Dataset Viewer
layer_id
int64 0
223
| name
stringlengths 26
32
| D
float64 0.03
0.21
| M
int64 1.02k
4.1k
| N
int64 4.1k
14.3k
| Q
float64 1
4
| alpha
float64 2.55
30.7
| alpha_weighted
float64 -100.7
-4.79
| entropy
float64 1.07
1.57
| has_esd
bool 1
class | lambda_max
float32 0
0.01
| layer_type
stringclasses 1
value | log_alpha_norm
float64 -100.63
-4.73
| log_norm
float32 -1.66
-0.94
| log_spectral_norm
float32 -3.31
-1.88
| matrix_rank
int64 64
64
| norm
float32 0.02
0.11
| num_evals
int64 1.02k
4.1k
| num_pl_spikes
int64 5
64
| rank_loss
int64 960
4.03k
| rf
int64 1
1
| sigma
float64 0.35
9.03
| spectral_norm
float32 0
0.01
| stable_rank
float32 4.91
54.6
| status
stringclasses 1
value | sv_max
float64 0.02
0.11
| sv_min
float64 0
0
| warning
stringclasses 2
values | weak_rank_loss
int64 960
4.03k
| xmax
float64 0
0.01
| xmin
float64 0
0
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 |
model.layers.0.mlp.down_proj
| 0.078037 | 4,096 | 14,336 | 3.5 | 4.053136 | -8.624209 | 1.546217 | true | 0.007451 |
dense
| -8.422872 | -0.942671 | -2.127786 | 64 | 0.114112 | 4,096 | 21 | 4,032 | 1 | 0.666249 | 0.007451 | 15.314962 |
success
| 0.086319 | 0.000001 | 4,032 | 0.007451 | 0.001594 |
|
1 |
model.layers.0.mlp.gate_proj
| 0.074845 | 4,096 | 14,336 | 3.5 | 3.074121 | -6.048194 | 1.523045 | true | 0.010778 |
dense
| -5.992284 | -1.043336 | -1.967455 | 64 | 0.090503 | 4,096 | 13 | 4,032 | 1 | 0.575258 | 0.010778 | 8.39689 |
success
| 0.103818 | 0.000001 | 4,032 | 0.010778 | 0.001346 |
|
2 |
model.layers.0.mlp.up_proj
| 0.073709 | 4,096 | 14,336 | 3.5 | 2.963981 | -5.587149 | 1.50815 | true | 0.013031 |
dense
| -5.539123 | -1.029696 | -1.885015 | 64 | 0.093391 | 4,096 | 18 | 4,032 | 1 | 0.462915 | 0.013031 | 7.166698 |
success
| 0.114154 | 0.000001 | 4,032 | 0.013031 | 0.001169 |
|
3 |
model.layers.0.self_attn.k_proj
| 0.041871 | 1,024 | 4,096 | 4 | 3.660928 | -8.275696 | 1.091316 | true | 0.005489 |
dense
| -8.234427 | -1.295308 | -2.260546 | 64 | 0.050663 | 1,024 | 34 | 960 | 1 | 0.456345 | 0.005489 | 9.230771 |
success
| 0.074084 | 0.000001 | 960 | 0.005489 | 0.000629 |
|
4 |
model.layers.0.self_attn.o_proj
| 0.075064 | 4,096 | 4,096 | 1 | 2.545702 | -4.788104 | 1.446955 | true | 0.013157 |
dense
| -4.725399 | -1.189854 | -1.880858 | 64 | 0.064587 | 4,096 | 19 | 4,032 | 1 | 0.354608 | 0.013157 | 4.90913 |
success
| 0.114702 | 0 | 4,032 | 0.013157 | 0.00069 |
|
5 |
model.layers.0.self_attn.q_proj
| 0.063552 | 4,096 | 4,096 | 1 | 3.702849 | -8.79926 | 1.540747 | true | 0.004204 |
dense
| -8.706662 | -1.264196 | -2.376349 | 64 | 0.054426 | 4,096 | 41 | 4,032 | 1 | 0.422114 | 0.004204 | 12.9465 |
success
| 0.064837 | 0 | 4,032 | 0.004204 | 0.000649 |
|
6 |
model.layers.0.self_attn.v_proj
| 0.065128 | 1,024 | 4,096 | 4 | 4.518371 | -11.075607 | 1.074268 | true | 0.003538 |
dense
| -11.073485 | -1.633022 | -2.451239 | 64 | 0.02328 | 1,024 | 64 | 960 | 1 | 0.439796 | 0.003538 | 6.579869 |
success
| 0.059481 | 0.000001 | 960 | 0.003538 | 0.000235 |
|
7 |
model.layers.1.mlp.down_proj
| 0.120789 | 4,096 | 14,336 | 3.5 | 3.760372 | -8.12376 | 1.553696 | true | 0.006913 |
dense
| -8.030754 | -0.996069 | -2.160361 | 64 | 0.100909 | 4,096 | 7 | 4,032 | 1 | 1.043323 | 0.006913 | 14.59795 |
success
| 0.083142 | 0.000001 | 4,032 | 0.006913 | 0.001736 |
|
8 |
model.layers.1.mlp.gate_proj
| 0.101213 | 4,096 | 14,336 | 3.5 | 3.073197 | -6.50478 | 1.540912 | true | 0.007645 |
dense
| -6.342643 | -1.041639 | -2.116617 | 64 | 0.090858 | 4,096 | 9 | 4,032 | 1 | 0.691066 | 0.007645 | 11.884425 |
success
| 0.087436 | 0.000001 | 4,032 | 0.007645 | 0.001464 |
|
9 |
model.layers.1.mlp.up_proj
| 0.120154 | 4,096 | 14,336 | 3.5 | 3.501113 | -7.287698 | 1.536073 | true | 0.008288 |
dense
| -7.149562 | -1.016781 | -2.081537 | 64 | 0.09621 | 4,096 | 15 | 4,032 | 1 | 0.645785 | 0.008288 | 11.607965 |
success
| 0.09104 | 0.000001 | 4,032 | 0.008288 | 0.001366 |
|
10 |
model.layers.1.self_attn.k_proj
| 0.056722 | 1,024 | 4,096 | 4 | 4.463136 | -10.295389 | 1.102708 | true | 0.004934 |
dense
| -10.254933 | -1.28201 | -2.306761 | 64 | 0.052238 | 1,024 | 62 | 960 | 1 | 0.439819 | 0.004934 | 10.586463 |
success
| 0.070246 | 0.000001 | 960 | 0.004934 | 0.00056 |
|
11 |
model.layers.1.self_attn.o_proj
| 0.082948 | 4,096 | 4,096 | 1 | 2.788825 | -6.187573 | 1.512383 | true | 0.006044 |
dense
| -5.846718 | -1.19272 | -2.218702 | 64 | 0.064162 | 4,096 | 17 | 4,032 | 1 | 0.433854 | 0.006044 | 10.616527 |
success
| 0.077741 | 0 | 4,032 | 0.006044 | 0.000848 |
|
12 |
model.layers.1.self_attn.q_proj
| 0.051761 | 4,096 | 4,096 | 1 | 4.367304 | -9.032353 | 1.518836 | true | 0.008547 |
dense
| -9.028883 | -1.188359 | -2.068176 | 64 | 0.06481 | 4,096 | 64 | 4,032 | 1 | 0.420913 | 0.008547 | 7.582582 |
success
| 0.092451 | 0 | 4,032 | 0.008547 | 0.000665 |
|
13 |
model.layers.1.self_attn.v_proj
| 0.084882 | 1,024 | 4,096 | 4 | 6.50357 | -18.628179 | 1.1217 | true | 0.001367 |
dense
| -18.610157 | -1.656919 | -2.864301 | 64 | 0.022033 | 1,024 | 64 | 960 | 1 | 0.687946 | 0.001367 | 16.120611 |
success
| 0.03697 | 0.000001 |
under-trained
| 960 | 0.001367 | 0.000273 |
14 |
model.layers.2.mlp.down_proj
| 0.141108 | 4,096 | 14,336 | 3.5 | 4.986315 | -11.807773 | 1.561366 | true | 0.004285 |
dense
| -11.631251 | -1.010099 | -2.368036 | 64 | 0.097701 | 4,096 | 12 | 4,032 | 1 | 1.15075 | 0.004285 | 22.800112 |
success
| 0.065461 | 0.000001 | 4,032 | 0.004285 | 0.001526 |
|
15 |
model.layers.2.mlp.gate_proj
| 0.09412 | 4,096 | 14,336 | 3.5 | 3.715742 | -7.997589 | 1.549306 | true | 0.007041 |
dense
| -7.919346 | -1.032961 | -2.152353 | 64 | 0.092691 | 4,096 | 10 | 4,032 | 1 | 0.858793 | 0.007041 | 13.164119 |
success
| 0.083912 | 0.000001 | 4,032 | 0.007041 | 0.001451 |
|
16 |
model.layers.2.mlp.up_proj
| 0.088223 | 4,096 | 14,336 | 3.5 | 3.476825 | -7.241272 | 1.543075 | true | 0.008266 |
dense
| -7.155042 | -1.013239 | -2.082725 | 64 | 0.096998 | 4,096 | 12 | 4,032 | 1 | 0.714998 | 0.008266 | 11.735083 |
success
| 0.090915 | 0.000001 | 4,032 | 0.008266 | 0.001439 |
|
17 |
model.layers.2.self_attn.k_proj
| 0.059055 | 1,024 | 4,096 | 4 | 6.324751 | -16.606587 | 1.124112 | true | 0.002368 |
dense
| -16.570013 | -1.3895 | -2.625651 | 64 | 0.040785 | 1,024 | 64 | 960 | 1 | 0.665594 | 0.002368 | 17.224663 |
success
| 0.04866 | 0.000001 |
under-trained
| 960 | 0.002368 | 0.000507 |
18 |
model.layers.2.self_attn.o_proj
| 0.054473 | 4,096 | 4,096 | 1 | 3.100158 | -7.058452 | 1.526014 | true | 0.005287 |
dense
| -6.920864 | -1.264247 | -2.276804 | 64 | 0.054419 | 4,096 | 21 | 4,032 | 1 | 0.458292 | 0.005287 | 10.293361 |
success
| 0.072711 | 0 | 4,032 | 0.005287 | 0.0007 |
|
19 |
model.layers.2.self_attn.q_proj
| 0.085959 | 4,096 | 4,096 | 1 | 8.018122 | -20.184861 | 1.553734 | true | 0.003038 |
dense
| -20.184489 | -1.360992 | -2.517405 | 64 | 0.043552 | 4,096 | 64 | 4,032 | 1 | 0.877265 | 0.003038 | 14.335519 |
success
| 0.055119 | 0 |
under-trained
| 4,032 | 0.003038 | 0.000566 |
20 |
model.layers.2.self_attn.v_proj
| 0.09117 | 1,024 | 4,096 | 4 | 7.027676 | -20.602752 | 1.12715 | true | 0.00117 |
dense
| -20.565834 | -1.62459 | -2.931659 | 64 | 0.023736 | 1,024 | 64 | 960 | 1 | 0.753459 | 0.00117 | 20.280077 |
success
| 0.034211 | 0.000001 |
under-trained
| 960 | 0.00117 | 0.000304 |
21 |
model.layers.3.mlp.down_proj
| 0.08119 | 4,096 | 14,336 | 3.5 | 5.102273 | -12.319074 | 1.563152 | true | 0.003851 |
dense
| -12.153177 | -1.034317 | -2.414429 | 64 | 0.092402 | 4,096 | 10 | 4,032 | 1 | 1.297253 | 0.003851 | 23.994524 |
success
| 0.062056 | 0.000001 | 4,032 | 0.003851 | 0.001462 |
|
22 |
model.layers.3.mlp.gate_proj
| 0.10023 | 4,096 | 14,336 | 3.5 | 3.712471 | -8.48617 | 1.556851 | true | 0.005178 |
dense
| -8.305467 | -1.050676 | -2.285855 | 64 | 0.088987 | 4,096 | 8 | 4,032 | 1 | 0.959003 | 0.005178 | 17.186176 |
success
| 0.071957 | 0.000001 | 4,032 | 0.005178 | 0.001423 |
|
23 |
model.layers.3.mlp.up_proj
| 0.11905 | 4,096 | 14,336 | 3.5 | 3.594004 | -8.02471 | 1.553261 | true | 0.005851 |
dense
| -7.847661 | -1.035492 | -2.232805 | 64 | 0.092153 | 4,096 | 9 | 4,032 | 1 | 0.864668 | 0.005851 | 15.75117 |
success
| 0.076489 | 0.000001 | 4,032 | 0.005851 | 0.001451 |
|
24 |
model.layers.3.self_attn.k_proj
| 0.104859 | 1,024 | 4,096 | 4 | 5.604087 | -12.085917 | 1.085087 | true | 0.006972 |
dense
| -12.084052 | -1.287998 | -2.156626 | 64 | 0.051523 | 1,024 | 64 | 960 | 1 | 0.575511 | 0.006972 | 7.389718 |
success
| 0.0835 | 0.000001 | 960 | 0.006972 | 0.000571 |
|
25 |
model.layers.3.self_attn.o_proj
| 0.063017 | 4,096 | 4,096 | 1 | 4.106814 | -10.249573 | 1.550359 | true | 0.003193 |
dense
| -10.072092 | -1.276134 | -2.495748 | 64 | 0.05295 | 4,096 | 22 | 4,032 | 1 | 0.662375 | 0.003193 | 16.581116 |
success
| 0.05651 | 0 | 4,032 | 0.003193 | 0.000741 |
|
26 |
model.layers.3.self_attn.q_proj
| 0.067876 | 4,096 | 4,096 | 1 | 3.348291 | -7.814138 | 1.538209 | true | 0.004637 |
dense
| -7.730213 | -1.295588 | -2.333769 | 64 | 0.05063 | 4,096 | 12 | 4,032 | 1 | 0.677893 | 0.004637 | 10.918955 |
success
| 0.068095 | 0 | 4,032 | 0.004637 | 0.000785 |
|
27 |
model.layers.3.self_attn.v_proj
| 0.070333 | 1,024 | 4,096 | 4 | 5.224446 | -15.4996 | 1.13189 | true | 0.00108 |
dense
| -15.310787 | -1.573987 | -2.966745 | 64 | 0.026669 | 1,024 | 11 | 960 | 1 | 1.273718 | 0.00108 | 24.70347 |
success
| 0.032857 | 0.000001 | 960 | 0.00108 | 0.000431 |
|
28 |
model.layers.4.mlp.down_proj
| 0.103412 | 4,096 | 14,336 | 3.5 | 6.499501 | -16.271618 | 1.564917 | true | 0.003137 |
dense
| -16.07889 | -1.03764 | -2.503518 | 64 | 0.091698 | 4,096 | 13 | 4,032 | 1 | 1.525287 | 0.003137 | 29.233288 |
success
| 0.056007 | 0.000001 |
under-trained
| 4,032 | 0.003137 | 0.001422 |
29 |
model.layers.4.mlp.gate_proj
| 0.116253 | 4,096 | 14,336 | 3.5 | 3.795076 | -8.701769 | 1.557888 | true | 0.005094 |
dense
| -8.544298 | -1.054941 | -2.29291 | 64 | 0.088117 | 4,096 | 7 | 4,032 | 1 | 1.056439 | 0.005094 | 17.296932 |
success
| 0.071375 | 0.000001 | 4,032 | 0.005094 | 0.001453 |
|
30 |
model.layers.4.mlp.up_proj
| 0.12004 | 4,096 | 14,336 | 3.5 | 4.187209 | -9.434501 | 1.55538 | true | 0.005582 |
dense
| -9.328923 | -1.033906 | -2.253172 | 64 | 0.09249 | 4,096 | 12 | 4,032 | 1 | 0.920068 | 0.005582 | 16.567825 |
success
| 0.074716 | 0.000001 | 4,032 | 0.005582 | 0.001405 |
|
31 |
model.layers.4.self_attn.k_proj
| 0.06627 | 1,024 | 4,096 | 4 | 6.227436 | -16.95982 | 1.127202 | true | 0.001891 |
dense
| -16.916808 | -1.442925 | -2.723403 | 64 | 0.036064 | 1,024 | 64 | 960 | 1 | 0.653429 | 0.001891 | 19.075619 |
success
| 0.043481 | 0.000001 |
under-trained
| 960 | 0.001891 | 0.00045 |
32 |
model.layers.4.self_attn.o_proj
| 0.051627 | 4,096 | 4,096 | 1 | 4.323554 | -10.8611 | 1.552673 | true | 0.003076 |
dense
| -10.770511 | -1.30265 | -2.512077 | 64 | 0.049814 | 4,096 | 22 | 4,032 | 1 | 0.708584 | 0.003076 | 16.196711 |
success
| 0.055458 | 0 | 4,032 | 0.003076 | 0.000711 |
|
33 |
model.layers.4.self_attn.q_proj
| 0.079045 | 4,096 | 4,096 | 1 | 7.006285 | -18.277367 | 1.554457 | true | 0.002462 |
dense
| -18.263869 | -1.388304 | -2.60871 | 64 | 0.040897 | 4,096 | 64 | 4,032 | 1 | 0.750786 | 0.002462 | 16.611397 |
success
| 0.049619 | 0 |
under-trained
| 4,032 | 0.002462 | 0.000519 |
34 |
model.layers.4.self_attn.v_proj
| 0.064339 | 1,024 | 4,096 | 4 | 8.255926 | -25.286125 | 1.132694 | true | 0.000865 |
dense
| -25.089855 | -1.590087 | -3.062785 | 64 | 0.025699 | 1,024 | 64 | 960 | 1 | 0.906991 | 0.000865 | 29.696016 |
success
| 0.029418 | 0.000001 |
under-trained
| 960 | 0.000865 | 0.000344 |
35 |
model.layers.5.mlp.down_proj
| 0.102415 | 4,096 | 14,336 | 3.5 | 6.801178 | -17.267207 | 1.565843 | true | 0.002892 |
dense
| -17.055313 | -1.040575 | -2.538856 | 64 | 0.09108 | 4,096 | 11 | 4,032 | 1 | 1.749121 | 0.002892 | 31.497822 |
success
| 0.053774 | 0.000001 |
under-trained
| 4,032 | 0.002892 | 0.001433 |
36 |
model.layers.5.mlp.gate_proj
| 0.101403 | 4,096 | 14,336 | 3.5 | 4.828013 | -11.53821 | 1.561887 | true | 0.004075 |
dense
| -11.414749 | -1.061174 | -2.389846 | 64 | 0.086861 | 4,096 | 9 | 4,032 | 1 | 1.276004 | 0.004075 | 21.314381 |
success
| 0.063838 | 0.000001 | 4,032 | 0.004075 | 0.00138 |
|
37 |
model.layers.5.mlp.up_proj
| 0.122957 | 4,096 | 14,336 | 3.5 | 4.840966 | -11.489038 | 1.560318 | true | 0.004234 |
dense
| -11.329233 | -1.041366 | -2.373294 | 64 | 0.090915 | 4,096 | 13 | 4,032 | 1 | 1.065292 | 0.004234 | 21.474775 |
success
| 0.065066 | 0.000001 | 4,032 | 0.004234 | 0.001391 |
|
38 |
model.layers.5.self_attn.k_proj
| 0.058986 | 1,024 | 4,096 | 4 | 6.511588 | -17.164931 | 1.124793 | true | 0.002312 |
dense
| -17.146604 | -1.41215 | -2.636059 | 64 | 0.038712 | 1,024 | 64 | 960 | 1 | 0.688948 | 0.002312 | 16.745928 |
success
| 0.048081 | 0.000001 |
under-trained
| 960 | 0.002312 | 0.000485 |
39 |
model.layers.5.self_attn.o_proj
| 0.102708 | 4,096 | 4,096 | 1 | 6.50579 | -18.101157 | 1.563011 | true | 0.001651 |
dense
| -17.909787 | -1.336704 | -2.782315 | 64 | 0.046057 | 4,096 | 25 | 4,032 | 1 | 1.101158 | 0.001651 | 27.900465 |
success
| 0.04063 | 0 |
under-trained
| 4,032 | 0.001651 | 0.000678 |
40 |
model.layers.5.self_attn.q_proj
| 0.075607 | 4,096 | 4,096 | 1 | 8.9117 | -24.09903 | 1.560718 | true | 0.001976 |
dense
| -24.090758 | -1.387967 | -2.704201 | 64 | 0.040929 | 4,096 | 64 | 4,032 | 1 | 0.988963 | 0.001976 | 20.712568 |
success
| 0.044453 | 0 |
under-trained
| 4,032 | 0.001976 | 0.00055 |
41 |
model.layers.5.self_attn.v_proj
| 0.05698 | 1,024 | 4,096 | 4 | 10.334181 | -32.260235 | 1.135119 | true | 0.000756 |
dense
| -32.222351 | -1.613308 | -3.121702 | 64 | 0.024361 | 1,024 | 64 | 960 | 1 | 1.166773 | 0.000756 | 32.239906 |
success
| 0.027488 | 0.000001 |
under-trained
| 960 | 0.000756 | 0.000339 |
42 |
model.layers.6.mlp.down_proj
| 0.106362 | 4,096 | 14,336 | 3.5 | 6.931822 | -17.470068 | 1.565562 | true | 0.003018 |
dense
| -17.290337 | -1.030035 | -2.520271 | 64 | 0.093318 | 4,096 | 14 | 4,032 | 1 | 1.585346 | 0.003018 | 30.919691 |
success
| 0.054937 | 0.000001 |
under-trained
| 4,032 | 0.003018 | 0.001441 |
43 |
model.layers.6.mlp.gate_proj
| 0.089191 | 4,096 | 14,336 | 3.5 | 4.654741 | -10.97667 | 1.560834 | true | 0.004384 |
dense
| -10.851597 | -1.049342 | -2.35817 | 64 | 0.08926 | 4,096 | 11 | 4,032 | 1 | 1.101946 | 0.004384 | 20.362329 |
success
| 0.066209 | 0.000001 | 4,032 | 0.004384 | 0.001363 |
|
44 |
model.layers.6.mlp.up_proj
| 0.105811 | 4,096 | 14,336 | 3.5 | 4.32534 | -10.156714 | 1.559256 | true | 0.004486 |
dense
| -9.939353 | -1.027995 | -2.348189 | 64 | 0.093757 | 4,096 | 13 | 4,032 | 1 | 0.922283 | 0.004486 | 20.902269 |
success
| 0.066974 | 0.000001 | 4,032 | 0.004486 | 0.001421 |
|
45 |
model.layers.6.self_attn.k_proj
| 0.056873 | 1,024 | 4,096 | 4 | 6.693871 | -17.802754 | 1.12456 | true | 0.00219 |
dense
| -17.785555 | -1.437849 | -2.65956 | 64 | 0.036488 | 1,024 | 63 | 960 | 1 | 0.71736 | 0.00219 | 16.661371 |
success
| 0.046797 | 0.000001 |
under-trained
| 960 | 0.00219 | 0.000461 |
46 |
model.layers.6.self_attn.o_proj
| 0.103141 | 4,096 | 4,096 | 1 | 5.320054 | -14.340628 | 1.559961 | true | 0.002016 |
dense
| -14.170697 | -1.334167 | -2.69558 | 64 | 0.046327 | 4,096 | 20 | 4,032 | 1 | 0.965993 | 0.002016 | 22.983286 |
success
| 0.044896 | 0 | 4,032 | 0.002016 | 0.000693 |
|
47 |
model.layers.6.self_attn.q_proj
| 0.075063 | 4,096 | 4,096 | 1 | 8.53185 | -22.660099 | 1.559597 | true | 0.002208 |
dense
| -22.658375 | -1.38822 | -2.655942 | 64 | 0.040905 | 4,096 | 64 | 4,032 | 1 | 0.941481 | 0.002208 | 18.523449 |
success
| 0.046993 | 0 |
under-trained
| 4,032 | 0.002208 | 0.000545 |
48 |
model.layers.6.self_attn.v_proj
| 0.053575 | 1,024 | 4,096 | 4 | 10.10451 | -32.271476 | 1.135456 | true | 0.00064 |
dense
| -31.934859 | -1.60524 | -3.193769 | 64 | 0.024818 | 1,024 | 57 | 960 | 1 | 1.205922 | 0.00064 | 38.773029 |
success
| 0.0253 | 0.000001 |
under-trained
| 960 | 0.00064 | 0.000349 |
49 |
model.layers.7.mlp.down_proj
| 0.131502 | 4,096 | 14,336 | 3.5 | 6.106007 | -15.723402 | 1.566253 | true | 0.00266 |
dense
| -15.247479 | -1.027381 | -2.575071 | 64 | 0.09389 | 4,096 | 7 | 4,032 | 1 | 1.929889 | 0.00266 | 35.293121 |
success
| 0.051578 | 0.000001 |
under-trained
| 4,032 | 0.00266 | 0.001575 |
50 |
model.layers.7.mlp.gate_proj
| 0.092991 | 4,096 | 14,336 | 3.5 | 4.66407 | -11.037661 | 1.561423 | true | 0.0043 |
dense
| -10.888869 | -1.039225 | -2.36653 | 64 | 0.091364 | 4,096 | 9 | 4,032 | 1 | 1.221357 | 0.0043 | 21.247375 |
success
| 0.065575 | 0.000001 | 4,032 | 0.0043 | 0.001464 |
|
51 |
model.layers.7.mlp.up_proj
| 0.083526 | 4,096 | 14,336 | 3.5 | 4.418851 | -10.374051 | 1.559826 | true | 0.004491 |
dense
| -10.158229 | -1.018919 | -2.347681 | 64 | 0.095737 | 4,096 | 12 | 4,032 | 1 | 0.986937 | 0.004491 | 21.318748 |
success
| 0.067013 | 0.000001 | 4,032 | 0.004491 | 0.001482 |
|
52 |
model.layers.7.self_attn.k_proj
| 0.092425 | 1,024 | 4,096 | 4 | 6.301261 | -18.606098 | 1.133596 | true | 0.001115 |
dense
| -18.203055 | -1.425027 | -2.952758 | 64 | 0.037581 | 1,024 | 47 | 960 | 1 | 0.773268 | 0.001115 | 33.707863 |
success
| 0.03339 | 0.000001 |
under-trained
| 960 | 0.001115 | 0.00051 |
53 |
model.layers.7.self_attn.o_proj
| 0.075342 | 4,096 | 4,096 | 1 | 9.002145 | -25.429427 | 1.564116 | true | 0.001497 |
dense
| -25.246398 | -1.327605 | -2.824819 | 64 | 0.047032 | 4,096 | 64 | 4,032 | 1 | 1.000268 | 0.001497 | 31.42049 |
success
| 0.038689 | 0 |
under-trained
| 4,032 | 0.001497 | 0.000639 |
54 |
model.layers.7.self_attn.q_proj
| 0.067324 | 4,096 | 4,096 | 1 | 8.272918 | -22.371443 | 1.560991 | true | 0.001976 |
dense
| -22.349378 | -1.366129 | -2.704178 | 64 | 0.04304 | 4,096 | 64 | 4,032 | 1 | 0.909115 | 0.001976 | 21.779566 |
success
| 0.044454 | 0 |
under-trained
| 4,032 | 0.001976 | 0.000572 |
55 |
model.layers.7.self_attn.v_proj
| 0.035828 | 1,024 | 4,096 | 4 | 11.606042 | -36.820088 | 1.135943 | true | 0.000672 |
dense
| -36.715384 | -1.592729 | -3.172493 | 64 | 0.025543 | 1,024 | 52 | 960 | 1 | 1.470793 | 0.000672 | 37.998268 |
success
| 0.025927 | 0.000001 |
under-trained
| 960 | 0.000672 | 0.000369 |
56 |
model.layers.8.mlp.down_proj
| 0.143326 | 4,096 | 14,336 | 3.5 | 7.349975 | -18.750527 | 1.565933 | true | 0.002811 |
dense
| -18.478513 | -1.021602 | -2.551101 | 64 | 0.095148 | 4,096 | 14 | 4,032 | 1 | 1.697102 | 0.002811 | 33.845333 |
success
| 0.053021 | 0.000001 |
under-trained
| 4,032 | 0.002811 | 0.001474 |
57 |
model.layers.8.mlp.gate_proj
| 0.096562 | 4,096 | 14,336 | 3.5 | 4.282198 | -9.903676 | 1.559676 | true | 0.004867 |
dense
| -9.748083 | -1.023318 | -2.312756 | 64 | 0.094772 | 4,096 | 9 | 4,032 | 1 | 1.094066 | 0.004867 | 19.473211 |
success
| 0.069763 | 0.000001 | 4,032 | 0.004867 | 0.00151 |
|
58 |
model.layers.8.mlp.up_proj
| 0.101449 | 4,096 | 14,336 | 3.5 | 4.470252 | -10.296513 | 1.558773 | true | 0.004973 |
dense
| -10.135558 | -1.003884 | -2.30334 | 64 | 0.09911 | 4,096 | 13 | 4,032 | 1 | 0.962475 | 0.004973 | 19.927673 |
success
| 0.070523 | 0.000001 | 4,032 | 0.004973 | 0.001524 |
|
59 |
model.layers.8.self_attn.k_proj
| 0.08686 | 1,024 | 4,096 | 4 | 6.646015 | -16.279518 | 1.114718 | true | 0.003552 |
dense
| -16.2774 | -1.380645 | -2.449516 | 64 | 0.041625 | 1,024 | 64 | 960 | 1 | 0.705752 | 0.003552 | 11.718461 |
success
| 0.059599 | 0.000001 |
under-trained
| 960 | 0.003552 | 0.000513 |
60 |
model.layers.8.self_attn.o_proj
| 0.068692 | 4,096 | 4,096 | 1 | 5.494895 | -14.968555 | 1.562716 | true | 0.001888 |
dense
| -14.748427 | -1.30508 | -2.724084 | 64 | 0.049536 | 4,096 | 13 | 4,032 | 1 | 1.24666 | 0.001888 | 26.242395 |
success
| 0.043447 | 0 | 4,032 | 0.001888 | 0.000804 |
|
61 |
model.layers.8.self_attn.q_proj
| 0.089713 | 4,096 | 4,096 | 1 | 7.238111 | -17.969642 | 1.553421 | true | 0.003291 |
dense
| -17.967233 | -1.307936 | -2.482643 | 64 | 0.049211 | 4,096 | 64 | 4,032 | 1 | 0.779764 | 0.003291 | 14.952259 |
success
| 0.057369 | 0 |
under-trained
| 4,032 | 0.003291 | 0.000627 |
62 |
model.layers.8.self_attn.v_proj
| 0.039211 | 1,024 | 4,096 | 4 | 10.635006 | -33.443697 | 1.135642 | true | 0.000717 |
dense
| -33.337394 | -1.584424 | -3.144681 | 64 | 0.026036 | 1,024 | 53 | 960 | 1 | 1.32347 | 0.000717 | 36.329201 |
success
| 0.026771 | 0.000001 |
under-trained
| 960 | 0.000717 | 0.000372 |
63 |
model.layers.9.mlp.down_proj
| 0.128309 | 4,096 | 14,336 | 3.5 | 8.653824 | -22.723533 | 1.566809 | true | 0.002367 |
dense
| -22.262528 | -1.019453 | -2.625837 | 64 | 0.09562 | 4,096 | 15 | 4,032 | 1 | 1.976209 | 0.002367 | 40.400311 |
success
| 0.04865 | 0.000001 |
under-trained
| 4,032 | 0.002367 | 0.001492 |
64 |
model.layers.9.mlp.gate_proj
| 0.08722 | 4,096 | 14,336 | 3.5 | 4.630853 | -10.738622 | 1.560123 | true | 0.004798 |
dense
| -10.615177 | -1.01836 | -2.318929 | 64 | 0.095861 | 4,096 | 10 | 4,032 | 1 | 1.148177 | 0.004798 | 19.978786 |
success
| 0.069268 | 0.000001 | 4,032 | 0.004798 | 0.001535 |
|
65 |
model.layers.9.mlp.up_proj
| 0.095441 | 4,096 | 14,336 | 3.5 | 4.509581 | -10.436652 | 1.559562 | true | 0.004849 |
dense
| -10.254104 | -0.994814 | -2.314328 | 64 | 0.101201 | 4,096 | 11 | 4,032 | 1 | 1.058179 | 0.004849 | 20.869593 |
success
| 0.069636 | 0.000001 | 4,032 | 0.004849 | 0.001637 |
|
66 |
model.layers.9.self_attn.k_proj
| 0.083743 | 1,024 | 4,096 | 4 | 11.978332 | -36.619759 | 1.136268 | true | 0.000877 |
dense
| -36.102986 | -1.390942 | -3.057167 | 64 | 0.04065 | 1,024 | 31 | 960 | 1 | 1.971767 | 0.000877 | 46.368629 |
success
| 0.029609 | 0.000001 |
under-trained
| 960 | 0.000877 | 0.000628 |
67 |
model.layers.9.self_attn.o_proj
| 0.063917 | 4,096 | 4,096 | 1 | 9.052659 | -25.969677 | 1.56488 | true | 0.001353 |
dense
| -25.562036 | -1.315855 | -2.868735 | 64 | 0.048322 | 4,096 | 64 | 4,032 | 1 | 1.006582 | 0.001353 | 35.717358 |
success
| 0.036782 | 0 |
under-trained
| 4,032 | 0.001353 | 0.000658 |
68 |
model.layers.9.self_attn.q_proj
| 0.068104 | 4,096 | 4,096 | 1 | 11.947367 | -34.271361 | 1.566557 | true | 0.001354 |
dense
| -34.250902 | -1.33759 | -2.868528 | 64 | 0.045963 | 4,096 | 48 | 4,032 | 1 | 1.580116 | 0.001354 | 33.957748 |
success
| 0.036791 | 0 |
under-trained
| 4,032 | 0.001354 | 0.00067 |
69 |
model.layers.9.self_attn.v_proj
| 0.036851 | 1,024 | 4,096 | 4 | 11.726856 | -37.617797 | 1.136089 | true | 0.00062 |
dense
| -37.503763 | -1.617514 | -3.207833 | 64 | 0.024126 | 1,024 | 43 | 960 | 1 | 1.63583 | 0.00062 | 38.933083 |
success
| 0.024893 | 0.000001 |
under-trained
| 960 | 0.00062 | 0.000355 |
70 |
model.layers.10.mlp.down_proj
| 0.13738 | 4,096 | 14,336 | 3.5 | 6.860931 | -17.709316 | 1.565695 | true | 0.002623 |
dense
| -17.151487 | -1.01245 | -2.581182 | 64 | 0.097174 | 4,096 | 15 | 4,032 | 1 | 1.513286 | 0.002623 | 37.04528 |
success
| 0.051216 | 0.000001 |
under-trained
| 4,032 | 0.002623 | 0.0015 |
71 |
model.layers.10.mlp.gate_proj
| 0.083743 | 4,096 | 14,336 | 3.5 | 3.814121 | -8.29112 | 1.553266 | true | 0.006702 |
dense
| -8.192316 | -1.002268 | -2.173796 | 64 | 0.099479 | 4,096 | 10 | 4,032 | 1 | 0.889903 | 0.006702 | 14.843208 |
success
| 0.081866 | 0.000001 | 4,032 | 0.006702 | 0.001555 |
|
72 |
model.layers.10.mlp.up_proj
| 0.083849 | 4,096 | 14,336 | 3.5 | 4.076868 | -8.950159 | 1.554181 | true | 0.006377 |
dense
| -8.837687 | -0.985078 | -2.195352 | 64 | 0.103496 | 4,096 | 13 | 4,032 | 1 | 0.85337 | 0.006377 | 16.228313 |
success
| 0.079859 | 0.000001 | 4,032 | 0.006377 | 0.001591 |
|
73 |
model.layers.10.self_attn.k_proj
| 0.056769 | 1,024 | 4,096 | 4 | 7.818972 | -21.698837 | 1.132445 | true | 0.001678 |
dense
| -21.653366 | -1.368847 | -2.775152 | 64 | 0.042771 | 1,024 | 58 | 960 | 1 | 0.895375 | 0.001678 | 25.486191 |
success
| 0.040966 | 0.000001 |
under-trained
| 960 | 0.001678 | 0.000576 |
74 |
model.layers.10.self_attn.o_proj
| 0.070628 | 4,096 | 4,096 | 1 | 8.901525 | -24.73618 | 1.56414 | true | 0.001664 |
dense
| -24.647737 | -1.30816 | -2.77887 | 64 | 0.049186 | 4,096 | 64 | 4,032 | 1 | 0.987691 | 0.001664 | 29.560369 |
success
| 0.040791 | 0 |
under-trained
| 4,032 | 0.001664 | 0.000667 |
75 |
model.layers.10.self_attn.q_proj
| 0.091471 | 4,096 | 4,096 | 1 | 9.544777 | -25.029251 | 1.561299 | true | 0.002386 |
dense
| -25.027851 | -1.31183 | -2.622298 | 64 | 0.048772 | 4,096 | 64 | 4,032 | 1 | 1.068097 | 0.002386 | 20.439404 |
success
| 0.048848 | 0 |
under-trained
| 4,032 | 0.002386 | 0.000663 |
76 |
model.layers.10.self_attn.v_proj
| 0.039781 | 1,024 | 4,096 | 4 | 13.460733 | -43.727946 | 1.136434 | true | 0.000564 |
dense
| -43.467368 | -1.606999 | -3.248556 | 64 | 0.024717 | 1,024 | 34 | 960 | 1 | 2.136998 | 0.000564 | 43.808399 |
success
| 0.023753 | 0.000001 |
under-trained
| 960 | 0.000564 | 0.000377 |
77 |
model.layers.11.mlp.down_proj
| 0.084076 | 4,096 | 14,336 | 3.5 | 8.331583 | -21.69929 | 1.566558 | true | 0.002486 |
dense
| -21.266779 | -1.013571 | -2.604462 | 64 | 0.096923 | 4,096 | 16 | 4,032 | 1 | 1.832896 | 0.002486 | 38.984375 |
success
| 0.049862 | 0.000001 |
under-trained
| 4,032 | 0.002486 | 0.00151 |
78 |
model.layers.11.mlp.gate_proj
| 0.124518 | 4,096 | 14,336 | 3.5 | 3.566869 | -7.808087 | 1.554186 | true | 0.006471 |
dense
| -7.641942 | -0.990355 | -2.189059 | 64 | 0.102246 | 4,096 | 8 | 4,032 | 1 | 0.907525 | 0.006471 | 15.801709 |
success
| 0.08044 | 0.000001 | 4,032 | 0.006471 | 0.001697 |
|
79 |
model.layers.11.mlp.up_proj
| 0.105866 | 4,096 | 14,336 | 3.5 | 4.111511 | -9.150791 | 1.555739 | true | 0.005948 |
dense
| -9.000263 | -0.978656 | -2.225652 | 64 | 0.105037 | 4,096 | 12 | 4,032 | 1 | 0.898216 | 0.005948 | 17.660204 |
success
| 0.077121 | 0.000001 | 4,032 | 0.005948 | 0.001658 |
|
80 |
model.layers.11.self_attn.k_proj
| 0.076034 | 1,024 | 4,096 | 4 | 6.886649 | -17.54321 | 1.125219 | true | 0.002835 |
dense
| -17.53927 | -1.338794 | -2.547423 | 64 | 0.045836 | 1,024 | 64 | 960 | 1 | 0.735831 | 0.002835 | 16.166996 |
success
| 0.053246 | 0.000001 |
under-trained
| 960 | 0.002835 | 0.000583 |
81 |
model.layers.11.self_attn.o_proj
| 0.082475 | 4,096 | 4,096 | 1 | 9.621523 | -27.295947 | 1.564701 | true | 0.001456 |
dense
| -27.014932 | -1.307915 | -2.836967 | 64 | 0.049214 | 4,096 | 64 | 4,032 | 1 | 1.07769 | 0.001456 | 33.810543 |
success
| 0.038152 | 0 |
under-trained
| 4,032 | 0.001456 | 0.000676 |
82 |
model.layers.11.self_attn.q_proj
| 0.092576 | 4,096 | 4,096 | 1 | 3.737231 | -9.223967 | 1.553536 | true | 0.003403 |
dense
| -9.073385 | -1.267686 | -2.468129 | 64 | 0.05399 | 4,096 | 10 | 4,032 | 1 | 0.865588 | 0.003403 | 15.865086 |
success
| 0.058336 | 0 | 4,032 | 0.003403 | 0.00086 |
|
83 |
model.layers.11.self_attn.v_proj
| 0.045068 | 1,024 | 4,096 | 4 | 12.227346 | -39.194857 | 1.136222 | true | 0.000623 |
dense
| -38.929056 | -1.581387 | -3.205508 | 64 | 0.026219 | 1,024 | 40 | 960 | 1 | 1.775199 | 0.000623 | 42.08437 |
success
| 0.02496 | 0.000001 |
under-trained
| 960 | 0.000623 | 0.00039 |
84 |
model.layers.12.mlp.down_proj
| 0.071737 | 4,096 | 14,336 | 3.5 | 10.463299 | -27.652009 | 1.567254 | true | 0.002276 |
dense
| -27.278975 | -1.01537 | -2.642762 | 64 | 0.096523 | 4,096 | 17 | 4,032 | 1 | 2.295187 | 0.002276 | 42.402534 |
success
| 0.047711 | 0.000001 |
under-trained
| 4,032 | 0.002276 | 0.001505 |
85 |
model.layers.12.mlp.gate_proj
| 0.093378 | 4,096 | 14,336 | 3.5 | 3.726353 | -8.2903 | 1.556028 | true | 0.00596 |
dense
| -8.120935 | -0.997856 | -2.224776 | 64 | 0.100495 | 4,096 | 8 | 4,032 | 1 | 0.963911 | 0.00596 | 16.8624 |
success
| 0.077199 | 0.000001 | 4,032 | 0.00596 | 0.001679 |
|
86 |
model.layers.12.mlp.up_proj
| 0.084262 | 4,096 | 14,336 | 3.5 | 4.286353 | -9.666749 | 1.557471 | true | 0.005556 |
dense
| -9.516003 | -0.984565 | -2.255239 | 64 | 0.103618 | 4,096 | 11 | 4,032 | 1 | 0.990873 | 0.005556 | 18.64978 |
success
| 0.074538 | 0.000001 | 4,032 | 0.005556 | 0.001669 |
|
87 |
model.layers.12.self_attn.k_proj
| 0.048592 | 1,024 | 4,096 | 4 | 5.293701 | -15.09437 | 1.131777 | true | 0.001408 |
dense
| -14.339401 | -1.297373 | -2.851383 | 64 | 0.050423 | 1,024 | 64 | 960 | 1 | 0.536713 | 0.001408 | 35.810429 |
success
| 0.037524 | 0.000001 | 960 | 0.001408 | 0.00061 |
|
88 |
model.layers.12.self_attn.o_proj
| 0.036461 | 4,096 | 4,096 | 1 | 10.498903 | -30.738891 | 1.566372 | true | 0.001181 |
dense
| -30.349195 | -1.325973 | -2.927819 | 64 | 0.047209 | 4,096 | 64 | 4,032 | 1 | 1.187363 | 0.001181 | 39.980358 |
success
| 0.034363 | 0 |
under-trained
| 4,032 | 0.001181 | 0.000659 |
89 |
model.layers.12.self_attn.q_proj
| 0.059794 | 4,096 | 4,096 | 1 | 10.446452 | -27.443894 | 1.562977 | true | 0.00236 |
dense
| -27.443376 | -1.285311 | -2.627102 | 64 | 0.051843 | 4,096 | 62 | 4,032 | 1 | 1.199701 | 0.00236 | 21.968027 |
success
| 0.048579 | 0 |
under-trained
| 4,032 | 0.00236 | 0.000719 |
90 |
model.layers.12.self_attn.v_proj
| 0.056912 | 1,024 | 4,096 | 4 | 14.830225 | -48.769316 | 1.136817 | true | 0.000515 |
dense
| -48.376759 | -1.608922 | -3.288508 | 64 | 0.024608 | 1,024 | 40 | 960 | 1 | 2.186751 | 0.000515 | 47.817432 |
success
| 0.022685 | 0.000001 |
under-trained
| 960 | 0.000515 | 0.000371 |
91 |
model.layers.13.mlp.down_proj
| 0.101172 | 4,096 | 14,336 | 3.5 | 9.722754 | -25.602905 | 1.566878 | true | 0.002326 |
dense
| -25.09933 | -1.007937 | -2.633298 | 64 | 0.098189 | 4,096 | 21 | 4,032 | 1 | 1.903461 | 0.002326 | 42.204708 |
success
| 0.048234 | 0.000001 |
under-trained
| 4,032 | 0.002326 | 0.001502 |
92 |
model.layers.13.mlp.gate_proj
| 0.076844 | 4,096 | 14,336 | 3.5 | 4.195623 | -9.25822 | 1.555494 | true | 0.006214 |
dense
| -9.17138 | -0.996401 | -2.206638 | 64 | 0.100832 | 4,096 | 12 | 4,032 | 1 | 0.922497 | 0.006214 | 16.226952 |
success
| 0.078828 | 0.000001 | 4,032 | 0.006214 | 0.001561 |
|
93 |
model.layers.13.mlp.up_proj
| 0.072975 | 4,096 | 14,336 | 3.5 | 4.54178 | -10.238768 | 1.558146 | true | 0.005567 |
dense
| -10.13164 | -0.983272 | -2.254352 | 64 | 0.103927 | 4,096 | 12 | 4,032 | 1 | 1.022424 | 0.005567 | 18.667231 |
success
| 0.074615 | 0.000001 | 4,032 | 0.005567 | 0.001665 |
|
94 |
model.layers.13.self_attn.k_proj
| 0.074733 | 1,024 | 4,096 | 4 | 8.151952 | -22.214526 | 1.131022 | true | 0.001883 |
dense
| -22.195854 | -1.377887 | -2.725056 | 64 | 0.04189 | 1,024 | 63 | 960 | 1 | 0.901061 | 0.001883 | 22.241776 |
success
| 0.043398 | 0.000001 |
under-trained
| 960 | 0.001883 | 0.000559 |
95 |
model.layers.13.self_attn.o_proj
| 0.030219 | 4,096 | 4,096 | 1 | 10.243985 | -29.651683 | 1.566539 | true | 0.001275 |
dense
| -29.323853 | -1.290212 | -2.894546 | 64 | 0.051261 | 4,096 | 64 | 4,032 | 1 | 1.155498 | 0.001275 | 40.209957 |
success
| 0.035705 | 0 |
under-trained
| 4,032 | 0.001275 | 0.000714 |
96 |
model.layers.13.self_attn.q_proj
| 0.089999 | 4,096 | 4,096 | 1 | 9.241785 | -23.352984 | 1.559237 | true | 0.002972 |
dense
| -23.352611 | -1.2781 | -2.526891 | 64 | 0.052711 | 4,096 | 64 | 4,032 | 1 | 1.030223 | 0.002972 | 17.733349 |
success
| 0.05452 | 0 |
under-trained
| 4,032 | 0.002972 | 0.00071 |
97 |
model.layers.13.self_attn.v_proj
| 0.06204 | 1,024 | 4,096 | 4 | 17.463952 | -57.035094 | 1.136875 | true | 0.000542 |
dense
| -56.694075 | -1.577319 | -3.265876 | 64 | 0.026466 | 1,024 | 24 | 960 | 1 | 3.36069 | 0.000542 | 48.815338 |
success
| 0.023284 | 0.000001 |
under-trained
| 960 | 0.000542 | 0.000418 |
98 |
model.layers.14.mlp.down_proj
| 0.082979 | 4,096 | 14,336 | 3.5 | 11.637098 | -31.044017 | 1.567351 | true | 0.002149 |
dense
| -30.417835 | -0.998153 | -2.667677 | 64 | 0.100426 | 4,096 | 24 | 4,032 | 1 | 2.171288 | 0.002149 | 46.722298 |
success
| 0.046362 | 0.000001 |
under-trained
| 4,032 | 0.002149 | 0.001538 |
99 |
model.layers.14.mlp.gate_proj
| 0.106847 | 4,096 | 14,336 | 3.5 | 4.425835 | -9.716215 | 1.556191 | true | 0.006378 |
dense
| -9.659478 | -0.990614 | -2.19534 | 64 | 0.102185 | 4,096 | 9 | 4,032 | 1 | 1.141945 | 0.006378 | 16.022362 |
success
| 0.07986 | 0.000001 | 4,032 | 0.006378 | 0.001713 |
End of preview. Expand
in Data Studio
No dataset card yet
- Downloads last month
- 3