licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 3301 | """
```
struct InpStiffness{dim, N, TF, TI, TBool, Tch <: ConstraintHandler, GO, TInds <: AbstractVector{TI}, TMeta<:Metadata} <: StiffnessTopOptProblem{dim, TF}
inp_content::InpContent{dim, TF, N, TI}
geom_order::Type{Val{GO}}
ch::Tch
black::TBool
white::TBool
varind::TInds
metadata::TMeta
end
```
- `dim`: dimension of the problem
- `TF`: number type for computations and coordinates
- `N`: number of nodes in a cell of the grid
- `inp_content`: an instance of [`InpContent`](@ref) which stores all the information from the ``.inp` file.
- `geom_order`: a field equal to `Val{GO}` where `GO` is an integer representing the order of the finite elements. Linear elements have a `geom_order` of `Val{1}` and quadratic elements have a `geom_order` of `Val{2}`.
- `metadata`: Metadata having various cell-node-dof relationships
- `black`: a `BitVector` of length equal to the number of elements where `black[e]` is 1 iff the `e`^th element must be part of the final design
- `white`: a `BitVector` of length equal to the number of elements where `white[e]` is 1 iff the `e`^th element must not be part of the final design
- `varind`: an `AbstractVector{Int}` of length equal to the number of elements where `varind[e]` gives the index of the decision variable corresponding to element `e`. Because some elements can be fixed to be black or white, not every element has a decision variable associated.
"""
struct InpStiffness{dim, N, TF, TI, TBool, Tch <: ConstraintHandler, GO, TInds <: AbstractVector{TI}, TMeta<:Metadata} <: StiffnessTopOptProblem{dim, TF}
inp_content::InpContent{dim, TF, N, TI}
geom_order::Type{Val{GO}}
ch::Tch
black::TBool
white::TBool
varind::TInds
metadata::TMeta
end
"""
InpStiffness(filepath::AbstractString; keep_load_cells = false)
Imports stiffness problem from a .inp file, e.g. `InpStiffness("example.inp")`. The `keep_load_cells` keyword argument will enforce that any cell with a load applied on it is to be part of the final optimal design generated by topology optimization algorithms.
"""
function InpStiffness(filepath_with_ext::AbstractString; keep_load_cells = false)
problem = Parser.extract_inp(filepath_with_ext)
return InpStiffness(problem; keep_load_cells = keep_load_cells)
end
function InpStiffness(problem::Parser.InpContent; keep_load_cells = false)
ch = Parser.inp_to_ferrite(problem)
black, white = find_black_and_white(ch.dh)
metadata = Metadata(ch.dh)
geom_order = Ferrite.getorder(ch.dh.field_interpolations[1])
if keep_load_cells
for k in keys(problem.cloads)
for (c, f) in metadata.node_cells[k]
black[c] = 1
end
end
end
varind = find_varind(black, white)
return InpStiffness(problem, Val{geom_order}, ch, black, white, varind, metadata)
end
getE(p::InpStiffness) = p.inp_content.E
getν(p::InpStiffness) = p.inp_content.ν
nnodespercell(::InpStiffness{dim, N}) where {dim, N} = N
getgeomorder(p::InpStiffness{<:Any, <:Any, <:Any, <:Any, <:Any, <:Any, GO}) where {GO} = GO
getdensity(p::InpStiffness) = p.inp_content.density
getpressuredict(p::InpStiffness) = p.inp_content.dloads
getcloaddict(p::InpStiffness) = p.inp_content.cloads
getfacesets(p::InpStiffness) = p.inp_content.facesets
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 5451 | module Parser
using Ferrite, SparseArrays
export extract_inp, InpContent
"""
```
struct InpContent{dim, TF, N, TI}
node_coords::Vector{NTuple{dim,TF}}
celltype::String
cells::Vector{NTuple{N,TI}}
nodesets::Dict{String,Vector{TI}}
cellsets::Dict{String,Vector{TI}}
E::TF
ν::TF
density::TF
nodedbcs::Dict{String, Vector{Tuple{TI,TF}}}
cloads::Dict{Int, Vector{TF}}
facesets::Dict{String, Vector{Tuple{TI,TI}}}
dloads::Dict{String, TF}
end
```
- `node_coords`: a vector of node coordinates.
- `celltype`: a cell type code in the INP convention
- `cells`: a vector of cell connectivities
- `nodesets`: a dictionary mapping a node set name to a vector of node indices
- `cellsets`: a dictionary mapping a cell set name to a vector of cell indices
- `E`: Young's modulus
- `ν`: Poisson ratio
- `density`: physical density of the material
- `nodedbcs`: a dictionary mapping a node set name to a vector of tuples of type `Tuple{Int, Float64}` specifying a Dirichlet boundary condition on that node set. Each tuple in the vector specifies the local index of a constrained degree of freedom and its fixed value. A 3-dimensional field has 3 degrees of freedom per node for example. So the index can be 1, 2 or 3.
- `cloads`: a dictionary mapping a node index to a load vector on that node.
- `facesets`: a dictionary mapping a face set name to a vector of `Tuple{Int,Int}` tuples where each tuple is a face index. The first integer is the cell index where the face is and the second integer is the local face index in the cell according to the VTK convention.
- `dloads`: a dictionary of distributed loads mapping face set names to a normal traction load value.
"""
struct InpContent{dim, TF, N, TI}
node_coords::Vector{NTuple{dim,TF}}
celltype::String
cells::Vector{NTuple{N,TI}}
nodesets::Dict{String,Vector{TI}}
cellsets::Dict{String,Vector{TI}}
E::TF
ν::TF
density::TF
nodedbcs::Dict{String, Vector{Tuple{TI,TF}}}
cloads::Dict{Int, Vector{TF}}
facesets::Dict{String, Vector{Tuple{TI,TI}}}
dloads::Dict{String, TF}
end
const stopping_pattern = r"^\*[^\*]"
# Import
include(joinpath("FeatureExtractors", "extract_cells.jl"))
include(joinpath("FeatureExtractors", "extract_cload.jl"))
include(joinpath("FeatureExtractors", "extract_dbcs.jl"))
include(joinpath("FeatureExtractors", "extract_dload.jl"))
include(joinpath("FeatureExtractors", "extract_material.jl"))
include(joinpath("FeatureExtractors", "extract_nodes.jl"))
include(joinpath("FeatureExtractors", "extract_set.jl"))
include(joinpath("inp_to_ferrite.jl"))
function extract_inp(filepath_with_ext)
file = open(filepath_with_ext, "r")
local node_coords
local celltype, cells, offset
nodesets = Dict{String,Vector{Int}}()
cellsets = Dict{String,Vector{Int}}()
local E, mu
nodedbcs = Dict{String, Vector{Tuple{Int,Float64}}}()
cloads = Dict{Int, Vector{Float64}}()
facesets = Dict{String, Vector{Tuple{Int,Int}}}()
dloads = Dict{String, Float64}()
density = 0. # Should extract from the file
node_heading_pattern = r"\*Node\s*,\s*NSET\s*=\s*([^,]*)"
cell_heading_pattern = r"\*Element\s*,\s*TYPE\s*=\s*([^,]*)\s*,\s*ELSET\s*=\s*([^,]*)"
nodeset_heading_pattern = r"\*NSET\s*,\s*NSET\s*=\s*([^,]*)"
cellset_heading_pattern = r"\*ELSET\s*,\s*ELSET\s*=\s*([^,]*)"
material_heading_pattern = r"\*MATERIAL\s*,\s*NAME\s*=\s*([^\s]*)"
boundary_heading_pattern = r"\*BOUNDARY"
cload_heading_pattern = r"\*CLOAD"
dload_heading_pattern = r"\*DLOAD"
line = readline(file)
local dim
while !eof(file)
m = match(node_heading_pattern, line)
if m != nothing && m[1] == "Nall"
node_coords, line = extract_nodes(file)
dim = length(node_coords[1])
continue
end
m = match(cell_heading_pattern, line)
if m != nothing
celltype = String(m[1])
cellsetname = String(m[2])
cells, offset, line = extract_cells(file)
cellsets[cellsetname] = collect(1:length(cells))
continue
end
m = match(nodeset_heading_pattern, line)
if m != nothing
nodesetname = String(m[1])
line = extract_set!(nodesets, nodesetname, file)
continue
end
m = match(cellset_heading_pattern, line)
if m != nothing
cellsetname = String(m[1])
line = extract_set!(cellsets, cellsetname, file, offset)
continue
end
m = match(material_heading_pattern, line)
if m != nothing
material_name = String(m[1])
E, mu, line = extract_material(file)
continue
end
m = match(boundary_heading_pattern, line)
if m != nothing
line = extract_nodedbcs!(nodedbcs, file)
continue
end
m = match(cload_heading_pattern, line)
if m != nothing
line = extract_cload!(cloads, file, Val{dim})
continue
end
m = match(dload_heading_pattern, line)
if m != nothing
line = extract_dload!(dloads, facesets, file, Val{dim}, offset)
continue
end
line = readline(file)
end
close(file)
return InpContent(node_coords, celltype, cells, nodesets, cellsets, E, mu, density, nodedbcs, cloads, facesets, dloads)
end
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 4207 | function inpcelltype(::Type{CT}) where CT
if CT === Triangle
return "CPS3"
elseif CT === QuadraticTriangle
return "CPS6"
elseif CT === Tetrahedron
return "C3D4"
elseif CT === QuadraticTetrahedron
return "C3D10"
elseif CT === Quadrilateral
return "CPS4"
elseif CT === QuadraticQuadrilateral
return "CPS8"
elseif CT === Hexahedron
return "C3D8"
elseif CT === QuadraticHexahedron
return "C3D20"
else
return ""
end
end
function import_inp(filepath_with_ext)
problem = extract_inp(filepath_with_ext)
return inp_to_ferrite(problem)
end
function inp_to_ferrite(problem::InpContent)
_celltype = problem.celltype
if _celltype == "CPS3"
# Linear triangle
celltype = Triangle
geom_order = 1
refshape = RefTetrahedron
dim = 2
elseif _celltype == "CPS6"
# Quadratic triangle
celltype = QuadraticTriangle
geom_order = 2
refshape = RefTetrahedron
dim = 2
elseif _celltype == "C3D4"
# Linear tetrahedron
celltype = Tetrahedron
geom_order = 1
refshape = RefTetrahedron
dim = 3
elseif _celltype == "C3D10"
# Quadratic tetrahedron
celltype = QuadraticTetrahedron
geom_order = 2
refshape = RefTetrahedron
dim = 3
elseif _celltype == "CPS4"
# Linear quadrilateral
celltype = Quadrilateral
geom_order = 1
refshape = RefCube
dim = 2
elseif _celltype == "CPS8" || _celltype == "CPS8R"
# Quadratic quadrilateral
celltype = QuadraticQuadrilateral
geom_order = 2
refshape = RefCube
dim = 2
elseif _celltype == "C3D8" || _celltype == "C3D8R"
# Linear hexahedron
celltype = Hexahedron
geom_order = 1
refshape = RefCube
dim = 3
elseif _celltype == "C3D20" || _celltype == "C3D20R"
# Quadratic hexahedron
celltype = QuadraticHexahedron
geom_order = 2
refshape = RefCube
dim = 3
#elseif _celltype == "C3D6"
# Linear wedge
#elseif _celltype == "C3D15"
# Quadratic wedge
else
throw("Unsupported cell type $_celltype.")
end
cells = celltype.(problem.cells)
nodes = Node.(problem.node_coords)
grid = Grid(cells, nodes)
for k in keys(problem.cellsets)
grid.cellsets[k] = Set(problem.cellsets[k])
end
for k in keys(problem.nodesets)
grid.nodesets[k] = Set(problem.nodesets[k])
end
for k in keys(problem.facesets)
grid.facesets[k] = Set(problem.facesets[k])
end
# Define boundary faces
grid.boundary_matrix = extract_boundary_matrix(grid);
dh = DofHandler(grid)
# Isoparametric
field_interpolation = Lagrange{dim, refshape, geom_order}()
push!(dh, :u, dim, field_interpolation)
close!(dh)
ch = ConstraintHandler(dh)
for k in keys(problem.nodedbcs)
vec = problem.nodedbcs[k]
f(x, t) = [vec[i][2] for i in 1:length(vec)]
components = [vec[i][1] for i in 1:length(vec)]
dbc = Dirichlet(:u, getnodeset(grid, k), f, components)
add!(ch, dbc)
close!(ch)
update!(ch, 0.0)
end
return ch
end
function extract_boundary_matrix(grid::Grid{dim}) where dim
nfaces = length(Ferrite.faces(grid.cells[1]))
ncells = length(grid.cells)
countedbefore = Dict{NTuple{dim,Int},Bool}()
boundary_matrix = ones(Bool, nfaces, ncells) # Assume all are boundary faces
for (ci, cell) in enumerate(getcells(grid))
for (fi, face) in enumerate(Ferrite.faces(cell))
sface = Ferrite.sortface(face) # TODO: faces(cell) may as well just return the sorted list
token = Base.ht_keyindex2!(countedbefore, sface)
if token > 0 # haskey(countedbefore, sface)
boundary_matrix[fi, ci] = 0
else # distribute new dofs
Base._setindex!(countedbefore, true, sface, -token)# countedbefore[sface] = true, mark the face as counted
end
end
end
sparse(boundary_matrix)
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 1445 | function extract_cells(file, ::Type{TI}=Int) where TI
line = readline(file)
cell_idx_pattern = r"^(\d+)\s*,"
m = match(cell_idx_pattern, line)
first_cell_idx = parse(TI, m[1])
node_idx_pattern = r",\s*(\d+)"
local cells
nodes = TI[]
for m in eachmatch(node_idx_pattern, line)
push!(nodes, parse(TI, m[1]))
end
cells = [Tuple(nodes)]
nextline = _extract_cells!(cells, file, first_cell_idx)
return cells, first_cell_idx-TI(1), nextline
end
function _extract_cells!(cells::AbstractVector{NTuple{nnodes, TI}}, file, prev_cell_idx::TI) where {nnodes, TI}
cell_idx_pattern = r"^(\d+)\s*,"
node_idx_pattern = r",\s*(\d+)"
nodes = zeros(TI, nnodes)
line = readline(file)
m = match(stopping_pattern, line)
while m isa Nothing
m = match(cell_idx_pattern, line)
if m != nothing
cell_idx = parse(TI, m[1])
cell_idx == prev_cell_idx + TI(1) || throw("Cell indices are not consecutive.")
nodes .= zero(TI)
for (i, m) in enumerate(eachmatch(node_idx_pattern, line))
nodes[i] = parse(TI, m[1])
end
all(nodes .!= zero(TI)) || throw("Cell $cell_idx has fewer nodes than it should.")
push!(cells, Tuple(nodes))
prev_cell_idx = cell_idx
end
line = readline(file)
m = match(stopping_pattern, line)
end
return line
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 739 | function extract_cload!(cloads::Dict{TI, Vector{TF}}, file, ::Type{Val{dim}}) where {TI, TF, dim}
pattern = r"(\d+)\s*,\s*(\d)\s*,\s*(\-?\d+\.\d*E[\+\-]\d{2})"
line = readline(file)
m = match(stopping_pattern, line)
while m isa Nothing
m = match(pattern, line)
if m != nothing
nodeidx = parse(TI, m[1])
dof = parse(Int, m[2])
load = parse(TF, m[3])
if haskey(cloads, nodeidx)
cloads[nodeidx][dof] += load
else
cloads[nodeidx] = zeros(TF, dim)
cloads[nodeidx][dof] = load
end
end
line = readline(file)
m = match(stopping_pattern, line)
end
return line
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 2242 | function extract_nodedbcs!(node_dbcs::Dict{String, Vector{Tuple{TI,TF}}}, file) where {TI, TF}
pattern_zero = r"([^,]+)\s*,\s*(\d)"
pattern_range = r"([^,]+)\s*,\s*(\d)\s*,\s*(\d)"
pattern_other = r"([^,]+)\s*,\s*(\d)\s*,\s*(\d)\s*,\s*(\-?\d+\.\d*)"
line = readline(file)
m = match(stopping_pattern, line)
while m isa Nothing
m = match(pattern_other, line)
if m != nothing
nodesetname = m[1]
dof1 = parse(TI, m[2])
dof2 = parse(TI, m[3])
val = parse(TF, m[4])
if haskey(node_dbcs, nodesetname)
for dof in dof1:dof2
push!(node_dbcs[nodesetname], (dof, val))
end
else
node_dbcs[nodesetname] = [(dof1, val)]
for dof in dof1+1:dof2
push!(node_dbcs[nodesetname], (dof, val))
end
end
line = readline(file)
m = match(stopping_pattern, line)
continue
end
m = match(pattern_range, line)
if m != nothing
nodesetname = m[1]
dof1 = parse(TI, m[2])
dof2 = parse(TI, m[3])
if haskey(node_dbcs, nodesetname)
for dof in dof1:dof2
push!(node_dbcs[nodesetname], (dof, zero(TF)))
end
else
node_dbcs[nodesetname] = [(dof1, zero(TF))]
for dof in dof1+1:dof2
push!(node_dbcs[nodesetname], (dof, zero(TF)))
end
end
line = readline(file)
m = match(stopping_pattern, line)
continue
end
m = match(pattern_zero, line)
if m != nothing
nodesetname = m[1]
dof = parse(TI, m[2])
if haskey(node_dbcs, nodesetname)
push!(node_dbcs[nodesetname], (dof, zero(TF)))
else
node_dbcs[nodesetname] = [(dof, zero(TF))]
end
line = readline(file)
m = match(stopping_pattern, line)
continue
end
line = readline(file)
m = match(stopping_pattern, line)
end
return line
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 1362 | function extract_dload!(dloads::Dict{String, TF}, facesets::Dict{String, Vector{Tuple{TI,TI}}}, file, ::Type{Val{dim}}, offset::TI) where {TI, TF, dim}
pattern = r"(\d+)\s*,\s*P(\d+)\s*,\s*(\-?\d+\.\d*)"
dload_heading_pattern = r"\*DLOAD"
faceset_name = "DLOAD_SET_$(length(dloads)+1)"
facesets[faceset_name] = Tuple{TI,TI}[]
first = true
prevload = zero(TF)
load = zero(TF)
line = readline(file)
m = match(stopping_pattern, line)
while m isa Nothing
m = match(dload_heading_pattern, line)
if m != nothing
dloads[faceset_name] = load
first = true
faceset_name = "DLOAD_SET_$(length(dloads)+1)"
facesets[faceset_name] = Tuple{TI,TI}[]
end
m = match(pattern, line)
if m != nothing
cellidx = parse(TI, m[1]) - offset
faceidx = parse(TI, m[2])
load = parse(TF, m[3])
if !first && prevload != load
throw("Loads in the same DLOAD set are not equal.")
end
prevload = load
if first
first = false
end
push!(facesets[faceset_name], (cellidx, faceidx))
end
line = readline(file)
m = match(stopping_pattern, line)
end
dloads[faceset_name] = load
return line
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 529 | function extract_material(file, ::Type{TF}=Float64) where TF
elastic_heading_pattern = r"\*ELASTIC"
Emu_pattern = r"(-?\d+\.?\d*)\s*,\s*(-?\d+\.?\d*)"
line = readline(file)
m = match(elastic_heading_pattern, line)
if m != nothing
line = readline(file)
m = match(Emu_pattern, line)
if m != nothing
E = parse(TF, m[1])
mu = parse(TF, m[2])
end
else
throw("Material not supported.")
end
line = readline(file)
return E, mu, line
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 1786 | function extract_nodes(file, ::Type{TF}=Float64, ::Type{TI}=Int) where {TF, TI}
line = readline(file)
pattern = r"(\d+)\s*,\s*(-?\d+\.?\d*(e[-\+]?\d*)?)\s*,\s*(-?\d+\.?\d*(e[-\+]?\d*)?)\s*(,\s*(-?\d+\.?\d*(e[-\+]?\d*)?))?"
m = match(pattern, line)
first_node_idx = parse(TI, m[1])
first_node_idx == TI(1) || throw("First node index is not 1.")
if m[6] isa Nothing
node_coords = [(parse(TF, m[2]), parse(TF, m[4]))]
nextline = _extract_nodes!(node_coords, file, TI(1))
else
node_coords = [(parse(TF, m[2]), parse(TF, m[4]), parse(TF, m[7]))]
nextline = _extract_nodes!(node_coords, file, TI(1))
end
return node_coords, nextline
end
function _extract_nodes!(node_coords::AbstractVector{NTuple{dim, TF}}, file, prev_node_idx::TI) where {dim, TF, TI}
if dim === 2
pattern = r"(\d+)\s*,\s*(-?\d+\.?\d*(e[-\+]?\d*)?)\s*,\s*(-?\d+\.?\d*(e[-\+]?\d*)?)"
elseif dim === 3
pattern = r"(\d+)\s*,\s*(-?\d+\.?\d*(e[-\+]?\d*)?)\s*,\s*(-?\d+\.?\d*(e[-\+]?\d*)?)\s*,\s*(-?\d+\.?\d*(e[-\+]?\d*)?)"
else
error("Dimension is not supported.")
end
line = readline(file)
m = match(stopping_pattern, line)
while m isa Nothing
m = match(pattern, line)
if m != nothing
node_idx = parse(Int, m[1])
node_idx == prev_node_idx + TI(1) || throw("Node indices are not consecutive.")
if dim === 2
push!(node_coords, (parse(TF, m[2]), parse(TF, m[4])))
else
push!(node_coords, (parse(TF, m[2]), parse(TF, m[4]), parse(TF, m[6])))
end
prev_node_idx = node_idx
end
line = readline(file)
m = match(stopping_pattern, line)
end
return line
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 819 | function extract_set!(sets::Dict{String, TV}, setname::AbstractString, file, offset=0) where {TI, TV<:AbstractVector{TI}}
sets[setname] = Int[]
vector = sets[setname]
pattern_single = r"^(\d+)"
pattern_subset = r"^([^,]+)"
line = readline(file)
m = match(stopping_pattern, line)
while m isa Nothing
m = match(pattern_single, line)
if m != nothing
push!(vector, parse(TI, m[1])-offset)
else
m = match(pattern_subset, line)
if m != nothing
subsetname = String(m[1])
if haskey(sets, subsetname)
append!(vector, sets[subsetname])
end
end
end
line = readline(file)
m = match(stopping_pattern, line)
end
return line
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 816 | module Utilities
using ForwardDiff, Ferrite, IterativeSolvers, Requires
export AbstractPenalty,
PowerPenalty,
RationalPenalty,
HeavisideProjection,
SigmoidProjection,
ProjectedPenalty,
setpenalty,
TopOptTrace,
RaggedArray,
@debug,
compliance,
meandiag,
density,
find_black_and_white,
find_varind,
YoungsModulus,
PoissonRatio,
getpenalty,
getprevpenalty,
setpenalty!,
getsolver,
@params,
@forward_property
function getpenalty end
function getprevpenalty end
function setpenalty! end
getsolver(f) = f.solver
# Utilities
include("utils.jl")
# Trace definition
include("traces.jl")
# Penalty definitions
include("penalties.jl")
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 1183 | using ..CUDASupport
using ..TopOpt: @init_cuda, CPU, GPU
@init_cuda()
import ..TopOpt: whichdevice
using ..GPUUtils, ForwardDiff
abstract type AbstractGPUPenalty{T} <: AbstractPenalty{T} end
whichdevice(::AbstractCPUPenalty) = CPU()
whichdevice(::AbstractGPUPenalty) = GPU()
CUDAnative.pow(d::TD, p::AbstractFloat) where {T, TV, TD <: ForwardDiff.Dual{T, TV, 1}} = ForwardDiff.Dual{T}(CUDAnative.pow(d.value, p), p * d.partials[1] * CUDAnative.pow(d.value, p - 1))
struct GPUPowerPenalty{T} <: AbstractGPUPenalty{T}
p::T
end
@inline (P::GPUPowerPenalty)(x) = CUDAnative.pow(x, P.p)
struct GPURationalPenalty{T} <: AbstractGPUPenalty{T}
p::T
end
@inline (P::GPURationalPenalty)(x) = x / (1 + R.p * (1 - x))
struct GPUSinhPenalty{T} <: AbstractGPUPenalty{T}
p::T
end
@inline (P::GPUSinhPenalty)(x) = CUDAnative.sinh(R.p*x)/CUDAnative.sinh(R.p)
for T in (:PowerPenalty, :RationalPenalty)
fname = Symbol(:GPU, T)
@eval @inline CuArrays.cu(p::$T) = $fname(p.p)
end
CuArrays.cu(p::AbstractGPUPenalty) = p
@define_cu(IterativeSolvers.CGStateVariables, :u, :r, :c)
whichdevice(ra::RaggedArray) = whichdevice(ra.offsets)
@define_cu(RaggedArray, :offsets, :values)
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 1578 | abstract type AbstractPenalty{T} end
abstract type AbstractCPUPenalty{T} <: AbstractPenalty{T} end
abstract type AbstractProjection end
mutable struct PowerPenalty{T} <: AbstractCPUPenalty{T}
p::T
end
@inline (P::PowerPenalty)(x) = x^(P.p)
mutable struct RationalPenalty{T} <: AbstractCPUPenalty{T}
p::T
end
@inline (R::RationalPenalty)(x) = x / (1 + R.p * (1 - x))
mutable struct SinhPenalty{T} <: AbstractCPUPenalty{T}
p::T
end
@inline (R::SinhPenalty)(x) = sinh(R.p*x)/sinh(R.p)
struct ProjectedPenalty{T, Tpen <: AbstractPenalty{T}, Tproj} <: AbstractCPUPenalty{T}
penalty::Tpen
proj::Tproj
end
function ProjectedPenalty(penalty::AbstractPenalty{T}) where {T}
return ProjectedPenalty(penalty, HeavisideProjection(10*one(T)))
end
@inline (P::ProjectedPenalty)(x) = P.penalty(P.proj(x))
@forward_property ProjectedPenalty penalty
mutable struct HeavisideProjection{T} <: AbstractProjection
β::T
end
@inline (P::HeavisideProjection)(x) = 1 - exp(-P.β*x) + x * exp(-P.β)
mutable struct SigmoidProjection{T} <: AbstractProjection
β::T
end
@inline (P::SigmoidProjection)(x) = 1 / (1 + exp((P.β + 1) * (-x + 0.5)))
import Base: copy
copy(p::TP) where {TP<:AbstractPenalty} = TP(p.p)
copy(p::HeavisideProjection) = HeavisideProjection(p.β)
copy(p::SigmoidProjection) = SigmoidProjection(p.β)
copy(p::ProjectedPenalty) = ProjectedPenalty(copy(p.penalty), copy(p.proj))
function Utilities.setpenalty!(P::AbstractPenalty, p)
P.p = p
return P
end
function Utilities.setpenalty!(P::ProjectedPenalty, p)
P.penalty.p = p
return P
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 1076 | import Base: length, append!, sizehint!
@params struct TopOptTrace{T, TI <: Integer}
c_hist::AbstractVector{T}
v_hist::AbstractVector{T}
x_hist::AbstractVector{<:AbstractVector{T}}
add_hist::AbstractVector{TI}
rem_hist::AbstractVector{TI}
end
TopOptTrace{T, TI}() where {T, TI<:Integer} = TopOptTrace(Vector{T}(), Vector{T}(), Vector{Vector{T}}(), Vector{TI}(), Vector{TI}())
length(t::TopOptTrace) = length(t.v_hist)
topopt_trace_fields = fieldnames(TopOptTrace)
macro append_fields_t1_t2()
return esc(Expr(:block, [Expr(:call, :append!, :(t1.$f), :(t2.$f)) for f in topopt_trace_fields]...))
end
function append!(t1::TopOptTrace, t2::TopOptTrace)
@append_fields_t1_t2()
end
macro sizehint!_fields_t()
return esc(Expr(:block, [Expr(:call, :sizehint!, :(t.$f), :n) for f in topopt_trace_fields]...))
end
function sizehint!(t::TopOptTrace, n)
@sizehint!_fields_t()
return
end
function append!(ts::Vector{<:TopOptTrace})
sizehint!(ts[1], sum(length.(ts)))
for i in 2:length(ts)
append!(ts[1], ts[i])
end
return ts[1]
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 4939 | """
@params struct_def
A macro that changes all fields' types to type parameters while respecting the type bounds specificied by the user. For example:
```
@params struct MyType{T}
f1::T
f2::AbstractVector{T}
f3::AbstractVector{<:Real}
f4
end
```
will define:
```
struct MyType{T, T1 <: T, T2 <: AbstractVector{T}, T3 <: AbstractVector{<:Real}, T4}
f1::T1
f2::T1
f3::T3
f4::T4
end
```
The default non-parameteric constructor, e.g. `MyType(f1, f2, f3, f4)`, will always work if all the type parameters used in the type header are used in the field types. Using a type parameter in the type header that is not used in the field types such as:
```
struct MyType{T}
f1
f2
end
```
is not recommended.
"""
macro params(struct_expr)
header = struct_expr.args[2]
fields = @view struct_expr.args[3].args[2:2:end]
params = []
for i in 1:length(fields)
x = fields[i]
T = gensym()
if x isa Symbol
push!(params, T)
fields[i] = :($x::$T)
elseif x.head == :(::)
abstr = x.args[2]
var = x.args[1]
push!(params, :($T <: $abstr))
fields[i] = :($var::$T)
end
end
if header isa Symbol && length(params) > 0
struct_expr.args[2] = :($header{$(params...)})
elseif header.head == :curly
append!(struct_expr.args[2].args, params)
elseif header.head == :<:
if struct_expr.args[2].args[1] isa Symbol
name = struct_expr.args[2].args[1]
struct_expr.args[2].args[1] = :($name{$(params...)})
elseif header.head == :<: && struct_expr.args[2].args[1] isa Expr
append!(struct_expr.args[2].args[1].args, params)
else
error("Unidentified type definition.")
end
else
error("Unidentified type definition.")
end
esc(struct_expr)
end
struct RaggedArray{TO, TV}
offsets::TO
values::TV
end
function RaggedArray(vv::Vector{Vector{T}}) where T
offsets = [1; 1 .+ accumulate(+, collect(length(v) for v in vv))]
values = Vector{T}(undef, offsets[end]-1)
for (i, v) in enumerate(vv)
r = offsets[i]:offsets[i+1]-1
values[r] .= v
end
RaggedArray(offsets, values)
end
function Base.getindex(ra::RaggedArray, i)
@assert 1 <= i < length(ra.offsets)
r = ra.offsets[i]:ra.offsets[i+1]-1
@assert 1 <= r.start && r.stop <= length(ra.values)
return @view ra.values[r]
end
function Base.getindex(ra::RaggedArray, i, j)
@assert 1 <= j < length(ra.offsets)
r = ra.offsets[j]:ra.offsets[j+1]-1
@assert 1 <= i <= length(r)
return ra.values[r[i]]
end
function Base.setindex!(ra::RaggedArray, v, i, j)
@assert 1 <= j < length(ra.offsets)
r = ra.offsets[j]:ra.offsets[j+1]-1
@assert 1 <= i <= length(r)
ra.values[r[i]] = v
end
function find_varind(black, white, ::Type{TI}=Int) where TI
nel = length(black)
nel == length(white) || throw("Black and white vectors should be of the same length")
varind = zeros(TI, nel)
k = 1
for i in 1:nel
if !black[i] && !white[i]
varind[i] = k
k += 1
end
end
return varind
end
function find_black_and_white(dh)
black = falses(getncells(dh.grid))
white = falses(getncells(dh.grid))
if haskey(dh.grid.cellsets, "black")
for c in grid.cellsets["black"]
black[c] = true
end
end
if haskey(dh.grid.cellsets, "white")
for c in grid.cellsets["white"]
white[c] = true
end
end
return black, white
end
YoungsModulus(p) = getE(p)
PoissonRatio(p) = getν(p)
function compliance(Ke, u, dofs)
comp = zero(eltype(u))
for i in 1:length(dofs)
for j in 1:length(dofs)
comp += u[dofs[i]]*Ke[i,j]*u[dofs[j]]
end
end
comp
end
function meandiag(K::AbstractMatrix)
z = zero(eltype(K))
for i in 1:size(K, 1)
z += abs(K[i, i])
end
return z / size(K, 1)
end
density(var, xmin) = var*(1-xmin) + xmin
macro debug(expr)
return quote
if DEBUG[]
$(esc(expr))
end
end
end
@generated function _getproperty(c::T, ::Val{fallback}, ::Val{f}) where {T, fallback, f}
f ∈ fieldnames(T) && return :(getfield(c, $(QuoteNode(f))))
return :(getproperty(getfield(c, $(QuoteNode(fallback))), $(QuoteNode(f))))
end
@generated function _setproperty!(c::T, ::Val{fallback}, ::Val{f}, val) where {T, fallback, f}
f ∈ fieldnames(T) && return :(setfield!(c, $(QuoteNode(f)), val))
return :(setproperty!(getfield(c, $(QuoteNode(fallback))), $(QuoteNode(f)), val))
end
macro forward_property(T, field)
quote
Base.getproperty(c::$(esc(T)), f::Symbol) = _getproperty(c, Val($(QuoteNode(field))), Val(f))
Base.setproperty!(c::$(esc(T)), f::Symbol, val) = _setproperty!(c, Val($(QuoteNode(field))), Val(f), val)
end
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 856 | @testset "Element stiffness matrix" begin
# 1x1 linear quadrilateral cell
# Isoparameteric
# 2nd order quadrature rule
E = 1
nu = 0.3
k = [1/2-nu/6, 1/8+nu/8, -1/4-nu/12, -1/8+3*nu/8, -1/4+nu/12, -1/8-nu/8, nu/6, 1/8-3*nu/8]
Ke = E/(1-nu^2)*[k[1] k[2] k[3] k[4] k[5] k[6] k[7] k[8];
k[2] k[1] k[8] k[7] k[6] k[5] k[4] k[3];
k[3] k[8] k[1] k[6] k[7] k[4] k[5] k[2];
k[4] k[7] k[6] k[1] k[8] k[3] k[2] k[5];
k[5] k[6] k[7] k[8] k[1] k[2] k[3] k[4];
k[6] k[5] k[4] k[3] k[2] k[1] k[8] k[7];
k[7] k[4] k[5] k[2] k[3] k[8] k[1] k[6];
k[8] k[3] k[2] k[5] k[4] k[7] k[6] k[1]]
problem = HalfMBB((2,2), (1.,1.), 1., 0.3, 1.);
#@test ElementFEAInfo(problem).Kes[1] ≈ Ke
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 4201 | @testset "Metadata" begin
#HalfMBB - 2x2
# 7 8 9
# x--x--x x--x--x
# | | | |C3|C4|
# x--x--x x--x--x
# 4| 5| |6 |C1|C2|
# x--x--x x--x--x
# 1 2 3
#Node coords:
#Ferrite.Node{2,Float64}([0.0, 0.0])
#Ferrite.Node{2,Float64}([1.0, 0.0])
#Ferrite.Node{2,Float64}([2.0, 0.0])
#Ferrite.Node{2,Float64}([0.0, 1.0])
#Ferrite.Node{2,Float64}([1.0, 1.0])
#Ferrite.Node{2,Float64}([2.0, 1.0])
#Ferrite.Node{2,Float64}([0.0, 2.0])
#Ferrite.Node{2,Float64}([1.0, 2.0])
#Ferrite.Node{2,Float64}([2.0, 2.0])
#Cells
#Ferrite.Cell{2,4,4}((1, 2, 5, 4))
#Ferrite.Cell{2,4,4}((2, 3, 6, 5))
#Ferrite.Cell{2,4,4}((4, 5, 8, 7))
#Ferrite.Cell{2,4,4}((5, 6, 9, 8))
# 7 8 9
# x--x--x x--x--x
# | | | |C3|C4|
# x--x--x x--x--x
# 4| 5| |6 |C1|C2|
# x--x--x x--x--x
# 1 2 3
#Node dofs
##1 #2 #3 #4 #5 #6 #7 #8 #9
#1 3 9 7 5 11 15 13 17
#2 4 10 8 6 12 16 14 18
#Cell dofs
# #1 #2 #3 #4
# 1 3 7 5
# 2 4 8 6
# 3 9 5 11
# 4 10 6 12
# 5 11 13 17
# 6 12 14 18
# 7 5 15 13
# 8 6 16 14
problem = HalfMBB(Val{:Linear}, (2,2), (1.,1.), 1., 0.3, 1.);
coords = [(0.0, 0.0),
(1.0, 0.0),
(2.0, 0.0),
(0.0, 1.0),
(1.0, 1.0),
(2.0, 1.0),
(0.0, 2.0),
(1.0, 2.0),
(2.0, 2.0)]
for (i, node) in enumerate(problem.ch.dh.grid.nodes)
@test node.x.data == coords[i]
end
cells = [Ferrite.Cell{2,4,4}((1, 2, 5, 4)),
Ferrite.Cell{2,4,4}((2, 3, 6, 5)),
Ferrite.Cell{2,4,4}((4, 5, 8, 7)),
Ferrite.Cell{2,4,4}((5, 6, 9, 8))]
@test problem.ch.dh.grid.cells == cells
node_dofs = [1 3 9 7 5 11 15 13 17;
2 4 10 8 6 12 16 14 18]
@test problem.metadata.node_dofs == node_dofs
cell_dofs = [1 3 7 5;
2 4 8 6;
3 9 5 11;
4 10 6 12;
5 11 13 17;
6 12 14 18;
7 5 15 13;
8 6 16 14]
@test problem.metadata.cell_dofs == cell_dofs
dof_cells = problem.metadata.dof_cells
cell_dofs = problem.metadata.cell_dofs
for i in 1:Ferrite.ndofs(problem.ch.dh)
d_cells = dof_cells[i]
for c in d_cells
(cellid, localdof) = c
@test i == cell_dofs[localdof, cellid]
end
end
node_first_cells = [(1, 1),
(1, 2),
(2, 2),
(1, 4),
(1, 3),
(2, 3),
(3, 4),
(3, 3),
(4, 3)]
# First node is the first cell's first node.
@test problem.metadata.node_cells[1] == [(1, 1)]
# Second node is the first cell's second node,
# and the second cell's first node.
@test problem.metadata.node_cells[2] == [(1, 2), (2, 1)]
# Third node is the second cell's second node.
@test problem.metadata.node_cells[3] == [(2, 2)]
# Fourth node is the first cell's fourth node,
# and the third cell's first node.
@test problem.metadata.node_cells[4] == [(1, 4), (3, 1)]
# Fifth node is the first cell's third node, the second cell's fourth node,
# the third cell's second node and the fourth cell's first node.
@test problem.metadata.node_cells[5] == [(1, 3), (2, 4), (3, 2), (4, 1)]
# Sixth node is the second cell's third node,
# and the fourth cell's second node.
@test problem.metadata.node_cells[6] == [(2, 3), (4, 2)]
# Seventh node is the third cell's fourth node.
@test problem.metadata.node_cells[7] == [(3, 4)]
# Eigth node is the third cell's third node,
# and the fourth cell's fourth node.
@test problem.metadata.node_cells[8] == [(3, 3), (4, 4)]
# Ninth node is the fourth cell's third node.
@test problem.metadata.node_cells[9] == [(4, 3)]
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 5656 | using TopOptProblems
using Test
using Ferrite
using TopOptProblems: boundingbox
E = 1.0
ν = 0.3
force = 1.0
# Cantilever beam problem tests
@testset "Point load cantilever beam" begin
global E, ν, force
problem = PointLoadCantilever(Val{:Linear}, (160,40), (1.0,1.0), E, ν, force);
ncells = 160*40
@test problem.E == E
@test problem.ν == ν
@test problem.black == problem.white == falses(ncells)
@test problem.force == force
@test problem.force_dof == 161 * 21 * 2
@test problem.varind == 1:ncells
grid = problem.ch.dh.grid
@test length(grid.cells) == ncells
for i in 1:2, j in 1:2
@test boundingbox(grid)[i][j] ≈ problem.rect_grid.corners[i][j] atol = 1e-8
end
@test length(grid.boundary_matrix.nzval) == 2*160 + 2*40
for (c, f) in grid.facesets["bottom"]
@test f == 1
for n in grid.cells[c].nodes[[1,2]]
@test grid.nodes[n].x[2] == 0
end
end
for (c, f) in grid.facesets["right"]
@test f == 2
for n in grid.cells[c].nodes[[2,3]]
@test grid.nodes[n].x[1] ≈ 160 atol = 1e-8
end
end
for (c, f) in grid.facesets["top"]
@test f == 3
for n in grid.cells[c].nodes[[3,4]]
@test grid.nodes[n].x[2] ≈ 40 atol = 1e-8
end
end
for (c, f) in grid.facesets["left"]
@test f == 4
for n in grid.cells[c].nodes[[1,4]]
@test grid.nodes[n].x[1] == 0
end
end
@test sum(length, getindex.((grid.facesets,), ["bottom", "right", "top", "left"])) == 2*160 + 2*40
end
# Half MBB beam problem
@testset "Half MBB beam" begin
global E, ν, force
problem = HalfMBB(Val{:Linear}, (60,20), (1.,1.), E, ν, force);
ncells = 60*20
@test problem.E == E
@test problem.ν == ν
@test problem.black == problem.white == falses(ncells)
@test problem.force == force
@test problem.force_dof == (61 * 20 + 2) * 2
@test problem.varind == 1:ncells
grid = problem.ch.dh.grid
@test length(grid.cells) == ncells
for i in 1:2, j in 1:2
@test boundingbox(grid)[i][j] ≈ problem.rect_grid.corners[i][j] atol = 1e-8
end
@test length(grid.boundary_matrix.nzval) == 2*60 + 2*20
for (c, f) in grid.facesets["bottom"]
@test f == 1
for n in grid.cells[c].nodes[[1,2]]
@test grid.nodes[n].x[2] == 0
end
end
for (c, f) in grid.facesets["right"]
@test f == 2
for n in grid.cells[c].nodes[[2,3]]
@test grid.nodes[n].x[1] ≈ 60 atol = 1e-8
end
end
for (c, f) in grid.facesets["top"]
@test f == 3
for n in grid.cells[c].nodes[[3,4]]
@test grid.nodes[n].x[2] ≈ 20 atol = 1e-8
end
end
for (c, f) in grid.facesets["left"]
@test f == 4
for n in grid.cells[c].nodes[[1,4]]
@test grid.nodes[n].x[1] == 0
end
end
@test sum(length, getindex.((grid.facesets,), ["bottom", "right", "top", "left"])) == 2*60 + 2*20
end
# L-beam problem
@testset "L-beam" begin
global E, ν, force
problem = LBeam(Val{:Linear}, Float64, force=force);
ncells = 100*50 + 50*50
@test problem.E == E
@test problem.ν == ν
@test problem.black == problem.white == falses(ncells)
@test problem.force == force
@test problem.force_dof == (51 * 51 + 50 * 26) * 2
@test problem.varind == 1:ncells
grid = problem.ch.dh.grid
@test length(grid.cells) == ncells
corners = [[0.0, 0.0], [100.0, 100.0]]
for i in 1:2, j in 1:2
@test boundingbox(grid)[i][j] ≈ corners[i][j] atol = 1e-8
end
@test length(grid.boundary_matrix.nzval) == 100 * 2 + 50 * 4
for (c, f) in grid.facesets["right"]
@test f == 2
for n in grid.cells[c].nodes[[2,3]]
@test grid.nodes[n].x[1] ≈ 100 atol = 1e-8
end
end
for (c, f) in grid.facesets["top"]
@test f == 3
for n in grid.cells[c].nodes[[3,4]]
@test grid.nodes[n].x[2] ≈ 100 atol = 1e-8
end
end
@test sum(length, getindex.((grid.facesets,), ["right", "top"])) == 2*50
end
# Tie-beam problem
@testset "Tie-beam" begin
problem = TopOptProblems.TieBeam(Val{:Quadratic}, Float64);
ncells = 100
@test problem.E == 1
@test problem.ν == 0.3
@test problem.black == problem.white == falses(ncells)
@test problem.force == 1
@test problem.varind == 1:ncells
grid = problem.ch.dh.grid
@test length(grid.cells) == ncells
corners = [[0.0, 0.0], [32.0, 7.0]]
for i in 1:2, j in 1:2
@test boundingbox(grid)[i][j] ≈ corners[i][j] atol = 1e-8
end
@test length(grid.boundary_matrix.nzval) == 32 * 2 + 3 * 2 + 4 * 2
for (c, f) in grid.facesets["bottomload"]
@test f == 1
for n in grid.cells[c].nodes[[1,2]]
@test grid.nodes[n].x[2] == 0
end
end
for (c, f) in grid.facesets["rightload"]
@test f == 2
for n in grid.cells[c].nodes[[2,3]]
@test grid.nodes[n].x[1] ≈ 32 atol = 1e-8
end
end
for (c, f) in grid.facesets["toproller"]
@test f == 3
for n in grid.cells[c].nodes[[3,4]]
@test grid.nodes[n].x[2] ≈ 7 atol = 1e-8
end
end
for (c, f) in grid.facesets["leftfixed"]
@test f == 4
for n in grid.cells[c].nodes[[1,4]]
@test grid.nodes[n].x[1] == 0
end
end
@test sum(length, getindex.((grid.facesets,), ["bottomload", "rightload", "toproller", "leftfixed"])) == 8
@test Ferrite.getorder(problem.ch.dh.field_interpolations[1]) == 2
@test Ferrite.nnodes(grid.cells[1]) == 9
end
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | code | 122 | using Test, SafeTestsets
@safetestset "TopOptProblems.jl" begin
include("problems.jl")
include("metadata.jl")
end | TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MIT"
] | 0.1.1 | 10c04258080b378ecf9b81b6739206eca3f63535 | docs | 624 | # TopOptProblems
[](https://github.com/juliatopopt/TopOptProblems.jl/actions)
[](https://codecov.io/gh/juliatopopt/TopOptProblems.jl)
`TopOptProblems` is a collection of standard topology optimisation problems package written in [Julia](https://github.com/JuliaLang/julia).
## Installation
To install `TopOptProblems.jl`, run:
```julia
using Pkg
pkg"add TopOptProblems"
```
To load the package, use:
```julia
using TopOptProblems
```
| TopOptProblems | https://github.com/JuliaTopOpt/TopOptProblems.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 488 | using Documenter, SolverBenchmark
makedocs(
modules = [SolverBenchmark],
checkdocs = :exports,
doctest = true,
linkcheck = true,
format = Documenter.HTML(
assets = ["assets/style.css"],
prettyurls = get(ENV, "CI", nothing) == "true",
),
sitename = "SolverBenchmark.jl",
pages = ["Home" => "index.md", "Reference" => "reference.md"],
)
deploydocs(
repo = "github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git",
push_preview = true,
devbranch = "main",
)
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 580 | # need to have done, e.g.,
# results = PkgBenchmark.benchmarkpkg("Krylov", script="benchmark/cg_bmark.jl")
# optional: customize plot appearance
using Plots
pyplot() # recommended!
using PlotThemes
theme(:juno)
common_plot_args = Dict{Symbol, Any}(
:linewidth => 2,
:alpha => 0.75,
:titlefontsize => 8,
:legendfontsize => 8,
:xtickfontsize => 6,
:ytickfontsize => 6,
:guidefontsize => 8,
)
Plots.default(; common_plot_args...)
# process benchmark results and post gist
p = profile_solvers(results)
posted_gist = to_gist(results, p)
println(posted_gist.html_url)
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 771 | module SolverBenchmark
using Logging
using Printf
using ColorSchemes
using DataFrames
using JLD2
using LaTeXStrings
using PrettyTables
using NLPModels
using SolverCore
# reexport PrettyTable table formats for convenience
export unicode,
ascii_dots,
ascii_rounded,
borderless,
compact,
tf_markdown,
matrix,
mysql,
simple,
unicode_rounded
# Tables
include("formats.jl")
include("latex_formats.jl")
include("highlighters.jl")
include("join.jl")
# Benchmark
include("run_solver.jl")
include("bmark_solvers.jl")
include("bmark_utils.jl")
# deprecated, remove in a future version
include("formatting.jl")
include("latex_tables.jl")
include("markdown_tables.jl")
# Profiles
include("profiles.jl")
# PkgBenchmark benchmarks
include("pkgbmark.jl")
end
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 730 | export bmark_solvers
"""
bmark_solvers(solvers :: Dict{Symbol,Any}, args...; kwargs...)
Run a set of solvers on a set of problems.
#### Arguments
* `solvers`: a dictionary of solvers to which each problem should be passed
* other positional arguments accepted by `solve_problems`, except for a solver name
#### Keyword arguments
Any keyword argument accepted by `solve_problems`
#### Return value
A Dict{Symbol, AbstractExecutionStats} of statistics.
"""
function bmark_solvers(solvers::Dict{Symbol, <:Any}, args...; kwargs...)
stats = Dict{Symbol, DataFrame}()
for (name, solver) in solvers
@info "running solver $name"
stats[name] = solve_problems(solver, name, args...; kwargs...)
end
return stats
end
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 4013 | export save_stats, load_stats, count_unique, quick_summary
"""
save_stats(stats, filename; kwargs...)
Write the benchmark statistics `stats` to a file named `filename`.
#### Arguments
* `stats::Dict{Symbol,DataFrame}`: benchmark statistics such as returned by `bmark_solvers`
* `filename::AbstractString`: the output file name.
#### Keyword arguments
* `force::Bool=false`: whether to overwrite `filename` if it already exists
* `key::String="stats"`: the key under which the data can be read from `filename` later.
#### Return value
This method returns an error if `filename` exists and `force==false`.
On success, it returns the value of `jldopen(filename, "w")`.
"""
function save_stats(
stats::Dict{Symbol, DataFrame},
filename::AbstractString;
force::Bool = false,
key::String = "stats",
)
isfile(filename) && !force && error("$filename already exists; use `force=true` to overwrite")
jldopen(filename, "w") do file
file[key] = stats
end
end
"""
stats = load_stats(filename; kwargs...)
#### Arguments
* `filename::AbstractString`: the input file name.
#### Keyword arguments
* `key::String="stats"`: the key under which the data can be read in `filename`.
The key should be the same as the one used when `save_stats` was called.
#### Return value
A `Dict{Symbol,DataFrame}` containing the statistics stored in file `filename`.
The user should `import DataFrames` before calling `load_stats`.
"""
function load_stats(filename::AbstractString; key::String = "stats")
jldopen(filename) do file
file[key]
end
end
@doc raw"""
vals = count_unique(X)
Count the number of occurrences of each value in `X`.
#### Arguments
* `X`: an iterable.
#### Return value
A `Dict{eltype(X),Int}` whose keys are the unique elements in `X` and
values are their number of occurrences.
Example: the snippet
stats = load_stats("mystats.jld2")
for solver ∈ keys(stats)
@info "$solver statuses" count_unique(stats[solver].status)
end
displays the number of occurrences of each final status for each solver in `stats`.
"""
function count_unique(X)
vals = Dict{eltype(X), Int}()
for x ∈ X
vals[x] = x ∈ keys(vals) ? (vals[x] + 1) : 1
end
vals
end
"""
statuses, avgs = quick_summary(stats; kwargs...)
Call `count_unique` and compute a few average measures for each solver in `stats`.
#### Arguments
* `stats::Dict{Symbol,DataFrame}`: benchmark statistics such as returned by `bmark_solvers`.
#### Keyword arguments
* `cols::Vector{Symbol}`: symbols indicating `DataFrame` columns in solver statistics for which we
compute averages. Default: `[:iter, :neval_obj, :neval_grad, :neval_hess, :neval_hprod, :elapsed_time]`.
#### Return value
* `statuses::Dict{Symbol,Dict{Symbol,Int}}`: a dictionary of number of occurrences of each final
status for each solver in `stats`. Each value in this dictionary is returned by `count_unique`
* `avgs::Dict{Symbol,Dict{Symbol,Float64}}`: a dictionary that contains averages of performance measures
across all problems for each solver. Each `avgs[solver]` is a `Dict{Symbol,Float64}` where the measures
are those given in the keyword argument `cols` and values are averages of those measures across all problems.
Example: the snippet
statuses, avgs = quick_summary(stats)
for solver ∈ keys(stats)
@info "statistics for" solver statuses[solver] avgs[solver]
end
displays quick summary and averages for each solver.
"""
function quick_summary(
stats::Dict{Symbol, DataFrame};
cols::Vector{Symbol} = [:iter, :neval_obj, :neval_grad, :neval_hess, :neval_hprod, :elapsed_time],
)
nproblems = size(stats[first(keys(stats))], 1)
statuses = Dict{Symbol, Dict{Symbol, Int}}()
avgs = Dict{Symbol, Dict{Symbol, Float64}}()
for solver ∈ keys(stats)
statuses[solver] = count_unique(stats[solver].status)
avgs[solver] = Dict{Symbol, Float64}()
for col ∈ cols
avgs[solver][col] = sum(stats[solver][!, col]) / nproblems
end
end
statuses, avgs
end
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 3157 | export pretty_stats
const default_formatters =
Dict(AbstractFloat => "%9.2e", Signed => "%6d", AbstractString => "%15s", Symbol => "%15s")
abstract_supertype(T::DataType) = T == Symbol ? T : supertype(T)
abstract_supertype(::Type{<:AbstractFloat}) = AbstractFloat
abstract_supertype(::Type{<:AbstractString}) = AbstractString
"""
pretty_stats(df; kwargs...)
Pretty-print a DataFrame using PrettyTables.
### Arguments
* `io::IO`: an IO stream to which the table will be output (default: `stdout`);
* `df::DataFrame`: the DataFrame to be displayed. If only certain columns of `df` should be displayed,
they should be extracted explicitly, e.g., by passing `df[!, [:col1, :col2, :col3]]`.
### Keyword Arguments
* `col_formatters::Dict{Symbol, String}`: a Dict of format strings to apply to selected columns of `df`.
The keys of `col_formatters` should be symbols, so that specific formatting can be applied to specific columns.
By default, `default_formatters` is used, based on the column type.
If PrettyTables formatters are passed using the `formatters` keyword argument, they are applied
before those in `col_formatters`.
* `hdr_override::Dict{Symbol, String}`: a Dict of those headers that should be displayed differently than
simply according to the column name (default: empty). Example: `Dict(:col1 => "column 1")`.
All other keyword arguments are passed directly to `pretty_table`.
In particular,
* use `tf=tf_markdown` to display a Markdown table;
* do not use this function for LaTeX output; use `pretty_latex_stats` instead;
* any PrettyTables highlighters can be given, but see the predefined `passfail_highlighter` and `gradient_highlighter`.
"""
function pretty_stats(
io::IO,
df::DataFrame;
col_formatters = default_formatters,
hdr_override::Dict{Symbol, String} = Dict{Symbol, String}(),
kwargs...,
)
kwargs = Dict(kwargs)
pt_formatters = []
# if PrettyTable formatters are given, apply those first
if :formatters ∈ keys(kwargs)
kw_fmts = pop!(kwargs, :formatters)
if typeof(kw_fmts) <: Tuple
for fmt ∈ kw_fmts
push!(pt_formatters, fmt)
end
else
push!(pt_formatters, kw_fmts)
end
end
# merge default and user-specified column formatters
df_names = propertynames(df)
for col = 1:length(df_names)
name = df_names[col]
if name ∈ keys(col_formatters)
push!(pt_formatters, ft_printf(col_formatters[name], col))
else
typ = Missings.nonmissingtype(eltype(df[!, name]))
used_format_type = abstract_supertype(typ)
push!(pt_formatters, ft_printf(default_formatters[used_format_type], col))
end
end
# set header
header = String[]
for name ∈ df_names
push!(header, name ∈ keys(hdr_override) ? hdr_override[name] : String(name))
end
# set nosubheader=true to avoid printing the column data types
:nosubheader ∈ keys(kwargs) && pop!(kwargs, :nosubheader)
# pretty_table expects a tuple of formatters
pretty_table(io, df, header = header, formatters = tuple(pt_formatters...); kwargs...)
end
pretty_stats(df::DataFrame; kwargs...) = pretty_stats(stdout, df; kwargs...)
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 1954 | """
format_table(df, formatter, kwargs...)
Format the data frame into a table using `formatter`. Used by other table functions.
Inputs:
- `df::DataFrame`: Dataframe of a solver. Each row is a problem.
- `formatter::Function`: A function that formats its input according to its type. See `LTXformat` or `MDformat` for examples.
Keyword arguments:
- `cols::Array{Symbol}`: Which columns of the `df`. Defaults to using all columns;
- `ignore_missing_cols::Bool`: If `true`, filters out the columns in `cols` that don't
exist in the data frame. Useful when creating tables for solvers in a loop where one
solver has a column the other doesn't. If `false`, throws `BoundsError` in that
situation.
- `fmt_override::Dict{Symbol,Function}`: Overrides format for a specific column, such as
fmt_override=Dict(:name => x->@sprintf("**%-10s**", x))
- `hdr_override::Dict{Symbol,String}`: Overrides header names, such as `hdr_override=Dict(:name => "Name")`.
Outputs:
- `header::Array{String,1}`: header vector.
- `table::Array{String,2}`: formatted table.
"""
function format_table(
df::DataFrame,
formatter::Function;
cols::Array{Symbol, 1} = propertynames(df),
ignore_missing_cols::Bool = false,
fmt_override::Dict{Symbol, F} = Dict{Symbol, Function}(),
hdr_override::Dict{Symbol, String} = Dict{Symbol, String}(),
) where {F <: Function}
if ignore_missing_cols
cols = filter(c -> hasproperty(df, c), cols)
elseif !all(hasproperty(df, c) for c in cols)
missing_cols = setdiff(cols, propertynames(df))
@error("There are no columns `" * join(missing_cols, ", ") * "` in dataframe")
throw(BoundsError)
end
string_cols =
[map(haskey(fmt_override, col) ? fmt_override[col] : formatter, df[!, col]) for col in cols]
table = hcat(string_cols...)
header = [haskey(hdr_override, c) ? hdr_override[c] : formatter(c) for c in cols]
return header, table
end
Base.@deprecate format_table pretty_stats false
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 2395 | export passfail_highlighter, passfail_latex_highlighter, gradient_highlighter
# helper function
function find_failure_ids(df::DataFrame)
hasproperty(df, :status) ? df[(df.status .!= :first_order) .& (df.status .!= :unbounded), :].id :
Int[]
end
"""
hl = passfail_highlighter(df, c=crayon"bold red")
A PrettyTables highlighter that colors failures in bold red by default.
### Input Arguments
* `df::DataFrame` dataframe to which the highlighter will be applied.
`df` must have the `id` column.
If `df` has the `:status` property, the highlighter will be applied to rows for which
`df.status` indicates a failure. A failure is any status different from `:first_order`
or `:unbounded`.
"""
function passfail_highlighter(df::DataFrame, c = crayon"bold red")
# extract failure ids
failure_id = find_failure_ids(df)
Highlighter((data, i, j) -> i ∈ failure_id, c)
end
"""
hl = passfail_latex_highlighter(df)
A PrettyTables LaTeX highlighter that colors failures in bold red by default.
See the documentation of `passfail_highlighter` for more information.
"""
function passfail_latex_highlighter(df::DataFrame, c = "cellcolor{red}")
# NB: not obvious how to also use bold as \textbf{\(1.0e-03\)} will not appear in bold
failure_id = find_failure_ids(df)
LatexHighlighter((data, i, j) -> i ∈ failure_id, c)
end
"""
hl = gradient_highlighter(df, col; cmap=:coolwarm)
A PrettyTables highlighter the applies a color gradient to the values in columns given by `cols`.
### Input Arguments
* `df::DataFrame` dataframe to which the highlighter will be applied;
* `col::Symbol` a symbol to indicate which column the highlighter will be applied to.
### Keyword Arguments
* `cmap::Symbol` color scheme to use, from ColorSchemes.
"""
function gradient_highlighter(df::DataFrame, col::Symbol; cmap::Symbol = :coolwarm)
# inspired from https://ronisbr.github.io/PrettyTables.jl/stable/man/text_examples
min_data = minimum(df[!, col])
max_data = maximum(df[!, col])
colidx = findfirst(x -> x == col, names(df))
Highlighter(
(data, i, j) -> true,
(h, data, i, j) -> begin
color = get(ColorSchemes.colorschemes[cmap], data[i, colidx], (min_data, max_data))
return Crayon(
foreground = (
round(Int, color.r * 255),
round(Int, color.g * 255),
round(Int, color.b * 255),
),
)
end,
)
end
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 1942 | import Base.join
export join
"""
df = join(stats, cols; kwargs...)
Join a dictionary of DataFrames given by `stats`. Column `:id` is required in all
DataFrames. The resulting DataFrame will have column `id` and all columns `cols` for
each solver.
Inputs:
- `stats::Dict{Symbol,DataFrame}`: Dictionary of DataFrames per solver. Each key is a different solver;
- `cols::Array{Symbol}`: Which columns of the DataFrames.
Keyword arguments:
- `invariant_cols::Array{Symbol,1}`: Invariant columns to be added, i.e., columns that don't change depending on the solver (such as name of problem, number of variables, etc.);
- `hdr_override::Dict{Symbol,String}`: Override header names.
Output:
- `df::DataFrame`: Resulting dataframe.
"""
function join(
stats::Dict{Symbol, DataFrame},
cols::Array{Symbol, 1};
invariant_cols::Array{Symbol, 1} = Symbol[],
hdr_override::Dict{Symbol, String} = Dict{Symbol, String}(),
)
length(cols) == 0 && error("cols can't be empty")
if !all(:id in propertynames(df) for (s, df) in stats)
error("Missing column :id in some DataFrame")
elseif !all(setdiff(cols, propertynames(df)) == [] for (s, df) in stats)
error("Not all DataFrames have all columns given by `cols`")
end
if :id in cols
deleteat!(cols, findall(cols .== :id))
end
if :id in invariant_cols
deleteat!(cols, findall(cols .== :id))
end
invariant_cols = [:id; invariant_cols]
cols = setdiff(cols, invariant_cols)
if length(cols) == 0
error("All columns are invariant")
end
cols = [:id; cols]
s = first(stats)[1]
df = stats[s][:, invariant_cols]
rename_f(c, s) = begin
symbol_c = Symbol(c)
symbol_c in invariant_cols && return symbol_c
sc = haskey(hdr_override, symbol_c) ? hdr_override[symbol_c] : c
Symbol(sc * "_$s")
end
for (s, dfs) in stats
df = innerjoin(df, rename(c -> rename_f(c, s), dfs[!, cols]), on = :id, makeunique = true)
end
return df
end
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 5618 | export pretty_latex_stats
StringOrLaTeXString = Union{String, LaTeXString}
"""
safe_latex_Signed_col(col::Integer)
Generate a PrettyTables LaTeX formatter for signed integers.
"""
function safe_latex_Signed_col(col::Integer)
return (s, i, j) -> begin
j !== col && return s
return ismissing(s) ? " "^10 : safe_latex_Signed(s)
end
end
"""
safe_latex_Signed(s::AbstractString)
Format the string representation of signed integers for output in a LaTeX table.
Encloses `s` in `\\(` and `\\)`.
"""
safe_latex_Signed(s::AbstractString) = LaTeXString("\\(" * string(s) * "\\)")
"""
safe_latex_AbstractString_col(col:::Integer)
Generate a PrettyTables LaTeX formatter for strings.
Replaces `_` with `\\_`.
"""
function safe_latex_AbstractString_col(col::Integer)
return (s, i, j) -> begin
j !== col && return s
ismissing(s) ? " " : safe_latex_AbstractString(s)
end
end
"""
safe_latex_AbstractString(s::AbstractString)
Format a string for output in a LaTeX table.
Escapes underscores.
"""
function safe_latex_AbstractString(s::AbstractString)
if occursin("_", s)
LaTeXString(replace(s, "_" => "\\_"))
else
LaTeXString(s)
end
end
"""
safe_latex_Symbol_col(col::Integer)
Generate a PrettyTables LaTeX formatter for symbols.
"""
function safe_latex_Symbol_col(col::Integer)
return (s, i, j) -> begin
j !== col && return s
safe_latex_Symbol(s)
end
end
"""
safe_latex_Symbol(s)
Format a symbol for output in a LaTeX table.
Calls `safe_latex_AbstractString(string(s))`.
"""
safe_latex_Symbol(s) = safe_latex_AbstractString(string(s))
"""
safe_latex_AbstractFloat_col(col::Integer)
Generate a PrettyTables LaTeX formatter for real numbers.
"""
function safe_latex_AbstractFloat_col(col::Integer)
# by this point, the table value should already have been converted to a string
return (s, i, j) -> begin
j != col && return s
return ismissing(s) ? " "^17 : safe_latex_AbstractFloat(s)
end
end
"""
safe_latex_AbstractFloat(s::AbstractString)
Format the string representation of floats for output in a LaTeX table.
Replaces infinite values with the `\\infty` LaTeX sequence.
If the float is represented in exponential notation, the mantissa and exponent
are wrapped in math delimiters.
Otherwise, the entire float is wrapped in math delimiters.
"""
function safe_latex_AbstractFloat(s::AbstractString)
strip(s) == "Inf" && return LaTeXString("\\(\\infty\\)")
strip(s) == "-Inf" && return LaTeXString("\\(-\\infty\\)")
strip(s) == "NaN" && return s
if occursin('e', s)
mantissa, exponent = split(s, 'e')
return LaTeXString("\\(" * string(mantissa) * "\\)e\\(" * string(exponent) * "\\)")
else
return LaTeXString("\\(" * string(s) * "\\)")
end
end
safe_latex_formatters = Dict(
AbstractFloat => safe_latex_AbstractFloat_col,
Signed => safe_latex_Signed_col,
AbstractString => safe_latex_AbstractString_col,
Symbol => safe_latex_Symbol_col,
)
"""
pretty_latex_stats(df; kwargs...)
Pretty-print a DataFrame as a LaTeX longtable using PrettyTables.
See the `pretty_stats` documentation. Specific settings in this method are:
* the backend is set to `:latex`;
* the table type is set to `:longtable`;
* highlighters, if any, should be LaTeX highlighters.
See the PrettyTables documentation for more information.
"""
function pretty_latex_stats(
io::IO,
df::DataFrame;
col_formatters = default_formatters,
hdr_override::Dict{Symbol, String} = Dict{Symbol, String}(),
kwargs...,
)
kwargs = Dict(kwargs)
pt_formatters = []
# if PrettyTable formatters are given, apply those first
if :formatters ∈ keys(kwargs)
kw_fmts = pop!(kwargs, :formatters)
if typeof(kw_fmts) <: Tuple
for fmt ∈ kw_fmts
push!(pt_formatters, fmt)
end
else
push!(pt_formatters, kw_fmts)
end
end
# merge default and user-specified column formatters
df_names = propertynames(df)
for col = 1:length(df_names)
name = df_names[col]
typ = Missings.nonmissingtype(eltype(df[!, name]))
styp = supertype(typ)
if name ∈ keys(col_formatters)
push!(pt_formatters, ft_printf(col_formatters[name], col))
else
# be careful because supertype(Symbol) = Any
used_format_type = abstract_supertype(typ)
push!(pt_formatters, ft_printf(default_formatters[used_format_type], col))
# add LaTeX-specific formatters to make our table pretty
push!(pt_formatters, safe_latex_formatters[used_format_type](col))
end
end
# set header
header = StringOrLaTeXString[]
for name ∈ df_names
push!(
header,
(name ∈ keys(hdr_override) ? hdr_override[name] : String(name)) |> safe_latex_AbstractString,
)
end
# force a few options
for s ∈ (:nosubheader, :backend, :table_type, :tf)
s ∈ keys(kwargs) && pop!(kwargs, s)
end
# by default, PrettyTables wants to boldface headers
# that won't work if we put any math headers
tf = LatexTableFormat(
top_line = "\\hline",
header_line = "\\hline",
mid_line = "\\hline",
bottom_line = "\\hline",
left_vline = "|",
mid_vline = "|",
right_vline = "|",
header_envs = [],
subheader_envs = ["texttt"],
)
# pretty_table expects a tuple of formatters
pretty_table(
io,
df,
header = header,
backend = Val(:latex),
table_type = :longtable,
tf = tf,
vlines = :none,
longtable_footer = "{\\bfseries Continued on next page}",
formatters = tuple(pt_formatters...);
kwargs...,
)
end
pretty_latex_stats(df::DataFrame; kwargs...) = pretty_latex_stats(stdout, df; kwargs...)
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 2109 | # dependencies imports
using LaTeXTabulars
for (typ, fmt) in default_formatters
safe = Symbol("safe_latex_$typ")
@eval begin
LTXformat(x::$typ) = @sprintf($fmt, x) |> $safe
end
end
LTXformat(x::Missing) = "NA"
@doc """
LTXformat(x)
Format `x` according to its type. For types `Signed`, `AbstractFloat`,
`AbstractString` and `Symbol`, use a predefined formatting string passed to
`@sprintf` and then the corresponding `safe_latex_<type>` function.
For type `Missing`, return "NA".
"""
LTXformat
"""
latex_table(io, df, kwargs...)
Create a latex longtable of a DataFrame using LaTeXTabulars, and format the output for a publication-ready table.
Inputs:
- `io::IO`: where to send the table, e.g.:
open("file.tex", "w") do io
latex_table(io, df)
end
If left out, `io` defaults to `stdout`.
- `df::DataFrame`: Dataframe of a solver. Each row is a problem.
Keyword arguments:
- `cols::Array{Symbol}`: Which columns of the `df`. Defaults to using all columns;
- `ignore_missing_cols::Bool`: If `true`, filters out the columns in `cols` that don't
exist in the data frame. Useful when creating tables for solvers in a loop where one
solver has a column the other doesn't. If `false`, throws `BoundsError` in that
situation.
- `fmt_override::Dict{Symbol,Function}`: Overrides format for a specific column, such as
fmt_override=Dict(:name => x->@sprintf("\\textbf{%s}", x) |> safe_latex_AbstractString)`
- `hdr_override::Dict{Symbol,String}`: Overrides header names, such as
`hdr_override=Dict(:name => "Name")`, where LaTeX escaping should be used if necessary.
We recommend using the `safe_latex_foo` functions when overriding formats, unless
you're sure you don't need them.
"""
function latex_table(io::IO, df::DataFrame; kwargs...)
header, table, _ = format_table(df, LTXformat; kwargs...) # ignore highlighter
latex_tabular(io, LongTable("l" * "r"^(length(header) - 1), header), [table, Rule()])
nothing
end
latex_table(df::DataFrame; kwargs...) = latex_table(stdout, df; kwargs...)
Base.@deprecate latex_table pretty_latex_stats false
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 1341 | for (typ, fmt) in default_formatters
@eval begin
MDformat(x::$typ) = @sprintf($fmt, x)
end
end
MDformat(x::Missing) = "NA"
@doc """
MDformat(x)
Format `x` according to its type. For types `Signed`, `AbstractFloat`,
`AbstractString` and `Symbol`, use a predefined formatting string passed to
`@sprintf`.
For type `Missing`, return "NA".
"""
MDformat
"""
markdown_table(io, df, kwargs...)
Create a markdown table from a DataFrame using PrettyTables and format the output.
Inputs:
- `io::IO`: where to send the table, e.g.:
open("file.md", "w") do io
markdown_table(io, df)
end
If left out, `io` defaults to `stdout`.
- `df::DataFrame`: Dataframe of a solver. Each row is a problem.
Keyword arguments:
- `hl`: a highlighter or tuple of highlighters to color individual cells (when output to screen).
By default, we use a simple `passfail_highlighter`.
- all other keyword arguments are passed directly to `format_table`.
"""
function markdown_table(io::IO, df::DataFrame; hl = passfail_highlighter(df), kwargs...)
header, table = format_table(df, MDformat; kwargs...)
pretty_table(io, table, header = header, tf = tf_markdown, highlighters = hl)
end
markdown_table(df::DataFrame; kwargs...) = markdown_table(stdout, df; kwargs...)
Base.@deprecate markdown_table pretty_stats false
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 5519 | import BenchmarkTools
import GitHub
import JSON
import PkgBenchmark
export bmark_results_to_dataframes, judgement_results_to_dataframes, profile_package, to_gist
"""
stats = bmark_results_to_dataframes(results)
Convert `PkgBenchmark` results to a dictionary of `DataFrame`s.
The benchmark SUITE should have been constructed in
the form
SUITE[solver][case] = ...
where `solver` will be recorded as one of the solvers
to be compared in the DataFrame and case is a test
case. For example:
SUITE["CG"]["BCSSTK09"] = @benchmarkable ...
SUITE["LBFGS"]["ROSENBR"] = @benchmarkable ...
Inputs:
- `results::BenchmarkResults`: the result of `PkgBenchmark.benchmarkpkg`
Output:
- `stats::Dict{Symbol,DataFrame}`: a dictionary of `DataFrame`s containing the
benchmark results per solver.
"""
function bmark_results_to_dataframes(results::PkgBenchmark.BenchmarkResults)
entries = BenchmarkTools.leaves(PkgBenchmark.benchmarkgroup(results))
entries = entries[sortperm(map(x -> string(first(x)), entries))]
solvers = unique(map(pair -> pair[1][1], entries))
names = [:name, :time, :memory, :gctime, :allocations]
types = [String, Float64, Float64, Float64, Int]
stats = Dict{Symbol, DataFrame}()
for solver in solvers
stats[Symbol(solver)] = DataFrame(names .=> [T[] for T in types])
end
for entry in entries
case, trial = entry
name = case[end]
solver = Symbol(case[1])
time = BenchmarkTools.time(trial)
mem = BenchmarkTools.memory(trial)
gctime = BenchmarkTools.gctime(trial)
allocs = BenchmarkTools.allocs(trial)
push!(stats[solver], [name, time, mem, gctime, allocs])
end
stats
end
"""
stats = judgement_results_to_dataframes(judgement)
Convert `BenchmarkJudgement` results to a dictionary of `DataFrame`s.
Inputs:
- `judgement::BenchmarkJudgement`: the result of, e.g.,
commit = benchmarkpkg(mypkg) # benchmark a commit or pull request
main = benchmarkpkg(mypkg, "main") # baseline benchmark
judgement = judge(commit, main)
Output:
- `stats::Dict{Symbol,Dict{Symbol,DataFrame}}`: a dictionary of
`Dict{Symbol,DataFrame}`s containing the target and baseline benchmark results.
The elements of this dictionary are the same as those returned by
`bmark_results_to_dataframes(main)` and `bmark_results_to_dataframes(commit)`.
"""
function judgement_results_to_dataframes(judgement::PkgBenchmark.BenchmarkJudgement)
target_stats = bmark_results_to_dataframes(judgement.target_results)
baseline_stats = bmark_results_to_dataframes(judgement.baseline_results)
Dict{Symbol, Dict{Symbol, DataFrame}}(
k => Dict{Symbol, DataFrame}(:target => target_stats[k], :baseline => baseline_stats[k]) for
k ∈ keys(target_stats)
)
end
"""
p = profile_solvers(results)
Produce performance profiles based on `PkgBenchmark.benchmarkpkg` results.
Inputs:
- `results::BenchmarkResults`: the result of `PkgBenchmark.benchmarkpkg`.
"""
function profile_solvers(results::PkgBenchmark.BenchmarkResults)
# guard against zero gctimes
costs =
[df -> df[!, :time], df -> df[!, :memory], df -> df[!, :gctime] .+ 1, df -> df[!, :allocations]]
profile_solvers(
bmark_results_to_dataframes(results),
costs,
["time", "memory", "gctime+1", "allocations"],
)
end
"""
p = profile_package(judgement)
Produce performance profiles based on `PkgBenchmark.BenchmarkJudgement` results.
Inputs:
- `judgement::BenchmarkJudgement`: the result of, e.g.,
commit = benchmarkpkg(mypkg) # benchmark a commit or pull request
main = benchmarkpkg(mypkg, "main") # baseline benchmark
judgement = judge(commit, main)
"""
function profile_package(judgement::PkgBenchmark.BenchmarkJudgement)
# guard against zero gctimes
costs =
[df -> df[!, :time], df -> df[!, :memory], df -> df[!, :gctime] .+ 1, df -> df[!, :allocations]]
judgement_dataframes = judgement_results_to_dataframes(judgement)
Dict{Symbol, Plots.Plot}(
k => profile_solvers(
judgement_dataframes[k],
costs,
["time", "memory", "gctime+1", "allocations"],
) for k ∈ keys(judgement_dataframes)
)
end
"""
posted_gist = to_gist(results, p)
Create and post a gist with the benchmark results and performance profiles.
Inputs:
- `results::BenchmarkResults`: the result of `PkgBenchmark.benchmarkpkg`
- `p`:: the result of `profile_solvers`.
Output:
- the return value of GitHub.jl's `create_gist`.
"""
function to_gist(results::PkgBenchmark.BenchmarkResults, p)
filename = tempname()
svgfilename = "$(filename).svg"
savefig(p, svgfilename)
svgfilecontents = escape_string(read(svgfilename, String))
gist_json = JSON.parse(
"""
{
"description": "Benchmarks uploaded by SolverBenchmark.jl",
"public": true,
"files": {
"bmark.md": {
"content": "$(escape_string(sprint(PkgBenchmark.export_markdown, results; context=stdout)))"
},
"bmark.svg": {
"content": "$(svgfilecontents)"
}
}
}
""",
)
# Need to add GITHUB_AUTH to your .bashrc
myauth = GitHub.authenticate(ENV["GITHUB_AUTH"])
GitHub.create_gist(params = gist_json, auth = myauth)
end
"""
posted_gist = to_gist(results)
Create and post a gist with the benchmark results and performance profiles.
Inputs:
- `results::BenchmarkResults`: the result of `PkgBenchmark.benchmarkpkg`
Output:
- the return value of GitHub.jl's `create_gist`.
"""
to_gist(results) = to_gist(results, profile_solvers(results))
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 4479 | import BenchmarkProfiles: performance_profile
using BenchmarkProfiles, Plots
export performance_profile, profile_solvers
"""
performance_profile(stats, cost, args...; b = PlotsBackend(), kwargs...)
Produce a performance profile comparing solvers in `stats` using the `cost` function.
Inputs:
- `stats::Dict{Symbol,DataFrame}`: pairs of `:solver => df`;
- `cost::Function`: cost function applyed to each `df`. Should return a vector with the cost of solving the problem at each row;
- 0 cost is not allowed;
- If the solver did not solve the problem, return Inf or a negative number.
- `b::BenchmarkProfiles.AbstractBackend` : backend used for the plot.
Examples of cost functions:
- `cost(df) = df.elapsed_time`: Simple `elapsed_time` cost. Assumes the solver solved the problem.
- `cost(df) = (df.status .!= :first_order) * Inf + df.elapsed_time`: Takes into consideration the status of the solver.
"""
function performance_profile(
stats::Dict{Symbol, DataFrame},
cost::Function,
args...;
b::BenchmarkProfiles.AbstractBackend = PlotsBackend(),
kwargs...,
)
solvers = keys(stats)
dfs = (stats[s] for s in solvers)
P = hcat([cost(df) for df in dfs]...)
performance_profile(b, P, string.(solvers), args...; kwargs...)
end
"""
p = profile_solvers(stats, costs, costnames;
width = 400, height = 400,
b = PlotsBackend(), kwargs...)
Produce performance profiles comparing `solvers` based on the data in `stats`.
Inputs:
- `stats::Dict{Symbol,DataFrame}`: a dictionary of `DataFrame`s containing the
benchmark results per solver (e.g., produced by `bmark_results_to_dataframes()`)
- `costs::Vector{Function}`: a vector of functions specifying the measures to use in the profiles
- `costnames::Vector{String}`: names to be used as titles of the profiles.
Keyword inputs:
- `width::Int`: Width of each individual plot (Default: 400)
- `height::Int`: Height of each individual plot (Default: 400)
- `b::BenchmarkProfiles.AbstractBackend` : backend used for the plot.
Additional `kwargs` are passed to the `plot` call.
Output:
A Plots.jl plot representing a set of performance profiles comparing the solvers.
The set contains performance profiles comparing all the solvers together on the
measures given in `costs`.
If there are more than two solvers, additional profiles are produced comparing the
solvers two by two on each cost measure.
"""
function profile_solvers(
stats::Dict{Symbol, DataFrame},
costs::Vector{<:Function},
costnames::Vector{String};
width::Int = 400,
height::Int = 400,
b::BenchmarkProfiles.AbstractBackend = PlotsBackend(),
kwargs...,
)
solvers = collect(keys(stats))
dfs = (stats[solver] for solver in solvers)
Ps = [hcat([Float64.(cost(df)) for df in dfs]...) for cost in costs]
nprobs = size(stats[first(solvers)], 1)
nsolvers = length(solvers)
ncosts = length(costs)
npairs = div(nsolvers * (nsolvers - 1), 2)
colors = get_color_palette(:auto, nsolvers)
# profiles with all solvers
ps = [
performance_profile(
b,
Ps[1],
string.(solvers),
palette = colors,
title = costnames[1],
legend = :bottomright,
),
]
nsolvers > 2 && xlabel!(ps[1], "")
for k = 2:ncosts
p = performance_profile(
b,
Ps[k],
string.(solvers),
palette = colors,
title = costnames[k],
legend = false,
)
nsolvers > 2 && xlabel!(p, "")
ylabel!(p, "")
push!(ps, p)
end
if nsolvers > 2
ipairs = 0
# combinations of solvers 2 by 2
for i = 2:nsolvers
for j = 1:(i - 1)
ipairs += 1
pair = [solvers[i], solvers[j]]
dfs = (stats[solver] for solver in pair)
Ps = [hcat([Float64.(cost(df)) for df in dfs]...) for cost in costs]
clrs = [colors[i], colors[j]]
p = performance_profile(b, Ps[1], string.(pair), palette = clrs, legend = :bottomright)
ipairs < npairs && xlabel!(p, "")
push!(ps, p)
for k = 2:length(Ps)
p = performance_profile(b, Ps[k], string.(pair), palette = clrs, legend = false)
ipairs < npairs && xlabel!(p, "")
ylabel!(p, "")
push!(ps, p)
end
end
end
p = plot(
ps...,
layout = (1 + ipairs, ncosts),
size = (ncosts * width, (1 + ipairs) * height);
kwargs...,
)
else
p = plot(ps..., layout = (1, ncosts), size = (ncosts * width, height); kwargs...)
end
p
end
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 4879 | export solve_problems
"""
solve_problems(solver, solver_name, problems; kwargs...)
Apply a solver to a set of problems.
#### Arguments
* `solver`: the function name of a solver;
* `solver_name`: name of the solver;
* `problems`: the set of problems to pass to the solver, as an iterable of
`AbstractNLPModel`. It is recommended to use a generator expression (necessary for
CUTEst problems).
#### Keyword arguments
* `solver_logger::AbstractLogger`: logger wrapping the solver call (default: `NullLogger`);
* `reset_problem::Bool`: reset the problem's counters before solving (default: `true`);
* `skipif::Function`: function to be applied to a problem and return whether to skip it
(default: `x->false`);
* `colstats::Vector{Symbol}`: summary statistics for the logger to output during the
benchmark (default: `[:name, :nvar, :ncon, :status, :elapsed_time, :objective, :dual_feas, :primal_feas]`);
* `info_hdr_override::Dict{Symbol,String}`: header overrides for the summary statistics
(default: use default headers);
* `prune`: do not include skipped problems in the final statistics (default: `true`);
* any other keyword argument to be passed to the solver.
#### Return value
* a `DataFrame` where each row is a problem, minus the skipped ones if `prune` is true.
"""
function solve_problems(
solver,
solver_name::TName,
problems;
solver_logger::AbstractLogger = NullLogger(),
reset_problem::Bool = true,
skipif::Function = x -> false,
colstats::Vector{Symbol} = [
:solver_name,
:name,
:nvar,
:ncon,
:status,
:iter,
:elapsed_time,
:objective,
:dual_feas,
:primal_feas,
],
info_hdr_override::Dict{Symbol, String} = Dict{Symbol, String}(:solver_name => "Solver"),
prune::Bool = true,
kwargs...,
) where {TName}
f_counters = collect(fieldnames(Counters))
fnls_counters = collect(fieldnames(NLSCounters))[2:end] # Excludes :counters
ncounters = length(f_counters) + length(fnls_counters)
types = [
TName
Int
String
Int
Int
Int
Symbol
Float64
Float64
Int
Float64
Float64
fill(Int, ncounters)
String
]
names = [
:solver_name
:id
:name
:nvar
:ncon
:nequ
:status
:objective
:elapsed_time
:iter
:dual_feas
:primal_feas
f_counters
fnls_counters
:extrainfo
]
stats = DataFrame(names .=> [T[] for T in types])
specific = Symbol[]
col_idx = indexin(colstats, names)
first_problem = true
for (id, problem) in enumerate(problems)
if reset_problem
reset!(problem)
end
nequ = problem isa AbstractNLSModel ? problem.nls_meta.nequ : 0
problem_info = [id; problem.meta.name; problem.meta.nvar; problem.meta.ncon; nequ]
skipthis = skipif(problem)
if skipthis
prune || push!(
stats,
[
solver_name
problem_info
:exception
Inf
Inf
0
Inf
Inf
fill(0, ncounters)
"skipped"
fill(missing, length(specific))
],
)
finalize(problem)
else
try
s = with_logger(solver_logger) do
solver(problem; kwargs...)
end
if first_problem
for (k, v) in s.solver_specific
if !(typeof(v) <: AbstractVector)
insertcols!(stats, ncol(stats) + 1, k => Vector{Union{typeof(v), Missing}}())
push!(specific, k)
end
end
@info log_header(colstats, types[col_idx], hdr_override = info_hdr_override)
first_problem = false
end
counters_list =
problem isa AbstractNLSModel ?
[getfield(problem.counters.counters, f) for f in f_counters] :
[getfield(problem.counters, f) for f in f_counters]
nls_counters_list =
problem isa AbstractNLSModel ? [getfield(problem.counters, f) for f in fnls_counters] :
zeros(Int, length(fnls_counters))
push!(
stats,
[
solver_name
problem_info
s.status
s.objective
s.elapsed_time
s.iter
s.dual_feas
s.primal_feas
counters_list
nls_counters_list
""
[s.solver_specific[k] for k in specific]
],
)
catch e
@error "caught exception" e
push!(
stats,
[
solver_name
problem_info
:exception
Inf
Inf
0
Inf
Inf
fill(0, ncounters)
string(e)
fill(missing, length(specific))
],
)
finally
finalize(problem)
end
end
(skipthis && prune) || @info log_row(stats[end, col_idx])
end
return stats
end
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 312 | using LinearAlgebra
using BenchmarkTools
# make up bogus benchmark suite
SUITE = BenchmarkGroup()
SUITE["lu"] = BenchmarkGroup()
SUITE["qr"] = BenchmarkGroup()
for _ = 1:10
A = rand(10, 10)
name = string(gensym())
SUITE["lu"][name] = @benchmarkable lu($A)
SUITE["qr"][name] = @benchmarkable qr($A)
end
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 502 | function get_stats_data()
n = 10
names = [:alpha, :beta, :gamma]
stats = Dict(
name => DataFrame(
:id => 1:n,
:name => [@sprintf("prob%03d", i) for i = 1:n],
:status => map(x -> mod(x, 3) == 0 ? :first_order : :failure, 1:n),
:f => [exp(i / n) for i = 1:n],
:t => [1e-3 .+ abs(sin(2π * i / n)) * 1000 for i = 1:n],
:iter => [3 + 2 * Int(ceil(sin(2π * i / n))) for i = 1:n],
:irrelevant => collect(1:n),
) for name in names
)
return stats
end
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 8713 | alpha_md = raw"""| flag | name | f(x) | time | iter |
|-------------|---------|-----------|--------|--------|
| failure | prob001 | 1.11e+00 | 587.79 | 5 |
| failure | prob002 | 1.22e+00 | 951.06 | 5 |
| first_order | prob003 | 1.35e+00 | 951.06 | 5 |
| failure | prob004 | 1.49e+00 | 587.79 | 5 |
| failure | prob005 | 1.65e+00 | 0.00 | 5 |
| first_order | prob006 | 1.82e+00 | 587.79 | 3 |
| failure | prob007 | 2.01e+00 | 951.06 | 3 |
| failure | prob008 | 2.23e+00 | 951.06 | 3 |
| first_order | prob009 | 2.46e+00 | 587.79 | 3 |
| failure | prob010 | 2.72e+00 | 0.00 | 3 |
"""
alpha_tex = raw"""\begin{longtable}{rrrrr}
\hline
flag & name & \(f(x)\) & time & iter \\\hline
\endfirsthead
\hline
flag & name & \(f(x)\) & time & iter \\\hline
\endhead
\hline
\multicolumn{5}{r}{{\bfseries Continued on next page}}\\
\hline
\endfoot
\endlastfoot
failure & prob001 & \( 1.11\)e\(+00\) & \( 5.88\)e\(+02\) & \( 5\) \\
failure & prob002 & \( 1.22\)e\(+00\) & \( 9.51\)e\(+02\) & \( 5\) \\
first\_order & prob003 & \( 1.35\)e\(+00\) & \( 9.51\)e\(+02\) & \( 5\) \\
failure & prob004 & \( 1.49\)e\(+00\) & \( 5.88\)e\(+02\) & \( 5\) \\
failure & prob005 & \( 1.65\)e\(+00\) & \( 1.00\)e\(-03\) & \( 5\) \\
first\_order & prob006 & \( 1.82\)e\(+00\) & \( 5.88\)e\(+02\) & \( 3\) \\
failure & prob007 & \( 2.01\)e\(+00\) & \( 9.51\)e\(+02\) & \( 3\) \\
failure & prob008 & \( 2.23\)e\(+00\) & \( 9.51\)e\(+02\) & \( 3\) \\
first\_order & prob009 & \( 2.46\)e\(+00\) & \( 5.88\)e\(+02\) & \( 3\) \\
failure & prob010 & \( 2.72\)e\(+00\) & \( 1.00\)e\(-03\) & \( 3\) \\\hline
\end{longtable}
"""
alpha_txt = raw"""┌─────────────┬─────────┬───────────┬────────┬────────┐
│ flag │ name │ f(x) │ time │ iter │
├─────────────┼─────────┼───────────┼────────┼────────┤
│ failure │ prob001 │ 1.11e+00 │ 587.79 │ 5 │
│ failure │ prob002 │ 1.22e+00 │ 951.06 │ 5 │
│ first_order │ prob003 │ 1.35e+00 │ 951.06 │ 5 │
│ failure │ prob004 │ 1.49e+00 │ 587.79 │ 5 │
│ failure │ prob005 │ 1.65e+00 │ 0.00 │ 5 │
│ first_order │ prob006 │ 1.82e+00 │ 587.79 │ 3 │
│ failure │ prob007 │ 2.01e+00 │ 951.06 │ 3 │
│ failure │ prob008 │ 2.23e+00 │ 951.06 │ 3 │
│ first_order │ prob009 │ 2.46e+00 │ 587.79 │ 3 │
│ failure │ prob010 │ 2.72e+00 │ 0.00 │ 3 │
└─────────────┴─────────┴───────────┴────────┴────────┘
"""
alpha_hi_tex = raw"""\begin{longtable}{rrrrr}
\hline
flag & name & \(f(x)\) & time & iter \\\hline
\endfirsthead
\hline
flag & name & \(f(x)\) & time & iter \\\hline
\endhead
\hline
\multicolumn{5}{r}{{\bfseries Continued on next page}}\\
\hline
\endfoot
\endlastfoot
\cellcolor{red}{failure} & \cellcolor{red}{prob001} & \cellcolor{red}{\( 1.11\)e\(+00\)} & \cellcolor{red}{\( 5.88\)e\(+02\)} & \cellcolor{red}{\( 5\)} \\
\cellcolor{red}{failure} & \cellcolor{red}{prob002} & \cellcolor{red}{\( 1.22\)e\(+00\)} & \cellcolor{red}{\( 9.51\)e\(+02\)} & \cellcolor{red}{\( 5\)} \\
first\_order & prob003 & \( 1.35\)e\(+00\) & \( 9.51\)e\(+02\) & \( 5\) \\
\cellcolor{red}{failure} & \cellcolor{red}{prob004} & \cellcolor{red}{\( 1.49\)e\(+00\)} & \cellcolor{red}{\( 5.88\)e\(+02\)} & \cellcolor{red}{\( 5\)} \\
\cellcolor{red}{failure} & \cellcolor{red}{prob005} & \cellcolor{red}{\( 1.65\)e\(+00\)} & \cellcolor{red}{\( 1.00\)e\(-03\)} & \cellcolor{red}{\( 5\)} \\
first\_order & prob006 & \( 1.82\)e\(+00\) & \( 5.88\)e\(+02\) & \( 3\) \\
\cellcolor{red}{failure} & \cellcolor{red}{prob007} & \cellcolor{red}{\( 2.01\)e\(+00\)} & \cellcolor{red}{\( 9.51\)e\(+02\)} & \cellcolor{red}{\( 3\)} \\
\cellcolor{red}{failure} & \cellcolor{red}{prob008} & \cellcolor{red}{\( 2.23\)e\(+00\)} & \cellcolor{red}{\( 9.51\)e\(+02\)} & \cellcolor{red}{\( 3\)} \\
first\_order & prob009 & \( 2.46\)e\(+00\) & \( 5.88\)e\(+02\) & \( 3\) \\
\cellcolor{red}{failure} & \cellcolor{red}{prob010} & \cellcolor{red}{\( 2.72\)e\(+00\)} & \cellcolor{red}{\( 1.00\)e\(-03\)} & \cellcolor{red}{\( 3\)} \\\hline
\end{longtable}
"""
joined_tex = raw"""\begin{longtable}{rrrrrrrrrrr}
\hline
id & name & flag\_alpha & f\_alpha & t\_alpha & flag\_beta & f\_beta & t\_beta & flag\_gamma & f\_gamma & t\_gamma \\\hline
\endfirsthead
\hline
id & name & flag\_alpha & f\_alpha & t\_alpha & flag\_beta & f\_beta & t\_beta & flag\_gamma & f\_gamma & t\_gamma \\\hline
\endhead
\hline
\multicolumn{11}{r}{{\bfseries Continued on next page}}\\
\hline
\endfoot
\endlastfoot
\( 1\) & prob001 & failure & \( 1.11\)e\(+00\) & \( 5.88\)e\(+02\) & failure & \( 1.11\)e\(+00\) & \( 5.88\)e\(+02\) & failure & \( 1.11\)e\(+00\) & \( 5.88\)e\(+02\) \\
\( 2\) & prob002 & failure & \( 1.22\)e\(+00\) & \( 9.51\)e\(+02\) & failure & \( 1.22\)e\(+00\) & \( 9.51\)e\(+02\) & failure & \( 1.22\)e\(+00\) & \( 9.51\)e\(+02\) \\
\( 3\) & prob003 & first\_order & \( 1.35\)e\(+00\) & \( 9.51\)e\(+02\) & first\_order & \( 1.35\)e\(+00\) & \( 9.51\)e\(+02\) & first\_order & \( 1.35\)e\(+00\) & \( 9.51\)e\(+02\) \\
\( 4\) & prob004 & failure & \( 1.49\)e\(+00\) & \( 5.88\)e\(+02\) & failure & \( 1.49\)e\(+00\) & \( 5.88\)e\(+02\) & failure & \( 1.49\)e\(+00\) & \( 5.88\)e\(+02\) \\
\( 5\) & prob005 & failure & \( 1.65\)e\(+00\) & \( 1.00\)e\(-03\) & failure & \( 1.65\)e\(+00\) & \( 1.00\)e\(-03\) & failure & \( 1.65\)e\(+00\) & \( 1.00\)e\(-03\) \\
\( 6\) & prob006 & first\_order & \( 1.82\)e\(+00\) & \( 5.88\)e\(+02\) & first\_order & \( 1.82\)e\(+00\) & \( 5.88\)e\(+02\) & first\_order & \( 1.82\)e\(+00\) & \( 5.88\)e\(+02\) \\
\( 7\) & prob007 & failure & \( 2.01\)e\(+00\) & \( 9.51\)e\(+02\) & failure & \( 2.01\)e\(+00\) & \( 9.51\)e\(+02\) & failure & \( 2.01\)e\(+00\) & \( 9.51\)e\(+02\) \\
\( 8\) & prob008 & failure & \( 2.23\)e\(+00\) & \( 9.51\)e\(+02\) & failure & \( 2.23\)e\(+00\) & \( 9.51\)e\(+02\) & failure & \( 2.23\)e\(+00\) & \( 9.51\)e\(+02\) \\
\( 9\) & prob009 & first\_order & \( 2.46\)e\(+00\) & \( 5.88\)e\(+02\) & first\_order & \( 2.46\)e\(+00\) & \( 5.88\)e\(+02\) & first\_order & \( 2.46\)e\(+00\) & \( 5.88\)e\(+02\) \\
\( 10\) & prob010 & failure & \( 2.72\)e\(+00\) & \( 1.00\)e\(-03\) & failure & \( 2.72\)e\(+00\) & \( 1.00\)e\(-03\) & failure & \( 2.72\)e\(+00\) & \( 1.00\)e\(-03\) \\\hline
\end{longtable}
"""
joined_md =
raw"""| id | name | flag_alpha | f_alpha | t_alpha | flag_beta | f_beta | t_beta | flag_gamma | f_gamma | t_gamma |
|--------|---------|-------------|-----------|-----------|-------------|-----------|-----------|-------------|-----------|-----------|
| 1 | prob001 | failure | 1.11e+00 | 5.88e+02 | failure | 1.11e+00 | 5.88e+02 | failure | 1.11e+00 | 5.88e+02 |
| 2 | prob002 | failure | 1.22e+00 | 9.51e+02 | failure | 1.22e+00 | 9.51e+02 | failure | 1.22e+00 | 9.51e+02 |
| 3 | prob003 | first_order | 1.35e+00 | 9.51e+02 | first_order | 1.35e+00 | 9.51e+02 | first_order | 1.35e+00 | 9.51e+02 |
| 4 | prob004 | failure | 1.49e+00 | 5.88e+02 | failure | 1.49e+00 | 5.88e+02 | failure | 1.49e+00 | 5.88e+02 |
| 5 | prob005 | failure | 1.65e+00 | 1.00e-03 | failure | 1.65e+00 | 1.00e-03 | failure | 1.65e+00 | 1.00e-03 |
| 6 | prob006 | first_order | 1.82e+00 | 5.88e+02 | first_order | 1.82e+00 | 5.88e+02 | first_order | 1.82e+00 | 5.88e+02 |
| 7 | prob007 | failure | 2.01e+00 | 9.51e+02 | failure | 2.01e+00 | 9.51e+02 | failure | 2.01e+00 | 9.51e+02 |
| 8 | prob008 | failure | 2.23e+00 | 9.51e+02 | failure | 2.23e+00 | 9.51e+02 | failure | 2.23e+00 | 9.51e+02 |
| 9 | prob009 | first_order | 2.46e+00 | 5.88e+02 | first_order | 2.46e+00 | 5.88e+02 | first_order | 2.46e+00 | 5.88e+02 |
| 10 | prob010 | failure | 2.72e+00 | 1.00e-03 | failure | 2.72e+00 | 1.00e-03 | failure | 2.72e+00 | 1.00e-03 |
"""
missing_md = raw"""| A | B | C | D |
|-----------|---------|---------|---------|
| 1.00e+00 | missing | missing | missing |
| missing | 1 | a | missing |
| 3.00e+00 | 3 | b | notmiss |
"""
missing_ltx = raw"""\begin{longtable}{rrrr}
\hline
A & B & C & D \\\hline
\endfirsthead
\hline
A & B & C & D \\\hline
\endhead
\hline
\multicolumn{4}{r}{{\bfseries Continued on next page}}\\
\hline
\endfoot
\endlastfoot
\( 1.00\)e\(+00\) & & & missing \\
& \( 1\) & a & missing \\
\( 3.00\)e\(+00\) & \( 3\) & b & notmiss \\\hline
\end{longtable}
"""
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 1981 | using BenchmarkTools
using LibGit2
using PkgBenchmark
import Plots
function test_pkgbmark()
# When running breakage tests, don't run these tests
if get(ENV, "CI", nothing) !== nothing &&
get(ENV, "GITHUB_REPOSITORY", "") != "JuliaSmoothOptimizers/SolverBenchmark.jl"
return
end
results =
PkgBenchmark.benchmarkpkg("SolverBenchmark", script = joinpath(@__DIR__, "bmark_suite.jl"))
stats = bmark_results_to_dataframes(results)
@info stats
@test length(keys(stats)) == 2
@test :lu ∈ keys(stats)
@test :qr ∈ keys(stats)
@test size(stats[:lu]) == (10, 5) # 10 problems x (problem name + 4 PkgBenchmark measures)
@test size(stats[:qr]) == (10, 5)
p = profile_solvers(results)
@test typeof(p) <: Plots.Plot
costs =
[df -> df[!, :time], df -> df[!, :memory], df -> df[!, :gctime] .+ 1, df -> df[!, :allocations]]
p = profile_solvers(stats, costs, ["time", "memory", "gctime+1", "allocations"])
@test typeof(p) <: Plots.Plot
repo = LibGit2.GitRepo(joinpath(@__DIR__, ".."))
LibGit2.lookup_branch(repo, "main") === nothing && LibGit2.branch!(repo, "main", force = true)
main = PkgBenchmark.benchmarkpkg(
"SolverBenchmark",
"main",
script = joinpath(@__DIR__, "bmark_suite.jl"),
)
judgement = PkgBenchmark.judge(results, main)
stats = judgement_results_to_dataframes(judgement)
@info stats
@test length(keys(stats)) == 2
@test :lu ∈ keys(stats)
@test :qr ∈ keys(stats)
for k ∈ keys(stats)
@test :target ∈ keys(stats[k])
@test :baseline ∈ keys(stats[k])
end
for k ∈ keys(stats)
for j ∈ keys(stats[k])
@test size(stats[k][j]) == (10, 5)
end
end
p = profile_package(judgement)
@test typeof(p) <: Dict{Symbol, Plots.Plot}
costs =
[df -> df[!, :time], df -> df[!, :memory], df -> df[!, :gctime] .+ 1, df -> df[!, :allocations]]
p = profile_solvers(stats[:lu], costs, ["time", "memory", "gctime+1", "allocations"])
@test typeof(p) <: Plots.Plot
end
test_pkgbmark()
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 555 | function test_profiles()
stats = get_stats_data() # from data.jl
@info "Generating performance profiles"
@info "Cost: t"
unicodeplots()
p = performance_profile(
stats,
df -> df.t,
b = SolverBenchmark.BenchmarkProfiles.UnicodePlotsBackend(),
)
p = profile_solvers(stats, [df -> df.t, df -> df.iter], ["Time", "Iterations"])
if !Sys.isfreebsd()
pgfplotsx()
p = performance_profile(
stats,
df -> df.t,
b = SolverBenchmark.BenchmarkProfiles.PGFPlotsXBackend(),
)
end
nothing
end
test_profiles()
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 352 | # stdlib imports
using LinearAlgebra
using Printf
using Random
using Test
# dependencies imports
using DataFrames
using LaTeXStrings
# test dependencies
using PGFPlotsX
using UnicodePlots
using Plots
# this package
using SolverBenchmark
include("data.jl")
include("tables.jl")
include("profiles.jl")
include("pkgbmark.jl")
include("test_bmark.jl")
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 2727 | # Test all table output
function test_tables()
example_folder = joinpath(@__DIR__, "example")
stats = get_stats_data() # from data.jl
include("output_results.jl")
df = stats[:alpha]
cols = [:status, :name, :f, :t, :iter]
@testset "alpha results in latex format" begin
header = Dict(:status => "flag", :f => "\\(f(x)\\)", :t => "time")
io = IOBuffer()
pretty_latex_stats(io, df[!, cols], hdr_override = header)
@test all(chomp.(split(alpha_tex)) .== chomp.(split(String(take!(io)))))
end
@testset "alpha results in latex format with highlighting" begin
header = Dict(:status => "flag", :f => "\\(f(x)\\)", :t => "time")
hl = passfail_latex_highlighter(df)
io = IOBuffer()
pretty_latex_stats(io, df[!, cols], hdr_override = header, highlighters = hl)
@test all(chomp.(split(alpha_hi_tex)) .== chomp.(split(String(take!(io)))))
end
@testset "alpha results in markdown format" begin
header = Dict(:status => "flag", :f => "f(x)", :t => "time")
fmts = Dict(:t => "%.2f")
io = IOBuffer()
pretty_stats(io, df[!, cols], col_formatters = fmts, hdr_override = header, tf = tf_markdown)
@test all(chomp.(split(alpha_md)) .== chomp.(split(String(take!(io)))))
end
@testset "alpha results in unicode format" begin
header = Dict(:status => "flag", :f => "f(x)", :t => "time")
fmts = Dict(:t => "%.2f")
io = IOBuffer()
pretty_stats(io, df[!, cols], col_formatters = fmts, hdr_override = header)
@test all(chomp.(split(alpha_txt)) .== chomp.(split(String(take!(io)))))
end
@testset "Show all table output for joined solver" begin
df = join(
stats,
[:status, :f, :t],
invariant_cols = [:name],
hdr_override = Dict(:status => "flag"),
)
println(df)
end
@testset "joined results in latex format" begin
io = IOBuffer()
pretty_latex_stats(io, df)
@test all(chomp.(split(joined_tex)) .== chomp.(split(String(take!(io)))))
end
@testset "joined results in markdown format" begin
io = IOBuffer()
pretty_stats(io, df, tf = tf_markdown)
@test all(chomp.(split(joined_md)) .== chomp.(split(String(take!(io)))))
end
@testset "missing values" begin
df = DataFrame(
A = [1.0, missing, 3.0],
B = [missing, 1, 3],
C = [missing, "a", "b"],
D = [missing, missing, :notmiss],
)
io = IOBuffer()
pretty_stats(io, df, tf = tf_markdown)
pretty_stats(stdout, df, tf = tf_markdown)
println(missing_md)
@test all(chomp.(split(missing_md)) .== chomp.(split(String(take!(io)))))
io = IOBuffer()
pretty_latex_stats(io, df)
@test all(chomp.(split(missing_ltx)) .== chomp.(split(String(take!(io)))))
end
end
test_tables()
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | code | 2607 | using DataFrames
using Logging
using NLPModels, ADNLPModels
using SolverCore
import SolverCore.dummy_solver
mutable struct CallableSolver end
function (solver::CallableSolver)(nlp::AbstractNLPModel; kwargs...)
return GenericExecutionStats(nlp)
end
function test_bmark()
@testset "Testing bmark" begin
problems = [
ADNLPModel(x -> sum(x .^ 2), ones(2), name = "Quadratic"),
ADNLPModel(
x -> sum(x .^ 2),
ones(2),
x -> [sum(x) - 1],
[0.0],
[0.0],
name = "Cons quadratic",
),
ADNLPModel(
x -> (x[1] - 1)^2 + 4 * (x[2] - x[1]^2)^2,
ones(2),
x -> [x[1]^2 + x[2]^2 - 1],
[0.0],
[0.0],
name = "Cons Rosen",
),
]
callable = CallableSolver()
stats = solve_problems(dummy_solver, "dummy", problems)
@test stats isa DataFrame
stats = solve_problems(dummy_solver, "dummy", problems, reset_problem = false)
stats = solve_problems(dummy_solver, "dummy", problems, reset_problem = true)
solve_problems(callable, "callable", problems)
solvers = Dict(:dummy => dummy_solver, :callable => callable)
stats = bmark_solvers(solvers, problems)
@test stats isa Dict{Symbol, DataFrame}
for k in keys(solvers)
@test haskey(stats, k)
end
# write stats to file
filename = tempname()
save_stats(stats, filename)
# read stats from file
stats2 = load_stats(filename)
# check that they are the same
for k ∈ keys(stats)
@test k ∈ keys(stats2)
@test stats[k] == stats2[k]
end
statuses, avgs = quick_summary(stats)
pretty_stats(stats[:dummy])
end
@testset "Testing logging" begin
nlps = [ADNLPModel(x -> sum(x .^ k), ones(2k), name = "Sum of power $k") for k = 2:4]
push!(
nlps,
ADNLPModel(x -> dot(x, x), ones(2), x -> [sum(x) - 1], [0.0], [0.0], name = "linquad"),
)
with_logger(ConsoleLogger()) do
@info "Testing simple logger on `solve_problems`"
solve_problems(dummy_solver, "dummy", nlps)
reset!.(nlps)
@info "Testing logger with specific columns on `solve_problems`"
solve_problems(
dummy_solver,
"dummy",
nlps,
colstats = [:name, :nvar, :elapsed_time, :objective, :dual_feas],
)
reset!.(nlps)
@info "Testing logger with hdr_override on `solve_problems`"
hdr_override = Dict(:dual_feas => "‖∇L(x)‖", :primal_feas => "‖c(x)‖")
solve_problems(dummy_solver, "dummy", nlps, info_hdr_override = hdr_override)
reset!.(nlps)
end
end
end
test_bmark()
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | docs | 5517 | # SolverBenchmark.jl
## How to Cite
If you use SolverBenchmark.jl in your work, please cite using the format given in [CITATION.cff](https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl/blob/main/CITATION.cff).
[](https://doi.org/10.5281/zenodo.3948381)

[](https://cirrus-ci.com/github/JuliaSmoothOptimizers/SolverBenchmark.jl)
[](https://JuliaSmoothOptimizers.github.io/SolverBenchmark.jl/stable)
[](https://JuliaSmoothOptimizers.github.io/SolverBenchmark.jl/dev)
[](https://codecov.io/gh/JuliaSmoothOptimizers/SolverBenchmark.jl)
This package provides general tools for benchmarking solvers, focusing on the following
guidelines:
- The output of a solver's run on a suite of problems is a `DataFrame`, where each row
is a different problem.
- Since naming issues may arise (e.g., same problem with different number of
variables), there must be an ID column;
- The collection of two or more solver runs (`DataFrame`s), is a
`Dict{Symbol,DataFrame}`, where each key is a solver;
This package is developed focusing on
[Krylov.jl](https://github.com/JuliaSmoothOptimizers/Krylov.jl) and
[JSOSolvers.jl](https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl), but is
sufficiently general to be used in other places.
## Example
Obs: See the [assets](assets) folder for the complete code, or the [docs](https://JuliaSmoothOptimizers.github.io/SolverBenchmark.jl/latest) for a more detailed example.
### Example table of a single `DataFrame`
`pretty_stats(df)`
```
┌─────────────┬─────────┬───────────┬───────────┬────────┐
│ flag │ name │ f(x) │ time │ iter │
├─────────────┼─────────┼───────────┼───────────┼────────┤
│ failure │ prob001 │ -6.89e-01 │ 6.24e+01 │ 70 │
│ failure │ prob002 │ -7.63e-01 │ 3.53e+02 │ 10 │
│ first_order │ prob003 │ 3.97e-01 │ 7.68e+02 │ 10 │
│ first_order │ prob004 │ 8.12e-01 │ 4.31e+01 │ 80 │
│ first_order │ prob005 │ -3.46e-01 │ 2.68e+02 │ 30 │
│ first_order │ prob006 │ -1.88e-01 │ 6.68e+01 │ 80 │
│ first_order │ prob007 │ -1.61e+00 │ 1.57e+02 │ 60 │
│ first_order │ prob008 │ -2.48e+00 │ 6.05e+02 │ 40 │
│ first_order │ prob009 │ 2.28e+00 │ 1.36e+02 │ 40 │
│ failure │ prob010 │ 2.20e-01 │ 8.38e+02 │ 50 │
└─────────────┴─────────┴───────────┴───────────┴────────┘
```
`pretty_latex_stats(df)`

### Example table of a joined `DataFrame`
```
df = join(stats, [:status, :f, :t], ...)
pretty_stats(df, tf=markdown)
```
```
| id | name | flag_alpha | f_alpha | t_alpha | flag_beta | f_beta | t_beta | flag_gamma | f_gamma | t_gamma |
|--------|---------|-------------|-----------|-----------|-------------|-----------|-----------|-------------|-----------|-----------|
| 1 | prob001 | failure | -6.89e-01 | 6.24e+01 | first_order | -4.83e-01 | 3.92e+02 | failure | -9.99e-01 | 6.97e+02 |
| 2 | prob002 | failure | -7.63e-01 | 3.53e+02 | first_order | -1.16e+00 | 4.79e+02 | first_order | 1.03e+00 | 4.35e+02 |
| 3 | prob003 | first_order | 3.97e-01 | 7.68e+02 | first_order | -2.14e-01 | 6.82e+01 | first_order | -1.16e+00 | 9.86e+02 |
| 4 | prob004 | first_order | 8.12e-01 | 4.31e+01 | first_order | -1.37e+00 | 4.80e+02 | first_order | 5.34e-01 | 9.97e+02 |
| 5 | prob005 | first_order | -3.46e-01 | 2.68e+02 | first_order | -1.54e+00 | 4.68e+02 | first_order | -3.08e-01 | 5.08e+02 |
| 6 | prob006 | first_order | -1.88e-01 | 6.68e+01 | first_order | -1.23e+00 | 4.52e+02 | first_order | 9.86e-01 | 2.16e+02 |
| 7 | prob007 | first_order | -1.61e+00 | 1.57e+02 | first_order | -1.96e+00 | 6.44e+02 | first_order | -1.19e+00 | 8.59e+02 |
| 8 | prob008 | first_order | -2.48e+00 | 6.05e+02 | failure | -4.73e-01 | 6.69e+02 | first_order | 6.80e-01 | 9.05e+02 |
| 9 | prob009 | first_order | 2.28e+00 | 1.36e+02 | first_order | 1.34e+00 | 9.48e+01 | failure | 2.04e-03 | 4.35e+02 |
| 10 | prob010 | failure | 2.20e-01 | 8.38e+02 | first_order | 8.08e-01 | 9.49e+02 | first_order | -4.78e-01 | 6.59e+01 |
```
`pretty_latex_stats(df)`

### Example profile
`p = performance_profile(stats, df->df.t)`

### Example profile-wall
`p = profile_solvers(stats, costs, titles)`

## Bug reports and discussions
If you think you found a bug, feel free to open an [issue](https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl/issues).
Focused suggestions and requests can also be opened as issues. Before opening a pull request, start an issue or a discussion on the topic, please.
If you want to ask a question not suited for a bug report, feel free to start a discussion [here](https://github.com/JuliaSmoothOptimizers/Organization/discussions). This forum is for general discussion about this repository and the [JuliaSmoothOptimizers](https://github.com/JuliaSmoothOptimizers) organization, so questions about any of our packages are welcome.
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | docs | 1726 | # [SolverBenchmark.jl documentation](@id Home)
This package provides general tools for benchmarking solvers, focusing on a few
guidelines:
- The output of a solver's run on a suite of problems is a `DataFrame`, where each row
is a different problem.
- Since naming issues may arise (e.g., same problem with different number of
variables), there must be an ID column;
- The collection of two or more solver runs (`DataFrame`s), is a
`Dict{Symbol,DataFrame}`, where each key is a solver;
This package is developed focusing on
[Krylov.jl](https://github.com/JuliaSmoothOptimizers/Krylov.jl) and
[JSOSolvers.jl](https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl), but they should be
general enough to be used in other places.
## Bug reports and discussions
If you think you found a bug, feel free to open an [issue](https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl/issues).
Focused suggestions and requests can also be opened as issues. Before opening a pull request, start an issue or a discussion on the topic, please.
If you want to ask a question not suited for a bug report, feel free to start a discussion [here](https://github.com/JuliaSmoothOptimizers/Organization/discussions). This forum is for general discussion about this repository and the [JuliaSmoothOptimizers](https://github.com/JuliaSmoothOptimizers) organization, so questions about any of our packages are welcome.
# Tutorials
You can access more tutorials regarding [SolverBenchmark.jl](https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl) on the JuliaSmoothOptimizers website [jso.dev](https://jso.dev), for instance, an [Introduction to SolverBenchmark](https://jso.dev/tutorials/introduction-to-solverbenchmark/).
| SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MPL-2.0"
] | 0.6.1 | c70c1123e2ae0a7c441f7719e369d3d3ef8f90a4 | docs | 168 | # Reference
## Contents
```@contents
Pages = ["reference.md"]
```
## Index
```@index
Pages = ["reference.md"]
```
```@autodocs
Modules = [SolverBenchmark]
``` | SolverBenchmark | https://github.com/JuliaSmoothOptimizers/SolverBenchmark.jl.git |
|
[
"MIT"
] | 0.2.6 | 7a89075c252d95cd9530f937158955939c218425 | code | 345 | module PrincipalMomentAnalysisApp
export pmaapp
using PrincipalMomentAnalysis
using LinearAlgebra
using DataFrames
using CSV
using Statistics
using Blink
using JSExpr
using Colors
using PlotlyJS
import IterTools
using SparseArrays
include("Schedulers.jl")
using .Schedulers
include("pmaplots.jl")
include("pca.jl")
include("app.jl")
end
| PrincipalMomentAnalysisApp | https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl.git |
|
[
"MIT"
] | 0.2.6 | 7a89075c252d95cd9530f937158955939c218425 | code | 17168 | module Schedulers
using DataStructures
export
Scheduler,
JobStatusChange,
PropagatedError,
JobID,
createjob!,
deletejob!,
add_dependency!,
remove_dependency!,
set_dependency!,
setfunction!,
setresult!,
schedule!,
cancel!,
cancelall!,
iscanceled,
wantstorun,
isactive,
step!,
status,
statusstring,
jobstatus,
jobname
const JobID = Int
const Timestamp = Int
const Callback = Union{Function,Nothing}
struct JobStatus # TODO: rename
changedAt::Threads.Atomic{Timestamp}
runAt::Timestamp # i.e. the value of changedAt when the job was run
end
mutable struct Job
changedAt::Threads.Atomic{Timestamp} # Only set by Scheduler thread. Can be read by other threads.
name::String # Only used in error/log messages. Set once.
f::Union{Function,Nothing}
spawn::Bool
edges::Dict{String,JobID} # name=>fromID
edgesReverse::Set{Tuple{JobID,String}} # Set{(toID,name)}
result::Any
status::Symbol # one of :notstarted,:waiting,:spawned,:running,:done,:errored
statusChangedTime::UInt64 # from time_ns()
runAt::Timestamp
waitingFor::Set{JobID}
callbacks::Vector{Function}
end
Job(changedAt::Int, name::String, f::Union{Function,Nothing}, spawn::Bool, result, status::Symbol, runAt::Timestamp) = Job(Threads.Atomic{Int}(changedAt), name, f, spawn, Dict{String,JobID}(), Set{Tuple{JobID,String}}(), result, status, time_ns(), runAt, Set{JobID}(), [])
Job(name::String, f::Function, changedAt::Int, spawn::Bool) = Job(changedAt, name, f, spawn, nothing, :notstarted, -1)
Job(name::String, result::Any, changedAt::Int, spawn::Bool) = Job(changedAt, name, nothing, spawn, result, result2status(result), changedAt)
struct DetachedJob
jobID::JobID
runAt::Timestamp
end
struct JobStatusChange
jobID::JobID
jobName::String
status::Symbol
time::UInt64
message::String
end
JobStatusChange(jobID::JobID,job::Job) =
JobStatusChange(jobID, job.name, job.status, job.statusChangedTime, job.status==:errored ? sprint(showerror,job.result) : "")
struct Scheduler
threaded::Bool
timestamp::Ref{Timestamp}
jobCounter::Threads.Atomic{JobID}
jobs::Dict{JobID,Job}
actions::Channel{Function}
slowActions::Channel{Function}
dirtyJobs::Vector{JobID}
activeJobs::Set{JobID}
detachedJobs::Dict{DetachedJob, UInt64} # -> time_ns() when job started running
hasSpawned::Ref{Bool}
statusChannel::Union{Channel{JobStatusChange},Nothing}
verbose::Bool
end
function Scheduler(;threaded=Threads.nthreads()>1, statusChannel=nothing, verbose=false)
threaded && Threads.nthreads()==1 && @warn "Trying to run threaded Scheduler, but threading is not enabled, please set the environment variable JULIA_NUM_THREADS to the desired number of threads."
Scheduler(threaded, Ref(0), Threads.Atomic{JobID}(1), Dict{JobID,Job}(), Channel{Function}(Inf), Channel{Function}(Inf), [], Set{JobID}(), Dict{DetachedJob,UInt64}(), Ref(false), statusChannel, verbose)
end
struct PropagatedError{T<:Exception} <: Exception
e::T
jobName::String
inputName::String
end
errorchain(io::IO, e::Exception) = showerror(io,e)
errorchain(io::IO, e::PropagatedError) = (print(io, e.inputName, '[', e.jobName, "]<--"); errorchain(io, e.e))
Base.showerror(io::IO, e::PropagatedError) = (print(io::IO, "Propagated error: "); errorchain(io,e))
# --- exported functions ---
function createjob!(s::Scheduler, result::Any, args::Pair{JobID,String}...; spawn::Bool=true, name::Union{String,Nothing}=nothing)
id = newjobid!(s)
name = name==nothing ? "AnonymousJob#$id" : name
addaction!(s->_createjob!(s,id,result,name,spawn), s)
for (fromID,toName) in args
add_dependency!(s, fromID=>(id,toName))
end
id
end
createjob!(f::Function, s::Scheduler, args::Pair{JobID,String}...; name=string(f), kwargs...) = createjob!(s, f, args...; name=name, kwargs...)
deletejob!(s::Scheduler, jobID::JobID) = addaction!(s->_deletejob!(s,jobID), s)
add_dependency!( s::Scheduler, dep::Pair{JobID,Tuple{JobID,String}}) = addaction!(s-> add_edge!(s,dep), s)
remove_dependency!(s::Scheduler, dep::Pair{JobID,Tuple{JobID,String}}) = addaction!(s->remove_edge!(s,dep), s)
set_dependency!(s::Scheduler, dep::Pair{JobID,Tuple{JobID,String}}) = addaction!(s-> set_edge!(s,dep), s)
setfunction!(f::Function, s::Scheduler, jobID::JobID) = addaction!(s->_setfunction!(s,jobID,f), s)
setresult!(s::Scheduler, jobID::JobID, result::Any) = addaction!(s->_setresult!(s,jobID,result), s)
schedule!(callback::Callback, s::Scheduler, jobID::JobID) = addaction!(s->_schedule!(s,jobID,callback), s)
schedule!(s::Scheduler, jobID::JobID) = schedule!(nothing,s,jobID)
cancel!(s::Scheduler, jobID::JobID) = addaction!(s->_cancel!(s,jobID),s)
cancelall!(s::Scheduler) = addaction!(s) do s
for jobID in keys(s.jobs)
_cancel!(s, jobID)
end
end
iscanceled(jobStatus::JobStatus) = jobStatus.changedAt[] > jobStatus.runAt
wantstorun(s::Scheduler) = isready(s.actions) || isready(s.slowActions)
function step!(s::Scheduler)
while isready(s.actions)
take!(s.actions)(s)
end
s.hasSpawned[] = false # TODO: revise this solution
while !s.hasSpawned[] && isready(s.slowActions) # at most one slow spawning job per step
take!(s.slowActions)(s)
end
updatetimestamps!(s)
end
isactive(s::Scheduler) = !isempty(s.activeJobs)
function status(s::Scheduler)
# Running (A[2s], B[3s], ...), Detached Running (...), Spawned (C[0.1s], D [...), Waiting (...)
now = time_ns()
running = Tuple{String,Float64}[]
detached = Tuple{String,Float64}[]
spawned = Tuple{String,Float64}[]
waiting = Tuple{String,Float64}[]
for jobID in s.activeJobs
job = s.jobs[jobID]
job.status == :running && push!(running,(job.name,(now-job.statusChangedTime)/1e9))
job.status == :spawned && push!(spawned,(job.name,(now-job.statusChangedTime)/1e9))
job.status == :waiting && push!(waiting,(job.name,(now-job.statusChangedTime)/1e9))
end
for (detachedJob,jobStartTime) in s.detachedJobs
jobName = "Unknown"
haskey(s.jobs, detachedJob.jobID) && (jobName = s.jobs[detachedJob.jobID].name)
push!(detached, (jobName,(now-jobStartTime)/1e9))
end
running, detached, spawned, waiting
end
function statusstring(s::Scheduler; delim=", ")
running, detached, spawned, waiting = status(s)
strs = String[]
isempty(running) || push!(strs, string("Running (", join(_durationstring.(running), ", "), ")"))
isempty(detached) || push!(strs, string("Detached (", join(_durationstring.(detached), ", "), ")"))
isempty(spawned) || push!(strs, string("Spawned (", join(_durationstring.(spawned), ", "), ")"))
isempty(waiting) || push!(strs, string("Waiting (", join(_durationstring.(waiting), ", "), ")"))
join(strs, delim)
end
"""
jobstatus(s::Scheduler, jobID::JobID)
Returns one of :doesntexist, :notstarted, :waiting, :spawned, :running, :done, :errored
"""
jobstatus(s::Scheduler, jobID::JobID) = haskey(s.jobs, jobID) ? s.jobs[jobID].status : :doesntexist
jobname(s::Scheduler, jobID::JobID) = haskey(s.jobs, jobID) ? s.jobs[jobID].name : "Unknown"
# --- internal functions ---
result2status(::Any) = :done
result2status(::Exception) = :errored
function _setstatus!(s::Scheduler, jobID::JobID, job::Job, status::Symbol, statusChangedTime::UInt64=time_ns())
if status in (:notstarted,:doesntexist) && job.status in (:running,:spawned)
job.status==:running && @warn "Detaching running job $(job.name)"
s.detachedJobs[DetachedJob(jobID,job.runAt)] = job.statusChangedTime
end
wasActive = job.status in (:waiting,:spawned,:running)
isActive = status in (:waiting,:spawned,:running)
job.status = status
job.statusChangedTime = statusChangedTime
wasActive && !isActive && pop!(s.activeJobs, jobID)
isActive && !wasActive && push!(s.activeJobs, jobID)
s.statusChannel!=nothing && put!(s.statusChannel, JobStatusChange(jobID, job))
nothing
end
_durationstring(t::Tuple{String,Float64}, digits=1) = string(t[1], '[', round(t[2],digits=digits), "s]")
newjobid!(s::Scheduler) = Threads.atomic_add!(s.jobCounter, 1)
newtimestamp!(s::Scheduler) = s.timestamp[]+=1
addaction!(action::Function, s::Scheduler; slow::Bool=false) = (put!(slow ? s.slowActions : s.actions, action); nothing)
function _createjob!(s::Scheduler, jobID::JobID, x, name::String, spawn::Bool)
job = Job(name, x, newtimestamp!(s), spawn)
s.jobs[jobID] = job
_setstatus!(s, jobID, job, job.status)
nothing
end
function _deletejob!(s::Scheduler, jobID::JobID)
@assert haskey(s.jobs, jobID) "Trying to delete nonexisting job with id $(jobID)"
# remove dependencies
job = s.jobs[jobID]
for (name,fromID) in job.edges
remove_edge!(s, fromID=>(jobID,name))
end
for (toID,name) in job.edgesReverse
remove_edge!(s, jobID=>(toID,name))
end
_setstatus!(s, jobID, job, :doesntexist) # ensures removal from active jobs and detaching if needed
delete!(s.jobs, jobID)
nothing
end
function _setfunction!(s::Scheduler, jobID::JobID, f::Function)
@assert haskey(s.jobs, jobID) "Trying to update nonexisting job with id $(jobID)"
job = s.jobs[jobID]
job.f = f
setdirty!(s, jobID)
nothing
end
function _setresult!(s::Scheduler, jobID::JobID, result::Any)
@assert haskey(s.jobs, jobID) "Trying to update nonexisting job with id $(jobID)"
job = s.jobs[jobID]
@assert job.f == nothing
result==job.result && return nothing # Nothing to do.
setdirty!(s, jobID)
updatetimestamps!(s)
@assert job.status == :notstarted
job.result = result
_setstatus!(s, jobID, job, result2status(result))
nothing
end
_schedule!(callback::Function, s::Scheduler, jobID::JobID, scheduledAt::Timestamp) = _schedule!(s,jobID,callback,scheduledAt)
function _schedule!(s::Scheduler, jobID::JobID, callback::Callback, scheduledAt::Timestamp = s.timestamp[])
@assert haskey(s.jobs, jobID) "Trying to schedule nonexisting job with id $jobID"
updatetimestamps!(s)
job = s.jobs[jobID]
changedAt = job.changedAt[]
scheduledAt < changedAt && return # Scheduling out of date.
slow = !job.spawn
if job.runAt < changedAt # the job needs to run at a later timestamp than what has been run before
@assert job.status == :notstarted
job.runAt = changedAt
_setstatus!(s, jobID, job, :waiting)
empty!(job.callbacks)
# figure out which jobs we are waiting for to finish
waitingFor = Set{JobID}() # NB: do not reuse old set as it might be referenced from old dependency callbacks!
for e in job.edges
fromID = e[2]
if s.jobs[fromID].result == nothing
push!(waitingFor, fromID)
_schedule!(s, fromID, scheduledAt) do x
delete!(waitingFor,fromID)
isempty(waitingFor) && addaction!(s->_spawn!(s,jobID,scheduledAt),s; slow=slow)
end
end
end
job.waitingFor = waitingFor
s.verbose && @info "$(job.name) waiting for $(length(job.waitingFor)) jobs to finish."
end
@assert job.runAt == changedAt
callback != nothing && push!(job.callbacks, callback)
isempty(job.waitingFor) && addaction!(s->_spawn!(s,jobID,scheduledAt),s; slow=slow)
nothing
end
function _setstatustorunning!(s::Scheduler, jobID::JobID, runAt::Timestamp, statusChangedTime::UInt64)
haskey(s.jobs, jobID) || return # nothing to do if the job was deleted before it finished
job = s.jobs[jobID]
runAt < job.changedAt[] && return # nothing to do
@assert job.status == :spawned
_setstatus!(s, jobID, job, :running, statusChangedTime)
nothing
end
function _spawn!(s::Scheduler, jobID::JobID, scheduledAt::Timestamp)
haskey(s.jobs, jobID) || return # nothing to do if the job was deleted before it finished
updatetimestamps!(s)
job = s.jobs[jobID]
changedAt = job.changedAt[]
scheduledAt < changedAt && return # Spawned after dependency was finished, but now out of date.
if job.status in (:done, :errored)
job.result != nothing && _finish!(s, jobID, job.runAt, job.result, time_ns())
elseif job.status == :waiting
@assert isempty(job.waitingFor)
s.verbose && @info "Spawning $(job.name) ($jobID@$changedAt)"
s.hasSpawned[] = true
inputs = getinput(s,jobID)
_setstatus!(s, jobID, job, :spawned)
f = job.f
if s.threaded && job.spawn
Threads.@spawn runjob!(s, jobID, job.name, job.changedAt, changedAt, f, inputs)
else
runjob!(s, jobID, job.name, job.changedAt, changedAt, f, inputs)
end
end
nothing
end
function _cancel!(s::Scheduler, jobID::JobID)
@assert haskey(s.jobs, jobID) "Trying to cancel nonexisting job with id $jobID"
updatetimestamps!(s)
job = s.jobs[jobID]
job.result == nothing && setdirty!(s, jobID) # Do not invalidate jobs that have finished!
end
function _finish!(s::Scheduler, jobID::JobID, runAt::Timestamp, result::Any, statusChangedTime::UInt64)
if haskey(s.jobs, jobID)
updatetimestamps!(s)
job = s.jobs[jobID]
changedAt = job.changedAt[]
if changedAt == runAt # we finished the last version of the job
@assert job.status in (:running,:done,:errored)
job.result = result
_setstatus!(s, jobID, job, result2status(result), statusChangedTime)
for callback in job.callbacks
callback(job.result)
end
empty!(job.callbacks)
result isa Exception && throw(result)
return
end
end
# if we reach here, the job was either deleted or we finished running an old version of the job
pop!(s.detachedJobs, DetachedJob(jobID,runAt)) # remove from list of detached jobs
nothing
end
function getinput(s::Scheduler, jobID::JobID)
job = s.jobs[jobID]
Dict{String,Any}((name=>s.jobs[inputJobID].result) for (name,inputJobID) in job.edges)
end
function add_edge!(s::Scheduler, dep::Pair{JobID,Tuple{JobID,String}})
fromID,(toID,toName) = dep
@assert haskey(s.jobs, toID) "Trying to add edge to nonexisting job with id $(toID)"
@assert haskey(s.jobs, fromID) "Trying to add edge from nonexisting job with id $(fromID)"
from,to = s.jobs[fromID], s.jobs[toID]
@assert !haskey(to.edges, toName) "Trying to add edge \"$toName\" that already exists in job with id ($toID)"
to.edges[toName] = fromID
push!(from.edgesReverse, (toID,toName))
setdirty!(s, toID)
nothing
end
function remove_edge!(s::Scheduler, dep::Pair{JobID,Tuple{JobID,String}})
fromID,(toID,toName) = dep
@assert haskey(s.jobs, toID) "Trying to remove edge to nonexisting job with id $(toID)"
@assert haskey(s.jobs, fromID) "Trying to remove edge from nonexisting job with id $(fromID)"
from,to = s.jobs[fromID], s.jobs[toID]
# we don't allow removing edges that doesn't exist
@assert haskey(to.edges, toName) "Trying to remove edge \"$toName\" that doesn't exists in job with id ($toID)"
@assert to.edges[toName]==fromID
delete!(to.edges, toName)
delete!(from.edgesReverse, (toID,toName))
setdirty!(s, toID)
nothing
end
function set_edge!(s::Scheduler, dep::Pair{JobID,Tuple{JobID,String}})
fromID,(toID,toName) = dep
@assert haskey(s.jobs, toID) "Trying to replace edge to nonexisting job with id $(toID)"
@assert haskey(s.jobs, fromID) "Trying to replace (remove) edge from nonexisting job with id $(fromID)"
from,to = s.jobs[fromID], s.jobs[toID]
if haskey(to.edges, toName)
prevFromID = to.edges[toName]
prevFromID == fromID && return
remove_edge!(s, prevFromID=>(toID,toName))
end
add_edge!(s, dep)
nothing
end
function setdirty!(s::Scheduler, jobID::JobID)
job = s.jobs[jobID]
job.changedAt[] = newtimestamp!(s)
push!(s.dirtyJobs, jobID)
nothing
end
function updatetimestamprec!(s::Scheduler, jobID::JobID)
haskey(s.jobs, jobID) || return # happens if the job was deleted
job = s.jobs[jobID]
changedAt = job.changedAt[]
_setstatus!(s, jobID, job, :notstarted)
job.result = nothing
for (toID,name) in job.edgesReverse
toJob = s.jobs[toID]
Threads.atomic_max!(toJob.changedAt,changedAt) < changedAt && updatetimestamprec!(s,toID)
end
end
function updatetimestamps!(s::Scheduler)
while !isempty(s.dirtyJobs) # go through in reverse order to minimize changes to dependency graph
updatetimestamprec!(s,pop!(s.dirtyJobs))
end
end
function runjob!(s::Scheduler, jobID::JobID, jobName::String, changedAt::Threads.Atomic{Timestamp}, runAt::Timestamp, f::Function, input::Dict{String,Any})
jobStatus = JobStatus(changedAt, runAt)
result = nothing
if !iscanceled(jobStatus) # ensure the job was not changed after it was scheduled
try
s.verbose && @info "Running $jobName ($jobID@$runAt) with $(length(input)) parameter(s) in thread $(Threads.threadid())."
jobStartTime = time_ns()
addaction!(s->_setstatustorunning!(s,jobID,runAt,jobStartTime), s)
# sanity check input and propagate errors
for (name,v) in input
@assert v != nothing "Job \"$jobName\" input \"$name\" has not been computed."
v isa Exception && throw(PropagatedError(v,jobName,name))
end
result = f(jobStatus, input)
dur = round((time_ns()-jobStartTime)/1e9,digits=1)
isCanceled = iscanceled(jobStatus)
detachedStr = isCanceled ? " (detached job)" : ""
s.verbose && @info "Finished running$detachedStr $jobName[$(dur)s] ($jobID@$runAt) in thread $(Threads.threadid())."
isCanceled || @assert result!=nothing "Job $jobName returned nothing"
catch err
if !(err isa PropagatedError)
@warn "Job $jobName ($jobID@$runAt) failed"
showerror(stdout, err, catch_backtrace())
end
result = err
end
end
statusChangedTime = time_ns()
addaction!(s->_finish!(s,jobID,runAt,result,statusChangedTime), s)
result isa Exception && throw(result)
nothing
end
end
| PrincipalMomentAnalysisApp | https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl.git |
|
[
"MIT"
] | 0.2.6 | 7a89075c252d95cd9530f937158955939c218425 | code | 19117 | struct JobGraph
scheduler::Scheduler
sampleStatus::Ref{String}
fileIOLock::ReentrantLock
paramIDs::Dict{String,JobID}
loadSampleID::JobID
normalizeID::JobID
setupSimplicesID::JobID
dimreductionID::JobID
makeplotID::JobID
exportSingleID::JobID
exportMultipleID::JobID
end
struct SampleData
data::Matrix
sa::DataFrame
va::DataFrame
end
SampleData() = SampleData(zeros(0,0),DataFrame(),DataFrame(),"")
struct ReducedSampleData
F::Factorization
sa::DataFrame
va::DataFrame
end
guesslastsampleannot(df::DataFrame) =
something(findlast(j->!(eltype(df[!,j])<:Union{Real,Missing}), 1:size(df,2)), 1) # a reasonable guess for which column to use as the last sample annotation
getdelim(filepath::String) = lowercase(splitext(filepath)[2])==".csv" ? ',' : '\t'
loadcsv(filepath::String; delim, transpose::Bool=false) =
CSV.read(filepath, DataFrame; delim=delim, transpose=transpose, ntasks=1) # ntasks=1 might prevent crashes on some systems???
function loadsample(st, input::Dict{String,Any})::DataFrame
@assert length(input)==2
filepath = input["filepath"]::String
rowsAsSamples = parse(Bool,input["rowsassamples"])
filepath == :__INVALID__ && return Nothing
filepath::String
isempty(filepath) && return Nothing
@assert isfile(filepath) "Sample file not found: \"$filepath\""
df = loadcsv(filepath; delim=getdelim(filepath), transpose=!rowsAsSamples)
@assert size(df,2)>1 "Invalid data set. Must contain at least one sample annotation and one variable."
@assert guesslastsampleannot(df)<size(df,2) "Invalid data set. Numerical data (variables) must come after sample annotations."
df
end
# callback function
function showsampleannotnames(df::DataFrame, toGUI)
indLastSampleAnnot = guesslastsampleannot(df)
put!(toGUI, :displaysampleannotnames=>(names(df)[1:min(max(indLastSampleAnnot+10,40),end)], indLastSampleAnnot))
end
function normalizesample(st, input::Dict{String,Any})
@assert length(input)==5
df = input["dataframe"]
method = input["method"]
lastSampleAnnot = input["lastsampleannot"]
logTransform = parse(Bool,input["logtransform"])
logTransformOffset = parse(Float64, input["logtransformoffset"])
@assert method in ("None", "Mean=0", "Mean=0,Std=1")
nbrSampleAnnots = findfirst(x->string(x)==lastSampleAnnot, names(df))
@assert nbrSampleAnnots != nothing "Couldn't find sample annotation: \"$lastSampleAnnot\""
sa = df[:, 1:nbrSampleAnnots]
va = DataFrame(VariableId=propertynames(df)[nbrSampleAnnots+1:end])
originalData = Matrix(df[!,nbrSampleAnnots+1:end])'
@assert eltype(originalData) <: Union{Number,Missing}
if logTransform
@assert all(x->x>-logTransformOffset, skipmissing(originalData)) "Data contains negative values, cannot log-transform."
originalData .= log2.(originalData.+logTransformOffset)
end
data = zeros(size(originalData))
if any(ismissing,originalData)
# Replace missing values with mean over samples with nonmissing data
@info "Reconstructing missing values (taking the mean over all nonmissing samples)"
for i=1:size(data,1)
m = ismissing.(originalData[i,:])
data[i,.!m] .= originalData[i,.!m]
reconstructed = mean(originalData[i,.!m])
data[i,m] .= isnan(reconstructed) ? 0.0 : reconstructed
end
else
data .= originalData # just copy
end
@assert all(!isnan, data) "Input data cannot contain NaNs. Use empty cells for missing values."
X = data
if method == "Mean=0,Std=1"
X = normalizemeanstd!(X)
elseif method == "Mean=0"
X = normalizemean!(X)
end
SampleData(X,sa,va)
end
function setupsimplices(st, input::Dict{String,Any})
@assert length(input)==6
sampleData = input["sampledata"]
method = Symbol(input["method"])
sampleAnnot = Symbol(input["sampleannot"])
timeAnnot = Symbol(input["timeannot"])
kNN = parse(Int,input["knearestneighbors"])
distNN = parse(Float64, input["distnearestneighbors"])
@assert method in (:SA,:Time,:NN,:NNSA)
local G, description
if method == :SA
G = groupsimplices(sampleData.sa[!,sampleAnnot])
description = "GroupBy=$sampleAnnot"
elseif method == :Time
eltype(sampleData.sa[!,timeAnnot])<:Number || @warn "Expected time annotation to contain numbers, got $(eltype(sampleData.sa[!,timeAnnot])). Fallback to default sorting."
G = timeseriessimplices(sampleData.sa[!,timeAnnot], groupby=sampleData.sa[!,sampleAnnot])
description = "Time=$timeAnnot, GroupBy=$sampleAnnot"
elseif method == :NN
G = neighborsimplices(sampleData.data; k=kNN, r=distNN, dim=50)
description = "Nearest Neighbors k=$kNN, r=$distNN"
elseif method == :NNSA
G = neighborsimplices(sampleData.data; k=kNN, r=distNN, dim=50, groupby=sampleData.sa[!,sampleAnnot])
description = "Nearest Neighbors k=$kNN, r=$distNN, GroupBy=$sampleAnnot"
end
G, description
end
function dimreduction(st, input::Dict{String,Any})
@assert length(input)==3
sampleData = input["sampledata"]
sampleSimplices = input["samplesimplices"][1]
method = Symbol(input["method"])
X = sampleData.data::Matrix{Float64}
# dim = 3
dim = min(10, size(X)...)
if method==:PMA
F = pma(X, sampleSimplices, nsv=dim)
elseif method==:PCA
F = svdbyeigen(X,nsv=dim)
end
ReducedSampleData(F, sampleData.sa, sampleData.va)
end
function makeplot(st, input::Dict{String,Any})
@assert length(input)==17
reduced = input["reduced"]::ReducedSampleData
dimReductionMethod = Symbol(input["dimreductionmethod"])
sampleAnnot = Symbol(input["sampleannot"])
sampleSimplices, sampleSimplexDescription = input["samplesimplices"]
xaxis = parse(Int,input["xaxis"])
yaxis = parse(Int,input["yaxis"])
zaxis = parse(Int,input["zaxis"])
plotWidth = parse(Int,input["plotwidth"])
plotHeight = parse(Int,input["plotheight"])
showPoints = parse(Bool,input["showpoints"])
showLines = parse(Bool,input["showlines"])
showTriangles = parse(Bool,input["showtriangles"])
markerSize = parse(Float64,input["markersize"])
lineWidth = parse(Float64,input["linewidth"])
triangleOpacity = parse(Float64,input["triangleopacity"])
colorByMethod = Symbol(input["colorby"])
colorAnnot = Symbol(input["colorannot"])
# shapeByMethod = Symbol(input["shapeby"])
# shapeAnnot = Symbol(input["shapeannot"])
title = "$dimReductionMethod - $sampleSimplexDescription"
colorByMethod == :Auto && (colorAnnot=sampleAnnot)
colorBy = colorByMethod == :None ? repeat([""],size(reduced.sa,1)) : reduced.sa[!,colorAnnot]
colorDict = (eltype(colorBy) <: Real) ? nothing : colordict(colorBy)
shapeBy, shapeDict = nothing, nothing
# if shapeByMethod == :Custom
# shapeBy = reduced.sa[!,shapeAnnot]
# shapeDict = shapedict(shapeBy)
# end
# TODO: handle missing values in sample annotations?
dims = [xaxis, yaxis, zaxis]
plotArgs = plotsimplices(reduced.F.V[:,dims],sampleSimplices,colorBy,colorDict, title=title,
drawPoints=showPoints, drawLines=showLines, drawTriangles=showTriangles,
opacity=triangleOpacity, markerSize=markerSize, lineWidth=lineWidth,
shapeBy=shapeBy, shapeDict=shapeDict,
xLabel=string("PMA",xaxis), yLabel=string("PMA",yaxis), zLabel=string("PMA",zaxis))
plotArgs, plotWidth, plotHeight
end
showplot(data, toGUI::Channel) = put!(toGUI, :displayplot=>data)
function exportsingle(st, input::Dict{String,Any})
@assert length(input)==5
reduced = input["reduced"]::ReducedSampleData
mode = Symbol(input["mode"])
filepath = input["filepath"]
sortMode = Symbol(input["sort"])
dim = parse(Int,input["dim"])
@assert mode in (:Variables, :Samples)
@assert sortMode in (:Abs, :Descending, :Ascending, :Original)
colName = Symbol("PMA",dim)
if mode == :Variables
df = copy(reduced.va)
df[!,colName] = reduced.F.U[:,dim]
else
df = copy(reduced.sa[!,1:1])
df[!,colName] = reduced.F.V[:,dim]
end
if sortMode==:Abs
sort!(df, colName, by=abs, rev=true)
elseif sortMode==:Descending
sort!(df, colName, rev=true)
elseif sortMode==:Ascending
sort!(df, colName)
end
CSV.write(filepath, df, delim=getdelim(filepath))
end
function exportmultiple(st, input::Dict{String,Any})
@assert length(input)==4
reduced = input["reduced"]::ReducedSampleData
mode = Symbol(input["mode"])
filepath = input["filepath"]
dim = parse(Int,input["dim"])
@assert mode in (:Variables, :Samples)
if mode == :Variables
df = copy(reduced.va)
PMAs = reduced.F.U
else
df = copy(reduced.sa[!,1:1])
PMAs = reduced.F.V
end
for d in 1:dim
df[!,Symbol("PMA",d)] = PMAs[:,d]
end
CSV.write(filepath, df, delim=getdelim(filepath))
end
function samplestatus(jg::JobGraph)
status = jobstatus(jg.scheduler, jg.loadSampleID)
status==:done && return "Sample loaded."
status in (:waiting,:running) && return "Loading sample."
"Please load sample."
end
function setsamplestatus(jg::JobGraph, toGUI::Channel)
sampleStatus = samplestatus(jg)
sampleStatus!=jg.sampleStatus[] && put!(toGUI, :samplestatus=>sampleStatus)
jg.sampleStatus[] = sampleStatus
end
function JobGraph(;verbose=false)
scheduler = Scheduler(verbose=verbose)
# scheduler = Scheduler(threaded=false, verbose=verbose) # For DEBUG
# Data Nodes (i.e. parameters chosen in the GUI)
paramIDs = Dict{String,JobID}()
loadSampleID = createjob!(loadsample, scheduler,
getparamjobid(scheduler,paramIDs,"samplefilepath")=>"filepath",
getparamjobid(scheduler,paramIDs,"loadrowsassamples")=>"rowsassamples")
normalizeID = createjob!(normalizesample, scheduler,
loadSampleID=>"dataframe",
getparamjobid(scheduler,paramIDs,"lastsampleannot")=>"lastsampleannot",
getparamjobid(scheduler,paramIDs,"normalizemethod")=>"method",
getparamjobid(scheduler,paramIDs,"logtransform")=>"logtransform",
getparamjobid(scheduler,paramIDs,"logtransformoffset")=>"logtransformoffset")
setupSimplicesID = createjob!(setupsimplices, scheduler,
normalizeID=>"sampledata",
getparamjobid(scheduler,paramIDs,"samplesimplexmethod")=>"method",
getparamjobid(scheduler,paramIDs,"sampleannot")=>"sampleannot",
getparamjobid(scheduler,paramIDs,"timeannot")=>"timeannot",
getparamjobid(scheduler,paramIDs,"knearestneighbors")=>"knearestneighbors",
getparamjobid(scheduler,paramIDs,"distnearestneighbors")=>"distnearestneighbors")
dimreductionID = createjob!(dimreduction, scheduler,
normalizeID=>"sampledata",
setupSimplicesID=>"samplesimplices",
getparamjobid(scheduler,paramIDs,"dimreductionmethod")=>"method")
makeplotID = createjob!(makeplot, scheduler,
dimreductionID=>"reduced",
getparamjobid(scheduler,paramIDs,"dimreductionmethod")=>"dimreductionmethod",
getparamjobid(scheduler,paramIDs,"sampleannot")=>"sampleannot",
setupSimplicesID=>"samplesimplices",
getparamjobid(scheduler,paramIDs,"xaxis")=>"xaxis",
getparamjobid(scheduler,paramIDs,"yaxis")=>"yaxis",
getparamjobid(scheduler,paramIDs,"zaxis")=>"zaxis",
getparamjobid(scheduler,paramIDs,"plotwidth")=>"plotwidth",
getparamjobid(scheduler,paramIDs,"plotheight")=>"plotheight",
getparamjobid(scheduler,paramIDs,"showpoints")=>"showpoints",
getparamjobid(scheduler,paramIDs,"showlines")=>"showlines",
getparamjobid(scheduler,paramIDs,"showtriangles")=>"showtriangles",
getparamjobid(scheduler,paramIDs,"markersize")=>"markersize",
getparamjobid(scheduler,paramIDs,"linewidth")=>"linewidth",
getparamjobid(scheduler,paramIDs,"triangleopacity")=>"triangleopacity",
getparamjobid(scheduler,paramIDs,"colorby")=>"colorby",
getparamjobid(scheduler,paramIDs,"colorannot")=>"colorannot")
# getparamjobid(scheduler,paramIDs,"shapeby")=>"shapeby",
# getparamjobid(scheduler,paramIDs,"shapeannot")=>"shapeannot")
exportSingleID = createjob!(exportsingle, scheduler,
dimreductionID=>"reduced",
getparamjobid(scheduler,paramIDs,"exportmode")=>"mode",
getparamjobid(scheduler,paramIDs,"exportsinglepath")=>"filepath",
getparamjobid(scheduler,paramIDs,"exportsingledim")=>"dim",
getparamjobid(scheduler,paramIDs,"exportsinglesort")=>"sort")
exportMultipleID = createjob!(exportmultiple, scheduler,
dimreductionID=>"reduced",
getparamjobid(scheduler,paramIDs,"exportmode")=>"mode",
getparamjobid(scheduler,paramIDs,"exportmultiplepath")=>"filepath",
getparamjobid(scheduler,paramIDs,"exportmultipledim")=>"dim")
JobGraph(scheduler,
Ref(""),
ReentrantLock(),
paramIDs,
loadSampleID,
normalizeID,
setupSimplicesID,
dimreductionID,
makeplotID,
exportSingleID,
exportMultipleID)
end
getparamjobid(s::Scheduler, paramIDs::Dict{String,JobID}, name::String, create::Bool=true) = create ? get!(paramIDs,name,createjob!(s, :__INVALID__, name=name)) : paramIDs[name]
getparamjobid(jg::JobGraph, name::String, args...) = getparamjobid(jg.scheduler, jg.paramIDs, name, args...)
function setparam(jg::JobGraph, name::String, value)
if haskey(jg.paramIDs, name)
setresult!(jg.scheduler, getparamjobid(jg,name), value)
else
@warn "Unknown variable name: $name"
end
end
function process_step(jg::JobGraph, fromGUI::Channel, toGUI::Channel, lastSchedulerTime::Ref{UInt64}; verbosityLevel)
scheduler = jg.scheduler
verbosityLevel>=3 && @info "[Processing] tick"
timeNow = time_ns()
if isready(fromGUI)
try
msg = take!(fromGUI)
msgName = msg.first
msgArgs = msg.second
verbosityLevel>=2 && @info "[Processing] Got message: $msgName $msgArgs"
if msgName == :exit
return false
elseif msgName == :cancel
verbosityLevel>=2 && @info "[Processing] Cancelling all future events."
cancelall!(scheduler)
elseif msgName == :setvalue
setparam(jg, msgArgs[1], msgArgs[2])
elseif msgName == :loadsample
schedule!(x->showsampleannotnames(x,toGUI), scheduler, jg.loadSampleID)
elseif msgName == :normalize
schedule!(scheduler, jg.normalizeID)
elseif msgName == :dimreduction
schedule!(scheduler, jg.dimreductionID)
elseif msgName == :showplot
schedule!(x->showplot(x,toGUI), scheduler, jg.makeplotID)
elseif msgName == :exportsingle
schedule!(scheduler, jg.exportSingleID)
elseif msgName == :exportmultiple
schedule!(scheduler, jg.exportMultipleID)
else
@warn "Unknown message type: $(msgName)"
end
catch e
@warn "[Processing] Error processing GUI message."
showerror(stdout, e, catch_backtrace())
end
setsamplestatus(jg, toGUI)
elseif wantstorun(scheduler) || (isactive(scheduler) && (timeNow-lastSchedulerTime[])/1e9 > 5.0)
lastSchedulerTime[] = timeNow
try
step!(scheduler)
status = statusstring(scheduler)
!isempty(status) && verbosityLevel>=2 && @info "Job status: $status"
catch e
@warn "[Processing] Error processing event: $e"
#showerror(stdout, e, catch_backtrace())
end
setsamplestatus(jg, toGUI)
else
sleep(0.05)#yield()
end
true
end
function process_thread(jg::JobGraph, fromGUI::Channel, toGUI::Channel; verbosityLevel)
lastSchedulerTime = Ref{UInt64}(0)
try
while process_step(jg, fromGUI, toGUI, lastSchedulerTime; verbosityLevel=verbosityLevel)
end
catch e
@warn "[Processing] Fatal error."
showerror(stdout, e, catch_backtrace())
end
verbosityLevel>=2 && @info "[Processing] Exiting thread."
put!(toGUI, :exited=>nothing)
end
"""
pmaapp()
Start the Principal Moment Analysis App.
"""
function pmaapp(; verbosityLevel=1, return_job_graph=false)
# This is the GUI thread
jg = JobGraph(verbose=verbosityLevel>=2)
verbosityLevel>=1 && @info "[PMAGUI] Using $(Threads.nthreads()) of $(Sys.CPU_THREADS) available threads."
Threads.nthreads() == 1 && verbosityLevel>=1 && @warn "[PMAGUI] Threading not enabled, please set the environment variable JULIA_NUM_THREADS to the desired number of threads."
# init
fromGUI = Channel{Pair{Symbol,Vector}}(Inf)
toGUI = Channel{Pair{Symbol,Any}}(Inf)
# start processing thread
processingThreadRunning = true
Threads.@spawn process_thread(jg, fromGUI, toGUI; verbosityLevel=verbosityLevel)
# setup gui
w = Window(Dict(:width=>512,:height=>768))
# event listeners
handle(w, "msg") do args
msgName = Symbol(args[1])
msgArgs = args[2:end]
verbosityLevel>=2 && @info "[GUI] sending message: $msgName $(join(msgArgs,", "))"
processingThreadRunning && put!(fromGUI, msgName=>msgArgs)
end
doc = read(joinpath(@__DIR__,"content.html"),String)
body!(w,doc,async=false)
js(w, js"init()")
while isopen(w.content.sock) # is there a better way to check if the window is still open?
verbosityLevel>=3 && @info "[GUI] tick"
if isready(toGUI)
msg = take!(toGUI)
msgName = msg.first
msgArgs = msg.second
verbosityLevel>=2 && @info "[GUI] got message: $msgName"
if msgName == :samplestatus
js(w, js"""setSampleStatus($msgArgs)""")
elseif msgName == :displayplot
plotArgs,plotWidth,plotHeight = msgArgs
pl = plot(plotArgs...)
relayout!(pl, Dict(:margin=>attr(l=1, r=1, b=1, t=50))) # by doing this here - we seem to avoid a bug that causes axis ticks to disappear from subsequent Volcano(!) plots.
display(pl)
# Slight hack to set window size properly
plSize = size(pl)
size(pl.window, floor(Int,plotWidth*1.05), floor(Int,plotHeight*1.05))
elseif msgName == :displaysampleannotnames
js(w, js"""setSampleAnnotNames($(msgArgs[1]), $(msgArgs[2]-1))""")
elseif msgName == :exited
processingThreadRunning = false
end
end
sleep(0.05)#yield() # Allow GUI to run
end
verbosityLevel>=2 && @info "[GUI] Waiting for scheduler thread to finish."
processingThreadRunning && put!(fromGUI, :exit=>[])
# wait until all threads have exited
while processingThreadRunning
msg = take!(toGUI)
msgName = msg.first
msgArgs = msg.second
verbosityLevel>=2 && @info "[GUI] got message: $msgName"
msgName == :exited && (processingThreadRunning = false)
sleep(0.05)
end
verbosityLevel>=2 && @info "[GUI] Scheduler thread finished."
return_job_graph ? jg : nothing
end
| PrincipalMomentAnalysisApp | https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl.git |
|
[
"MIT"
] | 0.2.6 | 7a89075c252d95cd9530f937158955939c218425 | code | 243 | function svdbyeigen(A; nsv::Integer=3)
P,N = size(A)
K = Symmetric(N<=P ? A'A : A*A')
M = size(K,1)
F = eigen(K, M-nsv+1:M)
S = sqrt.(max.(0.,reverse(F.values)))
V = F.vectors[:,end:-1:1]
N<=P ? SVD(A*V./S',S,V') : SVD(V,S,V'A./S)
end
| PrincipalMomentAnalysisApp | https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl.git |
|
[
"MIT"
] | 0.2.6 | 7a89075c252d95cd9530f937158955939c218425 | code | 9310 | function _scatter(V; kwargs...)
size(V,2)==2 && return scatter(;x=V[:,1], y=V[:,2], kwargs...)
scatter3d(;x=V[:,1], y=V[:,2], z=V[:,3], kwargs...)
end
function plotsimplices(V, sg, colorBy, colorDict;
drawPoints=true, drawLines=true, drawTriangles=true,
title="",
opacity=0.3, markerSize=5, lineWidth=2,
shapeBy=nothing, shapeDict=nothing,
xLabel="x", yLabel="y", zLabel="z",
legendTitle="",
cameraAttr=attr())
@assert size(V,2) in 2:3
traces = GenericTrace[]
# colorscale setup
colorScale = nothing
tOffs, tScale = 0.0, 1.0
if colorDict==nothing
# this is the "RdBu" colorscale used by PlotlyJS
colorScale = ColorScale([0, 0.35, 0.5, 0.6, 0.7, 1], [RGB(5/255,10/255,172/255), RGB(106/255,137/255,247/255), RGB(190/255,190/255,190/255), RGB(220/255,170/255,132/255), RGB(230/255,145/255,90/255), RGB(178/255,10/255,28/255)])
if !isempty(skipmissing(colorBy))
m,M = Float64.(extrema(skipmissing(colorBy)))
tOffs,tScale = M>m ? (m, 1.0./(M-m)) : (m-0.5, 1.0) # if there is only one unique value, map it to the middle of the colorscale
end
end
if drawTriangles && size(V,2)>2 # Triangles not supported in 2d plot for now
TRIANGLE_LIMIT = 2_000_000
triangleInds = Int[]
for c=1:size(sg.G,2)
ind = findall(sg.G[:,c])
isempty(ind) && continue
length(ind)<3 && continue # no triangles
# slow and ugly solution
for tri in IterTools.subsets(ind,3)
append!(triangleInds, sort(tri))
end
end
triangleInds = reshape(triangleInds,3,:)
triangleInds = unique(triangleInds,dims=2) # remove duplicates
triangleInds .-= 1 # PlotlyJS wants zero-based indices
if size(triangleInds,2)>TRIANGLE_LIMIT
@warn "More than $TRIANGLE_LIMIT triangles to plot, disabling triangle plotting for performance reasons."
else
if colorDict==nothing
vertexColor = [ ismissing(t) ? RGB(0.,0.,0.) : lookup(colorScale, (t-tOffs)*tScale) for t in colorBy ]
else
vertexColor = getindex.((colorDict,), colorBy)
end
push!(traces, mesh3d(; x=V[:,1],y=V[:,2],z=V[:,3],i=triangleInds[1,:],j=triangleInds[2,:],k=triangleInds[3,:], vertexcolor=vertexColor, opacity=opacity, lighting=attr(ambient=1.0,diffuse=0.0,specular=0.0,fresnel=0.0), showlegend=false))
end
end
if drawLines
LINE_LIMIT = 300_000
GK = sg.G*sg.G'
nbrLines = div(nnz(GK) - sum(i->GK[i,i]>0, 1:size(GK,1)), 2) # number of elements above the diagonal
if nbrLines > LINE_LIMIT
@warn "More than $LINE_LIMIT lines to plot, disabling line plotting for performance reasons."
else
# every third point is "nothing" to make lines disconnected
VL = repeat(Union{Float64,Nothing}[nothing], nbrLines*3, size(V,2))
colorsRGB = repeat([RGB(0.,0.,0.)], nbrLines*3)
lineInd = 1
rows = rowvals(GK)
for c = 1:size(GK,2)
for k in nzrange(GK, c)
r = rows[k]
r>=c && break # just use upper triangular part
VL[lineInd, :] .= V[r,:]
VL[lineInd+1, :] .= V[c,:]
if colorDict==nothing
t1,t2 = colorBy[r],colorBy[c]
col1 = ismissing(t1) ? RGB(0.,0.,0.) : lookup(colorScale, (t1-tOffs)*tScale)
col2 = ismissing(t2) ? RGB(0.,0.,0.) : lookup(colorScale, (t2-tOffs)*tScale)
else
col1 = colorDict[colorBy[r]]
col2 = colorDict[colorBy[c]]
end
colorsRGB[lineInd] = col1
colorsRGB[lineInd+1] = col2
lineInd+=3
end
end
@assert lineInd == nbrLines*3+1
if size(V,2)==2
# PLOTLY DOESN'T HANDLE PER VERTEX COLORS FOR 2D LINES. THIS IS A STUPID WORKAROUND TO MAKE LINES BLACK IN 2D.
push!(traces, _scatter(VL; mode="lines", line=attr(color=colorant"black", width=lineWidth), showlegend=false))
else
push!(traces, _scatter(VL; mode="lines", line=attr(color=colorsRGB, width=lineWidth), showlegend=false))
end
end
end
# plot each group in different colors
if drawPoints
# TODO: merge the two cases below?
if colorDict != nothing
for cb in unique(colorBy)
ind = findall(colorBy.==cb )
col = colorDict[cb]
extras = []
length(colorDict)==1 && push!(extras, (;showlegend=false))
shapeBy!=nothing && shapeDict!=nothing && push!(extras, (marker_symbol=[shapeDict[k] for k in shapeBy[ind]],))
isempty(extras) || (extras = pairs(extras...))
points = _scatter(V[ind,:]; mode="markers", marker_color=col, marker_size=markerSize, marker_line_width=0, name=string(cb), extras...)
push!(traces, points)
end
else
extras = []
shapeBy!=nothing && shapeDict!=nothing && push!(extras, (marker_symbol=[shapeDict[k] for k in shapeBy],))
isempty(extras) || (extras = pairs(extras...))
V2 = V
c = colorBy
# handle missing values by plotting them in another trace (with a different color)
if any(ismissing, c)
mask = ismissing.(c)
pointsNA = _scatter(V2[mask,:]; mode="markers", marker=attr(color=colorant"black", size=markerSize, line_width=0), name="", showlegend=false, extras...)
push!(traces, pointsNA)
V2 = V2[.!mask,:]
c = disallowmissing(c[.!mask])
end
points = _scatter(V2; mode="markers", marker=attr(color=c, colorscale=to_list(colorScale), showscale=true, size=markerSize, line_width=0, colorbar=attr(title=legendTitle)), name="", showlegend=false, extras...)
push!(traces, points)
end
end
if size(V,2)==2
layout = Layout(title=title,
xaxis=attr(title=xLabel, constrain="domain"),
yaxis=attr(title=yLabel, constrain="domain", scaleanchor='x'),
legend=attr(title_text=legendTitle, itemsizing="constant"),
hovermode="closest")
else
layout = Layout(title=title,
scene=attr(xaxis=attr(title=xLabel), yaxis=attr(title=yLabel), zaxis=attr(title=zLabel), camera=cameraAttr, aspectmode="data"),
legend=attr(title_text=legendTitle, itemsizing="constant"))
end
traces, layout # return plot args rather than plot because of threading issues.
end
_distinguishable_colors(n) = distinguishable_colors(n+1,colorant"white")[2:end]
function colordict(x::AbstractArray)
k = unique(x)
Dict(s=>c for (s,c) in zip(k,_distinguishable_colors(length(k))))
end
struct ColorScale
t::Vector{Float64} # increasing values between 0 and 1. First must be 0 and last must be 1.
colors::Vector{RGB{Float64}} # must be same length as t
end
to_list(colorScale::ColorScale) = [ [t,c] for (t,c) in zip(colorScale.t, colorScale.colors)]
function lookup(colorScale::ColorScale, t::Float64)
i2 = searchsortedfirst(colorScale.t, t)
i2>length(colorScale.t) && return colorScale.colors[end]
i2==1 && return colorScale.colors[1]
i1 = i2-1
α = (t-colorScale.t[i1]) / (colorScale.t[i2]-colorScale.t[i1])
weighted_color_mean(α, colorScale.colors[i2], colorScale.colors[i1]) # NB: order because α=1 means first color in weighted_color_mean
end
const SHAPES = ["circle","square","diamond","cross","x","triangle-up","triangle-down","triangle-left","triangle-right","triangle-ne","triangle-se","triangle-sw","triangle-nw","pentagon","hexagon","hexagon2","octagon","star","hexagram","star-triangle-up","star-triangle-down","star-square","star-diamond","diamond-tall","diamond-wide","hourglass","bowtie","circle-cross","circle-x","square-cross","square-x","diamond-cross","diamond-x","cross-thin","x-thin","asterisk","hash","y-up","y-down","y-left","y-right","line-ew","line-ns","line-ne","line-nw","circle-open","square-open","diamond-open","cross-open","x-open","triangle-up-open","triangle-down-open","triangle-left-open","triangle-right-open","triangle-ne-open","triangle-se-open","triangle-sw-open","triangle-nw-open","pentagon-open","hexagon-open","hexagon2-open","octagon-open","star-open","hexagram-open","star-triangle-up-open","star-triangle-down-open","star-square-open","star-diamond-open","diamond-tall-open","diamond-wide-open","hourglass-open","bowtie-open","circle-cross-open","circle-x-open","square-cross-open","square-x-open","diamond-cross-open","diamond-x-open","cross-thin-open","x-thin-open","asterisk-open","hash-open","y-up-open","y-down-open","y-left-open","y-right-open","line-ew-open","line-ns-open","line-ne-open","line-nw-open","","circle-dot","square-dot","diamond-dot","cross-dot","x-dot","triangle-up-dot","triangle-down-dot","triangle-left-dot","triangle-right-dot","triangle-ne-dot","triangle-se-dot","triangle-sw-dot","triangle-nw-dot","pentagon-dot","hexagon-dot","hexagon2-dot","octagon-dot","star-dot","hexagram-dot","star-triangle-up-dot","star-triangle-down-dot","star-square-dot","star-diamond-dot","diamond-tall-dot","diamond-wide-dot","hash-dot","circle-open-dot","square-open-dot","diamond-open-dot","cross-open-dot","x-open-dot","triangle-up-open-dot","triangle-down-open-dot","triangle-left-open-dot","triangle-right-open-dot","triangle-ne-open-dot","triangle-se-open-dot","triangle-sw-open-dot","triangle-nw-open-dot","pentagon-open-dot","hexagon-open-dot","hexagon2-open-dot","octagon-open-dot","star-open-dot","hexagram-open-dot","star-triangle-up-open-dot","star-triangle-down-open-dot","star-square-open-dot","star-diamond-open-dot","diamond-tall-open-dot","diamond-wide-open-dot","hash-open-dot"]
shapedict(x::AbstractArray) = Dict(v=>SHAPES[mod(i-1,length(SHAPES))+1] for (i,v) in enumerate(unique(x)))
| PrincipalMomentAnalysisApp | https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl.git |
|
[
"MIT"
] | 0.2.6 | 7a89075c252d95cd9530f937158955939c218425 | code | 368 | using PrincipalMomentAnalysisApp
using Test
using PrincipalMomentAnalysis
using LinearAlgebra
using DataFrames
using CSV
import PrincipalMomentAnalysisApp: JobGraph, process_thread, process_step
using PrincipalMomentAnalysisApp.Schedulers
include("utils.jl")
@testset "PrincipalMomentAnalysisApp" begin
include("test_content.jl")
include("test_app.jl")
end
| PrincipalMomentAnalysisApp | https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl.git |
|
[
"MIT"
] | 0.2.6 | 7a89075c252d95cd9530f937158955939c218425 | code | 18163 | @testset "app" begin
@testset "exit" begin
app = MiniApp()
put!(app.fromGUI, :exit=>[])
process_thread(app.jg, app.fromGUI, app.toGUI; verbosityLevel=2)
didExit = false
while true
@test isready(app.toGUI)
msg = take!(app.toGUI)
msg.first == :exited && (didExit=true; break)
end
@test didExit
end
@testset "exit2" begin
app = MiniApp()
init(app)
lastSchedulerTime = Ref{UInt64}(0)
put!(app.fromGUI, :exit=>[])
@test !runall(app)
end
@testset "data.tsv" begin
filepath = joinpath(@__DIR__, "data/data.tsv")
varIds = [Symbol("V$i") for i=1:40]
sampleIds = [string('S',lpad(i,2,'0')) for i=1:20]
groupAnnot = repeat(["A","B"],inner=10)
timeAnnot = vcat(0.01:0.01:0.1, 0.01:0.01:0.1)
app = MiniApp()
init(app)
# Open file
setvalue(app, Any["samplefilepath", filepath])
setvalue(app, Any["lastsampleannot", "Time"])
put!(app.fromGUI, :loadsample=>[])
@test runall(app)
dfSample = app.jg.scheduler.jobs[app.jg.loadSampleID].result
@test propertynames(dfSample) == vcat([:SampleId, :Group, :Time], varIds)
@test dfSample.SampleId == sampleIds
@test dfSample.Group == groupAnnot
@test dfSample.Time == timeAnnot
@test size(dfSample)==(20,3+40)
X = Matrix(Matrix{Float64}(dfSample[:,4:end])')
normalizemean!(X)
# PMA (groups)
setvalue(app, Any["samplesimplexmethod", "SA"])
setvalue(app, Any["sampleannot", "Group"])
put!(app.fromGUI, :dimreduction=>[])
@test runall(app)
reduced = app.jg.scheduler.jobs[app.jg.dimreductionID].result
@test reduced.sa == dfSample[!,1:3]
@test reduced.va[!,1] == varIds
factorizationcmp(pma(X, groupsimplices(groupAnnot); nsv=10), reduced.F)
# PMA (time series)
setvalue(app, Any["samplesimplexmethod", "Time"])
setvalue(app, Any["sampleannot", "Group"])
setvalue(app, Any["timeannot", "Time"])
put!(app.fromGUI, :dimreduction=>[])
@test runall(app)
reduced = app.jg.scheduler.jobs[app.jg.dimreductionID].result
@test reduced.sa == dfSample[!,1:3]
@test reduced.va[!,1] == varIds
#factorizationcmp(pma(X, timeseriessimplices(timeAnnot, groupby=groupAnnot); nsv=10), reduced.F)
G = timeseriessimplices(timeAnnot, groupby=groupAnnot)
factorizationcmp(pma(X, G; nsv=10), reduced.F)
# PMA (NN)
setvalue(app, Any["samplesimplexmethod", "NN"])
setvalue(app, Any["knearestneighbors", "2"])
setvalue(app, Any["distnearestneighbors", "0.5"])
put!(app.fromGUI, :dimreduction=>[])
@test runall(app)
reduced = app.jg.scheduler.jobs[app.jg.dimreductionID].result
@test reduced.sa == dfSample[!,1:3]
@test reduced.va[!,1] == varIds
factorizationcmp(pma(X, neighborsimplices(X,k=2,r=0.5,dim=50), nsv=10), reduced.F)
# PMA (NN withing groups)
setvalue(app, Any["samplesimplexmethod", "NNSA"])
setvalue(app, Any["sampleannot", "Group"])
setvalue(app, Any["knearestneighbors", "2"])
setvalue(app, Any["distnearestneighbors", "0.5"])
put!(app.fromGUI, :dimreduction=>[])
@test runall(app)
reduced = app.jg.scheduler.jobs[app.jg.dimreductionID].result
@test reduced.sa == dfSample[!,1:3]
@test reduced.va[!,1] == varIds
F = pma(X, neighborsimplices(X,k=2,r=0.5,dim=50,groupby=groupAnnot), nsv=10)
factorizationcmp(F, reduced.F)
# Exports
mktempdir() do temppath
for (dim,order,mode) in zip((1,3,7,10), ("Abs","Descending","Ascending","Original"), ("Samples","Variables","Samples","Variables"))
setvalue(app, Any["exportsingledim", "$dim"])
setvalue(app, Any["exportsinglesort", order])
setvalue(app, Any["exportmode", mode])
filepath = joinpath(temppath,"PMA$(dim)_$(mode)_$order.tsv")
setvalue(app, Any["exportsinglepath", filepath])
put!(app.fromGUI, :exportsingle=>[])
@test runall(app)
result = CSV.read(filepath, DataFrame; delim='\t', ntasks=1)
colName = Symbol(:PMA,dim)
resultPMA = result[:,colName]
if mode=="Samples"
idCol = :SampleId
ids = sampleIds
PMA = reduced.F.V[:,dim]
else
idCol = :VariableId
ids = string.(varIds)
PMA = reduced.F.U[:,dim]
end
perm = collect(1:length(PMA))
if order=="Abs"
perm = sortperm(PMA, by=abs, rev=true)
elseif order=="Descending"
perm = sortperm(PMA, rev=true)
elseif order=="Ascending"
perm = sortperm(PMA)
end
@test propertynames(result)==[idCol,colName]
@test result[!,idCol] == ids[perm]
@test resultPMA ≈ PMA[perm]
end
for (dim,mode) in zip((4,5), ("Samples","Variables"))
setvalue(app, Any["exportmultipledim", "$dim"])
setvalue(app, Any["exportmode", mode])
filepath = joinpath(temppath,"PMA$(dim)_$(mode).csv")
setvalue(app, Any["exportmultiplepath", filepath])
put!(app.fromGUI, :exportmultiple=>[])
@test runall(app)
result = CSV.read(filepath, DataFrame; delim=',', ntasks=false)
colNames = Symbol.(:PMA,1:dim)
if mode=="Samples"
@test propertynames(result)==vcat(:SampleId, colNames)
@test result.SampleId == sampleIds
@test Matrix(result[:,colNames]) ≈ reduced.F.V[:,1:dim]
else
@test propertynames(result)==vcat(:VariableId, colNames)
@test result.VariableId == string.(varIds)
@test Matrix(result[:,colNames]) ≈ reduced.F.U[:,1:dim]
end
end
end
# Exit
put!(app.fromGUI, :exit=>[])
@test !runall(app)
end
@testset "MissingValueReconstruction" begin
reconstructed = Float64[0.06 0.26 0.0 0.0 0.28 0.03 0.04 0.12 0.05 0.0 0.02 0.31 0.0 0.85 0.41 0.06 0.04 0.92 0.32 0.12; 0.01 0.13 0.48 0.64 0.23 0.01 0.0 0.18 0.03 0.14 0.26 0.0 0.09 0.27 0.1 0.0 0.48 0.06 0.07 0.56; 0.0 0.22 0.02 0.0 0.02 0.06 0.05 0.59 0.64 0.81 0.98 0.24 0.08 0.24 0.41 0.0 0.65 0.15 0.11 0.0; 0.01 0.01 0.31 0.23 0.02 0.0 0.01 0.15 0.03 0.64 0.21 0.16 0.0 0.02 0.12 0.84 0.06 0.0 0.0 0.2; 0.03 0.55 0.0 0.06 0.01 0.01 0.16 0.01 0.42 0.73 0.01 0.15 0.27 0.02 0.02 0.37 0.16 0.19 0.04 0.0; 0.36 0.97 0.54 0.98 0.03 0.52 0.1 0.06 0.14 0.0 0.46 0.38 0.29 0.93 0.06 0.07 0.05 0.45 0.0 0.01; 0.12 0.97 0.3 0.07 0.11 0.28 0.31 0.07 0.0 0.16 0.0 0.29 0.33 0.01 0.01 0.02 0.17 0.0 0.67 0.45; 0.0 0.08 0.49 0.34 0.07 0.01 0.03 0.1 0.05 0.16 0.05 0.36 0.0 0.38 0.41 0.0 0.09 0.67 0.61 1.0; 0.01 0.3 0.19 0.0 0.0 0.0 0.32 0.72 0.0 0.04 0.7 1.0 0.55 0.12 0.03 0.19 0.52 0.04 0.04 0.8; 0.12 0.0 0.04 0.02 0.19 0.09 0.01 0.66 0.25 0.21 0.01 0.02 0.38 0.62 0.3 0.99 0.38 0.1 0.54 0.07; 0.08 0.0 0.16 0.01 0.69 0.23 0.81 0.29 0.13 0.4 0.04 0.15 0.17 0.64 0.03 0.32 0.78 0.28 0.12 0.36; 0.89 0.02 0.0 0.02 0.26 0.06 0.01 0.01 0.48 0.58 0.25 0.29 0.51 0.31 0.22 0.0 0.27 0.01 0.04 0.05; 0.55 0.04 0.47 0.0 0.24 0.07 0.64 0.01 0.02 0.0 0.42 0.0 0.36 0.22 0.06 0.95 0.66 0.27 0.09 0.05; 0.46 0.19 0.1 0.01 0.13 0.15 0.06 0.84 0.02 0.0 0.09 0.62 0.01 0.0 0.01 0.0 0.01 0.33 0.47 0.58; 0.04 0.28 0.27 0.69 0.0 0.78 0.12 0.01 0.13 0.0 0.0 0.09 0.11 0.53 0.0 0.29 0.39 0.67 0.42 0.29; 0.01 0.09 0.0 0.49 0.18 0.0 0.64 0.67 0.32 0.37 0.08 0.0 0.04 0.17 0.0 0.06 0.01 0.0 0.43 0.22; 0.27 0.02 0.05 0.88 0.02 0.16 0.09 0.0 0.46 0.05 0.18 0.11 0.02 0.37 0.88 0.47 0.92 0.41 0.96 0.0; 0.0 0.99 0.98 0.31 0.05 0.02 0.06 0.03 0.34 0.37 0.17 0.0 0.33 0.78 0.47 0.75 0.34 0.04 0.69 0.0; 0.69 0.34 0.15 0.12 0.11 0.0 0.91 0.35 0.05 0.0 0.26 0.01 0.62 0.82 0.48 0.4 0.08 0.0 0.32 0.0; 0.08 0.01 0.85 0.82 0.0 0.0 0.99 0.0 0.12 0.05 0.04 0.53 0.0 0.89 0.26 0.01 0.17 0.39 0.05 0.0; 0.01 0.01 0.72 0.2647368421052631 0.0 0.6 0.01 0.08 0.18 0.42 0.48 0.02 0.34 0.59 0.02 0.6 0.02 0.76 0.03 0.14; 0.17555555555555552 0.13 0.47 0.01 0.08 0.26 0.25 0.17555555555555552 0.0 0.0 0.01 0.82 0.0 0.0 0.03 0.0 0.0 0.3 0.07 0.73; 0.0 0.3664705882352941 0.39 0.99 0.03 0.5 0.88 0.13 0.8 0.0 0.0 0.0 0.3664705882352941 0.3664705882352941 0.43 0.7 0.72 0.22 0.04 0.4; 0.0 0.5 0.5 0.97 0.02 0.08 0.35 0.238125 0.02 0.26 0.02 0.238125 0.1 0.0 0.0 0.92 0.0 0.238125 0.238125 0.07; 0.09 0.0 0.09733333333333334 0.09733333333333334 0.56 0.0 0.09733333333333334 0.09733333333333334 0.0 0.14 0.01 0.0 0.02 0.08 0.12 0.0 0.09733333333333334 0.09 0.1 0.25; 0.34500000000000003 0.34500000000000003 0.13 0.63 0.34500000000000003 0.03 0.0 0.06 0.56 0.55 0.15 0.34500000000000003 0.87 0.9 0.79 0.04 0.34500000000000003 0.34500000000000003 0.09 0.03; 0.85 0.79 0.32769230769230767 0.32769230769230767 0.35 0.32769230769230767 0.32769230769230767 0.21 0.03 0.01 0.36 0.44 0.52 0.01 0.32769230769230767 0.66 0.32769230769230767 0.03 0.0 0.32769230769230767; 0.86 0.24499999999999997 0.24499999999999997 0.24 0.01 0.24499999999999997 0.84 0.24499999999999997 0.24499999999999997 0.15 0.24499999999999997 0.24499999999999997 0.24499999999999997 0.1 0.13 0.3 0.03 0.04 0.24 0.0; 0.3427272727272727 0.92 0.3427272727272727 0.3427272727272727 0.09 0.3427272727272727 0.9 0.0 0.3427272727272727 0.3427272727272727 0.02 0.3427272727272727 0.63 0.05 0.19 0.09 0.0 0.88 0.3427272727272727 0.3427272727272727; 0.6 0.271 0.271 0.271 0.271 0.271 0.16 0.271 0.271 0.271 0.271 0.271 0.02 0.4 0.04 0.0 0.18 0.34 0.01 0.96; 0.0 0.1688888888888889 0.24 0.0 0.1688888888888889 0.2 0.02 0.1688888888888889 0.33 0.1688888888888889 0.1688888888888889 0.1688888888888889 0.17 0.1688888888888889 0.06 0.1688888888888889 0.1688888888888889 0.1688888888888889 0.1688888888888889 0.5; 0.26375000000000004 0.26375000000000004 0.84 0.26375000000000004 0.26375000000000004 0.42 0.26375000000000004 0.26375000000000004 0.26375000000000004 0.26375000000000004 0.54 0.26375000000000004 0.26375000000000004 0.0 0.13 0.01 0.04 0.26375000000000004 0.26375000000000004 0.13; 0.21142857142857144 0.21142857142857144 0.21142857142857144 0.21142857142857144 0.27 0.03 0.21142857142857144 0.11 0.21142857142857144 0.5 0.21142857142857144 0.21142857142857144 0.21142857142857144 0.21142857142857144 0.21142857142857144 0.21142857142857144 0.21142857142857144 0.15 0.36 0.06; 0.22833333333333336 0.22833333333333336 0.22833333333333336 0.22833333333333336 0.1 0.22833333333333336 0.22833333333333336 0.01 0.02 0.22833333333333336 0.01 0.22833333333333336 0.22833333333333336 0.22833333333333336 0.22833333333333336 0.64 0.22833333333333336 0.59 0.22833333333333336 0.22833333333333336; 0.08800000000000001 0.08800000000000001 0.08800000000000001 0.04 0.08800000000000001 0.08800000000000001 0.08 0.15 0.17 0.08800000000000001 0.08800000000000001 0.08800000000000001 0.08800000000000001 0.08800000000000001 0.08800000000000001 0.0 0.08800000000000001 0.08800000000000001 0.08800000000000001 0.08800000000000001; 0.52 0.62 0.30250000000000005 0.07 0.30250000000000005 0.30250000000000005 0.30250000000000005 0.30250000000000005 0.30250000000000005 0.30250000000000005 0.30250000000000005 0.30250000000000005 0.30250000000000005 0.30250000000000005 0.0 0.30250000000000005 0.30250000000000005 0.30250000000000005 0.30250000000000005 0.30250000000000005; 0.043333333333333335 0.08 0.043333333333333335 0.043333333333333335 0.043333333333333335 0.043333333333333335 0.0 0.043333333333333335 0.043333333333333335 0.043333333333333335 0.043333333333333335 0.043333333333333335 0.043333333333333335 0.05 0.043333333333333335 0.043333333333333335 0.043333333333333335 0.043333333333333335 0.043333333333333335 0.043333333333333335; 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.68 0.34 0.0 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34; 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]
logReconstructed = Float64[-0.6666 -0.2688 -0.811 -0.811 -0.2345 -0.737 -0.7131 -0.5353 -0.6897 -0.811 -0.7612 -0.1844 -0.811 0.5059 -0.02915 -0.6666 -0.7131 0.5753 -0.1681 -0.5353; -0.7859 -0.5146 0.07039 0.275 -0.3219 -0.7859 -0.811 -0.415 -0.737 -0.4941 -0.2688 -0.811 -0.5995 -0.2515 -0.5778 -0.811 0.07039 -0.6666 -0.6439 0.1763; -0.811 -0.3401 -0.7612 -0.811 -0.7612 -0.6666 -0.6897 0.2141 0.275 0.4647 0.6323 -0.304 -0.6215 -0.304 -0.02915 -0.811 0.2869 -0.4739 -0.5564 -0.811; -0.7859 -0.7859 -0.1844 -0.3219 -0.7612 -0.811 -0.7859 -0.4739 -0.737 0.275 -0.3585 -0.454 -0.811 -0.7612 -0.5353 0.4957 -0.6666 -0.811 -0.811 -0.3771; -0.737 0.1635 -0.811 -0.6666 -0.7859 -0.7859 -0.454 -0.7859 -0.0145 0.3785 -0.7859 -0.4739 -0.2515 -0.7612 -0.7612 -0.08927 -0.454 -0.3959 -0.7131 -0.811; -0.1047 0.6229 0.1506 0.6323 -0.737 0.1243 -0.5778 -0.6666 -0.4941 -0.811 0.04264 -0.074 -0.2176 0.585 -0.6666 -0.6439 -0.6897 0.02857 -0.811 -0.7859; -0.5353 0.6229 -0.2009 -0.6439 -0.5564 -0.2345 -0.1844 -0.6439 -0.811 -0.454 -0.811 -0.2176 -0.152 -0.7859 -0.7859 -0.7612 -0.4344 -0.811 0.3103 0.02857; -0.811 -0.6215 0.08406 -0.1361 -0.6439 -0.7859 -0.737 -0.5778 -0.6897 -0.454 -0.6897 -0.1047 -0.811 -0.074 -0.02915 -0.811 -0.5995 0.3103 0.2388 0.6508; -0.7859 -0.2009 -0.3959 -0.811 -0.811 -0.811 -0.1681 0.3674 -0.811 -0.7131 0.3448 0.6508 0.1635 -0.5353 -0.737 -0.3959 0.1243 -0.7131 -0.7131 0.4542; -0.5353 -0.811 -0.7131 -0.7612 -0.3959 -0.5995 -0.7859 0.2987 -0.2863 -0.3585 -0.7859 -0.7612 -0.074 0.251 -0.2009 0.6415 -0.074 -0.5778 0.1506 -0.6439; -0.6215 -0.811 -0.454 -0.7859 0.3334 -0.3219 0.4647 -0.2176 -0.5146 -0.04394 -0.7131 -0.4739 -0.4344 0.275 -0.737 -0.1681 0.433 -0.2345 -0.5353 -0.1047; 0.546 -0.7612 -0.811 -0.7612 -0.2688 -0.6666 -0.7859 -0.7859 0.07039 0.2016 -0.2863 -0.2176 0.111 -0.1844 -0.3401 -0.811 -0.2515 -0.7859 -0.7131 -0.6897; 0.1635 -0.7131 0.05658 -0.811 -0.304 -0.6439 0.275 -0.7859 -0.7612 -0.811 -0.0145 -0.811 -0.1047 -0.3401 -0.6666 0.6041 0.2987 -0.2515 -0.5995 -0.6897; 0.04264 -0.3959 -0.5778 -0.7859 -0.5146 -0.4739 -0.6666 0.4957 -0.7612 -0.811 -0.5995 0.251 -0.7859 -0.811 -0.7859 -0.811 -0.7859 -0.152 0.05658 0.2016; -0.7131 -0.2345 -0.2515 0.3334 -0.811 0.433 -0.5353 -0.7859 -0.5146 -0.811 -0.811 -0.5995 -0.5564 0.1375 -0.811 -0.2176 -0.05889 0.3103 -0.0145 -0.2176; -0.7859 -0.5995 -0.811 0.08406 -0.415 -0.811 0.275 0.3103 -0.1681 -0.08927 -0.6215 -0.811 -0.7131 -0.4344 -0.811 -0.6666 -0.7859 -0.811 0.0 -0.3401; -0.2515 -0.7612 -0.6897 0.5361 -0.7612 -0.454 -0.5995 -0.811 0.04264 -0.6897 -0.415 -0.5564 -0.7612 -0.08927 0.5361 0.05658 0.5753 -0.02915 0.6135 -0.811; -0.811 0.6415 0.6323 -0.1844 -0.6897 -0.7612 -0.6666 -0.737 -0.1361 -0.08927 -0.4344 -0.811 -0.152 0.433 0.05658 0.4005 -0.1361 -0.7131 0.3334 -0.811; 0.3334 -0.1361 -0.4739 -0.5353 -0.5564 -0.811 0.5656 -0.1203 -0.6897 -0.811 -0.2688 -0.7859 0.251 0.4751 0.07039 -0.04394 -0.6215 -0.811 -0.1681 -0.811; -0.6215 -0.7859 0.5059 0.4751 -0.811 -0.811 0.6415 -0.811 -0.5353 -0.6897 -0.7131 0.1375 -0.811 0.546 -0.2688 -0.7859 -0.4344 -0.05889 -0.6897 -0.811; -0.7859 -0.7859 0.3674 -0.3344 -0.811 0.2265 -0.7859 -0.6215 -0.415 -0.0145 0.07039 -0.7612 -0.1361 0.2141 -0.7612 0.2265 -0.7612 0.4114 -0.737 -0.4941; -0.4889 -0.5146 0.05658 -0.7859 -0.6215 -0.2688 -0.2863 -0.4889 -0.811 -0.811 -0.7859 0.4751 -0.811 -0.811 -0.737 -0.811 -0.811 -0.2009 -0.6439 0.3785; -0.811 -0.1888 -0.05889 0.6415 -0.737 0.09761 0.5361 -0.5146 0.4542 -0.811 -0.811 -0.811 -0.1888 -0.1888 0.0 0.3448 0.3674 -0.3401 -0.7131 -0.04394; -0.811 0.09761 0.09761 0.6229 -0.7612 -0.6215 -0.1203 -0.3979 -0.7612 -0.2688 -0.7612 -0.3979 -0.5778 -0.811 -0.811 0.5753 -0.811 -0.3979 -0.3979 -0.6439; -0.5995 -0.811 -0.6093 -0.6093 0.1763 -0.811 -0.6093 -0.6093 -0.811 -0.4941 -0.7859 -0.811 -0.7612 -0.6215 -0.5353 -0.811 -0.6093 -0.5995 -0.5778 -0.2863; -0.2232 -0.2232 -0.5146 0.263 -0.2232 -0.737 -0.811 -0.6666 0.1763 0.1635 -0.4739 -0.2232 0.5261 0.5558 0.4436 -0.7131 -0.2232 -0.2232 -0.5995 -0.737; 0.5059 0.4436 -0.2349 -0.2349 -0.1203 -0.2349 -0.2349 -0.3585 -0.737 -0.7859 -0.1047 0.01436 0.1243 -0.7859 -0.2349 0.2987 -0.2349 -0.737 -0.811 -0.2349; 0.516 -0.3675 -0.3675 -0.304 -0.7859 -0.3675 0.4957 -0.3675 -0.3675 -0.4739 -0.3675 -0.3675 -0.3675 -0.5778 -0.5146 -0.2009 -0.737 -0.7131 -0.304 -0.811; -0.2489 0.5753 -0.2489 -0.2489 -0.5995 -0.2489 0.5558 -0.811 -0.2489 -0.2489 -0.7612 -0.2489 0.263 -0.6897 -0.3959 -0.5995 -0.811 0.5361 -0.2489 -0.2489; 0.2265 -0.328 -0.328 -0.328 -0.328 -0.328 -0.454 -0.328 -0.328 -0.328 -0.328 -0.328 -0.7612 -0.04394 -0.7131 -0.811 -0.415 -0.1361 -0.7859 0.6135; -0.811 -0.4688 -0.304 -0.811 -0.4688 -0.3771 -0.7612 -0.4688 -0.152 -0.4688 -0.4688 -0.4688 -0.4344 -0.4688 -0.6666 -0.4688 -0.4688 -0.4688 -0.4688 0.09761; -0.3384 -0.3384 0.4957 -0.3384 -0.3384 -0.0145 -0.3384 -0.3384 -0.3384 -0.3384 0.1506 -0.3384 -0.3384 -0.811 -0.5146 -0.7859 -0.7131 -0.3384 -0.3384 -0.5146; -0.3846 -0.3846 -0.3846 -0.3846 -0.2515 -0.737 -0.3846 -0.5564 -0.3846 0.09761 -0.3846 -0.3846 -0.3846 -0.3846 -0.3846 -0.3846 -0.3846 -0.4739 -0.1047 -0.6666; -0.4036 -0.4036 -0.4036 -0.4036 -0.5778 -0.4036 -0.4036 -0.7859 -0.7612 -0.4036 -0.7859 -0.4036 -0.4036 -0.4036 -0.4036 0.275 -0.4036 0.2141 -0.4036 -0.4036; -0.6108 -0.6108 -0.6108 -0.7131 -0.6108 -0.6108 -0.6215 -0.4739 -0.4344 -0.6108 -0.6108 -0.6108 -0.6108 -0.6108 -0.6108 -0.811 -0.6108 -0.6108 -0.6108 -0.6108; 0.1243 0.251 -0.2699 -0.6439 -0.2699 -0.2699 -0.2699 -0.2699 -0.2699 -0.2699 -0.2699 -0.2699 -0.2699 -0.2699 -0.811 -0.2699 -0.2699 -0.2699 -0.2699 -0.2699; -0.7074 -0.6215 -0.7074 -0.7074 -0.7074 -0.7074 -0.811 -0.7074 -0.7074 -0.7074 -0.7074 -0.7074 -0.7074 -0.6897 -0.7074 -0.7074 -0.7074 -0.7074 -0.7074 -0.7074; -0.2445 -0.2445 -0.2445 -0.2445 -0.2445 -0.2445 -0.2445 0.3219 -0.2445 -0.811 -0.2445 -0.2445 -0.2445 -0.2445 -0.2445 -0.2445 -0.2445 -0.2445 -0.2445 -0.2445; -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131 -0.7131; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]
filepath = joinpath(@__DIR__, "data/data_missing.tsv")
varIds = [Symbol("V$i") for i=1:40]
sampleIds = [string('S',lpad(i,2,'0')) for i=1:20]
groupAnnot = repeat(["A","B"],inner=10)
timeAnnot = vcat(0.01:0.01:0.1, 0.01:0.01:0.1)
app = MiniApp()
init(app)
# Open file
setvalue(app, Any["samplefilepath", filepath])
setvalue(app, Any["lastsampleannot", "Time"])
setvalue(app, Any["normalizemethod", "None"])
put!(app.fromGUI, :normalize=>[])
@test runall(app)
sampleData = app.jg.scheduler.jobs[app.jg.normalizeID].result
@test sampleData.data ≈ reconstructed
setvalue(app, Any["logtransform", "true"])
setvalue(app, Any["logtransformoffset", "0.57"])
put!(app.fromGUI, :normalize=>[])
@test runall(app)
sampleData = app.jg.scheduler.jobs[app.jg.normalizeID].result
@test sampleData.data ≈ logReconstructed atol=1e-3
end
end | PrincipalMomentAnalysisApp | https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl.git |
|
[
"MIT"
] | 0.2.6 | 7a89075c252d95cd9530f937158955939c218425 | code | 130 | @testset "content" begin
doc = read("../src/content.html",String)
@test occursin("""<script type="text/javascript">""", doc)
end | PrincipalMomentAnalysisApp | https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl.git |
|
[
"MIT"
] | 0.2.6 | 7a89075c252d95cd9530f937158955939c218425 | code | 1957 | struct MiniApp
jg::JobGraph
fromGUI::Channel{Pair{Symbol,Vector}}
toGUI::Channel{Pair{Symbol,Any}}
lastSchedulerTime::Ref{UInt64}
end
MiniApp() = MiniApp(JobGraph(verbose=true), Channel{Pair{Symbol,Vector}}(Inf), Channel{Pair{Symbol,Any}}(Inf), Ref{UInt64}(0))
setvalue(app::MiniApp, value::Array{Any}) = put!(app.fromGUI, :setvalue=>value)
function init(app::MiniApp)
setvalue(app, Any["samplesimplexmethod", "SA"])
setvalue(app, Any["loadrowsassamples", "true"])
setvalue(app, Any["logtransform", "false"])
setvalue(app, Any["logtransformoffset", "1"])
setvalue(app, Any["normalizemethod", "Mean=0"])
setvalue(app, Any["dimreductionmethod", "PMA"])
setvalue(app, Any["knearestneighbors", "0"])
setvalue(app, Any["distnearestneighbors", "0"])
setvalue(app, Any["xaxis", "1"])
setvalue(app, Any["yaxis", "2"])
setvalue(app, Any["zaxis", "3"])
setvalue(app, Any["plotwidth", "1024"])
setvalue(app, Any["plotheight", "768"])
setvalue(app, Any["showpoints", "true"])
setvalue(app, Any["showlines", "true"])
setvalue(app, Any["showtriangles", "false"])
setvalue(app, Any["markersize", "4"])
setvalue(app, Any["linewidth", "1"])
setvalue(app, Any["triangleopacity", "0.05"])
setvalue(app, Any["colorby", "Auto"])
setvalue(app, Any["exportmode", "Variables"])
setvalue(app, Any["exportsingledim", "1"])
setvalue(app, Any["exportsinglesort", "Abs"])
setvalue(app, Any["exportmultipledim", "3"] )
end
function runall(app::MiniApp)
while isready(app.fromGUI) || wantstorun(app.jg.scheduler) || isactive(app.jg.scheduler)
process_step(app.jg, app.fromGUI, app.toGUI, app.lastSchedulerTime; verbosityLevel=2) || return false
end
true
end
function factorizationcmp(F1,F2)
@test size(F1.U)==size(F2.U)
@test size(F1.S)==size(F2.S)
@test size(F1.V)==size(F2.V)
@test size(F1.Vt)==size(F2.Vt)
@test F1.S ≈ F2.S
sgn = sign.(diag(F1.U'F2.U))
@test F1.U.*sgn' ≈ F2.U
@test F1.V.*sgn' ≈ F2.V
@test F1.Vt.*sgn ≈ F2.Vt
nothing
end
| PrincipalMomentAnalysisApp | https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl.git |
|
[
"MIT"
] | 0.2.6 | 7a89075c252d95cd9530f937158955939c218425 | docs | 5444 | # Principal Moment Analysis App
[](https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl/actions)
The Principal Moment Analysis App is a simple GUI Application for exploring data sets using Principal Moment Analysis.
See below for usage instructions.
For more information about Principal Moment Analysis, please refer to:
* [Principal Moment Analysis home page](https://principalmomentanalysis.github.io/).
* [PrincipalMomentAnalysis.jl](https://principalmomentanalysis.github.io/PrincipalMomentAnalysis.jl).
If you want to cite our work, please use:
> [Fontes, M., & Henningsson, R. (2020). Principal Moment Analysis. arXiv arXiv:2003.04208.](https://arxiv.org/abs/2003.04208)
## Installation
To install PrincipalMomentAnalysisApp.jl, start Julia and type:
```julia
using Pkg
Pkg.add("PrincipalMomentAnalysisApp")
```
## Running the App
*Option 1*
Start Julia and run:
```julia
using PrincipalMomentAnalysisApp
pmaapp()
```
*Option 2*
Run the following command from a terminal/command prompt:
```
julia -e "using PrincipalMomentAnalysisApp; pmaapp()"
```
Note that this requires julia to be in the PATH.
## Using the App
<img src="https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl/blob/master/docs/src/images/app1.png" alt="App before loading a file" title="App before loading a file" width="341" height="563"> <img src="https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl/blob/master/docs/src/images/app2.png" alt="App after loading a file" title="App after loading a file" width="341" height="563">
### Loading a file
PrincipalMomentAnalysisApp can load *.csv* (comma-separated values) or *.tsv* (tab-separated values) files, *.txt* and other extensions are treated as *.tsv*.
You can choose whether samples are described by rows or columns.
Input file example:
| Sample ID | Sample Annotation 1 | Sample Annotation 2 | ... | Variable 1 | Variable 2 | ... |
| --------- | ------------------- | ------------------- | --- | ---------- | ---------- | --- |
| A | Group1 | 0.1 | ... | 0.0 | 0.5 | ... |
| B | Group1 | 0.4 | ... | 1.0 | 0.2 | ... |
| C | Group2 | 2.0 | ... | 0.3 | 0.8 | ... |
After loading a file, you need to choose the last sample annotation in the dropdown list. This is **important**, since the rest of the columns will be used as variables.
### Normalization
* *None*: The data matrix is not modified.
* *Mean=0*: Variables are centered.
* *Mean=0,Std=1*: Variables are centered and their standard deviations are normalized to 1.
### Dimension Reduction
In addition to **PMA** (Principal Moment Analysis), you can also choose **PCA** (Principal Component Analysis) for reference. **PCA** is a special case of **PMA** with point masses for each sample.
**PMA** is a flexible method where we can use our knowledge about the data to improve the dimension reduction.
In the GUI, you can choose between four different methods for how to create the simplices that represent our data set.
* *Sample Annotation*: All samples sharing the same value of the chosen *sample annotation* will be connected to form a simplex. The total weight of each simplex is equal to the number of samples forming the simplex.
* *Time Series*: First the samples are divided into groups by the chosen *sample annotation*. Then simplices are formed by connecting each sample to the previous and next sample according to the *time annotation*. (If there are ties, all samples at a timepoint will be connected to all samples at the previous/next timepoints.)
* *Nearest Neighbors*: For each sample, a simplex is created by connecting to the chosen number of nearest neighbors. You can also chose to connect a sample to neighbours within a distance threshold (normalized such that a distance of 0.5 is the distance between the origin and the sample furthest away from the origin). To reduce noise, distances between samples are computed after reducing the dimension to 50 by PCA.
* *Nearest Neighbors within groups*: As for *Nearest Neighbors*, but samples are only connected if they share the same value of the chosen *sample annotation*.
### Plotting
The plotting options allow you to visualize the samples and the simplices after dimension reduction. (If you chose **PCA** above, the simplices will still be visualized, but the dimension reduction will be computed by PCA.)
* Axes: You can choose which Principal Moment Axis (PMA) to display for the *x*, *y*, and *z* axes respectively. This is useful for exploring more than the first 3 dimensions.
* Plot size: Control the width/height of the plotting area.
* Color: Decide which *sample annotation* to use for coloring the samples. For numerical data, a continuous color scale will be used.
* Points: Enable/disable drawing of the sample points and choose their size.
* Lines: Enable/disable drawing of the simplex edges and choose line width.
* Triangles: Enable/disable drawing of the simplex facets and choose opacity.
Press the "Show Plot" button to open the plot in a new window.
### Export Principal Moment Axes
The PMAs, giving you the low-dimensional representations of variables/samples, can be exported to text files. The exported files are tab-separated (or comma-separated if the file extension is *.csv*).
When exporing a single PMA, you can also choose the sorting.
| PrincipalMomentAnalysisApp | https://github.com/PrincipalMomentAnalysis/PrincipalMomentAnalysisApp.jl.git |
|
[
"MIT"
] | 0.1.2 | b0b395f51a4bc5cc94bb7cc82fbab56df694d278 | code | 184 | module ProjectEulerUtil
# Write your package code here.
include("proper_divisors.jl")
include("abundant-numbers.jl")
include("inverse_digits.jl")
include("get_problem_title.jl")
end
| ProjectEulerUtil | https://github.com/xiaodaigh/ProjectEulerUtil.jl.git |
|
[
"MIT"
] | 0.1.2 | b0b395f51a4bc5cc94bb7cc82fbab56df694d278 | code | 98 | export proper_divisors, is_abundant
is_abundant(n) = begin
sum(proper_divisors(n)) > n
end
| ProjectEulerUtil | https://github.com/xiaodaigh/ProjectEulerUtil.jl.git |
|
[
"MIT"
] | 0.1.2 | b0b395f51a4bc5cc94bb7cc82fbab56df694d278 | code | 361 | using Gumbo, HTTP, AbstractTrees
export get_problem_title
get_problem_title(pn) = begin
p = HTTP.get("https://projecteuler.net/problem=$pn").body |> String |> parsehtml
for elem in PreOrderDFS(p.root)
if elem isa HTMLElement
if tag(elem) == :h2
return elem.children[1].text
end
end
end
end
| ProjectEulerUtil | https://github.com/xiaodaigh/ProjectEulerUtil.jl.git |
|
[
"MIT"
] | 0.1.2 | b0b395f51a4bc5cc94bb7cc82fbab56df694d278 | code | 115 | export inverse_digits
inverse_digits(digits, base = 10) = sum([digits[k] * base^(k - 1) for k = 1:length(digits)])
| ProjectEulerUtil | https://github.com/xiaodaigh/ProjectEulerUtil.jl.git |
|
[
"MIT"
] | 0.1.2 | b0b395f51a4bc5cc94bb7cc82fbab56df694d278 | code | 736 | using Primes
using Base.Iterators: drop, product
proper_divisors(n) = begin
if n == 1
return [1]
end
factors_of_n = factor(n)
nfactors = prod(x -> x[2] + 1, factors_of_n)
res = Vector{Int}(undef, nfactors)
res .= 1
i = 1
for (factor, power) in factors_of_n
if i == 1
res[1] = 1
res[2:power+1] .= factor .^ (1:power)
i = power + 1
else
next_few = i * power
next_few_vals = [
existing * more
for (existing, more) in product(res[1:i], factor .^ (1:power))
]
res[i+1:i+next_few] = vec(next_few_vals)
i += next_few
end
end
res[1:end-1]
end
| ProjectEulerUtil | https://github.com/xiaodaigh/ProjectEulerUtil.jl.git |
|
[
"MIT"
] | 0.1.2 | b0b395f51a4bc5cc94bb7cc82fbab56df694d278 | code | 105 | using ProjectEulerUtil
using Test
@testset "ProjectEulerUtil.jl" begin
# Write your tests here.
end
| ProjectEulerUtil | https://github.com/xiaodaigh/ProjectEulerUtil.jl.git |
|
[
"MIT"
] | 0.1.2 | b0b395f51a4bc5cc94bb7cc82fbab56df694d278 | docs | 220 | # ProjectEulerUtil
`is_abundant` checks if a number is abundant
`get_problem_title(n)` get the title of the `n`th question
`inverse_digits(digits(n))` gives `n`
`proper_divisors(n)` gives the proper divisors of `n`
| ProjectEulerUtil | https://github.com/xiaodaigh/ProjectEulerUtil.jl.git |
|
[
"MIT"
] | 0.1.2 | 90950ef1bc004499811fe377dabe84b3292a8f10 | code | 160 | using Documenter, DocumenterMarkdown, LaurentPolynomials
makedocs(sitename="Laurent polynomials documentation",format=Markdown(),modules=[LaurentPolynomials])
| LaurentPolynomials | https://github.com/jmichel7/LaurentPolynomials.jl.git |
|
[
"MIT"
] | 0.1.2 | 90950ef1bc004499811fe377dabe84b3292a8f10 | code | 29919 | """
This package implements univariate Laurent polynomials, and univariate
rational fractions. The coefficients can be in any ring (possibly even
non-commutative, like `Matrix{Int}).
The initial motivation in 2018 was to have an easy way to port GAP polynomials to Julia. The reasons for still having my own package are
multiple:
- I need my polynomials to behave well when the coefficients are in a
ring, in which case I use pseudo-division and subresultant gcd.
- I need my polynomials to work as well as possible with coefficients of
type `T` where the elements have a `zero` method but `T` itself does
not have one, because `T` does not contain the necessary information.
An example is modular arithmetic with a `BigInt` modulus which cannot
be part of the type. For this reason the `zero` polynomial does not
have an empty list of coefficients, but a list containing an element
equal to zero, so it is always possible to get a zero of type T from
the zero polynomial.
- `LaurentPolynomials` is designed to be used by `PuiseuxPolynomials`.
- Often my polynomials are several times faster than those in the
`Polynomials` package. In addition, the interface is simple and
flexible.
The only package this package depends on is `LinearAlgebra`, through the
use of the `exactdiv` function.
Laurent polynomials are of the parametric type `Pol{T}`, where `T`is the
type of the coefficients. They are constructed by giving a vector of
coefficients of type `T`, and a valuation (an `Int`). We call true
polynomials those whose valuation is `≥0`.
There is a current variable name (a `Symbol`) which is used to print
polynomials nicely at the repl or in IJulia or Pluto. This name can be
changed globally, or just for printing a specific polynomial. However,
polynomials do not individually record which symbol they should be printed
with.
# Examples
```julia-repl
julia> Pol(:q) # define symbol used for printing and return Pol([1],1)
Pol{Int64}: q
julia> @Pol q # same as q=Pol(:q) useful to start session with polynomials
Pol{Int64}: q
julia> Pol([1,2]) # valuation is taken to be 0 if omitted
Pol{Int64}: 2q+1
julia> 2q+1 # same polynomial
Pol{Int64}: 2q+1
julia> Pol() # omitting all arguments gives Pol([1],1)
Pol{Int64}: q
julia> p=Pol([1,2,1],-1) # here the valuation is specified to be -1
Pol{Int64}: q+2+q⁻¹
julia> q+2+q^-1 # same polynomial
Pol{Int64}: q+2+q⁻¹
```
```julia-rep1
julia> print(p) # if not nice printing give an output which can be read back
Pol([1, 2, 1],-1)
# change the variable for printing just this time
julia> print(IOContext(stdout,:limit=>true,:varname=>"x"),p)
x+2+x⁻¹
julia> print(IOContext(stdout,:TeX=>true),p) # TeXable output (used in Pluto, IJulia)
q+2+q^{-1}
```
A polynomial can be taken apart with the functions `valuation`, `degree`
and `getindex`. An index `p[i]` returns the coefficient of degree `i` of
`p`.
```julia-repl
julia> valuation(p),degree(p)
(-1, 1)
julia> p[0], p[1], p[-1], p[10]
(2, 1, 1, 0)
julia> p[valuation(p):degree(p)]
3-element Vector{Int64}:
1
2
1
julia> p[begin:end] # the same as the above line
3-element Vector{Int64}:
1
2
1
julia> coefficients(p) # the same again
3-element Vector{Int64}:
1
2
1
```
The coefficients can come from any ring:
```julia-repl
julia> h=Pol([[1 1;0 1],[1 0; 0 1]])
Pol{Matrix{Int64}}: [1 0; 0 1]q+[1 1; 0 1]
julia> h^3
Pol{Matrix{Int64}}: [1 0; 0 1]q³+[3 3; 0 3]q²+[3 6; 0 3]q+[1 3; 0 1]
```
A polynomial is a *scalar* if its valuation and degree are `0`. The
`scalar` function returns the constant coefficient if the polynomial is a
scalar, and `nothing` otherwise.
```julia-repl
julia> Pol(1)
Pol{Int64}: 1
julia> convert(Pol{Int},1) # the same thing
Pol{Int64}: 1
julia> scalar(Pol(1))
1
julia> convert(Int,Pol(1)) # the same thing
1
julia> Int(Pol(1)) # the same thing
1
julia> scalar(q+1) # nothing; convert would give an error
```
In arrays `Pol{T}` of different types `T` are promoted to the same type `T`
(if the `T` involved have a promotion) and a number is promoted to a
polynomial.
Usual arithmetic (`+`, `-`, `*`, `^`, `/`, `//`, `one`, `isone`, `zero`,
`iszero`, `==`) works. Elements of type `<:Number` or of type `T` for a
`Pol{T}` are considered as scalars for scalar operations on the
coefficients.
```julia-repl
julia> derivative(p)
Pol{Int64}: 1-q⁻²
julia> p=(q+1)^2
Pol{Int64}: q²+2q+1
julia> p/2
Pol{Float64}: 0.5q²+1.0q+0.5
julia> p//2
Pol{Rational{Int64}}: (1//2)q²+q+1//2
julia> p(1//2) # value of p at 1//2
9//4
julia> p(0.5)
2.25
julia> Pol([1,2,3],[2.0,1.0,3.0]) # find p taking values [2.0,1.0,3.0] at [1,2,3]
Pol{Float64}: 1.5q²-5.5q+6.0
```
Polynomials are scalars for broadcasting. They can be sorted (they have
`cmp` and `isless` functions which compare the valuation and the
coefficients), they can be keys in a `Dict` (they have a `hash` function).
The functions `divrem`, `div`, `%`, `gcd`, `gcdx`, `lcm`, `powermod`
operate between true polynomials over a field, using the polynomial
division. Over a ring it is better to use `pseudodiv` and `srgcd` instead
of `divrem` and `gcd` (by default `gcd` between integer polynomials
delegates to `srgcd`).
`LinearAlgebra.exactdiv` does division (over a field or a ring) when it is
exact, otherwise gives an error.
```julia-repl
julia> divrem(q^3+1,2q+1) # changes coefficients to field elements
(0.5q²-0.25q+0.125, 0.875)
julia> divrem(q^3+1,2q+1//1) # case of coefficients already field elements
((1//2)q²+(-1//4)q+1//8, 7//8)
julia> pseudodiv(q^3+1,2q+1) # pseudo-division keeps the ring
(4q²-2q+1, 7)
julia> (4q^2-2q+1)*(2q+1)+7 # but multiplying back gives a multiple of the polynomial
Pol{Int64}: 8q³+8
julia> LinearAlgebra.exactdiv(q+1,2.0) # LinearAlgebra.exactdiv(q+1,2) would give an error
Pol{Float64}: 0.5q+0.5
```
Finally, `Pol`s have methods `conj`, `adjoint` which operate on
coefficients, methods `positive_part`, `negative_part` and `bar` (useful
for Kazhdan-Lusztig theory) and a method `randpol` to produce random
polynomials.
Inverting polynomials is a way to get a rational fraction `Frac{Pol{T}}`,
where `Frac` is a general type for fractions. Rational fractions are
normalised so that the numerator and denominator are true polynomials that
are prime to each other. They have the arithmetic operations `+`, `-` ,
`*`, `/`, `//`, `^`, `inv`, `one`, `isone`, `zero`, `iszero` (which can
operate between a `Pol` or a `Number` and a `Frac{Pol{T}}`).
```julia-repl
julia> a=1/(q+1)
Frac{Pol{Int64}}: 1/(q+1)
julia> Pol(2/a) # convert back to `Pol`
Pol{Int64}: 2q+2
julia> numerator(a)
Pol{Int64}: 1
julia> denominator(a)
Pol{Int64}: q+1
julia> m=[q+1 q+2;q-2 q-3]
2×2 Matrix{Pol{Int64}}:
q+1 q+2
q-2 q-3
julia> n=inv(Frac.(m)) # convert to rational fractions to invert the matrix
2×2 Matrix{Frac{Pol{Int64}}}:
(-q+3)/(2q-1) (-q-2)/(-2q+1)
(q-2)/(2q-1) (q+1)/(-2q+1)
julia> map(x->x(1),n) # evaluate at 1 the inverse matrix
2×2 Matrix{Float64}:
2.0 3.0
-1.0 -2.0
julia> map(x->x(1;Rational=true),n) # evaluate at 1 using //
2×2 Matrix{Rational{Int64}}:
2 3
-1 -2
```
Rational fractions are also scalars for broadcasting and can be sorted
(have `cmp` and `isless` methods).
"""
module LaurentPolynomials
export degree, valuation, Pol, derivative, shift, positive_part, negative_part,
bar, derivative, srgcd, Frac, @Pol, scalar, coefficients, root, randpol,
pseudodiv, resultant, discriminant
using LinearAlgebra:LinearAlgebra, exactdiv, det_bareiss
varname::Symbol=:x
struct Pol{T}
c::Vector{T}
v::Int
# Unexported inner constructor that bypasses all checks
global Pol_(c::AbstractVector{T},v::Integer) where T=new{T}(c,v)
end
"""
`Pol(c::AbstractVector,v::Integer=0;check=true,copy=true)`
Make a polynomial of valuation `v` with coefficients `c`.
Then, unless `check` is `false` normalize the result by making sure that
`c` has no leading or trailing zeroes (do not set `check=false` unless you
are sure this is already the case).
Unless `copy=false` the contents of `c` are copied (you can gain one
allocation by setting `copy=false` if you know the contents can be shared)
"""
function Pol(c::AbstractVector{T},v::Integer=0;check=true,copy=true)where T
if check # normalize c so there are no leading or trailing zeroes
b=findfirst(!iszero,c)
if b===nothing
if length(c)>0 return Pol_([c[1]],0)
else return Pol_([T(0)],0) # try to avoid this case
end
end
e=findlast(!iszero,c)
if b!=1 || e!=length(c) || copy return Pol_(view(c,b:e),v+b-1) end
end
Pol_(copy ? Base.copy(c) : c,v)
end
Pol()=Pol_([1],1)
Pol(a::T) where T<:Number=Pol_([a],0)
"""
`Pol(t::Symbol)`
Sets the name of the variable for printing `Pol`s to `t`, and returns the
polynomial of degree 1 equal to that variable.
"""
function Pol(t::Symbol)
LaurentPolynomials.varname=t
Pol()
end
"""
`@Pol q`
is equivalent to `q=Pol(:q)` except that it creates `q` in the global scope
of the current module, since it uses `eval`.
"""
macro Pol(t)
if !(t isa Symbol) error("usage: @Pol <variable name>") end
Base.eval(Main,:($t=Pol($(Core.QuoteNode(t)))))
end
Base.broadcastable(p::Pol)=Ref(p)
Base.copy(p::Pol)=Pol_(copy(p.c),p.v)
degree(a::Number)=0 # convenient
degree(p::Pol)=length(p.c)-1+p.v
valuation(p::Pol)=p.v
coefficients(p::Pol)=p.c
Base.lastindex(p::Pol)=degree(p)
Base.firstindex(p::Pol)=valuation(p)
@inbounds Base.getindex(p::Pol{T},i::Integer) where T=
i in firstindex(p):lastindex(p) ? p.c[i-p.v+1] : zero(p.c[1])
Base.getindex(p::Pol,i::AbstractVector{<:Integer})=getindex.(Ref(p),i)
Base.convert(::Type{Pol{T}},a::Number) where T=Pol_([T(a)],0)
(::Type{Pol{T}})(a) where T=convert(Pol{T},a)
# like convert for vectors does not always make a copy
Base.convert(::Type{Pol{T}},p::Pol{T1}) where {T,T1}=Pol_(Vector{T}(p.c),p.v)
function Base.promote_rule(a::Type{Pol{T1}},b::Type{Pol{T2}})where {T1,T2}
Pol{promote_type(T1,T2)}
end
function Base.promote_rule(a::Type{Pol{T1}},b::Type{T2})where {T1,T2<:Number}
Pol{promote_type(T1,T2)}
end
Base.isinteger(p::Pol)=isinteger(scalar(p))
function scalar(p::Pol{T})where T
if iszero(valuation(p)) && iszero(degree(p)) p[0] end
end
function Base.convert(::Type{T},p::Pol) where T<:Number
res=scalar(p)
if res===nothing throw(InexactError(:convert,T,p)) end
convert(T,res)
end
(::Type{T})(p::Pol) where T<:Number=convert(T,p)
Base.cmp(a::Pol,b::Pol)=cmp((!iszero(a),a.v,a.c),(!iszero(b),b.v,b.c))
Base.isless(a::Pol,b::Pol)=cmp(a,b)==-1
Base.hash(a::Pol, h::UInt)=hash(a.v,hash(a.c,h))
(p::Pol{T})(x) where T=evalpoly(x,p.c)*x^p.v
"""
`shift(p::Pol,s)`
efficient way to multiply a polynomial by `Pol()^s`.
"""
shift(p::Pol{T},s) where T=Pol_(p.c,p.v+s)
"`positive_part(p::Pol)` keep the terms of degree≥0"
positive_part(p::Pol)=p.v>=0 ? copy(p) : Pol(view(p.c,1-p.v:length(p.c)),0)
"`negative_part(p::Pol)` keep the terms of degree≤0"
negative_part(p::Pol)=degree(p)<=0 ? copy(p) : Pol(view(p.c,1:1-p.v),p.v)
# q↦ q⁻¹ on p
"`bar(p::Pol)` transform p(q) into p(q⁻¹)"
bar(p::Pol)=Pol_(reverse(p.c),-degree(p))
Base.:(==)(a::Pol, b::Pol)= a.c==b.c && a.v==b.v
Base.:(==)(a::Pol{T},b::Union{Number,T}) where T=b!==nothing && scalar(a)==b
Base.:(==)(b::Union{Number,T},a::Pol{T}) where T=b!==nothing && scalar(a)==b
Base.one(a::Pol)=Pol_([one(a.c[1])],0)
Base.one(::Type{Pol{T}}) where T=Pol_([one(T)],0) # try to avoid this
Base.isone(a::Pol)=scalar(a)==1
Base.zero(::Type{Pol{T}}) where T=Pol_([T(0)],0) # try to avoid this
Base.zero(a::Pol)=Pol_([zero(a.c[1])],0)
Base.iszero(a::Pol)=length(a.c)==1 && iszero(a.c[1])
# next 4 stuff to make transpose and inv using LU work (abs is stupid)
Base.conj(p::Pol{T}) where T=Pol_(conj.(p.c),p.v)
Base.abs(p::Pol)=p
Base.adjoint(a::Pol)=conj(a)
Base.transpose(a::Pol)=a
ismonomial(p::Pol)=length(p.c)==1
function Base.show(io::IO, ::MIME"text/html", a::Pol)
print(io, "\$")
show(IOContext(io,:TeX=>true),a)
print(io, "\$")
end
function Base.show(io::IO, ::MIME"text/plain", a::Pol)
if !haskey(io,:typeinfo)
print(io,typeof(a),": ")
io=IOContext(io,:typeinfo=>typeof(a))
end
show(io,a)
end
# 3 next methods copied from Format.jl in order to have a self-contained file.
# determines when coefficients should be bracketed for unambiguous display
function bracket_if_needed(c::String)
if match(r"^[-+]?([^-+*/]|√-|{-)*(\(.*\))?$",c)!==nothing c
else "("*c*")"
end
end
function format_coefficient(c::String)
if c=="1" ""
elseif c=="-1" "-"
else bracket_if_needed(c)
end
end
const supvec=['⁰','¹','²','³','⁴','⁵','⁶','⁷','⁸','⁹']
function stringexp(io::IO,n::Integer)
if isone(n) ""
elseif get(io,:TeX,false)
n in 0:9 ? "^"*string(n) : "^{"*string(n)*"}"
elseif get(io,:limit,false)
res=Char[]
if n<0 push!(res,'⁻'); n=-n end
for i in reverse(digits(n)) push!(res,supvec[i+1]) end
String(res)
else "^"*string(n)
end
end
function Base.show(io::IO,p::Pol{T})where T
if !get(io,:limit,false) && !get(io,:TeX,false)
if ismonomial(p) && isone(p.c[1]) && p.v==1 && T==Int print(io,"Pol()")
else print(io,"Pol(",p.c)
if !iszero(p.v) print(io,",",p.v) end
print(io,")")
end
elseif iszero(p) print(io,"0")
else
var=string(get(io,:varname,varname))
for deg in degree(p):-1:valuation(p)
c=p[deg]
if iszero(c) continue end
c=repr(c; context=IOContext(io,:typeinfo=>typeof(c)))
if !iszero(deg)
c=format_coefficient(c)*var*stringexp(io,deg)
end
if c[1]!='-' && deg!=degree(p) c="+"*c end
print(io,c)
end
end
end
function Base.:*(a::Pol{T1},b::Pol{T2})where {T1,T2}
T=promote_type(T1,T2)
if iszero(a) || iszero(b) return Pol([a.c[1]*b.c[1]]) end
# below not zero(T) for types T like Mod{T1} which have no zero method
res=fill(zero(a.c[1]*b.c[1]),length(a.c)+length(b.c)-1)
for i in eachindex(a.c), j in eachindex(b.c)
@inbounds res[i+j-1]+=a.c[i]*b.c[j]
end
Pol_(res,a.v+b.v)
end
Base.:*(a::Pol, b::Number)=Pol(a.c.*Ref(b),a.v)
Base.:*(a::Pol{T}, b::T) where T=Pol(a.c.*Ref(b),a.v;copy=false)
Base.:*(b::Number, a::Pol)=Pol(Ref(b).*a.c,a.v)
Base.:*(b::T, a::Pol{T}) where T=Pol(Ref(b).*a.c,a.v;copy=false)
Base.:^(a::Pol, n::Real)=isinteger(n) ? a^Int(n) : root(a,1//n)
Base.:^(a::Pol, n::Integer)=ismonomial(a) ? Pol_([a.c[1]^n],n*a.v) :
n>=0 ? Base.power_by_squaring(a,n) :
Base.power_by_squaring(inv(a),-n)
function Base.:+(a::Pol,b::Pol)
z=zero(a.c[1]+b.c[1])
d=b.v-a.v
if d>=0
res=fill(z,max(length(a.c),d+length(b.c)))
@inbounds view(res,eachindex(a.c)).=a.c
@inbounds view(res,d.+eachindex(b.c)).+=b.c
Pol(res,a.v;copy=false)
else
res=fill(z,max(length(a.c)-d,length(b.c)))
@inbounds view(res,eachindex(a.c).-d).=a.c
@inbounds view(res,eachindex(b.c)).+=b.c
Pol(res,b.v;copy=false)
end
end
function Base.:-(a::Pol,b::Pol)
z=zero(a.c[1]+b.c[1])
d=b.v-a.v
if d>=0
res=fill(z,max(length(a.c),d+length(b.c)))
@inbounds view(res,eachindex(a.c)).=a.c
@inbounds view(res,d.+eachindex(b.c)).-=b.c
Pol(res,a.v;copy=false)
else
res=fill(z,max(length(a.c)-d,length(b.c)))
@inbounds view(res,eachindex(a.c).-d).=a.c
@inbounds view(res,eachindex(b.c)).-=b.c
Pol(res,b.v;copy=false)
end
end
Base.:+(a::Pol, b::Number)=a+Pol(b)
Base.:+(b::Number, a::Pol)=Pol(b)+a
Base.:-(a::Pol)=Pol_(-a.c,a.v)
Base.:-(b::Number, a::Pol)=Pol(b)-a
Base.:-(a::Pol,b::Number)=a-Pol(b)
Base.div(a::Pol,b::Number)=Pol(div.(a.c,b),a.v;copy=false)
# compared to LinearAlgebra.exactdiv this function gives an error if not exact
#function exactdiv(a::Integer,b::Integer)
# (d,r)=divrem(a,b)
# if !iszero(r) error(b," does not exactly divide ",a) end
# d
#end
function coeffexactdiv(a::Pol,b)
if isone(b) return a end
c=exactdiv.(a.c,b)
Pol_(c,a.v)
end
LinearAlgebra.exactdiv(a::Pol,b::Number)=coeffexactdiv(a,b)
Base.:/(p::Pol,q::Number)=Pol_(p.c./Ref(q),p.v)
Base.://(p::Pol,q::Number)=Pol_(p.c.//Ref(q),p.v)
Base.:/(p::Pol{T},q::T) where T=Pol_(p.c./Ref(q),p.v)
Base.://(p::Pol{T},q::T) where T=Pol_(p.c.//Ref(q),p.v)
derivative(a::Pol)=Pol([(i+a.v-1)*v for (i,v) in enumerate(a.c)],a.v-1,copy=false)
"""
`divrem(a::Pol, b::Pol)`
`a` and `b` should be true polynomials (have a nonnegative valuation).
Computes `(q,r)` such that `a=q*b+r` and `degree(r)<degree(b)`. It is type
stable if the coefficients of `b` are in a field.
"""
function Base.divrem(a::Pol, b::Pol)
if iszero(b) throw(DivideError) end
if degree(b)>degree(a) return (zero(a),a) end
if a.v<0 || b.v<0 error("arguments should be true polynomials") end
a,b=promote(a,b)
d=inv(b.c[end])
z=zero(a.c[1]+b.c[1]+d)
r=fill(z,1+degree(a))
view(r,a.v+1:length(r)).=a.c
q=fill(z,length(r)-degree(b))
for i in length(r):-1:degree(b)+1
if iszero(r[i]) c=zero(d)
else c=r[i]*d
view(r,i-length(b.c)+1:i).-=Ref(c).*b.c
end
q[i-degree(b)]=c
end
Pol(q),Pol(r)
end
function LinearAlgebra.exactdiv(a::Pol,b::Pol)
if isone(b) || iszero(a) return a end
if iszero(b) throw(DivideError) end
d=a.v-b.v
if !iszero(a.v) a=shift(a,-a.v) end
if !iszero(b.v) b=shift(b,-b.v) end
if degree(b)>degree(a) error(b," does not exactly divide ",a) end
z=zero(a.c[1]+b.c[1])
r=fill(z,1+degree(a))
view(r,a.v+1:length(r)).=a.c
q=fill(z,length(r)-degree(b))
for i in length(r):-1:degree(b)+1
c=exactdiv(r[i],b.c[end])
view(r,i-length(b.c)+1:i).-=Ref(c).*b.c
q[i-length(b.c)+1]=c
end
if !iszero(r) error(b," does not exactly divide ",a) end
res=Pol(q,d)
end
"""
`pseudodiv(a::Pol, b::Pol)`
pseudo-division of `a` by `b`. If `d` is the leading coefficient of `b`,
computes `(q,r)` such that `d^(degree(a)+1-degree(b))a=q*b+r` and
`degree(r)<degree(b)`. Does not do division so works over any ring.
For true polynomials (errors if the valuation of `a` or of `b` is negative).
```julia-repl
julia> pseudodiv(q^2+1,2q+1)
(2q-1, 5)
julia> (2q+1)*(2q-1)+5
Pol{Int64}: 4q²+4
```
See Knuth AOCP2 4.6.1 Algorithm R
"""
function pseudodiv(a::Pol, b::Pol)
if isone(b) || iszero(a) return a,zero(a) end
if iszero(b) throw(DivideError) end
d=b.c[end]
if degree(a)<degree(b) return (zero(a),d^(degree(a)+1-degree(b))*a) end
if a.v<0 || b.v<0 error("arguments should be true polynomials") end
z=zero(a.c[1]+b.c[1])
r=fill(z,1+degree(a))
view(r,a.v+1:length(r)).=a.c
q=fill(z,length(r)-degree(b))
for i in length(r):-1:degree(b)+1
c=r[i]
r.*=Ref(d)
q.*=Ref(d)
if !iszero(c)
for j in eachindex(b.c) r[j+i-length(b.c)]-=c*b.c[j] end
end
q[i-degree(b)]=c
end
Pol(q),Pol(r)
end
"""
`srgcd(a::Pol,b::Pol)`
sub-resultant gcd: gcd of polynomials over a unique factorization domain
```julia-repl
julia> srgcd(4q+4,6q^2-6)
Pol{Int64}: 2q+2
```
See Knuth AOCP2 4.6.1 Algorithm C
"""
function srgcd(a::Pol,b::Pol)
if iszero(b) return a end
if iszero(a) return b end
v=min(valuation(a),valuation(b))
a=shift(a,-valuation(a));b=shift(b,-valuation(b)) # reducing degree cheap
if degree(b)>degree(a) return shift(srgcd(b,a),v) end
ca=gcd(a.c);a=coeffexactdiv(a,ca)
cb=gcd(b.c);b=coeffexactdiv(b,cb)
d=gcd(ca,cb)
g=one(a.c[1])
h=one(a.c[1])
while true
δ=degree(a)-degree(b)
q,r=pseudodiv(a,b)
if iszero(r)
cb=gcd(b.c);b=coeffexactdiv(b,cb)
return isone(d) ? shift(b,v) : Pol_(b.c.*Ref(d),b.v+v)
elseif degree(r)==0
return Pol_([d],v)
end
a=b
gh=g*h^δ
b=coeffexactdiv(r,gh)
g=a[end]
if δ>1
h=exactdiv(g^δ,h^(δ-1))
else
h=g^δ*h^(1-δ)
end
end
end
Base.gcd(p::Pol{<:Integer},q::Pol{<:Integer})=srgcd(p,q)
Base.gcd(v::AbstractArray{<:Pol})=reduce(gcd,v)
Base.lcm(p::Pol,q::Pol)=exactdiv(p*q,gcd(p,q))
Base.lcm(m::AbstractArray{<:Pol})=reduce(lcm,m)
Base.div(a::Pol, b::Pol)=divrem(a,b)[1]
Base.:%(a::Pol, b::Pol)=divrem(a,b)[2]
Base.:%(a::Pol{<:Integer}, b::Pol{<:Integer})=divrem(a,b)[2]
"""
`gcd(p::Pol, q::Pol)` computes the `gcd` of the polynomials. It uses the
subresultant algorithms for the `gcd` of integer polynomials.
```julia-repl
julia> gcd(2q+2,2q^2-2)
Pol{Int64}: 2q+2
julia> gcd((2q+2)//1,(2q^2-2)//1)
Pol{Rational{Int64}}: q+1
```
"""
function Base.gcd(p::Pol,q::Pol)
if degree(q)>degree(p)
p,q=q,p
end
p,q=promote(p,q)
while !iszero(q)
q=q/q.c[end]
(q,p)=(divrem(p,q)[2],q)
end
p*inv(p.c[end])
end
"""
`gcdx(a::Pol,b::Pol)`
for polynomials over a field returns `d,u,v` such that `d=ua+vb` and
`d=gcd(a,b)`.
```julia-repl
julia> gcdx(q^3-1//1,q^2-1//1)
(q-1, 1, -q)
```
"""
function Base.gcdx(a::Pol, b::Pol)
a,b=promote(a, b)
# a0, b0=a, b
s0, s1=one(a), zero(a)
t0, t1=s1, s0
# The loop invariant is: s0*a0 + t0*b0 == a
x,y=a,b
while y != 0
q,q1=divrem(x, y)
x, y=y, q1
s0, s1=s1, s0 - q*s1
t0, t1=t1, t0 - q*t1
end
(x, s0, t0)./Ref(x[end])
end
"""
`powermod(p::Pol, x::Integer, q::Pol)` computes ``p^x \\pmod m``.
```julia-repl
julia> powermod(q-1//1,3,q^2+q+1)
Pol{Rational{Int64}}: 6q+3
```
"""
function Base.powermod(p::Pol, x::Integer, q::Pol)
x==0 && return one(q)
b=p%q
t=prevpow(2, x)
r=one(p)
while true
if x>=t
r=(r*b)%q
x-=t
end
t >>>= 1
t<=0 && break
r=(r*r)%q
end
r
end
"""
`randpol(T,d)`
random polynomial of degree `d` with coefficients from `T`
"""
randpol(T,d::Integer)=Pol(rand(T,d+1))
"""
`Pol(x::AbstractVector,y::AbstractVector)`
Interpolation: find a `Pol` (of nonnegative valuation) of smallest degree
taking values `y` at points `x`. The values `y` should be in a field for
the function to be type stable.
```julia-repl
julia> p=Pol([1,1,1])
Pol{Int64}: q²+q+1
julia> vals=p.(1:5)
5-element Vector{Int64}:
3
7
13
21
31
julia> Pol(1:5,vals*1//1)
Pol{Rational{Int64}}: q²+q+1
julia> Pol(1:5,vals*1.0)
Pol{Float64}: 1.0q²+1.0q+1.0
```
"""
function Pol(pts::AbstractVector,vals::AbstractVector)
vals=collect(vals)
a=map(eachindex(pts))do i
for k in i-1:-1:1
if pts[i]==pts[k] error("interpolating points must be distinct") end
vals[k]=(vals[k+1]-vals[k])/(pts[i]-pts[k])
end
vals[1]
end
p=Pol_([a[end]],0)
for i in length(pts)-1:-1:1
p=p*(Pol()-pts[i])+a[i]
end
p
end
Base.denominator(p::Pol)=lcm(denominator.(p.c))
Base.numerator(p::Pol{<:Rational{T}}) where T=convert(Pol{T},p*denominator(p))
Base.numerator(p::Pol{<:Integer})=p
function root(x::Pol,n::Union{Integer,Rational{<:Integer}}=2)
n=Int(n)
if !ismonomial(x) || !iszero(x.v%n) error("root($x,$n) not implemented") end
c=x.c[1]
Pol_([isone(c) ? c : root(c,n)],div(x.v,n))
end
root(x::AbstractFloat,n=2)=x^(1/n)
"""
`resultant(p::Pol,q::Pol)`
The function computes the resultant of the two polynomials, as the
determinant of the Sylvester matrix.
```
"""
function resultant(p::Pol,q::Pol)
if iszero(p) || iszero(q) return zero(p) end
l=max(0,degree(p)+degree(q))
if degree(p)==degree(q)==0 return one(p[end]) end
m=fill(zero(p[end]),l,l)
for i in 1:degree(q) m[i,i:i+degree(p)]=p[end:-1:0] end
for i in 1:degree(p) m[i+degree(q),i:i+degree(q)]=q[end:-1:0] end
det_bareiss(m)
end
"""
`discriminant(p::Pol)` the resultant of the polynomial with its derivative.
This detects multiple zeroes.
"""
discriminant(p::Pol)=resultant(p,derivative(p))
#---------------------- Frac-------------------------------------
## cannot use Rational{T} since it forces T<:Integer
struct Frac{T}
num::T
den::T
# Unexported inner constructor that bypasses all checks
global Frac_(num::T,den::T) where T=new{T}(num,den)
end
Base.numerator(a::Frac)=a.num
Base.denominator(a::Frac)=a.den
Base.isfinite(x::Frac)=true
function Base.convert(::Type{Frac{T}},p::Frac{T1}) where {T,T1}
Frac_(convert(T,p.num),convert(T,p.den))
end
(::Type{Frac{T}})(a::Frac) where {T}=convert(Frac{T},a)
(::Type{Pol{T}})(a::Frac) where {T}=convert(Pol{T},a)
(::Type{Frac{T}})(a::Number) where T=convert(Frac{T},a)
Base.broadcastable(p::Frac)=Ref(p)
Base.copy(a::Frac)=Frac_(a.num,a.den)
Base.one(a::Frac)=Frac_(one(a.num),one(a.den))
Base.one(::Type{Frac{T}}) where T =Frac_(one(T),one(T)) # avoid this
Base.isone(a::Frac)=a.num==a.den
Base.zero(::Type{Frac{T}}) where T =Frac_(zero(T),one(T)) # avoid this
Base.zero(a::Frac)=Frac_(zero(a.num),one(a.num))
Base.iszero(a::Frac)=iszero(a.num)
# next 3 methods are to make inv using LU work (abs is stupid)
Base.abs(p::Frac)=p
Base.conj(p::Frac)=Frac_(conj(p.num),conj(p.den))
Base.adjoint(a::Frac)=conj(a)
Base.:(==)(a::Frac,b::Frac)=a.num==b.num && a.den==b.den
Base.cmp(a::Frac,b::Frac)=cmp((a.num,a.den),(b.num,b.den))
Base.hash(a::Frac, h::UInt)=hash(a.num,hash(a.den,h))
Base.isless(a::Frac,b::Frac)=cmp(a,b)==-1
function Base.show(io::IO, ::MIME"text/plain", a::Frac)
if !haskey(io,:typeinfo)
print(io,typeof(a),": ")
io=IOContext(io,:typeinfo=>typeof(a))
end
show(io,a)
end
function Base.show(io::IO,a::Frac)
if !get(io, :limit, false) && !get(io, :TeX, false)
print(io,"Frac(",a.num,",",a.den,")")
return
end
if haskey(io,:typeinfo) && isone(a.den)
print(io,a.num)
return
end
n=sprint(show,a.num; context=io)
print(io,bracket_if_needed(n))
n=sprint(show,a.den; context=io)
print(io,"/",bracket_if_needed(n))
end
Base.inv(a::Frac)=Frac_(a.den,a.num)
Base.:^(a::Frac, n::Integer)= n>=0 ? Base.power_by_squaring(a,n) :
Base.power_by_squaring(inv(a),-n)
Base.:+(a::Frac,b::Frac)=Frac(a.num*b.den+a.den*b.num,a.den*b.den)
Base.:+(a::Frac{<:T},b::Union{Number,T}) where T=+(promote(a,b)...)
Base.:+(b::Union{Number,T},a::Frac{<:T}) where T=+(promote(a,b)...)
Base.:-(a::Frac)=Frac_(-a.num,a.den)
Base.:-(a::Frac,b::Frac)=Frac(a.num*b.den-a.den*b.num,a.den*b.den)
Base.:-(a::Frac{<:T},b::Union{Number,T}) where T=-(promote(a,b)...)
Base.:-(b::Union{Number,T},a::Frac{<:T}) where T=-(promote(b,a)...)
Base.:*(a::Frac,b::Frac)=Frac(a.num*b.num,a.den*b.den)
Base.:*(a::Frac{<:T},b::T) where T=Frac(a.num*b,a.den)
Base.:*(b::T,a::Frac{<:T}) where T=Frac(a.num*b,a.den)
Base.:*(a::Frac{<:Pol},b::Number)=Frac(a.num*b,a.den;prime=true)
Base.:*(b::Number,a::Frac{<:Pol})=a*b
#----------------------------------------------------------------------
# make both non-Laurent pols, one of valuation 0
function make_positive(a::Pol,b::Pol)
v=a.v-b.v
shift(a,max(v,0)-a.v),shift(b,-min(v,0)-b.v)
end
Frac(a::Pol,b::Pol;prime=false)=Frac(promote(a,b)...;prime)
"""
`Frac(a::Pol,b::Pol;prime=false)
Polynomials `a` and `b` are promoted to same coefficient type, and checked
for being true polynomials (otherwise they are both multiplied by the same
power of the variable so they become true polynomials), and unless
`prime=true` they are checked for having a non-trivial `gcd`.
"""
function Frac(a::T,b::T;prime=false)::Frac{T} where T<:Pol
if iszero(b) error("division by 0") end
a,b=make_positive(a,b)
if !prime
d=gcd(a,b)
a,b=exactdiv(a,d),exactdiv(b,d)
end
if scalar(b)==-1 a,b=(-a,-b) end
Frac_(a,b)
end
function Pol(p::Frac{<:Pol})
if ismonomial(p.den)
if isone(p.den.c[1]^2) return Pol(p.num.c.*Ref(p.den.c[1]),p.num.v-p.den.v)
else return Pol(p.num.c.//Ref(p.den.c[1]),p.num.v-p.den.v)
end
end
error("cannot convert ",p," to Pol")
end
Base.convert(::Type{Pol{T}},p::Frac) where {T}=convert(Pol{T},Pol(p))
function Base.convert(::Type{Frac{T}},p::Pol) where T
f=Frac(convert(T,p),convert(T,one(p));prime=true)
Frac_(convert(T,f.num),convert(T,f.den))
end
function Base.convert(::Type{Frac{Pol{T}}},a::Frac{<:Pol{<:Rational{T}}}) where T<:Integer
n=numerator(a)
d=denominator(a)
Frac(numerator(n)*denominator(d),numerator(d)*denominator(n))
end
function Base.convert(::Type{Frac{Pol{T}}},p::Pol{Rational{T1}}) where{T,T1}
T2=Pol{promote_type(T,T1)}
Frac_(convert(T2,numerator(p)),convert(T2,denominator(p)))
end
function Base.convert(::Type{Frac{T}},p::Number) where {T<:Pol}
Frac_(convert(T,p),convert(T,1))
end
function Base.promote_rule(a::Type{Pol{T1}},b::Type{Frac{Pol{T2}}})where {T1,T2}
Frac{Pol{promote_type(T1,T2)}}
end
function Base.promote_rule(a::Type{Pol{Rational{T1}}},b::Type{Frac{Pol{T2}}})where {T1,T2}
Frac{Pol{promote_type(T1,T2)}}
end
function Base.promote_rule(a::Type{T1},b::Type{Frac{T2}})where {T1<:Number,T2<:Pol}
Frac{promote_type(T1,T2)}
end
function Base.promote_rule(a::Type{Frac{T1}},b::Type{Frac{T2}})where {T1<:Pol,T2<:Pol}
Frac{promote_type(T1,T2)}
end
#@test (q+1)/(q-1)+q//1==(q^2+1)//(q-1)
#@test q//1+(q+1)/(q-1)==(q^2+1)//(q-1)
function Frac(a::Pol)
if a.v>0 return Frac_(a,one(a)) end
Frac(a,one(a);prime=true)
end
bestinv(x)=isone(x) ? x : isone(-x) ? x : inv(x)
function Base.inv(p::Pol)
if ismonomial(p) return Pol_([bestinv(p.c[1])],-p.v) end
Frac_(make_positive(one(p),p)...)
end
function Base.:/(a::Pol,b::Pol)
if ismonomial(b) return Pol_(a.c*bestinv(b.c[1]),a.v-b.v) end
Frac(a,b)
end
Base.:/(a::Frac,b::Frac)=a//b
Base.:/(p::Number,q::Pol)=p*inv(q)
Base.:/(a::Union{Number,Pol},b::Frac{<:Pol})=a//b
Base.:/(a::Frac{<:Pol},b::Union{Number,Pol})=a//b
Base.://(a::Frac{<:Pol},b::Pol)=Frac(a.num,a.den*b)
Base.://(a::Frac{<:Pol},b::Number)=Frac(a.num,a.den*b;prime=true)
Base.://(a::Union{Number,Pol},b::Frac{<:Pol})=a*inv(b)
Base.://(p::Number,q::Pol)=Frac(Pol(p),q;prime=true)
Base.://(a::Frac,b::Frac)=Frac(a.num*b.den,a.den*b.num)
function Base.://(a::Pol,b::Pol)
if ismonomial(b) return Pol(a.c.//Ref(b.c[1]),a.v-b.v) end
Frac(a,b)
end
(p::Frac{<:Pol})(x;Rational=false)=Rational ? p.num(x)//p.den(x) : p.num(x)/p.den(x)
# @btime inv(Frac.([q+1 q+2;q-2 q-3])) setup=(q=Pol())
# 1.9.3 27.855 μs (673 allocations: 46.39 KiB)
# 1.10.β3 23.769 μs (568 allocations: 33.12 KiB)
end
| LaurentPolynomials | https://github.com/jmichel7/LaurentPolynomials.jl.git |
|
[
"MIT"
] | 0.1.2 | 90950ef1bc004499811fe377dabe84b3292a8f10 | code | 4881 | # auto-generated tests from julia-repl docstrings
using Test, LaurentPolynomials, LinearAlgebra
function mytest(file::String,cmd::String,man::String)
println(file," ",cmd)
exec=repr(MIME("text/plain"),eval(Meta.parse(cmd)),context=:limit=>true)
if endswith(cmd,";") return true end
exec=replace(exec,r"\s*$"m=>""); exec=replace(exec,r"\s*$"s=>"")
exec=replace(exec,r"^\s*"=>"")
if exec==man return true end
i=findfirst(i->i<=lastindex(man) && exec[i]!=man[i],collect(eachindex(exec)))
print("exec=$(repr(exec[i:end]))\nmanl=$(repr(man[i:end]))\n")
false
end
@testset "LaurentPolynomials.jl" begin
@test mytest("LaurentPolynomials.jl","Pol(:q)","Pol{Int64}: q")
@test mytest("LaurentPolynomials.jl","@Pol q","Pol{Int64}: q")
@test mytest("LaurentPolynomials.jl","Pol([1,2])","Pol{Int64}: 2q+1")
@test mytest("LaurentPolynomials.jl","2q+1","Pol{Int64}: 2q+1")
@test mytest("LaurentPolynomials.jl","Pol()","Pol{Int64}: q")
@test mytest("LaurentPolynomials.jl","p=Pol([1,2,1],-1)","Pol{Int64}: q+2+q⁻¹")
@test mytest("LaurentPolynomials.jl","q+2+q^-1","Pol{Int64}: q+2+q⁻¹")
@test mytest("LaurentPolynomials.jl","valuation(p),degree(p)","(-1, 1)")
@test mytest("LaurentPolynomials.jl","p[0], p[1], p[-1], p[10]","(2, 1, 1, 0)")
@test mytest("LaurentPolynomials.jl","p[valuation(p):degree(p)]","3-element Vector{Int64}:\n 1\n 2\n 1")
@test mytest("LaurentPolynomials.jl","p[begin:end]","3-element Vector{Int64}:\n 1\n 2\n 1")
@test mytest("LaurentPolynomials.jl","coefficients(p)","3-element Vector{Int64}:\n 1\n 2\n 1")
@test mytest("LaurentPolynomials.jl","h=Pol([[1 1;0 1],[1 0; 0 1]])","Pol{Matrix{Int64}}: [1 0; 0 1]q+[1 1; 0 1]")
@test mytest("LaurentPolynomials.jl","h^3","Pol{Matrix{Int64}}: [1 0; 0 1]q³+[3 3; 0 3]q²+[3 6; 0 3]q+[1 3; 0 1]")
@test mytest("LaurentPolynomials.jl","Pol(1)","Pol{Int64}: 1")
@test mytest("LaurentPolynomials.jl","convert(Pol{Int},1)","Pol{Int64}: 1")
@test mytest("LaurentPolynomials.jl","scalar(Pol(1))","1")
@test mytest("LaurentPolynomials.jl","convert(Int,Pol(1))","1")
@test mytest("LaurentPolynomials.jl","Int(Pol(1))","1")
@test mytest("LaurentPolynomials.jl","scalar(q+1)","nothing")
@test mytest("LaurentPolynomials.jl","derivative(p)","Pol{Int64}: 1-q⁻²")
@test mytest("LaurentPolynomials.jl","p=(q+1)^2","Pol{Int64}: q²+2q+1")
@test mytest("LaurentPolynomials.jl","p/2","Pol{Float64}: 0.5q²+1.0q+0.5")
@test mytest("LaurentPolynomials.jl","p//2","Pol{Rational{Int64}}: (1//2)q²+q+1//2")
@test mytest("LaurentPolynomials.jl","p(1//2)","9//4")
@test mytest("LaurentPolynomials.jl","p(0.5)","2.25")
@test mytest("LaurentPolynomials.jl","Pol([1,2,3],[2.0,1.0,3.0])","Pol{Float64}: 1.5q²-5.5q+6.0")
@test mytest("LaurentPolynomials.jl","divrem(q^3+1,2q+1)","(0.5q²-0.25q+0.125, 0.875)")
@test mytest("LaurentPolynomials.jl","divrem(q^3+1,2q+1//1)","((1//2)q²+(-1//4)q+1//8, 7//8)")
@test mytest("LaurentPolynomials.jl","pseudodiv(q^3+1,2q+1)","(4q²-2q+1, 7)")
@test mytest("LaurentPolynomials.jl","(4q^2-2q+1)*(2q+1)+7","Pol{Int64}: 8q³+8")
@test mytest("LaurentPolynomials.jl","LinearAlgebra.exactdiv(q+1,2.0)","Pol{Float64}: 0.5q+0.5")
@test mytest("LaurentPolynomials.jl","a=1/(q+1)","Frac{Pol{Int64}}: 1/(q+1)")
@test mytest("LaurentPolynomials.jl","Pol(2/a)","Pol{Int64}: 2q+2")
@test mytest("LaurentPolynomials.jl","numerator(a)","Pol{Int64}: 1")
@test mytest("LaurentPolynomials.jl","denominator(a)","Pol{Int64}: q+1")
@test mytest("LaurentPolynomials.jl","m=[q+1 q+2;q-2 q-3]","2×2 Matrix{Pol{Int64}}:\n q+1 q+2\n q-2 q-3")
@test mytest("LaurentPolynomials.jl","n=inv(Frac.(m))","2×2 Matrix{Frac{Pol{Int64}}}:\n (-q+3)/(2q-1) (-q-2)/(-2q+1)\n (q-2)/(2q-1) (q+1)/(-2q+1)")
@test mytest("LaurentPolynomials.jl","map(x->x(1),n)","2×2 Matrix{Float64}:\n 2.0 3.0\n -1.0 -2.0")
@test mytest("LaurentPolynomials.jl","map(x->x(1;Rational=true),n)","2×2 Matrix{Rational{Int64}}:\n 2 3\n -1 -2")
@test mytest("LaurentPolynomials.jl","pseudodiv(q^2+1,2q+1)","(2q-1, 5)")
@test mytest("LaurentPolynomials.jl","(2q+1)*(2q-1)+5","Pol{Int64}: 4q²+4")
@test mytest("LaurentPolynomials.jl","srgcd(4q+4,6q^2-6)","Pol{Int64}: 2q+2")
@test mytest("LaurentPolynomials.jl","gcd(2q+2,2q^2-2)","Pol{Int64}: 2q+2")
@test mytest("LaurentPolynomials.jl","gcd((2q+2)//1,(2q^2-2)//1)","Pol{Rational{Int64}}: q+1")
@test mytest("LaurentPolynomials.jl","gcdx(q^3-1//1,q^2-1//1)","(q-1, 1, -q)")
@test mytest("LaurentPolynomials.jl","powermod(q-1//1,3,q^2+q+1)","Pol{Rational{Int64}}: 6q+3")
@test mytest("LaurentPolynomials.jl","p=Pol([1,1,1])","Pol{Int64}: q²+q+1")
@test mytest("LaurentPolynomials.jl","vals=p.(1:5)","5-element Vector{Int64}:\n 3\n 7\n 13\n 21\n 31")
@test mytest("LaurentPolynomials.jl","Pol(1:5,vals*1//1)","Pol{Rational{Int64}}: q²+q+1")
@test mytest("LaurentPolynomials.jl","Pol(1:5,vals*1.0)","Pol{Float64}: 1.0q²+1.0q+1.0")
@test (q+1)/(q-1)+q//1==(q^2+1)//(q-1)
@test q//1+(q+1)/(q-1)==(q^2+1)//(q-1)
end
| LaurentPolynomials | https://github.com/jmichel7/LaurentPolynomials.jl.git |
|
[
"MIT"
] | 0.1.2 | 90950ef1bc004499811fe377dabe84b3292a8f10 | docs | 12919 |
<a id='Laurent-polynomials'></a>
<a id='Laurent-polynomials-1'></a>
# Laurent polynomials
- [Laurent polynomials](index.md#Laurent-polynomials)
<a id='LaurentPolynomials' href='#LaurentPolynomials'>#</a>
**`LaurentPolynomials`** — *Module*.
This package implements univariate Laurent polynomials, and univariate rational fractions. The coefficients can be in any ring (possibly even non-commutative, like `Matrix{Int}).
The initial motivation in 2018 was to have an easy way to port GAP polynomials to Julia. The reasons for still having my own package are multiple:
* I need my polynomials to behave well when coefficients are in a ring, in which case I use pseudo-division and subresultant gcd.
* I need my polynomials to work as well as possible with coefficients of type `T` where the elements have a `zero` method but `T` itself does not have one, because `T` does not contain the necessary information. An example is modular arithmetic with a `BigInt` modulus which cannot be part of the type. For this reason the `zero` polynomial does not have an empty list of coefficients, but a list containing one element equal to zero, so it is always possible to get a zero of type T from the zero polynomial.
* `LaurentPolynomials` is designed to be used by `PuiseuxPolynomials`.
* In many cases, my polynomials are several times faster than those in the package `Polynomials`. Also the interface is simple and flexible.
The only package on which this package depends is `LinearAlgebra`, through the use of the function `exactdiv`.
Laurent polynomials have the parametric type `Pol{T}`, where `T`is the type of the coefficients. They are constructed by giving a vector of coefficients of type `T`, and a valuation (an `Int`). We call true polynomials those whose valuation is `≥0`.
There is a current variable name (a `Symbol`) which is used to print polynomials nicely at the repl or in IJulia or Pluto. This name can be changed globally, or just for printing a specific polynomial. But polynomials do not record individually which symbol they should be printed with.
**Examples**
```julia-repl
julia> Pol(:q) # define symbol used for printing and return Pol([1],1)
Pol{Int64}: q
julia> @Pol q # same as q=Pol(:q) useful to start session with polynomials
Pol{Int64}: q
julia> Pol([1,2]) # valuation is taken to be 0 if omitted
Pol{Int64}: 2q+1
julia> 2q+1 # same polynomial
Pol{Int64}: 2q+1
julia> Pol() # omitting all arguments gives Pol([1],1)
Pol{Int64}: q
julia> p=Pol([1,2,1],-1) # here the valuation is specified to be -1
Pol{Int64}: q+2+q⁻¹
julia> q+2+q^-1 # same polynomial
Pol{Int64}: q+2+q⁻¹
```
```julia-rep1
julia> print(p) # if not nice printing give an output which can be read back
Pol([1, 2, 1],-1)
# change the variable for printing just this time
julia> print(IOContext(stdout,:limit=>true,:varname=>"x"),p)
x+2+x⁻¹
julia> print(IOContext(stdout,:TeX=>true),p) # TeXable output (used in Pluto, IJulia)
q+2+q^{-1}
```
A polynomial can be taken apart with the functions `valuation`, `degree` and `getindex`. An index `p[i]` gives the coefficient of degree `i` of `p`.
```julia-repl
julia> valuation(p),degree(p)
(-1, 1)
julia> p[0], p[1], p[-1], p[10]
(2, 1, 1, 0)
julia> p[valuation(p):degree(p)]
3-element Vector{Int64}:
1
2
1
julia> p[begin:end] # the same as the above line
3-element Vector{Int64}:
1
2
1
julia> coefficients(p) # the same again
3-element Vector{Int64}:
1
2
1
```
A polynomial is a *scalar* if the valuation and degree are `0`. The function `scalar` returns the constant coefficient if the polynomial is a scalar, and `nothing` otherwise.
```julia-repl
julia> Pol(1)
Pol{Int64}: 1
julia> convert(Pol{Int},1) # the same thing
Pol{Int64}: 1
julia> scalar(Pol(1))
1
julia> convert(Int,Pol(1)) # the same thing
1
julia> Int(Pol(1)) # the same thing
1
julia> scalar(q+1) # nothing; convert would give an error
```
In arrays `Pol{T}` of different types `T` are promoted to the same type `T` (when the `T` involved have a promotion) and a number is promoted to a polynomial.
Usual arithmetic (`+`, `-`, `*`, `^`, `/`, `//`, `one`, `isone`, `zero`, `iszero`, `==`) works. Elements of type `<:Number` or of type `T` for a `Pol{T}` are considered as scalars for scalar operations on the coefficients.
```julia-repl
julia> derivative(p)
Pol{Int64}: 1-q⁻²
julia> p=(q+1)^2
Pol{Int64}: q²+2q+1
julia> p/2
Pol{Float64}: 0.5q²+1.0q+0.5
julia> p//2
Pol{Rational{Int64}}: (1//2)q²+q+1//2
julia> p(1//2) # value of p at 1//2
9//4
julia> p(0.5)
2.25
julia> Pol([1,2,3],[2.0,1.0,3.0]) # find p taking values [2.0,1.0,3.0] at [1,2,3]
Pol{Float64}: 1.5q²-5.5q+6.0
```
Polynomials are scalars for broadcasting. They can be sorted (they have `cmp` and `isless` functions which compare the valuation and the coefficients), they can be keys in a `Dict` (they have a `hash` function).
The functions `divrem`, `div`, `%`, `gcd`, `gcdx`, `lcm`, `powermod` operate between true polynomials over a field, using the polynomial division. Over a ring it is better to use `pseudodiv` and `srgcd` instead of `divrem` and `gcd` (by default `gcd` between integer polynomials delegates to `srgcd`).
`LinearAlgebra.exactdiv` does division (over a field or a ring) when it is exact, otherwise gives an error.
```julia-repl
julia> divrem(q^3+1,2q+1) # changes coefficients to field elements
(0.5q²-0.25q+0.125, 0.875)
julia> divrem(q^3+1,2q+1//1) # case of coefficients already field elements
((1//2)q²+(-1//4)q+1//8, 7//8)
julia> pseudodiv(q^3+1,2q+1) # pseudo-division keeps the ring
(4q²-2q+1, 7)
julia> (4q^2-2q+1)*(2q+1)+7 # but multiplying back gives a multiple of the polynomial
Pol{Int64}: 8q³+8
julia> LinearAlgebra.exactdiv(q+1,2.0) # LinearAlgebra.exactdiv(q+1,2) would give an error
Pol{Float64}: 0.5q+0.5
```
Finally, `Pol`s have methods `conj`, `adjoint` which operate on coefficients, methods `positive_part`, `negative_part` and `bar` (useful for Kazhdan-Lusztig theory) and a method `randpol` to produce random polynomials.
Inverting polynomials is a way to get a rational fraction `Frac{Pol{T}}`, where `Frac` is a general type for fractions. Rational fractions are normalized so that the numerator and denominator are true polynomials prime to each other. They have the arithmetic operations `+`, `-` , `*`, `/`, `//`, `^`, `inv`, `one`, `isone`, `zero`, `iszero` (which can operate between a `Pol` or a `Number` and a `Frac{Pol{T}}`).
```julia-repl
julia> a=1/(q+1)
Frac{Pol{Int64}}: 1/(q+1)
julia> Pol(2/a) # convert back to `Pol`
Pol{Int64}: 2q+2
julia> numerator(a)
Pol{Int64}: 1
julia> denominator(a)
Pol{Int64}: q+1
julia> m=[q+1 q+2;q-2 q-3]
2×2 Matrix{Pol{Int64}}:
q+1 q+2
q-2 q-3
julia> n=inv(Frac.(m)) # convert to rational fractions to invert the matrix
2×2 Matrix{Frac{Pol{Int64}}}:
(-q+3)/(2q-1) (-q-2)/(-2q+1)
(q-2)/(2q-1) (q+1)/(-2q+1)
julia> map(x->x(1),n) # evaluate at 1 the inverse matrix
2×2 Matrix{Float64}:
2.0 3.0
-1.0 -2.0
julia> map(x->x(1;Rational=true),n) # evaluate at 1 using //
2×2 Matrix{Rational{Int64}}:
2 3
-1 -2
```
Rational fractions are also scalars for broadcasting and can be sorted (have `cmp` and `isless` methods).
<a id='LaurentPolynomials.Pol' href='#LaurentPolynomials.Pol'>#</a>
**`LaurentPolynomials.Pol`** — *Type*.
`Pol(c::AbstractVector,v::Integer=0;check=true,copy=true)`
Make a polynomial of valuation `v` with coefficients `c`.
Unless `check` is `false` normalize the result by making sure that `c` has no leading or trailing zeroes (do not set `check=false` unless you are sure this is already the case).
Unless `copy=false` the contents of `c` are copied (you can gain one allocation by setting `copy=false` if you know the contents can be shared)
`Pol(t::Symbol)`
Sets the name of the variable for printing `Pol`s to `t`, and returns the polynomial of degree 1 equal to that variable.
`Pol(x::AbstractVector,y::AbstractVector)`
Interpolation: find a `Pol` (of nonnegative valuation) of smallest degree taking values `y` at points `x`. The values `y` should be in a field for the function to be type stable.
```julia-repl
julia> p=Pol([1,1,1])
Pol{Int64}: q²+q+1
julia> vals=p.(1:5)
5-element Vector{Int64}:
3
7
13
21
31
julia> Pol(1:5,vals*1//1)
Pol{Rational{Int64}}: q²+q+1
julia> Pol(1:5,vals*1.0)
Pol{Float64}: 1.0q²+1.0q+1.0
```
<a id='LaurentPolynomials.@Pol' href='#LaurentPolynomials.@Pol'>#</a>
**`LaurentPolynomials.@Pol`** — *Macro*.
`@Pol q`
is equivalent to `q=Pol(:q)` excepted it creates `q` in the global scope of the current module, since it uses `eval`.
<a id='Base.divrem' href='#Base.divrem'>#</a>
**`Base.divrem`** — *Function*.
`divrem(a::Pol, b::Pol)`
`a` and `b` should be true polynomials (nonnegative valuation). Computes `(q,r)` such that `a=q*b+r` and `degree(r)<degree(b)`. Type stable if the coefficients of `b` are in a field.
<a id='Base.gcd-Tuple{Pol, Pol}' href='#Base.gcd-Tuple{Pol, Pol}'>#</a>
**`Base.gcd`** — *Method*.
`gcd(p::Pol, q::Pol)` computes the `gcd` of the polynomials. It uses the subresultant algorithms for the `gcd` of integer polynomials.
```julia-repl
julia> gcd(2q+2,2q^2-2)
Pol{Int64}: 2q+2
julia> gcd((2q+2)//1,(2q^2-2)//1)
Pol{Rational{Int64}}: q+1
```
<a id='Base.gcdx-Tuple{Pol, Pol}' href='#Base.gcdx-Tuple{Pol, Pol}'>#</a>
**`Base.gcdx`** — *Method*.
`gcdx(a::Pol,b::Pol)`
for polynomials over a field returns `d,u,v` such that `d=ua+vb` and `d=gcd(a,b)`.
```julia-repl
julia> gcdx(q^3-1//1,q^2-1//1)
(q-1, 1, -q)
```
<a id='LaurentPolynomials.pseudodiv' href='#LaurentPolynomials.pseudodiv'>#</a>
**`LaurentPolynomials.pseudodiv`** — *Function*.
`pseudodiv(a::Pol, b::Pol)`
pseudo-division of `a` by `b`. If `d` is the leading coefficient of `b`, computes `(q,r)` such that `d^(degree(a)+1-degree(b))a=q*b+r` and `degree(r)<degree(b)`. Does not do division so works over any ring. For true polynomials (errors if the valuation of `a` or of `b` is negative).
```julia-repl
julia> pseudodiv(q^2+1,2q+1)
(2q-1, 5)
julia> (2q+1)*(2q-1)+5
Pol{Int64}: 4q²+4
```
See Knuth AOCP2 4.6.1 Algorithm R
<a id='LaurentPolynomials.srgcd' href='#LaurentPolynomials.srgcd'>#</a>
**`LaurentPolynomials.srgcd`** — *Function*.
`srgcd(a::Pol,b::Pol)`
sub-resultant gcd: gcd of polynomials over a unique factorization domain
```julia-repl
julia> srgcd(4q+4,6q^2-6)
Pol{Int64}: 2q+2
```
See Knuth AOCP2 4.6.1 Algorithm C
<a id='Base.powermod' href='#Base.powermod'>#</a>
**`Base.powermod`** — *Function*.
`powermod(p::Pol, x::Integer, q::Pol)` computes $p^x \pmod m$.
```julia-repl
julia> powermod(q-1//1,3,q^2+q+1)
Pol{Rational{Int64}}: 6q+3
```
<a id='LaurentPolynomials.randpol' href='#LaurentPolynomials.randpol'>#</a>
**`LaurentPolynomials.randpol`** — *Function*.
`randpol(T,d)`
random polynomial of degree `d` with coefficients from `T`
<a id='LaurentPolynomials.Frac' href='#LaurentPolynomials.Frac'>#</a>
**`LaurentPolynomials.Frac`** — *Type*.
`Frac(a::Pol,b::Pol;prime=false)
Polynomials `a` and `b` are promoted to same coefficient type, and checked for being true polynomials (otherwise they are both multiplied by the same power of the variable so they become true polynomials), and unless `prime=true` they are checked for having a non-trivial `gcd`.
<a id='LaurentPolynomials.negative_part' href='#LaurentPolynomials.negative_part'>#</a>
**`LaurentPolynomials.negative_part`** — *Function*.
`negative_part(p::Pol)` keep the terms of degree≤0
<a id='LaurentPolynomials.positive_part' href='#LaurentPolynomials.positive_part'>#</a>
**`LaurentPolynomials.positive_part`** — *Function*.
`positive_part(p::Pol)` keep the terms of degree≥0
<a id='LaurentPolynomials.bar' href='#LaurentPolynomials.bar'>#</a>
**`LaurentPolynomials.bar`** — *Function*.
`bar(p::Pol)` transform p(q) into p(q⁻¹)
<a id='LaurentPolynomials.shift' href='#LaurentPolynomials.shift'>#</a>
**`LaurentPolynomials.shift`** — *Function*.
`shift(p::Pol,s)` efficient way to multiply a polynomial by `Pol()^s`.
<a id='LaurentPolynomials.resultant' href='#LaurentPolynomials.resultant'>#</a>
**`LaurentPolynomials.resultant`** — *Function*.
`resultant(p::Pol,q::Pol)`
The function computes the resultant of the two polynomials, as the determinant of the Sylvester matrix. ```
<a id='LaurentPolynomials.discriminant' href='#LaurentPolynomials.discriminant'>#</a>
**`LaurentPolynomials.discriminant`** — *Function*.
`discriminant(p::Pol)` the resultant of the polynomial with its derivative. This detects multiple zeroes.
| LaurentPolynomials | https://github.com/jmichel7/LaurentPolynomials.jl.git |
|
[
"MIT"
] | 0.1.2 | 90950ef1bc004499811fe377dabe84b3292a8f10 | docs | 230 | # Laurent polynomials
```@contents
Depth=3
```
```@docs
LaurentPolynomials
Pol
@Pol
divrem
gcd(::Pol,::Pol)
gcdx(::Pol,::Pol)
pseudodiv
srgcd
powermod
randpol
Frac
negative_part
positive_part
bar
shift
resultant
discriminant
```
| LaurentPolynomials | https://github.com/jmichel7/LaurentPolynomials.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 719 | module PowerModelsAnnex
import JuMP
import JuMP: @variable, @constraint, @objective, @expression, optimize!, Model
import InfrastructureModels; const _IM = InfrastructureModels
import PowerModels; const _PM = PowerModels
import PowerModels: ids, ref, var, con, sol, nw_id_default
import Memento
const LOGGER = Memento.getlogger(PowerModels)
include("form/acr.jl")
include("form/wr.jl")
include("form/shared.jl")
include("prob/opf.jl")
include("model/pf.jl")
include("model/opf.jl")
include("pglib/shared.jl")
include("pglib/api.jl")
include("pglib/sad.jl")
include("piecewise-linear/delta.jl")
include("piecewise-linear/lambda.jl")
include("piecewise-linear/phi.jl")
include("piecewise-linear/psi.jl")
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 98 | export NLACRPowerModel
mutable struct NLACRPowerModel <: _PM.AbstractACRModel _PM.@pm_fields end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 517 | NLPowerModels = Union{NLSOCWRPowerModel, NLACRPowerModel}
"force JuMP to define an NLobjective"
function _PM.objective_min_fuel_and_flow_cost(pm::NLPowerModels; kwargs...)
_PM.expression_pg_cost(pm; kwargs...)
_PM.expression_p_dc_cost(pm; kwargs...)
return JuMP.@objective(pm.model, Min,
sum(
sum( var(pm, n, :pg_cost, i) for (i,gen) in nw_ref[:gen]) +
sum( var(pm, n, :p_dc_cost, i) for (i,dcline) in nw_ref[:dcline])
for (n, nw_ref) in _PM.nws(pm))
)
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 2648 |
# Defines a variant of the SOCWRForm which is appropriate for outer approximation
export SOCWROAPowerModel
mutable struct SOCWROAPowerModel <: _PM.AbstractSOCWRModel _PM.@pm_fields end
function _PM.constraint_model_voltage(pm::SOCWROAPowerModel, n::Int)
w = var(pm, n, :w)
wr = var(pm, n, :wr)
wi = var(pm, n, :wi)
for (i,j) in _PM.ids(pm, n, :buspairs)
@constraint(pm.model, (wr[(i,j)]^2 + wi[(i,j)]^2)/w[j] <= w[i])
end
end
function _PM.constraint_thermal_limit_from(pm::SOCWROAPowerModel, n::Int, f_idx, rate_a)
p_fr = var(pm, n, :p, f_idx)
q_fr = var(pm, n, :q, f_idx)
@constraint(pm.model, sqrt(p_fr^2 + q_fr^2) <= rate_a)
end
function _PM.constraint_thermal_limit_to(pm::SOCWROAPowerModel, n::Int, t_idx, rate_a)
p_to = var(pm, n, :p, t_idx)
q_to = var(pm, n, :q, t_idx)
@constraint(pm.model, sqrt(p_to^2 + q_to^2) <= rate_a)
end
# Defines a variant of the SOCWRForm which forces the NL solver path
export NLSOCWRPowerModel
mutable struct NLSOCWRPowerModel <: _PM.AbstractSOCWRModel _PM.@pm_fields end
# Defines a variant of the QCWRTriForm without the linking constraints
export QCLSNoLinkPowerModel
mutable struct QCLSNoLinkPowerModel <: _PM.AbstractQCLSModel _PM.@pm_fields end
function _PM.constraint_model_voltage(pm::QCLSNoLinkPowerModel, n::Int)
v = var(pm, n, :vm)
t = var(pm, n, :va)
td = var(pm, n, :td)
si = var(pm, n, :si)
cs = var(pm, n, :cs)
w = var(pm, n, :w)
wr = var(pm, n, :wr)
lambda_wr = var(pm, n, :lambda_wr)
wi = var(pm, n, :wi)
lambda_wi = var(pm, n, :lambda_wi)
for (i,b) in ref(pm, n, :bus)
_IM.relaxation_sqr(pm.model, v[i], w[i])
end
for bp in _PM.ids(pm, n, :buspairs)
i,j = bp
@constraint(pm.model, t[i] - t[j] == td[bp])
_PM.relaxation_sin(pm.model, td[bp], si[bp])
_PM.relaxation_cos(pm.model, td[bp], cs[bp])
_IM.relaxation_trilinear(pm.model, v[i], v[j], cs[bp], wr[bp], lambda_wr[bp,:])
_IM.relaxation_trilinear(pm.model, v[i], v[j], si[bp], wi[bp], lambda_wi[bp,:])
# this constraint is redudant and useful for debugging
#_IM.relaxation_complex_product(pm.model, w[i], w[j], wr[bp], wi[bp])
end
for (i,branch) in ref(pm, n, :branch)
pair = (branch["f_bus"], branch["t_bus"])
buspair = ref(pm, n, :buspairs, pair)
# to prevent this constraint from being posted on multiple parallel branchs
if buspair["branch"] == i
_PM.constraint_power_magnitude_sqr(pm, i, nw=n)
_PM.constraint_power_magnitude_link(pm, i, nw=n)
end
end
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 11057 | #### AC Optimal Power Flow ####
# This file provides a pedagogical example of modeling the AC Optimal Power
# Flow problem using the Julia Mathematical Programming package (JuMP) and the
# PowerModels package for data parsing.
# This file can be run by calling `include("ac-opf.jl")` from the Julia REPL or
# by calling `julia ac-opf.jl` in Julia v1.
# Developed by Line Roald (@lroald) and Carleton Coffrin (@ccoffrin)
###############################################################################
# 0. Initialization
###############################################################################
# Load Julia Packages
#--------------------
using PowerModels
using Ipopt
using JuMP
# Load System Data
# ----------------
powermodels_path = joinpath(dirname(pathof(PowerModels)), "..")
file_name = "$(powermodels_path)/test/data/matpower/case5.m"
# note: change this string to modify the network data that will be loaded
# load the data file
data = PowerModels.parse_file(file_name)
# Add zeros to turn linear objective functions into quadratic ones
# so that additional parameter checks are not required
PowerModels.standardize_cost_terms!(data, order=2)
# Adds reasonable rate_a values to branches without them
PowerModels.calc_thermal_limits!(data)
# use build_ref to filter out inactive components
ref = PowerModels.build_ref(data)[:it][:pm][:nw][0]
# note: ref contains all the relevant system parameters needed to build the OPF model
# When we introduce constraints and variable bounds below, we use the parameters in ref.
###############################################################################
# 1. Building the Optimal Power Flow Model
###############################################################################
# Initialize a JuMP Optimization Model
#-------------------------------------
model = Model(Ipopt.Optimizer)
set_optimizer_attribute(model, "print_level", 0)
# note: print_level changes the amount of solver information printed to the terminal
# Add Optimization and State Variables
# ------------------------------------
# Add voltage angles va for each bus
@variable(model, va[i in keys(ref[:bus])])
# note: [i in keys(ref[:bus])] adds one `va` variable for each bus in the network
# Add voltage angles vm for each bus
@variable(model, ref[:bus][i]["vmin"] <= vm[i in keys(ref[:bus])] <= ref[:bus][i]["vmax"], start=1.0)
# note: this vairable also includes the voltage magnitude limits and a starting value
# Add active power generation variable pg for each generator (including limits)
@variable(model, ref[:gen][i]["pmin"] <= pg[i in keys(ref[:gen])] <= ref[:gen][i]["pmax"])
# Add reactive power generation variable qg for each generator (including limits)
@variable(model, ref[:gen][i]["qmin"] <= qg[i in keys(ref[:gen])] <= ref[:gen][i]["qmax"])
# Add power flow variables p to represent the active power flow for each branch
@variable(model, -ref[:branch][l]["rate_a"] <= p[(l,i,j) in ref[:arcs]] <= ref[:branch][l]["rate_a"])
# Add power flow variables q to represent the reactive power flow for each branch
@variable(model, -ref[:branch][l]["rate_a"] <= q[(l,i,j) in ref[:arcs]] <= ref[:branch][l]["rate_a"])
# note: ref[:arcs] includes both the from (i,j) and the to (j,i) sides of a branch
# Add power flow variables p_dc to represent the active power flow for each HVDC line
@variable(model, p_dc[a in ref[:arcs_dc]])
# Add power flow variables q_dc to represent the reactive power flow at each HVDC terminal
@variable(model, q_dc[a in ref[:arcs_dc]])
for (l,dcline) in ref[:dcline]
f_idx = (l, dcline["f_bus"], dcline["t_bus"])
t_idx = (l, dcline["t_bus"], dcline["f_bus"])
JuMP.set_lower_bound(p_dc[f_idx], dcline["pminf"])
JuMP.set_upper_bound(p_dc[f_idx], dcline["pmaxf"])
JuMP.set_lower_bound(q_dc[f_idx], dcline["qminf"])
JuMP.set_upper_bound(q_dc[f_idx], dcline["qmaxf"])
JuMP.set_lower_bound(p_dc[t_idx], dcline["pmint"])
JuMP.set_upper_bound(p_dc[t_idx], dcline["pmaxt"])
JuMP.set_lower_bound(q_dc[f_idx], dcline["qmint"])
JuMP.set_upper_bound(q_dc[f_idx], dcline["qmaxt"])
end
# Add Objective Function
# ----------------------
# index representing which side the HVDC line is starting
from_idx = Dict(arc[1] => arc for arc in ref[:arcs_from_dc])
# Minimize the cost of active power generation and cost of HVDC line usage
# assumes costs are given as quadratic functions
@objective(model, Min,
sum(gen["cost"][1]*pg[i]^2 + gen["cost"][2]*pg[i] + gen["cost"][3] for (i,gen) in ref[:gen]) +
sum(dcline["cost"][1]*p_dc[from_idx[i]]^2 + dcline["cost"][2]*p_dc[from_idx[i]] + dcline["cost"][3] for (i,dcline) in ref[:dcline])
)
# Add Constraints
# ---------------
# Fix the voltage angle to zero at the reference bus
for (i,bus) in ref[:ref_buses]
@constraint(model, va[i] == 0)
end
# Nodal power balance constraints
for (i,bus) in ref[:bus]
# Build a list of the loads and shunt elements connected to the bus i
bus_loads = [ref[:load][l] for l in ref[:bus_loads][i]]
bus_shunts = [ref[:shunt][s] for s in ref[:bus_shunts][i]]
# Active power balance at node i
@constraint(model,
sum(p[a] for a in ref[:bus_arcs][i]) + # sum of active power flow on lines from bus i +
sum(p_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) == # sum of active power flow on HVDC lines from bus i =
sum(pg[g] for g in ref[:bus_gens][i]) - # sum of active power generation at bus i -
sum(load["pd"] for load in bus_loads) - # sum of active load consumption at bus i -
sum(shunt["gs"] for shunt in bus_shunts)*vm[i]^2 # sum of active shunt element injections at bus i
)
# Reactive power balance at node i
@constraint(model,
sum(q[a] for a in ref[:bus_arcs][i]) + # sum of reactive power flow on lines from bus i +
sum(q_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) == # sum of reactive power flow on HVDC lines from bus i =
sum(qg[g] for g in ref[:bus_gens][i]) - # sum of reactive power generation at bus i -
sum(load["qd"] for load in bus_loads) + # sum of reactive load consumption at bus i -
sum(shunt["bs"] for shunt in bus_shunts)*vm[i]^2 # sum of reactive shunt element injections at bus i
)
end
# Branch power flow physics and limit constraints
for (i,branch) in ref[:branch]
# Build the from variable id of the i-th branch, which is a tuple given by (branch id, from bus, to bus)
f_idx = (i, branch["f_bus"], branch["t_bus"])
# Build the to variable id of the i-th branch, which is a tuple given by (branch id, to bus, from bus)
t_idx = (i, branch["t_bus"], branch["f_bus"])
# note: it is necessary to distinguish between the from and to sides of a branch due to power losses
p_fr = p[f_idx] # p_fr is a reference to the optimization variable p[f_idx]
q_fr = q[f_idx] # q_fr is a reference to the optimization variable q[f_idx]
p_to = p[t_idx] # p_to is a reference to the optimization variable p[t_idx]
q_to = q[t_idx] # q_to is a reference to the optimization variable q[t_idx]
# note: adding constraints to p_fr is equivalent to adding constraints to p[f_idx], and so on
vm_fr = vm[branch["f_bus"]] # vm_fr is a reference to the optimization variable vm on the from side of the branch
vm_to = vm[branch["t_bus"]] # vm_to is a reference to the optimization variable vm on the to side of the branch
va_fr = va[branch["f_bus"]] # va_fr is a reference to the optimization variable va on the from side of the branch
va_to = va[branch["t_bus"]] # va_fr is a reference to the optimization variable va on the to side of the branch
# Compute the branch parameters and transformer ratios from the data
g, b = PowerModels.calc_branch_y(branch)
tr, ti = PowerModels.calc_branch_t(branch)
g_fr = branch["g_fr"]
b_fr = branch["b_fr"]
g_to = branch["g_to"]
b_to = branch["b_to"]
tm = branch["tap"]^2
# note: tap is assumed to be 1.0 on non-transformer branches
# AC Power Flow Constraints
# From side of the branch flow
@constraint(model, p_fr == (g+g_fr)/tm*vm_fr^2 + (-g*tr+b*ti)/tm*(vm_fr*vm_to*cos(va_fr-va_to)) + (-b*tr-g*ti)/tm*(vm_fr*vm_to*sin(va_fr-va_to)) )
@constraint(model, q_fr == -(b+b_fr)/tm*vm_fr^2 - (-b*tr-g*ti)/tm*(vm_fr*vm_to*cos(va_fr-va_to)) + (-g*tr+b*ti)/tm*(vm_fr*vm_to*sin(va_fr-va_to)) )
# To side of the branch flow
@constraint(model, p_to == (g+g_to)*vm_to^2 + (-g*tr-b*ti)/tm*(vm_to*vm_fr*cos(va_to-va_fr)) + (-b*tr+g*ti)/tm*(vm_to*vm_fr*sin(va_to-va_fr)) )
@constraint(model, q_to == -(b+b_to)*vm_to^2 - (-b*tr+g*ti)/tm*(vm_to*vm_fr*cos(va_fr-va_to)) + (-g*tr-b*ti)/tm*(vm_to*vm_fr*sin(va_to-va_fr)) )
# Voltage angle difference limit
@constraint(model, va_fr - va_to <= branch["angmax"])
@constraint(model, va_fr - va_to >= branch["angmin"])
# Apparent power limit, from side and to side
@constraint(model, p_fr^2 + q_fr^2 <= branch["rate_a"]^2)
@constraint(model, p_to^2 + q_to^2 <= branch["rate_a"]^2)
end
# HVDC line constraints
for (i,dcline) in ref[:dcline]
# Build the from variable id of the i-th HVDC line, which is a tuple given by (hvdc line id, from bus, to bus)
f_idx = (i, dcline["f_bus"], dcline["t_bus"])
# Build the to variable id of the i-th HVDC line, which is a tuple given by (hvdc line id, to bus, from bus)
t_idx = (i, dcline["t_bus"], dcline["f_bus"]) # index of the ith HVDC line which is a tuple given by (line number, to bus, from bus)
# note: it is necessary to distinguish between the from and to sides of a HVDC line due to power losses
# Constraint defining the power flow and losses over the HVDC line
@constraint(model, (1-dcline["loss1"])*p_dc[f_idx] + (p_dc[t_idx] - dcline["loss0"]) == 0)
end
###############################################################################
# 3. Solve the Optimal Power Flow Model and Review the Results
###############################################################################
# Solve the optimization problem
optimize!(model)
# Check that the solver terminated without an error
println("The solver termination status is $(termination_status(model))")
# Check the value of the objective function
cost = objective_value(model)
println("The cost of generation is $(cost).")
# Check the value of an optimization variable
# Example: Active power generated at generator 1
pg1 = value(pg[1])
println("The active power generated at generator 1 is $(pg1*ref[:baseMVA]) MW.")
# note: the optimization model is in per unit, so the baseMVA value is used to restore the physical units
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 7981 | #### DC Optimal Power Flow ####
# This file provides a pedagogical example of modeling the DC Optimal Power
# Flow problem using the Julia Mathematical Programming package (JuMP) and the
# PowerModels package for data parsing.
# This file can be run by calling `include("dc-opf.jl")` from the Julia REPL or
# by calling `julia dc-opf.jl` in Julia v1.
# Developed by Line Roald (@lroald) and Carleton Coffrin (@ccoffrin)
###############################################################################
# 0. Initialization
###############################################################################
# Load Julia Packages
#--------------------
using PowerModels
using Ipopt
using JuMP
# Load System Data
# ----------------
powermodels_path = joinpath(dirname(pathof(PowerModels)), "..")
file_name = "$(powermodels_path)/test/data/matpower/case5.m"
# note: change this string to modify the network data that will be loaded
# load the data file
data = PowerModels.parse_file(file_name)
# Add zeros to turn linear objective functions into quadratic ones
# so that additional parameter checks are not required
PowerModels.standardize_cost_terms!(data, order=2)
# Adds reasonable rate_a values to branches without them
PowerModels.calc_thermal_limits!(data)
# use build_ref to filter out inactive components
ref = PowerModels.build_ref(data)[:it][:pm][:nw][0]
# Note: ref contains all the relevant system parameters needed to build the OPF model
# When we introduce constraints and variable bounds below, we use the parameters in ref.
###############################################################################
# 1. Building the Optimal Power Flow Model
###############################################################################
# Initialize a JuMP Optimization Model
#-------------------------------------
model = Model(Ipopt.Optimizer)
set_optimizer_attribute(model, "print_level", 0)
# note: print_level changes the amount of solver information printed to the terminal
# Add Optimization and State Variables
# ------------------------------------
# Add voltage angles va for each bus
@variable(model, va[i in keys(ref[:bus])])
# note: [i in keys(ref[:bus])] adds one `va` variable for each bus in the network
# Add active power generation variable pg for each generator (including limits)
@variable(model, ref[:gen][i]["pmin"] <= pg[i in keys(ref[:gen])] <= ref[:gen][i]["pmax"])
# Add power flow variables p to represent the active power flow for each branch
@variable(model, -ref[:branch][l]["rate_a"] <= p[(l,i,j) in ref[:arcs_from]] <= ref[:branch][l]["rate_a"])
# Build JuMP expressions for the value of p[(l,i,j)] and p[(l,j,i)] on the branches
p_expr = Dict([((l,i,j), 1.0*p[(l,i,j)]) for (l,i,j) in ref[:arcs_from]])
p_expr = merge(p_expr, Dict([((l,j,i), -1.0*p[(l,i,j)]) for (l,i,j) in ref[:arcs_from]]))
# note: this is used to make the definition of nodal power balance simpler
# Add power flow variables p_dc to represent the active power flow for each HVDC line
@variable(model, p_dc[a in ref[:arcs_dc]])
for (l,dcline) in ref[:dcline]
f_idx = (l, dcline["f_bus"], dcline["t_bus"])
t_idx = (l, dcline["t_bus"], dcline["f_bus"])
JuMP.set_lower_bound(p_dc[f_idx], dcline["pminf"])
JuMP.set_upper_bound(p_dc[f_idx], dcline["pmaxf"])
JuMP.set_lower_bound(p_dc[t_idx], dcline["pmint"])
JuMP.set_upper_bound(p_dc[t_idx], dcline["pmaxt"])
end
# Add Objective Function
# ----------------------
# index representing which side the HVDC line is starting
from_idx = Dict(arc[1] => arc for arc in ref[:arcs_from_dc])
# Minimize the cost of active power generation and cost of HVDC line usage
# assumes costs are given as quadratic functions
@objective(model, Min,
sum(gen["cost"][1]*pg[i]^2 + gen["cost"][2]*pg[i] + gen["cost"][3] for (i,gen) in ref[:gen]) +
sum(dcline["cost"][1]*p_dc[from_idx[i]]^2 + dcline["cost"][2]*p_dc[from_idx[i]] + dcline["cost"][3] for (i,dcline) in ref[:dcline])
)
# Add Constraints
# ---------------
# Fix the voltage angle to zero at the reference bus
for (i,bus) in ref[:ref_buses]
@constraint(model, va[i] == 0)
end
# Nodal power balance constraints
for (i,bus) in ref[:bus]
# Build a list of the loads and shunt elements connected to the bus i
bus_loads = [ref[:load][l] for l in ref[:bus_loads][i]]
bus_shunts = [ref[:shunt][s] for s in ref[:bus_shunts][i]]
# Active power balance at node i
@constraint(model,
sum(p_expr[a] for a in ref[:bus_arcs][i]) + # sum of active power flow on lines from bus i +
sum(p_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) == # sum of active power flow on HVDC lines from bus i =
sum(pg[g] for g in ref[:bus_gens][i]) - # sum of active power generation at bus i -
sum(load["pd"] for load in bus_loads) - # sum of active load consumption at bus i -
sum(shunt["gs"] for shunt in bus_shunts)*1.0^2 # sum of active shunt element injections at bus i
)
end
# Branch power flow physics and limit constraints
for (i,branch) in ref[:branch]
# Build the from variable id of the i-th branch, which is a tuple given by (branch id, from bus, to bus)
f_idx = (i, branch["f_bus"], branch["t_bus"])
p_fr = p[f_idx] # p_fr is a reference to the optimization variable p[f_idx]
va_fr = va[branch["f_bus"]] # va_fr is a reference to the optimization variable va on the from side of the branch
va_to = va[branch["t_bus"]] # va_fr is a reference to the optimization variable va on the to side of the branch
# Compute the branch parameters and transformer ratios from the data
g, b = PowerModels.calc_branch_y(branch)
# DC Power Flow Constraint
@constraint(model, p_fr == -b*(va_fr - va_to))
# note: that upper and lower limits on the power flow (i.e. p_fr) are not included here.
# these limits were already enforced for p (which is the same as p_fr) when
# the optimization variable p was defined (around line 65).
# Voltage angle difference limit
@constraint(model, va_fr - va_to <= branch["angmax"])
@constraint(model, va_fr - va_to >= branch["angmin"])
end
# HVDC line constraints
for (i,dcline) in ref[:dcline]
# Build the from variable id of the i-th HVDC line, which is a tuple given by (hvdc line id, from bus, to bus)
f_idx = (i, dcline["f_bus"], dcline["t_bus"])
# Build the to variable id of the i-th HVDC line, which is a tuple given by (hvdc line id, to bus, from bus)
t_idx = (i, dcline["t_bus"], dcline["f_bus"]) # index of the ith HVDC line which is a tuple given by (line number, to bus, from bus)
# note: it is necessary to distinguish between the from and to sides of a HVDC line due to power losses
# Constraint defining the power flow and losses over the HVDC line
@constraint(model, (1-dcline["loss1"])*p_dc[f_idx] + (p_dc[t_idx] - dcline["loss0"]) == 0)
end
###############################################################################
# 3. Solve the Optimal Power Flow Model and Review the Results
###############################################################################
# Solve the optimization problem
optimize!(model)
# Check that the solver terminated without an error
println("The solver termination status is $(termination_status(model))")
# Check the value of the objective function
cost = objective_value(model)
println("The cost of generation is $(cost).")
# Check the value of an optimization variable
# Example: Active power generated at generator 1
pg1 = value(pg[1])
println("The active power generated at generator 1 is $(pg1*ref[:baseMVA]) MW.")
# note: the optimization model is in per unit, so the baseMVA value is used to restore the physical units
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 28655 | export build_ac_opf, build_soc_opf, build_qc_opf, build_dc_opf
"""
Given a JuMP model and a PowerModels network data structure,
Builds an AC-OPF formulation of the given data and returns the JuMP model
"""
function build_ac_opf(data::Dict{String,Any}, model=Model())
@assert !haskey(data, "multinetwork")
@assert !haskey(data, "conductors")
PowerModels.standardize_cost_terms!(data, order=2)
ref = PowerModels.build_ref(data)[:it][_PM.pm_it_sym][:nw][nw_id_default]
@variable(model, va[i in keys(ref[:bus])])
@variable(model, ref[:bus][i]["vmin"] <= vm[i in keys(ref[:bus])] <= ref[:bus][i]["vmax"], start=1.0)
@variable(model, ref[:gen][i]["pmin"] <= pg[i in keys(ref[:gen])] <= ref[:gen][i]["pmax"])
@variable(model, ref[:gen][i]["qmin"] <= qg[i in keys(ref[:gen])] <= ref[:gen][i]["qmax"])
@variable(model, -Inf <= p[(l,i,j) in ref[:arcs]] <= Inf)
@variable(model, -Inf <= q[(l,i,j) in ref[:arcs]] <= Inf)
for arc in ref[:arcs]
(l,i,j) = arc
branch = ref[:branch][l]
if haskey(branch, "rate_a")
JuMP.set_lower_bound(p[arc], -branch["rate_a"])
JuMP.set_upper_bound(p[arc], branch["rate_a"])
JuMP.set_lower_bound(q[arc], -branch["rate_a"])
JuMP.set_upper_bound(q[arc], branch["rate_a"])
end
end
@variable(model, p_dc[a in ref[:arcs_dc]])
@variable(model, q_dc[a in ref[:arcs_dc]])
for (l,dcline) in ref[:dcline]
f_idx = (l, dcline["f_bus"], dcline["t_bus"])
t_idx = (l, dcline["t_bus"], dcline["f_bus"])
JuMP.set_lower_bound(p_dc[f_idx], dcline["pminf"])
JuMP.set_upper_bound(p_dc[f_idx], dcline["pmaxf"])
JuMP.set_lower_bound(q_dc[f_idx], dcline["qminf"])
JuMP.set_upper_bound(q_dc[f_idx], dcline["qmaxf"])
JuMP.set_lower_bound(p_dc[t_idx], dcline["pmint"])
JuMP.set_upper_bound(p_dc[t_idx], dcline["pmaxt"])
JuMP.set_lower_bound(q_dc[t_idx], dcline["qmint"])
JuMP.set_upper_bound(q_dc[t_idx], dcline["qmaxt"])
end
from_idx = Dict(arc[1] => arc for arc in ref[:arcs_from_dc])
@objective(model, Min,
sum(gen["cost"][1]*pg[i]^2 + gen["cost"][2]*pg[i] + gen["cost"][3] for (i,gen) in ref[:gen]) +
sum(dcline["cost"][1]*p_dc[from_idx[i]]^2 + dcline["cost"][2]*p_dc[from_idx[i]] + dcline["cost"][3] for (i,dcline) in ref[:dcline])
)
for (i,bus) in ref[:ref_buses]
# Refrence Bus
@constraint(model, va[i] == 0)
end
for (i,bus) in ref[:bus]
bus_loads = [ref[:load][l] for l in ref[:bus_loads][i]]
bus_shunts = [ref[:shunt][s] for s in ref[:bus_shunts][i]]
# Bus KCL
@constraint(model,
sum(p[a] for a in ref[:bus_arcs][i]) +
sum(p_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) ==
sum(pg[g] for g in ref[:bus_gens][i]) -
sum(load["pd"] for load in bus_loads) -
sum(shunt["gs"] for shunt in bus_shunts)*vm[i]^2
)
@constraint(model,
sum(q[a] for a in ref[:bus_arcs][i]) +
sum(q_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) ==
sum(qg[g] for g in ref[:bus_gens][i]) -
sum(load["qd"] for load in bus_loads) +
sum(shunt["bs"] for shunt in bus_shunts)*vm[i]^2
)
end
for (i,branch) in ref[:branch]
f_idx = (i, branch["f_bus"], branch["t_bus"])
t_idx = (i, branch["t_bus"], branch["f_bus"])
p_fr = p[f_idx]
q_fr = q[f_idx]
p_to = p[t_idx]
q_to = q[t_idx]
vm_fr = vm[branch["f_bus"]]
vm_to = vm[branch["t_bus"]]
va_fr = va[branch["f_bus"]]
va_to = va[branch["t_bus"]]
# Line Flow
g, b = PowerModels.calc_branch_y(branch)
tr, ti = PowerModels.calc_branch_t(branch)
g_fr = branch["g_fr"]
b_fr = branch["b_fr"]
g_to = branch["g_to"]
b_to = branch["b_to"]
tm = branch["tap"]^2
# AC Line Flow Constraints
@constraint(model, p_fr == (g+g_fr)/tm*vm_fr^2 + (-g*tr+b*ti)/tm*(vm_fr*vm_to*cos(va_fr-va_to)) + (-b*tr-g*ti)/tm*(vm_fr*vm_to*sin(va_fr-va_to)) )
@constraint(model, q_fr == -(b+b_fr)/tm*vm_fr^2 - (-b*tr-g*ti)/tm*(vm_fr*vm_to*cos(va_fr-va_to)) + (-g*tr+b*ti)/tm*(vm_fr*vm_to*sin(va_fr-va_to)) )
@constraint(model, p_to == (g+g_to)*vm_to^2 + (-g*tr-b*ti)/tm*(vm_to*vm_fr*cos(va_to-va_fr)) + (-b*tr+g*ti)/tm*(vm_to*vm_fr*sin(va_to-va_fr)) )
@constraint(model, q_to == -(b+b_to)*vm_to^2 - (-b*tr+g*ti)/tm*(vm_to*vm_fr*cos(va_fr-va_to)) + (-g*tr-b*ti)/tm*(vm_to*vm_fr*sin(va_to-va_fr)) )
# Phase Angle Difference Limit
@constraint(model, va_fr - va_to <= branch["angmax"])
@constraint(model, va_fr - va_to >= branch["angmin"])
# Apparent Power Limit, From and To
if haskey(branch, "rate_a")
@constraint(model, p[f_idx]^2 + q[f_idx]^2 <= branch["rate_a"]^2)
@constraint(model, p[t_idx]^2 + q[t_idx]^2 <= branch["rate_a"]^2)
end
end
for (i,dcline) in ref[:dcline]
# DC Line Flow Constraint
f_idx = (i, dcline["f_bus"], dcline["t_bus"])
t_idx = (i, dcline["t_bus"], dcline["f_bus"])
@constraint(model, (1-dcline["loss1"])*p_dc[f_idx] + (p_dc[t_idx] - dcline["loss0"]) == 0)
end
return model
end
"""
Given a JuMP model and a PowerModels network data structure,
Builds an SOC-OPF formulation of the given data and returns the JuMP model
"""
function build_soc_opf(data::Dict{String,Any}, model=Model())
@assert !haskey(data, "multinetwork")
@assert !haskey(data, "conductors")
PowerModels.standardize_cost_terms!(data, order=2)
ref = PowerModels.build_ref(data)[:it][_PM.pm_it_sym][:nw][nw_id_default]
@variable(model, ref[:bus][i]["vmin"]^2 <= w[i in keys(ref[:bus])] <= ref[:bus][i]["vmax"]^2, start=1.001)
wr_min, wr_max, wi_min, wi_max = PowerModels.ref_calc_voltage_product_bounds(ref[:buspairs])
@variable(model, wr_min[bp] <= wr[bp in keys(ref[:buspairs])] <= wr_max[bp], start=1.0)
@variable(model, wi_min[bp] <= wi[bp in keys(ref[:buspairs])] <= wi_max[bp])
@variable(model, ref[:gen][i]["pmin"] <= pg[i in keys(ref[:gen])] <= ref[:gen][i]["pmax"])
@variable(model, ref[:gen][i]["qmin"] <= qg[i in keys(ref[:gen])] <= ref[:gen][i]["qmax"])
@variable(model, -Inf <= p[(l,i,j) in ref[:arcs]] <= Inf)
@variable(model, -Inf <= q[(l,i,j) in ref[:arcs]] <= Inf)
for arc in ref[:arcs]
(l,i,j) = arc
branch = ref[:branch][l]
if haskey(branch, "rate_a")
JuMP.set_lower_bound(p[arc], -branch["rate_a"])
JuMP.set_upper_bound(p[arc], branch["rate_a"])
JuMP.set_lower_bound(q[arc], -branch["rate_a"])
JuMP.set_upper_bound(q[arc], branch["rate_a"])
end
end
@variable(model, p_dc[a in ref[:arcs_dc]])
@variable(model, q_dc[a in ref[:arcs_dc]])
for (l,dcline) in ref[:dcline]
f_idx = (l, dcline["f_bus"], dcline["t_bus"])
t_idx = (l, dcline["t_bus"], dcline["f_bus"])
JuMP.set_lower_bound(p_dc[f_idx], dcline["pminf"])
JuMP.set_upper_bound(p_dc[f_idx], dcline["pmaxf"])
JuMP.set_lower_bound(q_dc[f_idx], dcline["qminf"])
JuMP.set_upper_bound(q_dc[f_idx], dcline["qmaxf"])
JuMP.set_lower_bound(p_dc[t_idx], dcline["pmint"])
JuMP.set_upper_bound(p_dc[t_idx], dcline["pmaxt"])
JuMP.set_lower_bound(q_dc[f_idx], dcline["qmint"])
JuMP.set_upper_bound(q_dc[f_idx], dcline["qmaxt"])
end
from_idx = Dict(arc[1] => arc for arc in ref[:arcs_from_dc])
@objective(model, Min,
sum(gen["cost"][1]*pg[i]^2 + gen["cost"][2]*pg[i] + gen["cost"][3] for (i,gen) in ref[:gen]) +
sum(dcline["cost"][1]*p_dc[from_idx[i]]^2 + dcline["cost"][2]*p_dc[from_idx[i]] + dcline["cost"][3] for (i,dcline) in ref[:dcline])
)
for (bp, buspair) in ref[:buspairs]
i,j = bp
# Voltage Product Relaxation Lowerbound
@constraint(model, wr[(i,j)]^2 + wi[(i,j)]^2 <= w[i]*w[j])
vfub = buspair["vm_fr_max"]
vflb = buspair["vm_fr_min"]
vtub = buspair["vm_to_max"]
vtlb = buspair["vm_to_min"]
tdub = buspair["angmax"]
tdlb = buspair["angmin"]
phi = (tdub + tdlb)/2
d = (tdub - tdlb)/2
sf = vflb + vfub
st = vtlb + vtub
# Voltage Product Relaxation Upperbound
@constraint(model, sf*st*(cos(phi)*wr[(i,j)] + sin(phi)*wi[(i,j)]) - vtub*cos(d)*st*w[i] - vfub*cos(d)*sf*w[j] >= vfub*vtub*cos(d)*(vflb*vtlb - vfub*vtub))
@constraint(model, sf*st*(cos(phi)*wr[(i,j)] + sin(phi)*wi[(i,j)]) - vtlb*cos(d)*st*w[i] - vflb*cos(d)*sf*w[j] >= -vflb*vtlb*cos(d)*(vflb*vtlb - vfub*vtub))
end
for (i,bus) in ref[:bus]
bus_loads = [ref[:load][l] for l in ref[:bus_loads][i]]
bus_shunts = [ref[:shunt][s] for s in ref[:bus_shunts][i]]
# Bus KCL
@constraint(model,
sum(p[a] for a in ref[:bus_arcs][i]) +
sum(p_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) ==
sum(pg[g] for g in ref[:bus_gens][i]) -
sum(load["pd"] for load in bus_loads) -
sum(shunt["gs"] for shunt in bus_shunts)*w[i]
)
@constraint(model,
sum(q[a] for a in ref[:bus_arcs][i]) +
sum(q_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) ==
sum(qg[g] for g in ref[:bus_gens][i]) -
sum(load["qd"] for load in bus_loads) +
sum(shunt["bs"] for shunt in bus_shunts)*w[i]
)
end
for (i,branch) in ref[:branch]
f_idx = (i, branch["f_bus"], branch["t_bus"])
t_idx = (i, branch["t_bus"], branch["f_bus"])
bp_idx = (branch["f_bus"], branch["t_bus"])
p_fr = p[f_idx]
q_fr = q[f_idx]
p_to = p[t_idx]
q_to = q[t_idx]
w_fr = w[branch["f_bus"]]
w_to = w[branch["t_bus"]]
wr_br = wr[bp_idx]
wi_br = wi[bp_idx]
# Line Flow
g, b = PowerModels.calc_branch_y(branch)
tr, ti = PowerModels.calc_branch_t(branch)
g_fr = branch["g_fr"]
b_fr = branch["b_fr"]
g_to = branch["g_to"]
b_to = branch["b_to"]
tm = branch["tap"]^2
# AC Line Flow Constraints
@constraint(model, p_fr == (g+g_fr)/tm*w_fr + (-g*tr+b*ti)/tm*(wr_br) + (-b*tr-g*ti)/tm*(wi_br) )
@constraint(model, q_fr == -(b+b_fr)/tm*w_fr - (-b*tr-g*ti)/tm*(wr_br) + (-g*tr+b*ti)/tm*(wi_br) )
@constraint(model, p_to == (g+g_to)*w_to + (-g*tr-b*ti)/tm*(wr_br) + (-b*tr+g*ti)/tm*(-wi_br) )
@constraint(model, q_to == -(b+b_to)*w_to - (-b*tr+g*ti)/tm*(wr_br) + (-g*tr-b*ti)/tm*(-wi_br) )
# Phase Angle Difference Limit
@constraint(model, wi_br <= tan(branch["angmax"])*wr_br)
@constraint(model, wi_br >= tan(branch["angmin"])*wr_br)
# Apparent Power Limit, From and To
if haskey(branch, "rate_a")
@constraint(model, p[f_idx]^2 + q[f_idx]^2 <= branch["rate_a"]^2)
@constraint(model, p[t_idx]^2 + q[t_idx]^2 <= branch["rate_a"]^2)
end
end
for (i,dcline) in ref[:dcline]
# DC Line Flow Constraint
f_idx = (i, dcline["f_bus"], dcline["t_bus"])
t_idx = (i, dcline["t_bus"], dcline["f_bus"])
@constraint(model, (1-dcline["loss1"])*p_dc[f_idx] + (p_dc[t_idx] - dcline["loss0"]) == 0)
end
return model
end
"""
Given the JuMP model and the PowerModels network data structure,
Builds the QC-OPF formulation of the given data and returns the JuMP model
Implementation provided by @sidhant172
"""
function build_qc_opf(data::Dict{String,Any}, model=Model())
@assert !haskey(data, "multinetwork")
@assert !haskey(data, "conductors")
PowerModels.standardize_cost_terms!(data, order=2)
ref = PowerModels.build_ref(data)[:it][_PM.pm_it_sym][:nw][nw_id_default]
# voltage angle and magnitude
@variable(model, va[i in keys(ref[:bus])])
@variable(model, ref[:bus][i]["vmin"] <= vm[i in keys(ref[:bus])] <= ref[:bus][i]["vmax"], start=1.0)
# voltage squared
@variable(model, ref[:bus][i]["vmin"]^2 <= w[i in keys(ref[:bus])] <= ref[:bus][i]["vmax"]^2, start=1.001)
# voltage product
wr_min, wr_max, wi_min, wi_max = PowerModels.ref_calc_voltage_product_bounds(ref[:buspairs])
@variable(model, wr_min[bp] <= wr[bp in keys(ref[:buspairs])] <= wr_max[bp], start=1.0)
@variable(model, wi_min[bp] <= wi[bp in keys(ref[:buspairs])] <= wi_max[bp])
# voltage angle differences
@variable(model, ref[:buspairs][bp]["angmin"] <= td[bp in keys(ref[:buspairs])] <= ref[:buspairs][bp]["angmax"])
# variable multipliers in lambda formulation
@variable(model, 0 <= lambda_wr[bp in keys(ref[:buspairs]), 1:8] <= 1)
@variable(model, 0 <= lambda_wi[bp in keys(ref[:buspairs]), 1:8] <= 1)
# cosine variables
# computing bounds for cosine variables
cos_min = Dict([(bp, -Inf) for bp in keys(ref[:buspairs])])
cos_max = Dict([(bp, Inf) for bp in keys(ref[:buspairs])])
for (bp, buspair) in ref[:buspairs]
angmin = buspair["angmin"]
angmax = buspair["angmax"]
if angmin >= 0
cos_max[bp] = cos(angmin)
cos_min[bp] = cos(angmax)
end
if angmax <= 0
cos_max[bp] = cos(angmax)
cos_min[bp] = cos(angmin)
end
if angmin < 0 && angmax > 0
cos_max[bp] = 1.0
cos_min[bp] = min(cos(angmin), cos(angmax))
end
end
# end computing bounds for cosine variables
# defining cosine variables
@variable(model, cos_min[bp] <= cs[bp in keys(ref[:buspairs])] <= cos_max[bp])
# defining sine variables
@variable(model, sin(ref[:buspairs][bp]["angmin"]) <= si[bp in keys(ref[:buspairs])] <= sin(ref[:buspairs][bp]["angmax"]))
# current magnitude squared
# compute upper bound
cm_ub = Dict()
for (bp, buspair) in ref[:buspairs]
if haskey(buspair, "rate_a")
cm_ub[bp] = ((buspair["rate_a"]*buspair["tap"])/buspair["vm_fr_min"])^2
else
cm_ub[bp] = Inf
end
end
# define current magnitude variable
@variable(model, 0 <= cm[bp in keys(ref[:buspairs])] <= cm_ub[bp])
# line flow variables
@variable(model, -Inf <= p[(l,i,j) in ref[:arcs]] <= Inf)
@variable(model, -Inf <= q[(l,i,j) in ref[:arcs]] <= Inf)
for arc in ref[:arcs]
(l,i,j) = arc
branch = ref[:branch][l]
if haskey(branch, "rate_a")
JuMP.set_lower_bound(p[arc], -branch["rate_a"])
JuMP.set_upper_bound(p[arc], branch["rate_a"])
JuMP.set_lower_bound(q[arc], -branch["rate_a"])
JuMP.set_upper_bound(q[arc], branch["rate_a"])
end
end
# generation pg and qg
@variable(model, ref[:gen][i]["pmin"] <= pg[i in keys(ref[:gen])] <= ref[:gen][i]["pmax"])
@variable(model, ref[:gen][i]["qmin"] <= qg[i in keys(ref[:gen])] <= ref[:gen][i]["qmax"])
# dc line flows
@variable(model, p_dc[a in ref[:arcs_dc]])
@variable(model, q_dc[a in ref[:arcs_dc]])
for (l,dcline) in ref[:dcline]
f_idx = (l, dcline["f_bus"], dcline["t_bus"])
t_idx = (l, dcline["t_bus"], dcline["f_bus"])
JuMP.set_lower_bound(p_dc[f_idx], dcline["pminf"])
JuMP.set_upper_bound(p_dc[f_idx], dcline["pmaxf"])
JuMP.set_lower_bound(q_dc[f_idx], dcline["qminf"])
JuMP.set_upper_bound(q_dc[f_idx], dcline["qmaxf"])
JuMP.set_lower_bound(p_dc[t_idx], dcline["pmint"])
JuMP.set_upper_bound(p_dc[t_idx], dcline["pmaxt"])
JuMP.set_lower_bound(q_dc[f_idx], dcline["qmint"])
JuMP.set_upper_bound(q_dc[f_idx], dcline["qmaxt"])
end
# objective
from_idx = Dict(arc[1] => arc for arc in ref[:arcs_from_dc])
@objective(model, Min,
sum(gen["cost"][1]*pg[i]^2 + gen["cost"][2]*pg[i] + gen["cost"][3] for (i,gen) in ref[:gen]) +
sum(dcline["cost"][1]*p_dc[from_idx[i]]^2 + dcline["cost"][2]*p_dc[from_idx[i]] + dcline["cost"][3] for (i,dcline) in ref[:dcline])
)
#### beginning of constraints ####
# relaxation of vm square
for (i,bus) in ref[:bus]
@constraint(model, w[i] >= vm[i]^2)
@constraint(model, w[i] <= (bus["vmin"] + bus["vmax"])*vm[i] - bus["vmin"]*bus["vmax"])
end
# buspair voltage constraints
for (bp, buspair) in ref[:buspairs]
i,j = bp
@constraint(model, va[i] - va[j] == td[bp])
# relaxation sin
ub = buspair["angmax"]
lb = buspair["angmin"]
max_ad = max(abs(lb),abs(ub))
if lb < 0 && ub > 0
@constraint(model, si[bp] <= cos(max_ad/2)*(td[bp] - max_ad/2) + sin(max_ad/2))
@constraint(model, si[bp] >= cos(max_ad/2)*(td[bp] + max_ad/2) - sin(max_ad/2))
end
if ub <= 0
@constraint(model, si[bp] <= (sin(lb) - sin(ub))/(lb-ub)*(td[bp] - lb) + sin(lb))
@constraint(model, si[bp] >= cos(max_ad/2)*(td[bp] + max_ad/2) - sin(max_ad/2))
end
if lb >= 0
@constraint(model, si[bp] <= cos(max_ad/2)*(td[bp] - max_ad/2) + sin(max_ad/2))
@constraint(model, si[bp] >= (sin(lb) - sin(ub))/(lb-ub)*(td[bp] - lb) + sin(lb))
end
# end of relaxation sin
# relaxation cos
@constraint(model, cs[bp] <= 1 - (1-cos(max_ad))/(max_ad*max_ad)*(td[bp]^2))
@constraint(model, cs[bp] >= (cos(lb) - cos(ub))/(lb-ub)*(td[bp] - lb) + cos(lb))
# end of relaxation cos
##### relaxation trilinear wr
val = [
ref[:bus][i]["vmin"] * ref[:bus][j]["vmin"]
ref[:bus][i]["vmin"] * ref[:bus][j]["vmin"]
ref[:bus][i]["vmin"] * ref[:bus][j]["vmax"]
ref[:bus][i]["vmin"] * ref[:bus][j]["vmax"]
ref[:bus][i]["vmax"] * ref[:bus][j]["vmin"]
ref[:bus][i]["vmax"] * ref[:bus][j]["vmin"]
ref[:bus][i]["vmax"] * ref[:bus][j]["vmax"]
ref[:bus][i]["vmax"] * ref[:bus][j]["vmax"]
]
wr_val = val .* [cos_min[bp], cos_max[bp], cos_min[bp], cos_max[bp], cos_min[bp], cos_max[bp], cos_min[bp], cos_max[bp]]
@constraint(model, wr[bp] == sum(wr_val[ii]*lambda_wr[bp,ii] for ii in 1:8))
@constraint(model, vm[i] == (lambda_wr[bp,1] + lambda_wr[bp,2] + lambda_wr[bp,3] + lambda_wr[bp,4])*ref[:bus][i]["vmin"] +
(lambda_wr[bp,5] + lambda_wr[bp,6] + lambda_wr[bp,7] + lambda_wr[bp,8])*ref[:bus][i]["vmax"])
@constraint(model, vm[j] == (lambda_wr[bp,1] + lambda_wr[bp,2] + lambda_wr[bp,5] + lambda_wr[bp,6])*ref[:bus][j]["vmin"] +
(lambda_wr[bp,3] + lambda_wr[bp,4] + lambda_wr[bp,7] + lambda_wr[bp,8])*ref[:bus][j]["vmax"])
@constraint(model, cs[bp] == (lambda_wr[bp,1] + lambda_wr[bp,3] + lambda_wr[bp,5] + lambda_wr[bp,7])*cos_min[bp] +
(lambda_wr[bp,2] + lambda_wr[bp,4] + lambda_wr[bp,6] + lambda_wr[bp,8])*cos_max[bp])
@constraint(model, sum(lambda_wr[bp,ii] for ii in 1:8) == 1)
#### end of relaxation trilinear wr
##### relaxation trilinear wi
sin_min = sin(buspair["angmin"])
sin_max = sin(buspair["angmax"])
wi_val = val .* [sin_min, sin_max, sin_min, sin_max, sin_min, sin_max, sin_min, sin_max]
@constraint(model, wi[bp] == sum(wi_val[ii]*lambda_wi[bp,ii] for ii in 1:8))
@constraint(model, vm[i] == (lambda_wi[bp,1] + lambda_wi[bp,2] + lambda_wi[bp,3] + lambda_wi[bp,4])*ref[:bus][i]["vmin"] +
(lambda_wi[bp,5] + lambda_wi[bp,6] + lambda_wi[bp,7] + lambda_wi[bp,8])*ref[:bus][i]["vmax"])
@constraint(model, vm[j] == (lambda_wi[bp,1] + lambda_wi[bp,2] + lambda_wi[bp,5] + lambda_wi[bp,6])*ref[:bus][j]["vmin"] +
(lambda_wi[bp,3] + lambda_wi[bp,4] + lambda_wi[bp,7] + lambda_wi[bp,8])*ref[:bus][j]["vmax"])
@constraint(model, si[bp] == (lambda_wi[bp,1] + lambda_wi[bp,3] + lambda_wi[bp,5] + lambda_wi[bp,7])*sin(buspair["angmin"]) +
(lambda_wi[bp,2] + lambda_wi[bp,4] + lambda_wi[bp,6] + lambda_wi[bp,8])*sin(buspair["angmax"]))
@constraint(model, sum(lambda_wi[bp,ii] for ii in 1:8) == 1)
#### end of relaxation trilinear wi
# relaxation tighten vv - tying constraint
@constraint(model, sum(lambda_wr[bp,ii]*val[ii] - lambda_wi[bp,ii]*val[ii] for ii in 1:8) == 0)
# end of relaxation tighten vv
vfub = buspair["vm_fr_max"]
vflb = buspair["vm_fr_min"]
vtub = buspair["vm_to_max"]
vtlb = buspair["vm_to_min"]
tdub = buspair["angmax"]
tdlb = buspair["angmin"]
phi = (tdub + tdlb)/2
d = (tdub - tdlb)/2
sf = vflb + vfub
st = vtlb + vtub
# Voltage Product Relaxation Upperbound
@constraint(model, sf*st*(cos(phi)*wr[bp] + sin(phi)*wi[bp]) - vtub*cos(d)*st*w[i] - vfub*cos(d)*sf*w[j] >= vfub*vtub*cos(d)*(vflb*vtlb - vfub*vtub))
@constraint(model, sf*st*(cos(phi)*wr[bp] + sin(phi)*wi[bp]) - vtlb*cos(d)*st*w[i] - vflb*cos(d)*sf*w[j] >= -vflb*vtlb*cos(d)*(vflb*vtlb - vfub*vtub))
end
# end of QC tri-form voltage constraint
# end of voltage constraints
for (i,branch) in ref[:branch]
bp = (branch["f_bus"], branch["t_bus"])
buspair = ref[:buspairs][bp]
tm = branch["tap"]
# to prevent this constraint from being posted on multiple parallel branches
if buspair["branch"] == i
# extract quantities
g, b = PowerModels.calc_branch_y(branch)
tr, ti = PowerModels.calc_branch_t(branch)
g_fr = branch["g_fr"]
b_fr = branch["b_fr"]
# extract variables
p_fr = p[(i,branch["f_bus"],branch["t_bus"])]
q_fr = q[(i,branch["f_bus"],branch["t_bus"])]
w_fr = w[branch["f_bus"]]
w_to = w[branch["t_bus"]]
@constraint(model, p_fr^2 + q_fr^2 <= w_fr/tm^2*cm[bp])
ym_sh_sqr = g_fr^2 + b_fr^2
@constraint(model, cm[bp] == (g^2 + b^2)*(w_fr/tm^2 + w_to - 2*(tr*wr[bp] + ti*wi[bp])/tm^2) - ym_sh_sqr*(w_fr/tm^2) + 2*(g_fr*p_fr - b_fr*q_fr))
end
end
# constraint theta ref
for i in keys(ref[:ref_buses])
@constraint(model, va[i] == 0)
end
# constraint KCL shunt
for (i,bus) in ref[:bus]
# Bus KCL
gs = 0.0
bs = 0.0
if length(ref[:bus_shunts][i]) > 0
shunt_num = ref[:bus_shunts][i][1]
gs = ref[:shunt][shunt_num]["gs"]
bs = ref[:shunt][shunt_num]["bs"]
end
@constraint(model,
sum(p[a] for a in ref[:bus_arcs][i]) +
sum(p_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) ==
sum(pg[g] for g in ref[:bus_gens][i]) - sum(load["pd"] for (l,load) in ref[:load] if load["load_bus"]==i) - gs*w[i]
)
@constraint(model,
sum(q[a] for a in ref[:bus_arcs][i]) +
sum(q_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) ==
sum(qg[g] for g in ref[:bus_gens][i]) - sum(load["qd"] for (l,load) in ref[:load] if load["load_bus"]==i) + bs*w[i]
)
end
# ohms laws, voltage angle difference limits
for (i,branch) in ref[:branch]
f_idx = (i, branch["f_bus"], branch["t_bus"])
t_idx = (i, branch["t_bus"], branch["f_bus"])
bp_idx = (branch["f_bus"], branch["t_bus"])
p_fr = p[f_idx]
q_fr = q[f_idx]
p_to = p[t_idx]
q_to = q[t_idx]
w_fr = w[branch["f_bus"]]
w_to = w[branch["t_bus"]]
wr_br = wr[bp_idx]
wi_br = wi[bp_idx]
# Line Flow
g, b = PowerModels.calc_branch_y(branch)
tr, ti = PowerModels.calc_branch_t(branch)
g_fr = branch["g_fr"]
g_to = branch["g_to"]
b_fr = branch["b_fr"]
b_to = branch["b_to"]
tm = branch["tap"]
# AC Line Flow Constraints
@constraint(model, p_fr == (g+g_fr)/tm^2*w_fr + (-g*tr+b*ti)/tm^2*wr_br + (-b*tr-g*ti)/tm^2*wi_br )
@constraint(model, q_fr == -(b+b_fr)/tm^2*w_fr - (-b*tr-g*ti)/tm^2*wr_br + (-g*tr+b*ti)/tm^2*wi_br )
@constraint(model, p_to == (g+g_to)*w_to + (-g*tr-b*ti)/tm^2*wr_br + (-b*tr+g*ti)/tm^2*-wi_br )
@constraint(model, q_to == -(b+b_to)*w_to - (-b*tr+g*ti)/tm^2*wr_br + (-g*tr-b*ti)/tm^2*-wi_br )
# Phase Angle Difference Limit
@constraint(model, wi_br <= tan(branch["angmax"])*wr_br)
@constraint(model, wi_br >= tan(branch["angmin"])*wr_br)
# Apparent Power Limit, From and To
if haskey(branch, "rate_a")
@constraint(model, p[f_idx]^2 + q[f_idx]^2 <= branch["rate_a"]^2)
@constraint(model, p[t_idx]^2 + q[t_idx]^2 <= branch["rate_a"]^2)
end
end
# DC line constraints
for (i,dcline) in ref[:dcline]
# DC Line Flow Constraint
f_idx = (i, dcline["f_bus"], dcline["t_bus"])
t_idx = (i, dcline["t_bus"], dcline["f_bus"])
@constraint(model, (1-dcline["loss1"])*p_dc[f_idx] + (p_dc[t_idx] - dcline["loss0"]) == 0)
end
return model
end
"""
Given a JuMP model and a PowerModels network data structure,
Builds an DC-OPF formulation of the given data and returns the JuMP model
"""
function build_dc_opf(data::Dict{String,Any}, model=Model())
@assert !haskey(data, "multinetwork")
@assert !haskey(data, "conductors")
PowerModels.standardize_cost_terms!(data, order=2)
ref = PowerModels.build_ref(data)[:it][_PM.pm_it_sym][:nw][nw_id_default]
@variable(model, va[i in keys(ref[:bus])])
@variable(model, ref[:gen][i]["pmin"] <= pg[i in keys(ref[:gen])] <= ref[:gen][i]["pmax"])
@variable(model, -Inf <= p[(l,i,j) in ref[:arcs]] <= Inf)
for arc in ref[:arcs]
(l,i,j) = arc
branch = ref[:branch][l]
if haskey(branch, "rate_a")
JuMP.set_lower_bound(p[arc], -branch["rate_a"])
JuMP.set_upper_bound(p[arc], branch["rate_a"])
end
end
p_expr = Dict([((l,i,j), 1.0*p[(l,i,j)]) for (l,i,j) in ref[:arcs_from]])
p_expr = merge(p_expr, Dict([((l,j,i), -1.0*p[(l,i,j)]) for (l,i,j) in ref[:arcs_from]]))
@variable(model, p_dc[a in ref[:arcs_dc]])
for (l,dcline) in ref[:dcline]
f_idx = (l, dcline["f_bus"], dcline["t_bus"])
t_idx = (l, dcline["t_bus"], dcline["f_bus"])
JuMP.set_lower_bound(p_dc[f_idx], dcline["pminf"])
JuMP.set_upper_bound(p_dc[f_idx], dcline["pmaxf"])
JuMP.set_lower_bound(p_dc[t_idx], dcline["pmint"])
JuMP.set_upper_bound(p_dc[t_idx], dcline["pmaxt"])
end
from_idx = Dict(arc[1] => arc for arc in ref[:arcs_from_dc])
@objective(model, Min,
sum(gen["cost"][1]*pg[i]^2 + gen["cost"][2]*pg[i] + gen["cost"][3] for (i,gen) in ref[:gen]) +
sum(dcline["cost"][1]*p_dc[from_idx[i]]^2 + dcline["cost"][2]*p_dc[from_idx[i]] + dcline["cost"][3] for (i,dcline) in ref[:dcline])
)
for (i,bus) in ref[:ref_buses]
# Refrence Bus
@constraint(model, va[i] == 0)
end
for (i,bus) in ref[:bus]
bus_loads = [ref[:load][l] for l in ref[:bus_loads][i]]
bus_shunts = [ref[:shunt][s] for s in ref[:bus_shunts][i]]
# Bus KCL
@constraint(model,
sum(p_expr[a] for a in ref[:bus_arcs][i]) +
sum(p_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) ==
sum(pg[g] for g in ref[:bus_gens][i]) -
sum(load["pd"] for load in bus_loads) -
sum(shunt["gs"] for shunt in bus_shunts)*1.0^2
)
end
for (i,branch) in ref[:branch]
f_idx = (i, branch["f_bus"], branch["t_bus"])
p_fr = p[f_idx]
va_fr = va[branch["f_bus"]]
va_to = va[branch["t_bus"]]
g, b = PowerModels.calc_branch_y(branch)
# DC Line Flow Constraints
@constraint(model, p_fr == -b*(va_fr - va_to))
# Phase Angle Difference Limit
@constraint(model, va_fr - va_to <= branch["angmax"])
@constraint(model, va_fr - va_to >= branch["angmin"])
# Apparent Power Limit, From and To
# covered by variable bounds
end
for (i,dcline) in ref[:dcline]
# DC Line Flow Constraint
f_idx = (i, dcline["f_bus"], dcline["t_bus"])
t_idx = (i, dcline["t_bus"], dcline["f_bus"])
@constraint(model, (1-dcline["loss1"])*p_dc[f_idx] + (p_dc[t_idx] - dcline["loss0"]) == 0)
end
return model
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 10121 | export build_ac_pf, build_soc_pf, build_dc_pf
"""
Given a JuMP model and a PowerModels network data structure,
Builds an AC-PF formulation of the given data and returns the JuMP model
"""
function build_ac_pf(data::Dict{String,Any}, model=Model())
@assert !_IM.ismultinetwork(data)
@assert !haskey(data, "conductors")
ref = PowerModels.build_ref(data)[:it][_PM.pm_it_sym][:nw][nw_id_default]
@variable(model, va[i in keys(ref[:bus])])
@variable(model, vm[i in keys(ref[:bus])], start=1.0)
@variable(model, pg[i in keys(ref[:gen])])
@variable(model, qg[i in keys(ref[:gen])])
@variable(model, p_dc[(l,i,j) in ref[:arcs_dc]])
@variable(model, q_dc[(l,i,j) in ref[:arcs_dc]])
p = Dict()
q = Dict()
for (i,branch) in ref[:branch]
# AC Line Flow Constraint
f_idx = (i, branch["f_bus"], branch["t_bus"])
t_idx = (i, branch["t_bus"], branch["f_bus"])
vm_fr = vm[branch["f_bus"]]
vm_to = vm[branch["t_bus"]]
va_fr = va[branch["f_bus"]]
va_to = va[branch["t_bus"]]
# Line Flow
g, b = PowerModels.calc_branch_y(branch)
tr, ti = PowerModels.calc_branch_t(branch)
g_fr = branch["g_fr"]
b_fr = branch["b_fr"]
g_to = branch["g_to"]
b_to = branch["b_to"]
tm = branch["tap"]^2
p[f_idx] = @expression(model, (g+g_fr)/tm*vm_fr^2 + (-g*tr+b*ti)/tm*(vm_fr*vm_to*cos(va_fr-va_to)) + (-b*tr-g*ti)/tm*(vm_fr*vm_to*sin(va_fr-va_to)) )
q[f_idx] = @expression(model, -(b+b_fr)/tm*vm_fr^2 - (-b*tr-g*ti)/tm*(vm_fr*vm_to*cos(va_fr-va_to)) + (-g*tr+b*ti)/tm*(vm_fr*vm_to*sin(va_fr-va_to)) )
p[t_idx] = @expression(model, (g+g_to)*vm_to^2 + (-g*tr-b*ti)/tm*(vm_to*vm_fr*cos(va_to-va_fr)) + (-b*tr+g*ti)/tm*(vm_to*vm_fr*sin(va_to-va_fr)) )
q[t_idx] = @expression(model, -(b+b_to)*vm_to^2 - (-b*tr+g*ti)/tm*(vm_to*vm_fr*cos(va_fr-va_to)) + (-g*tr-b*ti)/tm*(vm_to*vm_fr*sin(va_to-va_fr)) )
end
for (i,bus) in ref[:ref_buses]
# Refrence Bus
@assert bus["bus_type"] == 3
@constraint(model, va[i] == 0)
@constraint(model, vm[i] == bus["vm"])
end
for (i,bus) in ref[:bus]
bus_loads = [ref[:load][l] for l in ref[:bus_loads][i]]
bus_shunts = [ref[:shunt][s] for s in ref[:bus_shunts][i]]
# Bus KCL
@constraint(model,
sum(p[a] for a in ref[:bus_arcs][i]) +
sum(p_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) ==
sum(pg[g] for g in ref[:bus_gens][i]) -
sum(load["pd"] for load in bus_loads) -
sum(shunt["gs"] for shunt in bus_shunts)*vm[i]^2
)
@constraint(model,
sum(q[a] for a in ref[:bus_arcs][i]) +
sum(q_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) ==
sum(qg[g] for g in ref[:bus_gens][i]) -
sum(load["qd"] for load in bus_loads) +
sum(shunt["bs"] for shunt in bus_shunts)*vm[i]^2
)
# PV Bus Constraints
if length(ref[:bus_gens][i]) > 0 && !(i in keys(ref[:ref_buses]))
# this assumes inactive generators are filtered out of bus_gens
@assert bus["bus_type"] == 2
@constraint(model, vm[i] == bus["vm"])
for j in ref[:bus_gens][i]
@constraint(model, pg[j] == ref[:gen][j]["pg"])
end
end
end
for (i,dcline) in ref[:dcline]
# DC Line Flow Constraint
f_idx = (i, dcline["f_bus"], dcline["t_bus"])
t_idx = (i, dcline["t_bus"], dcline["f_bus"])
@constraint(model, p_dc[f_idx] == dcline["pf"])
@constraint(model, p_dc[t_idx] == dcline["pt"])
f_bus = ref[:bus][dcline["f_bus"]]
if f_bus["bus_type"] == 1
@constraint(model, vm[dcline["f_bus"]] == f_bus["vm"])
end
t_bus = ref[:bus][dcline["t_bus"]]
if t_bus["bus_type"] == 1
@constraint(model, vm[dcline["t_bus"]] == t_bus["vm"])
end
end
return model
end
"""
Given a JuMP model and a PowerModels network data structure,
Builds an SOC-PF formulation of the given data and returns the JuMP model
"""
function build_soc_pf(data::Dict{String,Any}, model=Model())
@assert !_IM.ismultinetwork(data)
@assert !haskey(data, "conductors")
ref = PowerModels.build_ref(data)[:it][_PM.pm_it_sym][:nw][nw_id_default]
@variable(model, w[i in keys(ref[:bus])] >= 0, start=1.001)
@variable(model, wr[bp in keys(ref[:buspairs])], start=1.0)
@variable(model, wi[bp in keys(ref[:buspairs])])
@variable(model, pg[i in keys(ref[:gen])])
@variable(model, qg[i in keys(ref[:gen])])
@variable(model, p_dc[(l,i,j) in ref[:arcs_dc]])
@variable(model, q_dc[(l,i,j) in ref[:arcs_dc]])
p = Dict()
q = Dict()
for (i,branch) in ref[:branch]
# AC Line Flow Constraint
f_idx = (i, branch["f_bus"], branch["t_bus"])
t_idx = (i, branch["t_bus"], branch["f_bus"])
bp_idx = (branch["f_bus"], branch["t_bus"])
w_fr = w[branch["f_bus"]]
w_to = w[branch["t_bus"]]
wr_br = wr[bp_idx]
wi_br = wi[bp_idx]
g, b = PowerModels.calc_branch_y(branch)
tr, ti = PowerModels.calc_branch_t(branch)
g_fr = branch["g_fr"]
b_fr = branch["b_fr"]
g_to = branch["g_to"]
b_to = branch["b_to"]
tm = branch["tap"]^2
p[f_idx] = (g+g_fr)/tm*w_fr + (-g*tr+b*ti)/tm*(wr_br) + (-b*tr-g*ti)/tm*(wi_br)
q[f_idx] = -(b+b_fr)/tm*w_fr - (-b*tr-g*ti)/tm*(wr_br) + (-g*tr+b*ti)/tm*(wi_br)
p[t_idx] = (g+g_to)*w_to + (-g*tr-b*ti)/tm*(wr_br) + (-b*tr+g*ti)/tm*(-wi_br)
q[t_idx] = -(b+b_to)*w_to - (-b*tr+g*ti)/tm*(wr_br) + (-g*tr-b*ti)/tm*(-wi_br)
end
for (i,j) in keys(ref[:buspairs])
# Voltage Product Relaxation
@constraint(model, wr[(i,j)]^2 + wi[(i,j)]^2 <= w[i]*w[j])
end
for (i,bus) in ref[:ref_buses]
# Refrence Bus
@assert bus["bus_type"] == 3
@constraint(model, w[i] == bus["vm"]^2)
end
for (i,bus) in ref[:bus]
bus_loads = [ref[:load][l] for l in ref[:bus_loads][i]]
bus_shunts = [ref[:shunt][s] for s in ref[:bus_shunts][i]]
# Bus KCL
@constraint(model,
sum(p[a] for a in ref[:bus_arcs][i]) +
sum(p_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) ==
sum(pg[g] for g in ref[:bus_gens][i]) -
sum(load["pd"] for load in bus_loads) -
sum(shunt["gs"] for shunt in bus_shunts)*w[i]
)
@constraint(model,
sum(q[a] for a in ref[:bus_arcs][i]) +
sum(q_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) ==
sum(qg[g] for g in ref[:bus_gens][i]) -
sum(load["qd"] for load in bus_loads) +
sum(shunt["bs"] for shunt in bus_shunts)*w[i]
)
# PV Bus Constraints
if length(ref[:bus_gens][i]) > 0 && !(i in keys(ref[:ref_buses]))
# this assumes inactive generators are filtered out of bus_gens
@assert bus["bus_type"] == 2
@constraint(model, w[i] == bus["vm"]^2)
for j in ref[:bus_gens][i]
@constraint(model, pg[j] == ref[:gen][j]["pg"])
end
end
end
for (i,dcline) in ref[:dcline]
# DC Line Flow Constraint
f_idx = (i, dcline["f_bus"], dcline["t_bus"])
t_idx = (i, dcline["t_bus"], dcline["f_bus"])
@constraint(model, p_dc[f_idx] == dcline["pf"])
@constraint(model, p_dc[t_idx] == dcline["pt"])
f_bus = ref[:bus][dcline["f_bus"]]
if f_bus["bus_type"] == 1
@constraint(model, w[dcline["f_bus"]] == f_bus["vm"]^2)
end
t_bus = ref[:bus][dcline["t_bus"]]
if t_bus["bus_type"] == 1
@constraint(model, w[dcline["t_bus"]] == t_bus["vm"]^2)
end
end
return model
end
"""
Given a JuMP model and a PowerModels network data structure,
Builds an DC-PF formulation of the given data and returns the JuMP model
"""
function build_dc_pf(data::Dict{String,Any}, model=Model())
@assert !_IM.ismultinetwork(data)
@assert !haskey(data, "conductors")
ref = PowerModels.build_ref(data)[:it][_PM.pm_it_sym][:nw][nw_id_default]
@variable(model, va[i in keys(ref[:bus])])
@variable(model, pg[i in keys(ref[:gen])])
@variable(model, p_dc[(l,i,j) in ref[:arcs_dc]])
p = Dict()
for (i,branch) in ref[:branch]
f_idx = (i, branch["f_bus"], branch["t_bus"])
t_idx = (i, branch["t_bus"], branch["f_bus"])
va_fr = va[branch["f_bus"]]
va_to = va[branch["t_bus"]]
# Line Flow
g, b = PowerModels.calc_branch_y(branch)
p[f_idx] = -b*(va_fr - va_to)
p[t_idx] = -b*(va_to - va_fr)
end
for (i,bus) in ref[:ref_buses]
# Refrence Bus
@constraint(model, va[i] == 0)
end
for (i,bus) in ref[:bus]
bus_loads = [ref[:load][l] for l in ref[:bus_loads][i]]
bus_shunts = [ref[:shunt][s] for s in ref[:bus_shunts][i]]
# Bus KCL
@constraint(model,
sum(p[a] for a in ref[:bus_arcs][i]) +
sum(p_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) ==
sum(pg[g] for g in ref[:bus_gens][i]) -
sum(load["pd"] for load in bus_loads) -
sum(shunt["gs"] for shunt in bus_shunts)*1.0^2
)
# PV Bus Constraints
if length(ref[:bus_gens][i]) > 0 && !(i in keys(ref[:ref_buses]))
# this assumes inactive generators are filtered out of bus_gens
@assert bus["bus_type"] == 2
for j in ref[:bus_gens][i]
@constraint(model, pg[j] == ref[:gen][j]["pg"])
end
end
end
for (i,dcline) in ref[:dcline]
# DC Line Flow Constraint
f_idx = (i, dcline["f_bus"], dcline["t_bus"])
t_idx = (i, dcline["t_bus"], dcline["f_bus"])
@constraint(model, p_dc[f_idx] == dcline["pf"])
@constraint(model, p_dc[t_idx] == dcline["pt"])
end
return model
end | PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 4793 | export solve_opf_api
""
function solve_opf_api(file, model_constructor, optimizer; kwargs...)
return _PM.solve_model(file, model_constructor, optimizer, build_opf_api; kwargs...)
end
""
function build_opf_api(pm::_PM.AbstractPowerModel)
_PM.variable_bus_voltage(pm)
bounds_tighten_voltage(pm)
_PM.variable_gen_power(pm, bounded = false)
upperbound_negative_active_generation(pm)
_PM.variable_branch_power(pm)
_PM.variable_dcline_power(pm)
variable_load_factor(pm)
#objective_max_loading(pm)
#objective_max_loading_voltage_norm(pm)
objective_max_loading_gen_output(pm)
_PM.constraint_model_voltage(pm)
for i in _PM.ids(pm, :ref_buses)
_PM.constraint_theta_ref(pm, i)
end
for (i,gen) in ref(pm, :gen)
pg = var(pm, :pg, i)
@constraint(pm.model, pg >= gen["pmin"])
end
for i in _PM.ids(pm, :bus)
constraint_power_balance_shunt_scaled(pm, i)
end
for i in _PM.ids(pm, :branch)
_PM.constraint_ohms_yt_from(pm, i)
_PM.constraint_ohms_yt_to(pm, i)
_PM.constraint_voltage_angle_difference(pm, i)
constraint_thermal_limit_from(pm, i; scale = 0.999)
constraint_thermal_limit_to(pm, i; scale = 0.999)
end
for i in _PM.ids(pm, :dcline)
_PM.constraint_dcline_power_losses(pm, i)
end
end
"variable: load_factor >= 1.0"
function variable_load_factor(pm::_PM.AbstractPowerModel, report::Bool=true)
load_factor = var(pm)[:load_factor] = @variable(pm.model,
base_name="load_factor",
lower_bound=1.0,
start = 1.0
)
sol(pm)[:load_factor] = load_factor
for (i,load) in ref(pm, :load)
if load["pd"] > 0 && load["qd"] > 0
sol(pm, :load, i)[:pd] = load["pd"]*load_factor
else
sol(pm, :load, i)[:pd] = load["pd"]
end
sol(pm, :load, i)[:qd] = load["qd"]
end
end
"objective: Max. load_factor"
function objective_max_loading(pm::_PM.AbstractPowerModel)
@objective(pm.model, Max, var(pm, :load_factor))
end
""
function objective_max_loading_voltage_norm(pm::_PM.AbstractPowerModel)
# Seems to create too much reactive power and makes even small models hard to converge
load_factor = var(pm, :load_factor)
scale = length(_PM.ids(pm, :bus))
vm = var(pm, :vm)
@objective(pm.model, Max, 10*scale*load_factor - sum(((bus["vmin"] + bus["vmax"])/2 - vm[i])^2 for (i,bus) in ref(pm, :bus)))
end
""
function objective_max_loading_gen_output(pm::_PM.AbstractPowerModel)
# Works but adds unnecessary runtime
load_factor = var(pm, :load_factor)
scale = length(_PM.ids(pm, :gen))
pg = var(pm, :pg)
qg = var(pm, :qg)
@objective(pm.model, Max, 100*scale*load_factor - sum( ((gen["qmin"] + gen["qmax"])/2 - qg[i])^2 for (i,gen) in ref(pm, :gen)))
end
""
function bounds_tighten_voltage(pm::_PM.AbstractACPModel; epsilon = 0.001)
for (i,bus) in ref(pm, :bus)
v = var(pm, :vm, i)
JuMP.set_upper_bound(v, bus["vmax"]*(1.0-epsilon))
JuMP.set_lower_bound(v, bus["vmin"]*(1.0+epsilon))
end
end
""
function upperbound_negative_active_generation(pm::_PM.AbstractPowerModel)
for (i,gen) in ref(pm, :gen)
if gen["pmax"] <= 0
pg = var(pm, :pg, i)
JuMP.set_upper_bound(pg, gen["pmax"])
end
end
end
""
function constraint_power_balance_shunt_scaled(pm::_PM.AbstractACPModel, n::Int, i::Int)
bus = ref(pm, n, :bus, i)
bus_arcs = ref(pm, n, :bus_arcs, i)
bus_gens = ref(pm, n, :bus_gens, i)
bus_loads = ref(pm, n, :bus_loads, i)
bus_shunts = ref(pm, n, :bus_shunts, i)
load_factor = var(pm, n, :load_factor)
vm = var(pm, n, :vm, i)
p = var(pm, n, :p)
q = var(pm, n, :q)
pg = var(pm, n, :pg)
qg = var(pm, n, :qg)
if length(bus_loads) > 0
pd = sum([ref(pm, n, :load, i, "pd") for i in bus_loads])
qd = sum([ref(pm, n, :load, i, "qd") for i in bus_loads])
else
pd = 0.0
qd = 0.0
end
if length(bus_shunts) > 0
gs = sum([ref(pm, n, :shunt, i, "gs") for i in bus_shunts])
bs = sum([ref(pm, n, :shunt, i, "bs") for i in bus_shunts])
else
gs = 0.0
bs = 0.0
end
if pd > 0.0 && qd > 0.0
@constraint(pm.model, sum(p[a] for a in bus_arcs) == sum(pg[g] for g in bus_gens) - pd*load_factor - gs*vm^2)
else
# super fallback impl
@constraint(pm.model, sum(p[a] for a in bus_arcs) == sum(pg[g] for g in bus_gens) - pd - gs*vm^2)
end
@constraint(pm.model, sum(q[a] for a in bus_arcs) == sum(qg[g] for g in bus_gens) - qd + bs*vm^2)
end
constraint_power_balance_shunt_scaled(pm::_PM.AbstractPowerModel, i::Int) = constraint_power_balance_shunt_scaled(pm, nw_id_default, i)
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 1370 | export solve_opf_sad
""
function solve_opf_sad(file, model_constructor, optimizer; kwargs...)
return _PM.solve_model(file, model_constructor, optimizer, build_opf_sad; kwargs...)
end
""
function build_opf_sad(pm::_PM.AbstractPowerModel)
_PM.variable_bus_voltage(pm)
_PM.variable_gen_power(pm)
_PM.variable_branch_power(pm)
_PM.variable_dcline_power(pm, bounded = false)
@variable(pm.model, theta_delta_bound >= 0.0, start = 0.523598776)
@objective(pm.model, Min, theta_delta_bound)
_PM.constraint_model_voltage(pm)
for i in _PM.ids(pm, :ref_buses)
_PM.constraint_theta_ref(pm, i)
end
for i in _PM.ids(pm, :bus)
_PM.constraint_power_balance(pm, i)
end
for (i, branch) in ref(pm, :branch)
_PM.constraint_ohms_yt_from(pm, i)
_PM.constraint_ohms_yt_to(pm, i)
_PM.constraint_voltage_angle_difference(pm, i)
theta_fr = var(pm, :va, branch["f_bus"])
theta_to = var(pm, :va, branch["t_bus"])
@constraint(pm.model, theta_fr - theta_to <= theta_delta_bound)
@constraint(pm.model, theta_fr - theta_to >= -theta_delta_bound)
constraint_thermal_limit_from(pm, i; scale = 0.999)
constraint_thermal_limit_to(pm, i; scale = 0.999)
end
for i in _PM.ids(pm, :dcline)
_PM.constraint_dcline_power_losses(pm, i)
end
end | PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 1023 | ### Branch - Thermal Limit Constraints ###
""
function constraint_thermal_limit_from(pm::_PM.AbstractPowerModel, n::Int, i::Int; scale = 1.0)
branch = ref(pm, n, :branch, i)
f_bus = branch["f_bus"]
t_bus = branch["t_bus"]
f_idx = (i, f_bus, t_bus)
if haskey(branch, "rate_a")
_PM.constraint_thermal_limit_from(pm, n, f_idx, branch["rate_a"]*scale)
end
end
constraint_thermal_limit_from(pm::_PM.AbstractPowerModel, i::Int; scale = 1.0) = constraint_thermal_limit_from(pm, nw_id_default, i; scale=scale)
""
function constraint_thermal_limit_to(pm::_PM.AbstractPowerModel, n::Int, i::Int; scale = 1.0)
branch = ref(pm, n, :branch, i)
f_bus = branch["f_bus"]
t_bus = branch["t_bus"]
t_idx = (i, t_bus, f_bus)
if haskey(branch, "rate_a")
_PM.constraint_thermal_limit_to(pm, n, t_idx, branch["rate_a"]*scale)
end
end
constraint_thermal_limit_to(pm::_PM.AbstractPowerModel, i::Int; scale = 1.0) = constraint_thermal_limit_to(pm, nw_id_default, i; scale=scale)
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 3656 | export solve_opf_pwl_delta, build_opf_pwl_delta
""
function solve_opf_pwl_delta(file, model_type::Type, optimizer; kwargs...)
return _PM.solve_model(file, model_type, optimizer, build_opf_pwl_delta; kwargs...)
end
"a variant of the OPF problem specification that uses a max variant of the pwl cost function implementation"
function build_opf_pwl_delta(pm::_PM.AbstractPowerModel)
_PM.variable_bus_voltage(pm)
_PM.variable_gen_power(pm)
_PM.variable_branch_power(pm)
_PM.variable_dcline_power(pm)
objective_min_fuel_cost_delta(pm)
_PM.constraint_model_voltage(pm)
for i in ids(pm, :ref_buses)
_PM.constraint_theta_ref(pm, i)
end
for i in ids(pm, :bus)
_PM.constraint_power_balance(pm, i)
end
for i in ids(pm, :branch)
_PM.constraint_ohms_yt_from(pm, i)
_PM.constraint_ohms_yt_to(pm, i)
_PM.constraint_voltage_angle_difference(pm, i)
_PM.constraint_thermal_limit_from(pm, i)
_PM.constraint_thermal_limit_to(pm, i)
end
for i in ids(pm, :dcline)
_PM.constraint_dcline_power_losses(pm, i)
end
end
""
function objective_min_fuel_cost_delta(pm::_PM.AbstractPowerModel; kwargs...)
expression_pg_cost_delta(pm; kwargs...)
return JuMP.@objective(pm.model, Min,
sum(
sum( var(pm, n, :pg_cost, i) for (i,gen) in nw_ref[:gen])
for (n, nw_ref) in _PM.nws(pm))
)
end
""
function expression_pg_cost_delta(pm::_PM.AbstractPowerModel; report::Bool=true)
for (n, nw_ref) in _PM.nws(pm)
pg_cost = var(pm, n)[:pg_cost] = Dict{Int,Any}()
for (i,gen) in ref(pm, n, :gen)
pg_terms = [var(pm, n, :pg, i)]
if gen["model"] == 1
if isa(pg_terms, Array{JuMP.VariableRef})
pmin = sum(JuMP.lower_bound.(pg_terms))
pmax = sum(JuMP.upper_bound.(pg_terms))
else
pmin = gen["pmin"]
pmax = gen["pmax"]
end
points = _PM.calc_pwl_points(gen["ncost"], gen["cost"], pmin, pmax)
pg_cost[i] = _pwl_cost_expression_delta(pm, pg_terms, points, nw=n, id=i, var_name="pg")
elseif gen["model"] == 2
cost_rev = reverse(gen["cost"])
pg_cost[i] = _PM._polynomial_cost_expression(pm, pg_terms, cost_rev, nw=n, id=i, var_name="pg")
else
Memento.error(_LOGGER, "Only cost models of types 1 and 2 are supported at this time, given cost model type of $(model) on generator $(i)")
end
end
report && _PM.sol_component_value(pm, n, :gen, :pg_cost, ids(pm, n, :gen), pg_cost)
end
end
""
function _pwl_cost_expression_delta(pm::_PM.AbstractPowerModel, x_list::Array{JuMP.VariableRef}, points; nw=0, id=1, var_name="x")
cost_per_mw = Float64[0.0]
for i in 2:length(points)
x0 = points[i-1].mw
y0 = points[i-1].cost
x1 = points[i].mw
y1 = points[i].cost
m = (y1 - y0)/(x1 - x0)
if !isnan(m)
push!(cost_per_mw, m)
else
@assert isapprox(y0, y1)
push!(cost_per_mw, 0.0)
end
end
pg_cost_mw = JuMP.@variable(pm.model,
[i in 2:length(points)], base_name="$(nw)_pg_$(id)_cost_mw_$(i)",
lower_bound = 0.0,
upper_bound = points[i].mw - points[i-1].mw
)
JuMP.@constraint(pm.model, points[1].mw + sum(pg_cost_mw[i] for i in 2:length(points)) == var(pm, nw, :pg, id))
cost_expr = points[1].cost + sum(cost_per_mw[i]*pg_cost_mw[i] for i in 2:length(points))
return cost_expr
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 3357 | export solve_opf_pwl_lambda, build_opf_pwl_lambda
""
function solve_opf_pwl_lambda(file, model_type::Type, optimizer; kwargs...)
return _PM.solve_model(file, model_type, optimizer, build_opf_pwl_lambda; kwargs...)
end
"a variant of the OPF problem specification that uses a max variant of the pwl cost function implementation"
function build_opf_pwl_lambda(pm::_PM.AbstractPowerModel)
_PM.variable_bus_voltage(pm)
_PM.variable_gen_power(pm)
_PM.variable_branch_power(pm)
_PM.variable_dcline_power(pm)
objective_min_fuel_cost_lambda(pm)
_PM.constraint_model_voltage(pm)
for i in ids(pm, :ref_buses)
_PM.constraint_theta_ref(pm, i)
end
for i in ids(pm, :bus)
_PM.constraint_power_balance(pm, i)
end
for i in ids(pm, :branch)
_PM.constraint_ohms_yt_from(pm, i)
_PM.constraint_ohms_yt_to(pm, i)
_PM.constraint_voltage_angle_difference(pm, i)
_PM.constraint_thermal_limit_from(pm, i)
_PM.constraint_thermal_limit_to(pm, i)
end
for i in ids(pm, :dcline)
_PM.constraint_dcline_power_losses(pm, i)
end
end
""
function objective_min_fuel_cost_lambda(pm::_PM.AbstractPowerModel; kwargs...)
expression_pg_cost_lambda(pm; kwargs...)
return JuMP.@objective(pm.model, Min,
sum(
sum( var(pm, n, :pg_cost, i) for (i,gen) in nw_ref[:gen])
for (n, nw_ref) in _PM.nws(pm))
)
end
""
function expression_pg_cost_lambda(pm::_PM.AbstractPowerModel; report::Bool=true)
for (n, nw_ref) in _PM.nws(pm)
pg_cost = var(pm, n)[:pg_cost] = Dict{Int,Any}()
for (i,gen) in ref(pm, n, :gen)
pg_terms = [var(pm, n, :pg, i)]
if gen["model"] == 1
if isa(pg_terms, Array{JuMP.VariableRef})
pmin = sum(JuMP.lower_bound.(pg_terms))
pmax = sum(JuMP.upper_bound.(pg_terms))
else
pmin = gen["pmin"]
pmax = gen["pmax"]
end
points = _PM.calc_pwl_points(gen["ncost"], gen["cost"], pmin, pmax)
pg_cost[i] = _pwl_cost_expression_lambda(pm, pg_terms, points, nw=n, id=i, var_name="pg")
elseif gen["model"] == 2
cost_rev = reverse(gen["cost"])
pg_cost[i] = _PM._polynomial_cost_expression(pm, pg_terms, cost_rev, nw=n, id=i, var_name="pg")
else
Memento.error(_LOGGER, "Only cost models of types 1 and 2 are supported at this time, given cost model type of $(model) on generator $(i)")
end
end
report && _PM.sol_component_value(pm, n, :gen, :pg_cost, ids(pm, n, :gen), pg_cost)
end
end
""
function _pwl_cost_expression_lambda(pm::_PM.AbstractPowerModel, x_list::Array{JuMP.VariableRef}, points; nw=0, id=1, var_name="x")
pg_cost_lambda = JuMP.@variable(pm.model,
[i in 1:length(points)], base_name="$(nw)_pg_$(id)_cost_lambda_$(i)",
lower_bound = 0.0,
upper_bound = 1.0
)
JuMP.@constraint(pm.model, sum(pg_cost_lambda) == 1.0)
pg_expr = sum(pt.mw*pg_cost_lambda[i] for (i,pt) in enumerate(points))
pg_cost_expr = sum(pt.cost*pg_cost_lambda[i] for (i,pt) in enumerate(points))
JuMP.@constraint(pm.model, pg_expr == var(pm, nw, :pg, id))
return pg_cost_expr
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 3846 | export solve_opf_pwl_phi, build_opf_pwl_phi
""
function solve_opf_pwl_phi(file, model_type::Type, optimizer; kwargs...)
return _PM.solve_model(file, model_type, optimizer, build_opf_pwl_phi; kwargs...)
end
"a variant of the OPF problem specification that uses a max variant of the pwl cost function implementation"
function build_opf_pwl_phi(pm::_PM.AbstractPowerModel)
_PM.variable_bus_voltage(pm)
_PM.variable_gen_power(pm)
_PM.variable_branch_power(pm)
_PM.variable_dcline_power(pm)
objective_min_fuel_cost_phi(pm)
_PM.constraint_model_voltage(pm)
for i in ids(pm, :ref_buses)
_PM.constraint_theta_ref(pm, i)
end
for i in ids(pm, :bus)
_PM.constraint_power_balance(pm, i)
end
for i in ids(pm, :branch)
_PM.constraint_ohms_yt_from(pm, i)
_PM.constraint_ohms_yt_to(pm, i)
_PM.constraint_voltage_angle_difference(pm, i)
_PM.constraint_thermal_limit_from(pm, i)
_PM.constraint_thermal_limit_to(pm, i)
end
for i in ids(pm, :dcline)
_PM.constraint_dcline_power_losses(pm, i)
end
end
""
function objective_min_fuel_cost_phi(pm::_PM.AbstractPowerModel; kwargs...)
expression_pg_cost_phi(pm; kwargs...)
return JuMP.@objective(pm.model, Min,
sum(
sum( var(pm, n, :pg_cost, i) for (i,gen) in nw_ref[:gen])
for (n, nw_ref) in _PM.nws(pm))
)
end
""
function expression_pg_cost_phi(pm::_PM.AbstractPowerModel; report::Bool=true)
for (n, nw_ref) in _PM.nws(pm)
pg_cost = var(pm, n)[:pg_cost] = Dict{Int,Any}()
for (i,gen) in ref(pm, n, :gen)
pg_terms = [var(pm, n, :pg, i)]
if gen["model"] == 1
if isa(pg_terms, Array{JuMP.VariableRef})
pmin = sum(JuMP.lower_bound.(pg_terms))
pmax = sum(JuMP.upper_bound.(pg_terms))
else
pmin = gen["pmin"]
pmax = gen["pmax"]
end
points = _PM.calc_pwl_points(gen["ncost"], gen["cost"], pmin, pmax)
pg_cost[i] = _pwl_cost_expression_phi(pm, pg_terms, points, nw=n, id=i, var_name="pg")
elseif gen["model"] == 2
cost_rev = reverse(gen["cost"])
pg_cost[i] = _PM._polynomial_cost_expression(pm, pg_terms, cost_rev, nw=n, id=i, var_name="pg")
else
Memento.error(_LOGGER, "Only cost models of types 1 and 2 are supported at this time, given cost model type of $(model) on generator $(i)")
end
end
report && _PM.sol_component_value(pm, n, :gen, :pg_cost, ids(pm, n, :gen), pg_cost)
end
end
""
function _pwl_cost_expression_phi(pm::_PM.AbstractPowerModel, x_list::Array{JuMP.VariableRef}, points; nw=0, id=1, var_name="x")
gen_lines = []
for j in 2:length(points)
x1 = points[j-1].mw
y1 = points[j-1].cost
x2 = points[j].mw
y2 = points[j].cost
m = (y2 - y1)/(x2 - x1)
if !isnan(m)
b = y1 - m * x1
else
@assert isapprox(y1, y2)
m = 0.0
b = y1
end
push!(gen_lines, (slope=m, intercept=b))
end
pmax = ref(pm, nw, :gen, id)["pmax"]
pg_phi = JuMP.@variable(pm.model,
[j in 3:length(points)], base_name="$(nw)_pg_$(id)_phi_$(j)",
lower_bound = 0.0,
upper_bound = pmax - points[j-1].mw
)
for j in 3:length(points)
JuMP.@constraint(pm.model, pg_phi[j] >= var(pm, nw, :pg, id) - points[j-1].mw)
end
pg_cost_expr = gen_lines[1].slope * var(pm, nw, :pg, id) + gen_lines[1].intercept
if length(points) > 2
pg_cost_expr += sum((gen_lines[j-1].slope - gen_lines[j-2].slope)*pg_phi[j] for j in 3:length(points))
end
return pg_cost_expr
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 3551 | export solve_opf_pwl_psi, build_opf_pwl_psi
""
function solve_opf_pwl_psi(file, model_type::Type, optimizer; kwargs...)
return _PM.solve_model(file, model_type, optimizer, build_opf_pwl_psi; kwargs...)
end
"a variant of the OPF problem specification that uses a max variant of the pwl cost function implementation"
function build_opf_pwl_psi(pm::_PM.AbstractPowerModel)
_PM.variable_bus_voltage(pm)
_PM.variable_gen_power(pm)
_PM.variable_branch_power(pm)
_PM.variable_dcline_power(pm)
objective_min_fuel_cost_psi(pm)
_PM.constraint_model_voltage(pm)
for i in ids(pm, :ref_buses)
_PM.constraint_theta_ref(pm, i)
end
for i in ids(pm, :bus)
_PM.constraint_power_balance(pm, i)
end
for i in ids(pm, :branch)
_PM.constraint_ohms_yt_from(pm, i)
_PM.constraint_ohms_yt_to(pm, i)
_PM.constraint_voltage_angle_difference(pm, i)
_PM.constraint_thermal_limit_from(pm, i)
_PM.constraint_thermal_limit_to(pm, i)
end
for i in ids(pm, :dcline)
_PM.constraint_dcline_power_losses(pm, i)
end
end
""
function objective_min_fuel_cost_psi(pm::_PM.AbstractPowerModel; kwargs...)
expression_pg_cost_psi(pm; kwargs...)
return JuMP.@objective(pm.model, Min,
sum(
sum( var(pm, n, :pg_cost, i) for (i,gen) in nw_ref[:gen])
for (n, nw_ref) in _PM.nws(pm))
)
end
""
function expression_pg_cost_psi(pm::_PM.AbstractPowerModel; report::Bool=true)
for (n, nw_ref) in _PM.nws(pm)
pg_cost = var(pm, n)[:pg_cost] = Dict{Int,Any}()
for (i,gen) in ref(pm, n, :gen)
pg_terms = [var(pm, n, :pg, i)]
if gen["model"] == 1
if isa(pg_terms, Array{JuMP.VariableRef})
pmin = sum(JuMP.lower_bound.(pg_terms))
pmax = sum(JuMP.upper_bound.(pg_terms))
else
pmin = gen["pmin"]
pmax = gen["pmax"]
end
points = _PM.calc_pwl_points(gen["ncost"], gen["cost"], pmin, pmax)
pg_cost[i] = _pwl_cost_expression_psi(pm, pg_terms, points, nw=n, id=i, var_name="pg")
elseif gen["model"] == 2
cost_rev = reverse(gen["cost"])
pg_cost[i] = _PM._polynomial_cost_expression(pm, pg_terms, cost_rev, nw=n, id=i, var_name="pg")
else
Memento.error(_LOGGER, "Only cost models of types 1 and 2 are supported at this time, given cost model type of $(model) on generator $(i)")
end
end
report && _PM.sol_component_value(pm, n, :gen, :pg_cost, ids(pm, n, :gen), pg_cost)
end
end
""
function _pwl_cost_expression_psi(pm::_PM.AbstractPowerModel, x_list::Array{JuMP.VariableRef}, points; nw=0, id=1, var_name="x")
gen_lines = []
for j in 2:length(points)
x1 = points[j-1].mw
y1 = points[j-1].cost
x2 = points[j].mw
y2 = points[j].cost
m = (y2 - y1)/(x2 - x1)
if !isnan(m)
b = y1 - m * x1
else
@assert isapprox(y1, y2)
m = 0.0
b = y1
end
push!(gen_lines, (slope=m, intercept=b))
end
pg_cost = JuMP.@variable(pm.model,
base_name="$(nw)_pg_$(id)_cost",
lower_bound = points[1].cost,
upper_bound = points[end].cost
)
for line in gen_lines
JuMP.@constraint(pm.model, pg_cost >= line.slope*var(pm, nw, :pg, id) + line.intercept)
end
return pg_cost
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 1698 | export solve_opf_cop
"a closet operating point (cop) opf model variant that minimizes distance from the given operating point"
function solve_opf_cop(file, model_type::Type, optimizer; kwargs...)
return _PM.solve_model(file, model_type, optimizer, build_opf_cop; kwargs...)
end
""
function build_opf_cop(pm::_PM.AbstractPowerModel)
_PM.variable_bus_voltage(pm)
_PM.variable_gen_power(pm)
_PM.variable_branch_power(pm)
_PM.variable_dcline_power(pm)
objective_min_pg_vm_distance(pm)
_PM.constraint_model_voltage(pm)
for i in ids(pm, :ref_buses)
_PM.constraint_theta_ref(pm, i)
end
for i in ids(pm, :bus)
_PM.constraint_power_balance(pm, i)
end
for i in ids(pm, :branch)
_PM.constraint_ohms_yt_from(pm, i)
_PM.constraint_ohms_yt_to(pm, i)
_PM.constraint_voltage_angle_difference(pm, i)
_PM.constraint_thermal_limit_from(pm, i)
_PM.constraint_thermal_limit_to(pm, i)
end
for i in ids(pm, :dcline)
_PM.constraint_dcline_power_losses(pm, i)
end
end
function objective_min_pg_vm_distance(pm::_PM.AbstractPowerModel)
nws = _PM.nw_ids(pm)
return JuMP.@objective(pm.model, Min,
sum(
sum((gen["pg"] - var(pm, n, :pg, i))^2 for (i,gen) in ref(pm, n, :gen)) +
sum((bus["vm"] - var(pm, n, :vm, i))^2 for (i,bus) in ref(pm, n, :bus))
for n in nws)
)
end
function objective_min_pg_vm_distance(pm::_PM.AbstractActivePowerModel)
nws = _PM.nw_ids(pm)
return JuMP.@objective(pm.model, Min,
sum(
sum((gen["pg"] - var(pm, n, :pg, i))^2 for (i,gen) in ref(pm, n, :gen))
for n in nws)
)
end | PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 2789 | @testset "test ac cop" begin
@testset "3-bus case" begin
result = solve_opf_cop(case_files["case3"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 0.0; atol = 1e-3)
@test isapprox(result["solution"]["gen"]["1"]["pg"], 1.581; atol = 1e-2)
@test isapprox(result["solution"]["gen"]["2"]["pg"], 1.599; atol = 1e-2)
@test isapprox(result["solution"]["bus"]["1"]["vm"], 1.099; atol = 1e-3)
@test isapprox(result["solution"]["bus"]["2"]["vm"], 0.926; atol = 1e-3)
end
@testset "5-bus pjm case" begin
result = solve_opf_cop(case_files["case5"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 0.136996; atol = 1e-3)
@test isapprox(result["solution"]["gen"]["1"]["pg"], 0.316; atol = 1e-2)
@test isapprox(result["solution"]["gen"]["2"]["pg"], 1.616; atol = 1e-2)
@test isapprox(result["solution"]["bus"]["1"]["vm"], 0.977; atol = 1e-3)
@test isapprox(result["solution"]["bus"]["2"]["vm"], 0.975; atol = 1e-3)
end
@testset "14-bus ieee case" begin
result = solve_opf_cop(case_files["case14"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 0.0024798; atol = 1e-3)
@test isapprox(result["solution"]["gen"]["1"]["pg"], 2.323; atol = 1e-2)
@test isapprox(result["solution"]["gen"]["2"]["pg"], 0.399; atol = 1e-2)
@test isapprox(result["solution"]["bus"]["1"]["vm"], 1.059; atol = 1e-3)
@test isapprox(result["solution"]["bus"]["2"]["vm"], 1.037; atol = 1e-3)
end
@testset "30-bus ieee case" begin
result = solve_opf_cop(case_files["case30"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 0.0; atol = 1e-3)
@test isapprox(result["solution"]["gen"]["1"]["pg"], 2.188; atol = 1e-2)
@test isapprox(result["solution"]["gen"]["2"]["pg"], 0.800; atol = 1e-2)
@test isapprox(result["solution"]["bus"]["1"]["vm"], 1.059; atol = 1e-3)
@test isapprox(result["solution"]["bus"]["2"]["vm"], 1.036; atol = 1e-3)
end
end
@testset "test dc cop" begin
@testset "5-bus pjm case" begin
result = solve_opf_cop(case_files["case5"], DCPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 0.00717; atol = 1e-3)
@test isapprox(result["solution"]["gen"]["1"]["pg"], 0.369; atol = 1e-2)
@test isapprox(result["solution"]["gen"]["2"]["pg"], 1.669; atol = 1e-2)
end
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 4388 | @testset "test pwl opf problems with polynomial costs" begin
@testset "5-bus with pwl delta model" begin
result = solve_opf_pwl_delta(case_files["case5"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 18269; atol = 1e0)
end
@testset "5-bus with pwl lambda model" begin
result = solve_opf_pwl_lambda(case_files["case5"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 18269; atol = 1e0)
end
@testset "5-bus with pwl phi model" begin
result = solve_opf_pwl_phi(case_files["case5"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 18269; atol = 1e0)
end
@testset "5-bus with pwl psi model" begin
result = solve_opf_pwl_psi(case_files["case5"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 18269; atol = 1e0)
end
end
@testset "test ac polar pwl opf" begin
@testset "5-bus with pwl delta model" begin
result = solve_opf_pwl_delta(case_file_pwl, ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 42905; atol = 1e0)
end
@testset "5-bus with pwl lambda model" begin
result = solve_opf_pwl_lambda(case_file_pwl, ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 42905; atol = 1e0)
end
@testset "5-bus with pwl phi model" begin
result = solve_opf_pwl_phi(case_file_pwl, ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 42905; atol = 1e0)
end
@testset "5-bus with pwl psi model" begin
result = solve_opf_pwl_psi(case_file_pwl, ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 42905; atol = 1e0)
end
end
@testset "test soc pwl opf" begin
@testset "5-bus with pwl delta model" begin
result = solve_opf_pwl_delta(case_file_pwl, SOCWRPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 42905; atol = 1e0)
end
@testset "5-bus with pwl lambda model" begin
result = solve_opf_pwl_lambda(case_file_pwl, SOCWRPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 42905; atol = 1e0)
end
@testset "5-bus with pwl phi model" begin
result = solve_opf_pwl_phi(case_file_pwl, SOCWRPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 42905; atol = 1e0)
end
@testset "5-bus with pwl psi model" begin
result = solve_opf_pwl_psi(case_file_pwl, SOCWRPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 42905; atol = 1e0)
end
end
@testset "test dc pwl opf" begin
@testset "5-bus with pwl delta model" begin
result = solve_opf_pwl_delta(case_file_pwl, DCPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 42575; atol = 1e0)
end
@testset "5-bus with pwl lambda model" begin
result = solve_opf_pwl_lambda(case_file_pwl, DCPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 42575; atol = 1e0)
end
@testset "5-bus with pwl phi model" begin
result = solve_opf_pwl_phi(case_file_pwl, DCPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 42575; atol = 1e0)
end
@testset "5-bus with pwl psi model" begin
result = solve_opf_pwl_psi(case_file_pwl, DCPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 42575; atol = 1e0)
end
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 1156 | using PowerModelsAnnex
PMA = PowerModelsAnnex
using JuMP
using PowerModels
using Ipopt
using Test
PowerModels.silence()
pms_path = joinpath(dirname(pathof(PowerModels)), "..")
# default setup for solvers
ipopt_solver = JuMP.optimizer_with_attributes(Ipopt.Optimizer, "tol"=>1e-6, "print_level"=>0)
# this will work because PowerModels is a dependency
case_files = Dict(
"case3" => "$(pms_path)/test/data/matpower/case3.m",
"case5" => "$(pms_path)/test/data/matpower/case5.m",
"case5_asym" => "$(pms_path)/test/data/matpower/case5_asym.m",
"case5_gap" => "$(pms_path)/test/data/matpower/case5_gap.m",
"case5_dc" => "$(pms_path)/test/data/matpower/case5_dc.m",
"case14" => "$(pms_path)/test/data/matpower/case14.m",
"case30" => "$(pms_path)/test/data/matpower/case30.m"
)
case_file_pwl = "$(pms_path)/test/data/matpower/case5_pwlc.m"
@testset "PowerModelsAnnex" begin
include("form/acr.jl")
include("form/wr.jl")
include("opf.jl")
include("model/pf.jl")
include("model/opf.jl")
include("pglib/api.jl")
include("pglib/sad.jl")
include("piecewise-linear.jl")
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 1048 |
@testset "test acr nl" begin
@testset "3-bus case" begin
pm = instantiate_model(case_files["case3"], NLACRPowerModel, build_opf)
result = optimize_model!(pm, optimizer=ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 5907; atol = 1e0)
end
@testset "5-bus pjm case" begin
pm = instantiate_model(case_files["case5"], NLACRPowerModel, build_opf)
result = optimize_model!(pm, optimizer=ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 18269; atol = 1e0) # Increasing tolerance
# here as the result seems to depend on the machine
end
@testset "30-bus ieee case" begin
pm = instantiate_model(case_files["case30"], NLACRPowerModel, build_opf)
result = optimize_model!(pm, optimizer=ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 204.9; atol = 1e0)
end
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 2691 |
@testset "test wr oa" begin
@testset "3-bus case" begin
pm = instantiate_model(case_files["case3"], SOCWROAPowerModel, build_opf)
p = var(pm, :p)
for v in values(p)
JuMP.set_start_value(v, 1.0)
end
q = var(pm, :q)
for v in values(q)
JuMP.set_start_value(v, 1.0)
end
result = optimize_model!(pm, optimizer=ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 5746.7; atol = 1e0)
end
@testset "5-bus pjm case" begin
pm = instantiate_model(case_files["case5"], SOCWROAPowerModel, build_opf)
p = var(pm, :p)
for v in values(p)
JuMP.set_start_value(v, 1.0)
end
q = var(pm, :q)
for v in values(q)
JuMP.set_start_value(v, 1.0)
end
result = optimize_model!(pm, optimizer=ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 14999.71; atol = 1e2) # Increasing tolerance
# here as the result seems to depend on the machine
end
@testset "30-bus ieee case" begin
pm = instantiate_model(case_files["case30"], SOCWROAPowerModel, build_opf)
p = var(pm, :p)
for v in values(p)
JuMP.set_start_value(v, 1.0)
end
q = var(pm, :q)
for v in values(q)
JuMP.set_start_value(v, 1.0)
end
result = optimize_model!(pm, optimizer=ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 172.41; atol = 1e0)
end
end
@testset "test qc tri without linking" begin
@testset "3-bus case" begin
pm = instantiate_model(case_files["case3"], QCLSNoLinkPowerModel, build_opf)
result = optimize_model!(pm, optimizer=ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 5817.58; atol = 1e0)
end
@testset "5-bus pjm case" begin
pm = instantiate_model(case_files["case5"], QCLSNoLinkPowerModel, build_opf)
result = optimize_model!(pm, optimizer=ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 15051.6; atol = 1e2)
end
@testset "30-bus ieee case" begin
pm = instantiate_model(case_files["case30"], QCLSNoLinkPowerModel, build_opf)
result = optimize_model!(pm, optimizer=ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 173.806; atol = 1e0)
end
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 7406 |
function solve_ac_opf_model(data, optimizer)
model = build_ac_opf(data, JuMP.Model(optimizer))
JuMP.optimize!(model)
return JuMP.termination_status(model), model
end
@testset "test ac polar opf" begin
@testset "case $(name)" for (name, case_file) in case_files
data = parse_file(case_file)
opf_status, opf_model = solve_ac_opf_model(data, ipopt_solver)
pm_result = solve_ac_opf(data, ipopt_solver)
pm_sol = pm_result["solution"]
@test isapprox(JuMP.objective_value(opf_model), pm_result["objective"]; atol = 1e-5)
base_mva = data["baseMVA"]
for (i, bus) in data["bus"]
if bus["bus_type"] != 4
index = parse(Int, i)
#println("$i, $(JuMP.value(opf_model[:va][index])), $(pm_sol["bus"][i]["va"])")
#println("$i, $(JuMP.value(opf_model[:vm][index])), $(pm_sol["bus"][i]["vm"])")
@test isapprox(JuMP.value(opf_model[:va][index]), pm_sol["bus"][i]["va"]; atol = 1e-8)
@test isapprox(JuMP.value(opf_model[:vm][index]), pm_sol["bus"][i]["vm"])
end
end
for (i, gen) in data["gen"]
if gen["gen_status"] != 0
index = parse(Int, i)
#println("$i, $(JuMP.value(opf_model[:pg][index])), $(pm_sol["gen"][i]["pg"])")
@test isapprox(JuMP.value(opf_model[:pg][index]), pm_sol["gen"][i]["pg"])
# multiple generators at one bus can cause this to be non-unqiue
#@test isapprox(JuMP.value(opf_model[:qg][index]), pm_sol["gen"][i]["qg"])
end
end
end
end
function solve_soc_opf_model(data, optimizer)
model = build_soc_opf(data, JuMP.Model(optimizer))
JuMP.optimize!(model)
return JuMP.termination_status(model), model
end
@testset "test soc w opf" begin
@testset "case $(name)" for (name, case_file) in case_files
data = parse_file(case_file)
opf_status, opf_model = solve_soc_opf_model(data, ipopt_solver)
pm_result = solve_opf(data, SOCWRPowerModel, ipopt_solver)
pm_sol = pm_result["solution"]
@test isapprox(JuMP.objective_value(opf_model), pm_result["objective"]; atol = 1e-5)
base_mva = data["baseMVA"]
for (i, bus) in data["bus"]
if bus["bus_type"] != 4
index = parse(Int, i)
#println("$i, $(JuMP.value(opf_model[:va][index])), $(pm_sol["bus"][i]["va"])")
#@test isapprox(JuMP.value(opf_model[:va][index]), pm_sol["bus"][i]["va"]; atol = 1e-8)
#println("$i, $(JuMP.value(opf_model[:w][index])), $(pm_sol["bus"][i]["vm"]^2)")
@test isapprox(JuMP.value(opf_model[:w][index]), pm_sol["bus"][i]["w"]; atol = 1e-6)
end
end
for (i, gen) in data["gen"]
if gen["gen_status"] != 0
index = parse(Int, i)
#println("$i, $(JuMP.value(opf_model[:pg][index])), $(pm_sol["gen"][i]["pg"])")
@test isapprox(JuMP.value(opf_model[:pg][index]), pm_sol["gen"][i]["pg"]; atol = 1e-6)
# multiple generators at one bus can cause this to be non-unqiue
#@test isapprox(JuMP.value(opf_model[:qg][index]), pm_sol["gen"][i]["qg"])
end
end
end
end
function solve_qc_opf_model(data, optimizer)
model = build_qc_opf(data, JuMP.Model(optimizer))
JuMP.optimize!(model)
return JuMP.termination_status(model), model
end
@testset "test qc w+l opf" begin
@testset "case $(name)" for (name, case_file) in case_files
data = parse_file(case_file)
opf_status, opf_model = solve_qc_opf_model(data, ipopt_solver)
pm_result = solve_opf(data, QCLSPowerModel, ipopt_solver)
pm_sol = pm_result["solution"]
@test isapprox(JuMP.objective_value(opf_model), pm_result["objective"]; atol = 1e-5)
base_mva = data["baseMVA"]
for (i, bus) in data["bus"]
if bus["bus_type"] != 4
index = parse(Int, i)
#println("$i, $(JuMP.value(opf_model[:va][index])), $(pm_sol["bus"][i]["va"])")
#@test isapprox(JuMP.value(opf_model[:va][index]), pm_sol["bus"][i]["va"]; atol = 1e-8)
#println("$i, $(JuMP.value(opf_model[:vm][index])), $(pm_sol["bus"][i]["vm"])")
@test isapprox(JuMP.value(opf_model[:vm][index]), pm_sol["bus"][i]["vm"]; atol = 1e-5)
end
end
for (i, gen) in data["gen"]
if gen["gen_status"] != 0
index = parse(Int, i)
#println("$i, $(JuMP.value(opf_model[:pg][index])), $(pm_sol["gen"][i]["pg"])")
@test isapprox(JuMP.value(opf_model[:pg][index]), pm_sol["gen"][i]["pg"]; atol = 1e-5)
# multiple generators at one bus can cause this to be non-unqiue
#@test isapprox(JuMP.value(opf_model[:qg][index]), pm_sol["gen"][i]["qg"])
end
end
end
end
function solve_dc_opf_model(data, optimizer)
model = build_dc_opf(data, JuMP.Model(optimizer))
JuMP.optimize!(model)
return JuMP.termination_status(model), model
end
@testset "test dc polar opf" begin
@testset "case $(name)" for (name, case_file) in case_files
data = parse_file(case_file)
opf_status, opf_model = solve_dc_opf_model(data, ipopt_solver)
pm_result = solve_dc_opf(data, ipopt_solver)
pm_sol = pm_result["solution"]
#println(opf_status)
#println(pm_result["status"])
@test isapprox(JuMP.objective_value(opf_model), pm_result["objective"]; atol = 1e-5)
# needed becouse some test networks are not DC feasible
if pm_result["termination_status"] == LOCALLY_SOLVED
@test opf_status == LOCALLY_SOLVED
base_mva = data["baseMVA"]
for (i, bus) in data["bus"]
if bus["bus_type"] != 4
index = parse(Int, i)
#println("$i, $(JuMP.value(opf_model[:va][index])), $(pm_sol["bus"][i]["va"])")
@test isapprox(JuMP.value(opf_model[:va][index]), pm_sol["bus"][i]["va"]; atol = 1e-8)
end
end
for (i, gen) in data["gen"]
if gen["gen_status"] != 0
index = parse(Int, i)
#println("$i, $(JuMP.value(opf_model[:pg][index])), $(pm_sol["gen"][i]["pg"])")
@test isapprox(JuMP.value(opf_model[:pg][index]), pm_sol["gen"][i]["pg"]; atol = 1e-8)
end
end
else
@test opf_status == LOCALLY_INFEASIBLE
@test pm_result["status"] == LOCALLY_INFEASIBLE
end
end
end
function solve_file(file_name)
include(file_name)
optimizer = JuMP.optimizer_with_attributes(Ipopt.Optimizer, "print_level"=>0)
return optimizer, data, termination_status(model), cost
end
@testset "test ac polar opf" begin
optimizer, data, status, cost = solve_file("../../src/model/ac-opf.jl")
pm_result = solve_ac_opf(data, optimizer)
@test isapprox(cost, pm_result["objective"]; atol = 1e-6)
end
@testset "test dc polar opf" begin
optimizer, data, status, cost = solve_file("../../src/model/dc-opf.jl")
pm_result = solve_dc_opf(data, optimizer)
@test isapprox(cost, pm_result["objective"]; atol = 1e-6)
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 5066 |
function solve_ac_pf_model(data, optimizer)
model = build_ac_pf(data, JuMP.Model(optimizer))
JuMP.optimize!(model)
return JuMP.termination_status(model), model
end
@testset "test ac polar pf" begin
@testset "case $(name)" for (name, case_file) in case_files
data = parse_file(case_file)
pf_status, pf_model = solve_ac_pf_model(data, ipopt_solver)
pm_result = solve_ac_pf(data, ipopt_solver)
pm_sol = pm_result["solution"]
base_mva = data["baseMVA"]
for (i, bus) in data["bus"]
if bus["bus_type"] != 4
index = parse(Int, i)
#println("$i, $(JuMP.value(pf_model[:va][index])), $(pm_sol["bus"][i]["va"])")
@test isapprox(JuMP.value(pf_model[:va][index]), pm_sol["bus"][i]["va"]; atol = 1e-6)
@test isapprox(JuMP.value(pf_model[:vm][index]), pm_sol["bus"][i]["vm"])
end
end
for (i, gen) in data["gen"]
if gen["gen_status"] != 0
index = parse(Int, i)
#println("$i, $(JuMP.value(pf_model[:pg][index])), $(pm_sol["gen"][i]["pg"])")
@test isapprox(JuMP.value(pf_model[:pg][index]), pm_sol["gen"][i]["pg"]; atol = 1e-6)
# multiple generators at one bus can cause this to be non-unqiue
#@test isapprox(JuMP.value(pf_model[:qg][index]), pm_sol["gen"][i]["qg"])
end
end
end
end
function solve_soc_pf_model(data, optimizer)
model = build_soc_pf(data, JuMP.Model(optimizer))
JuMP.optimize!(model)
return JuMP.termination_status(model), model
end
@testset "test soc w pf" begin
@testset "case $(name)" for (name, case_file) in case_files
if name != "case3" && name != "case5_dc"
# case3 started failing 06/18/2021 with latest package version, case5_dc started working againg
# case5_dc started failing 05/22/2020 when ipopt moved to jll artifacts
data = parse_file(case_file)
pf_status, pf_model = solve_soc_pf_model(data, ipopt_solver)
pm_result = solve_pf(data, SOCWRPowerModel, ipopt_solver)
pm_sol = pm_result["solution"]
#println(pf_status)
#println(pm_result["status"])
base_mva = data["baseMVA"]
for (i, bus) in data["bus"]
if bus["bus_type"] != 4
index = parse(Int, i)
#println("$i, $(JuMP.value(pf_model[:va][index])), $(pm_sol["bus"][i]["va"])")
#@test isapprox(JuMP.value(pf_model[:va][index]), pm_sol["bus"][i]["va"]; atol = 1e-8)
#println("$i, $(JuMP.value(pf_model[:w][index])), $(pm_sol["bus"][i]["vm"]^2)")
@test isapprox(JuMP.value(pf_model[:w][index]), pm_sol["bus"][i]["w"]; atol = 1e-3)
end
end
for (i, gen) in data["gen"]
if gen["gen_status"] != 0
index = parse(Int, i)
#println("$i, $(JuMP.value(pf_model[:pg][index])), $(pm_sol["gen"][i]["pg"])")
@test isapprox(JuMP.value(pf_model[:pg][index]), pm_sol["gen"][i]["pg"]; atol = 1e-1)
# multiple generators at one bus can cause this to be non-unqiue
#@test isapprox(JuMP.value(pf_model[:qg][index]), pm_sol["gen"][i]["qg"])
end
end
end
end
end
function solve_dc_pf_model(data, optimizer)
model = build_dc_pf(data, JuMP.Model(optimizer))
JuMP.optimize!(model)
return JuMP.termination_status(model), model
end
@testset "test dc polar pf" begin
@testset "case $(name)" for (name, case_file) in case_files
data = parse_file(case_file)
pf_status, pf_model = solve_dc_pf_model(data, ipopt_solver)
pm_result = solve_dc_pf(data, ipopt_solver)
pm_sol = pm_result["solution"]
#println(pf_status)
#println(pm_result["status"])
# needed becouse some test networks are not DC feasible
if pm_result["termination_status"] == LOCALLY_SOLVED
@test pf_status == LOCALLY_SOLVED
base_mva = data["baseMVA"]
for (i, bus) in data["bus"]
if bus["bus_type"] != 4
index = parse(Int, i)
#println("$i, $(JuMP.value(pf_model[:va][index])), $(pm_sol["bus"][i]["va"])")
@test isapprox(JuMP.value(pf_model[:va][index]), pm_sol["bus"][i]["va"]; atol = 1e-8)
end
end
for (i, gen) in data["gen"]
if gen["gen_status"] != 0
index = parse(Int, i)
#println("$i, $(JuMP.value(pf_model[:pg][index])), $(pm_sol["gen"][i]["pg"])")
@test isapprox(JuMP.value(pf_model[:pg][index]), pm_sol["gen"][i]["pg"])
end
end
else
@test pf_status == LOCALLY_INFEASIBLE
@test pm_result["status"] == LOCALLY_INFEASIBLE
end
end
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 1780 |
@testset "test ac api" begin
@testset "3-bus case" begin
result = solve_opf_api(case_files["case3"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 400.94; atol = 1e0)
@test isapprox(result["solution"]["load"]["1"]["pd"], 1.471; atol = 1e-2)
@test isapprox(result["solution"]["load"]["1"]["qd"], 0.4; atol = 1e-2)
end
# started failing 05/22/2020 when ipopt moved to jll artifacts
# @testset "5-bus pjm case" begin
# result = solve_opf_api(case_files["case5"], ACPPowerModel, ipopt_solver)
# @test result["termination_status"] == LOCALLY_SOLVED
# @test isapprox(result["objective"], 2.6872; atol = 1e-3)
# @test isapprox(result["solution"]["load"]["3"]["pd"], 10.754; atol = 1e-2)
# @test isapprox(result["solution"]["load"]["3"]["qd"], 1.3147; atol = 1e-2)
# end
@testset "14-bus ieee case" begin
result = solve_opf_api(case_files["case14"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 1993.39; atol = 1e0)
@test isapprox(result["solution"]["load"]["1"]["pd"], 0.8653; atol = 1e-2)
@test isapprox(result["solution"]["load"]["1"]["qd"], 0.127; atol = 1e-2)
end
@testset "30-bus ieee case" begin
result = solve_opf_api(case_files["case30"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 994.13; atol = 1e0)
@test isapprox(result["solution"]["load"]["1"]["pd"], 0.361; atol = 1e-2)
@test isapprox(result["solution"]["load"]["1"]["qd"], 0.127; atol = 1e-2)
end
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | code | 1047 |
@testset "test ac sad" begin
@testset "3-bus case" begin
result = solve_opf_sad(case_files["case3"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 0.3114; atol = 1e-2)
end
@testset "5-bus pjm case" begin
result = solve_opf_sad(case_files["case5"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 0.02211; atol = 1e-2)
end
@testset "14-bus ieee case" begin
result = solve_opf_sad(case_files["case14"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 0.033097; atol = 1e-2)
end
@testset "30-bus ieee case" begin
result = solve_opf_sad(case_files["case30"], ACPPowerModel, ipopt_solver)
@test result["termination_status"] == LOCALLY_SOLVED
@test isapprox(result["objective"], 0.1522; atol = 1e-2)
end
end
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | docs | 2246 | PowerModelsAnnex.jl Change Log
==============================
### Staged
- nothing
### v0.11.0
- Update to PowerModels v0.21 and JuMP's new nonlinear interface (breaking)
### v0.10.0
- Update PowerModels v0.20
- Drop `frontend` directory, lack of maintenance on dependent packages
- Drop `islanding` directory, no tests
### v0.9.0
- Revise `solve_opf_api` to consider reactive power dispatch
### v0.8.5
- Add closest operating point formulation `solve_opf_cop`
### v0.8.4
- Update PowerModels `run_*` functions to `solve_*`
- Add support for Memento v1.4
### v0.8.3
- Add support for JuMP v1.0
### v0.8.2
- Add support for JuMP v0.23
- Update minimum Julia version to v1.6 (LTS)
### v0.8.1
- Add support for Memento v1.3
### v0.8.0
- Update to JuMP v0.22, PowerModels v0.19
- Drop support for JuMP v0.21
- Remove dependency on MathOptInterface package
### v0.7.1
- Add support for Memento v1.2
- Update use of `with_optimizer` to `optimizer_with_attributes`
### v0.7.0
- Update to InfrastructureModels v0.6 and PowerModels v0.18
### v0.6.1
- Add variants of piecewise linear cost model formulations
- Update to DataFrames v0.21
### v0.6.0
- Update to PowerModels v0.17
- Added support for Memento v1.1
### v0.5.0
- Update to PowerModels v0.16
### v0.4.4
- Fixed solution reporting bug in api model
### v0.4.3
- Update pacakge internal short names to `_PM` and `_IM`
- Add support for optional branch power flows in api and sad models
### v0.4.2
- Add support for Memento v0.13, v1.0
### v0.4.1
- Add support for JuMP v0.21
- Drop Manifest.toml (#57)
### v0.4.0
- Update to PowerModels v0.15
### v0.3.1
- Update to InfrastructureModels v0.4
### v0.3.0
- Update to PowerModels v0.14 and new naming conventions (#65)
### v0.2.6
- Updates for PowerModels v0.13
### v0.2.5
- Updates to frontend for MOI status values (#60)
### v0.2.4
- Updates for JuMP v0.20 and Julia v1.2 (#59)
- Resolve Dataframes deprecations (#58)
### v0.2.3
- Updates for PowerSystemsUnits
- Fixes for Frontend (#53)
### v0.2.2
- Update to PowerModels v0.12
### v0.2.1
- Update to PowerModels v0.11
### v0.2.0
- Update to JuMP v0.19/MathOptInterface
### v0.1.12
- Dropped support for Julia v0.6/v0.7
### Previous
- See Github releases for details
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | docs | 2281 | Copyright (c) 2016, Los Alamos National Security, LLC
All rights reserved.
Copyright 2016. Los Alamos National Security, LLC. This software was produced under U.S. Government contract DE-AC52-06NA25396 for Los Alamos National Laboratory (LANL), which is operated by Los Alamos National Security, LLC for the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is modified to produce derivative works, such modified software should be clearly marked, so as not to confuse it with the version available from LANL.
Additionally, redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of Los Alamos National Security, LLC, Los Alamos National Laboratory, LANL, the U.S. Government, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY LOS ALAMOS NATIONAL SECURITY, LLC AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LOS ALAMOS NATIONAL SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | docs | 1420 | # PowerModelsAnnex.jl
Dev:
[](https://github.com/lanl-ansi/PowerModelsAnnex.jl/actions/workflows/ci.yml)
[](https://codecov.io/gh/lanl-ansi/PowerModelsAnnex.jl)
[PowerModels.jl](https://github.com/lanl-ansi/PowerModels.jl) provides an implementation reference for *established* formulations and methods in power system optimization, and hence is is not an appropriate location for more exploratory work. PowerModelsAnnex.jl is an extension of PowerModels.jl that provides a home for open-source sharing of preliminary and/or exploratory methods in power system optimization.
Due to the exploratory nature of PowerModelsAnnex,
- there is minimal documentation and testing
- there are limited code quality and reliablity standards
- anything goes in the annex, more-or-less
Users should be prepared for features that break.
Pull Requests to PowerModelsAnnex are always welcome and not subject to significant scrutiny.
## Acknowledgments
This code has been developed as part of the Advanced Network Science Initiative at Los Alamos National Laboratory.
The primary developer is Carleton Coffrin.
## License
This code is provided under a BSD license as part of the Multi-Infrastructure Control and Optimization Toolkit (MICOT) project, C15024.
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | docs | 1882 | # PowerModelsAnnex JuMP Models
## Motivation
Integrating novel power model formulations in to PowerModels.jl can be time consuming and requires
significant understanding of the PowerModels software design. Consequently PowerModels.jl is not
ideal for rapid prototyping of novel problem formulations. To address this issue the files
provided in this directory defined functions that build JuMP models from scratch, which are identical to those produced by
PowerModels.jl, for a few of the most common formulations. These functions leverage the
data processing tools in PowerModels.jl and conform to the same naming conventions.
Unit tests are used to ensure that the solutions produced by these from-scratch models match those of
PowerModels.jl.
## Usage
The functions provided here designed to setup a JuMP model. Notably, they are not concerned with
reading data files, solving the model, or reporting the solution. These tasks are left to the user.
For example, a simple AC OPF work flow would be as follows,
```
using PowerModelsAnnex
using PowerModels
using JuMP
using Ipopt
model = Model(Ipopt.Optimizer)
data = PowerModels.parse_file("case3.m")
build_ac_opf(data, model)
optimize!(model)
```
Once the model is solved the solution can be extracted as follows,
```
for (i, bus) in data["bus"]
if bus["bus_type"] != 4
println("$i, $(value(model[:t][bus["index"]])), $(value(model[:v][bus["index"]]))")
end
end
for (i, gen) in data["gen"]
if gen["gen_status"] != 0
println("$i, $(value(model[:pg][gen["index"]])), $(value(model[:qg][gen["index"]]))")
end
end
```
Note that all values are given in per unit and radians, as this is the internal PowerModels data format.
For additional examples of how to use these functions see the files in `PowerModelsAnnex.jl/test/model`.
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"BSD-3-Clause"
] | 0.11.0 | 9586539805324e50536586e2df1d8e26b87f9fb7 | docs | 188 | # PowerModelsAnnex PGLib
This directory includes model formulations are are used to develop AC-OPF test cases for [PGLib Optimal Power Flow](https://github.com/power-grid-lib/pglib-opf).
| PowerModelsAnnex | https://github.com/lanl-ansi/PowerModelsAnnex.jl.git |
|
[
"MIT"
] | 0.6.1 | 51f56372090c3af1ce784610c5cf3c4c224563e4 | code | 394 | using Documenter, FDM
makedocs(
modules=[FDM],
format=:html,
pages=[
"Home" => "index.md",
"API" => "pages/api.md"
],
sitename="FDM.jl",
authors="Invenia Labs",
assets=[
"assets/invenia.css",
],
)
deploydocs(
repo = "github.com/invenia/FDM.jl.git",
julia = "1.0",
target = "build",
deps = nothing,
make = nothing,
)
| FDM | https://github.com/invenia/FDM.jl.git |
|
[
"MIT"
] | 0.6.1 | 51f56372090c3af1ce784610c5cf3c4c224563e4 | code | 156 | module FDM
using Printf, LinearAlgebra
const AV = AbstractVector
include("methods.jl")
include("numerics.jl")
include("grad.jl")
end
| FDM | https://github.com/invenia/FDM.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.