filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_22318
""" The documentation for python-tdl. A Pythonic port of U{libtcod<http://doryen.eptalys.net/libtcod/>}. You can find the project page on Google Code U{here<http://code.google.com/p/python-tdl/>}. Report any bugs or issues to the Google Code issue tracker U{here<https://code.google.com/p/python-tdl/issues/list>}. Getting Started =============== Once the library is imported you can load the font you want to use with L{tdl.setFont}. This is optional and when skipped will use a decent default font. After that you call L{tdl.init} to set the size of the window and get the root console in return. This console is the canvas to what will appear on the screen. Indexing Consoles ================= For most methods taking a position you can use Python-style negative indexes to refer to the opposite side of a console with (-1, -1) starting at the bottom right. You can also check if a point is part of a console using containment logic i.e. ((x, y) in console). You may also iterate over a console using a for statement. This returns every x,y coordinate available to draw on but it will be extremely slow to actually operate on every coordinate individualy. Try to minimize draws by using an offscreen L{Console}, only drawing what needs to be updated, and using L{Console.blit}. Drawing ======= Once you have the root console from L{tdl.init} you can start drawing on it using a method such as L{Console.drawChar}. When using this method you can have the char parameter be an integer or a single character string. The fgcolor and bgcolor parameters expect a three item list [red, green, blue] with integers in the 0-255 range with [0, 0, 0] being black and [255, 255, 255] being white. Or instead you can use None in the place of any of the three parameters to tell the library to not overwrite colors. After the drawing functions are called a call to L{tdl.flush} will update the screen. """ import sys import os import ctypes import weakref import array import itertools import textwrap import struct import re import warnings from . import event, map, noise from .__tcod import _lib, _Color, _unpackfile _IS_PYTHON3 = (sys.version_info[0] == 3) if _IS_PYTHON3: # some type lists to use with isinstance _INTTYPES = (int,) _NUMTYPES = (int, float) _STRTYPES = (str, bytes) else: _INTTYPES = (int, long) _NUMTYPES = (int, long, float) _STRTYPES = (str,) def _encodeString(string): # still used for filepaths, and that's about it "changes string into bytes if running in python 3, for sending to ctypes" if _IS_PYTHON3 and isinstance(string, str): return string.encode() return string #def _formatString(string): # pass def _formatChar(char): """Prepares a single characters for passing to ctypes calls, needs to return an integer but can also pass None which will keep the current characters instead of overwriting it. This is called often and needs to be optimized whenever possible. """ if char is None: return None #if isinstance(char, _INTTYPES): # return char if isinstance(char, _STRTYPES) and len(char) == 1: return ord(char) return int(char) # conversion faster than type check #raise TypeError('Expected char parameter to be a single characters string, number, or None, got: %s' % repr(char)) _fontinitialized = False _rootinitialized = False _rootConsoleRef = None # remove dots from common functions _setchar = _lib.TCOD_console_set_char _setfore = _lib.TCOD_console_set_char_foreground _setback = _lib.TCOD_console_set_char_background _setcharEX = _lib.TCOD_console_put_char_ex def _verify_colors(*colors): """Used internally. Raise an assertion error if the parameters can not be converted into colors. """ for color in colors: assert _iscolor(color), 'a color must be a 3 items tuple, web format, or None, received %s' % repr(color) return True def _iscolor(color): """Used internally. A debug function to see if an object can be used as a TCOD color struct. None counts as a parameter to keep the current colors instead. This function is often part of an inner-loop and can slow a program down. It has been made to work with assert and can be skipped with the -O flag. Still it's called often and must be optimized. """ if color is None: return True if isinstance(color, (tuple, list, _Color)): return len(color) == 3 if isinstance(color, _INTTYPES): return True return False ## not using this for now #class Color(object): # # def __init__(self, r, g, b): # self._color = (r, g, b) # self._ctype = None # # def _getCType(self): # if not self._ctype: # self._ctype = _Color(*self._color) # return self._ctype # # def __len__(self): # return 3 # Format the color to ctypes, will preserve None and False _formatColor = _Color.new def _getImageSize(filename): """Try to get the width and height of a bmp of png image file""" file = open(filename, 'rb') if file.read(8) == b'\x89PNG\r\n\x1a\n': # PNG while 1: length, = struct.unpack('>i', file.read(4)) chunkID = file.read(4) if chunkID == '': # EOF return None if chunkID == b'IHDR': # return width, height return struct.unpack('>ii', file.read(8)) file.seek(4 + length, 1) file.seek(0) if file.read(8) == b'BM': # Bitmap file.seek(18, 0) # skip to size data # return width, height return struct.unpack('<ii', file.read(8)) # return None on error, unknown file class TDLError(Exception): """ The catch all for most TDL specific errors. """ class _MetaConsole(object): """ Contains methods shared by both the L{Console} and L{Window} characters. """ __slots__ = ('width', 'height', 'console', '_cursor', '_fgcolor', '_bgcolor', '_bgblend', '_colorLock', '__weakref__', '__dict__') def __init__(self): self._cursor = (0, 0) self._scrollMode = 'error' self._fgcolor = _formatColor((255, 255, 255)) self._bgcolor = _formatColor((0, 0, 0)) self._bgblend = 1 # SET self._colorLock = None # which object sets the ctype color options def _normalizePoint(self, x, y): """Check if a point is in bounds and make minor adjustments. Respects Pythons negative indexes. -1 starts at the bottom right. Replaces the _drawable function """ #assert isinstance(x, _INTTYPES), 'x must be an integer, got %s' % repr(x) #assert isinstance(y, _INTTYPES), 'y must be an integer, got %s' % repr(y) # force int, always faster than type checking x = int(x) y = int(y) assert (-self.width <= x < self.width) and (-self.height <= y < self.height), \ ('(%i, %i) is an invalid postition on %s' % (x, y, self)) # handle negative indexes if x < 0: x += self.width if y < 0: y += self.height return (x, y) def _normalizeRect(self, x, y, width, height): """Check if the rectangle is in bounds and make minor adjustments. raise AssertionError's for any problems """ x, y = self._normalizePoint(x, y) # inherit _normalizePoint logic assert width is None or isinstance(width, _INTTYPES), 'width must be an integer or None, got %s' % repr(width) assert height is None or isinstance(height, _INTTYPES), 'height must be an integer or None, got %s' % repr(height) # if width or height are None then extend them to the edge if width is None: width = self.width - x elif width < 0: # handle negative numbers width += self.width width = max(0, width) # a 'too big' negative is clamped zero if height is None: height = self.height - y height = max(0, height) elif height < 0: height += self.height # reduce rect size to bounds width = min(width, self.width - x) height = min(height, self.height - y) return x, y, width, height def _normalizeCursor(self, x, y): """return the normalized the cursor position.""" width, height = self.getSize() assert width != 0 and height != 0, 'can not print on a console with a width or height of zero' while x >= width: x -= width y += 1 while y >= height: if self._scrollMode == 'scroll': y -= 1 self.scroll(0, -1) elif self._scrollMode == 'error': # reset the cursor on error self._cursor = (0, 0) raise TDLError('Cursor has reached the end of the console') return (x, y) def _lockColors(self, forceUpdate=False): """Make sure the color options on the root console match ths instance""" if self.console._lockColors is not self or forceUpdate: self.console._lockColors = self _lib.TCOD_console_set_default_background(self.console, self.bgcolor) _lib.TCOD_console_set_default_foreground(self.console, self.fgcolor) # def setMode(self, mode): """Configure how this console will react to the cursor writing past the end if the console. This is for methods that use the virtual cursor, such as L{printStr}. @type mode: string @param mode: Possible settings are: - 'error' - A TDLError will be raised once the cursor reaches the end of the console. Everything up until the error will still be drawn. This is the default setting. - 'scroll' - The console will scroll up as stuff is written to the end. You can restrict the region with L{tdl.Window} when doing this. """ MODES = ['error', 'scroll'] if mode.lower() not in MODES: raise TDLError('mode must be one of %s, got %s' % (MODES, repr(mode))) self._scrollMode = mode.lower() def setColors(self, fg=None, bg=None): """Sets the colors to be used with the L{printStr} function. Values of None will only leave the current values unchanged. """ if self.console._lockColors is self: self.console._lockColors = None if fg is not None: self._fgcolor = _formatColor(fg) if bg is not None: self._bgcolor = _formatColor(bg) def printStr(self, string): """Print a string at the virtual cursor. Handles special characters such as '\\n' and '\\r'. Printing past the bottom of the console will scroll everying upwards. Colors can be set with L{setColors} and the virtual cursor can be moved with L{move}. @type string: string @param string: """ x, y = self._cursor for char in string: if char == '\n': # line break x = 0 y += 1 continue if char == '\r': # return x = 0 continue x, y = self._normalizeCursor(x, y) self.drawChar(x, y, char, self._fgcolor, self._bgcolor) x += 1 self._cursor = (x, y) def write(self, string): """This method mimics basic file-like behaviour. Because of this method you can replace sys.stdout or sys.stderr with a L{Typewriter} instance. This is a convoluted process and behaviour seen now can be excepted to change on later versions. @type string: string """ # some 'basic' line buffer stuff. # there must be an easier way to do this. The textwrap module didn't # help much. x, y = self._normalizeCursor(*self._cursor) width, height = self.getSize() wrapper = textwrap.TextWrapper(initial_indent=(' '*x), width=width) writeLines = [] for line in string.split('\n'): if line: writeLines += wrapper.wrap(line) wrapper.initial_indent = '' else: writeLines.append([]) for line in writeLines: x, y = self._normalizeCursor(x, y) self.drawStr(x, y, line[x:], self._fgcolor, self._bgcolor) y += 1 x = 0 y -= 1 self._cursor = (x, y) def drawChar(self, x, y, char, fgcolor=(255, 255, 255), bgcolor=(0, 0, 0)): """Draws a single characters. @type x: int @param x: X coordinate to draw at. @type y: int @param y: Y coordinate to draw at. @type char: int, string, or None @param char: Should be an integer, single characters string, or None. You can set the char parameter as None if you only want to change the colors of the tile. @type fgcolor: (r, g, b) or None @param fgcolor: For fgcolor and bgcolor you use a 3 items list with integers ranging 0-255 or None. None will keep the current color at this position unchanged. @type bgcolor: (r, g, b) or None @param bgcolor: Background color. See fgcolor @raise AssertionError: Having x or y values that can't be placed inside of the console will raise an AssertionError. You can use always use ((x, y) in console) to check if a tile is drawable. """ assert _verify_colors(fgcolor, bgcolor) x, y = self._normalizePoint(x, y) x, y = ctypes.c_int(x), ctypes.c_int(y) self._setChar(x, y, _formatChar(char), _formatColor(fgcolor), _formatColor(bgcolor)) def drawStr(self, x, y, string, fgcolor=(255, 255, 255), bgcolor=(0, 0, 0)): """Draws a string starting at x and y. Optinally colored. A string that goes past the right side will wrap around. A string wraping to below the console will raise a L{TDLError} but will still be written out. This means you can safely ignore the errors with a try... except block if you're fine with partily written strings. \\r and \\n are drawn on the console as normal characters tiles. No special encoding is done and any string will translate to the characters table as is. For a string drawing operation that respects special characters see the L{Typewriter} class. @type x: int @param x: X coordinate to draw at. @type y: int @param y: Y coordinate to draw at. @type string: string or iterable @param string: Can be a string or an iterable of numbers. Special characters are ignored and rendered as any other characters. @type fgcolor: (r, g, b) or None @param fgcolor: For fgcolor and bgcolor you use a 3 items list with integers ranging 0-255 or None. None will keep the current color at this position unchanged. @type bgcolor: (r, g, b) or None @param bgcolor: Background color. See fgcolor @raise AssertionError: Having x or y values that can't be placed inside of the console will raise an AssertionError. You can use always use ((x, y) in console) to check if a tile is drawable. """ x, y = self._normalizePoint(x, y) assert _verify_colors(fgcolor, bgcolor) fgcolor, bgcolor = _formatColor(fgcolor), _formatColor(bgcolor) width, height = self.getSize() batch = [] # prepare a batch operation def _drawStrGen(x=x, y=y, string=string, width=width, height=height): """Generator for drawStr Iterates over ((x, y), ch) data for _setCharBatch, raising an error if the end of the console is reached. """ for char in string: if y == height: raise TDLError('End of console reached.') #batch.append(((x, y), _formatChar(char))) # ((x, y), ch) yield((x, y), _formatChar(char)) x += 1 # advance cursor if x == width: # line break x = 0 y += 1 self._setCharBatch(_drawStrGen(), fgcolor, bgcolor) def drawRect(self, x, y, width, height, string, fgcolor=(255, 255, 255), bgcolor=(0, 0, 0)): """Draws a rectangle starting from x and y and extending to width and height. If width or height are None then it will extend to the edge of the console. @type x: int @param x: x coordinate to draw at. @type y: int @param y: y coordinate to draw at. @type width: int or None @param width: Width of the rectangle. Can be None to extend to the bottom right of the console or can be a negative number to be sized reltive to the total size of the console. @type height: int or None @param height: Height of the rectangle. See width. @type string: int, string, or None @param string: Should be an integer, single characters string, or None. You can set the char parameter as None if you only want to change the colors of an areas. @type fgcolor: (r, g, b) or None @param fgcolor: For fgcolor and bgcolor you use a 3 items list with integers ranging 0-255 or None. None will keep the current color at this position unchanged. @type bgcolor: (r, g, b) or None @param bgcolor: Background color. See fgcolor @raise AssertionError: Having x or y values that can't be placed inside of the console will raise an AssertionError. You can use always use ((x, y) in console) to check if a tile is drawable. """ x, y, width, height = self._normalizeRect(x, y, width, height) assert _verify_colors(fgcolor, bgcolor) fgcolor, bgcolor = _formatColor(fgcolor), _formatColor(bgcolor) char = _formatChar(string) # use itertools to make an x,y grid # using ctypes here reduces type converstions later grid = itertools.product((ctypes.c_int(x) for x in range(x, x + width)), (ctypes.c_int(y) for y in range(y, y + height))) # zip the single characters in a batch variable batch = zip(grid, itertools.repeat(char, width * height)) self._setCharBatch(batch, fgcolor, bgcolor, nullChar=(char is None)) def drawFrame(self, x, y, width, height, string, fgcolor=(255, 255, 255), bgcolor=(0, 0, 0)): """Similar to L{drawRect} but only draws the outline of the rectangle. @type x: int @param x: x coordinate to draw at. @type y: int @param y: y coordinate to draw at. @type width: int or None @param width: Width of the rectangle. Can be None to extend to the bottom right of the console or can be a negative number to be sized reltive to the total size of the console. @type height: int or None @param height: Height of the rectangle. See width. @type string: int, string, or None @param string: Should be an integer, single characters string, or None. You can set the char parameter as None if you only want to change the colors of an areas. @type fgcolor: (r, g, b) or None @param fgcolor: For fgcolor and bgcolor you use a 3 items list with integers ranging 0-255 or None. None will keep the current color at this position unchanged. @type bgcolor: (r, g, b) or None @param bgcolor: Background color. See fgcolor @raise AssertionError: Having x or y values that can't be placed inside of the console will raise an AssertionError. You can use always use ((x, y) in console) to check if a tile is drawable. """ x, y, width, height = self._normalizeRect(x, y, width, height) assert _verify_colors(fgcolor, bgcolor) fgcolor, bgcolor = _formatColor(fgcolor), _formatColor(bgcolor) char = _formatChar(string) if width == 1 or height == 1: # it's just a single width line here return self.drawRect(x, y, width, height, char, fgcolor, bgcolor) # draw sides of frame with drawRect self.drawRect(x, y, 1, height, char, fgcolor, bgcolor) self.drawRect(x, y, width, 1, char, fgcolor, bgcolor) self.drawRect(x + width - 1, y, 1, height, char, fgcolor, bgcolor) self.drawRect(x, y + height - 1, width, 1, char, fgcolor, bgcolor) def blit(self, source, x=0, y=0, width=None, height=None, srcX=0, srcY=0): """Blit another console or Window onto the current console. By default it blits the entire source to the topleft corner. @type source: L{Console} or L{Window} @param source: Source window can be a L{Console} or L{Window} instance. It can even blit to itself without any problems. @type x: int @param x: X coordinate to blit to. @type y: int @param y: Y coordinate to blit to. @type width: int or None @param width: Width of the rectangle. Can be None to extend as far as possible to the bottom right corner of the blit areas or can be a negative number to be sized reltive to the total size of the B{destination} console. @type height: int or None @param height: Height of the rectangle. See width. @type srcX: int @param srcX: The source consoles x coordinate to blit from. @type srcY: int @param srcY: The source consoles y coordinate to blit from. """ # hardcode alpha settings for now fgalpha=1.0 bgalpha=1.0 assert isinstance(source, (Console, Window)), "source muse be a Window or Console instance" # handle negative indexes and rects # negative width and height will be set realtive to the destination # and will also be clamped to the smallest Console x, y, width, height = self._normalizeRect(x, y, width, height) srcX, srcY, width, height = source._normalizeRect(srcX, srcY, width, height) # translate source and self if any of them are Window instances srcX, srcY = source._translate(srcX, srcY) source = source.console x, y = self._translate(x, y) self = self.console if self == source: # if we are the same console then we need a third console to hold # onto the data, otherwise it tries to copy into itself and # starts destroying everything tmp = Console(width, height) _lib.TCOD_console_blit(source, srcX, srcY, width, height, tmp, 0, 0, fgalpha, bgalpha) _lib.TCOD_console_blit(tmp, 0, 0, width, height, self, x, y, fgalpha, bgalpha) else: _lib.TCOD_console_blit(source, srcX, srcY, width, height, self, x, y, fgalpha, bgalpha) def getCursor(self): """Return the virtual cursor position. @rtype: (x, y) @return: Returns (x, y) a 2-integer tuple containing where the next L{addChar} or L{addStr} will start at. This can be changed with the L{move} method.""" x, y = self._cursor width, height = self.parent.getSize() while x >= width: x -= width y += 1 if y >= height and self.scrollMode == 'scroll': y = height - 1 return x, y def getSize(self): """Return the size of the console as (width, height) @rtype: (width, height) """ return self.width, self.height def __iter__(self): """Return an iterator with every possible (x, y) value for this console. It goes without saying that working on the console this way is a slow process, especially for Python, and should be minimized. @rtype: iter((x, y), ...) """ return itertools.product(range(self.width), range(self.height)) def move(self, x, y): """Move the virtual cursor. @type x: int @param x: X position to place the cursor. @type y: int @param y: Y position to place the cursor. """ self._cursor = self._normalizePoint(x, y) def scroll(self, x, y): """Scroll the contents of the console in the direction of x,y. Uncovered areas will be cleared. Does not move the virutal cursor. @type x: int @param x: Distance to scroll along x-axis @type y: int @param y: Distance to scroll along y-axis @rtype: iter((x, y), ...) @return: Iterates over the (x, y) of any tile uncovered after scrolling. """ assert isinstance(x, _INTTYPES), "x must be an integer, got %s" % repr(x) assert isinstance(y, _INTTYPES), "y must be an integer, got %s" % repr(x) def getSlide(x, length): """get the parameters needed to scroll the console in the given direction with x returns (x, length, srcx) """ if x > 0: srcx = 0 length -= x elif x < 0: srcx = abs(x) x = 0 length -= srcx else: srcx = 0 return x, length, srcx def getCover(x, length): """return the (x, width) ranges of what is covered and uncovered""" cover = (0, length) # everything covered uncover = None # nothing uncovered if x > 0: # left side uncovered cover = (x, length - x) uncover = (0, x) elif x < 0: # right side uncovered x = abs(x) cover = (0, length - x) uncover = (length - x, x) return cover, uncover width, height = self.getSize() if abs(x) >= width or abs(y) >= height: return self.clear() # just clear the console normally # get the ranges of the areas that will be uncovered coverX, uncoverX = getCover(x, width) coverY, uncoverY = getCover(y, height) # so at this point we know that coverX and coverY makes a rect that # encases the areas that we end up blitting to. uncoverX/Y makes a # rect in the corner of the uncovered areas. So we need to combine # the uncoverX/Y with coverY/X to make what's left of the uncovered # areas. Explaining it makes it mush easier to do now. # But first we need to blit. x, width, srcx = getSlide(x, width) y, height, srcy = getSlide(y, height) self.blit(self, x, y, width, height, srcx, srcy) if uncoverX: # clear sides (0x20 is space) self.drawRect(uncoverX[0], coverY[0], uncoverX[1], coverY[1], 0x20, 0x000000, 0x000000) if uncoverY: # clear top/bottom self.drawRect(coverX[0], uncoverY[0], coverX[1], uncoverY[1], 0x20, 0x000000, 0x000000) if uncoverX and uncoverY: # clear corner self.drawRect(uncoverX[0], uncoverY[0], uncoverX[1], uncoverY[1], 0x20, 0x000000, 0x000000) def getChar(self, x, y): """Return the characters and colors of a tile as (ch, fg, bg) This method runs very slowly as is not recommended to be called frequently. @rtype: (int, (r, g, b), (r, g, b)) @returns: Returns a 3-items tuple. The first items is an integer of the characters at the position (x, y) the second and third are the foreground and background colors respectfully. """ raise NotImplementedError('Method here only exists for the docstring') def __contains__(self, position): """Use ((x, y) in console) to check if a position is drawable on this console. """ x, y = position return (0 <= x < self.width) and (0 <= y < self.height) class Console(_MetaConsole): """Contains characters and color data and can be drawn to. The console created by the L{tdl.init} function is the root console and is the console that is rendered to the screen with L{flush}. Any console created from the Console class is an off-screen console that can be drawn on before being L{blit} to the root console. """ __slots__ = ('_as_parameter_', '_typewriter') def __init__(self, width, height): """Create a new offscreen console. @type width: int @param width: Width of the console in tiles @type height: int @param height: Height of the console in tiles """ _MetaConsole.__init__(self) if not _rootinitialized: raise TDLError('Can not create Console\'s before tdl.init') self._as_parameter_ = _lib.TCOD_console_new(width, height) self.console = self self.width = width self.height = height self._typewriter = None # "typewriter lock", makes sure the colors are set to the typewriter # will be phased out with the Typewriter class @classmethod def _newConsole(cls, console): """Make a Console instance, from a console ctype""" self = cls.__new__(cls) _MetaConsole.__init__(self) self._as_parameter_ = console self.console = self self.width = _lib.TCOD_console_get_width(self) self.height = _lib.TCOD_console_get_height(self) self._typewriter = None return self def __del__(self): """ If the main console is garbage collected then the window will be closed as well """ # If this is the root console the window will close when collected try: if isinstance(self._as_parameter_, ctypes.c_void_p): global _rootinitialized, _rootConsoleRef _rootinitialized = False _rootConsoleRef = None _lib.TCOD_console_delete(self) except StandardError: pass # I forget why I put this here but I'm to afraid to delete it def __copy__(self): # make a new class and blit clone = self.__class__(self.width, self.height) clone.blit(self) return clone def __getstate__(self): # save data from getChar data = [self.getChar(x, y) for x,y in itertools.product(range(self.width), range(self.height))] return self.width, self.height, data def __setstate__(self, state): # make console from __init__ and unpack a getChar array width, height, data = state self.__init__(width, height) for (x, y), graphic in zip(itertools.product(range(width), range(height)), data): self.drawChar(x, y, *graphic) def _replace(self, console): """Used internally Mostly used just to replace this Console object with the root console If another Console object is used then they are swapped """ if isinstance(console, Console): self._as_parameter_, console._as_parameter_ = \ console._as_parameter_, self._as_parameter_ # swap tcod consoles else: self._as_parameter_ = console self.width = _lib.TCOD_console_get_width(self) self.height = _lib.TCOD_console_get_height(self) return self def _translate(self, x, y): """Convertion x and y to their position on the root Console for this Window Because this is a Console instead of a Window we return the paramaters untouched""" return x, y def clear(self, fgcolor=(0, 0, 0), bgcolor=(0, 0, 0)): """Clears the entire Console. @type fgcolor: (r, g, b) @param fgcolor: Foreground color. Must be a 3-items list with integers that range 0-255. Unlike most other operations you cannot use None here. @type bgcolor: (r, g, b) @param bgcolor: Background color. See fgcolor. """ assert _verify_colors(fgcolor, bgcolor) assert fgcolor and bgcolor, 'Can not use None with clear' self._typewriter = None _lib.TCOD_console_set_default_background(self, _formatColor(bgcolor)) _lib.TCOD_console_set_default_foreground(self, _formatColor(fgcolor)) _lib.TCOD_console_clear(self) def _setChar(self, x, y, char, fgcolor=None, bgcolor=None, bgblend=1): """ Sets a characters. This is called often and is designed to be as fast as possible. Because of the need for speed this function will do NO TYPE CHECKING AT ALL, it's up to the drawing functions to use the functions: _formatChar and _formatColor before passing to this.""" # buffer values as ctypes objects console = self._as_parameter_ if char is not None and fgcolor is not None and bgcolor is not None: _setcharEX(console, x, y, char, fgcolor, bgcolor) return if char is not None: _setchar(console, x, y, char) if fgcolor is not None: _setfore(console, x, y, fgcolor) if bgcolor is not None: _setback(console, x, y, bgcolor, bgblend) def _setCharBatch(self, batch, fgcolor, bgcolor, bgblend=1, nullChar=False): """ Try to perform a batch operation otherwise fall back to _setChar. If fgcolor and bgcolor are defined then this is faster but not by very much. batch is a iterable of [(x, y), ch] items """ if fgcolor and not nullChar: # buffer values as ctypes objects self._typewriter = None # clear the typewriter as colors will be set console = self._as_parameter_ bgblend = ctypes.c_int(bgblend) if not bgcolor: bgblend = 0 else: _lib.TCOD_console_set_default_background(console, bgcolor) _lib.TCOD_console_set_default_foreground(console, fgcolor) _putChar = _lib.TCOD_console_put_char # remove dots and make local for (x, y), char in batch: _putChar(console, x, y, char, bgblend) else: for (x, y), char in batch: self._setChar(x, y, char, fgcolor, bgcolor, bgblend) def getChar(self, x, y): # inherit docstring x, y = self._normalizePoint(x, y) char = _lib.TCOD_console_get_char(self, x, y) bgcolor = _lib.TCOD_console_get_char_background_wrapper(self, x, y) fgcolor = _lib.TCOD_console_get_char_foreground_wrapper(self, x, y) return char, tuple(fgcolor), tuple(bgcolor) def __repr__(self): return "<Console (Width=%i Height=%i)>" % (self.width, self.height) class Window(_MetaConsole): """A Window contains a small isolated part of a Console. Drawing on the Window draws on the Console. Making a Window and setting its width or height to None will extend it to the edge of the console. """ __slots__ = ('parent', 'x', 'y') def __init__(self, console, x, y, width, height): """Isolate part of a L{Console} or L{Window} instance. @type console: L{Console} or L{Window} @param console: The parent object which can be a L{Console} or another L{Window} instance. @type x: int @param x: X coordinate to place the Window. This follows the normal rules for indexing so you can use a negative integer to place the Window relative to the bottom right of the parent Console instance. @type y: int @param y: Y coordinate to place the Window. See x. @type width: int or None @param width: Width of the Window. Can be None to extend as far as possible to the bottom right corner of the parent Console or can be a negative number to be sized reltive to the Consoles total size. @type height: int or None @param height: Height of the Window. See width. """ _MetaConsole.__init__(self) assert isinstance(console, (Console, Window)), 'console parameter must be a Console or Window instance, got %s' % repr(console) self.parent = console self.x, self.y, self.width, self.height = console._normalizeRect(x, y, width, height) if isinstance(console, Console): self.console = console else: self.console = self.parent.console def _translate(self, x, y): """Convertion x and y to their position on the root Console""" # we add our position relative to our parent and then call then next parent up return self.parent._translate((x + self.x), (y + self.y)) def clear(self, fgcolor=(0, 0, 0), bgcolor=(0, 0, 0)): """Clears the entire Window. @type fgcolor: (r, g, b) @param fgcolor: Foreground color. Must be a 3-items list with integers that range 0-255. Unlike most other operations you can not use None here. @type bgcolor: (r, g, b) @param bgcolor: Background color. See fgcolor. """ assert _verify_colors(fgcolor, bgcolor) assert fgcolor and bgcolor, 'Can not use None with clear' self.drawRect(0, 0, None, None, 0x20, fgcolor, bgcolor) def _setChar(self, x, y, char=None, fgcolor=None, bgcolor=None, bgblend=1): self.parent._setChar((x + self.x), (y + self.y), char, fgcolor, bgcolor, bgblend) def _setCharBatch(self, batch, fgcolor, bgcolor, bgblend=1): myX = self.x # remove dots for speed up myY = self.y self.parent._setCharBatch((((x + myX, y + myY), ch) for ((x, y), ch) in batch), fgcolor, bgcolor, bgblend) def drawChar(self, x, y, char, fgcolor=(255, 255, 255), bgcolor=(0, 0, 0)): # inherit docstring x, y = self._normalizePoint(x, y) self.parent.drawChar(x + self.x, y + self.y, char, fgcolor, bgcolor) def drawRect(self, x, y, width, height, string, fgcolor=(255, 255, 255), bgcolor=(0, 0, 0)): # inherit docstring x, y, width, height = self._normalizeRect(x, y, width, height) self.parent.drawRect(x + self.x, y + self.y, width, height, string, fgcolor, bgcolor) def drawFrame(self, x, y, width, height, string, fgcolor=(255, 255, 255), bgcolor=(0, 0, 0)): # inherit docstring x, y, width, height = self._normalizeRect(x, y, width, height) self.parent.drawFrame(x + self.x, y + self.y, width, height, string, fgcolor, bgcolor) def getChar(self, x, y): # inherit docstring x, y = self._normalizePoint(x, y) return self.console.getChar(self._translate(x, y)) def __repr__(self): return "<Window(X=%i Y=%i Width=%i Height=%i)>" % (self.x, self.y, self.width, self.height) def init(width, height, title=None, fullscreen=False, renderer='OPENGL'): """Start the main console with the given width and height and return the root console. Call the consoles drawing functions. Then remember to use L{tdl.flush} to make what's drawn visible on the console. @type width: int @param width: width of the root console (in tiles) @type height: int @param height: height of the root console (in tiles) @type title: string @param title: Text to display as the window title. If left None it defaults to the running scripts filename. @type fullscreen: boolean @param fullscreen: Can be set to True to start in fullscreen mode. @type renderer: string @param renderer: Can be one of 'GLSL', 'OPENGL', or 'SDL'. Due to way Python works you're unlikely to see much of an improvement by using 'GLSL' or 'OPENGL' as most of the time Python is slow interacting with the console and the rendering itself is pretty fast even on 'SDL'. @rtype: L{Console} @return: The root console. Only what is drawn on the root console is what's visible after a call to L{tdl.flush}. After the root console is garbage collected, the window made by this function will close. """ RENDERERS = {'GLSL': 0, 'OPENGL': 1, 'SDL': 2} global _rootinitialized, _rootConsoleRef if not _fontinitialized: # set the default font to the one that comes with tdl setFont(_unpackfile('terminal8x8.png'), None, None, True, True) if renderer.upper() not in RENDERERS: raise TDLError('No such render type "%s", expected one of "%s"' % (renderer, '", "'.join(RENDERERS))) renderer = RENDERERS[renderer.upper()] # If a console already exists then make a clone to replace it if _rootConsoleRef and _rootConsoleRef(): oldroot = _rootConsoleRef() rootreplacement = Console(oldroot.width, oldroot.height) rootreplacement.blit(oldroot) oldroot._replace(rootreplacement) del rootreplacement if title is None: # use a default title if sys.argv: # Use the script filename as the title. title = os.path.basename(sys.argv[0]) else: title = 'python-tdl' _lib.TCOD_console_init_root(width, height, _encodeString(title), fullscreen, renderer) #event.get() # flush the libtcod event queue to fix some issues # issues may be fixed already event._eventsflushed = False _rootinitialized = True rootconsole = Console._newConsole(ctypes.c_void_p()) _rootConsoleRef = weakref.ref(rootconsole) return rootconsole def flush(): """Make all changes visible and update the screen. Remember to call this function after drawing operations. Calls to flush will enfore the frame rate limit set by L{tdl.setFPS}. This function can only be called after L{tdl.init} """ if not _rootinitialized: raise TDLError('Cannot flush without first initializing with tdl.init') _lib.TCOD_console_flush() def setFont(path, columns=None, rows=None, columnFirst=False, greyscale=False, altLayout=False): """Changes the font to be used for this session. This should be called before L{tdl.init} If the font specifies its size in its filename (i.e. font_NxN.png) then this function can auto-detect the tileset formatting and the parameters columns and rows can be left None. While it's possible you can change the font mid program it can sometimes break in rare circumstances. So use caution when doing this. @type path: string @param path: Must be a string filepath where a bmp or png file is found. @type columns: int @param columns: Number of columns in the tileset. Can be left None for auto-detection. @type rows: int @param rows: Number of rows in the tileset. Can be left None for auto-detection. @type columnFirst: boolean @param columnFirst: Defines if the characer order goes along the rows or colomns. It should be True if the charater codes 0-15 are in the first column. And should be False if the characters 0-15 are in the first row. @type greyscale: boolean @param greyscale: Creates an anti-aliased font from a greyscale bitmap. Otherwise it uses the alpha channel for anti-aliasing. Unless you actually need anti-aliasing from a font you know uses a smooth greyscale channel you should leave this on False. @type altLayout: boolean @param altLayout: An alternative layout with space in the upper left corner. The colomn parameter is ignored if this is True, find examples of this layout in the font/libtcod/ directory included with the python-tdl source. @raise TDLError: Will be raised if no file is found at path or if auto- detection fails. @note: A png file that's been optimized can fail to load correctly on MAC OS X creating a garbled mess when rendering. Don't use a program like optipng or just use bmp files instead if you want your program to work on macs. """ # put up some constants that are only used here FONT_LAYOUT_ASCII_INCOL = 1 FONT_LAYOUT_ASCII_INROW = 2 FONT_TYPE_GREYSCALE = 4 FONT_LAYOUT_TCOD = 8 global _fontinitialized _fontinitialized = True flags = 0 if altLayout: flags |= FONT_LAYOUT_TCOD elif columnFirst: flags |= FONT_LAYOUT_ASCII_INCOL else: flags |= FONT_LAYOUT_ASCII_INROW if greyscale: flags |= FONT_TYPE_GREYSCALE if not os.path.exists(path): raise TDLError('no file exists at: "%s"' % path) path = os.path.abspath(path) # and the rest is the auto-detect script imgSize = _getImageSize(path) # try to find image size if imgSize: imgWidth, imgHeight = imgSize # try to get font size from filename match = re.match('.*?([0-9]+)[xX]([0-9]+)', os.path.basename(path)) if match: fontWidth, fontHeight = match.groups() fontWidth, fontHeight = int(fontWidth), int(fontHeight) # estimate correct tileset size estColumns, remC = divmod(imgWidth, fontWidth) estRows, remR = divmod(imgHeight, fontHeight) if remC or remR: warnings.warn("Font may be incorrectly formatted.") if not columns: columns = estColumns if not rows: rows = estRows else: # the font name excluded the fonts size if not (columns and rows): # no matched font size and no tileset is given raise TDLError('%s has no font size in filename' % os.path.basename(path)) if columns and rows: # confirm user set options if (fontWidth * columns != imgWidth or fontHeight * rows != imgHeight): warnings.warn("setFont parameters are set as if the image size is (%d, %d) when the detected size is actually (%i, %i)" % (fontWidth * columns, fontHeight * rows, imgWidth, imgHeight)) else: warnings.warn("%s is probably not an image." % os.path.basename(path)) if not (columns and rows): # didn't auto-detect raise TDLError('Can not auto-detect the tileset of %s' % os.path.basename(path)) _lib.TCOD_console_set_custom_font(_encodeString(path), flags, columns, rows) def getFullscreen(): """Returns True if program is fullscreen. @rtype: boolean @return: Returns True if the window is in fullscreen mode. Otherwise returns False. """ if not _rootinitialized: raise TDLError('Initialize first with tdl.init') return _lib.TCOD_console_is_fullscreen() def setFullscreen(fullscreen): """Changes the fullscreen state. @type fullscreen: boolean """ if not _rootinitialized: raise TDLError('Initialize first with tdl.init') _lib.TCOD_console_set_fullscreen(fullscreen) def setTitle(title): """Change the window title. @type title: string """ if not _rootinitialized: raise TDLError('Not initilized. Set title with tdl.init') _lib.TCOD_console_set_window_title(_encodeString(title)) def screenshot(path=None): """Capture the screen and save it as a png file @type path: string @param path: The filepath to save the screenshot. If path is None then the image will be placed in the current folder with the names: screenshot001.png, screenshot002.png, ... """ if not _rootinitialized: raise TDLError('Initialize first with tdl.init') if isinstance(path, str): _lib.TCOD_sys_save_screenshot(_encodeString(path)) elif path is None: # save to screenshot001.png, screenshot002.png, ... filelist = os.listdir('.') n = 1 filename = 'screenshot%.3i.png' % n while filename in filelist: n += 1 filename = 'screenshot%.3i.png' % n _lib.TCOD_sys_save_screenshot(_encodeString(filename)) else: # assume file like obj #save to temp file and copy to file-like obj tmpname = os.tempnam() _lib.TCOD_sys_save_screenshot(_encodeString(tmpname)) with tmpname as tmpfile: path.write(tmpfile.read()) os.remove(tmpname) #else: # raise TypeError('path is an invalid type: %s' % type(path)) def setFPS(frameRate): """Set the maximum frame rate. @type frameRate: int @param frameRate: Further calls to L{tdl.flush} will limit the speed of the program to run at <frameRate> frames per second. Can also be set to 0 to run without a limit. Defaults to None. """ if frameRate is None: frameRate = 0 assert isinstance(frameRate, _INTTYPES), 'frameRate must be an integer or None, got: %s' % repr(frameRate) _lib.TCOD_sys_set_fps(frameRate) def getFPS(): """Return the current frames per second of the running program set by L{setFPS} @rtype: int @return: Returns the frameRate set by setFPS. If set to no limit, this will return 0. """ return _lib.TCOD_sys_get_fps() def forceResolution(width, height): """Change the fullscreen resoulution @type width: int @type height: int """ _lib.TCOD_sys_force_fullscreen_resolution(width, height) __all__ = [_var for _var in locals().keys() if _var[0] != '_' and _var not in ['sys', 'os', 'ctypes', 'array', 'weakref', 'itertools', 'textwrap', 'struct', 're', 'warnings']] # remove modules from __all__ __all__ += ['_MetaConsole'] # keep this object public to show the documentation in epydoc __license__ = "New BSD License" __email__ = "[email protected]" file = open(os.path.join(os.path.dirname(__file__), 'VERSION.txt'), 'r') __version__ = file.read() file.close()
the-stack_0_22320
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SqueezeNet implementation with TPU support. This version does not contain the model compression components ( sparsification and quantization). Original paper: (https://arxiv.org/pdf/1602.07360.pdf) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf from tensorflow.contrib import layers as contrib_layers from tensorflow.contrib import tpu as contrib_tpu def conv2d(inputs, filters, kernel_size, strides=(1, 1), kernel_initializer=contrib_layers.xavier_initializer_conv2d(), bias_initializer=tf.zeros_initializer(), kernel_regularizer=contrib_layers.l2_regularizer(scale=0.0002), name=None): return tf.layers.conv2d( inputs, filters, kernel_size, strides, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, activation=tf.nn.relu, name=name, padding="same") def fire_module(inputs, squeeze_depth, expand_depth, name): """Fire module: squeeze input filters, then apply spatial convolutions.""" with tf.variable_scope(name, "fire", [inputs]): squeezed = conv2d(inputs, squeeze_depth, [1, 1], name="squeeze") e1x1 = conv2d(squeezed, expand_depth, [1, 1], name="e1x1") e3x3 = conv2d(squeezed, expand_depth, [3, 3], name="e3x3") return tf.concat([e1x1, e3x3], axis=3) def squeezenet(images, is_training=True, num_classes=1001): """Squeezenet 1.0 model.""" net = conv2d(images, 96, [7, 7], strides=(2, 2), name="conv1") net = tf.layers.max_pooling2d(net, [3, 3], strides=(2, 2), name="maxpool1") net = fire_module(net, 16, 64, name="fire2") net = fire_module(net, 16, 64, name="fire3") net = fire_module(net, 32, 128, name="fire4") net = tf.layers.max_pooling2d(net, [3, 3], strides=(2, 2), name="maxpool4") net = fire_module(net, 32, 128, name="fire5") net = fire_module(net, 48, 192, name="fire6") net = fire_module(net, 48, 192, name="fire7") net = fire_module(net, 64, 256, name="fire8") net = tf.layers.max_pooling2d(net, [3, 3], strides=(2, 2), name="maxpool8") net = fire_module(net, 64, 256, name="fire9") net = tf.layers.dropout(net, rate=0.5 if is_training else 0.0, name="drop9") net = conv2d(net, num_classes, [1, 1], strides=(1, 1), name="conv10") net = tf.layers.average_pooling2d(net, pool_size=(13, 13), strides=(1, 1)) logits = tf.layers.flatten(net) return logits def metric_fn(labels, logits, learning_rate): predictions = tf.cast(tf.argmax(logits, 1), tf.int32) labels = tf.cast(labels, tf.int64) return { "accuracy": tf.metrics.accuracy(labels, predictions), "recall_at_5": tf.metrics.recall_at_k(labels, logits, 5), "recall_at_1": tf.metrics.recall_at_k(labels, logits, 1), "learning_rate": tf.metrics.mean(learning_rate), } def model_fn(features, labels, mode, params): """TPUEstimatorSpec for the Squeezenet model.""" is_training = mode == tf.estimator.ModeKeys.TRAIN logits = squeezenet( features, is_training=is_training, num_classes=params["num_classes"]) loss = tf.reduce_mean( tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=labels)) global_batch_size = (params["train"]["num_cores_per_replica"] * params["train"]["train_batch_size"]) decay_steps = (params["train"]["num_examples_per_epoch"] * params["train"]["num_epochs"]) // global_batch_size learning_rate = tf.train.polynomial_decay( params["train"]["learning_rate"]["init_learning_rate"], global_step=tf.train.get_or_create_global_step(), end_learning_rate=params["train"]["learning_rate"]["end_learning_rate"], decay_steps=decay_steps, power=1.0, cycle=False) # TODO(power): Hack copied from resnet: remove when summaries are working. lr_repeat = tf.reshape( tf.tile(tf.expand_dims(learning_rate, 0), [params["train"]["train_batch_size"],]), [params["train"]["train_batch_size"], 1]) if params["train"]["optimizer"]["type"] == "adam": optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) elif params["train"]["optimizer"]["type"] == "rmsprop": optimizer = tf.train.RMSPropOptimizer( learning_rate=learning_rate, momentum=params["train"]["optimizer"]["momentum"], epsilon=1.0 ) else: optimizer = tf.train.MomentumOptimizer( learning_rate=learning_rate, momentum=params["train"]["optimizer"]["momentum"], use_nesterov=True) if params["use_tpu"]: optimizer = contrib_tpu.CrossShardOptimizer(optimizer) train_op = optimizer.minimize(loss, tf.train.get_global_step()) return contrib_tpu.TPUEstimatorSpec( mode=mode, loss=loss, train_op=train_op, eval_metrics=(metric_fn, [labels, logits, lr_repeat]), predictions={ "classes": tf.argmax(input=logits, axis=1), "probabilities": tf.nn.softmax(logits, name="softmax_tensor") }, )
the-stack_0_22321
"""This module defines rwrtrack.py commands.""" import code import logging import sys from datetime import datetime, timedelta from sqlalchemy.util import KeyedTuple from sqlalchemy.orm.exc import NoResultFound from sqlalchemy import func, distinct, text from rwrtrack.get import get_stats from rwrtrack.csv import load_stats_from_csv, write_stats_to_csv from rwrtrack.db import sesh, _set_db_readonly, _set_db_writable from rwrtrack.dbinfo import DbInfo, get_dbinfo from rwrtrack.account import Account, get_account_by_name from rwrtrack.record import Record, get_records_on_date from rwrtrack.difference import Diff, difference from rwrtrack.sum import sum_, diffsum from rwrtrack.average import avg, diffavg from rwrtrack.rank import rank, diffrank from rwrtrack.filter import filter_ from rwrtrack.exceptions import NoAccountError, NoRecordError, NoCsvError from rwrtrack.tablify import render_analysis_table from rwrtrack.migrate import migrate logger = logging.getLogger(__name__) def _prettify_int_or_float(x): if isinstance(x, int): return f"{x:,d}" elif isinstance(x, float): return f"{x:,.2f}" else: raise Exception("Can't pretty '{x}' as it is not an int or float!") def process_numeric_dates(date_string): """Identify and convert date or date range to int(s).""" if date_string.isnumeric(): return "single", int(date_string) else: # Handle date ranges dates = date_string.split("-") d_older = int(dates[0]) d_newer = int(dates[1]) if (d_older > d_newer): logger.error("Dates must be older-newer!") sys.exit(1) return "range", (d_newer, d_older) def _get(csv_hist_dir, args): # TODO: Rewrite to use write to db as well num_pages = int(args["<pages>"]) if args["<pages>"] else 10 stats = get_stats(num_pages) write_stats_to_csv(csv_hist_dir, stats) def _analyse(args): username = args["<name>"] dates = args["<dates>"] try: account = get_account_by_name(username) except NoAccountError as e: logger.error(e) sys.exit(1) logger.info(f"Performing individual analysis for '{username}'...") try: if not dates: print(f"'{account.username}' on {account.latest_date}:") render_analysis_table(account.latest_record) else: dt, d = process_numeric_dates(dates) if dt == "single": record = account.on_date(d) print(f"'{account.username}' on {record.date}:") render_analysis_table(record) elif dt == "range": record_newer = account.on_date(d[0]) record_older = account.on_date(d[1]) diff = record_newer - record_older print(f"'{account.username}' from {record_older.date} to {record_newer.date}:") render_analysis_table(diff) except NoRecordError as e: logger.error(e) sys.exit(1) def _average(args): dates = args["<dates>"] rf, df = args["--record-filters"], args["--diff-filters"] if not dates: try: db_info = get_dbinfo() a = avg(db_info.latest_date, record_filters=rf) except NoResultFound: logger.info("Empty database! Exit.") sys.exit(1) else: dt, d = process_numeric_dates(dates) if dt == "single": a = avg(d, record_filters=rf) elif dt == "range": a = diffavg(d[0], d[1], record_filters=rf, diff_filters=df) # TODO: add nice table for averages print(a) def _rank(args): metric = args["<metric>"] try: if args["--limit"]: limit = abs(int(args["--limit"])) if not limit > 0: raise ValueError else: limit = 5 except ValueError as e: logger.error(f"Limit must be an integer greater than or equal to 1") sys.exit(1) dates = args["<dates>"] rf, df = args["--record-filters"], args["--diff-filters"] if not dates: try: db_info = get_dbinfo() ranking = rank(db_info.latest_date, metric, record_filters=rf) except NoResultFound: logger.info("Empty database! Exit.") sys.exit(1) else: dt, d = process_numeric_dates(dates) if dt == "single": print(f"Ranking by '{metric}' on {d}:") ranking = rank(d, metric, record_filters=rf) elif dt == "range": print(f"Ranking by '{metric}' between {d[1]} and {d[0]}:") ranking = diffrank(d[0], d[1], metric, record_filters=rf, diff_filters=df) ranking = ranking.limit(limit) for x, r in enumerate(ranking.all()): if isinstance(r, Record): # render in the form "#12...MR. BANG...8,752,631" v = _prettify_int_or_float(getattr(r, metric)) print(f"#{x+1:<8}{r.username:<24}{v}") else: # print(r._asdict()) v = _prettify_int_or_float(getattr(r, metric)) print(f"#{x+1:<8}{r.username:<24}{v}") # print("\n", end="") def _sum(args): dates = args["<dates>"] rf, df = args["--record-filters"], args["--diff-filters"] if not dates: try: db_info = get_dbinfo() s = sum_(db_info.latest_date, record_filters=rf) except NoResultFound: logger.info("Empty database! Exit.") sys.exit(1) else: dt, d = process_numeric_dates(dates) if dt == "single": s = sum_(d, record_filters=rf) elif dt == "range": s = diffsum(d[0], d[1], record_filters=rf, diff_filters=df) # TODO: add nice table for sums print(s) def _dbinfo(): try: db_info = get_dbinfo() except NoResultFound: logger.info("Empty database! Exit.") sys.exit(1) print(f"First date: {db_info.first_date} Latest date: {db_info.latest_date}") num_accounts = sesh.query(func.count(Account._id)).scalar() print(f"Accounts recorded: {num_accounts}") num_days = sesh.query(func.count(distinct(Record.date))).scalar() print(f"Days recorded: {num_days}") total_records = sesh.query(func.count(Record.date)).scalar() print(f"Number of records: {total_records}") def _db_migrate_csv(csv_hist_dir): try: migrate(csv_hist_dir) except NoCsvError as e: logger.error(e) sys.exit(1) def _interact(): print("Entering interactive mode...") code.interact(local=globals(), banner="", exitmsg="")
the-stack_0_22322
import copy import math import pickle from typing import Any from typing import Dict from typing import List from typing import Optional from typing import Tuple import warnings from cmaes import CMA import numpy as np import optuna from optuna import logging from optuna._study_direction import StudyDirection from optuna._transform import _SearchSpaceTransform from optuna.distributions import BaseDistribution from optuna.exceptions import ExperimentalWarning from optuna.samplers import BaseSampler from optuna.trial import FrozenTrial from optuna.trial import TrialState _logger = logging.get_logger(__name__) _EPS = 1e-10 # The value of system_attrs must be less than 2046 characters on RDBStorage. _SYSTEM_ATTR_MAX_LENGTH = 2045 class CmaEsSampler(BaseSampler): """A Sampler using CMA-ES algorithm. Example: Optimize a simple quadratic function by using :class:`~optuna.samplers.CmaEsSampler`. .. testcode:: import optuna def objective(trial): x = trial.suggest_uniform("x", -1, 1) y = trial.suggest_int("y", -1, 1) return x ** 2 + y sampler = optuna.samplers.CmaEsSampler() study = optuna.create_study(sampler=sampler) study.optimize(objective, n_trials=20) Please note that this sampler does not support CategoricalDistribution. If your search space contains categorical parameters, I recommend you to use :class:`~optuna.samplers.TPESampler` instead. Furthermore, there is room for performance improvements in parallel optimization settings. This sampler cannot use some trials for updating the parameters of multivariate normal distribution. For further information about CMA-ES algorithm and its restarting strategy algorithm, please refer to the following papers: - `N. Hansen, The CMA Evolution Strategy: A Tutorial. arXiv:1604.00772, 2016. <https://arxiv.org/abs/1604.00772>`_ - `A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population size. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2005), pages 1769–1776. IEEE Press, 2005. <http://www.cmap.polytechnique.fr/~nikolaus.hansen/cec2005ipopcmaes.pdf>`_ .. seealso:: You can also use :class:`optuna.integration.PyCmaSampler` which is a sampler using cma library as the backend. Args: x0: A dictionary of an initial parameter values for CMA-ES. By default, the mean of ``low`` and ``high`` for each distribution is used. Note that ``x0`` is sampled uniformly within the search space domain for each restart if you specify ``restart_strategy`` argument. sigma0: Initial standard deviation of CMA-ES. By default, ``sigma0`` is set to ``min_range / 6``, where ``min_range`` denotes the minimum range of the distributions in the search space. seed: A random seed for CMA-ES. n_startup_trials: The independent sampling is used instead of the CMA-ES algorithm until the given number of trials finish in the same study. independent_sampler: A :class:`~optuna.samplers.BaseSampler` instance that is used for independent sampling. The parameters not contained in the relative search space are sampled by this sampler. The search space for :class:`~optuna.samplers.CmaEsSampler` is determined by :func:`~optuna.samplers.intersection_search_space()`. If :obj:`None` is specified, :class:`~optuna.samplers.RandomSampler` is used as the default. .. seealso:: :class:`optuna.samplers` module provides built-in independent samplers such as :class:`~optuna.samplers.RandomSampler` and :class:`~optuna.samplers.TPESampler`. warn_independent_sampling: If this is :obj:`True`, a warning message is emitted when the value of a parameter is sampled by using an independent sampler. Note that the parameters of the first trial in a study are always sampled via an independent sampler, so no warning messages are emitted in this case. restart_strategy: Strategy for restarting CMA-ES optimization when converges to a local minimum. If given :obj:`None`, CMA-ES will not restart (default). If given 'ipop', CMA-ES will restart with increasing population size. Please see also ``inc_popsize`` parameter. .. note:: Added in v2.1.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.1.0. inc_popsize: Multiplier for increasing population size before each restart. This argument will be used when setting ``restart_strategy = 'ipop'``. consider_pruned_trials: If this is :obj:`True`, the PRUNED trials are considered for sampling. .. note:: Added in v2.0.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0. .. note:: It is suggested to set this flag :obj:`False` when the :class:`~optuna.pruners.MedianPruner` is used. On the other hand, it is suggested to set this flag :obj:`True` when the :class:`~optuna.pruners.HyperbandPruner` is used. Please see `the benchmark result <https://github.com/optuna/optuna/pull/1229>`_ for the details. Raises: ValueError: If ``restart_strategy`` is not 'ipop' or :obj:`None`. """ def __init__( self, x0: Optional[Dict[str, Any]] = None, sigma0: Optional[float] = None, n_startup_trials: int = 1, independent_sampler: Optional[BaseSampler] = None, warn_independent_sampling: bool = True, seed: Optional[int] = None, *, consider_pruned_trials: bool = False, restart_strategy: Optional[str] = None, inc_popsize: int = 2, ) -> None: self._x0 = x0 self._sigma0 = sigma0 self._independent_sampler = independent_sampler or optuna.samplers.RandomSampler(seed=seed) self._n_startup_trials = n_startup_trials self._warn_independent_sampling = warn_independent_sampling self._cma_rng = np.random.RandomState(seed) self._search_space = optuna.samplers.IntersectionSearchSpace() self._consider_pruned_trials = consider_pruned_trials self._restart_strategy = restart_strategy self._inc_popsize = inc_popsize if self._restart_strategy: warnings.warn( "`restart_strategy` option is an experimental feature." " The interface can change in the future.", ExperimentalWarning, ) if self._consider_pruned_trials: warnings.warn( "`consider_pruned_trials` option is an experimental feature." " The interface can change in the future.", ExperimentalWarning, ) # TODO(c-bata): Support BIPOP-CMA-ES. if restart_strategy not in ( "ipop", None, ): raise ValueError( "restart_strategy={} is unsupported. Please specify: 'ipop' or None.".format( restart_strategy ) ) def reseed_rng(self) -> None: # _cma_rng doesn't require reseeding because the relative sampling reseeds in each trial. self._independent_sampler.reseed_rng() def infer_relative_search_space( self, study: "optuna.Study", trial: "optuna.trial.FrozenTrial" ) -> Dict[str, BaseDistribution]: search_space: Dict[str, BaseDistribution] = {} for name, distribution in self._search_space.calculate(study).items(): if distribution.single(): # `cma` cannot handle distributions that contain just a single value, so we skip # them. Note that the parameter values for such distributions are sampled in # `Trial`. continue if not isinstance( distribution, ( optuna.distributions.UniformDistribution, optuna.distributions.LogUniformDistribution, optuna.distributions.DiscreteUniformDistribution, optuna.distributions.IntUniformDistribution, optuna.distributions.IntLogUniformDistribution, ), ): # Categorical distribution is unsupported. continue search_space[name] = distribution return search_space def sample_relative( self, study: "optuna.Study", trial: "optuna.trial.FrozenTrial", search_space: Dict[str, BaseDistribution], ) -> Dict[str, Any]: self._raise_error_if_multi_objective(study) if len(search_space) == 0: return {} completed_trials = self._get_trials(study) if len(completed_trials) < self._n_startup_trials: return {} if len(search_space) == 1: _logger.info( "`CmaEsSampler` only supports two or more dimensional continuous " "search space. `{}` is used instead of `CmaEsSampler`.".format( self._independent_sampler.__class__.__name__ ) ) self._warn_independent_sampling = False return {} trans = _SearchSpaceTransform(search_space) optimizer, n_restarts = self._restore_optimizer(completed_trials) if optimizer is None: n_restarts = 0 optimizer = self._init_optimizer(trans) if self._restart_strategy is None: generation_attr_key = "cma:generation" # for backward compatibility else: generation_attr_key = "cma:restart_{}:generation".format(n_restarts) if optimizer.dim != len(trans.bounds): _logger.info( "`CmaEsSampler` does not support dynamic search space. " "`{}` is used instead of `CmaEsSampler`.".format( self._independent_sampler.__class__.__name__ ) ) self._warn_independent_sampling = False return {} # TODO(c-bata): Reduce the number of wasted trials during parallel optimization. # See https://github.com/optuna/optuna/pull/920#discussion_r385114002 for details. solution_trials = [ t for t in completed_trials if optimizer.generation == t.system_attrs.get(generation_attr_key, -1) ] if len(solution_trials) >= optimizer.population_size: solutions: List[Tuple[np.ndarray, float]] = [] for t in solution_trials[: optimizer.population_size]: assert t.value is not None, "completed trials must have a value" x = trans.transform(t.params) y = t.value if study.direction == StudyDirection.MINIMIZE else -t.value solutions.append((x, y)) optimizer.tell(solutions) if self._restart_strategy == "ipop" and optimizer.should_stop(): n_restarts += 1 generation_attr_key = "cma:restart_{}:generation".format(n_restarts) popsize = optimizer.population_size * self._inc_popsize optimizer = self._init_optimizer( trans, population_size=popsize, randomize_start_point=True ) # Store optimizer optimizer_str = pickle.dumps(optimizer).hex() optimizer_attrs = _split_optimizer_str(optimizer_str) for key in optimizer_attrs: study._storage.set_trial_system_attr(trial._trial_id, key, optimizer_attrs[key]) # Caution: optimizer should update its seed value seed = self._cma_rng.randint(1, 2 ** 16) + trial.number optimizer._rng = np.random.RandomState(seed) params = optimizer.ask() study._storage.set_trial_system_attr( trial._trial_id, generation_attr_key, optimizer.generation ) study._storage.set_trial_system_attr(trial._trial_id, "cma:n_restarts", n_restarts) external_values = trans.untransform(params) # Exclude upper bounds for parameters that should have their upper bounds excluded. # TODO(hvy): Remove this exclusion logic when it is handled by the data transformer. for name, param in external_values.items(): distribution = search_space[name] if isinstance(distribution, optuna.distributions.UniformDistribution): external_values[name] = min(external_values[name], distribution.high - _EPS) elif isinstance(distribution, optuna.distributions.LogUniformDistribution): external_values[name] = min( external_values[name], math.exp(math.log(distribution.high) - _EPS) ) return external_values def _restore_optimizer( self, completed_trials: "List[optuna.trial.FrozenTrial]", ) -> Tuple[Optional[CMA], int]: # Restore a previous CMA object. for trial in reversed(completed_trials): optimizer_attrs = { key: value for key, value in trial.system_attrs.items() if key.startswith("cma:optimizer") } if len(optimizer_attrs) == 0: continue # Check "cma:optimizer" key for backward compatibility. optimizer_str = optimizer_attrs.get("cma:optimizer", None) if optimizer_str is None: optimizer_str = _concat_optimizer_attrs(optimizer_attrs) n_restarts: int = trial.system_attrs.get("cma:n_restarts", 0) return pickle.loads(bytes.fromhex(optimizer_str)), n_restarts return None, 0 def _init_optimizer( self, trans: _SearchSpaceTransform, population_size: Optional[int] = None, randomize_start_point: bool = False, ) -> CMA: lower_bounds = trans.bounds[:, 0] upper_bounds = trans.bounds[:, 1] n_dimension = len(trans.bounds) if randomize_start_point: mean = lower_bounds + (upper_bounds - lower_bounds) * self._cma_rng.rand(n_dimension) elif self._x0 is None: mean = lower_bounds + (upper_bounds - lower_bounds) / 2 else: # `self._x0` is external representations. mean = trans.transform(self._x0) if self._sigma0 is None: sigma0 = np.min((upper_bounds - lower_bounds) / 6) else: sigma0 = self._sigma0 # Avoid ZeroDivisionError in cmaes. sigma0 = max(sigma0, _EPS) return CMA( mean=mean, sigma=sigma0, bounds=trans.bounds, seed=self._cma_rng.randint(1, 2 ** 31 - 2), n_max_resampling=10 * n_dimension, population_size=population_size, ) def sample_independent( self, study: "optuna.Study", trial: "optuna.trial.FrozenTrial", param_name: str, param_distribution: BaseDistribution, ) -> Any: self._raise_error_if_multi_objective(study) if self._warn_independent_sampling: complete_trials = self._get_trials(study) if len(complete_trials) >= self._n_startup_trials: self._log_independent_sampling(trial, param_name) return self._independent_sampler.sample_independent( study, trial, param_name, param_distribution ) def _log_independent_sampling(self, trial: FrozenTrial, param_name: str) -> None: _logger.warning( "The parameter '{}' in trial#{} is sampled independently " "by using `{}` instead of `CmaEsSampler` " "(optimization performance may be degraded). " "`CmaEsSampler` does not support dynamic search space or `CategoricalDistribution`. " "You can suppress this warning by setting `warn_independent_sampling` " "to `False` in the constructor of `CmaEsSampler`, " "if this independent sampling is intended behavior.".format( param_name, trial.number, self._independent_sampler.__class__.__name__ ) ) def _get_trials(self, study: "optuna.Study") -> List[FrozenTrial]: complete_trials = [] for t in study.get_trials(deepcopy=False): if t.state == TrialState.COMPLETE: complete_trials.append(t) elif ( t.state == TrialState.PRUNED and len(t.intermediate_values) > 0 and self._consider_pruned_trials ): _, value = max(t.intermediate_values.items()) if value is None: continue # We rewrite the value of the trial `t` for sampling, so we need a deepcopy. copied_t = copy.deepcopy(t) copied_t.value = value complete_trials.append(copied_t) return complete_trials def _split_optimizer_str(optimizer_str: str) -> Dict[str, str]: optimizer_len = len(optimizer_str) attrs = {} for i in range(math.ceil(optimizer_len / _SYSTEM_ATTR_MAX_LENGTH)): start = i * _SYSTEM_ATTR_MAX_LENGTH end = min((i + 1) * _SYSTEM_ATTR_MAX_LENGTH, optimizer_len) attrs["cma:optimizer:{}".format(i)] = optimizer_str[start:end] return attrs def _concat_optimizer_attrs(optimizer_attrs: Dict[str, str]) -> str: return "".join( optimizer_attrs["cma:optimizer:{}".format(i)] for i in range(len(optimizer_attrs)) )
the-stack_0_22323
#!/usr/bin/env python """ _DashboardInterface_t_ Unit tests for the DashboardInterface module """ import unittest import socket import os import os.path from nose.plugins.attrib import attr from WMQuality.TestInit import TestInit from WMQuality.Emulators.WMSpecGenerator.WMSpecGenerator import WMSpecGenerator from WMQuality.Emulators.EmulatedUnitTestCase import EmulatedUnitTestCase from WMCore.DataStructs.Job import Job from WMCore.DataStructs.File import File from WMCore.DataStructs.Run import Run from WMCore.FwkJobReport.Report import Report from WMCore.WMRuntime.DashboardInterface import DashboardInfo, getUserProxyDN from WMCore.WMBase import getTestBase class DashboardInterfaceTest(EmulatedUnitTestCase): """ Test for the dashboard interface and its monitoring interaction Well, once I've written them it will be """ def setUp(self): """ Basically, do nothing """ super(DashboardInterfaceTest, self).setUp() self.testInit = TestInit(__file__) self.testInit.setLogging() self.testDir = self.testInit.generateWorkDir() return def tearDown(self): """ Clean up the test directory """ self.testInit.delWorkDir() super(DashboardInterfaceTest, self).tearDown() return def createWorkload(self): """ Create a workload in order to test things """ generator = WMSpecGenerator() workload = generator.createReRecoSpec("Tier1ReReco") return workload def createTestJob(self): """ Create a test job to pass to the DashboardInterface """ job = Job(name = "ThisIsASillyName") testFileA = File(lfn = "/this/is/a/lfnA", size = 1024, events = 10) testFileA.addRun(Run(1, *[45])) testFileB = File(lfn = "/this/is/a/lfnB", size = 1024, events = 10) testFileB.addRun(Run(1, *[46])) job.addFile(testFileA) job.addFile(testFileB) job['id'] = 1 return job def createReport(self, outcome = 0): """ Create a test report """ jobReport = Report() jobReport.addStep('cmsRun1') jobReport.setStepStartTime(stepName = 'cmsRun1') jobReport.setStepStopTime(stepName = 'cmsRun1') if outcome: jobReport.addError('cmsRun1', 200, 'FakeError', 'FakeError') return jobReport def setupJobEnvironment(self, name = 'test'): """ _setupJobEnvironment_ Make some sort of environment in which to run tests """ os.environ['WMAGENT_SITE_CONFIG_OVERRIDE'] = os.path.join(getTestBase(), "WMCore_t/Storage_t", "T1_US_FNAL_SiteLocalConfig.xml") return def testASuccessfulJobMonitoring(self): """ _testASuccessfulJobMonitoring_ Check that the data packets make sense when a job completes successfully """ # Get the necessary objects name = 'testA' job = self.createTestJob() workload = self.createWorkload() task = workload.getTask(taskName = "DataProcessing") report = self.createReport() # Fill the job environment self.setupJobEnvironment(name = name) # Instantiate DBInfo dbInfo = DashboardInfo(job=job, task=task, dashboardUrl='127.0.0.1:8884') # Check jobStart information data = dbInfo.jobStart() self.assertEqual(data['MessageType'], 'JobStatus') self.assertEqual(data['StatusValue'], 'running') self.assertEqual(data['StatusDestination'], "T1_US_FNAL") self.assertEqual(data['taskId'], 'wmagent_Tier1ReReco') # Do the first step step = task.getStep(stepName = "cmsRun1") # Do the step start data = dbInfo.stepStart(step = step.data) self.assertNotEqual(data['jobStart'], None) self.assertEqual(data['jobStart']['ExeStart'], step.name()) self.assertEqual(data['jobStart']['WNHostName'], socket.gethostname()) self.assertEqual(data['1_ExeStart'], step.name()) #Do the step end data = dbInfo.stepEnd(step = step.data, stepReport = report) self.assertEqual(data['1_ExeEnd'], step.name()) self.assertEqual(data['1_ExeExitCode'], 0) self.assertTrue(data['1_ExeWCTime'] >= 0) self.assertEqual(data['1_NCores'], 1) self.assertEqual(report.retrieveStep("cmsRun1").counter, 1) #Do a second step step = task.getStep(stepName = "cmsRun1") #Do the step start (It's not the first step) data = dbInfo.stepStart(step = step.data) self.assertEqual(data['jobStart'], None) self.assertEqual(data['2_ExeStart'], step.name()) #Do the step end data = dbInfo.stepEnd(step = step.data, stepReport = report) self.assertEqual(data['2_ExeEnd'], step.name()) self.assertEqual(data['2_ExeExitCode'], 0) self.assertTrue(data['2_ExeWCTime'] >= 0) self.assertEqual(data['2_NCores'], 1) self.assertEqual(report.retrieveStep("cmsRun1").counter, 2) # End the job! data = dbInfo.jobEnd() self.assertEqual(data['ExeEnd'], "cmsRun1") self.assertEqual(data['JobExitCode'], 0) self.assertEqual(data['WrapperCPUTime'], 0) self.assertTrue(data['WrapperWCTime'] >= 0) self.assertNotEqual(data['JobExitReason'], "") return def testMultithreadedApplication(self): """ _testMultithreadedApplication_ Check that the data packets have NCores and it picks it up successfully from the CMSSW step """ # Get the necessary objects name = 'testMT' job = self.createTestJob() workload = self.createWorkload() task = workload.getTask(taskName = "DataProcessing") report = self.createReport() # Fill the job environment self.setupJobEnvironment(name = name) # Instantiate DBInfo dbInfo = DashboardInfo(job=job, task=task, dashboardUrl='127.0.0.1:8884') # Modify the first step step = task.getStep(stepName = "cmsRun1") step.getTypeHelper().setNumberOfCores(8) # Check jobStart information data = dbInfo.jobStart() self.assertEqual(data['NCores'], 8) # Do the first step step = task.getStep(stepName = "cmsRun1") # Do the step start data = dbInfo.stepStart(step = step.data) #Do the step end data = dbInfo.stepEnd(step = step.data, stepReport = report) self.assertEqual(data['1_NCores'], 8) self.assertEqual(report.retrieveStep("cmsRun1").counter, 1) # End the job and test the final NCores report data = dbInfo.jobEnd() self.assertEqual(data['NCores'], 8) return def testAFailedJobMonitoring(self): """ _TestAFailedJobMonitoring_ Simulate a job that completes but fails, check that the data sent is correct """ # Get the necessary objects name = 'testB' job = self.createTestJob() workload = self.createWorkload() task = workload.getTask(taskName = "DataProcessing") report = self.createReport(outcome = 1) # Fill the job environment self.setupJobEnvironment(name = name) # Instantiate DBInfo dbInfo = DashboardInfo(job=job, task=task, dashboardUrl='127.0.0.1:8884') # Check jobStart information data = dbInfo.jobStart() self.assertEqual(data['MessageType'], 'JobStatus') self.assertEqual(data['StatusValue'], 'running') self.assertEqual(data['StatusDestination'], "T1_US_FNAL") self.assertEqual(data['taskId'], 'wmagent_Tier1ReReco') # Do the first step step = task.getStep(stepName = "cmsRun1") # Do the step start data = dbInfo.stepStart(step = step.data) self.assertNotEqual(data['jobStart'], None) self.assertEqual(data['jobStart']['ExeStart'], step.name()) self.assertEqual(data['jobStart']['WNHostName'], socket.gethostname()) self.assertEqual(data['1_ExeStart'], step.name()) #Do the step end data = dbInfo.stepEnd(step = step.data, stepReport = report) self.assertEqual(data['1_ExeEnd'], step.name()) self.assertNotEqual(data['1_ExeExitCode'], 0) self.assertTrue(data['1_ExeWCTime'] >= 0) self.assertEqual(report.retrieveStep("cmsRun1").counter, 1) # End the job! data = dbInfo.jobEnd() self.assertEqual(data['ExeEnd'], "cmsRun1") self.assertNotEqual(data['JobExitCode'], 0) self.assertEqual(data['WrapperCPUTime'], 0) self.assertTrue(data['WrapperWCTime'] >= 0) self.assertNotEqual(data['JobExitReason'].find('cmsRun1'), -1) return def testAKilledJobMonitoring(self): """ _TestAKilledJobMonitoring_ Simulate a job that is killed check that the data sent is correct """ # Get the necessary objects name = 'testC' job = self.createTestJob() workload = self.createWorkload() task = workload.getTask(taskName = "DataProcessing") report = self.createReport(outcome = 1) # Fill the job environment self.setupJobEnvironment(name = name) # Instantiate DBInfo dbInfo = DashboardInfo(job=job, task=task, dashboardUrl='127.0.0.1:8884') # Check jobStart information data = dbInfo.jobStart() self.assertEqual(data['MessageType'], 'JobStatus') self.assertEqual(data['StatusValue'], 'running') self.assertEqual(data['StatusDestination'], "T1_US_FNAL") self.assertEqual(data['taskId'], 'wmagent_Tier1ReReco') # Do the first step step = task.getStep(stepName = "cmsRun1") # Do the step start data = dbInfo.stepStart(step = step.data) self.assertNotEqual(data['jobStart'], None) self.assertEqual(data['jobStart']['ExeStart'], step.name()) self.assertEqual(data['jobStart']['WNHostName'], socket.gethostname()) self.assertEqual(data['1_ExeStart'], step.name()) #Do the step end data = dbInfo.stepEnd(step = step.data, stepReport = report) self.assertEqual(data['1_ExeEnd'], step.name()) self.assertNotEqual(data['1_ExeExitCode'], 0) self.assertTrue(data['1_ExeWCTime'] >= 0) # Kill the job! data = dbInfo.jobKilled() self.assertEqual(data['ExeEnd'], "cmsRun1") self.assertNotEqual(data['JobExitCode'], 0) self.assertEqual(data['WrapperCPUTime'], 0) self.assertTrue(data['WrapperWCTime'] >= 0) self.assertNotEqual(data['JobExitReason'].find('killed'), -1) return @attr('integration') def testGetDN(self): """ _testGetDN_ Checks that we can get a DN """ dn = getUserProxyDN() if 'X509_USER_PROXY' in os.environ: self.assertNotEqual(dn, None, 'Error: This should get a DN, if you have set one') else: self.assertEqual(dn, None, 'Error: There is no proxy in the environment, it should not get one') if __name__ == "__main__": unittest.main()
the-stack_0_22326
"""The command-line interface for Fava.""" import errno import os import click from cheroot.wsgi import Server # type: ignore from werkzeug.middleware.dispatcher import DispatcherMiddleware from werkzeug.middleware.profiler import ProfilerMiddleware from fava import __version__ from fava.application import app from fava.util import simple_wsgi # pylint: disable=too-many-arguments @click.command(context_settings=dict(auto_envvar_prefix="FAVA")) @click.argument( "filenames", nargs=-1, type=click.Path(exists=True, dir_okay=False, resolve_path=True), ) @click.option( "-p", "--port", type=int, default=5000, show_default=True, metavar="<port>", help="The port to listen on.", ) @click.option( "-H", "--host", type=str, default="localhost", show_default=True, metavar="<host>", help="The host to listen on.", ) @click.option("--prefix", type=str, help="Set an URL prefix.") @click.option( "--incognito", is_flag=True, help="Run in incognito mode and obscure all numbers.", ) @click.option("-d", "--debug", is_flag=True, help="Turn on debugging.") @click.option( "--profile", is_flag=True, help="Turn on profiling. Implies --debug." ) @click.option( "--profile-dir", type=click.Path(), help="Output directory for profiling data.", ) @click.version_option(version=__version__, prog_name="fava") def main( filenames, port, host, prefix, incognito, debug, profile, profile_dir ): # pragma: no cover """Start Fava for FILENAMES on http://<host>:<port>. If the `BEANCOUNT_FILE` environment variable is set, Fava will use the files (space-delimited) specified there in addition to FILENAMES. Note you can also specify command-line options via environment variables. For example, `--host=0.0.0.0` is equivalent to setting the environment variable `FAVA_HOST=0.0.0.0`. """ if profile: debug = True env_filename = os.environ.get("BEANCOUNT_FILE") if env_filename: filenames = filenames + tuple(env_filename.split()) if not filenames: raise click.UsageError("No file specified") app.config["BEANCOUNT_FILES"] = filenames app.config["INCOGNITO"] = incognito if prefix: app.wsgi_app = DispatcherMiddleware( simple_wsgi, {prefix: app.wsgi_app} ) if not debug: server = Server((host, port), app) print(f"Running Fava on http://{host}:{port}") server.safe_start() else: if profile: app.config["PROFILE"] = True app.wsgi_app = ProfilerMiddleware( app.wsgi_app, restrictions=(30,), profile_dir=profile_dir if profile_dir else None, ) app.jinja_env.auto_reload = True try: app.run(host, port, debug) except OSError as error: if error.errno == errno.EADDRINUSE: raise click.UsageError( "Can not start webserver because the port is already in " "use. Please choose another port with the '-p' option." ) raise # needed for pyinstaller: if __name__ == "__main__": # pragma: no cover main() # pylint: disable=no-value-for-parameter
the-stack_0_22327
#!/usr/bin/env python3 import os import time import multiprocessing from tqdm import tqdm import argparse # run DM procs os.environ["USE_WEBCAM"] = "1" import cereal.messaging as messaging from cereal.services import service_list from cereal.visionipc.visionipc_pyx import VisionIpcServer, VisionStreamType # pylint: disable=no-name-in-module, import-error from common.params import Params from common.realtime import Ratekeeper, DT_MDL, DT_DMON, sec_since_boot from common.transformations.camera import eon_f_frame_size, eon_d_frame_size, tici_f_frame_size, tici_d_frame_size from selfdrive.car.fingerprints import FW_VERSIONS from selfdrive.manager.process import ensure_running from selfdrive.manager.process_config import managed_processes from selfdrive.test.update_ci_routes import upload_route from tools.lib.route import Route from tools.lib.framereader import FrameReader from tools.lib.logreader import LogReader process_replay_dir = os.path.dirname(os.path.abspath(__file__)) FAKEDATA = os.path.join(process_replay_dir, "fakedata/") def replay_panda_states(s, msgs): pm = messaging.PubMaster([s, 'peripheralState']) rk = Ratekeeper(service_list[s].frequency, print_delay_threshold=None) smsgs = [m for m in msgs if m.which() in ['pandaStates', 'pandaStateDEPRECATED']] # Migrate safety param base on carState cp = [m for m in msgs if m.which() == 'carParams'][0].carParams if len(cp.safetyConfigs): safety_param = cp.safetyConfigs[0].safetyParam else: safety_param = cp.safetyParamDEPRECATED while True: for m in smsgs: if m.which() == 'pandaStateDEPRECATED': new_m = messaging.new_message('pandaStates', 1) new_m.pandaStates[0] = m.pandaStateDEPRECATED new_m.pandaStates[0].safetyParam = safety_param pm.send(s, new_m) else: new_m = m.as_builder() new_m.logMonoTime = int(sec_since_boot() * 1e9) pm.send(s, new_m) new_m = messaging.new_message('peripheralState') pm.send('peripheralState', new_m) rk.keep_time() def replay_manager_state(s, msgs): pm = messaging.PubMaster([s, ]) rk = Ratekeeper(service_list[s].frequency, print_delay_threshold=None) while True: new_m = messaging.new_message('managerState') new_m.managerState.processes = [{'name': name, 'running': True} for name in managed_processes] pm.send(s, new_m) rk.keep_time() def replay_device_state(s, msgs): pm = messaging.PubMaster([s, ]) rk = Ratekeeper(service_list[s].frequency, print_delay_threshold=None) smsgs = [m for m in msgs if m.which() == s] while True: for m in smsgs: new_m = m.as_builder() new_m.logMonoTime = int(sec_since_boot() * 1e9) new_m.deviceState.freeSpacePercent = 50 new_m.deviceState.memoryUsagePercent = 50 pm.send(s, new_m) rk.keep_time() def replay_sensor_events(s, msgs): pm = messaging.PubMaster([s, ]) rk = Ratekeeper(service_list[s].frequency, print_delay_threshold=None) smsgs = [m for m in msgs if m.which() == s] while True: for m in smsgs: new_m = m.as_builder() new_m.logMonoTime = int(sec_since_boot() * 1e9) for evt in new_m.sensorEvents: evt.timestamp = new_m.logMonoTime pm.send(s, new_m) rk.keep_time() def replay_service(s, msgs): pm = messaging.PubMaster([s, ]) rk = Ratekeeper(service_list[s].frequency, print_delay_threshold=None) smsgs = [m for m in msgs if m.which() == s] while True: for m in smsgs: new_m = m.as_builder() new_m.logMonoTime = int(sec_since_boot() * 1e9) pm.send(s, new_m) rk.keep_time() def replay_cameras(lr, frs): eon_cameras = [ ("roadCameraState", DT_MDL, eon_f_frame_size, VisionStreamType.VISION_STREAM_ROAD), ("driverCameraState", DT_DMON, eon_d_frame_size, VisionStreamType.VISION_STREAM_DRIVER), ] tici_cameras = [ ("roadCameraState", DT_MDL, tici_f_frame_size, VisionStreamType.VISION_STREAM_ROAD), ("driverCameraState", DT_MDL, tici_d_frame_size, VisionStreamType.VISION_STREAM_DRIVER), ] def replay_camera(s, stream, dt, vipc_server, frames, size): pm = messaging.PubMaster([s, ]) rk = Ratekeeper(1 / dt, print_delay_threshold=None) img = b"\x00" * int(size[0]*size[1]*3/2) while True: if frames is not None: img = frames[rk.frame % len(frames)] rk.keep_time() m = messaging.new_message(s) msg = getattr(m, s) msg.frameId = rk.frame pm.send(s, m) vipc_server.send(stream, img, msg.frameId, msg.timestampSof, msg.timestampEof) init_data = [m for m in lr if m.which() == 'initData'][0] cameras = tici_cameras if (init_data.initData.deviceType == 'tici') else eon_cameras # init vipc server and cameras p = [] vs = VisionIpcServer("camerad") for (s, dt, size, stream) in cameras: fr = frs.get(s, None) frames = None if fr is not None: print(f"Decomressing frames {s}") frames = [] for i in tqdm(range(fr.frame_count)): img = fr.get(i, pix_fmt='yuv420p')[0] frames.append(img.flatten().tobytes()) vs.create_buffers(stream, 40, False, size[0], size[1]) p.append(multiprocessing.Process(target=replay_camera, args=(s, stream, dt, vs, frames, size))) # hack to make UI work vs.create_buffers(VisionStreamType.VISION_STREAM_RGB_ROAD, 4, True, eon_f_frame_size[0], eon_f_frame_size[1]) vs.start_listener() return vs, p def regen_segment(lr, frs=None, outdir=FAKEDATA): lr = list(lr) if frs is None: frs = dict() # setup env params = Params() params.clear_all() params.put_bool("Passive", False) params.put_bool("OpenpilotEnabledToggle", True) os.environ["LOG_ROOT"] = outdir os.environ["REPLAY"] = "1" os.environ['SKIP_FW_QUERY'] = "" os.environ['FINGERPRINT'] = "" # TODO: remove after getting new route for mazda migration = { "Mazda CX-9 2021": "MAZDA CX-9 2021", } for msg in lr: if msg.which() == 'carParams': car_fingerprint = migration.get(msg.carParams.carFingerprint, msg.carParams.carFingerprint) if len(msg.carParams.carFw) and (car_fingerprint in FW_VERSIONS): params.put("CarParamsCache", msg.carParams.as_builder().to_bytes()) else: os.environ['SKIP_FW_QUERY'] = "1" os.environ['FINGERPRINT'] = car_fingerprint elif msg.which() == 'liveCalibration': params.put("CalibrationParams", msg.as_builder().to_bytes()) vs, cam_procs = replay_cameras(lr, frs) fake_daemons = { 'sensord': [ multiprocessing.Process(target=replay_sensor_events, args=('sensorEvents', lr)), ], 'pandad': [ multiprocessing.Process(target=replay_service, args=('can', lr)), multiprocessing.Process(target=replay_service, args=('ubloxRaw', lr)), multiprocessing.Process(target=replay_panda_states, args=('pandaStates', lr)), ], 'managerState': [ multiprocessing.Process(target=replay_manager_state, args=('managerState', lr)), ], 'thermald': [ multiprocessing.Process(target=replay_device_state, args=('deviceState', lr)), ], 'camerad': [ *cam_procs, ], } try: # start procs up ignore = list(fake_daemons.keys()) + ['ui', 'manage_athenad', 'uploader'] ensure_running(managed_processes.values(), started=True, not_run=ignore) for procs in fake_daemons.values(): for p in procs: p.start() for _ in tqdm(range(60)): # ensure all procs are running for d, procs in fake_daemons.items(): for p in procs: if not p.is_alive(): raise Exception(f"{d}'s {p.name} died") time.sleep(1) finally: # kill everything for p in managed_processes.values(): p.stop() for procs in fake_daemons.values(): for p in procs: p.terminate() del vs r = params.get("CurrentRoute", encoding='utf-8') return os.path.join(outdir, r + "--0") def regen_and_save(route, sidx, upload=False, use_route_meta=False): if use_route_meta: r = Route(args.route) lr = LogReader(r.log_paths()[args.seg]) fr = FrameReader(r.camera_paths()[args.seg]) else: lr = LogReader(f"cd:/{route.replace('|', '/')}/{sidx}/rlog.bz2") fr = FrameReader(f"cd:/{route.replace('|', '/')}/{sidx}/fcamera.hevc") rpath = regen_segment(lr, {'roadCameraState': fr}) lr = LogReader(os.path.join(rpath, 'rlog.bz2')) controls_state_active = [m.controlsState.active for m in lr if m.which() == 'controlsState'] assert any(controls_state_active), "Segment did not engage" relr = os.path.relpath(rpath) print("\n\n", "*"*30, "\n\n") print("New route:", relr, "\n") if upload: upload_route(relr) return relr if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate new segments from old ones") parser.add_argument("--upload", action="store_true", help="Upload the new segment to the CI bucket") parser.add_argument("route", type=str, help="The source route") parser.add_argument("seg", type=int, help="Segment in source route") args = parser.parse_args() regen_and_save(args.route, args.seg, args.upload)
the-stack_0_22328
# Copyright (c) 2017 https://github.com/ping # # This software is released under the MIT License. # https://opensource.org/licenses/MIT # -*- coding: utf-8 -*- import logging import hmac import hashlib import uuid import json import re import time import random from datetime import datetime import gzip from io import BytesIO import warnings from socket import timeout, error as SocketError from ssl import SSLError from .compat import ( compat_urllib_parse, compat_urllib_error, compat_urllib_request, compat_urllib_parse_urlparse, compat_http_client) from .errors import ( ErrorHandler, ClientError, ClientLoginRequiredError, ClientCookieExpiredError, ClientConnectionError ) try: # Python 3: # Not a no-op, we're adding this to the namespace so it can be imported. ConnectionError = ConnectionError # pylint: disable=redefined-builtin except NameError: # Python 2: class ConnectionError(Exception): pass from .constants import Constants from .http import ClientCookieJar from .endpoints import ( AccountsEndpointsMixin, DiscoverEndpointsMixin, FeedEndpointsMixin, FriendshipsEndpointsMixin, LiveEndpointsMixin, MediaEndpointsMixin, MiscEndpointsMixin, LocationsEndpointsMixin, TagsEndpointsMixin, UsersEndpointsMixin, UploadEndpointsMixin, UsertagsEndpointsMixin, CollectionsEndpointsMixin, HighlightsEndpointsMixin, IGTVEndpointsMixin, ClientDeprecationWarning, ClientPendingDeprecationWarning, ClientExperimentalWarning, ChallengeEndpointsMixin ) logger = logging.getLogger(__name__) # Force Client deprecation warnings to always appear warnings.simplefilter('always', ClientDeprecationWarning) warnings.simplefilter('always', ClientPendingDeprecationWarning) warnings.simplefilter('default', ClientExperimentalWarning) class Client(AccountsEndpointsMixin, DiscoverEndpointsMixin, FeedEndpointsMixin, FriendshipsEndpointsMixin, LiveEndpointsMixin, MediaEndpointsMixin, MiscEndpointsMixin, LocationsEndpointsMixin, TagsEndpointsMixin, UsersEndpointsMixin, UploadEndpointsMixin, UsertagsEndpointsMixin, CollectionsEndpointsMixin, HighlightsEndpointsMixin, ChallengeEndpointsMixin, IGTVEndpointsMixin, object): """Main API client class for the private app api.""" API_URL = 'https://i.instagram.com/api/{version!s}/' USER_AGENT = Constants.USER_AGENT IG_SIG_KEY = Constants.IG_SIG_KEY IG_CAPABILITIES = Constants.IG_CAPABILITIES SIG_KEY_VERSION = Constants.SIG_KEY_VERSION APPLICATION_ID = Constants.APPLICATION_ID def __init__(self, username, password, **kwargs): """ :param username: Login username :param password: Login password :param kwargs: See below :Keyword Arguments: - **auto_patch**: Patch the api objects to match the public API. Default: False - **drop_incompat_key**: Remove api object keys that is not in the public API. Default: False - **timeout**: Timeout interval in seconds. Default: 15 - **api_url**: Override the default api url base - **cookie**: Saved cookie string from a previous session - **settings**: A dict of settings from a previous session - **on_login**: Callback after successful login - **proxy**: Specify a proxy ex: 'http://127.0.0.1:8888' (ALPHA) - **proxy_handler**: Specify your own proxy handler - **authenticate**: Specify if you want to login default is True :return: """ self.username = username self.password = password self.auto_patch = kwargs.pop('auto_patch', False) self.drop_incompat_keys = kwargs.pop('drop_incompat_keys', False) self.api_url = kwargs.pop('api_url', None) or self.API_URL self.timeout = kwargs.pop('timeout', 15) self.on_login = kwargs.pop('on_login', None) self.logger = logger user_settings = kwargs.pop('settings', None) or {} self.uuid = ( kwargs.pop('guid', None) or kwargs.pop('uuid', None) or user_settings.get('uuid') or self.generate_uuid(False)) self.device_id = ( kwargs.pop('device_id', None) or user_settings.get('device_id') or self.generate_deviceid()) # application session ID self.session_id = ( kwargs.pop('session_id', None) or user_settings.get('session_id') or self.generate_uuid(False)) self.signature_key = ( kwargs.pop('signature_key', None) or user_settings.get('signature_key') or self.IG_SIG_KEY) self.key_version = ( kwargs.pop('key_version', None) or user_settings.get('key_version') or self.SIG_KEY_VERSION) self.ig_capabilities = ( kwargs.pop('ig_capabilities', None) or user_settings.get('ig_capabilities') or self.IG_CAPABILITIES) self.application_id = ( kwargs.pop('application_id', None) or user_settings.get('application_id') or self.APPLICATION_ID) self.authenticate = kwargs.pop('authenticate', True) # to maintain backward compat for user_agent kwarg custom_ua = kwargs.pop('user_agent', '') or user_settings.get('user_agent') if custom_ua: self.user_agent = custom_ua else: self.app_version = ( kwargs.pop('app_version', None) or user_settings.get('app_version') or Constants.APP_VERSION) self.android_release = ( kwargs.pop('android_release', None) or user_settings.get('android_release') or Constants.ANDROID_RELEASE) self.android_version = int( kwargs.pop('android_version', None) or user_settings.get('android_version') or Constants.ANDROID_VERSION) self.phone_manufacturer = ( kwargs.pop('phone_manufacturer', None) or user_settings.get('phone_manufacturer') or Constants.PHONE_MANUFACTURER) self.phone_device = ( kwargs.pop('phone_device', None) or user_settings.get('phone_device') or Constants.PHONE_DEVICE) self.phone_model = ( kwargs.pop('phone_model', None) or user_settings.get('phone_model') or Constants.PHONE_MODEL) self.phone_dpi = ( kwargs.pop('phone_dpi', None) or user_settings.get('phone_dpi') or Constants.PHONE_DPI) self.phone_resolution = ( kwargs.pop('phone_resolution', None) or user_settings.get('phone_resolution') or Constants.PHONE_RESOLUTION) self.phone_chipset = ( kwargs.pop('phone_chipset', None) or user_settings.get('phone_chipset') or Constants.PHONE_CHIPSET) self.version_code = ( kwargs.pop('version_code', None) or user_settings.get('version_code') or Constants.VERSION_CODE) cookie_string = kwargs.pop('cookie', None) or user_settings.get('cookie') cookie_jar = ClientCookieJar(cookie_string=cookie_string) if cookie_string and cookie_jar.auth_expires and int(time.time()) >= cookie_jar.auth_expires: raise ClientCookieExpiredError('Cookie expired at {0!s}'.format(cookie_jar.auth_expires)) cookie_handler = compat_urllib_request.HTTPCookieProcessor(cookie_jar) proxy_handler = kwargs.pop('proxy_handler', None) if not proxy_handler: proxy = kwargs.pop('proxy', None) if proxy: warnings.warn('Proxy support is alpha.', UserWarning) parsed_url = compat_urllib_parse_urlparse(proxy) if parsed_url.netloc and parsed_url.scheme: proxy_address = '{0!s}://{1!s}'.format(parsed_url.scheme, parsed_url.netloc) proxy_handler = compat_urllib_request.ProxyHandler({'https': proxy_address}) else: raise ValueError('Invalid proxy argument: {0!s}'.format(proxy)) handlers = [] if proxy_handler: handlers.append(proxy_handler) # Allow user to override custom ssl context where possible custom_ssl_context = kwargs.pop('custom_ssl_context', None) try: https_handler = compat_urllib_request.HTTPSHandler(context=custom_ssl_context) except TypeError: # py version < 2.7.9 https_handler = compat_urllib_request.HTTPSHandler() handlers.extend([ compat_urllib_request.HTTPHandler(), https_handler, cookie_handler]) opener = compat_urllib_request.build_opener(*handlers) opener.cookie_jar = cookie_jar self.opener = opener # ad_id must be initialised after cookie_jar/opener because # it relies on self.authenticated_user_name self.ad_id = ( kwargs.pop('ad_id', None) or user_settings.get('ad_id') or self.generate_adid()) if not cookie_string and self.authenticate: # [TODO] There's probably a better way than to depend on cookie_string if not self.username or not self.password: raise ClientLoginRequiredError('login_required', code=400) self.login() self.logger.debug('USERAGENT: {0!s}'.format(self.user_agent)) super(Client, self).__init__() @property def is_authenticated(self): if self.authenticated_user_id: return True return False @property def settings(self): """Helper property that extracts the settings that you should cache in addition to username and password.""" return { 'uuid': self.uuid, 'device_id': self.device_id, 'ad_id': self.ad_id, 'session_id': self.session_id, 'cookie': self.cookie_jar.dump(), 'created_ts': int(time.time()) } @property def user_agent(self): """Returns the useragent string that the client is currently using.""" return Constants.USER_AGENT_FORMAT.format(**{ 'app_version': self.app_version, 'android_version': self.android_version, 'android_release': self.android_release, 'brand': self.phone_manufacturer, 'device': self.phone_device, 'model': self.phone_model, 'dpi': self.phone_dpi, 'resolution': self.phone_resolution, 'chipset': self.phone_chipset, 'version_code': self.version_code}) @user_agent.setter def user_agent(self, value): """Override the useragent string with your own""" mobj = re.search(Constants.USER_AGENT_EXPRESSION, value) if not mobj: raise ValueError('User-agent specified does not fit format required: {0!s}'.format( Constants.USER_AGENT_EXPRESSION)) self.app_version = mobj.group('app_version') self.android_release = mobj.group('android_release') self.android_version = int(mobj.group('android_version')) self.phone_manufacturer = mobj.group('manufacturer') self.phone_device = mobj.group('device') self.phone_model = mobj.group('model') self.phone_dpi = mobj.group('dpi') self.phone_resolution = mobj.group('resolution') self.phone_chipset = mobj.group('chipset') self.version_code = mobj.group('version_code') @staticmethod def generate_useragent(**kwargs): """ Helper method to generate a useragent string based on device parameters :param kwargs: - **app_version** - **android_version** - **android_release** - **brand** - **device** - **model** - **dpi** - **resolution** - **chipset** :return: A compatible user agent string """ return Constants.USER_AGENT_FORMAT.format(**{ 'app_version': kwargs.pop('app_version', None) or Constants.APP_VERSION, 'android_version': int(kwargs.pop('android_version', None) or Constants.ANDROID_VERSION), 'android_release': kwargs.pop('android_release', None) or Constants.ANDROID_RELEASE, 'brand': kwargs.pop('phone_manufacturer', None) or Constants.PHONE_MANUFACTURER, 'device': kwargs.pop('phone_device', None) or Constants.PHONE_DEVICE, 'model': kwargs.pop('phone_model', None) or Constants.PHONE_MODEL, 'dpi': kwargs.pop('phone_dpi', None) or Constants.PHONE_DPI, 'resolution': kwargs.pop('phone_resolution', None) or Constants.PHONE_RESOLUTION, 'chipset': kwargs.pop('phone_chipset', None) or Constants.PHONE_CHIPSET, 'version_code': kwargs.pop('version_code', None) or Constants.VERSION_CODE}) @staticmethod def validate_useragent(value): """ Helper method to validate a useragent string for format correctness :param value: :return: """ mobj = re.search(Constants.USER_AGENT_EXPRESSION, value) if not mobj: raise ValueError( 'User-agent specified does not fit format required: {0!s}'.format( Constants.USER_AGENT_EXPRESSION)) parse_params = { 'app_version': mobj.group('app_version'), 'android_version': int(mobj.group('android_version')), 'android_release': mobj.group('android_release'), 'brand': mobj.group('manufacturer'), 'device': mobj.group('device'), 'model': mobj.group('model'), 'dpi': mobj.group('dpi'), 'resolution': mobj.group('resolution'), 'chipset': mobj.group('chipset'), 'version_code': mobj.group('version_code'), } return { 'user_agent': Constants.USER_AGENT_FORMAT.format(**parse_params), 'parsed_params': parse_params } def get_cookie_value(self, key, domain=''): now = int(time.time()) eternity = now + 100 * 365 * 24 * 60 * 60 # future date for non-expiring cookies if not domain: domain = compat_urllib_parse_urlparse(self.API_URL).netloc for cookie in sorted( self.cookie_jar, key=lambda c: c.expires or eternity, reverse=True): # don't return expired cookie if cookie.expires and cookie.expires < now: continue # cookie domain may be i.instagram.com or .instagram.com cookie_domain = cookie.domain # simple domain matching if cookie_domain.startswith('.'): cookie_domain = cookie_domain[1:] if not domain.endswith(cookie_domain): continue if cookie.name.lower() == key.lower(): return cookie.value return None @property def csrftoken(self): """The client's current csrf token""" return self.get_cookie_value('csrftoken') @property def token(self): """For compatibility. Equivalent to :meth:`csrftoken`""" return self.csrftoken @property def authenticated_user_id(self): """The current authenticated user id""" return self.get_cookie_value('ds_user_id') @property def authenticated_user_name(self): """The current authenticated user name""" return self.get_cookie_value('ds_user') @property def phone_id(self): """Current phone ID. For use in certain functions.""" return self.generate_uuid(return_hex=False, seed=self.device_id) @property def timezone_offset(self): """Timezone offset in seconds. For use in certain functions.""" return int(round((datetime.now() - datetime.utcnow()).total_seconds())) @property def rank_token(self): if not self.authenticated_user_id: return None return '{0!s}_{1!s}'.format(self.authenticated_user_id, self.uuid) @property def authenticated_params(self): return { '_csrftoken': self.csrftoken, '_uuid': self.uuid, '_uid': self.authenticated_user_id } @property def cookie_jar(self): """The client's cookiejar instance.""" return self.opener.cookie_jar @property def default_headers(self): return { 'User-Agent': self.user_agent, 'Connection': 'close', 'Accept': '*/*', 'Accept-Language': 'en-US', 'Accept-Encoding': 'gzip, deflate', 'X-IG-Capabilities': self.ig_capabilities, 'X-IG-Connection-Type': 'WIFI', 'X-IG-Connection-Speed': '{0:d}kbps'.format(random.randint(1000, 5000)), 'X-IG-App-ID': self.application_id, 'X-IG-Bandwidth-Speed-KBPS': '-1.000', 'X-IG-Bandwidth-TotalBytes-B': '0', 'X-IG-Bandwidth-TotalTime-MS': '0', 'X-FB-HTTP-Engine': Constants.FB_HTTP_ENGINE, } @property def radio_type(self): """For use in certain endpoints""" return 'wifi-none' def _generate_signature(self, data): """ Generates the signature for a data string :param data: content to be signed :return: """ return hmac.new( self.signature_key.encode('ascii'), data.encode('ascii'), digestmod=hashlib.sha256).hexdigest() @classmethod def generate_uuid(cls, return_hex=False, seed=None): """ Generate uuid :param return_hex: Return in hex format :param seed: Seed value to generate a consistent uuid :return: """ if seed: m = hashlib.md5() m.update(seed.encode('utf-8')) new_uuid = uuid.UUID(m.hexdigest()) else: new_uuid = uuid.uuid1() if return_hex: return new_uuid.hex return str(new_uuid) @classmethod def generate_deviceid(cls, seed=None): """ Generate an android device ID :param seed: Seed value to generate a consistent device ID :return: """ return 'android-{0!s}'.format(cls.generate_uuid(True, seed)[:16]) def generate_adid(self, seed=None): """ Generate an Advertising ID based on the login username since the Google Ad ID is a personally identifying but resettable ID. :return: """ modified_seed = seed or self.authenticated_user_name or self.username if modified_seed: # Do some trivial mangling of original seed sha2 = hashlib.sha256() sha2.update(modified_seed.encode('utf-8')) modified_seed = sha2.hexdigest() return self.generate_uuid(False, modified_seed) @staticmethod def _read_response(response): """ Extract the response body from a http response. :param response: :return: """ if response.info().get('Content-Encoding') == 'gzip': buf = BytesIO(response.read()) res = gzip.GzipFile(fileobj=buf).read().decode('utf8') else: res = response.read().decode('utf8') return res def _call_api(self, endpoint, params=None, query=None, return_response=False, unsigned=False, version='v1'): """ Calls the private api. :param endpoint: endpoint path that should end with '/', example 'discover/explore/' :param params: POST parameters :param query: GET url query parameters :param return_response: return the response instead of the parsed json object :param unsigned: use post params as-is without signing :param version: for the versioned api base url. Default 'v1'. :return: """ url = '{0}{1}'.format(self.api_url.format(version=version), endpoint) if query: url += ('?' if '?' not in endpoint else '&') + compat_urllib_parse.urlencode(query) headers = self.default_headers data = None if params or params == '': headers['Content-type'] = 'application/x-www-form-urlencoded; charset=UTF-8' if params == '': # force post if empty string data = ''.encode('ascii') else: if not unsigned: json_params = json.dumps(params, separators=(',', ':')) hash_sig = self._generate_signature(json_params) post_params = { 'ig_sig_key_version': self.key_version, 'signed_body': hash_sig + '.' + json_params } else: # direct form post post_params = params data = compat_urllib_parse.urlencode(post_params).encode('ascii') req = compat_urllib_request.Request(url, data, headers=headers) try: self.logger.debug('REQUEST: {0!s} {1!s}'.format(url, req.get_method())) self.logger.debug('DATA: {0!s}'.format(data)) response = self.opener.open(req, timeout=self.timeout) except compat_urllib_error.HTTPError as e: error_response = self._read_response(e) self.logger.debug('RESPONSE: {0:d} {1!s}'.format(e.code, error_response)) ErrorHandler.process(e, error_response) except (SSLError, timeout, SocketError, compat_urllib_error.URLError, # URLError is base of HTTPError compat_http_client.HTTPException, ConnectionError) as connection_error: raise ClientConnectionError('{} {}'.format( connection_error.__class__.__name__, str(connection_error))) if return_response: return response response_content = self._read_response(response) self.logger.debug('RESPONSE: {0:d} {1!s}'.format(response.code, response_content)) json_response = json.loads(response_content) if json_response.get('message', '') == 'login_required': raise ClientLoginRequiredError( json_response.get('message'), code=response.code, error_response=json.dumps(json_response)) # not from oembed or an ok response if not json_response.get('provider_url') and json_response.get('status', '') != 'ok': raise ClientError( json_response.get('message', 'Unknown error'), code=response.code, error_response=json.dumps(json_response)) return json_response
the-stack_0_22329
""" flask_excel ~~~~~~~~~~~~~~~~~~~ A flask extension that provides one application programming interface to read and write data in different excel file formats :copyright: (c) 2015-2020 by Onni Software Ltd and its contributors :license: New BSD License """ try: # if in py2 from urllib import quote _PY_VERSION = 2 except ImportError: # else (aka in py3) from urllib.parse import quote _PY_VERSION = 3 import pyexcel_webio as webio from flask import Request, Response class ExcelRequest(webio.ExcelInputInMultiDict, Request): """ Mix in pyexcel's webio function signatures to Flask request """ def get_file_tuple(self, field_name): """ Implement Flask specific way of getting uploaded files """ filehandle = self.files[field_name] filename = filehandle.filename extension = filename.split(".")[-1] if extension == filename: raise IOError("Failed to find out file extension") return extension, filehandle def _make_response(content, content_type, status, file_name=None): """ Custom response function that is called by pyexcel-webio """ response = Response(content, content_type=content_type, status=status) if file_name: if _PY_VERSION == 2 and isinstance(file_name, unicode): file_name = file_name.encode("utf-8") url_encoded_file_name = quote(file_name) response.headers[ "Content-Disposition" ] = "attachment; filename=%s;filename*=utf-8''%s" % ( url_encoded_file_name, url_encoded_file_name, ) return response from pyexcel_webio import ( make_response, make_response_from_a_table, make_response_from_array, make_response_from_book_dict, make_response_from_dict, make_response_from_query_sets, make_response_from_records, make_response_from_tables, ) def init_excel(app): app.request_class = ExcelRequest webio.init_webio(_make_response) return app
the-stack_0_22330
#Advent of code 2021 #Day 7 Part 2 #The Treachery of Whales import numpy as np np.set_printoptions(threshold=np.inf) import pdb #pdb.set_trace() import time import copy from functools import reduce import math from decimal import Decimal start_time = time.time() ###Functions def calculate_stats_and_shit(positions): #Calculate a lot of averages cos why the fuck not. #I'm definetly not going to use all of these lol #I had fun everything is fine #(My RAM might disagree) Sigma_x = sum(positions) Sigma_x2 = reduce(lambda a, x: a + x**2, [0]+positions) Sigma_x2_minus_x = reduce(lambda a, x: a + x**2 - x, [0]+positions) no = len(positions) no_dec = Decimal(no) mean = Sigma_x / no RMS = ((1/no)*Sigma_x2)**0.5 MRS = (1/no)*(Sigma_x2)**0.5 positions_plus_one = [x+1 for x in positions] product_x_plus_one = Decimal(reduce((lambda x, y: x * y), positions_plus_one)) GM_add_one = product_x_plus_one**(1/no_dec) - 1 positions_wo_zero = [i for i in positions if i != 0] no_wo_zero = Decimal(len(positions_wo_zero)) product_x_wo_zero = Decimal(reduce((lambda x, y: x * y), positions_wo_zero)) GM_ignore_zero = product_x_wo_zero**(1/no_wo_zero) positions_zero_to_one = [i if i != 0 else 1 for i in positions] product_x_zero_to_one = Decimal(reduce((lambda x, y: x * y), positions_zero_to_one)) GM_zero_to_one = product_x_zero_to_one**(1/no_dec) return mean, RMS, MRS, GM_add_one, GM_ignore_zero, GM_zero_to_one def calc_fuel_needed(positions, x): total_fuel = 0 for position in positions: distance = abs(position - x) fuel = 0 for num in range(1, distance + 1, 1): fuel += num total_fuel += fuel return total_fuel #Import and sort File positions = [] with open("input_07.txt") as positionsf: for line in positionsf: #Import operations line = line.strip("/n")#Remove EOL symbol line = line.split(",") positions = list(map(int,line)) positions.sort() ###Main Code mean, RMS, MRS, GM_add_one, GM_ignore_zero, GM_zero_to_one = calculate_stats_and_shit(positions) #Mean of the Geometric Means MoGMs = (GM_add_one + GM_ignore_zero + GM_zero_to_one) / 3 #Find to nearest integers x_lower = int(math.floor(mean)) x_upper = x_lower + 1 #Calculate fuel for nearest integers total_fuel_lower = calc_fuel_needed(positions, x_lower) total_fuel_upper = calc_fuel_needed(positions, x_upper) #Find nearest local minima #Direction To Search if total_fuel_lower < total_fuel_upper: search_dir = -1 elif total_fuel_lower > total_fuel_upper: search_dir = 1 else: print('lol that shouldnt happen, fuck this') i = 0 while (time.time() - start_time) <= 5*60: x_lower += search_dir x_upper += search_dir total_fuel_lower = calc_fuel_needed(positions, x_lower) total_fuel_upper = calc_fuel_needed(positions, x_upper) i += 1 if (total_fuel_lower > total_fuel_upper and search_dir == -1): x = x_upper total_fuel = total_fuel_upper break if (total_fuel_lower < total_fuel_upper and search_dir == 1): x = x_lower total_fuel = total_fuel_lower break #Result print('Input positions are ',positions) print('Mean is ',mean) print('Root Mean Square is ',RMS) print('Mean Root Square is ',MRS) print('Geometric Mean using the add one to all method is ',GM_add_one) print('Geometric Mean using the ignore zero method is ',GM_ignore_zero) print('Geometric Mean using the convert zero to one method is ',GM_zero_to_one) print('The Mean of the Geometric Means is ',MoGMs) print('.......') print('.......') print('.......') print('Well that was a lot of silly data') print('maybe you might like some results now') print('.......') print('.......') print('.......') print('maybe') print('.......') print('.......') print('.......') print('The best place for the crab subs to meet is ',x) print('The fuel usage required for that is ',total_fuel) print('I did ',i,' loops to find the local optima') timetaken = time.time() - start_time print("Completed in ", timetaken, " seconds")
the-stack_0_22332
from django.contrib.auth.models import User from rest_framework_simplejwt.serializers import TokenObtainPairSerializer from rest_framework import serializers class MyTokenObtainPairSerializer(TokenObtainPairSerializer): @classmethod def get_token(cls, user): return super().get_token(user) def validate(self, attrs): data = super().validate(attrs) refresh = self.get_token(self.user) data['refresh'] = str(refresh) data['access'] = str(refresh.access_token) data['username'] = self.user.username return data class RegisterSerializer(serializers.ModelSerializer): class Meta: model = User fields = '__all__'
the-stack_0_22333
if __name__ == '__main__': import sys sys.path.insert(0, 'C:\\Users\\James Jiang\\Documents\\Project Euler') from progress import Progress answers_list = ['dummy'] with open('C:\\Users\\James Jiang\\Documents\\Project Euler\\answers.txt') as answers: for line in answers: answers_list.append(int(line)) progress_ = Progress("Problem 009: Special Pythagorean triplet", 1, 1000) for a in range(1, 1000): progress_.count = a progress_.progress() for b in range(a, 1000): if a**2 + b**2 == (1000 - a - b)**2: break else: continue break progress_.count = a*b*(1000 - a - b) progress_.total = answers_list[9] progress_.progress() if __name__ == '__main__': input()
the-stack_0_22334
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals """ Customize Form is a Single DocType used to mask the Property Setter Thus providing a better UI from user perspective """ import frappe import frappe.translate from frappe import _ from frappe.utils import cint from frappe.model.document import Document from frappe.model import no_value_fields, core_doctypes_list from frappe.core.doctype.doctype.doctype import validate_fields_for_doctype from frappe.custom.doctype.custom_field.custom_field import create_custom_field from frappe.model.docfield import supports_translation doctype_properties = { 'search_fields': 'Data', 'title_field': 'Data', 'image_field': 'Data', 'sort_field': 'Data', 'sort_order': 'Data', 'default_print_format': 'Data', 'allow_copy': 'Check', 'istable': 'Check', 'quick_entry': 'Check', 'editable_grid': 'Check', 'max_attachments': 'Int', 'track_changes': 'Check', 'track_views': 'Check', 'allow_auto_repeat': 'Check', 'allow_import': 'Check', 'show_title_field_in_link': 'Check', 'send_me_a_copy': 'Check', 'send_read_receipt': 'Check', 'attach_document_print': 'Check', 'file_autoname': 'Data', 'autoname': 'Data' } docfield_properties = { 'idx': 'Int', 'label': 'Data', 'fieldtype': 'Select', 'options': 'Text', 'fetch_from': 'Small Text', 'fetch_if_empty': 'Check', 'permlevel': 'Int', 'width': 'Data', 'print_width': 'Data', 'reqd': 'Check', 'unique': 'Check', 'ignore_user_permissions': 'Check', 'in_list_view': 'Check', 'in_standard_filter': 'Check', 'in_global_search': 'Check', 'bold': 'Check', 'hidden': 'Check', 'collapsible': 'Check', 'collapsible_depends_on': 'Data', 'print_hide': 'Check', 'print_hide_if_no_value': 'Check', 'report_hide': 'Check', 'allow_on_submit': 'Check', 'translatable': 'Check', 'mandatory_depends_on': 'Data', 'read_only_depends_on': 'Data', 'depends_on': 'Data', 'description': 'Text', 'default': 'Text', 'precision': 'Select', 'read_only': 'Check', 'length': 'Int', 'columns': 'Int', 'remember_last_selected_value': 'Check', 'allow_bulk_edit': 'Check', 'auto_repeat': 'Link', 'allow_in_quick_entry': 'Check' } allowed_fieldtype_change = (('Currency', 'Float', 'Percent'), ('Small Text', 'Data'), ('Text', 'Data'), ('Text', 'Text Editor', 'Text Editor Alt', 'Code', 'Signature', 'HTML Editor'), ('Data', 'Select'), ('Text', 'Small Text'), ('Text', 'Data', 'Barcode'), ('Code', 'Geolocation'), ('Table', 'Table MultiSelect')) allowed_fieldtype_for_options_change = ('Read Only', 'HTML', 'Select', 'Data') class CustomizeForm(Document): def on_update(self): frappe.db.sql("delete from tabSingles where doctype='Customize Form'") frappe.db.sql("delete from `tabCustomize Form Field`") def fetch_to_customize(self): self.clear_existing_doc() if not self.doc_type: return meta = frappe.get_meta(self.doc_type) if self.doc_type in core_doctypes_list: return frappe.msgprint(_("Core DocTypes cannot be customized.")) if meta.issingle: return frappe.msgprint(_("Single DocTypes cannot be customized.")) if meta.custom: return frappe.msgprint(_("Only standard DocTypes are allowed to be customized from Customize Form.")) # doctype properties for property in doctype_properties: self.set(property, meta.get(property)) for d in meta.get("fields"): new_d = {"fieldname": d.fieldname, "is_custom_field": d.get("is_custom_field"), "name": d.name} for property in docfield_properties: new_d[property] = d.get(property) self.append("fields", new_d) # load custom translation translation = self.get_name_translation() self.label = translation.target_name if translation else '' #If allow_auto_repeat is set, add auto_repeat custom field. if self.allow_auto_repeat: if not frappe.db.exists('Custom Field', {'fieldname': 'auto_repeat', 'dt': self.doc_type}): insert_after = self.fields[len(self.fields) - 1].fieldname df = dict(fieldname='auto_repeat', label='Auto Repeat', fieldtype='Link', options='Auto Repeat', insert_after=insert_after, read_only=1, no_copy=1, print_hide=1) create_custom_field(self.doc_type, df) # NOTE doc is sent to clientside by run_method def get_name_translation(self): '''Get translation object if exists of current doctype name in the default language''' return frappe.get_value('Translation', {'source_name': self.doc_type, 'language': frappe.local.lang or 'en'}, ['name', 'target_name'], as_dict=True) def set_name_translation(self): '''Create, update custom translation for this doctype''' current = self.get_name_translation() if current: if self.label and current.target_name != self.label: frappe.db.set_value('Translation', current.name, 'target_name', self.label) frappe.translate.clear_cache() else: # clear translation frappe.delete_doc('Translation', current.name) else: if self.label: frappe.get_doc(dict(doctype='Translation', source_name=self.doc_type, target_name=self.label, language_code=frappe.local.lang or 'en')).insert() def clear_existing_doc(self): doc_type = self.doc_type for fieldname in self.meta.get_valid_columns(): self.set(fieldname, None) for df in self.meta.get_table_fields(): self.set(df.fieldname, []) self.doc_type = doc_type self.name = "Customize Form" def save_customization(self): if not self.doc_type: return self.flags.update_db = False self.flags.rebuild_doctype_for_global_search = False self.set_property_setters() self.update_custom_fields() self.set_name_translation() validate_fields_for_doctype(self.doc_type) if self.flags.update_db: frappe.db.updatedb(self.doc_type) if not hasattr(self, 'hide_success') or not self.hide_success: frappe.msgprint(_("{0} updated").format(_(self.doc_type)), alert=True) frappe.clear_cache(doctype=self.doc_type) self.fetch_to_customize() if self.flags.rebuild_doctype_for_global_search: frappe.enqueue('frappe.utils.global_search.rebuild_for_doctype', now=True, doctype=self.doc_type) def set_property_setters(self): meta = frappe.get_meta(self.doc_type) # doctype property setters for property in doctype_properties: if self.get(property) != meta.get(property): self.make_property_setter(property=property, value=self.get(property), property_type=doctype_properties[property]) for df in self.get("fields"): meta_df = meta.get("fields", {"fieldname": df.fieldname}) if not meta_df or meta_df[0].get("is_custom_field"): continue for property in docfield_properties: if property != "idx" and (df.get(property) or '') != (meta_df[0].get(property) or ''): if property == "fieldtype": self.validate_fieldtype_change(df, meta_df[0].get(property), df.get(property)) elif property == "allow_on_submit" and df.get(property): if not frappe.db.get_value("DocField", {"parent": self.doc_type, "fieldname": df.fieldname}, "allow_on_submit"): frappe.msgprint(_("Row {0}: Not allowed to enable Allow on Submit for standard fields")\ .format(df.idx)) continue elif property == "reqd" and \ ((frappe.db.get_value("DocField", {"parent":self.doc_type,"fieldname":df.fieldname}, "reqd") == 1) \ and (df.get(property) == 0)): frappe.msgprint(_("Row {0}: Not allowed to disable Mandatory for standard fields")\ .format(df.idx)) continue elif property == "in_list_view" and df.get(property) \ and df.fieldtype!="Attach Image" and df.fieldtype in no_value_fields: frappe.msgprint(_("'In List View' not allowed for type {0} in row {1}") .format(df.fieldtype, df.idx)) continue elif property == "precision" and cint(df.get("precision")) > 6 \ and cint(df.get("precision")) > cint(meta_df[0].get("precision")): self.flags.update_db = True elif property == "unique": self.flags.update_db = True elif (property == "read_only" and cint(df.get("read_only"))==0 and frappe.db.get_value("DocField", {"parent": self.doc_type, "fieldname": df.fieldname}, "read_only")==1): # if docfield has read_only checked and user is trying to make it editable, don't allow it frappe.msgprint(_("You cannot unset 'Read Only' for field {0}").format(df.label)) continue elif property == "options" and df.get("fieldtype") not in allowed_fieldtype_for_options_change: frappe.msgprint(_("You can't set 'Options' for field {0}").format(df.label)) continue elif property == 'translatable' and not supports_translation(df.get('fieldtype')): frappe.msgprint(_("You can't set 'Translatable' for field {0}").format(df.label)) continue elif (property == 'in_global_search' and df.in_global_search != meta_df[0].get("in_global_search")): self.flags.rebuild_doctype_for_global_search = True self.make_property_setter(property=property, value=df.get(property), property_type=docfield_properties[property], fieldname=df.fieldname) def update_custom_fields(self): for i, df in enumerate(self.get("fields")): if df.get("is_custom_field"): if not frappe.db.exists('Custom Field', {'dt': self.doc_type, 'fieldname': df.fieldname}): self.add_custom_field(df, i) self.flags.update_db = True else: self.update_in_custom_field(df, i) self.delete_custom_fields() def add_custom_field(self, df, i): d = frappe.new_doc("Custom Field") d.dt = self.doc_type for property in docfield_properties: d.set(property, df.get(property)) if i!=0: d.insert_after = self.fields[i-1].fieldname d.idx = i d.insert() df.fieldname = d.fieldname def update_in_custom_field(self, df, i): meta = frappe.get_meta(self.doc_type) meta_df = meta.get("fields", {"fieldname": df.fieldname}) if not (meta_df and meta_df[0].get("is_custom_field")): # not a custom field return custom_field = frappe.get_doc("Custom Field", meta_df[0].name) changed = False for property in docfield_properties: if df.get(property) != custom_field.get(property): if property == "fieldtype": self.validate_fieldtype_change(df, meta_df[0].get(property), df.get(property)) custom_field.set(property, df.get(property)) changed = True # check and update `insert_after` property if i!=0: insert_after = self.fields[i-1].fieldname if custom_field.insert_after != insert_after: custom_field.insert_after = insert_after custom_field.idx = i changed = True if changed: custom_field.db_update() self.flags.update_db = True #custom_field.save() def delete_custom_fields(self): meta = frappe.get_meta(self.doc_type) fields_to_remove = (set([df.fieldname for df in meta.get("fields")]) - set(df.fieldname for df in self.get("fields"))) for fieldname in fields_to_remove: df = meta.get("fields", {"fieldname": fieldname})[0] if df.get("is_custom_field"): frappe.delete_doc("Custom Field", df.name) def make_property_setter(self, property, value, property_type, fieldname=None): self.delete_existing_property_setter(property, fieldname) property_value = self.get_existing_property_value(property, fieldname) if property_value==value: return # create a new property setter # ignore validation becuase it will be done at end frappe.make_property_setter({ "doctype": self.doc_type, "doctype_or_field": "DocField" if fieldname else "DocType", "fieldname": fieldname, "property": property, "value": value, "property_type": property_type }, ignore_validate=True) def delete_existing_property_setter(self, property, fieldname=None): # first delete existing property setter existing_property_setter = frappe.db.get_value("Property Setter", {"doc_type": self.doc_type, "property": property, "field_name['']": fieldname or ''}) if existing_property_setter: frappe.db.sql("delete from `tabProperty Setter` where name=%s", existing_property_setter) def get_existing_property_value(self, property_name, fieldname=None): # check if there is any need to make property setter! if fieldname: property_value = frappe.db.get_value("DocField", {"parent": self.doc_type, "fieldname": fieldname}, property_name) else: try: property_value = frappe.db.get_value("DocType", self.doc_type, property_name) except Exception as e: if frappe.db.is_column_missing(e): property_value = None else: raise return property_value def validate_fieldtype_change(self, df, old_value, new_value): allowed = False self.check_length_for_fieldtypes = [] for allowed_changes in allowed_fieldtype_change: if (old_value in allowed_changes and new_value in allowed_changes): allowed = True old_value_length = cint(frappe.db.type_map.get(old_value)[1]) new_value_length = cint(frappe.db.type_map.get(new_value)[1]) # Ignore fieldtype check validation if new field type has unspecified maxlength # Changes like DATA to TEXT, where new_value_lenth equals 0 will not be validated if new_value_length and (old_value_length > new_value_length): self.check_length_for_fieldtypes.append({'df': df, 'old_value': old_value}) self.validate_fieldtype_length() else: self.flags.update_db = True break if not allowed: frappe.throw(_("Fieldtype cannot be changed from {0} to {1} in row {2}").format(old_value, new_value, df.idx)) def validate_fieldtype_length(self): for field in self.check_length_for_fieldtypes: df = field.get('df') max_length = cint(frappe.db.type_map.get(df.fieldtype)[1]) fieldname = df.fieldname docs = frappe.db.sql(''' SELECT name, {fieldname}, LENGTH({fieldname}) AS len FROM `tab{doctype}` WHERE LENGTH({fieldname}) > {max_length} '''.format( fieldname=fieldname, doctype=self.doc_type, max_length=max_length ), as_dict=True) links = [] label = df.label for doc in docs: links.append(frappe.utils.get_link_to_form(self.doc_type, doc.name)) links_str = ', '.join(links) if docs: frappe.throw(_('Value for field {0} is too long in {1}. Length should be lesser than {2} characters') .format( frappe.bold(label), links_str, frappe.bold(max_length) ), title=_('Data Too Long'), is_minimizable=len(docs) > 1) self.flags.update_db = True def reset_to_defaults(self): if not self.doc_type: return frappe.db.sql("""DELETE FROM `tabProperty Setter` WHERE doc_type=%s and `field_name`!='naming_series' and `property`!='options'""", self.doc_type) frappe.clear_cache(doctype=self.doc_type) self.fetch_to_customize()
the-stack_0_22335
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Text problems mnist.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil from tensor2tensor.data_generators import problem as problem_lib from tensor2tensor.data_generators import text_encoder from tensor2tensor.data_generators import text_problems import tensorflow as tf class Test1(text_problems.Text2textTmpdir): @property def name(self): # name is normally provided by register_problem, but this problem is not # registered, so we provide one here to avoid inheriting the parent class's # name. return "test1" @property def approx_vocab_size(self): return 3 @property def dataset_splits(self): return [{ "split": problem_lib.DatasetSplit.TRAIN, "shards": 1, }, { "split": problem_lib.DatasetSplit.EVAL, "shards": 1, }] class TextProblems(tf.test.TestCase): @classmethod def setUpClass(cls): cls.tmp_dir = tf.test.get_temp_dir() shutil.rmtree(cls.tmp_dir) os.mkdir(cls.tmp_dir) cls.inputs = [ "Hello world", "Goodbye world", ] cls.targets = [ "Hola mundo", "Adios mundo", ] cls.labels = [2, 3] cls.labels_strs = ["c", "d"] cls.inputs_file = os.path.join(cls.tmp_dir, "inputs.train.txt") cls.targets_file = os.path.join(cls.tmp_dir, "targets.train.txt") cls.labels_file = os.path.join(cls.tmp_dir, "labels.train.txt") cls.labels_str_file = os.path.join(cls.tmp_dir, "labels_str.train.txt") data = [(cls.inputs, cls.inputs_file), (cls.targets, cls.targets_file), (cls.labels, cls.labels_file), (cls.labels_strs, cls.labels_str_file)] for lines, filename in data: with tf.gfile.Open(filename, "w") as f: for line in lines: f.write(str(line)) f.write("\n") cls.tabbed_file = os.path.join(cls.tmp_dir, "tabbed.train.txt") with tf.gfile.Open(cls.tabbed_file, "w") as f: for inputs, targets in zip(cls.inputs, cls.targets): f.write("%s\t%s\n" % (inputs, targets)) tf.gfile.Copy(cls.inputs_file, os.path.join(cls.tmp_dir, "inputs.eval.txt")) tf.gfile.Copy(cls.targets_file, os.path.join(cls.tmp_dir, "targets.eval.txt")) def testTxtLineIterator(self): lines = [line for line in text_problems.txt_line_iterator(self.inputs_file)] self.assertEqual(lines, self.inputs) def testText2TextTxtIterator(self): inputs = [] targets = [] for entry in text_problems.text2text_txt_iterator(self.inputs_file, self.targets_file): inputs.append(entry["inputs"]) targets.append(entry["targets"]) self.assertEqual(inputs, self.inputs) self.assertEqual(targets, self.targets) def testText2SelfTxtIterator(self): targets = [ entry["targets"] for entry in text_problems.text2self_txt_iterator(self.targets_file) ] self.assertEqual(targets, self.targets) def testText2ClassTxtIterator(self): inputs = [] labels = [] for entry in text_problems.text2class_txt_iterator(self.inputs_file, self.labels_file): inputs.append(entry["inputs"]) labels.append(entry["label"]) self.assertEqual(inputs, self.inputs) self.assertEqual(labels, self.labels) def testText2ClassTxtIteratorWithStrs(self): inputs = [] labels = [] for entry in text_problems.text2class_txt_iterator( self.inputs_file, self.labels_str_file, class_strs=["a", "b", "c", "d"]): inputs.append(entry["inputs"]) labels.append(entry["label"]) self.assertEqual(inputs, self.inputs) self.assertEqual(labels, self.labels) def testText2TextTxtTabIterator(self): inputs = [] targets = [] for entry in text_problems.text2text_txt_tab_iterator(self.tabbed_file): inputs.append(entry["inputs"]) targets.append(entry["targets"]) self.assertEqual(inputs, self.inputs) self.assertEqual(targets, self.targets) def testText2TextTmpDir(self): problem = Test1() problem.generate_data(self.tmp_dir, self.tmp_dir) vocab_file = os.path.join(self.tmp_dir, "vocab.test1.3.subwords") train_file = os.path.join(self.tmp_dir, "test1-train-00000-of-00001") eval_file = os.path.join(self.tmp_dir, "test1-dev-00000-of-00001") self.assertTrue(tf.gfile.Exists(vocab_file)) self.assertTrue(tf.gfile.Exists(train_file)) self.assertTrue(tf.gfile.Exists(eval_file)) dataset = problem.dataset(tf.estimator.ModeKeys.TRAIN, self.tmp_dir) features = dataset.make_one_shot_iterator().get_next() examples = [] exhausted = False with self.test_session() as sess: examples.append(sess.run(features)) examples.append(sess.run(features)) try: sess.run(features) except tf.errors.OutOfRangeError: exhausted = True self.assertTrue(exhausted) self.assertEqual(2, len(examples)) self.assertNotEqual( list(examples[0]["inputs"]), list(examples[1]["inputs"])) example = examples[0] encoder = text_encoder.SubwordTextEncoder(vocab_file) inputs_encoded = list(example["inputs"]) inputs_encoded.pop() # rm EOS self.assertTrue(encoder.decode(inputs_encoded) in self.inputs) targets_encoded = list(example["targets"]) targets_encoded.pop() # rm EOS self.assertTrue(encoder.decode(targets_encoded) in self.targets) if __name__ == "__main__": tf.test.main()
the-stack_0_22336
import sys # generator expression inname, outname = sys.argv[1:3] # (venv) nguyendangtuan@Nguyens-MacBook-Pro Chapter09 % python warning_generators.py sample_log.txt warning_log.txt def generator(): with open(inname) as infile: with open(outname, 'w') as outfile: warnings = (l.replace("WARNING", "") for l in infile if 'WARNING' in l) for line in warnings: outfile.write(line) generator() outname = "normal_" + outname def normal_loop(): with open(inname) as infile: with open(outname, 'w') as outfile: for line in infile: if "WARNING" in line: outfile.write(line.replace("\tWARNING", "")) normal_loop() class WarningFilter: def __init__(self, sequence): self.sequence = sequence def __iter__(self): return self def __next__(self): line = self.sequence.readline() while line and "WARNING" not in line: line = self.sequence.readline() if not line: raise StopIteration return line.replace("\tWARNING", "") outname = "oop_" + outname def oopReader(): with open(inname) as infile: with open(outname, 'w') as outfile: filter = WarningFilter(infile) for line in filter: outfile.write(line) oopReader() outname = "yield_" + outname def warning_filter(sequence): for line in sequence: if "WARNING" in line: yield line.replace("\tWARNING", "") print(dir(warning_filter)) def generator_yield(): with open(inname) as infile: with open(outname, "w") as outfile: filter = warning_filter(infile) for line in filter: outfile.write(line) generator_yield() outname = "yield_form_" + outname def warning_filter_yield_from(inname): with open(inname) as infile: yield from ( line.replace("\tWARNING", "") for line in infile if "WARNING" in line ) print(dir(warning_filter_yield_from)) def write_out_filter(): filter = warning_filter_yield_from(inname) with open(outname, "w") as outfile: for line in filter: outfile.write(line) write_out_filter() # # with open(inname) as infile: # with open(outname, "w") as outfile: # warnings = ( # l.replace("\tWARNING", "") for l in infile if "WARNING" in l # ) # for l in warnings: # outfile.write(l) # # # normal loop # with open(inname) as infile: # with open(outname, "w") as outfile: # for l in infile: # if "WARNING" in l: # outfile.write(l.replace("\tWARNING", "")) # # # # object-oriented # class WarningFilter: # def __init__(self, insequence): # self.insequence = insequence # # def __iter__(self): # return self # # def __next__(self): # l = self.insequence.readline() # while l and "WARNING" not in l: # l = self.insequence.readline() # if not l: # raise StopIteration # return l.replace("\tWARNING", "") # # # with open(inname) as infile: # with open(outname, "w") as outfile: # filter = WarningFilter(infile) # for l in filter: # outfile.write(l) # # # # Generator with yield # def warnings_filter(insequence): # for l in insequence: # if "WARNING" in l: # yield l.replace("\tWARNING", "") # # # with open(inname) as infile: # with open(outname, "w") as outfile: # filter = warnings_filter(infile) # for l in filter: # outfile.write(l) # # # # Generator with yield from # def warnings_filter(infilename): # with open(infilename) as infile: # yield from ( # l.replace("\tWARNING", "") for l in infile if "WARNING" in l # ) # # # filter = warnings_filter(inname) # with open(outname, "w") as outfile: # for l in filter: # outfile.write(l)
the-stack_0_22337
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class AutoScaleRunError(Model): """An error that occurred when executing or evaluating a pool autoscale formula. :param code: An identifier for the autoscale error. Codes are invariant and are intended to be consumed programmatically. :type code: str :param message: A message describing the autoscale error, intended to be suitable for display in a user interface. :type message: str :param values: A list of additional error details related to the autoscale error. :type values: list of :class:`NameValuePair <azure.batch.models.NameValuePair>` """ _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'values': {'key': 'values', 'type': '[NameValuePair]'}, } def __init__(self, code=None, message=None, values=None): self.code = code self.message = message self.values = values
the-stack_0_22340
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Delete node pool command.""" import argparse from googlecloudsdk.api_lib.container import util from googlecloudsdk.calliope import actions from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions from googlecloudsdk.core import log from googlecloudsdk.core import properties from googlecloudsdk.core.console import console_io from googlecloudsdk.third_party.apitools.base.py import exceptions as apitools_exceptions DETAILED_HELP = { 'DESCRIPTION': """\ *{command}* deletes a node pool from a Google Container Engine cluster. """, 'EXAMPLES': """\ To delete the "node-pool-1" node pool from the cluster "sample-cluster", run: $ {command} node-pool-1 --cluster=sample-cluster """, } class Delete(base.DeleteCommand): """Delete an existing node pool in a running cluster.""" @staticmethod def Args(parser): """Register flags for this command. Args: parser: An argparse.ArgumentParser-like object. It is mocked out in order to capture some information, but behaves like an ArgumentParser. """ # TODO(b/28639250): Support remote completion when the SDK supports it. parser.add_argument( 'name', metavar='NAME', help='The name of the node pool to delete.') parser.add_argument( '--timeout', type=int, default=1800, help=argparse.SUPPRESS) parser.add_argument( '--wait', action='store_true', default=True, help='Poll the operation for completion after issuing a delete ' 'request.') parser.add_argument( '--cluster', help='The cluster from which to delete the node pool.', action=actions.StoreProperty(properties.VALUES.container.cluster)) def Run(self, args): """This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later. """ adapter = self.context['api_adapter'] pool_ref = adapter.ParseNodePool(args.name) console_io.PromptContinue( message=('The following node pool will be deleted.\n' '[{name}] in cluster [{clusterId}] in zone [{zone}]') .format(name=pool_ref.nodePoolId, clusterId=pool_ref.clusterId, zone=adapter.Zone(pool_ref)), throw_if_unattended=True, cancel_on_no=True) try: # Make sure it exists (will raise appropriate error if not) adapter.GetNodePool(pool_ref) op_ref = adapter.DeleteNodePool(pool_ref) if args.wait: adapter.WaitForOperation( op_ref, 'Deleting node pool {0}'.format(pool_ref.nodePoolId), timeout_s=args.timeout) except apitools_exceptions.HttpError as error: raise exceptions.HttpException(util.GetError(error)) log.DeletedResource(pool_ref) return op_ref Delete.detailed_help = DETAILED_HELP
the-stack_0_22342
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None # 二叉树 # f(root) = f(root->left) + f(root->right) class Solution: def allPossibleFBT(self, N: int) -> List[TreeNode]: if N == 1: return [TreeNode(0)] res = [] for i in range(1,N,2): nLeft = i nRight = N -1 - i for left in self.allPossibleFBT(nLeft): for right in self.allPossibleFBT(nRight): root = TreeNode(0) root.left = left root.right = right res.append(root) return res
the-stack_0_22343
from xsd2tkform.core.annotation import Annotation from xsd2tkform.core.restriction import Restriction from xsd2tkform.core.list import List from xsd2tkform.core.sequence import Sequence from xsd2tkform.core.choice import Choice from xsd2tkform.core.element import Element def get_annotation(element): """Get annotations from a type definition element """ docs={} for child in element: if child.tag.endswith("annotation"): for gchild in child: if gchild.tag.endswith("documentation"): # find language for k in gchild.attrib: if k.endswith("lang"): docs[gchild.attrib[k]]=gchild.text.strip() return Annotation(docs=docs) def get_restriction(element): for child in element: if child.tag.endswith("restriction"): if len(child): enum=[e.attrib["value"] for e in child if e.tag.endswith("enumeration")] return Restriction(base=child.attrib["base"], enum=enum) else: return Restriction(base=child.attrib["base"]) return def get_list(element): item_list=None for child in element: if child.tag.endswith("list"): attr = child.attrib attr["item_type"]=attr.pop("itemType") item_list=List(**attr) return item_list def get_sequence(element): sequence = [] for child in element: if child.tag.endswith("sequence"): # children should be elements of choices for gchild in child: if gchild.tag.endswith("element"): sequence.append(Element.from_element(gchild)) elif gchild.tag.endswith("choice"): sequence.append(Choice.from_element(gchild)) else: pass return Sequence(sequence)
the-stack_0_22344
import numpy as np from numpy.testing import assert_allclose from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score import pytest from sklearn.ensemble._hist_gradient_boosting.binning import _BinMapper from sklearn.ensemble._hist_gradient_boosting.grower import TreeGrower from sklearn.ensemble._hist_gradient_boosting.predictor import TreePredictor from sklearn.ensemble._hist_gradient_boosting.common import ( G_H_DTYPE, PREDICTOR_RECORD_DTYPE, ALMOST_INF, X_BINNED_DTYPE, X_BITSET_INNER_DTYPE, X_DTYPE, ) from sklearn.ensemble._hist_gradient_boosting._bitset import ( set_bitset_memoryview, set_raw_bitset_from_binned_bitset, ) from sklearn.utils._openmp_helpers import _openmp_effective_n_threads n_threads = _openmp_effective_n_threads() @pytest.mark.parametrize("n_bins", [200, 256]) def test_regression_dataset(n_bins): X, y = make_regression( n_samples=500, n_features=10, n_informative=5, random_state=42 ) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) mapper = _BinMapper(n_bins=n_bins, random_state=42) X_train_binned = mapper.fit_transform(X_train) # Init gradients and hessians to that of least squares loss gradients = -y_train.astype(G_H_DTYPE) hessians = np.ones(1, dtype=G_H_DTYPE) min_samples_leaf = 10 max_leaf_nodes = 30 grower = TreeGrower( X_train_binned, gradients, hessians, min_samples_leaf=min_samples_leaf, max_leaf_nodes=max_leaf_nodes, n_bins=n_bins, n_bins_non_missing=mapper.n_bins_non_missing_, ) grower.grow() predictor = grower.make_predictor(binning_thresholds=mapper.bin_thresholds_) known_cat_bitsets = np.zeros((0, 8), dtype=X_BITSET_INNER_DTYPE) f_idx_map = np.zeros(0, dtype=np.uint32) y_pred_train = predictor.predict(X_train, known_cat_bitsets, f_idx_map, n_threads) assert r2_score(y_train, y_pred_train) > 0.82 y_pred_test = predictor.predict(X_test, known_cat_bitsets, f_idx_map, n_threads) assert r2_score(y_test, y_pred_test) > 0.67 @pytest.mark.parametrize( "num_threshold, expected_predictions", [ (-np.inf, [0, 1, 1, 1]), (10, [0, 0, 1, 1]), (20, [0, 0, 0, 1]), (ALMOST_INF, [0, 0, 0, 1]), (np.inf, [0, 0, 0, 0]), ], ) def test_infinite_values_and_thresholds(num_threshold, expected_predictions): # Make sure infinite values and infinite thresholds are handled properly. # In particular, if a value is +inf and the threshold is ALMOST_INF the # sample should go to the right child. If the threshold is inf (split on # nan), the +inf sample will go to the left child. X = np.array([-np.inf, 10, 20, np.inf]).reshape(-1, 1) nodes = np.zeros(3, dtype=PREDICTOR_RECORD_DTYPE) # We just construct a simple tree with 1 root and 2 children # parent node nodes[0]["left"] = 1 nodes[0]["right"] = 2 nodes[0]["feature_idx"] = 0 nodes[0]["num_threshold"] = num_threshold # left child nodes[1]["is_leaf"] = True nodes[1]["value"] = 0 # right child nodes[2]["is_leaf"] = True nodes[2]["value"] = 1 binned_cat_bitsets = np.zeros((0, 8), dtype=X_BITSET_INNER_DTYPE) raw_categorical_bitsets = np.zeros((0, 8), dtype=X_BITSET_INNER_DTYPE) known_cat_bitset = np.zeros((0, 8), dtype=X_BITSET_INNER_DTYPE) f_idx_map = np.zeros(0, dtype=np.uint32) predictor = TreePredictor(nodes, binned_cat_bitsets, raw_categorical_bitsets) predictions = predictor.predict(X, known_cat_bitset, f_idx_map, n_threads) assert np.all(predictions == expected_predictions) @pytest.mark.parametrize( "bins_go_left, expected_predictions", [ ([0, 3, 4, 6], [1, 0, 0, 1, 1, 0]), ([0, 1, 2, 6], [1, 1, 1, 0, 0, 0]), ([3, 5, 6], [0, 0, 0, 1, 0, 1]), ], ) def test_categorical_predictor(bins_go_left, expected_predictions): # Test predictor outputs are correct with categorical features X_binned = np.array([[0, 1, 2, 3, 4, 5]], dtype=X_BINNED_DTYPE).T categories = np.array([2, 5, 6, 8, 10, 15], dtype=X_DTYPE) bins_go_left = np.array(bins_go_left, dtype=X_BINNED_DTYPE) # We just construct a simple tree with 1 root and 2 children # parent node nodes = np.zeros(3, dtype=PREDICTOR_RECORD_DTYPE) nodes[0]["left"] = 1 nodes[0]["right"] = 2 nodes[0]["feature_idx"] = 0 nodes[0]["is_categorical"] = True nodes[0]["missing_go_to_left"] = True # left child nodes[1]["is_leaf"] = True nodes[1]["value"] = 1 # right child nodes[2]["is_leaf"] = True nodes[2]["value"] = 0 binned_cat_bitsets = np.zeros((1, 8), dtype=X_BITSET_INNER_DTYPE) raw_categorical_bitsets = np.zeros((1, 8), dtype=X_BITSET_INNER_DTYPE) for go_left in bins_go_left: set_bitset_memoryview(binned_cat_bitsets[0], go_left) set_raw_bitset_from_binned_bitset( raw_categorical_bitsets[0], binned_cat_bitsets[0], categories ) predictor = TreePredictor(nodes, binned_cat_bitsets, raw_categorical_bitsets) # Check binned data gives correct predictions prediction_binned = predictor.predict_binned( X_binned, missing_values_bin_idx=6, n_threads=n_threads ) assert_allclose(prediction_binned, expected_predictions) # manually construct bitset known_cat_bitsets = np.zeros((1, 8), dtype=np.uint32) known_cat_bitsets[0, 0] = np.sum(2 ** categories, dtype=np.uint32) f_idx_map = np.array([0], dtype=np.uint32) # Check with un-binned data predictions = predictor.predict( categories.reshape(-1, 1), known_cat_bitsets, f_idx_map, n_threads ) assert_allclose(predictions, expected_predictions) # Check missing goes left because missing_values_bin_idx=6 X_binned_missing = np.array([[6]], dtype=X_BINNED_DTYPE).T predictions = predictor.predict_binned( X_binned_missing, missing_values_bin_idx=6, n_threads=n_threads ) assert_allclose(predictions, [1]) # missing and unknown go left predictions = predictor.predict( np.array([[np.nan, 17]], dtype=X_DTYPE).T, known_cat_bitsets, f_idx_map, n_threads, ) assert_allclose(predictions, [1, 1])
the-stack_0_22346
# encoding: utf-8 """ @author: liaoxingyu @contact: [email protected] """ import torch import pdb import cv2 import torchvision.transforms as T import os.path as osp from PIL import Image from torch.utils.data import Dataset import random import numpy as np from ..transforms import RandomErasing #RandomErasing2 from .import_Market1501Attribute import import_Market1501Attribute_binary from .import_DukeMTMCAttribute import import_DukeMTMCAttribute_binary def read_image(img_path): """Keep reading image until succeed. This can avoid IOError incurred by heavy IO process.""" got_img = False if not osp.exists(img_path): raise IOError("{} does not exist".format(img_path)) while not got_img: try: img = Image.open(img_path).convert('RGB') got_img = True except IOError: print("IOError incurred when reading '{}'. Will redo. Don't worry. Just chill.".format(img_path)) pass return img class MTImageDataset(Dataset): """Image Person ReID Dataset""" def __init__(self, dataset, transform=None, cfg=None): try: self.dataset, self.label2pid = dataset except: self.dataset = dataset self.dataset_name = cfg.DATASETS.NAMES if cfg.DATASETS.NAMES == 'market1501': train_attr, test_attr, self.attr_label = import_Market1501Attribute_binary(cfg.DATASETS.ROOT_DIR) elif cfg.DATASETS.NAMES == 'dukemtmc': train_attr, test_attr, self.attr_label = import_DukeMTMCAttribute_binary(cfg.DATASETS.ROOT_DIR) elif 'cuhk03' in cfg.DATASETS.NAMES: train_attr = [] self.attr_label = ['not used'] else: raise ValueError(f'dataset not support: {cfg.DATASETS.NAMES}') self.train_attr = train_attr self.transform = transform self.img_size = cfg.INPUT.SIZE_TRAIN self.resize = T.Resize(self.img_size) self.flip = T.RandomHorizontalFlip(p=1.0) self.crop_loc_generator = T.RandomCrop(self.img_size) self.pad = T.Pad(cfg.INPUT.PADDING) self.erase = RandomErasing(probability=cfg.INPUT.RE_PROB, mean=cfg.INPUT.PIXEL_MEAN) self.flip_prob = cfg.INPUT.PROB if self.img_size[0] == 224: self.seg_height = 28 self.seg_weight = 28 elif self.img_size[0] == 256: self.seg_height = 16 self.seg_weight = 32 elif self.img_size[0] == 384: if self.img_size[1] == 128: self.seg_height = 16 elif self.img_size[1] == 192: self.seg_height = 24 self.seg_weight = 48 def __len__(self): return len(self.dataset) def attr_labels(self): return self.attr_label def num_attr_label(self): return len(self.attr_label) def __getitem__(self, index): img_path, pid, camid = self.dataset[index] #if self.dataset_name == 'market1501': temp_root, temp_name = img_path.split('bounding') seg_path = temp_root + 'segmentation/' + 'bounding'+ temp_name + '.npy' #else: # temp_root, temp_name = img_path.split('cuhk03_') # seg_path = temp_root + 'segmentation/' + 'cuhk03_'+ temp_name + '.npy' img = read_image(img_path) seg = np.load(seg_path) seg = Image.fromarray(seg.astype('uint8')).convert('L') try: attr = np.asarray(self.train_attr[f'{self.label2pid[pid]:04}'], dtype=np.float32) except: attr = [0] #np.array(self.train_attr) if self.transform is not None: # resize img = self.resize(img) seg = self.resize(seg) # random horizontal flip if(random.random()>self.flip_prob): img = self.flip(img) seg = self.flip(seg) # pad img = self.pad(img) seg = self.pad(seg) # random crop crop_loc = self.crop_loc_generator.get_params(img, self.img_size) img = T.functional.crop(img, crop_loc[0], crop_loc[1], crop_loc[2], crop_loc[3]) seg = T.functional.crop(seg, crop_loc[0], crop_loc[1], crop_loc[2], crop_loc[3]) # visualization #img.save('/mnt/lustre/liuyuan1/cvpr20/network/MT-Net/data_quality/img/img{}.jpg'.format(index)) #seg.save('/mnt/lustre/liuyuan1/cvpr20/network/MT-Net/data_quality/seg/seg{}.jpg'.format(index)) # normalize and erase, only for img, not for seg img = self.transform(img) img = self.erase(img) #img, seg = self.erase(img, np.array(seg)) #temp = Image.fromarray(seg) #temp.save('/mnt/lustre/liuyuan1/cvpr20/network/MT-Net/data_quality/seg/seg_erase{}.jpg'.format(index)) seg = np.array(seg) seg = torch.from_numpy(cv2.resize( seg, (self.seg_height, self.seg_weight), cv2.INTER_NEAREST)).long() return img, pid, seg, attr, camid, img_path
the-stack_0_22347
"""Optimization utilities.""" import inspect import tensorflow as tf import tensorflow_addons as tfa from tensorflow_addons.optimizers.weight_decay_optimizers import DecoupledWeightDecayExtension def get_optimizer_class(name): """Returns the optimizer class. Args: name: The optimizer name. Returns: A class extending ``tf.keras.optimizers.Optimizer``. Raises: ValueError: if :obj:`name` can not be resolved to an optimizer class. """ optimizer_class = None if optimizer_class is None: optimizer_class = getattr(tf.keras.optimizers, name, None) if optimizer_class is None: optimizer_class = getattr(tfa.optimizers, name, None) if optimizer_class is None: raise ValueError("Unknown optimizer class: %s" % name) return optimizer_class def make_optimizer(name, learning_rate, **kwargs): """Creates the optimizer. Args: name: The name of the optimizer class in ``tf.keras.optimizers`` or ``tfa.optimizers`` as a string. learning_rate: The learning rate or learning rate schedule to use. **kwargs: Additional optimizer arguments. If ``weight_decay`` is set, the optimizer will be extended with decoupled weight decay. Returns: A ``tf.keras.optimizers.Optimizer`` instance. Raises: ValueError: if :obj:`name` can not be resolved to an optimizer class. """ optimizer_class = get_optimizer_class(name) if "weight_decay" in kwargs: if DecoupledWeightDecayExtension not in inspect.getmro(optimizer_class): optimizer_class = tfa.optimizers.extend_with_decoupled_weight_decay(optimizer_class) optimizer = optimizer_class(learning_rate=learning_rate, **kwargs) return optimizer class GradientAccumulator(object): """Distribution strategies-aware gradient accumulation utility.""" def __init__(self): """Initializes the accumulator.""" self._gradients = [] self._accum_steps = tf.Variable( initial_value=0, dtype=tf.int64, trainable=False, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA) @property def step(self): """Number of accumulated steps.""" return self._accum_steps.value() @property def gradients(self): """The accumulated gradients.""" return list(gradient.value() for gradient in self._get_replica_gradients()) def __call__(self, gradients): """Accumulates :obj:`gradients`.""" if not self._gradients: self._gradients.extend([ tf.Variable(tf.zeros_like(gradient), trainable=False) for gradient in gradients]) if len(gradients) != len(self._gradients): raise ValueError("Expected %s gradients, but got %d" % ( len(self._gradients), len(gradients))) for accum_gradient, gradient in zip(self._get_replica_gradients(), gradients): accum_gradient.assign_add(gradient) self._accum_steps.assign_add(1) def reset(self): """Resets the accumulated gradients.""" if self._gradients: self._accum_steps.assign(0) for gradient in self._get_replica_gradients(): gradient.assign(tf.zeros_like(gradient)) def _get_replica_gradients(self): if tf.distribute.has_strategy(): # In a replica context, we want to accumulate gradients on each replica # without synchronization, so we directly assign the value of the # current replica. replica_context = tf.distribute.get_replica_context() if replica_context is None: return self._gradients return ( gradient.device_map.select_for_current_replica(gradient.values, replica_context) for gradient in self._gradients) else: return self._gradients
the-stack_0_22349
import hashlib from math import ceil __author__ = 'Iurii Sergiichuk' ''' The ANSI X9.63 key derivation function We assume that we use SHA-512 hash function ''' HASH_LEN = 512 MAX_INPUT = HASH_LEN * (2 << 32 - 1) class SharedInfo(object): def __init__(self, algorithm_id, counter=0, entityAinfo=None, entityBinfo=None, suppPrivInfo=None, suppPubInfo=None): """ :arg algorithm_id: unique identifier of used hash algorithm :arg counter: counter of iteration :type algorithm_id: int :type counter: int :type entityAinfo: long :type entityBinfo: long :type suppPrivInfo: long :type suppPubInfo: long :rtype : SharedInfo """ self.algorithm_id = algorithm_id self.counter = counter self.entityAinfo = entityAinfo self.entityBinfo = entityBinfo self.suppPrivInfo = suppPrivInfo self.suppPubInfo = suppPubInfo def __str__(self): result = str(self.algorithm_id) + str(self.counter) if self.entityAinfo is not None: result += bin(self.entityAinfo)[2:] if self.entityBinfo is not None: result += bin(self.entityBinfo)[2:] if self.suppPrivInfo is not None: result += bin(self.suppPrivInfo)[2:] if self.suppPubInfo is not None: result += bin(self.suppPubInfo)[2:] return result def is_whole(number): ''' Check whether given number is whole or not :param number: number to check :type number: number :return: true, if given number is whole :rtype: bool ''' if number % 1 == 0: return True return False def derivate_key(Z, keydatalen, shared_info): """ Process key derivation :arg Z: shared secret as long number :arg keydatalen: integer that point ZZ bit length :arg shared_info: possible additional information :type Z: long :type keydatalen: int :type SharedInfo: SharedInfo :return: derivated key in bit-string format :rtype : str """ if keydatalen > MAX_INPUT: raise ValueError("Keydatalen should be less than HASH_LEN*(2^32-1), but was:" + str(keydatalen)) shared_info.counter = 0x00000001 hash_parts = [] for i in xrange(int(ceil(keydatalen * 1.0 / HASH_LEN))): value_to_hash = bin(Z)[2:] value_to_hash += str(shared_info) h = hashlib.sha512() h.update(value_to_hash) hex_digest = h.hexdigest() long_digest = long(hex_digest, base=16) h_i = bin(long_digest)[2:] hash_parts.append(h_i) shared_info.counter += 1 r = '' for i in xrange(len(hash_parts) - 1): r += hash_parts[i] h_hash = hash_parts[len(hash_parts) - 1] if not is_whole(keydatalen * 1.0 / HASH_LEN): h_hash = h_hash[:keydatalen - HASH_LEN * (len(hash_parts) - 1)] r += h_hash return r
the-stack_0_22350
#%reload_ext autoreload #%autoreload 2 from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer import numpy as np from sklearn.cluster import SpectralClustering from sklearn.cluster import KMeans from sklearn import metrics import nmslib dataset = fetch_20newsgroups(subset='all', shuffle=True, download_if_missing=True) np.random.seed(123) texts = dataset.data # Extract text target = dataset.target # Extract target #texts[0:10] #target[0:10] vectorizer = TfidfVectorizer(stop_words='english', max_df = 0.3) X = vectorizer.fit_transform(texts) index = nmslib.init(method='hnsw', space='cosinesimil_sparse', data_type=nmslib.DataType.SPARSE_VECTOR) index.addDataPointBatch(X) index_time_params = {'post':2} index.createIndex(index_time_params, print_progress=True) nn = 1000 neighbors = index.knnQueryBatch(X, k=nn, num_threads=4) col = np.array([i for n in neighbors for i in n[0].tolist()]) #row = np.repeat(np.arange(0, len(neighbors)), nn) row = np.repeat(np.arange(0, len(neighbors)), np.array([len(n[0]) for n in neighbors])) #data = np.array([1]*len(row)) data = np.array([i for n in neighbors for i in n[1].tolist()]) from scipy.sparse import csc_matrix connectivity = csc_matrix((data, (row, col)), shape = (X.shape[0], X.shape[0])) #affinity_matrix = 0.5 * (connectivity + connectivity.T) from scipy.sparse.csgraph import laplacian as csgraph_laplacian ##### Versuch, alle eigenvalues zu bekommen ######################### from sklearn.utils import check_array from sklearn.utils import check_random_state from sklearn.utils.fixes import lobpcg from sklearn.manifold._spectral_embedding import _set_diag from scipy import sparse from pyamg import smoothed_aggregation_solver import matplotlib.pyplot as plt plt.grid() norm_laplacian = True n_components = laplacian.shape[0] random_state = check_random_state(1234) laplacian, dd = csgraph_laplacian(connectivity, normed=norm_laplacian, return_diag=True) laplacian = check_array(laplacian, dtype=np.float64, accept_sparse=True) laplacian = _set_diag(laplacian, 1, norm_laplacian) diag_shift = 1e-5 * sparse.eye(laplacian.shape[0]) laplacian += diag_shift ml = smoothed_aggregation_solver(check_array(laplacian, 'csr')) laplacian -= diag_shift M = ml.aspreconditioner() X = random_state.rand(laplacian.shape[0], n_components + 1) X[:, 0] = dd.ravel() eigs, diffusion_map = lobpcg(laplacian, X, M=M, tol=1.e-5, largest=False) plt.scatter(np.arange(len(eigs)), eigs) plt.grid() plt.show() # funktioniert ##################################################################### ## #solution = SpectralClustering(n_clusters=20, assign_labels='kmeans', \ # affinity='precomputed', n_neighbors=20).fit(affinity_matrix) solution = SpectralClustering(n_clusters = 20, n_components = 21, affinity = 'precomputed', gamma=0.7, eigen_solver='amg').fit(connectivity) metrics.adjusted_rand_score(solution.labels_, target) #laplacian, dd = csgraph_laplacian(affinity_matrix, normed = True, return_diag=True) from sklearn.manifold import spectral_embedding # this step doesn't help anything: maps = spectral_embedding(connectivity, n_components=21, eigen_solver='amg', drop_first=False) solutionKMeans = KMeans(n_clusters=20, init='k-means++',\ max_iter= 100).fit(maps) metrics.adjusted_rand_score(solutionKMeans.labels_, target)
the-stack_0_22351
import os import cv2 import torch import numpy as np import scipy.io as sio import torch.utils.data as tud from opts import Opts from datasets.penn import PENN_CROP from utils.visualizer import Visualizer from utils.eval import AverageMeter, get_preds, get_ref, original_coordinate, error, accuracy def main(): # Parse the options from parameters opts = Opts().parse() ## For PyTorch 0.4.1, cuda(device) opts.device = torch.device(f'cuda:{opts.gpu[0]}') print(opts.expID, opts.task,os.path.dirname(os.path.realpath(__file__))) # Load the trained model test if opts.loadModel != 'none': model_path = os.path.join(opts.root_dir, opts.loadModel) model = torch.load(model_path).cuda(device=opts.device) model.eval() else: print('ERROR: No model is loaded!') return # Read the input image, pass input to gpu if opts.img == 'None': val_dataset = PENN_CROP(opts, 'val') val_loader = tud.DataLoader( val_dataset, batch_size=1, shuffle=False, num_workers=int(opts.num_workers) ) opts.nJoints = val_dataset.nJoints opts.skeleton = val_dataset.skeleton for i, gt in enumerate(val_loader): # Test Visualizer, Input and get_preds if i == 0: input, label = gt['input'], gt['label'] gtpts, center, scale, proj = gt['gtpts'], gt['center'], gt['scale'], gt['proj'] input_var = input[:, 0, ].float().cuda(device=opts.device, non_blocking=True) # output = label output = model(input_var) # Test Loss, Err and Acc(PCK) Loss, Err, Acc = AverageMeter(), AverageMeter(), AverageMeter() ref = get_ref(opts.dataset, scale) for j in range(opts.preSeqLen): pred = get_preds(output[:, j, ].cpu().float()) pred = original_coordinate(pred, center[:, ], scale, opts.outputRes) err, ne = error(pred, gtpts[:, j, ], ref) acc, na = accuracy(pred, gtpts[:, j, ], ref) # assert ne == na, "ne must be the same as na" Err.update(err) Acc.update(acc) print(j, f"{Err.val:.6f}", Acc.val) print('all', f"{Err.avg:.6f}", Acc.avg) # Visualizer Object ## Initialize v = Visualizer(opts.nJoints, opts.skeleton, opts.outputRes) # ## Add input image # v.add_img(input[0,0,].transpose(2, 0).numpy().astype(np.uint8)) # ## Get the predicted joints # predJoints = get_preds(output[:, 0, ]) # # ## Add joints and skeleton to the figure # v.add_2d_joints_skeleton(predJoints, (0, 0, 255)) # Transform heatmap to show hm_img = output[0,0,].cpu().detach().numpy() v.add_hm(hm_img) ## Show image v.show_img(pause=True) break else: print('NOT ready for the raw input outside the dataset') img = cv2.imread(opts.img) input = torch.from_numpy(img.tramspose(2, 0, 1)).float()/256. input = input.view(1, input.size(0), input.size(1), input.size(2)) input_var = torch.autograd.variable(input).float().cuda(device=opts.device) output = model(input_var) predJoints = get_preds(output[-2].data.cpu().numpy())[0] * 4 if __name__ == '__main__': main()
the-stack_0_22352
import asyncio import os from typing import cast import ccxt.async_support as ccxt from ccxt.async_support.bybit import bybit # from magnet.config import APICredentialBinance from pydantic import BaseSettings class APICredentialBybit(BaseSettings): API_BYBIT_API_KEY: str API_BYBIT_API_SECRET: str class Config: env_file = ".env" env_file_encoding = "utf-8" credential = APICredentialBybit() # https://github.com/ccxt/ccxt exchange_id = "bybit" exchange_class = getattr(ccxt, exchange_id) def create_api() -> bybit: return exchange_class( { "apiKey": credential.API_BYBIT_API_KEY, "secret": credential.API_BYBIT_API_SECRET, "timeout": 30000, "enableRateLimit": True, } ) def ccxt_context(func): import functools @functools.wraps(func) async def wapped(): api: bybit = create_api() try: api.urls["api"] = api.urls["test"] await func(api) except: raise finally: await api.close() return wapped @ccxt_context async def main(api: bybit): import pprint # pprint.pprint(api.api) # https://note.com/kanawoinvestment/n/ne287ff725fd9 markets = await api.load_markets() # print(markets) printするとバグる、、、 pairs = [x for x in api.symbols if "BTC" in x] symbol = "BTC/USDT" symbol = "BTC/USDT" order_type = "limit" side = "buy" amount = 1 price = 50000 # order = await api.create_order( # symbol, order_type, side, amount, price, {"qty": amount} # ) # クロスマージン取引 # 口座残高の全てを証拠金としてロックし、更に最大レバレッジをかける恐ろしいモード。レバレッジは、数量で調整する # 分離マージン取引 # 注文分の証拠金のみをロックする。レバレッジを指定可能。 symbol_new = symbol.replace("/", "") # USDTシンボルはこちら # https://help.bybit.com/hc/en-us/articles/360039260574-What-is-a-reduce-only-order- # https://help.bybit.com/hc/en-us/articles/360039260534-What-is-a-close-on-trigger-Order- if True: order = await api.private_linear_post_order_create( { "side": "Buy", "symbol": symbol_new, "order_type": "Market", # Limit "qty": 1, # 1BitCoin # "price": 1 # 1USD "take_profit": 1, # 利確価格 1USD "stop_loss": 1, # 損切価格 1USD "time_in_force": "GoodTillCancel", "reduce_only": False, # オープンポジションがない場合、にリデュースのみの注​​文は拒否される。要は、クローズ注文として扱う場合に利用する。 "close_on_trigger": False, # システムが他のアクティブな注文を自動的にキャンセルして証拠金を解放 # "order_link_id ": "" # どの注文に関連するのか、カスタマイズでリンクしていい } ) print(order)
the-stack_0_22354
# Copyright 2011 Google Inc. All Rights Reserved. # __author__ = '[email protected] (Krystian Baclawski)' from django.conf import settings from django.conf.urls.defaults import patterns urlpatterns = patterns( 'dashboard', (r'^job-group$', 'JobGroupListPageHandler'), (r'^machine$', 'MachineListPageHandler'), (r'^job/(?P<job_id>\d+)/log$', 'LogPageHandler'), (r'^job/(?P<job_id>\d+)$', 'JobPageHandler'), ( r'^job-group/(?P<job_group_id>\d+)/files/(?P<path>.*)$', 'JobGroupFilesPageHandler'), (r'^job-group/(?P<job_group_id>\d+)$', 'JobGroupPageHandler'), (r'^$', 'DefaultPageHandler')) urlpatterns += patterns('', (r'^static/(?P<path>.*)$', 'django.views.static.serve', {'document_root': settings.MEDIA_ROOT}))
the-stack_0_22355
import os import sys if 'SUMO_HOME' in os.environ: tools = os.path.join(os.environ['SUMO_HOME'], 'tools') sys.path.append(tools) else: sys.exit("Please declare the environment variable 'SUMO_HOME'") import traci import sumolib net = sumolib.net.readNet('nets/charlottenburg/actuated.net.xml') import numpy as np from gym import spaces class TrafficSignal: """ This class represents a Traffic Signal of an intersection It is responsible for retrieving information and changing the traffic phase using Traci API """ def __init__(self, env, ts_id, delta_time, yellow_time, min_green, max_green, use_pressure=False): self.id = ts_id self.env = env self.delta_time = delta_time # self.yellow_time = yellow_time # patch: we use the yellow time from the net definition further below self.yellow_time = 0 self.red_time = 0 self.min_green = min_green self.max_green = max_green self.green_phase = 0 self.is_yellow = False self.has_red = False self.is_red = False self.is_green = False self.time_since_last_phase_change = 0 self.use_pressure = use_pressure self.next_action_time = 0 self.last_measure = 0.0 self.last_reward = None self.phases = traci.trafficlight.getCompleteRedYellowGreenDefinition(self.id)[0].phases self.different_phases = { 'g': 0, 'y': 0, 'r': 0 } self.num_green_phases = 0 self.green_phase_mapper = {} for index, phase in enumerate(self.phases): s = phase.state if 'G' in s or 'g' in s: self.num_green_phases += 1 self.different_phases['g'] += 1 self.green_phase_mapper[self.num_green_phases-1] = index elif 'r' in s and 'G' not in s and 'g' not in s and 'y' not in s: self.different_phases['r'] += 1 if phase.duration > 0: if self.red_time != 0: if self.red_time != phase.duration: raise Exception(f'{self.id} has different red times!') else: self.has_red = True self.red_time = phase.duration elif 'y' in s: self.different_phases['y'] += 1 if phase.duration > 0: if self.yellow_time != 0: if self.yellow_time != phase.duration: raise Exception(f'{self.id} has different yellow times!') else: self.yellow_time = phase.duration else: raise Exception(f'{self.id} has another state {s} within phases!') self.num_different_phases = 0 for diff_phase in self.different_phases: if self.different_phases[diff_phase] > 0: self.num_different_phases += 1 #self.num_green_phases = len(self.phases) // 2 # Number of green phases == number of phases (green+yellow) divided by 2 self.lanes = list(dict.fromkeys(traci.trafficlight.getControlledLanes(self.id))) # Remove duplicates and keep order if len(self.phases) > 3: # ignore traffic lights without intersection (e.g. just a light for pedestrians to cross) copy = [] alreadyVisited = [] offset = 0 for i, lane in enumerate(self.lanes): self.verify_and_append_incoming_lanes(copy, lane, i+offset, alreadyVisited) if set(self.lanes) != set(copy): print(f'intersection {self.id} had at least one incoming lane smaller than 23 meters, extended it with:') print(set(copy) - set(self.lanes)) self.lanes = copy self.out_lanes = [link[0][1] for link in traci.trafficlight.getControlledLinks(self.id) if link] self.out_lanes = list(set(self.out_lanes)) self.neighbors = {} """ Default observation space is a vector R^(#greenPhases + 2 * #lanes) s = [current phase one-hot encoded, observation metric] You can change this by modifing self.observation_space and the method _compute_observations() Action space is which green phase is going to be open for the next delta_time seconds """ self.observation_space = spaces.Box( low=np.zeros(self.num_green_phases + 2*len(self.lanes)), high=np.ones(self.num_green_phases + 2*len(self.lanes))) self.discrete_observation_space = spaces.Tuple(( spaces.Discrete(self.num_green_phases), # Green Phase spaces.Discrete(10) # Metric )) self.action_space = spaces.Discrete(self.num_green_phases) logic = traci.trafficlight.Logic("new-program"+self.id, 0, 0, phases=self.phases) traci.trafficlight.setCompleteRedYellowGreenDefinition(self.id, logic) def verify_and_append_incoming_lanes(self, lanes, lane, offset, alreadyVisited): if lane not in lanes and lane not in alreadyVisited: alreadyVisited.append(lane) lanes.insert(offset, lane) length = traci.lane.getLength(lane) if length < 23: incomingLanes = net.getLane(lane).getIncoming() for incomingLane in incomingLanes: offset += 1 self.verify_and_append_incoming_lanes(lanes, incomingLane.getID(), offset, alreadyVisited) def set_neighbors(self, traffic_signals): for ts in traffic_signals: lanes = list(dict.fromkeys(traci.trafficlight.getControlledLanes(ts))) sharedLanes = 0 for lane in lanes: if lane in self.out_lanes: sharedLanes += 1 if sharedLanes > 0: self.neighbors[ts] = traffic_signals[ts] self.discrete_observation_space = spaces.Tuple(( spaces.Discrete(self.num_green_phases), *(spaces.Discrete(10) for _ in range(1 + len(self.neighbors))) # own metric + metric of neighbor TS )) @property def phase(self): return traci.trafficlight.getPhase(self.id) @property def time_to_act(self): return self.next_action_time == self.env.sim_step def update(self): self.time_since_last_phase_change += 1 if self.is_yellow and self.time_since_last_phase_change == self.yellow_time: traci.trafficlight.setPhase(self.id, (self.phase + 1) % len(self.phases)) self.is_yellow = False self.time_since_last_phase_change = 0 s = traci.trafficlight.getRedYellowGreenState(self.id) if 'G' in s or 'g' in s: self.is_green = True self.is_red = False self.is_yellow = False elif 'r' in s and 'G' not in s and 'g' not in s and 'y' not in s: self.is_green = False self.is_red = True self.is_yellow = False elif 'y' in s: self.is_green = False self.is_red = False self.is_yellow = True if self.is_red and self.time_since_last_phase_change == self.red_time: traci.trafficlight.setPhase(self.id, (self.phase + 1) % len(self.phases)) self.is_red = False self.time_since_last_phase_change = 0 s = traci.trafficlight.getRedYellowGreenState(self.id) if 'G' in s or 'g' in s: self.is_green = True self.is_red = False self.is_yellow = False elif 'r' in s and 'G' not in s and 'g' not in s and 'y' not in s: self.is_green = False self.is_red = True self.is_yellow = False elif 'y' in s: self.is_green = False self.is_red = False self.is_yellow = True def set_next_phase(self, new_phase): """ Sets the next phase if the given new_phase is different than the current :param new_phase: (int) Number between [0..num_green_phases] """ if self.phase == self.green_phase_mapper[new_phase] or self.time_since_last_phase_change < self.min_green + self.yellow_time + self.red_time: traci.trafficlight.setPhase(self.id, self.phase) self.next_action_time = self.env.sim_step + self.delta_time else: traci.trafficlight.setPhase(self.id, (self.phase + 1) % len(self.phases)) self.next_action_time = self.env.sim_step + self.delta_time self.time_since_last_phase_change = 0 s = traci.trafficlight.getRedYellowGreenState(self.id) if 'G' in s or 'g' in s: self.is_green = True self.is_red = False self.is_yellow = False elif 'r' in s and 'G' not in s and 'g' not in s and 'y' not in s: self.is_green = False self.is_red = True self.is_yellow = False self.next_action_time += self.red_time elif 'y' in s: self.is_green = False self.is_red = False self.is_yellow = True self.next_action_time += self.yellow_time def compute_observation(self): phase_id = [1 if self.phase//2 == i else 0 for i in range(self.num_green_phases)] # one-hot encoding if self.use_pressure: print('pressure') pressure = self.get_pressure() for neighbor in self.neighbors: print('neighbors pressure') pressure += self.neighbors[neighbor].get_pressure() return np.array(phase_id + pressure) else: print('Q+D') density = self.get_lanes_density() queue = self.get_lanes_queue() for neighbor in self.neighbors: print('neighbors Q+D') density += self.neighbors[neighbor].get_lanes_density() queue += self.neighbors[neighbor].get_lanes_queue() return np.array(phase_id + density + queue) def compute_reward(self): self.last_reward = self._waiting_time_reward() return self.last_reward def _pressure_reward(self): return -self.get_pressure()[0] def _queue_average_reward(self): new_average = np.mean(self.get_stopped_vehicles_num()) reward = self.last_measure - new_average self.last_measure = new_average return reward def _queue_reward(self): return - (sum(self.get_stopped_vehicles_num()))**2 def _waiting_time_reward(self): ts_wait = sum(self.get_waiting_time_per_lane()) / 100.0 reward = self.last_measure - ts_wait self.last_measure = ts_wait return reward def _waiting_time_reward2(self): ts_wait = sum(self.get_waiting_time()) self.last_measure = ts_wait if ts_wait == 0: reward = 1.0 else: reward = 1.0/ts_wait return reward def _waiting_time_reward3(self): ts_wait = sum(self.get_waiting_time()) reward = -ts_wait self.last_measure = ts_wait return reward def get_waiting_time_per_lane(self): wait_time_per_lane = [] for lane in self.lanes: veh_list = traci.lane.getLastStepVehicleIDs(lane) wait_time = 0.0 for veh in veh_list: veh_lane = traci.vehicle.getLaneID(veh) acc = traci.vehicle.getAccumulatedWaitingTime(veh) if veh not in self.env.vehicles: self.env.vehicles[veh] = {veh_lane: acc} else: self.env.vehicles[veh][veh_lane] = acc - sum([self.env.vehicles[veh][lane] for lane in self.env.vehicles[veh].keys() if lane != veh_lane]) wait_time += self.env.vehicles[veh][veh_lane] wait_time_per_lane.append(wait_time) return wait_time_per_lane def get_pressure(self): sum_in = 0 for lane in self.lanes: sum_in += traci.lane.getLastStepVehicleNumber(lane) sum_out = 0 for lane in self.out_lanes: sum_out += traci.lane.getLastStepVehicleNumber(lane) return [abs(sum_in - sum_out)] def get_out_lanes_density(self): vehicle_size_min_gap = 7.5 # 5(vehSize) + 2.5(minGap) return [min(1, traci.lane.getLastStepVehicleNumber(lane) / (traci.lane.getLength(lane) / vehicle_size_min_gap)) for lane in self.out_lanes] def get_lanes_density(self): vehicle_size_min_gap = 7.5 # 5(vehSize) + 2.5(minGap) return [min(1, traci.lane.getLastStepVehicleNumber(lane) / (traci.lane.getLength(lane) / vehicle_size_min_gap)) for lane in self.lanes] def get_lanes_queue(self): vehicle_size_min_gap = 7.5 # 5(vehSize) + 2.5(minGap) return [min(1, traci.lane.getLastStepHaltingNumber(lane) / (traci.lane.getLength(lane) / vehicle_size_min_gap)) for lane in self.lanes] def get_total_queued(self): return sum([traci.lane.getLastStepHaltingNumber(lane) for lane in self.lanes]) def _get_veh_list(self): veh_list = [] for lane in self.lanes: veh_list += traci.lane.getLastStepVehicleIDs(lane) return veh_list
the-stack_0_22357
"""empty message Revision ID: 0202_new_letter_pricing Revises: 0201_another_letter_org Create Date: 2017-07-09 12:44:16.815039 """ revision = '0202_new_letter_pricing' down_revision = '0201_another_letter_org' import uuid from datetime import datetime from alembic import op start = datetime(2018, 6, 30, 23, 0) NEW_RATES = [ (uuid.uuid4(), start, 4, 0.39, True, 'second'), (uuid.uuid4(), start, 4, 0.51, False, 'second'), (uuid.uuid4(), start, 5, 0.42, True, 'second'), (uuid.uuid4(), start, 5, 0.57, False, 'second'), ] def upgrade(): conn = op.get_bind() for id, start_date, sheet_count, rate, crown, post_class in NEW_RATES: conn.execute(""" INSERT INTO letter_rates (id, start_date, sheet_count, rate, crown, post_class) VALUES ('{}', '{}', '{}', '{}', '{}', '{}') """.format(id, start_date, sheet_count, rate, crown, post_class)) def downgrade(): pass
the-stack_0_22359
from django import template from django.template.base import Node, TemplateSyntaxError, kwarg_re from django.utils.html import conditional_escape from feincms3 import apps register = template.Library() @register.simple_tag(takes_context=True) def render_region(context, regions, region, **kwargs): """ Render a single region. See :class:`~feincms3.regions.Regions` for additional details. Any and all keyword arguments are forwarded to the ``render`` method of the ``Regions`` instance. Usage:: {% render_region regions "main" %} """ return regions.render(region, context, **kwargs) class ReverseAppNode(Node): def __init__(self, namespaces, view_name, args, kwargs, asvar): self.namespaces = namespaces self.view_name = view_name self.args = args self.kwargs = kwargs self.asvar = asvar def _current_app(self, context): try: return context.request.current_app except AttributeError: try: return context.request.resolver_match.namespace except AttributeError: return None def render(self, context): args = [arg.resolve(context) for arg in self.args] kwargs = {k: v.resolve(context) for k, v in self.kwargs.items()} namespaces = self.namespaces.resolve(context) view_name = self.view_name.resolve(context) fallback = kwargs.pop("fallback", None) if not isinstance(namespaces, (list, tuple)): namespaces = namespaces.split(",") # Try to look up the URL. If it fails, raise NoReverseMatch unless the # {% reverse ... as var %} construct is used, in which case return # nothing. url = "" try: url = apps.reverse_app( namespaces, view_name, args=args, kwargs=kwargs, current_app=self._current_app(context), ) except apps.NoReverseMatch: if fallback is not None: url = fallback elif self.asvar is None: raise if self.asvar: context[self.asvar] = url return "" else: if context.autoescape: url = conditional_escape(url) return url @register.tag def reverse_app(parser, token): """ Reverse app URLs, preferring the active language. Usage:: {% load feincms3 %} {% reverse_app 'blog' 'detail' [args] [kw=args] [fallback='/'] %} ``namespaces`` can either be a list or a comma-separated list of namespaces. ``NoReverseMatch`` exceptions can be avoided by providing a ``fallback`` as a keyword argument or by saving the result in a variable, similar to ``{% url 'view' as url %}`` does:: {% reverse_app 'newsletter' 'subscribe-form' fallback='/newsletter/' %} Or:: {% reverse_app 'extranet' 'login' as login_url %} """ bits = token.split_contents() if len(bits) < 3: raise TemplateSyntaxError( "'reverse_app' takes at least two arguments, a namespace and" " a URL pattern name." ) namespaces = parser.compile_filter(bits[1]) viewname = parser.compile_filter(bits[2]) args = [] kwargs = {} asvar = None bits = bits[3:] if len(bits) >= 2 and bits[-2] == "as": asvar = bits[-1] bits = bits[:-2] if len(bits): for bit in bits: match = kwarg_re.match(bit) if not match: raise TemplateSyntaxError("Malformed arguments to reverse_app tag") name, value = match.groups() if name: kwargs[name] = parser.compile_filter(value) else: args.append(parser.compile_filter(value)) return ReverseAppNode(namespaces, viewname, args, kwargs, asvar)
the-stack_0_22360
def leiaInt(mgn): while True: try: n = int(input(mgn)) except (ValueError, TypeError): print('Erro: Digite um número inteiro válido') except Exception as erro: print(erro.__cause__, erro.__class__) else: return n break def leiaReal(mgn): while True: try: f = float(input(mgn)) except (ValueError, TypeError): print('Erro: Digite um número real válido') except Exception as erro: print(erro.__cause__, erro.__class__) except KeyboardInterrupt: f = 0 return f break else: return f break i = leiaInt('Digite um número Inteiro: ') f = leiaReal('Digite um número Real: ') print(f'O valor inteiro digitado foi {i} e o valor rela foi {f}')
the-stack_0_22365
# -*- coding: utf-8 -*- from __future__ import unicode_literals import uuid import redis import logging from django.conf import settings import json redis_server = redis.StrictRedis(host=settings.REDIS_HOST, port=settings.REDIS_PORT, db=settings.REDIS_DB) logger = logging.getLogger(__name__) def send_message(user_id, message): """ Sends a message to a user """ logger.info("send_message() - user_id: '%s' - message: '%s'", user_id, message) url = "/app/user/{0}/notifications".format(user_id) redis_server.publish(url, message) def store_uuid_cookie(user_id): """ Generates an uuidCookie and store it in Radis. Returns: uuidCookie if stored correctly Returns: None if cookie couldn't be stored """ uuid_cookie = str(uuid.uuid4()) data = json.dumps({ 'userId': user_id }) logger.info("store_uuid_cookie() - uuid_cookie: '%s' - data: '%s'", uuid_cookie, data) set_result = redis_server.set(settings.UUIDCOOKIE_PREFIX + uuid_cookie, data, settings.UUIDCOOKIE_EXPIRE_TIME, nx=True) if set_result is True: return uuid_cookie else: logger.error("store_uuid_cookie() - redis_server.set() FAILED") return None
the-stack_0_22367
"""empty message Revision ID: 0eeaa5aed53b Revises: e36f1d0c4947 Create Date: 2019-06-26 17:31:17.238355 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "0eeaa5aed53b" down_revision = "e36f1d0c4947" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column( "projects", sa.Column( "enforce_random_task_selection", sa.Boolean(), nullable=True, server_default=sa.false(), ), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column("projects", "enforce_random_task_selection") # ### end Alembic commands ###
the-stack_0_22371
import Domoticz from devices.configuration import config from devices.device import Device from devices.device import DeviceCreateException from devices.device import DeviceUpdateException class DeviceModulationLevel(Device): domoticz_device_type = 243 domoticz_subtype = 6 domoticz_switch_type = 0 def __init__(self, plugin_devices, toon): super().__init__(config.STR_UNIT_MODULATION_LEVEL, config.STD_UNIT_MODULATION_LEVEL, plugin_devices, toon) def create(self): if not self.exists: try: Domoticz.Log("Creating modulation level device " + self.name) Domoticz.Device(Name=self.name, Unit=self.unit, Type=self.domoticz_device_type, Subtype=self.domoticz_subtype, Switchtype=self.domoticz_switch_type).Create() except DeviceCreateException as ex: Domoticz.Log("An error occurred creating " + self.name) Domoticz.Log("Exception: " + str(ex)) elif config.debug: Domoticz.Log("Unit " + str(self.unit) + " exists - nothing to do") return self def update(self): super().update() str_value = "" try: modulation_level = self.toon.thermostat_info.current_modulation_level str_value = str(modulation_level) if str_value != self.previous_value: if config.debug: Domoticz.Log("Update modulation level: " + str_value) self.plugin_devices[self.unit].Update(modulation_level, str_value) except DeviceUpdateException as ex: Domoticz.Log("An error occurred updating " + self.name) Domoticz.Log("Exception: " + str(ex)) self.set_previous_value(str_value)
the-stack_0_22372
import os from unittest.mock import patch import pytest import requests from autovirt.session import VirtSession, VirtSessionOptions @pytest.fixture def options() -> VirtSessionOptions: return VirtSessionOptions( session_file="tests/session.dat", session_timeout=1800, base_url="https://virtonomica.ru/api/vera", login="login", password="password", ) @pytest.fixture def response_ok() -> requests.Response: response = requests.Response() response.status_code = 200 return response @pytest.fixture def response_not_ok() -> requests.Response: response = requests.Response() response.status_code = 500 return response @pytest.fixture def session(options): return VirtSession(options=options) @patch("autovirt.session.VirtSession.login") def test_get_logged_session_new_session(login_mock, session): if os.path.isfile(session.options.session_file): os.remove(session.options.session_file) assert type(session.get_logged_session()) == requests.Session login_mock.assert_called() @patch("autovirt.session.requests.Session.post") def test_login_response_ok( post_mock, session, options: VirtSessionOptions, response_ok ): post_mock.return_value = response_ok session.login(requests.Session()) post_mock.assert_called_with( f"{options.base_url}/user/login", {"email": options.login, "password": options.password}, ) @patch("autovirt.session.requests.Session.post") def test_login_response_not_ok( post_mock, session, options: VirtSessionOptions, response_not_ok ): post_mock.return_value = response_not_ok with pytest.raises(RuntimeError): session.login(requests.Session())
the-stack_0_22373
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import base64 from collections import defaultdict from datetime import datetime, timedelta import logging import os import time import webapp2 from google.appengine.api import memcache from google.appengine.ext.webapp import template from google.appengine.ext import db import encoding import json import settings import tweeter import models import mailer import subscription import random LOGGER = logging.getLogger(__name__) def cache(method, seconds=60 * 60 * 24): """ A basic caching wrapper that will generate a key based off of the URL of the request """ #@functools.wraps def wrapped(handler, *a, **kw): key = (handler.request.path.replace('/', '') + handler.request.query_string) # This is absolutely required, to normalize memcached keys # from /twitter/post and /uptime/post if "post" in key: key = key.replace("post", '') data = memcache.get(key) if not data: LOGGER.info('CACHE miss') data = method(handler, *a, **kw) if not memcache.add(key=key, value=data, time=seconds): LOGGER.error('Failed to set cache ' + key) return data return wrapped class TwitterBaseController(webapp2.RequestHandler): def __init__(self, *a, **kw): super(TwitterBaseController, self).__init__(*a, **kw) self.tweet_manager = tweeter.TwitterStatusProcessor( **settings.TWITTER['AUTH'] ) class TwitterHandler(TwitterBaseController): def get(self, service=None, **_): self.response.headers['Content-Type'] = 'application/json' self.response.out.write(self._get(service)) @cache def _get(self, service): tweets = [] services = [service] if service else tweeter.SERVICES for service in services: tweets += self.tweet_manager.get(service) return encoding.to_json({ 'messages': [encoding.to_dict(m) for m in tweets] }) def post(self): self.tweet_manager.run() keys = [ 'twitter', 'twittermessages', 'twittermessageslatest', ] for key in keys: memcache.delete(key) # Send notifications on tweet for service in tweeter.SERVICES: latest_tweet = self.tweet_manager.get_last_message(service) # Notified must be set, False, and created within the last 10 # minutes if (latest_tweet and hasattr(latest_tweet, 'notified') and not latest_tweet.notified and latest_tweet.created_at > datetime.utcnow() - timedelta(minutes=10)): self.tweet_manager._set_notified(latest_tweet.tweet_id) subscription.send_emails(service=service, request_url=self.request.url, current_state=latest_tweet.status, twitter_tweet=latest_tweet.message) self.get() class TwitterPostHandler(webapp2.RequestHandler): def get(self): th = TwitterHandler(self.request, self.response) th.post() class TwitterMessageHandler(TwitterBaseController): def get(self, *a, **kw): self.response.headers['Content-Type'] = 'application/json' self.response.out.write(self._get()) @cache def _get(self): offset = int(self.request.get('offset', 0)) max_date = datetime.utcnow() - timedelta(days=offset) min_date = max_date - timedelta(days=30) messages = defaultdict(list) # messages by service messages['min'] = time.mktime(min_date.timetuple()) messages['max'] = time.mktime(max_date.timetuple()) for service in tweeter.SERVICES: tweets = self.tweet_manager.get_by_dates( service, max_date=max_date, min_date=min_date, ) tweets = [t for t in tweets] messages[service] = [encoding.to_dict(m) for m in reversed(tweets)] return encoding.to_json({ 'messages': messages, }) class TwitterLatestMessageHandler(TwitterBaseController): """ Mounted at /twitter/messages/latest GET returns a dictionary of messages by service { 'DASH': message1, 'API': message1, 'JS': message1, } """ def get(self, *a, **kw): self.response.headers['Content-Type'] = 'application/json' self.response.out.write(self._get()) @cache def _get(self): messages = {} # messages by date + service for service in tweeter.SERVICES: tweet = self.tweet_manager.get_last_message(service) if tweet: if tweet.created_at < datetime.utcnow() - timedelta(days=1): tweet = None messages[service] = encoding.to_dict( tweet, ) if tweet else None return encoding.to_json({ 'messages': messages, }) class UptimeHandler(TwitterBaseController): """ Mounted at /uptime GET returns a dictionary of uptime for the various services POST deletes cached results, the subsequent GET will re-populate the cache """ def __init__(self, request, response): super(UptimeHandler, self).__init__(request, response) def get(self, *a, **kw): self.response.headers['Content-Type'] = 'application/json' self.response.out.write(self._get()) @cache def _get(self): raw = { 'uptime': {} } for service in tweeter.SERVICES: # we need to have a state, so if we can't find one (e.g. because # the last tweet was a long time ago), default to UP tweet_state = self.tweet_manager.get_latest_state(service) or 'UP' raw['uptime'][service] = { 'status': tweet_state, 'uptime': self.tweet_manager.get_uptime_month(service) } subscription.should_notify(service, tweet_state, self.request.url) return encoding.to_json(raw) def post(self): memcache.delete('uptime') self.get() class UptimePostHandler(webapp2.RequestHandler): def get(self): uh = UptimeHandler(self.request, self.response) uh.post() class MainHandler(webapp2.RequestHandler): """ Serves the index.html, that's it. """ def get(self, *a, **kw): path = os.path.join( os.path.dirname(__file__), 'templates', 'index.html') self.response.out.write(template.render(path, {})) class SubscribeEmailHandler(webapp2.RequestHandler): def post(self): self.response.headers['Content-Type'] = 'application/json' email = self.request.get('email') services = self.request.get('services').rstrip(',') query = db.GqlQuery( "SELECT * FROM EmailSubscriber WHERE email = :1", email) number_rows = query.count() if number_rows > 0: self.response.status = 409 self.response.out.write(json.dumps({ "error": email + " is already subscribed." })) return mail = mailer.Mail() mail.send(email, "Successfully subscribed to Kloudless " + services + " incidents", "You successfully subscribed to Kloudless " + services + " incidents.", self.request.url) s = models.EmailSubscriber(email=email, services=services.split(',')) s.put() self.response.out.write(json.dumps({ "subscribed": "email", "services": services.split(',') })) class UnsubscribeEmailHandler(webapp2.RequestHandler): def get(self, base64email): if not base64email: self.redirect("/") email = base64.urlsafe_b64decode(base64email) if email: email_subscriber = models.EmailSubscriber.all() email_subscriber.filter('email =', email) for es in email_subscriber: es.delete() # ToDo: show a nice pretty notification that e-mail is subscribed self.redirect("/") app = webapp2.WSGIApplication([ ('/', MainHandler), ('/uptime', UptimeHandler), ('/uptime/post', UptimePostHandler), ('/twitter', TwitterHandler), ('/twitter/post', TwitterPostHandler), ('/twitter/messages', TwitterMessageHandler), ('/twitter/messages/latest', TwitterLatestMessageHandler), ('/twitter/(.*)', TwitterHandler), ('/subscriptions/email', SubscribeEmailHandler), ('/subscriptions/email/(.*)', UnsubscribeEmailHandler) ], debug=settings.DEBUG)
the-stack_0_22374
"""Support for Tahoma devices.""" from collections import defaultdict import logging from requests.exceptions import RequestException from tahoma_api import Action, TahomaApi import voluptuous as vol from homeassistant.const import CONF_EXCLUDE, CONF_PASSWORD, CONF_USERNAME from homeassistant.helpers import config_validation as cv, discovery from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) DOMAIN = "tahoma" TAHOMA_ID_FORMAT = "{}_{}" CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_EXCLUDE, default=[]): vol.All( cv.ensure_list, [cv.string] ), } ) }, extra=vol.ALLOW_EXTRA, ) TAHOMA_COMPONENTS = ["binary_sensor", "cover", "lock", "scene", "sensor", "switch"] TAHOMA_TYPES = { "io:AwningValanceIOComponent": "cover", "io:ExteriorVenetianBlindIOComponent": "cover", "io:DiscreteGarageOpenerIOComponent": "cover", "io:DiscreteGarageOpenerWithPartialPositionIOComponent": "cover", "io:HorizontalAwningIOComponent": "cover", "io:GarageOpenerIOComponent": "cover", "io:LightIOSystemSensor": "sensor", "io:OnOffIOComponent": "switch", "io:OnOffLightIOComponent": "switch", "io:RollerShutterGenericIOComponent": "cover", "io:RollerShutterUnoIOComponent": "cover", "io:RollerShutterVeluxIOComponent": "cover", "io:RollerShutterWithLowSpeedManagementIOComponent": "cover", "io:SomfyBasicContactIOSystemSensor": "sensor", "io:SomfyContactIOSystemSensor": "sensor", "io:TemperatureIOSystemSensor": "sensor", "io:VerticalExteriorAwningIOComponent": "cover", "io:VerticalInteriorBlindVeluxIOComponent": "cover", "io:WindowOpenerVeluxIOComponent": "cover", "opendoors:OpenDoorsSmartLockComponent": "lock", "rtds:RTDSContactSensor": "sensor", "rtds:RTDSMotionSensor": "sensor", "rtds:RTDSSmokeSensor": "smoke", "rts:BlindRTSComponent": "cover", "rts:CurtainRTSComponent": "cover", "rts:DualCurtainRTSComponent": "cover", "rts:ExteriorVenetianBlindRTSComponent": "cover", "rts:GarageDoor4TRTSComponent": "switch", "rts:LightRTSComponent": "switch", "rts:RollerShutterRTSComponent": "cover", "rts:OnOffRTSComponent": "switch", "rts:VenetianBlindRTSComponent": "cover", "somfythermostat:SomfyThermostatTemperatureSensor": "sensor", "somfythermostat:SomfyThermostatHumiditySensor": "sensor", } def setup(hass, config): """Activate Tahoma component.""" conf = config[DOMAIN] username = conf.get(CONF_USERNAME) password = conf.get(CONF_PASSWORD) exclude = conf.get(CONF_EXCLUDE) try: api = TahomaApi(username, password) except RequestException: _LOGGER.exception("Error when trying to log in to the Tahoma API") return False try: api.get_setup() devices = api.get_devices() scenes = api.get_action_groups() except RequestException: _LOGGER.exception("Error when getting devices from the Tahoma API") return False hass.data[DOMAIN] = {"controller": api, "devices": defaultdict(list), "scenes": []} for device in devices: _device = api.get_device(device) if all(ext not in _device.type for ext in exclude): device_type = map_tahoma_device(_device) if device_type is None: _LOGGER.warning( "Unsupported type %s for Tahoma device %s", _device.type, _device.label, ) continue hass.data[DOMAIN]["devices"][device_type].append(_device) for scene in scenes: hass.data[DOMAIN]["scenes"].append(scene) for component in TAHOMA_COMPONENTS: discovery.load_platform(hass, component, DOMAIN, {}, config) return True def map_tahoma_device(tahoma_device): """Map Tahoma device types to Home Assistant components.""" return TAHOMA_TYPES.get(tahoma_device.type) class TahomaDevice(Entity): """Representation of a Tahoma device entity.""" def __init__(self, tahoma_device, controller): """Initialize the device.""" self.tahoma_device = tahoma_device self.controller = controller self._name = self.tahoma_device.label @property def name(self): """Return the name of the device.""" return self._name @property def device_state_attributes(self): """Return the state attributes of the device.""" return {"tahoma_device_id": self.tahoma_device.url} def apply_action(self, cmd_name, *args): """Apply Action to Device.""" action = Action(self.tahoma_device.url) action.add_command(cmd_name, *args) self.controller.apply_actions("HomeAssistant", [action])
the-stack_0_22376
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os import platform import re import itertools import shutil import tempfile import llnl.util.lang from llnl.util.filesystem import ( path_contains_subdirectory, paths_containing_libs) import llnl.util.tty as tty import spack.error import spack.spec import spack.architecture import spack.util.executable import spack.compilers from spack.util.environment import filter_system_paths __all__ = ['Compiler'] def _verify_executables(*paths): for path in paths: if not os.path.isfile(path) and os.access(path, os.X_OK): raise CompilerAccessError(path) @llnl.util.lang.memoized def get_compiler_version_output(compiler_path, version_arg, ignore_errors=()): """Invokes the compiler at a given path passing a single version argument and returns the output. Args: compiler_path (path): path of the compiler to be invoked version_arg (str): the argument used to extract version information """ compiler = spack.util.executable.Executable(compiler_path) output = compiler( version_arg, output=str, error=str, ignore_errors=ignore_errors) return output def tokenize_flags(flags_str): """Given a compiler flag specification as a string, this returns a list where the entries are the flags. For compiler options which set values using the syntax "-flag value", this function groups flags and their values together. Any token not preceded by a "-" is considered the value of a prior flag.""" tokens = flags_str.split() if not tokens: return [] flag = tokens[0] flags = [] for token in tokens[1:]: if not token.startswith('-'): flag += ' ' + token else: flags.append(flag) flag = token flags.append(flag) return flags #: regex for parsing linker lines _LINKER_LINE = re.compile( r'^( *|.*[/\\])' r'(link|ld|([^/\\]+-)?ld|collect2)' r'[^/\\]*( |$)') #: components of linker lines to ignore _LINKER_LINE_IGNORE = re.compile(r'(collect2 version|^[A-Za-z0-9_]+=|/ldfe )') #: regex to match linker search paths _LINK_DIR_ARG = re.compile(r'^-L(.:)?(?P<dir>[/\\].*)') #: regex to match linker library path arguments _LIBPATH_ARG = re.compile(r'^[-/](LIBPATH|libpath):(?P<dir>.*)') def _parse_link_paths(string): """Parse implicit link paths from compiler debug output. This gives the compiler runtime library paths that we need to add to the RPATH of generated binaries and libraries. It allows us to ensure, e.g., that codes load the right libstdc++ for their compiler. """ lib_search_paths = False raw_link_dirs = [] tty.debug('parsing implicit link info') for line in string.splitlines(): if lib_search_paths: if line.startswith('\t'): raw_link_dirs.append(line[1:]) continue else: lib_search_paths = False elif line.startswith('Library search paths:'): lib_search_paths = True if not _LINKER_LINE.match(line): continue if _LINKER_LINE_IGNORE.match(line): continue tty.debug('linker line: %s' % line) next_arg = False for arg in line.split(): if arg in ('-L', '-Y'): next_arg = True continue if next_arg: raw_link_dirs.append(arg) next_arg = False continue link_dir_arg = _LINK_DIR_ARG.match(arg) if link_dir_arg: link_dir = link_dir_arg.group('dir') tty.debug('linkdir: %s' % link_dir) raw_link_dirs.append(link_dir) link_dir_arg = _LIBPATH_ARG.match(arg) if link_dir_arg: link_dir = link_dir_arg.group('dir') tty.debug('libpath: %s', link_dir) raw_link_dirs.append(link_dir) tty.debug('found raw link dirs: %s' % ', '.join(raw_link_dirs)) implicit_link_dirs = list() visited = set() for link_dir in raw_link_dirs: normalized_path = os.path.abspath(link_dir) if normalized_path not in visited: implicit_link_dirs.append(normalized_path) visited.add(normalized_path) tty.debug('found link dirs: %s' % ', '.join(implicit_link_dirs)) return implicit_link_dirs def _parse_non_system_link_dirs(string): """Parses link paths out of compiler debug output. Args: string (str): compiler debug output as a string Returns: (list of str): implicit link paths parsed from the compiler output """ link_dirs = _parse_link_paths(string) # Return set of directories containing needed compiler libs, minus # system paths. Note that 'filter_system_paths' only checks for an # exact match, while 'in_system_subdirectory' checks if a path contains # a system directory as a subdirectory link_dirs = filter_system_paths(link_dirs) return list(p for p in link_dirs if not in_system_subdirectory(p)) def in_system_subdirectory(path): system_dirs = ['/lib/', '/lib64/', '/usr/lib/', '/usr/lib64/', '/usr/local/lib/', '/usr/local/lib64/'] return any(path_contains_subdirectory(path, x) for x in system_dirs) class Compiler(object): """This class encapsulates a Spack "compiler", which includes C, C++, and Fortran compilers. Subclasses should implement support for specific compilers, their possible names, arguments, and how to identify the particular type of compiler.""" # Subclasses use possible names of C compiler cc_names = [] # Subclasses use possible names of C++ compiler cxx_names = [] # Subclasses use possible names of Fortran 77 compiler f77_names = [] # Subclasses use possible names of Fortran 90 compiler fc_names = [] # Optional prefix regexes for searching for this type of compiler. # Prefixes are sometimes used for toolchains, e.g. 'powerpc-bgq-linux-' prefixes = [] # Optional suffix regexes for searching for this type of compiler. # Suffixes are used by some frameworks, e.g. macports uses an '-mp-X.Y' # version suffix for gcc. suffixes = [r'-.*'] #: Compiler argument that produces version information version_argument = '-dumpversion' #: Return values to ignore when invoking the compiler to get its version ignore_version_errors = () #: Regex used to extract version from compiler's output version_regex = '(.*)' # These libraries are anticipated to be required by all executables built # by any compiler _all_compiler_rpath_libraries = ['libc', 'libc++', 'libstdc++'] # Default flags used by a compiler to set an rpath @property def cc_rpath_arg(self): return '-Wl,-rpath,' @property def cxx_rpath_arg(self): return '-Wl,-rpath,' @property def f77_rpath_arg(self): return '-Wl,-rpath,' @property def fc_rpath_arg(self): return '-Wl,-rpath,' @property def linker_arg(self): """Flag that need to be used to pass an argument to the linker.""" return '-Wl,' @property def disable_new_dtags(self): if platform.system() == 'Darwin': return '' return '--disable-new-dtags' @property def enable_new_dtags(self): if platform.system() == 'Darwin': return '' return '--enable-new-dtags' # Cray PrgEnv name that can be used to load this compiler PrgEnv = None # Name of module used to switch versions of this compiler PrgEnv_compiler = None def __init__(self, cspec, operating_system, target, paths, modules=[], alias=None, environment=None, extra_rpaths=None, enable_implicit_rpaths=None, **kwargs): self.spec = cspec self.operating_system = str(operating_system) self.target = target self.modules = modules self.alias = alias self.extra_rpaths = extra_rpaths self.enable_implicit_rpaths = enable_implicit_rpaths def check(exe): if exe is None: return None _verify_executables(exe) return exe self.cc = check(paths[0]) self.cxx = check(paths[1]) if len(paths) > 2: self.f77 = check(paths[2]) if len(paths) == 3: self.fc = self.f77 else: self.fc = check(paths[3]) self.environment = environment self.extra_rpaths = extra_rpaths or [] # Unfortunately have to make sure these params are accepted # in the same order they are returned by sorted(flags) # in compilers/__init__.py self.flags = {} for flag in spack.spec.FlagMap.valid_compiler_flags(): value = kwargs.get(flag, None) if value is not None: self.flags[flag] = tokenize_flags(value) @property def version(self): return self.spec.version def implicit_rpaths(self): if self.enable_implicit_rpaths is False: return [] exe_paths = [ x for x in [self.cc, self.cxx, self.fc, self.f77] if x] link_dirs = self._get_compiler_link_paths(exe_paths) all_required_libs = ( list(self.required_libs) + Compiler._all_compiler_rpath_libraries) return list(paths_containing_libs(link_dirs, all_required_libs)) @property def required_libs(self): """For executables created with this compiler, the compiler libraries that would be generally required to run it. """ # By default every compiler returns the empty list return [] @classmethod def _get_compiler_link_paths(cls, paths): first_compiler = next((c for c in paths if c), None) if not first_compiler: return [] try: tmpdir = tempfile.mkdtemp(prefix='spack-implicit-link-info') fout = os.path.join(tmpdir, 'output') fin = os.path.join(tmpdir, 'main.c') with open(fin, 'w+') as csource: csource.write( 'int main(int argc, char* argv[]) { ' '(void)argc; (void)argv; return 0; }\n') compiler_exe = spack.util.executable.Executable(first_compiler) output = str(compiler_exe(cls.verbose_flag(), fin, '-o', fout, output=str, error=str)) # str for py2 return _parse_non_system_link_dirs(output) except spack.util.executable.ProcessError as pe: tty.debug('ProcessError: Command exited with non-zero status: ' + pe.long_message) return [] finally: shutil.rmtree(tmpdir, ignore_errors=True) @classmethod def verbose_flag(cls): """ This property should be overridden in the compiler subclass if a verbose flag is available. If it is not overridden, it is assumed to not be supported. """ # This property should be overridden in the compiler subclass if # OpenMP is supported by that compiler @property def openmp_flag(self): # If it is not overridden, assume it is not supported and warn the user raise UnsupportedCompilerFlag(self, "OpenMP", "openmp_flag") # This property should be overridden in the compiler subclass if # C++98 is not the default standard for that compiler @property def cxx98_flag(self): return "" # This property should be overridden in the compiler subclass if # C++11 is supported by that compiler @property def cxx11_flag(self): # If it is not overridden, assume it is not supported and warn the user raise UnsupportedCompilerFlag(self, "the C++11 standard", "cxx11_flag") # This property should be overridden in the compiler subclass if # C++14 is supported by that compiler @property def cxx14_flag(self): # If it is not overridden, assume it is not supported and warn the user raise UnsupportedCompilerFlag(self, "the C++14 standard", "cxx14_flag") # This property should be overridden in the compiler subclass if # C++17 is supported by that compiler @property def cxx17_flag(self): # If it is not overridden, assume it is not supported and warn the user raise UnsupportedCompilerFlag(self, "the C++17 standard", "cxx17_flag") # This property should be overridden in the compiler subclass if # C99 is supported by that compiler @property def c99_flag(self): # If it is not overridden, assume it is not supported and warn the user raise UnsupportedCompilerFlag(self, "the C99 standard", "c99_flag") # This property should be overridden in the compiler subclass if # C11 is supported by that compiler @property def c11_flag(self): # If it is not overridden, assume it is not supported and warn the user raise UnsupportedCompilerFlag(self, "the C11 standard", "c11_flag") # # Compiler classes have methods for querying the version of # specific compiler executables. This is used when discovering compilers. # # Compiler *instances* are just data objects, and can only be # constructed from an actual set of executables. # @classmethod def default_version(cls, cc): """Override just this to override all compiler version functions.""" output = get_compiler_version_output( cc, cls.version_argument, tuple(cls.ignore_version_errors)) return cls.extract_version_from_output(output) @classmethod @llnl.util.lang.memoized def extract_version_from_output(cls, output): """Extracts the version from compiler's output.""" match = re.search(cls.version_regex, output) return match.group(1) if match else 'unknown' @classmethod def cc_version(cls, cc): return cls.default_version(cc) @classmethod def cxx_version(cls, cxx): return cls.default_version(cxx) @classmethod def f77_version(cls, f77): return cls.default_version(f77) @classmethod def fc_version(cls, fc): return cls.default_version(fc) @classmethod def search_regexps(cls, language): # Compile all the regular expressions used for files beforehand. # This searches for any combination of <prefix><name><suffix> # defined for the compiler compiler_names = getattr(cls, '{0}_names'.format(language)) prefixes = [''] + cls.prefixes suffixes = [''] + cls.suffixes regexp_fmt = r'^({0}){1}({2})$' return [ re.compile(regexp_fmt.format(prefix, re.escape(name), suffix)) for prefix, name, suffix in itertools.product(prefixes, compiler_names, suffixes) ] def setup_custom_environment(self, pkg, env): """Set any environment variables necessary to use the compiler.""" pass def __repr__(self): """Return a string representation of the compiler toolchain.""" return self.__str__() def __str__(self): """Return a string representation of the compiler toolchain.""" return "%s(%s)" % ( self.name, '\n '.join((str(s) for s in ( self.cc, self.cxx, self.f77, self.fc, self.modules, str(self.operating_system))))) class CompilerAccessError(spack.error.SpackError): def __init__(self, path): super(CompilerAccessError, self).__init__( "'%s' is not a valid compiler." % path) class InvalidCompilerError(spack.error.SpackError): def __init__(self): super(InvalidCompilerError, self).__init__( "Compiler has no executables.") class UnsupportedCompilerFlag(spack.error.SpackError): def __init__(self, compiler, feature, flag_name, ver_string=None): super(UnsupportedCompilerFlag, self).__init__( "{0} ({1}) does not support {2} (as compiler.{3})." .format(compiler.name, ver_string if ver_string else compiler.version, feature, flag_name), "If you think it should, please edit the compiler.{0} subclass to" .format(compiler.name) + " implement the {0} property and submit a pull request or issue." .format(flag_name) )
the-stack_0_22380
"""This module contains the general information for SysdebugCoreFileRepository ManagedObject.""" from ...ucscentralmo import ManagedObject from ...ucscentralcoremeta import UcsCentralVersion, MoPropertyMeta, MoMeta from ...ucscentralmeta import VersionMeta class SysdebugCoreFileRepositoryConsts(): pass class SysdebugCoreFileRepository(ManagedObject): """This is SysdebugCoreFileRepository class.""" consts = SysdebugCoreFileRepositoryConsts() naming_props = set([]) mo_meta = MoMeta("SysdebugCoreFileRepository", "sysdebugCoreFileRepository", "corefiles", VersionMeta.Version101a, "InputOutput", 0xf, [], ["admin", "operations"], [u'topSystem'], [u'sysdebugCore', u'sysfileMutation'], ["Get"]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version101a, MoPropertyMeta.INTERNAL, None, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version101a, MoPropertyMeta.READ_ONLY, 0x2, 0, 256, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version101a, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version101a, MoPropertyMeta.READ_WRITE, 0x8, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), } prop_map = { "childAction": "child_action", "dn": "dn", "rn": "rn", "status": "status", } def __init__(self, parent_mo_or_dn, **kwargs): self._dirty_mask = 0 self.child_action = None self.status = None ManagedObject.__init__(self, "SysdebugCoreFileRepository", parent_mo_or_dn, **kwargs)
the-stack_0_22381
# --- # title: Developing custom scikit-learn transformers and estimators # date: 2020-03-05T17:15:00-05:00 # --- # scikit-learn offers a wide range of Machine Learning models, but it goes way beyond that by providing other tools such as hyperparameter optimization using `GridSearchCV` or composed estimators via `Pipeline`. One of the characteristics I like the most about scikit-learn is their consistent API, all estimators implement the same basic methods (fit and predict). This consistency has been immensely useful to the ML open source community since a lot of third party packages are developed with this in mind (e.g. Keras), hence they are able to interface with each other. # # Often we need to implement some functionality that does not exist in scikit-learn or any other packages, if we conform to scikit-learn's API we can limit ourselves to develop a custom transformer/estimator and our code will nicely interface with scikit-learn modules. # # In this blog post, I will show how to build custom transformers and estimators, as well as discuss implementation details to do this correctly. [The official docs](https://scikit-learn.org/stable/developers/develop.html) contain all you need to know but here are the most important facts: # # 1. All constructor (the `__init__` function) parameters should have default values # 2. Constructor parameters should be added as attributes *without any modifications* # 3. Attributes estimated from data must have a name with a trailing underscore # # There are other rules but you can use utility functions provided by scikit-learn to take care of them. A `check_estimator` function is also provided to exhaustively verify that your implementation is correct. An [official code template](https://github.com/scikit-learn-contrib/project-template/blob/master/skltemplate/_template.py) is also provided. # ## Transformer use case: verifying model's input # # scikit-learn estimators were originally designed to operate on numpy arrays (although there is current ongoing work to better interface with pandas Data Frames). For practical purposes, this means our estimators do not have a notion of column names (only input shape is verified to raise errors): if columns are shuffled, the transformer/estimator will not complain, but the prediction will be meaningless. # # Our custom transformer (an object that implements fit and transform) adds this capability: when used in a `Pipeline` object, it will verify that the we are getting the right input columns. The (commented) implementation looks as follows: # + hide=true import warnings import logging import pickle import sklearn from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils.estimator_checks import check_estimator from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from sklearn.linear_model import ElasticNet, LinearRegression from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split, GridSearchCV import pandas as pd import numpy as np warnings.filterwarnings('ignore') dataset = load_boston() X = pd.DataFrame(dataset.data, columns=dataset.feature_names) y = dataset.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33) # - # We inherit from TransformerMixin to get the fit_transform implementation. # Transformers in scikit-learn also have to inherit from BaseEstimator # see: https://github.com/scikit-learn/scikit-learn/blob/b194674c4/sklearn/preprocessing/_data.py#L520 class InputGuard(TransformerMixin, BaseEstimator): """ Verify column names at predict time match the ones used when fitting Parameters ---------- strict : bool, optional If True, it will raise an error if the input does not match exactly (same columns, same order), if False, it will ignore order and extra columns (will only show a warning), defaults to True Notes ----- Must be used in a Pipeline object and must be the first step. fit and predict should be called with a pandas.DataFrame object """ def __init__(self, strict=True): # no logic allowed here, just assign attributes # from __init__ args self.strict = strict def fit(self, X, y=None): # we need this to pass check_estimator X_out, y = check_X_y(X, y) X = X if hasattr(X, 'columns') else X_out # our estimator is designed to work on structures # that have a columns attribute (such as pandas Data Frame) if hasattr(X, 'columns'): self.expected_ = list(X.columns) self.expected_n_ = X.shape[1] # ...but we still need to support numpy.arrays to # pass check_estimator else: self.expected_ = None self.expected_n_ = X.shape[1] warnings.warn('Input does not have a columns attribute, ' 'only number of columns will be validated') return self def transform(self, X): # these two are to pass check_estimator check_is_fitted(self) X_out = check_array(X) X = X if hasattr(X, 'columns') else X_out # if column names are available... if self.expected_: return self._transform(X) else: # this is raised to pass check_estimator if self.expected_n_ != X.shape[1] and self.strict: raise ValueError('Number of columns from fit {} is different from transform {}' .format(self.expected_n_, X.shape[1])) return X def _transform(self, X): # this function implements our core logic and it # will only be called when fit received an X with a columns attribute if not hasattr(X, 'columns'): raise ValueError('{}.fit ran with a X object that had ' 'a columns attribute, but the current ' 'X does not have it'.format(type(self).__name__)) columns_got = list(X.columns) if self.strict: if self.expected_ != columns_got: missing = set(self.expected_) - set(columns_got) raise ValueError('Columns during fit were: {}, but got {} ' 'for predict.' ' Missing: {}'.format(self.expected_, columns_got, missing)) else: missing = set(self.expected_) - set(columns_got) extra = set(columns_got) - set(self.expected_) if missing: raise ValueError('Missing columns: {}'.format(missing)) elif extra: extra = set(columns_got) - set(self.expected_) warnings.warn('Got extra columns: {}, ignoring' .format(extra)) return X[self.expected_] return X # The `sklearn.utils.validation` module provides utility functions to pass some of `check_estimator` tests without having to implement the logic ourselves (I actually had to perform a few modifications to my original implementation, to fix errors thrown by `check_estimator`). These utility functions transform inputs (`check_X_y`, `check_array`) to return the expected format (numpy arrays) and throw the appropriate exceptions when this is not possible. `check_is_fitted` only raises an error if a call to `predict` is attempted without fitting the model first. # # We now verify that our transformer passes all the tests: # if no exceptions are raised, we're good check_estimator(InputGuard) # Passing all tests is not absolutely necessary for your transformer (or estimator) to integrate correctly with other scikit-learn modules, but doing so assures that your implementation is robust by handling common scenarios on behalf of the user (e.g. passing a 2D array with one column as y instead of a 1D array) and throwing informative errors. Given the large user base scikit-learn has, this is a must, however, for some very customized implementation, passing all the tests is simply not possible, as we will see in the the custom estimator use case. # # For now, let's verify that our transformer plays nicely with Pipeline and GridSearchCV: # + # our transformer *has* to be the first step in the pipeline, # to make sure it gets a pandas Data Frame as input and not # a numpy array (which strips column names) pipe = Pipeline([('guard', InputGuard()), ('scaler', StandardScaler()), ('reg', ElasticNet())]) # perform hyperparameter tuning grid = GridSearchCV(pipe, param_grid={'reg__alpha': [0.5, 1.0, 2.0]}) best_pipe = grid.fit(X_train, y_train).best_estimator_ # make predictions using the best model y_pred = best_pipe.predict(X_test) print(f'MAE: {np.abs(y_test - y_pred).mean():.2f}') # - # We now verify that our transformer throws an error if a column is missing: # + # drop a feature used during training X_corrupted = X_test.drop('CRIM', axis='columns') try: best_pipe.predict(X_corrupted) except ValueError as e: print('Error message: ', e) # - # If we add a column but switch to non-strict mode, we get a warning instead of an error: warnings.filterwarnings('default') X_corrupted = X_test.copy() X_corrupted['extra'] = 1 best_pipe.named_steps['guard'].strict = False _ = best_pipe.predict(X_corrupted) warnings.filterwarnings('ignore') # ## Estimator use case: logging model's predictions # # Say we want to log all our predictions to monitor a production model, for the sake of example, we will just use the `logging` module but this same logic applies to other methods such as saving predictions to a database. There are a few nuances here. `Pipeline` requires all intermediate steps to be transformers (fit/transform), which means we can only add our model (the one that implements predict) at the end. # # Since we cannot split our logging in two steps, we have to wrap an existing estimator and add the logging functionality to it, from the outside, our custom estimator will just look like another standard estimator. # # The 3 considerations that apply for transformers apply for estimators, plus a fourth one (copied directly from scikit-learn's documentation): # # 4. Estimators have `get_params` and `set_params` functions. The get_params function takes no arguments and returns a dict of the `__init__` parameters of the estimator, together with their values. It must take one keyword argument, `deep`, which receives a boolean value that determines whether the method should return the parameters of sub-estimators (for most estimators, this can be ignored). The default value for deep should be true. class LoggingEstimator(BaseEstimator): """ A wrapper for scikit-learn estimators that logs every prediction Parameters ---------- est_class The estimator class to use **kwargs Keyword arguments to initialize the estimator """ # NOTE: we arbitrarily selected a default estimator class # so check_estimator does not fail when doing LoggingEstimator() def __init__(self, est_class=LinearRegression, **kwargs): self.est_class = est_class # kwargs depend on the model used, so assign them whatever they are for key, value in kwargs.items(): setattr(self, key, value) # these attributes support the logging functionality self._logger = logging.getLogger(__name__) self._logging_enabled = False self._param_names = ['est_class'] + list(kwargs.keys()) # in the transformer case, we did not implement get_params # nor set_params since we inherited them from BaseEstimator # but such implementation will not work here due to the **kwargs # in the constructor, so we implemented it def get_params(self, deep=True): # Note: we are ignoring the deep parameter # this will not work with estimators that have sub-estimators # see https://scikit-learn.org/stable/developers/develop.html#get-params-and-set-params return {param: getattr(self, param) for param in self._param_names} def set_params(self, **parameters): for parameter, value in parameters.items(): setattr(self, parameter, value) return self # our fit method instantiates the actual model, and # it forwards any extra keyword arguments def fit(self, X, y, **kwargs): est_kwargs = self.get_params() del est_kwargs['est_class'] # remember the trailing underscore self.model_ = self.est_class(**est_kwargs) self.model_.fit(X, y, **kwargs) # fit must return self return self def predict(self, X): check_is_fitted(self) # we use the fitted model and log if logging is enabled y_pred = self.model_.predict(X) if self._logging_enabled: self._logger.info('Logging predicted values: %s', y_pred) return y_pred # requiring a score method is not documented but throws an # error if not implemented def score(self, X, y, **kwargs): return self.model_.score(X, y, **kwargs) # some models implement custom methods. Anything that is not implemented here # will be delegated to the underlying model. There is one condition we have # to cover: if the underlying estimator has class attributes they won't # be accessible until we fit the model (since we instantiate the model there) # to fix it, we try to look it up attributes in the instance, if there # is no instance, we look up the class. More info here: # https://scikit-learn.org/stable/developers/develop.html#estimator-types def __getattr__(self, key): if key != 'model_': if hasattr(self, 'model_'): return getattr(self.model_, key) else: return getattr(self.est_class, key) else: raise AttributeError( "'{}' object has no attribute 'model_'".format(type(self).__name__)) # these two control logging def enable_logging(self): self._logging_enabled = True def disable_logging(self): self._logging_enabled = False # ignore the following two for now, more info in the Appendix def __getstate__(self): state = self.__dict__.copy() del state['_logger'] return state def __setstate__(self, state): self.__dict__.update(state) self._logger = logging.getLogger(__name__) # `check_estimator` has a `generate_only` parameter that let us run checks one by one instead of failing at the first error. Let's use that option to check `LoggingEstimator`. for est, check in check_estimator(LoggingEstimator, generate_only=True): try: check(est) except AssertionError as e: print('Failed: ', check, e) # Names aren't very informative, so I took a look at the [source code](https://github.com/scikit-learn/scikit-learn/blob/b194674c4/sklearn/utils/estimator_checks.py). # # `check_parameters_default_constructible` checks that the estimator `__init__` parameters are of certain type, our estimator passes a class as an argument, that's why it breaks, but it shouldn't be an issue when interfacing with other components. I don't know why they restrict the types of arguments, my guess is that they want to avoid problems with objects that don't play nicely with the `multiprocessing` module. # # `check_no_attributes_set_in_init` is also about `__init__` arguments, according to the spec, we should not set any attributes other than the arguments, but we need them for logging to work, it should not affect either. # # Finally `check_supervised_y_2d`, checks that if a 2D numpy array is passed to `fit` a warning is issued, since it has to be converted to a 1D array, our custom estimator wraps any estimator, which could have multi-output, so we cannot use the utility functions to fix this. # # The bottom line is that `check_estimator` runs a very strict test suite, if your estimator does not pass all the tests, it does not mean it won't work, but you'll have to be more careful about your implementation. # # Let's now see our pipeline in action, note that we are also including our `InputGuard`, we change the underlying model in `LoggingEstimator` to demonstrate that it works with any estimator. # + pipe = Pipeline([('guard', InputGuard()), ('scaler', StandardScaler()), ('reg', LoggingEstimator(est_class=ElasticNet))]) # perform hyperparameter tuning grid = GridSearchCV( pipe, param_grid={'reg__alpha': [0.5, 1.0, 2.0]}, n_jobs=-1) best_pipe = grid.fit(X_train, y_train).best_estimator_ # make predictions using the best model y_pred = best_pipe.predict(X_test) print(f'MAE: {np.abs(y_test - y_pred).mean():.2f}') # - # Let's now configure the `logging` module and enable it in our custom estimator: logging.basicConfig(level=logging.INFO) best_pipe.named_steps['reg'].enable_logging() # The following line shows our logging in effect: best_pipe.predict(X_test.iloc[0:2]) # Since we implemented `__getattr__`, any model-specific attribute also works, let's get the linear model coefficients: best_pipe.named_steps['reg'].coef_ # ### Appendix: making our estimator work with `pickle` (or any other pickling mechanism) # # Pickling an object means saving it to disk. This is useful if we want to fit and then deploy a model ([be careful when doing this!](https://scikit-learn.org/stable/modules/model_persistence.html#security-maintainability-limitations)) but it is also needed if we want our model to work with the `multiprocessing` module. Some objects are *picklable* but some others are not (this also depends on which library you are using). `logger` objects do not work with the `pickle` module but we can easily fix this by deleting it before saving to disk and initializing it after loading, this boils down to adding two more methods: `__getstate__` and `__setstate__`, if you are interested in the details, [read this](https://docs.python.org/3/library/pickle.html#handling-stateful-objects). # showing pickling and unpickling works pickle.loads(pickle.dumps(best_pipe)) # ## Closing remarks # In this post we showed how to develop transformers and estimators compatible with scikit-learn. Given how many details the API has, using the `check_estimator` function will guide you through the process. However, if your implementations contains non-standard behavior (like ours), your custom objects will fail the tests even if they integrate correctly with other modules. In such case, you'll have to be careful about your implementation, using `check_estimator` with `generate_only=True` is useful for getting a list of failing tests and deciding whether it is acceptable or not. # # Following the scikit-learn API spec gives you access to a wide set of ML tools so you can focus on implementing your custom model and still use other modules for grid search, cross validation, etc. This is a huge time saver for ML projects. # # Source code for this post is available [here]({{url_source}}). # # Found an error in this post? [Click here to let us know]({{url_issue}}). # # Looking for commercial support? [Drop us a line](mailto:[email protected]). # # This post was generated using scikit-learn version: # + hide=true print(sklearn.__version__)
the-stack_0_22382
""" Image class and relative functions Defines the Image class and functions that operate on it. CLASSES --------- Image Subclass of numpy `ndarray`. Has the additional attribute properties which contains the properties used to generate it as a `list` of `dicts`. Functions --------- pad_image_to_fft(image: Image, axes = (0, 1)) Pads the image with zeros to optimize the speed of Fast Fourier Transforms. """ import warnings import cupy import numpy as np import numpy.lib.mixins import operator as ops from tensorflow import Tensor import tensorflow from .backend.tensorflow_bindings import TENSORFLOW_BINDINGS CUPY_INSTALLED = False try: import cupy as cp CUPY_INSTALLED = True except Exception: CUPY_INSTALLED = False warnings.warn( "cupy not installed. GPU-accelerated simulations will not be possible" ) def _binary_method(op): """Implement a forward binary method with a noperator, e.g., __add__.""" def func(self, other): self, other = coerce([self, other]) if isinstance(other, Image): return Image( op(self._value, other._value), copy=False ).merge_properties_from([self, other]) else: return Image(op(self._value, other), copy=False).merge_properties_from(self) func.__name__ = "__{}__".format(op.__name__) return func def _reflected_binary_method(op): """Implement a reflected binary method with a noperator, e.g., __radd__.""" def func(self, other): self, other = coerce([self, other]) if isinstance(other, Image): return Image( op(other._value, self._value), copy=False ).merge_properties_from([other, self]) else: return Image(op(other, self._value), copy=False).merge_properties_from(self) func.__name__ = "__r{}__".format(op.__name__) return func def _inplace_binary_method(op): """Implement a reflected binary method with a noperator, e.g., __radd__.""" def func(self, other): self, other = coerce([self, other]) if isinstance(other, Image): self._value = op(self._value, other._value) self.merge_properties_from(other) else: self._value = op(self._value, other) return self func.__name__ = "__i{}__".format(op.__name__) return func def _numeric_methods(op): """Implement forward, reflected and inplace binary methods with an ufunc.""" return ( _binary_method(op), _reflected_binary_method(op), _inplace_binary_method(op), ) def _unary_method( op, ): """Implement a unary special method with an ufunc.""" def func(self): return Image(op(self._value)).merge_properties_from(self) func.__name__ = "__{}__".format(op) return func class Image: def __init__(self, value, copy=True): super().__init__() if copy: self._value = self._view(value) else: if isinstance(value, Image): self._value = value._value else: self._value = value if isinstance(value, Image): self.properties = list(value.properties) else: self.properties = [] def append(self, property_dict: dict): """Appends a dictionary to the properties list. Parameters ---------- property_dict : dict A dictionary to append to the property list. Most commonly the current values of the properties of a feature. Returns ------- Image Returns itself. """ self.properties = [*self.properties, property_dict] return self def get_property( self, key: str, get_one: bool = True, default: any = None ) -> list or any: """Retrieve a property. If the feature has the property defined by `key`, return its current_value. Otherwise, return `default`. If `get_one` is True, the first instance is returned; otherwise, all instances are returned as a list. Parameters ---------- key The name of the property. get_one: optional Whether to return all instances of that property or just the first. default : optional What is returned if the property is not found. Returns ------- any The value of the property if found, else `default`. """ if get_one: for prop in self.properties: if key in prop: return prop[key] return default else: return [prop[key] for prop in self.properties if key in prop] or default def merge_properties_from(self, other: "Image") -> "Image": """Merge properties with those from another Image. Appends properties from another images such that no property is duplicated. Uniqueness of a dictionary of properties is determined from the property `hash_key`. Most functions involving two images should automatically output an image with merged properties. However, since each property is guaranteed to be unique, it is safe to manually call this function if there is any uncertainty. Parameters ---------- other The Image to retrieve properties from. """ if isinstance(other, Image): for new_prop in other.properties: should_append = True for my_prop in self.properties: if my_prop is new_prop: # Prop already added should_append = False break if should_append: self.append(new_prop) elif isinstance(other, np.ndarray): return self else: try: for i in other: self.merge_properties_from(i) except TypeError: pass return self def _view(self, value): if isinstance(value, Image): return self._view(value._value) if isinstance(value, (np.ndarray, list, tuple, int, float, bool)): return np.array(value) if isinstance(value, Tensor): return value return value def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): args = coerce(inputs) args = tuple(strip(arg) for arg in args) if isinstance(self._value, Tensor): if ufunc in TENSORFLOW_BINDINGS: ufunc = TENSORFLOW_BINDINGS[ufunc] else: return NotImplemented out = kwargs.get("out", ()) if out: kwargs["out"] = tuple(x._value if isinstance(x, Image) else x for x in out) results = getattr(ufunc, method)(*args, **kwargs) if type(results) is tuple: outputs = [] for result in results: out = Image(result, copy=False) out.merge_properties_from(inputs) outputs.append(out) return tuple(outputs) elif method == "at": return None else: result = Image(results, copy=False) result.merge_properties_from(inputs) return result def __array_function__(self, func, types, args, kwargs): # # Note: this allows subclasses that don't override # # __array_function__ to handle DiagonalArray objects. # if not all(issubclass(t, Image) for t in types): # return NotImplemented values = coerce(args) values = [strip(arg) for arg in values] if isinstance(self._value, Tensor): if func in TENSORFLOW_BINDINGS: func = TENSORFLOW_BINDINGS[func] else: return NotImplemented elif not ( isinstance(self._value, (np.ndarray, tuple, list)) or np.isscalar(self._value) ) and not hasattr(self._value, "__array_function__"): return NotImplemented out = func(*values, **kwargs) if isinstance(out, (bool, int, float)): return out out = Image(out, copy=False) for inp in args: if isinstance(inp, Image): out.merge_properties_from(inp) return out def __array__(self, *args, **kwargs): return np.array(self.to_numpy()._value) def to_tf(self): if isinstance(self._value, np.ndarray): return Image( tensorflow.constant(self._value), copy=False ).merge_properties_from(self) if isinstance(self._value, cupy.ndarray): return Image( tensorflow.constant(self._value.get()), copy=False ).merge_properties_from(self) return self def to_cupy(self): if isinstance(self._value, np.ndarray): return Image(cupy.array(self._value), copy=False).merge_properties_from( self ) return self def to_numpy(self): if isinstance(self._value, cupy.ndarray): return Image(self._value.get(), copy=False).merge_properties_from(self) if isinstance(self._value, tensorflow.Tensor): return Image(self._value.numpy(), copy=False).merge_properties_from(self) return self def __getattr__(self, key): return getattr(self._value, key) def __getitem__(self, idx): idx = strip(idx) out = Image(self._value.__getitem__(idx), copy=False) out.merge_properties_from([self, idx]) return out def __setitem__(self, key, value): key = strip(key) value = strip(value) o = self._value.__setitem__(key, value) self.merge_properties_from([key, value]) return o def __int__(self): return int(self._value) def __float__(self): return float(self._value) def __nonzero__(self): return bool(self._value) def __bool__(self): return bool(self._value) def __round__(self, *args, **kwargs): return round(self._value, *args, **kwargs) def __len__(self): return len(self._value) def __repr__(self): return repr(self._value) + "\nWith properties:" + repr(self.properties) __lt__ = _binary_method(ops.lt) __le__ = _binary_method(ops.le) __eq__ = _binary_method(ops.eq) __ne__ = _binary_method(ops.ne) __gt__ = _binary_method(ops.gt) __ge__ = _binary_method(ops.ge) # numeric methods __add__, __radd__, __iadd__ = _numeric_methods(ops.add) __sub__, __rsub__, __isub__ = _numeric_methods(ops.sub) __mul__, __rmul__, __imul__ = _numeric_methods(ops.mul) __matmul__, __rmatmul__, __imatmul__ = _numeric_methods(ops.matmul) # Python 3 does not use __div__, __rdiv__, or __idiv__ __truediv__, __rtruediv__, __itruediv__ = _numeric_methods(ops.truediv) __floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods(ops.floordiv) __mod__, __rmod__, __imod__ = _numeric_methods(ops.mod) __divmod__ = _binary_method(divmod) __rdivmod__ = _reflected_binary_method(divmod) # __idivmod__ does not exist # TODO: handle the optional third argument for __pow__? __pow__, __rpow__, __ipow__ = _numeric_methods(ops.pow) __lshift__, __rlshift__, __ilshift__ = _numeric_methods(ops.lshift) __rshift__, __rrshift__, __irshift__ = _numeric_methods(ops.rshift) __and__, __rand__, __iand__ = _numeric_methods(ops.and_) __xor__, __rxor__, __ixor__ = _numeric_methods(ops.xor) __or__, __ror__, __ior__ = _numeric_methods(ops.or_) # unary methods __neg__ = _unary_method(ops.neg) __pos__ = _unary_method(ops.pos) __abs__ = _unary_method(ops.abs) __invert__ = _unary_method(ops.invert) def strip(v): if isinstance(v, Image): return v._value if isinstance(v, (list, tuple)): return type(v)([strip(i) for i in v]) return v def array(v): return np.array(strip(v)) def coerce(images): images = [Image(image, copy=False) for image in images] # if any(isinstance(i._value, tensorflow.Tensor) for i in images): # return [i.to_tf() for i in images] if any(isinstance(i._value, cupy.ndarray) for i in images): return [i.to_cupy() for i in images] else: return images FASTEST_SIZES = [0] for n in range(1, 10): FASTEST_SIZES += [2 ** a * 3 ** (n - a - 1) for a in range(n)] FASTEST_SIZES = np.sort(FASTEST_SIZES) def pad_image_to_fft(image: Image, axes=(0, 1)) -> Image: """Pads image to speed up fast fourier transforms. Pads image to speed up fast fourier transforms by adding 0s to the end of the image. Parameters ---------- image The image to pad axes : iterable of int, optional The axes along which to pad. """ def _closest(dim): # Returns the smallest value frin FASTEST_SIZES # larger than dim for size in FASTEST_SIZES: if size >= dim: return size new_shape = np.array(image.shape) for axis in axes: new_shape[axis] = _closest(new_shape[axis]) increase = np.array(new_shape) - image.shape pad_width = [(0, inc) for inc in increase] return np.pad(image, pad_width, mode="constant") def maybe_cupy(array): from . import config if config.gpu_enabled: return cp.array(array) return array
the-stack_0_22384
from subdaap import monkey # noqa from subdaap.application import Application from subdaap.utils import VerboseAction, PathAction, NewPathAction import argparse import logging import atexit import sys import gc import os # Logger instance logger = logging.getLogger(__name__) def parse_arguments(): """ Parse commandline arguments. """ parser = argparse.ArgumentParser() # Add options parser.add_argument( "-D", "--daemon", action="store_true", help="run as daemon") parser.add_argument( "-v", "--verbose", nargs="?", action=VerboseAction, default=0, help="toggle verbose mode (-vv, -vvv for more)") parser.add_argument( "-c", "--config-file", action=PathAction, default="config.ini", help="config file") parser.add_argument( "-d", "--data-dir", action=PathAction, default=os.getcwd(), help="data directory") parser.add_argument( "-p", "--pid-file", action=NewPathAction, help="pid file") parser.add_argument( "-l", "--log-file", action=NewPathAction, help="log file") # Parse command line return parser.parse_args(), parser def setup_logging(console=True, log_file=None, verbose=False): """ Setup logging. :param bool console: If True, log to console. :param str log_file: If set, log to a file (append) as specified. :param bool verbose: Enable debug logging if True. """ # Configure logging formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - %(message)s") level = logging.DEBUG if verbose else logging.INFO # Add console output handler if console: console_log_handler = logging.StreamHandler() console_log_handler.setLevel(level) console_log_handler.setFormatter(formatter) logging.getLogger().addHandler(console_log_handler) # Add file output handler if log_file: file_log_handler = logging.FileHandler(log_file) file_log_handler.setLevel(level) file_log_handler.setFormatter(formatter) logging.getLogger().addHandler(file_log_handler) logging.getLogger().setLevel(level) logger.info("Verbose level is %d", verbose) def daemonize(pid_file=None): """ Daemonize the current process. Returns the PID of the continuing child process. As an extra option, the PID of the child process can be written to a specified PID file. Note that parent process ends with `os._exit` instead of `sys.exit`. The first will not trigger any cleanups that may have been set. These are left for the child process that continues. :param str pid_file: Path to PID file to write process ID into. Must be in a writeable folder. If left `None`, no file will be written. :return: Process ID :rtype: int """ # Dependency check to make sure the imports are OK. Saves you from a lot of # debugging trouble when you forget to import them. assert atexit.register and os.fork and sys.stdout and gc.collect # Force cleanup old resources to minimize the risk of sharing them. gc.collect() # First fork try: if os.fork() > 0: os._exit(0) except OSError as e: sys.stderr.write("Unable to fork: %d (%s)\n" % (e.errno, e.strerror)) sys.exit(1) # Decouple from parent os.setsid() os.umask(0) # Second fork try: if os.fork() > 0: os._exit(0) except OSError as e: sys.stderr.write("Unable to fork: %d (%s)\n" % (e.errno, e.strerror)) sys.exit(1) # Redirect file descriptors sys.stdout.flush() sys.stderr.flush() stdin = file("/dev/null", "r") stdout = file("/dev/null", "a+") stderr = file("/dev/null", "a+", 0) os.dup2(stdin.fileno(), sys.stdin.fileno()) os.dup2(stdout.fileno(), sys.stdout.fileno()) os.dup2(stderr.fileno(), sys.stderr.fileno()) # Write PID file if pid_file: atexit.register(os.remove, pid_file) with open(pid_file, "w+") as fp: fp.write("%d" % os.getpid()) # Return the PID return os.getpid() def main(): """ Main entry point. Parses arguments, daemonizes and creates the application. """ # Parse arguments and configure application instance. arguments, parser = parse_arguments() if arguments.daemon: daemonize(arguments.pid_file) setup_logging(not arguments.daemon, arguments.log_file, arguments.verbose) # Change to data directory os.chdir(arguments.data_dir) # Create application instance and run it. try: application = Application( config_file=arguments.config_file, data_dir=arguments.data_dir, verbose=arguments.verbose) except Exception as e: logger.error( "One or more components failed to initialize: %s. The application " "will now exit.", e) if arguments.verbose > 1: logger.exception("Stack trace") return 1 try: application.start() except KeyboardInterrupt: application.stop() # E.g. `python SubDaap.py --daemonize --config-file=config.ini" if __name__ == "__main__": sys.exit(main())
the-stack_0_22387
#!/usr/bin/env python import os from skimage._build import cython base_path = os.path.abspath(os.path.dirname(__file__)) def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration, get_numpy_include_dirs config = Configuration('transform', parent_package, top_path) config.add_data_dir('tests') cython(['_hough_transform.pyx', '_warps_cy.pyx', '_radon_transform.pyx'], working_path=base_path) config.add_extension('_hough_transform', sources=['_hough_transform.c'], include_dirs=[get_numpy_include_dirs()]) config.add_extension('_warps_cy', sources=['_warps_cy.c'], include_dirs=[get_numpy_include_dirs(), '../_shared']) config.add_extension('_radon_transform', sources=['_radon_transform.c'], include_dirs=[get_numpy_include_dirs()]) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(maintainer='scikit-image Developers', author='scikit-image Developers', maintainer_email='[email protected]', description='Transforms', url='https://github.com/scikit-image/scikit-image', license='SciPy License (BSD Style)', **(configuration(top_path='').todict()) )
the-stack_0_22389
""" Implement the transformations we need to use to convert a link to an adaptive loss scaled link. """ # NOTE: this file is deprecated import chainer import chainer.links as L import chainer.initializers as I # pylint: disable=unused-wildcard-import from ada_loss.chainer_impl.links import * __all__ = [ "AdaLossTransformLinear", "AdaLossTransformConvolution2D", ] class AdaLossTransform(object): """ The base class """ def __call__(self, link, cfg): """ Entry """ raise NotImplementedError("This call function should be implemented properly") class AdaLossTransformLinear(AdaLossTransform): """ """ cls = L.Linear def __call__(self, link, cfg, initialW=I.HeNormal()): assert isinstance(link, self.cls) link_ = AdaLossLinear( link.in_size, out_size=link.out_size, nobias=link.b is None, ada_loss_cfg=cfg, ) link_.copyparams(link) return link_ class AdaLossTransformConvolution2D(AdaLossTransform): """ """ cls = L.Convolution2D def __call__(self, link, cfg, initialW=I.HeNormal()): assert isinstance(link, self.cls) link_ = AdaLossConvolution2D( link.in_channels, link.out_channels, ksize=link.ksize, stride=link.stride, pad=link.pad, dilate=link.dilate, groups=link.groups, nobias=link.b is None, ada_loss_cfg=cfg, ) link_.copyparams(link) return link_
the-stack_0_22390
import numpy as np import torch import torchmetrics from utils import criterion_utils def frame_based_metrics(model, data_loader, threshold, reduction): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device=device) model.eval() precision = torchmetrics.Precision(threshold=threshold, average="micro", compute_on_step=False) precision.to(device=device) recall = torchmetrics.Recall(threshold=threshold, average="micro", compute_on_step=False) recall.to(device=device) f1 = torchmetrics.F1(threshold=threshold, average="micro", compute_on_step=False) f1.to(device=device) with torch.no_grad(): for batch_idx, data in enumerate(data_loader, 0): audio_feats, audio_lens, queries, query_lens, labels, infos = data audio_feats, queries, labels = audio_feats.to(device), queries.to(device), labels.to(device) if reduction == "baseline": alignment_matrices = torch.rand_like(labels, device=device) else: audio_embeds, query_embeds = model(audio_feats, queries, query_lens) # Alignment matrices [N, T, Q] alignment_matrices = criterion_utils.compute_similarities(audio_embeds, query_embeds, audio_lens) # Aggregate along Q if reduction == "mean": alignment_matrices = alignment_matrices.mean(dim=2, keepdim=False) # [N, T] elif reduction == "max": alignment_matrices = alignment_matrices.max(dim=2, keepdim=False).values # [N, T] # Min-max normalization alignment_matrices -= alignment_matrices.min(dim=1, keepdim=True)[0] alignment_matrices /= alignment_matrices.max(dim=1, keepdim=True)[0] # Frame-based metric precision(alignment_matrices, labels.long()) recall(alignment_matrices, labels.long()) f1(alignment_matrices, labels.long()) precision = precision.compute().item() recall = recall.compute().item() f1 = f1.compute().item() return {"precision": precision, "recall": recall, "f1": f1} def retrieval_metrics(model, dataset, reduction): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device=device) model.eval() # Initial metric instances recalls = {"a2c_R": {}, "c2a_R": {}} for task in recalls: for k in [1, 5]: instance = torchmetrics.RetrievalRecall(empty_target_action="skip", compute_on_step=False, k=k) instance.to(device=device) recalls[task]["{}{}".format(task, k)] = instance with torch.no_grad(): # Group audio-caption pairs by ytid ytid_group = {} for i in range(len(dataset)): item = dataset.data_df.iloc[i] if ytid_group.get(item["ytid"]) is None: ytid_group[item["ytid"]] = [i] else: ytid_group[item["ytid"]].append(i) # ytid-to-index, index-to-ytid ytid2ind = {ytid: ind for ind, ytid in enumerate(ytid_group, 0)} ind2ytid = {ytid2ind[ytid]: ytid for ytid in ytid2ind} # Randomize 30 audio-caption pairs (1 ground-truth + 29 non-positive) for each audio sample (ytid) for i_ytid in ytid_group: indexes, a2c_preds, c2a_preds, target = [], [], [], [] # Select the ground truth i = np.random.choice(a=ytid_group[i_ytid], size=1, replace=False, p=None)[0] i_audio_emb, i_query_emb, i_info = transform(model, dataset, i, device) gt_score = criterion_utils.score(i_audio_emb, i_query_emb, reduction=reduction) indexes.append(i) a2c_preds.append(gt_score.item()) c2a_preds.append(gt_score.item()) target.append(i_info["ytid"] == i_ytid) # Select 29 non-positive audio samples (ytids) num_items = 30 ytid_indexes = np.array([ind for ind in ind2ytid]) if len(ytid_indexes) > num_items: probs = np.array([ytid2ind[i_ytid] != ind for ind in ytid_indexes]) probs = probs / (len(ytid_indexes) - 1) ytid_indexes[:num_items - 1] = np.random.choice(a=ytid_indexes, size=num_items - 1, replace=False, p=probs) ytid_indexes[num_items - 1] = ytid2ind[i_ytid] ytid_indexes = ytid_indexes[:num_items] assert len(ytid_indexes) == num_items assert ytid_indexes[num_items - 1] == ytid2ind[i_ytid] # Randomize 29 non-positives for ind in ytid_indexes[:num_items - 1]: j_ytid = ind2ytid[ind] j = np.random.choice(a=ytid_group[j_ytid], size=1, replace=False, p=None)[0] j_audio_emb, j_query_emb, j_info = transform(model, dataset, j, device) a2c_score = criterion_utils.score(i_audio_emb, j_query_emb, reduction=reduction) c2a_score = criterion_utils.score(j_audio_emb, i_query_emb, reduction=reduction) indexes.append(i) a2c_preds.append(a2c_score.item()) c2a_preds.append(c2a_score.item()) target.append(i_info["ytid"] == j_info["ytid"]) indexes = torch.tensor(indexes, device=device, dtype=torch.long) a2c_preds = torch.tensor(a2c_preds, device=device) c2a_preds = torch.tensor(c2a_preds, device=device) target = torch.tensor(target, device=device) # Update metrics for key in recalls["a2c_R"]: instance = recalls["a2c_R"][key] instance(a2c_preds, target, indexes=indexes) for key in recalls["c2a_R"]: instance = recalls["c2a_R"][key] instance(c2a_preds, target, indexes=indexes) # Compute metrics for task in recalls: for key in recalls[task]: instance = recalls[task][key] recalls[task][key] = instance.compute().item() return recalls def transform(model, dataset, index, device=None): audio, query, _, info = dataset[index] audio = torch.unsqueeze(audio, dim=0).to(device=device) query = torch.unsqueeze(query, dim=0).to(device=device) audio_emb, query_emb = model(audio, query, [query.size(-1)]) audio_emb = torch.squeeze(audio_emb, dim=0).to(device=device) query_emb = torch.squeeze(query_emb, dim=0).to(device=device) return audio_emb, query_emb, info
the-stack_0_22391
# The plot server must be running # Go to http://localhost:5006/bokeh to view this plot import numpy as np from bokeh.plotting import * from bokeh.objects import Range1d N = 80 x = np.linspace(0, 4*np.pi, N) y = np.sin(x) output_server("line.py example") hold() line(x, y, color="#3333ee", tools="pan,zoom,resize") line([0,4*np.pi], [-1, 1], color="#ee3333", tools="pan,zoom,resize") show() import time from bokeh.objects import Glyph renderer = [r for r in curplot().renderers if isinstance(r, Glyph)][0] ds = renderer.data_source while True: for i in np.hstack((np.linspace(1, -1, 100), np.linspace(-1, 1, 100))): ds.data["y"] = y * i ds._dirty = True session().store_obj(ds) time.sleep(0.05)
the-stack_0_22392
import re from servo import Servo import socket import time from threading import Thread import queue ERROR_TIMEOUT = 0.5 # Seconds to wait after a client socket error. class ServoServer(Thread): """ A thread class that listens for servo messages over a socket in the form of "<pin address> <angle>". """ def __init__(self, port): """ Initialized the server but does not open any ports until run() is called. :param port: The port to use to listen for commands. """ super(ServoServer, self).__init__() self.__port = port def run(self): """ Infinitely loops, waiting for socket connections and commands. """ try: server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_socket.bind(('127.0.0.1', self.__port)) servo_queue = ServoQueue() servo_queue.start() while True: try: server_socket.listen(2) client_socket, _ = server_socket.accept() message = client_socket.recv(2048).decode("utf-8") re_result = re.match('^(?P<pin>[0-9]+) (?P<angle>[0-9]{1,3})$', message) if re_result: pin = int(re_result.group('pin')) angle = int(re_result.group('angle')) servo_queue.add_servo(Servo(pin, angle)) client_socket.shutdown(socket.SHUT_RDWR) client_socket.close() except Exception as e: print('Socket exception %s' % e) time.sleep(ERROR_TIMEOUT) except Exception as e: print('Server exception %s' % e) return class ServoQueue(Thread): """ A thread class that manages the servos in a queue. Allows only one servo to run at a time. """ def __init__(self): self.__queue = queue.Queue() super(ServoQueue, self).__init__() def add_servo(self, srvo): self.__queue.put(srvo) def run(self): while True: srvo = self.__queue.get() srvo.start() while srvo.is_alive(): time.sleep(0.1)
the-stack_0_22393
import os import numpy as np import tensorflow as tf import tensorflow.keras.backend as K import tensorflow.keras.layers as KL import matplotlib.pyplot as plt from . import neuron as ne from . import layers def setup_device(gpuid=None): """ Configures the appropriate TF device from a cuda device string. Returns the device id and total number of devices. """ if gpuid is not None and not isinstance(gpuid, str): gpuid = str(gpuid) nb_devices = len(gpuid.split(',')) if gpuid is not None and (gpuid != '-1'): device = '/gpu:' + gpuid os.environ['CUDA_VISIBLE_DEVICES'] = gpuid # GPU memory configuration differs between TF 1 and 2 if hasattr(tf, 'ConfigProto'): config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True tf.keras.backend.set_session(tf.Session(config=config)) else: tf.config.set_soft_device_placement(True) for pd in tf.config.list_physical_devices('GPU'): tf.config.experimental.set_memory_growth(pd, True) else: device = '/cpu:0' os.environ['CUDA_VISIBLE_DEVICES'] = '-1' return device, nb_devices def transform(img, trf, interp_method='linear', rescale=None): """ Applies a transform to an image. Note that inputs and outputs are in tensor format i.e. (batch, *imshape, nchannels). """ img_input = tf.keras.Input(shape=img.shape[1:]) trf_input = tf.keras.Input(shape=trf.shape[1:]) trf_scaled = trf_input if rescale is None else layers.RescaleTransform(rescale)(trf_input) y_img = layers.SpatialTransformer(interp_method=interp_method)([img_input, trf_scaled]) return tf.keras.Model([img_input, trf_input], y_img).predict([img, trf]) def is_affine(shape): return len(shape) == 1 or (len(shape) == 2 and shape[0] + 1 == shape[1]) def extract_affine_ndims(shape): if len(shape) == 1: # if vector, just compute ndims since length = N * (N + 1) return int((np.sqrt(4 * int(shape[0]) + 1) - 1) / 2) else: return int(shape[0]) def affine_shift_to_identity(trf): ndims = extract_affine_ndims(trf.shape.as_list()) trf = tf.reshape(trf, [ndims, ndims + 1]) trf = tf.concat([trf, tf.zeros((1, ndims + 1))], axis=0) trf += tf.eye(ndims + 1) return trf def affine_identity_to_shift(trf): ndims = int(trf.shape.as_list()[-1]) - 1 trf = trf - tf.eye(ndims + 1) trf = trf[:ndims, :] return tf.reshape(trf, [ndims * (ndims + 1)]) def value_at_location(x, single_vol=False, single_pts=False, force_post_absolute_val=True): """ Extracts value at given point. """ # vol is batch_size, *vol_shape, nb_feats # loc_pts is batch_size, nb_surface_pts, D or D+1 vol, loc_pts = x fn = lambda y: ne.utils.interpn(y[0], y[1]) z = tf.map_fn(fn, [vol, loc_pts], dtype=tf.float32) if force_post_absolute_val: z = K.abs(z) return z def point_spatial_transformer(x, single=False, sdt_vol_resize=1): """ Transforms surface points with a given deformation. Note that the displacement field that moves image A to image B will be "in the space of B". That is, `trf(p)` tells you "how to move data from A to get to location `p` in B". Therefore, that same displacement field will warp *landmarks* in B to A easily (that is, for any landmark `L(p)`, it can easily find the appropriate `trf(L(p))` via interpolation. """ # surface_points is a N x D or a N x (D+1) Tensor # trf is a *volshape x D Tensor surface_points, trf = x trf = trf * sdt_vol_resize surface_pts_D = surface_points.get_shape().as_list()[-1] trf_D = trf.get_shape().as_list()[-1] assert surface_pts_D in [trf_D, trf_D + 1] if surface_pts_D == trf_D + 1: li_surface_pts = K.expand_dims(surface_points[..., -1], -1) surface_points = surface_points[..., :-1] # just need to interpolate. # at each location determined by surface point, figure out the trf... # note: if surface_points are on the grid, gather_nd should work as well fn = lambda x: ne.utils.interpn(x[0], x[1]) diff = tf.map_fn(fn, [trf, surface_points], dtype=tf.float32) ret = surface_points + diff if surface_pts_D == trf_D + 1: ret = tf.concat((ret, li_surface_pts), -1) return ret def plot_history(hist, model_name): """ Quick function to plot the history """ # plt.figure() plt.style.use('ggplot') plt.plot(hist.epoch, hist.history['loss'], '.-') plt.ylabel('loss') plt.xlabel('epoch') # plt.show() dir_imgs = f'./logs/learning_curve/' if not os.path.exists(dir_imgs): os.makedirs(dir_imgs) plt.savefig(dir_imgs + f'{model_name}.png', format='png', dpi=100, transparent=False, bbox_inches='tight')
the-stack_0_22395
import requests import telebot,os API_KEY=os.environ.get('TOKEN') bot=telebot.TeleBot(API_KEY) from datetime import datetime #from flask import request import re,textwrap now=datetime.now() today_date=now.strftime("%d-%m-%Y") base_url="https://cdn-api.co-vin.in/api/v2/appointment/sessions/public/calendarByDistrict" district={622: 'Agra', 623: 'Aligarh', 625: 'Ambedkar Nagar', 626: 'Amethi', 627: 'Amroha', 628: 'Auraiya', 646: 'Ayodhya', 629: 'Azamgarh', 630: 'hathrus'} def availability_data(response): response_json=response.json() message="" for center in response_json["centers"]: for session in center["sessions"]: if(session["available_capacity_dose1"]>0): message+="PinCode:{} \nDate :{} \nCenter Name :{} \nMin Age :{} \nVaccine Type :{} \nCapacity :{}\n---\n".format(center["pincode"], session["date"],center["name"],session["min_age_limit"],session["vaccine"],session["available_capacity_dose1"]) return message def fetch_data_from_covin(dist_id): query="?district_id={}&date={}".format(dist_id,today_date) final_url=base_url+query response=requests.get(final_url) return availability_data(response) #print(fetch_data_from_covin(622 if __name__=="__main__": try: @bot.message_handler(commands=['start']) def start_message(message): text="i will help you to find vaccine slots in your district just type districts then enter your district code:) " bot.send_message(message.chat.id,text) #bot.reply_to(message,"somthing went wrong :-{") @bot.message_handler(content_types=['text']) def send_text(message): try: txt=message.text if(len(txt)==0): bot.reply_to(message,"NOT available") if txt.lower()=="district": districts="" for a,b in district.items(): districts+="{} - {}\n".format(a,b) bot.reply_to(message,districts) elif txt.isnumeric() and int(txt)>0: dist_id=int(txt) slots=fetch_data_from_covin(dist_id) split_text=textwrap.wrap(slots,width=4096,break_long_words=False) #bot.sendMessage(chat_id=chat_id, text=slots, reply_to_message_id=msg_id) if len(slots)>=4095: for text in split_text: text=text+"\n--" bot.send_message(message.chat.id,text.upper()) else: bot.send_message(message.chat.id,slots) else: bot.send_message(message.chat.id,"INVALID CODE! TRY AGAIN") # elif message.text.lower() =='Bye': # bot.send_message(message.chat.id,'see you soom' ) # elif message.text.lower() == 'I love you': # bot.send_sticker(message.chat.id, 'API') # bot.send_message(message.chat.id,'Wrong code ' ) except Exception as e: print(e) bot.reply_to(message,"slots are not available :-{") bot.polling(none_stop=True) except Exception as e: print(e) bot.polling(none_stop=True)
the-stack_0_22396
import django_tables2 as tables from dcim.models import Location, Region, Site, SiteGroup from tenancy.tables import TenantColumn from utilities.tables import ( BaseTable, ButtonsColumn, ChoiceFieldColumn, LinkedCountColumn, MarkdownColumn, MPTTColumn, TagColumn, ToggleColumn, ) from .template_code import LOCATION_ELEVATIONS __all__ = ( 'LocationTable', 'RegionTable', 'SiteTable', 'SiteGroupTable', ) # # Regions # class RegionTable(BaseTable): pk = ToggleColumn() name = MPTTColumn( verbose_name='地区', linkify=True ) site_count = LinkedCountColumn( viewname='dcim:site_list', url_params={'region_id': 'pk'}, verbose_name='站点数' ) actions = ButtonsColumn(Region) class Meta(BaseTable.Meta): model = Region fields = ('pk', 'name', 'slug', 'site_count', 'description', 'actions') default_columns = ('pk', 'name', 'site_count', 'description', 'actions') # # Site groups # class SiteGroupTable(BaseTable): pk = ToggleColumn() name = MPTTColumn( verbose_name='站点组名', linkify=True ) site_count = LinkedCountColumn( viewname='dcim:site_list', url_params={'group_id': 'pk'}, verbose_name='站点数' ) actions = ButtonsColumn(SiteGroup) class Meta(BaseTable.Meta): model = SiteGroup fields = ('pk', 'name', 'slug', 'site_count', 'description', 'actions') default_columns = ('pk', 'name', 'site_count', 'description', 'actions') # # Sites # class SiteTable(BaseTable): pk = ToggleColumn() name = tables.Column( verbose_name='站点名', linkify=True ) status = ChoiceFieldColumn( verbose_name='状态' ) region = tables.Column( verbose_name='地区', linkify=True ) group = tables.Column( verbose_name='组别', linkify=True ) tenant = TenantColumn( verbose_name='租户' ) comments = MarkdownColumn() tags = TagColumn( url_name='dcim:site_list' ) class Meta(BaseTable.Meta): model = Site fields = ( 'pk', 'name', 'slug', 'status', 'facility', 'region', 'group', 'tenant', 'asn', 'time_zone', 'description', 'physical_address', 'shipping_address', 'latitude', 'longitude', 'contact_name', 'contact_phone', 'contact_email', 'comments', 'tags', ) default_columns = ('pk', 'name', 'status', 'facility', 'region', 'group', 'tenant', 'asn', 'description') # # Locations # class LocationTable(BaseTable): pk = ToggleColumn() name = MPTTColumn( verbose_name='名称', linkify=True ) site = tables.Column( verbose_name='站点', linkify=True ) rack_count = LinkedCountColumn( viewname='dcim:rack_list', url_params={'location_id': 'pk'}, verbose_name='机架数' ) device_count = LinkedCountColumn( viewname='dcim:device_list', url_params={'location_id': 'pk'}, verbose_name='设备数' ) actions = ButtonsColumn( model=Location, prepend_template=LOCATION_ELEVATIONS ) class Meta(BaseTable.Meta): model = Location fields = ('pk', 'name', 'site', 'rack_count', 'device_count', 'description', 'slug', 'actions') default_columns = ('pk', 'name', 'site', 'rack_count', 'device_count', 'description', 'actions')
the-stack_0_22402
""" This is mostly based on references/infection_alg.pdf """ import ast from functools import (lru_cache, partial) import json import logging import mocos_helper #import random import time from collections import defaultdict import pickle import psutil from shutil import copyfile from math import log from git import Repo import pandas as pd import scipy.optimize import scipy.stats from src.models.schemas import * from src.models.defaults import * from src.models.states_and_functions import * from src.visualization.visualize import Visualize import click from dotenv import find_dotenv, load_dotenv from queue import (PriorityQueue) q = PriorityQueue() class InfectionModel: def __init__(self, params_path: str, df_individuals_path: str, df_households_path: str = '') -> None: self.params_path = params_path self.df_individuals_path = df_individuals_path self.df_households_path = df_households_path logger.info('Loading params...') self._params = dict() with open(params_path, 'r') as params_file: params = json.loads( params_file.read() ) # TODO: check whether this should be moved to different place logger.info('Parsing params...') for key, schema in infection_model_schemas.items(): self._params[key] = schema.validate(params.get(key, defaults[key])) default_household_input_path = os.path.join(self._params[OUTPUT_ROOT_DIR], self._params[EXPERIMENT_ID], 'input_df_households.csv') # TODO: ensure households are valid! if df_households_path == '': self.df_households_path = default_household_input_path self._global_time = None self._max_time = None self._vis = None self._max_time_offset = 0.0 self._expected_case_severity = None self._df_individuals = None self._df_households = None #self._individuals_gender = None self._individuals_age = None self._individuals_household_id = None self._individuals_indices = None self._households_capacities = None self._households_inhabitants = None self._init_for_stats = None self._affected_people = 0 self._active_people = 0 self._quarantined_people = 0 self._detected_people = 0 self._immune_people = 0 self._deaths = 0 self._icu_needed = 0 self._disable_friendship_kernel = False self._set_up_data_frames() self._infection_status = None self._detection_status = None self._quarantine_status = None self._expected_case_severity = None if self._params[REUSE_EXPECTED_CASE_SEVERITIES]: self._expected_case_severity = self.draw_expected_case_severity() self._infections_dict = None self._progression_times_dict = None t0_f, t0_args, t0_kwargs = self.setup_random_distribution(T0) self.rv_t0 = lambda: t0_f(*t0_args, **t0_kwargs) t1_f, t1_args, t1_kwargs = self.setup_random_distribution(T1) self.rv_t1 = lambda: t1_f(*t1_args, **t1_kwargs) t2_f, t2_args, t2_kwargs = self.setup_random_distribution(T2) self.rv_t2 = lambda: t2_f(*t2_args, **t2_kwargs) tdeath_f, tdeath_args, tdeath_kwargs = self.setup_random_distribution(TDEATH) self.rv_tdeath = lambda: tdeath_f(*tdeath_args, **tdeath_kwargs) # TODO: This should be refactored self.fear_fun = dict() self.fear_weights_detected = dict() self.fear_weights_deaths = dict() self.fear_scale = dict() self.fear_loc = dict() self.fear_limit_value = dict() self.serial_intervals = [] self.band_time = None self._last_affected = None self._per_day_increases = {} self._disable_constant_age_kernel = False self._constant_age_helper_age_dict = {} self._constant_age_individuals = defaultdict(list) self._setup_constant_age_kernel() def _setup_constant_age_kernel(self): if self._params[CONSTANT_AGE_SETUP] is None: self._disable_constant_age_kernel = True return if isinstance(self._params[CONSTANT_AGE_SETUP][AGE], int): self._constant_age_helper_age_dict[self._params[CONSTANT_AGE_SETUP][AGE]] = 0 else: if self._params[CONSTANT_AGE_SETUP][INTER_AGE_CONTACTS]: # so all ages specified can be mixed for age in self._params[CONSTANT_AGE_SETUP][AGE]: self._constant_age_helper_age_dict[age] = 0 else: for i, age in enumerate(self._params[CONSTANT_AGE_SETUP][AGE]): self._constant_age_helper_age_dict[age] = i for age, individual_list_key in self._constant_age_helper_age_dict.items(): self._constant_age_individuals[individual_list_key].extend([ k for k, v in self._individuals_age_dct.items() if v==age ]) def get_detection_status_(self, person_id): return self._detection_status.get(person_id, default_detection_status) def get_quarantine_status_(self, person_id): return self._quarantine_status.get(person_id, default_quarantine_status) def get_infection_status(self, person_id): return self._infection_status.get(person_id, InfectionStatus.Healthy.value) @staticmethod def parse_random_seed(random_seed): mocos_helper.seed(random_seed) def _set_up_data_frames(self) -> None: """ The purpose of this method is to set up two dataframes. One is self._df_individuals that stores features for the population Second is self._df_households that stores list of people idx per household building df_households is time consuming, therefore we try to reuse previously computed df_households :return: """ logger.info('Set up data frames: Reading population csv...') self._df_individuals = pd.read_csv(self.df_individuals_path) self._df_individuals.index = self._df_individuals.idx self._individuals_age = self._df_individuals[AGE].values self._individuals_age_dct = self._df_individuals[AGE].to_dict() self._individuals_gender_dct = self._df_individuals[GENDER].to_dict() self._individuals_household_id = self._df_individuals[HOUSEHOLD_ID].to_dict() self._individuals_indices = self._df_individuals.index.values if SOCIAL_COMPETENCE in self._df_individuals.columns: if self._params[TRANSMISSION_PROBABILITIES][FRIENDSHIP] == 0: logger.info('Friendship = 0.0 - Disable friendship kernel...') self._disable_friendship_kernel = True else: logger.info('Set up data frames: Social competence and loading social activity sampler...') self._social_activity_scores = self._df_individuals[SOCIAL_COMPETENCE].to_dict() self._social_activity_sampler = mocos_helper.AgeDependentFriendSampler( self._individuals_indices, self._individuals_age, self._df_individuals[GENDER].values, self._df_individuals[SOCIAL_COMPETENCE].values ) self._disable_friendship_kernel = False else: logger.info('Social competence missing - Disable friendship kernel...') self._disable_friendship_kernel = True logger.info('Set up data frames: Building households df...') if os.path.exists(self.df_households_path): self._df_households = pd.read_csv(self.df_households_path, index_col=HOUSEHOLD_ID, converters={ID: ast.literal_eval}) else: self._df_households = pd.DataFrame({ID: self._df_individuals.groupby(HOUSEHOLD_ID)[ID].apply(list)}) os.makedirs(os.path.dirname(self.df_households_path), exist_ok=True) self._df_households.to_csv(self.df_households_path) self._df_households[CAPACITY] = self._df_households[ID].apply(lambda x: len(x)) d = self._df_households.to_dict() self._households_inhabitants = d[ID] #self._df_households[ID] self._households_capacities = d[CAPACITY] #self._df_households[CAPACITY] if not self._params[LOG_OUTPUTS]: self._df_households = None self._df_individuals = None @staticmethod def append_event(event: Event) -> None: q.put(event) def _fill_queue_based_on_auxiliary_functions(self) -> None: # TODO: THIS IS NOT WORKING WHEN CAP = INF, let's fix it # (one possible way to fix it: generate say first N events and a followup "filling EVENT" # on time T(N) of N-th event - at T(N) generate N more events and enqueue next portion. # Alternatively add just one event of type AUXILIARY_FUNCTION/IMPORT_INTENSITY # that will then draw time of next event of that type """ The purpose of this method is to mark some people of the population as sick according to provided function. Possible functions: see possible values of ImportIntensityFunctions enum Outcome of the function can be adjusted by overriding default parameters: multiplier, rate, cap, infectious_probability. :return: """ def _generate_event_times(func, rate, multiplier, cap, root_buffer=100, root_guess=0) -> list: """ Here a naive way of generating event times is proposed. The idea is to generate N events :param func: currently two functions are supported: exponential a*exp(r*t) and polynomial a*r^t :param rate: a parameter that is making the slope more steep :param multiplier: a parameter that scales the time down :param cap: the maximum amount of cases generated and added to queue list :param root_buffer: one-directional range to find roots in :param root_guess: guess on first solution (i=1) :return: """ root_min = root_guess - root_buffer root_max = root_guess + root_buffer time_events_ = [] def bisect_fun(x, integer): return func(x, rate=rate, multiplier=multiplier) - integer for i in range(1, 1 + cap): bisect_fun = partial(bisect_fun, integer=i) root = scipy.optimize.bisect(bisect_fun, root_min, root_max) time_events_.append(root) root_min = root root_max = root + root_buffer return time_events_ import_intensity = self._params[IMPORT_INTENSITY] f_choice = ImportIntensityFunctions(import_intensity[FUNCTION]) if f_choice == ImportIntensityFunctions.NoImport: return func = import_intensity_functions[f_choice] multiplier = import_intensity[MULTIPLIER] rate = import_intensity[RATE] cap = import_intensity[CAP] infectious_prob = import_intensity[INFECTIOUS] event_times = _generate_event_times(func=func, rate=rate, multiplier=multiplier, cap=cap) for event_time in event_times: person_id = self._individuals_indices[mocos_helper.randint(0, len(self._individuals_indices))] t_state = TMINUS1 if mocos_helper.rand() < infectious_prob: t_state = T0 self.append_event(Event(event_time, person_id, t_state, None, IMPORT_INTENSITY, self.global_time)) def _fill_queue_based_on_initial_conditions(self): """ The purpose of this method is to mark some people of the population as sick according to provided initial conditions. Conditions can be provided using one of two supported schemas. schema v1 is list with details per person, while schema v2 is dictionary specifying selection algorithm and cardinalities of each group of patients (per symptom). :return: """ def _assign_t_state(status): if status == CONTRACTION: return TMINUS1 if status == INFECTIOUS: return T0 if status == IMMUNE: return TRECOVERY raise ValueError(f'invalid initial infection status {status}') initial_conditions = self._params[INITIAL_CONDITIONS] if isinstance(initial_conditions, list): # schema v1 for initial_condition in initial_conditions: person_idx = initial_condition[PERSON_INDEX] t_state = _assign_t_state(initial_condition[INFECTION_STATUS]) if EXPECTED_CASE_SEVERITY in initial_condition: self._expected_case_severity[person_idx] = initial_condition[EXPECTED_CASE_SEVERITY] self.append_event(Event(initial_condition[CONTRACTION_TIME], person_idx, t_state, None, INITIAL_CONDITIONS, self.global_time)) elif isinstance(initial_conditions, dict): # schema v2 if initial_conditions[SELECTION_ALGORITHM] == InitialConditionSelectionAlgorithms.RandomSelection.value: # initially all indices can be drawn #choice_set = self._individuals_indices# self._df_individuals.index.values choice_set = list(self._individuals_indices) for infection_status, cardinality in initial_conditions[CARDINALITIES].items(): if cardinality > 0: if cardinality < 1: c = cardinality cardinality = int(cardinality * len(choice_set)) if cardinality == 0: logger.info(f"too small cardinality provided {cardinality} ({c})") continue else: cardinality = int(cardinality) #selected_rows = np.random.choice(choice_set, cardinality, replace=False) # now only previously unselected indices can be drawn in next steps #choice_set = np.array(list(set(choice_set) - set(selected_rows))) choice_set, selected_rows = mocos_helper.randomly_split_list(choice_set, howmuch=cardinality) t_state = _assign_t_state(infection_status) for row in selected_rows: whom = None if t_state == TRECOVERY: whom = row self.append_event(Event(self.global_time, row, t_state, whom, INITIAL_CONDITIONS, self.global_time)) else: err_msg = f'Unsupported selection algorithm provided {initial_conditions[SELECTION_ALGORITHM]}' logger.error(err_msg) raise ValueError(err_msg) else: err_msg = f'invalid schema provided {initial_conditions}' logger.error(err_msg) raise ValueError(err_msg) @property def global_time(self): return self._global_time @property def df_individuals(self): return self._df_individuals @property def stop_simulation_threshold(self): return self._params[STOP_SIMULATION_THRESHOLD] @property def case_severity_distribution(self): return self._params[CASE_SEVERITY_DISTRIBUTION] @property def disease_progression(self): return self._params[DISEASE_PROGRESSION][DEFAULT] @property def affected_people(self): return self._affected_people @property def detected_people(self): return self._detected_people @property def quarantined_people(self): return self._quarantined_people @property def active_people(self): return self._active_people @property def deaths(self): return self._deaths def draw_expected_case_severity(self): case_severity_dict = self.case_severity_distribution keys = list(case_severity_dict.keys()) d = {} for age_min, age_max, fatality_prob in default_age_induced_fatality_rates: cond_lb = self._individuals_age >= age_min cond_ub = self._individuals_age < age_max cond = np.logical_and(cond_lb, cond_ub) if np.count_nonzero(cond) == 0: continue age_induced_severity_distribution = dict() age_induced_severity_distribution[CRITICAL] = fatality_prob/self._params[DEATH_PROBABILITY][CRITICAL] for x in case_severity_dict: if x != CRITICAL: age_induced_severity_distribution[x] = case_severity_dict[x] / (1 - case_severity_dict[CRITICAL]) * (1 - age_induced_severity_distribution[CRITICAL]) realizations = mocos_helper.sample_with_replacement_shuffled((age_induced_severity_distribution[x] for x in case_severity_dict), len(self._individuals_indices[cond])) values = [keys[r] for r in realizations] df = pd.DataFrame(values, index=self._individuals_indices[cond]) d = {**d, **df.to_dict()[0]} return d def setup_random_distribution(self, t): params = self.disease_progression[t] distribution = params.get(DISTRIBUTION, default_distribution[DISTRIBUTION]) if distribution == FROM_FILE: filepath = params.get('filepath', None).replace('$ROOT_DIR', config.ROOT_DIR) Schema(lambda x: os.path.exists(x)).validate(filepath) array = np.load(filepath) approximate_distribution = params.get('approximate_distribution', None) if approximate_distribution == LOGNORMAL: shape, loc, scale = scipy.stats.lognorm.fit(array, floc=0) return mocos_helper.lognormal, [], {'mean': log(scale), 'sigma': shape} if approximate_distribution == GAMMA: shape, loc, scale = scipy.stats.gamma.fit(array, floc=0) return mocos_helper.gamma, [], {'alpha': shape, 'beta': scale} if approximate_distribution: raise NotImplementedError(f'Approximating to this distribution {approximate_distribution}' f'is not yet supported but we can quickly add it if needed') raise NotImplementedError(f'Currently not supporting empirical distribution' f' without approximating it') if distribution == LOGNORMAL: mean = params.get('mean', 0.0) sigma = params.get('sigma', 1.0) return mocos_helper.lognormal, [], {'mean': mean, 'sigma': sigma} if distribution == EXPONENTIAL: lambda_ = params.get('lambda', 1.0) return mocos_helper.exponential, [], {'scale': 1/lambda_} if distribution == POISSON: lambda_ = params.get('lambda', 1.0) return mocos_helper.poisson, [], {'lam': lambda_} raise ValueError(f'Sampling from distribution {distribution} is not yet supported but we can quickly add it') def add_potential_contractions_from_transport_kernel(self, person_id): pass def set_up_internal_fear(self, kernel_id): fear_factors = self._params[FEAR_FACTORS] fear_factor = fear_factor_schema.validate(fear_factors.get(kernel_id, fear_factors.get(DEFAULT, None))) if not fear_factor: return fear_functions[FearFunctions.FearDisabled], 0, 0, 0, 0, 0 f = fear_functions[FearFunctions(fear_factor[FEAR_FUNCTION])] limit_value = fear_factor[LIMIT_VALUE] scale = fear_factor[SCALE_FACTOR] loc = fear_factor[LOC_FACTOR] weights_deaths = fear_factor[DEATHS_MULTIPLIER] weights_detected = fear_factor[DETECTED_MULTIPLIER] return f, weights_detected, weights_deaths, scale, loc, limit_value def fear(self, kernel_id) -> float: if kernel_id not in self.fear_fun: res = self.set_up_internal_fear(kernel_id) (self.fear_fun[kernel_id], self.fear_weights_detected[kernel_id], self.fear_weights_deaths[kernel_id], self.fear_scale[kernel_id], self.fear_loc[kernel_id], self.fear_limit_value[kernel_id]) = res detected = self.detected_people deaths = self.deaths time = self._global_time if self._params[MOVE_ZERO_TIME_ACCORDING_TO_DETECTED]: if self._max_time_offset != np.inf: time -= self._max_time_offset else: time = -np.inf return self.fear_fun[kernel_id](detected, deaths, time, self.fear_weights_detected[kernel_id], self.fear_weights_deaths[kernel_id], self.fear_loc[kernel_id], self.fear_scale[kernel_id], self.fear_limit_value[kernel_id]) def gamma(self, kernel_id): return self._params[TRANSMISSION_PROBABILITIES][kernel_id] def household_kernel_old_implementation(self, person_id): prog_times = self._progression_times_dict[person_id] start = prog_times[T0] end = prog_times[T2] or prog_times[TRECOVERY] total_infection_rate = (end - start) * self.gamma('household') infected = mocos_helper.poisson(total_infection_rate) if infected == 0: return household_id = self._individuals_household_id[person_id] inhabitants = self._households_inhabitants[household_id] possible_choices = [i for i in inhabitants if i != person_id] for choice_idx in mocos_helper.sample_idxes_with_replacement_uniform(len(possible_choices), infected): person_idx = possible_choices[choice_idx] if self.get_infection_status(person_idx) == InfectionStatus.Healthy: contraction_time = mocos_helper.uniform(low=start, high=end) self.append_event(Event(contraction_time, person_idx, TMINUS1, person_id, HOUSEHOLD, self.global_time)) def add_potential_contractions_from_household_kernel(self, person_id): if self._params[OLD_IMPLEMENTATION_FOR_HOUSEHOLD_KERNEL]: self.household_kernel_old_implementation(person_id) return prog_times = self._progression_times_dict[person_id] start = prog_times[T0] end = prog_times[T2] or prog_times[TRECOVERY] household_id = self._individuals_household_id[person_id] inhabitants = self._households_inhabitants[household_id] possible_choices = [i for i in inhabitants if i != person_id] for person_idx in possible_choices: if self.get_infection_status(person_idx) == InfectionStatus.Healthy: scale = len(possible_choices) / self.gamma('household') contraction_time = start + mocos_helper.exponential(scale=scale) if contraction_time >= end: continue self.append_event(Event(contraction_time, person_idx, TMINUS1, person_id, HOUSEHOLD, self.global_time)) def add_potential_contractions_from_constant_kernel(self, person_id): """ Constant kernel draws a number of infections based on base gamma and enqueue randomly selected events """ prog_times = self._progression_times_dict[person_id] start = prog_times[T0] end = prog_times[T1] if end is None: end = prog_times[T2] total_infection_rate = (end - start) * self.gamma('constant') infected = mocos_helper.poisson(total_infection_rate) if infected == 0: return selected_rows = mocos_helper.nonreplace_sample_few(self._individuals_indices, infected, person_id) for person_idx in selected_rows: if self.get_infection_status(person_idx) == InfectionStatus.Healthy: contraction_time = mocos_helper.uniform(low=start, high=end) self.append_event(Event(contraction_time, person_idx, TMINUS1, person_id, CONSTANT, self.global_time)) def add_potential_contractions_from_constant_age_kernel(self, person_id): if self._disable_constant_age_kernel is True: return age = self._individuals_age_dct[person_id] if age not in self._constant_age_helper_age_dict: return prog_times = self._progression_times_dict[person_id] start = prog_times[T0] end = prog_times[T1] if end is None: end = prog_times[T2] total_infection_rate = (end - start) * self.gamma('constant_age') infected = mocos_helper.poisson(total_infection_rate) if infected == 0: return selected_rows = mocos_helper.nonreplace_sample_few( self._constant_age_individuals[self._constant_age_helper_age_dict[age]], infected, person_id ) for person_idx in selected_rows: if self.get_infection_status(person_idx) == InfectionStatus.Healthy: contraction_time = mocos_helper.uniform(low=start, high=end) self.append_event(Event(contraction_time, person_idx, TMINUS1, person_id, CONSTANT_AGE, self.global_time)) def add_potential_contractions_from_friendship_kernel(self, person_id): if self._disable_friendship_kernel is True: return prog_times = self._progression_times_dict[person_id] start = prog_times[T0] end = prog_times[T1] if end is None: end = prog_times[T2] total_infection_rate = (end - start) * self.gamma('friendship') no_infected = mocos_helper.poisson(total_infection_rate * self._social_activity_scores[person_id]) # Add a constant multiplicand above? age = self._individuals_age_dct[person_id] gender = self._individuals_gender_dct[person_id] for _ in range(no_infected): infected_idx = self._social_activity_sampler.gen(age, gender) if self.get_infection_status(infected_idx) == InfectionStatus.Healthy: contraction_time = mocos_helper.uniform(low=start, high=end) self.append_event(Event(contraction_time, infected_idx, TMINUS1, person_id, FRIENDSHIP, self.global_time)) def handle_t0(self, person_id): self._active_people += 1 if self.get_infection_status(person_id) in [ InfectionStatus.Healthy, InfectionStatus.Contraction ]: self._infection_status[person_id] = InfectionStatus.Infectious.value else: raise AssertionError(f'Unexpected state detected: {self.get_infection_status(person_id)}' f'person_id: {person_id}') household_id = self._individuals_household_id[person_id] # self._df_individuals.loc[person_id, HOUSEHOLD_ID] capacity = self._households_capacities[household_id] # self._df_households.loc[household_id][ID] if capacity > 1: self.add_potential_contractions_from_household_kernel(person_id) self.add_potential_contractions_from_constant_kernel(person_id) self.add_potential_contractions_from_friendship_kernel(person_id) self.add_potential_contractions_from_constant_age_kernel(person_id) def generate_disease_progression(self, person_id, event_time: float, initial_infection_status: str) -> None: """Returns list of disease progression events "future" disease_progression should be recalculated when the disease will be recognised at the state level t0 - time when individual becomes infectious (Mild symptoms) t1 - time when individual stay home/visit doctor due to Mild/Serious? symptoms t2 - time when individual goes to hospital due to Serious symptoms tdeath - time when individual dies (depending on death probability) trecovery - time when individual is recovered (in case the patient will not die from covid19) If person is Infected: A - tminus1 is known (event time), B - t0 is calculated as tminus1 + rv_t0, If person is added to population as Infectious: A - t0 is known (event time), B - tminus 1 is calculated as t0 - rv_t0 For all infected: A - t1 is calculated as t0 + rv_t1 If person will develop Severe or Critical symptoms: A - t2 is calculated as t0 + rv_t2 B - if t1 is larger than t2, discard t1 C - calculate trecovery time as t0 + 6 weeks <- these 6 weeks are from WHO report, in python we use uniform[4w,8w] D - calculate tdetection as t2 If person will develop Asymptomatic or Mild symptoms: A - calculate trecovery time as t0 + 2 weeks <- these 2 weeks are from WHO report, in python we use uniform[11d,17d] B - draw a random number uniform[0,1] and if less than detection_mild_proba, calculate tdetection as t0 + 2 Draw a random number uniform[0,1] and if less than death_probability[expected_case(person_id)]: A - calculate tdeath time as t0 + rv_tdeath, B - discard all times that are larger than tdeath """ if initial_infection_status == InfectionStatus.Contraction: tminus1 = event_time t0 = tminus1 + self.rv_t0() self.append_event(Event(t0, person_id, T0, person_id, DISEASE_PROGRESSION, tminus1)) self._infection_status[person_id] = initial_infection_status elif initial_infection_status == InfectionStatus.Infectious: t0 = event_time # tminus1 does not to be defined, but for completeness let's calculate it tminus1 = t0 - self.rv_t0() else: raise ValueError(f'invalid initial infection status {initial_infection_status}') t2 = None if self._expected_case_severity[person_id] in [ ExpectedCaseSeverity.Severe, ExpectedCaseSeverity.Critical ]: t2 = t0 + self.rv_t2() self.append_event(Event(t2, person_id, T2, person_id, DISEASE_PROGRESSION, t0)) t1 = t0 + self.rv_t1() if not t2 or t1 < t2: self.append_event(Event(t1, person_id, T1, person_id, DISEASE_PROGRESSION, t0)) else: # if t2 < t1 then we reset t1 to avoid misleading in data exported from the simulation t1 = None tdetection = None trecovery = None tdeath = None if mocos_helper.rand() <= self._params[DEATH_PROBABILITY][self._expected_case_severity[person_id]]: tdeath = t0 + self.rv_tdeath() self.append_event(Event(tdeath, person_id, TDEATH, person_id, DISEASE_PROGRESSION, t0)) else: if self._expected_case_severity[person_id] in [ ExpectedCaseSeverity.Mild, ExpectedCaseSeverity.Asymptomatic ]: trecovery = t0 + mocos_helper.uniform(14.0 - 3.0, 14.0 + 3.0) # TODO: this should not be hardcoded! else: trecovery = t0 + mocos_helper.uniform(42.0 - 14.0, 42.0 + 14.0) self.append_event(Event(trecovery, person_id, TRECOVERY, person_id, DISEASE_PROGRESSION, t0)) """ Following is for checking whther tdetection should be picked up""" calculate_tdetection = self._params[TURN_ON_DETECTION] if self._expected_case_severity[person_id] in [ ExpectedCaseSeverity.Mild, ExpectedCaseSeverity.Asymptomatic ]: if mocos_helper.rand() > self._params[DETECTION_MILD_PROBA]: calculate_tdetection = False if calculate_tdetection: """ If t2 is defined (severe/critical), then use this time; if not; use some offset from t0 """ tdetection = t2 or t0 + 2 # TODO: this should not be hardcoded ev = Event(tdetection, person_id, TDETECTION, person_id, DETECTION, t0) self.append_event(ev) self._progression_times_dict[person_id] = {ID: person_id, TMINUS1: tminus1, T0: t0, T1: t1, T2: t2, TDEATH: tdeath, TRECOVERY: trecovery, TDETECTION: tdetection} if initial_infection_status == InfectionStatus.Infectious: self.handle_t0(person_id) @property def df_infections(self): return pd.DataFrame.from_dict(self._infections_dict, orient='index') @property def df_progression_times(self): return pd.DataFrame.from_dict(self._progression_times_dict, orient='index') def save_progression_times(self, path): with open(path, "w") as f: f.write('idx,tminus1,t0,t1,t2,tdeath,trecovery,tdetection,quarantine\n') for elem in self._progression_times_dict.values(): str = f'{elem.get(ID, None)},{elem.get(TMINUS1, None)},{elem.get(T0, None)},'\ f'{elem.get(T1, None)},{elem.get(T2, None)},{elem.get(TDEATH, None)},'\ f'{elem.get(TRECOVERY, None)},{elem.get(TDETECTION, None)},{elem.get(QUARANTINE, None)}\n' f.write(str) def save_potential_contractions(self, path): with open(path, "w") as f: f.write('source_id,target_id,contraction_time,kernel\n') for elem in self._infections_dict.values(): if elem.get(CONTRACTION_TIME) <= self._global_time: # skiping events that were not realized yet str = f'{elem.get(SOURCE, None)},{elem.get(TARGET, None)},{elem.get(CONTRACTION_TIME, None)},'\ f'{elem.get(KERNEL, None)}\n' f.write(str) def prevalance_at(self, time): return len([1 for elem in self._infections_dict.values() if elem.get(CONTRACTION_TIME, np.inf) <= time]) def mean_day_increase_until(self, time): mean_increase = 0.0 i = 0 for k, v in self._per_day_increases.items(): if k <= time: mean_increase = (mean_increase * i + v) / (i + 1) return mean_increase def detected_cases(self, df_r1): cond1 = ~df_r1.tdetection.isna() cond2a = ~df_r1.trecovery.isna() cond2b = df_r1.tdetection > df_r1.trecovery cond2 = ~np.logical_and(cond2a, cond2b) if len(df_r1[~df_r1.tdeath.isna()]) > 0: cond3a = ~df_r1.tdeath.isna() cond3b = df_r1.tdetection > df_r1.tdeath cond3 = ~np.logical_and(cond3a, cond3b) cond23 = np.logical_and(cond2, cond3) else: cond23 = cond2 cond = np.logical_and(cond1, cond23) df = df_r1[cond] detected_cases = df.sort_values(by='tdetection').tdetection return detected_cases @staticmethod def store_parameter(simulation_output_dir, parameter, filename): save_path = os.path.join(simulation_output_dir, filename) with open(save_path, 'wb') as f: pickle.dump(parameter, f) def _save_population_parameters(self, simulation_output_dir): run_id = f'{int(time.monotonic() * 1e9)}_{self._params[RANDOM_SEED]}' if self._params[SAVE_EXPECTED_SEVERITY]: self.store_parameter(simulation_output_dir, self._expected_case_severity, 'expected_case_severity.pkl') self.store_parameter(simulation_output_dir, self._infection_status, 'infection_status.pkl') self.store_parameter(simulation_output_dir, self._detection_status, 'detection_status.pkl') self.store_parameter(simulation_output_dir, self._quarantine_status, 'quarantine_status.pkl') def _save_dir(self, prefix=''): underscore_if_prefix = '_' if len(prefix) > 0 else '' json_name = os.path.splitext(os.path.basename(self.params_path))[0] run_id = f'{prefix}{underscore_if_prefix}{json_name}_{int(time.monotonic() * 1e9)}_{self._params[RANDOM_SEED]}' simulation_output_dir = os.path.join(self._params[OUTPUT_ROOT_DIR], self._params[EXPERIMENT_ID], run_id) os.makedirs(simulation_output_dir) return simulation_output_dir def save_serial_interval(self, simulation_output_dir): if len(self.serial_intervals) == 0: return np.nan np_intervals = np.array(self.serial_intervals) serial_interval_median = np.median(np_intervals) description = scipy.stats.describe(np_intervals) serial_interval_str = f'serial interval: measured from {self._params[SERIAL_INTERVAL][MIN_TIME]}'\ f' to {self._params[SERIAL_INTERVAL][MAX_TIME]};'\ f' median={serial_interval_median}, stats describe: {description}' logger.info(serial_interval_str) np.save(os.path.join(simulation_output_dir, 'serial_intervals.npy'), np_intervals) output_log_file = os.path.join(simulation_output_dir, 'serial_interval_stats.txt') with open(output_log_file, "w") as out: out.write(serial_interval_str) return serial_interval_median def log_outputs(self, simulation_output_dir): self._save_population_parameters(simulation_output_dir) copyfile(self.params_path, os.path.join(simulation_output_dir, f'input_{os.path.basename(self.params_path)}')) if self._params[SAVE_INPUT_DATA]: copyfile(self.df_individuals_path, os.path.join(simulation_output_dir, f'input_{os.path.basename(self.df_individuals_path)}')) household_input_path = os.path.join(self._params[OUTPUT_ROOT_DIR], self._params[EXPERIMENT_ID], 'input_df_households.csv') if not os.path.exists(household_input_path): self._df_households.to_csv(household_input_path) repo = Repo(config.ROOT_DIR) git_active_branch_log = os.path.join(simulation_output_dir, 'git_active_branch_log.txt') with open(git_active_branch_log, 'w') as f: f.write(f'Active branch name {repo.active_branch.name}\n') f.write(str(repo.active_branch.log())) git_status = os.path.join(simulation_output_dir, 'git_status.txt') with open(git_status, 'w') as f: f.write(repo.git.status()) serial_interval = self.save_serial_interval(simulation_output_dir) if self._params[ENABLE_VISUALIZATION]: self._vis.visualize_simulation(simulation_output_dir, serial_interval, self.fear, self.active_people, self._max_time_offset, self.detected_cases, self.df_progression_times, self.df_infections ) def update_max_time_offset(self): if self._params[MOVE_ZERO_TIME_ACCORDING_TO_DETECTED]: if self._max_time_offset == np.inf: if self._params[NUMBER_OF_DETECTED_AT_ZERO_TIME] <= self._detected_people: self._max_time_offset = self._global_time self._init_for_stats = self._active_people def quick_return_condition(self, initiated_through): """ Checks if event of type 'initiated_through' should be abandoned given current situation """ if initiated_through == HOUSEHOLD: return False r = mocos_helper.rand() if initiated_through == CONSTANT and len(self._params[R_OUT_SCHEDULE]) > 0: t = self._global_time - self._max_time_offset for s in self._params[R_OUT_SCHEDULE]: if s[MIN_TIME] <= t <= s[MAX_TIME]: if r > s[OVERRIDE_R_FRACTION]: return True else: return False if r > self.fear(initiated_through): return True return False def add_new_infection(self, person_id, infection_status, initiated_by, initiated_through): self._detection_status[person_id] = DetectionStatus.NotDetected.value self._infections_dict[len(self._infections_dict)] = { SOURCE: initiated_by, TARGET: person_id, CONTRACTION_TIME: self.global_time, KERNEL: initiated_through } if self.global_time >= self._params[SERIAL_INTERVAL][MIN_TIME]: if self.global_time < self._params[SERIAL_INTERVAL][MAX_TIME]: if initiated_by is not None: serial_interval = self.global_time - self._progression_times_dict[initiated_by][TMINUS1] self.serial_intervals.append(serial_interval) self._affected_people += 1 self.generate_disease_progression(person_id, self.global_time, infection_status) # 'Event', [TIME, PERSON_INDEX, TYPE, INITIATED_BY, INITIATED_THROUGH, ISSUED_TIME]) def process_event(self, event) -> bool: type_ = getattr(event, TYPE) time = getattr(event, TIME) if int(time / self._params[LOG_TIME_FREQ]) != int(self._global_time / self._params[LOG_TIME_FREQ]): memory_use = ps.memory_info().rss / 1024 / 1024 fearC = self.fear(CONSTANT) fearH = self.fear(HOUSEHOLD) per_day_increase = 0 if self._last_affected: per_day_increase = (self.affected_people - self._last_affected)/self._last_affected*100 self._last_affected = self.affected_people self._per_day_increases[int(self._global_time)] = per_day_increase logger.info(f'Time: {time:.2f}' f'\tAffected: {self.affected_people}' f'\tDetected: {self.detected_people}' f'\tQuarantined: {self.quarantined_people}' f'\tPer-day-increase: {per_day_increase:.2f} %' f'\tActive: {self.active_people}' f'\tDeaths: {self.deaths}' f'\tFearC: {fearC}' f'\tFearH: {fearH}' f'\tPhysical memory use: {memory_use:.2f} MB') self._global_time = time if self._global_time > self._max_time + self._max_time_offset: return False person_id = getattr(event, PERSON_INDEX) initiated_by = getattr(event, INITIATED_BY) initiated_through = getattr(event, INITIATED_THROUGH) # TODO the remaining attribute will be useful when we will take into account for backtracing # issued_time = getattr(event, ISSUED_TIME) if initiated_by is None and initiated_through != DISEASE_PROGRESSION: if self.get_infection_status(person_id) == InfectionStatus.Healthy: if type_ == TMINUS1: self.add_new_infection(person_id, InfectionStatus.Contraction.value, initiated_by, initiated_through) elif type_ == T0: self.add_new_infection(person_id, InfectionStatus.Infectious.value, initiated_by, initiated_through) elif type_ == TMINUS1: # check if this action is still valid first try: initiated_inf_status = self._infection_status[initiated_by] except KeyError: logging.error(f'infection status should not be blank for infection! key: {initiated_by}') if initiated_inf_status in active_states: if self.quick_return_condition(initiated_through): return True current_status = self.get_infection_status(person_id) if current_status == InfectionStatus.Healthy: new_infection = False # TODO below is a spaghetti code that should be sorted out! SORRY! if initiated_through != HOUSEHOLD: if initiated_inf_status != InfectionStatus.StayHome: new_infection = True if self.get_quarantine_status_(initiated_by) == QuarantineStatus.Quarantine: new_infection = False if self.get_quarantine_status_(person_id) == QuarantineStatus.Quarantine: new_infection = False else: # HOUSEHOLD kernel: new_infection = True if new_infection: self.add_new_infection(person_id, InfectionStatus.Contraction.value, initiated_by, initiated_through) elif type_ == T0: if self.get_infection_status(person_id) == InfectionStatus.Contraction: self.handle_t0(person_id) elif type_ == T1: if self.get_infection_status(person_id) == InfectionStatus.Infectious: self._infection_status[person_id] = InfectionStatus.StayHome.value elif type_ == T2: if self.get_infection_status(person_id) in [ InfectionStatus.StayHome, InfectionStatus.Infectious ]: self._infection_status[person_id] = InfectionStatus.Hospital.value if self._expected_case_severity[person_id] == ExpectedCaseSeverity.Critical: self._icu_needed += 1 elif type_ == TDEATH: if self.get_infection_status(person_id) not in [ InfectionStatus.Death, InfectionStatus.Recovered ]: self._deaths += 1 if self._expected_case_severity[person_id] == ExpectedCaseSeverity.Critical: if self._progression_times_dict[person_id][T2] < self.global_time: self._icu_needed -= 1 self._active_people -= 1 self._infection_status[person_id] = InfectionStatus.Death.value elif type_ == TRECOVERY: # TRECOVERY is exclusive with regards to TDEATH (when this comment was added) if self.get_infection_status(person_id) not in [ InfectionStatus.Recovered, InfectionStatus.Death ]: if initiated_through != INITIAL_CONDITIONS: self._active_people -= 1 if self._expected_case_severity[person_id] == ExpectedCaseSeverity.Critical: if self._progression_times_dict[person_id][T2] < self.global_time: self._icu_needed -= 1 self._infection_status[person_id] = InfectionStatus.Recovered self._immune_people += 1 elif type_ == TDETECTION: if self.get_infection_status(person_id) not in [ InfectionStatus.Recovered, InfectionStatus.Healthy ]: if self.get_detection_status_(person_id) == DetectionStatus.NotDetected: self._detection_status[person_id] = DetectionStatus.Detected.value self._detected_people += 1 self.update_max_time_offset() household_id = self._individuals_household_id[person_id] for inhabitant in self._households_inhabitants[household_id]: if self.get_quarantine_status_(inhabitant) == QuarantineStatus.NoQuarantine: if self.get_infection_status(inhabitant) != InfectionStatus.Death: self._quarantine_status[inhabitant] = QuarantineStatus.Quarantine.value self._quarantined_people += 1 if inhabitant not in self._progression_times_dict: self._progression_times_dict[inhabitant] = {} self._progression_times_dict[inhabitant][QUARANTINE] = self.global_time if self.get_infection_status(inhabitant) in [InfectionStatus.Infectious, InfectionStatus.StayHome]: # TODO: this has to be implemented better, just a temporary solution: if self._progression_times_dict[inhabitant].get(TDETECTION, None) is None: new_detection_time = self.global_time + 2.0 self._progression_times_dict[inhabitant][TDETECTION] = new_detection_time ev = Event(new_detection_time, inhabitant, TDETECTION, person_id, 'quarantine_followed_detection', self.global_time) self.append_event(ev) else: raise ValueError(f'unexpected status of event: {event}') return True def run_simulation(self): def _inner_loop(iter): threshold_type = self._params[STOP_SIMULATION_THRESHOLD_TYPE] value_to_be_checked = None start = time.time() times_mean = 0.0 i = 0 while not q.empty(): event_start = time.time() if threshold_type == PREVALENCE: value_to_be_checked = self.affected_people elif threshold_type == DETECTIONS: value_to_be_checked = self.detected_people if value_to_be_checked is None: logging.error(f"we have an error here") if value_to_be_checked >= self.stop_simulation_threshold: logging.info( f"The outbreak reached a high number {self.stop_simulation_threshold} ({threshold_type})") break event = q.get() if not self.process_event(event): logging.info(f"Processing event {event} returned False") q.task_done() break q.task_done() event_end = time.time() elapsed = event_end - event_start times_mean = ( times_mean * i + elapsed ) / (i + 1) i += 1 end = time.time() print(f'Sim runtime {end - start}, event proc. avg time: {times_mean}') # cleaning up priority queue: while not q.empty(): q.get_nowait() q.task_done() simulation_output_dir = self._save_dir() self.save_progression_times(os.path.join(simulation_output_dir, 'output_df_progression_times.csv')) self.save_potential_contractions(os.path.join(simulation_output_dir, 'output_df_potential_contractions.csv')) if self._params[LOG_OUTPUTS]: logger.info('Log outputs') self.log_outputs(simulation_output_dir) if self._icu_needed >= self._params[ICU_AVAILABILITY]: return True if value_to_be_checked >= self.stop_simulation_threshold: return True return False seeds = None if isinstance(self._params[RANDOM_SEED], str): seeds = eval(self._params[RANDOM_SEED]) # TODO: warning, this is unsafe! not use in production elif isinstance(self._params[RANDOM_SEED], int): seeds = [self._params[RANDOM_SEED]] runs = 0 output_log = 'Last_processed_time;Total_#Affected;Total_#Detected;Total_#Deceased;Total_#Quarantined;'\ 'c;c_norm;Init_#people;Band_hit_time;Subcritical;runs;fear;detection_rate;'\ 'incidents_per_last_day;over_icu;hospitalized;zero_time_offset;total_#immune' if self._params[ENABLE_ADDITIONAL_LOGS]: output_log += ';Prevalence_30days;Prevalence_60days;Prevalence_90days;Prevalence_120days;'\ 'Prevalence_150days;Prevalence_180days;Prevalence_360days;'\ 'increase_10;increase_20;increase_30;increase_40;increase_50;increase_100;increase_150' output_log += '\n' for i, seed in enumerate(seeds): runs += 1 self.parse_random_seed(seed) self.setup_simulation() logger.info('Filling queue based on initial conditions...') self._fill_queue_based_on_initial_conditions() logger.info('Filling queue based on auxiliary functions...') self._fill_queue_based_on_auxiliary_functions() logger.info('Initialization step is done!') outbreak = _inner_loop(i + 1) last_processed_time = self._global_time c = self._params[TRANSMISSION_PROBABILITIES][CONSTANT] c_norm = c * self._params[AVERAGE_INFECTIVITY_TIME_CONSTANT_KERNEL] subcritical = self._active_people < self._init_for_stats / 2 # at 200 days bandtime = self.band_time #if bandtime: # return 0 fear_ = self.fear(CONSTANT) detection_rate = self._params[DETECTION_MILD_PROBA] affected = self.affected_people detected = self.detected_people deceased = self.deaths quarantined = self.quarantined_people incidents_per_last_day = self.prevalance_at(self._global_time) - self.prevalance_at(self._global_time - 1) hospitalized = self._icu_needed zero_time_offset = self._max_time_offset immune = self._immune_people output_add = f'{last_processed_time };{affected};{detected};{deceased};{quarantined};{c};{c_norm};'\ f'{self._init_for_stats};{bandtime};{subcritical};{runs};{fear_};{detection_rate};'\ f'{incidents_per_last_day};{outbreak};{hospitalized};{zero_time_offset};{immune}' if self._params[ENABLE_ADDITIONAL_LOGS]: prev30 = self.prevalance_at(30) prev60 = self.prevalance_at(60) prev90 = self.prevalance_at(90) prev120 = self.prevalance_at(120) prev150 = self.prevalance_at(150) prev180 = self.prevalance_at(180) prev360 = self.prevalance_at(360) mean_increase_at_10 = self.mean_day_increase_until(10) mean_increase_at_20 = self.mean_day_increase_until(20) mean_increase_at_30 = self.mean_day_increase_until(30) mean_increase_at_40 = self.mean_day_increase_until(40) mean_increase_at_50 = self.mean_day_increase_until(50) mean_increase_at_100 = self.mean_day_increase_until(100) mean_increase_at_150 = self.mean_day_increase_until(150) output_add += f'{prev30};{prev60};{prev90};{prev120};{prev150};{prev180};{prev360};'\ f'{mean_increase_at_10};{mean_increase_at_20};{mean_increase_at_30};'\ f'{mean_increase_at_40};{mean_increase_at_50};{mean_increase_at_100};'\ f'{mean_increase_at_150}' output_add += '\n' logger.info(output_add) output_log = f'{output_log}{output_add}' logger.info(output_log) simulation_output_dir = self._save_dir('aggregated_results') output_log_file = os.path.join(simulation_output_dir, 'results.txt') if self._params[ENABLE_VISUALIZATION]: self._vis.visualize_scenario(simulation_output_dir) with open(output_log_file, "w") as out: out.write(output_log) def setup_simulation(self): self._init_for_stats = 0 # TODO support different import methods if isinstance(self._params[INITIAL_CONDITIONS], dict): cardinalities = self._params[INITIAL_CONDITIONS][CARDINALITIES] self._init_for_stats = cardinalities.get(CONTRACTION, 0) + cardinalities.get(INFECTIOUS, 0) # TODO and think how to better group them, ie namedtuple state_stats? self._affected_people = 0 self._active_people = 0 self._detected_people = 0 self._quarantined_people = 0 self._immune_people = 0 self._deaths = 0 self._icu_needed = 0 self._max_time_offset = 0 if self._params[MOVE_ZERO_TIME_ACCORDING_TO_DETECTED]: self._max_time_offset = np.inf self._fear_factor = {} self._infection_status = {} self._infections_dict = {} self._progression_times_dict = {} self._per_day_increases = {} self._global_time = self._params[START_TIME] self._max_time = self._params[MAX_TIME] if not self._params[REUSE_EXPECTED_CASE_SEVERITIES]: self._expected_case_severity = self.draw_expected_case_severity() self._last_affected = None self.band_time = None self._quarantine_status = {} self._detection_status = {} if self._params[ENABLE_VISUALIZATION]: self._vis = Visualize(self._params, self.df_individuals, self._expected_case_severity, logger) logger = logging.getLogger(__name__) @click.command() @click.option('--params-path', type=click.Path(exists=True)) @click.option('--df-individuals-path', type=click.Path(exists=True)) @click.option('--df-households-path', type=click.Path()) @click.argument('run-simulation') #ignored def runner(params_path, df_individuals_path, run_simulation, df_households_path=''): im = InfectionModel(params_path=params_path, df_individuals_path=df_individuals_path, df_households_path=df_households_path or '') im.run_simulation() # TODO: think about separate thread/process to generate random numbers, facilitate sampling if __name__ == '__main__': log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=log_fmt) pid = os.getpid() ps = psutil.Process(pid) pd.set_option('display.max_columns', None) #fire.Fire(InfectionModel) # find .env automagically by walking up directories until it's found, then # load up the .env entries as environment variables load_dotenv(find_dotenv()) runner()
the-stack_0_22403
import math import torch import torch.nn.functional as F from fairseq.criterions import FairseqCriterion, register_criterion from fairseq import utils @register_criterion('word_prediction') class WordPredictionCriterion(FairseqCriterion): def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss, as a Variable 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ predictor_output, decoder_output = model(**sample['net_input']) # translation loss translation_lprobs = model.get_normalized_probs(decoder_output, log_probs=True) translation_target = model.get_targets(sample, decoder_output).view(-1) translation_loss = F.nll_loss( translation_lprobs, translation_target, size_average=False, ignore_index=self.padding_idx, reduce=reduce ) # predictor loss prediction_lprobs = model.get_predictor_normalized_probs( predictor_output, log_probs=True) # prevent domination of padding idx non_padding_mask = torch.ones(prediction_lprobs.size(1)).cuda() non_padding_mask[model.encoder.padding_idx] = 0 prediction_lprobs = prediction_lprobs * non_padding_mask.unsqueeze(0) prediction_target = model.get_target_words(sample) assert prediction_lprobs.size(0) == prediction_target.size(0) assert prediction_lprobs.dim() == 2 word_prediction_loss = -torch.gather(prediction_lprobs, 1, prediction_target) if reduce: word_prediction_loss = word_prediction_loss.sum() else: word_prediction_loss = word_prediction_loss.sum(1) # loss per batch element assert translation_loss.size() == word_prediction_loss.size() loss = translation_loss + word_prediction_loss if self.args.sentence_avg: sample_size = sample['target'].size(0) else: sample_size = sample['ntokens'] logging_output = { 'loss': translation_loss, 'word_prediction_loss': word_prediction_loss, 'ntokens': sample['ntokens'], 'sample_size': sample_size, } if reduce: logging_output['loss'] = utils.item(logging_output['loss']) logging_output['word_prediction_loss'] = utils.item( logging_output['word_prediction_loss']) return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" ntokens = sum(log.get('ntokens', 0) for log in logging_outputs) sample_size = sum(log.get('sample_size', 0) for log in logging_outputs) agg_output = {'sample_size': sample_size} for loss in ['loss', 'word_prediction_loss']: loss_sum = sum(log.get(loss, 0) for log in logging_outputs) agg_output[loss] = loss_sum / sample_size / math.log(2) if loss == 'loss' and sample_size != ntokens: agg_output['nll_loss'] = loss_sum / ntokens / math.log(2) return agg_output
the-stack_0_22404
import rest_framework.authentication from django.conf import settings from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from rest_framework import exceptions import waldur_core.logging.middleware TOKEN_KEY = settings.WALDUR_CORE.get('TOKEN_KEY', 'x-auth-token') def can_access_admin_site(user): return user.is_active and (user.is_staff or user.is_support) class AuthenticationBackend: """ Enables only support and staff to access admin site. """ def authenticate(self, request, username, password): """ Always return ``None`` to prevent authentication within this backend. """ return None def has_perm(self, user_obj, perm, obj=None): return can_access_admin_site(user_obj) def has_module_perms(self, user_obj, app_label): return can_access_admin_site(user_obj) class TokenAuthentication(rest_framework.authentication.TokenAuthentication): """ Custom token-based authentication. Use TOKEN_KEY from request query parameters if authentication token was not found in header. """ def get_authorization_value(self, request): auth = rest_framework.authentication.get_authorization_header(request) if not auth: auth = request.query_params.get(TOKEN_KEY, '') return auth def authenticate_credentials(self, key): model = self.get_model() try: token = model.objects.select_related('user').get(key=key) except model.DoesNotExist: raise exceptions.AuthenticationFailed(_('Invalid token.')) if not token.user.is_active: raise exceptions.AuthenticationFailed(_('User inactive or deleted.')) if token.user.token_lifetime: lifetime = timezone.timedelta(seconds=token.user.token_lifetime) if token.created < timezone.now() - lifetime: raise exceptions.AuthenticationFailed(_('Token has expired.')) return token.user, token def authenticate(self, request): auth = self.get_authorization_value(request).split() if not auth or auth[0].lower() != b'token': return None if len(auth) == 1: msg = _('Invalid token. No credentials provided.') raise exceptions.AuthenticationFailed(msg) elif len(auth) > 2: msg = _('Invalid token. Token string should not contain spaces.') raise exceptions.AuthenticationFailed(msg) try: token = auth[1].decode() except UnicodeError: msg = _( 'Invalid token header. Token string should not contain invalid characters.' ) raise exceptions.AuthenticationFailed(msg) return self.authenticate_credentials(token) def user_capturing_auth(auth): class CapturingAuthentication(auth): def authenticate(self, request): result = super(CapturingAuthentication, self).authenticate(request) if result is not None: user, _ = result waldur_core.logging.middleware.set_current_user(user) token = user.auth_token if token: token.created = timezone.now() token.save() return result return CapturingAuthentication class CsrfExemptSessionAuthentication( rest_framework.authentication.SessionAuthentication ): def enforce_csrf(self, request): return # Skip CSRF check SessionAuthentication = user_capturing_auth(CsrfExemptSessionAuthentication) TokenAuthentication = user_capturing_auth(TokenAuthentication)
the-stack_0_22405
# Copyright 2020, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Measured Process for adaptive zeroing.""" import collections from typing import Union import attr import tensorflow as tf import tensorflow_privacy import tree from tensorflow_federated.python.common_libs import py_typecheck from tensorflow_federated.python.core.api import computation_types from tensorflow_federated.python.core.api import computations from tensorflow_federated.python.core.api import intrinsics from tensorflow_federated.python.core.api import placements from tensorflow_federated.python.core.templates import measured_process ValueType = Union[computation_types.TensorType, computation_types.StructType] @attr.s(auto_attribs=True, eq=False, frozen=True) class AdaptiveZeroingMetrics(object): """Structure metrics returned by adaptive zeroing mean prcoess. Attributes: current_threshold: A float. The current zeroing threshold. num_zeroed: An integer. The number of updates that were zeroed this round. """ current_threshold: float num_zeroed: int def build_adaptive_zeroing_mean_process( value_type: ValueType, initial_threshold: float, target_quantile: float, multiplier: float, learning_rate: float, norm_order: float, ): """Builds `tff.templates.MeasuredProcess` for averaging with adaptive zeroing. The returned `MeasuredProcess` averages values after zeroing out any values whose norm is greater than C * r where C is adapted to approximate the q'th quantile of the distribution of value norms. Its next function has the following type signature: ({state_type}@SERVER,{value_type}@CLIENTS,{float32}@CLIENTS> -> <state={state_type}@SERVER,result={value_type}@SERVER, measurements=AdaptiveZeroingMetrics@SERVER>) Args: value_type: The type of values to be averaged by the `MeasuredProcess`. Can be a `tff.TensorType` or a nested structure of `tff.StructType` that bottoms out in `tff.TensorType`. initial_threshold: The initial value of C * r. Values with norm greater than this will be zeroed out. target_quantile: The target quantile q. The adaptive process ensures that C will approximate the q'th quantile of the distribution of value norms. multiplier: The multiplier r of the quantile estimate C. learning_rate: The learning rate l for the adaptive process. If the observed fraction of values whose norm is less than C on a given round is p, then C will be updated according to C *= exp(l * (q - p)). It follows that the maximum possible update is multiplying or dividing by a factor of exp(l). norm_order: The order of the norm. May be 1, 2, or np.inf. Returns: A `MeasuredProcess` implementing averaging values with adaptive zeroing with the type signature described above. """ # Actually value_type can be any nested structure of StructType bottoming # out in TensorType, but we'll just verify this much here. py_typecheck.check_type( value_type, (computation_types.TensorType, computation_types.StructType)) if isinstance(value_type, computation_types.StructType): if not value_type: raise ValueError("value_type cannot be empty.") initial_quantile_estimate = initial_threshold / multiplier quantile_query = tensorflow_privacy.NoPrivacyQuantileEstimatorQuery( initial_estimate=initial_quantile_estimate, target_quantile=target_quantile, learning_rate=learning_rate, geometric_update=True) assert isinstance(quantile_query, tensorflow_privacy.SumAggregationDPQuery) @computations.tf_computation def initial_state_fn(): return quantile_query.initial_global_state() @computations.federated_computation() def initial_state_comp(): return intrinsics.federated_eval(initial_state_fn, placements.SERVER) global_state_type = initial_state_fn.type_signature.result @computations.tf_computation(global_state_type) def derive_sample_params(global_state): return quantile_query.derive_sample_params(global_state) @computations.tf_computation(derive_sample_params.type_signature.result, value_type, tf.float32) def preprocess_value(params, value, weight): vectors = tree.map_structure(lambda v: tf.reshape(v, [-1]), value) norm = tf.norm(tf.concat(tree.flatten(vectors), axis=0), ord=norm_order) quantile_record = quantile_query.preprocess_record(params, norm) threshold = params.current_estimate * multiplier too_large = (norm > threshold) adj_weight = tf.cond(too_large, lambda: tf.constant(0.0), lambda: weight) weighted_value = tree.map_structure( lambda v: tf.math.multiply_no_nan(v, adj_weight), value) too_large = tf.cast(too_large, tf.int32) return weighted_value, adj_weight, quantile_record, too_large quantile_record_type = preprocess_value.type_signature.result[2] @computations.tf_computation(quantile_record_type, global_state_type) def next_quantile(quantile_sum, global_state): new_estimate, new_global_state = quantile_query.get_noised_result( quantile_sum, global_state) new_threshold = new_estimate * multiplier return new_threshold, new_global_state @computations.tf_computation(value_type, tf.float32) def divide_no_nan(value_sum, total_weight): return tree.map_structure(lambda v: tf.math.divide_no_nan(v, total_weight), value_sum) @computations.federated_computation( initial_state_comp.type_signature.result, computation_types.FederatedType(value_type, placements.CLIENTS), computation_types.FederatedType(tf.float32, placements.CLIENTS)) def next_fn(global_state, value, weight): sample_params = intrinsics.federated_broadcast( intrinsics.federated_map(derive_sample_params, global_state)) weighted_value, adj_weight, quantile_record, too_large = ( intrinsics.federated_map(preprocess_value, (sample_params, value, weight))) value_sum = intrinsics.federated_sum(weighted_value) total_weight = intrinsics.federated_sum(adj_weight) quantile_sum = intrinsics.federated_sum(quantile_record) num_zeroed = intrinsics.federated_sum(too_large) mean_value = intrinsics.federated_map(divide_no_nan, (value_sum, total_weight)) new_threshold, new_global_state = intrinsics.federated_map( next_quantile, (quantile_sum, global_state)) measurements = intrinsics.federated_zip( AdaptiveZeroingMetrics(new_threshold, num_zeroed)) return collections.OrderedDict( state=new_global_state, result=mean_value, measurements=measurements) return measured_process.MeasuredProcess( initialize_fn=initial_state_comp, next_fn=next_fn)
the-stack_0_22406
from django.shortcuts import render, redirect from django.forms import inlineformset_factory from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import authenticate, login, logout from django.contrib import messages from django.contrib.auth.decorators import login_required from .models import * from .forms import CreateUserForm # Create your views here. def registerPage(request): if request.user.is_authenticated: return redirect('home') else: form = CreateUserForm() if request.method == 'POST': form = CreateUserForm(request.POST) if form.is_valid(): form.save() user = form.cleaned_data.get('username') messages.success(request, 'Conta criada para usuário ' + user) return redirect('login') context = {'form':form} return render(request, 'clio/register.html', context) def loginPage(request): if request.user.is_authenticated: return redirect('home') else: if request.method == 'POST': username = request.POST.get('username') password = request.POST.get('password') user = authenticate(request, username=username, password=password) if user is not None: login(request, user) return redirect('home') else: messages.info(request, 'Senha ou usuário incorretos') context = {} return render(request, 'clio/login.html', context) def logoutUser(request): logout(request) return redirect('login') @login_required(login_url='login') def home(request): return render(request, 'clio/homepage.html')
the-stack_0_22408
import numpy.linalg as lg import numpy as np import random class Lattice: def __init__(self, time_size, space_size, dim, beta, linkType): self.sites = np.zeros( [time_size] + [space_size for _ in range(dim-1)], dtype=linkType ) self.links = np.zeros( list(self.sites.shape) + [dim], dtype=linkType ) self.dim = dim self.beta = beta self.linkType = linkType self.bases = np.array([ np.array([1,0,0,0]), np.array([0,1,0,0]), np.array([0,0,1,0]), np.array([0,0,0,1]), ]) self.numSites = reduce(lambda a, b: a*b, self.links.shape) for link in self.iterLinks(): self.links[link] = linkType.getRandomElement() def iterLinks(self): for site in self.iterSites(): for mu in range(self.dim): yield tuple(list(site)+[mu]) def iterSites(self): for i in range(self.numSites): indices = list() for dim in self.sites.shape: indices.append(i % dim) i = i / dim yield tuple(indices) def getNeighbors(self, site): shape = self.sites.shape neighbors = list() for i, dim in enumerate(shape): e = list(site) if site[i] > 0: e[i] = e[i]-1 else: e[i] = dim-1 neighbors.append(tuple(e)) e = list(site) if site[i] < dim - 1: e[i] = e[i]+1 else: e[i] = 0 neighbors.append(tuple(e)) return neighbors def getRandomSite(self): return tuple([random.randint(0, d-1) for d in self.sites.shape]) def getRandomLink(self): return tuple([random.randint(0, d-1) for d in self.links.shape]) def localAction(self, *links): S = 0.0 for link in links: site1 = link[:-1] mu = link[-1] for nu in range(self.dim): if nu != mu: site2 = np.array(site1) - self.bases[nu] S += 5.0/3.0 * ( self.plaquetteOperator(site1, mu, nu) + self.plaquetteOperator(site2, mu, nu) ) return S def totalAction(self): S = 0.0 for site in self.iterSites(): for mu in range(self.dim): for nu in range(self.dim): if nu > mu: S += 5.0/3.0 * self.plaquetteOperator(site, mu, nu) return S def plaquetteOperator(self, c, mu, nu): c = np.array(c) return 1.0/3.0 * np.trace( self.links[tuple(list(c%5)+[mu])] *self.links[tuple(list((c+self.bases[mu])%5)+[nu])] *self.links[tuple(list((c+self.bases[nu])%5)+[mu])].conjugate().T *self.links[tuple(list(c%5)+[nu])].conjugate().T ).real def rectOperator(self, c, mu, nu): c = np.array(c) return 1.0/3.0 * np.trace( self.links[tuple(list(c%5)+[mu])] *self.links[tuple(list((c+self.bases[mu])%5)+[mu])] *self.links[tuple(list((c+2*self.bases[mu])%5)+[nu])] *self.links[tuple(list((c+self.bases[mu]+self.bases[nu])%5)+[mu])].conjugate().T *self.links[tuple(list((c+self.bases[nu])%5)+[mu])].conjugate().T *self.links[tuple(list(c%5)+[nu])].conjugate().T ).real def metropolisUpdate(self): link = self.getRandomLink() U = self.linkType.getRandomElement() Si = self.localAction(link) self.links[link] = U * self.links[link] Sf = self.localAction(link) # print Sf - Si if np.random.rand() > min(1, np.exp(self.beta*(Sf-Si))): self.links[link] = U.conjugate().T * self.links[link]
the-stack_0_22410
# coding: utf-8 # PYTHON IMPORTS import re import os import unicodedata import math # DJANGO IMPORTS from django.utils import six # FILEBROWSER IMPORTS from filebrowser.settings import STRICT_PIL, NORMALIZE_FILENAME, CONVERT_FILENAME # PIL import if STRICT_PIL: from PIL import Image else: try: from PIL import Image except ImportError: import Image def convert_filename(value): """ Convert Filename. """ if NORMALIZE_FILENAME: chunks = value.split(os.extsep) normalized = [] for v in chunks: v = unicodedata.normalize('NFKD', six.text_type(v)).encode('ascii', 'ignore').decode('ascii') v = re.sub(r'[^\w\s-]', '', v).strip() normalized.append(v) if len(normalized) > 1: value = '.'.join(normalized) else: value = normalized[0] if CONVERT_FILENAME: value = value.replace(" ", "_").lower() return value def path_strip(path, root): if not path or not root: return path path = os.path.normcase(path) root = os.path.normcase(root) if path.startswith(root): return path[len(root):] return path def scale_and_crop(im, width, height, opts): """ Scale and Crop. """ x, y = [float(v) for v in im.size] width = float(width or 0) height = float(height or 0) if 'upscale' not in opts: if (x < width or not width) and (y < height or not height): return False if width: xr = width else: xr = x * height / y if height: yr = height else: yr = y * width / x if 'crop' in opts: r = max(xr / x, yr / y) else: r = min(xr / x, yr / y) if r < 1.0 or (r > 1.0 and 'upscale' in opts): im = im.resize((int(math.ceil(x * r)), int(math.ceil(y * r))), resample=Image.ANTIALIAS) if 'crop' in opts: x, y = [float(v) for v in im.size] ex, ey = (x - min(x, xr)) / 2, (y - min(y, yr)) / 2 if ex or ey: im = im.crop((int(ex), int(ey), int(ex + xr), int(ey + yr))) return im scale_and_crop.valid_options = ('crop', 'upscale')
the-stack_0_22411
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import math import sys EULER = 0.5772156649015328606 EPS = 1e-10 if __name__ == '__main__': x = float(input("Value of x?")) if x==0: print ("Illegal value of x", file= sys.stderr) exit(1) a=x S, k = a, 1 while math.fabs(a)>EPS: a*= x*k / (k+1)**2 S+=a k+=1 print(f"Ei({x}) = {EULER + math.log(math.fabs(x))+S}")
the-stack_0_22412
import numpy as np # from tensorflow import keras from tensorflow import keras import h5py import os import cv2 # data generator class DataGenerator(keras.utils.Sequence): def __init__(self, data_IDs, labels, batch_size=8, dim=(288, 360, 3), n_frames=41, shuffle=True, data_dir='./data/HockeyFights'): self.dim = dim self.batch_size = batch_size self.n_frames = n_frames self.shuffle = shuffle self.data_IDs = data_IDs self.labels = labels self.data_dir = data_dir self.on_epoch_end() def __len__(self): return int(np.floor(len(self.data_IDs)) / self.batch_size) def __getitem__(self, idx): # Generate one batch of data indexes = self.indexes[idx*self.batch_size:(idx+1)*self.batch_size] # Find list of IDs data_IDs_temp = [self.data_IDs[k] for k in indexes] # Generate data X, y = self.__data_generation(data_IDs_temp) return X, y def on_epoch_end(self): self.indexes = np.arange(len(self.data_IDs)) if self.shuffle == True: np.random.shuffle(self.indexes) def __data_generation(self, data_IDs_temp): # X : (n_samples, *dim, n_frames) # Initialization X = np.empty((self.batch_size, self.n_frames, *self.dim), dtype=np.float32) y = np.empty((self.batch_size), dtype=int) # Generate data for i, ID in enumerate(data_IDs_temp): # Store sample h5_file = h5py.File(os.path.join(self.data_dir, f'./processed/{ID}.h5'), 'r') # 전처리 if (h5_file['data'].shape[1] > self.dim[0]) and (h5_file['data'].shape[2] > self.dim[1]): data = random_cropping(h5_file['data'], self.dim[:2]) else: data = np.asarray([cv2.resize(im, dsize=self.dim[:2], interpolation=cv2.INTER_CUBIC) for im in h5_file['data']]) X[i,] = data / 255. h5_file.close() # Store class y[i] = self.labels[ID] return X, keras.utils.to_categorical(y, num_classes=2) # Random cropping def random_cropping(data, crop_size=(224, 224)): height, width = data.shape[1], data.shape[2] he_idx = int(np.random.uniform(0, height - crop_size[0] + 1, size=())) wi_idx = int(np.random.uniform(0, width - crop_size[0] + 1, size=())) data = data[:, he_idx:he_idx + crop_size[0], wi_idx:wi_idx + crop_size[1]] return data def get_steps_hockey(num_data, batch): return num_data//batch + 1
the-stack_0_22414
import pyodbc try: connect = pyodbc.connect(r'Driver= {Microsoft Access Driver (*.mdb, *.accdb)};DBQ=C:\Users\steff\OneDrive\Desktop\files\Database1.accdb;') print("Connected to a Database") Fullname = "Almeda, Stephanie Joy G." Assignment = 87 Laboratory = 90 Quiz = 85 Exam = 94 user_id = 10 record = connect.cursor() record.execute('UPDATE Table1 SET Fullname = ?, Assignment = ?, Laboratory = ?, Quiz = ?, Exam = ? WHERE id = ?', (Fullname, Assignment, Laboratory, Quiz, Exam, user_id)) record.commit() print("Data is updated") except pyodbc.Error as e: print("Error in Connection")
the-stack_0_22415
from __future__ import print_function from cement.core import controller from cement.core import handler from sandglass.time import __version__ class ShowController(controller.CementBaseController): """ Sandglass CLI command that display sandglass information. """ class Meta: label = 'show' interface = controller.IController description = "Show sandglass information" stacked_on = 'base' stacked_type = 'nested' @controller.expose(help="display sandglass version") def version(self): print("Sandglass", __version__) handler.register(ShowController)
the-stack_0_22416
#!/usr/bin/env python # # Copyright (c) 2013 ARM Limited # All rights reserved # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Andrew Bardsley # # minorview.py: Minorview visuliser for MinorCPU model MinorTrace output # import gtk import os import sys import argparse # Find MinorView modules even if not called from minorview directory minorviewDir = os.path.dirname(os.path.realpath(__file__)) sys.path.append(minorviewDir) from minorview.model import BlobModel from minorview.view import BlobView, BlobController, BlobWindow from minorview.point import Point if __name__ == '__main__': parser = argparse.ArgumentParser(description='Minor visualiser') parser.add_argument('--picture', metavar='picture-file', default=minorviewDir + '/minorview/minor.pic', help='markup file containing blob information ' + '(default: <minorview-path>/minor.pic)') parser.add_argument('--prefix', metavar='name', default='system.cpu', help='name prefix in trace for CPU to be visualised (default: ' + 'system.cpu)') parser.add_argument('--start-time', metavar='time', type=int, default=0, help='time of first event to load from file') parser.add_argument('--end-time', metavar='time', type=int, default=None, help='time of last event to load from file') parser.add_argument('--mini-views', action='store_true', default=False, help='show tiny views of the next 10 time steps') parser.add_argument('eventFile', metavar='event-file', default='ev') args = parser.parse_args(sys.argv[1:]) model = BlobModel(unitNamePrefix=args.prefix) if args.picture and os.access(args.picture, os.O_RDONLY): model.load_picture(args.picture) else: parser.error('Can\'t read picture file: ' + args.picture) # Make the key objects view = BlobView(model) controller = BlobController(model, view, defaultEventFile=args.eventFile, defaultPictureFile=args.picture) window = BlobWindow(model, view, controller) window.add_control_bar(controller.bar) # Miniviews allow future timesteps to appear at the bottom of the # display. if args.mini_views: window.miniViewCount = 10 window.show_window() if args.eventFile and os.access(args.eventFile, os.O_RDONLY): controller.startTime = args.start_time controller.endTime = args.end_time model.load_events(args.eventFile, startTime=args.start_time, endTime=args.end_time) controller.set_time_index(0) else: parser.error('Can\'t read event file: ' + args.eventFile) gtk.main()
the-stack_0_22417
from django.core.management.base import BaseCommand from courses.models import Submission class Command(BaseCommand): help = ( "ONE Time command to calculate missing data. It will go through ALL Submissions and calculate " "'video_watched_percent' if missing, however the lecture has to have 'video_duration' stored in metadata." ) def handle(self, *args, **options): for submission in Submission.objects.all(): # Rename stored data: watched_video_time_range changed to video_watched_time_range (all starts with video) if submission.metadata and "watched_video_time_range" in submission.metadata: submission.metadata["video_watched_time_range"] = submission.metadata["watched_video_time_range"] del submission.metadata["watched_video_time_range"] if submission.metadata and "video_watched_time_range" in submission.metadata: if submission.lecture.metadata and "video_duration" in submission.lecture.metadata: video_watched = 0 for video_range in submission.metadata["video_watched_time_range"]: video_watched += video_range[1] - video_range[0] video_watched_percent = video_watched / submission.lecture.metadata["video_duration"] * 100 submission.metadata["video_watched_percent"] = round(video_watched_percent, 1) submission.save() self.stdout.write(self.style.SUCCESS("Done. Bye!"))
the-stack_0_22419
#!/usr/bin/python # File: pbs_status.py # # Author: Brian Bockelman # e-mail: [email protected] # # # Copyright (c) University of Nebraska-Lincoln. 2012 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Query PBS (or SLURM with the PBS emulation layer) for the status of a given job Internally, it creates a cache of the PBS qstat response and will reuse this for subsequent queries. """ from __future__ import print_function import os import re import pwd import sys import time import errno import fcntl import random import struct import subprocess import signal import tempfile import pickle import csv cache_timeout = 60 launchtime = time.time() def log(msg): """ A very lightweight log - not meant to be used in production, but helps when debugging scale tests """ print(time.strftime("%x %X"), os.getpid(), msg, file = sys.stderr) def createCacheDir(): uid = os.geteuid() username = pwd.getpwuid(uid).pw_name cache_dir = os.path.join("/var/tmp", "qstat_cache_%s" % username) try: os.mkdir(cache_dir, 0o755) except OSError as oe: if oe.errno != errno.EEXIST: raise s = os.stat(cache_dir) if s.st_uid != uid: raise Exception("Unable to check cache because it is owned by UID %d" % s.st_uid) return cache_dir def initLog(): """ Determine whether to create a logfile based on the presence of a file in the user's qstat cache directory. If so, make the logfile there. """ cache_dir = createCacheDir() if os.path.exists(os.path.join(cache_dir, "pbs_status.debug")): filename = os.path.join(cache_dir, "pbs_status.log") else: filename = "/dev/null" fd = open(filename, "a") # Do NOT close the file descriptor blahp originally hands us for stderr. # This causes blahp to lose all status updates. os.dup(2) os.dup2(fd.fileno(), 2) # Something else from a prior life - see gratia-probe-common's GratiaWrapper.py def ExclusiveLock(fd, timeout=120): """ Grabs an exclusive lock on fd If the lock is owned by another process, and that process is older than the timeout, then the other process will be signaled. If the timeout is negative, then the other process is never signaled. If we are unable to hold the lock, this call will not block on the lock; rather, it will throw an exception. By default, the timeout is 120 seconds. """ # POSIX file locking is cruelly crude. There's nothing to do besides # try / sleep to grab the lock, no equivalent of polling. # Why hello, thundering herd. # An alternate would be to block on the lock, and use signals to interupt. # This would mess up Gratia's flawed use of signals already, and not be # able to report on who has the lock. I don't like indefinite waits! max_time = 30 starttime = time.time() tries = 1 while time.time() - starttime < max_time: try: fcntl.lockf(fd, fcntl.LOCK_EX | fcntl.LOCK_NB) return except IOError as ie: if not ((ie.errno == errno.EACCES) or (ie.errno == errno.EAGAIN)): raise if check_lock(fd, timeout): time.sleep(.2) # Fast case; however, we have *no clue* how # long it takes to clean/release the old lock. # Nor do we know if we'd get it if we did # fcntl.lockf w/ blocking immediately. Blech. # Check again immediately, especially if this was the last # iteration in the for loop. try: fcntl.lockf(fd, fcntl.LOCK_EX | fcntl.LOCK_NB) return except IOError as ie: if not ((ie.errno == errno.EACCES) or (ie.errno == errno.EAGAIN)): raise sleeptime = random.random() log("Unable to acquire lock, try %i; will sleep for %.2f " \ "seconds and try for %.2f more seconds." % (tries, sleeptime, max_time - (time.time()-starttime))) tries += 1 time.sleep(sleeptime) log("Fatal exception - Unable to acquire lock") raise Exception("Unable to acquire lock") def check_lock(fd, timeout): """ For internal use only. Given a fd that is locked, determine which process has the lock. Kill said process if it is older than "timeout" seconds. This will log the PID of the "other process". """ pid = get_lock_pid(fd) if pid == os.getpid(): return True if timeout < 0: log("Another process, %d, holds the cache lock." % pid) return False try: age = get_pid_age(pid) except: log("Another process, %d, holds the cache lock." % pid) log("Unable to get the other process's age; will not time it out.") return False log("Another process, %d (age %d seconds), holds the cache lock." % (pid, age)) if age > timeout: os.kill(pid, signal.SIGKILL) else: return False return True linux_struct_flock = "hhxxxxqqixxxx" try: os.O_LARGEFILE except AttributeError: start_len = "hhlli" def get_lock_pid(fd): # For reference, here's the definition of struct flock on Linux # (/usr/include/bits/fcntl.h). # # struct flock # { # short int l_type; /* Type of lock: F_RDLCK, F_WRLCK, or F_UNLCK. */ # short int l_whence; /* Where `l_start' is relative to (like `lseek'). */ # __off_t l_start; /* Offset where the lock begins. */ # __off_t l_len; /* Size of the locked area; zero means until EOF. */ # __pid_t l_pid; /* Process holding the lock. */ # }; # # Note that things are different on Darwin # Assuming off_t is unsigned long long, pid_t is int try: if sys.platform == "darwin": arg = struct.pack("QQihh", 0, 0, 0, fcntl.F_WRLCK, 0) else: arg = struct.pack(linux_struct_flock, fcntl.F_WRLCK, 0, 0, 0, 0) result = fcntl.fcntl(fd, fcntl.F_GETLK, arg) except IOError as ie: if ie.errno != errno.EINVAL: raise log("Unable to determine which PID has the lock due to a " "python portability failure. Contact the developers with your" " platform information for support.") return False if sys.platform == "darwin": _, _, pid, _, _ = struct.unpack("QQihh", result) else: _, _, _, _, pid = struct.unpack(linux_struct_flock, result) return pid def get_pid_age(pid): now = time.time() st = os.stat("/proc/%d" % pid) return now - st.st_ctime def qstat(jobid=""): """ Call qstat directly for a jobid. If none is specified, query all jobid's. Returns a python dictionary with the job info. """ qstat = get_qstat_location() command = (qstat, '--version') qstat_process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) qstat_version, _ = qstat_process.communicate() starttime = time.time() log("Starting qstat.") if re.search(r'PBSPro', qstat_version): child_stdout = os.popen("%s -f %s" % (qstat, jobid)) # -1 conflicts with -f in PBS Pro else: child_stdout = os.popen("%s -f -1 %s" % (qstat, jobid)) result = parse_qstat_fd(child_stdout) exit_status = child_stdout.close() log("Finished qstat (time=%f)." % (time.time()-starttime)) if exit_status: exit_code = 0 if os.WIFEXITED(exit_status): exit_code = os.WEXITSTATUS(exit_status) if exit_code == 153 or exit_code == 35: # Completed result = {jobid: {'BatchJobId': '"%s"' % jobid, "JobStatus": "4", "ExitCode": ' 0'}} elif exit_code == 271: # Removed result = {jobid: {'BatchJobId': '"%s"' % jobid, 'JobStatus': '3', 'ExitCode': ' 0'}} else: raise Exception("qstat failed with exit code %s" % str(exit_status)) # If the job has completed... if jobid is not "" and "JobStatus" in result[jobid] and (result[jobid]["JobStatus"] == '4' or result[jobid]["JobStatus"] == '3'): # Get the finished job stats and update the result finished_job_stats = get_finished_job_stats(jobid) result[jobid].update(finished_job_stats) return result def which(program): """ Determine if the program is in the path. arg program: name of the program to search returns: full path to executable, or None if executable is not found """ def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None def convert_cpu_to_seconds(cpu_string): import re h,m,s = re.split(':',cpu_string) return int(h) * 3600 + int(m) * 60 + int(s) _cluster_type_cache = None def get_finished_job_stats(jobid): """ Get a completed job's statistics such as used RAM and cpu usage. """ # List the attributes that we want return_dict = { "ImageSize": 0, "ExitCode": 0, "RemoteUserCpu": 0 } # First, determine if this is a pbs or slurm machine. uid = os.geteuid() username = pwd.getpwuid(uid).pw_name cache_dir = os.path.join("/var/tmp", "qstat_cache_%s" % username) cluster_type_file = os.path.join(cache_dir, "cluster_type") global _cluster_type_cache if not _cluster_type_cache: # Look for the special file, cluster_type if os.path.exists(cluster_type_file): _cluster_type_cache = open(cluster_type_file).read() else: # No idea what type of cluster is running, not set, so give up log("cluster_type file is not present, not checking for completed job statistics") return return_dict # Slurm completion if _cluster_type_cache == "slurm": # Next, query the appropriate interfaces for the completed job information # TODO: fix for pbs log("Querying sacct for completed job for jobid: %s" % (str(jobid))) child_stdout = os.popen("sacct -j %s -l --noconvert -P" % (str(jobid))) sacct_data = child_stdout.readlines() ret = child_stdout.close() if ret: # retry without --noconvert for slurm < 15.8 child_stdout = os.popen("sacct -j %s -l -P" % (str(jobid))) sacct_data = child_stdout.readlines() child_stdout.close() try: reader = csv.DictReader(sacct_data, delimiter="|") except Exception as e: log("Unable to read in CSV output from sacct: %s" % str(e)) return return_dict # Slurm can return more than 1 row, for some odd reason. # so sum up relevant values for row in reader: if row["AveCPU"] is not "": return_dict['RemoteUserCpu'] += convert_cpu_to_seconds(row["AveCPU"]) * int(row["AllocCPUS"]) if row["MaxRSS"] is not "": # Remove the trailing [KMGTP] and scale the value appropriately # Note: We assume that all values will have a suffix, and we # want the value in kilos. value = row["MaxRSS"] factor = 1 if value[-1] == 'M': factor = 1024 elif value[-1] == 'G': factor = 1024 * 1024 elif value[-1] == 'T': factor = 1024 * 1024 * 1024 elif value[-1] == 'P': factor = 1024 * 1024 * 1024 * 1024 return_dict["ImageSize"] += int(value.strip('KMGTP')) * factor if row["ExitCode"] is not "": return_dict["ExitCode"] = int(row["ExitCode"].split(":")[0]) # PBS completion elif _cluster_type_cache == "pbs": pass return return_dict _qstat_location_cache = None def get_qstat_location(): """ Locate the copy of qstat the blahp configuration wants to use. """ global _qstat_location_cache if _qstat_location_cache is not None: return _qstat_location_cache load_config_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'blah_load_config.sh') if os.path.exists(load_config_path) and os.access(load_config_path, os.R_OK): cmd = "/bin/bash -c 'source %s && echo $pbs_binpath/qstat'" % load_config_path else: cmd = 'which qstat' child_stdout = os.popen(cmd) output = child_stdout.read() location = output.split("\n")[0].strip() if child_stdout.close(): raise Exception("Unable to determine qstat location: %s" % output) _qstat_location_cache = location return location job_id_re = re.compile("\s*Job Id:\s([0-9]+)([\w\-\/.]*)") exec_host_re = re.compile("\s*exec_host = ([\w\-\/.]+)") status_re = re.compile("\s*job_state = ([QREFCH])") exit_status_re = re.compile("\s*[Ee]xit_status = (-?[0-9]+)") status_mapping = {"Q": 1, "R": 2, "E": 2, "F": 4, "C": 4, "H": 5} def parse_qstat_fd(fd): """ Parse the stdout fd of "qstat -f" into a python dictionary containing the information we need. """ job_info = {} cur_job_id = None cur_job_info = {} for line in fd: line = line.strip() m = job_id_re.match(line) if m: if cur_job_id: job_info[cur_job_id] = cur_job_info cur_job_id = m.group(1) #print cur_job_id, line cur_job_info = {"BatchJobId": '"%s"' % cur_job_id.split(".")[0]} continue if cur_job_id is None: continue m = exec_host_re.match(line) if m: cur_job_info["WorkerNode"] = '"' + m.group(1).split("/")[0] + '"' continue m = status_re.match(line) if m: status = status_mapping.get(m.group(1), 0) if status != 0: cur_job_info["JobStatus"] = str(status) continue m = exit_status_re.match(line) if m: cur_job_info["ExitCode"] = ' %s' % m.group(1) continue if cur_job_id: job_info[cur_job_id] = cur_job_info return job_info def job_dict_to_string(info): result = ["%s=%s;" % (i[0], i[1]) for i in info.items()] return "[" + " ".join(result) + " ]" def fill_cache(cache_location): log("Starting query to fill cache.") results = qstat() log("Finished query to fill cache.") (fd, filename) = tempfile.mkstemp(dir = "/var/tmp") # Open the file with a proper python file object f = os.fdopen(fd, "w") writer = csv.writer(f, delimiter='\t') try: try: for key, val in results.items(): key = key.split(".")[0] writer.writerow([key, pickle.dumps(val)]) os.fsync(fd) except: os.unlink(filename) raise finally: f.close() os.rename(filename, cache_location) # Create the cluster_type file uid = os.geteuid() username = pwd.getpwuid(uid).pw_name cache_dir = os.path.join("/var/tmp", "qstat_cache_%s" % username) cluster_type_file = os.path.join(cache_dir, "cluster_type") (fd, filename) = tempfile.mkstemp(dir = "/var/tmp") global _cluster_type_cache if which("sacct"): os.write(fd, "slurm") _cluster_type_cache = "slurm" else: log("Unable to find cluster type") os.close(fd) os.rename(filename, cluster_type_file) global launchtime launchtime = time.time() cache_line_re = re.compile("([0-9]+[\.\w\-]+):\s+(.+)") def cache_to_status(jobid, fd): reader = csv.reader(fd, delimiter='\t') for row in reader: if row[0] == jobid: return pickle.loads(row[1]) def check_cache(jobid, recurse=True): uid = os.geteuid() username = pwd.getpwuid(uid).pw_name cache_dir = os.path.join("/var/tmp", "qstat_cache_%s" % username) if recurse: try: s = os.stat(cache_dir) except OSError as oe: if oe.errno != 2: raise os.mkdir(cache_dir, 0o755) s = os.stat(cache_dir) if s.st_uid != uid: raise Exception("Unable to check cache because it is owned by UID %d" % s.st_uid) cache_location = os.path.join(cache_dir, "blahp_results_cache") try: fd = open(cache_location, "a+") except IOError as ie: if ie.errno != 2: raise # Create an empty file so we can hold the file lock fd = open(cache_location, "w+") ExclusiveLock(fd) # If someone grabbed the lock between when we opened and tried to # acquire, they may have filled the cache if os.stat(cache_location).st_size == 0: fill_cache(cache_location) fd.close() if recurse: return check_cache(jobid, recurse=False) else: return None ExclusiveLock(fd) s = os.fstat(fd.fileno()) if s.st_uid != uid: raise Exception("Unable to check cache file because it is owned by UID %d" % s.st_uid) if (s.st_size == 0) or (launchtime - s.st_mtime > cache_timeout): # If someone filled the cache between when we opened the file and # grabbed the lock, we may not need to fill the cache. s2 = os.stat(cache_location) if (s2.st_size == 0) or (launchtime - s2.st_mtime > cache_timeout): fill_cache(cache_location) if recurse: return check_cache(jobid, recurse=False) else: return None return cache_to_status(jobid, fd) job_status_re = re.compile(".*JobStatus=(\d+);.*") def main(): initLog() # Accept the optional -w argument, but ignore it if len(sys.argv) == 2: jobid_arg = sys.argv[1] elif len(sys.argv) == 3 and sys.argv[1] == "-w": jobid_arg = sys.argv[2] else: print("1Usage: pbs_status.sh pbs/<date>/<jobid>") return 1 jobid = jobid_arg.split("/")[-1].split(".")[0] log("Checking cache for jobid %s" % jobid) cache_contents = None try: cache_contents = check_cache(jobid) except Exception as e: msg = "1ERROR: Internal exception, %s" % str(e) log(msg) #print msg if not cache_contents: log("Jobid %s not in cache; querying PBS" % jobid) results = qstat(jobid) log("Finished querying PBS for jobid %s" % jobid) if not results or jobid not in results: log("1ERROR: Unable to find job %s" % jobid) print("1ERROR: Unable to find job %s" % jobid) else: log("0%s" % job_dict_to_string(results[jobid])) print("0%s" % job_dict_to_string(results[jobid])) else: log("Jobid %s in cache." % jobid) log("0%s" % job_dict_to_string(cache_contents)) if cache_contents["JobStatus"] == '4' or cache_contents["JobStatus"] == '3': finished_job_stats = get_finished_job_stats(jobid) cache_contents.update(finished_job_stats) print("0%s" % job_dict_to_string(cache_contents)) return 0 if __name__ == "__main__": try: sys.exit(main()) except SystemExit: raise except Exception as e: print("1ERROR: %s" % str(e).replace("\n", "\\n")) sys.exit(0)
the-stack_0_22422
#!/usr/bin/env python3 """ Lists all the UAVCAN files in a format compatible with CMake (column separated data). It is intended to be handled as part of the build, not be used interactively. """ import argparse import glob import os.path import re def parse_args(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--output-dir", help="Generate list of outputs") parser.add_argument( "dsdl_dirs", help="Files containing dsdl definitions", nargs="+" ) return parser.parse_args() def output_file(input_path: str, input_dir: str, output_path: str) -> str: """ Converts an input path to an output DSDLC path >>> output_file('foo/uavcan_data_types/cvra/20001.Reboot.uavcan', 'foo/uavcan_data_types/cvra', 'dsdlc_generated') 'dsdlc_generated/cvra/Reboot.hpp' """ input_dir = os.path.join(*input_dir.split("/")[:-1]) path = input_path.replace(input_dir, "") path = path.split("/", maxsplit=1) # Change the extension path[-1] = path[-1].replace(".uavcan", ".hpp") path[-1] = re.sub(r"[0-9]+\.", "", path[-1]) return os.path.join(output_path, *path) def main(): args = parse_args() input_files = [] output_files = [] for d in args.dsdl_dirs: files = glob.glob(os.path.join(d, "**/**.uavcan"), recursive=True) input_files += files if args.output_dir: output_files += [output_file(i, d, args.output_dir) for i in files] if args.output_dir: print(output_files[0], end="") else: print(";".join(os.path.abspath(p) for p in input_files), end="") if __name__ == "__main__": main()
the-stack_0_22424
""" To get standard out, run nosetests as follows: nosetests -sv tests nosetests --verbosity=2 --detailed-errors --nologcapture --processes=4 --process-restartworker --process-timeout=1000 tests """ import datetime import os import random import sys sys.path = [os.path.abspath(os.path.dirname(__file__))] + sys.path sys.path = [os.path.abspath(os.path.dirname(os.path.dirname(__file__)))] + sys.path os.environ['is_test_suite'] = 'True' from auto_ml import Predictor from auto_ml.utils_models import load_ml_model from nose.tools import assert_equal, assert_not_equal, with_setup from sklearn.metrics import accuracy_score import dill import numpy as np import utils_testing as utils def test_linear_model_analytics_classification(model_name=None): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, model_names='RidgeClassifier') test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) assert -0.21 < test_score < -0.131 def test_input_df_unmodified(): np.random.seed(42) df_boston_train, df_boston_test = utils.get_boston_regression_dataset() column_descriptions = { 'MEDV': 'output' , 'CHAS': 'categorical' } ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) df_shape = df_boston_train.shape ml_predictor.train(df_boston_train) training_shape = df_boston_train.shape assert training_shape[0] == df_shape[0] assert training_shape[1] == df_shape[1] test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV) print('test_score') print(test_score) assert -3.35 < test_score < -2.8 def test_model_uses_user_provided_training_params(model_name=None): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) try: ml_predictor.train(df_titanic_train, model_names='RidgeClassifier', training_params={'this_param_is_not_valid': True}) assert False except ValueError as e: assert True def test_ignores_new_invalid_features(): # One of the great unintentional features of auto_ml is that you can pass in new features at prediction time, that weren't present at training time, and they're silently ignored! # One edge case here is new features that are strange objects (lists, datetimes, intervals, or anything else that we can't process in our default data processing pipeline). Initially, we just ignored them in dict_vectorizer, but we need to ignore them earlier. np.random.seed(0) df_boston_train, df_boston_test = utils.get_boston_regression_dataset() column_descriptions = { 'MEDV': 'output' , 'CHAS': 'categorical' } ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) ml_predictor.train(df_boston_train) file_name = ml_predictor.save(str(random.random())) saved_ml_pipeline = load_ml_model(file_name) os.remove(file_name) try: keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5' os.remove(keras_file_name) except: pass df_boston_test_dictionaries = df_boston_test.to_dict('records') # 1. make sure the accuracy is the same predictions = [] for row in df_boston_test_dictionaries: if random.random() > 0.9: row['totally_new_feature'] = datetime.datetime.now() row['really_strange_feature'] = random.random row['we_should_really_ignore_this'] = Predictor row['pretty_vanilla_ignored_field'] = 8 row['potentially_confusing_things_here'] = float('nan') row['potentially_confusing_things_again'] = float('inf') row['this_is_a_list'] = [1,2,3,4,5] predictions.append(saved_ml_pipeline.predict(row)) print('predictions') print(predictions) print('predictions[0]') print(predictions[0]) print('type(predictions)') print(type(predictions)) first_score = utils.calculate_rmse(df_boston_test.MEDV, predictions) print('first_score') print(first_score) # Make sure our score is good, but not unreasonably good lower_bound = -3.0 assert lower_bound < first_score < -2.7 # 2. make sure the speed is reasonable (do it a few extra times) data_length = len(df_boston_test_dictionaries) start_time = datetime.datetime.now() for idx in range(1000): row_num = idx % data_length saved_ml_pipeline.predict(df_boston_test_dictionaries[row_num]) end_time = datetime.datetime.now() duration = end_time - start_time print('duration.total_seconds()') print(duration.total_seconds()) # It's very difficult to set a benchmark for speed that will work across all machines. # On my 2013 bottom of the line 15" MacBook Pro, this runs in about 0.8 seconds for 1000 predictions # That's about 1 millisecond per prediction # Assuming we might be running on a test box that's pretty weak, multiply by 3 # Also make sure we're not running unreasonably quickly assert 0.1 < duration.total_seconds() / 1.0 < 15 # 3. make sure we're not modifying the dictionaries (the score is the same after running a few experiments as it is the first time) predictions = [] for row in df_boston_test_dictionaries: predictions.append(saved_ml_pipeline.predict(row)) second_score = utils.calculate_rmse(df_boston_test.MEDV, predictions) print('second_score') print(second_score) # Make sure our score is good, but not unreasonably good assert lower_bound < second_score < -2.7
the-stack_0_22425
# -*- coding: utf-8 -*- def calc_depth(vertex_count: int, graph): """Calculates depth of rooted tree. Assumption: The graph is connected. Args: vertex_count : The number of vertices in rooted tree. graph : Rooted tree (0-indexed). Returns: depth : Depth of rooted tree (0-indexed). Landau notation: O(|Edges|log|Vertices|). """ from collections import deque PENDING = -1 depth = [PENDING for _ in range(vertex_count)] parent = [PENDING for _ in range(vertex_count)] depth[0], parent[0] = 0, 0 d = deque() d.append(0) while d: vertex = d.popleft() for g in graph[vertex]: if depth[g] == PENDING: depth[g] = depth[vertex] + 1 parent[g] = vertex d.append(g) return depth def run_imos(graph, depth, imos): """Calculate values of rooted tree faster using imos method. Args: graph : Rooted tree (0-indexed). depth : Depth of rooted tree (0-indexed). imos : List of some values (0-indexed). Returns: imos : List of cumulative sum of values (0-indexed). Landau notation: O(|Edges|log|Vertices|). """ from collections import deque d = deque() d.append(0) while d: vertex = d.popleft() for g in graph[vertex]: if depth[vertex] < depth[g]: imos[g] += imos[vertex] d.append(g) return imos
the-stack_0_22426
import numpy as np class DataStats: """ This class holds statistics for any kind of numerical data. Args: mean (float): The mean overall data points. var (float): The variance overall data points. min_val (float): The minimum value within all data points. max_val (float): The maximum value within all data points. num (int): The number of data points, these stats were calculated of. """ __slots__ = ['mean', 'var', 'min', 'max', 'num'] def __init__(self, mean, var, min_val, max_val, num): self.mean = mean self.var = var self.min = min_val self.max = max_val self.num = num @property def values(self): """ Return all values as numpy-array (mean, var, min, max, num). """ return np.array([self.mean, self.var, self.min, self.max, self.num]) def to_dict(self): """ Return the stats as a dictionary. """ return { 'mean': self.mean, 'var': self.var, 'min': self.min, 'max': self.max, 'num': self.num } @classmethod def from_dict(cls, dict_with_stats): """ Create a DataStats object from a dictionary with stats. Args: dict_with_stats (dict): Dictionary containing stats. Returns: (DataStats): Statistics """ return DataStats(dict_with_stats['mean'], dict_with_stats['var'], dict_with_stats['min'], dict_with_stats['max'], dict_with_stats['num']) @classmethod def concatenate(cls, list_of_stats): """ Take a list of stats from different sets of data points and merge the stats for getting stats overall data points. Args: list_of_stats (iterable): A list containing stats for different sets of data points. Returns: DataStats: Stats calculated overall sets of data points. """ all_stats = np.stack([stats.values for stats in list_of_stats]) all_counts = all_stats[:, 4] all_counts_relative = all_counts / np.sum(all_counts) min_value = float(np.min(all_stats[:, 2])) max_value = float(np.max(all_stats[:, 3])) mean_value = float(np.sum(all_counts_relative * all_stats[:, 0])) var_value = float(np.sum(all_counts_relative * (all_stats[:, 1] + np.power(all_stats[:, 0] - mean_value, 2)))) num_value = int(np.sum(all_counts)) return cls(mean_value, var_value, min_value, max_value, num_value)
the-stack_0_22430
# -*- coding: utf-8 -*- """ @Author: oisc <[email protected]> @Date: 2018/5/2 @Description: Default syntactic and dependency parser """ from interface import SentenceParser, SentenceParseError from nltk.tree import ParentedTree from nltk.parse.stanford import StanfordDependencyParser from structure.dependency import DependencyGraph import subprocess import threading import jieba from jieba import posseg import os import logging jieba.setLogLevel(logging.ERROR) LRB = '-LRB-' RRB = '-RRB-' PREFIX = os.path.dirname(__file__) BERKELEY_JAR = os.path.join(PREFIX, "../berkeleyparser/BerkeleyParser-1.7.jar") BERKELEY_GRAMMAR = os.path.join(PREFIX, "../berkeleyparser/chn_sm5.gr") STANFORD_JAR = os.path.join(PREFIX, "../stanford/stanford-parser.jar") STANFORD_MODEL = os.path.join(PREFIX, "../stanford/stanford-chinese-corenlp-2018-02-27-models.jar") STANFORD_GRAMMAR = "edu/stanford/nlp/models/lexparser/chinesePCFG.ser.gz" class BerkeleyWarpper(object): def __init__(self, path_to_jar: str, path_to_grammar: str, binarize=False, timeout=20): self.env = dict(os.environ) self.java_opt = ['-Xmx1024m'] self.jar = path_to_jar self.gr = path_to_grammar self.timeout = timeout # check java try: subprocess.run(['java', '-version']) except subprocess.CalledProcessError: raise EnvironmentError("Java should be placed in system PATH environment!") # start berkeley parser process cmd = ['java'] cmd.extend(self.java_opt) cmd.extend(['-jar', self.jar, '-gr', self.gr]) if binarize: cmd.append('-binarize') self.cmd = cmd self.start() def start(self): self.process = subprocess.Popen(self.cmd, env=self.env, universal_newlines=True, shell=False, bufsize=0, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, errors='ignore') def stop(self): if hasattr(self, "process") and self.process: self.process.terminate() def restart(self): self.stop() self.start() def parse_thread(self, text, results): self.process.stdin.write(text + '\n') self.process.stdin.flush() ret = self.process.stdout.readline().strip() results.append(ret) def parse(self, text: str): results = [] t = threading.Thread(target=self.parse_thread, kwargs={'text': text, 'results': results}) t.setDaemon(True) t.start() t.join(self.timeout) if not results: self.restart() raise TimeoutError else: return results[0] def __del__(self): self.stop() class StanfordWrapper(StanfordDependencyParser): def _execute(self, cmd, input_, verbose=False): # command hack cmd.extend(['-outputFormatOptions', 'includePunctuationDependencies']) return StanfordDependencyParser._execute(self, cmd, input_, verbose) def _make_tree(self, result): # pickleable hack return DependencyGraph(result, top_relation_label='root') def grammar(self): raise NotImplementedError() class ZhBerkeleyParser(SentenceParser): name = "berkeley" def __init__(self, binarize=False): self.berkeley = BerkeleyWarpper(path_to_jar=BERKELEY_JAR, path_to_grammar=BERKELEY_GRAMMAR, binarize=binarize) self.stanford = StanfordWrapper(path_to_jar=STANFORD_JAR, path_to_models_jar=STANFORD_MODEL, model_path=STANFORD_GRAMMAR) self.jieba = jieba self.posseg = posseg def cut(self, text: str): yield from self.jieba.cut(text) def tag(self, text: str): for pair in self.posseg.cut(text): yield pair.word, pair.flag def parse(self, text: str): _text = ' '.join(self.cut(text)) _text = _text.replace("(", LRB) _text = _text.replace(")", RRB) try: parse_text = self.berkeley.parse(_text) _parse = ParentedTree.fromstring(parse_text) except TimeoutError: raise SentenceParseError("timeout parsing sentence \"%s\"" % text) except ValueError: raise SentenceParseError("error parsing sentence %s to tree format" % text) if not _parse.leaves(): raise SentenceParseError("get an empty parse tree for sentence: \"%s\"" % text) for child in list(_parse.subtrees(lambda t: t.height() == 2 and t.label() != '-NONE-')): if child[0] == LRB: child[0] = '(' if child[0] == RRB: child[0] = ')' return _parse def dependency(self, text): cuted = list(self.cut(text)) return next(self.stanford.parse(cuted))
the-stack_0_22431
# Django settings for test_project project. DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': ':memory:', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = 'f3jab0f^tm*8%s#h)r*&amp;-#0%*+@ij^o#-g5d$yd@phr$$0pmk8' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'test_project.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'test_project.wsgi.application' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Uncomment the next line to enable the admin: # 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', 'infinite_memcached', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
the-stack_0_22432
import bpy import uuid from ..Utils import * from bpy.app.handlers import persistent @persistent def computeCollectionsUids(dummy): for c in bpy.data.collections: if not uid_key in c or not c[uid_key]: c[uid_key]=str(uuid.uuid4()) print(c.name+" has assigned f3b_uid "+c[uid_key]) getCollectionUid(c,c[uid_key]) def register(): print("Register collection uid generator") bpy.app.handlers.save_pre.append(computeCollectionsUids) def unregister(): bpy.app.handlers.save_pre.remove(computeCollectionsUids)
the-stack_0_22436
import requests from bs4 import BeautifulSoup def solveequation(x, y): """function that solves simple chemistry reaction equation(need WI FI enabled, cause uses web-parsing)""" url = 'https://chemequations.com/ru/?s=' + x + '+%2B+' + y + '&ref=input' def get_html(url, params=None): r = requests.get(url, params=params) return r def get_content(html): s = BeautifulSoup(html, 'html.parser') pog = s.find('h1', class_='equation main-equation well') if pog is None: raise Exception('Error, insert valid elements') return pog.get_text() def parse(): html = get_html(url) if html.status_code == 200: return get_content(html.text) else: raise Exception('Error, enable WI-FI') return parse() def chain(text): """function that solves chemistry reactions chain(need WI FI enabled, cause uses web-parsing)""" def get_content(html): global y s = BeautifulSoup(html, 'html.parser') react = s.findAll('div', class_='reac') for r in react: reaction = r.get_text() el = str(reaction).split() z = el[0] z1 = el[2] if z == x or el[2] == x or z[1:] == x or z1[1:] == x: totr = reaction break try: return totr except Exception as e: return 'Invalid reaction or no no reactions like that' def parse(): def get_html(url, params=None): r = requests.get(url, params=params) return r html = get_html(url) if html.status_code == 200: return get_content(html.text) else: raise Exception('Error, enable WI-FI') out = [] c = 0 a = list(text.split()) for i in range(len(a) - 1): c += 1 x = a[i] y = a[i + 1] for j in range(10): url = 'https://tutata.ru/chemistry/search?s=%3D+' + y + '&page=' + str(j) res = parse() if res != 'Invalid reaction or no no reactions like that' or res == 'Error': break if res == 'Invalid reaction or no no reactions like that': out.append(str(c) + ': ' + 'Invalid reaction or no no reactions like that') else: out.append(str(c) + ': ' + ''.join(res)[1:]) return out
the-stack_0_22437
import argparse from typing import List from catas.cli import MyArgumentParser from catas.data import Version from catas import __version__ from catas.exitcodes import ( EXIT_VALID, EXIT_KEYBOARD, EXIT_UNKNOWN, EXIT_CLI, EXIT_INPUT_FORMAT, EXIT_INPUT_NOT_FOUND, EXIT_SYSERR, EXIT_CANT_OUTPUT ) def cli(prog: str, args: List[str]) -> argparse.Namespace: import joblib parser = MyArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=( "Examples:\n\n" "```bash\n" "$ %(prog)s -o outdir proteome_1.fasta proteome_2.fasta\n" "```\n" ), epilog=( "Exit codes:\n\n" f"{EXIT_VALID} - Everything's fine\n" f"{EXIT_KEYBOARD} - Keyboard interrupt\n" f"{EXIT_CLI} - Invalid command line usage\n" f"{EXIT_INPUT_FORMAT} - Input format error\n" f"{EXIT_INPUT_NOT_FOUND} - Cannot open the input\n" f"{EXIT_SYSERR} - System error\n" f"{EXIT_CANT_OUTPUT} - Can't create output file\n" f"{EXIT_UNKNOWN} - Unhandled exception, please file a bug!\n" ) ) parser.add_argument( "infiles", type=str, nargs="+", help=( "Proteome fasta-files to run." ) ) parser.add_argument( "-m", "--model", dest="model_version", default=Version.latest(), type=Version.from_string, choices=list(Version), help=( "The version of the model to use. If you're using old dbCAN " "predictions you may have to specify this. The version numbers " "are just the versions of dbCAN used to train the models so just " "select the dbCAN version that you used. The latest version is " "used by default." ) ) parser.add_argument( "--hmms", type=str, help=( "Path to the dbCAN hmmer-formatted database. " "Note that the specified model version must match the version of " "the database specified here." ) ) parser.add_argument( "-o", "--outdir", type=str, default="results", help="A directory to put the files in. default will be 'results'" ) parser.add_argument( "--hmmscan_path", type=str, default="hmmscan", help=( "Where to look for hmmscan" ) ) parser.add_argument( "--hmmpress_path", type=str, default="hmmpress", help=( "Where to look for hmmpress" ) ) parser.add_argument( "--ncpu", type=int, default=joblib.cpu_count(), help="How many processes to run." ) parser.add_argument( "-c", "--correct", action="store_true", default=False, help="Replace invalid characters in Fasta files." ) parser.add_argument( "-q", "--quiet", action="store_true", default=False, help="Suppress running feedback." ) parser.add_argument( '--version', action='version', version='%(prog)s {}'.format(__version__), help="Print the version of %(prog)s and exit" ) return parser.parse_args()
the-stack_0_22438
# Copyright 2018-2019 Jetperch LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from joulescope import span from joulescope.stream_buffer import StreamBuffer, stats_to_api, \ stats_array_factory, stats_array_invalidate import threading import queue import numpy as np import logging TIMEOUT = 10.0 def data_array_to_update(x_limits, x, data_array): """Convert raw data buffer to a view update. :param x_limits: The list of [x_min, x_max] or None if unknown. :param x: The np.ndarray of x-axis times. :param data_array: The np.ndarray((N, STATS_FIELD_COUNT), dtype=STATS_DTYPE) """ if len(x): s = stats_to_api(data_array[0, :], float(x[0]), float(x[-1])) else: s = stats_to_api(None, 0.0, 0.0) s['time']['x'] = {'value': x, 'units': 's'} s['time']['limits'] = {'value': x_limits, 'units': 's'} s['state'] = {'source_type': 'buffer'} # ['realtime', 'buffer'] for idx, signal in enumerate(s['signals'].values()): signal['µ']['value'] = data_array[:, idx]['mean'].copy() length = data_array[:, idx]['length'] - 1 length[length < 1] = 1.0 signal['σ2']['value'] = data_array[:, idx]['variance'] / length signal['min']['value'] = data_array[:, idx]['min'].copy() signal['max']['value'] = data_array[:, idx]['max'].copy() signal['p2p']['value'] = signal['max']['value'] - signal['min']['value'] return s class View: def __init__(self, stream_buffer, calibration): """Create a new view instance. :param stream_buffer: The stream buffer providing the data. :param calibration: The device calibration data structure. """ self._state = 'idle' self._stream_buffer = None self._calibration = calibration self._x = None self._data = None # [N, STATS_FIELD_COUNT] self._x_range = [0.0, 1.0] # the initial default range self._samples_per = 1 self._data_idx = 0 self._span = None self._changed = True self._stream_notify_available = False # flag when stream_notify called self._refresh_requested = False self._log = logging.getLogger(__name__) self._thread = None self._closing = False self._cmd_queue = queue.Queue() # tuples of (command, args, callback) self._response_queue = queue.Queue() self.on_update_fn = None # callable(data) self._quit = False self.on_close = None # optional callable() on close if stream_buffer is not None: self._stream_buffer_assign(stream_buffer) def _stream_buffer_assign(self, stream_buffer): if self._stream_buffer == stream_buffer: return self._stream_buffer = stream_buffer self._x_range = list(self._stream_buffer.limits_time) # the initial default range length = len(self) if length <= 0: length = 100 # todo : investigate - may want inclusive max time (not exclusive) -- off by 1 error? self._span = span.Span(limits=self._stream_buffer.limits_time, quant=1.0 / self.sampling_frequency, length=length) def __len__(self): if self._data is None: return 0 return self._data.shape[0] @property def sampling_frequency(self): """The output sampling frequency.""" if self._stream_buffer is None: return None return self._stream_buffer.output_sampling_frequency @property def calibration(self): """The device calibration.""" return self._calibration @property def limits(self): """Get the (x_min, x_max) limits for the view.""" if self._span is not None: return list(self._span.limits) return None def _cmd_process(self, cmd, args): rv = None try: # self._log.debug('_cmd_process %s - start', cmd) if cmd == 'stream_notify': rv = self._stream_notify(stream_buffer=args) elif cmd == 'refresh': if bool(args['force']): self._log.debug('view refresh(force=True) requested') self._update() else: self._refresh_requested = True elif cmd == 'on_x_change': rv = self._on_x_change(*args) elif cmd == 'samples_get': rv = self._samples_get(**args) elif cmd == 'statistics_get': rv = self._statistics_get(**args) elif cmd == 'statistics_get_multiple': rv = self._statistics_get_multiple(**args) elif cmd == 'start': rv = self._start() elif cmd == 'stop': rv = self._stop() elif cmd == 'ping': return args elif cmd == 'close': self._quit = True else: self._log.warning('unsupported command %s', cmd) except Exception: self._log.exception('While running command') # self._log.debug('_cmd_process %s - done', cmd) return rv def _run(self): cmd_count = 0 timeout = 1.0 self._log.info('View.run start') while not self._quit: try: cmd, args, cbk = self._cmd_queue.get(timeout=timeout) except queue.Empty: timeout = 1.0 if cmd_count and self._refresh_requested and (self._changed or self._stream_notify_available): self._update() cmd_count = 0 continue except Exception: self._log.exception('Exception during View _cmd_queue get') continue cmd_count += 1 timeout = 0.0 rv = self._cmd_process(cmd, args) if callable(cbk): try: cbk(rv) except Exception: self._log.exception('in callback') self._data = None self._log.info('View.run done') def _post(self, command, args=None, cbk=None): if self._thread is None: self._log.info('View._post(%s) when thread not running', command) else: self._cmd_queue.put((command, args, cbk)) def _post_block(self, command, args=None, timeout=None): timeout = TIMEOUT if timeout is None else float(timeout) # self._log.debug('_post_block %s start', command) while not self._response_queue.empty(): self._log.warning('response queue not empty') try: self._response_queue.get(timeout=0.0) except queue.Empty: pass if self._thread is None: raise IOError('View thread not running') self._post(command, args, lambda rv_=None: self._response_queue.put(rv_)) try: rv = self._response_queue.get(timeout=timeout) except queue.Empty as ex: self._log.error('view thread hung: %s - FORCE CLOSE', command) self._join() rv = ex except Exception as ex: rv = ex if isinstance(rv, Exception): raise IOError(rv) # self._log.debug('_post_block %s done', command) # rv return rv def _update_from_buffer(self): buffer = self._stream_buffer if buffer is None: return length = len(self) data_idx_view_end, sample_id_end, delta = self._view() if self._data is None: return elif not self._changed and 0 == delta: return elif self._changed or delta >= length: # perform full recompute stats_array_invalidate(self._data) if data_idx_view_end > 0: start_idx = (data_idx_view_end - length) * self._samples_per # self.log.debug('recompute(start=%s, stop=%s, increment=%s)', start_idx, sample_id_end, self.samples_per) buffer.data_get(start_idx, sample_id_end, self._samples_per, self._data) elif data_idx_view_end > 0: start_idx = self._data_idx * self._samples_per # self.log.debug('update(start=%s, stop=%s, increment=%s)', start_idx, sample_id_end, self.samples_per) self._data = np.roll(self._data, -delta, axis=0) buffer.data_get(start_idx, sample_id_end, self._samples_per, self._data[-delta:, :]) else: stats_array_invalidate(self._data) self._data_idx = data_idx_view_end self._changed = False def _update(self): if not callable(self.on_update_fn): return self._update_from_buffer() if self._data is None: data = None else: data = data_array_to_update(self.limits, self._x, self._data) if self._state != 'idle': data['state']['source_type'] = 'realtime' self._stream_notify_available = False self._refresh_requested = False try: self.on_update_fn(data) except Exception: self._log.exception('in on_update_fn') def _clear(self): self._changed = True self._refresh_requested = True self._data_idx = 0 if self._data is not None: stats_array_invalidate(self._data) def _start(self): self._log.debug('start') self._clear() self._state = 'streaming' def _stop(self): self._log.debug('start') self._state = 'idle' def _on_x_change(self, cmd, kwargs): x_range = list(self._x_range) # copy if cmd == 'resize': # {pixels: int} length = kwargs['pixels'] if length is not None and length != len(self): self._log.info('resize %s', length) self._span.length = length self._data = stats_array_factory(length) self._changed = True # invalidate x_range, self._samples_per, self._x = self._span.conform_discrete(x_range) elif cmd == 'span_absolute': # {range: (start: float, stop: float)}] x_range, self._samples_per, self._x = self._span.conform_discrete(kwargs.get('range')) elif cmd == 'span_relative': # {center: float, gain: float}] x_range, self._samples_per, self._x = self._span.conform_discrete( x_range, gain=kwargs.get('gain'), pivot=kwargs.get('pivot')) elif cmd == 'span_pan': delta = kwargs.get('delta', 0.0) x_range = [x_range[0] + delta, x_range[-1] + delta] x_range, self._samples_per, self._x = self._span.conform_discrete(x_range) elif cmd == 'refresh': self._log.warning('on_x_change(refresh)') self._changed = True return else: self._log.warning('on_x_change(%s) unsupported', cmd) return if self._state == 'streaming': x_max = self._span.limits[1] if x_range[1] < x_max: x_shift = x_max - x_range[1] x_range = [x_range[0] + x_shift, x_max] x_range, self._samples_per, self._x = self._span.conform_discrete(x_range) self._changed |= (self._x_range != x_range) self._clear() self._x_range = x_range self._log.info('changed=%s, length=%s, span=%s, range=%s, samples_per=%s', self._changed, len(self), self._x_range, self._x_range[1] - self._x_range[0], self._samples_per) if self._state == 'idle': self._stream_notify(self._stream_buffer) def _view(self): buffer = self._stream_buffer _, sample_id_end = buffer.sample_id_range lag_time = self._span.limits[1] - self._x_range[1] lag_samples = int(lag_time * self.sampling_frequency) // self._samples_per data_idx_stream_end = sample_id_end // self._samples_per data_idx_view_end = data_idx_stream_end - lag_samples sample_id_end = data_idx_view_end * self._samples_per delta = data_idx_view_end - self._data_idx return data_idx_view_end, sample_id_end, delta def time_to_sample_id(self, t): return self._stream_buffer.time_to_sample_id(t) def sample_id_to_time(self, s): return self._stream_buffer.sample_id_to_time(s) def _stream_notify(self, stream_buffer): self._stream_buffer = stream_buffer self._stream_notify_available = True def _convert_time_to_samples(self, x, units): if units is None or units == 'seconds': return self.time_to_sample_id(x) elif units == 'samples': return int(x) else: raise ValueError(f'unsupported units {units}') def _convert_time_range_to_samples(self, start, stop, units): length = len(self) data_idx_view_end, sample_id_end, delta = self._view() start_idx = (data_idx_view_end - length) * self._samples_per if start is None and units == 'seconds': start = start_idx else: start = self._convert_time_to_samples(start, units) if stop is None and units == 'seconds': stop = data_idx_view_end * self._samples_per else: stop = self._convert_time_to_samples(stop, units) return start, stop def _samples_get(self, start=None, stop=None, units=None, fields=None): s1, s2 = self._convert_time_range_to_samples(start, stop, units) self._log.debug('_samples_get(start=%r, stop=%r, units=%s) -> %s, %s', start, stop, units, s1, s2) return self._stream_buffer.samples_get(start=s1, stop=s2, fields=fields) def _statistics_get(self, start=None, stop=None, units=None): """Get the statistics for the collected sample data over a time range. :return: The statistics data structure. See the :`statistics documentation <statistics.html>`_ for details on the data format. """ s1, s2 = self._convert_time_range_to_samples(start, stop, units) # self._log.debug('buffer %s, %s, %s => %s, %s', start, stop, units, s1, s2) d , x_range = self._stream_buffer.statistics_get(start=s1, stop=s2) t_start = x_range[0] / self.sampling_frequency t_stop = x_range[1] / self.sampling_frequency return stats_to_api(d, t_start, t_stop) def _statistics_get_multiple(self, ranges, units=None, source_id=None): return [self._statistics_get(x[0], x[1], units=units) for x in ranges] def open(self): """Open the view and run the thread.""" self.close() self._log.info('open') self._closing = False self._thread = threading.Thread(name='view', target=self._run) self._thread.start() self._post_block('ping') return def start(self, stream_buffer: StreamBuffer): """Start streaming.""" self._post_block('start') def stop(self): """Stop streaming.""" if self._thread is not None: self._post_block('stop') def _join(self, timeout=None): timeout = TIMEOUT if timeout is None else timeout if not self._closing: self._closing = True self._post('close', None, None) if self._thread: # thread can safely join() multiple times self._thread.join(timeout=timeout) self._thread = None def close(self): """Close the view and stop the thread.""" if self._thread is not None: self._log.info('close') self._join() on_close, self.on_close = self.on_close, None if callable(on_close): try: on_close() except Exception: self._log.exception('view.on_close') self._stream_buffer = None def refresh(self, force=None): return self._post('refresh', {'force': force}) def on_x_change(self, cmd, kwargs): self._post('on_x_change', (cmd, kwargs)) def stream_notify(self, stream_buffer): self._post('stream_notify', stream_buffer) def samples_get(self, start=None, stop=None, units=None, fields=None): """Get exact samples over a range. :param start: The starting time. :param stop: The ending time. :param units: The units for start and stop. 'seconds' or None is in floating point seconds relative to the view. 'samples' is in stream buffer sample indicies. :param fields: The fields to get. None (default) gets the fundamental fields available for this view instance, which may vary depending upon the backend. """ args = {'start': start, 'stop': stop, 'units': units, 'fields': fields} return self._post_block('samples_get', args) def statistics_get(self, start=None, stop=None, units=None, callback=None): """Get statistics over a range. :param start: The starting time. :param stop: The ending time. :param units: The units for start and stop. 'seconds' or None is in floating point seconds relative to the view. 'samples' is in stream buffer sample indices. :param callback: The optional callable. When provided, this method will not block and the callable will be called with the statistics data structure from the view thread. :return: The statistics data structure or None if callback is provided. Note: this same format is used by the :meth:`Driver.statistics_callback_register`. See the `statistics documentation <statistics.html>`_ for details on the data format. """ args = {'start': start, 'stop': stop, 'units': units} if callback is None: return self._post_block('statistics_get', args) else: self._post('statistics_get', args=args, cbk=callback) return None def statistics_get_multiple(self, ranges, units=None, callback=None, source_id=None): args = {'ranges': ranges, 'units': units, 'source_id': source_id} if callback is None: return self._post_block('statistics_get_multiple', args) else: self._post('statistics_get_multiple', args=args, cbk=callback) return None def ping(self, *args, **kwargs): """Ping the thread. :param args: The positional arguments. :param kwargs: The keyword arguments. :return: (args, kwargs) after passing through the thread. """ return self._post_block('ping', (args, kwargs))
the-stack_0_22440
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import time from marionette import SkipTest from gaiatest import GaiaTestCase from gaiatest.apps.email.app import Email class TestSetupAndSendIMAPEmail(GaiaTestCase): def setUp(self): try: self.account = self.testvars['email']['IMAP'] except KeyError: raise SkipTest('account details not present in test variables') GaiaTestCase.setUp(self) self.connect_to_network() self.email = Email(self.marionette) self.email.launch() def test_setup_and_send_imap_email(self): """ https://moztrap.mozilla.org/manage/case/6113/ https://moztrap.mozilla.org/manage/case/6114/ """ # setup IMAP account self.email.setup_IMAP_email(self.account) # check header area self.assertTrue(self.email.header.is_compose_visible) self.assertTrue(self.email.header.is_menu_visible) self.assertEqual(self.email.header.label, 'Inbox') # check toolbar area self.assertTrue(self.email.toolbar.is_edit_visible) self.assertTrue(self.email.toolbar.is_refresh_visible) # check account has emails self.email.wait_for_emails_to_sync() self.assertGreater(len(self.email.mails), 0) # Bug 878772 - email app doesn't show the last emails by default self.email.mails[0].scroll_to_message() curr_time = repr(time.time()).replace('.', '') _subject = 's%s' % curr_time _body = 'b%s' % curr_time new_email = self.email.header.tap_compose() new_email.type_to(self.testvars['email']['IMAP']['email']) new_email.type_subject(_subject) new_email.type_body(_body) self.email = new_email.tap_send() # wait for the email to be sent before we tap refresh self.email.wait_for_email(_subject) # assert that the email app subject is in the email list self.assertIn(_subject, [mail.subject for mail in self.email.mails]) read_email = self.email.mails[0].tap_subject() self.assertEqual(_body, read_email.body.splitlines()[0]) self.assertEqual(_subject, read_email.subject)
the-stack_0_22441
# Import game state, action and player class, random module Game2048State = __import__('2048_game').Game2048State Game2048Action = __import__('2048_game').Game2048Action Game2048Player = __import__('2048_game').Game2048Player import random import math import numpy as np # Max searching depth search_max_depth = 0 # Processed tree nodes processed_nodes = 0 # Tree search node class class Node(object): def __init__(self, state, player): self.state = state self.player = player # Calculate utility of state def getUtility(self): utility = 0 empty_count = 0 # Sum non 0 tile values, times factor # factor = log2(tile) # Count num of zero tiles for i in range(self.state.board.shape[0]): for j in range(self.state.board.shape[1]): if self.state.board[i][j] != 0: utility += self.state.board[i][j] * math.log(self.state.board[i][j], 2) else: empty_count += 1 # More zero tiles = higher utility utility += empty_count * 5 return utility # Find next state using expectimax search def getNextState(state): # Reset processed nodes counter global processed_nodes processed_nodes = 0 # Update search depth depth_map = {2: 5, 4: 1, 6: 1, 8: 1, 10: 1} global search_max_depth search_max_depth = depth_map[state.size] # Find next best move next_node = expectimax(Node(state, Game2048Player.USER), 0) # Next state result and number of processed tree nodes return next_node.state # Expectimax tree search def expectimax(node, depth): # Increase tree node counter global processed_nodes processed_nodes += 1 # Max or Exp the node if node.player == Game2048Player.USER: return findMax(node, depth) if node.player == Game2048Player.GAME: return findExp(node, depth) # Find max state def findMax(node, depth): # Best next move next_node = None # List all possible next nodes next_nodes = [] valid_actions = node.state.validActions() for action in valid_actions: if (action == Game2048Action.SLIDE_UP): next_state = node.state.slideUp() next_nodes.append(Node(next_state, Game2048Player.GAME)) elif (action == Game2048Action.SLIDE_DOWN): next_state = node.state.slideDown() next_nodes.append(Node(next_state, Game2048Player.GAME)) elif (action == Game2048Action.SLIDE_LEFT): next_state = node.state.slideLeft() next_nodes.append(Node(next_state, Game2048Player.GAME)) elif (action == Game2048Action.SLIDE_RIGHT): next_state = node.state.slideRight() next_nodes.append(Node(next_state, Game2048Player.GAME)) elif (action == Game2048Action.ROTATE_CW): next_state = node.state.rotateCenterCW() next_nodes.append(Node(next_state, Game2048Player.GAME)) elif (action == Game2048Action.ROTATE_CCW): next_state = node.state.rotateCenterCCW() next_nodes.append(Node(next_state, Game2048Player.GAME)) # Find optimal board max_utility = float('-inf') for n in next_nodes: expected_utility = expectimax(n, depth + 1) if (expected_utility > max_utility): next_node = n; max_utility = expected_utility # Next move if next_node == None: return node else: return next_node # Find expected state def findExp(node, depth): if depth >= search_max_depth: return node.getUtility() # Expected utility expected_utility = 0.0 # All possible next nodes next_nodes = [] # Add all possible next nodes with new tile value of 2 for i in range(node.state.board.shape[0]): for j in range(node.state.board.shape[1]): if (node.state.board[i][j] == 0): next_state = Game2048State(node.state.size) next_state.board = np.copy(node.state.board) next_state.board[i][j] = 2 next_nodes.append(Node(next_state, Game2048Player.USER)) # Add all possible next nodes with new tile value of 4 for i in range(node.state.board.shape[0]): for j in range(node.state.board.shape[1]): if (node.state.board[i][j] == 0): next_state = Game2048State(node.state.size) next_state.board = np.copy(node.state.board) next_state.board[i][j] = 4 next_nodes.append(Node(next_state, Game2048Player.USER)) # Sum up expected utility for n in next_nodes: expected_utility += 1/len(next_nodes) * expectimax(n, depth + 1).getUtility() # Expected utility result return expected_utility if __name__ == "__main__": # AI demo state = Game2048State(6) state = state.initialState() print(state) for _ in range(0, 50000): state = getNextState(state) print(state) state = state.addNewTile() print(state) node = Node(state, Game2048Player.GAME) print(node.getUtility())
the-stack_0_22443
import subprocess import os import sys def current_version(commits_ahead=False): if isinstance(commits_ahead, str): commits_ahead = commits_ahead.lower() == "true" env = os.environ.copy() output = subprocess.run( "git describe --tags --long", shell=True, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) if output.returncode == 0: output = output.stdout.decode("utf-8").strip() else: output = "v0.0.0-0-0" output = output.split("-") tag = output[0] if commits_ahead: return tag, output[1] return tag def latest_version(): tag, patch = current_version(commits_ahead=True) tag = tag.split(".") patch = int(tag[-1]) + int(patch) tag = ".".join(tag[:-1]) + "." + str(patch) return tag def update_version_tag(): tag = latest_version() env = os.environ.copy() subprocess.run( f'git tag -a {tag} -m "updated to new version {tag}"', shell=True, env=env ) return current_version() def revert_version_tag(): tag = current_version() env = os.environ.copy() subprocess.run(f"git tag -d {tag}", shell=True, env=env) return current_version() def new_version(new_tag: str, update_patch: bool = True): tag = new_tag if isinstance(update_patch, str): update_patch = update_patch.lower() != "false" if update_patch: _, patch = current_version(commits_ahead=True) tag = tag.split(".") if len(tag) < 3 or tag[-1] == "": tag = ".".join(tag[:-1]) + "." + str(patch) else: patch = int(tag[-1]) + int(patch) tag = ".".join(tag[:-1]) + "." + str(patch) return tag def create_new_version_tag( new_tag: str, new_version_description: str = "Release Version", update_patch: bool = True, ): tag = new_version(new_tag, update_patch) env = os.environ.copy() subprocess.run( f'git tag -a {tag} -m "{new_version_description} - {tag}"', shell=True, env=env ) return current_version() def view_releases(): env = os.environ.copy() output = subprocess.run( 'git tag -l --sort=-version:refname "v*" -n3', shell=True, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) if output.returncode == 0: return output.stdout.decode("utf-8") else: return None def set_version_in_environemnt(env: str): with open("./Dockerfile", "r+") as docker: content = docker.read() content.replace() def get_remote_url(): env = os.environ.copy() output = subprocess.run( "git config --get remote.origin.url", shell=True, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) if output.returncode == 0: return output.stdout.decode("utf-8").replace(".git", "") else: return None if __name__ == "__main__": try: function = sys.argv[1] params = sys.argv[2:] print(globals()[function](*params)) except IndexError: print(current_version()) except KeyError: raise Exception(f"Invalid argument {function}")
the-stack_0_22444
#!/usr/bin/env python3 # Copyright (c) 2018-2019 The Bitcoin Core developers # Copyright (c) 2019-2018-2020 The Rapids developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import argparse import os import subprocess import sys def setup_linux(): global args, workdir if os.path.isfile('/usr/bin/apt-get'): programs = ['ruby', 'git', 'make', 'wget', 'curl'] if args.kvm: programs += ['apt-cacher-ng', 'python-vm-builder', 'qemu-kvm', 'qemu-utils'] elif args.docker: if not os.path.isfile('/lib/systemd/system/docker.service'): dockers = ['docker.io', 'docker-ce'] for i in dockers: return_code = subprocess.call(['sudo', 'apt-get', 'install', '-qq', i]) if return_code == 0: subprocess.check_call(['sudo', 'usermod', '-aG', 'docker', os.environ['USER']]) print('Docker installed, restart your computer and re-run this script to continue the setup process.') sys.exit(0) if return_code != 0: print('Cannot find any way to install Docker.', file=sys.stderr) sys.exit(1) else: programs += ['apt-cacher-ng', 'lxc', 'debootstrap'] subprocess.check_call(['sudo', 'apt-get', 'install', '-qq'] + programs) setup_repos() elif args.is_fedora: pkgmgr = 'dnf' repourl = 'https://download.docker.com/linux/fedora/docker-ce.repo' elif args.is_centos: pkgmgr = 'yum' repourl = 'https://download.docker.com/linux/centos/docker-ce.repo' if args.is_fedora or args.is_centos: programs = ['ruby', 'make', 'wget', 'curl'] if args.kvm: print('KVM not supported with Fedora/CentOS yet.') sys.exit(1) elif args.docker: if not os.path.isfile('/lib/systemd/system/docker.service'): user = os.environ['USER'] dockers = ['docker-ce', 'docker-ce-cli', 'containerd.io'] if args.is_fedora: subprocess.check_call(['sudo', pkgmgr, 'install', '-y', 'dnf-plugins-core']) subprocess.check_call(['sudo', pkgmgr, 'config-manager', '--add-repo', repourl]) elif args.is_centos: reqs = ['yum-utils', 'device-mapper-persistent-data', 'lvm2'] subprocess.check_call(['sudo', pkgmgr, 'install', '-y'] + reqs) subprocess.check_call(['sudo', 'yum-config-manager', '--add-repo', repourl]) subprocess.check_call(['sudo', pkgmgr, 'install', '-y'] + dockers) subprocess.check_call(['sudo', 'usermod', '-aG', 'docker', user]) subprocess.check_call(['sudo', 'systemctl', 'enable', 'docker']) print('Docker installed, restart your computer and re-run this script to continue the setup process.') sys.exit(0) subprocess.check_call(['sudo', 'systemctl', 'start', 'docker']) else: print('LXC not supported with Fedora/CentOS yet.') sys.exit(1) if args.is_fedora: programs += ['git'] if args.is_centos: # CentOS ships with an insanely outdated version of git that is no longer compatible with gitian builds # Check current version and update if necessary oldgit = b'2.' not in subprocess.check_output(['git', '--version']) if oldgit: subprocess.check_call(['sudo', pkgmgr, 'remove', '-y', 'git*']) subprocess.check_call(['sudo', pkgmgr, 'install', '-y', 'https://centos7.iuscommunity.org/ius-release.rpm']) programs += ['git2u-all'] subprocess.check_call(['sudo', pkgmgr, 'install', '-y'] + programs) setup_repos() else: print('Unsupported system/OS type.') sys.exit(1) def setup_darwin(): global args, workdir programs = [] if not os.path.isfile('/usr/local/bin/wget'): programs += ['wget'] if not os.path.isfile('/usr/local/bin/git'): programs += ['git'] if not os.path.isfile('/usr/local/bin/gsha256sum'): programs += ['coreutils'] if args.docker: print('Experimental setup for macOS host') if len(programs) > 0: subprocess.check_call(['brew', 'install'] + programs) os.environ['PATH'] = '/usr/local/opt/coreutils/libexec/gnubin' + os.pathsep + os.environ['PATH'] elif args.kvm or not args.docker: print('KVM and LXC are not supported under macOS at this time.') sys.exit(0) setup_repos() def setup_repos(): if not os.path.isdir('gitian.sigs'): subprocess.check_call(['git', 'clone', 'https://github.com/RapidsOfficial/gitian.sigs.git']) if not os.path.isdir('rapids-detached-sigs'): subprocess.check_call(['git', 'clone', 'https://github.com/RapidsOfficial/Rapids.git']) if not os.path.isdir('gitian-builder'): subprocess.check_call(['git', 'clone', 'https://github.com/devrandom/gitian-builder.git']) if not os.path.isdir('rapids'): subprocess.check_call(['git', 'clone', 'https://github.com/RapidsOfficial/rapids.git']) os.chdir('gitian-builder') make_image_prog = ['bin/make-base-vm', '--suite', 'bionic', '--arch', 'amd64'] if args.docker: make_image_prog += ['--docker'] elif not args.kvm: make_image_prog += ['--lxc'] if args.host_os == 'darwin': subprocess.check_call(['sed', '-i.old', '/50cacher/d', 'bin/make-base-vm']) if args.host_os == 'linux': if args.is_fedora or args.is_centos or args.is_wsl: subprocess.check_call(['sed', '-i', '/50cacher/d', 'bin/make-base-vm']) subprocess.check_call(make_image_prog) subprocess.check_call(['git', 'checkout', 'bin/make-base-vm']) os.chdir(workdir) if args.host_os == 'linux': if args.is_bionic and not args.kvm and not args.docker: subprocess.check_call(['sudo', 'sed', '-i', 's/lxcbr0/br0/', '/etc/default/lxc-net']) print('Reboot is required') print('Setup complete!') sys.exit(0) def build(): global args, workdir os.makedirs('rapids-binaries/' + args.version, exist_ok=True) print('\nBuilding Dependencies\n') os.chdir('gitian-builder') os.makedirs('inputs', exist_ok=True) subprocess.check_call(['wget', '-N', '-P', 'inputs', 'https://downloads.sourceforge.net/project/osslsigncode/osslsigncode/osslsigncode-1.7.1.tar.gz']) subprocess.check_call(['wget', '-N', '-P', 'inputs', 'https://bitcoincore.org/cfields/osslsigncode-Backports-to-1.7.1.patch']) subprocess.check_call(["echo 'a8c4e9cafba922f89de0df1f2152e7be286aba73f78505169bc351a7938dd911 inputs/osslsigncode-Backports-to-1.7.1.patch' | sha256sum -c"], shell=True) subprocess.check_call(["echo 'f9a8cdb38b9c309326764ebc937cba1523a3a751a7ab05df3ecc99d18ae466c9 inputs/osslsigncode-1.7.1.tar.gz' | sha256sum -c"], shell=True) subprocess.check_call(['make', '-C', '../rapids/depends', 'download', 'SOURCES_PATH=' + os.getcwd() + '/cache/common']) if args.linux: print('\nCompiling ' + args.version + ' Linux') subprocess.check_call(['bin/gbuild', '-j', args.jobs, '-m', args.memory, '--commit', 'rapids='+args.commit, '--url', 'rapids='+args.url, '../rapids/contrib/gitian-descriptors/gitian-linux.yml']) subprocess.check_call(['bin/gsign', '-p', args.sign_prog, '--signer', args.signer, '--release', args.version+'-linux', '--destination', '../gitian.sigs/', '../rapids/contrib/gitian-descriptors/gitian-linux.yml']) subprocess.check_call('mv build/out/rapids-*.tar.gz build/out/src/rapids-*.tar.gz ../rapids-binaries/'+args.version, shell=True) if args.windows: print('\nCompiling ' + args.version + ' Windows') subprocess.check_call(['bin/gbuild', '-j', args.jobs, '-m', args.memory, '--commit', 'rapids='+args.commit, '--url', 'rapids='+args.url, '../rapids/contrib/gitian-descriptors/gitian-win.yml']) subprocess.check_call(['bin/gsign', '-p', args.sign_prog, '--signer', args.signer, '--release', args.version+'-win-unsigned', '--destination', '../gitian.sigs/', '../rapids/contrib/gitian-descriptors/gitian-win.yml']) subprocess.check_call('mv build/out/rapids-*-win-unsigned.tar.gz inputs/', shell=True) subprocess.check_call('mv build/out/rapids-*.zip build/out/rapids-*.exe build/out/src/rapids-*.tar.gz ../rapids-binaries/'+args.version, shell=True) if args.macos: print('\nCompiling ' + args.version + ' MacOS') subprocess.check_call(['bin/gbuild', '-j', args.jobs, '-m', args.memory, '--commit', 'rapids='+args.commit, '--url', 'rapids='+args.url, '../rapids/contrib/gitian-descriptors/gitian-osx.yml']) subprocess.check_call(['bin/gsign', '-p', args.sign_prog, '--signer', args.signer, '--release', args.version+'-osx-unsigned', '--destination', '../gitian.sigs/', '../rapids/contrib/gitian-descriptors/gitian-osx.yml']) subprocess.check_call('mv build/out/rapids-*-osx-unsigned.tar.gz inputs/', shell=True) subprocess.check_call('mv build/out/rapids-*.tar.gz build/out/rapids-*.dmg build/out/src/rapids-*.tar.gz ../rapids-binaries/'+args.version, shell=True) os.chdir(workdir) if args.commit_files: print('\nCommitting '+args.version+' Unsigned Sigs\n') os.chdir('gitian.sigs') subprocess.check_call(['git', 'add', args.version+'-linux/'+args.signer]) subprocess.check_call(['git', 'add', args.version+'-win-unsigned/'+args.signer]) subprocess.check_call(['git', 'add', args.version+'-osx-unsigned/'+args.signer]) subprocess.check_call(['git', 'commit', '-m', 'Add '+args.version+' unsigned sigs for '+args.signer]) os.chdir(workdir) def sign(): global args, workdir os.chdir('gitian-builder') # TODO: Skip making signed windows sigs until we actually start producing signed windows binaries #print('\nSigning ' + args.version + ' Windows') #subprocess.check_call('cp inputs/rapids-' + args.version + '-win-unsigned.tar.gz inputs/rapids-win-unsigned.tar.gz', shell=True) #subprocess.check_call(['bin/gbuild', '--skip-image', '--upgrade', '--commit', 'signature='+args.commit, '../rapids/contrib/gitian-descriptors/gitian-win-signer.yml']) #subprocess.check_call(['bin/gsign', '-p', args.sign_prog, '--signer', args.signer, '--release', args.version+'-win-signed', '--destination', '../gitian.sigs/', '../rapids/contrib/gitian-descriptors/gitian-win-signer.yml']) #subprocess.check_call('mv build/out/rapids-*win64-setup.exe ../rapids-binaries/'+args.version, shell=True) #subprocess.check_call('mv build/out/rapids-*win32-setup.exe ../rapids-binaries/'+args.version, shell=True) print('\nSigning ' + args.version + ' MacOS') subprocess.check_call('cp inputs/rapids-' + args.version + '-osx-unsigned.tar.gz inputs/rapids-osx-unsigned.tar.gz', shell=True) subprocess.check_call(['bin/gbuild', '--skip-image', '--upgrade', '--commit', 'signature='+args.commit, '../rapids/contrib/gitian-descriptors/gitian-osx-signer.yml']) subprocess.check_call(['bin/gsign', '-p', args.sign_prog, '--signer', args.signer, '--release', args.version+'-osx-signed', '--destination', '../gitian.sigs/', '../rapids/contrib/gitian-descriptors/gitian-osx-signer.yml']) subprocess.check_call('mv build/out/rapids-osx-signed.dmg ../rapids-binaries/'+args.version+'/rapids-'+args.version+'-osx.dmg', shell=True) os.chdir(workdir) if args.commit_files: os.chdir('gitian.sigs') commit = False if os.path.isfile(args.version+'-win-signed/'+args.signer+'/rapids-win-signer-build.assert.sig'): subprocess.check_call(['git', 'add', args.version+'-win-signed/'+args.signer]) commit = True if os.path.isfile(args.version+'-osx-signed/'+args.signer+'/rapids-dmg-signer-build.assert.sig'): subprocess.check_call(['git', 'add', args.version+'-osx-signed/'+args.signer]) commit = True if commit: print('\nCommitting '+args.version+' Signed Sigs\n') subprocess.check_call(['git', 'commit', '-a', '-m', 'Add '+args.version+' signed binary sigs for '+args.signer]) else: print('\nNothing to commit\n') os.chdir(workdir) def verify(): global args, workdir rc = 0 os.chdir('gitian-builder') print('\nVerifying v'+args.version+' Linux\n') if subprocess.call(['bin/gverify', '-v', '-d', '../gitian.sigs/', '-r', args.version+'-linux', '../rapids/contrib/gitian-descriptors/gitian-linux.yml']): print('Verifying v'+args.version+' Linux FAILED\n') rc = 1 print('\nVerifying v'+args.version+' Windows\n') if subprocess.call(['bin/gverify', '-v', '-d', '../gitian.sigs/', '-r', args.version+'-win-unsigned', '../rapids/contrib/gitian-descriptors/gitian-win.yml']): print('Verifying v'+args.version+' Windows FAILED\n') rc = 1 print('\nVerifying v'+args.version+' MacOS\n') if subprocess.call(['bin/gverify', '-v', '-d', '../gitian.sigs/', '-r', args.version+'-osx-unsigned', '../rapids/contrib/gitian-descriptors/gitian-osx.yml']): print('Verifying v'+args.version+' MacOS FAILED\n') rc = 1 # TODO: Skip checking signed windows sigs until we actually start producing signed windows binaries #print('\nVerifying v'+args.version+' Signed Windows\n') #if subprocess.call(['bin/gverify', '-v', '-d', '../gitian.sigs/', '-r', args.version+'-win-signed', '../rapids/contrib/gitian-descriptors/gitian-win-signer.yml']): # print('Verifying v'+args.version+' Signed Windows FAILED\n') # rc = 1 print('\nVerifying v'+args.version+' Signed MacOS\n') if subprocess.call(['bin/gverify', '-v', '-d', '../gitian.sigs/', '-r', args.version+'-osx-signed', '../rapids/contrib/gitian-descriptors/gitian-osx-signer.yml']): print('Verifying v'+args.version+' Signed MacOS FAILED\n') rc = 1 os.chdir(workdir) return rc def main(): global args, workdir parser = argparse.ArgumentParser(description='Script for running full Gitian builds.') parser.add_argument('-c', '--commit', action='store_true', dest='commit', help='Indicate that the version argument is for a commit or branch') parser.add_argument('-p', '--pull', action='store_true', dest='pull', help='Indicate that the version argument is the number of a github repository pull request') parser.add_argument('-u', '--url', dest='url', default='https://github.com/RapidsOfficial/rapids', help='Specify the URL of the repository. Default is %(default)s') parser.add_argument('-v', '--verify', action='store_true', dest='verify', help='Verify the Gitian build') parser.add_argument('-b', '--build', action='store_true', dest='build', help='Do a Gitian build') parser.add_argument('-s', '--sign', action='store_true', dest='sign', help='Make signed binaries for Windows and MacOS') parser.add_argument('-B', '--buildsign', action='store_true', dest='buildsign', help='Build both signed and unsigned binaries') parser.add_argument('-o', '--os', dest='os', default='lwm', help='Specify which Operating Systems the build is for. Default is %(default)s. l for Linux, w for Windows, m for MacOS') parser.add_argument('-j', '--jobs', dest='jobs', default='2', help='Number of processes to use. Default %(default)s') parser.add_argument('-m', '--memory', dest='memory', default='2000', help='Memory to allocate in MiB. Default %(default)s') parser.add_argument('-k', '--kvm', action='store_true', dest='kvm', help='Use KVM instead of LXC') parser.add_argument('-d', '--docker', action='store_true', dest='docker', help='Use Docker instead of LXC') parser.add_argument('-S', '--setup', action='store_true', dest='setup', help='Set up the Gitian building environment. Only works on Debian-based systems (Ubuntu, Debian)') parser.add_argument('-D', '--detach-sign', action='store_true', dest='detach_sign', help='Create the assert file for detached signing. Will not commit anything.') parser.add_argument('-n', '--no-commit', action='store_false', dest='commit_files', help='Do not commit anything to git') parser.add_argument('signer', nargs='?', help='GPG signer to sign each build assert file') parser.add_argument('version', nargs='?', help='Version number, commit, or branch to build. If building a commit or branch, the -c option must be specified') args = parser.parse_args() workdir = os.getcwd() args.host_os = sys.platform if args.host_os == 'win32' or args.host_os == 'cygwin': raise Exception('Error: Native Windows is not supported by this script, use WSL') if args.host_os == 'linux': if os.environ['USER'] == 'root': raise Exception('Error: Do not run this script as the root user') args.is_bionic = False args.is_fedora = False args.is_centos = False args.is_wsl = False if os.path.isfile('/usr/bin/lsb_release'): args.is_bionic = b'bionic' in subprocess.check_output(['lsb_release', '-cs']) if os.path.isfile('/etc/fedora-release'): args.is_fedora = True if os.path.isfile('/etc/centos-release'): args.is_centos = True if os.path.isfile('/proc/version') and open('/proc/version', 'r').read().find('Microsoft'): args.is_wsl = True if args.kvm and args.docker: raise Exception('Error: cannot have both kvm and docker') # Ensure no more than one environment variable for gitian-builder (USE_LXC, USE_VBOX, USE_DOCKER) is set as they # can interfere (e.g., USE_LXC being set shadows USE_DOCKER; for details see gitian-builder/libexec/make-clean-vm). os.environ['USE_LXC'] = '' os.environ['USE_VBOX'] = '' os.environ['USE_DOCKER'] = '' if args.docker: os.environ['USE_DOCKER'] = '1' elif not args.kvm: os.environ['USE_LXC'] = '1' if 'GITIAN_HOST_IP' not in os.environ.keys(): os.environ['GITIAN_HOST_IP'] = '10.0.3.1' if 'LXC_GUEST_IP' not in os.environ.keys(): os.environ['LXC_GUEST_IP'] = '10.0.3.5' if args.setup: if args.host_os == 'linux': setup_linux() elif args.host_os == 'darwin': setup_darwin() if args.buildsign: args.build = True args.sign = True if not args.build and not args.sign and not args.verify: sys.exit(0) if args.host_os == 'darwin': os.environ['PATH'] = '/usr/local/opt/coreutils/libexec/gnubin' + os.pathsep + os.environ['PATH'] args.linux = 'l' in args.os args.windows = 'w' in args.os args.macos = 'm' in args.os # Disable for MacOS if no SDK found if args.macos and not os.path.isfile('gitian-builder/inputs/MacOSX10.11.sdk.tar.gz'): print('Cannot build for MacOS, SDK does not exist. Will build for other OSes') args.macos = False args.sign_prog = 'true' if args.detach_sign else 'gpg --detach-sign' if args.detach_sign: args.commit_files = False script_name = os.path.basename(sys.argv[0]) if not args.signer: print(script_name+': Missing signer') print('Try '+script_name+' --help for more information') sys.exit(1) if not args.version: print(script_name+': Missing version') print('Try '+script_name+' --help for more information') sys.exit(1) # Add leading 'v' for tags if args.commit and args.pull: raise Exception('Cannot have both commit and pull') args.commit = ('' if args.commit else 'v') + args.version os.chdir('rapids') if args.pull: subprocess.check_call(['git', 'fetch', args.url, 'refs/pull/'+args.version+'/merge']) if not os.path.isdir('../gitian-builder/inputs/rapids'): os.makedirs('../gitian-builder/inputs/rapids') os.chdir('../gitian-builder/inputs/rapids') if not os.path.isdir('.git'): subprocess.check_call(['git', 'init']) subprocess.check_call(['git', 'fetch', args.url, 'refs/pull/'+args.version+'/merge']) args.commit = subprocess.check_output(['git', 'show', '-s', '--format=%H', 'FETCH_HEAD'], universal_newlines=True, encoding='utf8').strip() args.version = 'pull-' + args.version print(args.commit) subprocess.check_call(['git', 'fetch']) subprocess.check_call(['git', 'checkout', args.commit]) os.chdir(workdir) os.chdir('gitian-builder') subprocess.check_call(['git', 'pull']) os.chdir(workdir) if args.build: build() if args.sign: sign() if args.verify: os.chdir('gitian.sigs') subprocess.check_call(['git', 'pull']) os.chdir(workdir) sys.exit(verify()) if __name__ == '__main__': main()
the-stack_0_22446
"""Support for lights under the iGlo brand.""" import logging import math import voluptuous as vol from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_EFFECT, ATTR_HS_COLOR, SUPPORT_BRIGHTNESS, SUPPORT_COLOR_TEMP, SUPPORT_COLOR, SUPPORT_EFFECT, PLATFORM_SCHEMA, Light) from homeassistant.const import CONF_HOST, CONF_NAME, CONF_PORT import homeassistant.helpers.config_validation as cv import homeassistant.util.color as color_util _LOGGER = logging.getLogger(__name__) DEFAULT_NAME = 'iGlo Light' DEFAULT_PORT = 8080 PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, }) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the iGlo lights.""" host = config.get(CONF_HOST) name = config.get(CONF_NAME) port = config.get(CONF_PORT) add_entities([IGloLamp(name, host, port)], True) class IGloLamp(Light): """Representation of an iGlo light.""" def __init__(self, name, host, port): """Initialize the light.""" from iglo import Lamp self._name = name self._lamp = Lamp(0, host, port) @property def name(self): """Return the name of the light.""" return self._name @property def brightness(self): """Return the brightness of this light between 0..255.""" return int((self._lamp.state()['brightness'] / 200.0) * 255) @property def color_temp(self): """Return the color temperature.""" return color_util.color_temperature_kelvin_to_mired( self._lamp.state()['white']) @property def min_mireds(self): """Return the coldest color_temp that this light supports.""" return math.ceil(color_util.color_temperature_kelvin_to_mired( self._lamp.max_kelvin)) @property def max_mireds(self): """Return the warmest color_temp that this light supports.""" return math.ceil(color_util.color_temperature_kelvin_to_mired( self._lamp.min_kelvin)) @property def hs_color(self): """Return the hs value.""" return color_util.color_RGB_to_hs(*self._lamp.state()['rgb']) @property def effect(self): """Return the current effect.""" return self._lamp.state()['effect'] @property def effect_list(self): """Return the list of supported effects.""" return self._lamp.effect_list() @property def supported_features(self): """Flag supported features.""" return (SUPPORT_BRIGHTNESS | SUPPORT_COLOR_TEMP | SUPPORT_COLOR | SUPPORT_EFFECT) @property def is_on(self): """Return true if light is on.""" return self._lamp.state()['on'] def turn_on(self, **kwargs): """Turn the light on.""" if not self.is_on: self._lamp.switch(True) if ATTR_BRIGHTNESS in kwargs: brightness = int((kwargs[ATTR_BRIGHTNESS] / 255.0) * 200.0) self._lamp.brightness(brightness) return if ATTR_HS_COLOR in kwargs: rgb = color_util.color_hs_to_RGB(*kwargs[ATTR_HS_COLOR]) self._lamp.rgb(*rgb) return if ATTR_COLOR_TEMP in kwargs: kelvin = int(color_util.color_temperature_mired_to_kelvin( kwargs[ATTR_COLOR_TEMP])) self._lamp.white(kelvin) return if ATTR_EFFECT in kwargs: effect = kwargs[ATTR_EFFECT] self._lamp.effect(effect) return def turn_off(self, **kwargs): """Turn the light off.""" self._lamp.switch(False)
the-stack_0_22448
#!/usr/bin/env python import os from pathlib import Path from typing import List, Optional import click import clickclick as cc from pipenv.project import Project @click.command("check-pipfile-lock") @click.argument("pipfile_locks", metavar="PATH-TO-PIPFILE-LOCK", type=click.Path(exists=True), nargs=-1, required=False) def main(pipfile_locks: List[str]): """ Check whether specified Pipfile.lock file(s) are up to date with their Pipfile(s). If no Pipfile.lock paths are provided, the current directory is assumed. """ if not pipfile_locks: pipfile_locks = [Path(os.getcwd()) / "Pipfile.lock"] for pipfile_lock in pipfile_locks: pipfile_dir: Path = Path(pipfile_lock).parent if not check_dir(pipfile_dir): cc.fatal_error(f"{pipfile_lock} is out of date. Consider running 'pipenv lock' or 'pipenv install'") def check_dir(dir_path: Optional[Path] = None) -> bool: """ Check whether specified directory container a valid and up-to-date Pipfile.lock. Lack of Pipfile.lock is considered as success. """ cur_path: Path = os.getcwd() try: if dir_path: os.chdir(dir_path) project = Project() if not project.lockfile_exists: return old_hash = project.get_lockfile_hash() new_hash = project.calculate_pipfile_hash() return old_hash == new_hash finally: os.chdir(cur_path) if __name__ == "__main__": main()
the-stack_0_22449
import negspy.coordinates as nc def load_chromsizes(chromsizes_filename, assembly=None): ''' Load a set of chromosomes from a file or using an assembly identifier. If using just an assembly identifier the chromsizes will be loaded from the negspy repository. Parameters: ----------- chromsizes_filename: string The file containing the tab-delimited chromosome sizes assembly: string Assembly name (e.g. 'hg19'). Not necessary if a chromsizes_filename is passed in ''' if chromsizes_filename is not None: chrom_info = nc.get_chrominfo_from_file(chromsizes_filename) chrom_names = chrom_info.chrom_order chrom_sizes = [chrom_info.chrom_lengths[c] for c in chrom_info.chrom_order] else: chrom_info = nc.get_chrominfo(assembly) chrom_names = nc.get_chromorder(assembly) chrom_sizes = nc.get_chromsizes(assembly) return (chrom_info, chrom_names, chrom_sizes)
the-stack_0_22450
from clarifai.rest import Image as ClImage from clarifai.rest import ClarifaiApp NUM_THRESHOLD = 20 # Numeric threshold for how many results to include. PROB_THRESHOLD = 0.8 # Probabilistic threshold for lower limit of confidence rate of image def setup_model(): # constructs boiler plate to get model ready f = open('TOKENS','r') lines = f.readlines() f.close() CLIENT_ID = lines[0][:-1] CLIENT_SECRET = lines[1] app = ClarifaiApp(CLIENT_ID, CLIENT_SECRET) ACCESS_TOKEN = app.auth.get_token() model = app.models.get('general-v1.3') return model def process_image(filename): model = setup_model() image = ClImage(file_obj=open(filename, 'rb')) json_dict = model.predict([image]) results = json_dict['outputs'][0]['data']['concepts'] return_list = [] for i in range(0,NUM_THRESHOLD): name = results[i]['name'] value = results[i]['value'] return_list.append([name,value]) # return_list.append(name) if value < PROB_THRESHOLD: break else: print(name + ' : ' + str(value)) return return_list
the-stack_0_22451
# -*- coding: utf-8 -*- from pyramid.view import view_config from chsdi.models.bod import Topics from chsdi.lib.filters import filter_by_geodata_staging @view_config(route_name='topics', renderer='jsonp') def topics(request): model = Topics geodataStaging = request.registry.settings['geodata_staging'] showCatalog = True query = request.db.query(model).filter(model.showCatalog == showCatalog) \ .order_by(model.groupId) query = filter_by_geodata_staging(query, model.staging, geodataStaging) results = [{ 'id': q.id, 'defaultBackground': q.defaultBackground, 'backgroundLayers': q.backgroundLayers, 'selectedLayers': q.selectedLayers, 'activatedLayers': q.activatedLayers, 'plConfig': q.plconf, 'groupId': q.groupId } for q in query] return {'topics': results}
the-stack_0_22453
import typing as tp import os from pathlib import Path from catalyst import utils from catalyst.dl import ConfigExperiment from dataset import get_cat_dogs_dataset, get_reader import torch import torch.nn as nn from torch.utils.data import DataLoader class Experiment(ConfigExperiment): def get_loaders(self, stage: str, **kwargs) -> tp.Dict[str, DataLoader]: loaders = dict() data_params = dict(self.stages_config[stage]["data_params"]) data_path = ( Path(os.getenv("DATA_PATH")) / "data_cat_dogs" ).as_posix() + "/*" tag_file_path = ( Path(os.getenv("DATA_PATH")) / "cat_dog_labeling.json" ).as_posix() train_data, valid_data, num_classes = get_cat_dogs_dataset( data_path, tag_file_path=tag_file_path ) open_fn = get_reader(num_classes) data = [("train", train_data), ("valid", valid_data)] for mode, part in data: data_transform = self.get_transforms(stage=stage, dataset=mode) loaders[mode] = utils.get_loader( part, open_fn=open_fn, dict_transform=data_transform, shuffle=(mode == "train"), sampler=None, drop_last=(mode == "train"), **data_params, ) return loaders
the-stack_0_22455
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import numpy as np from bwtougu.data.daybar_store import DayBarStore from bwtougu.interface import AbstractDataSource from bwtougu.utils.datetime_func import convert_date_to_int, convert_int_to_date from bwtougu.data.converter import StockBarConverter, IndexBarConverter from bwtougu.data.instrument_store import InstrumentStore from bwtougu.data.dividend_store import DividendStore from bwtougu.data.trading_dates_store import TradingDatesStore from bwtougu.data.simple_factor_store import SimpleFactorStore from bwtougu.data.date_set import DateSet from bwtougu.utils.py2 import lru_cache from bwtougu.data.yield_curve_store import YieldCurveStore class BaseDataSource(AbstractDataSource): def __init__(self, path): if not os.path.exists(path): raise RuntimeError('bundle path {} not exist'.format(os.path.abspath)) def _p(name): return os.path.join(path, name) self._day_bars = [ DayBarStore(_p('stocks.bcolz'), StockBarConverter), DayBarStore(_p('indexes.bcolz'), IndexBarConverter), ] self._instruments = InstrumentStore(_p('instruments.pk')) self._dividends = DividendStore(_p('original_dividends.bcolz')) self._trading_dates = TradingDatesStore(_p('trading_dates.bcolz')) self._yield_curve = YieldCurveStore(_p('yield_curve.bcolz')) self._split_factor = SimpleFactorStore(_p('split_factor.bcolz')) self._ex_cum_factor = SimpleFactorStore(_p('ex_cum_factor.bcolz')) self._st_stock_days = DateSet(_p('st_stock_days.bcolz')) self._suspend_days = DateSet(_p('suspended_days.bcolz')) self.get_yield_curve = self._yield_curve.get_yield_curve self.get_risk_free_rate = self._yield_curve.get_risk_free_rate def get_trading_calendar(self): return self._trading_dates.get_trading_calendar() def get_all_instruments(self): return self._instruments.get_all_instruments() # 是否停牌 def is_suspended(self, order_book_id, dates): return self._suspend_days.contains(order_book_id, dates) # 是否为st股票 def is_st_stock(self, order_book_id, dates): return self._st_stock_days.contains(order_book_id, dates) INSTRUMENT_TYPE_MAP = { 'CS': 0, 'INDX': 1, 'Future': 2, 'ETF': 3, 'LOF': 3, 'FenjiA': 3, 'FenjiB': 3, 'FenjiMu': 3, 'PublicFund': 4 } def _index_of(self, instrument): return self.INSTRUMENT_TYPE_MAP[instrument.type] @lru_cache(None) def _all_day_bars_of(self, instrument): i = self._index_of(instrument) return self._day_bars[i].get_bars(instrument.order_book_id, fields=None) def get_bar(self, instrument, dt, frequency): if frequency != '1d': raise NotImplementedError bars = self._all_day_bars_of(instrument) if bars is None: return dt = np.uint64(convert_date_to_int(dt)) pos = bars['datetime'].searchsorted(dt) if pos >= len(bars) or bars['datetime'][pos] != dt: return None return bars[pos] def available_data_range(self, frequency): if frequency in ['tick', '1d']: s, e = self._day_bars[self.INSTRUMENT_TYPE_MAP['INDX']].get_date_range('000001.XSHG') return convert_int_to_date(s).date(), convert_int_to_date(e).date() raise NotImplementedError def get_dividend(self, order_book_id, public_fund=False): if public_fund: return self._public_fund_dividends.get_dividend(order_book_id) return self._dividends.get_dividend(order_book_id)
the-stack_0_22456
""" Solve some two-player games """ from puzzle_generator import PuzzleGenerator from typing import List # See https://github.com/microsoft/PythonProgrammingPuzzles/wiki/How-to-add-a-puzzle to learn about adding puzzles class Nim(PuzzleGenerator): """ Compute optimal play for the classic two-player game [Nim](https://en.wikipedia.org/wiki/Nim) Nim has an elegant theory for optimal play based on the xor of the bits in the heaps. Instead of writing a program that plays the game interactively (since interaction is not allowed), we require them to determine the winning states. """ value_multiplier = 10 # harder than most problems, worth more @staticmethod def sat(cert: List[List[int]], heaps=[5, 9]): """ Compute optimal play in Nim, a two-player game involving a number of heaps of objects. Players alternate, in each turn removing one or more objects from a single non-empty heap. The player who takes the last object wins. The initial board state is represented by heaps, a list of numbers of objects in each heap. The optimal play is certified by a list of "winning leaves" which are themselves lists of heap sizes that, with optimal play, are winning if you leave your opponent with those numbers of objects. """ good_leaves = {tuple(h) for h in cert} # for efficiency, we keep track of h as a tuple of n non-negative ints cache = {} def is_good_leave(h): if h in cache: return cache[h] next_states = [(*h[:i], k, *h[i + 1:]) for i in range(len(h)) for k in range(h[i])] conjecture = (h in good_leaves) if conjecture: # check that it is a good leave assert not any(is_good_leave(s) for s in next_states) else: # check that it is a bad leave, only need to check one move assert is_good_leave(next(s for s in next_states if s in good_leaves)) cache[h] = conjecture return conjecture init_leave = tuple(heaps) return is_good_leave(init_leave) == (init_leave in good_leaves) @staticmethod def sol(heaps): import itertools def val(h): # return True if h is a good state to leave things in xor = 0 for i in h: xor ^= i return xor == 0 return [list(h) for h in itertools.product(*[range(i + 1) for i in heaps]) if val(h)] def gen_random(self): num_heaps = self.random.randrange(10) heaps = [self.random.randrange(10) for _ in range(num_heaps)] prod = 1 for i in heaps: prod *= i + 1 if prod < 10 ** 6: self.add(dict(heaps=heaps)) class Mastermind(PuzzleGenerator): """Compute a strategy for winning in [mastermind](https://en.wikipedia.org/wiki/Mastermind_%28board_game%29) in a given number of guesses. Instead of writing a program that plays the game interactively (since interaction is not allowed), we require them to provide a provable winning game tree. """ timeout = 10 @staticmethod def sat(transcripts: List[str], max_moves=10): """ Come up with a winning strategy for Mastermind in max_moves moves. Colors are represented by the letters A-F. The solution representation is as follows. A transcript is a string describing the game so far. It consists of rows separated by newlines. Each row has 4 letters A-F followed by a space and then two numbers indicating how many are exactly right and how many are right but in the wrong location. A sample transcript is as follows: ``` AABB 11 ABCD 21 ABDC ``` This is the transcript as the game is in progress. The complete transcript might be: ``` AABB 11 ABCD 21 ABDC 30 ABDE 40 ``` A winning strategy is described by a list of transcripts to visit. The next guess can be determined from those partial transcripts. """ COLORS = "ABCDEF" def helper(secret: str, transcript=""): if transcript.count("\n") == max_moves: return False guess = min([t for t in transcripts if t.startswith(transcript)], key=len)[-4:] if guess == secret: return True assert all(g in COLORS for g in guess) perfect = {c: sum([g == s == c for g, s in zip(guess, secret)]) for c in COLORS} almost = sum(min(guess.count(c), secret.count(c)) - perfect[c] for c in COLORS) return helper(secret, transcript + f"{guess} {sum(perfect.values())}{almost}\n") return all(helper(r + s + t + u) for r in COLORS for s in COLORS for t in COLORS for u in COLORS) @staticmethod def sol(max_moves): COLORS = "ABCDEF" transcripts = [] ALL = [r + s + t + u for r in COLORS for s in COLORS for t in COLORS for u in COLORS] def score(secret, guess): perfect = {c: sum([g == s == c for g, s in zip(guess, secret)]) for c in COLORS} almost = sum(min(guess.count(c), secret.count(c)) - perfect[c] for c in COLORS) return f"{sum(perfect.values())}{almost}" def mastermind(transcript="AABB", feasible=ALL): # mastermind moves transcripts.append(transcript) assert transcript.count("\n") <= max_moves guess = transcript[-4:] feasibles = {} for secret in feasible: scr = score(secret, guess) if scr not in feasibles: feasibles[scr] = [] feasibles[scr].append(secret) for scr, secrets in feasibles.items(): if scr != "40": guesser(transcript + f" {scr}\n", secrets) def guesser(transcript, feasible): # guesser moves def max_ambiguity(guess): by_score = {} for secret2 in feasible: scr = score(secret2, guess) if scr not in by_score: by_score[scr] = 0 by_score[scr] += 1 # for OPTIMAL solution, use return max(by_score.values()) + 0.5 * (guess not in feasible) instead of: return max(by_score.values()) # for optimal solution use guess = min(ALL, key=max_ambiguity) instead of: guess = min(feasible, key=max_ambiguity) mastermind(transcript + guess, feasible) mastermind() return transcripts def gen(self, target_num_instances): for max_moves in [6, 8, 10]: self.add(dict(max_moves=max_moves)) class TicTacToeX(PuzzleGenerator): """Since we don't have interaction, this problem asks for a full tie-guranteeing strategy.""" @staticmethod def sat(good_boards: List[str]): """ Compute a strategy for X (first player) in tic-tac-toe that guarantees a tie. That is a strategy for X that, no matter what the opponent does, X does not lose. A board is represented as a 9-char string like an X in the middle would be "....X...." and a move is an integer 0-8. The answer is a list of "good boards" that X aims for, so no matter what O does there is always good board that X can get to with a single move. """ board_bit_reps = {tuple(sum(1 << i for i in range(9) if b[i] == c) for c in "XO") for b in good_boards} win = [any(i & w == w for w in [7, 56, 73, 84, 146, 273, 292, 448]) for i in range(512)] def tie(x, o): # returns True if X has a forced tie/win assuming it's X's turn to move. x |= 1 << [i for i in range(9) if (x | (1 << i), o) in board_bit_reps][0] return not win[o] and (win[x] or all((x | o) & (1 << i) or tie(x, o | (1 << i)) for i in range(9))) return tie(0, 0) @staticmethod def sol(): win = [any(i & w == w for w in [7, 56, 73, 84, 146, 273, 292, 448]) for i in range(512)] # 9-bit representation good_boards = [] def x_move(x, o): # returns True if x wins or ties, x's turn to move if win[o]: return False if x | o == 511: return True for i in range(9): if (x | o) & (1 << i) == 0 and o_move(x | (1 << i), o): good_boards.append("".join(".XO"[((x >> j) & 1) + 2 * ((o >> j) & 1) + (i == j)] for j in range(9))) return True return False # O wins def o_move(x, o): # returns True if x wins or ties, x's turn to move if win[x] or x | o == 511: # full board return True for i in range(9): if (x | o) & (1 << i) == 0 and not x_move(x, o | (1 << i)): return False return True # O wins res = x_move(0, 0) assert res return good_boards class TicTacToeO(PuzzleGenerator): """Same as above but for 2nd player""" @staticmethod def sat(good_boards: List[str]): """ Compute a strategy for O (second player) in tic-tac-toe that guarantees a tie. That is a strategy for O that, no matter what the opponent does, O does not lose. A board is represented as a 9-char string like an X in the middle would be "....X...." and a move is an integer 0-8. The answer is a list of "good boards" that O aims for, so no matter what X does there is always good board that O can get to with a single move. """ board_bit_reps = {tuple(sum(1 << i for i in range(9) if b[i] == c) for c in "XO") for b in good_boards} win = [any(i & w == w for w in [7, 56, 73, 84, 146, 273, 292, 448]) for i in range(512)] def tie(x, o): # returns True if O has a forced tie/win. It's O's turn to move. if o | x != 511: # complete board o |= 1 << [i for i in range(9) if (x, o | (1 << i)) in board_bit_reps][0] return not win[x] and (win[o] or all((x | o) & (1 << i) or tie(x | (1 << i), o) for i in range(9))) return all(tie(1 << i, 0) for i in range(9)) @staticmethod def sol(): win = [any(i & w == w for w in [7, 56, 73, 84, 146, 273, 292, 448]) for i in range(512)] # 9-bit representation good_boards = [] def x_move(x, o): # returns True if o wins or ties, x's turn to move if win[o] or x | o == 511: # full board return True for i in range(9): if (x | o) & (1 << i) == 0 and not o_move(x | (1 << i), o): return False return True # O wins/ties def o_move(x, o): # returns True if o wins or ties, o's turn to move if win[x]: return False if x | o == 511: return True for i in range(9): if (x | o) & (1 << i) == 0 and x_move(x, o | (1 << i)): good_boards.append( "".join(".XO"[((x >> j) & 1) + 2 * ((o >> j) & 1) + 2 * (i == j)] for j in range(9))) return True return False # X wins res = x_move(0, 0) assert res return good_boards class RockPaperScissors(PuzzleGenerator): @staticmethod def sat(probs: List[float]): """Find optimal probabilities for playing Rock-Paper-Scissors zero-sum game, with best worst-case guarantee""" assert len(probs) == 3 and abs(sum(probs) - 1) < 1e-6 return max(probs[(i + 2) % 3] - probs[(i + 1) % 3] for i in range(3)) < 1e-6 @staticmethod def sol(): return [1 / 3] * 3 if __name__ == "__main__": PuzzleGenerator.debug_problems()
the-stack_0_22457
# Copyright 2018 Red Hat Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import amqcfg.config_data dataset_metadata_members = ( 'tool_name', 'datetime', ) @pytest.mark.parametrize('member', dataset_metadata_members) def test_add_template_metadata_check_member(member): data = {} amqcfg.config_data.add_template_metadata(data) assert member in data['metadata'] dataset_metadata_datetime_members = ( 'datetime', 'year', 'time', 'date', 'unix', ) @pytest.mark.parametrize('member', dataset_metadata_datetime_members) def test_add_template_metadata_datetime_check_member(member): data = {} amqcfg.config_data.add_template_metadata(data) assert member in data['metadata']['datetime']
the-stack_0_22459
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest from test_dist_base import TestDistBase import os import paddle paddle.enable_static() flag_name = os.path.splitext(__file__)[0] class TestStaticModelParallel(TestDistBase): def _setup_config(self): self._sync_mode = True self._use_reduce = False self._use_reader_alloc = False self._nccl_comm_num = 1 self._pipeline_mode = True def test_dist_static_model_parallel_fused_feedforward(self): import paddle.fluid as fluid if fluid.core.is_compiled_with_cuda(): self.check_with_place( "static_model_parallel_fused_feedforward.py", delta=1e-5, check_error_log=True, log_name=flag_name) if __name__ == '__main__': unittest.main()
the-stack_0_22461
"""Test version checks.""" from os import getenv from datetime import datetime from pathlib import Path from packaging.version import Version import pytest from .. import version as _version from ..version import check_latest, DATE_FMT, requests, is_flagged class MockResponse: """Mocks the requests module so that Pypi is not actually queried.""" status_code = 200 _json = { "releases": {"1.0.0": None, "1.0.1": None, "1.1.0": None, "1.1.1rc1": None} } def __init__(self, code=200, json=None): """Allow setting different response codes.""" self.status_code = code if json is not None: self._json = json def json(self): """Redefine the response object.""" return self._json def test_check_latest1(tmpdir, monkeypatch): """Test latest version check.""" tmpdir.chdir() monkeypatch.setenv("HOME", str(tmpdir)) assert str(Path.home()) == str(tmpdir) def mock_get(*args, **kwargs): return MockResponse() monkeypatch.setattr(requests, "get", mock_get) # Initially, cache should not exist cachefile = Path.home() / ".cache" / "fmriprep-rodents" / "latest" assert not cachefile.exists() # First check actually fetches from pypi v = check_latest() assert cachefile.exists() assert isinstance(v, Version) assert v == Version("1.1.0") assert cachefile.read_text().split("|") == [ str(v), datetime.now().strftime(DATE_FMT), ] # Second check - test the cache file is read cachefile.write_text("|".join(("1.0.0", cachefile.read_text().split("|")[1]))) v = check_latest() assert isinstance(v, Version) assert v == Version("1.0.0") # Third check - forced oudating of cache cachefile.write_text("2.0.0|20180121") v = check_latest() assert isinstance(v, Version) assert v == Version("1.1.0") # Mock timeouts def mock_get(*args, **kwargs): raise requests.exceptions.Timeout monkeypatch.setattr(requests, "get", mock_get) cachefile.write_text("|".join(("1.0.0", cachefile.read_text().split("|")[1]))) v = check_latest() assert isinstance(v, Version) assert v == Version("1.0.0") cachefile.write_text("2.0.0|20180121") v = check_latest() assert v is None cachefile.unlink() v = check_latest() assert v is None @pytest.mark.parametrize( ("result", "code", "json"), [ (None, 404, None), (None, 200, {"releases": {"1.0.0rc1": None}}), (Version("1.1.0"), 200, None), (Version("1.0.0"), 200, {"releases": {"1.0.0": None}}), ], ) def test_check_latest2(tmpdir, monkeypatch, result, code, json): """Test latest version check with varying server responses.""" tmpdir.chdir() monkeypatch.setenv("HOME", str(tmpdir)) assert str(Path.home()) == str(tmpdir) def mock_get(*args, **kwargs): return MockResponse(code=code, json=json) monkeypatch.setattr(requests, "get", mock_get) v = check_latest() if result is None: assert v is None else: assert isinstance(v, Version) assert v == result @pytest.mark.parametrize( "bad_cache", [ "3laj#r???d|3akajdf#", "2.0.0|3akajdf#", "|".join(("2.0.0", datetime.now().strftime(DATE_FMT), "")), "", ], ) def test_check_latest3(tmpdir, monkeypatch, bad_cache): """Test latest version check when the cache file is corrupted.""" tmpdir.chdir() monkeypatch.setenv("HOME", str(tmpdir)) assert str(Path.home()) == str(tmpdir) def mock_get(*args, **kwargs): return MockResponse() monkeypatch.setattr(requests, "get", mock_get) # Initially, cache should not exist cachefile = Path.home() / ".cache" / "fmriprep-rodents" / "latest" cachefile.parent.mkdir(parents=True, exist_ok=True) assert not cachefile.exists() cachefile.write_text(bad_cache) v = check_latest() assert isinstance(v, Version) assert v == Version("1.1.0") @pytest.mark.parametrize( ("result", "version", "code", "json"), [ (False, "1.2.1", 200, {"flagged": {"1.0.0": None}}), (True, "1.2.1", 200, {"flagged": {"1.2.1": None}}), (True, "1.2.1", 200, {"flagged": {"1.2.1": "FATAL Bug!"}}), (False, "1.2.1", 404, {"flagged": {"1.0.0": None}}), (False, "1.2.1", 200, {"flagged": []}), (False, "1.2.1", 200, {}), ], ) def test_is_flagged(monkeypatch, result, version, code, json): """Test that the flagged-versions check is correct.""" monkeypatch.setattr(_version, "__version__", version) def mock_get(*args, **kwargs): return MockResponse(code=code, json=json) monkeypatch.setattr(requests, "get", mock_get) val, reason = is_flagged() assert val is result test_reason = None if val: test_reason = json.get("flagged", {}).get(version, None) if test_reason is not None: assert reason == test_reason else: assert reason is None def test_readonly(tmp_path, monkeypatch): """Test behavior when $HOME/.cache/fmriprep-rodents/latest can't be written out.""" home_path = ( Path("/home/readonly") if getenv("TEST_READONLY_FILESYSTEM") else tmp_path ) monkeypatch.setenv("HOME", str(home_path)) cachedir = home_path / ".cache" if getenv("TEST_READONLY_FILESYSTEM") is None: cachedir.mkdir(mode=0o555, exist_ok=True) # Make sure creating the folder will raise the exception. with pytest.raises(OSError): (cachedir / "fmriprep-rodents").mkdir(parents=True) # Should not raise check_latest()
the-stack_0_22462
# -*- test-case-name: twisted.python.test.test_deprecate -*- # Copyright (c) 2008 Twisted Matrix Laboratories. # See LICENSE for details. """ Deprecation framework for Twisted. To mark a method or function as being deprecated do this:: def badAPI(self, first, second): ''' Docstring for badAPI. ''' ... badAPI = deprecate(Version("Twisted", 8, 0, 0))(badAPI) The newly-decorated badAPI will issue a warning when called. It will also have a deprecation notice appended to its docstring. See also L{Version}. """ __all__ = [ 'deprecated', 'getDeprecationWarningString', 'getWarningMethod', 'setWarningMethod', ] from warnings import warn from twisted.python.versions import getVersionString from twisted.python.reflect import fullyQualifiedName from twisted.python.util import mergeFunctionMetadata def getWarningMethod(): """ Return the warning method currently used to record deprecation warnings. """ return warn def setWarningMethod(newMethod): """ Set the warning method to use to record deprecation warnings. The callable should take message, category and stacklevel. The return value is ignored. """ global warn warn = newMethod def _getDeprecationDocstring(version): return "Deprecated in %s." % getVersionString(version) def getDeprecationWarningString(callableThing, version): """ Return a string indicating that the callable was deprecated in the given version. @param callableThing: A callable to be deprecated. @param version: The L{twisted.python.versions.Version} that the callable was deprecated in. @return: A string describing the deprecation. """ return "%s was deprecated in %s" % ( fullyQualifiedName(callableThing), getVersionString(version)) def deprecated(version): """ Return a decorator that marks callables as deprecated. @type version: L{twisted.python.versions.Version} @param version: The version in which the callable will be marked as having been deprecated. The decorated function will be annotated with this version, having it set as its C{deprecatedVersion} attribute. """ def deprecationDecorator(function): """ Decorator that marks C{function} as deprecated. """ warningString = getDeprecationWarningString(function, version) def deprecatedFunction(*args, **kwargs): warn( warningString, DeprecationWarning, stacklevel=2) return function(*args, **kwargs) deprecatedFunction = mergeFunctionMetadata( function, deprecatedFunction) _appendToDocstring(deprecatedFunction, _getDeprecationDocstring(version)) deprecatedFunction.deprecatedVersion = version return deprecatedFunction return deprecationDecorator def _appendToDocstring(thingWithDoc, textToAppend): """ Append the given text to the docstring of C{thingWithDoc}. If C{thingWithDoc} has no docstring, then the text just replaces the docstring. If it has a single-line docstring then it appends a blank line and the message text. If it has a multi-line docstring, then in appends a blank line a the message text, and also does the indentation correctly. """ if thingWithDoc.__doc__: docstringLines = thingWithDoc.__doc__.splitlines() else: docstringLines = [] if len(docstringLines) == 0: docstringLines.append(textToAppend) elif len(docstringLines) == 1: docstringLines.extend(['', textToAppend, '']) else: spaces = docstringLines.pop() docstringLines.extend(['', spaces + textToAppend, spaces]) thingWithDoc.__doc__ = '\n'.join(docstringLines)
the-stack_0_22465
''' Given an integer array nums and an integer k, return the k most frequent elements. You may return the answer in any order. Example 1: Input: nums = [1,1,1,2,2,3], k = 2 Output: [1,2] Example 2: Input: nums = [1], k = 1 Output: [1] ''' from typing import List class Solution: def topKFrequent(self, nums: List[int], k: int) -> List[int]: count = {} freq = [[] for i in range(len(nums) + 1)] for n in nums: count[n] = count.get(n, 0) + 1 for n, c in count.items(): freq[c].append(n) # freq[c] is a list of numbers with count res = [] for i in range(len(freq) - 1, 0, -1): for n in freq[i]: res.append(n) if len(res) == k: return res s = Solution() print(s.topKFrequent([1, 1, 1, 2, 2, 3], 2))
the-stack_0_22467
import json, datetime from discord.ext import commands from datetime import timedelta from vulcan import Keystore, Account, Vulcan from tabulate import tabulate with open("config.json", "r") as config: data = json.load(config) prefix = data["prefix"] dziennik_enabled = data["dziennik_enabled"] class ZadaniaDomowe(commands.Cog, name='Zadania domowe'): def __init__(self, bot): self.bot = bot bot = commands.Bot(command_prefix=prefix) @bot.command(aliases=['zadania_domowe', 'zadane', 'zadaniadomowe', 'zaddom', 'hw']) async def homework(self, ctx): if not dziennik_enabled: await ctx.reply("Moduł dziennika jest wyłączony!", mention_author=False) return await ctx.reply(f'Zadania domowe: \n```{await self.get_homework()}```', mention_author=False) #Doesnt work? # @plan.error # async def plan_error(ctx, error): # if isinstance(error, commands.BadArgument) or isinstance(error, commands.MissingRequiredArgument): # await ctx.channel.send("Instrukcja: `!plan <dzień> <grupa>`. \nLista dni: \n```dzisiaj, jutro, pojutrze, wczoraj, poniedzialek, poniedziałek, wtorek, środa, sroda, czwartek, piątek, piatek```") async def get_homework(self): with open("key-config.json") as f: # load from a JSON string dziennikKeystore = Keystore.load(f.read()) with open("acc-config.json") as f: # load from a JSON string dziennikAccount = Account.load(f.read()) dziennikClient = Vulcan(dziennikKeystore, dziennikAccount) await dziennikClient.select_student() lessons = await dziennikClient.data.get_lessons() tmp = [] async for lesson in lessons: tmp.append(lesson) lessons = tmp homeworks = await dziennikClient.data.get_homework() tmp = [] rows = [] headers = ["Data", "Przedmiot", "Treść"] all_info = {} today = datetime.date.today() tmp = today.weekday() first_day = today while tmp != 0: #Get first day of the week first_day = first_day - timedelta(days=1) tmp = tmp - 1 last_day = first_day + timedelta(days=4) homeworks = await dziennikClient.data.get_homework() number = 0 async for hw in homeworks: if ((hw.deadline.date >= first_day) & (hw.deadline.date <= last_day)): #Check if homework is in the current week all_info[number] = [hw] number+1 await dziennikClient.close() for key in sorted(all_info): homework = all_info[key][0] if homework.content: content = homework.content if homework.subject: name = homework.subject.name if len(name) > 16: name = homework.subject.code else: name = homework.subject.name print(name) else: name = 'NO_INFO' date = homework.deadline.date.strftime("%d.%m.%Y") rows.append([date, name, content]) table = tabulate(rows, headers, tablefmt="orgtbl", stralign="center") print(table) return table def setup(bot): bot.add_cog(ZadaniaDomowe(bot))
the-stack_0_22469
""" Pre-process the CNN/Daily Mail dataset. Before using this script, please download the following files and put all of them under `data/cnndm`: * cnn_stories_tokenized.zip, dm_stories_tokenized.zip -- These can be obtained from https://github.com/JafferWilson/Process-Data-of-CNN-DailyMail * all_test.txt, all_train.txt, all_val.txt -- These are the indices of documents in See et al's training/validation/testing sets, used here to ensure the same data split. They can be found in https://github.com/abisee/cnn-dailymail/tree/master/url_lists This script will generate `cnndm.gz`, `cnndm.val.gz`, and `cnndm.test.gz`. Each file is a gzipped text file containing one example per line. """ import re import os import gzip from zipfile import ZipFile from hashlib import sha1 splitter = re.compile(r'(-)') word_recognizer = re.compile(r'^\w[\w\-]+\w$') contractions = {"s", "d", "ve", "ll", "m", "re", "em"} ptb_unescape = {'-LRB-': '(', '-RRB-': ')', '-LCB-': '{', '-RCB-': '}'} print_every = 1000 # print progress every 1000 documents data_path = os.path.dirname(os.path.abspath(__file__)) corpus_path = os.path.join(data_path, 'cnndm') def split_example(filename: str, data: str, eop: str='<P>') -> tuple: text, summary = [], [] highlight_mode = False for paragraph in data.split('\n\n'): if paragraph == '@highlight': highlight_mode = True else: original_tokens = paragraph.split() tokens, next_prefix = [], None for i, tok in enumerate(original_tokens): if tok == '¿': # convert ¿ into ' if i + 1 < len(original_tokens): if original_tokens[i+1] == 't' and len(tokens) > 0 and tokens[-1][-1] == 'n': tokens[-1] = tokens[-1][:-1] next_prefix = "n'" elif original_tokens[i+1] in contractions: next_prefix = "'" elif len(tokens) > 0 and tokens[-1] == 'o': # o ' clock => o'clock tokens.pop() next_prefix = "o'" elif len(tokens) > 0 and tokens[-1] == 'y': # y ' all => y' all tokens[-1] = "y'" else: tokens.append("'") else: tokens.append("'") elif tok in ptb_unescape: assert next_prefix is None tokens.append(ptb_unescape[tok]) elif tok == '|': assert next_prefix is None else: tok = tok.lower() if next_prefix is not None: tok = next_prefix + tok if tok == '-': tokens.append('--') elif '-' in tok and not '--' in tok and word_recognizer.match(tok): tokens.extend(t for t in splitter.split(tok) if t) else: tokens.append(tok) next_prefix = None if not tokens: continue # skip empty paragraphs if eop: tokens.append(eop) if highlight_mode is False: text.extend(tokens) else: if highlight_mode is True: summary.extend(tokens) highlight_mode = None else: print("A paragraph in %s is dropped because it is not text or summary." % filename) return text, summary def get_story_set(filename: str) -> set: story_names = set() with open(os.path.join(corpus_path, filename), 'rb') as f: for line in f: story_names.add(sha1(line.strip()).hexdigest()) return story_names train_set = get_story_set('all_train.txt') valid_set = get_story_set('all_val.txt') test_set = get_story_set('all_test.txt') train_out = gzip.open(os.path.join(data_path, 'cnndm.gz'), 'wt') valid_out = gzip.open(os.path.join(data_path, 'cnndm.val.gz'), 'wt') test_out = gzip.open(os.path.join(data_path, 'cnndm.test.gz'), 'wt') count = 0 for download_file in ['cnn_stories_tokenized.zip', 'dm_stories_tokenized.zip']: with ZipFile(os.path.join(corpus_path, download_file), 'r') as archive: for filename in archive.namelist(): if not filename.endswith('.story'): continue story_name = filename[-46:-6] if story_name in train_set: fout = train_out elif story_name in valid_set: fout = valid_out elif story_name in test_set: fout = test_out else: print("Error: filename %s is not found in train, valid, or test set." % filename) continue with archive.open(filename, 'r') as f: content = f.read().decode('utf-8') text, summary = split_example(filename, content) if not text: print("Skipped: %s has no text." % filename) continue if not summary: print("Skipped: %s has no summary." % filename) continue if len(text) < len(summary): print("Skipped: the text of %s is shorter than its summary." % filename) continue fout.write(" ".join(text) + "\t" + " ".join(summary) + "\n") count += 1 if count % print_every == 0: print(count) fout.flush() train_out.close() valid_out.close() test_out.close()
the-stack_0_22470
# coding: utf-8 import math import torch from torch import nn # from util.misc import NestedTensor # class PositionEmbeddingSine(nn.Module): # """ # This is a more standard version of the position embedding, very similar to the one # used by the Attention is all you need paper, generalized to work on images. # """ # def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): # super().__init__() # self.num_pos_feats = num_pos_feats # self.temperature = temperature # self.normalize = normalize # if scale is not None and normalize is False: # raise ValueError("normalize should be True if scale is passed") # if scale is None: # scale = 2 * math.pi # self.scale = scale # # def forward(self, tensor_list: NestedTensor): # # x = tensor_list.tensors # # mask = tensor_list.mask # # assert mask is not None # def forward(self, mask): # not_mask = ~mask # y_embed = not_mask.cumsum(1, dtype=torch.float32) # x_embed = not_mask.cumsum(2, dtype=torch.float32) # import ipdb; ipdb.set_trace() # if self.normalize: # eps = 1e-6 # y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale # x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale # dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=mask.device) # dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) # pos_x = x_embed[:, :, :, None] / dim_t # pos_y = y_embed[:, :, :, None] / dim_t # pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) # pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) # pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) # return pos class PositionEmbeddingLearned(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, num_pos_feats=256): super().__init__() self.row_embed = nn.Embedding(50, num_pos_feats) self.col_embed = nn.Embedding(50, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) def forward(self, tensor): x = tensor h, w = x.shape[-2:] i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = torch.cat([ x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1), ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1) return pos def test_embedding(): hidden_dim = 256 N_steps = hidden_dim // 2 # position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
the-stack_0_22471
#!/usr/bin/env python3 import os import re from setuptools import setup, find_packages version = None def find(haystack, *needles): regexes = [(index, re.compile(r'^{}\s*=\s*[\'"]([^\'"]*)[\'"]$'.format(needle))) for index, needle in enumerate(needles)] values = ['' for needle in needles] for line in haystack: if len(regexes) == 0: break for rindex, (vindex, regex) in enumerate(regexes): match = regex.match(line) if match: values[vindex] = match.groups()[0] del regexes[rindex] break if len(needles) == 1: return values[0] else: return values with open(os.path.join(os.path.dirname(__file__), 'serve', '__init__.py'), 'r') as serve: version = find(serve, '__version__') setup( name='serve', version=version, description='a simple autoindexing file server', license='MIT', author='Lily Foster', author_email='[email protected]', install_requires=['fooster-web'], packages=find_packages(), package_data={'': ['html/*.*', 'res/*.*']}, entry_points={'console_scripts': ['serve = serve.__main__:main']}, )
the-stack_0_22474
r"""Function of unitary fourier transform (uft) and utilities This module implements the unitary fourier transform, also known as the ortho-normal transform. It is especially useful for convolution [1], as it respects the Parseval equality. The value of the null frequency is equal to .. math:: \frac{1}{\sqrt{n}} \sum_i x_i so the Fourier transform has the same energy as the original image (see ``image_quad_norm`` function). The transform is applied from the last axis for performance (assuming a C-order array input). References ---------- .. [1] B. R. Hunt "A matrix theory proof of the discrete convolution theorem", IEEE Trans. on Audio and Electroacoustics, vol. au-19, no. 4, pp. 285-288, dec. 1971 """ import math import cupy as cp import numpy as np from .._shared.fft import fftmodule as fft __keywords__ = "fft, Fourier Transform, orthonormal, unitary" def ufftn(inarray, dim=None): """N-dimensional unitary Fourier transform. Parameters ---------- inarray : ndarray The array to transform. dim : int, optional The last axis along which to compute the transform. All axes by default. Returns ------- outarray : ndarray (same shape than inarray) The unitary N-D Fourier transform of ``inarray``. Examples -------- >>> import cupy as cp >>> input = cp.ones((3, 3, 3)) >>> output = ufftn(input) >>> cp.allclose(cp.sum(input) / cp.sqrt(input.size), output[0, 0, 0]) True >>> output.shape (3, 3, 3) """ if dim is None: dim = inarray.ndim outarray = fft.fftn(inarray, axes=range(-dim, 0), norm="ortho") return outarray def uifftn(inarray, dim=None): """N-dimensional unitary inverse Fourier transform. Parameters ---------- inarray : ndarray The array to transform. dim : int, optional The last axis along which to compute the transform. All axes by default. Returns ------- outarray : ndarray (same shape than inarray) The unitary inverse N-D Fourier transform of ``inarray``. Examples -------- >>> import cupy as cp >>> input = cp.ones((3, 3, 3)) >>> output = uifftn(input) >>> cp.allclose(cp.sum(input) / cp.sqrt(input.size), output[0, 0, 0]) True >>> output.shape (3, 3, 3) """ if dim is None: dim = inarray.ndim outarray = fft.ifftn(inarray, axes=range(-dim, 0), norm='ortho') return outarray def urfftn(inarray, dim=None): """N-dimensional real unitary Fourier transform. This transform considers the Hermitian property of the transform on real-valued input. Parameters ---------- inarray : ndarray, shape (M, N, ..., P) The array to transform. dim : int, optional The last axis along which to compute the transform. All axes by default. Returns ------- outarray : ndarray, shape (M, N, ..., P / 2 + 1) The unitary N-D real Fourier transform of ``inarray``. Notes ----- The ``urfft`` functions assume an input array of real values. Consequently, the output has a Hermitian property and redundant values are not computed or returned. Examples -------- >>> import cupy as cp >>> input = cp.ones((5, 5, 5)) >>> output = urfftn(input) >>> cp.allclose(cp.sum(input) / cp.sqrt(input.size), output[0, 0, 0]) True >>> output.shape (5, 5, 3) """ if dim is None: dim = inarray.ndim outarray = fft.rfftn(inarray, axes=range(-dim, 0), norm='ortho') return outarray def uirfftn(inarray, dim=None, shape=None): """N-dimensional inverse real unitary Fourier transform. This transform considers the Hermitian property of the transform from complex to real input. Parameters ---------- inarray : ndarray The array to transform. dim : int, optional The last axis along which to compute the transform. All axes by default. shape : tuple of int, optional The shape of the output. The shape of ``rfft`` is ambiguous in case of odd-valued input shape. In this case, this parameter should be provided. See ``cupy.fft.irfftn``. Returns ------- outarray : ndarray The unitary N-D inverse real Fourier transform of ``inarray``. Notes ----- The ``uirfft`` function assumes that the output array is real-valued. Consequently, the input is assumed to have a Hermitian property and redundant values are implicit. Examples -------- >>> import cupy as cp >>> input = cp.ones((5, 5, 5)) >>> output = uirfftn(urfftn(input), shape=input.shape) >>> cp.allclose(input, output) True >>> output.shape (5, 5, 5) """ if dim is None: dim = inarray.ndim outarray = fft.irfftn(inarray, shape, axes=range(-dim, 0), norm='ortho') return outarray def ufft2(inarray): """2-dimensional unitary Fourier transform. Compute the Fourier transform on the last 2 axes. Parameters ---------- inarray : ndarray The array to transform. Returns ------- outarray : ndarray (same shape as inarray) The unitary 2-D Fourier transform of ``inarray``. See Also -------- uifft2, ufftn, urfftn Examples -------- >>> import cupy as cp >>> input = cp.ones((10, 128, 128)) >>> output = ufft2(input) >>> cp.allclose(cp.sum(input[1, ...]) / cp.sqrt(input[1, ...].size), ... output[1, 0, 0]) True >>> output.shape (10, 128, 128) """ return ufftn(inarray, 2) def uifft2(inarray): """2-dimensional inverse unitary Fourier transform. Compute the inverse Fourier transform on the last 2 axes. Parameters ---------- inarray : ndarray The array to transform. Returns ------- outarray : ndarray (same shape as inarray) The unitary 2-D inverse Fourier transform of ``inarray``. See Also -------- uifft2, uifftn, uirfftn Examples -------- >>> import cupy as cp >>> input = cp.ones((10, 128, 128)) >>> output = uifft2(input) >>> cp.allclose(cp.sum(input[1, ...]) / cp.sqrt(input[1, ...].size), ... output[0, 0, 0]) True >>> output.shape (10, 128, 128) """ return uifftn(inarray, 2) def urfft2(inarray): """2-dimensional real unitary Fourier transform Compute the real Fourier transform on the last 2 axes. This transform considers the Hermitian property of the transform from complex to real-valued input. Parameters ---------- inarray : ndarray, shape (M, N, ..., P) The array to transform. Returns ------- outarray : ndarray, shape (M, N, ..., 2 * (P - 1)) The unitary 2-D real Fourier transform of ``inarray``. See Also -------- ufft2, ufftn, urfftn Examples -------- >>> import cupy as cp >>> input = cp.ones((10, 128, 128)) >>> output = urfft2(input) >>> cp.allclose(cp.sum(input[1,...]) / cp.sqrt(input[1,...].size), ... output[1, 0, 0]) True >>> output.shape (10, 128, 65) """ return urfftn(inarray, 2) def uirfft2(inarray, shape=None): """2-dimensional inverse real unitary Fourier transform. Compute the real inverse Fourier transform on the last 2 axes. This transform considers the Hermitian property of the transform from complex to real-valued input. Parameters ---------- inarray : ndarray, shape (M, N, ..., P) The array to transform. shape : tuple of int, optional The shape of the output. The shape of ``rfft`` is ambiguous in case of odd-valued input shape. In this case, this parameter should be provided. See ``cupy.fft.irfftn``. Returns ------- outarray : ndarray, shape (M, N, ..., 2 * (P - 1)) The unitary 2-D inverse real Fourier transform of ``inarray``. See Also -------- urfft2, uifftn, uirfftn Examples -------- >>> import cupy as cp >>> input = cp.ones((10, 128, 128)) >>> output = uirfftn(urfftn(input), shape=input.shape) >>> cp.allclose(input, output) True >>> output.shape (10, 128, 128) """ return uirfftn(inarray, 2, shape=shape) def image_quad_norm(inarray): """Return the quadratic norm of images in Fourier space. This function detects whether the input image satisfies the Hermitian property. Parameters ---------- inarray : ndarray Input image. The image data should reside in the final two axes. Returns ------- norm : float The quadratic norm of ``inarray``. Examples -------- >>> import cupy as cp >>> input = cp.ones((5, 5)) >>> image_quad_norm(ufft2(input)) == cp.sum(cp.abs(input)**2) True >>> image_quad_norm(ufft2(input)) == image_quad_norm(urfft2(input)) True """ # If there is a Hermitian symmetry abs_sq = cp.abs(inarray) abs_sq *= abs_sq if inarray.shape[-1] != inarray.shape[-2]: return 2 * cp.sum(cp.sum(abs_sq, axis=-1), axis=-1) - cp.sum( cp.abs(inarray[..., 0]) ** 2, axis=-1 ) else: return cp.sum(cp.sum(abs_sq, axis=-1), axis=-1) def ir2tf(imp_resp, shape, dim=None, is_real=True): """Compute the transfer function of an impulse response (IR). This function makes the necessary correct zero-padding, zero convention, correct fft2, etc... to compute the transfer function of IR. To use with unitary Fourier transform for the signal (ufftn or equivalent). Parameters ---------- imp_resp : ndarray The impulse responses. shape : tuple of int A tuple of integer corresponding to the target shape of the transfer function. dim : int, optional The last axis along which to compute the transform. All axes by default. is_real : boolean, optional If True (default), imp_resp is supposed real and the Hermitian property is used with rfftn Fourier transform. Returns ------- y : complex ndarray The transfer function of shape ``shape``. See Also -------- ufftn, uifftn, urfftn, uirfftn Examples -------- >>> import cupy as cp >>> cp.all(cp.array([[4, 0], [0, 0]]) == ir2tf(cp.ones((2, 2)), (2, 2))) True >>> ir2tf(cp.ones((2, 2)), (512, 512)).shape == (512, 257) True >>> ir2tf(cp.ones((2, 2)), (512, 512), is_real=False).shape == (512, 512) True Notes ----- The input array can be composed of multiple-dimensional IR with an arbitrary number of IR. The individual IR must be accessed through the first axes. The last ``dim`` axes contain the space definition. """ if not dim: dim = imp_resp.ndim # Zero padding and fill irpadded_dtype = imp_resp.dtype if imp_resp.dtype.kind == 'f' else float irpadded = cp.zeros(shape, dtype=irpadded_dtype) irpadded[tuple([slice(0, s) for s in imp_resp.shape])] = imp_resp # Roll for zero convention of the fft to avoid the phase # problem. Work with odd and even size. for axis, axis_size in enumerate(imp_resp.shape): if axis >= imp_resp.ndim - dim: irpadded = cp.roll(irpadded, shift=-math.floor(axis_size / 2), axis=axis) if is_real: return fft.rfftn(irpadded, axes=range(-dim, 0)) else: return fft.fftn(irpadded, axes=range(-dim, 0)) def laplacian(ndim, shape, is_real=True, *, dtype=None): """Return the transfer function of the Laplacian. Laplacian is the second order difference, on row and column. Parameters ---------- ndim : int The dimension of the Laplacian. shape : tuple The support on which to compute the transfer function. is_real : boolean, optional If True (default), imp_resp is assumed to be real-valued and the Hermitian property is used with rfftn Fourier transform to return the transfer function. Returns ------- tf : array_like, complex The transfer function. impr : array_like, real The Laplacian. Examples -------- >>> import cupy as cp >>> tf, ir = laplacian(2, (32, 32)) >>> cp.all(ir == cp.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]])) True >>> cp.all(tf == ir2tf(ir, (32, 32))) True """ if dtype is None: dtype = cp.float64 if is_real else cp.complex128 elif np.dtype(dtype).kind != 'f': raise ValueError("dtype must be a floating point dtype") # CuPy Backend: assemble the small kernel on the host and then transfer it impr = np.zeros([3] * ndim) for dim in range(ndim): idx = tuple( [slice(1, 2)] * dim + [slice(None)] + [slice(1, 2)] * (ndim - dim - 1) ) impr[idx] = np.array([-1.0, 0.0, -1.0]).reshape( [-1 if i == dim else 1 for i in range(ndim)] ) impr[(slice(1, 2),) * ndim] = 2.0 * ndim impr = cp.array(impr, dtype=dtype) if shape is None: # filters.laplace only uses the spatial kernel return impr return ir2tf(impr, shape, is_real=is_real), impr
the-stack_0_22478
# Copyright 2021, laggardkernel and the ranger-fzf-marks contributors # SPDX-License-Identifier: MIT from __future__ import absolute_import, division, print_function import os from ranger.api.commands import Command class FzfMarksBase(Command): fzf_cmd = os.environ.get("FZF_MARKS_CMD", "fzf") # https://github.com/urbainvaes/fzf-marks bookmark_file = os.environ.get("FZF_MARKS_FILE") or os.path.join( os.environ.get("HOME", os.path.expanduser("~")), ".fzf-marks" ) class fmark(FzfMarksBase): """ :fmark <name> Mark the current directory with provided keyword """ def execute(self): if not self.arg(1): self.fm.notify( "A keyword must be given for the current bookmark!", bad=True ) return item = "{} : {}".format(self.arg(1), self.fm.thisdir.path) if not os.path.exists(self.bookmark_file): with open(self.bookmark_file, "a") as f: pass with open(self.bookmark_file, "r") as f: for line in f.readlines(): if line.split(":")[1].strip() == self.fm.thisdir.path: self.fm.notify( "Fzf bookmark already exists: {}".format(line.strip()), bad=True ) return with open(self.bookmark_file, "a") as f: f.write("{}{}".format(item, os.linesep)) self.fm.notify("Fzf bookmark has been added: {}".format(item)) class dmark(FzfMarksBase): """ dmark: delete current directory from fzf-marks file """ fzf_opts = os.environ.get( "FZF_DMARK_OPTS", "--cycle -m --ansi --bind=ctrl-o:accept,ctrl-t:toggle", ) def execute(self): import subprocess items = None query = "" if self.arg(1): query = self.arg(1) if not os.path.exists(self.bookmark_file): self.fm.notify("No fzf bookmark is created yet!", bad=True) return # TODO: batch deletion command = '< "{2}" sort -f | {0} {1} --query="{3}"'.format( self.fzf_cmd, self.fzf_opts, self.bookmark_file, query ) process = self.fm.execute_command( command, universal_newlines=True, stdout=subprocess.PIPE ) stdout, stderr = process.communicate() if process.returncode == 0: items = stdout.rstrip().split("\n") if not items: return with open(self.bookmark_file, "r") as f: lines = f.readlines() with open(self.bookmark_file, "w") as f: for line in lines: if line.strip() not in items: f.write(line) self.fm.notify("Fzf bookmark is deleted: {}".format(", ".join(items))) class fzm(FzfMarksBase): """ fzm: select and jump to bookmark stored in fzf-marks """ fzf_opts = os.environ.get( "FZF_FZM_OPTS", "--cycle +m --ansi --bind=ctrl-o:accept,ctrl-t:toggle --select-1", ) def execute(self): import subprocess target = None query = "" if self.arg(1): query = self.arg(1) if not os.path.exists(self.bookmark_file): self.fm.notify("No fzf bookmark is created yet!", bad=True) return command = '< "{2}" sort -f | {0} {1} --query "{3}"'.format( self.fzf_cmd, self.fzf_opts, self.bookmark_file, query ) process = self.fm.execute_command( command, universal_newlines=True, stdout=subprocess.PIPE ) stdout, stderr = process.communicate() if process.returncode == 0: key, target = stdout.rstrip().split(" : ", 1) target = os.path.expanduser(target) if not target: return elif os.path.isdir(target): self.fm.cd(target) elif os.path.isfile(target): self.fm.select_file(target) else: self.fm.notify( "Invalid fzf bookmark location: {} : {}".format(key, target), True )
the-stack_0_22481
#!/usr/bin/env python # -*- coding: utf-8 -*- from wifite.tools.airodump import Airodump import unittest class TestTarget(unittest.TestCase): ''' Test suite for Target parsing an generation ''' airodump_csv = 'airodump.csv' def getTargets(self, filename): ''' Helper method to parse targets from filename ''' import os, inspect this_file = os.path.abspath(inspect.getsourcefile(TestTarget.getTargets)) this_dir = os.path.dirname(this_file) csv_file = os.path.join(this_dir, 'files', filename) # Load targets from CSV file return Airodump.get_targets_from_csv(csv_file) def testTargetParsing(self): ''' Asserts target parsing finds targets ''' targets = self.getTargets(TestTarget.airodump_csv) assert(len(targets) > 0) def testTargetClients(self): ''' Asserts target parsing captures clients properly ''' targets = self.getTargets(TestTarget.airodump_csv) for t in targets: if t.bssid == '00:1D:D5:9B:11:00': assert(len(t.clients) > 0) if __name__ == '__main__': unittest.main()
the-stack_0_22484
# All Rights Reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from NSDManagement.models import NsdInfo from NSDSubscription.serializers import * from rest_framework import viewsets, status from rest_framework.utils import json from rest_framework.exceptions import APIException class VNFPackageSubscriptionViewSet(viewsets.ModelViewSet): queryset = NsdmSubscription.objects.all() serializer_class = NsdmSubscriptionSerializer def create(self, request, **kwargs): """ Subscribe to NSD change notifications. The POST method creates a new subscription. \ This method shall support the URI query parameters, request and response data structures, \ and response codes, as specified in the Tables 5.4.8.3.1-1 and 5.4.8.3.1-2. \ Creation of two subscription resources with the same callbackURI \ and the same filter can result in performance degradation \ and will provide duplicates of notifications to the OSS, \ and might make sense only in very rare use cases. \ Consequently, the NFVO may either allow creating a subscription resource \ if another subscription resource with the same filter \ and callbackUri already exists (in which case it shall return the “201 Created” response code), \ or may decide to not create a duplicate subscription resource (in which case \ it shall return a “303 See Other” response code referencing the existing subscription resource \ with the same filter and callbackUri). """ if 'filter' not in request.data or 'callbackUri' not in request.data: raise APIException(detail='filter or callbackUri is not exists', code=status.HTTP_409_CONFLICT) ns_descriptor_subscription_filter = request.data['filter'].get('nsdInfoId', None) if not ns_descriptor_subscription_filter: raise APIException(detail='nsdInfoId is not exists', code=status.HTTP_409_CONFLICT) if not isinstance(ns_descriptor_subscription_filter, list): raise APIException(detail='nsdInfoId needs list type', code=status.HTTP_409_CONFLICT) for ns_id in ns_descriptor_subscription_filter: ns_instance = NsdInfo.objects.filter(id=uuid.UUID(ns_id)).last() if not ns_instance: raise APIException(detail='Network Service Descriptor not found', code=status.HTTP_404_NOT_FOUND) request.data['filter']['nsdInfoId'] = json.dumps(ns_descriptor_subscription_filter) request.data['_links'] = {'self': request.build_absolute_uri()} return super().create(request) def get_success_headers(self, data): return {'Location': data['_links']['self']} def update(self, request, *args, **kwargs): raise APIException(detail='Method Not Allowed', code=status.HTTP_405_METHOD_NOT_ALLOWED) def retrieve(self, request, *args, **kwargs): """ Read an individual subscription resource. This resource represents an individual subscription. \ It can be used by the client to read and to terminate a subscription \ to notifications related to NSD management. \ The GET method retrieves information about a subscription by reading an individual subscription resource. \ This resource represents an individual subscription. \ It can be used by the client to read \ and to terminate a subscription to notifications related to NSD management. """ return super().retrieve(request) def list(self, request, *args, **kwargs): """ Query multiple subscriptions. The GET method queries the list of active subscriptions of the functional block that invokes the method. \ It can be used e.g. for resynchronization after error situations. """ return super().list(request) def destroy(self, request, *args, **kwargs): """ Terminate Subscription. This resource represents an individual subscription. It can be used by the client to read \ and to terminate a subscription to notifications related to NSD management. The DELETE method terminates an individual subscription. \ This method shall support the URI query parameters, request and response data structures, \ and response codes, as specified in the Table 5.4.9.3.3-2. """ return super().destroy(request)
the-stack_0_22485
"""Tool to convert Waymo Open Dataset to pickle files. Adapted from https://github.com/WangYueFt/pillar-od # Copyright (c) Massachusetts Institute of Technology and its affiliates. # Licensed under MIT License """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob, argparse, tqdm, pickle, os import waymo_decoder import tensorflow.compat.v2 as tf from waymo_open_dataset import dataset_pb2 from multiprocessing import Pool import numpy as np tf.enable_v2_behavior() fnames = None LIDAR_PATH = None ANNO_PATH = None prefix = 1 # validation def convert(idx): global fnames, prefix fname = fnames[idx] dataset = tf.data.TFRecordDataset(fname, compression_type='') for frame_id, data in enumerate(dataset): frame = dataset_pb2.Frame() frame.ParseFromString(bytearray(data.numpy())) decoded_frame = waymo_decoder.decode_frame(frame, frame_id) bin_filepath = f'/mnt/xrhuang/datasets/waymo/kitti_format/training/velodyne/{prefix}{idx:03d}{frame_id:03d}.bin' #points = np.fromfile(bin_filepath, dtype=np.float32).reshape(-1, 6) decoded_frame.pop('lidars') decoded_frame['lidars'] = bin_filepath decoded_annos = waymo_decoder.decode_annos(frame, frame_id) with open(os.path.join(LIDAR_PATH, 'seq_{}_frame_{}.pkl'.format(idx, frame_id)), 'wb') as f: pickle.dump(decoded_frame, f) with open(os.path.join(ANNO_PATH, 'seq_{}_frame_{}.pkl'.format(idx, frame_id)), 'wb') as f: pickle.dump(decoded_annos, f) def main(args): global fnames, prefix fnames = sorted(list(glob.glob(args.record_path))) print("Number of files {}".format(len(fnames))) with Pool(128) as p: # change according to your cpu r = list(tqdm.tqdm(p.imap(convert, range(len(fnames))), total=len(fnames))) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Waymo Data Converter') parser.add_argument('--root_path', type=str, required=True) parser.add_argument('--record_path', type=str, required=True) args = parser.parse_args() if not os.path.isdir(args.root_path): os.mkdir(args.root_path) LIDAR_PATH = os.path.join(args.root_path, 'lidar') ANNO_PATH = os.path.join(args.root_path, 'annos') if not os.path.isdir(LIDAR_PATH): os.mkdir(LIDAR_PATH) if not os.path.isdir(ANNO_PATH): os.mkdir(ANNO_PATH) main(args)