layer_id
int64
0
223
name
stringlengths
26
32
D
float64
0.03
0.21
M
int64
1.02k
4.1k
N
int64
4.1k
14.3k
Q
float64
1
4
alpha
float64
2.55
30.7
alpha_weighted
float64
-100.7
-4.79
entropy
float64
1.07
1.57
has_esd
bool
1 class
lambda_max
float32
0
0.01
layer_type
stringclasses
1 value
log_alpha_norm
float64
-100.63
-4.73
log_norm
float32
-1.66
-0.94
log_spectral_norm
float32
-3.31
-1.88
matrix_rank
int64
64
64
norm
float32
0.02
0.11
num_evals
int64
1.02k
4.1k
num_pl_spikes
int64
5
64
rank_loss
int64
960
4.03k
rf
int64
1
1
sigma
float64
0.35
9.03
spectral_norm
float32
0
0.01
stable_rank
float32
4.91
54.6
status
stringclasses
1 value
sv_max
float64
0.02
0.11
sv_min
float64
0
0
warning
stringclasses
2 values
weak_rank_loss
int64
960
4.03k
xmax
float64
0
0.01
xmin
float64
0
0
100
model.layers.14.mlp.up_proj
0.088045
4,096
14,336
3.5
4.728654
-10.57703
1.558624
true
0.005797
dense
-10.503501
-0.974476
-2.236795
64
0.106053
4,096
10
4,032
1
1.179104
0.005797
18.294415
success
0.076138
0.000001
4,032
0.005797
0.001769
101
model.layers.14.self_attn.k_proj
0.052885
1,024
4,096
4
7.301511
-19.055762
1.129169
true
0.002456
dense
-19.051874
-1.337155
-2.609838
64
0.046009
1,024
62
960
1
0.800293
0.002456
18.736265
success
0.049554
0.000001
under-trained
960
0.002456
0.000601
102
model.layers.14.self_attn.o_proj
0.081484
4,096
4,096
1
6.163327
-16.709728
1.564028
true
0.001945
dense
-16.529209
-1.267445
-2.711154
64
0.05402
4,096
14
4,032
1
1.379957
0.001945
27.778484
success
0.044098
0
under-trained
4,032
0.001945
0.000851
103
model.layers.14.self_attn.q_proj
0.078813
4,096
4,096
1
9.171611
-23.894232
1.561724
true
0.002482
dense
-23.888121
-1.267009
-2.605238
64
0.054074
4,096
64
4,032
1
1.021451
0.002482
21.788572
success
0.049817
0
under-trained
4,032
0.002482
0.000732
104
model.layers.14.self_attn.v_proj
0.052027
1,024
4,096
4
15.531955
-48.761606
1.136586
true
0.000725
dense
-48.656321
-1.501851
-3.139438
64
0.031488
1,024
26
960
1
2.849951
0.000725
43.409729
success
0.026933
0.000001
under-trained
960
0.000725
0.000495
105
model.layers.15.mlp.down_proj
0.03222
4,096
14,336
3.5
20.178456
-54.219032
1.567939
true
0.002056
dense
-54.08938
-1.004997
-2.686976
64
0.098856
4,096
62
4,032
1
2.435666
0.002056
48.08157
success
0.045343
0.000001
under-trained
4,032
0.002056
0.001466
106
model.layers.15.mlp.gate_proj
0.071743
4,096
14,336
3.5
5.233762
-11.880146
1.559517
true
0.005371
dense
-11.838327
-1.002592
-2.269906
64
0.099405
4,096
13
4,032
1
1.174234
0.005371
18.506042
success
0.07329
0.000001
4,032
0.005371
0.00155
107
model.layers.15.mlp.up_proj
0.066682
4,096
14,336
3.5
5.879578
-13.534449
1.561189
true
0.00499
dense
-13.495264
-0.986517
-2.301942
64
0.103153
4,096
16
4,032
1
1.219894
0.00499
20.674023
success
0.070636
0.000001
4,032
0.00499
0.001588
108
model.layers.15.self_attn.k_proj
0.099247
1,024
4,096
4
9.423515
-28.762983
1.136285
true
0.000887
dense
-27.768991
-1.35326
-3.052256
64
0.044334
1,024
50
960
1
1.191265
0.000887
50.003071
success
0.029776
0.000001
under-trained
960
0.000887
0.000633
109
model.layers.15.self_attn.o_proj
0.032321
4,096
4,096
1
15.634389
-46.124784
1.567676
true
0.001121
dense
-45.919358
-1.286214
-2.950213
64
0.051735
4,096
34
4,032
1
2.509777
0.001121
46.13166
success
0.033488
0
under-trained
4,032
0.001121
0.00079
110
model.layers.15.self_attn.q_proj
0.064558
4,096
4,096
1
12.589234
-35.11913
1.566411
true
0.001623
dense
-35.114409
-1.288
-2.789616
64
0.051523
4,096
53
4,032
1
1.591904
0.001623
31.740629
success
0.04029
0
under-trained
4,032
0.001623
0.000746
111
model.layers.15.self_attn.v_proj
0.064377
1,024
4,096
4
28.481666
-92.912677
1.137139
true
0.000547
dense
-92.497945
-1.528765
-3.262192
64
0.029596
1,024
16
960
1
6.870417
0.000547
54.128735
success
0.023383
0.000001
under-trained
960
0.000547
0.000482
112
model.layers.16.mlp.down_proj
0.087122
4,096
14,336
3.5
18.278263
-47.557774
1.567344
true
0.002501
dense
-47.528136
-1.00071
-2.601876
64
0.099837
4,096
64
4,032
1
2.159783
0.002501
39.917759
success
0.050011
0.000001
under-trained
4,032
0.002501
0.001466
113
model.layers.16.mlp.gate_proj
0.110417
4,096
14,336
3.5
4.460473
-9.956797
1.55842
true
0.005858
dense
-9.879789
-0.988953
-2.232229
64
0.102576
4,096
8
4,032
1
1.223462
0.005858
17.509598
success
0.076539
0.000001
4,032
0.005858
0.001726
114
model.layers.16.mlp.up_proj
0.107535
4,096
14,336
3.5
4.569904
-10.342811
1.559859
true
0.005455
dense
-10.244776
-0.983598
-2.263245
64
0.103849
4,096
8
4,032
1
1.262152
0.005455
19.039099
success
0.073855
0.000001
4,032
0.005455
0.001755
115
model.layers.16.self_attn.k_proj
0.095658
1,024
4,096
4
28.090519
-86.373939
1.136644
true
0.000842
dense
-86.024576
-1.364159
-3.074843
64
0.043236
1,024
9
960
1
9.030173
0.000842
51.367046
success
0.029012
0.000001
under-trained
960
0.000842
0.000754
116
model.layers.16.self_attn.o_proj
0.030218
4,096
4,096
1
14.659859
-42.945266
1.567561
true
0.001176
dense
-42.756544
-1.27997
-2.929446
64
0.052484
4,096
45
4,032
1
2.036292
0.001176
44.614502
success
0.034299
0
under-trained
4,032
0.001176
0.000781
117
model.layers.16.self_attn.q_proj
0.066623
4,096
4,096
1
12.333208
-33.995883
1.565982
true
0.001752
dense
-33.993732
-1.286641
-2.756451
64
0.051684
4,096
55
4,032
1
1.528169
0.001752
29.499187
success
0.041858
0
under-trained
4,032
0.001752
0.000744
118
model.layers.16.self_attn.v_proj
0.086352
1,024
4,096
4
27.09401
-87.411861
1.137041
true
0.000594
dense
-87.27872
-1.519833
-3.226243
64
0.030211
1,024
15
960
1
6.737444
0.000594
50.863968
success
0.024371
0.000001
under-trained
960
0.000594
0.000497
119
model.layers.17.mlp.down_proj
0.057253
4,096
14,336
3.5
19.359662
-51.849015
1.567815
true
0.002098
dense
-51.711726
-1.007425
-2.678198
64
0.098305
4,096
64
4,032
1
2.294958
0.002098
46.856842
success
0.045804
0.000001
under-trained
4,032
0.002098
0.001451
120
model.layers.17.mlp.gate_proj
0.087451
4,096
14,336
3.5
5.048414
-11.485839
1.560231
true
0.005307
dense
-11.425627
-0.99271
-2.275138
64
0.101693
4,096
11
4,032
1
1.220643
0.005307
19.161421
success
0.07285
0.000001
4,032
0.005307
0.001603
121
model.layers.17.mlp.up_proj
0.106461
4,096
14,336
3.5
4.94852
-11.495758
1.561953
true
0.004753
dense
-11.37885
-0.988145
-2.32307
64
0.102767
4,096
8
4,032
1
1.396013
0.004753
21.623453
success
0.068939
0.000001
4,032
0.004753
0.001731
122
model.layers.17.self_attn.k_proj
0.079491
1,024
4,096
4
7.654828
-19.952351
1.126326
true
0.002475
dense
-19.939089
-1.35584
-2.606506
64
0.044072
1,024
63
960
1
0.838429
0.002475
17.810081
success
0.049745
0.000001
under-trained
960
0.002475
0.000574
123
model.layers.17.self_attn.o_proj
0.028133
4,096
4,096
1
12.521953
-36.428269
1.567143
true
0.001233
dense
-36.314292
-1.304693
-2.909152
64
0.04958
4,096
59
4,032
1
1.500031
0.001233
40.221554
success
0.035109
0
under-trained
4,032
0.001233
0.000712
124
model.layers.17.self_attn.q_proj
0.083729
4,096
4,096
1
9.104787
-22.625788
1.557598
true
0.003273
dense
-22.625483
-1.267234
-2.485043
64
0.054046
4,096
64
4,032
1
1.013098
0.003273
16.512367
success
0.057211
0
under-trained
4,032
0.003273
0.000723
125
model.layers.17.self_attn.v_proj
0.070676
1,024
4,096
4
25.021776
-81.282501
1.137071
true
0.000564
dense
-80.976471
-1.530491
-3.248471
64
0.029479
1,024
17
960
1
5.826136
0.000564
52.237156
success
0.023756
0.000001
under-trained
960
0.000564
0.000479
126
model.layers.18.mlp.down_proj
0.050305
4,096
14,336
3.5
22.059051
-59.651624
1.567991
true
0.001976
dense
-59.524687
-1.015775
-2.704179
64
0.096433
4,096
62
4,032
1
2.674502
0.001976
48.798252
success
0.044454
0.000001
under-trained
4,032
0.001976
0.001437
127
model.layers.18.mlp.gate_proj
0.101667
4,096
14,336
3.5
4.72942
-10.654039
1.559201
true
0.005588
dense
-10.596874
-1.00335
-2.252716
64
0.099232
4,096
9
4,032
1
1.24314
0.005588
17.756847
success
0.074755
0.000001
4,032
0.005588
0.001601
128
model.layers.18.mlp.up_proj
0.093648
4,096
14,336
3.5
5.078744
-11.618822
1.560661
true
0.005155
dense
-11.560412
-1.001033
-2.287735
64
0.099762
4,096
10
4,032
1
1.289812
0.005155
19.350937
success
0.071801
0.000001
4,032
0.005155
0.001593
129
model.layers.18.self_attn.k_proj
0.084797
1,024
4,096
4
9.731679
-29.269051
1.135682
true
0.000983
dense
-28.591311
-1.352156
-3.007606
64
0.044447
1,024
34
960
1
1.497471
0.000983
45.232372
success
0.031347
0.000001
under-trained
960
0.000983
0.000673
130
model.layers.18.self_attn.o_proj
0.053086
4,096
4,096
1
12.688044
-36.572721
1.566637
true
0.001311
dense
-36.512068
-1.321364
-2.882455
64
0.047713
4,096
64
4,032
1
1.461006
0.001311
36.399193
success
0.036205
0
under-trained
4,032
0.001311
0.00068
131
model.layers.18.self_attn.q_proj
0.044601
4,096
4,096
1
11.852522
-32.606474
1.565888
true
0.001774
dense
-32.602863
-1.2781
-2.751016
64
0.052711
4,096
43
4,032
1
1.654994
0.001774
29.71092
success
0.04212
0
under-trained
4,032
0.001774
0.000775
132
model.layers.18.self_attn.v_proj
0.08094
1,024
4,096
4
25.83335
-83.407907
1.137018
true
0.000591
dense
-83.302488
-1.530775
-3.228691
64
0.029459
1,024
11
960
1
7.487537
0.000591
49.878788
success
0.024303
0.000001
under-trained
960
0.000591
0.000491
133
model.layers.19.mlp.down_proj
0.046149
4,096
14,336
3.5
24.274677
-66.061206
1.568086
true
0.001899
dense
-65.986934
-1.028575
-2.721404
64
0.093632
4,096
63
4,032
1
2.932334
0.001899
49.298027
success
0.043581
0.000001
under-trained
4,032
0.001899
0.001401
134
model.layers.19.mlp.gate_proj
0.123848
4,096
14,336
3.5
4.70368
-10.993695
1.561626
true
0.0046
dense
-10.883689
-1.026132
-2.337254
64
0.09416
4,096
7
4,032
1
1.39986
0.0046
20.470171
success
0.067822
0.000001
4,032
0.0046
0.001578
135
model.layers.19.mlp.up_proj
0.098325
4,096
14,336
3.5
5.139143
-12.166721
1.562589
true
0.004291
dense
-12.069168
-1.027631
-2.367461
64
0.093836
4,096
9
4,032
1
1.379714
0.004291
21.869057
success
0.065504
0.000001
4,032
0.004291
0.001497
136
model.layers.19.self_attn.k_proj
0.051625
1,024
4,096
4
10.897674
-32.478873
1.135455
true
0.001046
dense
-32.330556
-1.402143
-2.980349
64
0.039615
1,024
22
960
1
2.110191
0.001046
37.862217
success
0.032346
0.000001
under-trained
960
0.001046
0.000633
137
model.layers.19.self_attn.o_proj
0.04253
4,096
4,096
1
17.472803
-52.45571
1.567787
true
0.000995
dense
-52.225657
-1.323864
-3.002135
64
0.047439
4,096
33
4,032
1
2.867547
0.000995
47.672775
success
0.031545
0
under-trained
4,032
0.000995
0.000728
138
model.layers.19.self_attn.q_proj
0.04941
4,096
4,096
1
10.202023
-28.205337
1.565039
true
0.001719
dense
-28.201599
-1.339994
-2.764681
64
0.045709
4,096
64
4,032
1
1.150253
0.001719
26.588095
success
0.041463
0
under-trained
4,032
0.001719
0.000634
139
model.layers.19.self_attn.v_proj
0.064489
1,024
4,096
4
22.368846
-71.606298
1.136987
true
0.000629
dense
-71.518224
-1.51859
-3.201162
64
0.030298
1,024
19
960
1
4.90235
0.000629
48.147243
success
0.025085
0.000001
under-trained
960
0.000629
0.000488
140
model.layers.20.mlp.down_proj
0.066527
4,096
14,336
3.5
26.106228
-71.931461
1.56813
true
0.001757
dense
-71.776794
-1.045039
-2.755337
64
0.090149
4,096
63
4,032
1
3.163087
0.001757
51.321369
success
0.041911
0.000001
under-trained
4,032
0.001757
0.001353
141
model.layers.20.mlp.gate_proj
0.112275
4,096
14,336
3.5
5.347478
-12.838731
1.563282
true
0.003973
dense
-12.746096
-1.045397
-2.400895
64
0.090075
4,096
8
4,032
1
1.537066
0.003973
22.672419
success
0.063031
0.000001
4,032
0.003973
0.001456
142
model.layers.20.mlp.up_proj
0.096243
4,096
14,336
3.5
5.597637
-13.746404
1.564401
true
0.003501
dense
-13.614599
-1.052082
-2.455751
64
0.088699
4,096
9
4,032
1
1.532546
0.003501
25.332001
success
0.059173
0.000001
4,032
0.003501
0.001402
143
model.layers.20.self_attn.k_proj
0.056116
1,024
4,096
4
11.830419
-36.589825
1.136153
true
0.000807
dense
-36.31897
-1.462648
-3.09286
64
0.034463
1,024
32
960
1
1.914566
0.000807
42.678757
success
0.028416
0.000001
under-trained
960
0.000807
0.000528
144
model.layers.20.self_attn.o_proj
0.069663
4,096
4,096
1
28.4237
-87.707927
1.568112
true
0.000821
dense
-87.527496
-1.362754
-3.085732
64
0.043376
4,096
22
4,032
1
5.846752
0.000821
52.841881
success
0.028651
0
under-trained
4,032
0.000821
0.000688
145
model.layers.20.self_attn.q_proj
0.05119
4,096
4,096
1
10.494094
-29.652063
1.565325
true
0.001494
dense
-29.646998
-1.3821
-2.825595
64
0.041486
4,096
64
4,032
1
1.186762
0.001494
27.764874
success
0.038655
0
under-trained
4,032
0.001494
0.000577
146
model.layers.20.self_attn.v_proj
0.093938
1,024
4,096
4
24.501967
-79.827178
1.137067
true
0.000552
dense
-79.417424
-1.53325
-3.257991
64
0.029292
1,024
19
960
1
5.391721
0.000552
53.056709
success
0.023497
0.000001
under-trained
960
0.000552
0.000474
147
model.layers.21.mlp.down_proj
0.064974
4,096
14,336
3.5
26.468458
-73.706019
1.568107
true
0.001642
dense
-73.33047
-1.065387
-2.784674
64
0.086023
4,096
63
4,032
1
3.208724
0.001642
52.394669
success
0.040519
0.000001
under-trained
4,032
0.001642
0.001292
148
model.layers.21.mlp.gate_proj
0.115016
4,096
14,336
3.5
6.141163
-15.168297
1.564783
true
0.003389
dense
-15.086632
-1.064503
-2.469939
64
0.086198
4,096
8
4,032
1
1.817676
0.003389
25.435242
success
0.058214
0.000001
under-trained
4,032
0.003389
0.001383
149
model.layers.21.mlp.up_proj
0.106059
4,096
14,336
3.5
6.094915
-15.4517
1.565676
true
0.002916
dense
-15.282092
-1.076371
-2.535179
64
0.083874
4,096
8
4,032
1
1.801325
0.002916
28.761208
success
0.054002
0.000001
under-trained
4,032
0.002916
0.001339
150
model.layers.21.self_attn.k_proj
0.049746
1,024
4,096
4
7.629897
-21.971864
1.132671
true
0.001319
dense
-21.927961
-1.469238
-2.879707
64
0.033944
1,024
60
960
1
0.855916
0.001319
25.731724
success
0.03632
0.000001
under-trained
960
0.001319
0.000453
151
model.layers.21.self_attn.o_proj
0.061163
4,096
4,096
1
22.63699
-70.924932
1.568127
true
0.000736
dense
-70.323526
-1.395994
-3.133143
64
0.04018
4,096
42
4,032
1
3.33866
0.000736
54.594528
success
0.027129
0
under-trained
4,032
0.000736
0.000612
152
model.layers.21.self_attn.q_proj
0.053863
4,096
4,096
1
9.267359
-25.456937
1.562925
true
0.001791
dense
-25.45525
-1.401946
-2.746946
64
0.039633
4,096
64
4,032
1
1.03342
0.001791
22.130991
success
0.042318
0
under-trained
4,032
0.001791
0.000539
153
model.layers.21.self_attn.v_proj
0.08334
1,024
4,096
4
30.733462
-100.703772
1.137111
true
0.000529
dense
-100.628457
-1.568105
-3.276682
64
0.027033
1,024
11
960
1
8.964976
0.000529
51.118313
success
0.022996
0.000001
under-trained
960
0.000529
0.000449
154
model.layers.22.mlp.down_proj
0.092055
4,096
14,336
3.5
26.495596
-73.430247
1.568081
true
0.001693
dense
-73.376784
-1.081067
-2.771413
64
0.082972
4,096
62
4,032
1
3.237944
0.001693
49.01701
success
0.041143
0.000001
under-trained
4,032
0.001693
0.001247
155
model.layers.22.mlp.gate_proj
0.115706
4,096
14,336
3.5
6.272838
-15.50362
1.564791
true
0.003376
dense
-15.429582
-1.06528
-2.471548
64
0.086044
4,096
8
4,032
1
1.86423
0.003376
25.484016
success
0.058107
0.000001
under-trained
4,032
0.003376
0.00139
156
model.layers.22.mlp.up_proj
0.109543
4,096
14,336
3.5
6.262851
-15.84857
1.565468
true
0.002947
dense
-15.714697
-1.082538
-2.530568
64
0.082692
4,096
8
4,032
1
1.860699
0.002947
28.056255
success
0.05429
0.000001
under-trained
4,032
0.002947
0.001335
157
model.layers.22.self_attn.k_proj
0.061843
1,024
4,096
4
7.847612
-24.359356
1.134993
true
0.000787
dense
-23.882569
-1.512321
-3.104047
64
0.030738
1,024
44
960
1
1.032316
0.000787
39.059383
success
0.028053
0.000001
under-trained
960
0.000787
0.000436
158
model.layers.22.self_attn.o_proj
0.047603
4,096
4,096
1
15.036358
-46.856894
1.56769
true
0.000765
dense
-46.407214
-1.432106
-3.11624
64
0.036974
4,096
63
4,032
1
1.768415
0.000765
48.320675
success
0.027662
0
under-trained
4,032
0.000765
0.000537
159
model.layers.22.self_attn.q_proj
0.046817
4,096
4,096
1
9.643863
-27.110748
1.563508
true
0.001545
dense
-27.109173
-1.447843
-2.811192
64
0.035658
4,096
49
4,032
1
1.234838
0.001545
23.08602
success
0.039301
0
under-trained
4,032
0.001545
0.000505
160
model.layers.22.self_attn.v_proj
0.058297
1,024
4,096
4
24.13966
-79.221554
1.137047
true
0.000523
dense
-79.091265
-1.58329
-3.281801
64
0.026104
1,024
17
960
1
5.612192
0.000523
49.947212
success
0.022861
0.000001
under-trained
960
0.000523
0.000423
161
model.layers.23.mlp.down_proj
0.080725
4,096
14,336
3.5
26.884795
-73.691522
1.567962
true
0.001815
dense
-73.689571
-1.094295
-2.741011
64
0.080483
4,096
62
4,032
1
3.287372
0.001815
44.331905
success
0.042608
0.000001
under-trained
4,032
0.001815
0.001209
162
model.layers.23.mlp.gate_proj
0.105507
4,096
14,336
3.5
6.553426
-16.146519
1.564583
true
0.003437
dense
-16.098287
-1.069908
-2.463829
64
0.085132
4,096
9
4,032
1
1.851142
0.003437
24.769682
success
0.058625
0.000001
under-trained
4,032
0.003437
0.001351
163
model.layers.23.mlp.up_proj
0.098312
4,096
14,336
3.5
6.451926
-16.419561
1.565579
true
0.002852
dense
-16.298551
-1.0934
-2.544909
64
0.080649
4,096
9
4,032
1
1.817309
0.002852
28.281919
success
0.053401
0.000001
under-trained
4,032
0.002852
0.001282
164
model.layers.23.self_attn.k_proj
0.044231
1,024
4,096
4
8.685878
-26.818006
1.135234
true
0.000817
dense
-26.599642
-1.528306
-3.087541
64
0.029627
1,024
50
960
1
1.086947
0.000817
36.243912
success
0.028591
0.000001
under-trained
960
0.000817
0.000417
165
model.layers.23.self_attn.o_proj
0.086024
4,096
4,096
1
13.179125
-38.548754
1.566138
true
0.001189
dense
-38.540363
-1.420885
-2.924986
64
0.037942
4,096
64
4,032
1
1.522391
0.001189
31.922808
success
0.034475
0
under-trained
4,032
0.001189
0.000542
166
model.layers.23.self_attn.q_proj
0.047519
4,096
4,096
1
10.634295
-31.235869
1.565653
true
0.001155
dense
-31.228127
-1.471754
-2.937277
64
0.033748
4,096
48
4,032
1
1.390591
0.001155
29.209417
success
0.033991
0
under-trained
4,032
0.001155
0.000486
167
model.layers.23.self_attn.v_proj
0.04169
1,024
4,096
4
17.404055
-56.238253
1.136861
true
0.000587
dense
-56.055635
-1.56089
-3.23133
64
0.027486
1,024
29
960
1
3.046157
0.000587
46.821026
success
0.024229
0.000001
under-trained
960
0.000587
0.000428
168
model.layers.24.mlp.down_proj
0.09546
4,096
14,336
3.5
24.953419
-67.179076
1.567588
true
0.002032
dense
-67.178959
-1.106459
-2.692179
64
0.07826
4,096
64
4,032
1
2.994177
0.002032
38.523045
success
0.045072
0.000001
under-trained
4,032
0.002032
0.001169
169
model.layers.24.mlp.gate_proj
0.125072
4,096
14,336
3.5
15.395967
-37.963343
1.564485
true
0.003421
dense
-37.963322
-1.075045
-2.465798
64
0.084131
4,096
64
4,032
1
1.799496
0.003421
24.589685
success
0.058493
0.000001
under-trained
4,032
0.003421
0.001211
170
model.layers.24.mlp.up_proj
0.095826
4,096
14,336
3.5
6.089533
-15.509972
1.565375
true
0.002838
dense
-15.365067
-1.10238
-2.546989
64
0.078999
4,096
9
4,032
1
1.696511
0.002838
27.836147
success
0.053273
0.000001
under-trained
4,032
0.002838
0.001248
171
model.layers.24.self_attn.k_proj
0.047288
1,024
4,096
4
7.493427
-22.751314
1.133444
true
0.00092
dense
-22.595868
-1.558617
-3.036169
64
0.02763
1,024
51
960
1
0.909262
0.00092
30.029797
success
0.030333
0.000001
under-trained
960
0.00092
0.000378
172
model.layers.24.self_attn.o_proj
0.071055
4,096
4,096
1
16.48228
-49.786721
1.567127
true
0.000954
dense
-49.785523
-1.479156
-3.020621
64
0.033178
4,096
64
4,032
1
1.935285
0.000954
34.79084
success
0.030881
0
under-trained
4,032
0.000954
0.000484
173
model.layers.24.self_attn.q_proj
0.036041
4,096
4,096
1
9.925885
-28.910437
1.564274
true
0.001223
dense
-28.908021
-1.519081
-2.912631
64
0.030263
4,096
56
4,032
1
1.192772
0.001223
24.74852
success
0.034969
0
under-trained
4,032
0.001223
0.000424
174
model.layers.24.self_attn.v_proj
0.058889
1,024
4,096
4
23.276687
-76.282564
1.13697
true
0.000528
dense
-76.228967
-1.599989
-3.277209
64
0.02512
1,024
18
960
1
5.250666
0.000528
47.557606
success
0.022982
0.000001
under-trained
960
0.000528
0.000407
175
model.layers.25.mlp.down_proj
0.12544
4,096
14,336
3.5
22.601148
-60.042548
1.567144
true
0.002205
dense
-60.04247
-1.113156
-2.656615
64
0.077063
4,096
64
4,032
1
2.700143
0.002205
34.95097
success
0.046956
0.000001
under-trained
4,032
0.002205
0.001145
176
model.layers.25.mlp.gate_proj
0.12068
4,096
14,336
3.5
13.940288
-34.545454
1.564761
true
0.003326
dense
-34.545329
-1.073043
-2.478102
64
0.084519
4,096
64
4,032
1
1.617536
0.003326
25.413172
success
0.05767
0.000001
under-trained
4,032
0.003326
0.001208
177
model.layers.25.mlp.up_proj
0.09619
4,096
14,336
3.5
5.860057
-14.98204
1.565308
true
0.002776
dense
-14.800526
-1.108379
-2.556637
64
0.077915
4,096
9
4,032
1
1.620019
0.002776
28.071037
success
0.052684
0.000001
4,032
0.002776
0.001226
178
model.layers.25.self_attn.k_proj
0.086496
1,024
4,096
4
7.71323
-25.242188
1.135881
true
0.000534
dense
-24.216169
-1.590238
-3.272583
64
0.02569
1,024
63
960
1
0.845788
0.000534
48.122189
success
0.023105
0.000001
under-trained
960
0.000534
0.000344
179
model.layers.25.self_attn.o_proj
0.083508
4,096
4,096
1
13.930974
-42.769201
1.566749
true
0.000851
dense
-42.640661
-1.498674
-3.07008
64
0.031719
4,096
63
4,032
1
1.62915
0.000851
37.273968
success
0.029172
0
under-trained
4,032
0.000851
0.000457
180
model.layers.25.self_attn.q_proj
0.039704
4,096
4,096
1
9.001914
-26.694807
1.564694
true
0.001083
dense
-26.675192
-1.524629
-2.965459
64
0.029879
4,096
51
4,032
1
1.120492
0.001083
27.594992
success
0.032906
0
under-trained
4,032
0.001083
0.000419
181
model.layers.25.self_attn.v_proj
0.079096
1,024
4,096
4
23.327133
-76.709015
1.136906
true
0.000515
dense
-76.58582
-1.598524
-3.288403
64
0.025204
1,024
11
960
1
6.731884
0.000515
48.964264
success
0.022688
0.000001
under-trained
960
0.000515
0.000422
182
model.layers.26.mlp.down_proj
0.134245
4,096
14,336
3.5
21.974989
-57.246944
1.566523
true
0.002483
dense
-57.246938
-1.118854
-2.605095
64
0.076058
4,096
64
4,032
1
2.621874
0.002483
30.636671
success
0.049826
0.000001
under-trained
4,032
0.002483
0.001126
183
model.layers.26.mlp.gate_proj
0.145916
4,096
14,336
3.5
14.525749
-35.792439
1.564134
true
0.003435
dense
-35.791913
-1.068163
-2.464068
64
0.085475
4,096
64
4,032
1
1.690719
0.003435
24.883167
success
0.058609
0.000001
under-trained
4,032
0.003435
0.001223
184
model.layers.26.mlp.up_proj
0.108684
4,096
14,336
3.5
6.368245
-16.239063
1.564809
true
0.002818
dense
-16.093494
-1.103885
-2.550006
64
0.078725
4,096
13
4,032
1
1.488883
0.002818
27.93321
success
0.053088
0.000001
under-trained
4,032
0.002818
0.001206
185
model.layers.26.self_attn.k_proj
0.034856
1,024
4,096
4
7.456504
-22.91698
1.132999
true
0.000844
dense
-22.644402
-1.587041
-3.073421
64
0.02588
1,024
49
960
1
0.922358
0.000844
30.646473
success
0.02906
0.000001
under-trained
960
0.000844
0.000356
186
model.layers.26.self_attn.o_proj
0.167697
4,096
4,096
1
10.922671
-31.43949
1.562381
true
0.001323
dense
-31.402265
-1.469525
-2.87837
64
0.033922
4,096
64
4,032
1
1.240334
0.001323
25.635735
success
0.036376
0
under-trained
4,032
0.001323
0.00047
187
model.layers.26.self_attn.q_proj
0.042271
4,096
4,096
1
7.985482
-22.489588
1.560908
true
0.001526
dense
-22.486146
-1.516497
-2.816309
64
0.030444
4,096
64
4,032
1
0.873185
0.001526
19.943983
success
0.03907
0
under-trained
4,032
0.001526
0.000403
188
model.layers.26.self_attn.v_proj
0.058746
1,024
4,096
4
24.701824
-81.647791
1.137018
true
0.000495
dense
-81.5235
-1.607704
-3.305335
64
0.024677
1,024
15
960
1
6.119785
0.000495
49.846031
success
0.02225
0.000001
under-trained
960
0.000495
0.000404
189
model.layers.27.mlp.down_proj
0.169859
4,096
14,336
3.5
19.350975
-49.017357
1.565103
true
0.00293
dense
-49.017354
-1.122905
-2.533069
64
0.075352
4,096
64
4,032
1
2.293872
0.00293
25.71369
success
0.054133
0.000001
under-trained
4,032
0.00293
0.001103
190
model.layers.27.mlp.gate_proj
0.154579
4,096
14,336
3.5
4.657099
-11.249424
1.562604
true
0.003841
dense
-11.058984
-1.059703
-2.415543
64
0.087156
4,096
7
4,032
1
1.382253
0.003841
22.690315
success
0.061977
0.000001
4,032
0.003841
0.001419
191
model.layers.27.mlp.up_proj
0.139529
4,096
14,336
3.5
5.798713
-14.547875
1.563372
true
0.003099
dense
-14.383105
-1.09817
-2.508811
64
0.079768
4,096
14
4,032
1
1.28251
0.003099
25.741913
success
0.055667
0.000001
4,032
0.003099
0.001208
192
model.layers.27.self_attn.k_proj
0.053247
1,024
4,096
4
7.088601
-20.734525
1.129563
true
0.001188
dense
-20.46086
-1.529256
-2.925052
64
0.029563
1,024
63
960
1
0.767092
0.001188
24.876902
success
0.034473
0.000001
under-trained
960
0.001188
0.000383
193
model.layers.27.self_attn.o_proj
0.101908
4,096
4,096
1
12.312543
-37.227076
1.566002
true
0.000947
dense
-37.146804
-1.485103
-3.023508
64
0.032726
4,096
64
4,032
1
1.414068
0.000947
34.546589
success
0.030778
0
under-trained
4,032
0.000947
0.000464
194
model.layers.27.self_attn.q_proj
0.042044
4,096
4,096
1
7.92628
-21.679954
1.559018
true
0.00184
dense
-21.678854
-1.490915
-2.735199
64
0.032291
4,096
64
4,032
1
0.865785
0.00184
17.550272
success
0.042894
0
under-trained
4,032
0.00184
0.000425
195
model.layers.27.self_attn.v_proj
0.063521
1,024
4,096
4
16.373393
-53.042834
1.136855
true
0.000576
dense
-52.951057
-1.590571
-3.239575
64
0.02567
1,024
38
960
1
2.493894
0.000576
44.566044
success
0.024
0.000001
under-trained
960
0.000576
0.00039
196
model.layers.28.mlp.down_proj
0.17393
4,096
14,336
3.5
4.513984
-11.095919
1.563425
true
0.003482
dense
-10.931005
-1.115081
-2.458121
64
0.076722
4,096
5
4,032
1
1.571502
0.003482
22.03126
success
0.059012
0.000001
4,032
0.003482
0.001234
197
model.layers.28.mlp.gate_proj
0.174762
4,096
14,336
3.5
12.366044
-29.875316
1.561714
true
0.003838
dense
-29.865175
-1.061048
-2.415915
64
0.086886
4,096
64
4,032
1
1.420755
0.003838
22.639526
success
0.06195
0.000001
under-trained
4,032
0.003838
0.001217
198
model.layers.28.mlp.up_proj
0.132646
4,096
14,336
3.5
5.04215
-12.611106
1.562622
true
0.003154
dense
-12.314449
-1.088936
-2.501137
64
0.081482
4,096
12
4,032
1
1.166868
0.003154
25.834534
success
0.056161
0.000001
4,032
0.003154
0.001248
199
model.layers.28.self_attn.k_proj
0.065966
1,024
4,096
4
7.460837
-22.041873
1.131685
true
0.001111
dense
-21.921246
-1.543238
-2.954343
64
0.028626
1,024
64
960
1
0.807605
0.001111
25.769484
success
0.033329
0.000001
under-trained
960
0.001111
0.000376