x))dΩ Qgraddiv(x,v_x,dΩ) = ∫(η*Π(v_x,dΩ)⋅Π(x,dΩ))dΩ crossB(x,v_x,dΩ) = ∫(v_x⋅cross(x,B))dΩ biform_u(u,v_u,dΩ) = lap(u,v_u,dΩ) + Qgraddiv(u,v_u,dΩ) biform_j(j,v_j,dΩ) = mass(j,v_j,dΩ) + graddiv(j,v_j,dΩ) biform((u,j),(v_u,v_j),dΩ) = biform_u(u,v_u,dΩ) + biform_j(j,v_j,dΩ) - crossB(u,v_j,dΩ) - crossB(j,v_u,dΩ) liform((v_u,v_j),dΩ) = ∫(v_u⋅f)dΩ rhs((u,j),(v_u,v_j),dΩ) = Qgraddiv(u,v_u,dΩ) + graddiv(j,v_j,dΩ) rhs_u(u,v_u,dΩ) = Qgraddiv(u,v_u,dΩ) smatrices, A, b = compute_hierarchy_matrices(trials,tests,biform,liform,qdegree); smoothers = get_patch_smoothers_bis(mh,tests,biform,qdegree); prolongations = setup_patch_prolongation_operators(tests,biform,biform,qdegree); restrictions = setup_patch_restriction_operators(tests,prolongations,biform,qdegree); gmg = GMGLinearSolver( mh,smatrices,prolongations,restrictions, pre_smoothers=smoothers,post_smoothers=smoothers, coarsest_solver=LUSolver(), maxiter=4,rtol=1.0e-8, verbose=i_am_main(parts),mode=:preconditioner ); gmg.log.depth += 1 # Standalone GMG gmg_ns = numerical_setup(symbolic_setup(gmg,A),A) x = pfill(0.0,partition(axes(A,2))) r = b - A*x solve!(x,gmg_ns,r) # FGMRES + GMG #solver = FGMRESSolver(10,gmg;m_add=5,maxiter=30,atol=1e-14,rtol=1.e-8,verbose=i_am_main(parts)); #ns = numerical_setup(symbolic_setup(solver,A),A); #x = pfill(0.0,partition(axes(A,2))); #solve!(x,ns,b)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
4532
using Test using LinearAlgebra using FillArrays, BlockArrays using Gridap using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces using Gridap.CellData, Gridap.MultiField, Gridap.Algebra using PartitionedArrays using GridapDistributed using GridapP4est using GridapSolvers using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools, GridapSolvers.PatchBasedSmoothers using GridapSolvers.BlockSolvers: LinearSystemBlock, BiformBlock, BlockTriangularSolver function get_patch_smoothers(mh,tests,biform,patch_decompositions,qdegree) patch_spaces = PatchFESpace(tests,patch_decompositions) nlevs = num_levels(mh) smoothers = map(view(tests,1:nlevs-1),patch_decompositions,patch_spaces) do tests, PD, Ph Vh = get_fe_space(tests) Ω = Triangulation(PD) dΩ = Measure(Ω,qdegree) ap = (u,v) -> biform(u,v,dΩ) patch_smoother = PatchBasedLinearSolver(ap,Ph,Vh) return RichardsonSmoother(patch_smoother,10,0.2) end return smoothers end function get_bilinear_form(mh_lev,biform,qdegree) model = get_model(mh_lev) Ω = Triangulation(model) dΩ = Measure(Ω,qdegree) return (u,v) -> biform(u,v,dΩ) end function add_labels_2d!(labels) add_tag_from_tags!(labels,"top",[3,4,6]) add_tag_from_tags!(labels,"walls",[1,5,7,2,8]) add_tag_from_tags!(labels,"right",[2,8]) end function add_labels_3d!(labels) add_tag_from_tags!(labels,"top",[5,6,7,8,11,12,15,16,22]) add_tag_from_tags!(labels,"walls",[1,2,9,13,14,17,18,21,23,25,26,3,4,10,19,20,24]) add_tag_from_tags!(labels,"right",[3,4,10,19,20,24]) end np = (1,1) parts = with_mpi() do distribute distribute(LinearIndices((prod(np),))) end # Geometry Dc = 2 nc = Tuple(fill(8,Dc)) domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1) add_labels! = (Dc == 2) ? add_labels_2d! : add_labels_3d! mh = CartesianModelHierarchy(parts,[np,np],domain,nc;add_labels! = add_labels!) model = get_model(mh,1) # FE spaces order = 2 qdegree = 2*(order+1) reffe_u = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order) reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P) u_wall = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0) u_top = (Dc==2) ? VectorValue(1.0,0.0) : VectorValue(1.0,0.0,0.0) tests_u = TestFESpace(mh,reffe_u,dirichlet_tags=["walls","top"]); trials_u = TrialFESpace(tests_u,[u_wall,u_top]); U, V = get_fe_space(trials_u,1), get_fe_space(tests_u,1) Q = TestFESpace(model,reffe_p;conformity=:L2,constraint=:zeromean) mfs = Gridap.MultiField.BlockMultiFieldStyle() X = MultiFieldFESpace([U,Q];style=mfs) Y = MultiFieldFESpace([V,Q];style=mfs) # Weak formulation α = 1.e2 f = (Dc==2) ? VectorValue(1.0,1.0) : VectorValue(1.0,1.0,1.0) poly = (Dc==2) ? QUAD : HEX Π_Qh = LocalProjectionMap(divergence,lagrangian,Float64,order-1;space=:P) graddiv(u,v,dΩ) = ∫(α*Π_Qh(u,dΩ)⋅Π_Qh(v,dΩ))dΩ biform_u(u,v,dΩ) = ∫(∇(v)⊙∇(u))dΩ + graddiv(u,v,dΩ) biform((u,p),(v,q),dΩ) = biform_u(u,v,dΩ) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ liform((v,q),dΩ) = ∫(v⋅f)dΩ Ω = Triangulation(model) dΩ = Measure(Ω,qdegree) a(u,v) = biform(u,v,dΩ) l(v) = liform(v,dΩ) op = AffineFEOperator(a,l,X,Y) A, b = get_matrix(op), get_vector(op); # GMG Solver for u biforms = map(mhl -> get_bilinear_form(mhl,biform_u,qdegree),mh) patch_decompositions = PatchDecomposition(mh) smoothers = get_patch_smoothers( mh,tests_u,biform_u,patch_decompositions,qdegree ); prolongations = setup_patch_prolongation_operators( tests_u,biform_u,graddiv,qdegree ); restrictions = setup_patch_restriction_operators( tests_u,prolongations,graddiv,qdegree;solver=LUSolver() ); gmg = GMGLinearSolver( mh,trials_u,tests_u,biforms, prolongations,restrictions, pre_smoothers=smoothers, post_smoothers=smoothers, coarsest_solver=LUSolver(), maxiter=4,mode=:preconditioner,verbose=i_am_main(parts) ); # Solver solver_u = gmg; solver_p = CGSolver(JacobiLinearSolver();maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts)); solver_u.log.depth = 2 solver_p.log.depth = 2 diag_blocks = [LinearSystemBlock(),BiformBlock((p,q) -> ∫(-1.0/α*p*q)dΩ,Q,Q)] bblocks = map(CartesianIndices((2,2))) do I (I[1] == I[2]) ? diag_blocks[I[1]] : LinearSystemBlock() end coeffs = [1.0 1.0; 0.0 1.0] P = BlockTriangularSolver(bblocks,[solver_u,solver_p],coeffs,:upper) solver = FGMRESSolver(20,P;atol=1e-14,rtol=1.e-8,verbose=i_am_main(parts)) ns = numerical_setup(symbolic_setup(solver,A),A) x = allocate_in_domain(A); fill!(x,0.0) solve!(x,ns,b) xh = FEFunction(X,x); r = allocate_in_range(A) mul!(r,A,x) r .-= b norm(r) < 1.e-6
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
5218
using Gridap using Gridap.Geometry, Gridap.FESpaces, Gridap.Adaptivity, Gridap.ReferenceFEs, Gridap.Arrays using Gridap.CellData using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools using GridapSolvers.PatchBasedSmoothers using LinearAlgebra order = 2 poly = QUAD # Geometry n = 6 cmodel = CartesianDiscreteModel((0,1,0,1),(n,n)) if poly == TRI cmodel = simplexify(cmodel) end labels = get_face_labeling(cmodel) for D in 1:2 for i in LinearIndices(labels.d_to_dface_to_entity[D]) if labels.d_to_dface_to_entity[D][i] == 9 # Interior faces (not cells) labels.d_to_dface_to_entity[D][i] = 10 # new entity end end end push!(labels.tag_to_entities[9],10) push!(labels.tag_to_entities,[1:8...,10]) push!(labels.tag_to_name,"coarse") add_tag_from_tags!(labels,"top",[3,4,6]) add_tag_from_tags!(labels,"bottom",[1,2,5]) add_tag_from_tags!(labels,"walls",[7,8]) fmodel = refine(cmodel) Ωh = Triangulation(fmodel) ΩH = Triangulation(cmodel) qdegree = 2*(order+1) dΩh = Measure(Ωh,qdegree) dΩH = Measure(ΩH,qdegree) dΩHh = Measure(ΩH,Ωh,qdegree) # Spaces conformity = H1Conformity() u_exact(x) = VectorValue(x[1]^2,-2.0*x[2]*x[1]) u_bottom = VectorValue(0.0,0.0) u_top = VectorValue(1.0,0.0) reffe = ReferenceFE(lagrangian,VectorValue{2,Float64},order) #VH = TestFESpace(cmodel,reffe,dirichlet_tags="boundary") #UH = TrialFESpace(VH,u_exact) #Vh = TestFESpace(fmodel,reffe,dirichlet_tags="boundary") #Uh = TrialFESpace(Vh,u_exact) VH = TestFESpace(cmodel,reffe,dirichlet_tags=["bottom","top"]) UH = TrialFESpace(VH,[u_bottom,u_top]) Vh = TestFESpace(fmodel,reffe,dirichlet_tags=["bottom","top"]) Uh = TrialFESpace(Vh,[u_bottom,u_top]) # Weakform α = 1.e10 f(x) = -Δ(u_exact)(x) Π_Qh = LocalProjectionMap(divergence,lagrangian,Float64,order-1;space=:P) lap(u,v,dΩ) = ∫(∇(v)⊙∇(u))dΩ graddiv(u,v,dΩ) = ∫(α*Π_Qh(v,dΩ)⋅Π_Qh(u,dΩ))dΩ biform(u,v,dΩ) = lap(u,v,dΩ) + graddiv(u,v,dΩ) ah(u,v) = biform(u,v,dΩh) aH(u,v) = biform(u,v,dΩH) lh(v) = ∫(v⋅f)*dΩh lH(v) = ∫(v⋅f)*dΩH oph = AffineFEOperator(ah,lh,Uh,Vh) opH = AffineFEOperator(aH,lH,UH,VH) xh_star = get_free_dof_values(solve(oph)) xH_star = get_free_dof_values(solve(opH)) Ah, bh = get_matrix(oph), get_vector(oph); AH, bH = get_matrix(opH), get_vector(opH); Mhh = assemble_matrix((u,v)->∫(u⋅v)*dΩh,Vh,Vh) function project_c2f(xH) uH = FEFunction(VH,xH) op = AffineFEOperator((u,v)->∫(u⋅v)*dΩh,v->∫(v⋅uH)*dΩh,Vh,Vh) return get_matrix(op)\get_vector(op) end function project_f2c(rh) Qrh = Mhh\rh uh = FEFunction(Vh,Qrh) assemble_vector(v->∫(v⋅uh)*dΩHh,VH) end function interp_c2f(xH) get_free_dof_values(interpolate(FEFunction(VH,xH),Vh)) end # Smoother PD = PatchDecomposition(fmodel) Ph = PatchFESpace(Vh,PD,reffe;conformity) Ωp = Triangulation(PD) dΩp = Measure(Ωp,qdegree) ap(u,v) = biform(u,v,dΩp) smoother = RichardsonSmoother(PatchBasedLinearSolver(ap,Ph,Vh),10,0.2) smoother_ns = numerical_setup(symbolic_setup(smoother,Ah),Ah) # Prolongation Operator 1 Ṽh = FESpace(fmodel,reffe;dirichlet_tags="coarse") Ãh = assemble_matrix(ah,Ṽh,Ṽh) function P1(dxH) dxh = interp_c2f(dxH) uh = FEFunction(Vh,dxh) bh = assemble_vector(v -> graddiv(uh,v,dΩh),Ṽh) dx̃ = Ãh\bh ũh = interpolate(FEFunction(Ṽh,dx̃),Vh) y = dxh - get_free_dof_values(ũh) return y end function R1(rh) r̃h = get_free_dof_values(interpolate(FEFunction(Vh,rh),Ṽh)) dr̃h = Ãh\r̃h dxh = interpolate(FEFunction(Ṽh,dr̃h),Vh) drh = assemble_vector(v -> graddiv(dxh,v,dΩh),Vh) rH = project_f2c(rh - drh) return rH end # Prolongation Operator 2 patches_mask = PatchBasedSmoothers.get_coarse_node_mask(fmodel,fmodel.glue) Ih = PatchFESpace(Vh,PD,reffe;conformity=conformity,patches_mask=patches_mask) I_solver = PatchBasedLinearSolver(ap,Ih,Vh) I_ns = numerical_setup(symbolic_setup(I_solver,Ah),Ah) Ai = assemble_matrix(ap,Ih,Ih) function P2(dxH) dxh = interp_c2f(dxH) uh = FEFunction(Vh,dxh) r̃h = assemble_vector(v -> graddiv(uh,v,dΩp),Ih) dx̃ = Ai\r̃h Pdxh = fill(0.0,length(dxh)) PatchBasedSmoothers.inject!(Pdxh,Ih,dx̃) y = dxh - Pdxh return y end function R2(rh) r̃h = zero_free_values(Ih) PatchBasedSmoothers.prolongate!(r̃h,Ih,rh) dr̃h = Ai\r̃h dxh = zero_free_values(Vh) PatchBasedSmoothers.inject!(dxh,Ih,dr̃h) drh = assemble_vector(v -> graddiv(FEFunction(Vh,dxh),v,dΩh),Vh) rH = project_f2c(rh - drh) return rH end # Solve #xh = fill(1.0,size(Ah,2)); xh = randn(size(Ah,2)) rh = bh - Ah*xh niters = 100 iter = 0 error0 = norm(rh) error = error0 e_rel = error/error0 while iter < niters && e_rel > 1.0e-10 println("Iter $iter:") println(" > Initial: ", norm(rh)) solve!(xh,smoother_ns,rh) println(" > Pre-smoother: ", norm(rh)) rH = R1(rh) qH = AH\rH qh = P1(qH) rh = rh - Ah*qh xh = xh + qh println(" > Post-correction: ", norm(rh)) solve!(xh,smoother_ns,rh) iter += 1 error = norm(rh) e_rel = error/error0 println(" > Final: ",error, " - ", e_rel) end uh = FEFunction(Uh,xh) eh = uh - u_exact uh_star = FEFunction(Uh,xh_star) writevtk(Ωh,"data/solution",cellfields=["u_star"=>uh_star]) writevtk(cmodel,"data/cmodel") #writevtk(Ωh,"data/solution",cellfields=["u"=>uh,"u_star"=>uh_star,"error"=>eh])
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
6326
using Gridap using Gridap.Geometry, Gridap.FESpaces, Gridap.Adaptivity, Gridap.ReferenceFEs, Gridap.Arrays using Gridap.CellData using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools using GridapSolvers.PatchBasedSmoothers using PartitionedArrays, GridapDistributed using LinearAlgebra function DModel(parts,model) models = map(p -> model, parts) n = num_cells(model) indices = map(p -> LocalIndices(n,1,collect(1:n),fill(1,n)), parts) gids = PRange(indices) return GridapDistributed.DistributedDiscreteModel(models,gids) end order = 2 poly = QUAD # Geometry n = 6 cmodel = CartesianDiscreteModel((0,1,0,1),(n,n)) if poly == TRI cmodel = simplexify(cmodel) end labels = get_face_labeling(cmodel) for D in 1:2 for i in LinearIndices(labels.d_to_dface_to_entity[D]) if labels.d_to_dface_to_entity[D][i] == 9 # Interior faces (not cells) labels.d_to_dface_to_entity[D][i] = 10 # new entity end end end push!(labels.tag_to_entities[9],10) push!(labels.tag_to_entities,[1:8...,10]) push!(labels.tag_to_name,"coarse") fmodel = refine(cmodel) np = 1 parts = with_mpi() do distribute distribute(LinearIndices((np,))) end dcmodel = DModel(parts,cmodel) dfmodel = DModel(parts,fmodel) dglue = map(p -> get_adaptivity_glue(fmodel), parts) mh_clevel = MultilevelTools.ModelHierarchyLevel(2,dcmodel,nothing,nothing,nothing) mh_flevel = MultilevelTools.ModelHierarchyLevel(1,dfmodel,dglue,nothing,nothing) mh = HierarchicalArray([mh_flevel,mh_clevel],[parts,parts]) Ωh = Triangulation(dfmodel) ΩH = Triangulation(dcmodel) qdegree = 2*(order+1) dΩh = Measure(Ωh,qdegree) dΩH = Measure(ΩH,qdegree) dΩHh = Measure(ΩH,Ωh,qdegree) # Spaces conformity = H1Conformity() u_exact(x) = VectorValue(x[1]^2,-2.0*x[2]*x[1]) #u_exact(x) = VectorValue(x[1]*(x[1]-1.0)*x[2]*(x[2]-1.0),(1.0-2.0*x[1])*(1.0/3.0*x[2]^3 - 1.0/2.0*x[2]^2)) reffe = ReferenceFE(lagrangian,VectorValue{2,Float64},order) VH = TestFESpace(dcmodel,reffe,dirichlet_tags="boundary") UH = TrialFESpace(VH,u_exact) Vh = TestFESpace(dfmodel,reffe,dirichlet_tags="boundary") Uh = TrialFESpace(Vh,u_exact) # Weakform α = 1.e10 f(x) = -Δ(u_exact)(x) Π_Qh = LocalProjectionMap(divergence,lagrangian,Float64,order-1;space=:P) lap(u,v,dΩ) = ∫(∇(v)⊙∇(u))dΩ graddiv(u,v,dΩ) = ∫(α*Π_Qh(v,dΩ)⋅Π_Qh(u,dΩ))dΩ biform(u,v,dΩ) = lap(u,v,dΩ) + graddiv(u,v,dΩ) ah(u,v) = biform(u,v,dΩh) aH(u,v) = biform(u,v,dΩH) lh(v) = ∫(v⋅f)*dΩh lH(v) = ∫(v⋅f)*dΩH oph = AffineFEOperator(ah,lh,Uh,Vh) opH = AffineFEOperator(aH,lH,UH,VH) xh_star = get_free_dof_values(solve(oph)) xH_star = get_free_dof_values(solve(opH)) Ah, bh = get_matrix(oph), get_vector(oph); AH, bH = get_matrix(opH), get_vector(opH); Mhh = assemble_matrix((u,v)->∫(u⋅v)*dΩh,Vh,Vh) function project_f2c(rh) Qrh = Mhh\rh uh = FEFunction(Vh,Qrh) assemble_vector(v->∫(v⋅uh)*dΩHh,VH) end # Smoother PD = PatchDecomposition(dfmodel) Ph = PatchFESpace(Vh,PD,reffe;conformity) Ωp = Triangulation(PD) dΩp = Measure(Ωp,qdegree) ap(u,v) = biform(u,v,dΩp) smoother = RichardsonSmoother(PatchBasedLinearSolver(ap,Ph,Vh),10,0.2) smoother_ns = numerical_setup(symbolic_setup(smoother,Ah),Ah) # Prolongation Operator 1 Ṽh = FESpace(dfmodel,reffe;dirichlet_tags="coarse") Ãh = assemble_matrix(ah,Ṽh,Ṽh) function P1(dxH) uh = interpolate(FEFunction(VH,dxH),Vh) dxh = get_free_dof_values(uh) bh = assemble_vector(v -> graddiv(uh,v,dΩh),Ṽh) dx̃ = Ãh\bh ũh = interpolate(FEFunction(Ṽh,dx̃),Vh) y = dxh - get_free_dof_values(ũh) return y end function R1_bis(rh) r̃h = get_free_dof_values(interpolate(FEFunction(Vh,rh),Ṽh)) dr̃h = Ãh\r̃h drh = get_free_dof_values(interpolate(FEFunction(Ṽh,dr̃h),Vh)) rH = project_f2c(rh - drh) return rH end function R1(rh) r̃h = get_free_dof_values(interpolate(FEFunction(Vh,rh),Ṽh)) dr̃h = Ãh\r̃h dxh = interpolate(FEFunction(Ṽh,dr̃h),Vh) drh = assemble_vector(v -> graddiv(dxh,v,dΩh),Vh) rH = project_f2c(rh - drh) return rH end # Prolongation Operator 2 mh_Vh = FESpace(mh,reffe;dirichlet_tags="boundary") cell_conformity = mh_Vh[1].cell_conformity patches_mask = PatchBasedSmoothers.get_coarse_node_mask(dfmodel,dglue) Ih = PatchFESpace(Vh,PD,cell_conformity;patches_mask=patches_mask) I_solver = PatchBasedLinearSolver(ap,Ih,Vh) I_ns = numerical_setup(symbolic_setup(I_solver,Ah),Ah) Ai = assemble_matrix(ap,Ih,Ih) function P2(dxH) uh = interpolate(FEFunction(VH,dxH),Vh) dxh = get_free_dof_values(uh) r̃h = assemble_vector(v -> graddiv(uh,v,dΩp),Ih) dx̃ = Ai\r̃h Pdxh = zero_free_values(Vh) PatchBasedSmoothers.inject!(Pdxh,Ih,dx̃) y = dxh - Pdxh return y end function R2_bis(rh) r̃h = zero_free_values(Ih) PatchBasedSmoothers.prolongate!(r̃h,Ih,rh) dr̃h = Ai\r̃h drh = zero_free_values(Vh) PatchBasedSmoothers.inject!(drh,Ih,dr̃h) rH = project_f2c(rh - drh) return rH end function R2(rh) r̃h = zero_free_values(Ih) PatchBasedSmoothers.prolongate!(r̃h,Ih,rh) dr̃h = Ai\r̃h dxh = zero_free_values(Vh) PatchBasedSmoothers.inject!(dxh,Ih,dr̃h) drh = assemble_vector(v -> graddiv(FEFunction(Vh,dxh),v,dΩh),Vh) rH = project_f2c(rh - drh) return rH end # Prolongation Operator 3 prolongations = setup_patch_prolongation_operators( mh_Vh,biform,graddiv,qdegree ); restrictions = setup_patch_restriction_operators( mh_Vh,prolongations,graddiv,qdegree ); function P3(dxH) dxh = zero_free_values(Vh) mul!(dxh,prolongations[1],dxH) return dxh end function R3(rh) rH = zero_free_values(UH) mul!(rH,restrictions[1],rh) return rH end # Solve begin xh = pfill(1.0,partition(axes(Ah,2))); #xh = prandn(partition(axes(Ah,2))) rh = bh - Ah*xh niters = 100 iter = 0 error0 = norm(rh) error = error0 e_rel = error/error0 while iter < niters && e_rel > 1.0e-10 println("Iter $iter:") println(" > Initial: ", norm(rh)) solve!(xh,smoother_ns,rh) println(" > Pre-smoother: ", norm(rh)) rH = R3(rh) println(" > rH: ", norm(rH)) qH = AH\rH println(" > qH: ", norm(qH)) qh = P3(qH) println(" > qh: ", norm(qh)) rh = rh - Ah*qh xh = xh + qh println(" > Post-correction: ", norm(rh)) solve!(xh,smoother_ns,rh) iter += 1 error = norm(rh) e_rel = error/error0 println(" > Final: ",error, " - ", e_rel) end end uh = FEFunction(Uh,xh) eh = FEFunction(Vh,rh) uh_star = FEFunction(Uh,xh_star)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
5636
using Gridap using Gridap.Geometry, Gridap.FESpaces, Gridap.Adaptivity, Gridap.ReferenceFEs, Gridap.Arrays using Gridap.CellData, Gridap.Fields using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools using GridapSolvers.PatchBasedSmoothers using LinearAlgebra order = 3 poly = QUAD # Geometry n = 6 cmodel = CartesianDiscreteModel((0,1,0,1),(n,n)) if poly == TRI cmodel = simplexify(cmodel) end fmodel = refine(cmodel) Ωh = Triangulation(fmodel) ΩH = Triangulation(cmodel) qdegree = 2*(order+1) dΩh = Measure(Ωh,qdegree) dΩH = Measure(ΩH,qdegree) dΩHh = Measure(ΩH,Ωh,qdegree) # Spaces conformity = H1Conformity() u_exact(x) = VectorValue(x[1]^2,-2.0*x[2]*x[1]) #u_exact(x) = VectorValue(x[1]*(x[1]-1.0)*x[2]*(x[2]-1.0),(1.0-2.0*x[1])*(1.0/3.0*x[2]^3 - 1.0/2.0*x[2]^2)) reffe = ReferenceFE(lagrangian,VectorValue{2,Float64},order) VH = TestFESpace(cmodel,reffe,dirichlet_tags="boundary") UH = TrialFESpace(VH,u_exact) Vh = TestFESpace(fmodel,reffe,dirichlet_tags="boundary") Uh = TrialFESpace(Vh,u_exact) # Weakform α = 1.e8 f(x) = -Δ(u_exact)(x) Π_Qh = LocalProjectionMap(divergence,lagrangian,Float64,order-1;space=:P) lap(u,v,dΩ) = ∫(∇(v)⊙∇(u))dΩ graddiv(u,v,dΩ) = ∫(α*Π_Qh(v,dΩ)⋅Π_Qh(u,dΩ))dΩ biform(u,v,dΩ) = lap(u,v,dΩ) + graddiv(u,v,dΩ) ah(u,v) = biform(u,v,dΩh) aH(u,v) = biform(u,v,dΩH) lh(v) = ∫(v⋅f)*dΩh lH(v) = ∫(v⋅f)*dΩH oph = AffineFEOperator(ah,lh,Uh,Vh) opH = AffineFEOperator(aH,lH,UH,VH) xh_star = get_free_dof_values(solve(oph)) xH_star = get_free_dof_values(solve(opH)) Ah, bh = get_matrix(oph), get_vector(oph); AH, bH = get_matrix(opH), get_vector(opH); Mhh = assemble_matrix((u,v)->∫(u⋅v)*dΩh,Vh,Vh) function project_c2f(xH) uH = FEFunction(VH,xH) op = AffineFEOperator((u,v)->∫(u⋅v)*dΩh,v->∫(v⋅uH)*dΩh,Vh,Vh) return get_matrix(op)\get_vector(op) end function project_f2c(rh) Qrh = Mhh\rh uh = FEFunction(Vh,Qrh) assemble_vector(v->∫(v⋅uh)*dΩHh,VH) end function interp_c2f(xH) get_free_dof_values(interpolate(FEFunction(VH,xH),Vh)) end # Smoother PD = PatchDecomposition(fmodel) Ph = PatchFESpace(Vh,PD,reffe;conformity) Ωp = Triangulation(PD) dΩp = Measure(Ωp,qdegree) ap(u,v) = biform(u,v,dΩp) smoother = RichardsonSmoother(PatchBasedLinearSolver(ap,Ph,Vh),20,0.2) smoother_ns = numerical_setup(symbolic_setup(smoother,Ah),Ah) # New prolongation operator ftopo = get_grid_topology(fmodel) n2e_map = Gridap.Geometry.get_faces(ftopo,0,1) e2n_map = Gridap.Geometry.get_faces(ftopo,1,0) ccoords = get_node_coordinates(cmodel) fcoords = get_node_coordinates(fmodel) function is_fine(n) A = fcoords[n] ∉ ccoords edges = n2e_map[n] for e in edges nbor_nodes = e2n_map[e] A = A && all(m -> fcoords[m] ∉ ccoords,nbor_nodes) end return !A end _patches_mask = map(is_fine,LinearIndices(fcoords)) patches_mask = reshape(_patches_mask,length(fcoords)) Ih = PatchFESpace(Vh,PD,reffe;conformity=conformity,patches_mask=patches_mask) I_solver = PatchBasedLinearSolver(ap,Ih,Vh) I_ns = numerical_setup(symbolic_setup(I_solver,Ah),Ah) Ai = assemble_matrix(ap,Ih,Ih) patches_mask_2 = GridapSolvers.PatchBasedSmoothers.get_coarse_node_mask(fmodel,fmodel.glue) patches_mask_2 == patches_mask _patches_mask_2 = reshape(patches_mask_2,size(fcoords)) function prolongate(dxH) dxh = interp_c2f(dxH) uh = FEFunction(Vh,dxh) bh = assemble_vector(v -> graddiv(uh,v,dΩp),Ih) dx̃ = Ai\bh Pdxh = fill(0.0,length(dxh)) GridapSolvers.PatchBasedSmoothers.inject!(Pdxh,Ih,dx̃) y = dxh - Pdxh return y end # Solve xh = fill(1.0,size(Ah,2)); rh = bh - Ah*xh niters = 20 iter = 0 error = norm(bh - Ah*xh) while iter < niters && error > 1.0e-8 println("Iter $iter:") println(" > Initial: ", norm(rh)) solve!(xh,smoother_ns,rh) println(" > Pre-smoother: ", norm(rh)) rH = project_f2c(rh) qH = AH\rH qh = prolongate(qH) rh = rh - Ah*qh xh = xh + qh println(" > Post-correction: ", norm(rh)) solve!(xh,smoother_ns,rh) iter += 1 error = norm(bh - Ah*xh) println(" > Final: ",error) end uh = FEFunction(Uh,xh) eh = FEFunction(Vh,rh) uh_star = FEFunction(Uh,xh_star) #writevtk(Ωh,"data/h1div_error";cellfields=["eh"=>eh,"u"=>uh,"u_star"=>uh_star,"u_exact"=>u_exact]) """ reffe_p = ReferenceFE(lagrangian,Float64,0;space=:P) QH = FESpace(cmodel,reffe_p;conformity=:L2) checks = fill(false,(num_free_dofs(QH),num_free_dofs(VH))) for i in 1:num_free_dofs(QH) qH = zeros(num_free_dofs(QH)); qH[i] = 1.0 for j in 1:num_free_dofs(VH) vH = zeros(num_free_dofs(VH)); vH[j] = 1.0 vh = interp_c2f(vH) ϕH = FEFunction(QH,qH) φh = FEFunction(Vh,vh) φH = FEFunction(VH,vH) lhs = sum(∫(divergence(φh)*ϕH)*dΩh) rhs = sum(∫(divergence(φH)*ϕH)*dΩh) checks[i,j] = abs(lhs-rhs) < 1.0e-10 end end all(checks) reffe = LagrangianRefFE(VectorValue{2,Float64},QUAD,2) dof_ids = get_cell_dof_ids(Vh) local_dof_nodes = lazy_map(Reindex(reffe.reffe.dofs.nodes),reffe.reffe.dofs.dof_to_node) cell_maps = get_cell_map(fmodel) dof_nodes = Vector{VectorValue{2,Float64}}(undef,num_free_dofs(Vh)) for (ids,cmap) in zip(dof_ids,cell_maps) for (i,id) in enumerate(ids) if id > 0 dof_nodes[id] = cmap(local_dof_nodes[i]) end end end V̂h_dofs = findall(x -> !isempty(x),Ih.dof_to_pdof) checks = fill(false,(num_free_dofs(QH),length(V̂h_dofs))) for i in 1:num_free_dofs(QH) qH = zeros(num_free_dofs(QH)); qH[i] = 1.0 for (j,j_dof) in enumerate(V̂h_dofs) vh = zeros(num_free_dofs(Vh)); vh[j_dof] = 1.0 ϕH = FEFunction(QH,qH) φh = FEFunction(Vh,vh) lhs = sum(∫(divergence(φh)*ϕH)*dΩHh) checks[i,j] = abs(lhs) < 1.0e-10 end end all(checks) """
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
6264
using Gridap using Gridap.Geometry, Gridap.FESpaces, Gridap.Adaptivity, Gridap.ReferenceFEs, Gridap.Arrays using Gridap.CellData using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools using GridapSolvers.PatchBasedSmoothers using PartitionedArrays, GridapDistributed, GridapP4est using LinearAlgebra order = 2 poly = QUAD # Geometry n = 6 cmodel = CartesianDiscreteModel((0,1,0,1),(n,n)) if poly == TRI cmodel = simplexify(cmodel) end labels = get_face_labeling(cmodel) for D in 1:2 for i in LinearIndices(labels.d_to_dface_to_entity[D]) if labels.d_to_dface_to_entity[D][i] == 9 # Interior faces (not cells) labels.d_to_dface_to_entity[D][i] = 10 # new entity end end end push!(labels.tag_to_entities[9],10) push!(labels.tag_to_entities,[1:8...,10]) push!(labels.tag_to_name,"coarse") add_tag_from_tags!(labels,"top",[3,4,6]) add_tag_from_tags!(labels,"bottom",[1,2,5]) add_tag_from_tags!(labels,"walls",[7,8]) np = 1 parts = with_mpi() do distribute distribute(LinearIndices((np,))) end dcmodel = OctreeDistributedDiscreteModel(parts,cmodel,0) mh = ModelHierarchy(parts,dcmodel,[np,np]) dcmodel = MultilevelTools.get_model(mh,2) dfmodel = MultilevelTools.get_model(mh,1) Ωh = Triangulation(dfmodel) ΩH = Triangulation(dcmodel) qdegree = 2*(order+1) dΩh = Measure(Ωh,qdegree) dΩH = Measure(ΩH,qdegree) dΩHh = Measure(ΩH,Ωh,qdegree) # Spaces conformity = H1Conformity() u_exact(x) = VectorValue(x[1]^2,-2.0*x[2]*x[1]) u_bottom = VectorValue(0.0,0.0) u_top = VectorValue(1.0,0.0) reffe = ReferenceFE(lagrangian,VectorValue{2,Float64},order) #VH = TestFESpace(dcmodel,reffe,dirichlet_tags="boundary") #UH = TrialFESpace(VH,u_exact) #Vh = TestFESpace(dfmodel,reffe,dirichlet_tags="boundary") #Uh = TrialFESpace(Vh,u_exact) VH = TestFESpace(dcmodel,reffe,dirichlet_tags=["bottom","top"]) UH = TrialFESpace(VH,[u_bottom,u_top]) Vh = TestFESpace(dfmodel,reffe,dirichlet_tags=["bottom","top"]) Uh = TrialFESpace(Vh,[u_bottom,u_top]) # Weakform α = 1.e10 f(x) = -Δ(u_exact)(x) Π_Qh = LocalProjectionMap(divergence,lagrangian,Float64,order-1;space=:P) lap(u,v,dΩ) = ∫(∇(v)⊙∇(u))dΩ graddiv(u,v,dΩ) = ∫(α*Π_Qh(v,dΩ)⋅Π_Qh(u,dΩ))dΩ biform(u,v,dΩ) = lap(u,v,dΩ) + graddiv(u,v,dΩ) ah(u,v) = biform(u,v,dΩh) aH(u,v) = biform(u,v,dΩH) lh(v) = ∫(v⋅f)*dΩh lH(v) = ∫(v⋅f)*dΩH oph = AffineFEOperator(ah,lh,Uh,Vh) opH = AffineFEOperator(aH,lH,UH,VH) xh_star = get_free_dof_values(solve(oph)) xH_star = get_free_dof_values(solve(opH)) Ah, bh = get_matrix(oph), get_vector(oph); AH, bH = get_matrix(opH), get_vector(opH); Mhh = assemble_matrix((u,v)->∫(u⋅v)*dΩh,Vh,Vh) function project_f2c(rh) Qrh = Mhh\rh uh = FEFunction(Vh,Qrh) assemble_vector(v->∫(v⋅uh)*dΩHh,VH) end # Smoother PD = PatchDecomposition(dfmodel) Ph = PatchFESpace(Vh,PD,reffe;conformity) Ωp = Triangulation(PD) dΩp = Measure(Ωp,qdegree) ap(u,v) = biform(u,v,dΩp) smoother = RichardsonSmoother(PatchBasedLinearSolver(ap,Ph,Vh),10,0.2) smoother_ns = numerical_setup(symbolic_setup(smoother,Ah),Ah) # Prolongation Operator 1 Ṽh = FESpace(dfmodel,reffe;dirichlet_tags="coarse") Ãh = assemble_matrix(ah,Ṽh,Ṽh) function P1(dxH) uh = interpolate(FEFunction(VH,dxH),Vh) dxh = get_free_dof_values(uh) bh = assemble_vector(v -> graddiv(uh,v,dΩh),Ṽh) dx̃ = Ãh\bh ũh = interpolate(FEFunction(Ṽh,dx̃),Vh) y = dxh - get_free_dof_values(ũh) return y end function R1_bis(rh) r̃h = get_free_dof_values(interpolate(FEFunction(Vh,rh),Ṽh)) dr̃h = Ãh\r̃h drh = get_free_dof_values(interpolate(FEFunction(Ṽh,dr̃h),Vh)) rH = project_f2c(rh - drh) return rH end function R1(rh) r̃h = get_free_dof_values(interpolate(FEFunction(Vh,rh),Ṽh)) dr̃h = Ãh\r̃h dxh = interpolate(FEFunction(Ṽh,dr̃h),Vh) drh = assemble_vector(v -> graddiv(dxh,v,dΩh),Vh) rH = project_f2c(rh - drh) return rH end # Prolongation Operator 2 #mh_Vh = FESpace(mh,reffe;dirichlet_tags="boundary") mh_Vh = FESpace(mh,reffe;dirichlet_tags=["bottom","top"]) cell_conformity = mh_Vh[1].cell_conformity dglue = mh_Vh[1].mh_level.ref_glue patches_mask = PatchBasedSmoothers.get_coarse_node_mask(dfmodel,dglue) Ih = PatchFESpace(Vh,PD,cell_conformity;patches_mask=patches_mask) I_solver = PatchBasedLinearSolver(ap,Ih,Vh) I_ns = numerical_setup(symbolic_setup(I_solver,Ah),Ah) Ai = assemble_matrix(ap,Ih,Ih) function P2(dxH) uh = interpolate(FEFunction(VH,dxH),Vh) dxh = get_free_dof_values(uh) r̃h = assemble_vector(v -> graddiv(uh,v,dΩp),Ih) dx̃ = Ai\r̃h Pdxh = zero_free_values(Vh) PatchBasedSmoothers.inject!(Pdxh,Ih,dx̃) y = dxh - Pdxh return y end function R2_bis(rh) r̃h = zero_free_values(Ih) PatchBasedSmoothers.prolongate!(r̃h,Ih,rh) dr̃h = Ai\r̃h drh = zero_free_values(Vh) PatchBasedSmoothers.inject!(drh,Ih,dr̃h) rH = project_f2c(rh - drh) return rH end function R2(rh) r̃h = zero_free_values(Ih) PatchBasedSmoothers.prolongate!(r̃h,Ih,rh) dr̃h = Ai\r̃h dxh = zero_free_values(Vh) PatchBasedSmoothers.inject!(dxh,Ih,dr̃h) drh = assemble_vector(v -> graddiv(FEFunction(Vh,dxh),v,dΩh),Vh) rH = project_f2c(rh - drh) return rH end # Prolongation Operator 3 prolongations = setup_patch_prolongation_operators( mh_Vh,biform,graddiv,qdegree ); restrictions = setup_patch_restriction_operators( mh_Vh,prolongations,graddiv,qdegree ); function P3(dxH) dxh = zero_free_values(Vh) mul!(dxh,prolongations[1],dxH) return dxh end function R3(rh) rH = zero_free_values(UH) mul!(rH,restrictions[1],rh) return rH end # Solve xh = pfill(1.0,partition(axes(Ah,2))); #xh = prandn(partition(axes(Ah,2))) rh = bh - Ah*xh niters = 10 iter = 0 err0 = norm(rh) err = err0 e_rel = err/err0 while iter < niters && e_rel > 1.0e-10 println("Iter $iter:") println(" > Initial: ", norm(rh)) solve!(xh,smoother_ns,rh) println(" > Pre-smoother: ", norm(rh)) rH = R3(rh) println(" > rH: ", norm(rH)) qH = AH\rH println(" > qH: ", norm(qH)) qh = P3(qH) println(" > qh: ", norm(qh)) rh = rh - Ah*qh xh = xh + qh println(" > Post-correction: ", norm(rh)) solve!(xh,smoother_ns,rh) iter += 1 err = norm(rh) e_rel = err/err0 println(" > Final: ",err, " - ", e_rel) end uh = FEFunction(Uh,xh) eh = FEFunction(Vh,rh) uh_star = FEFunction(Uh,xh_star)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
6464
using Gridap using Gridap.Geometry, Gridap.FESpaces, Gridap.Adaptivity, Gridap.ReferenceFEs, Gridap.Arrays using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools using GridapSolvers.PatchBasedSmoothers u_h1(x) = x[1] + x[2] # u_h1(x) = x[1]*(1-x[1])*x[2]*(1-x[2]) #u_hdiv(x) = VectorValue(x[1],x[2]) u_hdiv(x) = VectorValue([x[1]*(1.0-x[1]),-x[2]*(1.0-x[2])]) a_h1(u,v,dΩ) = ∫(u⋅v)*dΩ a_hdiv(u,v,dΩ) = ∫(u⋅v + divergence(u)⋅divergence(v))*dΩ conf = :hdiv order = 1 poly = QUAD cmodel = CartesianDiscreteModel((0,1,0,1),(16,16)) if poly == TRI cmodel = simplexify(cmodel) end fmodel = refine(cmodel) Ωh = Triangulation(fmodel) ΩH = Triangulation(cmodel) qdegree = 2*(order+1) dΩh = Measure(Ωh,qdegree) dΩH = Measure(ΩH,qdegree) dΩHh = Measure(ΩH,Ωh,qdegree) if conf == :h1 u_bc = u_h1 conformity = H1Conformity() reffe = ReferenceFE(lagrangian,Float64,order) ah(u,v) = a_h1(u,v,dΩh) aH(u,v) = a_h1(u,v,dΩH) f = zero(Float64) else u_bc = u_hdiv conformity = DivConformity() reffe = ReferenceFE(raviart_thomas,Float64,order) ah(u,v) = a_hdiv(u,v,dΩh) aH(u,v) = a_hdiv(u,v,dΩH) f = zero(VectorValue{2,Float64}) end lh(v) = ∫(v⋅f)*dΩh lH(v) = ∫(v⋅f)*dΩH VH = TestFESpace(cmodel,reffe,dirichlet_tags="boundary") UH = TrialFESpace(VH,u_bc) Vh = TestFESpace(fmodel,reffe,dirichlet_tags="boundary") Uh = TrialFESpace(Vh,u_bc) oph = AffineFEOperator(ah,lh,Uh,Vh) opH = AffineFEOperator(aH,lH,UH,VH) xh_star = get_free_dof_values(solve(oph)) xH_star = get_free_dof_values(solve(opH)) Ah, bh = get_matrix(oph), get_vector(oph); AH, bH = get_matrix(opH), get_vector(opH); Mhh = assemble_matrix((u,v)->∫(u⋅v)*dΩh,Vh,Vh) function compute_MhH() MhH = zeros(num_free_dofs(Vh),num_free_dofs(VH)) xHi = fill(0.0,num_free_dofs(VH)) for iH in 1:num_free_dofs(VH) fill!(xHi,0.0); xHi[iH] = 1.0 vHi = FEFunction(VH,xHi) vH = assemble_vector((v)->∫(v⋅vHi)*dΩh,Vh) MhH[:,iH] .= vH end return MhH end MhH = compute_MhH() # Projection operators function Λ_project(xh) uh = FEFunction(Vh,xh) op = AffineFEOperator((u,v)->∫(u⋅v)*dΩh,v->∫(v⋅uh + divergence(v)⋅divergence(uh))*dΩh,Vh,Vh) return get_matrix(op)\get_vector(op) end function project_c2f(xH) uH = FEFunction(VH,xH) op = AffineFEOperator((u,v)->∫(u⋅v)*dΩh,v->∫(v⋅uH)*dΩh,Vh,Vh) return get_matrix(op)\get_vector(op) end function Λ_project_c2f(xH) uH = FEFunction(VH,xH) op = AffineFEOperator((u,v)->∫(u⋅v)*dΩh,v->∫(v⋅uH + divergence(v)⋅divergence(uH))*dΩh,Vh,Vh) return get_matrix(op)\get_vector(op) end function Λ_project_f2c(xh) uh = FEFunction(Vh,xh) op = AffineFEOperator((u,v)->∫(u⋅v)*dΩH,v->∫(v⋅uh + divergence(v)⋅divergence(uh))*dΩHh,VH,VH) return get_matrix(op)\get_vector(op) end function project_f2c(xh) uh = FEFunction(Vh,xh) op = AffineFEOperator((u,v)->∫(u⋅v)*dΩH,v->∫(v⋅uh)*dΩHh,VH,VH) return get_matrix(op)\get_vector(op) end function interp_f2c(xh) get_free_dof_values(interpolate(FEFunction(Vh,xh),VH)) end function dotH(a::AbstractVector,b::AbstractVector) _a = FEFunction(VH,a) _b = FEFunction(VH,b) dotH(_a,_b) end function dotH(a,b) sum(∫(a⋅b)*dΩH) end function doth(a::AbstractVector,b::AbstractVector) _a = FEFunction(Vh,a) _b = FEFunction(Vh,b) doth(_a,_b) end function doth(a,b) sum(∫(a⋅b)*dΩh) end # Patch Decomposition PD = PatchDecomposition(fmodel) Ph = PatchFESpace(Vh,PD,reffe;conformity) Ωp = Triangulation(PD) dΩp = Measure(Ωp,qdegree) if conf == :h1 smoother = RichardsonSmoother(JacobiLinearSolver(),5,0.6) else ap(u,v) = a_hdiv(u,v,dΩp) smoother = RichardsonSmoother(PatchBasedLinearSolver(ap,Ph,Vh),10,0.2) Ap = assemble_matrix(ap,Ph,Ph) end smoother_ns = numerical_setup(symbolic_setup(smoother,Ah),Ah) function smooth!(x,r) A = smoother_ns.A Ap = smoother_ns.Mns.Ap_ns.A dx = smoother_ns.dx rp = smoother_ns.Mns.caches[1] dxp = smoother_ns.Mns.caches[2] w, w_sums = smoother_ns.Mns.weights w_sums = fill(1.0,length(w_sums)) β = 0.4 niter = 10 for i in 1:niter _r = bh - Λ_project(x) PatchBasedSmoothers.prolongate!(rp,Ph,r,w,w_sums) dxp = Ap\rp PatchBasedSmoothers.inject!(dx,Ph,dxp,w,w_sums) x .+= β*dx r .-= β*A*dx end end xh = fill(1.0,size(Ah,2)) rh = bh - Ah*xh niters = 10 wH = randn(size(AH,2)) wh = project_c2f(wH) function project_f2c_bis(rh) Qrh = Mhh\rh uh = FEFunction(Vh,Qrh) assemble_vector(v->∫(v⋅uh)*dΩHh,VH) end iter = 0 error = norm(bh - Ah*xh) while iter < niters && error > 1.0e-8 println("Iter $iter:") println(" > Pre-smoother: ") println(" > norm(xh) = ",norm(xh)) println(" > norm(rh) = ",norm(rh)) solve!(xh,smoother_ns,rh) println(" > Post-smoother: ") println(" > norm(xh) = ",norm(xh)) println(" > norm(rh) = ",norm(rh)) rH = project_f2c_bis(rh) qH = AH\rH qh = project_c2f(qH) println(" > GMG approximation properties:") println(" > (AH*qH,wH) = ",dotH(AH*qH,wH)) println(" > (rH,wH) = ",dotH(rH,wH)) println(" > (rh,wh) = ",doth(rh,wh)) println(" > (Ah*(x-xh),wh) = ",doth(Ah*(xh_star-xh),wh)) rh = rh - Ah*qh xh = xh + qh solve!(xh,smoother_ns,rh) iter += 1 error = norm(bh - Ah*xh) println(" > error = ",error) end ###################################################################################### using GridapSolvers.PatchBasedSmoothers: prolongate!, inject!, compute_weight_operators xh = fill(1.0,size(Ah,2)) rh = bh - Ah*xh w, w_sums = compute_weight_operators(Ph,Ph.Vh) rp = fill(0.0,size(Ap,2)) prolongate!(rp,Ph,rh) xp = Ap\rp dxh = fill(0.0,size(Ah,2)) inject!(dxh,Ph,xp,w,w_sums) _rh = fill(0.0,size(Ah,2)) inject!(_rh,Ph,rp,w,w_sums) patch_cells = PD.patch_cells ids_Ph = get_cell_dof_ids(Ph) ids_Vh = get_cell_dof_ids(Vh) patch_ids_Ph = Table(ids_Ph,patch_cells.ptrs) patch_ids_Vh = Table(lazy_map(Reindex(ids_Vh),patch_cells.data),patch_cells.ptrs) ###################################################################################### using LinearAlgebra function LinearAlgebra.ldiv!(x,ns,b) solve!(x,ns,b) end using IterativeSolvers x = zeros(size(Ah,2)) cg!(x,Ah,bh;Pl=smoother_ns.Mns,verbose=true) ###################################################################################### _s = IS_ConjugateGradientSolver(maxiter=50,reltol=1.e-16,verbose=true) _ns = numerical_setup(symbolic_setup(_s,Mhh),Mhh) x = zeros(size(Mhh,2)) _rh = copy(rh) solve!(x,_ns,_rh) norm(rh - Mhh*x)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
3657
using LinearAlgebra using FillArrays, BlockArrays using Gridap using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces, Gridap.Polynomials using Gridap.CellData, Gridap.MultiField, Gridap.Arrays, Gridap.Fields, Gridap.Helpers using PartitionedArrays using GridapDistributed using GridapPETSc using GridapSolvers using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools using GridapSolvers.PatchBasedSmoothers, GridapSolvers.NonlinearSolvers using GridapSolvers.BlockSolvers: NonlinearSystemBlock, LinearSystemBlock, BiformBlock, TriformBlock using GridapSolvers.BlockSolvers: BlockTriangularSolver, BlockDiagonalSolver using GridapSolvers.MultilevelTools: get_level_parts function HuntModelHierarchy( parts,np_per_level,nc ) return CartesianModelHierarchy( parts,np_per_level,(-1,1,-1,1,0,0.2),nc; add_labels! = add_labels_hunt!, isperiodic = (false,false,true), #map = hunt_stretch_map(1.0,sol.Ha,1.0,1.0,adapt), nrefs = (2,2,2) ) end function add_labels_hunt!(labels) add_tag_from_tags!(labels,"noslip",[1:20...,23,24,25,26]) add_tag_from_tags!(labels,"insulating",[1:20...,25,26]) add_tag_from_tags!(labels,"topbottom",[21,22]) end function get_patch_smoothers( mh,tests,biform,qdegree; w=0.2, niter=20, is_nonlinear=false, patch_decompositions = PatchDecomposition(mh) ) patch_spaces = PatchFESpace(tests,patch_decompositions) nlevs = num_levels(mh) smoothers = map(view(tests,1:nlevs-1),patch_decompositions,patch_spaces) do tests, PD, Ph Vh = get_fe_space(tests) Ω = Triangulation(PD) dΩ = Measure(Ω,qdegree) ap = is_nonlinear ? (u,du,dv) -> biform(u,du,dv,dΩ) : (u,v) -> biform(u,v,dΩ) patch_solver = PatchBasedLinearSolver(ap,Ph,Vh;is_nonlinear=is_nonlinear) if w < 0 solver = GMRESSolver(niter;Pr=patch_solver,maxiter=niter) patch_smoother = RichardsonSmoother(solver,1,1.0) else patch_smoother = RichardsonSmoother(patch_solver,niter,w) end return patch_smoother end return smoothers end function get_bilinear_form(mh_lev,biform,qdegree) model = get_model(mh_lev) Ω = Triangulation(model) dΩ = Measure(Ω,qdegree) return (u,v) -> biform(u,v,dΩ) end np = (2,2,1) parts = with_debug() do distribute distribute(LinearIndices((prod(np),))) end mh = HuntModelHierarchy(parts,[np,np],(4,4,3)) order = 2 qdegree = 2*(order+1) reffe = ReferenceFE(raviart_thomas,Float64,order-1) tests = TestFESpace(mh,reffe,dirichlet_tags=["insulating"]); trials = TrialFESpace(tests,VectorValue(0.0,0.0,0.0)); J, D = get_fe_space(trials,1), get_fe_space(tests,1) η = 100.0 mass(x,v_x,dΩ) = ∫(v_x⋅x)dΩ graddiv(x,v_x,dΩ) = ∫(η*divergence(v_x)⋅divergence(x))dΩ biform(j,v_j,dΩ) = mass(j,v_j,dΩ) + graddiv(j,v_j,dΩ) biforms = map(mhl -> get_bilinear_form(mhl,biform,qdegree),mh) smoothers = get_patch_smoothers( mh,trials,biform,qdegree; w=0.2 ) prolongations = setup_prolongation_operators( trials,qdegree;mode=:residual,solver=LUSolver() ) restrictions = setup_restriction_operators( trials,qdegree;mode=:residual,solver=LUSolver() ) gmg = GMGLinearSolver( mh,trials,tests,biforms, prolongations,restrictions, pre_smoothers=smoothers, post_smoothers=smoothers, coarsest_solver=LUSolver(), maxiter = 3, mode = :preconditioner, verbose = i_am_main(parts) ) solver = FGMRESSolver(5,gmg;maxiter=10,rtol=1.e-8,verbose=i_am_main(parts)) Ω = Triangulation(get_model(mh,1)) dΩ = Measure(Ω,qdegree) ah(j,d) = biform(j,d,dΩ) Ah = assemble_matrix(ah,D,J) b = allocate_in_range(Ah) fill!(b,1.0) ns = numerical_setup(symbolic_setup(solver,Ah),Ah) x = allocate_in_domain(Ah) fill!(x,0.0) solve!(x,ns,b)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
3169
module PRefinementGMGLinearSolverPoissonTests using MPI using Test using LinearAlgebra using IterativeSolvers using FillArrays using Gridap using Gridap.Helpers using Gridap.ReferenceFEs using PartitionedArrays using GridapDistributed using GridapP4est using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools u(x) = x[1] + x[2] f(x) = -Δ(u)(x) function main(parts, coarse_grid_partition, num_parts_x_level, num_refs_coarse, max_order) GridapP4est.with(parts) do domain = (0,1,0,1) num_levels = length(num_parts_x_level) cparts = generate_subparts(parts,num_parts_x_level[num_levels]) cmodel = CartesianDiscreteModel(domain,coarse_grid_partition) coarse_model = OctreeDistributedDiscreteModel(cparts,cmodel,num_refs_coarse) mh = ModelHierarchy(parts,coarse_model,num_parts_x_level;mesh_refinement=false) orders = collect(max_order:-1:1) qdegrees = map(o->2*(o+1),orders) reffes = map(o->ReferenceFE(lagrangian,Float64,o),orders) tests = TestFESpace(mh,reffes;conformity=:H1,dirichlet_tags="boundary") trials = TrialFESpace(tests,u) biform(u,v,dΩ) = ∫(∇(v)⋅∇(u))dΩ liform(v,dΩ) = ∫(v*f)dΩ smatrices, A, b = compute_hierarchy_matrices(trials,biform,liform,qdegrees) # Preconditioner smoothers = Fill(RichardsonSmoother(JacobiLinearSolver(),10,2.0/3.0),num_levels-1) restrictions, prolongations = setup_transfer_operators(trials,qdegrees; mode=:residual, restriction_method=:interpolation) gmg = GMGLinearSolver(mh, smatrices, prolongations, restrictions, pre_smoothers=smoothers, post_smoothers=smoothers, maxiter=1, rtol=1.0e-10, verbose=false, mode=:preconditioner) ss = symbolic_setup(gmg,A) ns = numerical_setup(ss,A) # Solve x = pfill(0.0,partition(axes(A,2))) x, history = IterativeSolvers.cg!(x,A,b; verbose=i_am_main(parts), reltol=1.0e-12, Pl=ns, log=true) # Error norms and print solution model = get_model(mh,1) Uh = get_fe_space(trials,1) Ω = Triangulation(model) dΩ = Measure(Ω,qdegrees[1]) uh = FEFunction(Uh,x) e = u-uh e_l2 = sum(∫(e⋅e)dΩ) tol = 1.0e-9 @test e_l2 < tol if i_am_main(parts) println("L2 error = ", e_l2) end end end ############################################## if !MPI.Initialized() MPI.Init() end # Parameters max_order = 3 coarse_grid_partition = (2,2) num_refs_coarse = 2 num_parts_x_level = [4,4,1] num_ranks = num_parts_x_level[1] parts = with_mpi() do distribute distribute(LinearIndices((prod(num_ranks),))) end main(parts,coarse_grid_partition,num_parts_x_level,num_refs_coarse,max_order) MPI.Finalize() end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
3264
using MPI using Test using LinearAlgebra using IterativeSolvers using FillArrays using Gridap using Gridap.ReferenceFEs, Gridap.Algebra using PartitionedArrays using GridapDistributed using GridapP4est using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools using GridapSolvers.PatchBasedSmoothers function get_patch_smoothers(tests,patch_decompositions,biform,qdegree) mh = tests.mh patch_spaces = PatchFESpace(tests,patch_decompositions) nlevs = num_levels(mh) smoothers = Vector{RichardsonSmoother}(undef,nlevs-1) for lev in 1:nlevs-1 parts = get_level_parts(mh,lev) if i_am_in(parts) PD = patch_decompositions[lev] Ph = get_fe_space(patch_spaces,lev) Vh = get_fe_space(tests,lev) Ω = Triangulation(PD) dΩ = Measure(Ω,qdegree) ap(u,v) = biform(u,v,dΩ) patch_smoother = PatchBasedLinearSolver(ap,Ph,Vh) smoothers[lev] = RichardsonSmoother(patch_smoother,10,0.1) end end return smoothers end function get_mesh_hierarchy(parts,nc,np_per_level) Dc = length(nc) domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1) num_refs_coarse = (Dc == 2) ? 1 : 0 num_levels = length(np_per_level) cparts = generate_subparts(parts,np_per_level[num_levels]) cmodel = CartesianDiscreteModel(domain,nc) coarse_model = OctreeDistributedDiscreteModel(cparts,cmodel,num_refs_coarse) mh = ModelHierarchy(parts,coarse_model,np_per_level) return mh end u(x) = VectorValue(x[1]^2,-2*x[1]*x[2]) f(x) = VectorValue(x[1],x[2]) np = 1 nc = (6,6) np_per_level = [np,np] parts = with_mpi() do distribute distribute(LinearIndices((np,))) end mh = get_mesh_hierarchy(parts,nc,np_per_level) α = 1000.0 #biform(u,v,dΩ) = ∫(v⋅u)dΩ + ∫(α*divergence(v)⋅divergence(u))dΩ biform(u,v,dΩ) = ∫(∇(v)⊙∇(u))dΩ + ∫(α*divergence(v)⋅divergence(u))dΩ liform(v,dΩ) = ∫(v⋅f)dΩ order = 2 qdegree = 2*(order+1) #reffe = ReferenceFE(raviart_thomas,Float64,order-1) reffe = ReferenceFE(lagrangian,VectorValue{2,Float64},order) tests = TestFESpace(mh,reffe,dirichlet_tags="boundary"); trials = TrialFESpace(tests,u); patch_decompositions = PatchDecomposition(mh) smoothers = get_patch_smoothers(tests,patch_decompositions,biform,qdegree) smatrices, A, b = compute_hierarchy_matrices(trials,tests,biform,liform,qdegree); coarse_solver = LUSolver() restrictions, prolongations = setup_transfer_operators(trials, qdegree; mode=:residual, solver=LUSolver()); gmg = GMGLinearSolver(mh, smatrices, prolongations, restrictions, pre_smoothers=smoothers, post_smoothers=smoothers, coarsest_solver=coarse_solver, maxiter=2, rtol=1.0e-8, verbose=true, mode=:preconditioner) gmg.log.depth += 1 solver = CGSolver(gmg;maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts)) ns = numerical_setup(symbolic_setup(solver,A),A) # Solve x = pfill(0.0,partition(axes(A,2))) solve!(x,ns,b)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
3111
using LinearAlgebra using FillArrays, BlockArrays using Gridap using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces using Gridap.CellData, Gridap.MultiField, Gridap.Algebra using PartitionedArrays using GridapDistributed using GridapSolvers using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools using GridapSolvers.BlockSolvers: LinearSystemBlock, BiformBlock, BlockTriangularSolver function add_labels_2d!(labels) add_tag_from_tags!(labels,"top",[3,4,6]) add_tag_from_tags!(labels,"walls",[1,2,5,7,8]) end function add_labels_3d!(labels) add_tag_from_tags!(labels,"top",[5,6,7,8,11,12,15,16,22]) add_tag_from_tags!(labels,"walls",[1,2,3,4,9,10,13,14,17,18,19,20,21,23,24,25,26]) end nc = (10,10) Dc = length(nc) domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1) model = CartesianDiscreteModel(domain,nc) add_labels! = (Dc == 2) ? add_labels_2d! : add_labels_3d! add_labels!(get_face_labeling(model)) order = 2 qdegree = 2*(order+1) reffe_u = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order) reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P) u_walls = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0) u_top = (Dc==2) ? VectorValue(1.0,0.0) : VectorValue(1.0,0.0,0.0) V = TestFESpace(model,reffe_u,dirichlet_tags=["walls","top"]); U = TrialFESpace(V,[u_walls,u_top]); Q = TestFESpace(model,reffe_p;conformity=:L2,constraint=:zeromean) mfs = Gridap.MultiField.BlockMultiFieldStyle() X = MultiFieldFESpace([U,Q];style=mfs) Y = MultiFieldFESpace([V,Q];style=mfs) α = 10.0 f = (Dc==2) ? VectorValue(1.0,1.0) : VectorValue(1.0,1.0,1.0) poly = (Dc==2) ? QUAD : HEX Π_Qh = LocalProjectionMap(divergence,lagrangian,Float64,order-1;space=:P) graddiv(u,v,dΩ) = ∫(α*Π_Qh(u,dΩ)⋅Π_Qh(v,dΩ))dΩ biform_u(u,v,dΩ) = ∫(∇(v)⊙∇(u))dΩ + graddiv(u,v,dΩ) biform((u,p),(v,q),dΩ) = biform_u(u,v,dΩ) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ liform((v,q),dΩ) = ∫(v⋅f)dΩ Ω = Triangulation(model) dΩ = Measure(Ω,qdegree) a(u,v) = biform(u,v,dΩ) l(v) = liform(v,dΩ) op = AffineFEOperator(a,l,X,Y) A, b = get_matrix(op), get_vector(op); solver_u = LUSolver() solver_p = CGSolver(JacobiLinearSolver();maxiter=20,atol=1e-14,rtol=1.e-6,verbose=true) solver_p.log.depth = 2 β = max(1.0,α) bblocks = [LinearSystemBlock(),BiformBlock((p,q) -> ∫((1.0/β)*p*q)dΩ,Q,Q)] P = BlockDiagonalSolver(bblocks,[solver_u,solver_p]) solver = MINRESSolver(;Pl=P,atol=1e-14,rtol=1.e-8,verbose=true) ns = numerical_setup(symbolic_setup(solver,A),A) x = allocate_in_domain(A); fill!(x,0.0) solve!(x,ns,b); ############################################### X2 = MultiFieldFESpace([U,Q]) Y2 = MultiFieldFESpace([V,Q]) op2 = AffineFEOperator(a,l,X2,Y2) A2, b2 = get_matrix(op2), get_vector(op2); x_ref = A2\b2 p((u,p),(v,q)) = biform_u(u,v,dΩ) + ∫((1.0/β)*p*q)dΩ P2_mat = assemble_matrix(p,X2,Y2) P2 = LinearSolvers.MatrixSolver(P2_mat) solver2 = MINRESSolver(;Pl=P2,atol=1e-14,rtol=1.e-8,verbose=true) ns2 = numerical_setup(symbolic_setup(solver2,A2),A2) x2 = allocate_in_domain(A2); fill!(x2,0.0) solve!(x2,ns2,b2); norm(A*x-b), norm(A2*x_ref-b2) norm(x-x_ref), norm(x2-x_ref)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
1595
using Gridap using Gridap.Adaptivity, Gridap.Geometry, Gridap.ReferenceFEs, Gridap.FESpaces, Gridap.Arrays using FillArrays u_sol(x) = VectorValue(x[1]^2*x[2], -x[1]*x[2]^2) p_sol(x) = (x[1] - 1.0/2.0) model = simplexify(CartesianDiscreteModel((0,1,0,1),(20,20))) labels = get_face_labeling(model) add_tag_from_tags!(labels,"top",[6]) add_tag_from_tags!(labels,"walls",[1,2,3,4,5,7,8]) order = 2 rrule = Adaptivity.BarycentricRefinementRule(TRI) reffes = Fill(LagrangianRefFE(VectorValue{2,Float64},TRI,order),Adaptivity.num_subcells(rrule)) reffe_u = Adaptivity.MacroReferenceFE(rrule,reffes) reffe_p = LagrangianRefFE(Float64,TRI,order-1) #reffe_p = Adaptivity.MacroReferenceFE(rrule,reffes;conformity=L2Conformity()) qdegree = 2*order quad = Quadrature(TRI,Adaptivity.CompositeQuadrature(),rrule,qdegree) V = FESpace(model,reffe_u,dirichlet_tags=["boundary"]) Q = FESpace(model,reffe_p,conformity=:L2,constraint=:zeromean) U = TrialFESpace(V,u_sol) Ω = Triangulation(model) dΩ = Measure(Ω,quad) @assert abs(sum(∫(p_sol)dΩ)) < 1.e-15 @assert abs(sum(∫(divergence(u_sol))dΩ)) < 1.e-15 X = MultiFieldFESpace([U,Q]) Y = MultiFieldFESpace([V,Q]) f(x) = -Δ(u_sol)(x) + ∇(p_sol)(x) lap(u,v) = ∫(∇(u)⊙∇(v))dΩ a((u,p),(v,q)) = lap(u,v) + ∫(divergence(u)*q - divergence(v)*p)dΩ l((v,q)) = ∫(f⋅v)dΩ op = AffineFEOperator(a,l,X,Y) xh = solve(op) uh, ph = xh sum(∫(uh⋅uh)dΩ) sum(∫(ph)dΩ) eh_u = uh - u_sol eh_p = ph - p_sol sum(∫(eh_u⋅eh_u)dΩ) sum(∫(eh_p*eh_p)dΩ) writevtk( Ω,"stokes", cellfields=["u"=>uh,"p"=>ph,"eu"=>eh_u,"ep"=>eh_p,"u_sol"=>u_sol,"p_sol"=>p_sol], append=false, )
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
591
using Gridap using GridapDistributed, PartitionedArrays using GridapSolvers using Gridap.MultiField ranks = with_debug() do distribute distribute(LinearIndices((4,))) end np_per_level = [(2,2),(2,2),(2,1)] nrefs = [(2,1),(2,2)] isperiodic = (true,false) mh = CartesianModelHierarchy( ranks, np_per_level, (0,1,0,1), (10,10); nrefs, isperiodic ) ncells_per_level = map(num_cells∘get_model,mh).array reffe = ReferenceFE(lagrangian,Float64,1) V = FESpace(mh,reffe,dirichlet_tags="boundary") X = MultiFieldFESpace([V,V]) PD = PatchDecomposition(mh) Ph = PatchFESpace(V,PD)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
685
using PartitionedArrays using GridapDistributed using GridapSolvers, GridapSolvers.MultilevelTools using Gridap, Gridap.Geometry struct HierarchyLevel{A,B,C} object :: A object_red :: B red_glue :: C end ############################################################################################ np = (2,1) ranks = DebugArray(LinearIndices((prod(np),))) dmodel = CartesianDiscreteModel(ranks,np,(0,1,0,1),(4,4)) model1 = CartesianDiscreteModel((0,1,0,1),(4,4)) model2 = UnstructuredDiscreteModel(model1) a = HierarchicalArray(fill(dmodel,2),fill(ranks,2)) b = HierarchicalArray([dmodel,nothing],fill(ranks,2)) c = HierarchicalArray([model1,model2],fill(ranks,2))
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
1241
using Gridap using GridapDistributed, PartitionedArrays using GridapSolvers using GridapSolvers.MultilevelTools using Gridap.Arrays np = (2,2) ranks = with_debug() do distribute distribute(LinearIndices((prod(np),))) end layer(x) = sign(x)*abs(x)^(1/3) cmap(x) = VectorValue(layer(x[1]),layer(x[2])) model = CartesianDiscreteModel((0,-1,0,-1),(10,10),map=cmap) Ω = Triangulation(model) dΩ = Measure(Ω,2) order = 2 qdegree = 2*(order+1) reffe_u = ReferenceFE(lagrangian,VectorValue{2,Float64},order) reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P) V = TestFESpace(model,reffe_u,dirichlet_tags="boundary"); Q = TestFESpace(model,reffe_p;conformity=:L2,constraint=:zeromean) mfs = Gridap.MultiField.BlockMultiFieldStyle() X = MultiFieldFESpace([V,Q];style=mfs) #Π_Qh = LocalProjectionMap(divergence,reffe_p,qdegree) Π_Qh = LocalProjectionMap(divergence,Q,qdegree) A = assemble_matrix((u,v) -> ∫(∇(v)⊙∇(u))dΩ, V, V) D = assemble_matrix((u,v) -> ∫(Π_Qh(u)⋅(∇⋅v))dΩ, V, V) B = assemble_matrix((u,q) -> ∫(divergence(u)*q)dΩ, V, Q) Bt = assemble_matrix((p,v) -> ∫(divergence(v)*p)dΩ, Q, V) Mp = assemble_matrix((p,q) -> ∫(p⋅q)dΩ, Q, Q) @assert Bt ≈ B' F = Bt*inv(Matrix(Mp))*B G = Matrix(D) F-G norm(F-G) maximum(abs.(F-G))
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
1984
using Gridap using GridapDistributed, PartitionedArrays using GridapSolvers using Gridap.MultiField, Gridap.Arrays, Gridap.Geometry using GridapSolvers.PatchBasedSmoothers function add_labels!(labels) add_tag_from_tags!(labels,"noslip",[1:20...,23,24,25,26]) add_tag_from_tags!(labels,"insulating",[1:20...,25,26]) add_tag_from_tags!(labels,"topbottom",[21,22]) end ranks = with_debug() do distribute distribute(LinearIndices((4,))) end nrefs = (2,2,2) isperiodic = (false,false,true) np_per_level = [(2,2,1),(2,2,1)] mh = CartesianModelHierarchy( ranks, np_per_level, (-1.,1.,-1.,1.,0.,0.1), (4,4,4); nrefs, isperiodic, add_labels!, ) order = 2 qdegree = 2*order reffe_u = ReferenceFE(lagrangian,VectorValue{3,Float64},order) reffe_j = ReferenceFE(raviart_thomas,Float64,order-1) tests_u = TestFESpace(mh,reffe_u,dirichlet_tags=["noslip"]); tests_j = TestFESpace(mh,reffe_j,dirichlet_tags=["insulating"]); tests = MultiFieldFESpace([tests_u,tests_j]) PD = PatchDecomposition(mh) Ph = PatchFESpace(tests,PD) biform((u,j),(v,s),dΩ) = ∫(u⋅v + j⋅s)dΩ nlevs = num_levels(mh) smoothers = map(view(tests,1:nlevs-1),PD,Ph) do tests, PD, Ph Vh = get_fe_space(tests) Ω = Triangulation(PD) dΩ = Measure(Ω,qdegree) ap(u,v) = biform(u,v,dΩ) patch_solver = PatchBasedLinearSolver(ap,Ph,Vh) RichardsonSmoother(patch_solver,10,0.2) end smatrices = map(view(mh,1:nlevs-1),view(tests,1:nlevs-1)) do mhlev,tests Vh = get_fe_space(tests) model = get_model(mhlev) Ω = Triangulation(model) dΩ = Measure(Ω,qdegree) a(u,v) = biform(u,v,dΩ) assemble_matrix(a,Vh,Vh) end smoother_ns = map(smoothers,smatrices) do s, m numerical_setup(symbolic_setup(s,m),m) end prolongations = map(view(linear_indices(mh),1:nlevs-1),view(mh,1:nlevs-1),PD) do lev,mhlev,PD model = get_model(mhlev) Ω = Triangulation(PD) dΩ = Measure(Ω,qdegree) lhs(u,v) = biform(u,v,dΩ) rhs(u,v) = biform(u,v,dΩ) PatchProlongationOperator(lev,tests,PD,lhs,rhs) end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
3039
using Gridap using Gridap.Geometry, Gridap.FESpaces, Gridap.Adaptivity u_h1(x) = x[1]*(1-x[1])*x[2]*(1-x[2]) #x[1] + x[2] u_hdiv(x) = VectorValue(x[1],x[2]) a_h1(u,v,dΩ) = ∫(u⋅v)*dΩ a_hdiv(u,v,dΩ) = ∫(u⋅v + divergence(u)⋅divergence(v))*dΩ conf = :hdiv order = 1 cmodel = CartesianDiscreteModel((0,1,0,1),(8,8)) fmodel = refine(cmodel) Ωh = Triangulation(fmodel) ΩH = Triangulation(cmodel) qdegree = 2*(order+1) dΩh = Measure(Ωh,qdegree) dΩH = Measure(ΩH,qdegree) dΩHh = Measure(ΩH,Ωh,qdegree) if conf == :h1 u_bc = u_h1 reffe = ReferenceFE(lagrangian,Float64,order) ah(u,v) = a_h1(u,v,dΩh) aH(u,v) = a_h1(u,v,dΩH) f = zero(Float64) else u_bc = u_hdiv reffe = ReferenceFE(raviart_thomas,Float64,order) ah(u,v) = a_hdiv(u,v,dΩh) aH(u,v) = a_hdiv(u,v,dΩH) f = zero(VectorValue{2,Float64}) end lh(v) = ∫(v⋅f)*dΩh lH(v) = ∫(v⋅f)*dΩH VH = TestFESpace(cmodel,reffe,dirichlet_tags="boundary") UH = TrialFESpace(VH,u_bc) Vh = TestFESpace(fmodel,reffe,dirichlet_tags="boundary") Uh = TrialFESpace(Vh,u_bc) oph = AffineFEOperator(ah,lh,Uh,Vh) opH = AffineFEOperator(aH,lH,UH,VH) xh_star = get_free_dof_values(solve(oph)) xH_star = get_free_dof_values(solve(opH)) Ah, bh = get_matrix(oph), get_vector(oph); AH, bH = get_matrix(opH), get_vector(opH); uh = interpolate(u_bc,Uh) uH = interpolate(u_bc,UH) xh = get_free_dof_values(uh) xH = get_free_dof_values(uH) eh = xh_star - xh eH = xH_star - xH rh = bh - Ah*xh rH = bH - AH*xH norm(Ah*eh - rh) norm(AH*eH - rH) uh0 = FEFunction(Vh,xh) yh = bh - assemble_vector(v -> ah(uh0,v),Vh) norm(rh-yh) function project_sol_c2f(xH) uH = FEFunction(UH,xH) op = AffineFEOperator((u,v)->∫(u⋅v)*dΩh,v->∫(v⋅uH)*dΩh,Uh,Vh) return get_matrix(op)\get_vector(op) end function project_err_c2f(xH) uH = FEFunction(VH,xH) op = AffineFEOperator((u,v)->∫(u⋅v)*dΩh,v->∫(v⋅uH)*dΩh,Vh,Vh) return get_matrix(op)\get_vector(op) end #function project_err_f2c(xh) # uh = FEFunction(Vh,xh) # uH = interpolate(uh,VH) # return get_free_dof_values(uH) #end function project_err_f2c(xh) uh = FEFunction(Vh,xh) op = AffineFEOperator((u,v)->∫(u⋅v)*dΩH,v->∫(v⋅uh)*dΩHh,VH,VH) return get_matrix(op)\get_vector(op) end yh = project_sol_c2f(xH) norm(xh-yh) yh = project_err_c2f(eH) norm(eh-yh) norm(rh-Ah*yh) ######################################## hH = get_cell_measure(ΩH) hh = get_cell_measure(Ωh) function dotH(a::AbstractVector,b::AbstractVector) _a = FEFunction(VH,a) _b = FEFunction(VH,b) dotH(_a,_b) end function dotH(a,b) sum(∫(a⋅b)*dΩH) end function doth(a::AbstractVector,b::AbstractVector) _a = FEFunction(Vh,a) _b = FEFunction(Vh,b) doth(_a,_b) end function doth(a,b) sum(∫(a⋅b)*dΩh) end g = rh z = Ah\g zm1 = fill(0.1,size(Ah,2)) gH = project_err_f2c(g-Ah*zm1) qH = AH\gH wH = randn(size(AH,2)) wh = get_free_dof_values(interpolate(FEFunction(VH,wH),Vh)) #wh = project_err_c2f(wH) dotH(AH*qH,wH) dotH(gH,wH) doth(g-Ah*zm1,wh) doth(Ah*(z-zm1),wh) gH = project_err_f2c(g) dotH(gH,wH) doth(g,wh) gh = project_err_c2f(gH) doth(gh-g,wh)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
5854
using Gridap, Gridap.TensorValues, Gridap.Geometry, Gridap.ReferenceFEs using GridapDistributed using GridapPETSc using GridapPETSc: PetscScalar, PetscInt, PETSC, @check_error_code using PartitionedArrays using SparseMatricesCSR using MPI import GridapDistributed.DistributedCellField import GridapDistributed.DistributedFESpace import GridapDistributed.DistributedDiscreteModel import GridapDistributed.DistributedMeasure import GridapDistributed.DistributedTriangulation function isotropic_3d(E::M,nu::M) where M<:AbstractFloat λ = E*nu/((1+nu)*(1-2nu)); μ = E/(2*(1+nu)) C =[λ+2μ λ λ 0 0 0 λ λ+2μ λ 0 0 0 λ λ λ+2μ 0 0 0 0 0 0 μ 0 0 0 0 0 0 μ 0 0 0 0 0 0 μ]; return SymFourthOrderTensorValue( C[1,1], C[6,1], C[5,1], C[2,1], C[4,1], C[3,1], C[1,6], C[6,6], C[5,6], C[2,6], C[4,6], C[3,6], C[1,5], C[6,5], C[5,5], C[2,5], C[4,5], C[3,5], C[1,2], C[6,2], C[5,2], C[2,2], C[4,2], C[3,2], C[1,4], C[6,4], C[5,4], C[2,4], C[4,4], C[3,4], C[1,3], C[6,3], C[5,3], C[2,3], C[4,3], C[3,3]) end struct ElasticitySolver{A,B} <: Gridap.Algebra.LinearSolver trian ::A space ::B rtol ::PetscScalar maxits::PetscInt function ElasticitySolver(trian::DistributedTriangulation, space::DistributedFESpace; rtol=1.e-12, maxits=100) A = typeof(trian) B = typeof(space) new{A,B}(trian,space,rtol,maxits) end end struct ElasticitySymbolicSetup{A} <: Gridap.Algebra.SymbolicSetup solver::A end function Gridap.Algebra.symbolic_setup(solver::ElasticitySolver,A::AbstractMatrix) ElasticitySymbolicSetup(solver) end function get_dof_coords(trian,space) coords = map(local_views(trian),local_views(space),partition(space.gids)) do trian, space, dof_indices node_coords = Gridap.Geometry.get_node_coordinates(trian) dof_to_node = space.metadata.free_dof_to_node dof_to_comp = space.metadata.free_dof_to_comp o2l_dofs = own_to_local(dof_indices) coords = Vector{PetscScalar}(undef,length(o2l_dofs)) for (i,dof) in enumerate(o2l_dofs) node = dof_to_node[dof] comp = dof_to_comp[dof] coords[i] = node_coords[node][comp] end return coords end ngdofs = length(space.gids) indices = map(local_views(space.gids)) do dof_indices owner = part_id(dof_indices) own_indices = OwnIndices(ngdofs,owner,own_to_global(dof_indices)) ghost_indices = GhostIndices(ngdofs,Int64[],Int32[]) # We only consider owned dofs OwnAndGhostIndices(own_indices,ghost_indices) end return PVector(coords,indices) end function elasticity_ksp_setup(ksp,rtol,maxits) rtol = PetscScalar(rtol) atol = GridapPETSc.PETSC.PETSC_DEFAULT dtol = GridapPETSc.PETSC.PETSC_DEFAULT maxits = PetscInt(maxits) @check_error_code GridapPETSc.PETSC.KSPView(ksp[],C_NULL) @check_error_code GridapPETSc.PETSC.KSPSetType(ksp[],GridapPETSc.PETSC.KSPGMRES) @check_error_code GridapPETSc.PETSC.KSPSetTolerances(ksp[], rtol, atol, dtol, maxits) pc = Ref{GridapPETSc.PETSC.PC}() @check_error_code GridapPETSc.PETSC.KSPGetPC(ksp[],pc) @check_error_code GridapPETSc.PETSC.PCSetType(pc[],GridapPETSc.PETSC.PCGAMG) end function Gridap.Algebra.numerical_setup(ss::ElasticitySymbolicSetup,A::PSparseMatrix) s = ss.solver; Dc = num_cell_dims(s.trian) # Compute coordinates for owned dofs dof_coords = convert(PETScVector,get_dof_coords(s.trian,s.space)) @check_error_code GridapPETSc.PETSC.VecSetBlockSize(dof_coords.vec[],Dc) # Create matrix nullspace B = convert(PETScMatrix,A) null = Ref{GridapPETSc.PETSC.MatNullSpace}() @check_error_code GridapPETSc.PETSC.MatNullSpaceCreateRigidBody(dof_coords.vec[],null) @check_error_code GridapPETSc.PETSC.MatSetNearNullSpace(B.mat[],null[]) # Setup solver and preconditioner ns = GridapPETSc.PETScLinearSolverNS(A,B) @check_error_code GridapPETSc.PETSC.KSPCreate(B.comm,ns.ksp) @check_error_code GridapPETSc.PETSC.KSPSetOperators(ns.ksp[],ns.B.mat[],ns.B.mat[]) elasticity_ksp_setup(ns.ksp,s.rtol,s.maxits) @check_error_code GridapPETSc.PETSC.KSPSetUp(ns.ksp[]) GridapPETSc.Init(ns) end ############ D = 3 order = 1 n = 20 np_x_dim = 1 np = Tuple(fill(np_x_dim,D)) #Tuple([fill(np_x_dim,D-1)...,1]) ranks = with_debug() do distribute distribute(LinearIndices((prod(np),))) end n_tags = (D==2) ? "tag_6" : "tag_22" d_tags = (D==2) ? ["tag_5"] : ["tag_21"] nc = (D==2) ? (n,n) : (n,n,n) domain = (D==2) ? (0,1,0,1) : (0,1,0,1,0,1) model = CartesianDiscreteModel(domain,nc) Ω = Triangulation(model) Γ = Boundary(model,tags=n_tags) ΓD = Boundary(model,tags=d_tags) poly = (D==2) ? QUAD : HEX reffe = LagrangianRefFE(VectorValue{D,Float64},poly,order) V = TestFESpace(model,reffe;dirichlet_tags=d_tags) U = TrialFESpace(V) assem = SparseMatrixAssembler(SparseMatrixCSR{0,PetscScalar,PetscInt},Vector{PetscScalar},U,V)#,FullyAssembledRows()) dΩ = Measure(Ω,2*order) dΓ = Measure(Γ,2*order) C = (D == 2) ? isotropic_2d(1.,0.3) : isotropic_3d(1.,0.3) g = (D == 2) ? VectorValue(0.0,1.0) : VectorValue(0.0,0.0,1.0) a(u,v) = ∫((C ⊙ ε(u) ⊙ ε(v)))dΩ l(v) = ∫(v ⋅ g)dΓ op = AffineFEOperator(a,l,U,V,assem) A, b = get_matrix(op), get_vector(op); dim, coords = get_coords(Ω,V); pcoords = PVector(coords,partition(axes(A,1))) options = " -ksp_type cg -ksp_rtol 1.0e-12 -pc_type gamg -mat_block_size $D -ksp_converged_reason -ksp_error_if_not_converged true " GridapPETSc.with(args=split(options)) do solver = PETScLinearSolver(ksp_setup) ss = symbolic_setup(solver,A) ns = my_numerical_setup(ss,A,pcoords,dim) x = pfill(PetscScalar(1.0),partition(axes(A,2))) solve!(x,ns,b) end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
7271
using Gridap using GridapDistributed using PartitionedArrays using GridapPETSc using SparseMatricesCSR using LinearAlgebra using Gridap.Geometry, Gridap.FESpaces, Gridap.CellData, Gridap.Arrays function get_operators(V_H1_sc,V_H1_vec,V_Hcurl,V_Hdiv) G = interpolation_operator(u->∇(u),V_H1_sc,V_Hcurl) C = interpolation_operator(u->cross(∇,u),V_Hcurl,V_Hdiv) Π_div = interpolation_operator(u->u,V_H1_vec,V_Hdiv) Π_curl = interpolation_operator(u->u,V_H1_vec,V_Hcurl) return G, C, Π_div, Π_curl end function interpolation_operator(op,U_in,V_out; strat=SubAssembledRows(), Tm=SparseMatrixCSR{0,PetscScalar,PetscInt}, Tv=Vector{PetscScalar}) out_dofs = get_fe_dof_basis(V_out) in_basis = get_fe_basis(U_in) cell_interp_mats = out_dofs(op(in_basis)) local_contr = map(local_views(out_dofs),cell_interp_mats) do dofs, arr contr = DomainContribution() add_contribution!(contr,get_triangulation(dofs),arr) return contr end contr = GridapDistributed.DistributedDomainContribution(local_contr) matdata = collect_cell_matrix(U_in,V_out,contr) assem = SparseMatrixAssembler(Tm,Tv,U_in,V_out,strat) I = allocate_matrix(assem,matdata) takelast_matrix!(I,assem,matdata) return I end function takelast_matrix(a::SparseMatrixAssembler,matdata) m1 = Gridap.Algebra.nz_counter(get_matrix_builder(a),(get_rows(a),get_cols(a))) symbolic_loop_matrix!(m1,a,matdata) m2 = Gridap.Algebra.nz_allocation(m1) takelast_loop_matrix!(m2,a,matdata) m3 = Gridap.Algebra.create_from_nz(m2) return m3 end function takelast_matrix!(mat,a::SparseMatrixAssembler,matdata) LinearAlgebra.fillstored!(mat,zero(eltype(mat))) takelast_matrix_add!(mat,a,matdata) end function takelast_matrix_add!(mat,a::SparseMatrixAssembler,matdata) takelast_loop_matrix!(mat,a,matdata) Gridap.Algebra.create_from_nz(mat) end function takelast_loop_matrix!(A,a::GridapDistributed.DistributedSparseMatrixAssembler,matdata) rows = get_rows(a) cols = get_cols(a) map(takelast_loop_matrix!,local_views(A,rows,cols),local_views(a),matdata) end function takelast_loop_matrix!(A,a::SparseMatrixAssembler,matdata) strategy = Gridap.FESpaces.get_assembly_strategy(a) for (cellmat,_cellidsrows,_cellidscols) in zip(matdata...) cellidsrows = Gridap.FESpaces.map_cell_rows(strategy,_cellidsrows) cellidscols = Gridap.FESpaces.map_cell_cols(strategy,_cellidscols) @assert length(cellidscols) == length(cellidsrows) @assert length(cellmat) == length(cellidsrows) if length(cellmat) > 0 rows_cache = array_cache(cellidsrows) cols_cache = array_cache(cellidscols) vals_cache = array_cache(cellmat) mat1 = getindex!(vals_cache,cellmat,1) rows1 = getindex!(rows_cache,cellidsrows,1) cols1 = getindex!(cols_cache,cellidscols,1) add! = Gridap.Arrays.AddEntriesMap((a,b) -> b) add_cache = return_cache(add!,A,mat1,rows1,cols1) caches = add_cache, vals_cache, rows_cache, cols_cache _takelast_loop_matrix!(A,caches,cellmat,cellidsrows,cellidscols) end end A end @noinline function _takelast_loop_matrix!(mat,caches,cell_vals,cell_rows,cell_cols) add_cache, vals_cache, rows_cache, cols_cache = caches add! = Gridap.Arrays.AddEntriesMap((a,b) -> b) for cell in 1:length(cell_cols) rows = getindex!(rows_cache,cell_rows,cell) cols = getindex!(cols_cache,cell_cols,cell) vals = getindex!(vals_cache,cell_vals,cell) evaluate!(add_cache,add!,mat,vals,rows,cols) end end function ads_ksp_setup(ksp,rtol,maxits,dim,G,C,Π_div,Π_curl) rtol = PetscScalar(rtol) atol = GridapPETSc.PETSC.PETSC_DEFAULT dtol = GridapPETSc.PETSC.PETSC_DEFAULT maxits = PetscInt(maxits) @check_error_code GridapPETSc.PETSC.KSPSetType(ksp[],GridapPETSc.PETSC.KSPGMRES) @check_error_code GridapPETSc.PETSC.KSPSetTolerances(ksp[], rtol, atol, dtol, maxits) pc = Ref{GridapPETSc.PETSC.PC}() @check_error_code GridapPETSc.PETSC.KSPGetPC(ksp[],pc) @check_error_code GridapPETSc.PETSC.PCSetType(pc[],GridapPETSc.PETSC.PCHYPRE) _G = convert(PETScMatrix,G) _C = convert(PETScMatrix,C) _Π_div = convert(PETScMatrix,Π_div) _Π_curl = convert(PETScMatrix,Π_curl) @check_error_code GridapPETSc.PETSC.PCHYPRESetDiscreteGradient(pc[],_G.mat[]) @check_error_code GridapPETSc.PETSC.PCHYPRESetDiscreteCurl(pc[],_C.mat[]) @check_error_code GridapPETSc.PETSC.PCHYPRESetInterpolations(pc[],dim,_Π_div.mat[],C_NULL,_Π_curl.mat[],C_NULL) @check_error_code GridapPETSc.PETSC.KSPView(ksp[],C_NULL) end ############################################################################### n = 10 D = 3 order = 1 np = (1,1,1)#Tuple(fill(1,D)) ranks = with_mpi() do distribute distribute(LinearIndices((prod(np),))) end domain = (D==2) ? (0,1,0,1) : (0,1,0,1,0,1) ncells = (D==2) ? (n,n) : (n,n,n) model = CartesianDiscreteModel(ranks,np,domain,ncells) trian = Triangulation(model) reffe_H1_sc = ReferenceFE(lagrangian,Float64,order) V_H1_sc = FESpace(model,reffe_H1_sc)#;dirichlet_tags="boundary") U_H1_sc = TrialFESpace(V_H1_sc) reffe_H1 = ReferenceFE(lagrangian,VectorValue{D,Float64},order) V_H1 = FESpace(model,reffe_H1)#;dirichlet_tags="boundary") U_H1 = TrialFESpace(V_H1) reffe_Hdiv = ReferenceFE(raviart_thomas,Float64,order-1) V_Hdiv = FESpace(model,reffe_Hdiv)#;dirichlet_tags="boundary") U_Hdiv = TrialFESpace(V_Hdiv) reffe_Hcurl = ReferenceFE(nedelec,Float64,order-1) V_Hcurl = FESpace(model,reffe_Hcurl)#;dirichlet_tags="boundary") U_Hcurl = TrialFESpace(V_Hcurl) ############################################################################## dΩ = Measure(trian,(order+1)*2) G, C, Π_div, Π_curl = get_operators(V_H1_sc,V_H1,V_Hcurl,V_Hdiv); u(x) = x[1]^3 + x[2]^3 u_h1 = interpolate(u,U_H1_sc) x_h1 = get_free_dof_values(u_h1) #u_hcurl = interpolate(∇(u_h1),U_Hcurl) #x_hcurl = G * x_h1 #@assert norm(x_hcurl - get_free_dof_values(u_hcurl)) < 1.e-8 # #u_hdiv = interpolate(∇×(u_hcurl),U_Hdiv) #x_hdiv = C * x_hcurl #@assert norm(x_hdiv - get_free_dof_values(u_hdiv)) < 1.e-8 # #u_vec(x) = VectorValue(x[1]^3,x[2]^3,x[3]^3) #u_h1_vec = interpolate(u_vec,V_H1) #x_h1_vec = get_free_dof_values(u_h1_vec) # #u_hcurl_bis = interpolate(u_h1_vec,U_Hcurl) #x_hcurl_bis = Π_curl * x_h1_vec #@assert norm(x_hcurl_bis - get_free_dof_values(u_hcurl_bis)) < 1.e-8 #u_hdiv_bis = interpolate(u_h1_vec,U_Hcurl) #x_hdiv_bis = Π_curl * x_h1_vec #@assert norm(x_hdiv_bis - get_free_dof_values(u_hdiv_bis)) < 1.e-8 ############################################################################################ sol(x) = (D==2) ? VectorValue(x[1],x[2]) : VectorValue(x[1],x[2],x[3]) f(x) = (D==2) ? VectorValue(x[1],x[2]) : VectorValue(x[1],x[2],x[3]) α = 1.0 a(u,v) = ∫(u⋅v + α⋅(∇⋅u)⋅(∇⋅v)) * dΩ l(v) = ∫(f⋅v) * dΩ V = FESpace(model,reffe_Hdiv)#;dirichlet_tags="boundary") U = TrialFESpace(V,sol) op = AffineFEOperator(a,l,V,U) A = get_matrix(op) b = get_vector(op) options = "-ksp_converged_reason" GridapPETSc.with(args=split(options)) do ksp_setup(ksp) = ads_ksp_setup(ksp,1e-8,300,D,G,C,Π_div,Π_curl) solver = PETScLinearSolver(ksp_setup) ns = numerical_setup(symbolic_setup(solver,A),A) x = pfill(0.0,partition(axes(A,2))) solve!(x,ns,b) end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
1460
using Test using LinearAlgebra using FillArrays using Gridap using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.FESpaces, Gridap.Geometry using PartitionedArrays using GridapDistributed using GridapP4est using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools using GridapSolvers.PatchBasedSmoothers function weakforms(model) Ω = Triangulation(model) Γ = BoundaryTriangulation(model) Λ = SkeletonTriangulation(model) dΩ = Measure(Ω, qorder) dΓ = Measure(Γ, qorder) dΛ = Measure(Λ, qorder) n_Γ = get_normal_vector(Γ) n_Λ = get_normal_vector(Λ) a1(u,v) = ∫(∇(u)⊙∇(v))dΩ a2(u,v) = ∫((∇(v)⋅n_Γ)⋅u)dΓ a3(u,v) = ∫(jump(u⋅n_Λ)⋅jump(v⋅n_Λ))dΛ return a1, a2, a3 end model = CartesianDiscreteModel((0,1,0,1),(2,2)) order = 1 qorder = 2*order+1 reffe = ReferenceFE(raviart_thomas,Float64,order-1) Vh = FESpace(model,reffe) Ω = Triangulation(model) Γ = BoundaryTriangulation(model) Λ = SkeletonTriangulation(model) PD = PatchDecomposition(model) Ph = PatchFESpace(Vh,PD,reffe) Ωp = Triangulation(PD) Γp = BoundaryTriangulation(PD) Λp = SkeletonTriangulation(PD) Γp_virtual = BoundaryTriangulation(PD,tags=["boundary","interior"],reverse=true) a1, a2, a3 = weakforms(model) ap1, ap2, ap3 = weakforms(PD) A1 = assemble_matrix(a1,Vh,Vh) Ap1 = assemble_matrix(ap1,Ph,Ph) A2 = assemble_matrix(a2,Vh,Vh) Ap2 = assemble_matrix(ap2,Ph,Ph) A3 = assemble_matrix(a3,Vh,Vh) Ap3 = assemble_matrix(ap3,Ph,Ph)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
4976
module DistributedPatchFESpacesHDivTests using LinearAlgebra using Test using PartitionedArrays using Gridap using Gridap.Helpers using Gridap.Arrays using Gridap.Geometry using Gridap.ReferenceFEs using GridapDistributed using FillArrays using GridapSolvers import GridapSolvers.PatchBasedSmoothers as PBS function run(ranks) parts = with_debug() do distribute distribute(LinearIndices((prod(ranks),))) end domain = (0.0,1.0,0.0,1.0) partition = (2,4) model = CartesianDiscreteModel(parts,ranks,domain,partition) order = 0 reffe = ReferenceFE(raviart_thomas,Float64,order) Vh = TestFESpace(model,reffe) PD = PBS.PatchDecomposition(model) Ph = PBS.PatchFESpace(model,reffe,DivConformity(),PD,Vh) # ---- Testing Prolongation and Injection ---- # w, w_sums = PBS.compute_weight_operators(Ph,Vh); xP = pfill(1.0,partition(Ph.gids)) yP = pfill(0.0,partition(Ph.gids)) x = pfill(1.0,partition(Vh.gids)) y = pfill(0.0,partition(Vh.gids)) PBS.prolongate!(yP,Ph,x) PBS.inject!(y,Ph,yP,w,w_sums) @test x ≈ y PBS.inject!(x,Ph,xP,w,w_sums) PBS.prolongate!(yP,Ph,x) @test xP ≈ yP # ---- Assemble systems ---- # sol(x) = VectorValue(x[1],x[2]) f(x) = VectorValue(2.0*x[2]*(1.0-x[1]*x[1]),2.0*x[1]*(1-x[2]*x[2])) α = 1.0 biform(u,v,dΩ) = ∫(v⋅u)dΩ + ∫(α*divergence(v)⋅divergence(u))dΩ liform(v,dΩ) = ∫(v⋅f)dΩ Ω = Triangulation(model) dΩ = Measure(Ω,2*order+1) a(u,v) = biform(u,v,dΩ) l(v) = liform(v,dΩ) assembler = SparseMatrixAssembler(Vh,Vh) Ah = assemble_matrix(a,assembler,Vh,Vh) fh = assemble_vector(l,assembler,Vh) sol_h = solve(LUSolver(),Ah,fh) Ωₚ = Triangulation(PD) dΩₚ = Measure(Ωₚ,2*order+1) ap(u,v) = biform(u,v,dΩₚ) lp(v) = liform(v,dΩₚ) assembler_P = SparseMatrixAssembler(Ph,Ph,FullyAssembledRows()) Ahp = assemble_matrix(ap,assembler_P,Ph,Ph) fhp = assemble_vector(lp,assembler_P,Ph) sol_hp = solve(LUSolver(),Ahp,fhp) # ---- Define solvers ---- # LU = LUSolver() LUss = symbolic_setup(LU,Ahp) LUns = numerical_setup(LUss,Ahp) M = PBS.PatchBasedLinearSolver(ap,Ph,Vh,LU) Mss = symbolic_setup(M,Ah) Mns = numerical_setup(Mss,Ah) R = RichardsonSmoother(M,10,1.0/3.0) Rss = symbolic_setup(R,Ah) Rns = numerical_setup(Rss,Ah) # ---- Manual solve using LU ---- # x1_mat = pfill(0.5,partition(axes(Ah,2))) r1_mat = fh-Ah*x1_mat consistent!(r1_mat) |> fetch r1 = pfill(0.0,partition(Vh.gids)) x1 = pfill(0.0,partition(Vh.gids)) rp = pfill(0.0,partition(Ph.gids)) xp = pfill(0.0,partition(Ph.gids)) rp_mat = pfill(0.0,partition(axes(Ahp,2))) xp_mat = pfill(0.0,partition(axes(Ahp,2))) copy!(r1,r1_mat) consistent!(r1) |> fetch PBS.prolongate!(rp,Ph,r1) # OK copy!(rp_mat,rp) consistent!(rp_mat) |> fetch solve!(xp_mat,LUns,rp_mat) copy!(xp,xp_mat) # Some big numbers appear here.... w, w_sums = PBS.compute_weight_operators(Ph,Vh); PBS.inject!(x1,Ph,xp,w,w_sums) # Problem here!! copy!(x1_mat,x1) # ---- Same using the PatchBasedSmoother ---- # x2_mat = pfill(0.5,partition(axes(Ah,2))) r2_mat = fh-Ah*x2_mat consistent!(r2_mat) |> fetch solve!(x2_mat,Mns,r2_mat) # ---- Smoother inside Richardson x3_mat = pfill(0.5,partition(axes(Ah,2))) r3_mat = fh-Ah*x3_mat consistent!(r3_mat) solve!(x3_mat,Rns,r3_mat) consistent!(x3_mat) |> fetch # Outputs res = Dict{String,Any}() res["sol_h"] = sol_h res["sol_hp"] = sol_hp res["r1"] = r1 res["x1"] = x1 res["r1_mat"] = r1_mat res["x1_mat"] = x1_mat res["rp"] = rp res["xp"] = xp res["rp_mat"] = rp_mat res["xp_mat"] = xp_mat res["w"] = w res["w_sums"] = w_sums return model,PD,Ph,Vh,res end ranks = (1,1) Ms,PDs,Phs,Vhs,res_single = run(ranks); ranks = (1,2) Mm,PDm,Phm,Vhm,res_multi = run(ranks); println(repeat('#',80)) map(local_views(Ms)) do model cell_ids = get_cell_node_ids(model) cell_coords = get_cell_coordinates(model) display(reshape(cell_ids,length(cell_ids))) display(reshape(cell_coords,length(cell_coords))) end; println(repeat('-',80)) cell_gids = get_cell_gids(Mm) vertex_gids = get_face_gids(Mm,0) edge_gids = get_face_gids(Mm,1) println(">>> Cell gids") map(cell_gids.partition) do p println(transpose(p.lid_to_ohid)) end; println(repeat('-',80)) println(">>> Vertex gids") map(vertex_gids.partition) do p println(transpose(p.lid_to_ohid)) end; println(repeat('-',80)) println(">>> Edge gids") map(edge_gids.partition) do p println(transpose(p.lid_to_ohid)) end; println(repeat('#',80)) map(local_views(Phs)) do Ph display(Ph.patch_cell_dofs_ids) end; map(local_views(Phm)) do Ph display(Ph.patch_cell_dofs_ids) end; println(repeat('#',80)) for key in keys(res_single) val_s = res_single[key] val_m = res_multi[key] println(">>> ", key) map(partition(val_s)) do v println(transpose(v)) end; map(own_values(val_m)) do v println(transpose(v)) end; println(repeat('-',80)) end end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
3997
module DistributedPatchFESpacesTests using LinearAlgebra using Test using PartitionedArrays using Gridap using Gridap.Helpers using Gridap.Geometry using Gridap.FESpaces using Gridap.ReferenceFEs using GridapDistributed using FillArrays using GridapSolvers import GridapSolvers.PatchBasedSmoothers as PBS np = (2,1) parts = with_debug() do distribute distribute(LinearIndices((prod(np),))) end domain = (0,1,0,1) domain_partition = (4,3) isperiodic = (false,true) if prod(np) == 1 model = CartesianDiscreteModel(domain,domain_partition;isperiodic) add_tag_from_tags!(get_face_labeling(model), "dirichlet", [1,2,5]) else model = CartesianDiscreteModel(parts,np,domain,domain_partition;isperiodic) map(local_views(get_face_labeling(model))) do labels add_tag_from_tags!(labels, "dirichlet", [1,2,5]) end end pbs = PBS.PatchBoundaryExclude() PD = PBS.PatchDecomposition(model;patch_boundary_style=pbs) conf = :hdiv order = 1 if conf === :h1 _reffe = ReferenceFE(lagrangian,Float64,order) reffe = LagrangeRefFE(Float64,QUAD,order) conformity = H1Conformity() f = 1.0 u_bc = 0.0 biform(u,v,dΩ) = ∫(v⋅u)*dΩ liform(v,dΩ) = ∫(f⋅v)*dΩ else _reffe = ReferenceFE(raviart_thomas,Float64,order) reffe = RaviartThomasRefFE(Float64,QUAD,order) conformity = DivConformity() f = VectorValue(1.0,1.0) u_bc = VectorValue(1.0,0.0) biform(u,v,dΩ) = ∫(u⋅v + divergence(v)⋅divergence(u))*dΩ liform(v,dΩ) = ∫(f⋅v)*dΩ end Vh = TestFESpace(model,_reffe,dirichlet_tags="dirichlet") Uh = TrialFESpace(Vh,u_bc) Ph = PBS.PatchFESpace(Vh,PD,_reffe;conformity) Ωₚ = Triangulation(PD) dΩₚ = Measure(Ωₚ,2*(order+2)) ap(u,v) = biform(u,v,dΩₚ) Ahp = assemble_matrix(ap,Ph,Ph) cond(Matrix(Ahp)) det(Ahp) n1 = 4 # 8 A_corner = Matrix(Ahp)[1:n1,1:n1] det(A_corner) # ---- Testing Prolongation and Injection ---- # w, w_sums = PBS.compute_weight_operators(Ph,Vh); xP = zero_free_values(Ph) .+ 1.0 yP = zero_free_values(Ph) x = zero_free_values(Vh) .+ 1.0 y = zero_free_values(Vh) PBS.prolongate!(yP,Ph,x) PBS.inject!(y,Ph,yP,w,w_sums) @test x ≈ y PBS.inject!(x,Ph,xP,w,w_sums) PBS.prolongate!(yP,Ph,x) @test xP ≈ yP @benchmark PBS.inject!($y,$Ph,$yP,$w,$w_sums) @benchmark PBS.inject!($y,$Ph,$yP) # ---- Assemble systems ---- # Ω = Triangulation(model) dΩ = Measure(Ω,2*order+1) a(u,v) = biform(u,v,dΩ) l(v) = liform(v,dΩ) assembler = SparseMatrixAssembler(Vh,Vh) Ah = assemble_matrix(a,assembler,Vh,Vh) fh = assemble_vector(l,assembler,Vh) sol_h = solve(LUSolver(),Ah,fh) Ωₚ = Triangulation(PD) dΩₚ = Measure(Ωₚ,2*order+1) ap(u,v) = biform(u,v,dΩₚ) lp(v) = liform(v,dΩₚ) assembler_P = SparseMatrixAssembler(Ph,Ph) Ahp = assemble_matrix(ap,assembler_P,Ph,Ph) fhp = assemble_vector(lp,assembler_P,Ph) # ---- Define solvers ---- # LU = LUSolver() LUss = symbolic_setup(LU,Ahp) LUns = numerical_setup(LUss,Ahp) M = PBS.PatchBasedLinearSolver(ap,Ph,Vh,LU) Mss = symbolic_setup(M,Ah) Mns = numerical_setup(Mss,Ah) R = RichardsonSmoother(M,10,1.0/3.0) Rss = symbolic_setup(R,Ah) Rns = numerical_setup(Rss,Ah) # ---- Manual solve using LU ---- # x1_mat = pfill(0.5,partition(axes(Ah,2))) r1_mat = fh-Ah*x1_mat consistent!(r1_mat) |> fetch r1 = pfill(0.0,partition(Vh.gids)) x1 = pfill(0.0,partition(Vh.gids)) rp = pfill(0.0,partition(Ph.gids)) xp = pfill(0.0,partition(Ph.gids)) rp_mat = pfill(0.0,partition(axes(Ahp,2))) xp_mat = pfill(0.0,partition(axes(Ahp,2))) copy!(r1,r1_mat) consistent!(r1) |> fetch PBS.prolongate!(rp,Ph,r1) copy!(rp_mat,rp) solve!(xp_mat,LUns,rp_mat) copy!(xp,xp_mat) w, w_sums = PBS.compute_weight_operators(Ph,Vh); PBS.inject!(x1,Ph,xp,w,w_sums) copy!(x1_mat,x1) # ---- Same using the PatchBasedSmoother ---- # x2_mat = pfill(0.5,partition(axes(Ah,2))) r2_mat = fh-Ah*x2_mat consistent!(r2_mat) |> fetch solve!(x2_mat,Mns,r2_mat) # ---- Smoother inside Richardson x3_mat = pfill(0.5,partition(axes(Ah,2))) r3_mat = fh-Ah*x3_mat consistent!(r3_mat) |> fetch solve!(x3_mat,Rns,r3_mat) consistent!(x3_mat) |> fetch end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
1780
using LinearAlgebra using Test using PartitionedArrays using Gridap using Gridap.Arrays using Gridap.Helpers using Gridap.Geometry using Gridap.ReferenceFEs using Gridap.FESpaces using GridapDistributed using FillArrays using GridapSolvers import GridapSolvers.PatchBasedSmoothers as PBS num_ranks = (1,2) parts = with_debug() do distribute distribute(LinearIndices((prod(num_ranks),))) end domain = (0,1,0,1) mesh_partition = (2,4) model = CartesianDiscreteModel(domain,mesh_partition) #order = 1; reffe = ReferenceFE(lagrangian,Float64,order;space=:P); conformity = L2Conformity(); order = 1; reffe = ReferenceFE(lagrangian,Float64,order); conformity = H1Conformity(); #order = 0; reffe = ReferenceFE(raviart_thomas,Float64,order); conformity = HDivConformity(); Vh = TestFESpace(model,reffe,conformity=conformity) PD = PBS.PatchDecomposition(model) Ph = PBS.PatchFESpace(Vh,PD,reffe;conformity) # ---- Assemble systems ---- # Ω = Triangulation(model) dΩ = Measure(Ω,2*order+1) Λ = Skeleton(model) dΛ = Measure(Λ,3) Γ = Boundary(model) dΓ = Measure(Γ,3) aΩ(u,v) = ∫(v⋅u)*dΩ aΛ(u,v) = ∫(jump(v)⋅jump(u))*dΛ aΓ(u,v) = ∫(v⋅u)*dΓ a(u,v) = aΩ(u,v) + aΛ(u,v) + aΓ(u,v) l(v) = ∫(1*v)*dΩ assembler = SparseMatrixAssembler(Vh,Vh) Ah = assemble_matrix(a,assembler,Vh,Vh) fh = assemble_vector(l,assembler,Vh) sol_h = solve(LUSolver(),Ah,fh) Ωₚ = Triangulation(PD) dΩₚ = Measure(Ωₚ,2*order+1) Λₚ = SkeletonTriangulation(PD) dΛₚ = Measure(Λₚ,3) Γₚ = BoundaryTriangulation(PD) dΓₚ = Measure(Γₚ,3) aΩp(u,v) = ∫(v⋅u)*dΩₚ aΛp(u,v) = ∫(jump(v)⋅jump(u))*dΛₚ aΓp(u,v) = ∫(v⋅u)*dΓₚ ap(u,v) = aΩp(u,v) + aΛp(u,v) + aΓp(u,v) lp(v) = ∫(1*v)*dΩₚ assembler_P = SparseMatrixAssembler(Ph,Ph) Ahp = assemble_matrix(ap,assembler_P,Ph,Ph) fhp = assemble_vector(lp,assembler_P,Ph)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
795
using Gridap using GridapDistributed using PartitionedArrays using GridapSolvers using GridapSolvers.MultilevelTools, GridapSolvers.PatchBasedSmoothers np = 2 parts = with_mpi() do distribute distribute(LinearIndices((prod(np),))) end mh1 = CartesianModelHierarchy(parts,[np,np],(0,1,0,1),(2,2)) model1 = get_model(mh1,1) glue1 = mh1[1].ref_glue mh2 = CartesianModelHierarchy(parts,[np,1],(0,1,0,1),(2,2)) model2 = get_model_before_redist(mh2,1) glue2 = mh2[1].ref_glue gids1 = get_face_gids(model1,0) mask1 = PatchBasedSmoothers.get_coarse_node_mask(model1,glue1) display(local_to_global(gids1)) display(mask1) if i_am_main(parts) gids2 = get_face_gids(model2,0) mask2 = PatchBasedSmoothers.get_coarse_node_mask(model2,glue2) display(local_to_global(gids2)) display(mask2) end
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
code
4561
using Gridap using Gridap.CellData, Gridap.Geometry, Gridap.FESpaces, Gridap.Arrays, Gridap.Algebra using GridapSolvers using GridapSolvers.LinearSolvers using GridapSolvers.MultilevelTools using GridapSolvers.PatchBasedSmoothers using LinearAlgebra get_edge_measures(Ω::Triangulation,dΩ) = sqrt∘CellField(get_array(∫(1)dΩ),Ω) function weakform_dg(u,v,Ω,Γ,Λ,qorder) dΩ = Measure(Ω, qorder) dΓ = Measure(Γ, qorder) dΛ = Measure(Λ, qorder) n_Γ = get_normal_vector(Γ) n_Λ = get_normal_vector(Λ) h_e_Λ = get_edge_measures(Λ,dΛ) h_e_Γ = get_edge_measures(Γ,dΓ) ω = 1000.0 c = ∫(∇(u)⋅∇(v))*dΩ + ∫(-jump(u⋅n_Λ)⋅mean(∇(v)) - mean(∇(u))⋅jump(v⋅n_Λ) + ω/h_e_Λ*jump(u⋅n_Λ)⋅jump(v⋅n_Λ))*dΛ + ∫(-(∇(u)⋅n_Γ)⋅v - u⋅(∇(v)⋅n_Γ) + ω/h_e_Γ*(u⋅n_Γ)⋅(v⋅n_Γ))*dΓ return c end function weakform_dg_patch(u,v,Ω,Γ_phys,Γ_patch,Λ,qorder) dΩ = Measure(Ω, qorder) dΓ_phys = Measure(Γ_phys, qorder) dΓ_patch = Measure(Γ_patch, qorder) dΛ = Measure(Λ, qorder) n_Γ_phys = get_normal_vector(Γ_phys) n_Γ_patch = get_normal_vector(Γ_patch) n_Λ = get_normal_vector(Λ) h_e_Λ = get_edge_measures(Λ,dΛ) h_e_Γ_phys = get_edge_measures(Γ_phys,dΓ_phys) h_e_Γ_patch = get_edge_measures(Γ_patch,dΓ_patch) ω = 1000.0 c = ∫(∇(u)⋅∇(v))*dΩ + ∫(-jump(u⋅n_Λ)⋅mean(∇(v)) - mean(∇(u))⋅jump(v⋅n_Λ) + ω/h_e_Λ*jump(u⋅n_Λ)⋅jump(v⋅n_Λ))*dΛ + ∫(-(∇(u)⋅n_Γ_phys)⋅v - u⋅(∇(v)⋅n_Γ_phys) + ω/h_e_Γ_phys*(u⋅n_Γ_phys)⋅(v⋅n_Γ_phys))*dΓ_phys + ∫(-(∇(u)⋅n_Γ_patch)⋅v - u⋅(∇(v)⋅n_Γ_patch) + ω/h_e_Γ_patch*(u⋅n_Γ_patch)⋅(v⋅n_Γ_patch))*dΓ_patch return c end function weakform(u,v,Ω,qorder) dΩ = Measure(Ω, qorder) c = ∫(∇(u)⋅∇(v))*dΩ return c end btags = ["boundary"] model = CartesianDiscreteModel((0,1,0,1),(8,8)) PD = PatchDecomposition(model;boundary_tag_names=btags) Ω = Triangulation(model) Γ = BoundaryTriangulation(model) Λ = SkeletonTriangulation(model) Ωp = Triangulation(PD) Γp = BoundaryTriangulation(PD) Λp = SkeletonTriangulation(PD) Γp_patch = BoundaryTriangulation(PD;reverse=true) order = 2 qdegree = 2*(order+1) dΩ = Measure(Ω, qdegree) dΓ = Measure(Γ, qdegree) dΛ = Measure(Λ, qdegree) u_sol(x) = x[1]*(1-x[1])*x[2]*(1-x[2]) f(x) = Δ(u_sol)(x) g = VectorValue(1.0,1.0) # Continuous problem reffe_h1 = ReferenceFE(lagrangian,Float64,order) V_h1 = FESpace(model,reffe_h1;dirichlet_tags=btags) P_h1 = PatchFESpace(V_h1,PD,reffe_h1) a_h1(u,v) = weakform(u,v,Ω,qdegree) l_h1(v) = ∫(f⋅v)*dΩ op_h1 = AffineFEOperator(a_h1,l_h1,V_h1,V_h1) A_h1, b_h1 = get_matrix(op_h1), get_vector(op_h1) S_h1 = RichardsonSmoother(PatchBasedLinearSolver((u,v)->weakform(u,v,Ωp,qdegree),P_h1,V_h1),10,0.2) solver_h1 = CGSolver(S_h1,verbose=true) ns_h1 = numerical_setup(symbolic_setup(solver_h1,A_h1),A_h1) x_h1 = allocate_in_domain(A_h1); fill!(x_h1,0.0) solve!(x_h1,ns_h1,b_h1) uh_h1 = FEFunction(V_h1,x_h1) # Discontinuous problem reffe_l2 = ReferenceFE(lagrangian,Float64,order) V_l2 = FESpace(model,reffe_l2;conformity=:L2,dirichlet_tags="boundary") P_l2 = PatchFESpace(V_l2,PD,reffe_l2;conformity=:L2) ω = 1000.0 h_e_Γ = get_edge_measures(Γ,dΓ) n_Γ = get_normal_vector(Γ) a_l2(u,v) = weakform_dg(u,v,Ω,Γ,Λ,qdegree) l_l2(v) = ∫(f⋅v)*dΩ + ∫(-(∇(v)⋅n_Γ)*u_sol + (ω/h_e_Γ)*v*u_sol)*dΓ op_l2 = AffineFEOperator(a_l2,l_l2,V_l2,V_l2) A_l2, b_l2 = get_matrix(op_l2), get_vector(op_l2) S_l2 = RichardsonSmoother(PatchBasedLinearSolver((u,v)->weakform_dg_patch(u,v,Ωp,Γp,Γp_patch,Λp,qdegree),P_l2,V_l2),10,0.2) solver_l2 = CGSolver(S_l2,verbose=true) ns_l2 = numerical_setup(symbolic_setup(solver_l2,A_l2),A_l2) x_l2 = allocate_in_domain(A_l2); fill!(x_l2,0.0) solve!(x_l2,ns_l2,b_l2) S_l2_ns = numerical_setup(symbolic_setup(S_l2,A_l2),A_l2) solve!(x_l2,S_l2_ns,b_l2) x_l2 x_l2 = A_l2\b_l2 uh_l2 = FEFunction(V_l2,x_l2) eh = uh_h1 - uh_l2 sum(∫(eh⋅eh)*dΩ) ############################################################################################ ### VECTOR POISSON PROBLEM reffe_hdiv = ReferenceFE(raviart_thomas,Float64,order-1) V_hdiv = FESpace(model,reffe_hdiv;dirichlet_tags="boundary") P_hdiv = PatchFESpace(V_hdiv,PD,reffe_hdiv) a_hdiv(u,v) = weakform_dg(u,v,Ω,Γ,Λ,qdegree) l_hdiv(v) = ∫(f⋅v)*dΩ op = AffineFEOperator(a_hdiv,l_hdiv,V_hdiv,V_hdiv) A_hdiv, b_hdiv = get_matrix(op), get_vector(op) S_hdiv = RichardsonSmoother(PatchBasedLinearSolver((u,v)->weakform_dg(u,v,Ωp,Γp,Λp,qdegree),P_hdiv,V_hdiv),10,0.2) solver_hdiv = CGSolver(S_hdiv,verbose=true) ns_hdiv = numerical_setup(symbolic_setup(solver_hdiv,A_hdiv),A_hdiv) x_hdiv = allocate_in_domain(A_hdiv); fill!(x,0.0) solve!(x_hdiv,ns_hdiv,b_hdiv)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
docs
2973
# GridapSolvers [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://gridap.github.io/GridapSolvers.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://gridap.github.io/GridapSolvers.jl/dev/) [![Build Status](https://github.com/gridap/GridapSolvers.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/gridap/GridapSolvers.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/gridap/GridapSolvers.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/gridap/GridapSolvers.jl) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.13327414.svg)](https://zenodo.org/records/13327414) GridapSolvers provides algebraic and non-algebraic solvers for the Gridap ecosystem, designed with High Performance Computing (HPC) in mind. Solvers follow a modular design, where most blocks can be combined to produce PDE-taylored solvers for a wide range of problems. ## (Non-exhaustive) list of features - **Krylov solvers**: We provide a (short) list of Krylov solvers, with full preconditioner support and HPC-first implementation. - **Block preconditioners**: We provide full support for block assembly of multiphysics problems, and a generic API for building block-based preconditioners for block-assembled systems. - **Multilevel support**: We provide a generic API for building multilevel preconditioners. - **Geometric Multigrid**: We provide a full-fledged geometric multigrid solver. Highly scalable adaptivity and redistribution of meshes, provided by `p4est` through `GridapP4est.jl`. - **PETSc interface**: Full access to PETSc algebraic solvers, through `GridapPETSc.jl`, with full interoperability with the rest of the aforementioned solvers. ## Installation GridapSolvers is a registered package in the official [Julia package registry](https://github.com/JuliaRegistries/General). Thus, the installation of GridapSolvers is straight forward using the [Julia's package manager](https://julialang.github.io/Pkg.jl/v1/). Open the Julia REPL, type `]` to enter package mode, and install as follows ```julia pkg> add GridapSolvers pkg> build ``` Building is required to link the external artifacts (e.g., PETSc, p4est) to the Julia environment. Restarting Julia is required after building in order to make the changes take effect. ### Using custom binaries The previous installations steps will setup GridapSolvers to work using Julia's pre-compiled artifacts for MPI, PETSc and p4est. However, you can also link local copies of these libraries. This might be very desirable in clusters, where hardware-specific libraries might be faster/more stable than the ones provided by Julia. To do so, follow the next steps: - [MPI.jl](https://juliaparallel.org/MPI.jl/stable/configuration/) - [GridapPETSc.jl](https://github.com/gridap/GridapPETSc.jl) - [GridapP4est.jl](https://github.com/gridap/GridapP4est.jl), and [P4est_wrapper.jl](https://github.com/gridap/p4est_wrapper.jl)
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
docs
2076
```@meta CurrentModule = GridapSolvers.BlockSolvers ``` # GridapSolvers.BlockSolvers Many scalable preconditioners for multiphysics problems are based on (possibly partial) block factorizations. This module provides a simple interface to define and use block solvers for block-assembled systems. ## Block types In a same preconditioner, blocks can come from different sources. For example, in a Schur-complement-based preconditioner you might want to solve the eliminated block (which comes from the original matrix), while having an approximation for your Schur complement (which can come from a matrix assembled in your driver, or from a weakform). For this reason, we define the following abstract interface: ```@docs SolverBlock LinearSolverBlock NonlinearSolverBlock ``` On top of this interface, we provide some useful block implementations: ```@docs LinearSystemBlock NonlinearSystemBlock MatrixBlock BiformBlock TriformBlock ``` To create a new type of block, one needs to implement the following implementation (similar to the one for `LinearSolver`): ```@docs block_symbolic_setup block_numerical_setup block_numerical_setup! block_offdiagonal_setup block_offdiagonal_setup! ``` ## Block solvers We can combine blocks to define a block solver. All block solvers take an array of blocks and a vector of solvers for the diagonal blocks (which need to be solved for). We provide two common types of block solvers: ### BlockDiagonalSolvers ```@docs BlockDiagonalSolver BlockDiagonalSolver(blocks::AbstractVector{<:SolverBlock},solvers::AbstractVector{<:LinearSolver}) BlockDiagonalSolver(solvers::AbstractVector{<:LinearSolver}) BlockDiagonalSolver(funcs::AbstractArray{<:Function},trials::AbstractArray{<:FESpace},tests::AbstractArray{<:FESpace},solvers::AbstractArray{<:LinearSolver}) ``` ### BlockTriangularSolvers ```@docs BlockTriangularSolver BlockTriangularSolver(blocks::AbstractMatrix{<:SolverBlock},solvers ::AbstractVector{<:LinearSolver},) BlockTriangularSolver(solvers::AbstractVector{<:LinearSolver}) ```
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
docs
1512
```@meta CurrentModule = GridapSolvers.LinearSolvers ``` # GridapSolvers.LinearSolvers ## Krylov solvers ```@docs CGSolver MINRESSolver GMRESSolver FGMRESSolver krylov_mul! krylov_residual! ``` ## Smoothers Given a linear system ``Ax = b``, a **smoother** is an operator `S` that takes an iterative solution ``x_k`` and its residual ``r_k = b - A x_k``, and modifies them **in place** ```math S : (x_k,r_k) \rightarrow (x_{k+1},r_{k+1}) ``` such that ``|r_{k+1}| < |r_k|``. ```@docs RichardsonSmoother RichardsonSmoother(M::LinearSolver) ``` ## Preconditioners Given a linear system ``Ax = b``, a **preconditioner** is an operator that takes an iterative residual ``r_k`` and returns a correction ``dx_k``. ```@docs JacobiLinearSolver GMGLinearSolverFromMatrices GMGLinearSolverFromWeakform GMGLinearSolver ``` ## Wrappers ### PETSc Building on top of [GridapPETSc.jl](https://github.com/gridap/GridapPETSc.jl), GridapSolvers provides specific solvers for some particularly complex PDEs: ```@docs ElasticitySolver ElasticitySolver(::FESpace) CachedPETScNS CachedPETScNS(::GridapPETSc.PETScLinearSolverNS,::AbstractVector,::AbstractVector) get_dof_coordinates ``` ### IterativeSolvers.jl GridapSolvers provides wrappers for some iterative solvers from the package [IterativeSolvers.jl](https://iterativesolvers.julialinearalgebra.org/dev/): ```@docs IterativeLinearSolver IS_ConjugateGradientSolver IS_GMRESSolver IS_MINRESSolver IS_SSORSolver ```
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
docs
1053
```@meta CurrentModule = GridapSolvers.MultilevelTools ``` # GridapSolvers.MultilevelTools ## Nested subpartitions One of the main difficulties of multilevel algorithms is dealing with the complexity of having multiple subcommunicators. We provide some tools to deal with it. In particular we introduce `HierarchicalArray`s. ```@docs generate_level_parts HierarchicalArray Base.map with_level ``` ## ModelHierarchies and FESpaceHierarchies This objects are the multilevel counterparts of Gridap's `DiscreteModel` and `FESpace`. ```@docs ModelHierarchy ModelHierarchyLevel CartesianModelHierarchy P4estCartesianModelHierarchy FESpaceHierarchy ``` ## Grid transfer operators To move information between different levels, we will require grid transfer operators. Although any custom-made operator can be used, we provide some options. ```@docs DistributedGridTransferOperator RestrictionOperator ProlongationOperator MultiFieldTransferOperator ``` ## Local projection maps ```@docs LocalProjectionMap ReffeProjectionMap SpaceProjectionMap ```
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
docs
143
```@meta CurrentModule = GridapSolvers.NonlinearSolvers ``` # GridapSolvers.NonlinearSolvers ```@autodocs Modules = [NonlinearSolvers,] ```
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
docs
152
```@meta CurrentModule = GridapSolvers.PatchBasedSmoothers ``` # GridapSolvers.PatchBasedSmoothers ```@autodocs Modules = [PatchBasedSmoothers,] ```
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
docs
388
```@meta CurrentModule = GridapSolvers.SolverInterfaces ``` # GridapSolvers.SolverInterfaces ## SolverTolerances ```@docs SolverTolerances SolverConvergenceFlag get_solver_tolerances set_solver_tolerances! finished converged finished_flag ``` ## ConvergenceLogs ```@docs ConvergenceLog SolverVerboseLevel reset! init! update! finalize! print_message ```
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.4.1
2b09db401471a212fb06a9c2577f4a0be77039c2
docs
588
```@meta CurrentModule = GridapSolvers ``` # GridapSolvers Documentation for [GridapSolvers](https://github.com/gridap/GridapSolvers.jl). GridapSolvers provides algebraic and non-algebraic solvers for the Gridap ecosystem, designed with High Performance Computing (HPC) in mind. Solvers follow a modular design, where most blocks can be combined to produce PDE-taylored solvers for a wide range of problems. ```@contents Pages = [ "SolverInterfaces.md", "MultilevelTools.md", "LinearSolvers.md", "NonlinearSolvers.md", "BlockSolvers.md", "PatchBasedSmoothers.md" ] ```
GridapSolvers
https://github.com/gridap/GridapSolvers.jl.git
[ "MIT" ]
0.7.1
f01fb2f34675f9839d55ba7238bab63ebd2e531e
code
70
@static if Sys.isapple() using Homebrew Homebrew.update() end
Homebrew
https://github.com/JuliaPackaging/Homebrew.jl.git
[ "MIT" ]
0.7.1
f01fb2f34675f9839d55ba7238bab63ebd2e531e
code
22194
# This file contains the API that users interact with. Everything in here should # depend only on `brew()` calls. """ `brew(cmd::Cmd; no_stderr=false, no_stdout=false, verbose=false, force=false, quiet=false)` Run command `cmd` using the configured brew binary, optionally suppressing stdout and stderr, and providing flags such as `--verbose` to the brew binary. """ function brew(cmd::Cmd; no_stderr=false, no_stdout=false, verbose::Bool=false, force::Bool=false, quiet::Bool=false) cmd = add_flags(`$brew_exe $cmd`, Dict(`--verbose` => verbose, `--force` => force, `--quiet` => quiet)) if no_stderr cmd = pipeline(cmd, stderr=devnull) end if no_stdout cmd = pipeline(cmd, stdout=devnull) end return run(cmd) end """ `brewchomp(cmd::Cmd; no_stderr=false, no_stdout=false, verbose=false, force=false, quiet=false))` Run command `cmd` using the configured brew binary, optionally suppressing stdout and stderr, and providing flags such as `--verbose` to the brew binary. This function uses `readchomp()`, as opposed to `brew()` which uses `run()` """ function brewchomp(cmd::Cmd; no_stderr=false, no_stdout=false, verbose::Bool=false, force::Bool=false, quiet::Bool=false) cmd = add_flags(`$brew_exe $cmd`, Dict(`--verbose` => verbose, `--force` => force, `--quiet` => quiet)) if no_stderr cmd = pipeline(cmd, stderr=devnull) end if no_stdout cmd = pipeline(cmd, stdout=devnull) end return readchomp(cmd) end """ `update(;verbose::Bool=false)` Runs `brew update` to update Homebrew itself and all taps. Then runs `upgrade()` to upgrade all formulae that have fallen out of date. """ function update(;verbose::Bool=false) # Just run `brew update` brew(`update`; force=true, verbose=verbose) # Ensure we're on the right tag update_tag(;verbose=verbose) # Finally, upgrade outdated packages. upgrade(;verbose=verbose) end """ `prefix()` Returns `brew_prefix`, the location where all Homebrew files are stored. """ function prefix() return brew_prefix end """ `prefix(pkg::Union{AbstractString,BrewPkg})` Returns the prefix for a particular package's latest installed version. """ function prefix(pkg::StringOrPkg) end function prefix(name::AbstractString) path, tap_path = formula_tap(name) return joinpath(brew_prefix, "Cellar", path, info(name).version) end function prefix(pkg::BrewPkg) prefix(pkg.name) end """ `list()` Returns a list of all installed packages as a `Vector{BrewPkg}` """ function list() # Get list of fully-qualified installed packages names = brewchomp(`list --full-name`) # If we've got something, then return info on all those names if !isempty(names) return info(split(names,"\n")) end return BrewPkg[] end """ `outdated()` Returns a list of all installed packages that are out of date as a `Vector{BrewPkg}` """ function outdated() json_str = brewchomp(`outdated --json=v1`) if isempty(json_str) return BrewPkg[] end brew_outdated = JSON.parse(json_str) outdated_pkgs = BrewPkg[info(pkg["name"]) for pkg in brew_outdated] return outdated_pkgs end """ `refresh!(;verbose=false)` Forcibly remove all packages and add them again. This should only be used to fix a broken installation, normal operation should never need to use this. """ function refresh!(;verbose=false) pkg_list = list() for pkg in pkg_list rm(pkg,verbose=verbose) end for pkg in pkg_list add(pkg,verbose=verbose) end end """ `upgrade(;verbose::Bool=false)` Iterate over all packages returned from `outdated()`, removing the old version and adding a new one. Note that we do not simply call `brew upgrade` here, as we have special logic inside of `add()` to install from our tap before trying to install from mainline Homebrew. """ function upgrade(;verbose::Bool=false) # We have to manually upgrade each package, as `brew upgrade` will pull from mxcl/master for pkg in outdated() rm(pkg; verbose=verbose) add(pkg; verbose=verbose) end end const json_cache = Dict{String,Dict{AbstractString,Any}}() """ `json(names::Vector{AbstractString})` For each package name in `names`, return the full JSON object for `name`, the result of `brew info --json=v1 \$name`, stored in a dictionary keyed by the names passed into this function. If `brew info` fails, throws an error. If `brew info` returns an empty object "[]", that object is represented by an empty dictionary. Note that running `brew info --json=v1` is somewhat expensive, so we cache the results in a global dictionary, and batching larger requests with this function similarly increases performance. """ function json(names::Vector{T}) where {T <: AbstractString} # This is the dictionary of responses we'll return objs = Dict{String,Dict{AbstractString,Any}}() # Build list of names we have to ask for, eschewing asking for caching when we can ask_names = String[] for name in names if haskey(json_cache, name) objs[name] = json_cache[name] else push!(ask_names, name) end end # Now ask for all these names if we have any if !isempty(ask_names) # Tap the necessary tap for each name we're asking about, if there is one for name in ask_names path, tap_path = formula_tap(name) if !isempty(tap_path) tap(tap_path) end end try jdata = JSON.parse(brewchomp(Cmd(String["info", "--json=v1", ask_names...]))) for idx in 1:length(jdata) json_cache[ask_names[idx]] = jdata[idx] objs[ask_names[idx]] = jdata[idx] end catch throw(ArgumentError("`brew info` failed for $(ask_names)!")) end end # Return these hard-won objects return objs end """ `json(pkg::Union{AbstractString,BrewPkg})` Return the full JSON object for `pkg`, the result of `brew info --json=v1 \$pkg`. If `brew info` fails, throws an error. If `brew info` returns an empty object, (e.g. "[]"), this returns an empty Dict. Note that running `brew info --json=v1` is somewhat expensive, so we cache the results in a global dictionary, and batching larger requests with the vectorized `json()` function similarly increases performance. """ function json(pkg::StringOrPkg) end function json(name::AbstractString) return json([name])[name] end function json(pkg::BrewPkg) return json([fullname(pkg)])[fullname(pkg)] end """ `info(names::Vector{String})` For each name in `names`, returns information about that particular package name as a BrewPkg. This is our batched `String` -> `BrewPkg` converter. """ function info(names::Vector{T}) where {T <: AbstractString} # Get the JSON representations of all of these packages objs = json(names) infos = BrewPkg[] for name in names obj = objs[name] # First, get name and version obj_name = obj["name"] version = obj["versions"]["stable"] # Manually append the revision to the end of the version, as brew is wont to do if obj["revision"] > 0 version *= "_$(obj["revision"])" end tap = dirname(obj["full_name"]) if isempty(tap) tap = "Homebrew/core" end # Push that BrewPkg onto our infos object push!(infos, BrewPkg(obj_name, tap, version)) end # Return the list of infos return infos end """ `info(name::AbstractString)` Returns information about a particular package name as a BrewPkg. This is our basic `String` -> `BrewPkg` converter. """ function info(name::AbstractString) return info([name])[1] end """ `direct_deps(pkg::Union{AbstractString,BrewPkg}; build_deps::Bool=false)` Return a list of all direct dependencies of `pkg` as a `Vector{BrewPkg}` If `build_deps` is `true` include formula depependencies marked as `:build`. """ function direct_deps(pkg::StringOrPkg; build_deps::Bool=false) end function direct_deps(name::AbstractString; build_deps::Bool=false) obj = json(name) # Iterate over all dependencies, removing optional and build dependencies dependencies = String[dep for dep in obj["dependencies"]] dependencies = filter(x -> !(x in obj["optional_dependencies"]), dependencies) if !build_deps dependencies = filter(x -> !(x in obj["build_dependencies"]), dependencies) end return info(dependencies) end function direct_deps(pkg::BrewPkg; build_deps::Bool=false) return direct_deps(fullname(pkg); build_deps=build_deps) end """ `deps_tree(pkg::Union{AbstractString,BrewPkg}; build_deps::Bool=false)` Return a dictionary mapping every dependency (both direct and indirect) of `pkg` to a `Vector{BrewPkg}` of all of its dependencies. Used in `deps_sorted()`. If `build_deps` is `true` include formula depependencies marked as `:build`. """ function deps_tree(pkg::StringOrPkg; build_deps::Bool=false) end function deps_tree(name::AbstractString; build_deps::Bool=false) # First, get all the knowledge we need about dependencies deptree = Dict{String,Vector{BrewPkg}}() pending_deps = direct_deps(name; build_deps=build_deps) completed_deps = Set(String[]) while !isempty(pending_deps) # Temporarily move pending_deps over to curr_pending_deps curr_pending_deps = pending_deps pending_deps = BrewPkg[] # Iterate over these currently pending deps, adding new ones to pending_deps for pkg in curr_pending_deps deptree[fullname(pkg)] = direct_deps(pkg; build_deps=build_deps) push!(completed_deps, fullname(pkg)) for dpkg in deptree[fullname(pkg)] if !(fullname(dpkg) in completed_deps) push!(pending_deps, dpkg) end end end end return deptree end function deps_tree(pkg::BrewPkg; build_deps::Bool=false) return deps_tree(fullname(pkg); build_deps=build_deps) end """ `insert_after_dependencies(tree::Dict, sorted_deps::Vector{BrewPkg}, name::AbstractString)` Given a mapping from names to dependencies in `tree`, and a list of sorted dependencies in `sorted_deps`, insert a new dependency `name` into `sorted_deps` after all dependencies of `name`. If a dependency of `name` is not already in `sorted_deps`, then recursively add that dependency as well. """ function insert_after_dependencies(tree::Dict, sorted_deps::Vector{BrewPkg}, name::AbstractString) # First off, are we already in sorted_deps? If so, back out! self_idx = findfirst(x -> (fullname(x) == name), sorted_deps) if self_idx != nothing return self_idx end # This is the index at which we will insert ourselves insert_idx = 1 # Iterate over all dependencies for dpkg in tree[name] # Is this dependency already in the sorted_deps? idx = findfirst(x -> (fullname(x) == fullname(dpkg)), sorted_deps) # If the dependency is not already in this list, then recurse into it! if self_idx == nothing idx = insert_after_dependencies(tree, sorted_deps, fullname(dpkg)) end # Otherwise, update insert_idx insert_idx = max(insert_idx, idx + 1) end # Finally, insert ourselves insert!(sorted_deps, insert_idx, info(name)) return insert_idx end """ `deps_sorted(pkg::Union{AbstractString,BrewPkg}; build_deps::Bool)` Return a sorted `Vector{BrewPkg}` of all dependencies (direct and indirect) such that each entry in the list appears after all of its own dependencies. If `build_deps` is `true` include formula depependencies marked as `:build`. """ function deps_sorted(pkg::StringOrPkg; build_deps::Bool=false) end function deps_sorted(name::AbstractString; build_deps::Bool=false) tree = deps_tree(name; build_deps=build_deps) sorted_deps = BrewPkg[] # For each package in the tree, insert it only after all of its dependencies # Just for aesthetic purposes, sort the keys by the number of dependencies # they have first, so that packages with few deps end up on top for name in sort(collect(keys(tree)), by=k-> length(tree[k])) insert_after_dependencies(tree, sorted_deps, name) end return sorted_deps end function deps_sorted(pkg::BrewPkg; build_deps::Bool=false) return deps_sorted(fullname(pkg); build_deps=build_deps) end """ `add(pkg::Union{AbstractString,BrewPkg}; verbose::Bool=false, keep_translations::Bool=false)` Install package `pkg` and all dependencies, using bottles only, unlinking any previous versions if necessary, and linking the new ones in place. Will attempt to install non-relocatable bottles from `Homebrew/core` by translating formulae and forcing `cellar :any` into the formulae. Automatically deletes all translated formulae before adding formulae and after, unless `keep_translations` is set to `true`. """ function add(pkg::StringOrPkg; verbose::Bool=false, keep_translations::Bool=false) end function add(name::AbstractString; verbose::Bool=false, keep_translations::Bool=false) # We do this so that things are as unambiguous and fresh as possible. # It's not a bad situation because translation is very fast. if !keep_translations delete_all_translated_formulae() end # Begin by translating all dependencies of `name`, including :build deps. # We need to translate :build deps so that we don't run into the diamond of death sorted_deps = AbstractString[] build_deps_only = AbstractString[] runtime_deps = [x.name for x in deps_sorted(name)] if verbose println("runtime_deps: $runtime_deps") end for dep in deps_sorted(name; build_deps=true) translated_dep = translate_formula(dep; verbose=verbose) # Collect the translated runtime_deps into sorted_deps if dep.name in runtime_deps push!(sorted_deps, translated_dep) else push!(build_deps_only, translated_dep) end end if verbose println("sorted_deps: $sorted_deps") println("build_deps only: $build_deps_only") end # Translate the actual formula we're interested in name = translate_formula(name; verbose=verbose) # Push `name` onto the end of `sorted_deps` so we have one list of things to install push!(sorted_deps, name) # Ensure that we are able to install relocatable bottles for every package non_relocatable = filter(x -> !has_relocatable_bottle(x), sorted_deps) if !isempty(non_relocatable) @warn(""" The following packages do not have relocatable bottles, installation may fail! Please report these packages to https://github.com/JuliaLang/Homebrew.jl: $(join(non_relocatable, "\n "))""") end # Get list of outdated packages and remove them all for dep in filter(pkg -> pkg.name in sorted_deps, Homebrew.outdated()) unlink(dep; verbose=verbose) end # Install this package and all dependencies, in dependency order for dep in sorted_deps install_and_link(dep; verbose=verbose) end # Cleanup translated formula once we're done, unless asked not to if !keep_translations delete_all_translated_formulae() end end function add(pkg::BrewPkg; verbose::Bool=false, keep_translations::Bool=false) add(fullname(pkg); verbose=verbose, keep_translations=keep_translations) end """ `install_and_link(pkg::Union{AbstractString,BrewPkg}; verbose=false)` Installs, and links package `pkg`. Used by `add()`. Don't call manually unless you really know what you're doing, as this doesn't deal with dependencies, and so can trigger compilation when you don't want it to. """ function install_and_link(pkg::StringOrPkg; verbose::Bool=false) end function install_and_link(name::AbstractString; verbose::Bool=false) # If we're already linked, don't sweat it. if linked(name) return end # Install dependency and link it brew(`install --ignore-dependencies $name`; verbose=verbose) link(name; verbose=verbose) end function install_and_link(pkg::BrewPkg; verbose::Bool=false) return install_and_link(fullname(pkg); verbose=verbose) end """ `postinstall(pkg::Union{AbstractString,BrewPkg}; verbose=false)` Runs `brew postinstall` against package `pkg`, useful for debugging complicated formulae when a bottle doesn't install right and you want to re-run postinstall. """ function postinstall(pkg::StringOrPkg; verbose::Bool=false) end function postinstall(name::AbstractString; verbose::Bool=false) brew(`postinstall $name`, verbose=verbose) end function postinstall(pkg::BrewPkg; verbose::Bool=false) postinstall(fullname(pkg), verbose=verbose) end """ `link(pkg::Union{AbstractString,BrewPkg}; verbose=false, force=true)` Link package `name` into the global namespace, uses `--force` if `force == true` """ function link(name::StringOrPkg; verbose::Bool=false, force::Bool=true) end function link(name::AbstractString; verbose::Bool=false, force::Bool=true) brew(`link $name`, no_stdout=true, verbose=verbose, force=force) end function link(pkg::BrewPkg; verbose::Bool=false, force::Bool=true) return link(fullname(pkg); force=force, verbose=verbose) end """ `unlink(pkg::Union{AbstractString,BrewPkg}; verbose::Bool=false, quiet::Bool=true)` Unlink package `pkg` from the global namespace, uses `--quiet` if `quiet == true` """ function unlink(name::StringOrPkg; verbose::Bool=false, quiet::Bool=true) end function unlink(name::AbstractString; verbose::Bool=false, quiet::Bool=true) brew(`unlink $name`; verbose=verbose, quiet=quiet) end function unlink(pkg::BrewPkg; verbose::Bool=false, quiet::Bool=true) return unlink(fullname(pkg); verbose=verbose, quiet=quiet) end """ `rm(pkg::Union{AbstractString,BrewPkg}; verbose::Bool=false, force::Bool=true)` Remove package `pkg`, use `--force` if `force` == `true` """ function rm(pkg::StringOrPkg; verbose::Bool=false, force::Bool=false) end function rm(pkg::AbstractString; verbose::Bool=false, force::Bool=true) brew(`rm --ignore-dependencies $pkg`; verbose=verbose, force=force) end function rm(pkg::BrewPkg; verbose::Bool=false, force::Bool=true) return rm(fullname(pkg); verbose=verbose, force=force) end """ `rm(pkgs::Vector{String or BrewPkg}; verbose::Bool=false, force::Bool=true)` Remove packages `pkgs`, use `--force` if `force` == `true` """ function rm(pkgs::Vector{T}; verbose::Bool=false, force::Bool=false) where {T <: StringOrPkg} for pkg in pkgs try rm(pkg; verbose=verbose, force=force) catch end end end """ `cleanup()` Cleans up old installed versions of formulae, as well as purging all downloaded bottles """ function cleanup() brew(`cleanup -s`) end """ `tap(tap_name::AbstractString; full::Bool=true, verbose::Bool=false)` Runs `brew tap \$tap_name` if the tap does not already exist. If `full` is `true` adds the flag `--full` to clone a full tap instead of Homebrew's default shallow. If `git` is not available, manually tap it with curl and tar. This tap will be unshallowed at the next `brew update` when `git` is available. """ function tap(tap_name::AbstractString; full::Bool=true, verbose::Bool=false) if !tap_exists(tap_name) # If we have no git available, then do it oldschool style if !git_installed() user = dirname(tap_name) repo = "homebrew-$(basename(tap_name))" tarball_url = "https://github.com/$user/$repo/tarball/master" tap_path = joinpath(brew_prefix,"Library","Taps", user, repo) if verbose @info("Manually tapping $tap_name...") end try mkpath(tap_path) run(pipeline(`curl -\# -L $tarball_url`, `tar xz -m --strip 1 -C $tap_path`)) catch @warn("Could not download/extract $tarball_url into $(tap_path)!") rethrow() end else if full brew(`tap --full $tap_name`; verbose=verbose) else brew(`tap $tap_name`; verbose=verbose) end end end end const OSX_VERSION = [""] function osx_version_string() global OSX_VERSION if isempty(OSX_VERSION[1]) OSX_VERSION[1] = join(split(readchomp(`sw_vers -productVersion`), ".")[1:2],".") end return Dict( "10.4" => "tiger", "10.5" => "leopard", "10.6" => "snow_leopard", "10.7" => "lion", "10.8" => "mountain_lion", "10.9" => "mavericks", "10.10" => "yosemite", "10.11" => "el_capitan", "10.12" => "sierra", "10.13" => "high_sierra", "10.14" => "mojave" )[OSX_VERSION[1]] end """ `has_bottle(name::AbstractString)` Checks if a given formula has a bottle at all """ function has_bottle(name::AbstractString) return haskey(json(name)["bottle"], "stable") && haskey(json(name)["bottle"]["stable"]["files"], osx_version_string()) end """ `has_relocatable_bottle(name::AbstractString)` Checks to see if a given formula has a bottle that can be installed anywhere """ function has_relocatable_bottle(name::AbstractString) if !has_bottle(name) return false end return json(name)["bottle"]["stable"]["cellar"] in [":any", ":any_skip_relocation"] end function versioninfo(;verbose=false) InteractiveUtils.versioninfo(stdout; verbose=verbose) run(Cmd(`git log -1 '--pretty=format:Homebrew git revision %h; last commit %cr'`; dir=joinpath(prefix()))) run(Cmd(`git log -1 '--pretty=format:homebrew/core git revision %h; last commit %cr'`; dir=joinpath(prefix(), "Library", "Taps", "homebrew", "homebrew-core"))) run(Cmd(`git log -1 '--pretty=format:staticfloat/juliadeps revision %h; last commit %cr'`; dir=joinpath(prefix(), "Library", "Taps", "staticfloat", "homebrew-juliadeps"))) installed_pkgs = list() println("\n$(length(installed_pkgs)) total packages installed:") println(join([x.name for x in installed_pkgs], ", ")) end
Homebrew
https://github.com/JuliaPackaging/Homebrew.jl.git
[ "MIT" ]
0.7.1
f01fb2f34675f9839d55ba7238bab63ebd2e531e
code
1443
module Homebrew import Base: show using Unicode, JSON, Libdl, InteractiveUtils # Find homebrew installation prefix const brew_prefix = abspath(joinpath(dirname(@__FILE__),"..","deps", "usr")) const brew_exe = joinpath(brew_prefix,"bin","brew") # Types and show() overrides, etc.. include("types.jl") # Utilities include("util.jl") # The public API that uses Homebrew like a blackbox, only through the `brew` script include("API.jl") # The private API that peeks into the internals of Homebrew a bit include("private_API.jl") include("translation.jl") # Include our own, personal bindeps integration stuff include("bindeps_integration.jl") """ `__init__()` Initialization function. Calls `install_brew()` to ensure that everything we need is downloaded/installed, then calls `update_env()` to set the environment properly so that packages being installed can find their binaries. """ function __init__() if Sys.isapple() # Let's see if Homebrew is installed. If not, let's do that first! (isdir(brew_prefix) && isdir(tappath)) || install_brew() # Update environment variables such as PATH, DL_LOAD_PATH, etc... update_env() else # change this to an error in future @warn(""" Homebrew.jl can only be used on Apple macOS. Suggested usage is @static if Sys.isapple() using Homebrew # Homebrew specific code goes here end """) end end end # module
Homebrew
https://github.com/JuliaPackaging/Homebrew.jl.git
[ "MIT" ]
0.7.1
f01fb2f34675f9839d55ba7238bab63ebd2e531e
code
1258
# This file contains the necessary ingredients to create a PackageManager for BinDeps using BinDeps import BinDeps: PackageManager, can_use, package_available, libdir, generate_steps, LibraryDependency, provider import Base: show mutable struct HB <: PackageManager packages end show(io::IO, hb::HB) = write(io, "Homebrew Bottles ", join(isa(hb.packages, AbstractString) ? [hb.packages] : hb.packages,", ")) # Only return true on Darwin platforms can_use(::Type{HB}) = Sys.KERNEL == :Darwin function package_available(p::HB) !can_use(HB) && return false pkgs = p.packages if isa(pkgs, AbstractString) pkgs = [pkgs] end # For each package, see if we can get info about it. If not, fail out for pkg in pkgs try info(pkg) catch return false end end return true end libdir(p::HB, dep) = joinpath(brew_prefix, "lib") provider(::Type{HB}, packages::Vector{T}; opts...) where {T <: AbstractString} = HB(packages) function generate_steps(dep::LibraryDependency, p::HB, opts) pkgs = p.packages if isa(pkgs, AbstractString) pkgs = [pkgs] end ()->install(pkgs) end function install(pkgs) for pkg in pkgs add(pkg) end end
Homebrew
https://github.com/JuliaPackaging/Homebrew.jl.git
[ "MIT" ]
0.7.1
f01fb2f34675f9839d55ba7238bab63ebd2e531e
code
5426
# This file contains all functions that either do not directly interface with `brew` # or peek into the internals of Homebrew a bit, such as `install_brew()` which # installs Homebrew using Git, `tap_exists()` which presupposes knowledge of the # internal layout of Taps, and `installed()` which presupposed knowledge of the # location of files within the Cellar # This is the tap that contains our manually-curated overrides const tapname = "staticfloat/juliadeps" const tappath = joinpath(brew_prefix,"Library","Taps","staticfloat","homebrew-juliadeps") # This is the tap that will contain our automatically-translated overrides const auto_tapname = "staticfloat/juliatranslated" const auto_tappath = joinpath(brew_prefix,"Library","Taps","staticfloat","homebrew-juliatranslated") # Where we download brew from const BREW_URL = "https://github.com/Homebrew/brew" const BREW_BRANCH = "master" const BREW_STABLE_SHA = "38287e6309c02272cec18fb1655145d3519f1b2f" """ `install_brew()` Ensures that Homebrew is installed as desired, that our basic Taps are available and that we have whatever binary tools we need, such as `install_name_tool` """ function install_brew() # Ensure brew_prefix exists if !isdir(brew_prefix) || !isfile(joinpath(brew_prefix,"bin","brew")) try mkdir(brew_prefix) catch end try @info("Downloading brew...") run(pipeline(`curl -\# -L $BREW_URL/tarball/$BREW_BRANCH`, `tar xz -m --strip 1 -C $brew_prefix`)) catch @warn("Could not download/extract $BREW_URL/tarball/$BREW_BRANCH into $(brew_prefix)!") rethrow() end cd(brew_prefix) do try git(`fetch --unshallow`) catch end end end # Tap homebrew/core, always and forever tap("homebrew/core") # Tap our own "overrides" taps tap("staticfloat/juliadeps") tap("staticfloat/juliatranslated") if !clt_installed() && !installed("cctools") # If we don't have the command-line tools installed, then let's grab # cctools, as we need that to install bottles that need relocation add("cctools") end if !git_installed() && !installed("git") # If we don't have a git available, install it now add("git") end # Update the environment before running update() update_env() # Update immediately so that we get onto our "stable" tag update(verbose=true) return nothing end """ `tap_exists(tap_name::AbstractString)` Check to see if a tap called `tap_name` (ex: `"staticfloat/juliadeps"`) exists """ function tap_exists(tap_name::AbstractString) path = joinpath(brew_prefix,"Library","Taps", dirname(tap_name), "homebrew-$(basename(tap_name))") return isdir(path) end """ `installed(pkg::Union{AbstractString,BrewPkg})` Return true if the given package `pkg` is a directory in the Cellar, showing that it has been installed (but possibly not linked, see `linked()`) """ function installed(pkg::StringOrPkg) end function installed(name::AbstractString) isdir(joinpath(brew_prefix,"Cellar",basename(name))) end function installed(pkg::BrewPkg) installed(pkg.name) end """ `linked(pkg::Union{AbstractString,BrewPkg})` Returns true if the given package `pkg` is linked to LinkedKegs, signifying all files installed by this package have been linked into the global prefix. """ function linked(pkg::StringOrPkg) end function linked(name::AbstractString) return islink(joinpath(brew_prefix,"var","homebrew","linked",basename(name))) end function linked(pkg::BrewPkg) return linked(pkg.name) end """ `formula_path(pkg::Union{AbstractString,BrewPkg})` Returns the absolute path on-disk of the given package `pkg`. """ function formula_path(pkg::StringOrPkg) end function formula_path(name::AbstractString) path, tap_path = formula_tap(name) if isempty(tap_path) return joinpath(brew_prefix, "Library", "Taps", "homebrew", "homebrew-core", "Formula", "$path.rb") else # Insert the "homebrew-" that exists in all taps tap_path = "$(dirname(tap_path))/homebrew-$(basename(tap_path))" return joinpath(brew_prefix, "Library", "Taps", tap_path, "$path.rb") end end function formula_path(pkg::BrewPkg) return formula_path(fullname(pkg)) end """ `update_tag(;verbose::Bool = false)` We maintain our own "stable" tag that overrides Homebrew so that we can update at our own pace along with them. Make sure to call `update_env()` before calling this, as calling our `git` doesn't work properly otherwise. """ function update_tag(;verbose::Bool=false) global BREW_STABLE_SHA, brew_prefix # If a recent enough version of git is not installed, then install our own # This is necessary because some people do not have git installed but already # have Homebrew installed, and the check up above during install_brew() # doesn't run every time if !git_installed() add("git") end if verbose git = cmd -> run(`git $cmd`) else git = cmd -> run(pipeline(`git $cmd`, stdout=devnull, stderr=devnull)) end cd(brew_prefix) do try git(`tag -d 9.9.9`) catch end git(`tag 9.9.9 $BREW_STABLE_SHA`) git(`checkout 9.9.9`) end return nothing end
Homebrew
https://github.com/JuliaPackaging/Homebrew.jl.git
[ "MIT" ]
0.7.1
f01fb2f34675f9839d55ba7238bab63ebd2e531e
code
9283
""" `read_formula(pkg::Union{AbstractString,BrewPkg})` Returns the string contents of a package's formula. """ function read_formula(pkg::StringOrPkg) end function read_formula(name::AbstractString) return read(formula_path(name), String) end function read_formula(pkg::BrewPkg) return read(formula_path(pkg), String) end """ `write_formula(name::AbstractString, formula::AbstractString)` Write out fully-qualified formula `name` with contents `formula` to disk. Note that writing out without a tap name is not allowed; we won't write new formulae out to `Homebrew/core`, only to taps. """ function write_formula(name::AbstractString, formula::AbstractString) path, tap_path = formula_tap(name) if isempty(tap_path) error("Cannot write a formula out to Homebrew/core!") end # Insert the "homebrew-" that exists in all taps tap_path = "$(dirname(tap_path))/homebrew-$(basename(tap_path))" # Open this file, and write it out! path = joinpath(brew_prefix, "Library", "Taps", tap_path, "$path.rb") open(path, "w") do f write(f, formula) end # We done! return end """ `delete_translated_formula(name::AbstractString; verbose::Bool=false)` Delete a translated formula from the `staticfloat/juliatranslated` tap. """ function delete_translated_formula(name::AbstractString; verbose::Bool=false) # Throw out the tap_path part of any formula that someone passed into here. path, tap_path = formula_tap(name) # Override tap_path with our auto_tapname tap_path = "$(dirname(auto_tapname))/homebrew-$(basename(auto_tapname))" try del_path = joinpath(brew_prefix, "Library", "Taps", tap_path, "$path.rb") Base.rm(del_path) if verbose println("Deleting $(basename(del_path))...") end catch end end """ `delete_all_translated_formulae(;verbose::Bool=false)` Delete all translated formulae from the `staticfloat/juliatranslated` tap. This is useful for debugging misbehaving formulae during translation. """ function delete_all_translated_formulae(;verbose::Bool=false) for f in readdir(auto_tappath) if endswith(f,".rb") if verbose println("Deleting $f...") end Base.rm(joinpath(auto_tappath,f)) end end end """ `translate_formula(pkg::Union{AbstractString,BrewPkg}; verbose::Bool=false)` Given a formula `name`, return the fully-qualified name of a translated formula if it is translatable. Translation copies a `Homebrew/core` formula to `$auto_tapname`, adding appropriate `cellar :any` and `root_url` lines to any bottle stanzas. This allows us to transparently install non-cellar-any formulae from `Homebrew/core`. This function is fairly strict, bailing out at every possible opportunity, and returning the original name. If a formula is non-translatable, it's possible it needs manual intervention, check out the $tapname tap for examples. """ function translate_formula(pkg::StringOrPkg; verbose::Bool=false) end function translate_formula(name::AbstractString; verbose::Bool=false) if verbose println("translation: beginning for $name") end path, tap_path = formula_tap(name) # We maintain a list of formulae that we WILL NOT translate. As an example, # 'xz' is automatically added as a dependency by Homebrew when a formula # has a `.tar.xz` source tarball. This cannot be redirected to the # `staticfloat/juliatranslated` tap, causing diamonds of death where we have # the potential for both `xz` and `staticfloat/juliatranslated/xz` to # be in the dependency tree for a formula. translation_blacklist = ["xz"] if basename(name) in translation_blacklist if verbose println("translation: bailing because $name is in the translation blacklist") end return name end # Did we ask for any old name, or did we explicitly request a tap? if isempty(tap_path) # Bail if there is an overriding formula in our manually-curated tap if isfile(joinpath(tappath, "$(name).rb")) if verbose println("translation: using $tapname/$name for the source of our translation") end tap_path = tapname name = "$(tap_path)/$(path)" end else # If we explicitly asked for a tap, then make sure it's here! tap(tap_path) end # Bail if we have no bottles if !has_bottle(name) if verbose println("translation: bailing because $name has no bottles") end return name end # Delete any older translated formula if they exist auto_path = joinpath(auto_tappath, "$(path).rb") override_name = joinpath(auto_tapname, path) if isfile(auto_path) src_path = formula_path(name) if stat(auto_path).mtime < stat(src_path).mtime if verbose println("translation: deleting stale translation for $name") end delete_translated_formula(override_name; verbose=verbose) else if verbose println("translation: bailing becuase $name is already available in tap $auto_tapname") end return joinpath(auto_tapname, path) end end # Read formula source in, and also get a JSON representation of it obj = json(name) formula = read_formula(name) # Find bottle section. We allow 1 to 8 lines of code in a bottle stanza: # a root_url, a prefix, a cellar, a revision, and four OSX version bottles. ex = r"(?:\r\n|\r|\n)\s*bottle\s+do(?:\r\n|\r|\n)(?:[^\n]*(?:\r\n|\r|\n)){1,8}\s*end\s*(?:\r\n|\r|\n)" m = match(ex, formula) if m === nothing # This shouldn't happen, because we passed `has_bottle()` above @warn("Couldn't find bottle stanza in $name") return name end # We know there is no `cellar :any` or `cellar :any_skip_relocation` since # we made it past the `has_relocatable_bottle()` check. Eliminate any # `cellar` lines still within the match, then replace that section with a # section that contains the `cellar :any` we rely so heavily upon. bottle_lines = split(m.match, "\n") # Eliminate any lines that start with "cellar" or "root_url" bottle_lines = filter(line -> !startswith(lstrip(line), "cellar"), bottle_lines) bottle_lines = filter(line -> !startswith(lstrip(line), "root_url"), bottle_lines) # Find at which line the "bottle do" actually starts bottle_idx = findfirst(line -> match(r"bottle\s+do", line) !== nothing, bottle_lines) # Add a "cellar :any" and "root_url" line to this formula just after the # `bottle do`. Note that since `match()` returns SubString's, we need to # explicitly convert our string to SubString; this should be fixed in 0.6 # We should, however, preserve :any_skip_relocation if that is what this # bottle is marked as, which includes important bottles such as `cctools`. if occursin(":any_skip_relocation", m.match) insert!(bottle_lines, bottle_idx+1, SubString(" cellar :any_skip_relocation",1)) else insert!(bottle_lines, bottle_idx+1, SubString(" cellar :any",1)) end insert!(bottle_lines, bottle_idx+1, SubString(" root_url \"$(obj["bottle"]["stable"]["root_url"])\"",1)) # Resynthesize the bottle stanza and embed it into `formula` once more bottle_stanza = join(bottle_lines, "\n") formula = formula[1:m.offset-1] * bottle_stanza * formula[m.offset+length(m.match):end] # Find any depends_on lines, substitute in any translated formulae adjustment = 0 for m in eachmatch(r"depends_on\s+\"([^ ]+)\"", formula) # This is the path that this dependency would have if it has been translated dep_name = m.captures[1] auto_dep_path = joinpath(auto_tappath, "$(dep_name).rb") # If this dependency has been translated, then prepend "staticfloat/juliatranslated" # to it in the formula, so there is no confusion inside of Homebrew if isfile(auto_dep_path) if verbose println("translation: replacing dependency $dep_name because it's been translated before") end new_name = "$(auto_tapname)/$(dep_name)" offset = m.offsets[1] start_idx = offset-1+adjustment stop_idx = offset+length(dep_name)+adjustment formula = formula[1:start_idx] * new_name * formula[stop_idx:end] adjustment += length(auto_tapname) + 1 end end # Write our patched formula out to our override tap write_formula(override_name, formula) # Read that formula in again as a JSON object, compare with the original new_obj = json(override_name) if !has_relocatable_bottle(override_name) @warn("New formula $override_name doesn't have a relocatable bottle despite our meddling") return name end # Wow. We actually did it. if verbose println("translation: successfully finished for $name") end return override_name end function translate_formula(pkg::BrewPkg; verbose::Bool=false) return translate_formula(fullname(pkg); verbose=verbose) end
Homebrew
https://github.com/JuliaPackaging/Homebrew.jl.git
[ "MIT" ]
0.7.1
f01fb2f34675f9839d55ba7238bab63ebd2e531e
code
1204
import Base: == """ `BrewPkg` A simple type to give us some nice ways of representing our packages to the user It contains important information such as the `name` of the package, the `tap` it came from, the `version` of the package and whether it was `translated` or not """ struct BrewPkg # The name of this particular Brew package name::String # The tap this brew package comes from ("Homebrew/core" in general) tap::String # The version of this brew package version::String end function ==(x::BrewPkg, y::BrewPkg) return x.name == y.name && x.tap == y.tap && x.version == y.version end """ `fullname(pkg::BrewPkg)` Return the fully-qualified name for a package, dropping "Homebrew/core" """ function fullname(pkg::BrewPkg) if pkg.tap == "Homebrew/core" return pkg.name end return joinpath(pkg.tap,pkg.name) end """ `show(io::IO, b::BrewPkg)` Writes a `BrewPkg` to `io`, showing tap, name and version number """ function show(io::IO, b::BrewPkg) write(io, "$(fullname(b)): $(b.version)") end """ `StringOrPkg` A convenience type accepting either an `AbstractString` or a `BrewPkg` """ const StringOrPkg = Union{AbstractString, BrewPkg}
Homebrew
https://github.com/JuliaPackaging/Homebrew.jl.git
[ "MIT" ]
0.7.1
f01fb2f34675f9839d55ba7238bab63ebd2e531e
code
4517
# This file contains various utility functions that don't belong anywhere else """ `update_env()` Updates environment variables PATH and HOMEBREW_CACHE, and modifies DL_LOAD_PATH to point to our Homebrew installation, allowing us to use things inside of Homebrew transparently. This causes BinDeps to find the binaries during Pkg.build() time, writing the absolute path into `deps/deps.jl`. Because the paths are written into `deps/deps.jl`, packages do not need to load in the entire Homebrew package just to find their dependencies. HOMEBREW_CACHE stores our bottle download cache in a separate place, separating ourselves from other Homebrew installations so we don't conflict with anyone """ function update_env() if findfirst(joinpath(brew_prefix, "bin"), ENV["PATH"]) == nothing ENV["PATH"] = "$(abspath(joinpath(brew_prefix, "bin"))):$(abspath(joinpath(brew_prefix, "sbin"))):$(ENV["PATH"])" end if !(joinpath(brew_prefix,"lib") in Libdl.DL_LOAD_PATH) push!(Libdl.DL_LOAD_PATH, joinpath(brew_prefix, "lib") ) end # We need to set our own, private, cache directory so that we don't conflict with # user-maintained Homebrew installations, and multiple users can use it at once ENV["HOMEBREW_CACHE"] = joinpath(ENV["HOME"],"Library/Caches/Homebrew.jl/") # We invoke `brew` a lot, let's disable automatic updates since we do those explicitly ENV["HOMEBREW_NO_AUTO_UPDATE"] = "1" # We opt out of analytics by default if !("HOMEBREW_NO_ANALYTICS" in keys(ENV)) ENV["HOMEBREW_NO_ANALYTICS"] = "1" end # If we have `git` installed from Homebrew, add its environment variables if isfile(joinpath(brew_prefix,"bin","git")) git_core = joinpath(brew_prefix,"opt","git","libexec","git-core") ENV["PATH"] = ENV["PATH"] * ":" * git_core ENV["HOMEBREW_NO_ENV_FILTERING"] = "1" ENV["GIT_EXEC_PATH"] = git_core ENV["GIT_TEMPLATE_DIR"] = joinpath(brew_prefix,"opt","git","share","git-core") end return end """ `add_flags(cmd::AbstractString, flags::Dict{String,Bool})` Given a mapping of flags to Bools, return [cmd, flag1, flag2...] if the respective Bools are true. Useful for adding `--verbose` and `--force` flags onto the end of commands """ function add_flags(cmd::Cmd, flags::Dict{Cmd,Bool}) for flag in keys(flags) if flags[flag] cmd = `$cmd $flag` end end return cmd end """ `download_and_unpack(url::AbstractString, target_dir::AbstractString)` Download a tarball from `url` and unpack it into `target_dir`. """ function download_and_unpack(url::AbstractString, target_dir::AbstractString; strip=0) run(pipeline(`curl -\# -L $url`, `tar xz -m --strip 1 -C $target_dir`)) end """ `clt_installed()` Checks whether the command-line tools are installed, as reported by xcode-select """ function clt_installed() try !isempty(readchomp(pipeline(`/usr/bin/xcode-select -print-path`, stderr=devnull))) catch return false end end """ `git_installed()` Checks whether `git` is truly installed or not, dealing with stubs in /usr/bin Also ensure that the version is new enough (e.g. >= 2.0.0.0) that it will work with `git fetch --unshallow` on Homebrew. """ function git_installed() gitpath = readchomp(`which git`) # If there is no `git` executable at all, fail if isempty(gitpath) return false end # If we have a git from the CLT location, but the CLT isn't installed, fail if gitpath == "/usr/bin/git" && !clt_installed() return false end # check that the git version is at least 2.0.0.0. We may end up # tightening these bounds a little bit in the future, so parse # out the full git version m = match(r"^git version ([\d\.]+) ", readchomp(`git --version`)) if m === nothing return false end gitver = [parse(Int64, x) for x in split(m.captures[1], ".")] if gitver[1] < 2 return false end # If we made it through the gauntlet, succeed! return true end """ `formula_tap(name::AbstractString)` Given a formula `name`, return the formula name and the tap it is from, replacing "" for "Homebrew/core", as we don't care about that particular prefix. """ function formula_tap(name::AbstractString) tap_path = dirname(name) if isempty(tap_path) || lowercase(tap_path) == "homebrew/core" return basename(name), "" end return basename(name), tap_path end
Homebrew
https://github.com/JuliaPackaging/Homebrew.jl.git
[ "MIT" ]
0.7.1
f01fb2f34675f9839d55ba7238bab63ebd2e531e
code
5512
using Homebrew using Test # Print some debugging info @info("Using Homebrew.jl installed to $(Homebrew.prefix())") # Restore pkg-config to its installed (or non-installed) state at the end of all of this pkg_was_installed = Homebrew.installed("pkg-config") libgfortran_was_installed = Homebrew.installed("staticfloat/juliadeps/libgfortran") if pkg_was_installed @info("Removing pkg-config for our testing...") Homebrew.rm("pkg-config") end # Add pkg-config Homebrew.add("pkg-config") @test Homebrew.installed("pkg-config") == true # Print versioninfo() to boost coverage Homebrew.versioninfo() # Now show that we have it and that it's the right version function strip_underscores(str) range = something(findlast("_", str), 0:0) if range.start > 1 return str[1:range.start-1] else return str end end pkgconfig = Homebrew.info("pkg-config") version = readchomp(`pkg-config --version`) @test version == strip_underscores(pkgconfig.version) @test Homebrew.installed(pkgconfig) == true @info("$(pkgconfig) installed to: $(Homebrew.prefix(pkgconfig))") @test isdir(Homebrew.prefix("pkg-config")) @test isdir(Homebrew.prefix(pkgconfig)) # Run through some of the Homebrew API, both with strings and with BrewPkg objects @test length(filter(x -> x.name == "pkg-config", Homebrew.list())) > 0 @test Homebrew.linked("pkg-config") == true @test Homebrew.linked(pkgconfig) == true # Test dependency inspection @test Homebrew.direct_deps("pkg-config") == [] @test Homebrew.direct_deps(pkgconfig) == [] @test Homebrew.direct_deps("nettle") == [Homebrew.info("gmp")] @test Homebrew.direct_deps(Homebrew.info("nettle")) == [Homebrew.info("gmp")] # Run through our sorted deps routines, ensuring that everything is sorted sortdeps = Homebrew.deps_sorted("pango") for idx in 1:length(sortdeps) for dep in Homebrew.direct_deps(sortdeps[idx]) depidx = findfirst(x -> (x.name == dep.name), sortdeps) @test depidx != 0 @test depidx < idx end end # Test that we can probe for bottles properly @test Homebrew.has_bottle("ack") == false @test Homebrew.has_bottle("cairo") == true # I will be a very happy man the day this test starts to fail @test Homebrew.has_relocatable_bottle("cairo") == false if Homebrew.has_bottle("staticfloat/juliadeps/libgfortran") @test Homebrew.has_relocatable_bottle("staticfloat/juliadeps/libgfortran") == true end @test Homebrew.json(pkgconfig)["name"] == "pkg-config" # Test that has_bottle knows which OSX version we're running on. @test Homebrew.has_bottle("ld64") == false # Test that we can translate properly @info("Translation should pass:") @test Homebrew.translate_formula("gettext"; verbose=true) == "staticfloat/juliatranslated/gettext" @info("Translation should fail because it has no bottles:") @test Homebrew.translate_formula("ack"; verbose=true) == "ack" if libgfortran_was_installed # Remove libgfortran before we start messing around with it Homebrew.rm("staticfloat/juliadeps/libgfortran"; force=true) end # Make sure translation works properly with other taps Homebrew.delete_translated_formula("staticfloat/juliadeps/libgfortran"; verbose=true) @info("Translation should pass because we just deleted libgfortran from translation cache:") @test Homebrew.translate_formula("staticfloat/juliadeps/libgfortran"; verbose=true) == "staticfloat/juliatranslated/libgfortran" @info("Translation should fail because libgfortran has already been translated:") # Do it a second time so we can get coverage of practicing that particular method of bailing out Homebrew.translate_formula(Homebrew.info("staticfloat/juliadeps/libgfortran"); verbose=true) # Test that installation of a formula from a tap when it's already been translated works Homebrew.add("staticfloat/juliadeps/libgfortran"; verbose=true) if !libgfortran_was_installed Homebrew.rm("staticfloat/juliadeps/libgfortran") end # Now that we have staticfloat/juliadeps tapped, test to make sure that prefix() works # with taps properly: @test Homebrew.prefix("libgfortran") == Homebrew.prefix("staticfloat/juliadeps/libgfortran") # Test more miscellaneous things fontconfig = Homebrew.info("staticfloat/juliadeps/fontconfig") @test Homebrew.formula_path(fontconfig) == joinpath(Homebrew.tappath, "fontconfig.rb") @test !isempty(Homebrew.read_formula("xz")) @test !isempty(Homebrew.read_formula(fontconfig)) @info("add() should fail because this actually isn't a package name:") @test_throws ArgumentError Homebrew.add("thisisntapackagename") Homebrew.unlink(pkgconfig) @test Homebrew.installed(pkgconfig) == true @test Homebrew.linked(pkgconfig) == false Homebrew.link(pkgconfig) @test Homebrew.installed(pkgconfig) == true @test Homebrew.linked(pkgconfig) == true # Can't really do anything useful with these, but can at least run them to ensure they work Homebrew.outdated() Homebrew.update() Homebrew.postinstall("pkg-config") Homebrew.postinstall(pkgconfig) Homebrew.delete_translated_formula("gettext"; verbose=true) Homebrew.delete_all_translated_formulae(verbose=true) # Test deletion as well, showing that the array-argument form continues on after errors Homebrew.rm(pkgconfig) Homebrew.add(pkgconfig) @info("rm() should fail because this isn't actually a package name:") Homebrew.rm(["thisisntapackagename", "pkg-config"]) @test Homebrew.installed("pkg-config") == false @test Homebrew.linked("pkg-config") == false if pkg_was_installed @info("Adding pkg-config back again...") Homebrew.add("pkg-config") end
Homebrew
https://github.com/JuliaPackaging/Homebrew.jl.git
[ "MIT" ]
0.7.1
f01fb2f34675f9839d55ba7238bab63ebd2e531e
docs
7478
# Homebrew.jl (OSX only) [![Build Status](https://travis-ci.org/JuliaPackaging/Homebrew.jl.svg)](https://travis-ci.org/JuliaPackaging/Homebrew.jl) Homebrew.jl sets up a [homebrew](http://brew.sh) installation inside your [Julia](http://julialang.org/) package directory. It uses Homebrew to provide specialized binary packages to satisfy dependencies for other Julia packages, without the need for a compiler or other development tools; it is completely self-sufficient. Package authors with dependencies that want binaries distributed in this manner should open an issue here for inclusion into the package database. NOTE: If you have MacPorts installed, and are seeing issues with `git` or `curl` complaining about certificates, try to update the the ```curl``` and ```curl-ca-bundle``` packages before using Homebrew.jl. From the terminal, run: ``` port selfupdate port upgrade curl curl-ca-bundle ``` # Usage (Users) As a user, you ideally shouldn't ever have to use Homebrew directly, short of installing it via `Pkg.add("Homebrew")`. However, there is a simple to use interface for interacting with the Homebrew package manager: * `Homebrew.add("pkg")` will install `pkg`, note that if you want to install a package from a non-default tap, you can do so via `Homebrew.add("user/tap/formula")`. An example of this is installing the `metis4` formula from the [`Homebrew/science` tap](https://github.com/Homebrew/homebrew-science) via `Homebrew.add("homebrew/science/metis4")`. * `Homebrew.rm("pkg")` will uninstall `pkg` * `Homebrew.update()` will update the available formulae for installation and upgrade installed packages if a newer version is available * `Homebrew.list()` will list all installed packages and versions * `Homebrew.installed("pkg")` will return a `Bool` denoting whether or not `pkg` is installed * `Homebrew.prefix()` will return the prefix that all packages are installed to # Usage (Package Authors) As a package author, the first thing to do is to [write](https://github.com/Homebrew/brew/blob/master/share/doc/homebrew/Formula-Cookbook.md)/[find](http://braumeister.org/) a Homebrew formula for whatever package you wish to create. The easiest way to tell if the binary will work out-of-the-box is `Homebrew.add()` it. Formulae from the default `homebrew/core` tap need no prefix, but if you are installing something from another tap, you need to prefix it with the appropriate tap name. For example, to install `metis4` from the `homebrew/science` tap, you would run `Homebrew.add("homebrew/science/metis4")`. Programs installed to `<prefix>/bin` and libraries installed to `<prefix>/lib` will automatically be availble for `run()`'ing and `dlopen()`'ing. If that doesn't "just work", there may be some special considerations necessary for your piece of software. Open an issue here with a link to your formula and we will discuss what the best approach for your software is. To see examples of formulae we have already included for special usage, peruse the [homebrew-juliadeps](https://github.com/staticfloat/homebrew-juliadeps) repository. To have your Julia package automatically install these precompiled binaries, `Homebrew.jl` offers a BinDeps provider which can be accessed as `Homebrew.HB`. Simply declare your dependency on `Homebrew.jl` via a `@osx Homebrew` in your REQUIRE files, create a BinDeps `library_dependency` and state that `Homebrew` provides that dependency: ```julia using BinDeps @BinDeps.setup nettle = library_dependency("nettle", aliases = ["libnettle","libnettle-4-6"]) ... # Wrap in @osx_only to avoid non-OSX users from erroring out @osx_only begin using Homebrew provides( Homebrew.HB, "nettle", nettle, os = :Darwin ) end @BinDeps.install Dict(:nettle => :nettle) ``` Then, the `Homebrew` package will automatically download the requisite bottles for any dependencies you state it can provide. This example garnered from the `build.jl` file from [`Nettle.jl` package](https://github.com/staticfloat/Nettle.jl/blob/master/deps/build.jl). ## Why Package Authors should use Homebrew.jl A common question is why bother with Homebrew formulae and such when a package author could simply compile the `.dylib`'s needed by their package, upload them somewhere and download them to a user's installation somewhere. There are multiple reasons, and although they are individually surmountable Homebrew offers a simpler (and standardized) method of solving many of these problems automatically: * On OSX shared libraries link via full paths. This means that unless you manually alter the path inside of a `.dylib` or binary to have an `@rpath` or `@executable_path` in it, the path will be attempting to point to the exact location on your harddrive that the shared library was found at compile-time. This is not an issue if all libraries linked to are standard system libraries, however as soon as you wish to link to a library in a non-standard location you must alter the paths. Homebrew does this for you automatically, rewriting the paths during installation via `install_name_tool`. To see the paths embedded in your libraries and executable files, run `otool -L <file>`. * Dependencies on other libraries are handled gracefully by Homebrew. If your package requires some heavy-weight library such as `cairo`, `glib`, etc... Homebrew already has those libraries ready to be installed for you. * Releasing new versions of binaries can be difficult. Homebrew.jl has builtin mechanisms for upgrading all old packages, and even detecting when a binary of the same version number has a new revision (e.g. if an old binary had an error embedded inside it). ## Why doesn't this package use my system-wide Homebrew installation? Some of the formulae in the [staticfloat/juliadeps tap](https://github.com/staticfloat/homebrew-juliadeps) are specifically patched to work with Julia. Some of these patches have not (or will not) be merged back into Homebrew mainline, so we don't want to conflict with any packages the user may or may not have installed. Users can modify Homebrew's internal workings, so it's better to have a known good Homebrew installation than to risk bug reports from users that have unknowingly merged patches into Homebrew that break functionality we require. If you already have something installed, and it is usable, (e.g. `BinDeps` can load it and it passes any quick internal tests the Package authors have defined) then `Homebrew.jl` won't try to install it. `BinDeps` always checks to see if there is a library in the current load path that satisfies the requirements setup by package authors, and if there is, it doesn't build anything. ## Advanced usage `Homebrew.jl` provides a convenient wrapper around most of the functionality of Homebrew, however there are rare cases where access to the full suite of `brew` commands is necessary. To facilitate this, users that are familiar with the `brew` command set can use `Homebrew.brew()` to directly feed commands to the `brew` binary within `Homebrew.jl`. Example usage: ``` julia> using Homebrew julia> Homebrew.brew(`info staticfloat/juliadeps/libgfortran`) staticfloat/juliadeps/libgfortran: stable 6.2 (bottled) http://gcc.gnu.org/wiki/GFortran /Users/sabae/.julia/v0.5/Homebrew/deps/usr/Cellar/libgfortran/6.2 (9 files, 2M) * Poured from bottle on 2016-11-21 at 13:14:33 From: https://github.com/staticfloat/homebrew-juliadeps/blob/master/libgfortran.rb ==> Dependencies Build: gcc ✘ ```
Homebrew
https://github.com/JuliaPackaging/Homebrew.jl.git
[ "MIT" ]
0.7.1
f01fb2f34675f9839d55ba7238bab63ebd2e531e
docs
248
When opening an issue, please ping `@staticfloat`. He does not receive emails automatically when new issues are created. Without this ping, your issue may slip through the cracks! If no response is garnered within a week, feel free to ping again.
Homebrew
https://github.com/JuliaPackaging/Homebrew.jl.git
[ "MIT" ]
0.7.1
f01fb2f34675f9839d55ba7238bab63ebd2e531e
docs
248
When opening an issue, please ping `@staticfloat`. He does not receive emails automatically when new issues are created. Without this ping, your issue may slip through the cracks! If no response is garnered within a week, feel free to ping again.
Homebrew
https://github.com/JuliaPackaging/Homebrew.jl.git
[ "MIT" ]
0.3.2
add78dc1de6ffcf80f4fc350cf38794ad257690c
code
2696
module NaturallyUnitful using Reexport @reexport using Unitful export natural, unnatural const c = 1u"c" const ħ = Unitful.ħ const ħc = ħ*c const kB = Unitful.k const ϵ0 = Unitful.ϵ0 setDimPow(D::Dict, x::Unitful.Dimension{T}) where {T} = D[T] = x.power function dimDict(x::Unitful.Dimensions{T}) where {T} D = Dict{Symbol, Rational}(:Length => 0, :Mass => 0, :Temperature => 0, :Time => 0, :Current => 0) for t in T setDimPow(D,t) end return D end dimDict(x::Unitful.Quantity{T}) where {T} = dimDict(dimension(x)) dimDict(x) = Dict{Symbol, Rational}(:Length => 0, :Mass => 0, :Temperature => 0, :Time => 0, :Current => 0) gettypeparams(::Unitful.FreeUnits{T, U, V}) where {T, U, V} = T, U, V const energydimension = gettypeparams(u"GeV")[2] """ natural(q; base=u"eV") Convert `q` to natural units based on the units specified by `base`. If `base` is unspecified, `natural` will default to `eV`. Currently, `natural` only supports `base`s with dimensions of energy. For all other `base` you will need to use `unnatrual` ' to convert. Examples: julia> natural(1u"kg") 5.609588650020686e35 eV julia> natural(1u"kg", base=u"GeV") 5.609588650020685e26 GeV julia> natural(1u"m") 5.067730759202785e6 eV^-1 julia> natural(1u"m", base=u"GeV") 5.067730759202785e15 GeV^-1 """ natural(q; base=u"eV") = _natural(base, q) function _natural(base::Unitful.FreeUnits{T, energydimension, U}, q) where {T, U} D = dimDict(q) (α,β,γ,δ,ϕ) = (D[:Length], D[:Mass], D[:Temperature], D[:Time], D[:Current]) uconvert(base^(-α-δ+β+γ+ϕ), q*ħc^(-α+ϕ/2)*ħ^(-δ)*c^(2(β-ϕ/2))*kB^(γ)*(4π*ϵ0)^(-ϕ/2)) end function _natural(base::Unitful.FreeUnits{T, U, V}, q) where {T, U, V} throw("""natural(q; base)` where `base` has dimensions `$U` has not yet been implemented. Please use a base with dimensions of `energy` and then use `unnatural` to convert to your desired units.""") end """ unnatural(targetUnit, q) Convert a quantity `q` to units specified by `targetUnits` automatically inserting whatever factors of `ħ`, `c`, `ϵ₀` and `kb` are required to make the conversion work. Examples: julia> unnatural(u"m", 5.067730759202785e6u"eV^-1") 1.0 m julia> unnatural(u"m/s", 1) 2.99792458e8 m s^-1 julia> unnatural(u"K", 1u"eV") 11604.522060401006 K """ function unnatural(targetUnit, q) natTarget = natural(1targetUnit) natQ = natural(q) ratio = natQ/natTarget if typeof(ratio |> dimension) == Unitful.Dimensions{()} (ratio)targetUnit else throw(Unitful.DimensionError) end end end # module
NaturallyUnitful
https://github.com/MasonProtter/NaturallyUnitful.jl.git
[ "MIT" ]
0.3.2
add78dc1de6ffcf80f4fc350cf38794ad257690c
code
635
using Test, NaturallyUnitful using NaturallyUnitful: c, ħ, ħc, kB, ϵ0 @testset "tests" begin @test natural(1u"m") ≈ uconvert(u"eV^-1", 1u"m"/(ħc)) @test unnatural(u"m", uconvert(u"eV^-1", 1u"m"/(ħc))) ≈ 1.0u"m" @test natural(1e8u"m/s") ≈ convert(Float64, 1e8u"m/s"/c) @test unnatural(u"m/s", convert(Float64, 1e8u"m/s"/c)) ≈ 1e8u"m/s" @test natural(1u"kg") ≈ uconvert(u"GeV", 1u"kg"*c^2) @test natural(1u"m", base=u"GeV") ≈ uconvert(u"GeV^-1", 1u"m"/(ħc)) @test unnatural(u"K", 1u"eV") ≈ uconvert(u"K", 1u"eV"/kB) @test unnatural(u"(m/s)^(3/2)", 1) ≈ uconvert(u"(m/s)^(3/2)", c^(3/2)) end
NaturallyUnitful
https://github.com/MasonProtter/NaturallyUnitful.jl.git
[ "MIT" ]
0.3.2
add78dc1de6ffcf80f4fc350cf38794ad257690c
docs
1358
[![CI](https://github.com/MasonProtter/NaturallyUnitful.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/MasonProtter/NaturallyUnitful.jl/actions/workflows/ci.yml) # NaturallyUnitful.jl This package reexports [Unitful.jl](https://github.com/ajkeller34/Unitful.jl) alongside two extra functions: 1. `natural`, a function for converting a given quantity to the Physicist's so-called "[natural units](https://en.wikipedia.org/wiki/Natural_units)", in which `ħ = c = ϵ₀ = kb = 1` ```julia julia> using NaturallyUnitful julia> natural(1u"m") 5.067730759202785e6 eV^-1 julia> natural(3e8u"m/s") 1.000692285594456 ``` `natural` also accepts a keyword argument `base` (defaults to electron volts) which determines what unit your natural quantity is constructed from. Currently, the `base` unit must have dimensions of energy. ```julia julia> natural(1u"m", base=u"GeV") 5.067730759202785e15 GeV^-1 ``` 2. `unnatural`, a function for converting from natural units to a given `unnatural` unit such as meters ```julia julia> unnatural(u"m", 5.067730759202785e6u"eV^-1") 1.0 m julia> unnatural(u"m/s", 1) 2.99792458e8 m s^-1 ``` ## Installation Instructions To install, simply open the `pkg` prompt from the julia REPL by pressing `]`, and type: ``` pkg> add NaturallyUnitful ```
NaturallyUnitful
https://github.com/MasonProtter/NaturallyUnitful.jl.git
[ "MIT" ]
0.5.4
62176f36b39144429a567d71ab98c72ee4617579
code
772
using TuringBenchmarking using Documenter DocMeta.setdocmeta!(TuringBenchmarking, :DocTestSetup, :(using TuringBenchmarking); recursive=true) makedocs(; modules=[TuringBenchmarking], authors="Tor Erlend Fjelde <[email protected]> and contributors", repo="https://github.com/TuringLang/TuringBenchmarking.jl/blob/{commit}{path}#{line}", sitename="TuringBenchmarking.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://turinglang.org/TuringBenchmarking.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/TuringLang/TuringBenchmarking.jl", devbranch="main", push_preview=true, )
TuringBenchmarking
https://github.com/TuringLang/TuringBenchmarking.jl.git
[ "MIT" ]
0.5.4
62176f36b39144429a567d71ab98c72ee4617579
code
2582
using TuringBenchmarking, BridgeStan, BenchmarkTools, Turing, Zygote, ReverseDiff, ForwardDiff, JSON ### Setup ### function sim(I, P) yvec = Vector{Int}(undef, I * P) ivec = similar(yvec) pvec = similar(yvec) beta = rand(Normal(), I) theta = rand(Normal(), P) n = 0 for i in 1:I, p in 1:P n += 1 ivec[n] = i pvec[n] = p yvec[n] = rand(BernoulliLogit(theta[p] - beta[i])) end return yvec, ivec, pvec, theta, beta end P = 1000 y, i, p, _, _ = sim(20, P); ### Turing ### # naive implementation @model function irt_naive(y, i, p; I = maximum(i), P = maximum(p)) theta ~ filldist(Normal(), P) beta ~ filldist(Normal(), I) for n in eachindex(y) y[n] ~ Bernoulli(logistic(theta[p[n]] - beta[i[n]])) end end # performant model function bernoulli_logit_logpdf(y, theta, beta) return logpdf(BernoulliLogit(theta - beta), y) end @model function irt(y, i, p; I = maximum(i), P = maximum(p)) theta ~ filldist(Normal(), P) beta ~ filldist(Normal(), I) Turing.@addlogprob! sum(bernoulli_logit_logpdf.(y, theta[p], beta[i])) return (; theta, beta) end # Instantiate model = irt(y, i, p); # Make the benchmark suite. suite = TuringBenchmarking.make_turing_suite( model, adbackends = [ TuringBenchmarking.ForwardDiffAD{40}(), TuringBenchmarking.ReverseDiffAD{true}(), TuringBenchmarking.ReverseDiffAD{false}() ] ); # Run suite! @info "Turing.jl" run(suite) ### Stan ### @info "Compiling Stan model..." # Tell `TuringBenchmarking` how to convert `model` into data consumable by Stan. function TuringBenchmarking.extract_stan_data(model::DynamicPPL.Model{typeof(irt)}) args = Dict(zip(string.(keys(model.args)), values(model.args))) kwargs = Dict(zip(string.(keys(model.defaults)), values(model.defaults))) kwargs["N"] = kwargs["I"] * kwargs["P"] return JSON.json(merge(args, kwargs)) end # Tell `TuringBenchmarking` about the corresponding Stan model. TuringBenchmarking.stan_model_string(model::DynamicPPL.Model{typeof(irt)}) = """ data { int<lower=1> I; int<lower=1> P; int<lower=1> N; int<lower=1, upper=I> i[N]; int<lower=1, upper=P> p[N]; int<lower=0, upper=1> y[N]; } parameters { vector[I] beta; vector[P] theta; } model { theta ~ std_normal(); beta ~ std_normal(); y ~ bernoulli_logit(theta[p] - beta[i]); } """ # Construct benchmark suite. stan_suite = TuringBenchmarking.make_stan_suite(model) # Run suite! @info "Stan" run(stan_suite)
TuringBenchmarking
https://github.com/TuringLang/TuringBenchmarking.jl.git
[ "MIT" ]
0.5.4
62176f36b39144429a567d71ab98c72ee4617579
code
2229
module TuringBenchmarkingBridgeStanExt if isdefined(Base, :get_extension) using TuringBenchmarking: TuringBenchmarking, BenchmarkTools using BridgeStan: BridgeStan else using ..TuringBenchmarking: TuringBenchmarking, BenchmarkTools using ..BridgeStan: BridgeStan end function stan_model_to_file_maybe(x::AbstractString) endswith(x, ".stan") && return x # Write to a temporary file. tmpfile = tempname() * ".stan" open(tmpfile, "w") do io write(io, x) end return tmpfile end """ make_stan_suite(model::Turing.Model; kwargs...) Create default benchmark suite for the Stan model corresponding to `model`. # Arguments - `model`: The model to benchmark. # Keyword arguments - `θ`: The parameters to evaluate the model at. If `nothing`, then the parameters are randomly initialized. - `model_string`: The Stan model string. If `nothing`, the model is obtained by calling `stan_model_string(model)`. This can either be a string representing the model or a path to a file ending in `.stan`. - `kwargs...`: Additional keyword arguments to pass to `BridgeStan.StanModel`. """ function TuringBenchmarking.make_stan_suite( model::TuringBenchmarking.DynamicPPL.Model; θ = nothing, model_string = nothing, kwargs... ) if isnothing(model_string) model_string = TuringBenchmarking.stan_model_string(model) end # Convert the data/observations into something consumable by the Stan model. data = TuringBenchmarking.extract_stan_data(model) stan_model = BridgeStan.StanModel( stan_file = stan_model_to_file_maybe(model_string), data = data, kwargs... ) # Initialize from chain if parameters have not been provided. ϕ = if isnothing(θ) rand(BridgeStan.param_num(stan_model)) else BridgeStan.param_unconstrain(stan_model, θ) end # Create suite. stan_suite = BenchmarkTools.BenchmarkGroup() stan_suite["evaluation"] = BenchmarkTools.@benchmarkable $(BridgeStan.log_density)( $stan_model, $ϕ ) stan_suite["gradient"] = BenchmarkTools.@benchmarkable $(BridgeStan.log_density_gradient)( $stan_model, $ϕ ) return stan_suite end end
TuringBenchmarking
https://github.com/TuringLang/TuringBenchmarking.jl.git
[ "MIT" ]
0.5.4
62176f36b39144429a567d71ab98c72ee4617579
code
12328
module TuringBenchmarking using LinearAlgebra using BenchmarkTools using LogDensityProblems using LogDensityProblemsAD using DynamicPPL using ADTypes using PrettyTables: PrettyTables using AbstractMCMC: AbstractMCMC using DynamicPPL: DynamicPPL # Load some the default backends to trigger conditional loading. using ForwardDiff: ForwardDiff using ReverseDiff: ReverseDiff using Zygote: Zygote if !isdefined(Base, :get_extension) using Requires end export benchmark_model, make_turing_suite, BenchmarkTools, @tagged # Don't include `TrackerAD` because it's never going to win. const DEFAULT_ADBACKENDS = [ AutoForwardDiff(chunksize=0), AutoReverseDiff(compile=false), AutoReverseDiff(compile=true), AutoZygote(), ] backend_label(x) = "$x" backend_label(::AutoForwardDiff) = "ForwardDiff" function backend_label(ad::AutoReverseDiff) "ReverseDiff" * (ad.compile ? " [compiled]" : "") end backend_label(::AutoZygote) = "Zygote" backend_label(::AutoTracker) = "Tracker" backend_label(::AutoEnzyme) = "Enzyme" const SYMBOL_TO_BACKEND = Dict( :forwarddiff => AutoForwardDiff(chunksize=0), :reversediff => AutoReverseDiff(compile=false), :reversediff_compiled => AutoReverseDiff(compile=true), :zygote => AutoZygote(), :tracker => AutoTracker(), ) to_backend(x) = error("Unknown backend: $x") to_backend(x::ADTypes.AbstractADType) = x function to_backend(x::Union{AbstractString,Symbol}) k = Symbol(lowercase(string(x))) haskey(SYMBOL_TO_BACKEND, k) || error("Unknown backend: $x") return SYMBOL_TO_BACKEND[k] end _default_params(model, varinfo) = rand(Vector, model) _default_params_linked(model, varinfo) = randn(length(DynamicPPL.link(varinfo, model)[:])) """ benchmark_model(model::Turing.Model; suite_kwargs..., kwargs...) Create and run a benchmark suite for `model`. The benchmarking suite will be created using [`make_turing_suite`](@ref). See [`make_turing_suite`](@ref) for the available keyword arguments and more information. # Keyword arguments - `suite_kwargs`: Keyword arguments passed to [`make_turing_suite`](@ref). - `kwargs`: Keyword arguments passed to `BenchmarkTools.run`. """ function benchmark_model( model::DynamicPPL.Model; adbackends = DEFAULT_ADBACKENDS, run_once::Bool = true, check::Bool = false, check_grads::Bool = check, error_on_failed_check::Bool = false, error_on_failed_backend::Bool = false, varinfo::DynamicPPL.AbstractVarInfo = DynamicPPL.VarInfo(model), sampler::Union{AbstractMCMC.AbstractSampler,Nothing} = nothing, context::DynamicPPL.AbstractContext = DynamicPPL.DefaultContext(), θ::AbstractVector = _default_params(model, varinfo), θ_linked::AbstractVector = _default_params_linked(model, varinfo), atol::Real = 1e-6, rtol::Real = 0, kwargs... ) suite = make_turing_suite( model; adbackends, run_once, check, check_grads, error_on_failed_check, error_on_failed_backend, varinfo, sampler, context, atol, rtol, ) return run(suite; kwargs...) end """ make_turing_suite(model::Turing.Model; kwargs...) Create default benchmark suite for `model`. # Keyword arguments - `adbackends`: a collection of adbackends to use, specified either as a type from ADTypes.jl or using a `Symbol`. Defaults to `$(DEFAULT_ADBACKENDS)`. - `run_once=true`: if `true`, the body of each benchmark will be run once to avoid compilation to be included in the timings (this may occur if compilation runs longer than the allowed time limit). - `check=false`: if `true`, the log-density evaluations and the gradients will be compared against each other to ensure that they are consistent. Note that this will force `run_once=true`. - `error_on_failed_check=false`: if `true`, an error will be thrown if the check fails rather than just printing a warning, as is done by default. - `error_on_failed_backend=false`: if `true`, an error will be thrown if the evaluation of the log-density or the gradient fails for any of the backends rather than just printing a warning, as is done by default. - `varinfo`: the `VarInfo` to use. Defaults to `DynamicPPL.VarInfo(model)`. - `sampler`: the `Sampler` to use. Defaults to `nothing` (i.e. no sampler). - `context`: the `Context` to use. Defaults to `DynamicPPL.DefaultContext()`. - `θ`: the parameters to use. Defaults to `rand(Vector, model)`. - `θ_linked`: the linked parameters to use. Defaults to `randn(d)` where `d` is the length of the linked parameters.. - `atol`: the absolute tolerance to use for comparisons. - `rtol`: the relative tolerance to use for comparisons. # Notes - A separate "parameter" instance (`DynamicPPL.VarInfo`) will be created for _each test_. Hence if you have a particularly large model, you might want to only pass one `adbackend` at the time. """ function make_turing_suite( model::DynamicPPL.Model; adbackends = DEFAULT_ADBACKENDS, run_once::Bool = true, check::Bool = false, check_grads::Bool = check, error_on_failed_check::Bool = false, error_on_failed_backend::Bool = false, varinfo::DynamicPPL.AbstractVarInfo = DynamicPPL.VarInfo(model), sampler::Union{AbstractMCMC.AbstractSampler,Nothing} = nothing, context::DynamicPPL.AbstractContext = DynamicPPL.DefaultContext(), θ::AbstractVector = _default_params(model, varinfo), θ_linked::AbstractVector = _default_params_linked(model, varinfo), atol::Real = 1e-6, rtol::Real = 0, ) if check != check_grads Base.depwarn( "The `check_grads` keyword argument is deprecated. Use `check` instead.", :make_turing_suite ) check = check_grads end grads_and_vals = Dict(:standard => Dict(), :linked => Dict()) adbackends = map(to_backend, adbackends) suite = BenchmarkGroup() suite_evaluation = BenchmarkGroup() suite_gradient = BenchmarkGroup() suite["evaluation"] = suite_evaluation suite["gradient"] = suite_gradient indexer = sampler === nothing ? Colon() : sampler if sampler !== nothing context = DynamicPPL.SamplingContext(sampler, context) end for adbackend in adbackends suite_backend = BenchmarkGroup([backend_label(adbackend)]) suite_gradient["$(adbackend)"] = suite_backend suite_backend["standard"] = BenchmarkGroup() suite_backend["linked"] = BenchmarkGroup() # We construct `LogDensityFunction` using different values # than the ones we're going to use for the test. Some of the AD backends # compiles the tape upon `ADgradient` construction, and so we want to # check that the compiled tape is also correct on inputs which it wasn't # compiled for. varinfo_current = DynamicPPL.unflatten(varinfo, context, varinfo[indexer]) f = LogDensityProblemsAD.ADgradient( adbackend, DynamicPPL.LogDensityFunction(varinfo_current, model, context) ) try if run_once || check_grads ℓ, ∇ℓ = LogDensityProblems.logdensity_and_gradient(f, θ) @debug "$(backend_label(adbackend))" θ ℓ ∇ℓ if check_grads grads_and_vals[:standard][adbackend] = (ℓ, ∇ℓ) end end suite_backend["standard"] = @benchmarkable $(LogDensityProblems.logdensity_and_gradient)($f, $θ) catch e if error_on_failed_backend rethrow(e) else @warn "Gradient computation (without linking) failed for $(adbackend): $(e)" end end # Need a separate `VarInfo` for the linked version since otherwise we risk the # `varinfo` from above being mutated. varinfo_linked = if sampler === nothing DynamicPPL.link(varinfo_current, model) else DynamicPPL.link(varinfo_current, sampler, model) end f_linked = LogDensityProblemsAD.ADgradient( adbackend, DynamicPPL.LogDensityFunction(varinfo_linked, model, context) ) try if run_once || check_grads ℓ_linked, ∇ℓ_linked = LogDensityProblems.logdensity_and_gradient(f_linked, θ_linked) @debug "$(backend_label(adbackend)) [linked]" θ_linked ℓ_linked ∇ℓ_linked if check_grads grads_and_vals[:linked][adbackend] = (ℓ_linked, ∇ℓ_linked) end end suite_backend["linked"] = @benchmarkable $(LogDensityProblems.logdensity_and_gradient)($f_linked, $θ_linked) catch e if error_on_failed_backend rethrow(e) else @warn "Gradient computation (with linking) failed for $(adbackend): $(e)" end end end # Also benchmark just standard model evaluation because why not. suite_evaluation["standard"] = @benchmarkable $(DynamicPPL.evaluate!!)( $model, $varinfo, $context ) varinfo_linked = if sampler === nothing DynamicPPL.link(varinfo, model) else DynamicPPL.link(varinfo, sampler, model) end suite_evaluation["linked"] = @benchmarkable $(DynamicPPL.evaluate!!)( $model, $varinfo_linked, $context ) if check_grads success = true for type in [:standard, :linked] backends = collect(keys(grads_and_vals[type])) vals = map(first, values(grads_and_vals[type])) vals_dists = compute_distances(backends, vals) if !all(isapprox.(values(vals_dists), 0, atol=atol, rtol=rtol)) @warn "There is disagreement in the log-density values!" show_distances(vals_dists; header=([titlecase(string(type)), "Log-density"], ["backend", "distance"]), atol=atol, rtol=rtol) success = false end grads = map(last, values(grads_and_vals[type])) grads_dists = compute_distances(backends, grads) if !all(isapprox.(values(grads_dists), 0, atol=atol, rtol=rtol)) @warn "There is disagreement in the gradients!" show_distances(grads_dists, header=([titlecase(string(type)), "Gradient"], ["backend", "distance"]), atol=atol, rtol=rtol) success = false end end if !success && error_on_failed_check error("Consistency checks failed!") end end return suite end function compute_distances(backends, vals) T = eltype(first(vals)) n = length(vals) dists = DynamicPPL.OrderedDict{String,T}() for (i, backend_i) in zip(1:n, backends) for (j, backend_j) in zip(i + 1:n, backends[i + 1:end]) dists["$(backend_label(backend_i)) vs $(backend_label(backend_j))"] = norm(vals[i] - vals[j]) end end return dists end function show_distances(dists::AbstractDict; header=["Backend", "Distance"], atol=1e-6, rtol=0) hl = PrettyTables.Highlighter( (data, i, j) -> !isapprox(data[i, 2], 0; atol=atol, rtol=rtol), PrettyTables.crayon"red bold" ) PrettyTables.pretty_table( dists; header=header, highlighters=(hl,), formatters=PrettyTables.ft_printf("%.2f", [2]) ) end """ extract_stan_data(model::DynamicPPL.Model) Return the data in `model` in a format consumable by the corresponding Stan model. The Stan model requires the return data to be either 1. A JSON string representing a dictionary with the data. 2. A path to a data file ending in `.json`. """ function extract_stan_data end """ stan_model_string(model::DynamicPPL.Model) Return a string defining the Stan model corresponding to `model`. """ function stan_model_string end """ make_stan_suite(model::Turing.Model; kwargs...) Create default benchmark suite for the Stan model corresponding to `model`. """ function make_stan_suite end # This symbol is only defined on Julia versions that support extensions @static if !isdefined(Base, :get_extension) function __init__() @require BridgeStan = "c88b6f0a-829e-4b0b-94b7-f06ab5908f5a" include("../ext/TuringBenchmarkingBridgeStanExt.jl") end end end # module TuringBenchmarking
TuringBenchmarking
https://github.com/TuringLang/TuringBenchmarking.jl.git
[ "MIT" ]
0.5.4
62176f36b39144429a567d71ab98c72ee4617579
code
5921
using TuringBenchmarking using BenchmarkTools using DynamicPPL, Distributions, DistributionsAD using Test using ADTypes using Zygote: Zygote using ReverseDiff: ReverseDiff # Just make things run a bit faster. BenchmarkTools.DEFAULT_PARAMETERS.seconds = 1 BenchmarkTools.DEFAULT_PARAMETERS.evals = 1 BenchmarkTools.DEFAULT_PARAMETERS.samples = 2 # These should be ordered (ascendingly) by runtime. ADBACKENDS = TuringBenchmarking.DEFAULT_ADBACKENDS @testset "TuringBenchmarking.jl" begin @testset "Item-Response model" begin # Simulate data. function sim(I, P) yvec = Vector{Int}(undef, I * P) ivec = similar(yvec) pvec = similar(yvec) beta = rand(Normal(), I) theta = rand(Normal(), P) n = 0 for i in 1:I, p in 1:P n += 1 ivec[n] = i pvec[n] = p yvec[n] = rand(BernoulliLogit(theta[p] - beta[i])) end return yvec, ivec, pvec, theta, beta end y, i, p, _, _ = sim(5, 3) # Performant model. @model function irt(y, i, p; I=maximum(i), P=maximum(p)) theta ~ filldist(Normal(), P) beta ~ filldist(Normal(), I) DynamicPPL.@addlogprob! sum(logpdf.(BernoulliLogit.(theta[p] - beta[i]), y)) return (; theta, beta) end # Instantiate model = irt(y, i, p) # Make the benchmark suite. @testset "$(nameof(typeof(varinfo)))" for varinfo in [ DynamicPPL.VarInfo(model), DynamicPPL.SimpleVarInfo(model), ] suite = TuringBenchmarking.make_turing_suite( model; adbackends=ADBACKENDS, varinfo=varinfo, check_grads=true, ) results = run(suite, verbose=true) @testset "$adbackend" for (i, adbackend) in enumerate(ADBACKENDS) adbackend_string = "$(adbackend)" results_backend = results[@tagged adbackend_string] # Each AD backend should have two results. @test length(BenchmarkTools.leaves(results_backend)) == 2 # It should be under the "gradient" section. @test haskey(results_backend, "gradient") # It should have one tagged "linked" and one "standard" @test length(BenchmarkTools.leaves(results_backend[@tagged "linked"])) == 1 @test length(BenchmarkTools.leaves(results_backend[@tagged "standard"])) == 1 end end @testset "Specify AD backends using symbols" begin varinfo = DynamicPPL.VarInfo(model) suite = TuringBenchmarking.make_turing_suite( model; adbackends=[:forwarddiff, :reversediff, :reversediff_compiled, :zygote], varinfo=varinfo, ) results = run(suite, verbose=true) @testset "$adbackend" for (i, adbackend) in enumerate(ADBACKENDS) adbackend_string = "$(adbackend)" results_backend = results[@tagged adbackend_string] # Each AD backend should have two results. @test length(BenchmarkTools.leaves(results_backend)) == 2 # It should be under the "gradient" section. @test haskey(results_backend, "gradient") # It should have one tagged "linked" and one "standard" @test length(BenchmarkTools.leaves(results_backend[@tagged "linked"])) == 1 @test length(BenchmarkTools.leaves(results_backend[@tagged "standard"])) == 1 end end end @testset "Model with mutation" begin @model function demo_with_mutation(::Type{TV}=Vector{Float64}) where {TV} x = TV(undef, 2) x[1] ~ Normal() x[2] ~ Normal() return x end model = demo_with_mutation() # Make the benchmark suite. @testset "$(nameof(typeof(varinfo)))" for varinfo in [ DynamicPPL.VarInfo(model), DynamicPPL.SimpleVarInfo(x=randn(2)), DynamicPPL.SimpleVarInfo(DynamicPPL.OrderedDict(@varname(x) => randn(2))), ] # Zygote will fail. @test_throws Union{MethodError,ErrorException,Zygote.CompileError} TuringBenchmarking.make_turing_suite( model; adbackends=ADBACKENDS, varinfo=varinfo, error_on_failed_backend=true, ) # Skip the failing ones. suite = TuringBenchmarking.make_turing_suite( model; adbackends=ADBACKENDS, varinfo=varinfo, error_on_failed_backend=false, ) results = run(suite, verbose=true) @testset "$adbackend" for (i, adbackend) in enumerate(ADBACKENDS) adbackend_string = "$(adbackend)" results_backend = results[@tagged adbackend_string] if adbackend isa AutoZygote # Zygote.jl should fail, i.e. return an empty suite. @test length(BenchmarkTools.leaves(results_backend)) == 0 else # Each AD backend should have two results. @test length(BenchmarkTools.leaves(results_backend)) == 2 # It should be under the "gradient" section. @test haskey(results_backend, "gradient") # It should have one tagged "linked" and one "standard" @test length(BenchmarkTools.leaves(results_backend[@tagged "linked"])) == 1 @test length(BenchmarkTools.leaves(results_backend[@tagged "standard"])) == 1 end end end end end
TuringBenchmarking
https://github.com/TuringLang/TuringBenchmarking.jl.git
[ "MIT" ]
0.5.4
62176f36b39144429a567d71ab98c72ee4617579
docs
2601
# TuringBenchmarking.jl [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://turinglang.github.io/TuringBenchmarking.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://turinglang.github.io/TuringBenchmarking.jl/dev/) [![Build Status](https://github.com/turinglang/TuringBenchmarking.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/turinglang/TuringBenchmarking.jl/actions/workflows/CI.yml?query=branch%3Amain) A quick and dirty way to compare different automatic-differentiation backends in Turing.jl. A typical workflow will look something like ``` julia using BenchmarkTools using Turing using TuringBenchmarking # Define your model. @model function your_model(...) # ... end # Create and run the benchmarking suite for Turing.jl. turing_suite = make_turing_suite(model; kwargs...) run(turing_suite) ``` Example output: ``` julia # Running `examples/item-response-model.jl` on my laptop. 2-element BenchmarkTools.BenchmarkGroup: tags: [] "linked" => 2-element BenchmarkTools.BenchmarkGroup: tags: [] "evaluation" => Trial(1.132 ms) "Turing.Essential.ReverseDiffAD{true}()" => Trial(1.598 ms) "Turing.Essential.ForwardDiffAD{40, true}()" => Trial(184.703 ms) "not_linked" => 2-element BenchmarkTools.BenchmarkGroup: tags: [] "evaluation" => Trial(1.131 ms) "Turing.Essential.ReverseDiffAD{true}()" => Trial(1.596 ms) "Turing.Essential.ForwardDiffAD{40, true}()" => Trial(182.864 ms) ``` `"linked"`/`"not_linked"` here refers to whether or not we're working in unconstrained space. And if you want to compare the result to Stan: ``` julia using BridgeStan, JSON # Tell `TuringBenchmarking` how to convert `model` into Stan data & model. function TuringBenchmaring.extract_stan_data(model::Turing.Model{typeof(your_model)}) # In the case where the Turing.jl and Stan models are identical in what they expect we can just do: return JSON.json(Dict(zip(string.(keys(model.args)), values(model.args)))) end TuringBenchmarking.stan_model_string(model::Turing.Model{typeof(your_model)}) = """ [HERE GOES YOUR STAN MODEL DEFINITION] """ # Create and run the benchmarking suite for Stan. stan_suite = make_stan_suite(model; kwargs...) run(stan_suite) ``` Example output: ``` julia # Running `examples/item-response-model.jl` on my laptop. 2-element BenchmarkTools.BenchmarkGroup: tags: [] "evaluation" => Trial(1.102 ms) "gradient" => Trial(1.256 ms) ``` Note that the benchmarks for Stan are only in unconstrained space.
TuringBenchmarking
https://github.com/TuringLang/TuringBenchmarking.jl.git
[ "MIT" ]
0.5.4
62176f36b39144429a567d71ab98c72ee4617579
docs
717
```@meta CurrentModule = TuringBenchmarking ``` # TuringBenchmarking.jl A useful package for benchmarking and checking [Turing.jl](https://github.com/TuringLang/Turing.jl) models. ## Example ```@repl using TuringBenchmarking, Turing @model function demo(x) s ~ InverseGamma(2, 3) m ~ Normal(0, sqrt(s)) for i in 1:length(x) x[i] ~ Normal(m, sqrt(s)) end end model = demo([1.5, 2.0]); benchmark_model( model; # Check correctness of computations check=true, # Automatic differentiation backends to check and benchmark adbackends=[:forwarddiff, :reversediff, :reversediff_compiled, :zygote] ) ``` ## API ```@index ``` ```@autodocs Modules = [TuringBenchmarking] ```
TuringBenchmarking
https://github.com/TuringLang/TuringBenchmarking.jl.git
[ "MIT" ]
1.0.1
137fe5b646de73455486043ba766490722f0546c
code
12377
__precompile__(true) """ API Tools package Copyright 2018-2019 Gandalf Software, Inc., Scott P. Jones Licensed under MIT License, see LICENSE.md (@def macro "stolen" from DiffEqBase.jl/src/util.jl :-) ) """ module ModuleInterfaceTools const debug = Ref(false) const showeval = Ref(false) const V6_COMPAT = VERSION < v"0.7-" const BIG_ENDIAN = (ENDIAN_BOM == 0x01020304) _stdout() = stdout _stderr() = stderr Base.parse(::Type{Expr}, args...; kwargs...) = Meta.parse(args...; kwargs...) export @api, V6_COMPAT, BIG_ENDIAN _api_def(name, definition) = quote macro $(esc(name))() esc($(Expr(:quote, definition))) end end const SymSet = Set{Symbol} abstract type AbstractAPI end struct TMP_API <: AbstractAPI mod::Module base::SymSet public::SymSet develop::SymSet public!::SymSet develop!::SymSet modules::SymSet TMP_API(mod::Module) = new(mod, SymSet(), SymSet(), SymSet(), SymSet(), SymSet(), SymSet()) end const SymList = Tuple{Vararg{Symbol}} struct API <: AbstractAPI mod::Module base::SymList public::SymList develop::SymList public!::SymList develop!::SymList modules::SymList end API(api::TMP_API) = API(api.mod, SymList(api.base), SymList(api.public), SymList(api.develop), SymList(api.public!), SymList(api.develop!), SymList(api.modules)) function Base.show(io::IO, api::AbstractAPI) println(io, "ModuleInterfaceTools.API: ", api.mod) for fld in (:base, :public, :develop, :public!, :develop!, :modules) syms = getfield(api, fld) isempty(syms) && continue print(fld, ":") for s in syms print(" ", s) end println() println() end end function m_eval(mod, expr) try showeval[] && println("m_eval($mod, $expr)") Core.eval(mod, expr) catch ex println("m_eval($mod, $expr)"); println(sprint(showerror, ex, catch_backtrace())) #rethrow(ex) end end """ @api <cmd> [<symbols>...] * freeze # use at end of module to freeze API * list <modules>... # list API(s) of given modules (or current if none given) * use <modules>... # use, without importing (i.e. can't extend) * use! <modules>... # use, without importing (i.e. can't extend), "export" * test <modules>... # using public and develop APIs, for testing purposes * extend <modules>... # for development, imports api & dev, use api & dev definitions * extend! <modules>... # for development, imports api & dev, use api & dev definitions, "export" * reexport <modules>... # export public definitions from those modules * base <names...> # Add functions from Base that are part of the API (extendible) * base! <names...> # Add functions from Base or define them if not in Base * public <names...> # Add other symbols that are part of the public API (structs, consts) * public! <names...> # Add functions that are part of the public API (extendible) * develop <names...> # Add other symbols that are part of the development API * develop! <names...> # Add functions that are part of the development API (extendible) * define! <names...> # Define functions to be extended, public API * defdev! <names...> # Define functions to be extended, develop API * modules <names...> # Add submodule names that are part of the API * path <paths...> # Add paths to LOAD_PATH * def <name> <expr> # Same as the @def macro, creates a macro with the given name """ macro api(cmd::Symbol) mod = __module__ cmd == :list ? _api_list(mod) : cmd == :freeze ? _api_freeze(mod) : cmd == :test ? _api_test(mod) : error("@api unrecognized command: $cmd") end function _api_display(mod, nam) if isdefined(mod, nam) && (api = m_eval(mod, nam)) !== nothing show(api); else println("Exported from $mod:") syms = names(mod) if !isempty(syms) print(fld, ":") for s in syms print(" ", s) end end end println() end _api_list(mod::Module) = (_api_display(mod, :__api__) ; _api_display(mod, :__tmp_api__)) function _api_freeze(mod::Module) ex = :( const __api__ = ModuleInterfaceTools.API(__tmp_api__) ; __tmp_api__ = nothing ) isdefined(mod, :__tmp_api__) && m_eval(mod, :( __tmp_api__ !== nothing ) ) && m_eval(mod, ex) nothing end function _api_path(curmod, exprs) for exp in exprs if isa(exp, Expr) || isa(exp, Symbol) str = m_eval(curmod, exp) elseif isa(exp, String) str = exp else error("@api path: syntax error $exp") end m_eval(curmod, :( push!(LOAD_PATH, $str) )) end nothing end const _cmduse = (:use, :use!, :test, :extend, :extend!, :reexport, :list) const _cmdadd = (:modules, :public, :develop, :public!, :develop!, :base, :base!, :define!, :defdev!) _ff(lst, val) = (ret = findfirst(isequal(val), lst); ret === nothing ? 0 : ret) function _add_def!(curmod, grp, exp) debug[] && print("_add_def!($curmod, $grp, $exp::$(typeof(exp))") if isa(exp, Symbol) sym = exp elseif isa(exp, AbstractString) sym = Symbol(exp) else error("@api $grp: syntax error $exp") end if grp == :base! && isdefined(Base, sym) m_eval(curmod, :(import Base.$sym )) m_eval(curmod, :(push!(__tmp_api__.base, $(QuoteNode(sym))))) return end m_eval(curmod, :(function $sym end)) m_eval(curmod, (grp == :defdev! ? :(push!(__tmp_api__.develop!, $(QuoteNode(sym)))) : :(push!(__tmp_api__.public!, $(QuoteNode(sym)))))) end function push_args!(symbols, lst, grp) for ex in lst if isa(ex, Expr) && ex.head == :tuple push_args!(symbols, ex.args) elseif isa(ex, Symbol) push!(symbols, ex) elseif isa(ex, AbstractString) push!(symbols, Symbol(ex)) else error("@api $grp: syntax error $ex") end end end """Initialize the temp api variable for this module""" _init_api(curmod) = isdefined(curmod, :__tmp_api__) || m_eval(curmod, :( global __tmp_api__ = ModuleInterfaceTools.TMP_API($curmod))) """Add symbols""" function _add_symbols(curmod, grp, exprs) if debug[] print("_add_symbols($curmod, $grp, $exprs)") isdefined(curmod, :__tmp_api__) && print(" => ", m_eval(curmod, :__tmp_api__)) println() end _init_api(curmod) if grp == :base! || grp == :define! || grp == :defdev! for ex in exprs if isa(ex, Expr) && ex.head == :tuple for sym in ex.args _add_def!(curmod, grp, sym) end else _add_def!(curmod, grp, ex) end end else symbols = SymSet() for ex in exprs if isa(ex, Expr) && ex.head == :tuple push_args!(symbols, ex.args, grp) elseif isa(ex, Symbol) push!(symbols, ex) elseif isa(ex, AbstractString) push!(symbols, Symbol(ex)) else error("@api $grp: syntax error $ex") end end if grp == :base for sym in symbols m_eval(curmod, :( import Base.$sym )) end end for sym in symbols m_eval(curmod, :( push!(__tmp_api__.$grp, $(QuoteNode(sym)) ))) end end debug[] && println("after add symbols: ", m_eval(curmod, :__tmp_api__)) nothing end has_api(mod) = isdefined(mod, :__api__) get_api(curmod, mod) = m_eval(curmod, :( $mod.__api__ )) function _api_extend(curmod, modules, cpy::Bool) for nam in modules mod = m_eval(curmod, nam) if has_api(mod) api = get_api(curmod, mod) _do_list(curmod, cpy, :import, Base, :Base, :base, api) _do_list(curmod, cpy, :import, mod, nam, :public!, api) _do_list(curmod, cpy, :import, mod, nam, :develop!, api) _do_list(curmod, cpy, :using, mod, nam, :public, api) _do_list(curmod, cpy, :using, mod, nam, :develop, api) else _do_list(curmod, cpy, :import, mod, nam, :public!, names(mod)) end end nothing end function _api_use(curmod, modules, cpy::Bool) for nam in modules mod = m_eval(curmod, nam) if has_api(mod) api = get_api(curmod, mod) _do_list(curmod, cpy, :using, mod, nam, :public, api) _do_list(curmod, cpy, :using, mod, nam, :public!, api) else _do_list(curmod, cpy, :using, mod, nam, :public!, names(mod)) end end nothing end function _api_reexport(curmod, modules) for nam in modules mod = m_eval(curmod, nam) if has_api(mod) api = get_api(curmod, mod) l1, l2, l3 = getfield(api, :modules), getfield(api, :public), getfield(api, :public!) if !(isempty(l1) && isempty(l2) && isempty(l3)) debug[] && println("Reexport: api = $api:$l1,$l2,$l3") m_eval(curmod, Expr( :export, l1..., l2..., l3... )) end end end nothing end function _api_list(curmod, modules) for nam in modules _api_list(m_eval(curmod, nam)) end nothing end _api_test(mod) = m_eval(mod, :(using Test)) function _api(curmod::Module, cmd::Symbol, exprs) cmd == :def && return _api_def(exprs...) cmd == :path && return _api_path(curmod, exprs) ind = _ff(_cmdadd, cmd) ind == 0 || return _add_symbols(curmod, cmd, exprs) _ff(_cmduse, cmd) == 0 && error("Syntax error: @api $cmd $exprs") debug[] && print("_api($curmod, $cmd, $exprs)") # Be nice and set up standard Test cmd == :test && _api_test(curmod) modules = SymSet() for ex in exprs if isa(ex, Expr) && ex.head == :tuple # Some of these might not just be modules # might have module(symbols, !syms, sym => other), need to add support for that for sym in ex.args if isa(sym, Symbol) push!(modules, sym) m_eval(curmod, :(import $sym)) else println("Not a symbol: $sym"); dump(sym); end end elseif isa(ex, Symbol) push!(modules, ex) m_eval(curmod, :(import $ex)) else error("@api $cmd: syntax error $ex") end end debug[] && println(" => $modules") cmd == :reexport && return _api_reexport(curmod, modules) cmd == :list && return _api_list(curmod, modules) cpy = (cmd == :use!) || (cmd == :extend!) cpy && _init_api(curmod) for nam in modules mod = m_eval(curmod, nam) if has_api(mod) api = get_api(curmod, mod) for sym in getfield(api, :modules) if isdefined(mod, sym) m_eval(curmod, :(using $nam.$sym)) cpy && m_eval(curmod, :( push!(__tmp_api__.modules, $(QuoteNode(sym)) ))) else println(_stderr(), "Warning: Exported symbol $sym is not defined in $nam") end end end end ((cmd == :use || cmd == :use!) ? _api_use(curmod, modules, cpy) : _api_extend(curmod, modules, cpy)) end function makecmd(cmd, nam, sym) (cmd == :using ? Expr(cmd, Expr(:(:), Expr(:., nam), Expr(:., sym))) : Expr(cmd, Expr(:., nam, sym))) end _do_list(curmod, cpy, cmd, mod, nam, grp, api::API) = _do_list(curmod, cpy, cmd, mod, nam, grp, getfield(api, grp)) function _do_list(curmod, cpy, cmd, mod, nam, grp, lst) debug[] && println("_do_list($curmod, $cpy, $cmd, $mod, $nam, $grp, $lst)") for sym in lst if isdefined(mod, sym) m_eval(curmod, makecmd(cmd, nam, sym)) cpy && m_eval(curmod, :( push!(__tmp_api__.$grp, $(QuoteNode(sym)) ))) else println(_stderr(), "Warning: Exported symbol $sym is not defined in $nam") end end end macro api(cmd::Symbol, exprs...) _api(__module__, cmd, exprs) end end # module ModuleInterfaceTools
ModuleInterfaceTools
https://github.com/JuliaString/ModuleInterfaceTools.jl.git
[ "MIT" ]
1.0.1
137fe5b646de73455486043ba766490722f0546c
code
568
# Copyright 2018 Gandalf Software, Inc., Scott P. Jones # Licensed under MIT License, see LICENSE.md using ModuleInterfaceTools @api test @api extend InternedStrings @api list InternedStrings @api def testcase begin myname = "Scott Paul Jones" end @testset "@api def <name> <expr>" begin @testcase @test myname == "Scott Paul Jones" end intern(x::Integer) = 1 intern(x::Float64) = 2 @testset "Function extension" begin @test typeof(intern("foo")) == String @test intern(1) == 1 @test intern(2.0) == 2 @test intern("th") == "th" end
ModuleInterfaceTools
https://github.com/JuliaString/ModuleInterfaceTools.jl.git
[ "MIT" ]
1.0.1
137fe5b646de73455486043ba766490722f0546c
docs
4988
# ModuleInterfaceTools | **Info** | **Windows** | **Linux & MacOS** | **Package Evaluator** | **CodeCov** | **Coveralls** | |:------------------:|:------------------:|:---------------------:|:-----------------:|:---------------------:|:-----------------:| | [![][license-img]][license-url] | [![][app-s-img]][app-s-url] | [![][travis-s-img]][travis-url] | [![][pkg-s-img]][pkg-s-url] | [![][codecov-img]][codecov-url] | [![][coverall-s-img]][coverall-s-url] | [![][gitter-img]][gitter-url] | [![][app-m-img]][app-m-url] | [![][travis-m-img]][travis-url] | [![][pkg-m-img]][pkg-m-url] | [![][codecov-img]][codecov-url] | [![][coverall-m-img]][coverall-m-url] [license-img]: http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat [license-url]: LICENSE.md [gitter-img]: https://badges.gitter.im/Join%20Chat.svg [gitter-url]: https://gitter.im/JuliaString/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge [travis-url]: https://travis-ci.org/JuliaString/ModuleInterfaceTools.jl [travis-s-img]: https://travis-ci.org/JuliaString/ModuleInterfaceTools.jl.svg [travis-m-img]: https://travis-ci.org/JuliaString/ModuleInterfaceTools.jl.svg?branch=master [app-s-url]: https://ci.appveyor.com/project/ScottPJones/moduleinterfacetools-jl [app-m-url]: https://ci.appveyor.com/project/ScottPJones/moduleinterfacetools-jl/branch/master [app-s-img]: https://ci.appveyor.com/api/projects/status/x13gh7y6id3fbmke?svg=true [app-m-img]: https://ci.appveyor.com/api/projects/status/x13gh7y6id3fbmke/branch/master?svg=true [pkg-s-url]: http://pkg.julialang.org/detail/ModuleInterfaceTools [pkg-m-url]: http://pkg.julialang.org/detail/ModuleInterfaceTools [pkg-s-img]: http://pkg.julialang.org/badges/ModuleInterfaceTools_0.6.svg [pkg-m-img]: http://pkg.julialang.org/badges/ModuleInterfaceTools_0.7.svg [codecov-url]: https://codecov.io/gh/JuliaString/ModuleInterfaceTools.jl [codecov-img]: https://codecov.io/gh/JuliaString/ModuleInterfaceTools.jl/branch/master/graph/badge.svg [coverall-s-url]: https://coveralls.io/github/JuliaString/ModuleInterfaceTools.jl [coverall-m-url]: https://coveralls.io/github/JuliaString/ModuleInterfaceTools.jl?branch=master [coverall-s-img]: https://coveralls.io/repos/github/JuliaString/ModuleInterfaceTools.jl/badge.svg [coverall-m-img]: https://coveralls.io/repos/github/JuliaString/ModuleInterfaceTools.jl/badge.svg?branch=master This provides a way of having different lists of names that you want to be part of a public API, as well as being part of a development API (i.e. functions that are not normally needed by users of a package, but *are* needed by a developer writing a package that depends on it). It also separates lists of names of functions, that can be extended, from names of types, modules, constants that cannot be extended, and functions that are not intended to be extended. This is a bit of a work-in-progress, I heartily welcome any suggestions for better syntax, better implementation, and extra functionality. ```julia @api <cmd> [<symbols>...] * @api list # display information about this module's API * @api freeze # use at end of module, to "freeze" API * @api list <modules>... # display information about one or more modules' API * @api use <modules>... # for normal use, i.e. `using` * @api test <modules>... # using public and develop symbols, for testing purposes * @api extend <modules>... # for development, imports `base`, `public`, and `develop` lists, * # uses `define_public`and `define_develop` lists * @api export <modules>... # export api symbols * @api base <names...> # Add functions from Base that are part of the API * @api public! <names...> # Add functions that are part of the public API * @api develop! <names...> # Add functions that are part of the development API * @api public <names...> # Add other symbols that are part of the public API (structs, consts) * @api develop <names...> # Add other symbols that are part of the development API * @api modules <names...> # Add submodule names that are part of the API * @api base! <names...> # Conditionally import functions from Base, or define them ``` This also includes the `@def` macro, renamed as `@api def` which I've found very useful! I would also like to add commands that add the functionality of `@reexport`, but instead of exporting the symbols found in the module(s), add them to either the public or develop list. (I had a thought that it could automatically add names that do not start with `_`, have a docstring, and are not exported, to the develop list, and all exported names would be added to the public list). Another thing I'd like to add is a way of using/importing a module, but having pairs of names, for renaming purposes, i.e. something like `@api use Foobar: icantreadthisname => i_cant_read_this_name` which would import the variable from Foobar, but with the name after the `=>`.
ModuleInterfaceTools
https://github.com/JuliaString/ModuleInterfaceTools.jl.git
[ "MIT" ]
0.1.1
5aa07104cc57e5aeaaa14891afcac7d0c95f28b7
code
248
using PyCall: pyimport_conda using Conda function installpypackage() try pyimport_conda("sklearn", "scikit-learn") catch try Conda.add("scikit-learn") catch println("scikit-learn failed to install") end end end installpypackage()
SyntheticDatasets
https://github.com/ATISLabs/SyntheticDatasets.jl.git
[ "MIT" ]
0.1.1
5aa07104cc57e5aeaaa14891afcac7d0c95f28b7
code
2471
### A Pluto.jl notebook ### # v0.11.9 using Markdown using InteractiveUtils # ╔═╡ 9cd14420-fd07-11ea-2bba-8965aca56d2d begin using StatsPlots, SyntheticDatasets end # ╔═╡ a3c9a100-fd07-11ea-078c-21cb7dc31f79 blobs = SyntheticDatasets.make_blobs(n_samples = 1000, n_features = 2, centers = [-1 1; -0.5 0.5], cluster_std = 0.25, center_box = (-2.0, 2.0), shuffle = true, random_state = nothing); # ╔═╡ 44690e10-fd09-11ea-36b8-f16615c1f284 gauss = SyntheticDatasets.make_gaussian_quantiles(mean =[10,1], cov = 2.0, n_samples = 1000, n_features = 2, n_classes = 3, shuffle = true, random_state = 2); # ╔═╡ e6227ef0-fdc0-11ea-1cde-e904cfe08d34 spirals = SyntheticDatasets.make_twospirals(n_samples=2000, start_degrees = 90, total_degrees = 570, noise =0.1); # ╔═╡ 514edde0-fdc1-11ea-2790-c59af5f94ae4 kernel = SyntheticDatasets.make_halfkernel(n_samples = 1000, minx = -20, r1 = 20, r2 = 35, noise = 3.0, ratio = 0.6); # ╔═╡ 776a58e0-fd0a-11ea-3a6a-4fac23cba2d9 blob = @df blobs scatter( :feature_1, :feature_2, group = :label, title = "Blobs" ) # ╔═╡ dcc15f70-fdc0-11ea-0ba7-5b09883ed63a gaussian_quantiles = @df gauss scatter( :feature_1, :feature_2, group = :label, title = "Gaussian Quantiles" ) # ╔═╡ e4b3acb0-fdc0-11ea-1e86-535f2541fc20 half_kernel = @df kernel scatter( :feature_1, :feature_2, group = :label, title = "Half Kernel" ) # ╔═╡ 96652d30-fdc1-11ea-30d6-790213f94220 two_spirals = @df spirals scatter( :feature_1, :feature_2, group = :label, title = "Two Spirals" ) # ╔═╡ aea9f1f0-fdc1-11ea-31db-2d8f810726b0 plot(two_spirals,half_kernel,gaussian_quantiles,blob) # ╔═╡ Cell order: # ╠═9cd14420-fd07-11ea-2bba-8965aca56d2d # ╠═a3c9a100-fd07-11ea-078c-21cb7dc31f79 # ╠═44690e10-fd09-11ea-36b8-f16615c1f284 # ╠═e6227ef0-fdc0-11ea-1cde-e904cfe08d34 # ╠═514edde0-fdc1-11ea-2790-c59af5f94ae4 # ╠═776a58e0-fd0a-11ea-3a6a-4fac23cba2d9 # ╠═dcc15f70-fdc0-11ea-0ba7-5b09883ed63a # ╠═e4b3acb0-fdc0-11ea-1e86-535f2541fc20 # ╠═96652d30-fdc1-11ea-30d6-790213f94220 # ╠═aea9f1f0-fdc1-11ea-31db-2d8f810726b0
SyntheticDatasets
https://github.com/ATISLabs/SyntheticDatasets.jl.git
[ "MIT" ]
0.1.1
5aa07104cc57e5aeaaa14891afcac7d0c95f28b7
code
1872
using StatsPlots, SyntheticDatasets blobs = SyntheticDatasets.make_blobs( n_samples = 1000, n_features = 2, centers = [-1 1; -0.5 0.5], cluster_std = 0.25, center_box = (-2.0, 2.0), shuffle = true, random_state = nothing); @df blobs scatter(:feature_1, :feature_2, group = :label, title = "Blobs") gauss = SyntheticDatasets.make_gaussian_quantiles( mean = [10,1], cov = 2.0, n_samples = 1000, n_features = 2, n_classes = 3, shuffle = true, random_state = 2); @df gauss scatter(:feature_1, :feature_2, group = :label, title = "Gaussian Quantiles") spirals = SyntheticDatasets.make_twospirals(n_samples = 2000, start_degrees = 90, total_degrees = 570, noise =0.1); @df spirals scatter(:feature_1, :feature_2, group = :label, title = "Two Spirals") kernel = SyntheticDatasets.make_halfkernel( n_samples = 1000, minx = -20, r1 = 20, r2 = 35, noise = 3.0, ratio = 0.6); @df kernel scatter(:feature_1, :feature_2, group = :label, title = "Half Kernel")
SyntheticDatasets
https://github.com/ATISLabs/SyntheticDatasets.jl.git
[ "MIT" ]
0.1.1
5aa07104cc57e5aeaaa14891afcac7d0c95f28b7
code
1126
module SyntheticDatasets using PyCall using DataFrames using Random const datasets = PyNULL() function __init__() copy!(datasets, pyimport("sklearn.datasets")) end include("sklearn.jl") include("matlab.jl") function convert(features::Array{T, 2}, labels::Array{D, 1})::DataFrame where {T <: Number, D <: Number} df = DataFrame() for i = 1:size(features)[2] df[!, Symbol("feature_$(i)")] = eltype(features)[] end df[!, :label] = eltype(labels)[] for label in unique(labels) for i in findall(r->r == label, labels) push!(df, (features[i, :]... , label)) end end return df end function convert(features::Array{T, 2}, labels::Array{D, 2})::DataFrame where {T <: Number, D <: Number} df = DataFrame() for i = 1:size(features)[2] df[!, Symbol("feature_$(i)")] = eltype(features)[] end for i = 1:size(labels)[2] df[!, Symbol("label_$(i)")] = eltype(labels)[] end for row in 1:size(features)[1] push!(df, (features[row, :]... , labels[row, :]...)) end return df end end # module
SyntheticDatasets
https://github.com/ATISLabs/SyntheticDatasets.jl.git