filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_19266
# -*- coding: utf-8 -*- import pandas as pd import matplotlib.pyplot as plt import numpy as np j_hor = [] j_ver = [] j_bro = [] j_non = [] for i in range(0, 20): hor = pd.read_csv('lowtest_hor/hor_%s.csv' % i) ver = pd.read_csv('lowtest_ver/ver_%s.csv' % i) bro = pd.read_csv('lowtest_brownout/brownout_%s.csv' % i) non = pd.read_csv('lowtest_raw/jmeter_rawdata_%s.csv' % i) hor = hor['success'].astype('int') ver = ver['success'].astype('int') bro = bro['success'].astype('int') non = non['success'].astype('int') hor = np.mean(hor) ver = np.mean(ver) bro = np.mean(bro) non = np.mean(non) j_hor.append(hor) j_ver.append(ver) j_bro.append(bro) j_non.append(non) hor_save = pd.DataFrame(j_hor) ver_save = pd.DataFrame(j_ver) bro_save = pd.DataFrame(j_bro) hor_save.to_csv('csv/success_hor.csv', header=False) ver_save.to_csv('csv/success_ver.csv', header=False) bro_save.to_csv('csv/success_bro.csv', header=False) plt.xlabel('round') plt.ylabel('success') plt.plot(j_hor, label='hor', color='red') plt.plot(j_ver, label='ver', color='blue') plt.plot(j_bro, label='brownout', color='green') # plt.plot(j_non, label='raw', color='coral') plt.legend() plt.savefig('img/success_compare.png') plt.show()
the-stack_0_19267
from ex115 import fmt, dados while True: opc = fmt.menuOpc() if opc == 1: dados.reader() elif opc == 2: fmt.dataManagement() elif opc == 3: print('Obrigado e até a próxima!') break else: print('Digite uma opção válida.')
the-stack_0_19268
import numpy as np import jax.numpy as jnp from jax.numpy import interp from jax import jit, partial, random, vmap from tqdm import tqdm import warnings warnings.filterwarnings("ignore") np.printoptions(precision=2) ''' Constants ''' # time line, starts at 20 ends at 80 T_min = 0 T_max = 60 T_R = 45 # discounting factor beta = 1/(1+0.02) # utility function parameter gamma = 2.0 # relative importance of housing consumption and non durable consumption alpha = 0.7 # parameter used to calculate the housing consumption kappa = 0.3 # uB associated parameter B = 2 # social welfare after the unemployment welfare = 20 # tax rate before and after retirement tau_L = 0.2 tau_R = 0.1 # number of states S nS = 8 # number of states e nE = 2 # housing state nO = 2 # experience state nZ = 2 ''' Economic state calibration ''' # probability of survival Pa = jnp.array(np.load("constant/prob.npy")) # deterministic income detEarning = jnp.array(np.load("constant/detEarningHigh.npy")) ############################################################################################################ high skill feature # fix the deterministic income detEarning = jnp.concatenate([detEarning[:46], detEarning[46:]-25]) # stock transaction fee Kc = 0.02 # stock participation cost c_k = 20 ############################################################################################################ high skill feature # Define transition matrix of economical states S Ps = np.genfromtxt('constant/Ps.csv',delimiter=',') Ps = jnp.array(Ps) # The possible GDP growth, stock return, bond return gkfe = np.genfromtxt('constant/gkfe.csv',delimiter=',') gkfe = jnp.array(gkfe) # GDP growth depending on current S state gGDP = gkfe[:,0]/100 # risk free interest rate depending on current S state r_b = gkfe[:,1]/100 # stock return depending on current S state r_k = gkfe[:,2]/100 # unemployment rate depending on current S state Pe = gkfe[:,7:]/100 Pe = Pe[:,::-1] ''' calculate stationary distribution to prepare for simulation ''' # calculate the stationary distribution of econ state and employment state S_distribution = jnp.ones(nS)/nS for _ in range(100): S_distribution = jnp.matmul(S_distribution, Ps) #P(0,1) P01 = jnp.dot(Pe[:,0],S_distribution) #P(1,0) P10 = jnp.dot(Pe[:,1],S_distribution) jnp.array([[1-P01, P01],[P10, 1-P10]]) E_distribution = jnp.ones(2)/2 for _ in range(100): E_distribution = jnp.matmul(E_distribution, jnp.array([[1-P01, P01],[P10, 1-P10]])) ''' 401k related constants ''' # 401k amount growth rate r_bar = 0.02 # income fraction goes into 401k yi = 0.04 Pa = Pa[:T_max] Nt = [np.sum(Pa[t:]) for t in range(T_min,T_max)] # factor used to calculate the withdraw amount Dn = [(r_bar*(1+r_bar)**N)/((1+r_bar)**N - 1) for N in Nt] Dn[-1] = 1 Dn = jnp.array(Dn) # cash accumulated before retirement nEarning = yi*E_distribution[1]*(1+jnp.dot(S_distribution,gGDP))*detEarning[:45] n_balance = np.zeros(T_R) for t in range(T_R): nMultiplier = jnp.array([(1+r_bar)**(t-i) for i in range(t)]) n_balance[t] = (nEarning[:t] * nMultiplier).sum() # cash payouts after retirement n_payout = [] amount = n_balance[-1] for t in range(45, 60): n_payout.append(amount*Dn[t]) amount = amount - amount*Dn[t] n_balance = jnp.append(n_balance,amount) n_payout = jnp.array(n_payout) ''' housing related constants ''' # variable associated with housing and mortgage # age limit of buying a house ageLimit = 30 mortgageLength = 30 # mortgage rate rh = 0.045 # housing unit H = 1000 # max rent unit Rl = 500 # housing price constant pt = 2*250/1000 # 30k rent 1000 sf pr = 2*10/1000 * 2 # constant cost c_h = 5 c_s = H*pt*0.4 # Dm is used to update the mortgage payment Dm = [(1+rh) - rh*(1+rh)**(T_max - t)/((1+rh)**(T_max-t)-1) for t in range(T_min, T_max)] Dm[-1] = 0 Dm = jnp.array(Dm) # 30 year mortgage Ms = [] M = H*pt*0.8 m = M*(1+rh) - Dm[30]*M for i in range(30, T_max): Ms.append(M) M = M*(1+rh) - m Ms.append(0) Ms = jnp.array(Ms) ''' Discretize the state space Discretize the action space ''' # actions dicretization(hp, cp, kp) numGrid = 20 As = np.array(np.meshgrid(np.linspace(0.001,0.999,numGrid), np.linspace(0,1,numGrid), [0,1])).T.reshape(-1,3) As = jnp.array(As) # wealth discretization wealthLevel = 300 polynomialDegree = 3 ws = jnp.linspace(0, np.power(wealthLevel,1/polynomialDegree), numGrid)**polynomialDegree # age of last time bought a house value only count when o = 1. aBuy = np.array(range(ageLimit)) # dimentions of the state dim = (ws.size, aBuy.size, nS, nE, nO, nZ) dimSize = len(dim) xgrid = np.array([[w,ab,s,e,o,z] for w in ws for ab in aBuy for s in range(nS) for e in range(nE) for o in range(nO) for z in range(nZ)]).reshape(dim + (dimSize,)) Xs = xgrid.reshape((np.prod(dim),dimSize)) Xs = jnp.array(Xs) Vgrid = np.zeros(dim + (T_max,)) # start of function definitions nX = Xs.shape[0] nA = As.shape[0] ''' Functions Definitions ''' #Define the earning function, which applies for both employment status and 8 econ states @partial(jit, static_argnums=(0,)) def y(t, x): ''' x = [w,ab,s,e,o,z] x = [0,1, 2,3,4,5] ''' if t < T_R: return detEarning[t] * (1+gGDP[jnp.array(x[2], dtype = jnp.int8)]) * x[3] + (1-x[3]) * welfare else: return detEarning[-1] #Earning after tax and fixed by transaction in and out from 401k account @partial(jit, static_argnums=(0,)) def yAT(t,x): yt = y(t, x) if t < T_R: # yi portion of the income will be put into the 401k if employed return (1-tau_L)*(yt * (1-yi))*x[3] + (1-x[3])*yt else: # t >= T_R, n/discounting amount will be withdraw from the 401k return (1-tau_R)*yt + n_payout[t-T_R] #Define the utility function @jit def u(c): return jnp.nan_to_num(x = (jnp.power(c, 1-gamma) - 1)/(1 - gamma), nan = -jnp.inf) #Define the bequeath function, which is a function of bequeath wealth @jit def uB(tb): return B*u(tb) #Reward function depends on the housing and non-housing consumption @jit def R(a): ''' Input: a = [c,b,k,h,action] a = [0,1,2,3,4] ''' c = a[:,0] b = a[:,1] k = a[:,2] h = a[:,3] C = jnp.power(c, alpha) * jnp.power(h, 1-alpha) return u(C) + (-1/((c > 0) * (b >= 0) * (k >= 0) * (h > 0)) + 1) # pc*qc / (ph*qh) = alpha/(1-alpha) @partial(jit, static_argnums=(0,)) def feasibleActions(t, x): ''' x = [w,ab,s,e,o,z] x = [0,1, 2,3,4,5] a = [c,b,k,h,action] a = [0,1,2,3,4] ''' # owner sell = As[:,2] ab = jnp.array(x[1], dtype = jnp.int8) # last term is the tax deduction of the interest portion of mortgage payment payment = ((t-ab) > 0)*((t-ab) <= mortgageLength)*(((t<=T_R)*tau_L + (t>T_R)*tau_R)*Ms[t-ab]*rh - m) # this is the fire sell term, as long as we could afford the payment, do not sell sell = (yAT(t,x) + x[0] + payment > 0)*jnp.zeros(nA) + (yAT(t,x) + x[0] + payment <= 0)*jnp.ones(nA) budget1 = yAT(t,x) + x[0] + (1-sell)*payment + sell*(H*pt - Ms[t-ab] - c_s) h = jnp.ones(nA)*H*(1+kappa)*(1-sell) + sell*jnp.clip(budget1*As[:,0]*(1-alpha)/pr, a_max = Rl) c = budget1*As[:,0]*(1-sell) + sell*(budget1*As[:,0] - h*pr) budget2 = budget1*(1-As[:,0]) k = budget2*As[:,1] k = k - (1-x[5])*(k>0)*c_k k = k*(1-Kc) b = budget2*(1-As[:,1]) owner_action = jnp.column_stack((c,b,k,h,sell)) # renter buy = As[:,2]*(t < ageLimit) budget1 = yAT(t,x) + x[0] - buy*(H*pt*0.2 + c_h) h = jnp.clip(budget1*As[:,0]*(1-alpha)/pr, a_max = Rl)*(1-buy) + buy*jnp.ones(nA)*H*(1+kappa) c = (budget1*As[:,0] - h*pr)*(1-buy) + buy*budget1*As[:,0] budget2 = budget1*(1-As[:,0]) k = budget2*As[:,1] k = k - (1-x[5])*(k>0)*c_k k = k*(1-Kc) b = budget2*(1-As[:,1]) renter_action = jnp.column_stack((c,b,k,h,buy)) actions = x[4]*owner_action + (1-x[4])*renter_action return actions @partial(jit, static_argnums=(0,)) def transition(t,a,x): ''' Input: x = [w,ab,s,e,o,z] x = [0,1, 2,3,4,5] a = [c,b,k,h,action] a = [0,1,2,3,4] Output: w_next ab_next s_next e_next o_next z_next prob_next ''' nA = a.shape[0] s = jnp.array(x[2], dtype = jnp.int8) e = jnp.array(x[3], dtype = jnp.int8) # actions taken b = a[:,1] k = a[:,2] action = a[:,4] w_next = ((1+r_b[s])*b + jnp.outer(k,(1+r_k)).T).T.flatten().repeat(nE) ab_next = (1-x[4])*(t*(action == 1)).repeat(nS*nE) + x[4]*(x[1]*jnp.ones(w_next.size)) s_next = jnp.tile(jnp.arange(nS),nA).repeat(nE) e_next = jnp.column_stack((e.repeat(nA*nS),(1-e).repeat(nA*nS))).flatten() z_next = x[5]*jnp.ones(w_next.size) + ((1-x[5]) * (k > 0)).repeat(nS*nE) # job status changing probability and econ state transition probability pe = Pe[s, e] ps = jnp.tile(Ps[s], nA) prob_next = jnp.column_stack(((1-pe)*ps,pe*ps)).flatten() # owner o_next_own = (x[4] - action).repeat(nS*nE) # renter o_next_rent = action.repeat(nS*nE) o_next = x[4] * o_next_own + (1-x[4]) * o_next_rent return jnp.column_stack((w_next,ab_next,s_next,e_next,o_next,z_next,prob_next)) # used to calculate dot product @jit def dotProduct(p_next, uBTB): return (p_next*uBTB).reshape((p_next.shape[0]//(nS*nE), (nS*nE))).sum(axis = 1) # define approximation of fit @jit def fit(v, xpp): value = vmap(partial(jnp.interp,xp = ws))(x = xpp[:,0], fp = v[:,jnp.array(xpp[:,1], dtype = int), jnp.array(xpp[:,2], dtype = int), jnp.array(xpp[:,3], dtype = int), jnp.array(xpp[:,4], dtype = int), jnp.array(xpp[:,5], dtype = int)].T) return jnp.nan_to_num(x = value, nan = -jnp.inf) @partial(jit, static_argnums=(0,)) def V(t,V_next,x): ''' x = [w,ab,s,e,o,z] x = [0,1, 2,3,4,5] xp: w_next 0 ab_next 1 s_next 2 e_next 3 o_next 4 z_next 5 prob_next 6 ''' actions = feasibleActions(t,x) xp = transition(t,actions,x) # bequeath utility, wealth level, the retirement account, heir sell the house at a cost of 25k TB = xp[:,0] + n_balance[t] + xp[:,4]*(H*pt-Ms[jnp.array(t-xp[:,1], dtype = jnp.int8)]*(1+rh) - 25) bequeathU = uB(TB) if t == T_max-1: Q = R(actions) + beta * dotProduct(xp[:,6], bequeathU) else: Q = R(actions) + beta * dotProduct(xp[:,6], Pa[t]*fit(V_next, xp) + (1-Pa[t])*bequeathU) Q = Q + (-jnp.inf)*(x[1] >= t) v = Q.max() return v @partial(jit, static_argnums=(0,)) def V_solve(t,V_next,x): ''' x = [w,ab,s,e,o,z] x = [0,1, 2,3,4,5] xp: w_next 0 ab_next 1 s_next 2 e_next 3 o_next 4 z_next 5 prob_next 6 ''' actions = feasibleActions(t,x) xp = transition(t,actions,x) # bequeath utility, wealth level, the retirement account, heir sell the house at a cost of 25k TB = xp[:,0] + n_balance[t] + xp[:,4]*(H*pt-Ms[jnp.array(t-xp[:,1], dtype = jnp.int8)]*(1+rh) - 25) bequeathU = uB(TB) if t == T_max-1: Q = R(actions) + beta * dotProduct(xp[:,6], bequeathU) else: Q = R(actions) + beta * dotProduct(xp[:,6], Pa[t]*fit(V_next, xp) + (1-Pa[t])*bequeathU) Q = Q + (-jnp.inf)*(x[1] >= t) v = Q.max() cbkha = actions[Q.argmax()] return v, cbkha ###################################solving the model################################################## import os.path if os.path.exists("richHigh.npy"): print("Model Solved! ") else: for t in tqdm(range(T_max-1,T_min-1, -1)): if t == T_max-1: v = vmap(partial(V,t,Vgrid[:,:,:,:,:,:,t]))(Xs) else: v = vmap(partial(V,t,Vgrid[:,:,:,:,:,:,t+1]))(Xs) Vgrid[:,:,:,:,:,:,t] = v.reshape(dim) np.save("richHigh",Vgrid)
the-stack_0_19269
import html import os import re from typing import Iterable from docutils import nodes from docutils.parsers.rst import directives from jinja2 import Template from sphinxcontrib.plantuml import ( generate_name, # Need for plantuml filename calculation ) from sphinxcontrib.needs.diagrams_common import calculate_link, create_legend from sphinxcontrib.needs.filter_common import ( FilterBase, filter_single_need, process_filters, ) from sphinxcontrib.needs.logging import get_logger logger = get_logger(__name__) class Needflow(nodes.General, nodes.Element): pass class NeedflowDirective(FilterBase): """ Directive to get flow charts. """ optional_arguments = 1 final_argument_whitespace = True option_spec = { "show_legend": directives.flag, "show_filters": directives.flag, "show_link_names": directives.flag, "link_types": directives.unchanged_required, "config": directives.unchanged_required, "scale": directives.unchanged_required, "highlight": directives.unchanged_required, "align": directives.unchanged_required, "debug": directives.flag, } # Update the options_spec with values defined in the FilterBase class option_spec.update(FilterBase.base_option_spec) def run(self): env = self.state.document.settings.env if not hasattr(env, "need_all_needflows"): env.need_all_needflows = {} # be sure, global var is available. If not, create it if not hasattr(env, "needs_all_needs"): env.needs_all_needs = {} id = env.new_serialno("needflow") targetid = f"needflow-{env.docname}-{id}" targetnode = nodes.target("", "", ids=[targetid]) all_link_types = ",".join(x["option"] for x in env.config.needs_extra_links) link_types = list(split_link_types(self.options.get("link_types", all_link_types))) config_names = self.options.get("config", None) configs = [] if config_names: for config_name in config_names.split(","): config_name = config_name.strip() if config_name and config_name in env.config.needs_flow_configs: configs.append(env.config.needs_flow_configs[config_name]) scale = self.options.get("scale", "100").replace("%", "") if not scale.isdigit(): raise Exception(f'Needflow scale value must be a number. "{scale}" found') if int(scale) < 1 or int(scale) > 300: raise Exception(f'Needflow scale value must be between 1 and 300. "{scale}" found') highlight = self.options.get("highlight", "") caption = None if self.arguments: caption = self.arguments[0] # Add the need and all needed information env.need_all_needflows[targetid] = { "docname": env.docname, "lineno": self.lineno, "target_node": targetnode, "caption": caption, "show_filters": "show_filters" in self.options, "show_legend": "show_legend" in self.options, "show_link_names": "show_link_names" in self.options, "debug": "debug" in self.options, "config_names": config_names, "config": "\n".join(configs), "scale": scale, "highlight": highlight, "align": self.options.get("align", None), "link_types": link_types, "env": env, } env.need_all_needflows[targetid].update(self.collect_filter_attributes()) return [targetnode] + [Needflow("")] def split_link_types(link_types: str) -> Iterable[str]: def is_valid(link_type) -> bool: if len(link_type) == 0 or link_type.isspace(): logger.warning("Scruffy link_type definition found in needflow." "Defined link_type contains spaces only.") return False return True return filter( is_valid, (x.strip() for x in re.split(";|,", link_types)), ) def make_entity_name(name): """Creates a valid PlantUML entity name from the given value.""" invalid_chars = "-=!#$%^&*[](){}/~'`<>:;" for char in invalid_chars: name = name.replace(char, "_") return name def process_needflow(app, doctree, fromdocname): # Replace all needflow nodes with a list of the collected needs. # Augment each need with a backlink to the original location. env = app.builder.env link_types = env.config.needs_extra_links allowed_link_types_options = [link.upper() for link in env.config.needs_flow_link_types] # NEEDFLOW for node in doctree.traverse(Needflow): if not app.config.needs_include_needs: # Ok, this is really dirty. # If we replace a node, docutils checks, if it will not lose any attributes. # But this is here the case, because we are using the attribute "ids" of a node. # However, I do not understand, why losing an attribute is such a big deal, so we delete everything # before docutils claims about it. for att in ("ids", "names", "classes", "dupnames"): node[att] = [] node.replace_self([]) continue id = node.attributes["ids"][0] current_needflow = env.need_all_needflows[id] all_needs = env.needs_all_needs option_link_types = [link.upper() for link in current_needflow["link_types"]] for lt in option_link_types: if lt not in [link["option"].upper() for link in link_types]: logger.warning( "Unknown link type {link_type} in needflow {flow}. Allowed values: {link_types}".format( link_type=lt, flow=current_needflow["target_node"], link_types=",".join(link_types) ) ) content = [] try: if "sphinxcontrib.plantuml" not in app.config.extensions: raise ImportError from sphinxcontrib.plantuml import plantuml except ImportError: content = nodes.error() para = nodes.paragraph() text = nodes.Text("PlantUML is not available!", "PlantUML is not available!") para += text content.append(para) node.replace_self(content) continue plantuml_block_text = ".. plantuml::\n" "\n" " @startuml" " @enduml" puml_node = plantuml(plantuml_block_text) puml_node["uml"] = "@startuml\n" puml_connections = "" # Adding config config = current_needflow["config"] if config and len(config) >= 3: # Remove all empty lines config = "\n".join([line.strip() for line in config.split("\n") if line.strip()]) puml_node["uml"] += "\n' Config\n\n" puml_node["uml"] += config puml_node["uml"] += "\n\n" all_needs = list(all_needs.values()) found_needs = process_filters(app, all_needs, current_needflow) processed_need_part_ids = [] puml_node["uml"] += "\n' Nodes definition \n\n" for need_info in found_needs: # Check if need_part was already handled during handling of parent need. # If this is the case, it is already part of puml-code and we do not need to create a node. if not (need_info["is_part"] and need_info["id_complete"] in processed_need_part_ids): # Check if we need to embed need_parts into parent need, because they are also part of search result. node_part_code = "" valid_need_parts = [x for x in found_needs if x["is_part"] and x["id_parent"] == need_info["id"]] for need_part in valid_need_parts: part_link = calculate_link(app, need_part, fromdocname) diagram_template = Template(env.config.needs_diagram_template) part_text = diagram_template.render(**need_part) part_colors = [] if need_part["type_color"]: # We set # later, as the user may not have given a color and the node must get highlighted part_colors.append(need_part["type_color"].replace("#", "")) if current_needflow["highlight"] and filter_single_need( app, need_part, current_needflow["highlight"], all_needs ): part_colors.append("line:FF0000") node_part_code += '{style} "{node_text}" as {id} [[{link}]] #{color}\n'.format( id=make_entity_name(need_part["id_complete"]), node_text=part_text, link=part_link, color=";".join(part_colors), style="rectangle", ) processed_need_part_ids.append(need_part["id_complete"]) link = calculate_link(app, need_info, fromdocname) diagram_template = Template(env.config.needs_diagram_template) node_text = diagram_template.render(**need_info) if need_info["is_part"]: need_id = need_info["id_complete"] else: need_id = need_info["id"] colors = [] if need_info["type_color"]: # We set # later, as the user may not have given a color and the node must get highlighted colors.append(need_info["type_color"].replace("#", "")) if current_needflow["highlight"] and filter_single_need( app, need_info, current_needflow["highlight"], all_needs ): colors.append("line:FF0000") # Only add subelements and their {...} container, if we really need them. # Otherwise plantuml may not set style correctly, if {..} is empty if node_part_code: node_part_code = f"{{\n {node_part_code} }}" style = need_info["type_style"] node_code = '{style} "{node_text}" as {id} [[{link}]] #{color} {need_parts}\n'.format( id=make_entity_name(need_id), node_text=node_text, link=link, color=";".join(colors), style=style, need_parts=node_part_code, ) puml_node["uml"] += node_code for link_type in link_types: # Skip link-type handling, if it is not part of a specified list of allowed link_types or # if not part of the overall configuration of needs_flow_link_types if (current_needflow["link_types"] and link_type["option"].upper() not in option_link_types) or ( not current_needflow["link_types"] and link_type["option"].upper() not in allowed_link_types_options ): continue for link in need_info[link_type["option"]]: # If source or target of link is a need_part, a specific style is needed if "." in link or "." in need_info["id_complete"]: final_link = link if current_needflow["show_link_names"] or env.config.needs_flow_show_links: desc = link_type["outgoing"] + "\\n" comment = f": {desc}" else: comment = "" if "style_part" in link_type and link_type["style_part"]: link_style = "[{style}]".format(style=link_type["style_part"]) else: link_style = "[dotted]" else: final_link = link if current_needflow["show_link_names"] or env.config.needs_flow_show_links: comment = ": {desc}".format(desc=link_type["outgoing"]) else: comment = "" if "style" in link_type and link_type["style"]: link_style = "[{style}]".format(style=link_type["style"]) else: link_style = "" # Do not create an links, if the link target is not part of the search result. if final_link not in [x["id"] for x in found_needs if x["is_need"]] and final_link not in [ x["id_complete"] for x in found_needs if x["is_part"] ]: continue if "style_start" in link_type and link_type["style_start"]: style_start = link_type["style_start"] else: style_start = "-" if "style_end" in link_type and link_type["style_end"]: style_end = link_type["style_end"] else: style_end = "->" puml_connections += "{id} {style_start}{link_style}{style_end} {link}{comment}\n".format( id=make_entity_name(need_info["id_complete"]), link=make_entity_name(final_link), comment=comment, link_style=link_style, style_start=style_start, style_end=style_end, ) puml_node["uml"] += "\n' Connection definition \n\n" puml_node["uml"] += puml_connections # Create a legend if current_needflow["show_legend"]: puml_node["uml"] += create_legend(app.config.needs_types) puml_node["uml"] += "\n@enduml" puml_node["incdir"] = os.path.dirname(current_needflow["docname"]) puml_node["filename"] = os.path.split(current_needflow["docname"])[1] # Needed for plantuml >= 0.9 scale = int(current_needflow["scale"]) # if scale != 100: puml_node["scale"] = scale puml_node = nodes.figure("", puml_node) if current_needflow["align"]: puml_node["align"] = current_needflow["align"] else: puml_node["align"] = "center" if current_needflow["caption"]: # Make the caption to a link to the original file. try: if "SVG" in app.config.plantuml_output_format.upper(): file_ext = "svg" else: file_ext = "png" except Exception: file_ext = "png" gen_flow_link = generate_name(app, puml_node.children[0], file_ext) current_file_parts = fromdocname.split("/") subfolder_amount = len(current_file_parts) - 1 img_locaton = "../" * subfolder_amount + "_images/" + gen_flow_link[0].split("/")[-1] flow_ref = nodes.reference("t", current_needflow["caption"], refuri=img_locaton) puml_node += nodes.caption("", "", flow_ref) # Add lineno to node puml_node.line = current_needflow["lineno"] content.append(puml_node) if len(content) == 0: nothing_found = "No needs passed the filters" para = nodes.paragraph() nothing_found_node = nodes.Text(nothing_found, nothing_found) para += nothing_found_node content.append(para) if current_needflow["show_filters"]: para = nodes.paragraph() filter_text = "Used filter:" filter_text += ( " status(%s)" % " OR ".join(current_needflow["status"]) if len(current_needflow["status"]) > 0 else "" ) if len(current_needflow["status"]) > 0 and len(current_needflow["tags"]) > 0: filter_text += " AND " filter_text += ( " tags(%s)" % " OR ".join(current_needflow["tags"]) if len(current_needflow["tags"]) > 0 else "" ) if (len(current_needflow["status"]) > 0 or len(current_needflow["tags"]) > 0) and len( current_needflow["types"] ) > 0: filter_text += " AND " filter_text += ( " types(%s)" % " OR ".join(current_needflow["types"]) if len(current_needflow["types"]) > 0 else "" ) filter_node = nodes.emphasis(filter_text, filter_text) para += filter_node content.append(para) if current_needflow["debug"]: debug_container = nodes.container() if isinstance(puml_node, nodes.figure): data = puml_node.children[0]["uml"] else: data = puml_node["uml"] data = "\n".join([html.escape(line) for line in data.split("\n")]) debug_para = nodes.raw("", f"<pre>{data}</pre>", format="html") debug_container += debug_para content += debug_container node.replace_self(content)
the-stack_0_19270
#! /usr/bin/env python # Import the needed types. from comp0037_planner_controller.occupancy_grid import OccupancyGrid from comp0037_planner_controller.fifo_planner import FIFOPlanner # Create the occupancy grid. Syntax is: number of cells in X, number of cells in Y, # length of each cell in m occupancyGrid = OccupancyGrid(21, 21, 0.5) # The cells are indexed starting from 0. # Set the state of the cells in the range [11,1]-[11,19] to be occupied. # This corresponds to the "easy case" in the lectures for y in xrange(1, 19): occupancyGrid.setCell(11, y, 1) # Start and goal cells start = (3, 18) goal = (20, 0) # Create the planner. The first field is the title which will appear in the # graphics window, the second the occupancy grid used. planner = FIFOPlanner('Breadth First Search', occupancyGrid); # This causes the planner to slow down and pause for things like key entries planner.setRunInteractively(True) # This specifies the height of the window drawn showing the occupancy grid. Everything # should scale automatically to properly preserve the aspect ratio planner.setWindowHeightInPixels(400) # Search and see if a path can be found. Returns True if a path from the start to the # goal was found and False otherwise goalReached = planner.search(start, goal) # Extract the path. This is based on the last search carried out. path = planner.extractPathToGoal() # Note that you can run multiple planners - each one will create and update its own window. # See the minkowski_sum_tester as an example
the-stack_0_19271
# This example requires the 'members' privileged intents import disnake class MyClient(disnake.Client): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.role_message_id = 0 # ID of the message that can be reacted to to add/remove a role. self.emoji_to_role = { disnake.PartialEmoji(name="🔴"): 0, # ID of the role associated with unicode emoji '🔴'. disnake.PartialEmoji(name="🟡"): 0, # ID of the role associated with unicode emoji '🟡'. disnake.PartialEmoji( name="green", id=0 ): 0, # ID of the role associated with a partial emoji's ID. } async def on_raw_reaction_add(self, payload: disnake.RawReactionActionEvent): """Gives a role based on a reaction emoji.""" # Make sure that the message the user is reacting to is the one we care about. if payload.message_id != self.role_message_id: return guild = self.get_guild(payload.guild_id) if guild is None: # Check if we're still in the guild and it's cached. return try: role_id = self.emoji_to_role[payload.emoji] except KeyError: # If the emoji isn't the one we care about then exit as well. return role = guild.get_role(role_id) if role is None: # Make sure the role still exists and is valid. return try: # Finally, add the role. await payload.member.add_roles(role) except disnake.HTTPException: # If we want to do something in case of errors we'd do it here. pass async def on_raw_reaction_remove(self, payload: disnake.RawReactionActionEvent): """Removes a role based on a reaction emoji.""" # Make sure that the message the user is reacting to is the one we care about. if payload.message_id != self.role_message_id: return guild = self.get_guild(payload.guild_id) if guild is None: # Check if we're still in the guild and it's cached. return try: role_id = self.emoji_to_role[payload.emoji] except KeyError: # If the emoji isn't the one we care about then exit as well. return role = guild.get_role(role_id) if role is None: # Make sure the role still exists and is valid. return # The payload for `on_raw_reaction_remove` does not provide `.member` # so we must get the member ourselves from the payload's `.user_id`. member = guild.get_member(payload.user_id) if member is None: # Make sure the member still exists and is valid. return try: # Finally, remove the role. await member.remove_roles(role) except disnake.HTTPException: # If we want to do something in case of errors we'd do it here. pass intents = disnake.Intents.default() intents.members = True client = MyClient(intents=intents) client.run("token")
the-stack_0_19272
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the RPC HTTP basics.""" import http.client import urllib.parse from test_framework.test_framework import TrumpCoinTestFramework from test_framework.util import assert_equal, str_to_b64str class HTTPBasicsTest (TrumpCoinTestFramework): def set_test_params(self): self.num_nodes = 3 def setup_network(self): self.setup_nodes() def run_test(self): ################################################# # lowlevel check for http persistent connection # ################################################# url = urllib.parse.urlparse(self.nodes[0].url) authpair = url.username + ':' + url.password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) assert(conn.sock is not None) #according to http/1.1 connection must still be open! #send 2nd request without closing connection conn.request('POST', '/', '{"method": "getchaintips"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) #must also response with a correct json-rpc message assert(conn.sock is not None) #according to http/1.1 connection must still be open! conn.close() #same should be if we add keep-alive because this should be the std. behaviour headers = {"Authorization": "Basic " + str_to_b64str(authpair), "Connection": "keep-alive"} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) assert(conn.sock is not None) #according to http/1.1 connection must still be open! #send 2nd request without closing connection conn.request('POST', '/', '{"method": "getchaintips"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) #must also response with a correct json-rpc message assert(conn.sock is not None) #according to http/1.1 connection must still be open! conn.close() #now do the same with "Connection: close" headers = {"Authorization": "Basic " + str_to_b64str(authpair), "Connection":"close"} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) assert(conn.sock is None) #now the connection must be closed after the response #node1 (2nd node) is running with disabled keep-alive option urlNode1 = urllib.parse.urlparse(self.nodes[1].url) authpair = urlNode1.username + ':' + urlNode1.password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(urlNode1.hostname, urlNode1.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) #node2 (third node) is running with standard keep-alive parameters which means keep-alive is on urlNode2 = urllib.parse.urlparse(self.nodes[2].url) authpair = urlNode2.username + ':' + urlNode2.password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(urlNode2.hostname, urlNode2.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) assert(conn.sock is not None) #connection must be closed because trumpcoind should use keep-alive by default # Check excessive request size conn = http.client.HTTPConnection(urlNode2.hostname, urlNode2.port) conn.connect() conn.request('GET', '/' + ('x'*1000), '', headers) out1 = conn.getresponse() assert_equal(out1.status, http.client.NOT_FOUND) conn = http.client.HTTPConnection(urlNode2.hostname, urlNode2.port) conn.connect() conn.request('GET', '/' + ('x'*10000), '', headers) out1 = conn.getresponse() assert_equal(out1.status, http.client.BAD_REQUEST) if __name__ == '__main__': HTTPBasicsTest ().main ()
the-stack_0_19276
import warnings import numpy as np import pandas as pd import xgboost as xgb from joblib import Parallel, delayed from sklearn.linear_model import LogisticRegression from sklearn.neighbors import BallTree from sklearn.preprocessing import OneHotEncoder # lib utils from xgbse._base import XGBSEBaseEstimator, DummyLogisticRegression from xgbse.converters import convert_data_to_xgb_format, convert_y # at which percentiles will the KM predict from xgbse.non_parametric import get_time_bins, calculate_interval_failures KM_PERCENTILES = np.linspace(0, 1, 11) DEFAULT_PARAMS = { "objective": "survival:aft", "eval_metric": "aft-nloglik", "aft_loss_distribution": "normal", "aft_loss_distribution_scale": 1, "tree_method": "hist", "learning_rate": 5e-2, "max_depth": 8, "booster": "dart", "subsample": 0.5, "min_child_weight": 50, "colsample_bynode": 0.5, } DEFAULT_PARAMS_LR = {"C": 1e-3, "max_iter": 500} def _repeat_array(x, n): """ Repeats an array x n times. Resulting array of ((x*n) x 1) shape. Args: x (np.array): An array to be repeated n (Int): Number of times to repeat array x Returns: (np.array): Array x repeated n times. """ return np.array([x] * n).T def _build_multi_task_targets(E, T, time_bins): """ Builds compatible multi task targets. This function creates a times array from time 0 to T, where T is the event/censor last observed time. If time_bins > T, times greater than the last observed time T are considered equal to -1. Args: E ([np.array, pd.Series]): Array of censors(0)/events(1). T ([np.array, pd.Series]): Array of times. time_bins ([np.array]): Specified time bins to split targets. Returns: targets (pd.Series): A Series with multi task targets (for data existent just up to time T=t, all times over t are considered equal to -1). time_bins (np.array): Time bins to be used for multi task survival analysis. """ events = _repeat_array(E, len(time_bins)) times = _repeat_array(T, len(time_bins)) < time_bins targets = times.astype(int) shifted_array = np.roll(targets, 1) shifted_array[:, 0] = 0 shifted_array = shifted_array + targets shifted_array[shifted_array == 2] = -1 shifted_array[np.logical_not(events) & times] = -1 return shifted_array, time_bins # class to fit a BCE on the leaves of a XGB class XGBSEDebiasedBCE(XGBSEBaseEstimator): """ Class to train a set of logistic regressions on top of the embedding produced by xgboost models. Each logistic regression predicts survival at different user-defined discrete time windows. The classifiers remove individuals as they are censored, with targets that are indicators of surviving at each window. Adapted from source: http://quinonero.net/Publications/predicting-clicks-facebook.pdf """ def __init__( self, xgb_params=DEFAULT_PARAMS, lr_params=DEFAULT_PARAMS_LR, n_jobs=-1, ): """ Construct XGBSEDebiasedBCE instance Args: xgb_params (Dict): parameters for XGBoost model, see https://xgboost.readthedocs.io/en/latest/parameter.html lr_params (Dict): parameters for Logistic Regression model, see https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html n_jobs (Int): Number of CPU cores used to fit logistic regressions via joblib. """ self.xgb_params = xgb_params self.lr_params = lr_params self.n_jobs = n_jobs self.persist_train = False def fit( self, X, y, num_boost_round=1000, validation_data=None, early_stopping_rounds=None, verbose_eval=0, persist_train=False, index_id=None, time_bins=None, ): """ Transform feature space by fitting a XGBoost model and outputting its leaf indices. Leaves are transformed and considered as dummy variables to fit multiple logistic regression models to each evaluated time bin. Args: X ([pd.DataFrame, np.array]): features to be used while fitting XGBoost model y (structured array(numpy.bool_, numpy.number)): binary event indicator as first field, and time of event or time of censoring as second field. num_boost_round (Int): Number of boosting iterations. validation_data (Tuple): Validation data in the format of a list of tuples [(X, y)] if user desires to use early stopping early_stopping_rounds (Int): Activates early stopping. Validation metric needs to improve at least once in every **early_stopping_rounds** round(s) to continue training. See xgboost.train documentation. verbose_eval ([Bool, Int]): level of verbosity. See xgboost.train documentation. persist_train (Bool): whether or not to persist training data to use explainability through prototypes index_id (pd.Index): user defined index if intended to use explainability through prototypes time_bins (np.array): specified time windows to use when making survival predictions Returns: XGBSEDebiasedBCE: Trained XGBSEDebiasedBCE instance """ E_train, T_train = convert_y(y) if time_bins is None: time_bins = get_time_bins(T_train, E_train) self.time_bins = time_bins # converting data to xgb format dtrain = convert_data_to_xgb_format(X, y, self.xgb_params["objective"]) # converting validation data to xgb format evals = () if validation_data: X_val, y_val = validation_data dvalid = convert_data_to_xgb_format( X_val, y_val, self.xgb_params["objective"] ) evals = [(dvalid, "validation")] # training XGB self.bst = xgb.train( self.xgb_params, dtrain, num_boost_round=num_boost_round, early_stopping_rounds=early_stopping_rounds, evals=evals, verbose_eval=verbose_eval, ) # predicting and encoding leaves self.encoder = OneHotEncoder() leaves = self.bst.predict(dtrain, pred_leaf=True) leaves_encoded = self.encoder.fit_transform(leaves) # convert targets for using with logistic regression self.targets, self.time_bins = _build_multi_task_targets( E_train, T_train, self.time_bins ) # fitting LR for several targets self.lr_estimators_ = self._fit_all_lr(leaves_encoded, self.targets) if persist_train: self.persist_train = True if index_id is None: index_id = X.index.copy() index_leaves = self.bst.predict(dtrain, pred_leaf=True) self.tree = BallTree(index_leaves, metric="hamming") self.index_id = index_id return self def _fit_one_lr(self, leaves_encoded, target): """ Fits a single logistic regression to predict survival probability at a certain time bin as target. Encoded leaves are used as features. Args: leaves_encoded (np.array): A tensor of one hot encoded leaves. target (np.array): An array of time targets for a specific Returns: lr (sklearn.linear_model.LogisticRegression): A fitted Logistic Regression model. This model outputs calibrated survival probabilities on a time T. """ # masking mask = target != -1 # by default we use a logistic regression classifier = LogisticRegression(**self.lr_params) if len(target[mask]) == 0: # If there's no observation in a time bucket we raise an error raise ValueError("Error: No observations in a time bucket") elif len(np.unique(target[mask])) == 1: # If there's only one class in a time bucket # we create a dummy classifier that predicts that class and send a warning warnings.warn( "Warning: Only one class found in a time bucket", RuntimeWarning ) classifier = DummyLogisticRegression() classifier.fit(leaves_encoded[mask, :], target[mask]) return classifier def _fit_all_lr(self, leaves_encoded, targets): """ Fits multiple Logistic Regressions to predict survival probability for a list of time bins as target. Encoded leaves are used as features. Args: leaves_encoded (np.array): A tensor of one hot encoded leaves. targets (np.array): An array of time targets for a specific time bin. Returns: lr_estimators (List): A list of fitted Logistic Regression models. These models output calibrated survival probabilities for all times in pre specified time bins. """ with Parallel(n_jobs=self.n_jobs) as parallel: lr_estimators = parallel( delayed(self._fit_one_lr)(leaves_encoded, targets[:, i]) for i in range(targets.shape[1]) ) return lr_estimators def _predict_from_lr_list(self, lr_estimators, leaves_encoded, time_bins): """ Predicts survival probabilities from a list of multiple fitted Logistic Regressions models. Encoded leaves are used as features. Args: lr_estimators (List): A list of fitted Logistic Regression models. These models output calibrated survival probabilities for all times in pre specified time bins. leaves_encoded (np.array): A tensor of one hot encoded leaves. time_bins (np.array): Specified time bins to split targets. Returns: preds (pd.DataFrame): A dataframe of estimated survival probabilities for all times (columns), from the time_bins array, for all samples (rows). """ with Parallel(n_jobs=self.n_jobs) as parallel: preds = parallel( delayed(m.predict_proba)(leaves_encoded) for m in lr_estimators ) # organizing interval predictions from LRs preds = np.array(preds)[:, :, 1].T preds = pd.DataFrame(preds, columns=time_bins) # converting these interval predictions # to cumulative survival curve preds = (1 - preds).cumprod(axis=1) return preds def predict(self, X, return_interval_probs=False): """ Predicts survival probabilities using the XGBoost + Logistic Regression pipeline. Args: X (pd.DataFrame): Dataframe of features to be used as input for the XGBoost model. return_interval_probs (Bool): Boolean indicating if interval probabilities are supposed to be returned. If False the cumulative survival is returned. Default is False. Returns: pd.DataFrame: A dataframe of survival probabilities for all times (columns), from a time_bins array, for all samples of X (rows). If return_interval_probs is True, the interval probabilities are returned instead of the cumulative survival probabilities. """ # converting to xgb format d_matrix = xgb.DMatrix(X) # getting leaves and extracting neighbors leaves = self.bst.predict(d_matrix, pred_leaf=True) leaves_encoded = self.encoder.transform(leaves) # predicting from logistic regression artifacts preds_df = self._predict_from_lr_list( self.lr_estimators_, leaves_encoded, self.time_bins ) if return_interval_probs: preds_df = calculate_interval_failures(preds_df) return preds_df
the-stack_0_19278
from unittest import TestCase from os.path import dirname, join import json from pytezos.michelson.program import MichelsonProgram from pytezos.michelson.types.big_map import big_map_diff_to_lazy_diff from pytezos.michelson.forge import forge_micheline, unforge_micheline folder = 'dexter_usdtz_xtz' entrypoint = 'removeLiquidity' class MainnetOperationTestCaseNYQJME(TestCase): @classmethod def setUpClass(cls): with open(join(dirname(__file__), f'', '__script__.json')) as f: script = json.loads(f.read()) cls.program = MichelsonProgram.match(script['code']) with open(join(dirname(__file__), f'', f'updateCountryRestrictions.json')) as f: operation = json.loads(f.read()) cls.entrypoint = f'updateCountryRestrictions' cls.operation = operation # cls.maxDiff = None def test_parameters_nyqjme(self): original_params = self.program.parameter.from_parameters(self.operation['parameters']) py_obj = original_params.to_python_object() # pprint(py_obj) readable_params = self.program.parameter.from_parameters(original_params.to_parameters(mode='readable')) self.assertEqual(py_obj, readable_params.to_python_object()) self.program.parameter.from_python_object(py_obj) def test_lazy_storage_nyqjme(self): storage = self.program.storage.from_micheline_value(self.operation['storage']) lazy_diff = big_map_diff_to_lazy_diff(self.operation['big_map_diff']) extended_storage = storage.merge_lazy_diff(lazy_diff) py_obj = extended_storage.to_python_object(try_unpack=True, lazy_diff=True) # pprint(py_obj) def test_parameters_forging(self): expected = self.operation['parameters'].get('value', {'prim': 'Unit'}) actual = unforge_micheline(forge_micheline(expected)) self.assertEqual(expected, actual)
the-stack_0_19280
# Loads a target data then defines tables for it spark.read \ .option("header", True) \ .csv("./testdata/hospital.csv") \ .write \ .saveAsTable("hospital") scavenger.misc \ .options({"db_name": "default", "table_name": "hospital", "row_id": "tid"}) \ .flatten() \ .write \ .saveAsTable("hospital_flatten") spark.table("hospital").show(1) spark.table("hospital_flatten").show(1) # Loads a ground truth data then defines tables for it spark.read \ .option("header", True) \ .csv("./testdata/hospital_clean.csv") \ .write \ .saveAsTable("hospital_clean") spark.table("hospital_flatten") \ .join(spark.table("hospital_clean"), ["tid", "attribute"], "inner") \ .where("not(value <=> correct_val)") \ .write \ .saveAsTable("error_cells_ground_truth") spark.table("hospital_clean").show(1) spark.table("error_cells_ground_truth").show(1) # Detects error cells then repairs them from repair.detectors import NullErrorDetector, ConstraintErrorDetector error_detectors = [ ConstraintErrorDetector(constraint_path="./testdata/hospital_constraints.txt"), NullErrorDetector() ] repaired_df = scavenger.repair \ .setDbName("default") \ .setTableName("hospital") \ .setRowId("tid") \ .setErrorDetectors(error_detectors) \ .setDiscreteThreshold(100) \ .setRuleBasedModelEnabled(True) \ .option("hp.no_progress_loss", "100") \ .run() # Computes performance numbers (precision & recall) # - Precision: the fraction of correct repairs, i.e., repairs that match # the ground truth, over the total number of repairs performed # - Recall: correct repairs over the total number of errors pdf = repaired_df.join( spark.table("hospital_clean").where("attribute != 'Score'"), ["tid", "attribute"], "inner") rdf = repaired_df.join( spark.table("error_cells_ground_truth").where("attribute != 'Score'"), ["tid", "attribute"], "right_outer") # Compares predicted values with the correct ones pdf.orderBy("attribute").show() precision = pdf.where("repaired <=> correct_val").count() / pdf.count() recall = rdf.where("repaired <=> correct_val").count() / rdf.count() f1 = (2.0 * precision * recall) / (precision + recall) print("Precision={} Recall={} F1={}".format(precision, recall, f1))
the-stack_0_19282
from collections import namedtuple import re from .registry import DEFAULT_LOOKUP # export resolve_lookups at this level from .registry import resolve_lookups # NOQA from .registry import register_lookup_handler # NOQA LOOKUP_REGEX = re.compile(""" \$\{ # opening brace for the lookup ((?P<type>[._\-a-zA-Z0-9]*(?=\s)) # type of lookup, must be followed by a # space to allow for defaulting to # "output" type ?\s* # any number of spaces separating the # type from the input (?P<input>[@\+\/,\._\-a-zA-Z0-9\:\s=]+) # the input value to the lookup )\} # closing brace of the lookup """, re.VERBOSE) Lookup = namedtuple("Lookup", ("type", "input", "raw")) def extract_lookups_from_string(value): """Extract any lookups within a string. Args: value (str): string value we're extracting lookups from Returns: list: list of :class:`stacker.lookups.Lookup` if any """ lookups = set() for match in LOOKUP_REGEX.finditer(value): groupdict = match.groupdict() raw = match.groups()[0] lookup_type = groupdict.get("type") or DEFAULT_LOOKUP lookup_input = groupdict.get("input") lookups.add(Lookup(lookup_type, lookup_input, raw)) return lookups def extract_lookups(value): """Recursively extracts any stack lookups within the data structure. Args: value (one of str, list, dict): a structure that contains lookups to output values Returns: list: list of lookups if any """ lookups = set() if isinstance(value, basestring): lookups = lookups.union(extract_lookups_from_string(value)) elif isinstance(value, list): for v in value: lookups = lookups.union(extract_lookups(v)) elif isinstance(value, dict): for v in value.values(): lookups = lookups.union(extract_lookups(v)) return lookups
the-stack_0_19283
import unittest from pprint import pprint from lichecker import LicenseChecker # these packages dont define license in setup.py # manually verified and injected license_overrides = { "kthread": "MIT", 'yt-dlp': "Unlicense", 'pyxdg': 'GPL-2.0', 'ptyprocess': 'ISC license', 'psutil': 'BSD3' } # explicitly allow these packages that would fail otherwise whitelist = [ 'idna' # BSD-like ] # validation flags allow_nonfree = False allow_viral = False allow_unknown = False allow_unlicense = True allow_ambiguous = False pkg_name = "RAKEkeywords" class TestLicensing(unittest.TestCase): @classmethod def setUpClass(self): licheck = LicenseChecker(pkg_name, license_overrides=license_overrides, whitelisted_packages=whitelist, allow_ambiguous=allow_ambiguous, allow_unlicense=allow_unlicense, allow_unknown=allow_unknown, allow_viral=allow_viral, allow_nonfree=allow_nonfree) print("Package", pkg_name) print("Version", licheck.version) print("License", licheck.license) print("Transient Requirements (dependencies of dependencies)") pprint(licheck.transient_dependencies) self.licheck = licheck def test_license_compliance(self): print("Package Versions") pprint(self.licheck.versions) print("Dependency Licenses") pprint(self.licheck.licenses) self.licheck.validate()
the-stack_0_19284
import os import time import cv2 import numpy as np import torch import torch.backends.cudnn as cudnn import torch.utils.data as data from dataset import TotalText, Ctw1500Text, Icdar15Text, Mlt2017Text, TD500Text from network.textnet import TextNet from util.augmentation import BaseTransform from cfglib.config import config as cfg, update_config, print_config from cfglib.option import BaseOptions from util.visualize import visualize_detection, visualize_gt from util.misc import to_device, mkdirs,rescale_result from util.eval import deal_eval_total_text, deal_eval_ctw1500, deal_eval_icdar15, \ deal_eval_TD500, data_transfer_ICDAR, data_transfer_TD500, data_transfer_MLT2017 import multiprocessing multiprocessing.set_start_method("spawn", force=True) def osmkdir(out_dir): import shutil if os.path.exists(out_dir): shutil.rmtree(out_dir) os.makedirs(out_dir) def write_to_file(contours, file_path): """ :param contours: [[x1, y1], [x2, y2]... [xn, yn]] :param file_path: target file path """ # according to total-text evaluation method, output file shoud be formatted to: y0,x0, ..... yn,xn with open(file_path, 'w') as f: for cont in contours: cont = np.stack([cont[:, 0], cont[:, 1]], 1) cont = cont.flatten().astype(str).tolist() cont = ','.join(cont) f.write(cont + '\n') def inference(model, test_loader, output_dir): total_time = 0. if cfg.exp_name != "MLT2017": osmkdir(output_dir) else: if not os.path.exists(output_dir): mkdirs(output_dir) for i, (image, meta) in enumerate(test_loader): input_dict = dict() input_dict['img'] = to_device(image) # get detection result start = time.time() torch.cuda.synchronize() output_dict = model(input_dict) end = time.time() if i > 0: total_time += end - start fps = (i + 1) / total_time else: fps = 0.0 idx = 0 # test mode can only run with batch_size == 1 print('detect {} / {} images: {}.'.format(i + 1, len(test_loader), meta['image_id'][idx])) # visualization img_show = image[idx].permute(1, 2, 0).cpu().numpy() img_show = ((img_show * cfg.stds + cfg.means) * 255).astype(np.uint8) show_boundary, heat_map = visualize_detection(img_show, output_dict, meta=meta) contours = output_dict["py_preds"][-1].int().cpu().numpy() gt_contour = [] label_tag = meta['label_tag'][idx].int().cpu().numpy() for annot, n_annot in zip(meta['annotation'][idx], meta['n_annotation'][idx]): if n_annot.item() > 0: gt_contour.append(annot[:n_annot].int().cpu().numpy()) gt_vis = visualize_gt(img_show, gt_contour, label_tag) show_map = np.concatenate([heat_map, gt_vis], axis=1) show_map = cv2.resize(show_map, (320 * 3, 320)) im_vis = np.concatenate([show_map, show_boundary], axis=0) path = os.path.join(cfg.vis_dir, '{}_test'.format(cfg.exp_name), meta['image_id'][idx].split(".")[0]+".jpg") cv2.imwrite(path, im_vis) H, W = meta['Height'][idx].item(), meta['Width'][idx].item() img_show, contours = rescale_result(img_show, contours, H, W) # write to file if cfg.exp_name == "Icdar2015": fname = "res_" + meta['image_id'][idx].replace('jpg', 'txt') contours = data_transfer_ICDAR(contours) write_to_file(contours, os.path.join(output_dir, fname)) elif cfg.exp_name == "MLT2017": out_dir = os.path.join(output_dir, str(cfg.checkepoch)) if not os.path.exists(out_dir): mkdirs(out_dir) fname = meta['image_id'][idx].split("/")[-1].replace('ts', 'res') fname = fname.split(".")[0] + ".txt" data_transfer_MLT2017(contours, os.path.join(out_dir, fname)) elif cfg.exp_name == "TD500": fname = "res_" + meta['image_id'][idx].split(".")[0]+".txt" data_transfer_TD500(contours, os.path.join(output_dir, fname)) else: fname = meta['image_id'][idx].replace('jpg', 'txt') write_to_file(contours, os.path.join(output_dir, fname)) def main(vis_dir_path): osmkdir(vis_dir_path) if cfg.exp_name == "Totaltext": testset = TotalText( data_root='data/total-text-mat', ignore_list=None, is_training=False, transform=BaseTransform(size=cfg.test_size, mean=cfg.means, std=cfg.stds) ) elif cfg.exp_name == "Ctw1500": testset = Ctw1500Text( data_root='data/ctw1500', is_training=False, transform=BaseTransform(size=cfg.test_size, mean=cfg.means, std=cfg.stds) ) elif cfg.exp_name == "Icdar2015": testset = Icdar15Text( data_root='data/Icdar2015', is_training=False, transform=BaseTransform(size=cfg.test_size, mean=cfg.means, std=cfg.stds) ) elif cfg.exp_name == "MLT2017": testset = Mlt2017Text( data_root='data/MLT2017', is_training=False, transform=BaseTransform(size=cfg.test_size, mean=cfg.means, std=cfg.stds) ) elif cfg.exp_name == "TD500": testset = TD500Text( data_root='data/TD500', is_training=False, transform=BaseTransform(size=cfg.test_size, mean=cfg.means, std=cfg.stds) ) else: print("{} is not justify".format(cfg.exp_name)) test_loader = data.DataLoader(testset, batch_size=1, shuffle=False, num_workers=cfg.num_workers) # Model model = TextNet(is_training=False, backbone=cfg.net) model_path = os.path.join(cfg.save_dir, cfg.exp_name, 'TextBPN_{}_{}.pth'.format(model.backbone_name, cfg.checkepoch)) model.load_model(model_path) model = model.to(cfg.device) # copy to cuda model.eval() if cfg.cuda: cudnn.benchmark = True print('Start testing TextBPN.') output_dir = os.path.join(cfg.output_dir, cfg.exp_name) inference(model, test_loader, output_dir) if cfg.exp_name == "Totaltext": deal_eval_total_text(debug=True) elif cfg.exp_name == "Ctw1500": deal_eval_ctw1500(debug=True) elif cfg.exp_name == "Icdar2015": deal_eval_icdar15(debug=True) elif cfg.exp_name == "TD500": deal_eval_TD500(debug=True) else: print("{} is not justify".format(cfg.exp_name)) if __name__ == "__main__": # parse arguments option = BaseOptions() args = option.initialize() update_config(cfg, args) print_config(cfg) vis_dir = os.path.join(cfg.vis_dir, '{}_test'.format(cfg.exp_name)) if not os.path.exists(vis_dir): mkdirs(vis_dir) # main main(vis_dir)
the-stack_0_19286
# coding=utf-8 # Copyright 2019 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Generate Binarized MNIST-like files, smaller and with random data. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags import numpy as np import tensorflow as tf from tensorflow_datasets.core.utils import py_utils from tensorflow_datasets.testing import test_utils flags.DEFINE_string( "tfds_dir", py_utils.tfds_dir(), "Path to tensorflow_datasets directory" ) FLAGS = flags.FLAGS def examples_dir(): return os.path.join(FLAGS.tfds_dir, "testing", "test_data", "fake_examples") def mnist_dir(name): return os.path.join(examples_dir(), name) _TRAIN_DATA_FILENAME = "binarized_mnist_train.amat" _VALID_DATA_FILENAME = "binarized_mnist_valid.amat" _TEST_DATA_FILENAME = "binarized_mnist_test.amat" def make_images(num_images): return np.random.randint(256, size=(28 * 28 * num_images), dtype=np.uint8).reshape( (num_images, -1) ) def write_image_file(filename, num_images): with tf.io.gfile.GFile(filename, "wb") as f: np.savetxt(f, make_images(num_images), delimiter=" ") def main(_): output_dir = mnist_dir("binarized_mnist") test_utils.remake_dir(output_dir) write_image_file(os.path.join(output_dir, _TRAIN_DATA_FILENAME), 10) write_image_file(os.path.join(output_dir, _VALID_DATA_FILENAME), 2) write_image_file(os.path.join(output_dir, _TEST_DATA_FILENAME), 2) if __name__ == "__main__": app.run(main)
the-stack_0_19287
""" # Definition for a Node. class Node: def __init__(self, val=None, children=None): self.val = val self.children = children """ class Solution: def levelOrder(self, root: 'Node') -> List[List[int]]: import collections res = [] if not root: return res q = collections.deque() q.append(root) # BFS while q: tmp = [] for _ in range(len(q)): node = q.popleft() tmp.append(node.val) # 使用extend在列表末尾一次追加多个值 q.extend(node.children) res.append(tmp) return res
the-stack_0_19291
from __future__ import unicode_literals, division, absolute_import from builtins import * # noqa pylint: disable=unused-import, redefined-builtin import os import shutil import logging import time from flexget import plugin from flexget.event import event from flexget.config_schema import one_or_more from flexget.utils.template import RenderError from flexget.utils.pathscrub import pathscrub def get_directory_size(directory): """ :param directory: Path :return: Size in bytes (recursively) """ dir_size = 0 for (path, _, files) in os.walk(directory): for file in files: filename = os.path.join(path, file) dir_size += os.path.getsize(filename) return dir_size def get_siblings(ext, main_file_no_ext, main_file_ext, abs_path): siblings = {} files = os.listdir(abs_path) for filename in files: # skip the main file if filename == main_file_no_ext + main_file_ext: continue filename_lower = filename.lower() if not filename_lower.startswith(main_file_no_ext.lower()) or not filename_lower.endswith(ext.lower()): continue # we have to use the length of the main file (no ext) to extract the rest of the filename # for the future renaming file_ext = filename[len(main_file_no_ext):] file_path = os.path.join(abs_path, filename) if os.path.exists(file_path): siblings[file_path] = file_ext return siblings class BaseFileOps(object): # Defined by subclasses log = None along = { 'type': 'object', 'properties': { 'extensions': one_or_more({'type': 'string'}), 'subdirs': one_or_more({'type': 'string'}) }, 'additionalProperties': False, 'required': ['extensions'] } def prepare_config(self, config): if config is True: return {} elif config is False: return if 'along' not in config: return config extensions = config['along'].get('extensions') subdirs = config['along'].get('subdirs') if extensions and not isinstance(extensions, list): config['along']['extensions'] = [extensions] if subdirs and not isinstance(subdirs, list): config['along']['subdirs'] = [subdirs] return config def on_task_output(self, task, config): config = self.prepare_config(config) if config is None: return for entry in task.accepted: if 'location' not in entry: self.log.verbose('Cannot handle %s because it does not have the field location.', entry['title']) continue src = entry['location'] src_isdir = os.path.isdir(src) try: # check location if not os.path.exists(src): self.log.warning('location `%s` does not exists (anymore).' % src) continue if src_isdir: if not config.get('allow_dir'): self.log.warning('location `%s` is a directory.' % src) continue elif not os.path.isfile(src): self.log.warning('location `%s` is not a file.' % src) continue # search for namesakes siblings = {} # dict of (path=ext) pairs if not src_isdir and 'along' in config: parent = os.path.dirname(src) filename_no_ext, filename_ext = os.path.splitext(os.path.basename(src)) for ext in config['along']['extensions']: siblings.update(get_siblings(ext, filename_no_ext, filename_ext, parent)) files = os.listdir(parent) files_lower = list(map(str.lower, files)) for subdir in config['along'].get('subdirs', []): try: idx = files_lower.index(subdir) except ValueError: continue subdir_path = os.path.join(parent, files[idx]) if not os.path.isdir(subdir_path): continue for ext in config['along']['extensions']: siblings.update(get_siblings(ext, filename_no_ext, filename_ext, subdir_path)) # execute action in subclasses self.handle_entry(task, config, entry, siblings) except (OSError, IOError) as err: entry.fail(str(err)) continue def clean_source(self, task, config, entry): min_size = entry.get('clean_source', config.get('clean_source', -1)) if min_size < 0: return base_path = os.path.split(entry.get('old_location', entry['location']))[0] # everything here happens after a successful execution of the main action: the entry has been moved in a # different location, or it does not exists anymore. so from here we can just log warnings and move on. if not os.path.isdir(base_path): self.log.warning('Cannot delete path `%s` because it does not exists (anymore).', base_path) return dir_size = get_directory_size(base_path) / 1024 / 1024 if dir_size >= min_size: self.log.info('Path `%s` left because it exceeds safety value set in clean_source option.', base_path) return if task.options.test: self.log.info('Would delete `%s` and everything under it.', base_path) return try: shutil.rmtree(base_path) self.log.info('Path `%s` has been deleted because was less than clean_source safe value.', base_path) except Exception as err: self.log.warning('Unable to delete path `%s`: %s', base_path, err) def handle_entry(self, task, config, entry, siblings): raise NotImplementedError() class DeleteFiles(BaseFileOps): """Delete all accepted files.""" schema = { 'oneOf': [ {'type': 'boolean'}, { 'type': 'object', 'properties': { 'allow_dir': {'type': 'boolean'}, 'along': BaseFileOps.along, 'clean_source': {'type': 'number'} }, 'additionalProperties': False } ] } log = logging.getLogger('delete') def handle_entry(self, task, config, entry, siblings): src = entry['location'] src_isdir = os.path.isdir(src) if task.options.test: if src_isdir: self.log.info('Would delete `%s` and all its content.', src) else: self.log.info('Would delete `%s`', src) for s, _ in siblings.items(): self.log.info('Would also delete `%s`', s) return # IO errors will have the entry mark failed in the base class if src_isdir: shutil.rmtree(src) self.log.info('`%s` and all its content has been deleted.', src) else: os.remove(src) self.log.info('`%s` has been deleted.', src) # further errors will not have any effect (the entry does not exists anymore) for s, _ in siblings.items(): try: os.remove(s) self.log.info('`%s` has been deleted as well.', s) except Exception as err: self.log.warning(str(err)) if not src_isdir: self.clean_source(task, config, entry) class TransformingOps(BaseFileOps): # Defined by subclasses move = None destination_field = None def handle_entry(self, task, config, entry, siblings): src = entry['location'] src_isdir = os.path.isdir(src) src_path, src_name = os.path.split(src) # get the proper path and name in order of: entry, config, above split dst_path = entry.get(self.destination_field, config.get('to', src_path)) if config.get('rename'): dst_name = config['rename'] elif entry.get('filename') and entry['filename'] != src_name: # entry specifies different filename than what was split from the path # since some inputs fill in filename it must be different in order to be used dst_name = entry['filename'] else: dst_name = src_name try: dst_path = entry.render(dst_path) except RenderError as err: raise plugin.PluginError('Path value replacement `%s` failed: %s' % (dst_path, err.args[0])) try: dst_name = entry.render(dst_name) except RenderError as err: raise plugin.PluginError('Filename value replacement `%s` failed: %s' % (dst_name, err.args[0])) # Clean invalid characters with pathscrub plugin dst_path = pathscrub(os.path.expanduser(dst_path)) dst_name = pathscrub(dst_name, filename=True) # Join path and filename dst = os.path.join(dst_path, dst_name) if dst == entry['location']: raise plugin.PluginWarning('source and destination are the same.') if not os.path.exists(dst_path): if task.options.test: self.log.info('Would create `%s`', dst_path) else: self.log.info('Creating destination directory `%s`', dst_path) os.makedirs(dst_path) if not os.path.isdir(dst_path) and not task.options.test: raise plugin.PluginWarning('destination `%s` is not a directory.' % dst_path) # unpack_safety if config.get('unpack_safety', entry.get('unpack_safety', True)): count = 0 while True: if count > 60 * 30: raise plugin.PluginWarning('The task has been waiting unpacking for 30 minutes') size = os.path.getsize(src) time.sleep(1) new_size = os.path.getsize(src) if size != new_size: if not count % 10: self.log.verbose('File `%s` is possibly being unpacked, waiting ...', src_name) else: break count += 1 src_file, src_ext = os.path.splitext(src) dst_file, dst_ext = os.path.splitext(dst) # Check dst contains src_ext if config.get('keep_extension', entry.get('keep_extension', True)): if not src_isdir and dst_ext != src_ext: self.log.verbose('Adding extension `%s` to dst `%s`', src_ext, dst) dst += src_ext dst_file += dst_ext # this is used for sibling files. dst_ext turns out not to be an extension! funct_name = 'move' if self.move else 'copy' funct_done = 'moved' if self.move else 'copied' if task.options.test: self.log.info('Would %s `%s` to `%s`', funct_name, src, dst) for s, ext in siblings.items(): # we cannot rely on splitext for extensions here (subtitles may have the language code) d = dst_file + ext self.log.info('Would also %s `%s` to `%s`', funct_name, s, d) else: # IO errors will have the entry mark failed in the base class if self.move: shutil.move(src, dst) elif src_isdir: shutil.copytree(src, dst) else: shutil.copy(src, dst) self.log.info('`%s` has been %s to `%s`', src, funct_done, dst) # further errors will not have any effect (the entry has been successfully moved or copied out) for s, ext in siblings.items(): # we cannot rely on splitext for extensions here (subtitles may have the language code) d = dst_file + ext try: if self.move: shutil.move(s, d) else: shutil.copy(s, d) self.log.info('`%s` has been %s to `%s` as well.', s, funct_done, d) except Exception as err: self.log.warning(str(err)) entry['old_location'] = entry['location'] entry['location'] = dst if self.move and not src_isdir: self.clean_source(task, config, entry) class CopyFiles(TransformingOps): """Copy all accepted files.""" schema = { 'oneOf': [ {'type': 'boolean'}, { 'type': 'object', 'properties': { 'to': {'type': 'string', 'format': 'path'}, 'rename': {'type': 'string'}, 'allow_dir': {'type': 'boolean'}, 'unpack_safety': {'type': 'boolean'}, 'keep_extension': {'type': 'boolean'}, 'along': TransformingOps.along }, 'additionalProperties': False } ] } move = False destination_field = 'copy_to' log = logging.getLogger('copy') class MoveFiles(TransformingOps): """Move all accepted files.""" schema = { 'oneOf': [ {'type': 'boolean'}, { 'type': 'object', 'properties': { 'to': {'type': 'string', 'format': 'path'}, 'rename': {'type': 'string'}, 'allow_dir': {'type': 'boolean'}, 'unpack_safety': {'type': 'boolean'}, 'keep_extension': {'type': 'boolean'}, 'along': TransformingOps.along, 'clean_source': {'type': 'number'} }, 'additionalProperties': False } ] } move = True destination_field = 'move_to' log = logging.getLogger('move') @event('plugin.register') def register_plugin(): plugin.register(DeleteFiles, 'delete', api_ver=2) plugin.register(CopyFiles, 'copy', api_ver=2) plugin.register(MoveFiles, 'move', api_ver=2)
the-stack_0_19293
# Fazer um progqama que peça o salário de uma pessoa e aumente: # 10% para salários superiores a 1.250,00$ # 15% para salários inferiores # Pedir o salário salario = float(input('Me informe seu salário:R$ ')) # Calcular o reajuste reajuste_10 = salario * 10 / 100 reajuste_15 = salario * 15 / 100 # Mostra o reajuste deacorddo com seu salários if salario >= 1250: print(f'Seu salário vai ficar {salario + reajuste_10}.') else: print(f'Seu salário vai ficar {salario + reajuste_15}.')
the-stack_0_19294
#!/usr/bin/python3 import subprocess import tempfile import shutil import os import time def main(): subprocess.check_call(["cargo", "build", "--release"]) test_dir = None server = None try: test_dir = tempfile.mkdtemp() in_dir = os.path.join(test_dir, "in") # Write config file for the server server_config = os.path.join(test_dir, "mbackupd.toml") with open(server_config, "w") as f: f.write( """ verbosity="Info" bind="127.0.0.1:31782" [[users]] name="backup" password="hunter1" access_level="Put" [[users]] name="restore" password="hunter2" access_level="Get" [[users]] name="admin" password="hunter3" access_level="Delete" """ ) # Start the server server_data = os.path.join(test_dir, "server") os.mkdir(server_data) server = subprocess.Popen( [ "target/release/mbackupd", "--config", server_config, "--data-dir", server_data, ] ) # Write configuration for the client client_config = os.path.join(test_dir, "mbackup.toml") with open(client_config, "w") as f: f.write( """ user="backup" password="hunter1" encryption_key="correcthorsebatterystaple" server="http://localhost:31782" hostname="test" backup_dirs=["%s"] cache_db="%s" """%(in_dir, os.path.join(test_dir, "cache.db")) ) # Create some test files and links d1 = os.path.join(in_dir, "k") os.makedirs(d1) a = os.path.join(d1, "a") b = os.path.join(d1, "b") c = os.path.join(d1, "c") e = os.path.join(d1, "e") f = os.path.join(d1, "f") g = os.path.join(d1, "g") h = os.path.join(d1, "h") i = os.path.join(d1, "i") with open(a, "w") as fi: fi.write("test1") with open(b, "w") as fi: fi.write("test1") with open(c, "w") as fi: fi.write("test2" * 1024 * 1024) with open(e, "w") as fi: fi.write("test3") with open(f, "w") as fi: fi.write("x" * 1024 * 1024 * 50) os.symlink(i, h) # Backup the files and validate the files time.sleep(0.5) subprocess.check_call(["target/release/mbackup", "-c", client_config, "backup"]) subprocess.check_call( [ "target/release/mbackup", "-c", client_config, "--user", "restore", "--password", "hunter2", "validate", "--full", ] ) # Recover from backup r1 = os.path.join(test_dir, "r1") subprocess.check_call( [ "target/release/mbackup", "-c", client_config, "--user", "restore", "--password", "hunter2", "restore", "1", "--pattern", "/", "--dest", r1, ] ) # Validate backup config with open(os.path.join(r1, a[1:]), "r") as fi: if fi.read() != "test1": raise Exception("Bad restore 1") with open(os.path.join(r1, b[1:]), "r") as fi: if fi.read() != "test1": raise Exception("Bad restore 2 ") with open(os.path.join(r1, c[1:]), "r") as fi: if fi.read() != "test2" * 1024 * 1024: raise Exception("Bad restore 3") with open(os.path.join(r1, e[1:]), "r") as fi: if fi.read() != "test3": raise Exception("Bad restore 4") with open(os.path.join(r1, f[1:]), "r") as fi: if fi.read() != "x" * 1024 * 1024 * 50: raise Exception("Bad restore 5") if os.readlink(os.path.join(r1, h[1:])) != i: raise Exception("Bad restore link 1") # Modify state with open(g, "w") as fi: fi.write("test4") os.unlink(b) os.unlink(e) # Backup new state subprocess.check_call(["target/release/mbackup", "-c", client_config, "backup"]) # Remove the old root, prune all unused items and validate the content subprocess.check_call( [ "target/release/mbackup", "-c", client_config, "--user", "admin", "--password", "hunter3", "delete-root", "1", ] ) subprocess.check_call( [ "target/release/mbackup", "-c", client_config, "--user", "admin", "--password", "hunter3", "prune", ] ) subprocess.check_call( [ "target/release/mbackup", "-c", client_config, "--user", "restore", "--password", "hunter2", "validate" ] ) subprocess.check_call( [ "target/release/mbackup", "-c", client_config, "--user", "restore", "--password", "hunter2", "validate", "--full", ] ) # Recover from the second backup r2 = os.path.join(test_dir, "r2") subprocess.check_call( [ "target/release/mbackup", "-c", client_config, "--user", "restore", "--password", "hunter2", "restore", "2", "--pattern", "/", "--dest", r2, ] ) # And check the content with open(os.path.join(r2, a[1:]), "r") as fi: if fi.read() != "test1": raise Exception("Bad restore 6") if os.path.exists(os.path.join(r2, b[1:])): raise Exception("Bad restore 7") with open(os.path.join(r2, c[1:]), "r") as fi: if fi.read() != "test2" * 1024 * 1024: raise Exception("Bad restore 8") if os.path.exists(os.path.join(r2, e[1:])): raise Exception("Bad restore 9") with open(os.path.join(r2, f[1:]), "r") as fi: if fi.read() != "x" * 1024 * 1024 * 50: raise Exception("Bad restore 10") with open(os.path.join(r2, g[1:]), "r") as fi: if fi.read() != "test4": raise Exception("Bad restore 11") if os.readlink(os.path.join(r1, h[1:])) != i: raise Exception("Bad restore link 2") # Recreate e with open(e, "w") as fi: fi.write("test3") # Preform backup subprocess.check_call(["target/release/mbackup", "-c", client_config, "backup"]) r3 = os.path.join(test_dir, "r3") # And restorm from the backup subprocess.check_call( [ "target/release/mbackup", "-c", client_config, "--user", "restore", "--password", "hunter2", "restore", "3", "--pattern", "/", "--dest", r3, ] ) # Check that e is as we expect, # the recover of e would fail here if the cache invalidation timings in the server did not work # as we would think the server would allready have e when performing the backup with open(os.path.join(r3, e[1:]), "r") as fi: if fi.read() != "test3": raise Exception("Bad restore 12") # Delete all the content subprocess.check_call( [ "target/release/mbackup", "-c", client_config, "--user", "admin", "--password", "hunter3", "prune", "--age", "0", ] ) # And kill the server if server.returncode != None: raise Exception("Server terminated early") server.terminate() server.wait() server = 0 # Check that the prune got rid of most of the data usage = 0 for dirpath, dirnames, filenames in os.walk(server_data): for f in filenames: usage += os.path.getsize(os.path.join(dirpath, f)) if usage > 1024 * 1024: raise Exception("Prune did not remove enough data") finally: # Kill the server if server: server.terminate() server.wait() # And empty the test folder if test_dir: shutil.rmtree(test_dir) if __name__ == "__main__": main()
the-stack_0_19296
import json from django.urls import reverse from rest_framework.test import APITestCase from rest_framework import status from authors.apps.authentication.models import User from authors.apps.authentication.tests.utils import TEST_USER from django.core import mail from authors.apps.authentication.views import VerifyAccount from django.utils.http import urlsafe_base64_encode from django.utils.encoding import force_bytes from authors.apps.authentication.utils import generate_token from rest_framework.test import force_authenticate from rest_framework.test import APIRequestFactory from authors.apps.articles.models import Article user = { "user": { "username": "test", "email": "[email protected]", "password": "Test123." } } class ArticleCRUDTestCase(APITestCase): """Test Cases to test ratings feature""" def setUp(self): """Initialize default data.""" self.user = { "user": { "username": "test", "email": "[email protected]", "password": "Test123." } } self.user1 = { "user": { "username": "Jacob", "email": "[email protected]", "password": "Test123." } } self.article1 = { "article": { "title": "How to train your dragon", "description": "Ever wonder how?", "body": "You have to believe", } } self.article2 = { "article": { "title": "How to feed your dragon", "description": "Wanna know how?", "body": "You don't believe?", } } def login_user(self, user=user): """ login user """ response = self.client.post( reverse("authentication:login"), user, format='json') response.render() user = json.loads(response.content) return user def create_a_user(self, username='test', email='[email protected]', password='Test123.'): """ Create a test user """ user = User.objects.create_user(username, email, password) user.save() return user def create_article(self): """ Create a test article """ user = User.objects.get() article = Article.objects.create( title="How to train your dragon", description="Ever wonder how?", body="You have to believe", author=user.profile) article.save() return article def verify_user(self, user): """Verify user""" token = generate_token.make_token(user) uid = urlsafe_base64_encode(force_bytes(user.pk)) request = APIRequestFactory().get( reverse("authentication:verify", args=[uid, token])) verify_account = VerifyAccount.as_view() verify_account(request, uidb64=uid, token=token) return user def test_auth_user_can_like(self): user = self.create_a_user() self.verify_user(user) auth_user = self.login_user() user = User.objects.get() article = self.create_article() res = self.client.put('/api/articles/'+article.slug+'/like/', HTTP_AUTHORIZATION='Bearer ' + auth_user['user']['token'], format='json' ) self.assertEquals(res.status_code, 200) def test_auth_user_can_dislike(self): user = self.create_a_user() self.verify_user(user) auth_user = self.login_user() user = User.objects.get() article = self.create_article() res = self.client.put('/api/articles/'+article.slug+'/dislike/', HTTP_AUTHORIZATION='Bearer ' + auth_user['user']['token'], format='json' ) self.assertEquals(res.status_code, 200) def test_like_404_article(self): user = self.create_a_user() self.verify_user(user) auth_user = self.login_user() user = User.objects.get() slug = 'fake-slug-13qedffd23' res = self.client.put('/api/articles/'+slug+'/like/', HTTP_AUTHORIZATION='Bearer ' + auth_user['user']['token'], format='json' ) self.assertEquals(res.status_code, 404) def test_dislike_404_article(self): user = self.create_a_user() self.verify_user(user) auth_user = self.login_user() user = User.objects.get() slug = 'fake-slug-13qedffd23' res = self.client.put('/api/articles/'+slug+'/dislike/', HTTP_AUTHORIZATION='Bearer ' + auth_user['user']['token'], format='json' ) self.assertEquals(res.status_code, 404) def test_like_disliked_article(self): user = self.create_a_user() self.verify_user(user) auth_user = self.login_user() user = User.objects.get() article = self.create_article() self.client.put('/api/articles/'+article.slug+'/dislike/', HTTP_AUTHORIZATION='Bearer ' + auth_user['user']['token'], format='json' ) res = self.client.put('/api/articles/'+article.slug+'/like/', HTTP_AUTHORIZATION='Bearer ' + auth_user['user']['token'], format='json' ) self.assertEquals(res.status_code, 200) def test_dislike_liked_article(self): user = self.create_a_user() self.verify_user(user) auth_user = self.login_user() user = User.objects.get() article = self.create_article() self.client.put('/api/articles/'+article.slug+'/like/', HTTP_AUTHORIZATION='Bearer ' + auth_user['user']['token'], format='json' ) res = self.client.put('/api/articles/'+article.slug+'/dislike/', HTTP_AUTHORIZATION='Bearer ' + auth_user['user']['token'], format='json' ) self.assertEquals(res.status_code, 200)
the-stack_0_19297
#!/usr/local/bin/python3.3 def echo(message): print(message) return echo('Direct Call') x = echo x('Indirect Call') def indirect(func, arg): func(arg) indirect(echo, "Argument Call") schedule = [(echo, 'Spam'), (echo, 'Ham')] for (func, arg) in schedule: func(arg) def make(label): def echo(message): print(label + ': ' + message) return echo F = make('Spam') F('Eggs') F('Ham') def func(a): b = 'spam' return b * a print(func(8)) print(dir(func)) func.handles = 'Bottom-Press' func.count = 0 print(dir(func)) def func(a: 'spam', b: (1, 10), c: float) -> int: return a+b+c print(func.__annotations__)
the-stack_0_19299
# The MIT License (MIT) # Copyright (c) 2021 Tom J. Sun # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import lcd import machine from pmu import axp192 from context import Context from login import Login from home import Home import settings pmu = axp192() # Enable power management so that if power button is held down 6 secs, # it shuts off as expected pmu.enablePMICSleepMode(True) ctx = Context() ctx.display.flash_text( settings.load('splash', ( 'Krux' ), strip=False), color=lcd.WHITE, word_wrap=False, padding=8 ) while True: if not Login(ctx).run(): break if not Home(ctx).run(): break ctx.display.flash_text(( 'Shutting down..' )) ctx.clear() pmu.setEnterSleepMode() machine.reset()
the-stack_0_19302
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. import odoo import odoo.tests @odoo.tests.tagged('-at_install', 'post_install') class TestUiCustomizeTheme(odoo.tests.HttpCase): def test_01_attachment_website_unlink(self): ''' Some ir.attachment needs to be unlinked when a website is unlink, otherwise some flows will just crash. That's the case when 2 website have their theme color customized. Removing a website will make its customized attachment generic, thus having 2 attachments with the same URL available for other websites, leading to singleton errors (among other). But no all attachment should be deleted, eg we don't want to delete a SO or invoice PDF coming from an ecommerce order. ''' Website = self.env['website'] Page = self.env['website.page'] Attachment = self.env['ir.attachment'] website_default = Website.browse(1) website_test = Website.create({'name': 'Website Test'}) # simulate attachment state when editing 2 theme through customize custom_url = '/TEST/website/static/src/scss/options/colors/user_theme_color_palette.custom.web.assets_common.scss' scss_attachment = Attachment.create({ 'name': custom_url, 'type': 'binary', 'mimetype': 'text/scss', 'datas': '', 'url': custom_url, 'website_id': website_default.id }) scss_attachment.copy({'website_id': website_test.id}) # simulate PDF from ecommerce order # Note: it will only have its website_id flag if the website has a domain # equal to the current URL (fallback or get_current_website()) so_attachment = Attachment.create({ 'name': 'SO036.pdf', 'type': 'binary', 'mimetype': 'application/pdf', 'datas': '', 'website_id': website_test.id }) # avoid sql error on page website_id restrict Page.search([('website_id', '=', website_test.id)]).unlink() website_test.unlink() self.assertEqual(Attachment.search_count([('url', '=', custom_url)]), 1, 'Should not left duplicates when deleting a website') self.assertTrue(so_attachment.exists(), 'Most attachment should not be deleted') self.assertFalse(so_attachment.website_id, 'Website should be removed') @odoo.tests.tagged('-at_install', 'post_install') class TestUiHtmlEditor(odoo.tests.HttpCase): def test_html_editor_multiple_templates(self): Website = self.env['website'] View = self.env['ir.ui.view'] Page = self.env['website.page'] self.generic_view = View.create({ 'name': 'Generic', 'type': 'qweb', 'arch': ''' <div>content</div> ''', 'key': 'test.generic_view', }) self.generic_page = Page.create({ 'view_id': self.generic_view.id, 'url': '/generic', }) generic_page = Website.viewref('test.generic_view') # Use an empty page layout with oe_structure id for this test oe_structure_layout = ''' <t name="Generic" t-name="test.generic_view"> <t t-call="website.layout"> <div id="oe_structure_test_ui" class="oe_structure oe_empty"/> </t> </t> ''' generic_page.arch = oe_structure_layout self.start_tour("/", 'html_editor_multiple_templates', login='admin') self.assertEqual(View.search_count([('key', '=', 'test.generic_view')]), 2, "homepage view should have been COW'd") self.assertTrue(generic_page.arch == oe_structure_layout, "Generic homepage view should be untouched") self.assertEqual(len(generic_page.inherit_children_ids.filtered(lambda v: 'oe_structure' in v.name)), 0, "oe_structure view should have been deleted when aboutus was COW") specific_page = Website.with_context(website_id=1).viewref('test.generic_view') self.assertTrue(specific_page.arch != oe_structure_layout, "Specific homepage view should have been changed") self.assertEqual(len(specific_page.inherit_children_ids.filtered(lambda v: 'oe_structure' in v.name)), 1, "oe_structure view should have been created on the specific tree") def test_html_editor_scss(self): self.start_tour("/", 'test_html_editor_scss', login='admin') @odoo.tests.tagged('-at_install', 'post_install') class TestUiTranslate(odoo.tests.HttpCase): def test_admin_tour_rte_translator(self): fr_BE = self.env.ref('base.lang_fr_BE') fr_BE.active = True self.env.ref('website.default_website').language_ids |= fr_BE self.start_tour("/", 'rte_translator', login='admin', timeout=120) @odoo.tests.common.tagged('post_install', '-at_install') class TestUi(odoo.tests.HttpCase): def test_01_admin_tour_homepage(self): self.start_tour("/?enable_editor=1", 'homepage', login='admin') def test_02_restricted_editor(self): self.restricted_editor = self.env['res.users'].create({ 'name': 'Restricted Editor', 'login': 'restricted', 'password': 'restricted', 'groups_id': [(6, 0, [ self.ref('base.group_user'), self.ref('website.group_website_publisher') ])] }) self.start_tour("/", 'restricted_editor', login='restricted') def test_03_backend_dashboard(self): self.start_tour("/", 'backend_dashboard', login='admin') def test_04_website_navbar_menu(self): website = self.env['website'].search([], limit=1) self.env['website.menu'].create({ 'name': 'Test Tour Menu', 'url': '/test-tour-menu', 'parent_id': website.menu_id.id, 'sequence': 0, 'website_id': website.id, }) self.start_tour("/", 'website_navbar_menu') def test_05_specific_website_editor(self): website_default = self.env['website'].search([], limit=1) new_website = self.env['website'].create({'name': 'New Website'}) website_editor_assets_view = self.env.ref('website.assets_wysiwyg') self.env['ir.ui.view'].create({ 'name': 'Editor Extension', 'type': 'qweb', 'inherit_id': website_editor_assets_view.id, 'website_id': new_website.id, 'arch': """ <xpath expr="." position="inside"> <script type="text/javascript">document.body.dataset.hello = 'world';</script> </xpath> """, }) self.start_tour("/website/force/%s" % website_default.id, "generic_website_editor", login='admin') self.start_tour("/website/force/%s" % new_website.id, "specific_website_editor", login='admin') def test_06_public_user_editor(self): website_default = self.env['website'].search([], limit=1) website_default.homepage_id.arch = """ <t name="Homepage" t-name="website.homepage"> <t t-call="website.layout"> <textarea class="o_public_user_editor_test_textarea o_wysiwyg_loader"/> </t> </t> """ self.start_tour("/", "public_user_editor", login=None) def test_07_snippet_version(self): website_snippets = self.env.ref('website.snippets') self.env['ir.ui.view'].create([{ 'name': 'Test snip', 'type': 'qweb', 'key': 'website.s_test_snip', 'arch': """ <section class="s_test_snip"> <t t-snippet-call="website.s_share"/> </section> """, }, { 'type': 'qweb', 'inherit_id': website_snippets.id, 'arch': """ <xpath expr="//t[@t-snippet='website.s_parallax']" position="after"> <t t-snippet="website.s_test_snip" t-thumbnail="/website/static/src/img/snippets_thumbs/s_website_form.svg"/> </xpath> """, }]) self.start_tour("/", 'snippet_version', login='admin') def test_08_website_style_custo(self): self.start_tour("/", "website_style_edition", login="admin")
the-stack_0_19303
from __future__ import absolute_import from __future__ import unicode_literals from collections import namedtuple from itertools import chain from couchdbkit.exceptions import DocTypeError, ResourceNotFound from corehq.apps.app_manager.exceptions import BuildNotFoundException from corehq.util.python_compatibility import soft_assert_type_text from corehq.util.quickcache import quickcache from django.http import Http404 from django.core.cache import cache from django.utils.translation import ugettext_lazy as _ from corehq.apps.es import AppES from corehq.apps.es.aggregations import TermsAggregation, NestedAggregation from dimagi.utils.couch.database import iter_docs import six from six.moves import map AppBuildVersion = namedtuple('AppBuildVersion', ['app_id', 'build_id', 'version', 'comment']) @quickcache(['domain'], timeout=1 * 60 * 60) def domain_has_apps(domain): from .models import Application results = Application.get_db().view('app_manager/applications_brief', startkey=[domain], endkey=[domain, {}], include_docs=False, limit=1, ).all() return len(results) > 0 def get_latest_released_app_doc(domain, app_id): """Get the latest starred build for the application""" from .models import Application key = ['^ReleasedApplications', domain, app_id] app = Application.get_db().view( 'app_manager/applications', startkey=key + [{}], endkey=key, descending=True, include_docs=True, limit=1, ).first() return app['doc'] if app else None def get_latest_released_app(domain, app_id): app = get_latest_released_app_doc(domain, app_id) if app: return wrap_app(app) return None def get_latest_released_build_id(domain, app_id): """Get the latest starred build id for an application""" app = _get_latest_released_build_view_result(domain, app_id) return app['id'] if app else None def get_latest_released_app_version(domain, app_id): app = _get_latest_released_build_view_result(domain, app_id) return app['key'][3] if app else None def _get_latest_released_build_view_result(domain, app_id): from .models import Application key = ['^ReleasedApplications', domain, app_id] return Application.get_db().view( 'app_manager/applications', startkey=key + [{}], endkey=key, descending=True, include_docs=False, limit=1, ).first() def _get_latest_build_view(domain, app_id, include_docs): from .models import Application return Application.get_db().view( 'app_manager/saved_app', startkey=[domain, app_id, {}], endkey=[domain, app_id], descending=True, include_docs=include_docs, limit=1, ).first() def get_latest_build_doc(domain, app_id): """Get the latest saved build of the application, regardless of star.""" res = _get_latest_build_view(domain, app_id, include_docs=True) return res['doc'] if res else None def get_latest_build_id(domain, app_id): """Get id of the latest build of the application, regardless of star.""" res = _get_latest_build_view(domain, app_id, include_docs=False) return res['id'] if res else None def get_latest_build_version(domain, app_id): """Get id of the latest build of the application, regardless of star.""" res = _get_latest_build_view(domain, app_id, include_docs=False) return res['value']['version'] if res else None def get_build_by_version(domain, app_id, version, return_doc=False): from .models import Application kwargs = {} if version: version = int(version) if return_doc: kwargs = {'include_docs': True, 'reduce': False} res = Application.get_db().view( 'app_manager/saved_app', key=[domain, app_id, version], limit=1, **kwargs ).first() return res['doc'] if return_doc and res else res def get_build_doc_by_version(domain, app_id, version): return get_build_by_version(domain, app_id, version, return_doc=True) def wrap_app(app_doc, wrap_cls=None): """Will raise DocTypeError if it can't figure out the correct class""" from corehq.apps.app_manager.util import get_correct_app_class cls = wrap_cls or get_correct_app_class(app_doc) return cls.wrap(app_doc) def get_current_app_version(domain, app_id): from .models import Application result = Application.get_db().view( 'app_manager/applications_brief', key=[domain, app_id], ).one(except_all=True) return result['value']['version'] def get_current_app_doc(domain, app_id): from .models import Application app = Application.get_db().get(app_id) if app.get('domain', None) != domain: raise ResourceNotFound() return app def get_current_app(domain, app_id): return wrap_app(get_current_app_doc(domain, app_id)) def get_app_cached(domain, app_id): """Cached version of ``get_app`` for use in phone api calls where most requests will be for app builds which are read-only. This only caches app builds.""" key = 'app_build_cache_{}_{}'.format(domain, app_id) app = cache.get(key) if not app: app = get_app(domain, app_id) if app.copy_of: cache.set(key, app, 24 * 3600) return app def get_app(domain, app_id, wrap_cls=None, latest=False, target=None): """ Utility for getting an app, making sure it's in the domain specified, and wrapping it in the right class (Application or RemoteApp). 'target' is only used if latest=True. It should be set to one of: 'build', 'release', or 'save' Here are some common usages and the simpler dbaccessor alternatives: current_app = get_app(domain, app_id) = get_current_app_doc(domain, app_id) latest_released_build = get_app(domain, app_id, latest=True) = get_latest_released_app_doc(domain, app_id) latest_build = get_app(domain, app_id, latest=True, target='build') = get_latest_build_doc(domain, app_id) Use wrap_app() if you need the wrapped object. """ from .models import Application if not app_id: raise Http404() try: app = Application.get_db().get(app_id) except ResourceNotFound: raise Http404() if latest: if not domain: domain = app['domain'] if app.get('copy_of'): # The id passed in corresponds to a build app_id = app.get('copy_of') if target == 'build': app = get_latest_build_doc(domain, app_id) or app elif target == 'save': # If the app_id passed in was the working copy, just use that app. # If it's a build, get the working copy. if app.get('copy_of'): app = get_current_app_doc(domain, app_id) else: app = get_latest_released_app_doc(domain, app_id) or app if domain and app['domain'] != domain: raise Http404() try: return wrap_app(app, wrap_cls=wrap_cls) except DocTypeError: raise Http404() def get_apps_in_domain(domain, include_remote=True): from .models import Application from corehq.apps.app_manager.util import get_correct_app_class docs = [row['doc'] for row in Application.get_db().view( 'app_manager/applications', startkey=[domain, None], endkey=[domain, None, {}], include_docs=True )] apps = [get_correct_app_class(doc).wrap(doc) for doc in docs] if not include_remote: apps = [app for app in apps if not app.is_remote_app()] return apps def get_brief_apps_in_domain(domain, include_remote=True): from .models import Application from corehq.apps.app_manager.util import get_correct_app_class docs = [row['value'] for row in Application.get_db().view( 'app_manager/applications_brief', startkey=[domain], endkey=[domain, {}] )] apps = [get_correct_app_class(doc).wrap(doc) for doc in docs] if not include_remote: apps = [app for app in apps if not app.is_remote_app()] return sorted(apps, key=lambda app: app.name) def get_brief_app(domain, app_id): from .models import Application from corehq.apps.app_manager.util import get_correct_app_class result = Application.get_db().view( 'app_manager/applications_brief', key=[domain, app_id], ).one(except_all=True) doc = result['value'] return get_correct_app_class(doc).wrap(doc) def get_app_ids_in_domain(domain): from .models import Application return [row['id'] for row in Application.get_db().view( 'app_manager/applications', startkey=[domain, None], endkey=[domain, None, {}] )] def get_apps_by_id(domain, app_ids): from .models import Application from corehq.apps.app_manager.util import get_correct_app_class if isinstance(app_ids, six.string_types): soft_assert_type_text(app_ids) app_ids = [app_ids] docs = iter_docs(Application.get_db(), app_ids) return [get_correct_app_class(doc).wrap(doc) for doc in docs] def get_built_app_ids(domain): """ Returns the app ids of all apps in the domain that have at least one build. """ from .models import Application result = Application.get_db().view( 'app_manager/saved_app', startkey=[domain], endkey=[domain, {}], include_docs=False, ) app_ids = [data.get('value', {}).get('copy_of') for data in result] app_ids = list(set(app_ids)) return [app_id for app_id in app_ids if app_id] def get_built_app_ids_for_app_id(domain, app_id, version=None): """ Returns all the built apps for an application id. If version is specified returns all apps after that version. """ from .models import Application key = [domain, app_id] skip = 1 if version else 0 results = Application.get_db().view( 'app_manager/saved_app', startkey=key + [version], endkey=key + [{}], reduce=False, include_docs=False, skip=skip ).all() return [result['id'] for result in results] def get_built_app_ids_with_submissions_for_app_id(domain, app_id, version=None): """ Returns all the built apps for an application id that have submissions. If version is specified returns all apps after that version. """ from .models import Application key = [domain, app_id] skip = 1 if version else 0 results = Application.get_db().view( 'apps_with_submissions/view', startkey=key + [version], endkey=key + [{}], reduce=False, include_docs=False, skip=skip ).all() return [result['id'] for result in results] def get_built_app_ids_with_submissions_for_app_ids_and_versions(domain, app_ids, app_ids_and_versions=None): """ Returns all the built app_ids for a domain that has submissions. If version is specified returns all apps after that version. :domain: :app_ids_and_versions: A dictionary mapping an app_id to build version """ app_ids_and_versions = app_ids_and_versions or {} results = [] for app_id in app_ids: results.extend( get_built_app_ids_with_submissions_for_app_id(domain, app_id, app_ids_and_versions.get(app_id)) ) return results def get_auto_generated_built_apps(domain, app_id): """ Returns all the built apps that were automatically generated for an application id. """ from .models import Application results = Application.get_db().view( 'saved_apps_auto_generated/view', startkey=[domain, app_id], endkey=[domain, app_id, {}], reduce=False, include_docs=False, ).all() return [doc['value'] for doc in results] def get_latest_app_ids_and_versions(domain, app_id=None): """ Returns all the latest app_ids and versions in a dictionary. :param domain: The domain to get the app from :param app_id: The app_id to get the latest version from. If not specified gets latest versions of all apps in the domain :returns: {app_id: latest_version} """ from .models import Application key = [domain] results = Application.get_db().view( 'app_manager/applications_brief', startkey=key + [{}], endkey=key, descending=True, reduce=False, include_docs=True, ).all() latest_ids_and_versions = {} if app_id: results = [r for r in results if r['value']['_id'] == app_id] for result in results: app_id = result['value']['_id'] version = result['value']['version'] # Since we have sorted, we know the first instance is the latest version if app_id not in latest_ids_and_versions: latest_ids_and_versions[app_id] = version return latest_ids_and_versions def get_all_apps(domain): """ Returns an iterable over all the apps ever built and current Applications. Used for subscription management when apps use subscription only features that shouldn't be present in built apps as well as app definitions. """ def _saved_apps(): from .models import Application from corehq.apps.app_manager.util import get_correct_app_class saved_app_ids = Application.get_db().view( 'app_manager/saved_app', startkey=[domain], endkey=[domain, {}], include_docs=False, wrapper=lambda row: row['id'], ) correct_wrap = lambda app_doc: get_correct_app_class(app_doc).wrap(app_doc) return map(correct_wrap, iter_docs(Application.get_db(), saved_app_ids)) return chain(get_apps_in_domain(domain), _saved_apps()) def get_all_app_ids(domain): """ Returns a list of all the app_ids ever built and current Applications. """ from .models import Application results = Application.get_db().view( 'app_manager/saved_app', startkey=[domain], endkey=[domain, {}], include_docs=False, ).all() return [result['id'] for result in results] def get_all_built_app_ids_and_versions(domain, app_id=None): """ Returns a list of all the app_ids ever built and their version. [[AppBuildVersion(app_id, build_id, version, comment)], ...] If app_id is provided, limit to bulds for that app. """ return [ AppBuildVersion( app_id=result['key'][1], build_id=result['id'], version=result['key'][2], comment=result['value']['build_comment'], ) for result in get_all_built_app_results(domain, app_id) ] def get_all_built_app_results(domain, app_id=None): from .models import Application startkey = [domain] endkey = [domain, {}] if app_id: startkey = [domain, app_id] endkey = [domain, app_id, {}] return Application.get_db().view( 'app_manager/saved_app', startkey=startkey, endkey=endkey, include_docs=False, ).all() def get_available_versions_for_app(domain, app_id): from .models import Application result = Application.get_db().view('app_manager/saved_app', startkey=[domain, app_id, {}], endkey=[domain, app_id], descending=True) return [doc['value']['version'] for doc in result] def get_version_build_id(domain, app_id, version): build = get_build_by_version(domain, app_id, version) if not build: raise BuildNotFoundException(_("Build for version requested not found")) return build['id'] def get_case_types_from_apps(domain): """ Get the case types of modules in applications in the domain. :returns: A set of case_types """ case_types_agg = NestedAggregation('modules', 'modules').aggregation( TermsAggregation('case_types', 'modules.case_type.exact')) q = (AppES() .domain(domain) .is_build(False) .size(0) .aggregation(case_types_agg)) return set(q.run().aggregations.modules.case_types.keys) - {''} def get_case_sharing_apps_in_domain(domain, exclude_app_id=None): apps = get_apps_in_domain(domain, include_remote=False) return [a for a in apps if a.case_sharing and exclude_app_id != a.id]
the-stack_0_19304
from django.contrib.contenttypes.models import ContentType from rest_framework.test import APITestCase from blitz_api.factories import UserFactory from ..models import Package, Coupon class CouponTests(APITestCase): @classmethod def setUpClass(cls): super(CouponTests, cls).setUpClass() cls.package_type = ContentType.objects.get_for_model(Package) cls.user = UserFactory() cls.coupon = Coupon.objects.create( value=13, code="ASD1234E", start_time="2019-01-06T15:11:05-05:00", end_time="2020-01-06T15:11:06-05:00", max_use=100, max_use_per_user=2, details="Any package for fjeanneau clients", owner=cls.user, ) cls.coupon.applicable_product_types.add(cls.package_type) cls.coupon.save() def test_create(self): """ Ensure that we can create a coupon. """ coupon = Coupon.objects.create( value=13, code="12345678", start_time="2019-01-06T15:11:05-05:00", end_time="2020-01-06T15:11:06-05:00", max_use=100, max_use_per_user=2, details="Any package for fjeanneau clients", owner=self.user, ) self.assertEqual(str(coupon), "12345678")
the-stack_0_19305
# !/usr/bin/env python # title :EYEDIAP_utils.py # description :Script with utility methods to read EYEDIAP files. Adapted from scripts provided by EYEDIAP. # author :Cristina Palmero # date :30092018 # version :2.0 # usage : - # notes : - # python_version :3.5.5 # ============================================================================== import numpy as np import math import cv2 as cv import tensorflow as tf from keras import backend as K from itertools import chain def read_screen_track_file(screen_track_file): """ Read the ground truth values, i.e. the 3D position of the screen target """ screen_track_vals = np.loadtxt(screen_track_file, skiprows=1, delimiter=';')[:, -3:] return screen_track_vals def read_ball_track_file(ball_track_file): """ Read the ground truth values, i.e. the 3D position of the floating target """ ball_track_vals = np.loadtxt(ball_track_file, skiprows=1, delimiter=';')[:, -3:] return ball_track_vals def read_head_track_file(head_track_file): """ Read the head pose parameters: the frame-by-frame rotation and translation """ head_track_vals = np.loadtxt(head_track_file, skiprows=1, delimiter=';')[:, 1:] R = head_track_vals[:, :9].reshape(-1, 3, 3) T = head_track_vals[:, 9:12] return R, T def readCalibrationFile(calibration_file): """ Reads the calibration parameters """ cal = {} fh = open(calibration_file, 'r') # Read the [resolution] section fh.readline().strip() cal['size'] = [int(val) for val in fh.readline().strip().split(';')] cal['size'] = cal['size'][0], cal['size'][1] # Read the [intrinsics] section fh.readline().strip() vals = [] for i in range(3): vals.append([float(val) for val in fh.readline().strip().split(';')]) cal['intrinsics'] = np.array(vals).reshape(3, 3) # Read the [R] section fh.readline().strip() vals = [] for i in range(3): vals.append([float(val) for val in fh.readline().strip().split(';')]) cal['R'] = np.array(vals).reshape(3, 3) # Read the [T] section fh.readline().strip() vals = [] for i in range(3): vals.append([float(val) for val in fh.readline().strip().split(';')]) cal['T'] = np.array(vals).reshape(3, 1) fh.close() return cal
the-stack_0_19306
""" Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Network ID for integration tests import swagger_client NETWORK_ID = 'integ_net' # Gateway ID for integration tests GATEWAY_ID = 'integ_gate' DEFAULT_NETWORK_DNSD_CONFIG = swagger_client.NetworkDnsConfig( enable_caching=False, records=[], ) DEFAULT_NETWORK_CELLULAR_CONFIG = swagger_client.NetworkCellularConfigs( ran=swagger_client.NetworkRanConfigs( earfcndl=44590, bandwidth_mhz=20, subframe_assignment=2, special_subframe_pattern=7, ), epc=swagger_client.NetworkEpcConfigs( mcc='001', mnc='01', tac=1, lte_auth_op='EREREREREREREREREREREQ==', lte_auth_amf='gAA=', default_rule_id='default_rule_1', relay_enabled=True, ), ) DEFAULT_GATEWAY_CONFIG = swagger_client.MagmadGatewayConfig( checkin_interval=10, checkin_timeout=15, autoupgrade_enabled=False, autoupgrade_poll_interval=300, tier='default', ) DEFAULT_GATEWAY_CELLULAR_CONFIG = swagger_client.GatewayCellularConfigs( ran=swagger_client.GatewayRanConfigs( pci=260, transmit_enabled=True, ), epc=swagger_client.GatewayEpcConfigs( nat_enabled=True, ip_block='192.168.128.0/24', ), )
the-stack_0_19308
import aiohttp from aiohttp.web import HTTPException import traceback from automat.config import config from automat.util.logutil import LoggingUtil logger = LoggingUtil.init_logging(__name__, config.get('logging_level'), config.get('logging_format') ) async def async_get_json(url, headers={}, timeout=5*6): """ Gets json response from url asyncronously. """ client_timeout = aiohttp.ClientTimeout(connect=timeout) async with aiohttp.ClientSession(timeout=client_timeout) as session: try: async with session.get(url, headers=headers) as response: if response.status != 200: error = f"Failed to get response from {url}. Status code {response.status}" logger.error(error) return { 'error': error }, response.status return await response.json(), 200 except HTTPException as e: logger.error(f'error contacting {url} -- {e}') logger.debug(traceback.print_exc()) return { 'error': f"Backend server at {url} caused {e}" }, 500 except Exception as e: logger.error(f"Failed to get response from {url}.") logger.debug(traceback.print_exc()) return { 'error': f'Internal server error {e}' }, 500 async def async_post_json(url, headers={}, body='', timeout=5*6): client_timeout = aiohttp.ClientTimeout(connect=timeout) async with aiohttp.ClientSession(timeout=client_timeout) as session: try: async with session.post(url, data=body, headers=headers) as response: if response.status != 200: try: content = await response.json() except: content = await response.content.read() content = { 'error': content.decode('utf-8') } logger.error(f'{url} returned {response.status}. {content}') return content, response.status return await response.json(), 200 except Exception as e: logger.error(f"Failed to get response from {url}.") return { 'error': f"Server returned {e}" }, 500 async def async_get_text(url,headers={}): """ Gets text response from url asyncronously """ async with aiohttp.ClientSession() as session: async with session.get(url, headers=headers) as response: if response.status != 200: logger.error(f'Failed to get response from {url}, returned status : {response.status}') return '' return await response.text() async def async_get_response(url, headers={}, timeout=5*60): """ Returns the whole reponse object """ client_timeout = aiohttp.ClientTimeout(connect=timeout) async with aiohttp.ClientSession(timeout=client_timeout) as session: async with session.get(url, headers=headers) as response: try: json = await response.json() except: json = {} try: text = await response.text() except: text = '' try: raw = await response.read() except: raw = '' return { 'headers' : response.headers, 'json': json, 'text': text, 'raw': raw, 'status': response.status }
the-stack_0_19310
from neutronclient.v2_0 import client as neutron_client from cloudshell.cp.core.models import VmDetailsProperty,VmDetailsNetworkInterface,VmDetailsData class VmDetailsProvider(object): def __init__(self, instance_service): """ :param NovaInstanceService instance_service: """ self.instance_service = instance_service def create(self, instance, openstack_session, management_vlan_id, logger): """ :param logger: :param management_vlan_id: :param instance: :param keystoneauth1.session.Session openstack_session: :return: cloudshell.cp.core.models.VmDetanoilsData """ # must be reloaded to acquire a floating ip instance = self.instance_service.get_instance_from_instance_id(openstack_session=openstack_session, instance_id=instance.id, logger=logger) logger.info("Reloading vm with id: {0}".format(instance.id)) vm_instance_data = self._get_vm_instance_data(instance, openstack_session) vm_network_data = self._get_vm_network_data(instance, openstack_session, management_vlan_id) return VmDetailsData(vmInstanceData=vm_instance_data,vmNetworkData=vm_network_data) def _get_vm_instance_data(self, instance, openstack_session): image = self.instance_service.get_image(openstack_session, instance.image['id']) flavor = self.instance_service.get_flavor(openstack_session, instance.flavor['id']) data = [ VmDetailsProperty(key='Image',value=image.name), VmDetailsProperty(key='Flavour',value=flavor.name), VmDetailsProperty(key='Availability Zone', value=instance._info['OS-EXT-AZ:availability_zone']), VmDetailsProperty(key='CPU', value='%s vCPU' % flavor.vcpus), VmDetailsProperty(key='Memory', value='%s GB' % flavor.ram), VmDetailsProperty(key='Disk Size', value='%s GB' % flavor.disk) ] return data @staticmethod def _get_vm_network_data(instance, openstack_session, management_vlan_id): network_interfaces = [] client = neutron_client.Client(session=openstack_session, insecure=True) list_networks = client.list_networks() networks = list_networks['networks'] for network_name in instance.networks: interfaces = instance.interface_list() net = filter(lambda x: x['name'] == network_name, networks)[0] network_id = net['id'] segmentation_id = net['provider:segmentation_id'] interface = filter(lambda x: x.net_id == network_id, interfaces)[0] interface_mac = interface.to_dict().get('mac_addr') is_primary_and_predefined = network_id == management_vlan_id private_ip = instance.networks[network_name][0] network_data =[VmDetailsProperty(key="IP",value= private_ip), VmDetailsProperty(key="MAC Address", value=interface_mac), VmDetailsProperty(key="VLAN Name", value=network_name,hidden=True)] public_ip = '' addresses = instance.to_dict().get('addresses') if addresses: for key, val in addresses.iteritems(): if key == network_name: floating_ip = filter(lambda x: x['OS-EXT-IPS:type'] == 'floating', val) if floating_ip: public_ip = floating_ip[0]['addr'] network_data.append(VmDetailsProperty(key="Floating IP",value= public_ip)) current_interface = VmDetailsNetworkInterface(interfaceId=interface_mac, networkId=segmentation_id, isPrimary=is_primary_and_predefined, isPredefined=is_primary_and_predefined, networkData=network_data,privateIpAddress=private_ip,publicIpAddress=public_ip) network_interfaces.append(current_interface) return sorted(network_interfaces, key=lambda x: x.networkId, reverse=False)
the-stack_0_19312
from CronMatch import cron_match from datetime import datetime from time import sleep from threading import Thread from threading import Lock from threading import Event class Scheduler: _running = False _entries = [] _last_tick = None _tick_thread = None _lock = None fn = None _exit = None def __init__(self): self._lock = Lock() self.start() def load_cron(self, cron, fn): with self._lock: entries = cron.split('\n') for e in entries: self._entries.append((e, fn)) def stop(self): with self._lock: if self._running: self._exit.set() self._running = False self._tick_thread = None def start(self): with self._lock: if self._running is False: self._tick_thread = Thread(target=self._tick) self._exit = Event() self._running = True self._tick_thread.start() def _check_cron(self): with self._lock: for entry in self._entries: cron = entry[0] fn = entry[1] match = cron_match(cron) if match is not False: fn(match) def _trim_datetime(self, dt = None): if dt is None: dt = datetime.now() return datetime(dt.year, dt.month, dt.day, dt.hour, dt.minute, 0, 0) def _tick(self): while self._running: t = datetime.utcnow() rem = t.second + (t.microsecond / 1000000) self._exit.wait(60.001 - rem) # Make extra sure that we don't continue twice in the same minute while self._trim_datetime() == self._last_tick: self._exit.wait(.1) if self._running is False: break self._last_tick = self._trim_datetime() self._check_cron() self._running = False self._exit = None
the-stack_0_19315
#!/usr/bin/python # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Run this script from the root of the repository to update all translations from transifex. It will do the following automatically: - fetch all translations using the tx tool - post-process them into valid and committable format - remove invalid control characters - remove location tags (makes diffs less noisy) TODO: - auto-add new translations to the build system according to the translation process ''' from __future__ import division, print_function import subprocess import re import sys import os import io import xml.etree.ElementTree as ET # Name of transifex tool TX = 'tx' # Name of source language file SOURCE_LANG = 'orbit_en.ts' # Directory with locale files LOCALE_DIR = 'src/qt/locale' # Minimum number of messages for translation to be considered at all MIN_NUM_MESSAGES = 10 def check_at_repository_root(): if not os.path.exists('.git'): print('No .git directory found') print('Execute this script at the root of the repository', file=sys.stderr) exit(1) def fetch_all_translations(): if subprocess.call([TX, 'pull', '-f', '-a']): print('Error while fetching translations', file=sys.stderr) exit(1) def find_format_specifiers(s): '''Find all format specifiers in a string.''' pos = 0 specifiers = [] while True: percent = s.find('%', pos) if percent < 0: break try: specifiers.append(s[percent+1]) except: print('Failed to get specifier') pos = percent+2 return specifiers def split_format_specifiers(specifiers): '''Split format specifiers between numeric (Qt) and others (strprintf)''' numeric = [] other = [] for s in specifiers: if s in {'1','2','3','4','5','6','7','8','9'}: numeric.append(s) else: other.append(s) # numeric (Qt) can be present in any order, others (strprintf) must be in specified order return set(numeric),other def sanitize_string(s): '''Sanitize string for printing''' return s.replace('\n',' ') def check_format_specifiers(source, translation, errors, numerus): source_f = split_format_specifiers(find_format_specifiers(source)) # assert that no source messages contain both Qt and strprintf format specifiers # if this fails, go change the source as this is hacky and confusing! #assert(not(source_f[0] and source_f[1])) try: translation_f = split_format_specifiers(find_format_specifiers(translation)) except IndexError: errors.append("Parse error in translation for '%s': '%s'" % (sanitize_string(source), sanitize_string(translation))) return False else: if source_f != translation_f: if numerus and source_f == (set(), ['n']) and translation_f == (set(), []) and translation.find('%') == -1: # Allow numerus translations to omit %n specifier (usually when it only has one possible value) return True errors.append("Mismatch between '%s' and '%s'" % (sanitize_string(source), sanitize_string(translation))) return False return True def all_ts_files(suffix=''): for filename in os.listdir(LOCALE_DIR): # process only language files, and do not process source language if not filename.endswith('.ts'+suffix) or filename == SOURCE_LANG+suffix: continue if suffix: # remove provided suffix filename = filename[0:-len(suffix)] filepath = os.path.join(LOCALE_DIR, filename) yield(filename, filepath) FIX_RE = re.compile(b'[\x00-\x09\x0b\x0c\x0e-\x1f]') def remove_invalid_characters(s): '''Remove invalid characters from translation string''' return FIX_RE.sub(b'', s) # Override cdata escape function to make our output match Qt's (optional, just for cleaner diffs for # comparison, disable by default) _orig_escape_cdata = None def escape_cdata(text): text = _orig_escape_cdata(text) text = text.replace("'", '&apos;') text = text.replace('"', '&quot;') return text def postprocess_translations(reduce_diff_hacks=False): print('Checking and postprocessing...') if reduce_diff_hacks: global _orig_escape_cdata _orig_escape_cdata = ET._escape_cdata ET._escape_cdata = escape_cdata for (filename,filepath) in all_ts_files(): os.rename(filepath, filepath+'.orig') have_errors = False for (filename,filepath) in all_ts_files('.orig'): # pre-fixups to cope with transifex output parser = ET.XMLParser(encoding='utf-8') # need to override encoding because 'utf8' is not understood only 'utf-8' with open(filepath + '.orig', 'rb') as f: data = f.read() # remove control characters; this must be done over the entire file otherwise the XML parser will fail data = remove_invalid_characters(data) tree = ET.parse(io.BytesIO(data), parser=parser) # iterate over all messages in file root = tree.getroot() for context in root.findall('context'): for message in context.findall('message'): numerus = message.get('numerus') == 'yes' source = message.find('source').text translation_node = message.find('translation') # pick all numerusforms if numerus: translations = [i.text for i in translation_node.findall('numerusform')] else: translations = [translation_node.text] for translation in translations: if translation is None: continue errors = [] valid = check_format_specifiers(source, translation, errors, numerus) for error in errors: print('%s: %s' % (filename, error)) if not valid: # set type to unfinished and clear string if invalid translation_node.clear() translation_node.set('type', 'unfinished') have_errors = True # Remove location tags for location in message.findall('location'): message.remove(location) # Remove entire message if it is an unfinished translation if translation_node.get('type') == 'unfinished': context.remove(message) # check if document is (virtually) empty, and remove it if so num_messages = 0 for context in root.findall('context'): for message in context.findall('message'): num_messages += 1 if num_messages < MIN_NUM_MESSAGES: print('Removing %s, as it contains only %i messages' % (filepath, num_messages)) continue # write fixed-up tree # if diff reduction requested, replace some XML to 'sanitize' to qt formatting if reduce_diff_hacks: out = io.BytesIO() tree.write(out, encoding='utf-8') out = out.getvalue() out = out.replace(b' />', b'/>') with open(filepath, 'wb') as f: f.write(out) else: tree.write(filepath, encoding='utf-8') return have_errors if __name__ == '__main__': check_at_repository_root() # fetch_all_translations() postprocess_translations()
the-stack_0_19316
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ... import opcodes as OperandDef from ..datasource import tensor as astensor from .core import TensorFFTMixin, validate_fft, TensorHermitianFFT class TensorIHFFT(TensorHermitianFFT, TensorFFTMixin): _op_type_ = OperandDef.IHFFT def __init__(self, n=None, axis=-1, norm=None, dtype=None, **kw): super().__init__(_n=n, _axis=axis, _norm=norm, _dtype=dtype, **kw) @classmethod def _get_shape(cls, op, shape): new_shape = list(shape) shape = op.n if op.n is not None else shape[op.axis] if shape % 2 == 0: shape = (shape // 2) + 1 else: shape = (shape + 1) // 2 new_shape[op.axis] = shape return tuple(new_shape) def ihfft(a, n=None, axis=-1, norm=None): """ Compute the inverse FFT of a signal that has Hermitian symmetry. Parameters ---------- a : array_like Input tensor. n : int, optional Length of the inverse FFT, the number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex Tensor The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is ``n//2 + 1``. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error, * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error. Examples -------- >>> import mars.tensor as mt >>> spectrum = mt.array([ 15, -4, 0, -1, 0, -4]) >>> mt.fft.ifft(spectrum).execute() array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j]) >>> mt.fft.ihfft(spectrum).execute() array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) """ a = astensor(a) validate_fft(a, axis=axis, norm=norm) op = TensorIHFFT(n=n, axis=axis, norm=norm, dtype=np.dtype(np.complex_)) return op(a)
the-stack_0_19317
#!/usr/bin/env python3 from cereal import car from selfdrive.config import Conversions as CV from selfdrive.controls.lib.drive_helpers import EventTypes as ET, create_event from selfdrive.controls.lib.vehicle_model import VehicleModel from selfdrive.car.toyota.carstate import CarState, get_can_parser, get_cam_can_parser from selfdrive.car.toyota.values import Ecu, ECU_FINGERPRINT, CAR, NO_STOP_TIMER_CAR, TSS2_CAR, FINGERPRINTS from selfdrive.car import STD_CARGO_KG, scale_rot_inertia, scale_tire_stiffness, is_ecu_disconnected, gen_empty_fingerprint from selfdrive.swaglog import cloudlog from selfdrive.car.interfaces import CarInterfaceBase ButtonType = car.CarState.ButtonEvent.Type GearShifter = car.CarState.GearShifter class CarInterface(CarInterfaceBase): def __init__(self, CP, CarController): self.CP = CP self.VM = VehicleModel(CP) self.frame = 0 self.gas_pressed_prev = False self.brake_pressed_prev = False self.cruise_enabled_prev = False # *** init the major players *** self.CS = CarState(CP) self.cp = get_can_parser(CP) self.cp_cam = get_cam_can_parser(CP) self.CC = None if CarController is not None: self.CC = CarController(self.cp.dbc_name, CP.carFingerprint, CP.enableCamera, CP.enableDsu, CP.enableApgs) @staticmethod def compute_gb(accel, speed): return float(accel) / 3.0 @staticmethod def get_params(candidate, fingerprint=gen_empty_fingerprint(), has_relay=False, car_fw=[]): ret = car.CarParams.new_message() ret.carName = "toyota" ret.carFingerprint = candidate ret.isPandaBlack = has_relay ret.safetyModel = car.CarParams.SafetyModel.toyota ret.enableCruise = True ret.steerActuatorDelay = 0.12 # Default delay, Prius has larger delay ret.steerLimitTimer = 0.4 if candidate not in [CAR.PRIUS, CAR.RAV4, CAR.RAV4H]: # These cars use LQR/INDI ret.lateralTuning.init('pid') ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] if candidate == CAR.PRIUS: stop_and_go = True ret.safetyParam = 66 # see conversion factor for STEER_TORQUE_EPS in dbc file ret.wheelbase = 2.70 ret.steerRatio = 13.4 # unknown end-to-end spec tire_stiffness_factor = 0.6371 # hand-tune ret.mass = 3375. * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.init('indi') ret.lateralTuning.indi.innerLoopGain = 4.0 ret.lateralTuning.indi.outerLoopGain = 3.0 ret.lateralTuning.indi.timeConstant = 1.0 ret.lateralTuning.indi.actuatorEffectiveness = 1.0 # TODO: Determine if this is better than INDI # ret.lateralTuning.init('lqr') # ret.lateralTuning.lqr.scale = 1500.0 # ret.lateralTuning.lqr.ki = 0.01 # ret.lateralTuning.lqr.a = [0., 1., -0.22619643, 1.21822268] # ret.lateralTuning.lqr.b = [-1.92006585e-04, 3.95603032e-05] # ret.lateralTuning.lqr.c = [1., 0.] # ret.lateralTuning.lqr.k = [-110.73572306, 451.22718255] # ret.lateralTuning.lqr.l = [0.03233671, 0.03185757] # ret.lateralTuning.lqr.dcGain = 0.002237852961363602 ret.steerActuatorDelay = 0.5 elif candidate in [CAR.RAV4, CAR.RAV4H]: stop_and_go = True if (candidate in CAR.RAV4H) else False ret.safetyParam = 73 ret.wheelbase = 2.65 ret.steerRatio = 16.88 # 14.5 is spec end-to-end tire_stiffness_factor = 0.5533 ret.mass = 3650. * CV.LB_TO_KG + STD_CARGO_KG # mean between normal and hybrid ret.lateralTuning.init('lqr') ret.lateralTuning.lqr.scale = 1500.0 ret.lateralTuning.lqr.ki = 0.05 ret.lateralTuning.lqr.a = [0., 1., -0.22619643, 1.21822268] ret.lateralTuning.lqr.b = [-1.92006585e-04, 3.95603032e-05] ret.lateralTuning.lqr.c = [1., 0.] ret.lateralTuning.lqr.k = [-110.73572306, 451.22718255] ret.lateralTuning.lqr.l = [0.3233671, 0.3185757] ret.lateralTuning.lqr.dcGain = 0.002237852961363602 elif candidate == CAR.COROLLA: stop_and_go = False ret.safetyParam = 100 ret.wheelbase = 2.70 ret.steerRatio = 18.27 tire_stiffness_factor = 0.444 # not optimized yet ret.mass = 2860. * CV.LB_TO_KG + STD_CARGO_KG # mean between normal and hybrid ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2], [0.05]] ret.lateralTuning.pid.kf = 0.00003 # full torque for 20 deg at 80mph means 0.00007818594 elif candidate == CAR.LEXUS_RX: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 2.79 ret.steerRatio = 14.8 tire_stiffness_factor = 0.5533 ret.mass = 4387. * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.05]] ret.lateralTuning.pid.kf = 0.00006 elif candidate == CAR.LEXUS_RXH: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 2.79 ret.steerRatio = 16. # 14.8 is spec end-to-end tire_stiffness_factor = 0.444 # not optimized yet ret.mass = 4481. * CV.LB_TO_KG + STD_CARGO_KG # mean between min and max ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.1]] ret.lateralTuning.pid.kf = 0.00006 # full torque for 10 deg at 80mph means 0.00007818594 elif candidate == CAR.LEXUS_RX_TSS2: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 2.79 ret.steerRatio = 14.8 tire_stiffness_factor = 0.5533 # not optimized yet ret.mass = 4387. * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.1]] ret.lateralTuning.pid.kf = 0.00007818594 elif candidate in [CAR.CHR, CAR.CHRH]: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 2.63906 ret.steerRatio = 13.6 tire_stiffness_factor = 0.7933 ret.mass = 3300. * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.723], [0.0428]] ret.lateralTuning.pid.kf = 0.00006 elif candidate in [CAR.CAMRY, CAR.CAMRYH]: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 2.82448 ret.steerRatio = 13.7 tire_stiffness_factor = 0.7933 ret.mass = 3400. * CV.LB_TO_KG + STD_CARGO_KG #mean between normal and hybrid ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.1]] ret.lateralTuning.pid.kf = 0.00006 elif candidate == CAR.HIGHLANDER_TSS2: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 2.84988 # 112.2 in = 2.84988 m ret.steerRatio = 16.0 tire_stiffness_factor = 0.8 ret.mass = 4700. * CV.LB_TO_KG + STD_CARGO_KG # 4260 + 4-5 people ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.18], [0.015]] # community tuning ret.lateralTuning.pid.kf = 0.00012 # community tuning elif candidate in [CAR.HIGHLANDER, CAR.HIGHLANDERH]: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 2.78 ret.steerRatio = 16.0 tire_stiffness_factor = 0.8 ret.mass = 4607. * CV.LB_TO_KG + STD_CARGO_KG #mean between normal and hybrid limited ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.18], [0.015]] # community tuning ret.lateralTuning.pid.kf = 0.00012 # community tuning elif candidate == CAR.AVALON: stop_and_go = False ret.safetyParam = 73 ret.wheelbase = 2.82 ret.steerRatio = 14.8 #Found at https://pressroom.toyota.com/releases/2016+avalon+product+specs.download tire_stiffness_factor = 0.7983 ret.mass = 3505. * CV.LB_TO_KG + STD_CARGO_KG # mean between normal and hybrid ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.17], [0.03]] ret.lateralTuning.pid.kf = 0.00006 elif candidate == CAR.RAV4_TSS2: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 2.68986 ret.steerRatio = 14.3 tire_stiffness_factor = 0.7933 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.1]] ret.mass = 3370. * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kf = 0.00007818594 elif candidate == CAR.RAV4H_TSS2: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 2.68986 ret.steerRatio = 14.3 tire_stiffness_factor = 0.7933 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.1]] ret.mass = 3800. * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kf = 0.00007818594 elif candidate == CAR.PRIUS_2019: stop_and_go = True ret.safetyParam = 66 ret.wheelbase = 2.70 ret.steerRatio = 15.74 # unknown end-to-end spec tire_stiffness_factor = 0.6371 # hand-tune ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.1]] ret.mass = 3045. * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kf = 0.00007818594 elif candidate == CAR.PRIUS_2019: stop_and_go = True ret.safetyParam = 66 ret.wheelbase = 2.70 ret.steerRatio = 15.74 # unknown end-to-end spec tire_stiffness_factor = 0.6371 # hand-tune ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.1]] ret.mass = 3045. * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kf = 0.00007818594 elif candidate in [CAR.COROLLA_TSS2, CAR.COROLLAH_TSS2]: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 2.63906 ret.steerRatio = 13.9 tire_stiffness_factor = 0.444 # not optimized yet ret.mass = 3060. * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.1]] ret.lateralTuning.pid.kf = 0.00007818594 elif candidate in [CAR.LEXUS_ES_TSS2, CAR.LEXUS_ESH_TSS2]: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 2.8702 ret.steerRatio = 16.0 # not optimized tire_stiffness_factor = 0.444 # not optimized yet ret.mass = 3704. * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.1]] ret.lateralTuning.pid.kf = 0.00007818594 elif candidate == CAR.SIENNA: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 3.03 ret.steerRatio = 16.0 tire_stiffness_factor = 0.444 ret.mass = 4590. * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.05]] ret.lateralTuning.pid.kf = 0.00007818594 elif candidate == CAR.LEXUS_IS: stop_and_go = False ret.safetyParam = 77 ret.wheelbase = 2.79908 ret.steerRatio = 13.3 tire_stiffness_factor = 0.444 ret.mass = 3736.8 * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.05]] ret.lateralTuning.pid.kf = 0.00006 elif candidate == CAR.LEXUS_CTH: stop_and_go = True ret.safetyParam = 100 ret.wheelbase = 2.60 ret.steerRatio = 18.6 tire_stiffness_factor = 0.517 ret.mass = 3108 * CV.LB_TO_KG + STD_CARGO_KG # mean between min and max ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.05]] ret.lateralTuning.pid.kf = 0.00007 elif candidate == CAR.LEXUS_NXH: stop_and_go = True ret.safetyParam = 73 ret.wheelbase = 2.66 ret.steerRatio = 14.7 tire_stiffness_factor = 0.444 # not optimized yet ret.mass = 4070 * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.1]] ret.lateralTuning.pid.kf = 0.00006 ret.steerRateCost = 1. ret.centerToFront = ret.wheelbase * 0.44 # TODO: get actual value, for now starting with reasonable value for # civic and scaling by mass and wheelbase ret.rotationalInertia = scale_rot_inertia(ret.mass, ret.wheelbase) # TODO: start from empirically derived lateral slip stiffness for the civic and scale by # mass and CG position, so all cars will have approximately similar dyn behaviors ret.tireStiffnessFront, ret.tireStiffnessRear = scale_tire_stiffness(ret.mass, ret.wheelbase, ret.centerToFront, tire_stiffness_factor=tire_stiffness_factor) # no rear steering, at least on the listed cars above ret.steerRatioRear = 0. ret.steerControlType = car.CarParams.SteerControlType.torque # steer, gas, brake limitations VS speed ret.steerMaxBP = [16. * CV.KPH_TO_MS, 45. * CV.KPH_TO_MS] # breakpoints at 1 and 40 kph ret.steerMaxV = [1., 1.] # 2/3rd torque allowed above 45 kph ret.brakeMaxBP = [0.] ret.brakeMaxV = [1.] ret.enableCamera = is_ecu_disconnected(fingerprint[0], FINGERPRINTS, ECU_FINGERPRINT, candidate, Ecu.fwdCamera) or has_relay # Detect smartDSU, which intercepts ACC_CMD from the DSU allowing openpilot to send it smartDsu = 0x2FF in fingerprint[0] # In TSS2 cars the camera does long control ret.enableDsu = is_ecu_disconnected(fingerprint[0], FINGERPRINTS, ECU_FINGERPRINT, candidate, Ecu.dsu) and candidate not in TSS2_CAR ret.enableApgs = False # is_ecu_disconnected(fingerprint[0], FINGERPRINTS, ECU_FINGERPRINT, candidate, Ecu.apgs) ret.enableGasInterceptor = 0x201 in fingerprint[0] # if the smartDSU is detected, openpilot can send ACC_CMD (and the smartDSU will block it from the DSU) or not (the DSU is "connected") ret.openpilotLongitudinalControl = ret.enableCamera and (smartDsu or ret.enableDsu or candidate in TSS2_CAR) cloudlog.warning("ECU Camera Simulated: %r", ret.enableCamera) cloudlog.warning("ECU DSU Simulated: %r", ret.enableDsu) cloudlog.warning("ECU APGS Simulated: %r", ret.enableApgs) cloudlog.warning("ECU Gas Interceptor: %r", ret.enableGasInterceptor) # min speed to enable ACC. if car can do stop and go, then set enabling speed # to a negative value, so it won't matter. ret.minEnableSpeed = -1. if (stop_and_go or ret.enableGasInterceptor) else 19. * CV.MPH_TO_MS # removing the DSU disables AEB and it's considered a community maintained feature # intercepting the DSU is a community feature since it requires unofficial hardware ret.communityFeature = ret.enableGasInterceptor or ret.enableDsu or smartDsu ret.longitudinalTuning.deadzoneBP = [0., 9.] ret.longitudinalTuning.deadzoneV = [0., .15] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kiBP = [0., 35.] ret.stoppingControl = False ret.startAccel = 0.0 if ret.enableGasInterceptor: ret.gasMaxBP = [0., 9., 35] ret.gasMaxV = [0.2, 0.5, 0.7] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiV = [0.18, 0.12] else: ret.gasMaxBP = [0.] ret.gasMaxV = [0.5] ret.longitudinalTuning.kpV = [3.6, 2.4, 1.5] ret.longitudinalTuning.kiV = [0.54, 0.36] return ret # returns a car.CarState def update(self, c, can_strings): # ******************* do can recv ******************* self.cp.update_strings(can_strings) self.cp_cam.update_strings(can_strings) self.CS.update(self.cp, self.cp_cam) # create message ret = car.CarState.new_message() ret.canValid = self.cp.can_valid and self.cp_cam.can_valid # speeds ret.vEgo = self.CS.v_ego ret.vEgoRaw = self.CS.v_ego_raw ret.aEgo = self.CS.a_ego ret.yawRate = self.VM.yaw_rate(self.CS.angle_steers * CV.DEG_TO_RAD, self.CS.v_ego) ret.standstill = self.CS.standstill ret.wheelSpeeds.fl = self.CS.v_wheel_fl ret.wheelSpeeds.fr = self.CS.v_wheel_fr ret.wheelSpeeds.rl = self.CS.v_wheel_rl ret.wheelSpeeds.rr = self.CS.v_wheel_rr # gear shifter ret.gearShifter = self.CS.gear_shifter # gas pedal ret.gas = self.CS.pedal_gas if self.CP.enableGasInterceptor: # use interceptor values to disengage on pedal press ret.gasPressed = self.CS.pedal_gas > 15 else: ret.gasPressed = self.CS.pedal_gas > 0 # brake pedal ret.brake = self.CS.user_brake ret.brakePressed = self.CS.brake_pressed != 0 ret.brakeLights = self.CS.brake_lights # steering wheel ret.steeringAngle = self.CS.angle_steers ret.steeringRate = self.CS.angle_steers_rate ret.steeringTorque = self.CS.steer_torque_driver ret.steeringTorqueEps = self.CS.steer_torque_motor ret.steeringPressed = self.CS.steer_override ret.steeringRateLimited = self.CC.steer_rate_limited if self.CC is not None else False # cruise state ret.cruiseState.enabled = self.CS.pcm_acc_active # schrauger - set min cruise to 20mph instead of 28 #ret.cruiseState.speed = self.CS.v_cruise_pcm * CV.KPH_TO_MS speed = self.CS.v_cruise_pcm * CV.KPH_TO_MS if speed < (46 * CV.KPH_TO_MS): # ~28mph speed = 32 * CV.KPH_TO_MS # ~20mph ret.cruiseState.speed = speed ret.cruiseState.available = bool(self.CS.main_on) ret.cruiseState.speedOffset = 0. if self.CP.carFingerprint in NO_STOP_TIMER_CAR or self.CP.enableGasInterceptor: # ignore standstill in hybrid vehicles, since pcm allows to restart without # receiving any special command # also if interceptor is detected ret.cruiseState.standstill = False else: ret.cruiseState.standstill = self.CS.pcm_acc_status == 7 buttonEvents = [] if self.CS.left_blinker_on != self.CS.prev_left_blinker_on: be = car.CarState.ButtonEvent.new_message() be.type = ButtonType.leftBlinker be.pressed = self.CS.left_blinker_on != 0 buttonEvents.append(be) if self.CS.right_blinker_on != self.CS.prev_right_blinker_on: be = car.CarState.ButtonEvent.new_message() be.type = ButtonType.rightBlinker be.pressed = self.CS.right_blinker_on != 0 buttonEvents.append(be) ret.buttonEvents = buttonEvents ret.leftBlinker = bool(self.CS.left_blinker_on) ret.rightBlinker = bool(self.CS.right_blinker_on) ret.doorOpen = not self.CS.door_all_closed ret.seatbeltUnlatched = not self.CS.seatbelt ret.genericToggle = self.CS.generic_toggle ret.stockAeb = self.CS.stock_aeb # events events = [] if self.cp_cam.can_invalid_cnt >= 200 and self.CP.enableCamera: events.append(create_event('invalidGiraffeToyota', [ET.PERMANENT])) if not ret.gearShifter == GearShifter.drive and self.CP.openpilotLongitudinalControl: events.append(create_event('wrongGear', [ET.NO_ENTRY, ET.SOFT_DISABLE])) if ret.doorOpen: events.append(create_event('doorOpen', [ET.NO_ENTRY, ET.SOFT_DISABLE])) if ret.seatbeltUnlatched: events.append(create_event('seatbeltNotLatched', [ET.NO_ENTRY, ET.SOFT_DISABLE])) if self.CS.esp_disabled and self.CP.openpilotLongitudinalControl: events.append(create_event('espDisabled', [ET.NO_ENTRY, ET.SOFT_DISABLE])) if not self.CS.main_on and self.CP.openpilotLongitudinalControl: events.append(create_event('wrongCarMode', [ET.NO_ENTRY, ET.USER_DISABLE])) if ret.gearShifter == GearShifter.reverse and self.CP.openpilotLongitudinalControl: events.append(create_event('reverseGear', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE])) if self.CS.steer_error: events.append(create_event('steerTempUnavailable', [ET.NO_ENTRY, ET.WARNING])) if self.CS.low_speed_lockout and self.CP.openpilotLongitudinalControl: events.append(create_event('lowSpeedLockout', [ET.NO_ENTRY, ET.PERMANENT])) if ret.vEgo < self.CP.minEnableSpeed and self.CP.openpilotLongitudinalControl: events.append(create_event('speedTooLow', [ET.NO_ENTRY])) if c.actuators.gas > 0.1: # some margin on the actuator to not false trigger cancellation while stopping events.append(create_event('speedTooLow', [ET.IMMEDIATE_DISABLE])) if ret.vEgo < 0.001: # while in standstill, send a user alert events.append(create_event('manualRestart', [ET.WARNING])) # enable request in prius is simple, as we activate when Toyota is active (rising edge) if ret.cruiseState.enabled and not self.cruise_enabled_prev: events.append(create_event('pcmEnable', [ET.ENABLE])) elif not ret.cruiseState.enabled: events.append(create_event('pcmDisable', [ET.USER_DISABLE])) # disable on pedals rising edge or when brake is pressed and speed isn't zero if (ret.gasPressed and not self.gas_pressed_prev) or \ (ret.brakePressed and (not self.brake_pressed_prev or ret.vEgo > 0.001)): events.append(create_event('pedalPressed', [ET.NO_ENTRY, ET.USER_DISABLE])) if ret.gasPressed: events.append(create_event('pedalPressed', [ET.PRE_ENABLE])) ret.events = events self.gas_pressed_prev = ret.gasPressed self.brake_pressed_prev = ret.brakePressed self.cruise_enabled_prev = ret.cruiseState.enabled return ret.as_reader() # pass in a car.CarControl # to be called @ 100hz def apply(self, c): can_sends = self.CC.update(c.enabled, self.CS, self.frame, c.actuators, c.cruiseControl.cancel, c.hudControl.visualAlert, c.hudControl.leftLaneVisible, c.hudControl.rightLaneVisible, c.hudControl.leadVisible, c.hudControl.leftLaneDepart, c.hudControl.rightLaneDepart) self.frame += 1 return can_sends
the-stack_0_19320
from setuptools import find_packages, setup def get_version(): version = {} with open("dagster_papertrail/version.py") as fp: exec(fp.read(), version) # pylint: disable=W0122 return version["__version__"] if __name__ == "__main__": setup( name="dagster-papertrail", version=get_version(), author="Elementl", author_email="[email protected]", license="Apache-2.0", description="Package for papertrail Dagster framework components.", url="https://github.com/dagster-io/dagster/tree/master/python_modules/libraries/dagster-papertrail", classifiers=[ "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], packages=find_packages(exclude=["test"]), install_requires=["dagster"], zip_safe=False, )
the-stack_0_19321
# OBSS SAHI Tool # Code written by Fatih C Akyon, 2020. from typing import List def get_bbox_from_shapely(shapely_object): """ Accepts shapely box/poly object and returns its bounding box in coco and voc formats """ minx, miny, maxx, maxy = shapely_object.bounds width = maxx - minx height = maxy - miny coco_bbox = [minx, miny, width, height] coco_bbox = [round(point) for point in coco_bbox] if coco_bbox else coco_bbox voc_bbox = [minx, miny, maxx, maxy] voc_bbox = [round(point) for point in voc_bbox] if voc_bbox else voc_bbox return coco_bbox, voc_bbox class ShapelyAnnotation: """ Creates ShapelyAnnotation (as shapely MultiPolygon). Can convert this instance annotation to various formats. """ def __init__(self, slice_bbox=None): self.slice_bbox = slice_bbox @property def area(self): return int(self.__area) def to_list(self): """ [ [(x1, y1), (x2, y2), (x3, y3), ...], [(x1, y1), (x2, y2), (x3, y3), ...], ... ] """ list_of_list_of_points: List = [] for shapely_polygon in self.multipolygon.geoms: # create list_of_points for selected shapely_polygon if shapely_polygon.area != 0: x_coords = shapely_polygon.exterior.coords.xy[0] y_coords = shapely_polygon.exterior.coords.xy[1] # fix coord by slice_bbox if self.slice_bbox: minx = self.slice_bbox[0] miny = self.slice_bbox[1] x_coords = [x_coord - minx for x_coord in x_coords] y_coords = [y_coord - miny for y_coord in y_coords] list_of_points = list(zip(x_coords, y_coords)) else: list_of_points = [] # append list_of_points to list_of_list_of_points list_of_list_of_points.append(list_of_points) # return result return list_of_list_of_points def to_opencv_contours(self): """ [ [[[1, 1]], [[325, 125]], [[250, 200]], [[5, 200]]], [[[1, 1]], [[325, 125]], [[250, 200]], [[5, 200]]] ] """ opencv_contours: List = [] for shapely_polygon in self.multipolygon.geoms: # create opencv_contour for selected shapely_polygon if shapely_polygon.area != 0: x_coords = shapely_polygon.exterior.coords.xy[0] y_coords = shapely_polygon.exterior.coords.xy[1] # fix coord by slice_bbox if self.slice_bbox: minx = self.slice_bbox[0] miny = self.slice_bbox[1] x_coords = [x_coord - minx for x_coord in x_coords] y_coords = [y_coord - miny for y_coord in y_coords] opencv_contour = [[[int(x_coords[ind]), int(y_coords[ind])]] for ind in range(len(x_coords))] else: opencv_contour: List = [] # append opencv_contour to opencv_contours opencv_contours.append(opencv_contour) # return result return opencv_contours def to_coco_bbox(self): """ [xmin, ymin, width, height] """ if self.multipolygon.area != 0: coco_bbox, _ = get_bbox_from_shapely(self.multipolygon) # fix coord by slice box if self.slice_bbox: minx = round(self.slice_bbox[0]) miny = round(self.slice_bbox[1]) coco_bbox[0] = round(coco_bbox[0] - minx) coco_bbox[1] = round(coco_bbox[1] - miny) else: coco_bbox: List = [] return coco_bbox def to_voc_bbox(self): """ [xmin, ymin, xmax, ymax] """ if self.multipolygon.area != 0: _, voc_bbox = get_bbox_from_shapely(self.multipolygon) # fix coord by slice box if self.slice_bbox: minx = self.slice_bbox[0] miny = self.slice_bbox[1] voc_bbox[0] = round(voc_bbox[0] - minx) voc_bbox[2] = round(voc_bbox[2] - minx) voc_bbox[1] = round(voc_bbox[1] - miny) voc_bbox[3] = round(voc_bbox[3] - miny) else: voc_bbox = [] return voc_bbox
the-stack_0_19322
import json import mover import defs class ScenarioReader: def __init__(self, jsonFile): with open(jsonFile) as f: self.scenario = json.load(f) self.domainSize = self.scenario["domainSize"] if "domainSize" in self.scenario else [100,100] self.name = self.scenario["name"] if "name" in self.scenario else "Name" self.movers = [] def getScenarioName(self): return self.name def getMoversForPlane(self): for mov in self.scenario['objects']: movementType = (defs.getMovementTypeFromString(mov["movementType"])) if "movementType" in mov else defs.MovementType.STATIC startPoint = mov["startingPixel"] paceLength = mov["paceLength"] if "paceLength" in mov else 0 radius = mov["radius"] if "radius" in mov else 10 movementDirection = (defs.getMovementDirectionFromString(mov["movementDirection"])) if "movementDirection" in mov else defs.MovementDirection.VERTICALUP m = mover.Mover(movementType, startPoint, self.domainSize, pacelength=paceLength, radius=radius, movementDirection=movementDirection) self.movers.append(m) return self.movers
the-stack_0_19323
import json import pathlib import re import argparse from pprint import pformat from align.cell_fabric import transformation from intel_p1222p2.IntelP1222p2Canvas import IntelP1222p2Canvas def check_results(ckt_name, skip_layers=None): ckt_name_json = ckt_name if not ckt_name.endswith('.json'): ckt_name_json += '.json' with open( ckt_name_json, "rt") as fp: d = json.load(fp) if skip_layers is None: skip_layers = set( ["boundary", "diearea", "cellarea", "ndiff", "pdiff", "nwell", "poly", "gcn", "tcn", "polycon", "diffcon"]) else: skip_layers = set( ["boundary", "diearea", "cellarea"]) layer_tbl = { "diffcon": "Diffcon", "polycon": "Polycon", "nwell": "Nwell", "metal1": "M1", "metal2": "M2", "metal3": "M3", "metal4": "M4", "metal5": "M5", "via0": "V0", "via1": "V1", "via2": "V2", "via3": "V3", "via4": "V4"} p = re.compile( "^(.*)_gr$") def s( r): assert all( v%10 == 0 for v in r) return [ v//10 for v in r] terminals = [] for term in d['terminals']: ly = term['layer'] if str(ly).lower() in skip_layers: continue nm = term['netName'] if 'netName' in term else term['net_name'] # # !kor and !float signals might be need. Right now, just excluding them. # if nm in ['!kor', '!float']: continue if nm is not None and p.match(nm): continue term['layer'] = layer_tbl.get( ly, ly) term['rect'] = s(term['rect']) terminals.append( term) d['terminals'] = terminals cnv = IntelP1222p2Canvas() cnv.bbox = transformation.Rect( *s(d['bbox'])) cnv.terminals = d['terminals'] data = cnv.gen_data(run_pex=True, run_drc=True) with open( ckt_name + "_prim.json", "w") as fp: cnv.writeJSON(fp) tbl = cnv.pex.getSummaryCaps() def diffs( n0, n1): a, b = tbl[n0], tbl[n1] s = (a+b)/2 return f"{n0},{n1}: {a:.2f}f, {b:.2f}f, {100*(a/s-1):.1f}%, {100*(b/s-1):.1f}%" if ckt_name.startswith("comparator") or ckt_name.startswith("align"): print( diffs( 'vin', 'vip')) print( diffs( 'vin_d', 'vip_d')) print( diffs( 'vin_o', 'vip_o')) print( diffs( 'von', 'vop')) if ckt_name.startswith('pushpull'): print( diffs( 'v_n1', 'v_n2')) print( diffs( 'v_p1', 'v_p2')) print( diffs( 'vo_ls', 'vref_ls')) print( diffs( 'vo_hs', 'vref_hs')) if False: assert len(cnv.rd.different_widths) == 0, pformat(cnv.rd.different_widths) assert len(cnv.rd.shorts) == 0, pformat(cnv.rd.shorts) assert len(cnv.rd.opens) == 0, pformat(cnv.rd.opens) assert len(cnv.drc.errors) == 0, pformat(cnv.drc.errors) return(data) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Check <circuit>.JSON against design rules") parser.add_argument("--circuit", required=True, type=str, help="Circuit name") args = parser.parse_args() check_results(args.circuit)
the-stack_0_19324
# Copyright (c) 2014 Thales Services SAS # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import random from neutron_lib import constants as p_const from neutron_lib import context as neutron_ctx from neutron_lib.db import api as db_api from neutron_lib import exceptions from neutron_lib.plugins import constants as plugin_constants from neutron_lib.plugins import directory from neutron_lib.plugins.ml2 import api from neutron_lib.plugins import utils as p_utils from neutron_lib.utils import helpers from oslo_config import cfg from oslo_db import exception as db_exc from oslo_log import log from sqlalchemy import and_ from sqlalchemy import sql from neutron.db.models import network_segment_range as range_model from neutron.objects import base as base_obj LOG = log.getLogger(__name__) IDPOOL_SELECT_SIZE = 100 class BaseTypeDriver(api.ML2TypeDriver): """BaseTypeDriver for functions common to Segment and flat.""" def __init__(self): try: self.physnet_mtus = helpers.parse_mappings( cfg.CONF.ml2.physical_network_mtus, unique_values=False ) except Exception as e: LOG.error("Failed to parse physical_network_mtus: %s", e) self.physnet_mtus = [] def get_mtu(self, physical_network=None): return p_utils.get_deployment_physnet_mtu() class SegmentTypeDriver(BaseTypeDriver): """SegmentTypeDriver for segment allocation. Provide methods helping to perform segment allocation fully or partially specified. """ def __init__(self, model): super(SegmentTypeDriver, self).__init__() if issubclass(model, base_obj.NeutronDbObject): self.model = model.db_model else: self.model = model self.primary_keys = set(dict(self.model.__table__.columns)) self.primary_keys.remove("allocated") # TODO(ataraday): get rid of this method when old TypeDriver won't be used def _get_session(self, arg): if isinstance(arg, neutron_ctx.Context): return arg.session, db_api.CONTEXT_WRITER.using(arg) return arg, arg.session.begin(subtransactions=True) def build_segment_query(self, session, **filters): # Only uses filters that correspond to columns defined by this model. # Subclasses may use/support additional filters columns = set(dict(self.model.__table__.columns)) model_filters = dict((k, filters[k]) for k in columns & set(filters.keys())) return [session.query(self.model).filter_by(allocated=False, **model_filters)] def build_segment_queries_for_tenant_and_shared_ranges(self, session, **filters): """Enforces that segments are allocated from network segment ranges that are owned by the tenant, and then from shared ranges, but never from ranges owned by other tenants. This method also enforces that other network segment range attributes are used when constraining the set of possible segments to be used. """ network_type = self.get_type() project_id = filters.pop('project_id', None) columns = set(dict(self.model.__table__.columns)) model_filters = dict((k, filters[k]) for k in columns & set(filters.keys())) query = (session.query(self.model) .filter_by(allocated=False, **model_filters)) query = query.join( range_model.NetworkSegmentRange, and_(range_model.NetworkSegmentRange.network_type == network_type, self.model.physical_network == range_model.NetworkSegmentRange.physical_network if network_type == p_const.TYPE_VLAN else sql.expression.true())) query = query.filter(and_(self.model_segmentation_id >= range_model.NetworkSegmentRange.minimum, self.model_segmentation_id <= range_model.NetworkSegmentRange.maximum)) query_project_id = (query.filter( range_model.NetworkSegmentRange.project_id == project_id) if project_id is not None else []) query_shared = query.filter( range_model.NetworkSegmentRange.shared == sql.expression.true()) return [query_project_id] + [query_shared] def allocate_fully_specified_segment(self, context, **raw_segment): """Allocate segment fully specified by raw_segment. If segment exists, then try to allocate it and return db object If segment does not exists, then try to create it and return db object If allocation/creation failed, then return None """ network_type = self.get_type() session, ctx_manager = self._get_session(context) try: with ctx_manager: alloc = ( session.query(self.model).filter_by(**raw_segment). first()) if alloc: if alloc.allocated: # Segment already allocated return else: # Segment not allocated LOG.debug("%(type)s segment %(segment)s allocate " "started ", {"type": network_type, "segment": raw_segment}) count = (session.query(self.model). filter_by(allocated=False, **raw_segment). update({"allocated": True})) if count: LOG.debug("%(type)s segment %(segment)s allocate " "done ", {"type": network_type, "segment": raw_segment}) return alloc # Segment allocated or deleted since select LOG.debug("%(type)s segment %(segment)s allocate " "failed: segment has been allocated or " "deleted", {"type": network_type, "segment": raw_segment}) # Segment to create or already allocated LOG.debug("%(type)s segment %(segment)s create started", {"type": network_type, "segment": raw_segment}) alloc = self.model(allocated=True, **raw_segment) alloc.save(session) LOG.debug("%(type)s segment %(segment)s create done", {"type": network_type, "segment": raw_segment}) except db_exc.DBDuplicateEntry: # Segment already allocated (insert failure) alloc = None LOG.debug("%(type)s segment %(segment)s create failed", {"type": network_type, "segment": raw_segment}) return alloc def allocate_partially_specified_segment(self, context, **filters): """Allocate model segment from pool partially specified by filters. Return allocated db object or None. """ network_type = self.get_type() session, ctx_manager = self._get_session(context) with ctx_manager: queries = (self.build_segment_queries_for_tenant_and_shared_ranges( session, **filters) if directory.get_plugin( plugin_constants.NETWORK_SEGMENT_RANGE) else self.build_segment_query(session, **filters)) for select in queries: # Selected segment can be allocated before update by someone # else allocs = select.limit(IDPOOL_SELECT_SIZE).all() if not allocs: # No resource available continue alloc = random.choice(allocs) raw_segment = dict((k, alloc[k]) for k in self.primary_keys) LOG.debug("%(type)s segment allocate from pool " "started with %(segment)s ", {"type": network_type, "segment": raw_segment}) count = (session.query(self.model). filter_by(allocated=False, **raw_segment). update({"allocated": True})) if count: LOG.debug("%(type)s segment allocate from pool " "success with %(segment)s ", {"type": network_type, "segment": raw_segment}) return alloc # Segment allocated since select LOG.debug("Allocate %(type)s segment from pool " "failed with segment %(segment)s", {"type": network_type, "segment": raw_segment}) # saving real exception in case we exceeded amount of attempts raise db_exc.RetryRequest( exceptions.NoNetworkFoundInMaximumAllowedAttempts())
the-stack_0_19325
import os.path as p import sys from .conda import conda class PyMathJaxError(Exception): pass def mathjax_path(as_url: bool=False) -> str: """ Returns MathJax.js file absolute path. """ if conda: import os pyexedir = p.dirname(p.abspath(sys.executable)) if os.name == 'nt': mathjax_dir = p.join(pyexedir, 'Library', 'lib', 'mathjax') else: mathjax_dir = p.join(p.dirname(pyexedir), 'lib', 'mathjax') else: mathjax_dir = p.join(p.dirname(p.abspath(__file__)), 'mathjax') mathjax = p.join(mathjax_dir, 'MathJax.js') if not p.isfile(mathjax): raise PyMathJaxError(f"'{mathjax}' wasn't found.") if as_url: import pathlib return pathlib.Path(mathjax).as_uri() else: return mathjax def cli(): """ Usage: py-mathjax-path [OPTIONS] Prints MathJax.js file absolute path. Options: --url, -u print MathJax.js file abs path as URL, --help, -h Show this message and exit. """ url = False if len(sys.argv) > 1: if sys.argv[1] in ('--url', '-u'): url = True elif sys.argv[1] in ('--help', '-u'): print(str(cli.__doc__).replace('\n ', '\n')) return None sys.stdout.write(mathjax_path(as_url=url)) if __name__ == '__main__': cli()
the-stack_0_19326
#appModules/wlmail.py #A part of NonVisual Desktop Access (NVDA) #Copyright (C) 2006-2010 NVDA Contributors <http://www.nvda-project.org/> #This file is covered by the GNU General Public License. #See the file COPYING for more details. import appModuleHandler import controlTypes import api import winUser from keyboardHandler import KeyboardInputGesture from NVDAObjects.IAccessible.MSHTML import MSHTML import msimn class AboutBlankDocument(MSHTML): """A document called about:blank which hosts the HTML message composer document using viewlink. Unfortunately, there doesn't seem to be any way to access the real (editable) viewlink document. Therefore, we need to ignore this about:blank document so the user can access the editable document. """ # Make sure a buffer doesn't get created for this document. # Otherwise, the viewLink document beneath it will be treated as part of this buffer and won't be accessible. role = controlTypes.ROLE_UNKNOWN def event_gainFocus(self): # This document is useless to us, so don't bother to report it. return class AppModule(appModuleHandler.AppModule): def chooseNVDAObjectOverlayClasses(self, obj, clsList): if obj.windowClassName == "Internet Explorer_Server" and obj.role == controlTypes.ROLE_DOCUMENT and obj.HTMLNode and obj.HTMLNode.document.url=="about:blank": clsList.insert(0, AboutBlankDocument) elif obj.windowClassName=="SysListView32" and obj.windowControlID in (128,129,130) and obj.role==controlTypes.ROLE_LISTITEM: clsList.insert(0,msimn.MessageRuleListItem) elif obj.windowClassName=="SysListView32" and obj.role==controlTypes.ROLE_LISTITEM and obj.parent.name=="Outlook Express Message List": clsList.insert(0,msimn.MessageListItem) def event_gainFocus(self,obj,nextHandler): nextHandler() #Force focus to move to something sane when landing on a plain text message window if obj.windowClassName=="ME_DocHost" and obj.windowControlID==1000 and obj.role==controlTypes.ROLE_PANE: firstChild=obj.firstChild if firstChild: firstChild=obj.firstChild if firstChild: firstChild.setFocus() return if obj.windowClassName=="ATH_Note" and obj.event_objectID==winUser.OBJID_CLIENT and obj.IAccessibleChildID==0: api.processPendingEvents() if obj==api.getFocusObject() and controlTypes.STATE_FOCUSED in obj.states: return KeyboardInputGesture.fromName("shift+tab").send()
the-stack_0_19328
import logging import re import os import time from typing import Dict, List, cast from assemblyline.common import isotime, forge from assemblyline.common.constants import SUBMISSION_QUEUE, FILE_QUEUE, DISPATCH_TASK_HASH, \ DISPATCH_RUNNING_TASK_HASH, get_temporary_submission_data_name, get_tag_set_name, make_watcher_list_name from assemblyline.common.forge import CachedObject, get_service_queue from assemblyline.common.metrics import MetricsFactory from assemblyline.datastore import Collection from assemblyline.datastore.exceptions import MultiKeyError from assemblyline.datastore.helper import AssemblylineDatastore from assemblyline.odm.messages.dispatcher_heartbeat import Metrics from assemblyline.odm.messages.dispatching import WatchQueueMessage from assemblyline.odm.models.config import Config from assemblyline.odm.models.error import Error from assemblyline.odm.models.service import Service from assemblyline.remote.datatypes import get_client from assemblyline.remote.datatypes.hash import Hash, ExpiringHash from assemblyline.remote.datatypes.queues.named import NamedQueue from assemblyline.remote.datatypes.set import ExpiringSet from assemblyline_core.dispatching.dispatch_hash import DispatchHash from assemblyline import odm from assemblyline.odm.messages.task import FileInfo, Task as ServiceTask from assemblyline.odm.models.submission import Submission from assemblyline_core.server_base import get_service_stage_hash, ServiceStage from assemblyline_core.watcher.client import WatcherClient # If you are doing development and you want the system to route jobs ignoring the service setup/teardown # set an environment variable SKIP_SERVICE_SETUP to true for all dispatcher containers SKIP_SERVICE_SETUP = os.environ.get('SKIP_SERVICE_SETUP', 'false').lower() in ['true', '1'] @odm.model() class SubmissionTask(odm.Model): """Dispatcher internal model for submissions""" submission: Submission = odm.Compound(Submission) completed_queue = odm.Optional(odm.Keyword()) # Which queue to notify on completion @odm.model() class FileTask(odm.Model): """Dispatcher internal model for tracking each file in a submission.""" sid = odm.Keyword() min_classification = odm.Classification() # Minimum classification of the file being scanned parent_hash = odm.Optional(odm.Keyword()) file_info: FileInfo = odm.Compound(FileInfo) depth = odm.Integer() max_files = odm.Integer() def get_tag_set_name(self) -> str: """Get the name of a redis set where the task tags are collected.""" return get_tag_set_name(self.sid, self.file_info.sha256) def get_temporary_submission_data_name(self) -> str: """Get the name of a redis hash where tags for a submission are collected.""" return get_temporary_submission_data_name(self.sid, self.file_info.sha256) class Scheduler: """This object encapsulates building the schedule for a given file type for a submission.""" def __init__(self, datastore: AssemblylineDatastore, config: Config, redis): self.datastore = datastore self.config = config self.services = cast(Dict[str, Service], CachedObject(self._get_services)) self.service_stage = get_service_stage_hash(redis) def build_schedule(self, submission: Submission, file_type: str) -> List[Dict[str, Service]]: all_services = dict(self.services) # Load the selected and excluded services by category excluded = self.expand_categories(submission.params.services.excluded) runtime_excluded = self.expand_categories(submission.params.services.runtime_excluded) if not submission.params.services.selected: selected = [s for s in all_services.keys()] else: selected = self.expand_categories(submission.params.services.selected) # Add all selected, accepted, and not rejected services to the schedule schedule: List[Dict[str, Service]] = [{} for _ in self.config.services.stages] services = list(set(selected) - set(excluded) - set(runtime_excluded)) selected = [] skipped = [] for name in services: service = all_services.get(name, None) if not service: skipped.append(name) logging.warning(f"Service configuration not found: {name}") continue accepted = not service.accepts or re.match(service.accepts, file_type) rejected = bool(service.rejects) and re.match(service.rejects, file_type) if accepted and not rejected: schedule[self.stage_index(service.stage)][name] = service selected.append(name) else: skipped.append(name) return schedule def expand_categories(self, services: List[str]) -> List[str]: """Expands the names of service categories found in the list of services. Args: services (list): List of service category or service names. """ if services is None: return [] services = list(services) categories = self.categories() found_services = [] seen_categories = set() while services: name = services.pop() # If we found a new category mix in it's content if name in categories: if name not in seen_categories: # Add all of the items in this group to the list of # things that we need to evaluate, and mark this # group as having been seen. services.extend(categories[name]) seen_categories.update(name) continue # If it isn't a category, its a service found_services.append(name) # Use set to remove duplicates, set is more efficient in batches return list(set(found_services)) def categories(self) -> Dict[str, List[str]]: all_categories = {} for service in self.services.values(): try: all_categories[service.category].append(service.name) except KeyError: all_categories[service.category] = [service.name] return all_categories def stage_index(self, stage): return self.config.services.stages.index(stage) def _get_services(self): stages = self.service_stage.items() # noinspection PyUnresolvedReferences return {x.name: x for x in self.datastore.list_all_services(full=True) if x.enabled and (stages.get(x.name) == ServiceStage.Running or SKIP_SERVICE_SETUP)} def depths_from_tree(file_tree: Dict[str, List[str]]) -> Dict[str, int]: file_children: Dict[str, List[str]] = {} depths: Dict[str, int] = {} remaining_files = set() for child, parents in file_tree.items(): remaining_files.add(child) for parent in parents: if parent: remaining_files.add(parent) file_children[parent] = file_children.get(parent, []) + [child] else: depths[child] = 0 next_round = dict(file_children) change = True while next_round and change: file_children = next_round next_round = dict() change = False for parent, children in file_children.items(): if parent in depths: change = True for child in children: depths[child] = min(depths[parent] + 1, depths.get(child, float('inf'))) else: next_round[parent] = children return depths class Dispatcher: def __init__(self, datastore, redis, redis_persist, logger, counter_name='dispatcher'): # Load the datastore collections that we are going to be using self.datastore: AssemblylineDatastore = datastore self.log: logging.Logger = logger self.submissions: Collection = datastore.submission self.results: Collection = datastore.result self.errors: Collection = datastore.error self.files: Collection = datastore.file # Create a config cache that will refresh config values periodically self.config: Config = forge.get_config() # Connect to all of our persistent redis structures self.redis = redis or get_client( host=self.config.core.redis.nonpersistent.host, port=self.config.core.redis.nonpersistent.port, private=False, ) self.redis_persist = redis_persist or get_client( host=self.config.core.redis.persistent.host, port=self.config.core.redis.persistent.port, private=False, ) # Build some utility classes self.scheduler = Scheduler(datastore, self.config, self.redis) self.classification_engine = forge.get_classification() self.timeout_watcher = WatcherClient(self.redis_persist) self.submission_queue = NamedQueue(SUBMISSION_QUEUE, self.redis) self.file_queue = NamedQueue(FILE_QUEUE, self.redis) self._nonper_other_queues = {} self.active_submissions = ExpiringHash(DISPATCH_TASK_HASH, host=self.redis_persist) self.running_tasks = ExpiringHash(DISPATCH_RUNNING_TASK_HASH, host=self.redis) # Publish counters to the metrics sink. self.counter = MetricsFactory(metrics_type='dispatcher', schema=Metrics, name=counter_name, redis=self.redis, config=self.config) def volatile_named_queue(self, name: str) -> NamedQueue: if name not in self._nonper_other_queues: self._nonper_other_queues[name] = NamedQueue(name, self.redis) return self._nonper_other_queues[name] def dispatch_submission(self, task: SubmissionTask): """ Find any files associated with a submission and dispatch them if they are not marked as in progress. If all files are finished, finalize the submission. This version of dispatch submission doesn't verify each result, but assumes that the dispatch table has been kept up to date by other components. Preconditions: - File exists in the filestore and file collection in the datastore - Submission is stored in the datastore """ submission = task.submission sid = submission.sid if not self.active_submissions.exists(sid): self.log.info(f"[{sid}] New submission received") self.active_submissions.add(sid, task.as_primitives()) else: self.log.info(f"[{sid}] Received a pre-existing submission, check if it is complete") # Refresh the watch, this ensures that this function will be called again # if something goes wrong with one of the files, and it never gets invoked by dispatch_file. self.timeout_watcher.touch(key=sid, timeout=int(self.config.core.dispatcher.timeout), queue=SUBMISSION_QUEUE, message={'sid': sid}) # Refresh the quota hold if submission.params.quota_item and submission.params.submitter: self.log.info(f"[{sid}] Submission will count towards {submission.params.submitter.upper()} quota") Hash('submissions-' + submission.params.submitter, self.redis_persist).add(sid, isotime.now_as_iso()) # Open up the file/service table for this submission dispatch_table = DispatchHash(submission.sid, self.redis, fetch_results=True) file_parents = dispatch_table.file_tree() # Load the file tree data as well # All the submission files, and all the file_tree files, to be sure we don't miss any incomplete children unchecked_hashes = [submission_file.sha256 for submission_file in submission.files] unchecked_hashes = list(set(unchecked_hashes) | set(file_parents.keys())) # Using the file tree we can recalculate the depth of any file depth_limit = self.config.submission.max_extraction_depth file_depth = depths_from_tree(file_parents) # Try to find all files, and extracted files, and create task objects for them # (we will need the file data anyway for checking the schedule later) max_files = len(submission.files) + submission.params.max_extracted unchecked_files = [] # Files that haven't been checked yet try: for sha, file_data in self.files.multiget(unchecked_hashes).items(): unchecked_files.append(FileTask(dict( sid=sid, min_classification=task.submission.classification, file_info=dict( magic=file_data.magic, md5=file_data.md5, mime=file_data.mime, sha1=file_data.sha1, sha256=file_data.sha256, size=file_data.size, type=file_data.type, ), depth=file_depth.get(sha, 0), max_files=max_files ))) except MultiKeyError as missing: errors = [] for file_sha in missing.keys: error = Error(dict( archive_ts=submission.archive_ts, expiry_ts=submission.expiry_ts, response=dict( message="Submission couldn't be completed due to missing file.", service_name="dispatcher", service_tool_version='4', service_version='4', status="FAIL_NONRECOVERABLE", ), sha256=file_sha, type='UNKNOWN' )) error_key = error.build_key(service_tool_version=sid) self.datastore.error.save(error_key, error) errors.append(error_key) return self.cancel_submission(task, errors, file_parents) # Files that have already been encountered, but may or may not have been processed yet # encountered_files = {file.sha256 for file in submission.files} pending_files = {} # Files that have not yet been processed # Track information about the results as we hit them file_scores: Dict[str, int] = {} # # Load the current state of the dispatch table in one go rather than one at a time in the loop prior_dispatches = dispatch_table.all_dispatches() # found should be added to the unchecked files if they haven't been encountered already for file_task in unchecked_files: sha = file_task.file_info.sha256 schedule = self.build_schedule(dispatch_table, submission, sha, file_task.file_info.type) while schedule: stage = schedule.pop(0) for service_name in stage: # Only active services should be in this dict, so if a service that was placed in the # schedule is now missing it has been disabled or taken offline. service = self.scheduler.services.get(service_name) if not service: continue # If the service is still marked as 'in progress' runtime = time.time() - prior_dispatches.get(sha, {}).get(service_name, 0) if runtime < service.timeout: pending_files[sha] = file_task continue # It hasn't started, has timed out, or is finished, see if we have a result result_row = dispatch_table.finished(sha, service_name) # No result found, mark the file as incomplete if not result_row: pending_files[sha] = file_task continue if not submission.params.ignore_filtering and result_row.drop: schedule.clear() # The process table is marked that a service has been abandoned due to errors if result_row.is_error: continue # Collect information about the result file_scores[sha] = file_scores.get(sha, 0) + result_row.score # Using the file tree find the most shallow parent of the given file def lowest_parent(_sha): # A root file won't have any parents in the dict if _sha not in file_parents or None in file_parents[_sha]: return None return min((file_depth.get(parent, depth_limit), parent) for parent in file_parents[_sha])[1] # Filter out things over the depth limit pending_files = {sha: ft for sha, ft in pending_files.items() if ft.depth < depth_limit} # Filter out files based on the extraction limits pending_files = {sha: ft for sha, ft in pending_files.items() if dispatch_table.add_file(sha, max_files, lowest_parent(sha))} # If there are pending files, then at least one service, on at least one # file isn't done yet, and hasn't been filtered by any of the previous few steps # poke those files if pending_files: self.log.debug(f"[{sid}] Dispatching {len(pending_files)} files: {list(pending_files.keys())}") for file_task in pending_files.values(): self.file_queue.push(file_task.as_primitives()) else: self.log.debug(f"[{sid}] Finalizing submission.") max_score = max(file_scores.values()) if file_scores else 0 # Submissions with no results have no score self.finalize_submission(task, max_score, file_scores.keys()) def _cleanup_submission(self, task: SubmissionTask, file_list: List[str]): """Clean up code that is the same for canceled and finished submissions""" submission = task.submission sid = submission.sid # Erase the temporary data which may have accumulated during processing for file_hash in file_list: hash_name = get_temporary_submission_data_name(sid, file_hash=file_hash) ExpiringHash(hash_name, host=self.redis).delete() if submission.params.quota_item and submission.params.submitter: self.log.info(f"[{sid}] Submission no longer counts toward {submission.params.submitter.upper()} quota") Hash('submissions-' + submission.params.submitter, self.redis_persist).pop(sid) if task.completed_queue: self.volatile_named_queue(task.completed_queue).push(submission.as_primitives()) # Send complete message to any watchers. watcher_list = ExpiringSet(make_watcher_list_name(sid), host=self.redis) for w in watcher_list.members(): NamedQueue(w).push(WatchQueueMessage({'status': 'STOP'}).as_primitives()) # Clear the timeout watcher watcher_list.delete() self.timeout_watcher.clear(sid) self.active_submissions.pop(sid) # Count the submission as 'complete' either way self.counter.increment('submissions_completed') def cancel_submission(self, task: SubmissionTask, errors, file_list): """The submission is being abandoned, delete everything, write failed state.""" submission = task.submission sid = submission.sid # Pull down the dispatch table and clear it from redis dispatch_table = DispatchHash(submission.sid, self.redis) dispatch_table.delete() submission.classification = submission.params.classification submission.error_count = len(errors) submission.errors = errors submission.state = 'failed' submission.times.completed = isotime.now_as_iso() self.submissions.save(sid, submission) self._cleanup_submission(task, file_list) self.log.error(f"[{sid}] Failed") def finalize_submission(self, task: SubmissionTask, max_score, file_list): """All of the services for all of the files in this submission have finished or failed. Update the records in the datastore, and flush the working data from redis. """ submission = task.submission sid = submission.sid # Pull down the dispatch table and clear it from redis dispatch_table = DispatchHash(submission.sid, self.redis) all_results = dispatch_table.all_results() errors = dispatch_table.all_extra_errors() dispatch_table.delete() # Sort the errors out of the results results = [] for row in all_results.values(): for status in row.values(): if status.is_error: errors.append(status.key) elif status.bucket == 'result': results.append(status.key) else: self.log.warning(f"[{sid}] Unexpected service output bucket: {status.bucket}/{status.key}") submission.classification = submission.params.classification submission.error_count = len(errors) submission.errors = errors submission.file_count = len(file_list) submission.results = results submission.max_score = max_score submission.state = 'completed' submission.times.completed = isotime.now_as_iso() self.submissions.save(sid, submission) self._cleanup_submission(task, file_list) self.log.info(f"[{sid}] Completed; files: {len(file_list)} results: {len(results)} " f"errors: {len(errors)} score: {max_score}") def dispatch_file(self, task: FileTask): """ Handle a message describing a file to be processed. This file may be: - A new submission or extracted file. - A file that has just completed a stage of processing. - A file that has not completed a a stage of processing, but this call has been triggered by a timeout or similar. If the file is totally new, we will setup a dispatch table, and fill it in. Once we make/load a dispatch table, we will dispatch whichever group the table shows us hasn't been completed yet. When we dispatch to a service, we check if the task is already in the dispatch queue. If it isn't proceed normally. If it is, check that the service is still online. """ # Read the message content file_hash = task.file_info.sha256 active_task = self.active_submissions.get(task.sid) if active_task is None: self.log.warning(f"[{task.sid}] Untracked submission is being processed") return submission_task = SubmissionTask(active_task) submission = submission_task.submission # Refresh the watch on the submission, we are still working on it self.timeout_watcher.touch(key=task.sid, timeout=int(self.config.core.dispatcher.timeout), queue=SUBMISSION_QUEUE, message={'sid': task.sid}) # Open up the file/service table for this submission dispatch_table = DispatchHash(task.sid, self.redis, fetch_results=True) # Load things that we will need to fill out the file_tags = ExpiringSet(task.get_tag_set_name(), host=self.redis) file_tags_data = file_tags.members() temporary_submission_data = ExpiringHash(task.get_temporary_submission_data_name(), host=self.redis) temporary_data = [dict(name=row[0], value=row[1]) for row in temporary_submission_data.items().items()] # Calculate the schedule for the file schedule = self.build_schedule(dispatch_table, submission, file_hash, task.file_info.type) started_stages = [] # Go through each round of the schedule removing complete/failed services # Break when we find a stage that still needs processing outstanding = {} score = 0 errors = 0 while schedule and not outstanding: stage = schedule.pop(0) started_stages.append(stage) for service_name in stage: service = self.scheduler.services.get(service_name) if not service: continue # Load the results, if there are no results, then the service must be dispatched later # Don't look at if it has been dispatched, as multiple dispatches are fine, # but missing a dispatch isn't. finished = dispatch_table.finished(file_hash, service_name) if not finished: outstanding[service_name] = service continue # If the service terminated in an error, count the error and continue if finished.is_error: errors += 1 continue # if the service finished, count the score, and check if the file has been dropped score += finished.score if not submission.params.ignore_filtering and finished.drop: schedule.clear() if schedule: # If there are still stages in the schedule, over write them for next time dispatch_table.schedules.set(file_hash, started_stages) # Try to retry/dispatch any outstanding services if outstanding: self.log.info(f"[{task.sid}] File {file_hash} sent to services : {', '.join(list(outstanding.keys()))}") for service_name, service in outstanding.items(): # Find the actual file name from the list of files in submission filename = None for file in submission.files: if task.file_info.sha256 == file.sha256: filename = file.name break # Build the actual service dispatch message config = self.build_service_config(service, submission) service_task = ServiceTask(dict( sid=task.sid, metadata=submission.metadata, min_classification=task.min_classification, service_name=service_name, service_config=config, fileinfo=task.file_info, filename=filename or task.file_info.sha256, depth=task.depth, max_files=task.max_files, ttl=submission.params.ttl, ignore_cache=submission.params.ignore_cache, ignore_dynamic_recursion_prevention=submission.params.ignore_dynamic_recursion_prevention, tags=file_tags_data, temporary_submission_data=temporary_data, deep_scan=submission.params.deep_scan, priority=submission.params.priority, )) dispatch_table.dispatch(file_hash, service_name) queue = get_service_queue(service_name, self.redis) queue.push(service_task.priority, service_task.as_primitives()) else: # There are no outstanding services, this file is done # clean up the tags file_tags.delete() # If there are no outstanding ANYTHING for this submission, # send a message to the submission dispatcher to finalize self.counter.increment('files_completed') if dispatch_table.all_finished(): self.log.info(f"[{task.sid}] Finished processing file '{file_hash}' starting submission finalization.") self.submission_queue.push({'sid': submission.sid}) else: self.log.info(f"[{task.sid}] Finished processing file '{file_hash}'. Other files are not finished.") def build_schedule(self, dispatch_hash: DispatchHash, submission: Submission, file_hash: str, file_type: str) -> List[List[str]]: """Rather than rebuilding the schedule every time we see a file, build it once and cache in redis.""" cached_schedule = dispatch_hash.schedules.get(file_hash) if not cached_schedule: # Get the schedule for that file type based on the submission parameters obj_schedule = self.scheduler.build_schedule(submission, file_type) # The schedule built by the scheduling tool has the service objects, we just want the names for now cached_schedule = [list(stage.keys()) for stage in obj_schedule] dispatch_hash.schedules.add(file_hash, cached_schedule) return cached_schedule @classmethod def build_service_config(cls, service: Service, submission: Submission) -> Dict[str, str]: """Prepare the service config that will be used downstream. v3 names: get_service_params get_config_data """ # Load the default service config params = {x.name: x.default for x in service.submission_params} # Over write it with values from the submission if service.name in submission.params.service_spec: params.update(submission.params.service_spec[service.name]) return params
the-stack_0_19331
from argparse import ArgumentParser from typing import Any from django.core.management.base import CommandError from confirmation.models import Confirmation, create_confirmation_link from zerver.lib.email_validation import email_allowed_for_realm from zerver.lib.management import ZulipBaseCommand from zerver.models import DomainNotAllowedForRealmError, PreregistrationUser class Command(ZulipBaseCommand): help = "Generate activation links for users and print them to stdout." def add_arguments(self, parser: ArgumentParser) -> None: parser.add_argument('--force', action="store_true", default=False, help='Override that the domain is restricted to external users.') parser.add_argument('emails', metavar='<email>', type=str, nargs='*', help='email of users to generate an activation link for') self.add_realm_args(parser, True) def handle(self, *args: Any, **options: Any) -> None: duplicates = False realm = self.get_realm(options) assert realm is not None # Should be ensured by parser if not options['emails']: self.print_help("./manage.py", "generate_invite_links") raise CommandError for email in options['emails']: try: self.get_user(email, realm) print(email + ": There is already a user registered with that address.") duplicates = True continue except CommandError: pass if duplicates: return for email in options['emails']: try: email_allowed_for_realm(email, realm) except DomainNotAllowedForRealmError: if not options["force"]: raise CommandError("You've asked to add an external user '{}' to a " "closed realm '{}'.\nAre you sure? To do this, " "pass --force.".format(email, realm.string_id)) prereg_user = PreregistrationUser(email=email, realm=realm) prereg_user.save() print(email + ": " + create_confirmation_link(prereg_user, Confirmation.INVITATION))
the-stack_0_19332
""" Module to access the Root endpoints """ # pylint: disable=too-many-lines,too-many-locals,too-many-public-methods,too-few-public-methods from ...models import PushNotification from ..base import ApiBaseClass class RootApi(ApiBaseClass): """ """ async def acknowledge_notification( self, ) -> PushNotification: """Acknowledge receiving of a notification Permissions: Must be logged in. Minimum Server Version: 3.10 Api Reference: `AcknowledgeNotification <https://api.mattermost.com/#operation/AcknowledgeNotification>`_ """ url = "/notifications/ack" request_kwargs = { "url": url, } # pylint: disable-next=protected-access async with self.client._get_httpx_client() as httpx_client: response = await httpx_client.post( **request_kwargs, ) if self.skip_response_parsing: return response if response.status_code == 200: response200 = PushNotification.parse_obj(response.json()) return response200 return response
the-stack_0_19333
K = int(input()) NumsStr = input().split() Nums = list(map(int, NumsStr)) # map # algorithm 4. O(N) MaxSum = 0 ThisSum = 0 for i in range(K): ThisSum += Nums[i] if ThisSum > MaxSum: MaxSum = ThisSum elif ThisSum < 0: ThisSum = 0 print(MaxSum) # algorithm 3. O(NlogN) def MaxBorderSum(List, Start, End, Step): MaxSum = 0 ThisSum = 0 for i in range(Start, End+Step, Step): ThisSum += List[i] if ThisSum > MaxSum: MaxSum = ThisSum return MaxSum def DivideAndConquer(List, Left, Right): if Left == Right: # end of recursion return max(List[Left], 0) Center = (Left + Right) // 2 # floored quotient MaxLeftSum = DivideAndConquer(List, Left, Center) MaxRightSum = DivideAndConquer(List, Center+1, Right) MaxLeftBorderSum = MaxBorderSum(List, Center, Left, -1) MaxRightBorderSum = MaxBorderSum(List, Center+1, Right, 1) return max(MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum) MaxSum = DivideAndConquer(Nums, 0, K-1) print(MaxSum) # algorithm 2. O(N**2) MaxSum = 0 for i in range(K): ThisSum = 0 for j in range(K)[i:]: ThisSum += Nums[j] if ThisSum > MaxSum: MaxSum = ThisSum print(MaxSum) # algorithm 1. O(N**3) MaxSum = 0 for i in range(K): for j in range(K)[i:]: ThisSum = 0 for k in range(i, j+1): ThisSum += Nums[k] if ThisSum > MaxSum: MaxSum = ThisSum print(MaxSum)
the-stack_0_19334
class ReviewRouter(object): """ Sends all review-related operations to a database with the alias of "reviews" or "reviews-s". No other apps should use this db alias. """ def db_for_read(self, model, **hints): if model._meta.app_label == "reviews": return "reviews-s" return None def db_for_write(self, model, **hints): if model._meta.app_label == "reviews": return "reviews" return None def allow_syncdb(self, db, model): this_app = (model._meta.app_label == "reviews") reviews_db = (db in ("reviews", "reviews-s")) if this_app: return reviews_db if reviews_db: return False return None
the-stack_0_19335
from builtins import map from copy import deepcopy from snips_nlu.pipeline.configs import ProcessingUnitConfig from snips_nlu.pipeline.processing_unit import get_processing_unit_config from snips_nlu.resources import merge_required_resources from snips_nlu.utils import classproperty class NLUEngineConfig(ProcessingUnitConfig): """Configuration of a :class:`.SnipsNLUEngine` object Args: intent_parsers_configs (list): List of intent parser configs (:class:`.ProcessingUnitConfig`). The order in the list determines the order in which each parser will be called by the nlu engine. """ # pylint: disable=super-init-not-called def __init__(self, intent_parsers_configs=None): if intent_parsers_configs is None: from snips_nlu.pipeline.configs import ( ProbabilisticIntentParserConfig, DeterministicIntentParserConfig) intent_parsers_configs = [ DeterministicIntentParserConfig(), ProbabilisticIntentParserConfig() ] self.intent_parsers_configs = list(map(get_processing_unit_config, intent_parsers_configs)) # pylint: enable=super-init-not-called @classproperty def unit_name(cls): # pylint:disable=no-self-argument from snips_nlu.nlu_engine.nlu_engine import SnipsNLUEngine return SnipsNLUEngine.unit_name def get_required_resources(self): resources = dict() for config in self.intent_parsers_configs: resources = merge_required_resources( resources, config.get_required_resources()) return resources def to_dict(self): return { "unit_name": self.unit_name, "intent_parsers_configs": [ config.to_dict() for config in self.intent_parsers_configs ] } @classmethod def from_dict(cls, obj_dict): d = obj_dict if "unit_name" in obj_dict: d = deepcopy(obj_dict) d.pop("unit_name") return cls(**d)
the-stack_0_19338
from __future__ import division from __future__ import unicode_literals import frappe def get_context(context): user = frappe.session.user result = frappe.get_list("Exam Result", fields=["user", "student", "exam_id", "exam_start_date", "exam_end_date", "name", "attended", "correct_answers", "wrong_answers", "total_marks", "secured__marks"], filters={"user": user}, limit_page_length= 500, ) context.result = result context.user = user
the-stack_0_19341
from logging import Logger from typing import Callable, Optional, Awaitable from slack_sdk.errors import SlackApiError from slack_bolt.logger import get_bolt_logger from slack_bolt.request.async_request import AsyncBoltRequest from slack_bolt.response import BoltResponse from .async_authorization import AsyncAuthorization from .async_internals import _build_error_response, _is_no_auth_required from .internals import _is_no_auth_test_call_required from ...authorization import AuthorizeResult from ...authorization.async_authorize import AsyncAuthorize class AsyncMultiTeamsAuthorization(AsyncAuthorization): authorize: AsyncAuthorize def __init__(self, authorize: AsyncAuthorize, base_logger: Optional[Logger] = None): """Multi-workspace authorization. Args: authorize: The function to authorize incoming requests from Slack. base_logger: The base logger """ self.authorize = authorize self.logger = get_bolt_logger( AsyncMultiTeamsAuthorization, base_logger=base_logger ) async def async_process( self, *, req: AsyncBoltRequest, resp: BoltResponse, # As this method is not supposed to be invoked by bolt-python users, # the naming conflict with the built-in one affects # only the internals of this method next: Callable[[], Awaitable[BoltResponse]], ) -> BoltResponse: if _is_no_auth_required(req): return await next() if _is_no_auth_test_call_required(req): req.context.set_authorize_result( AuthorizeResult( enterprise_id=req.context.enterprise_id, team_id=req.context.team_id, user_id=req.context.user_id, ) ) return await next() try: auth_result: Optional[AuthorizeResult] = await self.authorize( context=req.context, enterprise_id=req.context.enterprise_id, team_id=req.context.team_id, user_id=req.context.user_id, ) if auth_result: req.context.set_authorize_result(auth_result) token = auth_result.bot_token or auth_result.user_token req.context["token"] = token # As AsyncApp#_init_context() generates a new AsyncWebClient for this request, # it's safe to modify this instance. req.context.client.token = token return await next() else: # This situation can arise if: # * A developer installed the app from the "Install to Workspace" button in Slack app config page # * The InstallationStore failed to save or deleted the installation for this workspace self.logger.error( "Although the app should be installed into this workspace, " "the AuthorizeResult (returned value from authorize) for it was not found." ) return _build_error_response() except SlackApiError as e: self.logger.error(f"Failed to authorize with the given token ({e})") return _build_error_response()
the-stack_0_19343
#!/usr/bin/env python3 import sys def main(args): nub = [s.strip() for s in sys.stdin][0] nub2 = nub + nub[0] n = 0 for i in range(len(nub)): if nub2[i] == nub2[i+1]: n += int(nub2[i]) print(n) n = 0 l = len(nub) h = l//2 for i in range(l): if nub[i] == nub[(i+h) % l]: n += int(nub[i]) print(n) if __name__ == '__main__': sys.exit(main(sys.argv))
the-stack_0_19345
from typing import Optional from pydantic import BaseModel from xpresso import App, FromQuery, Path class Filter(BaseModel): prefix: str limit: int skip: int = 0 async def read_items(filter: FromQuery[Optional[Filter]]) -> Optional[Filter]: return filter app = App( routes=[ Path( path="/items/", get=read_items, ), ] )
the-stack_0_19346
# Some code was borrowed from https://github.com/petewarden/tensorflow_makefile/blob/master/tensorflow/models/image/mnist/convolutional.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import os import numpy from scipy import ndimage from six.moves import urllib import tensorflow as tf SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' DATA_DIRECTORY = "data" # Params for MNIST IMAGE_SIZE = 28 NUM_CHANNELS = 1 PIXEL_DEPTH = 255 NUM_LABELS = 10 VALIDATION_SIZE = 5000 # Size of the validation set. # Download MNIST data def maybe_download(filename): """Download the data from Yann's website, unless it's already here.""" if not tf.gfile.Exists(DATA_DIRECTORY): tf.gfile.MakeDirs(DATA_DIRECTORY) filepath = os.path.join(DATA_DIRECTORY, filename) if not tf.gfile.Exists(filepath): filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) with tf.gfile.GFile(filepath) as f: size = f.size() print('Successfully downloaded', filename, size, 'bytes.') return filepath # Extract the images def extract_data(filename, num_images, norm_shift=False, norm_scale=True): """Extract the images into a 4D tensor [image index, y, x, channels]. Values are rescaled from [0, 255] down to [-0.5, 0.5]. """ print('Extracting', filename) with gzip.open(filename) as bytestream: bytestream.read(16) buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images * NUM_CHANNELS) data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32) if norm_shift: data = data - (PIXEL_DEPTH / 2.0) if norm_scale: data = data / PIXEL_DEPTH data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS) data = numpy.reshape(data, [num_images, -1]) return data # Extract the labels def extract_labels(filename, num_images): """Extract the labels into a vector of int64 label IDs.""" print('Extracting', filename) with gzip.open(filename) as bytestream: bytestream.read(8) buf = bytestream.read(1 * num_images) labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64) num_labels_data = len(labels) one_hot_encoding = numpy.zeros((num_labels_data,NUM_LABELS)) one_hot_encoding[numpy.arange(num_labels_data),labels] = 1 one_hot_encoding = numpy.reshape(one_hot_encoding, [-1, NUM_LABELS]) return one_hot_encoding # Augment training data def expend_training_data(images, labels): expanded_images = [] expanded_labels = [] j = 0 # counter for x, y in zip(images, labels): j = j+1 if j%100==0: print ('expanding data : %03d / %03d' % (j,numpy.size(images,0))) # register original data expanded_images.append(x) expanded_labels.append(y) # get a value for the background # zero is the expected value, but median() is used to estimate background's value bg_value = numpy.median(x) # this is regarded as background's value image = numpy.reshape(x, (-1, 28)) for i in range(4): # rotate the image with random degree angle = numpy.random.randint(-15,15,1) new_img = ndimage.rotate(image,angle,reshape=False, cval=bg_value) # shift the image with random distance shift = numpy.random.randint(-2, 2, 2) new_img_ = ndimage.shift(new_img,shift, cval=bg_value) # register new training data expanded_images.append(numpy.reshape(new_img_, 784)) expanded_labels.append(y) # images and labels are concatenated for random-shuffle at each epoch # notice that pair of image and label should not be broken expanded_train_total_data = numpy.concatenate((expanded_images, expanded_labels), axis=1) numpy.random.shuffle(expanded_train_total_data) return expanded_train_total_data # Prepare MNISt data def prepare_MNIST_data(use_norm_shift=False, use_norm_scale=True, use_data_augmentation=False, reuse=False, percentage=0.1): # Get the data. train_data_filename = maybe_download('train-images-idx3-ubyte.gz') train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz') test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz') test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz') # Extract it into numpy arrays. train_data = extract_data(train_data_filename, 60000, use_norm_shift, use_norm_scale) train_labels = extract_labels(train_labels_filename, 60000) test_data = extract_data(test_data_filename, 10000, use_norm_shift, use_norm_scale) test_labels = extract_labels(test_labels_filename, 10000) if reuse: train_inds = numpy.loadtxt('train_inds.csv').astype(int) percentage = numpy.loadtxt('percentage.csv').astype(float) print(percentage) else: # shuffle data randomly train_inds = numpy.arange(len(train_data)) numpy.random.shuffle(train_inds) numpy.savetxt('train_inds.csv', train_inds) numpy.savetxt('percentage.csv', [percentage]) # shuffle according to train_inds train_data = train_data[train_inds] train_labels = train_labels[train_inds] # Generate a validation set. VALIDATION_SIZE = int((1-percentage)*60000) # Size of the validation set. validation_data = train_data[:VALIDATION_SIZE, :] validation_labels = train_labels[:VALIDATION_SIZE,:] train_data = train_data[VALIDATION_SIZE:, :] train_labels = train_labels[VALIDATION_SIZE:,:] # Concatenate train_data & train_labels for random shuffle if use_data_augmentation: train_total_data = expend_training_data(train_data, train_labels) else: train_total_data = numpy.concatenate((train_data, train_labels), axis=1) # Concatenate train_data & train_labels for random shuffle if use_data_augmentation: validation_total_data = expend_training_data(validation_data, validation_labels) else: validation_total_data = numpy.concatenate((validation_data, validation_labels), axis=1) # Concatenate train_data & train_labels for random shuffle if use_data_augmentation: test_total_data = expend_training_data(test_data, test_labels) else: test_total_data = numpy.concatenate((test_data, test_labels), axis=1) train_size = train_total_data.shape[0] validation_size = validation_total_data.shape[0] test_size = test_total_data.shape[0] print("#######") print(train_size) print(validation_size) print(test_size) print("#######") return train_total_data, train_size, validation_total_data, validation_size, test_total_data, test_size, test_data, test_labels
the-stack_0_19347
# -*- coding: utf-8 -*- """ Copyright (C) 2013-2018 Danilo Bargen Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import print_function, division, absolute_import, unicode_literals from collections import namedtuple from time import sleep import RPi.GPIO as GPIO from . import common as c from .lcd import BaseCharLCD from .compat import range import sys if sys.version_info.major < 3: from time import clock as now else: from time import perf_counter as now PinConfig = namedtuple('PinConfig', 'rs rw e d0 d1 d2 d3 d4 d5 d6 d7 backlight mode') class CharLCD(BaseCharLCD): def __init__(self, numbering_mode=None, pin_rs=None, pin_rw=None, pin_e=None, pins_data=None, pin_backlight=None, backlight_mode='active_low', backlight_enabled=True, cols=20, rows=4, dotsize=8, charmap='A02', auto_linebreaks=True, compat_mode=False, compat_mode_wait_time=0.001, cache_text=True): """ Character LCD controller. The default pin numbers are based on the BOARD numbering scheme (1-26). You can save 1 pin by not using RW. Set ``pin_rw`` to ``None`` if you want this. :param pin_rs: Pin for register select (RS). Default: ``15``. :type pin_rs: int :param pin_rw: Pin for selecting read or write mode (R/W). Set this to ``None`` for read only mode. Default: ``18``. :type pin_rw: int :param pin_e: Pin to start data read or write (E). Default: ``16``. :type pin_e: int :param pins_data: List of data bus pins in 8 bit mode (DB0-DB7) or in 4 bit mode (DB4-DB7) in ascending order. Default: ``[21, 22, 23, 24]``. :type pins_data: list of int :param pin_backlight: Pin for controlling backlight on/off. Set this to ``None`` for no backlight control. Default: ``None``. :type pin_backlight: int :param backlight_mode: Set this to either ``active_high`` or ``active_low`` to configure the operating control for the backlight. Has no effect if pin_backlight is ``None`` :type backlight_mode: str :param backlight_enabled: Whether the backlight is enabled initially. Default: ``True``. Has no effect if pin_backlight is ``None`` :type backlight_enabled: bool :param numbering_mode: Which scheme to use for numbering of the GPIO pins, either ``GPIO.BOARD`` or ``GPIO.BCM``. Default: ``GPIO.BOARD`` (1-26). :type numbering_mode: int :param rows: Number of display rows (usually 1, 2 or 4). Default: ``4``. :type rows: int :param cols: Number of columns per row (usually 16 or 20). Default ``20``. :type cols: int :param dotsize: Some 1 line displays allow a font height of 10px. Allowed: ``8`` or ``10``. Default: ``8``. :type dotsize: int :param charmap: The character map used. Depends on your LCD. This must be either ``A00`` or ``A02`` or ``ST0B``. Default: ``A02``. :type charmap: str :param auto_linebreaks: Whether or not to automatically insert line breaks. Default: ``True``. :type auto_linebreaks: bool :param compat_mode: Whether to run additional checks to support older LCDs that may not run at the reference clock (or keep up with it). :type compat_mode: bool :param compat_mode_wait_time: Minimum time to pass between sends. if zero, turns off compat_mode Default: ``0.001`` seconds. :type compat_mode_wait_time: float :param : Minimum time to pass between sends. if zero, turns off compat_mode Default: ``0.001`` seconds. :type compat_mode_wait_time: float """ # Configure compatibility mode self.compat_mode = compat_mode and compat_mode_wait_time > 0 self.compat_mode_wait_time = compat_mode_wait_time if compat_mode: self.last_send_event = now() # Set attributes if numbering_mode == GPIO.BCM or numbering_mode == GPIO.BOARD: self.numbering_mode = numbering_mode else: raise ValueError('Invalid GPIO numbering mode: numbering_mode=%s, ' 'must be either GPIO.BOARD or GPIO.BCM.\n' 'See https://gist.github.com/dbrgn/77d984a822bfc9fddc844f67016d0f7e ' 'for more details.' % numbering_mode) if pin_rs is None: raise ValueError('pin_rs is not defined.') if pin_e is None: raise ValueError('pin_e is not defined.') if len(pins_data) == 4: # 4 bit mode self.data_bus_mode = c.LCD_4BITMODE block1 = [None] * 4 elif len(pins_data) == 8: # 8 bit mode self.data_bus_mode = c.LCD_8BITMODE block1 = pins_data[:4] else: raise ValueError('There should be exactly 4 or 8 data pins.') block2 = pins_data[-4:] self.pins = PinConfig(rs=pin_rs, rw=pin_rw, e=pin_e, d0=block1[0], d1=block1[1], d2=block1[2], d3=block1[3], d4=block2[0], d5=block2[1], d6=block2[2], d7=block2[3], backlight=pin_backlight, mode=numbering_mode) self.backlight_mode = backlight_mode # Call superclass super(CharLCD, self).__init__(cols, rows, dotsize, charmap=charmap, auto_linebreaks=auto_linebreaks, cache_text=cache_text) # Set backlight status if pin_backlight is not None: self.backlight_enabled = backlight_enabled def _init_connection(self): # Setup GPIO GPIO.setmode(self.numbering_mode) for pin in list(filter(None, self.pins))[:-1]: GPIO.setup(pin, GPIO.OUT) if self.pins.backlight is not None: GPIO.setup(self.pins.backlight, GPIO.OUT) # Initialization c.msleep(50) GPIO.output(self.pins.rs, 0) GPIO.output(self.pins.e, 0) if self.pins.rw is not None: GPIO.output(self.pins.rw, 0) def _close_connection(self): pins = (self.pins.rs, self.pins.rw, self.pins.e, self.pins.d0, self.pins.d1, self.pins.d2, self.pins.d3, self.pins.d4, self.pins.d5, self.pins.d6, self.pins.d7) active_pins = [pin for pin in pins if pin is not None] GPIO.cleanup(active_pins) # Properties def _get_backlight_enabled(self): # We could probably read the current GPIO output state via sysfs, but # for now let's just store the state in the class if self.pins.backlight is None: raise ValueError('You did not configure a GPIO pin for backlight control!') return bool(self._backlight_enabled) def _set_backlight_enabled(self, value): if self.pins.backlight is None: raise ValueError('You did not configure a GPIO pin for backlight control!') if not isinstance(value, bool): raise ValueError('backlight_enabled must be set to ``True`` or ``False``.') self._backlight_enabled = value GPIO.output(self.pins.backlight, value ^ (self.backlight_mode == 'active_low')) backlight_enabled = property(_get_backlight_enabled, _set_backlight_enabled, doc='Whether or not to turn on the backlight.') # Low level commands def _send(self, value, mode): """Send the specified value to the display with automatic 4bit / 8bit selection. The rs_mode is either ``RS_DATA`` or ``RS_INSTRUCTION``.""" # Wait, if compatibility mode is enabled if self.compat_mode: self._wait() # Choose instruction or data mode GPIO.output(self.pins.rs, mode) # If the RW pin is used, set it to low in order to write. if self.pins.rw is not None: GPIO.output(self.pins.rw, 0) # Write data out in chunks of 4 or 8 bit if self.data_bus_mode == c.LCD_8BITMODE: self._write8bits(value) else: self._write4bits(value >> 4) self._write4bits(value) # Record the time for the tail-end of the last send event if self.compat_mode: self.last_send_event = now() def _send_data(self, value): """Send data to the display. """ self._send(value, c.RS_DATA) def _send_instruction(self, value): """Send instruction to the display. """ self._send(value, c.RS_INSTRUCTION) def _write4bits(self, value): """Write 4 bits of data into the data bus.""" for i in range(4): bit = (value >> i) & 0x01 GPIO.output(self.pins[i + 7], bit) self._pulse_enable() def _write8bits(self, value): """Write 8 bits of data into the data bus.""" for i in range(8): bit = (value >> i) & 0x01 GPIO.output(self.pins[i + 3], bit) self._pulse_enable() def _pulse_enable(self): """Pulse the `enable` flag to process data.""" GPIO.output(self.pins.e, 0) c.usleep(1) GPIO.output(self.pins.e, 1) c.usleep(1) GPIO.output(self.pins.e, 0) c.usleep(100) # commands need > 37us to settle def _wait(self): """Rate limit the number of send events.""" end = self.last_send_event + self.compat_mode_wait_time sleep_duration = end - now() if sleep_duration > 0: sleep(sleep_duration)
the-stack_0_19348
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Code are based on # https://github.com/fmassa/vision/blob/voc_dataset/torchvision/datasets/voc.py # Copyright (c) Francisco Massa. # Copyright (c) Ellis Brown, Max deGroot. # Copyright (c) Megvii, Inc. and its affiliates. from loguru import logger import cv2 import numpy as np from yolox.evaluators.voc_eval import voc_eval import os import os.path import pickle import xml.etree.ElementTree as ET from .datasets_wrapper import Dataset from .voc_classes import VOC_CLASSES class AnnotationTransform(object): """Transforms a VOC annotation into a Tensor of bbox coords and label index Initilized with a dictionary lookup of classnames to indexes Arguments: class_to_ind (dict, optional): dictionary lookup of classnames -> indexes (default: alphabetic indexing of VOC's 20 classes) keep_difficult (bool, optional): keep difficult instances or not (default: False) height (int): height width (int): width """ def __init__(self, class_to_ind=None, keep_difficult=True): self.class_to_ind = class_to_ind or dict( zip(VOC_CLASSES, range(len(VOC_CLASSES))) ) self.keep_difficult = keep_difficult def __call__(self, target): """ Arguments: target (annotation) : the target annotation to be made usable will be an ET.Element Returns: a list containing lists of bounding boxes [bbox coords, class name] """ res = np.empty((0, 5)) for obj in target.iter("object"): difficult = obj.find("difficult") if difficult is not None: difficult = int(difficult.text) == 1 else: difficult = False if not self.keep_difficult and difficult: continue name = obj.find("name").text.strip() bbox = obj.find("bndbox") pts = ["xmin", "ymin", "xmax", "ymax"] bndbox = [] for i, pt in enumerate(pts): cur_pt = int(bbox.find(pt).text) - 1 # scale height or width # cur_pt = cur_pt / width if i % 2 == 0 else cur_pt / height bndbox.append(cur_pt) label_idx = self.class_to_ind[name] bndbox.append(label_idx) res = np.vstack((res, bndbox)) # [xmin, ymin, xmax, ymax, label_ind] # img_id = target.find('filename').text[:-4] width = int(target.find("size").find("width").text) height = int(target.find("size").find("height").text) img_info = (height, width) return res, img_info class VOCDetection(Dataset): """ VOC Detection Dataset Object input is image, target is annotation Args: root (string): filepath to VOCdevkit folder. image_set (string): imageset to use (eg. 'train', 'val', 'test') transform (callable, optional): transformation to perform on the input image target_transform (callable, optional): transformation to perform on the target `annotation` (eg: take in caption string, return tensor of word indices) dataset_name (string, optional): which dataset to load (default: 'VOC2007') """ def __init__( self, data_dir, image_sets=[("2007", "trainval"), ("2012", "trainval")], img_size=(416, 416), preproc=None, target_transform=AnnotationTransform(), dataset_name="VOC0712", cache=False, ): super().__init__(img_size) self.root = data_dir self.image_set = image_sets self.img_size = img_size self.preproc = preproc self.target_transform = target_transform self.name = dataset_name self._annopath = os.path.join("%s", "Annotations", "%s.xml") self._imgpath = os.path.join("%s", "JPEGImages", "%s.jpg") self._classes = VOC_CLASSES self.ids = list() for (year, name) in image_sets: self._year = year rootpath = os.path.join(self.root, "VOC" + year) for line in open( os.path.join(rootpath, "ImageSets", "Main", name + ".txt") ): self.ids.append((rootpath, line.strip())) self.annotations = self._load_coco_annotations() self.imgs = None if cache: self._cache_images() def __len__(self): return len(self.ids) def _load_coco_annotations(self): return [self.load_anno_from_ids(_ids) for _ids in range(len(self.ids))] def _cache_images(self): logger.warning( "\n********************************************************************************\n" "You are using cached images in RAM to accelerate training.\n" "This requires large system RAM.\n" "Make sure you have 60G+ RAM and 19G available disk space for training VOC.\n" "********************************************************************************\n" ) max_h = self.img_size[0] max_w = self.img_size[1] cache_file = self.root + "/img_resized_cache_" + self.name + ".array" if not os.path.exists(cache_file): logger.info( "Caching images for the frist time. This might take about 3 minutes for VOC" ) self.imgs = np.memmap( cache_file, shape=(len(self.ids), max_h, max_w, 3), dtype=np.uint8, mode="w+", ) from tqdm import tqdm from multiprocessing.pool import ThreadPool NUM_THREADs = min(8, os.cpu_count()) loaded_images = ThreadPool(NUM_THREADs).imap( lambda x: self.load_resized_img(x), range(len(self.annotations)), ) pbar = tqdm(enumerate(loaded_images), total=len(self.annotations)) for k, out in pbar: self.imgs[k][: out.shape[0], : out.shape[1], :] = out.copy() self.imgs.flush() pbar.close() else: logger.warning( "You are using cached imgs! Make sure your dataset is not changed!!" ) logger.info("Loading cached imgs...") self.imgs = np.memmap( cache_file, shape=(len(self.ids), max_h, max_w, 3), dtype=np.uint8, mode="r+", ) def load_anno_from_ids(self, index): img_id = self.ids[index] target = ET.parse(self._annopath % img_id).getroot() assert self.target_transform is not None res, img_info = self.target_transform(target) height, width = img_info r = min(self.img_size[0] / height, self.img_size[1] / width) res[:, :4] *= r resized_info = (int(height * r), int(width * r)) return (res, img_info, resized_info) def load_anno(self, index): return self.annotations[index][0] def load_resized_img(self, index): img = self.load_image(index) r = min(self.img_size[0] / img.shape[0], self.img_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR, ).astype(np.uint8) return resized_img def load_image(self, index): img_id = self.ids[index] img = cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR) assert img is not None return img def pull_item(self, index): """Returns the original image and target at an index for mixup Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: img, target """ if self.imgs is not None: target, img_info, resized_info = self.annotations[index] pad_img = self.imgs[index] img = pad_img[: resized_info[0], : resized_info[1], :].copy() else: img = self.load_resized_img(index) target, img_info, _ = self.annotations[index] return img, target, img_info, index @Dataset.mosaic_getitem def __getitem__(self, index): img, target, img_info, img_id = self.pull_item(index) if self.preproc is not None: img, target = self.preproc(img, target, self.input_dim) return img, target, img_info, img_id def evaluate_detections(self, all_boxes, output_dir=None): """ all_boxes is a list of length number-of-classes. Each list element is a list of length number-of-images. Each of those list elements is either an empty list [] or a numpy array of detection. all_boxes[class][image] = [] or np.array of shape #dets x 5 """ self._write_voc_results_file(all_boxes) IouTh = np.linspace( 0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True ) mAPs = [] for iou in IouTh: mAP = self._do_python_eval(output_dir, iou) mAPs.append(mAP) print("--------------------------------------------------------------") print("map_5095:", np.mean(mAPs)) print("map_50:", mAPs[0]) print("--------------------------------------------------------------") return np.mean(mAPs), mAPs[0] def _get_voc_results_file_template(self): filename = "comp4_det_test" + "_{:s}.txt" filedir = os.path.join(self.root, "results", "VOC" + self._year, "Main") if not os.path.exists(filedir): os.makedirs(filedir) path = os.path.join(filedir, filename) return path def _write_voc_results_file(self, all_boxes): for cls_ind, cls in enumerate(VOC_CLASSES): cls_ind = cls_ind if cls == "__background__": continue print("Writing {} VOC results file".format(cls)) filename = self._get_voc_results_file_template().format(cls) with open(filename, "wt") as f: for im_ind, index in enumerate(self.ids): index = index[1] dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in range(dets.shape[0]): f.write( "{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n".format( index, dets[k, -1], dets[k, 0] + 1, dets[k, 1] + 1, dets[k, 2] + 1, dets[k, 3] + 1, ) ) def _do_python_eval(self, output_dir="output", iou=0.5): rootpath = os.path.join(self.root, "VOC" + self._year) name = self.image_set[0][1] annopath = os.path.join(rootpath, "Annotations", "{:s}.xml") imagesetfile = os.path.join(rootpath, "ImageSets", "Main", name + ".txt") cachedir = os.path.join( self.root, "annotations_cache", "VOC" + self._year, name ) if not os.path.exists(cachedir): os.makedirs(cachedir) aps = [] # The PASCAL VOC metric changed in 2010 use_07_metric = True if int(self._year) < 2010 else False print("Eval IoU : {:.2f}".format(iou)) if output_dir is not None and not os.path.isdir(output_dir): os.mkdir(output_dir) for i, cls in enumerate(VOC_CLASSES): if cls == "__background__": continue filename = self._get_voc_results_file_template().format(cls) rec, prec, ap = voc_eval( filename, annopath, imagesetfile, cls, cachedir, ovthresh=iou, use_07_metric=use_07_metric, ) aps += [ap] if iou == 0.5: print("AP for {} = {:.4f}".format(cls, ap)) if output_dir is not None: with open(os.path.join(output_dir, cls + "_pr.pkl"), "wb") as f: pickle.dump({"rec": rec, "prec": prec, "ap": ap}, f) if iou == 0.5: print("Mean AP = {:.4f}".format(np.mean(aps))) print("~~~~~~~~") print("Results:") for ap in aps: print("{:.3f}".format(ap)) print("{:.3f}".format(np.mean(aps))) print("~~~~~~~~") print("") print("--------------------------------------------------------------") print("Results computed with the **unofficial** Python eval code.") print("Results should be very close to the official MATLAB eval code.") print("Recompute with `./tools/reval.py --matlab ...` for your paper.") print("-- Thanks, The Management") print("--------------------------------------------------------------") return np.mean(aps)
the-stack_0_19349
import os import shutil import tkinter as tk from ftplib import FTP import cftime import cartopy.crs as ccrs import matplotlib.animation as animation import matplotlib.pyplot as plt import numpy as np from netCDF4 import Dataset def getdata(): global file_dir, file_list, window, var, forma ''' 说明: 1、本模块数据来源:中国Argo实时资料中心网站(或自然资源部杭州全球海洋Argo系统野外科学观测研究站) 2、版权所属:自然资源部第二海洋研究所中国Argo实时资料中心 3、编写者对用户因使用此模块产生的损失和不良后果不负任何法律责任。 4、本模块采用匿名登录ftp方式下载数据。 5、已知bug:受制于主机和服务器的带宽有一定概率下载失败,如果没有显示 '下载完毕。' 则一致认定为下载失败。 WRITE BY YuHanxue in 2021.12.1 in OUC 联系邮箱:[email protected] ''' window.destroy() window = tk.Tk() window.geometry("500x500") window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") window.title('FTP模块') tk.Label(window, text='已启动FTP下载模块', font=('Arial', 12)).place(x=0, y=0) ftpserver = 'data.argo.org.cn' ftpath = '/pub/ARGO/BOA_Argo/NetCDF' localpath = './data/' ftp = FTP() try: ftp.connect(ftpserver, 21) ftp.login() ftp.cwd(ftpath) except: raise IOError('FTP数据连接失败,请检查您的网络环境') else: tk.Label(window, text=f'{ftpserver}欢迎信息:{ftp.getwelcome()}', font=( 'Arial', 12)).place(x=0, y=20) tk.Label(window, text='FTP连接成功', font=('Arial', 12)).place(x=0, y=40) tk.Label(window, text=f'成功进入FTP服务器:{ftp.pwd()}', font=( 'Arial', 12)).place(x=0, y=60) file_list = list(ftp.nlst()) for i in range(13): file_list.pop() file_sta = (file_list[0]).split('_') file_end = (file_list[-1]).split('_') tk.Label(window, text=f'NC文件记录时间从{file_sta[2]:4}年{file_sta[3][0:2]:2}月\ 到{file_end[2]:4}年{file_end[3][0:2]:2}月', font=('Arial', 12)).place(x=0, y=80) # 下载数据 if not os.path.exists(localpath): os.makedirs(localpath) tk.Label(window, text='请问需要单个数据还是批量数据?', font=('Arial', 12)).place(x=0, y=100) print() def single(): global file_dir, file_list, window, var, forma def get(): global file_dir, file_list, window, var, forma year = e_year.get() mon = e_mon.get() filename = 'BOA_Argo_'+str(year)+'_'+str(mon).zfill(2)+'.nc' bufsize = 1024 path = os.path.join(localpath, filename) with open(path, 'wb') as fid: tk.Label(window, text='正在下载:').grid(row=3, column=1) window.update() ftp.retrbinary('RETR {0}'.format(filename), fid.write, bufsize) tk.Label(window, text='下载完毕。').grid(row=4, column=1) tk.Button(window, text='进入可视化', command=printfil).grid( row=5, column=1) window.destroy() window = tk.Tk() window.geometry("300x500") window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") window.title('ARGO数据单项下载') l_year = tk.Label(window, text='年:(2004-2021)') l_year.grid(row=0) e_year = tk.Entry(window) e_year.grid(row=0, column=1) l_mon = tk.Label(window, text='月:(1-12)') l_mon.grid(row=1) e_mon = tk.Entry(window) e_mon.grid(row=1, column=1) b_sure = tk.Button(window, text='确定', command=get) b_sure.grid(row=2, column=1) def batch(): global file_dir, file_list, window, var, forma def get(): global file_dir, file_list, window, var, forma tk.Label(window, text='正在下载,请不要退出').grid(row=6) window.update() year1 = e_year.get() mon1 = e_mon.get() year2 = e_year2.get() mon2 = e_mon2.get() file_down_start = 'BOA_Argo_' + \ str(year1)+'_'+str(mon1).zfill(2)+'.nc' file_down_start_index = file_list.index(file_down_start) file_down_end = 'BOA_Argo_'+str(year2)+'_'+str(mon2).zfill(2)+'.nc' file_down_end_index = file_list.index(file_down_end) i = 7 for filename in file_list[file_down_start_index:file_down_end_index+1]: bufsize = 1024 path = os.path.join(localpath, filename) with open(path, 'wb') as fid: tk.Label(window, text=f'正在下载:{filename}').grid(row=i) window.update() ftp.retrbinary('RETR {0}'.format( filename), fid.write, bufsize) tk.Label(window, text=f'{filename}文件下载结束').grid(row=i+1) window.update() i += 2 if filename == file_list[file_down_end_index]: window.destroy() window = tk.Tk() window.geometry("300x500") window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") window.title('ARGO数据结束下载') tk.Button(window, text='进入可视化', command=printfil).pack() window.destroy() window = tk.Tk() window.geometry("300x500") window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") window.title('ARGO数据批量下载') l_year = tk.Label(window, text='起始年份:(2004-2021)') l_year.grid(row=0) e_year = tk.Entry(window) e_year.grid(row=0, column=1) l_mon = tk.Label(window, text='起始月份:(1-12)') l_mon.grid(row=1) e_mon = tk.Entry(window) e_mon.grid(row=1, column=1) l_year2 = tk.Label(window, text='起始年份:(2004-2021)') l_year2.grid(row=2) e_year2 = tk.Entry(window) e_year2.grid(row=2, column=1) l_mon2 = tk.Label(window, text='起始月份:(1-12)') l_mon2.grid(row=3) e_mon2 = tk.Entry(window) e_mon2.grid(row=3, column=1) b_sure = tk.Button(window, text='确定', command=get) b_sure.grid(row=4, column=1) b = tk.Button(window, text='单个数据', command=single, width=35) c = tk.Button(window, text='批量数据', command=batch, width=35) b.place(x=0, y=120) c.place(x=250, y=120) window.mainloop() def ftp(): global file_dir, file_list, window, var, forma file_dir = './data' if os.path.exists(file_dir): shutil.rmtree('./data') os.makedirs('./data') getdata() def demo(): global file_dir, file_list, window, var, forma file_dir = './demo_data' printfil() def selfdata(): global file_dir, file_list, window, var, forma file_dir = './self_data' if not os.path.exists(file_dir): os.makedirs(file_dir) window.destroy() window = tk.Tk() window.geometry("300x500") window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") window.title('自定义文件') tk.Label(window, text='请将文件放入self_data文件夹内', font=('Arial', 12)).pack() tk.Label(window, text='文件必须是BOA_Argo_yyyy_mm.nc格式,y指年份,m指月份', font=('Arial', 12)).pack() tk.Label(window, text='放置结束请按结束键', font=('Arial', 12)).pack() tk.Button(window, text='结束放置', command=printfil).pack() def printfil(): global file_dir, file_list, window, var, forma file_list = list(os.listdir(file_dir)) for i in range(len(file_list)): file_list[i] = file_dir+'/'+file_list[i] window.destroy() window = tk.Tk() window.geometry("300x500") window.title('文件确认') window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") tk.Label(window, text='您将处理以下文件:', font=('Arial', 12)).pack() for i in file_list: tk.Label(window, text=i, font=('Arial', 12)).pack() tk.Button(window, text='进入可视化', command=choose).pack() def choose(): global file_dir, file_list, window, var, forma window.destroy() window = tk.Tk() window.title('请选择温度或盐度') window.geometry("300x500") window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") la1 = tk.Label(window, text='请选择可视化对象', font=('Arial', 12)) la1.place(y=0) b = tk.Button(window, text='温度', command=temp, width=20) c = tk.Button(window, text='盐度', command=salt, width=20) b.place(x=0, y=20) c.place(x=150, y=20) def salt(): global file_dir, file_list, window, var, forma window.destroy() window = tk.Tk() window.title('已选择盐度') window.geometry("300x500") window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") var = 'salt' la1 = tk.Label(window, text='请选择可视化格式', font=('Arial', 12)) la1.place(y=0) b = tk.Button(window, text='GIF 动图', command=forma_gif, width=20) c = tk.Button(window, text='JPG 图片', command=forma_jpg, width=20) b.place(x=0, y=20) c.place(x=150, y=20) def temp(): global file_dir, file_list, window, var, forma window.destroy() window = tk.Tk() window.title('已选择温度') window.geometry("300x500") window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") var = 'temp' la1 = tk.Label(window, text='请选择可视化格式', font=('Arial', 12)) la1.place(y=0) b = tk.Button(window, text='GIF 动图', command=forma_gif, width=20) c = tk.Button(window, text='JPG 图片', command=forma_jpg, width=20) b.place(x=0, y=20) c.place(x=150, y=20) def forma_gif(): global file_dir, file_list, window, var, forma forma = gifmake window.destroy() window = tk.Tk() window.title('GIF制作') window.geometry("300x500") window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") for fil in file_list: file_name = var+'_of_'+fil.split('/')[-1] data = Dataset(fil) lon = data.variables['lon'] lat = data.variables['lat'] data1 = data.variables[var] lat = slice(np.min(lat), np.max(lat)+lat[1]-lat[0], lat[1]-lat[0]) lon = slice(np.min(lon), np.max(lon)+lon[1]-lon[0], lon[1]-lon[0]) Lat, Lon = np.mgrid[lat, lon] tk.Label( window, text=f'正在可视化{file_name[:-3]}', font=('Arial', 12)).pack() window.update() forma(Lon, Lat, data1, file_name[:-3]) end() def forma_jpg(): global file_dir, file_list, window, var, forma forma = picmake window.destroy() window = tk.Tk() window.title('JPG制作') window.geometry("300x500") window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") for fil in file_list: file_name = var+'_of_'+fil.split('/')[-1] data = Dataset(fil) lon = data.variables['lon'] lat = data.variables['lat'] data1 = data.variables[var] lat = slice(np.min(lat), np.max(lat)+lat[1]-lat[0], lat[1]-lat[0]) lon = slice(np.min(lon), np.max(lon)+lon[1]-lon[0], lon[1]-lon[0]) Lat, Lon = np.mgrid[lat, lon] tk.Label(window, text=f'正在可视化{file_name}', font=('Arial', 12)).pack() window.update() forma(Lon, Lat, data1, file_name[:-3]) end() def picmake(Lon, Lat, data1, name): global file_dir, file_list, window, var, forma for i in range(np.shape(data1)[1]): plt.cla() plt.figure(figsize=(20, 10)) ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=180)) ax.coastlines() data_drew = data1[0, i, :, :] plt.contour(Lon, Lat, data_drew, 16, alpha=0.75, linewidths=0.5, colors='black', transform=ccrs.PlateCarree(central_longitude=0)) c = plt.contourf(Lon, Lat, data_drew, 16, transform=ccrs.PlateCarree(central_longitude=0)) plt.colorbar(c) plt.title(f'depth={i}', fontsize='xx-large') name1 = './pic/'+name+f'_depth={i}.jpg' plt.savefig(name1, dpi=200) plt.close() def gifmake(Lon, Lat, data1, name): global file_dir, file_list, window, var, forma name = './gif/'+name+'.gif' fig = plt.figure(figsize=(20, 10)) def updatefig(num): plt.cla() ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=180)) ax.coastlines() data_drew = data1[0, num, :, :] ax.contourf(Lon, Lat, data_drew, 16, transform=ccrs.PlateCarree(central_longitude=0)) ax.contour(Lon, Lat, data_drew, 16, linewidths=0.5, alpha=0.75, colors='black', transform=ccrs.PlateCarree(central_longitude=0)) plt.title(f'depth={num}', fontsize='xx-large') return ax ani = animation.FuncAnimation( fig, updatefig, frames=range(np.shape(data1)[1])) ani.save(name, fps=15) def end(): global file_dir, file_list, window, var, forma window.destroy() window = tk.Tk() window.title('结束') window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") if forma == picmake: tk.Label(window, text=f'制作完毕,请于pic文件夹内查看', font=('Arial', 12)).pack() elif forma == gifmake: tk.Label(window, text=f'制作完毕,请于gif文件夹内查看', font=('Arial', 12)).pack() tk.Button(window, text='结束程序', command=endgui).pack() def endgui(): window.destroy() global file_dir, file_list, ishit, window window = tk.Tk() window.title('ARGO数据可视化') window.geometry("300x500") window.iconbitmap(r".\lib\ico\IDisk HD ALT.ico") la1 = tk.Label(window, text='请选择数据来源', font=('Arial', 12)) la1.place(y=0) ishit = 0 b = tk.Button(window, text='ftp', command=ftp, width=13) c = tk.Button(window, text='demo', command=demo, width=13) d = tk.Button(window, text='self', command=selfdata, width=13) #b.grid(column=10, row=10) b.place(x=0, y=20) c.place(x=100, y=20) d.place(x=200, y=20) window.mainloop()
the-stack_0_19352
""":mod:`wand.version` --- Version data ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You can find the current version in the command line interface: .. sourcecode:: console $ python -m wand.version 0.0.0 $ python -m wand.version --verbose Wand 0.0.0 ImageMagick 6.7.7-6 2012-06-03 Q16 http://www.imagemagick.org $ python -m wand.version --config | grep CC | cut -d : -f 2 gcc -std=gnu99 -std=gnu99 $ python -m wand.version --fonts | grep Helvetica Helvetica Helvetica-Bold Helvetica-Light Helvetica-Narrow Helvetica-Oblique $ python -m wand.version --formats | grep CMYK CMYK CMYKA .. versionadded:: 0.2.0 The command line interface. .. versionadded:: 0.2.2 The ``--verbose``/``-v`` option which also prints ImageMagick library version for CLI. .. versionadded:: 0.4.1 The ``--fonts``, ``--formats``, & ``--config`` option allows printing additional information about ImageMagick library. """ from __future__ import print_function import ctypes import datetime import re import sys try: from .api import libmagick, library except ImportError: # pragma: no cover libmagick = None from .compat import binary, string_type, text __all__ = ('VERSION', 'VERSION_INFO', 'MAGICK_VERSION', 'MAGICK_VERSION_DELEGATES', 'MAGICK_VERSION_FEATURES', 'MAGICK_VERSION_INFO', 'MAGICK_VERSION_NUMBER', 'MAGICK_RELEASE_DATE', 'MAGICK_RELEASE_DATE_STRING', 'MAGICK_HDRI', 'QUANTUM_DEPTH', 'QUANTUM_RANGE', 'QUANTUM_SCALE', 'configure_options', 'fonts', 'formats') #: (:class:`tuple`) The version tuple e.g. ``(0, 1, 2)``. #: #: .. versionchanged:: 0.1.9 #: Becomes :class:`tuple`. (It was string before.) VERSION_INFO = (0, 6, 8) #: (:class:`basestring`) The version string e.g. ``'0.1.2'``. #: #: .. versionchanged:: 0.1.9 #: Becomes string. (It was :class:`tuple` before.) VERSION = '{0}.{1}.{2}'.format(*VERSION_INFO) if libmagick: c_magick_version = ctypes.c_size_t() #: (:class:`basestring`) The version string of the linked ImageMagick #: library. The exactly same string to the result of #: :c:func:`GetMagickVersion` function. #: #: Example:: #: #: 'ImageMagick 6.7.7-6 2012-06-03 Q16 http://www.imagemagick.org' #: #: .. versionadded:: 0.2.1 MAGICK_VERSION = text( libmagick.GetMagickVersion(ctypes.byref(c_magick_version)) ) #: (:class:`numbers.Integral`) The version number of the linked #: ImageMagick library. #: #: .. versionadded:: 0.2.1 MAGICK_VERSION_NUMBER = c_magick_version.value _match = re.match(r'^ImageMagick\s+(\d+)\.(\d+)\.(\d+)(?:-(\d+))?', MAGICK_VERSION) #: (:class:`basestring`) A string of all delegates enabled. #: This value is identical to what is returned by #: :c:func:`GetMagickDelegates` #: #: Set to empty string if the system uses an older version of #: ImageMagick-6, or does not support :c:func:`GetMagickDelegates`. #: #: .. versionadded:: 0.5.0 if libmagick.GetMagickDelegates: # pragma: no cover MAGICK_VERSION_DELEGATES = text(libmagick.GetMagickDelegates()) else: # pragma: no cover MAGICK_VERSION_DELEGATES = "" #: (:class:`basestring`) A string of all features enabled. #: This value is identical to what is returned by #: :c:func:`GetMagickFeatures` #: #: .. versionadded:: 0.5.0 MAGICK_VERSION_FEATURES = text(libmagick.GetMagickFeatures()) #: (:class:`tuple`) The version tuple e.g. ``(6, 7, 7, 6)`` of #: :const:`MAGICK_VERSION`. #: #: .. versionadded:: 0.2.1 MAGICK_VERSION_INFO = tuple(int(v or 0) for v in _match.groups()) #: (:class:`basestring`) The date string e.g. ``'2012-06-03'`` of #: :const:`MAGICK_RELEASE_DATE_STRING`. This value is the exactly same #: string to the result of :c:func:`GetMagickReleaseDate` function. #: #: .. versionadded:: 0.2.1 MAGICK_RELEASE_DATE_STRING = text(libmagick.GetMagickReleaseDate()) if MAGICK_RELEASE_DATE_STRING: _match = re.match(r'^(\d{4})-?(\d\d)-?(\d\d)$', MAGICK_RELEASE_DATE_STRING) #: (:class:`datetime.date`) The release date of the linked ImageMagick #: library. Equivalent to the result of :c:func:`GetMagickReleaseDate` #: function. #: #: .. versionadded:: 0.2.1 MAGICK_RELEASE_DATE = datetime.date(*map(int, _match.groups())) c_quantum_depth = ctypes.c_size_t() libmagick.GetMagickQuantumDepth(ctypes.byref(c_quantum_depth)) #: (:class:`numbers.Integral`) The quantum depth configuration of #: the linked ImageMagick library. One of 8, 16, 32, or 64. #: #: .. versionadded:: 0.3.0 QUANTUM_DEPTH = c_quantum_depth.value c_quantum_range = ctypes.c_size_t() libmagick.GetMagickQuantumRange(ctypes.byref(c_quantum_range)) #: (:class:`numbers.Integral`) The quantum range configuration of #: the linked ImageMagick library. #: #: .. versionadded:: 0.5.0 QUANTUM_RANGE = c_quantum_range.value #: (:class:`numbers.Real`) The quantum scale of the linked ImageMagick #: library. This is calculated as `1.0 / QUANTUM_RANGE`. #: #: .. versionadded:: 0.6.8 QUANTUM_SCALE = 1.0 / float(QUANTUM_RANGE) #: (:class:`bool`) True if ImageMagick is compiled for High Dynamic #: Range Image. MAGICK_HDRI = 'HDRI' in MAGICK_VERSION_FEATURES del c_magick_version, _match, c_quantum_depth, c_quantum_range def configure_options(pattern='*'): """ Queries ImageMagick library for configurations options given at compile-time. Example: Find where the ImageMagick documents are installed:: >>> from wand.version import configure_options >>> configure_options('DOC*') {'DOCUMENTATION_PATH': '/usr/local/share/doc/ImageMagick-6'} :param pattern: A term to filter queries against. Supports wildcard '*' characters. Default patterns '*' for all options. :type pattern: :class:`basestring` :returns: Directory of configuration options matching given pattern :rtype: :class:`collections.defaultdict` """ if not isinstance(pattern, string_type): raise TypeError('pattern must be a string, not ' + repr(pattern)) # We must force init environment to load user config paths. library.MagickWandGenesis() pattern_p = ctypes.create_string_buffer(binary(pattern)) config_count = ctypes.c_size_t(0) configs = {} configs_p = library.MagickQueryConfigureOptions(pattern_p, ctypes.byref(config_count)) for cursor in range(config_count.value): config = ctypes.string_at(configs_p[cursor]) val_p = library.MagickQueryConfigureOption(config) if val_p: configs[text(config)] = text(ctypes.string_at(val_p)) val_p = library.MagickRelinquishMemory(val_p) if configs_p: configs_p = library.MagickRelinquishMemory(configs_p) return configs def fonts(pattern='*'): """ Queries ImageMagick library for available fonts. Available fonts can be configured by defining `types.xml`, `type-ghostscript.xml`, or `type-windows.xml`. Use :func:`wand.version.configure_options` to locate system search path, and `resources <http://www.imagemagick.org/script/resources.php>`_ article for defining xml file. Example: List all bold Helvetica fonts:: >>> from wand.version import fonts >>> fonts('*Helvetica*Bold*') ['Helvetica-Bold', 'Helvetica-Bold-Oblique', 'Helvetica-BoldOblique', 'Helvetica-Narrow-Bold', 'Helvetica-Narrow-BoldOblique'] :param pattern: A term to filter queries against. Supports wildcard '*' characters. Default patterns '*' for all options. :type pattern: :class:`basestring` :returns: Sequence of matching fonts :rtype: :class:`collections.Sequence` """ if not isinstance(pattern, string_type): raise TypeError('pattern must be a string, not ' + repr(pattern)) # We must force init environment to load user config paths. library.MagickWandGenesis() pattern_p = ctypes.create_string_buffer(binary(pattern)) number_fonts = ctypes.c_size_t(0) fonts = [] fonts_p = library.MagickQueryFonts(pattern_p, ctypes.byref(number_fonts)) for cursor in range(number_fonts.value): font = ctypes.string_at(fonts_p[cursor]) fonts.append(text(font)) if fonts_p: fonts_p = library.MagickRelinquishMemory(fonts_p) return fonts def formats(pattern='*'): """ Queries ImageMagick library for supported formats. Example: List supported PNG formats:: >>> from wand.version import formats >>> formats('PNG*') ['PNG', 'PNG00', 'PNG8', 'PNG24', 'PNG32', 'PNG48', 'PNG64'] :param pattern: A term to filter formats against. Supports wildcards '*' characters. Default pattern '*' for all formats. :type pattern: :class:`basestring` :returns: Sequence of matching formats :rtype: :class:`collections.Sequence` """ if not isinstance(pattern, string_type): raise TypeError('pattern must be a string, not ' + repr(pattern)) # We must force init environment to load user config paths. library.MagickWandGenesis() pattern_p = ctypes.create_string_buffer(binary(pattern)) number_formats = ctypes.c_size_t(0) formats = [] formats_p = library.MagickQueryFormats(pattern_p, ctypes.byref(number_formats)) for cursor in range(number_formats.value): value = ctypes.string_at(formats_p[cursor]) formats.append(text(value)) if formats_p: formats_p = library.MagickRelinquishMemory(formats_p) return formats if __doc__ is not None: __doc__ = __doc__.replace('0.0.0', VERSION) del libmagick if __name__ == '__main__': # pragma: no cover options = frozenset(sys.argv[1:]) if '-v' in options or '--verbose' in options: print('Wand', VERSION) try: print(MAGICK_VERSION) except NameError: pass elif '--fonts' in options: for font in fonts(): print(font) elif '--formats' in options: for supported_format in formats(): print(supported_format) elif '--config' in options: config_options = configure_options() for key in config_options: print('{:24s}: {}'.format(key, config_options[key])) else: print(VERSION)
the-stack_0_19354
# -*- coding: utf-8 -*- # Copyright 2020 Green Valley Belgium NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @@license_version:1.7@@ import inspect import itertools import logging import time from types import NoneType import types from google.appengine.ext import db, ndb from common.mcfw.cache import set_cache_key from common.mcfw.consts import MISSING from common.mcfw.properties import get_members, simple_types, object_factory, long_property, unicode_property, typed_property class ErrorResponse(object): status_code = long_property('1') error = unicode_property('2') data = typed_property('3', dict) def __init__(self, rest_exception): """ Args: rest_exception (mcfw.exceptions.HttpException): """ self.status_code = rest_exception.http_code self.error = u'%s' % rest_exception.error self.data = rest_exception.data class MissingArgumentException(Exception): def __init__(self, name, func=None): Exception.__init__(self, "%s is a required argument%s!" % ( name, (' in function %s' % func.func_name) if func else '')) self.name = name def log_access(call=True, response=True): def wrap(f): def logged(*args, **kwargs): if call: arg_str = "" for i, arg in enumerate(args): arg_str += " %s: %s\n" % (i, arg) kwarg_str = "" for kw, arg in kwargs.iteritems(): kwarg_str += " %s: %s\n" % (kw, arg) logging.debug(u"%s.%s\nargs:\n%skwargs:\n%s" % (f.__module__, f.__name__, arg_str, kwarg_str)) start = time.time() try: result = f(*args, **kwargs) if response: end = time.time() logging.debug( u"%s.%s finished in %s seconds returning %s" % (f.__module__, f.__name__, end - start, result)) return result except: if response: end = time.time() logging.exception(u"%s.%s failed in %s seconds" % (f.__module__, f.__name__, end - start)) raise set_cache_key(logged, f) logged.__name__ = f.__name__ logged.__module__ = f.__module__ if hasattr(f, u"meta"): logged.meta.update(f.meta) return logged return wrap def arguments(**kwarg_types): """ The arguments decorator function describes & validates the parameters of the function.""" for value in kwarg_types.itervalues(): _validate_type_spec(value) def wrap(f): # validate argspec f_args = inspect.getargspec(f) f_args = inspect.ArgSpec([a for a in f_args[0] if a not in ('self', 'cls')], f_args[1], f_args[2], f_args[3]) f_arg_count = len(f_args[0]) f_defaults = f_args[3] if not f_defaults: f_defaults = [] f_arg_defaults_count = len(f_defaults) f_arg_no_defaults_count = f_arg_count - f_arg_defaults_count f_arg_defaults = { f_args[0][i]: f_defaults[i - f_arg_no_defaults_count] if i >= f_arg_no_defaults_count else MISSING for i in xrange(f_arg_count)} f_pure_default_args_dict = {f_args[0][i]: f_defaults[i - f_arg_no_defaults_count] for i in xrange(f_arg_no_defaults_count, f_arg_count)} if f_arg_count != len(kwarg_types): raise ValueError(f.func_name + " does not contain the expected arguments!") unknown_args = [arg for arg in f_args[0] if arg not in kwarg_types] if unknown_args: raise ValueError("No type information is supplied for %s!" % ", ".join(unknown_args)) def typechecked_f(*args, **kwargs): arg_length = len(args) if arg_length > f_arg_count: raise ValueError("%s() takes %s arguments (%s given)" % (f.__name__, f_arg_count, arg_length)) for i in xrange(arg_length): kwargs[f_args[0][i]] = args[i] # accept MISSING as magical value or not accept_missing = u'accept_missing' in kwargs if accept_missing: kwargs.pop(u'accept_missing') # apply default value if available for arg in kwarg_types: value = kwargs.get(arg, f_arg_defaults[arg]) if value is MISSING: value = f_arg_defaults.get(arg, MISSING) kwargs[arg] = value # validate number of arguments if not len(kwargs) == len(kwarg_types): raise ValueError("kwarg mismatch\nExpected:%s\nGot:%s" % (kwarg_types, kwargs)) # validate supplied arguments unknown_args = [arg for arg in kwargs if arg not in kwarg_types] if unknown_args: raise ValueError("Unknown argument(s) %s supplied!" % ", ".join(unknown_args)) # validate argument values for arg in kwargs: _check_type(arg, kwarg_types[arg], kwargs[arg], accept_missing=accept_missing, func=f) return f(**kwargs) set_cache_key(typechecked_f, f) typechecked_f.__name__ = f.__name__ typechecked_f.__module__ = f.__module__ typechecked_f.meta[u"fargs"] = f_args typechecked_f.meta[u"kwarg_types"] = kwarg_types typechecked_f.meta[u"pure_default_args_dict"] = f_pure_default_args_dict if hasattr(f, u"meta"): typechecked_f.meta.update(f.meta) return typechecked_f return wrap def returns(type_=NoneType): """ The retunrs decorator function describes & validates the result of the function.""" _validate_type_spec(type_) def wrap(f): def typechecked_return(*args, **kwargs): result = f(*args, **kwargs) return _check_type(u"Result", type_, result, func=f) set_cache_key(typechecked_return, f) typechecked_return.__name__ = f.__name__ typechecked_return.__module__ = f.__module__ typechecked_return.meta[u"return_type"] = type_ if hasattr(f, u"meta"): typechecked_return.meta.update(f.meta) return typechecked_return return wrap def run(function, args, kwargs): kwargs['accept_missing'] = None result = function(*args, **kwargs) type_, islist = _get_return_type_details(function) return serialize_value(result, type_, islist, skip_missing=True) def parse_parameters(function, parameters): kwarg_types = get_parameter_types(function) return get_parameters(parameters, kwarg_types) def parse_complex_value(type_, value, islist): if value is None: return None parser = _get_complex_parser(type_) if islist: return map(parser, value) else: return parser(value) def check_function_metadata(function): if "kwarg_types" not in function.meta or "return_type" not in function.meta: raise ValueError("Can not execute function. Too little meta information is available!") def get_parameter_types(function): return function.meta["kwarg_types"] def get_parameters(parameters, kwarg_types): return {name: parse_parameter(name, type_, parameters[name]) if name in parameters else MISSING for name, type_ in kwarg_types.iteritems()} def get_type_details(type_, value=MISSING): if isinstance(type_, tuple): # The value can have multiple types. if value is not MISSING: # We must find the type by comparing the possible types with the real type of <value> value_is_list = isinstance(value, list) if value_is_list: if not value: return unicode, True # The type doesn't matter, the list is empty value = value[0] for t in type_: is_list = isinstance(t, list) if is_list != value_is_list: continue if is_list: t = t[0] if t in (str, unicode): type_to_check = (str, unicode) elif t in (int, long): type_to_check = (int, long) else: type_to_check = t if isinstance(value, type_to_check): return type(value), is_list # Weird... type not found and @arguments didn't raise... The serialization will probably fail. is_list = isinstance(type_, list) if is_list: type_ = type_[0] return type_, is_list def serialize_complex_value(value, type_, islist, skip_missing=False): if type_ == dict: return value def optimal_serializer(val): if not isinstance(type_, object_factory) and isinstance(val, type_): serializer = _get_complex_serializer(val.__class__) else: serializer = _get_complex_serializer(type_) return serializer(val, skip_missing) if value is None: return None if islist: try: return map(optimal_serializer, value) except: logging.warn("value for type %s was %s", type_, value) raise else: return optimal_serializer(value) def serialize_value(value, type_, islist, skip_missing=False): if value is None \ or type_ in simple_types \ or (isinstance(type_, tuple) and all(t in simple_types for t in type_)): return value else: return serialize_complex_value(value, type_, islist, skip_missing) def parse_parameter(name, type_, value): raw_type, is_list = get_type_details(type_, value) if isinstance(value, list) != is_list: raise ValueError("list expected for parameter %s and got %s or vice versa!" % (name, value)) if isinstance(value, list): return map(lambda x: _parse_value(name, raw_type, x), value) else: return _parse_value(name, raw_type, value) def _validate_type_spec(type_): if isinstance(type_, list) and len(type_) != 1: raise ValueError("Illegal type specification!") DICT_KEY_ITERATOR_TYPE = type(dict().iterkeys()) def _check_type(name, type_, value, accept_missing=False, func=None): if value == MISSING: if accept_missing: return value else: raise MissingArgumentException(name, func) checktype = (str, unicode) if type_ in (str, unicode) else type_ checktype = (int, long) if checktype in (int, long) else checktype if value is None and (isinstance(checktype, list) or type_ not in (int, long, float, bool)): return value if isinstance(type_, tuple): # multiple types are allowed. checking if value is one of the them. errors = [] for t in type_: try: return _check_type(name, t, value, accept_missing, func) except (ValueError, TypeError) as e: errors.append(e) continue logging.debug('\n\n'.join(map(str, errors))) raise ValueError("%s is not of expected type %s! Its type is %s:\n%s" % (name, str(type_), type(value), value)) if isinstance(checktype, list) and isinstance(value, list): checktype = (str, unicode) if checktype[0] in (str, unicode) else checktype[0] for i, x in enumerate(value): t = checktype.get_subtype(x) if isinstance(checktype, object_factory) else checktype if not isinstance(x, t): raise ValueError( "%s: Not all items were of expected type %s. Encountered an item at index %s with type %s: %s." % (name, str(checktype), i, type(x), x)) elif isinstance(checktype, list) and isinstance(value, ( types.GeneratorType, db.Query, ndb.Query, db._QueryIterator, itertools.chain, DICT_KEY_ITERATOR_TYPE)): checktype = (str, unicode) if checktype[0] in (str, unicode) else checktype[0] def checkStreaming(): for o in value: if not isinstance(o, checktype): raise ValueError( "%s: Not all items were of expected type %s. Encountered an item with type %s: %s." % (name, str(checktype), type(o), o)) yield o return checkStreaming() elif checktype == type and isinstance(value, list): if len(value) != 1: raise ValueError("%s: unexpected type count (%s)" % (name, len(value))) def check(t, i): if not isinstance(t, type): raise ValueError( "%s: Not all items were of expected type %s. Encountered an item at index %s with type %s: %s." % (name, str(checktype), i, type(x), x)) if isinstance(value[0], tuple): for i, t in enumerate(value[0]): check(t, i) else: check(value[0], 0) else: if isinstance(checktype, object_factory): checktype = checktype.get_subtype(value) try: if not isinstance(value, checktype): raise ValueError( "%s is not of expected type %s! Its type is %s:\n%s" % (name, str(checktype), type(value), value)) except TypeError as e: raise TypeError("%s\nvalue: %s\nchecktype: %s" % (e.message, value, checktype)) return value _complexParserCache = {} def _get_complex_parser(type_): if type_ is dict: return lambda x: x if type_ not in _complexParserCache: def parse(value): t = type_.get_subtype(value) if isinstance(type_, object_factory) else type_ inst = t() complex_members, simple_members = get_members(t) for name, prop in simple_members: setattr(inst, name, value[name] if name in value else getattr(t, name).default) for name, prop in complex_members: setattr(inst, name, parse_complex_value( prop.get_subtype(inst) if (prop.subtype_attr_name and prop.subtype_mapping) else prop.type, value[name], prop.list) if name in value else MISSING) return inst _complexParserCache[type_] = parse return parse else: return _complexParserCache[type_] _value_types = {int, long, float, bool, NoneType} def _parse_value(name, type_, value): def raize(): raise ValueError("Incorrect type received for parameter '%s'. Expected %s and got %s (%s)." % (name, type_, type(value), value)) istuple = isinstance(type_, tuple) if (istuple and set(type_).issubset(_value_types)) or type_ in _value_types: if not isinstance(value, type_): raize() return value elif istuple: for tt in type_: try: return _parse_value(name, tt, value) except ValueError: pass raize() elif value is None: return None elif type_ == unicode: if not isinstance(value, (str, unicode)): raize() return value if isinstance(value, unicode) else unicode(value) elif type_ == str: if not isinstance(value, (str, unicode)): raize() return value elif not isinstance(value, dict): raize() return parse_complex_value(type_, value, False) _complex_serializer_cache = {} def _get_complex_serializer(type_): if type_ not in _complex_serializer_cache: def serializer(value, skip_missing): t = type_.get_subtype(value) if isinstance(type_, object_factory) else type_ complex_members, simple_members = get_members(t) result = {name: getattr(value, name) for (name, _) in simple_members if not skip_missing or getattr(value, name) is not MISSING} def _serialize(name, prop): attr = getattr(value, name) real_type = prop.get_subtype(value) if (prop.subtype_attr_name and prop.subtype_mapping) else prop.type serialized_value = serialize_complex_value(attr, real_type, prop.list, skip_missing) return serialized_value for (name, prop) in complex_members: if not skip_missing or getattr(value, name) is not MISSING: result[name] = _serialize(name, prop) return result _complex_serializer_cache[type_] = serializer return serializer else: return _complex_serializer_cache[type_] def _get_return_type_details(function): return get_type_details(function.meta["return_type"])
the-stack_0_19355
""" Tree is either empty or consists of a root and zero or more subtrees, each of which is also a tree. The root of each subtree is connected to the root of the parent tree by an edge. * left right / \ * * left right left right \ * left right Find the successor/predecessor node of a node in a tree Successor: The BinaryTree has left/right attributes which reference to the successor of left/right subtree. Predecessor (see ./parse_tree.py): To find predecessor node, we need a stack to keep the current node before descent to the child node. The peak node in the stack is the predecessor of current node. """ class BinaryTree(object): def __init__(self, rootobj=None): self.key = rootobj self.left = None self.right = None def __repr__(self, i: int = 0): """Print BinaryTree in a structured way""" s = '' s += ' ' * (i-1) * bool(i) + ':..' * bool(i) + str(self.key) + '\n' if self.left is not None: s += self.left.__repr__(i + 1) if self.right is not None: s += self.right.__repr__(i + 1) return s def insertLeft(self, newobj): """Insert a subtree as the left child""" tmp = BinaryTree(newobj) if self.left is None: self.left = tmp else: tmp.left = self.left self.left = tmp return self def insertRight(self, newobj): """Insert a subtree as the right child""" tmp = BinaryTree(newobj) if self.right is None: self.right = tmp else: tmp.right = self.right self.right = tmp return self if __name__ == '__main__': t = BinaryTree('a') t.insertLeft('b') t.insertRight('c') t.left.insertLeft('e') t.left.insertRight('f') print(t)
the-stack_0_19357
import requests, json, io, datetime, pathlib, sys, time, os, csv from io import StringIO import county_report, state_report from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By STATE_ABBR = 'SC' STATE = 'South Carolina' URL = 'https://www.arcgis.com/home/webmap/viewer.html?url=https://services2.arcgis.com/XZg2efAbaieYAXmu/ArcGIS/rest/services/COVID19_SharingView/FeatureServer/0&source=sd' def get_row_data(table): for row in table: yield [td.text for td in row.find_elements_by_xpath(".//td")] def scraper(): counties = [] # You will need a WebDriver for Edge. See https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/ try: browser = webdriver.Edge("msedgedriver.exe") browser.get(URL) time.sleep(1) show_table_link = WebDriverWait(browser, 30).until(EC.presence_of_element_located((By.XPATH, '/html/body/div[1]/div[1]/div[3]/div[3]/div/div/div[3]/div[2]/div/div[1]/div[2]/div[1]/div[1]/div/div[2]/span'))) show_table_link.click() time.sleep(1) county_div = WebDriverWait(browser, 30).until(EC.presence_of_element_located((By.XPATH, '/html/body/div[1]/div[1]/div[3]/div[5]/div[4]/div[1]/div/div/div/div[1]/div/div/div[2]/div/div[2]/div'))) county_div_rows = county_div.find_elements_by_xpath('.//div[@role="row"]') # SC puts its county level data into lots of <div> elements, with one <div> per county. Each <div> has its own single-row <table> that contains the county data. Thus, we # have some extra stuff to do to make this work right. for div_row in county_div_rows: county_table = div_row.find_element_by_xpath('.//table') htmlRows = county_table.find_elements_by_xpath(".//tr") rows = get_row_data(htmlRows) for row in rows: county_name = row[0] if county_name == 'Unknown': continue confirmed = int(row[3].replace(',', '')) deaths = int(row[4].replace(',', '')) county = county_report.CountyReport(STATE, county_name, confirmed, deaths, -1, -1, datetime.datetime.now()) counties.append(county) except: print("Unexpected error:", sys.exc_info()[0]) browser.quit() # print the number of counties we processed print(' ', STATE_ABBR, ':', len(counties), ' counties processed OK') # build the state-level report object that will include all of the counties stateReport = state_report.StateReport(STATE, STATE_ABBR, counties, datetime.datetime.now()) # return the state-level report return stateReport
the-stack_0_19359
import os import bpy from tests import utils from io_scene_xray import plugin_prefs class TestLevel(utils.XRayTestCase): def test_default(self): if bpy.app.version >= (2, 80, 0): prefs = plugin_prefs.get_preferences() prefs.gamemtl_file = os.path.join(self.relpath(), 'gamemtl.xr') # Import bpy.ops.xray_import.level(filepath=os.path.join( self.relpath(), 'test_fmt_level', 'level' )) # Export level_obj = bpy.data.objects['test_fmt_level'] level_obj.select_set(True) directory = self.outpath('test_fmt_level_export') if not os.path.exists(directory): os.makedirs(directory) bpy.context.view_layer.objects.active = level_obj bpy.ops.xray_export.level(directory=directory) # Assert self.assertReportsNotContains('WARNING')
the-stack_0_19360
from math import inf def max_sub_array_sum(array:list): ''' Takes an array and returns the maximum possible sum of a sub-array and returns the sum and the indices of sub-array whose sum is that max sum ''' def conquer(left:int, mid:int, right:int) -> tuple: left_sum, right_sum = -inf, -inf max_left, max_right = mid, mid s = 0 for i in range(mid, left - 1, -1): s += array[i] if s >= left_sum: left_sum = s max_left = i s = 0 for i in range(mid + 1, right + 1): s += array[i] if s >= right_sum: right_sum = s max_right = i return left_sum + right_sum, max_left, max_right def divide(left:int, right:int) -> tuple: if left == right: return array[left], left, left else: mid = (left + right) // 2 left_sum = divide(left, mid) right_sum = divide(mid + 1, right) mid_sum = conquer(left, mid, right) returned_sum = left_sum if returned_sum[0] < right_sum[0]: returned_sum = right_sum if returned_sum[0] < mid_sum[0]: returned_sum = mid_sum return returned_sum return divide(0, len(array) - 1)
the-stack_0_19361
import torch import torch.nn as nn import hourglasses import modules.vae as V import modules.landmark_projection as lp import torch.nn.functional as F import vgg from torchvision.transforms import Normalize from time import process_time # # # # # # # # # # DISENTANGLING CONTENT AND STYLE VIA UNSUPERVISED GEOMETRY DISTILLATION # # # # # # # # # # class GeomVAE(nn.Module): """VAE of DISENTANGLING CONTENT AND STYLE VIA UNSUPERVISED GEOMETRY DISTILLATION""" def __init__(self, in_channels=3, landmarks=30, sigma=2): super(GeomVAE, self).__init__() num_channels = 16 # from hourglass paper # Structure Branch self.structure_branch = hourglasses.StackedHourGlass(in_channels=in_channels, nChannels=num_channels, nStack=1, nModules=2, numReductions=4, nJoints=landmarks) # self.structure_branch = hg2.Hourglass() self.project_y = lp.HeatmapProjection(sigma=sigma, landmarks=landmarks) self.reduce_y = False # reduce y to 1 channel after extraction if self.reduce_y: landmarks = 1 self.y_norm = nn.InstanceNorm2d(landmarks) self.encode_structure = EncoderVAE(in_channels=landmarks, need_skips=True) # Style Branch self.encode_style = EncoderVAE(in_channels=in_channels+landmarks, need_skips=False) # Decoder self.skip_mode = 'cat' # self.skip_mode = 'add' decoder_in = 128 self.decoder = DecoderVAE(in_channels=decoder_in, out_channels=in_channels, skip_mode=self.skip_mode) # batch_norm = True # self.vgg_extractor = ExtractorVGG(features=vgg.make_layers(vgg.cfgs['E'], batch_norm=batch_norm), # arch='vgg19', batch_norm=batch_norm).eval() self.L1_loss = nn.L1Loss() def forward(self, x): # # Structure y through hourglass t = [process_time()] y = self.structure_branch(x) y = y[0] t.append(process_time()) y = F.interpolate(y, size=(256, 256), mode='nearest') # y = F.interpolate(y, size=(256, 256), mode='bilinear', align_corners=True) y, prior_loss = self.project_y(y) # y = y.detach() t.append(process_time()) if self.reduce_y: y = y.sum(1, keepdim=True) # y, _ = y.max(dim=1) # y = y.unsqueeze(1) y = self.y_norm(y) # y = self.y_norm(y) # print(y.max(), y.min()) z_structure, skips = self.encode_structure(y) # # Style branch # # x_y = torch.cat((x, y), dim=1) # concatenate x with structure, y, to encode style p(z|x, y) t.append(process_time()) z_style = self.encode_style(torch.cat((x, y), dim=1)) # # By modeling the two distributions as Gaussian with identity covariances, # # the KL Loss is simply equal to the Euclidean distance between their means t.append(process_time()) kl_loss = 0.5 * torch.pow(z_style.squeeze() - z_structure.squeeze(), 2).sum(-1) kl_loss = kl_loss.mean() t.append(process_time()) z_style = self.reparameterize(z_style) if self.skip_mode == 'cat': z = torch.cat((z_style, z_structure), dim=1) else: z = z_style + z_structure # fuse features, essentially the first skip layers x_out = self.decoder(z, skips=skips) t.append(process_time()) rc_loss = self.reconstruction_loss(x, x_out) t.append(process_time()) # delta_t = [] # for i in range(1, len(t)): # delta_t.append(t[i] - t[i-1]) # print(delta_t) return x_out, y, (rc_loss, prior_loss, kl_loss) @staticmethod def reparameterize(mu, logvar=None): if logvar is None: # in the paper, they just estimate mu, and use an identify matrix as sigma logvar = torch.ones_like(mu) std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return mu + eps * std def reconstruction_loss(self, x_in, x_out): """ Calculate the reconstruction loss of the whole model using combined losses for L1 loss between the image apir, and loss between the image pairs' features from the l^th layer of VGG-19. **Authors note it would also be possible to add an adversarial loss too :param x_in: Original Image :param x_out: Reconstructed Image :param lam: Weighting factor for feature map losses :return: """ # self.vgg_extractor.eval() # calculate L1(?) loss between x_in, x_out x_loss = self.L1_loss(x_in, x_out) return x_loss class EncoderVAE(nn.Module): def __init__(self, in_channels, need_skips=False): super(EncoderVAE, self).__init__() self.need_skips = need_skips # self.layer_0 = nn.Sequential(nn.InstanceNorm2d(in_channels), # nn.Conv2d(in_channels, 64, kernel_size=4, stride=2, padding=1, bias=True)) self.layer_0 = nn.Conv2d(in_channels, 64, kernel_size=4, stride=2, padding=1, bias=True) main_layers = [] # Arch first layer is 64-128, rest are 128-128 channels arch = [(64, 128, 4, 2)] + [(128, 128, 4, 2)] * 5 + [(128, 128, 4, 2, 1, True)] # final layer maps to a vector so can't instant norm for layer in arch: main_layers.append(V.LeakyBlock(*layer)) self.main_layers = nn.ModuleList(main_layers) self.layer_mu = nn.Conv2d(128, 128, kernel_size=1, stride=1) def forward(self, x): x = self.layer_0(x) skips = [x.clone()] for i, layer in enumerate(self.main_layers): x = layer(x) if self.need_skips: skips.append(x.clone()) assert not torch.equal(x[0, :, :, :], x[1, :, :, :]) x = self.layer_mu(x) if self.need_skips: return x, skips else: return x class DecoderVAE(nn.Module): """ Using upsample->skip->conv instead of skip->deconv """ def __init__(self, in_channels, out_channels, skip_mode='cat'): super(DecoderVAE, self).__init__() decoder_channels = 128 if skip_mode == 'cat': in_channels *= 2 arch = [(decoder_channels*2, decoder_channels, 4, 2)] * 6 + [(decoder_channels*2, 64, 4, 2)] final_channels = 128 elif skip_mode == 'add': arch = [(decoder_channels, decoder_channels, 4, 2)] * 6 + [(decoder_channels, 64, 4, 2)] final_channels = 64 else: print('Invalid skip_mode') raise NotImplementedError # opposite to encoder so layer_mu is first, then layer_9 at the end self.conv_0 = nn.Conv2d(in_channels, decoder_channels, kernel_size=1, stride=1, padding=0) main_layers = [] for layer in arch: main_layers.append(V.DeconvBlock(*layer)) self.main_layers = nn.ModuleList(main_layers) self.tanh = nn.Tanh() self.relu = nn.ReLU() self.layer_end = nn.ConvTranspose2d(final_channels, out_channels, kernel_size=4, stride=2, padding=1, bias=True) self.skip_mode = skip_mode def forward(self, x, skips=None): x = self.conv_0(x) skips = skips[::-1] for layer_id, layer in enumerate(self.main_layers): if skips is not None: x = self.skip_layer(x, skips[layer_id]) x = layer(x) x = self.skip_layer(x, skips[-1]) x = self.tanh(self.layer_end(self.relu(x))) return x def skip_layer(self, x, skip_x): if self.skip_mode == 'cat': return torch.cat((x, skip_x), dim=1) else: return x + skip_x class ExtractorVGG(vgg.VGG): def __init__(self, features, arch, batch_norm): super(ExtractorVGG, self).__init__(features) # check for batch norm if batch_norm: arch = 'vgg19_bn' self.load_weights(arch) del self.classifier # # extract features before every Maxpool layer # if not batch_norm: # self.extract_ids = [3, 8, 17, 26, 35] # else: # self.extract_ids = [5, 12, 25, 38, 51] # extract features after every Maxpool layer if not batch_norm: self.extract_ids = [4, 9, 18, 27, 36] else: self.extract_ids = [6, 13, 26, 39, 52] self.loss = nn.L1Loss() def _forward(self, x): # normalize images # x = F.interpolate(x, size=(224, 224), mode='bilinear', align_corners=False) x = self.normalize(x) outputs = [] for i, layer in enumerate(self.features): x = layer(x) if i in self.extract_ids: outputs.append(x) return tuple(outputs) def load_weights(self, arch, progress=True): state_dict = vgg.load_state_dict_from_url(vgg.model_urls[arch], progress=progress) state_dict = {k: v for k, v in state_dict.items() if k in self.state_dict()} self.load_state_dict(state_dict) def forward(self, x_in, x_out, lam=1.): # def reconstruction_loss(self, x_in, x_out, lam=1.): """ Calculate the reconstruction loss of the whole model using combined losses for L1 loss between the image apir, and loss between the image pairs' features from the l^th layer of VGG-19. **Authors note it would also be possible to add an adversarial loss too :param x_in: Original Image :param x_out: Reconstructed Image :param lam: Weighting factor for feature map losses :return: """ # calculate L1(?) losses between l-th vgg features f_in, f_out for all l x_loss = 0. # concat inputs batch_size = x_in.size(0) x = torch.cat((x_in, x_out), dim=0) fmaps = self._forward(x) for layer_id in range(len(fmaps)): x_loss += lam * self.loss(fmaps[layer_id][:batch_size, :, :, :], fmaps[layer_id][batch_size:, :, :, :]) return x_loss @staticmethod def normalize(x): # Normalize with imagenet mean and std mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] x_new = x.clone() for channel in range(3): x_new[:, channel, :, :] = x[:, channel, :, :] - mean[channel] x_new[:, channel, :, :] = x[:, channel, :, :] / std[channel] return x_new
the-stack_0_19362
# Copyright 2017 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import lzma import os import sys import shutil import subprocess import pickle import hashlib import tarfile, zipfile import tempfile from glob import glob from mesonbuild.environment import detect_ninja from mesonbuild.mesonlib import windows_proof_rmtree from mesonbuild import mlog def create_hash(fname): hashname = fname + '.sha256sum' m = hashlib.sha256() m.update(open(fname, 'rb').read()) with open(hashname, 'w') as f: f.write('%s %s\n' % (m.hexdigest(), os.path.basename(fname))) def create_zip(zipfilename, packaging_dir): prefix = os.path.dirname(packaging_dir) removelen = len(prefix) + 1 with zipfile.ZipFile(zipfilename, 'w', compression=zipfile.ZIP_DEFLATED, allowZip64=True) as zf: zf.write(packaging_dir, packaging_dir[removelen:]) for root, dirs, files in os.walk(packaging_dir): for d in dirs: dname = os.path.join(root, d) zf.write(dname, dname[removelen:]) for f in files: fname = os.path.join(root, f) zf.write(fname, fname[removelen:]) def del_gitfiles(dirname): for f in glob(os.path.join(dirname, '.git*')): if os.path.isdir(f) and not os.path.islink(f): windows_proof_rmtree(f) else: os.unlink(f) def process_submodules(dirname): module_file = os.path.join(dirname, '.gitmodules') if not os.path.exists(module_file): return subprocess.check_call(['git', 'submodule', 'update', '--init', '--recursive'], cwd=dirname) for line in open(module_file): line = line.strip() if '=' not in line: continue k, v = line.split('=', 1) k = k.strip() v = v.strip() if k != 'path': continue del_gitfiles(os.path.join(dirname, v)) def run_dist_scripts(dist_root, dist_scripts): assert(os.path.isabs(dist_root)) env = os.environ.copy() env['MESON_DIST_ROOT'] = dist_root for d in dist_scripts: script = d['exe'] args = d['args'] name = ' '.join(script + args) print('Running custom dist script {!r}'.format(name)) try: rc = subprocess.call(script + args, env=env) if rc != 0: sys.exit('Dist script errored out') except OSError: print('Failed to run dist script {!r}'.format(name)) sys.exit(1) def git_have_dirty_index(src_root): '''Check whether there are uncommitted changes in git''' ret = subprocess.call(['git', '-C', src_root, 'diff-index', '--quiet', 'HEAD']) return ret == 1 def create_dist_git(dist_name, src_root, bld_root, dist_sub, dist_scripts): if git_have_dirty_index(src_root): mlog.warning('Repository has uncommitted changes that will not be included in the dist tarball') distdir = os.path.join(dist_sub, dist_name) if os.path.exists(distdir): shutil.rmtree(distdir) os.makedirs(distdir) subprocess.check_call(['git', 'clone', '--shared', src_root, distdir]) process_submodules(distdir) del_gitfiles(distdir) run_dist_scripts(distdir, dist_scripts) xzname = distdir + '.tar.xz' # Should use shutil but it got xz support only in 3.5. with tarfile.open(xzname, 'w:xz') as tf: tf.add(distdir, dist_name) # Create only .tar.xz for now. # zipname = distdir + '.zip' # create_zip(zipname, distdir) shutil.rmtree(distdir) return (xzname, ) def hg_have_dirty_index(src_root): '''Check whether there are uncommitted changes in hg''' out = subprocess.check_output(['hg', '-R', src_root, 'summary']) return b'commit: (clean)' not in out def create_dist_hg(dist_name, src_root, bld_root, dist_sub, dist_scripts): if hg_have_dirty_index(src_root): mlog.warning('Repository has uncommitted changes that will not be included in the dist tarball') os.makedirs(dist_sub, exist_ok=True) tarname = os.path.join(dist_sub, dist_name + '.tar') xzname = tarname + '.xz' subprocess.check_call(['hg', 'archive', '-R', src_root, '-S', '-t', 'tar', tarname]) if dist_scripts: mlog.warning('dist scripts are not supported in Mercurial projects') with lzma.open(xzname, 'wb') as xf, open(tarname, 'rb') as tf: shutil.copyfileobj(tf, xf) os.unlink(tarname) # Create only .tar.xz for now. # zipname = os.path.join(dist_sub, dist_name + '.zip') # subprocess.check_call(['hg', 'archive', '-R', src_root, '-S', '-t', 'zip', zipname]) return (xzname, ) def check_dist(packagename, meson_command, privdir): print('Testing distribution package %s' % packagename) unpackdir = os.path.join(privdir, 'dist-unpack') builddir = os.path.join(privdir, 'dist-build') installdir = os.path.join(privdir, 'dist-install') for p in (unpackdir, builddir, installdir): if os.path.exists(p): shutil.rmtree(p) os.mkdir(p) ninja_bin = detect_ninja() try: tf = tarfile.open(packagename) tf.extractall(unpackdir) srcdir = glob(os.path.join(unpackdir, '*'))[0] if subprocess.call(meson_command + ['--backend=ninja', srcdir, builddir]) != 0: print('Running Meson on distribution package failed') return 1 if subprocess.call([ninja_bin], cwd=builddir) != 0: print('Compiling the distribution package failed') return 1 if subprocess.call([ninja_bin, 'test'], cwd=builddir) != 0: print('Running unit tests on the distribution package failed') return 1 myenv = os.environ.copy() myenv['DESTDIR'] = installdir if subprocess.call([ninja_bin, 'install'], cwd=builddir, env=myenv) != 0: print('Installing the distribution package failed') return 1 finally: shutil.rmtree(unpackdir) shutil.rmtree(builddir) shutil.rmtree(installdir) print('Distribution package %s tested' % packagename) return 0 def run(args): src_root = args[0] bld_root = args[1] meson_command = args[2:] priv_dir = os.path.join(bld_root, 'meson-private') dist_sub = os.path.join(bld_root, 'meson-dist') buildfile = os.path.join(priv_dir, 'build.dat') build = pickle.load(open(buildfile, 'rb')) dist_name = build.project_name + '-' + build.project_version _git = os.path.join(src_root, '.git') if os.path.isdir(_git) or os.path.isfile(_git): names = create_dist_git(dist_name, src_root, bld_root, dist_sub, build.dist_scripts) elif os.path.isdir(os.path.join(src_root, '.hg')): names = create_dist_hg(dist_name, src_root, bld_root, dist_sub, build.dist_scripts) else: print('Dist currently only works with Git or Mercurial repos') return 1 if names is None: return 1 error_count = 0 for name in names: rc = check_dist(name, meson_command, priv_dir) # Check only one. if rc == 0: create_hash(name) error_count += rc return 1 if error_count else 0
the-stack_0_19366
from pathlib import Path from typing import List from blspy import AugSchemeMPL from peas.util.ints import uint32 from peas.util.keychain import Keychain from peas.util.validate_alert import create_alert_file, create_not_ready_alert_file, validate_alert_file bitcoin_hash = None bram_message = None status = None while True: status_input = input("What is the status of this alert? (ready/not ready)").lower() if status_input == "ready": status = True break elif status_input == "not ready": status = False break else: print("Unknown input") keychain: Keychain = Keychain() print("\n___________ SELECT KEY ____________") private_keys = keychain.get_all_private_keys() if len(private_keys) == 0: print("There are no saved private keys.") quit() print("Showing all private keys:") for sk, seed in private_keys: print("\nFingerprint:", sk.get_g1().get_fingerprint()) selected_key = None while True: user_input = input("\nEnter fingerprint of the key you want to use, or enter Q to quit: ").lower() if user_input == "q": quit() for sk, seed in private_keys: fingerprint = sk.get_g1().get_fingerprint() pub = sk.get_g1() if int(user_input) == fingerprint: print(f"Selected: {fingerprint}") selected_key = sk break if selected_key is not None: break print("\n___________ HD PATH ____________") while True: hd_path = input("Enter the HD path in the form 'm/12381/8444/n/n', or enter Q to quit: ").lower() if hd_path == "q": quit() verify = input(f"Is this correct path: {hd_path}? (y/n) ").lower() if verify == "y": break k = Keychain() private_keys = k.get_all_private_keys() path: List[uint32] = [uint32(int(i)) for i in hd_path.split("/") if i != "m"] # Derive HD key using path form input for c in path: selected_key = AugSchemeMPL.derive_child_sk(selected_key, c) print("Public key:", selected_key.get_g1()) # get file path file_path = None while True: file_path = input("Enter the path where you want to save signed alert file, or q to quit: ") if file_path == "q" or file_path == "Q": quit() file_path = file_path.strip() y_n = input(f"Is this correct path (y/n)?: {file_path} ").lower() if y_n == "y": break f_path: Path = Path(file_path) if status is True: print("") print("___________ BITCOIN BLOCK HASH ____________") while True: bitcoin_hash = input("Insert Bitcoin block hash: ") print(f"Bitcoin block hash = {bitcoin_hash}") y_n = input("Does this look good (y/n): ").lower() if y_n == "y": break print("") print("___________ BRAM MESSAGE ____________") while True: bram_message = input("Insert message from Bram: ") print(f"Bram message = {bram_message}") y_n = input("Does this look good (y/n): ").lower() if y_n == "y": break genesis_challenge_preimage = f"bitcoin_hash:{bitcoin_hash},bram_message:{bram_message}" create_alert_file(f_path, selected_key, genesis_challenge_preimage) print(f"Alert written to file {f_path}") pubkey = f"{bytes(selected_key.get_g1()).hex()}" validated = validate_alert_file(f_path, pubkey) if validated: print(f"Signature has passed validation for pubkey: {pubkey}") else: print(f"Signature has failed validation for pubkey: {pubkey}") assert False else: create_not_ready_alert_file(f_path, selected_key) print(f"Alert written to file {f_path}")
the-stack_0_19367
# !/usr/bin/python2 ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from resource_management.core.logger import Logger from resource_management.libraries.functions import component_version from resource_management.libraries.script import Script from unittest import TestCase Logger.initialize_logger() class TestComponentVersionMapping(TestCase): def test_get_component_versions(self): """ Tests that the component version map can be parsed :return: """ command_json = TestComponentVersionMapping._get_component_version_mappings() Script.config = command_json version = component_version.get_component_repository_version(service_name="HDFS", component_name="DATANODE") self.assertEqual(version, "2.5.0.0-1234") version = component_version.get_component_repository_version(service_name = "ZOOKEEPER", component_name = "ZOOKEEPER_SERVER") self.assertEqual(version, "2.6.0.0-9999") def test_get_component_version_by_service_name(self): """ Tests that the component version map can be parsed using only the service name :return: """ command_json = TestComponentVersionMapping._get_component_version_mappings() Script.config = command_json version = component_version.get_component_repository_version(service_name="HDFS") self.assertEqual(version, "2.5.0.0-1234") version = component_version.get_component_repository_version(service_name = "ZOOKEEPER") self.assertEqual(version, "2.6.0.0-9999") @staticmethod def _get_component_version_mappings(): """ A typical component version mapping structure :return: """ return { "componentVersionMap": { "HDFS": { "NAMENODE": "2.5.0.0-1234", "SECONDARY_NAMENODE": "2.5.0.0-1234", "DATANODE": "2.5.0.0-1234", "HDFS_CLIENT": "2.5.0.0-1234" }, "ZOOKEEPER": { "ZOOKEEPER_SERVER": "2.6.0.0-9999", "ZOOKEEPER_CLIENT": "2.6.0.0-9999" } }, }
the-stack_0_19368
# -*- coding: utf-8 -*- """Monitoring library for Puppet Agent and Puppet Server components. Implements a number of interfaces for interacting with Puppet Agent state and provides the ability to reliably determine the status of a Puppet Agent, profile catalog run performance and detect failed resources and events. Also provides interfaces for interacting with Puppet Server service APIs to reliably detect the status of critical services on Puppet. Attributes: LOG (:class:`logging.Logger`): A module level logger instance. The configuration of handlers is the prerogative of developers consuming the library. """ import logging import os import yaml from .utils import get_timedelta, safe_get LOG = logging.getLogger('puppetbeacon.monitor') class AgentState(object): """Base class that provides an interface to the Puppet agent state. Provides an interface that can be used to interact with the various Puppet agent state objects to determine if an agent is enabled or actively executing a catalog run. Also provides a method for retrieving detailed statistics from the last catalog run. Args: summary_file (:obj:`str`, optional): Fully-qualified path to the Puppet Agent last run summary file. This file contains YAML structured data and statistics about the agents last catalog run. Default: /opt/puppetlabs/puppet/cache/state/last_run_summary.yaml run_lock (:obj:`str`, optional): Fully-qualified path to the Puppet Agent run lock. This lock is present if the agent is actively executing a catalog run. Default: /opt/puppetlabs/puppet/cache/state/agent_catalog_run.lock disabled_lock (:obj:`str`, optional): Fully-qualified path to the Puppet Agent disabled lock. This lock is present if the agent has been administratively disabled and contains an optional message. Default: /opt/puppetlabs/puppet/cache/state/agent_disabled.lock Attributes: disabled_message (:obj:`str`): If the agent has been administratively disabled, the disabled_message will be provided here if available. Defaults to None. """ def __init__(self, summary_file=None, run_lock=None, disabled_lock=None): self.summary_file = summary_file if summary_file is not None else \ '/opt/puppetlabs/puppet/cache/state/last_run_summary.yaml' self.run_lock = run_lock if run_lock is not None else \ '/opt/puppetlabs/puppet/cache/state/agent_catalog_run.lock' self.disabled_lock = disabled_lock if disabled_lock is not None else \ '/opt/puppetlabs/puppet/cache/state/agent_disabled.lock' self._disabled = None self.disabled_message = None @property def disabled(self): """:obj:`bool`: Puppet Agent administrative status. True if the agent is disabled, False otherwise. """ try: with open(self.disabled_lock, 'r') as disabled_lock: LOG.debug('Located agent disabled lock at %s, looking ' + 'for an administrative message.', self.disabled_lock) self.disabled_message = \ safe_get(yaml.safe_load(disabled_lock), 'disabled_message') LOG.warning('Puppet agent has been administratively ' + 'disabled. Message: %s', self.disabled_message) return True except EnvironmentError: LOG.debug('No agent disabled lock present at %s, agent is ' + 'enabled.', self.disabled_lock) return False def get_run_summary(self): """Retrieves and deserializes agent run summary data and statistics. Provides an interface to interact with the last run summary data and statistics of a Puppet agent. Method performs a safe_load when deserializing to provide protection against execution of arbitrary code. Returns: dict: Returns a nested dictionary object with the deserialized data and statistics from the agent's last run. Returns an empty dictionary if the method is unable to retrieve or deserialize the summary data. """ run_summary = None try: with open(self.summary_file, 'r') as summary_file: run_summary = yaml.safe_load(summary_file) LOG.debug('Successfully parsed Puppet agent summary data in ' + 'file %s', self.summary_file) except IOError as error: # TODO(e.westfall): Raise exception rather than return empty dict? LOG.error('Unable to locate or open summary file %s. Error: %s', self.summary_file, error) except yaml.YAMLError as error: LOG.error('Unable to parse summary file %s. Error: %s', self.summary_file, error) return run_summary if run_summary else {} class PuppetAgent(AgentState): """Provides an interface to detailed Puppet agent data and statistics. Implements an interface that exposes data and statistics providing detailed information about resource and event failures, the last time the agent completed a catalog run and its duration, and the agent version. Also provides a method to determine if the agent is currently executing a catalog run and if so, its duration. Args: *args: Variable length argument list that is passed through to the :class:`AgentState` base class initializer. Can be used to override the default values for `summary_file`, `run_lock` and `disabled_lock` when directly instantiating a :class:`PuppetAgent` instance. **kwargs: Arbitrary keyword arguments that are passed through to the :class:`AgentState` base class. Can be used to override the default values for `summary_file`, `run_lock` and `disabled_lock` when directly instantiating a :class:`PuppetAgent` instance. Attributes: last_run (:obj:`int`): The number of seconds since the last catalog run. last_run_duration (:obj:`int`): The duration of the last catalog run in seconds. events_failed (:obj:`int`): The number of failed events during the last catalog run. resources_failed (:obj:`int`): The number of resources that failed during the last catalog run. resources_failed_restart (:obj:`int`): The number of resources that failed to restart during the last catalog run. puppet_version (:obj:`str`): The Puppet agent version. """ def __init__(self, *args, **kwargs): AgentState.__init__(self, *args, **kwargs) self._run_duration = None self.last_run = None self.last_run_duration = None self.events_failed = None self.resources_failed = None self.resources_failed_restart = None self.puppet_version = None self.get_last_run() @property def run_duration(self): """Determine if a catalog run is in progress and return duration. Checks for the presence of the agent run lock and if present, determines the duration of the catalog run by calculating the age of the lock in seconds. Returns: int: An integer representing the number of seconds the run lock has been held by the Puppet agent. """ run_duration = None try: run_duration = get_timedelta(os.path.getmtime(self.run_lock)) LOG.debug('Located agent run lock at %s, Puppet agent has been ' + 'executing a catalog run for %s seconds.', self.run_lock, run_duration) except OSError: LOG.debug('Puppet agent is not executing a catalog run.') return run_duration def get_last_run(self): """Obtains and processes summary data for last catalog run. Calls the :method:`get_run_summary` method from the :class:`AgentState` class to obtain last run summary data and statistics. Processes key data using the :func:`safe_get` helper function to safely evaluate nested values from the deserialized object. If values can be found, instance attributes are set. Returns: bool: Returns True if last run summary data was successfully retrieved and processed, returns False otherwise. """ run_summary = self.get_run_summary() if not run_summary: return False self.last_run = \ get_timedelta(safe_get(run_summary, 'time', 'last_run')) self.last_run_duration = \ int(safe_get(run_summary, 'time', 'total')) self.events_failed = safe_get(run_summary, 'events', 'failure') self.resources_failed = \ safe_get(run_summary, 'resources', 'failed') self.resources_failed_restart = \ safe_get(run_summary, 'resources', 'failed_to_restart') self.puppet_version = safe_get(run_summary, 'version', 'puppet') return True
the-stack_0_19369
import json from bm_instance_agent.common import utils from bm_instance_agent import exception class Base(object): """ Construct obj from req body """ k_v_mapping = {} allowed_keys = [] def __init__(self): for v in self.k_v_mapping.values(): setattr(self, v, None) @staticmethod def body(req): b_data = req.get('body', {}) if isinstance(b_data, str): b_data = json.loads(b_data) return b_data def construct(self, data): for k in self.allowed_keys: setattr(self, k, data.get(k)) def to_json(self): return {k: getattr(self, k) for k in self.allowed_keys} class BmInstanceObj(Base): """ Construct a bm instance obj from req body Bm instance part of req:: { 'bmInstance': { 'uuid': 'uuid', 'provisionIpAddress': '192.168.101.10', 'provisionNicMac': 'aa:bb:cc:dd:ee:ff' } } """ allowed_keys = ['uuid', 'provision_ip', 'provision_mac'] @classmethod def from_json(cls, bm_instance): obj = cls() obj.construct(bm_instance) return obj class VolumeObj(Base): """ Construct a volume obj from req body Volume part of req:: { 'volume': { 'uuid': 'uuid', 'primaryStorageType': 'NFS', 'type': 'Data/Sys', 'path': '/path/to/nfs/qcow2/volume', 'format': 'qcow2', 'deviceId': 2 } } """ allowed_keys = ['uuid', 'device_id'] @classmethod def from_json(cls, volume): obj = cls() obj.construct(volume) return obj class PortObj(Base): """ Construct a Port obj from req body A port example:: { 'mac': 'aa:bb:cc:dd:ee:ff', 'ipAddress': '10.0.120.10', 'netmask': '255.255.255.0', 'gateway': '10.0.120.1', 'vlanId': '1024', 'defaultRoute': True } `nextDefaultRoutePort` only used during port detach. """ allowed_keys = ['mac', 'ip_address', 'netmask', 'gateway', 'default_route', 'iface_name', 'vlan_id'] @classmethod def from_json(cls, port): obj = cls() obj.construct(port) local_ifaces = utils.get_interfaces() if obj.mac not in local_ifaces: raise exception.NewtorkInterfaceNotFound(mac=obj.mac, vlan_id=obj.vlan_id) # NOTE(ya.wang) For vlan nic, the name is 'iface.vlan_id', therefore # try to split it. iface_name = local_ifaces.get(obj.mac).split('.')[0] if obj.vlan_id: iface_name = '{iface_name}.{vlan_id}'.format( iface_name=iface_name, vlan_id=obj.vlan_id) setattr(obj, 'iface_name', iface_name) return obj class NetworkObj(Base): """ Construct a network obj from req body single port req example:: { 'port': { 'mac': '52:54:00:23:f1:c0', 'ipAddress': '10.0.120.10', 'netmask': '255.255.255.0', 'gateway': '10.0.120.1', 'vlanId': '1024', 'defaultRoute': True } } multi ports req example:: { 'ports': [ { 'mac': '52:54:00:23:a1:c0', 'ipAddress': '10.0.120.10', 'netmask': '255.255.255.0', 'gateway': '10.0.120.1', 'vlanId': '1024', 'defaultRoute': True }, { 'mac': '52:54:00:e5:c3:bf', 'ipAddress': '10.0.130.10', 'netmask': '255.255.255.0', 'gateway': '10.0.130.1', 'vlanId': '1024', 'defaultRoute': False } ] } """ @classmethod def from_json(cls, req): if not req: return None obj = cls() setattr(obj, 'default_gw_addr', '') setattr(obj, 'ports', []) ports = req if isinstance(req, list) else [req] for port_dict in ports: obj.ports.append(PortObj.from_json(port_dict)) if port_dict.get('default_route'): obj.default_gw_addr = port_dict.get('gateway') return obj class HeaderObj(Base): """ Construct a request header obj from req headers A req headers example:: { 'taskuuid': '4dca1e5c-6b25-498d-b89e-99c55b32bd81', 'callbackurl': 'mn callback url', 'Gateway-Callback-Uri': 'The callback url which proxy by gw nginx' } If callbackurl and Gateway-Callback-Uri both exist, use Gateway-Callback-Uri """ allowed_keys = ['task_uuid', 'callback_url'] @classmethod def from_headers(cls, headers): obj = cls() setattr(obj, 'task_uuid', headers.get('taskuuid')) if 'Gateway-Callback-Uri' in headers: setattr(obj, 'callback_url', headers.get('Gateway-Callback-Uri')) else: setattr(obj, 'callback_url', headers.get('callbackurl')) return obj
the-stack_0_19370
# ------------------------------------------------------------------------------------------------- # Imports # ------------------------------------------------------------------------------------------------- import logging import os from pathlib import Path import shutil import numpy as np import imageio from datoviz import app, canvas ROOT_PATH = Path(__file__).resolve().parent.parent.parent.parent CYTHON_PATH = Path(__file__).resolve().parent.parent IMAGES_PATH = CYTHON_PATH / 'images' SCREENSHOTS_PATH = ROOT_PATH / 'data/screenshots' logger = logging.getLogger('datoviz') # ------------------------------------------------------------------------------------------------- # Util functions # ------------------------------------------------------------------------------------------------- def check_screenshot(filename): """Compare a new screenshot with the reference image.""" assert filename.exists filename_ref = filename.with_suffix('').with_suffix('').with_suffix('.png') if not filename_ref.exists(): logger.debug(f"Reference image {filename_ref} didn't exist, skipping image check.") shutil.copy(filename, filename_ref) return True img_new = imageio.imread(filename) if img_new.sum() == 0: logger.warning("Screenshot is empty") return False img_ref = imageio.imread(filename_ref) if img_new.shape != img_ref.shape: logger.debug(f"Image size is different: {img_new.shape} != {img_ref.shape}") return False return np.all(img_new == img_ref) def check_canvas(ca, test_name, output_dir=None): """Run a canvas, make a screenshot, and check it with respect to the reference image.""" output_dir = output_dir or IMAGES_PATH if not output_dir.exists(): output_dir.mkdir(exist_ok=True, parents=True) screenshot = output_dir / f'{test_name}.new.png' # Interactive mode if debug. debug = os.environ.get('DVZ_DEBUG', None) if debug: app().run() ca.close() return # Run and save the screenshot. # app().run(10, screenshot=str(screenshot)) app().run(n_frames=5) ca.screenshot(str(screenshot)) ca.close() # Check the screenshot. res = check_screenshot(screenshot) assert res, f"Screenshot check failed for {test_name}" # Delete the new screenshot if it matched the reference image. if res: logger.debug(f"Screenshot check succeedeed for {test_name}") os.remove(screenshot)
the-stack_0_19371
import typing as t from pyday_night_funkin.core.camera import Camera from pyday_night_funkin.core.graphics import PNFBatch, get_default_batch, PNFGroup class Context(): """ Graphics context, which is fancy talk for a batch, a group and a camera in a slotted container class. """ __slots__ = ("batch", "camera", "group") def __init__( self, batch: t.Optional["PNFBatch"] = None, group: t.Optional["PNFGroup"] = None, camera: t.Optional["Camera"] = None, ) -> None: """ Creates a new context. If no `batch` is given, it will be set to be the default batch. If no `group` is given, it will be set to an empty group without state mutators and no parent. If no `camera` is given, it will be set to the global dummy camera. """ self.batch = batch or get_default_batch() self.group = group or PNFGroup() self.camera = camera or Camera.get_dummy()
the-stack_0_19372
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. import dace import numpy as np from dace.transformation.dataflow import StripMining N = dace.symbol('N') @dace.program(dace.float64, dace.float64[N], dace.float64[N]) def axpy(A, X, Y): @dace.map(_[0:N]) def multiplication(i): in_A << A in_X << X[i] in_Y << Y[i] out >> Y[i] out = in_A * in_X + in_Y def test_tiling_number_of_tiles(): size = 250 np.random.seed(0) A = np.random.rand() X = np.random.rand(size) Y = np.random.rand(size) Z = np.copy(Y) sdfg = axpy.to_sdfg() sdfg.name = 'tiling_number_of_tiles' sdfg.apply_strict_transformations() sdfg.apply_transformations(StripMining, options=[{ 'tile_size': '16', 'tiling_type': dace.TilingType.NumberOfTiles }]) sdfg(A=A, X=X, Y=Y, N=size) assert np.allclose(Y, A*X+Z) print('PASS') if __name__ == "__main__": test_tiling_number_of_tiles()
the-stack_0_19373
import sys from setuptools import setup, find_packages with open("README.rst") as fp: long_description = fp.read() install_requires = [ "requests>=2.12", "PyYAML", "six>=1.10.0", "tzlocal", ] if sys.version_info < (3,): install_requires.extend([ "ipaddress", ]) setup( name="pykube", version="0.16a2", description="Python client library for Kubernetes", long_description=long_description, author="Eldarion, Inc.", author_email="[email protected]", license="Apache", url="https://github.com/kelproject/pykube", classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Web Environment", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python", ], zip_safe=False, packages=find_packages(), entry_points={ "httpie.plugins.transport.v1": [ "httpie_pykube = pykube.contrib.httpie_plugin:PyKubeTransportPlugin" ], }, install_requires=install_requires, extras_require={ "gcp": [ "google-auth", "jsonpath-ng", ] }, )
the-stack_0_19375
# Copyright 2020 Open Reaction Database Project Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset processing script for database submissions. This script is meant to be a one-stop shop for preparing submissions to the Open Reaction Database. By default, the script only validates the input Dataset messages. Validation may introduce changes to the Reaction messages, such as the addition of SMILES for compounds identified only by NAME. Users should frequently run these checks as they are preparing a dataset for submission. With the optional --update flag, the script also performs database-specific updates (such as adding record IDs). These operations are meant to be run as part of the submission process and not as part of the pre-submission validation cycle. Usage: process_dataset.py (--input_pattern=<str> | --input_file=<str>) [options] Options: --input_pattern=<str> Pattern matching input Dataset protos --input_file=<str> File containing Dataset proto filenames --root=<str> Root of the repository [default: ] --output_format=<str> Dataset output format [default: .pb.gz] --write_errors If True, errors will be written to *.error --no-validate If set, reactions will not be validated --update If True, update Reaction protos --cleanup If True, use git to clean up --max_size=<float> Maximum size (in MB) for any Reaction message [default: 10.0] --base=<str> Git branch to diff against --issue=<str> GitHub pull request number; if provided, a comment will be added --token=<str> GitHub authentication token """ import dataclasses import glob import gzip import logging import os import subprocess import sys from typing import Iterable, List, Mapping, Optional, Set, Tuple import docopt import github from rdkit import RDLogger from ord_schema import message_helpers from ord_schema import updates from ord_schema import validations from ord_schema.proto import dataset_pb2 logger = logging.getLogger(__name__) # pylint: disable=too-many-branches,too-many-locals @dataclasses.dataclass(eq=True, frozen=True, order=True) class FileStatus: """A filename and its status in Git.""" filename: str status: str original_filename: str def __post_init__(self): if self.status[0] not in ["A", "D", "M", "R"]: raise ValueError(f"unsupported file status: {self.status}") def _get_inputs(kwargs) -> List[FileStatus]: """Gets a list of Dataset proto filenames to process. Returns: List of FileStatus objects. Raises: ValueError: If a git-diff status is not one of {'A', 'D', 'M', 'R'}. """ if kwargs["--input_pattern"]: # Setting recursive=True allows recursive matching with '**'. filenames = glob.glob(kwargs["--input_pattern"], recursive=True) return [FileStatus(filename, "A", "") for filename in filenames] if kwargs["--input_file"]: inputs = [] with open(kwargs["--input_file"]) as f: for line in f: fields = line.strip().split("\t") if len(fields) == 3: status, original_filename, filename = fields if not status.startswith("R"): raise ValueError(f"malformed status line: {line.strip()}") else: status, filename = fields if not status.startswith(("A", "D", "M")): raise ValueError(f"unsupported git-diff statue: {status}") original_filename = "" inputs.append(FileStatus(filename, status, original_filename)) return inputs raise ValueError("one of --input_pattern or --input_file is required") def cleanup(filename: str, output_filename: str): """Removes and/or renames the input Dataset files. Args: filename: Original dataset filename. output_filename: Updated dataset filename. """ if filename == output_filename: logger.info("editing an existing dataset; no cleanup needed") return # Reuse the existing dataset ID. args = ["git", "mv", filename, output_filename] logger.info("Running command: %s", " ".join(args)) subprocess.run(args, check=True) def _get_reaction_ids(dataset: dataset_pb2.Dataset) -> Set[str]: """Returns a set containing the reaction IDs in a Dataset.""" reaction_ids = set() for reaction in dataset.reactions: if reaction.reaction_id: reaction_ids.add(reaction.reaction_id) return reaction_ids def _load_base_dataset(file_status: FileStatus, base: str) -> dataset_pb2.Dataset: """Loads a Dataset message from another branch.""" if file_status.status.startswith("A"): return None # Dataset only exists in the submission. # NOTE(kearnes): Use --no-pager to avoid a non-zero exit code. args = ["git", "--no-pager", "show"] if file_status.status.startswith("R"): args.append(f"{base}:{file_status.original_filename}") else: args.append(f"{base}:{file_status.filename}") logger.info("Running command: %s", " ".join(args)) serialized = subprocess.run(args, capture_output=True, check=True, text=False) if serialized.stdout.startswith(b"version"): # Convert Git LFS pointers to real data. serialized = subprocess.run( ["git", "lfs", "smudge"], input=serialized.stdout, capture_output=True, check=True, text=False, ) if args[-1].endswith(".gz"): value = gzip.decompress(serialized.stdout) else: value = serialized.stdout return dataset_pb2.Dataset.FromString(value) def get_change_stats( datasets: Mapping[str, dataset_pb2.Dataset], inputs: Iterable[FileStatus], base: str ) -> Tuple[Set[str], Set[str], Set[str]]: """Computes diff statistics for the submission. Args: datasets: Dict mapping filenames to Dataset messages. inputs: List of FileStatus objects. base: Git branch to diff against. Returns: added: Set of added reaction IDs. removed: Set of deleted reaction IDs. changed: Set of changed reaction IDs. """ old, new = set(), set() for file_status in inputs: if not file_status.status.startswith("D"): new.update(_get_reaction_ids(datasets[file_status.filename])) dataset = _load_base_dataset(file_status, base) if dataset is not None: old.update(_get_reaction_ids(dataset)) return new - old, old - new, new & old def _run_updates(datasets: Mapping[str, dataset_pb2.Dataset], kwargs): """Updates the submission files. Args: datasets: Dict mapping filenames to Dataset messages. Raises: ValueError: if any Reaction is larger than FLAGS.max_size. """ for dataset in datasets.values(): # Set reaction_ids, resolve names, fix cross-references, etc. updates.update_dataset(dataset) # Final validation to make sure we didn't break anything. options = validations.ValidationOptions(validate_ids=True, require_provenance=True) validations.validate_datasets(datasets, kwargs["--write_errors"], options=options) for filename, dataset in datasets.items(): output_filename = os.path.join( kwargs["--root"], message_helpers.id_filename(f'{dataset.dataset_id}{kwargs["--output_format"]}'), ) os.makedirs(os.path.dirname(output_filename), exist_ok=True) if kwargs["--cleanup"]: cleanup(filename, output_filename) logger.info("writing Dataset to %s", output_filename) message_helpers.write_message(dataset, output_filename) def run(kwargs) -> Tuple[Optional[Set[str]], Optional[Set[str]], Optional[Set[str]]]: """Main function that returns added/removed reaction ID sets. This function should be called directly by tests to get access to the return values. If main() returns something other than None it will break shell error code logic downstream. Returns: added: Set of added reaction IDs. removed: Set of deleted reaction IDs. changed: Set of changed reaction IDs. """ inputs = sorted(_get_inputs(kwargs)) if not inputs: logger.info("nothing to do") return set(), set(), set() # Nothing to do. # NOTE(kearnes): Process one dataset at a time to avoid OOM errors. change_stats = {} for file_status in inputs: if file_status.status == "D": dataset = None else: dataset = message_helpers.load_message(file_status.filename, dataset_pb2.Dataset) logger.info("%s: %d reactions", file_status.filename, len(dataset.reactions)) datasets = {file_status.filename: dataset} if not kwargs["--no-validate"] and dataset is not None: # Note: this does not check if IDs are malformed. validations.validate_datasets(datasets, kwargs["--write_errors"]) # Check reaction sizes. for reaction in dataset.reactions: reaction_size = sys.getsizeof(reaction.SerializeToString()) / 1e6 if reaction_size > float(kwargs["--max_size"]): raise ValueError( "Reaction is larger than --max_size " f'({reaction_size} vs {kwargs["--max_size"]}' ) if kwargs["--base"]: added, removed, changed = get_change_stats(datasets, [file_status], base=kwargs["--base"]) change_stats[file_status.filename] = (added, removed, changed) logger.info( "Summary: +%d -%d Δ%d reaction IDs", len(added), len(removed), len(changed), ) if kwargs["--update"] and dataset is not None: _run_updates(datasets, kwargs) if change_stats: total_added, total_removed, total_changed = set(), set(), set() comment = [ "Change summary:", "| Filename | Added | Removed | Changed |", "| -------- | ----- | ------- | ------- |", ] for filename, (added, removed, changed) in change_stats.items(): comment.append(f"| {filename} | " f"{len(added)} | {len(removed)} | {len(changed)} |") total_added |= added total_removed |= removed total_changed |= changed comment.append(f"| | **{len(total_added)}** | " f"**{len(total_removed)}** | " f"**{len(total_changed)}** |") if kwargs["--issue"] and kwargs["--token"]: client = github.Github(kwargs["--token"]) repo = client.get_repo(os.environ["GITHUB_REPOSITORY"]) issue = repo.get_issue(kwargs["--issue"]) issue.create_comment("\n".join(comment)) else: total_added, total_removed, total_changed = None, None, None return total_added, total_removed, total_changed def main(kwargs): RDLogger.DisableLog("rdApp.*") # Disable RDKit logging. run(kwargs) if __name__ == "__main__": main(docopt.docopt(__doc__))
the-stack_0_19377
# Copyright 2016 AT&T Corp # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Tempest test-case to test namespace objects using RBAC roles """ from oslo_log import log as logging from patrole_tempest_plugin import rbac_rule_validation from tempest import config from tempest.lib.common.utils import data_utils from tempest.lib import decorators from tungsten_tempest_plugin.tests.api.contrail import rbac_base CONF = config.CONF LOG = logging.getLogger(__name__) class NamespaceContrailTest(rbac_base.BaseContrailTest): """Test class to test namespace objects using RBAC roles""" def _create_namespace(self): fq_name = data_utils.rand_name('namespace') post_body = { 'parent_type': 'domain', 'fq_name': ['default-domain', fq_name] } resp_body = self.namespace_client.create_namespaces(**post_body) namespace_uuid = resp_body['namespace']['uuid'] self.addCleanup(self._try_delete_resource, self.namespace_client.delete_namespace, namespace_uuid) return namespace_uuid def _update_namespace(self, namespace_uuid): put_body = { 'display_name': data_utils.rand_name('namespace') } self.namespace_client.update_namespace(namespace_uuid, **put_body) @rbac_rule_validation.action(service="Contrail", rules=["list_namespaces"]) @decorators.idempotent_id('e436390d-d669-4047-9838-421ea93e94be') def test_list_namespaces(self): """test method for list namespace objects""" with self.rbac_utils.override_role(self): self.namespace_client.list_namespaces() @rbac_rule_validation.action(service="Contrail", rules=["create_namespaces"]) @decorators.idempotent_id('503ae445-7e67-4db6-989a-af0b7f9a7e95') def test_create_namespaces(self): """test method for create namespace objects""" with self.rbac_utils.override_role(self): self._create_namespace() @rbac_rule_validation.action(service="Contrail", rules=["show_namespace"]) @decorators.idempotent_id('f916971a-7c07-4386-b887-8b78d8a1e528') def test_show_namespace(self): """test method for show namespace objects""" namespace_uuid = self._create_namespace() with self.rbac_utils.override_role(self): self.namespace_client.show_namespace(namespace_uuid) @rbac_rule_validation.action(service="Contrail", rules=["update_namespace"]) @decorators.idempotent_id('3649f65a-922a-4b8a-9b8b-520c333e192e') def test_update_namespace(self): """test method for update namespace objects""" namespace_uuid = self._create_namespace() with self.rbac_utils.override_role(self): self._update_namespace(namespace_uuid) @rbac_rule_validation.action(service="Contrail", rules=["delete_namespace"]) @decorators.idempotent_id('80e736bf-fc7d-4274-8173-a50c883776a9') def test_delete_namespace(self): """test method for delete namespace objects""" namespace_uuid = self._create_namespace() with self.rbac_utils.override_role(self): self.namespace_client.delete_namespace(namespace_uuid)
the-stack_0_19378
"""Test check utilities.""" # Authors: MNE Developers # Stefan Appelhoff <[email protected]> # # License: BSD (3-clause) import os import os.path as op import sys import numpy as np import pytest from pathlib import Path import mne from mne import read_vectorview_selection from mne.datasets import testing from mne.io.pick import pick_channels_cov from mne.utils import (check_random_state, _check_fname, check_fname, _check_subject, requires_mayavi, traits_test, _check_mayavi_version, _check_info_inv, _check_option, check_version, _check_path_like, _validate_type, _suggest, _on_missing, requires_nibabel, _safe_input) data_path = testing.data_path(download=False) base_dir = op.join(data_path, 'MEG', 'sample') fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif') fname_event = op.join(base_dir, 'sample_audvis_trunc_raw-eve.fif') fname_fwd = op.join(base_dir, 'sample_audvis_trunc-meg-vol-7-fwd.fif') fname_mgz = op.join(data_path, 'subjects', 'sample', 'mri', 'aseg.mgz') reject = dict(grad=4000e-13, mag=4e-12) @testing.requires_testing_data def test_check(tmpdir): """Test checking functions.""" pytest.raises(ValueError, check_random_state, 'foo') pytest.raises(TypeError, _check_fname, 1) _check_fname(Path('./')) fname = str(tmpdir.join('foo')) with open(fname, 'wb'): pass assert op.isfile(fname) _check_fname(fname, overwrite='read', must_exist=True) orig_perms = os.stat(fname).st_mode os.chmod(fname, 0) if not sys.platform.startswith('win'): with pytest.raises(PermissionError, match='read permissions'): _check_fname(fname, overwrite='read', must_exist=True) os.chmod(fname, orig_perms) os.remove(fname) assert not op.isfile(fname) pytest.raises(IOError, check_fname, 'foo', 'tets-dip.x', (), ('.fif',)) pytest.raises(ValueError, _check_subject, None, None) pytest.raises(TypeError, _check_subject, None, 1) pytest.raises(TypeError, _check_subject, 1, None) # smoke tests for permitted types check_random_state(None).choice(1) check_random_state(0).choice(1) check_random_state(np.random.RandomState(0)).choice(1) if check_version('numpy', '1.17'): check_random_state(np.random.default_rng(0)).choice(1) @testing.requires_testing_data @pytest.mark.parametrize('suffix', ('_meg.fif', '_eeg.fif', '_ieeg.fif', '_meg.fif.gz', '_eeg.fif.gz', '_ieeg.fif.gz')) def test_check_fname_suffixes(suffix, tmpdir): """Test checking for valid filename suffixes.""" new_fname = str(tmpdir.join(op.basename(fname_raw) .replace('_raw.fif', suffix))) raw = mne.io.read_raw_fif(fname_raw).crop(0, 0.1) raw.save(new_fname) mne.io.read_raw_fif(new_fname) @requires_mayavi @traits_test def test_check_mayavi(): """Test mayavi version check.""" pytest.raises(RuntimeError, _check_mayavi_version, '100.0.0') def _get_data(): """Read in data used in tests.""" # read forward model forward = mne.read_forward_solution(fname_fwd) # read data raw = mne.io.read_raw_fif(fname_raw, preload=True) events = mne.read_events(fname_event) event_id, tmin, tmax = 1, -0.1, 0.15 # decimate for speed left_temporal_channels = read_vectorview_selection('Left-temporal') picks = mne.pick_types(raw.info, meg=True, selection=left_temporal_channels) picks = picks[::2] raw.pick_channels([raw.ch_names[ii] for ii in picks]) del picks raw.info.normalize_proj() # avoid projection warnings epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, baseline=(None, 0.), preload=True, reject=reject) noise_cov = mne.compute_covariance(epochs, tmin=None, tmax=0.) data_cov = mne.compute_covariance(epochs, tmin=0.01, tmax=0.15) return epochs, data_cov, noise_cov, forward @testing.requires_testing_data def test_check_info_inv(): """Test checks for common channels across fwd model and cov matrices.""" epochs, data_cov, noise_cov, forward = _get_data() # make sure same channel lists exist in data to make testing life easier assert epochs.info['ch_names'] == data_cov.ch_names assert epochs.info['ch_names'] == noise_cov.ch_names # check whether bad channels get excluded from the channel selection # info info_bads = epochs.info.copy() info_bads['bads'] = info_bads['ch_names'][1:3] # include two bad channels picks = _check_info_inv(info_bads, forward, noise_cov=noise_cov) assert [1, 2] not in picks # covariance matrix data_cov_bads = data_cov.copy() data_cov_bads['bads'] = data_cov_bads.ch_names[0] picks = _check_info_inv(epochs.info, forward, data_cov=data_cov_bads) assert 0 not in picks # noise covariance matrix noise_cov_bads = noise_cov.copy() noise_cov_bads['bads'] = noise_cov_bads.ch_names[1] picks = _check_info_inv(epochs.info, forward, noise_cov=noise_cov_bads) assert 1 not in picks # test whether reference channels get deleted info_ref = epochs.info.copy() info_ref['chs'][0]['kind'] = 301 # pretend to have a ref channel picks = _check_info_inv(info_ref, forward, noise_cov=noise_cov) assert 0 not in picks # pick channels in all inputs and make sure common set is returned epochs.pick_channels([epochs.ch_names[ii] for ii in range(10)]) data_cov = pick_channels_cov(data_cov, include=[data_cov.ch_names[ii] for ii in range(5, 20)]) noise_cov = pick_channels_cov(noise_cov, include=[noise_cov.ch_names[ii] for ii in range(7, 12)]) picks = _check_info_inv(epochs.info, forward, noise_cov=noise_cov, data_cov=data_cov) assert list(range(7, 10)) == picks def test_check_option(): """Test checking the value of a parameter against a list of options.""" allowed_values = ['valid', 'good', 'ok'] # Value is allowed assert _check_option('option', 'valid', allowed_values) assert _check_option('option', 'good', allowed_values) assert _check_option('option', 'ok', allowed_values) assert _check_option('option', 'valid', ['valid']) # Check error message for invalid value msg = ("Invalid value for the 'option' parameter. Allowed values are " "'valid', 'good', and 'ok', but got 'bad' instead.") with pytest.raises(ValueError, match=msg): assert _check_option('option', 'bad', allowed_values) # Special error message if only one value is allowed msg = ("Invalid value for the 'option' parameter. The only allowed value " "is 'valid', but got 'bad' instead.") with pytest.raises(ValueError, match=msg): assert _check_option('option', 'bad', ['valid']) def test_check_path_like(): """Test _check_path_like().""" str_path = str(base_dir) pathlib_path = Path(base_dir) no_path = dict(foo='bar') assert _check_path_like(str_path) is True assert _check_path_like(pathlib_path) is True assert _check_path_like(no_path) is False def test_validate_type(): """Test _validate_type.""" _validate_type(1, 'int-like') with pytest.raises(TypeError, match='int-like'): _validate_type(False, 'int-like') @requires_nibabel() @testing.requires_testing_data def test_suggest(): """Test suggestions.""" names = mne.get_volume_labels_from_aseg(fname_mgz) sug = _suggest('', names) assert sug == '' # nothing sug = _suggest('Left-cerebellum', names) assert sug == " Did you mean 'Left-Cerebellum-Cortex'?" sug = _suggest('Cerebellum-Cortex', names) assert sug == " Did you mean one of ['Left-Cerebellum-Cortex', 'Right-Cerebellum-Cortex', 'Left-Cerebral-Cortex']?" # noqa: E501 def test_on_missing(): """Test _on_missing.""" msg = 'test' with pytest.raises(ValueError, match=msg): _on_missing('raise', msg) with pytest.warns(RuntimeWarning, match=msg): _on_missing('warn', msg) _on_missing('ignore', msg) with pytest.raises(ValueError, match='Invalid value for the \'on_missing\' parameter'): _on_missing('foo', msg) def _matlab_input(msg): raise EOFError() def test_safe_input(monkeypatch): """Test _safe_input.""" monkeypatch.setattr(mne.utils.check, 'input', _matlab_input) with pytest.raises(RuntimeError, match='Could not use input'): _safe_input('whatever', alt='nothing') assert _safe_input('whatever', use='nothing') == 'nothing'
the-stack_0_19379
import logging import aug import numpy as np from functools import partial import cv2 import torch import torch.optim as optim import tqdm import yaml from joblib import cpu_count from torch.utils.data import DataLoader from adversarial_trainer import GANFactory from dataset import PairedDataset, _read_img from metric_counter import MetricCounter from models.losses import get_loss from models.models import get_model from models.networks import get_nets from schedulers import LinearDecay, WarmRestart cv2.setNumThreads(0) class Trainer: def __init__(self, config, train: DataLoader, val: DataLoader): self.config = config self.train_dataset = train self.val_dataset = val self.adv_lambda = config['model']['adv_lambda'] self.metric_counter = MetricCounter(config['experiment_desc']) self.warmup_epochs = config['warmup_num'] def train(self): self._init_params() checkpoint = torch.load('last_{}.h5'.format(self.config['experiment_desc'])) self.netG.load_state_dict(checkpoint['model']) last_epoch = checkpoint.get('epoch') or -1 print("Starting from epoch:", last_epoch) logging.debug("Starting from epoch:", last_epoch) for epoch in range(last_epoch+1, config['num_epochs']): if (epoch == self.warmup_epochs) and not (self.warmup_epochs == 0): self.netG.module.unfreeze() self.optimizer_G = self._get_optim(self.netG.parameters()) self.scheduler_G = self._get_scheduler(self.optimizer_G) self._run_epoch(epoch) # self._validate(epoch) self.scheduler_G.step() self.scheduler_D.step() if self.metric_counter.update_best_model(): torch.save({ 'model': self.netG.state_dict(), }, 'best_{}.h5'.format(self.config['experiment_desc'])) torch.save({ 'model': self.netG.state_dict(), 'epoch': epoch }, 'last_{}.h5'.format(self.config['experiment_desc'])) print(self.metric_counter.loss_message()) logging.debug("Experiment Name: %s, Epoch: %d, Loss: %s" % ( self.config['experiment_desc'], epoch, self.metric_counter.loss_message())) def _run_epoch(self, epoch): self.metric_counter.clear() for param_group in self.optimizer_G.param_groups: lr = param_group['lr'] epoch_size = config.get('train_batches_per_epoch') or len(self.train_dataset) tq = tqdm.tqdm(self.train_dataset, total=epoch_size) tq.set_description('Epoch {}, lr {}'.format(epoch, lr)) i = 0 # transform_fn = aug.get_transforms(size=config['size'], scope=config['scope'], crop=config['crop']) normalize_fn = aug.get_normalize() # corrupt_fn = aug.get_corrupt_function(config['corrupt']) def _preprocess(img, res): def transpose(x): return np.transpose(x, (2, 0, 1)) return map(transpose, normalize_fn(img, res)) for data in tq: a, b = data['a'][0], data['b'][0] a, b = map(_read_img, (a, b)) # a, b = transform_fn(a, b) # a = corrupt_fn(a) a, b = _preprocess(a, b) a, b = np.expand_dims(a, axis=0), np.expand_dims(b, axis=0) a, b = torch.from_numpy(a), torch.from_numpy(b) data = {'a': a, 'b': b} inputs, targets = self.model.get_input(data) outputs = self.netG(inputs) loss_D = self._update_d(outputs, targets) self.optimizer_G.zero_grad() loss_content = self.criterionG(outputs, targets) loss_adv = self.adv_trainer.loss_g(outputs, targets) loss_G = loss_content + self.adv_lambda * loss_adv loss_G.backward() self.optimizer_G.step() self.metric_counter.add_losses(loss_G.item(), loss_content.item(), loss_D) curr_psnr, curr_ssim, img_for_vis = self.model.get_images_and_metrics(inputs, outputs, targets) self.metric_counter.add_metrics(curr_psnr, curr_ssim) tq.set_postfix(loss=self.metric_counter.loss_message()) if not i: self.metric_counter.add_image(img_for_vis, tag='train') i += 1 if i > epoch_size: break tq.close() self.metric_counter.write_to_tensorboard(epoch) def _validate(self, epoch): self.metric_counter.clear() epoch_size = config.get('val_batches_per_epoch') or len(self.val_dataset) tq = tqdm.tqdm(self.val_dataset, total=epoch_size) tq.set_description('Validation') i = 0 for data in tq: inputs, targets = self.model.get_input(data) outputs = self.netG(inputs) loss_content = self.criterionG(outputs, targets) loss_adv = self.adv_trainer.loss_g(outputs, targets) loss_G = loss_content + self.adv_lambda * loss_adv self.metric_counter.add_losses(loss_G.item(), loss_content.item()) curr_psnr, curr_ssim, img_for_vis = self.model.get_images_and_metrics(inputs, outputs, targets) self.metric_counter.add_metrics(curr_psnr, curr_ssim) if not i: self.metric_counter.add_image(img_for_vis, tag='val') i += 1 if i > epoch_size: break tq.close() self.metric_counter.write_to_tensorboard(epoch, validation=True) def _update_d(self, outputs, targets): if self.config['model']['d_name'] == 'no_gan': return 0 self.optimizer_D.zero_grad() loss_D = self.adv_lambda * self.adv_trainer.loss_d(outputs, targets) loss_D.backward(retain_graph=True) self.optimizer_D.step() return loss_D.item() def _get_optim(self, params): if self.config['optimizer']['name'] == 'adam': optimizer = optim.Adam(params, lr=self.config['optimizer']['lr']) elif self.config['optimizer']['name'] == 'sgd': optimizer = optim.SGD(params, lr=self.config['optimizer']['lr']) elif self.config['optimizer']['name'] == 'adadelta': optimizer = optim.Adadelta(params, lr=self.config['optimizer']['lr']) else: raise ValueError("Optimizer [%s] not recognized." % self.config['optimizer']['name']) return optimizer def _get_scheduler(self, optimizer): if self.config['scheduler']['name'] == 'plateau': scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=self.config['scheduler']['patience'], factor=self.config['scheduler']['factor'], min_lr=self.config['scheduler']['min_lr']) elif self.config['optimizer']['name'] == 'sgdr': scheduler = WarmRestart(optimizer) elif self.config['scheduler']['name'] == 'linear': scheduler = LinearDecay(optimizer, min_lr=self.config['scheduler']['min_lr'], num_epochs=self.config['num_epochs'], start_epoch=self.config['scheduler']['start_epoch']) else: raise ValueError("Scheduler [%s] not recognized." % self.config['scheduler']['name']) return scheduler @staticmethod def _get_adversarial_trainer(d_name, net_d, criterion_d): if d_name == 'no_gan': return GANFactory.create_model('NoGAN') elif d_name == 'patch_gan' or d_name == 'multi_scale': return GANFactory.create_model('SingleGAN', net_d, criterion_d) elif d_name == 'double_gan': return GANFactory.create_model('DoubleGAN', net_d, criterion_d) else: raise ValueError("Discriminator Network [%s] not recognized." % d_name) def _init_params(self): self.criterionG, criterionD = get_loss(self.config['model']) self.netG, netD = get_nets(self.config['model']) self.netG.cuda() self.adv_trainer = self._get_adversarial_trainer(self.config['model']['d_name'], netD, criterionD) self.model = get_model(self.config['model']) self.optimizer_G = self._get_optim(filter(lambda p: p.requires_grad, self.netG.parameters())) self.optimizer_D = self._get_optim(self.adv_trainer.get_params()) self.scheduler_G = self._get_scheduler(self.optimizer_G) self.scheduler_D = self._get_scheduler(self.optimizer_D) if __name__ == '__main__': with open('config/config.yaml', 'r') as f: config = yaml.load(f) batch_size = config.pop('batch_size') get_dataloader = partial(DataLoader, batch_size=batch_size, num_workers=cpu_count(), shuffle=True, drop_last=True) datasets = map(config.pop, ('train', 'val')) datasets = map(PairedDataset.from_config, datasets) train, val = map(get_dataloader, datasets) trainer = Trainer(config, train=train, val=val) trainer.train()
the-stack_0_19380
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- from collections import abc import copy import inspect import torch import warnings import gc from ._fallback import _FallbackManager, ORTModuleIOError, ORTModuleONNXModelException, wrap_exception from ._utils import warn_of_constant_inputs class _OutputIdentityOp(torch.autograd.Function): '''Internal class used to prepend Identity ops in model's outputs This class is required to support ONNX models which passthrough [some of] the models's inputs directly to the graph output. This is an issue because ONNX Runtime cannot build proper gradient graph based on this pattern. Adding a direct Identity Op to the user model doesn't work as the ONNX exporter would optimize it away, resulting in the same issue. Therefore a custom Autograd function was introduced to add an Identity right before the output in a way the ONNX exporter will not optimize it away. Given the model below .. code-block:: python class PassthroughNet(torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(PassthroughNet, self).__init__() self.fc1_1 = torch.nn.Linear(input_size, hidden_size) self.relu1 = torch.nn.ReLU() self.fc1_2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, input1, passthrough_input): out1 = self.fc1_2(self.relu1(self.fc1_1(input1))) # use shape from passthrough_input out1 = out1.view(passthrough_input.size()[0], -1) return out1, passthrough_input We can see `passthrough_input` is part of both model input and output and the resulting ONNX subgraph would contain something like `output2 -> output2`. By prepending each model output to an :class:`_OutputIdentityOp` op, the resulting onnx subgraph for this example would be `passthrough_input -> Identity -> output2`. TODO: Remove once PyTorch 1.8.2 or newer is released ''' @staticmethod def forward(ctx, input): return torch.nn.Identity()(input) @staticmethod def backward(ctx, grad_output): return grad_output @staticmethod def symbolic(g, self): return g.op("Identity", self) class _PrimitiveType(object): _primitive_types = {int, bool, float} @staticmethod def is_primitive_type(value): return type(value) in _PrimitiveType._primitive_types @staticmethod def get_tensor(value, device): return torch.tensor(value, device=device) @staticmethod def get_primitive_dtype(value): # If `value` is a boolean, save the value of the boolean in dtype. # This way, if the value changes from one forward call to the next, the schema will mismatch, # and the model will be re-exported. return f"{str(type(value))}_{value}" if isinstance(value, bool) else str(type(value)) class _InputInfo(object): def __init__(self, names, shape, require_grad_names=None, dynamic_axes=None, schema=None, num_positionals=0, num_expanded_positionals_non_none=0, keyword_names=None): self.names = names self.shape = shape self.require_grad_names = require_grad_names if require_grad_names else [] self.dynamic_axes = dynamic_axes if dynamic_axes else {} self.schema = schema if schema else [] self.num_positionals = num_positionals self.num_expanded_positionals_non_none = num_expanded_positionals_non_none self.keyword_names = keyword_names def __repr__(self) -> str: return f'''_InputInfo class: \tNames: {self.names} \tShape: {self.shape} \tRequire gradient: {self.require_grad_names} \tDynamic axes: {self.dynamic_axes} \tSchema: {self.schema} \t#Positionals (total): {self.num_positionals} \t#Expanded Positionals (non-None): {self.num_expanded_positionals_non_none} \tKeyword names: {self.keyword_names}''' def flatten(self, args, kwargs, device): '''Flatten args and kwargs in a single tuple of tensors with strict ordering''' ret = [_PrimitiveType.get_tensor(arg, device) if _PrimitiveType.is_primitive_type(arg) else arg for arg in args] ret += [_PrimitiveType.get_tensor(kwargs[name], device) if _PrimitiveType.is_primitive_type(kwargs[name]) else kwargs[name] for name in self.names if name in kwargs] # if kwargs is empty, append an empty dictionary at the end of the sample inputs to make exporter # happy. This is because the exporter is confused with kwargs and dictionary inputs otherwise. if not kwargs: ret.append({}) return ret def unflatten(self, flat_args): '''Unflatten tuple of tensors into args and kwargs''' args = tuple(flat_args[:self.num_positionals]) kwargs = {name: arg for name, arg in zip(self.names[self.num_expanded_positionals_non_none:], flat_args[self.num_positionals:]) \ if name in self.keyword_names} return args, kwargs def _combine_input_buffers_initializers(params, onnx_input_names, input_info, buffer_names, inputs, kwargs, device): '''Creates forward `*inputs` list from user input and PyTorch initializers ONNX Runtime forward requires an ordered list of: * User input: computed from forward InferenceSession * Initializers: computed from original PyTorch model parameters ''' def _expand_inputs(current_input, non_none_inputs): # The exporter handles input lists by expanding them so that each # element of the list is its own input. # ORTModule must match this behavior by also expanding the inputs. if current_input is None or isinstance(current_input, str): # Drop all None and string inputs return if isinstance(current_input, abc.Sequence): # If the input is a sequence (like a list), expand the list so that # each element of the list is an input by itself for inp in current_input: _expand_inputs(inp, non_none_inputs) elif isinstance(current_input, abc.Mapping): # If the input is a mapping (like a dict), expand the dict so that # each element of the dict is an input by itself for _, val in current_input.items(): _expand_inputs(val, non_none_inputs) else: # else just collect all the non none inputs within non_none_inputs non_none_inputs.append(current_input) # User inputs non_none_inputs = [] _expand_inputs(inputs, non_none_inputs) buffer_names_dict = {buffer_name: inp for buffer_name, inp in buffer_names} result = [] for input_idx, name in enumerate(onnx_input_names): inp = None if name in kwargs and kwargs[name] is not None: # Only use keywords coming from user that are expected by ONNX model inp = kwargs[name] if inp is None: try: # Only use positionals coming from user that are expected by ONNX model # if input_idx >= len(input_info.names), IndexError will be thrown if name != input_info.names[input_idx]: # When ONNX drops unused inputs, get correct index from user input # if name is not in input_info.names, ValueError will be thrown input_idx = input_info.names.index(name) inp = non_none_inputs[input_idx] except (IndexError, ValueError): # ONNX input name is not present in input_info.names. pass if inp is None: # Registered buffers are translated to user_input+initializer in ONNX try: inp = buffer_names_dict[name] except KeyError: # ONNX input name is not present in the registered buffer dict. pass if inp is not None: if _PrimitiveType.is_primitive_type(inp): inp = _PrimitiveType.get_tensor(inp, device) result.append(inp) else: raise wrap_exception(ORTModuleONNXModelException, RuntimeError(f'Input is present in ONNX graph but not provided: {name}.')) # params is a list of all initializers known to the onnx graph result.extend(params) return result def deepcopy_model_input(*inputs, **kwargs): def extract_tensor(value): if isinstance(value, torch.Tensor): if value.requires_grad: return value.data.requires_grad_() else: return value.data else: return value sample_inputs_copy = [extract_tensor(value) for value in inputs] sample_inputs_copy = copy.deepcopy(tuple(sample_inputs_copy)) sample_kwargs_copy = {} for name, value in kwargs.items(): sample_kwargs_copy[name] = extract_tensor(value) sample_kwargs_copy = copy.deepcopy(sample_kwargs_copy) return sample_inputs_copy, sample_kwargs_copy class _TensorStub(object): '''Tensor stub class used to represent model's input or output''' __slots__ = ['name', 'dtype', 'shape', 'shape_dims'] def __init__(self, name=None, dtype=None, shape=None, shape_dims=None): self.name = name self.dtype = dtype self.shape = shape self.shape_dims = shape_dims def __repr__(self) -> str: result = '_TensorStub(' if self.name is not None: result += f'name={self.name}' if self.dtype is not None: if result[-1] != '(': result += ', ' result += f'dtype={self.dtype}' if self.shape is not None: if result[-1] != '(': result += ', ' result += f'shape={self.shape}' if self.shape_dims is not None: if result[-1] != '(': result += ', ' result += f'shape_dims={self.shape_dims}' result += ')' return result def __eq__(self, other): if not other: return False elif not isinstance(other, _TensorStub): raise NotImplemented('_TensorStub must only be compared to another _TensorStub instance!') elif self.name != other.name: return False elif self.dtype != other.dtype: return False elif self.shape != other.shape: return False elif self.shape_dims != other.shape_dims: return False return True def unflatten_user_output(output_schema, outputs): """Follows the schema to generate an output that is expected by the user""" def _replace_stub_with_tensor_value(user_output, outputs, output_idx): # Recursively traverse across user_output and replace all _TensorStub # with torch.Tensor values from outputs following output_idx if user_output is None: return None elif isinstance(user_output, _TensorStub): out = outputs[output_idx[0]] output_idx[0] += 1 return out if isinstance(user_output, abc.Sequence): sequence_type = type(user_output) if hasattr(sequence_type, '_make'): # namedtuple sequence_type = type(user_output) user_output = sequence_type._make( _replace_stub_with_tensor_value(uo, outputs, output_idx) for uo in user_output) else: user_output = sequence_type( _replace_stub_with_tensor_value(uo, outputs, output_idx) for uo in user_output) elif isinstance(user_output, abc.Mapping): new_user_output = copy.copy(user_output) for key in sorted(user_output): new_user_output[key] = _replace_stub_with_tensor_value(new_user_output[key], outputs, output_idx) user_output = new_user_output else: raise wrap_exception(ORTModuleIOError, TypeError(f'ORTModule does not support the following model output type {type(user_output)}.')) return user_output # It is expected that the outputs are ordered in the way defined in the exported onnx model # which is the order in which the output schema was saved. output_idx = [0] user_output = _replace_stub_with_tensor_value(output_schema, outputs, output_idx) return user_output def _extract_schema(data): """Extract the data schema by replacing every torch.Tensor value with _TensorStub""" if data is None: return data elif isinstance(data, str): warn_of_constant_inputs(data) return data elif _PrimitiveType.is_primitive_type(data): if isinstance(data, bool): warn_of_constant_inputs(data) return _TensorStub(dtype=_PrimitiveType.get_primitive_dtype(data), shape_dims=0) # Depth first traversal to iterate over the data to replace every tensor with a stub elif isinstance(data, torch.Tensor): return _TensorStub(dtype=str(data.dtype), shape_dims=len(data.size())) # Instead of replacing the tensor with a stub in the original user input, build the stubbed_schema # from scratch from the user input. stubbed_schema = None if isinstance(data, abc.Sequence): sequence_type = type(data) stubbed_schema = [_extract_schema(val) for val in data] try: # namedtuple can be created by passing the list sequence to method _make stubbed_schema = sequence_type._make(stubbed_schema) except AttributeError: # If attribute error encountered, create the sequence directly stubbed_schema = sequence_type(stubbed_schema) elif isinstance(data, abc.Mapping): dict_type = type(data) stubbed_schema = {key: _extract_schema(data[key]) for key in data} stubbed_schema = dict_type(**stubbed_schema) else: raise wrap_exception(ORTModuleIOError, TypeError(f'ORTModule does not support the following model data type {type(data)}')) return stubbed_schema def _parse_outputs_and_extract_names_and_dynamic_axes(module_output): """Parses through the module output and returns output names and dynamic axes""" def _populate_output_names_and_dynamic_axes(output, output_names, output_dynamic_axes, output_idx): # Depth first traversal to traverse through the entire output collecting output names and dynamic axes if output is None: return elif isinstance(output, torch.Tensor): # Naming the outputs with a hyphen ensures that there can be no input with the same # name, preventing collisions with other NodeArgs (for example an input to forward called output0) output_name = f'output-{output_idx[0]}' output_idx[0] += 1 output_names.append(output_name) output_dynamic_axes[output_name] = {} for dim_idx in range(len(output.shape)): output_dynamic_axes[output_name].update({dim_idx: f'{output_name}_dim{dim_idx}'}) return if isinstance(output, abc.Sequence): for value in output: _populate_output_names_and_dynamic_axes(value, output_names, output_dynamic_axes, output_idx) elif isinstance(output, abc.Mapping): for _, value in sorted(output.items()): _populate_output_names_and_dynamic_axes(value, output_names, output_dynamic_axes, output_idx) else: raise wrap_exception(ORTModuleIOError, TypeError(f'ORTModule does not support the following model output type {type(output)}')) output_names = [] output_dynamic_axes = {} output_idx = [0] _populate_output_names_and_dynamic_axes(module_output, output_names, output_dynamic_axes, output_idx) return output_names, output_dynamic_axes def _transform_output_to_flat_tuple(data): """Converts the data to a flat tuple by iterating over the entire data structure""" def _flatten_data(data, flat_data): # Recursively traverse over the data and populate the flat_data with torch.Tensors if data is None: return elif isinstance(data, torch.Tensor): identity = _OutputIdentityOp.apply flat_data.append(identity(data)) elif isinstance(data, abc.Sequence): for value in data: _flatten_data(value, flat_data) elif isinstance(data, abc.Mapping): for _, value in sorted(data.items()): _flatten_data(value, flat_data) else: raise wrap_exception(ORTModuleIOError, TypeError(f'ORTModule does not support the following data type {type(data)}.')) flat_data = [] _flatten_data(data, flat_data) return tuple(flat_data) class _FlattenedModule(torch.nn.Module): def __init__(self, original_module): super(_FlattenedModule, self).__init__() self._original_module = original_module # Before `forward` is called, _ort_module must be assigned # Updated input info is needed to expand args into *args, **kwargs self._input_info = None def forward(self, *args): new_args, new_kwargs = self._input_info.unflatten(args) return _transform_output_to_flat_tuple(self._original_module(*new_args, **new_kwargs)) def parse_inputs_for_onnx_export(all_input_parameters, onnx_graph, schema, inputs, kwargs): def _add_dynamic_shape(name, input): dynamic_axes[name] = {} for dim_idx in range(len(input.shape)): dynamic_axes[name].update({dim_idx: f'{name}_dim{dim_idx}'}) return dynamic_axes def _add_input(name, input, onnx_graph, onnx_graph_input_names): """Returns number of expanded non none inputs that _add_input processed""" if input is None or isinstance(input, str): # Drop all None and string inputs and return 0. return 0 num_expanded_non_none_inputs = 0 if isinstance(input, abc.Sequence): # If the input is a sequence (like a list), expand the list so that # each element of the list is an input by itself. for i, val in enumerate(input): # Name each input with the index appended to the original name of the # argument. num_expanded_non_none_inputs += \ _add_input(f"{name}_{i}", val, onnx_graph, onnx_graph_input_names) # Return here since the list by itself is not a valid input. # All the elements of the list have already been added as inputs individually. return num_expanded_non_none_inputs elif isinstance(input, abc.Mapping): # If the input is a mapping (like a dict), expand the dict so that # each element of the dict is an input by itself. for key, val in input.items(): num_expanded_non_none_inputs += \ _add_input(f"{name}_{key}", val, onnx_graph, onnx_graph_input_names) # Return here since the dict by itself is not a valid input. # All the elements of the dict have already been added as inputs individually. return num_expanded_non_none_inputs # InputInfo should contain all the names irrespective of whether they are # a part of the onnx graph or not. input_names.append(name) if (onnx_graph is None or name in onnx_graph_input_names) and isinstance(input, torch.Tensor): if input.requires_grad: input_names_require_grad.append(name) dynamic_axes.update(_add_dynamic_shape(name, input)) input_shape.append(list(input.size())) # A single input non none input was processed, return 1 return 1 # Ignore optional inputs explicitly specified as None # ONNX exporter may remove unused inputs onnx_graph_input_names = [] if onnx_graph is not None: onnx_graph_input_names = {inp.name for inp in onnx_graph.graph.input} input_names = [] dynamic_axes = {} input_names_require_grad = [] input_shape = [] var_positional_idx = 0 num_expanded_non_none_positional_inputs = 0 for input_idx, input_parameter in enumerate(all_input_parameters): if input_parameter.kind == inspect.Parameter.VAR_POSITIONAL: # VAR_POSITIONAL parameter carries all *args parameters from original forward method for args_i in range(input_idx, len(inputs)): name = f'{input_parameter.name}_{var_positional_idx}' var_positional_idx += 1 inp = inputs[args_i] num_expanded_non_none_positional_inputs += \ _add_input(name, inp, onnx_graph, onnx_graph_input_names) elif input_parameter.kind == inspect.Parameter.POSITIONAL_ONLY or\ input_parameter.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD or\ input_parameter.kind == inspect.Parameter.KEYWORD_ONLY: # All positional non-*args and non-**kwargs are processed here name = input_parameter.name inp = None input_idx += var_positional_idx is_positional = True if input_idx < len(inputs) and inputs[input_idx] is not None: inp = inputs[input_idx] elif name in kwargs and kwargs[name] is not None: inp = kwargs[name] is_positional = False num_expanded_non_none_inputs_local = \ _add_input(name, inp, onnx_graph, onnx_graph_input_names) if is_positional: num_expanded_non_none_positional_inputs += num_expanded_non_none_inputs_local elif input_parameter.kind == inspect.Parameter.VAR_KEYWORD: # **kwargs is always the last argument of forward() for name,inp in kwargs.items(): if name not in input_names: _add_input(name, inp, onnx_graph, onnx_graph_input_names) # input_names have been expanded so to get the correct number of non none # positional names, we need to collect the num_expanded_non_none_positional_inputs. return _InputInfo(names=input_names, shape=input_shape, require_grad_names=input_names_require_grad, dynamic_axes=dynamic_axes, schema=schema, num_positionals=len(inputs), num_expanded_positionals_non_none=num_expanded_non_none_positional_inputs, keyword_names=list(kwargs.keys())) def parse_outputs_for_onnx_export_and_extract_schema(module, inputs, kwargs): # Perform a forward call to grab outputs output_names = None output_dynamic_axes = None is_deepcopy = False with torch.no_grad(): # Deepcopy inputs, since input values may change after model run. sample_inputs_copy, sample_kwargs_copy = deepcopy_model_input(*inputs, **kwargs) try: # Deepcopy model, in case model is stateful and changes after model run. model_copy = copy.deepcopy(module) is_deepcopy = True except Exception: model_copy = module warnings.warn("This model cannot be deep copied (or pickled), " "which is a required step for stateful models to be properly exported to ONNX." " Compute will continue, but unexpected results may occur!") sample_outputs = model_copy(*sample_inputs_copy, **sample_kwargs_copy) # Parse the output and extract the output_names and output_dynamic_axes to be used for onnx export output_names, output_dynamic_axes = _parse_outputs_and_extract_names_and_dynamic_axes(sample_outputs) output_schema = _extract_schema(sample_outputs) if is_deepcopy: del model_copy gc.collect() # Return output names, output dynamic axes and output schema return output_names, output_dynamic_axes, output_schema
the-stack_0_19381
"""Heap queue algorithm (a.k.a. priority queue). Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for all k, counting elements from 0. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is that a[0] is always its smallest element. Usage: heap = [] # creates an empty heap heappush(heap, item) # pushes a new item on the heap item = heappop(heap) # pops the smallest item from the heap item = heap[0] # smallest item on the heap without popping it heapify(x) # transforms list into a heap, in-place, in linear time item = heapreplace(heap, item) # pops and returns smallest item, and adds # new item; the heap size is unchanged Our API differs from textbook heap algorithms as follows: - We use 0-based indexing. This makes the relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable since Python uses 0-based indexing. - Our heappop() method returns the smallest item, not the largest. These two make it possible to view the heap as a regular Python list without surprises: heap[0] is the smallest item, and heap.sort() maintains the heap invariant! """ # Original code by Kevin O'Connor, augmented by Tim Peters and Raymond Hettinger __about__ = """Heap queues [explanation by Francois Pinard] Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for all k, counting elements from 0. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is that a[0] is always its smallest element. The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below are `k', not a[k]: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'. In a usual binary tournament we see in sports, each cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had. However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and the rule becomes that a cell and the two cells it tops contain three different items, but the top cell "wins" over the two topped cells. If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic way to remove it and find the "next" winner is to move some loser (let's say cell 30 in the diagram above) into the 0 position, and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n ln n) sort. A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the inserted items are not "better" than the last 0'th element you extracted. This is especially useful in simulation contexts, where the tree holds all incoming events, and the "win" condition means the smallest scheduled time. When an event schedule other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer :-). Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case. However, there are other representations which are more efficient overall, yet the worst cases might be terrible. Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing "runs" (which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a merging passes for these runs, which merging is often very cleverly organised[1]. It is very important that the initial sort produces the longest runs possible. Tournaments are a good way to that. If, using all the memory available to hold a tournament, you replace and percolate items that happen to fit the current run, you'll produce runs which are twice the size of the memory for random input, and much better for input fuzzily ordered. Moreover, if you output the 0'th item on disk and get an input which may not fit in the current tournament (because the value "wins" over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly the same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run. Clever and quite effective! In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to keep a `heap' module around. :-) -------------------- [1] The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far in advance) that each tape movement will be the most effective possible (that is, will best participate at "progressing" the merge). Some tapes were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all times, sorting has always been a Great Art! :-) """ import itertools __all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'merge', 'nlargest', 'nsmallest', 'heappushpop'] def heappush(heap, item): """Push item onto heap, maintaining the heap invariant.""" heap.append(item) _siftdown(heap, 0, len(heap)-1) def heappop(heap): """Pop the smallest item off the heap, maintaining the heap invariant.""" lastelt = heap.pop() # raises appropriate IndexError if heap is empty if heap: returnitem = heap[0] heap[0] = lastelt _siftup(heap, 0) return returnitem return lastelt def heapreplace(heap, item): """Pop and return the current smallest value, and add the new item. This is more efficient than heappop() followed by heappush(), and can be more appropriate when using a fixed-size heap. Note that the value returned may be larger than item! That constrains reasonable uses of this routine unless written as part of a conditional replacement: if item > heap[0]: item = heapreplace(heap, item) """ returnitem = heap[0] # raises appropriate IndexError if heap is empty heap[0] = item _siftup(heap, 0) return returnitem def heappushpop(heap, item): """Fast version of a heappush followed by a heappop.""" if heap and heap[0] < item: item, heap[0] = heap[0], item _siftup(heap, 0) return item def heapify(x): """Transform list into a heap, in-place, in O(len(x)) time.""" n = len(x) # Transform bottom-up. The largest index there's any point to looking at # is the largest with a child index in-range, so must have 2*i + 1 < n, # or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so # j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is # (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1. for i in reversed(range(n//2)): _siftup(x, i) def _heappop_max(heap): """Maxheap version of a heappop.""" lastelt = heap.pop() # raises appropriate IndexError if heap is empty if heap: returnitem = heap[0] heap[0] = lastelt _siftup_max(heap, 0) return returnitem return lastelt def _heapreplace_max(heap, item): """Maxheap version of a heappop followed by a heappush.""" returnitem = heap[0] # raises appropriate IndexError if heap is empty heap[0] = item _siftup_max(heap, 0) return returnitem def _heapify_max(x): """Transform list into a maxheap, in-place, in O(len(x)) time.""" n = len(x) for i in reversed(range(n//2)): _siftup_max(x, i) # 'heap' is a heap at all indices >= startpos, except possibly for pos. pos # is the index of a leaf with a possibly out-of-order value. Restore the # heap invariant. def _siftdown(heap, startpos, pos): newitem = heap[pos] # Follow the path to the root, moving parents down until finding a place # newitem fits. while pos > startpos: parentpos = (pos - 1) >> 1 parent = heap[parentpos] if newitem < parent: heap[pos] = parent pos = parentpos continue break heap[pos] = newitem # The child indices of heap index pos are already heaps, and we want to make # a heap at index pos too. We do this by bubbling the smaller child of # pos up (and so on with that child's children, etc) until hitting a leaf, # then using _siftdown to move the oddball originally at index pos into place. # # We *could* break out of the loop as soon as we find a pos where newitem <= # both its children, but turns out that's not a good idea, and despite that # many books write the algorithm that way. During a heap pop, the last array # element is sifted in, and that tends to be large, so that comparing it # against values starting from the root usually doesn't pay (= usually doesn't # get us out of the loop early). See Knuth, Volume 3, where this is # explained and quantified in an exercise. # # Cutting the # of comparisons is important, since these routines have no # way to extract "the priority" from an array element, so that intelligence # is likely to be hiding in custom comparison methods, or in array elements # storing (priority, record) tuples. Comparisons are thus potentially # expensive. # # On random arrays of length 1000, making this change cut the number of # comparisons made by heapify() a little, and those made by exhaustive # heappop() a lot, in accord with theory. Here are typical results from 3 # runs (3 just to demonstrate how small the variance is): # # Compares needed by heapify Compares needed by 1000 heappops # -------------------------- -------------------------------- # 1837 cut to 1663 14996 cut to 8680 # 1855 cut to 1659 14966 cut to 8678 # 1847 cut to 1660 15024 cut to 8703 # # Building the heap by using heappush() 1000 times instead required # 2198, 2148, and 2219 compares: heapify() is more efficient, when # you can use it. # # The total compares needed by list.sort() on the same lists were 8627, # 8627, and 8632 (this should be compared to the sum of heapify() and # heappop() compares): list.sort() is (unsurprisingly!) more efficient # for sorting. def _siftup(heap, pos): endpos = len(heap) startpos = pos newitem = heap[pos] # Bubble up the smaller child until hitting a leaf. childpos = 2*pos + 1 # leftmost child position while childpos < endpos: # Set childpos to index of smaller child. rightpos = childpos + 1 if rightpos < endpos and not heap[childpos] < heap[rightpos]: childpos = rightpos # Move the smaller child up. heap[pos] = heap[childpos] pos = childpos childpos = 2*pos + 1 # The leaf at pos is empty now. Put newitem there, and bubble it up # to its final resting place (by sifting its parents down). heap[pos] = newitem _siftdown(heap, startpos, pos) def _siftdown_max(heap, startpos, pos): 'Maxheap variant of _siftdown' newitem = heap[pos] # Follow the path to the root, moving parents down until finding a place # newitem fits. while pos > startpos: parentpos = (pos - 1) >> 1 parent = heap[parentpos] if parent < newitem: heap[pos] = parent pos = parentpos continue break heap[pos] = newitem def _siftup_max(heap, pos): 'Maxheap variant of _siftup' endpos = len(heap) startpos = pos newitem = heap[pos] # Bubble up the larger child until hitting a leaf. childpos = 2*pos + 1 # leftmost child position while childpos < endpos: # Set childpos to index of larger child. rightpos = childpos + 1 if rightpos < endpos and not heap[rightpos] < heap[childpos]: childpos = rightpos # Move the larger child up. heap[pos] = heap[childpos] pos = childpos childpos = 2*pos + 1 # The leaf at pos is empty now. Put newitem there, and bubble it up # to its final resting place (by sifting its parents down). heap[pos] = newitem _siftdown_max(heap, startpos, pos) def merge(*iterables, key=None, reverse=False): '''Merge multiple sorted inputs into a single sorted output. Similar to sorted(itertools.chain(*iterables)) but returns a generator, does not pull the data into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest). >>> list(merge([1,3,5,7], [0,2,4,8], [5,10,15,20], [], [25])) [0, 1, 2, 3, 4, 5, 5, 7, 8, 10, 15, 20, 25] If *key* is not None, applies a key function to each element to determine its sort order. >>> list(merge(['dog', 'horse'], ['cat', 'fish', 'kangaroo'], key=len)) ['dog', 'cat', 'fish', 'horse', 'kangaroo'] ''' h = [] h_append = h.append if reverse: _heapify = _heapify_max _heappop = _heappop_max _heapreplace = _heapreplace_max direction = -1 else: _heapify = heapify _heappop = heappop _heapreplace = heapreplace direction = 1 if key is None: for order, it in enumerate(map(iter, iterables)): try: next = it.__next__ h_append([next(), order * direction, next]) except StopIteration: pass _heapify(h) while len(h) > 1: try: while True: value, order, next = s = h[0] yield value s[0] = next() # raises StopIteration when exhausted _heapreplace(h, s) # restore heap condition except StopIteration: _heappop(h) # remove empty iterator if h: # fast case when only a single iterator remains value, order, next = h[0] yield value yield from next.__self__ return for order, it in enumerate(map(iter, iterables)): try: next = it.__next__ value = next() h_append([key(value), order * direction, value, next]) except StopIteration: pass _heapify(h) while len(h) > 1: try: while True: key_value, order, value, next = s = h[0] yield value value = next() s[0] = key(value) s[2] = value _heapreplace(h, s) except StopIteration: _heappop(h) if h: key_value, order, value, next = h[0] yield value yield from next.__self__ # Algorithm notes for nlargest() and nsmallest() # ============================================== # # Make a single pass over the data while keeping the k most extreme values # in a heap. Memory consumption is limited to keeping k values in a list. # # Measured performance for random inputs: # # number of comparisons # n inputs k-extreme values (average of 5 trials) % more than min() # ------------- ---------------- --------------------- ----------------- # 1,000 100 3,317 231.7% # 10,000 100 14,046 40.5% # 100,000 100 105,749 5.7% # 1,000,000 100 1,007,751 0.8% # 10,000,000 100 10,009,401 0.1% # # Theoretical number of comparisons for k smallest of n random inputs: # # Step Comparisons Action # ---- -------------------------- --------------------------- # 1 1.66 * k heapify the first k-inputs # 2 n - k compare remaining elements to top of heap # 3 k * (1 + lg2(k)) * ln(n/k) replace the topmost value on the heap # 4 k * lg2(k) - (k/2) final sort of the k most extreme values # # Combining and simplifying for a rough estimate gives: # # comparisons = n + k * (log(k, 2) * log(n/k) + log(k, 2) + log(n/k)) # # Computing the number of comparisons for step 3: # ----------------------------------------------- # * For the i-th new value from the iterable, the probability of being in the # k most extreme values is k/i. For example, the probability of the 101st # value seen being in the 100 most extreme values is 100/101. # * If the value is a new extreme value, the cost of inserting it into the # heap is 1 + log(k, 2). # * The probability times the cost gives: # (k/i) * (1 + log(k, 2)) # * Summing across the remaining n-k elements gives: # sum((k/i) * (1 + log(k, 2)) for i in range(k+1, n+1)) # * This reduces to: # (H(n) - H(k)) * k * (1 + log(k, 2)) # * Where H(n) is the n-th harmonic number estimated by: # gamma = 0.5772156649 # H(n) = log(n, e) + gamma + 1 / (2 * n) # http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#Rate_of_divergence # * Substituting the H(n) formula: # comparisons = k * (1 + log(k, 2)) * (log(n/k, e) + (1/n - 1/k) / 2) # # Worst-case for step 3: # ---------------------- # In the worst case, the input data is reversed sorted so that every new element # must be inserted in the heap: # # comparisons = 1.66 * k + log(k, 2) * (n - k) # # Alternative Algorithms # ---------------------- # Other algorithms were not used because they: # 1) Took much more auxiliary memory, # 2) Made multiple passes over the data. # 3) Made more comparisons in common cases (small k, large n, semi-random input). # See the more detailed comparison of approach at: # http://code.activestate.com/recipes/577573-compare-algorithms-for-heapqsmallest def nsmallest(n, iterable, key=None): """Find the n smallest elements in a dataset. Equivalent to: sorted(iterable, key=key)[:n] """ # Short-cut for n==1 is to use min() if n == 1: it = iter(iterable) sentinel = object() if key is None: result = min(it, default=sentinel) else: result = min(it, default=sentinel, key=key) return [] if result is sentinel else [result] # When n>=size, it's faster to use sorted() try: size = len(iterable) except (TypeError, AttributeError): pass else: if n >= size: return sorted(iterable, key=key)[:n] # When key is none, use simpler decoration if key is None: it = iter(iterable) # put the range(n) first so that zip() doesn't # consume one too many elements from the iterator result = [(elem, i) for i, elem in zip(range(n), it)] if not result: return result _heapify_max(result) top = result[0][0] order = n _heapreplace = _heapreplace_max for elem in it: if elem < top: _heapreplace(result, (elem, order)) top, _order = result[0] order += 1 result.sort() return [elem for (elem, order) in result] # General case, slowest method it = iter(iterable) result = [(key(elem), i, elem) for i, elem in zip(range(n), it)] if not result: return result _heapify_max(result) top = result[0][0] order = n _heapreplace = _heapreplace_max for elem in it: k = key(elem) if k < top: _heapreplace(result, (k, order, elem)) top, _order, _elem = result[0] order += 1 result.sort() return [elem for (k, order, elem) in result] def nlargest(n, iterable, key=None): """Find the n largest elements in a dataset. Equivalent to: sorted(iterable, key=key, reverse=True)[:n] """ # Short-cut for n==1 is to use max() if n == 1: it = iter(iterable) sentinel = object() if key is None: result = max(it, default=sentinel) else: result = max(it, default=sentinel, key=key) return [] if result is sentinel else [result] # When n>=size, it's faster to use sorted() try: size = len(iterable) except (TypeError, AttributeError): pass else: if n >= size: return sorted(iterable, key=key, reverse=True)[:n] # When key is none, use simpler decoration if key is None: it = iter(iterable) result = [(elem, i) for i, elem in zip(range(0, -n, -1), it)] if not result: return result heapify(result) top = result[0][0] order = -n _heapreplace = heapreplace for elem in it: if top < elem: _heapreplace(result, (elem, order)) top, _order = result[0] order -= 1 result.sort(reverse=True) return [elem for (elem, order) in result] # General case, slowest method it = iter(iterable) result = [(key(elem), i, elem) for i, elem in zip(range(0, -n, -1), it)] if not result: return result heapify(result) top = result[0][0] order = -n _heapreplace = heapreplace for elem in it: k = key(elem) if top < k: _heapreplace(result, (k, order, elem)) top, _order, _elem = result[0] order -= 1 result.sort(reverse=True) return [elem for (k, order, elem) in result] # If available, use C implementation try: from _heapq import * except ImportError: pass try: from _heapq import _heapreplace_max except ImportError: pass try: from _heapq import _heapify_max except ImportError: pass try: from _heapq import _heappop_max except ImportError: pass # -------------------------- -------------------------------- class PriorityQueue(): def __init__(self): self.pq = [] # list of entries arranged in a heap self.entry_finder = {} # mapping of tasks to entries self.REMOVED = '<removed-task>' # placeholder for a removed task self.counter = itertools.count() # unique sequence count def __str__(self): return "{0}".format(self.pq) def addTask(self, task, priority=0): 'Add a new task or update the priority of an existing task' if task in self.entry_finder: self.removeTask(task) count = next(self.counter) entry = [priority, count, task] self.entry_finder[task] = entry heappush(self.pq, entry) def removeTask(self, task): 'Mark an existing task as REMOVED. Print warning if not found.' try: entry = self.entry_finder.pop(task) entry[-1] = self.REMOVED return 0 except: prt_str = "Warning: removeTask() task {0} has not been in priority queue prior to this call.".format(task) print(prt_str) return prt_str def isAlreadyRemovedOrRemoveTask(self, task): 'Mark an existing task as REMOVED. Print warning if not found.' try: entry = self.entry_finder.pop(task) entry[-1] = self.REMOVED return 0 except: #prt_str = "Warning: removeTask() task {0} has not been in priority queue prior to this call.".format(task) #print(prt_str) return 1 def popTask(self): 'Remove and return the lowest priority task. Raise KeyError if empty.' while self.pq: priority, count, task = heappop(self.pq) if task is not self.REMOVED: del self.entry_finder[task] return task raise KeyError('pop from an empty priority queue') def popTaskPriority(self): 'Remove and return the lowest priority task. Raise KeyError if empty.' while self.pq: priority, count, task = heappop(self.pq) if task is not self.REMOVED: del self.entry_finder[task] return (task, priority) raise KeyError('pop from an empty priority queue') def getBestTask(self): 'Return the lowest priority task without removing. Raise KeyError if empty.' while self.pq: priority, count, task = heappop(self.pq) if task is not self.REMOVED: entry = [priority, count, task] heappush(self.pq, entry) return task raise KeyError('pop from an empty priority queue') def findBestTask(self): '''Self written: - Does not remove and reenter task if not necessary. - Returns None if heap is empty''' try: entry = self.pq[0] # if this task has not been remove by removeTask() the best entry is here if entry[2] != '<removed-task>': task = entry[2] # if best task has been removed by removeTask() the slower functionality is called else: task = self.getBestTask() except: task = None return task def hasElements(self): if self.pq and self.findBestTask() is not None: return True else: return False # -------------------------- -------------------------------- if __name__ == "__main__": import doctest print(doctest.testmod()) pq = PriorityQueue()
the-stack_0_19382
# vim: ft=python fileencoding=utf-8 sw=4 et sts=4 """Test vimiv's trash management.""" import os import tempfile import time from unittest import TestCase, main from gi import require_version require_version('Gtk', '3.0') from vimiv import trash_manager from vimiv.helpers import get_user_data_dir class TrashTest(TestCase): """TrashManager Tests.""" @classmethod def setUpClass(cls): # Run in tmp cls.tmpdir = tempfile.TemporaryDirectory(prefix="vimiv-tests-") os.environ["XDG_DATA_HOME"] = cls.tmpdir.name cls.trash_manager = trash_manager.TrashManager() cls.files_directory = os.path.join(get_user_data_dir(), "Trash/files") cls.info_directory = os.path.join(get_user_data_dir(), "Trash/info") cls.testfile = "" cls.basename = "" def setUp(self): _, self.testfile = tempfile.mkstemp() self.basename = os.path.basename(self.testfile) self._create_file() self.assertTrue(os.path.exists(self.testfile)) def test_move_to_trash(self): """Move a file to the trash directory.""" self.trash_manager.delete(self.testfile) self.assertFalse(os.path.exists(self.testfile)) # File should not exist # Trash file should exist and contain "something" expected_trashfile = os.path.join(self.files_directory, self.basename) self.assertTrue(os.path.exists(expected_trashfile)) with open(expected_trashfile) as f: content = f.read() self.assertEqual(content, "something\n") # Info file should exist and contain path, and date expected_infofile = os.path.join(self.info_directory, self.basename + ".trashinfo") self.assertTrue(os.path.exists(expected_infofile)) with open(expected_infofile) as f: lines = f.readlines() self.assertEqual(lines[0], "[Trash Info]\n") self.assertEqual(lines[1], "Path=%s\n" % (self.testfile)) self.assertIn("DeletionDate=%s" % (time.strftime("%Y%m")), lines[2]) def test_undelete_from_trash(self): """Undelete a file from trash.""" # First delete a file self.trash_manager.delete(self.testfile) self.assertFalse(os.path.exists(self.testfile)) # Now undelete it self.trash_manager.undelete(self.basename) self.assertTrue(os.path.exists(self.testfile)) def test_delete_file_with_same_name(self): """Delete a file with the same name more than twice.""" def run_one_round(suffix=""): """Test if self.testfile + suffix exists in trash.""" self.trash_manager.delete(self.testfile) self.assertFalse(os.path.exists(self.testfile)) expected_trashfile = \ os.path.join(self.files_directory, self.basename + suffix) self.assertTrue(os.path.exists(expected_trashfile)) self._create_file() run_one_round() run_one_round(".2") run_one_round(".3") def _create_file(self): with open(self.testfile, "w") as f: f.write("something\n") def tearDown(self): if os.path.exists(self.testfile): os.remove(self.testfile) if __name__ == "__main__": main()
the-stack_0_19383
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Common utility functions for RPN and RetinaNet minibtach blobs preparation. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import namedtuple import logging import numpy as np import threading from core.config import cfg from modeling.generate_anchors import generate_anchors import utils.boxes as box_utils logger = logging.getLogger(__name__) # octave and aspect fields are only used on RetinaNet. Octave corresponds to the # scale of the anchor and aspect denotes which aspect ratio is used in the range # of aspect ratios FieldOfAnchors = namedtuple( 'FieldOfAnchors', [ 'field_of_anchors', 'num_cell_anchors', 'stride', 'field_size', 'octave', 'aspect' ] ) # Cache for memoizing _get_field_of_anchors _threadlocal_foa = threading.local() def get_field_of_anchors( stride, anchor_sizes, anchor_aspect_ratios, octave=None, aspect=None ): global _threadlocal_foa if not hasattr(_threadlocal_foa, 'cache'): _threadlocal_foa.cache = {} cache_key = str(stride) + str(anchor_sizes) + str(anchor_aspect_ratios) if cache_key in _threadlocal_foa.cache: return _threadlocal_foa.cache[cache_key] # Anchors at a single feature cell cell_anchors = generate_anchors( stride=stride, sizes=anchor_sizes, aspect_ratios=anchor_aspect_ratios ) num_cell_anchors = cell_anchors.shape[0] # Generate canonical proposals from shifted anchors # Enumerate all shifted positions on the (H, W) grid # FPN max size fpn_max_size = cfg.FPN.COARSEST_STRIDE * np.ceil( cfg.TRAIN.MAX_SIZE / float(cfg.FPN.COARSEST_STRIDE) ) # RefineNet max size if cfg.MODEL.REFINE_ON: refinenet_stride = (1./cfg.REFINENET.SPATIAL_SCALE) * cfg.REFINENET.STRIDE refinenet_max_size = refinenet_stride * np.ceil( cfg.TRAIN.MAX_SIZE / float(refinenet_stride) ) fpn_max_size = max(fpn_max_size, refinenet_max_size) field_size = int(np.ceil(fpn_max_size / float(stride))) shifts = np.arange(0, field_size) * stride shift_x, shift_y = np.meshgrid(shifts, shifts) shift_x = shift_x.ravel() shift_y = shift_y.ravel() shifts = np.vstack((shift_x, shift_y, shift_x, shift_y)).transpose() # Broacast anchors over shifts to enumerate all anchors at all positions # in the (H, W) grid: # - add A cell anchors of shape (1, A, 4) to # - K shifts of shape (K, 1, 4) to get # - all shifted anchors of shape (K, A, 4) # - reshape to (K*A, 4) shifted anchors A = num_cell_anchors K = shifts.shape[0] field_of_anchors = ( cell_anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)) ) field_of_anchors = field_of_anchors.reshape((K * A, 4)) foa = FieldOfAnchors( field_of_anchors=field_of_anchors.astype(np.float32), num_cell_anchors=num_cell_anchors, stride=stride, field_size=field_size, octave=octave, aspect=aspect ) _threadlocal_foa.cache[cache_key] = foa return foa def unmap(data, count, inds, fill=0): """Unmap a subset of item (data) back to the original set of items (of size count)""" if count == len(inds): return data if len(data.shape) == 1: ret = np.empty((count, ), dtype=data.dtype) ret.fill(fill) ret[inds] = data else: ret = np.empty((count, ) + data.shape[1:], dtype=data.dtype) ret.fill(fill) ret[inds, :] = data return ret def compute_targets(ex_rois, gt_rois, weights=(1.0, 1.0, 1.0, 1.0)): """Compute bounding-box regression targets for an image.""" return box_utils.bbox_transform_inv(ex_rois, gt_rois, weights).astype( np.float32, copy=False )
the-stack_0_19384
import os from concurrent.futures import ProcessPoolExecutor from functools import partial import numpy as np from tqdm import tqdm from src.etc import audio from src.tac.core.wavenet_vocoder.util import (is_mulaw, is_mulaw_quantize, mulaw, mulaw_quantize) from src.tac.hparams import hparams from src.tac.preprocessing.audio.utterance_processor import process_utterance from src.tac.preprocessing.parser.LJSpeechDatasetParser import \ LJSpeechDatasetParser def get_wav_dir(caching_dir: str) -> str: ''' The directory to write the preprocessed wav into. ''' return os.path.join(caching_dir, 'preprocessing/audio') def get_mel_dir(caching_dir: str) -> str: ''' The directory to write the mel spectograms into. ''' return os.path.join(caching_dir, 'preprocessing/mels') def get_lin_dir(caching_dir: str) -> str: ''' The directory to write the linear spectrograms into. ''' return os.path.join(caching_dir, 'preprocessing/linear') class WavProcessor(): def __init__(self, hp: hparams, caching_dir: str): self.hp = hp self._set_paths(caching_dir) self._ensure_folders_exist() def process(self, dataset: LJSpeechDatasetParser, n_jobs): utterances = dataset.parse() executor = ProcessPoolExecutor(max_workers=n_jobs) futures = [] for basename, text, wav in utterances: process = partial(process_utterance, self.mel_dir, self.linear_dir, self.wav_dir, basename, wav, self.hp) x = executor.submit(process) futures.append(x) self.processing_result = [future.result() for future in tqdm(futures) if future.result() is not None] return self.processing_result def show_stats(self): assert self.processing_result timesteps_sum = sum([int(m[1]) for m in self.processing_result]) timesteps_max = max([int(m[1]) for m in self.processing_result]) mel_frames_sum = sum([int(m[2]) for m in self.processing_result]) mel_frames_max = max([int(m[2]) for m in self.processing_result]) hours = timesteps_sum / self.hp.sample_rate / 3600 print('Written {} utterances, {} mel frames, {} audio timesteps, ({:.2f} hours)'.format(len(self.processing_result), mel_frames_sum, timesteps_sum, hours)) print('Max audio timesteps length: {}'.format(timesteps_max)) print('Max mel frames length: {}'.format(mel_frames_max)) def _set_paths(self, caching_dir: str): self.caching_dir = caching_dir self.mel_dir = get_mel_dir(caching_dir) self.wav_dir = get_wav_dir(caching_dir) self.linear_dir = get_lin_dir(caching_dir) def _ensure_folders_exist(self): os.makedirs(self.caching_dir, exist_ok=True) os.makedirs(self.mel_dir, exist_ok=True) os.makedirs(self.wav_dir, exist_ok=True) os.makedirs(self.linear_dir, exist_ok=True)
the-stack_0_19385
import argparse import logging import os.path from configparser import ConfigParser from typing import Any, Dict, List from minio import Minio from redis import StrictRedis from .__version__ import __version__ from .backend import KartonBackend from .config import Config from .karton import Consumer, LogConsumer log = logging.getLogger(__name__) class CliLogger(LogConsumer): identity = "karton.cli-logger" def process_log(self, event: Dict[str, Any]) -> Any: if event.get("type") == "log": level = event.get("levelname") name = event.get("name") msg = event.get("message") print(f"[{level}] {name}: {msg}") def get_user_option(prompt: str, default: str) -> str: user_input = input(f"{prompt}\n[{default}] ") print("") # just for style return user_input.strip() or default def configuration_wizard(config_filename: str) -> None: config = ConfigParser() log.info("Configuring MinIO") minio_access_key = "minioadmin" minio_secret_key = "minioadmin" minio_address = "localhost:9000" minio_bucket = "karton" minio_secure = "0" while True: minio_access_key = get_user_option( "Enter the MinIO access key", default=minio_access_key ) minio_secret_key = get_user_option( "Enter the MinIO secret key", default=minio_secret_key ) minio_address = get_user_option( "Enter the MinIO address", default=minio_address ) minio_bucket = get_user_option( "Enter the MinIO bucket to use", default=minio_bucket ) minio_secure = get_user_option('Use SSL ("0", "1")?', default=minio_secure) log.info("Testing MinIO connection...") minio = Minio( endpoint=minio_address, access_key=minio_access_key, secret_key=minio_secret_key, secure=bool(int(minio_secure)), ) bucket_exists = False try: bucket_exists = minio.bucket_exists(minio_bucket) except Exception as e: log.info("Error while connecting to MinIO: %s", e, exc_info=True) retry = get_user_option( 'Do you want to try with different MinIO settings ("yes", "no")?', default="yes", ) if retry != "yes": log.info("Quitting configuration") return else: continue log.info("Connected to MinIO successfully") if not bucket_exists: log.info( ( "The required bucket %s does not exist. To create it automatically," " start karton-system with --setup-bucket flag" ), minio_bucket, ) break config["minio"] = { "access_key": minio_access_key, "secret_key": minio_secret_key, "address": minio_address, "bucket": minio_bucket, "secure": minio_secure, } log.info("Configuring Redis") redis_host = "localhost" redis_port = "6379" while True: redis_host = get_user_option("Enter the Redis host", default=redis_host) redis_port = get_user_option("Enter the Redis port", default=redis_port) redis_password = get_user_option( "Enter the Redis password (enter to skip)", default="" ) log.info("Testing the Redis connection...") redis = StrictRedis( host=redis_host, port=int(redis_port), password=redis_password or None, decode_responses=True, ) try: redis.ping() except Exception as e: log.info("Error while connecting to Redis: %s", e, exc_info=True) retry = get_user_option( 'Do you want to try with different Redis settings ("yes", "no")?', default="yes", ) if retry != "yes": log.info("Quitting configuration") return else: continue log.info("Connected to Redis successfully") break config["redis"] = { "host": redis_host, "port": str(int(redis_port)), } if redis_password: config["redis"]["password"] = redis_password with open(config_filename, "w") as configfile: config.write(configfile) log.info("Saved the new configuration file in %s", os.path.abspath(config_filename)) def print_bind_list(config: Config) -> None: backend = KartonBackend(config=config) for bind in backend.get_binds(): print(bind) def delete_bind(config: Config, karton_name: str) -> None: backend = KartonBackend(config=config) binds = {k.identity: k for k in backend.get_binds()} consumers = backend.get_online_consumers() if karton_name not in binds: log.error("Trying to delete a karton bind that doesn't exist") return if consumers.get(karton_name, []): log.error( "This bind has active replicas that need to be downscaled " "before it can be deleted" ) return class KartonDummy(Consumer): persistent = False filters: List[Dict[str, Any]] = [] def process(self, task): pass karton = KartonDummy(config=config, identity=karton_name) karton.shutdown = True karton.loop() def main() -> None: parser = argparse.ArgumentParser(description="Your red pill to the karton-verse") parser.add_argument("--version", action="version", version=__version__) parser.add_argument("-c", "--config-file", help="Alternative configuration path") parser.add_argument( "-v", "--verbose", action="store_true", help="More verbose log output" ) subparsers = parser.add_subparsers(dest="command", help="sub-command help") subparsers.add_parser("list", help="List active karton binds") logs_parser = subparsers.add_parser("logs", help="Start streaming logs") logs_parser.add_argument( "--filter", help='Service identity filter e.g. "karton.classifier-*"', required=False, ) delete_parser = subparsers.add_parser("delete", help="Delete an unused karton bind") delete_parser.add_argument("identity", help="Karton bind identity to remove") configure_parser = subparsers.add_parser( "configure", help="Create a new configuration file" ) configure_parser.add_argument( "-f", "--force", action="store_true", help="Overwrite the existing configuration file", ) args = parser.parse_args() if args.verbose: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) if args.command == "configure": config_filename = args.config_file or "./karton.ini" log.debug("Creating a new configuration file in %s", config_filename) if not args.force and os.path.exists(config_filename): log.error( ( "There's already a configuration file under %s. Please delete " "it or specify a different filename using the -c argument" ), config_filename, ) return configuration_wizard(config_filename) return try: config = Config(args.config_file) except RuntimeError as e: log.error("Error while initializing the karton config: %s", e) log.error( ( "Please correct the configuration file or run `karton configure` " "to initialize it" ) ) return if args.command == "list": print_bind_list(config) elif args.command == "delete": karton_name = args.identity print( f"Are you sure you want to remove binds for karton {karton_name}?\n" "Type in the karton name to confirm deletion." ) if input().strip() == karton_name: delete_bind(config, karton_name) else: log.info("Aborted.") elif args.command == "logs": CliLogger.logger_filter = args.filter CliLogger(config=config).loop() else: parser.print_help()
the-stack_0_19386
from setuptools import setup,Extension from Cython.Build import cythonize sourcefiles = ['riwrapper.pyx', 'ritest.cc'] extensions = [Extension("riwrapper", sourcefiles, include_dirs=['include', 'rilib'], language="c++", extra_compile_args=["-O3"])] setup( ext_modules = cythonize(extensions) )
the-stack_0_19388
# -*- coding: utf-8 -*- """Test the manager's citation utilities.""" from __future__ import unicode_literals import os import unittest import time from pybel import BELGraph from pybel.constants import ( CITATION, CITATION_AUTHORS, CITATION_DATE, CITATION_NAME, CITATION_TYPE_PUBMED, ) from pybel.dsl import protein from pybel.manager.citation_utils import enrich_pubmed_citations, get_citations_by_pmids, sanitize_date from pybel.manager.models import Citation from pybel.testing.cases import TemporaryCacheMixin from pybel.testing.utils import n class TestSanitizeDate(unittest.TestCase): """Test sanitization of dates in various formats.""" def test_sanitize_1(self): """Test YYYY Mon DD.""" self.assertEqual('2012-12-19', sanitize_date('2012 Dec 19')) def test_sanitize_2(self): """Test YYYY Mon.""" self.assertEqual('2012-12-01', sanitize_date('2012 Dec')) def test_sanitize_3(self): """Test YYYY.""" self.assertEqual('2012-01-01', sanitize_date('2012')) def test_sanitize_4(self): """Test YYYY Mon-Mon.""" self.assertEqual('2012-10-01', sanitize_date('2012 Oct-Dec')) def test_sanitize_5(self): """Test YYYY Season.""" self.assertEqual('2012-03-01', sanitize_date('2012 Spring')) def test_sanitize_6(self): """Test YYYY Mon DD-DD.""" self.assertEqual('2012-12-12', sanitize_date('2012 Dec 12-15')) def test_sanitize_7(self): """Test YYYY Mon DD-Mon DD.""" self.assertEqual('2005-01-29', sanitize_date('2005 Jan 29-Feb 4')) def test_sanitize_nope(self): """Test failure.""" self.assertEqual(None, sanitize_date('2012 Early Spring')) class TestCitations(TemporaryCacheMixin): """Tests for citations.""" def setUp(self): super(TestCitations, self).setUp() self.u, self.v = (protein(n(), n()) for _ in range(2)) self.pmid = "9611787" self.graph = BELGraph() self.graph.add_increases(self.u, self.v, citation=self.pmid, evidence=n()) def test_enrich(self): """""" self.assertEqual(0, self.manager.count_citations()) get_citations_by_pmids(manager=self.manager, pmids=[self.pmid]) self.assertEqual(1, self.manager.count_citations()) c = self.manager.get_citation_by_pmid(self.pmid) self.assertIsNotNone(c) self.assertIsInstance(c, Citation) self.assertEqual(CITATION_TYPE_PUBMED, c.type) self.assertEqual(self.pmid, c.reference) def test_enrich_list(self): pmids = [ '25818332', '27003210', '26438529', '26649137', ] get_citations_by_pmids(manager=self.manager, pmids=pmids) citation = self.manager.get_or_create_citation(type=CITATION_TYPE_PUBMED, reference='25818332') self.assertIsNotNone(citation) def test_enrich_list_grouped(self): pmids = [ '25818332', '27003210', '26438529', '26649137', ] get_citations_by_pmids(manager=self.manager, pmids=pmids, group_size=2) citation = self.manager.get_citation_by_pmid('25818332') self.assertIsNotNone(citation) def test_enrich_overwrite(self): citation = self.manager.get_or_create_citation(type=CITATION_TYPE_PUBMED, reference=self.pmid) self.manager.session.commit() self.assertIsNone(citation.date) self.assertIsNone(citation.name) enrich_pubmed_citations(manager=self.manager, graph=self.graph) _, _, d = list(self.graph.edges(data=True))[0] citation_dict = d[CITATION] self.assertIn(CITATION_NAME, citation_dict) self.assertIn(CITATION_DATE, citation_dict) self.assertEqual('1998-05-01', citation_dict[CITATION_DATE]) self.assertIn(CITATION_AUTHORS, citation_dict) self.assertEqual( {'Lewell XQ', 'Judd DB', 'Watson SP', 'Hann MM'}, set(citation_dict[CITATION_AUTHORS]) ) def test_enrich_graph(self): enrich_pubmed_citations(manager=self.manager, graph=self.graph) _, _, d = list(self.graph.edges(data=True))[0] citation_dict = d[CITATION] self.assertIn(CITATION_NAME, citation_dict) self.assertIn(CITATION_DATE, citation_dict) self.assertEqual('1998-05-01', citation_dict[CITATION_DATE]) self.assertIn(CITATION_AUTHORS, citation_dict) self.assertEqual( {'Lewell XQ', 'Judd DB', 'Watson SP', 'Hann MM'}, set(citation_dict[CITATION_AUTHORS]) ) @unittest.skipIf(os.environ.get('DB') == 'mysql', reason='MySQL collation is wonky') def test_accent_duplicate(self): """Test when two authors, Gomez C and Goméz C are both checked that they are not counted as duplicates.""" g1 = 'Gomez C' g2 = 'Gómez C' pmid_1, pmid_2 = pmids = [ '29324713', '29359844', ] get_citations_by_pmids(manager=self.manager, pmids=pmids) time.sleep(1) x = self.manager.get_citation_by_pmid(pmid_1) self.assertIsNotNone(x) self.assertEqual('Martínez-Guillén JR', x.first.name) self.assertIn(g1, self.manager.object_cache_author) self.assertIn(g2, self.manager.object_cache_author) a1 = self.manager.get_author_by_name(g1) self.assertEqual(g1, a1.name) a2 = self.manager.get_author_by_name(g2) self.assertEqual(g2, a2.name)
the-stack_0_19389
import csv import os import sys from django.core.management.base import BaseCommand from workshops.models import Award, Badge, Person class Command(BaseCommand): help = "Report inconsistencies in PDF certificates." def add_arguments(self, parser): parser.add_argument( "path", help="Path to root directory of certificates repository", ) def handle(self, *args, **options): """Main entry point.""" path_to_root = options["path"] badges = self.get_badges() result = [ [ "which", "badge", "event", "awarded_by", "username", "person", "email", "awarded", ] ] for (name, badge) in badges: db_records = self.get_db_records(badge) db_people = db_records.keys() cert_path = os.path.join(path_to_root, name) if not os.path.isdir(cert_path): print("No directory {0}".format(name), file=sys.stderr) else: file_people = self.get_file_people(cert_path) self.missing( result, "database-disk", name, db_people - file_people, db_records ) self.missing( result, "disk-database", name, file_people - db_people, db_records ) csv.writer(sys.stdout).writerows(result) def get_badges(self): """Get all available badges as list of lower-case name and badge pairs.""" return [(b.name.lower(), b) for b in Badge.objects.all()] def get_db_records(self, badge): """Get set of usernames of all people with the given badge.""" objects = Award.objects.filter(badge=badge).values_list( "person__username", "awarded", "event__slug", "awarded_by__username" ) return dict( (obj[0], {"awarded": obj[1], "event": obj[2], "awarded_by": obj[3]}) for obj in objects ) def get_file_people(self, path): """Get names of all people with the given certificate.""" return set( [os.path.splitext(e)[0] for e in os.listdir(path) if e.endswith(".pdf")] ) def missing(self, report, title, kind, usernames, records): """Report missing usernames.""" for uid in usernames: try: receiver = Person.objects.get(username=uid) except Person.DoesNotExist: self.stderr.write("{0} does not exist".format(uid)) else: name = receiver.full_name if uid in records: event = records[uid]["event"] awarded = records[uid]["awarded"] username = records[uid]["awarded_by"] try: awarded_by = Person.objects.get(username=username).full_name except Person.DoesNotExist: self.stderr.write( "Person with username={0} who awarded {1} " "does not exist".format(username, uid) ) else: report.append( [ title, kind, event, awarded_by, uid, name, receiver.email, awarded, ] ) else: event, awarded, awarded_by = "", "", "" report.append( [ title, kind, event, awarded_by, uid, name, receiver.email, awarded, ] )
the-stack_0_19390
from abc import abstractmethod, ABC from typing import List, Optional, Pattern, Dict from datetime import datetime from collections import namedtuple import regex from recognizers_text.extractor import Extractor, ExtractResult from .constants import Constants, TimeTypeConstants from .extractors import DateTimeExtractor from .parsers import DateTimeParser, DateTimeParseResult from .base_date import BaseDateParser from .base_time import BaseTimeParser from .base_datetime import BaseDateTimeParser from .base_holiday import BaseHolidayParser from .base_dateperiod import BaseDatePeriodParser from .base_timeperiod import BaseTimePeriodParser from .base_datetimeperiod import BaseDateTimePeriodParser from .base_duration import BaseDurationParser from .base_set import BaseSetParser from .utilities import Token, merge_all_tokens, RegExpUtility, DateTimeOptions, DateTimeFormatUtil, DateUtils MatchedIndex = namedtuple('MatchedIndex', ['matched', 'index']) class MergedExtractorConfiguration: @property @abstractmethod def date_extractor(self) -> DateTimeExtractor: raise NotImplementedError @property @abstractmethod def time_extractor(self) -> DateTimeExtractor: raise NotImplementedError @property @abstractmethod def date_time_extractor(self) -> DateTimeExtractor: raise NotImplementedError @property @abstractmethod def date_period_extractor(self) -> DateTimeExtractor: raise NotImplementedError @property @abstractmethod def time_period_extractor(self) -> DateTimeExtractor: raise NotImplementedError @property @abstractmethod def date_time_period_extractor(self) -> DateTimeExtractor: raise NotImplementedError @property @abstractmethod def holiday_extractor(self) -> DateTimeExtractor: raise NotImplementedError @property @abstractmethod def duration_extractor(self) -> DateTimeExtractor: raise NotImplementedError @property @abstractmethod def set_extractor(self) -> DateTimeExtractor: raise NotImplementedError @property @abstractmethod def integer_extractor(self) -> Extractor: raise NotImplementedError @property @abstractmethod def after_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def before_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def since_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def from_to_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def single_ambiguous_month_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def preposition_suffix_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def number_ending_pattern(self) -> Pattern: raise NotImplementedError @property @abstractmethod def filter_word_regex_list(self) -> List[Pattern]: raise NotImplementedError class BaseMergedExtractor(DateTimeExtractor): @property def extractor_type_name(self) -> str: return Constants.SYS_DATETIME_MERGED def __init__(self, config: MergedExtractorConfiguration, options: DateTimeOptions): self.config = config self.options = options def extract(self, source: str, reference: datetime = None) -> List[ExtractResult]: if reference is None: reference = datetime.now() result: List[ExtractResult] = list() result = self.add_to(result, self.config.date_extractor.extract(source, reference), source) result = self.add_to(result, self.config.time_extractor.extract(source, reference), source) result = self.add_to(result, self.config.duration_extractor.extract(source, reference), source) result = self.add_to(result, self.config.date_period_extractor.extract(source, reference), source) result = self.add_to(result, self.config.date_time_extractor.extract(source, reference), source) result = self.add_to(result, self.config.time_period_extractor.extract(source, reference), source) result = self.add_to(result, self.config.date_time_period_extractor.extract(source, reference), source) result = self.add_to(result, self.config.set_extractor.extract(source, reference), source) result = self.add_to(result, self.config.holiday_extractor.extract(source, reference), source) # this should be at the end since if need the extractor to determine the previous text contains time or not result = self.add_to(result, self.number_ending_regex_match(source, result), source) result = self.add_mod(result, source) # filtering if self.options & DateTimeOptions.CALENDAR: result = self.check_calendar_filter_list(result, source) result = sorted(result, key=lambda x: x.start) return result def add_to(self, destination: List[ExtractResult], source: List[ExtractResult], text: str) -> List[ExtractResult]: for value in source: if self.options & DateTimeOptions.SKIP_FROM_TO_MERGE and self.should_skip_from_merge(value): continue is_found = False overlap_indexes: List[int] = list() first_index = -1 for index, dest in enumerate(destination): if dest.overlap(value): is_found = True if dest.cover(value): if first_index == -1: first_index = index overlap_indexes.append(index) else: continue if not is_found: destination.append(value) elif overlap_indexes: temp_dst: List[ExtractResult] = list() for index, dest in enumerate(destination): if index not in overlap_indexes: temp_dst.append(dest) # insert at the first overlap occurence to keep the order temp_dst.insert(first_index, value) destination = temp_dst return destination def should_skip_from_merge(self, source: ExtractResult) -> bool: return regex.search(self.config.from_to_regex, source.text) def number_ending_regex_match(self, source: str, extract_results: List[ExtractResult]) -> List[ExtractResult]: tokens: List[Token] = list() for extract_result in extract_results: if extract_result.type in [Constants.SYS_DATETIME_TIME, Constants.SYS_DATETIME_DATETIME]: after_str = source[extract_result.start + extract_result.length:] match = regex.search(self.config.number_ending_pattern, after_str) if match: new_time = RegExpUtility.get_group(match, 'newTime') num_res = self.config.integer_extractor.extract(new_time) if not num_res: continue start_position = extract_result.start + extract_result.length + match.group().index(new_time) tokens.append(Token(start_position, start_position + len(new_time))) return merge_all_tokens(tokens, source, Constants.SYS_DATETIME_TIME) def add_mod(self, ers: List[ExtractResult], source: str) -> List[ExtractResult]: return list(map(lambda x: self.add_mod_item(x, source), ers)) def add_mod_item(self, er: ExtractResult, source: str) -> ExtractResult: before_str = source[0:er.start] before = self.has_token_index(before_str.strip(), self.config.before_regex) if before.matched: mod_len = len(before_str) - before.index er.length += mod_len er.start -= mod_len er.text = source[er.start:er.start + er.length] after = self.has_token_index(before_str.strip(), self.config.after_regex) if after.matched: mod_len = len(before_str) - after.index er.length += mod_len er.start -= mod_len er.text = source[er.start:er.start + er.length] since = self.has_token_index(before_str.strip(), self.config.since_regex) if since.matched: mod_len = len(before_str) - since.index er.length += mod_len er.start -= mod_len er.text = source[er.start:er.start + er.length] return er def has_token_index(self, source: str, pattern: Pattern) -> MatchedIndex: match = regex.search(pattern, source) if match: return MatchedIndex(True, match.start()) return MatchedIndex(False, -1) def check_calendar_filter_list(self, ers: List[ExtractResult], source: str) -> List[ExtractResult]: for er in reversed(ers): for pattern in self.config.filter_word_regex_list: if regex.search(pattern, er.text): ers.remove(er) break return ers class MergedParserConfiguration(ABC): @property @abstractmethod def before_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def after_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def since_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def date_parser(self) -> BaseDateParser: raise NotImplementedError @property @abstractmethod def holiday_parser(self) -> BaseHolidayParser: raise NotImplementedError @property @abstractmethod def time_parser(self) -> BaseTimeParser: raise NotImplementedError @property @abstractmethod def date_time_parser(self) -> BaseDateTimeParser: raise NotImplementedError @property @abstractmethod def date_period_parser(self) -> BaseDatePeriodParser: raise NotImplementedError @property @abstractmethod def time_period_parser(self) -> BaseTimePeriodParser: raise NotImplementedError @property @abstractmethod def date_time_period_parser(self) -> BaseDateTimePeriodParser: raise NotImplementedError @property @abstractmethod def duration_parser(self) -> BaseDurationParser: raise NotImplementedError @property @abstractmethod def set_parser(self) -> BaseSetParser: raise NotImplementedError class BaseMergedParser(DateTimeParser): @property def parser_type_name(self) -> str: return Constants.SYS_DATETIME_MERGED def __init__(self, config: MergedParserConfiguration, options: DateTimeOptions): self.__date_min_value = DateTimeFormatUtil.format_date(DateUtils.min_value) self.__date_time_min_value = DateTimeFormatUtil.format_date_time(DateUtils.min_value) self.config = config self.options = options def parse(self, source: ExtractResult, reference: datetime = None) -> Optional[DateTimeParseResult]: if not reference: reference = datetime.now() result = None has_before = False has_after = False has_since = False mod_str = '' before_match = self.config.before_regex.match(source.text) after_match = self.config.after_regex.match(source.text) since_match = self.config.since_regex.match(source.text) if before_match: has_before = True source.start += before_match.end() source.length -= before_match.end() source.text = source.text[before_match.end():] mod_str = before_match.group() elif after_match: has_after = True source.start += after_match.end() source.length -= after_match.end() source.text = source.text[after_match.end():] mod_str = after_match.group() elif since_match: has_since = True source.start += since_match.end() source.length -= since_match.end() source.text = source.text[since_match.end():] mod_str = since_match.group() if source.type == Constants.SYS_DATETIME_DATE: result = self.config.date_parser.parse(source, reference) if not result.value: result = self.config.holiday_parser.parse(source, reference) elif source.type == Constants.SYS_DATETIME_TIME: result = self.config.time_parser.parse(source, reference) elif source.type == Constants.SYS_DATETIME_DATETIME: result = self.config.date_time_parser.parse(source, reference) elif source.type == Constants.SYS_DATETIME_DATEPERIOD: result = self.config.date_period_parser.parse(source, reference) elif source.type == Constants.SYS_DATETIME_TIMEPERIOD: result = self.config.time_period_parser.parse(source, reference) elif source.type == Constants.SYS_DATETIME_DATETIMEPERIOD: result = self.config.date_time_period_parser.parse(source, reference) elif source.type == Constants.SYS_DATETIME_DURATION: result = self.config.duration_parser.parse(source, reference) elif source.type == Constants.SYS_DATETIME_SET: result = self.config.set_parser.parse(source, reference) else: return None if has_before and result.value: result.length += len(mod_str) result.start -= len(mod_str) result.text = mod_str + result.text val = result.value val.mod = TimeTypeConstants.BEFORE_MOD result.value = val if has_after and result.value: result.length += len(mod_str) result.start -= len(mod_str) result.text = mod_str + result.text val = result.value val.mod = TimeTypeConstants.AFTER_MOD result.value = val if has_since and result.value: result.length += len(mod_str) result.start -= len(mod_str) result.text = mod_str + result.text val = result.value val.mod = TimeTypeConstants.SINCE_MOD result.value = val if self.options & DateTimeOptions.SPLIT_DATE_AND_TIME and result.value and result.value.sub_date_time_entities: result.value = self._date_time_resolution_for_split(result) else: result = self.set_parse_result(result, has_before, has_after, has_since) return result def set_parse_result(self, slot: DateTimeParseResult, has_before: bool, has_after: bool, has_since: bool) -> DateTimeParseResult: slot.value = self._date_time_resolution(slot, has_before, has_after, has_since) slot.type = f'{self.parser_type_name}.{self._determine_date_time_types(slot.type, has_before, has_after, has_since)}' return slot def _get_parse_result(self, extractor_result: Extractor, reference: datetime) -> DateTimeParseResult: extractor_type = extractor_result.type if extractor_type == Constants.SYS_DATETIME_DATE: result = self.config.date_parser.parse(extractor_result, reference) if not result.value: result = self.config.holiday_parser.parse(extractor_result, reference) return result elif extractor_type == Constants.SYS_DATETIME_TIME: return self.config.time_parser.parse(extractor_result, reference) elif extractor_type == Constants.SYS_DATETIME_DATETIME: return self.config.date_time_parser.parse(extractor_result, reference) elif extractor_type == Constants.SYS_DATETIME_DATEPERIOD: return self.config.date_period_parser.parse(extractor_result, reference) elif extractor_type == Constants.SYS_DATETIME_TIMEPERIOD: return self.config.time_period_parser.parse(extractor_result, reference) elif extractor_type == Constants.SYS_DATETIME_DATETIMEPERIOD: return self.config.date_time_period_parser.parse(extractor_result, reference) elif extractor_type == Constants.SYS_DATETIME_DURATION: return self.config.duration_parser.parse(extractor_result, reference) elif extractor_type == Constants.SYS_DATETIME_SET: return self.config.set_parser.parse(extractor_result, reference) else: return None def _determine_date_time_types(self, dtype: str, has_before: bool, has_after: bool, has_since: bool) -> str: if self.options & DateTimeOptions.SPLIT_DATE_AND_TIME: if dtype == Constants.SYS_DATETIME_DATETIME: return Constants.SYS_DATETIME_TIME else: if has_before or has_after or has_since: if dtype == Constants.SYS_DATETIME_DATE: return Constants.SYS_DATETIME_DATEPERIOD if dtype == Constants.SYS_DATETIME_TIME: return Constants.SYS_DATETIME_TIMEPERIOD if dtype == Constants.SYS_DATETIME_DATETIME: return Constants.SYS_DATETIME_DATETIMEPERIOD return dtype def _date_time_resolution_for_split(self, slot: DateTimeParseResult) -> List[DateTimeParseResult]: results = [] if slot.value.sub_date_time_entities: sub_entities = slot.value.sub_date_time_entities for sub_entity in sub_entities: result = sub_entity result.start += slot.start results += self._date_time_resolution_for_split(result) else: slot.value = self._date_time_resolution(slot, False, False, False) slot.type = f'{self.parser_type_name}.{self._determine_date_time_types(slot.type, False, False, False)}' results.append(slot) return results def _date_time_resolution(self, slot: DateTimeParseResult, has_before, has_after, has_since) -> List[Dict[str, str]]: if not slot: return None result = dict() resolutions = [] dtype = slot.type output_type = self._determine_date_time_types(dtype, has_before, has_after, has_since) timex = slot.timex_str value = slot.value if not value: return None is_lunar = value.is_lunar mod = value.mod comment = value.comment self._add_resolution_fields_any(result, Constants.TimexKey, timex) self._add_resolution_fields_any(result, Constants.CommentKey, comment) self._add_resolution_fields_any(result, Constants.ModKey, mod) self._add_resolution_fields_any(result, Constants.TypeKey, output_type) self._add_resolution_fields_any(result, Constants.IsLunarKey, str(is_lunar).lower() if is_lunar else '') future_resolution = value.future_resolution past_resolution = value.past_resolution future = self._generate_from_resolution(dtype, future_resolution, mod) past = self._generate_from_resolution(dtype, past_resolution, mod) future_values = sorted(future.values()) past_values = sorted(past.values()) intersect_values = [i for i, j in zip(future_values, past_values) if i == j] if len(intersect_values) == len(past_values) and len(intersect_values) == len(future_values): if past_values: self._add_resolution_fields_any(result, Constants.ResolveKey, past) else: if past_values: self._add_resolution_fields_any(result, Constants.ResolveToPastKey, past) if future_resolution: self._add_resolution_fields_any(result, Constants.ResolveToFutureKey, future) if comment == 'ampm': if 'resolve' in result: self._resolve_ampm(result, 'resolve') else: self._resolve_ampm(result, 'resolveToPast') self._resolve_ampm(result, 'resolveToFuture') for value in result.values(): if isinstance(value, dict): new_values = {} self._add_resolution_fields(new_values, Constants.TimexKey, timex) self._add_resolution_fields(new_values, Constants.ModKey, mod) self._add_resolution_fields(new_values, Constants.TypeKey, output_type) self._add_resolution_fields(new_values, Constants.IsLunarKey, str(is_lunar).lower() if is_lunar else '') for inner_key in value: new_values[inner_key] = value[inner_key] resolutions.append(new_values) if not past and not future: o = {} o['timex'] = timex o['type'] = output_type o['value'] = 'not resolved' resolutions.append(o) return {'values': resolutions} def _add_resolution_fields_any(self, dic: Dict[str, str], key: str, value: object): if isinstance(value, str): if value: dic[key] = value else: dic[key] = value def _add_resolution_fields(self, dic: [str, str], key: str, value: str): if value: dic[key] = value def _generate_from_resolution(self, dtype: str, resolution: Dict[str, str], mod: str) -> Dict[str, str]: result = {} if dtype == Constants.SYS_DATETIME_DATETIME: self.__add_single_date_time_to_resolution(resolution, TimeTypeConstants.DATETIME, mod, result) elif dtype == Constants.SYS_DATETIME_TIME: self.__add_single_date_time_to_resolution(resolution, TimeTypeConstants.TIME, mod, result) elif dtype == Constants.SYS_DATETIME_DATE: self.__add_single_date_time_to_resolution(resolution, TimeTypeConstants.DATE, mod, result) elif dtype == Constants.SYS_DATETIME_DURATION: if TimeTypeConstants.DURATION in resolution: result[TimeTypeConstants.VALUE] = resolution[TimeTypeConstants.DURATION] if dtype == Constants.SYS_DATETIME_TIMEPERIOD: self.__add_period_to_resolution(resolution, TimeTypeConstants.START_TIME, TimeTypeConstants.END_TIME, mod, result) if dtype == Constants.SYS_DATETIME_DATEPERIOD: self.__add_period_to_resolution(resolution, TimeTypeConstants.START_DATE, TimeTypeConstants.END_DATE, mod, result) if dtype == Constants.SYS_DATETIME_DATETIMEPERIOD: self.__add_period_to_resolution(resolution, TimeTypeConstants.START_DATETIME, TimeTypeConstants.END_DATETIME, mod, result) return result def __add_single_date_time_to_resolution(self, resolutions: Dict[str, str], dtype: str, mod: str, result: Dict[str, str]): key = TimeTypeConstants.VALUE value = resolutions[dtype] if not value or self.__date_min_value == value or self.__date_time_min_value == value: return if mod: if mod == TimeTypeConstants.BEFORE_MOD: key = TimeTypeConstants.END elif mod == TimeTypeConstants.AFTER_MOD: key = TimeTypeConstants.START elif mod == TimeTypeConstants.SINCE_MOD: key = TimeTypeConstants.START result[key] = value def __add_period_to_resolution(self, resolutions: Dict[str, str], start_type: str, end_type: str, mod: str, result: Dict[str, str]): start = resolutions.get(start_type, None) end = resolutions.get(end_type, None) if mod: if mod == TimeTypeConstants.BEFORE_MOD: result[TimeTypeConstants.END] = start return if mod == TimeTypeConstants.AFTER_MOD: result[TimeTypeConstants.START] = end return if mod == TimeTypeConstants.SINCE_MOD: result[TimeTypeConstants.START] = start return if not (start and end): return result[TimeTypeConstants.START] = start result[TimeTypeConstants.END] = end def _resolve_ampm(self, values_map: Dict[str, str], keyname: str): if not keyname in values_map: return resolution = values_map[keyname] if not 'timex' in values_map: return timex = values_map['timex'] values_map.pop(keyname, None) values_map[keyname + 'Am'] = resolution resolution_pm = {} if values_map['type'] == Constants.SYS_DATETIME_TIME: resolution_pm[TimeTypeConstants.VALUE] = DateTimeFormatUtil.to_pm(resolution[TimeTypeConstants.VALUE]) resolution_pm['timex'] = DateTimeFormatUtil.to_pm(timex) elif values_map['type'] == Constants.SYS_DATETIME_DATETIME: split_value = resolution[TimeTypeConstants.VALUE].split(' ') resolution_pm[TimeTypeConstants.VALUE] = f'{split_value[0]} {DateTimeFormatUtil.to_pm(split_value[1])}' resolution_pm['timex'] = DateTimeFormatUtil.all_str_to_pm(timex) elif values_map['type'] == Constants.SYS_DATETIME_TIMEPERIOD: if TimeTypeConstants.START in resolution: resolution_pm[TimeTypeConstants.START] = DateTimeFormatUtil.to_pm(resolution[TimeTypeConstants.START]) if TimeTypeConstants.END in resolution: resolution_pm[TimeTypeConstants.END] = DateTimeFormatUtil.to_pm(resolution[TimeTypeConstants.END]) resolution_pm['timex'] = DateTimeFormatUtil.all_str_to_pm(timex) elif values_map['type'] == Constants.SYS_DATETIME_DATETIMEPERIOD: if TimeTypeConstants.START in resolution: split_value = resolution[TimeTypeConstants.START].split(' ') resolution_pm[TimeTypeConstants.START] = f'{split_value[0]} {DateTimeFormatUtil.to_pm(split_value[1])}' if TimeTypeConstants.END in resolution: split_value = resolution[TimeTypeConstants.END].split(' ') resolution_pm[TimeTypeConstants.END] = f'{split_value[0]} {DateTimeFormatUtil.to_pm(split_value[1])}' resolution_pm['timex'] = DateTimeFormatUtil.all_str_to_pm(timex) values_map[keyname + 'Pm'] = resolution_pm
the-stack_0_19392
"""Selector event loop for Unix with signal handling.""" import errno import io import os import selectors import signal import socket import stat import subprocess import sys import threading import warnings from . import base_events from . import base_subprocess from . import constants from . import coroutines from . import events from . import exceptions from . import futures from . import selector_events from . import tasks from . import transports from .log import logger __all__ = ( 'SelectorEventLoop', 'AbstractChildWatcher', 'SafeChildWatcher', 'FastChildWatcher', 'DefaultEventLoopPolicy', ) if sys.platform == 'win32': # pragma: no cover raise ImportError('Signals are not really supported on Windows') def _sighandler_noop(signum, frame): """Dummy signal handler.""" pass class _UnixSelectorEventLoop(selector_events.BaseSelectorEventLoop): """Unix event loop. Adds signal handling and UNIX Domain Socket support to SelectorEventLoop. """ def __init__(self, selector=None): super().__init__(selector) self._signal_handlers = {} def close(self): super().close() if not sys.is_finalizing(): for sig in list(self._signal_handlers): self.remove_signal_handler(sig) else: if self._signal_handlers: warnings.warn(f"Closing the loop {self!r} " f"on interpreter shutdown " f"stage, skipping signal handlers removal", ResourceWarning, source=self) self._signal_handlers.clear() def _process_self_data(self, data): for signum in data: if not signum: # ignore null bytes written by _write_to_self() continue self._handle_signal(signum) def add_signal_handler(self, sig, callback, *args): """Add a handler for a signal. UNIX only. Raise ValueError if the signal number is invalid or uncatchable. Raise RuntimeError if there is a problem setting up the handler. """ if (coroutines.iscoroutine(callback) or coroutines.iscoroutinefunction(callback)): raise TypeError("coroutines cannot be used " "with add_signal_handler()") self._check_signal(sig) self._check_closed() try: # set_wakeup_fd() raises ValueError if this is not the # main thread. By calling it early we ensure that an # event loop running in another thread cannot add a signal # handler. signal.set_wakeup_fd(self._csock.fileno()) except (ValueError, OSError) as exc: raise RuntimeError(str(exc)) handle = events.Handle(callback, args, self, None) self._signal_handlers[sig] = handle try: # Register a dummy signal handler to ask Python to write the signal # number in the wakup file descriptor. _process_self_data() will # read signal numbers from this file descriptor to handle signals. signal.signal(sig, _sighandler_noop) # Set SA_RESTART to limit EINTR occurrences. signal.siginterrupt(sig, False) except OSError as exc: del self._signal_handlers[sig] if not self._signal_handlers: try: signal.set_wakeup_fd(-1) except (ValueError, OSError) as nexc: logger.info('set_wakeup_fd(-1) failed: %s', nexc) if exc.errno == errno.EINVAL: raise RuntimeError(f'sig {sig} cannot be caught') else: raise def _handle_signal(self, sig): """Internal helper that is the actual signal handler.""" handle = self._signal_handlers.get(sig) if handle is None: return # Assume it's some race condition. if handle._cancelled: self.remove_signal_handler(sig) # Remove it properly. else: self._add_callback_signalsafe(handle) def remove_signal_handler(self, sig): """Remove a handler for a signal. UNIX only. Return True if a signal handler was removed, False if not. """ self._check_signal(sig) try: del self._signal_handlers[sig] except KeyError: return False if sig == signal.SIGINT: handler = signal.default_int_handler else: handler = signal.SIG_DFL try: signal.signal(sig, handler) except OSError as exc: if exc.errno == errno.EINVAL: raise RuntimeError(f'sig {sig} cannot be caught') else: raise if not self._signal_handlers: try: signal.set_wakeup_fd(-1) except (ValueError, OSError) as exc: logger.info('set_wakeup_fd(-1) failed: %s', exc) return True def _check_signal(self, sig): """Internal helper to validate a signal. Raise ValueError if the signal number is invalid or uncatchable. Raise RuntimeError if there is a problem setting up the handler. """ if not isinstance(sig, int): raise TypeError(f'sig must be an int, not {sig!r}') if sig not in signal.valid_signals(): raise ValueError(f'invalid signal number {sig}') def _make_read_pipe_transport(self, pipe, protocol, waiter=None, extra=None): return _UnixReadPipeTransport(self, pipe, protocol, waiter, extra) def _make_write_pipe_transport(self, pipe, protocol, waiter=None, extra=None): return _UnixWritePipeTransport(self, pipe, protocol, waiter, extra) async def _make_subprocess_transport(self, protocol, args, shell, stdin, stdout, stderr, bufsize, extra=None, **kwargs): with events.get_child_watcher() as watcher: waiter = self.create_future() transp = _UnixSubprocessTransport(self, protocol, args, shell, stdin, stdout, stderr, bufsize, waiter=waiter, extra=extra, **kwargs) watcher.add_child_handler(transp.get_pid(), self._child_watcher_callback, transp) try: await waiter except Exception: transp.close() await transp._wait() raise return transp def _child_watcher_callback(self, pid, returncode, transp): self.call_soon_threadsafe(transp._process_exited, returncode) async def create_unix_connection( self, protocol_factory, path=None, *, ssl=None, sock=None, server_hostname=None, ssl_handshake_timeout=None): assert server_hostname is None or isinstance(server_hostname, str) if ssl: if server_hostname is None: raise ValueError( 'you have to pass server_hostname when using ssl') else: if server_hostname is not None: raise ValueError('server_hostname is only meaningful with ssl') if ssl_handshake_timeout is not None: raise ValueError( 'ssl_handshake_timeout is only meaningful with ssl') if path is not None: if sock is not None: raise ValueError( 'path and sock can not be specified at the same time') path = os.fspath(path) sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM, 0) try: sock.setblocking(False) await self.sock_connect(sock, path) except: sock.close() raise else: if sock is None: raise ValueError('no path and sock were specified') if (sock.family != socket.AF_UNIX or sock.type != socket.SOCK_STREAM): raise ValueError( f'A UNIX Domain Stream Socket was expected, got {sock!r}') sock.setblocking(False) transport, protocol = await self._create_connection_transport( sock, protocol_factory, ssl, server_hostname, ssl_handshake_timeout=ssl_handshake_timeout) return transport, protocol async def create_unix_server( self, protocol_factory, path=None, *, sock=None, backlog=100, ssl=None, ssl_handshake_timeout=None, start_serving=True): if isinstance(ssl, bool): raise TypeError('ssl argument must be an SSLContext or None') if ssl_handshake_timeout is not None and not ssl: raise ValueError( 'ssl_handshake_timeout is only meaningful with ssl') if path is not None: if sock is not None: raise ValueError( 'path and sock can not be specified at the same time') path = os.fspath(path) sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) # Check for abstract socket. `str` and `bytes` paths are supported. if path[0] not in (0, '\x00'): try: if stat.S_ISSOCK(os.stat(path).st_mode): os.remove(path) except FileNotFoundError: pass except OSError as err: # Directory may have permissions only to create socket. logger.error('Unable to check or remove stale UNIX socket ' '%r: %r', path, err) try: sock.bind(path) except OSError as exc: sock.close() if exc.errno == errno.EADDRINUSE: # Let's improve the error message by adding # with what exact address it occurs. msg = f'Address {path!r} is already in use' raise OSError(errno.EADDRINUSE, msg) from None else: raise except: sock.close() raise else: if sock is None: raise ValueError( 'path was not specified, and no sock specified') if (sock.family != socket.AF_UNIX or sock.type != socket.SOCK_STREAM): raise ValueError( f'A UNIX Domain Stream Socket was expected, got {sock!r}') sock.setblocking(False) server = base_events.Server(self, [sock], protocol_factory, ssl, backlog, ssl_handshake_timeout) if start_serving: server._start_serving() # Skip one loop iteration so that all 'loop.add_reader' # go through. await tasks.sleep(0, loop=self) return server async def _sock_sendfile_native(self, sock, file, offset, count): try: os.sendfile except AttributeError as exc: raise exceptions.SendfileNotAvailableError( "os.sendfile() is not available") try: fileno = file.fileno() except (AttributeError, io.UnsupportedOperation) as err: raise exceptions.SendfileNotAvailableError("not a regular file") try: fsize = os.fstat(fileno).st_size except OSError as err: raise exceptions.SendfileNotAvailableError("not a regular file") blocksize = count if count else fsize if not blocksize: return 0 # empty file fut = self.create_future() self._sock_sendfile_native_impl(fut, None, sock, fileno, offset, count, blocksize, 0) return await fut def _sock_sendfile_native_impl(self, fut, registered_fd, sock, fileno, offset, count, blocksize, total_sent): fd = sock.fileno() if registered_fd is not None: # Remove the callback early. It should be rare that the # selector says the fd is ready but the call still returns # EAGAIN, and I am willing to take a hit in that case in # order to simplify the common case. self.remove_writer(registered_fd) if fut.cancelled(): self._sock_sendfile_update_filepos(fileno, offset, total_sent) return if count: blocksize = count - total_sent if blocksize <= 0: self._sock_sendfile_update_filepos(fileno, offset, total_sent) fut.set_result(total_sent) return try: sent = os.sendfile(fd, fileno, offset, blocksize) except (BlockingIOError, InterruptedError): if registered_fd is None: self._sock_add_cancellation_callback(fut, sock) self.add_writer(fd, self._sock_sendfile_native_impl, fut, fd, sock, fileno, offset, count, blocksize, total_sent) except OSError as exc: if (registered_fd is not None and exc.errno == errno.ENOTCONN and type(exc) is not ConnectionError): # If we have an ENOTCONN and this isn't a first call to # sendfile(), i.e. the connection was closed in the middle # of the operation, normalize the error to ConnectionError # to make it consistent across all Posix systems. new_exc = ConnectionError( "socket is not connected", errno.ENOTCONN) new_exc.__cause__ = exc exc = new_exc if total_sent == 0: # We can get here for different reasons, the main # one being 'file' is not a regular mmap(2)-like # file, in which case we'll fall back on using # plain send(). err = exceptions.SendfileNotAvailableError( "os.sendfile call failed") self._sock_sendfile_update_filepos(fileno, offset, total_sent) fut.set_exception(err) else: self._sock_sendfile_update_filepos(fileno, offset, total_sent) fut.set_exception(exc) except Exception as exc: self._sock_sendfile_update_filepos(fileno, offset, total_sent) fut.set_exception(exc) else: if sent == 0: # EOF self._sock_sendfile_update_filepos(fileno, offset, total_sent) fut.set_result(total_sent) else: offset += sent total_sent += sent if registered_fd is None: self._sock_add_cancellation_callback(fut, sock) self.add_writer(fd, self._sock_sendfile_native_impl, fut, fd, sock, fileno, offset, count, blocksize, total_sent) def _sock_sendfile_update_filepos(self, fileno, offset, total_sent): if total_sent > 0: os.lseek(fileno, offset, os.SEEK_SET) def _sock_add_cancellation_callback(self, fut, sock): def cb(fut): if fut.cancelled(): fd = sock.fileno() if fd != -1: self.remove_writer(fd) fut.add_done_callback(cb) class _UnixReadPipeTransport(transports.ReadTransport): max_size = 256 * 1024 # max bytes we read in one event loop iteration def __init__(self, loop, pipe, protocol, waiter=None, extra=None): super().__init__(extra) self._extra['pipe'] = pipe self._loop = loop self._pipe = pipe self._fileno = pipe.fileno() self._protocol = protocol self._closing = False mode = os.fstat(self._fileno).st_mode if not (stat.S_ISFIFO(mode) or stat.S_ISSOCK(mode) or stat.S_ISCHR(mode)): self._pipe = None self._fileno = None self._protocol = None raise ValueError("Pipe transport is for pipes/sockets only.") os.set_blocking(self._fileno, False) self._loop.call_soon(self._protocol.connection_made, self) # only start reading when connection_made() has been called self._loop.call_soon(self._loop._add_reader, self._fileno, self._read_ready) if waiter is not None: # only wake up the waiter when connection_made() has been called self._loop.call_soon(futures._set_result_unless_cancelled, waiter, None) def __repr__(self): info = [self.__class__.__name__] if self._pipe is None: info.append('closed') elif self._closing: info.append('closing') info.append(f'fd={self._fileno}') selector = getattr(self._loop, '_selector', None) if self._pipe is not None and selector is not None: polling = selector_events._test_selector_event( selector, self._fileno, selectors.EVENT_READ) if polling: info.append('polling') else: info.append('idle') elif self._pipe is not None: info.append('open') else: info.append('closed') return '<{}>'.format(' '.join(info)) def _read_ready(self): try: data = os.read(self._fileno, self.max_size) except (BlockingIOError, InterruptedError): pass except OSError as exc: self._fatal_error(exc, 'Fatal read error on pipe transport') else: if data: self._protocol.data_received(data) else: if self._loop.get_debug(): logger.info("%r was closed by peer", self) self._closing = True self._loop._remove_reader(self._fileno) self._loop.call_soon(self._protocol.eof_received) self._loop.call_soon(self._call_connection_lost, None) def pause_reading(self): self._loop._remove_reader(self._fileno) def resume_reading(self): self._loop._add_reader(self._fileno, self._read_ready) def set_protocol(self, protocol): self._protocol = protocol def get_protocol(self): return self._protocol def is_closing(self): return self._closing def close(self): if not self._closing: self._close(None) def __del__(self): if self._pipe is not None: warnings.warn(f"unclosed transport {self!r}", ResourceWarning, source=self) self._pipe.close() def _fatal_error(self, exc, message='Fatal error on pipe transport'): # should be called by exception handler only if (isinstance(exc, OSError) and exc.errno == errno.EIO): if self._loop.get_debug(): logger.debug("%r: %s", self, message, exc_info=True) else: self._loop.call_exception_handler({ 'message': message, 'exception': exc, 'transport': self, 'protocol': self._protocol, }) self._close(exc) def _close(self, exc): self._closing = True self._loop._remove_reader(self._fileno) self._loop.call_soon(self._call_connection_lost, exc) def _call_connection_lost(self, exc): try: self._protocol.connection_lost(exc) finally: self._pipe.close() self._pipe = None self._protocol = None self._loop = None class _UnixWritePipeTransport(transports._FlowControlMixin, transports.WriteTransport): def __init__(self, loop, pipe, protocol, waiter=None, extra=None): super().__init__(extra, loop) self._extra['pipe'] = pipe self._pipe = pipe self._fileno = pipe.fileno() self._protocol = protocol self._buffer = bytearray() self._conn_lost = 0 self._closing = False # Set when close() or write_eof() called. mode = os.fstat(self._fileno).st_mode is_char = stat.S_ISCHR(mode) is_fifo = stat.S_ISFIFO(mode) is_socket = stat.S_ISSOCK(mode) if not (is_char or is_fifo or is_socket): self._pipe = None self._fileno = None self._protocol = None raise ValueError("Pipe transport is only for " "pipes, sockets and character devices") os.set_blocking(self._fileno, False) self._loop.call_soon(self._protocol.connection_made, self) # On AIX, the reader trick (to be notified when the read end of the # socket is closed) only works for sockets. On other platforms it # works for pipes and sockets. (Exception: OS X 10.4? Issue #19294.) if is_socket or (is_fifo and not sys.platform.startswith("aix")): # only start reading when connection_made() has been called self._loop.call_soon(self._loop._add_reader, self._fileno, self._read_ready) if waiter is not None: # only wake up the waiter when connection_made() has been called self._loop.call_soon(futures._set_result_unless_cancelled, waiter, None) def __repr__(self): info = [self.__class__.__name__] if self._pipe is None: info.append('closed') elif self._closing: info.append('closing') info.append(f'fd={self._fileno}') selector = getattr(self._loop, '_selector', None) if self._pipe is not None and selector is not None: polling = selector_events._test_selector_event( selector, self._fileno, selectors.EVENT_WRITE) if polling: info.append('polling') else: info.append('idle') bufsize = self.get_write_buffer_size() info.append(f'bufsize={bufsize}') elif self._pipe is not None: info.append('open') else: info.append('closed') return '<{}>'.format(' '.join(info)) def get_write_buffer_size(self): return len(self._buffer) def _read_ready(self): # Pipe was closed by peer. if self._loop.get_debug(): logger.info("%r was closed by peer", self) if self._buffer: self._close(BrokenPipeError()) else: self._close() def write(self, data): assert isinstance(data, (bytes, bytearray, memoryview)), repr(data) if isinstance(data, bytearray): data = memoryview(data) if not data: return if self._conn_lost or self._closing: if self._conn_lost >= constants.LOG_THRESHOLD_FOR_CONNLOST_WRITES: logger.warning('pipe closed by peer or ' 'os.write(pipe, data) raised exception.') self._conn_lost += 1 return if not self._buffer: # Attempt to send it right away first. try: n = os.write(self._fileno, data) except (BlockingIOError, InterruptedError): n = 0 except Exception as exc: self._conn_lost += 1 self._fatal_error(exc, 'Fatal write error on pipe transport') return if n == len(data): return elif n > 0: data = memoryview(data)[n:] self._loop._add_writer(self._fileno, self._write_ready) self._buffer += data self._maybe_pause_protocol() def _write_ready(self): assert self._buffer, 'Data should not be empty' try: n = os.write(self._fileno, self._buffer) except (BlockingIOError, InterruptedError): pass except Exception as exc: self._buffer.clear() self._conn_lost += 1 # Remove writer here, _fatal_error() doesn't it # because _buffer is empty. self._loop._remove_writer(self._fileno) self._fatal_error(exc, 'Fatal write error on pipe transport') else: if n == len(self._buffer): self._buffer.clear() self._loop._remove_writer(self._fileno) self._maybe_resume_protocol() # May append to buffer. if self._closing: self._loop._remove_reader(self._fileno) self._call_connection_lost(None) return elif n > 0: del self._buffer[:n] def can_write_eof(self): return True def write_eof(self): if self._closing: return assert self._pipe self._closing = True if not self._buffer: self._loop._remove_reader(self._fileno) self._loop.call_soon(self._call_connection_lost, None) def set_protocol(self, protocol): self._protocol = protocol def get_protocol(self): return self._protocol def is_closing(self): return self._closing def close(self): if self._pipe is not None and not self._closing: # write_eof is all what we needed to close the write pipe self.write_eof() def __del__(self): if self._pipe is not None: warnings.warn(f"unclosed transport {self!r}", ResourceWarning, source=self) self._pipe.close() def abort(self): self._close(None) def _fatal_error(self, exc, message='Fatal error on pipe transport'): # should be called by exception handler only if isinstance(exc, base_events._FATAL_ERROR_IGNORE): if self._loop.get_debug(): logger.debug("%r: %s", self, message, exc_info=True) else: self._loop.call_exception_handler({ 'message': message, 'exception': exc, 'transport': self, 'protocol': self._protocol, }) self._close(exc) def _close(self, exc=None): self._closing = True if self._buffer: self._loop._remove_writer(self._fileno) self._buffer.clear() self._loop._remove_reader(self._fileno) self._loop.call_soon(self._call_connection_lost, exc) def _call_connection_lost(self, exc): try: self._protocol.connection_lost(exc) finally: self._pipe.close() self._pipe = None self._protocol = None self._loop = None class _UnixSubprocessTransport(base_subprocess.BaseSubprocessTransport): def _start(self, args, shell, stdin, stdout, stderr, bufsize, **kwargs): stdin_w = None if stdin == subprocess.PIPE: # Use a socket pair for stdin, since not all platforms # support selecting read events on the write end of a # socket (which we use in order to detect closing of the # other end). Notably this is needed on AIX, and works # just fine on other platforms. stdin, stdin_w = socket.socketpair() self._proc = subprocess.Popen( args, shell=shell, stdin=stdin, stdout=stdout, stderr=stderr, universal_newlines=False, bufsize=bufsize, **kwargs) if stdin_w is not None: stdin.close() self._proc.stdin = open(stdin_w.detach(), 'wb', buffering=bufsize) class AbstractChildWatcher: """Abstract base class for monitoring child processes. Objects derived from this class monitor a collection of subprocesses and report their termination or interruption by a signal. New callbacks are registered with .add_child_handler(). Starting a new process must be done within a 'with' block to allow the watcher to suspend its activity until the new process if fully registered (this is needed to prevent a race condition in some implementations). Example: with watcher: proc = subprocess.Popen("sleep 1") watcher.add_child_handler(proc.pid, callback) Notes: Implementations of this class must be thread-safe. Since child watcher objects may catch the SIGCHLD signal and call waitpid(-1), there should be only one active object per process. """ def add_child_handler(self, pid, callback, *args): """Register a new child handler. Arrange for callback(pid, returncode, *args) to be called when process 'pid' terminates. Specifying another callback for the same process replaces the previous handler. Note: callback() must be thread-safe. """ raise NotImplementedError() def remove_child_handler(self, pid): """Removes the handler for process 'pid'. The function returns True if the handler was successfully removed, False if there was nothing to remove.""" raise NotImplementedError() def attach_loop(self, loop): """Attach the watcher to an event loop. If the watcher was previously attached to an event loop, then it is first detached before attaching to the new loop. Note: loop may be None. """ raise NotImplementedError() def close(self): """Close the watcher. This must be called to make sure that any underlying resource is freed. """ raise NotImplementedError() def __enter__(self): """Enter the watcher's context and allow starting new processes This function must return self""" raise NotImplementedError() def __exit__(self, a, b, c): """Exit the watcher's context""" raise NotImplementedError() class BaseChildWatcher(AbstractChildWatcher): def __init__(self): self._loop = None self._callbacks = {} def close(self): self.attach_loop(None) def _do_waitpid(self, expected_pid): raise NotImplementedError() def _do_waitpid_all(self): raise NotImplementedError() def attach_loop(self, loop): assert loop is None or isinstance(loop, events.AbstractEventLoop) if self._loop is not None and loop is None and self._callbacks: warnings.warn( 'A loop is being detached ' 'from a child watcher with pending handlers', RuntimeWarning) if self._loop is not None: self._loop.remove_signal_handler(signal.SIGCHLD) self._loop = loop if loop is not None: loop.add_signal_handler(signal.SIGCHLD, self._sig_chld) # Prevent a race condition in case a child terminated # during the switch. self._do_waitpid_all() def _sig_chld(self): try: self._do_waitpid_all() except Exception as exc: # self._loop should always be available here # as '_sig_chld' is added as a signal handler # in 'attach_loop' self._loop.call_exception_handler({ 'message': 'Unknown exception in SIGCHLD handler', 'exception': exc, }) def _compute_returncode(self, status): if os.WIFSIGNALED(status): # The child process died because of a signal. return -os.WTERMSIG(status) elif os.WIFEXITED(status): # The child process exited (e.g sys.exit()). return os.WEXITSTATUS(status) else: # The child exited, but we don't understand its status. # This shouldn't happen, but if it does, let's just # return that status; perhaps that helps debug it. return status class SafeChildWatcher(BaseChildWatcher): """'Safe' child watcher implementation. This implementation avoids disrupting other code spawning processes by polling explicitly each process in the SIGCHLD handler instead of calling os.waitpid(-1). This is a safe solution but it has a significant overhead when handling a big number of children (O(n) each time SIGCHLD is raised) """ def close(self): self._callbacks.clear() super().close() def __enter__(self): return self def __exit__(self, a, b, c): pass def add_child_handler(self, pid, callback, *args): if self._loop is None: raise RuntimeError( "Cannot add child handler, " "the child watcher does not have a loop attached") self._callbacks[pid] = (callback, args) # Prevent a race condition in case the child is already terminated. self._do_waitpid(pid) def remove_child_handler(self, pid): try: del self._callbacks[pid] return True except KeyError: return False def _do_waitpid_all(self): for pid in list(self._callbacks): self._do_waitpid(pid) def _do_waitpid(self, expected_pid): assert expected_pid > 0 try: pid, status = os.waitpid(expected_pid, os.WNOHANG) except ChildProcessError: # The child process is already reaped # (may happen if waitpid() is called elsewhere). pid = expected_pid returncode = 255 logger.warning( "Unknown child process pid %d, will report returncode 255", pid) else: if pid == 0: # The child process is still alive. return returncode = self._compute_returncode(status) if self._loop.get_debug(): logger.debug('process %s exited with returncode %s', expected_pid, returncode) try: callback, args = self._callbacks.pop(pid) except KeyError: # pragma: no cover # May happen if .remove_child_handler() is called # after os.waitpid() returns. if self._loop.get_debug(): logger.warning("Child watcher got an unexpected pid: %r", pid, exc_info=True) else: callback(pid, returncode, *args) class FastChildWatcher(BaseChildWatcher): """'Fast' child watcher implementation. This implementation reaps every terminated processes by calling os.waitpid(-1) directly, possibly breaking other code spawning processes and waiting for their termination. There is no noticeable overhead when handling a big number of children (O(1) each time a child terminates). """ def __init__(self): super().__init__() self._lock = threading.Lock() self._zombies = {} self._forks = 0 def close(self): self._callbacks.clear() self._zombies.clear() super().close() def __enter__(self): with self._lock: self._forks += 1 return self def __exit__(self, a, b, c): with self._lock: self._forks -= 1 if self._forks or not self._zombies: return collateral_victims = str(self._zombies) self._zombies.clear() logger.warning( "Caught subprocesses termination from unknown pids: %s", collateral_victims) def add_child_handler(self, pid, callback, *args): assert self._forks, "Must use the context manager" if self._loop is None: raise RuntimeError( "Cannot add child handler, " "the child watcher does not have a loop attached") with self._lock: try: returncode = self._zombies.pop(pid) except KeyError: # The child is running. self._callbacks[pid] = callback, args return # The child is dead already. We can fire the callback. callback(pid, returncode, *args) def remove_child_handler(self, pid): try: del self._callbacks[pid] return True except KeyError: return False def _do_waitpid_all(self): # Because of signal coalescing, we must keep calling waitpid() as # long as we're able to reap a child. while True: try: pid, status = os.waitpid(-1, os.WNOHANG) except ChildProcessError: # No more child processes exist. return else: if pid == 0: # A child process is still alive. return returncode = self._compute_returncode(status) with self._lock: try: callback, args = self._callbacks.pop(pid) except KeyError: # unknown child if self._forks: # It may not be registered yet. self._zombies[pid] = returncode if self._loop.get_debug(): logger.debug('unknown process %s exited ' 'with returncode %s', pid, returncode) continue callback = None else: if self._loop.get_debug(): logger.debug('process %s exited with returncode %s', pid, returncode) if callback is None: logger.warning( "Caught subprocess termination from unknown pid: " "%d -> %d", pid, returncode) else: callback(pid, returncode, *args) class _UnixDefaultEventLoopPolicy(events.BaseDefaultEventLoopPolicy): """UNIX event loop policy with a watcher for child processes.""" _loop_factory = _UnixSelectorEventLoop def __init__(self): super().__init__() self._watcher = None def _init_watcher(self): with events._lock: if self._watcher is None: # pragma: no branch self._watcher = SafeChildWatcher() if isinstance(threading.current_thread(), threading._MainThread): self._watcher.attach_loop(self._local._loop) def set_event_loop(self, loop): """Set the event loop. As a side effect, if a child watcher was set before, then calling .set_event_loop() from the main thread will call .attach_loop(loop) on the child watcher. """ super().set_event_loop(loop) if (self._watcher is not None and isinstance(threading.current_thread(), threading._MainThread)): self._watcher.attach_loop(loop) def get_child_watcher(self): """Get the watcher for child processes. If not yet set, a SafeChildWatcher object is automatically created. """ if self._watcher is None: self._init_watcher() return self._watcher def set_child_watcher(self, watcher): """Set the watcher for child processes.""" assert watcher is None or isinstance(watcher, AbstractChildWatcher) if self._watcher is not None: self._watcher.close() self._watcher = watcher SelectorEventLoop = _UnixSelectorEventLoop DefaultEventLoopPolicy = _UnixDefaultEventLoopPolicy
the-stack_0_19393
import unittest from tests.test_undos.test_coreutils import common from undo import expand, resolve class TestLink(unittest.TestCase): def test_link(self): command = "link SOURCE DEST" expected = ["rm DEST"] actual = [expand.expand(undo, env, ("%", "%"), "; ") for env, undo in resolve.resolve(command, [common.COREUTILS_UNDO_DIR], False, False, "sh")] self.assertListEqual(expected, actual) if __name__ == '__main__': unittest.main()
the-stack_0_19394
import torch import torch.nn as nn from torch.utils.model_zoo import load_url as load_state_dict_from_url __all__ = [ 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19', ] model_urls = { 'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth', 'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth', 'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth', 'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', 'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth', 'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth', 'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth', 'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth', } class VGG(nn.Module): def __init__(self, features, num_classes=1000, init_weights=True): super(VGG, self).__init__() self.features = features self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), ) if init_weights: self._initialize_weights() def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfgs = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } def _vgg(arch, cfg, batch_norm, pretrained, progress, **kwargs): if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model def vgg11(pretrained=False, progress=True, **kwargs): r"""VGG 11-layer model (configuration "A") from `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg11', 'A', False, pretrained, progress, **kwargs) def vgg11_bn(pretrained=False, progress=True, **kwargs): r"""VGG 11-layer model (configuration "A") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg11_bn', 'A', True, pretrained, progress, **kwargs) def vgg13(pretrained=False, progress=True, **kwargs): r"""VGG 13-layer model (configuration "B") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg13', 'B', False, pretrained, progress, **kwargs) def vgg13_bn(pretrained=False, progress=True, **kwargs): r"""VGG 13-layer model (configuration "B") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg13_bn', 'B', True, pretrained, progress, **kwargs) def vgg16(pretrained=False, progress=True, **kwargs): r"""VGG 16-layer model (configuration "D") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs) def vgg16_bn(pretrained=False, progress=True, **kwargs): r"""VGG 16-layer model (configuration "D") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg16_bn', 'D', True, pretrained, progress, **kwargs) def vgg19(pretrained=False, progress=True, **kwargs): r"""VGG 19-layer model (configuration "E") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg19', 'E', False, pretrained, progress, **kwargs) def vgg19_bn(pretrained=False, progress=True, **kwargs): r"""VGG 19-layer model (configuration 'E') with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg19_bn', 'E', True, pretrained, progress, **kwargs)
the-stack_0_19397
# NEON AI (TM) SOFTWARE, Software Development Kit & Application Development System # All trademark and other rights reserved by their respective owners # Copyright 2008-2021 Neongecko.com Inc. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this list of conditions # and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions # and the following disclaimer in the documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from setuptools import setup, find_packages from os import getenv, path def get_requirements(requirements_filename: str): requirements_file = path.join(path.abspath(path.dirname(__file__)), "requirements", requirements_filename) with open(requirements_file, 'r', encoding='utf-8') as r: requirements = r.readlines() requirements = [r.strip() for r in requirements if r.strip() and not r.strip().startswith("#")] for i in range(0, len(requirements)): r = requirements[i] if "@" in r: parts = [p.lower() if p.strip().startswith("git+http") else p for p in r.split('@')] r = "@".join(parts) if getenv("GITHUB_TOKEN"): if "github.com" in r: r = r.replace("github.com", f"{getenv('GITHUB_TOKEN')}@github.com") requirements[i] = r return requirements with open("README.md", "r") as f: long_description = f.read() with open("./version.py", "r", encoding="utf-8") as v: for line in v.readlines(): if line.startswith("__version__"): if '"' in line: version = line.split('"')[1] else: version = line.split("'")[1] setup( name='neon-audio', version=version, description=long_description, url='https://github.com/NeonGeckoCom/neon_audio', author='Neongecko', author_email='[email protected]', license='NeonAI License v1.0', packages=find_packages(), install_requires=get_requirements("requirements.txt"), zip_safe=True, classifiers=[ 'Intended Audience :: Developers', 'Programming Language :: Python :: 3.6', ], entry_points={ 'console_scripts': [ 'neon_audio_client=neon_audio.__main__:main' ] } )
the-stack_0_19401
import torch as th import torch.nn as nn import numpy as np from utilities.util import select_action from models.model import Model from critics.mlp_critic import MLPCritic class SQDDPG(Model): def __init__(self, args, target_net=None): super(SQDDPG, self).__init__(args) self.construct_model() self.apply(self.init_weights) if target_net != None: self.target_net = target_net self.reload_params_to_target() self.sample_size = self.args.sample_size self.batchnorm = nn.BatchNorm1d(self.args.agent_num).to(self.device) def construct_value_net(self): if self.args.agent_id: input_shape = (self.obs_dim + self.act_dim) * self.n_ + self.n_ else: input_shape = (self.obs_dim + self.act_dim) * self.n_ output_shape = 1 if self.args.shared_params: self.value_dicts = nn.ModuleList( [ MLPCritic(input_shape, output_shape, self.args) ] ) else: self.value_dicts = nn.ModuleList( [ MLPCritic(input_shape, output_shape, self.args) for _ in range(self.n_) ] ) def construct_model(self): self.construct_value_net() self.construct_policy_net() def sample_grandcoalitions(self, batch_size): seq_set = th.tril(th.ones(self.n_, self.n_), diagonal=0, out=None).to(self.device) grand_coalitions = th.multinomial(th.ones(batch_size*self.sample_size, self.n_)/self.n_, self.n_, replacement=False).to(self.device) individual_map = th.zeros(batch_size*self.sample_size*self.n_, self.n_).to(self.device) individual_map.scatter_(1, grand_coalitions.contiguous().view(-1, 1), 1) individual_map = individual_map.contiguous().view(batch_size, self.sample_size, self.n_, self.n_) subcoalition_map = th.matmul(individual_map, seq_set) grand_coalitions = grand_coalitions.unsqueeze(1).expand(batch_size*self.sample_size, self.n_, self.n_).contiguous().view(batch_size, self.sample_size, self.n_, self.n_) # shape = (b, n_s, n, n) return subcoalition_map, grand_coalitions, individual_map def marginal_contribution(self, obs, act): batch_size = obs.size(0) subcoalition_map, grand_coalitions, individual_map = self.sample_grandcoalitions(batch_size) # shape = (b, n_s, n, n) grand_coalitions_expand = grand_coalitions.unsqueeze(-1).expand(batch_size, self.sample_size, self.n_, self.n_, self.act_dim) # shape = (b, n_s, n, n, a) act = act.unsqueeze(1).unsqueeze(2).expand(batch_size, self.sample_size, self.n_, self.n_, self.act_dim).gather(3, grand_coalitions_expand) # shape = (b, n, a) -> (b, 1, 1, n, a) -> (b, n_s, n, n, a) subcoalition_map_no_i = subcoalition_map - individual_map # shape = (b, n_s, n, n) subcoalition_map_no_i = subcoalition_map_no_i.unsqueeze(-1) # shape = (b, n_s, n, n, 1) individual_map = individual_map.unsqueeze(-1) # shape = (b, n_s, n, n, 1) act_no_i = act * subcoalition_map_no_i act_i = act * individual_map # detach other agents' actions act = act_no_i.detach() + act_i # shape = (b, n_s, n, n, a) # make up inputs act = act.contiguous().view(batch_size, self.sample_size, self.n_, -1) # shape = (b, n_s, n, n*a) obs = obs.unsqueeze(1).unsqueeze(2).expand(batch_size, self.sample_size, self.n_, self.n_, self.obs_dim) # shape = (b, n, o) -> (b, 1, n, o) -> (b, 1, 1, n, o) -> (b, n_s, n, n, o) obs = obs.contiguous().view(batch_size, self.sample_size, self.n_, self.n_*self.obs_dim) # shape = (b, n_s, n, n, o) -> (b, n_s, n, n*o) inp = th.cat((obs, act), dim=-1) # shape = (b, n_s, n, n*o+n*a) inp = inp.contiguous().view(batch_size*self.sample_size, self.n_, -1) # shape = (b*n_s, n, n*o+n*a) # add agent id if self.args.agent_id: agent_ids = th.eye(self.n_).unsqueeze(0).repeat(batch_size*self.sample_size, 1, 1).to(self.device) # shape = (b*n_s, n, n) inp = th.cat( (inp, agent_ids), dim=-1 ) # shape = (b*n_s, n, n*o+n*a+n) if self.args.shared_params: inputs = inp.contiguous().view( batch_size*self.sample_size*self.n_, -1 ) # shape = (b*n_s*n, n*o+n*a/n*o+n*a+n) agent_value = self.value_dicts[0] values, _ = agent_value(inputs, None) else: inputs = inp values = [] for i, agent_value in enumerate(self.value_dicts): value, _ = agent_value(inputs[:, i, :], None) values.append(value) values = th.stack(values, dim=1) values = values.contiguous().view(batch_size, self.sample_size, self.n_, 1) # shape = (b, n_s, n, 1) return values def value(self, obs, act): return self.marginal_contribution(obs, act) def get_actions(self, state, status, exploration, actions_avail, target=False, last_hid=None): target_policy = self.target_net.policy if self.args.target else self.policy if self.args.continuous: means, log_stds, hiddens = self.policy(state, last_hid=last_hid) if not target else target_policy(state, last_hid=last_hid) if means.size(-1) > 1: means_ = means.sum(dim=1, keepdim=True) log_stds_ = log_stds.sum(dim=1, keepdim=True) else: means_ = means log_stds_ = log_stds actions, log_prob_a = select_action(self.args, means_, status=status, exploration=exploration, info={'log_std': log_stds_}) restore_mask = 1. - (actions_avail == 0).to(self.device).float() restore_actions = restore_mask * actions action_out = (means, log_stds) else: logits, _, hiddens = self.policy(state, last_hid=last_hid) if not target else target_policy(state, last_hid=last_hid) logits[actions_avail == 0] = -9999999 actions, log_prob_a = select_action(self.args, logits, status=status, exploration=exploration) restore_actions = actions action_out = logits return actions, restore_actions, log_prob_a, action_out, hiddens def get_loss(self, batch): batch_size = len(batch.state) state, actions, old_log_prob_a, old_values, old_next_values, rewards, next_state, done, last_step, actions_avail, last_hids, hids = self.unpack_data(batch) _, actions_pol, log_prob_a, action_out, _ = self.get_actions(state, status='train', exploration=False, actions_avail=actions_avail, target=False, last_hid=last_hids) if self.args.double_q: _, next_actions, _, _, _ = self.get_actions(next_state, status='train', exploration=False, actions_avail=actions_avail, target=False, last_hid=hids) else: _, next_actions, _, _, _ = self.get_actions(next_state, status='train', exploration=False, actions_avail=actions_avail, target=True, last_hid=hids) shapley_values_pol = self.marginal_contribution(state, actions_pol).mean(dim=1).contiguous().view(-1, self.n_) # do the exploration action on the value loss shapley_values_sum = self.marginal_contribution(state, actions).mean(dim=1).contiguous().view(-1, self.n_).sum(dim=-1, keepdim=True).expand(batch_size, self.n_) if self.args.target: next_shapley_values_sum = self.target_net.marginal_contribution(next_state, next_actions.detach()).mean(dim=1).contiguous().view(-1, self.n_).sum(dim=-1, keepdim=True).expand(batch_size, self.n_) else: next_shapley_values_sum = self.marginal_contribution(next_state, next_actions.detach()).mean(dim=1).contiguous().view(-1, self.n_).sum(dim=-1, keepdim=True).expand(batch_size, self.n_) returns = th.zeros((batch_size, self.n_), dtype=th.float).to(self.device) assert shapley_values_sum.size() == next_shapley_values_sum.size() assert returns.size() == shapley_values_sum.size() done = done.to(self.device) returns = rewards + self.args.gamma * (1 - done) * next_shapley_values_sum.detach() deltas = returns - shapley_values_sum advantages = shapley_values_pol if self.args.normalize_advantages: advantages = self.batchnorm(advantages) policy_loss = - advantages policy_loss = policy_loss.mean() value_loss = deltas.pow(2).mean() return policy_loss, value_loss, action_out
the-stack_0_19402
import numpy from theano import Op, Apply, scalar try: from pygpu.tools import ScalarArg, ArrayArg from pygpu.elemwise import ElemwiseKernel except ImportError: pass from basic_ops import as_gpuarray_variable from type import GpuArrayType from theano.gof.utils import MethodNotDefined def _is_scalar(v): False def make_argument(v, name): if _is_scalar(v): return ScalarArg(numpy.dtype(v.type.dtype), name) else: return ArrayArg(numpy.dtype(v.type.dtype), name) def ensure_out(o, ref): if o is None: return ref._empty_like_me() else: return o class GpuElemwise(Op): nin = property(lambda self: self.scalar_op.nin) nout = property(lambda self: self.scalar_op.nout) def __init__(self, scalar_op): self.scalar_op = scalar_op self.destroy_map = {} def __getstate__(self): d = copy.copy(self.__dict__) d.pop('__epydoc_asRoutine', None) d.pop('_hashval') return d def __setstate__(self, d): self.__dict__.update(d) self._rehash() def __eq__(self, other): return (type(self) == type(other) and self.scalar_op == other.scalar_op) def __hash__(self): return hash(type(self)) ^ hash(self.scalar_op) def __str__(self): return "GpuElemwise{%s}(gpuarray)" % (self.scalar_op,) def make_node(self, *inputs): _inputs = [as_gpuarray_variable(i) for i in inputs] if self.nin > 0 and len(_inputs) != self.nin: raise TypeError("Wrong argument count", (self.nin, len(_inputs))) for i in _inputs[1:]: if i.type.ndim != inputs[0].type.ndim: raise TypeError('mismatched rank amongst inputs') broadcastable = [] for d in xrange(_inputs[0].type.ndim): bcast_d = True for i in _inputs: if not i.type.broadcastable[d]: bcast_d = False break broadcastable.append(bcast_d) assert len(broadcastable) == _inputs[0].type.ndim assert self.nout > 0 inps = [make_argument(i, 'i%d' % (n,)) for n, i in enumerate(inputs)] scal_ins = [scalar.Scalar(i.dtype) for i in inputs] res = Apply(self, _inputs, [GpuArrayType(o.dtype, broadcastable)() for o in self.scalar_op.output_types(scal_ins)]) outs = [make_argument(o, 'o%d' % (n,)) for n, o in enumerate(res.outputs)] scal_out = [scalar.Scalar(o.dtype) for o in res.outputs] fake_node = Apply(self.scalar_op, [i() for i in scal_ins], [o() for o in scal_out]) kcode = self.scalar_op.c_code(fake_node, 'kcode', [i.expr() for i in inps], [o.expr() for o in outs], sub=dict(fail='return;')) res.tag.kcode = kcode try: code = self.scalar_op.c_support_code_apply(fake_node, 'kcode') if code: raise SupportCodeError() except MethodNotDefined: pass support_code = "" try: support_code += self.scalar_op.c_support_code() except MethodNotDefined: pass if support_code != "#define THEANO_MACRO_MOD(x,y) (x % y)": # Avoid the C++ complex struct raise SupportCodeError() k = ElemwiseKernel(None, inps+outs, kcode, preamble=support_code) res.tag.kernel = k return res def perform(self, node, inps, out): k = node.tag.kernel outs = [ensure_out(o[0], inps[0]) for o in out] # the dict call is there to avoid syntax error in python <= 2.5 k(*(inps+outs), **dict(broadcast=True)) for o, og in zip(out, outs): o[0] = og class SupportCodeError(Exception): """ We do not support certain things (such as the C++ complex struct) """
the-stack_0_19404
import os import shutil import sys import subprocess from oly.utils import Utils, Clr class Service: def __init__(self): pass def git_service_has_changes(self, service_dir='./'): if self.git_service_get_changes(service_dir): return True return False def git_service_get_changes(self, service_dir='./'): git_command = self._git_command(service_dir=service_dir, command='status -s') git_process = subprocess.check_output(git_command, shell=True, stderr=subprocess.STDOUT).decode(sys.stdout.encoding) if git_process: return str(git_process).strip().split('\n') return def git_service_update(self, service_dir='./'): branch = self.git_get_service_working_branch(service_dir) git_command = self._git_command(service_dir, 'pull origin ' + str(branch)) try: process = subprocess.check_output(git_command, shell=True, stderr=subprocess.STDOUT).decode(sys.stdout.encoding) print(process) return True except subprocess.CalledProcessError as err: Clr(err.output).error_banner() return def git_get_service_working_branch(self, service_dir='./'): git_command = self._git_command(service_dir, command=' rev-parse --abbrev-ref HEAD') try: git_process = subprocess.check_output(git_command, shell=True, stderr=subprocess.STDOUT).decode( sys.stdout.encoding).strip() return git_process except subprocess.CalledProcessError as err: print(err.output) def git_get_service_last_tag(self, service_dir='./'): git_command = self._git_command(service_dir, command='describe --abbrev=0 --tags') git_process = subprocess.check_output(git_command, shell=True, stderr=subprocess.STDOUT).decode(sys.stdout.encoding).strip() return git_process @staticmethod def _git_command(service_dir='./', command=''): git_dir = os.path.join(service_dir, '.git') return 'git --git-dir=' + git_dir + ' --work-tree=' + service_dir + ' ' + command @staticmethod def remove_service_folder(service_dir='./'): shutil.rmtree(service_dir) return True @staticmethod def service_folder_exists(service): return os.path.isdir(os.path.join(Utils.PROJECTS_DIR, service))
the-stack_0_19407
import sys import numpy as np sys.path.insert(0, "./") from bayes_optim import BO, OptimizerPipeline, RealSpace from bayes_optim.acquisition_optim import OnePlusOne_Cholesky_CMA from bayes_optim.surrogate import GaussianProcess, trend from deap import benchmarks class _BO(BO): def __init__(self, **kwargs): super().__init__(**kwargs) self._hist_EI = np.zeros(3) def ask(self, n_point=None): X = super().ask(n_point=n_point) if self.model.is_fitted: _criter = self._create_acquisition(fun="EI", par={}, return_dx=False) self._hist_EI[(self.iter_count - 1) % 3] = np.mean([_criter(x) for x in X]) return X def check_stop(self): _delta = self._fBest_DoE - self.fopt if ( self.iter_count > 1 and np.mean(self._hist_EI[0 : min(3, self.iter_count - 1)]) < 0.01 * _delta ): self.stop_dict["low-EI"] = np.mean(self._hist_EI) if self.eval_count >= (self.max_FEs / 2): self.stop_dict["max_FEs"] = self.eval_count return super().check_stop() np.random.seed(42) dim = 2 max_FEs = 80 obj_fun = lambda x: benchmarks.griewank(x)[0] lb, ub = -600, 600 search_space = RealSpace([lb, ub]) * dim mean = trend.constant_trend(dim, beta=None) # autocorrelation parameters of GPR thetaL = 1e-10 * (ub - lb) * np.ones(dim) thetaU = 10 * (ub - lb) * np.ones(dim) theta0 = np.random.rand(dim) * (thetaU - thetaL) + thetaL model = GaussianProcess( mean=mean, corr="squared_exponential", theta0=theta0, thetaL=thetaL, thetaU=thetaU, nugget=1e-5, noise_estim=False, optimizer="BFGS", wait_iter=5, random_start=5 * dim, eval_budget=100 * dim, ) bo = _BO( search_space=search_space, obj_fun=obj_fun, model=model, eval_type="list", DoE_size=10, n_point=1, acquisition_fun="EI", verbose=True, minimize=True, ) cma = OnePlusOne_Cholesky_CMA(dim=dim, obj_fun=obj_fun, lb=lb, ub=ub) def post_BO(BO): xopt = BO.xopt dim = BO.dim H = BO.model.Hessian(xopt) g = BO.model.gradient(xopt)[0] w, B = np.linalg.eigh(H) M = np.diag(1 / np.sqrt(w)).dot(B.T) H_inv = B.dot(np.diag(1 / w)).dot(B.T) sigma0 = np.linalg.norm(M.dot(g)) / np.sqrt(dim - 0.5) if sigma0 == 0: sigma0 = 1 / 5 if np.isnan(sigma0): sigma0 = 1 / 5 H_inv = np.eye(dim) kwargs = { "x": xopt, "fopt": BO.fopt, "sigma": sigma0, "C": H_inv, } return kwargs pipe = OptimizerPipeline(obj_fun=obj_fun, minimize=True, max_FEs=max_FEs, verbose=True) pipe.add(bo, transfer=post_BO) pipe.add(cma) pipe.run()
the-stack_0_19409
"""The system tray used by the main window""" import sys, os from PyQt4 import QtCore, QtGui from Core.globals import * from Tutorial import Tutorial class Systray(QtGui.QMainWindow): def __init__(self, parent = None): """ Create a system tray window to appear in the taskbar. """ QtGui.QMainWindow.__init__(self, parent) self.project = "" self.createTrayActions() self.createTrayIcon() self.icon = QtGui.QIcon(environ["images"] + "giniLogo.png") self.setIcon(self.icon) #QtCore.QObject.connect(self.trayIcon, #QtCore.SIGNAL("messageClicked()"), self.messageClicked) QtCore.QObject.connect(self.trayIcon, QtCore.SIGNAL("activated(QSystemTrayIcon::ActivationReason)"), self.iconActivated) def quit(self): """ Quit the program and avoid the system tray settings. """ systray = options["systray"] options["systray"] = False self.close() options["systray"] = systray def closeEvent(self, event): """ Handle the close event based on system tray settings. """ if options["systray"]: self.hide() self.trayIcon.show() event.ignore() return elif self.canvas.scene().items(): if not self.closeTopology(usedyRouters): event.ignore() return if options["restore"]: self.saveLayout() def resetLayout(self, default=False): """ Toggle the layout between the default and the saved layout. """ if not default and isinstance(mainWidgets["canvas"], Tutorial): self.log.append("You cannot reset the layout during the Tutorial!") return if default: self.defaultLayout = True else: self.defaultLayout = not self.defaultLayout if self.defaultLayout: self.loadLayout(environ["config"] + "defaultLayout") else: self.loadLayout() def saveLayout(self, filename=""): """ Save the layout. """ def getGeometry(window): geo = window.geometry() return "(%d,%d,%d,%d)" % (geo.x(), geo.y(), geo.width(), geo.height()) def getWindowList(): wlist = [] for key, window in self.docks.iteritems(): if not wlist: wlist.append(key) continue for i in range(len(wlist)): geo1 = self.docks[wlist[i]].geometry() geo2 = window.geometry() if geo1.x() > geo2.x(): break elif geo1.x() == geo2.x() and geo1.y() > geo2.y(): break wlist.insert(i, key) return wlist try: if filename: outfile = open(filename, "w") else: outfile = open(environ["config"] + "layout", "w") except: return for key in ["main", "tab"]: window = mainWidgets[key] outfile.write(key + ":") outfile.write("visible=" + str(window.isVisible()) + ";") outfile.write("geometry=" + getGeometry(window) + "\n") for key in getWindowList(): window = self.docks[key] outfile.write(key + ":") outfile.write("visible=" + str(window.isVisible()) + ";") outfile.write("floating=" + str(window.isFloating()) + ";") outfile.write("location=" + str(window.getLocation()) + ";") outfile.write("geometry=" + getGeometry(window) + "\n") outfile.write("project:" + self.project) outfile.close() def loadLayout(self, filename=""): """ Load the layout. """ def parse(text): if text == "True": return True elif text == "False": return False else: areas = [QtCore.Qt.LeftDockWidgetArea, QtCore.Qt.RightDockWidgetArea, QtCore.Qt.TopDockWidgetArea, QtCore.Qt.BottomDockWidgetArea, QtCore.Qt.LeftDockWidgetArea] for area in areas: if int(text) == area: return area try: if filename: infile = open(filename, "r") else: infile = open(environ["config"] + "layout", "r") except: return lines = infile.readlines() windows = self.docks.copy() windows["main"] = mainWidgets["main"] windows["tab"] = mainWidgets["tab"] windows["tm"] = mainWidgets["tm"] for line in lines: name, properties = line.strip().split(":", 1) if name == "project": self.project = properties continue window = windows[name] for entry in properties.split(";"): prop, val = entry.split("=", 1) if prop == "visible": window.setVisible(parse(val)) elif prop == "geometry": x, y, w, h = val.strip("()").split(",", 3) rect = QtCore.QRect(int(x), int(y), int(w), int(h)) window.setGeometry(rect) elif prop == "floating": floating = parse(val) window.setFloating(floating) elif prop == "location": self.addDockWidget(parse(val), window) def setVisible(self, visible): """ Set the visibility of the window and the tray. """ QtGui.QMainWindow.setVisible(self, visible) if not options["systray"]: return self.minimizeAction.setEnabled(visible) self.maximizeAction.setEnabled(not self.isMaximized()) self.restoreAction.setEnabled(self.isMaximized() or not visible) self.trayIcon.setVisible(not visible) if not visible: self.showMessage("GINI", "GINI is still running in the background") def setIcon(self, icon): """ Set the icon of the tray. """ self.trayIcon.setIcon(icon) self.trayIcon.setToolTip("GINI") def iconActivated(self, reason): """ Handle mouse events to the system tray. """ if reason == QtGui.QSystemTrayIcon.DoubleClick: self.setVisible(not self.isVisible()) elif reason == QtGui.QSystemTrayIcon.MiddleClick: self.showMessage("Middle Click", "You clicked?") def showMessage(self, title, message): """ Show a message from the system tray. """ self.trayIcon.showMessage(title, message, QtGui.QSystemTrayIcon.Information, 15 * 1000) def messageClicked(self): """ Handle mouse clicks to the message. """ QtGui.QMessageBox.information(None, self.tr("Systray"), self.tr("Goto whatever")) def createTrayActions(self): """ Create the right click tray actions. """ self.minimizeAction = QtGui.QAction(self.tr("Mi&nimize"), self) QtCore.QObject.connect(self.minimizeAction, QtCore.SIGNAL("triggered()"), self, QtCore.SLOT("hide()")) self.maximizeAction = QtGui.QAction(self.tr("Ma&ximize"), self) QtCore.QObject.connect(self.maximizeAction, QtCore.SIGNAL("triggered()"), self, QtCore.SLOT("showMaximized()")) self.restoreAction = QtGui.QAction(self.tr("&Restore"), self) QtCore.QObject.connect(self.restoreAction, QtCore.SIGNAL("triggered()"), self, QtCore.SLOT("showNormal()")) self.quitAction = QtGui.QAction(self.tr("&Quit"), self) QtCore.QObject.connect(self.quitAction, QtCore.SIGNAL("triggered()"), QtGui.qApp, QtCore.SLOT("quit()")) def createTrayIcon(self): """ Create the tray icon and menu. """ self.trayIconMenu = QtGui.QMenu(self) self.trayIconMenu.setPalette(defaultOptions["palette"]) self.trayIconMenu.addAction(self.minimizeAction) self.trayIconMenu.addAction(self.maximizeAction) self.trayIconMenu.addAction(self.restoreAction) self.trayIconMenu.addSeparator() self.trayIconMenu.addAction(self.quitAction) self.trayIcon = QtGui.QSystemTrayIcon(self) self.trayIcon.setContextMenu(self.trayIconMenu) if __name__=='__main__': app = QtGui.QApplication(sys.argv) systray = Systray() systray.show() sys.exit(app.exec_())
the-stack_0_19410
# start = [3, 0, 5, 8, 5, 1] # finish = [4, 6, 7, 9, 9, 2] activity = [(3, 4), (0, 6), (5, 7), (8, 9), (5, 9), (1, 2)] activity.sort(key=lambda x: (x[1], x[0])) preve = activity[0][1] print(activity[0]) for i in range(1,len(activity)): if activity[i][0] >= preve: print(activity[i]) preve = activity[i][1]
the-stack_0_19411
# functions that implement analysis and synthesis of sounds using the Harmonic Model # (for example usage check the models_interface directory) import numpy as np from scipy.signal import blackmanharris, triang from scipy.fftpack import ifft import math import dftModel as DFT import utilFunctions as UF import sineModel as SM def f0Detection(x, fs, w, N, H, t, minf0, maxf0, f0et): """ Fundamental frequency detection of a sound using twm algorithm x: input sound; fs: sampling rate; w: analysis window; N: FFT size; t: threshold in negative dB, minf0: minimum f0 frequency in Hz, maxf0: maximim f0 frequency in Hz, f0et: error threshold in the f0 detection (ex: 5), returns f0: fundamental frequency """ if (minf0 < 0): # raise exception if minf0 is smaller than 0 raise ValueError("Minumum fundamental frequency (minf0) smaller than 0") if (maxf0 >= 10000): # raise exception if maxf0 is bigger than fs/2 raise ValueError("Maximum fundamental frequency (maxf0) bigger than 10000Hz") if (H <= 0): # raise error if hop size 0 or negative raise ValueError("Hop size (H) smaller or equal to 0") hN = N//2 # size of positive spectrum hM1 = int(math.floor((w.size+1)/2)) # half analysis window size by rounding hM2 = int(math.floor(w.size/2)) # half analysis window size by floor x = np.append(np.zeros(hM2),x) # add zeros at beginning to center first window at sample 0 x = np.append(x,np.zeros(hM1)) # add zeros at the end to analyze last sample pin = hM1 # init sound pointer in middle of anal window pend = x.size - hM1 # last sample to start a frame fftbuffer = np.zeros(N) # initialize buffer for FFT w = w / sum(w) # normalize analysis window f0 = [] # initialize f0 output f0t = 0 # initialize f0 track f0stable = 0 # initialize f0 stable while pin<pend: x1 = x[pin-hM1:pin+hM2] # select frame mX, pX = DFT.dftAnal(x1, w, N) # compute dft ploc = UF.peakDetection(mX, t) # detect peak locations iploc, ipmag, ipphase = UF.peakInterp(mX, pX, ploc) # refine peak values ipfreq = fs * iploc/N # convert locations to Hez f0t = UF.f0Twm(ipfreq, ipmag, f0et, minf0, maxf0, f0stable) # find f0 if ((f0stable==0)&(f0t>0)) \ or ((f0stable>0)&(np.abs(f0stable-f0t)<f0stable/5.0)): f0stable = f0t # consider a stable f0 if it is close to the previous one else: f0stable = 0 f0 = np.append(f0, f0t) # add f0 to output array pin += H # advance sound pointer return f0 def harmonicDetection(pfreq, pmag, pphase, f0, nH, hfreqp, fs, harmDevSlope=0.01): """ Detection of the harmonics of a frame from a set of spectral peaks using f0 to the ideal harmonic series built on top of a fundamental frequency pfreq, pmag, pphase: peak frequencies, magnitudes and phases f0: fundamental frequency, nH: number of harmonics, hfreqp: harmonic frequencies of previous frame, fs: sampling rate; harmDevSlope: slope of change of the deviation allowed to perfect harmonic returns hfreq, hmag, hphase: harmonic frequencies, magnitudes, phases """ if (f0<=0): # if no f0 return no harmonics return np.zeros(nH), np.zeros(nH), np.zeros(nH) hfreq = np.zeros(nH) # initialize harmonic frequencies hmag = np.zeros(nH)-100 # initialize harmonic magnitudes hphase = np.zeros(nH) # initialize harmonic phases hf = f0*np.arange(1, nH+1) # initialize harmonic frequencies hi = 0 # initialize harmonic index if hfreqp == []: # if no incomming harmonic tracks initialize to harmonic series hfreqp = hf while (f0>0) and (hi<nH) and (hf[hi]<fs/2): # find harmonic peaks pei = np.argmin(abs(pfreq - hf[hi])) # closest peak dev1 = abs(pfreq[pei] - hf[hi]) # deviation from perfect harmonic dev2 = (abs(pfreq[pei] - hfreqp[hi]) if hfreqp[hi]>0 else fs) # deviation from previous frame threshold = f0/3 + harmDevSlope * pfreq[pei] if ((dev1<threshold) or (dev2<threshold)): # accept peak if deviation is small hfreq[hi] = pfreq[pei] # harmonic frequencies hmag[hi] = pmag[pei] # harmonic magnitudes hphase[hi] = pphase[pei] # harmonic phases hi += 1 # increase harmonic index return hfreq, hmag, hphase def harmonicModel(x, fs, w, N, t, nH, minf0, maxf0, f0et): """ Analysis/synthesis of a sound using the sinusoidal harmonic model x: input sound, fs: sampling rate, w: analysis window, N: FFT size (minimum 512), t: threshold in negative dB, nH: maximum number of harmonics, minf0: minimum f0 frequency in Hz, maxf0: maximim f0 frequency in Hz, f0et: error threshold in the f0 detection (ex: 5), returns y: output array sound """ hN = N//2 # size of positive spectrum hM1 = int(math.floor((w.size+1)/2)) # half analysis window size by rounding hM2 = int(math.floor(w.size/2)) # half analysis window size by floor x = np.append(np.zeros(hM2),x) # add zeros at beginning to center first window at sample 0 x = np.append(x,np.zeros(hM1)) # add zeros at the end to analyze last sample Ns = 512 # FFT size for synthesis (even) H = Ns/4 # Hop size used for analysis and synthesis hNs = Ns/2 pin = max(hNs, hM1) # init sound pointer in middle of anal window pend = x.size - max(hNs, hM1) # last sample to start a frame fftbuffer = np.zeros(N) # initialize buffer for FFT yh = np.zeros(Ns) # initialize output sound frame y = np.zeros(x.size) # initialize output array w = w / sum(w) # normalize analysis window sw = np.zeros(Ns) # initialize synthesis window ow = triang(2*H) # overlapping window sw[hNs-H:hNs+H] = ow bh = blackmanharris(Ns) # synthesis window bh = bh / sum(bh) # normalize synthesis window sw[hNs-H:hNs+H] = sw[hNs-H:hNs+H] / bh[hNs-H:hNs+H] # window for overlap-add hfreqp = [] f0t = 0 f0stable = 0 while pin<pend: #-----analysis----- x1 = x[pin-hM1:pin+hM2] # select frame mX, pX = DFT.dftAnal(x1, w, N) # compute dft ploc = UF.peakDetection(mX, t) # detect peak locations iploc, ipmag, ipphase = UF.peakInterp(mX, pX, ploc) # refine peak values ipfreq = fs * iploc/N f0t = UF.f0Twm(ipfreq, ipmag, f0et, minf0, maxf0, f0stable) # find f0 if ((f0stable==0)&(f0t>0)) \ or ((f0stable>0)&(np.abs(f0stable-f0t)<f0stable/5.0)): f0stable = f0t # consider a stable f0 if it is close to the previous one else: f0stable = 0 hfreq, hmag, hphase = harmonicDetection(ipfreq, ipmag, ipphase, f0t, nH, hfreqp, fs) # find harmonics hfreqp = hfreq #-----synthesis----- Yh = UF.genSpecSines(hfreq, hmag, hphase, Ns, fs) # generate spec sines fftbuffer = np.real(ifft(Yh)) # inverse FFT yh[:hNs-1] = fftbuffer[hNs+1:] # undo zero-phase window yh[hNs-1:] = fftbuffer[:hNs+1] y[pin-hNs:pin+hNs] += sw*yh # overlap-add pin += H # advance sound pointer y = np.delete(y, range(hM2)) # delete half of first window which was added in stftAnal y = np.delete(y, range(y.size-hM1, y.size)) # add zeros at the end to analyze last sample return y def harmonicModelAnal(x, fs, w, N, H, t, nH, minf0, maxf0, f0et, harmDevSlope=0.01, minSineDur=.02): """ Analysis of a sound using the sinusoidal harmonic model x: input sound; fs: sampling rate, w: analysis window; N: FFT size (minimum 512); t: threshold in negative dB, nH: maximum number of harmonics; minf0: minimum f0 frequency in Hz, maxf0: maximim f0 frequency in Hz; f0et: error threshold in the f0 detection (ex: 5), harmDevSlope: slope of harmonic deviation; minSineDur: minimum length of harmonics returns xhfreq, xhmag, xhphase: harmonic frequencies, magnitudes and phases """ if (minSineDur <0): # raise exception if minSineDur is smaller than 0 raise ValueError("Minimum duration of sine tracks smaller than 0") hN = N//2 # size of positive spectrum hM1 = int(math.floor((w.size+1)/2)) # half analysis window size by rounding hM2 = int(math.floor(w.size/2)) # half analysis window size by floor x = np.append(np.zeros(hM2),x) # add zeros at beginning to center first window at sample 0 x = np.append(x,np.zeros(hM2)) # add zeros at the end to analyze last sample pin = hM1 # init sound pointer in middle of anal window pend = x.size - hM1 # last sample to start a frame fftbuffer = np.zeros(N) # initialize buffer for FFT w = w / sum(w) # normalize analysis window hfreqp = [] # initialize harmonic frequencies of previous frame f0t = 0 # initialize f0 track f0stable = 0 # initialize f0 stable while pin<=pend: x1 = x[pin-hM1:pin+hM2] # select frame mX, pX = DFT.dftAnal(x1, w, N) # compute dft ploc = UF.peakDetection(mX, t) # detect peak locations iploc, ipmag, ipphase = UF.peakInterp(mX, pX, ploc) # refine peak values ipfreq = fs * iploc/N # convert locations to Hz f0t = UF.f0Twm(ipfreq, ipmag, f0et, minf0, maxf0, f0stable) # find f0 if ((f0stable==0)&(f0t>0)) \ or ((f0stable>0)&(np.abs(f0stable-f0t)<f0stable/5.0)): f0stable = f0t # consider a stable f0 if it is close to the previous one else: f0stable = 0 hfreq, hmag, hphase = harmonicDetection(ipfreq, ipmag, ipphase, f0t, nH, hfreqp, fs, harmDevSlope) # find harmonics hfreqp = hfreq if pin == hM1: # first frame xhfreq = np.array([hfreq]) xhmag = np.array([hmag]) xhphase = np.array([hphase]) else: # next frames xhfreq = np.vstack((xhfreq,np.array([hfreq]))) xhmag = np.vstack((xhmag, np.array([hmag]))) xhphase = np.vstack((xhphase, np.array([hphase]))) pin += H # advance sound pointer xhfreq = SM.cleaningSineTracks(xhfreq, round(fs*minSineDur/H)) # delete tracks shorter than minSineDur return xhfreq, xhmag, xhphase
the-stack_0_19412
#!/bin/env python import os import os.path import numpy as np from datetime import datetime class MulticlassLogisticRegression(object): """Implementation of multiclass logistic regression. It provides two ways of training: 1) normal gradient descent 2) natural gradient descent Note that the natural gradient descend is much faster, however, it is also much more memory demanding (its memory complexity is O(N^2)). """ def __init__(self, num_clases, phi_size, name=None): """ Initialize the classifier: 1) num_classes - number of output classes 2) phi_size - number of features of the classifier """ self.num_clases = num_clases self.phi_size = phi_size self.theta = np.zeros((phi_size, 1), dtype=np.float64) self.name = name def __str__(self): return "MulticlassLogisticRegression: " + str(self.name) def w(self, phis): """Compute the product of the parameters and the features.""" w = [] for phi in phis: prod = float(np.dot(self.theta.T, phi)) if prod < -1e16 or prod > 1e16: print ("MulticlassLogisticRegression::w - too small/large " "numbers") w.append(prod) return np.array(w) def ew(self, phis): """Compute exponentiate of the product of the parameters and the features.""" return np.exp(self.w(phis)) def Pcf(self, cls, phis): """Returns probability of the cls class given the phis (class) features.""" ew = self.ew(phis) p = ew[cls]/sum(ew) return p def logPcf(self, cls, phis): """Return log of Pcf.""" return np.log(self.Pcf(cls, phis)) def gradLogPcf(self, cls, phis): """Compute the gradient of the logPcf.""" ew = self.ew(phis) lgp = phis[cls].copy() x = np.zeros_like(self.theta) for ewi, phi in zip(ew, phis): # this could be faster # ...as in `x = np.sum(np.array(map(self.ew, phis)) * phis)'? x += ewi*phi lgp -= 1/sum(ew)*x return lgp def logLikelihood(self, examples): """Compute the likelihood of the examples.""" l = 0.0 for episode in examples: for cls, phis in episode: l += self.logPcf(cls, phis) # normalize for the size of the corpus l /= len(examples) return l def gradLogLikelihood(self, examples): """Compute the gradient of the likelihood of the examples and at the same time also compute the likelihood. Normalize both the gradient and the likelihood for the number of the data points. """ gl = np.zeros_like(self.theta) l = 0.0 for episode in examples: for cls, phis in episode: gl += self.gradLogPcf(cls, phis) l += self.logPcf(cls, phis) # normalize for the size of the corpus gl /= len(examples) l /= len(examples) return gl, l def regLogLikelihood(self, examples, regularization = 0.0): """This is the objective function of the training: - the likelihood of examples - L2 regularization of parameters. """ return self.logLikelihood(examples) - float(regularization*np.dot(self.theta.T, self.theta)) def gradRegLogLikelihood(self, examples, regularization = 0.0): """This is gradient of the objective function of the training - the gradient of the likelihood function + gradient of the regularization """ g, l = self.gradLogLikelihood(examples) rg = g - regularization*self.theta rl = l - float(regularization*np.dot(self.theta.T, self.theta)) return rg, rl def naturalGradRegLogLikelihood(self, examples, regularization = 0.0): """This is natural gradient of the objective function - it also computes the likelihood of the examples """ l = 0.0 A = [] gl = np.zeros_like(self.theta) i = 0.0 for episode in examples: for cls, phis in episode: l += self.logPcf(cls, phis) g = self.gradLogPcf(cls, phis) gl += g A.append(g.T) i += 1.0 # normalize for the size of the corpus gl /= len(examples) l /= len(examples) A = np.vstack(A) F = np.dot(A.T, A)/i # regularize the F F += 0.001 * np.identity(self.phi_size) invF = np.linalg.pinv(F) ng = np.dot(invF, gl) # regularize rng = ng - regularization*self.theta return rng, l def update(self, examples, alg = "plain", step_size = 1.0, regularization = 0.0): """The theta parameters get updated by either: - 'plain' gradient or - natural gradient 1) examples - an list of training examples [exmpl1, exmpl2, ...] exmpl* = [class_num, phi_vect] 2) alg - optimization algorithm. In both cases, the likelihood of the examples is computed. plain - plain gradient natural - natural gradient 3) step_size - step size of the gradient ascend 4) regularization - L2 regularization coefficient """ if alg == 'plain': g, l = self.gradRegLogLikelihood(examples, regularization) s = step_size*g self.theta += s elif alg == 'natural': g, l = self.naturalGradRegLogLikelihood(examples, regularization) s = step_size*g self.theta += s lprint("-"*80) lprint("Grad norm: ", np.linalg.norm(g)) lprint("Step norm: ", np.linalg.norm(s)) lprint("Theta norm: ", np.linalg.norm(self.theta)) lprint("Log likelihood:", l) lprint('') return l def load(self, fileName): """Load the previously stored theta vector.""" f = open(fileName, "r") self.theta = np.array([float(x.strip()) for x in f]) self.theta = np.reshape(self.theta, (self.phi_size, 1)) f.close() def save(self, fileName): """Store the theta vector in the fileName file.""" f = open(fileName, "w") for theta in self.theta: f.write("%f\n" % theta) f.close() # The next function is just for inspiration when using the MLR class. It should # be moved to an independent test class. def test(): num_clases = 2 phi_size = 2 examples = [ [1, [ 0.0, 0.0, 1.0 ], ], [0, [ 0.5, 0.1, 1.0 ], ], [0, [ 0.5, 0.2, 1.0 ], ], [1, [-0.5, 0.2, 1.0 ], ] ] LR = MulticlassLogisticRegression(num_clases, phi_size) # for all iterations for i in range(0, 100): print("="*80) print('Working on a new iteration:', i) print('Date:', datetime.today()) l = LR.update(examples, ) LR.save(os.path.join("MLR.%03d.thetas" %i))
the-stack_0_19414
import re import typing from copy import deepcopy from pathlib import Path from xml.dom.minidom import Element from warnings import warn import commonmark import recommonmark from recommonmark.parser import CommonMarkParser import docutils import docutils.frontend from ruamel.yaml import YAML from .utils import * leadingTabsRx = re.compile("^( *)(\\t+)") parser = YAML(typ="safe") def _tabbedYaml2YamlReplacer(m): return m.group(1) + " " * len(m.group(2)) def _tabbedYaml2Yaml(text): for l in text.splitlines(): yield leadingTabsRx.sub(_tabbedYaml2YamlReplacer, l) def tabbedYaml2Yaml(text): return "\n".join(_tabbedYaml2Yaml(text)) def parseYaml(text): return parser.load(tabbedYaml2Yaml(text)) thisDir = Path(__file__).parent.absolute() schemaFile = thisDir / "issuer.schema.yaml" schema = parseYaml(schemaFile.read_text(encoding="utf-8")) defaultSectionCfg = schema["properties"]["react"]["default"] defaultRestSectionCfg = {"mustRemoveTemplate": True} defaultCfg = { "essentialLabels": { "invalid": schema["defs"]["essentialLabels"]["properties"]["invalid"]["default"], "valid": schema["defs"]["essentialLabels"]["properties"]["valid"]["default"], "delayedAction": schema["defs"]["essentialLabels"]["properties"]["delayedAction"]["default"] }, "messages": { "greeting": schema["defs"]["messagesTemplates"]["properties"]["greeting"]["default"], "issuesFixed": schema["defs"]["messagesTemplates"]["properties"]["issuesFixed"]["default"], "issuesStillPresent": schema["defs"]["messagesTemplates"]["properties"]["issuesStillPresent"]["default"], }, } defaultCfg.update(defaultSectionCfg) defaultCfg.update(defaultRestSectionCfg) issuesTemplatesPrefix = Path(".") / ".github" / "ISSUE_TEMPLATE" def deepMerge(src, dst, propagatingProps=None): if propagatingProps is None: propagatingProps = src for n in propagatingProps: if n not in src: continue v = src[n] if n not in dst: dst[n] = deepcopy(v) else: v1 = dst[n] if isinstance(v1, dict): deepMerge(v, v1, propagatingProps[n]) else: dst[n] = deepcopy(v) templateMetadataBlockRegEx = re.compile("^(-{3,})(\\r?\\n)(.+)\\2\\1\\2", re.DOTALL) def parseTemplateMetadataBlock(t: str, fileName: Path): m = templateMetadataBlockRegEx.match(t) if not m: raise ValueError("Metadata block is not detected in the issue template", fileName) metadataBlockYamlText = m.group(3) try: return parser.load(metadataBlockYamlText) except: raise ValueError("Incorrect YAML in metadata block", fileName) def parseConfig(path: Path = "./.github/issuer.yml"): path = Path(path) t = normalize(unicodeNormalization, path.read_text()) cfg = parser.load(t) deepMerge(defaultCfg, cfg, defaultCfg) cfg["templates"] = templatesDst = {} for templateFile in issuesTemplatesPrefix.glob("*.md"): templateText = templateFile.read_text(encoding="utf-8") try: templateMetadataYaml = parseTemplateMetadataBlock(templateText, templateFile) except: warn(str(templateFile) + " has invalid metadata block, skipping") continue if "issuer" not in templateMetadataYaml: continue templDtor = templateMetadataYaml["issuer"] templ = parseMarkdown(templateText) templDtor["file"] = templateFile templateLabels = templateMetadataYaml["labels"] if isinstance(templateLabels, str): issueLabel = templateLabels elif isinstance(templateLabels, list): issueLabel = templateLabels[0] if issueLabel in templatesDst: raise KeyError("Conflicting labels: " + str(templateFile) + ", " + str(templatesDst[issueLabel]["file"])) templatesDst[issueLabel] = templDtor deepMerge(cfg, templDtor, defaultCfg) secsDtors = templDtor["cbxSections"] checkboxesLabelsAll = set() restSections, cbxses = parseCheckboxedTemplate(templ, checkboxSectionsNames=secsDtors) for sn, cbxses in cbxses.items(): secDtor = secsDtors[sn] allowed = set(cbxses) secDtor["allowed"] = allowed checkboxesLabelsAll |= allowed if "min" not in secDtor or secDtor["min"] is None: secDtor["min"] = 0 if "max" not in secDtor or secDtor["max"] is None: secDtor["max"] = inf deepMerge(templDtor, secDtor, defaultSectionCfg) if "restSections" not in templDtor: templDtor["restSections"] = rSDtor = {} else: rSDtor = templDtor["restSections"] for sn, s in restSections.items(): if sn not in rSDtor: rSDtor[sn] = sD = {} else: sD = rSDtor[sn] sD["default"] = linesSet(node2text(s)) deepMerge(templDtor, sD, defaultRestSectionCfg) templDtor["checkboxesLabelsAll"] = checkboxesLabelsAll return cfg def parseMarkdown(t: typing.Union[str, Path]): if isinstance(t, Path): t = t.read_text(encoding="utf-8") s = docutils.frontend.OptionParser(components=(CommonMarkParser,)).get_default_values() p = CommonMarkParser() doc = docutils.utils.new_document(None, s) p.parse(t, doc) parsedDocs = doc.asdom() doc = next(iter(parsedDocs.childNodes)) return doc def getTextFromNodes(node): if node.nodeType == node.TEXT_NODE: yield node.data else: for cn in node.childNodes: yield from getTextFromNodes(cn) def node2text(node): return "".join(getTextFromNodes(node)) def getSections(doc): res = {} for s in doc.getElementsByTagName("section"): titleCand = s.firstChild if titleCand.tagName == "title": if s.getElementsByTagName("section"): continue name = node2text(titleCand).strip() res[name] = s return res class Checkbox: __slots__ = ("name", "checked", "desc", "pNode", "liNode") def __init__(self, name, checked, desc, liNode, pNode): self.name = name self.checked = checked self.desc = desc self.liNode = liNode self.pNode = pNode def __repr__(self): return self.__class__.__name__ + "<" + ", ".join(repr(getattr(self, k)) for k in self.__class__.__slots__[:3]) + ">" cbxRx = re.compile("^\\[([ xXvV])\\]\\s+(.+)$") def extractCheckboxes(sec): res = {} lists = list(sec.getElementsByTagName("bullet_list")) if len(lists) != 1: raise ValueError() l = lists[0] for i in l.getElementsByTagName("list_item"): if len(i.childNodes) != 1: raise ValueError() p = i.firstChild if p.tagName != "paragraph": raise ValueError() v = node2text(p) m = cbxRx.match(v) if not m: raise ValueError() c, lbl = m.groups() cbxV = c != " " lblSpl = lbl.split(" - ", 1) k = lblSpl[0].strip() if len(lblSpl) > 1: desc = lblSpl[1].strip() else: desc = None res[k] = Checkbox(k, cbxV, desc, i, p) return res def separateCheckboxSections(sections, checkboxSectionsNames): res = {} for cbxSName in checkboxSectionsNames: res[cbxSName] = extractCheckboxes(sections[cbxSName]) del sections[cbxSName] return res def parseCheckboxedTemplate(src: typing.Union[str, Path, Element], checkboxSectionsNames: typing.Iterable[str]): if not isinstance(src, Element): doc = parseMarkdown(src) else: doc = src sections = getSections(doc) checkboxesSections = separateCheckboxSections(sections, checkboxSectionsNames) return sections, checkboxesSections
the-stack_0_19415
nota1 = float(input('Primeira nota: ')) nota2 = float(input('Segunda nota: ')) média = (nota1 + nota2) / 2 print('Com as notas {:.1f} e {:.1f} você obteve média {:.1f}.'.format(nota1, nota2, média)) if média >= 7: print('Sua média foi maior do que 7.0. Parabéns, você está APROVADO.') elif 7 > média >= 5: print('Sua média foi abaixo de 7.0. Você está em RECUPERAÇÃO.') elif média < 5: print('Sua média foi muito baixa. Estude mais! Você está REPROVADO.')
the-stack_0_19417
"""Module executing integration tests against certbot with nginx plugin.""" import os import ssl import pytest from certbot_integration_tests.nginx_tests import context as nginx_context @pytest.fixture() def context(request): # Fixture request is a built-in pytest fixture describing current test request. integration_test_context = nginx_context.IntegrationTestsContext(request) try: yield integration_test_context finally: integration_test_context.cleanup() @pytest.mark.parametrize('certname_pattern, params, context', [ ('nginx.{0}.wtf', ['run'], {'default_server': True}), ('nginx2.{0}.wtf', ['--preferred-challenges', 'http'], {'default_server': True}), # Overlapping location block and server-block-level return 301 ('nginx3.{0}.wtf', ['--preferred-challenges', 'http'], {'default_server': True}), # No matching server block; default_server exists ('nginx4.{0}.wtf', ['--preferred-challenges', 'http'], {'default_server': True}), # No matching server block; default_server does not exist ('nginx5.{0}.wtf', ['--preferred-challenges', 'http'], {'default_server': False}), # Multiple domains, mix of matching and not ('nginx6.{0}.wtf,nginx7.{0}.wtf', ['--preferred-challenges', 'http'], {'default_server': False}), ], indirect=['context']) def test_certificate_deployment(certname_pattern, params, context): # type: (str, list, nginx_context.IntegrationTestsContext) -> None """ Test various scenarios to deploy a certificate to nginx using certbot. """ domains = certname_pattern.format(context.worker_id) command = ['--domains', domains] command.extend(params) context.certbot_test_nginx(command) lineage = domains.split(',')[0] server_cert = ssl.get_server_certificate(('localhost', context.tls_alpn_01_port)) with open(os.path.join(context.workspace, 'conf/live/{0}/cert.pem'.format(lineage)), 'r') as file: certbot_cert = file.read() assert server_cert == certbot_cert context.certbot_test_nginx(['rollback', '--checkpoints', '1']) with open(context.nginx_config_path, 'r') as file_h: current_nginx_config = file_h.read() assert context.nginx_config == current_nginx_config
the-stack_0_19418
from enum import Enum class Timetable(object): """Represents a timetable.""" def __init__(self): super(Timetable, self).__init__() self.coursesList = [] self.startDate = 0 self.endDate = 0 class Course(object): """Represents a course within the timetable.""" def __init__(self): super(Course, self).__init__() self.courseSlots = [] self.courseCode = "" self.teacher = "" self.description = "" class TimeSlot(object): """Represents a time slot for a course.""" def __init__(self): super(TimeSlot, self).__init__() self.slotType = "" self.day = 0 self.room = "" self.timeStart = 0 self.timeEnd = 0 class SlotType(Enum): """Type of time slot the course's time slot may have.""" none = 0 lecture = 1, lab = 2, exam = 3
the-stack_0_19419
#!/bin/env python3 # Author: ph-u # Script: sysargv.py # Desc: get familiarize with system arguments in python scripts # Input: python3 sysargv.py <var_1> <var_2> <var_3> ... # Output: three-lined python interpreter output # Arguments: variable # Date: Oct 2019 """get familiarize with system arguments in python scripts""" __appname__="sysargv.py" __author__="ph-u" __version__="0.0.1" __license__="None" import sys print("This is the name of the script: ",sys.argv[0]) print("Name of arguments: ",len(sys.argv)) print("The arguments are: ",str(sys.argv))