licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.6.1 | 51f56372090c3af1ce784610c5cf3c4c224563e4 | code | 3297 | """
grad(fdm, f, x::AbstractVector)
Approximate the gradient of `f` at `x` using `fdm`. Assumes that `f(x)` is scalar.
"""
function grad(fdm, f, x::Vector{T}) where T<:Real
v, dx, tmp = fill(zero(T), size(x)), similar(x), similar(x)
for n in eachindex(x)
v[n] = one(T)
dx[n] = fdm(function(ϵ)
tmp .= x .+ ϵ .* v
return f(tmp)
end,
zero(T),
)
v[n] = zero(T)
end
return dx
end
"""
jacobian(fdm, f, x::AbstractVector{<:Real}, D::Int)
jacobian(fdm, f, x::AbstractVector{<:Real})
Approximate the Jacobian of `f` at `x` using `fdm`. `f(x)` must be a length `D` vector. If
`D` is not provided, then `f(x)` is computed once to determine the output size.
"""
function jacobian(fdm, f, x::Vector{T}, D::Int) where {T<:Real}
J = Matrix{T}(undef, D, length(x))
for d in 1:D
J[d, :] = grad(fdm, x->f(x)[d], x)
end
return J
end
jacobian(fdm, f, x::Vector{<:Real}) = jacobian(fdm, f, x, length(f(x)))
"""
_jvp(fdm, f, x::Vector{<:Real}, ẋ::AbstractVector{<:Real})
Convenience function to compute `jacobian(f, x) * ẋ`.
"""
_jvp(fdm, f, x::Vector{<:Real}, ẋ::AV{<:Real}) = jacobian(fdm, f, x) * ẋ
"""
_j′vp(fdm, f, ȳ::AbstractVector{<:Real}, x::Vector{<:Real})
Convenience function to compute `jacobian(f, x)' * ȳ`.
"""
_j′vp(fdm, f, ȳ::AV{<:Real}, x::Vector{<:Real}) = jacobian(fdm, f, x, length(ȳ))' * ȳ
"""
jvp(fdm, f, x, ẋ)
Compute a Jacobian-vector product with any types of arguments for which `to_vec` is defined.
"""
function jvp(fdm, f, (x, ẋ)::Tuple{Any, Any})
x_vec, vec_to_x = to_vec(x)
_, vec_to_y = to_vec(f(x))
return vec_to_y(_jvp(fdm, x_vec->to_vec(f(vec_to_x(x_vec)))[1], x_vec, to_vec(ẋ)[1]))
end
function jvp(fdm, f, xẋs::Tuple{Any, Any}...)
x, ẋ = collect(zip(xẋs...))
return jvp(fdm, xs->f(xs...), (x, ẋ))
end
"""
j′vp(fdm, f, ȳ, x...)
Compute an adjoint with any types of arguments for which `to_vec` is defined.
"""
function j′vp(fdm, f, ȳ, x)
x_vec, vec_to_x = to_vec(x)
ȳ_vec, _ = to_vec(ȳ)
return vec_to_x(_j′vp(fdm, x_vec->to_vec(f(vec_to_x(x_vec)))[1], ȳ_vec, x_vec))
end
j′vp(fdm, f, ȳ, xs...) = j′vp(fdm, xs->f(xs...), ȳ, xs)
"""
to_vec(x)
Transform `x` into a `Vector`, and return a closure which inverts the transformation.
"""
to_vec(x::Real) = ([x], first)
# Arrays.
to_vec(x::Vector{<:Real}) = (x, identity)
to_vec(x::Array) = vec(x), x_vec->reshape(x_vec, size(x))
# AbstractArrays.
function to_vec(x::T) where {T<:LinearAlgebra.AbstractTriangular}
x_vec, back = to_vec(Matrix(x))
return x_vec, x_vec->T(reshape(back(x_vec), size(x)))
end
to_vec(x::Symmetric) = vec(Matrix(x)), x_vec->Symmetric(reshape(x_vec, size(x)))
to_vec(X::Diagonal) = vec(Matrix(X)), x_vec->Diagonal(reshape(x_vec, size(X)...))
function to_vec(X::T) where T<:Union{Adjoint,Transpose}
U = T.name.wrapper
return vec(Matrix(X)), x_vec->U(permutedims(reshape(x_vec, size(X))))
end
# Non-array data structures.
function to_vec(x::Tuple)
x_vecs, x_backs = zip(map(to_vec, x)...)
sz = cumsum([map(length, x_vecs)...])
return vcat(x_vecs...), function(v)
return ntuple(n->x_backs[n](v[sz[n]-length(x_vecs[n])+1:sz[n]]), length(x))
end
end
| FDM | https://github.com/invenia/FDM.jl.git |
|
[
"MIT"
] | 0.6.1 | 51f56372090c3af1ce784610c5cf3c4c224563e4 | code | 9416 | export fdm, backward_fdm, forward_fdm, central_fdm
"""
FDM.DEFAULT_CONDITION
The default [condition number](https://en.wikipedia.org/wiki/Condition_number) used when
computing bounds. It provides amplification of the ∞-norm when passed to the function's
derivatives.
"""
const DEFAULT_CONDITION = 100
"""
FDM.TINY
A tiny number added to some quantities to ensure that division by 0 does not occur.
"""
const TINY = 1e-20
forward_grid(p::Int) = 0:(p - 1)
backward_grid(p::Int) = (1 - p):0
function central_grid(p::Int)
if isodd(p)
return div(1 - p, 2):div(p - 1, 2)
else
return vcat(div(-p, 2):-1, 1:div(p, 2))
end
end
"""
History
A mutable type that tracks several values during adaptive bound computation.
"""
mutable struct History
adapt::Int
eps::Real
bound::Real
step::Real
accuracy::Real
function History(; kwargs...)
h = new()
for (k, v) in kwargs
setfield!(h, k, v)
end
return h
end
end
"""
FDMethod
Abstract type for all finite differencing method types.
Subtypes of `FDMethod` are callable with the signature
```
method(f, x; kwargs...)
```
where the keyword arguments can be any of
* `adapt`: The number of adaptive steps to use improve the estimate of `bound`.
* `bound`: Bound on the value of the function and its derivatives at `x`.
* `condition`: The condition number. See [`DEFAULT_CONDITION`](@ref).
* `eps`: The assumed roundoff error. Defaults to `eps()` plus [`TINY`](@ref).
"""
abstract type FDMethod end
function Base.show(io::IO, x::FDMethod)
@printf io "FDMethod:\n"
@printf io " order of method: %d\n" x.p
@printf io " order of derivative: %d\n" x.q
@printf io " grid: %s\n" x.grid
@printf io " coefficients: %s\n" x.coefs
h = x.history
if all(p->isdefined(h, p), propertynames(h))
@printf io " roundoff error: %.2e\n" h.eps
@printf io " bounds on derivatives: %.2e\n" h.bound
@printf io " step size: %.2e\n" h.step
@printf io " accuracy: %.2e\n" h.accuracy
end
end
for D in (:Forward, :Backward, :Central, :Nonstandard)
@eval begin
struct $D{G<:AbstractVector, C<:AbstractVector} <: FDMethod
p::Int
q::Int
grid::G
coefs::C
history::History
end
(d::$D)(f, x=0.0; kwargs...) = fdm(d, f, x; kwargs...)
end
end
# The below does not apply to Nonstandard, as it has its own constructor
for D in (:Forward, :Backward, :Central)
lcname = lowercase(String(D))
gridf = Symbol(lcname, "_grid")
fdmf = Symbol(lcname, "_fdm")
@eval begin
# Compatibility layer over the "old" API
function $fdmf(p::Integer, q::Integer; adapt=1, kwargs...)
_dep_kwarg(kwargs)
return $D(p, q; adapt=adapt, kwargs...)
end
function $D(p::Integer, q::Integer; adapt=1, kwargs...)
_check_p_q(p, q)
grid = $gridf(p)
coefs = _coefs(grid, p, q)
hist = History(; adapt=adapt, kwargs...)
return $D{typeof(grid), typeof(coefs)}(Int(p), Int(q), grid, coefs, hist)
end
@doc """
FDM.$($(Meta.quot(D)))(p, q; kwargs...)
$($(Meta.quot(fdmf)))(p, q; kwargs...)
Construct a $($lcname) finite difference method of order `p` to compute the `q`th
derivative.
See [`FDMethod`](@ref) for more details.
"""
($D, $fdmf)
end
end
"""
FDM.Nonstandard(grid, q; kwargs...)
An finite differencing method which is constructed based on a user-defined grid. It is
nonstandard in the sense that it represents neither forward, backward, nor central
differencing.
See [`FDMethod`](@ref) for further details.
"""
function Nonstandard(grid::AbstractVector{<:Real}, q::Integer; adapt=0, kwargs...)
p = length(grid)
_check_p_q(p, q)
coefs = _coefs(grid, p, q)
hist = History(; adapt=adapt, kwargs...)
return Nonstandard{typeof(grid), typeof(coefs)}(Int(p), Int(q), grid, coefs, hist)
end
# Check the method and derivative orders for consistency
function _check_p_q(p::Integer, q::Integer)
q < p || throw(ArgumentError("order of the method must be strictly greater than that " *
"of the derivative"))
# Check whether the method can be computed. We require the factorial of the
# method order to be computable with regular `Int`s, but `factorial` will overflow
# after 20, so 20 is the largest we can allow.
p > 20 && throw(ArgumentError("order of the method is too large to be computed"))
return
end
# Compute coefficients for the method
function _coefs(grid::AbstractVector{<:Real}, p::Integer, q::Integer)
C = [g^i for i in 0:(p - 1), g in grid]
x = zeros(Int, p)
x[q + 1] = factorial(q)
return C \ x
end
# Estimate the bound on the function value and its derivatives at a point
_estimate_bound(x, cond) = cond * maximum(abs, x) + TINY
"""
fdm(m::FDMethod, f, x[, Val(false)]; kwargs...) -> Real
fdm(m::FDMethod, f, x, Val(true); kwargs...) -> Tuple{FDMethod, Real}
Compute the derivative of `f` at `x` using the finite differencing method `m`.
The optional `Val` argument dictates whether the method should be returned alongside the
derivative value, which can be useful for examining the step size used and other such
parameters.
The recognized keywords are:
* `adapt`: The number of adaptive steps to use improve the estimate of `bound`.
* `bound`: Bound on the value of the function and its derivatives at `x`.
* `condition`: The condition number. See [`DEFAULT_CONDITION`](@ref).
* `eps`: The assumed roundoff error. Defaults to `eps()` plus [`TINY`](@ref).
!!! warning
Bounds can't be adaptively computed over nonstandard grids; passing a value for
`adapt` greater than 0 when `m::Nonstandard` results in an error.
!!! note
Calling [`FDMethod`](@ref) objects is equivalent to passing them to `fdm`.
# Examples
```julia-repl
julia> fdm(central_fdm(5, 1), sin, 1; adapt=2)
0.5403023058681039
julia> fdm(central_fdm(2, 1), exp, 0, Val(true))
(FDMethod:
order of method: 2
order of derivative: 1
grid: [-1, 1]
coefficients: [-0.5, 0.5]
roundoff error: 1.42e-14
bounds on derivatives: 1.00e+02
step size: 1.69e-08
accuracy: 1.69e-06
, 1.0000000031817473)
```
"""
function fdm(
m::M,
f,
x,
::Val{true};
condition=DEFAULT_CONDITION,
bound=_estimate_bound(f(x), condition),
eps=(Base.eps(float(bound)) + TINY),
adapt=m.history.adapt,
max_step=0.1,
) where M<:FDMethod
if M <: Nonstandard && adapt > 0
throw(ArgumentError("can't adaptively compute bounds over Nonstandard grids"))
end
eps > 0 || throw(ArgumentError("eps must be positive, got $eps"))
bound > 0 || throw(ArgumentError("bound must be positive, got $bound"))
0 <= adapt < 20 - m.p || throw(ArgumentError("can't perform $adapt adaptation steps"))
p = m.p
q = m.q
grid = m.grid
coefs = m.coefs
# Adaptively compute the bound on the function and derivative values, if applicable.
if adapt > 0
newm = (M.name.wrapper)(p + 1, p)
dfdx = fdm(
newm,
f,
x;
condition=condition,
eps=eps,
bound=bound,
max_step=max_step,
adapt=(adapt - 1),
)
bound = _estimate_bound(dfdx, condition)
end
# Set the step size by minimising an upper bound on the error of the estimate.
C₁ = eps * sum(abs, coefs)
C₂ = bound * sum(n->abs(coefs[n] * grid[n]^p), eachindex(coefs)) / factorial(p)
ĥ = min((q / (p - q) * C₁ / C₂)^(1 / p), max_step)
# Estimate the accuracy of the method.
accuracy = ĥ^(-q) * C₁ + ĥ^(p - q) * C₂
# Estimate the value of the derivative.
dfdx = sum(i->coefs[i] * f(x + ĥ * grid[i]), eachindex(grid)) / ĥ^q
m.history.eps = eps
m.history.bound = bound
m.history.step = ĥ
m.history.accuracy = accuracy
return m, dfdx
end
function fdm(m::FDMethod, f, x, ::Val{false}=Val(false); kwargs...)
_, dfdx = fdm(m, f, x, Val(true); kwargs...)
return dfdx
end
## Deprecations
# Used for keyword argument name deprecations
function _dep_kwarg(kwargs)
for (old, new) in [(:ε, :eps), (:M, :bound)]
haskey(kwargs, old) || continue
val = kwargs[old]
error(
"keyword argument `", old, "` should now be passed as `", new, "` upon ",
"application of the method. For example:\n ",
"central_fdm(5, 1)(f, x; $new=$val)\n",
"not\n ",
"central_fdm(5, 1; $old=$val)(f, x)"
)
end
end
function fdm(
grid::AbstractVector{<:Real},
q::Int,
::Union{Val{true}, Val{false}}=Val(false);
kwargs...,
)
error("to use a custom grid, use `Nonstandard(grid, q)` and pass the result to `fdm`")
end
for fdmf in (:central_fdm, :backward_fdm, :forward_fdm)
@eval function $fdmf(p::Int, q::Int, ::Union{Val{true}, Val{false}}; kwargs...)
error(
"the `Val` argument should now be passed directly to `fdm` after ",
"constructing the method, not to the method constructor itself"
)
end
end
| FDM | https://github.com/invenia/FDM.jl.git |
|
[
"MIT"
] | 0.6.1 | 51f56372090c3af1ce784610c5cf3c4c224563e4 | code | 1327 | export assert_approx_equal
"""
assert_approx_equal(x, y, ε_abs, ε_rel[, desc])
Assert that `x` is approximately equal to `y`.
Let `eps_z = eps_abs / eps_rel`. Call `x` and `y` small if
`abs(x) < eps_z` and `abs(y) < eps_z`, and call `x` and `y` large otherwise. If this
function returns `True`, then it is guaranteed that
`abs(x - y) < 2 eps_rel max(abs(x), abs(y))` if `x` and `y` are large, and
`abs(x - y) < 2 eps_abs` if `x` and `y` are small.
# Arguments
- `x`: First object to compare.
- `y`: Second object to compare.
- `ε_abs`: Absolute tolerance.
- `ε_rel`: Relative tolerance.
- `desc`: Description of the comparison. Omit or set to `false` to have no description.
"""
function assert_approx_equal(x, y, ε_abs, ε_rel, desc)
if abs(x - y) >= ε_abs + ε_rel * max(abs(x), abs(y))
msg = "$(desc != false ? "\"$desc\": " : "")large deviation from reference:\n" *
" relative error: $(@sprintf "%.3e" abs(x - y) / max(abs(x), abs(y)))\n" *
" tolerance: $(@sprintf "%.3e" ε_rel)\n" *
" absolute error: $(@sprintf "%.3e" abs(x - y))\n" *
" tolerance: $(@sprintf "%.3e" ε_abs)\n"
throw(ErrorException(msg))
end
return true
end
assert_approx_equal(x, y, ε_abs, ε_rel) = assert_approx_equal(x, y, ε_abs, ε_rel, false)
| FDM | https://github.com/invenia/FDM.jl.git |
|
[
"MIT"
] | 0.6.1 | 51f56372090c3af1ce784610c5cf3c4c224563e4 | code | 3648 | using FDM: grad, jacobian, _jvp, _j′vp, jvp, j′vp, to_vec
# Dummy type where length(x::DummyType) ≠ length(first(to_vec(x)))
struct DummyType{TX<:Matrix}
X::TX
end
function FDM.to_vec(x::DummyType)
x_vec, back = to_vec(x.X)
return x_vec, x_vec -> DummyType(back(x_vec))
end
Base.:(==)(x::DummyType, y::DummyType) = x.X == y.X
Base.length(x::DummyType) = size(x.X, 1)
@testset "grad" begin
@testset "grad" begin
rng, fdm = MersenneTwister(123456), central_fdm(5, 1)
x = randn(rng, 2)
xc = copy(x)
@test grad(fdm, x->sin(x[1]) + cos(x[2]), x) ≈ [cos(x[1]), -sin(x[2])]
@test xc == x
end
function check_jac_and_jvp_and_j′vp(fdm, f, ȳ, x, ẋ, J_exact)
xc = copy(x)
@test jacobian(fdm, f, x, length(ȳ)) ≈ J_exact
@test jacobian(fdm, f, x) == jacobian(fdm, f, x, length(ȳ))
@test _jvp(fdm, f, x, ẋ) ≈ J_exact * ẋ
@test _j′vp(fdm, f, ȳ, x) ≈ J_exact' * ȳ
@test xc == x
end
@testset "jacobian / _jvp / _j′vp" begin
rng, P, Q, fdm = MersenneTwister(123456), 3, 2, central_fdm(5, 1)
ȳ, A, x, ẋ = randn(rng, P), randn(rng, P, Q), randn(rng, Q), randn(rng, Q)
Ac = copy(A)
check_jac_and_jvp_and_j′vp(fdm, x->A * x, ȳ, x, ẋ, A)
@test Ac == A
check_jac_and_jvp_and_j′vp(fdm, x->sin.(A * x), ȳ, x, ẋ, cos.(A * x) .* A)
@test Ac == A
end
function test_to_vec(x)
x_vec, back = to_vec(x)
@test x_vec isa Vector
@test x == back(x_vec)
return nothing
end
@testset "to_vec" begin
test_to_vec(1.0)
test_to_vec(1)
test_to_vec(randn(3))
test_to_vec(randn(5, 11))
test_to_vec(randn(13, 17, 19))
test_to_vec(randn(13, 0, 19))
test_to_vec(UpperTriangular(randn(13, 13)))
test_to_vec(Symmetric(randn(11, 11)))
test_to_vec(Diagonal(randn(7)))
test_to_vec(DummyType(randn(2, 9)))
@testset "$T" for T in (Adjoint, Transpose)
test_to_vec(T(randn(4, 4)))
test_to_vec(T(randn(6)))
test_to_vec(T(randn(2, 5)))
end
@testset "Tuples" begin
test_to_vec((5, 4))
test_to_vec((5, randn(5)))
test_to_vec((randn(4), randn(4, 3, 2), 1))
test_to_vec((5, randn(4, 3, 2), UpperTriangular(randn(4, 4)), 2.5))
test_to_vec(((6, 5), 3, randn(3, 2, 0, 1)))
test_to_vec((DummyType(randn(2, 7)), DummyType(randn(3, 9))))
test_to_vec((DummyType(randn(3, 2)), randn(11, 8)))
end
end
@testset "jvp" begin
rng, N, M, fdm = MersenneTwister(123456), 2, 3, central_fdm(5, 1)
x, y = randn(rng, N), randn(rng, M)
ẋ, ẏ = randn(rng, N), randn(rng, M)
xy, ẋẏ = vcat(x, y), vcat(ẋ, ẏ)
ż_manual = _jvp(fdm, (xy)->sum(sin, xy), xy, ẋẏ)[1]
ż_auto = jvp(fdm, x->sum(sin, x[1]) + sum(sin, x[2]), ((x, y), (ẋ, ẏ)))
ż_multi = jvp(fdm, (x, y)->sum(sin, x) + sum(sin, y), (x, ẋ), (y, ẏ))
@test ż_manual ≈ ż_auto
@test ż_manual ≈ ż_multi
end
@testset "j′vp" begin
rng, N, M, fdm = MersenneTwister(123456), 2, 3, central_fdm(5, 1)
x, y = randn(rng, N), randn(rng, M)
z̄ = randn(rng, N + M)
xy = vcat(x, y)
x̄ȳ_manual = j′vp(fdm, xy->sin.(xy), z̄, xy)
x̄ȳ_auto = j′vp(fdm, x->sin.(vcat(x[1], x[2])), z̄, (x, y))
x̄ȳ_multi = j′vp(fdm, (x, y)->sin.(vcat(x, y)), z̄, x, y)
@test x̄ȳ_manual ≈ vcat(x̄ȳ_auto...)
@test x̄ȳ_manual ≈ vcat(x̄ȳ_multi...)
end
end
| FDM | https://github.com/invenia/FDM.jl.git |
|
[
"MIT"
] | 0.6.1 | 51f56372090c3af1ce784610c5cf3c4c224563e4 | code | 2990 | using FDM: Forward, Backward, Central, Nonstandard
@testset "Methods" begin
for f in [:forward_fdm, :backward_fdm, :central_fdm]
@eval @test $f(10, 1; bound=1)(sin, 1) ≈ cos(1)
@eval @test $f(10, 2; bound=1)(sin, 1) ≈ -sin(1)
@eval @test $f(10, 1; bound=1)(exp, 1) ≈ exp(1)
@eval @test $f(10, 2; bound=1)(exp, 1) ≈ exp(1)
@eval @test $f(10, 1; bound=1)(abs2, 1) ≈ 2
@eval @test $f(10, 2; bound=1)(abs2, 1) ≈ 2
@eval @test $f(10, 1; bound=1)(sqrt, 1) ≈ .5
@eval @test $f(10, 2; bound=1)(sqrt, 1) ≈ -.25
end
@testset "Adaptation improves estimate" begin
@test forward_fdm(5, 1)(log, 0.001; adapt=0) ≈ 969.2571703
@test forward_fdm(5, 1)(log, 0.001; adapt=1) ≈ 1000
end
@testset "Limiting step size" begin
@test !isfinite(central_fdm(5, 1)(abs, 0.001; max_step=0))
@test central_fdm(5, 1)(abs, 0.001) ≈ 1.0
end
@testset "Printing FDMethods" begin
@test sprint(show, central_fdm(2, 1)) == """
FDMethod:
order of method: 2
order of derivative: 1
grid: [-1, 1]
coefficients: [-0.5, 0.5]
"""
m, _ = fdm(central_fdm(2, 1), sin, 1, Val(true))
report = sprint(show, m)
regex_float = r"[\d\.\+-e]+"
regex_array = r"\[([\d.+-e]+(, )?)+\]"
@test occursin(Regex(join(map(x -> x.pattern,
[
r"FDMethod:",
r"order of method:", r"\d+",
r"order of derivative:", r"\d+",
r"grid:", regex_array,
r"coefficients:", regex_array,
r"roundoff error:", regex_float,
r"bounds on derivatives:", regex_float,
r"step size:", regex_float,
r"accuracy:", regex_float,
r""
]
), r"\s*".pattern)), report)
end
@testset "Breaking deprecations" begin
@test_throws ErrorException fdm([1,2,3], 4) # Custom grids need Nonstandard
for f in (forward_fdm, backward_fdm, central_fdm)
@test_throws ErrorException f(2, 1; M=1) # Old kwarg, now misplaced
@test_throws ErrorException f(2, 1, Val(true)) # Ask fdm for reports instead
end
end
@testset "Types" begin
@testset "$T" for T in (Forward, Backward, Central)
@test T(5, 1)(sin, 1; adapt=4) ≈ cos(1)
@test_throws ArgumentError T(3, 4)
@test_throws ArgumentError T(40, 5)
@test_throws ArgumentError T(5, 1)(sin, 1; adapt=200)
@test_throws ArgumentError T(5, 1)(sin, 1; eps=0.0)
@test_throws ArgumentError T(5, 1)(sin, 1; bound=0.0)
end
@testset "Nonstandard" begin
@test Nonstandard([-2, -1, 1], 1)(sin, 1) ≈ cos(1)
@test_throws ArgumentError Nonstandard([-2, -1, 1], 1)(sin, 1; adapt=2)
end
end
end
| FDM | https://github.com/invenia/FDM.jl.git |
|
[
"MIT"
] | 0.6.1 | 51f56372090c3af1ce784610c5cf3c4c224563e4 | code | 604 | @testset "Numerics" begin
@test_throws ErrorException assert_approx_equal(1, 1 + 1e-5, 1e-10, 1e-6, "assertion")
@test_throws ErrorException assert_approx_equal(1, 1 + 1e-5, 1e-10, 1e-6)
@test assert_approx_equal(1, 1 + 1e-7, 1e-10, 1e-6, "assertion")
@test assert_approx_equal(1, 1 + 1e-7, 1e-10, 1e-6)
@test_throws ErrorException assert_approx_equal(0, 1e-9, 1e-10, 1e-6, "assertion")
@test_throws ErrorException assert_approx_equal(0, 1e-9, 1e-10, 1e-6)
@test assert_approx_equal(0, 1e-11, 1e-10, 1e-6, "assertion")
@test assert_approx_equal(0, 1e-11, 1e-10, 1e-6)
end
| FDM | https://github.com/invenia/FDM.jl.git |
|
[
"MIT"
] | 0.6.1 | 51f56372090c3af1ce784610c5cf3c4c224563e4 | code | 149 | using FDM, Test, Random, Printf, LinearAlgebra
@testset "FDM" begin
include("methods.jl")
include("numerics.jl")
include("grad.jl")
end
| FDM | https://github.com/invenia/FDM.jl.git |
|
[
"MIT"
] | 0.6.1 | 51f56372090c3af1ce784610c5cf3c4c224563e4 | docs | 1649 | # FDM.jl: Finite Difference Methods
[](https://travis-ci.org/invenia/FDM.jl)
[](https://ci.appveyor.com/project/invenia/fdm-jl/branch/master)
[](http://codecov.io/github/invenia/FDM.jl?branch=master)
[](https://invenia.github.io/FDM.jl/latest/)
FDM.jl estimates derivatives with finite differences.
See also [FDM](https://github.com/wesselb/fdm).
## Examples
Compute the first derivative of `sin` with a 5th order central method:
```julia
julia> central_fdm(5, 1)(sin, 1) - cos(1)
-1.247890679678676e-13
```
Compute the second derivative of `sin` with a 5th order central method:
```julia
julia> central_fdm(5, 2)(sin, 1) + sin(1)
9.747314066999024e-12
```
Construct a FDM on a custom grid:
```julia
julia> method, report = fdm([-2, 0, 5], 1, report=true)
(FDM.method, FDMReport:
order of method: 3
order of derivative: 1
grid: [-2, 0, 5]
coefficients: [-0.357143, 0.3, 0.0571429]
roundoff error: 2.22e-16
bounds on derivatives: 1.00e+00
step size: 3.62e-06
accuracy: 6.57e-11
)
julia> method(sin, 1) - cos(1)
-2.05648831297367e-11
```
Compute a directional derivative:
```julia
julia> f(x) = sum(x)
f (generic function with 1 method)
julia> central_fdm(5, 1)(ε -> f([1, 1, 1] + ε * [1, 2, 3]), 0) - 6
-2.922107000813412e-13
```
| FDM | https://github.com/invenia/FDM.jl.git |
|
[
"MIT"
] | 0.6.1 | 51f56372090c3af1ce784610c5cf3c4c224563e4 | docs | 1451 | # FDM.jl: Finite Difference Methods
[](https://travis-ci.org/invenia/FDM.jl)
[](http://codecov.io/github/invenia/FDM.jl?branch=master)
[](https://invenia.github.io/FDM.jl/latest/)
FDM.jl approximates derivatives of functions using finite difference methods.
## Examples
Compute the first derivative of `sin` with a 5th order central method:
```julia
julia> central_fdm(5, 1)(sin, 1) - cos(1)
-1.247890679678676e-13
```
Compute the second derivative of `sin` with a 5th order central method:
```julia
julia> central_fdm(5, 2)(sin, 1) + sin(1)
9.747314066999024e-12
```
Construct a FDM on a custom grid:
```julia
julia> method, report = fdm([-2, 0, 5], 1, report=true)
(FDM.method, FDMReport:
order of method: 3
order of derivative: 1
grid: [-2, 0, 5]
coefficients: [-0.357143, 0.3, 0.0571429]
roundoff error: 2.22e-16
bounds on derivatives: 1.00e+00
step size: 3.62e-06
accuracy: 6.57e-11
)
julia> method(sin, 1) - cos(1)
-2.05648831297367e-11
```
Compute a directional derivative:
```julia
julia> f(x) = sum(x)
f (generic function with 1 method)
julia> central_fdm(5, 1)(ε -> f([1, 1, 1] + ε * [1, 2, 3]), 0) - 6
-2.922107000813412e-13
```
| FDM | https://github.com/invenia/FDM.jl.git |
|
[
"MIT"
] | 0.6.1 | 51f56372090c3af1ce784610c5cf3c4c224563e4 | docs | 49 | ```@autodocs
Modules = [FDM]
Private = false
```
| FDM | https://github.com/invenia/FDM.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 177 |
using Documenter, Espresso
makedocs()
deploydocs(
deps = Deps.pip("mkdocs", "python-markdown-math"),
repo = "github.com/dfdx/Espresso.jl.git",
julia = "0.6"
)
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 1967 |
__precompile__()
module Espresso
export
# utils
ExH,
to_block,
parse_call_args,
parse_call_expr,
make_call_expr,
with_keywords,
without_keywords,
# rewrite
matchex,
matchingex,
findex,
subs,
rewrite,
tryrewrite,
rewrite_all,
without,
set_default_placeholders,
# simplification
simplify,
@simple_rule,
# funexpr
funexpr,
func_expr,
func_name,
get_or_generate_argnames,
# indexing
split_indexed,
make_indexed,
with_indices,
get_vars,
get_var_names,
get_indices,
find_vars,
find_var_names,
find_indices,
forall_sum_indices,
forall_indices,
sum_indices,
# ExNode
ExNode,
getcategory,
getvar,
setvar!,
varname,
varidxs,
getexpr,
getexpr_kw,
setexpr!,
getguards,
setguards!,
getvalue,
setvalue!,
indexof,
dependencies,
to_expr,
to_expr_kw,
isindexed,
# ExGraph core
AbstractExGraph,
ExGraph,
parse!,
reparse,
evaluate!,
cat,
fuse_assigned,
# ExGraph utils
dependents,
external_vars,
topsort,
collect_deps,
expand_deps,
expand_const,
remove_unused,
eliminate_common,
inline_nodes,
graph_hash,
# expr utils
mergeex,
sanitize,
# tracking
TrackedArray,
TrackedReal,
tracked_val,
tracked_exgraph,
swap_default_graph!,
reset_default_graph!,
# conversions
to_buffered,
to_inplace,
@inplacerule,
# destruct
make_func_expr,
isstruct,
field_values,
named_field_values,
destruct,
destruct_inputs,
# codegens
generate_code,
VectorCodeGen,
BufCodeGen,
CuCodeGen,
GPUCodeGen,
autoselect_codegen,
# helpers
sum_1,
sum_2,
squeeze_sum,
squeeze_sum_1,
squeeze_sum_2,
__construct,
# re-export
mul!
include("core.jl")
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 816 |
# codegen.jl - utils to generate code in different formats from ExGraph and EinGraph
include("codegens/vec.jl")
include("codegens/buf.jl")
include("codegens/cuda.jl")
include("codegens/cudavec.jl")
include("codegens/gpu.jl")
function autoselect_codegen(inputs)
# assuming inputs is Base.Iterators.Pairs or Vector{Any} with pairs
first_array_idx = findfirst(a -> isa(a, AbstractArray) && eltype(a) != Any,
[v for (k,v) in inputs])
first_array_idx != nothing || return VectorCodeGen()
eltyp = eltype(inputs[first_array_idx][2])
# we don't want to include CuArrays as dependency, so working on strings
if any(startswith(string(typeof(v)), "CuArray") for (k, v) in inputs)
return CuCodeGen(eltyp)
else
return BufCodeGen(eltyp)
end
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 829 |
# core.jl - single place to load all package definitions.
#
# If you want to learn the package structure, just go through
# included files one by one, read header notes and other comments
# using Sugar
using LinearAlgebra
using Statistics
import Base: CodeInfo
if VERSION <= v"1.10"
import Base: Slot
else
import Core.Compiler.SlotNumber
const Slot = SlotNumber
end
include("types.jl")
include("utils.jl")
include("rewrite.jl")
include("simplify.jl")
include("sugar.jl")
include("funexpr.jl")
include("indexing.jl")
include("preprocess.jl")
include("exnode.jl")
include("exgraph.jl")
include("tracked.jl")
include("evaluate.jl")
include("graph_utils.jl")
include("expand_deps.jl")
include("optimize.jl")
include("merge.jl")
include("inplace.jl")
include("codegen.jl")
include("destruct.jl")
include("helpers.jl")
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 1680 |
## destruct.jl - deconstruction of structs
##
## TODO: now Espresso supports structures natively, remove this?
"Check if an object is of a struct type, i.e. not a number or array"
isstruct(::Type{T}) where T = !isbits(T) && !(T <: AbstractArray)
isstruct(obj) = !isbits(obj) && !isa(obj, AbstractArray)
field_values(m) = [getfield(m, f) for f in fieldnames(typeof(m))]
named_field_values(m) = [f => getfield(m, f) for f in fieldnames(typeof(m))]
"""
Replace all struct arguments by a list of their plain analogues.
Example:
args = [:m, :x, :y]
types = (Linear, Matrix{Float64}, Matrix{Float64})
ex = :(sum((m.W * x .+ m.b) - y))
destruct(args, types, ex)
# ==>
# ([:m_W, :m_b, :x, :y],
# :(sum((m_W * x .+ m_b) - y)),
# Dict(:(m.W) => :m_W, :(m.b) => :m_b))
"""
function destruct(args::Vector{Symbol}, types, ex)
st = Dict()
new_args = Symbol[]
for (arg, T) in zip(args, types)
if isstruct(T)
for f in fieldnames(T)
new_arg = Symbol("$(arg)_$(f)")
push!(new_args, new_arg)
f_ex = Expr(:., arg, QuoteNode(f))
st[f_ex] = new_arg
end
else
push!(new_args, arg)
end
end
return new_args, subs(ex, st), st
end
function destruct_inputs(inputs)
new_inputs = []
for (k, v) in inputs
if isstruct(v)
for f in fieldnames(v)
new_arg = Symbol("$(k)_$(f)")
new_val = getfield(v, f)
push!(new_inputs, new_arg => new_val)
end
else
push!(new_inputs, k => v)
end
end
return new_inputs
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 4614 |
## evaluate.jl - evaluation of graph
function remember_size!(g::AbstractExGraph, nd::ExNode)
rsizes = @get_or_create(g.ctx, :rsizes, Dict{Symbol,Any}())
buff_exprs = @get_or_create(g.ctx, :buff_exprs, Dict{Symbol, Any}())
val = getvalue(nd)
if isa(val, AbstractArray) || isa(val, Number)
sz = size(val)
rsizes[varname(nd)] = sz
if isa(val, Array)
T = eltype(val)
buff_expr = :(zeros($T, $sz))
else
T = typeof(val)
buff_expr = :(zero($T))
end
buff_exprs[varname(nd)] = buff_expr
end
end
function remember_size!(g::AbstractExGraph, nd::ExNode{:tuple}) end
function isconv(nd::ExNode)
depwarn_eingraph(:isconv)
idxs = nd |> getexpr |> get_indices |> flatten
return any(i -> isa(i, Expr), idxs)
end
function mk_eval_expr(g::ExGraph, nd::ExNode)
dep_nodes = [g[dep] for dep in dependencies(nd) if haskey(g, dep)]
deps_vals = Dict((varname(nd), getvalue(nd)) for nd in dep_nodes)
evex = Expr(:block)
for dep in unique(keys(deps_vals))
val = deps_vals[dep]
push!(evex.args, :(local $dep = $val))
end
codegen = eval_codegen(@get(g.ctx, :codegen, VectorCodeGen()))
push!(evex.args, generate_code(codegen, g, nd))
push!(evex.args, varname(nd))
return evex
end
function mk_eval_expr(g::ExGraph, nd::ExNode{:ctor})
dep_nodes = [g[dep] for dep in dependencies(nd) if haskey(g, dep)]
deps_vals = Dict((varname(nd), getvalue(nd)) for nd in dep_nodes)
evex = Expr(:block)
for dep in unique(keys(deps_vals))
val = deps_vals[dep]
push!(evex.args, :(local $dep = $val))
end
push!(evex.args, to_expr_kw(nd))
push!(evex.args, varname(nd))
return evex
end
# function mk_eval_expr(g::ExGraph, nd::ExNode{:ctor})
# dep_nodes = [g[dep] for dep in dependencies(nd) if haskey(g, dep)]
# deps_vals = [(varname(nd), getvalue(nd)) for nd in dep_nodes]
# eval_ex = Expr(:block, Expr(:let, Expr(:block)))
# block = eval_ex.args[1].args[1]
# for (dep, val) in unique(deps_vals)
# push!(block.args, :(local $dep = $val))
# end
# push!(block.args, to_expr_kw(nd))
# push!(block.args, varname(nd))
# return eval_ex
# end
"""
Evaluate node, i.e. fill its `val` by evaluating node's expression using
values of its dependencies.
"""
function evaluate!(g::ExGraph, nd::ExNode{:constant}; force=false)
ex = getexpr(nd)
if getvalue(nd) == nothing && (isa(ex, Symbol) || isa(ex, Expr))
# constant expression - need to evaluate it
evex = mk_eval_expr(g, nd)
val = Core.eval(g.ctx[:mod], evex)
setvalue!(nd, val)
end
remember_size!(g, nd)
return getvalue(nd)
end
function evaluate!(g::AbstractExGraph, nd::ExNode{:input}; force=false)
remember_size!(g, nd)
return getvalue(nd)
end
function evaluate!(g::AbstractExGraph, nd::ExNode{:(=)}; force=false)
if (!force && getvalue(nd) != nothing) return getvalue(nd) end
dep = dependencies(nd)[1]
evaluate!(g, g[dep]; force=false)
evex = mk_eval_expr(g, nd)
setvalue!(nd, Core.eval(g.ctx[:mod], evex))
remember_size!(g, nd)
return getvalue(nd)
end
# nd::Union{ExNode{:call}, ExNode{:bcast}, ExNode{:ctor},
# ExNode{:tuple}, ExNode{:opaque}}
function evaluate!(g::AbstractExGraph, nd::ExNode; force=false)
if (!force && getvalue(nd) != nothing) return getvalue(nd) end
deps = dependencies(nd)
for dep in deps
# if dep is not in graph, consider it a global constant (like π)
if haskey(g.idx, dep)
evaluate!(g, g[dep]; force=false) # force affects only current node
end
end
evex = mk_eval_expr(g, nd)
setvalue!(nd, Core.eval(g.ctx[:mod], evex))
remember_size!(g, nd)
return getvalue(nd)
end
function evaluate!(g::AbstractExGraph, nd::ExNode{:field}; force=false)
if (!force && getvalue(nd) != nothing) return getvalue(nd) end
depnd = g[dependencies(nd)[1]]
obj = getvalue(depnd)
fld = getexpr(nd).args[2].value
val = getfield(obj, fld)
setvalue!(nd, val)
remember_size!(g, nd)
return getvalue(nd)
end
evaluate!(g::AbstractExGraph, name::Symbol; force=false) = evaluate!(g, g[name]; force=force)
function evaluate!(g::AbstractExGraph; force=false)
for i=1:length(g)
try
evaluate!(g, g[i]; force=force)
catch e
mod = @get(g.ctx, :mod, nothing)
@info("Failed to evaluate node (in module $mod): $(g[i])")
throw(e)
end
end
return getvalue(g[end])
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 13791 |
# exgraph.jl - expression graph as a list of primitive expression nodes
abstract type AbstractExGraph end
mutable struct ExGraph <: AbstractExGraph
tape::Vector{ExNode} # list of ExNode-s
idx::Dict{Symbol, ExNode} # map from var name to its node in the graph
ctx::Dict{Any,Any} # settings and caches
end
function ExGraph(; ctx=Dict(), inputs...)
ctx = to_context(ctx)
# @get_or_create(ctx, :mod, @__MODULE__)
@get_or_create(ctx, :mod, get_caller_module())
g = ExGraph(ExNode[], Dict(), ctx)
for (var, val) in inputs
push!(g, :input, var, var; val=val)
end
return g
end
function ExGraph(ex::Expr; fuse=true, ctx=Dict(), inputs...)
ex = preprocess(ex)
ctx = to_context(ctx)
g = ExGraph(;ctx=ctx, inputs...)
g.ctx[:expr] = ex
method = @get(g.ctx, :method, :parse)
if method == :parse
parse!(g, ex)
elseif method == :track
eval_tracked!(g, ex, inputs...)
else
error("Method $method is not supported")
end
if fuse
g = fuse_assigned(g)
end
return g
end
function Base.deepcopy(g::AbstractExGraph)
ctx_copy = to_context(Dict())
for (k, v) in g.ctx
if isa(v, Module)
ctx_copy[k] = v
else
ctx_copy[k] = deepcopy(v)
end
end
return typeof(g)(deepcopy(g.tape), deepcopy(g.idx), ctx_copy)
end
function Base.show(io::IO, g::ExGraph)
print(io, "ExGraph\n")
for node in g.tape
print(io, " $node\n")
end
end
Base.haskey(g::AbstractExGraph, var::Symbol) = haskey(g.idx, var)
Base.in(var::Symbol, g::AbstractExGraph) = haskey(g, var)
Base.lastindex(g::AbstractExGraph) = lastindex(g.tape)
Base.length(g::AbstractExGraph) = length(g.tape)
Base.get(g::AbstractExGraph, var::Symbol) = g.idx[var]
Base.getindex(g::AbstractExGraph, var::Symbol) = g.idx[var]
Base.getindex(g::AbstractExGraph, var::String) = g.idx[Symbol(var)]
Base.getindex(g::AbstractExGraph, i::Integer) = g.tape[i]
Base.setindex!(g::AbstractExGraph, nd::ExNode, i::Integer) =
(g.tape[i] = nd; g.idx[varname(nd)] = nd)
# indexof(g::AbstractExGraph, vname::Symbol) = findfirst(map(varname, g.tape), vname)
indexof(g::AbstractExGraph, vname::Symbol) = findfirst(isequal(vname), map(varname, g.tape))
getsize(g::AbstractExGraph, vname::Symbol) = g.ctx[:rsizes][vname]
getsize(g::AbstractExGraph, nd::ExNode) = getsize(g, varname(nd))
Base.iterate(g::ExGraph) = length(g) >= 1 ? (g[1], 2) : nothing
Base.iterate(g::ExGraph, state) = length(g) >= state ? (g[state], state + 1) : nothing
function Base.cat(g1::T, g2::T) where T<:AbstractExGraph
return T(vcat(g1.tape, g2.tape), merge(g1.idx, g2.idx), merge(g1.ctx, g2.ctx))
end
function to_expr(g::AbstractExGraph)
res = quote end
for nd in g.tape
if !isa(nd, ExNode{:input})
push!(res.args, to_expr(nd))
end
end
return res
end
function to_expr_kw(g::AbstractExGraph)
res = quote end
for nd in g.tape
if !isa(nd, ExNode{:input})
push!(res.args, to_expr_kw(nd))
end
end
return res
end
function eval_tracked!(g::ExGraph, ex::Expr, inputs...)
og = swap_default_graph!(g)
evex = ex.head == :block ? deepcopy(ex) : Expr(:block, deepcopy(ex))
for (var, val) in inputs
tv = isa(val, AbstractArray) ? TrackedArray(g, var, val) : TrackedReal(g, var, val)
pushfirst!(evex.args, :($var = $tv))
end
Core.eval(@get(g.ctx, :mod, Main), evex)
new_g = reparse(swap_default_graph!(og); all=true)
# copy nodes, but keep old context; maybe we will introduce special copyto! for this later
g.tape = new_g.tape
g.idx = new_g.idx
return g
end
"""Generate a new unique name for intermediate variable in graph"""
function genname()
s = String(gensym())
return Symbol(replace(s, "##" => "tmp"))
end
function genname(prefix::String)
s = String(gensym())
return Symbol(replace(s, "##" => prefix))
end
function genname(prefix::Symbol)
s = String(gensym())
return Symbol(replace(s, "##" => prefix))
end
function gennames(count::Int)
return [genname() for _=1:count]
end
function rename_repeated(g::AbstractExGraph, ex)
st = @get_or_create(g.ctx, :renamings, Dict())
st = prop_subs(st)
return subs(ex, st)
end
rename_repeated(g::AbstractExGraph, ex::ExH) = rename_repeated(g, Expr(ex))
function add_renaming!(g::AbstractExGraph, var::Symbol)
old = var
while var in g
var = inc_var_name(var)
end
st = @get_or_create(g.ctx, :renamings, Dict())
st[old] = var
return var
end
## push!, insert!, delete!
"""
Add a new node to a graph. Expression should be simple, e.g.
nested calls or blocks are not allowed (use parse!() for it).
"""
function Base.push!(g::AbstractExGraph, nd::ExNode)
@assert(!haskey(g, varname(nd)),
"Graph already contains a node with name $(varname(nd))!")
push!(g.tape, nd)
g.idx[varname(nd)] = nd
return varname(nd)
end
function Base.push!(g::AbstractExGraph, C::Symbol, var::Union{Symbol,Expr}, ex::Any;
val=nothing, meta=Dict())
@assert(!haskey(g, split_indexed(var)[1]),
"Graph already contains a node with name $(var)!")
nd = ExNode{C}(var, ex; val=val, meta=meta)
push!(g, nd)
return var
end
function Base.insert!(g::AbstractExGraph, i::Integer, nd::ExNode)
g.idx[varname(nd)] = nd
insert!(g.tape, i, nd)
end
function Base.insert!(g::AbstractExGraph, i::Integer, nds::Vector{ExNode})
for (j, nd) in enumerate(nds)
insert!(g, i + j - 1, nd)
end
end
function Base.delete!(g::AbstractExGraph, i::Integer)
delete!(g.idx, varname(g[i]))
deleteat!(g.tape, i)
end
function Base.delete!(g::AbstractExGraph, vname::Symbol)
delete!(g.idx, vname)
i = findall(nd -> varname(nd) == vname, g.tape)
deleteat!(g.tape, i)
end
## parse!
"""
Parse Julia expression and build ExGraph in-place.
Return the the output variable.
"""
parse!(g::AbstractExGraph, ex::Expr) = parse!(g, ExH(ex))
parse!(g::AbstractExGraph, ::LineNumberNode) = :nil
parse!(g::AbstractExGraph, ::ExH{:line}) = :nil
parse!(g::AbstractExGraph, s::Symbol) = rename_repeated(g, s)
function parse!(g::AbstractExGraph, x::Number)
if haskey(g.ctx, :bitness)
x = force_bitness(x, Val(g.ctx[:bitness]))
end
var = push!(g, :constant, genname(), x; val=x)
return var
end
function parse!(g::AbstractExGraph, x::AbstractArray)
if haskey(g.ctx, :bitness)
x = force_bitness(x, Val(g.ctx[:bitness]))
end
var = push!(g, :constant, genname(), x; val=x)
return var
end
function parse!(g::AbstractExGraph, x::ExH{:vect})
@assert all(e -> e isa Number, x.args) "Can only create vector literal node with numbers"
nums = convert(Vector{Float64}, x.args)
if haskey(g.ctx, :bitness)
nums = force_bitness(nums, Val(g.ctx[:bitness]))
end
var = push!(g, :constant, genname(), nums; val=nums)
return var
end
function parse!(g::ExGraph, ex::ExH{:(=)})
lhs, rhs = ex.args
rhs = rename_repeated(g, rhs)
dep = parse!(g, rhs)
if isa(lhs, Symbol)
if haskey(g, lhs)
lhs = add_renaming!(g, lhs)
end
push!(g, :(=), lhs, dep)
return lhs
elseif isa(lhs, Expr) && lhs.head == :tuple
last_vname = nothing
for (i, vname) in enumerate(lhs.args)
parse!(g, :($vname = $dep[$i]))
end
return last_vname
else
error("LHS of $(Expr(ex)) is neither variable, nor tuple")
end
end
function parse!(g::ExGraph, ex::ExH{:ref})
ex = rename_repeated(g, ex)
# @assert isa(ex.args[2], Number) "Currently only constant indices are supported"
idx_vars = [parse!(g, v) for v in ex.args[2:end]]
base = isa(ex.args[1], Symbol) ? ex.args[1] : parse!(g, ex.args[1])
vname = push!(g, :ref, genname(), Expr(:ref, base, idx_vars...))
return vname
end
# operations that are guaranted to never change their value
const CONST_OPS = Set([:length])
function parse!(g::ExGraph, ex::ExH{:call})
ex = rename_repeated(g, ex)
op = canonical(g.ctx[:mod], ex.args[1])
args, kw_args = parse_call_args(ex)
meta = isempty(kw_args) ? Dict() : Dict(:kw => kw_args)
deps = [parse!(g, arg) for arg in args]
pex = Expr(:call, op, deps...)
if op in CONST_OPS && isempty(meta)
var = push!(g, :constant, genname(), pex)
else
var = push!(g, :call, genname(), pex; meta=meta)
end
return var
end
function parse!(g::ExGraph, ex::ExH{:.})
ex = rename_repeated(g, ex)
if isa(ex.args[2], Expr) && ex.args[2].head == :tuple
# broadcasting
op = canonical(g.ctx[:mod], ex.args[1])
deps = [parse!(g, arg) for arg in ex.args[2].args]
# pex = Expr(:call, op, deps...)
pex = Expr(:., op, Expr(:tuple, deps...))
var = push!(g, :bcast, genname(), pex)
return var
elseif isa(ex.args[2], QuoteNode)
# field
var = push!(g, :field, genname(), ex)
return var
end
end
function parse!(g::ExGraph, ex::ExH{Symbol("'")})
ex = rename_repeated(g, ex)
dep = parse!(g, ex.args[1])
pex = :(transpose($dep))
var = push!(g, :call, genname(), pex)
return var
end
function parse!(g::AbstractExGraph, ex::Union{ExH{:block}, ExH{:body}})
deps = [parse!(g, arg) for arg in ex.args]
return deps[end]
end
function parse!(g::ExGraph, ex::ExH{:tuple})
ex = rename_repeated(g, ex)
deps = [parse!(g, arg) for arg in ex.args]
pex = Expr(:tuple, deps...)
vname = push!(g, :tuple, genname(), pex)
end
## reparsing of opaque nodes
function reparse(g::AbstractExGraph; all=false)
new_g = reset_tape(g)
for nd in g.tape
if isa(nd, ExNode{:input}) || isa(nd, ExNode{:constant})
push!(new_g, nd)
elseif all || isa(nd, ExNode{:opaque})
parse!(new_g, to_expr(nd))
else
push!(new_g, nd)
end
end
return fuse_assigned(new_g)
end
## graph simlification
istemp(var::Symbol) = startswith(string(var), "tmp")
function external_vars(g::AbstractExGraph)
ext_vnames = Set{Symbol}()
for nd in g.tape
for dep in dependencies(nd)
if !haskey(g, dep)
push!(ext_vnames, dep)
end
end
end
return ext_vnames
end
function assign_chain!(g::AbstractExGraph, nd::ExNode{:(=)},
guards::Vector{Expr}, chain::Vector{Symbol})
if getguards(nd) == guards # && !is_special_expr(getexpr(nd))
push!(chain, varname(nd))
dep = dependencies(nd)[1]
if haskey(g, dep) && !isa(g[dep], ExNode{:input}) && !isa(g[dep], ExNode{:constant})
dep_nd = g[dep]
assign_chain!(g, dep_nd, guards, chain)
end
end
return chain
end
function assign_chain!(g::AbstractExGraph, nd::ExNode{C},
guards::Vector{Expr}, chain::Vector{Symbol}) where C
if getguards(nd) == guards
push!(chain, varname(nd))
end
end
"""
Collect all replacable variables from a chain of assignments in a graph.
Variables `y` and `x` are considered replacable if there's a node `y = x`
and both variables have the same set of guards.
Note that this allows nodes to have different sets of indices.
"""
assign_chain(g::AbstractExGraph, nd::ExNode{C}) where {C} =
assign_chain!(g, nd, getguards(nd), Vector{Symbol}())
function assign_chain_index_replacements(g::AbstractExGraph, chain::Vector{Symbol})
nd = g[chain[1]]
root_nd = g[chain[end]]
st = Dict(zip(varidxs(nd), varidxs(nd)))
for i=2:length(chain)
prev_idxs = get_indices(getexpr(g[chain[i-1]]))[1]
cur_idxs = varidxs(g[chain[i]])
pair_st = Dict(zip(prev_idxs, cur_idxs))
new_st = Dict()
for (k, v) in st
if haskey(pair_st, v)
# propagate replacements
new_st[k] = pair_st[v]
end
end
st = new_st
end
# indices that occur in RHS of the root assignment node, but not on its LHS
root_free_idxs_ = find_indices(to_expr(root_nd)) |> flatten |> Set
root_free_idxs = Any[idx for idx in root_free_idxs_ if !in(idx, values(st))]
free_st = index_replacements(Set(keys(st)), root_free_idxs)
rev_st = Dict(zip(values(st), keys(st)))
return merge(rev_st, free_st)
end
"""
Collapse unnecessary assignment nodes, rewriting all affected nodes. Example:
tmp1 = x * y
z = tmp1
will be rewritten to
z = x * y
"""
function fuse_assigned(g::AbstractExGraph; outvars=nothing)
new_g = reset_tape(g)
for nd in g.tape
if isa(nd, ExNode{:(=)})
chain = assign_chain(g, nd)
root_assign_nd = g[chain[end]]
new_ex = getexpr(root_assign_nd)
# st = assign_chain_index_replacements(g, chain)
# new_ex = subs(new_ex_, st)
new_nd = copy(root_assign_nd; var=getvar(nd), ex=new_ex)
push!(new_g, new_nd)
else
push!(new_g, copy(nd))
end
end
new_g = remove_unused(new_g, outvars == nothing ? [varname(new_g[end])] : outvars)
return new_g
end
function fuse_assigned(g::ExGraph; outvars=nothing)
new_g = reset_tape(g)
for nd in g.tape
if isa(nd, ExNode{:(=)})
chain = assign_chain(g, nd)
root_assign_nd = g[chain[end]]
new_ex = getexpr(root_assign_nd)
new_nd = copy(root_assign_nd; var=getvar(nd), ex=new_ex)
push!(new_g, new_nd)
else
push!(new_g, copy(nd))
end
end
new_g = remove_unused(new_g, outvars == nothing ? [varname(new_g[end])] : outvars)
return new_g
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 5631 |
# exnode.jl - ExNode, the building block of ExGraph
#
# There are several categories of ExNodes:
#
# * :call - single function call, e.g. ExNode{:call}(z = x + y)
# * :bcast - broadcasting, e.g. ExNode{:bcast}(y = exp.(x))
# * :(=) - assignment, e.g. ExNode{:(=)}(y = x)
# * :input - input variable
# * :constant - constant, e.g. ExNode{:constant}(x = 42)
# * :opaque - unparsed expression that can contain any subexpression;
# a graph with opaque nodes isn't valid for most tasks,
# but it may be converted to normalized graph using `reparse(g)`
# exnode
mutable struct ExNode{C} # C - category of node, e.g. :call, :=, etc.
var::Union{Symbol, Expr} # variable name, possibly with indices
ex::Any # primitive expression that produces the var
guards::Vector{Expr} # guards, turning ex to 0 when false
val::Any # example value
meta::Dict # node metadata & optional parameters
end
function ExNode{C}(var::Union{Symbol,Expr}, ex::Any;
guards=[], val=nothing, meta=Dict()) where C
return ExNode{C}(var, ex, guards, val, meta)
end
function ExNode{C}(full_ex::Expr; val=nothing) where C
@assert full_ex.head == :(=)
var = full_ex.args[1]
ex = without_guards(full_ex.args[2])
guards = find_guards(full_ex.args[2])
return ExNode{C}(var, ex; guards=guards, val=val)
end
## accessors
getcategory(nd::ExNode{C}) where {C} = C
getvar(nd::ExNode) = nd.var
setvar!(nd::ExNode, var::Union{Symbol,Expr}) = (nd.var = var)
varname(nd::ExNode)::Symbol = isa(nd.var, Symbol) ? nd.var : nd.var.args[1]
varidxs(nd::ExNode)::Vector = isa(nd.var, Symbol) ? [] : nd.var.args[2:end]
varidxs(nd::ExNode{:input})::Vector = IDX_NAMES[1:ndims(getvalue(nd))]
getexpr(nd::ExNode) = nd.ex
setexpr!(nd::ExNode, ex::Any) = (nd.ex = ex)
getguards(nd::ExNode) = nd.guards
setguards!(nd::ExNode, guards::Vector{Expr}) = (nd.guards = guards)
getvalue(nd::ExNode) = nd.val
setvalue!(nd::ExNode, val) = (nd.val = val)
Base.copy(nd::ExNode{C}; category=C, var=nd.var, ex=nd.ex,
guards=nd.guards, val=nd.val, meta=nd.meta) where {C} =
ExNode{category}(var, ex, guards, val, meta)
## pseudo-accessors
function getexpr_kw(nd::ExNode)
if haskey(nd.meta, :kw) && !isempty(nd.meta[:kw])
ex = copy(getexpr(nd))
insert!(ex.args, 2, make_kw_params(nd.meta[:kw]))
return ex
else
return getexpr(nd)
end
end
function setexpr_kw!(nd::Union{ExNode{:call}, ExNode{:ctor}}, ex)
f = ex.args[1]
args, kw = parse_call_args(ex)
nd.ex = :($f($(args...)))
nd.meta[:kw] = kw
end
setexpr_kw!(nd::ExNode, ex) = setexpr!(nd, ex)
## to_expr and friends
"""
Convert ExNode to a full expression, e.g. for vectorized notation:
z = x + y
or for indexed notation:
z[i] = x[i] + y[i]
"""
function to_expr(nd::ExNode)
var = getvar(nd)
ex = with_guards(getexpr(nd), getguards(nd))
return :($var = $ex)
end
"""
Same as to_expr(ExNode), but includes keyword arguments if any
"""
function to_expr_kw(nd::ExNode)
var = getvar(nd)
ex = with_guards(getexpr_kw(nd), getguards(nd))
return :($var = $ex)
end
"""
Convert ExNode to a fortmat compatible with Einsum.jl
"""
function to_einsum_expr(nd::ExNode)
depwarn_eingraph(:to_einsum_expr)
ex = getexpr(nd)
v = varname(nd)
assign_ex = Expr(:(:=), getvar(nd), ex)
macrocall_ex = Expr(:macrocall, Symbol("@einsum"), assign_ex)
return Expr(:block, macrocall_ex)
end
function to_einsum_expr(nd::ExNode, var_size)
depwarn_eingraph(:to_einsum_expr)
ex = getexpr(nd)
v = varname(nd)
init_ex = :($v = zeros($(var_size))) # TODO: handle data types other than Float64
assign_ex = Expr(:(=), getvar(nd), ex)
macrocall_ex = Expr(:macrocall, Symbol("@einsum"), assign_ex)
return Expr(:block, init_ex, macrocall_ex)
end
## dependencies
"""Get names of dependenices of this node"""
dependencies(nd::ExNode{:input}) = Symbol[]
dependencies(nd::ExNode{:constant}) = get_var_names(getexpr(nd))
dependencies(nd::ExNode{:(=)}) = get_var_names(getexpr(nd))
dependencies(nd::ExNode{:call}) = get_var_names(getexpr(nd))
dependencies(nd::ExNode{:bcast}) = get_var_names(getexpr(nd))
dependencies(nd::ExNode{:tuple}) = [split_indexed(dep)[1] for dep in getexpr(nd).args]
dependencies(nd::ExNode{:ref}) = getexpr(nd).args
dependencies(nd::ExNode{:opaque}) = get_var_names(getexpr(nd); rec=true)
dependencies(nd::ExNode{:field}) = [getexpr(nd).args[1]]
dependencies(nd::ExNode{:ctor}) =
[getexpr(nd).args[2], values(get(nd.meta, :kw, Dict()))...]
## node utils
# varsize(nd::ExNode{:tuple}) = map(size, getvalue(nd))
# varsize(nd::ExNode) = size(getvalue(nd))
# buffer_expr(nd::ExNode{:tuple})
function Base.show(io::IO, nd::ExNode{C}) where C
val = getvalue(nd)
if val == nothing
val = "nothing"
elseif isa(val, AbstractArray)
val = "<$(typeof(val))>"
elseif isa(val, Tuple)
val = ([isa(v, AbstractArray) ? "<$(typeof(v))>" : v for v in val]...,)
elseif isstruct(val)
val = "$(typeof(getvalue(nd)))"
end
ex_str = "ExNode{$C}($(to_expr_kw(nd)) | $val)"
print(io, ex_str)
end
isindexed(nd::ExNode) = any(isref, get_vars(to_expr(nd)))
function rewrite(nd::ExNode{C}, pat, rpat; rw_opts...) where C
full_ex = to_expr(nd)
new_full_ex = rewrite(full_ex, pat, rpat; rw_opts...)
@assert new_full_ex.head == :(=)
var, ex = new_full_ex.args[1:2]
return copy(nd; category=:opaque, var=var, ex=ex, val=nothing)
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 2752 |
# expand_deps.jl - collect & expand all dependencies of a variable in AbstractExGraph
## collect_deps
function collect_deps!(g::AbstractExGraph, nd::ExNode, depth::Int, result::Set{Symbol})
if depth > 0
for dep in dependencies(nd)
if haskey(g, dep)
collect_deps!(g, g[dep], depth - 1, result)
end
end
end
push!(result, varname(nd))
end
function collect_deps!(g::AbstractExGraph, ex::Expr, depth::Int, result::Set{Symbol})
vnames = get_var_names(ex, rec=true)
for vname in vnames
collect_deps!(g, vname, depth, result)
end
end
function collect_deps!(g::AbstractExGraph, x::Symbol, depth::Int, result::Set{Symbol})
if haskey(g, x)
collect_deps!(g, g[x], depth, result)
end
end
function collect_deps!(g::AbstractExGraph, x, depth::Int, result::Set{Symbol})
# do nothing
end
function collect_deps(g::AbstractExGraph, nd::ExNode, depth::Int=typemax(Int))
result = Set{Symbol}()
collect_deps!(g, nd, depth, result)
return result
end
function collect_deps(g::AbstractExGraph, ex::Expr, depth::Int=typemax(Int))
result = Set{Symbol}()
collect_deps!(g, ex, depth, result)
return result
end
function collect_deps(g::AbstractExGraph, x::Symbol, depth::Int=typemax(Int))
result = Set{Symbol}()
collect_deps!(g, x, depth, result)
return result
end
function collect_deps(g::AbstractExGraph, xs::Vector{Symbol}, depth::Int=typemax(Int))
result = Set{Symbol}()
for x in xs
collect_deps!(g, x, depth, result)
end
return result
end
collect_deps(g::AbstractExGraph, x, depth::Int=typemax(Int)) = Set{Symbol}()
## expand_deps
function expand_deps!(g::AbstractExGraph, nd::ExNode{:input}, depth::Int, result::Vector{Expr})
# do nothing
end
function expand_deps!(g::AbstractExGraph, nd::ExNode{:constat}, depth::Int, result::Vector{Expr})
push!(result, to_expr(nd))
end
function expand_deps!(g::AbstractExGraph, nd::ExNode{:(=)}, depth::Int, result::Vector{Expr})
if depth > 0
expand_deps!(g, [g[var] for var in dependencies(nd)], depth - 1, result)
push!(result, to_expr(nd))
end
end
function expand_deps!(g::AbstractExGraph, nd::ExNode{:call}, depth::Int, result::Vector{Expr})
if depth > 0
for dep in dependencies(nd)
expand_deps!(g, g[end], depth - 1, result)
end
push!(result, to_expr(nd))
end
end
function expand_deps(g::AbstractExGraph, nd::ExNode, depth::Int=typemax(Int))
deps = collect_deps(g, nd, depth)
ex = Expr(:block)
for nd in g.tape
if !isa(nd, ExNode{:input}) && in(varname(nd), deps)
push!(ex.args, to_expr(nd))
end
end
return ex
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 6354 |
# funexpr.jl - extract arguments and (sanitized) expression of a function body.
#
# Here sanitization means removing things like LineNumberNode and replacing
# hard-to-consume nodes (e.g. `GloabalRef` and `return`) with their simple
# counterparts (e.g. expression with `.` and variable node).
sanitize(x) = x
sanitize(ex::Expr) = sanitize(ExH(ex))
sanitize(ex::LineNumberNode) = nothing
sanitize(m::Module) = Symbol(string(m))
sanitize(ex::ExH{:line}) = nothing
sanitize(ex::ExH{:return}) = sanitize(ex.args[1])
sanitize(x::Core.SSAValue) = Symbol("SSAValue_$(x.id)")
# sanitize(ex::ExH{:macrocall}) = nothing # note: ignoring macros, experimental
function sanitize(ex::ExH{:block})
sanitized_args = [sanitize(arg) for arg in ex.args]
new_args = filter(arg -> arg != nothing, sanitized_args)
return length(new_args) == 1 ? new_args[1] : Expr(ex.head, new_args...)
end
function sanitize(ex::ExH{:quote})
return length(ex.args) == 1 ? QuoteNode(ex.args[1]) : ex
end
function sanitize(ex::ExH{H}) where H
sanitized_args = [sanitize(arg) for arg in ex.args]
new_args = filter(arg -> arg != nothing, sanitized_args)
return Expr(H, new_args...)
end
function sanitize(ref::GlobalRef)
return Expr(:., Symbol(string(ref.mod)), QuoteNode(ref.name))
end
## recover lowered
const RECOVER_LOWERED_RULES = [
:(Base.broadcast(_f, _xs...)) => :(_f.(_xs...)),
:(Base.broadcast(_m._f, _xs...)) => :(_m._f.(_xs...)),
:(A_mul_B(_x, _y)) => :(_x * _y),
:(A_mul_Bt(_x, _y)) => :(_x * _y'),
:(At_mul_B(_x, _y)) => :(_x' * _y),
:(A_mul_Bc(_x, _y)) => :(_x * _y'),
:(Ac_mul_B(_x, _y)) => :(_x' * _y),
:(Base.literal_pow(Main.:^, _x, _v)) => :(_x ^ _v),
:(Core.apply_type(Base.Val, _x)) => :_x,
# :(Core.getfield(_x, _y)) => :(_x._y),
:(Core.getfield(_x, $(QuoteNode(:_y)))) => :(_x._y),
]
"""
Try to recover an expression from a lowered form. Example:
ex = (Main.sum)((Base.literal_pow)(Main.^, (Base.broadcast)(Main.-, (Main.predict)(W, b, x), y), (Core.apply_type)(Base.Val, 2)))
"""
recover_lowered(x) = x
recover_lowered(ex::Expr) = recover_lowered(ExH(ex))
function recover_lowered(ex::ExH{:block})
recovered_args = [recover_lowered(arg) for arg in ex.args]
new_args = filter(arg -> arg != nothing, recovered_args)
return length(new_args) == 1 ? new_args[1] : Expr(ex.head, new_args...)
end
function recover_lowered(ex::ExH{:call})
# recover arguments
recovered_args = [recover_lowered(arg) for arg in ex.args[2:end]]
new_args = filter(arg -> arg != nothing, recovered_args)
ex = Expr(:call, ex.args[1], new_args...)
# check patterns
for (pat, rpat) in RECOVER_LOWERED_RULES
rex = tryrewrite(ex, pat, rpat)
if rex != nothing
ex = get(rex)
break
end
end
ex = canonical_calls(@__MODULE__, ex) |> subs_bcast_with_dot
return ex
end
function recover_lowered(ex::ExH{H}) where H
recovered_args = [recover_lowered(arg) for arg in ex.args]
new_args = filter(arg -> arg != nothing, recovered_args)
return Expr(H, new_args...)
end
function recover_lowered_rec(ex)
ex_old = ex
ex = recover_lowered(ex)
# TODO: create a function for this
while string(ex) != string(ex_old) # no more changes
ex_old = ex
ex = recover_lowered(ex)
end
return ex
end
## funexpr
function replace_slots(ex::Expr, slotnames::Vector)
new_args = Array{Any}(undef, length(ex.args))
for (i, arg) in enumerate(ex.args)
if isa(arg, Slot)
new_args[i] = slotnames[arg.id]
elseif isa(arg, Expr)
new_args[i] = replace_slots(arg, slotnames)
else
new_args[i] = arg
end
end
new_ex = Expr(ex.head, new_args...)
return new_ex
end
function arg_names(sig::Expr)
# note: ignoring type parameters, may not always be the right thing
while sig.head == :where
sig = sig.args[1]
end
return [isa(arg, Symbol) ? arg : arg.args[1] for arg in sig.args[2:end]]
end
function arg_types(sig::Expr)
# note: ignoring type parameters, may not always be the right thing
while sig.head == :where
sig = sig.args[1]
end
return [isa(arg, Symbol) ? Any : arg.args[2] for arg in sig.args[2:end]]
end
function to_expr(src::CodeInfo)
if isa(src.code, Array{Any,1})
slotnames = [Symbol(name) for name in Base.sourceinfo_slotnames(src)]
body = Expr(:body, src.code...)
result = replace_slots(body, slotnames)
return result
else
error("Can't convert CodeInfo to expression: CodeInfo is compressed: $src")
end
end
function concretise_types(code::Expr, types::NTuple{N, DataType}) where N
sig_types = arg_types(code.args[1])
st = Dict(zip(sig_types, types))
return subs(code, st)
end
"""
Replace all calls to an inner constructor with the corresponding outer constructor
"""
function replace_inner_constr(f, ex::Expr)
f_name = Meta.parse(string(f))
constr = :($f_name(_xs...))
ex = rewrite_all(ex, :(new{_T1, _T2, _T3}(_xs...)), constr)
ex = rewrite_all(ex, :(new{_T1, _T2}(_xs...)), constr)
ex = rewrite_all(ex, :(new{_T}(_xs...)), constr)
ex = rewrite_all(ex, :(new(_xs...)), constr)
return ex
end
function funexpr(f::Union{Function, DataType, UnionAll}, types::NTuple{N,DataType}) where N
method = get_method(f, types)
file = string(method.file)
linestart = method.line
try
ex, _ = get_source_at(file, linestart)
ex.head == :toplevel && throw(LoadError(file, Int(linestart), "Bad code found"))
ex = concretise_types(ex, types)
ex = replace_inner_constr(f, ex)
return arg_names(ex.args[1]), sanitize(ex.args[2])
catch err
if isa(err, LoadError)
code = code_lowered(f, types)[1]
args = convert(Vector{Symbol}, code.slotnames[2:end])
ex = to_expr(code) |> sanitize |> recover_lowered_rec
# ex = subs(ex, Dict(:new => parse(string(f))))
return args, ex
else
rethrow(err)
end
end
end
func_expr = funexpr
function get_or_generate_argnames(f, types)
try
args, _ = funexpr(f, types)
return args
catch
return [Symbol("arg$i") for i=1:length(types)]
end
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 5433 |
## topological sort
"""
For each variable in graph, calculate all variables that depend on it.
This is essentially the opposite of `dependencies(nd::ExNode)`, but
operates on variable names rather than nodes.
"""
function dependents(g::AbstractExGraph)
dpts = Dict{Symbol, Vector{Symbol}}()
# prepare all dependent lists
for nd in g.tape
dpts[varname(nd)] = Symbol[]
end
for nd in g.tape
vname = varname(nd)
for dep in dependencies(nd)
if haskey(dpts, dep) # don't include global constants
push!(dpts[dep], vname)
end
end
end
return dpts
end
function topsort_visit!(g::AbstractExGraph, dpts::Dict{Symbol, Vector{Symbol}},
temp_marked::Set{Symbol}, perm_marked::Set{Symbol},
sorted::Vector{Symbol}, vname::Symbol)
if vname in temp_marked
error("Expression graph isn't a DAG!")
end
if !in(vname, temp_marked) && !in(vname, perm_marked)
push!(temp_marked, vname)
for dpt in dpts[vname]
topsort_visit!(g, dpts, temp_marked, perm_marked, sorted, dpt)
end
push!(perm_marked, vname)
delete!(temp_marked, vname)
push!(sorted, vname)
end
end
"""Sort graph topologically"""
function topsort(g::AbstractExGraph)
dpts = dependents(g)
sorted = Symbol[]
temp_marked = Set{Symbol}()
perm_marked = Set{Symbol}()
for vname in keys(dpts)
topsort_visit!(g, dpts, temp_marked, perm_marked, sorted, vname)
end
sg = Espresso.reset_tape(g)
for vname in reverse(sorted)
push!(sg, g[vname])
end
return sg
end
## expand const
"""Expand all constant vars in a given expression"""
function expand_const(g::AbstractExGraph, ex)
st = Dict{Symbol, Any}()
vnames = get_var_names(ex)
for vname in vnames
if haskey(g, vname) && isa(g[vname], ExNode{:constant})
# st[vname] = g[vname].val
st[vname] = getvalue(g[vname])
end
end
return subs(ex, st)
end
reindex_from_beginning(g::ExGraph) = g
## inline / inline unknown
function subgraph_interm_subs_table(sub_g::ExGraph, dont_subs; prefix="")
interm_vars = [varname(sub_nd) for sub_nd in sub_g.tape
if !in(varname(sub_nd), dont_subs)]
new_names = [genname("$(prefix)_$(v)_") for v in interm_vars]
return Dict(zip(interm_vars, new_names))
end
"""
Find definition of a called function and build its subgraph ready for inlining
"""
function make_subgraph(g::ExGraph, nd::ExNode{:call})
mod = @get(g.ctx, :mod, Main) # TODO: Main or current_graph()?
fname = getexpr(nd).args[1]
f = fname isa Symbol ? getproperty(mod, fname) : fname
args = dependencies(nd)
arg_types = ([typeof(getvalue(g[arg])) for arg in args]...,)
params, sub_ex = funexpr(f, arg_types)
sub_g = ExGraph(sub_ex; ctx=g.ctx)
st = Dict(zip(params, args)) # rename internal params to actual arguments
st[varname(sub_g[end])] = varname(nd) # rename output var to this node's
dont_subs = Set(keys(st))
st = merge(st, subgraph_interm_subs_table(sub_g, dont_subs; prefix=fname))
rename!(sub_g, st)
return sub_g
end
function inline_subgraphs(g::ExGraph, inline_subs::Dict{Symbol, ExGraph})
new_g = reset_tape(g)
for nd in g
vname = varname(nd)
if haskey(inline_subs, vname)
for sub_nd in inline_subs[vname]
push!(new_g, sub_nd)
end
else
push!(new_g, nd)
end
end
return new_g
end
function inline_nodes(g::ExGraph, vnames::Set{Symbol})
inline_subs = Dict(vname => make_subgraph(g, g[vname]) for vname in vnames)
return inline_subgraphs(g, inline_subs)
end
iscall(x) = isa(x, Expr) && x.head == :call
function convert_call(g::AbstractExGraph, nd::Union{ExNode{:call}, ExNode{:bcast}})
new_ex = expand_const(g, getexpr(nd)) |> simplify
if isa(new_ex, Symbol) || (isa(new_ex, Expr) && new_ex.head == :ref)
# convert to assignment
return copy(nd; category=:(=), ex=new_ex)
elseif isa(new_ex, Number) || isa(new_ex, AbstractArray)
# convert to constant
if haskey(g.ctx, :bitness)
new_ex = force_bitness(new_ex, Val(g.ctx[:bitness]))
end
return copy(nd; category=:constant, ex=new_ex)
elseif isa(new_ex, Tuple)
return copy(nd; category=:tuple, ex=new_ex)
else
error("Call node $nd is simplified to an unknown non-call $new_ex")
end
end
"""
Given a symbolic name, either adds `2` to the end
or increment existing number. Example:
inc_var_name(:x) # ==> x2
inc_var_name(:x2) # ==> x3
"""
function inc_var_name(var::Symbol)
svar = string(var)
r = match(r"(.*)(\d+)", svar)
if r != nothing
base = r.captures[1]
num = parse(Int, r.captures[2]) + 1
return Symbol("$base$num")
else
return Symbol("$(svar)2")
end
end
function rename_from_beginning(g::ExGraph)
new_g = deepcopy(g)
vars = [getvar(nd) for nd in g]
new_vars = [Symbol("var$i") for i=1:length(vars)]
st = Dict(zip(vars, new_vars))
rename!(new_g, st)
return new_g
end
"""
A single number to represent a graph.
Insensitive to variable names.
"""
function graph_hash(g::ExGraph)
return rename_from_beginning(g) |> to_expr |> hash
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 1434 |
flip(X::Matrix{T}) where {T} = flipdim(flipdim(X, 1), 2)
sum_1(X) = sum(X, dims=1)
sum_2(X) = sum(X, dims=2)
squeeze_sum(A::Array{T,N}, dim::Integer) where {T,N} = squeeze(sum(A, dims=dim), dims=dim)
squeeze_sum_1(A) = squeeze_sum(A, 1)
squeeze_sum_2(A) = squeeze_sum(A, 2)
## constructor
function struct_like(m)
try
return typeof(m)()
catch e
if e isa MethodError
println("ERROR: Trying to instantiate mutable type $(typeof(m)), " *
"but it doesn't have a default constructor")
end
throw(e)
end
end
function __construct(mem::Dict, dzdm_v::Symbol, m::T; fields...) where T
if isimmutable(m)
return __construct_immutable(T; fields...)
else
dz!dm = @get_or_create(mem, dzdm_v, struct_like(m))
for (f, val) in fields
setfield!(dz!dm, f, val)
end
return dz!dm
end
end
function __construct(m::T; fields...) where T
if isimmutable(m)
return __construct_immutable(T; fields...)
else
dz!dm = struct_like(m)
for (f, val) in fields
setfield!(dz!dm, f, val)
end
return dz!dm
end
end
function __construct_immutable(::Type{T}; fields...) where T
f2i = Dict((f, i) for (i, f) in enumerate(fieldnames(T)))
vals = Array{Any}(length(f2i))
for (f, val) in fields
vals[f2i[f]] = val
end
return T(vals...)
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 3958 |
# indexing.jl - low-level utils for working with indexed expressions
# TODO: rename since indexing isn't in focus of this package anymore
# const IDX_NAMES = [:i, :j, :k, :m, :n, :p, :q, :r, :s, :l]
## utils
isref(ex::Expr) = ex.head == :ref
isref(x) = false
isindexed(ex::Expr) = isref(ex) || any(isindexed, ex.args)
isindexed(x) = false
"""
Split possibly indexed variable into a name and indices. Examples:
split_indexed(:x) ==> (:x, [])
split_indexed(:(x[i,j])) ==> (:x, [:i,:j])
See also: make_indexed
"""
split_indexed(var) = (var, [])
function split_indexed(ex::Expr)
@assert ex.head == :ref
return convert(Symbol, ex.args[1]), ex.args[2:end]
end
"""
Make indexed variable. Examples:
make_indexed(:x, []) ==> :x
make_indexed(:x, [:i,:j]) ==> :(x[i,j])
See also: split_indexed
"""
function make_indexed(vname::Symbol, vidxs::Vector)
return isempty(vidxs) ? vname : Expr(:ref, vname, vidxs...)
end
"""Generate index names and make an indexed variable using them"""
function with_indices(x::Symbol, start_idx::Int, num_idxs::Int)
return make_indexed(x, IDX_NAMES[start_idx:start_idx+num_idxs-1])
end
with_indices(x::Symbol, num_idxs::Int) = with_indices(x, 1, num_idxs)
## get_vars, get_var_names, get_indices
function get_vars!(x, rec::Bool, result::Vector{Union{Symbol, Expr}})
# do nothing
end
function get_vars!(x::Symbol, rec::Bool, result::Vector{Union{Symbol, Expr}})
push!(result, x)
end
function get_vars!(ex::Expr, rec::Bool, result::Vector{Union{Symbol, Expr}})
get_vars!(ExH(ex), rec, result)
end
function get_vars!(ex::ExH{:ref}, rec::Bool, result::Vector{Union{Symbol, Expr}})
push!(result, Expr(ex))
end
function get_vars!(ex::ExH{:call}, rec::Bool, result::Vector{Union{Symbol, Expr}})
for arg in ex.args[2:end]
if isa(arg, Symbol) || isref(arg)
push!(result, arg)
elseif rec
get_vars!(arg, rec, result)
end
end
end
function get_vars!(ex::ExH{:.}, rec::Bool, result::Vector{Union{Symbol, Expr}})
@assert ex.args[2].head == :tuple "Dot is only allowed in broadcasting: $ex"
for arg in ex.args[2].args
if isa(arg, Symbol) || isref(arg)
push!(result, arg)
elseif rec
get_vars!(arg, rec, result)
end
end
end
function get_vars!(ex::ExH{Symbol("'")}, rec::Bool, result::Vector{Union{Symbol, Expr}})
arg = ex.args[1]
if isa(arg, Symbol) || isref(arg)
push!(result, arg)
elseif rec
get_vars!(arg, rec, result)
end
end
function get_vars!(ex::ExH{:(=)}, rec::Bool, result::Vector{Union{Symbol, Expr}})
get_vars!(ex.args[1], rec, result)
get_vars!(ex.args[2], rec, result)
end
function get_vars!(ex::ExH{:tuple}, rec::Bool, result::Vector{Union{Symbol, Expr}})
for arg in ex.args
get_vars!(arg, rec, result)
end
end
function get_vars!(ex::ExH{:block}, rec::Bool, result::Vector{Union{Symbol, Expr}})
for subex in ex.args
get_vars!(subex, rec, result)
end
end
"""Get variables (`Symbol` or `Expr(:ref)`) involved in exprssion"""
function get_vars(ex::Expr; rec::Bool=false)
result = Vector{Union{Symbol, Expr}}()
get_vars!(ex, rec, result)
return result
end
function get_vars(x::Symbol; rec::Bool=false)
return Union{Symbol, Expr}[x]
end
function get_vars(x; rec::Bool=false)
return Union{Symbol, Expr}[]
end
function get_var_names(ex; rec::Bool=false)
vars = get_vars(ex; rec=rec)
return [split_indexed(var)[1] for var in vars]
end
function get_indices(ex; rec::Bool=false)
vars = get_vars(ex; rec=rec)
return [split_indexed(var)[2] for var in vars]
end
"""
find_vars(ex; rec=true)
Same as `get_vars()`, but recursive by default
"""
find_vars(ex; rec::Bool=true) = get_vars(ex; rec=rec)
find_var_names(ex; rec::Bool=true) = get_var_names(ex; rec=rec)
find_indices(ex; rec::Bool=true) = get_indices(ex; rec=rec)
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 3394 |
# to_inplace.jl - transform ExGraph to buffered/in-place operations
const Num = Number
const Vec = AbstractVector
const Mat = AbstractMatrix
const INPLACE_PHS = Set([:u, :v, :w, :x, :y, :z, :X, :Y, :Z])
const INPLACE_RULES = [
Type[Mat, Mat] => :(Z = X' * Y) => :(mul!(Z, transpose(X), Y)),
Type[Mat, Mat] => :(Z = X * Y') => :(mul!(Z, X, transpose(Y))),
Type[Mat, Mat] => :(Z = X * Y) => :(mul!(Z, X, Y)),
]
function to_inplace(g::ExGraph)
evaluate!(g)
g = expand_fixed_sequences(g)
g = fuse_broadcasting(g)
res = :(begin end)
for nd in g.tape
if getcategory(nd) != :input
vex = to_inplace(g, nd)
# push!(res.args, simplify(subs_size(vex, sizes)))
push!(res.args, vex)
end
end
res = subs_bcast_with_dot(sanitize(res))
return res
end
function to_inplace(g::ExGraph, nd::Union{ExNode{:call}, ExNode{:bcast}, ExNode{:opaque}})
ex = expand_const(g, to_expr_kw(nd)) |> simplify
if isa(nd, ExNode{:call}) && !iscall(ex.args[2])
return to_inplace(g, convert_call(g, nd))
end
# try patterns
dep_vals = [getvalue(g[dep]) for dep in dependencies(nd)]
for (types, (pat, rpat)) in INPLACE_RULES
if all(isa(val, T) for (val, T) in zip(dep_vals, types))
pat = sanitize(pat)
rex = tryrewrite(ex, pat, rpat; phs=INPLACE_PHS)
if rex != nothing
return rex
end
end
end
# try broadcasting
if is_bcast_vec(nd)
lhs_is_scalar = isa(getvalue(nd), Number)
return make_elementwise(to_expr_kw(nd); lhs_is_scalar=lhs_is_scalar)
end
# if LHS is an array, use .= instead of =
if isa(getvalue(nd), AbstractArray)
rex = to_expr_kw(nd)
rex.head = :.=
return rex
end
return to_expr_kw(nd)
end
function to_inplace(g::ExGraph, nd::ExNode{:ctor})
ex = to_expr_kw(nd)
insert!(ex.args[2].args, 3, :mem)
insert!(ex.args[2].args, 4, QuoteNode(varname(nd)))
return ex
end
function to_inplace(g::ExGraph, nd::ExNode)
return to_expr_kw(nd)
end
to_buffered = to_inplace
## @inplacerule
# TODO: copied from XGrad, fix
isparameters(a) = isa(a, Expr) && a.head == :parameters
function without_types(pat)
rpat = copy(pat)
for i=2:length(rpat.args)
a = rpat.args[i]
if !isparameters(a) # parameters aren't modified
rpat.args[i] = isa(a, Expr) ? a.args[1] : a
end
end
return rpat
end
function get_arg_names(pat)
return [isa(a, Expr) ? a.args[1] : a for a in pat.args[2:end] if !isparameters(a)]
end
function get_arg_types(pat)
return [isa(a, Expr) ? eval(Base, a.args[2]) : Any for a in pat.args[2:end] if !isparameters(a)]
end
function add_inplace_rule(mod::Module, tpat, rpat)
@assert tpat.head == :(=)
@assert rpat.head == :call
op = canonical(mod, tpat.args[2].args[1])
rop = canonical(mod, rpat.args[1])
types = get_arg_types(tpat.args[2])
pat = :($(tpat.args[1]) = $(without_types(tpat.args[2])))
# replace function names with canonical names
pat = subs(pat, Dict(tpat.args[2].args[1] => op))
rpat = subs(rpat, Dict(rpat.args[1] => rop))
rule = types => pat => rpat
push!(INPLACE_RULES, rule)
end
macro inplacerule(tpat, rpat)
mod = @__MODULE__
add_inplace_rule(mod, tpat, rpat)
nothing
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 1902 |
function rename!(g::AbstractExGraph, name::Symbol, new_name::Symbol)
return rename!(g, Dict(name => new_name))
end
function rename!(g::AbstractExGraph, st::Dict{Symbol,Symbol})
for nd in g.tape
var = getvar(nd)
new_var = subs(var, st)
setvar!(nd, subs(var, st))
setexpr!(nd, subs(getexpr(nd), st))
delete!(g.idx, var)
g.idx[new_var] = nd
end
return g
end
function rename(g::AbstractExGraph, st::Dict{Symbol,Symbol})
new_g = reset_tape(g)
for nd in g.tape
push!(new_g, copy(nd; var=subs(getvar(nd), st), ex=subs(getexpr(nd), st)))
end
return new_g
end
function mergeex(g1::AbstractExGraph, g2::AbstractExGraph)
g2 = deepcopy(g2)
@assert typeof(g1) == typeof(g2)
gm = typeof(g1)()
# find out what vars in g2 need to be renamed
g1_vars = Set(varname(nd) for nd in g1.tape)
g2_vars = Set(varname(nd) for nd in g2.tape)
need_renaming = Symbol[]
for nd in g2.tape
vname = varname(nd)
if haskey(g1, vname) && getexpr(g1[vname]) != getexpr(nd)
push!(need_renaming, vname)
end
end
# rename variables in g2
new_names = gennames(length(need_renaming))
for (name, new_name) in zip(need_renaming, new_names)
rename!(g2, name, new_name)
end
# concat graphs
for nd in g1.tape
push!(gm, nd)
end
for nd in g2.tape
if !haskey(gm, varname(nd))
push!(gm, nd)
end
end
return gm
end
function mergeex(gs::Vararg{AbstractExGraph})
return reduce(mergeex, gs)
end
function mergeex(exs::Vararg{Expr})
indexed = any(isindexed, exs)
gs = indexed ? [EinGraph(ex) for ex in exs] : [ExGraph(ex) for ex in exs]
gm = mergeex(gs...)
block = to_expr(gm)
res_vars = [g[end].var for g in gs]
push!(block.args, Expr(:tuple, res_vars...))
return block
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 1869 |
# ops.jl - overloaded operators for constucting symbolic expressions.
#
# A couple of examples:
#
# :x ⊕ :y ==> :(x + y)
# 2 ⊗ :(x ⊕ y) ==> :(2 * (x + y))
# import Base: +, -, *, /, .+, .-, .*, ./
# ⊕(ex::Symbolic, v::Numeric) = :($ex + $v)
# ⊕(v::Numeric, ex::Symbolic) = :($v + $ex)
# ⊕(ex1::Symbolic, ex2::Symbolic) = :($ex1 + $ex2)
# ⊕(x, y) = x + y
# (-)(ex::Symbolic, v::Numeric) = :($ex - $v)
# (-)(v::Numeric, ex::Symbolic) = :($v - $ex)
# (-)(ex1::Symbolic, ex2::Symbolic) = :($ex1 - $ex2)
# ⊗(ex::Symbolic, v::Numeric) = :($ex * $v)
# ⊗(v::Numeric, ex::Symbolic) = :($v * $ex)
# ⊗(ex1::Symbolic, ex2::Symbolic) = :($ex1 * $ex2)
# ⊗(x, y) = x * y
# (/)(ex::Symbolic, v::Numeric) = :($ex / $v)
# (/)(v::Numeric, ex::Symbolic) = :($v / $ex)
# (/)(ex1::Symbolic, ex2::Symbolic) = :($ex1 / $ex2)
# elementwise operations
⊕(ex::Symbolic, v::Numeric) = :($ex .+ $v)
⊕(v::Numeric, ex::Symbolic) = :($v .+ $ex)
⊕(ex1::Symbolic, ex2::Symbolic) = :($ex1 .+ $ex2)
⊕(x, y) = x .+ y
# (.-)(ex::Symbolic, v::Numeric) = :($ex .- $v)
# (.-)(v::Numeric, ex::Symbolic) = :($v .- $ex)
# (.-)(ex1::Symbolic, ex2::Symbolic) = :($ex1 .- $ex2)
⊗(ex::Symbolic, v::Numeric) = :($ex .* $v)
⊗(v::Numeric, ex::Symbolic) = :($v .* $ex)
⊗(ex1::Symbolic, ex2::Symbolic) = :($ex1 .* $ex2)
⊗(x, y) = x .* y
# (./)(ex::Symbolic, v::Numeric) = :($ex ./ $v)
# (./)(v::Numeric, ex::Symbolic) = :($v ./ $ex)
# (./)(ex1::Symbolic, ex2::Symbolic) = :($ex1 ./ $ex2)
## Note: this is also correct, but generates more ugly expressions
##
## for op in [:(+), :(-), :(*), :(/)]
## for T in [Number, Array]
## @eval begin
## Base.$(op)(ex::Symbolic, v::$T) = :(($$op)($ex,$v))
## Base.$(op)(v::$T, ex::Symbolic) = :(($$op)($v,$ex))
## Base.$(op)(ex1::Symbolic, ex2::Symbolic) = :(($$op($ex1,$ex2)))
## end
## end
## end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 5856 |
# optmizie.jl - optimize ExGraph
const OPT_PHS = [:X, :Y, :Z, :V, :W,
:i, :j, :k, :l, :m, :n, :p, :q, :r, :s, :t]
const OPT_VEC_RULES = [
:(Z = X * transpose(Y)) => :(Z = X * Y'),
:(Z = X * Y') => :(Z = X * Y'),
:(Z = transpose(X) * Y) => :(Z = X' * Y),
:(Z = X' * Y) => :(Z = X' * Y),
]
function remove_unused(g::AbstractExGraph, outvars::Vector{Symbol})
deps = collect_deps(g, outvars)
push!(deps, outvars...)
gr = reset_tape(g)
for nd in g.tape
if in(varname(nd), deps)
push!(gr, nd)
end
end
return gr
end
remove_unused(g::AbstractExGraph, outvar::Symbol) = remove_unused(g, [outvar])
remove_unused(g::AbstractExGraph) = remove_unused(g, [varname(g[end])])
"""
Removes unused variables from multiline expressions, e.g. in:
x = u * v
y = x + 1
z = 2x
`y` isn't used to compute output variable `z`, so it's removed:
x = u * v
z = 2x
"""
function remove_unused(ex::Expr; output_vars=nothing)
ex.head == :block || return ex # nothing to remove
g = ExGraph(ex; fuse=false)
output_vars = output_vars != nothing ? output_vars : [varname(g[end])]
deps = collect_deps(g, output_vars)
for vname in output_vars
push!(deps, vname)
end
res = quote end
for subex in ex.args
if subex.head == :(=)
vname = split_indexed(subex.args[1])[1]
if in(vname, deps)
push!(res.args, subex)
end
else
push!(res.args, subex)
end
end
return res
end
function reset_tape(g::G) where {G <: AbstractExGraph}
# new_g = deepcopy(g)
new_g = G()
new_g.tape = []
new_g.idx = Dict()
new_g.ctx = g.ctx
return new_g
end
function tryoptimize(ex::Expr)
for (pat, subs_ex) in OPT_VEC_RULES
new_ex = tryrewrite(ex, pat, subs_ex; phs=OPT_PHS, allow_ex=false)
if new_ex != nothing
genname_patterns = unique(findex(:(genname__(_n)), new_ex))
if !isempty(genname_patterns)
new_names = gennames(length(genname_patterns))
st = Dict(zip(genname_patterns, new_names))
return subs(new_ex, st)
else
return new_ex
end
end
end
return nothing
end
function expand_fixed_sequences(g::ExGraph, nd::ExNode)
ex = to_expr(nd)
changed = false
for dep in dependencies(nd)
expanded = subs(ex, Dict(dep => getexpr(g[dep])))
new_ex = tryoptimize(expanded)
if new_ex != nothing
ex = new_ex
changed = true
end
end
return changed ? copy(nd; category=:opaque, var=ex.args[1], ex=ex.args[2]) : nd
end
"""
Look at each node's dependencies and, if there are known pattern sequences,
rewrite them in a more optimal way.
"""
function expand_fixed_sequences(g::ExGraph)
new_g = reset_tape(g)
for nd in g.tape
if isa(nd, ExNode{:input})
push!(new_g, nd)
else
new_nd = expand_fixed_sequences(g, nd)
push!(new_g, new_nd)
end
end
new_g = remove_unused(new_g, varname(new_g[end]))
# new_g = fuse_assigned(new_g)
return new_g
end
# common subexpression elimination
safe_size(a::AbstractArray) = size(a)
safe_size(a) = nothing
function eliminate_common(g::AbstractExGraph)
g = reindex_from_beginning(g)
new_g = reset_tape(g)
existing = Dict() # index of existing expressions
st = Dict{Symbol,Symbol}() # later var -> previous var with the same expression
for nd in g.tape
new_full_ex = subs(to_expr_kw(nd), st)
vname, vidxs = split_indexed(new_full_ex.args[1])
key = string((vidxs, new_full_ex.args[2]))
if haskey(existing, key) &&
(g[vname] |> getvalue |> safe_size) == (g[existing[key]] |> getvalue |> safe_size)
st[vname] = existing[key]
else
# C = getcategory(nd)
new_nd = copy(nd)
setexpr_kw!(new_nd, new_full_ex.args[2])
push!(new_g, new_nd)
existing[key] = vname
end
end
rename!(new_g, st)
return new_g
end
# fuse broadcasting
function is_bcast_vec(nd::ExNode{:opaque})
# convert to expression, re-parse and check every node
return all(is_bcast_vec(nd) for nd in ExGraph(to_expr(nd)).tape)
end
const OLD_BCAST_OPS = Set([:.+, :.-, :.*, :./, :.^])
is_bcast_vec(nd::ExNode{:call}) = getexpr(nd).args[1] in OLD_BCAST_OPS
is_bcast_vec(nd::ExNode{:bcast}) = true
is_bcast_vec(nd::ExNode) = false
function fuse_broadcasting_node(g::ExGraph, new_g::ExGraph, nd::ExNode)
dep_nds = [new_g[dep] for dep in dependencies(nd)]
if any(is_bcast_vec(dep_nd) for dep_nd in dep_nds)
# at least one dependency is broadcasting
# transform node to :opaque and expand dep expression
st = Dict{Any, Any}()
for dep_nd in dep_nds
if is_bcast_vec(dep_nd)
# if dependency is broadcasting, replace its name with its expression
dep_ex = getexpr(dep_nd)
# idx_st = Dict(zip(varidxs(dep_nd),
# get_indices_in_expr(getexpr(nd), varname(dep_nd))))
# new_dep_ex = subs(dep_ex, idx_st)
new_dep_ex = dep_ex
st[getvar(dep_nd)] = new_dep_ex
end
end
new_ex = subs(getexpr(nd), st)
return copy(nd; ex=new_ex, category=:opaque)
else
return nd
end
end
function fuse_broadcasting(g::ExGraph)
new_g = reset_tape(g)
for nd in g.tape
if is_bcast_vec(nd)
push!(new_g, fuse_broadcasting_node(g, new_g, nd))
else
push!(new_g, nd)
end
end
return remove_unused(new_g, varname(g[end]))
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 210 | ## preprocess.jl - preprocess an expression for better parsing
const PREPROCESS_RULES = [
:(mean(abs2, _)) => :(mean(abs2.(_))),
]
function preprocess(ex)
return rewrite_all(ex, PREPROCESS_RULES)
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 9850 |
# rewrite.jl - expression pattern matching and rewriting.
#
# The general idea behind functions in this file is to provide easy means
# of finding specific pieces of expressions and using them elsewhere.
# At the time of writing it is used in 2 parts of this package:
#
# * for applyging derivatives, e.g. `x^n` ==> `n*x^(n-1)`
# * for expression simplification, e.g. `1 * x` ==> `x`
#
# Pieces of expression are matched to so-called placeholders - symbols that either
# start with `_` (e.g. `_x`) or are passed via `phs` paraneter, or set globally
# using `set_default_placeholders(::Set{Symbol})`. Using list of placeholders
# instead of _-prefixed names is convenient when writing a lot of transformation
# rules where using underscores creates unnecessary noise.
const Symbolic = Union{Expr, Symbol}
const Numeric = Union{Number, Array}
## pattern matching
const DEFAULT_PHS = [Set{Symbol}()]
set_default_placeholders(set::Set{Symbol}) = (DEFAULT_PHS[1] = set)
isplaceholder(x, phs) = false
isplaceholder(x::Symbol, phs) = (startswith(string(x), "_")
|| in(x, phs))
# isplaceholder(ex::Expr, phs) = ex.head == :... && isplaceholder(ex.args[1], phs)
function find_key(d::Dict{K, V}, val) where {K,V}
r = nothing
for (k,v) in d
if v == val
r = k
break
end
end
return r
end
function matchex!(m::Dict{Symbol,Any}, p::QuoteNode, x::QuoteNode;
opts...)
return matchex!(m, p.value, x.value)
end
function matchex!(m::Dict{Symbol,Any}, ps::Vector, xs::Vector; opts...)
opts = to_dict(opts)
phs = get(opts, :phs, Set([]))
length(ps) <= length(xs) || return false
for i in eachindex(ps)
if isa(ps[i], Expr) && ps[i].head == :... && isplaceholder(ps[i].args[1], phs)
p = ps[i].args[1]
haskey(m, p) && m[p] != xs[i] && m[p] != xs[i:end] && return false
# TODO: add something here?
m[p] = xs[i:end]
return true
else
matchex!(m, ps[i], xs[i]; opts...) || return false
end
end
# matched everything, didn't encounter dots expression
return length(ps) == length(xs)
end
function matchex!(m::Dict{Symbol,Any}, p, x; phs=DEFAULT_PHS[1], allow_ex=true, exact=false)
allow_ex = exact ? false : allow_ex # override allow_ex=false if exact==true
if isplaceholder(p, phs)
if haskey(m, p) && m[p] != x
# different bindings to the same pattern, treat as no match
return false
elseif !allow_ex && isa(x, Expr)
# x is expression, but matching to expression is not allowed, treat as no match
return false
elseif exact
k = find_key(m, x)
if k != p
return false
else
m[p] = x
return true
end
else
m[p] = x
return true
end
elseif isa(p, Expr) && isa(x, Expr)
return (matchex!(m, p.head, x.head) &&
matchex!(m, p.args, x.args; phs=phs, allow_ex=allow_ex, exact=exact))
else
return p == x
end
end
"""
Match expression `ex` to a pattern `pat`, return nullable dictionary of matched
symbols or rpatpressions.
Example:
```
ex = :(u ^ v)
pat = :(_x ^ _n)
matchex(pat, ex)
# ==> Union{ Dict{Symbol,Any}(:_n=>:v,:_x=>:u), Void }
```
NOTE: two symbols match if they are equal or symbol in pattern is a placeholder.
Placeholder is any symbol that starts with '_'. It's also possible to pass
list of placeholder names (not necessarily starting wiht '_') via `phs` parameter:
```
ex = :(u ^ v)
pat = :(x ^ n)
matchex(pat, ex; phs=Set([:x, :n]))
# ==> Union{ Dict{Symbol,Any}(:n=>:v,:x=>:u), Void }
```
Several elements may be matched using `...` expression, e.g.:
```
ex = :(A[i, j, k])
pat = :(x[I...])
matchex(pat, ex; phs=Set([:x, :I]))
# ==> Union{ Dict(:x=>:A, :I=>[:i,:j,:k]), Void }
```
Optional parameters:
* phs::Set{Symbol} = DEFAULT_PHS[1]
A set of placeholder symbols
* allow_ex::Boolean = true
Allow matchinng of symbol pattern to an expression. Example:
matchex(:(_x + 1), :(a*b + 1); allow_ex=true) # ==> matches
matchex(:(_x + 1), :(a*b + 1); allow_ex=false) # ==> doesn't match
* exact::Boolean = false
Allow matching of the same expression to different keys
matchex(:(_x + _y), :(a + a); exact=false) # ==> matches
matchex(:(_x = _y), :(a + a); exact=true) # ==> doesn't match
"""
function matchex(pat, ex; opts...)
m = Dict{Symbol,Any}()
res = matchex!(m, pat, ex; opts...)
if res
return m
else
return nothing
end
end
"""
Check if expression matches pattern. See `matchex()` for details.
"""
function matchingex(pat, ex; opts...)
return matchex(pat, ex; opts...) != nothing
end
## find rpatpression
function findex!(res::Vector, pat, ex; phs=DEFAULT_PHS[1])
if matchingex(pat, ex; phs=phs)
push!(res, ex)
elseif expr_like(ex)
for arg in ex.args
findex!(res, pat, arg; phs=phs)
end
end
end
"""
Find sub-expressions matching a pattern. Example:
ex = :(a * f(x) + b * f(y))
pat = :(f(_))
findex(pat, ex) # ==> [:(f(x)), :(f(y))]
"""
function findex(pat, ex; phs=DEFAULT_PHS[1])
res = Any[]
findex!(res, pat, ex; phs=phs)
return res
end
## substitution
"""
Given a list of expression arguments, flatten the dotted ones. Example:
args = [:foo, :([a, b, c]...)]
flatten_dots(args)
# ==> [:foo, :a, :b, :c]
"""
function flatten_dots(args::Vector)
new_args = Vector{Any}()
for arg in args
if isa(arg, Expr) && arg.head == :... && isa(arg.args[1], AbstractArray)
for x in arg.args[1]
push!(new_args, x)
end
else
push!(new_args, arg)
end
end
return new_args
end
"""
Substitute symbols in `ex` according to substitute table `st`.
Example:
ex = :(x ^ n)
subs(ex, x=2) # ==> :(2 ^ n)
alternatively:
subs(ex, Dict(:x => 2)) # ==> :(2 ^ n)
If `ex` contains a :(xs...) argument and `st` contains an array-valued
sabstitute for it, the substitute will be flattened:
ex = :(foo(xs...))
subs(ex, Dict(:xs => [:a, :b, :c]))
# ==> :(foo(a, b, c))
"""
function subs(ex::Expr, st::Dict)
if haskey(st, ex)
return st[ex]
# elseif ex.head == :... && haskey(st, ex.args[1])
else
new_args = [subs(arg, st) for arg in ex.args]
new_args = flatten_dots(new_args)
return Expr(ex.head, new_args...)
end
end
function subs(s::Symbol, st::Dict)
return haskey(st, s) ? st[s] : s
end
subs(q::QuoteNode, st::Dict) = QuoteNode(subs(q.value, st))
subs(x::Any, st::Dict) = x
subs(ex; st...) = subs(ex, to_dict(st))
## remove rpatpression
"""
Remove rpatpression conforming to a pattern.
Example:
ex = :(x * (m == n))
pat = :(_i == _j)
ex = without(ex, pat) # ==> :x
"""
function without(ex::Expr, pat; phs=DEFAULT_PHS[1])
new_args_without = [without(arg, pat; phs=phs) for arg in ex.args]
new_args = filter(arg -> !matchingex(pat, arg; phs=phs), new_args_without)
if ex.head == :call && length(new_args) == 2 &&
(ex.args[1] == :+ || ex.args[1] == :*)
# pop argument of now-single-valued operation
# TODO: make more general, e.g. handle (x - y) with x removed
return new_args[2]
elseif ex.head == :call && length(new_args) == 1 && ex.args[1] == :*
return 1.0
elseif ex.head == :call && length(new_args) == 1 && ex.args[1] == :+
return 0.0
else
return Expr(ex.head, new_args...) |> simplify
end
end
without(x, pat; phs=DEFAULT_PHS[1]) = x
## rewriting
"""
rewrite(ex, pat, rpat)
Rewrite expression `ex` according to a transform from pattern `pat`
to a substituting expression `rpat`.
Example (derivative of x^n):
ex = :(u ^ v)
pat = :(_x ^ _n)
rpat = :(_n * _x ^ (_n - 1))
rewrite(ex, pat, rpat) # ==> :(v * u ^ (v - 1))
"""
function rewrite(ex::Symbolic, pat::Symbolic, rpat::Any; opts...)
st = matchex(pat, ex; opts...)
if st == nothing
error("Expression $ex doesn't match pattern $pat")
else
return subs(rpat, st)
end
end
"""
Same as rewrite, but returns Union{Expr, Void} and doesn't throw an error
when expression doesn't match pattern
"""
function tryrewrite(ex::Symbolic, pat::Symbolic, rpat::Any; opts...)
st = matchex(pat, ex; opts...)
if st == nothing
return nothing
else
return subs(rpat, st)
end
end
"""
rewrite_all(ex, rules)
Recursively rewrite an expression according to a list of rules like [pat => rpat]
Example:
ex = :(foo(bar(foo(A))))
rules = [:(foo(x)) => :(quux(x)),
:(bar(x)) => :(baz(x))]
rewrite_all(ex, rules; phs=[:x])
# ==> :(quux(baz(quux(A))))
"""
function rewrite_all(ex::Symbolic, rules; opts...)
new_ex = ex
if isa(ex, Expr)
new_args = [rewrite_all(arg, rules; opts...)
for arg in ex.args]
new_ex = Expr(ex.head, new_args...)
end
for (pat, rpat) in rules
if matchingex(pat, new_ex; opts...)
new_ex = rewrite(new_ex, pat, rpat; opts...)
end
end
return new_ex
end
"""
rewrite_all(ex, pat, rpat)
Recursively rewrite all occurrences of a pattern in an expression.
Example:
ex = :(foo(bar(foo(A))))
pat = :(foo(x))
rpat = :(quux(x))
rewrite_all(ex, pat, rpat; phs=[:x])
# ==> :(quux(bar(quux(A))))
"""
function rewrite_all(ex::Symbolic, pat::Symbolic, rpat; opts...)
return rewrite_all(ex, [pat => rpat]; opts...)
end
rewrite_all(x, pat, rpat; opts...) = x
rewrite_all(x, rules; opts...) = x
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 3185 |
# simplify.jl - simplify numeric expressions in Julia.
#
# Common examples of expressions that may be simplified are multiplication
# by 1 or fully numeric expressions that may be just calculated out.
#
# Simplification is performed by rewriting original expression according to
# a list of simplification rules defined using macro `@simple_rule`.
# This macro as well as function `simplify` are exposed to the outer world.
# TODO: check if it's possible to add new simplification rules from
# outside the module
const SIMPLE_RULES = Dict{Symbolic, Any}()
const SIMPLE_PHS = Set([:x, :y, :a, :b])
"""
Macro to add simplification rules. Example:
@simple_rule (-x * -y) (x * y)
where `(-x * -y)` is a pattern to match expression and `(x * y)` is what
it should be transformed to (see `rewrite()` to understand expression rewriting).
Symbols $SIMPLE_PHS may be used as placeholders when defining new rules, all
other symbols will be taken literally.
"""
macro simple_rule(pat, subex)
SIMPLE_RULES[pat] = subex
nothing
end
is_calculable(x::Numeric) = true
is_calculable(x::Symbol) = false
is_calculable(ex::Expr) = (ex.head == :call
&& reduce(&, [is_calculable(arg)
for arg in ex.args[2:end]]))
is_calculable(c::Colon) = false
tryeval(ex) = is_calculable(ex) ? eval(ex) : nothing
function _simplify(ex::Expr)
evaled = tryeval(ex)
if evaled != nothing
return evaled
else
simplified_args = [_simplify(arg) for arg in ex.args]
ex_new_args = Expr(ex.head, simplified_args...)
for (pat, subex) in SIMPLE_RULES
if matchingex(pat, ex_new_args; phs=SIMPLE_PHS)
return rewrite(ex_new_args, pat, subex; phs=SIMPLE_PHS)
end
end
return ex_new_args
end
end
# fallback for non-expressions
_simplify(x) = x
"""
Simplify expression `x` by applying a set of rules. Common examples of
simplification include calculation of fully numeric subexpressions, removing
needless multiplication by 1, etc.
Use macro `@simple_rule` to add new simplification rules.
"""
function simplify(x)
# several rounds of simplification may be needed, so we simplify
# until there are no more changes to `x`, but no more than 5 times
old_x = nothing
rounds = 1
while x != old_x && rounds <= 5
old_x = x
x = _simplify(x)
rounds += 1
end
return x
end
# simplification rules
@simple_rule (x * 1) x
@simple_rule (1 * x) x
@simple_rule (x ^ 1) x
@simple_rule (x ^ 0) 1
@simple_rule (x .* 1) x
@simple_rule (1 .* x) x
@simple_rule (x .^ 1) x
@simple_rule (a * (b * x)) ((a * b) * x)
@simple_rule (-1 * x) -x
@simple_rule (x * -1) -x
@simple_rule (-x * -y) (x * y)
@simple_rule (-1 .* x) -x
@simple_rule (x .* -1) -x
@simple_rule (-x .* -y) (x .* y)
@simple_rule size(x)[1] size(x, 1)
@simple_rule size(x)[2] size(x, 2)
@simple_rule (x, y)[1] x
@simple_rule (x, y)[[1]] x
@simple_rule (x, y)[2] y
@simple_rule (x, y)[[2]] y
@simple_rule (x, y)[[1,2]] (x, y)
@simple_rule (x, y)[[2,1]] (y, x)
@simple_rule (x, y)[[]] ()
@simple_rule (size(x)...,) size(x)
# @simple_rule (x,) x
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 2431 | ## sugar.jl - (hopefully) temporary copy of needed parts of Sugar.jl package
# jlhome() = ccall(:jl_get_julia_home, Any, ())
jlhome() = Sys.BINDIR
function juliabasepath(file)
srcdir = joinpath(jlhome(),"..","..","base")
releasedir = joinpath(jlhome(),"..","share","julia","base")
normpath(joinpath(isdir(srcdir) ? srcdir : releasedir, file))
end
function get_source_file(path::AbstractString, ln)
isfile(path) && return path
# if not a file, it might be in julia base
file = juliabasepath(path)
if !isfile(file)
throw(LoadError(path, Int(ln), ErrorException("file $path not found")))
end
file
end
function get_method(f, types::Type)
get_method(f, (types.parameters...,))
end
function get_method(ftype::DataType, types::Tuple)
world = typemax(UInt)
if !isclosure(ftype)
ftype = Type{ftype}
end
tt = Tuple{ftype, to_tuple(types)...}
(ti, env, meth) = Base._methods_by_ftype(tt, 1, world)[1]
Base.func_for_method_checked(meth, tt)
end
function get_method(f, types::Tuple)
if !all(isconcretetype, types)
error("Not all types are concrete: $types")
end
# make sure there is a specialization with precompile
# TODO, figure out a better way, since this method is not very reliable.
# (I think, e.g. anonymous functions don't work)
precompile(f, (types...,))
x = methods(f, types)
if isempty(x)
throw(NoMethodError(f, types))
elseif length(x) != 1
error("
More than one method found for signature $f $types.
Please use more specific types!
")
end
first(x)
end
"""
Looks up the source of `method` in the file path found in `method`.
Returns the AST and source string, might throw an LoadError if file not found.
"""
function get_source_at(file, linestart)
file = get_source_file(file, linestart)
code, str = open(file) do io
line = ""
for i=1:linestart-1
line = readline(io)
end
try # lines can be one off, which will result in a parse error
Meta.parse(line)
catch e
line = readline(io)
end
while !eof(io)
line = line * "\n" * readline(io)
e = Base.parse_input_line(line; filename=file)
if !(isa(e,Expr) && e.head === :incomplete)
return e, line
end
end
end
code, str
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 10165 |
## tracked.jl - build ExGraph using tracked data types
import Base: +, -, *, /, log, exp, min, max, reshape, transpose, sum,
abs, abs2, >, >=, <, <=, minimum, maximum, getindex
import Statistics: mean
# import Broadcast: broadcasted
const DEFAULT_GRAPH = Ref(ExGraph())
get_default_graph() = DEFAULT_GRAPH[]
set_default_graph(g::ExGraph) = (DEFAULT_GRAPH[] = g)
reset_default_graph!() = (DEFAULT_GRAPH[] = ExGraph())
swap_default_graph!(g::ExGraph) = (og = DEFAULT_GRAPH[]; DEFAULT_GRAPH[] = g; og)
## TRACKED REAL
struct TrackedReal <: Real
graph::ExGraph
var::Symbol
val::Real
end
TrackedReal(var::Symbol, val::Real) = TrackedReal(get_default_graph(), var, val)
Base.show(io::IO, x::TrackedReal) = print(io, "Tracked($(x.var) = $(x.val))")
tracked_val(g::ExGraph, var::Symbol, val::Real) = TrackedReal(g, var, val)
struct TrackedArray{T,N} <: AbstractArray{T,N}
graph::ExGraph
var::Symbol
val::AbstractArray{T,N}
end
TrackedArray(var::Symbol, val::AbstractArray) = TrackedArray(get_default_graph(), var, val)
Base.show(io::IO, x::TrackedArray{T,N}) where {T,N} =
print(io, "Tracked{$T,$N}($(x.var) = $(x.val))")
Base.show(io::IO, ::MIME{Symbol("text/plain")}, x::TrackedArray{T,N}) where {T,N} =
print(io, "Tracked{$T,$N}($(x.var) = $(x.val))")
tracked_val(g::ExGraph, var::Symbol, val::AbstractArray) = TrackedArray(g, var, val)
## conversion and promotion
tracked(g::ExGraph, x::TrackedReal) = x
tracked(g::ExGraph, x::TrackedArray) = x
function tracked(g::ExGraph, x::T) where {T <: Real}
var = genname()
push!(g, ExNode{:constant}(var, x; val=x))
return TrackedReal(g, var, x)
end
function tracked(g::ExGraph, x::T) where {T <: AbstractArray}
var = genname()
push!(g, ExNode{:constant}(var, x; val=x))
return TrackedArray(g, var, x)
end
value(x::TrackedArray) = x.val
value(x::TrackedReal) = x.val
value(x) = x
istracked(x::TrackedReal) = true
istracked(x::TrackedArray) = true
istracked(::Type{T}) where T = (T <: TrackedReal || T <: TrackedArray)
istracked(x) = false
Base.promote_rule(::Type{TrackedReal}, ::Type{<:Real}) = TrackedReal
function Base.convert(::Type{TrackedReal}, x::R) where {R <: Real}
var = genname()
g = get_default_graph()
push!(g, ExNode{:constant}(var, x; val=x))
return TrackedReal(g, var, x)
end
Base.convert(::Type{TrackedReal}, x::TrackedReal) = x
Base.convert(::Type{R}, x::TrackedReal) where {R <: Real} = x.val
## TRACKED ARRAY
# TODO: should write this to graph? presumably no
Base.size(x::TrackedArray) = size(x.val)
# TODO: and these? presumably yes, but be carefull about printing
# Base.getindex(x::TrackedArray, I...) = getindex(x.val, I...)
# Base.setindex!(x::TrackedArray, val, I...) = setindex!(x.val, val, I...)
## conversion and promotion
Base.promote_rule(::Type{TrackedArray}, ::Type{<:AbstractArray}) = TrackedArray
function Base.convert(::Type{TrackedArray}, x::A) where {A <: AbstractArray}
var = genname()
g = get_default_graph()
push!(g, ExNode{:constant}(var, x; val=x))
return TrackedArray(g, var, x)
end
Base.convert(::Type{TrackedArray}, x::TrackedArray) = x
# Base.convert(::Type{<:AbstractArray}, x::TrackedArray) = x.val
## @tracked macro
function track_call(sig)
@assert sig.head == :call
op = sig.args[1]
vars_types, kw = split_params(sig)
call_ex = nothing; ex_in_ex = nothing
if isempty(kw)
call_ex = Expr(:call, op,
[istracked(Core.eval(@__MODULE__, t)) ? :($(v).val) : v
for (v, t) in vars_types]...)
ex_in_ex = Expr(:call, :Expr, QuoteNode(:call), QuoteNode(op),
[(istracked(Core.eval(@__MODULE__, t)) ? Expr(:., sig_var, QuoteNode(:var))
: sig_var) for (sig_var, t) in vars_types]...)
else
call_ex = Expr(:call, op, make_kw_params(kw),
[istracked(Core.eval(@__MODULE__, t)) ? :($(v).val) : v
for (v, t) in vars_types]...)
keys = [k for (k, v) in kw]
# we need to get this:
# :( Expr(:call, :mult, Expr(:parameters, Expr(:kw, :pow, pow)), :(x.var)) )
ex_in_ex = Expr(:call, :Expr, QuoteNode(:call), QuoteNode(op),
Expr(:call, :Expr, QuoteNode(:parameters),
[Expr(:call, :Expr, QuoteNode(:kw), QuoteNode(k), k)
for k in keys]...),
[(istracked(Core.eval(@__MODULE__, t)) ? Expr(:., sig_var, QuoteNode(:var))
: sig_var) for (sig_var, t) in vars_types]...)
end
defquot = quote
function $op($(sig.args[2:end]...))
val = $call_ex
tv = tracked_val(x.graph, genname(), val) # TODO: x may be undefined
ex = $ex_in_ex
nd = ExNode{:call}(tv.var, ex; val=val)
push!(x.graph, nd)
return tv
end
end
return defquot.args[2]
end
function track_bcast(sig)
@assert sig.head == :.
op = sig.args[1]
sig_vars, types = unzip([(arg.args[1], Core.eval(@__MODULE__, arg.args[2]))
for arg in sig.args[2].args])
bcast_ex = Expr(:., op, Expr(:tuple, [istracked(t) ? :($(v).val) : v
for (v, t) in zip(sig_vars, types)]...))
# we want to get this after code generation:
# ex = :(Expr(:., :sin, Expr(:tuple, x.var, y.var)))
ex_in_ex = Expr(:call, :Expr, QuoteNode(:.), QuoteNode(op),
Expr(:call, :Expr, QuoteNode(:tuple),
[istracked(t) ? Expr(:., sv, QuoteNode(:var)) : QuoteNode(:var)
for (sv, t) in zip(sig_vars, types)]...))
defquot = quote
function Broadcast.broadcasted(::typeof($op), $(sig.args[2].args...))
val = $bcast_ex
tv = tracked_val(x.graph, genname(), val) # TODO: x may be undefined
ex = $ex_in_ex
# println(ex)
nd = ExNode{:bcast}(tv.var, ex; val=val)
push!(x.graph, nd)
return tv
end
end
return defquot.args[2]
end
"""
Define a function or broadcasting rule for the specified signature which computes
the result as for ordinary (not tracked) data and writes it to the graph.
Note: this function expects at least 1 parameter of TrackedReal or TrackedArray type
with name `x`.
"""
macro tracked(sig)
if sig.head == :call
return track_call(sig)
elseif sig.head == :.
# TODO: we also need to add the op to broadcast list in `unfuse.jl`
return track_bcast(sig)
else
error("Can only track calls or broadcasting")
end
end
@tracked +(x::TrackedReal, y::TrackedReal)
@tracked -(x::TrackedReal, y::TrackedReal)
@tracked *(x::TrackedReal, y::TrackedReal)
@tracked /(x::TrackedReal, y::TrackedReal)
@tracked -(x::TrackedReal)
# @tracked (Base.:<=)(x::TrackedReal, y::TrackedReal)
# @tracked (Base.:>)(x::TrackedReal, y::TrackedReal)
# @tracked (Base.:>=)(x::TrackedReal, y::TrackedReal)
# @tracked (Base.:<)(x::TrackedReal, y::TrackedReal)
@tracked sin(x::TrackedReal)
@tracked cos(x::TrackedReal)
@tracked exp(x::TrackedReal)
@tracked log(x::TrackedReal)
@tracked abs(x::TrackedReal)
@tracked abs2(x::TrackedReal)
@tracked *(x::TrackedArray, y::TrackedArray)
@tracked maximum(x::TrackedArray)
@tracked getindex(x::TrackedArray, i::Integer)
@tracked getindex(x::TrackedArray, i::Integer, j::Integer)
@tracked getindex(x::TrackedArray, i::Integer, j::Integer, k::Integer)
@tracked getindex(x::TrackedArray, i::Integer, j::Integer, k::Integer, l::Integer)
@tracked reshape(x::TrackedArray, dims::Tuple{Int})
@tracked reshape(x::TrackedArray, dims::Tuple{Int, Int})
@tracked reshape(x::TrackedArray, dims::Tuple{Int, Int, Int})
@tracked reshape(x::TrackedArray, dims::Tuple{Int, Int, Int, Int})
@tracked reshape(x::TrackedArray, dims::Tuple{Int, Int, Int, Int, Int})
@tracked reshape(x::TrackedArray, dims::Tuple{Int, Int, Int, Int, Int, Int})
@tracked sum(x::TrackedArray)
@tracked mean(x::TrackedArray)
@tracked sin.(x::TrackedArray)
@tracked cos.(x::TrackedArray)
@tracked exp.(x::TrackedArray)
@tracked log.(x::TrackedArray)
@tracked log.(b::Integer, x::TrackedArray)
# TODO: make @nontracked macro?
# boolean operators aren't tracked
for op in [:<, :<=, :>, :>=, :(==)]
@eval (Base.$op)(x::TrackedReal, y::TrackedReal) = $op(x.val, y.val)
end
# I couldn't find a way to overload .+ and friends as either call or broadcasting
# fortunately, the list of such unusual operations is small and fixed
function Broadcast.broadcasted(::typeof(+), x::TrackedArray, y::TrackedArray)
val = x.val .+ y.val
var = genname()
nd = ExNode{:call}(var, :($(x.var) .+ $(y.var)); val=val)
push!(x.graph, nd)
return TrackedArray(var, val)
end
function Broadcast.broadcasted(::typeof(-), x::TrackedArray, y::TrackedArray)
val = x.val .- y.val
var = genname()
nd = ExNode{:call}(var, :($(x.var) .- $(y.var)); val=val)
push!(x.graph, nd)
return TrackedArray(var, val)
end
function Broadcast.broadcasted(::typeof(*), x::TrackedArray, y::TrackedArray)
val = x.val .* y.val
var = genname()
nd = ExNode{:call}(var, :($(x.var) .* $(y.var)); val=val)
push!(x.graph, nd)
return TrackedArray(var, val)
end
function Broadcast.broadcasted(::typeof(/), x::TrackedArray, y::TrackedArray)
val = x.val ./ y.val
var = genname()
nd = ExNode{:call}(var, :($(x.var) ./ $(y.var)); val=val)
push!(x.graph, nd)
return TrackedArray(var, val)
end
# TODO: also track dot ops with scalars, e.g. x .+ 1
## utils
function tracked_exgraph(f::Function, args...)
ctx = Dict{Any,Any}(:method => :track)
input_vars = [genname() for i=1:length(args)]
inputs = [iv => a for (iv, a) in zip(input_vars, args)]
g = ExGraph(; ctx=ctx, inputs...)
# replace default graph to capture constants to `g` as well
og = swap_default_graph!(g)
tr_args = [tracked_val(g, var, val) for (var, val) in inputs]
# evaluate function with tracked args
f(tr_args...)
# put original graph back
swap_default_graph!(og)
return g
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 562 |
# types.jl - common types and aliases used throught the code
# name of operation in a :call node - either symbol or Module.symbol
const OpName = Union{Symbol, Expr}
# Wrapper around Expr adding `ex.head` to type parameters thus adding convenient
# type dispatching
mutable struct ExH{H}
head::Symbol
args::Vector
end
Base.show(io::IO, ex::ExH) = print(io, "ExH{:$(ex.head)}($(Expr(ex)))")
Base.convert(::Type{ExH}, ex::Expr) = ExH{ex.head}(ex.head, ex.args)
ExH(ex::Expr) = ExH{ex.head}(ex.head, ex.args)
Expr(ex::ExH) = Expr(ex.head, ex.args...)
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 12673 |
# utils.jl - utility functions
"""Same as `get` function, but evaluates default_expr only if needed"""
macro get(dict, key, default_expr)
return esc(quote
if haskey($dict, $key)
$dict[$key]
else
$default_expr
end
end)
end
"""
Same as `@get`, but creates new object from `default_expr` if
it didn't exist before
"""
macro get_or_create(dict, key, default_expr)
return esc(quote
if !haskey($dict, $key)
$dict[$key] = $default_expr
end
$dict[$key]
end)
end
"""
Same as `@get`, but immediately exits function and return `default_expr`
if key doesn't exist.
"""
macro get_or_return(dict, key, default_expr)
return esc(quote
if haskey($dict, $key)
$dict[$key]
else
return $default_expr
nothing # not reachable, but without it code won't compile
end
end)
end
"""
Get array of size `sz` from a `dict` by `key`. If element doesn't exist or
its size is not equal to `sz`, create and return new array
using `default_expr`. If element exists, but is not an error,
throw ArgumentError.
"""
macro get_array(dict, key, sz, default_expr)
return esc(quote
if (haskey($dict, $key) && !isa($dict[$key], Array))
local k = $key
throw(ArgumentError("Key `$k` exists, but is not an array"))
end
if (!haskey($dict, $key) || size($dict[$key]) != $sz)
# ensure $default_expr results in an ordinary array
$dict[$key] = convert(Array, $default_expr)
end
$dict[$key]
end)
end
"""Flatten vector of vectors in-place"""
function flatten!(b::Vector, a::Vector)
for x in a
if isa(x, AbstractArray)
flatten!(b, x)
else
push!(b, x)
end
end
return b
end
"""Flattenx vector of vectors"""
flatten(a::Vector) = flatten!([], a)
flatten(::Type{T}, a::Vector) where {T} = convert(Vector{T}, flatten(a))
"""Flatten one level of nested vectors"""
function flatten1(a::Vector{Vector{T}}) where T
result = Array(T, 0)
for xs in a
for x in xs
push!(result, x)
end
end
return result
end
# function countdict(a::AbstractArray{T}) where T
# counts = OrderedDict{T, Int}()
# for x in a
# if haskey(counts, x)
# counts[x] += 1
# else
# counts[x] = 1
# end
# end
# return counts
# end
unzip(coll) = map(collect, zip(coll...))
## package-specific stuff
# func_name(f) = Base.function_name(f)
func_name(f) = nameof(f)
# func_mod(f) = Base.function_module(f)
func_mod(f) = Base.parentmodule(typeof(f))
"""
Given a list of symbols such as `[:x, :y, :z]` constructs expression `x.y.z`.
This is useful for building expressions of qualified names such as
`Base.LinAlg.exp`.
"""
function dot_expr(args::Vector{Symbol})
@assert length(args) >= 1
if length(args) == 1
return args[1]
else
ex = Expr(:., args[1], QuoteNode(args[2]))
for i=3:length(args)
ex = Expr(:., ex, QuoteNode(args[i]))
end
return ex
end
end
"""
Return canonical representation of a function name, e.g.:
Base.+ ==> +
Main.+ ==> + (resolved to Base.+)
Base.LinAlg.exp ==> exp
Mod.foo ==> Mod.foo
"""
function canonical(cur_mod::Module, qname)
try
f = getproperty(cur_mod, qname)
if f isa Function
mod = func_mod(f)
name = func_name(f)
# TODO: review operators and module names for Julia 0.7/1.0
if qname in [:.*, :./, :.+, :.-, :.^, :.>, :.<, :.>=, :.<=, :.==]
return qname # for Julia 0.6 only
elseif (mod == cur_mod || mod == Main || mod == Base || mod == Base.Math ||
mod == Base.DSP)
return Symbol(name)
else
# there should be a smarter way to do it...
parts = map(Symbol, split(string(mod), "."))
mod_ex = dot_expr(parts)
return Expr(:., mod_ex, QuoteNode(name))
end
elseif f isa DataType || f isa UnionAll
# parts = split(string(f), ".")
# mod = eval(cur_mod, parse(join(parts[1:end-1], ".")))
# name = parse(parts[end])
return parse(string(f)) # use it for functions as well?
else
error("Can't understand module of $f")
end
catch e
# if qname isn't defined in module `cur_mod`, return it as is
if isa(e, UndefVarError)
return qname
else
throw(e)
end
end
end
function canonical_calls(mod::Module, ex::Expr)
if ex.head == :call
new_args = [canonical_calls(mod, arg) for arg in ex.args[2:end]]
return Expr(:call, canonical(mod, ex.args[1]), new_args...)
elseif ex.head == :.
new_args = [canonical_calls(mod, arg) for arg in ex.args[2:end]]
return Expr(:., canonical(mod, ex.args[1]), new_args...)
else
new_args = [canonical_calls(mod, arg) for arg in ex.args]
return Expr(ex.head, new_args...)
end
end
canonical_calls(mod::Module, x) = x
# context
function to_context(d::Union{Dict{K,V},Vector{Pair{K,V}}}) where {K,V}
ctx = Dict{Any,Any}()
for (k, v) in d
ctx[k] = to_context(v)
end
return ctx
end
to_context(d::Dict{Any,Any}) = d
to_context(x) = x
function expr_like(x)
flds = Set(fieldnames(typeof(x)))
return in(:head, flds) && in(:args, flds)
end
function to_block(exs...)
new_exs = flatten([expr_like(ex) && ex.head == :block ? ex.args : [ex] for ex in exs])
return sanitize(Expr(:block, new_exs...))
end
"""
Propagate substitution rules. Example:
Dict(
:x => y,
:y => z
)
is transformed into:
Dict(
:x => z,
:y => z
)
"""
function prop_subs(st::Dict)
new_st = empty(st)
for (k, v) in st
while haskey(st, v)
v = st[v]
end
new_st[k] = v
end
return new_st
end
function with_guards(ex, guards::Vector{Expr})
if isempty(guards)
return ex
elseif length(guards) == 1
return :($ex * $(guards[1]))
else
return Expr(:call, :*, ex, guards...)
end
end
# dot-operators & broadcasting
const DOT_OPS = Set([:.*, :.+, :./, :.-, :.^])
const SIMPLE_TO_DOT = Dict(:* => :.*, :+ => :.+,
:/ => :./, :- => :.-,
:^ => :.^)
function subs_bcast_with_dot(ex::Expr)
if ex.head == :. && ex.args[1] in DOT_OPS
new_args = [subs_bcast_with_dot(arg) for arg in ex.args[2].args]
return Expr(:call, ex.args[1], new_args...)
elseif ex.head == :. && ex.args[1] in keys(SIMPLE_TO_DOT)
new_args = [subs_bcast_with_dot(arg) for arg in ex.args[2].args]
return Expr(:call, SIMPLE_TO_DOT[ex.args[1]], new_args...)
else
new_args = [subs_bcast_with_dot(arg) for arg in ex.args]
return Expr(ex.head, new_args...)
end
end
subs_bcast_with_dot(x) = x
## is broadcastable
"""
Check if all operations in this expression are broadcasting
"""
is_bcast(ex::Expr) = is_bcast(ExH(ex))
function is_bcast(ex::ExH{:.})
bcast = isa(ex.args[2], Expr) && ex.args[2].head == :tuple
return bcast && all(map(is_bcast, ex.args))
end
function is_bcast(ex::ExH{:call})
bcast_old = ex.args[1] in DOT_OPS
return bcast_old && all(map(is_bcast, ex.args))
end
is_bcast(ex::Symbol) = true
is_bcast(ex::Number) = false
is_bcast(x) = error("Don't know if $x is a broadcast expression")
# also see broadcasting for EinGraph nodes in optimize.jl
## function parsing
"""
Given a call expression, parse regular and keyword arguments
See also: split_params
"""
function parse_call_args(ex::ExH{:call})
ordinary_args = []
kw_args = Dict()
for arg in ex.args[2:end]
if arg isa Expr && arg.head == :kw
kw_args[arg.args[1]] = arg.args[2]
elseif arg isa Expr && arg.head == :parameters
for kw in arg.args
kw_args[kw.args[1]] = kw.args[2]
end
else
push!(ordinary_args, arg)
end
end
return ordinary_args, kw_args
end
function parse_call_args(ex::Expr)
@assert ex.head == :call
return parse_call_args(ExH(ex))
end
"""
Parse call expression into function name, ordinary and keyword arguments.
:kw and :parameters arguments are treated the same way.
The reverse of this operation is make_call_expr()
"""
function parse_call_expr(ex::Expr)
@assert ex.head == :call
op = ex.args[1]
ordinary_args, kw_args = parse_call_args(ex)
return op, ordinary_args, kw_args
end
"""
Make call expression from function name, ordinary and keyword arguments.
The reverse of this operation is parse_call_expr()
"""
function make_call_expr(op::Symbol, args::Vector, kw_args::Dict=Dict{Any,Any}())
if isempty(kw_args)
return Expr(:call, op, args...)
else
return Expr(:call, op, make_kw_params(kw_args), args...)
end
end
"""
Split parameters of a function signature, returning a list of (param name, param type) tuples
and a list of keyword parameters.
See also: parse_call_args
"""
function split_params(sig::Expr)
if length(sig.args) == 1
return Tuple{Symbol,Symbol}[], Any[]
elseif isa(sig.args[2], Expr) && sig.args[2].head == :parameters
kw_params = Any[a.args[1] => a.args[2] for a in sig.args[2].args]
params = [(arg.args[1], arg.args[2]) for arg in sig.args[3:end]]
return params, kw_params
else
return [(arg.args[1], arg.args[2]) for arg in sig.args[2:end]], []
end
end
"""
Remove all :kw and :parameters nodes from a call expression
"""
function without_keywords(ex::Expr)
@assert ex.head == :call
ex = without(ex, Expr(:parameters, Expr(:..., :_x)))
ex = without(ex, Expr(:kw, Expr(:..., :_x)))
return ex
end
function with_keywords(ex::Expr, kw_args::Dict)
@assert ex.head == :call
if isempty(kw_args)
return ex
else
return Expr(:call, ex.args[1], make_kw_params(kw_args), ex.args[2:end]...)
end
end
## function generation
function make_kw_params(kw_args)
kw_params = [Expr(:kw, arg...) for arg in kw_args]
return Expr(:parameters, kw_params...)
end
function make_func_expr(name, args, kw_args, body)
ex = :(function name() end) |> sanitize
# set name
ex.args[1].args[1] = name
# set kw arguments
if !isempty(kw_args)
push!(ex.args[1].args, make_kw_params(kw_args))
end
# set arguments
push!(ex.args[1].args, args...)
if isa(body, Expr) && body.head == :block
push!(ex.args[2].args, body.args...)
else
push!(ex.args[2].args, body)
end
return ex
end
# haskeyexact
# function haskeyexact(d::Dict, key)
# for (k, v) in d
# if k == key && typeof(k) == typeof(key)
# return true
# end
# end
# return false
# end
function make_elementwise(ex; lhs_is_scalar=false)
new_ex = macroexpand(@__MODULE__, :(@. $ex))
if isa(new_ex, Expr) && new_ex.head == :.= && lhs_is_scalar
new_ex.head = :(=) # can't use :.= if LHS is scalar
end
return new_ex
end
## force bitness
force_bitness(x::AbstractFloat, ::Val{32}) = Float32(x)
force_bitness(x::AbstractFloat, ::Val{64}) = Float64(x)
force_bitness(x::AT, ::Val{64}) where {AT <: AbstractArray{T,N}} where {T <: AbstractFloat, N} =
convert(AbstractArray{Float64, N}, x)
force_bitness(x::AT, ::Val{32}) where {AT <: AbstractArray{T,N}} where {T <: AbstractFloat, N} =
convert(AbstractArray{Float32, N}, x)
# don't touch integers since they normally don't affect bitness stability
# e.g. try `rand(Float32, 10) * 2`
force_bitness(x::Integer, ::Val{B}) where B = x
## fixes for Julia 0.7
# to_dict(t::NamedTuple) = Dict(zip(keys(t), t))
to_dict(x::Base.Iterators.Pairs) = Dict(x)
## handling of different modules
const KNOWN_MODULES = Set([:Core, :Base, :MainInclude, :REPL, :Espresso, :XGrad])
function get_caller_module()
s = stacktrace()
for i=2:length(s)
if s[i].linfo isa Core.MethodInstance
mod = s[i].linfo.def.module
if !in(nameof(mod), KNOWN_MODULES)
return mod
end
end
end
return Main
# error("Can't get module of a caller from the stacktrace")
end
# EinGraph deprecation
function depwarn_eingraph(funcsym)
Base.depwarn("Einstein notation is deprecated and will be removed in Espresso 0.4.0",
funcsym)
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 953 |
struct BufCodeGen
eltyp::Type
end
BufCodeGen() = BufCodeGen(Float64)
function buffer_expr(var, eltyp, buffer_var, sz)
if isempty(sz)
return :($var = $eltyp(0.0))
else
return :($var = @get_or_create($buffer_var, $(Expr(:quote, var)),
Array(zeros($eltyp, $sz))))
end
end
function generate_code(codegen::BufCodeGen, g::ExGraph, nd::ExNode)
# nd = cast_const_type(nd, codegen.eltyp)
ex = to_buffered(g, nd)
return ex
end
function generate_code(codegen::BufCodeGen, g::ExGraph)
g = eliminate_common(g)
# g = cast_const_type(g, codegen.eltyp)
ex = to_buffered(g)
init_exs = [buffer_expr(var, codegen.eltyp, :mem, sz) for (var, sz) in g.ctx[:rsizes]
if haskey(g, var) && getcategory(g[var]) != :input]
res = Expr(:block, init_exs..., ex.args...)
return res
end
eval_codegen(codegen::BufCodeGen) = VectorCodeGen(codegen.eltyp)
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 1563 |
struct CuCodeGen
eltyp::Type
end
const FT = Float32
const CUDA_NATIVE_RULES = [
:(log.(x)) => :(CUDAnative.log.(x)),
:(exp.(x)) => :(CUDAnative.exp.(x)),
:(sqrt.(x)) => :(CUDAnative.sqrt.(x)),
:(x .^ n) => :(CUDAnative.pow.(x, __FLOAT_TYPE__(n))),
:(ones(n)) => :(CuArray(ones(__FLOAT_TYPE__, n))),
# :(transpose(x)) => :(permutedims(x, (2,1))), -- seems to cauase segfault in complex cases
]
function cuda_buffer_expr(var, eltyp, buffer_var, sz)
if isempty(sz)
return :($var = $eltyp(0.0))
else
return :($var = @get_or_create($buffer_var, $(Expr(:quote, var)),
CuArray(zeros($eltyp, $sz))))
end
end
function generate_code(codegen::CuCodeGen, g::ExGraph, nd::ExNode)
# nd = cast_const_type(nd, codegen.eltyp)
ex = to_buffered(g, nd)
ex = rewrite_all(ex, CUDA_NATIVE_RULES; phs=[:x, :y, :z, :n])
ex = subs(ex, Dict(:__FLOAT_TYPE__ => codegen.eltyp))
return ex
end
function generate_code(codegen::CuCodeGen, g::ExGraph)
g = eliminate_common(g)
# g = cast_const_type(g, codegen.eltyp)
ex = to_buffered(g)
ex = rewrite_all(ex, CUDA_NATIVE_RULES; phs=[:x, :y, :z, :n])
ex = subs(ex, Dict(:__FLOAT_TYPE__ => codegen.eltyp))
init_exs = [cuda_buffer_expr(var, codegen.eltyp, :mem, sz) for (var, sz) in g.ctx[:rsizes]
if haskey(g, var) && getcategory(g[var]) != :input]
res = Expr(:block, init_exs..., ex.args...)
return res
end
eval_codegen(codegen::CuCodeGen) = CuVecCodeGen(codegen.eltyp)
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 671 |
struct CuVecCodeGen
eltyp::Type
end
function generate_code(codegen::CuVecCodeGen, g::ExGraph, nd::ExNode)
# nd = cast_const_type(nd, codegen.eltyp)
ex = to_expr_kw(nd)
ex = rewrite_all(ex, CUDA_NATIVE_RULES; phs=[:x, :y, :z, :n])
ex = subs(ex, Dict(:__FLOAT_TYPE__ => codegen.eltyp))
return ex
end
function generate_code(codegen::CuVecCodeGen, g::ExGraph)
g = eliminate_common(g)
# g = cast_const_type(g, codegen.eltyp)
ex = to_expr_kw(g)
ex = rewrite_all(ex, CUDA_NATIVE_RULES; phs=[:x, :y, :z, :n])
ex = subs(ex, Dict(:__FLOAT_TYPE__ => codegen.eltyp))
return ex
end
eval_codegen(codegen::CuVecCodeGen) = codegen
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 263 |
struct GPUCodeGen
buf_var_name::Symbol
end
function gpu_buffer_expr(var, buffer_var, sz_ex)
gpu_sz_ex = matchingex(:(zeros(_...)), sz_ex) ? :(GPUArray($sz_ex)) : sz_ex
return :($var = @get_or_create $buffer_var $(Expr(:quote, var)) $gpu_sz_ex)
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 595 |
# type for generating vectorized code
struct VectorCodeGen
eltyp::Type
end
VectorCodeGen() = VectorCodeGen(Float64)
function generate_code(codegen::VectorCodeGen, g::ExGraph, nd::ExNode)
# nd = cast_const_type(nd, codegen.eltyp)
ex = to_expr_kw(nd)
return ex
end
function generate_code(codegen::VectorCodeGen, g::ExGraph)
# g = cast_const_type(nd, codegen.eltyp)
g = eliminate_common(g)
ex = to_expr_kw(g)
return ex
end
"""
For buffered codegens, return unbuffered version that can be used in evaluate!()
"""
eval_codegen(codegen::VectorCodeGen) = codegen
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 1806 | @testset "exgraph" begin
let
g = ExGraph()
g = ExGraph(;ctx=[:foo => 42], x=1)
@test g.ctx[:foo] == 42
@test getvalue(g[1]) == 1
end
let
g = ExGraph(:(z = (x + y)^2); x=1, y=1)
@test length(g) == 5 # check that fuse_assigned() removed extra var
@test varname(g[5]) == :z
@test evaluate!(g) == 4
g = ExGraph(:(z = (x .+ y).^2); x=ones(3), y=ones(3))
@test evaluate!(g) == [4.0, 4.0, 4.0]
end
let
ex = :(M = u'v)
g = ExGraph(ex; u=rand(3), v=rand(3))
@test getcategory(g[3]) == :call
@test getexpr(g[3]) == :(transpose(u))
end
let
g = ExGraph(:(x = u + v; z = 2x))
nd = ExNode{:call}(:y, :(x - 1))
insert!(g, 2, nd)
@test varname(g[2]) == :y
nds = ExGraph(:(t1 = u + x; t2 = t1 - x)).tape
insert!(g, 3, nds)
@test varname(g[3]) == :t1
@test varname(g[4]) == :t2
delete!(g, 3)
@test length(g) == 5
delete!(g, :t2)
@test length(g) == 4
end
let
# test graph with :opaque nodes
g = ExGraph(:(y = 2x); x=rand(2))
push!(g, ExNode{:opaque}(:z, :(x .* 3y)))
rep_g = reparse(g)
@test getvar(g[3]) == getvar(rep_g[3])
@test evaluate!(g) == evaluate!(rep_g)
rw_nd = rewrite(g[3], :(Z = X * Y), :(Z = X .* Y'); phs=[:X, :Y, :Z])
@test getcategory(rw_nd) == :opaque
@test getvalue(rw_nd) == nothing # value should be cleared
end
end
@testset "var renaming" begin
ex = quote
x = 0
x = x + 1
y = 4
x = 2x + y
y = 5
z = x + y
end
g = ExGraph(ex)
@test to_expr(g[end]) == :(z = x3 + y2)
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 1596 |
@testset "exnode" begin
@testset "basic ops" begin
nd = ExNode{:call}(:z, :(x + y))
@test getvar(nd) == :z
@test varname(nd) == :z
@test varidxs(nd) == []
@test getexpr(nd) == :(x + y)
@test getvalue(nd) == nothing
setvar!(nd, :(z[i]))
@test getvar(nd) == :(z[i])
@test varname(nd) == :z
@test varidxs(nd) == [:i]
setexpr!(nd, :(x[i] + y[i]))
@test getexpr(nd) == :(x[i] + y[i])
setvalue!(nd, [1, 2, 3.])
@test getvalue(nd) == [1, 2, 3.]
end
@testset "simple node" begin
nd = ExNode{:call}(:z, :(x + y))
@test to_expr(nd) == :(z = x + y)
end
@testset "indexed node" begin
nd = ExNode{:call}(:(z[i]), :(x[i] + y[i]))
@test to_expr(nd) == :(z[i] = x[i] + y[i])
end
@testset "dependencies" begin
@test dependencies(ExNode{:constant}(:z, 42)) == []
@test dependencies(ExNode{:input}(:z, 42)) == []
@test dependencies(ExNode{:(=)}(:z, :x)) == [:x]
@test dependencies(ExNode{:(=)}(:(z[i]), :(x[i]))) == [:x]
@test dependencies(ExNode{:call}(:z, :(x + y))) == [:x, :y]
@test dependencies(ExNode{:call}(:(z[i]), :(x[i] + y[i]))) == [:x, :y]
@test dependencies(ExNode{:bcast}(:z, :(f.(x)))) == [:x]
end
@testset "broadcasting" begin
nd = ExNode{:bcast}(:z, :(f.(x)))
@test isindexed(nd) == false
nd = ExNode{:bcast}(:z, :(f.(x[i])))
@test isindexed(nd) == true
end
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 1661 |
@testset "rewrite" begin
phs = Set([:x])
@test matchex(:(_x ^ 2), :(a ^ 2)) == Dict(:_x => :a)
@test matchex(:(x ^ 2), :(a ^ 2), phs=phs) == Dict(:x => :a)
@test matchex(:(x ^ 2), :(a ^ 2)) == nothing
phs = Set([:x, :y])
@test rewrite(:(a + 2b), :(_x + 2_y), :(_x * _y)) == :(a * b)
@test rewrite(:(a + 2b), :(x + 2y), :(x * y); phs=phs) == :(a * b)
set_default_placeholders(Set([:x, :y]))
@test rewrite(:(a + 2b), :(x + 2y), :(x * y)) == :(a * b)
set_default_placeholders(Set(Symbol[]))
@test tryrewrite(:(a + 2b), :(x + 2y), :(x * y); phs=[:x, :y]) == :(a * b)
@test tryrewrite(:(a + 2b), :(x + 3y), :(x * y); phs=[:x, :y]) == nothing
@test without(:(x * (m == n)), :(_i == _j)) == :x
@test subs(:(x^n); n=2) == :(x^2)
@test subs(:(x^n), Dict(:n => 2)) == :(x^2)
@test subs(:(_mod._op); _mod=:Main, _op=:inc) == :(Main.inc)
phs = Set([:x, :I])
@test matchex(:(x[I...]), :(A[i,j,k]); phs=phs) == Dict(:x => :A, :I => [:i, :j, :k])
@test matchex(:(foo(_args...)), :(foo(x, y))) == Dict(:_args => [:x, :y])
ex = :(foo(bar(foo(A))))
rules = [:(foo(x)) => :(quux(x)),
:(bar(x)) => :(baz(x))]
@test rewrite_all(ex, rules; phs=[:x]) == :(quux(baz(quux(A))))
ex = :(foo(bar(foo(A))))
pat = :(foo(x))
rpat = :(quux(x))
@test rewrite_all(ex, pat, rpat; phs=[:x]) == :(quux(bar(quux(A))))
@test matchingex(:(_x + _y), :(a + a))
@test !matchingex(:(_x + _y), :(a + a); exact=true)
ex = :(foo(a, b, c))
pat = :(foo(xs...))
rpat = :(bar(xs...))
@test rewrite(ex, pat, rpat; phs=[:xs]) == :(bar(a, b, c))
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 246 | using Espresso
using Test
include("utils_test.jl")
include("rewrite_test.jl")
include("simplify_test.jl")
include("exnode_test.jl")
include("exgraph_test.jl")
# include("tracked_test.jl") -- tracked arrays are discontinued, use Yota.jl instead
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 290 |
@testset "simplify" begin
@test simplify(:(10 - 5)) == 5
@test simplify(:(u - 2)) == :(u - 2)
@test simplify(:(1 * (u - 2))) == :(u - 2)
@test simplify(:(1.0 * cos(x1))) == :(cos(x1))
@test simplify(:(2 * 3x)) == :(6x)
@test simplify(:(x ^ 0 / 2)) == 1/2
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 348 | @testset "tracked" begin
ex = quote
x2 = W * x .+ b
x3 = exp.(x2)
x4 = reshape(x3, 15)
y = sum(x4)
end
inputs = [:W => rand(3,4); :x => rand(4,5); :b => rand(3)]
g1 = ExGraph(ex; inputs...)
g2 = ExGraph(ex; ctx=Dict(:method => :track), inputs...)
@test evaluate!(g1) == evaluate!(g2)
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | code | 501 |
@testset "utils" begin
ex1 = :(foo(x, y=1, z=2))
ex2 = :(foo(x; y=1, z=2))
args, kw_args = parse_call_args(ex1)
@test args == [:x]
@test kw_args == Dict(:y => 1, :z => 2)
@test without_keywords(ex1) == :(foo(x))
@test without_keywords(ex2) == :(foo(x))
@test with_keywords(:(foo(x)), Dict(:y => 1, :z => 2)) == ex2
@test parse_call_expr(ex1) == (:foo, [:x], Dict(:y => 1, :z => 2))
@test parse_call_expr(ex2) == (:foo, [:x], Dict(:y => 1, :z => 2))
end
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | docs | 3273 | # Espresso
[](https://travis-ci.org/dfdx/Espresso.jl)
Expression transformation package.
## Symbolic manipulation
Espresso provides functions for finding, matching, substituting and rewriting Julia AST. A few examples:
Match power expression and extract its first argument
```julia
pat = :(_x ^ 2) # anything starting with `_` is a placeholder, placeholder matches everything
ex = :(A ^ 2)
matchex(pat, ex)
# ==> Dict{Symbol,Any} with 1 entry:
# ==> :_x => :A -- placeholder _x captured symbol :A
```
Find all function calls with any number of arguments:
```julia
pat = :(_f(_a...)) # `_a...` will match 0 or more arguments
ex = quote
x = foo(3, 5)
y = bar(x)
z = baz(y)
end
findex(pat, ex)
# ==> 3-element Array{Any,1}:
# ==> :(foo(3, 5))
# ==> :(bar(x))
# ==> :(baz(y))
```
Substitute symbol `y` with `quux(x)`:
```julia
ex = :(z = 2x + y)
subs(ex, Dict(:y => :(quux(x))))
# ==> :(z = 2x + quux(x))
```
Rewrite all function calls with corresponding broadcasting:
```julia
ex = :(z = foo(x) + bar(y)) # take this expression
pat = :(_f(_a...)) # match recursively to this pattern
rpat = :(_f.(_a...)) # and rewrite to this pattern
rewrite_all(ex, pat, rpat)
# ==> :(z = (+).(foo.(x), bar.(y)))
```
See [rewrite.jl](https://github.com/dfdx/Espresso.jl/blob/master/src/rewrite.jl) for more expression transformation functions and their parameters.
## Expression graph
Sometimes we need more sophisticated transformations including those depending on argument types. Espresso can parse expressions into a graph of basic calls and assignments using `ExGraph` type, e.g.:
```julia
ex = :(z = x ^ 2 * (y + x ^ 2))
g = ExGraph(ex; x=3.0, y=2.0); # `x` and `y` are example values from which ExGraphs learns types of these vars
evaluate!(g) # evaluate all expressions to fill values of intermediate nodes
g
# ==> ExGraph
# ==> ExNode{input}(x = x | 3.0)
# ==> ExNode{input}(y = y | 2.0)
# ==> ExNode{constant}(tmp390 = 2 | 2)
# ==> ExNode{call}(tmp391 = x ^ tmp390 | 9.0)
# ==> ExNode{constant}(tmp392 = 2 | 2)
# ==> ExNode{call}(tmp393 = x ^ tmp392 | 9.0)
# ==> ExNode{call}(tmp394 = y + tmp393 | 11.0)
# ==> ExNode{call}(z = tmp391 * tmp394 | 99.0)
```
Such representation, although somewhat cryptic, is more flexible. For example, using it we can easily get rid of common subexpressions (`x ^ 2`):
```julia
g2 = eliminate_common(g)
# ==> ExGraph
# ==> ExNode{input}(x = x | 3.0)
# ==> ExNode{input}(y = y | 2.0)
# ==> ExNode{constant}(tmp390 = 2 | 2)
# ==> ExNode{call}(tmp391 = x ^ tmp390 | 9.0)
# ==> ExNode{call}(tmp394 = y + tmp391 | 11.0)
# ==> ExNode{call}(z = tmp391 * tmp394 | 99.0)
```
`to_expr` and `to_expr_kw` construct a Julia expression back from `ExGraph`:
```julia
to_expr_kw(g2)
# ==> quote
# ==> tmp390 = 2
# ==> tmp391 = x ^ tmp390
# ==> tmp394 = y + tmp391
# ==> z = tmp391 * tmp394
# ==> end
```
## (Somewhat outdated) documentation
[](https://dfdx.github.io/Espresso.jl/stable)
[](https://dfdx.github.io/Espresso.jl/latest)
| Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.6.3 | 077f5b899ab7a0c62eaf7cd8b832c45119a9e859 | docs | 2784 |
Espresso ducumentation and thanks for all the fish
# Espresso.jl Documentation
```@contents
```
## Expression parsing and rewriting
### Expression matching
`matchex` - match expression by pattern, extract matching elements.
Elements of expression are matched to placeholders - symbols in pattern
that start with '_' or any symbols passed in `phs` parameter.
```julia
matchex(:(_x^2), :(u^2))
# Nullable(Dict{Symbol,Any}(:_x=>:u))
matchex(:(x^n), :(u^2); phs=Set([:x, :n]))
# Nullable(Dict{Symbol,Any}(:x=>:u,:n=>2))
```
See also `matchingex`.
See also `findex`.
### Expression substitution
`subs` - substitute elements of in expression according to substitution table:
```julia
ex = :(x ^ n)
subs(ex, x=2)
# :(2 ^ n)
```
### Expression rewriting
`rewrite` - rewrite an expression matching it to a pattern and replacing
corresponding placeholders in substitution expression.
```julia
ex = :(u ^ v)
pat = :(_x ^ _n)
subex = :(_n * _x ^ (_n - 1))
rewrite(ex, pat, subex)
# :(v * u ^ (v - 1))
```
See also `tryrewrite`.
### Expression simplification
`simplify` - simplify numeric expression if possible.
```julia
simplify(:(2 - 1))
# 1
simplify(:(1 * (2x^1)))
# :(2x)
```
## Einstein indexing notation
Espresso.jl also supports expressions in Einstein indexing notation and is mostly compatible with [Einsum.jl](https://github.com/ahwillia/Einsum.jl). The most important functions are:
`to_einstein` - convert vectorized expression to Einstein notation.
```julia
to_einstein(:(W*x + b); W=rand(3,4), x=rand(4), b=rand(3))
# quote
# tmp1[i] = W[i,k] * x[k]
# tmp2[i] = tmp1[i] + b[i]
# end
```
Here `W=rand(3,4)`, `x=rand(4)` and `b=rand(3)` are _example values_ - anything that has the same type and dimensions as real expected values.
`from_einstein` - convert an expression in Einstein notation to vectorized form if possible.
```julia
from_einstein(:(W[i,k] * x[k] + b[i]))
# quote
# tmp1 = W * x
# tmp2 = tmp1 + b
# end
```
## ExGraph
On low-level many functions of Espresso.jl use `ExGraph` - expression graph, represented as a topologically sorted list of primitive expression. Example:
```julia
g = ExGraph(:(W*x + b); W=rand(3,4), x=rand(4), b=rand(3))
# ExGraph
# ExNode{input}(W = W | <Array{Float64,2}>)
# ExNode{input}(x = x | <Array{Float64,1}>)
# ExNode{input}(b = b | <Array{Float64,1}>)
# ExNode{call}(tmp1 = W * x | nothing)
# ExNode{call}(tmp2 = tmp1 + b | nothing)
```
The main advantage of using such representation is that each node represents exactly one simple enough expression such as assignment or function call. For example, `to_einstein` and `from_einstein` both use `ExGraph` to find rule for transforming between two notations.
## Functions
```@docs
matchex(pat, ex)
```
## Index
```@index
``` | Espresso | https://github.com/dfdx/Espresso.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 668 | push!(LOAD_PATH,"../src/")
using GIFImages
using Documenter
DocMeta.setdocmeta!(GIFImages, :DocTestSetup, :(using GIFImages); recursive=true)
makedocs(;
modules=[GIFImages],
authors="Ashwani Rathee",
repo="github.com/ashwani-rathee/GIFImages.jl/blob/{commit}{path}#{line}",
sitename="GIFImages.jl",
format=Documenter.HTML(;
prettyurls=Base.get(ENV, "CI", "false") == "true",
canonical="https://ashwani-rathee.github.io/GIFImages.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/ashwani-rathee/GIFImages.jl",
devbranch="main",
push_preview = true
) | GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 402 | using Clang.JLLEnvs
using Clang.Generators
using Giflib_jll
include_dir = normpath(Giflib_jll.artifact_dir, "include")
headers = [joinpath(include_dir, header) for header in readdir(include_dir) if endswith(header, ".h")]
options = load_options(joinpath(@__DIR__, "generator.toml"))
args = get_default_args()
push!(args, "-I$include_dir")
ctx = create_context(headers, args, options)
build!(ctx) | GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 412 | using Clang.JLLEnvs
using Clang.Generators
using libgifextra_jll
include_dir = normpath(libgifextra_jll.artifact_dir, "include")
headers = [joinpath(include_dir, header) for header in readdir(include_dir) if endswith(header, ".h")]
options = load_options(joinpath(@__DIR__, "generator2.toml"))
args = get_default_args()
push!(args, "-I$include_dir")
ctx = create_context(headers, args, options)
build!(ctx) | GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 13470 | module LibGif
using Giflib_jll
export Giflib_jll
using CEnum
const GifPixelType = Cuchar
const GifRowType = Ptr{Cuchar}
const GifByteType = Cuchar
const GifPrefixType = Cuint
const GifWord = Cint
struct GifColorType
Red::GifByteType
Green::GifByteType
Blue::GifByteType
end
struct ColorMapObject
ColorCount::Cint
BitsPerPixel::Cint
SortFlag::Bool
Colors::Ptr{GifColorType}
end
struct GifImageDesc
Left::GifWord
Top::GifWord
Width::GifWord
Height::GifWord
Interlace::Bool
ColorMap::Ptr{ColorMapObject}
end
struct ExtensionBlock
ByteCount::Cint
Bytes::Ptr{GifByteType}
Function::Cint
end
struct SavedImage
ImageDesc::GifImageDesc
RasterBits::Ptr{GifByteType}
ExtensionBlockCount::Cint
ExtensionBlocks::Ptr{ExtensionBlock}
end
function Base.getproperty(x::Ptr{SavedImage}, f::Symbol)
f === :ImageDesc && return Ptr{GifImageDesc}(x + 0)
f === :RasterBits && return Ptr{Ptr{GifByteType}}(x + 32)
f === :ExtensionBlockCount && return Ptr{Cint}(x + 40)
f === :ExtensionBlocks && return Ptr{Ptr{ExtensionBlock}}(x + 48)
return getfield(x, f)
end
function Base.setproperty!(x::Ptr{SavedImage}, f::Symbol, v)
unsafe_store!(getproperty(x, f), v)
end
struct GifFileType
SWidth::GifWord
SHeight::GifWord
SColorResolution::GifWord
SBackGroundColor::GifWord
AspectByte::GifByteType
SColorMap::Ptr{ColorMapObject}
ImageCount::Cint
Image::GifImageDesc
SavedImages::Ptr{SavedImage}
ExtensionBlockCount::Cint
ExtensionBlocks::Ptr{ExtensionBlock}
Error::Cint
UserData::Ptr{Cvoid}
Private::Ptr{Cvoid}
end
function Base.getproperty(x::Ptr{GifFileType}, f::Symbol)
f === :SWidth && return Ptr{GifWord}(x + 0)
f === :SHeight && return Ptr{GifWord}(x + 4)
f === :SColorResolution && return Ptr{GifWord}(x + 8)
f === :SBackGroundColor && return Ptr{GifWord}(x + 12)
f === :AspectByte && return Ptr{GifByteType}(x + 16)
f === :SColorMap && return Ptr{Ptr{ColorMapObject}}(x + 24)
f === :ImageCount && return Ptr{Cint}(x + 32)
f === :Image && return Ptr{GifImageDesc}(x + 40)
f === :SavedImages && return Ptr{Ptr{SavedImage}}(x + 72)
f === :ExtensionBlockCount && return Ptr{Cint}(x + 80)
f === :ExtensionBlocks && return Ptr{Ptr{ExtensionBlock}}(x + 88)
f === :Error && return Ptr{Cint}(x + 96)
f === :UserData && return Ptr{Ptr{Cvoid}}(x + 104)
f === :Private && return Ptr{Ptr{Cvoid}}(x + 112)
return getfield(x, f)
end
function Base.setproperty!(x::Ptr{GifFileType}, f::Symbol, v)
unsafe_store!(getproperty(x, f), v)
end
@cenum GifRecordType::UInt32 begin
UNDEFINED_RECORD_TYPE = 0
SCREEN_DESC_RECORD_TYPE = 1
IMAGE_DESC_RECORD_TYPE = 2
EXTENSION_RECORD_TYPE = 3
TERMINATE_RECORD_TYPE = 4
end
# typedef int ( * InputFunc ) ( GifFileType * , GifByteType * , int )
const InputFunc = Ptr{Cvoid}
# typedef int ( * OutputFunc ) ( GifFileType * , const GifByteType * , int )
const OutputFunc = Ptr{Cvoid}
struct GraphicsControlBlock
DisposalMode::Cint
UserInputFlag::Bool
DelayTime::Cint
TransparentColor::Cint
end
function EGifOpenFileName(GifFileName, GifTestExistence, Error)
ccall((:EGifOpenFileName, libgif), Ptr{GifFileType}, (Ptr{Cchar}, Bool, Ptr{Cint}), GifFileName, GifTestExistence, Error)
end
function EGifOpenFileHandle(GifFileHandle, Error)
ccall((:EGifOpenFileHandle, libgif), Ptr{GifFileType}, (Cint, Ptr{Cint}), GifFileHandle, Error)
end
function EGifOpen(userPtr, writeFunc, Error)
ccall((:EGifOpen, libgif), Ptr{GifFileType}, (Ptr{Cvoid}, OutputFunc, Ptr{Cint}), userPtr, writeFunc, Error)
end
function EGifSpew(GifFile)
ccall((:EGifSpew, libgif), Cint, (Ptr{GifFileType},), GifFile)
end
function EGifGetGifVersion(GifFile)
ccall((:EGifGetGifVersion, libgif), Ptr{Cchar}, (Ptr{GifFileType},), GifFile)
end
function EGifCloseFile(GifFile, ErrorCode)
ccall((:EGifCloseFile, libgif), Cint, (Ptr{GifFileType}, Ptr{Cint}), GifFile, ErrorCode)
end
function EGifPutScreenDesc(GifFile, GifWidth, GifHeight, GifColorRes, GifBackGround, GifColorMap)
ccall((:EGifPutScreenDesc, libgif), Cint, (Ptr{GifFileType}, Cint, Cint, Cint, Cint, Ptr{ColorMapObject}), GifFile, GifWidth, GifHeight, GifColorRes, GifBackGround, GifColorMap)
end
function EGifPutImageDesc(GifFile, GifLeft, GifTop, GifWidth, GifHeight, GifInterlace, GifColorMap)
ccall((:EGifPutImageDesc, libgif), Cint, (Ptr{GifFileType}, Cint, Cint, Cint, Cint, Bool, Ptr{ColorMapObject}), GifFile, GifLeft, GifTop, GifWidth, GifHeight, GifInterlace, GifColorMap)
end
function EGifSetGifVersion(GifFile, gif89)
ccall((:EGifSetGifVersion, libgif), Cvoid, (Ptr{GifFileType}, Bool), GifFile, gif89)
end
function EGifPutLine(GifFile, GifLine, GifLineLen)
ccall((:EGifPutLine, libgif), Cint, (Ptr{GifFileType}, Ptr{GifPixelType}, Cint), GifFile, GifLine, GifLineLen)
end
function EGifPutPixel(GifFile, GifPixel)
ccall((:EGifPutPixel, libgif), Cint, (Ptr{GifFileType}, GifPixelType), GifFile, GifPixel)
end
function EGifPutComment(GifFile, GifComment)
ccall((:EGifPutComment, libgif), Cint, (Ptr{GifFileType}, Ptr{Cchar}), GifFile, GifComment)
end
function EGifPutExtensionLeader(GifFile, GifExtCode)
ccall((:EGifPutExtensionLeader, libgif), Cint, (Ptr{GifFileType}, Cint), GifFile, GifExtCode)
end
function EGifPutExtensionBlock(GifFile, GifExtLen, GifExtension)
ccall((:EGifPutExtensionBlock, libgif), Cint, (Ptr{GifFileType}, Cint, Ptr{Cvoid}), GifFile, GifExtLen, GifExtension)
end
function EGifPutExtensionTrailer(GifFile)
ccall((:EGifPutExtensionTrailer, libgif), Cint, (Ptr{GifFileType},), GifFile)
end
function EGifPutExtension(GifFile, GifExtCode, GifExtLen, GifExtension)
ccall((:EGifPutExtension, libgif), Cint, (Ptr{GifFileType}, Cint, Cint, Ptr{Cvoid}), GifFile, GifExtCode, GifExtLen, GifExtension)
end
function EGifPutCode(GifFile, GifCodeSize, GifCodeBlock)
ccall((:EGifPutCode, libgif), Cint, (Ptr{GifFileType}, Cint, Ptr{GifByteType}), GifFile, GifCodeSize, GifCodeBlock)
end
function EGifPutCodeNext(GifFile, GifCodeBlock)
ccall((:EGifPutCodeNext, libgif), Cint, (Ptr{GifFileType}, Ptr{GifByteType}), GifFile, GifCodeBlock)
end
function DGifOpenFileName(GifFileName, Error)
ccall((:DGifOpenFileName, libgif), Ptr{GifFileType}, (Ptr{Cchar}, Ptr{Cint}), GifFileName, Error)
end
function DGifOpenFileHandle(GifFileHandle, Error)
ccall((:DGifOpenFileHandle, libgif), Ptr{GifFileType}, (Cint, Ptr{Cint}), GifFileHandle, Error)
end
function DGifSlurp(GifFile)
ccall((:DGifSlurp, libgif), Cint, (Ptr{GifFileType},), GifFile)
end
function DGifOpen(userPtr, readFunc, Error)
ccall((:DGifOpen, libgif), Ptr{GifFileType}, (Ptr{Cvoid}, InputFunc, Ptr{Cint}), userPtr, readFunc, Error)
end
function DGifCloseFile(GifFile, ErrorCode)
ccall((:DGifCloseFile, libgif), Cint, (Ptr{GifFileType}, Ptr{Cint}), GifFile, ErrorCode)
end
function DGifGetScreenDesc(GifFile)
ccall((:DGifGetScreenDesc, libgif), Cint, (Ptr{GifFileType},), GifFile)
end
function DGifGetRecordType(GifFile, GifType)
ccall((:DGifGetRecordType, libgif), Cint, (Ptr{GifFileType}, Ptr{GifRecordType}), GifFile, GifType)
end
function DGifGetImageHeader(GifFile)
ccall((:DGifGetImageHeader, libgif), Cint, (Ptr{GifFileType},), GifFile)
end
function DGifGetImageDesc(GifFile)
ccall((:DGifGetImageDesc, libgif), Cint, (Ptr{GifFileType},), GifFile)
end
function DGifGetLine(GifFile, GifLine, GifLineLen)
ccall((:DGifGetLine, libgif), Cint, (Ptr{GifFileType}, Ptr{GifPixelType}, Cint), GifFile, GifLine, GifLineLen)
end
function DGifGetPixel(GifFile, GifPixel)
ccall((:DGifGetPixel, libgif), Cint, (Ptr{GifFileType}, GifPixelType), GifFile, GifPixel)
end
function DGifGetExtension(GifFile, GifExtCode, GifExtension)
ccall((:DGifGetExtension, libgif), Cint, (Ptr{GifFileType}, Ptr{Cint}, Ptr{Ptr{GifByteType}}), GifFile, GifExtCode, GifExtension)
end
function DGifGetExtensionNext(GifFile, GifExtension)
ccall((:DGifGetExtensionNext, libgif), Cint, (Ptr{GifFileType}, Ptr{Ptr{GifByteType}}), GifFile, GifExtension)
end
function DGifGetCode(GifFile, GifCodeSize, GifCodeBlock)
ccall((:DGifGetCode, libgif), Cint, (Ptr{GifFileType}, Ptr{Cint}, Ptr{Ptr{GifByteType}}), GifFile, GifCodeSize, GifCodeBlock)
end
function DGifGetCodeNext(GifFile, GifCodeBlock)
ccall((:DGifGetCodeNext, libgif), Cint, (Ptr{GifFileType}, Ptr{Ptr{GifByteType}}), GifFile, GifCodeBlock)
end
function DGifGetLZCodes(GifFile, GifCode)
ccall((:DGifGetLZCodes, libgif), Cint, (Ptr{GifFileType}, Ptr{Cint}), GifFile, GifCode)
end
function DGifGetGifVersion(GifFile)
ccall((:DGifGetGifVersion, libgif), Ptr{Cchar}, (Ptr{GifFileType},), GifFile)
end
function GifErrorString(ErrorCode)
ccall((:GifErrorString, libgif), Ptr{Cchar}, (Cint,), ErrorCode)
end
function GifMakeMapObject(ColorCount, ColorMap)
ccall((:GifMakeMapObject, libgif), Ptr{ColorMapObject}, (Cint, Ptr{GifColorType}), ColorCount, ColorMap)
end
function GifFreeMapObject(Object)
ccall((:GifFreeMapObject, libgif), Cvoid, (Ptr{ColorMapObject},), Object)
end
function GifUnionColorMap(ColorIn1, ColorIn2, ColorTransIn2)
ccall((:GifUnionColorMap, libgif), Ptr{ColorMapObject}, (Ptr{ColorMapObject}, Ptr{ColorMapObject}, Ptr{GifPixelType}), ColorIn1, ColorIn2, ColorTransIn2)
end
function GifBitSize(n)
ccall((:GifBitSize, libgif), Cint, (Cint,), n)
end
function GifApplyTranslation(Image, Translation)
ccall((:GifApplyTranslation, libgif), Cvoid, (Ptr{SavedImage}, Ptr{GifPixelType}), Image, Translation)
end
function GifAddExtensionBlock(ExtensionBlock_Count, ExtensionBlocks, Function, Len, ExtData)
ccall((:GifAddExtensionBlock, libgif), Cint, (Ptr{Cint}, Ptr{Ptr{ExtensionBlock}}, Cint, Cuint, Ptr{Cuchar}), ExtensionBlock_Count, ExtensionBlocks, Function, Len, ExtData)
end
function GifFreeExtensions(ExtensionBlock_Count, ExtensionBlocks)
ccall((:GifFreeExtensions, libgif), Cvoid, (Ptr{Cint}, Ptr{Ptr{ExtensionBlock}}), ExtensionBlock_Count, ExtensionBlocks)
end
function GifMakeSavedImage(GifFile, CopyFrom)
ccall((:GifMakeSavedImage, libgif), Ptr{SavedImage}, (Ptr{GifFileType}, Ptr{SavedImage}), GifFile, CopyFrom)
end
function GifFreeSavedImages(GifFile)
ccall((:GifFreeSavedImages, libgif), Cvoid, (Ptr{GifFileType},), GifFile)
end
function DGifExtensionToGCB(GifExtensionLength, GifExtension, GCB)
ccall((:DGifExtensionToGCB, libgif), Cint, (Csize_t, Ptr{GifByteType}, Ptr{GraphicsControlBlock}), GifExtensionLength, GifExtension, GCB)
end
function EGifGCBToExtension(GCB, GifExtension)
ccall((:EGifGCBToExtension, libgif), Csize_t, (Ptr{GraphicsControlBlock}, Ptr{GifByteType}), GCB, GifExtension)
end
function DGifSavedExtensionToGCB(GifFile, ImageIndex, GCB)
ccall((:DGifSavedExtensionToGCB, libgif), Cint, (Ptr{GifFileType}, Cint, Ptr{GraphicsControlBlock}), GifFile, ImageIndex, GCB)
end
function EGifGCBToSavedExtension(GCB, GifFile, ImageIndex)
ccall((:EGifGCBToSavedExtension, libgif), Cint, (Ptr{GraphicsControlBlock}, Ptr{GifFileType}, Cint), GCB, GifFile, ImageIndex)
end
function GifDrawText8x8(Image, x, y, legend, color)
ccall((:GifDrawText8x8, libgif), Cvoid, (Ptr{SavedImage}, Cint, Cint, Ptr{Cchar}, Cint), Image, x, y, legend, color)
end
function GifDrawBox(Image, x, y, w, d, color)
ccall((:GifDrawBox, libgif), Cvoid, (Ptr{SavedImage}, Cint, Cint, Cint, Cint, Cint), Image, x, y, w, d, color)
end
function GifDrawRectangle(Image, x, y, w, d, color)
ccall((:GifDrawRectangle, libgif), Cvoid, (Ptr{SavedImage}, Cint, Cint, Cint, Cint, Cint), Image, x, y, w, d, color)
end
function GifDrawBoxedText8x8(Image, x, y, legend, border, bg, fg)
ccall((:GifDrawBoxedText8x8, libgif), Cvoid, (Ptr{SavedImage}, Cint, Cint, Ptr{Cchar}, Cint, Cint, Cint), Image, x, y, legend, border, bg, fg)
end
const _GIF_LIB_H_ = 1
const GIFLIB_MAJOR = 5
const GIFLIB_MINOR = 2
const GIFLIB_RELEASE = 1
const GIF_ERROR = 0
const GIF_OK = 1
const GIF_STAMP = "GIFVER"
# Skipping MacroDefinition: GIF_STAMP_LEN sizeof ( GIF_STAMP ) - 1
const GIF_VERSION_POS = 3
const GIF87_STAMP = "GIF87a"
const GIF89_STAMP = "GIF89a"
const CONTINUE_EXT_FUNC_CODE = 0x00
const COMMENT_EXT_FUNC_CODE = 0xfe
const GRAPHICS_EXT_FUNC_CODE = 0xf9
const PLAINTEXT_EXT_FUNC_CODE = 0x01
const APPLICATION_EXT_FUNC_CODE = 0xff
const DISPOSAL_UNSPECIFIED = 0
const DISPOSE_DO_NOT = 1
const DISPOSE_BACKGROUND = 2
const DISPOSE_PREVIOUS = 3
const NO_TRANSPARENT_COLOR = -1
const E_GIF_SUCCEEDED = 0
const E_GIF_ERR_OPEN_FAILED = 1
const E_GIF_ERR_WRITE_FAILED = 2
const E_GIF_ERR_HAS_SCRN_DSCR = 3
const E_GIF_ERR_HAS_IMAG_DSCR = 4
const E_GIF_ERR_NO_COLOR_MAP = 5
const E_GIF_ERR_DATA_TOO_BIG = 6
const E_GIF_ERR_NOT_ENOUGH_MEM = 7
const E_GIF_ERR_DISK_IS_FULL = 8
const E_GIF_ERR_CLOSE_FAILED = 9
const E_GIF_ERR_NOT_WRITEABLE = 10
const D_GIF_SUCCEEDED = 0
const D_GIF_ERR_OPEN_FAILED = 101
const D_GIF_ERR_READ_FAILED = 102
const D_GIF_ERR_NOT_GIF_FILE = 103
const D_GIF_ERR_NO_SCRN_DSCR = 104
const D_GIF_ERR_NO_IMAG_DSCR = 105
const D_GIF_ERR_NO_COLOR_MAP = 106
const D_GIF_ERR_WRONG_RECORD = 107
const D_GIF_ERR_DATA_TOO_BIG = 108
const D_GIF_ERR_NOT_ENOUGH_MEM = 109
const D_GIF_ERR_CLOSE_FAILED = 110
const D_GIF_ERR_NOT_READABLE = 111
const D_GIF_ERR_IMAGE_DEFECT = 112
const D_GIF_ERR_EOF_TOO_SOON = 113
const GIF_FONT_WIDTH = 8
const GIF_FONT_HEIGHT = 8
end # module
| GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 1534 | module LibGifExtra
using libgifextra_jll
export libgifextra_jll
using CEnum
function LoadRGB(FileName, InFileName, OneFileFlag, RedBuffer, GreenBuffer, BlueBuffer, Width, Height)
ccall((:LoadRGB, libgifextra), Cvoid, (Ptr{Cchar}, Ptr{Cchar}, Cint, Ptr{Ptr{Cint}}, Ptr{Ptr{Cint}}, Ptr{Ptr{Cint}}, Cint, Cint), FileName, InFileName, OneFileFlag, RedBuffer, GreenBuffer, BlueBuffer, Width, Height)
end
function GIF2RGB(NumFiles, FileName, OneFileFlag, OutFileName)
ccall((:GIF2RGB, libgifextra), Cvoid, (Cint, Ptr{Cchar}, Bool, Ptr{Cchar}), NumFiles, FileName, OneFileFlag, OutFileName)
end
function DumpScreen2RGB(FileName, OneFileFlag, ColorMap, ScreenBuffer, ScreenWidth, ScreenHeight)
ccall((:DumpScreen2RGB, libgifextra), Cvoid, (Ptr{Cchar}, Cint, Ptr{Cint}, Ptr{Cint}, Cint, Cint), FileName, OneFileFlag, ColorMap, ScreenBuffer, ScreenWidth, ScreenHeight)
end
function RGB2GIF(OneFileFlag, NumFiles, FileName, InFileName, ExpNumOfColors, Width, Height)
ccall((:RGB2GIF, libgifextra), Cvoid, (Bool, Cint, Ptr{Cchar}, Ptr{Cchar}, Cint, Cint, Cint), OneFileFlag, NumFiles, FileName, InFileName, ExpNumOfColors, Width, Height)
end
function SaveGif(FileName, OutputBuffer, Width, Height, ExpColorMapSize, OutputColorMap)
ccall((:SaveGif, libgifextra), Cvoid, (Ptr{Cchar}, Ptr{Cint}, Cint, Cint, Cint, Ptr{Cint}), FileName, OutputBuffer, Width, Height, ExpColorMapSize, OutputColorMap)
end
function returnGIF(FileName)
ccall((:returnGIF, libgifextra), Ptr{Cint}, (Ptr{Cchar},), FileName)
end
end # module | GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 551 | module GIFImages
include("../lib/LibGif.jl")
include("../lib/LibGifExtra.jl")
using .LibGif
using .LibGifExtra
using ColorTypes
using ColorVectorSpace
using FixedPointNumbers
using StatsBase
using RegionTrees, StaticArrays
using HistogramThresholding
using DataStructures
using ImageCore
include("decode.jl")
include("encode.jl")
include("quantizers.jl")
export gif_decode, gif_encode
export mediancutquantisation, mediancutquantisation!
export octreequantisation, octreequantisation!
export kdtreequantisation, kdtreequantisation!
end # module
| GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 2936 |
"""
gif_decode(filepath::AbstractString; use_localpalette=false)
Decode the GIF image as colorant matrix. The source data needs to be a filename.
#### Arguments
- `filepath::AbstractString` : Path to the gif file
- `use_localpalette::Bool=false` : While decoding, using this argument use of local colormap or global colormap for a particular slice can be specified. Gif files are palette based and have a global colormap(max `256 colors`) but slices/images in gif can have their own local colormap specific to a particular slice/image.
#### Examples
```jl
julia> using GIFImages, Downloads
julia> path = "test/data/fire.gif"
"test/data/fire.gif"
julia> img = gif_decode(path)
60×30×33 Array{RGB{N0f8},3} with eltype RGB{N0f8}
"""
function gif_decode(filepath::AbstractString; use_localpalette=false)
error1 = Cint(0)
gif = LibGif.DGifOpenFileName(filepath, Ref(error1))
try
gif == C_NULL && error("failed to open the gif file: null pointer")
slurp_return = LibGif.DGifSlurp(gif)
if (slurp_return == LibGif.GIF_ERROR)
error("failed to read .gif file")
end
loaded_gif = unsafe_load(gif)
img_count = loaded_gif.ImageCount
components = unsafe_wrap(Array, loaded_gif.SavedImages, loaded_gif.ImageCount)
# Gif's are palette based and can have upto 256 colors in a image
colormap = unsafe_load(loaded_gif.SColorMap) # global colormap
palette = unsafe_wrap(Array, colormap.Colors, colormap.ColorCount)
final = zeros(RGB{N0f8}, loaded_gif.SHeight, loaded_gif.SWidth, loaded_gif.ImageCount)
# read the images
for i = 1:img_count
img = unsafe_wrap(Array, components[i].RasterBits, loaded_gif.SWidth * loaded_gif.SHeight)
desc = components[i].ImageDesc
@debug "Image $i at [$(desc.Left), $(desc.Top)] and size [$(desc.Width), $(desc.Height)]" * ((desc.ColorMap !=C_NULL) ? " and has a local colormap.\n" : " and doesn't have a local colormap.\n")
# support for using local colormaps
if desc.ColorMap !=C_NULL && use_localpalette == true
localcolormap = unsafe_load(desc.ColorMap)
@debug "Image $i : using Local ColorMap with $(localcolormap.ColorCount) colors."
lpalette = unsafe_wrap(Array, localcolormap.Colors, localcolormap.ColorCount)
colortypes = map(x -> lpalette[x+1], img)
else
colortypes = map(x -> palette[x+1], img)
end
res = map(x -> RGB{N0f8}(x.Red / 255, x.Green / 255, x.Blue / 255), colortypes)
res = reshape(res, Int(loaded_gif.SWidth), Int(loaded_gif.SHeight))
res = res'
final[:, :, i] = res
end
# return the final matrix
return final
finally
LibGif.DGifCloseFile(gif, Ref(error1))
end
end
| GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 2818 |
"""
gif_encode(filepath::AbstractString, img::AbstractArray; num::Int = 64)
Encode the GIF colorant matrix to file.
#### Arguments
- `filepath` : Name of the file to which image is written.
- `img` : 3D GIF colorant matrix which has structure of height*width*numofimags and all the images are present as slices of the 3D matrix
- `colormapnum` : Specifies the number of colors to be used for the global colormap
### Examples
```jl
julia> using GIFImages, Downloads
julia> path = "test/data/fire.gif"
"test/data/fire.gif"
julia> img = gif_decode(path)
60×30×33 Array{RGB{N0f8},3} with eltype RGB{N0f8}
julia> gif_encode("fire.gif", img)
```
"""
function gif_encode(filepath::AbstractString, img::AbstractArray; colormapnum::Int = 256)
if(eltype(img)!= RGB{N0f8})
throw(ErrorException("gif_encode requires img to be in RGB{N0f8} colorspace currently"))
end
error1 = Cint(0)
gif_file = LibGif.EGifOpenFileName(filepath, 0, Ref(error1))
colors = []
shape = size(img)
gif_file == C_NULL && throw(ErrorException("EGifOpenFileName() failed to open the gif file: null pointer"))
(colormapnum < 1 || colormapnum > 256) && throw(BoundsError("colormapnum is out of range and needs to be in range 1-256(both inclusive)"))
(ndims(img) != 3) && throw(DimensionMismatch("Image Array needs to be in Height, Width, NumImages format."))
try
# generation of a colormap
# this changes the image directly for now
palette = kdtreequantisation!(img; numcolors=colormapnum, precheck=true)
append!(colors, palette)
mapping = Dict()
for (i, j) in enumerate(colors)
mapping[j] = UInt8(i-1)
end
# defining the global colormap
colors = map(x -> LibGif.GifColorType(x.r, x.g, x.b), colors * 255)
colormap = LibGif.GifMakeMapObject(colormapnum, colors)
# features of the file
gif_file.SWidth = shape[2]
gif_file.SHeight = shape[1]
gif_file.SColorResolution = 8
gif_file.SBackGroundColor = 0
gif_file.SColorMap = colormap
# encoding # case of 512*512
for i = 1:shape[3]
# flatten the image
img1 = vec(collect(@view(img[:, :, i])'))
pix = map(x -> mapping[x], img1)
# saving a new image in gif_file
desc = LibGif.GifImageDesc(0, 0, size(img)[2], size(img)[1], 0, C_NULL)
c = LibGif.SavedImage(desc, pointer(pix), 0, C_NULL)
LibGif.GifMakeSavedImage(gif_file, Ref(c))
end
finally
# proper file close if error happens
# writing and closing the file
if (LibGif.EGifSpew(gif_file) == LibGif.GIF_ERROR)
throw(ErrorException("Failed to write to file!"))
end
end
end | GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 10462 | # In this file, we have the color quantisation algorithms
function mediancutquantisation!(img; numcolors = 256, precheck::Bool=false)
if(eltype(img)!=RGB{N0f8})
error("Median Cut Algorithm requires img to be in RGB colorspace currently")
end
# checks if image has more colors than in numcolors
if precheck == true
unumcolors = length(unique(img))
# @show unumcolors
if unumcolors <= numcolors
@debug "Image has $unumcolors unique colors"
return unique(img)
end
end
idxs = collect(1:length(img))
function split_buckets(idxs, depth)
if length(idxs) == 0 return end
color = RGB.(0,0,0)
# Buckets are same size,
# means that each colors is assigned to
# equal number of pixels here.
if depth == 0
color = RGB{N0f8}.(mean(img[idxs]))
img[idxs] .= color
return
end
# find range of colors and pick color which
# most difference in max val and min val
rmin, rmax = 1.0N0f8, 0.0N0f8
gmin, gmax = 1.0N0f8, 0.0N0f8
bmin, bmax = 1.0N0f8, 0.0N0f8
for idx in idxs
color = img[idx]
if (color.r > rmax) rmax = color.r end
if (color.g > gmax) gmax = color.g end
if (color.b > bmax) bmax = color.b end
if (color.r < rmin) rmin = color.r end
if (color.g < gmin) gmin = color.g end
if (color.b < bmin) bmin = color.b end
end
ind = findmax([rmax - rmin, gmax - gmin, bmax - bmin])[2]
# sort on basis of max range color
if ind == 1 sort!(idxs; by = c -> img[c].r)
elseif ind == 2 sort!(idxs; by = c -> img[c].g)
elseif ind == 3 sort!(idxs; by = c -> img[c].b) end
# start diving on basis of median index
medind = trunc(Int, (length(idxs) + 1) / 2)
# two separate buckets
split_buckets(@view(idxs[1:medind]), depth - 1)
split_buckets(@view(idxs[medind+1:end]), depth - 1)
end
split_buckets(idxs, log2(numcolors))
end
function mediancutquantisation(img;kwargs...)
img1 = deepcopy(img)
mediancutquantisation!(img1;kwargs...)
return img1
end
function octreequantisation!(img; numcolors = 256, precheck::Bool=false)
# ensure the img is in RGB colorspace
if(eltype(img)!=RGB{N0f8})
error("Octree Algorithm requires img to be in RGB colorspace")
end
# checks if image has more colors than in numcolors
if precheck == true
unumcolors = length(unique(img))
# @show unumcolors
if unumcolors <= numcolors
@debug "Image has $unumcolors unique colors"
return unique(img)
end
end
# step 1: creating the octree
root = Cell(SVector(0.0, 0.0, 0.0), SVector(1.0, 1.0, 1.0), ["root", 0, [], RGB{N0f8}.(0.0, 0.0, 0.0), 0])
cases = map(p->[bitstring(UInt8(p))[6:end], 0, Vector{Int}([]), RGB{N0f8}.(0.0,0.0,0.0), 1], 1:8)
split!(root, cases)
inds = collect(1:length(img))
function putin(root, in)
r, g, b = map(p->bitstring(UInt8(p*255)), channelview([img[in]]))
rgb = r[1] * g[1] * b[1]
# finding the entry to the tree
ind = 0
for i = 1:8
if (root.children[i].data[1] == rgb)
root.children[i].data[2] += 1
ind = i
break
end
end
curr = root.children[ind]
for i = 2:8
cases = map(p->[bitstring(UInt8(p))[6:end], 0, Vector{Int}([]), RGB{N0f8}.(0.0,0.0,0.0), i], 1:8)
rgb = r[i] * g[i] * b[i]
if (isleaf(curr) == true && i <= 8) split!(curr, cases) end
if (i == 8)
for j = 1:8
if (curr.children[j].data[1] == rgb)
curr = curr.children[j]
curr.data[2] += 1
push!(curr.data[3], in)
curr.data[4] = img[in]
return
end
end
end
# handle 1:7 cases for rgb to handle first seven bits
for j = 1:8
if (curr.children[j].data[1] == rgb)
curr.children[j].data[2] += 1
curr = curr.children[j]
break
end
end
end
end
# build the tree
for i in inds
root.data[2]+=1
putin(root, i)
end
# step 2: reducing tree to a certain number of colors
# there is scope for improvements in allleaves as it's found again n again
leafs = [p for p in allleaves(root)]
filter!(p -> !iszero(p.data[2]), leafs)
tobe_reduced = leafs[1]
while (length(leafs) > numcolors)
parents = unique([parent(p) for p in leafs])
parents = sort(parents; by = c -> c.data[2])
tobe_reduced = parents[1]
# @show tobe_reduced.data
for i = 1:8
append!(tobe_reduced.data[3], tobe_reduced.children[i].data[3])
tobe_reduced.data[4] += tobe_reduced.children[i].data[4] * tobe_reduced.children[i].data[2]
end
tobe_reduced.data[4] /= tobe_reduced.data[2]
tobe_reduced.children = nothing
# we don't want to do this again n again
leafs = [p for p in allleaves(root)]
filter!(p -> !iszero(p.data[2]), leafs)
end
# step 3: palette formation and quantisation now
da = [p.data for p in leafs]
for i in da
for j in i[3]
img[j] = i[4]
end
end
colors = [p[4] for p in da]
return colors
end
function octreequantisation(img; kwargs...)
img_copy = deepcopy(img)
palette = octreequantisation!(img_copy; kwargs...)
return img_copy, palette
end
function Otsu_N(histogram::AbstractArray, edges::AbstractRange)
N = sum(histogram)
pdf = histogram / N
first_bin = firstindex(pdf)
last_bin = lastindex(pdf)
cumulative_zeroth_moment = cumsum(pdf)
cumulative_first_moment = cumsum(float(edges) .* pdf)
μ_T = cumulative_first_moment[end]
maxval = zero(eltype(first(pdf)))
# Equation (6) for determining the probability of the first class.
function ω(k)
let cumulative_zeroth_moment = cumulative_zeroth_moment
return cumulative_zeroth_moment[k]
end
end
# Equation (7) for determining the mean of the first class.
function μ(k)
let cumulative_first_moment = cumulative_first_moment
return cumulative_first_moment[k]
end
end
# Equation (18) for determining the between-cass variance.
function σ²(k)
let μ_T = μ_T
return (μ_T * ω(k) - μ(k))^2 / (ω(k) * (1 - ω(k)))
end
end
t = first_bin
for k = first_bin:last_bin-1
val = σ²(k)
if val > maxval
maxval = val
t = k
end
end
return t
end
mutable struct kdtreenode
inds::Vector{Int}
axis::Int
splitpoint::Float64
leftChild::Union{kdtreenode,Nothing}
rightChild::Union{kdtreenode,Nothing}
end
function kdtreequantisation!(img::AbstractArray; numcolors::Int = 256, precheck::Bool=false)
# ensure the img is in RGB colorspace
if(eltype(img)!=RGB{N0f8})
error("KDtree Algorithm requires img to be in RGB colorspace currently")
end
# checks if image has more colors than in numcolors
if precheck == true
unumcolors = length(unique(img))
# @show unumcolors
if unumcolors <= numcolors
@debug "Image has $unumcolors unique colors"
return unique(img)
end
end
# basic setup of img data, PriorityQueue to maintain variances for making splits
n_channels = length(channelview([img[1]]))
data = collect(reshape(channelview(img), n_channels, :))
inds = collect(1:length(img))
pq = PriorityQueue(Base.Order.Reverse)
variance(edges::AbstractRange, count::AbstractArray) = sum((((edges .- mean(edges)) .^ 2) .* count) / (sum(count) - 1))
# To calculate max variance along a axis
function varmax(inds::Vector{Int})
maxval = -Inf
ind = 0
edgesd = 0
for i = 1:n_channels
# error that needs to be fixed ArgumentError: reducing over an empty collection is not allowed
edges, count = build_histogram(data[i,inds], 256)
t = Otsu_N(count[1:end], edges)
curr = variance(edges[1:end], count[1:end]) - variance(edges[1:t], count[1:t])- variance(edges[t:end], count[t:end])
if (curr > maxval)
maxval = curr
ind = i
edgesd = edges[t]
end
end
return maxval, ind, edgesd
end
# To split of a node into its children based on max variance reduction infromation
function split(x)
indsleft = Vector{Int}([])
indsright = Vector{Int}([])
for i in x.inds
if data[:,i][x.axis] <= x.splitpoint
push!(indsleft, i)
else
push!(indsright, i)
end
end
return indsleft, indsright
end
# root of tree set up
maxvar, axis, splitpoint = varmax(inds)
root = kdtreenode(inds, axis, splitpoint, nothing, nothing)
enqueue!(pq, root => maxvar)
while length(pq) < numcolors
# split using axis with highest variance change
x, maxvar = dequeue_pair!(pq)
if maxvar == 0
@debug "Variance dropped to 0 while splitting, number of colors in Image: $(length(pq))"
break
end
indsleft, indsright = split(x)
maxvar, axis, splitpoint = varmax(indsleft)
enqueue!(pq, kdtreenode(indsleft, axis, splitpoint, nothing, nothing) => maxvar)
maxvar, axis, splitpoint = varmax(indsright)
enqueue!(pq, kdtreenode(indsright, axis, splitpoint, nothing, nothing) => maxvar)
end
# Update the image
numcol = length(pq)
colors = Vector{eltype(img)}([])
for i = 1:numcol
x = dequeue!(pq)
color = eltype(img).(mean(img[x.inds]))
push!(colors, color)
img[x.inds] .= color
end
return colors
end
function kdtreequantisation(img; kwargs...)
img_copy = deepcopy(img)
palette = kdtreequantisation!(img_copy; kwargs...)
return img_copy, palette
end | GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 1400 | @testset "GIFImages.jl" begin
path = get_example("fire.gif")
@testset "Basics" begin
@test typeof(gif_decode(path)) == Array{ColorTypes.RGB{FixedPointNumbers.N0f8}, 3}
@test eltype(gif_decode(path)) == ColorTypes.RGB{FixedPointNumbers.N0f8}
end
@testset "Output Shapes" begin
@test size(gif_decode(get_example("fire.gif"))) == (60,30,33)
@test size(gif_decode(get_example("gifgrid.gif")))== (100,100,1)
@test size(gif_decode(get_example("porsche.gif"))) == (200,320,1)
@test size(gif_decode(get_example("solid2.gif"))) == (400,640,1)
@test size(gif_decode(get_example("treescap-interlaced.gif"))) == (40,40,1)
@test size(gif_decode(get_example("treescap.gif"))) == (40,40,1)
@test size(gif_decode(get_example("welcome2.gif"))) == (48,290,6)
@test size(gif_decode(get_example("x-trans.gif"))) == (100,100,1)
end
@testset "Local ColorMaps" begin
img1 = gif_decode(get_example("welcome2.gif"); use_localpalette=true)
img2 = gif_decode(get_example("welcome2.gif"))
@test img1 != img2
# only certain images in welcome2.gif have local palette
# need to ensure the global and local color palettes are maintained separately
@test img1[:,:,1] == img1[:,:,1]
@test img1[:,:,2] == img1[:,:,2]
@test img1[:,:,3] == img1[:,:,3]
end
end | GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 2501 | using ImageQualityIndexes
@testset "Encoding" begin
@testset "Basic Encoding" begin
img1 = gif_decode(get_example("fire.gif"))
gif_encode("test1.gif", img1)
@test size(gif_decode("test1.gif")) == (60,30,33)
img1 = gif_decode(get_example("gifgrid.gif"))
gif_encode("test1.gif", img1)
@test size(gif_decode("test1.gif")) == (100,100,1)
end
@testset "Encode, Decode compatibility" begin
QUALITY = 100
# ensure encodes are same as what was decoded
img = gif_decode(get_example("fire.gif"))
gif_encode("test12.gif", img)
@test assess_psnr(gif_decode("test12.gif"), img) > QUALITY
img = gif_decode(get_example("gifgrid.gif"))
gif_encode("test12.gif", img)
@test assess_psnr(gif_decode("test12.gif"), img) > QUALITY
img = gif_decode(get_example("porsche.gif"))
gif_encode("test12.gif", img)
@test assess_psnr(gif_decode("test12.gif"), img) > QUALITY
img = gif_decode(get_example("solid2.gif"))
gif_encode("test12.gif", img)
@test assess_psnr(gif_decode("test12.gif"), img) > QUALITY
img = gif_decode(get_example("treescap-interlaced.gif"))
gif_encode("test12.gif", img)
@test assess_psnr(gif_decode("test12.gif"), img) > QUALITY
img = gif_decode(get_example("treescap.gif"))
gif_encode("test12.gif", img)
@test assess_psnr(gif_decode("test12.gif"), img) > QUALITY
img = gif_decode(get_example("welcome2.gif"))
gif_encode("test12.gif", img)
@test assess_psnr(gif_decode("test12.gif"), img) > QUALITY
img = gif_decode(get_example("x-trans.gif"))
gif_encode("test12.gif", img)
@test assess_psnr(gif_decode("test12.gif"), img) > QUALITY
end
# restricting colorspace to RGB for now
@testset "ColorSpaces" begin
img = BGR.(gif_decode(get_example("x-trans.gif")))
@test_throws ErrorException gif_encode("test12.gif", img)
end
@testset "Other Exceptions" begin
# colormap number out of range
img = gif_decode(get_example("x-trans.gif"))
@test_throws BoundsError gif_encode("test12.gif", img; colormapnum= 270)
# dimension error
img = testimage("mandrill")
@test_throws DimensionMismatch gif_encode("test12.gif", img)
img = gif_decode(get_example("welcome2.gif"))
@test_throws ErrorException gif_encode("", img)
end
end | GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 2387 | @testset "Quantizers" begin
@testset "Median Cut Color Quantizer" begin
#known issue
# this has some issues with number of colors generated
img = gif_decode(get_example("fire.gif")) # cuz this has less number of colors
@test length(unique(mediancutquantisation(img; numcolors=32))) == 16
# images with ample number of distinct colors
img = testimage("mandrill")
@test length(unique(mediancutquantisation(img; numcolors=256))) == 256
# test on different color ColorTypes
img = BGR.(testimage("mandrill"))
@test_throws ErrorException mediancutquantisation(img; numcolors=256)
# test on unique colors less than asked amount
img = gif_decode(get_example("fire.gif"))
mediancutquantisation!(img; numcolors=256, precheck = true)
@test length(unique(img)) == 231
end
@testset "Octree Color Quantizer" begin
img = gif_decode(get_example("fire.gif"))
octreequantisation!(img; numcolors=120)
@test length(unique(img)) == 120
img = gif_decode(get_example("fire.gif"))
octreequantisation!(img; numcolors=256, precheck = true)
@test length(unique(img)) == 231
img = BGR.(testimage("mandrill"))
@test_throws ErrorException octreequantisation(img; numcolors=256)
end
@testset "KDtree Color Quantizer" begin
img = gif_decode(get_example("fire.gif"))
kdtreequantisation!(img; numcolors=32)
@test length(unique(img)) == 32
img = gif_decode(get_example("fire.gif"))
kdtreequantisation!(img; numcolors=256, precheck = true)
@test length(unique(img)) == 231
# has around 15k colors n color quantiser brings it to 256
img = testimage("mandrill")
kdtreequantisation!(img; numcolors=256)
@test length(unique(img)) == 256
img = testimage("mandrill")
palette = kdtreequantisation!(img; numcolors=256)
@test length(palette) == 256
@test eltype(palette) == RGB{N0f8}
img = testimage("mandrill")
img_copy, palette = kdtreequantisation(img; numcolors=256)
@test length(palette) == 256
@test eltype(palette) == RGB{N0f8}
img = BGR.(testimage("mandrill"))
@test_throws ErrorException kdtreequantisation(img; numcolors=256)
end
end | GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | code | 332 | using GIFImages
using GIFImages.LibGif
using Test
using Downloads
using ColorTypes
using FixedPointNumbers
using TestImages
_wrap(name) = "https://github.com/ashwani-rathee/gif-sampleimages/blob/main/$(name)?raw=true"
get_example(x) = Downloads.download(_wrap(x))
include("decode.jl")
include("encode.jl")
include("quantizers.jl") | GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | docs | 3088 |

---
GIFImages.jl provides support for decoding and encoding GIF images by wrapping LibGif. GIF(Graphics Interchange Format) supports up to 8 bits per pixel for each image, allowing a single image to reference its own palette of up to 256 different colors chosen from the 24-bit RGB color space. It also supports animations and allows a separate palette which are known as local colormap of up to 256 colors for each frame. GIF is palette based, is very widely used and is a loseless data compression format.
[](https://ashwani-rathee.github.io/GIFImages.jl) [](https://join.slack.com/t/julialang/shared_invite/zt-1hxxb5ryp-Ts_egJ7FRN2muQ7nkTtCNQ) [](https://opensource.org/licenses/MIT) [](https://pkgs.genieframework.com?packages=GIFImages)
### Installation
If you have not yet installed Julia, please follow the [instructions](https://julialang.org/downloads/platform/) for your operating system.
Stable Version
```julia
# Enter ']' from the REPL to enter Pkg mode.
pkg> add GIFImages.jl
```
Dev Version
```julia
using Pkg
# Enter ']' from the REPL to enter Pkg mode.
pkg> add https://github.com/ashwani-rathee/GIFImages.jl.git
```
### Usage
For decoding purposes, GIFImages.jl currently supports `gif_decode` which
decode the GIF image as colorant matrix. The source data needs to be a filename.
#### Arguments
- `filepath::AbstractString` : Path to the gif file
- `use_localpalette::Bool=false` : While decoding, using this argument use of local colormap or global colormap for a particular slice can be specified. Gif files are palette based and have a global colormap(max `256 colors`) but slices/images in gif can have their own local colormap specific to a particular slice/image. These colormap can be used to decode a image if `use_localpalette` as `true`.
#### Examples
```jl
julia> using GIFImages, Downloads
julia> path = "test/data/fire.gif"
"test/data/fire.gif"
julia> img = gif_decode(path)
60×30×33 Array{RGB{N0f8},3} with eltype RGB{N0f8}
```
---
For encoding, GIFImages.jl provides `gif_encode` which encode the GIF colorant matrix to file.
#### Arguments
- `filepath` : Name of the file to which image is written.
- `img` : 3D GIF colorant matrix which has structure of height* width * numofimages and all the images are present as slices of the 3D matrix
- `colormapnum` : Specifies the number of colors to be used for the global colormap
#### Examples
```jl
julia> using GIFImages, Downloads
julia> path = "test/data/fire.gif"
"test/data/fire.gif"
julia> img = gif_decode(path)
60×30×33 Array{RGB{N0f8},3} with eltype RGB{N0f8}
julia> gif_encode("fire.gif", img)
```
### Contributions and Issues:
If you have questions about GIFImages.jl, feel free to get in touch via Slack or open an issue :hearts: | GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 184ddb5441f9635c0f45bf74c16a534e4beff7ec | docs | 1719 | ```@meta
CurrentModule = GIFImages
```
# GIFImages
This is the documentation for [GIFImages](https://github.com/ashwani-rathee/GIFImages.jl).
GIFImages.jl provides support for decoding and encoding GIF images.
# Usage
For decoding purposes, GIFImages.jl currently supports `gif_decode` which
decode the GIF image as colorant matrix. The source data needs to be a filename.
#### Arguments
- `filepath::AbstractString` : Path to the gif file
- `use_localpalette::Bool=false` : While decoding, using this argument use of local colormap or global colormap for a particular slice can be specified. Gif files are palette based and have a global colormap(max `256 colors`) but slices/images in gif can have their own local colormap specific to a particular slice/image. These colormap can be used to decode a image if `use_localpalette` as `true`.
#### Examples
```jl
julia> using GIFImages, Downloads
julia> path = "test/data/fire.gif"
"test/data/fire.gif"
julia> img = gif_decode(path)
60×30×33 Array{RGB{N0f8},3} with eltype RGB{N0f8}
```
---
For encoding, GIFImages.jl provides `gif_encode` which encode the GIF colorant matrix to file.
#### Arguments
- `filepath` : Name of the file to which image is written.
- `img` : 3D GIF colorant matrix which has structure of height* width * numofimages and all the images are present as slices of the 3D matrix
- `colormapnum` : Specifies the number of colors to be used for the global colormap
### Examples
```jl
julia> using GIFImages, Downloads
julia> path = "test/data/fire.gif"
"test/data/fire.gif"
julia> img = gif_decode(path)
60×30×33 Array{RGB{N0f8},3} with eltype RGB{N0f8}
julia> gif_encode("fire.gif", img)
```
```@autodocs
Modules = [GIFImages]
``` | GIFImages | https://github.com/JuliaIO/GIFImages.jl.git |
|
[
"MIT"
] | 0.1.0 | 548c7276bd79fde0577bfdc37684c3688b2e1417 | code | 1171 | # # Local nonparametric quantile regression
# This Julia package implements the nonparametric
# [quantile regression approach](https://arxiv.org/abs/2012.01758)
# of Ye and Padilla (2020).
# ## Usage
# The following example simulates heteroscedastic data and estimates
# the 20th, 50th,and 80th conditional quantiles.
ENV["GKSwstype"] = "nul" #hide
using QuantileNN, Plots, StableRNGs, LaTeXStrings, Statistics, Printf, Distributions
rng = StableRNG(123)
n = 1000
p = 3
X = randn(rng, n, p)
X[:, 1] .= 1
y = X[:, 2] + (1 .+ 2*abs.(X[:, 2])) .* randn(n)
pp = [0.2, 0.5, 0.8]
mm = [fit(QNN, X, y; p=p) for p in pp]
x = range(-2, 2, 20)
bw = 1.0
yy = [[predict_smooth(m, [0, v, 0], [bw]) for v in x] for m in mm]
ps = [@sprintf("%.2f", p) for p in pp]
plt = plot(x, yy[1], label=ps[1], xlabel=L"$x$", ylabel=L"$y$", size=(400,300))
plt = plot!(plt, x, yy[2], label=ps[2])
plt = plot!(plt, x, yy[3], label=ps[3])
Plots.savefig(plt, "./assets/readme1.svg")
# 
# ## References
# [1] Steven Siwei Ye and Oscar Hernan Madrid Padilla. Non-parametric Quantile
# Regression via the K-NN Fused Lasso. https://arxiv.org/abs/2012.01758
| QuantileNN | https://github.com/kshedden/QuantileNN.jl.git |
|
[
"MIT"
] | 0.1.0 | 548c7276bd79fde0577bfdc37684c3688b2e1417 | code | 1106 | using QuantileNN, UnicodePlots, Distributions
function example1()
n = 1000
x = randn(n, 2)
ey = x[:, 1] .^ 2
y = ey + randn(n)
qr = qregnn(y, x; dofit=false)
for p in [0.25, 0.5, 0.75]
fit!(qr, p)
for mode in [1, 2]
# True quantiles
yq = ey .+ quantile(Normal(), p)
fv = if mode == 1
# Predict using local averaging
[predict(qr, r; k=10) for r in eachrow(x)]
else
# Predict using local linear fitting
[predict_smooth(qr, r, [0.1, 10]) for r in eachrow(x)]
end
plt = lineplot([-3, 3], [-3, 3], xlim=(-3, 3), ylim=(-3, 3))
scatterplot!(plt, yq, fv)
println("Quantiles at probability p=", p)
println(plt)
end
end
end
function example2()
nrep = 20
n = 1000
p = 0.5
for j = 1:nrep
for k in [1, 2]
x = randn(n, k)
y = x[:, 1] .^ 2 + randn(n)
qr = qregnn(y, x)
la, pa = bic_search(qr, p, lam_max = 1e6)
x = [z[2] for z in pa]
x = x .- minimum(x)
plt = lineplot(x[3:end])
println(plt)
end
end
end
| QuantileNN | https://github.com/kshedden/QuantileNN.jl.git |
|
[
"MIT"
] | 0.1.0 | 548c7276bd79fde0577bfdc37684c3688b2e1417 | code | 188 | module QuantileNN
import StatsAPI: fit, predict, RegressionModel, fitted
export QNN, fit, fit!, predict, predict_smooth, fitted
export bic_search
include("qregnn.jl")
end # module
| QuantileNN | https://github.com/kshedden/QuantileNN.jl.git |
|
[
"MIT"
] | 0.1.0 | 548c7276bd79fde0577bfdc37684c3688b2e1417 | code | 5505 | using JuMP
using Tulip
using Random
using Statistics
using NearestNeighbors
using LightGraphs
using MathOptInterface
using LinearAlgebra
using StatsAPI
# Implement the nonparametric quantile regression approach described here:
# https://arxiv.org/abs/2012.01758
# Representation of a fitted model
mutable struct QNN <: RegressionModel
# The outcome variable
y::Vector{Float64}
# The covariates used to define the nearest neighbors
x::Matrix{Float64}
# Indices of the nearest neighbors
nn::Matrix{Int}
# A tree for finding neighbors
kt::KDTree
# The optimization model
model::JuMP.Model
# The fitted values from the most recent call to fit
fit::Vector{Float64}
# The probability point for the most recent fit
p::Float64
# Retain these references from the optimization model
rpos::Array{JuMP.VariableRef,1}
rneg::Array{JuMP.VariableRef,1}
dcap::Array{JuMP.VariableRef,2}
rfit::Array{JuMP.VariableRef,1}
end
# Returns the degrees of freedom of the fitted model, which is the
# number of connected components of the graph defined by all edges
# of the covariate graph that are fused in the regression fit.
function degf(qr::QNN; e = 1e-2)
nn = qr.nn
fv = qr.fit
g = SimpleGraph(size(nn, 1))
for i = 1:size(nn, 1)
for j = 1:size(nn, 2)
if abs(fv[i] - fv[nn[i, j]]) < e
add_edge!(g, i, nn[i, j])
end
end
end
return length(connected_components(g))
end
# Returns the BIC for the given fitted model.
function bic(qr::QNN)::Tuple{Float64,Int}
d = degf(qr)
p = qr.p
resid = qr.y - qr.fit
pos = sum(x -> clamp(x, 0, Inf), resid)
neg = -sum(x -> clamp(x, -Inf, 0), resid)
check = p * pos + (1 - p) * neg
sig = (1 - abs(1 - 2 * p)) / 2
n = length(qr.y)
return tuple(2 * check / sig + d * log(n), d)
end
function fitted(qr::QNN)
return qr.fit
end
# Predict the quantile at the point z using k nearest neighbors.
function predict(qr::QNN, z::AbstractVector; k = 5)
ii, _ = knn(qr.kt, z, k)
return mean(qr.fit[ii])
end
"""
predict_smooth(qr::QNN, z::AbstractVector, bw::AbstractVector)
Predict a quantile at the point z for the fitted model qr. The
vector bw contains bandwidths, which can either be the same
length of z (a bandwidth for each variable), or a vector of
length 1 (the same bandwidth for all variables).
"""
function predict_smooth(qr::QNN, z::AbstractVector, bw::AbstractVector)
if minimum(bw) <= 0
throw(ArgumentError("Bandwidth must be positive"))
end
f = qr.fit
x = qr.x
n, r = size(x)
xtx = zeros(r + 1, r + 1)
xty = zeros(r + 1)
xr = ones(r + 1)
for i = 1:n
xr[2:end] = x[i, :] - z
e2 = sum(abs2, xr[2:end] ./ bw)
w = exp(-e2 / 2)
xtx .= xtx + w * xr * xr'
xty .= xty + w * f[i] * xr
end
b = pinv(xtx) * xty
return b[1]
end
function fit(::Type{QNN}, X::AbstractMatrix, y::AbstractVector;
p=0.5, k=5, lam=0.1)
n = length(y)
# Build the nearest neighbor tree, exclude each point from its own
# neighborhood.
kt = KDTree(X')
nx, _ = knn(kt, X', k + 1, true)
nn = hcat(nx...)'
nn = nn[:, 2:end]
model = Model(Tulip.Optimizer)
# The estimated quantile for each row of the design matrix.
@variable(model, rfit[1:n])
# The residuals y - rfit are decomposed into their positive
# and negative parts.
rpos = @variable(model, rpos[1:n])
rneg = @variable(model, rneg[1:n])
# The distance between the fitted value of each point
# and its nearest neighbor is bounded by dcap.
dcap = @variable(model, dcap[1:n, 1:k])
@constraint(model, rpos - rneg .== y - rfit)
@constraint(model, rpos .>= 0)
@constraint(model, rneg .>= 0)
@constraint(model, dcap .>= 0)
for j = 1:k
@constraint(model, rfit - rfit[nn[:, j]] .<= dcap[:, j])
@constraint(model, rfit[nn[:, j]] - rfit .<= dcap[:, j])
end
qr = QNN(y, X, nn, kt, model, Vector{Float64}(), -1, rpos, rneg, dcap, rfit)
fit!(qr, p; lam=lam)
return qr
end
# Estimate the p'th quantiles for the population represented by the data
# in qr. lam is a penalty parameter controlling the smoothness of the
# fit.
function fit!(qr::QNN, p::Float64; lam::Float64=0.1)
@objective(qr.model, Min, sum(p * qr.rpos + (1 - p) * qr.rneg) + lam * sum(qr.dcap))
optimize!(qr.model)
if termination_status(qr.model) != MathOptInterface.OPTIMAL
@warn("QNN fit did not converge")
end
qr.fit = value.(qr.rfit)
end
# Search for a tuning parameter based on BIC. Starting from
# lambda=0.1, increase the tuning parameter sequentially
# by a factor of 'fac'. The iterations stop when the current
# BIC is greater than the previous BIC, or when the degrees of
# freedom is less than or equal to 'dof_min', or when the value of
# lambda is greater than 'lam_max'. The path is returned as an array
# of triples containing the tuning parameter value, the BIC
# value, and the degrees of freedom.
function bic_search(qr::QNN, p::Float64; fac = 1.2, lam_max = 1e6, dof_min = 2)
pa = []
lam = 0.1
while lam < lam_max
_ = fit!(qr, p; lam=lam)
b, d = bic(qr)
push!(pa, [lam, b, d])
if (d <= dof_min) || (length(pa) > 1 && b > pa[end-1][2])
break
end
lam = lam * fac
end
la = minimum([x[2] for x in pa])
return tuple(la, pa)
end
| QuantileNN | https://github.com/kshedden/QuantileNN.jl.git |
|
[
"MIT"
] | 0.1.0 | 548c7276bd79fde0577bfdc37684c3688b2e1417 | code | 875 | using Test
using QuantileNN
using StableRNGs
using Statistics
@testset "test1" begin
rng = StableRNG(123)
n = 2000
X = randn(rng, n, 2)
y = X[:, 1] + randn(rng, n)
qr1 = fit(QNN, X, y; p=0.25)
qr2 = fit(QNN, X, y; p=0.5)
qr3 = fit(QNN, X, y; p=0.75)
yq = zeros(n, 3)
yq[:, 1] = fitted(qr1)
yq[:, 2] = fitted(qr2)
yq[:, 3] = fitted(qr3)
ax = [-0.67, 0, 0.67] # True intercepts
for j = 1:3
c = cov(yq[:, j], X[:, 1])
b = c / var(X[:, 1])
a = mean(yq[:, j]) - b * mean(X[:, 1])
@test abs(b - 1) < 0.1 # True slope is 1
@test abs(a - ax[j]) < 0.15
end
bw = Float64[2, 2]
@test abs(predict_smooth(qr1, [0.0, 0.0], bw) - ax[1]) < 0.15
@test abs(predict_smooth(qr2, [0.0, 0.0], bw) - ax[2]) < 0.15
@test abs(predict_smooth(qr3, [0.0, 0.0], bw) - ax[3]) < 0.15
end
| QuantileNN | https://github.com/kshedden/QuantileNN.jl.git |
|
[
"MIT"
] | 0.1.0 | 548c7276bd79fde0577bfdc37684c3688b2e1417 | docs | 1231 | # Local nonparametric quantile regression
This Julia package implements the nonparametric
[quantile regression approach](https://arxiv.org/abs/2012.01758)
of Ye and Padilla (2020).
## Usage
The following example simulates heteroscedastic data and estimates
the 20th, 50th,and 80th conditional quantiles.
````julia
using QuantileNN, Plots, StableRNGs, LaTeXStrings, Statistics, Printf, Distributions
rng = StableRNG(123)
n = 1000
p = 3
X = randn(rng, n, p)
X[:, 1] .= 1
y = X[:, 2] + (1 .+ 2*abs.(X[:, 2])) .* randn(n)
pp = [0.2, 0.5, 0.8]
mm = [fit(QNN, X, y; p=p) for p in pp]
x = range(-2, 2, 20)
bw = 1.0
yy = [[predict_smooth(m, [0, v, 0], [bw]) for v in x] for m in mm]
ps = [@sprintf("%.2f", p) for p in pp]
plt = plot(x, yy[1], label=ps[1], xlabel=L"$x$", ylabel=L"$y$", size=(400,300))
plt = plot!(plt, x, yy[2], label=ps[2])
plt = plot!(plt, x, yy[3], label=ps[3])
Plots.savefig(plt, "./assets/readme1.svg")
````

## References
[1] Steven Siwei Ye and Oscar Hernan Madrid Padilla. Non-parametric Quantile
Regression via the K-NN Fused Lasso. https://arxiv.org/abs/2012.01758
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| QuantileNN | https://github.com/kshedden/QuantileNN.jl.git |
|
[
"MIT"
] | 0.2.0 | 3ed67384a353e88a9140db8bf274aee75af9d36a | code | 201 | module ComoniconTypes
export Maybe, ComoniconExpr, Description, LeafCommand, NodeCommand, Entry, Argument, Option, Flag, print_cmd
include("types.jl")
include("printing.jl")
include("utils.jl")
end
| ComoniconTypes | https://github.com/comonicon/ComoniconTypes.jl.git |
|
[
"MIT"
] | 0.2.0 | 3ed67384a353e88a9140db8bf274aee75af9d36a | code | 6815 | tab(n::Int) = " "^n
ignore_type(type) = type in [Any, String] || type <: AbstractString
function has_args(cmd::LeafCommand)
!isempty(cmd.args) || !isnothing(cmd.vararg)
end
section(io) = print(io, "\n\n")
function section(io::IO, title)
section(io)
printstyled(io, title; bold=true)
section(io)
end
Base.@kwdef mutable struct Indent
text::Int = 0
desc::Int = 0
end
Base.@kwdef mutable struct Color
name::Symbol = :light_blue
args::Symbol = :light_magenta
dash::Symbol = :light_cyan
end
Base.@kwdef mutable struct Terminal
width::Int = displaysize(stdout)[2]
left::Int = floor(Int, 0.4 * width) # left column max width
right::Int = floor(Int, 0.4 * width) # right column max width
color::Color = Color()
indent::Indent = Indent()
brief::Bool = true
end
Base.show(io::IO, ::MIME"text/plain", cmd::ComoniconExpr) = print_cmd(io, cmd)
function Base.show(io::IO, ::MIME"text/plain", cmd::Description)
printstyled(io, "brief:\n"; color=:light_black)
println(io, cmd.brief)
printstyled(io, "content:\n"; color=:light_black)
print(io, cmd.content)
end
print_cmd(cmd) = print_cmd(stdout, cmd)
print_cmd(io::IO, cmd) = print_cmd(io, cmd, Terminal())
print_cmd(cmd, t::Terminal) = print_cmd(stdout, cmd, t)
function print_cmd(io::IO, arg::Argument, t::Terminal)
color = t.color.args
arg.require || printstyled(io, "["; color)
arg.require && printstyled(io, "<"; color)
printstyled(io, arg.name; color)
if !ignore_type(arg.type)
printstyled(io, "::", arg.type; color)
end
arg.vararg && printstyled(io, "..."; color)
arg.require && printstyled(io, ">"; color)
arg.require || printstyled(io, "]"; color)
return
end
print_cmd(io::IO, cmd::Flag, t::Terminal) = _print_dash(io, cmd, t)
function print_cmd(io::IO, cmd::Option, t::Terminal)
_print_dash(io, cmd, t)
isnothing(cmd.hint) ||
printstyled(io, tab(1), "<", cmd.hint, ">"; color=t.color.args)
return
end
function _print_dash(io::IO, cmd::Union{Option, Flag}, t::Terminal)
color = t.color.dash
if cmd.short
printstyled(io, "-", first(cmd.name), ", "; color)
end
printstyled(io, "--", cmd.name; color)
end
function print_content(io::IO, desc::Description, t::Terminal)
isnothing(desc.content) || print_within(io, desc.content, t.width, 0)
return
end
function print_cmd(io::IO, cmd::Entry, t::Terminal)
section(io)
printstyled(io, tab(2), cmd.root.name; color=t.color.name, bold=true)
isnothing(cmd.version) || print(io, " v", cmd.version)
section(io)
t.brief = false
# print description ahead
print_content(io, cmd.root.description, t)
section(io, "Usage")
print_head(io, cmd, t)
print_body(io, cmd, t)
end
function print_cmd(io::IO, cmd::NodeCommand, t::Terminal)
section(io)
print_head(io, cmd, t)
section(io)
print_content(io, cmd.description, t)
print_body(io, cmd, t)
end
function print_cmd(io::IO, cmd::LeafCommand, t::Terminal)
section(io)
print_head(io, cmd, t)
section(io)
print_content(io, cmd.description, t)
print_body(io, cmd, t)
end
print_head(io::IO, cmd::Entry, t::Terminal) = print_head(io, cmd.root, t)
function print_head(io::IO, cmd::NodeCommand, t::Terminal)
print(io, tab(2))
print_signature(io, cmd, t)
end
function print_head(io::IO, cmd::LeafCommand, t::Terminal)
print(io, tab(2))
print_name(io, cmd, t)
if has_args(cmd)
printstyled(io, tab(1), "<args>"; color=t.color.args)
end
isempty(cmd.args) || printstyled(io, tab(1), "[options]"; color = t.color.dash)
isempty(cmd.flags) || printstyled(io, tab(1), "[flags]"; color = t.color.dash)
return
end
function print_name(io::IO, cmd, t::Terminal)
printstyled(io, cmd.name; color=t.color.name, bold=true)
end
function print_signature(io::IO, cmd, t::Terminal)
print_cmd(io, cmd, t)
end
function print_signature(io::IO, cmd::NodeCommand, t::Terminal)
print_name(io, cmd, t)
printstyled(io, tab(1), "<command>"; color=t.color.name)
end
function print_signature(io::IO, cmd::LeafCommand, t::Terminal)
print_name(io, cmd, t)
for each in cmd.args
print(io, tab(1))
print_cmd(io, each, t)
end
if !isnothing(cmd.vararg)
print(io, tab(1))
print_cmd(io, cmd.vararg, t)
end
end
function print_body(io::IO, cmd::Entry, t::Terminal)
print_body(io, cmd.root, t)
version_flag = "-V, --version"
printstyled(io, tab(2), version_flag; color=t.color.dash)
print_indent_content(io, "print version information", t, length(version_flag)+2)
println(io)
end
function print_body(io::IO, cmd::NodeCommand, t::Terminal)
section(io, "Commands")
for each in values(cmd.subcmds)
print_sig_brief(io, each, t)
println(io)
end
section(io, "Flags")
print_help(io, t)
return
end
function print_body(io::IO, cmd::LeafCommand, t::Terminal)
if has_args(cmd)
section(io, "Args")
end
for each in cmd.args
print_sig_brief(io, each, t)
println(io)
end
if !isnothing(cmd.vararg)
print_sig_brief(io, cmd.vararg, t)
println(io)
end
if !isempty(cmd.options)
section(io, "Options")
for each in unique(values(cmd.options))
print_sig_brief(io, each, t)
println(io)
end
end
section(io, "Flags")
for each in unique(values(cmd.flags))
print_sig_brief(io, each, t)
section(io)
end
print_help(io, t)
end
function print_help(io::IO, t::Terminal)
help_flag = "-h, --help"
printstyled(io, tab(2), help_flag; color=t.color.dash)
print_indent_content(io, "print this help message", t, length(help_flag)+2)
println(io)
end
function print_sig_brief(io::IO, cmd, t::Terminal)
buf = IOBuffer()
print_signature(buf, cmd, t)
s = String(take!(buf))
print(io, tab(2))
print_signature(io, cmd, t)
isnothing(cmd.description.brief) && return
print_indent_content(io, cmd.description.brief, t, length(s)+2)
return
end
function print_indent_content(io::IO, text::String, t::Terminal, firstline::Int)
middle = t.width - t.left - t.right
lines = splitlines(text, t.width)
isempty(lines) && return
print(io, tab(t.left - firstline + middle), lines[1])
for i in 2:length(lines)
print(io, tab(t.width - t.right), lines[i])
if i !== lastindex(lines)
println(io)
end
end
return
end
function print_within(io::IO, text::String, width::Int, indent::Int)
lines = splitlines(text, width - indent)
for i in eachindex(lines)
print(io, tab(indent), lines[i])
if i !== lastindex(lines)
println(io)
end
end
end
| ComoniconTypes | https://github.com/comonicon/ComoniconTypes.jl.git |
|
[
"MIT"
] | 0.2.0 | 3ed67384a353e88a9140db8bf274aee75af9d36a | code | 2957 | const Maybe{T} = Union{Nothing, T}
abstract type ComoniconExpr end
Base.@kwdef struct Description <: ComoniconExpr
brief::Union{Nothing, String} = nothing
content::Union{Nothing, String} = nothing
end
Base.convert(::Type{Description}, ::Nothing) = Description()
Base.convert(::Type{Description}, x::String) = Description(x)
Base.convert(::Type{Description}, x::AbstractString) = Description(String(x))
Description(::Nothing) = Description(nothing, nothing)
function Description(text::String)
return Description(brief(text), text)
end
Base.@kwdef struct Argument <: ComoniconExpr
name::String
type = Any
vararg::Bool = false
require::Bool = true
# this is only for docs, since Julia
# function will handle the actual default
# value
default::Maybe{String} = nothing
description::Description = Description()
line::Maybe{LineNumberNode} = nothing
function Argument(name, type, vararg, require, default, description, line)
require = vararg ? false : require # force require=false for vararg
new(name, type, vararg, require, default, description, line)
end
end
Base.@kwdef struct Option <: ComoniconExpr
sym::Symbol
name::String = replace(string(sym), '_'=>'-')
hint::Maybe{String} = nothing
type = Any
short::Bool = false
description::Description = Description()
line::Maybe{LineNumberNode} = nothing
end
Base.@kwdef struct Flag <: ComoniconExpr
sym::Symbol
name::String = replace(string(sym), '_'=>'-')
short::Bool = false
description::Description = Description()
line::Maybe{LineNumberNode} = nothing
end
Base.@kwdef struct NodeCommand <: ComoniconExpr
name::String
subcmds::Dict{String, Any}
description::Description = Description()
line::Maybe{LineNumberNode} = nothing
function NodeCommand(name, subcmds, description, line)
!isempty(subcmds) || error("list of subcommands should not be empty")
new(name, subcmds, description, line)
end
end
Base.@kwdef struct LeafCommand <: ComoniconExpr
fn::Any
name::String
args::Vector{Argument} = Argument[]
nrequire::Int = count(x->x.require, args)
vararg::Maybe{Argument} = nothing
flags::Dict{String, Flag} = Dict{String, Flag}()
options::Dict{String, Option} = Dict{String, Option}()
description::Description = Description()
line::Maybe{LineNumberNode} = nothing
function LeafCommand(fn, name, arg, nrequire, vararg,
flags, options, description, line)
isnothing(vararg) || vararg.vararg == true ||
error("expect vararg $(vararg.name) " *
"to have property vararg=true")
new(fn, name, arg, nrequire, vararg,
flags, options, description, line)
end
end
Base.@kwdef struct Entry <: ComoniconExpr
root::Union{NodeCommand, LeafCommand}
version::Maybe{VersionNumber} = nothing
line::Maybe{LineNumberNode} = nothing
end
| ComoniconTypes | https://github.com/comonicon/ComoniconTypes.jl.git |
|
[
"MIT"
] | 0.2.0 | 3ed67384a353e88a9140db8bf274aee75af9d36a | code | 1933 | """
splittext(s)
Split the text in string `s` into an array, but keep all the separators
attached to the preceding word.
!!! note
this is copied from Luxor/text.jl
"""
function splittext(s::String)
# split text into array, keeping all separators
# hyphens stay with first word
result = Array{String,1}()
iobuffer = IOBuffer()
for c in s
if isspace(c)
push!(result, String(take!(iobuffer)))
iobuffer = IOBuffer()
elseif c == '-' # hyphen splits words but needs keeping
print(iobuffer, c)
push!(result, String(take!(iobuffer)))
iobuffer = IOBuffer()
else
print(iobuffer, c)
end
end
push!(result, String(take!(iobuffer)))
return result
end
"""
splitlines(s, width = 80)
Split a given string into lines of width `80` characters.
"""
function splitlines(s, width = 80)
words = splittext(s)
lines = String[]
current_line = String[]
space_left = width
for word in words
word == "" && continue
word_width = length(word)
if space_left < word_width
# start a new line
push!(lines, strip(join(current_line)))
current_line = String[]
space_left = width
end
if endswith(word, "-")
push!(current_line, word)
space_left -= word_width
else
push!(current_line, word * " ")
space_left -= word_width + 1
end
end
isempty(current_line) || push!(lines, strip(join(current_line)))
return lines
end
"""
brief(text::String)
Use the first sentence as the brief description.
"""
function brief(text::String)
index = findfirst(". ", text)
if index === nothing
index = findfirst(".", text)
end
if index === nothing
return text
else
return text[1:first(index)]
end
end
| ComoniconTypes | https://github.com/comonicon/ComoniconTypes.jl.git |
|
[
"MIT"
] | 0.2.0 | 3ed67384a353e88a9140db8bf274aee75af9d36a | code | 2219 | using ComoniconTypes
using Test
using Faker
desc = Description(Faker.text())
@test endswith(desc.brief, ".") # brief should be a sentence
arg = Argument(;name="arg", type=Int)
macro test_show(mime, ex)
Meta.isexpr(ex, :block) || error("expect begin ... end")
ret = Expr(:block)
for each in ex.args
if Meta.isexpr(each, :call) && each.args[1] === :in
@gensym buf object
push!(ret.args, :($buf = IOBuffer()))
push!(ret.args, :($object = $(each.args[3])))
push!(ret.args, :(show($buf, $mime(), $object)))
push!(ret.args, :(@test occursin($(each.args[2]), String(take!($buf)))))
else
push!(ret.args, each)
end
end
return esc(ret)
end
@testset "convert(Description, ...)" begin
@test Description(nothing) == Description()
@test convert(Description, nothing) == Description()
@test convert(Description, "nothing") == Description("nothing")
@test convert(Description, split("abcd. efdasdas.", '.')[1]) == Description("abcd")
end
@test_show MIME"text/plain" begin
"<arg>" in Argument(;name="arg")
"[arg...]" in Argument(;name="arg", vararg=true)
"<arg::Int64>" in Argument(;name="arg", type=Int)
"--option-a" in Option(;sym=:option_a)
"--option-a <hint>" in Option(;sym=:option_a, hint="hint")
"--flag-a" in Flag(;sym=:flag_a)
end
leaf = LeafCommand(;
fn=identity,
name="leaf",
args=[Argument(;name="arg", description=Faker.text())],
flags=Dict(
"flag-a" => Flag(;
sym=:flag_a,
description="flag a."
),
"flag-b" => Flag(;
sym=:flag_b,
description="flag b."
)
),
description=Faker.text(),
)
@test_show MIME"text/plain" begin
" leaf <args> [options] [flags]" in leaf
"Args\n\n" in leaf
" <arg>" in leaf
"Flags\n\n" in leaf
end
@test_throws ErrorException NodeCommand(;name="abc", subcmds=Dict{String, Any}())
node = NodeCommand(;name="foo", subcmds=Dict("leaf"=>leaf))
@test_show MIME"text/plain" begin
" foo <command>" in node
"Commands\n\n" in node
" leaf <arg>" in node
"Flags\n\n" in node
"-h, --help" in node
end
| ComoniconTypes | https://github.com/comonicon/ComoniconTypes.jl.git |
|
[
"MIT"
] | 0.2.0 | 3ed67384a353e88a9140db8bf274aee75af9d36a | docs | 344 | # ComoniconTypes
[](https://github.com/comonicon/ComoniconTypes.jl/actions)
[](https://codecov.io/gh/comonicon/ComoniconTypes.jl)
Comonicon IR types.
| ComoniconTypes | https://github.com/comonicon/ComoniconTypes.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 1588 | ## A simple 2D example for fluid-flow simulation
using DrWatson
@quickactivate "JutulDarcyRules-example"
using JutulDarcyRules
using LinearAlgebra
using PyPlot
## grid size
n = (30, 1, 15)
d = (30.0, 30.0, 30.0)
## permeability
K0 = 200 * md * ones(n)
K = deepcopy(K0)
K[:,:,1:2:end] .*= 100
ϕ = 0.25
model = jutulModel(n, d, ϕ, K1to3(K))
## simulation time steppings
tstep = 50 * ones(10)
tot_time = sum(tstep)
## injection & production
inj_loc = (15, 1, 10) .* d
irate = 5e-3
q = jutulVWell(irate, (450., 30.); startz = 270., endz = 330.)
## set up modeling operator
S = jutulModeling(model, tstep)
## simulation
Trans = KtoTrans(CartesianMesh(model), K1to3(K))
Trans0 = KtoTrans(CartesianMesh(model), K1to3(K0))
@time states = S(log.(Trans), q)
@time states0 = S(log.(Trans0), q)
## plotting
fig=figure(figsize=(20,12));
subplot(1,2,1);
imshow(reshape(Saturations(states.states[end]), n[1], n[end])'); colorbar(); title("saturation")
subplot(1,2,2);
imshow(reshape(Pressure(states.states[end]), n[1], n[end])'); colorbar(); title("pressure")
## plotting
fig=figure(figsize=(20,12));
subplot(1,2,1);
imshow(reshape(Saturations(states0.states[end]), n[1], n[end])'); colorbar(); title("saturation")
subplot(1,2,2);
imshow(reshape(Pressure(states0.states[end]), n[1], n[end])'); colorbar(); title("pressure")
exist_co2 = sum(Saturations(states.states[end]) .* states.states[end].state[:Reservoir][:PhaseMassDensities][1,:] .* model.ϕ) * prod(model.d)
inj_co2 = JutulDarcyRules.ρCO2 * q.irate * JutulDarcyRules.day * sum(tstep)
norm(exist_co2-inj_co2)/norm(exist_co2+inj_co2)
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 1558 | ## A simple 2D example for fluid-flow simulation
using DrWatson
@quickactivate "JutulDarcyRules-example"
using JutulDarcyRules
using LinearAlgebra
using PyPlot
## grid size
n = (30, 1, 15)
d = (30.0, 30.0, 30.0)
## permeability
K0 = 200 * md * ones(n)
K = deepcopy(K0)
K[:,:,1:2:end] .*= 100
ϕ = 0.25
model = jutulModel(n, d, ϕ, K1to3(K))
## simulation time steppings
tstep = 50 * ones(10)
tot_time = sum(tstep)
## injection & production
inj_loc = (15, 1, 10) .* d
irate = 5e-3
q = jutulForce(irate, [inj_loc])
## set up modeling operator
S = jutulModeling(model, tstep)
## simulation
Trans = KtoTrans(CartesianMesh(model), K1to3(K))
Trans0 = KtoTrans(CartesianMesh(model), K1to3(K0))
@time states = S(log.(Trans), q)
@time states0 = S(log.(Trans0), q)
## plotting
fig=figure(figsize=(20,12));
subplot(1,2,1);
imshow(reshape(Saturations(states.states[end]), n[1], n[end])'); colorbar(); title("saturation")
subplot(1,2,2);
imshow(reshape(Pressure(states.states[end]), n[1], n[end])'); colorbar(); title("pressure")
## plotting
fig=figure(figsize=(20,12));
subplot(1,2,1);
imshow(reshape(Saturations(states0.states[end]), n[1], n[end])'); colorbar(); title("saturation")
subplot(1,2,2);
imshow(reshape(Pressure(states0.states[end]), n[1], n[end])'); colorbar(); title("pressure")
exist_co2 = sum(Saturations(states.states[end]) .* states.states[end].state[:Reservoir][:PhaseMassDensities][1,:] .* model.ϕ) * prod(model.d)
inj_co2 = JutulDarcyRules.ρCO2 * q.irate * JutulDarcyRules.day * sum(tstep)
norm(exist_co2-inj_co2)/norm(exist_co2+inj_co2)
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 5107 | ## A 2D compass example
using DrWatson
@quickactivate "JutulDarcyRules-example"
using JutulDarcyRules
using LinearAlgebra
using PyPlot
using Flux
using LineSearches
using JLD2
using JUDI
using Statistics
sim_name = "2D-K-inv"
exp_name = "compass"
mkpath(datadir())
mkpath(plotsdir())
## grid size
JLD2.@load datadir("BGCompass_tti_625m.jld2") m d;
d = (6., 6.)
m = m[200:450,181:end]
h = 180 * d[end]
v = Float64.(sqrt.(1f0./m));
function downsample(v::Matrix{T}, factor::Int) where T
v_out_size = div.(size(v), factor)
v_out = zeros(T, v_out_size)
for i = 1:v_out_size[1]
for j = 1:v_out_size[2]
v_out[i,j] = mean(v[factor*i-factor+1:factor*i, factor*j-factor+1:factor*j])
end
end
return v_out
end
factor = 2
v = 1.0./downsample(1.0./v, factor)
d = Float64.(d) .* factor;
function VtoK(v::Matrix{T}, d::Tuple{T, T}; α::T=T(20)) where T
n = size(v)
idx_wb = find_water_bottom(v.-minimum(v))
idx_ucfmt = find_water_bottom((v.-T(3.5)).*(v.>T(3.5)))
Kh = zeros(T, n)
capgrid = Int(round(T(50)/d[2]))
for i = 1:n[1]
Kh[i,1:idx_wb[i]-1] .= T(1e-10) # water layer
Kh[i,idx_wb[i]:idx_ucfmt[i]-capgrid-1] .= α*exp.(v[i,idx_wb[i]:idx_ucfmt[i]-capgrid-1])
Kh[i,idx_ucfmt[i]-capgrid:idx_ucfmt[i]-1] .= T(1e-3)
Kh[i,idx_ucfmt[i]:end] .= α*exp.(v[i,idx_ucfmt[i]:end]) .- α*exp(T(3.5))
end
return Kh
end
Kh = VtoK(v, d);
K = Float64.(Kh * md);
n = (size(K,1), 1, size(K,2))
d = (d[1], 2000.0, d[2])
ϕ = 0.25
model = jutulModel(n, d, ϕ, K1to3(K; kvoverkh=0.36); h=h)
## simulation time steppings
tstep = 365.25 * ones(15)
tot_time = sum(tstep)
## injection & production
inj_loc = (Int(round(n[1]/2)), 1, n[end]-20) .* d
irate = 0.3
q = jutulForce(irate, [inj_loc])
## set up modeling operator
S = jutulModeling(model, tstep)
## simulation
mesh = CartesianMesh(model)
T(x) = log.(KtoTrans(mesh, K1to3(exp.(x); kvoverkh=0.36)))
logK = log.(K)
@time state = S(T(logK), q)
#### inversion
logK0 = deepcopy(logK)
logK0[v.>3.5] .= mean(logK[v.>3.5])
logK0[logK0.==minimum(logK0)] .= mean(logK[v.>3.5])
logK_init = deepcopy(logK0)
state_init = S(T(logK_init), q)
f(logK) = .5 * norm(S(T(logK),q)[1:length(tstep)*prod(n)]-state[1:length(tstep)*prod(n)])^2
ls = BackTracking(order=3, iterations=10)
lower, upper = 1.1*minimum(logK), 0.9*maximum(logK)
prj(x) = max.(min.(x,upper),lower)
# Main loop
niterations = 100
fhistory = zeros(niterations)
for j=1:niterations
@time fval, gs = Flux.withgradient(() -> f(logK0), Flux.params(logK0))
g = gs[logK0]
p = -g/norm(g, Inf)
println("Inversion iteration no: ",j,"; function value: ",fval)
fhistory[j] = fval
# linesearch
function f_(α)
misfit = f(prj(logK0 .+ α * p))
@show α, misfit
return misfit
end
step, fval = ls(f_, 1e-1, fval, dot(g, p))
# Update model and bound projection
global logK0 = prj(logK0 .+ step .* p)
fig_name = @strdict j n d ϕ tstep irate niterations lower upper inj_loc
### plotting
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(exp.(logK)'./md, vmin=minimum(exp.(logK))./md, vmax=maximum(exp.(logK)./md)); colorbar(); title("true permeability")
subplot(1,3,2);
imshow(exp.(logK0)'./md, vmin=minimum(exp.(logK))./md, vmax=maximum(exp.(logK)./md)); colorbar(); title("inverted permeability")
subplot(1,3,3);
imshow(exp.(logK)'./md.-exp.(logK0)'./md, vmin=minimum(exp.(logK)), vmax=maximum(exp.(logK)./md)); colorbar(); title("diff")
suptitle("Flow Inversion at iter $j")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_diff.png"), fig);
close(fig)
state_predict = S(T(logK0), q)
## data fitting
fig = figure(figsize=(20,12));
for i = 1:5
subplot(4,5,i);
imshow(reshape(Saturations(state_init.states[3*i]), n[1], n[end])', vmin=0, vmax=0.9); colorbar();
title("initial prediction at snapshot $(3*i)")
subplot(4,5,i+5);
imshow(reshape(Saturations(state.states[3*i]), n[1], n[end])', vmin=0, vmax=0.9); colorbar();
title("true at snapshot $(3*i)")
subplot(4,5,i+10);
imshow(reshape(Saturations(state_predict.states[3*i]), n[1], n[end])', vmin=0, vmax=0.9); colorbar();
title("predict at snapshot $(3*i)")
subplot(4,5,i+15);
imshow(5*abs.(reshape(Saturations(state.states[3*i]), n[1], n[end])'-reshape(Saturations(state_predict.states[3*i]), n[1], n[end])'), vmin=0, vmax=0.9); colorbar();
title("5X diff at snapshot $(3*i)")
end
suptitle("Flow Inversion at iter $j")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_co2.png"), fig);
close(fig)
## loss
fig = figure(figsize=(20,12));
plot(fhistory[1:j]);title("loss=$(fhistory[j])");
suptitle("Flow Inversion at iter $j")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_loss.png"), fig);
close(fig)
end
JLD2.@save "compass-inv.jld2" logK logK0 state | JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 8173 | ## A 64×64 2D example for end-to-end inversion of a tortuous channel
using DrWatson
@quickactivate "JutulDarcyRules-example"
using JutulDarcyRules
using LinearAlgebra
using PyPlot
using Flux
using LineSearches
using JLD2
using JUDI
using Random
Random.seed!(2023)
sim_name = "end-to-end-inv"
exp_name = "tortuous"
# patchy saturation model
include("utils.jl")
mkpath(datadir())
mkpath(plotsdir())
## grid size
JLD2.@load datadir("K.jld2") K K0;
K = Float64.(K * md);
K0 = Float64.(K0 * md);
n = size(K)
d = (15.0, 15.0)
ϕ = 0.25
model0 = jutulModel((n[1], 1, n[2]), (d[1], 10.0, d[2]), ϕ, K1to3(K0))
model = jutulModel((n[1], 1, n[2]), (d[1], 10.0, d[2]), ϕ, K1to3(K))
## simulation time steppings
tstep = 40 * ones(51)
tot_time = sum(tstep)
# observation vintages
nv = 11
survey_indices = Int.(round.(range(1, stop=length(tstep), length=nv)))
## injection & production
inj_loc = (3, 1, 32) .* (d[1], 10.0, d[2])
prod_loc = (62, 1, 32) .* (d[1], 10.0, d[2])
irate = 5e-3
f = jutulForce(irate, [inj_loc, prod_loc])
## set up modeling operator
S = jutulModeling(model, tstep)
## simulation
mesh = CartesianMesh(model)
T(x) = log.(KtoTrans(mesh, K1to3(exp.(x))))
logK0 = log.(K0)
logK = log.(K)
logK_init = deepcopy(logK0)
@time state0 = S(T(logK0), f)
@time state = S(T(logK), f)
### observed states
O(state::AbstractVector) = Float32.(permutedims(reshape(state[1:length(tstep)*prod(n)], n[1], n[end], length(tstep)), [3,1,2])[survey_indices,:,:])
sw_true = O(state)
# set up rock physics
vp = 3500 * ones(Float32,n) # p-wave
phi = 0.25f0 * ones(Float32,n) # porosity
rho = 2200 * ones(Float32,n) # density
R(c::AbstractArray{Float32,3}) = Patchy(c,vp,rho,phi)[1]
vps = R(sw_true) # time-varying vp
## upsampling
upsample = 2
u(x::Vector{Matrix{Float32}}) = [repeat(x[i], inner=(upsample,upsample)) for i = 1:nv]
vpups = u(vps)
##### Wave equation
nw = n.*upsample
dw = (15f0/upsample, 15f0/upsample) # discretization for wave equation
o = (0f0, 0f0) # origin
nsrc = 32 # num of sources
nrec = 960 # num of receivers
models = [Model(nw, dw, o, (1f3 ./ vpups[i]).^2f0; nb = 80) for i = 1:nv] # wave model
timeS = timeR = 750f0 # recording time
dtS = dtR = 1f0 # recording time sampling rate
ntS = Int(floor(timeS/dtS))+1 # time samples
ntR = Int(floor(timeR/dtR))+1 # source time samples
# source locations -- half at the left hand side of the model, half on top
xsrc = convertToCell(vcat(range(dw[1],stop=dw[1],length=Int(nsrc/2)),range(dw[1],stop=(nw[1]-1)*dw[1],length=Int(nsrc/2))))
ysrc = convertToCell(range(0f0,stop=0f0,length=nsrc))
zsrc = convertToCell(vcat(range(dw[2],stop=(nw[2]-1)*dw[2],length=Int(nsrc/2)),range(10f0,stop=10f0,length=Int(nsrc/2))))
# receiver locations -- half at the right hand side of the model, half on top
xrec = vcat(range((nw[1]-1)*dw[1],stop=(nw[1]-1)*dw[1], length=Int(nrec/2)),range(dw[1],stop=(nw[1]-1)*dw[1],length=Int(nrec/2)))
yrec = 0f0
zrec = vcat(range(dw[2],stop=(nw[2]-1)*dw[2],length=Int(nrec/2)),range(10f0,stop=10f0,length=Int(nrec/2)))
# set up src/rec geometry
srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtS, t=timeS)
recGeometry = Geometry(xrec, yrec, zrec; dt=dtR, t=timeR, nsrc=nsrc)
# set up source
f0 = 0.05f0 # kHz
wavelet = ricker_wavelet(timeS, dtS, f0)
q = judiVector(srcGeometry, wavelet)
# set up simulation operators
Fs = [judiModeling(models[i], srcGeometry, recGeometry) for i = 1:nv] # acoustic wave equation solver
## wave physics
function F(v::Vector{Matrix{Float32}})
m = [vec(1f3./v[i]).^2f0 for i = 1:nv]
return [Fs[i](m[i], q) for i = 1:nv]
end
# Define seismic data directory
mkpath(datadir("seismic-data"))
misc_dict = @strdict nsrc nrec upsample
### generate/load data
if ~isfile(datadir("seismic-data", savename(misc_dict, "jld2"; digits=6)))
println("generating data")
global d_obs = [Fs[i]*q for i = 1:nv]
seismic_dict = @strdict nsrc nrec upsample d_obs q srcGeometry recGeometry model
@tagsave(
datadir("seismic-data", savename(seismic_dict, "jld2"; digits=6)),
seismic_dict;
safe=true
)
else
println("loading data")
JLD2.@load datadir("seismic-data", savename(misc_dict, "jld2"; digits=6)) d_obs
global d_obs = d_obs
end
## add noise
noise_ = deepcopy(d_obs)
for i = 1:nv
for j = 1:nsrc
noise_[i].data[j] = randn(Float32, ntR, nrec)
end
end
snr = 10f0
noise_ = noise_/norm(noise_) * norm(d_obs) * 10f0^(-snr/20f0)
d_obs = d_obs + noise_
ls = BackTracking(order=3, iterations=10)
lower, upper = 1.1*minimum(logK), 0.9*maximum(logK)
box_logK(x::AbstractArray{T}) where T = max.(min.(x,T(upper)),T(lower))
# Main loop
niterations = 100
fhistory = zeros(niterations)
### add box to co2 and velocity
box_co2(x::AbstractArray{T}) where T = max.(min.(x,T(1)),T(0))
box_v(x::AbstractMatrix{T}) where T = max.(min.(x,T(3501)),T(3200))
box_v(x::AbstractVector) = [box_v(x[i]) for i = 1:length(x)]
y_init = box_co2(O(S(T(logK_init), f)))
# objective function for inversion
fval = Inf32
function obj(logK)
c = box_co2(O(S(T(logK), f))); v = R(c); v_up = box_v(u(v)); dpred = F(v_up);
global fval = .5f0 * norm(dpred-d_obs)^2f0
@show fval
return fval
end
for j=1:niterations
global fval = fval
Base.flush(Base.stdout)
## AD by Flux
@time g = gradient(()->obj(logK0), Flux.params(logK0))[logK0]
fhistory[j] = fval
p = -g
println("Inversion iteration no: ",j,"; function value: ", fhistory[j])
# linesearch
function f_(α)
misfit = obj(box_logK(logK0 .+ α .* p))
@show α, misfit
return misfit
end
step, fval = ls(f_, 3e-3, fhistory[j], dot(g, p))
# Update model and bound projection
global logK0 = box_logK(logK0 .+ step .* p)
### plotting
y_predict = box_co2(O(S(T(logK0), f)))
### save intermediate results
save_dict = @strdict j snr logK0 step niterations nv nsrc nrec survey_indices fhistory
@tagsave(
joinpath(datadir(sim_name, exp_name), savename(save_dict, "jld2"; digits=6)),
save_dict;
safe=true
)
## save figure
fig_name = @strdict j snr niterations nv nsrc nrec survey_indices
## compute true and plot
SNR = -2f1 * log10(norm(K-exp.(logK0))/norm(K))
fig = figure(figsize=(20,12));
subplot(2,2,1);
imshow(exp.(logK0)'./md,vmin=20,vmax=120);title("inversion by NN, $(j) iter");colorbar();
subplot(2,2,2);
imshow(K'./md,vmin=20,vmax=120);title("GT permeability");colorbar();
subplot(2,2,3);
imshow(exp.(logK_init)'./md,vmin=20,vmax=120);title("initial permeability");colorbar();
subplot(2,2,4);
imshow(abs.(K'-exp.(logK0)')./md,vmin=20,vmax=120);title("error, SNR=$SNR");colorbar();
suptitle("End-to-end Inversion at iter $j, seismic data snr=$snr")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_K.png"), fig);
close(fig)
## loss
fig = figure(figsize=(20,12));
plot(fhistory[1:j]);title("loss=$(fhistory[j])");
suptitle("Learned Coupled Inversion at iter $j, seismic data snr=$snr")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_loss.png"), fig);
close(fig)
## data fitting
fig = figure(figsize=(20,12));
for i = 1:5
subplot(4,5,i);
imshow(y_init[2*i,:,:]', vmin=0, vmax=1);
title("initial prediction at snapshot $(survey_indices[2*i])")
subplot(4,5,i+5);
imshow(sw_true[2*i,:,:]', vmin=0, vmax=1);
title("true at snapshot $(survey_indices[2*i])")
subplot(4,5,i+10);
imshow(y_predict[2*i,:,:]', vmin=0, vmax=1);
title("predict at snapshot $(survey_indices[2*i])")
subplot(4,5,i+15);
imshow(5*abs.(sw_true[2*i,:,:]'-y_predict[2*i,:,:]'), vmin=0, vmax=1);
title("5X diff at snapshot $(survey_indices[2*i])")
end
suptitle("Learned Coupled Inversion at iter $j, seismic data snr=$snr")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_saturation.png"), fig);
close(fig)
end
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 5326 | ## A simple 2D example for permeability inversion
using DrWatson
@quickactivate "JutulDarcyRules-example"
using JutulDarcyRules
using LinearAlgebra
using PyPlot
using Flux
using LineSearches
sim_name = "2D-K-inv"
exp_name = "channel"
mkpath(datadir())
mkpath(plotsdir())
## grid size
n = (30, 1, 15)
d = (30.0, 30.0, 30.0)
## permeability
K0 = 20 * md * ones(n)
K = deepcopy(K0)
K[:,:,8:10] .*= 6.0
ϕ = 0.25
model0 = jutulModel(n, d, ϕ, K1to3(K0))
model = jutulModel(n, d, ϕ, K1to3(K))
## simulation time steppings
tstep = 40 * ones(50)
tot_time = sum(tstep)
## injection & production
inj_loc = (3, 1, 9) .* d
prod_loc = (28, 1, 9) .* d
irate = 5e-3
q = jutulForce(irate, [inj_loc, prod_loc])
## set up modeling operator
S = jutulModeling(model, tstep)
## simulation
mesh = CartesianMesh(model)
T(x) = log.(KtoTrans(mesh, K1to3(x)))
K_init = deepcopy(K0)
@time state0 = S(T(K0), q)
@time state = S(T(K), q)
state_init = deepcopy(state0)
f(K) = .5 * norm(S(T(K),q)[1:length(tstep)*prod(n)]-state[1:length(tstep)*prod(n)])^2
ls = BackTracking(order=3, iterations=10)
lower, upper = 0.9*minimum(K), 1.1*maximum(K)
prj(x) = max.(min.(x,upper),lower)
# Main loop
niterations = 50
fhistory = zeros(niterations)
for j=1:niterations
fval = f(K0)
g = gradient(()->f(K0), Flux.params(K0))[K0]
p = -g/norm(g, Inf) * norm(K_init, Inf)
println("Inversion iteration no: ",j,"; function value: ",fval)
fhistory[j] = fval
# linesearch
function f_(α)
misfit = f(prj(K0 .+ α * p))
@show α, misfit
return misfit
end
step, fval = ls(f_, 1.0, fval, dot(g, p))
# Update model and bound projection
global K0 = prj(K0 .+ step .* p)
end
## plotting
state0 = S(T(K0), q)
fig_name = @strdict n d ϕ tstep irate niterations lower upper inj_loc prod_loc
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(K_init[:,1,:]', vmin=minimum(K), vmax=maximum(K)); colorbar(); title("initial permeability")
subplot(1,3,2);
imshow(K0[:,1,:]', vmin=minimum(K), vmax=maximum(K)); colorbar(); title("inverted permeability")
subplot(1,3,3);
imshow(K[:,1,:]', vmin=minimum(K), vmax=maximum(K)); colorbar(); title("true permeability")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_K.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(reshape(state_init.states[end].Saturations, n[1], n[end])', vmin=0, vmax=1); colorbar(); title("initial saturation")
subplot(1,3,2);
imshow(reshape(state0.states[end].Saturations, n[1], n[end])', vmin=0, vmax=1); colorbar(); title("inverted saturation")
subplot(1,3,3);
imshow(reshape(state.states[end].Saturations, n[1], n[end])', vmin=0, vmax=1); colorbar(); title("true saturation")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_saturation.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(reshape(state_init.states[end].Pressure, n[1], n[end])', vmin=minimum(state.states[end].Pressure), vmax=maximum(state.states[end].Pressure)); colorbar(); title("initial pressure")
subplot(1,3,2);
imshow(reshape(state0.states[end].Pressure, n[1], n[end])', vmin=minimum(state.states[end].Pressure), vmax=maximum(state.states[end].Pressure)); colorbar(); title("inverted pressure")
subplot(1,3,3);
imshow(reshape(state.states[end].Pressure, n[1], n[end])', vmin=minimum(state.states[end].Pressure), vmax=maximum(state.states[end].Pressure)); colorbar(); title("true pressure")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_pressure.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
plot(fhistory); title("loss")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_loss.png"), fig);
close(fig)
x0 = T(K0)
x_init = T(K_init)
x = T(K)
## plotting
trans_x = reshape(x[1:(n[1]-1)*n[end]], n[1]-1, n[end])
trans_z = reshape(x[(n[1]-1)*n[end]+1:end], n[1], n[end]-1)
trans_x0 = reshape(x0[1:(n[1]-1)*n[end]], n[1]-1, n[end])
trans_z0 = reshape(x0[(n[1]-1)*n[end]+1:end], n[1], n[end]-1)
trans_x_init = reshape(x_init[1:(n[1]-1)*n[end]], n[1]-1, n[end])
trans_z_init = reshape(x_init[(n[1]-1)*n[end]+1:end], n[1], n[end]-1)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(trans_x_init', vmin=minimum(trans_x), vmax=maximum(trans_x)); colorbar(); title("initial transmissibility x")
subplot(1,3,2);
imshow(trans_x0', vmin=minimum(trans_x), vmax=maximum(trans_x)); colorbar(); title("inverted transmissibility x")
subplot(1,3,3);
imshow(trans_x', vmin=minimum(trans_x), vmax=maximum(trans_x)); colorbar(); title("true transmissibility x")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_transx.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(trans_z_init', vmin=minimum(trans_z), vmax=maximum(trans_z)); colorbar(); title("initial transmissibility z")
subplot(1,3,2);
imshow(trans_z0', vmin=minimum(trans_z), vmax=maximum(trans_z)); colorbar(); title("inverted transmissibility z")
subplot(1,3,3);
imshow(trans_z', vmin=minimum(trans_z), vmax=maximum(trans_z)); colorbar(); title("true transmissibility z")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_transz.png"), fig);
close(fig)
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 5422 | ## A simple 2D example for permeability inversion
using DrWatson
@quickactivate "JutulDarcyRules-example"
using JutulDarcyRules
using LinearAlgebra
using PyPlot
using Flux
using LineSearches
sim_name = "2D-K-inv"
exp_name = "channel"
mkpath(datadir())
mkpath(plotsdir())
## grid size
n = (30, 1, 15)
d = (30.0, 30.0, 30.0)
## permeability
K0 = 20 * md * ones(n)
K = deepcopy(K0)
K[:,:,8:10] .*= 6.0
ϕ = 0.25
model0 = jutulModel(n, d, ϕ, K1to3(K0))
model = jutulModel(n, d, ϕ, K1to3(K))
## simulation time steppings
tstep = 40 * ones(50)
tot_time = sum(tstep)
## injection & production
inj_loc = (15, 1, 9) .* d
irate = 5e-3
q = jutulForce(irate, [inj_loc])
## set up modeling operator
S = jutulModeling(model, tstep)
## simulation
mesh = CartesianMesh(model)
T(x) = log.(KtoTrans(mesh, K1to3(exp.(x))))
logK0 = log.(K0)
logK = log.(K)
logK_init = deepcopy(logK0)
@time state0 = S(T(logK0), q)
@time state = S(T(logK), q)
state_init = deepcopy(state0)
f(logK) = .5 * norm(S(T(logK),q)[1:length(tstep)*prod(n)]-state[1:length(tstep)*prod(n)])^2
ls = BackTracking(order=3, iterations=10)
lower, upper = 1.1*minimum(logK), 0.9*maximum(logK)
prj(x) = max.(min.(x,upper),lower)
# Main loop
niterations = 100
fhistory = zeros(niterations)
for j=1:niterations
@time fval, gs = Flux.withgradient(() -> f(logK0), Flux.params(logK0))
g = gs[logK0]
p = -g/norm(g, Inf)
println("Inversion iteration no: ",j,"; function value: ", fval)
fhistory[j] = fval
# linesearch
function f_(α)
misfit = f(prj(logK0 .+ α * p))
@show α, misfit
return misfit
end
step, fval = ls(f_, 1e-1, fval, dot(g, p))
# Update model and bound projection
global logK0 = prj(logK0 .+ step .* p)
end
## plotting
state0 = S(T(logK0), q)
K0 = exp.(logK0)
K_init = exp.(logK_init)
fig_name = @strdict n d ϕ tstep irate niterations lower upper inj_loc
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(K_init[:,1,:]', vmin=minimum(K), vmax=maximum(K)); colorbar(); title("initial permeability")
subplot(1,3,2);
imshow(K0[:,1,:]', vmin=minimum(K), vmax=maximum(K)); colorbar(); title("inverted permeability")
subplot(1,3,3);
imshow(K[:,1,:]', vmin=minimum(K), vmax=maximum(K)); colorbar(); title("true permeability")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_K.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(reshape(Saturations(state_init.states[end]), n[1], n[end])', vmin=0, vmax=1); colorbar(); title("initial saturation")
subplot(1,3,2);
imshow(reshape(Saturations(state0.states[end]), n[1], n[end])', vmin=0, vmax=1); colorbar(); title("inverted saturation")
subplot(1,3,3);
imshow(reshape(Saturations(state.states[end]), n[1], n[end])', vmin=0, vmax=1); colorbar(); title("true saturation")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_saturation.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(reshape(Pressure(state_init.states[end]), n[1], n[end])', vmin=minimum(state.states[end].Pressure), vmax=maximum(state.states[end].Pressure)); colorbar(); title("initial pressure")
subplot(1,3,2);
imshow(reshape(Pressure(state0.states[end]), n[1], n[end])', vmin=minimum(state.states[end].Pressure), vmax=maximum(state.states[end].Pressure)); colorbar(); title("inverted pressure")
subplot(1,3,3);
imshow(reshape(Pressure(state.states[end]), n[1], n[end])', vmin=minimum(state.states[end].Pressure), vmax=maximum(state.states[end].Pressure)); colorbar(); title("true pressure")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_pressure.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
plot(fhistory); title("loss")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_loss.png"), fig);
close(fig)
x0 = T(logK0)
x_init = T(logK_init)
x = T(logK)
## plotting
trans_x = reshape(x[1:(n[1]-1)*n[end]], n[1]-1, n[end])
trans_z = reshape(x[(n[1]-1)*n[end]+1:end], n[1], n[end]-1)
trans_x0 = reshape(x0[1:(n[1]-1)*n[end]], n[1]-1, n[end])
trans_z0 = reshape(x0[(n[1]-1)*n[end]+1:end], n[1], n[end]-1)
trans_x_init = reshape(x_init[1:(n[1]-1)*n[end]], n[1]-1, n[end])
trans_z_init = reshape(x_init[(n[1]-1)*n[end]+1:end], n[1], n[end]-1)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(trans_x_init', vmin=minimum(trans_x), vmax=maximum(trans_x)); colorbar(); title("initial transmissibility x")
subplot(1,3,2);
imshow(trans_x0', vmin=minimum(trans_x), vmax=maximum(trans_x)); colorbar(); title("inverted transmissibility x")
subplot(1,3,3);
imshow(trans_x', vmin=minimum(trans_x), vmax=maximum(trans_x)); colorbar(); title("true transmissibility x")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_transx.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(trans_z_init', vmin=minimum(trans_z), vmax=maximum(trans_z)); colorbar(); title("initial transmissibility z")
subplot(1,3,2);
imshow(trans_z0', vmin=minimum(trans_z), vmax=maximum(trans_z)); colorbar(); title("inverted transmissibility z")
subplot(1,3,3);
imshow(trans_z', vmin=minimum(trans_z), vmax=maximum(trans_z)); colorbar(); title("true transmissibility z")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_transz.png"), fig);
close(fig)
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 5469 | ## A 64×64 2D example for permeability inversion of a tortuous channel
using DrWatson
@quickactivate "JutulDarcyRules-example"
using JutulDarcyRules
using LinearAlgebra
using PyPlot
using Flux
using LineSearches
using JLD2
sim_name = "2D-K-inv"
exp_name = "tortuous"
mkpath(datadir())
mkpath(plotsdir())
## grid size
JLD2.@load datadir("K.jld2") K K0;
K = Float64.(K * md);
K0 = Float64.(K0 * md);
n = (size(K,1), 1, size(K,2))
d = (15.0, 10.0, 15.0)
ϕ = 0.25
model0 = jutulModel(n, d, ϕ, K1to3(K0))
model = jutulModel(n, d, ϕ, K1to3(K))
## simulation time steppings
tstep = 40 * ones(50)
tot_time = sum(tstep)
## injection & production
inj_loc = (3, 1, 32) .* d
prod_loc = (62, 1, 32) .* d
irate = 5e-3
q = jutulForce(irate, [inj_loc, prod_loc])
## set up modeling operator
S = jutulModeling(model, tstep)
## simulation
mesh = CartesianMesh(model)
T(x) = log.(KtoTrans(mesh, K1to3(exp.(x))))
logK0 = log.(K0)
logK = log.(K)
logK_init = deepcopy(logK0)
@time state0 = S(T(logK0), q)
@time state = S(T(logK), q)
state_init = deepcopy(state0)
f(logK) = .5 * norm(S(T(logK),q)[1:length(tstep)*prod(n)]-state[1:length(tstep)*prod(n)])^2
ls = BackTracking(order=3, iterations=10)
lower, upper = 1.1*minimum(logK), 0.9*maximum(logK)
prj(x) = max.(min.(x,upper),lower)
# Main loop
niterations = 100
fhistory = zeros(niterations)
for j=1:niterations
fval = f(logK0)
@time g = gradient(()->f(logK0), Flux.params(logK0))[logK0]
p = -g
println("Inversion iteration no: ",j,"; function value: ",fval)
fhistory[j] = fval
# linesearch
function f_(α)
misfit = f(prj(logK0 .+ α * p))
@show α, misfit
return misfit
end
step, fval = ls(f_, 1e-1, fval, dot(g, p))
# Update model and bound projection
global logK0 = prj(logK0 .+ step .* p)
end
## plotting
state0 = S(T(logK0), q)
K0 = exp.(logK0)
K_init = exp.(logK_init)
fig_name = @strdict n d ϕ tstep irate niterations lower upper inj_loc prod_loc
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(K_init', vmin=minimum(K), vmax=maximum(K)); colorbar(); title("initial permeability")
subplot(1,3,2);
imshow(K0', vmin=minimum(K), vmax=maximum(K)); colorbar(); title("inverted permeability")
subplot(1,3,3);
imshow(K', vmin=minimum(K), vmax=maximum(K)); colorbar(); title("true permeability")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_K.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(reshape(state_init.states[end].Saturations, n[1], n[end])', vmin=0, vmax=1); colorbar(); title("initial saturation")
subplot(1,3,2);
imshow(reshape(state0.states[end].Saturations, n[1], n[end])', vmin=0, vmax=1); colorbar(); title("inverted saturation")
subplot(1,3,3);
imshow(reshape(state.states[end].Saturations, n[1], n[end])', vmin=0, vmax=1); colorbar(); title("true saturation")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_saturation.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(reshape(state_init.states[end].Pressure, n[1], n[end])', vmin=minimum(state.states[end].Pressure), vmax=maximum(state.states[end].Pressure)); colorbar(); title("initial pressure")
subplot(1,3,2);
imshow(reshape(state0.states[end].Pressure, n[1], n[end])', vmin=minimum(state.states[end].Pressure), vmax=maximum(state.states[end].Pressure)); colorbar(); title("inverted pressure")
subplot(1,3,3);
imshow(reshape(state.states[end].Pressure, n[1], n[end])', vmin=minimum(state.states[end].Pressure), vmax=maximum(state.states[end].Pressure)); colorbar(); title("true pressure")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_pressure.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
plot(fhistory); title("loss")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_loss.png"), fig);
close(fig)
x0 = T(logK0)
x_init = T(logK_init)
x = T(logK)
## plotting
trans_x = reshape(x[1:(n[1]-1)*n[end]], n[1]-1, n[end])
trans_z = reshape(x[(n[1]-1)*n[end]+1:end], n[1], n[end]-1)
trans_x0 = reshape(x0[1:(n[1]-1)*n[end]], n[1]-1, n[end])
trans_z0 = reshape(x0[(n[1]-1)*n[end]+1:end], n[1], n[end]-1)
trans_x_init = reshape(x_init[1:(n[1]-1)*n[end]], n[1]-1, n[end])
trans_z_init = reshape(x_init[(n[1]-1)*n[end]+1:end], n[1], n[end]-1)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(trans_x_init', vmin=minimum(trans_x), vmax=maximum(trans_x)); colorbar(); title("initial transmissibility x")
subplot(1,3,2);
imshow(trans_x0', vmin=minimum(trans_x), vmax=maximum(trans_x)); colorbar(); title("inverted transmissibility x")
subplot(1,3,3);
imshow(trans_x', vmin=minimum(trans_x), vmax=maximum(trans_x)); colorbar(); title("true transmissibility x")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_transx.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(trans_z_init', vmin=minimum(trans_z), vmax=maximum(trans_z)); colorbar(); title("initial transmissibility z")
subplot(1,3,2);
imshow(trans_z0', vmin=minimum(trans_z), vmax=maximum(trans_z)); colorbar(); title("inverted transmissibility z")
subplot(1,3,3);
imshow(trans_z', vmin=minimum(trans_z), vmax=maximum(trans_z)); colorbar(); title("true transmissibility z")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_transz.png"), fig);
close(fig)
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 4836 | ## A simple 2D example for transmissibility inversion
using DrWatson
@quickactivate "JutulDarcyRules-example"
using JutulDarcyRules
using LinearAlgebra
using PyPlot
using Flux
using LineSearches
sim_name = "2D-trans-inv"
exp_name = "channel"
mkpath(datadir())
mkpath(plotsdir())
## grid size
n = (30, 1, 15)
d = (30.0, 30.0, 30.0)
## permeability
K0 = 20 * md * ones(n)
K = deepcopy(K0)
K[:,:,8:10] .*= 6.0
ϕ = 0.25
model0 = jutulModel(n, d, ϕ, K1to3(K0))
model = jutulModel(n, d, ϕ, K1to3(K))
## simulation time steppings
tstep = 40 * ones(50)
tot_time = sum(tstep)
## injection & production
inj_loc = (3, 1, 9) .* d
prod_loc = (28, 1, 9) .* d
irate = 5e-3
q = jutulForce(irate, [inj_loc, prod_loc])
## set up modeling operator
S = jutulModeling(model, tstep)
## simulation
mesh = CartesianMesh(model)
T(x) = log.(KtoTrans(mesh, K1to3(x)))
K_init = deepcopy(K0)
x0 = T(K0)
x = T(K)
x_init = T(K_init)
@time state0 = S(x0, q)
@time state = S(x, q)
state_init = deepcopy(state0)
f(x) = .5 * norm(S(x,q)[1:length(tstep)*prod(n)]-state[1:length(tstep)*prod(n)])^2
ls = BackTracking(order=3, iterations=10)
lower, upper = 1.1*minimum(x), 0.9*maximum(x)
prj(x) = max.(min.(x,upper),lower)
# Main loop
niterations = 100
fhistory = zeros(niterations)
for j=1:niterations
fval = f(x0)
g = gradient(()->f(x0), Flux.params(x0))[x0]
p = -g/norm(g, Inf) * norm(x_init, Inf)
println("Inversion iteration no: ",j,"; function value: ",fval)
fhistory[j] = fval
# linesearch
function f_(α)
misfit = f(prj(x0 .+ α * p))
@show α, misfit
return misfit
end
step, fval = ls(f_, 1e-1, fval, dot(g, p))
# Update model and bound projection
global x0 = prj(x0 .+ step .* p)
end
## plotting
state0 = S(x0, q)
fig_name = @strdict n d ϕ tstep irate niterations lower upper inj_loc prod_loc
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(reshape(state_init.states[end].Saturations, n[1], n[end])', vmin=0, vmax=1); colorbar(); title("initial saturation")
subplot(1,3,2);
imshow(reshape(state0.states[end].Saturations, n[1], n[end])', vmin=0, vmax=1); colorbar(); title("inverted saturation")
subplot(1,3,3);
imshow(reshape(state.states[end].Saturations, n[1], n[end])', vmin=0, vmax=1); colorbar(); title("true saturation")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_saturation.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(reshape(state_init.states[end].Pressure, n[1], n[end])', vmin=minimum(state.states[end].Pressure), vmax=maximum(state.states[end].Pressure)); colorbar(); title("initial pressure")
subplot(1,3,2);
imshow(reshape(state0.states[end].Pressure, n[1], n[end])', vmin=minimum(state.states[end].Pressure), vmax=maximum(state.states[end].Pressure)); colorbar(); title("inverted pressure")
subplot(1,3,3);
imshow(reshape(state.states[end].Pressure, n[1], n[end])', vmin=minimum(state.states[end].Pressure), vmax=maximum(state.states[end].Pressure)); colorbar(); title("true pressure")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_pressure.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
plot(fhistory); title("loss")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_loss.png"), fig);
close(fig)
## plotting
trans_x = reshape(x[1:(n[1]-1)*n[end]], n[1]-1, n[end])
trans_z = reshape(x[(n[1]-1)*n[end]+1:end], n[1], n[end]-1)
trans_x0 = reshape(x0[1:(n[1]-1)*n[end]], n[1]-1, n[end])
trans_z0 = reshape(x0[(n[1]-1)*n[end]+1:end], n[1], n[end]-1)
trans_x_init = reshape(x_init[1:(n[1]-1)*n[end]], n[1]-1, n[end])
trans_z_init = reshape(x_init[(n[1]-1)*n[end]+1:end], n[1], n[end]-1)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(trans_x_init', vmin=minimum(trans_x), vmax=maximum(trans_x)); colorbar(); title("initial transmissibility x")
subplot(1,3,2);
imshow(trans_x0', vmin=minimum(trans_x), vmax=maximum(trans_x)); colorbar(); title("inverted transmissibility x")
subplot(1,3,3);
imshow(trans_x', vmin=minimum(trans_x), vmax=maximum(trans_x)); colorbar(); title("true transmissibility x")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_transx.png"), fig);
close(fig)
fig=figure(figsize=(20,12));
subplot(1,3,1);
imshow(trans_z_init', vmin=minimum(trans_z), vmax=maximum(trans_z)); colorbar(); title("initial transmissibility z")
subplot(1,3,2);
imshow(trans_z0', vmin=minimum(trans_z), vmax=maximum(trans_z)); colorbar(); title("inverted transmissibility z")
subplot(1,3,3);
imshow(trans_z', vmin=minimum(trans_z), vmax=maximum(trans_z)); colorbar(); title("true transmissibility z")
tight_layout()
safesave(joinpath(plotsdir(sim_name, exp_name), savename(fig_name; digits=6)*"_transz.png"), fig);
close(fig)
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 1110 | using DrWatson
@quickactivate "JutulDarcyRules-example"
using JutulDarcyRules
using Flux
using LinearAlgebra
using Optim
nx = 30
ny = 1
nz = 15
dims = (nx, ny, nz)
g = CartesianMesh(dims, (30.0, 30.0, 30.0) .* dims)
nc = prod(dims)
Kx = 20 * md * ones(nx, nz)
Kxtrue = deepcopy(Kx)
Kxtrue[:, 6:8] .*= 6
Trans_true = KtoTrans(g, K1to3(Kxtrue))
Kx = 10 * md * ones(prod(g.dims))
@time grad = gradient(() -> .5 * norm(KtoTrans(g, K1to3(Kx))-Trans_true)^2f0, Flux.params(Kx))[Kx]
# ## Set up L-BFGS
function fg(F, G, x)
grads = gradient(Flux.params(x)) do
F = .5 * norm(KtoTrans(g, K1to3(x))-Trans_true)^2 / norm(Trans_true)^2
end
G .= grads[x]
return F
end
method = LBFGS()
optimopt = Optim.Options(iterations = 200, store_trace = true, show_trace = true, show_every = 1)
result = optimize(Optim.only_fg!(fg), Kx, method, optimopt)
Kxinv = result.minimizer
println(norm(Kxinv-vec(Kxtrue))/norm(Kxtrue))
@time Kxinv1 = TransToK(g, Trans_true)
println(norm(Kxinv1-K1to3(Kxtrue))/norm(K1to3(Kxtrue)))
println(norm(KtoTrans(g, Kxinv1)-Trans_true)/norm(Trans_true))
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 1098 | ## A simple 2D example for fluid-flow simulation
using DrWatson
@quickactivate "JutulDarcyRules-example"
using JutulDarcyRules
using LinearAlgebra
using PyPlot
## grid size
n = (30, 1, 15)
d = (30.0, 30.0, 30.0)
## permeability
K = 20 * md * ones(n)
ϕ = 0.25 * ones(n)
model = jutulModel(n, d, vec(ϕ), K1to3(K))
## simulation time steppings
tstep = 40 * ones(50)
tot_time = sum(tstep)
## injection & production
inj_loc = (3, 1, 9) .* d
prod_loc = (28, 1, 9) .* d
irate = 5e-3
q = jutulSource(irate, [inj_loc, prod_loc])
## set up modeling operator
S = jutulModeling(model, tstep)
## simulation
Trans = KtoTrans(CartesianMesh(model), K1to3(K))
@time result = S(log.(Trans), q; info_level=1)
@time result = S(log.(Trans), q)
## plotting
fig=figure(figsize=(20,12));
subplot(1,2,1);
imshow(reshape(Saturations(result.states[end]), n[1], n[end])', vmin=0, vmax=1); colorbar(); title("saturation")
subplot(1,2,2);
imshow(reshape(Pressure(result.states[end]), n[1], n[end])', vmin=minimum(Pressure(result.states[end])), vmax=maximum(Pressure(result.states[end]))); colorbar(); title("pressure")
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 1334 | #### Patchy saturation model
function Patchy(sw::AbstractMatrix{T}, vp::AbstractMatrix{T}, rho::AbstractMatrix{T}, phi::AbstractMatrix{T};
bulk_min::T=T(36.6f9), bulk_fl1::T=T(2.735f9), bulk_fl2::T=T(0.125f9), ρw::T=T(501.9f0), ρo::T=T(1053.0f0)) where T
### works for channel problem
vs = vp./sqrt(3f0)
bulk_sat1 = rho .* (vp.^2f0 - 4f0/3f0 .* vs.^2f0)
shear_sat1 = rho .* (vs.^2f0)
patch_temp = bulk_sat1 ./(bulk_min .- bulk_sat1) -
bulk_fl1 ./ phi ./ (bulk_min .- bulk_fl1) +
bulk_fl2 ./ phi ./ (bulk_min .- bulk_fl2)
bulk_sat2 = bulk_min./(1f0./patch_temp .+ 1f0)
bulk_new = 1f0./( (1f0.-sw)./(bulk_sat1+4f0/3f0*shear_sat1)
+ sw./(bulk_sat2+4f0/3f0*shear_sat1) ) - 4f0/3f0*shear_sat1
rho_new = rho + phi .* sw * (ρw - ρo)
Vp_new = sqrt.((bulk_new+4f0/3f0*shear_sat1)./rho_new)
return Vp_new, rho_new
end
function Patchy(sw::AbstractArray{T, 3}, vp::AbstractMatrix{T}, rho::AbstractMatrix{T}, phi::AbstractMatrix{T};
bulk_min::T=T(36.6f9), bulk_fl1::T=T(2.735f9), bulk_fl2::T=T(0.125f9), ρw::T=T(501.9f0), ρo::T=T(1053.0f0)) where T
stack = [Patchy(sw[i,:,:], vp, rho, phi; bulk_min=bulk_min, bulk_fl1=bulk_fl1, bulk_fl2=bulk_fl2, ρw = ρw, ρo=ρo) for i = 1:size(sw,1)]
return [stack[i][1] for i = 1:size(sw,1)], [stack[i][2] for i = 1:size(sw,1)]
end | JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 1143 | __precompile__()
module JutulDarcyRules
export JutulDarcyRulesPATH, Darcy, md
using LinearAlgebra
using Statistics
using JutulDarcy
using Jutul
using Optim
using Flux
using ChainRulesCore
import Jutul: JutulGeometry, get_facepos, compute_face_trans, compute_half_face_trans, expand_perm
import Jutul: SimulationModel, select_output_variables!
import Jutul: optimization_targets, variable_mapper, optimization_limits, print_parameter_optimization_config
import Jutul: objective_opt!, gradient_opt!, objective_and_gradient_opt!
import Base: +, -, *, /, ==
import Base: display, length, size, getindex, setindex!, IndexStyle, vec, firstindex, lastindex
import LinearAlgebra: norm, dot
import ChainRulesCore: rrule
JutulDarcyRulesPATH = dirname(pathof(JutulDarcyRules))
visCO2 = 1e-4
visH2O = 1e-3
ρCO2 = 7e2
ρH2O = 1e3
bar = 1e5
const Darcy = 9.869232667160130e-13
const md = Darcy * 1e-3
const day = 24*3600.0
include("PropertyConversion/PropertyConversion.jl")
include("FlowRules/FlowRules.jl")
end # module JutulDarcyRules
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 279 | ### types
include("Types/jutulModel.jl")
include("Types/jutulForce.jl")
include("Types/jutulVWell.jl")
include("Types/jutulSource.jl")
include("Types/jutulState.jl")
include("Types/type_utils.jl")
### operators
include("Operators/jutulModeling.jl")
include("Operators/rrule.jl") | JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 3283 | export jutulModeling
struct jutulModeling{D, T}
model::jutulModel{D, T}
tstep::Vector{T}
end
display(M::jutulModeling{D, T}) where {D, T} =
println("$(D)D jutulModeling structure with $(sum(M.tstep)) days in $(length(M.tstep)) time steps")
function (S::jutulModeling{D, T})(LogTransmissibilities::AbstractVector{T}, ϕ::AbstractVector{T}, f::Union{jutulForce{D, N}, jutulVWell{D, N}};
state0=nothing, visCO2::T=T(visCO2), visH2O::T=T(visH2O),
ρCO2::T=T(ρCO2), ρH2O::T=T(ρH2O), info_level::Int64=-1) where {D, T, N}
Transmissibilities = exp.(LogTransmissibilities)
### set up simulation time
tstep = day * S.tstep
### set up simulation configurations
model, parameters, state0_, forces = setup_well_model(S.model, f, tstep; visCO2=visCO2, visH2O=visH2O, ρCO2=ρCO2, ρH2O=ρH2O)
model.models.Reservoir.data_domain[:porosity] = ϕ
parameters[:Reservoir][:Transmissibilities] = Transmissibilities
parameters[:Reservoir][:FluidVolume] .= prod(S.model.d) .* ϕ
isnothing(state0) || (state0_[:Reservoir] = get_Reservoir_state(state0))
### simulation
sim, config = setup_reservoir_simulator(model, state0_, parameters);
states, report = simulate!(sim, tstep, forces = forces, config = config, max_timestep_cuts = 1000, info_level=info_level);
output = jutulStates(states)
return output
end
function (S::jutulModeling{D, T})(LogTransmissibilities::AbstractVector{T}, ϕ::AbstractVector{T}, f::jutulSource{D, N};
state0=nothing, visCO2::T=T(visCO2), visH2O::T=T(visH2O),
ρCO2::T=T(ρCO2), ρH2O::T=T(ρH2O), info_level::Int64=-1) where {D, T, N}
Transmissibilities = exp.(LogTransmissibilities)
forces = source(S.model, f; ρCO2=ρCO2)
### set up simulation time
tstep = day * S.tstep
model = simple_model(S.model; ρCO2=ρCO2, ρH2O=ρH2O)
model.data_domain[:porosity] = ϕ
parameters = setup_parameters(model, PhaseViscosities = [visCO2, visH2O]);
parameters[:Transmissibilities] = Transmissibilities
parameters[:FluidVolume] .= prod(S.model.d) .* ϕ
state0_ = jutulSimpleState(S.model)
isnothing(state0) || (state0_ = state0)
states, _ = simulate(dict(state0_), model, tstep, parameters = parameters, forces = forces, info_level = info_level, max_timestep_cuts = 1000)
return jutulSimpleStates(states)
end
function (S::jutulModeling{D, T})(f::Union{jutulForce{D, N}, jutulVWell{D, N}, jutulSource{D, N}};
LogTransmissibilities::AbstractVector{T}=KtoTrans(CartesianMesh(S.model), S.model.K), ϕ::AbstractVector{T}=S.model.ϕ,
state0=nothing, visCO2::T=T(visCO2), visH2O::T=T(visH2O),
ρCO2::T=T(ρCO2), ρH2O::T=T(ρH2O), info_level::Int64=-1) where {D, T, N}
return S(LogTransmissibilities, ϕ, f; state0=state0, visCO2=visCO2, visH2O=visH2O, ρCO2=ρCO2, ρH2O=ρH2O, info_level=info_level)
end
function (S::jutulModeling{D, T})(LogTransmissibilities::AbstractVector{T}, f::Union{jutulForce{D, N}, jutulVWell{D, N}, jutulSource{D, N}};
ϕ::AbstractVector{T}=S.model.ϕ,
state0=nothing, visCO2::T=T(visCO2), visH2O::T=T(visH2O),
ρCO2::T=T(ρCO2), ρH2O::T=T(ρH2O), info_level::Int64=-1) where {D, T, N}
return S(LogTransmissibilities, ϕ, f; state0=state0, visCO2=visCO2, visH2O=visH2O, ρCO2=ρCO2, ρH2O=ρH2O, info_level=info_level)
end
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 9374 | function rrule(S::jutulModeling{D, T}, LogTransmissibilities::AbstractVector{T}, ϕ::AbstractVector{T}, f::Union{jutulForce{D, N}, jutulVWell{D, N}};
state0=nothing, visCO2::T=T(visCO2), visH2O::T=T(visH2O),
ρCO2::T=T(ρCO2), ρH2O::T=T(ρH2O), info_level::Int64=-1) where {D, T, N}
Transmissibilities = exp.(LogTransmissibilities)
### set up simulation time
tstep = day * S.tstep
### set up simulation configurations
model, parameters, state0_, forces = setup_well_model(S.model, f, tstep; visCO2=visCO2, visH2O=visH2O, ρCO2=ρCO2, ρH2O=ρH2O)
model.models.Reservoir.data_domain[:porosity] = ϕ
parameters[:Reservoir][:Transmissibilities] = Transmissibilities
parameters[:Reservoir][:FluidVolume] .= prod(S.model.d) .* ϕ
isnothing(state0) || (state0_[:Reservoir] = get_Reservoir_state(state0))
### simulation
sim, config = setup_reservoir_simulator(model, state0_, parameters);
states, reports = simulate!(sim, tstep, forces = forces, config = config, max_timestep_cuts = 1000, info_level=info_level);
output = jutulStates(states)
### optimization framework
cfg = optimization_config(model, parameters, Dict(:Reservoir => [:FluidVolume, :Transmissibilities], :Injector => [:FluidVolume]))
cfg[:Reservoir][:Transmissibilities][:scaler] = :log
function pullback(dy)
states_ref_ = output(vec(output)-dy)
check_valid_state(states_ref_)
states_ref = dict(states_ref_)
mass_mismatch = (m, state, dt, step_no, forces) -> loss_per_step(m, state, dt, step_no, forces, states_ref)
F_o, dF_o, F_and_dF, x0, lims, data = setup_parameter_optimization(
states, reports, model, state0_, parameters, tstep, forces, mass_mismatch, cfg, param_obj = true, print = info_level, config = config, use_sparsity = false);
g = dF_o(similar(x0), x0);
n_faces = length(LogTransmissibilities)
n_cells = prod(S.model.n)
dLogTransmissibilities = g[1:n_faces]
dϕ = g[n_faces + 1 : n_faces + n_cells] * prod(S.model.d)
return NoTangent(), dLogTransmissibilities, dϕ, NoTangent()
end
return output, pullback
end
function rrule(S::jutulModeling{D, T}, LogTransmissibilities::AbstractVector{T}, ϕ::AbstractVector{T}, f::jutulSource{D, N};
state0=nothing, visCO2::T=T(visCO2), visH2O::T=T(visH2O),
ρCO2::T=T(ρCO2), ρH2O::T=T(ρH2O), info_level::Int64=-1) where {D, T, N}
Transmissibilities = exp.(LogTransmissibilities)
forces = source(S.model, f; ρCO2=ρCO2)
### set up simulation time
tstep = day * S.tstep
model = simple_model(S.model; ρCO2=ρCO2, ρH2O=ρH2O)
model.data_domain[:porosity] = ϕ
parameters = setup_parameters(model, PhaseViscosities = [visCO2, visH2O]);
parameters[:Transmissibilities] = Transmissibilities
parameters[:FluidVolume] .= prod(S.model.d) .* ϕ
state0_ = jutulSimpleState(S.model)
isnothing(state0) || (state0_ = state0)
states, reports = simulate(dict(state0_), model, tstep, parameters = parameters, forces = forces, info_level = info_level, max_timestep_cuts = 1000)
output = jutulSimpleStates(states)
cfg = optimization_config(model, parameters, use_scaling = false, rel_min = 0., rel_max = Inf)
for (ki, vi) in cfg
if ki in [:TwoPointGravityDifference, :PhaseViscosities]
vi[:active] = false
end
if ki == :Transmissibilities
vi[:scaler] = :log
end
end
function pullback(dy)
states_dy = output(dy)
states_ref = dict(output-states_dy)
function mass_mismatch(m, state, dt, step_no, forces)
state_ref = states_ref[step_no]
fld = :Saturations
fld2 = :Pressure
val = state[fld]
val2 = state[fld2]
ref = state_ref[fld]
ref2 = state_ref[fld2]
return 0.5 * sum((val[1,:] - ref[1,:]).^2) + 0.5 * sum((val2-ref2).^2)
end
mass_mismatch = (m, state, dt, step_no, forces) -> loss_per_step_simple(m, state, dt, step_no, forces, states_ref)
Jutul.evaluate_objective(mass_mismatch, model, states_ref, tstep, forces)
F_o, dF_o, F_and_dF, x0, lims, data = setup_parameter_optimization(states, reports, model,
dict(state0_), parameters, tstep, forces, mass_mismatch, cfg, print = -1, param_obj = true);
g = dF_o(similar(x0), x0);
n_faces = length(LogTransmissibilities)
n_cells = prod(S.model.n)
dLogTransmissibilities = g[1:n_faces]
dϕ = g[n_faces + 1 : n_faces + n_cells] * prod(S.model.d)
return NoTangent(), dLogTransmissibilities, dϕ, NoTangent()
end
return output, pullback
end
function loss_per_step(m, state, dt, step_no, forces, states_ref)
state_ref = states_ref[step_no]
fld = :Saturations
fld2 = :Pressure
val = state[:Reservoir][fld]
val2 = state[:Reservoir][fld2]
ref = state_ref[:Reservoir][fld]
ref2 = state_ref[:Reservoir][fld2]
return inner_mismatch(val, ref, val2, ref2)
end
function loss_per_step_simple(m, state, dt, step_no, forces, states_ref)
state_ref = states_ref[step_no]
fld = :Saturations
fld2 = :Pressure
val = state[fld]
val2 = state[fld2]
ref = state_ref[fld]
ref2 = state_ref[fld2]
return inner_mismatch(val, ref, val2, ref2)
end
function inner_mismatch(val, ref, val2, ref2)
mismatch_s = zero(eltype(val))
for i in axes(val, 2)
mismatch_s += (val[1,i] - ref[1,i])^2
end
mismatch_p = zero(eltype(val2))
for i in eachindex(val2)
mismatch_p += (val2[i] - ref2[i])^2
end
return eltype(val)(0.5) * mismatch_s + eltype(val2)(0.5) * mismatch_p
end
function setup_parameter_optimization(precomputed_states, reports, model, state0, param, dt, forces, G, arg...; kwarg...)
case = JutulCase(model, dt, forces, state0 = state0, parameters = param)
return setup_parameter_optimization(precomputed_states, reports, case, G, arg...; kwarg...)
end
function setup_parameter_optimization(precomputed_states, reports, case::JutulCase, G, opt_cfg = optimization_config(case.model, case.parameters);
grad_type = :adjoint,
config = nothing,
print = 1,
copy_case = true,
param_obj = false,
use_sparsity = true,
kwarg...)
if copy_case
case = Jutul.duplicate(case)
end
# Pick active set of targets from the optimization config and construct a mapper
(; model, state0, parameters) = case
if print isa Bool
if print
print = 1
else
print = Inf
end
end
verbose = print > 0 && isfinite(print)
targets = optimization_targets(opt_cfg, model)
if grad_type == :numeric
@assert length(targets) == 1
@assert model isa SimulationModel
else
@assert grad_type == :adjoint
end
mapper, = variable_mapper(model, :parameters, targets = targets, config = opt_cfg)
lims = optimization_limits(opt_cfg, mapper, parameters, model)
if verbose
print_parameter_optimization_config(targets, opt_cfg, model)
end
x0 = vectorize_variables(model, parameters, mapper, config = opt_cfg)
for k in eachindex(x0)
low = lims[1][k]
high = lims[2][k]
@assert low <= x0[k] "Computed lower limit $low for parameter #$k was larger than provided x0[k]=$(x0[k])"
@assert high >= x0[k] "Computer upper limit $hi for parameter #$k was smaller than provided x0[k]=$(x0[k])"
end
data = Dict()
data[:n_objective] = 1
data[:n_gradient] = 1
data[:obj_hist] = zeros(0)
sim = Simulator(case)
if isnothing(config)
config = simulator_config(sim; info_level = -1, kwarg...)
elseif !verbose
config[:info_level] = -1
config[:end_report] = false
end
data[:sim] = sim
data[:sim_config] = config
if grad_type == :adjoint
adj_storage = setup_adjoint_storage(model, state0 = state0,
parameters = parameters,
targets = targets,
use_sparsity = use_sparsity,
param_obj = param_obj)
data[:adjoint_storage] = adj_storage
grad_adj = zeros(adj_storage.n)
else
grad_adj = similar(x0)
end
data[:case] = case
data[:grad_adj] = grad_adj
data[:mapper] = mapper
data[:G] = G
data[:targets] = targets
data[:mapper] = mapper
data[:config] = opt_cfg
data[:last_obj] = Inf
data[:x_hash] = hash(x0)
data[:states] = precomputed_states
data[:reports] = reports
F = x -> objective_opt!(x, data, print)
dF = (dFdx, x) -> gradient_opt!(dFdx, x, data)
F_and_dF = (F, dFdx, x) -> objective_and_gradient_opt!(F, dFdx, x, data, print)
return (F! = F, dF! = dF, F_and_dF! = F_and_dF, x0 = x0, limits = lims, data = data)
end
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 613 | export jutulForce
struct jutulForce{D, T}
irate::T
name::Vector{Symbol}
loc::Vector{NTuple{D, T}}
end
jutulForce(irate::T, loc::NTuple{D, T}) where {D, T} = jutulForce(irate, [loc])
jutulForce(irate::T, loc::Vector{NTuple{D, T}}) where {D, T}= jutulForce(irate, vcat(:Injector, [:Producer for i = 1:length(loc)]), loc)
display(f::jutulForce{D, T}) where {D, T} =
println("$(D)D jutulForce structure with $(length(f.loc)) injection/production wells and rate $(f.irate) m^3/s")
==(A::jutulForce{D, T}, B::jutulForce{D, T}) where {D,T} = (A.irate == B.irate && A.name == B.name && A.loc == B.loc) | JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 1039 | export jutulModel, CartesianMesh
struct jutulModel{D, T}
n::NTuple{D, Int64}
d::NTuple{D, T}
ϕ::Vector{T}
K::Union{Matrix{T}, T}
h::T # depth of the top grid
end
function jutulModel(n::NTuple{D, Int64}, d::NTuple{D, T}, ϕ::T, K::Union{Matrix{T}, T}; h::T=T(0), pad::Bool=true) where {D, T}
ϕ_full = ϕ * ones(T, n)
if pad
ϕ_full[1,:,:] .= 1e8
ϕ_full[end,:,:] .= 1e8
ϕ_full[:,:,1] .= ϕ * (h/d[end] + T(1))
ϕ_full[:,:,end] .= 1e8
end
ϕ = vec(ϕ_full)
return jutulModel(n, d, ϕ, K, h)
end
jutulModel(n::NTuple{D, Int64}, d::NTuple{D, T}, ϕ::Vector{T}, K::Union{Matrix{T}, T}) where {D, T} = jutulModel(n, d, ϕ, K, T(0))
display(M::jutulModel{D, T}) where {D, T} =
println("$(D)D jutulModel with size $(M.n) and grid spacing $(M.d) at depth $(M.h) m")
CartesianMesh(M::jutulModel{D, T}) where {D, T} = CartesianMesh(M.n, M.d .* M.n)
==(A::jutulModel{D, T}, B::jutulModel{D, T}) where {D,T} = (A.n == B.n && A.d == B.d && A.ϕ == B.ϕ && A.K == B.K && A.h == B.h) | JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 673 | export jutulSource
struct jutulSource{D, T}
irate::Vector{T}
name::Vector{Symbol}
loc::Vector{NTuple{D, T}}
end
jutulSource(irate::T, loc::NTuple{D, T}) where {D, T} = jutulSource(irate, [loc])
jutulSource(irate::T, loc::Vector{NTuple{D, T}}) where {D, T} = jutulSource([(-T(1))^(i+1)*irate for i = 1:length(loc)], vcat(:Injector, [:Producer for i = 1:length(loc)]), loc)
display(f::jutulSource{D, T}) where {D, T} =
println("$(D)D jutulSource structure with $(length(f.loc)) injection/production wells and rate $(f.irate[1]) m^3/s")
==(A::jutulSource{D, T}, B::jutulSource{D, T}) where {D,T} = (A.irate == B.irate && A.name == B.name && A.loc == B.loc) | JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 8571 | export jutulState, jutulStates, jutulSimpleState, jutulSimpleStates, dict, Saturations, Pressure
abstract type jutulAllState{T} <: DenseVector{T} end
abstract type jutulSimpleOrMultiModelStates{T} <: jutulAllState{T} end
abstract type jutulSimpleOrMultiModelState{T} <: jutulAllState{T} end
struct jutulState{T} <: jutulSimpleOrMultiModelState{T}
state::Dict
end
struct jutulStates{T} <: jutulSimpleOrMultiModelStates{T}
states::Vector{jutulState{T}}
end
struct jutulSimpleState{T} <: jutulSimpleOrMultiModelState{T}
state::Dict
end
struct jutulSimpleStates{T} <: jutulSimpleOrMultiModelStates{T}
states::Vector{jutulSimpleState{T}}
end
state_T(T) = Dict{Symbol, T}
complex_state_T(T) = Union{Dict{Symbol, T}, AbstractVector{Dict{Symbol, T}}}
display(state::jutulAllState{T}) where T = println("$(typeof(state))")
jutulState(state::Dict) = jutulState{eltype(state[:Reservoir][:Saturations])}(state)
jutulStates(states::Vector{S}) where {T, S<:complex_state_T(T)} = jutulStates{eltype(states[1][:Reservoir][:Saturations])}([jutulState(states[i]::state_T(T)) for i = 1:length(states)])
jutulSimpleState(state::state_T(T)) where T = jutulSimpleState{eltype(state[:Saturations])}(state)
jutulSimpleStates(states::Vector{S}) where {T, S<:complex_state_T(T)} = jutulSimpleStates{eltype(states[1][:Saturations])}([jutulSimpleState(states[i]::state_T(T)) for i = 1:length(states)])
Saturations(state::jutulState) = state.state[:Reservoir][:Saturations][1,:]
Pressure(state::jutulState) = state.state[:Reservoir][:Pressure]
Saturations(state::jutulSimpleState) = state.state[:Saturations][1,:]
Pressure(state::jutulSimpleState) = state.state[:Pressure]
Saturations(state::jutulSimpleOrMultiModelStates) = vcat([Saturations(state.states[i]) for i = 1:get_nt(state)]...)
Pressure(state::jutulSimpleOrMultiModelStates) = vcat([Pressure(state.states[i]) for i = 1:get_nt(state)]...)
get_Reservoir_state(state::jutulState) = state.state[:Reservoir]
get_Reservoir_state(state::jutulSimpleState) = state.state
get_Reservoir_state(state::jutulSimpleOrMultiModelStates) = get_Reservoir_state(state.states[end])
get_nt(state::jutulSimpleOrMultiModelStates) = length(state.states)
get_nn(state::jutulSimpleOrMultiModelState) = length(Saturations(state))
get_nn(state::jutulSimpleOrMultiModelStates) = get_nn(state.states[1])
###### turn jutulStates to state dictionary
dict(state::jutulSimpleOrMultiModelState) = state.state
dict(state::jutulSimpleOrMultiModelStates) = [dict(state.states[i]) for i = 1:get_nt(state)]
dict(state::Dict) = state
###### AbstractVector
length(state::jutulSimpleOrMultiModelState) = length(Saturations(state)) + length(Pressure(state))
length(state::jutulSimpleOrMultiModelStates) = sum([length(state.states[i]) for i = 1:get_nt(state)])
size(state::jutulAllState) = (length(state),)
vec(state::jutulAllState) = vcat(Saturations(state), Pressure(state))
IndexStyle(::jutulAllState) = IndexLinear()
function getindex(state::jutulState, i::Int)
if i <= get_nn(state)
## getindex for saturation
return state.state[:Reservoir][:Saturations][1,i]
else
## getindex for pressure
return state.state[:Reservoir][:Pressure][i-get_nn(state)]
end
end
function getindex(state::jutulSimpleState, i::Int)
if i <= get_nn(state)
## getindex for saturation
return state.state[:Saturations][1,i]
else
## getindex for pressure
return state.state[:Pressure][i-get_nn(state)]
end
end
function setindex!(state::jutulState{T}, v, i::Int) where T
if i <= get_nn(state)
## setindex for saturation
state.state[:Reservoir][:Saturations][1,i] = T(v)
state.state[:Reservoir][:Saturations][2,i] = T(1) - T(v)
else
## setindex for pressure
state.state[:Reservoir][:Pressure][i-get_nn(state)] = T(v)
end
end
function setindex!(state::jutulSimpleState{T}, v, i::Int) where T
if i <= get_nn(state)
## setindex for saturation
state.state[:Saturations][1,i] = T(v)
state.state[:Saturations][2,i] = T(1) - T(v)
else
## setindex for pressure
state.state[:Pressure][i-get_nn(state)] = T(v)
end
end
function getindex(states::jutulStates, i::Int)
idx_t = div(i-1, get_nn(states)) + 1
idx_n = mod(i-1, get_nn(states)) + 1
if idx_t <= get_nt(states)
## getindex for saturation
return states.states[idx_t].state[:Reservoir][:Saturations][1,idx_n]
else
## getindex for pressure
return states.states[idx_t-get_nt(states)].state[:Reservoir][:Pressure][idx_n]
end
end
function getindex(states::jutulSimpleStates, i::Int)
idx_t = div(i-1, get_nn(states)) + 1
idx_n = mod(i-1, get_nn(states)) + 1
if idx_t <= get_nt(states)
## getindex for saturation
return states.states[idx_t].state[:Saturations][1,idx_n]
else
## getindex for pressure
return states.states[idx_t-get_nt(states)].state[:Pressure][idx_n]
end
end
function setindex!(states::jutulStates{T}, v, i::Int) where T
idx_t = div(i-1, get_nn(states)) + 1
idx_n = mod(i-1, get_nn(states)) + 1
if idx_t <= get_nt(states)
## setindex for saturation
states.states[idx_t].state[:Reservoir][:Saturations][1,idx_n] = T(v)
else
## setindex for pressure
states.states[idx_t-get_nt(states)].state[:Reservoir][:Pressure][idx_n] = T(v)
end
end
function setindex!(states::jutulSimpleStates{T}, v, i::Int) where T
idx_t = div(i-1, get_nn(states)) + 1
idx_n = mod(i-1, get_nn(states)) + 1
if idx_t <= get_nt(states)
## setindex for saturation
states.states[idx_t].state[:Saturations][1,idx_n] = T(v)
else
## setindex for pressure
states.states[idx_t-get_nt(states)].state[:Pressure][idx_n] = T(v)
end
end
getindex(state::jutulAllState, i...) = getindex(vec(state), i...)
firstindex(A::jutulAllState) = 1
lastindex(A::jutulAllState) = length(A)
norm(A::jutulAllState, order::Real=2) = norm(vec(A), order)
dot(A::jutulAllState, B::jutulAllState) = dot(vec(A), vec(B))
dot(A::jutulAllState, B::AbstractArray) = dot(vec(A), vec(B))
dot(A::AbstractArray, B::jutulAllState) = dot(vec(A), vec(B))
function (states::jutulState{T})(x::AbstractArray) where T
@assert length(states) == length(x)
states_ = deepcopy(states)
states_ .= T.(x)
states_.state[:Reservoir][:Saturations][2,:] = T(1) .- states_.state[:Reservoir][:Saturations][1,:]
return states_
end
function (states::jutulSimpleState{T})(x::AbstractArray) where T
@assert length(states) == length(x)
states_ = deepcopy(states)
states_ .= T.(x)
states_.state[:Saturations][2,:] = T(1) .- states_.state[:Saturations][1,:]
return states_
end
function (states::jutulStates{T})(x::AbstractArray) where T
@assert length(states) == length(x)
states_ = deepcopy(states)
states_ .= T.(x)
for i = 1:get_nt(states)
states_.states[i].state[:Reservoir][:Saturations][2,:] = T(1) .- states_.states[i].state[:Reservoir][:Saturations][1,:]
end
return states_
end
function (states::jutulSimpleStates{T})(x::AbstractArray) where T
@assert length(states) == length(x)
states_ = deepcopy(states)
states_ .= T.(x)
for i = 1:get_nt(states)
states_.states[i].state[:Saturations][2,:] = T(1) .- states_.states[i].state[:Saturations][1,:]
end
return states_
end
function jutulSimpleState(M::jutulModel{D, T}; ρCO2::T=T(ρCO2), ρH2O::T=T(ρH2O), g::T=T(10.0)) where {D, T}
## default state at time 0 with all water
Z = repeat((1:M.n[end])*M.d[end], inner = prod(M.n[1:2]))
p0 = ρH2O * g * (Z .+ M.h) # rho * g * h
state0 = setup_state(simple_model(M; ρCO2=ρCO2, ρH2O=ρH2O), Pressure = p0, Saturations = [0.0, 1.0])
return jutulSimpleState(state0)
end
for op in [:+, :-, :*, :/]
@eval function $(op)(A::jutulAllState{T}, B::jutulAllState{T}) where T
return A(broadcast($(op), vec(A), vec(B)))
end
end
==(A::jutulAllState{T}, B::jutulAllState{T}) where {T} = vec(A) == vec(B)
function check_valid_state(states::jutulState{T}) where T
@assert all(isapprox.(sum(states.state[:Reservoir][:Saturations], dims=1),1; rtol=sqrt(eps(T))))
end
function check_valid_state(states::jutulSimpleState{T}) where T
@assert all(isapprox.(sum(states.state[:Saturations], dims=1),1; rtol=sqrt(eps(T))))
end
function check_valid_state(states::jutulSimpleOrMultiModelStates{T}) where T
for i = 1:get_nt(states)
check_valid_state(states.states[i])
end
end | JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 727 | export jutulVWell
struct jutulVWell{D, T}
irate::T
name::Vector{Symbol}
loc::Vector
startz
endz
end
jutulVWell(irate::T, loc::NTuple{D, T}; startz=nothing, endz=nothing) where {D, T} = jutulVWell(irate, [loc]; startz=startz, endz=endz)
jutulVWell(irate::T, loc::Vector{NTuple{D, T}}; startz=nothing, endz=nothing) where {D, T}= jutulVWell{D+1, T}(irate, vcat(:Injector, [:Producer for i = 1:length(loc)]), loc, startz, endz)
display(f::jutulVWell{D, T}) where {D, T} =
println("$(D)D jutulVWell structure with $(length(f.loc)) injection/production wells and rate $(f.irate) m^3/s")
==(A::jutulVWell{D, T}, B::jutulVWell{D, T}) where {D,T} = (A.irate == B.irate && A.name == B.name && A.loc == B.loc) | JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 4449 | function force(M::jutulModel{D, T}, w::jutulForce{D, T}, tstep::Vector{T};
ρCO2::T=T(ρCO2), ρH2O::T=T(ρH2O), g::T=T(10.0)) where {D, T}
## set up well information
cell_loc = [Int.(round.(w.loc[i] ./ M.d[1:length(w.loc[1])])) for i = 1:length(w.loc)]
Is = [setup_well(CartesianMesh(M), M.K, [cell_loc[i]], name = w.name[i]) for i = 1:length(w.loc)]
ctrls = [w.name[i]==:Injector ? InjectorControl(TotalRateTarget(w.irate), [1.0, 0.0], density = ρCO2) : ProducerControl(BottomHolePressureTarget(50*bar)) for i = 1:length(w.loc)]
controls = Dict()
for i = 1:length(w.loc)
controls[w.name[i]] = ctrls[i]
end
return Is, controls
end
function force(M::jutulModel{D, T}, w::jutulVWell{D, T}, tstep::Vector{T};
ρCO2::T=T(ρCO2), ρH2O::T=T(ρH2O), g::T=T(10.0)) where {D, T}
## set up well information
cell_loc = [Int.(round.(w.loc[i] ./ M.d[1:length(w.loc[1])])) for i = 1:length(w.loc)]
heel = [isnothing(w.startz) ? 1 : Int(div(w.startz[i], M.d[end])) for i = 1:length(w.loc)]
toe = [isnothing(w.endz) ? M.n[end] : Int(div(w.endz[i], M.d[end])) for i = 1:length(w.loc)]
Is = [setup_vertical_well(CartesianMesh(M), M.K, cell_loc[i]..., name = w.name[i]; heel = heel[i], toe = toe[i]) for i = 1:length(w.loc)]
ctrls = [w.name[i]==:Injector ? InjectorControl(TotalRateTarget(w.irate), [1.0, 0.0], density = ρCO2) : ProducerControl(BottomHolePressureTarget(50*bar)) for i = 1:length(w.loc)]
controls = Dict()
for i = 1:length(w.loc)
controls[w.name[i]] = ctrls[i]
end
return Is, controls
end
function setup_well_model(M::jutulModel{D, T}, f::Union{jutulForce{D, T}, jutulVWell{D, T}}, tstep::Vector{T};
visCO2::T=T(visCO2), visH2O::T=T(visH2O), ρCO2::T=T(ρCO2), ρH2O::T=T(ρH2O), g::T=T(10.0)) where {D, T}
### set up well controls
Is, controls = force(M, f, tstep; ρCO2=ρCO2, ρH2O=ρH2O, g=g)
### set up model, parameters
sys = ImmiscibleSystem((VaporPhase(), AqueousPhase()), reference_densities = [ρCO2, ρH2O])
domain_spec = reservoir_domain(CartesianMesh(M), porosity = M.ϕ, permeability = M.K)
domain = discretized_domain_tpfv_flow(domain_spec)
model_parameters = Dict(:Reservoir => Dict(:PhaseViscosities=> [visCO2, visH2O]))
model, parameters = setup_reservoir_model(domain_spec, sys, wells = Is, parameters=model_parameters)
select_output_variables!(model.models.Reservoir, :all)
ρ = ConstantCompressibilityDensities(p_ref = 150*bar, density_ref = [ρCO2, ρH2O], compressibility = [1e-4/bar, 1e-6/bar])
replace_variables!(model, PhaseMassDensities = ρ)
replace_variables!(model, RelativePermeabilities = BrooksCoreyRelPerm(sys, [2.0, 2.0], [0.1, 0.1], 1.0))
for x ∈ keys(model.models)
Jutul.select_output_variables!(model.models[x], :all)
end
### forces
forces = setup_reservoir_forces(model, control = controls)
### initial state
Z = repeat((1:M.n[end])*M.d[end], inner = prod(M.n[1:2]))
p0 = ρH2O * g * (Z .+ M.h) # rho * g * h
state0 = setup_reservoir_state(model, Pressure = p0, Saturations = [0.0, 1.0])
return model, parameters, state0, forces
end
function source(M::jutulModel{D, T}, f::jutulSource{D, T}; ρCO2::T=T(ρCO2)) where {D, T}
model = simple_model(M; ρCO2=ρCO2)
cell_loc = [Int.(round.(f.loc[i] ./ M.d)) for i = 1:length(f.loc)]
cell = [sum([(cell_loc[i][d]-1) * prod(M.n[1:d-1]) for d = length(cell_loc[i]):-1:1]) + 1 for i = 1:length(cell_loc)]
src = [SourceTerm(cell[i], f.irate[i] * ρCO2, fractional_flow = [T(f.irate[i] > 0), T(1)-T(f.irate[i] > 0)]) for i = 1:length(f.loc)]
return setup_forces(model, sources = src)
end
function simple_model(M::jutulModel{D, T}; ρCO2::T=T(ρCO2), ρH2O::T=T(ρH2O)) where {D, T}
sys = ImmiscibleSystem((VaporPhase(), AqueousPhase()))
g = CartesianMesh(M.n, M.d .* M.n)
domain_spec = reservoir_domain(g, porosity = M.ϕ, permeability = M.K)
G = discretized_domain_tpfv_flow(domain_spec)
model = SimulationModel(domain_spec, sys, output_level = :all)
model.primary_variables[:Pressure] = JutulDarcy.Pressure(minimum = -Inf, max_rel = nothing)
ρ = ConstantCompressibilityDensities(p_ref = 150*bar, density_ref = [ρCO2, ρH2O], compressibility = [1e-4/bar, 1e-6/bar])
replace_variables!(model, PhaseMassDensities = ρ)
replace_variables!(model, RelativePermeabilities = BrooksCoreyRelPerm(sys, [2.0, 2.0], [0.1, 0.1], 1.0))
return model
end
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 1516 | export TransToK, KtoTrans, K1to3
K1to3(Kx::AbstractArray{T}; kvoverkh::T=T(1)) where T = vcat(vec(Kx)', vec(Kx)', kvoverkh * vec(Kx)')
function TransToK(g::CartesianMesh, Trans::AbstractVector{T}) where T<:Number
# ## Set up L-BFGS
function fg(F, G, x)
grads = gradient(Flux.params(x)) do
F = norm(KtoTrans(g, x)-Trans)^2 / norm(Trans)^2
end
G .= grads[x]
return F
end
Kx = vcat([vec(g.deltas[i]^2 / prod(g.deltas) * mean(Trans) * ones(prod(g.dims)))' for i = 1:3]...)
result = optimize(Optim.only_fg!(fg), Kx, LBFGS(), Optim.Options(f_tol=T(0)))
Kxinv = result.minimizer
return Kxinv
end
function KtoTrans(g::CartesianMesh, K::AbstractArray{T}) where {T<:Number}
d = g.deltas
n = g.dims
return vcat(vec(KtoTransx(reshape(K[1,:], n), d)),
vec(KtoTransy(reshape(K[2,:], n), d)),
vec(KtoTransz(reshape(K[3,:], n), d)))
end
function KtoTransx(K::AbstractArray{T, 3}, d::NTuple{3, T}) where {T<:Number}
Kreci = T(1) ./ K
return T(2) * prod(d) / d[1]^2 ./ (Kreci[1:end-1,:,:] + Kreci[2:end,:,:])
end
function KtoTransy(K::AbstractArray{T, 3}, d::NTuple{3, T}) where {T<:Number}
Kreci = T(1) ./ K
return permutedims(T(2) .* prod(d) / d[2]^2 ./ (Kreci[:,1:end-1,:] + Kreci[:,2:end,:]), [1,3,2])
end
function KtoTransz(K::AbstractArray{T, 3}, d::NTuple{3, T}) where {T<:Number}
Kreci = T(1) ./ K
return T(2) .* prod(d) / d[3]^2 ./ (Kreci[:,:,1:end-1] + Kreci[:,:,2:end])
end
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 4799 | mean(x) = sum(x)/length(x)
function log_division(a, b)
if b == 0
return a == 0 ? NaN : Inf
end
return log(a / b)
end
"""
grad_test(J, x0, Δx, dJdx; ΔJ=nothing, maxiter=6, h0=5e-2, stol=1e-1, hfactor=8e-1)
Test the gradient using Taylor series convergence.
Compute a series of residuals using zeroth order and first order Taylor approximations.
Each perturbed computation J(x₀ + hᵢ Δx) is compared to J(x₀) and J(x₀) + hᵢ ΔJ,
where hᵢ = hfactor * hᵢ₋₁ and ΔJ = dJdx ⋅ Δx by default. If the computation of J and
dJdx is correct, J is sufficiently smooth, and h is sufficiently small, the zeroth
order approximation should converge linearly and the first order approximation should
converge quadratically.
It can be difficult to obtain the correct convergence, so we average the
convergence factors across maxiter values of h and test that the convergence
factor is more than correct convergence factor minus the stol parameter.
# Mathematical basis
For J sufficiently smooth, the value of a point at a small perturbation from x₀ can be
computed using the Taylor series expansion.
```math
J(x₀ + h Δx) = J(x₀) + h (dJ/dx) Δx + h² (d²J/dx²) : (Δx Δxᵀ) + O(h³)
```
If d²J/dx² is non-zero and h is small enough, the value of the first-order Taylor
approximation differs from the true value by approximately a constant proportional to h².
```math
err(h) = |J(x₀ + h Δx) - J(x₀) - h (dJ/dx) Δx| ≈ h²c
```
If we consider the error for two different values of h, the unknown constant can be eliminated.
```math
err(h₁) / err(h₂) ≈ (h₁ / h₂)^2
```
So if h₁ is divided by a factor α, then the ratio of the errors should be divided by a factor α².
Or we can compute the exponent for the rate of convergence using logarithms.
```math
log(err(h₁) / err(h₂)) / log (h₁ / h₂) ≈ 2
```
"""
function grad_test(J, x0, Δx, dJdx; ΔJ=nothing, maxiter=6, h0=5e-2, stol=1e-1, hfactor=8e-1, unittest=:test)
if !xor(isnothing(dJdx), isnothing(ΔJ))
error("Must specify either dJdx or ΔJ")
end
if isnothing(ΔJ)
ΔJ = dot(dJdx, Δx)
end
J0 = J(x0)
h = h0
log_factor = log(hfactor)
expected_f1 = 1e0 / hfactor
expected_f2 = 1e0 / hfactor ^2e0
err1 = zeros(Float64, maxiter)
err2 = zeros(Float64, maxiter)
Js = zeros(Float64, maxiter)
@printf("%11s, %12s | %11s, %11s | %11s, %11s | %12s, %12s | %12s %12s %12s \n", "h", "ΔJ", "e1", "e2", "factor1", "factor2", "rate1", "rate2", "Finite-diff", "T1 approx", "T2 approx")
@printf("%11s, % 12.5e | %11s, %11s | %11.5e, %11.5e | % 12.5e, % 12.5e | \n", "", ΔJ, "0", "0", expected_f1, expected_f2, 1, 2)
@printf("%11s, %12s | %11s, %11s | %11s, %11s | % 12s, % 12s \n", "___________", "___________", "___________", "___________", "___________", "___________", "____________", "____________")
all_info = []
for j=1:maxiter
Jh = J(x0 + h*Δx)
Js[j] = Jh
err1[j] = norm(Jh - J0, 1)
err2[j] = norm(Jh - J0 - h*ΔJ, 1)
j == 1 ? prev = 1 : prev = j - 1
dJ_est = (Jh - J0) / h
α = expected_f2
dJ_est1 = (α*Js[prev] - Jh + (1-α)*J0) / (h * (α/hfactor - 1))
α = -expected_f2
dJ_est2 = (α*Js[prev] - Jh + (1-α)*J0) / (h * (α/hfactor - 1))
rate1 = log_division(err1[j], err1[prev]) / log_factor
rate2 = log_division(err2[j], err2[prev]) / log_factor
info = (h, h*norm(ΔJ, 1), err1[j], err2[j], err1[prev]/err1[j], err2[prev]/err2[j], rate1, rate2, dJ_est, dJ_est1, dJ_est2)
push!(all_info, info)
@printf("%11.5e, % 12.5e | %11.5e, %11.5e | %11.5e, %11.5e | % 12.5e, % 12.5e | % 12.5e, % 12.5e, % 12.5e \n", info...)
h = h * hfactor
end
println()
@printf("%11s, %12s | %11s, %11s | %11s, %11s | %12s, %12s | %12s %12s %12s \n", "h", "ΔJ", "e1", "e2", "factor1", "factor2", "rate1", "rate2", "Finite-diff", "T1 approx", "T2 approx")
@printf("%11s, % 12.5e | %11s, %11s | %11.5e, %11.5e | % 12.5e, % 12.5e | \n", "", ΔJ, "0", "0", expected_f1, expected_f2, 1, 2)
@printf("%11s, %12s | %11s, %11s | %11s, %11s | % 12s, % 12s \n", "___________", "___________", "___________", "___________", "___________", "___________", "____________", "____________")
for j=1:maxiter
info = all_info[j]
@printf("%11.5e, % 12.5e | %11.5e, %11.5e | %11.5e, %11.5e | % 12.5e, % 12.5e | % 12.5e, % 12.5e, % 12.5e \n", info...)
h = h * hfactor
end
factor1 = err1[1:end-1]./err1[2:end]
factor2 = err2[1:end-1]./err2[2:end]
@test mean(factor1) ≥ expected_f1 - stol
if unittest == :skip
@test mean(factor2) ≥ expected_f2 - stol skip=true
elseif unittest == :broken
@test mean(factor2) ≥ expected_f2 - stol broken=true
else
@test mean(factor2) ≥ expected_f2 - stol
end
end
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 399 | using Test
using Jutul
using JutulDarcyRules
using Flux
using Printf
using Random
using LinearAlgebra
Random.seed!(2023)
include("test_utils.jl")
include("test_model_parameter.jl")
include("test_gradient.jl")
include("test_conversion.jl")
include("test_jutulState.jl")
include("test_jutulForce.jl")
include("test_jutulSource.jl")
include("test_jutulModel.jl")
include("test_jutulModeling.jl")
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
|
[
"MIT"
] | 0.2.8 | da37b282ff5919181ee4c1eae2ad7665e9af3702 | code | 356 | nx = 30
ny = 10
nz = 15
dims = (nx, ny, nz)
g1 = CartesianMesh(dims, (5.0, 8.0, 10.0) .* dims)
g = tpfv_geometry(g1)
K1 = vcat(vec(rand(nx, ny, nz))', vec(rand(nx, ny, nz))', vec(rand(nx, ny, nz))')
@testset "Test conversion" begin
@info "compute transmissibility from permeability"
@test isapprox(KtoTrans(g1, K1), compute_face_trans(g, K1))
end
| JutulDarcyRules | https://github.com/slimgroup/JutulDarcyRules.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.