filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_18913
# coding: utf-8 # Assign this shadow size even if # a font bitmap set has no shadow to keep location consistency. shadow_size = 3 def construct_color(r, g, b) : rx = hex(r).split('x')[1] if len(rx) == 1 : rx = '0' + rx gx = hex(g).split('x')[1] if len(gx) == 1 : gx = '0' + rx bx = hex(b).split('x')[1] if len(gx) == 1 : gx = '0' + rx return '#' + rx + gx + bx blue = construct_color(214, 244, 255) darkblue = construct_color(118, 200, 241) green = construct_color(101, 181, 91) red = construct_color(228, 63, 63) white = construct_color(255, 255, 255) grey = construct_color(110, 111, 115) black = construct_color(0, 0, 0) shadow_color = construct_color(50, 50, 50) config = { 'Do not delete this configure file.' : '' # The base folder of this font map generator. , 'base folder' : './' # The folder stores all TrueType font (.ttf) files. # The specified folder is relative to this configure file. # Absolute folder will be base folder + font folder. , 'font folder' : 'fonts' # The Space Engineers (SE) installation path. , 'space engineer base folder' : 'C:\Program Files (x86)\Steam\SteamApps\common\SpaceEngineers' # Font size in SE , 'font size' : 33 # The font priority list, from high to low. # The bitmap of each character # is given by the TrueType font (.tff) # who has a valid bitmap and a highest priority. , 'font priority list' : [ ] # The width of the result .dds image. , 'image width' : 1024 # The width of the result .dds image , 'image height' : 1024 # output .dds file name prefix , 'output dds prefix' : 'FontDataExtra-' # Original dds file names. # They are used when # the user wants to keep the original font bitmaps # and only construct the characters that # are not included in the original font bitmaps. , 'original dds file names' : [ 'FontData-0.dds' ] # Predefined colors , 'predefined colors' : { 'blue': { 'output' : True, 'color': blue, 'shadow_color': shadow_color, 'shadow_size': shadow_size, 'shadow' : False }, 'darkblue': { 'output' : True, 'color': darkblue, 'shadow_color': shadow_color, 'shadow_size': shadow_size, 'shadow' : False }, 'green': { 'output' : True, 'color': green, 'shadow_color': shadow_color, 'shadow_size': shadow_size, 'shadow' : False }, 'red': { 'output' : True, 'color': red, 'shadow_color': shadow_color, 'shadow_size': shadow_size, 'shadow' : False }, 'white': { 'output' : True, 'color': white, 'shadow_color': shadow_color, 'shadow_size': shadow_size, 'shadow' : False }, 'grey': { 'output' : True, 'color': grey, 'shadow_color': shadow_color, 'shadow_size': shadow_size, 'shadow' : False }, 'white_shadow': { 'output' : True, 'color': white, 'shadow_color': shadow_color, 'shadow_size': shadow_size, 'shadow' : True } } # Left Side Bearing, lsb # # illusion: # # |< last >| |< this >| # |< char >| |< char >| # |< bitmap >||< lsb >||< bitmap >| # , 'lsb' : -1 # font map xml template file , 'xml template' : 'xml_template.xml' # font map xml file name , 'xml file name' : 'FontData.xml' # font place holder north margin , 'north margin' : 0 # font place holder west margin , 'west margin' : 0 # font place holder south margin , 'south margin' : 0 # font place holder east margin , 'east margin' : 0 # keep original font map , 'keep original font map' : True , 'text file folder' : 'text_files' , 'unsupported folder' : 'unsupported' , 'backup folder' : 'backup' , 'output folder' : 'output' }
the-stack_0_18916
"""Build macro that compiles a TensorFlow graph into a cc_library. To use from your BUILD file, add the following line to load the macro: load("//tensorflow/compiler/aot:tfcompile.bzl", "tf_library") Then call the macro like this: tf_library( name = "test_graph_tfmatmul", config = "test_graph_tfmatmul.config.pbtxt", cpp_class = "MatMulComp", graph = ":test_graph_tfmatmul.pb", ) """ load( "//tensorflow:tensorflow.bzl", "if_android", "tf_cc_test", "tf_copts", ) load("//tensorflow:tensorflow.bzl", "tfcompile_target_cpu") def tf_library( name, graph, config, debug_info = None, freeze_checkpoint = None, freeze_saver = None, cpp_class = None, gen_test = True, gen_benchmark = True, visibility = None, testonly = None, tfcompile_flags = None, tfcompile_tool = "//tensorflow/compiler/aot:tfcompile", include_standard_runtime_deps = True, enable_xla_hlo_profiling = False, enable_tracemes = False, mlir_components = "None", deps = None, tags = []): """Runs tfcompile to compile a TensorFlow graph into executable code with fast math enabled on cpu. Given an invocation of tf_library(name="foo", ...), generates the following build targets: foo: A cc_library containing the generated header and computation. foo_test: A cc_test with simple tests and benchmarks. Only created if gen_test=True. foo_benchmark: A cc_binary that runs a minimal-dependency benchmark, useful for mobile devices or other platforms that can't compile the full test libraries. Only created if gen_benchmark=True. The output header is called <name>.h. Args: name: The name of the build rule. graph: The TensorFlow GraphDef to compile. If the file ends in '.pbtxt' it is expected to be in the human-readable proto text format, otherwise it is expected to be in the proto binary format. config: File containing tensorflow.tf2xla.Config proto. If the file ends in '.pbtxt' it is expected to be in the human-readable proto text format, otherwise it is expected to be in the proto binary format. freeze_checkpoint: If provided, run freeze_graph with this checkpoint to convert variables into constants. freeze_saver: If provided, run freeze_graph with this saver, in SaverDef binary form, to convert variables into constants. cpp_class: The name of the generated C++ class, wrapping the generated function. The syntax of this flag is [[<optional_namespace>::],...]<class_name>. This mirrors the C++ syntax for referring to a class, where multiple namespaces may precede the class name, separated by double-colons. The class will be generated in the given namespace(s), or if no namespaces are given, within the global namespace. gen_test: If True, also generate a cc_test rule that builds a simple test and benchmark. gen_benchmark: If True, also generate a binary with a simple benchmark. Unlike the output of gen_test, this benchmark can be run on android. visibility: Bazel build visibility. testonly: Bazel testonly attribute. tfcompile_flags: Extra flags to pass to tfcompile to control compilation. tfcompile_tool: The tfcompile binary. A non-default can be passed to use a tfcompile built with extra dependencies. include_standard_runtime_deps: If True, the standard list of kernel/runtime deps is added to deps. If False, deps must contain the full set of deps needed by the generated library. enable_xla_hlo_profiling: Enable XLA HLO profiling in the generated program, and emit metadata that lets us pretty-print the gathered profile counters. enable_tracemes: Tell tfcompile to generate calls to TraceMe::Activity{Start|End} around HLO instructions that can be used by Xprof to construct profiler timelines. mlir_components: When the value is "None", no components use MLIR. When the value is "Bridge", use MLIR to translate GraphDef to HLO. deps: a list of deps to include on the build rules for the generated library, added to the standard deps if standard_runtime_deps is True. tags: tags to apply to subsidiary build rules. """ if not cpp_class: fail("cpp_class must be specified") tfcompile_graph = graph if freeze_checkpoint or freeze_saver: if not freeze_checkpoint: fail("freeze_checkpoint must be specified when freeze_saver is " + "specified") freeze_name = "freeze_" + name freeze_file = freeze_name + ".pb" # First run tfcompile to generate the list of out_nodes. # # Here and below, we set CUDA_VISIBLE_DEVICES='' to prevent the code we # launch from using any GPUs which might be present. This is important # because builds may run concurrently with tests, and tests need to be # able to assume that they have control of the full GPU. out_nodes_file = "out_nodes_" + freeze_name native.genrule( name = ("gen_" + out_nodes_file), srcs = [config], outs = [out_nodes_file], cmd = ("CUDA_VISIBLE_DEVICES='' " + "$(location " + tfcompile_tool + ")" + " --config=$(location " + config + ")" + " --dump_fetch_nodes > $@"), tools = [tfcompile_tool], # Run tfcompile on the build host, rather than forge, since it's # typically way faster on the local machine. local = 1, tags = tags, ) # Now run freeze_graph to convert variables into constants. freeze_args = ( " --input_graph=$(location " + graph + ")" + " --checkpoint_version=1" + " --input_binary=" + str(not graph.endswith(".pbtxt")) + " --input_checkpoint=$(location " + freeze_checkpoint + ")" + " --output_graph=$(location " + freeze_file + ")" + " --output_node_names=$$(<$(location " + out_nodes_file + "))" ) freeze_saver_srcs = [] if freeze_saver: freeze_args += " --input_saver=$(location " + freeze_saver + ")" freeze_saver_srcs += [freeze_saver] native.genrule( name = freeze_name, srcs = [ graph, freeze_checkpoint, out_nodes_file, ] + freeze_saver_srcs, outs = [freeze_file], cmd = ( "CUDA_VISIBLE_DEVICES='' " + "$(location " + "//tensorflow/python/tools:freeze_graph)" + freeze_args ), exec_tools = ["//tensorflow/python/tools:freeze_graph"], tags = tags, ) tfcompile_graph = freeze_file # Rule that runs tfcompile to produce the header and object file. header_file = name + ".h" metadata_object_file = name + "_tfcompile_metadata.o" function_object_file = name + "_tfcompile_function.o" # The XLA backends morph kernal name prefix __ that is not in the form of # __xla_. ep = ("__xla_" + native.package_name() + "__" + name).replace("/", "_") if type(tfcompile_flags) == type(""): flags = tfcompile_flags else: flags = " ".join([ "'" + arg.replace("'", "'\\''") + "'" for arg in (tfcompile_flags or []) ]) # Do this before we append the `select` into `flags`, because doing so # transforms `flags` into a variable of type `select`, and we can't call # `find` on such an object. need_xla_data_proto = flags and flags.find("--gen_program_shape") != -1 target_cpu = tfcompile_target_cpu() extra_flags = "--target_cpu=" + target_cpu + " " if target_cpu else " " flags = extra_flags + flags if enable_xla_hlo_profiling: profiling_flag = "--xla_hlo_profile" else: profiling_flag = "" if enable_tracemes: traceme_flag = "--xla_cpu_enable_xprof_traceme=true" else: traceme_flag = "--xla_cpu_enable_xprof_traceme=false" mlir_flag = "--mlir_components=" + mlir_components srcs = [tfcompile_graph, config] debug_info_flag = "" if debug_info: srcs.append(debug_info) debug_info_flag = " --debug_info=$(location " + debug_info + ")" default_fast_math_xla_flags = ("XLA_FLAGS='" + "--xla_cpu_enable_fast_math=true " + "--xla_cpu_fast_math_honor_nans=false " + "--xla_cpu_fast_math_honor_infs=false " + "--xla_cpu_fast_math_honor_functions=false " + "--xla_cpu_fast_math_honor_division=false " + "--xla_cpu_enable_fast_min_max=true " + "$${XLA_FLAGS:-}' ") native.genrule( name = ("gen_" + name), srcs = srcs, outs = [ header_file, metadata_object_file, function_object_file, ], cmd = ( default_fast_math_xla_flags + "CUDA_VISIBLE_DEVICES='' " + "$(location " + tfcompile_tool + ")" + " --graph=$(location " + tfcompile_graph + ")" + debug_info_flag + " --config=$(location " + config + ")" + " --entry_point=" + ep + " --cpp_class=" + cpp_class + " --target_triple=" + target_llvm_triple() + " --out_header=$(@D)/" + header_file + " --out_metadata_object=$(@D)/" + metadata_object_file + " --out_function_object=$(@D)/" + function_object_file + " " + flags + " " + profiling_flag + " " + mlir_flag + " " + traceme_flag ), tools = [tfcompile_tool], visibility = visibility, testonly = testonly, # Run tfcompile on the build host since it's typically faster on the # local machine. # # Note that setting the local=1 attribute on a *test target* causes the # test infrastructure to skip that test. However this is a genrule, not # a test target, and runs with --strategy=Genrule=forced_forge, meaning # the local=1 attribute is ignored, and the genrule is still run. # # https://www.bazel.io/versions/master/docs/be/general.html#genrule local = 1, tags = tags, ) # Rule that runs tfcompile to produce the SessionModule proto, useful for # debugging. TODO(b/64813587): Once the SessionModule proto is # deterministic, move this into the main rule above. session_module_pb = name + "_session_module.pb" native.genrule( name = (name + "_session_module"), srcs = srcs, outs = [ session_module_pb, ], cmd = ( default_fast_math_xla_flags + "CUDA_VISIBLE_DEVICES='' " + "$(location " + tfcompile_tool + ")" + " --graph=$(location " + tfcompile_graph + ")" + debug_info_flag + " --config=$(location " + config + ")" + " --entry_point=" + ep + " --cpp_class=" + cpp_class + " --target_triple=" + target_llvm_triple() + " --out_session_module=$(@D)/" + session_module_pb + " " + flags ), tools = [tfcompile_tool], visibility = visibility, testonly = testonly, local = 1, tags = tags, ) # The cc_library rule packaging up the header and object file, and needed # kernel implementations. native.cc_library( name = name, srcs = [function_object_file, metadata_object_file], hdrs = [header_file], visibility = visibility, testonly = testonly, deps = [ # These deps are required by all tf_library targets even if # include_standard_runtime_deps is False. Without them, the # generated code will fail to compile. "//tensorflow/compiler/tf2xla:xla_compiled_cpu_function", "//tensorflow/core:framework_lite", ] + (need_xla_data_proto and [ # If we're generating the program shape, we must depend on the # proto. "//tensorflow/compiler/xla:xla_data_proto_cc", ] or []) + (enable_xla_hlo_profiling and [ "//tensorflow/compiler/xla/service:hlo_profile_printer_data_cc", ] or []) + (include_standard_runtime_deps and [ # TODO(cwhipkey): only depend on kernel code that the model actually # needed. "//tensorflow/compiler/xla/service/cpu:runtime_conv2d", "//tensorflow/compiler/xla/service/cpu:runtime_key_value_sort", "//tensorflow/compiler/xla/service/cpu:runtime_matmul", "//tensorflow/compiler/xla/service/cpu:runtime_single_threaded_conv2d", "//tensorflow/compiler/xla/service/cpu:runtime_single_threaded_matmul", "//third_party/eigen3", ] or []) + (deps or []), tags = tags, ) # Variables used for gen_test and gen_benchmark. cpp_class_split = cpp_class.rsplit("::", 2) if len(cpp_class_split) == 1: no_ns_name = cpp_class_split[0] else: no_ns_name = cpp_class_split[1] sed_replace = ( "-e \"s|{{TFCOMPILE_HEADER}}|$(location " + header_file + ")|g\" " + "-e \"s|{{TFCOMPILE_CPP_CLASS}}|" + cpp_class + "|g\" " + "-e \"s|{{TFCOMPILE_NAME}}|" + no_ns_name + "|g\" " ) if gen_test: test_name = name + "_test" test_file = test_name + ".cc" # Rule to rewrite test.cc to produce the test_file. native.genrule( name = ("gen_" + test_name), testonly = 1, srcs = [ "//tensorflow/compiler/aot:test.cc", header_file, ], outs = [test_file], cmd = ( "sed " + sed_replace + " $(location //tensorflow/compiler/aot:test.cc) " + "> $(OUTS)" ), tags = tags, ) # The cc_test rule for the generated code. To ensure that this works # reliably across build configurations, we must use tf_cc_test instead # of native.cc_test. This is related to how we build # //tensorflow/core:lib -- see the note in # tensorflow/core/BUILD for more details. tf_cc_test( name = test_name, srcs = [test_file], deps = [ ":" + name, "//tensorflow/compiler/aot:tf_library_test_main", "//tensorflow/compiler/xla:executable_run_options", "//third_party/eigen3", "//tensorflow/core:lib", "//tensorflow/core:test", ], tags = tags, ) if gen_benchmark: benchmark_name = name + "_benchmark" benchmark_file = benchmark_name + ".cc" benchmark_main = ("//tensorflow/compiler/aot:" + "benchmark_main.template") # Rule to rewrite benchmark.cc to produce the benchmark_file. native.genrule( name = ("gen_" + benchmark_name), srcs = [ benchmark_main, header_file, ], testonly = testonly, outs = [benchmark_file], cmd = ("sed " + sed_replace + " $(location " + benchmark_main + ") " + "> $(OUTS)"), tags = tags, ) # The cc_benchmark rule for the generated code. This does not need the # tf_cc_binary since we (by deliberate design) do not depend on # //tensorflow/core:lib. # # Note: to get smaller size on android for comparison, compile with: # --copt=-fvisibility=hidden # --copt=-D_LIBCPP_TYPE_VIS=_LIBCPP_HIDDEN # --copt=-D_LIBCPP_EXCEPTION_ABI=_LIBCPP_HIDDEN native.cc_binary( name = benchmark_name, srcs = [benchmark_file], testonly = testonly, copts = tf_copts(), linkopts = if_android(["-pie", "-s"]), deps = [ ":" + name, "//tensorflow/compiler/aot:benchmark", "//tensorflow/compiler/xla:executable_run_options", "//third_party/eigen3", ] + if_android([ "//tensorflow/compiler/aot:benchmark_extra_android", ]), tags = tags, ) def target_llvm_triple(): """Returns the target LLVM triple to be used for compiling the target.""" # TODO(toddw): Add target_triple for other targets. For details see: # http://llvm.org/docs/doxygen/html/Triple_8h_source.html return select({ "//tensorflow:android_armeabi": "armv5-none-android", "//tensorflow:android_arm": "armv7-none-android", "//tensorflow:android_arm64": "aarch64-none-android", "//tensorflow:android_x86": "i686-none-android", "//tensorflow:ios": "arm64-none-ios", "//tensorflow:ios_x86_64": "x86_64-apple-ios", "//tensorflow:linux_ppc64le": "ppc64le-ibm-linux-gnu", "//tensorflow:macos": "x86_64-none-darwin", "//tensorflow:windows": "x86_64-none-windows", "//tensorflow:linux_s390x": "systemz-none-linux-gnu", "//conditions:default": "x86_64-pc-linux", })
the-stack_0_18917
import requests import json import sys import re import os from slugify import slugify class Downloader(object): def __init__( self, cookie, download_path=os.environ.get('FILE_PATH', './data'), pk='BCpkADawqM2OOcM6njnM7hf9EaK6lIFlqiXB0iWjqGWUQjU7R8965xUvIQNqdQbnDTLz0IAO7E6Ir2rIbXJtFdzrGtitoee0n1XXRliD-RH9A-svuvNW9qgo3Bh34HEZjXjG4Nml4iyz3KqF', brightcove_account_id=3695997568001, ): self.cookie = cookie.strip().strip('"') self.download_path = download_path self.pk = pk.strip() self.brightcove_account_id = brightcove_account_id self.pythonversion = 3 if sys.version_info >= (3, 0) else 2 def is_unicode_string(self, string): if (self.pythonversion == 3 and isinstance(string, str)) or (self.pythonversion == 2 and isinstance(string, unicode)): return True else: return False def download_course_by_url(self, url): m = re.match(r'https://www.skillshare.com/classes/.*?/(\d+)', url) if not m: raise Exception('Failed to parse class ID from URL') self.download_course_by_class_id(m.group(1)) def download_course_by_class_id(self, class_id): data = self.fetch_course_data_by_class_id(class_id=class_id) teacher_name = None if 'vanity_username' in data['_embedded']['teacher']: teacher_name = data['_embedded']['teacher']['vanity_username'] if not teacher_name: teacher_name = data['_embedded']['teacher']['full_name'] if not teacher_name: raise Exception('Failed to read teacher name from data') if self.is_unicode_string(teacher_name): teacher_name = teacher_name.encode('ascii', 'replace') title = data['title'] if self.is_unicode_string(title): title = title.encode('ascii', 'replace') # ignore any weird char base_path = os.path.abspath( os.path.join( self.download_path, slugify(teacher_name), slugify(title), ) ).rstrip('/') if not os.path.exists(base_path): os.makedirs(base_path) for u in data['_embedded']['units']['_embedded']['units']: for s in u['_embedded']['sessions']['_embedded']['sessions']: video_id = None if 'video_hashed_id' in s and s['video_hashed_id']: video_id = s['video_hashed_id'].split(':')[1] if not video_id: # NOTE: this happens sometimes... # seems random and temporary but might be some random # server-side check on user-agent etc? # ...think it's more stable now with those set to # emulate an android device raise Exception('Failed to read video ID from data') s_title = s['title'] if self.is_unicode_string(s_title): s_title = s_title.encode('ascii', 'replace') # ignore any weird char file_name = '{} - {}'.format( str(s['index'] + 1).zfill(2), slugify(s_title), ) self.download_video( fpath='{base_path}/{session}.mp4'.format( base_path=base_path, session=file_name, ), video_id=video_id, ) print('') def fetch_course_data_by_class_id(self, class_id): res = requests.get( url='https://api.skillshare.com/classes/{}'.format(class_id), headers={ 'Accept': 'application/vnd.skillshare.class+json;,version=0.8', 'User-Agent': 'Skillshare/4.1.1; Android 5.1.1', 'Host': 'api.skillshare.com', 'cookie': self.cookie, } ) if not res.status_code == 200: raise Exception('Fetch error, code == {}'.format(res.status_code)) return res.json() def download_video(self, fpath, video_id): meta_url = 'https://edge.api.brightcove.com/playback/v1/accounts/{account_id}/videos/{video_id}'.format( account_id=self.brightcove_account_id, video_id=video_id, ) meta_res = requests.get( meta_url, headers={ 'Accept': 'application/json;pk={}'.format(self.pk), 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0', 'Origin': 'https://www.skillshare.com' } ) if meta_res.status_code != 200: raise Exception('Failed to fetch video meta') for x in meta_res.json()['sources']: if 'container' in x and x['container'] == 'MP4' and 'src' in x: dl_url = x['src'] break print('Downloading {}...'.format(fpath)) if os.path.exists(fpath): print('Video already downloaded, skipping...') return with open(fpath, 'wb') as f: response = requests.get(dl_url, allow_redirects=True, stream=True) total_length = response.headers.get('content-length') if not total_length: f.write(response.content) else: dl = 0 total_length = int(total_length) for data in response.iter_content(chunk_size=4096): dl += len(data) f.write(data) done = int(50 * dl / total_length) sys.stdout.write("\r[%s%s]" % ('=' * done, ' ' * (50 - done))) sys.stdout.flush() print('')
the-stack_0_18919
import os import numpy as np from astropy.table import Table from . import get_data_home DATA_URL = ("https://github.com/astroML/astroML-data/raw/master/datasets/" "sgSDSSimagingSample.fit.gz") def fetch_imaging_sample(data_home=None, download_if_missing=True): """Loader for SDSS Imaging sample data Parameters ---------- data_home : optional, default=None Specify another download and cache folder for the datasets. By default all astroML data is stored in '~/astroML_data'. download_if_missing : optional, default=True If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- data : recarray, shape = (330753,) record array containing imaging data Examples -------- >>> from astroML.datasets import fetch_imaging_sample >>> data = fetch_imaging_sample() # doctest: +IGNORE_OUTPUT >>> data.shape # number of objects in dataset (330753,) >>> print(data.dtype.names[:5]) # names of the first five columns ('ra', 'dec', 'run', 'rExtSFD', 'uRaw') >>> print(data['ra'][:2]) [0.358174 0.358382] >>> print(data['dec'][:2]) [-0.508718 -0.551157] Notes ----- This data was selected from the SDSS database using the following SQL query:: SELECT round(p.ra,6) as ra, round(p.dec,6) as dec, p.run, --- comments are preceded by --- round(p.extinction_r,3) as rExtSFD, --- r band extinction from SFD round(p.modelMag_u,3) as uRaw, --- ISM-uncorrected model mags round(p.modelMag_g,3) as gRaw, --- rounding up model magnitudes round(p.modelMag_r,3) as rRaw, round(p.modelMag_i,3) as iRaw, round(p.modelMag_z,3) as zRaw, round(p.modelMagErr_u,3) as uErr, --- errors are important! round(p.modelMagErr_g,3) as gErr, round(p.modelMagErr_r,3) as rErr, round(p.modelMagErr_i,3) as iErr, round(p.modelMagErr_z,3) as zErr, round(p.psfMag_u,3) as psfRaw, --- psf magnitudes round(p.psfMag_g,3) as psfRaw, round(p.psfMag_r,3) as psfRaw, round(p.psfMag_i,3) as psfRaw, round(p.psfMag_z,3) as psfRaw, round(p.psfMagErr_u,3) as psfuErr, round(p.psfMagErr_g,3) as psfgErr, round(p.psfMagErr_r,3) as psfrErr, round(p.psfMagErr_i,3) as psfiErr, round(p.psfMagErr_z,3) as psfzErr, p.type, --- tells if a source is resolved or not (case when (p.flags & '16') = 0 then 1 else 0 end) as ISOLATED INTO mydb.SDSSimagingSample FROM PhotoTag p WHERE --- 10x2 sq.deg. p.ra > 0.0 and p.ra < 10.0 and p.dec > -1 and p.dec < 1 --- resolved and unresolved sources and (p.type = 3 OR p.type = 6) and --- '4295229440' is magic code for no --- DEBLENDED_AS_MOVING or SATURATED objects (p.flags & '4295229440') = 0 and --- PRIMARY objects only, which implies --- !BRIGHT && (!BLENDED || NODEBLEND || nchild == 0)] p.mode = 1 and --- adopted faint limit (same as about SDSS limit) p.modelMag_r < 22.5 --- the end of query """ data_home = get_data_home(data_home) archive_file = os.path.join(data_home, os.path.basename(DATA_URL)) if not os.path.exists(archive_file): if not download_if_missing: raise IOError('data not present on disk. ' 'set download_if_missing=True to download') data = Table.read(DATA_URL) data.write(archive_file) else: data = Table.read(archive_file) return np.asarray(data)
the-stack_0_18920
from Tuleap.RestClient.Artifacts import Artifacts from lib.base import BaseTuleapAction class CreateArtifacts(BaseTuleapAction): def run(self, tracker_id, values_by_field_by_artifact): success = self._login() if success: # Artifacts artifacts = Artifacts(self.connection) for values_by_field in values_by_field_by_artifact.values(): success = artifacts.create_artifact(tracker_id, values_by_field) if success: self.response = artifacts.get_data() else: return False, self.response return True, self.response return False, self.response
the-stack_0_18921
from datetime import date from django.test import TestCase from django.contrib.gis.geos import GEOSGeometry, Point, MultiPoint from django.contrib.gis.db.models import Collect, Count, Extent, F, Union from django.contrib.gis.geometry.backend import Geometry from django.contrib.gis.tests.utils import mysql, oracle, no_mysql, no_oracle, no_spatialite from models import City, Location, DirectoryEntry, Parcel, Book, Author, Article class RelatedGeoModelTest(TestCase): def test02_select_related(self): "Testing `select_related` on geographic models (see #7126)." qs1 = City.objects.all() qs2 = City.objects.select_related() qs3 = City.objects.select_related('location') # Reference data for what's in the fixtures. cities = ( ('Aurora', 'TX', -97.516111, 33.058333), ('Roswell', 'NM', -104.528056, 33.387222), ('Kecksburg', 'PA', -79.460734, 40.18476), ) for qs in (qs1, qs2, qs3): for ref, c in zip(cities, qs): nm, st, lon, lat = ref self.assertEqual(nm, c.name) self.assertEqual(st, c.state) self.assertEqual(Point(lon, lat), c.location.point) @no_mysql def test03_transform_related(self): "Testing the `transform` GeoQuerySet method on related geographic models." # All the transformations are to state plane coordinate systems using # US Survey Feet (thus a tolerance of 0 implies error w/in 1 survey foot). tol = 0 def check_pnt(ref, pnt): self.assertAlmostEqual(ref.x, pnt.x, tol) self.assertAlmostEqual(ref.y, pnt.y, tol) self.assertEqual(ref.srid, pnt.srid) # Each city transformed to the SRID of their state plane coordinate system. transformed = (('Kecksburg', 2272, 'POINT(1490553.98959621 314792.131023984)'), ('Roswell', 2257, 'POINT(481902.189077221 868477.766629735)'), ('Aurora', 2276, 'POINT(2269923.2484839 7069381.28722222)'), ) for name, srid, wkt in transformed: # Doing this implicitly sets `select_related` select the location. # TODO: Fix why this breaks on Oracle. qs = list(City.objects.filter(name=name).transform(srid, field_name='location__point')) check_pnt(GEOSGeometry(wkt, srid), qs[0].location.point) @no_mysql @no_spatialite def test04a_related_extent_aggregate(self): "Testing the `extent` GeoQuerySet aggregates on related geographic models." # This combines the Extent and Union aggregates into one query aggs = City.objects.aggregate(Extent('location__point')) # One for all locations, one that excludes New Mexico (Roswell). all_extent = (-104.528056, 29.763374, -79.460734, 40.18476) txpa_extent = (-97.516111, 29.763374, -79.460734, 40.18476) e1 = City.objects.extent(field_name='location__point') e2 = City.objects.exclude(state='NM').extent(field_name='location__point') e3 = aggs['location__point__extent'] # The tolerance value is to four decimal places because of differences # between the Oracle and PostGIS spatial backends on the extent calculation. tol = 4 for ref, e in [(all_extent, e1), (txpa_extent, e2), (all_extent, e3)]: for ref_val, e_val in zip(ref, e): self.assertAlmostEqual(ref_val, e_val, tol) @no_mysql def test04b_related_union_aggregate(self): "Testing the `unionagg` GeoQuerySet aggregates on related geographic models." # This combines the Extent and Union aggregates into one query aggs = City.objects.aggregate(Union('location__point')) # These are the points that are components of the aggregate geographic # union that is returned. Each point # corresponds to City PK. p1 = Point(-104.528056, 33.387222) p2 = Point(-97.516111, 33.058333) p3 = Point(-79.460734, 40.18476) p4 = Point(-96.801611, 32.782057) p5 = Point(-95.363151, 29.763374) # Creating the reference union geometry depending on the spatial backend, # as Oracle will have a different internal ordering of the component # geometries than PostGIS. The second union aggregate is for a union # query that includes limiting information in the WHERE clause (in other # words a `.filter()` precedes the call to `.unionagg()`). if oracle: ref_u1 = MultiPoint(p4, p5, p3, p1, p2, srid=4326) ref_u2 = MultiPoint(p3, p2, srid=4326) else: # Looks like PostGIS points by longitude value. ref_u1 = MultiPoint(p1, p2, p4, p5, p3, srid=4326) ref_u2 = MultiPoint(p2, p3, srid=4326) u1 = City.objects.unionagg(field_name='location__point') u2 = City.objects.exclude(name__in=('Roswell', 'Houston', 'Dallas', 'Fort Worth')).unionagg(field_name='location__point') u3 = aggs['location__point__union'] self.assertEqual(ref_u1, u1) self.assertEqual(ref_u2, u2) self.assertEqual(ref_u1, u3) def test05_select_related_fk_to_subclass(self): "Testing that calling select_related on a query over a model with an FK to a model subclass works" # Regression test for #9752. l = list(DirectoryEntry.objects.all().select_related()) def test06_f_expressions(self): "Testing F() expressions on GeometryFields." # Constructing a dummy parcel border and getting the City instance for # assigning the FK. b1 = GEOSGeometry('POLYGON((-97.501205 33.052520,-97.501205 33.052576,-97.501150 33.052576,-97.501150 33.052520,-97.501205 33.052520))', srid=4326) pcity = City.objects.get(name='Aurora') # First parcel has incorrect center point that is equal to the City; # it also has a second border that is different from the first as a # 100ft buffer around the City. c1 = pcity.location.point c2 = c1.transform(2276, clone=True) b2 = c2.buffer(100) p1 = Parcel.objects.create(name='P1', city=pcity, center1=c1, center2=c2, border1=b1, border2=b2) # Now creating a second Parcel where the borders are the same, just # in different coordinate systems. The center points are also the # the same (but in different coordinate systems), and this time they # actually correspond to the centroid of the border. c1 = b1.centroid c2 = c1.transform(2276, clone=True) p2 = Parcel.objects.create(name='P2', city=pcity, center1=c1, center2=c2, border1=b1, border2=b1) # Should return the second Parcel, which has the center within the # border. qs = Parcel.objects.filter(center1__within=F('border1')) self.assertEqual(1, len(qs)) self.assertEqual('P2', qs[0].name) if not mysql: # This time center2 is in a different coordinate system and needs # to be wrapped in transformation SQL. qs = Parcel.objects.filter(center2__within=F('border1')) self.assertEqual(1, len(qs)) self.assertEqual('P2', qs[0].name) # Should return the first Parcel, which has the center point equal # to the point in the City ForeignKey. qs = Parcel.objects.filter(center1=F('city__location__point')) self.assertEqual(1, len(qs)) self.assertEqual('P1', qs[0].name) if not mysql: # This time the city column should be wrapped in transformation SQL. qs = Parcel.objects.filter(border2__contains=F('city__location__point')) self.assertEqual(1, len(qs)) self.assertEqual('P1', qs[0].name) def test07_values(self): "Testing values() and values_list() and GeoQuerySets." # GeoQuerySet and GeoValuesQuerySet, and GeoValuesListQuerySet respectively. gqs = Location.objects.all() gvqs = Location.objects.values() gvlqs = Location.objects.values_list() # Incrementing through each of the models, dictionaries, and tuples # returned by the different types of GeoQuerySets. for m, d, t in zip(gqs, gvqs, gvlqs): # The values should be Geometry objects and not raw strings returned # by the spatial database. self.assertTrue(isinstance(d['point'], Geometry)) self.assertTrue(isinstance(t[1], Geometry)) self.assertEqual(m.point, d['point']) self.assertEqual(m.point, t[1]) def test08_defer_only(self): "Testing defer() and only() on Geographic models." qs = Location.objects.all() def_qs = Location.objects.defer('point') for loc, def_loc in zip(qs, def_qs): self.assertEqual(loc.point, def_loc.point) def test09_pk_relations(self): "Ensuring correct primary key column is selected across relations. See #10757." # The expected ID values -- notice the last two location IDs # are out of order. Dallas and Houston have location IDs that differ # from their PKs -- this is done to ensure that the related location # ID column is selected instead of ID column for the city. city_ids = (1, 2, 3, 4, 5) loc_ids = (1, 2, 3, 5, 4) ids_qs = City.objects.order_by('id').values('id', 'location__id') for val_dict, c_id, l_id in zip(ids_qs, city_ids, loc_ids): self.assertEqual(val_dict['id'], c_id) self.assertEqual(val_dict['location__id'], l_id) def test10_combine(self): "Testing the combination of two GeoQuerySets. See #10807." buf1 = City.objects.get(name='Aurora').location.point.buffer(0.1) buf2 = City.objects.get(name='Kecksburg').location.point.buffer(0.1) qs1 = City.objects.filter(location__point__within=buf1) qs2 = City.objects.filter(location__point__within=buf2) combined = qs1 | qs2 names = [c.name for c in combined] self.assertEqual(2, len(names)) self.assertTrue('Aurora' in names) self.assertTrue('Kecksburg' in names) def test11_geoquery_pickle(self): "Ensuring GeoQuery objects are unpickled correctly. See #10839." import pickle from django.contrib.gis.db.models.sql import GeoQuery qs = City.objects.all() q_str = pickle.dumps(qs.query) q = pickle.loads(q_str) self.assertEqual(GeoQuery, q.__class__) # TODO: fix on Oracle -- get the following error because the SQL is ordered # by a geometry object, which Oracle apparently doesn't like: # ORA-22901: cannot compare nested table or VARRAY or LOB attributes of an object type @no_oracle def test12a_count(self): "Testing `Count` aggregate use with the `GeoManager` on geo-fields." # The City, 'Fort Worth' uses the same location as Dallas. dallas = City.objects.get(name='Dallas') # Count annotation should be 2 for the Dallas location now. loc = Location.objects.annotate(num_cities=Count('city')).get(id=dallas.location.id) self.assertEqual(2, loc.num_cities) def test12b_count(self): "Testing `Count` aggregate use with the `GeoManager` on non geo-fields. See #11087." # Should only be one author (Trevor Paglen) returned by this query, and # the annotation should have 3 for the number of books, see #11087. # Also testing with a `GeoValuesQuerySet`, see #11489. qs = Author.objects.annotate(num_books=Count('books')).filter(num_books__gt=1) vqs = Author.objects.values('name').annotate(num_books=Count('books')).filter(num_books__gt=1) self.assertEqual(1, len(qs)) self.assertEqual(3, qs[0].num_books) self.assertEqual(1, len(vqs)) self.assertEqual(3, vqs[0]['num_books']) # TODO: The phantom model does appear on Oracle. @no_oracle def test13_select_related_null_fk(self): "Testing `select_related` on a nullable ForeignKey via `GeoManager`. See #11381." no_author = Book.objects.create(title='Without Author') b = Book.objects.select_related('author').get(title='Without Author') # Should be `None`, and not a 'dummy' model. self.assertEqual(None, b.author) @no_mysql @no_oracle @no_spatialite def test14_collect(self): "Testing the `collect` GeoQuerySet method and `Collect` aggregate." # Reference query: # SELECT AsText(ST_Collect("relatedapp_location"."point")) FROM "relatedapp_city" LEFT OUTER JOIN # "relatedapp_location" ON ("relatedapp_city"."location_id" = "relatedapp_location"."id") # WHERE "relatedapp_city"."state" = 'TX'; ref_geom = GEOSGeometry('MULTIPOINT(-97.516111 33.058333,-96.801611 32.782057,-95.363151 29.763374,-96.801611 32.782057)') c1 = City.objects.filter(state='TX').collect(field_name='location__point') c2 = City.objects.filter(state='TX').aggregate(Collect('location__point'))['location__point__collect'] for coll in (c1, c2): # Even though Dallas and Ft. Worth share same point, Collect doesn't # consolidate -- that's why 4 points in MultiPoint. self.assertEqual(4, len(coll)) self.assertEqual(ref_geom, coll) def test15_invalid_select_related(self): "Testing doing select_related on the related name manager of a unique FK. See #13934." qs = Article.objects.select_related('author__article') # This triggers TypeError when `get_default_columns` has no `local_only` # keyword. The TypeError is swallowed if QuerySet is actually # evaluated as list generation swallows TypeError in CPython. sql = str(qs.query) def test16_annotated_date_queryset(self): "Ensure annotated date querysets work if spatial backend is used. See #14648." birth_years = [dt.year for dt in list(Author.objects.annotate(num_books=Count('books')).dates('dob', 'year'))] birth_years.sort() self.assertEqual([1950, 1974], birth_years) # TODO: Related tests for KML, GML, and distance lookups.
the-stack_0_18922
import wx from LaserProject import * from ThreadConstants import * from icons import icons8_connected_50, icons8_play_50 class JobSpooler(wx.Frame): def __init__(self, *args, **kwds): # begin wxGlade: JobSpooler.__init__ kwds["style"] = kwds.get("style", 0) | wx.DEFAULT_FRAME_STYLE | wx.FRAME_TOOL_WINDOW | wx.STAY_ON_TOP wx.Frame.__init__(self, *args, **kwds) self.SetSize((668, 448)) self.list_job_spool = wx.ListCtrl(self, wx.ID_ANY, style=wx.LC_HRULES | wx.LC_REPORT | wx.LC_VRULES) self.panel_controller = wx.Panel(self, wx.ID_ANY, style=wx.BORDER_RAISED) self.gauge_controller = wx.Gauge(self.panel_controller, wx.ID_ANY, 100) self.checkbox_limit_buffer = wx.CheckBox(self.panel_controller, wx.ID_ANY, "Limit Write Buffer") self.text_packet_buffer = wx.TextCtrl(self.panel_controller, wx.ID_ANY, "") self.spin_packet_buffer_max = wx.SpinCtrl(self.panel_controller, wx.ID_ANY, "1500", min=1, max=100000) self.button_writer_control = wx.Button(self, wx.ID_ANY, "Start Job") self.button_controller = wx.BitmapButton(self, wx.ID_ANY, icons8_connected_50.GetBitmap()) self.__set_properties() self.__do_layout() self.Bind(wx.EVT_LIST_BEGIN_DRAG, self.on_list_drag, self.list_job_spool) self.Bind(wx.EVT_LIST_ITEM_RIGHT_CLICK, self.on_item_rightclick, self.list_job_spool) self.Bind(wx.EVT_CHECKBOX, self.on_check_limit_packet_buffer, self.checkbox_limit_buffer) self.Bind(wx.EVT_SPINCTRL, self.on_spin_packet_buffer_max, self.spin_packet_buffer_max) self.Bind(wx.EVT_TEXT, self.on_spin_packet_buffer_max, self.spin_packet_buffer_max) self.Bind(wx.EVT_TEXT_ENTER, self.on_spin_packet_buffer_max, self.spin_packet_buffer_max) self.Bind(wx.EVT_BUTTON, self.on_button_start_job, self.button_writer_control) self.Bind(wx.EVT_BUTTON, self.on_button_controller, self.button_controller) # end wxGlade self.project = None self.dirty = False self.update_buffer_size = False self.update_writer_state = False self.update_spooler = False self.buffer_size = 0 self.elements_progress = 0 self.elements_progress_total = 0 self.command_index = 0 self.listener_list = None self.list_lookup = {} self.Bind(wx.EVT_CLOSE, self.on_close, self) def set_project(self, project): self.project = project project["spooler", self.on_spooler_update] = self project["buffer", self.on_buffer_update] = self project["writer", self.on_writer_state] = self self.set_writer_button_by_state() self.checkbox_limit_buffer.SetValue(self.project.writer.thread.limit_buffer) self.spin_packet_buffer_max.SetValue(self.project.writer.thread.buffer_max) self.refresh_spooler_list() def on_close(self, event): self.project["spooler", self.on_spooler_update] = None self.project["buffer", self.on_buffer_update] = None self.project["writer", self.on_writer_state] = None try: del self.project.windows["jobspooler"] except KeyError: pass self.project = None event.Skip() # Call destroy as regular. def __set_properties(self): # begin wxGlade: JobSpooler.__set_properties self.SetTitle("Spooler") self.list_job_spool.AppendColumn("#", format=wx.LIST_FORMAT_LEFT, width=29) self.list_job_spool.AppendColumn("Name", format=wx.LIST_FORMAT_LEFT, width=90) self.list_job_spool.AppendColumn("Status", format=wx.LIST_FORMAT_LEFT, width=73) self.list_job_spool.AppendColumn("Device", format=wx.LIST_FORMAT_LEFT, width=53) self.list_job_spool.AppendColumn("Type", format=wx.LIST_FORMAT_LEFT, width=50) self.list_job_spool.AppendColumn("Speed", format=wx.LIST_FORMAT_LEFT, width=73) self.list_job_spool.AppendColumn("Settings", format=wx.LIST_FORMAT_LEFT, width=82) self.list_job_spool.AppendColumn("Submitted", format=wx.LIST_FORMAT_LEFT, width=70) self.list_job_spool.AppendColumn("Time Estimate", format=wx.LIST_FORMAT_LEFT, width=92) self.checkbox_limit_buffer.SetValue(1) self.panel_controller.SetBackgroundColour(wx.Colour(204, 204, 204)) self.button_writer_control.SetBackgroundColour(wx.Colour(102, 255, 102)) self.button_writer_control.SetFont( wx.Font(15, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL, 0, "Segoe UI")) self.button_writer_control.SetBitmap(icons8_play_50.GetBitmap()) self.button_controller.SetSize(self.button_controller.GetBestSize()) # end wxGlade def __do_layout(self): # begin wxGlade: JobSpooler.__do_layout sizer_1 = wx.BoxSizer(wx.HORIZONTAL) sizer_2 = wx.BoxSizer(wx.VERTICAL) sizer_3 = wx.BoxSizer(wx.HORIZONTAL) sizer_11 = wx.BoxSizer(wx.VERTICAL) sizer_12 = wx.BoxSizer(wx.HORIZONTAL) sizer_2.Add(self.list_job_spool, 8, wx.EXPAND, 0) sizer_11.Add(self.gauge_controller, 0, wx.EXPAND, 0) sizer_12.Add(self.checkbox_limit_buffer, 1, 0, 0) sizer_12.Add(self.text_packet_buffer, 5, 0, 0) label_4 = wx.StaticText(self.panel_controller, wx.ID_ANY, "/") sizer_12.Add(label_4, 0, 0, 0) sizer_12.Add(self.spin_packet_buffer_max, 0, 0, 0) sizer_11.Add(sizer_12, 1, wx.EXPAND, 0) self.panel_controller.SetSizer(sizer_11) sizer_2.Add(self.panel_controller, 0, wx.EXPAND, 0) sizer_3.Add(self.button_writer_control, 1, 0, 0) sizer_3.Add(self.button_controller, 0, 0, 0) sizer_2.Add(sizer_3, 1, wx.EXPAND, 0) sizer_1.Add(sizer_2, 1, wx.EXPAND, 0) self.SetSizer(sizer_1) self.Layout() # end wxGlade def refresh_spooler_list(self): self.list_job_spool.DeleteAllItems() if len(self.project.writer.queue) > 0: pass # This should actually process and update the queue items. for i, e in enumerate(self.project.writer.queue): m = self.list_job_spool.InsertItem(i, "#%d" % i) if m != -1: self.list_job_spool.SetItem(m, 1, str(e)) settings = "" if m == 0: self.list_job_spool.SetItem(m, 2, "Executing") else: self.list_job_spool.SetItem(m, 2, "Queued") self.list_job_spool.SetItem(m, 3, self.project.writer.board) if isinstance(e, PathElement): self.list_job_spool.SetItem(m, 4, "Path") if VARIABLE_NAME_POWER in e.properties: settings += " power=%.0f" % (e.properties[VARIABLE_NAME_POWER]) elif isinstance(e, ImageElement): self.list_job_spool.SetItem(m, 4, "Raster") if VARIABLE_NAME_RASTER_STEP in e.properties: settings += " step=%d" % (e.properties[VARIABLE_NAME_RASTER_STEP]) elif isinstance(e, RawElement): self.list_job_spool.SetItem(m, 4, "Raw") if isinstance(e, LaserElement): if VARIABLE_NAME_SPEED in e.properties: self.list_job_spool.SetItem(m, 5, "%.1fmm/s" % (e.properties[VARIABLE_NAME_SPEED])) self.list_job_spool.SetItem(m, 6, settings) self.list_job_spool.SetItem(m, 7, "n/a") self.list_job_spool.SetItem(m, 8, "unknown") def on_list_drag(self, event): # wxGlade: JobSpooler.<event_handler> event.Skip() def on_item_rightclick(self, event): # wxGlade: JobSpooler.<event_handler> index = event.Index if index == 0: event.Skip() return # We can't delete the running element. try: element = self.project.writer.queue[index] except IndexError: return menu = wx.Menu() convert = menu.Append(wx.ID_ANY, "Remove %s" % str(element)[:16], "", wx.ITEM_NORMAL) self.Bind(wx.EVT_MENU, self.on_tree_popup_delete(element), convert) convert = menu.Append(wx.ID_ANY, "Clear All", "", wx.ITEM_NORMAL) self.Bind(wx.EVT_MENU, self.on_tree_popup_clear(element), convert) self.PopupMenu(menu) menu.Destroy() def on_tree_popup_clear(self, element): def delete(event): self.project.writer.queue = [] self.refresh_spooler_list() return delete def on_tree_popup_delete(self, element): def delete(event): self.project.writer.queue.remove(element) self.refresh_spooler_list() return delete def on_check_limit_packet_buffer(self, event): # wxGlade: JobInfo.<event_handler> self.project.writer.thread.limit_buffer = not self.project.writer.thread.limit_buffer def on_spin_packet_buffer_max(self, event): # wxGlade: JobInfo.<event_handler> if self.project is not None: self.project.writer.thread.buffer_max = self.spin_packet_buffer_max.GetValue() def on_check_auto_start_controller(self, event): # wxGlade: JobInfo.<event_handler> if self.project is not None: self.project.writer.thread.autostart = not self.project.controller.autostart def on_check_home_after(self, event): # wxGlade: JobInfo.<event_handler> if self.project is not None: self.project.writer.thread.autohome = not self.project.writer.thread.autohome def on_check_beep_after(self, event): # wxGlade: JobInfo.<event_handler> if self.project is not None: self.project.writer.thread.autobeep = not self.project.writer.thread.autobeep def on_button_controller(self, event): # wxGlade: JobSpooler.<event_handler> self.project.close_old_window("controller") from Controller import Controller window = Controller(None, wx.ID_ANY, "") window.set_project(self.project) window.Show() self.project.windows["controller"] = window def on_button_start_job(self, event): # wxGlade: JobInfo.<event_handler> state = self.project.writer.thread.state if state == THREAD_STATE_STARTED: self.project.writer.thread.pause() self.set_writer_button_by_state() elif state == THREAD_STATE_PAUSED: self.project.writer.thread.resume() self.set_writer_button_by_state() elif state == THREAD_STATE_UNSTARTED or state == THREAD_STATE_FINISHED: self.project.writer.start_queue_consumer() self.set_writer_button_by_state() elif state == THREAD_STATE_ABORT: self.project("abort", 0) self.project.writer.reset_thread() def set_writer_button_by_state(self): state = self.project.writer.thread.state if state == THREAD_STATE_FINISHED or state == THREAD_STATE_UNSTARTED: self.button_writer_control.SetBackgroundColour("#009900") self.button_writer_control.SetLabel("Start Job") elif state == THREAD_STATE_PAUSED: self.button_writer_control.SetBackgroundColour("#00dd00") self.button_writer_control.SetLabel("Resume Job") elif state == THREAD_STATE_STARTED: self.button_writer_control.SetBackgroundColour("#00ff00") self.button_writer_control.SetLabel("Pause Job") elif state == THREAD_STATE_ABORT: self.button_writer_control.SetBackgroundColour("#00ffff") self.button_writer_control.SetLabel("Manual Reset") def post_update(self): if not self.dirty: self.dirty = True wx.CallAfter(self.post_update_on_gui_thread) def post_update_on_gui_thread(self): if self.project is None: return # left over update on closed window if self.update_buffer_size: self.update_buffer_size = False self.text_packet_buffer.SetValue(str(self.buffer_size)) self.gauge_controller.SetValue(self.buffer_size) self.gauge_controller.SetRange(self.spin_packet_buffer_max.GetValue()) if self.update_writer_state: self.update_writer_state = False self.set_writer_button_by_state() if self.update_spooler: self.update_spooler = False self.refresh_spooler_list() self.dirty = False def on_spooler_update(self, value): self.update_spooler = True self.post_update() def on_buffer_update(self, value): self.update_buffer_size = True self.buffer_size = value self.post_update() def on_writer_state(self, state): self.update_writer_state = True self.post_update()
the-stack_0_18925
BLANK_INIT = True #================== DATASET DATA_FILE = 'data/stroke_rehabilitation-train' DATA_VAL_FILE = 'data/stroke_rehabilitation-val' META_FILE = 'data/stroke_rehabilitation-meta' DATA_TEST_FILE = 'data/stroke_rehabilitation-test' CLASSES = 2 FEATURE_DIM = 66 STATE_DIM = FEATURE_DIM * 2 ACTION_DIM = FEATURE_DIM + CLASSES COLUMN_LABEL = '_label' COLUMN_DROP = ['_count'] META_COSTS = 'cost' META_AVG = 'avg' META_STD = 'std' #================== RL FEATURE_FACTOR = 0.001 REWARD_CORRECT = 0 REWARD_INCORRECT = -1 #================== TRAINING AGENTS = 1000 TRAINING_EPOCHS = 10000 EPOCH_STEPS = 1 EPSILON_START = 0.50 EPSILON_END = 0.05 EPSILON_EPOCHS = 2000 # epsilon will fall to EPSILON_END after EPSILON_EPOCHS EPSILON_UPDATE_EPOCHS = 10 # update epsilon every x epochs #================== LOG from log_states.log_mb import TRACKED_STATES LOG_TRACKED_STATES = TRACKED_STATES LOG_EPOCHS = 100 # states prediction will be logged every LOG_EPOCHS LOG_PERF_EPOCHS = 100 LOG_PERF_VAL_SIZE = 1000 #================== NN BATCH_SIZE = 100000 POOL_SIZE = 500000 NN_FC_DENSITY = 128 NN_HIDDEN_LAYERS = 3 OPT_LR = 1.0e-4 OPT_ALPHA = 0.95 OPT_MAX_NORM = 1.0 # LR scheduling => lower LR by LR_SC_FACTOR every LR_SC_EPOCHS epochs LR_SC_FACTOR = 0.1 LR_SC_EPOCHS = 5000 LR_SC_MIN = 1.0e-7 TARGET_RHO = 0.01 #================== AUX SAVE_EPOCHS = 1000 MAX_MASK_CONST = 1.e6 SEED = 112233
the-stack_0_18926
# # @lc app=leetcode id=186 lang=python3 # # [186] Reverse Words in a String II # # https://leetcode.com/problems/reverse-words-in-a-string-ii/description/ # # algorithms # Medium (42.22%) # Likes: 417 # Dislikes: 96 # Total Accepted: 83.6K # Total Submissions: 197.9K # Testcase Example: '["t","h","e"," ","s","k","y"," ","i","s"," ","b","l","u","e"]' # # Given an input string , reverse the string word by word.  # # Example: # # # Input: ["t","h","e"," ","s","k","y"," ","i","s"," ","b","l","u","e"] # Output: ["b","l","u","e"," ","i","s"," ","s","k","y"," ","t","h","e"] # # Note:  # # # A word is defined as a sequence of non-space characters. # The input string does not contain leading or trailing spaces. # The words are always separated by a single space. # # # Follow up: Could you do it in-place without allocating extra space? # # # @lc code=start def reverse(s, start, end): l = start r = end - 1 while l < r: s[l], s[r] = s[r], s[l] l += 1 r -= 1 class Solution: def reverseWords(self, s: List[str]) -> None: """ Do not return anything, modify s in-place instead. """ s.reverse() start = 0 end = 0 while end < len(s): if s[end] == ' ': reverse(s, start, end) start = end + 1 end += 1 reverse(s, start, end) # @lc code=end
the-stack_0_18927
# Assignment 1 a = 1 b = 2 a, b = b, a print(a, b) ######################################## Cut cells here. # Assignment 2 my_list = [1, 2, 3, 4, 50, 60] first, *other, last = my_list print(first) print(other) print(last) ######################################## Cut cells here. #Assignment 3 x = [[31,17], [40 ,51], [13 ,12]] print(list(zip(*x))) ######################################## Cut cells here. # Assignment 4 import string caesar = {i:a for i, a in enumerate(string.ascii_lowercase)} def decrypt(shift, cipher): deciphered = [caesar[(string.ascii_lowercase.index(k)-shift)%26] for k in cipher] return "".join(deciphered) for shift in range(1, 26): print(f'{shift:2.0f}: {decrypt(shift, "zvsbapvu")}') # A shift of 7 seems most likely
the-stack_0_18930
import pyximport; pyximport.install() from gryphon.lib.exchange.quadriga_btc_cad import QuadrigaBTCCADExchange from gryphon.tests.exceptional.exchange_wrappers.live_orders import LiveOrdersTest class TestQuadrigaLiveOrders(LiveOrdersTest): def __init__(self): super(TestQuadrigaLiveOrders, self).__init__() # Quadriga has a 10 CAD minimum order size. self.order1_price_amount = '10.01' self.order2_price_amount = '10.02' def setUp(self): self.exchange = QuadrigaBTCCADExchange()
the-stack_0_18932
# generation of mails import re from django.utils.html import strip_tags from django.utils.text import wrap from django.conf import settings from django.urls import reverse as urlreverse from ietf.utils.mail import send_mail, send_mail_text from ietf.mailtrigger.utils import gather_address_lists def email_admin_re_charter(request, group, subject, text, mailtrigger): (to,cc) = gather_address_lists(mailtrigger,group=group) full_subject = u"Regarding %s %s: %s" % (group.type.name, group.acronym, subject) text = strip_tags(text) send_mail(request, to, None, full_subject, "group/email_iesg_secretary_re_charter.txt", dict(text=text, group=group, group_url=settings.IDTRACKER_BASE_URL + group.about_url(), charter_url=settings.IDTRACKER_BASE_URL + urlreverse('ietf.doc.views_doc.document_main', kwargs=dict(name=group.charter.name)) if group.charter else "[no charter]", ), cc=cc, ) def email_personnel_change(request, group, text, changed_personnel): (to, cc) = gather_address_lists('group_personnel_change',group=group,changed_personnel=changed_personnel) full_subject = u"Personnel change for %s %s" % (group.acronym,group.type.name) send_mail_text(request, to, None, full_subject, text, cc=cc) def email_milestones_changed(request, group, changes, states): def wrap_up_email(addrs, text): subject = u"Milestones changed for %s %s" % (group.acronym, group.type.name) if re.search("Added .* for review, due",text): subject = u"Review Required - " + subject text = wrap(strip_tags(text), 70) text += "\n\n" text += u"URL: %s" % (settings.IDTRACKER_BASE_URL + group.about_url()) send_mail_text(request, addrs.to, None, subject, text, cc=addrs.cc) # first send to those who should see any edits (such as management and chairs) addrs = gather_address_lists('group_milestones_edited',group=group) if addrs.to or addrs.cc: wrap_up_email(addrs, u"\n\n".join(c + "." for c in changes)) # then send only the approved milestones to those who shouldn't be # bothered with milestones pending approval addrs = gather_address_lists('group_approved_milestones_edited',group=group) msg = u"\n\n".join(c + "." for c,s in zip(changes,states) if not s == "review") if (addrs.to or addrs.cc) and msg: wrap_up_email(addrs, msg)
the-stack_0_18933
def f(a): a = [] for i in range(5): i = i ** 3 a.append(i) yield a # return a def main(): for x in f(5): print(x,) if __name__ == '__main__': main()
the-stack_0_18934
""" Device for Zigbee Home Automation. For more details about this component, please refer to the documentation at https://home-assistant.io/components/zha/ """ import asyncio from enum import Enum import logging from homeassistant.core import callback from homeassistant.helpers.dispatcher import ( async_dispatcher_connect, async_dispatcher_send ) from .const import ( ATTR_MANUFACTURER, POWER_CONFIGURATION_CHANNEL, SIGNAL_AVAILABLE, IN, OUT, ATTR_CLUSTER_ID, ATTR_ATTRIBUTE, ATTR_VALUE, ATTR_COMMAND, SERVER, ATTR_COMMAND_TYPE, ATTR_ARGS, CLIENT_COMMANDS, SERVER_COMMANDS, ATTR_ENDPOINT_ID, IEEE, MODEL, NAME, UNKNOWN, QUIRK_APPLIED, QUIRK_CLASS, ZDO_CHANNEL, MANUFACTURER_CODE, POWER_SOURCE ) from .channels import EventRelayChannel, ZDOChannel _LOGGER = logging.getLogger(__name__) class DeviceStatus(Enum): """Status of a device.""" CREATED = 1 INITIALIZED = 2 class ZHADevice: """ZHA Zigbee device object.""" def __init__(self, hass, zigpy_device, zha_gateway): """Initialize the gateway.""" self.hass = hass self._zigpy_device = zigpy_device # Get first non ZDO endpoint id to use to get manufacturer and model endpoint_ids = zigpy_device.endpoints.keys() self._manufacturer = UNKNOWN self._model = UNKNOWN ept_id = next((ept_id for ept_id in endpoint_ids if ept_id != 0), None) if ept_id is not None: self._manufacturer = zigpy_device.endpoints[ept_id].manufacturer self._model = zigpy_device.endpoints[ept_id].model self._zha_gateway = zha_gateway self.cluster_channels = {} self._relay_channels = {} self._all_channels = [] self._name = "{} {}".format( self.manufacturer, self.model ) self._available = False self._available_signal = "{}_{}_{}".format( self.name, self.ieee, SIGNAL_AVAILABLE) self._unsub = async_dispatcher_connect( self.hass, self._available_signal, self.async_initialize ) from zigpy.quirks import CustomDevice self.quirk_applied = isinstance(self._zigpy_device, CustomDevice) self.quirk_class = "{}.{}".format( self._zigpy_device.__class__.__module__, self._zigpy_device.__class__.__name__ ) self._power_source = None self.status = DeviceStatus.CREATED @property def name(self): """Return device name.""" return self._name @property def ieee(self): """Return ieee address for device.""" return self._zigpy_device.ieee @property def manufacturer(self): """Return manufacturer for device.""" return self._manufacturer @property def model(self): """Return model for device.""" return self._model @property def nwk(self): """Return nwk for device.""" return self._zigpy_device.nwk @property def lqi(self): """Return lqi for device.""" return self._zigpy_device.lqi @property def rssi(self): """Return rssi for device.""" return self._zigpy_device.rssi @property def last_seen(self): """Return last_seen for device.""" return self._zigpy_device.last_seen @property def manufacturer_code(self): """Return manufacturer code for device.""" if ZDO_CHANNEL in self.cluster_channels: return self.cluster_channels.get(ZDO_CHANNEL).manufacturer_code return None @property def power_source(self): """Return the power source for the device.""" if self._power_source is not None: return self._power_source if ZDO_CHANNEL in self.cluster_channels: return self.cluster_channels.get(ZDO_CHANNEL).power_source return None @property def gateway(self): """Return the gateway for this device.""" return self._zha_gateway @property def all_channels(self): """Return cluster channels and relay channels for device.""" return self._all_channels @property def available_signal(self): """Signal to use to subscribe to device availability changes.""" return self._available_signal @property def available(self): """Return True if sensor is available.""" return self._available def set_available(self, available): """Set availability from restore and prevent signals.""" self._available = available def set_power_source(self, power_source): """Set the power source.""" self._power_source = power_source def update_available(self, available): """Set sensor availability.""" if self._available != available and available: # Update the state the first time the device comes online async_dispatcher_send( self.hass, self._available_signal, False ) async_dispatcher_send( self.hass, "{}_{}".format(self._available_signal, 'entity'), available ) self._available = available @property def device_info(self): """Return a device description for device.""" ieee = str(self.ieee) return { IEEE: ieee, ATTR_MANUFACTURER: self.manufacturer, MODEL: self.model, NAME: self.name or ieee, QUIRK_APPLIED: self.quirk_applied, QUIRK_CLASS: self.quirk_class, MANUFACTURER_CODE: self.manufacturer_code, POWER_SOURCE: ZDOChannel.POWER_SOURCES.get(self.power_source) } def add_cluster_channel(self, cluster_channel): """Add cluster channel to device.""" # only keep 1 power configuration channel if cluster_channel.name is POWER_CONFIGURATION_CHANNEL and \ POWER_CONFIGURATION_CHANNEL in self.cluster_channels: return if isinstance(cluster_channel, EventRelayChannel): self._relay_channels[cluster_channel.unique_id] = cluster_channel self._all_channels.append(cluster_channel) else: self.cluster_channels[cluster_channel.name] = cluster_channel self._all_channels.append(cluster_channel) def get_channels_to_configure(self): """Get a deduped list of channels for configuration. This goes through all channels and gets a unique list of channels to configure. It first assembles a unique list of channels that are part of entities while stashing relay channels off to the side. It then takse the stashed relay channels and adds them to the list of channels that will be returned if there isn't a channel in the list for that cluster already. This is done to ensure each cluster is only configured once. """ channel_keys = [] channels = [] relay_channels = self._relay_channels.values() def get_key(channel): channel_key = "ZDO" if hasattr(channel.cluster, 'cluster_id'): channel_key = "{}_{}".format( channel.cluster.endpoint.endpoint_id, channel.cluster.cluster_id ) return channel_key # first we get all unique non event channels for channel in self.all_channels: c_key = get_key(channel) if c_key not in channel_keys and channel not in relay_channels: channel_keys.append(c_key) channels.append(channel) # now we get event channels that still need their cluster configured for channel in relay_channels: channel_key = get_key(channel) if channel_key not in channel_keys: channel_keys.append(channel_key) channels.append(channel) return channels async def async_configure(self): """Configure the device.""" _LOGGER.debug('%s: started configuration', self.name) await self._execute_channel_tasks( self.get_channels_to_configure(), 'async_configure') _LOGGER.debug('%s: completed configuration', self.name) entry = self.gateway.zha_storage.async_create_or_update(self) _LOGGER.debug('%s: stored in registry: %s', self.name, entry) async def async_initialize(self, from_cache=False): """Initialize channels.""" _LOGGER.debug('%s: started initialization', self.name) await self._execute_channel_tasks( self.all_channels, 'async_initialize', from_cache) _LOGGER.debug( '%s: power source: %s', self.name, ZDOChannel.POWER_SOURCES.get(self.power_source) ) self.status = DeviceStatus.INITIALIZED _LOGGER.debug('%s: completed initialization', self.name) async def _execute_channel_tasks(self, channels, task_name, *args): """Gather and execute a set of CHANNEL tasks.""" channel_tasks = [] semaphore = asyncio.Semaphore(3) zdo_task = None for channel in channels: if channel.name == ZDO_CHANNEL: # pylint: disable=E1111 if zdo_task is None: # We only want to do this once zdo_task = self._async_create_task( semaphore, channel, task_name, *args) else: channel_tasks.append( self._async_create_task( semaphore, channel, task_name, *args)) if zdo_task is not None: await zdo_task await asyncio.gather(*channel_tasks) async def _async_create_task(self, semaphore, channel, func_name, *args): """Configure a single channel on this device.""" try: async with semaphore: await getattr(channel, func_name)(*args) _LOGGER.debug('%s: channel: %s %s stage succeeded', self.name, "{}-{}".format( channel.name, channel.unique_id), func_name) except Exception as ex: # pylint: disable=broad-except _LOGGER.warning( '%s channel: %s %s stage failed ex: %s', self.name, "{}-{}".format(channel.name, channel.unique_id), func_name, ex ) async def async_unsub_dispatcher(self): """Unsubscribe the dispatcher.""" if self._unsub: self._unsub() @callback def async_update_last_seen(self, last_seen): """Set last seen on the zigpy device.""" self._zigpy_device.last_seen = last_seen @callback def async_get_clusters(self): """Get all clusters for this device.""" return { ep_id: { IN: endpoint.in_clusters, OUT: endpoint.out_clusters } for (ep_id, endpoint) in self._zigpy_device.endpoints.items() if ep_id != 0 } @callback def async_get_std_clusters(self): """Get ZHA and ZLL clusters for this device.""" from zigpy.profiles import zha, zll return { ep_id: { IN: endpoint.in_clusters, OUT: endpoint.out_clusters } for (ep_id, endpoint) in self._zigpy_device.endpoints.items() if ep_id != 0 and endpoint.profile_id in ( zha.PROFILE_ID, zll.PROFILE_ID ) } @callback def async_get_cluster(self, endpoint_id, cluster_id, cluster_type=IN): """Get zigbee cluster from this entity.""" clusters = self.async_get_clusters() return clusters[endpoint_id][cluster_type][cluster_id] @callback def async_get_cluster_attributes(self, endpoint_id, cluster_id, cluster_type=IN): """Get zigbee attributes for specified cluster.""" cluster = self.async_get_cluster(endpoint_id, cluster_id, cluster_type) if cluster is None: return None return cluster.attributes @callback def async_get_cluster_commands(self, endpoint_id, cluster_id, cluster_type=IN): """Get zigbee commands for specified cluster.""" cluster = self.async_get_cluster(endpoint_id, cluster_id, cluster_type) if cluster is None: return None return { CLIENT_COMMANDS: cluster.client_commands, SERVER_COMMANDS: cluster.server_commands, } async def write_zigbee_attribute(self, endpoint_id, cluster_id, attribute, value, cluster_type=IN, manufacturer=None): """Write a value to a zigbee attribute for a cluster in this entity.""" cluster = self.async_get_cluster(endpoint_id, cluster_id, cluster_type) if cluster is None: return None from zigpy.exceptions import DeliveryError try: response = await cluster.write_attributes( {attribute: value}, manufacturer=manufacturer ) _LOGGER.debug( 'set: %s for attr: %s to cluster: %s for entity: %s - res: %s', value, attribute, cluster_id, endpoint_id, response ) return response except DeliveryError as exc: _LOGGER.debug( 'failed to set attribute: %s %s %s %s %s', '{}: {}'.format(ATTR_VALUE, value), '{}: {}'.format(ATTR_ATTRIBUTE, attribute), '{}: {}'.format(ATTR_CLUSTER_ID, cluster_id), '{}: {}'.format(ATTR_ENDPOINT_ID, endpoint_id), exc ) return None async def issue_cluster_command(self, endpoint_id, cluster_id, command, command_type, args, cluster_type=IN, manufacturer=None): """Issue a command against specified zigbee cluster on this entity.""" cluster = self.async_get_cluster(endpoint_id, cluster_id, cluster_type) if cluster is None: return None response = None if command_type == SERVER: response = await cluster.command(command, *args, manufacturer=manufacturer, expect_reply=True) else: response = await cluster.client_command(command, *args) _LOGGER.debug( 'Issued cluster command: %s %s %s %s %s %s %s', '{}: {}'.format(ATTR_CLUSTER_ID, cluster_id), '{}: {}'.format(ATTR_COMMAND, command), '{}: {}'.format(ATTR_COMMAND_TYPE, command_type), '{}: {}'.format(ATTR_ARGS, args), '{}: {}'.format(ATTR_CLUSTER_ID, cluster_type), '{}: {}'.format(ATTR_MANUFACTURER, manufacturer), '{}: {}'.format(ATTR_ENDPOINT_ID, endpoint_id) ) return response
the-stack_0_18935
from datetime import datetime from tests import PyResTests import pyres.json_parser as json class JSONTests(PyResTests): def test_encode_decode_date(self): dt = datetime(1972, 1, 22); encoded = json.dumps({'dt': dt}) decoded = json.loads(encoded) assert decoded['dt'] == dt def test_dates_in_lists(self): dates = [datetime.now() for i in range(50)] decoded = json.loads(json.dumps(dates)) for value in dates: assert isinstance(value, datetime) def test_dates_in_dict(self): dates = dict((i, datetime.now()) for i in range(50)) decoded = json.loads(json.dumps(dates)) for i, value in dates.items(): assert isinstance(i, int) assert isinstance(value, datetime)
the-stack_0_18936
""" The tsnet.network.discretize contains methods to perform spatial and temporal discretization by adjusting wave speed and time step to solve compatibility equations in case of uneven wave travel time. """ from __future__ import print_function import numpy as np def discretization(tm, dt): """Discretize in temporal and spatial space using wave speed adjustment scheme. Parameters ---------- tm : tsnet.network.geometry.TransientModel Network dt : float User defined time step Returns ------- tm : tsnet.network.geometry.TransientModel Network with updated parameters """ max_dt = max_time_step(tm) if dt > max_dt: raise ValueError("time step is too large. Please define \ a time step that is less than %.5f " %max_dt) else : Ndis = cal_N(tm, dt) # add number of segments as a new attribute to each pipe i = 0 for _, pipe in tm.pipes(): pipe.number_of_segments = int(Ndis[i]) i+=1 # adjust wave speed and calculate time step tm = adjust_wavev(tm) return tm def max_time_step(tm): """Determine the maximum time step based on Courant's criteria. Parameters ---------- tm : tsnet.network.geometry.TransientModel Network Returns ------- max_dt : float Maximum time step allowed for this network """ max_dt = np.inf for _, pipe in tm.pipes(): dt = pipe.length / (2. * pipe.wavev) if max_dt > dt : max_dt = dt #- 0.001 # avoid numerical issue which cause N = 0 return max_dt def discretization_N(tm, dt): """Discretize in temporal and spatial space using wave speed adjustment scheme. Parameters ---------- tm : tsnet.network.geometry.TransientModel Network dt : float User defined time step Returns ------- tm : tsnet.network.geometry.TransientModel Network with updated parameters """ Ndis = cal_N(tm, dt) # add number of segments as a new attribute to each pipe i = 0 for _, pipe in tm.pipes(): pipe.number_of_segments = int(Ndis[i]) i+=1 # adjust wave speed and calculate time step tm = adjust_wavev(tm) return tm def max_time_step_N(tm, N): """Determine the maximum time step based on Courant's criteria. Parameters ---------- tm : tsnet.network.geometry.TransientModel Network Returns ------- max_dt : float Maximum time step allowed for this network """ max_dt = np.inf for _, pipe in tm.pipes(): dt = pipe.length / (N * pipe.wavev) if max_dt > dt : max_dt = dt #- 1e-5 # avoid numerical issue which cause N = 0 return max_dt def cal_N(tm, dt): """Determine the number of computation unites ($N_i$) for each pipes. Parameters ---------- tm : tsnet.network.geometry.TransientModel Network dt : float Time step for transient simulation """ N = np.zeros((tm.num_pipes,1)) for _, pipe in tm.pipes() : # N[int(pipe.id)-1] = int(2*np.int(pipe.length/ (2. * pipe.wavev *dt))) N[int(pipe.id)-1] = round(np.int(pipe.length/ (pipe.wavev *dt))) return N def adjust_wavev(tm): """Adjust wave speed and time step to solve compatibility equations. Parameters ---------- tm : tsnet.network.geometry.TransientModel Network Returns ------- tm : tsnet.network.geometry.TransientModel Network with adjusted wave speed. dt : float Adjusted time step """ from numpy import transpose as trans phi = [np.longdouble(pipe.length / pipe.wavev / pipe.number_of_segments) for _, pipe in tm.pipes()] phi = np.array(phi).reshape((len(phi), 1)) tm.wavespeed_adj = np.sum(phi**2) theta = np.longdouble(1/ np.matmul(trans(phi), phi) * \ np.matmul(trans(phi), np.ones((len(phi), 1)))) # adjust time step dt = np.float64(1/theta) # adjust the wave speed of each links for _, pipe in tm.pipes(): pipe.wavev = np.float64(pipe.wavev * phi[int(pipe.id)-1] * theta) # set time step as a new attribute to TransientModel tm.time_step =dt return tm
the-stack_0_18939
#! /usr/bin/env python """Script to """ from __future__ import print_function import os import sys import argparse from bdb import BdbQuit try: from pysyte.types.paths import pwd except ImportError: from pysyte.types.paths import pwd __version__ = '0.1.0' class ScriptError(NotImplementedError): pass def run_args(args, methods): """Run any methods eponymous with args""" if not args: return False valuable_args = {k for k, v in args.__dict__.items() if v} arg_methods = {methods[a] for a in valuable_args if a in methods} for method in arg_methods: method(args) def version(args): print('%s %s' % (args, __version__)) raise SystemExit def parse_args(methods): """Parse out command line arguments""" parser = argparse.ArgumentParser(description=__doc__.splitlines()[0]) parser.add_argument('items', metavar='items', type=str, nargs='+', help='some items') parser.add_argument('-s', '--short', action='store_true', help='The shorter of absolute or relative path') parser.add_argument('-v', '--version', action='store_true', help='Show version') args = parser.parse_args() run_args(args, methods) return args def script(args): p = pwd() method = p.short_relative_path_to if args.short else p.relpathto print(method(' '.join(args.items))) return True def main(): """Run the script""" try: args = parse_args(globals()) return os.EX_OK if script(args) else not os.EX_OK except BdbQuit: pass except SystemExit as e: return e.code return os.EX_OK if __name__ == '__main__': sys.exit(main())
the-stack_0_18940
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Hyperparameters defining different problems. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os # Dependency imports from tensor2tensor.data_generators import text_encoder from tensor2tensor.models import modalities # pylint: disable=unused-import from tensor2tensor.utils import registry import tensorflow as tf def problem_hparams(problem_name, model_hparams): """Generate problem hyperparameters based on problem name. Args: problem_name: a string model_hparams: a tf.contrib.training.HParams Returns: a tf.contrib.training.HParams Raises: ValueError: if problem_name is unknown. """ base_name, was_reversed, was_copy = parse_problem_name(problem_name) p = _lookup_problem_hparams_fn(base_name)(model_hparams) if was_reversed: _reverse_problem_hparams(p) if "image_cifar10" in base_name: p.loss_multiplier = 1. if was_copy: _copy_problem_hparams(p) return p def parse_problem_name(problem_name): """Determines if problem_name specifies a copy and/or reversal. Args: problem_name: A string containing a single problem name from FLAGS.problems. Returns: base_name: A string with the base problem name. was_reversed: A boolean. was_copy: A boolean. """ # Recursively strip tags until we reach a base name. if len(problem_name) > 4 and problem_name[-4:] == "_rev": base, _, was_copy = parse_problem_name(problem_name[:-4]) return base, True, was_copy elif len(problem_name) > 5 and problem_name[-5:] == "_copy": base, was_reversed, _ = parse_problem_name(problem_name[:-5]) return base, was_reversed, True else: return problem_name, False, False def _lookup_problem_hparams_fn(name): if name not in PROBLEM_HPARAMS_MAP: map_str = "* " + "\n* ".join(sorted(PROBLEM_HPARAMS_MAP.keys())) error_msg = "%s not in the supported set of problems:\n%s" % (name, map_str) raise ValueError(error_msg) return PROBLEM_HPARAMS_MAP.get(name) def _copy_problem_hparams(p_hparams): """Use input modality, vocab, and space id for target.""" p = p_hparams # Duplicate input modality. p.target_modality = p.input_modality["inputs"] # Duplicate input vocabulary. p.vocabulary["targets"] = p.vocabulary["inputs"] # Duplicate input space ids. p.target_space_id = p.input_space_id # Mark that p was reversed. p.was_copy = True def _reverse_problem_hparams(p_hparams): """Swap input/output modalities, vocab, and space ids.""" p = p_hparams # Swap modalities. input_modality = p.input_modality["inputs"] target_modality = p.target_modality p.input_modality["inputs"] = target_modality p.target_modality = input_modality # Swap vocabularies. input_vocabulary = p.vocabulary["inputs"] target_vocabulary = p.vocabulary["targets"] p.vocabulary["inputs"] = target_vocabulary p.vocabulary["targets"] = input_vocabulary # Swap input/target space ids. input_space_id = p.input_space_id target_space_id = p.target_space_id p.input_space_id = target_space_id p.target_space_id = input_space_id # Mark that p was reversed. p.was_reversed = True def default_problem_hparams(): """A set of basic model hyperparameters.""" return tf.contrib.training.HParams( # Use this parameter to get comparable perplexity numbers with different # tokenizations. This value should be set to the ratio of the number of # tokens in the test set according to the tokeization used to the number # of tokens in the test set in the "official" tokenization. For example, # if we are using a word-piece based model and we want to compute # per-word perplexity, then we set loss_multiplier to the number of # wordpieces per word in the test set. loss_multiplier=1.0, # Use this parameter to allow for larger sequences in the batch. Without # the use of this parameter, the size of the inner two dimensions will be # used to judge the sequence length. batch_size_multiplier=1, # To make queues of the right capacity, it's good to know the maximal # expected batch size, as it can vary a lot. It only affects performance # of input readers and memory use. The defaults should be safe and fast, # but decrease if your reader uses a lot of memory and increase if slow. max_expected_batch_size_per_shard=64, # Modalities used to map from input features to a space compatible with # chosen model architecture. One modality spec (which is a 2-tuple, # (modality_full_name, vocab_size)) per feature key. modality_full_name is # a string type:name, e.g. class_label:class_label_2d. Leaving off the # name uses the default modality for that type (e.g. class_label == # class_label:default). input_modality={}, # Modality used to map from hidden representation to the target space. # Specified as a modality spec, a 2-tuple described above. target_modality=None, # Identifiers used to tell the model which input/target space will be # expected. For example, it can tell that we expect French as characters # as output, or Spanish as sound. An integer with the following semantics: # 0: Generic / unknown output space (default) # 1: Image labels # 2: English characters # 3: English tokens # 4: English bpe tokens # 5: French characters # 6: French tokens # 7: German characters # 8: German tokens # 9: German bpe tokens # 10: Digit cipher lexicon 0 # 11: Digit cipher lexicon 1 # 12: Audio waveform domain # 13: Audio spectral domain # 14: Parse characters # 15: Parse tokens # Add more above if needed. input_space_id=0, target_space_id=0, # Vocabulary per feature key. # a vocabulary converts to/from human-readable strings. # E.g. {"inputs": text_encoder.ByteTextEncoder(), # "targets": text_encoder.SubwordTextEncoder("vocab_filename.txt")} vocabulary={ "inputs": text_encoder.TextEncoder(), "targets": text_encoder.TextEncoder() }, # This is a marker to keep track if the problem was reversed or copied. # Only set automatically, do not override the default. # # These tags can be combined in order to perform copies of the input or # the targets. For instance `problem_copy` will copy the inputs, but # `problem_rev_copy` will copy the targets. was_reversed=False, was_copy=False,) def test_problem_hparams(unused_model_hparams, input_vocab_size, target_vocab_size): """Problem hparams for testing model bodies.""" p = default_problem_hparams() p.input_modality = {"inputs": (registry.Modalities.SYMBOL, input_vocab_size)} p.target_modality = (registry.Modalities.SYMBOL, target_vocab_size) p.vocabulary = { "inputs": text_encoder.TextEncoder(), "targets": text_encoder.TextEncoder() } return p def algorithmic(vocab_size, unused_model_hparams): """Default parameters for algorithmic tasks.""" p = default_problem_hparams() p.input_modality = {"inputs": (registry.Modalities.SYMBOL, vocab_size)} p.target_modality = (registry.Modalities.SYMBOL, vocab_size) p.vocabulary = { "inputs": text_encoder.TextEncoder(), "targets": text_encoder.TextEncoder(), } p.input_space_id = 10 p.target_space_id = 11 return p def audio_timit_characters(unused_model_hparams): """English audio transcription benchmark.""" p = default_problem_hparams() p.input_modality = { "inputs": (registry.Modalities.AUDIO, None), } p.target_modality = (registry.Modalities.SYMBOL, 256) p.vocabulary = { "inputs": text_encoder.TextEncoder(), "targets": text_encoder.ByteTextEncoder(), } p.batch_size_multiplier = 256 p.loss_multiplier = 2.0 p.input_space_id = 12 p.target_space_id = 2 return p def audio_timit_tokens(model_hparams, wrong_vocab_size): """English audio transcription benchmark. Args: model_hparams: a tf.contrib.training.HParams wrong_vocab_size: a number used in the filename indicating the approximate vocabulary size. This is not to be confused with the actual vocabulary size. Returns: a tf.contrib.training.HParams """ p = default_problem_hparams() # This vocab file must be present within the data directory. vocab_filename = os.path.join(model_hparams.data_dir, "tokens.vocab.%d" % wrong_vocab_size) subtokenizer = text_encoder.SubwordTextEncoder(vocab_filename) p.input_modality = { "inputs": (registry.Modalities.AUDIO, None), } p.target_modality = (registry.Modalities.SYMBOL, subtokenizer.vocab_size) p.vocabulary = { "inputs": text_encoder.TextEncoder(), "targets": subtokenizer, } p.batch_size_multiplier = 256 p.loss_multiplier = 2.0 p.input_space_id = 13 p.target_space_id = 3 return p def audio_wsj_characters(unused_model_hparams): """English audio transcription benchmark.""" p = default_problem_hparams() p.input_modality = { "inputs": (registry.Modalities.AUDIO, None), } p.target_modality = (registry.Modalities.SYMBOL, 256) p.vocabulary = { "inputs": text_encoder.TextEncoder(), "targets": text_encoder.ByteTextEncoder(), } p.batch_size_multiplier = 512 p.loss_multiplier = 2.0 p.input_space_id = 13 p.target_space_id = 2 return p def audio_wsj_tokens(model_hparams, wrong_vocab_size): """English audio transcription benchmark. Args: model_hparams: a tf.contrib.training.HParams wrong_vocab_size: a number used in the filename indicating the approximate vocabulary size. This is not to be confused with the actual vocabulary size. Returns: a tf.contrib.training.HParams """ p = default_problem_hparams() # This vocab file must be present within the data directory. vocab_filename = os.path.join(model_hparams.data_dir, "tokens.vocab.%d" % wrong_vocab_size) subtokenizer = text_encoder.SubwordTextEncoder(vocab_filename) p.input_modality = { "inputs": (registry.Modalities.AUDIO, None), } p.target_modality = (registry.Modalities.SYMBOL, subtokenizer.vocab_size) p.vocabulary = { "inputs": text_encoder.TextEncoder(), "targets": subtokenizer, } p.batch_size_multiplier = 512 p.loss_multiplier = 2.0 p.input_space_id = 12 p.target_space_id = 3 return p def lm1b_16k(model_hparams): """Billion-word language-modeling benchmark, 16k subtoken vocabulary.""" p = default_problem_hparams() p.perplexity_exponent = 1.184206 p.input_modality = {} p.target_modality = (registry.Modalities.SYMBOL, 16384) p.vocabulary = { "targets": text_encoder.SubwordTextEncoder( os.path.join(model_hparams.data_dir, "lm1b_16k.subword_text_encoder")) } p.target_space_id = 3 return p def lm1b_64k(model_hparams): """Billion-word language-modeling benchmark, 64k subtoken vocabulary.""" p = default_problem_hparams() p.perplexity_exponent = 1.067068 p.input_modality = {} p.target_modality = (registry.Modalities.SYMBOL, 65536) p.vocabulary = { "targets": text_encoder.SubwordTextEncoder( os.path.join(model_hparams.data_dir, "lm1b_64k.subword_text_encoder")) } p.target_space_id = 3 return p def lmptb_10k(model_hparams): """Penn Tree Bank language-modeling benchmark, 10k token vocabulary.""" p = default_problem_hparams() p.input_modality = {} p.target_modality = (registry.Modalities.SYMBOL, 10000) vocabulary = text_encoder.TokenTextEncoder( os.path.join(model_hparams.data_dir, "lmptb_10k.vocab")) p.vocabulary = { "targets": vocabulary, } p.input_space_id = 3 p.target_space_id = 3 return p def wmt_enfr_characters(unused_model_hparams): """English to French translation benchmark.""" p = default_problem_hparams() p.input_modality = {"inputs": (registry.Modalities.SYMBOL, 256)} p.target_modality = (registry.Modalities.SYMBOL, 256) p.vocabulary = { "inputs": text_encoder.ByteTextEncoder(), "targets": text_encoder.ByteTextEncoder(), } p.loss_multiplier = 2.0 p.input_space_id = 2 p.target_space_id = 5 return p def wmt_enfr_tokens(model_hparams, wrong_vocab_size): """English to French translation benchmark. Args: model_hparams: a tf.contrib.training.HParams wrong_vocab_size: a number used in the filename indicating the approximate vocabulary size. This is not to be confused with the actual vocabulary size. Returns: a tf.contrib.training.HParams """ p = default_problem_hparams() # This vocab file must be present within the data directory. vocab_filename = os.path.join(model_hparams.data_dir, "tokens.vocab.%d" % wrong_vocab_size) subtokenizer = text_encoder.SubwordTextEncoder(vocab_filename) p.input_modality = { "inputs": (registry.Modalities.SYMBOL, subtokenizer.vocab_size) } p.target_modality = (registry.Modalities.SYMBOL, subtokenizer.vocab_size) p.vocabulary = { "inputs": subtokenizer, "targets": subtokenizer, } p.input_space_id = 3 p.target_space_id = 6 return p def wmt_ende_bpe32k(model_hparams): """English to German translation benchmark.""" p = default_problem_hparams() vocab_size = 40960 modality_spec = (registry.Modalities.SYMBOL, vocab_size) p.input_modality = {"inputs": modality_spec} p.target_modality = modality_spec # This vocab file must be present within the data directory. vocab_filename = os.path.join(model_hparams.data_dir, "vocab.bpe.32000") p.vocabulary = { "inputs": text_encoder.TokenTextEncoder(vocab_filename=vocab_filename), "targets": text_encoder.TokenTextEncoder(vocab_filename=vocab_filename), } p.loss_multiplier = 1.4 p.input_space_id = 4 p.target_space_id = 9 return p def wmt_ende_characters(unused_model_hparams): """English to German translation benchmark.""" p = default_problem_hparams() p.input_modality = {"inputs": (registry.Modalities.SYMBOL, 256)} p.target_modality = (registry.Modalities.SYMBOL, 256) p.vocabulary = { "inputs": text_encoder.ByteTextEncoder(), "targets": text_encoder.ByteTextEncoder(), } p.loss_multiplier = 2.0 p.input_space_id = 2 p.target_space_id = 7 return p def wmt_ende_tokens(model_hparams, wrong_vocab_size): """English to German translation benchmark.""" p = default_problem_hparams() # This vocab file must be present within the data directory. vocab_filename = os.path.join(model_hparams.data_dir, "tokens.vocab.%d" % wrong_vocab_size) subtokenizer = text_encoder.SubwordTextEncoder(vocab_filename) p.input_modality = { "inputs": (registry.Modalities.SYMBOL, subtokenizer.vocab_size) } p.target_modality = (registry.Modalities.SYMBOL, subtokenizer.vocab_size) p.vocabulary = { "inputs": subtokenizer, "targets": subtokenizer, } p.input_space_id = 3 p.target_space_id = 8 return p def wmt_ende_v2(model_hparams, vocab_size): """English to German translation benchmark with separate vocabularies.""" p = default_problem_hparams() # These vocab files must be present within the data directory. source_vocab_filename = os.path.join(model_hparams.data_dir, "wmt_ende_v2.en.vocab.%d" % vocab_size) target_vocab_filename = os.path.join(model_hparams.data_dir, "wmt_ende_v2.de.vocab.%d" % vocab_size) p.input_modality = {"inputs": (registry.Modalities.SYMBOL, vocab_size)} p.target_modality = (registry.Modalities.SYMBOL, vocab_size) p.vocabulary = { "inputs": text_encoder.SubwordTextEncoder(source_vocab_filename), "targets": text_encoder.SubwordTextEncoder(target_vocab_filename), } p.input_space_id = 3 p.target_space_id = 8 return p def wmt_concat(model_hparams, wrong_vocab_size): """English to German translation benchmark.""" p = default_problem_hparams() # This vocab file must be present within the data directory. vocab_filename = os.path.join(model_hparams.data_dir, "tokens.vocab.%d" % wrong_vocab_size) subtokenizer = text_encoder.SubwordTextEncoder(vocab_filename) vocab_size = subtokenizer.vocab_size p.input_modality = {} p.target_modality = (registry.Modalities.SYMBOL, vocab_size) p.vocabulary = {"targets": subtokenizer} return p def wmt_parsing_characters(unused_model_hparams): """English to parse tree translation benchmark.""" p = default_problem_hparams() p.input_modality = {"inputs": (registry.Modalities.SYMBOL, 256)} p.target_modality = (registry.Modalities.SYMBOL, 256) p.vocabulary = { "inputs": text_encoder.ByteTextEncoder(), "targets": text_encoder.ByteTextEncoder(), } p.loss_multiplier = 2.0 p.input_space_id = 2 p.target_space_id = 14 return p def wmt_parsing_tokens(model_hparams, wrong_vocab_size): """English to parse tree translation benchmark. Args: model_hparams: a tf.contrib.training.HParams wrong_vocab_size: a number used in the filename indicating the approximate vocabulary size. This is not to be confused with the actual vocabulary size. Returns: a tf.contrib.training.HParams """ p = default_problem_hparams() # This vocab file must be present within the data directory. vocab_filename = os.path.join(model_hparams.data_dir, "tokens.vocab.%d" % wrong_vocab_size) subtokenizer = text_encoder.SubwordTextEncoder(vocab_filename) p.input_modality = { "inputs": (registry.Modalities.SYMBOL, subtokenizer.vocab_size) } p.target_modality = (registry.Modalities.SYMBOL, subtokenizer.vocab_size) p.vocabulary = { "inputs": subtokenizer, "targets": subtokenizer, } p.input_space_id = 3 p.target_space_id = 15 return p def wsj_parsing_tokens(model_hparams, wrong_source_vocab_size, wrong_target_vocab_size): """English to parse tree translation benchmark. Args: model_hparams: a tf.contrib.training.HParams wrong_source_vocab_size: a number used in the filename indicating the approximate vocabulary size. This is not to be confused with the actual vocabulary size. wrong_target_vocab_size: a number used in the filename indicating the approximate target vocabulary size. This is not to be confused with the actual target vocabulary size. Returns: a tf.contrib.training.HParams """ p = default_problem_hparams() # This vocab file must be present within the data directory. source_vocab_filename = os.path.join( model_hparams.data_dir, "wsj_source.tokens.vocab.%d" % wrong_source_vocab_size) target_vocab_filename = os.path.join( model_hparams.data_dir, "wsj_target.tokens.vocab.%d" % wrong_target_vocab_size) source_subtokenizer = text_encoder.SubwordTextEncoder(source_vocab_filename) target_subtokenizer = text_encoder.SubwordTextEncoder(target_vocab_filename) p.input_modality = { "inputs": (registry.Modalities.SYMBOL, source_subtokenizer.vocab_size) } p.target_modality = (registry.Modalities.SYMBOL, target_subtokenizer.vocab_size) p.vocabulary = { "inputs": source_subtokenizer, "targets": target_subtokenizer, } p.input_space_id = 3 p.target_space_id = 15 return p def image_cifar10(unused_model_hparams): """CIFAR-10.""" p = default_problem_hparams() p.input_modality = { "inputs": ("%s:small_image_modality" % registry.Modalities.IMAGE, None) } p.target_modality = (registry.Modalities.CLASS_LABEL, 10) p.batch_size_multiplier = 4 p.max_expected_batch_size_per_shard = 8 p.loss_multiplier = 3.0 p.input_space_id = 1 p.target_space_id = 1 return p def image_mnist(unused_model_hparams): """MNIST.""" p = default_problem_hparams() p.input_modality = {"inputs": (registry.Modalities.SYMBOL, 256)} p.target_modality = (registry.Modalities.CLASS_LABEL, 10) p.batch_size_multiplier = 4 p.max_expected_batch_size_per_shard = 8 p.loss_multiplier = 3.0 p.input_space_id = 1 p.target_space_id = 1 return p def image_imagenet(model_hparams): """ImageNet.""" p = default_problem_hparams() p.input_modality = { "inputs": (registry.Modalities.IMAGE, None), } target_modality = ("%s:class_label_2d" % registry.Modalities.CLASS_LABEL if model_hparams.imagenet_use_2d else registry.Modalities.CLASS_LABEL) p.target_modality = (target_modality, 1000) p.batch_size_multiplier = 256 p.max_expected_batch_size_per_shard = 2 p.loss_multiplier = 0.7 p.input_space_id = 1 p.target_space_id = 1 return p def image_mscoco_characters(unused_model_hparams): """COCO image captioning with captions as characters.""" p = default_problem_hparams() p.input_modality = {"inputs": (registry.Modalities.IMAGE, None)} p.target_modality = (registry.Modalities.SYMBOL, 256) p.vocabulary = { "inputs": text_encoder.TextEncoder(), "targets": text_encoder.ByteTextEncoder(), } p.batch_size_multiplier = 128 p.max_expected_batch_size_per_shard = 2 p.loss_multiplier = 2.0 p.input_space_id = 1 p.target_space_id = 2 return p def image_mscoco_tokens(model_hparams, vocab_count): """COCO image captioning with captions as tokens.""" p = default_problem_hparams() p.input_modality = {"inputs": (registry.Modalities.IMAGE, None)} # This vocab file must be present within the data directory. vocab_filename = os.path.join(model_hparams.data_dir, "tokens.vocab.%d" % vocab_count) subtokenizer = text_encoder.SubwordTextEncoder(vocab_filename) p.target_modality = (registry.Modalities.SYMBOL, subtokenizer.vocab_size) p.vocabulary = { "inputs": text_encoder.TextEncoder(), "targets": subtokenizer, } p.batch_size_multiplier = 256 p.max_expected_batch_size_per_shard = 2 p.input_space_id = 1 p.target_space_id = 3 return p # Dictionary of named hyperparameter settings for various problems. # This is only accessed through the problem_hparams function below. PROBLEM_HPARAMS_MAP = { "algorithmic_addition_binary40": lambda p: algorithmic(4, p), "algorithmic_addition_decimal40": lambda p: algorithmic(12, p), "algorithmic_identity_binary40": lambda p: algorithmic(4, p), "algorithmic_identity_decimal40": lambda p: algorithmic(12, p), "algorithmic_multiplication_binary40": lambda p: algorithmic(4, p), "algorithmic_multiplication_decimal40": lambda p: algorithmic(12, p), "algorithmic_reverse_binary40": lambda p: algorithmic(4, p), "algorithmic_reverse_decimal40": lambda p: algorithmic(12, p), "algorithmic_reverse_nlplike_decimal8K": lambda p: algorithmic(8002, p), "algorithmic_reverse_nlplike_decimal32K": lambda p: algorithmic(32002, p), "algorithmic_shift_decimal40": lambda p: algorithmic(22, p), "audio_timit_characters_tune": audio_timit_characters, "audio_timit_characters_test": audio_timit_characters, "audio_timit_tokens_8k_tune": lambda p: audio_timit_tokens(p, 2**13), "audio_timit_tokens_8k_test": lambda p: audio_timit_tokens(p, 2**13), "audio_wsj_characters_tune": audio_wsj_characters, "audio_wsj_characters_test": audio_wsj_characters, "audio_wsj_tokens_8k_tune": lambda p: audio_wsj_tokens(p, 2**13), "audio_wsj_tokens_8k_test": lambda p: audio_wsj_tokens(p, 2**13), "lm1b_16k": lm1b_16k, "lm1b_64k": lm1b_64k, "lmptb_10k": lmptb_10k, "wmt_parsing_characters": wmt_parsing_characters, "wmt_parsing_tokens_8k": lambda p: wmt_parsing_tokens(p, 2**13), "wsj_parsing_tokens_16k": lambda p: wsj_parsing_tokens(p, 2**14, 2**9), "wsj_parsing_tokens_32k": lambda p: wsj_parsing_tokens(p, 2**15, 2**9), "wmt_enfr_characters": wmt_enfr_characters, "wmt_enfr_tokens_8k": lambda p: wmt_enfr_tokens(p, 2**13), "wmt_enfr_tokens_32k": lambda p: wmt_enfr_tokens(p, 2**15), "wmt_enfr_tokens_32k_shuffled": lambda p: wmt_enfr_tokens(p, 2**15), "wmt_enfr_tokens_32k_combined": lambda p: wmt_enfr_tokens(p, 2**15), "wmt_enfr_tokens_128k": lambda p: wmt_enfr_tokens(p, 2**17), # bytes per subtoken: 3.267350 "wmt_ende_concat_8k": lambda p: wmt_concat(p, 2**13), # bytes per subtoken: 4.236272 "wmt_ende_concat_32k": lambda p: wmt_concat(p, 2**15), "wmt_ende_characters": wmt_ende_characters, "wmt_ende_tokens_8k": lambda p: wmt_ende_tokens(p, 2**13), "wmt_ende_tokens_32k": lambda p: wmt_ende_tokens(p, 2**15), "wmt_ende_tokens_128k": lambda p: wmt_ende_tokens(p, 2**17), # bytes per subtoken: 4.59291664162 "wmt_ende_bpe32k": wmt_ende_bpe32k, "wmt_ende_bpe32k_shuffled": wmt_ende_bpe32k, "wmt_ende_bpe32k_combined": wmt_ende_bpe32k, "wmt_ende_bpe32k_160": wmt_ende_bpe32k, "wmt_ende_v2_32k_combined": lambda p: wmt_ende_v2(p, 2**15), "wmt_ende_v2_16k_combined": lambda p: wmt_ende_v2(p, 2**14), "image_cifar10_tune": image_cifar10, "image_cifar10_test": image_cifar10, "image_mnist_tune": image_mnist, "image_mnist_test": image_mnist, "image_mscoco_characters_tune": image_mscoco_characters, "image_mscoco_characters_test": image_mscoco_characters, "image_mscoco_tokens_8k_tune": lambda p: image_mscoco_tokens(p, 2**13), "image_mscoco_tokens_8k_test": lambda p: image_mscoco_tokens(p, 2**13), "image_mscoco_tokens_32k_tune": lambda p: image_mscoco_tokens(p, 2**15), "image_mscoco_tokens_32k_test": lambda p: image_mscoco_tokens(p, 2**15), "image_mscoco_tokens_128k_tune": lambda p: image_mscoco_tokens(p, 2**17), "image_mscoco_tokens_128k_test": lambda p: image_mscoco_tokens(p, 2**17), "image_imagenet": image_imagenet, }
the-stack_0_18941
import csv from pathlib import Path from leaguesettings import LeagueSettings from match import MatchDetails from match_maker import TicketSystem from paths import LeagueDir from ranking_system import RankingSystem from settings import PersistentSettings settings = PersistentSettings.load() ld = LeagueDir(Path(settings.league_dir_raw)) league_settings = LeagueSettings.load(ld) times = ["00000000000000"] + [path.name[:14] for path in list(ld.rankings.iterdir())] rankings = RankingSystem.all(ld) tickets = TicketSystem.all(ld, league_settings) bots = sorted(rankings[-1].ratings.keys()) matches = MatchDetails.all(ld) # Tickets with open(ld.stats / "tickets.csv", 'w', newline="") as csvfile_match: writer_match = csv.writer(csvfile_match) # Header writer_match.writerow(["time"] + bots) for time, ticket in zip(times, tickets): writer_match.writerow([time] + [float(ticket.get_ensured(bot)) for bot in bots]) # Rankings with open(ld.stats / "mmr.csv", 'w', newline="") as csvfile_mmr: with open(ld.stats / "mmr_mu.csv", 'w', newline="") as csvfile_mu: with open(ld.stats / "mmr_sigma.csv", 'w', newline="") as csvfile_sigma: writer_mmr = csv.writer(csvfile_mmr) writer_mu = csv.writer(csvfile_mu) writer_sigma = csv.writer(csvfile_sigma) # Header writer_mmr.writerow(["time"] + bots) writer_mu.writerow(["time"] + bots) writer_sigma.writerow(["time"] + bots) for time, rank in zip(times, rankings): writer_mmr.writerow([time] + [rank.get_mmr(bot) for bot in bots]) writer_mu.writerow([time] + [rank.get(bot).mu for bot in bots]) writer_sigma.writerow([time] + [rank.get(bot).sigma for bot in bots]) # Matches with open(ld.stats / "match.csv", 'w', newline="") as csvfile_match: with open(ld.stats / "bot_stats.csv", 'w', newline="") as csvfile_bot_stats: writer_match = csv.writer(csvfile_match) writer_bot_stats = csv.writer(csvfile_bot_stats) # Header writer_match.writerow([ "time", "blue_bot_1", "blue_bot_2", "blue_bot_3", "orange_bot_1", "orange_bot_2", "orange_bot_3", "map", "replay_id", "blue_goals", "orange_goals" ]) writer_bot_stats.writerow([ "time", "bot", "points", "goals", "shots", "saves", "assists", "demolitions", "own_goals", ]) for match in matches: writer_match.writerow([ match.time_stamp, match.blue[0], match.blue[1], match.blue[2], match.orange[0], match.orange[1], match.orange[2], match.map, match.replay_id, match.result.blue_goals, match.result.orange_goals, ]) for bot, stats in match.result.player_scores.items(): writer_bot_stats.writerow([ match.time_stamp, bot, stats.points, stats.goals, stats.shots, stats.saves, stats.assists, stats.demolitions, stats.own_goals, ])
the-stack_0_18942
from collections import defaultdict import nltk import pandas as pd import pdfplumber import re from deep_translator import GoogleTranslator,PonsTranslator import os import BLEU_matching import keyword_identifiers import translators import text_preprocessing def input_language(): language = input("Please enter the language of the questionnaire (without spaces)") return language def input_filename(): filename = input("Please enter the name of the questionnaire PDF:\n") print(f'You entered {filename} and please import the pdf file into the folder if its later than 2009 ') pdf = pdfplumber.open(filename) return pdf def input_translator_choice(): translator_choice = input("Would you like to \nA-use the default google translator \nB- use the alternative sPONSTranslator") return translator_choice language = input_language() pdf = input_filename() translator_choice = input_translator_choice() def choose_translator(translator_choice,sentence): target = keyword_identifiers.translator_dict[language.lower()] if translator_choice.lower() == "a": return GoogleTranslator(source = 'en', target = target).translate(sentence) elif translator_choice.lower() == "b": #return MicrosoftTranslator(source = 'en', target = target).translate(sentence) return PonsTranslator(source='en', target=target).translate(sentence) def translate_keywords(): translated_keywords_dict = defaultdict() for key in keyword_identifiers.questions_to_keywords.values(): for item in key: translated_keywords_dict[choose_translator(translator_choice,item)] = [] return (translated_keywords_dict) def tokenize_and_translate_questions(pages): translated_questions = defaultdict() for number in pages: p1 = pdf.pages[number] text = text_preprocessing.remove_whitespace(p1.extract_text()) sentences = nltk.sent_tokenize(text) for item in sentences: if item[-1] == "?": translated_questions[translators.translator_into_english(item)] = item return translated_questions def filter_non_words(input_dictionary): words = set(nltk.corpus.words.words()) new_dictionary = defaultdict() for question in input_dictionary.keys(): item = (" ".join(w.lower() for w in nltk.wordpunct_tokenize(str(question)) \ if w.lower() in words or not w.isalpha())) new_dictionary[item] = input_dictionary[question] return new_dictionary def find_and_preprocess_questions(): translated_keywords = translate_keywords().keys() pages = set() for word in translated_keywords: word = word.lower() for i in range(0,len(pdf.pages)): page_number = pdf.pages[i] text = page_number.extract_text() if re.findall(word,text,re.IGNORECASE): pages.add(i) clean_translations = tokenize_and_translate_questions(list(pages)) filtered_dictionary = filter_non_words(clean_translations) keywords_questions = text_preprocessing.check_keywords(filtered_dictionary) removed_brackets_list = text_preprocessing.remove_brackets(keywords_questions) return removed_brackets_list def group_questions_by_keyword(ungrouped_dictionary): grouped_questions= defaultdict() for question in ungrouped_dictionary.keys(): keyword_group = [] keyword_list = ungrouped_dictionary[question] for translated_question in translated_questions_to_check.keys(): if any(keyword in translated_question for keyword in keyword_list): keyword_group.append(translated_question) grouped_questions[question] = keyword_group return grouped_questions #returns dictionary of david questoin to matched question in foreign language def main(): keyword_to_translations = group_questions_by_keyword(keyword_identifiers.questions_to_keywords) matched_questions = defaultdict() for key,value in keyword_to_translations.items(): if value == []: matched_questions[key] = ["not found"] else: matched_questions[key] = BLEU_matching.bleu_implementation(key,value) final_dataframe_dictionary = {} for davids_question in matched_questions.keys(): if matched_questions[davids_question] == ["not found"]: final_dataframe_dictionary[davids_question] = "not found" else: final_dataframe_dictionary[davids_question] = translated_questions_to_check[matched_questions[davids_question]] return final_dataframe_dictionary translated_questions_to_check = find_and_preprocess_questions() output_dict = main() for key,value in output_dict.items(): print(key,value)
the-stack_0_18943
import argparse from pathlib import Path from PIL import Image import numpy as np try: from tqdm import tqdm except ModuleNotFoundError: pass def args_parse(): parser = argparse.ArgumentParser("Calculate image mean and std.") parser.add_argument("--images_dir", help="Directory contains a list of images") _args = parser.parse_args() return _args def images_stats(imgs): mean = [] std = [] for img in tqdm(imgs): img_np = np.array(Image.open(img))/255 rgb_mean = np.mean(img_np, axis=(0, 1)) rgb_std = np.std(img_np, axis=(0, 1)) mean.append(rgb_mean) std.append(rgb_std) mean = np.array(mean) std = np.array(std) return mean, std if __name__ == "__main__": imgs = list(sorted(Path(args.images_dir).rglob("*.jpg"))) print("process %s images:" % len(imgs)) mean, std = images_stats(imgs) u = np.mean(mean, axis=0) sigma = np.mean(std, axis=0) print("target mean: ", np.around(u, decimals=3)) print("target std: ", np.around(sigma, decimals=3))
the-stack_0_18944
''' message utility functions for processing native messages and formatting responses ''' import json import sys import struct # Read a message from stdin and decode it. def get_message(): raw_length = sys.stdin.buffer.read(4) if not raw_length: send_message("Error: message length missing") sys.exit(0) message_length = struct.unpack('=I', raw_length)[0] message = sys.stdin.buffer.read(message_length).decode("utf-8") return json.loads(message) # Encode a message for transmission, given its content. def _encode_message(message_content): encoded_content = json.dumps(message_content).encode("utf-8") encoded_length = struct.pack('=I', len(encoded_content)) # use struct.pack("10s", bytes), to pack a string of the length of 10 characters return {'length': encoded_length, 'content': struct.pack(str(len(encoded_content))+"s",encoded_content)} # Send an encoded message to stdout. def send_message(raw_message): encoded_message = _encode_message(raw_message) sys.stdout.buffer.write(encoded_message['length']) sys.stdout.buffer.write(encoded_message['content']) sys.stdout.buffer.flush()
the-stack_0_18946
from featmultinomial import FeatMultinomialNB default_config = { # Corpus files 'u_corpus_f': 'corpus/unlabeled_new_corpus.pickle', 'test_corpus_f': 'corpus/test_new_corpus.pickle', 'training_corpus_f': 'corpus/training_new_corpus.pickle', 'feature_corpus_f': 'corpus/feature_corpus.pickle', # Options to be displayed 'number_of_classes': 30, 'number_of_features': 30, # Classifier 'classifier': FeatMultinomialNB(), # Features 'feature_boost': 0.5, # Active learning instance selection function 'get_next_instance': None, # Active learning feature selection functions 'get_next_features': None, 'handle_feature_prediction': None, # Active learning class selection function 'get_class_options': None, # Run expectation maximization algorithm after training 'can_run_em': False }
the-stack_0_18948
#!/usr/bin/env python # Script to run tests and benchmarks. import argparse import glob import os import subprocess import sys from typing import Sequence def parse_arguments(): parser = argparse.ArgumentParser(description="Select tests to run") parser.add_argument( "--gpu-integration-tests", help="Run GPU integration tests - requires a GPU with CUDA installation.", dest="gpu_integration_tests", default=False, action=argparse.BooleanOptionalAction, ) parser.add_argument( "--iterators-tests", help="Run Iterators tests.", dest="iterators_tests", default=False, action=argparse.BooleanOptionalAction, ) return parser.parse_args() def _convert_path_to_module(test_script: str) -> str: """Convert the path of the test script to its module name.""" test_script = test_script.replace(os.sep, ".") test_script = test_script.strip(".") if test_script.endswith(".py"): return test_script[:-3] return test_script def _configure_env(): env = os.environ build_dir = env["IREE_LLVM_SANDBOX_BUILD_DIR"] # TODO: just grab from .env. env["PYTHONPATH"] = ( os.path.join(build_dir, "tools/sandbox/python_packages") + ((":" + env["PYTHONPATH"]) if "PYTHONPATH" in env else "")) env["MLIR_RUNNER_UTILS_LIB"] = os.path.join(build_dir, "lib/libmlir_runner_utils.so") env["MLIR_C_RUNNER_UTILS_LIB"] = os.path.join( build_dir, "lib/libmlir_c_runner_utils.so") env["MLIR_RUNNER_EXTRA_LIBS"] = os.path.join( build_dir, "lib/libmlir_async_runtime_copy.so") return env def _run_test(test_script: str, test_args: Sequence[str] = []) -> bool: """Run the provided test script an return failure or success. A test succeeds if: - it does not time out - it returns zero - it does not print FAILURE """ print(f"- running {test_script}: ", end="") module = _convert_path_to_module(test_script) env = _configure_env() proc = subprocess.Popen(["python", "-m", module] + test_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) try: outs, errs = proc.communicate(timeout=20) except subprocess.TimeoutExpired: proc.kill() print("\033[31m" + "FAILED" + "\033[m") print(" -> test execution timed out") return False if proc.returncode != 0: print("\033[31m" + "FAILED" + "\033[m") print(f" -> test returned code {proc.returncode}") print(errs.decode("utf-8")) return False # Check the output for numerical failures. outs = outs.decode("utf-8") errs = errs.decode("utf-8") for line in outs.splitlines() + errs.splitlines(): if line.count("FAILURE") != 0: print("\033[31m" + "FAILED" + "\033[m") print(f" -> test failure: {line}") return False print("\033[32m" + "SUCCESS" + "\033[m") return True def run_small_search(): return _run_test( "./python/examples/tuning/test_nevergrad_small_matmul.py", ['--search-budget 500', '--n_iters 3000', '--num-parallel-tasks 10']) def main(args): results = [] for f in glob.glob("./python/**/*test.py", recursive=True): results.append(_run_test(f)) # Tun a small search. results.append( _run_test("./python/examples/tuning/test_nevergrad_small_matmul.py", [ '--search-budget', '10', '--n_iters', '10', '--num-parallel-tasks', '4' ])) errors = results.count(False) if errors: print(f"-> {errors} tests failed!") # Additionally run the lit tests. print(f"- running lit tests:") lit_args = ["lit", "-v"] if not args.gpu_integration_tests: lit_args.append("--filter-out=Integration/Dialect/VectorExt/GPU") test_dirs = ["test"] if args.iterators_tests: test_dirs += [ "experimental/iterators/unittests", "experimental/iterators/test" ] returncode = subprocess.call(lit_args + test_dirs, env=_configure_env()) if returncode != 0: print(f"-> lit tests failed!") if returncode != 0 or errors: exit(1) if __name__ == '__main__': main(parse_arguments())
the-stack_0_18949
# #!/usr/bin/python # import numpy as np import pandas as pd import datetime as dt import dateutil.relativedelta as dtr def temp_f(c_month,farm_N): degs = (tarbert_avetemp[c_month-1]-ardrishaig_avetemp[c_month-1])/(685715-665300) Ndiff = farm_N - 665300 #farm Northing - tarbert Northing return round(tarbert_avetemp[c_month-1] - Ndiff*degs, 1) def d_hatching(c_temp): return 3*(3.3 - 0.93*np.log(c_temp/3) -0.16*np.log(c_temp/3)**2) #for 3 broods nfarms = 10 ncages = np.array([1,6,4,8,12,9,9,8,9,9]) fishf = [40000,40000,40000,40000,40000,40000,40000,40000,40000] ext_pressure = 150 #planktonic lice per day per cage/farm arriving from wildlife -> seasonal? start_pop = 150*np.sum(ncages) prop_influx = 0.33 eggs = 1200#3 broods #[50,50,40,40,50,60,80,80,80,80,70,50] #d_hatching = [9,10,11,9,8,6,4,4,4,4,5,7] ardrishaig_avetemp = np.array([8.2,7.55,7.45,8.25,9.65,11.35,13.15,13.75,13.65,12.85,11.75,9.85]) #www.seatemperature.org tarbert_avetemp = np.array([8.4,7.8,7.7,8.6,9.8,11.65,13.4,13.9,13.9,13.2,12.15,10.2]) xy_array = np.array([[190300,665300],[192500,668200],[191800,669500],[186500,674500], [190400,676800],[186300,679600],[190800,681000],[195300,692200],[199800,698000]]) #Tarbert South, Rubha Stillaig, Glenan Bay, Meall Mhor, Gob a Bharra, Strondoir Bay, Ardgaddan, Ardcastle, Quarry Point f_muEMB = 3.5 f_sigEMB = 0.7 dates_list = [[] for i in range(nfarms-1)] dates_list[0].extend(pd.date_range(dt.datetime(2017, 12, 1), dt.datetime(2018, 1, 1)).tolist()) dates_list[0].extend(pd.date_range(dt.datetime(2018, 2, 1), dt.datetime(2018, 3, 1)).tolist()) dates_list[0].extend(pd.date_range(dt.datetime(2018, 5, 1), dt.datetime(2018, 6, 1)).tolist()) dates_list[1].extend(pd.date_range(dt.datetime(2017, 10, 1), dt.datetime(2018, 1, 1)).tolist()) dates_list[1].extend(pd.date_range(dt.datetime(2018, 2, 1), dt.datetime(2018, 3, 1)).tolist()) dates_list[1].extend(pd.date_range(dt.datetime(2018, 5, 1), dt.datetime(2018, 6, 1)).tolist()) dates_list[2].extend(pd.date_range(dt.datetime(2017, 12, 1), dt.datetime(2018, 1, 1)).tolist()) dates_list[2].extend(pd.date_range(dt.datetime(2018, 2, 1), dt.datetime(2018, 3, 1)).tolist()) dates_list[2].extend(pd.date_range(dt.datetime(2018, 5, 1), dt.datetime(2018, 6, 1)).tolist()) dates_list[3].extend(pd.date_range(dt.datetime(2017, 10, 1), dt.datetime(2017, 11, 1)).tolist()) dates_list[3].extend(pd.date_range(dt.datetime(2017, 12, 1), dt.datetime(2018, 1, 1)).tolist()) dates_list[3].extend(pd.date_range(dt.datetime(2018, 2, 1), dt.datetime(2018, 3, 1)).tolist()) dates_list[3].extend(pd.date_range(dt.datetime(2018, 5, 1), dt.datetime(2018, 6, 1)).tolist()) dates_list[4].extend(pd.date_range(dt.datetime(2017, 10, 1), dt.datetime(2018, 1, 1)).tolist()) dates_list[4].extend(pd.date_range(dt.datetime(2018, 2, 1), dt.datetime(2018, 3, 1)).tolist()) dates_list[4].extend(pd.date_range(dt.datetime(2018, 5, 1), dt.datetime(2018, 6, 1)).tolist()) dates_list[5].extend(pd.date_range(dt.datetime(2017, 10, 1), dt.datetime(2018, 1, 1)).tolist()) dates_list[5].extend(pd.date_range(dt.datetime(2018, 2, 1), dt.datetime(2018, 3, 1)).tolist()) dates_list[5].extend(pd.date_range(dt.datetime(2018, 5, 1), dt.datetime(2018, 6, 1)).tolist()) dates_list[6].extend(pd.date_range(dt.datetime(2017, 11, 1), dt.datetime(2018, 1, 1)).tolist()) dates_list[6].extend(pd.date_range(dt.datetime(2018, 2, 1), dt.datetime(2018, 3, 1)).tolist()) dates_list[6].extend(pd.date_range(dt.datetime(2018, 5, 1), dt.datetime(2018, 6, 1)).tolist()) dates_list[7].extend(pd.date_range(dt.datetime(2017, 10, 1), dt.datetime(2017, 12, 1)).tolist()) dates_list[7].extend(pd.date_range(dt.datetime(2018, 2, 1), dt.datetime(2018, 3, 1)).tolist()) dates_list[7].extend(pd.date_range(dt.datetime(2018, 5, 1), dt.datetime(2018, 6, 1)).tolist()) dates_list[8].extend(pd.date_range(dt.datetime(2017, 10, 1), dt.datetime(2017, 12, 1)).tolist()) dates_list[8].extend(pd.date_range(dt.datetime(2018, 2, 1), dt.datetime(2018, 3, 1)).tolist()) dates_list[8].extend(pd.date_range(dt.datetime(2018, 5, 1), dt.datetime(2018, 6, 1)).tolist()) bool_treat = '(cur_date - dt.timedelta(days=14)) in inpt.dates_list[farm-1]' prob_arrive = pd.read_csv('./Data/Fyne_props.csv',header=None) E_days = pd.read_csv('./Data/Fyne_Edays.csv',header=None) Enfish_res = [3]*12 #[4,5,6,6,8,15,37,22,10,2,2,3] #"roughly" based on marine scotland fixed engine catch data for west of scotland from 2000-2018 Ewt_res = 2500 start_date = dt.datetime(2017, 8, 1) end_date = dt.datetime(2019, 8, 1) cpw = [1, 1, 1, 2, 3, 1, 1, 2, 1, 1] numwk = [1, 6, 4, 4, 4, 9, 9, 4, 9, 9] farm_start = [dt.datetime(2017, 8, 1), dt.datetime(2017, 10, 1), dt.datetime(2017, 9, 1), dt.datetime(2017, 10, 1), dt.datetime(2017, 10, 1), dt.datetime(2017, 10, 1), dt.datetime(2017, 8, 1), dt.datetime(2017, 9, 1), dt.datetime(2017, 10, 1), dt.datetime(2017, 9, 1)] cage_start = [[farm_start[i] + dtr.relativedelta(weeks=j) for j in range(numwk[i])]*cpw[i] for i in range(nfarms)] NSbool_str = 'cur_date>=inpt.cage_start[farm][cage-1]'
the-stack_0_18950
import torch import torch.nn as nn from torch.nn.parallel import DistributedDataParallel import torch.distributed from utils.dataset import pc_dataloader,std_collate_fn from torch.utils.data.dataloader import DataLoader from models.STD import PGM import os import datetime import logging from pathlib import Path import importlib import shutil from tqdm import tqdm import numpy as np import time EXP_DIR = '/data/usr/zhengyu/exp' def main(): def log_string(str): logger.info(str) print(str) os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2' # create dir timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M')) experiment_dir = Path(EXP_DIR) experiment_dir.mkdir(exist_ok=True) experiment_dir = experiment_dir.joinpath('STD') experiment_dir.mkdir(exist_ok=True) exp_dir = experiment_dir experiment_dir = experiment_dir.joinpath(timestr) experiment_dir.mkdir(exist_ok=True) checkpoints_dir = experiment_dir.joinpath('checkpoints') checkpoints_dir.mkdir(exist_ok=True) log_dir = experiment_dir.joinpath('logs') log_dir.mkdir(exist_ok=True) # LOG logger = logging.getLogger("Model") logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') file_handler = logging.FileHandler('{0}/exp_{1}.txt'.format(log_dir,timestr)) file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) logger.addHandler(file_handler) # torch.distributed.init_process_group(backend="nccl") model = PGM(0).cuda() # model = nn.parallel.DistributedDataParallel(model) last_exp = "2021-08-18_19-33" try: checkpoint = torch.load(str(exp_dir.joinpath(last_exp)) + '/checkpoints/best.pt') start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['model_state_dict']) log_string('Use pretrain model') except: log_string('No existing model, starting training from scratch...') start_epoch = 0 INTIAL_LR = 0.0001 AFTER_LR = 0.00005 optimizer = torch.optim.Adam( model.parameters(), lr=INTIAL_LR, betas=(0.9, 0.999), eps=1e-08 ) EPOCH = 100 best_loss = 0 data = pc_dataloader() trainDataloader = DataLoader(data, batch_size=1, shuffle=True, collate_fn=std_collate_fn) for epoch in range(start_epoch, EPOCH): log_string('**** Epoch %d/%s ****' % (epoch+1,EPOCH)) # adjust lr if epoch == 80: for p in optimizer.param_groups: p['lr'] = AFTER_LR loss_sum = 0 proposal_num = 0 for i, (points, target) in tqdm(enumerate(trainDataloader), total=len(trainDataloader), smoothing=0.9): optimizer.zero_grad() proposals,features,loss = model(points,target) loss.backward() optimizer.step() loss_sum += loss proposal_num += len(proposals) log_string('Training mean loss: %f' % (loss_sum / len(trainDataloader))) log_string("Training output proposal: %f"%(proposal_num/len(trainDataloader))) if epoch % 5 == 0: logger.info('Save model...') savepath = str(checkpoints_dir) + '/best.pt' log_string('Saving at %s' % savepath) state = { 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), } torch.save(state, savepath) log_string('Saving model....') # save the last model logger.info('Save model...') savepath = str(checkpoints_dir) + '/best.pt' log_string('Saving at %s' % savepath) state = { 'epoch': EPOCH, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), } torch.save(state, savepath) log_string('Saving last model....') if __name__ == '__main__': main()
the-stack_0_18952
from setuptools import setup, find_packages import sys, os.path # Don't import scigym module here, since deps may not be installed sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'scigym')) from version import VERSION # Read the contents of the README file with open(os.path.join(os.path.dirname(__file__), 'README.md'), encoding='utf-8') as f: long_description = f.read() # Environment-specific dependencies. extras = { 'teleportation' : [], 'entangled_ions': [], 'toricgame': ['matplotlib==3.4.2'] # for rendering only } # Meta dependency groups. all_deps = [] for group_name in extras: all_deps += extras[group_name] extras['all'] = all_deps setup(name='scigym', version=VERSION, description='SciGym -- The OpenAI Gym for Science: A platform for your scientific reinforcement learning problem.', url='https://github.com/HendrikPN/scigym', author='HendrikPN', author_email='[email protected]', license='MIT', packages=[package for package in find_packages() if package.startswith('scigym')], zip_safe=False, install_requires=['gym==0.18.0'], extras_require=extras, package_data={'scigym': []}, tests_require=['pytest'], long_description=long_description, long_description_content_type='text/markdown', )
the-stack_0_18953
from flask_script import Command, Option from flask_security.utils import hash_password from models.models import db from main import app import datetime import random import os import json from pprint import pprint class CreateDB(Command): def run(self, **kwargs): print(db.engine) print(dir(db.engine)) db.engine.echo = True r = db.create_all() print(r) class ResetDB(Command): """Drops all tables and recreates them""" def run(self, **kwargs): db.drop_all() db.create_all() class AddMazeCourse(Command): """Fills in predefined data into DB for Maze Game""" option_list = ( Option('--owner', '-o', dest='owner_id', default='1'), ) def run(self, owner_id, **kwargs): from models.user import User from models.course import Course from models.role import Role from models.assignment import Assignment from models.assignment_group import AssignmentGroup from models.assignment_group_membership import AssignmentGroupMembership owner_id = int(owner_id) maze_course = Course.new('Maze Course', owner_id, 'public', '', 'maze') maze_group = AssignmentGroup.new(owner_id, maze_course.id, "Maze Game") for level in range(10): maze_level = Assignment.new(owner_id, maze_course.id, 'maze', level=str(1 + level)) db.session.add(maze_level) db.session.flush() membership = AssignmentGroupMembership.move_assignment(maze_level.id, maze_group.id) db.session.add(membership) db.session.commit() class AddTestUsersDB(Command): """Fills in predefined data into DB""" def run(self, **kwargs): from models.user import User from models.course import Course from models.role import Role from models.assignment_group import AssignmentGroup from models.assignment_group_membership import AssignmentGroupMembership from models.assignment import Assignment default_course = Course.query.first() print("Adding Teacher") teacher = User(first_name="Klaus", last_name="Bart", password=hash_password("password"), confirmed_at=datetime.datetime.now(), active=True, email="[email protected]") db.session.add(teacher) db.session.flush() db.session.add(Role(name='instructor', course_id=default_course.id, user_id=teacher.id)) print("Adding Student") student = User(first_name="Ada", last_name="Bart", password=hash_password("password"), confirmed_at=datetime.datetime.now(), active=True, email="[email protected]") db.session.add(student) db.session.flush() db.session.add(Role(name='student', course_id=default_course.id, user_id=student.id)) print("Adding basic assignments") basic_group = AssignmentGroup(name="First Group", course_id=default_course.id, owner_id=teacher.id) db.session.add(basic_group) db.session.flush() for i in range(5): assignment = Assignment(name="Problem {}".format(i), instructions="Complete this problem", owner_id=teacher.id, course_id=default_course.id) db.session.add(assignment) db.session.flush() db.session.add(AssignmentGroupMembership(assignment_group_id=basic_group.id, assignment_id=assignment.id)) db.session.commit() print("Complete") class PopulateDB(Command): """Fills in predefined data into DB""" def run(self, **kwargs): from models.user import User from models.course import Course from models.role import Role with open('settings/secrets.json', 'r') as secret_file: secrets = json.load(secret_file).get("ADMIN", {}) print("Adding Admin") admin = User(first_name=secrets.get("first_name", "Admin"), last_name=secrets.get("last_name", "User"), password=hash_password(secrets.get("password", "password")), confirmed_at=datetime.datetime.now(), active=True, email=secrets.get("email", "[email protected]")) db.session.add(admin) db.session.flush() db.session.add(Role(name='instructor', user_id=admin.id)) db.session.add(Role(name='admin', user_id=admin.id)) print("Adding default course") default_course = Course(name="Default Course", owner_id=admin.id, service="native", url="default", visibility='public') db.session.add(default_course) db.session.flush() db.session.add(Role(name='instructor', course_id=default_course.id, user_id=admin.id)) db.session.commit() print("Complete") class DisplayDB(Command): def run(self, **kwargs): from sqlalchemy import MetaData from scripts.sqlalchemy_schemadisplay3 import create_schema_graph connection = app.config['SQLALCHEMY_DATABASE_URI'] filename = 'docs/dbschema.png' graph = create_schema_graph(metadata=MetaData(connection), show_datatypes=True, # The image would get nasty big if we'd show the datatypes show_indexes=False, # ditto for indexes rankdir='LR', # From left to right (instead of top to bottom) font='Helvetica', concentrate=False # Don't try to join the relation lines together ) graph.write_png(filename) # write out the file class ExportCourse(Command): option_list = ( Option('--file', '-f', dest='course_data_path', default='backups/current_course_data.json'), Option('--course', '-c', dest='course_id', default='1'), ) def run(self, course_id, course_data_path, **kwargs): from models.models import AssignmentGroupMembership from models.course import Course from models.assignment import Assignment from models.assignment_group import AssignmentGroup exported_data = Course.export(int(course_id)) with open(course_data_path, 'w') as output_file: json.dump(exported_data, output_file, indent=2, sort_keys=True) pprint(exported_data) class ImportCourse(Command): option_list = ( Option('--file', '-f', dest='course_data_path', default='backups/current_course_data.json'), Option('--owner', '-o', dest='owner_id', default='1'), ) def run(self, owner_id, course_data_path, **kwargs): from models.models import AssignmentGroupMembership from models.course import Course from models.assignment import Assignment from models.assignment_group import AssignmentGroup with open(course_data_path, 'r') as input_file: imported_data = json.load(input_file) Course.import_json(imported_data, int(owner_id)) class RemoveCourse(Command): option_list = ( Option('--course', '-c', dest='course_id'), ) def run(self, course_id, **kwargs): from models.course import Course Course.remove(int(course_id), True) class DumpDB(Command): option_list = ( Option('--output', '-o', dest='output', default='backups/db/'), Option('--log_for_course', '-l', dest='log_for_course', default=None), ) def dump_rows(self, rows, output, table_name): data = [{c.name: str(getattr(row, c.name)) for c in row.__table__.columns} for row in rows] full_path = os.path.join(output, table_name + '.json') with open(full_path, 'w') as output_file: json.dump(data, output_file) def _log_for_course(self, course, output): from models.log import Log logs = Log.get_logs_for_course(course) self.dump_rows(logs, output, 'log') def run(self, output, log_for_course, **kwargs): if log_for_course: return self._log_for_course(log_for_course, output) from models.models import (db, AssignmentGroupMembership) from models.user import User from models.course import Course from models.role import Role from models.authentication import Authentication from models.log import Log from models.submission import Submission from models.assignment import Assignment from models.assignment_group import AssignmentGroup tables = { 'user': User, 'course': Course, 'submission': Submission, 'assignment': Assignment, 'group': AssignmentGroup, 'membership': AssignmentGroupMembership, 'authentication': Authentication, 'log': Log, 'role': Role } for table_name, table_class in tables.items(): self.dump_rows(table_class.query.all(), output, table_name) class ExportProgSnap(Command): option_list = ( Option('--output', '-o', dest='output', default='backups/progsnap2_{}'), Option('--log_for_course', '-l', dest='log_for_course', default=1), Option('--groups', '-g', dest='groups', default=None), ) def run(self, output, log_for_course, groups, **kwargs): from models.portation import export_progsnap2 if groups is not None: output = output + "_{}".format(groups.replace(",", "_")) groups = [int(g) for g in groups.split(",")] export_progsnap2(output.format(log_for_course), log_for_course, groups)
the-stack_0_18954
import copy import json import os from ast import literal_eval from typing import Iterable from slugify import slugify from prefect import config from prefect.agent import Agent from prefect.environments.storage import Docker from prefect.serialization.storage import StorageSchema from prefect.utilities.graphql import GraphQLResult class FargateAgent(Agent): """ Agent which deploys flow runs as tasks using Fargate. This agent can run anywhere as long as the proper access configuration variables are set. Information on using the Fargate Agent can be found at https://docs.prefect.io/cloud/agents/fargate.html All `kwargs` are accepted that one would normally pass to boto3 for `register_task_definition` and `run_task`. For information on the kwargs supported visit the following links: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ecs.html#ECS.Client.register_task_definition https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ecs.html#ECS.Client.run_task **Note**: if AWS authentication kwargs such as `aws_access_key_id` and `aws_session_token` are not provided they will be read from the environment. Environment variables may be set on the agent to be provided to each flow run's Fargate task: ``` prefect agent start fargate --env MY_SECRET_KEY=secret --env OTHER_VAR=$OTHER_VAR ``` boto3 kwargs being provided to the Fargate Agent: ``` prefect agent start fargate networkConfiguration="{'awsvpcConfiguration': {'assignPublicIp': 'ENABLED', 'subnets': ['my_subnet_id'], 'securityGroups': []}}" ``` Args: - name (str, optional): An optional name to give this agent. Can also be set through the environment variable `PREFECT__CLOUD__AGENT__NAME`. Defaults to "agent" - labels (List[str], optional): a list of labels, which are arbitrary string identifiers used by Prefect Agents when polling for work - env_vars (dict, optional): a dictionary of environment variables and values that will be set on each flow run that this agent submits for execution - max_polls (int, optional): maximum number of times the agent will poll Prefect Cloud for flow runs; defaults to infinite - aws_access_key_id (str, optional): AWS access key id for connecting the boto3 client. Defaults to the value set in the environment variable `AWS_ACCESS_KEY_ID` or `None` - aws_secret_access_key (str, optional): AWS secret access key for connecting the boto3 client. Defaults to the value set in the environment variable `AWS_SECRET_ACCESS_KEY` or `None` - aws_session_token (str, optional): AWS session key for connecting the boto3 client. Defaults to the value set in the environment variable `AWS_SESSION_TOKEN` or `None` - region_name (str, optional): AWS region name for connecting the boto3 client. Defaults to the value set in the environment variable `REGION_NAME` or `None` - enable_task_revisions (bool, optional): Enable registration of task definitions using revisions. When enabled, task definitions will use flow name as opposed to flow id and each new version will be a task definition revision. Each revision will be registered with a tag called 'PrefectFlowId' and 'PrefectFlowVersion' to enable proper lookup for existing revisions. Flow name is reformatted to support task definition naming rules by converting all non-alphanumeric characters to '_'. Defaults to False. - use_external_kwargs (bool, optional): When enabled, the agent will check for the existence of an external json file containing kwargs to pass into the run_flow process. Defaults to False. - external_kwargs_s3_bucket (str, optional): S3 bucket containing external kwargs. - external_kwargs_s3_key (str, optional): S3 key prefix for the location of <slugified_flow_name>/<flow_id[:8]>.json. - **kwargs (dict, optional): additional keyword arguments to pass to boto3 for `register_task_definition` and `run_task` """ def __init__( # type: ignore self, name: str = None, labels: Iterable[str] = None, env_vars: dict = None, max_polls: int = None, aws_access_key_id: str = None, aws_secret_access_key: str = None, aws_session_token: str = None, region_name: str = None, enable_task_revisions: bool = False, use_external_kwargs: bool = False, external_kwargs_s3_bucket: str = None, external_kwargs_s3_key: str = None, **kwargs ) -> None: super().__init__( name=name, labels=labels, env_vars=env_vars, max_polls=max_polls ) from boto3 import client as boto3_client from boto3 import resource as boto3_resource # Config used for boto3 client initialization aws_access_key_id = aws_access_key_id or os.getenv("AWS_ACCESS_KEY_ID") aws_secret_access_key = aws_secret_access_key or os.getenv( "AWS_SECRET_ACCESS_KEY" ) aws_session_token = aws_session_token or os.getenv("AWS_SESSION_TOKEN") region_name = region_name or os.getenv("REGION_NAME") # revisions and kwargs configurations self.enable_task_revisions = enable_task_revisions self.use_external_kwargs = use_external_kwargs self.external_kwargs_s3_bucket = external_kwargs_s3_bucket self.external_kwargs_s3_key = external_kwargs_s3_key # Parse accepted kwargs for definition and run self.task_definition_kwargs, self.task_run_kwargs = self._parse_kwargs( kwargs, True ) # Client initialization self.boto3_client = boto3_client( "ecs", aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, aws_session_token=aws_session_token, region_name=region_name, ) # fetch external kwargs from s3 if needed if self.use_external_kwargs: self.logger.info("Use of external S3 kwargs enabled.") self.s3_resource = boto3_resource( "s3", aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, aws_session_token=aws_session_token, region_name=region_name, ) # get boto3 client for resource groups tagging api if self.enable_task_revisions: self.logger.info("Native ECS task revisions enabled.") self.boto3_client_tags = boto3_client( "resourcegroupstaggingapi", aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, aws_session_token=aws_session_token, region_name=region_name, ) def _override_kwargs( self, flow_run: GraphQLResult, flow_task_definition_kwargs: dict, flow_task_run_kwargs: dict, ) -> None: """ Return new kwargs updated from external kwargs file. Args: - flow_run (GraphQLResult): A GraphQLResult flow run object - flow_task_definition_kwargs (dict): task_definition_kwargs to update - flow_task_run_kwargs (dict): task_run_kwargs to update """ from botocore.exceptions import ClientError # get external kwargs from S3 try: self.logger.info("Fetching external kwargs from S3") obj = self.s3_resource.Object( self.external_kwargs_s3_bucket, os.path.join( # type: ignore self.external_kwargs_s3_key, # type: ignore slugify(flow_run.flow.name), # type: ignore "{}.json".format(flow_run.flow.id[:8]), # type: ignore ), # type: ignore ) body = obj.get()["Body"].read().decode("utf-8") except ClientError: self.logger.info( "Flow id {} does not have external kwargs.".format(flow_run.flow.id[:8]) ) body = "{}" self.logger.debug("External kwargs:\n{}".format(body)) # update kwargs from with external kwargs self.logger.info("Updating default kwargs with external") external_kwargs = json.loads(body) # parse external kwargs ext_task_definition_kwargs, ext_task_run_kwargs = self._parse_kwargs( external_kwargs ) self.logger.debug( "External task definition kwargs:\n{}".format(ext_task_definition_kwargs) ) self.logger.debug("External task run kwargs:\n{}".format(ext_task_run_kwargs)) # update flow_task_definition_kwargs and flow_task_run_kwargs flow_task_definition_kwargs.update(ext_task_definition_kwargs) flow_task_run_kwargs.update(ext_task_run_kwargs) def _add_flow_tags( self, flow_run: GraphQLResult, flow_task_definition_kwargs: dict ) -> None: """ Add tags to task definition kwargs to Args: - flow_run (GraphQLResult): A GraphQLResult flow run object - flow_task_definition_kwargs (dict): task_definition_kwargs to add tags to """ # add flow id and version to definition tags self.logger.info("Adding tags for flow_id and version.") if not flow_task_definition_kwargs.get("tags"): flow_task_definition_kwargs["tags"] = [] else: flow_task_definition_kwargs["tags"] = copy.deepcopy( flow_task_definition_kwargs["tags"] ) append_tag = True for i in flow_task_definition_kwargs["tags"]: if i["key"] == "PrefectFlowId": i["value"] = flow_run.flow.id[:8] append_tag = False if append_tag: flow_task_definition_kwargs["tags"].append( {"key": "PrefectFlowId", "value": flow_run.flow.id[:8]} ) append_tag = True for i in flow_task_definition_kwargs["tags"]: if i["key"] == "PrefectFlowVersion": i["value"] = str(flow_run.flow.version) append_tag = False if append_tag: flow_task_definition_kwargs["tags"].append( {"key": "PrefectFlowVersion", "value": str(flow_run.flow.version)} ) def _parse_kwargs(self, user_kwargs: dict, check_envars: bool = False) -> tuple: """ Parse the kwargs passed in and separate them out for `register_task_definition` and `run_task`. This is required because boto3 does not allow extra kwargs and if they are provided it will raise botocore.exceptions.ParamValidationError. Args: - user_kwargs (dict): The kwargs passed to the initialization of the environment - check_envars (bool): Whether to check envars for kwargs Returns: tuple: a tuple of two dictionaries (task_definition_kwargs, task_run_kwargs) """ definition_kwarg_list = [ "taskRoleArn", "executionRoleArn", "volumes", "placementConstraints", "cpu", "memory", "tags", "pidMode", "ipcMode", "proxyConfiguration", "inferenceAccelerators", ] definition_kwarg_list_no_eval = ["cpu", "memory"] run_kwarg_list = [ "cluster", "count", "startedBy", "group", "placementConstraints", "placementStrategy", "platformVersion", "networkConfiguration", "tags", "enableECSManagedTags", "propagateTags", ] task_definition_kwargs = {} definition_kwarg_list_eval = { i: (i not in definition_kwarg_list_no_eval) for i in definition_kwarg_list } for key, item in user_kwargs.items(): if key in definition_kwarg_list: if definition_kwarg_list_eval.get(key): try: # Parse kwarg if needed item = literal_eval(item) except (ValueError, SyntaxError): pass task_definition_kwargs.update({key: item}) self.logger.debug("{} = {}".format(key, item)) task_run_kwargs = {} for key, item in user_kwargs.items(): if key in run_kwarg_list: try: # Parse kwarg if needed item = literal_eval(item) except (ValueError, SyntaxError): pass task_run_kwargs.update({key: item}) self.logger.debug("{} = {}".format(key, item)) # Check environment if keys were not provided if check_envars: for key in definition_kwarg_list: if not task_definition_kwargs.get(key) and os.getenv(key): self.logger.debug("{} from environment variable".format(key)) def_env_value = os.getenv(key) if definition_kwarg_list_eval.get(key): try: # Parse env var if needed def_env_value = literal_eval(def_env_value) # type: ignore except (ValueError, SyntaxError): pass task_definition_kwargs.update({key: def_env_value}) for key in run_kwarg_list: if not task_run_kwargs.get(key) and os.getenv(key): self.logger.debug("{} from environment variable".format(key)) run_env_value = os.getenv(key) try: # Parse env var if needed run_env_value = literal_eval(run_env_value) # type: ignore except (ValueError, SyntaxError): pass task_run_kwargs.update({key: run_env_value}) return task_definition_kwargs, task_run_kwargs def deploy_flow(self, flow_run: GraphQLResult) -> str: """ Deploy flow runs to Fargate Args: - flow_run (GraphQLResult): A GraphQLResult flow run object Returns: - str: Information about the deployment Raises: - ValueError: if deployment attempted on unsupported Storage type """ self.logger.info( "Deploying flow run {}".format(flow_run.id) # type: ignore ) # create copies of kwargs to apply overrides as needed flow_task_definition_kwargs = copy.deepcopy(self.task_definition_kwargs) flow_task_run_kwargs = copy.deepcopy(self.task_run_kwargs) # create task_definition_name dict for passing into verify method task_definition_dict = {} if self.use_external_kwargs: # override from external kwargs self._override_kwargs( flow_run, flow_task_definition_kwargs, flow_task_run_kwargs ) # set proper task_definition_name and tags based on enable_task_revisions flag if self.enable_task_revisions: # set task definition name task_definition_dict["task_definition_name"] = slugify(flow_run.flow.name) self._add_flow_tags(flow_run, flow_task_definition_kwargs) else: task_definition_dict["task_definition_name"] = "prefect-task-{}".format( # type: ignore flow_run.flow.id[:8] # type: ignore ) # type: ignore # Require Docker storage if not isinstance(StorageSchema().load(flow_run.flow.storage), Docker): self.logger.error( "Storage for flow run {} is not of type Docker.".format(flow_run.id) ) raise ValueError("Unsupported Storage type") # check if task definition exists self.logger.debug("Checking for task definition") if not self._verify_task_definition_exists(flow_run, task_definition_dict): self.logger.debug("No task definition found") self._create_task_definition( flow_run, flow_task_definition_kwargs, task_definition_dict["task_definition_name"], ) # run task task_arn = self._run_task( flow_run, flow_task_run_kwargs, task_definition_dict["task_definition_name"] ) self.logger.debug("Run created for task {}".format(task_arn)) return "Task ARN: {}".format(task_arn) def _verify_task_definition_exists( self, flow_run: GraphQLResult, task_definition_dict: dict ) -> bool: """ Check if a task definition already exists for the flow Args: - flow_run (GraphQLResult): A GraphQLResult representing a flow run object - task_definition_dict(dict): Dictionary containing task definition name to update if needed. Returns: - bool: whether or not a preexisting task definition is found for this flow """ from botocore.exceptions import ClientError try: definition_exists = True task_definition_name = task_definition_dict["task_definition_name"] definition_response = self.boto3_client.describe_task_definition( taskDefinition=task_definition_name, include=["TAGS"] ) # if current active task definition has current flow id, then exists if self.enable_task_revisions: definition_exists = False tag_dict = {x["key"]: x["value"] for x in definition_response["tags"]} current_flow_id = tag_dict.get("PrefectFlowId") current_flow_version = int(tag_dict.get("PrefectFlowVersion", 0)) if current_flow_id == flow_run.flow.id[:8]: self.logger.debug( "Active task definition for {} already exists".format( flow_run.flow.id[:8] ) # type: ignore ) definition_exists = True elif flow_run.flow.version < current_flow_version: tag_search = self.boto3_client_tags.get_resources( TagFilters=[ {"Key": "PrefectFlowId", "Values": [flow_run.flow.id[:8]]} ], ResourceTypeFilters=["ecs:task-definition"], ) if tag_search["ResourceTagMappingList"]: task_definition_dict["task_definition_name"] = [ x.get("ResourceARN") for x in tag_search["ResourceTagMappingList"] ][-1] self.logger.debug( "Active task definition for {} already exists".format( flow_run.flow.id[:8] ) # type: ignore ) definition_exists = True else: self.logger.debug( "Task definition {} found".format( task_definition_name ) # type: ignore ) except ClientError: return False return definition_exists def _create_task_definition( self, flow_run: GraphQLResult, flow_task_definition_kwargs: dict, task_definition_name: str, ) -> None: """ Create a task definition for the flow that each flow run will use. This function is only called when a flow is run for the first time. Args: - flow_runs (list): A list of GraphQLResult flow run objects - flow_task_definition_kwargs (dict): kwargs to use for registration - task_definition_name (str): task definition name to use """ self.logger.debug( "Using image {} for task definition".format( StorageSchema().load(flow_run.flow.storage).name # type: ignore ) ) container_definitions = [ { "name": "flow", "image": StorageSchema() .load(flow_run.flow.storage) # type: ignore .name, "command": ["/bin/sh", "-c", "prefect execute cloud-flow"], "environment": [ { "name": "PREFECT__CLOUD__API", "value": config.cloud.api or "https://api.prefect.io", }, { "name": "PREFECT__CLOUD__AGENT__LABELS", "value": str(self.labels), }, {"name": "PREFECT__CLOUD__USE_LOCAL_SECRETS", "value": "false"}, { "name": "PREFECT__LOGGING__LOG_TO_CLOUD", "value": str(self.log_to_cloud).lower(), }, {"name": "PREFECT__LOGGING__LEVEL", "value": "DEBUG"}, { "name": "PREFECT__ENGINE__FLOW_RUNNER__DEFAULT_CLASS", "value": "prefect.engine.cloud.CloudFlowRunner", }, { "name": "PREFECT__ENGINE__TASK_RUNNER__DEFAULT_CLASS", "value": "prefect.engine.cloud.CloudTaskRunner", }, ], "essential": True, } ] for key, value in self.env_vars.items(): container_definitions[0]["environment"].append(dict(name=key, value=value)) # Register task definition self.logger.debug( "Registering task definition {}".format( task_definition_name # type: ignore ) ) self.boto3_client.register_task_definition( family=task_definition_name, # type: ignore containerDefinitions=container_definitions, requiresCompatibilities=["FARGATE"], networkMode="awsvpc", **flow_task_definition_kwargs ) def _run_task( self, flow_run: GraphQLResult, flow_task_run_kwargs: dict, task_definition_name: str, ) -> str: """ Run a task using the flow run. Args: - flow_runs (list): A list of GraphQLResult flow run objects - flow_task_run_kwargs (dict): kwargs to use for task run - task_definition_name (str): task definition name to use """ container_overrides = [ { "name": "flow", "environment": [ { "name": "PREFECT__CLOUD__AUTH_TOKEN", "value": config.cloud.agent.auth_token, }, { "name": "PREFECT__CONTEXT__FLOW_RUN_ID", "value": flow_run.id, # type: ignore }, ], } ] # Run task self.logger.debug( "Running task using task definition {}".format( task_definition_name # type: ignore ) ) task = self.boto3_client.run_task( taskDefinition=task_definition_name, overrides={"containerOverrides": container_overrides}, launchType="FARGATE", **flow_task_run_kwargs ) return task["tasks"][0].get("taskArn") if __name__ == "__main__": FargateAgent().start()
the-stack_0_18956
""" Game data manager Use None for unfilled, False for black, and True for white. The manager provides related access interfaces. """ from error import InvalidGridError, SettedGridError from collections import defaultdict from typing import List, Tuple, Union, Iterator, Set, Dict, Optional class Manager: """ Game data manager Use a two-dimensional array matrix to represent the game board. """ def __init__(self, size: int) -> None: """ Initialize a new game data manager. Parameters: size: int - length and width of the game board (same) """ self._ended = False self._size = size self._records: List[Tuple[int, int]] = list() self._board: List[List[Union[None, bool]]] = [ [None for _index in range(size)] for _index in range(size) ] @property def size(self) -> int: """Return size of game board""" return self._size def undo(self) -> Tuple[int, int]: """Undo the last step""" row, column = self._records.pop() return row, column @property def steps(self) -> int: """Return steps count""" return len(self._records) @property def turn(self) -> bool: """Return which turn""" return len(self._records) % 2 == 0 @property def ended(self) -> bool: """Return if game ended""" return self._ended def end(self) -> None: """Set end flag""" self._ended = True def reset(self) -> None: """Reset game status""" self._records.clear() self._ended = False self._board: List[List[Union[None, bool]]] = [ [None for _index in range(self._size)] for _index in range(self._size) ] def _around(self, _x: int, _y: int) -> Iterator[Tuple[int, int]]: """Return all grids's indexs around specific grid""" if _x >= self._size or _y >= self._size: raise InvalidGridError( "Invalid index for ({x}, {y})".format(x=_x, y=_y)) for i in (_x - 1, _x, _x + 1): for j in (_y - 1, _y, _y + 1): if (i, j) == (_x, _y): continue if i < 0 or j < 0: continue if i >= self._size or j >= self._size: continue yield (i, j) def find(self, row: int, column: int, paths: Optional[Dict[int, Set[Tuple[int, int]]]] = None, direction: Optional[int] = None) -> Dict[int, Set[Tuple[int, int]]]: """ Try to continuously find the specified amount of continuously set data in any direction Parameters: row, column: position or grid paths: path for all directions directions: 1 2 3 ↖ ↑ ↗ 4 ← · → 4 ↙ ↓ ↘ 3 2 1 """ target = self[row, column] if paths is None: paths = {1: set(), 2: set(), 3: set(), 4: set()} # Find all grids aorund current one around = self._around(row, column) classified = defaultdict(list) for nrow, ncolumn in around: # Filter all invalid grid if not self[nrow, ncolumn] == target: continue # Filter non-set grid if self[nrow, ncolumn] == None: continue # Define direction if (nrow - row) * (ncolumn - column) == 1: classified[1].append((nrow, ncolumn)) if nrow - row == 0: classified[2].append((nrow, ncolumn)) if (nrow - row) * (ncolumn - column) == -1: classified[3].append((nrow, ncolumn)) if ncolumn - column == 0: classified[4].append((nrow, ncolumn)) # If direction has not been specified if direction is None: for ndirection, grids in classified.items(): for nrow, ncolumn in grids: paths[ndirection].add((row, column)) paths[ndirection].add((nrow, ncolumn)) self.find(nrow, ncolumn, paths, ndirection) # If direction has been sprcified else: grids = classified[direction] for nrow, ncolumn in grids: if (nrow, ncolumn) in paths[direction]: continue paths[direction].add((nrow, ncolumn)) self.find(nrow, ncolumn, paths, direction) # If all directional recursions break before condition satisfied return paths def __setitem__(self, index: Tuple[int, int], value: Union[None, bool]) -> None: """Set status for specific index of grid""" _x, _y = index if _x > self._size or _x < 0 or _y > self._size or _y < 0: raise InvalidGridError( "Invalid index for ({x}, {y})".format(x=_x, y=_y)) # Check for grid if grid has been set if isinstance(self._board[_x][_y], bool) and not value is None: raise SettedGridError("Cannot set grid which has already been set") self._board[_x][_y] = value if value is None: self._records.remove(index) else: self._records.append(index) def __getitem__(self, index: Tuple[int, int]) -> Union[None, bool]: """Return status for specific index of grid""" _x, _y = index if _x > self._size or _x < 0 or _y > self._size or _y < 0: raise IndexError("Invalid index for ({x}, {y})".format(x=_x, y=_y)) return self._board[_x][_y] def show(self) -> None: """Show all grids status""" status = list() for row in self._board: for column in row: if column is None: status.append('x ') if column is True: status.append('Y ') if column is False: status.append('N ') status.append('\n') print(''.join(status)) # Test case if __name__ == "__main__": size = 10 # Test for size property manager = Manager(size) assert(manager.size == size) # Boundary conditions testing of private function _around assert(set(manager._around(0, 0)) == {(0, 1), (1, 0), (1, 1)}) assert(set(manager._around(0, size - 1)) == { (0, size - 2), (1, size - 1), (1, size - 2)}) assert(set(manager._around(1, 1)) == {(0, 0), (0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1), (2, 2)}) assert(set(manager._around(size - 1, 0)) == { (size - 2, 0), (size - 2, 1), (size - 1, 1)}) assert(set(manager._around(size - 1, size - 1)) == { (size - 1, size - 2), (size - 2, size - 2), (size - 2, size - 1)}) # Test setitem and getitem function manager[0, 0] = True assert(manager[0, 0] == True) assert(manager[0, 1] == None) try: manager[0, 0] = False except SettedGridError as _error: pass else: raise AssertionError("Setitem function test failed!") # Test step count function assert(manager.steps == 1) # Test find function manager[0, 1] = True manager[1, 0] = False manager[1, 1] = True manager[3, 0] = True manager[2, 2] = False assert(manager.find(0, 0) == { 1: {(1, 1), (0, 0)}, 2: {(0, 1), (0, 0)}, 3: set(), 4: set() }) # Test show function manager.show()
the-stack_0_18957
import glm import draw import math import copy # This class handles the orientation, movement and various associated tasks for a given object. # # lots of stuff here shamelessly stolen from # https://github.com/SebLague/Boids under the MIT license # Portions Copyright (c) 2019 Sebastian Lague # # Check out his sweet video: # https://www.youtube.com/watch?v=bqtqltqcQhw&fbclid=IwAR3MYG37B7dI3EV4YiNySQVSvtj-MP_0xcgWdh7-T18aUoAEg2BNohNWzk0 # class posture: def __init__(self, _cx, _cy, _cz, _hx, _hy, _hz, _v):# center, heading, velocity self.center_pos=glm.vec3(_cx,_cy,_cz) # (x,y,z) center pos of self (on field) self.target=glm.vec3(_hx,_hy,_hz) # (x,y,z) vector - current target of element self.heading=glm.vec3(0,-1,0) # (x,y,z) normalized vector - current direction of element (forward) self.velocity=_v # current velocity of element along the heading self.velocity2=glm.vec3(0,0,0) # (x,y,z) vector - velocity2 self.momentum=glm.vec3(0,0,0) # (x,y,z) vector - current momentum of element self.accel2=glm.vec3(0,0,0) # (x,y,z) vector - accelleration (2) self.avgAvoidanceHeading=glm.vec3(0,0,0) # (x,y,z) vector - avg avoidance heading self.accelleration=0.0 # current accelleration of self self.drag=0.0 # current drag of self self.friction=0.0 # current friction of surface self.minSpeed=0.0 # minimum speed self.maxSpeed=5.0 # maximum speed self.perceptionRadius = 2.5 # radius for perception self.avoidanceRadius = 1 # radius for avoidance self.maxSteerForce=3.0 # maximum steerage force self.alignWeight=1 # how much to weigh aligning with the flock self.cohesionWeight=1 # how much to weigh cohesion with the flock self.separateWeight=1 # how much to weigh separation from the flock self.targetWeight=1 # how much to weigh the target destination self.boundsRadius = 0.27 # radius of the boundary self.avoidCollisionsWeight = 10 # how much to weight avoiding collisions self.collisionAvoidDst = 5 # the distance to use when avoiding self.collide_rays=self.calc_collide_rays(100, 100) def tick_update(self): acceleration = glm.vec3(0,0,0) if (self.target != glm.vec3(0,0,0)): offsetToTarget = glm.vec3(self.target - self.center_pos) accelleration = self.steer_towards(offsetToTarget) * self.targetWeight # no flocking behavior here # if (numPerceivedFlockmates != 0) { # centreOfFlockmates /= numPerceivedFlockmates; # # Vector3 offsetToFlockmatesCentre = (centreOfFlockmates - position); # # var alignmentForce = SteerTowards (avgFlockHeading) * settings.alignWeight; # var cohesionForce = SteerTowards (offsetToFlockmatesCentre) * settings.cohesionWeight; # var seperationForce = SteerTowards (avgAvoidanceHeading) * settings.seperateWeight; # # acceleration += alignmentForce; # acceleration += cohesionForce; # acceleration += seperationForce; # } if (self.is_heading_for_collision()): collisionAvoidDir = glm.vec3(obstacle_rays()); collisionAvoidForce = glm.vec3(steer_towards(collisionAvoidDir) * self.avoidCollisionWeight) acceleration += collisionAvoidForce; self.velocity2 += acceleration * 50/1000 speed = glm.length(self.velocity2) #velocity.magnitude; (TODO: should be magnitude, confirm) direction = glm.vec3(self.velocity2 / speed) speed = glm.clamp(speed, self.minSpeed, self.maxSpeed); self.velocity2 = direction * speed; # cachedTransform.position += velocity * 50/1000; # cachedTransform.forward = direction; # position = cachedTransform.position; self.heading = direction; # calculate the new position based on velocity new_pos = draw.do_translate_point(self.center_pos, (glm.normalize(self.heading) * self.velocity)) if ((math.isnan(new_pos.x) == False) and (math.isnan(new_pos.y) == False) and (math.isnan(new_pos.z)== False)): if ((self.center_pos.x > 0) and (self.center_pos.y > 0)): self.center_pos.x = int(new_pos.x) self.center_pos.y = int(new_pos.y) self.center_pos.z = int(new_pos.z) # new_vector = glm.cross(self.velocity, self.accelleration) # reduce momentum based on friction (2πMgD)? # TODO - fix this calculation # self.velocity = self.velocity - (self.velocity*(self.drag*.1)) def set_drag(self, new_drag): self.drag = new_drag # takes a glm.vec3 def set_accel(self, new_accel): self.accelleration = new_accel def __str__(self): return "posture: %dx%dx%d %dx%dx%d %dx%dx%d %d" %(self.center_pos[0], self.center_pos[1], self.center_pos[2], self.heading[0], self.heading[1], self.heading[2], self.target[1], self.target[2], self.velocity) def calc_collide_rays(self, numViewDirections, length): directions=[] goldenRatio = (1 + glm.sqrt(5)) / 2; angleIncrement = glm.pi() * 2 * goldenRatio; i=0 while i < (numViewDirections): t = i / numViewDirections; inclination = glm.acos(1 - 2 * t); azimuth = angleIncrement * i; x = glm.sin(inclination) * glm.cos(azimuth); y = glm.sin (inclination) * glm.sin(azimuth); z = glm.cos (inclination); directions.append(glm.vec3(x, y, z)*length) i+=1 return directions def get_collide_rays(self): local_rays = copy.deepcopy(self.collide_rays) return (local_rays) def steer_towards(self, vector): v = glm.vec3(glm.normalize(vector) * self.maxSpeed - self.velocity2) return glm.clamp(v, 0, self.maxSteerForce); def is_heading_for_collision(self): # RaycastHit hit; # if (Physics.SphereCast (position, settings.boundsRadius, forward, out hit, settings.collisionAvoidDst, settings.obstacleMask)) { # return true; # } else { } return False def obstacle_rays(self): rayDirections = self.get_collide_rays(); length = rayDirections.length() i=0 while i < (length): # Vector3 dir = cachedTransform.TransformDirection (rayDirections[i]); #Ray ray = new Ray (position, dir); #if (!Physics.SphereCast (ray, settings.boundsRadius, settings.collisionAvoidDst, settings.obstacleMask)) { # return dir; #} i += 1 return self.heading;
the-stack_0_18958
""" https://leetcode.com/problems/surrounded-regions/ Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'. A region is captured by flipping all 'O's into 'X's in that surrounded region. Example: X X X X X O O X X X O X X O X X After running your function, the board should be: X X X X X X X X X X X X X O X X Explanation: Surrounded regions shouldn’t be on the border, which means that any 'O' on the border of the board are not flipped to 'X'. Any 'O' that is not on the border and it is not connected to an 'O' on the border will be flipped to 'X'. Two cells are connected if they are adjacent cells connected horizontally or vertically. """ # time complexity: O(m*n), space complexity: O(1), where m and n are the height and width of the matrix class Solution: def solve(self, board: List[List[str]]) -> None: """ Do not return anything, modify board in-place instead. """ if not(board) or not(board[0]): return def convert(row, col): if 0 <= row < len(board) and 0 <= col < len(board[0]) and board[row][col] == 'O': board[row][col] = 'A' convert(row, col-1) convert(row, col+1) convert(row-1, col) convert(row+1, col) for i in range(len(board)): convert(i, 0) convert(i, len(board[0])-1) for j in range(len(board[0])): convert(0, j) convert(len(board)-1, j) for i in range(len(board)): for j in range(len(board[0])): if board[i][j] == 'O': board[i][j] = 'X' if board[i][j] == 'A': board[i][j] = 'O'
the-stack_0_18959
from typing import Type, Union import numpy as np import pytest from pandas._libs import OutOfBoundsDatetime from pandas.compat.numpy import _np_version_under1p18 import pandas as pd import pandas._testing as tm from pandas.core.arrays import DatetimeArray, PeriodArray, TimedeltaArray from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import Period, PeriodIndex from pandas.core.indexes.timedeltas import TimedeltaIndex # TODO: more freq variants @pytest.fixture(params=["D", "B", "W", "M", "Q", "Y"]) def period_index(request): """ A fixture to provide PeriodIndex objects with different frequencies. Most PeriodArray behavior is already tested in PeriodIndex tests, so here we just test that the PeriodArray behavior matches the PeriodIndex behavior. """ freqstr = request.param # TODO: non-monotone indexes; NaTs, different start dates pi = pd.period_range(start=pd.Timestamp("2000-01-01"), periods=100, freq=freqstr) return pi @pytest.fixture(params=["D", "B", "W", "M", "Q", "Y"]) def datetime_index(request): """ A fixture to provide DatetimeIndex objects with different frequencies. Most DatetimeArray behavior is already tested in DatetimeIndex tests, so here we just test that the DatetimeArray behavior matches the DatetimeIndex behavior. """ freqstr = request.param # TODO: non-monotone indexes; NaTs, different start dates, timezones dti = pd.date_range(start=pd.Timestamp("2000-01-01"), periods=100, freq=freqstr) return dti @pytest.fixture def timedelta_index(request): """ A fixture to provide TimedeltaIndex objects with different frequencies. Most TimedeltaArray behavior is already tested in TimedeltaIndex tests, so here we just test that the TimedeltaArray behavior matches the TimedeltaIndex behavior. """ # TODO: flesh this out return pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"]) class SharedTests: index_cls: Type[Union[DatetimeIndex, PeriodIndex, TimedeltaIndex]] @pytest.fixture def arr1d(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls(data, freq="D") return arr def test_compare_len1_raises(self): # make sure we raise when comparing with different lengths, specific # to the case where one has length-1, which numpy would broadcast data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls._simple_new(data, freq="D") idx = self.index_cls(arr) with pytest.raises(ValueError, match="Lengths must match"): arr == arr[:1] # test the index classes while we're at it, GH#23078 with pytest.raises(ValueError, match="Lengths must match"): idx <= idx[[0]] @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("as_index", [True, False]) def test_compare_categorical_dtype(self, arr1d, as_index, reverse, ordered): other = pd.Categorical(arr1d, ordered=ordered) if as_index: other = pd.CategoricalIndex(other) left, right = arr1d, other if reverse: left, right = right, left ones = np.ones(arr1d.shape, dtype=bool) zeros = ~ones result = left == right tm.assert_numpy_array_equal(result, ones) result = left != right tm.assert_numpy_array_equal(result, zeros) if not reverse and not as_index: # Otherwise Categorical raises TypeError bc it is not ordered # TODO: we should probably get the same behavior regardless? result = left < right tm.assert_numpy_array_equal(result, zeros) result = left <= right tm.assert_numpy_array_equal(result, ones) result = left > right tm.assert_numpy_array_equal(result, zeros) result = left >= right tm.assert_numpy_array_equal(result, ones) def test_take(self): data = np.arange(100, dtype="i8") * 24 * 3600 * 10 ** 9 np.random.shuffle(data) arr = self.array_cls._simple_new(data, freq="D") idx = self.index_cls._simple_new(arr) takers = [1, 4, 94] result = arr.take(takers) expected = idx.take(takers) tm.assert_index_equal(self.index_cls(result), expected) takers = np.array([1, 4, 94]) result = arr.take(takers) expected = idx.take(takers) tm.assert_index_equal(self.index_cls(result), expected) @pytest.mark.parametrize("fill_value", [2, 2.0, pd.Timestamp.now().time]) def test_take_fill_raises(self, fill_value): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls._simple_new(data, freq="D") msg = f"'fill_value' should be a {self.dtype}. Got '{fill_value}'" with pytest.raises(ValueError, match=msg): arr.take([0, 1], allow_fill=True, fill_value=fill_value) def test_take_fill(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls._simple_new(data, freq="D") result = arr.take([-1, 1], allow_fill=True, fill_value=None) assert result[0] is pd.NaT result = arr.take([-1, 1], allow_fill=True, fill_value=np.nan) assert result[0] is pd.NaT result = arr.take([-1, 1], allow_fill=True, fill_value=pd.NaT) assert result[0] is pd.NaT def test_concat_same_type(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls._simple_new(data, freq="D") idx = self.index_cls(arr) idx = idx.insert(0, pd.NaT) arr = self.array_cls(idx) result = arr._concat_same_type([arr[:-1], arr[1:], arr]) arr2 = arr.astype(object) expected = self.index_cls(np.concatenate([arr2[:-1], arr2[1:], arr2]), None) tm.assert_index_equal(self.index_cls(result), expected) def test_unbox_scalar(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls(data, freq="D") result = arr._unbox_scalar(arr[0]) assert isinstance(result, int) result = arr._unbox_scalar(pd.NaT) assert isinstance(result, int) msg = f"'value' should be a {self.dtype.__name__}." with pytest.raises(ValueError, match=msg): arr._unbox_scalar("foo") def test_check_compatible_with(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls(data, freq="D") arr._check_compatible_with(arr[0]) arr._check_compatible_with(arr[:1]) arr._check_compatible_with(pd.NaT) def test_scalar_from_string(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls(data, freq="D") result = arr._scalar_from_string(str(arr[0])) assert result == arr[0] def test_reduce_invalid(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls(data, freq="D") with pytest.raises(TypeError, match="cannot perform"): arr._reduce("not a method") @pytest.mark.parametrize("method", ["pad", "backfill"]) def test_fillna_method_doesnt_change_orig(self, method): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls(data, freq="D") arr[4] = pd.NaT fill_value = arr[3] if method == "pad" else arr[5] result = arr.fillna(method=method) assert result[4] == fill_value # check that the original was not changed assert arr[4] is pd.NaT def test_searchsorted(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls(data, freq="D") # scalar result = arr.searchsorted(arr[1]) assert result == 1 result = arr.searchsorted(arr[2], side="right") assert result == 3 # own-type result = arr.searchsorted(arr[1:3]) expected = np.array([1, 2], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) result = arr.searchsorted(arr[1:3], side="right") expected = np.array([2, 3], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) # Following numpy convention, NaT goes at the beginning # (unlike NaN which goes at the end) result = arr.searchsorted(pd.NaT) assert result == 0 def test_getitem_2d(self, arr1d): # 2d slicing on a 1D array expected = type(arr1d)(arr1d._data[:, np.newaxis], dtype=arr1d.dtype) result = arr1d[:, np.newaxis] tm.assert_equal(result, expected) # Lookup on a 2D array arr2d = expected expected = type(arr2d)(arr2d._data[:3, 0], dtype=arr2d.dtype) result = arr2d[:3, 0] tm.assert_equal(result, expected) # Scalar lookup result = arr2d[-1, 0] expected = arr1d[-1] assert result == expected def test_setitem(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls(data, freq="D") arr[0] = arr[1] expected = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 expected[0] = expected[1] tm.assert_numpy_array_equal(arr.asi8, expected) arr[:2] = arr[-2:] expected[:2] = expected[-2:] tm.assert_numpy_array_equal(arr.asi8, expected) def test_setitem_str_array(self, arr1d): if isinstance(arr1d, DatetimeArray) and arr1d.tz is not None: pytest.xfail(reason="timezone comparisons inconsistent") expected = arr1d.copy() expected[[0, 1]] = arr1d[-2:] arr1d[:2] = [str(x) for x in arr1d[-2:]] tm.assert_equal(arr1d, expected) @pytest.mark.parametrize("as_index", [True, False]) def test_setitem_categorical(self, arr1d, as_index): expected = arr1d.copy()[::-1] if not isinstance(expected, PeriodArray): expected = expected._with_freq(None) cat = pd.Categorical(arr1d) if as_index: cat = pd.CategoricalIndex(cat) arr1d[:] = cat[::-1] tm.assert_equal(arr1d, expected) def test_setitem_raises(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls(data, freq="D") val = arr[0] with pytest.raises(IndexError, match="index 12 is out of bounds"): arr[12] = val with pytest.raises(TypeError, match="'value' should be a.* 'object'"): arr[0] = object() @pytest.mark.parametrize("box", [list, np.array, pd.Index, pd.Series]) def test_setitem_numeric_raises(self, arr1d, box): # We dont case e.g. int64 to our own dtype for setitem msg = "requires compatible dtype" with pytest.raises(TypeError, match=msg): arr1d[:2] = box([0, 1]) with pytest.raises(TypeError, match=msg): arr1d[:2] = box([0.0, 1.0]) def test_inplace_arithmetic(self): # GH#24115 check that iadd and isub are actually in-place data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls(data, freq="D") expected = arr + pd.Timedelta(days=1) arr += pd.Timedelta(days=1) tm.assert_equal(arr, expected) expected = arr - pd.Timedelta(days=1) arr -= pd.Timedelta(days=1) tm.assert_equal(arr, expected) def test_shift_fill_int_deprecated(self): # GH#31971 data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = self.array_cls(data, freq="D") with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = arr.shift(1, fill_value=1) expected = arr.copy() if self.array_cls is PeriodArray: fill_val = PeriodArray._scalar_type._from_ordinal(1, freq=arr.freq) else: fill_val = arr._scalar_type(1) expected[0] = fill_val expected[1:] = arr[:-1] tm.assert_equal(result, expected) class TestDatetimeArray(SharedTests): index_cls = pd.DatetimeIndex array_cls = DatetimeArray dtype = pd.Timestamp @pytest.fixture def arr1d(self, tz_naive_fixture): tz = tz_naive_fixture dti = pd.date_range("2016-01-01 01:01:00", periods=3, freq="H", tz=tz) dta = dti._data return dta def test_round(self, tz_naive_fixture): # GH#24064 tz = tz_naive_fixture dti = pd.date_range("2016-01-01 01:01:00", periods=3, freq="H", tz=tz) result = dti.round(freq="2T") expected = dti - pd.Timedelta(minutes=1) expected = expected._with_freq(None) tm.assert_index_equal(result, expected) dta = dti._data result = dta.round(freq="2T") expected = expected._data._with_freq(None) tm.assert_datetime_array_equal(result, expected) def test_array_interface(self, datetime_index): arr = DatetimeArray(datetime_index) # default asarray gives the same underlying data (for tz naive) result = np.asarray(arr) expected = arr._data assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, copy=False) assert result is expected tm.assert_numpy_array_equal(result, expected) # specifying M8[ns] gives the same result as default result = np.asarray(arr, dtype="datetime64[ns]") expected = arr._data assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype="datetime64[ns]", copy=False) assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype="datetime64[ns]") assert result is not expected tm.assert_numpy_array_equal(result, expected) # to object dtype result = np.asarray(arr, dtype=object) expected = np.array(list(arr), dtype=object) tm.assert_numpy_array_equal(result, expected) # to other dtype always copies result = np.asarray(arr, dtype="int64") assert result is not arr.asi8 assert not np.may_share_memory(arr, result) expected = arr.asi8.copy() tm.assert_numpy_array_equal(result, expected) # other dtypes handled by numpy for dtype in ["float64", str]: result = np.asarray(arr, dtype=dtype) expected = np.asarray(arr).astype(dtype) tm.assert_numpy_array_equal(result, expected) def test_array_object_dtype(self, tz_naive_fixture): # GH#23524 tz = tz_naive_fixture dti = pd.date_range("2016-01-01", periods=3, tz=tz) arr = DatetimeArray(dti) expected = np.array(list(dti)) result = np.array(arr, dtype=object) tm.assert_numpy_array_equal(result, expected) # also test the DatetimeIndex method while we're at it result = np.array(dti, dtype=object) tm.assert_numpy_array_equal(result, expected) def test_array_tz(self, tz_naive_fixture): # GH#23524 tz = tz_naive_fixture dti = pd.date_range("2016-01-01", periods=3, tz=tz) arr = DatetimeArray(dti) expected = dti.asi8.view("M8[ns]") result = np.array(arr, dtype="M8[ns]") tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype="datetime64[ns]") tm.assert_numpy_array_equal(result, expected) # check that we are not making copies when setting copy=False result = np.array(arr, dtype="M8[ns]", copy=False) assert result.base is expected.base assert result.base is not None result = np.array(arr, dtype="datetime64[ns]", copy=False) assert result.base is expected.base assert result.base is not None def test_array_i8_dtype(self, tz_naive_fixture): tz = tz_naive_fixture dti = pd.date_range("2016-01-01", periods=3, tz=tz) arr = DatetimeArray(dti) expected = dti.asi8 result = np.array(arr, dtype="i8") tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype=np.int64) tm.assert_numpy_array_equal(result, expected) # check that we are still making copies when setting copy=False result = np.array(arr, dtype="i8", copy=False) assert result.base is not expected.base assert result.base is None def test_from_array_keeps_base(self): # Ensure that DatetimeArray._data.base isn't lost. arr = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]") dta = DatetimeArray(arr) assert dta._data is arr dta = DatetimeArray(arr[:0]) assert dta._data.base is arr def test_from_dti(self, tz_naive_fixture): tz = tz_naive_fixture dti = pd.date_range("2016-01-01", periods=3, tz=tz) arr = DatetimeArray(dti) assert list(dti) == list(arr) # Check that Index.__new__ knows what to do with DatetimeArray dti2 = pd.Index(arr) assert isinstance(dti2, pd.DatetimeIndex) assert list(dti2) == list(arr) def test_astype_object(self, tz_naive_fixture): tz = tz_naive_fixture dti = pd.date_range("2016-01-01", periods=3, tz=tz) arr = DatetimeArray(dti) asobj = arr.astype("O") assert isinstance(asobj, np.ndarray) assert asobj.dtype == "O" assert list(asobj) == list(dti) @pytest.mark.parametrize("freqstr", ["D", "B", "W", "M", "Q", "Y"]) def test_to_perioddelta(self, datetime_index, freqstr): # GH#23113 dti = datetime_index arr = DatetimeArray(dti) expected = dti.to_perioddelta(freq=freqstr) result = arr.to_perioddelta(freq=freqstr) assert isinstance(result, TimedeltaArray) # placeholder until these become actual EA subclasses and we can use # an EA-specific tm.assert_ function tm.assert_index_equal(pd.Index(result), pd.Index(expected)) @pytest.mark.parametrize("freqstr", ["D", "B", "W", "M", "Q", "Y"]) def test_to_period(self, datetime_index, freqstr): dti = datetime_index arr = DatetimeArray(dti) expected = dti.to_period(freq=freqstr) result = arr.to_period(freq=freqstr) assert isinstance(result, PeriodArray) # placeholder until these become actual EA subclasses and we can use # an EA-specific tm.assert_ function tm.assert_index_equal(pd.Index(result), pd.Index(expected)) @pytest.mark.parametrize("propname", pd.DatetimeIndex._bool_ops) def test_bool_properties(self, datetime_index, propname): # in this case _bool_ops is just `is_leap_year` dti = datetime_index arr = DatetimeArray(dti) assert dti.freq == arr.freq result = getattr(arr, propname) expected = np.array(getattr(dti, propname), dtype=result.dtype) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("propname", pd.DatetimeIndex._field_ops) def test_int_properties(self, datetime_index, propname): if propname in ["week", "weekofyear"]: # GH#33595 Deprecate week and weekofyear return dti = datetime_index arr = DatetimeArray(dti) result = getattr(arr, propname) expected = np.array(getattr(dti, propname), dtype=result.dtype) tm.assert_numpy_array_equal(result, expected) def test_take_fill_valid(self, datetime_index, tz_naive_fixture): dti = datetime_index.tz_localize(tz_naive_fixture) arr = DatetimeArray(dti) now = pd.Timestamp.now().tz_localize(dti.tz) result = arr.take([-1, 1], allow_fill=True, fill_value=now) assert result[0] == now msg = f"'fill_value' should be a {self.dtype}. Got '0 days 00:00:00'." with pytest.raises(ValueError, match=msg): # fill_value Timedelta invalid arr.take([-1, 1], allow_fill=True, fill_value=now - now) msg = f"'fill_value' should be a {self.dtype}. Got '2014Q1'." with pytest.raises(ValueError, match=msg): # fill_value Period invalid arr.take([-1, 1], allow_fill=True, fill_value=pd.Period("2014Q1")) tz = None if dti.tz is not None else "US/Eastern" now = pd.Timestamp.now().tz_localize(tz) msg = "Cannot compare tz-naive and tz-aware datetime-like objects" with pytest.raises(TypeError, match=msg): # Timestamp with mismatched tz-awareness arr.take([-1, 1], allow_fill=True, fill_value=now) value = pd.NaT.value msg = f"'fill_value' should be a {self.dtype}. Got '{value}'." with pytest.raises(ValueError, match=msg): # require NaT, not iNaT, as it could be confused with an integer arr.take([-1, 1], allow_fill=True, fill_value=value) value = np.timedelta64("NaT", "ns") msg = f"'fill_value' should be a {self.dtype}. Got '{str(value)}'." with pytest.raises(ValueError, match=msg): # require appropriate-dtype if we have a NA value arr.take([-1, 1], allow_fill=True, fill_value=value) def test_concat_same_type_invalid(self, datetime_index): # different timezones dti = datetime_index arr = DatetimeArray(dti) if arr.tz is None: other = arr.tz_localize("UTC") else: other = arr.tz_localize(None) with pytest.raises(ValueError, match="to_concat must have the same"): arr._concat_same_type([arr, other]) def test_concat_same_type_different_freq(self): # we *can* concatenate DTI with different freqs. a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central")) b = DatetimeArray(pd.date_range("2000", periods=2, freq="H", tz="US/Central")) result = DatetimeArray._concat_same_type([a, b]) expected = DatetimeArray( pd.to_datetime( [ "2000-01-01 00:00:00", "2000-01-02 00:00:00", "2000-01-01 00:00:00", "2000-01-01 01:00:00", ] ).tz_localize("US/Central") ) tm.assert_datetime_array_equal(result, expected) def test_strftime(self, datetime_index): arr = DatetimeArray(datetime_index) result = arr.strftime("%Y %b") expected = np.array([ts.strftime("%Y %b") for ts in arr], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_strftime_nat(self): # GH 29578 arr = DatetimeArray(DatetimeIndex(["2019-01-01", pd.NaT])) result = arr.strftime("%Y-%m-%d") expected = np.array(["2019-01-01", np.nan], dtype=object) tm.assert_numpy_array_equal(result, expected) class TestTimedeltaArray(SharedTests): index_cls = pd.TimedeltaIndex array_cls = TimedeltaArray dtype = pd.Timedelta def test_from_tdi(self): tdi = pd.TimedeltaIndex(["1 Day", "3 Hours"]) arr = TimedeltaArray(tdi) assert list(arr) == list(tdi) # Check that Index.__new__ knows what to do with TimedeltaArray tdi2 = pd.Index(arr) assert isinstance(tdi2, pd.TimedeltaIndex) assert list(tdi2) == list(arr) def test_astype_object(self): tdi = pd.TimedeltaIndex(["1 Day", "3 Hours"]) arr = TimedeltaArray(tdi) asobj = arr.astype("O") assert isinstance(asobj, np.ndarray) assert asobj.dtype == "O" assert list(asobj) == list(tdi) def test_to_pytimedelta(self, timedelta_index): tdi = timedelta_index arr = TimedeltaArray(tdi) expected = tdi.to_pytimedelta() result = arr.to_pytimedelta() tm.assert_numpy_array_equal(result, expected) def test_total_seconds(self, timedelta_index): tdi = timedelta_index arr = TimedeltaArray(tdi) expected = tdi.total_seconds() result = arr.total_seconds() tm.assert_numpy_array_equal(result, expected.values) @pytest.mark.parametrize("propname", pd.TimedeltaIndex._field_ops) def test_int_properties(self, timedelta_index, propname): tdi = timedelta_index arr = TimedeltaArray(tdi) result = getattr(arr, propname) expected = np.array(getattr(tdi, propname), dtype=result.dtype) tm.assert_numpy_array_equal(result, expected) def test_array_interface(self, timedelta_index): arr = TimedeltaArray(timedelta_index) # default asarray gives the same underlying data result = np.asarray(arr) expected = arr._data assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, copy=False) assert result is expected tm.assert_numpy_array_equal(result, expected) # specifying m8[ns] gives the same result as default result = np.asarray(arr, dtype="timedelta64[ns]") expected = arr._data assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype="timedelta64[ns]", copy=False) assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype="timedelta64[ns]") assert result is not expected tm.assert_numpy_array_equal(result, expected) # to object dtype result = np.asarray(arr, dtype=object) expected = np.array(list(arr), dtype=object) tm.assert_numpy_array_equal(result, expected) # to other dtype always copies result = np.asarray(arr, dtype="int64") assert result is not arr.asi8 assert not np.may_share_memory(arr, result) expected = arr.asi8.copy() tm.assert_numpy_array_equal(result, expected) # other dtypes handled by numpy for dtype in ["float64", str]: result = np.asarray(arr, dtype=dtype) expected = np.asarray(arr).astype(dtype) tm.assert_numpy_array_equal(result, expected) def test_take_fill_valid(self, timedelta_index): tdi = timedelta_index arr = TimedeltaArray(tdi) td1 = pd.Timedelta(days=1) result = arr.take([-1, 1], allow_fill=True, fill_value=td1) assert result[0] == td1 now = pd.Timestamp.now() value = now msg = f"'fill_value' should be a {self.dtype}. Got '{value}'." with pytest.raises(ValueError, match=msg): # fill_value Timestamp invalid arr.take([0, 1], allow_fill=True, fill_value=value) value = now.to_period("D") msg = f"'fill_value' should be a {self.dtype}. Got '{value}'." with pytest.raises(ValueError, match=msg): # fill_value Period invalid arr.take([0, 1], allow_fill=True, fill_value=value) value = np.datetime64("NaT", "ns") msg = f"'fill_value' should be a {self.dtype}. Got '{str(value)}'." with pytest.raises(ValueError, match=msg): # require appropriate-dtype if we have a NA value arr.take([-1, 1], allow_fill=True, fill_value=value) class TestPeriodArray(SharedTests): index_cls = pd.PeriodIndex array_cls = PeriodArray dtype = pd.Period @pytest.fixture def arr1d(self, period_index): return period_index._data def test_from_pi(self, period_index): pi = period_index arr = PeriodArray(pi) assert list(arr) == list(pi) # Check that Index.__new__ knows what to do with PeriodArray pi2 = pd.Index(arr) assert isinstance(pi2, pd.PeriodIndex) assert list(pi2) == list(arr) def test_astype_object(self, period_index): pi = period_index arr = PeriodArray(pi) asobj = arr.astype("O") assert isinstance(asobj, np.ndarray) assert asobj.dtype == "O" assert list(asobj) == list(pi) def test_take_fill_valid(self, period_index): pi = period_index arr = PeriodArray(pi) value = pd.NaT.value msg = f"'fill_value' should be a {self.dtype}. Got '{value}'." with pytest.raises(ValueError, match=msg): # require NaT, not iNaT, as it could be confused with an integer arr.take([-1, 1], allow_fill=True, fill_value=value) value = np.timedelta64("NaT", "ns") msg = f"'fill_value' should be a {self.dtype}. Got '{str(value)}'." with pytest.raises(ValueError, match=msg): # require appropriate-dtype if we have a NA value arr.take([-1, 1], allow_fill=True, fill_value=value) @pytest.mark.parametrize("how", ["S", "E"]) def test_to_timestamp(self, how, period_index): pi = period_index arr = PeriodArray(pi) expected = DatetimeArray(pi.to_timestamp(how=how)) result = arr.to_timestamp(how=how) assert isinstance(result, DatetimeArray) # placeholder until these become actual EA subclasses and we can use # an EA-specific tm.assert_ function tm.assert_index_equal(pd.Index(result), pd.Index(expected)) def test_to_timestamp_out_of_bounds(self): # GH#19643 previously overflowed silently pi = pd.period_range("1500", freq="Y", periods=3) msg = "Out of bounds nanosecond timestamp: 1500-01-01 00:00:00" with pytest.raises(OutOfBoundsDatetime, match=msg): pi.to_timestamp() with pytest.raises(OutOfBoundsDatetime, match=msg): pi._data.to_timestamp() @pytest.mark.parametrize("propname", PeriodArray._bool_ops) def test_bool_properties(self, period_index, propname): # in this case _bool_ops is just `is_leap_year` pi = period_index arr = PeriodArray(pi) result = getattr(arr, propname) expected = np.array(getattr(pi, propname)) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("propname", PeriodArray._field_ops) def test_int_properties(self, period_index, propname): pi = period_index arr = PeriodArray(pi) result = getattr(arr, propname) expected = np.array(getattr(pi, propname)) tm.assert_numpy_array_equal(result, expected) def test_array_interface(self, period_index): arr = PeriodArray(period_index) # default asarray gives objects result = np.asarray(arr) expected = np.array(list(arr), dtype=object) tm.assert_numpy_array_equal(result, expected) # to object dtype (same as default) result = np.asarray(arr, dtype=object) tm.assert_numpy_array_equal(result, expected) result = np.asarray(arr, dtype="int64") tm.assert_numpy_array_equal(result, arr.asi8) # to other dtypes msg = r"float\(\) argument must be a string or a number, not 'Period'" with pytest.raises(TypeError, match=msg): np.asarray(arr, dtype="float64") result = np.asarray(arr, dtype="S20") expected = np.asarray(arr).astype("S20") tm.assert_numpy_array_equal(result, expected) def test_strftime(self, period_index): arr = PeriodArray(period_index) result = arr.strftime("%Y") expected = np.array([per.strftime("%Y") for per in arr], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_strftime_nat(self): # GH 29578 arr = PeriodArray(PeriodIndex(["2019-01-01", pd.NaT], dtype="period[D]")) result = arr.strftime("%Y-%m-%d") expected = np.array(["2019-01-01", np.nan], dtype=object) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "array,casting_nats", [ ( pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data, (pd.NaT, np.timedelta64("NaT", "ns")), ), ( pd.date_range("2000-01-01", periods=3, freq="D")._data, (pd.NaT, np.datetime64("NaT", "ns")), ), (pd.period_range("2000-01-01", periods=3, freq="D")._data, (pd.NaT,)), ], ids=lambda x: type(x).__name__, ) def test_casting_nat_setitem_array(array, casting_nats): expected = type(array)._from_sequence([pd.NaT, array[1], array[2]]) for nat in casting_nats: arr = array.copy() arr[0] = nat tm.assert_equal(arr, expected) @pytest.mark.parametrize( "array,non_casting_nats", [ ( pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data, (np.datetime64("NaT", "ns"), pd.NaT.value), ), ( pd.date_range("2000-01-01", periods=3, freq="D")._data, (np.timedelta64("NaT", "ns"), pd.NaT.value), ), ( pd.period_range("2000-01-01", periods=3, freq="D")._data, (np.datetime64("NaT", "ns"), np.timedelta64("NaT", "ns"), pd.NaT.value), ), ], ids=lambda x: type(x).__name__, ) def test_invalid_nat_setitem_array(array, non_casting_nats): msg = ( "'value' should be a '(Timestamp|Timedelta|Period)', 'NaT', or array of those. " "Got '(timedelta64|datetime64|int)' instead." ) for nat in non_casting_nats: with pytest.raises(TypeError, match=msg): array[0] = nat @pytest.mark.parametrize( "array", [ pd.date_range("2000", periods=4).array, pd.timedelta_range("2000", periods=4).array, ], ) def test_to_numpy_extra(array): if _np_version_under1p18: # np.isnan(NaT) raises, so use pandas' isnan = pd.isna else: isnan = np.isnan array[0] = pd.NaT original = array.copy() result = array.to_numpy() assert isnan(result[0]) result = array.to_numpy(dtype="int64") assert result[0] == -9223372036854775808 result = array.to_numpy(dtype="int64", na_value=0) assert result[0] == 0 result = array.to_numpy(na_value=array[1].to_numpy()) assert result[0] == result[1] result = array.to_numpy(na_value=array[1].to_numpy(copy=False)) assert result[0] == result[1] tm.assert_equal(array, original) @pytest.mark.parametrize("as_index", [True, False]) @pytest.mark.parametrize( "values", [ pd.to_datetime(["2020-01-01", "2020-02-01"]), pd.TimedeltaIndex([1, 2], unit="D"), pd.PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"), ], ) @pytest.mark.parametrize( "klass", [ list, np.array, pd.array, pd.Series, pd.Index, pd.Categorical, pd.CategoricalIndex, ], ) def test_searchsorted_datetimelike_with_listlike(values, klass, as_index): # https://github.com/pandas-dev/pandas/issues/32762 if not as_index: values = values._data result = values.searchsorted(klass(values)) expected = np.array([0, 1], dtype=result.dtype) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "values", [ pd.to_datetime(["2020-01-01", "2020-02-01"]), pd.TimedeltaIndex([1, 2], unit="D"), pd.PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"), ], ) @pytest.mark.parametrize( "arg", [[1, 2], ["a", "b"], [pd.Timestamp("2020-01-01", tz="Europe/London")] * 2] ) def test_searchsorted_datetimelike_with_listlike_invalid_dtype(values, arg): # https://github.com/pandas-dev/pandas/issues/32762 msg = "[Unexpected type|Cannot compare]" with pytest.raises(TypeError, match=msg): values.searchsorted(arg) @pytest.mark.parametrize("klass", [list, tuple, np.array, pd.Series]) def test_period_index_construction_from_strings(klass): # https://github.com/pandas-dev/pandas/issues/26109 strings = ["2020Q1", "2020Q2"] * 2 data = klass(strings) result = PeriodIndex(data, freq="Q") expected = PeriodIndex([Period(s) for s in strings]) tm.assert_index_equal(result, expected)
the-stack_0_18961
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. import dace import numpy as np @dace.program def tlarray(A: dace.int32[128]): tmp = dace.ndarray([128], dace.int32, storage=dace.StorageType.CPU_ThreadLocal) for i in dace.map[0:128]: with dace.tasklet: # Assuming OpenMP is used t = omp_get_thread_num() t >> tmp[i] for i in dace.map[0:128]: with dace.tasklet: t << tmp[i] o >> A[i] # If tmp is thread-local, will be distributed across thread IDs o = t def test_threadlocal(): A = np.ndarray([128], dtype=np.int32) A[:] = -1 # Add OpenMP include sdfg = tlarray.to_sdfg() sdfg.set_global_code('#include <omp.h>') sdfg(A=A) assert np.all(A >= 0) print('OK. Detected threads:', np.max(A) + 1) if __name__ == '__main__': test_threadlocal()
the-stack_0_18962
# -*- coding: utf-8 -*- import httplib as http import pkgutil import mock from nose import SkipTest from nose.tools import * # flake8: noqa from tests.base import ApiTestCase from osf_tests import factories from framework.auth.oauth_scopes import CoreScopes from api.base.settings.defaults import API_BASE from rest_framework.permissions import IsAuthenticatedOrReadOnly, IsAuthenticated from api.base.permissions import TokenHasScope from website.settings import DEBUG_MODE from django.contrib.auth.models import User import importlib URLS_MODULES = [] for loader, name, _ in pkgutil.iter_modules(['api']): if name != 'base' and name != 'test': try: URLS_MODULES.append(importlib.import_module('api.{}.urls'.format(name))) except ImportError: pass VIEW_CLASSES = [] for mod in URLS_MODULES: urlpatterns = mod.urlpatterns for patt in urlpatterns: VIEW_CLASSES.append(patt.callback.cls) class TestApiBaseViews(ApiTestCase): def test_root_returns_200(self): res = self.app.get('/{}'.format(API_BASE)) assert_equal(res.status_code, 200) def test_does_not_exist_returns_404(self): res = self.app.get('/{}{}'.format(API_BASE,"notapage"), expect_errors=True) assert_equal(res.status_code, 404) def test_does_not_exist_formatting(self): if DEBUG_MODE: raise SkipTest else: url = '/{}{}/'.format(API_BASE, 'notapage') res = self.app.get(url, expect_errors=True) errors = res.json['errors'] assert(isinstance(errors, list)) assert_equal(errors[0], {'detail': 'Not found.'}) def test_view_classes_have_minimal_set_of_permissions_classes(self): base_permissions = [ TokenHasScope, (IsAuthenticated, IsAuthenticatedOrReadOnly) ] for view in VIEW_CLASSES: for cls in base_permissions: if isinstance(cls, tuple): has_cls = any([c in view.permission_classes for c in cls]) assert_true(has_cls, "{0} lacks the appropriate permission classes".format(view)) else: assert_in(cls, view.permission_classes, "{0} lacks the appropriate permission classes".format(view)) for key in ['read', 'write']: scopes = getattr(view, 'required_{}_scopes'.format(key), None) assert_true(bool(scopes)) for scope in scopes: assert_is_not_none(scope) if key == 'write': assert_not_in(CoreScopes.ALWAYS_PUBLIC, scopes) def test_view_classes_support_embeds(self): for view in VIEW_CLASSES: assert_true(hasattr(view, '_get_embed_partial'), "{0} lacks embed support".format(view)) def test_view_classes_define_or_override_serializer_class(self): for view in VIEW_CLASSES: has_serializer_class = getattr(view, 'serializer_class', None) or getattr(view, 'get_serializer_class', None) assert_true(has_serializer_class, "{0} should include serializer class or override get_serializer_class()".format(view)) @mock.patch('framework.auth.core.User.is_confirmed', mock.PropertyMock(return_value=False)) def test_unconfirmed_user_gets_error(self): user = factories.AuthUserFactory() res = self.app.get('/{}nodes/'.format(API_BASE), auth=user.auth, expect_errors=True) assert_equal(res.status_code, http.BAD_REQUEST) @mock.patch('framework.auth.core.User.is_disabled', mock.PropertyMock(return_value=True)) def test_disabled_user_gets_error(self): user = factories.AuthUserFactory() res = self.app.get('/{}nodes/'.format(API_BASE), auth=user.auth, expect_errors=True) assert_equal(res.status_code, http.BAD_REQUEST) class TestJSONAPIBaseView(ApiTestCase): def setUp(self): super(TestJSONAPIBaseView, self).setUp() self.user = factories.AuthUserFactory() self.node = factories.ProjectFactory(creator=self.user) self.url = '/{0}nodes/{1}/'.format(API_BASE, self.node._id) for i in range(5): factories.ProjectFactory(parent=self.node, creator=self.user) for i in range(5): factories.ProjectFactory(parent=self.node) @mock.patch('api.base.serializers.JSONAPISerializer.to_representation', autospec=True) def test_request_added_to_serializer_context(self, mock_to_representation): self.app.get(self.url, auth=self.user.auth) assert_in('request', mock_to_representation.call_args[0][0].context) def test_reverse_sort_possible(self): response = self.app.get('http://localhost:8000/v2/users/me/nodes/?sort=-title', auth=self.user.auth) assert_equal(response.status_code, 200) class TestSwaggerDocs(ApiTestCase): def test_swagger_docs_redirect_to_root(self): res = self.app.get('/v2/docs/') assert_equal(res.status_code, 302) assert_equal(res.location, '/v2/')
the-stack_0_18963
# Copyright 2017--2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """ A set of utility methods. """ import binascii import gzip import itertools import logging import math import multiprocessing import os import pprint import random import sys from collections import defaultdict from contextlib import contextmanager from itertools import starmap from typing import Any, List, Iterator, Iterable, Tuple, Dict, Optional, Union, TypeVar import numpy as np import torch as pt import torch.distributed from . import __version__, constants as C from .log import log_sockeye_version, log_torch_version logger = logging.getLogger(__name__) class SockeyeError(Exception): pass def check_version(version: str): """ Checks given version against code version and determines compatibility. Throws if versions are incompatible. :param version: Given version. """ code_version = parse_version(__version__) given_version = parse_version(version) if given_version[0] == '3' and given_version[1] == '0': logger.info(f"Code version: {__version__}") logger.warning(f"Given release version ({version}) does not match code version ({__version__}). " f"Models with version {version} should be compatible though.") return check_condition(code_version[0] == given_version[0], "Given release version (%s) does not match release code version (%s)" % (version, __version__)) check_condition(code_version[1] == given_version[1], "Given major version (%s) does not match major code version (%s)" % (version, __version__)) def load_version(fname: str) -> str: """ Loads version from file. :param fname: Name of file to load version from. :return: Version string. """ if not os.path.exists(fname): logger.warning("No version file found. Defaulting to 1.0.3") return "1.0.3" with open(fname) as inp: return inp.read().strip() def parse_version(version_string: str) -> Tuple[str, str, str]: """ Parse version string into release, major, minor version. :param version_string: Version string. :return: Tuple of strings. """ release, major, minor = version_string.split(".", 2) return release, major, minor def log_basic_info(args) -> None: """ Log basic information like version number, arguments, etc. :param args: Arguments as returned by argparse. """ log_sockeye_version(logger) log_torch_version(logger) logger.info("Command: %s", " ".join(sys.argv)) logger.info("Arguments: %s", args) def seed_rngs(seed: int) -> None: # type: ignore """ Seed the random number generators (Python, Numpy and MXNet). :param seed: The random seed. """ logger.info(f"Random seed: {seed}") np.random.seed(seed) random.seed(seed) try: import torch torch.manual_seed(seed) logger.info(f"PyTorch seed: {seed}") except ImportError: pass def check_condition(condition: bool, error_message: str): """ Check the condition and if it is not met, exit with the given error message and error_code, similar to assertions. :param condition: Condition to check. :param error_message: Error message to show to the user. """ if not condition: raise SockeyeError(error_message) class OnlineMeanAndVariance: def __init__(self) -> None: self._count = 0 self._mean = 0. self._M2 = 0. def update(self, value: Union[float, int]) -> None: self._count += 1 delta = value - self._mean self._mean += delta / self._count delta2 = value - self._mean self._M2 += delta * delta2 @property def count(self) -> int: return self._count @property def mean(self) -> float: return self._mean @property def variance(self) -> float: if self._count < 2: return float('nan') else: return self._M2 / self._count @property def std(self) -> float: variance = self.variance return math.sqrt(variance) if not math.isnan(variance) else 0.0 def chunks(some_list: List, n: int) -> Iterable[List]: """Yield successive n-sized chunks from l.""" for i in range(0, len(some_list), n): yield some_list[i:i + n] def get_tokens(line: str) -> Iterator[str]: """ Yields tokens from input string. :param line: Input string. :return: Iterator over tokens. """ for token in line.rstrip().split(): if len(token) > 0: yield token def is_gzip_file(filename: str) -> bool: # check for magic gzip number with open(filename, 'rb') as test_f: return binascii.hexlify(test_f.read(2)) == b'1f8b' def smart_open(filename: str, mode: str = "rt", ftype: str = "auto", errors: str = 'replace'): """ Returns a file descriptor for filename with UTF-8 encoding. If mode is "rt", file is opened read-only. If ftype is "auto", uses gzip iff filename endswith .gz. If ftype is {"gzip","gz"}, uses gzip. If ftype is "auto" and read mode requested, uses gzip iff is_gzip_file(filename). Note: encoding error handling defaults to "replace" :param filename: The filename to open. :param mode: Reader mode. :param ftype: File type. If 'auto' checks filename suffix for gz to try gzip.open. :param errors: Encoding error handling during reading. Defaults to 'replace'. :return: File descriptor. """ if ftype in ('gzip', 'gz') \ or (ftype == 'auto' and filename.endswith(".gz")) \ or (ftype == 'auto' and 'r' in mode and is_gzip_file(filename)): if mode == "rb" or mode == "wb": return gzip.open(filename, mode=mode) else: return gzip.open(filename, mode=mode, encoding='utf-8', errors=errors) else: if mode == "rb" or mode == "wb": return open(filename, mode=mode) else: return open(filename, mode=mode, encoding='utf-8', errors=errors) def combine_means(means: List[Optional[float]], num_sents: List[int]) -> float: """ Takes a list of means and number of sentences of the same length and computes the combined mean. :param means: A list of mean values. :param num_sents: A list with the number of sentences used to compute each mean value. :return: The combined mean of the list of means. """ if not means or not num_sents: raise ValueError("Invalid input list.") check_condition(len(means) == len(num_sents), "List lengths do not match") return sum(num_sent * mean for num_sent, mean in zip(num_sents, means) if mean is not None) / sum(num_sents) def combine_stds(stds: List[Optional[float]], means: List[Optional[float]], num_sents: List[int]) -> float: """ Takes a list of standard deviations, means and number of sentences of the same length and computes the combined standard deviation. :param stds: A list of standard deviations. :param means: A list of mean values. :param num_sents: A list with number of sentences used to compute each mean value. :return: The combined standard deviation. """ if not stds or not means or not num_sents: raise ValueError("Invalid input list.") check_condition(all(len(stds) == len(l) for l in [means, num_sents]), "List lengths do not match") # type: ignore total_mean = combine_means(means, num_sents) return math.sqrt(sum(num_sent * (std**2 + (mean-total_mean)**2) for num_sent, std, mean in zip(num_sents, stds, means) if std is not None and mean is not None) / sum(num_sents)) def average_tensors(tensors: List[pt.Tensor]) -> pt.Tensor: """ Compute the element-wise average of a list of tensors of the same shape. :param tensors: A list of input tensors with the same shape. :return: The average of the tensors on the same device as tensors[0]. """ if not tensors: raise ValueError("tensors is empty.") if len(tensors) == 1: return tensors[0] check_condition(all(tensors[0].shape == t.shape for t in tensors), "tensor shapes do not match") return sum(tensors) / len(tensors) # type: ignore def gen_prefix_masking(prefix: pt.Tensor, vocab_size: int, dtype: pt.dtype) -> Tuple[pt.Tensor, int]: """ Generate prefix masks from prefix ids, which are inf everywhere except zero for prefix ids. :param prefix: Target prefix token or factors in ids. Shape (batch size, max length of prefix). :param vocab_size: vocabulary size :param dtype: dtype of the retuning output :return prefix_masks (batch size, max length of prefix, vocab_size), with type as dtype """ prefix_masks_sizes = list(prefix.size()) # type: List[int] max_length = prefix_masks_sizes[1] prefix_masks_sizes.append(vocab_size) # prefix_masks are inf everywhere except zero for indices of prefix ids. prefix_masks = pt.full(prefix_masks_sizes, fill_value=np.inf, device=prefix.device, dtype=dtype) prefix_masks.scatter_(-1, prefix.to(pt.int64).unsqueeze(-1), 0.) # Note: The use of prefix_masks.scatter_() function is equivalent (but much faster) to # prefix_masks[prefix_one_hot != 0] = 0., where # prefix_one_hot = pt.nn.functional.one_hot(prefix.to(pt.int64), num_classes=vocab_size).to(prefix.device) # In the same batch during inference, it is possible that some translations have target prefix # while others do not have. It is also possible that translation may have a target prefix with # different length to others. Thus prefix ids may include a full zero vector if a translation # in the batch does not have prefix, or include a vector padding with zeros on the right if some # translations are with shorter prefix. An example of prefix ids reflecting length differences \ # is as follows: # # [1, 2, 3] # [1, 2, 0] # [0, 0, 0] # # Here, the first sentence has a prefix of length 3, the second one has a prefix of length 1 \ # and the last one does not have prefix. # # At any timestep, some target prefix ids could be 0 (i.e. 0 in the target_prefix means 'no constraint'). \ # If a prefix id is 0 for a translation at a timestep, all hots in the vocab are assigned to 0 (instead \ # of only one hot is assigned to 0 and other hots are inf). This makes sure there is no constraint on \ # selecting any specific target token for the translation in that case. prefix_masks.masked_fill_(prefix.unsqueeze(-1) == 0, 0) return prefix_masks, max_length def shift_prefix_factors(prefix_factors: pt.Tensor) -> pt.Tensor: """ Shift prefix factors one step to the right :param prefix_factors: tensor ids. Shape (batch size, length, num of factors). :return new prefix_factors_shift (batch size, length + 1, num of factors) """ prefix_factors_sizes = prefix_factors.size() prefix_factors_shift = pt.zeros(prefix_factors_sizes[0], prefix_factors_sizes[1] + 1, prefix_factors_sizes[2], dtype=prefix_factors.dtype, device=prefix_factors.device) prefix_factors_shift[:, 1:] = prefix_factors return prefix_factors_shift def adjust_first_step_masking(target_prefix: pt.Tensor, first_step_mask: pt.Tensor) -> pt.Tensor: """ Adjust first_step_masking based on the target prefix (Target prefix for each input in the same batch may have a different length. \ Thus first_step_mask needs to be adjusted accordingly.) :param target_prefix: Shape (batch size, max target prefix length). :param first_step_mask: Shape (batch_size * beam_size, 1) :return (adjusted) first_steps_masking (batch_size * beam_size, max target prefix length + 1). An illustrative example of how first_step_masking is adjusted Inputs: target_prefix (batch_size = 2, max target prefix length = 2) tensor([1 2] [1 0]) Note: Two target prefix tokens in the first sentence, \ one target prefix token in the second sentence. first_step_mask (batch_size = 2 * beam_size = 5, 1) tensor([[0], [inf], [inf], [inf], [inf], [0], [inf], [inf], [inf], [inf]) Output: Adjusted first_step_mask (batch_size * beam_size, max target prefix length + 1): tensor([[0 0 0], [inf inf inf], [inf inf inf], [inf inf inf], [inf inf, inf], [0 0 0], [inf inf 0], [inf inf 0], [inf inf 0], [inf inf 0]]) The concrete steps of what this function does are as follows: Step 1: Create a zero masking matrix with shape (batch size, max target prefix length + 1) Fill 1 into this masking matrix based on the target prefix target prefix initialize masking masking roll one step to the right from target prefix is not 0 and assign 1 at index 0 [1 2] -> [1 2 0] -> [1 1 0] -> [1 1 1] [1 0] [1 0 0] [1 0 0] [1 1 0] Step 2: Adjust first_step_mask based on masking masking expand masking with expand first_step_mask with max target beam size prefix length, fill 0 where masking is 0 [1 1 1] -> [1 1 1] -> [0 0 0] [1 1 0] [1 1 1] [inf inf inf] [1 1 1] [inf inf inf] [1 1 1] [inf inf inf] [1 1 1] [inf inf inf] [1 1 0] [0 0 0] [1 1 0] [inf inf 0] [1 1 0] [inf inf 0] [1 1 0] [inf inf 0] [1 1 0] [inf inf 0] """ batch_beam, _ = first_step_mask.size() batch, max_prefix_len = target_prefix.size() beam_size = batch_beam // batch # Step 1 masking = pt.zeros((batch, max_prefix_len + 1), device=target_prefix.device) masking[:, :max_prefix_len] = target_prefix masking = pt.clamp(masking, 0., 1.) # force all non zero ids to 1 masking = pt.roll(masking, 1, -1) masking[:, 0] = 1. # Step 2 masking = masking.unsqueeze(1).expand(-1, beam_size, -1).reshape(batch_beam, -1) first_step_mask = first_step_mask.expand(-1, masking.size(-1)).clone() first_step_mask.masked_fill_(masking == 0., 0.) return first_step_mask def parse_metrics_line(line_number: int, line: str) -> Dict[str, Any]: """ Parse a line of metrics into a mappings of key and values. :param line_number: Line's number for checking if checkpoints are aligned to it. :param line: A line from the Sockeye metrics file. :return: Dictionary of metric names (e.g. perplexity-train) mapping to a list of values. """ fields = line.split('\t') checkpoint = int(fields[0]) check_condition(line_number == checkpoint, "Line (%d) and loaded checkpoint (%d) do not align." % (line_number, checkpoint)) metric = dict() # type: Dict[str, Any] for field in fields[1:]: key, value = field.split("=", 1) if value == 'True' or value == 'False': metric[key] = (value == 'True') elif value == 'None': metric[key] = None else: metric[key] = float(value) return metric def read_metrics_file(path: str) -> List[Dict[str, Any]]: """ Reads lines metrics file and returns list of mappings of key and values. :param path: File to read metric values from. :return: Dictionary of metric names (e.g. perplexity-train) mapping to a list of values. """ with open(path) as fin: metrics = [parse_metrics_line(i, line.strip()) for i, line in enumerate(fin, 1)] return metrics def write_metrics_file(metrics: List[Dict[str, Any]], path: str): """ Write metrics data to tab-separated file. :param metrics: metrics data. :param path: Path to write to. """ with open(path, 'w') as metrics_out: for checkpoint, metric_dict in enumerate(metrics, 1): metrics_str = "\t".join(["{}={}".format(name, value) for name, value in sorted(metric_dict.items())]) metrics_out.write("{}\t{}\n".format(checkpoint, metrics_str)) def get_validation_metric_points(model_path: str, metric: str): """ Returns tuples of value and checkpoint for given metric from metrics file at model_path. :param model_path: Model path containing .metrics file. :param metric: Metric values to extract. :return: List of tuples (value, checkpoint). """ metrics_path = os.path.join(model_path, C.METRICS_NAME) data = read_metrics_file(metrics_path) return [(d['%s-val' % metric], cp) for cp, d in enumerate(data, 1)] def grouper(iterable: Iterable, size: int) -> Iterable: """ Collect data into fixed-length chunks or blocks without discarding underfilled chunks or padding them. :param iterable: A sequence of inputs. :param size: Chunk size. :return: Sequence of chunks. """ it = iter(iterable) while True: chunk = list(itertools.islice(it, size)) if not chunk: return yield chunk def repeat_interleave_with_expand(state: pt.Tensor, repeats: int, dim: int) -> pt.Tensor: """ Replace repeat_interleave with expand for latency (i.e. equivalent to state.repeat_interleave(repeats=repeats, dim=dim)) :param state: a pt.Tensor :param repeats: int :param dim: int :return repeat_state """ state_size = state.size() return state.unsqueeze(dim + 1).expand(*state_size[:dim + 1], repeats, *state_size[dim + 1:])\ .clone().view(*state_size[:dim], state.size(dim) * repeats, *state_size[dim + 1:]) def metric_value_is_better(new: float, old: float, metric: str) -> bool: """ Returns true if new value is strictly better than old for given metric. """ if C.METRIC_MAXIMIZE[metric]: return new > old else: return new < old _DTYPE_TO_STRING = { np.float32: 'float32', np.float16: 'float16', np.int8: 'int8', np.int32: 'int32', pt.float32: 'float32', pt.float16: 'float16', pt.int32: 'int32', pt.int8: 'int8', } def _print_dtype(dtype): return _DTYPE_TO_STRING.get(dtype, str(dtype)) def log_parameters(model: pt.nn.Module): """ Logs information about model parameters. """ fixed_parameter_names = [] learned_parameter_names = [] total_learned = 0 total_fixed = 0 visited = defaultdict(list) for name, module in model.named_modules(remove_duplicate=False): for param_name, param in module.named_parameters(prefix=name, recurse=False): repr = "%s [%s, %s]" % (name, tuple(param.shape), _print_dtype(param.dtype)) size = param.shape.numel() if not param.requires_grad: fixed_parameter_names.append(repr) total_fixed += size if param not in visited else 0 else: total_learned += size if param not in visited else 0 learned_parameter_names.append(repr) visited[param].append(param_name) shared_parameter_names = [] # type: List[str] total_shared = 0 for param, names in visited.items(): if len(names) > 1: total_shared += param.shape.numel() shared_parameter_names.append(" = ".join(names)) total_parameters = total_learned + total_fixed logger.info("# of parameters: %d | trainable: %d (%.2f%%) | shared: %d (%.2f%%) | fixed: %d (%.2f%%)", total_parameters, total_learned, total_learned / total_parameters * 100, total_shared, total_shared / total_parameters * 100, total_fixed, total_fixed / total_parameters * 100) logger.info("Trainable parameters: \n%s", pprint.pformat(learned_parameter_names)) logger.info("Shared parameters: \n%s", pprint.pformat(shared_parameter_names, width=120)) logger.info("Fixed parameters:\n%s", pprint.pformat(fixed_parameter_names)) @contextmanager def no_context(): """ No-op context manager that can be used in "with" statements """ yield None class SingleProcessPool: def map(self, func, iterable): return list(map(func, iterable)) def starmap(self, func, iterable): return list(starmap(func, iterable)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): pass def create_pool(max_processes): if max_processes == 1: return SingleProcessPool() else: return multiprocessing.pool.Pool(processes=max_processes) def is_distributed() -> bool: return torch.distributed.is_initialized() def is_primary_worker() -> bool: """ True when current process is the primary worker (rank 0) or the only worker (not running in distributed mode) """ return not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0 def get_local_rank() -> int: return int(os.environ[C.DIST_ENV_LOCAL_RANK]) T = TypeVar('T') def broadcast_object(obj: T, src: int = 0) -> T: """ Broadcast a single Python object across workers (default source is primary worker with rank 0) """ obj_list = [obj] torch.distributed.broadcast_object_list(obj_list, src=src) return obj_list[0] def all_gather_object(obj: T) -> List[T]: """Gather each worker's instance of an object, returned as a list""" obj_list = [None] * torch.distributed.get_world_size() # type: List[T] torch.distributed.all_gather_object(obj_list, obj) return obj_list
the-stack_0_18964
import json import os import re import numpy as np from django.conf import settings from django.views.decorators.csrf import csrf_protect from django.core.files.storage import FileSystemStorage from django.shortcuts import redirect from django.http import HttpResponse from django.contrib.auth.models import User from django.core.exceptions import ValidationError from PySAM import Windpower from PySAM.ResourceTools import FetchResourceFiles from api.models.calliope import Abstract_Tech, Run_Parameter from api.models.configuration import Location, Technology, Tech_Param, \ Loc_Tech, Loc_Tech_Param, ParamsManager, Scenario, Scenario_Param, \ Scenario_Loc_Tech, Timeseries_Meta, Model, Model_Comment, \ Model_Favorite, User_File, Model_User from api.tasks import task_status, upload_ts, copy_model from taskmeta.models import CeleryTask def validate_model_name(value): if len(value) < 3: raise ValidationError(f"Error: Invalid model name, too short.") regex = re.compile(r"(<(.*)>.*?|<(.*) />|[^\w\s\(\)-])") matched = regex.search(value) if matched is None: return diff = set(value).difference(set(["(", ")", " ", "-", "_"])) if len(diff) == 0: raise ValidationError("Error: Invalid model name, should not contain only symbols") result = matched.group(0) raise ValidationError(f"Error: Invalid model name, should not contain '{result}'") @csrf_protect def add_model(request): """ Create a new model. Option to provide an existing model to copy as a new instance. User must already have view access to the template model. Parameters: template_model_uuid (uuid): optional model_name (str): required Returns (json): Action Confirmation Example: POST: /api/add_model/ """ user = request.user model_name = request.POST["model_name"].strip() template_model_uuid = request.POST["template_model_uuid"] payload = {} try: validate_model_name(model_name) except ValidationError as e: payload["status"] = "Failed" payload["message"] = str(e) return HttpResponse(json.dumps(payload), content_type="application/json") try: template_model = Model.objects.get(uuid=template_model_uuid) template_model.handle_view_access(user) except Exception as e: template_model = None print("User building from blank model: {}".format(e)) # Create Model model_name = Model.find_unique_name(model_name) model = Model.objects.create(name=model_name) Model_User.objects.create(user=user, model=model, can_edit=True) comment = "{} initiated this model.".format(user.get_full_name()) Model_Comment.objects.create(model=model, comment=comment, type="version") payload['model_uuid'] = str(model.uuid) payload["status"] = "Added" if template_model is not None: try: model.is_uploading = True model.save() copy_model.apply_async( kwargs={"src_model_id": template_model.id, "dst_model_id": model.id, "user_id": user.id}) payload["status"] = "Submitted" except Exception as e: payload["status"] = "Failed" payload["message"] = str(e) model.delete() return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def remove_model(request): """ Removes a user's access to a model. The model will still exist and may be seen by other collaborators. Parameters: model_uuid (uuid): required Returns (json): Action Confirmation Example: POST: /api/remove_model/ """ user = request.user model_uuid = request.POST["model_uuid"] model = Model.by_uuid(model_uuid) model.handle_view_access(request.user) Model_User.objects.filter(model=model, user=user).hard_delete() payload = {"message": "Dropped as collaborator."} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def duplicate_model(request): """ Duplicate a model as a view only snapshot. User's may choose to take a snapshot of a model to provide a retrieval checkpoint and/or begin a forked version of their original model. A snapshot will replicate all of its underlying data as new instances. Parameters: model_uuid (uuid): required Returns (json): Action Confirmation Example: POST: /api/duplicate_model/ """ user = request.user model_uuid = request.POST["model_uuid"] payload = {} old_model = Model.by_uuid(model_uuid) old_model.handle_edit_access(user) # Create Model model = Model.objects.create(name=old_model.name) latest = Model.objects.filter(name=model.name).exclude( snapshot_version=None).values_list('snapshot_version', flat=True) model.snapshot_version = np.max(list(latest) + [0]) + 1 model.snapshot_base = old_model payload['model_uuid'] = str(model.uuid) model.save() try: model.is_uploading = True model.save() copy_model.apply_async( kwargs={"src_model_id": old_model.id, "dst_model_id": model.id, "user_id": user.id}) payload["status"] = "Submitted" except Exception as e: payload["status"] = "Failed" payload["message"] = str(e) model.delete() return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def add_collaborator(request): """ Add a collaborator to a model. A collaborator may become: granted of edit permissions (value=1), granted of view only permissions (value=0), removed of all permisssions (value=null) Parameters: model_uuid (uuid): required collaborator_id (str): required collaborator_can_edit (int): optional (0 or 1) Returns (json): Action Confirmation Example: POST: /api/add_collaborator/ """ model_uuid = request.POST["model_uuid"] user_id = request.POST["collaborator_id"] user = User.objects.filter(id=user_id).first() try: can_edit = bool(int(request.POST["collaborator_can_edit"])) except ValueError: can_edit = None model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) if user: message = Model_User.update(model, user, can_edit) else: message = "No user registered by that email." payload = {"message": message} return HttpResponse(json.dumps(payload), content_type="application/json") def validate_model_comment(value): value = value.strip() if len(value) == 0: raise ValidationError("Please write your comment.") regex = re.compile(r"(<(.*)>.*?|<(.*) />)") matched = regex.search(value) if matched is None: return result = matched.group(0) raise ValidationError(f"Invalid comment string, please remove '{result}'") @csrf_protect def add_model_comment(request): """ Add a user comment to a model's activity page Parameters: model_uuid (uuid): required comment (str): required Returns (json): Action Confirmation Example: POST: /api/add_model_comment/ """ model_uuid = request.POST["model_uuid"] comment = request.POST["comment"] try: validate_model_comment(comment) except ValidationError as e: payload = {"message": str(e)} return HttpResponse(json.dumps(payload), content_type="application/json") model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) Model_Comment.objects.create( model=model, user=request.user, comment=comment, type="comment" ) model.notify_collaborators(request.user) payload = {"message": "Added comment."} return HttpResponse(json.dumps(payload), content_type="application/json") # ------ Locations @csrf_protect def update_location(request): """ Add or Update a location. To update a location, must provide a location_id Parameters: model_uuid (uuid): required location_id (int): optional location_name (str): required location_lat (float): required location_long (float): required location_area (float): required location_description (str): required Returns (json): Action Confirmation Example: POST: /api/update_location/ """ model_uuid = request.POST["model_uuid"] location_id = int(request.POST.get("location_id", 0)) location_name = request.POST["location_name"].strip() location_lat = float(request.POST["location_lat"]) location_long = float(request.POST["location_long"]) location_area = request.POST["location_area"] location_description = request.POST["location_description"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) if location_area == "": location_area = None elif float(location_area) < 0: location_area = None if ((location_lat < -90) or (location_lat > 90)): location_lat = 0 if ((location_long < -180) or (location_long > 180)): location_long = 0 non_unique_name = True while non_unique_name: existing = model.locations.filter(pretty_name__iexact=location_name) if existing: if location_id == existing.first().id: non_unique_name = False else: location_name += " COPY" else: non_unique_name = False if location_id: model.locations.filter(id=location_id).update( pretty_name=location_name, name=ParamsManager.simplify_name(location_name), latitude=location_lat, longitude=location_long, available_area=location_area, description=location_description, ) # Log Activity comment = "{} updated the location: {}.".format( request.user.get_full_name(), location_name ) Model_Comment.objects.create(model=model, comment=comment, type="edit") model.notify_collaborators(request.user) model.deprecate_runs(location_id=location_id) payload = { "message": "edited location", "location_id": location_id, "location_name": location_name, "location_lat": location_lat, "location_long": location_long, "location_area": location_area, "location_description": location_description, } else: location = Location.objects.create( model_id=model.id, pretty_name=location_name, name=ParamsManager.simplify_name(location_name), latitude=location_lat, longitude=location_long, available_area=location_area, description=location_description, ) # Log Activity comment = "{} added a location: {}.".format( request.user.get_full_name(), location_name ) Model_Comment.objects.create(model=model, comment=comment, type="add") model.notify_collaborators(request.user) payload = { "message": "added location", "location_id": location.id, "location_name": location_name, "location_lat": location_lat, "location_long": location_long, "location_area": location_area, "location_description": location_description, } return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def delete_location(request): """ Delete a location. This action will cascade "delete" all instances that refer to it. Parameters: model_uuid (uuid): required location_id (int): required Returns (json): Action Confirmation Example: POST: /api/delete_location/ """ model_uuid = request.POST["model_uuid"] location_id = request.POST["location_id"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) locations = model.locations.filter(id=location_id) if len(locations) > 0: pretty_name = locations.first().pretty_name model.deprecate_runs(location_id=location_id) locations.delete() # Log Activity comment = "{} deleted the location: {}.".format( request.user.get_full_name(), pretty_name ) Model_Comment.objects.create(model=model, comment=comment, type="delete") model.notify_collaborators(request.user) payload = {"message": "deleted location"} return HttpResponse(json.dumps(payload), content_type="application/json") # ------ Technologies @csrf_protect def add_technology(request): """ Add a new technology. Option to create technology from an existing technology to inherit its technology level parameters. Any override parameters set at the nodes level will not be transferred. Parameters: model_uuid (uuid): required technology_pretty_name (str): required technology_type (str): required technology_id (int): optional Returns (json): Action Confirmation Example: POST: /api/add_technolgy/ """ model_uuid = request.POST["model_uuid"] technology_pretty_name = request.POST["technology_name"] technology_id = request.POST.get("technology_id", None) technology_type = request.POST["technology_type"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) abstract_tech = Abstract_Tech.objects.filter(name=technology_type).first() technology_name = ParamsManager.simplify_name(technology_pretty_name) if technology_id is not None: existing = Technology.objects.filter(id=technology_id).first() existing.model.handle_view_access(request.user) technology = existing.duplicate(model.id, technology_pretty_name) else: technology = Technology.objects.create( model_id=model.id, abstract_tech_id=abstract_tech.id, name=technology_name, pretty_name=technology_pretty_name, ) Tech_Param.objects.create( model_id=model.id, technology_id=technology.id, parameter_id=1, value=technology_type, ) Tech_Param.objects.create( model_id=model.id, technology_id=technology.id, parameter_id=2, value=technology_pretty_name, ) # Log Activity comment = "{} added a technology: {}.".format( request.user.get_full_name(), technology_pretty_name ) Model_Comment.objects.create(model=model, comment=comment, type="add") model.notify_collaborators(request.user) request.session["technology_id"] = technology.id payload = {"message": "added technology", "technology_id": technology.id} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def delete_technology(request): """ Delete a technology. This action will cascade "delete" all instances that refer to it. Parameters: model_uuid (uuid): required technology_id (int): required Returns (json): Action Confirmation Example: POST: /api/delete_technology/ """ model_uuid = request.POST["model_uuid"] technology_id = request.POST["technology_id"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) technologies = model.technologies.filter(id=technology_id) if len(technologies) > 0: technology_pretty_name = technologies.first().pretty_name model.deprecate_runs(technology_id=technology_id) technologies.delete() # Log Activity comment = "{} deleted the technology: {}.".format( request.user.get_full_name(), technology_pretty_name ) Model_Comment.objects.create(model=model, comment=comment, type="delete") model.notify_collaborators(request.user) payload = {"message": "deleted technology"} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def update_tech_params(request): """ Update the parameters for a technology. Parameter data is provided in a form_data object which stores updates under the following keys: 'essentials', 'add', 'edit', 'delete' Parameters: model_uuid (uuid): required technology_id (int): required form_data (json): required Returns (json): Action Confirmation Example: POST: /api/update_tech_params/ """ model_uuid = request.POST["model_uuid"] technology_id = request.POST["technology_id"] form_data = json.loads(request.POST["form_data"]) model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) technology = model.technologies.filter(id=technology_id) if len(technology) > 0: technology.first().update(form_data) # Log Activity comment = "{} updated the technology: {}.".format( request.user.get_full_name(), technology.first().pretty_name, ) Model_Comment.objects.create(model=model, comment=comment, type="edit") model.notify_collaborators(request.user) model.deprecate_runs(technology_id=technology_id) payload = {"message": "Success."} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def update_favorite(request): """ Add a parameter as a favorite. Favorites are persisted on a model by model basis. Therefore, if one user adds or removes a favorite parameter, all collaborators on that model will experience those changes. Parameters: model_uuid (uuid): required param_id (int): required add_favorite (int): required Returns (json): Action Confirmation Example: GET: /api/update_favorite/ """ model_uuid = request.GET["model_uuid"] add_favorite = int(request.GET["add_favorite"]) param_id = int(request.GET["param_id"]) model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) if add_favorite: Model_Favorite.objects.create(model_id=model.id, parameter_id=param_id) payload = {"message": "added favorite"} else: Model_Favorite.objects.filter(model_id=model.id, parameter_id=param_id).hard_delete() payload = {"message": "removed favorite"} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def convert_to_timeseries(request): """ Convert a static parameter into a timeseries. Note that this does not yet assign a timeseries meta instance to the parameter instance. Any previous data that has been configured for this parameter will be lost. Parameters: model_uuid (uuid): required technology_id (int): required param_id (int): required Returns (json): Action Confirmation Example: GET: /api/convert_to_timeseries/ """ model_uuid = request.GET["model_uuid"] param_id = int(request.GET["param_id"]) technology_id = request.GET["technology_id"] try: loc_tech_id = int(request.GET["loc_tech_id"]) except Exception as e: loc_tech_id = None print("Technology only: {}".format(e)) model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) if loc_tech_id: Loc_Tech_Param.objects.filter( model_id=model.id, parameter_id=param_id, loc_tech_id=loc_tech_id ).hard_delete() Loc_Tech_Param.objects.create( model_id=model.id, parameter_id=param_id, loc_tech_id=loc_tech_id, value=0, timeseries=True, ) payload = {"message": "added timeseries to node"} else: Tech_Param.objects.filter(model_id=model.id, parameter_id=param_id, technology_id=technology_id).hard_delete() Tech_Param.objects.create( model_id=model.id, parameter_id=param_id, technology_id=technology_id, value=0, timeseries=True, ) payload = {"message": "added timeseries to technology"} return HttpResponse(json.dumps(payload), content_type="application/json") # ------ Location-Technologies (Nodes) @csrf_protect def add_loc_tech(request): """ Add a new node (location + technology). An argument for location_2_id is only required for nodes with a transmission technology. Parameters: model_uuid (uuid): required technology_id (int): required location_1_id (int): required location_2_id (int): optional loc_tech_description (str): optional Returns (json): Action Confirmation Example: POST: /api/add_loc_tech/ """ model_uuid = request.POST["model_uuid"] technology_id = request.POST["technology_id"] location_1_id = request.POST["location_1_id"] location_2_id = request.POST.get("location_2_id", None) loc_tech_description = request.POST.get("loc_tech_description", None) model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) technology = model.technologies.filter(id=technology_id).first() location_1 = model.locations.filter(id=location_1_id).first() location_2 = model.locations.filter(id=location_2_id).first() if technology.abstract_tech.name != "transmission": location_2_id = None existing = model.loc_techs.filter( technology=technology, location_1=location_1, location_2=location_2, ) if existing.first(): loc_tech = existing.first() else: loc_tech = Loc_Tech.objects.create( model=model, technology=technology, location_1=location_1, location_2=location_2, description=loc_tech_description, ) # Log Activity comment = "{} added a node: {} ({}) @ {}.".format( request.user.get_full_name(), technology.pretty_name, technology.tag, location_1.pretty_name, ) Model_Comment.objects.create(model=model, comment=comment, type="add") model.notify_collaborators(request.user) request.session["loc_tech_id"] = loc_tech.id payload = {"message": "added location technology", "loc_tech_id": loc_tech.id} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def delete_loc_tech(request): """ Delete a node (location + technology). This action will cascade "delete" all instances that refer to it. Parameters: model_uuid (uuid): required loc_tech_id (int): required Returns (json): Action Confirmation Example: POST: /api/delete_loc_tech/ """ model_uuid = request.POST["model_uuid"] loc_tech_id = request.POST["loc_tech_id"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) loc_techs = model.loc_techs.filter(id=loc_tech_id) # Log Activity comment = "{} deleted the node: {} ({}) @ {}.".format( request.user.get_full_name(), loc_techs.first().technology.pretty_name, loc_techs.first().technology.tag, loc_techs.first().location_1.pretty_name, ) Model_Comment.objects.create(model=model, comment=comment, type="delete") model.notify_collaborators(request.user) model.deprecate_runs(technology_id=loc_techs.first().technology_id) loc_techs.delete() payload = {"message": "deleted location technology"} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def update_loc_tech_params(request): """ Update the parameters for a node. Parameter data is provided in a form_data object which stores updates under the following keys: 'add', 'edit', 'delete' Parameters: model_uuid (uuid): required loc_tech_id (int): required form_data (json): required Returns (json): Action Confirmation Example: POST: /api/update_loc_tech_params/ """ model_uuid = request.POST["model_uuid"] loc_tech_id = request.POST["loc_tech_id"] form_data = json.loads(request.POST["form_data"]) model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) loc_tech = model.loc_techs.filter(id=loc_tech_id) if len(loc_tech) > 0: loc_tech.first().update(form_data) # Log Activity comment = "{} updated the node: {} ({}) @ {}.".format( request.user.get_full_name(), loc_tech.first().technology.pretty_name, loc_tech.first().technology.tag, loc_tech.first().location_1.pretty_name, ) Model_Comment.objects.create(model=model, comment=comment, type="edit") model.notify_collaborators(request.user) model.deprecate_runs(technology_id=loc_tech.first().technology_id) payload = {"message": "Success."} return HttpResponse(json.dumps(payload), content_type="application/json") # ------ Scenarios @csrf_protect def add_scenario(request): """ Create a new scenario. Option to create a new scenario from an existing one by providing an existing scenario_id. Configuration and settings will be copied as new instances. Parameters: model_uuid (uuid): required scenario_name (str): required scenario_id (str): optional Returns (json): Action Confirmation Example: POST: /api/add_scenario/ """ model_uuid = request.POST["model_uuid"] scenario_id = request.POST.get("scenario_id", None) scenario_name = request.POST["scenario_name"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) if scenario_id not in [None, '']: existing = model.scenarios.filter(id=scenario_id).first() scenario = existing.duplicate(scenario_name) else: scenario = Scenario.objects.create(model_id=model.id, name=scenario_name) parameters = Run_Parameter.objects.all() for param in parameters: if param.name == "name": value = "{}: {}".format(model.name, scenario_name) else: value = param.default_value Scenario_Param.objects.create( scenario=scenario, run_parameter=param, value=value, model=model ) # Log Activity comment = "{} added a scenario: {}.".format( request.user.get_full_name(), scenario_name ) Model_Comment.objects.create(model=model, comment=comment, type="add") model.notify_collaborators(request.user) request.session["scenario_id"] = scenario.id payload = {"message": "added scenario", "scenario_id": scenario.id} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def toggle_scenario_loc_tech(request): """ Add/remove a node (loc_tech) to/from a scenario. Parameters: model_uuid (uuid): required scenario_id (int): required loc_tech_ids (int, comma delimited): required add (int): required: 1-True, 0-False Returns (json): Action Confirmation Example: POST: /api/toggle_scenario_loc_tech/ """ model_uuid = request.POST["model_uuid"] scenario_id = request.POST["scenario_id"] loc_tech_ids = request.POST["loc_tech_ids"] loc_tech_ids = [int(i) for i in str(loc_tech_ids).split(',')] add = bool(int(request.POST["add"])) model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) scenario = model.scenarios.filter(id=scenario_id).first() scenario_loc_techs = Scenario_Loc_Tech.objects.filter( model_id=model.id, scenario_id=scenario_id, loc_tech_id__in=loc_tech_ids ) scenario_loc_techs.delete() if add: slts = [Scenario_Loc_Tech(model_id=model.id, scenario_id=scenario_id, loc_tech_id=lt) for lt in loc_tech_ids] Scenario_Loc_Tech.objects.bulk_create(slts) # Log Activity comment = "{} updated the scenario: {}.".format( request.user.get_full_name(), scenario.name ) Model_Comment.objects.filter(model=model, comment=comment, type="edit").hard_delete() Model_Comment.objects.create(model=model, comment=comment, type="edit") model.deprecate_runs(scenario_id=scenario_id) # Return new list of active loc tech IDs active_lts = Scenario_Loc_Tech.objects.filter(scenario_id=scenario_id) active_lt_ids = list(active_lts.values_list("loc_tech_id", flat=True)) payload = {"active_lt_ids": active_lt_ids, "message": "Updated scenario's location technologies"} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def update_scenario_params(request): """ Update the parameters on a scenario. Parameter data is provided in a form_data object which stores updates under the following keys: 'add', 'edit', 'delete' Parameters: model_uuid (uuid): required scenario_id (int): required form_data (json): required Returns (json): Action Confirmation Example: POST: /api/update_scenario_params/ """ model_uuid = request.POST["model_uuid"] scenario_id = request.POST["scenario_id"] form_data = json.loads(request.POST["form_data"]) model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) scenario = model.scenarios.filter(id=scenario_id).first() Scenario_Param.update(scenario, form_data) # Log Activity comment = "{} updated the scenario: {}.".format( request.user.get_full_name(), scenario.name ) Model_Comment.objects.create(model=model, comment=comment, type="edit") model.notify_collaborators(request.user) model.deprecate_runs(scenario_id=scenario_id) payload = {"message": "Success."} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def delete_scenario(request): """ Delete a scenario. This action will cascade "delete" all instances that refer to it. Parameters: model_uuid (uuid): required scenario_id (int): required Returns (json): Action Confirmation Example: POST: /api/delete_scenario/ """ model_uuid = request.POST["model_uuid"] scenario_id = request.POST["scenario_id"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) scenarios = model.scenarios.filter(id=scenario_id) if len(scenarios) > 0: name = scenarios.first().name scenarios.delete() # Log Activity comment = "{} deleted the scenario: {}.".format( request.user.get_full_name(), name ) Model_Comment.objects.create(model=model, comment=comment, type="delete") model.notify_collaborators(request.user) payload = {"message": "deleted scenario"} return HttpResponse(json.dumps(payload), content_type="application/json") # ------ Timeseries @csrf_protect def upload_file(request): """ Upload a timeseries file. Parameters: model_uuid (uuid): required description (str): optional myfile (file): required Returns: Redirect to the timeseries page for the given model Example: POST: /api/upload_file/ """ model_uuid = request.POST["model_uuid"] description = request.POST.get("file-description", None) model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) if (request.method == "POST") and ("myfile" in request.FILES): myfile = request.FILES["myfile"] fs = FileSystemStorage() filename = fs.save("user_files/" + myfile.name, myfile) User_File.objects.create(filename=filename, description=description, model=model) return redirect("/%s/timeseries/" % model_uuid) return redirect("/{}/timeseries/".format(model_uuid)) @csrf_protect def delete_timeseries(request): """ Delete a timeseries Parameters: model_uuid (uuid): required timeseries_id (int): required Returns (json): Action Confirmation Example: POST: /api/delete_timeseries/ """ model_uuid = request.POST.get("model_uuid", None) timeseries_id = request.POST.get("timeseries_id", None) model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) timeseries_meta = Timeseries_Meta.objects.filter( model=model, id=timeseries_id ) timeseries_meta.delete() payload = {"message": "Success."} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def delete_file(request): """ Delete a user timeseries file Parameters: model_uuid (uuid): required file_id (int): required Returns (json): Action Confirmation Example: POST: /api/delete_file/ """ model_uuid = request.POST.get("model_uuid", None) file_id = request.POST.get("file_id", None) model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) file_record = User_File.objects.filter(model=model, id=file_id) file_record.delete() payload = {"message": "Success."} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def import_timeseries(request): """ Import a timeseries Parameters: model_uuid (uuid): required timeseries_id (int): required Returns (json): Action Confirmation Example: POST: /api/import_timeseries/ """ model_uuid = request.POST["model_uuid"] name = request.POST["name"] values = request.POST["timeseries"].split(',') model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) Timeseries_Meta.create_ts_8760(model, name, values) payload = {"message": "Success."} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def upload_timeseries(request): """ Build and save a clean timeseries csv from a user uploaded file. Parameters: model_uuid (uuid): required file_id (int): required timeseries_name (str): required timestamp_col (int): required value_col (int): required has_header (bool): required Returns (json): Action Confirmation Example: GET: /api/upload_timeseries/ """ model_uuid = request.GET.get("model_uuid", None) file_id = request.GET.get("file_id", None) timeseries_name = request.GET.get("timeseries_name", None) timestamp_col = request.GET.get("timestamp_col", None) value_col = request.GET.get("value_col", None) has_header = request.GET.get("has_header", None) if has_header == "true": has_header = True else: has_header = False model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) file_record = User_File.objects.filter(model=model, id=file_id) simple_filename = file_record.first().simple_filename() payload = {} existing = Timeseries_Meta.objects.filter(model=model, name=timeseries_name).first() if existing: payload["status"] = task_status.FAILURE payload["message"] = "Timeseries name already exists" return HttpResponse(json.dumps(payload), content_type="application/json") new_meta = Timeseries_Meta.objects.create( model=model, name=timeseries_name, original_filename=simple_filename, original_timestamp_col=timestamp_col, original_value_col=value_col, ) try: async_result = upload_ts.apply_async( kwargs={ "model_uuid": model_uuid, "timeseries_meta_id": new_meta.id, "file_id": file_id, "timestamp_col": timestamp_col, "value_col": value_col, "has_header": has_header, } ) upload_task = CeleryTask.objects.get(task_id=async_result.id) new_meta.upload_task = upload_task new_meta.is_uploading = True new_meta.save() payload["status"] = "Success" # Only means that the submission of the celery task was successful. except Exception as e: print(e) payload["status"] = "Failed" payload["message"] = str(e) if not has_header: payload["message"] += ( " Please try checking the box, " '"The first row of the selected CSV file is a header row."' ) new_meta.delete() return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def wtk_timeseries(request): """ Pull timeseries from WTK (PySAM) Parameters: lat (float): required e.g. 32.22 lon (float): required e.g. -97.83 Returns (json): Data Example: POST: /api/wtk_timeseries/ """ latitude = request.POST["lat"] longitude = request.POST["lon"] coordinate = (longitude, latitude) # Fetch wind resource data wtk_fp = wtk_fetch_resource_files(coordinate) # --- Initialize generator --- if wtk_fp is not None: generator = Windpower.default('WindPowerNone') generator.Resource.assign({'wind_resource_filename': wtk_fp}) generator.execute() generation = np.array(generator.Outputs.gen) cf_profile = generation / generator.Farm.system_capacity payload = {"cf_profile": list(cf_profile)} else: payload = {"message": "Not Found"} return HttpResponse(json.dumps(payload), content_type="application/json") def wtk_fetch_resource_files(coordinate): """Fetch wind resource data""" wr = FetchResourceFiles( tech='wind', resource_year='tmy', nrel_api_email=settings.NREL_API_EMAIL, nrel_api_key=settings.NREL_API_KEY, resource_dir=os.path.join(settings.DATA_STORAGE, 'wind-data') ) wr.fetch([coordinate]) # --- Get resource data file path --- wtk_path_dict = wr.resource_file_paths_dict wtk_fp = wtk_path_dict[coordinate] return wtk_fp
the-stack_0_18965
#!/usr/bin/python2.7 # # Adapted from: # http://stackoverflow.com/questions/14557944/downsizing-an-otf-font-by-removing-glyphs import sys try: import fontforge except ImportError: print('ImportError, try: sudo apt install python-fontforge') exit(2) if len(sys.argv) >= 4: font = fontforge.open(sys.argv[1]) for path in sys.argv[3:]: with open(path, "rb") as f: data = f.read() for i in data.decode("UTF-8"): font.selection[ord(i)] = True f.close() font.selection.invert() for i in font.selection.byGlyphs: font.removeGlyph(i) font.generate(sys.argv[2]) else: print("Usage: {} source.woff output.woff source1.txt ...".format(sys.argv[0])) print("Example: {} /path/to/ukai.ttc chineseTranslation.txt ukaiStripped.ttf".format(sys.argv[0])) exit(2)
the-stack_0_18966
import datetime import pytest from redisolar.dao.redis import FeedDaoRedis from redisolar.models import MeterReading TESTING_SITE_ID = 1 NOW = datetime.datetime.utcnow() @pytest.fixture def feed_dao(redis, key_schema): yield FeedDaoRedis(redis, key_schema) def generate_meter_reading(site_id: int, datetime: datetime.datetime): return MeterReading(site_id=site_id, timestamp=datetime, temp_c=15.0, wh_generated=0.025, wh_used=0.015) def test_basic_insert_returns_recent(feed_dao): now = datetime.datetime.now() reading0 = generate_meter_reading(1, now) reading1 = generate_meter_reading(1, now - datetime.timedelta(minutes=1)) feed_dao.insert(reading0) feed_dao.insert(reading1) global_list = feed_dao.get_recent_global(100) assert len(global_list) == 2 assert global_list[0] == reading1 assert global_list[1] == reading0 site_list = feed_dao.get_recent_for_site(1, 100) assert len(site_list) == 2 assert site_list[0] == reading1 assert site_list[1] == reading0
the-stack_0_18969
import json import random from time import time import torch import weaviate import math from uuid import uuid4 client = weaviate.Client("http://localhost:8080", timeout_config = (5, 120) ) # or another location where your Weaviate instance is running schema = { "classes": [{ "class": "SemanticUnit", "description": "A written text, for example a news article or blog post", "vectorIndexType": "hnsw", "vectorIndexConfig": { "efConstruction": 128, "maxConnections": 64, }, # "shardingConfig": { # "desiredCount":4, # }, "vectorizer": "none", "properties": [ { "dataType": [ "string" ], "description": "ID", "name": "reference" }, { "dataType": [ "text" ], "description": "titles of the unit", "name": "title", }, { "dataType": [ "text" ], "description": "semantic unit flat text", "name": "text" }, { "dataType": [ "string" ], "description": "document type", "name": "docType" }, { "dataType": [ "int" ], "description": "so we can do some int queries", "name": "itemId" }, { "dataType": [ "int" ], "description": "so we can do some int queries", "name": "itemIdHundred" }, { "dataType": [ "int" ], "description": "so we can do some int queries", "name": "itemIdTen" }, { "dataType": [ "int" ], "description": "so we can do some int queries", "name": "dummy" } ] }] } # cleanup from previous runs client.schema.delete_all() client.schema.create(schema) batch = weaviate.ObjectsBatchRequest() batchSize = 256 data=[] with open("data.json", "r") as f: data = json.load(f) update_ratio = 0.0 # ids=[] # if update_ratio != 0: # id_ratio = 1-update_ratio # id_count = len(data) * id_ratio # for i in range(int(id_count)): # ids+=[str(uuid4())] # def get_uuid(): # if update_ratio == 0: # return None # return random.choice(ids) def normalize(v): norm=0 for x in v: norm+= x*x norm=math.sqrt(norm) for i, x in enumerate(v): v[i] = x/norm return v start = time() for i, doc in enumerate(data): props = { "title": doc['properties']['title'], "text": doc['properties']['text'], "docType": doc['properties']['token'], "itemId": doc['properties']['itemId'], "itemIdHundred": doc['properties']['itemIdHundred'], "itemIdTen": doc['properties']['itemIdTen'], "dummy": 7, } batch.add(props, "SemanticUnit", vector=normalize(doc['vector']), uuid=doc['id']) # when either batch size is reached or we are at the last object if (i != 0 and i % batchSize == 0) or i == len(data) - 1: print(f'send! {i/len(data)*100:.2f}% - index time: {(time() -start)/60:.2f}mn') # send off the batch res = client.batch.create(batch) for single in res: if "errors" in single["result"]: print(single["result"]["errors"]) # and reset for the next batch batch = weaviate.ObjectsBatchRequest()
the-stack_0_18970
""" Top Fields ========== This class returns top fields based on document frequency :Author: Faegheh Hasibi """ from nordlys.core.retrieval.elastic import Elastic class TopFields(object): DEBUG = 0 def __init__(self, elastic): self.elastic = elastic self.__fields = None self.__fsdm_fields = {"names", "categories", "attributes", "similar_entity_names", "related_entity_names"} @property def fields(self): if self.__fields is None: self.__fields = set(self.elastic.get_fields()) return self.__fields def get_top_term(self, en, n): """Returns top-n fields with highest document frequency for the given entity ID.""" doc_freq = {} if self.DEBUG: print("Entity:[" + en + "]") for field in self.fields: df = self.elastic.doc_freq(en, field) if df > 0: doc_freq[field] = df top_fields = self.__get_top_n(doc_freq, n) return top_fields def __get_top_n(self, fields_freq, n): """Sorts fields and returns top-n.""" sorted_fields = sorted(fields_freq.items(), key=lambda item: (item[1], item[0]), reverse=True) top_fields = dict() i = 0 for field, freq in sorted_fields: if i >= n: break if field in self.__fsdm_fields: continue i += 1 top_fields[field] = freq if self.DEBUG: print("(" + field + ", " + str(freq) + ")") if self.DEBUG: print("\nNumber of fields:", len(top_fields), "\n") return top_fields
the-stack_0_18972
def _impl(ctx): input_file = ctx.files.enum_file[0] enum_name = input_file.basename[:-len(input_file.extension)] ctx.action( inputs=[input_file], #outputs=[enum_name + '.cpp', enum_name + '.h', enum_name + 't.cpp'], outputs=[ctx.outputs.header, ctx.outputs.cpp, ctx.outputs.test], arguments=[ "--config", input_file.path, "--output_dir", ctx.outputs.cpp.dirname ], progress_message="Generating from %s" % input_file.short_path, executable=ctx.executable._gen_tool) _gen_cppenum = rule( implementation=_impl, attrs={ "enum_name": attr.string(), "enum_file": attr.label( mandatory=True, allow_files=True, single_file=True ), "_gen_tool": attr.label( executable=True, cfg="host", allow_files=True, default=Label("//external:gen_cppenum") ) }, output_to_genfiles=True, outputs={ "header": "%{enum_name}.h", "cpp": "%{enum_name}.cpp", "test": "%{enum_name}.t.cpp", }, ) def gen_cppenum(enum_file, visibility=None): name = enum_file[:enum_file.rindex('.')] _gen_cppenum( name=name + '_genfiles', enum_name=name, enum_file=enum_file ) native.cc_library( name=name, hdrs=[ name + ".h", ], srcs=[ name + ".cpp", ], visibility=visibility, ) native.cc_test( name=name + '_test', srcs=[ name + ".t.cpp", ], deps=[ ":" + name, "//external:boost-test", ], )
the-stack_0_18973
import xarray as xr import numpy as np import glob # PARAMETER SPECIFICATION def _get_universal(): universal={'rootdir': '/local/projects/so_decadal_variability/', 'localdir': '', 'prefix': 'SO_', 'gridsuffix':'.nc'} return universal ################# # NOTE : nameposition is a super hacky solution to extract # the name of the variable from the filename. It changes # dependent on whether we are using the ocean grid or not. # Need to overhaul procedure. # Think I can combine these functions (to _get_specifics) # but leaving separate for now # def _get_specifics_flux(fluxname): # specific={} # specific['erai'] = {'suffix':'_1979-2018.nc', # 'nameposition':slice(-24,-22)} # specific['era5'] = {'suffix':'_1979-2019.nc', # 'nameposition':slice(-20,-18)} # specific['jra55'] = {'suffix':'_1979-2019.nc', # 'nameposition':slice(-25,-23)} # specific['merra2'] = {'suffix':'_1980-2019.nc', # 'nameposition':slice(-26,-24)} # return specific[fluxname] # def _get_specifics_ocean(oceanname): # specific={} # specific['en4'] = {'suffix':'_197901-201812.nc', # 'depthname':'depth'} # specific['iap'] = {'suffix':'_197901-201812.nc', # 'depthname':'depth_std'} # return specific[oceanname] ################## def _get_specifics(name): specific={} specific['erai'] = {'suffix':'_1979-2018.nc', 'nameposition':slice(-24,-22), 'gridlon':'longitude', 'gridlat':'latitude', 'tempoffset':-273.15} specific['era5'] = {'suffix':'_1979-2019.nc', 'nameposition':slice(-24,-22), 'gridlon':'longitude', 'gridlat':'latitude', 'tempoffset':0} specific['jra55'] = {'suffix':'_1979-2020.nc', 'nameposition':slice(-25,-23), 'gridlon':'lon', 'gridlat':'lat', 'tempoffset':-273.15} specific['merra2'] = {'suffix':'_1980-2019.nc', 'nameposition':slice(-26,-24), 'gridlon':'lon', 'gridlat':'lat', 'tempoffset':-273.15} specific['en4'] = {'suffix':'_197901-201812.nc', 'depthname':'depth'} specific['iap'] = {'suffix':'_197901-201812.nc', 'depthname':'depth_std'} return specific[name] ## PATHS def _get_oceanpath(oceanname, fluxname=None, varname=None): universal=_get_universal() specific=_get_specifics(oceanname) if fluxname is None: filename = universal['prefix']+'ocean_*'+oceanname+specific['suffix'] else: filename = universal['prefix']+'ocean_*'+oceanname+'_'+fluxname+specific['suffix'] if varname is not None: filename = universal['prefix']+'ocean_'+varname+'_'+oceanname+specific['suffix'] path = universal['rootdir']+universal['localdir']+'ocean/'+filename return path def _get_gridpath(name, varname=None): universal=_get_universal() specific=_get_specifics(name) filename = universal['prefix']+'grid_*'+name+universal['gridsuffix'] if varname is not None: filename = universal['prefix']+'grid_'+varname+'_'+oceanname+universal['gridsuffix'] path = universal['rootdir']+universal['localdir']+'grid/'+filename return path def _get_fluxpath(fluxname, oceanname=None, varname='*[!e]'): universal=_get_universal() specific=_get_specifics(fluxname) if oceanname is None: ocean = '' else: ocean = '_'+oceanname filename = universal['prefix']+'flux_'+varname+'_'+fluxname+ocean+specific['suffix'] path = universal['rootdir']+universal['localdir']+'flux/'+filename return path # LOADING def _get_oceands(oceanname,fluxname=None): path = _get_oceanpath(oceanname,fluxname) return xr.open_mfdataset(path) def _get_gridds(name): path = _get_gridpath(name) return xr.open_mfdataset(path) def _get_fluxds(fluxname,oceanname=None): path = _get_fluxpath(fluxname,oceanname) return xr.open_mfdataset(path) # Getting flux data (more complicated loading because of muddled time coordinate) ### This was a hack that was in here before to select particular flux data ### I'm not entirely sure of its purpose, since the appropriate data seems to be ### collected irrespective. Will remove for now but may need to return to this. # universal=_get_universal() # specific=_get_specifics_flux(fluxname) # # Getting flux data (more complicated loading because of muddled time coordinate) # fluxfiles=[] # if oceanname is None: # filename = universal['prefix']+'flux_*'+fluxname+specific['suffix'] # else: # filename = universal['prefix']+'flux_*'+fluxname+'_'+oceanname+specific['suffix'] # for file in glob.glob(universal['rootdir']+'flux/'+filename): # print(file) # f = file[specific['nameposition']] # if f in ['sr','fw','ht']: # fluxfiles.append(file) # print('Retrieving data from :') # print(fluxfiles) # return xr.open_mfdataset(fluxfiles) # PROCESSING def _preprocess(fluxds,oceands,gridds,timeslice,onoceangrid,specifics): # HACK : current hack to avoid time selection for gridfile # when on flux grid (which is static), whereas ocean grid # has time dimension # Revisit grid data to rectify timeselect = {'time':timeslice} if onoceangrid: fluxds = fluxds.sel(timeselect).assign_coords({'time':oceands['time'].sel(timeselect)}) gridds = gridds.sel(timeselect) oceands = oceands.sel(timeselect) else: fluxds = fluxds.sel(timeselect) # gridds = gridds.sel(timeselect) oceands = oceands.sel(timeselect).assign_coords({'time':fluxds['time'].sel(timeselect)}) # Check for consistency of longitude coordinates ### This is a temporary patch for merra2 and jra55 (which have a very small ### error in the longitude/latitude array), but could be instituted properly if ~np.array_equal(oceands[specifics['gridlon']],fluxds[specifics['gridlon']]): oceands = oceands.assign_coords( {specifics['gridlon']:fluxds[specifics['gridlon']]}) if ~np.array_equal(oceands[specifics['gridlat']],fluxds[specifics['gridlat']]): oceands = oceands.assign_coords( {specifics['gridlat']:fluxds[specifics['gridlat']]}) # Merge ds = xr.merge([fluxds,oceands,gridds]) # Change names of lon and lat ds = ds.rename({specifics['gridlat']:'lat',specifics['gridlon']:'lon'}) # Roll longitude to it goes from 0 to 360 # ds = ds.roll(lon=180,roll_coords=False).assign_coords({'lon':np.arange(0,360)}) # Make heat flux positive into the ocean ds['ht'] *= -1 ds['sr'] *= -1 # Turn gamman to a proper density if 'gamman' in ds.data_vars: ds['gamman']+=1000 # Apply offset to temperature if 'sst' in ds.data_vars: ds['sst']+=specifics['tempoffset'] return ds def _preprocess_oceanonly(oceands,gridds,timeslice, roll): timeselect = {'time':timeslice} gridds = gridds.sel(timeselect) oceands = oceands.sel(timeselect) # Merge ds = xr.merge([oceands,gridds]) # Roll longitude to it goes from 0 to 360 if roll: ds = ds.roll(lon=180,roll_coords=False).assign_coords({'lon':np.arange(0,360)}) # Turn gamman to a proper density ds['gamman']+=1000 return ds # LOADING WRAPPERS def loaddata(fluxname, oceanname, timeslice, onoceangrid, debug=False): if onoceangrid: # ocean oceands = _get_oceands(oceanname) # grid gridname = oceanname gridds = _get_gridds(gridname) # flux fluxds = _get_fluxds(fluxname,oceanname) else: oceands = _get_oceands(oceanname,fluxname) gridname = fluxname gridds = _get_gridds(gridname) fluxds = _get_fluxds(fluxname) if debug: return oceands,gridds,fluxds # Some renaming conventions if _get_specifics(oceanname)['depthname']!='depth': oceands = oceands.rename({_get_specific(oceanname)['depthname']:'depth'}) gridds = gridds.rename({_get_specific(oceanname)['depthname']:'depth'}) return _preprocess(fluxds,oceands,gridds, timeslice,onoceangrid,_get_specifics(gridname)) def loaddata_oceanonly(oceanname, timeslice, roll=True): specific=_get_specifics_ocean(oceanname) oceands = _get_oceands(oceanname) gridds = _get_gridds(oceanname) # Some renaming conventions if specific['depthname']!='depth': oceands = oceands.rename({specific['depthname']:'depth'}) gridds = gridds.rename({specific['depthname']:'depth'}) return _preprocess_oceanonly(oceands,gridds,timeslice, roll) # POST-PROCESSING AND SAVING def save_ocean(da,oceanname): universal = _get_universal() specific = _get_specifics_ocean(oceanname) # Change naming conventions back if specific['depthname']!='depth': da = da.rename({'depth':specific['depthname']}) varname = da.name filename = universal['prefix']+'ocean_'+varname+'_'+oceanname+specific['suffix'] path = universal['rootdir']+universal['localdir']+'ocean/'+filename print('Saving to '+path) da.to_netcdf(path)
the-stack_0_18974
from __future__ import print_function import os import sys import json import numpy as np import pandas as pd import matplotlib.pyplot as plt from pathlib import Path from scipy.stats import linregress from collections import defaultdict from sklearn.metrics import mean_squared_error def print_json(data): print(json.dumps(data, indent=2)) def bin_markers(df, diff=0, missing_value='-'): """ merge consecutive markers with same genotypes return slelected row index Examples: """ df = df.replace(missing_value, np.nan) first_row = df.iloc[0,:] temp = [df.index[0]] # save temp index pre_row = first_row df_rest = df.iloc[1:,:] result_ids = [] for idx, row in df_rest.iterrows(): df_tmp = pd.concat([pre_row, row], axis=1).dropna() diff_num = (df_tmp.iloc[:,0] != df_tmp.iloc[:,1]).sum() if diff_num <= diff: temp.append(idx) else: if len(temp) > 1: result_ids.append(temp) else: result_ids.append([idx]) temp = [idx] pre_row = row if result_ids[0][0] != df.index[0]: result_ids.insert(0, [df.index[0]]) results = [] represent_idx, block_idx = [], [] for index in result_ids: if len(index) > 1: df_tmp = df.loc[index, :] good_idx = df_tmp.isnull().sum(axis=1).idxmin() results.append(good_idx) represent_idx.append(good_idx) block_idx.append(index) else: results.append(index[0]) return represent_idx, block_idx, results def sort_merge_sort(arrays): """ get redundant lists by merging lists with overlaping region. Example: >>> a = [[1,3], [3, 5], [6,10], [7, 9], [11,15], [11,12],[16,30]] >>> sort_merge_sort(a) >>> [array([1, 3, 5]), array([ 6, 7, 9, 10]), array([11, 12, 15]), [16, 30]] """ val_start = [i[0] for i in arrays] val_end = [i[-1] for i in arrays] df = pd.DataFrame(dict(zip(['array', 'val_start', 'val_end'], [arrays, val_start, val_end]))).sort_values(['val_start', 'val_end']).reset_index(drop=True) first_arr = df.loc[0, 'array'] temp = first_arr pre_arr = first_arr results = [] for arr in df.loc[1:, 'array']: if arr[0] <= pre_arr[-1]: temp.extend(arr) else: if len(temp) == len(pre_arr): results.append(pre_arr) else: temp_sorted_unique = pd.Series(temp).sort_values().unique() results.append(temp_sorted_unique) temp = arr pre_arr = arr if len(temp) == len(pre_arr): results.append(pre_arr) else: temp_sorted_unique = pd.Series(temp).sort_values().unique() results.append(temp_sorted_unique) return results def get_blocks(np_1d_array, dist=150, block_size=2): """ group values to a block with specified distance Examples: >>> a = np.array([1,2,4,10,12,13,15]) >>> test(a, dist=1) [[1, 2], [12, 13]] >>> test(a, dist=2) [[1, 2, 4], [10, 12, 13, 15]] """ first_val = np_1d_array[0] temp = [first_val] # save temp blocks pre_val = first_val results = [] for val in np_1d_array[1:]: if (val - pre_val) <= dist: temp.append(val) else: if len(temp) >= block_size: results.append(temp) temp = [val] pre_val = val if len(temp) >= block_size: results.append(temp) return results def random_alternative(lens, values=[0,2]): """ return a numpy array with alternating interger values """ v1, v2 = values st_value = np.random.choice(values) alternative_value = v1 if st_value == v2 else v2 a = np.empty((lens,)) a[::2] = st_value a[1::2] = alternative_value return a.astype('int') def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) def GenDataFrameFromPath(path, pattern='*.png', fs=False): """ generate a dataframe for all file in a dir with the specific pattern of file name. use: GenDataFrameFromPath(path, pattern='*.png') """ fnpaths = list(path.glob(pattern)) df = pd.DataFrame(dict(zip(['fnpath'], [fnpaths]))) df['dir'] = df['fnpath'].apply(lambda x: x.parent) df['fn'] = df['fnpath'].apply(lambda x: x.name) if fs: df['size'] = df['fnpath'].apply(lambda x: os.path.getsize(x)) return df def ConciseVcf(fn): """ concise the vcf file by remove the header, useless columns and simplfied genotype ConciseVcf(fn) """ n = 0 f = open(fn) for i in f: if i.startswith('##'): n += 1 else: break df = pd.read_csv(fn, header=n, delim_whitespace=True) df = df.drop(['INFO', 'FORMAT', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER'], axis=1) for idx in df.columns[2:]: df[idx] = df[idx].map(lambda x: x.split(':')[0]) df = df.replace(['0/0', '0/1', '1/0', '1/1', './.'], [0, 1, 1, 2, 9]) return df def getChunk(fn, ignore=1): '''ignore: rows starts with pound sign''' df0_chr = defaultdict(int) chr_order = [] with open(fn) as f: for dash_line in range(ignore): f.readline() for i in f: j = i.split()[0].split('-')[0] df0_chr[j] += 1 if j in chr_order: pass else: chr_order.append(j) if len(chr_order) != len(set(chr_order)): sys.exit('Please check your marker name and sort them by chr name.') return chr_order, df0_chr class SimpleStats(object): """ This class will do the simple statistics on two series objecjts. a) linear regressoin: slope, intercept, r^2, p_value b) mean, std of the difference and absolute differnece c) MSE (mean squared error) and RMSE (root mean squared error) d) agreement e) plot the regreesion figure and the difference distribution figure """ def __init__(self, series1, series2): self.s1 = series1 self.s2 = series2 self.length = series1.shape[0] self.diff = series1 - series2 self.absdiff = (series1 - series2).abs() def regression(self): slope, intercept, r_value, p_value, __ = linregress(self.s1, self.s2) return slope, intercept, r_value**2, p_value def mean_std_diff(self): mean, std = self.diff.mean(), self.diff.std() return mean, std def mean_std_absdiff(self): abs_mean, abs_std = self.absdiff.mean(), self.absdiff.std() return abs_mean, abs_std def mse(self): mse = mean_squared_error(self.s1, self.s2) return mse def rmse(self): rmse = mean_squared_error(self.s1, self.s2)**0.5 return rmse def agreement(self, cutoff): return (self.absdiff<=float(cutoff)).sum()/self.length
the-stack_0_18975
# Copyright 2002 by Jeffrey Chang. All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. # This module attempts to detect whether the internet is available. # To use it, import requires_internet into your Python code, and call # requires_internet.check(). If the internet is available, then the # import statement succeeds. If it is not, then the statement will # result in a MissingExternalDependencyError exception. """Common code to check if the internet is available.""" from Bio import MissingExternalDependencyError def check(): try: check.available except AttributeError: # I'm going to check for internet availability RELIABLE_DOMAIN = "biopython.org" import socket try: socket.getaddrinfo( RELIABLE_DOMAIN, 80, socket.AF_UNSPEC, socket.SOCK_STREAM ) except socket.gaierror as x: check.available = False else: check.available = True if not check.available: raise MissingExternalDependencyError("internet not available")
the-stack_0_18976
import torch from torch.nn.utils.rnn import pad_sequence from torch.utils.data import Dataset from transformers import RobertaTokenizer import pandas as pd from ast import literal_eval from torch.nn import CrossEntropyLoss tokenizer = RobertaTokenizer.from_pretrained('roberta-base') id2tag = ['O', 'B-toxic', 'I-toxic'] tag2id = {v:k for k, v in enumerate(id2tag)} tag_pad_id = CrossEntropyLoss().ignore_index def encode_roberta(sentence): sentence_tokens = [tokenizer.tokenize(sentence[0])] + \ [tokenizer.tokenize(f' {t}') for t in sentence[1:]] sentence_ids = [tokenizer.convert_tokens_to_ids(t) for t in sentence_tokens] start_idx_mask = [] all_ids = [] for subwords in sentence_ids: curr_mask = [1] if len(subwords) > 1: curr_mask += [0] * (len(subwords) - 1) start_idx_mask.extend(curr_mask) all_ids.extend(subwords) special_token_mask = tokenizer.get_special_tokens_mask(all_ids) prefix_offset = 0 while prefix_offset < len(special_token_mask) and special_token_mask[prefix_offset] == 1: prefix_offset += 1 suffix_offset = len(special_token_mask) - len(start_idx_mask) - prefix_offset start_idx_mask = [0] * prefix_offset + start_idx_mask + [0] * suffix_offset sentence_inputs = tokenizer.prepare_for_model(all_ids, add_special_tokens=True) input_ids = sentence_inputs["input_ids"] attention_mask = sentence_inputs["attention_mask"] ####### inputs = tokenizer( text=' '.join(sentence), add_special_tokens=True ) assert inputs["input_ids"] == input_ids assert inputs["attention_mask"] == attention_mask ####### return input_ids, attention_mask, start_idx_mask def get_labels_tokens(orig_sentence, chunks): curr = 0 labels = [] tokens = [] for s, e in chunks: other_txt = orig_sentence[curr:s].split() label_txt = orig_sentence[s:e + 1].split() curr = e + 1 tokens.extend(other_txt) labels.extend(['O'] * len(other_txt)) tokens.append(label_txt[0]) labels.append('B-toxic') for k in range(1, len(label_txt)): tokens.append(label_txt[k]) labels.append('I-toxic') if curr < len(orig_sentence): other_txt = orig_sentence[curr:].split() tokens.extend(other_txt) labels.extend(['O'] * len(other_txt)) return tokens, labels def get_chunks(span): chunks = [] curr_start = None for span_i, t in enumerate(span): if span_i == 0 or curr_start is None: curr_start = t elif t > span[span_i - 1] + 1: chunks.append((curr_start, span[span_i - 1])) curr_start = t if curr_start is not None: chunks.append((curr_start, span[-1])) return chunks def get_text_from_ids(input_ids): return tokenizer.convert_tokens_to_string( [tokenizer._convert_id_to_token(input_id) for input_id in input_ids]) class SpanDataset(Dataset): def __getitem__(self, n): return self._features[n] def __len__(self): return len(self._features) def __init__(self, phase): self._phase = phase self.init_dataset() def init_dataset(self): train = pd.read_csv("tsd_train.csv") sentences = train['text'] if self._phase in {'train', 'dev'}: spans = train.spans.apply(literal_eval) max_seq_len = -1 max_token_len = -1 features = [] for i, orig_sentence in enumerate(sentences): chunks = [] if self._phase in {'train', 'dev'}: chunks = get_chunks(spans[i]) tokens, labels = get_labels_tokens(orig_sentence, chunks) # roberta tokenization input_ids, attention_mask, start_idx_mask = encode_roberta(tokens) max_seq_len = max(max_seq_len, len(input_ids)) max_token_len = max(max_token_len, len(labels)) labels_ids = [tag2id[k] for k in labels] padded_labels_ids = labels_ids + [tag_pad_id]*(200 - len(labels_ids)) datum = { 'input_ids': torch.LongTensor(input_ids), 'attention_mask': torch.LongTensor(attention_mask), 'start_idx_mask': torch.BoolTensor(start_idx_mask), 'labels': torch.LongTensor(labels_ids), 'padded_labels': torch.LongTensor(padded_labels_ids) } features.append(datum) print(f'max_seq_len {max_seq_len} max_token_len {max_token_len}') self._features = features def variable_collate_fn(batch): batch_features = {} batch_features['input_ids'] = pad_sequence([x['input_ids'] for x in batch], batch_first=True, padding_value=tokenizer.pad_token_id) batch_features['attention_mask'] = pad_sequence([x['attention_mask'] for x in batch], batch_first=True, padding_value=0) batch_features['start_idx_mask'] = pad_sequence([x['start_idx_mask'] for x in batch], batch_first=True, padding_value=0) if 'labels' in batch[0]: batch_features['labels'] = pad_sequence([x['labels'] for x in batch], batch_first=True, padding_value=tag_pad_id) batch_features['padded_labels'] = pad_sequence([x['padded_labels'] for x in batch], batch_first=True, padding_value=tag_pad_id) return batch_features if __name__ == '__main__': data_iter = SpanDataset('dev') for d in data_iter: print(d) break
the-stack_0_18981
import board import busio import adafruit_sht31d # Create library object using our Bus I2C port i2c = busio.I2C(board.SCL, board.SDA) sensor = adafruit_sht31d.SHT31D(i2c) print("\033[1mSensor\033[0m = SHT31-D") print("\033[1mSerial Number\033[0m = ", sensor.serial_number, "\n") for i in range(3): if i == 0: sensor.repeatability = adafruit_sht31d.REP_LOW print("\033[1m\033[36mLow Repeatability:\033[0m\n") if i == 1: sensor.repeatability = adafruit_sht31d.REP_MED print("\n\033[1m\033[36mMedium Repeatability:\033[0m\n") if i == 2: sensor.repeatability = adafruit_sht31d.REP_HIGH sensor.clock_stretching = True print("\n\033[1m\033[36mHigh Repeatability:\033[0m") print("\033[1m\033[95mClock Stretching:\033[0m \033[92mEnabled\033[0m\n") for itr in range(3): print("\033[1mTemperature:\033[0m %0.3f ºC" % sensor.temperature) print("\033[1mHumidity:\033[0m %0.2f %%" % sensor.relative_humidity, "\n")
the-stack_0_18983
from typing import Any, Dict from lpc import lpc def format_and_escape_string(lexer: lpc.Lexer, value: str) -> str: result = value[1:-1] result = result.replace("\\n", "\n") result = result.replace("\\t", "\t") result = result.replace("\\r", "\r") result = result.replace("\\f", "\f") result = result.replace("\\b", "\b") result = result.replace("\\\"", "\"") result = result.replace("\\\\", "\\") return result class JSONParser(lpc.LPC[Dict[Any, Any]]): def __init__(self) -> None: lexer = lpc.Lexer() lexer.AddPattern("\\s+", None, "WS") lexer.AddPattern("{|}|\\[|\\]|,|:", None, "SYMBOL") lexer.AddPattern("(true)|(false)|(null)", None, "KEYWORD") lexer.AddPattern("-?(?:0|[1-9]\\d*)(?:\\.\\d+)(?:[eE][+-]?\\d+)?", None, "decimal") lexer.AddPattern("-?(?:0|[1-9]\\d*)", None, "integer") lexer.AddPattern("\"([^\\\"\\\\]|\\\\.)*\"", format_and_escape_string, "string") parsers : Dict[str, lpc.Parser] = {} parsers["string"] = lpc.Terminal("string", "string") parsers["value"] = lpc.Choice("Value", [ parsers["string"], lpc.Terminal("number", "integer", transformer=lambda value: int(value)), lpc.Terminal("number", "decimal", transformer=lambda value: float(value)), lpc.Terminal("true", "KEYWORD", "true", transformer=lambda _: True), lpc.Terminal("false", "KEYWORD", "false", transformer=lambda _: False), lpc.Terminal("null", "KEYWORD", "null", transformer=lambda _: None), lpc.Lazy("object", lambda: parsers["object"]), lpc.Lazy("array", lambda: parsers["array"]), ], tag=True) parsers["pair"] = lpc.Sequence("pair", [parsers["string"], lpc.Terminal(":", "SYMBOL", ":"), parsers["value"]]) parsers["object"] = lpc.Sequence("object", [ lpc.Terminal("{", "SYMBOL", "{"), lpc.Separated("pairs", parsers["pair"], lpc.Terminal(",", "SYMBOL", ",")), lpc.Terminal("}", "SYMBOL", "}"), ], transformer=lambda value: {res.value[0].value:res.value[2].value[1] for res in value[1].value}) parsers["array"] = lpc.Sequence("array", [ lpc.Terminal("[", "SYMBOL", "["), lpc.Separated("values", parsers["value"], lpc.Terminal(",", "SYMBOL", ",")), lpc.Terminal("]", "SYMBOL", "]"), ], transformer=lambda value: [res.value[1] for res in value[1].value]) super().__init__(lexer, lpc.Choice("json", [parsers["array"], parsers["object"]], tag=False), ["WS"])
the-stack_0_18984
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Add model for task log filename template. Revision ID: f9da662e7089 Revises: 786e3737b18f Create Date: 2021-12-09 06:11:21.044940 """ from alembic import op from sqlalchemy import Column, ForeignKey, Integer, Text from airflow.utils.sqlalchemy import UtcDateTime # Revision identifiers, used by Alembic. revision = "f9da662e7089" down_revision = "786e3737b18f" branch_labels = None depends_on = None def upgrade(): """Add model for task log template and establish fk on task instance.""" op.create_table( "log_template", Column("id", Integer, primary_key=True, autoincrement=True), Column("filename", Text, nullable=False), Column("elasticsearch_id", Text, nullable=False), Column("created_at", UtcDateTime, nullable=False), ) dag_run_log_filename_id = Column( "log_template_id", Integer, ForeignKey("log_template.id", name="task_instance_log_template_id_fkey", ondelete="NO ACTION"), ) with op.batch_alter_table("dag_run") as batch_op: batch_op.add_column(dag_run_log_filename_id) def downgrade(): """Remove fk on task instance and model for task log filename template.""" with op.batch_alter_table("dag_run") as batch_op: batch_op.drop_column("log_template_id") op.drop_table("log_template")
the-stack_0_18985
import collections import json import os import re import string import sys import csv import rouge_stats as rs import glob def ropen(f) : return open(f,'r',encoding='utf8') def jload(infile) : ''' loads .json file, preprocessed from a .txt file''' with ropen(infile) as f: res = json.load(f) return res def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r'\b(a|an|the)\b', re.UNICODE) return re.sub(regex, ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def score2txt(files, p, r, f) : zipped = zip(files, p, r, f) txt = '' for item in zipped : file,pre,recall,fm=item txt += file + ', ' txt += str(pre) + ', ' txt += str(recall) + ', ' txt += str(fm) + '\n' return txt def avg(xs) : s=sum(xs) l=len(xs) if 0==l : return None return s/l def eval_with_rouge(type) : files=[] f1=[] p1=[] r1=[] f2=[] p2=[] r2=[] fl=[] pl=[] rl=[] ref_dir = type + "/answer/" pred_dir = type + "/output/predictions/" print('ref_dir:', ref_dir) print('pred_dir:', pred_dir) doc_files = sorted(glob.glob(type + "/answer/*.txt")) print(len(doc_files)) j = 0 for doc_file in doc_files : fname=doc_file.split('/')[-1] ref_name=ref_dir+fname pred_name=pred_dir+fname ''' print('fname:',fname) print('ref_name:', ref_name) print('rouge', i, ', pred_name:', pred_name) ''' with open(ref_name,'r',encoding='utf8') as fgold: gold=fgold.read() with open(pred_name,'r',encoding='utf8') as fsliver: silver=fsliver.read() if not gold: print('gold file missing:', ref_name) continue if not silver: print('silver file missing:', pred_name) continue files.append(fname) ''' print('gold:\n', gold ) print('silver:\n', silver ) ''' res = rs.rstat('rouge', silver,gold) #print('res:\n', *res) #print('res[0]:\n',res[0]) p1.append(res[0]['rouge-1']['p']) r1.append(res[0]['rouge-1']['r']) f1.append(res[0]['rouge-1']['f']) p2.append(res[0]['rouge-2']['p']) r2.append(res[0]['rouge-2']['r']) f2.append(res[0]['rouge-2']['f']) pl.append(res[0]['rouge-l']['p']) rl.append(res[0]['rouge-l']['r']) fl.append(res[0]['rouge-l']['f']) ''' print('p1:\n', p1) print('r1:\n', r1) print('f1:\n', f1) print('p2:\n', p2) print('r2:\n', r2) print('f2:\n', f2) print('pl:\n', pl) print('rl:\n', rl) print('fl:\n', fl) ''' j = j+1 #if j==2: break p = [] p.append(p1) p.append(p2) p.append(pl) r = [] r.append(r1) r.append(r2) r.append(rl) f = [] f.append(f1) f.append(f2) f.append(fl) ''' print('p:/n', p) print('r:/n', r) print('f:/n', f) ''' rouge_names=('ROUGE_1','ROUGE_2','ROUGE_l') for i, rouge_name in enumerate(rouge_names) : #print (rouge_name,':', ', Precision=', avg(p[i]), ', Recall=', avg(r[i]), ', F-Measure=', avg(f[i])) #save ABS ROUGE scores into file content = 'fileName, Precision, Recall, F-Measure' + '\n' content += score2txt(files, p[i], r[i], f[i]) #print('content:\n',content ) toFile = "Abs" + rouge_name + ".csv" with open(pred_dir + toFile,'w',encoding='utf8') as frouge: frouge.write(content + "\n") return ((avg(p1),avg(r1),avg(f1)), (avg(p2),avg(r2),avg(f2)), (avg(pl),avg(rl),avg(fl))) def main(): if len(sys.argv) != 2 or sys.argv[1] not in ['test', 'test2', 'val', 'val2' ]: print('Run one of the commands as below:') print(' python evaluate.py test') print(' python evaluate.py test2') print(' python evaluate.py val ') print(' python evaluate.py val2 ') sys.exit(0) type = sys.argv[1] content = '' r1, r2, rl = eval_with_rouge(type ) ''' print('r1:', r1) print('r2:', r2) print('rl:', rl) ''' content += 'ROUGE_1 F-Measure= '+ str(round(r1[2], 5)) content += ', ROUGE_2 F-Measure= '+ str(round(r2[2],5)) content += ', ROUGE_L F-Measure= ' + str(round(rl[2], 5)) + '\n' doc_files = glob.glob(type + "/answer/*.txt") totalQ = len(doc_files) print('totalQ=', totalQ) outDir = type + '/output/' totalSentsList = jload( outDir + 'Total_Sents.json') avgSents = round(sum(totalSentsList)/len(totalSentsList), 2) totalWordsList = jload( outDir + 'Total_Words.json') avgWords = round(sum(totalWordsList)/len(totalWordsList), 2) nlpParseDurList = jload( outDir + 'nlpParse_duration.json') avgNlpParsrDur = round(sum(nlpParseDurList)/len(totalWordsList), 5) doctalkSummDurList = jload( outDir + 'DoctalkSumm_duration.json') avgDoctalkSummDur = round(sum(doctalkSummDurList)/len(totalWordsList), 5) qaDur_doctalk_self_list = jload( outDir + 'QA_doctalk_self_duration.json') avgDoctalkQaSelf = round(sum(qaDur_doctalk_self_list)/totalQ, 5) stats = 'average Sentences: ' + str(avgSents) + '\n' stats += 'average words: ' + str(avgWords) + '\n' stats += 'Total articles: ' + str(len(totalWordsList)) + '\n' stats += 'average nlpParse duration per article (seconds): ' + str(avgNlpParsrDur) + '\n' stats += 'average Doctak summarization duration per article (seconds): ' + str(avgDoctalkSummDur) + '\n' stats += 'Total questions: ' + str(totalQ) + '\n' stats += 'average doctalk self duration per question (seconds): ' + str(avgDoctalkQaSelf) + '\n' print(stats ) print("score:\n", content) toFile = outDir + "score_textrank.txt" print('save score to file:', toFile) with open(toFile,'w',encoding='utf8') as fscore: fscore.write(stats + "\n") fscore.write(content + "\n") if __name__ == '__main__': main()
the-stack_0_18992
""" Copyright (c) NREL. All rights reserved. """ from __future__ import print_function import numpy as np import openmdao.api as om from wisdem.nrelcsm.nrel_csm_cost_2015 import Turbine_CostsSE_2015 # -------------------------------------------------------------------- class BladeMass(om.ExplicitComponent): """ Compute blade mass of the form :math:`mass = k*diameter^b`. Value of :math:`k` was updated in 2015 to be 0.5. Value of :math:`b` was updated to be 2.47/2.54 for turbine class I blades with/without carbon or 2.44/2.5 for other turbine classes with/without carbon. Values of k and b can be overridden by the user with use of `blade_mass_coeff` (k) and/or `blade_user_exp` (b). To use `blade_user_exp`, the value of `turbine_class` must be less than 1. Parameters ---------- rotor_diameter : float, [m] rotor diameter of the machine turbine_class : float turbine class. Set to 1 for Class I, 2 for Class II+, or 0 for user overrides of blade_user_exp blade_has_carbon : boolean does the blade have carbon? blade_mass_coeff : float k in the blade mass equation: k*(rotor_diameter/2)^b blade_user_exp : float optional user-entered exp for the blade mass equation Returns ------- blade_mass : float, [kg] component mass """ def setup(self): self.add_input("rotor_diameter", 0.0, units="m") self.add_discrete_input("turbine_class", 1) self.add_discrete_input("blade_has_carbon", False) self.add_input("blade_mass_coeff", 0.5) self.add_input("blade_user_exp", 2.5) self.add_output("blade_mass", 0.0, units="kg") def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): rotor_diameter = inputs["rotor_diameter"] turbine_class = discrete_inputs["turbine_class"] blade_has_carbon = discrete_inputs["blade_has_carbon"] blade_mass_coeff = inputs["blade_mass_coeff"] blade_user_exp = inputs["blade_user_exp"] # select the exp for the blade mass equation exp = 0.0 if turbine_class == 1: if blade_has_carbon: exp = 2.47 else: exp = 2.54 elif turbine_class > 1: if blade_has_carbon: exp = 2.44 else: exp = 2.50 else: exp = blade_user_exp # calculate the blade mass outputs["blade_mass"] = blade_mass_coeff * (rotor_diameter / 2) ** exp # -------------------------------------------------------------------- class HubMass(om.ExplicitComponent): """ Compute hub mass in the form of :math:`mass = k*m_{blade} + b`. Value of :math:`k` was updated in 2015 to be 2.3. Value of :math:`b` was updated in 2015 to be 1320. Parameters ---------- blade_mass : float, [kg] component mass hub_mass_coeff : float k inthe hub mass equation: k*blade_mass + b hub_mass_intercept : float b in the hub mass equation: k*blade_mass + b Returns ------- hub_mass : float, [kg] component mass """ def setup(self): # Variables self.add_input("blade_mass", 0.0, units="kg") self.add_input("hub_mass_coeff", 2.3) self.add_input("hub_mass_intercept", 1320.0) self.add_output("hub_mass", 0.0, units="kg") def compute(self, inputs, outputs): blade_mass = inputs["blade_mass"] hub_mass_coeff = inputs["hub_mass_coeff"] hub_mass_intercept = inputs["hub_mass_intercept"] # calculate the hub mass outputs["hub_mass"] = hub_mass_coeff * blade_mass + hub_mass_intercept # -------------------------------------------------------------------- class PitchSystemMass(om.ExplicitComponent): """ Compute pitch bearing mass in the form of :math:`m_{bearing} = k*m_{blade}*nblade + b1`. Then compute pitch system mass, with bearing housing in the form of :math:`mass = (1+h)*m_{bearing} + b2`. The values of the constants were NOT updated in 2015 and are the same as the original CSM. Value of :math:`k` is 0.1295. Value of :math:`h` is 0.328. Value of :math:`b1` is 491.31. Value of :math:`b2` is 555.0. Parameters ---------- blade_mass : float, [kg] component mass blade_number : float number of rotor blades pitch_bearing_mass_coeff : float k in the pitch bearing mass equation: k*blade_mass*blade_number + b pitch_bearing_mass_intercept : float b in the pitch bearing mass equation: k*blade_mass*blade_number + b bearing_housing_fraction : float bearing housing fraction mass_sys_offset : float mass system offset Returns ------- pitch_system_mass : float, [kg] component mass """ def setup(self): self.add_input("blade_mass", 0.0, units="kg") self.add_discrete_input("blade_number", 3) self.add_input("pitch_bearing_mass_coeff", 0.1295) self.add_input("pitch_bearing_mass_intercept", 491.31) self.add_input("bearing_housing_fraction", 0.3280) self.add_input("mass_sys_offset", 555.0) self.add_output("pitch_system_mass", 0.0, units="kg") def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): blade_mass = inputs["blade_mass"] blade_number = discrete_inputs["blade_number"] pitch_bearing_mass_coeff = inputs["pitch_bearing_mass_coeff"] pitch_bearing_mass_intercept = inputs["pitch_bearing_mass_intercept"] bearing_housing_fraction = inputs["bearing_housing_fraction"] mass_sys_offset = inputs["mass_sys_offset"] # calculate the hub mass pitchBearingMass = pitch_bearing_mass_coeff * blade_mass * blade_number + pitch_bearing_mass_intercept outputs["pitch_system_mass"] = pitchBearingMass * (1 + bearing_housing_fraction) + mass_sys_offset # -------------------------------------------------------------------- class SpinnerMass(om.ExplicitComponent): """ Compute spinner (nose cone) mass in the form of :math:`mass = k*diameter + b`. Value of :math:`k` was updated in 2015 to be 15.5. Value of :math:`b` was updated in 2015 to be -980. Parameters ---------- rotor_diameter : float, [m] rotor diameter of the machine spinner_mass_coeff : float k inthe spinner mass equation: k*rotor_diameter + b spinner_mass_intercept : float b in the spinner mass equation: k*rotor_diameter + b Returns ------- spinner_mass : float, [kg] component mass """ def setup(self): self.add_input("rotor_diameter", 0.0, units="m") self.add_input("spinner_mass_coeff", 15.5) self.add_input("spinner_mass_intercept", -980.0) self.add_output("spinner_mass", 0.0, units="kg") def compute(self, inputs, outputs): rotor_diameter = inputs["rotor_diameter"] spinner_mass_coeff = inputs["spinner_mass_coeff"] spinner_mass_intercept = inputs["spinner_mass_intercept"] # calculate the spinner mass outputs["spinner_mass"] = spinner_mass_coeff * rotor_diameter + spinner_mass_intercept # -------------------------------------------------------------------- class LowSpeedShaftMass(om.ExplicitComponent): """ Compute low speed shaft mass in the form of :math:`mass = k*(m_{blade}*power)^b1 + b2`. Value of :math:`k` was updated in 2015 to be 13. Value of :math:`b1` was updated in 2015 to be 0.65. Value of :math:`b2` was updated in 2015 to be 775. Parameters ---------- blade_mass : float, [kg] mass for a single wind turbine blade machine_rating : float, [kW] machine rating lss_mass_coeff : float k inthe lss mass equation: k*(blade_mass*rated_power)^b1 + b2 lss_mass_exp : float b1 in the lss mass equation: k*(blade_mass*rated_power)^b1 + b2 lss_mass_intercept : float b2 in the lss mass equation: k*(blade_mass*rated_power)^b1 + b2 Returns ------- lss_mass : float, [kg] component mass """ def setup(self): self.add_input("blade_mass", 0.0, units="kg") self.add_input("machine_rating", 0.0, units="kW") self.add_input("lss_mass_coeff", 13.0) self.add_input("lss_mass_exp", 0.65) self.add_input("lss_mass_intercept", 775.0) self.add_output("lss_mass", 0.0, units="kg") def compute(self, inputs, outputs): blade_mass = inputs["blade_mass"] machine_rating = inputs["machine_rating"] lss_mass_coeff = inputs["lss_mass_coeff"] lss_mass_exp = inputs["lss_mass_exp"] lss_mass_intercept = inputs["lss_mass_intercept"] # calculate the lss mass outputs["lss_mass"] = ( lss_mass_coeff * (blade_mass * machine_rating / 1000.0) ** lss_mass_exp + lss_mass_intercept ) # -------------------------------------------------------------------- class BearingMass(om.ExplicitComponent): """ Compute main bearing mass (single bearing) in the form of :math:`mass = k*diameter^b`. Value of :math:`k` was updated in 2015 to be 1e-4. Value of :math:`b` was updated in 2015 to be 3.5. Parameters ---------- rotor_diameter : float, [m] rotor diameter of the machine bearing_mass_coeff : float k inthe bearing mass equation: k*rotor_diameter^b bearing_mass_exp : float exp in the bearing mass equation: k*rotor_diameter^b Returns ------- main_bearing_mass : float, [kg] component mass """ def setup(self): # Variables self.add_input("rotor_diameter", 0.0, units="m") self.add_input("bearing_mass_coeff", 0.0001) self.add_input("bearing_mass_exp", 3.5) self.add_output("main_bearing_mass", 0.0, units="kg") def compute(self, inputs, outputs): rotor_diameter = inputs["rotor_diameter"] bearing_mass_coeff = inputs["bearing_mass_coeff"] bearing_mass_exp = inputs["bearing_mass_exp"] # calculates the mass of a SINGLE bearing outputs["main_bearing_mass"] = bearing_mass_coeff * rotor_diameter ** bearing_mass_exp # -------------------------------------------------------------------- class RotorTorque(om.ExplicitComponent): """ Computed rated rpm and rotor torque from rated power, rotor diameter, max tip speed, and drivetrain efficiency. Rotor torque will be used to size other drivetrain components, such as the generator. Parameters ---------- rotor_diameter : float, [m] rotor diameter of the machine machine_rating : float, [kW] machine rating max_tip_speed : float, [m/s] Maximum allowable blade tip speed max_efficiency : float Maximum possible drivetrain efficiency Returns ------- rated_rpm : float, [rpm] rpm of rotor at rated power rotor_torque : float, [N*m] torque from rotor at rated power """ def setup(self): self.add_input("rotor_diameter", 0.0, units="m") self.add_input("machine_rating", 0.0, units="kW") self.add_input("max_tip_speed", 0.0, units="m/s") self.add_input("max_efficiency", 0.0) self.add_output("rated_rpm", 0.0, units="rpm") self.add_output("rotor_torque", 0.0, units="N*m") def compute(self, inputs, outputs): # Rotor force calculations for nacelle inputs maxTipSpd = inputs["max_tip_speed"] maxEfficiency = inputs["max_efficiency"] ratedHubPower_W = inputs["machine_rating"] * 1000.0 / maxEfficiency rotorSpeed = maxTipSpd / (0.5 * inputs["rotor_diameter"]) outputs["rated_rpm"] = rotorSpeed / (2 * np.pi) * 60.0 outputs["rotor_torque"] = ratedHubPower_W / rotorSpeed # -------------------------------------------------------------------- class GearboxMass(om.ExplicitComponent): """ Compute gearbox mass in the form of :math:`mass = k*torque^b`. Value of :math:`k` was updated in 2015 to be 113. Value of :math:`b` was updated in 2015 to be 0.71. Parameters ---------- rotor_torque : float, [N*m] torque from rotor at rated power gearbox_mass_coeff : float k inthe gearbox mass equation: k*rotor_torque^b gearbox_mass_exp : float exp in the gearbox mass equation: k*rotor_torque^b Returns ------- gearbox_mass : float, [kg] component mass """ def setup(self): self.add_input("rotor_torque", 0.0, units="N*m") self.add_input("gearbox_mass_coeff", 113.0) self.add_input("gearbox_mass_exp", 0.71) self.add_output("gearbox_mass", 0.0, units="kg") def compute(self, inputs, outputs): rotor_torque = inputs["rotor_torque"] gearbox_mass_coeff = inputs["gearbox_mass_coeff"] gearbox_mass_exp = inputs["gearbox_mass_exp"] # calculate the gearbox mass outputs["gearbox_mass"] = gearbox_mass_coeff * (rotor_torque / 1000.0) ** gearbox_mass_exp # -------------------------------------------------------------------- class BrakeMass(om.ExplicitComponent): """ Compute brake mass in the form of :math:`mass = k*torque`. Value of :math:`k` was updated in 2020 to be 0.00122. Parameters ---------- rotor_torque : float, [N*m] rotor torque at rated power brake_mass_coeff : float Mass scaling coefficient Returns ------- brake_mass : float, [kg] overall component mass """ def setup(self): self.add_input("rotor_torque", 0.0, units="N*m") self.add_input("brake_mass_coeff", 0.00122) self.add_output("brake_mass", 0.0, units="kg") def compute(self, inputs, outputs): # Unpack inputs rotor_torque = float(inputs["rotor_torque"]) coeff = float(inputs["brake_mass_coeff"]) # Regression based sizing derived by J.Keller under FOA 1981 support project outputs["brake_mass"] = coeff * rotor_torque # -------------------------------------------------------------------- class HighSpeedShaftMass(om.ExplicitComponent): """ Compute high speed shaft mass in the form of :math:`mass = k*power`. Value of :math:`k` was updated in 2015 to be 0.19894. Parameters ---------- machine_rating : float, [kW] machine rating hss_mass_coeff : float NREL CSM hss equation; removing intercept since it is negligible Returns ------- hss_mass : float, [kg] component mass """ def setup(self): self.add_input("machine_rating", 0.0, units="kW") self.add_input("hss_mass_coeff", 0.19894) self.add_output("hss_mass", 0.0, units="kg") def compute(self, inputs, outputs): machine_rating = inputs["machine_rating"] hss_mass_coeff = inputs["hss_mass_coeff"] outputs["hss_mass"] = hss_mass_coeff * machine_rating # -------------------------------------------------------------------- class GeneratorMass(om.ExplicitComponent): """ Compute generator mass in the form of :math:`mass = k*power + b`. Value of :math:`k` was updated in 2015 to be 2300. Value of :math:`b` was updated in 2015 to be 3400. Parameters ---------- machine_rating : float, [kW] machine rating generator_mass_coeff : float k inthe generator mass equation: k*rated_power + b generator_mass_intercept : float b in the generator mass equation: k*rated_power + b Returns ------- generator_mass : float, [kg] component mass """ def setup(self): self.add_input("machine_rating", 0.0, units="kW") self.add_input("generator_mass_coeff", 2300.0) self.add_input("generator_mass_intercept", 3400.0) self.add_output("generator_mass", 0.0, units="kg") def compute(self, inputs, outputs): machine_rating = inputs["machine_rating"] generator_mass_coeff = inputs["generator_mass_coeff"] generator_mass_intercept = inputs["generator_mass_intercept"] # calculate the generator mass outputs["generator_mass"] = generator_mass_coeff * machine_rating / 1000.0 + generator_mass_intercept # -------------------------------------------------------------------- class BedplateMass(om.ExplicitComponent): """ Compute bedplate mass in the form of :math:`mass = diameter^b`. Value of :math:`b` was updated in 2015 to be 2.2. Parameters ---------- rotor_diameter : float, [m] rotor diameter of the machine bedplate_mass_exp : float exp in the bedplate mass equation: rotor_diameter^b Returns ------- bedplate_mass : float, [kg] component mass """ def setup(self): self.add_input("rotor_diameter", 0.0, units="m") self.add_input("bedplate_mass_exp", 2.2) self.add_output("bedplate_mass", 0.0, units="kg") def compute(self, inputs, outputs): rotor_diameter = inputs["rotor_diameter"] bedplate_mass_exp = inputs["bedplate_mass_exp"] # calculate the bedplate mass outputs["bedplate_mass"] = rotor_diameter ** bedplate_mass_exp # -------------------------------------------------------------------- class YawSystemMass(om.ExplicitComponent): """ Compute yaw system mass in the form of :math:`mass = k*diameter^b`. The values of the constants were NOT updated in 2015 and are the same as the original CSM. Value of :math:`k` is 9e-4. Value of :math:`b` is 3.314. Parameters ---------- rotor_diameter : float, [m] rotor diameter of the machine yaw_mass_coeff : float k inthe yaw mass equation: k*rotor_diameter^b yaw_mass_exp : float exp in the yaw mass equation: k*rotor_diameter^b Returns ------- yaw_mass : float, [kg] component mass """ def setup(self): self.add_input("rotor_diameter", 0.0, units="m") self.add_input("yaw_mass_coeff", 0.0009) self.add_input("yaw_mass_exp", 3.314) self.add_output("yaw_mass", 0.0, units="kg") def compute(self, inputs, outputs): rotor_diameter = inputs["rotor_diameter"] yaw_mass_coeff = inputs["yaw_mass_coeff"] yaw_mass_exp = inputs["yaw_mass_exp"] # calculate yaw system mass #TODO - 50% adder for non-bearing mass outputs["yaw_mass"] = 1.5 * ( yaw_mass_coeff * rotor_diameter ** yaw_mass_exp ) # JMF do we really want to expose all these? # TODO: no variable speed mass; ignore for now # -------------------------------------------------------------------- class HydraulicCoolingMass(om.ExplicitComponent): """ Compute hydraulic cooling mass in the form of :math:`mass = k*power`. The values of the constants were NOT updated in 2015 and are the same as the original CSM. Value of :math:`k` is 0.08. Parameters ---------- machine_rating : float, [kW] machine rating hvac_mass_coeff : float hvac linear coeff Returns ------- hvac_mass : float, [kg] component mass """ def setup(self): self.add_input("machine_rating", 0.0, units="kW") self.add_input("hvac_mass_coeff", 0.08) self.add_output("hvac_mass", 0.0, units="kg") def compute(self, inputs, outputs): machine_rating = inputs["machine_rating"] hvac_mass_coeff = inputs["hvac_mass_coeff"] # calculate hvac system mass outputs["hvac_mass"] = hvac_mass_coeff * machine_rating # -------------------------------------------------------------------- class NacelleCoverMass(om.ExplicitComponent): """ Compute nacelle cover mass in the form of :math:`mass = k*power + b`. The values of the constants were NOT updated in 2015 and are the same as the original CSM. Value of :math:`k` is 1.2817. Value of :math:`b` is 428.19. Parameters ---------- machine_rating : float, [kW] machine rating cover_mass_coeff : float k inthe spinner mass equation: k*rotor_diameter + b cover_mass_intercept : float b in the spinner mass equation: k*rotor_diameter + b Returns ------- cover_mass : float, [kg] component mass """ def setup(self): self.add_input("machine_rating", 0.0, units="kW") self.add_input("cover_mass_coeff", 1.2817) self.add_input("cover_mass_intercept", 428.19) self.add_output("cover_mass", 0.0, units="kg") def compute(self, inputs, outputs): machine_rating = inputs["machine_rating"] cover_mass_coeff = inputs["cover_mass_coeff"] cover_mass_intercept = inputs["cover_mass_intercept"] # calculate nacelle cover mass outputs["cover_mass"] = cover_mass_coeff * machine_rating + cover_mass_intercept # TODO: ignoring controls and electronics mass for now # -------------------------------------------------------------------- class PlatformsMainframeMass(om.ExplicitComponent): """ Compute platforms mass in the form of :math:`mass = k*m_{bedplate}` and crane mass as 3000kg, if flagged by the user. The values of the constants were NOT updated in 2015 and are the same as the original CSM. Value of :math:`k` is 0.125. Parameters ---------- bedplate_mass : float, [kg] component mass platforms_mass_coeff : float nacelle platforms mass coeff as a function of bedplate mass [kg/kg] crane : boolean flag for presence of onboard crane crane_weight : float, [kg] weight of onboard crane Returns ------- platforms_mass : float, [kg] component mass """ # nacelle platforms, service crane, base hardware def setup(self): self.add_input("bedplate_mass", 0.0, units="kg") self.add_input("platforms_mass_coeff", 0.125) self.add_discrete_input("crane", False) self.add_input("crane_weight", 3000.0, units="kg") self.add_output("platforms_mass", 0.0, units="kg") # TODO: there is no base hardware mass model in the old model. Cost is not dependent on mass. def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): bedplate_mass = inputs["bedplate_mass"] platforms_mass_coeff = inputs["platforms_mass_coeff"] crane = discrete_inputs["crane"] crane_weight = inputs["crane_weight"] # calculate nacelle cover mass platforms_mass = platforms_mass_coeff * bedplate_mass # --- crane --- if crane: crane_mass = crane_weight else: crane_mass = 0.0 outputs["platforms_mass"] = platforms_mass + crane_mass # -------------------------------------------------------------------- class TransformerMass(om.ExplicitComponent): """ Compute transformer mass in the form of :math:`mass = k*power + b`. Value of :math:`k` was updated in 2015 to be 1915. Value of :math:`b` was updated in 2015 to be 1910. Parameters ---------- machine_rating : float, [kW] machine rating transformer_mass_coeff : float k inthe transformer mass equation: k*rated_power + b transformer_mass_intercept : float b in the transformer mass equation: k*rated_power + b Returns ------- transformer_mass : float, [kg] component mass """ def setup(self): self.add_input("machine_rating", 0.0, units="kW") self.add_input("transformer_mass_coeff", 1915.0) self.add_input("transformer_mass_intercept", 1910.0) self.add_output("transformer_mass", 0.0, units="kg") def compute(self, inputs, outputs): machine_rating = inputs["machine_rating"] transformer_mass_coeff = inputs["transformer_mass_coeff"] transformer_mass_intercept = inputs["transformer_mass_intercept"] # calculate the transformer mass outputs["transformer_mass"] = transformer_mass_coeff * machine_rating / 1000.0 + transformer_mass_intercept # -------------------------------------------------------------------- class TowerMass(om.ExplicitComponent): """ Compute tower mass in the form of :math:`mass = k*H_{hub}^b`. Value of :math:`k` was updated in 2015 to be 19.828. Value of :math:`b` was updated in 2015 to be 2.0282. Parameters ---------- hub_height : float, [m] hub height of wind turbine above ground / sea level tower_mass_coeff : float k inthe tower mass equation: k*hub_height^b tower_mass_exp : float b in the tower mass equation: k*hub_height^b Returns ------- tower_mass : float, [kg] component mass """ def setup(self): self.add_input("hub_height", 0.0, units="m") self.add_input("tower_mass_coeff", 19.828) self.add_input("tower_mass_exp", 2.0282) self.add_output("tower_mass", 0.0, units="kg") def compute(self, inputs, outputs): hub_height = inputs["hub_height"] tower_mass_coeff = inputs["tower_mass_coeff"] tower_mass_exp = inputs["tower_mass_exp"] # calculate the tower mass outputs["tower_mass"] = tower_mass_coeff * hub_height ** tower_mass_exp # Turbine mass adder class TurbineMassAdder(om.ExplicitComponent): """ Aggregates all components masses into category labels of hub system, rotor, nacelle, and tower. Parameters ---------- blade_mass : float, [kg] component mass hub_mass : float, [kg] component mass pitch_system_mass : float, [kg] component mass spinner_mass : float, [kg] component mass lss_mass : float, [kg] component mass main_bearing_mass : float, [kg] component mass gearbox_mass : float, [kg] component mass hss_mass : float, [kg] component mass brake_mass : float, [kg] component mass generator_mass : float, [kg] component mass bedplate_mass : float, [kg] component mass yaw_mass : float, [kg] component mass hvac_mass : float, [kg] component mass cover_mass : float, [kg] component mass platforms_mass : float, [kg] component mass transformer_mass : float, [kg] component mass tower_mass : float, [kg] component mass blade_number : float number of rotor blades main_bearing_number : float number of main bearings Returns ------- hub_system_mass : float, [kg] hub system mass rotor_mass : float, [kg] hub system mass nacelle_mass : float, [kg] nacelle mass turbine_mass : float, [kg] turbine mass """ def setup(self): # rotor self.add_input("blade_mass", 0.0, units="kg") self.add_input("hub_mass", 0.0, units="kg") self.add_input("pitch_system_mass", 0.0, units="kg") self.add_input("spinner_mass", 0.0, units="kg") # nacelle self.add_input("lss_mass", 0.0, units="kg") self.add_input("main_bearing_mass", 0.0, units="kg") self.add_input("gearbox_mass", 0.0, units="kg") self.add_input("hss_mass", 0.0, units="kg") self.add_input("brake_mass", 0.0, units="kg") self.add_input("generator_mass", 0.0, units="kg") self.add_input("bedplate_mass", 0.0, units="kg") self.add_input("yaw_mass", 0.0, units="kg") self.add_input("hvac_mass", 0.0, units="kg") self.add_input("cover_mass", 0.0, units="kg") self.add_input("platforms_mass", 0.0, units="kg") self.add_input("transformer_mass", 0.0, units="kg") # tower self.add_input("tower_mass", 0.0, units="kg") self.add_discrete_input("blade_number", 3) self.add_discrete_input("main_bearing_number", 2) self.add_output("hub_system_mass", 0.0, units="kg") self.add_output("rotor_mass", 0.0, units="kg") self.add_output("nacelle_mass", 0.0, units="kg") self.add_output("turbine_mass", 0.0, units="kg") def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): blade_mass = inputs["blade_mass"] hub_mass = inputs["hub_mass"] pitch_system_mass = inputs["pitch_system_mass"] spinner_mass = inputs["spinner_mass"] lss_mass = inputs["lss_mass"] main_bearing_mass = inputs["main_bearing_mass"] gearbox_mass = inputs["gearbox_mass"] hss_mass = inputs["hss_mass"] brake_mass = inputs["brake_mass"] generator_mass = inputs["generator_mass"] bedplate_mass = inputs["bedplate_mass"] yaw_mass = inputs["yaw_mass"] hvac_mass = inputs["hvac_mass"] cover_mass = inputs["cover_mass"] platforms_mass = inputs["platforms_mass"] transformer_mass = inputs["transformer_mass"] tower_mass = inputs["tower_mass"] blade_number = discrete_inputs["blade_number"] bearing_number = discrete_inputs["main_bearing_number"] outputs["hub_system_mass"] = hub_mass + pitch_system_mass + spinner_mass outputs["rotor_mass"] = blade_mass * blade_number + outputs["hub_system_mass"] outputs["nacelle_mass"] = ( lss_mass + bearing_number * main_bearing_mass + gearbox_mass + hss_mass + brake_mass + generator_mass + bedplate_mass + yaw_mass + hvac_mass + cover_mass + platforms_mass + transformer_mass ) outputs["turbine_mass"] = outputs["rotor_mass"] + outputs["nacelle_mass"] + tower_mass # -------------------------------------------------------------------- class nrel_csm_mass_2015(om.Group): def setup(self): self.add_subsystem("blade", BladeMass(), promotes=["*"]) self.add_subsystem("hub", HubMass(), promotes=["*"]) self.add_subsystem("pitch", PitchSystemMass(), promotes=["*"]) self.add_subsystem("spinner", SpinnerMass(), promotes=["*"]) self.add_subsystem("lss", LowSpeedShaftMass(), promotes=["*"]) self.add_subsystem("bearing", BearingMass(), promotes=["*"]) self.add_subsystem("torque", RotorTorque(), promotes=["*"]) self.add_subsystem("gearbox", GearboxMass(), promotes=["*"]) self.add_subsystem("hss", HighSpeedShaftMass(), promotes=["*"]) self.add_subsystem("brake", BrakeMass(), promotes=["*"]) self.add_subsystem("generator", GeneratorMass(), promotes=["*"]) self.add_subsystem("bedplate", BedplateMass(), promotes=["*"]) self.add_subsystem("yaw", YawSystemMass(), promotes=["*"]) self.add_subsystem("hvac", HydraulicCoolingMass(), promotes=["*"]) self.add_subsystem("cover", NacelleCoverMass(), promotes=["*"]) self.add_subsystem("platforms", PlatformsMainframeMass(), promotes=["*"]) self.add_subsystem("transformer", TransformerMass(), promotes=["*"]) self.add_subsystem("tower", TowerMass(), promotes=["*"]) self.add_subsystem("turbine", TurbineMassAdder(), promotes=["*"]) class nrel_csm_2015(om.Group): def setup(self): self.add_subsystem("nrel_csm_mass", nrel_csm_mass_2015(), promotes=["*"]) self.add_subsystem("turbine_costs", Turbine_CostsSE_2015(verbosity=False), promotes=["*"])
the-stack_0_18993
# -*- coding: utf-8 -*- # # ramstk.models.fmea.view.py is part of The RAMSTK Project # # All rights reserved. # Copyright since 2007 Doyle "weibullguy" Rowland doyle.rowland <AT> reliaqual <DOT> com """Failure Mode and Effects Analysis (FMEA) Package View Model.""" # Standard Library Imports from typing import Any, Dict # Third Party Imports from pubsub import pub from treelib import Tree # RAMSTK Package Imports from ramstk.models import RAMSTKBaseView class RAMSTKFMEAView(RAMSTKBaseView): """Contain the attributes and methods of the FMEA view. This class manages the usage profile data from the RAMSTKMode, RAMSTKMechanism, RAMSTKCause, RAMSTKControl, and RAMSKTAction table models. """ # Define private dictionary class attributes. # Define private list class attributes. # Define private scalar class attributes. _root = 0 _tag = "fmea" # Define public dictionary class attributes. # Define public list class attributes. # Define public scalar class attributes. def __init__(self, **kwargs: Dict[Any, Any]) -> None: """Initialize a FMEA view model instance.""" super().__init__(**kwargs) # Initialize private dictionary attributes. self._dic_load_functions = { "mode": self._do_load_modes, "mechanism": self._do_load_mechanisms, "cause": self._do_load_causes, "control": self._do_load_controls, "action": self._do_load_actions, } self._dic_trees = { "mode": Tree(), "mechanism": Tree(), "cause": Tree(), "control": Tree(), "action": Tree(), } # Initialize private list attributes. self._lst_modules = [ "mode", "mechanism", "cause", "control", "action", ] # Initialize private scalar attributes. # Initialize public dictionary attributes. # Initialize public list attributes. # Initialize public scalar attributes. # Subscribe to PyPubSub messages. pub.subscribe(super().on_insert, "succeed_insert_mode") pub.subscribe(super().on_insert, "succeed_insert_mechanism") pub.subscribe(super().on_insert, "succeed_insert_cause") pub.subscribe(super().on_insert, "succeed_insert_control") pub.subscribe(super().on_insert, "succeed_insert_action") pub.subscribe(super().do_set_tree, "succeed_retrieve_modes") pub.subscribe(super().do_set_tree, "succeed_retrieve_mechanisms") pub.subscribe(super().do_set_tree, "succeed_retrieve_causes") pub.subscribe(super().do_set_tree, "succeed_retrieve_controls") pub.subscribe(super().do_set_tree, "succeed_retrieve_actions") pub.subscribe(super().do_set_tree, "succeed_delete_mode") pub.subscribe(super().do_set_tree, "succeed_delete_mechanism") pub.subscribe(super().do_set_tree, "succeed_delete_cause") pub.subscribe(super().do_set_tree, "succeed_delete_control") pub.subscribe(super().do_set_tree, "succeed_delete_action") def _do_load_modes(self) -> None: """Load the failure modes into the tree. :return: None :rtype: None """ for _node in self._dic_trees["mode"].all_nodes()[1:]: _mode = _node.data["mode"] _node_id = "{}".format(_mode.mode_id) self.tree.create_node( tag="mode", identifier=_node_id, parent=self._root, data={self._tag: _mode}, ) if self._dic_trees["mechanism"].depth() > 0: self._dic_load_functions["mechanism"]( # type: ignore _mode.mode_id, ) def _do_load_mechanisms(self, mode_id: int) -> None: """Load the failure mechanisms into the tree. :param mode_id: the ID of the parent failure mode. :return: None :rtype: None """ for _node in self._dic_trees["mechanism"].all_nodes()[1:]: _mechanism = _node.data["mechanism"] _node_id = "{}.{}".format(mode_id, _mechanism.mechanism_id) if _mechanism.mode_id == mode_id: self.tree.create_node( tag="mechanism", identifier=_node_id, parent="{}".format(mode_id), data={self._tag: _mechanism}, ) if self._dic_trees["cause"].depth() > 0: self._dic_load_functions["cause"]( # type: ignore _mechanism.mechanism_id, _node_id, ) def _do_load_causes(self, mechanism_id: int, parent_id: str) -> None: """Load the failure causes into the tree for the passed mechanism ID. :param mechanism_id: the failure mechanism ID to add the new operating load. :param parent_id: the parent node ID. :return: None :rtype: None """ for _node in self._dic_trees["cause"].all_nodes()[1:]: _cause = _node.data["cause"] _node_id = "{}.{}".format(parent_id, _cause.cause_id) if _cause.mechanism_id == mechanism_id: self.tree.create_node( tag="cause", identifier=_node_id, parent=parent_id, data={self._tag: _cause}, ) if self._dic_trees["control"].depth() > 0: self._dic_load_functions["control"]( # type: ignore _cause.cause_id, _node_id, ) if self._dic_trees["action"].depth() > 0: self._dic_load_functions["action"]( # type: ignore _cause.cause_id, _node_id, ) def _do_load_controls(self, cause_id: int, parent_id: str) -> None: """Load the FNEA controls into the tree. :param cause_id: the ID of the parent failure cause. :param parent_id: the parent node ID. :return: None :rtype: None """ for _node in self._dic_trees["control"].all_nodes()[1:]: _control = _node.data["control"] _node_id = "{}.{}c".format(parent_id, _control.control_id) if _control.cause_id == cause_id: self.tree.create_node( tag="control", identifier=_node_id, parent=parent_id, data={self._tag: _control}, ) def _do_load_actions(self, cause_id: int, parent_id: str) -> None: """Load the FMEA actions into the tree. :param cause_id: the ID of the parent failure cause. :param parent_id: the parent node ID. :return: None :rtype: None """ for _node in self._dic_trees["action"].all_nodes()[1:]: _action = _node.data["action"] _node_id = "{}.{}a".format(parent_id, _action.action_id) if _action.cause_id == cause_id: self.tree.create_node( tag="action", identifier=_node_id, parent=parent_id, data={self._tag: _action}, )
the-stack_0_18994
import locale import shlex from typing import List, Dict, Any, Union, Tuple import yaml from func_timeout import func_timeout, FunctionTimedOut from sparclur._parser import VALID, VALID_WARNINGS, REJECTED, REJECTED_AMBIG, RENDER, TRACER, TEXT, TIMED_OUT from sparclur._hybrid import Hybrid from sparclur._reforge import Reforger from sparclur._renderer import _SUCCESSFUL_RENDER_MESSAGE as SUCCESS from sparclur._renderer import _SUCCESS_WITH_WARNINGS as SUCCESS_WITH_WARNINGS from sparclur._renderer import _ocr_text from sparclur._tracer import Tracer from sparclur.utils import fix_splits, hash_file import os import sys import re import subprocess from subprocess import TimeoutExpired, DEVNULL import tempfile import time import fitz from PIL import Image from PIL.PngImagePlugin import PngImageFile from sparclur.utils._config import _get_config_param, _load_config class MuPDF(Tracer, Hybrid, Reforger): """MuPDF parser""" def __init__(self, doc: Union[str, bytes], skip_check: Union[bool, None] = None, hash_exclude: Union[str, List[str], None] = None, page_hashes: Union[int, Tuple[Any], None] = None, validate_hash: bool = False, parse_streams: Union[bool, None] = None, binary_path: Union[str, None] = None, temp_folders_dir: Union[str, None] = None, dpi: Union[int, None] = None, cache_renders: Union[bool, None] = None, timeout: Union[int, None] = None, ocr: Union[bool, None] = None ): """ Parameters ---------- parse_streams : bool Indicates whether mutool clean should be called with -s or not. -s parses into the content streams of the PDF. binary_path : str If the mutool binary is not in the system PATH, add the path to the binary here. Can also be used to trace specific versions of the binary. """ config = _load_config() skip_check = _get_config_param(MuPDF, config, 'skip_check', skip_check, False) hash_exclude = _get_config_param(MuPDF, config, 'hash_exclude', hash_exclude, None) parse_streams = _get_config_param(MuPDF, config, 'parse_streams', parse_streams, True) binary_path = _get_config_param(MuPDF, config, 'binary_path', binary_path, None) temp_folders_dir = _get_config_param(MuPDF, config, 'temp_folders_dir', temp_folders_dir, None) dpi = _get_config_param(MuPDF, config, 'dpi', dpi, 200) cache_renders = _get_config_param(MuPDF, config, 'cache_renders', cache_renders, False) timeout = _get_config_param(MuPDF, config, 'timeout', timeout, None) ocr = _get_config_param(MuPDF, config, 'ocr', ocr, False) super().__init__(doc=doc, temp_folders_dir=temp_folders_dir, skip_check=skip_check, hash_exclude=hash_exclude, page_hashes=page_hashes, validate_hash=validate_hash, dpi=dpi, cache_renders=cache_renders, timeout=timeout, ocr=ocr) self._parse_streams = parse_streams self._cmd_path = 'mutool clean' if binary_path is None else binary_path.strip() + ' clean' self._trace_exit_code = None def _check_for_renderer(self) -> bool: if self._can_render is None: self._can_render = 'fitz' in sys.modules.keys() return self._can_render @property def validate_renderer(self): if RENDER in self._validity: return self._validity[RENDER] else: validity_results = dict() if len(self._logs) == 0: if self._validate_hash: _ = self.get_renders(self._parse_page_hashes) else: _ = self.get_renders() results = [(page, value['result']) for (page, value) in self._logs.items()] not_successful = [result for (_, result) in results if result != SUCCESS] if self._file_timed_out[RENDER]: validity_results['valid'] = False validity_results['status'] = TIMED_OUT validity_results['info'] = 'Timed Out: %i' % self._timeout elif len(results) == 0: validity_results['valid'] = False validity_results['status'] = REJECTED validity_results['info'] = 'No info returned' elif len(not_successful) == 0: validity_results['valid'] = True validity_results['status'] = VALID elif len([result for result in not_successful if result != SUCCESS_WITH_WARNINGS]) == 0: validity_results['valid'] = True validity_results['status'] = VALID_WARNINGS else: validity_results['valid'] = False validity_results['status'] = REJECTED validity_results['info'] = ';'.join( ['%i: %s' % (page, result) for (page, result) in results if result != SUCCESS and result != SUCCESS_WITH_WARNINGS]) self._validity[RENDER] = validity_results return validity_results # @staticmethod # def get_name(): # return 'MuDraw' def _get_num_pages(self): with tempfile.TemporaryDirectory(dir=self._temp_folders_dir) as temp_path: if isinstance(self._doc, bytes): file_hash = hash_file(self._doc) doc_path = os.path.join(temp_path, file_hash) with open(doc_path, 'wb') as doc_out: doc_out.write(self._doc) else: doc_path = self._doc try: doc = fitz.open(doc_path) self._num_pages = doc.pageCount except Exception as e: print(e) self._num_pages = 0 finally: try: doc.close() except: pass def _mudraw(self, page, mat): pix = page.get_pixmap(matrix=mat) width = pix.width height = pix.height return Image.frombytes("RGB", [width, height], pix.samples) def _render_page(self, page): with tempfile.TemporaryDirectory(dir=self._temp_folders_dir) as temp_path: if isinstance(self._doc, bytes): file_hash = hash_file(self._doc) doc_path = os.path.join(temp_path, file_hash) with open(doc_path, 'wb') as doc_out: doc_out.write(self._doc) else: doc_path = self._doc start_time = time.perf_counter() try: mat = fitz.Matrix(self._dpi / 72, self._dpi / 72) fitz.TOOLS.reset_mupdf_warnings() doc = fitz.open(doc_path) if self._timeout is None: mu_pil: PngImageFile = self._mudraw(doc[page], mat) else: mu_pil: PngImageFile = func_timeout( self._timeout, self._mudraw, kwargs={ 'page': doc[page], 'mat': mat } ) doc.close() if self._caching: self._renders[page] = mu_pil timing = time.perf_counter() - start_time warnings = fitz.TOOLS.mupdf_warnings() result = SUCCESS if warnings == '' else SUCCESS_WITH_WARNINGS self._logs[page] = {'result': result, 'timing': timing} self._file_timed_out[RENDER] = False except FunctionTimedOut: mu_pil: PngImageFile = None self._logs[page] = {'result': 'Timed out', 'timing': self._timeout} self._file_timed_out[RENDER] = True except Exception as e: mu_pil: PngImageFile = None timing = time.perf_counter() - start_time self._logs[page] = {'result': str(e), 'timing': timing} self._file_timed_out[RENDER] = False return mu_pil def _render_doc(self, pages=None): with tempfile.TemporaryDirectory(dir=self._temp_folders_dir) as temp_path: if isinstance(self._doc, bytes): file_hash = hash_file(self._doc) doc_path = os.path.join(temp_path, file_hash) with open(doc_path, 'wb') as doc_out: doc_out.write(self._doc) else: doc_path = self._doc start_time = time.perf_counter() try: mat = fitz.Matrix(self._dpi / 72, self._dpi / 72) doc = fitz.open(doc_path) num_pages = doc.pageCount if num_pages == 0 and pages is not None: num_pages = max(pages) + 1 if pages is None: page_range = range(num_pages) else: page_range = [page for page in pages if -1 < page < num_pages] if len(doc) == 0: doc.close() raise Exception('Document failed to load') pils: Dict[int, PngImageFile] = dict() for page in page_range: fitz.TOOLS.reset_mupdf_warnings() page_start = time.perf_counter() try: if self._timeout is None: pils[page] = self._mudraw(doc[page], mat) else: pils[page] = func_timeout( self._timeout, self._mudraw, kwargs={ 'page': doc[page], 'mat': mat } ) timing = time.perf_counter() - page_start warnings = fitz.TOOLS.mupdf_warnings() result = SUCCESS if warnings == '' else SUCCESS_WITH_WARNINGS self._logs[page] = {'result': result, 'timing': timing} self._file_timed_out[RENDER] = False except FunctionTimedOut: self._logs[page] = {'result': 'Timed out', 'timing': self._timeout} self._file_timed_out[RENDER] = True except Exception as e: self._logs[page] = {'result': str(e), 'timing': time.perf_counter() - page_start} self._file_timed_out[RENDER] = False doc.close() if self._caching: if pages is None: self._full_doc_rendered = True self._renders.update(pils) # timing = time.perf_counter() - start_time # num_pages = len(pils) # for page in pils.keys(): # self._logs[page] = {'result': SUCCESS, 'timing': timing / num_pages} except Exception as e: pils: Dict[int, PngImageFile] = dict() timing = time.perf_counter() - start_time self._logs[0] = {'result': str(e), 'timing': timing} self._file_timed_out[RENDER] = False return pils def _render_pages(self, pages: List[int]): return self._render_doc(pages) # class MuPDF(Tracer, TextCompare): # """MuPDF tracer and renderer """ # def __init__(self, doc_path: str, # parse_streams: bool = True, # binary_path: str = None, # temp_folders_dir: str = None # ): # """ # Parameters # ---------- # doc_path : str # Full path to the document to be traced. # parse_streams : bool # Indicates whether mutool clean should be called with -s or not. -s parses into the content streams of the # PDF. # binary_path : str # If the mutool binary is not in the system PATH, add the path to the binary here. Can also be used to trace # specific versions of the binary. # temp_folders_dir : str # Path to create the temporary directories used for temporary files. # """ # super().__init__(doc_path=doc_path) # self._parse_streams = parse_streams # self._temp_folders_dir = temp_folders_dir # self._cmd_path = 'mutool clean' if binary_path is None else binary_path def _check_for_text_extraction(self) -> bool: if self._ocr: if self._can_extract is None: if self._can_render is None: _ = self._check_for_renderer() self._can_extract = 'pytesseract' in sys.modules.keys() and self._can_render else: if self._can_extract is None: self._can_extract = 'fitz' in sys.modules.keys() return self._can_extract @property def validate_text(self) -> Dict[str, Any]: if TEXT not in self._validity: fitz.TOOLS.reset_mupdf_warnings() validity_results = dict() with tempfile.TemporaryDirectory(dir=self._temp_folders_dir) as temp_path: if isinstance(self._doc, bytes): file_hash = hash_file(self._doc) doc_path = os.path.join(temp_path, file_hash) with open(doc_path, 'wb') as doc_out: doc_out.write(self._doc) else: doc_path = self._doc try: doc = fitz.open(doc_path) for page in doc: text = page.getText() if not self._ocr and page.number not in self._text: self._text[page.number] = text if not self._ocr: self._full_text_extracted = True warnings = fitz.TOOLS.mupdf_warnings() error = None except Exception as e: error = str(e) warnings = None finally: try: doc.close() except: pass if error is not None: validity_results['valid'] = False validity_results['status'] = REJECTED validity_results['info'] = error else: validity_results['valid'] = True if warnings == '': validity_results['status'] = VALID else: validity_results['status'] = VALID_WARNINGS validity_results['info'] = warnings self._validity[TEXT] = validity_results return self._validity[TEXT] def _check_for_tracer(self) -> bool: if self._can_trace is None: try: subprocess.check_output(shlex.split("mutool -v"), shell=False) mutool_present = True except subprocess.CalledProcessError as e: mutool_present = False self._can_trace = mutool_present return self._can_trace def _check_for_reforger(self) -> bool: if self._can_reforge is None: self._can_reforge = self._check_for_tracer() return self._can_reforge def _reforge(self): stream_flag = ' -s' if self._parse_streams else '' with tempfile.TemporaryDirectory(dir=self._temp_folders_dir) as temp_path: if isinstance(self._doc, bytes): file_hash = hash_file(self._doc) doc_path = os.path.join(temp_path, file_hash) with open(doc_path, 'wb') as doc_out: doc_out.write(self._doc) else: doc_path = self._doc try: out_path = os.path.join(temp_path, 'out.pdf') sp = subprocess.Popen(shlex.split('mutool clean%s %s %s' % (stream_flag, doc_path, out_path)), stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=False) (_, err) = sp.communicate(timeout=self._timeout or 600) with open(out_path, 'rb') as file_in: raw = file_in.read() self._reforged = raw self._successfully_reforged = True self._reforge_result = 'Successfully reforged' decoder = locale.getpreferredencoding() err = fix_splits(err.decode(decoder)) error_arr = [message for message in err.split('\n') if len(message) > 0] except TimeoutExpired: sp.kill() (_, err) = sp.communicate() decoder = locale.getpreferredencoding() err = fix_splits(err.decode(decoder)) error_arr = [message for message in err.split('\n') if len(message) > 0] error_arr.insert(0, 'Error: Subprocess timed out: %i' % (self._timeout or 600)) self._successfully_reforged = False self._reforge_result = '[' + ', '.join(error_arr) + ']' except Exception as e: sp.kill() decoder = locale.getpreferredencoding() err = fix_splits(err.decode(decoder)) error_arr = str(e).split('\n') error_arr.extend([message for message in err.split('\n') if len(message) > 0]) self._successfully_reforged = False self._reforge_result = '[' + ', '.join(error_arr) + ']' self._trace_exit_code = sp.returncode self._messages = ['No warnings'] if len(error_arr) == 0 else error_arr @property def validate_tracer(self) -> Dict[str, Any]: if TRACER not in self._validity: validity_results = dict() if self._messages is None: self._parse_document() if self._cleaned is None: self._scrub_messages() observed_messages = list(self._cleaned.keys()) if self._file_timed_out[TRACER]: validity_results['valid'] = False validity_results['status'] = TIMED_OUT validity_results['info'] = 'Timed Out: %i' % self._timeout elif self._trace_exit_code > 0: validity_results['valid'] = False validity_results['status'] = REJECTED validity_results['info'] = 'Exit code: %i' % self._trace_exit_code elif observed_messages == ['No warnings']: validity_results['valid'] = True validity_results['status'] = VALID elif len([message for message in observed_messages if 'error' in message]) > 0: validity_results['valid'] = False validity_results['status'] = REJECTED validity_results['info'] = 'Errors returned' elif len([message for message in observed_messages if 'warning' in message]) == len(observed_messages): validity_results['valid'] = True validity_results['status'] = VALID_WARNINGS validity_results['info'] = 'Warnings only' else: validity_results['valid'] = False validity_results['status'] = REJECTED_AMBIG validity_results['info'] = 'Unknown message type returned' self._validity[TRACER] = validity_results return self._validity[TRACER] @staticmethod def get_name(): return 'MuPDF' @property def streams_parsed(self): return self._parse_streams def _parse_document(self): stream_flag = ' -s' if self._parse_streams else '' with tempfile.TemporaryDirectory(dir=self._temp_folders_dir) as temp_path: if isinstance(self._doc, bytes): file_hash = hash_file(self._doc) doc_path = os.path.join(temp_path, file_hash) with open(doc_path, 'wb') as doc_out: doc_out.write(self._doc) else: doc_path = self._doc try: out_path = os.path.join(temp_path, 'out.pdf') sp = subprocess.Popen(shlex.split('mutool clean%s %s %s' % (stream_flag, doc_path, out_path)), stderr=subprocess.PIPE, stdout=DEVNULL, shell=False) (_, err) = sp.communicate(timeout=self._timeout or 600) decoder = locale.getpreferredencoding() err = fix_splits(err.decode(decoder)) error_arr = [message for message in err.split('\n') if len(message) > 0] self._file_timed_out[TRACER] = False except TimeoutExpired: sp.kill() (_, err) = sp.communicate() decoder = locale.getpreferredencoding() err = fix_splits(err.decode(decoder)) error_arr = [message for message in err.split('\n') if len(message) > 0] error_arr.insert(0, 'Error: Subprocess timed out: %i' % (self._timeout or 600)) self._file_timed_out[TRACER] = True except Exception as e: sp.kill() decoder = locale.getpreferredencoding() err = fix_splits(err.decode(decoder)) error_arr = str(e).split('\n') error_arr.extend([message for message in err.split('\n') if len(message) > 0]) self._file_timed_out[TRACER] = False self._trace_exit_code = sp.returncode self._messages = ['No warnings'] if len(error_arr) == 0 else error_arr def _clean_message(self, err): cleaned = re.sub(r'\([\d]+ [\d]+ R\)', '', err) cleaned = re.sub(r'[\d]+ [\d]+ R', '', cleaned) cleaned = re.sub(r"\'[^']+\'", '', cleaned) cleaned = 'error: expected generation number' if cleaned.startswith( 'error: expected generation number ') else cleaned cleaned = 'error: unknown colorspace' if cleaned.startswith('error: unknown colorspace: ') else cleaned cleaned = re.sub(r'non-embedded font using identity encoding: [.]*', 'non-embedded font using identity encoding: <font>', cleaned) cleaned = re.sub(r'\(gid [\d]+\)', '', cleaned) cleaned = 'error: expected keyword' if cleaned.startswith('error: expected keyword ') else cleaned cleaned = 'warning: unknown filter name' if cleaned.startswith('warning: unknown filter name ') else cleaned cleaned = 'error: aes padding out of range' if cleaned.startswith( 'error: aes padding out of range:') else cleaned cleaned = 'error: cannot authenticate password' if cleaned.startswith( 'error: cannot authenticate password:') else cleaned cleaned = re.sub(r'\[\d+\] prec\(\d+\) sgnd\(\d+\) \[\d+\] prec\(\d+\) sgnd\(\d+\)', 'Out of Memory Error', cleaned) cleaned = 'warning: cannot load content stream part' if cleaned.startswith( 'warning: cannot load content stream part') else cleaned cleaned = 'error: object out of range' if cleaned.startswith('error: object out of range') else cleaned cleaned = 'warning: object out of range' if cleaned.startswith('warning: object out of range') else cleaned cleaned = 'error: object id out of range' if cleaned.startswith('error: object id out of range') else cleaned cleaned = re.sub(r"\'\'", '', cleaned) cleaned = 'error: invalid reference to non-object-stream' if cleaned.startswith( 'error: invalid reference to non-object-stream:') else cleaned cleaned = 'error: object offset out of range' if cleaned.startswith( 'error: object offset out of range:') else cleaned cleaned = 'error: unexpected xref type' if cleaned.startswith('error: unexpected xref type:') else cleaned cleaned = 'error: unknown keyword' if cleaned.startswith('error: unknown keyword:') else cleaned cleaned = re.sub(r'warning: Encountered new definition for object \d+ - keeping the original one', 'warning: Encountered new definition for object - keeping the original one', cleaned) cleaned = 'warning: bf_range limits out of range in cmap' if cleaned.startswith( 'warning: bf_range limits out of range in cmap') else cleaned cleaned = re.sub(r'ignoring one to many mapping in cmap [.]*', 'ignoring one to many mapping in cmap', cleaned) cleaned = re.sub(r'\(segment [\-]?\d+\)', '', cleaned) cleaned = re.sub(r'\([\-]?\d+\)', '', cleaned) cleaned = re.sub(r'\(\d+\/\d+\)', '', cleaned) cleaned = 'warning: jbig2dec error: Invalid SYMWIDTH value' if cleaned.startswith( 'warning: jbig2dec error: Invalid SYMWIDTH value') else cleaned cleaned = 'warning: jbig2dec error: No OOB signalling end of height class' if cleaned.startswith( 'warning: jbig2dec error: No OOB signalling end of height class') else cleaned cleaned = 'warning: openjpeg error: Failed to decode tile' if cleaned.startswith( 'warning: openjpeg error: Failed to decode tile') else cleaned cleaned = 'warning: openjpeg error: Invalid component index' if cleaned.startswith( 'warning: openjpeg error: Invalid component index') else cleaned cleaned = 'warning: openjpeg error: Invalid tile part index for tile number' if cleaned.startswith( 'warning: openjpeg error: Invalid tile part index for tile number') else cleaned cleaned = re.sub( r'warning: openjpeg error: Invalid values for comp = \d+ : prec=\d+ (should be between 1 and 38 according to the JPEG2000 norm. OpenJpeg only supports up to 31)', 'warning: openjpeg error: Invalid values for comp = x : prec=y (should be between 1 and 38 according to the JPEG2000 norm. OpenJpeg only supports up to 31)', cleaned) cleaned = 'warning: openjpeg error: read: segment too long with max for codeblock' if cleaned.startswith( 'warning: openjpeg error: read: segment too long with max for codeblock') else cleaned cleaned = re.sub(r'comp\[\d+\]', 'comp', cleaned) cleaned = re.sub(r'ignoring CMap range \(\d+-\d+\)', 'ignoring CMap range (a-b)', cleaned) cleaned = re.sub(r'FT_New_Memory_Face\([^)]+\)', 'FT_New_Memory_Face(x)', cleaned) cleaned = re.sub(r'FT_Load_Glyph\([^)]+\)', 'FT_Load_Glyph(x)', cleaned) cleaned = re.sub(r'FT_Set_Char_Size\([^)]+\)', 'FT_Set_Char_Size(x)', cleaned) cleaned = re.sub(r'Subprocess timed out: [\d]+', 'Subprocess timed out: <t>', cleaned) cleaned = re.sub(r'error: cannot find page [\d]+ in page tree', 'error: cannot find page <p> in page tree', cleaned) cleaned = re.sub(r'unknown cid collection: [.]+', 'unknown cid collection', cleaned) cleaned = re.sub(r'content stream is not a stream \([^)]*\)', 'content stream is not a stream (<x>)', cleaned) cleaned = re.sub(r'expected endobj or stream keyword \([^)]*\)', 'expected endobj or stream keyword (<x>)', cleaned) cleaned = re.sub(r'ignoring object with invalid object number \([^)]*\)', 'ignoring object with invalid object number (<x>)', cleaned) cleaned = re.sub(r'invalid indirect reference \([^)]*\)', 'invalid indirect reference (<x>)', cleaned) cleaned: str = re.sub(r'\[\d+\] prec\(\d+\) sgnd\(\d+\) \[\d+\] prec\(\d+\) sgnd\(\d+\)', 'Out of Memory Error', cleaned) return cleaned def _mupdf_scrub(self, messages): scrubbed_messages = [self._clean_message(err) for err in messages] error_dict: Dict[str, int] = dict() for (index, error) in enumerate(scrubbed_messages): if '... repeated ' in error: repeated = re.sub(r'[^\d]', '', error) error_dict[self._messages[index - 1]] = error_dict.get(error, 0) + int(repeated) else: error_dict[error] = error_dict.get(error, 0) + 1 return error_dict def _scrub_messages(self): if self._messages is None: self._parse_document() error_dict = self._mupdf_scrub(self._messages) self._cleaned = error_dict def _extract_page(self, page: int): if self._ocr: self._text[page] = _ocr_text(self.get_renders(page=page)) else: with tempfile.TemporaryDirectory(dir=self._temp_folders_dir) as temp_path: if isinstance(self._doc, bytes): file_hash = hash_file(self._doc) doc_path = os.path.join(temp_path, file_hash) with open(doc_path, 'wb') as doc_out: doc_out.write(self._doc) else: doc_path = self._doc doc = fitz.open(doc_path) text = doc[page].get_text() doc.close() self._text[page] = text def _extract_doc(self): if self._ocr: for (page, pil) in self.get_renders().items(): self._text[page] = _ocr_text(pil) else: with tempfile.TemporaryDirectory(dir=self._temp_folders_dir) as temp_path: if isinstance(self._doc, bytes): file_hash = hash_file(self._doc) doc_path = os.path.join(temp_path, file_hash) with open(doc_path, 'wb') as doc_out: doc_out.write(self._doc) else: doc_path = self._doc doc = fitz.open(doc_path) for page in doc: self._text[page.number] = page.get_text() doc.close() self._full_text_extracted = True
the-stack_0_18997
""" baggingclassifier.py Builds a bagging classifier ~66 pct accuracy, 1m57.020s execution time with n_estimators=10 """ from classifier import Classifier from matrixdatabase import MatrixDatabase from sklearn.ensemble import BaggingClassifier as BC class BaggingClassifier(Classifier): def __init__(self, matrixdatabase): self._matrix_database = matrixdatabase self._has_fit = False self._bc = BC(n_estimators=10) def learn(self, ingredients, cuisine): return def classify(self, ingredients): if not self._has_fit: matrix, classes = self._matrix_database.make_train_matrix() self._bc = self._bc.fit(matrix, classes) print('Fitting complete...') self._has_fit = True output = self._bc.predict(self._matrix_database.make_row_from_recipe(ingredients)) return output[0]
the-stack_0_18998
"""Support for playing sounds.""" import os import re import subprocess import uuid from typing import Any, Dict, List, Optional, Type from rhasspy.actor import RhasspyActor from rhasspy.mqtt import MqttPublish # ----------------------------------------------------------------------------- # Events # ----------------------------------------------------------------------------- class PlayWavFile: """Play a WAV file.""" def __init__(self, wav_path: str, receiver: Optional[RhasspyActor] = None) -> None: self.wav_path = wav_path self.receiver = receiver class PlayWavData: """Play a WAV buffer.""" def __init__( self, wav_data: bytes, receiver: Optional[RhasspyActor] = None ) -> None: self.wav_data = wav_data self.receiver = receiver class WavPlayed: """Response to PlayWavFile or PlayWavData.""" pass # ----------------------------------------------------------------------------- def get_sound_class(system: str) -> Type[RhasspyActor]: """Get class type for profile audio player.""" assert system in ["aplay", "hermes", "dummy"], "Unknown sound system: %s" % system if system == "aplay": return APlayAudioPlayer if system == "hermes": return HermesAudioPlayer return DummyAudioPlayer # ----------------------------------------------------------------------------- # Dummy audio player # ----------------------------------------------------------------------------- class DummyAudioPlayer(RhasspyActor): """Does not play sound. Responds immediately with WavPlayed.""" def in_started(self, message: Any, sender: RhasspyActor) -> None: """Handle messages in started state.""" if isinstance(message, (PlayWavFile, PlayWavData)): self.send(message.receiver or sender, WavPlayed()) @classmethod def get_speakers(cls) -> Dict[Any, Any]: """Get list of possible audio output devices.""" return {} # ----------------------------------------------------------------------------- # APlay based audio player # ----------------------------------------------------------------------------- class APlayAudioPlayer(RhasspyActor): """Plays WAV files using aplay command.""" def __init__(self): super().__init__() self.device: Optional[str] = None def to_started(self, from_state: str) -> None: """Transition to started state.""" self.device = self.config.get("device") or self.profile.get( "sounds.aplay.device" ) def in_started(self, message: Any, sender: RhasspyActor) -> None: """Handle messages in started state.""" if isinstance(message, PlayWavFile): self.play_file(message.wav_path) self.send(message.receiver or sender, WavPlayed()) elif isinstance(message, PlayWavData): self.play_data(message.wav_data) self.send(message.receiver or sender, WavPlayed()) # ------------------------------------------------------------------------- def play_file(self, path: str) -> None: """Play a WAV file using aplay.""" if not os.path.exists(path): self._logger.warning("Path does not exist: %s", path) return aplay_cmd = ["aplay", "-q"] if self.device is not None: aplay_cmd.extend(["-D", str(self.device)]) # Play file aplay_cmd.append(path) self._logger.debug(aplay_cmd) subprocess.run(aplay_cmd) def play_data(self, wav_data: bytes) -> None: """Play a WAV buffer using aplay.""" aplay_cmd = ["aplay", "-q"] if self.device is not None: aplay_cmd.extend(["-D", str(self.device)]) self._logger.debug(aplay_cmd) # Play data subprocess.run(aplay_cmd, input=wav_data) # ------------------------------------------------------------------------- @classmethod def get_speakers(cls) -> Dict[Any, Any]: """Get list of possible audio output devices.""" output = subprocess.check_output(["aplay", "-L"]).decode().splitlines() speakers: Dict[Any, Any] = {} name, description = None, None # Parse output of arecord -L first_speaker = True for line in output: line = line.rstrip() if re.match(r"^\s", line): description = line.strip() if first_speaker: description = description + "*" first_speaker = False else: if name is not None: speakers[name] = description name = line.strip() return speakers # ----------------------------------------------------------------------------- # MQTT audio player for Snips.AI Hermes Protocol # https://docs.snips.ai/reference/hermes # ----------------------------------------------------------------------------- class HermesAudioPlayer(RhasspyActor): """Sends audio data over MQTT via Hermes (Snips) protocol.""" def __init__(self): super().__init__() self.mqtt: Optional[RhasspyActor] = None self.site_ids: List[str] = [] def to_started(self, from_state: str) -> None: """Transition to started state.""" self.mqtt = self.config["mqtt"] self.site_ids = self.profile.get("mqtt.site_id", "default").split(",") def in_started(self, message: Any, sender: RhasspyActor) -> None: """Handle messages in started state.""" if isinstance(message, PlayWavFile): self.play_file(message.wav_path) self.send(message.receiver or sender, WavPlayed()) elif isinstance(message, PlayWavData): self.play_data(message.wav_data) self.send(message.receiver or sender, WavPlayed()) # ------------------------------------------------------------------------- def play_file(self, path: str) -> None: """Send WAV file over MQTT.""" if not os.path.exists(path): self._logger.warning("Path does not exist: %s", path) return with open(path, "rb") as wav_file: self.play_data(wav_file.read()) def play_data(self, wav_data: bytes) -> None: """Send WAV buffer over MQTT.""" request_id = str(uuid.uuid4()) # Send to all site ids for site_id in self.site_ids: topic = f"hermes/audioServer/{site_id}/playBytes/{request_id}" self.send(self.mqtt, MqttPublish(topic, wav_data)) # ------------------------------------------------------------------------- @classmethod def get_speakers(cls) -> Dict[Any, Any]: """Get list of possible audio output devices.""" return {}
the-stack_0_18999
# -*- coding: UTF-8 -*- # ------------------------(max to 80 columns)----------------------------------- # author by : (学员ID) # created: 2019.11 # Description: # 初步学习 WinForm 编程 ( Window ) # ------------------------(max to 80 columns)----------------------------------- import tkinter as tk from tkinter import ttk import tkinter.messagebox # create root window top_win = tk.Tk() # naming root window top_win.title('Hello World Window') # resize root window win_size_pos = '800x600' #win_size_pos = '360x60' top_win.geometry(win_size_pos) #------------------------------ # balablabla title = 'My Label Frame' lfm_step1 = ttk.Labelframe( top_win, text=title, width=240, height=500) #lfm_step1.place(x=20, y=20) lfm_step1.grid(row=0, column=0, padx=10, pady=10) lbl_test0 = tk.Label(lfm_step1, text='Oh! My god', bg='blue', fg='white') lbl_test0.grid(row=0, column=0, pady=5, padx=5) lbl_test1 = tk.Label(lfm_step1, text='Oh! My god', bg='blue', fg='white') lbl_test1.grid(row=1, column=0, pady=5, padx=5) lbl_test2 = tk.Label(lfm_step1, text='Oh! My god', bg='blue', fg='white') lbl_test2.grid(row=2, column=0, pady=5, padx=5) lbl_test3 = tk.Label(lfm_step1, text='Oh! My god', bg='blue', fg='white') lbl_test3.grid(row=3, column=0, pady=5, padx=5) lbl_test4 = tk.Label(lfm_step1, text='Oh! My god', bg='blue', fg='white') lbl_test4.grid(row=4, column=0, pady=5, padx=5) lbl_test0 = tk.Label(lfm_step1, text='Oh! My god', bg='blue', fg='white') lbl_test0.grid(row=0, column=1, pady=5, padx=5) lbl_test1 = tk.Label(lfm_step1, text='Oh! My god', bg='blue', fg='white') lbl_test1.grid(row=1, column=1, pady=5, padx=5) lbl_test2 = tk.Label(lfm_step1, text='Oh! My god', bg='blue', fg='white') lbl_test2.grid(row=2, column=1, pady=5, padx=5) lbl_test3 = tk.Label(lfm_step1, text='Oh! My god', bg='blue', fg='white') lbl_test3.grid(row=3, column=1, pady=5, padx=5) lbl_test4 = tk.Label(lfm_step1, text='Oh! My god', bg='blue', fg='white') lbl_test4.grid(row=4, column=1, pady=5, padx=5) title = 'My Label Frame generated by for' lfm_step2 = ttk.Labelframe( top_win, text=title, width=240, height=500) #lfm_step2.place(x=400, y=20) lfm_step2.grid(row=0, column=1, padx=10, pady=10) for r in range(5): for c in range(3): ent_row = tk.Entry(lfm_step2, show=None, width=8, bg='red', fg='white') #ent_row.place(x=20, y=20) ent_row.grid(row=r, column=c, padx=5, pady=5) #------------------------------ # show window and get into event loop top_win.mainloop()
the-stack_0_19001
from __future__ import absolute_import, division, print_function import sys import re import subprocess from os.path import join, basename from conda_build.conda_interface import memoized from conda_build.conda_interface import untracked from conda_build.conda_interface import linked_data from conda_build import post from conda_build.os_utils.macho import otool from conda_build.os_utils.pyldd import inspect_linkages LDD_RE = re.compile(r'\s*(.*?)\s*=>\s*(.*?)\s*\(.*\)') LDD_NOT_FOUND_RE = re.compile(r'\s*(.*?)\s*=>\s*not found') def ldd(path): "thin wrapper around ldd" lines = subprocess.check_output(['ldd', path]).decode('utf-8').splitlines() res = [] for line in lines: if '=>' not in line: continue assert line[0] == '\t', (path, line) m = LDD_RE.match(line) if m: res.append(m.groups()) continue m = LDD_NOT_FOUND_RE.match(line) if m: res.append((m.group(1), 'not found')) continue if 'ld-linux' in line: continue raise RuntimeError("Unexpected output from ldd: %s" % line) return res @memoized def get_linkages(obj_files, prefix, sysroot): res = {} for f in obj_files: path = join(prefix, f) # ldd quite often fails on foreign architectures. ldd_failed = False try: if sys.platform.startswith('linux'): res[f] = ldd(path) elif sys.platform.startswith('darwin'): links = otool(path) res[f] = [(basename(l['name']), l['name']) for l in links] except: ldd_failed = True finally: res_py = inspect_linkages(path, sysroot=sysroot) res_py = [(basename(lp), lp) for lp in res_py] # print("set(res_py) {}".format(set(res_py))) if ldd_failed: res[f] = res_py # else: # print("set(res[f]) = {}".format(set(res[f]))) # if set(res[f]) != set(res_py): # print("WARNING: pyldd disagrees with ldd/otool. This will not cause any") # print("WARNING: problems for this build, but please file a bug at:") # print("WARNING: https://github.com/conda/conda-build") # print("WARNING: and (if possible) attach file {}".format(path)) # print("WARNING: ldd/tool gives {}, pyldd gives {}" # .format(set(res[f]), set(res_py))) return res @memoized def get_package_obj_files(dist, prefix): data = linked_data(prefix).get(dist) res = [] if data: for f in data.get('files', []): path = join(prefix, f) if post.is_obj(path): res.append(f) return res @memoized def get_untracked_obj_files(prefix): res = [] files = untracked(prefix) for f in files: path = join(prefix, f) if post.is_obj(path): res.append(f) return res
the-stack_0_19003
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. # language governing permissions and limitations under the License. from __future__ import absolute_import import json import pytest import sagemaker import os import warnings from mock import ( Mock, PropertyMock, patch, ) from sagemaker.debugger import DEBUGGER_FLAG, ProfilerConfig from sagemaker.estimator import Estimator from sagemaker.tensorflow import TensorFlow from sagemaker.inputs import TrainingInput, TransformInput, CreateModelInput from sagemaker.model import Model from sagemaker.processing import ( Processor, ProcessingInput, ProcessingOutput, ScriptProcessor, ) from sagemaker.tuner import ( HyperparameterTuner, ContinuousParameter, WarmStartConfig, WarmStartTypes, ) from sagemaker.network import NetworkConfig from sagemaker.transformer import Transformer from sagemaker.workflow.functions import Join from sagemaker.workflow.pipeline import Pipeline, PipelineGraph from sagemaker.workflow.properties import Properties, PropertyFile from sagemaker.workflow.parameters import ParameterString, ParameterInteger, ParameterBoolean from sagemaker.workflow.retry import ( StepRetryPolicy, StepExceptionTypeEnum, SageMakerJobStepRetryPolicy, SageMakerJobExceptionTypeEnum, ) from sagemaker.workflow.steps import ( ProcessingStep, ConfigurableRetryStep, StepTypeEnum, TrainingStep, TuningStep, TransformStep, CreateModelStep, CacheConfig, ) from sagemaker.pipeline import PipelineModel from sagemaker.sparkml import SparkMLModel from sagemaker.predictor import Predictor from sagemaker.model import FrameworkModel from tests.unit import DATA_DIR from tests.unit.sagemaker.workflow.helpers import ordered DUMMY_SCRIPT_PATH = os.path.join(DATA_DIR, "dummy_script.py") REGION = "us-west-2" BUCKET = "my-bucket" IMAGE_URI = "fakeimage" ROLE = "DummyRole" MODEL_NAME = "gisele" class CustomStep(ConfigurableRetryStep): def __init__(self, name, display_name=None, description=None, retry_policies=None): super(CustomStep, self).__init__( name, StepTypeEnum.TRAINING, display_name, description, None, retry_policies ) self._properties = Properties(name) @property def arguments(self): return dict() @property def properties(self): return self._properties class DummyFrameworkModel(FrameworkModel): def __init__(self, sagemaker_session, **kwargs): super(DummyFrameworkModel, self).__init__( "s3://bucket/model_1.tar.gz", "mi-1", ROLE, os.path.join(DATA_DIR, "dummy_script.py"), sagemaker_session=sagemaker_session, **kwargs, ) def create_predictor(self, endpoint_name): return Predictor(endpoint_name, self.sagemaker_session) @pytest.fixture def boto_session(): role_mock = Mock() type(role_mock).arn = PropertyMock(return_value=ROLE) resource_mock = Mock() resource_mock.Role.return_value = role_mock session_mock = Mock(region_name=REGION) session_mock.resource.return_value = resource_mock return session_mock @pytest.fixture def client(): """Mock client. Considerations when appropriate: * utilize botocore.stub.Stubber * separate runtime client from client """ client_mock = Mock() client_mock._client_config.user_agent = ( "Boto3/1.14.24 Python/3.8.5 Linux/5.4.0-42-generic Botocore/1.17.24 Resource" ) return client_mock @pytest.fixture def sagemaker_session(boto_session, client): return sagemaker.session.Session( boto_session=boto_session, sagemaker_client=client, sagemaker_runtime_client=client, default_bucket=BUCKET, ) @pytest.fixture def script_processor(sagemaker_session): return ScriptProcessor( role=ROLE, image_uri="012345678901.dkr.ecr.us-west-2.amazonaws.com/my-custom-image-uri", command=["python3"], instance_type="ml.m4.xlarge", instance_count=1, volume_size_in_gb=100, volume_kms_key="arn:aws:kms:us-west-2:012345678901:key/volume-kms-key", output_kms_key="arn:aws:kms:us-west-2:012345678901:key/output-kms-key", max_runtime_in_seconds=3600, base_job_name="my_sklearn_processor", env={"my_env_variable": "my_env_variable_value"}, tags=[{"Key": "my-tag", "Value": "my-tag-value"}], network_config=NetworkConfig( subnets=["my_subnet_id"], security_group_ids=["my_security_group_id"], enable_network_isolation=True, encrypt_inter_container_traffic=True, ), sagemaker_session=sagemaker_session, ) def test_custom_step(): step = CustomStep( name="MyStep", display_name="CustomStepDisplayName", description="CustomStepDescription" ) assert step.to_request() == { "Name": "MyStep", "DisplayName": "CustomStepDisplayName", "Description": "CustomStepDescription", "Type": "Training", "Arguments": dict(), } def test_custom_step_without_display_name(): step = CustomStep(name="MyStep", description="CustomStepDescription") assert step.to_request() == { "Name": "MyStep", "Description": "CustomStepDescription", "Type": "Training", "Arguments": dict(), } def test_custom_step_without_description(): step = CustomStep(name="MyStep", display_name="CustomStepDisplayName") assert step.to_request() == { "Name": "MyStep", "DisplayName": "CustomStepDisplayName", "Type": "Training", "Arguments": dict(), } def test_custom_step_with_retry_policy(): step = CustomStep( name="MyStep", retry_policies=[ StepRetryPolicy( exception_types=[ StepExceptionTypeEnum.SERVICE_FAULT, StepExceptionTypeEnum.THROTTLING, ], expire_after_mins=1, ), SageMakerJobStepRetryPolicy( exception_types=[SageMakerJobExceptionTypeEnum.CAPACITY_ERROR], max_attempts=3, ), ], ) assert step.to_request() == { "Name": "MyStep", "Type": "Training", "RetryPolicies": [ { "ExceptionType": ["Step.SERVICE_FAULT", "Step.THROTTLING"], "IntervalSeconds": 1, "BackoffRate": 2.0, "ExpireAfterMin": 1, }, { "ExceptionType": ["SageMaker.CAPACITY_ERROR"], "IntervalSeconds": 1, "BackoffRate": 2.0, "MaxAttempts": 3, }, ], "Arguments": dict(), } step.add_retry_policy( SageMakerJobStepRetryPolicy( exception_types=[SageMakerJobExceptionTypeEnum.INTERNAL_ERROR], interval_seconds=5, backoff_rate=2.0, expire_after_mins=5, ) ) assert step.to_request() == { "Name": "MyStep", "Type": "Training", "RetryPolicies": [ { "ExceptionType": ["Step.SERVICE_FAULT", "Step.THROTTLING"], "IntervalSeconds": 1, "BackoffRate": 2.0, "ExpireAfterMin": 1, }, { "ExceptionType": ["SageMaker.CAPACITY_ERROR"], "IntervalSeconds": 1, "BackoffRate": 2.0, "MaxAttempts": 3, }, { "ExceptionType": ["SageMaker.JOB_INTERNAL_ERROR"], "IntervalSeconds": 5, "BackoffRate": 2.0, "ExpireAfterMin": 5, }, ], "Arguments": dict(), } step = CustomStep(name="MyStep") assert step.to_request() == { "Name": "MyStep", "Type": "Training", "Arguments": dict(), } def test_training_step_base_estimator(sagemaker_session): custom_step1 = CustomStep("TestStep") custom_step2 = CustomStep("AnotherTestStep") instance_type_parameter = ParameterString(name="InstanceType", default_value="c4.4xlarge") instance_count_parameter = ParameterInteger(name="InstanceCount", default_value=1) data_source_uri_parameter = ParameterString( name="DataSourceS3Uri", default_value=f"s3://{BUCKET}/train_manifest" ) training_epochs_parameter = ParameterInteger(name="TrainingEpochs", default_value=5) training_batch_size_parameter = ParameterInteger(name="TrainingBatchSize", default_value=500) use_spot_instances = ParameterBoolean(name="UseSpotInstances", default_value=False) output_path = Join(on="/", values=["s3:/", "a", "b"]) estimator = Estimator( image_uri=IMAGE_URI, role=ROLE, instance_count=instance_count_parameter, instance_type=instance_type_parameter, profiler_config=ProfilerConfig(system_monitor_interval_millis=500), hyperparameters={ "batch-size": training_batch_size_parameter, "epochs": training_epochs_parameter, }, rules=[], sagemaker_session=sagemaker_session, output_path=output_path, use_spot_instances=use_spot_instances, ) inputs = TrainingInput(s3_data=data_source_uri_parameter) cache_config = CacheConfig(enable_caching=True, expire_after="PT1H") step = TrainingStep( name="MyTrainingStep", depends_on=["TestStep"], description="TrainingStep description", display_name="MyTrainingStep", estimator=estimator, inputs=inputs, cache_config=cache_config, ) step.add_depends_on(["AnotherTestStep"]) pipeline = Pipeline( name="MyPipeline", parameters=[ instance_type_parameter, instance_count_parameter, data_source_uri_parameter, training_epochs_parameter, training_batch_size_parameter, use_spot_instances, ], steps=[step, custom_step1, custom_step2], sagemaker_session=sagemaker_session, ) assert json.loads(pipeline.definition())["Steps"][0] == { "Name": "MyTrainingStep", "Type": "Training", "Description": "TrainingStep description", "DisplayName": "MyTrainingStep", "DependsOn": ["TestStep", "AnotherTestStep"], "Arguments": { "AlgorithmSpecification": {"TrainingImage": IMAGE_URI, "TrainingInputMode": "File"}, "EnableManagedSpotTraining": {"Get": "Parameters.UseSpotInstances"}, "HyperParameters": { "batch-size": { "Std:Join": { "On": "", "Values": [{"Get": "Parameters.TrainingBatchSize"}], }, }, "epochs": { "Std:Join": { "On": "", "Values": [{"Get": "Parameters.TrainingEpochs"}], }, }, }, "InputDataConfig": [ { "ChannelName": "training", "DataSource": { "S3DataSource": { "S3DataDistributionType": "FullyReplicated", "S3DataType": "S3Prefix", "S3Uri": {"Get": "Parameters.DataSourceS3Uri"}, } }, } ], "OutputDataConfig": { "S3OutputPath": {"Std:Join": {"On": "/", "Values": ["s3:/", "a", "b"]}} }, "ResourceConfig": { "InstanceCount": {"Get": "Parameters.InstanceCount"}, "InstanceType": {"Get": "Parameters.InstanceType"}, "VolumeSizeInGB": 30, }, "RoleArn": ROLE, "StoppingCondition": {"MaxRuntimeInSeconds": 86400}, "ProfilerConfig": { "ProfilingIntervalInMilliseconds": 500, "S3OutputPath": {"Std:Join": {"On": "/", "Values": ["s3:/", "a", "b"]}}, }, }, "CacheConfig": {"Enabled": True, "ExpireAfter": "PT1H"}, } assert step.properties.TrainingJobName.expr == {"Get": "Steps.MyTrainingStep.TrainingJobName"} assert step.properties.HyperParameters.expr == {"Get": "Steps.MyTrainingStep.HyperParameters"} adjacency_list = PipelineGraph.from_pipeline(pipeline).adjacency_list assert ordered(adjacency_list) == ordered( { "AnotherTestStep": ["MyTrainingStep"], "MyTrainingStep": [], "TestStep": ["MyTrainingStep"], } ) def test_training_step_tensorflow(sagemaker_session): instance_type_parameter = ParameterString(name="InstanceType", default_value="ml.p3.16xlarge") instance_count_parameter = ParameterInteger(name="InstanceCount", default_value=1) data_source_uri_parameter = ParameterString( name="DataSourceS3Uri", default_value=f"s3://{BUCKET}/train_manifest" ) training_epochs_parameter = ParameterInteger(name="TrainingEpochs", default_value=5) training_batch_size_parameter = ParameterInteger(name="TrainingBatchSize", default_value=500) estimator = TensorFlow( entry_point=DUMMY_SCRIPT_PATH, role=ROLE, model_dir=False, image_uri=IMAGE_URI, source_dir="s3://mybucket/source", framework_version="2.4.1", py_version="py37", instance_count=instance_count_parameter, instance_type=instance_type_parameter, sagemaker_session=sagemaker_session, hyperparameters={ "batch-size": training_batch_size_parameter, "epochs": training_epochs_parameter, }, debugger_hook_config=False, # Training using SMDataParallel Distributed Training Framework distribution={"smdistributed": {"dataparallel": {"enabled": True}}}, ) inputs = TrainingInput(s3_data=data_source_uri_parameter) cache_config = CacheConfig(enable_caching=True, expire_after="PT1H") step = TrainingStep( name="MyTrainingStep", estimator=estimator, inputs=inputs, cache_config=cache_config ) pipeline = Pipeline( name="MyPipeline", parameters=[ instance_type_parameter, instance_count_parameter, data_source_uri_parameter, training_epochs_parameter, training_batch_size_parameter, ], steps=[step], sagemaker_session=sagemaker_session, ) dsl = json.loads(pipeline.definition())["Steps"][0] dsl["Arguments"]["HyperParameters"].pop("sagemaker_program", None) dsl["Arguments"].pop("ProfilerRuleConfigurations", None) assert dsl == { "Name": "MyTrainingStep", "Type": "Training", "Arguments": { "AlgorithmSpecification": { "TrainingInputMode": "File", "TrainingImage": "fakeimage", "EnableSageMakerMetricsTimeSeries": True, }, "OutputDataConfig": {"S3OutputPath": "s3://my-bucket/"}, "StoppingCondition": {"MaxRuntimeInSeconds": 86400}, "ResourceConfig": { "InstanceCount": {"Get": "Parameters.InstanceCount"}, "InstanceType": {"Get": "Parameters.InstanceType"}, "VolumeSizeInGB": 30, }, "RoleArn": "DummyRole", "InputDataConfig": [ { "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": {"Get": "Parameters.DataSourceS3Uri"}, "S3DataDistributionType": "FullyReplicated", } }, "ChannelName": "training", } ], "HyperParameters": { "batch-size": { "Std:Join": {"On": "", "Values": [{"Get": "Parameters.TrainingBatchSize"}]} }, "epochs": { "Std:Join": {"On": "", "Values": [{"Get": "Parameters.TrainingEpochs"}]} }, "sagemaker_submit_directory": '"s3://mybucket/source"', "sagemaker_container_log_level": "20", "sagemaker_region": '"us-west-2"', "sagemaker_distributed_dataparallel_enabled": "true", "sagemaker_instance_type": {"Get": "Parameters.InstanceType"}, "sagemaker_distributed_dataparallel_custom_mpi_options": '""', }, "ProfilerConfig": {"S3OutputPath": "s3://my-bucket/"}, "Environment": {DEBUGGER_FLAG: "0"}, }, "CacheConfig": {"Enabled": True, "ExpireAfter": "PT1H"}, } assert step.properties.TrainingJobName.expr == {"Get": "Steps.MyTrainingStep.TrainingJobName"} def test_training_step_profiler_warning(sagemaker_session): estimator = TensorFlow( entry_point=DUMMY_SCRIPT_PATH, role=ROLE, model_dir=False, image_uri=IMAGE_URI, source_dir="s3://mybucket/source", framework_version="2.4.1", py_version="py37", disable_profiler=False, instance_count=1, instance_type="ml.p3.16xlarge", sagemaker_session=sagemaker_session, hyperparameters={ "batch-size": 500, "epochs": 5, }, debugger_hook_config=False, distribution={"smdistributed": {"dataparallel": {"enabled": True}}}, ) inputs = TrainingInput(s3_data=f"s3://{BUCKET}/train_manifest") cache_config = CacheConfig(enable_caching=True, expire_after="PT1H") with warnings.catch_warnings(record=True) as w: TrainingStep( name="MyTrainingStep", estimator=estimator, inputs=inputs, cache_config=cache_config ) assert len(w) == 2 assert issubclass(w[0].category, UserWarning) assert "Profiling is enabled on the provided estimator" in str(w[0].message) assert issubclass(w[1].category, DeprecationWarning) assert "We are deprecating the instantiation" in str(w[1].message) def test_training_step_no_profiler_warning(sagemaker_session): estimator = TensorFlow( entry_point=DUMMY_SCRIPT_PATH, role=ROLE, model_dir=False, image_uri=IMAGE_URI, source_dir="s3://mybucket/source", framework_version="2.4.1", py_version="py37", disable_profiler=True, instance_count=1, instance_type="ml.p3.16xlarge", sagemaker_session=sagemaker_session, hyperparameters={ "batch-size": 500, "epochs": 5, }, debugger_hook_config=False, distribution={"smdistributed": {"dataparallel": {"enabled": True}}}, ) inputs = TrainingInput(s3_data=f"s3://{BUCKET}/train_manifest") cache_config = CacheConfig(enable_caching=True, expire_after="PT1H") with warnings.catch_warnings(record=True) as w: # profiler disabled, cache config not None TrainingStep( name="MyTrainingStep", estimator=estimator, inputs=inputs, cache_config=cache_config ) assert len(w) == 1 assert issubclass(w[-1].category, DeprecationWarning) assert "We are deprecating the instantiation" in str(w[-1].message) with warnings.catch_warnings(record=True) as w: # profiler enabled, cache config is None estimator.disable_profiler = False TrainingStep(name="MyTrainingStep", estimator=estimator, inputs=inputs, cache_config=None) assert len(w) == 1 assert issubclass(w[-1].category, DeprecationWarning) assert "We are deprecating the instantiation" in str(w[-1].message) def test_processing_step(sagemaker_session): custom_step1 = CustomStep("TestStep") custom_step2 = CustomStep("SecondTestStep") custom_step3 = CustomStep("ThirdTestStep") processing_input_data_uri_parameter = ParameterString( name="ProcessingInputDataUri", default_value=f"s3://{BUCKET}/processing_manifest" ) instance_type_parameter = ParameterString(name="InstanceType", default_value="ml.m4.4xlarge") instance_count_parameter = ParameterInteger(name="InstanceCount", default_value=1) processor = Processor( image_uri=IMAGE_URI, role=ROLE, instance_count=instance_count_parameter, instance_type=instance_type_parameter, sagemaker_session=sagemaker_session, ) inputs = [ ProcessingInput( source=processing_input_data_uri_parameter, destination="processing_manifest", ) ] cache_config = CacheConfig(enable_caching=True, expire_after="PT1H") evaluation_report = PropertyFile( name="EvaluationReport", output_name="evaluation", path="evaluation.json" ) with warnings.catch_warnings(record=True) as w: step = ProcessingStep( name="MyProcessingStep", description="ProcessingStep description", display_name="MyProcessingStep", depends_on=["TestStep", "SecondTestStep"], processor=processor, inputs=inputs, outputs=[], cache_config=cache_config, property_files=[evaluation_report], ) assert len(w) == 1 assert issubclass(w[-1].category, DeprecationWarning) assert "We are deprecating the instantiation" in str(w[-1].message) step.add_depends_on(["ThirdTestStep"]) pipeline = Pipeline( name="MyPipeline", parameters=[ processing_input_data_uri_parameter, instance_type_parameter, instance_count_parameter, ], steps=[step, custom_step1, custom_step2, custom_step3], sagemaker_session=sagemaker_session, ) assert json.loads(pipeline.definition())["Steps"][0] == { "Name": "MyProcessingStep", "Description": "ProcessingStep description", "DisplayName": "MyProcessingStep", "Type": "Processing", "DependsOn": ["TestStep", "SecondTestStep", "ThirdTestStep"], "Arguments": { "AppSpecification": {"ImageUri": "fakeimage"}, "ProcessingInputs": [ { "InputName": "input-1", "AppManaged": False, "S3Input": { "LocalPath": "processing_manifest", "S3CompressionType": "None", "S3DataDistributionType": "FullyReplicated", "S3DataType": "S3Prefix", "S3InputMode": "File", "S3Uri": {"Get": "Parameters.ProcessingInputDataUri"}, }, } ], "ProcessingResources": { "ClusterConfig": { "InstanceCount": {"Get": "Parameters.InstanceCount"}, "InstanceType": {"Get": "Parameters.InstanceType"}, "VolumeSizeInGB": 30, } }, "RoleArn": "DummyRole", }, "CacheConfig": {"Enabled": True, "ExpireAfter": "PT1H"}, "PropertyFiles": [ { "FilePath": "evaluation.json", "OutputName": "evaluation", "PropertyFileName": "EvaluationReport", } ], } assert step.properties.ProcessingJobName.expr == { "Get": "Steps.MyProcessingStep.ProcessingJobName" } adjacency_list = PipelineGraph.from_pipeline(pipeline).adjacency_list assert ordered(adjacency_list) == ordered( { "SecondTestStep": ["MyProcessingStep"], "TestStep": ["MyProcessingStep"], "ThirdTestStep": ["MyProcessingStep"], "MyProcessingStep": [], } ) @patch("sagemaker.processing.ScriptProcessor._normalize_args") def test_processing_step_normalizes_args_with_local_code(mock_normalize_args, script_processor): cache_config = CacheConfig(enable_caching=True, expire_after="PT1H") inputs = [ ProcessingInput( source=f"s3://{BUCKET}/processing_manifest", destination="processing_manifest", ) ] outputs = [ ProcessingOutput( source=f"s3://{BUCKET}/processing_manifest", destination="processing_manifest", ) ] step = ProcessingStep( name="MyProcessingStep", processor=script_processor, code=DUMMY_SCRIPT_PATH, inputs=inputs, outputs=outputs, job_arguments=["arg1", "arg2"], cache_config=cache_config, ) mock_normalize_args.return_value = [step.inputs, step.outputs] step.to_request() mock_normalize_args.assert_called_with( job_name="MyProcessingStep-3e89f0c7e101c356cbedf27d9d27e9db", arguments=step.job_arguments, inputs=step.inputs, outputs=step.outputs, code=step.code, kms_key=None, ) def test_processing_step_normalizes_args_with_param_str_local_code( sagemaker_session, script_processor ): cache_config = CacheConfig(enable_caching=True, expire_after="PT1H") code_param = ParameterString(name="Script", default_value="S3://my-bucket/file_name.py") inputs = [ ProcessingInput( source=f"s3://{BUCKET}/processing_manifest", destination="processing_manifest", ) ] outputs = [ ProcessingOutput( source=f"s3://{BUCKET}/processing_manifest", destination="processing_manifest", ) ] with pytest.raises(ValueError) as error: step = ProcessingStep( name="MyProcessingStep", processor=script_processor, code=code_param, inputs=inputs, outputs=outputs, job_arguments=["arg1", "arg2"], cache_config=cache_config, ) pipeline = Pipeline( name="MyPipeline", parameters=[code_param], steps=[step], sagemaker_session=sagemaker_session, ) pipeline.definition() assert "has to be a valid S3 URI or local file path" in str(error.value) @patch("sagemaker.processing.ScriptProcessor._normalize_args") def test_processing_step_normalizes_args_with_s3_code(mock_normalize_args, script_processor): cache_config = CacheConfig(enable_caching=True, expire_after="PT1H") inputs = [ ProcessingInput( source=f"s3://{BUCKET}/processing_manifest", destination="processing_manifest", ) ] outputs = [ ProcessingOutput( source=f"s3://{BUCKET}/processing_manifest", destination="processing_manifest", ) ] step = ProcessingStep( name="MyProcessingStep", processor=script_processor, code="s3://foo", inputs=inputs, outputs=outputs, job_arguments=["arg1", "arg2"], cache_config=cache_config, kms_key="arn:aws:kms:us-west-2:012345678901:key/s3-kms-key", ) mock_normalize_args.return_value = [step.inputs, step.outputs] step.to_request() mock_normalize_args.assert_called_with( job_name=None, arguments=step.job_arguments, inputs=step.inputs, outputs=step.outputs, code=step.code, kms_key=step.kms_key, ) @patch("sagemaker.processing.ScriptProcessor._normalize_args") def test_processing_step_normalizes_args_with_no_code(mock_normalize_args, script_processor): cache_config = CacheConfig(enable_caching=True, expire_after="PT1H") inputs = [ ProcessingInput( source=f"s3://{BUCKET}/processing_manifest", destination="processing_manifest", ) ] outputs = [ ProcessingOutput( source=f"s3://{BUCKET}/processing_manifest", destination="processing_manifest", ) ] step = ProcessingStep( name="MyProcessingStep", processor=script_processor, inputs=inputs, outputs=outputs, job_arguments=["arg1", "arg2"], cache_config=cache_config, ) mock_normalize_args.return_value = [step.inputs, step.outputs] step.to_request() mock_normalize_args.assert_called_with( job_name=None, arguments=step.job_arguments, inputs=step.inputs, outputs=step.outputs, code=None, kms_key=None, ) def test_create_model_step(sagemaker_session): model = Model( image_uri=IMAGE_URI, role=ROLE, sagemaker_session=sagemaker_session, ) inputs = CreateModelInput( instance_type="c4.4xlarge", accelerator_type="ml.eia1.medium", ) step = CreateModelStep( name="MyCreateModelStep", depends_on=["TestStep"], display_name="MyCreateModelStep", description="TestDescription", model=model, inputs=inputs, ) step.add_depends_on(["SecondTestStep"]) assert step.to_request() == { "Name": "MyCreateModelStep", "Type": "Model", "Description": "TestDescription", "DisplayName": "MyCreateModelStep", "DependsOn": ["TestStep", "SecondTestStep"], "Arguments": { "ExecutionRoleArn": "DummyRole", "PrimaryContainer": {"Environment": {}, "Image": "fakeimage"}, }, } assert step.properties.ModelName.expr == {"Get": "Steps.MyCreateModelStep.ModelName"} def test_create_model_step_with_invalid_input(sagemaker_session): # without both step_args and any of the old required arguments with pytest.raises(ValueError) as error: CreateModelStep( name="MyRegisterModelStep", ) assert "Either of them should be provided" in str(error.value) # with both step_args and the old required arguments with pytest.raises(ValueError) as error: CreateModelStep( name="MyRegisterModelStep", step_args=dict(), model=Model(image_uri=IMAGE_URI), ) assert "Either of them should be provided" in str(error.value) @patch("tarfile.open") @patch("time.strftime", return_value="2017-10-10-14-14-15") def test_create_model_step_with_model_pipeline(tfo, time, sagemaker_session): framework_model = DummyFrameworkModel(sagemaker_session) sparkml_model = SparkMLModel( model_data="s3://bucket/model_2.tar.gz", role=ROLE, sagemaker_session=sagemaker_session, env={"SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv"}, ) model = PipelineModel( models=[framework_model, sparkml_model], role=ROLE, sagemaker_session=sagemaker_session ) inputs = CreateModelInput( instance_type="c4.4xlarge", accelerator_type="ml.eia1.medium", ) step = CreateModelStep( name="MyCreateModelStep", depends_on=["TestStep"], display_name="MyCreateModelStep", description="TestDescription", model=model, inputs=inputs, ) step.add_depends_on(["SecondTestStep"]) assert step.to_request() == { "Name": "MyCreateModelStep", "Type": "Model", "Description": "TestDescription", "DisplayName": "MyCreateModelStep", "DependsOn": ["TestStep", "SecondTestStep"], "Arguments": { "Containers": [ { "Environment": { "SAGEMAKER_PROGRAM": "dummy_script.py", "SAGEMAKER_SUBMIT_DIRECTORY": "s3://my-bucket/mi-1-2017-10-10-14-14-15/sourcedir.tar.gz", "SAGEMAKER_CONTAINER_LOG_LEVEL": "20", "SAGEMAKER_REGION": "us-west-2", }, "Image": "mi-1", "ModelDataUrl": "s3://bucket/model_1.tar.gz", }, { "Environment": {"SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv"}, "Image": "246618743249.dkr.ecr.us-west-2.amazonaws.com/sagemaker-sparkml-serving:2.4", "ModelDataUrl": "s3://bucket/model_2.tar.gz", }, ], "ExecutionRoleArn": "DummyRole", }, } assert step.properties.ModelName.expr == {"Get": "Steps.MyCreateModelStep.ModelName"} def test_transform_step(sagemaker_session): transformer = Transformer( model_name=MODEL_NAME, instance_count=1, instance_type="c4.4xlarge", sagemaker_session=sagemaker_session, ) inputs = TransformInput(data=f"s3://{BUCKET}/transform_manifest") cache_config = CacheConfig(enable_caching=True, expire_after="PT1H") with warnings.catch_warnings(record=True) as w: step = TransformStep( name="MyTransformStep", depends_on=["TestStep"], transformer=transformer, display_name="TransformStep", description="TestDescription", inputs=inputs, cache_config=cache_config, ) assert len(w) == 1 assert issubclass(w[-1].category, DeprecationWarning) assert "We are deprecating the instantiation" in str(w[-1].message) step.add_depends_on(["SecondTestStep"]) assert step.to_request() == { "Name": "MyTransformStep", "Type": "Transform", "Description": "TestDescription", "DisplayName": "TransformStep", "DependsOn": ["TestStep", "SecondTestStep"], "Arguments": { "ModelName": "gisele", "TransformInput": { "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://my-bucket/transform_manifest", } } }, "TransformOutput": {"S3OutputPath": None}, "TransformResources": { "InstanceCount": 1, "InstanceType": "c4.4xlarge", }, }, "CacheConfig": {"Enabled": True, "ExpireAfter": "PT1H"}, } assert step.properties.TransformJobName.expr == { "Get": "Steps.MyTransformStep.TransformJobName" } def test_properties_describe_training_job_response(): prop = Properties(step_name="MyStep", shape_name="DescribeTrainingJobResponse") some_prop_names = ["TrainingJobName", "TrainingJobArn", "HyperParameters", "OutputDataConfig"] for name in some_prop_names: assert name in prop.__dict__.keys() assert prop.CreationTime.expr == {"Get": "Steps.MyStep.CreationTime"} assert prop.OutputDataConfig.S3OutputPath.expr == { "Get": "Steps.MyStep.OutputDataConfig.S3OutputPath" } def test_properties_describe_processing_job_response(): prop = Properties(step_name="MyStep", shape_name="DescribeProcessingJobResponse") some_prop_names = ["ProcessingInputs", "ProcessingOutputConfig", "ProcessingEndTime"] for name in some_prop_names: assert name in prop.__dict__.keys() assert prop.ProcessingJobName.expr == {"Get": "Steps.MyStep.ProcessingJobName"} assert prop.ProcessingOutputConfig.Outputs["MyOutputName"].S3Output.S3Uri.expr == { "Get": "Steps.MyStep.ProcessingOutputConfig.Outputs['MyOutputName'].S3Output.S3Uri" } def test_add_depends_on(sagemaker_session): processing_input_data_uri_parameter = ParameterString( name="ProcessingInputDataUri", default_value=f"s3://{BUCKET}/processing_manifest" ) instance_type_parameter = ParameterString(name="InstanceType", default_value="ml.m4.4xlarge") instance_count_parameter = ParameterInteger(name="InstanceCount", default_value=1) processor = Processor( image_uri=IMAGE_URI, role=ROLE, instance_count=instance_count_parameter, instance_type=instance_type_parameter, sagemaker_session=sagemaker_session, ) inputs = [ ProcessingInput( source=processing_input_data_uri_parameter, destination="processing_manifest", ) ] cache_config = CacheConfig(enable_caching=True, expire_after="PT1H") step_1 = ProcessingStep( name="MyProcessingStep-1", processor=processor, inputs=inputs, outputs=[], cache_config=cache_config, ) step_2 = ProcessingStep( name="MyProcessingStep-2", depends_on=[step_1], processor=processor, inputs=inputs, outputs=[], cache_config=cache_config, ) step_3 = ProcessingStep( name="MyProcessingStep-3", depends_on=[step_1], processor=processor, inputs=inputs, outputs=[], cache_config=cache_config, ) step_3.add_depends_on([step_2.name]) assert "DependsOn" not in step_1.to_request() assert step_2.to_request()["DependsOn"] == ["MyProcessingStep-1"] assert step_3.to_request()["DependsOn"] == ["MyProcessingStep-1", "MyProcessingStep-2"] def test_single_algo_tuning_step(sagemaker_session): data_source_uri_parameter = ParameterString( name="DataSourceS3Uri", default_value=f"s3://{BUCKET}/train_manifest" ) use_spot_instances = ParameterBoolean(name="UseSpotInstances", default_value=False) estimator = Estimator( image_uri=IMAGE_URI, role=ROLE, instance_count=1, instance_type="ml.c5.4xlarge", profiler_config=ProfilerConfig(system_monitor_interval_millis=500), rules=[], sagemaker_session=sagemaker_session, use_spot_instances=use_spot_instances, ) estimator.set_hyperparameters( num_layers=18, image_shape="3,224,224", num_classes=257, num_training_samples=15420, mini_batch_size=128, epochs=10, optimizer="sgd", top_k="2", precision_dtype="float32", augmentation_type="crop", ) hyperparameter_ranges = { "learning_rate": ContinuousParameter(0.0001, 0.05), "momentum": ContinuousParameter(0.0, 0.99), "weight_decay": ContinuousParameter(0.0, 0.99), } tuner = HyperparameterTuner( estimator=estimator, objective_metric_name="val:accuracy", hyperparameter_ranges=hyperparameter_ranges, objective_type="Maximize", max_jobs=5, max_parallel_jobs=2, early_stopping_type="OFF", strategy="Bayesian", warm_start_config=WarmStartConfig( warm_start_type=WarmStartTypes.IDENTICAL_DATA_AND_ALGORITHM, parents=set(["parent-hpo"]), ), ) inputs = TrainingInput(s3_data=data_source_uri_parameter) with warnings.catch_warnings(record=True) as w: tuning_step = TuningStep( name="MyTuningStep", tuner=tuner, inputs=inputs, ) assert len(w) == 1 assert issubclass(w[-1].category, DeprecationWarning) assert "We are deprecating the instantiation" in str(w[-1].message) pipeline = Pipeline( name="MyPipeline", parameters=[data_source_uri_parameter, use_spot_instances], steps=[tuning_step], sagemaker_session=sagemaker_session, ) step_dsl_list = json.loads(pipeline.definition())["Steps"] assert step_dsl_list[0] == { "Name": "MyTuningStep", "Type": "Tuning", "Arguments": { "HyperParameterTuningJobConfig": { "Strategy": "Bayesian", "ResourceLimits": {"MaxNumberOfTrainingJobs": 5, "MaxParallelTrainingJobs": 2}, "TrainingJobEarlyStoppingType": "OFF", "HyperParameterTuningJobObjective": { "Type": "Maximize", "MetricName": "val:accuracy", }, "ParameterRanges": { "ContinuousParameterRanges": [ { "Name": "learning_rate", "MinValue": "0.0001", "MaxValue": "0.05", "ScalingType": "Auto", }, { "Name": "momentum", "MinValue": "0.0", "MaxValue": "0.99", "ScalingType": "Auto", }, { "Name": "weight_decay", "MinValue": "0.0", "MaxValue": "0.99", "ScalingType": "Auto", }, ], "CategoricalParameterRanges": [], "IntegerParameterRanges": [], }, }, "TrainingJobDefinition": { "StaticHyperParameters": { "num_layers": "18", "image_shape": "3,224,224", "num_classes": "257", "num_training_samples": "15420", "mini_batch_size": "128", "epochs": "10", "optimizer": "sgd", "top_k": "2", "precision_dtype": "float32", "augmentation_type": "crop", }, "RoleArn": "DummyRole", "OutputDataConfig": {"S3OutputPath": "s3://my-bucket/"}, "ResourceConfig": { "InstanceCount": 1, "InstanceType": "ml.c5.4xlarge", "VolumeSizeInGB": 30, }, "StoppingCondition": {"MaxRuntimeInSeconds": 86400}, "AlgorithmSpecification": { "TrainingInputMode": "File", "TrainingImage": "fakeimage", }, "EnableManagedSpotTraining": {"Get": "Parameters.UseSpotInstances"}, "InputDataConfig": [ { "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": {"Get": "Parameters.DataSourceS3Uri"}, "S3DataDistributionType": "FullyReplicated", } }, "ChannelName": "training", } ], }, "WarmStartConfig": { "WarmStartType": "IdenticalDataAndAlgorithm", "ParentHyperParameterTuningJobs": [ { "HyperParameterTuningJobName": "parent-hpo", } ], }, }, } assert tuning_step.properties.HyperParameterTuningJobName.expr == { "Get": "Steps.MyTuningStep.HyperParameterTuningJobName" } assert tuning_step.properties.TrainingJobSummaries[0].TrainingJobName.expr == { "Get": "Steps.MyTuningStep.TrainingJobSummaries[0].TrainingJobName" } assert tuning_step.get_top_model_s3_uri(0, "my-bucket", "my-prefix").expr == { "Std:Join": { "On": "/", "Values": [ "s3:/", "my-bucket", "my-prefix", {"Get": "Steps.MyTuningStep.TrainingJobSummaries[0].TrainingJobName"}, "output/model.tar.gz", ], } } def test_multi_algo_tuning_step(sagemaker_session): data_source_uri_parameter = ParameterString( name="DataSourceS3Uri", default_value=f"s3://{BUCKET}/train_manifest" ) instance_count = ParameterInteger(name="InstanceCount", default_value=1) estimator = Estimator( image_uri=IMAGE_URI, role=ROLE, instance_count=instance_count, instance_type="ml.c5.4xlarge", profiler_config=ProfilerConfig(system_monitor_interval_millis=500), rules=[], sagemaker_session=sagemaker_session, max_retry_attempts=10, ) estimator.set_hyperparameters( num_layers=18, image_shape="3,224,224", num_classes=257, num_training_samples=15420, mini_batch_size=128, epochs=10, optimizer="sgd", top_k="2", precision_dtype="float32", augmentation_type="crop", ) initial_lr_param = ParameterString(name="InitialLR", default_value="0.0001") hyperparameter_ranges = { "learning_rate": ContinuousParameter(initial_lr_param, 0.05), "momentum": ContinuousParameter(0.0, 0.99), "weight_decay": ContinuousParameter(0.0, 0.99), } tuner = HyperparameterTuner.create( estimator_dict={ "estimator-1": estimator, "estimator-2": estimator, }, objective_type="Minimize", objective_metric_name_dict={ "estimator-1": "val:loss", "estimator-2": "val:loss", }, hyperparameter_ranges_dict={ "estimator-1": hyperparameter_ranges, "estimator-2": hyperparameter_ranges, }, ) inputs = TrainingInput(s3_data=data_source_uri_parameter) tuning_step = TuningStep( name="MyTuningStep", tuner=tuner, inputs={ "estimator-1": inputs, "estimator-2": inputs, }, ) pipeline = Pipeline( name="MyPipeline", parameters=[data_source_uri_parameter, instance_count, initial_lr_param], steps=[tuning_step], sagemaker_session=sagemaker_session, ) dsl = json.loads(pipeline.definition()) assert dsl["Steps"][0] == { "Name": "MyTuningStep", "Type": "Tuning", "Arguments": { "HyperParameterTuningJobConfig": { "Strategy": "Bayesian", "ResourceLimits": {"MaxNumberOfTrainingJobs": 1, "MaxParallelTrainingJobs": 1}, "TrainingJobEarlyStoppingType": "Off", }, "TrainingJobDefinitions": [ { "StaticHyperParameters": { "num_layers": "18", "image_shape": "3,224,224", "num_classes": "257", "num_training_samples": "15420", "mini_batch_size": "128", "epochs": "10", "optimizer": "sgd", "top_k": "2", "precision_dtype": "float32", "augmentation_type": "crop", }, "RoleArn": "DummyRole", "OutputDataConfig": {"S3OutputPath": "s3://my-bucket/"}, "ResourceConfig": { "InstanceCount": {"Get": "Parameters.InstanceCount"}, "InstanceType": "ml.c5.4xlarge", "VolumeSizeInGB": 30, }, "StoppingCondition": {"MaxRuntimeInSeconds": 86400}, "AlgorithmSpecification": { "TrainingInputMode": "File", "TrainingImage": "fakeimage", }, "InputDataConfig": [ { "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": {"Get": "Parameters.DataSourceS3Uri"}, "S3DataDistributionType": "FullyReplicated", } }, "ChannelName": "training", } ], "DefinitionName": "estimator-1", "TuningObjective": {"Type": "Minimize", "MetricName": "val:loss"}, "HyperParameterRanges": { "ContinuousParameterRanges": [ { "Name": "learning_rate", "MinValue": {"Get": "Parameters.InitialLR"}, "MaxValue": "0.05", "ScalingType": "Auto", }, { "Name": "momentum", "MinValue": "0.0", "MaxValue": "0.99", "ScalingType": "Auto", }, { "Name": "weight_decay", "MinValue": "0.0", "MaxValue": "0.99", "ScalingType": "Auto", }, ], "CategoricalParameterRanges": [], "IntegerParameterRanges": [], }, "RetryStrategy": { "MaximumRetryAttempts": 10, }, }, { "StaticHyperParameters": { "num_layers": "18", "image_shape": "3,224,224", "num_classes": "257", "num_training_samples": "15420", "mini_batch_size": "128", "epochs": "10", "optimizer": "sgd", "top_k": "2", "precision_dtype": "float32", "augmentation_type": "crop", }, "RoleArn": "DummyRole", "OutputDataConfig": {"S3OutputPath": "s3://my-bucket/"}, "ResourceConfig": { "InstanceCount": {"Get": "Parameters.InstanceCount"}, "InstanceType": "ml.c5.4xlarge", "VolumeSizeInGB": 30, }, "StoppingCondition": {"MaxRuntimeInSeconds": 86400}, "AlgorithmSpecification": { "TrainingInputMode": "File", "TrainingImage": "fakeimage", }, "InputDataConfig": [ { "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": {"Get": "Parameters.DataSourceS3Uri"}, "S3DataDistributionType": "FullyReplicated", } }, "ChannelName": "training", } ], "DefinitionName": "estimator-2", "TuningObjective": {"Type": "Minimize", "MetricName": "val:loss"}, "HyperParameterRanges": { "ContinuousParameterRanges": [ { "Name": "learning_rate", "MinValue": {"Get": "Parameters.InitialLR"}, "MaxValue": "0.05", "ScalingType": "Auto", }, { "Name": "momentum", "MinValue": "0.0", "MaxValue": "0.99", "ScalingType": "Auto", }, { "Name": "weight_decay", "MinValue": "0.0", "MaxValue": "0.99", "ScalingType": "Auto", }, ], "CategoricalParameterRanges": [], "IntegerParameterRanges": [], }, "RetryStrategy": { "MaximumRetryAttempts": 10, }, }, ], }, }
the-stack_0_19004
#!/usr/bin/env python3 # # ===============LICENSE_START======================================================= # Acumos # =================================================================================== # Copyright (C) 2018 AT&T Intellectual Property. All rights reserved. # =================================================================================== # This Acumos software file is distributed by AT&T # under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ===============LICENSE_END========================================================= from flask_restplus import fields from modelbuilder.api.namespaces import model_builder_namespace as api error_response_body = api.model('Error Response - General', { 'errorId': fields.String(description='Identifier for the error.', required=True, example="H2O-0003"), 'message': fields.String(description='Brief description about the error.', required=True, example="Invalid Value for parameter(s), %1, %2"), 'variable': fields.List(fields.String, description='Values for the parameters in the error message field.', required=False, example="['modelKey', 'modelVersion']"), 'errorUrl': fields.String(description='Url to a web page where there is detailed information \ about the cause and resolution for the given error.', required=False, example="https://acumos.org/error/h2o-0001"), }) error_response_body_500 = api.model('Error Response - 500', { 'errorId': fields.String(description='Identifier for the error.', required=True, example="H2O-0001"), 'message': fields.String(description='Brief description about the error.', required=True, example="Please provide the reference id ( %1 ) to the support team"), 'variable': fields.List(fields.String, description='The unique error reference id to be provided to the support team.', required=False, example="['24234234234234']"), 'errorUrl': fields.String(description='Url to a web page where there is detailed information \ about the cause and resolution for the given error.', required=False, example="https://acumos.org/error/h2o-0001"), })
the-stack_0_19008
''' Copyright 2013 Cosnita Radu Viorel Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. .. codeauthor:: Radu Viorel Cosnita <[email protected]> .. py:module:: fantastico.contrib.dynamic_menu.menu_controller ''' from fantastico.contrib.dynamic_menu.menu_exceptions import FantasticoMenuNotFoundException from fantastico.contrib.dynamic_menu.models.menus import DynamicMenuItem, DynamicMenu from fantastico.mvc.base_controller import BaseController from fantastico.mvc.controller_decorators import ControllerProvider, Controller from fantastico.mvc.models.model_filter import ModelFilter from webob.response import Response import json @ControllerProvider() class DynamicMenuController(BaseController): '''This class provides the controller for dynamic menus. The following routes are automatically made available when dynamic menu component is deployed: **/dynamic-menu/menus/<menu_id>/items/** -- This route loads menu items from database and retrieve them in json format. Below you can see a diagram describing relation model of the menu: .. image:: /images/components/dynamic_menu/erd.png ''' ITEMS_URL = "/dynamic-menu/menus/(?P<menu_id>\\d{1,})/items/$" @property def max_items(self): '''This property retrieves the maximum number of items allowed for a menu.''' return 100 @Controller(url=ITEMS_URL, method="GET", models={"Menus": "fantastico.contrib.dynamic_menu.models.menus.DynamicMenu", "Items": "fantastico.contrib.dynamic_menu.models.menus.DynamicMenuItem"}) def retrieve_menu_items(self, request, menu_id): '''This method is used to retrieve all items associated with a specified menu. :param request: Http request being processed. :type request: HTTP request :param menu_id: Menu unique identifier we want to retrieve information for. :type menu_id: int :returns: A JSON array containing all available menu items. :raises fantastico.contrib.dynamic_menu.menu_exceptions.FantasticoMenuNotFoundException: Whenever the requested menu does not exist. ''' menu_id = int(menu_id) menus_facade = request.models.Menus if not menus_facade.find_by_pk({DynamicMenu.id: menu_id}): raise FantasticoMenuNotFoundException("Menu %s does not exist." % menu_id) items_facade = request.models.Items items = items_facade.get_records_paged(start_record=0, end_record=self.max_items, filter_expr=[ModelFilter(DynamicMenuItem.menu_id, menu_id, ModelFilter.EQ)]) items = [{"url": item.url, "target": item.target, "title": item.title, "label": item.label} for item in items or []] body = json.dumps({"items": items}) return Response(body, content_type="application/json")
the-stack_0_19010
import json import logging from collections import OrderedDict from decimal import ROUND_HALF_UP, Decimal from typing import Any, Dict, Union import pytz from django import forms from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.dispatch import receiver from django.forms import Form from django.http import HttpRequest from django.template.loader import get_template from django.utils.timezone import now from django.utils.translation import pgettext_lazy, ugettext_lazy as _ from django_countries import Countries from i18nfield.forms import I18nFormField, I18nTextarea, I18nTextInput from i18nfield.strings import LazyI18nString from pretix.base.forms import PlaceholderValidator from pretix.base.models import ( CartPosition, Event, InvoiceAddress, Order, OrderPayment, OrderRefund, Quota, ) from pretix.base.reldate import RelativeDateField, RelativeDateWrapper from pretix.base.settings import SettingsSandbox from pretix.base.signals import register_payment_providers from pretix.base.templatetags.money import money_filter from pretix.base.templatetags.rich_text import rich_text from pretix.helpers.money import DecimalTextInput from pretix.presale.views import get_cart_total from pretix.presale.views.cart import cart_session, get_or_create_cart_id logger = logging.getLogger(__name__) class PaymentProviderForm(Form): def clean(self): cleaned_data = super().clean() for k, v in self.fields.items(): val = cleaned_data.get(k) if v._required and not val: self.add_error(k, _('This field is required.')) class BasePaymentProvider: """ This is the base class for all payment providers. """ def __init__(self, event: Event): self.event = event self.settings = SettingsSandbox('payment', self.identifier, event) # Default values if self.settings.get('_fee_reverse_calc') is None: self.settings.set('_fee_reverse_calc', True) def __str__(self): return self.identifier @property def is_implicit(self) -> bool: """ Returns whether or whether not this payment provider is an "implicit" payment provider that will *always* and unconditionally be used if is_allowed() returns True and does not require any input. This is intended to be used by the FreePaymentProvider, which skips the payment choice page. By default, this returns ``False``. Please do not set this if you don't know exactly what you are doing. """ return False @property def is_meta(self) -> bool: """ Returns whether or whether not this payment provider is a "meta" payment provider that only works as a settings holder for other payment providers and should never be used directly. This is a trick to implement payment gateways with multiple payment methods but unified payment settings. Take a look at the built-in stripe provider to see how this might be used. By default, this returns ``False``. """ return False @property def is_enabled(self) -> bool: """ Returns whether or whether not this payment provider is enabled. By default, this is determined by the value of the ``_enabled`` setting. """ return self.settings.get('_enabled', as_type=bool) @property def test_mode_message(self) -> str: """ If this property is set to a string, this will be displayed when this payment provider is selected while the event is in test mode. You should use it to explain to your user how your plugin behaves, e.g. if it falls back to a test mode automatically as well or if actual payments will be performed. If you do not set this (or, return ``None``), pretix will show a default message warning the user that this plugin does not support test mode payments. """ return None def calculate_fee(self, price: Decimal) -> Decimal: """ Calculate the fee for this payment provider which will be added to final price before fees (but after taxes). It should include any taxes. The default implementation makes use of the setting ``_fee_abs`` for an absolute fee and ``_fee_percent`` for a percentage. :param price: The total value without the payment method fee, after taxes. """ fee_abs = self.settings.get('_fee_abs', as_type=Decimal, default=0) fee_percent = self.settings.get('_fee_percent', as_type=Decimal, default=0) fee_reverse_calc = self.settings.get('_fee_reverse_calc', as_type=bool, default=True) places = settings.CURRENCY_PLACES.get(self.event.currency, 2) if fee_reverse_calc: return ((price + fee_abs) * (1 / (1 - fee_percent / 100)) - price).quantize( Decimal('1') / 10 ** places, ROUND_HALF_UP ) else: return (price * fee_percent / 100 + fee_abs).quantize( Decimal('1') / 10 ** places, ROUND_HALF_UP ) @property def verbose_name(self) -> str: """ A human-readable name for this payment provider. This should be short but self-explaining. Good examples include 'Bank transfer' and 'Credit card via Stripe'. """ raise NotImplementedError() # NOQA @property def public_name(self) -> str: """ A human-readable name for this payment provider to be shown to the public. This should be short but self-explaining. Good examples include 'Bank transfer' and 'Credit card', but 'Credit card via Stripe' might be to explicit. By default, this is the same as ``verbose_name`` """ return self.verbose_name @property def identifier(self) -> str: """ A short and unique identifier for this payment provider. This should only contain lowercase letters and in most cases will be the same as your package name. """ raise NotImplementedError() # NOQA @property def abort_pending_allowed(self) -> bool: """ Whether or not a user can abort a payment in pending start to switch to another payment method. This returns ``False`` by default which is no guarantee that aborting a pending payment can never happen, it just hides the frontend button to avoid users accidentally committing double payments. """ return False @property def settings_form_fields(self) -> dict: """ When the event's administrator visits the event configuration page, this method is called to return the configuration fields available. It should therefore return a dictionary where the keys should be (unprefixed) settings keys and the values should be corresponding Django form fields. The default implementation returns the appropriate fields for the ``_enabled``, ``_fee_abs``, ``_fee_percent`` and ``_availability_date`` settings mentioned above. We suggest that you return an ``OrderedDict`` object instead of a dictionary and make use of the default implementation. Your implementation could look like this:: @property def settings_form_fields(self): return OrderedDict( list(super().settings_form_fields.items()) + [ ('bank_details', forms.CharField( widget=forms.Textarea, label=_('Bank account details'), required=False )) ] ) .. WARNING:: It is highly discouraged to alter the ``_enabled`` field of the default implementation. """ places = settings.CURRENCY_PLACES.get(self.event.currency, 2) d = OrderedDict([ ('_enabled', forms.BooleanField( label=_('Enable payment method'), required=False, )), ('_availability_date', RelativeDateField( label=_('Available until'), help_text=_('Users will not be able to choose this payment provider after the given date.'), required=False, )), ('_invoice_text', I18nFormField( label=_('Text on invoices'), help_text=_('Will be printed just below the payment figures and above the closing text on invoices. ' 'This will only be used if the invoice is generated before the order is paid. If the ' 'invoice is generated later, it will show a text stating that it has already been paid.'), required=False, widget=I18nTextarea, widget_kwargs={'attrs': {'rows': '2'}} )), ('_total_min', forms.DecimalField( label=_('Minimum order total'), help_text=_('This payment will be available only if the order total is equal to or exceeds the given ' 'value. The order total for this purpose may be computed without taking the fees imposed ' 'by this payment method into account.'), localize=True, required=False, decimal_places=places, widget=DecimalTextInput(places=places) )), ('_total_max', forms.DecimalField( label=_('Maximum order total'), help_text=_('This payment will be available only if the order total is equal to or below the given ' 'value. The order total for this purpose may be computed without taking the fees imposed ' 'by this payment method into account.'), localize=True, required=False, decimal_places=places, widget=DecimalTextInput(places=places) )), ('_fee_abs', forms.DecimalField( label=_('Additional fee'), help_text=_('Absolute value'), localize=True, required=False, decimal_places=places, widget=DecimalTextInput(places=places) )), ('_fee_percent', forms.DecimalField( label=_('Additional fee'), help_text=_('Percentage of the order total.'), localize=True, required=False, )), ('_fee_reverse_calc', forms.BooleanField( label=_('Calculate the fee from the total value including the fee.'), help_text=_('We recommend to enable this if you want your users to pay the payment fees of your ' 'payment provider. <a href="{docs_url}" target="_blank" rel="noopener">Click here ' 'for detailed information on what this does.</a> Don\'t forget to set the correct fees ' 'above!').format(docs_url='https://docs.pretix.eu/en/latest/user/payments/fees.html'), required=False )), ('_restricted_countries', forms.MultipleChoiceField( label=_('Restrict to countries'), choices=Countries(), help_text=_('Only allow choosing this payment provider for invoice addresses in the selected ' 'countries. If you don\'t select any country, all countries are allowed. This is only ' 'enabled if the invoice address is required.'), widget=forms.CheckboxSelectMultiple( attrs={'class': 'scrolling-multiple-choice'} ), required=False, disabled=not self.event.settings.invoice_address_required )), ]) d['_restricted_countries']._as_type = list return d def settings_form_clean(self, cleaned_data): """ Overriding this method allows you to inject custom validation into the settings form. :param cleaned_data: Form data as per previous validations. :return: Please return the modified cleaned_data """ return cleaned_data def settings_content_render(self, request: HttpRequest) -> str: """ When the event's administrator visits the event configuration page, this method is called. It may return HTML containing additional information that is displayed below the form fields configured in ``settings_form_fields``. """ return "" def render_invoice_text(self, order: Order, payment: OrderPayment) -> str: """ This is called when an invoice for an order with this payment provider is generated. The default implementation returns the content of the _invoice_text configuration variable (an I18nString), or an empty string if unconfigured. For paid orders, the default implementation always renders a string stating that the invoice is already paid. """ if order.status == Order.STATUS_PAID: return pgettext_lazy('invoice', 'The payment for this invoice has already been received.') return self.settings.get('_invoice_text', as_type=LazyI18nString, default='') @property def payment_form_fields(self) -> dict: """ This is used by the default implementation of :py:meth:`payment_form`. It should return an object similar to :py:attr:`settings_form_fields`. The default implementation returns an empty dictionary. """ return {} def payment_form(self, request: HttpRequest) -> Form: """ This is called by the default implementation of :py:meth:`payment_form_render` to obtain the form that is displayed to the user during the checkout process. The default implementation constructs the form using :py:attr:`payment_form_fields` and sets appropriate prefixes for the form and all fields and fills the form with data form the user's session. If you overwrite this, we strongly suggest that you inherit from ``PaymentProviderForm`` (from this module) that handles some nasty issues about required fields for you. """ form = PaymentProviderForm( data=(request.POST if request.method == 'POST' and request.POST.get("payment") == self.identifier else None), prefix='payment_%s' % self.identifier, initial={ k.replace('payment_%s_' % self.identifier, ''): v for k, v in request.session.items() if k.startswith('payment_%s_' % self.identifier) } ) form.fields = self.payment_form_fields for k, v in form.fields.items(): v._required = v.required v.required = False v.widget.is_required = False return form def _is_still_available(self, now_dt=None, cart_id=None, order=None): now_dt = now_dt or now() tz = pytz.timezone(self.event.settings.timezone) availability_date = self.settings.get('_availability_date', as_type=RelativeDateWrapper) if availability_date: if self.event.has_subevents and cart_id: availability_date = min([ availability_date.datetime(se).date() for se in self.event.subevents.filter( id__in=CartPosition.objects.filter( cart_id=cart_id, event=self.event ).values_list('subevent', flat=True) ) ]) elif self.event.has_subevents and order: availability_date = min([ availability_date.datetime(se).date() for se in self.event.subevents.filter( id__in=order.positions.values_list('subevent', flat=True) ) ]) elif self.event.has_subevents: logger.error('Payment provider is not subevent-ready.') return False else: availability_date = availability_date.datetime(self.event).date() return availability_date >= now_dt.astimezone(tz).date() return True def is_allowed(self, request: HttpRequest, total: Decimal=None) -> bool: """ You can use this method to disable this payment provider for certain groups of users, products or other criteria. If this method returns ``False``, the user will not be able to select this payment method. This will only be called during checkout, not on retrying. The default implementation checks for the _availability_date setting to be either unset or in the future and for the _total_max and _total_min requirements to be met. It also checks the ``_restrict_countries`` setting. :param total: The total value without the payment method fee, after taxes. .. versionchanged:: 1.17.0 The ``total`` parameter has been added. For backwards compatibility, this method is called again without this parameter if it raises a ``TypeError`` on first try. """ timing = self._is_still_available(cart_id=get_or_create_cart_id(request)) pricing = True if (self.settings._total_max is not None or self.settings._total_min is not None) and total is None: raise ImproperlyConfigured('This payment provider does not support maximum or minimum amounts.') if self.settings._total_max is not None: pricing = pricing and total <= Decimal(self.settings._total_max) if self.settings._total_min is not None: pricing = pricing and total >= Decimal(self.settings._total_min) def get_invoice_address(): if not hasattr(request, '_checkout_flow_invoice_address'): cs = cart_session(request) iapk = cs.get('invoice_address') if not iapk: request._checkout_flow_invoice_address = InvoiceAddress() else: try: request._checkout_flow_invoice_address = InvoiceAddress.objects.get(pk=iapk, order__isnull=True) except InvoiceAddress.DoesNotExist: request._checkout_flow_invoice_address = InvoiceAddress() return request._checkout_flow_invoice_address if self.event.settings.invoice_address_required: restricted_countries = self.settings.get('_restricted_countries', as_type=list) if restricted_countries: ia = get_invoice_address() if str(ia.country) not in restricted_countries: return False return timing and pricing def payment_form_render(self, request: HttpRequest, total: Decimal) -> str: """ When the user selects this provider as their preferred payment method, they will be shown the HTML you return from this method. The default implementation will call :py:meth:`payment_form` and render the returned form. If your payment method doesn't require the user to fill out form fields, you should just return a paragraph of explanatory text. """ form = self.payment_form(request) template = get_template('pretixpresale/event/checkout_payment_form_default.html') ctx = {'request': request, 'form': form} return template.render(ctx) def checkout_confirm_render(self, request) -> str: """ If the user has successfully filled in their payment data, they will be redirected to a confirmation page which lists all details of their order for a final review. This method should return the HTML which should be displayed inside the 'Payment' box on this page. In most cases, this should include a short summary of the user's input and a short explanation on how the payment process will continue. """ raise NotImplementedError() # NOQA def payment_pending_render(self, request: HttpRequest, payment: OrderPayment) -> str: """ Render customer-facing instructions on how to proceed with a pending payment :return: HTML """ return "" def checkout_prepare(self, request: HttpRequest, cart: Dict[str, Any]) -> Union[bool, str]: """ Will be called after the user selects this provider as their payment method. If you provided a form to the user to enter payment data, this method should at least store the user's input into their session. This method should return ``False`` if the user's input was invalid, ``True`` if the input was valid and the frontend should continue with default behavior or a string containing a URL if the user should be redirected somewhere else. On errors, you should use Django's message framework to display an error message to the user (or the normal form validation error messages). The default implementation stores the input into the form returned by :py:meth:`payment_form` in the user's session. If your payment method requires you to redirect the user to an external provider, this might be the place to do so. .. IMPORTANT:: If this is called, the user has not yet confirmed their order. You may NOT do anything which actually moves money. :param cart: This dictionary contains at least the following keys: positions: A list of ``CartPosition`` objects that are annotated with the special attributes ``count`` and ``total`` because multiple objects of the same content are grouped into one. raw: The raw list of ``CartPosition`` objects in the users cart total: The overall total *including* the fee for the payment method. payment_fee: The fee for the payment method. """ form = self.payment_form(request) if form.is_valid(): for k, v in form.cleaned_data.items(): request.session['payment_%s_%s' % (self.identifier, k)] = v return True else: return False def payment_is_valid_session(self, request: HttpRequest) -> bool: """ This is called at the time the user tries to place the order. It should return ``True`` if the user's session is valid and all data your payment provider requires in future steps is present. """ raise NotImplementedError() # NOQA def execute_payment(self, request: HttpRequest, payment: OrderPayment) -> str: """ After the user has confirmed their purchase, this method will be called to complete the payment process. This is the place to actually move the money if applicable. You will be passed an :py:class:`pretix.base.models.OrderPayment` object that contains the amount of money that should be paid. If you need any special behavior, you can return a string containing the URL the user will be redirected to. If you are done with your process you should return the user to the order's detail page. If the payment is completed, you should call ``payment.confirm()``. Please note that ``this`` might raise a ``Quota.QuotaExceededException`` if (and only if) the payment term of this order is over and some of the items are sold out. You should use the exception message to display a meaningful error to the user. The default implementation just returns ``None`` and therefore leaves the order unpaid. The user will be redirected to the order's detail page by default. On errors, you should raise a ``PaymentException``. :param order: The order object :param payment: An ``OrderPayment`` instance """ return None def order_pending_mail_render(self, order: Order, payment: OrderPayment) -> str: """ After the user has submitted their order, they will receive a confirmation email. You can return a string from this method if you want to add additional information to this email. :param order: The order object :param payment: The payment object """ return "" def order_change_allowed(self, order: Order) -> bool: """ Will be called to check whether it is allowed to change the payment method of an order to this one. The default implementation checks for the _availability_date setting to be either unset or in the future, as well as for the _total_max, _total_min and _restricted_countries settings. :param order: The order object """ ps = order.pending_sum if self.settings._total_max is not None and ps > Decimal(self.settings._total_max): return False if self.settings._total_min is not None and ps < Decimal(self.settings._total_min): return False restricted_countries = self.settings.get('_restricted_countries', as_type=list) if restricted_countries: try: ia = order.invoice_address except InvoiceAddress.DoesNotExist: return True else: if str(ia.country) not in restricted_countries: return False return self._is_still_available(order=order) def payment_prepare(self, request: HttpRequest, payment: OrderPayment) -> Union[bool, str]: """ Will be called if the user retries to pay an unpaid order (after the user filled in e.g. the form returned by :py:meth:`payment_form`) or if the user changes the payment method. It should return and report errors the same way as :py:meth:`checkout_prepare`, but receives an ``Order`` object instead of a cart object. Note: The ``Order`` object given to this method might be different from the version stored in the database as it's total will already contain the payment fee for the new payment method. """ form = self.payment_form(request) if form.is_valid(): for k, v in form.cleaned_data.items(): request.session['payment_%s_%s' % (self.identifier, k)] = v return True else: return False def payment_control_render(self, request: HttpRequest, payment: OrderPayment) -> str: """ Will be called if the *event administrator* views the details of a payment. It should return HTML code containing information regarding the current payment status and, if applicable, next steps. The default implementation returns the verbose name of the payment provider. :param order: The order object """ return '' def payment_refund_supported(self, payment: OrderPayment) -> bool: """ Will be called to check if the provider supports automatic refunding for this payment. """ return False def payment_partial_refund_supported(self, payment: OrderPayment) -> bool: """ Will be called to check if the provider supports automatic partial refunding for this payment. """ return False def execute_refund(self, refund: OrderRefund): """ Will be called to execute an refund. Note that refunds have an amount property and can be partial. This should transfer the money back (if possible). On success, you should call ``refund.done()``. On failure, you should raise a PaymentException. """ raise PaymentException(_('Automatic refunds are not supported by this payment provider.')) def shred_payment_info(self, obj: Union[OrderPayment, OrderRefund]): """ When personal data is removed from an event, this method is called to scrub payment-related data from a payment or refund. By default, it removes all info from the ``info`` attribute. You can override this behavior if you want to retain attributes that are not personal data on their own, i.e. a reference to a transaction in an external system. You can also override this to scrub more data, e.g. data from external sources that is saved in LogEntry objects or other places. :param order: An order """ obj.info = '{}' obj.save(update_fields=['info']) def api_payment_details(self, payment: OrderPayment): """ Will be called to populate the ``details`` parameter of the payment in the REST API. :param payment: The payment in question. :return: A serializable dictionary """ return {} class PaymentException(Exception): pass class FreeOrderProvider(BasePaymentProvider): is_implicit = True is_enabled = True identifier = "free" def checkout_confirm_render(self, request: HttpRequest) -> str: return _("No payment is required as this order only includes products which are free of charge.") def payment_is_valid_session(self, request: HttpRequest) -> bool: return True @property def verbose_name(self) -> str: return _("Free of charge") def execute_payment(self, request: HttpRequest, payment: OrderPayment): try: payment.confirm(send_mail=False) except Quota.QuotaExceededException as e: raise PaymentException(str(e)) @property def settings_form_fields(self) -> dict: return {} def is_allowed(self, request: HttpRequest, total: Decimal=None) -> bool: from .services.cart import get_fees total = get_cart_total(request) total += sum([f.value for f in get_fees(self.event, request, total, None, None)]) return total == 0 def order_change_allowed(self, order: Order) -> bool: return False class BoxOfficeProvider(BasePaymentProvider): is_implicit = True is_enabled = True identifier = "boxoffice" verbose_name = _("Box office") def execute_payment(self, request: HttpRequest, payment: OrderPayment): try: payment.confirm(send_mail=False) except Quota.QuotaExceededException as e: raise PaymentException(str(e)) @property def settings_form_fields(self) -> dict: return {} def is_allowed(self, request: HttpRequest, total: Decimal=None) -> bool: return False def order_change_allowed(self, order: Order) -> bool: return False def api_payment_details(self, payment: OrderPayment): return { "pos_id": payment.info_data.get('pos_id', None), "receipt_id": payment.info_data.get('receipt_id', None), } def payment_control_render(self, request, payment) -> str: if not payment.info: return payment_info = json.loads(payment.info) template = get_template('pretixcontrol/boxoffice/payment.html') ctx = { 'request': request, 'event': self.event, 'settings': self.settings, 'payment_info': payment_info, 'payment': payment, 'provider': self, } return template.render(ctx) class ManualPayment(BasePaymentProvider): identifier = 'manual' verbose_name = _('Manual payment') @property def test_mode_message(self): return _('In test mode, you can just manually mark this order as paid in the backend after it has been ' 'created.') @property def is_implicit(self): return 'pretix.plugins.manualpayment' not in self.event.plugins def is_allowed(self, request: HttpRequest, total: Decimal=None): return 'pretix.plugins.manualpayment' in self.event.plugins and super().is_allowed(request, total) def order_change_allowed(self, order: Order): return 'pretix.plugins.manualpayment' in self.event.plugins and super().order_change_allowed(order) @property def public_name(self): return str(self.settings.get('public_name', as_type=LazyI18nString)) @property def settings_form_fields(self): d = OrderedDict( [ ('public_name', I18nFormField( label=_('Payment method name'), widget=I18nTextInput, )), ('checkout_description', I18nFormField( label=_('Payment process description during checkout'), help_text=_('This text will be shown during checkout when the user selects this payment method. ' 'It should give a short explanation on this payment method.'), widget=I18nTextarea, )), ('email_instructions', I18nFormField( label=_('Payment process description in order confirmation emails'), help_text=_('This text will be included for the {payment_info} placeholder in order confirmation ' 'mails. It should instruct the user on how to proceed with the payment. You can use' 'the placeholders {order}, {total}, {currency} and {total_with_currency}'), widget=I18nTextarea, validators=[PlaceholderValidator(['{order}', '{total}', '{currency}', '{total_with_currency}'])], )), ('pending_description', I18nFormField( label=_('Payment process description for pending orders'), help_text=_('This text will be shown on the order confirmation page for pending orders. ' 'It should instruct the user on how to proceed with the payment. You can use' 'the placeholders {order}, {total}, {currency} and {total_with_currency}'), widget=I18nTextarea, validators=[PlaceholderValidator(['{order}', '{total}', '{currency}', '{total_with_currency}'])], )), ] + list(super().settings_form_fields.items()) ) d.move_to_end('_enabled', last=False) return d def payment_form_render(self, request) -> str: return rich_text( str(self.settings.get('checkout_description', as_type=LazyI18nString)) ) def checkout_prepare(self, request, total): return True def payment_is_valid_session(self, request): return True def checkout_confirm_render(self, request): return self.payment_form_render(request) def format_map(self, order): return { 'order': order.code, 'total': order.total, 'currency': self.event.currency, 'total_with_currency': money_filter(order.total, self.event.currency) } def order_pending_mail_render(self, order) -> str: msg = str(self.settings.get('email_instructions', as_type=LazyI18nString)).format_map(self.format_map(order)) return msg def payment_pending_render(self, request, payment) -> str: return rich_text( str(self.settings.get('pending_description', as_type=LazyI18nString)).format_map(self.format_map(payment.order)) ) class OffsettingProvider(BasePaymentProvider): is_enabled = True identifier = "offsetting" verbose_name = _("Offsetting") is_implicit = True def execute_payment(self, request: HttpRequest, payment: OrderPayment): try: payment.confirm() except Quota.QuotaExceededException as e: raise PaymentException(str(e)) def execute_refund(self, refund: OrderRefund): code = refund.info_data['orders'][0] try: order = Order.objects.get(code=code, event__organizer=self.event.organizer) except Order.DoesNotExist: raise PaymentException(_('You entered an order that could not be found.')) p = order.payments.create( state=OrderPayment.PAYMENT_STATE_PENDING, amount=refund.amount, payment_date=now(), provider='offsetting', info=json.dumps({'orders': [refund.order.code]}) ) p.confirm() @property def settings_form_fields(self) -> dict: return {} def is_allowed(self, request: HttpRequest, total: Decimal=None) -> bool: return False def order_change_allowed(self, order: Order) -> bool: return False def api_payment_details(self, payment: OrderPayment): return { "orders": payment.info_data.get('orders', []), } def payment_control_render(self, request: HttpRequest, payment: OrderPayment) -> str: return _('Balanced against orders: %s' % ', '.join(payment.info_data['orders'])) @receiver(register_payment_providers, dispatch_uid="payment_free") def register_payment_provider(sender, **kwargs): return [FreeOrderProvider, BoxOfficeProvider, OffsettingProvider, ManualPayment]
the-stack_0_19011
import tensorflow as tf from tfoptests.persistor import TensorFlowPersistor tf.set_random_seed(1) def test_simple_while(): i1 = tf.Variable(tf.constant(0), name='loop_var') c = lambda i: tf.less(i, 10) b = lambda i: tf.add(i, 1) r = tf.while_loop(c, b, [i1]) out_node = tf.identity(r, name="output") predictions = [out_node] # Run and persist tfp = TensorFlowPersistor(save_dir="simple_while") tfp.set_placeholders([]) \ .set_output_tensors(predictions) \ .set_test_data({}) \ .build_save_frozen_graph() if __name__ == '__main__': test_simple_while()
the-stack_0_19022
# coding=utf-8 # # This file is part of Hypothesis, which may be found at # https://github.com/HypothesisWorks/hypothesis/ # # Most of this work is copyright (C) 2013-2019 David R. MacIver # ([email protected]), but it contains contributions by others. See # CONTRIBUTING.rst for a full list of people who may hold copyright, and # consult the git log if you need to determine who owns an individual # contribution. # # This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at https://mozilla.org/MPL/2.0/. # # END HEADER from __future__ import absolute_import, division, print_function import unittest from functools import partial import django.db.models as dm import django.forms as df import django.test as dt from django.core.exceptions import ValidationError from django.db import IntegrityError import hypothesis._strategies as st from hypothesis import reject from hypothesis.errors import InvalidArgument from hypothesis.extra.django._fields import from_field from hypothesis.utils.conventions import infer if False: from datetime import tzinfo # noqa from typing import Any, Type, Optional, List, Text, Callable, Union # noqa from hypothesis.utils.conventions import InferType # noqa class HypothesisTestCase(object): def setup_example(self): self._pre_setup() def teardown_example(self, example): self._post_teardown() def __call__(self, result=None): testMethod = getattr(self, self._testMethodName) if getattr(testMethod, u"is_hypothesis_test", False): return unittest.TestCase.__call__(self, result) else: return dt.SimpleTestCase.__call__(self, result) class TestCase(HypothesisTestCase, dt.TestCase): pass class TransactionTestCase(HypothesisTestCase, dt.TransactionTestCase): pass @st.defines_strategy def from_model( model, # type: Type[dm.Model] **field_strategies # type: Union[st.SearchStrategy[Any], InferType] ): # type: (...) -> st.SearchStrategy[Any] """Return a strategy for examples of ``model``. .. warning:: Hypothesis creates saved models. This will run inside your testing transaction when using the test runner, but if you use the dev console this will leave debris in your database. ``model`` must be an subclass of :class:`~django:django.db.models.Model`. Strategies for fields may be passed as keyword arguments, for example ``is_staff=st.just(False)``. Hypothesis can often infer a strategy based the field type and validators, and will attempt to do so for any required fields. No strategy will be inferred for an :class:`~django:django.db.models.AutoField`, nullable field, foreign key, or field for which a keyword argument is passed to ``from_model()``. For example, a Shop type with a foreign key to Company could be generated with:: shop_strategy = from_model(Shop, company=from_model(Company)) Like for :func:`~hypothesis.strategies.builds`, you can pass :obj:`~hypothesis.infer` as a keyword argument to infer a strategy for a field which has a default value instead of using the default. """ if not issubclass(model, dm.Model): raise InvalidArgument("model=%r must be a subtype of Model" % (model,)) fields_by_name = {f.name: f for f in model._meta.concrete_fields} for name, value in sorted(field_strategies.items()): if value is infer: field_strategies[name] = from_field(fields_by_name[name]) for name, field in sorted(fields_by_name.items()): if ( name not in field_strategies and not field.auto_created and field.default is dm.fields.NOT_PROVIDED ): field_strategies[name] = from_field(field) for field in field_strategies: if model._meta.get_field(field).primary_key: # The primary key is generated as part of the strategy. We # want to find any existing row with this primary key and # overwrite its contents. kwargs = {field: field_strategies.pop(field)} kwargs["defaults"] = st.fixed_dictionaries(field_strategies) # type: ignore return _models_impl(st.builds(model.objects.update_or_create, **kwargs)) # The primary key is not generated as part of the strategy, so we # just match against any row that has the same value for all # fields. return _models_impl(st.builds(model.objects.get_or_create, **field_strategies)) @st.composite def _models_impl(draw, strat): """Handle the nasty part of drawing a value for models()""" try: return draw(strat)[0] except IntegrityError: reject() @st.defines_strategy def from_form( form, # type: Type[dm.Model] form_kwargs=None, # type: dict **field_strategies # type: Union[st.SearchStrategy[Any], InferType] ): # type: (...) -> st.SearchStrategy[Any] """Return a strategy for examples of ``form``. ``form`` must be an subclass of :class:`~django:django.forms.Form`. Strategies for fields may be passed as keyword arguments, for example ``is_staff=st.just(False)``. Hypothesis can often infer a strategy based the field type and validators, and will attempt to do so for any required fields. No strategy will be inferred for a disabled field or field for which a keyword argument is passed to ``from_form()``. This function uses the fields of an unbound ``form`` instance to determine field strategies, any keyword arguments needed to instantiate the unbound ``form`` instance can be passed into ``from_form()`` as a dict with the keyword ``form_kwargs``. E.g.:: shop_strategy = from_form(Shop, form_kwargs={"company_id": 5}) Like for :func:`~hypothesis.strategies.builds`, you can pass :obj:`~hypothesis.infer` as a keyword argument to infer a strategy for a field which has a default value instead of using the default. """ # currently unsupported: # ComboField # FilePathField # FileField # ImageField form_kwargs = form_kwargs or {} if not issubclass(form, df.BaseForm): raise InvalidArgument("form=%r must be a subtype of Form" % (form,)) # Forms are a little bit different from models. Model classes have # all their fields defined, whereas forms may have different fields # per-instance. So, we ought to instantiate the form and get the # fields from the instance, thus we need to accept the kwargs for # instantiation as well as the explicitly defined strategies unbound_form = form(**form_kwargs) fields_by_name = {} for name, field in unbound_form.fields.items(): if isinstance(field, df.MultiValueField): # PS: So this is a little strange, but MultiValueFields must # have their form data encoded in a particular way for the # values to actually be picked up by the widget instances' # ``value_from_datadict``. # E.g. if a MultiValueField named 'mv_field' has 3 # sub-fields then the ``value_from_datadict`` will look for # 'mv_field_0', 'mv_field_1', and 'mv_field_2'. Here I'm # decomposing the individual sub-fields into the names that # the form validation process expects for i, _field in enumerate(field.fields): fields_by_name["%s_%d" % (name, i)] = _field else: fields_by_name[name] = field for name, value in sorted(field_strategies.items()): if value is infer: field_strategies[name] = from_field(fields_by_name[name]) for name, field in sorted(fields_by_name.items()): if name not in field_strategies and not field.disabled: field_strategies[name] = from_field(field) return _forms_impl( st.builds( partial(form, **form_kwargs), data=st.fixed_dictionaries(field_strategies), # type: ignore ) ) @st.composite def _forms_impl(draw, strat): """Handle the nasty part of drawing a value for from_form()""" try: return draw(strat) except ValidationError: reject()
the-stack_0_19024
# The MIT License (MIT) # # Author: Baozhu Zuo ([email protected]) # # Copyright (C) 2020 Seeed Technology Co.,Ltd. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import re import os import sys import json import demjson import stat from pip._internal.cli import cmdoptions from functools import partial from aip.parser import parser from aip.logger import log from optparse import Option from pip._internal.commands.list import tabulate from pip._internal.utils.misc import write_output board = partial( Option, '-b', '--board', dest='board', action='store', default="", help='The name of the ArduPy board.', ) # type: Callable[..., Option] verbose = partial( Option, '-v', '--verbose', dest='verbose', action='count', default=0, help='Output compilation information' ) # type: Callable[..., Option] if os.name == 'nt': # sys.platform == 'win32': from serial.tools.list_ports_windows import comports elif os.name == 'posix': from serial.tools.list_ports_posix import comports #~ elif os.name == 'java': else: raise ImportError("Sorry: no implementation for your platform ('{}') available".format(os.name)) def readonly_handler(func, path, execinfo): os.chmod(path, stat.S_IWRITE) func(path) def dealGenericOptions(): cmdoptions.general_group['options'].insert(6, board) cmdoptions.general_group['options'].insert(1, verbose) cmdoptions.general_group['options'].remove(cmdoptions.isolated_mode) cmdoptions.general_group['options'].remove(cmdoptions.verbose) cmdoptions.general_group['options'].remove(cmdoptions.no_python_version_warning) def windows_full_port_name(portname): # Helper function to generate proper Windows COM port paths. Apparently # Windows requires COM ports above 9 to have a special path, where ports below # 9 are just referred to by COM1, COM2, etc. (wacky!) See this post for # more info and where this code came from: # http://eli.thegreenplace.net/2009/07/31/listing-all-serial-ports-on-windows-with-python/ m = re.match("^COM(\d+)$", portname) if m and int(m.group(1)) < 10: return portname else: return "\\\\.\\{0}".format(portname) def output_package_listing_columns(data, header): # insert the header first: we need to know the size of column names if len(data) > 0: data.insert(0, header) pkg_strings, sizes = tabulate(data) # Create and add a separator. if len(data) > 0: pkg_strings.insert(1, " ".join(map(lambda x: '-' * x, sizes))) for val in pkg_strings: write_output(val) class SerialUtils(object): def __init__(self): super().__init__() if len(parser.boards) == 0: log.error("Unable to find any ardupy boards, please refer to aip core!") sys.exit(1) def getAllPortInfo(self): return comports(include_links=False) def listAvailableBoard(self): list = [] for info in self.getAllPortInfo(): port, desc, hwid = info ii = hwid.find("VID:PID") #hwid: USB VID:PID=2886:002D SER=4D68990C5337433838202020FF123244 LOCATION=7-3.1.3:1. #print(hwid) if ii != -1: for b in parser.boards: (vid, pid) = b["hwids"]["application"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: #print(port,desc, hwid) list.append({"port":port, "desc":desc, "hwid":hwid, "state":False}) (vid, pid) = b["hwids"]["bootloader"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: #print(port,desc, hwid) list.append({"port":port, "desc":desc, "hwid":hwid, "state":True}) return demjson.encode(list) def getBootloaderBoard(self): for info in self.getAllPortInfo(): port, desc, hwid = info ii = hwid.find("VID:PID") #hwid: USB VID:PID=2886:002D SER=4D68990C5337433838202020FF123244 LOCATION=7-3.1.3:1. #print(hwid) if ii != -1: for b in parser.boards: (vid, pid) = b["hwids"]["bootloader"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: #print(port,desc, hwid) return port,desc, hwid, True return None, None, None, None def getAvailableBoard(self): for info in self.getAllPortInfo(): port, desc, hwid = info ii = hwid.find("VID:PID") #hwid: USB VID:PID=2886:002D SER=4D68990C5337433838202020FF123244 LOCATION=7-3.1.3:1. #print(hwid) if ii != -1: for b in parser.boards: (vid, pid) = b["hwids"]["application"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: #print(port,desc, hwid) return port,desc, hwid, False (vid, pid) = b["hwids"]["bootloader"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: #print(port,desc, hwid) return port,desc, hwid, True return None, None, None, None def listBoard(self): list = []; for b in parser.boards: list.append(b["name"]) return demjson.encode(list) def listDesignatedBoard(self, designated): list = [] for info in self.getAllPortInfo(): port, desc, hwid = info ii = hwid.find("VID:PID") #hwid: USB VID:PID=2886:002D SER=4D68990C5337433838202020FF123244 LOCATION=7-3.1.3:1. #print(hwid) if ii != -1: for b in parser.boards: if b["name"] != designated: continue (vid, pid) = b["hwids"]["application"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: #print(port,desc, hwid) list.append({"port":port, "desc":desc, "hwid":hwid, "state":False}) (vid, pid) = b["hwids"]["bootloader"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: #print(port,desc, hwid) list.append({"port":port, "desc":desc, "hwid":hwid, "state":True}) return demjson.encode(list) def getDesignatedBoard(self, designated): for info in self.getAllPortInfo(): port, desc, hwid = info ii = hwid.find("VID:PID") #hwid: USB VID:PID=2886:002D SER=4D68990C5337433838202020FF123244 LOCATION=7-3.1.3:1. #print(hwid) if ii != -1: for b in parser.boards: if b["name"] != designated: continue (vid, pid) = b["hwids"]["application"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: #print(port,desc, hwid) return port,desc, hwid, False (vid, pid) = b["hwids"]["bootloader"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: #print(port,desc, hwid) return port,desc, hwid, True None def isBootloaderStatus(self): return True def getBoardByPort(self, _port): for info in self.getAllPortInfo(): port, desc, hwid = info if _port != port: continue ii = hwid.find("VID:PID") #hwid: USB VID:PID=2886:002D SER=4D68990C5337433838202020FF123244 LOCATION=7-3.1.3:1. #print(hwid) if ii != -1: for b in parser.boards: (vid, pid) = b["hwids"]["application"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: return (b["name"], b["version"], b["firmware_url"]) (vid, pid) = b["hwids"]["bootloader"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: #print(port,desc, hwid) return (b["name"], b["version"], b["firmware_url"]) return "" def getBoardIdByPort(self, _port): for info in self.getAllPortInfo(): port, desc, hwid = info if _port != port: continue ii = hwid.find("VID:PID") #hwid: USB VID:PID=2886:002D SER=4D68990C5337433838202020FF123244 LOCATION=7-3.1.3:1. #print(hwid) if ii != -1: for b in parser.boards: (vid, pid) = b["hwids"]["application"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: return (b["id"]) (vid, pid) = b["hwids"]["bootloader"] if vid == hwid[ii + 8: ii + 8 + 4] and pid == hwid[ii + 8 + 5 :ii + 8 + 5 + 4 ]: #print(port,desc, hwid) return (b["id"]) return "" def getBoardIdByName(self, _name): for b in parser.boards: if b["name"] == _name: return b["id"] return -1 # def getFirmwareByBoard(self, Board): # for b in parser.boards: # (_vid, _pid) = b["application"] # if (_vid, _pid) == (vid, pid): # return (b["version"], b["Firmware_url"]) # (_vid, _pid) = b["bootloader"] # if (_vid, _pid) == (vid, pid): # return (b["version"], b["Firmware_url"]) # return "" if __name__ == '__main__': ser = SerialUtils() for info in ser.getAllPortInfo(): port, desc, hwid = info print("port: {}, desc: {}, hwid: {}".format(port, desc, hwid)) print(ser.getAvailableBoard()) print(ser.getDesignatedBoard("wio terminal"))
the-stack_0_19025
# -*- coding: utf-8 -*- """ Created on Tue Jul 28 12:54:35 2020 @author: rjovelin """ import argparse import os import json import pysam import time from smmips.smmips_libs import align_fastqs, assign_reads_to_smmips, create_tree, read_panel, \ count_alleles_across_panel, write_table_variants, parse_cosmic, get_genomic_positions, remove_bam_extension, \ sort_index_bam, merge_smmip_counts, merge_stats, merge_bams def align_reads(outdir, fastq1, fastq2, reference, bwa, prefix, remove): ''' (str, str, str, str, str, str, str, bool) -> None Parameters ---------- - outdir (str): Path to directory where directory structure is created - fastq1 (str): Path to Fastq1 - fastq2 (str): Path to Fastq2 - reference (str): Path to the reference genome - bwa (str): Path to the bwa script - prefix (str): Prefix used to name the output files - remove (bool): Remove intermediate files if True Align fastq1 and fastq2 using bwa mem into coordinate-sorted and indexed bam in outdir/out. ''' # use current directory if outdir not provided if outdir is None: outdir = os.getcwd() else: outdir = outdir # align fastqs prefix = os.path.basename(prefix) align_fastqs(fastq1, fastq2, reference, outdir, bwa, prefix, remove) def assign_smmips(outdir, sortedbam, prefix, remove, panel, upstream_nucleotides, umi_length, max_subs, match, mismatch, gap_opening, gap_extension, alignment_overlap_threshold, matches_threshold, chromosome, start, end, region): ''' (str, str, str, str, bool, str, int, int, int, float | int, float | int, float | int, float | int, float | int , float | int, str | None) -> None Parameters ---------- - outdir (str): Path to directory where directory structure is created - sortedbam (str): Coordinate-sorted bam with all reads - prefix (str): Prefix used to name the output files - remove (bool): Remove intermediate files if True - panel (str): Path to file with smmip information - upstream_nucleotides (int): Maximum number of nucleotides upstream the UMI sequence - umi_length (int): Length of the UMI - max_subs (int): Maximum number of substitutions allowed in the probe sequence - match (float or int): Score of identical characters - mismatch (float or int): Score of non-identical characters - gap_opening (float or int): Score for opening a gap - gap_extension (float or int): Score for extending an open gap - alignment_overlap_threshold (float or int): Cut-off value for the length of the de-gapped overlap between read1 and read2 - matches_threshold (float or int): Cut-off value for the number of matching positions within the de-gapped overlap between read1 and read2 - chromosome (str | None): Specifies the genomic region in the alignment file where reads are mapped. Examine reads on chromosome if used and on all chromosomes if None Chromosome format must match format in the bam header - start (int | None): Start position of region on chromosome if defined - end (int | None): End position of region on chromosome if defined - region (str | None): Chromosomal region "chrN.start.end". Dot-separated string with chromosome, start and end. Overrides chromosome, start and end parameters if used. Chromosome, start and end must be defined if region is used Write assigned reads and empty smmips to 2 separate coordinate-sorted and indexed bams. Assigned reads are tagged with the smMip name and the extracted UMI sequence. Also write 2 json files in outdir/stats for QC with counts of total, assigned and unassigned read along with empty smmips, and read count for each smmip in the panel ''' # define genomic coordinates if chromosome is None: start, end = None, None if region: chromosome, start, end = region.split('.') start = int(start) if start is not None else start end = int(end) if end is not None else end start_pos = 'start' if start is None else str(start) end_pos = 'end' if end is None else str(end) if chromosome: genomic_region = '.'.join([chromosome, start_pos, end_pos]) # record time spent smmip assignment start_time = time.time() # use current directory if outdir not provided if outdir is None: outdir = os.getcwd() else: outdir = outdir # create directory structure within outdir, including outdir if doesn't exist finaldir, statsdir, aligndir = create_tree(outdir) # align fastqs prefix = os.path.basename(prefix) # open files for writing # create AlignmentFile object to read input bam infile = pysam.AlignmentFile(sortedbam, 'rb') # create AlignmentFile objects for writing reads if chromosome is None: # create a new file, use header from bamfile assigned_filename = remove_bam_extension(sortedbam) + '.assigned_reads.bam' # open bam for writing assigned but empty reads empty_filename = remove_bam_extension(sortedbam) + '.empty_reads.bam' else: # create a new file, use header from bamfile assigned_filename = remove_bam_extension(sortedbam) + '.{0}.temp.assigned_reads.bam'.format(genomic_region) # open bam for writing assigned but empty reads empty_filename = remove_bam_extension(sortedbam) + '.{0}.temp.empty_reads.bam'.format(genomic_region) assigned_file = pysam.AlignmentFile(assigned_filename, 'wb', template=infile) empty_file = pysam.AlignmentFile(empty_filename, 'wb', template=infile) # close sortedbam infile.close() # assign reads to smmips metrics, smmip_counts = assign_reads_to_smmips(sortedbam, assigned_file, empty_file, read_panel(panel), upstream_nucleotides, umi_length, max_subs, match, mismatch, gap_opening, gap_extension, alignment_overlap_threshold, matches_threshold, chromosome, start, end) # close bams for i in [assigned_file, empty_file]: i.close() # sort and index bams if chromosome is None: sort_index_bam(assigned_filename, '.assigned_reads.sorted.bam') sort_index_bam(empty_filename, '.empty_reads.sorted.bam') else: sort_index_bam(assigned_filename, '.temp.assigned_reads.sorted.bam') sort_index_bam(empty_filename, '.temp.empty_reads.sorted.bam') # remove intermediate files if remove: os.remove(assigned_filename) os.remove(empty_filename) # record time after smmip assignment and update QC metrics end_time = time.time() run_time = round(end_time - start_time, 3) metrics.update({'run_time': run_time}) # write json to files if chromosome is None: statsfile1 = os.path.join(statsdir, '{0}_extraction_metrics.json'.format(prefix)) statsfile2 = os.path.join(statsdir, '{0}_smmip_counts.json'.format(prefix)) else: statsfile1 = os.path.join(statsdir, '{0}_temp.{1}.extraction_metrics.json'.format(prefix, genomic_region)) statsfile2 = os.path.join(statsdir, '{0}_temp.{1}.smmip_counts.json'.format(prefix, genomic_region)) with open(statsfile1, 'w') as newfile: json.dump(metrics, newfile, indent=4) with open(statsfile2, 'w') as newfile: json.dump(smmip_counts, newfile, indent=4) def merge_files(prefix, files, file_type, remove): ''' (str, list, str, bool) -> None Merges the files in L into a single stats file or a single bam. The output bam is indexed and coordinate-sorted Precondition: All files must be the same type of files and file_type is part of the file name Parameters ---------- - prefix (str): Prefix used to name the output files - files (list): List of stats files or bams to be merged - file_type (str): Type of the files to be merged. Valid options: - "assigned": merges bams with assigned non-empty smmips - "empty": merges bams with empty smmips - "counts": merges stats files with smmip counts - "extraction": merges stats files with extraction metrics - remove (bool): Remove intermediate files if True ''' F = [i for i in files if file_type in i] if F: if file_type == 'counts' or file_type == 'extraction': # make a list of dictionaries with smmip counts L = [] for i in F: infile = open(i) L.append(json.load(infile)) infile.close() if file_type == 'counts': statsfile = '{0}_smmip_counts.json'.format(prefix) merged = merge_smmip_counts(L) elif file_type == 'extraction': statsfile = '{0}_extraction_metrics.json'.format(prefix) merged = merge_stats(L) with open(statsfile, 'w') as newfile: json.dump(merged, newfile, indent=4) elif file_type == 'assigned' or file_type == 'empty': if file_type == 'assigned': bam_suffix = '{0}.assigned_reads.bam' sorted_suffix = '.assigned_reads.sorted.bam' elif file_type == 'empty': bam_suffix = '{0}.empty_reads.bam' sorted_suffix = '.empty_reads.sorted.bam' bamfile = bam_suffix.format(prefix) merge_bams(bamfile, F) # sort and index merged bam sort_index_bam(bamfile, sorted_suffix) # remove intermediate files if remove: discard = [] if file_type in ['extraction', 'counts']: if file_type == 'extraction': discard = [i for i in F if 'temp' in i and 'extraction_metrics.json' in i] elif discard == 'counts': discard = [i for i in F if 'temp' in i and 'smmip_counts.json' in i] elif file_type in ['empty', 'assigned']: if file_type == 'empty': discard = [i for i in F if 'temp.empty_reads.sorted.bam' in i] elif file_type == 'assigned': discard = [i for i in F if 'temp.assigned_reads.sorted.bam' in i] if discard: for i in discard: os.remove(i) # this function generates a table with nucleotide counts. not currently being used. def count_variants(bamfile, panel, outdir, max_depth, truncate, ignore_orphans, stepper, prefix, reference, cosmicfile): ''' (str, str, str, int, bool, bool, str, str, str) -> None Parameters ---------- - bamfile (str): Path to the coordinate-sorted and indexed bam file with annotated reads with smMIP and UMI tags - panel (str): Path to panel file with smMIP information - outdir (str): Path to output directory where out directory is written - max_depth (int): Maximum read depth - truncate: Consider only pileup columns within interval defined by region start and end if True - ignore_orphans: Ignore orphan reads (paired reads not in proper pair) if True - stepper: Controls how the iterator advances. Accepted values: 'all': skip reads with following flags: BAM_FUNMAP, BAM_FSECONDARY, BAM_FQCFAIL, BAM_FDUP 'nofilter': uses every single read turning off any filtering - prefix (str): Prefix used to name the output bam file - reference (str): Reference genome. Must be the same reference used in panel. Accepted values: 37 or 38 - cosmicfile (str): Cosmic file. Tab separated table of all COSMIC coding point mutations from targeted and genome wide screens Write a summary table with nucleotide and indel counts at each unique position of the target regions in panel. ''' # use current directory if outdir not provided if outdir == None: outdir = os.getcwd() else: outdir = outdir # create directory structure within outdir, including outdir if doesn't exist finaldir, statsdir, aligndir = create_tree(outdir) # get the allele counts at each position across all target regions Counts = count_alleles_across_panel(bamfile, read_panel(panel), max_depth, truncate, ignore_orphans, stepper) # get positions at each chromosome with variant information positions = get_genomic_positions(Counts) # get cosmic mutation information mutations = parse_cosmic(reference, cosmicfile, positions) # write base counts to file outputfile = os.path.join(finaldir, '{0}_Variant_Counts.txt'.format(prefix)) write_table_variants(Counts, outputfile, mutations) def main(): ''' main function to run the smmips script ''' # create main parser parser = argparse.ArgumentParser(prog='smmip.py', description="A tool to generate QC metrics for smMIP libraries") subparsers = parser.add_subparsers(help='sub-command help', dest='subparser_name') # align reads al_parser = subparsers.add_parser('align', help='Align reads to reference genome') al_parser.add_argument('-f1', '--Fastq1', dest='fastq1', help = 'Path to Fastq1', required=True) al_parser.add_argument('-f2', '--Fastq2', dest='fastq2', help = 'Path to Fastq2', required=True) al_parser.add_argument('-o', '--Outdir', dest='outdir', help = 'Path to outputd directory. Current directory if not provided') al_parser.add_argument('-r', '--Reference', dest='reference', help = 'Path to the reference genome', required=True) al_parser.add_argument('-bwa', '--Bwa', dest='bwa', help = 'Path to the bwa script', required=True) al_parser.add_argument('--remove', dest='remove', action='store_true', help = 'Remove intermediate files. Default is False, becomes True if used') al_parser.add_argument('-pf', '--Prefix', dest='prefix', help = 'Prefix used to name the output files', required=True) # assign smMips to reads a_parser = subparsers.add_parser('assign', help='Extract UMIs from reads and assign reads to smmips') a_parser.add_argument('-pa', '--Panel', dest='panel', help = 'Path to panel file with smmip information', required=True) a_parser.add_argument('-o', '--Outdir', dest='outdir', help = 'Path to outputd directory. Current directory if not provided') a_parser.add_argument('-b', '--BamFile', dest='sortedbam', help = 'Coordinate-sorted and indexed bam with all reads', required=True) a_parser.add_argument('--remove', dest='remove', action='store_true', help = 'Remove intermediate files. Default is False, becomes True if used') a_parser.add_argument('-pf', '--Prefix', dest='prefix', help = 'Prefix used to name the output files', required=True) a_parser.add_argument('-ms', '--Subs', dest='max_subs', type=int, default=0, help = 'Maximum number of substitutions allowed in the probe sequence. Default is 0') a_parser.add_argument('-up', '--Upstream', dest='upstream_nucleotides', type=int, default=0, help = 'Maximum number of nucleotides upstream the UMI sequence. Default is 0') a_parser.add_argument('-umi', '--Umi', dest='umi_length', type=int, default=4, help = 'Length of the UMI sequence in bp. Default is 4') a_parser.add_argument('-m', '--Matches', dest='match', type=float, default=2, \ help = 'Score of identical characters during local alignment. Used only if report is True. Default is 2') a_parser.add_argument('-mm', '--Mismatches', dest='mismatch', type=float, default=-1, \ help = 'Score of non-identical characters during local alignment. Used only if report is True. Default is -1') a_parser.add_argument('-go', '--Gap_opening', dest='gap_opening', type=float, default=-5, \ help = 'Score for opening a gap during local alignment. Used only if report is True. Default is -5') a_parser.add_argument('-ge', '--Gap_extension', dest='gap_extension', type=float, default=-1, \ help = 'Score for extending an open gap during local alignment. Used only if report is True. Default is -1') a_parser.add_argument('-ao', '--Alignment_overlap', dest='alignment_overlap_threshold', type=int, default=60, \ help = 'Cut-off value for the length of the de-gapped overlap between read1 and read2. Default is 60bp') a_parser.add_argument('-mt', '--Matches_threshold', dest='matches_threshold', type=float, default=0.7, \ help = 'Cut-off value for the number of matching positions within the de-gapped overlap between read1 and read2. Used only if report is True. Default is 0.7') a_parser.add_argument('-c', '--Chromosome', dest='chromosome', help = 'Considers only the reads mapped to chromosome. All chromosomes are used if omitted') a_parser.add_argument('-s', '--Start', dest='start', help = 'Start position of region on chromosome. Start of chromosome if omitted') a_parser.add_argument('-e', '--End', dest='end', help = 'End position of region on chromosome. End of chromosome if omitted') a_parser.add_argument('-r', '--Region', dest='region', help = 'Chromosomal region "chrN.start.end". Must follow this format and overrides chromosome, start and end parameters') # merge chromosome-level files m_parser = subparsers.add_parser('merge', help='Merges all the chromosome-level stats and alignment files') m_parser.add_argument('-pf', '--Prefix', dest='prefix', help = 'Prefix used to name the output files', required=True) m_parser.add_argument('-ft', '--FileType', dest='file_type', choices = ["assigned", "empty", "counts", "extraction"], help = 'Type of the files to be merged', required=True) m_parser.add_argument('-t', '--Files', dest='files', nargs='*', help = 'List of stats files or bams to be merged', required = True) m_parser.add_argument('--remove', dest='remove', action='store_true', help = 'Remove intermediate files. Default is False, becomes True if used') args = parser.parse_args() if args.subparser_name == 'align': try: align_reads(args.outdir, args.fastq1, args.fastq2, args.reference, args.bwa, args.prefix, args.remove) except AttributeError as e: print('#############\n') print('AttributeError: {0}\n'.format(e)) print('#############\n\n') print(parser.format_help()) elif args.subparser_name == 'assign': try: assign_smmips(args.outdir, args.sortedbam, args.prefix, args.remove, args.panel, args.upstream_nucleotides, args.umi_length, args.max_subs, args.match, args.mismatch, args.gap_opening, args.gap_extension, args.alignment_overlap_threshold, args.matches_threshold, args.chromosome, args.start, args.end, args.region) except AttributeError as e: print('#############\n') print('AttributeError: {0}\n'.format(e)) print('#############\n\n') print(parser.format_help()) elif args.subparser_name == 'merge': try: merge_files(args.prefix, args.files, args.file_type, args.remove) except AttributeError as e: print('#############\n') print('AttributeError: {0}\n'.format(e)) print('#############\n\n') print(parser.format_help()) elif args.subparser_name is None: print(parser.format_help())
the-stack_0_19028
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test cases for eager execution using XLA.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.compiler.tests import xla_test from tensorflow.core.protobuf import config_pb2 from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.eager import function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.layers import convolutional from tensorflow.python.layers import pooling from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import functional_ops from tensorflow.python.ops import gen_random_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.platform import googletest from tensorflow.python.training import adam class EagerTest(xla_test.XLATestCase): def testBasic(self): with self.test_scope(): three = constant_op.constant(3) five = constant_op.constant(5) product = three * five self.assertAllEqual(15, product) def testGradientTape(self): with self.test_scope(): x = constant_op.constant(1.0) y = constant_op.constant(10.0) with backprop.GradientTape(persistent=True) as tape: tape.watch(x) tape.watch(y) a = x + y + x * y da_dx = tape.gradient(a, x) da_dy = tape.gradient(a, y) self.assertEqual(11.0, da_dx.numpy()) self.assertEqual(2.0, da_dy.numpy()) def testExecuteListOutputLen0(self): with self.test_scope(): empty = constant_op.constant([], dtype=dtypes.float32) result = array_ops.unstack(empty, 0) self.assertTrue(isinstance(result, list)) self.assertEqual(0, len(result)) def testExecuteListOutputLen1(self): with self.test_scope(): split_dim = constant_op.constant(1) value = constant_op.constant([[0., 1., 2.], [3., 4., 5.]]) result = array_ops.split(value, 1, axis=split_dim) self.assertTrue(isinstance(result, list)) self.assertEqual(1, len(result)) self.assertAllEqual([[0, 1, 2], [3, 4, 5]], result[0]) def testExecuteListOutputLen3(self): with self.test_scope(): split_dim = constant_op.constant(1) value = constant_op.constant([[0., 1., 2.], [3., 4., 5.]]) result = array_ops.split(value, 3, axis=split_dim) self.assertTrue(isinstance(result, list)) self.assertEqual(3, len(result)) self.assertAllEqual([[0], [3]], result[0]) self.assertAllEqual([[1], [4]], result[1]) self.assertAllEqual([[2], [5]], result[2]) def testBasicGraph(self): # Run some ops eagerly with self.test_scope(): three = constant_op.constant(3) five = constant_op.constant(5) product = three * five self.assertAllEqual(15, product) # Run some ops graphly with context.graph_mode(), self.session(): with self.test_scope(): three = constant_op.constant(3) five = constant_op.constant(5) product = three * five self.assertAllEqual(15, self.evaluate(product)) def testDegenerateSlices(self): with self.test_scope(): npt = np.arange(1, 19, dtype=np.float32).reshape(3, 2, 3) t = constant_op.constant(npt) # degenerate by offering a forward interval with a negative stride self.assertAllEqual(npt[0:-1:-1, :, :], t[0:-1:-1, :, :]) # degenerate with a reverse interval with a positive stride self.assertAllEqual(npt[-1:0, :, :], t[-1:0, :, :]) # empty interval in every dimension self.assertAllEqual(npt[-1:0, 2:2, 2:3:-1], t[-1:0, 2:2, 2:3:-1]) def testIdentity(self): with self.test_scope(): self.assertAllEqual(2, array_ops.identity(2)) def testRandomOps(self): with self.test_scope(): tensor = gen_random_ops.random_uniform((2, 2), dtypes.float32) row0 = tensor[0].numpy() row1 = tensor[1].numpy() # It should be very unlikely to rng to generate two equal rows. self.assertFalse((row0 == row1).all()) def testIdentityOnVariable(self): with self.test_scope(): v = resource_variable_ops.ResourceVariable(True) i = array_ops.identity(v) self.assertAllEqual(True, i.numpy()) def testAssignAddVariable(self): with self.test_scope(): v = resource_variable_ops.ResourceVariable(1.0) v.assign_add(2.0) self.assertEqual(3.0, v.numpy()) def testReadAssignRead(self): with self.test_scope(): v = resource_variable_ops.ResourceVariable(1.0) val1 = v.read_value() v.assign_add(2.0) val2 = v.read_value() self.assertEqual(1.0, val1.numpy()) self.assertEqual(3.0, val2.numpy()) def testGradient(self): def f(x): return x with self.test_scope(): grad_fn = backprop.gradients_function(f) self.assertAllEqual(2., grad_fn(1., dy=2.)[0]) def testVariableGradient(self): with self.test_scope(): v0 = resource_variable_ops.ResourceVariable(1.0) def f(): x = v0 * v0 return x grads = backprop.implicit_grad(f)() self.assertEqual(2., grads[0][0].numpy()) def testMultipleVariableReads(self): # This test makes sure consecutive variable reads don't copy # the underlying memory. with self.test_scope(): # Create 128MiB variables var = resource_variable_ops.ResourceVariable( array_ops.ones([32, 1024, 1024])) # Read the same variable 100 times. If the underlying tensor # is not copied, this is a trivial operation. If it is copied, # this will eat over 13GB and OOM. values = [] for _ in range(100): values.append(var.value()) # The shape, shape_n, size, and rank are tested here because their # execution kernels (as opposed to compilation only tf2xla kernels) # are distincts from tf2xla kernels. def testShape(self): def const(value): return array_ops.shape( constant_op.constant(value)).numpy() def ones(value): return array_ops.shape( array_ops.ones(value)).numpy() with self.test_scope(): # Shapes of directly constructed tensors self.assertAllEqual([], const(3)) self.assertAllEqual([3], const([1.0, 2.0, 3.0])) self.assertAllEqual([2, 2], const([[1.0, 2.0], [3.0, 4.0]])) self.assertAllEqual([2, 1, 2], const([[[1.0, 2.0]], [[3.0, 4.0]]])) # Shapes of tensors created by op running on device # We make this distinction because directly constructed tensors # are treated differently in a few places that can influence shape: # - they always have on_host_tensor # - they and their shapes can be cached # - they end up on device via a copy, instead of as program output self.assertAllEqual([], ones([])) self.assertAllEqual([3], ones([3])) self.assertAllEqual([2, 2], ones([2, 2])) self.assertAllEqual([2, 1, 2], ones([2, 1, 2])) def testShapeN(self): with self.test_scope(): # Shapes of directly constructed tensors shapes = array_ops.shape_n([ constant_op.constant(1.0), constant_op.constant([1.0, 2.0, 3.0]), constant_op.constant([[1.0, 2.0], [3.0, 4.0]])]) self.assertAllEqual( [[], [3], [2, 2]], [x.numpy().tolist() for x in shapes]) # Shapes of tensors created by op running on device shapes = array_ops.shape_n([ array_ops.ones([]), array_ops.ones([3]), array_ops.ones([2, 2])]) self.assertAllEqual( [[], [3], [2, 2]], [x.numpy().tolist() for x in shapes]) def testSize(self): with self.test_scope(): self.assertEqual( 1, array_ops.size(constant_op.constant(1.0)).numpy()) self.assertEqual( 3, array_ops.size(constant_op.constant([1.0, 2.0, 3.0])).numpy()) self.assertEqual( 4, array_ops.size( constant_op.constant([[1.0, 2.0], [3.0, 4.0]])).numpy()) def testRank(self): with self.test_scope(): self.assertEqual( 0, array_ops.rank(constant_op.constant(1.0)).numpy()) self.assertEqual( 1, array_ops.rank(constant_op.constant([1.0, 2.0, 3.0])).numpy()) self.assertEqual( 2, array_ops.rank( constant_op.constant([[1.0, 2.0], [3.0, 4.0]])).numpy()) def testAdam(self): with self.test_scope(): optimizer = adam.AdamOptimizer(0.1) x = resource_variable_ops.ResourceVariable(10.0) with backprop.GradientTape() as tape: y = x * x dy_dx = tape.gradient(y, x) optimizer.apply_gradients([(dy_dx, x)]) self.assertAlmostEqual(9.9, x.numpy(), places=3) def testAdamSparse(self): with ops.device('/cpu:0'): # Create 2-D embedding for 3 objects on CPU because sparse/sliced updates # are not implemented on TPU. embedding_matrix = resource_variable_ops.ResourceVariable( array_ops.ones([3, 2])) with self.test_scope(): with backprop.GradientTape() as tape: embedding = embedding_ops.embedding_lookup(embedding_matrix, [1]) y = math_ops.reduce_sum(embedding) dy_dx = tape.gradient(y, embedding_matrix) self.assertIsInstance(dy_dx, ops.IndexedSlices) optimizer = adam.AdamOptimizer(0.1) # The gradient application operations will run on CPU because optimizer # updates are always collocated with the variable. optimizer.apply_gradients([(dy_dx, embedding_matrix)]) # This assign_add will run on CPU because when an input to an # operation is a resource, this operation is placed on the resource's # device by the eager runtime. embedding_matrix.assign_add(array_ops.ones([3, 2])) self.assertAllClose([[2.0, 2.0], [1.9, 1.9], [2.0, 2.0]], embedding_matrix.numpy()) class EagerFunctionTest(xla_test.XLATestCase): def testBasic(self): with self.test_scope(): matmul = function.defun(math_ops.matmul) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) sq = matmul(t, t, transpose_a=True) self.assertAllEqual(sq.numpy().reshape(-1), [10, 14, 14, 20]) def testConv(self): if 'GPU' in self.device: # TODO(b/32333178) self.skipTest('Current implementation of RandomStandardNormal kernel ' 'is very slow on GPU, and has been denylisted.') with self.test_scope(): data_format = 'channels_last' conv = convolutional.Conv2D( filters=1, kernel_size=2, padding='VALID', data_format=data_format, activation=nn_ops.relu, kernel_initializer=init_ops.ones_initializer(), bias_initializer=init_ops.zeros_initializer()) pool = pooling.MaxPooling2D(2, 2, data_format=data_format) def model(x): x = conv(x) return pool(x) model = function.defun(model) x = array_ops.ones([1, 4, 4, 1]) y = model(x) self.assertAllEqual(y.numpy(), [[[[4.]]]]) def testReadVariable(self): with self.test_scope(): v = resource_variable_ops.ResourceVariable(1.0) @function.defun def f(): return v.read_value() var = f() self.assertEqual(1.0, var.numpy()) def testResourceVariableNoInlineReadWrite(self): with self.test_scope(): v = resource_variable_ops.ResourceVariable(1.0) w = resource_variable_ops.ResourceVariable(0.0) @function.defun_with_attributes(attributes={'_noinline': True}) def g(x): w.assign(w.read_value() + x) return v.read_value() + x * w.read_value() @function.defun_with_attributes(attributes={'_noinline': True}) def f(): return g(1.0) + g(2.0) + g(3.0) + g(4.0) + g(5.0) # 1 + 1*1 + 1 + 2*3 + 1 + 3*6 + 1 + 4*10 + 1 + 5*15 self.assertEqual(145.0, f().numpy()) self.assertEqual(15.0, w.read_value().numpy()) def testResourceVariableNoInlineReadOnly(self): with self.test_scope(): v = resource_variable_ops.ResourceVariable(10.0) @function.defun_with_attributes(attributes={'_noinline': True}) def g(): return v.read_value() @function.defun_with_attributes(attributes={'_noinline': True}) def f(): return g() + g() + g() + g() + g() self.assertEqual(50.0, f().numpy()) def testResourceVariableNoInlineWriteOnly(self): with self.test_scope(): v = resource_variable_ops.ResourceVariable(0.0) @function.defun_with_attributes(attributes={'_noinline': True}) def g(x): v.assign(x) @function.defun_with_attributes(attributes={'_noinline': True}) def f(): g(1.0) g(2.0) g(3.0) g(4.0) g(5.0) f() self.assertEqual(5.0, v.read_value().numpy()) def testUpdateVariable(self): with self.test_scope(): v = resource_variable_ops.ResourceVariable(1.0) def f(v): v.assign_add(1.0) return v f = function.defun(f) var = f(v) self.assertEqual(2.0, var.numpy()) def testReturnResourceHandle(self): with self.test_scope(): v = resource_variable_ops.ResourceVariable([[1.0, 2.0], [3.0, 4.0]]) def f(v): return v.handle f = function.defun(f) handle = f(v) self.assertAllEqual(v.numpy(), resource_variable_ops.read_variable_op( handle, dtypes.float32).numpy()) def testReturnMultipleResourceHandles(self): with self.test_scope(): v1 = resource_variable_ops.ResourceVariable(1.25) v2 = resource_variable_ops.ResourceVariable(2.0) def f(v): return v.handle, 3.0 * v, v2.handle, v + v2 f = function.defun(f) v1_handle, v1_times_3, v2_handle, variable_sum = f(v1) self.assertAllEqual(v1.numpy(), resource_variable_ops.read_variable_op( v1_handle, dtypes.float32).numpy()) self.assertEqual(3.75, v1_times_3.numpy()) self.assertAllEqual(v2.numpy(), resource_variable_ops.read_variable_op( v2_handle, dtypes.float32).numpy()) self.assertEqual(3.25, variable_sum.numpy()) def testAllArgumentKinds(self): """Test a complex function that takes different argument kinds. tf2xla machinery that translates, compiles, and runs defuns classifies arguments into: compile-time constants, regular tensors, and resources. This test creates a function with a mix of all these kinds. Moreover, the order of function arguments is intentionally mixed up. This also tests the case when the same argument is a compile-time constant as well as used in an operation that normally expects its inputs to be in device memory - addition in this case. """ with self.test_scope(): def foo(c1, r1, v1, c2, v2, r2): # c1 and c2 are compile-time constants # r1 and r2 are regular tensors # v1 and v2 are resource variables a = c1 + r1 b = math_ops.cast(c2, dtypes.float32) + v2 c = array_ops.slice(v1, c1, c2) d = r2 * v2 return a, b, c, d foo = function.defun(foo) c1 = [0, 0] c2 = array_ops.ones([2], dtype=dtypes.int32) r1 = array_ops.ones([2]) r2 = [[2., 2.], [3., 3.]] v1 = resource_variable_ops.ResourceVariable([[1., 2.], [3., 4.]]) v2 = resource_variable_ops.ResourceVariable([[10., 20.], [30., 40.]]) a, b, c, d = foo(c1, r1, v1, c2, v2, r2) self.assertAllEqual([1, 1], a.numpy()) self.assertAllEqual([[11., 21.], [31., 41.]], b.numpy()) self.assertAllEqual([[1.]], c.numpy()) self.assertAllEqual([[20., 40.], [90., 120.]], d.numpy()) def testDefunInGradientTape(self): with self.test_scope(): v0 = resource_variable_ops.ResourceVariable(5.0) @function.defun def f(x): x = v0 * v0 * x return x x = constant_op.constant(3.0) with backprop.GradientTape() as tape: y = f(x) dy = tape.gradient(y, v0) self.assertEqual(75, y.numpy()) self.assertEqual(30, dy.numpy()) def testGradientTapeInDefun(self): with self.test_scope(): v0 = resource_variable_ops.ResourceVariable(5.0) @function.defun def f(): x = constant_op.constant(1.0) with backprop.GradientTape() as tape: y = v0 * x dy = tape.gradient(y, v0) return dy dy = f() self.assertEqual(1.0, dy.numpy()) def testSliceInDefun(self): with self.test_scope(): @function.defun def f(x, y): return x[0::2, y:, ...] x = array_ops.ones([2, 3, 4], dtype=dtypes.float32) y = array_ops.ones([], dtype=dtypes.int32) with backprop.GradientTape() as tape: tape.watch(x) tape.watch(y) z = f(x, y) dz = tape.gradient(z, x) self.assertAllEqual(np.ones([1, 2, 4]), z.numpy()) self.assertAllEqual((2, 3, 4), dz.shape.as_list()) def testNestedDefun(self): with self.test_scope(): @function.defun def times_two(x): return 2. * x @function.defun def two_x_plus_1(x): return times_two(x) + 1. x = constant_op.constant([2., 3., 4.]) y = two_x_plus_1(x) self.assertAllEqual([5., 7., 9.], y.numpy()) def testNestedDefunWithVariable(self): with self.test_scope(): v0 = resource_variable_ops.ResourceVariable(5.0) @function.defun def g(x): x = v0 * x return x @function.defun def f(x): x = g(v0 * x) return x x = constant_op.constant(3.0) y = f(x) self.assertEqual(75.0, y.numpy()) def testNestedDefunInGradientTape(self): with self.test_scope(): v0 = resource_variable_ops.ResourceVariable(5.0) @function.defun def g(x): x = v0 * x return x @function.defun def f(x): x = g(v0 * x) return x x = constant_op.constant(3.0) with backprop.GradientTape() as tape: y = f(x) dy = tape.gradient(y, v0) self.assertEqual(75, y.numpy()) self.assertEqual(30, dy.numpy()) def testNestedDefunInGradientTapeDifferentVars(self): with self.test_scope(): v0 = resource_variable_ops.ResourceVariable(5.0) v1 = resource_variable_ops.ResourceVariable(3.0) @function.defun def g(x): x = v1 * x return x @function.defun def f(x): x = g(v0 * x) return x x = constant_op.constant(3.0) with backprop.GradientTape(persistent=True) as tape: y = f(x) dy_v0 = tape.gradient(y, v0) dy_v1 = tape.gradient(y, v1) self.assertEqual(45, y.numpy()) self.assertEqual(9, dy_v0.numpy()) self.assertEqual(15, dy_v1.numpy()) def testWhileInDefun(self): with self.test_scope(): @def_function.function def f(start): c = lambda x: math_ops.less(x, 13.0) b = lambda x: math_ops.add(x, 1.0) return control_flow_ops.while_loop(c, b, [start]) y = f(constant_op.constant(3.0)) self.assertEqual(13.0, y.numpy()) def testAutoGraphWhileInDefun(self): with self.test_scope(): @def_function.function def f(start): x = start while x < 13.0: x += 1.0 return x y = f(constant_op.constant(3.0)) self.assertEqual(13.0, y.numpy()) def testCondInDefun(self): with self.test_scope(): @def_function.function def f(pred, value): fn1 = lambda: math_ops.add(value, 1.0) fn2 = lambda: math_ops.subtract(value, 1.0) return control_flow_ops.cond(pred, fn1, fn2) plus_one = f(constant_op.constant(True), constant_op.constant(10.0)) minus_one = f(constant_op.constant(False), constant_op.constant(10.0)) self.assertEqual(11.0, plus_one.numpy()) self.assertEqual(9.0, minus_one.numpy()) def testAutoGraphCondInDefun(self): with self.test_scope(): @def_function.function def f(pred, value): if pred: return value + 1.0 else: return value - 1.0 plus_one = f(constant_op.constant(True), constant_op.constant(10.0)) minus_one = f(constant_op.constant(False), constant_op.constant(10.0)) self.assertEqual(11.0, plus_one.numpy()) self.assertEqual(9.0, minus_one.numpy()) def testScanInDefun(self): with self.test_scope(): elems = constant_op.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='data') v = constant_op.constant(2.0, name='v') @def_function.function def f(y): # pylint: disable=unnecessary-lambda return functional_ops.scan( lambda a, x: math_ops.multiply(a, x), y, initializer=v) # pylint: enable=unnecessary-lambda r = f(elems) self.assertAllEqual([2., 4., 12., 48., 240., 1440.], self.evaluate(r)) def testFeedDeviceMemoryToOpExpectingHostMemory(self): @function.defun def f(dims, value): return array_ops.fill(dims, value) with self.test_scope(): x = constant_op.constant([4], dtype=dtypes.int64) y = f(x, 3) self.assertAllEqual([3, 3, 3, 3], y) def testRequestNotToCompile(self): with self.test_scope(): def f(x): with ops.device('device:CPU:0'): y = 2.0 * x return x, y wholly_compiled_f = def_function.function(f) op_by_op_f = def_function.function(f, jit_compile=False) x = array_ops.identity([0.0, 2.0], name='data') # When function is wholly compiled, all outputs will be on the # device on which it is run. r_x, r_y = wholly_compiled_f(x) self.assertAllEqual([0.0, 2.0], r_x) self.assertAllEqual([0.0, 4.0], r_y) if context.executing_eagerly(): # backing_device is only available for eager tensors. self.assertRegex(r_x.backing_device, self.device) self.assertRegex(r_y.backing_device, self.device) # When function is executed op-by-op, requested devices will be # respected. r_x, r_y = op_by_op_f(x) self.assertAllEqual([0.0, 2.0], r_x) self.assertAllEqual([0.0, 4.0], r_y) if context.executing_eagerly(): # backing_device is only available for eager tensors. self.assertRegex(r_x.backing_device, self.device) self.assertRegex(r_y.backing_device, 'device:CPU:0') class ExcessivePaddingTest(xla_test.XLATestCase): """Test that eager execution works with TPU flattened tensors. Tensors that would normally be excessively padded when written to TPU memory are reshaped to 1-D flat tensors. This test case verifies that such tensors work with eager execution. The flattening currently only happens on TPU, but tests should work fine with all backends as flattening is transparent. """ def testFromConstant(self): with self.test_scope(): # Create constant of shape [100, 2, 1]. This tensor would be # excessively padded on TPU. tensor = constant_op.constant(100 * [[[10.0], [2.0]]]) # Use reduce_sum since it requires correctly working with # a particular dimension. reduced = math_ops.reduce_sum(tensor, axis=1) self.assertAllEqual(100 * [[12.0]], reduced) def testFromOperation(self): with self.test_scope(): tensor = array_ops.ones([3, 100, 2, 2]) reduced = math_ops.reduce_sum(tensor, axis=[0, 2, 3]) self.assertAllEqual(100 * [12.0], reduced) def testAsFunctionInput(self): with self.test_scope(): @function.defun def f(x): return math_ops.reduce_sum(x, axis=2) tensor = constant_op.constant(100 * [[[10.0, 2.0]]]) reduced = f(tensor) self.assertAllEqual(100 * [[12.0]], reduced) def testAsFunctionOutput(self): with self.test_scope(): @function.defun def f(x): return x * constant_op.constant(100 * [[[10.0, 2.0]]]) y = f(3) reduced = math_ops.reduce_sum(y, axis=2) self.assertAllEqual(100 * [[36.0]], reduced) def multiple_tpus(): devices = context.context().devices() return len([d for d in devices if 'device:TPU:' in d]) > 1 class MultiDeviceTest(xla_test.XLATestCase): """Test running TPU computation on more than one core.""" def testBasic(self): if not multiple_tpus(): self.skipTest('MultiDeviceTest requires multiple TPU devices.') # Compute 10 on TPU core 0 with ops.device('device:TPU:0'): two = constant_op.constant(2) five = constant_op.constant(5) ten = two * five self.assertAllEqual(10, ten) # Compute 6 on TPU core 1 with ops.device('device:TPU:1'): two = constant_op.constant(2) three = constant_op.constant(3) six = two * three self.assertAllEqual(6, six) # Copy 10 and 6 to CPU and sum them self.assertAllEqual(16, ten + six) if __name__ == '__main__': ops.enable_eager_execution( config=config_pb2.ConfigProto(log_device_placement=True)) googletest.main()
the-stack_0_19031
import json import asyncio import traceback import aiohttp.web from guajiro.core.response_types import ResponseType @asyncio.coroutine def handle_response_annotations(app, view): @asyncio.coroutine def middleware(request): response = yield from view(request) if not isinstance(response, aiohttp.web.Response): attributes = getattr(view, "__attributes__", None) if attributes: returns = attributes.get("returns") if isinstance(returns, ResponseType): handler = returns.value.get("handler", None) if handler: response = handler(response) headers = returns.value.get("headers", {}) return aiohttp.web.Response( text=response, headers=headers, ) return response return middleware @asyncio.coroutine def handle_exceptions(app, view): @asyncio.coroutine def middleware(request): try: response = yield from view(request) except Exception as exception: if app.SETTINGS["DEBUG"]: plain_traceback = traceback.format_exc() return aiohttp.web.Response( text=plain_traceback, status=500, ) raise return response return middleware
the-stack_0_19035
#!/usr/bin/env python3 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import gc import os import statistics import sys import time from argparse import Namespace from operator import attrgetter import click MAX_DAG_RUNS_ALLOWED = 1 class ShortCircuitExecutorMixin: ''' Mixin class to manage the scheduler state during the performance test run. ''' def __init__(self, dag_ids_to_watch, num_runs): super().__init__() self.num_runs_per_dag = num_runs self.reset(dag_ids_to_watch) def reset(self, dag_ids_to_watch): ''' Capture the value that will determine when the scheduler is reset. ''' self.dags_to_watch = { dag_id: Namespace( waiting_for=self.num_runs_per_dag, # A "cache" of DagRun row, so we don't have to look it up each # time. This is to try and reduce the impact of our # benchmarking code on runtime, runs={} ) for dag_id in dag_ids_to_watch } def change_state(self, key, state, info=None): ''' Change the state of scheduler by waiting till the tasks is complete and then shut down the scheduler after the task is complete ''' from airflow.utils.state import State super().change_state(key, state, info=info) dag_id, _, execution_date, __ = key if dag_id not in self.dags_to_watch: return # This fn is called before the DagRun state is updated, so we can't # check the DR.state - so instead we need to check the state of the # tasks in that run run = self.dags_to_watch[dag_id].runs.get(execution_date) if not run: import airflow.models # odd `list()` is to work across Airflow versions. run = list(airflow.models.DagRun.find(dag_id=dag_id, execution_date=execution_date))[0] self.dags_to_watch[dag_id].runs[execution_date] = run if run and all(t.state == State.SUCCESS for t in run.get_task_instances()): self.dags_to_watch[dag_id].runs.pop(execution_date) self.dags_to_watch[dag_id].waiting_for -= 1 if self.dags_to_watch[dag_id].waiting_for == 0: self.dags_to_watch.pop(dag_id) if not self.dags_to_watch: self.log.warning("STOPPING SCHEDULER -- all runs complete") self.scheduler_job.processor_agent._done = True # pylint: disable=protected-access return self.log.warning("WAITING ON %d RUNS", sum(map(attrgetter('waiting_for'), self.dags_to_watch.values()))) def get_executor_under_test(): ''' Create and return a MockExecutor ''' try: # Run against master and 1.10.x releases from tests.test_utils.mock_executor import MockExecutor except ImportError: from tests.executors.test_executor import TestExecutor as MockExecutor # from airflow.executors.local_executor import LocalExecutor # Change this to try other executors class ShortCircuitExecutor(ShortCircuitExecutorMixin, MockExecutor): ''' Placeholder class that implements the inheritance hierarchy ''' scheduler_job = None return ShortCircuitExecutor def reset_dag(dag, session): ''' Delete all dag and task instances and then un_pause the Dag. ''' import airflow.models DR = airflow.models.DagRun DM = airflow.models.DagModel TI = airflow.models.TaskInstance TF = airflow.models.TaskFail dag_id = dag.dag_id session.query(DM).filter(DM.dag_id == dag_id).update({'is_paused': False}) session.query(DR).filter(DR.dag_id == dag_id).delete() session.query(TI).filter(TI.dag_id == dag_id).delete() session.query(TF).filter(TF.dag_id == dag_id).delete() def pause_all_dags(session): ''' Pause all Dags ''' from airflow.models.dag import DagModel session.query(DagModel).update({'is_paused': True}) def create_dag_runs(dag, num_runs, session): ''' Create `num_runs` of dag runs for sub-sequent schedules ''' from airflow.utils import timezone from airflow.utils.state import State try: from airflow.utils.types import DagRunType ID_PREFIX = f'{DagRunType.SCHEDULED.value}__' except ImportError: from airflow.models.dagrun import DagRun ID_PREFIX = DagRun.ID_PREFIX next_run_date = dag.normalize_schedule(dag.start_date or min(t.start_date for t in dag.tasks)) for _ in range(num_runs): dag.create_dagrun( run_id=ID_PREFIX + next_run_date.isoformat(), execution_date=next_run_date, start_date=timezone.utcnow(), state=State.RUNNING, external_trigger=False, session=session, ) next_run_date = dag.following_schedule(next_run_date) @click.command() @click.option('--num-runs', default=1, help='number of DagRun, to run for each DAG') @click.option('--repeat', default=3, help='number of times to run test, to reduce variance') @click.option('--pre-create-dag-runs', is_flag=True, default=False, help='''Pre-create the dag runs and stop the scheduler creating more. Warning: this makes the scheduler do (slightly) less work so may skew your numbers. Use sparingly! ''') @click.argument('dag_ids', required=True, nargs=-1) def main(num_runs, repeat, pre_create_dag_runs, dag_ids): # pylint: disable=too-many-locals """ This script can be used to measure the total "scheduler overhead" of Airflow. By overhead we mean if the tasks executed instantly as soon as they are executed (i.e. they do nothing) how quickly could we schedule them. It will monitor the task completion of the Mock/stub executor (no actual tasks are run) and after the required number of dag runs for all the specified dags have completed all their tasks, it will cleanly shut down the scheduler. The dags you run with need to have an early enough start_date to create the desired number of runs. Care should be taken that other limits (DAG concurrency, pool size etc) are not the bottleneck. This script doesn't help you in that regard. It is recommended to repeat the test at least 3 times (`--repeat=3`, the default) so that you can get somewhat-accurate variance on the reported timing numbers, but this can be disabled for longer runs if needed. """ # Turn on unit test mode so that we don't do any sleep() in the scheduler # loop - not needed on master, but this script can run against older # releases too! os.environ['AIRFLOW__CORE__UNIT_TEST_MODE'] = 'True' os.environ['AIRFLOW__CORE__DAG_CONCURRENCY'] = '500' # Set this so that dags can dynamically configure their end_date os.environ['AIRFLOW_BENCHMARK_MAX_DAG_RUNS'] = str(num_runs) os.environ['PERF_MAX_RUNS'] = str(num_runs) if pre_create_dag_runs: os.environ['AIRFLOW__SCHEDULER__USE_JOB_SCHEDULE'] = 'False' from airflow.jobs.scheduler_job import SchedulerJob from airflow.models.dagbag import DagBag from airflow.utils import db dagbag = DagBag() dags = [] with db.create_session() as session: pause_all_dags(session) for dag_id in dag_ids: dag = dagbag.get_dag(dag_id) dag.sync_to_db(session=session) dags.append(dag) reset_dag(dag, session) next_run_date = dag.normalize_schedule(dag.start_date or min(t.start_date for t in dag.tasks)) for _ in range(num_runs - 1): next_run_date = dag.following_schedule(next_run_date) end_date = dag.end_date or dag.default_args.get('end_date') if end_date != next_run_date: message = ( f"DAG {dag_id} has incorrect end_date ({end_date}) for number of runs! " f"It should be " f" {next_run_date}") sys.exit(message) if pre_create_dag_runs: create_dag_runs(dag, num_runs, session) ShortCircutExecutor = get_executor_under_test() executor = ShortCircutExecutor(dag_ids_to_watch=dag_ids, num_runs=num_runs) scheduler_job = SchedulerJob(dag_ids=dag_ids, do_pickle=False, executor=executor) executor.scheduler_job = scheduler_job total_tasks = sum(len(dag.tasks) for dag in dags) if 'PYSPY' in os.environ: pid = str(os.getpid()) filename = os.environ.get('PYSPY_O', 'flame-' + pid + '.html') os.spawnlp(os.P_NOWAIT, 'sudo', 'sudo', 'py-spy', 'record', '-o', filename, '-p', pid, '--idle') times = [] # Need a lambda to refer to the _latest_ value fo scheduler_job, not just # the initial one code_to_test = lambda: scheduler_job.run() # pylint: disable=unnecessary-lambda for count in range(repeat): gc.disable() start = time.perf_counter() code_to_test() times.append(time.perf_counter() - start) gc.enable() print("Run %d time: %.5f" % (count + 1, times[-1])) if count + 1 != repeat: with db.create_session() as session: for dag in dags: reset_dag(dag, session) executor.reset(dag_ids) scheduler_job = SchedulerJob(dag_ids=dag_ids, do_pickle=False, executor=executor) executor.scheduler_job = scheduler_job print() print() msg = "Time for %d dag runs of %d dags with %d total tasks: %.4fs" if len(times) > 1: print((msg + " (±%.3fs)") % ( num_runs, len(dags), total_tasks, statistics.mean(times), statistics.stdev(times) )) else: print(msg % (num_runs, len(dags), total_tasks, times[0])) print() print() if __name__ == "__main__": main() # pylint: disable=no-value-for-parameter
the-stack_0_19037
from tester.tester import Tester from tester.tester_params import TestingParameters from tester.learning_params import LearningParameters import os def rendezvous_config(num_times, num_agents): """ Function setting the experiment parameters and environment. Output ------ Tester : tester object Object containing the information necessary to run this experiment. """ base_file_path = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) joint_rm_file = os.path.join(base_file_path, 'experiments', 'gridworld_many_agent_rendezvous', '{}_agent_rendezvous_rm.txt'.format(num_agents)) local_rm_files = [] for i in range(num_agents): local_rm_string = os.path.join(base_file_path, 'experiments', 'gridworld_many_agent_rendezvous', 'coordination_experiment_agent{}.txt'.format(i+1)) local_rm_files.append(local_rm_string) step_unit = 1000 # configuration of testing params testing_params = TestingParameters() testing_params.test = True testing_params.test_freq = 1*step_unit testing_params.num_steps = step_unit # configuration of learning params learning_params = LearningParameters() learning_params.gamma = 0.9 learning_params.alpha = 0.8 learning_params.T = 50 learning_params.initial_epsilon = 0.0 # Set epsilon to zero to turn off epsilon-greedy exploration (only using boltzmann) learning_params.tabular_case = True learning_params.max_timesteps_per_task = step_unit learning_params.relearn_period = 30 learning_params.enter_loop = 10 tester = Tester(learning_params, testing_params) tester.total_steps = 150 * step_unit tester.min_steps = 1 tester.rm_test_file = joint_rm_file tester.rm_learning_file_list = local_rm_files tester.num_times = num_times tester.num_agents = num_agents # Set the environment settings for the experiment env_settings = dict() env_settings['Nr'] = 10 env_settings['Nc'] = 10 env_settings['initial_states'] = [0, 3, 20, 8, 90, 40, 70, 49, 96, 69] env_settings['rendezvous_loc'] = (3,4) env_settings['goal_locations'] = [(9,7), (7,9), (2,9), (9,9), (0,9), (7,0), (4,0), (5,0), (6,9), (8,0)] env_settings['p'] = 0.98 tester.env_settings = env_settings tester.experiment = 'rendezvous' return tester
the-stack_0_19039
import pythoncom import win32com.server.util import win32com.test.util import unittest class Persists: _public_methods_ = [ 'GetClassID', 'IsDirty', 'Load', 'Save', 'GetSizeMax', 'InitNew' ] _com_interfaces_ = [ pythoncom.IID_IPersistStreamInit ] def __init__(self): self.data = "abcdefg" self.dirty = 1 def GetClassID(self): return pythoncom.IID_NULL def IsDirty(self): return self.dirty def Load(self, stream): self.data = stream.Read(26) def Save(self, stream, clearDirty): stream.Write(self.data) if clearDirty: self.dirty = 0 def GetSizeMax(self): return 1024 def InitNew(self): pass class Stream: _public_methods_ = [ 'Read', 'Write' ] _com_interfaces_ = [ pythoncom.IID_IStream ] def __init__(self, data): self.data = data self.index = 0 def Read(self, amount): result = self.data[self.index : self.index + amount] self.index = self.index + amount return result def Write(self, data): self.data = data self.index = 0 return len(data) class StreamTest(win32com.test.util.TestCase): def _readWrite(self, data, write_stream, read_stream = None): if read_stream is None: read_stream = write_stream write_stream.Write(data) got = read_stream.Read(len(data)) self.assertEqual(data, got) def testit(self): mydata = 'abcdefghijklmnopqrstuvwxyz' # First test the objects just as Python objects... s = Stream(mydata) p = Persists() p.Load(s) p.Save(s, 0) self.assertEqual(s.data, mydata) # Wrap the Python objects as COM objects, and make the calls as if # they were non-Python COM objects. s2 = win32com.server.util.wrap(s, pythoncom.IID_IStream) p2 = win32com.server.util.wrap(p, pythoncom.IID_IPersistStreamInit) self._readWrite(mydata, s, s) self._readWrite(mydata, s, s2) self._readWrite(mydata, s2, s) self._readWrite(mydata, s2, s2) self._readWrite("string with\0a NULL", s2, s2) # reset the stream s.Write(mydata) p2.Load(s2) p2.Save(s2, 0) self.assertEqual(s.data, mydata) if __name__=='__main__': unittest.main()
the-stack_0_19040
"""Link user to organisation Revision ID: 4d8b254d7e7e Revises: 016571f41a20 Create Date: 2020-01-22 17:42:42.968199 """ # revision identifiers, used by Alembic. revision = '4d8b254d7e7e' down_revision = '016571f41a20' from alembic import op import sqlalchemy as sa from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import orm from app import db from app.users.models import AppUser Base = declarative_base() def upgrade(): Base.metadata.bind = op.get_bind() session = orm.Session(bind=Base.metadata.bind) op.add_column('app_user', sa.Column('organisation_id', sa.Integer(), nullable=True)) op.create_foreign_key('fk_user_organisation', 'app_user', 'organisation', ['organisation_id'], ['id']) # Populate with organisation 1 and make non-nullable users = session.query(AppUser).all() for user in users: user.organisation_id = 1 session.commit() op.alter_column('app_user', 'organisation_id', nullable=False) op.add_column('organisation', sa.Column('system_name', sa.String(length=50), nullable=True)) op.execute("""UPDATE organisation SET system_name = 'Baobab' WHERE id = 1""") op.execute("""UPDATE organisation SET system_name = 'EEML Portal' WHERE id = 2""") op.execute("""UPDATE organisation SET system_name = 'Baobab Dev' WHERE id = 3""") def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('organisation', 'system_name') op.drop_constraint('fk_user_organisation', 'app_user', type_='foreignkey') op.drop_column('app_user', 'organisation_id') # ### end Alembic commands ###
the-stack_0_19041
""" This file contains Visualizer class based on Facebook's visdom. Returns: Visualizer(): Visualizer class to display plots and images """ ## import os import time from matplotlib import pyplot as plt import numpy as np import pandas as pd import torchvision.utils as vutils from .plot import plot_confusion_matrix from .evaluate import get_values_for_pr_curve, get_values_for_roc_curve import seaborn as sns ## class Visualizer(): """ Visualizer wrapper based on Visdom. Returns: Visualizer: Class file. """ # pylint: disable=too-many-instance-attributes # Reasonable. ## def __init__(self, opt): self.name = opt.name self.opt = opt self.writer = None # use tensorboard for now if self.opt.display: from tensorboardX import SummaryWriter self.writer = SummaryWriter(log_dir=os.path.join("../tensorboard/skip_ganomaly/", opt.outf)) # -- # Dictionaries for plotting data and results. self.plot_data = None self.plot_res = None # -- # Path to train and test directories. self.img_dir = os.path.join(opt.outf, opt.name, 'train', 'images') self.tst_img_dir = os.path.join(opt.outf, opt.name, 'test', 'images') if not os.path.exists(self.img_dir): os.makedirs(self.img_dir) if not os.path.exists(self.tst_img_dir): os.makedirs(self.tst_img_dir) # -- # Log file. self.log_name = os.path.join(opt.outf, opt.name, 'loss_log.txt') # with open(self.log_name, "a") as log_file: # now = time.strftime("%c") # log_file.write('================ Training Loss (%s) ================\n' % now) now = time.strftime("%c") title = f'================ {now} ================\n' info = f'Anomalies, {opt.nz}, {opt.w_adv}, {opt.w_con}, {opt.w_lat}\n' self.write_to_log_file(text=title + info) ## @staticmethod def normalize(inp): """Normalize the tensor Args: inp ([FloatTensor]): Input tensor Returns: [FloatTensor]: Normalized tensor. """ return (inp - inp.min()) / (inp.max() - inp.min() + 1e-5) ## def plot_current_errors(self, epoch, total_steps, errors): """Plot current errros. Args: epoch (int): Current epoch counter_ratio (float): Ratio to plot the range between two epoch. errors (OrderedDict): Error for the current epoch. """ self.writer.add_scalars("Loss over time", errors, global_step=total_steps) ## def plot_performance(self, epoch, counter_ratio, performance, tag=None): """ Plot performance Args: epoch (int): Current epoch counter_ratio (float): Ratio to plot the range between two epoch. performance (OrderedDict): Performance for the current epoch. """ self.writer.add_scalars(tag if tag else "Performance Metrics", {k:v for k,v in performance.items() if ("conf_matrix" not in k and k != "Avg Run Time (ms/batch)")}, global_step=epoch) def plot_current_conf_matrix(self, epoch, cm, tag=None, save_path=None): plot = plot_confusion_matrix(cm, normalize=False, save_path=save_path) self.writer.add_figure(tag if tag else "Confusion Matrix", plot, global_step=epoch) ## def print_current_errors(self, epoch, errors): """ Print current errors. Args: epoch (int): Current epoch. errors (OrderedDict): Error for the current epoch. batch_i (int): Current batch batch_n (int): Total Number of batches. """ # message = ' [%d/%d] ' % (epoch, self.opt.niter) message = ' Loss: [%d/%d] ' % (epoch, self.opt.niter) for key, val in errors.items(): message += '%s: %.3f ' % (key, val) print(message) with open(self.log_name, "a") as log_file: log_file.write('%s\n' % message) ## def write_to_log_file(self, text): with open(self.log_name, "a") as log_file: log_file.write('%s\n' % text) ## def print_current_performance(self, performance, best): """ Print current performance results. Args: performance ([OrderedDict]): Performance of the model best ([int]): Best performance. """ message = ' ' #print(performance) for key, val in performance.items(): if key == "conf_matrix": message += '%s: %s ' % (key, val) else: message += '%s: %.3f ' % (key, val) message += 'max AUC: %.3f' % best print(message) self.write_to_log_file(text=message) def display_current_images(self, reals, fakes, fixed, train_or_test="train", global_step=0): """ Display current images. Args: epoch (int): Current epoch counter_ratio (float): Ratio to plot the range between two epoch. reals ([FloatTensor]): Real Image fakes ([FloatTensor]): Fake Image fixed ([FloatTensor]): Fixed Fake Image """ reals = self.normalize(reals.cpu().numpy()) fakes = self.normalize(fakes.cpu().numpy()) # fixed = self.normalize(fixed.cpu().numpy()) self.writer.add_images("Reals from {} step: ".format(str(train_or_test)), reals, global_step=global_step) self.writer.add_images("Fakes from {} step: ".format(str(train_or_test)), fakes, global_step=global_step) def plot_pr_curve(self, y_trues, y_preds, thresholds, global_step, tag=None): tp_counts, fp_counts, tn_counts, fn_counts, precisions, recalls, n_thresholds = get_values_for_pr_curve(y_trues, y_preds, thresholds) self.writer.add_pr_curve_raw(tag if tag else "Precision_recall_curve", true_positive_counts=tp_counts, false_positive_counts=fp_counts, true_negative_counts=tn_counts, false_negative_counts= fn_counts, precision=precisions, recall=recalls, num_thresholds=n_thresholds, global_step=global_step) def save_current_images(self, epoch, reals, fakes, fixed): """ Save images for epoch i. Args: epoch ([int]) : Current epoch reals ([FloatTensor]): Real Image fakes ([FloatTensor]): Fake Image fixed ([FloatTensor]): Fixed Fake Image """ vutils.save_image(reals, '%s/reals.png' % self.img_dir, normalize=True) vutils.save_image(fakes, '%s/fakes.png' % self.img_dir, normalize=True) vutils.save_image(fixed, '%s/fixed_fakes_%03d.png' %(self.img_dir, epoch+1), normalize=True) def plot_histogram(self, y_trues, y_preds, threshold, global_step=1, save_path=None, tag=None): scores = dict() scores["scores"] = y_preds scores["labels"] = y_trues hist = pd.DataFrame.from_dict(scores) plt.ion() # Filter normal and abnormal scores. abn_scr = hist.loc[hist.labels == 1]['scores'] nrm_scr = hist.loc[hist.labels == 0]['scores'] # Create figure and plot the distribution. fig = plt.figure(figsize=(4,4)) sns.distplot(nrm_scr, label=r'Normal Scores') sns.distplot(abn_scr, label=r'Abnormal Scores') plt.axvline(threshold, 0, 1, label='threshold', color="red") plt.legend() plt.yticks([]) plt.xlabel(r'Anomaly Scores') plt.savefig(save_path) self.writer.add_figure(tag if tag else "Histogram", fig, global_step) def plot_roc_curve(self, y_trues, y_preds, global_step=1, tag=None, save_path=None): fpr, tpr, roc_auc = get_values_for_roc_curve(y_trues, y_preds) fig = plt.figure(figsize=(4,4)) lw = 2 plt.plot(fpr, tpr, color='darkorange', lw=lw, label='(AUC = %0.2f)' % (roc_auc)) plt.plot([0, 1], [1, 0], color='navy', lw=1, linestyle=':') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") if save_path: plt.savefig(save_path) self.writer.add_figure(tag if tag else "ROC-Curve", fig, global_step)
the-stack_0_19043
#!/usr/bin/env python # coding: utf-8 from __future__ import print_function from __future__ import division from __future__ import absolute_import from __future__ import unicode_literals # Command line : # python -m benchmark.S3D2.FF-Prior import os import logging from config import SEED from config import _ERROR from config import _TRUTH import numpy as np import pandas as pd from visual.misc import set_plot_config set_plot_config() from ..common import load_estimations from ..common import load_conditional_estimations from utils.log import set_logger from utils.log import flush from utils.log import print_line from utils.model import get_model from utils.model import train_or_load_classifier from utils.evaluation import evaluate_classifier from utils.evaluation import evaluate_neural_net from utils.evaluation import evaluate_config from utils.evaluation import evaluate_summary_computer from utils.evaluation import evaluate_minuit from utils.evaluation import evaluate_estimator from utils.evaluation import evaluate_conditional_estimation from utils.images import gather_images from visual.misc import plot_params from problem.synthetic3D import S3D2Config as Config from problem.synthetic3D import get_minimizer from problem.synthetic3D import get_minimizer_no_nuisance from problem.synthetic3D import Generator from problem.synthetic3D import Parameter from problem.synthetic3D import param_generator from problem.synthetic3D import S3D2NLL as NLLComputer from visual.special.synthetic3D import plot_nll_around_min from model.feature_filter import FeatureModel from ..my_argparser import FF_parse_args from archi.classic import L4 as ARCHI from .common import N_BINS DATA_NAME = 'S3D2' BENCHMARK_NAME = DATA_NAME+'-prior' N_ITER = 30 def build_model(args, i_cv): model = get_model(args, FeatureModel) model.set_info(DATA_NAME, BENCHMARK_NAME, i_cv) return model # ===================================================================== # MAIN # ===================================================================== def main(): # BASIC SETUP logger = set_logger() args = FF_parse_args(main_description="Training launcher for Feature Filter on GG benchmark") logger.info(args) flush(logger) # INFO model = build_model(args, -1) os.makedirs(model.results_directory, exist_ok=True) config = Config() config_table = evaluate_config(config) config_table.to_csv(os.path.join(model.results_directory, 'config_table.csv')) # RUN if not args.conditional_only: eval_table = get_eval_table(args, model.results_directory) if not args.estimate_only: eval_conditional = get_eval_conditional(args, model.results_directory) if not args.estimate_only and not args.conditional_only: eval_table = pd.concat([eval_table, eval_conditional], axis=1) # EVALUATION print_line() print_line() print(eval_table) print_line() print_line() eval_table.to_csv(os.path.join(model.results_directory, 'evaluation.csv')) gather_images(model.results_directory) def get_eval_table(args, results_directory): logger = logging.getLogger() if args.load_run: logger.info(f'Loading previous runs [{args.start_cv},{args.end_cv}[') estimations = load_estimations(results_directory, start_cv=args.start_cv, end_cv=args.end_cv) else: logger.info(f'Running runs [{args.start_cv},{args.end_cv}[') estimations = [run_estimation(args, i_cv) for i_cv in range(args.start_cv, args.end_cv)] estimations = pd.concat(estimations, ignore_index=True) estimations.to_csv(os.path.join(results_directory, 'estimations.csv')) # EVALUATION eval_table = evaluate_estimator(Config.INTEREST_PARAM_NAME, estimations) print_line() print_line() print(eval_table) print_line() print_line() eval_table.to_csv(os.path.join(results_directory, 'estimation_evaluation.csv')) return eval_table def get_eval_conditional(args, results_directory): logger = logging.getLogger() if args.load_run: logger.info(f'Loading previous runs [{args.start_cv},{args.end_cv}[') conditional_estimations = load_conditional_estimations(results_directory, start_cv=args.start_cv, end_cv=args.end_cv) else: logger.info(f'Running runs [{args.start_cv},{args.end_cv}[') conditional_estimations = [run_conditional_estimation(args, i_cv) for i_cv in range(args.start_cv, args.end_cv)] conditional_estimations = pd.concat(conditional_estimations, ignore_index=True) conditional_estimations.to_csv(os.path.join(results_directory, 'conditional_estimations.csv')) # EVALUATION eval_conditional = evaluate_conditional_estimation(conditional_estimations, interest_param_name=Config.INTEREST_PARAM_NAME) print_line() print_line() print(eval_conditional) print_line() print_line() eval_conditional.to_csv(os.path.join(results_directory, 'conditional_evaluation.csv')) return eval_conditional def run_estimation(args, i_cv): logger = logging.getLogger() print_line() logger.info('Running iter n°{}'.format(i_cv)) print_line() result_row = {'i_cv': i_cv} # LOAD/GENERATE DATA logger.info('Set up data generator') config = Config() seed = SEED + i_cv * 5 train_generator = Generator(seed) valid_generator = Generator(seed+1) test_generator = Generator(seed+2) # SET MODEL logger.info('Set up classifier') model = build_model(args, i_cv) os.makedirs(model.results_path, exist_ok=True) flush(logger) # TRAINING / LOADING train_or_load_classifier(model, train_generator, config.CALIBRATED, config.N_TRAINING_SAMPLES, retrain=args.retrain) # CHECK TRAINING logger.info('Generate validation data') X_valid, y_valid, w_valid = valid_generator.generate(*config.CALIBRATED, n_samples=config.N_VALIDATION_SAMPLES, no_grad=True) result_row.update(evaluate_classifier(model, X_valid, y_valid, w_valid, prefix='valid')) # MEASUREMENT evaluate_summary_computer(model, X_valid, y_valid, w_valid, n_bins=N_BINS, prefix='valid_', suffix='') iter_results = [run_estimation_iter(model, result_row, i, test_config, valid_generator, test_generator, n_bins=N_BINS) for i, test_config in enumerate(config.iter_test_config())] result_table = pd.DataFrame(iter_results) result_table.to_csv(os.path.join(model.results_path, 'estimations.csv')) logger.info('Plot params') param_names = config.PARAM_NAMES for name in param_names: plot_params(name, result_table, title=model.full_name, directory=model.results_path) logger.info('DONE') return result_table def run_estimation_iter(model, result_row, i_iter, config, valid_generator, test_generator, n_bins=N_BINS): logger = logging.getLogger() logger.info('-'*45) logger.info(f'iter : {i_iter}') flush(logger) iter_directory = os.path.join(model.results_path, f'iter_{i_iter}') os.makedirs(iter_directory, exist_ok=True) result_row['i'] = i_iter result_row['n_test_samples'] = config.N_TESTING_SAMPLES suffix = f'-mu={config.TRUE.mu:1.2f}_r={config.TRUE.r}_lambda={config.TRUE.lam}' logger.info('Generate testing data') test_generator.reset() X_test, y_test, w_test = test_generator.generate(*config.TRUE, n_samples=config.N_TESTING_SAMPLES, no_grad=True) # PLOT SUMMARIES evaluate_summary_computer(model, X_test, y_test, w_test, n_bins=n_bins, prefix='', suffix=suffix, directory=iter_directory) logger.info('Set up NLL computer') compute_summaries = model.summary_computer(n_bins=n_bins) compute_nll = NLLComputer(compute_summaries, valid_generator, X_test, w_test, config=config) # NLL PLOTS plot_nll_around_min(compute_nll, config.TRUE, iter_directory, suffix) # MINIMIZE NLL logger.info('Prepare minuit minimizer') minimizer = get_minimizer(compute_nll, config.CALIBRATED, config.CALIBRATED_ERROR) result_row.update(evaluate_minuit(minimizer, config.TRUE, iter_directory, suffix=suffix)) return result_row.copy() def run_conditional_estimation(args, i_cv): logger = logging.getLogger() print_line() logger.info('Running iter n°{}'.format(i_cv)) print_line() result_row = {'i_cv': i_cv} # LOAD/GENERATE DATA logger.info('Set up data generator') config = Config() seed = SEED + i_cv * 5 train_generator = Generator(seed) valid_generator = Generator(seed+1) test_generator = Generator(seed+2) # SET MODEL logger.info('Set up classifier') model = build_model(args, i_cv) os.makedirs(model.results_path, exist_ok=True) flush(logger) # TRAINING / LOADING train_or_load_classifier(model, train_generator, config.CALIBRATED, config.N_TRAINING_SAMPLES, retrain=args.retrain) # CHECK TRAINING logger.info('Generate validation data') X_valid, y_valid, w_valid = valid_generator.generate(*config.CALIBRATED, n_samples=config.N_VALIDATION_SAMPLES, no_grad=True) result_row.update(evaluate_classifier(model, X_valid, y_valid, w_valid, prefix='valid')) # MEASUREMENT evaluate_summary_computer(model, X_valid, y_valid, w_valid, n_bins=N_BINS, prefix='valid_', suffix='') iter_results = [run_conditional_estimation_iter(model, result_row, i, test_config, valid_generator, test_generator, n_bins=N_BINS) for i, test_config in enumerate(config.iter_test_config())] conditional_estimate = pd.concat(iter_results) conditional_estimate['i_cv'] = i_cv fname = os.path.join(model.results_path, "conditional_estimations.csv") conditional_estimate.to_csv(fname) logger.info('DONE') return conditional_estimate def run_conditional_estimation_iter(model, result_row, i_iter, config, valid_generator, test_generator, n_bins=N_BINS): logger = logging.getLogger() logger.info('-'*45) logger.info(f'iter : {i_iter}') flush(logger) iter_directory = os.path.join(model.results_path, f'iter_{i_iter}') os.makedirs(iter_directory, exist_ok=True) logger.info('Generate testing data') test_generator.reset() X_test, y_test, w_test = test_generator.generate(*config.TRUE, n_samples=config.N_TESTING_SAMPLES, no_grad=True) # SUMMARIES logger.info('Set up NLL computer') compute_summaries = model.summary_computer(n_bins=n_bins) compute_nll = NLLComputer(compute_summaries, valid_generator, X_test, w_test, config=config) # MEASURE STAT/SYST VARIANCE logger.info('MEASURE STAT/SYST VARIANCE') conditional_results = make_conditional_estimation(compute_nll, config) fname = os.path.join(iter_directory, "no_nuisance.csv") conditional_estimate = pd.DataFrame(conditional_results) conditional_estimate['i'] = i_iter conditional_estimate.to_csv(fname) return conditional_estimate def make_conditional_estimation(compute_nll, config): results = [] for j, nuisance_parameters in enumerate(config.iter_nuisance()): compute_nll_no_nuisance = lambda mu : compute_nll(*nuisance_parameters, mu) minimizer = get_minimizer_no_nuisance(compute_nll_no_nuisance, config.CALIBRATED, config.CALIBRATED_ERROR) results_row = evaluate_minuit(minimizer, config.TRUE, do_hesse=False) results_row['j'] = j for name, value in zip(config.CALIBRATED.nuisance_parameters_names, nuisance_parameters): results_row[name] = value results_row[name+_TRUTH] = config.TRUE[name] results.append(results_row) print(f"ncalls = {results_row['ncalls']}", flush=True) return results if __name__ == '__main__': main()
the-stack_0_19045
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A very simple MNIST classifier. See extensive documentation at https://www.tensorflow.org/get_started/mnist/beginners """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf FLAGS = None def main(_): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.matmul(x, W) + b # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) # The raw formulation of cross-entropy, # # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)), # reduction_indices=[1])) # # can be numerically unstable. # # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw # outputs of 'y', and then average across the batch. cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y)) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession() tf.global_variables_initializer().run() # Train for _ in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # Test trained model correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='../cache/mnist', help='Directory for storing input data') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
the-stack_0_19048
# C2SMART Lab, NYU # NCHRP 03-137 # @file SSM_DRAC_CorrCoef.py # @author Fan Zuo # @author Di Yang # @date 2020-10-18 import pandas as pd import numpy as np from shapely.geometry import Polygon import math import time import multiprocessing as mp import glob from scipy.stats import spearmanr from scipy.stats import kde import matplotlib.pyplot as plt import matplotlib as mpl # 2 mpss = 6.56168 fpss # 3 mpss = 9.84252 fpss # 4 mpss = 13.1234 fpss def main(dataset, dataset_ref, time_interval, threshold, ssm_type, start_point, end_point): """ The main processing function of estimating the correlation coefficient. Returns the correlation coefficient of number of Surrogated Safety Measurements (SSM) between target and reference(100MPR). Keyword arguments: >>> dataset: The generated SSM from the BSM data. (Other MPR file, str) >>> dataset_ref: The generated SSM from the BSM data for comparison usage. (the 100MPR file, str) >>> time_interval: The time window that split the dataset, generated from SSM_DRAC_Opt.py. (5/10/15 min, int) >>> threshold: The threshold of identifying the unsafe movements, generated from SSM_DRAC_Opt.py. (float) >>> ssm_type: The type of the SSM output. >>> start_point: The start time of the dataset (second) >>> end_point: The end time of the dataset (second) RETURN: Spearmans correlation coefficient of number of SSM events between target and reference data """ if ssm_type == '1': # Read the whole file using useful columns. df = pd.read_csv(dataset, usecols=['transtime', 'Avg_Acceleration']) df = df.sort_values(by=['transtime']) # Select rows with acceleration lower than threshold # If the start time is not from 0, user can use the following sentence to modify the starting time point df = df[df.transtime > start_point] # Filter the the data by threshold, select rows with acceleration lower than threshold df = df[df.Avg_Acceleration < (-1 * threshold * 3.28)] # Define the time interval from minutes to seconds time_jump = time_interval * 60 # Define the time ranges and bins, be careful of number of words in the file name ranges = np.arange(start_point, end_point+1, time_jump).tolist() df_sim = df.groupby(pd.cut(df.transtime, ranges)).count() df_sim_corr = df_sim['transtime'].tolist() # Read the whole reference file using useful columns. df_ref = pd.read_csv(dataset_ref, usecols=['transtime', 'X', 'Y', 'Avg_Acceleration']) df_ref = df.sort_values(by=['transtime']) # Select rows with acceleration lower than threshold # If the start time is not from 0, user can use the following sentence to modify the starting time point df_ref = df_ref[df_ref.transtime > start_point] # Filter the the data by threshold df_ref = df_ref[df_ref.Avg_Acceleration < (-1 * threshold * 3.28)] # Define the time interval from minutes to seconds df_uni_ref = df_ref time_jump = time_interval * 60 # Define the time ranges and bins, be careful of number of words in the file name ranges = np.arange(start_point, end_point+1, time_jump).tolist() df_sim_ref = df_uni_ref.groupby(pd.cut(df_uni_ref.transtime, ranges)).count() df_sim_corr_ref = df_sim_ref['transtime'].tolist() elif ssm_type == '2': # Read the whole file using useful columns. df = pd.read_csv(dataset, usecols=['Time', 'DRAC']) df = df.sort_values(by=['Time']) # Select rows with acceleration lower than threshold # If the start time is not from 0, user can use the following sentence to modify the starting time point df = df[df.Time > start_point] # Filter the the data by threshold df = df[df.DRAC > (threshold * 3.28)] # Define the time interval from minutes to seconds time_jump = time_interval * 60 # Define the time ranges and bins, be careful of number of words in the file name ranges = np.arange(start_point, end_point + 1, time_jump).tolist() df_sim = df.groupby(pd.cut(df.Time, ranges)).count() df_sim_corr = df_sim['Time'].tolist() # Read the whole reference file using useful columns. df_ref = pd.read_csv(dataset_ref, usecols=['Time', 'DRAC']) df_ref = df_ref.sort_values(by=['Time']) # Select rows with acceleration lower than threshold # If the start time is not from 0, user can use the following sentence to modify the starting time point df_ref = df_ref[df_ref.Time > start_point] # Filter the the data by threshold df_ref = df_ref[df_ref.DRAC > (threshold * 3.28)] # Define the time interval from minutes to seconds df_uni_ref = df_ref time_jump = time_interval * 60 # Define the time ranges and bins, be careful of number of words in the file name ranges = np.arange(start_point, end_point + 1, time_jump).tolist() df_sim_ref = df_uni_ref.groupby(pd.cut(df_uni_ref.Time, ranges)).count() df_sim_corr_ref = df_sim_ref['Time'].tolist() elif ssm_type == '3': # Read the whole file using useful columns. df = pd.read_csv(dataset, usecols=['Time']) df = df.sort_values(by=['Time']) # Select rows with acceleration lower than threshold # If the start time is not from 0, user can use the following sentence to modify the starting time point df = df[df.Time > start_point] # Define the time interval from minutes to seconds time_jump = time_interval * 60 # Define the time ranges and bins, be careful of number of words in the file name ranges = np.arange(start_point, end_point + 1, time_jump).tolist() df_sim = df.groupby(pd.cut(df.Time, ranges)).count() df_sim_corr = df_sim['Time'].tolist() # Read the whole reference file using useful columns. df_ref = pd.read_csv(dataset_ref, usecols=['Time']) df_ref = df_ref.sort_values(by=['Time']) # Select rows with acceleration lower than threshold # If the start time is not from 0, user can use the following sentence to modify the starting time point df_ref = df_ref[df_ref.Time > start_point] # Define the time interval from minutes to seconds df_uni_ref = df_ref time_jump = time_interval * 60 # Define the time ranges and bins, be careful of number of words in the file name ranges = np.arange(start_point, end_point + 1, time_jump).tolist() df_sim_ref = df_uni_ref.groupby(pd.cut(df_uni_ref.Time, ranges)).count() df_sim_corr_ref = df_sim_ref['Time'].tolist() print (df_sim_corr, len(df_sim_corr)) print (df_sim_corr_ref, len(df_sim_corr_ref)) # calculate spearman's correlation coef, p = spearmanr(df_sim_corr, df_sim_corr_ref) print('For time interval', time_interval, 'min, DRAC threshold', drac_threshold, ', spearmans correlation coefficient: %.3f' % coef) # interpret the significance alpha = 0.05 if p > alpha: print('Samples are uncorrelated (fail to reject H0) p=%.3f' % p) else: print('Samples are correlated (reject H0) p=%.3f' % p) return(coef) if __name__ == "__main__": program_st = time.time() print("******************* Start Program *******************") print("Start time %s" % (time.strftime('%X', time.localtime(program_st)))) s_t = input("Please select the type of the SSM (1 - Hard Braking, 2 - DRAC, 3 - TTCD):") time_window = int(input("Please input the optimal time interval:")) opt_threshold = float(input("Please input the optimal threshold:")) ssm_file_100 = input("Please input the name of the 100MPR SSM file(*.csv):") ssm_file_75 = input("Please input the name of the 75MPR SSM file(*.csv):") ssm_file_50 = input("Please input the name of the 50MPR SSM file(*.csv):") ssm_file_20 = input("Please input the name of the 20MPR SSM file(*.csv):") ssm_file_5 = input("Please input the name of the 5MPR SSM file(*.csv):") Start_Point = float("{:.1f}".format(input("Please input the start time of the sub-interval(int): "))) End_Point = float("{:.1f}".format(input("Please input the end time of the sub-interval(int): "))) Diff_100_75 = main(ssm_file_75, ssm_file_100, time_window, opt_threshold, s_t, Start_Point, End_Point) Diff_100_50 = main(ssm_file_50, ssm_file_100, time_window, opt_threshold, s_t, Start_Point, End_Point) Diff_100_20 = main(ssm_file_20, ssm_file_100, time_window, opt_threshold, s_t, Start_Point, End_Point) Diff_100_5 = main(ssm_file_5, ssm_file_100, time_window, opt_threshold, s_t, Start_Point, End_Point) Diff_result = [Diff_100_75, Diff_100_50, Diff_100_20, Diff_100_5] print(Diff_result) x_label = ["100% & 75%", "100% & 50%", "100% & 20%", "100% & 5%"] x_pos = [i for i, _ in enumerate(x_label)] mpl.rcParams['font.size'] = 18.0 mpl.rcParams['axes.titlesize'] = 18.0 csfont = {'fontname': 'Times New Roman'} plt.plot(x_pos, Diff_result, 'o-') for x,y in zip(x_pos,Diff_result): label = "{:.2f}".format(y) plt.annotate(label, # this is the text (x,y), # this is the point to label textcoords="offset points", # how to position the text xytext=(0,10), # distance from text to points (x,y) ha='center', va='bottom', size = 16,**csfont) plt.xlabel("Market Penetration Rate Pair",**csfont) plt.ylabel("Correlation Coefficient",**csfont) plt.title("Correlation coefficient between\n 100% MPR and each MPR level",**csfont) plt.grid() plt.xticks(x_pos, x_label,**csfont) plt.yticks(**csfont) plt.ylim(0, 1) figure = plt.gcf() figure.set_size_inches(7, 6) # Adjust the output name if there are multiple results will be generated. plt.savefig('CorrCoef_Typ%s.png'%(s_t),bbox_inches='tight',dpi=100) plt.show() ed_time = time.time() print("End time %s (%f)" % (time.strftime('%X', time.localtime(ed_time)), (ed_time - program_st))) print("******************* End Program *******************")
the-stack_0_19049
# adds gdb "info registers eflags" feature to lldb import lldb # See: http://en.wikipedia.org/wiki/FLAGS_register # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 FLAGS = [ 'CF', '', 'PF', '', 'AF', '', 'ZF', 'SF', 'TF', 'IF', 'DF', 'OF', 'IOPL', 'IOPL', 'NT', '', 'RF', 'VM', 'AC', 'VIF', 'VIP', 'ID' ] def ifl(debugger, command, result, internal_dict): ci = debugger.GetCommandInterpreter() res = lldb.SBCommandReturnObject() ci.HandleCommand('register read --format b rflags', res) flags = str(res.GetOutput())[::-1].strip() syms = [] for i in range(0,21): if flags[i] == '1' and FLAGS[i] != '': syms.append(FLAGS[i]) res = lldb.SBCommandReturnObject() ci.HandleCommand('register read --format x rflags', res) print('rflags: %s %s' % (res.GetOutput()[11:-1], str(syms))) def __lldb_init_module(debugger, internal_dict): debugger.HandleCommand('command script add -f ifl.ifl ifl')
the-stack_0_19050
from algorithms.utils import read_fasta, BLOSUM62 import numpy as np def main_GCON(s, t, scoring_matrix, gap): """ Global Alignment with Constant Gap Penalty. Inputs: Two protein strings s and t in FASTA format. Return: The maximum alignment score between s and t using BLOSUM62 scoring matrix and a constant gap penalty equal to 5. """ neg_infinity = -999999 M = np.zeros((len(s) + 1, len(t) + 1), dtype=int) # main table L = np.full((len(s) + 1, len(t) + 1), neg_infinity, dtype=int) # lower scores U = np.full((len(s) + 1, len(t) + 1), neg_infinity, dtype=int) # upper scores # setting constant gap penalty M[1:, 0] = gap M[0, 1:] = gap for i in range(1, len(s) + 1): for j in range(1, len(t) + 1): # row horizontal L[i][j] = max([M[i - 1][j] + gap, L[i - 1][j]]) # column vertical U[i][j] = max([M[i][j - 1] + gap, U[i][j - 1]]) # diagonal M[i][j] = max([M[i - 1][j - 1] + scoring_matrix.loc[s[i - 1], t[j - 1]], L[i][j], U[i][j]]) # bottom-right corner of the M is the max score. return M[-1][-1] if __name__ == '__main__': # pragma: no cover s, t = read_fasta('../datasets/GCON_1.txt') # pragma: no cover max_score = main_GCON(s, t, BLOSUM62(), -5) # pragma: no cover print(max_score) # pragma: no cover
the-stack_0_19052
import os import xml.etree.ElementTree as ET from PIL import Image from tqdm import tqdm from yolo import YOLO from utils.utils import get_classes from utils.utils_map import get_coco_map, get_map if __name__ == "__main__": ''' Recall和Precision不像AP是一个面积的概念,在门限值不同时,网络的Recall和Precision值是不同的。 map计算结果中的Recall和Precision代表的是当预测时,门限置信度为0.5时,所对应的Recall和Precision值。 此处获得的./map_out/detection-results/里面的txt的框的数量会比直接predict多一些,这是因为这里的门限低, 目的是为了计算不同门限条件下的Recall和Precision值,从而实现map的计算。 ''' #------------------------------------------------------------------------------------------------------------------# # map_mode用于指定该文件运行时计算的内容 # map_mode为0代表整个map计算流程,包括获得预测结果、获得真实框、计算VOC_map。 # map_mode为1代表仅仅获得预测结果。 # map_mode为2代表仅仅获得真实框。 # map_mode为3代表仅仅计算VOC_map。 # map_mode为4代表利用COCO工具箱计算当前数据集的0.50:0.95map。需要获得预测结果、获得真实框后并安装pycocotools才行 #-------------------------------------------------------------------------------------------------------------------# map_mode = 0 #-------------------------------------------------------# # 此处的classes_path用于指定需要测量VOC_map的类别 # 一般情况下与训练和预测所用的classes_path一致即可 #-------------------------------------------------------# classes_path = 'model_data/my_classes.txt' #-------------------------------------------------------# # MINOVERLAP用于指定想要获得的mAP0.x # 比如计算mAP0.75时,可以设定MINOVERLAP = 0.75。 #-------------------------------------------------------# MINOVERLAP = 0.5 #-------------------------------------------------------# # map_vis用于指定是否开启VOC_map计算的可视化。开启的话可能导致程序没反应 #-------------------------------------------------------# map_vis = False #-------------------------------------------------------# # 指向VOC数据集所在的文件夹 # 默认指向根目录下的VOC数据集 #-------------------------------------------------------# VOCdevkit_path = 'VOCdevkit' #-------------------------------------------------------# # 结果输出的文件夹,默认为map_out #-------------------------------------------------------# map_out_path = 'map_out' image_ids = open(os.path.join(VOCdevkit_path, "VOC2007/ImageSets/Main/test.txt")).read().strip().split() if not os.path.exists(map_out_path): os.makedirs(map_out_path) if not os.path.exists(os.path.join(map_out_path, 'ground-truth')): os.makedirs(os.path.join(map_out_path, 'ground-truth')) if not os.path.exists(os.path.join(map_out_path, 'detection-results')): os.makedirs(os.path.join(map_out_path, 'detection-results')) if not os.path.exists(os.path.join(map_out_path, 'images-optional')): os.makedirs(os.path.join(map_out_path, 'images-optional')) class_names, _ = get_classes(classes_path) if map_mode == 0 or map_mode == 1: print("Load model.") yolo = YOLO(confidence = 0.001, nms_iou = 0.5) print("Load model done.") print("Get predict result.") for image_id in tqdm(image_ids): image_path = os.path.join(VOCdevkit_path, "VOC2007/JPEGImages/"+image_id+".jpg") image = Image.open(image_path) if map_vis: image.save(os.path.join(map_out_path, "images-optional/" + image_id + ".jpg")) yolo.get_map_txt(image_id, image, class_names, map_out_path) print("Get predict result done.") if map_mode == 0 or map_mode == 2: print("Get ground truth result.") for image_id in tqdm(image_ids): with open(os.path.join(map_out_path, "ground-truth/"+image_id+".txt"), "w") as new_f: root = ET.parse(os.path.join(VOCdevkit_path, "VOC2007/Annotations/"+image_id+".xml")).getroot() for obj in root.findall('object'): difficult_flag = False if obj.find('difficult')!=None: difficult = obj.find('difficult').text if int(difficult)==1: difficult_flag = True obj_name = obj.find('name').text if obj_name not in class_names: continue bndbox = obj.find('bndbox') left = bndbox.find('xmin').text top = bndbox.find('ymin').text right = bndbox.find('xmax').text bottom = bndbox.find('ymax').text if difficult_flag: new_f.write("%s %s %s %s %s difficult\n" % (obj_name, left, top, right, bottom)) else: new_f.write("%s %s %s %s %s\n" % (obj_name, left, top, right, bottom)) print("Get ground truth result done.") if map_mode == 0 or map_mode == 3: print("Get map.") get_map(MINOVERLAP, True, path = map_out_path) print("Get map done.") if map_mode == 4: print("Get map.") get_coco_map(class_names = class_names, path = map_out_path) print("Get map done.")
the-stack_0_19054
from collections import defaultdict import subprocess import lsst_camera.cp_pipe_drivers as cpd repo = '/lsstdata/offline/teststand/BOT/gen2repo' run = '6790D' imageType = 'FLAT' raftName = 'R22' selection = (f'imageType=="{imageType}" and run=="{run}" ' f'and raftName="{raftName}"') visit_dict = cpd.VisitDict(repo, selection) visits = sorted(list(visit_dict.keys())) visit_pairs = defaultdict(list) for visit in visits: my_df = visit_dict.df.query(f'visit=={visit}') if len(my_df) == 9: row = my_df.query(f'detectorName=="S00"').iloc[0] visit_pairs[(row['filter'], row.expTime)].append(row.visit) visit_pair_list = [] for items in visit_pairs.values(): if len(items) != 2: continue visit_pair_list.append(','.join([str(_) for _ in items])) visit_pair_list = sorted(visit_pair_list) visit_list = ' '.join(visit_pair_list[::4]) outdir = 'calib_products' rerun_folder = 'bf_kernels' command = (f'makeBrighterFatterKernel.py {outdir} --rerun {rerun_folder} ' f'--longlog --id raftName={raftName} ' f'--visit-pairs {visit_list} ' '--config isr.doCrosstalk=False isr.doBias=True ' 'isr.doDark=True level=AMP --clobber-config ' '--calib CALIB') print(command) subprocess.check_call(command, shell=True)
the-stack_0_19055
# first use of slow_net and fast_net import nengo from nengo import spa from nengo.dists import Exponential, Choice, Uniform from mem_net import MemNet from adder_env import create_adder_env # Note that D is equal to the dimensions of the addend from constants import * import numpy as np from collections import OrderedDict import itertools import ipdb ## Generate the vocab awkwardly rng = np.random.RandomState(0) vocab = spa.Vocabulary(D, rng=rng) number_dict = {"ONE": 1, "TWO": 2, "THREE": 3, "FOUR": 4, "FIVE": 5, "SIX": 6, "SEVEN": 7, "EIGHT": 8, "NINE": 9} number_ordered = OrderedDict(sorted(number_dict.items(), key=lambda t: t[1])) # This should be set to 10 for the actual final test number_range = 4 number_list = number_ordered.keys() def nearest(d): from scipy.linalg import sqrtm p = nengo.dists.UniformHypersphere(surface=True).sample(d, d) return np.dot(p, np.linalg.inv(sqrtm(np.dot(p.T, p)))) orth_vecs = nearest(D) for i in range(number_range): print(number_list[i]) vocab.add(number_list[i], orth_vecs[i]) join_num = "+".join(number_list[0:number_range]) q_list = [] ans_list = [] for val in itertools.product(number_list, number_list): # Filter for max count if val[0] >= val[1]: ans_val = number_dict[val[0]] + number_dict[val[1]] if ans_val <= number_range: q_list.append( np.concatenate( (vocab.parse(val[0]).v, vocab.parse(val[1]).v) ) ) ans_list.append( vocab.parse(number_list[ans_val-1]).v ) print("%s+%s=%s" %(val[0], val[1], number_list[ans_val-1])) # TESTING q_list[0] = q_list[3] ans_list[0] = ans_list[3] ## Generate specialised vocabs state_vocab = spa.Vocabulary(less_D) state_vocab.parse("RUN+NONE") with nengo.Network(label="Root Net", seed=0) as model: env = create_adder_env(q_list, ans_list, state_vocab.parse("NONE").v, vocab, ans_dur=0.1) with spa.SPA(vocabs=[vocab, state_vocab], label="Count Net", seed=0) as slow_net: slow_net.q1 = spa.State(D, vocab=vocab) slow_net.q2 = spa.State(D, vocab=vocab) slow_net.answer = spa.State(D, vocab=vocab) slow_net.op_state = MemNet(less_D, state_vocab, label="op_state") input_keys = number_list[:-1] output_keys = number_list[1:] ### Result circuit ## Incrementing memory slow_net.res_assoc = spa.AssociativeMemory(input_vocab=vocab, output_vocab=vocab, input_keys=input_keys, output_keys=output_keys, wta_output=True) ## Starting memory slow_net.count_res = MemNet(D, vocab, label="count_res") ## Increment result memory slow_net.res_mem = MemNet(D, vocab, label="res_mem") ## Cleanup memory slow_net.rmem_assoc = spa.AssociativeMemory(input_vocab=vocab, wta_output=True) ### Total circuit ## Total memory slow_net.tot_assoc = spa.AssociativeMemory(input_vocab=vocab, output_vocab=vocab, input_keys=input_keys, output_keys=output_keys, wta_output=True) ## Starting memory slow_net.count_tot = MemNet(D, vocab, label="count_tot") ## Increment result memory slow_net.tot_mem = MemNet(D, vocab, label="tot_mem") ## Cleanup memory slow_net.tmem_assoc = spa.AssociativeMemory(input_vocab=vocab, wta_output=True) slow_net.ans_assoc = spa.AssociativeMemory(input_vocab=vocab, wta_output=True) ## The memory that says when to stop incrementing slow_net.count_fin = MemNet(D, vocab, label="count_fin") ### Comparison circuit ## State for easier insertion into Actions after threshold slow_net.tot_fin_simi = spa.State(1) slow_net.comp_tot_fin = spa.Compare(D) # this network is only used during the on_input action, is it really necessary? slow_net.fin_assoc = spa.AssociativeMemory(input_vocab=vocab, wta_output=True) ### Compares that set the speed of the increment ## Compare for loading into start memory slow_net.comp_load_res = spa.Compare(D) ## Compare for loading into incrementing memory slow_net.comp_inc_res = spa.Compare(D) ## Cleanup for compare slow_net.comp_assoc = spa.AssociativeMemory(input_vocab=vocab, wta_output=True) ## Increment for compare and input slow_net.gen_inc_assoc = spa.AssociativeMemory(input_vocab=vocab, output_vocab=vocab, input_keys=input_keys, output_keys=output_keys, wta_output=True) main_actions = spa.Actions( ## If the input isn't blank, read it in on_input= "(dot(q1, %s) + dot(q2, %s))/2 " "--> count_res = gen_inc_assoc, gen_inc_assoc = q1, count_tot = ONE, count_fin = fin_assoc, fin_assoc = 2.5*q2, op_state = RUN" % (join_num, join_num,), ## If not done, prepare next increment cmp_fail= "dot(op_state, RUN) - tot_fin_simi + 1.25*comp_inc_res - comp_load_res" "--> op_state = 0.5*RUN - NONE, rmem_assoc = 2.5*count_res, tmem_assoc = 2.5*count_tot, " "count_res_gate = CLOSE, count_tot_gate = CLOSE, op_state_gate = CLOSE, count_fin_gate = CLOSE, " "comp_load_res_A = res_mem, comp_load_res_B = comp_assoc, comp_assoc = 2.5*count_res", ## If we're done incrementing write it to the answer cmp_good= "0.5*dot(op_state, RUN) + tot_fin_simi" "--> ans_assoc = 8*count_res, op_state = 0.5*RUN," "count_res_gate = CLOSE, count_tot_gate = CLOSE, op_state_gate = CLOSE, count_fin_gate = CLOSE", ## Increment memory transfer increment= "0.3*dot(op_state, RUN) + 1.2*comp_load_res - comp_inc_res" "--> res_assoc = 2.5*res_mem, tot_assoc = 2.5*tot_mem, " "res_mem_gate = CLOSE, tot_mem_gate = CLOSE, op_state_gate = CLOSE, count_fin_gate = CLOSE, " "comp_load_res_A = 0.75*ONE, comp_load_res_B = 0.75*ONE, " "comp_inc_res_A = gen_inc_assoc, gen_inc_assoc = 2.5*res_mem, comp_inc_res_B = count_res", ) slow_net.bg_main = spa.BasalGanglia(main_actions) slow_net.thal_main = spa.Thalamus(slow_net.bg_main) ## Threshold preventing premature influence from comp_tot_fin similarity thr = 0.25 thresh_ens = nengo.Ensemble(100, 1, encoders=Choice([[1]]), intercepts=Exponential(scale=(1 - thr) / 5.0, shift=thr, high=1), eval_points=Uniform(thr, 1.1), n_eval_points=5000) nengo.Connection(slow_net.comp_tot_fin.output, thresh_ens) nengo.Connection(thresh_ens, slow_net.tot_fin_simi.input) ## Because the answer is being continuously output, we've got to threshold it by the comp_tot_fin similarity ans_boost = nengo.networks.Product(200, dimensions=D, input_magnitude=2) ans_boost.label = "ans_boost" nengo.Connection(slow_net.ans_assoc.output, ans_boost.A) nengo.Connection(thresh_ens, ans_boost.B, transform=np.ones((D,1))) nengo.Connection(ans_boost.output, slow_net.answer.input, transform=2.5) # had to put the assoc connections here because bugs # ideally they should be routable cortical_actions = spa.Actions( "res_mem = rmem_assoc, tot_mem = tmem_assoc", "count_res = res_assoc, count_tot = tot_assoc", "comp_tot_fin_A = count_fin", "comp_tot_fin_B = 0.5*count_tot", ) slow_net.cortical = spa.Cortical(cortical_actions) nengo.Connection(env.q_in[D:], slow_net.q1.input) nengo.Connection(env.q_in[:D], slow_net.q2.input) nengo.Connection(env.op_in, slow_net.op_state.mem.input) with spa.SPA(vocabs=[vocab], label="Fast Net", seed=0) as fast_net: fast_net.final_cleanup = spa.AssociativeMemory(input_vocab=vocab, threshold=0.2, wta_output=True) fast_net.speech = MemNet(D, vocab, label="speech") nengo.Connection(slow_net.answer.output, fast_net.final_cleanup.input) nengo.Connection(fast_net.final_cleanup.output, fast_net.speech.mem.input, transform=2.5) nengo.Connection(fast_net.speech.mem.output, env.set_ans) # I don't know if sustaining this is absolutely necessary... # The actual answer is comming out of the env anyways nengo.Connection(env.reset, fast_net.speech.mem.reset, synapse=None) # reset all the counting network nengo.Connection(env.count_reset, slow_net.count_res.mem.reset, synapse=None) nengo.Connection(env.count_reset, slow_net.count_fin.mem.reset, synapse=None) nengo.Connection(env.count_reset, slow_net.count_tot.mem.reset, synapse=None) nengo.Connection(env.count_reset, slow_net.op_state.mem.reset, synapse=None) nengo.Connection(env.gate, fast_net.speech.mem.gate, synapse=None) #sim = nengo.Simulator(model, dt=dt) """ get_data = "probe" if get_data == "probe": p_keys = nengo.Probe(env.env_keys, synapse=None) p_final_ans = nengo.Probe(fast_net.final_cleanup.output) p_speech = nengo.Probe(fast_net.speech.mem.output) p_count_res = nengo.Probe(slow_net.count_res.mem.output) p_count_fin = nengo.Probe(slow_net.count_fin.mem.output) p_count_tot = nengo.Probe(slow_net.count_tot.mem.output) p_ans_assoc = nengo.Probe(slow_net.ans_assoc.output) p_thres_ens = nengo.Probe(thresh_ens) else: def file_func(filename): fi = open("data/%s" %filename, "w") def f(t, x): fi.write("%s\n" %x) return f p_keys = nengo.Node(file_func("p_keys"), size_in=2*D) nengo.Connection(env.env_keys, p_keys, synapse=None) p_final_ans = nengo.Node(file_func("p_final_ans"), size_in=D) nengo.Connection(fast_net.final_cleanup.output, p_final_ans) p_speech = nengo.Node(file_func("p_speech"), size_in=D) nengo.Connection(fast_net.speech.mem.output, p_speech) p_count_res = nengo.Node(file_func("p_count_res"), size_in=D) nengo.Connection(slow_net.count_res.mem.output, p_count_res) p_count_fin = nengo.Node(file_func("p_count_fin"), size_in=D) nengo.Connection(slow_net.count_fin.mem.output, p_count_fin) p_count_tot = nengo.Node(file_func("p_count_tot"), size_in=D) nengo.Connection(slow_net.count_tot.mem.output, p_count_tot) p_ans_assoc = nengo.Node(file_func("p_ans_assoc"), size_in=D) nengo.Connection(slow_net.ans_assoc.output, p_ans_assoc) p_thres_ens = nengo.Node(file_func("p_thres_ens"), size_in=1) nengo.Connection(thresh_ens, p_thres_ens) print("Building") sim = nengo.Simulator(model, dt=dt) print("Running") while env.env_cls.questions_answered < 4: sim.step() if env.env_cls.time_since_last_answer > 7.0: print("UH OH") ipdb.set_trace() ipdb.set_trace() np.savez_compressed("data/count_fig_data", p_count_res=sim.data[p_count_res], p_count_fin=sim.data[p_count_fin], p_count_tot=sim.data[p_count_tot], p_ans_assoc=sim.data[p_ans_assoc], p_thres_ens=sim.data[p_thres_ens]) np.savez_compressed("data/count_fig_env_data", t=t, p_keys=sim.data[p_keys], p_final_ans=sim.data[p_final_ans], p_speech=sim.data[p_speech]) """
the-stack_0_19056
#!/usr/bin/env python #################################################################### ### This is the PYTHON version of program 6.2 from page 197 of # ### "Modeling Infectious Disease in humans and animals" # ### by Keeling & Rohani. # ### # ### % It is the SIR epidemic model with constant additive noise # ### added all the various rates. # ### Given the difficulties in integrating the dynamics, the user # ### is prompted for a integration time-step. # #################################################################### ################################### ### Written by Ilias Soumpasis # ### [email protected] (work) # ### [email protected] # ################################### import scipy.integrate as spi import numpy as np import pylab as pl beta = 1.0 gamma = 1 / 10.0 mu = 1 / (50 * 365.0) X0 = 1e5 Y0 = 500 N0 = 1e6 Step = 1 ND = MaxTime = 5 * 365.0 TS = 1.0 INPUT0 = np.hstack((X0, Y0)) def diff_eqs(INP, t): """The main set of equations""" Y = np.zeros((2)) V = INP Y[0] = ( (mu * N0 + np.sqrt(mu * N0) * P[0]) - (beta * V[0] * V[1] / N0 + np.sqrt(beta * V[0] * V[1] / N0) * P[1]) - (mu * V[1] + np.sqrt(mu * V[1]) * P[2]) ) Y[1] = ( (beta * V[0] * V[1] / N0 + np.sqrt(beta * V[0] * V[1] / N0) * P[1]) - (gamma * V[1] + np.sqrt(gamma * V[1]) * P[3]) - (mu * V[1] + np.sqrt(mu * V[1]) * P[4]) ) return Y # For odeint T = np.zeros((np.ceil(ND / Step), 1)) RES = np.zeros((np.ceil(ND / Step), 2)) INPUT = INPUT0 t = 0 loop = 0 sqrtStep = np.sqrt(Step) while t < ND and INPUT[0] > 0 and INPUT[1] > 0: t_start = 0.0 t_end = t_start + Step t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) P = np.random.normal(size=5) / sqrtStep PRES = spi.odeint(diff_eqs, INPUT, t_range) T[loop] = t = t + Step INPUT = PRES[-1] RES[loop] = PRES[-1] loop += 1 print(RES) ### plotting pl.subplot(211) pl.plot(T / 365.0, RES[:, 0], ".-g") pl.xlabel("Time (Years)") pl.ylabel("Susceptibles") pl.subplot(212) pl.plot(T / 365.0, RES[:, 1], ".-r") pl.ylabel("Infected") pl.xlabel("Time (Years)") pl.show()
the-stack_0_19057
# -*- coding: utf-8 -*- """ Chromaticity Coordinates of the Colour Checkers =============================================== Defines the chromaticity coordinates of the colour checkers. Each colour checker data is in the form of an :class:`OrderedDict` class instance of 24 samples as follows:: {'name': 'xyY', ..., 'name': 'xyY'} The following colour checkers are available: - :attr:`colour.characterisation.datasets.colour_checkers.\ chromaticity_coordinates.CCS_COLORCHECKER1976`: *ColorChecker Classic* developed by *McCamy et al. (1976)* at Macbeth, a Division of Kollmorgen. - :attr:`colour.characterisation.datasets.colour_checkers.\ chromaticity_coordinates.CCS_COLORCHECKER2005`: *ColorChecker Classic* reference data from *GretagMacbeth* published in 2005. - :attr:`colour.characterisation.datasets.colour_checkers.\ chromaticity_coordinates.CCS_BABELCOLOR_AVERAGE`: Average data derived from measurements of 30 *ColorChecker Classic* charts. - :attr:`colour.characterisation.datasets.colour_checkers.\ chromaticity_coordinates.CCS_COLORCHECKER24_BEFORE_NOV2014`: *ColorChecker Classic* reference data from *X-Rite* published in 2015 and matching the data from *GretagMacbeth* published in 2005. - :attr:`colour.characterisation.datasets.colour_checkers.\ chromaticity_coordinates.CCS_COLORCHECKER24_AFTER_NOV2014`: *ColorChecker Classic* reference data from *X-Rite* published in 2015 and matching the *ColorChecker Classic* edition after November 2014. References ---------- - :cite:`BabelColor2012b` : BabelColor. (2012). The ColorChecker (since 1976!). Retrieved September 26, 2014, from http://www.babelcolor.com/main_level/ColorChecker.htm - :cite:`BabelColor2012c` : BabelColor. (2012). ColorChecker RGB and spectra. http://www.babelcolor.com/download/ColorChecker_RGB_and_spectra.xls - :cite:`X-Rite2016` : X-Rite. (2016). New color specifications for ColorChecker SG and Classic Charts. Retrieved October 29, 2018, from http://xritephoto.com/ph_product_overview.aspx?ID=938&Action=Support&\ SupportID=5884# """ from __future__ import division, unicode_literals import numpy as np from collections import OrderedDict, namedtuple from colour.colorimetry import CCS_ILLUMINANTS from colour.models import Lab_to_XYZ, XYZ_to_xyY from colour.utilities import CaseInsensitiveMapping __author__ = 'Colour Developers, Danny Pascale ' __copyright__ = 'Copyright (C) 2013-2020 - Colour Developers' __copyright__ += ', ' __copyright__ += ( 'BabelColor ColorChecker data: Copyright (C) 2004-2012 Danny Pascale ' '(www.babelcolor.com); used by permission.') __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '[email protected]' __status__ = 'Production' __all__ = [ 'ColourChecker', 'SAMPLE_LABELS_COLORCHECKER_CLASSIC', 'DATA_COLORCHECKER1976', 'CCS_ILLUMINANT_COLORCHECKER1976', 'CCS_COLORCHECKER1976', 'DATA_COLORCHECKER2005', 'CCS_ILLUMINANT_COLORCHECKER2005', 'CCS_COLORCHECKER2005', 'DATA_BABELCOLOR_AVERAGE', 'CCS_ILLUMINANT_BABELCOLOR_AVERAGE', 'CCS_BABELCOLOR_AVERAGE', 'DATA_COLORCHECKER24_BEFORE_NOV2014', 'DATA_COLORCHECKER24_BEFORE_NOV2014', 'CCS_ILLUMINANT_COLORCHECKER24_BEFORE_NOV2014', 'CCS_COLORCHECKER24_BEFORE_NOV2014', 'DATA_COLORCHECKER24_AFTER_NOV2014', 'DATA_COLORCHECKER24_AFTER_NOV2014', 'CCS_ILLUMINANT_COLORCHECKER24_AFTER_NOV2014', 'CCS_COLORCHECKER24_AFTER_NOV2014', 'CCS_COLOURCHECKERS' ] class ColourChecker( namedtuple('ColourChecker', ('name', 'data', 'illuminant'))): """ *Colour Checker* data. Parameters ---------- name : unicode *Colour Checker* name. data : OrderedDict Chromaticity coordinates in *CIE xyY* colourspace. illuminant : array_like *Colour Checker* illuminant chromaticity coordinates. """ SAMPLE_LABELS_COLORCHECKER_CLASSIC = ( 'dark skin', 'light skin', 'blue sky', 'foliage', 'blue flower', 'bluish green', 'orange', 'purplish blue', 'moderate red', 'purple', 'yellow green', 'orange yellow', 'blue', 'green', 'red', 'yellow', 'magenta', 'cyan', 'white 9.5 (.05 D)', 'neutral 8 (.23 D)', 'neutral 6.5 (.44 D)', 'neutral 5 (.70 D)', 'neutral 3.5 (1.05 D)', 'black 2 (1.5 D)', ) """ *ColorChecker Classic* illuminant. SAMPLE_LABELS_COLORCHECKER_CLASSIC : tuple """ DATA_COLORCHECKER1976 = OrderedDict( zip(SAMPLE_LABELS_COLORCHECKER_CLASSIC, [ np.array([0.4002, 0.3504, 0.1005]), np.array([0.3773, 0.3446, 0.3582]), np.array([0.2470, 0.2514, 0.1933]), np.array([0.3372, 0.4220, 0.1329]), np.array([0.2651, 0.2400, 0.2427]), np.array([0.2608, 0.3430, 0.4306]), np.array([0.5060, 0.4070, 0.3005]), np.array([0.2110, 0.1750, 0.1200]), np.array([0.4533, 0.3058, 0.1977]), np.array([0.2845, 0.2020, 0.0656]), np.array([0.3800, 0.4887, 0.4429]), np.array([0.4729, 0.4375, 0.4306]), np.array([0.1866, 0.1285, 0.0611]), np.array([0.3046, 0.4782, 0.2339]), np.array([0.5385, 0.3129, 0.1200]), np.array([0.4480, 0.4703, 0.5910]), np.array([0.3635, 0.2325, 0.1977]), np.array([0.1958, 0.2519, 0.1977]), np.array([0.3101, 0.3163, 0.9001]), np.array([0.3101, 0.3163, 0.5910]), np.array([0.3101, 0.3163, 0.3620]), np.array([0.3101, 0.3163, 0.1977]), np.array([0.3101, 0.3163, 0.0900]), np.array([0.3101, 0.3163, 0.0313]), ])) CCS_ILLUMINANT_COLORCHECKER1976 = ( CCS_ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['C']) """ *ColorChecker Classic 1976* illuminant. CCS_ILLUMINANT_COLORCHECKER1976 : ndarray """ CCS_COLORCHECKER1976 = ColourChecker('ColorChecker 1976', DATA_COLORCHECKER1976, CCS_ILLUMINANT_COLORCHECKER1976) """ *ColorChecker Classic* developed by *McCamy et al.* (1976) at Macbeth, a Division of Kollmorgen. CCS_COLORCHECKER1976 : ColourChecker """ DATA_COLORCHECKER2005 = OrderedDict( zip(SAMPLE_LABELS_COLORCHECKER_CLASSIC, [ np.array([0.4316, 0.3777, 0.1008]), np.array([0.4197, 0.3744, 0.3495]), np.array([0.2760, 0.3016, 0.1836]), np.array([0.3703, 0.4499, 0.1325]), np.array([0.2999, 0.2856, 0.2304]), np.array([0.2848, 0.3911, 0.4178]), np.array([0.5295, 0.4055, 0.3118]), np.array([0.2305, 0.2106, 0.1126]), np.array([0.5012, 0.3273, 0.1938]), np.array([0.3319, 0.2482, 0.0637]), np.array([0.3984, 0.5008, 0.4446]), np.array([0.4957, 0.4427, 0.4357]), np.array([0.2018, 0.1692, 0.0575]), np.array([0.3253, 0.5032, 0.2318]), np.array([0.5686, 0.3303, 0.1257]), np.array([0.4697, 0.4734, 0.5981]), np.array([0.4159, 0.2688, 0.2009]), np.array([0.2131, 0.3023, 0.1930]), np.array([0.3469, 0.3608, 0.9131]), np.array([0.3440, 0.3584, 0.5894]), np.array([0.3432, 0.3581, 0.3632]), np.array([0.3446, 0.3579, 0.1915]), np.array([0.3401, 0.3548, 0.0883]), np.array([0.3406, 0.3537, 0.0311]), ])) CCS_ILLUMINANT_COLORCHECKER2005 = ( CCS_ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['ICC D50']) """ *ColorChecker Classic 2005* illuminant. CCS_ILLUMINANT_COLORCHECKER2005 : ndarray """ CCS_COLORCHECKER2005 = ColourChecker('ColorChecker 2005', DATA_COLORCHECKER2005, CCS_ILLUMINANT_COLORCHECKER2005) """ *ColorChecker Classic* data from *GretagMacbeth (2005)*. CCS_COLORCHECKER2005 : ColourChecker """ DATA_BABELCOLOR_AVERAGE = OrderedDict( zip(SAMPLE_LABELS_COLORCHECKER_CLASSIC, [ np.array([0.4325, 0.3788, 0.1034]), np.array([0.4191, 0.3748, 0.3525]), np.array([0.2761, 0.3004, 0.1847]), np.array([0.3700, 0.4501, 0.1335]), np.array([0.3020, 0.2877, 0.2324]), np.array([0.2856, 0.3910, 0.4174]), np.array([0.5291, 0.4075, 0.3117]), np.array([0.2339, 0.2155, 0.1140]), np.array([0.5008, 0.3293, 0.1979]), np.array([0.3326, 0.2556, 0.0644]), np.array([0.3989, 0.4998, 0.4435]), np.array([0.4962, 0.4428, 0.4358]), np.array([0.2040, 0.1696, 0.0579]), np.array([0.3270, 0.5033, 0.2307]), np.array([0.5709, 0.3298, 0.1268]), np.array([0.4694, 0.4732, 0.6081]), np.array([0.4177, 0.2704, 0.2007]), np.array([0.2151, 0.3037, 0.1903]), np.array([0.3488, 0.3628, 0.9129]), np.array([0.3451, 0.3596, 0.5885]), np.array([0.3446, 0.3590, 0.3595]), np.array([0.3438, 0.3589, 0.1912]), np.array([0.3423, 0.3576, 0.0893]), np.array([0.3439, 0.3565, 0.0320]), ])) CCS_ILLUMINANT_BABELCOLOR_AVERAGE = ( CCS_ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['ICC D50']) """ *BabelColor Average* illuminant. CCS_ILLUMINANT_BABELCOLOR_AVERAGE : ndarray """ CCS_BABELCOLOR_AVERAGE = ColourChecker('BabelColor Average', DATA_BABELCOLOR_AVERAGE, CCS_ILLUMINANT_BABELCOLOR_AVERAGE) """ Average data derived from measurements of 30 *ColorChecker Classic* charts. CCS_BABELCOLOR_AVERAGE : ColourChecker """ DATA_COLORCHECKER24_BEFORE_NOV2014 = OrderedDict( zip(SAMPLE_LABELS_COLORCHECKER_CLASSIC, [ np.array([37.986, 13.555, 14.059]), np.array([65.711, 18.13, 17.81]), np.array([49.927, -4.88, -21.905]), np.array([43.139, -13.095, 21.905]), np.array([55.112, 8.844, -25.399]), np.array([70.719, -33.397, -0.199]), np.array([62.661, 36.067, 57.096]), np.array([40.02, 10.41, -45.964]), np.array([51.124, 48.239, 16.248]), np.array([30.325, 22.976, -21.587]), np.array([72.532, -23.709, 57.255]), np.array([71.941, 19.363, 67.857]), np.array([28.778, 14.179, -50.297]), np.array([55.261, -38.342, 31.37]), np.array([42.101, 53.378, 28.19]), np.array([81.733, 4.039, 79.819]), np.array([51.935, 49.986, -14.574]), np.array([51.038, -28.631, -28.638]), np.array([96.539, -0.425, 1.186]), np.array([81.257, -0.638, -0.335]), np.array([66.766, -0.734, -0.504]), np.array([50.867, -0.153, -0.27]), np.array([35.656, -0.421, -1.231]), np.array([20.461, -0.079, -0.973]), ])) """ *ColorChecker24 - Before November 2014* illuminant. Notes ----- - *X-Rite* data is given as *CIE L\\*a\\*b\\** colourspace values under *CIE Illuminant D Series D50* for the *CIE 1931 2 Degree Standard Observer*. DATA_COLORCHECKER24_BEFORE_NOV2014 : ndarray """ DATA_COLORCHECKER24_BEFORE_NOV2014 = OrderedDict( zip( SAMPLE_LABELS_COLORCHECKER_CLASSIC, XYZ_to_xyY( Lab_to_XYZ( list(DATA_COLORCHECKER24_BEFORE_NOV2014.values()), CCS_ILLUMINANTS['CIE 1931 2 Degree Standard Observer'][ 'ICC D50'])))) CCS_ILLUMINANT_COLORCHECKER24_BEFORE_NOV2014 = ( CCS_ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['ICC D50']) """ *ColorChecker24 - Before November 2014* illuminant. CCS_ILLUMINANT_COLORCHECKER24_BEFORE_NOV2014 : ndarray """ CCS_COLORCHECKER24_BEFORE_NOV2014 = ColourChecker( 'ColorChecker24 - Before November 2014', DATA_COLORCHECKER24_BEFORE_NOV2014, CCS_ILLUMINANT_COLORCHECKER24_BEFORE_NOV2014) """ Reference *ColorChecker Classic* data from *X-Rite (2015)*. Notes ----- - The rounded *ColorChecker24 - Before November 2014* values should match the *ColorChecker Classic 2005* values. They are given for reference of the original *CIE L\\*a\\*b\\** colourspace values. CCS_COLORCHECKER24_BEFORE_NOV2014 : ColourChecker """ DATA_COLORCHECKER24_AFTER_NOV2014 = OrderedDict(( ('dark skin', np.array([37.54, 14.37, 14.92])), ('light skin', np.array([64.66, 19.27, 17.5])), ('blue sky', np.array([49.32, -3.82, -22.54])), ('foliage', np.array([43.46, -12.74, 22.72])), ('blue flower', np.array([54.94, 9.61, -24.79])), ('bluish green', np.array([70.48, -32.26, -0.37])), ('orange', np.array([62.73, 35.83, 56.5])), ('purplish blue', np.array([39.43, 10.75, -45.17])), ('moderate red', np.array([50.57, 48.64, 16.67])), ('purple', np.array([30.1, 22.54, -20.87])), ('yellow green', np.array([71.77, -24.13, 58.19])), ('orange yellow', np.array([71.51, 18.24, 67.37])), ('blue', np.array([28.37, 15.42, -49.8])), ('green', np.array([54.38, -39.72, 32.27])), ('red', np.array([42.43, 51.05, 28.62])), ('yellow', np.array([81.8, 2.67, 80.41])), ('magenta', np.array([50.63, 51.28, -14.12])), ('cyan', np.array([49.57, -29.71, -28.32])), ('white 9.5 (.05 D)', np.array([95.19, -1.03, 2.93])), ('neutral 8 (.23 D)', np.array([81.29, -0.57, 0.44])), ('neutral 6.5 (.44 D)', np.array([66.89, -0.75, -0.06])), ('neutral 5 (.70 D)', np.array([50.76, -0.13, 0.14])), ('neutral 3.5 (1.05 D)', np.array([35.63, -0.46, -0.48])), ('black 2 (1.5 D)', np.array([20.64, 0.07, -0.46])), )) """ *ColorChecker24 - After November 2014* illuminant. Notes ----- - *X-Rite* data is given as *CIE L\\*a\\*b\\** colourspace values under *CIE Illuminant D Series D50* for the *CIE 1931 2 Degree Standard Observer*. DATA_COLORCHECKER24_AFTER_NOV2014 : ndarray """ DATA_COLORCHECKER24_AFTER_NOV2014 = OrderedDict( zip( DATA_COLORCHECKER24_AFTER_NOV2014.keys(), XYZ_to_xyY( Lab_to_XYZ( list(DATA_COLORCHECKER24_AFTER_NOV2014.values()), CCS_ILLUMINANTS['CIE 1931 2 Degree Standard Observer'][ 'ICC D50'])))) CCS_ILLUMINANT_COLORCHECKER24_AFTER_NOV2014 = ( CCS_ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['ICC D50']) """ *ColorChecker24 - After November 2014* illuminant. CCS_ILLUMINANT_COLORCHECKER24_AFTER_NOV2014 : ndarray """ CCS_COLORCHECKER24_AFTER_NOV2014 = ColourChecker( 'ColorChecker24 - After November 2014', DATA_COLORCHECKER24_AFTER_NOV2014, CCS_ILLUMINANT_COLORCHECKER24_AFTER_NOV2014) """ Reference *ColorChecker Classic* data from *X-Rite (2015)* and matching the *ColorChecker Classic* edition after November 2014. CCS_COLORCHECKER24_AFTER_NOV2014 : ColourChecker """ CCS_COLOURCHECKERS = CaseInsensitiveMapping({ 'ColorChecker 1976': CCS_COLORCHECKER1976, 'ColorChecker 2005': CCS_COLORCHECKER2005, 'BabelColor Average': CCS_BABELCOLOR_AVERAGE, 'ColorChecker24 - Before November 2014': CCS_COLORCHECKER24_BEFORE_NOV2014, 'ColorChecker24 - After November 2014': CCS_COLORCHECKER24_AFTER_NOV2014, }) CCS_COLOURCHECKERS.__doc__ = """ Chromaticity coordinates of the colour checkers. References ---------- :cite:`BabelColor2012b`, :cite:`BabelColor2012c`, :cite:`X-Rite2016` CCS_COLOURCHECKERS : CaseInsensitiveMapping **{'ColorChecker 1976', 'ColorChecker 2005', 'BabelColor Average', 'ColorChecker24 - Before November 2014', 'ColorChecker24 - After November 2014'}** Aliases: - 'babel_average': 'BabelColor Average' - 'cc2005': 'ColorChecker 2005' - 'ccb2014': 'ColorChecker24 - Before November 2014' - 'cca2014': 'ColorChecker24 - After November 2014' """ CCS_COLOURCHECKERS['babel_average'] = CCS_COLOURCHECKERS['BabelColor Average'] CCS_COLOURCHECKERS['cc2005'] = CCS_COLOURCHECKERS['ColorChecker 2005'] CCS_COLOURCHECKERS['ccb2014'] = CCS_COLOURCHECKERS[ 'ColorChecker24 - Before November 2014'] CCS_COLOURCHECKERS['cca2014'] = CCS_COLOURCHECKERS[ 'ColorChecker24 - After November 2014']
the-stack_0_19058
# Author: Decebal Constantin Mocanu et al.; # Proof of concept implementation of Sparse Evolutionary Training (SET) of Multi Layer Perceptron (MLP) on CIFAR10 using Keras and a mask over weights. # This implementation can be used to test SET in varying conditions, using the Keras framework versatility, e.g. various optimizers, activation layers, tensorflow # Also it can be easily adapted for Convolutional Neural Networks or other models which have dense layers # However, due the fact that the weights are stored in the standard Keras format (dense matrices), this implementation can not scale properly. # If you would like to build and SET-MLP with over 100000 neurons, please use the pure Python implementation from the folder "SET-MLP-Sparse-Python-Data-Structures" # This is a pre-alpha free software and was tested with Python 3.5.2, Keras 2.1.3, Keras_Contrib 0.0.2, Tensorflow 1.5.0, Numpy 1.14; # The code is distributed in the hope that it may be useful, but WITHOUT ANY WARRANTIES; The use of this software is entirely at the user's own risk; # For an easy understanding of the code functionality please read the following articles. # If you use parts of this code please cite the following articles: #@article{Mocanu2018SET, # author = {Mocanu, Decebal Constantin and Mocanu, Elena and Stone, Peter and Nguyen, Phuong H. and Gibescu, Madeleine and Liotta, Antonio}, # journal = {Nature Communications}, # title = {Scalable Training of Artificial Neural Networks with Adaptive Sparse Connectivity inspired by Network Science}, # year = {2018}, # doi = {10.1038/s41467-018-04316-3} #} #@Article{Mocanu2016XBM, #author="Mocanu, Decebal Constantin and Mocanu, Elena and Nguyen, Phuong H. and Gibescu, Madeleine and Liotta, Antonio", #title="A topological insight into restricted Boltzmann machines", #journal="Machine Learning", #year="2016", #volume="104", #number="2", #pages="243--270", #doi="10.1007/s10994-016-5570-z", #url="https://doi.org/10.1007/s10994-016-5570-z" #} #@phdthesis{Mocanu2017PhDthesis, #title = "Network computations in artificial intelligence", #author = "D.C. Mocanu", #year = "2017", #isbn = "978-90-386-4305-2", #publisher = "Eindhoven University of Technology", #} from __future__ import division from __future__ import print_function from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras import optimizers import numpy as np from keras import backend as K from keras_contrib.layers.advanced_activations import SReLU from keras.datasets import cifar10 from keras.utils import np_utils class Constraint(object): def __call__(self, w): return w def get_config(self): return {} class MaskWeights(Constraint): def __init__(self, mask): self.mask = mask self.mask = K.cast(self.mask, K.floatx()) def __call__(self, w): w *= self.mask return w def get_config(self): return {'mask': self.mask} def find_first_pos(array, value): idx = (np.abs(array - value)).argmin() return idx def find_last_pos(array, value): idx = (np.abs(array - value))[::-1].argmin() return array.shape[0] - idx def createWeightsMask(epsilon,noRows, noCols): # generate an Erdos Renyi sparse weights mask mask_weights = np.random.rand(noRows, noCols) prob = 1 - (epsilon * (noRows + noCols)) / (noRows * noCols) # normal tp have 8x connections mask_weights[mask_weights < prob] = 0 mask_weights[mask_weights >= prob] = 1 noParameters = np.sum(mask_weights) print ("Create Sparse Matrix: No parameters, NoRows, NoCols ",noParameters,noRows,noCols) return [noParameters,mask_weights] class SET_MLP_CIFAR10: def __init__(self): # set model parameters self.epsilon = 20 # control the sparsity level as discussed in the paper self.zeta = 0.3 # the fraction of the weights removed self.batch_size = 100 # batch size self.maxepoches = 1000 # number of epochs self.learning_rate = 0.01 # SGD learning rate self.num_classes = 10 # number of classes self.momentum=0.9 # SGD momentum # generate an Erdos Renyi sparse weights mask for each layer [self.noPar1, self.wm1] = createWeightsMask(self.epsilon,32 * 32 *3, 4000) [self.noPar2, self.wm2] = createWeightsMask(self.epsilon,4000, 1000) [self.noPar3, self.wm3] = createWeightsMask(self.epsilon,1000, 4000) # initialize layers weights self.w1 = None self.w2 = None self.w3 = None self.w4 = None # initialize weights for SReLu activation function self.wSRelu1 = None self.wSRelu2 = None self.wSRelu3 = None # create a SET-MLP model self.create_model() # train the SET-MLP model self.train() def create_model(self): # create a SET-MLP model for CIFAR10 with 3 hidden layers self.model = Sequential() self.model.add(Flatten(input_shape=(32, 32, 3))) self.model.add(Dense(4000, name="sparse_1",kernel_constraint=MaskWeights(self.wm1),weights=self.w1)) self.model.add(SReLU(name="srelu1",weights=self.wSRelu1)) self.model.add(Dropout(0.3)) self.model.add(Dense(1000, name="sparse_2",kernel_constraint=MaskWeights(self.wm2),weights=self.w2)) self.model.add(SReLU(name="srelu2",weights=self.wSRelu2)) self.model.add(Dropout(0.3)) self.model.add(Dense(4000, name="sparse_3",kernel_constraint=MaskWeights(self.wm3),weights=self.w3)) self.model.add(SReLU(name="srelu3",weights=self.wSRelu3)) self.model.add(Dropout(0.3)) self.model.add(Dense(self.num_classes, name="dense_4",weights=self.w4)) #please note that there is no need for a sparse output layer as the number of classes is much smaller than the number of input hidden neurons self.model.add(Activation('softmax')) def rewireMask(self,weights, noWeights): # rewire weight matrix # remove zeta largest negative and smallest positive weights values = np.sort(weights.ravel()) firstZeroPos = find_first_pos(values, 0) lastZeroPos = find_last_pos(values, 0) largestNegative = values[int((1-self.zeta) * firstZeroPos)] smallestPositive = values[int(min(values.shape[0] - 1, lastZeroPos +self.zeta * (values.shape[0] - lastZeroPos)))] rewiredWeights = weights.copy(); rewiredWeights[rewiredWeights > smallestPositive] = 1; rewiredWeights[rewiredWeights < largestNegative] = 1; rewiredWeights[rewiredWeights != 1] = 0; weightMaskCore = rewiredWeights.copy() # add zeta random weights nrAdd = 0 noRewires = noWeights - np.sum(rewiredWeights) while (nrAdd < noRewires): i = np.random.randint(0, rewiredWeights.shape[0]) j = np.random.randint(0, rewiredWeights.shape[1]) if (rewiredWeights[i, j] == 0): rewiredWeights[i, j] = 1 nrAdd += 1 return [rewiredWeights, weightMaskCore] def weightsEvolution(self): # this represents the core of the SET procedure. It removes the weights closest to zero in each layer and add new random weights self.w1 = self.model.get_layer("sparse_1").get_weights() self.w2 = self.model.get_layer("sparse_2").get_weights() self.w3 = self.model.get_layer("sparse_3").get_weights() self.w4 = self.model.get_layer("dense_4").get_weights() self.wSRelu1 = self.model.get_layer("srelu1").get_weights() self.wSRelu2 = self.model.get_layer("srelu2").get_weights() self.wSRelu3 = self.model.get_layer("srelu3").get_weights() [self.wm1, self.wm1Core] = self.rewireMask(self.w1[0], self.noPar1) [self.wm2, self.wm2Core] = self.rewireMask(self.w2[0], self.noPar2) [self.wm3, self.wm3Core] = self.rewireMask(self.w3[0], self.noPar3) self.w1[0] = self.w1[0] * self.wm1Core self.w2[0] = self.w2[0] * self.wm2Core self.w3[0] = self.w3[0] * self.wm3Core def train(self): # read CIFAR10 data [x_train,x_test,y_train,y_test]=self.read_data() #data augmentation datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) height_shift_range=0.1, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images datagen.fit(x_train) self.model.summary() # training process in a for loop self.accuracies_per_epoch=[] for epoch in range(0,self.maxepoches): sgd = optimizers.SGD(lr=self.learning_rate, momentum=self.momentum) self.model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) historytemp = self.model.fit_generator(datagen.flow(x_train, y_train, batch_size=self.batch_size), steps_per_epoch=x_train.shape[0]//self.batch_size, epochs=epoch, validation_data=(x_test, y_test), initial_epoch=epoch-1) self.accuracies_per_epoch.append(historytemp.history['val_acc'][0]) #ugly hack to avoid tensorflow memory increase for multiple fit_generator calls. Theano shall work more nicely this but it is outdated in general self.weightsEvolution() K.clear_session() self.create_model() self.accuracies_per_epoch=np.asarray(self.accuracies_per_epoch) def read_data(self): #read CIFAR10 data (x_train, y_train), (x_test, y_test) = cifar10.load_data() y_train = np_utils.to_categorical(y_train, self.num_classes) y_test = np_utils.to_categorical(y_test, self.num_classes) x_train = x_train.astype('float32') x_test = x_test.astype('float32') #normalize data xTrainMean = np.mean(x_train, axis=0) xTtrainStd = np.std(x_train, axis=0) x_train = (x_train - xTrainMean) / xTtrainStd x_test = (x_test - xTrainMean) / xTtrainStd return [x_train, x_test, y_train, y_test] if __name__ == '__main__': # create and run a SET-MLP model on CIFAR10 model=SET_MLP_CIFAR10() # save accuracies over for all training epochs # in "results" folder you can find the output of running this file np.savetxt("results/set_mlp_srelu_sgd_cifar10_acc.txt", np.asarray(model.accuracies_per_epoch))
the-stack_0_19061
import numpy as np import cv2 import os from utils import ACTION_TO_ID class Demonstration(): def __init__(self, path, demo_num, check_z_height, task_type='stack'): try: # path is expected to be <logs/exp_name> self.action_log = np.loadtxt(os.path.join(path, 'transitions', 'executed-actions-' + str(demo_num) + '.log.txt')) except OSError: raise OSError("Demo Number " + str(demo_num) + " does not exist.") self.rgb_dir = os.path.join(path, 'data', 'color-heightmaps') self.depth_dir = os.path.join(path, 'data', 'depth-heightmaps') self.demo_num = demo_num self.check_z_height = check_z_height self.task_type = task_type # image_names should contain all heightmaps that have demo_num as their poststring self.image_names = sorted([i for i in os.listdir(self.rgb_dir) if int(i.split('.')[-3]) == demo_num]) # get number of actions in demo self.num_actions = len(self.action_log) # check to make sure action log and image_names line up if len(self.image_names) != self.num_actions: raise ValueError("MISMATCH: Number of images does not match number of actions in demo for demo number:", demo_num) # populate actions in dict keyed by action_pair number {action_pair : {action : (x, y, z, theta)}} # divide num actions by 2 to get number of grasp/place pairs self.action_dict = {} # start at 1 since the structure starts with size 1 for action_pair in range(1, (self.num_actions // 2) + 1): demo_ind = (action_pair - 1) * 2 grasp_image_ind = int(self.image_names[demo_ind].split('.')[0]) place_image_ind = int(self.image_names[demo_ind + 1].split('.')[0]) self.action_dict[action_pair] = {ACTION_TO_ID['grasp'] : self.action_log[demo_ind], ACTION_TO_ID['place'] : self.action_log[demo_ind + 1], 'grasp_image_ind': grasp_image_ind, 'place_image_ind': place_image_ind} def get_heightmaps(self, action_str, stack_height, use_hist=False, history_len=3): # e.g. initial rgb filename is 000000.orig.color.png, only for stack demos if action_str != 'orig' and self.task_type == 'stack': action_str = str(stack_height) + action_str rgb_filename = os.path.join(self.rgb_dir, '%06d.%s.%d.color.png' % (stack_height, action_str, self.demo_num)) depth_filename = os.path.join(self.depth_dir, '%06d.%s.%d.depth.png' % (stack_height, action_str, self.demo_num)) # read rgb and depth heightmap rgb_heightmap = cv2.cvtColor(cv2.imread(rgb_filename), cv2.COLOR_BGR2RGB) depth_heightmap = cv2.imread(depth_filename, -1).astype(np.float32)/100000 # if using history, need to modify depth heightmap if use_hist: depth_heightmap_history = [depth_heightmap] image_ind = self.image_names.index(rgb_filename.split('/')[-1]) hist_ind = image_ind # iterate through last history_len frames and add to list for i in range(history_len - 1): # calculate previous index hist_ind = max(0, hist_ind - 1) # load heightmap and add to list heightmap_path = os.path.join(self.depth_dir, self.image_names[image_ind].replace('color', 'depth')) hist_depth = cv2.imread(heightmap_path, -1).astype(np.float32)/100000 depth_heightmap_history.append(hist_depth) return rgb_heightmap, np.stack(depth_heightmap_history, axis=-1) return rgb_heightmap, np.stack([depth_heightmap] * 3, axis=-1) def get_action(self, workspace_limits, primitive_action, stack_height, stack_trainer=None, row_trainer=None, unstack_trainer=None, vertical_square_trainer=None, use_hist=False, demo_mask=True, cycle_consistency=False): # ensure one of stack trainer or row trainer is provided if stack_trainer is None and row_trainer is None and unstack_trainer is None and vertical_square_trainer is None: raise ValueError("Must provide at least one trainer") if primitive_action == 'grasp': color_heightmap, valid_depth_heightmap = self.get_heightmaps(primitive_action, self.action_dict[stack_height]['grasp_image_ind'], use_hist=use_hist) elif primitive_action == 'place': color_heightmap, valid_depth_heightmap = self.get_heightmaps(primitive_action, self.action_dict[stack_height]['place_image_ind'], use_hist=use_hist) # get stack features if stack_trainer is provided # TODO(adit98) can add specific rotation to these forward calls for speedup if stack_trainer is not None: # to get vector of 64 vals, run trainer.forward with get_action_feat stack_push, stack_grasp, stack_place = stack_trainer.forward(color_heightmap, valid_depth_heightmap, is_volatile=True, keep_action_feat=True, demo_mask=demo_mask)[:3] # fill all masked arrays (convert to regular np arrays) stack_push, stack_grasp, stack_place = stack_push.filled(0.0), \ stack_grasp.filled(0.0), stack_place.filled(0.0) # get row features if row_trainer is provided if row_trainer is not None: # to get vector of 64 vals, run trainer.forward with get_action_feat row_push, row_grasp, row_place = row_trainer.forward(color_heightmap, valid_depth_heightmap, is_volatile=True, keep_action_feat=True, demo_mask=demo_mask)[:3] # fill all masked arrays (convert to regular np arrays) row_push, row_grasp, row_place = row_push.filled(0.0), \ row_grasp.filled(0.0), row_place.filled(0.0) # get unstack features if unstack_trainer is provided if unstack_trainer is not None: # to get vector of 64 vals, run trainer.forward with get_action_feat unstack_push, unstack_grasp, unstack_place = unstack_trainer.forward(color_heightmap, valid_depth_heightmap, is_volatile=True, keep_action_feat=True, demo_mask=demo_mask)[:3] # fill all masked arrays (convert to regular np arrays) unstack_push, unstack_grasp, unstack_place = unstack_push.filled(0.0), \ unstack_grasp.filled(0.0), unstack_place.filled(0.0) # get vertical_square features if vertical_square_trainer is provided if vertical_square_trainer is not None: # to get vector of 64 vals, run trainer.forward with get_action_feat vertical_square_push, vertical_square_grasp, vertical_square_place = vertical_square_trainer.forward(color_heightmap, valid_depth_heightmap, is_volatile=True, keep_action_feat=True, demo_mask=demo_mask)[:3] # fill all masked arrays (convert to regular np arrays) vertical_square_push, vertical_square_grasp, vertical_square_place = vertical_square_push.filled(0.0), \ vertical_square_grasp.filled(0.0), vertical_square_place.filled(0.0) # get demo action index vector action_vec = self.action_dict[stack_height][ACTION_TO_ID[primitive_action]] # convert rotation angle to index best_rot_ind = np.around((np.rad2deg(action_vec[-2]) % 360) * 16 / 360).astype(int) # convert robot coordinates to pixel workspace_pixel_offset = workspace_limits[:2, 0] * -1 * 1000 best_action_xy = ((workspace_pixel_offset + 1000 * action_vec[:2]) / 2).astype(int) # initialize best actions for stacking and row making best_action_stack, best_action_row, best_action_unstack, best_action_vertical_square = None, None, None, None # initialize embedding arrays for each policy (for selected primitive_action) stack_feat, row_feat, unstack_feat, vertical_square_feat = None, None, None, None # index predictions to obtain best action if primitive_action == 'grasp': # NOTE that we swap the order that the best_action_xy coordinates are passed in since # the NN output expects (theta, :, y, x) if stack_trainer is not None: best_action_stack = stack_grasp[best_rot_ind, :, best_action_xy[1], best_action_xy[0]] stack_feat = stack_grasp if row_trainer is not None: best_action_row = row_grasp[best_rot_ind, :, best_action_xy[1], best_action_xy[0]] row_feat = row_grasp if unstack_trainer is not None: best_action_unstack = unstack_grasp[best_rot_ind, :, best_action_xy[1], best_action_xy[0]] if vertical_square_trainer is not None: best_action_vertical_square = vertical_square_grasp[best_rot_ind, :, best_action_xy[1], best_action_xy[0]] vertical_square_feat = vertical_square_grasp elif primitive_action == 'place': if stack_trainer is not None: best_action_stack = stack_place[best_rot_ind, :, best_action_xy[1], best_action_xy[0]] stack_feat = stack_place if row_trainer is not None: best_action_row = row_place[best_rot_ind, :, best_action_xy[1], best_action_xy[0]] row_feat = row_place if unstack_trainer is not None: best_action_unstack = unstack_place[best_rot_ind, :, best_action_xy[1], best_action_xy[0]] unstack_feat = unstack_place if vertical_square_trainer is not None: best_action_vertical_square = vertical_square_place[best_rot_ind, :, best_action_xy[1], best_action_xy[0]] vertical_square_feat = vertical_square_place # if we aren't using cycle consistency, return best action's embedding if not cycle_consistency: # return best action for each model, primitive_action return best_action_row, best_action_stack, best_action_unstack, best_action_vertical_square, ACTION_TO_ID[primitive_action] # otherwise, return the entire 16x224x224 embedding space (only for selected primitive action) else: return stack_feat, row_feat, unstack_feat, vertical_square_feat, ACTION_TO_ID[primitive_action] def load_all_demos(demo_path, check_z_height, task_type): """ Function to load all demonstrations in a given path and return a list of demo objects. Argument: demo_path: Path to folder with demonstrations """ demos = [] demo_ind = 0 while True: try: demos.append(Demonstration(path=demo_path, demo_num=demo_ind, check_z_height=check_z_height, task_type=task_type)) except OSError: # demo does not exist, we loaded all the demos in the directory break # increment demo_ind demo_ind += 1 return demos
the-stack_0_19062
class Solution: """ @param A: A string @param B: A string @return: the length of the longest common substring. """ def longestCommonSubstring(self, A, B): m = len(A) n = len(B) dp = [[0] * (n+1) for _ in range(m+1)] ans = 0 for i in range(m): for j in range(n): if A[i] == B[j]: dp[i+1][j+1] = dp[i][j] + 1 ans = max(ans, dp[i+1][j+1]) return ans
the-stack_0_19064
# Needed on case-insensitive filesystems from __future__ import absolute_import # Try to import PIL in either of the two ways it can be installed. try: from PIL import Image except ImportError: # pragma: no cover import Image import math class QRColorMask: """ QRColorMask is used to color in the QRCode. By the time apply_mask is called, the QRModuleDrawer of the StyledPilImage will have drawn all of the modules on the canvas (the color of these modules will be mostly black, although antialiasing may result in gradiants) In the base class, apply_mask is implemented such that the background color will remain, but the foreground pixels will be replaced by a color determined by a call to get_fg_pixel. There is additional calculation done to preserve the gradiant artifacts of antialiasing. All QRColorMask objects should be careful about RGB vs RGBA color spaces. For examples of what these look like, see doc/color_masks.png """ back_color = (255, 255, 255) has_transparency = False paint_color = back_color def initialize(self, styledPilImage, image): self.paint_color = styledPilImage.paint_color def apply_mask(self, image): width, height = image.size for x in range(width): for y in range(height): norm = self.extrap_color( self.back_color, self.paint_color, image.getpixel((x, y)) ) if norm is not None: image.putpixel( (x, y), self.interp_color( self.get_bg_pixel(image, x, y), self.get_fg_pixel(image, x, y), norm, ), ) else: image.putpixel((x, y), self.get_bg_pixel(image, x, y)) def get_fg_pixel(self, image, x, y): raise NotImplementedError("QRModuleDrawer.paint_fg_pixel") def get_bg_pixel(self, image, x, y): return self.back_color # The following functions are helpful for color calculation: # interpolate a number between two numbers def interp_num(self, n1, n2, norm): return int(n2 * norm + n1 * (1 - norm)) # interpolate a color between two colorrs def interp_color(self, col1, col2, norm): return tuple(self.interp_num(col1[i], col2[i], norm) for i in range(len(col1))) # find the interpolation coefficient between two numbers def extrap_num(self, n1, n2, interped_num): if n2 == n1: return None else: return (interped_num - n1) / (n2 - n1) # find the interpolation coefficient between two numbers def extrap_color(self, col1, col2, interped_color): normed = list( filter( lambda i: i is not None, [ self.extrap_num(col1[i], col2[i], interped_color[i]) for i in range(len(col1)) ], ) ) if not normed: return None else: return sum(normed) / len(normed) class SolidFillColorMask(QRColorMask): """ Just fills in the background with one color and the foreground with another """ def __init__(self, back_color=(255, 255, 255), front_color=(0, 0, 0)): self.back_color = back_color self.front_color = front_color self.has_transparency = len(self.back_color) == 4 def apply_mask(self, image): if self.back_color == (255, 255, 255) and self.front_color == (0, 0, 0): # Optimization: the image is already drawn by QRModuleDrawer in # black and white, so if these are also our mask colors we don't # need to do anything. This is much faster than actually applying a # mask. pass else: # TODO there's probably a way to use PIL.ImageMath instead of doing # the individual pixel comparisons that the base class uses, which # would be a lot faster. (In fact doing this would probably remove # the need for the B&W optimization above.) QRColorMask.apply_mask(self, image) def get_fg_pixel(self, image, x, y): return self.front_color class RadialGradiantColorMask(QRColorMask): """ Fills in the foreground with a radial gradiant from the center to the edge """ def __init__( self, back_color=(255, 255, 255), center_color=(0, 0, 0), edge_color=(0, 0, 255) ): self.back_color = back_color self.center_color = center_color self.edge_color = edge_color self.has_transparency = len(self.back_color) == 4 def get_fg_pixel(self, image, x, y): width, _ = image.size normedDistanceToCenter = math.sqrt( (x - width / 2) ** 2 + (y - width / 2) ** 2 ) / (math.sqrt(2) * width / 2) return self.interp_color( self.center_color, self.edge_color, normedDistanceToCenter ) class SquareGradiantColorMask(QRColorMask): """ Fills in the foreground with a square gradiant from the center to the edge """ def __init__( self, back_color=(255, 255, 255), center_color=(0, 0, 0), edge_color=(0, 0, 255) ): self.back_color = back_color self.center_color = center_color self.edge_color = edge_color self.has_transparency = len(self.back_color) == 4 def get_fg_pixel(self, image, x, y): width, _ = image.size normedDistanceToCenter = max(abs(x - width / 2), abs(y - width / 2)) / ( width / 2 ) return self.interp_color( self.center_color, self.edge_color, normedDistanceToCenter ) class HorizontalGradiantColorMask(QRColorMask): """ Fills in the foreground with a gradiant sweeping from the left to the right """ def __init__( self, back_color=(255, 255, 255), left_color=(0, 0, 0), right_color=(0, 0, 255) ): self.back_color = back_color self.left_color = left_color self.right_color = right_color self.has_transparency = len(self.back_color) == 4 def get_fg_pixel(self, image, x, y): width, _ = image.size return self.interp_color(self.left_color, self.right_color, x / width) class VerticalGradiantColorMask(QRColorMask): """ Fills in the forefround with a gradiant sweeping from the top to the bottom """ def __init__( self, back_color=(255, 255, 255), top_color=(0, 0, 0), bottom_color=(0, 0, 255) ): self.back_color = back_color self.top_color = top_color self.bottom_color = bottom_color self.has_transparency = len(self.back_color) == 4 def get_fg_pixel(self, image, x, y): width, _ = image.size return self.interp_color(self.top_color, self.bottom_color, y / width) class ImageColorMask(QRColorMask): """ Fills in the foreground with pixels from another image, either passed by path or passed by image object. """ def __init__( self, back_color=(255, 255, 255), color_mask_path=None, color_mask_image=None ): self.back_color = back_color if color_mask_image: self.color_img = color_mask_image else: self.color_img = Image.open(color_mask_path) self.has_transparency = len(self.back_color) == 4 def initialize(self, styledPilImage, image): self.paint_color = styledPilImage.paint_color self.color_img = self.color_img.resize(image.size) def get_fg_pixel(self, image, x, y): width, _ = image.size return self.color_img.getpixel((x, y))
the-stack_0_19065
#!/usr/bin/env python # -*- coding:utf-8 -*- """================================================================= @Project : Algorithm_YuweiYin/LeetCode-All-Solution/Python3 @File : LC-0322-Coin-Change.py @Author : [YuweiYin](https://github.com/YuweiYin) @Date : 2022-01-31 ==================================================================""" import sys import time from typing import List # import collections """ LeetCode - 0322 - (Medium) - Coin Change https://leetcode.com/problems/coin-change/ Description & Requirement: You are given an integer array coins representing coins of different denominations and an integer amount representing a total amount of money. Return the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1. You may assume that you have an infinite number of each kind of coin. Example 1: Input: coins = [1,2,5], amount = 11 Output: 3 Explanation: 11 = 5 + 5 + 1 Example 2: Input: coins = [2], amount = 3 Output: -1 Example 3: Input: coins = [1], amount = 0 Output: 0 Constraints: 1 <= coins.length <= 12 1 <= coins[i] <= 2^31 - 1 0 <= amount <= 10^4 Related Problem: LC-0518-Coin-Change-2 """ class Solution: def coinChange(self, coins: List[int], amount: int) -> int: # exception case if not isinstance(amount, int) or amount <= 0: return 0 # amount == 0, no change is needed if not isinstance(coins, list) or len(coins) <= 0: return -1 # Error input type (now amount >= 1) # main method: (Knapsack problem - Dynamic Programming) # dp[i] is minimum number of coins to get total amount i (i = 0, 1, 2, ..., amount) # dp equation: dp[i] = min(1 + dp[i-j]), where j in coins (i - j >= 0), means a valid coin denomination # dp init: dp[0] == 0. # dp aim: get dp[-1] return self._coinChange(coins, amount) def _coinChange(self, coins: List[int], amount: int) -> int: len_coins = len(coins) assert len_coins >= 1 and amount >= 1 # default list coins is sorted. if not, sort it first (and remove duplicated denominations) # coins.sort() # dp[i] is minimum number of coins to get total amount i (i = 0, 1, 2, ..., amount) dp = [-1 for _ in range(amount + 1)] # -1 means can't get this total coin amount dp[0] = 0 # need no coin to get amount 0 for i in range(1, amount + 1): for j in coins: if i - j < 0 or dp[i - j] == -1: # index out of range, or dp[i - j] itself can't be reached continue if dp[i] == -1: # the state of dp[i] change from "can't reach" to "can reach" dp[i] = dp[i - j] + 1 else: # update dp[i] if dp[i - j] + 1 is smaller dp[i] = min(dp[i], dp[i - j] + 1) return dp[-1] def main(): # Example 1: Output: 3 # Explanation: 11 = 5 + 5 + 1 coins = [1, 2, 5] amount = 11 # Example 2: Output: -1 # coins = [2] # amount = 3 # Example 3: Output: 0 # coins = [1] # amount = 0 # init instance solution = Solution() # run & time start = time.process_time() ans = solution.coinChange(coins, amount) end = time.process_time() # show answer print('\nAnswer:') print(ans) # show time consumption print('Running Time: %.5f ms' % ((end - start) * 1000)) if __name__ == "__main__": sys.exit(main())
the-stack_0_19066
# -*- coding: utf-8 -*- from __future__ import print_function from matplotlib import rcParams FONT_FAMILY='DejaVu Serif' rcParams["font.family"] = FONT_FAMILY from mpl_toolkits.axes_grid.inset_locator import inset_axes import matplotlib.pyplot as plt import matplotlib matplotlib.use("TkAgg") import numpy as np import datetime import itertools import utils as u #markers=['.','x','o','v','^','<','>','1','2','3','4','8','s','p','*'] markers=[None] colors = ['b', 'g', 'r', 'm', 'y', 'k', 'orange', 'purple', 'olive'] markeriter = itertools.cycle(markers) coloriter = itertools.cycle(colors) fixed_colors = { 'S-SGD': '#ff3300', 'ssgd': '#ff3300', 'gTopK': '#009900', 'blue': 'b', 0.001: 'C2', 0.002: 'C5', 0.00025: 'C3', 0.0001: 'C0', 0.00005: 'C1', 0.00001: 'C4', } OUTPUTPATH='/tmp/ijcai2019' LOGHOME='/tmp/logs' FONTSIZE=14 HOSTNAME='localhost' num_batches_per_epoch = None global_max_epochs=150 global_density=0.001 #NFIGURES=4;NFPERROW=2 NFIGURES=6;NFPERROW=2 #NFIGURES=1;NFPERROW=1 #FIGSIZE=(5*NFPERROW,3.8*NFIGURES/NFPERROW) PLOT_NORM=False PLOT_NORM=True if PLOT_NORM: #FIGSIZE=(5*NFPERROW,3.1*NFIGURES/NFPERROW) FIGSIZE=(5*NFPERROW,3.2*NFIGURES/NFPERROW) else: #FIGSIZE=(5*NFPERROW,2.9*NFIGURES/NFPERROW) FIGSIZE=(5*NFPERROW,3.0*NFIGURES/NFPERROW) fig, group_axs = plt.subplots(NFIGURES/NFPERROW, NFPERROW,figsize=FIGSIZE) if NFIGURES > 1 and PLOT_NORM: ax = None group_axtwins = [] for i in range(NFIGURES/NFPERROW): tmp = [] for a in group_axs[i]: tmp.append(a.twinx()) group_axtwins.append(tmp) global_index = 0 else: ax = group_axs ax1 = ax global_index = None ax2 = None STANDARD_TITLES = { 'resnet20': 'ResNet-20', 'vgg16': 'VGG-16', 'alexnet': 'AlexNet', 'resnet50': 'ResNet-50', 'lstmptb': 'LSTM-PTB', 'lstm': 'LSTM-PTB', 'lstman4': 'LSTM-AN4' } def get_real_title(title): return STANDARD_TITLES.get(title, title) def seconds_between_datetimestring(a, b): a = datetime.datetime.strptime(a, '%Y-%m-%d %H:%M:%S') b = datetime.datetime.strptime(b, '%Y-%m-%d %H:%M:%S') delta = b - a return delta.days*86400+delta.seconds sbd = seconds_between_datetimestring def get_loss(line, isacc=False): valid = line.find('val acc: ') > 0 if isacc else line.find('loss: ') > 0 if line.find('Epoch') > 0 and valid: items = line.split(' ') loss = float(items[-1]) t = line.split(' I')[0].split(',')[0] t = datetime.datetime.strptime(t, '%Y-%m-%d %H:%M:%S') return loss, t def read_losses_from_log(logfile, isacc=False): global num_batches_per_epoch f = open(logfile) losses = [] times = [] average_delays = [] lrs = [] i = 0 time0 = None max_epochs = global_max_epochs counter = 0 for line in f.readlines(): if line.find('num_batches_per_epoch: ') > 0: num_batches_per_epoch = int(line[0:-1].split('num_batches_per_epoch:')[-1]) valid = line.find('val acc: ') > 0 if isacc else line.find('average loss: ') > 0 if line.find('num_batches_per_epoch: ') > 0: num_batches_per_epoch = int(line[0:-1].split('num_batches_per_epoch:')[-1]) if line.find('Epoch') > 0 and valid: t = line.split(' I')[0].split(',')[0] t = datetime.datetime.strptime(t, '%Y-%m-%d %H:%M:%S') if not time0: time0 = t if line.find('lr: ') > 0: try: lr = float(line.split(',')[-2].split('lr: ')[-1]) lrs.append(lr) except: pass if line.find('average delay: ') > 0: delay = int(line.split(':')[-1]) average_delays.append(delay) loss, t = get_loss(line, isacc) if loss and t: counter += 1 losses.append(loss) times.append(t) if counter > max_epochs: break f.close() if len(times) > 0: t0 = time0 if time0 else times[0] #times[0] for i in range(0, len(times)): delta = times[i]- t0 times[i] = delta.days*86400+delta.seconds return losses, times, average_delays, lrs def read_norm_from_log(logfile): f = open(logfile) means = [] stds = [] for line in f.readlines(): if line.find('gtopk-dense norm mean') > 0: items = line.split(',') mean = float(items[-2].split(':')[-1]) std = float(items[--1].split(':')[-1]) means.append(mean) stds.append(std) print('means: ', means) print('stds: ', stds) return means, stds def plot_loss(logfile, label, isacc=False, title='ResNet-20', fixed_color=None): losses, times, average_delays, lrs = read_losses_from_log(logfile, isacc=isacc) norm_means, norm_stds = read_norm_from_log(logfile) print('times: ', times) print('losses: ', losses) if len(average_delays) > 0: delay = int(np.mean(average_delays)) else: delay = 0 if delay > 0: label = label + ' (delay=%d)' % delay if isacc: ax.set_ylabel('top-1 Validation Accuracy') else: ax.set_ylabel('training loss') ax.set_title(get_real_title(title)) marker = markeriter.next() if fixed_color: color = fixed_color else: color = coloriter.next() iterations = np.arange(len(losses)) line = ax.plot(iterations, losses, label=label, marker=marker, markerfacecolor='none', color=color, linewidth=1) if False and len(norm_means) > 0: global ax2 if ax2 is None: ax2 = ax.twinx() ax2.set_ylabel('L2-Norm of : gTopK-Dense') ax2.plot(norm_means, label=label+' norms', color=color) ax.set_xlabel('# of epochs') if len(lrs) > 0: lr_indexes = [0] lr = lrs[0] for i in range(len(lrs)): clr = lrs[i] if lr != clr: lr_indexes.append(i) lr = clr u.update_fontsize(ax, FONTSIZE) return line def plot_with_params(dnn, nworkers, bs, lr, hostname, legend, isacc=False, prefix='', title='ResNet-20', sparsity=None, nsupdate=None, sg=None, density=None, force_legend=False): global global_density global_density = density postfix='5922' color = None if prefix.find('allreduce')>=0: postfix='0' elif prefix.find('single') >= 0: postfix = None if sparsity: logfile = LOGHOME+'/%s/%s-n%d-bs%d-lr%.4f-s%.5f' % (prefix, dnn, nworkers, bs, lr, sparsity) elif nsupdate: logfile = LOGHOME+'/%s/%s-n%d-bs%d-lr%.4f-ns%d' % (prefix, dnn, nworkers, bs, lr, nsupdate) else: logfile = LOGHOME+'/%s/%s-n%d-bs%d-lr%.4f' % (prefix, dnn, nworkers, bs, lr) if sg is not None: logfile += '-sg%.2f' % sg if density is not None: logfile += '-ds%s' % str(density) color = fixed_colors[density] else: color = fixed_colors['S-SGD'] if postfix is None: logfile += '/%s.log' % (hostname) else: logfile += '/%s-%s.log' % (hostname, postfix) print('logfile: ', logfile) if force_legend: l = legend else: l = legend+ '(lr=%.4f, bs=%d, %d workers)'%(lr, bs, nworkers) line = plot_loss(logfile, l, isacc=isacc, title=dnn, fixed_color=color) return line def plot_group_norm_diff(): global ax networks = ['vgg16', 'resnet20', 'lstm', 'lstman4'] networks = ['vgg16', 'resnet20', 'alexnet', 'resnet50', 'lstm', 'lstman4'] for i, network in enumerate(networks): ax_row = i / NFPERROW ax_col = i % NFPERROW ax = group_axs[ax_row][ax_col] ax1 = group_axtwins[ax_row][ax_col] plts = plot_norm_diff(ax1, network) lines, labels = ax.get_legend_handles_labels() STNAME lines2, labels2 = ax1.get_legend_handles_labels() fig.legend(lines + lines2, labels + labels2, ncol=4, loc='upper center', fontsize=FONTSIZE, frameon=True) plt.subplots_adjust(bottom=0.09, left=0.08, right=0.90, top=0.88, wspace=0.49, hspace=0.42) plt.savefig('%s/multiple_normdiff.pdf'%OUTPUTPATH) def plot_norm_diff(lax=None, network=None, subfig=None): global global_index global global_max_epochs density = 0.001 nsupdate=1 prefix='allreduce-comp-gtopk-baseline-gwarmup-dc1-model-ijcai2019' if network == 'lstm': network = 'lstm';bs =100;lr=30.0;epochs =40 elif network == 'lstman4': network = 'lstman4';bs =8;lr=0.0002;epochs = 80 elif network == 'resnet20': network = 'resnet20';bs =32;lr=0.1;epochs=140 elif network == 'vgg16': network = 'vgg16';bs=128;lr=0.1;epochs=140 elif network == 'alexnet': network = 'alexnet';bs=256;lr=0.01;epochs =40 elif network == 'resnet50': nsupdate=16 network = 'resnet50';bs=512;lr=0.01;epochs =35 global_max_epochs = epochs path = LOGHOME+'/%s/%s-n4-bs%d-lr%.4f-ns%d-sg1.50-ds%s' % (prefix, network,bs,lr, nsupdate,density) print(network, path) plts = [] if network == 'lstm': line = plot_with_params(network, 4, 100, 30.0, HOSTNAME, r'S-SGD loss', prefix='allreduce-baseline-gwarmup-dc1-model-ijcai2019', nsupdate=1, force_legend=True) plts.append(line) line = plot_with_params(network, 4, 100, 30.0, HOSTNAME, r'gTop-$k$ S-SGD loss', prefix='allreduce-comp-gtopk-baseline-gwarmup-dc1-model-ijcai2019', nsupdate=1, sg=1.5, density=density, force_legend=True) plts.append(line) elif network == 'resnet20': line = plot_with_params(network, 4, 32, lr, HOSTNAME, 'S-SGD loss', prefix='allreduce-baseline-gwarmup-dc1-model-ijcai2019', force_legend=True) plts.append(line) line = plot_with_params(network, 4, bs, lr, HOSTNAME, r'gTop-$k$ S-SGD loss', prefix='allreduce-comp-topk-baseline-gwarmup-dc1-model-ijcai2019', nsupdate=1, sg=1.5, density=density, force_legend=True) plts.append(line) pass elif network == 'vgg16': line = plot_with_params(network, 4, bs, lr, HOSTNAME, 'S-SGD loss', prefix='allreduce-baseline-gwarmup-dc1-model-ijcai2019', nsupdate=1, force_legend=True) plts.append(line) line = plot_with_params(network, 4, bs, lr, HOSTNAME, r'gTop-$k$ S-SGD loss', prefix=prefix, nsupdate=1, sg=1.5, density=density, force_legend=True) plts.append(line) elif network == 'lstman4': line = plot_with_params(network, 4, 8, 0.0002, HOSTNAME, 'S-SGD loss', prefix='allreduce-baseline-gwarmup-dc1-model-ijcai2019', nsupdate=1, force_legend=True) plts.append(line) line = plot_with_params(network, 4, 8, 0.0002, HOSTNAME, r'gTop-$k$ S-SGD loss', prefix='allreduce-comp-gtopk-baseline-gwarmup-dc1-model-ijcai2019', nsupdate=1, sg=1.5, density=density, force_legend=True) plts.append(line) elif network == 'resnet50': line = plot_with_params(network, 4, 512, lr, HOSTNAME, 'S-SGD loss', prefix='allreduce-baseline-gwarmup-dc1-model-ijcai2019', nsupdate=nsupdate, force_legend=True) line = plot_with_params(network, 4, 512, lr, HOSTNAME, r'gTop-$k$ S-SGD loss', prefix=prefix, nsupdate=nsupdate, sg=1.5, density=density, force_legend=True) plts.append(line) elif network == 'alexnet': plot_with_params(network, 4, 256, lr, HOSTNAME, 'S-SGD', prefix='allreduce-baseline-gwarmup-dc1-model-ijcai2019', nsupdate=1, force_legend=True) line = plot_with_params(network, 4, 256, lr, HOSTNAME, r'gTop-$k$ S-SGD loss', prefix=prefix, nsupdate=nsupdate, sg=1.5, density=density, force_legend=True) plts.append(line) arr = [] arr2 = [] for i in range(1, epochs+1): fn = '%s/gtopknorm-rank0-epoch%d.npy' % (path, i) fn2 = '%s/randknorm-rank0-epoch%d.npy' % (path, i) arr.append(np.mean(np.power(np.load(fn), 2))) arr2.append(np.mean(np.power(np.load(fn2), 2))) arr = np.array(arr) arr2 = np.array(arr2) cax = lax if lax is not None else ax1 cax.plot(arr/arr2, label=r'$\delta$', color=fixed_colors['blue'],linewidth=1) cax.set_ylim(bottom=0.97, top=1.001) zero_x = np.arange(len(arr), step=1) ones = np.ones_like(zero_x) cax.plot(zero_x, ones, ':', label='1 ref.', color='black', linewidth=1) if True or network.find('lstm') >= 0: subaxes = inset_axes(cax, width='50%', height='30%', bbox_to_anchor=(-0.04,0,1,0.95), bbox_transform=cax.transAxes, loc='upper right') half = epochs //2 subx = np.arange(half, len(arr)) subaxes.plot(subx, (arr/arr2)[half:], color=fixed_colors['blue'], linewidth=1) subaxes.plot(subx, ones[half:], ':', color='black', linewidth=1) subaxes.set_ylim(bottom=subaxes.get_ylim()[0]) cax.set_xlabel('# of iteration') cax.set_ylabel(r'$\delta$') u.update_fontsize(cax, FONTSIZE) if global_index is not None: global_index += 1 return plts def plot_group_lr_sensitivies(): def _plot_with_network(network): global global_max_epochs global global_density densities = [0.001, 0.00025, 0.0001, 0.00005] if network == 'vgg16': global_max_epochs = 140 for density in densities: legend=r'$c$=%d'%(1/density) plot_with_params(network, 4, 128, 0.1, HOSTNAME, legend, prefix='allreduce-comp-gtopk-baseline-gwarmup-dc1-model-ijcai2019', nsupdate=1, sg=1.5, density=density, force_legend=True) elif network == 'resnet20': global_max_epochs = 140 for density in densities: legend=r'$c$=%d'%(1/density) plot_with_params(network, 4, 32, 0.1, HOSTNAME, legend, prefix='allreduce-comp-gtopk-baseline-gwarmup-dc1-model-ijcai2019', nsupdate=1, sg=1.5, density=density, force_legend=True) elif network == 'lstm': global_max_epochs = 40 for density in densities: legend=r'$c$=%d'%(1/density) plot_with_params(network, 4, 100, 30.0, HOSTNAME, legend, prefix='allreduce-comp-gtopk-baseline-gwarmup-dc1-model-ijcai2019', nsupdate=1, sg=1.5, density=density, force_legend=True) elif network == 'lstman4': global_max_epochs = 80 for density in densities: legend=r'$c$=%d'%(1/density) plot_with_params(network, 4, 8, 0.0002, HOSTNAME, legend, prefix='allreduce-comp-gtopk-baseline-gwarmup-dc1-model-ijcai2019', nsupdate=1, sg=1.5, density=density, force_legend=True) global ax networks = ['vgg16', 'resnet20', 'lstm', 'lstman4'] for i, network in enumerate(networks): ax_row = i / NFPERROW ax_col = i % NFPERROW ax = group_axs[ax_row][ax_col] _plot_with_network(network) ax.legend(ncol=2, loc='upper right', fontsize=FONTSIZE-2) plt.subplots_adjust(bottom=0.10, left=0.10, right=0.94, top=0.95, wspace=0.37, hspace=0.42) plt.savefig('%s/multiple_lrs.pdf'%OUTPUTPATH) if __name__ == '__main__': if PLOT_NORM: plot_group_norm_diff() else: plot_group_lr_sensitivies() plt.show()
the-stack_0_19068
import torch from torch import nn class BasicCritic(nn.Module): """ The BasicCritic module takes an image and predicts whether it is a cover image or a steganographic image (N, 1). Input: (N, 3, H, W) Output: (N, 1) """ def _conv2d(self, in_channels, out_channels): return nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=3 ) def _build_models(self): self.conv1 = nn.Sequential( self._conv2d(3, self.hidden_size), nn.LeakyReLU(inplace=True), nn.BatchNorm2d(self.hidden_size), ) self.conv2 = nn.Sequential( self._conv2d(self.hidden_size, self.hidden_size), nn.LeakyReLU(inplace=True), nn.BatchNorm2d(self.hidden_size), ) self.conv3 = nn.Sequential( self._conv2d(self.hidden_size, self.hidden_size), nn.LeakyReLU(inplace=True), nn.BatchNorm2d(self.hidden_size), ) self.conv4 = nn.Sequential( self._conv2d(self.hidden_size, 1) ) return self.conv1,self.conv2,self.conv3,self.conv4 def __init__(self, hidden_size): super().__init__() self.hidden_size = hidden_size self._models = self._build_models() def forward(self, image): x = self._models[0](image) x_1 = self._models[1](x) x_2 = self._models[2](x_1) x_3 = self._models[3](x_2) return torch.mean(x_3.view(x_3.size(0), -1), dim=1)
the-stack_0_19069
import sys import os sys.path.append(os.path.abspath(os.path.dirname(__file__))) import pymzml.run as run try: import numpy as np except: np = None import unittest import test_file_paths class ChromatogramTest(unittest.TestCase): def assertPeaksIdentical(self, peaks1, peaks2, msg=None): self.assertEqual( len(peaks1), len(peaks2) ) # , msg='List have different number of peaks!') for x in range(len(peaks1)): self.assertCountEqual(peaks1[x], peaks2[x], msg=msg) def setUp(self): self.paths = test_file_paths.paths path = self.paths[2] self.Run_np = run.Reader(path) self.chrom = self.Run_np["TIC"] def test_time(self): time = self.chrom.time mz = self.chrom.mz self.assertCountEqual(time, mz) intensity = self.chrom.i def test_i(self): self.chrom.profile = [(1, 10), (2, 20), (3, 30)] peaks = self.chrom.peaks() print(self.chrom.peaks()) self.assertPeaksIdentical(peaks, [(1, 10), (2, 20), (3, 30)]) def test_profile(self): profile = self.chrom.profile self.assertIsNotNone(len(profile)) if np: self.assertIsInstance(profile, np.ndarray) else: self.assertIsInstance(profile, list) if __name__ == "__main__": unittest.main(verbosity=3)
the-stack_0_19074
#!/usr/bin/env python3 # Copyright (c) 2015-2020 The worldwideweb Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test BIP65 (CHECKLOCKTIMEVERIFY). Test that the CHECKLOCKTIMEVERIFY soft-fork activates. """ from test_framework.blocktools import ( create_block, create_coinbase, ) from test_framework.messages import ( CTransaction, msg_block, ) from test_framework.p2p import P2PInterface from test_framework.script import ( CScript, CScriptNum, OP_1NEGATE, OP_CHECKLOCKTIMEVERIFY, OP_DROP, ) from test_framework.test_framework import worldwidewebTestFramework from test_framework.util import assert_equal from test_framework.wallet import ( MiniWallet, MiniWalletMode, ) # Helper function to modify a transaction by # 1) prepending a given script to the scriptSig of vin 0 and # 2) (optionally) modify the nSequence of vin 0 and the tx's nLockTime def cltv_modify_tx(tx, prepend_scriptsig, nsequence=None, nlocktime=None): assert_equal(len(tx.vin), 1) if nsequence is not None: tx.vin[0].nSequence = nsequence tx.nLockTime = nlocktime tx.vin[0].scriptSig = CScript(prepend_scriptsig + list(CScript(tx.vin[0].scriptSig))) tx.rehash() def cltv_invalidate(tx, failure_reason): # Modify the signature in vin 0 and nSequence/nLockTime of the tx to fail CLTV # # According to BIP65, OP_CHECKLOCKTIMEVERIFY can fail due the following reasons: # 1) the stack is empty # 2) the top item on the stack is less than 0 # 3) the lock-time type (height vs. timestamp) of the top stack item and the # nLockTime field are not the same # 4) the top stack item is greater than the transaction's nLockTime field # 5) the nSequence field of the txin is 0xffffffff assert failure_reason in range(5) scheme = [ # | Script to prepend to scriptSig | nSequence | nLockTime | # +-------------------------------------------------+------------+--------------+ [[OP_CHECKLOCKTIMEVERIFY], None, None], [[OP_1NEGATE, OP_CHECKLOCKTIMEVERIFY, OP_DROP], None, None], [[CScriptNum(100), OP_CHECKLOCKTIMEVERIFY, OP_DROP], 0, 1296688602], # timestamp of genesis block [[CScriptNum(100), OP_CHECKLOCKTIMEVERIFY, OP_DROP], 0, 50], [[CScriptNum(50), OP_CHECKLOCKTIMEVERIFY, OP_DROP], 0xffffffff, 50], ][failure_reason] cltv_modify_tx(tx, prepend_scriptsig=scheme[0], nsequence=scheme[1], nlocktime=scheme[2]) def cltv_validate(tx, height): # Modify the signature in vin 0 and nSequence/nLockTime of the tx to pass CLTV scheme = [[CScriptNum(height), OP_CHECKLOCKTIMEVERIFY, OP_DROP], 0, height] cltv_modify_tx(tx, prepend_scriptsig=scheme[0], nsequence=scheme[1], nlocktime=scheme[2]) CLTV_HEIGHT = 111 class BIP65Test(worldwidewebTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [[ f'-testactivationheight=cltv@{CLTV_HEIGHT}', '[email protected]', '-par=1', # Use only one script thread to get the exact reject reason for testing '-acceptnonstdtxn=1', # cltv_invalidate is nonstandard ]] self.setup_clean_chain = True self.rpc_timeout = 480 def test_cltv_info(self, *, is_active): assert_equal(self.nodes[0].getblockchaininfo()['softforks']['bip65'], { "active": is_active, "height": CLTV_HEIGHT, "type": "buried", }, ) def run_test(self): peer = self.nodes[0].add_p2p_connection(P2PInterface()) wallet = MiniWallet(self.nodes[0], mode=MiniWalletMode.RAW_OP_TRUE) self.test_cltv_info(is_active=False) self.log.info("Mining %d blocks", CLTV_HEIGHT - 2) self.generate(wallet, 10) self.generate(self.nodes[0], CLTV_HEIGHT - 2 - 10) assert_equal(self.nodes[0].getblockcount(), CLTV_HEIGHT - 2) self.log.info("Test that invalid-according-to-CLTV transactions can still appear in a block") # create one invalid tx per CLTV failure reason (5 in total) and collect them invalid_cltv_txs = [] for i in range(5): spendtx = wallet.create_self_transfer(from_node=self.nodes[0])['tx'] cltv_invalidate(spendtx, i) invalid_cltv_txs.append(spendtx) tip = self.nodes[0].getbestblockhash() block_time = self.nodes[0].getblockheader(tip)['mediantime'] + 1 block = create_block(int(tip, 16), create_coinbase(CLTV_HEIGHT - 1), block_time) block.nVersion = 3 block.vtx.extend(invalid_cltv_txs) block.hashMerkleRoot = block.calc_merkle_root() block.solve() self.test_cltv_info(is_active=False) # Not active as of current tip and next block does not need to obey rules peer.send_and_ping(msg_block(block)) self.test_cltv_info(is_active=True) # Not active as of current tip, but next block must obey rules assert_equal(self.nodes[0].getbestblockhash(), block.hash) self.log.info("Test that blocks must now be at least version 4") tip = block.sha256 block_time += 1 block = create_block(tip, create_coinbase(CLTV_HEIGHT), block_time) block.nVersion = 3 block.solve() with self.nodes[0].assert_debug_log(expected_msgs=[f'{block.hash}, bad-version(0x00000003)']): peer.send_and_ping(msg_block(block)) assert_equal(int(self.nodes[0].getbestblockhash(), 16), tip) peer.sync_with_ping() self.log.info("Test that invalid-according-to-CLTV transactions cannot appear in a block") block.nVersion = 4 block.vtx.append(CTransaction()) # dummy tx after coinbase that will be replaced later # create and test one invalid tx per CLTV failure reason (5 in total) for i in range(5): spendtx = wallet.create_self_transfer(from_node=self.nodes[0])['tx'] cltv_invalidate(spendtx, i) expected_cltv_reject_reason = [ "non-mandatory-script-verify-flag (Operation not valid with the current stack size)", "non-mandatory-script-verify-flag (Negative locktime)", "non-mandatory-script-verify-flag (Locktime requirement not satisfied)", "non-mandatory-script-verify-flag (Locktime requirement not satisfied)", "non-mandatory-script-verify-flag (Locktime requirement not satisfied)", ][i] # First we show that this tx is valid except for CLTV by getting it # rejected from the mempool for exactly that reason. assert_equal( [{ 'txid': spendtx.hash, 'wtxid': spendtx.getwtxid(), 'allowed': False, 'reject-reason': expected_cltv_reject_reason, }], self.nodes[0].testmempoolaccept(rawtxs=[spendtx.serialize().hex()], maxfeerate=0), ) # Now we verify that a block with this transaction is also invalid. block.vtx[1] = spendtx block.hashMerkleRoot = block.calc_merkle_root() block.solve() with self.nodes[0].assert_debug_log(expected_msgs=[f'CheckInputScripts on {block.vtx[-1].hash} failed with {expected_cltv_reject_reason}']): peer.send_and_ping(msg_block(block)) assert_equal(int(self.nodes[0].getbestblockhash(), 16), tip) peer.sync_with_ping() self.log.info("Test that a version 4 block with a valid-according-to-CLTV transaction is accepted") cltv_validate(spendtx, CLTV_HEIGHT - 1) block.vtx.pop(1) block.vtx.append(spendtx) block.hashMerkleRoot = block.calc_merkle_root() block.solve() self.test_cltv_info(is_active=True) # Not active as of current tip, but next block must obey rules peer.send_and_ping(msg_block(block)) self.test_cltv_info(is_active=True) # Active as of current tip assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256) if __name__ == '__main__': BIP65Test().main()
the-stack_0_19075
import torch import torch.nn.functional as F from torch import nn from torch.optim import Adam import torchvision from torchvision.utils import save_image import os import sys import subprocess import signal from pathlib import Path from tqdm import trange from collections import namedtuple from big_sleep.biggan import BigGAN from big_sleep.clip import load, tokenize, normalize_image from einops import rearrange from adabelief_pytorch import AdaBelief assert torch.cuda.is_available(), 'CUDA must be available in order to use Deep Daze' # graceful keyboard interrupt terminate = False def signal_handling(signum,frame): global terminate terminate = True signal.signal(signal.SIGINT,signal_handling) # helpers def exists(val): return val is not None def open_folder(path): if os.path.isfile(path): path = os.path.dirname(path) if not os.path.isdir(path): return cmd_list = None if sys.platform == 'darwin': cmd_list = ['open', '--', path] elif sys.platform == 'linux2' or sys.platform == 'linux': cmd_list = ['xdg-open', path] elif sys.platform in ['win32', 'win64']: cmd_list = ['explorer', path.replace('/','\\')] if cmd_list == None: return try: subprocess.check_call(cmd_list) except subprocess.CalledProcessError: pass except OSError: pass # tensor helpers def differentiable_topk(x, k, temperature=1.): n, dim = x.shape topk_tensors = [] for i in range(k): is_last = i == (k - 1) values, indices = (x / temperature).softmax(dim=-1).topk(1, dim=-1) topks = torch.zeros_like(x).scatter_(-1, indices, values) topk_tensors.append(topks) if not is_last: x = x.scatter(-1, indices, float('-inf')) topks = torch.cat(topk_tensors, dim=-1) return topks.reshape(n, k, dim).sum(dim = 1) # load clip perceptor, preprocess = load() # load biggan class Latents(torch.nn.Module): def __init__( self, num_latents = 32, num_classes = None, class_temperature = 2. ): super().__init__() self.normu = torch.nn.Parameter(torch.zeros(num_latents, 128).normal_(std = 1)) self.cls = torch.nn.Parameter(torch.zeros(num_latents, 1000).normal_(mean = -3.9, std = .3)) self.register_buffer('thresh_lat', torch.tensor(1)) assert not exists(num_classes) or num_classes > 0 and num_classes <= 1000, 'num classes must be between 0 and 1000' self.num_classes = num_classes self.class_temperature = class_temperature def forward(self): if exists(self.num_classes): classes = differentiable_topk(self.cls, self.num_classes, temperature = self.class_temperature) else: classes = torch.sigmoid(self.cls) return self.normu, classes class Model(nn.Module): def __init__( self, image_size, num_classes = None, class_temperature = 2. ): super().__init__() assert image_size in (128, 256, 512), 'image size must be one of 128, 256, or 512' self.biggan = BigGAN.from_pretrained(f'biggan-deep-{image_size}') self.num_classes = num_classes self.class_temperature = class_temperature self.init_latents() def init_latents(self): self.latents = Latents( num_classes = self.num_classes, class_temperature = self.class_temperature ) def forward(self): self.biggan.eval() out = self.biggan(*self.latents(), 1) return (out + 1) / 2 # load siren class BigSleep(nn.Module): def __init__( self, num_cutouts = 128, loss_coef = 100, image_size = 512, bilinear = False, num_classes = None, class_temperature = 2. ): super().__init__() self.loss_coef = loss_coef self.image_size = image_size self.num_cutouts = num_cutouts self.interpolation_settings = {'mode': 'bilinear', 'align_corners': False} if bilinear else {'mode': 'nearest'} self.model = Model( image_size = image_size, num_classes = num_classes, class_temperature = class_temperature ) def reset(self): self.model.init_latents() def forward(self, text, return_loss = True): width, num_cutouts = self.image_size, self.num_cutouts out = self.model() if not return_loss: return out pieces = [] for ch in range(num_cutouts): size = int(width * torch.zeros(1,).normal_(mean=.8, std=.3).clip(.5, .95)) offsetx = torch.randint(0, width - size, ()) offsety = torch.randint(0, width - size, ()) apper = out[:, :, offsetx:offsetx + size, offsety:offsety + size] apper = F.interpolate(apper, (224, 224), **self.interpolation_settings) pieces.append(apper) into = torch.cat(pieces) into = normalize_image(into) image_embed = perceptor.encode_image(into) text_embed = perceptor.encode_text(text) latents, soft_one_hot_classes = self.model.latents() num_latents = latents.shape[0] latent_thres = self.model.latents.thresh_lat lat_loss = torch.abs(1 - torch.std(latents, dim=1)).mean() + \ torch.abs(torch.mean(latents)).mean() + \ 4 * torch.max(torch.square(latents).mean(), latent_thres) for array in latents: mean = torch.mean(array) diffs = array - mean var = torch.mean(torch.pow(diffs, 2.0)) std = torch.pow(var, 0.5) zscores = diffs / std skews = torch.mean(torch.pow(zscores, 3.0)) kurtoses = torch.mean(torch.pow(zscores, 4.0)) - 3.0 lat_loss = lat_loss + torch.abs(kurtoses) / num_latents + torch.abs(skews) / num_latents cls_loss = ((50 * torch.topk(soft_one_hot_classes, largest = False, dim = 1, k = 999)[0]) ** 2).mean() sim_loss = -self.loss_coef * torch.cosine_similarity(text_embed, image_embed, dim = -1).mean() return (lat_loss, cls_loss, sim_loss) class Imagine(nn.Module): def __init__( self, text, *, lr = .07, image_size = 512, gradient_accumulate_every = 1, save_every = 50, epochs = 20, iterations = 1050, save_progress = False, bilinear = False, open_folder = True, seed = None, adabelief=True, save_latents=False, adabelief_args = None, clip_grad = None, lr_scheduling = False, torch_deterministic = False, num_classes = None, class_temperature = 2. ): super().__init__() self.seed = seed self.save_latents = save_latents if exists(seed): assert not bilinear, 'the deterministic (seeded) operation does not work with interpolation, yet (ask pytorch)' print(f'setting seed of {seed}') if seed == 0: print('you can override this with --seed argument in the command line, or --random for a randomly chosen one') torch.manual_seed(seed) torch.set_deterministic(torch_deterministic) self.epochs = epochs self.iterations = iterations model = BigSleep( image_size = image_size, bilinear = bilinear, num_classes = num_classes, class_temperature = class_temperature ).cuda() self.model = model self.lr = lr self.adabelief=adabelief self.clip_grad = clip_grad self.lr_scheduling = lr_scheduling if self.adabelief: if adabelief_args != None: self.adabelief_args = adabelief_args self.optimizer = AdaBelief(model.model.latents.parameters(), lr=self.adabelief_args.lr, betas=(self.adabelief_args.b1, self.adabelief_args.b2), eps=self.adabelief_args.eps, weight_decay=self.adabelief_args.weight_decay, amsgrad=self.adabelief_args.amsgrad, weight_decouple=self.adabelief_args.weight_decouple, fixed_decay=self.adabelief_args.fixed_decay, rectify=self.adabelief_args.rectify) else: self.optimizer = AdaBelief(model.model.latents.parameters(), lr=self.lr, betas=(0.5, 0.999), eps=1e-12, weight_decay=0, amsgrad=False, weight_decouple=True, fixed_decay=False, rectify=True) else: self.optimizer = Adam(model.model.latents.parameters(), self.lr) if lr_scheduling: #self.lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(self.optimizer, max_lr=self.lr, steps_per_epoch=self.iterations, epochs=self.epochs) self.lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(self.optimizer, gamma = .96) self.gradient_accumulate_every = gradient_accumulate_every self.save_every = save_every self.save_progress = save_progress self.open_folder = open_folder self.set_text(text) def set_text(self, text): self.text = text textpath = self.text.replace(' ','_').replace('.','_')[:30] #textpath = datetime.now().strftime("%Y%m%d-%H%M%S-") + textpath if exists(self.seed): textpath = str(self.seed) + '-' + textpath self.textpath = textpath self.filename = Path(f'./{textpath}.png') self.encoded_text = tokenize(text).cuda() def reset(self): self.model.reset() if self.adabelief: if self.adabelief_args != None: self.optimizer = AdaBelief(self.model.model.latents.parameters(), lr=self.adabelief_args.lr, betas=(self.adabelief_args.b1, self.adabelief_args.b2), eps=self.adabelief_args.eps, weight_decay=self.adabelief_args.weight_decay, amsgrad=self.adabelief_args.amsgrad, weight_decouple=self.adabelief_args.weight_decouple, fixed_decay=self.adabelief_args.fixed_decay, rectify=self.adabelief_args.rectify) else: self.optimizer = AdaBelief(self.model.model.latents.parameters(), lr=self.lr, betas=(0.5, 0.999), eps=1e-12, weight_decay=0, amsgrad=False, weight_decouple=True, fixed_decay=False, rectify=True) else: self.optimizer = Adam(self.model.model.latents.parameters(), self.lr) if self.lr_scheduling: #self.lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(self.optimizer, max_lr=self.lr, steps_per_epoch=self.iterations, epochs=self.epochs) self.lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(self.optimizer, gamma = .96) def train_step(self, epoch, i): total_loss = 0 for _ in range(self.gradient_accumulate_every): losses = self.model(self.encoded_text) loss = sum(losses) / self.gradient_accumulate_every total_loss += loss loss.backward() if self.clip_grad != None: torch.nn.utils.clip_grad_norm_(self.model.model.latents.parameters(), self.clip_grad) self.optimizer.step() self.optimizer.zero_grad() if self.lr_scheduling and epoch!=0 and i== 0: self.lr_scheduler.step() if (i + 1) % self.save_every == 0: with torch.no_grad(): best = torch.topk(losses[2], k = 1, largest = False)[1] image = self.model.model()[best].cpu() save_image(image, str(self.filename)) print(f'image updated at "./{str(self.filename)}"') if self.save_latents: # save latents lats = self.model.model.latents lats.best = best # saving this just in case it might be useful torch.save(lats, Path(f'./{self.textpath}.pth')) if self.save_progress: total_iterations = epoch * self.iterations + i num = total_iterations // self.save_every save_image(image, Path(f'./{self.textpath}.{num:03d}.png')) if self.save_latents: # save latents lats = self.model.model.latents lats.best = best # saving this just in case it might be useful torch.save(lats, Path(f'./{self.textpath}.{num:03d}.pth')) return total_loss def forward(self): print(f'Imagining "{self.text}" from the depths of my weights...') if self.open_folder: open_folder('./') self.open_folder = False for epoch in trange(self.epochs, desc = 'epochs'): pbar = trange(self.iterations, desc='iteration') for i in pbar: loss = self.train_step(epoch, i) pbar.set_description(f'loss: {loss.item():.2f}') if terminate: print('detecting keyboard interrupt, gracefully exiting') return
the-stack_0_19077
import json import redis from allocation import config r = redis.Redis(**config.get_redis_host_and_port()) def subscribe_to(channel): pubsub = r.pubsub() pubsub.subscribe(channel) confirmation = pubsub.get_message(timeout=3) assert confirmation["type"] == "subscribe" return pubsub def publish_message(channel, message): r.publish(channel, json.dumps(message))
the-stack_0_19079
from django import forms from django.conf import settings from django.db.models import Q from django.utils.html import mark_safe from django.utils.translation import gettext_lazy as _ from django_scopes import scopes_disabled from django_scopes.forms import SafeModelMultipleChoiceField from i18nfield.forms import I18nModelForm from pretalx.common.forms.fields import IMAGE_EXTENSIONS, ExtensionFileField from pretalx.common.mixins.forms import ReadOnlyFlag from pretalx.event.models import Event, Organiser, Team, TeamInvite from pretalx.orga.forms.widgets import HeaderSelect, MultipleLanguagesWidget from pretalx.submission.models import ReviewPhase, Track class TeamForm(ReadOnlyFlag, I18nModelForm): def __init__(self, *args, organiser=None, instance=None, **kwargs): super().__init__(*args, instance=instance, **kwargs) self.fields['organiser'].widget = forms.HiddenInput() if instance and getattr(instance, 'pk', None): self.fields.pop('organiser') self.fields['limit_events'].queryset = instance.organiser.events.all() else: self.fields['organiser'].initial = organiser self.fields['limit_events'].queryset = organiser.events.all() if instance and instance.pk: self.fields['is_reviewer'].help_text = mark_safe( f' (<a href="{instance.orga_urls.base}tracks">' + str(_('Limit to certain tracks?')) + '</a>)' ) class Meta: model = Team fields = [ 'name', 'organiser', 'all_events', 'limit_events', 'can_create_events', 'can_change_teams', 'can_change_organiser_settings', 'can_change_event_settings', 'can_change_submissions', 'is_reviewer', 'review_override_votes', ] class TeamTrackForm(I18nModelForm): def __init__(self, *args, organiser=None, **kwargs): with scopes_disabled(): super().__init__(*args, **kwargs) instance = kwargs.get('instance') if instance and not instance.all_events and instance.limit_events.count(): self.fields['limit_tracks'].queryset = Track.objects.filter( event__in=instance.limit_events.all() ) else: self.fields['limit_tracks'].queryset = Track.objects.filter( event__organiser=organiser ).order_by('-event__date_from', 'name') class Meta: model = Team fields = ['limit_tracks'] field_classes = { 'limit_tracks': SafeModelMultipleChoiceField, } class TeamInviteForm(ReadOnlyFlag, forms.ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['email'].required = True class Meta: model = TeamInvite fields = ('email',) class OrganiserForm(ReadOnlyFlag, I18nModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if kwargs.get('instance'): self.fields['slug'].disabled = True class Meta: model = Organiser fields = ('name', 'slug') class EventWizardInitialForm(forms.Form): locales = forms.MultipleChoiceField( choices=settings.LANGUAGES, label=_('Use languages'), help_text=_('Choose all languages that your event should be available in.'), widget=MultipleLanguagesWidget, ) def __init__(self, *args, user=None, **kwargs): super().__init__(*args, **kwargs) self.fields['organiser'] = forms.ModelChoiceField( label=_('Organiser'), queryset=Organiser.objects.filter( id__in=user.teams.filter(can_create_events=True).values_list( 'organiser', flat=True ) ) if not user.is_administrator else Organiser.objects.all(), widget=forms.RadioSelect, empty_label=None, required=True, help_text=_( 'The organiser running the event can copy settings from previous events and share team permissions across all or multiple events.' ), ) if len(self.fields['organiser'].choices) == 1: self.fields['organiser'].initial = self.fields['organiser'].queryset.first() class EventWizardBasicsForm(I18nModelForm): def __init__(self, *args, user=None, locales=None, organiser=None, **kwargs): self.locales = locales super().__init__(*args, **kwargs, locales=locales) self.fields['locale'].choices = [ (a, b) for a, b in settings.LANGUAGES if a in locales ] self.fields['slug'].help_text = str(_( 'This is the address your event will be available at. ' 'Should be short, only contain lowercase letters and numbers, and must be unique. ' 'We recommend some kind of abbreviation with less than 10 characters that can be easily remembered.' )) + ' <strong>' + str(_('You cannot change the slug later on!')) + '</strong>' def clean_slug(self): slug = self.cleaned_data['slug'] qs = Event.objects.all() if qs.filter(slug__iexact=slug).exists(): raise forms.ValidationError( _( 'This short name is already taken, please choose another one (or ask the owner of that event to add you to their team).' ) ) return slug.lower() class Meta: model = Event fields = ('name', 'slug', 'timezone', 'email', 'locale') class EventWizardTimelineForm(forms.ModelForm): deadline = forms.DateTimeField( required=False, help_text=_('The default deadline for your Call for Papers. You can assign additional deadlines to individual submission types, which will take precedence over this deadline.') ) def __init__(self, *args, user=None, locales=None, organiser=None, **kwargs): super().__init__(*args, **kwargs) self.fields['deadline'].widget.attrs['class'] = 'datetimepickerfield' class Meta: model = Event fields = ('date_from', 'date_to') widgets = { 'date_from': forms.DateInput(attrs={'class': 'datepickerfield'}), 'date_to': forms.DateInput( attrs={'class': 'datepickerfield', 'data-date-after': '#id_date_from'} ), } class EventWizardDisplayForm(forms.Form): show_on_dashboard = forms.BooleanField( initial=True, required=False, label=_('Show on dashboard'), help_text=_('Show this event on this website\'s dashboard, once it is public?'), ) primary_color = forms.CharField( max_length=7, label=_('Main event colour'), help_text=_( 'Provide a hex value like #00ff00 if you want to style pretalx in your event\'s colour scheme.' ), required=False, ) logo = ExtensionFileField( required=False, extensions=IMAGE_EXTENSIONS, label=_('Logo'), help_text=_( 'If you provide a logo image, we will by default not show your event\'s name and date in the page header. ' 'We will show your logo in its full size if possible, scaled down to the full header width otherwise.' ), ) display_header_pattern = forms.ChoiceField( label=_('Frontpage header pattern'), help_text=_( 'Choose how the frontpage header banner will be styled. Pattern source: <a href="http://www.heropatterns.com/">heropatterns.com</a>, CC BY 4.0.' ), choices=( ('', _('Plain')), ('pcb', _('Circuits')), ('bubbles', _('Circles')), ('signal', _('Signal')), ('topo', _('Topography')), ('graph', _('Graph Paper')), ), required=False, widget=HeaderSelect, ) def __init__(self, *args, user=None, locales=None, organiser=None, **kwargs): super().__init__(*args, **kwargs) self.fields['primary_color'].widget.attrs['class'] = 'colorpickerfield' class EventWizardCopyForm(forms.Form): @staticmethod def copy_from_queryset(user): return Event.objects.filter( Q( organiser_id__in=user.teams.filter( all_events=True, can_change_event_settings=True ).values_list('organiser', flat=True) ) | Q( id__in=user.teams.filter(can_change_event_settings=True).values_list( 'limit_events__id', flat=True ) ) ) def __init__(self, *args, user=None, locales=None, organiser=None, **kwargs): super().__init__(*args, **kwargs) self.fields['copy_from_event'] = forms.ModelChoiceField( label=_('Copy configuration from'), queryset=EventWizardCopyForm.copy_from_queryset(user), widget=forms.RadioSelect, empty_label=_('Do not copy'), required=False, ) class ReviewPhaseForm(I18nModelForm): def __init__(self, *args, event=None, **kwargs): super().__init__(*args, **kwargs) def clean(self): data = super().clean() if data.get('start') and data.get('end') and data['start'] > data['end']: self.add_error('end', forms.ValidationError(_('The end of a phase has to be after its start.'))) return data class Meta: model = ReviewPhase fields = [ 'name', 'start', 'end', 'can_review', 'can_see_speaker_names', 'can_change_submission_state', 'can_see_other_reviews', 'speakers_can_change_submissions', ] widgets = { 'start': forms.DateInput(attrs={'class': 'datetimepickerfield'}), 'end': forms.DateInput( attrs={'class': 'datetimepickerfield'} ), }
the-stack_0_19080
__all__ = ['user_ns'] from flask_restplus import Namespace from documentation.models import (login_model, registration_model, auth_model, message_model, gallery_item, metadata, friend_model, upload_img, user_model, comment_model, message_post, post_response, pending_frame_model, pending_model_update, add_role) user_ns = Namespace('user', path='/users/<string:username>', description='User level operations') for model in [login_model, registration_model, auth_model, metadata, message_model, friend_model, upload_img, user_model, gallery_item, comment_model, message_post, post_response, pending_frame_model, pending_model_update, add_role]: user_ns.add_model(model.name, model)
the-stack_0_19082
from django.urls import path, include from . import views urlpatterns = [ path('friend_requests/', views.friend_requests, name='friend_requests'), path('following/', views.following, name='following'), path('followers/', views.followers, name='followers'), path('friends/', views.friends, name='friends'), path('find/', views.find, name='find_friends'), path('change_ModelDatabase/',views.change_ModelDatabase,name='change_ModelDatabase'), path('getNodeList/',views.getNodeList,name='getNodeList') ]
the-stack_0_19083
import numpy as np from sklearn import linear_model reg = linear_model.LinearRegression(fit_intercept=True) import pandas as pd from scipy import signal def get_doubling_time_via_regression(in_array): ''' Use a linear regression to approximate the doubling rate Parameters: ---------- in_array : pandas.series Returns: ---------- Doubling rate: double ''' y = np.array(in_array) X = np.arange(-1,2).reshape(-1, 1) assert len(in_array)==3 reg.fit(X,y) intercept=reg.intercept_ slope=reg.coef_ return intercept/slope def savgol_filter(df_input,column='confirmed',window=5): ''' Savgol Filter which can be used in groupby apply function (data structure kept) parameters: ---------- df_input : pandas.series column : str window : int used data points to calculate the filter result Returns: ---------- df_result: pd.DataFrame the index of the df_input has to be preserved in result ''' degree=1 df_result=df_input filter_in=df_input[column].fillna(0) # attention with the neutral element here result=signal.savgol_filter(np.array(filter_in), window, # window size used for filtering 1) df_result[str(column+'_filtered')]=result return df_result def rolling_reg(df_input,col='confirmed'): ''' Rolling Regression to approximate the doubling time' Parameters: ---------- df_input: pd.DataFrame col: str defines the used column Returns: ---------- result: pd.DataFrame ''' days_back=3 result=df_input[col].rolling( window=days_back, min_periods=days_back).apply(get_doubling_time_via_regression,raw=False) return result def calc_filtered_data(df_input,filter_on='confirmed'): ''' Calculate savgol filter and return merged data frame Parameters: ---------- df_input: pd.DataFrame filter_on: str defines the used column Returns: ---------- df_output: pd.DataFrame the result will be joined as a new column on the input data frame ''' must_contain=set(['state','country',filter_on]) assert must_contain.issubset(set(df_input.columns)), ' Erro in calc_filtered_data not all columns in data frame' df_output=df_input.copy() # we need a copy here otherwise the filter_on column will be overwritten pd_filtered_result=df_output[['state','country',filter_on]].groupby(['state','country']).apply(savgol_filter)#.reset_index() df_output=pd.merge(df_output,pd_filtered_result[[str(filter_on+'_filtered')]],left_index=True,right_index=True,how='left') return df_output.copy() def calc_doubling_rate(df_input,filter_on='confirmed'): ''' Calculate approximated doubling rate and return merged data frame Parameters: ---------- df_input: pd.DataFrame filter_on: str defines the used column Returns: ---------- df_output: pd.DataFrame the result will be joined as a new column on the input data frame ''' must_contain=set(['state','country',filter_on]) assert must_contain.issubset(set(df_input.columns)), ' Erro in calc_filtered_data not all columns in data frame' pd_DR_result= df_input.groupby(['state','country']).apply(rolling_reg,filter_on).reset_index() pd_DR_result=pd_DR_result.rename(columns={filter_on:filter_on+'_DR', 'level_2':'index'}) #we do the merge on the index of our big table and on the index column after groupby df_output=pd.merge(df_input,pd_DR_result[['index',str(filter_on+'_DR')]],left_index=True,right_on=['index'],how='left') df_output=df_output.drop(columns=['index']) return df_output if __name__ == '__main__': test_data_reg=np.array([2,4,6]) result=get_doubling_time_via_regression(test_data_reg) print('the test slope is: '+str(result)) pd_JH_data=pd.read_csv('../data/processed/COVID_relational_confirmed.csv',sep=';',parse_dates=[0]) pd_JH_data=pd_JH_data.sort_values('date',ascending=True).copy() pd_result_large=calc_filtered_data(pd_JH_data) pd_result_large=calc_doubling_rate(pd_result_large) pd_result_large=calc_doubling_rate(pd_result_large,'confirmed_filtered') mask=pd_result_large['confirmed']>250 pd_result_large['confirmed_filtered_DR']=pd_result_large['confirmed_filtered_DR'].where(mask, other=np.NaN) pd_result_large.to_csv('../data/processed/COVID_final_set.csv',sep=';',index=False) print(pd_result_large[pd_result_large['country']=='Korea, South'].tail())
the-stack_0_19085
# -*- coding: utf-8 -*- import re import warnings from six.moves import urllib_parse import os import os.path as osp import re import shutil import sys import tempfile import requests import six from tqdm import tqdm import argparse import pkg_resources from binascii import hexlify as hx, unhexlify as uhx try: import ujson as json except: import json import pickle import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from oauth2client.service_account import ServiceAccountCredentials import Hex import sq_tools from Drive import Public from Drive import DriveTools import io import Fs.Nca as Nca import Fs.Nsp as Nsp import Fs.Nacp as Nacp from Fs.File import MemoryFile from hashlib import sha256,sha1 from python_pick import pick from python_pick import Picker from listmanager import folder_to_list squirrel_dir=os.path.abspath(os.curdir) NSCB_dir=os.path.abspath('../'+(os.curdir)) if os.path.exists(os.path.join(squirrel_dir,'ztools')): NSCB_dir=squirrel_dir zconfig_dir=os.path.join(NSCB_dir, 'zconfig') ztools_dir=os.path.join(NSCB_dir,'ztools') squirrel_dir=ztools_dir elif os.path.exists(os.path.join(NSCB_dir,'ztools')): squirrel_dir=squirrel_dir ztools_dir=os.path.join(NSCB_dir, 'ztools') zconfig_dir=os.path.join(NSCB_dir, 'zconfig') else: ztools_dir=os.path.join(NSCB_dir, 'ztools') zconfig_dir=os.path.join(NSCB_dir, 'zconfig') credentials_dir=os.path.join(zconfig_dir, 'credentials') if not os.path.exists(credentials_dir): os.makedirs(credentials_dir) credentials_json = os.path.join(credentials_dir, 'credentials.json') def get_scopes(type): if type=='default': SCOPES = ['https://www.googleapis.com/auth/drive'] elif type=='read': SCOPES = ['https://www.googleapis.com/auth/drive.metadata.readonly', 'https://www.googleapis.com/auth/drive.readonly'] return SCOPES def get_path_parameters(route): param=route.split(":") folder_list=list() if len(param)>1: token_name=param[0] route=param[1] else: try: token_name=param[0] # print(token_name) route='root' except: token_name='drive' route='root' if route=='drive': pass else: tid1=list();tid1=[pos for pos, char in enumerate(route) if char == '/'] tid2=list();tid2=[pos for pos, char in enumerate(route) if char == '\\'] positions= list(set(tid1 + tid2));positions.sort() for i in range(len(positions)): if i==0: j=positions[i];folder=route[:j] else: j=positions[i-1];k=positions[i] folder=route[j+1:k] if folder != "": folder_list.append(folder) if i==(len(positions)-1): j=positions[i]+1;folder=route[j:] if folder != "": folder_list.append(folder) return token_name,folder_list def get_html_header(access_token,off1=None,off2=None): tokenTotal = 'Bearer ' + str(access_token) if off1==None or off2==None: header={ 'Authorization':tokenTotal, 'token_type':'Bearer', 'accept' : '*/*', 'accept-encoding': 'none', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36', 'x-goog-api-client': 'gdcl/1.7.11 gl-python/3.7.3'} else: header={ 'Range': 'bytes=%s-%s' % (off1,off2), 'Authorization':tokenTotal, 'token_type':'Bearer', 'accept' : '*/*', 'accept-encoding': 'none', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36', 'x-goog-api-client': 'gdcl/1.7.11 gl-python/3.7.3'} return header class auth(): def __init__(self,SCOPES=None,token='drive',SCOPES_type='default',headless=True,apiver='v3',json_file=None): if SCOPES_type!='default': SCOPES=get_scopes(SCOPES_type) if SCOPES!=None: if os.path.exists(tk): try: os.remove(tk) except:pass else: SCOPES = ['https://www.googleapis.com/auth/drive'] creds = None;json_auth=False tk = os.path.join(credentials_dir, token) alt_json=os.path.join(credentials_dir, (token+".json")) if os.path.exists(alt_json): credentials_json=alt_json else: credentials_json=os.path.join(credentials_dir, 'credentials.json') if json_file!=None: tk=json_file if os.path.exists(tk): try: with open(tk) as jfile: test=json.load(jfile) json_auth=True apiver='v3' except: with open(tk, 'rb') as tok: creds = pickle.load(tok) # If there are no (valid) credentials available, let the user log in. if json_auth==False: if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( credentials_json, SCOPES) if headless==False: creds = flow.run_local_server(port=0) else: creds = flow.run_console() # Save the credentials for the next run with open(tk, 'wb') as tok: pickle.dump(creds, tok) self.drive_service = build('drive', apiver, credentials=creds) self.access_token = creds.token else: if os.path.exists(token): creds = ServiceAccountCredentials.from_json_keyfile_name(token, scopes=SCOPES) elif os.path.exists(tk): creds = ServiceAccountCredentials.from_json_keyfile_name(tk, scopes=SCOPES) self.drive_service = build('drive', apiver, credentials=creds) self.access_token = None class location(): def __init__(self,ID=None,route=None,TD_ID=None,TD_Name=None,token_name=None): self.ID=ID;self.name=None;self.token_name=token_name;drive_service=None self.root='root';self.filetype=None;self.md5hash=None;self.access_token = None self.size=None;self.session=None;self.position=0;self.drivename=None self.drivename=self.token_name;self.response=None if TD_ID==None and TD_Name==None: self.isinTD=False else: self.isinTD=True if self.ID!=None and self.name==None: self.name,mimetype=self.get_name() if mimetype=='application/vnd.google-apps.folder': self.filetype='folder' else: self.filetype='file' if self.ID==None and route==None: raise("Can't get route to location") elif ID != None: self.ID=ID else: self.ID,self.name=self.get_location_ID(route,TD_ID,TD_Name) if self.ID==None and route!=None: tk,flist=get_path_parameters(route) if not flist and tk==self.token_name: self.ID=self.root def get_name(self,ID=None,token_name=None): if ID==None: ID=self.ID if token_name==None: remote=auth() self.access_token = remote.access_token else: remote=auth(token=token_name) self.access_token = remote.access_token drive_service=remote.drive_service self.drive_service=drive_service # print(self.isinTD) if self.isinTD==False: result=drive_service.files().get(fileId=ID, fields="name,mimeType").execute() else: result=drive_service.files().get(fileId=ID, fields="name,mimeType",supportsAllDrives = True).execute() name=result['name'] mimetype=result['mimeType'] return name,mimetype def get_hash(self,ID=None,token_name=None): if ID==None: ID=self.ID if token_name==None: remote=auth() self.access_token = remote.access_token else: remote=auth(token=token_name) self.access_token = remote.access_token drive_service=remote.drive_service self.drive_service=drive_service if self.isinTD==False: result=drive_service.files().get(fileId=ID, fields="md5Checksum").execute() else: result=drive_service.files().get(fileId=ID, fields="md5Checksum",supportsAllDrives = True).execute() md5=result['md5Checksum'] self.md5hash=md5 return md5 def get_size(self,ID=None,token_name=None): if ID==None: ID=self.ID if token_name==None: remote=auth() self.access_token = remote.access_token else: remote=auth(token=token_name) self.access_token = remote.access_token drive_service=remote.drive_service self.drive_service=drive_service try: if self.isinTD==False: result=drive_service.files().get(fileId=ID, fields="size").execute() else: result=drive_service.files().get(fileId=ID, fields="size",supportsAllDrives = True).execute() size=result['size'] self.size=size except:pass return self.size def get_location_ID(self,route,TD_ID=None,TD_Name=None): token_name,folder_list=get_path_parameters(route) self.token_name=token_name self.drivename=self.token_name remote=auth(token=token_name) self.access_token = remote.access_token drive_service=remote.drive_service self.drive_service=drive_service parent='root';endID=None;endName=None if TD_ID !=None: parent=TD_ID self.root=parent elif TD_Name != None: parent=self.get_TD(TD_Name) self.root=parent for i in range(len(folder_list)): # if i==0: # j=folder_list[i] # if self.root != 'root': # results = drive_service.files().list( # q="mimeType='application/vnd.google-apps.folder' and name='{}' and '{}' in parents".format(j,parent), # pageSize=100, fields="nextPageToken, files(id, name)",includeItemsFromAllDrives = True,supportsAllDrives = True).execute() # else: # results = drive_service.files().list( # q="mimeType='application/vnd.google-apps.folder' and name='{}' and '{}' in parents".format(j,parent), # pageSize=100, fields="nextPageToken, files(id, name)").execute() # items = results.get('files', []) # if not items: # return None,None # parent=items[0]['id'] # endID=parent;endName=items[0]['name'] if i == (len(folder_list)-1): j=folder_list[i] if self.root != 'root': results = drive_service.files().list( q="mimeType='application/vnd.google-apps.folder' and name='{}' and '{}' in parents".format(j,parent), pageSize=100, fields="nextPageToken, files(id, name)",includeItemsFromAllDrives = True,supportsAllDrives = True).execute() else: results = drive_service.files().list( q="mimeType='application/vnd.google-apps.folder' and name='{}' and '{}' in parents".format(j,parent), pageSize=100, fields="nextPageToken, files(id, name)").execute() items = results.get('files', []) if not items: if self.root != 'root': results = drive_service.files().list( q="mimeType!='application/vnd.google-apps.folder' and name='{}' and '{}' in parents".format(j,parent), pageSize=100, fields="nextPageToken, files(id, name)",includeItemsFromAllDrives = True,supportsAllDrives = True).execute() else: results = drive_service.files().list( q="mimeType!='application/vnd.google-apps.folder' and name='{}' and '{}' in parents".format(j,parent), pageSize=100, fields="nextPageToken, files(id, name)").execute() self.filetype='file' else: self.filetype='folder' items = results.get('files', []) if not items: self.filetype=None return None,None parent=items[0]['id'] endID=parent;endName=items[0]['name'] else: j=folder_list[i] if self.root != 'root': results = drive_service.files().list( q="mimeType='application/vnd.google-apps.folder' and name='{}' and '{}' in parents".format(j,parent), pageSize=100, fields="nextPageToken, files(id, name)",includeItemsFromAllDrives = True,supportsAllDrives = True).execute() else: results = drive_service.files().list( q="mimeType='application/vnd.google-apps.folder' and name='{}' and '{}' in parents".format(j,parent), pageSize=100, fields="nextPageToken, files(id, name)").execute() items = results.get('files', []) if not items: return None,None parent=items[0]['id'] endID=parent;endName=items[0]['name'] return endID,endName def get_TD(self,TD_Name=None): drive_service=self.drive_service;root='root' results = drive_service.drives().list(pageSize=100).execute() if TD_Name=='None' or TD_Name==None: return results['drives'] else: TDlist= results['drives'] for drive in results['drives']: if str(TD_Name).lower() == str(drive['name']).lower(): root=drive['id'] break if root != 'root': return root def get_session(self,hd=None): if self.filetype=='file': if self.session==None: self.session = requests.session() if hd==None: header=get_html_header(self.access_token) else: header=hd self.session.headers=header URL='https://www.googleapis.com/drive/v3/files/'+self.ID+'?alt=media' res = self.session.get(URL, stream=True) self.response=res else: self.session=None self.response=None def rewind(self): hd=get_html_header(self.access_token,0,int(self.size)) self.get_session(hd) self.position=0 def seek(self,p,off2=None): if off2==None: off2=self.size p=int(p);off2=int(off2)-0x01 hd=get_html_header(self.access_token,p,off2) self.get_session(hd) self.position=p def read(self,sz=None,buffer=None): if buffer==None: buf=64*1024 else: buf=int(buffer) if sz==None: sz=self.size-self.position sz=int(sz) if buf>sz: buf=sz end=self.position+sz-0x01 hd=get_html_header(self.access_token,self.position,end) self.get_session(hd) data=b'' for dump in self.response.iter_content(chunk_size=buf): data=data+dump self.position=self.position+len(dump) if not dump: break return data def read_at(self,pos,sz,buffer=None): if buffer==None: buf=64*1024 else: buf=int(buffer) pos=int(pos);off2=int(sz) self.position=pos sz=int(sz) if buf>sz: buf=sz end=self.position+sz-0x01 hd=get_html_header(self.access_token,self.position,end) self.get_session(hd) data=b'' for dump in self.response.iter_content(chunk_size=buf): data=data+dump self.position=self.position+len(dump) if not dump: break return data def readInt8(self, byteorder='little', signed = False): return int.from_bytes(self.read(1), byteorder=byteorder, signed=signed) def readInt16(self, byteorder='little', signed = False): return int.from_bytes(self.read(2), byteorder=byteorder, signed=signed) def readInt32(self, byteorder='little', signed = False): return int.from_bytes(self.read(4), byteorder=byteorder, signed=signed) def readInt64(self, byteorder='little', signed = False): return int.from_bytes(self.read(8), byteorder=byteorder, signed=signed) def readInt128(self, byteorder='little', signed = False): return int.from_bytes(self.read(16), byteorder=byteorder, signed=signed) def create_token(name,headless=True,SCOPES='default'): tk = os.path.join(credentials_dir, name) if os.path.exists(tk): os.remove(tk) auth(token=name,SCOPES_type=SCOPES,headless=headless) if os.path.exists(tk): print("\nSUCCESS!!!\n") else: print("\FAILURE!!!\n") def token_picker(): files=folder_to_list(credentials_dir,"all") # print(files) tokens=list();names=list() for file in files: bname=os.path.basename(os.path.abspath(file)) test=bname.split(".") if len(test)==1 and file not in tokens: tokens.append(file) names.append(str(os.path.basename(os.path.abspath(file)))) if len(names)>1: title = 'Pick an account (press SPACE\RIGHT to mark\\unmark, ENTER to continue): ' options = names selected = pick(options, title, min_selection_count=1) tok=names[selected[1]] elif len(names)==1: tok=names[0] else: tok=False return tok def folder_walker(showfiles=False,Print=False): account=token_picker() path=account+':' TD=TD_picker(path) while True: folder=search_folder(path,TD=TD,mime='folders',pickmode='single',Print=False) if folder==False: break path=folder if Print==True: print(path) if showfiles==False: return path,TD else: files=search_folder(path,TD=TD) def search_folder(path,TD=None,ext=None,filter=None,order=None,mime='files',Pick=True,Print=True,pickmode='multi'): file_list=list();userfilter=filter;isroot=False;TDlist=False;file_listv2=list() if isinstance(path, list): paths=path else: paths=path.split('.+') if isinstance(TD, list): TDlist=TD index=0 for path in paths: # print(path) try: if userfilter==None or filter=="": filter="" else: filter=" and name contains '{}'".format(userfilter) if TDlist!=False: TD=TDlist[index] index+=1 if TD=="pick": TD=TD_picker(path) if TD!= None: remote=location(route=path,TD_Name=TD) else: remote=location(route=path) drive_service=remote.drive_service if drive_service==None: if remote.token_name==None: auth=auth() else: auth=auth(token=token_name) drive_service=auth.drive_service tk,fl=get_path_parameters(path) if not fl and TD==None: root='root';remote.root=root;remote.ID=root elif not fl: root=remote.ID remote.root=root remote.ID=root else: root=remote.root # print(remote.ID) if mime=='files': page_token = None;pagesize=1000 while True: if root != 'root': results = drive_service.files().list( q="mimeType!='application/vnd.google-apps.folder' and '{}' in parents{}".format(remote.ID,filter), pageSize=pagesize,pageToken=page_token,fields="nextPageToken, files(id, name, size, createdTime)",includeItemsFromAllDrives = True,supportsAllDrives = True).execute() else: results = drive_service.files().list( q="mimeType!='application/vnd.google-apps.folder' and '{}' in parents{}".format(remote.ID,filter), pageSize=pagesize,pageToken=page_token,fields="nextPageToken, files(id, name, size, createdTime)").execute() items = results.get('files', []) try: page_token = results.get('nextPageToken', None) except:pass for file in items: try: file_list.append([file['name'],file['size'],path,file['createdTime']]) except:pass if Print==True: print(f'- {path}: Total Retrieved '+str(len(file_list))) if page_token == None: break elif mime=='folders': page_token = None;pagesize=100 while True: if root != 'root': results = drive_service.files().list( q="mimeType='application/vnd.google-apps.folder' and '{}' in parents{}".format(remote.ID,filter), pageSize=pagesize,pageToken=page_token,fields="nextPageToken, files(id, name)",includeItemsFromAllDrives = True,supportsAllDrives = True).execute() else: results = drive_service.files().list( q="mimeType='application/vnd.google-apps.folder' and '{}' in parents{}".format(remote.ID,filter), pageSize=pagesize,pageToken=page_token,fields="nextPageToken, files(id, name)").execute() items = results.get('files', []) try: page_token = results.get('nextPageToken', None) except:pass for file in items: try: file_list.append([file['name'],path]) except:pass if Print==True: print(f'- {path}: Total Retrieved '+str(len(file_list))) if page_token == None: break except: print(f'- {path}: Retrieved 0') return False if not file_list: return False file_list.sort(key=lambda x: x[0]) if Pick==True: if pickmode!='single': title = 'Select results (press SPACE\RIGHT to mark\\unmark, ENTER to continue): ' elif mime=="files": title = 'Select result:' else: title = 'Select result:\n + Press space or right to select content \n + Press E to finish selection' oplist=list();cleanlist=list() if mime=='folders': for item in file_list: oplist.append(item[0]) cleanlist.append(clean_name(item[0])) else: for item in file_list: sz=str(sq_tools.getSize(int(item[1]))) oplist.append(item[0]+' | '+sz) cleanlist.append(clean_name(item[0])+' | '+sz) options = cleanlist if pickmode!='single': selected = pick(options, title, multi_select=True, min_selection_count=0) elif mime=="files": selected = pick(options, title, min_selection_count=1) if selected[0]==False: return False else: picker = Picker(options, title, min_selection_count=1) def end_selection(picker): return False,-1 picker.register_custom_handler(ord('e'), end_selection) picker.register_custom_handler(ord('E'), end_selection) selected=picker.start() if selected[0]==False: return False # print (selected) oplist=file_list;file_list=list() if pickmode=='single': if mime=='folders': basepath=oplist[selected[1]][1] if basepath[-1]!="/" and basepath[-1]!="\\": basepath=basepath+'/' pth=basepath+oplist[selected[1]][0] else: basepath=oplist[selected[1]][2] if basepath[-1]!="/" and basepath[-1]!="\\": basepath=basepath+'/' pth=basepath+oplist[selected[1]][0] return pth if mime=='folders': for file in selected: basepath=oplist[file[1]][1] if basepath[-1]!="/" and basepath[-1]!="\\": basepath=basepath+'/' pth=basepath+oplist[file[1]][0] file_list.append(pth) else: for file in selected: basepath=oplist[file[1]][2] if basepath[-1]!="/" and basepath[-1]!="\\": basepath=basepath+'/' pth=basepath+oplist[file[1]][0] file_list.append(pth) if not file_list: return False if Print==True: print("\n- User selected the following results: ") for file in file_list: print(file) else: print("- User selected {} files".format(str(len(file_list)))) if TDlist!=False and file_list: file_listv2.append([file_list,TD]) if TDlist!=False: return file_listv2 return file_list def get_TeamDrives(token='drive:',Print=False): remote=location(route=token) TD_list=remote.get_TD() names=list();ids=list() names.append('None');ids.append('root') for drive in TD_list: names.append(drive['name']);ids.append(drive['id']) if Print!=False: print(drive['name']+' id: '+drive['id']) return names,ids # print(remote.ID) # print(remote.name) def get_Data(path,TD=None,get_hash=False,Print=True): if TD!= None: remote=location(route=path,TD_Name=TD) else: remote=location(route=path) ID=remote.ID type=remote.filetype name=remote.name if Print==True: print('- ID: '+ID);print('- Name: '+name);print('- Type: '+type) if type!='folder': size=remote.get_size(remote.ID,remote.token_name) if Print==True: print('- Size: '+size) else: size=None if get_hash==True: md5=remote.get_hash(remote.ID,remote.token_name) if Print==True: print('- MD5Hash: '+md5) else: md5=None return ID,name,type,size,md5,remote def download(path,ofolder,TD=None,filter=None,trimm=True): if path=='pick': account=token_picker() TD=TD_picker(account) return test=path.split(".+") if TD=='pick': TD=TD_picker(path) if len(test)>1 or path.endswith('/') or path.endswith('\\'): type="folder" else: ID,name,type,size,md5,remote=get_Data(path,TD=TD,Print=False) output=os.path.join(ofolder,name) if type!='file': # print('Path is a folder') folderpicker(path,ofolder,TD,filter) return else: if name.endswith(".xci") and trimm==True: end=DriveTools.get_xci_rom_size(remote) hd=get_html_header(remote.access_token,off1=0,off2=end) remote.get_session(hd) size=end else: remote.get_session() buf=int(64*1024) print("- Downloading file to {}".format(output)) t = tqdm(total=int(size), unit='B', unit_scale=True, leave=False) with open(output,"wb") as o: for data in remote.response.iter_content(chunk_size=buf): o.write(data) t.update(len(data)) if not data: break t.close() print(" *Finished*") def TD_picker(path): remote=location(route=path) names,ids=get_TeamDrives(remote.token_name) if names: title = 'Select Teamdrive (press SPACE\RIGHT to mark\\unmark, ENTER to continue): \n"None" will return the My-Drive section of the account' options = names selected = pick(options, title, min_selection_count=1) TD=selected[0] if TD=='None': TD=None else: TD=None return TD def folderpicker(path,ofolder=None,TD=None,filter=None,mode='download'): pathlist=search_folder(path,TD,pick=True,Print=False,filter=filter) counter=len(pathlist) for path in pathlist: if mode=='download': download(path,ofolder,TD) elif mode=='get_cnmt_data': DriveTools.get_cnmt_data(path,TD) elif mode=='decompress': from Drive.Decompress import decompress decompress(path,ofolder,TD) elif mode=='supertrimm': from Drive.XciTools import supertrimm supertrimm(path,ofolder,TD) elif mode=='read_cnmt': from Drive.Info import read_cnmt read_cnmt(path,TD) counter-=1 if counter>0: print("Still {} files to download".format(str(counter))) def add_to_drive(url=None,ID=None,filepath=None,makecopy=False,TD=None): # print(url);print(ID);print(filepath);print(makecopy);print(TD); try: if ID==None and url==None: return False if filepath==None: return False if ID!=None: file_id=ID else: file_id, is_download_link=Public.parse_url(url) if TD==None: remote=location(route=filepath) else: remote=location(route=filepath,TD_Name=TD) # remote=location(route=filepath) drive=remote.drivename FolderID=remote.ID if makecopy!=True: file = remote.drive_service.files().update(fileId=file_id, addParents=FolderID, fields='id,parents,name').execute() name=file.get('name') else: result=remote.drive_service.files().get(fileId=file_id, fields="name,mimeType").execute() name=result['name'] newfile = {'name': name, 'parents' : [FolderID]} file = remote.drive_service.files().copy(fileId=file_id, body=newfile, fields='id, parents').execute() print("{} was added to drive".format(name)) except IOError as e: print(e, file=sys.stderr) return name # def get_plink_data(url=None,ID=None,filepath=None,TD=None): # try: # if ID==None and url==None: # return False # if filepath==None: # return False # if ID!=None: # file_id=ID # else: # file_id, is_download_link=Public.parse_url(url) # if TD==None: # remote=location(route=filepath) # else: # remote=location(route=filepath,TD_Name=TD) # remote=location(route=filepath) # drive=remote.drivename # FolderID=remote.ID # result=remote.drive_service.files().get(fileId=file_id, fields="name,mimeType").execute() # name=result['name'] # id=file_id # except IOError as e: # print(e, file=sys.stderr) # return name,id def delete_from_drive(filepath=None,url=None,lkID=None,TD=None): try: if filepath==None and url==None and lkID==None: return False if TD==None: remote=location(route=filepath) else: remote=location(route=filepath,TD_Name=TD) if lkID != None: file_id=lkID elif url != None: file_id, is_download_link=Public.parse_url(url) elif filepath != None: file_id=remote.ID file = remote.drive_service.files().get(fileId=file_id, fields='parents').execute() # print(file.get('parents')) previous_parents = ",".join(file.get('parents')) file = remote.drive_service.files().update(fileId=file_id, removeParents=previous_parents, fields='name,id,parents').execute() print("{} was removed from drive".format(file['name'])) except IOError as e: print(e, file=sys.stderr) def move(origin,destiny,originTD,destinyTD): if originTD==None: Oremote=location(route=origin) else: Oremote=location(route=origin,TD_Name=originTD) fileId=Oremote.ID # print(fileId) # print(Oremote.name) if destinyTD==None: Dremote=location(route=destiny) else: Dremote=location(route=destiny,TD_Name=destinyTD) folderID=Dremote.ID # print(folderID) file = Oremote.drive_service.files().get(fileId=fileId, fields='parents').execute() previous_parents = ",".join(file.get('parents')) file = Dremote.drive_service.files().update(fileId=fileId, removeParents=previous_parents, addParents=folderID, fields='id, parents').execute() def create_folder(filepath): c=0;parent='root';endID=False try: remote=location(route=filepath) if remote.ID!=None: print("- Folder already exists") return True,remote.ID else: token_name,folder_list=get_path_parameters(filepath) remote=location(route=token_name) if remote.ID==None: print("Bad token") return False,False folder="{}:".format(token_name) for j in folder_list: folder+=('/'+j) remote=location(route=folder) if remote.ID==None: try: file_metadata = { 'name': j, 'mimeType': 'application/vnd.google-apps.folder', 'parents': [parent] } # print(file_metadata) file = remote.drive_service.files().create(body=file_metadata, fields='id').execute() parent=file.get('id') endID=parent print("Created {} with ID: {}".format(folder,parent)) except: return False,False else: parent=remote.ID except: token_name,folder_list=get_path_parameters(filepath) remote=location(route=token_name) if remote.ID==None: print("Bad token") return False,False folder="{}:".format(token_name) for j in folder_list: folder+=('/'+j) remote=location(route=folder) if remote.ID==None: try: file_metadata = { 'name': j, 'mimeType': 'application/vnd.google-apps.folder', 'parents': [parent] } print(file_metadata) file = remote.drive_service.files().create(body=file_metadata, fields='id').execute() parent=file.get('id') endID=parent print("Created {} with ID: {}".format(folder,parent)) except: return False,False else: parent=remote.ID return True,endID def get_parents(path,ID=None,url=None): file_id=ID remote=location(route=path) if ID !=None: file = remote.drive_service.files().get(fileId=file_id, fields='parents').execute() return file.get('parents') elif url !=None: file_id, is_download_link=Public.parse_url(url) file = remote.drive_service.files().get(fileId=file_id, fields='parents').execute() return file.get('parents') else: return False def clean_name(name): import nutdb name = re.sub(r'[àâá@äå]', 'a', name);name = re.sub(r'[ÀÂÁÄÅ]', 'A', name) name = re.sub(r'[èêéë]', 'e', name);name = re.sub(r'[ÈÊÉË]', 'E', name) name = re.sub(r'[ìîíï]', 'i', name);name = re.sub(r'[ÌÎÍÏ]', 'I', name) name = re.sub(r'[òôóöø]', 'o', name);name = re.sub(r'[ÒÔÓÖØ]', 'O', name) name = re.sub(r'[ùûúü]', 'u', name);name = re.sub(r'[ÙÛÚÜ]', 'U', name) converter = nutdb.kakashi_conv() name=converter.do(name) if name[0] == ' ': name=name[1:] name=name[0].upper()+name[1:] name=nutdb.set_roma_uppercases(name) return name
the-stack_0_19086
from django.urls import reverse from rest_framework import status from bluebottle.test.utils import BluebottleTestCase from bluebottle.test.factory_models.news import NewsItemFactory class NewsItemApiTestCase(BluebottleTestCase): """ Integration tests for the NewsItem API. """ def setUp(self): super(NewsItemApiTestCase, self).setUp() self.some_dutch_news = NewsItemFactory.create(language='nl') self.some_other_dutch_news = NewsItemFactory.create(language='nl') self.third_dutch_news = NewsItemFactory.create(language='nl') self.some_english_news = NewsItemFactory.create(language='en') self.some_other_english_news = NewsItemFactory.create(language='en') self.some_unpublished_english_news = NewsItemFactory.create(status='draft', language='en') class NewsItemsApiTest(NewsItemApiTestCase): """ Test case for the ``NewsItem`` API view Endpoint: /api/news/items/ """ def test_news_list_unfiltered(self): """ Test retrieving news items. """ response = self.client.get(reverse('news_item_list')) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data['count'], 5) def test_news_list_filtered(self): """ Test filtering news items by language. """ # Check that we have 3 dutch news items response = self.client.get(reverse('news_item_list'), {'language': 'nl'}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data['count'], 3) self.assertEqual(response.data['results'][0]['language'], 'nl') # Check that we have 2 english news items response = self.client.get(reverse('news_item_list'), {'language': 'en'}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data['count'], 2) self.assertEqual(response.data['results'][0]['language'], 'en') def test_news_post_details(self): """ Test retrieving a single news item. """ news_item_url = reverse('news_post_detail', kwargs={'slug': self.some_dutch_news.slug}) response = self.client.get(news_item_url) self.assertEqual(response.status_code, status.HTTP_200_OK, response.data) self.assertEqual(response.data['title'], self.some_dutch_news.title) def test_news_post_by_language(self): """ Test retrieving a single news item. """ NewsItemFactory.create(language='nl', slug='update', title='Hier is een update') NewsItemFactory.create(language='en', slug='update', title='This is happening now') news_item_url = reverse('news_post_detail', kwargs={'slug': 'update'}) response = self.client.get(news_item_url, HTTP_X_APPLICATION_LANGUAGE='nl') self.assertEqual(response.status_code, status.HTTP_200_OK, response.data) self.assertEqual(response.data['title'], 'Hier is een update') response = self.client.get(news_item_url, HTTP_X_APPLICATION_LANGUAGE='en') self.assertEqual(response.status_code, status.HTTP_200_OK, response.data) self.assertEqual(response.data['title'], 'This is happening now') def test_news_post_by_wrong_slug(self): """ Test retrieving a single news item. """ NewsItemFactory.create(language='nl', slug='update') news_item_url = reverse('news_post_detail', kwargs={'slug': 'vzzbx'}) response = self.client.get(news_item_url) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND)
the-stack_0_19087
from django.core.management.base import BaseCommand from company.models import Company, CompanyUser from company.tests.factories import CompanyFactory, CompanyUserFactory class Command(BaseCommand): help = 'Masks personal company/supplier fields with test data' def handle(self, *args, **options): self.mask_company_data() self.mask_supplier_data() def mask_company_data(self): queryset = Company.objects.all() failed = 0 succeded = 0 for company in queryset: try: message = f'Company {company.pk} updated' company_factory = CompanyFactory.build() company.mobile_number = company_factory.mobile_number company.postal_full_name = company_factory.postal_full_name company.address_line_1 = company_factory.address_line_1 company.address_line_2 = company_factory.address_line_2 company.postal_code = company_factory.postal_code company.po_box = company_factory.po_box company.email_address = company_factory.email_address company.email_full_name = company_factory.email_full_name company.save() self.stdout.write(self.style.SUCCESS(message)) succeded += 1 except Exception as e: self.stdout.write(self.style.ERROR(e)) failed += 1 self.stdout.write(self.style.SUCCESS(f'{succeded} companies updated')) self.stdout.write(self.style.WARNING(f'{failed} companies failed')) def mask_supplier_data(self): failed = 0 succeded = 0 for supplier in CompanyUser.objects.all(): try: supplier_factory = CompanyUserFactory.build() message = f'supplier {supplier.pk} updated' supplier.name = supplier_factory.name supplier.company_email = supplier_factory.company_email supplier.mobile_number = supplier_factory.mobile_number supplier.save() self.stdout.write(self.style.SUCCESS(message)) succeded += 1 except Exception as e: self.stdout.write(self.style.ERROR(e)) failed += 1 self.stdout.write(self.style.SUCCESS(f'{succeded} supplier updated')) self.stdout.write(self.style.WARNING(f'{failed} supplier failed'))