filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_26710
import xarray as xr from xcube.core.compute import compute_dataset from impl.algorithm import compute_chunk def process_dataset(dataset: xr.Dataset, output_var_name: str, input_var_name_1: str, input_var_name_2: str, factor_1: float = 1.0, factor_2: float = 2.0) -> xr.Dataset: return compute_dataset(compute_chunk, dataset, input_var_names=[input_var_name_1, input_var_name_2], input_params=dict(factor_1=factor_1, factor_2=factor_2), output_var_name=output_var_name)
the-stack_0_26712
# Copyright 2015 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Client for interacting with the Google Cloud Storage API.""" import base64 import binascii import collections import datetime import functools import json import warnings import google.api_core.client_options from google.auth.credentials import AnonymousCredentials from google.api_core import page_iterator from google.cloud._helpers import _LocalStack, _NOW from google.cloud.client import ClientWithProject from google.cloud.exceptions import NotFound from google.cloud.storage._helpers import _get_storage_host from google.cloud.storage._http import Connection from google.cloud.storage._signing import ( get_expiration_seconds_v4, get_v4_now_dtstamps, ensure_signed_credentials, _sign_message, ) from google.cloud.storage.batch import Batch from google.cloud.storage.bucket import Bucket from google.cloud.storage.blob import Blob from google.cloud.storage.hmac_key import HMACKeyMetadata from google.cloud.storage.acl import BucketACL from google.cloud.storage.acl import DefaultObjectACL from google.cloud.storage.constants import _DEFAULT_TIMEOUT _marker = object() class Client(ClientWithProject): """Client to bundle configuration needed for API requests. :type project: str or None :param project: the project which the client acts on behalf of. Will be passed when creating a topic. If not passed, falls back to the default inferred from the environment. :type credentials: :class:`~google.auth.credentials.Credentials` :param credentials: (Optional) The OAuth2 Credentials to use for this client. If not passed (and if no ``_http`` object is passed), falls back to the default inferred from the environment. :type _http: :class:`~requests.Session` :param _http: (Optional) HTTP object to make requests. Can be any object that defines ``request()`` with the same interface as :meth:`requests.Session.request`. If not passed, an ``_http`` object is created that is bound to the ``credentials`` for the current object. This parameter should be considered private, and could change in the future. :type client_info: :class:`~google.api_core.client_info.ClientInfo` :param client_info: The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own library or partner tool. :type client_options: :class:`~google.api_core.client_options.ClientOptions` or :class:`dict` :param client_options: (Optional) Client options used to set user options on the client. API Endpoint should be set through client_options. """ SCOPE = ( "https://www.googleapis.com/auth/devstorage.full_control", "https://www.googleapis.com/auth/devstorage.read_only", "https://www.googleapis.com/auth/devstorage.read_write", ) """The scopes required for authenticating as a Cloud Storage consumer.""" def __init__( self, project=_marker, credentials=None, _http=None, client_info=None, client_options=None, ): self._base_connection = None if project is None: no_project = True project = "<none>" else: no_project = False if project is _marker: project = None super(Client, self).__init__( project=project, credentials=credentials, _http=_http ) kw_args = {"client_info": client_info} kw_args["api_endpoint"] = _get_storage_host() if client_options: if type(client_options) == dict: client_options = google.api_core.client_options.from_dict( client_options ) if client_options.api_endpoint: api_endpoint = client_options.api_endpoint kw_args["api_endpoint"] = api_endpoint if no_project: self.project = None self._connection = Connection(self, **kw_args) self._batch_stack = _LocalStack() @classmethod def create_anonymous_client(cls): """Factory: return client with anonymous credentials. .. note:: Such a client has only limited access to "public" buckets: listing their contents and downloading their blobs. :rtype: :class:`google.cloud.storage.client.Client` :returns: Instance w/ anonymous credentials and no project. """ client = cls(project="<none>", credentials=AnonymousCredentials()) client.project = None return client @property def _connection(self): """Get connection or batch on the client. :rtype: :class:`google.cloud.storage._http.Connection` :returns: The connection set on the client, or the batch if one is set. """ if self.current_batch is not None: return self.current_batch else: return self._base_connection @_connection.setter def _connection(self, value): """Set connection on the client. Intended to be used by constructor (since the base class calls) self._connection = connection Will raise if the connection is set more than once. :type value: :class:`google.cloud.storage._http.Connection` :param value: The connection set on the client. :raises: :class:`ValueError` if connection has already been set. """ if self._base_connection is not None: raise ValueError("Connection already set on client") self._base_connection = value def _push_batch(self, batch): """Push a batch onto our stack. "Protected", intended for use by batch context mgrs. :type batch: :class:`google.cloud.storage.batch.Batch` :param batch: newly-active batch """ self._batch_stack.push(batch) def _pop_batch(self): """Pop a batch from our stack. "Protected", intended for use by batch context mgrs. :raises: IndexError if the stack is empty. :rtype: :class:`google.cloud.storage.batch.Batch` :returns: the top-most batch/transaction, after removing it. """ return self._batch_stack.pop() def _bucket_arg_to_bucket(self, bucket_or_name): """Helper to return given bucket or create new by name. Args: bucket_or_name (Union[ \ :class:`~google.cloud.storage.bucket.Bucket`, \ str, \ ]): The bucket resource to pass or name to create. Returns: google.cloud.storage.bucket.Bucket The newly created bucket or the given one. """ if isinstance(bucket_or_name, Bucket): bucket = bucket_or_name else: bucket = Bucket(self, name=bucket_or_name) return bucket @property def current_batch(self): """Currently-active batch. :rtype: :class:`google.cloud.storage.batch.Batch` or ``NoneType`` (if no batch is active). :returns: The batch at the top of the batch stack. """ return self._batch_stack.top def get_service_account_email(self, project=None, timeout=_DEFAULT_TIMEOUT): """Get the email address of the project's GCS service account :type project: str :param project: (Optional) Project ID to use for retreiving GCS service account email address. Defaults to the client's project. :type timeout: float or tuple :param timeout: (Optional) The amount of time, in seconds, to wait for the server response. Can also be passed as a tuple (connect_timeout, read_timeout). See :meth:`requests.Session.request` documentation for details. :rtype: str :returns: service account email address """ if project is None: project = self.project path = "/projects/%s/serviceAccount" % (project,) api_response = self._base_connection.api_request( method="GET", path=path, timeout=timeout ) return api_response["email_address"] def bucket(self, bucket_name, user_project=None): """Factory constructor for bucket object. .. note:: This will not make an HTTP request; it simply instantiates a bucket object owned by this client. :type bucket_name: str :param bucket_name: The name of the bucket to be instantiated. :type user_project: str :param user_project: (Optional) The project ID to be billed for API requests made via the bucket. :rtype: :class:`google.cloud.storage.bucket.Bucket` :returns: The bucket object created. """ return Bucket(client=self, name=bucket_name, user_project=user_project) def batch(self): """Factory constructor for batch object. .. note:: This will not make an HTTP request; it simply instantiates a batch object owned by this client. :rtype: :class:`google.cloud.storage.batch.Batch` :returns: The batch object created. """ return Batch(client=self) def get_bucket(self, bucket_or_name, timeout=_DEFAULT_TIMEOUT): """API call: retrieve a bucket via a GET request. See https://cloud.google.com/storage/docs/json_api/v1/buckets/get Args: bucket_or_name (Union[ \ :class:`~google.cloud.storage.bucket.Bucket`, \ str, \ ]): The bucket resource to pass or name to create. timeout (Optional[Union[float, Tuple[float, float]]]): The amount of time, in seconds, to wait for the server response. Can also be passed as a tuple (connect_timeout, read_timeout). See :meth:`requests.Session.request` documentation for details. Returns: google.cloud.storage.bucket.Bucket The bucket matching the name provided. Raises: google.cloud.exceptions.NotFound If the bucket is not found. Examples: Retrieve a bucket using a string. .. literalinclude:: snippets.py :start-after: [START get_bucket] :end-before: [END get_bucket] Get a bucket using a resource. >>> from google.cloud import storage >>> client = storage.Client() >>> # Set properties on a plain resource object. >>> bucket = client.get_bucket("my-bucket-name") >>> # Time passes. Another program may have modified the bucket ... # in the meantime, so you want to get the latest state. >>> bucket = client.get_bucket(bucket) # API request. """ bucket = self._bucket_arg_to_bucket(bucket_or_name) bucket.reload(client=self, timeout=timeout) return bucket def lookup_bucket(self, bucket_name, timeout=_DEFAULT_TIMEOUT): """Get a bucket by name, returning None if not found. You can use this if you would rather check for a None value than catching an exception: .. literalinclude:: snippets.py :start-after: [START lookup_bucket] :end-before: [END lookup_bucket] :type bucket_name: str :param bucket_name: The name of the bucket to get. :type timeout: float or tuple :param timeout: (Optional) The amount of time, in seconds, to wait for the server response. Can also be passed as a tuple (connect_timeout, read_timeout). See :meth:`requests.Session.request` documentation for details. :rtype: :class:`google.cloud.storage.bucket.Bucket` :returns: The bucket matching the name provided or None if not found. """ try: return self.get_bucket(bucket_name, timeout=timeout) except NotFound: return None def create_bucket( self, bucket_or_name, requester_pays=None, project=None, user_project=None, location=None, predefined_acl=None, predefined_default_object_acl=None, timeout=_DEFAULT_TIMEOUT, ): """API call: create a new bucket via a POST request. See https://cloud.google.com/storage/docs/json_api/v1/buckets/insert Args: bucket_or_name (Union[ \ :class:`~google.cloud.storage.bucket.Bucket`, \ str, \ ]): The bucket resource to pass or name to create. requester_pays (bool): DEPRECATED. Use Bucket().requester_pays instead. (Optional) Whether requester pays for API requests for this bucket and its blobs. project (str): (Optional) The project under which the bucket is to be created. If not passed, uses the project set on the client. user_project (str): (Optional) The project ID to be billed for API requests made via created bucket. location (str): (Optional) The location of the bucket. If not passed, the default location, US, will be used. See https://cloud.google.com/storage/docs/bucket-locations predefined_acl (str): (Optional) Name of predefined ACL to apply to bucket. See: https://cloud.google.com/storage/docs/access-control/lists#predefined-acl predefined_default_object_acl (str): (Optional) Name of predefined ACL to apply to bucket's objects. See: https://cloud.google.com/storage/docs/access-control/lists#predefined-acl timeout (Optional[Union[float, Tuple[float, float]]]): The amount of time, in seconds, to wait for the server response. Can also be passed as a tuple (connect_timeout, read_timeout). See :meth:`requests.Session.request` documentation for details. Returns: google.cloud.storage.bucket.Bucket The newly created bucket. Raises: google.cloud.exceptions.Conflict If the bucket already exists. Examples: Create a bucket using a string. .. literalinclude:: snippets.py :start-after: [START create_bucket] :end-before: [END create_bucket] Create a bucket using a resource. >>> from google.cloud import storage >>> client = storage.Client() >>> # Set properties on a plain resource object. >>> bucket = storage.Bucket("my-bucket-name") >>> bucket.location = "europe-west6" >>> bucket.storage_class = "COLDLINE" >>> # Pass that resource object to the client. >>> bucket = client.create_bucket(bucket) # API request. """ bucket = self._bucket_arg_to_bucket(bucket_or_name) if project is None: project = self.project if project is None: raise ValueError("Client project not set: pass an explicit project.") if requester_pays is not None: warnings.warn( "requester_pays arg is deprecated. Use Bucket().requester_pays instead.", PendingDeprecationWarning, stacklevel=1, ) bucket.requester_pays = requester_pays query_params = {"project": project} if predefined_acl is not None: predefined_acl = BucketACL.validate_predefined(predefined_acl) query_params["predefinedAcl"] = predefined_acl if predefined_default_object_acl is not None: predefined_default_object_acl = DefaultObjectACL.validate_predefined( predefined_default_object_acl ) query_params["predefinedDefaultObjectAcl"] = predefined_default_object_acl if user_project is not None: query_params["userProject"] = user_project properties = {key: bucket._properties[key] for key in bucket._changes} properties["name"] = bucket.name if location is not None: properties["location"] = location api_response = self._connection.api_request( method="POST", path="/b", query_params=query_params, data=properties, _target_object=bucket, timeout=timeout, ) bucket._set_properties(api_response) return bucket def download_blob_to_file(self, blob_or_uri, file_obj, start=None, end=None): """Download the contents of a blob object or blob URI into a file-like object. Args: blob_or_uri (Union[ \ :class:`~google.cloud.storage.blob.Blob`, \ str, \ ]): The blob resource to pass or URI to download. file_obj (file): A file handle to which to write the blob's data. start (int): (Optional) The first byte in a range to be downloaded. end (int): (Optional) The last byte in a range to be downloaded. Examples: Download a blob using using a blob resource. >>> from google.cloud import storage >>> client = storage.Client() >>> bucket = client.get_bucket('my-bucket-name') >>> blob = storage.Blob('path/to/blob', bucket) >>> with open('file-to-download-to') as file_obj: >>> client.download_blob_to_file(blob, file_obj) # API request. Download a blob using a URI. >>> from google.cloud import storage >>> client = storage.Client() >>> with open('file-to-download-to') as file_obj: >>> client.download_blob_to_file( >>> 'gs://bucket_name/path/to/blob', file_obj) """ try: blob_or_uri.download_to_file(file_obj, client=self, start=start, end=end) except AttributeError: blob = Blob.from_string(blob_or_uri) blob.download_to_file(file_obj, client=self, start=start, end=end) def list_blobs( self, bucket_or_name, max_results=None, page_token=None, prefix=None, delimiter=None, versions=None, projection="noAcl", fields=None, timeout=_DEFAULT_TIMEOUT, ): """Return an iterator used to find blobs in the bucket. If :attr:`user_project` is set, bills the API request to that project. Args: bucket_or_name (Union[ \ :class:`~google.cloud.storage.bucket.Bucket`, \ str, \ ]): The bucket resource to pass or name to create. max_results (int): (Optional) The maximum number of blobs to return. page_token (str): (Optional) If present, return the next batch of blobs, using the value, which must correspond to the ``nextPageToken`` value returned in the previous response. Deprecated: use the ``pages`` property of the returned iterator instead of manually passing the token. prefix (str): (Optional) Prefix used to filter blobs. delimiter (str): (Optional) Delimiter, used with ``prefix`` to emulate hierarchy. versions (bool): (Optional) Whether object versions should be returned as separate blobs. projection (str): (Optional) If used, must be 'full' or 'noAcl'. Defaults to ``'noAcl'``. Specifies the set of properties to return. fields (str): (Optional) Selector specifying which fields to include in a partial response. Must be a list of fields. For example to get a partial response with just the next page token and the name and language of each blob returned: ``'items(name,contentLanguage),nextPageToken'``. See: https://cloud.google.com/storage/docs/json_api/v1/parameters#fields timeout (Optional[Union[float, Tuple[float, float]]]): The amount of time, in seconds, to wait for the server response. Can also be passed as a tuple (connect_timeout, read_timeout). See :meth:`requests.Session.request` documentation for details. Returns: Iterator of all :class:`~google.cloud.storage.blob.Blob` in this bucket matching the arguments. """ bucket = self._bucket_arg_to_bucket(bucket_or_name) return bucket.list_blobs( max_results=max_results, page_token=page_token, prefix=prefix, delimiter=delimiter, versions=versions, projection=projection, fields=fields, client=self, timeout=timeout, ) def list_buckets( self, max_results=None, page_token=None, prefix=None, projection="noAcl", fields=None, project=None, timeout=_DEFAULT_TIMEOUT, ): """Get all buckets in the project associated to the client. This will not populate the list of blobs available in each bucket. .. literalinclude:: snippets.py :start-after: [START list_buckets] :end-before: [END list_buckets] This implements "storage.buckets.list". :type max_results: int :param max_results: (Optional) The maximum number of buckets to return. :type page_token: str :param page_token: (Optional) If present, return the next batch of buckets, using the value, which must correspond to the ``nextPageToken`` value returned in the previous response. Deprecated: use the ``pages`` property of the returned iterator instead of manually passing the token. :type prefix: str :param prefix: (Optional) Filter results to buckets whose names begin with this prefix. :type projection: str :param projection: (Optional) Specifies the set of properties to return. If used, must be 'full' or 'noAcl'. Defaults to 'noAcl'. :type fields: str :param fields: (Optional) Selector specifying which fields to include in a partial response. Must be a list of fields. For example to get a partial response with just the next page token and the language of each bucket returned: 'items/id,nextPageToken' :type project: str :param project: (Optional) The project whose buckets are to be listed. If not passed, uses the project set on the client. :type timeout: float or tuple :param timeout: (Optional) The amount of time, in seconds, to wait for the server response. Can also be passed as a tuple (connect_timeout, read_timeout). See :meth:`requests.Session.request` documentation for details. :rtype: :class:`~google.api_core.page_iterator.Iterator` :raises ValueError: if both ``project`` is ``None`` and the client's project is also ``None``. :returns: Iterator of all :class:`~google.cloud.storage.bucket.Bucket` belonging to this project. """ if project is None: project = self.project if project is None: raise ValueError("Client project not set: pass an explicit project.") extra_params = {"project": project} if prefix is not None: extra_params["prefix"] = prefix extra_params["projection"] = projection if fields is not None: extra_params["fields"] = fields api_request = functools.partial(self._connection.api_request, timeout=timeout) return page_iterator.HTTPIterator( client=self, api_request=api_request, path="/b", item_to_value=_item_to_bucket, page_token=page_token, max_results=max_results, extra_params=extra_params, ) def create_hmac_key( self, service_account_email, project_id=None, user_project=None, timeout=_DEFAULT_TIMEOUT, ): """Create an HMAC key for a service account. :type service_account_email: str :param service_account_email: e-mail address of the service account :type project_id: str :param project_id: (Optional) Explicit project ID for the key. Defaults to the client's project. :type user_project: str :param user_project: (Optional) This parameter is currently ignored. :type timeout: float or tuple :param timeout: (Optional) The amount of time, in seconds, to wait for the server response. Can also be passed as a tuple (connect_timeout, read_timeout). See :meth:`requests.Session.request` documentation for details. :rtype: Tuple[:class:`~google.cloud.storage.hmac_key.HMACKeyMetadata`, str] :returns: metadata for the created key, plus the bytes of the key's secret, which is an 40-character base64-encoded string. """ if project_id is None: project_id = self.project path = "/projects/{}/hmacKeys".format(project_id) qs_params = {"serviceAccountEmail": service_account_email} if user_project is not None: qs_params["userProject"] = user_project api_response = self._connection.api_request( method="POST", path=path, query_params=qs_params, timeout=timeout ) metadata = HMACKeyMetadata(self) metadata._properties = api_response["metadata"] secret = api_response["secret"] return metadata, secret def list_hmac_keys( self, max_results=None, service_account_email=None, show_deleted_keys=None, project_id=None, user_project=None, timeout=_DEFAULT_TIMEOUT, ): """List HMAC keys for a project. :type max_results: int :param max_results: (Optional) Max number of keys to return in a given page. :type service_account_email: str :param service_account_email: (Optional) Limit keys to those created by the given service account. :type show_deleted_keys: bool :param show_deleted_keys: (Optional) Included deleted keys in the list. Default is to exclude them. :type project_id: str :param project_id: (Optional) Explicit project ID for the key. Defaults to the client's project. :type user_project: str :param user_project: (Optional) This parameter is currently ignored. :type timeout: float or tuple :param timeout: (Optional) The amount of time, in seconds, to wait for the server response. Can also be passed as a tuple (connect_timeout, read_timeout). See :meth:`requests.Session.request` documentation for details. :rtype: Tuple[:class:`~google.cloud.storage.hmac_key.HMACKeyMetadata`, str] :returns: metadata for the created key, plus the bytes of the key's secret, which is an 40-character base64-encoded string. """ if project_id is None: project_id = self.project path = "/projects/{}/hmacKeys".format(project_id) extra_params = {} if service_account_email is not None: extra_params["serviceAccountEmail"] = service_account_email if show_deleted_keys is not None: extra_params["showDeletedKeys"] = show_deleted_keys if user_project is not None: extra_params["userProject"] = user_project api_request = functools.partial(self._connection.api_request, timeout=timeout) return page_iterator.HTTPIterator( client=self, api_request=api_request, path=path, item_to_value=_item_to_hmac_key_metadata, max_results=max_results, extra_params=extra_params, ) def get_hmac_key_metadata( self, access_id, project_id=None, user_project=None, timeout=_DEFAULT_TIMEOUT ): """Return a metadata instance for the given HMAC key. :type access_id: str :param access_id: Unique ID of an existing key. :type project_id: str :param project_id: (Optional) Project ID of an existing key. Defaults to client's project. :type timeout: float or tuple :param timeout: (Optional) The amount of time, in seconds, to wait for the server response. Can also be passed as a tuple (connect_timeout, read_timeout). See :meth:`requests.Session.request` documentation for details. :type user_project: str :param user_project: (Optional) This parameter is currently ignored. """ metadata = HMACKeyMetadata(self, access_id, project_id, user_project) metadata.reload(timeout=timeout) # raises NotFound for missing key return metadata def generate_signed_post_policy_v4( self, bucket_name, blob_name, expiration, conditions=None, fields=None, credentials=None, virtual_hosted_style=False, bucket_bound_hostname=None, scheme=None, service_account_email=None, access_token=None, ): """Generate a V4 signed policy object. .. note:: Assumes ``credentials`` implements the :class:`google.auth.credentials.Signing` interface. Also assumes ``credentials`` has a ``service_account_email`` property which identifies the credentials. Generated policy object allows user to upload objects with a POST request. :type bucket_name: str :param bucket_name: Bucket name. :type blob_name: str :param blob_name: Object name. :type expiration: Union[Integer, datetime.datetime, datetime.timedelta] :param expiration: Policy expiration time. :type conditions: list :param conditions: (Optional) List of POST policy conditions, which are used to restrict what is allowed in the request. :type fields: dict :param fields: (Optional) Additional elements to include into request. :type credentials: :class:`google.auth.credentials.Signing` :param credentials: (Optional) Credentials object with an associated private key to sign text. :type virtual_hosted_style: bool :param virtual_hosted_style: (Optional) If True, construct the URL relative to the bucket virtual hostname, e.g., '<bucket-name>.storage.googleapis.com'. :type bucket_bound_hostname: str :param bucket_bound_hostname: (Optional) If passed, construct the URL relative to the bucket-bound hostname. Value can be bare or with a scheme, e.g., 'example.com' or 'http://example.com'. See: https://cloud.google.com/storage/docs/request-endpoints#cname :type scheme: str :param scheme: (Optional) If ``bucket_bound_hostname`` is passed as a bare hostname, use this value as a scheme. ``https`` will work only when using a CDN. Defaults to ``"http"``. :type service_account_email: str :param service_account_email: (Optional) E-mail address of the service account. :type access_token: str :param access_token: (Optional) Access token for a service account. :rtype: dict :returns: Signed POST policy. Example: Generate signed POST policy and upload a file. >>> from google.cloud import storage >>> client = storage.Client() >>> policy = client.generate_signed_post_policy_v4( "bucket-name", "blob-name", expiration=datetime.datetime(2020, 3, 17), conditions=[ ["content-length-range", 0, 255] ], fields=[ "x-goog-meta-hello" => "world" ], ) >>> with open("bucket-name", "rb") as f: files = {"file": ("bucket-name", f)} requests.post(policy["url"], data=policy["fields"], files=files) """ credentials = self._credentials if credentials is None else credentials ensure_signed_credentials(credentials) # prepare policy conditions and fields timestamp, datestamp = get_v4_now_dtstamps() x_goog_credential = "{email}/{datestamp}/auto/storage/goog4_request".format( email=credentials.signer_email, datestamp=datestamp ) required_conditions = [ {"bucket": bucket_name}, {"key": blob_name}, {"x-goog-date": timestamp}, {"x-goog-credential": x_goog_credential}, {"x-goog-algorithm": "GOOG4-RSA-SHA256"}, ] conditions = conditions or [] policy_fields = {} for key, value in sorted((fields or {}).items()): if not key.startswith("x-ignore-"): policy_fields[key] = value conditions.append({key: value}) conditions += required_conditions # calculate policy expiration time now = _NOW() if expiration is None: expiration = now + datetime.timedelta(hours=1) policy_expires = now + datetime.timedelta( seconds=get_expiration_seconds_v4(expiration) ) # encode policy for signing policy = json.dumps( collections.OrderedDict( sorted( { "conditions": conditions, "expiration": policy_expires.isoformat() + "Z", }.items() ) ), separators=(",", ":"), ) str_to_sign = base64.b64encode(policy.encode("utf-8")) # sign the policy and get its cryptographic signature if access_token and service_account_email: signature = _sign_message(str_to_sign, access_token, service_account_email) signature_bytes = base64.b64decode(signature) else: signature_bytes = credentials.sign_bytes(str_to_sign) # get hexadecimal representation of the signature signature = binascii.hexlify(signature_bytes).decode("utf-8") policy_fields.update( { "key": blob_name, "x-goog-algorithm": "GOOG4-RSA-SHA256", "x-goog-credential": x_goog_credential, "x-goog-date": timestamp, "x-goog-signature": signature, "policy": str_to_sign, } ) # designate URL if virtual_hosted_style: url = "https://{}.storage.googleapis.com/".format(bucket_name) elif bucket_bound_hostname: if ":" in bucket_bound_hostname: # URL includes scheme url = bucket_bound_hostname else: # scheme is given separately url = "{scheme}://{host}/".format( scheme=scheme, host=bucket_bound_hostname ) else: url = "https://storage.googleapis.com/{}/".format(bucket_name) return {"url": url, "fields": policy_fields} def _item_to_bucket(iterator, item): """Convert a JSON bucket to the native object. :type iterator: :class:`~google.api_core.page_iterator.Iterator` :param iterator: The iterator that has retrieved the item. :type item: dict :param item: An item to be converted to a bucket. :rtype: :class:`.Bucket` :returns: The next bucket in the page. """ name = item.get("name") bucket = Bucket(iterator.client, name) bucket._set_properties(item) return bucket def _item_to_hmac_key_metadata(iterator, item): """Convert a JSON key metadata resource to the native object. :type iterator: :class:`~google.api_core.page_iterator.Iterator` :param iterator: The iterator that has retrieved the item. :type item: dict :param item: An item to be converted to a key metadata instance. :rtype: :class:`~google.cloud.storage.hmac_key.HMACKeyMetadata` :returns: The next key metadata instance in the page. """ metadata = HMACKeyMetadata(iterator.client) metadata._properties = item return metadata
the-stack_0_26713
''' Print the supplementary part of New GRE Upgrade book with respect to Magoosh GRE flashcards ''' from util.common import load_wordlist magoosh_path = 'wordlists/magoosh-gre' barron_path = 'wordlists/barron-800' upgrade_path = 'wordlists/gre-upgrade' magoosh_words = set(load_wordlist(magoosh_path)) upgrade_words = sorted([ (k, v) for k, v in load_wordlist(upgrade_path, detailed=True).items() if k not in magoosh_words ]) # new gre upgrade print('# New GRE Vocabulary Upgrade') for word, struct in upgrade_words: print('### {}'.format(word)) for k, meaning in enumerate(struct['meanings']): print('{}. {} {}'.format( 'i' * (k + 1), meaning['part'], meaning['definition'] )) print() if meaning['synonyms']: print('&ensp;' * 2 + 's. *{}*'.format( ', '.join(meaning['synonyms']) )) print() if meaning['antonyms']: print('&ensp;' * 2 + 'a. *{}*'.format( ', '.join(meaning['antonyms']) )) print() print()
the-stack_0_26714
from mmcv.utils import collect_env as collect_basic_env from mmcv.utils import get_git_hash import mmaction def collect_env(): env_info = collect_basic_env() env_info['MMAction2'] = ( mmaction.__version__ + '+' + get_git_hash(digits=7)) return env_info if __name__ == '__main__': for name, val in collect_env().items(): print('{}: {}'.format(name, val))
the-stack_0_26715
from __future__ import absolute_import import time import logging from collections import namedtuple from itertools import takewhile import email import re from ..exceptions import ( ConnectTimeoutError, MaxRetryError, ProtocolError, ReadTimeoutError, ResponseError, InvalidHeader, ) import six log = logging.getLogger(__name__) # Data structure for representing the metadata of requests that result in a retry. RequestHistory = namedtuple('RequestHistory', ["method", "url", "error", "status", "redirect_location"]) class Retry(object): """ Retry configuration. Each retry attempt will create a new Retry object with updated values, so they can be safely reused. Retries can be defined as a default for a pool:: retries = Retry(connect=5, read=2, redirect=5) http = PoolManager(retries=retries) response = http.request('GET', 'http://example.com/') Or per-request (which overrides the default for the pool):: response = http.request('GET', 'http://example.com/', retries=Retry(10)) Retries can be disabled by passing ``False``:: response = http.request('GET', 'http://example.com/', retries=False) Errors will be wrapped in :class:`~urllib3.exceptions.MaxRetryError` unless retries are disabled, in which case the causing exception will be raised. :param int total: Total number of retries to allow. Takes precedence over other counts. Set to ``None`` to remove this constraint and fall back on other counts. It's a good idea to set this to some sensibly-high value to account for unexpected edge cases and avoid infinite retry loops. Set to ``0`` to fail on the first retry. Set to ``False`` to disable and imply ``raise_on_redirect=False``. :param int connect: How many connection-related errors to retry on. These are errors raised before the request is sent to the remote server, which we assume has not triggered the server to process the request. Set to ``0`` to fail on the first retry of this type. :param int read: How many times to retry on read errors. These errors are raised after the request was sent to the server, so the request may have side-effects. Set to ``0`` to fail on the first retry of this type. :param int redirect: How many redirects to perform. Limit this to avoid infinite redirect loops. A redirect is a HTTP response with a status code 301, 302, 303, 307 or 308. Set to ``0`` to fail on the first retry of this type. Set to ``False`` to disable and imply ``raise_on_redirect=False``. :param int status: How many times to retry on bad status codes. These are retries made on responses, where status code matches ``status_forcelist``. Set to ``0`` to fail on the first retry of this type. :param iterable method_whitelist: Set of uppercased HTTP method verbs that we should retry on. By default, we only retry on methods which are considered to be idempotent (multiple requests with the same parameters end with the same state). See :attr:`Retry.DEFAULT_METHOD_WHITELIST`. Set to a ``False`` value to retry on any verb. :param iterable status_forcelist: A set of integer HTTP status codes that we should force a retry on. A retry is initiated if the request method is in ``method_whitelist`` and the response status code is in ``status_forcelist``. By default, this is disabled with ``None``. :param float backoff_factor: A backoff factor to apply between attempts after the second try (most errors are resolved immediately by a second try without a delay). urllib3 will sleep for:: {backoff factor} * (2 ** ({number of total retries} - 1)) seconds. If the backoff_factor is 0.1, then :func:`.sleep` will sleep for [0.0s, 0.2s, 0.4s, ...] between retries. It will never be longer than :attr:`Retry.BACKOFF_MAX`. By default, backoff is disabled (set to 0). :param bool raise_on_redirect: Whether, if the number of redirects is exhausted, to raise a MaxRetryError, or to return a response with a response code in the 3xx range. :param bool raise_on_status: Similar meaning to ``raise_on_redirect``: whether we should raise an exception, or return a response, if status falls in ``status_forcelist`` range and retries have been exhausted. :param tuple history: The history of the request encountered during each call to :meth:`~Retry.increment`. The list is in the order the requests occurred. Each list item is of class :class:`RequestHistory`. :param bool respect_retry_after_header: Whether to respect Retry-After header on status codes defined as :attr:`Retry.RETRY_AFTER_STATUS_CODES` or not. :param iterable remove_headers_on_redirect: Sequence of headers to remove from the request when a response indicating a redirect is returned before firing off the redirected request. """ DEFAULT_METHOD_WHITELIST = frozenset([ 'HEAD', 'GET', 'PUT', 'DELETE', 'OPTIONS', 'TRACE']) RETRY_AFTER_STATUS_CODES = frozenset([413, 429, 503]) DEFAULT_REDIRECT_HEADERS_BLACKLIST = frozenset(['Authorization']) #: Maximum backoff time. BACKOFF_MAX = 120 def __init__(self, total=10, connect=None, read=None, redirect=None, status=None, method_whitelist=DEFAULT_METHOD_WHITELIST, status_forcelist=None, backoff_factor=0, raise_on_redirect=True, raise_on_status=True, history=None, respect_retry_after_header=True, remove_headers_on_redirect=DEFAULT_REDIRECT_HEADERS_BLACKLIST): self.total = total self.connect = connect self.read = read self.status = status if redirect is False or total is False: redirect = 0 raise_on_redirect = False self.redirect = redirect self.status_forcelist = status_forcelist or set() self.method_whitelist = method_whitelist self.backoff_factor = backoff_factor self.raise_on_redirect = raise_on_redirect self.raise_on_status = raise_on_status self.history = history or tuple() self.respect_retry_after_header = respect_retry_after_header self.remove_headers_on_redirect = remove_headers_on_redirect def new(self, **kw): params = dict( total=self.total, connect=self.connect, read=self.read, redirect=self.redirect, status=self.status, method_whitelist=self.method_whitelist, status_forcelist=self.status_forcelist, backoff_factor=self.backoff_factor, raise_on_redirect=self.raise_on_redirect, raise_on_status=self.raise_on_status, history=self.history, remove_headers_on_redirect=self.remove_headers_on_redirect ) params.update(kw) return type(self)(**params) @classmethod def from_int(cls, retries, redirect=True, default=None): """ Backwards-compatibility for the old retries format.""" if retries is None: retries = default if default is not None else cls.DEFAULT if isinstance(retries, Retry): return retries redirect = bool(redirect) and None new_retries = cls(retries, redirect=redirect) log.debug("Converted retries value: %r -> %r", retries, new_retries) return new_retries def get_backoff_time(self): """ Formula for computing the current backoff :rtype: float """ # We want to consider only the last consecutive errors sequence (Ignore redirects). consecutive_errors_len = len(list(takewhile(lambda x: x.redirect_location is None, reversed(self.history)))) if consecutive_errors_len <= 1: return 0 backoff_value = self.backoff_factor * (2 ** (consecutive_errors_len - 1)) return min(self.BACKOFF_MAX, backoff_value) def parse_retry_after(self, retry_after): # Whitespace: https://tools.ietf.org/html/rfc7230#section-3.2.4 if re.match(r"^\s*[0-9]+\s*$", retry_after): seconds = int(retry_after) else: retry_date_tuple = email.utils.parsedate(retry_after) if retry_date_tuple is None: raise InvalidHeader("Invalid Retry-After header: %s" % retry_after) retry_date = time.mktime(retry_date_tuple) seconds = retry_date - time.time() if seconds < 0: seconds = 0 return seconds def get_retry_after(self, response): """ Get the value of Retry-After in seconds. """ retry_after = response.getheader("Retry-After") if retry_after is None: return None return self.parse_retry_after(retry_after) def sleep_for_retry(self, response=None): retry_after = self.get_retry_after(response) if retry_after: time.sleep(retry_after) return True return False def _sleep_backoff(self): backoff = self.get_backoff_time() if backoff <= 0: return time.sleep(backoff) def sleep(self, response=None): """ Sleep between retry attempts. This method will respect a server's ``Retry-After`` response header and sleep the duration of the time requested. If that is not present, it will use an exponential backoff. By default, the backoff factor is 0 and this method will return immediately. """ if response: slept = self.sleep_for_retry(response) if slept: return self._sleep_backoff() def _is_connection_error(self, err): """ Errors when we're fairly sure that the server did not receive the request, so it should be safe to retry. """ return isinstance(err, ConnectTimeoutError) def _is_read_error(self, err): """ Errors that occur after the request has been started, so we should assume that the server began processing it. """ return isinstance(err, (ReadTimeoutError, ProtocolError)) def _is_method_retryable(self, method): """ Checks if a given HTTP method should be retried upon, depending if it is included on the method whitelist. """ if self.method_whitelist and method.upper() not in self.method_whitelist: return False return True def is_retry(self, method, status_code, has_retry_after=False): """ Is this method/status code retryable? (Based on whitelists and control variables such as the number of total retries to allow, whether to respect the Retry-After header, whether this header is present, and whether the returned status code is on the list of status codes to be retried upon on the presence of the aforementioned header) """ if not self._is_method_retryable(method): return False if self.status_forcelist and status_code in self.status_forcelist: return True return (self.total and self.respect_retry_after_header and has_retry_after and (status_code in self.RETRY_AFTER_STATUS_CODES)) def is_exhausted(self): """ Are we out of retries? """ retry_counts = (self.total, self.connect, self.read, self.redirect, self.status) retry_counts = list(filter(None, retry_counts)) if not retry_counts: return False return min(retry_counts) < 0 def increment(self, method=None, url=None, response=None, error=None, _pool=None, _stacktrace=None): """ Return a new Retry object with incremented retry counters. :param response: A response object, or None, if the server did not return a response. :type response: :class:`~urllib3.response.HTTPResponse` :param Exception error: An error encountered during the request, or None if the response was received successfully. :return: A new ``Retry`` object. """ if self.total is False and error: # Disabled, indicate to re-raise the error. raise six.reraise(type(error), error, _stacktrace) total = self.total if total is not None: total -= 1 connect = self.connect read = self.read redirect = self.redirect status_count = self.status cause = 'unknown' status = None redirect_location = None if error and self._is_connection_error(error): # Connect retry? if connect is False: raise six.reraise(type(error), error, _stacktrace) elif connect is not None: connect -= 1 elif error and self._is_read_error(error): # Read retry? if read is False or not self._is_method_retryable(method): raise six.reraise(type(error), error, _stacktrace) elif read is not None: read -= 1 elif response and response.get_redirect_location(): # Redirect retry? if redirect is not None: redirect -= 1 cause = 'too many redirects' redirect_location = response.get_redirect_location() status = response.status else: # Incrementing because of a server error like a 500 in # status_forcelist and a the given method is in the whitelist cause = ResponseError.GENERIC_ERROR if response and response.status: if status_count is not None: status_count -= 1 cause = ResponseError.SPECIFIC_ERROR.format( status_code=response.status) status = response.status history = self.history + (RequestHistory(method, url, error, status, redirect_location),) new_retry = self.new( total=total, connect=connect, read=read, redirect=redirect, status=status_count, history=history) if new_retry.is_exhausted(): raise MaxRetryError(_pool, url, error or ResponseError(cause)) log.debug("Incremented Retry for (url='%s'): %r", url, new_retry) return new_retry def __repr__(self): return ('{cls.__name__}(total={self.total}, connect={self.connect}, ' 'read={self.read}, redirect={self.redirect}, status={self.status})').format( cls=type(self), self=self) # For backwards compatibility (equivalent to pre-v1.9): Retry.DEFAULT = Retry(3)
the-stack_0_26716
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('project', '0004_auto_20160308_0246'), ] operations = [ migrations.AddField( model_name='reservation', name='map', field=models.CharField(default='city', max_length=100), preserve_default=False, ), ]
the-stack_0_26717
import torch class Trader: def __init__(self, initial_capital, stakes=0): self.initial_capital = initial_capital self.equity = self.initial_capital self.portfolio = stakes self.portfolio_value = [self.initial_capital] def buy(self, conf, price): units = int(conf * self.equity / price) if units <= 0: return self.equity -= price * units self.portfolio += units self.portfolio_value.append(self.equity + self.portfolio * price) def sell(self, conf, price): units = int(conf * self.portfolio) if units <= 0: return self.equity += price * units self.portfolio -= units self.portfolio_value.append(self.equity + self.portfolio * price) def compute_returns(self, price): self.sell(1, price) returns = [] prev_value = self.portfolio_value[0] for value in self.portfolio_value[1:]: returns.append(value / prev_value) prev_value = value return returns def trade(self, signal, price): # Buy = 2, Hold = 1, Sell = 0 buy_conf = (signal == 2).sum() sell_conf = (signal == 0).sum() if buy_conf > sell_conf: self.buy(buy_conf / len(signal), price) elif sell_conf > buy_conf: self.sell(sell_conf / len(signal), price) else: self.portfolio_value.append(self.equity + self.portfolio * price) class ParallelTrader: def __init__(self, traders): self.traders = traders def trade(self, signal, price): for trader in self.traders: trader.trade(signal, price) def compute_returns(self, price): returns = [] for trader in self.traders: returns.append(trader.compute_returns(price)) return returns
the-stack_0_26718
# coding: utf-8 import logging import os.path from io import StringIO from edd import TestCase from .form_utils import ( extract_floats_from_form, extract_integers_from_form, extract_non_blank_string_from_form, ) from .parsers import biolector, gc_ms, skyline from .parsers.excel import export_to_xlsx, import_xlsx_table, import_xlsx_tables test_dir = os.path.join(os.path.dirname(__file__), "fixtures", "misc_data") logger = logging.getLogger(__name__) ######################################################################## # GC-MS class GCMSTests(TestCase): def test_1(self): test_file = os.path.join(test_dir, "gc_ms_1.txt") result = gc_ms.run([test_file], out=StringIO(), err=StringIO()) self.assertEqual(len(result.samples), 102) err = StringIO() out = StringIO() result.show_peak_areas(out=out, err=err) self.assertIn("0059.D 562 None None", out.getvalue()) self.assertIn("0062.D 104049 1192526 35926", out.getvalue()) self.assertIn("WARNING: 2 peaks near 8.092 for sample 0062.D", err.getvalue()) self.assertEqual(err.getvalue().count("WARNING"), 44) err = StringIO() out = StringIO() result.show_peak_areas_csv(out=out, err=err) self.assertIn("0059.D,562,None,None", out.getvalue()) self.assertIn("0062.D,104049,1192526,35926", out.getvalue()) def test_2(self): # a slightly different format test_file = os.path.join(test_dir, "gc_ms_2.txt") with open(os.path.join(test_dir, "gc_ms_2.out.txt")) as f: test_out = f.read() result = gc_ms.run([test_file], out=StringIO(), err=StringIO()) self.assertEqual(len(result.samples), 5) err = StringIO() out = StringIO() result.show_peak_areas(out=out, err=err) self.assertEqual(out.getvalue(), test_out) # Fault tolerance test_file = os.path.join(test_dir, "skyline.csv") with self.assertRaises(ValueError): result = gc_ms.run([test_file], out=StringIO(), err=StringIO()) def test_xls_key(self): # Import .xlsx workbook test_file = os.path.join(test_dir, "sample_gc_ms_key.xlsx") with open(test_file, "rb") as file: headers, table = gc_ms.import_xlsx_metadata(file) self.assertEqual( headers, [ "sample ID (could be vial #)", "label to display", "parent strain", "plasmid/change", "colony number", "time point", "media (induction, etc.)", "sample type", None, "user field 1", "user field 2", "user field 3", ], ) class SkylineTests(TestCase): def test_1(self): file_name = os.path.join(test_dir, "skyline.csv") parser = skyline.SkylineParser() with open(file_name, "r") as file: result = parser.export(file) self.assertIn(skyline.Record("4", "A", 22), result["rows"]) class BiolectorTests(TestCase): def test_simple(self): filename = "/code/edd_utils/parsers/biolector/biolector_test_file.xml" with open(filename, "r") as file: results = biolector.getRawImportRecordsAsJSON(file, 0) self.assertEqual(len(results), 48) last_v = results[-1]["data"][-1][1] self.assertEqual(last_v, "8.829") well_v = results[20]["metadata_by_name"]["Bio:well"] self.assertEqual(well_v, "C05") def get_table(): return [ ["Some random text we want to ignore", None, None, None, None, None], ["More random", 2.5, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, "sample ID", "line ID", "replica", "molecule1", "molecule 2"], [None, "abcd1", "line1", 1, 5.5, 6.5], [None, "abcd2", "line1", 2, 4.0, 7.3], [None, "abcd3", "line2", 1, 3.5, 8.8], [None, "abcd4", "line2", 2, 2.0, 9.6], [None, None, None, None, None, None], ["Summary line", None, None, None, 3.75, 8.05], [None, None, None, None, None, None], ] def make_simple(t, file_name): return export_to_xlsx(t, file_name=file_name, title=file_name) class ExcelTests(TestCase): def test_simple(self): make_simple(get_table(), "tst1.xlsx") result = import_xlsx_tables("tst1.xlsx") t = result["worksheets"][0][0] self.assertEqual( t["headers"], ["sample ID", "line ID", "replica", "molecule1", "molecule 2"] ) self.assertEqual( t["values"], [ ["abcd1", "line1", 1, 5.5, 6.5], ["abcd2", "line1", 2, 4, 7.3], ["abcd3", "line2", 1, 3.5, 8.8], ["abcd4", "line2", 2, 2, 9.6], ], ) result2 = import_xlsx_tables( "tst1.xlsx", worksheet_name="tst1.xlsx", column_search_text="sample" ) t2 = result2["worksheets"][0][0] self.assertEqual(t2, t) # note different function result3 = import_xlsx_table("tst1.xlsx") self.assertEqual(result3, t) result4 = import_xlsx_table( "tst1.xlsx", column_labels=["sample id", "molecule1", "MOLECULE 2"] ) self.assertEqual( result4, { "headers": ["sample ID", "molecule1", "molecule 2"], "values": [ ["abcd1", 5.5, 6.5], ["abcd2", 4, 7.3], ["abcd3", 3.5, 8.8], ["abcd4", 2, 9.6], ], }, ) os.remove("tst1.xlsx") def test_error_handling(self): t3 = get_table() t3[7][1] = None make_simple(t3, "tst3.xlsx") result = import_xlsx_tables("tst3.xlsx") self.assertEqual( result, { "worksheets": [ [ { "headers": [ "sample ID", "line ID", "replica", "molecule1", "molecule 2", ], "values": [ ["abcd1", "line1", 1, 5.5, 6.5], ["abcd2", "line1", 2, 4, 7.3], [None, "line2", 1, 3.5, 8.8], ["abcd4", "line2", 2, 2, 9.6], ], } ] ] }, ) # ask for missing worksheet with self.assertRaises(KeyError): import_xlsx_table("tst3.xlsx", worksheet_name="foo") os.remove("tst3.xlsx") def test_non_numeric(self): get_table() class UtilsTests(TestCase): def test_form_handling(self): form = { "int1": "1", "float1": "2.5", "int2": "1.5", "float2": "2", "int3": ["1", "2", "3"], "float3": ["1.5"], "int4": ["1.5", "2", "3"], "float4": "", "str1": "foo", "str2": ["foo", "bar"], "str3": "", } self.assertEqual(extract_integers_from_form(form, "int1"), 1) self.assertEqual(extract_floats_from_form(form, "int1"), 1.0) self.assertEqual( extract_integers_from_form(form, "int3", allow_list=True), [1, 2, 3] ) self.assertEqual( extract_floats_from_form(form, "float3", allow_list=True), [1.5] ) self.assertEqual(extract_non_blank_string_from_form(form, "str1"), "foo") self.assertEqual( extract_non_blank_string_from_form(form, "str2", allow_list=True), ["foo", "bar"], ) with self.assertRaises(TypeError): extract_integers_from_form(form, "int3") with self.assertRaises(ValueError): extract_integers_from_form(form, "int2") with self.assertRaises(KeyError): extract_integers_from_form(form, "int5") with self.assertRaises(ValueError): extract_integers_from_form(form, "int4", allow_list=True) with self.assertRaises(ValueError): extract_non_blank_string_from_form(form, "str3") self.assertIsNone( extract_non_blank_string_from_form( form, "str3", return_none_if_missing=True ) ) self.assertIsNone( extract_floats_from_form(form, "float4", return_none_if_missing=True) )
the-stack_0_26721
# Example connect and reset. should show syn-syn/ack-rst from trex.astf.api import * # we can send either Python bytes type as below: http_req = b'GET /3384 HTTP/1.1\r\nHost: 22.0.0.3\r\nConnection: Keep-Alive\r\nUser-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)\r\nAccept: */*\r\nAccept-Language: en-us\r\nAccept-Encoding: gzip, deflate, compress\r\n\r\n' # or we can send Python string containing ascii chars, as below: http_response = 'HTTP/1.1 200 OK\r\nServer: Microsoft-IIS/6.0\r\nContent-Type: text/html\r\nContent-Length: 32000\r\n\r\n<html><pre>**********</pre></html>' class Prof1(): def __init__(self): pass # tunables def create_profile(self): # client commands prog_c = ASTFProgram() prog_c.connect(); ## connect prog_c.reset(); ## send RST from client side prog_s = ASTFProgram() prog_s.wait_for_peer_close(); # wait for client to close the socket # ip generator ip_gen_c = ASTFIPGenDist(ip_range=["16.0.0.0", "16.0.0.255"], distribution="seq") ip_gen_s = ASTFIPGenDist(ip_range=["48.0.0.0", "48.0.255.255"], distribution="seq") ip_gen = ASTFIPGen(glob=ASTFIPGenGlobal(ip_offset="1.0.0.0"), dist_client=ip_gen_c, dist_server=ip_gen_s) # template temp_c = ASTFTCPClientTemplate(program=prog_c, ip_gen=ip_gen) temp_s = ASTFTCPServerTemplate(program=prog_s) # using default association template = ASTFTemplate(client_template=temp_c, server_template=temp_s) # profile profile = ASTFProfile(default_ip_gen=ip_gen, templates=template) return profile def get_profile(self,**kwargs): return self.create_profile() def register(): return Prof1()
the-stack_0_26723
import numpy as np import scipy.io.wavfile as wf import dtcwpt class dtcwpt_wav(object): def __init__(self,path,n_levels=3,dtype=np.dtype('complex64')): self.path = path self.n_levels = n_levels self.dtype = dtype self.real_dtype = dtype.type().real.dtype signal_sample_rate,signal = wf.read(path, mmap=True) self.signal_sample_rate = signal_sample_rate self.signal_channels = signal.shape[1] self.signal = signal @property def shape(self): return (self.signal_length, self.sample_rate, self.signal_channels) @property def sample_rate(self): return 2**self.n_levels @property def signal_length(self): return len(self.signal) @property def signal_padding(self): lpad = self.sample_rate//2 rpad = (self.signal_length-self.signal_length%self.sample_rate)%self.sample_rate return (lpad, rpad) def __len__(self): return (self.signal_length+sum(self.signal_padding))//self.sample_rate def __getitem__(self, key): start, stop, stride = None, None, 1 if hasattr(key,'__index__'): start = key.__index__() stop = start + 1 elif isinstance(key,(slice)): start, stop, stride = key.indices(len(self)) if stride != 1: raise IndexError("stride must be 1") if not isinstance(start, (int)): raise TypeError("indices must be integers") n_timeseries = stop-start n_samples = self.sample_rate*n_timeseries (lpad, rpad) = self.signal_padding lpad = lpad if (start == 0) else 0 rpad = rpad if (stop == len(self)) else 0 signal_start = start*self.sample_rate-self.sample_rate//2+lpad signal_stop = stop*self.sample_rate-self.sample_rate//2-rpad chunk = self.signal[signal_start:signal_stop] chunk = np.pad(chunk.astype(self.real_dtype),((lpad,rpad),(0,0))) packets = np.ndarray((self.signal_channels,n_timeseries,self.sample_rate),dtype=self.dtype) for channel in range(self.signal_channels): chunk_channel = chunk.T[channel][np.newaxis].T packets[channel] = dtcwpt.forward(chunk_channel,self.n_levels) #if not isinstance(key,(slice)): # return packets[:,0] return np.transpose(packets,(1,2,0)) #return packets.T
the-stack_0_26724
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os import signal import sys import threading import time import unittest import ray.local_scheduler as local_scheduler import ray.plasma as plasma USE_VALGRIND = False ID_SIZE = 20 NIL_WORKER_ID = 20 * b"\xff" NIL_ACTOR_ID = 20 * b"\xff" def random_object_id(): return local_scheduler.ObjectID(np.random.bytes(ID_SIZE)) def random_driver_id(): return local_scheduler.ObjectID(np.random.bytes(ID_SIZE)) def random_task_id(): return local_scheduler.ObjectID(np.random.bytes(ID_SIZE)) def random_function_id(): return local_scheduler.ObjectID(np.random.bytes(ID_SIZE)) class TestLocalSchedulerClient(unittest.TestCase): def setUp(self): # Start Plasma store. plasma_store_name, self.p1 = plasma.start_plasma_store() self.plasma_client = plasma.PlasmaClient(plasma_store_name, release_delay=0) # Start a local scheduler. scheduler_name, self.p2 = local_scheduler.start_local_scheduler( plasma_store_name, use_valgrind=USE_VALGRIND) # Connect to the scheduler. self.local_scheduler_client = local_scheduler.LocalSchedulerClient( scheduler_name, NIL_WORKER_ID, NIL_ACTOR_ID, False, 0) def tearDown(self): # Check that the processes are still alive. self.assertEqual(self.p1.poll(), None) self.assertEqual(self.p2.poll(), None) # Kill Plasma. self.p1.kill() # Kill the local scheduler. if USE_VALGRIND: self.p2.send_signal(signal.SIGTERM) self.p2.wait() if self.p2.returncode != 0: os._exit(-1) else: self.p2.kill() def test_submit_and_get_task(self): function_id = random_function_id() object_ids = [random_object_id() for i in range(256)] # Create and seal the objects in the object store so that we can schedule # all of the subsequent tasks. for object_id in object_ids: self.plasma_client.create(object_id.id(), 0) self.plasma_client.seal(object_id.id()) # Define some arguments to use for the tasks. args_list = [ [], [{}], [()], 1 * [1], 10 * [1], 100 * [1], 1000 * [1], 1 * ["a"], 10 * ["a"], 100 * ["a"], 1000 * ["a"], [1, 1.3, 1 << 100, "hi", u"hi", [1, 2]], object_ids[:1], object_ids[:2], object_ids[:3], object_ids[:4], object_ids[:5], object_ids[:10], object_ids[:100], object_ids[:256], [1, object_ids[0]], [object_ids[0], "a"], [1, object_ids[0], "a"], [object_ids[0], 1, object_ids[1], "a"], object_ids[:3] + [1, "hi", 2.3] + object_ids[:5], object_ids + 100 * ["a"] + object_ids ] for args in args_list: for num_return_vals in [0, 1, 2, 3, 5, 10, 100]: task = local_scheduler.Task(random_driver_id(), function_id, args, num_return_vals, random_task_id(), 0) # Submit a task. self.local_scheduler_client.submit(task) # Get the task. new_task = self.local_scheduler_client.get_task() self.assertEqual(task.function_id().id(), new_task.function_id().id()) retrieved_args = new_task.arguments() returns = new_task.returns() self.assertEqual(len(args), len(retrieved_args)) self.assertEqual(num_return_vals, len(returns)) for i in range(len(retrieved_args)): if isinstance(args[i], local_scheduler.ObjectID): self.assertEqual(args[i].id(), retrieved_args[i].id()) else: self.assertEqual(args[i], retrieved_args[i]) # Submit all of the tasks. for args in args_list: for num_return_vals in [0, 1, 2, 3, 5, 10, 100]: task = local_scheduler.Task(random_driver_id(), function_id, args, num_return_vals, random_task_id(), 0) self.local_scheduler_client.submit(task) # Get all of the tasks. for args in args_list: for num_return_vals in [0, 1, 2, 3, 5, 10, 100]: new_task = self.local_scheduler_client.get_task() def test_scheduling_when_objects_ready(self): # Create a task and submit it. object_id = random_object_id() task = local_scheduler.Task(random_driver_id(), random_function_id(), [object_id], 0, random_task_id(), 0) self.local_scheduler_client.submit(task) # Launch a thread to get the task. def get_task(): self.local_scheduler_client.get_task() t = threading.Thread(target=get_task) t.start() # Sleep to give the thread time to call get_task. time.sleep(0.1) # Create and seal the object ID in the object store. This should trigger a # scheduling event. self.plasma_client.create(object_id.id(), 0) self.plasma_client.seal(object_id.id()) # Wait until the thread finishes so that we know the task was scheduled. t.join() def test_scheduling_when_objects_evicted(self): # Create a task with two dependencies and submit it. object_id1 = random_object_id() object_id2 = random_object_id() task = local_scheduler.Task(random_driver_id(), random_function_id(), [object_id1, object_id2], 0, random_task_id(), 0) self.local_scheduler_client.submit(task) # Launch a thread to get the task. def get_task(): self.local_scheduler_client.get_task() t = threading.Thread(target=get_task) t.start() # Make one of the dependencies available. buf = self.plasma_client.create(object_id1.id(), 1) self.plasma_client.seal(object_id1.id()) # Release the object. del buf # Check that the thread is still waiting for a task. time.sleep(0.1) self.assertTrue(t.is_alive()) # Force eviction of the first dependency. self.plasma_client.evict(plasma.DEFAULT_PLASMA_STORE_MEMORY) # Check that the thread is still waiting for a task. time.sleep(0.1) self.assertTrue(t.is_alive()) # Check that the first object dependency was evicted. object1 = self.plasma_client.get([object_id1.id()], timeout_ms=0) self.assertEqual(object1, [None]) # Check that the thread is still waiting for a task. time.sleep(0.1) self.assertTrue(t.is_alive()) # Create the second dependency. self.plasma_client.create(object_id2.id(), 1) self.plasma_client.seal(object_id2.id()) # Check that the thread is still waiting for a task. time.sleep(0.1) self.assertTrue(t.is_alive()) # Create the first dependency again. Both dependencies are now available. self.plasma_client.create(object_id1.id(), 1) self.plasma_client.seal(object_id1.id()) # Wait until the thread finishes so that we know the task was scheduled. t.join() if __name__ == "__main__": if len(sys.argv) > 1: # Pop the argument so we don't mess with unittest's own argument parser. if sys.argv[-1] == "valgrind": arg = sys.argv.pop() USE_VALGRIND = True print("Using valgrind for tests") unittest.main(verbosity=2)
the-stack_0_26725
# -*- coding: utf-8 -*- # $Id: valueunit.py 69111 2017-10-17 14:26:02Z vboxsync $ """ Test Value Unit Definititions. This must correspond 1:1 with include/iprt/test.h and include/VBox/VMMDevTesting.h. """ __copyright__ = \ """ Copyright (C) 2012-2017 Oracle Corporation This file is part of VirtualBox Open Source Edition (OSE), as available from http://www.virtualbox.org. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (GPL) as published by the Free Software Foundation, in version 2 as it comes in the "COPYING" file of the VirtualBox OSE distribution. VirtualBox OSE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. The contents of this file may alternatively be used under the terms of the Common Development and Distribution License Version 1.0 (CDDL) only, as it comes in the "COPYING.CDDL" file of the VirtualBox OSE distribution, in which case the provisions of the CDDL are applicable instead of those of the GPL. You may elect to license modified versions of this file under the terms and conditions of either the GPL or the CDDL or both. """ __version__ = "$Revision: 69111 $" ## @name Unit constants. ## Used everywhere. ## @note Using upper case here so we can copy, past and chop from the other # headers. ## @{ PCT = 0x01; BYTES = 0x02; BYTES_PER_SEC = 0x03; KILOBYTES = 0x04; KILOBYTES_PER_SEC = 0x05; MEGABYTES = 0x06; MEGABYTES_PER_SEC = 0x07; PACKETS = 0x08; PACKETS_PER_SEC = 0x09; FRAMES = 0x0a; FRAMES_PER_SEC = 0x0b; OCCURRENCES = 0x0c; OCCURRENCES_PER_SEC = 0x0d; CALLS = 0x0e; CALLS_PER_SEC = 0x0f; ROUND_TRIP = 0x10; SECS = 0x11; MS = 0x12; NS = 0x13; NS_PER_CALL = 0x14; NS_PER_FRAME = 0x15; NS_PER_OCCURRENCE = 0x16; NS_PER_PACKET = 0x17; NS_PER_ROUND_TRIP = 0x18; INSTRS = 0x19; INSTRS_PER_SEC = 0x1a; NONE = 0x1b; PP1K = 0x1c; PP10K = 0x1d; PPM = 0x1e; PPB = 0x1f; END = 0x20; ## @} ## Translate constant to string. g_asNames = \ [ 'invalid', # 0 '%', 'bytes', 'bytes/s', 'KiB', 'KiB/s', 'MiB', 'MiB/s', 'packets', 'packets/s', 'frames', 'frames/s', 'occurrences', 'occurrences/s', 'calls', 'calls/s', 'roundtrips', 's', 'ms', 'ns', 'ns/call', 'ns/frame', 'ns/occurrences', 'ns/packet', 'ns/roundtrips', 'ins', 'ins/s', '', # none 'pp1k', 'pp10k', 'ppm', 'ppb', ]; assert g_asNames[PP1K] == 'pp1k'; ## Translation table for XML -> number. g_kdNameToConst = \ { 'KB': KILOBYTES, 'KB/s': KILOBYTES_PER_SEC, 'MB': MEGABYTES, 'MB/s': MEGABYTES_PER_SEC, 'occurrences': OCCURRENCES, 'occurrences/s': OCCURRENCES_PER_SEC, }; for i in range(1, len(g_asNames)): g_kdNameToConst[g_asNames[i]] = i;
the-stack_0_26728
from common.api_config import CommonApiConfig from util.config import Config, ConfigField class PluginsConfig(Config): backends_dir = ConfigField(type=str, required=True, default='plugins/backends') class MasterConfig(Config): api = CommonApiConfig(common_logger='dedalus.master.api.common', access_logger='dedalus.master.api.access', port=8080) backend = ConfigField(type=str, required=True, default='leveldb') backend_config = ConfigField(type=dict, required=True, default=dict()) plugins = PluginsConfig()
the-stack_0_26730
# Copyright (C) 2001-2010 Python Software Foundation # Author: Barry Warsaw # Contact: [email protected] """Miscellaneous utilities.""" __all__ = [ 'collapse_rfc2231_value', 'decode_params', 'decode_rfc2231', 'encode_rfc2231', 'formataddr', 'formatdate', 'format_datetime', 'getaddresses', 'make_msgid', 'mktime_tz', 'parseaddr', 'parsedate', 'parsedate_tz', 'parsedate_to_datetime', 'unquote', ] import os import re import time import random import socket import datetime import urllib.parse from email._parseaddr import quote from email._parseaddr import AddressList as _AddressList from email._parseaddr import mktime_tz from email._parseaddr import parsedate, parsedate_tz, _parsedate_tz # Intrapackage imports from email.charset import Charset COMMASPACE = ', ' EMPTYSTRING = '' UEMPTYSTRING = '' CRLF = '\r\n' TICK = "'" specialsre = re.compile(r'[][\\()<>@,:;".]') escapesre = re.compile(r'[\\"]') def _has_surrogates(s): """Return True if s contains surrogate-escaped binary data.""" # This check is based on the fact that unless there are surrogates, utf8 # (Python's default encoding) can encode any string. This is the fastest # way to check for surrogates, see issue 11454 for timings. try: s.encode() return False except UnicodeEncodeError: return True # How to deal with a string containing bytes before handing it to the # application through the 'normal' interface. def _sanitize(string): # Turn any escaped bytes into unicode 'unknown' char. If the escaped # bytes happen to be utf-8 they will instead get decoded, even if they # were invalid in the charset the source was supposed to be in. This # seems like it is not a bad thing; a defect was still registered. original_bytes = string.encode('utf-8', 'surrogateescape') return original_bytes.decode('utf-8', 'replace') # Helpers def formataddr(pair, charset='utf-8'): """The inverse of parseaddr(), this takes a 2-tuple of the form (realname, email_address) and returns the string value suitable for an RFC 2822 From, To or Cc header. If the first element of pair is false, then the second element is returned unmodified. The optional charset is the character set that is used to encode realname in case realname is not ASCII safe. Can be an instance of str or a Charset-like object which has a header_encode method. Default is 'utf-8'. """ name, address = pair # The address MUST (per RFC) be ascii, so raise a UnicodeError if it isn't. address.encode('ascii') if name: try: name.encode('ascii') except UnicodeEncodeError: if isinstance(charset, str): charset = Charset(charset) encoded_name = charset.header_encode(name) return "%s <%s>" % (encoded_name, address) else: quotes = '' if specialsre.search(name): quotes = '"' name = escapesre.sub(r'\\\g<0>', name) return '%s%s%s <%s>' % (quotes, name, quotes, address) return address def getaddresses(fieldvalues): """Return a list of (REALNAME, EMAIL) for each fieldvalue.""" all = COMMASPACE.join(fieldvalues) a = _AddressList(all) return a.addresslist def _format_timetuple_and_zone(timetuple, zone): return '%s, %02d %s %04d %02d:%02d:%02d %s' % ( ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'][timetuple[6]], timetuple[2], ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'][timetuple[1] - 1], timetuple[0], timetuple[3], timetuple[4], timetuple[5], zone) def formatdate(timeval=None, localtime=False, usegmt=False): """Returns a date string as specified by RFC 2822, e.g.: Fri, 09 Nov 2001 01:08:47 -0000 Optional timeval if given is a floating point time value as accepted by gmtime() and localtime(), otherwise the current time is used. Optional localtime is a flag that when True, interprets timeval, and returns a date relative to the local timezone instead of UTC, properly taking daylight savings time into account. Optional argument usegmt means that the timezone is written out as an ascii string, not numeric one (so "GMT" instead of "+0000"). This is needed for HTTP, and is only used when localtime==False. """ # Note: we cannot use strftime() because that honors the locale and RFC # 2822 requires that day and month names be the English abbreviations. if timeval is None: timeval = time.time() if localtime or usegmt: dt = datetime.datetime.fromtimestamp(timeval, datetime.timezone.utc) else: dt = datetime.datetime.utcfromtimestamp(timeval) if localtime: dt = dt.astimezone() usegmt = False return format_datetime(dt, usegmt) def format_datetime(dt, usegmt=False): """Turn a datetime into a date string as specified in RFC 2822. If usegmt is True, dt must be an aware datetime with an offset of zero. In this case 'GMT' will be rendered instead of the normal +0000 required by RFC2822. This is to support HTTP headers involving date stamps. """ now = dt.timetuple() if usegmt: if dt.tzinfo is None or dt.tzinfo != datetime.timezone.utc: raise ValueError("usegmt option requires a UTC datetime") zone = 'GMT' elif dt.tzinfo is None: zone = '-0000' else: zone = dt.strftime("%z") return _format_timetuple_and_zone(now, zone) def make_msgid(idstring=None, domain=None): """Returns a string suitable for RFC 2822 compliant Message-ID, e.g: <142480216486.20800.16526388040877946887@nightshade.la.mastaler.com> Optional idstring if given is a string used to strengthen the uniqueness of the message id. Optional domain if given provides the portion of the message id after the '@'. It defaults to the locally defined hostname. """ timeval = int(time.time()*100) pid = os.getpid() randint = random.getrandbits(64) if idstring is None: idstring = '' else: idstring = '.' + idstring if domain is None: domain = socket.getfqdn() msgid = '<%d.%d.%d%s@%s>' % (timeval, pid, randint, idstring, domain) return msgid def parsedate_to_datetime(data): *dtuple, tz = _parsedate_tz(data) if tz is None: return datetime.datetime(*dtuple[:6]) return datetime.datetime(*dtuple[:6], tzinfo=datetime.timezone(datetime.timedelta(seconds=tz))) def parseaddr(addr): """ Parse addr into its constituent realname and email address parts. Return a tuple of realname and email address, unless the parse fails, in which case return a 2-tuple of ('', ''). """ addrs = _AddressList(addr).addresslist if not addrs: return '', '' return addrs[0] # rfc822.unquote() doesn't properly de-backslash-ify in Python pre-2.3. def unquote(str): """Remove quotes from a string.""" if len(str) > 1: if str.startswith('"') and str.endswith('"'): return str[1:-1].replace('\\\\', '\\').replace('\\"', '"') if str.startswith('<') and str.endswith('>'): return str[1:-1] return str # RFC2231-related functions - parameter encoding and decoding def decode_rfc2231(s): """Decode string according to RFC 2231""" parts = s.split(TICK, 2) if len(parts) <= 2: return None, None, s return parts def encode_rfc2231(s, charset=None, language=None): """Encode string according to RFC 2231. If neither charset nor language is given, then s is returned as-is. If charset is given but not language, the string is encoded using the empty string for language. """ s = urllib.parse.quote(s, safe='', encoding=charset or 'ascii') if charset is None and language is None: return s if language is None: language = '' return "%s'%s'%s" % (charset, language, s) rfc2231_continuation = re.compile(r'^(?P<name>\w+)\*((?P<num>[0-9]+)\*?)?$', re.ASCII) def decode_params(params): """Decode parameters list according to RFC 2231. params is a sequence of 2-tuples containing (param name, string value). """ new_params = [params[0]] # Map parameter's name to a list of continuations. The values are a # 3-tuple of the continuation number, the string value, and a flag # specifying whether a particular segment is %-encoded. rfc2231_params = {} for name, value in params[1:]: encoded = name.endswith('*') value = unquote(value) mo = rfc2231_continuation.match(name) if mo: name, num = mo.group('name', 'num') if num is not None: num = int(num) rfc2231_params.setdefault(name, []).append((num, value, encoded)) else: new_params.append((name, '"%s"' % quote(value))) if rfc2231_params: for name, continuations in rfc2231_params.items(): value = [] extended = False # Sort by number continuations.sort() # And now append all values in numerical order, converting # %-encodings for the encoded segments. If any of the # continuation names ends in a *, then the entire string, after # decoding segments and concatenating, must have the charset and # language specifiers at the beginning of the string. for num, s, encoded in continuations: if encoded: # Decode as "latin-1", so the characters in s directly # represent the percent-encoded octet values. # collapse_rfc2231_value treats this as an octet sequence. s = urllib.parse.unquote(s, encoding="latin-1") extended = True value.append(s) value = quote(EMPTYSTRING.join(value)) if extended: charset, language, value = decode_rfc2231(value) new_params.append((name, (charset, language, '"%s"' % value))) else: new_params.append((name, '"%s"' % value)) return new_params def collapse_rfc2231_value(value, errors='replace', fallback_charset='us-ascii'): if not isinstance(value, tuple) or len(value) != 3: return unquote(value) # While value comes to us as a unicode string, we need it to be a bytes # object. We do not want bytes() normal utf-8 decoder, we want a straight # interpretation of the string as character bytes. charset, language, text = value if charset is None: # Issue 17369: if charset/lang is None, decode_rfc2231 couldn't parse # the value, so use the fallback_charset. charset = fallback_charset rawbytes = bytes(text, 'raw-unicode-escape') try: return str(rawbytes, charset, errors) except LookupError: # charset is not a known codec. return unquote(text) # # datetime doesn't provide a localtime function yet, so provide one. Code # adapted from the patch in issue 9527. This may not be perfect, but it is # better than not having it. # def localtime(dt=None, isdst=-1): """Return local time as an aware datetime object. If called without arguments, return current time. Otherwise *dt* argument should be a datetime instance, and it is converted to the local time zone according to the system time zone database. If *dt* is naive (that is, dt.tzinfo is None), it is assumed to be in local time. In this case, a positive or zero value for *isdst* causes localtime to presume initially that summer time (for example, Daylight Saving Time) is or is not (respectively) in effect for the specified time. A negative value for *isdst* causes the localtime() function to attempt to divine whether summer time is in effect for the specified time. """ if dt is None: return datetime.datetime.now(datetime.timezone.utc).astimezone() if dt.tzinfo is not None: return dt.astimezone() # We have a naive datetime. Convert to a (localtime) timetuple and pass to # system mktime together with the isdst hint. System mktime will return # seconds since epoch. tm = dt.timetuple()[:-1] + (isdst,) seconds = time.mktime(tm) localtm = time.localtime(seconds) try: delta = datetime.timedelta(seconds=localtm.tm_gmtoff) tz = datetime.timezone(delta, localtm.tm_zone) except AttributeError: # Compute UTC offset and compare with the value implied by tm_isdst. # If the values match, use the zone name implied by tm_isdst. delta = dt - datetime.datetime(*time.gmtime(seconds)[:6]) dst = time.daylight and localtm.tm_isdst > 0 gmtoff = -(time.altzone if dst else time.timezone) if delta == datetime.timedelta(seconds=gmtoff): tz = datetime.timezone(delta, time.tzname[dst]) else: tz = datetime.timezone(delta) return dt.replace(tzinfo=tz)
the-stack_0_26731
#!Measurement ''' baseline: after: true before: false counts: 80 detector: H1 mass: 34.2 settling_time: 15.0 default_fits: average equilibration: eqtime: 1.0 inlet: R inlet_delay: 3 outlet: O use_extraction_eqtime: true multicollect: counts: 20 detector: H1 isotope: Ar40 peakcenter: after: false before: false detector: H1 detectors: - H1 - AX - CDD integration_time: 0.262144 isotope: Ar40 peakhop: generate_ic_table: false hops_name: '' ncycles: 0 use_peak_hop: false ''' ACTIVE_DETECTORS=('H2','H1','AX','L1','L2','CDD') def main(): info('unknown measurement script') activate_detectors(*ACTIVE_DETECTORS) if mx.peakcenter.before: peak_center(detector=mx.peakcenter.detector,isotope=mx.peakcenter.isotope) if mx.baseline.before: baselines(ncounts=mx.baseline.counts,mass=mx.baseline.mass, detector=mx.baseline.detector, settling_time=mx.baseline.settling_time) position_magnet(mx.multicollect.isotope, detector=mx.multicollect.detector) #sniff the gas during equilibration if mx.equilibration.use_extraction_eqtime: eqt = eqtime else: eqt = mx.equilibration.eqtime ''' Equilibrate is non-blocking so use a sniff or sleep as a placeholder e.g sniff(<equilibration_time>) or sleep(<equilibration_time>) ''' set_integration_time(1) equilibrate(eqtime=eqt, inlet=mx.equilibration.inlet, outlet=mx.equilibration.outlet, delay=mx.equilibration.inlet_delay) set_time_zero() sniff(eqt) set_fits() set_baseline_fits() #multicollect on active detectors multicollect(ncounts=mx.multicollect.counts) if mx.baseline.after: baselines(ncounts=mx.baseline.counts,mass=mx.baseline.mass, detector=mx.baseline.detector, settling_time=mx.baseline.settling_time, integration_time=8) if mx.peakcenter.after: activate_detectors(*mx.peakcenter.detectors, **{'peak_center':True}) peak_center(detector=mx.peakcenter.detector,isotope=mx.peakcenter.isotope, integration_time=mx.peakcenter.integration_time) if use_cdd_warming: gosub('warm_cdd', argv=(mx.equilibration.outlet,)) info('finished measure script')
the-stack_0_26732
from bs4 import BeautifulSoup from flask import Flask, render_template, request import requests AF_URL = 'https://www.abercrombie.com/webapp/wcs/stores/servlet/Search?storeId=10051&catalogId=10901&langId=-1&departmentCategoryId=10000&search-field=' AT_URL = 'https://www.anntaylor.com/search/searchResults.jsp?question=' app = Flask(__name__) def get_product(html_doc): soup = BeautifulSoup(html_doc, "html.parser") res = soup.find(id="pid-9947721") return res @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': query = request.form['query'] res_html = requests.get(AF_URL + query) res = get_product(res_html.text) return render_template('index.html', res=res) return render_template('index.html') if __name__ == '__main__': app.run()
the-stack_0_26735
import requests from requests.packages.urllib3.exceptions import InsecureRequestWarning from pymemcache.client.base import Client import json requests.packages.urllib3.disable_warnings(InsecureRequestWarning) client = Client(('127.0.0.1', 11211)) #assumes local memcached application, if needed change this to suit your installation def misppull(dataType): headers={'Authorization':'****INSERTYOURMISPAPIKEYHERE****','Accept':'application/json','Content-type':'application/json'} data=json.dumps({"returnFormat":"json","type":dataType,"tags":"Feed-%","to_ids":"yes","includeEventTags":"yes","includeContext":"yes"}) response = requests.post('https://****INSERTYOURMISPADDRESSHERE****/attributes/restSearch',headers=headers,data=data,verify=False) return response if __name__ == '__main__': dataTypes={'domain', 'ip-%', 'md5', 'sha1','sha256'} for dt in dataTypes: response = misppull(dt) data=response.json() if data: for item in data["response"]["Attribute"]: tagList=[] for tag in item['Tag']: for k,v in tag.items(): if(k=='name' and 'Feed-' in tag['name']): tagList.append(str(v)) client.set(str(item['type'] + '-' + item['value']), tagList, 130)
the-stack_0_26736
"""Tests for HTMLExporter""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. import re from .base import ExportersTestsBase from ..html import HTMLExporter from traitlets.config import Config from nbformat import v4 class TestHTMLExporter(ExportersTestsBase): """Tests for HTMLExporter""" exporter_class = HTMLExporter should_include_raw = ['html'] def test_constructor(self): """ Can a HTMLExporter be constructed? """ HTMLExporter() def test_export(self): """ Can a HTMLExporter export something? """ (output, resources) = HTMLExporter().from_filename(self._get_notebook()) assert len(output) > 0 def test_export_basic(self): """ Can a HTMLExporter export using the 'basic' template? """ (output, resources) = HTMLExporter(template_file='basic').from_filename(self._get_notebook()) assert len(output) > 0 def test_export_full(self): """ Can a HTMLExporter export using the 'full' template? """ (output, resources) = HTMLExporter(template_file='full').from_filename(self._get_notebook()) assert len(output) > 0 def test_prompt_number(self): """ Does HTMLExporter properly format input and output prompts? """ (output, resources) = HTMLExporter(template_file='full').from_filename( self._get_notebook(nb_name="prompt_numbers.ipynb")) in_regex = r"In&nbsp;\[(.*)\]:" out_regex = r"Out\[(.*)\]:" ins = ["2", "10", "&nbsp;", "&nbsp;", "0"] outs = ["10"] assert re.findall(in_regex, output) == ins assert re.findall(out_regex, output) == outs def test_prompt_number(self): """ Does HTMLExporter properly format input and output prompts? """ no_prompt_conf = Config( {"TemplateExporter":{ "exclude_input_prompt": True, "exclude_output_prompt": True, } } ) exporter = HTMLExporter(config=no_prompt_conf, template_file='full') (output, resources) = exporter.from_filename( self._get_notebook(nb_name="prompt_numbers.ipynb")) in_regex = r"In&nbsp;\[(.*)\]:" out_regex = r"Out\[(.*)\]:" assert not re.findall(in_regex, output) assert not re.findall(out_regex, output) def test_png_metadata(self): """ Does HTMLExporter with the 'basic' template treat pngs with width/height metadata correctly? """ (output, resources) = HTMLExporter(template_file='basic').from_filename( self._get_notebook(nb_name="pngmetadata.ipynb")) check_for_png = re.compile(r'<img src="[^"]*?"([^>]*?)>') result = check_for_png.search(output) attr_string = result.group(1) assert 'width' in attr_string assert 'height' in attr_string def test_javascript_output(self): nb = v4.new_notebook( cells=[ v4.new_code_cell( outputs=[v4.new_output( output_type='display_data', data={ 'application/javascript': "javascript_output();" } )] ) ] ) (output, resources) = HTMLExporter(template_file='basic').from_notebook_node(nb) self.assertIn('javascript_output', output)
the-stack_0_26737
from tkinter import Tk , Entry , Button , END master = Tk() master.geometry("300x300") def delete_all() : input_entry.delete(0 , "end") def back_space() : a = input_entry.get() print(a) length = len(a) print(length) input_entry.delete( length-1 , END ) input_entry = Entry(master, width = 20 ) input_entry.pack(pady = 10) delete_all_button = Button(master, text = "Delete all", command = delete_all ) delete_all_button.pack(pady = 10 ) back_space_button = Button(master, text = "Back space", command = back_space ) back_space_button.pack(pady = 10 ) master.call( "tk" , "scaling" , 5.0) master.mainloop()
the-stack_0_26738
#!/usr/bin/env python3 import sys import socket from scapy.layers.dns import DNS, DNSQR from scapy.layers.inet import IP, UDP, ICMP, IPerror from scapy.sendrecv import sr1 from converter import Domain, Content from packet import Packet from utils import DNSHeaders, init_logger, get_ip_from_hostname logger = None class Client: def __init__(self, domain: str, ip: str, verbosity: int = 0): self.dns_server = ip self.domain = domain self.verb = verbosity def send(self, message: str): crafted_domain = f"{Domain.encode(message)}.{self.domain}" packet = Packet.build_query( {"dst": self.dns_server, "dns": {"qname": crafted_domain}}, self.domain, ) answer = sr1(packet.packet, verbose=self.verb, timeout=1) if answer.haslayer(ICMP) or answer.haslayer(IPerror): logger.debug(answer.show()) logger.critical("Unreachable host or filtered port") return None return answer[DNS] if answer is not None else None def recv(self, pkt: DNS): if pkt is not None: packet = Packet(pkt, self.domain) for i, (rrname, rdata) in enumerate(packet.answers): logger.info("Message %i (%s): %s", i, rrname, rdata) try: logger.info("Decoded: %s", Content.decode(rdata)) except Exception: logger.warning("Couldn't decode message") logger.debug(packet.dns.summary()) else: logger.warning("Packet was none, most likely timeout") if __name__ == "__main__": logger = init_logger() if len(sys.argv) < 2: logger.error("Usage: %s hostname [message]", sys.argv[0]) sys.exit(-1) ip = get_ip_from_hostname(sys.argv[1]) if ip is None: sys.exit(-1) client = Client(sys.argv[1], ip) pkt = client.send("hello world" if len(sys.argv) == 2 else sys.argv[2]) client.recv(pkt)
the-stack_0_26741
import torch from torch import nn import numpy as np import os from collections.abc import Iterable from .utils.detect_face import detect_face, extract_face class PNet(nn.Module): """MTCNN PNet. Keyword Arguments: pretrained {bool} -- Whether or not to load saved pretrained weights (default: {True}) """ def __init__(self, pretrained=True): super().__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=3) self.prelu1 = nn.PReLU(10) self.pool1 = nn.MaxPool2d(2, 2, ceil_mode=True) self.conv2 = nn.Conv2d(10, 16, kernel_size=3) self.prelu2 = nn.PReLU(16) self.conv3 = nn.Conv2d(16, 32, kernel_size=3) self.prelu3 = nn.PReLU(32) self.conv4_1 = nn.Conv2d(32, 2, kernel_size=1) self.softmax4_1 = nn.Softmax(dim=1) self.conv4_2 = nn.Conv2d(32, 4, kernel_size=1) self.training = False if pretrained: state_dict_path = os.path.join(os.path.dirname(__file__), '../data/pnet.pt') state_dict = torch.load(state_dict_path) self.load_state_dict(state_dict) def forward(self, x): x = self.conv1(x) x = self.prelu1(x) x = self.pool1(x) x = self.conv2(x) x = self.prelu2(x) x = self.conv3(x) x = self.prelu3(x) a = self.conv4_1(x) a = self.softmax4_1(a) b = self.conv4_2(x) return b, a class RNet(nn.Module): """MTCNN RNet. Keyword Arguments: pretrained {bool} -- Whether or not to load saved pretrained weights (default: {True}) """ def __init__(self, pretrained=True): super().__init__() self.conv1 = nn.Conv2d(3, 28, kernel_size=3) self.prelu1 = nn.PReLU(28) self.pool1 = nn.MaxPool2d(3, 2, ceil_mode=True) self.conv2 = nn.Conv2d(28, 48, kernel_size=3) self.prelu2 = nn.PReLU(48) self.pool2 = nn.MaxPool2d(3, 2, ceil_mode=True) self.conv3 = nn.Conv2d(48, 64, kernel_size=2) self.prelu3 = nn.PReLU(64) self.dense4 = nn.Linear(576, 128) self.prelu4 = nn.PReLU(128) self.dense5_1 = nn.Linear(128, 2) self.softmax5_1 = nn.Softmax(dim=1) self.dense5_2 = nn.Linear(128, 4) self.training = False if pretrained: state_dict_path = os.path.join(os.path.dirname(__file__), '../data/rnet.pt') state_dict = torch.load(state_dict_path) self.load_state_dict(state_dict) def forward(self, x): x = self.conv1(x) x = self.prelu1(x) x = self.pool1(x) x = self.conv2(x) x = self.prelu2(x) x = self.pool2(x) x = self.conv3(x) x = self.prelu3(x) x = x.permute(0, 3, 2, 1).contiguous() x = self.dense4(x.view(x.shape[0], -1)) x = self.prelu4(x) a = self.dense5_1(x) a = self.softmax5_1(a) b = self.dense5_2(x) return b, a class ONet(nn.Module): """MTCNN ONet. Keyword Arguments: pretrained {bool} -- Whether or not to load saved pretrained weights (default: {True}) """ def __init__(self, pretrained=True): super().__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3) self.prelu1 = nn.PReLU(32) self.pool1 = nn.MaxPool2d(3, 2, ceil_mode=True) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.prelu2 = nn.PReLU(64) self.pool2 = nn.MaxPool2d(3, 2, ceil_mode=True) self.conv3 = nn.Conv2d(64, 64, kernel_size=3) self.prelu3 = nn.PReLU(64) self.pool3 = nn.MaxPool2d(2, 2, ceil_mode=True) self.conv4 = nn.Conv2d(64, 128, kernel_size=2) self.prelu4 = nn.PReLU(128) self.dense5 = nn.Linear(1152, 256) self.prelu5 = nn.PReLU(256) self.dense6_1 = nn.Linear(256, 2) self.softmax6_1 = nn.Softmax(dim=1) self.dense6_2 = nn.Linear(256, 4) self.dense6_3 = nn.Linear(256, 10) self.training = False if pretrained: state_dict_path = os.path.join(os.path.dirname(__file__), '../data/onet.pt') state_dict = torch.load(state_dict_path) self.load_state_dict(state_dict) def forward(self, x): x = self.conv1(x) x = self.prelu1(x) x = self.pool1(x) x = self.conv2(x) x = self.prelu2(x) x = self.pool2(x) x = self.conv3(x) x = self.prelu3(x) x = self.pool3(x) x = self.conv4(x) x = self.prelu4(x) x = x.permute(0, 3, 2, 1).contiguous() x = self.dense5(x.view(x.shape[0], -1)) x = self.prelu5(x) a = self.dense6_1(x) a = self.softmax6_1(a) b = self.dense6_2(x) c = self.dense6_3(x) return b, c, a class MTCNN(nn.Module): """MTCNN face detection module. This class loads pretrained P-, R-, and O-nets and, given raw input images as PIL images, returns images cropped to include the face only. Cropped faces can optionally be saved to file also. Keyword Arguments: image_size {int} -- Output image size in pixels. The image will be square. (default: {160}) margin {int} -- Margin to add to bounding box, in terms of pixels in the final image. Note that the application of the margin differs slightly from the davidsandberg/facenet repo, which applies the margin to the original image before resizing, making the margin dependent on the original image size (this is a bug in davidsandberg/facenet). (default: {0}) min_face_size {int} -- Minimum face size to search for. (default: {20}) thresholds {list} -- MTCNN face detection thresholds (default: {[0.6, 0.7, 0.7]}) factor {float} -- Factor used to create a scaling pyramid of face sizes. (default: {0.709}) post_process {bool} -- Whether or not to post process images tensors before returning. (default: {True}) select_largest {bool} -- If True, if multiple faces are detected, the largest is returned. If False, the face with the highest detection probability is returned. (default: {True}) keep_all {bool} -- If True, all detected faces are returned, in the order dictated by the select_largest parameter. If a save_path is specified, the first face is saved to that path and the remaining faces are saved to <save_path>1, <save_path>2 etc. device {torch.device} -- The device on which to run neural net passes. Image tensors and models are copied to this device before running forward passes. (default: {None}) """ def __init__( self, image_size=160, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, select_largest=True, keep_all=False, device=None ): super().__init__() self.image_size = image_size self.margin = margin self.min_face_size = min_face_size self.thresholds = thresholds self.factor = factor self.post_process = post_process self.select_largest = select_largest self.keep_all = keep_all self.pnet = PNet() self.rnet = RNet() self.onet = ONet() self.device = torch.device('cpu') if device is not None: self.device = device self.to(device) def forward(self, img, save_path=None, return_prob=False): """Run MTCNN face detection on a PIL image. This method performs both detection and extraction of faces, returning tensors representing detected faces rather than the bounding boxes. To access bounding boxes, see the MTCNN.detect() method below. Arguments: img {PIL.Image or list} -- A PIL image or a list of PIL images. Keyword Arguments: save_path {str} -- An optional save path for the cropped image. Note that when self.post_process=True, although the returned tensor is post processed, the saved face image is not, so it is a true representation of the face in the input image. If `img` is a list of images, `save_path` should be a list of equal length. (default: {None}) return_prob {bool} -- Whether or not to return the detection probability. (default: {False}) Returns: Union[torch.Tensor, tuple(torch.tensor, float)] -- If detected, cropped image of a face with dimensions 3 x image_size x image_size. Optionally, the probability that a face was detected. If self.keep_all is True, n detected faces are returned in an n x 3 x image_size x image_size tensor with an optional list of detection probabilities. If `img` is a list of images, the item(s) returned have an extra dimension (batch) as the first dimension. Example: >>> from facenet_pytorch import MTCNN >>> mtcnn = MTCNN() >>> face_tensor, prob = mtcnn(img, save_path='face.png', return_prob=True) """ # Detect faces with torch.no_grad(): batch_boxes, batch_probs = self.detect(img) # Determine if a batch or single image was passed batch_mode = True if not isinstance(img, Iterable): img = [img] batch_boxes = [batch_boxes] batch_probs = [batch_probs] batch_mode = False # Parse save path(s) if save_path is not None: if isinstance(save_path, str): save_path = [save_path] else: save_path = [None for _ in range(len(img))] # Process all bounding boxes and probabilities faces, probs = [], [] for im, box_im, prob_im, path_im in zip(img, batch_boxes, batch_probs, save_path): if box_im is None: faces.append(None) probs.append([None] if self.keep_all else None) continue if not self.keep_all: box_im = box_im[[0]] faces_im = [] for i, box in enumerate(box_im): face_path = path_im if path_im is not None and i > 0: save_name, ext = os.path.splitext(path_im) face_path = save_name + '_' + str(i + 1) + ext face = extract_face(im, box, self.image_size, self.margin, face_path) if self.post_process: face = fixed_image_standardization(face) faces_im.append(face) if self.keep_all: faces_im = torch.stack(faces_im) else: faces_im = faces_im[0] prob_im = prob_im[0] faces.append(faces_im) probs.append(prob_im) if not batch_mode: faces = faces[0] probs = probs[0] if return_prob: return faces, probs else: return faces def detect(self, img, landmarks=False): """Detect all faces in PIL image and return bounding boxes and optional facial landmarks. This method is used by the forward method and is also useful for face detection tasks that require lower-level handling of bounding boxes and facial landmarks (e.g., face tracking). The functionality of the forward function can be emulated by using this method followed by the extract_face() function. Arguments: img {PIL.Image or list} -- A PIL image or a list of PIL images. Keyword Arguments: landmarks {bool} -- Whether to return facial landmarks in addition to bounding boxes. (default: {False}) Returns: tuple(numpy.ndarray, list) -- For N detected faces, a tuple containing an Nx4 array of bounding boxes and a length N list of detection probabilities. Returned boxes will be sorted in descending order by detection probability if self.select_largest=False, otherwise the largest face will be returned first. If `img` is a list of images, the items returned have an extra dimension (batch) as the first dimension. Optionally, a third item, the facial landmarks, are returned if `landmarks=True`. Example: >>> from PIL import Image, ImageDraw >>> from facenet_pytorch import MTCNN, extract_face >>> mtcnn = MTCNN(keep_all=True) >>> boxes, probs, points = mtcnn.detect(img, landmarks=True) >>> # Draw boxes and save faces >>> img_draw = img.copy() >>> draw = ImageDraw.Draw(img_draw) >>> for i, (box, point) in enumerate(zip(boxes, points)): ... draw.rectangle(box.tolist(), width=5) ... for p in point: ... draw.rectangle((p - 10).tolist() + (p + 10).tolist(), width=10) ... extract_face(img, box, save_path='detected_face_{}.png'.format(i)) >>> img_draw.save('annotated_faces.png') """ with torch.no_grad(): batch_boxes, batch_points = detect_face( img, self.min_face_size, self.pnet, self.rnet, self.onet, self.thresholds, self.factor, self.device ) boxes, probs, points = [], [], [] for box, point in zip(batch_boxes, batch_points): box = np.array(box) point = np.array(point) if len(box) == 0: boxes.append(None) probs.append([None]) points.append(None) elif self.select_largest: box_order = np.argsort((box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1]))[::-1] box = box[box_order] point = point[box_order] boxes.append(box[:, :4]) probs.append(box[:, 4]) points.append(point) else: boxes.append(box[:, :4]) probs.append(box[:, 4]) points.append(point) boxes = np.array(boxes) probs = np.array(probs) points = np.array(points) if not isinstance(img, Iterable): boxes = boxes[0] probs = probs[0] points = points[0] if landmarks: return boxes, probs, points return boxes, probs def fixed_image_standardization(image_tensor): processed_tensor = (image_tensor - 127.5) / 128.0 return processed_tensor def prewhiten(x): mean = x.mean() std = x.std() std_adj = std.clamp(min=1.0/(float(x.numel())**0.5)) y = (x - mean) / std_adj return y
the-stack_0_26742
# removeLineBreaks.py # # Demonstration of the pyparsing module, converting text files # with hard line-breaks to text files with line breaks only # between paragraphs. (Helps when converting downloads from Project # Gutenberg - https://www.gutenberg.org/ - to import to word processing apps # that can reformat paragraphs once hard line-breaks are removed.) # # Uses parse actions and transformString to remove unwanted line breaks, # and to double up line breaks between paragraphs. # # Copyright 2006, by Paul McGuire # import pyparsing as pp line_end = pp.LineEnd() # define an expression for the body of a line of text - use a predicate condition to # accept only lines with some content. def mustBeNonBlank(t): return t[0] != '' # could also be written as # return bool(t[0]) lineBody = pp.SkipTo(line_end).addCondition(mustBeNonBlank, message="line body can't be empty") # now define a line with a trailing lineEnd, to be replaced with a space character textLine = lineBody + line_end().setParseAction(pp.replaceWith(" ")) # define a paragraph, with a separating lineEnd, to be replaced with a double newline para = pp.OneOrMore(textLine) + line_end().setParseAction(pp.replaceWith("\n\n")) # run a test test = """ Now is the time for all good men to come to the aid of their country. """ print(para.transformString(test)) # process an entire file # Project Gutenberg EBook of Successful Methods of Public Speaking, by Grenville Kleiser # Download from http://www.gutenberg.org/cache/epub/18095/pg18095.txt # with open("18095-8.txt") as source_file: original = source_file.read() # use transformString to convert line breaks transformed = para.transformString(original) with open("18095-8_reformatted.txt", "w") as transformed_file: transformed_file.write(transformed)
the-stack_0_26744
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Serial port support for Windows. Requires PySerial and pywin32. """ # system imports import serial from serial import PARITY_NONE, PARITY_EVEN, PARITY_ODD from serial import STOPBITS_ONE, STOPBITS_TWO from serial import FIVEBITS, SIXBITS, SEVENBITS, EIGHTBITS import win32file, win32event # twisted imports from twisted.internet import abstract # sibling imports from serialport import BaseSerialPort class SerialPort(BaseSerialPort, abstract.FileDescriptor): """A serial device, acting as a transport, that uses a win32 event.""" connected = 1 def __init__(self, protocol, deviceNameOrPortNumber, reactor, baudrate = 9600, bytesize = EIGHTBITS, parity = PARITY_NONE, stopbits = STOPBITS_ONE, xonxoff = 0, rtscts = 0): self._serial = self._serialFactory( deviceNameOrPortNumber, baudrate=baudrate, bytesize=bytesize, parity=parity, stopbits=stopbits, timeout=None, xonxoff=xonxoff, rtscts=rtscts) self.flushInput() self.flushOutput() self.reactor = reactor self.protocol = protocol self.outQueue = [] self.closed = 0 self.closedNotifies = 0 self.writeInProgress = 0 self.protocol = protocol self._overlappedRead = win32file.OVERLAPPED() self._overlappedRead.hEvent = win32event.CreateEvent(None, 1, 0, None) self._overlappedWrite = win32file.OVERLAPPED() self._overlappedWrite.hEvent = win32event.CreateEvent(None, 0, 0, None) self.reactor.addEvent(self._overlappedRead.hEvent, self, 'serialReadEvent') self.reactor.addEvent(self._overlappedWrite.hEvent, self, 'serialWriteEvent') self.protocol.makeConnection(self) self._finishPortSetup() def _finishPortSetup(self): """ Finish setting up the serial port. This is a separate method to facilitate testing. """ flags, comstat = win32file.ClearCommError(self._serial.hComPort) rc, self.read_buf = win32file.ReadFile(self._serial.hComPort, win32file.AllocateReadBuffer(1), self._overlappedRead) def serialReadEvent(self): #get that character we set up n = win32file.GetOverlappedResult(self._serial.hComPort, self._overlappedRead, 0) if n: first = str(self.read_buf[:n]) #now we should get everything that is already in the buffer flags, comstat = win32file.ClearCommError(self._serial.hComPort) if comstat.cbInQue: win32event.ResetEvent(self._overlappedRead.hEvent) rc, buf = win32file.ReadFile(self._serial.hComPort, win32file.AllocateReadBuffer(comstat.cbInQue), self._overlappedRead) n = win32file.GetOverlappedResult(self._serial.hComPort, self._overlappedRead, 1) #handle all the received data: self.protocol.dataReceived(first + str(buf[:n])) else: #handle all the received data: self.protocol.dataReceived(first) #set up next one win32event.ResetEvent(self._overlappedRead.hEvent) rc, self.read_buf = win32file.ReadFile(self._serial.hComPort, win32file.AllocateReadBuffer(1), self._overlappedRead) def write(self, data): if data: if self.writeInProgress: self.outQueue.append(data) else: self.writeInProgress = 1 win32file.WriteFile(self._serial.hComPort, data, self._overlappedWrite) def serialWriteEvent(self): try: dataToWrite = self.outQueue.pop(0) except IndexError: self.writeInProgress = 0 return else: win32file.WriteFile(self._serial.hComPort, dataToWrite, self._overlappedWrite) def connectionLost(self, reason): """ Called when the serial port disconnects. Will call C{connectionLost} on the protocol that is handling the serial data. """ self.reactor.removeEvent(self._overlappedRead.hEvent) self.reactor.removeEvent(self._overlappedWrite.hEvent) abstract.FileDescriptor.connectionLost(self, reason) self._serial.close() self.protocol.connectionLost(reason)
the-stack_0_26746
from sqlalchemy import Column, Integer, MetaData, String, Table, create_engine from sqlalchemy.dialects.postgresql import UUID from sqlalchemy.engine.url import URL from sqlalchemy.util import immutabledict import sqlalchemy_postgresql_audit NAMING_CONVENTIONS = immutabledict( { "ix": "ix_%(column_0_label)s", "uq": "uq_%(table_name)s_%(column_0_name)s", "ck": "ck_%(table_name)s_%(constraint_name)s", "fk": "fk_%(table_name)s_%(column_0_name)s_%(referred_table_name)s", "pk": "pk_%(table_name)s", "audit.table": "%(table_name)s_audr", } ) # Event listeners must be enabled before tables are added to the Metadata Object sqlalchemy_postgresql_audit.enable() meta = MetaData(naming_convention=NAMING_CONVENTIONS) t = Table( "foo", meta, Column("bar", String), Column("baz", String), info={ "audit.options": { "enabled": True, "session_settings": [ Column("username", String, nullable=False), Column("app_uuid", UUID), ], } }, schema="public", ) r = Table( "bar", meta, Column("foo", String), info={"audit.options": {"enabled": True}}, schema="public", ) print("Tables: ", meta.tables) url = URL( drivername="postgresql+psycopg2", host="localhost", port=5432, password="postgres", username="postgres", ) engine = create_engine(url) engine.echo = True meta.bind = engine meta.create_all() sqlalchemy_postgresql_audit.install_audit_triggers(meta)
the-stack_0_26747
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from typing import Any, Dict, Optional from airflow.providers.http.operators.http import SimpleHttpOperator from airflow.providers.slack.hooks.slack_webhook import SlackWebhookHook from airflow.utils.decorators import apply_defaults class SlackWebhookOperator(SimpleHttpOperator): """ This operator allows you to post messages to Slack using incoming webhooks. Takes both Slack webhook token directly and connection that has Slack webhook token. If both supplied, http_conn_id will be used as base_url, and webhook_token will be taken as endpoint, the relative path of the url. Each Slack webhook token can be pre-configured to use a specific channel, username and icon. You can override these defaults in this hook. :param http_conn_id: connection that has Slack webhook token in the extra field :type http_conn_id: str :param webhook_token: Slack webhook token :type webhook_token: str :param message: The message you want to send on Slack :type message: str :param attachments: The attachments to send on Slack. Should be a list of dictionaries representing Slack attachments. :type attachments: list :param blocks: The blocks to send on Slack. Should be a list of dictionaries representing Slack blocks. :type blocks: list :param channel: The channel the message should be posted to :type channel: str :param username: The username to post to slack with :type username: str :param icon_emoji: The emoji to use as icon for the user posting to Slack :type icon_emoji: str :param icon_url: The icon image URL string to use in place of the default icon. :type icon_url: str :param link_names: Whether or not to find and link channel and usernames in your message :type link_names: bool :param proxy: Proxy to use to make the Slack webhook call :type proxy: str """ template_fields = [ 'webhook_token', 'message', 'attachments', 'blocks', 'channel', 'username', 'proxy', ] # pylint: disable=too-many-arguments @apply_defaults def __init__( self, *, http_conn_id: str, webhook_token: Optional[str] = None, message: str = "", attachments: Optional[list] = None, blocks: Optional[list] = None, channel: Optional[str] = None, username: Optional[str] = None, icon_emoji: Optional[str] = None, icon_url: Optional[str] = None, link_names: bool = False, proxy: Optional[str] = None, **kwargs, ) -> None: super().__init__(endpoint=webhook_token, **kwargs) self.http_conn_id = http_conn_id self.webhook_token = webhook_token self.message = message self.attachments = attachments self.blocks = blocks self.channel = channel self.username = username self.icon_emoji = icon_emoji self.icon_url = icon_url self.link_names = link_names self.proxy = proxy self.hook: Optional[SlackWebhookHook] = None def execute(self, context: Dict[str, Any]) -> None: """Call the SlackWebhookHook to post the provided Slack message""" self.hook = SlackWebhookHook( self.http_conn_id, self.webhook_token, self.message, self.attachments, self.blocks, self.channel, self.username, self.icon_emoji, self.icon_url, self.link_names, self.proxy, ) self.hook.execute()
the-stack_0_26749
#!/usr/bin/env python # -*- coding: utf-8 -*- """ HTW-PV3 - Export weather data for POLYSUN Export weatherdata for POLYSUN SPDX-License-Identifier: AGPL-3.0-or-later """ __copyright__ = "© Ludwig Hülk" __license__ = "GNU Affero General Public License Version 3 (AGPL-3.0)" __url__ = "https://www.gnu.org/licenses/agpl-3.0.en.html" __author__ = "Ludee;" __version__ = "v0.0.2" import pandas as pd from pv3_weatherdata import calculate_diffuse_irradiation from settings import HTW_LAT, HTW_LON from settings import write_to_csv import logging log = logging.getLogger(__name__) def export_htw_polysun(df_weather, filename, resolution, parameter_name): """TODO: Docu""" # calc diffuse irradiation df_dhi = calculate_diffuse_irradiation(df_weather, parameter_name, HTW_LAT, HTW_LON) if resolution == 'M': s = 60 steps = 525600 elif resolution == 'H': s = 3600 steps = 8760 time = list(zip(range(steps), [s * i for i in range(steps)])) polysun = {} polysun = {'# Time [s]': dict(time)} polysun.update( df_weather.loc[:, ['g_hor_si', 't_luft', 'v_wind', 'h_luft']].reset_index( drop=True).to_dict()) df_polysun = pd.DataFrame.from_dict(polysun) df_polysun = df_polysun.merge(df_dhi['dhi'].reset_index(drop=True), left_index=True, right_index=True) # zero values as not needed df_polysun['Lh [W/m²]'] = 0 # Lh Langwellenstrahlung[Wh / m2] # rename columns PRINT_NAMES = {'g_hor_si': 'Gh [W/m²]', # Gh Globalstrahlung [Wh/m2] 'dhi': 'Dh [W/m²]', # Dh Diffusstrahlung [Wh/m2] 't_luft': 'Tamb [°C]', # Tamb Umgebungstemperatur [°C] 'v_wind': 'Vwnd [m/s]', # Vwnd Windgeschwindigkeit [m/s] 'h_luft': 'Hrel [%]', # Hrel Luftfeuchtigkeit [%] } df_polysun = df_polysun.rename(columns=PRINT_NAMES) df_polysun = df_polysun.loc[:, ['# Time [s]', 'Gh [W/m²]', 'Dh [W/m²]', 'Tamb [°C]', 'Lh [W/m²]', 'Vwnd [m/s]', 'Hrel [%]']] df_polysun = df_polysun.round(1) write_to_csv(f'./data/{filename}', df_polysun, append=False, index=False) ## 1. Todo Doku polysun_first_row = '# Station: HTW Berlin, PVlib\n' ## 2. Todo Doku polysun_second_row = f'# Latitude: {HTW_LAT:.4f} Longitude: {HTW_LON:.4f} altitude: 81m\n' ## 3. Todo Doku polysun_third_row = '#' with open(f'./data/{filename}', "r+") as text_file: content = text_file.read() text_file.seek(0, 0) text_file.write( polysun_first_row + polysun_second_row + polysun_third_row + '\n' + content) log.info(f'Write data to file: {filename}') def export_fred_polysun(df, filename, resolution): """converts open_FRED data into HTW_Weatherdata format""" # dhi doesnt have to be calculated as it is already integrated # resample if resolution == 'M': s = 60 steps = 525600 elif resolution == 'H': s = 3600 steps = 8760 df = df.resample('H').mean() # 1 additional hour found, reduce to 8760 h df = df.loc['2015-01-01 00:00':'2015-12-31 23:00'] df['h_luft'] = 0 # rename columns column_names = {'ghi': 'Gh [W/m²]', # Gh Globalstrahlung [Wh/m2] 'dhi': 'Dh [W/m²]', # Dh Diffusstrahlung [Wh/m2] 'temp_air': 'Tamb [°C]', # Tamb Umgebungstemperatur [°C] 'wind_speed': 'Vwnd [m/s]', # Vwnd Windgeschwindigkeit [m/s] 'h_luft': 'Hrel [%]', # Hrel Luftfeuchtigkeit [%] } df_open_fred = df.rename(columns=column_names) df_open_fred['Lh [W/m²]'] = 0 # Lh Langwellenstrahlung[Wh / m2] fred_lat = df_open_fred['lat'][0] fred_lon = df_open_fred['lon'][0] time = list(zip(range(steps), [s * i for i in range(steps)])) polysun = {'# Time [s]': dict(time)} polysun.update( df_open_fred.loc[:, [ 'Gh [W/m²]', 'Dh [W/m²]', 'Tamb [°C]', 'Lh [W/m²]', 'Vwnd [m/s]', 'Hrel [%]']] .reset_index( drop=True).to_dict()) df_polysun = pd.DataFrame.from_dict(polysun) write_to_csv(f'./data/{filename}', df_polysun, append=False, index=False) ## 1. Todo Doku polysun_first_row = '# Open_FRED Wetter Stundenmittelwerte 2015\n' ## 2. Todo Doku # Todo altitude polysun_second_row = f'# Latitude: {fred_lat:.4f} Longitude: {fred_lon:.4f} altitude: 81m\n' ## 3. Todo Doku polysun_third_row = '#' with open(f'./data/{filename}', "r+") as text_file: content = text_file.read() text_file.seek(0, 0) text_file.write(polysun_first_row + polysun_second_row + polysun_third_row + '\n' + content) log.info(f'Write data to file: {filename}') # deprecated def convert_open_FRED(file_name): """converts open_FRED data into HTW_Weatherdata format""" # read open_fred_weather_data htw_weatherdata_names = {"ghi": "g_hor_si", "wind_speed": 'v_wind', "temp_air": 't_luft', } df_open_fred = pd.read_csv(file_name, index_col=0, date_parser=pd.to_datetime) df_open_fred = df_open_fred.resample('H').mean() # 1 additional hour found, reduce to 8760 h df_open_fred = df_open_fred.loc['2015-01-01 00:00':'2015-12-31 23:00'] df_open_fred['h_luft'] = 0 df_open_fred = df_open_fred.rename(columns=htw_weatherdata_names) lat = df_open_fred['lat'][0] lon = df_open_fred['lon'][0] return df_open_fred, lat, lon
the-stack_0_26750
from django.contrib.auth import get_user_model from django.http import Http404 from django.shortcuts import render, get_object_or_404, redirect, reverse from django.utils import timezone from django.views.generic import TemplateView from .models import Article, Commentaires, Tags from .form import CommentForm, ArticleForm from django.contrib.auth.decorators import login_required, user_passes_test, permission_required User = get_user_model() @login_required def timeline(request): """ Afficher tous les articles de notre blog, link à timeline/timeline.html """ # Article.objects.create(titre="Mon premier article", contenu_post="La dure vie d'un étudiant confiné, tome 1") posts = Article.objects.all() print(Tags.objects.get(text_tag='test')) args = {'posts': posts} return render(request, 'timeline/timeline.html', args) @login_required @permission_required('Article.add_article') def add_article(request): """ Ajoute un nouvel article """ if request.method == "POST": form = ArticleForm(request.POST, request.FILES) if form.is_valid(): new_titre = form.cleaned_data['titre'] new_auteur = form.cleaned_data['auteur'] new_photo = form.cleaned_data['photo'] new_post = form.cleaned_data['contenu_post'] new_tags = form.cleaned_data['tags'] print(new_tags, type(new_tags)) Articl = Article.objects.create(titre=new_titre, auteur=new_auteur, contenu_post=new_post, photo=new_photo) Articl.save() for tag in new_tags: Articl.tags.add(tag) Articl.save() # Reverse : return redirect(reverse('timeline-home')) else: print('_______________' + 'PAS VALIDE') return render(request, 'timeline/add.html') else: form = ArticleForm() args = {'form': form} return render(request, 'timeline/add.html', args) @login_required def lire(request, id): """ Permet de lire un post en particulier en fonction de son ID. Accès via timeline/timeline.html """ try: post = Article.objects.get(id=id) comments = Commentaires.objects.filter(id_post=id) except post.DoesNotExist: raise Http404 # COMMENTAIRES form = CommentForm(request.POST) if form.is_valid(): new_comment = form.cleaned_data['contenu_comm'] truc = request.user com = Commentaires.objects.create(contenu_comm=new_comment, id_post=post, id_user=truc) com.save() comments = Commentaires.objects.filter(id_post=id) # Actualise liste commentaires args = {'post': post, 'comments': comments, 'form': form} return render(request, 'timeline/lire.html', args) @login_required def search_timeline(request): # TODO : Chercher selon les tags """ Selectionne les articles correspondant aux champs de recherche """ # Article.objects.create(titre="Mon premier article", contenu_post="La dure vie d'un étudiant confiné, tome 1") posts = Article.objects.filter(id_post=id) return render(request, 'timeline/timeline.html', {'posts': posts}) # def add_comment_to_post(request, pk): # post = get_object_or_404(Article, pk=pk) # if request.method == "POST": # form = CommentForm(request.POST) # if form.is_valid(): # comment = form.save(commit=False) # comment.post = post # comment.save() # return redirect('post_detail', pk=post.pk) # else: # form = CommentForm() # return render(request, 'timeline/add_comment_to_post.html', {'form': form}) # class LireView(TemplateView): # template_name = "timeline/lire.html" # # def get(self, request): # form = CommentForm() # return render(request, self.template_name, {'form': form}) # # def post(self, request): # form = CommentForm(request.POST) # if form.is_valid(): # your_comment = form.cleaned_data['your_comment'] # form = CommentForm() # # # args = {'form': form, 'your_comment': your_comment} # return render(request, self.template_name, args)
the-stack_0_26751
# Author: Guilherme Aldeia # Contact: [email protected] # Version: 1.0.0 # Last modified: 10-16-2021 by Guilherme Aldeia """Auxiliary methods to deal with the results files and parallel workers. The experiments to fit and explain regression methods with explanatory methods are implemented in_experiments, with methods to perform and save each tipe of explanation. However, properly executing all experiments in parallel processes (without repetition) and result files management need to be implemented as simple as possible. This script implements methods for controlling the parallel processes by setting up all the structure needed to save the results, creating a progress tracking file and providing easy verification of finished experiments. Also, the experiments are wrapped in a worker function to make possible to run experiments in parallel. """ import os import pandas as pd from datetime import datetime from filelock import FileLock from _experiments import (run_or_retrieve_gridsearch, regressor_experiment, groundtruth_experiment) def setup_environment(results_path): """Creates the folder structure to save the results, using as root the given results_path. Inside the root, the tracking file and the parallel write lock of the results files will be created.""" print("Now creating all folders and files needed to control the " "execution of the experiments...") if not os.path.exists(results_path): os.makedirs(results_path) subfolders = [ '1.gridsearch', '2.regression', '3.explanation/3.1.local/3.1.1.traindata', '3.explanation/3.1.local/3.1.2.testdata', '3.explanation/3.2.global/3.2.1.traindata', '3.explanation/3.2.global/3.2.2.testdata', ] for subfolder in subfolders: if not os.path.exists(f"{results_path}/{subfolder}"): os.makedirs(f"{results_path}/{subfolder}") # Creating lock in a path that is known to all subprocesses open(f'{results_path}/_experiments_lock.lock', 'w+') # Columns of the tracking file columns = ['dataset', 'regressor_name', 'rep_number', 'end_time', 'finished'] tracking_file = f'{results_path}/_experiments_finished_executions.csv' tracking_df = pd.DataFrame(columns=columns) if os.path.isfile(tracking_file): tracking_df = pd.read_csv(tracking_file) else: # creating in case it does not exists tracking_df.to_csv(tracking_file, index=False) _clean_unfinished_reports(results_path) def _report_started_experiment(ds_name, regressor_name, rep_number, results_path): """Method that takes as argument the data set name, regressor, repetition number and the path where the results are and updates the tracking file to inform that the experiment with the given configurations has started. """ columns = ['dataset', 'regressor_name', 'rep_number', 'end_time', 'finished'] tracking_file = f'{results_path}/_experiments_finished_executions.csv' tracking_df = pd.DataFrame(columns=columns) with FileLock(f'{results_path}/_experiments_lock.lock'): if os.path.isfile(tracking_file): tracking_df = pd.read_csv(tracking_file) else: tracking_df.to_csv(tracking_file, index=False) new_entry = pd.Series({ 'dataset': ds_name, 'regressor_name' : regressor_name, 'end_time' : "not finished", 'rep_number': rep_number, 'finished' : False }) tracking_df = tracking_df.append(new_entry, ignore_index=True) tracking_df = tracking_df.sort_values('finished', ascending=False) tracking_df.to_csv(tracking_file, index=False) def _report_finished_experiment( ds_name, regressor_name, rep_number, results_path): """Method that takes as argument the data set name, regressor, repetition number and the path where the results are and updates the tracking file to inform that the experiment with the given configurations is now finished. """ columns = ['dataset', 'regressor_name', 'rep_number', 'end_time', 'finished'] tracking_file = f'{results_path}/_experiments_finished_executions.csv' tracking_df = pd.DataFrame(columns=columns) with FileLock(f'{results_path}/_experiments_lock.lock'): if os.path.isfile(tracking_file): tracking_df = pd.read_csv(tracking_file) else: tracking_df.to_csv(tracking_file, index=False) # Dropping the previous information about the experiment # (this should exist, since we only report a finished experiment if # it has been started) tracking_df = tracking_df.drop(tracking_df[ (tracking_df['dataset']==ds_name) & (tracking_df['regressor_name']==regressor_name) & (tracking_df['rep_number']==rep_number) & (tracking_df['finished']==False)].index) new_entry = pd.Series({ 'dataset': ds_name, 'regressor_name' : regressor_name, 'end_time' : datetime.now().strftime("%d/%m/%Y-%H:%M:%S"), 'rep_number': rep_number, 'finished' : True }) tracking_df = tracking_df.append(new_entry, ignore_index=True) tracking_df = tracking_df.sort_values('finished', ascending=False) tracking_df.to_csv(tracking_file, index=False) def _is_finished_experiment(ds_name, regressor_name, rep_number, results_path): """Method that takes as argument the data set name, regressor, repetition number and the path where the results are and checks if the experiment with the given configurations is already finished. """ tracking_file = f'{results_path}/_experiments_finished_executions.csv' with FileLock(f'{results_path}/_experiments_lock.lock'): if os.path.isfile(tracking_file): tracking_df = pd.read_csv(tracking_file) return len(tracking_df[ (tracking_df['dataset']==ds_name) & (tracking_df['regressor_name']==regressor_name) & (tracking_df['rep_number']==rep_number) & (tracking_df['finished']==True)])>=1 else: return False def _clean_unfinished_reports(results_path): """Abrupt interruptions of the experiment script can leave unfinished experiments in the tracking file. This method will clean them up. """ columns = ['dataset', 'regressor_name', 'rep_number', 'end_time', 'finished'] tracking_file = f'{results_path}/_experiments_finished_executions.csv' tracking_df = pd.DataFrame(columns=columns) with FileLock(f'{results_path}/_experiments_lock.lock'): if os.path.isfile(tracking_file): tracking_df = pd.read_csv(tracking_file) else: tracking_df.to_csv(tracking_file, index=False) tracking_df = tracking_df.drop(tracking_df[ tracking_df['finished']==False].index) tracking_df.to_csv(tracking_file, index=False) def worker_gridsearch(ds_name, regressor_class, results_path, datasets_path): """Worker to perform the gridsearch in parallel processes using the 'processing' module. This worker takes as argument the data set and regressor to be optimized, where the results should be saved, and where to find the feynman data sets. """ # Gridsearch results are simple enough to be checked within the # gridsearch method. There is no verification here. # However, the 'processing' package does not support a parallel map # with named arguments, so this worker provides this simplification. run_or_retrieve_gridsearch( ds_name = ds_name, regressor_class = regressor_class, results_path = results_path, datasets_path = datasets_path ) return def worker_experiment(ds_name, regressor_class, explainer_classes, rep_number, results_path, datasets_path, n_local_explanations, metrics_factor): """Worker to perform one experiment in parallel processes using the 'processing' module. This worker takes as argument the data set, the regressor to be fitted, a list of explainers to be used in the experiment, the number of this repetition of experiments, where the results should be saved, where to find the feynman data sets, the number of local explanations (max=100) to perform, and the neighborhood size factor. """ # If already finished, skip if _is_finished_experiment( ds_name, regressor_class.__name__, rep_number, results_path): return # Reporting that this experiment has started _report_started_experiment( ds_name, regressor_class.__name__, rep_number, results_path) # Performing the experiment regressor_experiment( ds_name = ds_name, regressor_class = regressor_class, explainer_classes = explainer_classes, rep_number = rep_number, n_local_explanations = n_local_explanations, metrics_factor = metrics_factor, results_path = results_path, datasets_path = datasets_path ) # Updating the status of this experiment _report_finished_experiment( ds_name, regressor_class.__name__, rep_number, results_path) return def worker_groundtruth(ds_name, feynman_regressor, explainer_classes, rep_number, results_path, datasets_path, n_local_explanations, metrics_factor): """Worker to perform one ground-truth experiment in parallel processes using the 'processing' module. This worker takes as argument the data set, the feynman regressor class, a list of explainers to be used in the experiment, the number of this repetition of experiments, where the results should be saved, where to find the feynman data sets, the number of local explanations (max=100) to perform, and the neighborhood size factor. """ if _is_finished_experiment( ds_name, feynman_regressor.__name__, rep_number, results_path): return _report_started_experiment( ds_name, feynman_regressor.__name__, rep_number, results_path) groundtruth_experiment( ds_name = ds_name, feynman_regressor = feynman_regressor, explainer_classes = explainer_classes, rep_number = rep_number, n_local_explanations = n_local_explanations, metrics_factor = metrics_factor, results_path = results_path, datasets_path = datasets_path, ) _report_finished_experiment( ds_name, feynman_regressor.__name__, rep_number, results_path) return
the-stack_0_26753
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: RainbowSecret ## Microsoft Research ## [email protected] ## Copyright (c) 2019 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import pdb import cv2 import os import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from lib.models.backbones.backbone_selector import BackboneSelector from lib.models.tools.module_helper import ModuleHelper from lib.utils.helpers.offset_helper import DTOffsetConfig from lib.models.backbones.hrnet.hrnet_backbone import BasicBlock class SegFix_HRNet(nn.Module): def __init__(self, configer): super(SegFix_HRNet, self).__init__() self.configer = configer self.backbone = BackboneSelector(configer).get_backbone() backbone_name = self.configer.get('network', 'backbone') width = int(backbone_name[-2:]) if 'hrnet' in backbone_name: in_channels = width * 15 else: in_channels = width * 31 num_masks = 2 num_directions = DTOffsetConfig.num_classes mid_channels = 256 self.dir_head = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=1, stride=1, padding=0, bias=False), ModuleHelper.BNReLU(mid_channels, bn_type=self.configer.get( 'network', 'bn_type')), nn.Conv2d(mid_channels, num_directions, kernel_size=1, stride=1, padding=0, bias=False)) self.mask_head = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=1, stride=1, padding=0, bias=False), ModuleHelper.BNReLU(mid_channels, bn_type=self.configer.get( 'network', 'bn_type')), nn.Conv2d(mid_channels, num_masks, kernel_size=1, stride=1, padding=0, bias=False)) def forward(self, x_): x = self.backbone(x_) _, _, h, w = x[0].size() feat1 = x[0] for i in range(1, len(x)): x[i] = F.interpolate(x[i], size=(h, w), mode='bilinear', align_corners=True) feats = torch.cat(x, 1) mask_map = self.mask_head(feats) dir_map = self.dir_head(feats) return mask_map, dir_map
the-stack_0_26754
import tensorflow as tf def initial(cell_number,n_actions,n_state,learning_rate,model_i,round_size): tf.reset_default_graph() gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) input = tf.placeholder(tf.float32, [None, round_size, n_state], name="input_x") # 1*30 lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=cell_number, state_is_tuple=True) _, final_state = tf.nn.dynamic_rnn(cell=lstm_cell, inputs=input, dtype=tf.float32) W3 = tf.get_variable("W3", shape=[cell_number, n_actions], initializer=tf.contrib.layers.xavier_initializer()) B3 = tf.get_variable("B3", shape=[1, n_actions], initializer=tf.constant_initializer()) score = tf.matmul(final_state[1], W3) + B3 probability = tf.nn.softmax(score) r = tf.placeholder(tf.float32, [None, n_actions], name="input_r") constant = tf.placeholder(tf.float32, name="Constant") same_state_sum = -tf.reduce_sum(r * constant * probability, axis=1) loss = tf.reduce_sum(same_state_sum, axis=0) train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss) init = tf.global_variables_initializer() saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) saver.save(sess, './model_' + str(model_i) + '/initial.ckpt')
the-stack_0_26755
import collections from celery.result import AsyncResult from flask import Flask, redirect, render_template, request from flask.json import jsonify from tasks import make_celery import glob import itertools import json import os import re import sys import subprocess import time app = Flask(__name__) app.config.from_object('config') celery = make_celery(app) @celery.task(bind=True) def generate(self, text="", sharpen_preset="Off", width=832, height=512, steps=250, out_name=None, init_image=""): kwargs = { 'text': text, 'root_path': 'out_diffusion', 'setup': False, 'out_name': out_name or str(int(time.time())), 'sharpen_preset': sharpen_preset, 'width': int(width), 'height': int(height), 'init_image': init_image, 'steps': int(steps), 'skip_steps': 0, 'inter_saves': 3 } sys.path.append(".") from diffuse import main from argparse import Namespace main(argparse_args=Namespace(**kwargs), task=self) @app.route("/tasks", methods=["POST"]) def run_task(): task = generate.delay(**request.form) return redirect(f'/?task_id={task.id}') @app.route("/tasks/<task_id>") def get_status(task_id): task_result = AsyncResult(task_id) result = { "task_id": task_id, "task_status": task_result.status, "task_result": task_result.result, } return jsonify(result) def read_settings(fname): with open(fname) as f: settings = json.load(f) return settings.get("text_prompts", {}).get('0', []) def get_gpus(): p = subprocess.run("nvidia-smi --query-gpu=name,uuid --format=csv,noheader", capture_output=True, shell=True) rows = filter(None, p.stdout.decode("utf-8").split("\n")) rows = [row.split(", ") for row in rows] return [ {"name": row[0], "uuid": row[1]} for row in rows ] @app.route("/") def get_generated(): desired_prompt = request.args.get("prompt", "") data_root = os.environ.get("DATA_ROOT", ".") srcs = [ src[len(data_root):] for src in glob.glob(os.path.join(data_root, "out_diffusion/images_out/*/*.png")) ] srcs.reverse() thumbs = [src.replace(".png", ".png!md") for src in srcs] ids = [re.search(r"out_diffusion/images_out/([^/]+)/.+\.png$", src).group(1) for src in srcs] prompts = [ str(read_settings(fname)) for fname in glob.glob(os.path.join(os.environ.get("DATA_ROOT", "./"), "out_diffusion/images_out/*/*_settings.txt"), recursive=True) ] prompts.reverse() prompt_attempts = collections.defaultdict(list) for prompt, img_id, thumb in zip(prompts, ids, thumbs): prompt_attempts[prompt].append(f"<a href=\"#{img_id}\"><img src=\"{thumb}\" /></a>") form = render_template("form.html") poll = render_template("poll.html") index = "<ul>" + "\n".join([f"<li>{prompt}<br/>{''.join(links)}</li>" for prompt, links in prompt_attempts.items()]) + "</ul>" images = [ f"<figure id=\"{img_id}\"><img src=\"{src}\" alt=\"{prompt}\"/><figcaption>{prompt}</figcaption></figure>" for img_id, src, prompt in zip(ids, srcs, prompts) ] return poll + form + index + (f"{desired_prompt}" if desired_prompt else "") + "\n".join(images) @app.route('/info') def info(): resp = { 'connecting_ip': request.headers['X-Real-IP'], 'proxy_ip': request.headers['X-Forwarded-For'], 'host': request.headers['Host'], 'user-agent': request.headers['User-Agent'] } return jsonify(resp) @app.route('/flask-health-check') def flask_health_check(): return "success"
the-stack_0_26756
import os def printFenGeFu(msg:str): print("*"*10,msg,"*"*10) printFenGeFu(" create dir ") os.mkdir("./testMkdir") printFenGeFu(" delete dir ") os.rmdir("./testMkdir") printFenGeFu(" file text write ") content=''' i am a programer and lucky dog do you love me? ''' file=open(r"./text.txt",'w') file.write(content) file.close() printFenGeFu(" file text read ") fr=open(r"./text.txt") while True: line=fr.readline() if len(line)==0: break print(line) fr.close()
the-stack_0_26757
import mmcv from mmcv.image import tensor2imgs from mmdet.core import bbox_mapping from ..builder import DETECTORS, build_backbone, build_head, build_neck from .base import BaseDetector @DETECTORS.register_module() class RPN(BaseDetector): """Implementation of Region Proposal Network.""" def __init__(self, backbone, neck, rpn_head, train_cfg, test_cfg, pretrained=None): super(RPN, self).__init__() self.backbone = build_backbone(backbone) self.neck = build_neck(neck) if neck is not None else None rpn_train_cfg = train_cfg.rpn if train_cfg is not None else None rpn_head.update(train_cfg=rpn_train_cfg) rpn_head.update(test_cfg=test_cfg.rpn) self.rpn_head = build_head(rpn_head) self.train_cfg = train_cfg self.test_cfg = test_cfg self.init_weights(pretrained=pretrained) def init_weights(self, pretrained=None): """Initialize the weights in detector. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ super(RPN, self).init_weights(pretrained) self.backbone.init_weights(pretrained=pretrained) if self.with_neck: self.neck.init_weights() self.rpn_head.init_weights() def extract_feat(self, img): """Extract features. Args: img (torch.Tensor): Image tensor with shape (n, c, h ,w). Returns: list[torch.Tensor]: Multi-level features that may have different resolutions. """ x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def forward_dummy(self, img): """Dummy forward function.""" x = self.extract_feat(img) rpn_outs = self.rpn_head(x) return rpn_outs def forward_train(self, img, img_metas, gt_bboxes=None, gt_bboxes_ignore=None): """ Args: img (Tensor): Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled. img_metas (list[dict]): A List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see :class:`mmdet.datasets.pipelines.Collect`. gt_bboxes (list[Tensor]): Each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format. gt_bboxes_ignore (None | list[Tensor]): Specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ if (isinstance(self.train_cfg.rpn, dict) and self.train_cfg.rpn.get('debug', False)): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) losses = self.rpn_head.forward_train(x, img_metas, gt_bboxes, None, gt_bboxes_ignore) return losses def simple_test(self, img, img_metas, rescale=False): """Test function without test time augmentation. Args: imgs (list[torch.Tensor]): List of multiple images img_metas (list[dict]): List of image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[np.ndarray]: proposals """ x = self.extract_feat(img) proposal_list = self.rpn_head.simple_test_rpn(x, img_metas) if rescale: for proposals, meta in zip(proposal_list, img_metas): proposals[:, :4] /= proposals.new_tensor(meta['scale_factor']) return [proposal.cpu().numpy() for proposal in proposal_list] def aug_test(self, imgs, img_metas, rescale=False): """Test function with test time augmentation. Args: imgs (list[torch.Tensor]): List of multiple images img_metas (list[dict]): List of image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[np.ndarray]: proposals """ proposal_list = self.rpn_head.aug_test_rpn( self.extract_feats(imgs), img_metas) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] flip_direction = img_meta['flip_direction'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip, flip_direction) return [proposal.cpu().numpy() for proposal in proposal_list] def show_result(self, data, result, top_k=20, **kwargs): """Show RPN proposals on the image. Args: data (str or np.ndarray): Image filename or loaded image. result (Tensor or tuple): The results to draw over `img` bbox_result or (bbox_result, segm_result). top_k (int): Plot the first k bboxes only if set positive. Default: 20 Returns: np.ndarray: The image with bboxes drawn on it. """ mmcv.imshow_bboxes(data, result, top_k=top_k)
the-stack_0_26759
import _plotly_utils.basevalidators class FamilyValidator(_plotly_utils.basevalidators.StringValidator): def __init__( self, plotly_name='family', parent_name='choropleth.colorbar.titlefont', **kwargs ): super(FamilyValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='colorbars', no_blank=True, role='style', strict=True, **kwargs )
the-stack_0_26760
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pretend import pytest import uuid from pyramid.httpexceptions import HTTPBadRequest, HTTPNotFound from webob.multidict import MultiDict, NoVars from warehouse.admin.views import users as views from warehouse.packaging.models import Project from ....common.db.accounts import User, UserFactory, EmailFactory from ....common.db.packaging import JournalEntryFactory, ProjectFactory, RoleFactory class TestUserList: def test_no_query(self, db_request): users = sorted( [UserFactory.create() for _ in range(30)], key=lambda u: u.username.lower() ) result = views.user_list(db_request) assert result == {"users": users[:25], "query": None} def test_with_page(self, db_request): users = sorted( [UserFactory.create() for _ in range(30)], key=lambda u: u.username.lower() ) db_request.GET["page"] = "2" result = views.user_list(db_request) assert result == {"users": users[25:], "query": None} def test_with_invalid_page(self): request = pretend.stub(params={"page": "not an integer"}) with pytest.raises(HTTPBadRequest): views.user_list(request) def test_basic_query(self, db_request): users = sorted( [UserFactory.create() for _ in range(5)], key=lambda u: u.username.lower() ) db_request.GET["q"] = users[0].username result = views.user_list(db_request) assert result == {"users": [users[0]], "query": users[0].username} def test_wildcard_query(self, db_request): users = sorted( [UserFactory.create() for _ in range(5)], key=lambda u: u.username.lower() ) db_request.GET["q"] = users[0].username[:-1] + "%" result = views.user_list(db_request) assert result == {"users": [users[0]], "query": users[0].username[:-1] + "%"} def test_email_query(self, db_request): users = sorted( [UserFactory.create() for _ in range(5)], key=lambda u: u.username.lower() ) emails = [EmailFactory.create(user=u, primary=True) for u in users] db_request.GET["q"] = "email:" + emails[0].email result = views.user_list(db_request) assert result == {"users": [users[0]], "query": "email:" + emails[0].email} def test_or_query(self, db_request): users = sorted( [UserFactory.create() for _ in range(5)], key=lambda u: u.username.lower() ) emails = [EmailFactory.create(user=u, primary=True) for u in users] db_request.GET["q"] = " ".join( [ users[0].username, users[1].username[:-1] + "%", "email:" + emails[2].email, "email:" + emails[3].email[:-5] + "%", ] ) result = views.user_list(db_request) assert result == {"users": users[:4], "query": db_request.GET["q"]} def test_ignores_invalid_query(self, db_request): users = sorted( [UserFactory.create() for _ in range(5)], key=lambda u: u.username.lower() ) db_request.GET["q"] = "foobar:what" result = views.user_list(db_request) assert result == {"users": users, "query": "foobar:what"} class TestUserDetail: def test_404s_on_nonexistant_user(self, db_request): user = UserFactory.create() user_id = uuid.uuid4() while user.id == user_id: user_id = uuid.uuid4() db_request.matchdict["user_id"] = str(user_id) with pytest.raises(HTTPNotFound): views.user_detail(db_request) def test_gets_user(self, db_request): email = EmailFactory.create(primary=True) user = UserFactory.create(emails=[email]) project = ProjectFactory.create() roles = sorted([RoleFactory(project=project, user=user, role_name="Owner")]) db_request.matchdict["user_id"] = str(user.id) db_request.POST = NoVars() result = views.user_detail(db_request) assert result["user"] == user assert result["roles"] == roles assert result["form"].emails[0].primary.data def test_updates_user(self, db_request): user = UserFactory.create() db_request.matchdict["user_id"] = str(user.id) db_request.method = "POST" db_request.POST["name"] = "Jane Doe" db_request.POST = MultiDict(db_request.POST) db_request.current_route_path = pretend.call_recorder( lambda: "/admin/users/{}/".format(user.id) ) resp = views.user_detail(db_request) assert resp.status_code == 303 assert resp.location == "/admin/users/{}/".format(user.id) assert user.name == "Jane Doe" class TestUserDelete: def test_deletes_user(self, db_request, monkeypatch): user = UserFactory.create() project = ProjectFactory.create() another_project = ProjectFactory.create() journal = JournalEntryFactory(submitted_by=user) RoleFactory(project=project, user=user, role_name="Owner") deleted_user = UserFactory.create(username="deleted-user") db_request.matchdict["user_id"] = str(user.id) db_request.params = {"username": user.username} db_request.route_path = pretend.call_recorder(lambda a: "/foobar") db_request.user = UserFactory.create() db_request.remote_addr = "10.10.10.10" result = views.user_delete(db_request) db_request.db.flush() assert not db_request.db.query(User).get(user.id) assert db_request.db.query(Project).all() == [another_project] assert db_request.route_path.calls == [pretend.call("admin.user.list")] assert result.status_code == 303 assert result.location == "/foobar" assert journal.submitted_by == deleted_user def test_deletes_user_bad_confirm(self, db_request, monkeypatch): user = UserFactory.create() project = ProjectFactory.create() RoleFactory(project=project, user=user, role_name="Owner") db_request.matchdict["user_id"] = str(user.id) db_request.params = {"username": "wrong"} db_request.route_path = pretend.call_recorder(lambda a, **k: "/foobar") result = views.user_delete(db_request) db_request.db.flush() assert db_request.db.query(User).get(user.id) assert db_request.db.query(Project).all() == [project] assert db_request.route_path.calls == [ pretend.call("admin.user.detail", user_id=user.id) ] assert result.status_code == 303 assert result.location == "/foobar"
the-stack_0_26761
"""Test PyPlumIO lambda structure.""" from pyplumio.structures.lambda_ import ( LAMBDA_LEVEL, LAMBDA_STATUS, LAMBDA_TARGET, from_bytes, ) _empty = bytearray([0xFF]) _message = bytearray([0x1, 0x2, 0x28, 0x0]) _data = {LAMBDA_STATUS: 1, LAMBDA_TARGET: 2, LAMBDA_LEVEL: 40} def test_from_bytes_empty(): """Test conversion from bytes with empty data.""" data, offset = from_bytes(_empty) assert data == {} assert offset == 1 def test_from_bytes(): """Test conversion from bytes.""" data, offset = from_bytes(_message) assert data == _data assert offset == 4
the-stack_0_26763
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict import functools import re from typing import Dict, Optional, Sequence, Tuple, Type, Union import pkg_resources from google.api_core.client_options import ClientOptions from google.api_core import exceptions as core_exceptions from google.api_core import gapic_v1 from google.api_core import retry as retries from google.auth import credentials as ga_credentials # type: ignore from google.oauth2 import service_account # type: ignore try: OptionalRetry = Union[retries.Retry, gapic_v1.method._MethodDefault] except AttributeError: # pragma: NO COVER OptionalRetry = Union[retries.Retry, object] # type: ignore from google.cloud.errorreporting_v1beta1.services.error_stats_service import pagers from google.cloud.errorreporting_v1beta1.types import common from google.cloud.errorreporting_v1beta1.types import error_stats_service from .transports.base import ErrorStatsServiceTransport, DEFAULT_CLIENT_INFO from .transports.grpc_asyncio import ErrorStatsServiceGrpcAsyncIOTransport from .client import ErrorStatsServiceClient class ErrorStatsServiceAsyncClient: """An API for retrieving and managing error statistics as well as data for individual events. """ _client: ErrorStatsServiceClient DEFAULT_ENDPOINT = ErrorStatsServiceClient.DEFAULT_ENDPOINT DEFAULT_MTLS_ENDPOINT = ErrorStatsServiceClient.DEFAULT_MTLS_ENDPOINT error_group_path = staticmethod(ErrorStatsServiceClient.error_group_path) parse_error_group_path = staticmethod( ErrorStatsServiceClient.parse_error_group_path ) common_billing_account_path = staticmethod( ErrorStatsServiceClient.common_billing_account_path ) parse_common_billing_account_path = staticmethod( ErrorStatsServiceClient.parse_common_billing_account_path ) common_folder_path = staticmethod(ErrorStatsServiceClient.common_folder_path) parse_common_folder_path = staticmethod( ErrorStatsServiceClient.parse_common_folder_path ) common_organization_path = staticmethod( ErrorStatsServiceClient.common_organization_path ) parse_common_organization_path = staticmethod( ErrorStatsServiceClient.parse_common_organization_path ) common_project_path = staticmethod(ErrorStatsServiceClient.common_project_path) parse_common_project_path = staticmethod( ErrorStatsServiceClient.parse_common_project_path ) common_location_path = staticmethod(ErrorStatsServiceClient.common_location_path) parse_common_location_path = staticmethod( ErrorStatsServiceClient.parse_common_location_path ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: ErrorStatsServiceAsyncClient: The constructed client. """ return ErrorStatsServiceClient.from_service_account_info.__func__(ErrorStatsServiceAsyncClient, info, *args, **kwargs) # type: ignore @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: ErrorStatsServiceAsyncClient: The constructed client. """ return ErrorStatsServiceClient.from_service_account_file.__func__(ErrorStatsServiceAsyncClient, filename, *args, **kwargs) # type: ignore from_service_account_json = from_service_account_file @classmethod def get_mtls_endpoint_and_cert_source( cls, client_options: Optional[ClientOptions] = None ): """Return the API endpoint and client cert source for mutual TLS. The client cert source is determined in the following order: (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the client cert source is None. (2) if `client_options.client_cert_source` is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None. The API endpoint is determined in the following order: (1) if `client_options.api_endpoint` if provided, use the provided one. (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the default mTLS endpoint; if the environment variabel is "never", use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint. More details can be found at https://google.aip.dev/auth/4114. Args: client_options (google.api_core.client_options.ClientOptions): Custom options for the client. Only the `api_endpoint` and `client_cert_source` properties may be used in this method. Returns: Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the client cert source to use. Raises: google.auth.exceptions.MutualTLSChannelError: If any errors happen. """ return ErrorStatsServiceClient.get_mtls_endpoint_and_cert_source(client_options) # type: ignore @property def transport(self) -> ErrorStatsServiceTransport: """Returns the transport used by the client instance. Returns: ErrorStatsServiceTransport: The transport used by the client instance. """ return self._client.transport get_transport_class = functools.partial( type(ErrorStatsServiceClient).get_transport_class, type(ErrorStatsServiceClient) ) def __init__( self, *, credentials: ga_credentials.Credentials = None, transport: Union[str, ErrorStatsServiceTransport] = "grpc_asyncio", client_options: ClientOptions = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the error stats service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.ErrorStatsServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. """ self._client = ErrorStatsServiceClient( credentials=credentials, transport=transport, client_options=client_options, client_info=client_info, ) async def list_group_stats( self, request: Union[error_stats_service.ListGroupStatsRequest, dict] = None, *, project_name: str = None, time_range: error_stats_service.QueryTimeRange = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListGroupStatsAsyncPager: r"""Lists the specified groups. .. code-block:: from google.cloud import errorreporting_v1beta1 def sample_list_group_stats(): # Create a client client = errorreporting_v1beta1.ErrorStatsServiceClient() # Initialize request argument(s) request = errorreporting_v1beta1.ListGroupStatsRequest( project_name="project_name_value", ) # Make the request page_result = client.list_group_stats(request=request) # Handle the response for response in page_result: print(response) Args: request (Union[google.cloud.errorreporting_v1beta1.types.ListGroupStatsRequest, dict]): The request object. Specifies a set of `ErrorGroupStats` to return. project_name (:class:`str`): Required. The resource name of the Google Cloud Platform project. Written as ``projects/{projectID}`` or ``projects/{projectNumber}``, where ``{projectID}`` and ``{projectNumber}`` can be found in the `Google Cloud Console <https://support.google.com/cloud/answer/6158840>`__. Examples: ``projects/my-project-123``, ``projects/5551234``. This corresponds to the ``project_name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. time_range (:class:`google.cloud.errorreporting_v1beta1.types.QueryTimeRange`): Optional. List data for the given time range. If not set, a default time range is used. The field time_range_begin in the response will specify the beginning of this time range. Only ErrorGroupStats with a non-zero count in the given time range are returned, unless the request contains an explicit group_id list. If a group_id list is given, also ErrorGroupStats with zero occurrences are returned. This corresponds to the ``time_range`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.errorreporting_v1beta1.services.error_stats_service.pagers.ListGroupStatsAsyncPager: Contains a set of requested error group stats. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([project_name, time_range]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = error_stats_service.ListGroupStatsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if project_name is not None: request.project_name = project_name if time_range is not None: request.time_range = time_range # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.list_group_stats, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("project_name", request.project_name),) ), ) # Send the request. response = await rpc(request, retry=retry, timeout=timeout, metadata=metadata,) # This method is paged; wrap the response in a pager, which provides # an `__aiter__` convenience method. response = pagers.ListGroupStatsAsyncPager( method=rpc, request=request, response=response, metadata=metadata, ) # Done; return the response. return response async def list_events( self, request: Union[error_stats_service.ListEventsRequest, dict] = None, *, project_name: str = None, group_id: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListEventsAsyncPager: r"""Lists the specified events. .. code-block:: from google.cloud import errorreporting_v1beta1 def sample_list_events(): # Create a client client = errorreporting_v1beta1.ErrorStatsServiceClient() # Initialize request argument(s) request = errorreporting_v1beta1.ListEventsRequest( project_name="project_name_value", group_id="group_id_value", ) # Make the request page_result = client.list_events(request=request) # Handle the response for response in page_result: print(response) Args: request (Union[google.cloud.errorreporting_v1beta1.types.ListEventsRequest, dict]): The request object. Specifies a set of error events to return. project_name (:class:`str`): Required. The resource name of the Google Cloud Platform project. Written as ``projects/{projectID}``, where ``{projectID}`` is the `Google Cloud Platform project ID <https://support.google.com/cloud/answer/6158840>`__. Example: ``projects/my-project-123``. This corresponds to the ``project_name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. group_id (:class:`str`): Required. The group for which events shall be returned. This corresponds to the ``group_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.errorreporting_v1beta1.services.error_stats_service.pagers.ListEventsAsyncPager: Contains a set of requested error events. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([project_name, group_id]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = error_stats_service.ListEventsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if project_name is not None: request.project_name = project_name if group_id is not None: request.group_id = group_id # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.list_events, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("project_name", request.project_name),) ), ) # Send the request. response = await rpc(request, retry=retry, timeout=timeout, metadata=metadata,) # This method is paged; wrap the response in a pager, which provides # an `__aiter__` convenience method. response = pagers.ListEventsAsyncPager( method=rpc, request=request, response=response, metadata=metadata, ) # Done; return the response. return response async def delete_events( self, request: Union[error_stats_service.DeleteEventsRequest, dict] = None, *, project_name: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> error_stats_service.DeleteEventsResponse: r"""Deletes all error events of a given project. .. code-block:: from google.cloud import errorreporting_v1beta1 def sample_delete_events(): # Create a client client = errorreporting_v1beta1.ErrorStatsServiceClient() # Initialize request argument(s) request = errorreporting_v1beta1.DeleteEventsRequest( project_name="project_name_value", ) # Make the request response = client.delete_events(request=request) # Handle the response print(response) Args: request (Union[google.cloud.errorreporting_v1beta1.types.DeleteEventsRequest, dict]): The request object. Deletes all events in the project. project_name (:class:`str`): Required. The resource name of the Google Cloud Platform project. Written as ``projects/{projectID}``, where ``{projectID}`` is the `Google Cloud Platform project ID <https://support.google.com/cloud/answer/6158840>`__. Example: ``projects/my-project-123``. This corresponds to the ``project_name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.errorreporting_v1beta1.types.DeleteEventsResponse: Response message for deleting error events. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([project_name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = error_stats_service.DeleteEventsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if project_name is not None: request.project_name = project_name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.delete_events, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("project_name", request.project_name),) ), ) # Send the request. response = await rpc(request, retry=retry, timeout=timeout, metadata=metadata,) # Done; return the response. return response async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): await self.transport.close() try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( "google-cloud-errorreporting", ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() __all__ = ("ErrorStatsServiceAsyncClient",)
the-stack_0_26766
import logging import os import platform import time from enum import Enum from typing import NoReturn, Union, Optional import selenium.webdriver.chrome.options as c_op import selenium.webdriver.chrome.webdriver as c_wd import selenium.webdriver.firefox.options as f_op import selenium.webdriver.firefox.webdriver as f_wd from selenium import webdriver from selenium.common.exceptions import WebDriverException, TimeoutException from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as ec from selenium.webdriver.support.ui import WebDriverWait from SessionHandler.SessionObject import SessionObject, IndexedDB class Browser(Enum): CHROME = 'chrome' FIREFOX = 'firefox' class SessionHandler: __browser_choice = 0 __browser_options: Union[c_op.Options, f_op.Options] __browser_profile_list: 'list[str]' __browser_user_dir: str __custom_driver = False __driver: Union[c_wd.WebDriver, f_wd.WebDriver] = None __log: logging.Logger __session: SessionObject def __refresh_profile_list(self) -> NoReturn: if not self.__custom_driver: if os.path.isdir(self.__browser_user_dir): self.__log.debug('Getting browser profiles...') if self.__browser_choice == Browser.CHROME: self.__browser_profile_list = [''] for profile_dir in os.listdir(self.__browser_user_dir): if 'profile' in profile_dir.lower(): if profile_dir != 'System Profile': self.__browser_profile_list.append(profile_dir) elif self.__browser_choice == Browser.FIREFOX: # TODO: consider reading out the profiles.ini self.__browser_profile_list = [] for profile_dir in os.listdir(self.__browser_user_dir): if not profile_dir.endswith('.default'): if os.path.isdir(os.path.join(self.__browser_user_dir, profile_dir)): self.__browser_profile_list.append(profile_dir) self.__log.debug('Browser profiles registered.') else: self.__log.error('Browser user dir does not exist.') self.__browser_profile_list = [] else: # TODO: Figure out why I did that before raise AssertionError('Do not call this method while using a custom driver.') def __init_browser(self) -> NoReturn: self.__custom_driver = False self.__log.debug('Setting browser user dirs...') if self.__browser_choice == Browser.CHROME: self.__browser_options = webdriver.ChromeOptions() if self.__platform == 'windows': self.__browser_user_dir = os.path.join( os.environ['USERPROFILE'], 'Appdata', 'Local', 'Google', 'Chrome', 'User Data') elif self.__platform == 'linux': self.__browser_user_dir = os.path.join(os.environ['HOME'], '.config', 'google-chrome') elif self.__browser_choice == Browser.FIREFOX: self.__browser_options = webdriver.FirefoxOptions() if self.__platform == 'windows': self.__browser_user_dir = os.path.join(os.environ['APPDATA'], 'Mozilla', 'Firefox', 'Profiles') self.__browser_profile_list = os.listdir(self.__browser_user_dir) elif self.__platform == 'linux': self.__browser_user_dir = os.path.join(os.environ['HOME'], '.mozilla', 'firefox') self.__log.debug('Browser user dirs set.') self.__browser_options.headless = True self.__refresh_profile_list() def __get_cookies(self) -> dict: self.__log.debug('Executing getCookies function...') cookie_list = self.__driver.execute_script(''' return document.cookie.split("; "); ''') cookie_dict = {} for cookie in cookie_list: if len(cookie) == 0: continue cookie = cookie.split("=", maxsplit=1) cookie_dict[cookie[0]] = cookie[1] return cookie_dict def __set_cookies(self, cookie_dict: dict[str, str]) -> NoReturn: cookie_string = "" for key, value in cookie_dict.items(): cookie_string += f"{key}={value}; " self.__driver.execute_script(''' document.cookie = arguments[0]; ''', cookie_string) def __get_local_storage(self) -> 'dict[str, str]': self.__log.debug('Executing getLocalStorage function...') return self.__driver.execute_script(''' var localStorageDict = {}; var ls = window.localStorage; for (var i = 0; i < ls.length; i++) { localStorageDict[ls.key(i)] = ls.getItem(ls.key(i)); } return localStorageDict; ''') def __set_local_storage(self, local_storage_dict: 'dict[str, str]') -> NoReturn: for ls_key, ls_val in local_storage_dict.items(): self.__driver.execute_script('window.localStorage.setItem(arguments[0], arguments[1]);', ls_key, ls_val) def __get_indexed_db(self) -> IndexedDB: idb_dict = {'url': self.__session.get_url(), 'databases': {}} idb_db_names = self.__session.get_idb_db_names(self.__driver) if self.__session.idb_special_treatment: self.__log.info("IDB special treatment required.") idb_st_layout = self.__session.get_idb_st_layout() else: idb_st_layout = None self.__log.debug('Executing getIndexedDb function...') # FIXME: Use driver.execute_async_script() in the future self.__driver.execute_script(''' document.pySessionHandler = {}; document.pySessionHandler.idbObject = {}; document.pySessionHandler.idbReady = 0; document.pySessionHandler.idbNames = arguments[0]; document.pySessionHandler.idbStLayout = arguments[1]; // This could be so easy // https://developer.mozilla.org/en-US/docs/Web/API/IDBFactory/databases#browser_compatibility // indexedDB.databases(); async function getAllIndexedDBs() { for (const dbName of document.pySessionHandler.idbNames) { document.pySessionHandler.idbObject[dbName] = {}; document.pySessionHandler.db = await new Promise((resolve, reject) => { document.pySessionHandler.openRequest = indexedDB.open(dbName); document.pySessionHandler.openRequest.onsuccess = _ => resolve( document.pySessionHandler.openRequest.result ); }); document.pySessionHandler.idbObject[dbName]['name'] = document.pySessionHandler.db.name; document.pySessionHandler.idbObject[dbName]['version'] = document.pySessionHandler.db.version; document.pySessionHandler.idbObject[dbName]['objectStores'] = {}; for (const objectStoreName of document.pySessionHandler.db.objectStoreNames) { document.pySessionHandler.idbObject[dbName]['objectStores'][objectStoreName] = {}; document.pySessionHandler.osTransaction = document.pySessionHandler.db.transaction( objectStoreName ); document.pySessionHandler.objectStore = document.pySessionHandler.osTransaction.objectStore( objectStoreName ); document.pySessionHandler.idbObject[dbName]['objectStores'][objectStoreName] = {}; document.pySessionHandler.idbObject[dbName]['objectStores'][objectStoreName]['name'] = objectStoreName; document.pySessionHandler.idbObject[dbName]['objectStores'][objectStoreName]['indices'] = {}; for (const idbIndexName of Array.from(document.pySessionHandler.objectStore.indexNames)) { idbIndex = document.pySessionHandler.objectStore.index(idbIndexName); document.pySessionHandler.idbObject[dbName]['objectStores'][objectStoreName]['indices'][ idbIndex.name ] = {'unique': idbIndex.unique, 'keyPath': idbIndex.keyPath, 'multiEntry': idbIndex.multiEntry}; } document.pySessionHandler.idbObject[dbName]['objectStores'][objectStoreName]['keyPath'] = document.pySessionHandler.objectStore.keyPath; document.pySessionHandler.idbObject[dbName]['objectStores'][objectStoreName]['autoIncrement'] = document.pySessionHandler.objectStore.autoIncrement; document.pySessionHandler.osName = objectStoreName; if (document.pySessionHandler.idbStLayout != null && document.pySessionHandler.idbStLayout[dbName] != undefined && document.pySessionHandler.idbStLayout[dbName][document.pySessionHandler.osName] != undefined) { document.pySessionHandler.idbObject[dbName]['objectStores'][document.pySessionHandler.osName]['data'] = []; } else { document.pySessionHandler.idbObject[dbName]['objectStores'][document.pySessionHandler.osName]['data'] = await new Promise((resolve, reject) => { document.pySessionHandler.osGetAllRequest = document.pySessionHandler.objectStore.getAll(); document.pySessionHandler.osGetAllRequest.onsuccess = _ => resolve(document.pySessionHandler.osGetAllRequest.result); }); } } document.pySessionHandler.db.close(); document.pySessionHandler.idbReady++; } } getAllIndexedDBs(); ''', idb_db_names, idb_st_layout) self.__log.debug('Waiting until IDB operation is done...') while not self.__driver.execute_script( f'return document.pySessionHandler.idbReady == {len(idb_db_names)};'): time.sleep(1) self.__log.debug('Getting IDB results...') idb_dict['databases'] = self.__driver.execute_script( 'return document.pySessionHandler.idbObject;') self.__driver.execute_script('document.pySessionHandler = {};') if idb_st_layout is not None: self.__log.info("Running special actions...") st_data = self.__session.do_idb_st_get_action(self.__driver) for idb_st_db, idb_st_os_list in idb_st_layout.items(): for idb_st_os in idb_st_os_list: idb_dict['databases'][idb_st_db]['objectStores'][idb_st_os]['data'] = st_data[idb_st_db][idb_st_os] return IndexedDB.create_from_dict(idb_dict) def __set_indexed_db(self, idb: IndexedDB) -> NoReturn: self.__log.debug('Inserting setIDBObjects function...') self.__driver.execute_script(''' document.pySessionHandler = {}; // Reference PoC: https://github.com/jeliebig/WaWebSessionHandler/issues/15#issuecomment-893716129 // PoC by: https://github.com/thewh1teagle document.pySessionHandler.setAllObjects = async function (idb_data, stLayout) { idb_dbs = idb_data['databases']; for (const [idbDbName, idbDbProps] of Object.entries(idb_dbs)) { await new Promise((resolve, reject) => { deleteRequest = indexedDB.deleteDatabase(idbDbName); deleteRequest.onsuccess = _ => resolve(_); deleteRequest.onerror = _ => resolve(_); }); await new Promise((resolve, reject) => { openRequest = indexedDB.open(idbDbName, idbDbProps['version']); openRequest.onupgradeneeded = async function(event) { db = event.target.result; for (const [idbOsName, idbOsProps] of Object.entries(idbDbProps['objectStores'])) { console.log("OS:", idbOsName, idbOsProps); objectStoreOptions = { autoIncrement: idbOsProps['autoIncrement'] }; if (idbOsProps['keyPath'].length > 0){ objectStoreOptions['keyPath'] = (idbOsProps['keyPath'].length == 1 ? idbOsProps['keyPath'].join('') : idbOsProps['keyPath']); } objectStore = db.createObjectStore(idbOsName, objectStoreOptions); containsUniqueIndex = false; for (const [idbIndexName, idbIndexOptions] of Object.entries(idbOsProps['indices'])) { if (idbIndexOptions['unique']) { containsUniqueIndex = true; } objectStore.createIndex(idbIndexName, idbIndexOptions['keyPath'],{ unique: idbIndexOptions['unique'], multiEntry: idbIndexOptions['multiEntry'] }); } if (!(stLayout != null && stLayout[idbDbName] != undefined && stLayout[idbDbName][idbOsName] != undefined)) { i = 1; for (const idbOsData of idbOsProps['data']) { if (containsUniqueIndex || idbOsProps['keyPath'].length > 0) { await new Promise((dResolve, dReject) => { addRequest = objectStore.add(idbOsData); addRequest.onsuccess = _ => dResolve(); }); } else { await new Promise((dResolve, dReject) => { addRequest = objectStore.add(idbOsData, i); addRequest.onsuccess = _ => dResolve(); }); } i++; } } } db.close(); resolve(); } }); } }; document.pySessionHandler.setAllObjectsAsync = async function(idb_data, stLayout, resolve) { console.log(idb_data, stLayout); await document.pySessionHandler.setAllObjects(idb_data, stLayout); resolve(); }; ''') self.__log.debug('setIDBObjects function inserted.') self.__log.info('Writing IDB data...') self.__driver.execute_async_script(''' var callback = arguments[arguments.length - 1]; document.pySessionHandler.setAllObjectsAsync(arguments[0], arguments[1], callback); ''', idb.as_dict(), self.__session.get_idb_st_layout() if self.__session.idb_special_treatment else None) if self.__session.idb_special_treatment: self.__log.info("IDB special treatment required. Running special actions...") st_layout = self.__session.get_idb_st_layout() st_data = {} for st_db, st_os_list in st_layout.items(): st_data[st_db] = {} for st_os in st_os_list: st_data[st_db][st_os] = idb.get_db(st_db).get_object_store(st_os).get_data() self.__session.do_idb_st_set_action(self.__driver, st_data) self.__log.info("Finished writing data to IDB!") def __verify_profile_name_exists(self, profile_name: str) -> bool: if self.__custom_driver: raise AssertionError('Do not call this method if you are using a custom webdriver.') # NOTE: Is this still required? if not isinstance(profile_name, str): raise TypeError('The provided profile_name is not a string.') return True if profile_name in self.__browser_profile_list else False def __wait_for_login(self, timeout=120): login_success = True self.__log.info('Waiting for login... [Timeout: %ss]', timeout) # TODO: rewrite this for the general approach self.__log.debug(f'Waiting until {self.__session.get_name()} finished loading...') try: WebDriverWait(self.__driver, 120).until( ec.visibility_of_element_located((By.TAG_NAME, 'h1')) ) self.__log.info('Login completed.') except TimeoutException: login_success = False self.__log.error('Login was not completed in time. Aborting...') return login_success def __start_session(self, options: Optional[Union[c_op.Options, f_op.Options]] = None, profile_name: Optional[str] = None, wait_for_login=True) -> NoReturn: if not self.__custom_driver and options is None: raise ValueError("Do not call this method without providing options for the webdriver.") if profile_name is None: if not self.__custom_driver: self.__log.info('Starting browser... [HEADLESS: %s]', str(options.headless)) if self.__browser_choice == Browser.CHROME: self.__driver = webdriver.Chrome(options=options) elif self.__browser_choice == Browser.FIREFOX: self.__driver = webdriver.Firefox(options=options) else: self.__log.debug('Checking if current browser window can be used...') if self.__browser_choice == Browser.CHROME: if self.__driver.current_url != 'chrome://new-tab-page/' and self.__driver.current_url != 'data:,': self.__driver.execute_script('window.open()') self.__driver.switch_to.window(self.__driver.window_handles[-1]) elif self.__browser_choice == Browser.FIREFOX: if self.__driver.current_url != "about:blank": self.__driver.execute_script('window.open()') self.__driver.switch_to.window(self.__driver.window_handles[-1]) self.__log.info(f'Loading {self.__session.get_name()}...') self.__driver.get(self.__session.get_url()) if wait_for_login: if not self.__wait_for_login(): return else: self.__log.info('Starting browser... [HEADLESS: %s]', str(options.headless)) if self.__browser_choice == Browser.CHROME: options.add_argument('user-data-dir=%s' % os.path.join(self.__browser_user_dir, profile_name)) self.__driver = webdriver.Chrome(options=options) elif self.__browser_choice == Browser.FIREFOX: fire_profile = webdriver.FirefoxProfile(os.path.join(self.__browser_user_dir, profile_name)) self.__driver = webdriver.Firefox(fire_profile, options=options) self.__log.info(f'Loading {self.__session.get_name()}...') self.__driver.get(self.__session.get_url()) def __start_visible_session(self, profile_name: Optional[str] = None, wait_for_login=True) -> NoReturn: options = self.__browser_options options.headless = False if profile_name is not None: self.__verify_profile_name_exists(profile_name) self.__start_session(options, profile_name, wait_for_login) def __start_invisible_session(self, profile_name: Optional[str] = None) -> NoReturn: if profile_name is not None: self.__verify_profile_name_exists(profile_name) self.__start_session(self.__browser_options, profile_name) def __get_profile_session(self, profile_name: Optional[str] = None) -> SessionObject: if profile_name is None: if self.__custom_driver: self.__start_session() else: self.__start_visible_session() else: self.__start_invisible_session(profile_name) cookies = self.__get_cookies() local_storage = self.__get_local_storage() indexed_db = self.__get_indexed_db() if not self.__custom_driver: self.__log.info("Closing browser...") self.__driver.quit() else: self.__log.info("Closing tab...") self.__driver.close() self.__driver.switch_to.window(self.__driver.window_handles[-1]) return SessionObject(self.__session.get_name(), self.__session.get_url(), self.__session.get_file_ext(), cookies, local_storage, indexed_db) # FIXME: get and set methods do very different things def __set_profile_session(self, session_object: SessionObject) -> NoReturn: self.__set_cookies(session_object.cookies) self.__set_local_storage(session_object.local_storage) self.__set_indexed_db(session_object.indexed_db) self.__log.info(f'Reloading {self.__session.get_name()}...') self.__driver.refresh() def __init__(self, session_class: SessionObject, browser: Optional[Union[Browser, str]] = None, driver: Optional[Union[c_wd.WebDriver, f_wd.WebDriver]] = None): self.__log = logging.getLogger('SessionHandler') self.__log.setLevel(logging.DEBUG) self.__platform = platform.system().lower() if self.__platform != 'windows' and self.__platform != 'linux': raise NotImplementedError('Only Windows and Linux are supported for now.') self.__log.debug('Detected platform: %s', self.__platform) self.__session = session_class if driver: self.set_custom_webdriver(driver) else: if browser: self.set_browser(browser) else: raise ValueError('Parameter browser is empty.\n' 'You need to set a browser or a custom driver during init.') self.__init_browser() def set_custom_webdriver(self, driver: Union[c_wd.WebDriver, f_wd.WebDriver]) -> NoReturn: if isinstance(driver, c_wd.WebDriver): self.__browser_choice = Browser.CHROME elif isinstance(driver, f_wd.WebDriver): self.__browser_choice = Browser.FIREFOX self.__custom_driver = True self.__driver = driver def set_browser(self, browser: Union[Browser, str]) -> NoReturn: if self.__driver is not None: self.__driver.quit() if isinstance(browser, str): if browser.lower() == 'chrome': self.__log.debug('Setting browser... [TYPE: %s]', 'Chrome') self.__browser_choice = Browser.CHROME elif browser.lower() == 'firefox': self.__log.debug('Setting browser... [TYPE: %s]', 'Firefox') self.__browser_choice = Browser.FIREFOX else: raise ValueError('The specified browser is invalid. Try to use "chrome" or "firefox" instead.') elif isinstance(browser, Browser): if browser == Browser.CHROME: self.__log.debug('Setting browser... [TYPE: %s]', 'Chrome') elif browser == Browser.FIREFOX: self.__log.debug('Setting browser... [TYPE: %s]', 'Firefox') self.__browser_choice = browser else: # NOTE: This shouldn't be needed anymore. raise TypeError( 'Type of browser invalid. Please use Browser.CHROME or Browser.FIREFOX instead.' ) self.__init_browser() # TODO: Think about type aliasing def get_active_session(self, use_profile: Optional[Union['list[str]', str]] = None, all_profiles=False) -> Union[ 'dict[str, SessionObject]', 'SessionObject' ]: self.__log.info('Make sure the specified browser profile is not being used by another process.') profile_storage_dict = {} use_profile_list = [] self.__refresh_profile_list() if self.__custom_driver: raise AssertionError('Do not call this method if you are using a custom webdriver.') if all_profiles: use_profile_list.extend(self.__browser_profile_list) self.__log.info( 'Trying to get active sessions for all browser profiles of the selected type...' ) else: if use_profile and use_profile not in self.__browser_profile_list: raise ValueError('Profile does not exist: %s', use_profile) elif use_profile is None: return self.__get_profile_session() elif use_profile and use_profile in self.__browser_profile_list: use_profile_list.append(use_profile) elif isinstance(use_profile, list): use_profile_list.extend(use_profile) else: raise ValueError( 'Invalid profile provided. Make sure you provided a list of profiles or a profile name.' ) for profile in use_profile_list: profile_storage_dict[profile] = self.__get_profile_session(profile) return profile_storage_dict def create_new_session(self) -> 'SessionObject': return self.__get_profile_session() def open_session(self) -> SessionObject: if not self.__custom_driver: self.__start_visible_session(wait_for_login=False) else: self.__start_session(wait_for_login=False) self.__set_profile_session(self.__session) return_session = SessionObject( self.__session.get_name(), self.__session.get_url(), self.__session.get_file_ext(), self.__get_cookies(), self.__get_local_storage(), self.__get_indexed_db() ) if not self.__custom_driver: self.__log.info('Do not reload the page manually.') self.__log.info('Waiting until the browser window is closed...') while True: try: _ = self.__driver.current_window_handle time.sleep(1) except WebDriverException: break return return_session
the-stack_0_26767
# Copyright 2020 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """A binary for generating samples given a folder of .wav files or encodings.""" import os from magenta.models.nsynth import utils from magenta.models.nsynth.wavenet import fastgen import tensorflow.compat.v1 as tf # noqa FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string("source_path", "", "Path to directory with either " ".wav files or precomputed encodings in .npy files." "If .wav files are present, use wav files. If no " ".wav files are present, use .npy files") tf.app.flags.DEFINE_boolean("npy_only", False, "If True, use only .npy files.") tf.app.flags.DEFINE_string("save_path", "", "Path to output file dir.") tf.app.flags.DEFINE_string("checkpoint_path", "model.ckpt-200000", "Path to checkpoint.") tf.app.flags.DEFINE_integer("sample_length", 64000, "Max output file size in samples.") tf.app.flags.DEFINE_integer("batch_size", 1, "Number of samples per a batch.") tf.app.flags.DEFINE_string("log", "INFO", "The threshold for what messages will be logged." "DEBUG, INFO, WARN, ERROR, or FATAL.") tf.app.flags.DEFINE_integer("gpu_number", 0, "Number of the gpu to use for multigpu generation.") def main(unused_argv=None): os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.gpu_number) source_path = utils.shell_path(FLAGS.source_path) checkpoint_path = utils.shell_path(FLAGS.checkpoint_path) save_path = utils.shell_path(FLAGS.save_path) if not save_path: raise ValueError("Must specify a save_path.") tf.logging.set_verbosity(FLAGS.log) # Use directory of files if tf.gfile.IsDirectory(source_path): files = tf.gfile.ListDirectory(source_path) file_extensions = [os.path.splitext(f)[1] for f in files] if ".wav" in file_extensions: file_extension = ".wav" elif ".npy" in file_extensions: file_extension = ".npy" else: raise RuntimeError("Folder must contain .wav or .npy files.") file_extension = ".npy" if FLAGS.npy_only else file_extension files = sorted([ os.path.join(source_path, fname) for fname in files if fname.lower().endswith(file_extension) ]) # Use a single file elif source_path.lower().endswith((".wav", ".npy")): file_extension = os.path.splitext(source_path.lower())[1] files = [source_path] else: raise ValueError( "source_path {} must be a folder or file.".format(source_path)) # Now synthesize from files one batch at a time batch_size = FLAGS.batch_size sample_length = FLAGS.sample_length n = len(files) for start in range(0, n, batch_size): end = start + batch_size batch_files = files[start:end] save_names = [ os.path.join(save_path, "gen_" + os.path.splitext(os.path.basename(f))[0] + ".wav") for f in batch_files ] # Encode waveforms if file_extension == ".wav": batch_data = fastgen.load_batch_audio( batch_files, sample_length=sample_length) encodings = fastgen.encode( batch_data, checkpoint_path, sample_length=sample_length) # Or load encodings else: encodings = fastgen.load_batch_encodings( batch_files, sample_length=sample_length) # Synthesize multi-gpu if FLAGS.gpu_number != 0: with tf.device("/device:GPU:%d" % FLAGS.gpu_number): fastgen.synthesize( encodings, save_names, checkpoint_path=checkpoint_path) # Single gpu else: fastgen.synthesize( encodings, save_names, checkpoint_path=checkpoint_path) def console_entry_point(): tf.app.run(main) if __name__ == "__main__": console_entry_point()
the-stack_0_26769
# -*- mode: python; coding: utf-8 -*- # Copyright 2019-2022 the AAS WorldWide Telescope project. # Licensed under the MIT License. """ Entrypoints for the "toasty pipeline" command-line tools. """ __all__ = """ pipeline_getparser pipeline_impl """.split() from fnmatch import fnmatch import glob import os.path import sys from wwt_data_formats.cli import EnsureGlobsExpandedAction from ..cli import die from . import NotActionableError def evaluate_imageid_args(searchdir, args): """ Figure out which image-ID's to process. """ matched_ids = set() globs_todo = set() for arg in args: if glob.has_magic(arg): globs_todo.add(arg) else: # If an ID is explicitly (non-gobbily) added, always add it to the # list, without checking if it exists in `searchdir`. We could check # for it in searchdir now, but we'll have to check later anyway, so # we don't bother. matched_ids.add(arg) if len(globs_todo): for filename in os.listdir(searchdir): for g in globs_todo: if fnmatch(filename, g): matched_ids.add(filename) break return sorted(matched_ids) # The "approve" subcommand def approve_setup_parser(parser): parser.add_argument( "--workdir", metavar="PATH", default=".", help="The working directory for this processing session", ) parser.add_argument( "cand_ids", nargs="+", action=EnsureGlobsExpandedAction, metavar="IMAGE-ID", help="Name(s) of image(s) to approve for publication (globs accepted)", ) def approve_impl(settings): from wwt_data_formats.folder import Folder, make_absolutizing_url_mutator from . import PipelineManager mgr = PipelineManager(settings.workdir) mgr.ensure_config() pub_url_prefix = mgr._config.get("publish_url_prefix") if pub_url_prefix: if pub_url_prefix[-1] != "/": pub_url_prefix += "/" proc_dir = mgr._ensure_dir("processed") app_dir = mgr._ensure_dir("approved") for cid in evaluate_imageid_args(proc_dir, settings.cand_ids): if not os.path.isdir(os.path.join(proc_dir, cid)): die(f"no such processed candidate ID {cid!r}") index_path = os.path.join(proc_dir, cid, "index.wtml") prefix = pub_url_prefix + cid + "/" try: f = Folder.from_file(os.path.join(proc_dir, cid, "index_rel.wtml")) f.mutate_urls(make_absolutizing_url_mutator(prefix)) with open(index_path, "wt", encoding="utf8") as f_out: f.write_xml(f_out) except Exception as e: print( "error: failed to create index.wtml from index_rel.wtml", file=sys.stderr, ) try: os.remove(index_path) except Exception: pass raise os.rename(os.path.join(proc_dir, cid), os.path.join(app_dir, cid)) # The "fetch" subcommand def fetch_setup_parser(parser): parser.add_argument( "--workdir", metavar="PATH", default=".", help="The working directory for this processing session", ) parser.add_argument( "cand_ids", nargs="+", action=EnsureGlobsExpandedAction, metavar="CAND-ID", help="Name(s) of candidate(s) to fetch and prepare for processing (globs accepted)", ) def fetch_impl(settings): from . import PipelineManager mgr = PipelineManager(settings.workdir) cand_dir = mgr._ensure_dir("candidates") rej_dir = mgr._ensure_dir("rejects") src = mgr.get_image_source() for cid in evaluate_imageid_args(cand_dir, settings.cand_ids): # Funky structure here is to try to ensure that cdata is closed in case # a NotActionable happens, so that we can move the directory on Windows. try: try: cdata = open(os.path.join(cand_dir, cid), "rb") except FileNotFoundError: die(f"no such candidate ID {cid!r}") try: print(f"fetching {cid} ... ", end="") sys.stdout.flush() cachedir = mgr._ensure_dir("cache_todo", cid) src.fetch_candidate(cid, cdata, cachedir) print("done") finally: cdata.close() except NotActionableError as e: print("not usable:", e) os.rename(os.path.join(cand_dir, cid), os.path.join(rej_dir, cid)) os.rmdir(cachedir) # The "init" subcommand def init_setup_parser(parser): parser.add_argument( "--azure-conn-env", metavar="ENV-VAR-NAME", help="The name of an environment variable contain an Azure Storage " "connection string", ) parser.add_argument( "--azure-container", metavar="CONTAINER-NAME", help="The name of a blob container in the Azure storage account", ) parser.add_argument( "--azure-path-prefix", metavar="PATH-PREFIX", help="A slash-separated path prefix for blob I/O within the container", ) parser.add_argument( "--local", metavar="PATH", help="Use the local-disk I/O backend" ) parser.add_argument( "workdir", nargs="?", metavar="PATH", default=".", help="The working directory for this processing session", ) def _pipeline_io_from_settings(settings): from . import azure_io, local_io if settings.local: return local_io.LocalPipelineIo(settings.local) if settings.azure_conn_env: conn_str = os.environ.get(settings.azure_conn_env) if not conn_str: die( "--azure-conn-env=%s provided, but that environment variable is unset" % settings.azure_conn_env ) if not settings.azure_container: die("--azure-container-name must be provided if --azure-conn-env is") path_prefix = settings.azure_path_prefix if not path_prefix: path_prefix = "" azure_io.assert_enabled() return azure_io.AzureBlobPipelineIo( conn_str, settings.azure_container, path_prefix ) die("An I/O backend must be specified with the arguments --local or --azure-*") def init_impl(settings): pipeio = _pipeline_io_from_settings(settings) os.makedirs(settings.workdir, exist_ok=True) pipeio.save_config(os.path.join(settings.workdir, "toasty-store-config.yaml")) # The "refresh" subcommand # # TODO: for large feeds, we should potentially add features to make it so that # we don't re-check every single candidate that's ever been posted. def refresh_setup_parser(parser): parser.add_argument( "--workdir", nargs="?", metavar="PATH", default=".", help="The working directory for this processing session", ) def refresh_impl(settings): from . import PipelineManager mgr = PipelineManager(settings.workdir) cand_dir = mgr._ensure_dir("candidates") rej_dir = mgr._ensure_dir("rejects") src = mgr.get_image_source() n_cand = 0 n_saved = 0 n_done = 0 n_skipped = 0 n_rejected = 0 for cand in src.query_candidates(): n_cand += 1 uniq_id = cand.get_unique_id() if mgr._pipeio.check_exists(uniq_id, "index.wtml"): n_done += 1 continue # skip already-done inputs if mgr._pipeio.check_exists(uniq_id, "skip.flag"): n_skipped += 1 continue # skip inputs that are explicitly flagged cand_path = os.path.join(cand_dir, uniq_id) try: with open(cand_path, "wb") as f: cand.save(f) n_saved += 1 except NotActionableError as e: os.remove(cand_path) with open(os.path.join(rej_dir, uniq_id, "wb")) as f: pass # for now, just touch the file n_rejected += 1 print(f"analyzed {n_cand} candidates from the image source") print(f" - {n_saved} processing candidates saved") print(f" - {n_rejected} rejected as definitely unusable") print(f" - {n_done} were already done") print(f" - {n_skipped} were already marked to be ignored") print() print("See the `candidates` directory for candidate image IDs.") # Other subcommands not yet split out. def pipeline_getparser(parser): subparsers = parser.add_subparsers(dest="pipeline_command") def add_manager_command(name): subp = subparsers.add_parser(name) subp.add_argument( "--workdir", nargs="?", metavar="WORKDIR", default=".", help="The local working directory", ) return subp approve_setup_parser(subparsers.add_parser("approve")) fetch_setup_parser(subparsers.add_parser("fetch")) add_manager_command("ignore-rejects") init_setup_parser(subparsers.add_parser("init")) add_manager_command("process-todos") add_manager_command("publish") refresh_setup_parser(subparsers.add_parser("refresh")) def pipeline_impl(settings): from . import PipelineManager if settings.pipeline_command is None: print('Run the "pipeline" command with `--help` for help on its subcommands') return if settings.pipeline_command == "approve": approve_impl(settings) elif settings.pipeline_command == "fetch": fetch_impl(settings) elif settings.pipeline_command == "ignore-rejects": mgr = PipelineManager(settings.workdir) mgr.ignore_rejects() elif settings.pipeline_command == "init": init_impl(settings) elif settings.pipeline_command == "process-todos": mgr = PipelineManager(settings.workdir) mgr.process_todos() elif settings.pipeline_command == "publish": mgr = PipelineManager(settings.workdir) mgr.publish() elif settings.pipeline_command == "refresh": refresh_impl(settings) else: die('unrecognized "pipeline" subcommand ' + settings.pipeline_command)
the-stack_0_26770
"""The Nextcloud integration.""" from datetime import timedelta import logging from nextcloudmonitor import NextcloudMonitor, NextcloudMonitorError import voluptuous as vol from homeassistant.const import ( CONF_PASSWORD, CONF_SCAN_INTERVAL, CONF_URL, CONF_USERNAME, ) from homeassistant.helpers import config_validation as cv, discovery from homeassistant.helpers.event import track_time_interval _LOGGER = logging.getLogger(__name__) DOMAIN = "nextcloud" NEXTCLOUD_COMPONENTS = ("sensor", "binary_sensor") SCAN_INTERVAL = timedelta(seconds=60) # Validate user configuration CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_URL): cv.url, vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_SCAN_INTERVAL, default=SCAN_INTERVAL): cv.time_period, } ) }, extra=vol.ALLOW_EXTRA, ) BINARY_SENSORS = ( "nextcloud_system_enable_avatars", "nextcloud_system_enable_previews", "nextcloud_system_filelocking.enabled", "nextcloud_system_debug", ) SENSORS = ( "nextcloud_system_version", "nextcloud_system_theme", "nextcloud_system_memcache.local", "nextcloud_system_memcache.distributed", "nextcloud_system_memcache.locking", "nextcloud_system_freespace", "nextcloud_system_cpuload", "nextcloud_system_mem_total", "nextcloud_system_mem_free", "nextcloud_system_swap_total", "nextcloud_system_swap_free", "nextcloud_system_apps_num_installed", "nextcloud_system_apps_num_updates_available", "nextcloud_system_apps_app_updates_calendar", "nextcloud_system_apps_app_updates_contacts", "nextcloud_system_apps_app_updates_tasks", "nextcloud_system_apps_app_updates_twofactor_totp", "nextcloud_storage_num_users", "nextcloud_storage_num_files", "nextcloud_storage_num_storages", "nextcloud_storage_num_storages_local", "nextcloud_storage_num_storages_home", "nextcloud_storage_num_storages_other", "nextcloud_shares_num_shares", "nextcloud_shares_num_shares_user", "nextcloud_shares_num_shares_groups", "nextcloud_shares_num_shares_link", "nextcloud_shares_num_shares_mail", "nextcloud_shares_num_shares_room", "nextcloud_shares_num_shares_link_no_password", "nextcloud_shares_num_fed_shares_sent", "nextcloud_shares_num_fed_shares_received", "nextcloud_shares_permissions_3_1", "nextcloud_server_webserver", "nextcloud_server_php_version", "nextcloud_server_php_memory_limit", "nextcloud_server_php_max_execution_time", "nextcloud_server_php_upload_max_filesize", "nextcloud_database_type", "nextcloud_database_version", "nextcloud_database_version", "nextcloud_activeUsers_last5minutes", "nextcloud_activeUsers_last1hour", "nextcloud_activeUsers_last24hours", ) def setup(hass, config): """Set up the Nextcloud integration.""" # Fetch Nextcloud Monitor api data conf = config[DOMAIN] try: ncm = NextcloudMonitor(conf[CONF_URL], conf[CONF_USERNAME], conf[CONF_PASSWORD]) except NextcloudMonitorError: _LOGGER.error("Nextcloud setup failed - Check configuration") hass.data[DOMAIN] = get_data_points(ncm.data) hass.data[DOMAIN]["instance"] = conf[CONF_URL] def nextcloud_update(event_time): """Update data from nextcloud api.""" try: ncm.update() except NextcloudMonitorError: _LOGGER.error("Nextcloud update failed") return False hass.data[DOMAIN] = get_data_points(ncm.data) hass.data[DOMAIN]["instance"] = conf[CONF_URL] # Update sensors on time interval track_time_interval(hass, nextcloud_update, conf[CONF_SCAN_INTERVAL]) for component in NEXTCLOUD_COMPONENTS: discovery.load_platform(hass, component, DOMAIN, {}, config) return True # Use recursion to create list of sensors & values based on nextcloud api data def get_data_points(api_data, key_path="", leaf=False): """Use Recursion to discover data-points and values. Get dictionary of data-points by recursing through dict returned by api until the dictionary value does not contain another dictionary and use the resulting path of dictionary keys and resulting value as the name/value for the data-point. returns: dictionary of data-point/values """ result = {} for key, value in api_data.items(): if isinstance(value, dict): if leaf: key_path = f"{key}_" if not leaf: key_path += f"{key}_" leaf = True result.update(get_data_points(value, key_path, leaf)) else: result[f"{DOMAIN}_{key_path}{key}"] = value leaf = False return result
the-stack_0_26773
# -*- coding: utf-8 -*- ## \package globals.stage # MIT licensing # See: docs/LICENSE.txt import os, shutil from globals.application import APP_name from globals.application import VERSION_string from globals.dateinfo import GetDate from globals.dateinfo import dtfmt from globals.strings import GS ## Creates a directory for storing temporary files # # \return # Path to new stage directory, or None if failed def CreateStage(): stage = u'/tmp' # Use current working directory if no write access to /tmp if not os.access(stage, os.W_OK): stage = os.getcwd() #suffix = u'{}{}{}_'.format(GetYear(), GetMonthInt(), GetDayInt()) #suffix = u'_temp' suffix = GetDate(dtfmt.STAMP) stage = u'{}/{}-{}_{}'.format(stage, GS(APP_name).lower(), VERSION_string, suffix) if os.access(os.path.dirname(stage), os.W_OK): # Start with fresh directory if os.path.isdir(stage): shutil.rmtree(stage) elif os.path.isfile(stage): os.remove(stage) os.makedirs(stage) if os.path.isdir(stage): return stage ## Remove a previously created stage directory # # \param stage # Absolute path to directory to remove # \return # \b \e True if stage does not exist def RemoveStage(stage): if os.access(stage, os.W_OK): shutil.rmtree(stage) return not os.path.exists(stage)
the-stack_0_26780
# =============================================================================== # Copyright 2017 ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== from __future__ import absolute_import from __future__ import print_function from traits.api import Array from chaco.abstract_overlay import AbstractOverlay from uncertainties import std_dev, nominal_value from numpy import array from pychron.core.stats import calculate_weighted_mean from pychron.pipeline.plot.plotter.arar_figure import BaseArArFigure from six.moves import zip class RadialOverlay(AbstractOverlay): xs = Array ys = Array def __init__(self, component, xs, ys, *args, **kw): super(RadialOverlay, self).__init__(component, *args, **kw) self._xs, self._ys = xs, ys def overlay(self, other_component, gc, view_bounds=None, mode="normal"): print(self.component.datasources) class Radial(BaseArArFigure): def plot(self, plots, legend=None): graph = self.graph for pid, (plotobj, po) in enumerate(zip(graph.plots, plots)): self._plot_radial(po, plotobj, pid) def post_make(self): g = self.graph for i, p in enumerate(g.plots): l, h = self.ymis[i], self.ymas[i] print(i, p, l, h) g.set_y_limits(l, h, pad='0.1', plotid=i) def _plot_radial(self, po, plot, pid): zs = array([nominal_value(a.uage) for a in self.analyses]) es = array([std_dev(a.uage) for a in self.analyses]) zm,_ = calculate_weighted_mean(zs, es) zs = (zs - zm)/es yma = max(abs(zs)) es = 1/es # xs = array([1/std_dev(a.uage) for a in self.analyses]) # ys = array([nominal_value(a.uage)/(std_dev(a.uage)) for a in self.analyses]) try: self.ymis[pid] = min(self.ymis[pid], -yma) self.ymas[pid] = max(self.ymas[pid], yma) except IndexError: self.ymis.append(-yma) self.ymas.append(yma) # overlay = RadialOverlay(plot, xs=xs, ys=ys) # plot.overlays.append(overlay) s, _ = self.graph.new_series(es, zs, type='scatter') self._add_scatter_inspector(s) self.graph.set_x_limits(min_=0) # self.graph.set_y_limits(min_=-a, max_=a, pad='0.1') # ============= EOF =============================================
the-stack_0_26783
from copy import deepcopy resolution = 10 grid = [] next = [] def setup(): global grid, next, cols, rows size(600, 400) this.surface.setTitle("Conways Game of Life") cols = width / resolution rows = height / resolution grid = [[floor(random(2)) for _ in range(rows)] for _ in range(cols)] next = [[0 for _ in range(rows)] for _ in range(cols)] frameRate(30) def draw(): global grid, next, cols, rows background(255) for i in range(cols): for j in range(rows): x = i * resolution y = j * resolution if grid[i][j] == 1: fill(255, 0, 0) stroke(0) rect(x, y, resolution, resolution) else: fill(200) stroke(0) rect(x, y, resolution, resolution) # Nächste Generation for i in range(cols): for j in range(rows): state = grid[i][j] neighbors = count_neighbors(grid, i, j) if ((state == 0) and (neighbors == 3)): next[i][j] = 1 elif ((state == 1) and (neighbors < 2 or neighbors > 3)): next[i][j] = 0 else: next[i][j] = state grid = deepcopy(next) def count_neighbors(li, x, y): global cols, rows sum = 0 for i in range(-1, 2): for j in range(-1, 2): col = (x + i + cols) % cols row = (y + j + rows) % rows sum += li[col][row] sum -= li[x][y] return(sum)
the-stack_0_26784
import torch import math irange = range def make_grid(tensor, nrow=8, padding=2, normalize=False, range=None, scale_each=False, pad_value=0): """Make a grid of images. Args: tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W) or a list of images all of the same size. nrow (int, optional): Number of images displayed in each row of the grid. The final grid size is ``(B / nrow, nrow)``. Default: ``8``. padding (int, optional): amount of padding. Default: ``2``. normalize (bool, optional): If True, shift the image to the range (0, 1), by the min and max values specified by :attr:`range`. Default: ``False``. range (tuple, optional): tuple (min, max) where min and max are numbers, then these numbers are used to normalize the image. By default, min and max are computed from the tensor. scale_each (bool, optional): If ``True``, scale each image in the batch of images separately rather than the (min, max) over all images. Default: ``False``. pad_value (float, optional): Value for the padded pixels. Default: ``0``. Example: See this notebook `here <https://gist.github.com/anonymous/bf16430f7750c023141c562f3e9f2a91>`_ """ if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): raise TypeError('tensor or list of tensors expected, got {}'.format(type(tensor))) # if list of tensors, convert to a 4D mini-batch Tensor if isinstance(tensor, list): tensor = torch.stack(tensor, dim=0) if tensor.dim() == 2: # single image H x W tensor = tensor.unsqueeze(0) if tensor.dim() == 3: # single image if tensor.size(0) == 1: # if single-channel, convert to 3-channel tensor = torch.cat((tensor, tensor, tensor), 0) tensor = tensor.unsqueeze(0) if tensor.dim() == 4 and tensor.size(1) == 1: # single-channel images tensor = torch.cat((tensor, tensor, tensor), 1) if normalize is True: tensor = tensor.clone() # avoid modifying tensor in-place if range is not None: assert isinstance(range, tuple), \ "range has to be a tuple (min, max) if specified. min and max are numbers" def norm_ip(img, min, max): img.clamp_(min=min, max=max) img.add_(-min).div_(max - min + 1e-5) def norm_range(t, range): if range is not None: norm_ip(t, range[0], range[1]) else: norm_ip(t, float(t.min()), float(t.max())) if scale_each is True: for t in tensor: # loop over mini-batch dimension norm_range(t, range) else: norm_range(tensor, range) if tensor.size(0) == 1: return tensor.squeeze(0) # make the mini-batch of images into a grid nmaps = tensor.size(0) xmaps = min(nrow, nmaps) ymaps = int(math.ceil(float(nmaps) / xmaps)) height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding) num_channels = tensor.size(1) grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value) k = 0 for y in irange(ymaps): for x in irange(xmaps): if k >= nmaps: break grid.narrow(1, y * height + padding, height - padding)\ .narrow(2, x * width + padding, width - padding)\ .copy_(tensor[k]) k = k + 1 return grid def save_image(tensor, fp, nrow=8, padding=2, normalize=False, range=None, scale_each=False, pad_value=0, format=None): """Save a given Tensor into an image file. Args: tensor (Tensor or list): Image to be saved. If given a mini-batch tensor, saves the tensor as a grid of images by calling ``make_grid``. fp (string or file object): A filename or a file object format(Optional): If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter should always be used. **kwargs: Other arguments are documented in ``make_grid``. """ from PIL import Image grid = make_grid(tensor, nrow=nrow, padding=padding, pad_value=pad_value, normalize=normalize, range=range, scale_each=scale_each) # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy() im = Image.fromarray(ndarr) im.save(fp, format=format)
the-stack_0_26785
#1.Counting sort计数排序 #2.Radix sort #3.Bucket sort import random #=============================Counting sort计数排序=============================== #生成随机列表 def random_int_list(start, stop, length): start, stop = (int(start), int(stop)) if start <=stop else (int(stop),int(start)) length = int(abs(length)) if length else 0 random_list = [] for i in range(length): random_list.append(random.randint(start,stop)) return random_list a = random_int_list(1,10,10) print('生成的原始序列A的数据为:',a) #扫描列表,找到最大值和最小值 def scan(arr,Gross,length): max = arr[0] min = arr[0] for i in range(length): if max == arr[i] or min ==arr[i]: continue if max<arr[i]: max = arr[i] if min > arr[i]: min = arr[i] if Gross == 'max': return max if Gross == 'min': return min max = scan(a,'max',len(a)) min = scan(a,'min',len(a)) print('最大值为:',max,' 最小值为:',min) #生成排序列表C,length=max-min+1 def sort_counting_list(length,arr): sort_list = [0] * length for i in range(length): #这个位置要在index上-1,因为序号是从0开始的 sort_list[arr[i]-1] = sort_list[arr[i]-1] + 1 return sort_list sort_list = sort_counting_list(len(a),a) print('计数排序序列',sort_list) temp = [] for i in range(len(a)): if sort_list[i]!=0: for j in range(sort_list[i]): #这个位置需要给index+1,因为要补回在生成排序列表C时减去的1 temp.append(i+1) print('Counting sort: ',temp) #============================Bucket sort桶排序============================ #根据函数划分原始数据,形成一个大致范围的有序 #例如根据f(k)=k/10 b = random_int_list(1,100,10) for i in range(10): x = random.random() if x!=0: b[i] = b[i] * x b = [("%.3f" % i) for i in b] b = list(map(float,b)) print('\n浮点化的B序列为:' , b) def sort_bucket_list(arr): #建立5个桶 bucket_alle = [[],[],[],[],[]] #建立最终表 erfolg = [] #建立映射关系存储表f(k)=0.1x bucket_list = [0.1]*len(arr) #print('bucket_list 函数中:',bucket_list) #建立映射关系f(k)=0.1x for i in range(len(arr)): bucket_list[i] = '%.3f' % (bucket_list[i] * arr[i]) #bucket_list = [('%.3f' % i)for i in bucket_list] bucket_list = list(map(float,bucket_list)) #根据映射关系开始分桶 for i in range(len(arr)): if 0<=bucket_list[i]<2: bucket_alle[0].append(arr[i]) elif 2<=bucket_list[i]<4: bucket_alle[1].append(arr[i]) elif 4<=bucket_list[i]<6: bucket_alle[2].append(arr[i]) elif 6<=bucket_list[i]<8: bucket_alle[3].append(arr[i]) elif 8<=bucket_list[i]: bucket_alle[4].append(arr[i]) else: print('数据错误!') print('分桶后:',bucket_alle) for i in range(5): if bucket_alle[i]!= None: bucket_alle[i].sort() for i in range(5): if bucket_alle[i]!=None: erfolg.extend(bucket_alle[i]) return erfolg bucket_list = sort_bucket_list(b) print('桶排序后:',bucket_list) #====================================Radix sort基数排序=========================== #先排低位,后排高位 c = random_int_list(1,99,10) print('\n生成随机正整数序列C(1-99):',c) def sort_radix_list(arr): radix_list = [[],[],[],[],[],[],[],[],[],[]] arrTemp = [] print(radix_list) #判断个位值,根据个位数值k放到radix_list中index为k的桶中 for i in range(len(arr)): radix_list[arr[i]%10].append(arr[i]) print('个位分桶:',radix_list) #有元素的桶内进行第一次排序 for i in range(len(arr)): if radix_list[i]!=None: radix_list[i].sort() arrTemp.extend(radix_list[i]) print('第一次桶内排序后生成一个新的中间序列:',arrTemp) #判断十位值,根据十位数值k放到radix_list中index为k的桶中 #首先初始化radix_list for i in range(len(arrTemp)): del radix_list[i][:] for i in range(len(arrTemp)): radix_list[arrTemp[i]%100//10].append(arrTemp[i]) print('十位分桶:',radix_list) #有元素的桶内进行第二次排序 #arrTemp初始化 del arrTemp[:] for i in range(len(arr)): if radix_list[i]!=None: radix_list[i].sort() arrTemp.extend(radix_list[i]) return arrTemp radix_list = sort_radix_list(c) print('基数排序后:',radix_list)
the-stack_0_26787
import face_alignment import skimage.io import numpy from argparse import ArgumentParser from skimage import img_as_ubyte from skimage.transform import resize from tqdm import tqdm import os import imageio import numpy as np import warnings warnings.filterwarnings("ignore") def extract_bbox(frame, fa): if max(frame.shape[0], frame.shape[1]) > 640: scale_factor = max(frame.shape[0], frame.shape[1]) / 640.0 frame = resize(frame, (int(frame.shape[0] / scale_factor), int(frame.shape[1] / scale_factor))) frame = img_as_ubyte(frame) else: scale_factor = 1 frame = frame[..., :3] bboxes = fa.face_detector.detect_from_image(frame[..., ::-1]) if len(bboxes) == 0: return [] return np.array(bboxes)[:, :-1] * scale_factor def bb_intersection_over_union(boxA, boxB): xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxA[3], boxB[3]) interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) iou = interArea / float(boxAArea + boxBArea - interArea) return iou def join(tube_bbox, bbox): xA = min(tube_bbox[0], bbox[0]) yA = min(tube_bbox[1], bbox[1]) xB = max(tube_bbox[2], bbox[2]) yB = max(tube_bbox[3], bbox[3]) return (xA, yA, xB, yB) def compute_bbox(start, end, fps, tube_bbox, frame_shape, inp, image_shape, increase_area=0.1): left, top, right, bot = tube_bbox width = right - left height = bot - top #Computing aspect preserving bbox width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width)) height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height)) left = int(left - width_increase * width) top = int(top - height_increase * height) right = int(right + width_increase * width) bot = int(bot + height_increase * height) top, bot, left, right = max(0, top), min(bot, frame_shape[0]), max(0, left), min(right, frame_shape[1]) h, w = bot - top, right - left start = start / fps end = end / fps time = end - start scale = f'{image_shape[0]}:{image_shape[1]}' return f'ffmpeg -i {inp} -ss {start} -t {time} -filter:v "crop={w}:{h}:{left}:{top}, scale={scale}" crop.mp4' def compute_bbox_trajectories(trajectories, fps, frame_shape, args): commands = [] for i, (bbox, tube_bbox, start, end) in enumerate(trajectories): if (end - start) > args.min_frames: command = compute_bbox(start, end, fps, tube_bbox, frame_shape, inp=args.inp, image_shape=args.image_shape, increase_area=args.increase) commands.append(command) return commands def process_video(args): device = 'cpu' if args.cpu else 'cuda' fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False, device=device) video = imageio.get_reader(args.inp) trajectories = [] previous_frame = None fps = video.get_meta_data()['fps'] commands = [] try: for i, frame in tqdm(enumerate(video)): frame_shape = frame.shape bboxes = extract_bbox(frame, fa) ## For each trajectory check the criterion not_valid_trajectories = [] valid_trajectories = [] for trajectory in trajectories: tube_bbox = trajectory[0] intersection = 0 for bbox in bboxes: intersection = max(intersection, bb_intersection_over_union(tube_bbox, bbox)) if intersection > args.iou_with_initial: valid_trajectories.append(trajectory) else: not_valid_trajectories.append(trajectory) commands += compute_bbox_trajectories(not_valid_trajectories, fps, frame_shape, args) trajectories = valid_trajectories ## Assign bbox to trajectories, create new trajectories for bbox in bboxes: intersection = 0 current_trajectory = None for trajectory in trajectories: tube_bbox = trajectory[0] current_intersection = bb_intersection_over_union(tube_bbox, bbox) if intersection < current_intersection and current_intersection > args.iou_with_initial: intersection = bb_intersection_over_union(tube_bbox, bbox) current_trajectory = trajectory ## Create new trajectory if current_trajectory is None: trajectories.append([bbox, bbox, i, i]) else: current_trajectory[3] = i current_trajectory[1] = join(current_trajectory[1], bbox) except IndexError as e: raise (e) commands += compute_bbox_trajectories(trajectories, fps, frame_shape, args) return commands if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--image_shape", default=(256, 256), type=lambda x: tuple(map(int, x.split(','))), help="Image shape") parser.add_argument("--increase", default=0.1, type=float, help='Increase bbox by this amount') parser.add_argument("--iou_with_initial", type=float, default=0.25, help="The minimal allowed iou with inital bbox") parser.add_argument("--inp", required=True, help='Input image or video') parser.add_argument("--min_frames", type=int, default=150, help='Minimum number of frames') parser.add_argument("--cpu", dest="cpu", action="store_true", help="cpu mode.") args = parser.parse_args() commands = process_video(args) for command in commands: print (command)
the-stack_0_26788
from clize import ArgumentError, Parameter, run def echo(*text:Parameter.REQUIRED, prefix:'p'='', suffix:'s'='', reverse:'r'=False, repeat:'n'=1): """Echoes text back :param text: The text to echo back :param reverse: Reverse text before processing :param repeat: Amount of times to repeat text :param prefix: Prepend this to each line in word :param suffix: Append this to each line in word """ text = ' '.join(text) if 'spam' in text: raise ArgumentError("I don't want any spam!") if reverse: text = text[::-1] text = text * repeat if prefix or suffix: return '\n'.join(prefix + line + suffix for line in text.split('\n')) return text def version(): """Show the version""" return 'echo version 0.2' if __name__ == '__main__': run(echo, alt=version)
the-stack_0_26789
import os from os.path import dirname, join import cPickle import numpy as np import sklearn import sklearn.linear_model from sklearn.model_selection import train_test_split import lmdb import sys sys.path.append(dirname(os.path.realpath(__file__))+"/../../../python/") import caffe def unpickle(file): """ unpickle the data """ fo = open(file, 'rb') dict = cPickle.load(fo) fo.close() return dict def shuffle_data(data, labels): data, _, labels, _ = sklearn.model_selection.train_test_split(data, labels, test_size=0.0, random_state=42) return data, labels def shuffle_data_random(data, labels): data, _, labels, _ = sklearn.model_selection.train_test_split(data, labels, test_size=0.0) return data, labels def load_data(train_file): """ load the train and test data""" d = unpickle(train_file) data = d['data'] #coarse_labels = d['coarse_labels'] fine_labels = d['fine_labels'] length = len(d['fine_labels']) data, labels = shuffle_data( data, #np.array(zip(coarse_labels, fine_labels)) np.array(fine_labels) ) #coarse_labels, fine_labels = zip(*labels.tolist()) return ( data.reshape(length, 3, 32, 32), #np.array(coarse_labels), labels ) def load_data_random(train_file): """ load the train and test data""" d = unpickle(train_file) data = d['data'] #coarse_labels = d['coarse_labels'] fine_labels = d['fine_labels'] length = len(d['fine_labels']) data, labels = shuffle_data_random( data, #np.array(zip(coarse_labels, fine_labels)) np.array(fine_labels) ) #coarse_labels, fine_labels = zip(*labels.tolist()) return ( data.reshape(length, 3, 32, 32), #np.array(coarse_labels), labels ) if __name__=='__main__': cifar_python_directory = dirname(os.path.realpath(__file__))+"/../../../data/cifar100/" #meta=unpickle(os.path.join(cifar_python_directory, 'meta')) #fine_label_names=meta['fine_label_names'] #print(fine_label_names) print("Converting...") cifar_caffe_directory = os.path.abspath("cifar100_train_lmdb") if not os.path.exists(cifar_caffe_directory): X, y_f = load_data_random(os.path.join(cifar_python_directory, 'train')) Xt, yt_f = load_data(os.path.join(cifar_python_directory, 'test')) print("Data is fully loaded, now truly convertung.") env = lmdb.open(cifar_caffe_directory, map_size=50000*1000*5) txn = env.begin(write=True) count = 0 for i in range(X.shape[0]): datum = caffe.io.array_to_datum(X[i], y_f[i]) str_id = '{:08}'.format(count) txn.put(str_id, datum.SerializeToString()) count+=1 if count%1000==0: print('already handled with {} pictures'.format(count)) txn.commit() txn = env.begin(write=True) txn.commit() env.close() env = lmdb.open('cifar100_test_lmdb', map_size=10000*1000*5) txn = env.begin(write=True) count = 0 for i in range(Xt.shape[0]): datum = caffe.io.array_to_datum(Xt[i], yt_f[i]) str_id = '{:08}'.format(count) txn.put(str_id, datum.SerializeToString()) count+=1 if count%1000==0: print('already handled with {} pictures'.format(count)) txn.commit() txn = env.begin(write=True) txn.commit() env.close() else: print("Conversion was already done. Did not convert twice.")
the-stack_0_26791
""" Python 'utf-8-sig' Codec This work similar to UTF-8 with the following changes: * On encoding/writing a UTF-8 encoded BOM will be prepended/written as the first three bytes. * On decoding/reading if the first three bytes are a UTF-8 encoded BOM, these bytes will be skipped. """ import codecs ### Codec APIs def encode(input, errors='strict'): return (codecs.BOM_UTF8 + codecs.utf_8_encode(input, errors)[0], len(input)) def decode(input, errors='strict'): prefix = 0 if input[:3] == codecs.BOM_UTF8: input = input[3:] prefix = 3 (output, consumed) = codecs.utf_8_decode(input, errors, True) return (output, consumed+prefix) class IncrementalEncoder(codecs.IncrementalEncoder): def __init__(self, errors='strict'): codecs.IncrementalEncoder.__init__(self, errors) self.first = 1 def encode(self, input, final=False): if self.first: self.first = 0 return codecs.BOM_UTF8 + \ codecs.utf_8_encode(input, self.errors)[0] else: return codecs.utf_8_encode(input, self.errors)[0] def reset(self): codecs.IncrementalEncoder.reset(self) self.first = 1 def getstate(self): return self.first def setstate(self, state): self.first = state class IncrementalDecoder(codecs.BufferedIncrementalDecoder): def __init__(self, errors='strict'): codecs.BufferedIncrementalDecoder.__init__(self, errors) self.first = 1 def _buffer_decode(self, input, errors, final): if self.first: if len(input) < 3: if codecs.BOM_UTF8.startswith(input): # not enough data to decide if this really is a BOM # => try again on the next call return ("", 0) else: self.first = 0 else: self.first = 0 if input[:3] == codecs.BOM_UTF8: (output, consumed) = \ codecs.utf_8_decode(input[3:], errors, final) return (output, consumed+3) return codecs.utf_8_decode(input, errors, final) def reset(self): codecs.BufferedIncrementalDecoder.reset(self) self.first = 1 def getstate(self): state = codecs.BufferedIncrementalDecoder.getstate(self) # state[1] must be 0 here, as it isn't passed along to the caller return (state[0], self.first) def setstate(self, state): # state[1] will be ignored by BufferedIncrementalDecoder.setstate() codecs.BufferedIncrementalDecoder.setstate(self, state) self.first = state[1] class StreamWriter(codecs.StreamWriter): def reset(self): codecs.StreamWriter.reset(self) try: del self.encode except AttributeError: pass def encode(self, input, errors='strict'): self.encode = codecs.utf_8_encode return encode(input, errors) class StreamReader(codecs.StreamReader): def reset(self): codecs.StreamReader.reset(self) try: del self.decode except AttributeError: pass def decode(self, input, errors='strict'): if len(input) < 3: if codecs.BOM_UTF8.startswith(input): # not enough data to decide if this is a BOM # => try again on the next call return ("", 0) elif input[:3] == codecs.BOM_UTF8: self.decode = codecs.utf_8_decode (output, consumed) = codecs.utf_8_decode(input[3:],errors) return (output, consumed+3) # (else) no BOM present self.decode = codecs.utf_8_decode return codecs.utf_8_decode(input, errors) ### encodings module API def getregentry(): return codecs.CodecInfo( name='utf-8-sig', encode=encode, decode=decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamreader=StreamReader, streamwriter=StreamWriter, )
the-stack_0_26792
"""System test for decision.py""" import sys sys.path.insert(0, '..\\decision') from decision import Node, Result import dials def test_1(): node1 = Node("node1") node1.set_dial(0.5) node1.activate(1.0) assert node1.total_input == 1.0 def test_2(): node1 = Node("node1") node2 = Node("node2") node1.attach_sub_node(node2, dials.duo_dial_low) node1.set_dial(0.5) node1.activate(0.5) assert node2.total_input == 0.25
the-stack_0_26793
# -*- coding: utf-8 -*- """ Created on 15/05/2020 @author: yhagos """ import pandas as pd import os import numpy as np import itertools from scipy.spatial.distance import cdist import multiprocessing as mp pd.options.mode.chained_assignment = None class IdentifyMarkersCoExpression: def __init__(self, combined_cell_pos_dir, patient_id, output_dir, threshold, coexpression_proteins, num_processes=1): self.combined_cell_pos_dir = combined_cell_pos_dir self.patient_id = patient_id self.output_dir = output_dir self.threshold = threshold self.coexpression_proteins = coexpression_proteins self.num_processes = num_processes def identify_co_expressing_cells(self, file_names_list, process_num): # create output file names and check if they exist in the path save_dir = os.path.join(self.output_dir, self.patient_id) os.makedirs(save_dir, exist_ok=True) for n_, file_name in enumerate(file_names_list): print('Process:{}, Patient Id:{}, File name:{}, {}/{}'.format(process_num + 1, self.patient_id, file_name, n_ + 1, len(file_names_list))) msi_name = os.path.splitext(file_name)[0] output_csv = os.path.join(save_dir, msi_name + '_co_exp.csv') # if os.path.isfile(output_csv) : # print('{} already exists'.format(output_csv)) # continue cell_data_df = pd.read_csv(os.path.join(self.combined_cell_pos_dir, self.patient_id, file_name)) col_names = cell_data_df.columns cell_data_df_copy = cell_data_df.copy() cell_phenotype_data = pd.DataFrame(columns=['X', 'Y', 'CellPhenotype']) for co_exp in self.coexpression_proteins: overlap_df = pd.DataFrame(columns=col_names) pos_markers, neg_markers = self.split_markers_status(co_exp) # coexp_protein_list = co_exp.split('+') coexp_protein_list = pos_markers if pos_markers.__len__() == 0: raise Exception(f"incorrect cell phenotype input:{co_exp}. There should be at least one +ve marker.") elif pos_markers.__len__() == 1: overlap_df = cell_data_df.loc[cell_data_df['Component'] == pos_markers[0], ['X', 'Y']].reset_index() else: # empty index co_expression_available = True coexp_markers_index_database = {f"{protein}": [] for protein in coexp_protein_list} protein_pairs = list(itertools.combinations(coexp_protein_list, 2)) for protein_pair in protein_pairs: protein_1_data = cell_data_df.loc[cell_data_df['Component'] == protein_pair[0]].reset_index() protein_1_data = protein_1_data.rename(columns={'index': 'INDEX_'}) # for more than 2 markers expression if there is data from previous computation; consider it if coexp_markers_index_database[protein_pair[0]].__len__() != 0: protein_1_data = protein_1_data.loc[protein_1_data['INDEX_'].isin(coexp_markers_index_database[protein_pair[0]]), :] else: pass # protein 2 data frame protein_2_data = cell_data_df.loc[cell_data_df['Component'] == protein_pair[1]].reset_index() protein_2_data = protein_2_data.rename(columns={'index': 'INDEX_'}) if coexp_markers_index_database[protein_pair[1]].__len__() != 0: protein_2_data = protein_2_data.loc[protein_2_data['INDEX_'].isin(coexp_markers_index_database[protein_pair[1]]), :] else: pass overlap_index_input1, overlap_index_input2 = self.get_co_exp_cells_detail(protein_1_data, protein_2_data) if overlap_index_input1.__len__() == 0: co_expression_available = False break indexs_dict = dict() indexs_dict[protein_pair[0]] = overlap_index_input1 indexs_dict[protein_pair[1]] = overlap_index_input2 coexp_markers_index_database = self.update_coexpression_database(coexp_markers_index_database, indexs_dict) # update which is overlapping and not if co_expression_available: overlapping_indices = self.get_index_co_expressing_markers_position(coexp_markers_index_database) cell_data_df_copy.loc[overlapping_indices, 'Component'] = 'co_exp' # get overlap data overlap_df = self.get_overlap_data(coexp_database=coexp_markers_index_database, data=cell_data_df_copy.copy()) # overlap_df['CellPhenotype'] = co_exp # overlap_df_all = pd.concat([overlap_df_all, overlap_df], ignore_index=True, axis=0, sort=False) else: pass if overlap_df.__len__() == 0: # if there are no expressing the +ve markers --> go to next step continue else: # check for the -ve markers # protein 2 data frame # df = overlap_df.copy() for neg_marker in neg_markers: neg_marker_data = cell_data_df.loc[cell_data_df['Component'] == neg_marker, :].reset_index() neg_marker_data = neg_marker_data.rename(columns={'index': 'INDEX_'}) overlap_df = overlap_df.reset_index().rename(columns={'index': 'INDEX_'}) overlap_index_input1, _ = self.get_co_exp_cells_detail(overlap_df.copy(), neg_marker_data) if overlap_index_input1.__len__() == 0: continue else: # remove these cells overlap_df = overlap_df.loc[~overlap_df['INDEX_'].isin(overlap_index_input1), :] overlap_df.drop(columns=['INDEX_'], inplace=True) if overlap_df.__len__() == 0: break overlap_df['CellPhenotype'] = co_exp cell_phenotype_data = pd.concat([cell_phenotype_data, overlap_df[['X', 'Y', 'CellPhenotype']]], axis=0, ignore_index=True) cell_phenotype_data[['X', 'Y']] = cell_phenotype_data[['X', 'Y']].round().astype('int32') cell_phenotype_data.to_csv(output_csv, index=False) # cell_data_df_copy.drop(columns=['Class'], inplace=True) # overlap_df_all.drop(columns=['Class'], inplace=True) # # drop all cells co-expressing different markers from cell_data_df_copy # # cell_data_df_copy.drop(cell_data_df_copy.index[cell_data_df_copy['Component'] == 'co_exp'], inplace=True) # non_overlap_df_data = cell_data_df_copy.loc[cell_data_df_copy['Component'] != 'co_exp', :] # # concatenate single marker expressing cells and co-expressing cells # # combined_df_all = pd.concat([overlap_df_all, cell_data_df_copy], ignore_index=True, axis=0, sort=False) # combined_df_all = pd.concat([overlap_df_all, non_overlap_df_data], ignore_index=True, axis=0, sort=False) # combined_df_all.to_csv(output_csv, index=False) def split_markers_status(self, cell_phenotype): pos_status_markers, neg_status_markers = [], [] for marker_status in cell_phenotype.split('/'): if marker_status.endswith("+"): pos_status_markers.append(marker_status[:-1]) elif marker_status.endswith("-"): neg_status_markers.append(marker_status[:-1]) else: raise Exception(f"wrong input found {marker_status}") return pos_status_markers, neg_status_markers def get_overlap_data(self, coexp_database: dict, data: pd.DataFrame) -> pd.DataFrame: df_overlap = pd.DataFrame() for protein, index_values in coexp_database.items(): df = data.iloc[index_values, :].reset_index(drop=True) if df_overlap.__len__() == 0: df_overlap = df else: # summation df_overlap[['X', 'Y']] = df_overlap[['X', 'Y']] + df[['X', 'Y']] # average df_overlap[['X', 'Y']] = df_overlap[['X', 'Y']] // coexp_database.__len__() return df_overlap def get_index_co_expressing_markers_position(self, coexp_database: dict) -> list: index_list = [] for _, val in coexp_database.items(): index_list += val return index_list def update_coexpression_database(self, database, current_computation): updated_database = database.copy() if self.__database_empty(database): for protein, values in current_computation.items(): updated_database[protein] = current_computation[protein] else: # do the update using the non-empty field for protein, values in current_computation.items(): if database[protein].__len__() != 0: # get index of common values common_values_index = self.__get_common_values_index(values1=database[protein], values2=current_computation[protein]) # update dictionary updated_database = self.__do_updates(database, common_values_index) break # the above loop only will look only for one protein: so make sure you update here for protein, values in current_computation.items(): updated_database[protein] = values return updated_database def __do_updates(self, database: dict, index_values_included: list) -> dict: new_db = dict() for protein, values in database.items(): if values.__len__() != 0: new_db[protein] = [values[index_val] for index_val in index_values_included] else: new_db[protein] = [] return new_db def __database_empty(self, database): vals = [] for _, val in database.items(): vals += val return vals.__len__() == 0 def __get_common_values_index(self, values1: list, values2: list) -> list: common_values_index = [] for val in values2: common_values_index.append(values1.index(val)) return common_values_index def get_co_exp_cells_detail(self, df1, df2): # if either of cell_data_df_p1 or cell_data_df_p2 are empty if len(df1) == 0 or len(df2) == 0: return [], [] else: # compute euclidean distance between the cell pos euclidean_dist = cdist(df1[['X', 'Y']].to_numpy(), df2[['X', 'Y']].to_numpy(), metric='euclidean') # find the location where in 2d space, which is the minimum distance arg_min_dist = np.argmin(euclidean_dist, axis=1) is_argmin = np.full(euclidean_dist.shape, fill_value=False, dtype=bool) is_argmin[(np.array(np.arange(euclidean_dist.shape[0])), np.array(arg_min_dist))] = True # distance and threshold is_overlap = euclidean_dist <= self.threshold # masking: identify overlapping expression level is_overlap = np.logical_and(is_overlap, is_argmin) df1_index, df2_index = np.where(is_overlap) # THESE ARE INDICES IN THE ORIGINAL CSV FILES overlap_index_input1 = df1.iloc[df1_index, :]['INDEX_'].to_list() overlap_index_input2 = df2.iloc[df2_index, :]['INDEX_'].to_list() # return overlap_df, overlap_pos_dict return overlap_index_input1, overlap_index_input2 def run_co_exp_analysis(self): file_lists = os.listdir(os.path.join(self.combined_cell_pos_dir, self.patient_id)) if self.num_processes > 1: n = len(file_lists) if n < self.num_processes: num_processes = n num_elem_per_process = int(np.ceil(n / self.num_processes)) file_names_list_list = [] for i in range(self.num_processes): start_ = i * num_elem_per_process x = file_lists[start_: start_ + num_elem_per_process] file_names_list_list.append(x) print('{} processes created.'.format(self.num_processes)) # create list of processes processes = [ mp.Process(target=self.identify_co_expressing_cells, args=(file_names_list_list[process_num], process_num)) for process_num in range(self.num_processes)] print('processes created') # Run processes for p in processes: p.start() # Exit the completed processes for p in processes: p.join() print('All Processes finished!!!') else: self.identify_co_expressing_cells(file_lists, 0) if __name__ == '__main__': pass
the-stack_0_26797
# -*- coding: utf-8 -*- # Copyright 2015, 2016 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import random from twisted.internet import defer import synapse.util.logcontext from synapse.api.errors import CodeMessageException logger = logging.getLogger(__name__) class NotRetryingDestination(Exception): def __init__(self, retry_last_ts, retry_interval, destination): """Raised by the limiter (and federation client) to indicate that we are are deliberately not attempting to contact a given server. Args: retry_last_ts (int): the unix ts in milliseconds of our last attempt to contact the server. 0 indicates that the last attempt was successful or that we've never actually attempted to connect. retry_interval (int): the time in milliseconds to wait until the next attempt. destination (str): the domain in question """ msg = "Not retrying server %s." % (destination,) super(NotRetryingDestination, self).__init__(msg) self.retry_last_ts = retry_last_ts self.retry_interval = retry_interval self.destination = destination @defer.inlineCallbacks def get_retry_limiter(destination, clock, store, ignore_backoff=False, **kwargs): """For a given destination check if we have previously failed to send a request there and are waiting before retrying the destination. If we are not ready to retry the destination, this will raise a NotRetryingDestination exception. Otherwise, will return a Context Manager that will mark the destination as down if an exception is thrown (excluding CodeMessageException with code < 500) Args: destination (str): name of homeserver clock (synapse.util.clock): timing source store (synapse.storage.transactions.TransactionStore): datastore ignore_backoff (bool): true to ignore the historical backoff data and try the request anyway. We will still reset the retry_interval on success. Example usage: try: limiter = yield get_retry_limiter(destination, clock, store) with limiter: response = yield do_request() except NotRetryingDestination: # We aren't ready to retry that destination. raise """ retry_last_ts, retry_interval = (0, 0) retry_timings = yield store.get_destination_retry_timings(destination) if retry_timings: retry_last_ts, retry_interval = ( retry_timings["retry_last_ts"], retry_timings["retry_interval"], ) now = int(clock.time_msec()) if not ignore_backoff and retry_last_ts + retry_interval > now: raise NotRetryingDestination( retry_last_ts=retry_last_ts, retry_interval=retry_interval, destination=destination, ) # if we are ignoring the backoff data, we should also not increment the backoff # when we get another failure - otherwise a server can very quickly reach the # maximum backoff even though it might only have been down briefly backoff_on_failure = not ignore_backoff defer.returnValue( RetryDestinationLimiter( destination, clock, store, retry_interval, backoff_on_failure=backoff_on_failure, **kwargs ) ) class RetryDestinationLimiter(object): def __init__( self, destination, clock, store, retry_interval, min_retry_interval=10 * 60 * 1000, max_retry_interval=24 * 60 * 60 * 1000, multiplier_retry_interval=5, backoff_on_404=False, backoff_on_failure=True, ): """Marks the destination as "down" if an exception is thrown in the context, except for CodeMessageException with code < 500. If no exception is raised, marks the destination as "up". Args: destination (str) clock (Clock) store (DataStore) retry_interval (int): The next retry interval taken from the database in milliseconds, or zero if the last request was successful. min_retry_interval (int): The minimum retry interval to use after a failed request, in milliseconds. max_retry_interval (int): The maximum retry interval to use after a failed request, in milliseconds. multiplier_retry_interval (int): The multiplier to use to increase the retry interval after a failed request. backoff_on_404 (bool): Back off if we get a 404 backoff_on_failure (bool): set to False if we should not increase the retry interval on a failure. """ self.clock = clock self.store = store self.destination = destination self.retry_interval = retry_interval self.min_retry_interval = min_retry_interval self.max_retry_interval = max_retry_interval self.multiplier_retry_interval = multiplier_retry_interval self.backoff_on_404 = backoff_on_404 self.backoff_on_failure = backoff_on_failure def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): valid_err_code = False if exc_type is None: valid_err_code = True elif not issubclass(exc_type, Exception): # avoid treating exceptions which don't derive from Exception as # failures; this is mostly so as not to catch defer._DefGen. valid_err_code = True elif issubclass(exc_type, CodeMessageException): # Some error codes are perfectly fine for some APIs, whereas other # APIs may expect to never received e.g. a 404. It's important to # handle 404 as some remote servers will return a 404 when the HS # has been decommissioned. # If we get a 401, then we should probably back off since they # won't accept our requests for at least a while. # 429 is us being aggresively rate limited, so lets rate limit # ourselves. if exc_val.code == 404 and self.backoff_on_404: valid_err_code = False elif exc_val.code in (401, 429): valid_err_code = False elif exc_val.code < 500: valid_err_code = True else: valid_err_code = False if valid_err_code: # We connected successfully. if not self.retry_interval: return logger.debug( "Connection to %s was successful; clearing backoff", self.destination ) retry_last_ts = 0 self.retry_interval = 0 elif not self.backoff_on_failure: return else: # We couldn't connect. if self.retry_interval: self.retry_interval *= self.multiplier_retry_interval self.retry_interval *= int(random.uniform(0.8, 1.4)) if self.retry_interval >= self.max_retry_interval: self.retry_interval = self.max_retry_interval else: self.retry_interval = self.min_retry_interval logger.info( "Connection to %s was unsuccessful (%s(%s)); backoff now %i", self.destination, exc_type, exc_val, self.retry_interval, ) retry_last_ts = int(self.clock.time_msec()) @defer.inlineCallbacks def store_retry_timings(): try: yield self.store.set_destination_retry_timings( self.destination, retry_last_ts, self.retry_interval ) except Exception: logger.exception("Failed to store destination_retry_timings") # we deliberately do this in the background. synapse.util.logcontext.run_in_background(store_retry_timings)
the-stack_0_26798
import torch from lib.utils import is_parallel import numpy as np np.set_printoptions(threshold=np.inf) import cv2 from sklearn.cluster import DBSCAN def build_targets(cfg, predictions, targets, model): ''' predictions [16, 3, 32, 32, 85] [16, 3, 16, 16, 85] [16, 3, 8, 8, 85] torch.tensor(predictions[i].shape)[[3, 2, 3, 2]] [32,32,32,32] [16,16,16,16] [8,8,8,8] targets[3,x,7] t [index, class, x, y, w, h, head_index] ''' # Build targets for compute_loss(), input targets(image,class,x,y,w,h) det = model.module.model[model.module.detector_index] if is_parallel(model) \ else model.model[model.detector_index] # Detect() module # print(type(model)) # det = model.model[model.detector_index] # print(type(det)) na, nt = det.na, targets.shape[0] # number of anchors=3, targets tcls, tbox, indices, anch = [], [], [], [] gain = torch.ones(7, device=targets.device) # normalized to gridspace gain ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices g = 0.5 # bias off = torch.tensor([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm ], device=targets.device).float() * g # offsets for i in range(det.nl): anchors = det.anchors[i] #[3,2] gain[2:6] = torch.tensor(predictions[i].shape)[[3, 2, 3, 2]] # xyxy gain # Match targets to anchors t = targets * gain if nt: # Matches r = t[:, :, 4:6] / anchors[:, None] # wh ratio j = torch.max(r, 1. / r).max(2)[0] < cfg.TRAIN.ANCHOR_THRESHOLD # compare # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) t = t[j] # filter # Offsets gxy = t[:, 2:4] # grid xy gxi = gain[[2, 3]] - gxy # inverse j, k = ((gxy % 1. < g) & (gxy > 1.)).T l, m = ((gxi % 1. < g) & (gxi > 1.)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] else: t = targets[0] offsets = 0 # Define b, c = t[:, :2].long().T # image, class gxy = t[:, 2:4] # grid xy gwh = t[:, 4:6] # grid wh gij = (gxy - offsets).long() gi, gj = gij.T # grid xy indices # Append a = t[:, 6].long() # anchor indices indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices tbox.append(torch.cat((gxy - gij, gwh), 1)) # box anch.append(anchors[a]) # anchors tcls.append(c) # class return tcls, tbox, indices, anch def morphological_process(image, kernel_size=5, func_type=cv2.MORPH_CLOSE): """ morphological process to fill the hole in the binary segmentation result :param image: :param kernel_size: :return: """ if len(image.shape) == 3: raise ValueError('Binary segmentation result image should be a single channel image') if image.dtype is not np.uint8: image = np.array(image, np.uint8) kernel = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(kernel_size, kernel_size)) # close operation fille hole closing = cv2.morphologyEx(image, func_type, kernel, iterations=1) return closing def connect_components_analysis(image): """ connect components analysis to remove the small components :param image: :return: """ if len(image.shape) == 3: gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: gray_image = image # print(gray_image.dtype) return cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S) def if_y(samples_x): for sample_x in samples_x: if len(sample_x): # if len(sample_x) != (sample_x[-1] - sample_x[0] + 1) or sample_x[-1] == sample_x[0]: if sample_x[-1] == sample_x[0]: return False return True def fitlane(mask, sel_labels, labels, stats): H, W = mask.shape for label_group in sel_labels: states = [stats[k] for k in label_group] x, y, w, h, _ = states[0] # if len(label_group) > 1: # print('in') # for m in range(len(label_group)-1): # labels[labels == label_group[m+1]] = label_group[0] t = label_group[0] # samples_y = np.linspace(y, H-1, 30) # else: samples_y = np.linspace(y, y+h-1, 30) samples_x = [np.where(labels[int(sample_y)]==t)[0] for sample_y in samples_y] if if_y(samples_x): samples_x = [int(np.mean(sample_x)) if len(sample_x) else -1 for sample_x in samples_x] samples_x = np.array(samples_x) samples_y = np.array(samples_y) samples_y = samples_y[samples_x != -1] samples_x = samples_x[samples_x != -1] func = np.polyfit(samples_y, samples_x, 2) x_limits = np.polyval(func, H-1) # if (y_max + h - 1) >= 720: if x_limits < 0 or x_limits > W: # if (y_max + h - 1) > 720: # draw_y = np.linspace(y, 720-1, 720-y) draw_y = np.linspace(y, y+h-1, h) else: # draw_y = np.linspace(y, y+h-1, y+h-y) draw_y = np.linspace(y, H-1, H-y) draw_x = np.polyval(func, draw_y) # draw_y = draw_y[draw_x < W] # draw_x = draw_x[draw_x < W] draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32) cv2.polylines(mask, [draw_points], False, 1, thickness=15) else: # if ( + w - 1) >= 1280: samples_x = np.linspace(x, W-1, 30) # else: # samples_x = np.linspace(x, x_max+w-1, 30) samples_y = [np.where(labels[:, int(sample_x)]==t)[0] for sample_x in samples_x] samples_y = [int(np.mean(sample_y)) if len(sample_y) else -1 for sample_y in samples_y] samples_x = np.array(samples_x) samples_y = np.array(samples_y) samples_x = samples_x[samples_y != -1] samples_y = samples_y[samples_y != -1] try: func = np.polyfit(samples_x, samples_y, 2) except: pass # y_limits = np.polyval(func, 0) # if y_limits > 720 or y_limits < 0: # if (x + w - 1) >= 1280: # draw_x = np.linspace(x, 1280-1, 1280-x) # else: y_limits = np.polyval(func, 0) if y_limits >= H or y_limits < 0: draw_x = np.linspace(x, x+w-1, w+x-x) else: y_limits = np.polyval(func, W-1) if y_limits >= H or y_limits < 0: draw_x = np.linspace(x, x+w-1, w+x-x) # if x+w-1 < 640: # draw_x = np.linspace(0, x+w-1, w+x-x) else: draw_x = np.linspace(x, W-1, W-x) draw_y = np.polyval(func, draw_x) draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32) cv2.polylines(mask, [draw_points], False, 1, thickness=15) return mask def connect_lane(image, shadow_height=0): if len(image.shape) == 3: gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: gray_image = image if shadow_height: image[:shadow_height] = 0 mask = np.zeros((image.shape[0], image.shape[1]), np.uint8) num_labels, labels, stats, centers = cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S) # ratios = [] selected_label = [] for t in range(1, num_labels, 1): _, _, _, _, area = stats[t] if area > 400: selected_label.append(t) if len(selected_label) == 0: return mask else: split_labels = [[label,] for label in selected_label] mask_post = fitlane(mask, split_labels, labels, stats) return mask_post
the-stack_0_26799
#!/usr/bin/env python3 # This is a simple script that takes in an scurve file produced by # csvcolumn_to_scurve and produces a png graph of the scurve. import argparse import csv import matplotlib.pyplot as plt import numpy as np FIELDS = ['N/total', 'New/Old'] def get_data(input_file): global FIELDS for row in csv.DictReader(input_file): yield (float(row[FIELDS[0]]), float(row[FIELDS[1]])) def main(): p = argparse.ArgumentParser() p.add_argument('input_csv_file', type=argparse.FileType('r')) p.add_argument('output_file', type=str) p.add_argument('-y-axis-num-tick-marks', type=int, help='The number of y tick marks to use above/below zero.') p.add_argument('-y-axis-min', type=float, help='Override the min y axis that we use') p.add_argument('-y-axis-max', type=float, help='Override the min y axis that we use') p.add_argument('-title', type=str, help='Title of the graph') p.add_argument('-x-axis-title', type=str, help='The title to use on the x-axis of the graph') p.add_argument('-y-axis-title', type=str, help='The title to use on the x-axis of the graph') args = p.parse_args() data = np.array(list(get_data(args.input_csv_file))) assert np.all(data >= 0) x = data[:, 0] y = data[:, 1] x_axis_title = args.x_axis_title or FIELDS[0] y_axis_title = args.y_axis_title or FIELDS[1] title = args.title or "{} vs {}".format(x_axis_title, y_axis_title) fig, ax = plt.subplots() fig.set_size_inches(18.5, 18.5) fig.suptitle(title, fontsize=20) ax.set_xlabel(x_axis_title, fontsize=20) ax.set_ylabel(y_axis_title, fontsize=20) ax.plot(x, y) ax.scatter(x, y) # To get good bounds, we: # # 1. Re-center our data at 0 by subtracting 1. This will give us the % # difference in between new and old (i.e. (new - old)/old) # # 2. Then we take the maximum absolute delta from zero and round to a # multiple of 5 away from zero. Lets call this value limit. # # 3. We set [min_y, max_y] = [1.0 - limit, 1.0 + limit] recentered_data = y - 1.0 max_magnitude = int(np.max(np.abs(recentered_data)) * 100.0) y_limit = float(((max_magnitude // 5) + 1) * 5) * 0.01 ax.set_xlim(0.0, 1.0) y_min = args.y_axis_min or 1.0 - y_limit y_max = args.y_axis_max or 1.0 + y_limit assert(y_min <= y_max) ax.set_ylim(y_min, y_max) ax.grid(True) ax.xaxis.set_ticks(np.arange(0.0, 1.0, 0.05)) if args.y_axis_num_tick_marks: y_delta = y_max - y_min y_tickmark_frequency = y_delta / float(args.y_axis_num_tick_marks) ax.yaxis.set_ticks(np.arange(y_min, y_max, y_tickmark_frequency)) plt.savefig(args.output_file) if __name__ == "__main__": main()
the-stack_0_26800
#!/usr/bin/env python3 ########################################################################################### # # # Program purpose: Find unique triplets whose three elements gives the sum of zero # # from an array of integers. # # Program Author : Happi Yvan <[email protected]> # # Creation Date : September 4, 2019 # # # ########################################################################################### import random def random_integer_list(list_size=10, start=0, stop=10, step=1): list_data = [] for x in range(list_size): list_data.append(random.randrange(start=start, stop=stop, step=step)) return list_data def find_triplets(list_data=None): if list_data is None: return [] triplet_list = [] for x in range(len(list_data)): for i in range(x+1, len(list_data), 1): if i + 2 <= len(list_data): val = int(list_data[x]) + int(list_data[i]) + int(list_data[i + 1]) if val == 0: temp_data = tuple([list_data[x], list_data[i], list_data[i+1]]) if temp_data not in triplet_list: triplet_list.append(temp_data) return triplet_list if __name__ == "__main__": random_list = random_integer_list(list_size=100, start=-2, stop=15, step=1) print(f"\nGenerated list: {random_list}") triplet_data = find_triplets(random_list) print(f"\nFound unique triplets: \n{triplet_data}")
the-stack_0_26801
from __future__ import absolute_import, division, print_function import torch from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.distributions import constraints from pyro.distributions.torch import MultivariateNormal from pyro.distributions.util import sum_leftmost class OMTMultivariateNormal(MultivariateNormal): """Multivariate normal (Gaussian) distribution with OMT gradients w.r.t. both parameters. Note the gradient computation w.r.t. the Cholesky factor has cost O(D^3), although the resulting gradient variance is generally expected to be lower. A distribution over vectors in which all the elements have a joint Gaussian density. :param torch.Tensor loc: Mean. :param torch.Tensor scale_tril: Cholesky of Covariance matrix. """ arg_constraints = {"loc": constraints.real, "scale_tril": constraints.lower_triangular} def __init__(self, loc, scale_tril): assert(loc.dim() == 1), "OMTMultivariateNormal loc must be 1-dimensional" assert(scale_tril.dim() == 2), "OMTMultivariateNormal scale_tril must be 2-dimensional" covariance_matrix = torch.mm(scale_tril, scale_tril.t()) super(OMTMultivariateNormal, self).__init__(loc, covariance_matrix) self.scale_tril = scale_tril def rsample(self, sample_shape=torch.Size()): return _OMTMVNSample.apply(self.loc, self.scale_tril, sample_shape + self.loc.shape) class _OMTMVNSample(Function): @staticmethod def forward(ctx, loc, scale_tril, shape): white = loc.new_empty(shape).normal_() z = torch.matmul(white, scale_tril.t()) ctx.save_for_backward(z, white, scale_tril) return loc + z @staticmethod @once_differentiable def backward(ctx, grad_output): jitter = 1.0e-8 # do i really need this? z, epsilon, L = ctx.saved_tensors dim = L.shape[0] g = grad_output loc_grad = sum_leftmost(grad_output, -1) identity = torch.eye(dim, out=torch.tensor(g.new_empty(dim, dim))) R_inv = torch.trtrs(identity, L.t(), transpose=False, upper=True)[0] z_ja = z.unsqueeze(-1) g_R_inv = torch.matmul(g, R_inv).unsqueeze(-2) epsilon_jb = epsilon.unsqueeze(-2) g_ja = g.unsqueeze(-1) diff_L_ab = 0.5 * sum_leftmost(g_ja * epsilon_jb + g_R_inv * z_ja, -2) Sigma_inv = torch.mm(R_inv, R_inv.t()) V, D, _ = torch.svd(Sigma_inv + jitter) D_outer = D.unsqueeze(-1) + D.unsqueeze(0) expand_tuple = tuple([-1] * (z.dim() - 1) + [dim, dim]) z_tilde = identity * torch.matmul(z, V).unsqueeze(-1).expand(*expand_tuple) g_tilde = identity * torch.matmul(g, V).unsqueeze(-1).expand(*expand_tuple) Y = sum_leftmost(torch.matmul(z_tilde, torch.matmul(1.0 / D_outer, g_tilde)), -2) Y = torch.mm(V, torch.mm(Y, V.t())) Y = Y + Y.t() Tr_xi_Y = torch.mm(torch.mm(Sigma_inv, Y), R_inv) - torch.mm(Y, torch.mm(Sigma_inv, R_inv)) diff_L_ab += 0.5 * Tr_xi_Y L_grad = torch.tril(diff_L_ab) return loc_grad, L_grad, None
the-stack_0_26803
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import logging from datetime import datetime from typing import Any, Dict, Optional, TYPE_CHECKING from superset.db_engine_specs.base import BaseEngineSpec from superset.utils import core as utils if TYPE_CHECKING: from superset.connectors.sqla.models import TableColumn from superset.models.core import Database logger = logging.getLogger() class DruidEngineSpec(BaseEngineSpec): # pylint: disable=abstract-method """Engine spec for Druid.io""" engine = "druid" engine_name = "Apache Druid" allows_joins = False allows_subqueries = True _time_grain_expressions = { None: "{col}", "PT1S": "FLOOR({col} TO SECOND)", "PT1M": "FLOOR({col} TO MINUTE)", "PT5M": "TIME_FLOOR({col}, 'PT5M')", "PT10M": "TIME_FLOOR({col}, 'PT10M')", "PT15M": "TIME_FLOOR({col}, 'PT15M')", "PT0.5H": "TIME_FLOOR({col}, 'PT30M')", "PT1H": "FLOOR({col} TO HOUR)", "P1D": "FLOOR({col} TO DAY)", "P1W": "FLOOR({col} TO WEEK)", "P1M": "FLOOR({col} TO MONTH)", "P0.25Y": "FLOOR({col} TO QUARTER)", "P1Y": "FLOOR({col} TO YEAR)", } @classmethod def alter_new_orm_column(cls, orm_col: "TableColumn") -> None: if orm_col.column_name == "__time": orm_col.is_dttm = True @staticmethod def get_extra_params(database: "Database") -> Dict[str, Any]: """ For Druid, the path to a SSL certificate is placed in `connect_args`. :param database: database instance from which to extract extras :raises CertificateException: If certificate is not valid/unparseable """ try: extra = json.loads(database.extra or "{}") except json.JSONDecodeError as ex: logger.error(ex) raise ex if database.server_cert: engine_params = extra.get("engine_params", {}) connect_args = engine_params.get("connect_args", {}) connect_args["scheme"] = "https" path = utils.create_ssl_cert_file(database.server_cert) connect_args["ssl_verify_cert"] = path engine_params["connect_args"] = connect_args extra["engine_params"] = engine_params return extra @classmethod def convert_dttm(cls, target_type: str, dttm: datetime) -> Optional[str]: tt = target_type.upper() if tt == utils.TemporalType.DATE: return f"CAST(TIME_PARSE('{dttm.date().isoformat()}') AS DATE)" if tt in (utils.TemporalType.DATETIME, utils.TemporalType.TIMESTAMP): return f"""TIME_PARSE('{dttm.isoformat(timespec="seconds")}')""" return None
the-stack_0_26805
import numpy as np import pandas_datareader as pdr import datetime as dt import pandas as pd import matplotlib.pyplot as plt from get_data_api_b import get_pd_histo start = dt.datetime(2020, 9, 1) date_in_string = start.strftime("%d %b %Y ") list_of_tickers = ['BTCUSDT', 'ETHUSDT', 'XTZUSDT', 'SOLUSDT' ] data = pd.DataFrame() for tick in list_of_tickers: dataiso = get_pd_histo(tick, date_in_string) dataiso = dataiso.set_index('Open_Time') dataiso = dataiso['Close'] data[tick] = dataiso portfolio = [.25, .15, .40, .20] log_return = np.sum(np.log(data/data.shift())*portfolio, axis=1) # fig, ax = plt.subplots() # log_return.hist(bins=50, ax=ax) # plt.show() return_daily = log_return.mean() std_daily = log_return.std() sharpe_ratio = log_return.mean()/log_return.std() annualized_shape_ratio = sharpe_ratio*364**.5 weight = np.random.random(4) weight /= weight.sum() log_return2 = np.sum(np.log(data/data.shift())*weight, axis=1) sharpe_ratio2 = log_return2.mean()/log_return2.std() asr2 = sharpe_ratio2*364**.5 print('portfolio') print(portfolio) print(annualized_shape_ratio) print('randomly') print(weight) print(asr2)
the-stack_0_26807
# -*- coding: utf-8 -*- r""" Coxeter Groups """ #***************************************************************************** # Copyright (C) 2009 Nicolas M. Thiery <nthiery at users.sf.net> # 2015 Christian Stump <christian.stump at gmail.com # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #****************************************************************************** # With contributions from Dan Bump, Steve Pon, Qiang Wang, Anne Schilling, Christian Stump, Mark Shimozono from sage.misc.cachefunc import cached_method, cached_in_parent_method from sage.misc.lazy_import import LazyImport from sage.misc.constant_function import ConstantFunction from sage.misc.misc import attrcall, uniq from sage.categories.category_singleton import Category_singleton from sage.categories.enumerated_sets import EnumeratedSets from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups from sage.structure.element import have_same_parent from sage.misc.flatten import flatten from copy import copy class CoxeterGroups(Category_singleton): r""" The category of Coxeter groups. A *Coxeter group* is a group `W` with a distinguished (finite) family of involutions `(s_i)_{i\in I}`, called the *simple reflections*, subject to relations of the form `(s_is_j)^{m_{i,j}} = 1`. `I` is the *index set* of `W` and `|I|` is the *rank* of `W`. See :Wikipedia:`Coxeter_group` for details. EXAMPLES:: sage: C = CoxeterGroups(); C Category of coxeter groups sage: C.super_categories() [Category of generalized coxeter groups] sage: W = C.example(); W The symmetric group on {0, ..., 3} sage: W.simple_reflections() Finite family {0: (1, 0, 2, 3), 1: (0, 2, 1, 3), 2: (0, 1, 3, 2)} Here are some further examples:: sage: FiniteCoxeterGroups().example() The 5-th dihedral group of order 10 sage: FiniteWeylGroups().example() The symmetric group on {0, ..., 3} sage: WeylGroup(["B", 3]) Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space) Those will eventually be also in this category:: sage: SymmetricGroup(4) Symmetric group of order 4! as a permutation group sage: DihedralGroup(5) Dihedral group of order 10 as a permutation group .. TODO:: add a demo of usual computations on Coxeter groups. .. SEEALSO:: - :mod:`sage.combinat.root_system` - :class:`WeylGroups` - :class:`GeneralizedCoxeterGroups` .. WARNING:: It is assumed that morphisms in this category preserve the distinguished choice of simple reflections. In particular, subobjects in this category are parabolic subgroups. In this sense, this category might be better named ``Coxeter Systems``. In the long run we might want to have two distinct categories, one for Coxeter groups (with morphisms being just group morphisms) and one for Coxeter systems:: sage: CoxeterGroups().is_full_subcategory(Groups()) False sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups sage: CoxeterGroups().is_full_subcategory(GeneralizedCoxeterGroups()) True TESTS:: sage: W = CoxeterGroups().example() sage: TestSuite(W).run() """ def super_categories(self): """ EXAMPLES:: sage: CoxeterGroups().super_categories() [Category of generalized coxeter groups] """ return [GeneralizedCoxeterGroups()] def additional_structure(self): r""" Return ``None``. Indeed, all the structure Coxeter groups have in addition to groups (simple reflections, ...) is already defined in the super category. .. SEEALSO:: :meth:`Category.additional_structure` EXAMPLES:: sage: CoxeterGroups().additional_structure() """ return None Finite = LazyImport('sage.categories.finite_coxeter_groups', 'FiniteCoxeterGroups') Algebras = LazyImport('sage.categories.coxeter_group_algebras', 'CoxeterGroupAlgebras') class ParentMethods: def __iter__(self): r""" Returns an iterator over the elements of this Coxeter group. EXAMPLES:: sage: D5 = FiniteCoxeterGroups().example(5) sage: sorted(list(D5)) # indirect doctest (but see :meth:`._test_enumerated_set_iter_list`) [(), (1,), (1, 2), (1, 2, 1), (1, 2, 1, 2), (1, 2, 1, 2, 1), (2,), (2, 1), (2, 1, 2), (2, 1, 2, 1)] sage: W = WeylGroup(["A",2,1]) sage: g = iter(W) sage: next(g) [1 0 0] [0 1 0] [0 0 1] sage: next(g) [-1 1 1] [ 0 1 0] [ 0 0 1] sage: next(g) [ 1 0 0] [ 1 -1 1] [ 0 0 1] """ return iter(self.weak_order_ideal(predicate = ConstantFunction(True))) def weak_order_ideal(self, predicate, side ="right", category = None): """ Returns a weak order ideal defined by a predicate INPUT: - ``predicate``: a predicate on the elements of ``self`` defining an weak order ideal in ``self`` - ``side``: "left" or "right" (default: "right") OUTPUT: an enumerated set EXAMPLES:: sage: D6 = FiniteCoxeterGroups().example(5) sage: I = D6.weak_order_ideal(predicate = lambda w: w.length() <= 3) sage: I.cardinality() 7 sage: list(I) [(), (1,), (2,), (1, 2), (2, 1), (1, 2, 1), (2, 1, 2)] We now consider an infinite Coxeter group:: sage: W = WeylGroup(["A",1,1]) sage: I = W.weak_order_ideal(predicate = lambda w: w.length() <= 2) sage: list(iter(I)) [ [1 0] [-1 2] [ 1 0] [ 3 -2] [-1 2] [0 1], [ 0 1], [ 2 -1], [ 2 -1], [-2 3] ] Even when the result is finite, some features of :class:`FiniteEnumeratedSets` are not available:: sage: I.cardinality() # todo: not implemented 5 sage: list(I) # todo: not implemented unless this finiteness is explicitly specified:: sage: I = W.weak_order_ideal(predicate = lambda w: w.length() <= 2, ... category = FiniteEnumeratedSets()) sage: I.cardinality() 5 sage: list(I) [ [1 0] [-1 2] [ 1 0] [ 3 -2] [-1 2] [0 1], [ 0 1], [ 2 -1], [ 2 -1], [-2 3] ] .. rubric:: Background The weak order is returned as a :class:`SearchForest`. This is achieved by assigning to each element `u1` of the ideal a single ancestor `u=u1 s_i`, where `i` is the smallest descent of `u`. This allows for iterating through the elements in roughly Constant Amortized Time and constant memory (taking the operations and size of the generated objects as constants). TESTS: We iterate over each level (i.e., breadth-first-search in the search forest), see :trac:`19926`:: sage: W = CoxeterGroup(['A',2]) sage: [x.length() for x in W] [0, 1, 1, 2, 2, 3] """ from sage.combinat.backtrack import SearchForest def succ(u): for i in u.descents(positive = True, side = side): u1 = u.apply_simple_reflection(i, side) if i == u1.first_descent(side = side) and predicate(u1): yield u1 return from sage.categories.finite_coxeter_groups import FiniteCoxeterGroups default_category = FiniteEnumeratedSets() if self in FiniteCoxeterGroups() else EnumeratedSets() return SearchForest((self.one(),), succ, algorithm='breadth', category = default_category.or_subcategory(category)) @cached_method def coxeter_element(self): """ Return a Coxeter element. The result is the product of the simple reflections, in some order. .. NOTE:: This implementation is shared with well generated complex reflection groups. It would be nicer to put it in some joint super category; however, in the current state of the art, there is none where it's clear that this is the right construction for obtaining a Coxeter element. In this context, this is an element having a regular eigenvector (a vector not contained in any reflection hyperplane of ``self``). EXAMPLES:: sage: CoxeterGroup(['A', 4]).coxeter_element().reduced_word() [1, 2, 3, 4] sage: CoxeterGroup(['B', 4]).coxeter_element().reduced_word() [1, 2, 3, 4] sage: CoxeterGroup(['D', 4]).coxeter_element().reduced_word() [1, 2, 4, 3] sage: CoxeterGroup(['F', 4]).coxeter_element().reduced_word() [1, 2, 3, 4] sage: CoxeterGroup(['E', 8]).coxeter_element().reduced_word() [1, 3, 2, 4, 5, 6, 7, 8] sage: CoxeterGroup(['H', 3]).coxeter_element().reduced_word() [1, 2, 3] This method is also used for well generated finite complex reflection groups:: sage: W = ReflectionGroup((1,1,4)) # optional - gap3 sage: W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3] sage: W = ReflectionGroup((2,1,4)) # optional - gap3 sage: W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3, 4] sage: W = ReflectionGroup((4,1,4)) # optional - gap3 sage: W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3, 4] sage: W = ReflectionGroup((4,4,4)) # optional - gap3 sage: W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3, 4] TESTS:: sage: WeylGroup(['A', 4]).coxeter_element().reduced_word() [1, 2, 3, 4] sage: SymmetricGroup(3).coxeter_element() (1,3,2) """ return self.prod(self.simple_reflections()) @cached_method def standard_coxeter_elements(self): r""" Return all standard Coxeter elements in ``self``. This is the set of all elements in self obtained from any product of the simple reflections in ``self``. .. NOTE:: - ``self`` is assumed to be well-generated. - This works even beyond real reflection groups, but the conjugacy class is not unique and we only obtain one such class. EXAMPLES:: sage: W = ReflectionGroup(4) # optional - gap3 sage: sorted(W.standard_coxeter_elements()) # optional - gap3 [(1,7,6,12,23,20)(2,8,17,24,9,5)(3,16,10,19,15,21)(4,14,11,22,18,13), (1,10,4,12,21,22)(2,11,19,24,13,3)(5,15,7,17,16,23)(6,18,8,20,14,9)] """ if not self.is_irreducible() or not self.is_well_generated(): raise ValueError("this method is available for irreducible, well-generated complex reflection groups") from sage.combinat.permutation import Permutations return set(self.from_reduced_word(w) for w in Permutations(self._index_set)) def grassmannian_elements(self, side="right"): """ Return the left or right grassmanian elements of ``self`` as an enumerated set. INPUT: - ``side`` -- (default: ``"right"``) ``"left"`` or ``"right"`` EXAMPLES:: sage: S = CoxeterGroups().example() sage: G = S.grassmannian_elements() sage: G.cardinality() 12 sage: G.list() [(0, 1, 2, 3), (1, 0, 2, 3), (0, 2, 1, 3), (0, 1, 3, 2), (2, 0, 1, 3), (1, 2, 0, 3), (0, 3, 1, 2), (0, 2, 3, 1), (3, 0, 1, 2), (1, 3, 0, 2), (1, 2, 3, 0), (2, 3, 0, 1)] sage: sorted(tuple(w.descents()) for w in G) [(), (0,), (0,), (0,), (1,), (1,), (1,), (1,), (1,), (2,), (2,), (2,)] sage: G = S.grassmannian_elements(side = "left") sage: G.cardinality() 12 sage: sorted(tuple(w.descents(side = "left")) for w in G) [(), (0,), (0,), (0,), (1,), (1,), (1,), (1,), (1,), (2,), (2,), (2,)] """ order_side = "left" if side == "right" else "right" return self.weak_order_ideal(attrcall("is_grassmannian", side=side), side=order_side) def _test_reduced_word(self, **options): """ Runs sanity checks on :meth:'CoxeterGroups.ElementMethods.reduced_word' and :meth:`~sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods.from_reduced_word` EXAMPLES:: sage: W = CoxeterGroups().example() sage: W._test_reduced_word() """ tester = self._tester(**options) s = self.simple_reflections() for x in tester.some_elements(): red = x.reduced_word() tester.assertEquals(self.from_reduced_word(red), x) tester.assertEquals(self.prod((s[i] for i in red)), x) def simple_projection(self, i, side = 'right', length_increasing = True): r""" INPUT: - ``i`` - an element of the index set of ``self`` Returns the simple projection `\pi_i` (or `\overline\pi_i` if `length_increasing` is False). See :meth:`.simple_projections` for the options and for the definition of the simple projections. EXAMPLES:: sage: W = CoxeterGroups().example() sage: W The symmetric group on {0, ..., 3} sage: s = W.simple_reflections() sage: sigma=W.an_element() sage: sigma (1, 2, 3, 0) sage: u0=W.simple_projection(0) sage: d0=W.simple_projection(0,length_increasing=False) sage: sigma.length() 3 sage: pi=sigma*s[0] sage: pi.length() 4 sage: u0(sigma) (2, 1, 3, 0) sage: pi (2, 1, 3, 0) sage: u0(pi) (2, 1, 3, 0) sage: d0(sigma) (1, 2, 3, 0) sage: d0(pi) (1, 2, 3, 0) """ if not (i in self.index_set() or i == 0): raise ValueError("%s is not 0 and not in the Dynkin node set %s"%(i, self.index_set())) return lambda x: x.apply_simple_projection(i, side = side, length_increasing = length_increasing) @cached_method def simple_projections(self, side = 'right', length_increasing = True): r""" Returns the family of simple projections, also known as 0-Hecke or Demazure operators. INPUT: - ``self`` - a Coxeter group `W` - ``side`` - 'left' or 'right' (default: 'right') - ``length_increasing`` - a boolean (default: True) specifying whether the operator increases or decreases length Returns the simple projections of `W`, as a family. To each simple reflection `s_i` of `W`, corresponds a *simple projection* `\pi_i` from `W` to `W` defined by: `\pi_i(w) = w s_i` if `i` is not a descent of `w` `\pi_i(w) = w` otherwise. The simple projections `(\pi_i)_{i\in I}` move elements down the right permutohedron, toward the maximal element. They satisfy the same braid relations as the simple reflections, but are idempotents `\pi_i^2=\pi` not involutions `s_i^2 = 1`. As such, the simple projections generate the `0`-Hecke monoid. By symmetry, one can also define the projections `(\overline\pi_i)_{i\in I}` (when the option ``length_increasing`` is False): `\overline\pi_i(w) = w s_i` if `i` is a descent of `w` `\overline\pi_i(w) = w` otherwise. as well as the analogues acting on the left (when the option ``side`` is 'left'). EXAMPLES:: sage: W = CoxeterGroups().example() sage: W The symmetric group on {0, ..., 3} sage: s = W.simple_reflections() sage: sigma=W.an_element() sage: sigma (1, 2, 3, 0) sage: pi=W.simple_projections() sage: pi Finite family {0: <function <lambda> at ...>, 1: <function <lambda> at ...>, 2: <function <lambda> ...>} sage: pi[1](sigma) (1, 3, 2, 0) sage: W.simple_projection(1)(sigma) (1, 3, 2, 0) """ from sage.sets.family import Family return Family(self.index_set(), lambda i: self.simple_projection(i, side = side, length_increasing = length_increasing)) def demazure_product(self,Q): r""" Returns the Demazure product of the list ``Q`` in ``self``. INPUT: - ``Q`` is a list of elements from the index set of ``self``. This returns the Coxeter group element that represents the composition of 0-Hecke or Demazure operators. See :meth:`CoxeterGroups.ParentMethods.simple_projections`. EXAMPLES:: sage: W = WeylGroup(['A',2]) sage: w = W.demazure_product([2,2,1]) sage: w.reduced_word() [2, 1] sage: w = W.demazure_product([2,1,2,1,2]) sage: w.reduced_word() [1, 2, 1] sage: W = WeylGroup(['B',2]) sage: w = W.demazure_product([2,1,2,1,2]) sage: w.reduced_word() [2, 1, 2, 1] """ return self.one().apply_demazure_product(Q) def bruhat_interval(self, x, y): """ Returns the list of t such that x <= t <= y. EXAMPLES:: sage: W = WeylGroup("A3", prefix="s") sage: [s1,s2,s3]=W.simple_reflections() sage: W.bruhat_interval(s2,s1*s3*s2*s1*s3) [s1*s2*s3*s2*s1, s2*s3*s2*s1, s3*s1*s2*s1, s1*s2*s3*s1, s1*s2*s3*s2, s3*s2*s1, s2*s3*s1, s2*s3*s2, s1*s2*s1, s3*s1*s2, s1*s2*s3, s2*s1, s3*s2, s2*s3, s1*s2, s2] sage: W = WeylGroup(['A',2,1], prefix="s") sage: [s0,s1,s2]=W.simple_reflections() sage: W.bruhat_interval(1,s0*s1*s2) [s0*s1*s2, s1*s2, s0*s2, s0*s1, s2, s1, s0, 1] """ if x == 1: x = self.one() if y == 1: y = self.one() if x == y: return [x] ret = [] if not x.bruhat_le(y): return ret ret.append([y]) while ret[-1] != []: nextlayer = [] for z in ret[-1]: for t in z.bruhat_lower_covers(): if t not in nextlayer: if x.bruhat_le(t): nextlayer.append(t) ret.append(nextlayer) return flatten(ret) def canonical_representation(self): r""" Return the canonical faithful representation of ``self``. EXAMPLES:: sage: W = WeylGroup("A3") sage: W.canonical_representation() Finite Coxeter group over Universal Cyclotomic Field with Coxeter matrix: [1 3 2] [3 1 3] [2 3 1] """ from sage.groups.matrix_gps.coxeter_group import CoxeterMatrixGroup return CoxeterMatrixGroup(self.coxeter_matrix(), index_set=self.index_set()) def elements_of_length(self, n): r""" Return all elements of length `n`. EXAMPLES:: sage: A = AffinePermutationGroup(['A',2,1]) sage: [len(list(A.elements_of_length(i))) for i in [0..5]] [1, 3, 6, 9, 12, 15] sage: W = CoxeterGroup(['H',3]) sage: [len(list(W.elements_of_length(i))) for i in range(4)] [1, 3, 5, 7] sage: W = CoxeterGroup(['A',2]) sage: [len(list(W.elements_of_length(i))) for i in range(6)] [1, 2, 2, 1, 0, 0] """ I = self.weak_order_ideal(ConstantFunction(True), side='right') return I.elements_of_depth_iterator(n) def random_element_of_length(self, n): r""" Return a random element of length ``n`` in ``self``. Starts at the identity, then chooses an upper cover at random. Not very uniform: actually constructs a uniformly random reduced word of length `n`. Thus we most likely get elements with lots of reduced words! EXAMPLES:: sage: A = AffinePermutationGroup(['A', 7, 1]) sage: p = A.random_element_of_length(10) sage: p in A True sage: p.length() == 10 True sage: W = CoxeterGroup(['A', 4]) sage: p = W.random_element_of_length(5) sage: p in W True sage: p.length() == 5 True """ from sage.misc.prandom import randint x = self.one() for i in xrange(1, n + 1): antiD = x.descents(positive=True) rnd = randint(0, len(antiD) - 1) x = x.apply_simple_reflection_right(antiD[rnd]) return x # TODO: Groups() should have inverse() call __invert__ # With strong doc stating that this is just a convenience for the user # and links to ~ / __invert__ # parabolic_subgroup def _test_simple_projections(self, **options): """ Runs sanity checks on :meth:`.simple_projections` and :meth:`CoxeterGroups.ElementMethods.apply_simple_projection` EXAMPLES:: sage: W = CoxeterGroups().example() sage: W._test_simple_projections() """ tester = self._tester(**options) for side in ['left', 'right']: pi = self.simple_projections(side = side) opi = self.simple_projections(side = side, length_increasing = False) for i in self.index_set(): for w in tester.some_elements(): tester.assert_( pi[i](w) == w.apply_simple_projection(i, side = side)) tester.assert_( pi[i](w) == w.apply_simple_projection(i, side = side, length_increasing = True )) tester.assert_(opi[i](w) == w.apply_simple_projection(i, side = side, length_increasing = False)) tester.assert_( pi[i](w).has_descent(i, side = side)) tester.assert_(not opi[i](w).has_descent(i, side = side)) tester.assertEquals(set([pi[i](w), opi[i](w)]), set([w, w.apply_simple_reflection(i, side = side)])) def _test_has_descent(self, **options): """ Runs sanity checks on the method :meth:`CoxeterGroups.ElementMethods.has_descent` of the elements of self. EXAMPLES:: sage: W = CoxeterGroups().example() sage: W._test_has_descent() """ tester = self._tester(**options) s = self.simple_reflections() for i in self.index_set(): tester.assert_(not self.one().has_descent(i)) tester.assert_(not self.one().has_descent(i, side = 'left')) tester.assert_(not self.one().has_descent(i, side = 'right')) tester.assert_(self.one().has_descent(i, positive = True)) tester.assert_(self.one().has_descent(i, positive = True, side = 'left')) tester.assert_(self.one().has_descent(i, positive = True, side = 'right')) for j in self.index_set(): tester.assertEquals(s[i].has_descent(j, side = 'left' ), i==j) tester.assertEquals(s[i].has_descent(j, side = 'right'), i==j) tester.assertEquals(s[i].has_descent(j ), i==j) tester.assertEquals(s[i].has_descent(j, positive = True, side = 'left' ), i!=j) tester.assertEquals(s[i].has_descent(j, positive = True, side = 'right'), i!=j) tester.assertEquals(s[i].has_descent(j, positive = True, ), i!=j) if i == j: continue u = s[i] * s[j] v = s[j] * s[i] tester.assert_((s[i]*s[j]).has_descent(i, side = 'left' )) tester.assert_((s[i]*s[j]).has_descent(j, side = 'right')) tester.assertEquals((s[i]*s[j]).has_descent(j, side = 'left' ), u == v) tester.assertEquals((s[i]*s[j]).has_descent(i, side = 'right'), u == v) def _test_descents(self, **options): """ Run sanity checks on the method :meth:`CoxeterGroups.ElementMethods.descents` of the elements of ``self``. EXAMPLES:: sage: W = CoxeterGroups().example() sage: W._test_descents() """ tester = self._tester(**options) s = self.simple_reflections() tester.assertEqual(len(self.one().descents(side='right')), 0) tester.assertEqual(len(self.one().descents(side='left')), 0) for i in self.index_set(): si = s[i] tester.assertEqual([i], si.descents(side='left')) tester.assertEqual([i], si.descents(side='right')) tester.assertNotIn(i, si.descents(positive=True, side='left')) tester.assertNotIn(i, si.descents(positive=True, side='right')) class ElementMethods: def has_descent(self, i, side = 'right', positive=False): """ Returns whether i is a (left/right) descent of self. See :meth:`.descents` for a description of the options. EXAMPLES:: sage: W = CoxeterGroups().example() sage: s = W.simple_reflections() sage: w = s[0] * s[1] * s[2] sage: w.has_descent(2) True sage: [ w.has_descent(i) for i in [0,1,2] ] [False, False, True] sage: [ w.has_descent(i, side = 'left') for i in [0,1,2] ] [True, False, False] sage: [ w.has_descent(i, positive = True) for i in [0,1,2] ] [True, True, False] This default implementation delegates the work to :meth:`.has_left_descent` and :meth:`.has_right_descent`. """ if not isinstance(positive, bool): raise TypeError("%s is not a boolean"%(bool)) if side == 'right': return self.has_right_descent(i) != positive if side != 'left': raise ValueError("%s is neither 'right' nor 'left'"%(side)) return self.has_left_descent(i) != positive # @abstract_method(optional = True) def has_right_descent(self, i): """ Returns whether ``i`` is a right descent of self. EXAMPLES:: sage: W = CoxeterGroups().example(); W The symmetric group on {0, ..., 3} sage: w = W.an_element(); w (1, 2, 3, 0) sage: w.has_right_descent(0) False sage: w.has_right_descent(1) False sage: w.has_right_descent(2) True """ return (~self).has_left_descent(i) def has_left_descent(self, i): """ Returns whether `i` is a left descent of self. This default implementation uses that a left descent of `w` is a right descent of `w^{-1}`. EXAMPLES:: sage: W = CoxeterGroups().example(); W The symmetric group on {0, ..., 3} sage: w = W.an_element(); w (1, 2, 3, 0) sage: w.has_left_descent(0) True sage: w.has_left_descent(1) False sage: w.has_left_descent(2) False TESTS:: sage: w.has_left_descent.__module__ 'sage.categories.coxeter_groups' """ return (~self).has_right_descent(i) def first_descent(self, side = 'right', index_set=None, positive=False): """ Returns the first left (resp. right) descent of self, as ane element of ``index_set``, or ``None`` if there is none. See :meth:`.descents` for a description of the options. EXAMPLES:: sage: W = CoxeterGroups().example() sage: s = W.simple_reflections() sage: w = s[2]*s[0] sage: w.first_descent() 0 sage: w = s[0]*s[2] sage: w.first_descent() 0 sage: w = s[0]*s[1] sage: w.first_descent() 1 """ if index_set is None: index_set = self.parent().index_set() for i in index_set: if self.has_descent(i, side = side, positive = positive): return i return None def descents(self, side = 'right', index_set=None, positive=False): """ INPUT: - ``index_set`` - a subset (as a list or iterable) of the nodes of the Dynkin diagram; (default: all of them) - ``side`` - 'left' or 'right' (default: 'right') - ``positive`` - a boolean (default: ``False``) Returns the descents of self, as a list of elements of the index_set. The ``index_set`` option can be used to restrict to the parabolic subgroup indexed by ``index_set``. If positive is ``True``, then returns the non-descents instead TODO: find a better name for ``positive``: complement? non_descent? Caveat: the return type may change to some other iterable (tuple, ...) in the future. Please use keyword arguments also, as the order of the arguments may change as well. EXAMPLES:: sage: W=CoxeterGroups().example() sage: s=W.simple_reflections() sage: w=s[0]*s[1] sage: w.descents() [1] sage: w=s[0]*s[2] sage: w.descents() [0, 2] TODO: side, index_set, positive """ if index_set is None: index_set=self.parent().index_set() return [ i for i in index_set if self.has_descent(i, side = side, positive = positive) ] def is_grassmannian(self, side = "right"): """ INPUT: - ``side`` - "left" or "right" (default: "right") Tests whether ``self`` is Grassmannian, i.e. it has at most one descent on the right (resp. on the left). EXAMPLES:: sage: W = CoxeterGroups().example(); W The symmetric group on {0, ..., 3} sage: s = W.simple_reflections() sage: W.one().is_grassmannian() True sage: s[1].is_grassmannian() True sage: (s[1]*s[2]).is_grassmannian() True sage: (s[0]*s[1]).is_grassmannian() True sage: (s[1]*s[2]*s[1]).is_grassmannian() False sage: (s[0]*s[2]*s[1]).is_grassmannian(side = "left") False sage: (s[0]*s[2]*s[1]).is_grassmannian(side = "right") True sage: (s[0]*s[2]*s[1]).is_grassmannian() True """ return len(self.descents(side = side)) <= 1 def reduced_word_reverse_iterator(self): """ Return a reverse iterator on a reduced word for ``self``. EXAMPLES:: sage: W=CoxeterGroups().example() sage: s = W.simple_reflections() sage: sigma = s[0]*s[1]*s[2] sage: rI=sigma.reduced_word_reverse_iterator() sage: [i for i in rI] [2, 1, 0] sage: s[0]*s[1]*s[2]==sigma True sage: sigma.length() 3 .. SEEALSO:: :meth:`.reduced_word` Default implementation: recursively remove the first right descent until the identity is reached (see :meth:`.first_descent` and :meth:`~sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods.apply_simple_reflection`). """ while True: i = self.first_descent() if i is None: return self = self.apply_simple_reflection(i, 'right') yield i def reduced_word(self): r""" Return a reduced word for ``self``. This is a word `[i_1,i_2,\ldots,i_k]` of minimal length such that `s_{i_1} s_{i_2} \cdots s_{i_k} = \operatorname{self}`, where the `s_i` are the simple reflections. EXAMPLES:: sage: W=CoxeterGroups().example() sage: s=W.simple_reflections() sage: w=s[0]*s[1]*s[2] sage: w.reduced_word() [0, 1, 2] sage: w=s[0]*s[2] sage: w.reduced_word() [2, 0] .. SEEALSO:: - :meth:`.reduced_words`, :meth:`.reduced_word_reverse_iterator`, - :meth:`length`, :meth:`reduced_word_graph` """ result = list(self.reduced_word_reverse_iterator()) return list(reversed(result)) #def lex_min_reduced_word(w): # return list(reversed((w.inverse()).reduced_word())) def support(self): r""" Return the support of ``self``, that is the simple reflections that appear in the reduced expressions of ``self``. OUTPUT: The support of ``self`` as a set of integers EXAMPLES:: sage: W = CoxeterGroups().example() sage: w = W.from_reduced_word([1,2,1]) sage: w.support() {1, 2} """ return set(self.reduced_word()) def has_full_support(self): r""" Return whether ``self`` has full support. An element is said to have full support if its support contains all simple reflections. EXAMPLES:: sage: W = CoxeterGroups().example() sage: w = W.from_reduced_word([1,2,1]) sage: w.has_full_support() False sage: w = W.from_reduced_word([1,2,1,0,1]) sage: w.has_full_support() True """ return self.support() == set(self.parent().index_set()) def reduced_words(self): r""" Return all reduced words for ``self``. See :meth:`reduced_word` for the definition of a reduced word. EXAMPLES:: sage: W=CoxeterGroups().example() sage: s=W.simple_reflections() sage: w=s[0]*s[2] sage: w.reduced_words() [[2, 0], [0, 2]] sage: W=WeylGroup(['E',6]) sage: w=W.from_reduced_word([2,3,4,2]) sage: w.reduced_words() [[3, 2, 4, 2], [2, 3, 4, 2], [3, 4, 2, 4]] TODO: the result should be full featured finite enumerated set (e.g. counting can be done much faster than iterating). .. SEEALSO:: :meth:`.reduced_word`, :meth:`.reduced_word_reverse_iterator`, :meth:`length`, :meth:`reduced_word_graph` """ descents = self.descents() if descents == []: return [[]] else: return [ r + [i] for i in self.descents() for r in (self.apply_simple_reflection(i)).reduced_words() ] def reduced_word_graph(self): r""" Return the reduced word graph of ``self``. The reduced word graph of an element `w` in a Coxeter group is the graph whose vertices are the reduced words for `w` (see :meth:`reduced_word` for a definition of this term), and which has an `m`-colored edge between two reduced words `x` and `y` whenever `x` and `y` differ by exactly one length-`m` braid move (with `m \geq 2`). This graph is always connected (a theorem due to Tits) and has no multiple edges. EXAMPLES:: sage: W = WeylGroup(['A',3], prefix='s') sage: w0 = W.long_element() sage: G = w0.reduced_word_graph() sage: G.num_verts() 16 sage: len(w0.reduced_words()) 16 sage: G.num_edges() 18 sage: len([e for e in G.edges() if e[2] == 2]) 10 sage: len([e for e in G.edges() if e[2] == 3]) 8 TESTS:: sage: p = Permutation([3,2,4,1]) sage: pp = WeylGroup(['A',3]).from_reduced_word(p.reduced_word()) sage: pp.reduced_word_graph() Graph on 3 vertices sage: w1 = W.one() sage: G = w1.reduced_word_graph() sage: G.num_verts() 1 sage: G.num_edges() 0 .. SEEALSO:: :meth:`.reduced_words`, :meth:`.reduced_word_reverse_iterator`, :meth:`length`, :meth:`reduced_word` """ R = self.reduced_words() from sage.graphs.graph import Graph # Special case for when the graph does not contain any edges if len(R) == 1: return Graph({tuple(R[0]): []}, immutable=True) P = self.parent() edges = [] for i,x in enumerate(R): x = tuple(x) for y in R[i:]: y = tuple(y) # Check that the reduced expressions differ by only # a single braid move i = 0 while i < len(x) and x[i] == y[i]: i += 1 if i == len(x): continue a, b = x[i], y[i] m = P.coxeter_matrix()[a,b] subword = [a,b] * (m // 2) subword2 = [b,a] * (m // 2) if m % 2 != 0: subword.append(a) subword2.append(b) if (x[i:i+m] != tuple(subword) or y[i:i+m] != tuple(subword2) or x[i+m:] != y[i+m:]): continue edges.append([x, y, m]) G = Graph(edges, immutable=True, format="list_of_edges") colors = {2: 'blue', 3: 'red', 4: 'green'} G.set_latex_options(edge_labels=True, color_by_label=lambda x: colors[x]) return G def length(self): r""" Return the length of ``self``. This is the minimal length of a product of simple reflections giving ``self``. EXAMPLES:: sage: W = CoxeterGroups().example() sage: s1 = W.simple_reflection(1) sage: s2 = W.simple_reflection(2) sage: s1.length() 1 sage: (s1*s2).length() 2 sage: W = CoxeterGroups().example() sage: s = W.simple_reflections() sage: w = s[0]*s[1]*s[0] sage: w.length() 3 sage: W = CoxeterGroups().example() sage: sum((x^w.length()) for w in W) - expand(prod(sum(x^i for i in range(j+1)) for j in range(4))) # This is scandalously slow!!! 0 .. SEEALSO:: :meth:`.reduced_word` .. TODO:: Should use reduced_word_iterator (or reverse_iterator) """ return len(self.reduced_word()) def absolute_length(self): """ Return the absolute length of ``self``. The absolute length is the length of the shortest expression of the element as a product of reflections. For permutations in the symmetric groups, the absolute length is the size minus the number of its disjoint cycles. .. SEEALSO:: :meth:`absolute_le` EXAMPLES:: sage: W = WeylGroup(["A", 3]) sage: s = W.simple_reflections() sage: (s[1]*s[2]*s[3]).absolute_length() 3 sage: W = SymmetricGroup(4) sage: s = W.simple_reflections() sage: (s[3]*s[2]*s[1]).absolute_length() 3 """ M = self.canonical_matrix() return (M - 1).image().dimension() def absolute_le(self, other): r""" Return whether ``self`` is smaller than ``other`` in the absolute order. A general reflection is an element of the form `w s_i w^{-1}`, where `s_i` is a simple reflection. The absolute order is defined analogously to the weak order but using general reflections rather than just simple reflections. This partial order can be used to define noncrossing partitions associated with this Coxeter group. .. SEEALSO:: :meth:`absolute_length` EXAMPLES:: sage: W = WeylGroup(["A", 3]) sage: s = W.simple_reflections() sage: w0 = s[1] sage: w1 = s[1]*s[2]*s[3] sage: w0.absolute_le(w1) True sage: w1.absolute_le(w0) False sage: w1.absolute_le(w1) True """ if self == other: return True if self.absolute_length() >= other.absolute_length(): return False return self.absolute_length() + (self.inverse() * other).absolute_length() == other.absolute_length() def absolute_covers(self): r""" Return the list of covers of ``self`` in absolute order. .. SEEALSO:: :meth:`absolute_length` EXAMPLES:: sage: W = WeylGroup(["A", 3]) sage: s = W.simple_reflections() sage: w0 = s[1] sage: w1 = s[1]*s[2]*s[3] sage: w0.absolute_covers() [ [0 0 1 0] [0 1 0 0] [0 0 0 1] [0 1 0 0] [0 1 0 0] [1 0 0 0] [1 0 0 0] [1 0 0 0] [0 0 1 0] [0 0 0 1] [0 1 0 0] [0 0 0 1] [0 0 1 0] [1 0 0 0] [0 0 1 0] [0 0 0 1], [0 0 1 0], [0 1 0 0], [0 0 0 1], [1 0 0 0] ] """ W = self.parent() return [self * t for t in W.reflections() if self.absolute_length() < (self * t).absolute_length()] def canonical_matrix(self): r""" Return the matrix of ``self`` in the canonical faithful representation. This is an `n`-dimension real faithful essential representation, where `n` is the number of generators of the Coxeter group. Note that this is not always the most natural matrix representation, for instance in type `A_n`. EXAMPLES:: sage: W = WeylGroup(["A", 3]) sage: s = W.simple_reflections() sage: (s[1]*s[2]*s[3]).canonical_matrix() [ 0 0 -1] [ 1 0 -1] [ 0 1 -1] """ G = self.parent().canonical_representation() return G.prod(G.simple_reflection(i) for i in self.reduced_word()).matrix() def coset_representative(self, index_set, side = 'right'): r""" INPUT: - ``index_set`` - a subset (or iterable) of the nodes of the Dynkin diagram - ``side`` - 'left' or 'right' Returns the unique shortest element of the Coxeter group $W$ which is in the same left (resp. right) coset as ``self``, with respect to the parabolic subgroup $W_I$. EXAMPLES:: sage: W = CoxeterGroups().example(5) sage: s = W.simple_reflections() sage: w = s[2]*s[1]*s[3] sage: w.coset_representative([]).reduced_word() [2, 3, 1] sage: w.coset_representative([1]).reduced_word() [2, 3] sage: w.coset_representative([1,2]).reduced_word() [2, 3] sage: w.coset_representative([1,3] ).reduced_word() [2] sage: w.coset_representative([2,3] ).reduced_word() [2, 1] sage: w.coset_representative([1,2,3] ).reduced_word() [] sage: w.coset_representative([], side = 'left').reduced_word() [2, 3, 1] sage: w.coset_representative([1], side = 'left').reduced_word() [2, 3, 1] sage: w.coset_representative([1,2], side = 'left').reduced_word() [3] sage: w.coset_representative([1,3], side = 'left').reduced_word() [2, 3, 1] sage: w.coset_representative([2,3], side = 'left').reduced_word() [1] sage: w.coset_representative([1,2,3], side = 'left').reduced_word() [] """ while True: i = self.first_descent(side = side, index_set = index_set) if i is None: return self self = self.apply_simple_reflection(i, side = side) def apply_simple_projection(self, i, side = 'right', length_increasing = True): r""" INPUT: - ``i`` - an element of the index set of the Coxeter group - ``side`` - 'left' or 'right' (default: 'right') - ``length_increasing`` - a boolean (default: True) specifying the direction of the projection Returns the result of the application of the simple projection `\pi_i` (resp. `\overline\pi_i`) on ``self``. See :meth:`CoxeterGroups.ParentMethods.simple_projections` for the definition of the simple projections. EXAMPLE:: sage: W=CoxeterGroups().example() sage: w=W.an_element() sage: w (1, 2, 3, 0) sage: w.apply_simple_projection(2) (1, 2, 3, 0) sage: w.apply_simple_projection(2, length_increasing=False) (1, 2, 0, 3) sage: W = WeylGroup(['C',4],prefix="s") sage: v = W.from_reduced_word([1,2,3,4,3,1]) sage: v s1*s2*s3*s4*s3*s1 sage: v.apply_simple_projection(2) s1*s2*s3*s4*s3*s1*s2 sage: v.apply_simple_projection(2, side='left') s1*s2*s3*s4*s3*s1 sage: v.apply_simple_projection(1, length_increasing = False) s1*s2*s3*s4*s3 """ if self.has_descent(i, side = side, positive = length_increasing): return self.apply_simple_reflection(i, side=side) return self def binary_factorizations(self, predicate = ConstantFunction(True)): """ Returns the set of all the factorizations `self = u v` such that `l(self) = l(u) + l(v)`. Iterating through this set is Constant Amortized Time (counting arithmetic operations in the Coxeter group as constant time) complexity, and memory linear in the length of `self`. One can pass as optional argument a predicate p such that `p(u)` implies `p(u')` for any `u` left factor of `self` and `u'` left factor of `u`. Then this returns only the factorizations `self = uv` such `p(u)` holds. EXAMPLES: We construct the set of all factorizations of the maximal element of the group:: sage: W = WeylGroup(['A',3]) sage: s = W.simple_reflections() sage: w0 = W.from_reduced_word([1,2,3,1,2,1]) sage: w0.binary_factorizations().cardinality() 24 The same number of factorizations, by bounded length:: sage: [w0.binary_factorizations(lambda u: u.length() <= l).cardinality() for l in [-1,0,1,2,3,4,5,6]] [0, 1, 4, 9, 15, 20, 23, 24] The number of factorizations of the elements just below the maximal element:: sage: [(s[i]*w0).binary_factorizations().cardinality() for i in [1,2,3]] [12, 12, 12] sage: w0.binary_factorizations(lambda u: False).cardinality() 0 TESTS:: sage: w0.binary_factorizations().category() Category of finite enumerated sets """ from sage.combinat.backtrack import SearchForest W = self.parent() if not predicate(W.one()): from sage.sets.finite_enumerated_set import FiniteEnumeratedSet return FiniteEnumeratedSet([]) s = W.simple_reflections() def succ(u_v): (u, v) = u_v for i in v.descents(side = 'left'): u1 = u * s[i] if i == u1.first_descent() and predicate(u1): yield (u1, s[i]*v) return SearchForest(((W.one(), self),), succ, category = FiniteEnumeratedSets()) @cached_in_parent_method def bruhat_lower_covers(self): """ Returns all elements that ``self`` covers in (strong) Bruhat order. If ``w = self`` has a descent at `i`, then the elements that `w` covers are exactly `\{ws_i, u_1s_i, u_2s_i,..., u_js_i\}`, where the `u_k` are elements that `ws_i` covers that also do not have a descent at `i`. EXAMPLES:: sage: W = WeylGroup(["A",3]) sage: w = W.from_reduced_word([3,2,3]) sage: print([v.reduced_word() for v in w.bruhat_lower_covers()]) [[3, 2], [2, 3]] sage: W = WeylGroup(["A",3]) sage: print([v.reduced_word() for v in W.simple_reflection(1).bruhat_lower_covers()]) [[]] sage: print([v.reduced_word() for v in W.one().bruhat_lower_covers()]) [] sage: W = WeylGroup(["B",4,1]) sage: w = W.from_reduced_word([0,2]) sage: print([v.reduced_word() for v in w.bruhat_lower_covers()]) [[2], [0]] We now show how to construct the Bruhat poset:: sage: W = WeylGroup(["A",3]) sage: covers = tuple([u, v] for v in W for u in v.bruhat_lower_covers() ) sage: P = Poset((W, covers), cover_relations = True) sage: P.show() Alternatively, one can just use:: sage: P = W.bruhat_poset() The algorithm is taken from Stembridge's 'coxeter/weyl' package for Maple. """ desc = self.first_descent() if desc is not None: ww = self.apply_simple_reflection(desc) return [u.apply_simple_reflection(desc) for u in ww.bruhat_lower_covers() if not u.has_descent(desc)] + [ww] else: return [] @cached_in_parent_method def bruhat_upper_covers(self): r""" Returns all elements that cover ``self`` in (strong) Bruhat order. The algorithm works recursively, using the 'inverse' of the method described for lower covers :meth:`bruhat_lower_covers`. Namely, it runs through all `i` in the index set. Let `w` equal ``self``. If `w` has no right descent `i`, then `w s_i` is a cover; if `w` has a decent at `i`, then `u_j s_i` is a cover of `w` where `u_j` is a cover of `w s_i`. EXAMPLES:: sage: W = WeylGroup(['A',3,1], prefix="s") sage: w = W.from_reduced_word([1,2,1]) sage: w.bruhat_upper_covers() [s1*s2*s1*s0, s1*s2*s0*s1, s0*s1*s2*s1, s3*s1*s2*s1, s2*s3*s1*s2, s1*s2*s3*s1] sage: W = WeylGroup(['A',3]) sage: w = W.long_element() sage: w.bruhat_upper_covers() [] sage: W = WeylGroup(['A',3]) sage: w = W.from_reduced_word([1,2,1]) sage: S = [v for v in W if w in v.bruhat_lower_covers()] sage: C = w.bruhat_upper_covers() sage: set(S) == set(C) True """ Covers = [] for i in self.parent().index_set(): if i in self.descents(): Covers += [ x.apply_simple_reflection(i) for x in self.apply_simple_reflection(i).bruhat_upper_covers() if i not in x.descents() ] else: Covers += [ self.apply_simple_reflection(i) ] return uniq(Covers) @cached_in_parent_method def bruhat_lower_covers_reflections(self): r""" Returns all 2-tuples of lower_covers and reflections (``v``, ``r``) where ``v`` is covered by ``self`` and ``r`` is the reflection such that ``self`` = ``v`` ``r``. ALGORITHM: See :meth:`.bruhat_lower_covers` EXAMPLES:: sage: W = WeylGroup(['A',3], prefix="s") sage: w = W.from_reduced_word([3,1,2,1]) sage: w.bruhat_lower_covers_reflections() [(s1*s2*s1, s1*s2*s3*s2*s1), (s3*s2*s1, s2), (s3*s1*s2, s1)] """ i = self.first_descent() if i is None: return [] wi = self.apply_simple_reflection(i) return [(u.apply_simple_reflection(i),r.apply_conjugation_by_simple_reflection(i)) for u,r in wi.bruhat_lower_covers_reflections() if not u.has_descent(i)] + [(wi, self.parent().simple_reflection(i))] def lower_cover_reflections(self, side = 'right'): r""" Returns the reflections ``t`` such that ``self`` covers ``self`` ``t``. If ``side`` is 'left', ``self`` covers ``t`` ``self``. EXAMPLES:: sage: W = WeylGroup(['A',3],prefix="s") sage: w = W.from_reduced_word([3,1,2,1]) sage: w.lower_cover_reflections() [s1*s2*s3*s2*s1, s2, s1] sage: w.lower_cover_reflections(side = 'left') [s2*s3*s2, s3, s1] """ if side == 'left': self = self.inverse() return [x[1] for x in self.bruhat_lower_covers_reflections()] @cached_in_parent_method def bruhat_upper_covers_reflections(self): r""" Returns all 2-tuples of covers and reflections (``v``, ``r``) where ``v`` covers ``self`` and ``r`` is the reflection such that ``self`` = ``v`` ``r``. ALGORITHM: See :meth:`.bruhat_upper_covers` EXAMPLES:: sage: W = WeylGroup(['A',4], prefix="s") sage: w = W.from_reduced_word([3,1,2,1]) sage: w.bruhat_upper_covers_reflections() [(s1*s2*s3*s2*s1, s3), (s2*s3*s1*s2*s1, s2*s3*s2), (s3*s4*s1*s2*s1, s4), (s4*s3*s1*s2*s1, s1*s2*s3*s4*s3*s2*s1)] """ Covers = [] for i in self.parent().index_set(): wi = self.apply_simple_reflection(i) if i in self.descents(): Covers += [(u.apply_simple_reflection(i), r.apply_conjugation_by_simple_reflection(i)) for u,r in wi.bruhat_upper_covers_reflections() if i not in u.descents()] else: Covers += [(wi,self.parent().simple_reflection(i))] return uniq(Covers) def cover_reflections(self, side = 'right'): r""" Returns the set of reflections ``t`` such that ``self`` ``t`` covers ``self``. If ``side`` is 'left', ``t`` ``self`` covers ``self``. EXAMPLES:: sage: W = WeylGroup(['A',4], prefix="s") sage: w = W.from_reduced_word([3,1,2,1]) sage: w.cover_reflections() [s3, s2*s3*s2, s4, s1*s2*s3*s4*s3*s2*s1] sage: w.cover_reflections(side = 'left') [s4, s2, s1*s2*s1, s3*s4*s3] """ if side == 'left': self = self.inverse() return [x[1] for x in self.bruhat_upper_covers_reflections()] @cached_in_parent_method def bruhat_le(self, other): """ Bruhat comparison INPUT: - other - an element of the same Coxeter group OUTPUT: a boolean Returns whether ``self`` <= ``other`` in the Bruhat order. EXAMPLES:: sage: W = WeylGroup(["A",3]) sage: u = W.from_reduced_word([1,2,1]) sage: v = W.from_reduced_word([1,2,3,2,1]) sage: u.bruhat_le(u) True sage: u.bruhat_le(v) True sage: v.bruhat_le(u) False sage: v.bruhat_le(v) True sage: s = W.simple_reflections() sage: s[1].bruhat_le(W.one()) False The implementation uses the equivalent condition that any reduced word for ``other`` contains a reduced word for ``self`` as subword. See Stembridge, A short derivation of the Möbius function for the Bruhat order. J. Algebraic Combin. 25 (2007), no. 2, 141--148, Proposition 1.1. Complexity: `O(l * c)`, where `l` is the minimum of the lengths of `u` and of `v`, and `c` is the cost of the low level methods :meth:`first_descent`, :meth:`has_descent`, :meth:`~sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods.apply_simple_reflection`), etc. Those are typically `O(n)`, where `n` is the rank of the Coxeter group. TESTS: We now run consistency tests with permutations and :meth:`bruhat_lower_covers`:: sage: W = WeylGroup(["A",3]) sage: P4 = Permutations(4) sage: def P4toW(w): return W.from_reduced_word(w.reduced_word()) sage: for u in P4: ... for v in P4: ... assert u.bruhat_lequal(v) == P4toW(u).bruhat_le(P4toW(v)) sage: W = WeylGroup(["B",3]) sage: P = W.bruhat_poset() # This is built from bruhat_lower_covers sage: Q = Poset((W, attrcall("bruhat_le"))) # long time (10s) sage: all( u.bruhat_le(v) == P.is_lequal(u,v) for u in W for v in W ) # long time (7s) True sage: all( P.is_lequal(u,v) == Q.is_lequal(u,v) for u in W for v in W) # long time (9s) True """ if not have_same_parent(self, other): raise TypeError("%s and %s do not have the same parent"%(self, other)) # could first compare the length, when that information is cheap desc = other.first_descent() if desc is not None: return self.apply_simple_projection(desc, length_increasing = False).bruhat_le(other.apply_simple_reflection(desc)) else: return self == other def weak_le(self, other, side = 'right'): """ comparison in weak order INPUT: - other - an element of the same Coxeter group - side - 'left' or 'right' (default: 'right') OUTPUT: a boolean Returns whether ``self`` <= ``other`` in left (resp. right) weak order, that is if 'v' can be obtained from 'v' by length increasing multiplication by simple reflections on the left (resp. right). EXAMPLES:: sage: W = WeylGroup(["A",3]) sage: u = W.from_reduced_word([1,2]) sage: v = W.from_reduced_word([1,2,3,2]) sage: u.weak_le(u) True sage: u.weak_le(v) True sage: v.weak_le(u) False sage: v.weak_le(v) True Comparison for left weak order is achieved with the option ``side``:: sage: u.weak_le(v, side = 'left') False The implementation uses the equivalent condition that any reduced word for `u` is a right (resp. left) prefix of some reduced word for `v`. Complexity: `O(l * c)`, where `l` is the minimum of the lengths of `u` and of `v`, and `c` is the cost of the low level methods :meth:`first_descent`, :meth:`has_descent`, :meth:`~sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods.apply_simple_reflection`), etc. Those are typically `O(n)`, where `n` is the rank of the Coxeter group. We now run consistency tests with permutations:: sage: W = WeylGroup(["A",3]) sage: P4 = Permutations(4) sage: def P4toW(w): return W.from_reduced_word(w.reduced_word()) sage: for u in P4: # long time (5s on sage.math, 2011) ....: for v in P4: ....: assert u.permutohedron_lequal(v) == P4toW(u).weak_le(P4toW(v)) ....: assert u.permutohedron_lequal(v, side='left') == P4toW(u).weak_le(P4toW(v), side='left') """ if not have_same_parent(self, other): raise TypeError("%s and %s do not have the same parent"%(self,other)) # could first compare the length, when that information is cheap prefix_side = 'left' if side == 'right' else 'right' while True: desc = self.first_descent(side = prefix_side) if desc is None: return True if not other.has_descent(desc, side = prefix_side): return False self = self.apply_simple_reflection(desc, side = prefix_side) other = other.apply_simple_reflection(desc, side = prefix_side) def weak_covers(self, side = 'right', index_set = None, positive = False): """ Returns all elements that ``self`` covers in weak order. INPUT: - side - 'left' or 'right' (default: 'right') - positive - a boolean (default: False) - index_set - a list of indices or None OUTPUT: a list EXAMPLES:: sage: W = WeylGroup(['A',3]) sage: w = W.from_reduced_word([3,2,1]) sage: [x.reduced_word() for x in w.weak_covers()] [[3, 2]] To obtain instead elements that cover self, set ``positive = True``:: sage: [x.reduced_word() for x in w.weak_covers(positive = True)] [[3, 1, 2, 1], [2, 3, 2, 1]] To obtain covers for left weak order, set the option side to 'left':: sage: [x.reduced_word() for x in w.weak_covers(side='left')] [[2, 1]] sage: w = W.from_reduced_word([3,2,3,1]) sage: [x.reduced_word() for x in w.weak_covers()] [[2, 3, 2], [3, 2, 1]] sage: [x.reduced_word() for x in w.weak_covers(side='left')] [[3, 2, 1], [2, 3, 1]] Covers w.r.t. a parabolic subgroup are obtained with the option ``index_set``:: sage: [x.reduced_word() for x in w.weak_covers(index_set = [1,2])] [[2, 3, 2]] """ return [ self.apply_simple_reflection(i, side=side) for i in self.descents(side=side, index_set = index_set, positive = positive) ] def coxeter_sorting_word(self,c): r""" Return the ``c``-sorting word of ``self``. For a Coxeter element `c` and an element `w`, the `c`-sorting word of `w` is the lexicographic minimal reduced expression of `w` in the infinite word `c^\infty`. INPUT: - ``c``-- a Coxeter element. OUTPUT: the ``c``-sorting word of ``self`` as a list of integers. EXAMPLES:: sage: W = CoxeterGroups().example() sage: c = W.from_reduced_word([0,2,1]) sage: w = W.from_reduced_word([1,2,1,0,1]) sage: w.coxeter_sorting_word(c) [2, 1, 2, 0, 1] """ if hasattr(c,"reduced_word"): c = c.reduced_word() elif not isinstance(c,list): c = list(c) n = self.parent().rank() pi = self l = pi.length() i = 0 sorting_word = [] while l > 0: s = c[i] if pi.has_left_descent(s): pi = pi.apply_simple_reflection_left(s) l -= 1 sorting_word.append(s) i += 1 if i == n: i = 0 return sorting_word def is_coxeter_sortable(self,c,sorting_word=None): r""" Return whether ``self`` is ``c``-sortable. Given a Coxeter element `c`, an element `w` is `c`-sortable if its `c`-sorting word decomposes into a sequence of weakly decreasing subwords of `c`. INPUT: - ``c`` -- a Coxeter element. - ``sorting_word`` -- sorting word (default: None) used to not recompute the ``c``-sorting word if already computed. OUTPUT: is ``self`` ``c``-sortable EXAMPLES:: sage: W = CoxeterGroups().example() sage: c = W.from_reduced_word([0,2,1]) sage: w = W.from_reduced_word([1,2,1,0,1]) sage: w.coxeter_sorting_word(c) [2, 1, 2, 0, 1] sage: w.is_coxeter_sortable(c) False sage: w = W.from_reduced_word([0,2,1,0,2]) sage: w.coxeter_sorting_word(c) [2, 0, 1, 2, 0] sage: w.is_coxeter_sortable(c) True sage: W = CoxeterGroup(['A',3]) sage: c = W.from_reduced_word([1,2,3]) sage: len([w for w in W if w.is_coxeter_sortable(c)]) # number of c-sortable elements in A_3 (Catalan number) 14 """ if hasattr(c,"reduced_word"): c = c.reduced_word() elif not isinstance(c,list): c = list(c) if sorting_word is None: sorting_word = self.coxeter_sorting_word(c) n = len(c) containment_list = [ True ]*n l = 0 i = 0 while l < len(sorting_word): s = c[i] t = sorting_word[l] if s == t: l += 1 if not containment_list[i]: return False else: containment_list[i] = False i += 1 if i == n: i = 0 return True def apply_demazure_product(self, element, side = 'right', length_increasing = True): r""" Returns the Demazure or 0-Hecke product of ``self`` with another Coxeter group element. See :meth:`CoxeterGroups.ParentMethods.simple_projections`. INPUT: - ``element`` -- either an element of the same Coxeter group as ``self`` or a tuple or a list (such as a reduced word) of elements from the index set of the Coxeter group. - ``side`` -- 'left' or 'right' (default: 'right'); the side of ``self`` on which the element should be applied. If ``side`` is 'left' then the operation is applied on the left. - ``length_increasing`` -- a boolean (default True) whether to act length increasingly or decreasingly EXAMPLES:: sage: W = WeylGroup(['C',4],prefix="s") sage: v = W.from_reduced_word([1,2,3,4,3,1]) sage: v.apply_demazure_product([1,3,4,3,3]) s4*s1*s2*s3*s4*s3*s1 sage: v.apply_demazure_product([1,3,4,3],side='left') s3*s4*s1*s2*s3*s4*s2*s3*s1 sage: v.apply_demazure_product((1,3,4,3),side='left') s3*s4*s1*s2*s3*s4*s2*s3*s1 sage: v.apply_demazure_product(v) s2*s3*s4*s1*s2*s3*s4*s2*s3*s2*s1 """ # if self and element have the same parent if self.parent().is_parent_of(element): the_word = element.reduced_word() else: # check for a list or tuple of elements of the index set if isinstance(element, (tuple)): element = [x for x in element] if not isinstance(element, (list)): raise TypeError("Bad Coxeter group element input: %s"%(element)) I = self.parent().index_set() if not all(i in I for i in element): raise ValueError("%s does not have all its members in the index set of the %s"%(element, self.parent())) # the copy is so that if we need to reverse the list, the original will not # get reversed the_word = copy(element) if side == 'left': the_word.reverse() for i in the_word: self = self.apply_simple_projection(i, side = side, length_increasing = length_increasing) return self def min_demazure_product_greater(self, element): r""" Finds the unique Bruhat-minimum element ``u`` such that ``v`` $\le$ ``w`` * ``u`` where ``v`` is ``self``, ``w`` is ``element`` and ``*`` is the Demazure product. INPUT: - ``element`` is either an element of the same Coxeter group as ``self`` or a list (such as a reduced word) of elements from the index set of the Coxeter group. EXAMPLES:: sage: W = WeylGroup(['A',4],prefix="s") sage: v = W.from_reduced_word([2,3,4,1,2]) sage: u = W.from_reduced_word([2,3,2,1]) sage: v.min_demazure_product_greater(u) s4*s2 sage: v.min_demazure_product_greater([2,3,2,1]) s4*s2 sage: v.min_demazure_product_greater((2,3,2,1)) s4*s2 """ # if self and element have the same parent if self.parent().is_parent_of(element): the_word = element.reduced_word() # else require that ``element`` is a list or tuple of index_set elements else: if not isinstance(element, (tuple,list)): raise TypeError("Bad Coxeter group element input: %s"%(element)) I = self.parent().index_set() if not all(i in I for i in element): raise ValueError("%s does not have all its members in the index set of the %s"%(element, self.parent())) the_word = element for i in the_word: if self.has_descent(i, side = 'left'): self = self.apply_simple_reflection(i, side = 'left') return self def deodhar_factor_element(self, w, index_set): r""" Returns Deodhar's Bruhat order factoring element. INPUT: - ``w`` is an element of the same Coxeter group ``W`` as ``self`` - ``index_set`` is a subset of Dynkin nodes defining a parabolic subgroup ``W'`` of ``W`` It is assumed that ``v = self`` and ``w`` are minimum length coset representatives for ``W/W'`` such that ``v`` $\le$ ``w`` in Bruhat order. OUTPUT: Deodhar's element ``f(v,w)`` is the unique element of ``W'`` such that, for all ``v'`` and ``w'`` in ``W'``, ``vv'`` $\le$ ``ww'`` in ``W`` if and only if ``v'`` $\le$ ``f(v,w) * w'`` in ``W'`` where ``*`` is the Demazure product. EXAMPLES:: sage: W = WeylGroup(['A',5],prefix="s") sage: v = W.from_reduced_word([5]) sage: w = W.from_reduced_word([4,5,2,3,1,2]) sage: v.deodhar_factor_element(w,[1,3,4]) s3*s1 sage: W=WeylGroup(['C',2]) sage: w=W.from_reduced_word([2,1]) sage: w.deodhar_factor_element(W.from_reduced_word([2]),[1]) Traceback (most recent call last): ... ValueError: [2, 1] is not of minimum length in its coset for the parabolic subgroup with index set [1] REFERENCES: .. [Deodhar] \V. Deodhar, A splitting criterion for the Bruhat orderings on Coxeter groups. Comm. Algebra, 15:1889-1894, 1987. """ if self != self.coset_representative(index_set): raise ValueError("%s is not of minimum length in its coset for the parabolic subgroup with index set %s"%(self.reduced_word(),index_set)) if w != w.coset_representative(index_set): raise ValueError("%s is not of minimum length in its coset for the parabolic subgroup with index set %s"%(w.reduced_word(),index_set)) if not self.bruhat_le(w): raise ValueError("Must have %s <= %s"%(self.reduced_word(), w.reduced_word())) if w.is_one(): return w i = w.first_descent(side = 'left') sw = w.apply_simple_reflection(i, side = 'left') sv = self.apply_simple_reflection(i, side = 'left') if self.has_descent(i, side = 'left'): return sv.deodhar_factor_element(sw, index_set) dsp = self.deodhar_factor_element(sw, index_set) des = sv.first_descent(side = 'right', index_set = index_set) if des is None: return dsp return dsp.apply_simple_projection(des, side = 'left') def deodhar_lift_up(self, w, index_set): """ Letting ``v = self``, given a Bruhat relation ``v W'`` $\le$ ``w W'`` among cosets with respect to the subgroup ``W'`` given by the Dynkin node subset ``index_set``, returns the Bruhat-minimum lift ``x`` of ``wW'`` such that ``v`` $\le$ ``x``. INPUT: - ``w`` is an element of the same Coxeter group ``W`` as ``self``. - ``index_set`` is a subset of Dynkin nodes defining a parabolic subgroup ``W'``. OUTPUT: The unique Bruhat-minimum element ``x`` in ``W`` such that ``x W' = w W'`` and ``v`` $\le$ ``x``. .. SEEALSO:: :meth:`sage.categories.coxeter_groups.CoxeterGroups.ElementMethods.deodhar_lift_down` EXAMPLES:: sage: W = WeylGroup(['A',3],prefix="s") sage: v = W.from_reduced_word([1,2,3]) sage: w = W.from_reduced_word([1,3,2]) sage: v.deodhar_lift_up(w, [3]) s1*s2*s3*s2 """ vmin = self.coset_representative(index_set) wmin = w.coset_representative(index_set) if not vmin.bruhat_le(wmin): raise ValueError("Must have %s <= %s mod the parabolic subgroup with index set %s"%(self.reduced_word(), w.reduced_word(), index_set)) vJ = vmin.inverse() * self dsp = vmin.deodhar_factor_element(wmin,index_set) return wmin * vJ.min_demazure_product_greater(dsp) def deodhar_lift_down(self, w, index_set): r""" Letting ``v = self``, given a Bruhat relation ``v W'`` $\ge$ ``w W'`` among cosets with respect to the subgroup ``W'`` given by the Dynkin node subset ``index_set``, returns the Bruhat-maximum lift ``x`` of ``wW'`` such that ``v`` $\ge$ ``x``. INPUT: - ``w`` is an element of the same Coxeter group ``W`` as ``self``. - ``index_set`` is a subset of Dynkin nodes defining a parabolic subgroup ``W'``. OUTPUT: The unique Bruhat-maximum element ``x`` in ``W`` such that ``x W' = w W'`` and ``v $\ge$ ``x``. .. SEEALSO:: :meth:`sage.categories.coxeter_groups.CoxeterGroups.ElementMethods.deodhar_lift_up` EXAMPLES:: sage: W = WeylGroup(['A',3],prefix="s") sage: v = W.from_reduced_word([1,2,3,2]) sage: w = W.from_reduced_word([3,2]) sage: v.deodhar_lift_down(w, [3]) s2*s3*s2 """ vmin = self.coset_representative(index_set) wmin = w.coset_representative(index_set) if not wmin.bruhat_le(vmin): raise ValueError("Must have %s <= %s mod the parabolic subgroup with index set %s"%(w.reduced_word(), self.reduced_word(), index_set)) vJ = vmin.inverse() * self dsp = wmin.deodhar_factor_element(vmin,index_set) return wmin * dsp.apply_demazure_product(vJ) @cached_in_parent_method def inversions_as_reflections(self): r""" Returns the set of reflections ``r`` such that ``self`` ``r < self``. EXAMPLES:: sage: W = WeylGroup(['A',3], prefix="s") sage: w = W.from_reduced_word([3,1,2,1]) sage: w.inversions_as_reflections() [s1, s1*s2*s1, s2, s1*s2*s3*s2*s1] """ i = self.first_descent() if i is None: return [] wi = self.apply_simple_reflection(i) return [self.parent().simple_reflection(i)]+[u.apply_conjugation_by_simple_reflection(i) for u in wi.inversions_as_reflections()] def left_inversions_as_reflections(self): r""" Returns the set of reflections ``r`` such that ``r`` ``self`` < ``self``. EXAMPLES:: sage: W = WeylGroup(['A',3], prefix="s") sage: w = W.from_reduced_word([3,1,2,1]) sage: w.left_inversions_as_reflections() [s1, s3, s1*s2*s3*s2*s1, s2*s3*s2] """ return self.inverse().inversions_as_reflections() def lower_covers(self, side = 'right', index_set = None): """ Returns all elements that ``self`` covers in weak order. INPUT: - side - 'left' or 'right' (default: 'right') - index_set - a list of indices or None OUTPUT: a list EXAMPLES:: sage: W = WeylGroup(['A',3]) sage: w = W.from_reduced_word([3,2,1]) sage: [x.reduced_word() for x in w.lower_covers()] [[3, 2]] To obtain covers for left weak order, set the option side to 'left':: sage: [x.reduced_word() for x in w.lower_covers(side='left')] [[2, 1]] sage: w = W.from_reduced_word([3,2,3,1]) sage: [x.reduced_word() for x in w.lower_covers()] [[2, 3, 2], [3, 2, 1]] Covers w.r.t. a parabolic subgroup are obtained with the option ``index_set``:: sage: [x.reduced_word() for x in w.lower_covers(index_set = [1,2])] [[2, 3, 2]] sage: [x.reduced_word() for x in w.lower_covers(side='left')] [[3, 2, 1], [2, 3, 1]] """ return self.weak_covers(side = side, index_set = index_set, positive = False) def upper_covers(self, side = 'right', index_set = None): """ Returns all elements that cover ``self`` in weak order. INPUT: - side - 'left' or 'right' (default: 'right') - index_set - a list of indices or None OUTPUT: a list EXAMPLES:: sage: W = WeylGroup(['A',3]) sage: w = W.from_reduced_word([2,3]) sage: [x.reduced_word() for x in w.upper_covers()] [[2, 3, 1], [2, 3, 2]] To obtain covers for left weak order, set the option ``side`` to 'left':: sage: [x.reduced_word() for x in w.upper_covers(side = 'left')] [[1, 2, 3], [2, 3, 2]] Covers w.r.t. a parabolic subgroup are obtained with the option ``index_set``:: sage: [x.reduced_word() for x in w.upper_covers(index_set = [1])] [[2, 3, 1]] sage: [x.reduced_word() for x in w.upper_covers(side = 'left', index_set = [1])] [[1, 2, 3]] """ return self.weak_covers(side = side, index_set = index_set, positive = True)
the-stack_0_26809
''' Reciprocal cycles Problem 26 A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given: 1/2 = 0.5 1/3 = 0.(3) 1/4 = 0.25 1/5 = 0.2 1/6 = 0.1(6) 1/7 = 0.(142857) 1/8 = 0.125 1/9 = 0.(1) 1/10 = 0.1 Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle. Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part. ''' def rec_cyc(a): #print("in rec_cyc , for : ", a) dec = [] s = 10 cyc = 0 rems = [1] divided = True while (True): #print(s , dec) if s < a: dec.append(0) cyc = cyc + 1 s = s * 10 else: r = s % a f = int(s / a) dec.append(f) if r == 0: cyc = 0 #print("Divided .. for " ,a , " dec =", dec," rem = ", rems) break elif r in rems: rems.append(r) first_pos = 0 for i in range(0, len(rems)): if rems[i] == r: first_pos = i + 1 break cyc = len(rems) - first_pos #print("Not divided ... for " ,a , " dec =", dec," rem = ", rems , ", first_pos = " ,first_pos, " len(rems)=" , len(rems)) break else: rems.append(r) s = r * 10 return (cyc) max_res = 0 max_int = 0 for i in range(2, 1000): r = rec_cyc(i) if r > max_res: max_res = r max_int = i #print("Result = " , i,r) print("max_res ", max_res, " max_int :", max_int)
the-stack_0_26812
import os from setuptools import setup, find_packages if os.path.exists('README.rst'): with open('README.rst') as file: long_description = file.read() else: long_description = '' setup( name="spinoff", description="Framework for writing distributed, fault tolerant and scalable internet applications", long_description=long_description, version="0.7.18", packages=find_packages(), install_requires=[ 'zope.interface', 'pyzmq==13.1', 'gevent==1.0', ], author="Erik Allik", author_email="[email protected]", license="BSD", url="http://github.com/eallik/spinoff/", entry_points={ 'console_scripts': [ 'spin = spinoff.actor.spin:console', ] }, )
the-stack_0_26813
# Copyright © 2020 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test Suite to ensure the PPR registration summary schema is valid.""" import pytest from registry_schemas import validate TEST_VALID_ALL = { 'registrationNumber': '9000100B', 'baseRegistrationNumber': '9000100B', 'statusType': 'ACT', 'registrationType': 'SA', 'registrationDescription': 'PPSA SECURITY AGREEMENT', 'registrationClass': 'PPSALIEN', 'expireDays': 1422, 'clientReferenceId': 'T-0000001', 'path': '/ppr/api/v1/financing-statements/9000100B', 'createDateTime': '2021-06-03T22:58:45+00:00', 'lastUpdateDateTime': '2021-06-03T23:03:45+00:00', 'registeringParty': 'Bank of British Columbia', 'securedParties': 'Bank of British Columbia', 'registeringName': 'Michael Smith', 'inUserList': False } TEST_VALID_MINIMUM = { 'registrationNumber': '9000100B', 'registrationType': 'SA', 'registrationClass': 'PPSALIEN', 'path': '/ppr/api/v1/financing-statements/9000100B', 'createDateTime': '2021-06-03T22:58:45+00:00' } TEST_INVALID_STATUS_TYPE = { 'registrationNumber': '9000100B', 'baseRegistrationNumber': '9000100B', 'statusType': 'XXX', 'registrationType': 'SA', 'registrationDescription': 'PPSA SECURITY AGREEMENT', 'registrationClass': 'PPSALIEN', 'expireDays': 1422, 'clientReferenceId': 'T-0000001', 'path': '/ppr/api/v1/financing-statements/9000100B', 'createDateTime': '2021-06-03T22:58:45+00:00', 'lastUpdateDateTime': '2021-06-03T23:03:45+00:00', 'registeringParty': 'Bank of British Columbia', 'securedParties': 'Bank of British Columbia', 'registeringName': 'Michael Smith', 'inUserList': False } TEST_INVALID_REG_TYPE = { 'registrationNumber': '9000100B', 'baseRegistrationNumber': '9000100B', 'statusType': 'ACT', 'registrationType': 'SAX', 'registrationDescription': 'PPSA SECURITY AGREEMENT', 'registrationClass': 'PPSALIEN', 'expireDays': 1422, 'clientReferenceId': 'T-0000001', 'path': '/ppr/api/v1/financing-statements/9000100B', 'createDateTime': '2021-06-03T22:58:45+00:00', 'lastUpdateDateTime': '2021-06-03T23:03:45+00:00', 'registeringParty': 'Bank of British Columbia', 'securedParties': 'Bank of British Columbia', 'registeringName': 'Michael Smith', 'inUserList': False } TEST_INVALID_REG_NUMBER = { 'registrationNumber': '9000100BXXX', 'baseRegistrationNumber': '9000100B', 'statusType': 'ACT', 'registrationType': 'SA', 'registrationDescription': 'PPSA SECURITY AGREEMENT', 'registrationClass': 'PPSALIEN', 'expireDays': 1422, 'clientReferenceId': 'T-0000001', 'path': '/ppr/api/v1/financing-statements/9000100B', 'createDateTime': '2021-06-03T22:58:45+00:00', 'lastUpdateDateTime': '2021-06-03T23:03:45+00:00', 'registeringParty': 'Bank of British Columbia', 'securedParties': 'Bank of British Columbia', 'registeringName': 'Michael Smith', 'inUserList': False } TEST_INVALID_EXPIRE_DAYS = { 'registrationNumber': '9000100B', 'baseRegistrationNumber': '9000100B', 'statusType': 'ACT', 'registrationType': 'SA', 'registrationDescription': 'PPSA SECURITY AGREEMENT', 'registrationClass': 'PPSALIEN', 'expireDays': 'wrong', 'clientReferenceId': 'T-0000001', 'path': '/ppr/api/v1/financing-statements/9000100B', 'createDateTime': '2021-06-03T22:58:45+00:00', 'lastUpdateDateTime': '2021-06-03T23:03:45+00:00', 'registeringParty': 'Bank of British Columbia', 'securedParties': 'Bank of British Columbia', 'registeringName': 'Michael Smith', 'inUserList': False } TEST_INVALID_MISSING_REG_NUM = { 'registrationType': 'SA', 'registrationClass': 'PPSALIEN', 'path': '/ppr/api/v1/financing-statements/9000100B', 'createDateTime': '2021-06-03T22:58:45+00:00' } TEST_INVALID_MISSING_REG_TYPE = { 'registrationNumber': '9000100B', 'registrationClass': 'PPSALIEN', 'path': '/ppr/api/v1/financing-statements/9000100B', 'createDateTime': '2021-06-03T22:58:45+00:00' } TEST_INVALID_MISSING_REG_CLASS = { 'registrationNumber': '9000100B', 'registrationType': 'SA', 'path': '/ppr/api/v1/financing-statements/9000100B', 'createDateTime': '2021-06-03T22:58:45+00:00' } TEST_INVALID_MISSING_PATH = { 'registrationNumber': '9000100B', 'registrationType': 'SA', 'registrationClass': 'PPSALIEN', 'createDateTime': '2021-06-03T22:58:45+00:00' } TEST_INVALID_MISSING_CREATE_TS = { 'registrationNumber': '9000100B', 'registrationType': 'SA', 'registrationClass': 'PPSALIEN', 'path': '/ppr/api/v1/financing-statements/9000100B' } TEST_EMPTY_JSON = { } TEST_UNKNOWN_JSON = { 'registrationNumber': '9000100B', 'registrationType': 'SA', 'registrationClass': 'PPSALIEN', 'path': '/ppr/api/v1/financing-statements/9000100B', 'createDateTime': '2021-06-03T22:58:45+00:00', 'unknown': 'xxxx' } # testdata pattern is ({description}, {is valid}, {data}) TEST_DATA = [ ('All valid', True, TEST_VALID_ALL), ('Minimum valid', True, TEST_VALID_MINIMUM), ('Invalid status type', False, TEST_INVALID_STATUS_TYPE), ('Invalid reg type length', False, TEST_INVALID_REG_TYPE), ('Invalid reg number length', False, TEST_INVALID_REG_NUMBER), ('Invalid expiry days value', False, TEST_INVALID_EXPIRE_DAYS), ('Invalid missing reg num', False, TEST_INVALID_MISSING_REG_NUM), ('Invalid missing reg type', False, TEST_INVALID_MISSING_REG_TYPE), ('Invalid missing reg class', False, TEST_INVALID_MISSING_REG_CLASS), ('Invalid missing path', False, TEST_INVALID_MISSING_PATH), ('Invalid missing create_ts', False, TEST_INVALID_MISSING_CREATE_TS), ('No settings', False, TEST_EMPTY_JSON), ('Unknown ignored setting', True, TEST_UNKNOWN_JSON) ] @pytest.mark.parametrize('desc,valid,data', TEST_DATA) def test_registration_summary(desc, valid, data): """Assert that the schema is performing as expected for a registration summary.""" is_valid, errors = validate(data, 'registrationSummary', 'ppr') if errors: # print(errors) for err in errors: print(err.message) assert is_valid == valid
the-stack_0_26814
import matplotlib.pyplot as plt from visualize.helpers.colors import color_rainbow from visualize.helpers.data import load_pickles, save_file, get_values, filter_data from analyze.scope_parse.c_get_lines import get_vol_cur_dir import numpy as np # data = load_pickle("G:/Prive/MIJN-Documenten/TU/62-Stage/20180103/run2-1us/data.pkl") # data = load_pickles('G:/Prive/MIJN-Documenten/TU/62-Stage/20180111') data = load_pickles('20180104-500hz') data = filter_data(data, input_v__gt=600) lw = 0.4 # linewidth w = np.unique(get_values(data, 'input_l')) colors = color_rainbow(len(w)) fig, ax = plt.subplots(2, 1) tit = fig.suptitle('Waveforms (1kHz, 26$\mu$H, avg32)') for i, iw in enumerate(w): l = str(iw) + '$\mu$s' d = [d for d in data if d['input_l'] == iw] v = get_values(d, 'output_v_pulse') y = get_values(d, 'o3_gramsec') ei = get_values(d, 'input_p') eo = get_values(d, 'output_e_rise') * get_values(d, 'input_f') # l=str(line['input_voltage_output'] / 1000) + 'kV' ax[0].plot(v, y, label=l, color=colors[i], linewidth=lw) ax[1].plot(v, ei, label=l + ' Pin', color=colors[i], linewidth=lw) ax[1].plot(v, eo, label=l + 'Pout', color=colors[i], linewidth=lw) ax[0].set_ylabel('Concentration [gram/s]') ax[1].set_ylabel('Power [W]') plt.xlabel('Voltage [V]') ax[0].grid(True) ax[1].grid(True) lgd = ax[0].legend(loc='upper left', bbox_to_anchor=(1, 1)) plt.show() save_file(fig, name='v_ep', bbox_extra_artists=(lgd, tit,))
the-stack_0_26815
import sys import csv import re from operator import itemgetter from phrase_sentiment import extract_sentiment_values, compute_sentiment def extract_actors_tweets(csv_file_name): with open(csv_file_name) as csv_file: file_reader = csv.DictReader(csv_file) actors_tweets = {} for row in file_reader: if actors_tweets.get(row['user_name']): actors_tweets[row['user_name']].append(row['tweet']) else: actors_tweets[row['user_name']] = [row['tweet']] return actors_tweets def compute_sentiment_for_tweets(tweets, sentiment_values): cumulative_sentiment = 0 for tweet in tweets: _, sentiment_val = compute_sentiment(tweet, sentiment_values) cumulative_sentiment += sentiment_val avg_sentiment = cumulative_sentiment / len(tweets) return avg_sentiment def sort_results(actors_sentiment_scores): results = sorted(list(actors_sentiment_scores.items()), key=itemgetter(1, 0), reverse=True) return results def main(): sent_file_name = sys.argv[1] sentiment_data = extract_sentiment_values(sent_file_name) csv_file_name = sys.argv[2] actors_tweets = extract_actors_tweets(csv_file_name) actors_sentiment_scores = {} for actor in actors_tweets.keys(): actors_sentiment_scores[actor] = compute_sentiment_for_tweets(actors_tweets[actor], sentiment_data) results = sort_results(actors_sentiment_scores) for i in results: print(i[0] + '\t' + str(i[1])) if __name__ == '__main__': main()
the-stack_0_26816
# Copyright 2018 NTRlab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ----------------------------------------------------------------------------- from __future__ import print_function import os import subprocess from setuptools import setup, find_packages data_files = [] if os.path.exists("/etc/default"): data_files.append( ('/etc/default', ['packaging/systemd/sawtooth-pbft-engine'])) if os.path.exists("/lib/systemd/system"): data_files.append( ('/lib/systemd/system', ['packaging/systemd/sawtooth-pbft-engine.service'])) setup( name='bgx-pbft-engine', version=subprocess.check_output( ['../../../bin/get_version']).decode('utf-8').strip(), description='BGX PBFT Consensus Engine', author='Hyperledger Sawtooth-bgx', url='https://github.com/hyperledger/sawtooth-core', packages=find_packages(), install_requires=[ "cbor", "colorlog", "cryptography", "sawtooth-sdk", "sawtooth-signing", "toml", "cbor" ], data_files=data_files, entry_points={ 'console_scripts': [ 'pbft-engine = sawtooth_pbft_engine.main:main' ] })
the-stack_0_26818
#!/usr/bin/env python from tkinter import Label, Button, END from tkinter.tix import Tk, Control, ComboBox top = Tk() top.tk.eval('package require Tix') lb = Label(top, text = 'Animals (in parirs; min : pair, max : dozen)') lb.pack() ct = Control(top, label = 'Number:', integer = True, max = 12, min = 2, value = 2, step = 2) ct.label.config(font = 'Helvetica -14 bold') ct.pack() cb = ComboBox(top, label = 'Type:', editable = True) for animal in ('dog', 'cat', 'hamster', 'python'): cb.insert(END, animal) cb.pack() qb = Button(top, text = 'Quit', command = top.quit, bg = 'red', fg = 'white') qb.pack() top.mainloop()
the-stack_0_26819
import komand from .schema import ManagerInfoInput, ManagerInfoOutput # Custom imports below import json import requests class ManagerInfo(komand.Action): def __init__(self): super(self.__class__, self).__init__( name='manager_info', description='Returns basic information about the Manager', input=ManagerInfoInput(), output=ManagerInfoOutput()) def run(self, params={}): api = '/manager/info' url = '{url}{api}'.format(url=self.connection.url, api=api) self.logger.info('Request: %s', url) try: resp = requests.get(url, auth=self.connection.creds) self.logger.info('Raw Response: %s', resp.json()) info = resp.json()['data'] info['error'] = resp.json()['error'] except requests.exceptions.HTTPError: self.logger.error('Requests: HTTPError: status code %s for %s' % (str(resp.status_code), url)) raise Exception('Requests: Connect: Failed response from server {}'.format(url)) self.logger.info('Normalized Response: %s', info) return info def test(self): # {'error': 0, 'data': 'Welcome to Wazuh HIDS API'} url = self.connection.url try: resp = requests.get(url, auth=self.connection.creds) r = resp.json() self.logger.info('Raw Response: %s', r) except requests.exceptions.HTTPError: self.logger.error('Requests: HTTPError: status code %s for %s' % (str(resp.status_code), url)) raise Exception('Requests: Connect: Failed response from server {}'.format(url)) if r['error'] == 0: # Example must match spec to succeed due to required's return { "installation_date": "Sat Apr 22 14:04:15 UTC 2017", "tz_offset": "+0000", "max_agents": "8000", "tz_name": "UTC", "error": 0, "path": "/var/ossec", "type": "server", "ruleset_version": "v2.0", "openssl_support": "yes", "version": "v2.0" } else: self.logger.error(r) raise Exception('Requests: Connect: Failed response from server {}'.format(url))
the-stack_0_26820
import demistomock as demisto from CommonServerPython import * from CommonServerUserPython import * import requests import json import time import re from xml.dom.minidom import Node, Document, parseString # disable insecure warnings requests.packages.urllib3.disable_warnings() USERNAME = demisto.params()['credentials']['identifier'] PASSWORD = demisto.params()['credentials']['password'] AUTH = ('super/' + USERNAME, PASSWORD) VERIFY_SSL = not demisto.params().get('unsecure', False) HOST = demisto.params()['host'] QUERY_URL = HOST + "/phoenix/rest/query/" REST_ADDRESS = HOST + "/phoenix/rest/h5" EXTENDED_KEYS = {} # type: dict def load_extended_keys(): global EXTENDED_KEYS if demisto.command() == 'fetch-incidents': last_run = demisto.getLastRun() EXTENDED_KEYS = last_run.get('extended_keys', {}) else: integration_context = demisto.getIntegrationContext() EXTENDED_KEYS = integration_context.get('extended_keys', {}) if not EXTENDED_KEYS: session = login() url = REST_ADDRESS + '/eventAttributeType/all' response = session.get(url, verify=VERIFY_SSL, auth=AUTH) EXTENDED_KEYS = dict((attr['attributeId'], attr['displayName']) for attr in response.json()) if demisto.command() != 'fetch-incidents': demisto.setIntegrationContext({'extended_keys': EXTENDED_KEYS}) def parse_resource_type(resource_type): type_to_url_path = { 'Reports': 'report', 'Rules': 'rule', 'Networks': 'resource/network', 'Watch Lists': 'rule/wl', 'Protocols': 'resource/port', 'Event Type': 'eventType', 'Malware IP': 'mal/ip', 'Malware Domains': 'mal/site', 'Malware Urls': 'mal/url', 'Malware Hash': 'mal/hash', 'Malware Processes': 'mal/proc', 'Country Groups': 'resource/geo', 'Default Password': 'mal/pwd', 'Anonymity Network': 'mal/proxy', 'User Agents': 'mal/agent', 'Remediations': 'remediation', } return type_to_url_path.get(resource_type, resource_type) @logger def validateSuccessfulResponse(resp, error_text): if resp.status_code != 200: return_error('Got response status {} when {}'.format(resp.status_code, error_text)) @logger def login(): session = requests.session() login_url = HOST + '/phoenix/login-html.jsf' response = session.get(login_url, verify=VERIFY_SSL) # get the VIEW_STATE from the xml returned in the UI login page. p = re.compile('(value=".{1046}==")') viewState = p.findall(response.text.encode('utf-8')) VIEW_STATE = viewState[0][len('value="'):][:-1] data = { 'loginHtml': 'loginHtml', 'loginHtml:username': USERNAME, 'loginHtml:password': PASSWORD, 'loginHtml:userDomain': 'Empty', 'loginHtml:loginBtn': 'Log In', 'loginHtml:domain': 'super', 'javax.faces.ViewState': VIEW_STATE } headers = { 'Upgrade-Insecure-Requests': '1', 'Content-Type': 'application/x-www-form-urlencoded', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,' 'application/signed-exchange;v=b3;q=0.9', 'Accept-Language': 'en-US,en;q=0.9,pt-PT;q=0.8,pt;q=0.7' } response = session.post(login_url, headers=headers, data=data, verify=VERIFY_SSL) # type: ignore return session def clear_incident_command(): args = demisto.args() incident_id = args['incident_id'] reason = args.get('close_reason', '') raw_response = clear_incident(incident_id, reason) return_outputs("Incident cleared successfully.", {}, raw_response) @logger def clear_incident(incident_id, reason): session = login() headers = { 'Accept': 'application/json, text/plain, */*', 'Content-Type': 'application/json' } response = session.put( HOST + '/phoenix/rest/h5/incident/clear', params={'ids': [incident_id], 'user': USERNAME}, headers=headers, data=reason, verify=VERIFY_SSL) validateSuccessfulResponse(response, "triggering events report") return response.text @logger def getEventsByIncident(incident_id, max_results, extended_data, max_wait_time): session = login() # response = session.get(HOST + '/phoenix/rest/h5/report/triggerEvent?rawMsg=' + incident_id) # validateSuccessfulResponse(response, "triggering events report") # # try: # jsonRes = response.json() # queryData = jsonRes[0]['right'] # except (ValueError, KeyError): # return_error("Got wrong response format when triggering events report. " # "Expected a json array but got:\n" + response.text) queryData = { "isReportService": True, "selectClause": "eventSeverityCat,incidentLastSeen,eventName,incidentRptDevName,incidentSrc,incidentTarget," "incidentDetail,incidentStatus,incidentReso,incidentId,eventType,incidentTicketStatus," "bizService,count,incidentClearedTime,incidentTicketUser,incidentNotiRecipients," "incidentClearedReason,incidentComments,eventSeverity,incidentFirstSeen,incidentRptIp," "incidentTicketId,customer,incidentNotiStatus,incidentClearedUser,incidentExtUser," "incidentExtClearedTime,incidentExtResoTime,incidentExtTicketId,incidentExtTicketState," "incidentExtTicketType,incidentViewStatus,rawEventMsg,phIncidentCategory,phSubIncidentCategory," "incidentRptDevStatus", "eventFilters": [{"name": "Filter_OVERALL_STATUS", "singleConstraint": "(phEventCategory = 1) AND incidentId = {}".format(incident_id)}], "hints": "IgnoreTime", } return getEventsByQuery(session, queryData, max_results, extended_data, max_wait_time, "FortiSIEM events for Incident " + incident_id, incident_id=incident_id) @logger def getEventsByQuery(session, queryData, max_results, extended_data, max_wait_time, tableTitle, incident_id=None): headers = { 'Accept': 'application/json, text/plain, */*', 'Content-Type': 'application/json' } response = session.post(REST_ADDRESS + '/report/run', headers=headers, data=json.dumps(queryData), verify=VERIFY_SSL) validateSuccessfulResponse(response, "running report") data = response.json() data["report"] = queryData data = json.dumps(data) # poll until report progress reaches 100 response = session.post(REST_ADDRESS + '/report/reportProgress', headers=headers, data=data, verify=VERIFY_SSL) # response contain the percentage of the report loading while response.text != "100" and max_wait_time > 0: response = session.post(REST_ADDRESS + '/report/reportProgress', headers=headers, data=data, verify=VERIFY_SSL) max_wait_time = int(max_wait_time) - 1 time.sleep(1) params = { 'start': 0, 'perPage': max_results, 'allData': extended_data, } response = session.post(REST_ADDRESS + '/report/resultByReport', params=params, headers=headers, data=data, verify=VERIFY_SSL) try: res = response.json() eventKeys = res["headerData"]["columnNames"] except (ValueError, KeyError): return_error("Got wrong response format when getting report results. " "Expected a json object but got:\n" + response.text) # reformat results eventData = [] md = "" for key in res["lightValueObjects"]: cur = { 'Event ID': key.get("naturalId", ""), 'Incident ID': incident_id, } for i in range(0, len(eventKeys)): if len(key["data"]) == 0 or key["data"][0] == "No report results found.": md = "No report results found." break else: cur[eventKeys[i]] = key["data"][i] if md != "": # no results were found, not need to loop break cur["ExtendedData"] = {} for extItem in key["extData"]: if EXTENDED_KEYS.get(extItem["left"]) is not None: cur[EXTENDED_KEYS.get(extItem["left"]).replace(' ', '')] = extItem["right"] # type: ignore else: cur["ExtendedData"][extItem["left"]] = extItem["right"] eventData.append(cur) md = tableToMarkdown(tableTitle, eventData, eventKeys) if md == "" else md demisto.results({ 'ContentsFormat': formats['json'], 'Type': entryTypes['note'], 'Contents': res, 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': md, 'EntryContext': {'FortiSIEM.Events(val["Event ID"] && val["Event ID"] == obj["Event ID"])': eventData} }) @logger def GetEventQuery(): in_xml = create_query_xml("all", interval='1') url = QUERY_URL + "eventQuery" headers = {'Content-Type': 'text/xml'} resp = requests.request('POST', url, headers=headers, data=in_xml, verify=VERIFY_SSL, auth=AUTH) validateSuccessfulResponse(resp, "fetching event query") queryId = resp.text if 'error code="255"' in queryId: return_error("Got error code 255 while getting event query. Make sure the query has valid syntax") return queryId @logger def GetIncidentsByOrg(queryId): # The request will poll until the server completes the query. url = QUERY_URL + "progress/" + queryId resp = requests.request('GET', url, verify=VERIFY_SSL, auth=AUTH) while resp.text != '100': resp = requests.request('GET', url, verify=VERIFY_SSL, auth=AUTH) outXML = [] if resp.text == '100': url = QUERY_URL + 'events/' + queryId + '/0/1000' resp = requests.request('GET', url, verify=VERIFY_SSL, auth=AUTH) content = resp.text if content != '': outXML.append(content) # this code is taken directly from their documentation. # get all results (last "page" has less than 1000 records) p = re.compile(r'totalCount="\d+"') mlist = p.findall(content) if mlist and mlist[0] != '': mm = mlist[0].replace('"', '') m = mm.split("=")[-1] num = 0 if int(m) > 1000: num = int(m) / 1000 if int(m) % 1000 > 0: num += 1 if num > 0: for i in range(num): url = QUERY_URL + 'events/' + queryId + '/' + str(i * 1000 + 1) + '/1000' resp = requests.request('GET', url, verify=VERIFY_SSL, auth=AUTH) content = resp.text if content != '': outXML.append(content) else: sys.exit(0) phCustId = "all" param = dumpXML(outXML, phCustId) return param @logger def create_query_xml(include_value, interval="", single_evt_value="phEventCategory=1", interval_type="Minute", attr_list=None, limit="All"): doc = Document() reports = doc.createElement("Reports") doc.appendChild(reports) report = doc.createElement("Report") report.setAttribute("id", "") report.setAttribute("group", "report") reports.appendChild(report) name = doc.createElement("Name") report.appendChild(name) doc.createTextNode("All Incidents") custScope = doc.createElement("CustomerScope") custScope.setAttribute("groupByEachCustomer", "true") report.appendChild(custScope) include = doc.createElement("Include") if include_value == "all": include.setAttribute("all", "true") custScope.appendChild(include) else: custScope.appendChild(include) include_text = doc.createTextNode(include_value) include.appendChild(include_text) exclude = doc.createElement("Exclude") custScope.appendChild(exclude) description = doc.createElement("description") report.appendChild(description) select = doc.createElement("SelectClause") select.setAttribute("numEntries", limit) report.appendChild(select) attrList = doc.createElement("AttrList") if attr_list: attr_text = doc.createTextNode(str(attr_list)) attrList.appendChild(attr_text) select.appendChild(attrList) reportInterval = doc.createElement("ReportInterval") report.appendChild(reportInterval) window = doc.createElement("Window") window.setAttribute("unit", interval_type) window.setAttribute("val", interval) reportInterval.appendChild(window) pattern = doc.createElement("PatternClause") pattern.setAttribute("window", "3600") report.appendChild(pattern) subPattern = doc.createElement("SubPattern") subPattern.setAttribute("displayName", "Events") subPattern.setAttribute("name", "Events") pattern.appendChild(subPattern) single = doc.createElement("SingleEvtConstr") subPattern.appendChild(single) single_text = doc.createTextNode(single_evt_value) single.appendChild(single_text) _filter = doc.createElement("RelevantFilterAttr") report.appendChild(_filter) return doc.toxml() @logger def dumpXML(xmlList, phCustId): param = [] for xml in xmlList: doc = parseString(xml.encode('utf-8')) for node in doc.getElementsByTagName("events"): for node1 in node.getElementsByTagName("event"): mapping = {} for node2 in node1.getElementsByTagName("attributes"): for node3 in node2.getElementsByTagName("attribute"): item_name = node3.getAttribute("name") for node4 in node3.childNodes: if node4.nodeType == Node.TEXT_NODE: mapping[item_name] = node4.data if phCustId == "all" or mapping['phCustId'] == phCustId: param.append(mapping) return param @logger def buildQueryString(args): res_list = [] for key in args: if 'IpAddr' not in key: res_list.append('{} = "{}"'.format(key, args[key])) else: res_list.append("{} = {}".format(key, args[key])) return " AND ".join(res_list) @logger def getEventsByFilter(maxResults, extendedData, maxWaitTime, reportWindow, reportWindowUnit): session = login() args = demisto.args() del args["maxResults"] del args["extendedData"] del args["maxWaitTime"] del args["reportWindow"] del args["reportWindowUnit"] query_string = buildQueryString(args) query_data = { "isReportService": True, "selectClause": "phRecvTime,reptDevIpAddr,eventType,eventName,rawEventMsg,destIpAddr", "reportWindow": int(reportWindow), "reportWindowUnit": reportWindowUnit, "timeRangeRelative": True, "eventFilters": [{ "groupBy": "", "singleConstraint": query_string }], "custId": 1 } return getEventsByQuery( session, query_data, maxResults, extendedData, maxWaitTime, "FortiSIEM Event Results") def parse_cmdb_list(cmdb_device): device_dict = { 'DiscoverMethod': cmdb_device.get('discoverMethod', 'N/A'), 'Approved': cmdb_device.get('approved', 'false'), 'CreationMethod': cmdb_device.get('creationMethod', 'N/A'), 'AccessIp': cmdb_device.get('accessIp', 'N/A'), 'Name': cmdb_device.get('name', 'N/A'), 'WinMachineGuid': cmdb_device.get('winMachineGuid', 'N/A'), 'Unmanaged': cmdb_device.get('unmanaged', 'false'), 'Version': cmdb_device.get('version', 'N/A'), 'UpdateMethod': cmdb_device.get('updateMethod', 'N/A'), } timestamp = cmdb_device.get('discoverTime', None) if timestamp and timestamp.isdigit(): device_dict['DiscoverTime'] = timestamp_to_datestring(timestamp) elif timestamp: device_dict['DiscoverTime'] = timestamp else: device_dict['DiscoverTime'] = 'N/A' device_type = cmdb_device.get('deviceType') if device_type: device_dict['DeviceType'] = "{} {}".format(device_type['model'], device_type['vendor']) else: device_dict['DeviceType'] = 'N/A' return device_dict def get_cmdb_devices_command(): args = demisto.args() device_ip = args.get('device_ip') limit = int(args.get('limit')) raw_response = get_cmdb_devices(device_ip, limit) list_of_devices = list(map(parse_cmdb_list, raw_response)) return_outputs( tableToMarkdown("Devices", list_of_devices), {'FortiSIEM.CmdbDevices': list_of_devices}, raw_response ) @logger def get_cmdb_devices(device_ip=None, limit=100): cmdb_url = HOST + "/phoenix/rest/cmdbDeviceInfo/devices" if device_ip: cmdb_url += "?includeIps=" + device_ip response = requests.get(cmdb_url, verify=VERIFY_SSL, auth=AUTH) list_of_devices = json.loads(xml2json(response.text)) if 'response' in list_of_devices: return_error(list_of_devices["response"]["error"]["description"]) elif 'devices' in list_of_devices: list_of_devices = list_of_devices['devices']['device'] elif 'device' in list_of_devices: list_of_devices = [list_of_devices['device']] return list_of_devices[:limit] @logger def get_events_by_query(query, report_window="60", interval_type="Minute", limit="20", extended_data='false', max_wait_time=60): session = login() query_data = { "isReportService": True, "selectClause": "phRecvTime,reptDevIpAddr,eventType,eventName,rawEventMsg,destIpAddr", "reportWindow": int(report_window), "reportWindowUnit": interval_type, "timeRangeRelative": True, "eventFilters": [{ "groupBy": "", "singleConstraint": query }], "custId": 1 } return getEventsByQuery( session, query_data, limit, extended_data, max_wait_time, "FortiSIEM Event Results") def get_lists_command(): raw_resources = get_lists() resources = [] for r in flatten_resources(raw_resources): resources.append({ 'DisplayName': r['displayName'], 'NatualID': r['naturalId'], 'ID': r['id'], 'ResourceType': r['groupType']['displayName'], 'Children': [c['displayName'] for c in r['children']], }) return_outputs( tableToMarkdown('Lists:', resources, removeNull=True), {'FortiSIEM.ResourceList(val.ID && val.ID == obj.ID)': resources}, raw_response=raw_resources) @logger def get_lists(): session = login() url = REST_ADDRESS + '/group/resource' response = session.get(url, verify=VERIFY_SSL, auth=AUTH) return response.json() def flatten_resources(raw_resources): for r in raw_resources: yield r # possible stackoverflow for sub_resource in flatten_resources(r['children']): yield sub_resource def add_item_to_resource_list_command(): args = demisto.args() resource_type = parse_resource_type(args['resource_type']) group_id = args['group_id'] object_info = args.get('object-info', []) object_info = dict(object_property.strip().split('=', 1) for object_property in object_info.split(',')) raw_response = add_item_to_resource_list(resource_type, group_id, object_info) outputs = {'FortiSIEM.Resource(val.id && val.id == obj.id)': createContext(raw_response, removeNull=True)} return_outputs(tableToMarkdown('Resource was added:', raw_response, removeNull=True), outputs, raw_response) @logger def add_item_to_resource_list(resource_type, group_id, object_info): session = login() url = '{}/{}/save'.format(REST_ADDRESS, resource_type) object_info['groupId'] = group_id object_info['active'] = True object_info['sysDefined'] = False response = session.post(url, data=json.dumps(object_info), verify=VERIFY_SSL, auth=AUTH) response = response.json() if response.get('code', 0) == -1: return_error(response['msg']) return response def remove_item_from_resource_list_command(): args = demisto.args() resource_type = parse_resource_type(args['resource_type']) deleted_ids = args.get('ids', '').split(',') raw_response = remove_item_from_resource_list(resource_type, deleted_ids) return_outputs(raw_response, {}, raw_response=raw_response) @logger def remove_item_from_resource_list(resource_type, deleted_ids): session = login() url = '{}/{}/del'.format(REST_ADDRESS, resource_type) response = session.delete(url, params={'ids': json.dumps(deleted_ids)}, verify=VERIFY_SSL, auth=AUTH) if response.text != '"OK"': return_error(response.text) return 'items with id {} were removed.'.format(deleted_ids) def get_resource_list_command(): args = demisto.args() resource_type = parse_resource_type(args['resource_type']) group_id = args['group_id'] raw_response = get_resource_list(resource_type, group_id) headers = raw_response.get('headerData', {}).get('keys', []) ec = [] for element in raw_response.get('lightValueObjects', []): e = dict(zip(headers, element.get('data', []))) e['id'] = element.get('objectId') ec.append(e) outputs = {'FortiSIEM.Resource(val.id && val.id == obj.id)': createContext(ec, removeNull=True)} return_outputs(tableToMarkdown('Resource list:', ec, headerTransform=pascalToSpace, removeNull=True), outputs, raw_response) @logger def get_resource_list(resource_type, group_id): session = login() url = '{}/{}/list'.format(REST_ADDRESS, resource_type) params = { 'groupId': group_id, 'start': 0, 'size': 50, } response = session.get(url, params=params, verify=VERIFY_SSL, auth=AUTH) response = response.json() if response.get('code', 0) == -1: return_error(response['msg']) return response def convert_keys_to_snake_case(d): d = dict((k.replace("-", "_"), v) for k, v in d.items()) return d def test(): try: login() except Exception as e: if isinstance(e, requests.exceptions.SSLError): demisto.results("Not verified certificate") else: demisto.results(str(e)) demisto.results('ok') def fetch_incidents(): query_id = GetEventQuery() res = GetIncidentsByOrg(query_id) known_ids = demisto.getLastRun().get('ids', None) if known_ids is None or not known_ids: known_ids = [] incidents = [] for inc in res: if inc.get('incidentId') not in known_ids: incidents.append({"name": inc.get('eventName', 'New FortiSIEM Event'), "rawJSON": json.dumps(inc)}) if len(known_ids) >= 1000: known_ids.pop(0) known_ids.append(inc.get('incidentId')) demisto.setLastRun({ 'ids': known_ids, 'extended_keys': EXTENDED_KEYS }) demisto.incidents(incidents) sys.exit(0) def main(): try: handle_proxy() load_extended_keys() if demisto.command() == 'test-module': test() elif demisto.command() == 'fetch-incidents': fetch_incidents() elif demisto.command() == 'fortisiem-get-events-by-incident': args = demisto.args() getEventsByIncident(args['incID'], args['maxResults'], args['extendedData'], args['maxWaitTime']) elif demisto.command() == 'fortisiem-clear-incident': clear_incident_command() elif demisto.command() == 'fortisiem-get-events-by-filter': args = demisto.args() getEventsByFilter(args['maxResults'], args['extendedData'], args['maxWaitTime'], args['reportWindow'], args['reportWindowUnit']) elif demisto.command() == 'fortisiem-get-events-by-query': args = convert_keys_to_snake_case(demisto.args()) get_events_by_query(**args) elif demisto.command() == 'fortisiem-get-cmdb-devices': get_cmdb_devices_command() elif demisto.command() == 'fortisiem-get-lists': get_lists_command() elif demisto.command() == 'fortisiem-add-item-to-resource-list': add_item_to_resource_list_command() elif demisto.command() == 'fortisiem-remove-item-from-resource-list': remove_item_from_resource_list_command() elif demisto.command() == 'fortisiem-get-resource-list': get_resource_list_command() except Exception as e: if demisto.command() == 'fetch-incidents': LOG(str(e)) LOG.print_log() raise else: return_error(str(e)) # python2 uses __builtin__ python3 uses builtins if __name__ == "__builtin__" or __name__ == "builtins": main()
the-stack_0_26822
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Service Class # this is a auto generated file generated by Cheetah # Libre Office Version: 7.3 # Namespace: com.sun.star.frame from .x_synchronous_frame_loader import XSynchronousFrameLoader as XSynchronousFrameLoader_5a8d1058 class OfficeFrameLoader(XSynchronousFrameLoader_5a8d1058): """ Service Class **since** LibreOffice 4.2 See Also: `API OfficeFrameLoader <https://api.libreoffice.org/docs/idl/ref/servicecom_1_1sun_1_1star_1_1frame_1_1OfficeFrameLoader.html>`_ """ __ooo_ns__: str = 'com.sun.star.frame' __ooo_full_ns__: str = 'com.sun.star.frame.OfficeFrameLoader' __ooo_type_name__: str = 'service' __all__ = ['OfficeFrameLoader']
the-stack_0_26824
#!/usr/bin/env python #!/bin/env python ''' This script simply executes a solver, and ensures the expected number of iterations are performed. It does 1: a multigrid solve An exception is thrown otherwise. ''' import underworld as uw from underworld import function as fn res=32 mesh = uw.mesh.FeMesh_Cartesian("Q1/DQ0", (res,res), (0.,0.), (1.,1.)) velocityField = uw.mesh.MeshVariable(mesh,2) velocityField.data[:] = (0.,0.) pressureField = uw.mesh.MeshVariable(mesh.subMesh,1) pressureField.data[:] = 0. # freeslip IWalls = mesh.specialSets["MinI_VertexSet"] + mesh.specialSets["MaxI_VertexSet"] JWalls = mesh.specialSets["MinJ_VertexSet"] + mesh.specialSets["MaxJ_VertexSet"] freeslip = uw.conditions.DirichletCondition(velocityField, (IWalls, JWalls)) # We are going to make use of one of the existing analytic solutions so that we may easily # obtain functions for a viscosity profile and forcing terms. # Exact solution solCx with defaults sol = fn.analytic.SolCx(eta_A=1.0, eta_B=10000.0, x_c=0.478, n_z=3) stokesSystem = uw.systems.Stokes(velocityField,pressureField,sol.fn_viscosity,sol.fn_bodyforce,conditions=[freeslip,]) #Run the BSSCR Solver # can optionally set penalty this way solver=uw.systems.Solver(stokesSystem) solver.options.A11.ksp_converged_reason='' #solver.options.mg.pc_mg_type="additive" #solver.options.mg.pc_mg_type="full" #solver.options.mg.pc_mg_type="kaskade" #solver.options.mg.pc_mg_type="multiplicative" solver.options.mg_accel.mg_accelerating_smoothing=0 solver.options.mg_accel.mg_accelerating_smoothing_view=1 #solver.options.main.penalty=1000.0 #solver.options.main.help='' solver.options.main.penalty=10.0 solver.options.main.restore_K=True solver.solve() stats=solver.get_stats() solver.print_stats() from libUnderworld import petsc petsc.OptionsPrint() def check(): if stats.pressure_its > 5: raise RuntimeError("Test appears to require too many pressure iterations. Iteration count = {}.".format(stats.pressure_its)) if stats.velocity_presolve_its > 10: raise RuntimeError("Test appears to require too many velocity pre solve iterations. Iteration count = {}.".format(stats.velocity_presolve_its)) if -1 != stats.velocity_pressuresolve_its: # -1 will be returned if this stat isn't supported. if stats.velocity_pressuresolve_its > 40 : raise RuntimeError("Test appears to require too many velocity pressure solve iterations. Iteration count = {}.".format(stats.velocity_pressuresolve_its)) if stats.velocity_backsolve_its > 8: raise RuntimeError("Test appears to require too many velocity back solve iterations. Iteration count = {}.".format(stats.velocity_backsolve_its)) check() solver.set_inner_method("lu") solver.solve() solver.set_inner_method("mg") solver.solve() solver.print_stats() petsc.OptionsPrint() check()
the-stack_0_26825
# -*- coding:utf-8 -*- """ 1. 导入模块 2. 创建套接字 3. 绑定端口 4. 设置监听, 设置套接字由主动为被动. 5. 接受客户端连接 6. 接收客户端发送的文件名 7. 根据文件名读取文件内容 8. 把读取的内容发送给客户端(循环) 9. 关闭和客户端的连接. 10. 关闭套接字 """ import socket Filesocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM) Filesocket.bind(("18.18.23.108",8888)) Filesocket.listen() while True: new_client_socket,ip_port = Filesocket.accept() print("欢迎新客户端:",ip_port) recvdata = new_client_socket.recv(1024) file_name = recvdata.decode() print(file_name) try: with open(file_name,"rb") as fil: while True: filedata = fil.read(1024) # 判断是否读取到了文件的末尾. if filedata: new_client_socket.send(filedata) else: break except Exception as e: print("文件:{}下载失败".format(file_name)) break else: print("文件:{}下载成功.".format(file_name)) break new_client_socket.close() Filesocket.close()
the-stack_0_26826
from typing import Dict from setuptools import find_packages, setup def get_version() -> str: version: Dict[str, str] = {} with open("dagster_shell/version.py") as fp: exec(fp.read(), version) # pylint: disable=W0122 return version["__version__"] if __name__ == "__main__": ver = get_version() # dont pin dev installs to avoid pip dep resolver issues pin = "" if ver == "0+dev" else f"=={ver}" setup( name="dagster-shell", version=ver, author="Elementl", author_email="[email protected]", license="Apache-2.0", description="Package for Dagster shell ops.", url="https://github.com/dagster-io/dagster/tree/master/python_modules/libraries/dagster-shell", classifiers=[ "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], packages=find_packages(exclude=["dagster_shell_tests*"]), install_requires=[f"dagster{pin}"], extras_require={"test": ["psutil"]}, zip_safe=False, )
the-stack_0_26827
import pytest import requests import time from threading import Thread from bottle import default_app, WSGIRefServer from tomviz.acquisition import server class Server(Thread): def __init__(self): super(Server, self).__init__() self.host = 'localhost' self.port = 9999 self.base_url = 'http://%s:%d' % (self.host, self.port) self.url = '%s/acquisition' % self.base_url self._server = WSGIRefServer(host=self.host, port=self.port) def run(self): self.setup() self._server.run(app=default_app()) def start(self): super(Server, self).start() # Wait for bottle to start while True: try: requests.get(self.base_url) break except requests.ConnectionError: time.sleep(0.1) def setup(self, adapter=None): server.setup_app(adapter) def stop(self): self._server.srv.shutdown() # Force the socket to close so we can reuse the same port self._server.srv.socket.close() @pytest.fixture(scope="module") def acquisition_server(): srv = Server() srv.start() yield srv srv.stop() srv.join()
the-stack_0_26828
# -*- coding: utf-8 -*- import csv import os import pathlib import sys from PIL import Image import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from scipy import misc from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import euclidean_distances from preprocess import align class MaigoDataBase(object): """Data strage for people with face image. Attributes: people (list[dict]): List of people data. People data has face image, name, ... feature_list (list): List of feature vectors. After build, this list will be empty features (numpy.ndarray): Feature vectors of the storaged people. """ def __init__(self): self.people = [] def add(self, person): self.people.append(person) def load(self, path, encoding='utf-8'): with open(str(path), 'r', encoding=encoding) as f: reader = csv.DictReader(f) if reader.fieldnames[0] != 'maigo_name': raise ValueError("Please Check Encodeing (=UTF-8 without BOM?): {}".format(str(path))) for row in reader: if row['deleted'] != '1': # 削除済み以外 self.people.append(row) return class ImageStorage(object): """ """ def __init__(self, model,): self.model = model self.image_paths = [] self.labels = [] self.labels_str = [] # self.images = [] self.features = [] self.size = 0 self.label2num = {} def add(self, image_path, label,): if label not in self.label2num: self.label2num[label] = len(self.label2num) images, extracted_filepaths = align([image_path], image_size=self.model.input_image_size, margin=44, gpu_memory_fraction=1.0) if not extracted_filepaths: return self.image_paths.append(str(image_path)) self.labels_str.append(label) self.labels.append(self.label2num[label]) # image = load_image(str(image_path), self.model.input_image_size, self.model.input_image_size, 'RGB') # self.images.append(image) feature = self.model(images[0]) self.features.append(feature) self.size += 1 def save(self, path, only_feature=True,): if only_feature: np.save(path, self.features) else: # パスとラベルとfeatureをまとめてcsvか何かに保存 pass def compare(self, idx_1, idx_2, plot=True,): path_1 = str(self.image_paths[idx_1]) path_2 = str(self.image_paths[idx_2]) print('Path 1: {}'.format(path_1)) print('Path 2: {}'.format(path_2)) img_1 = load_image(path_1) img_2 = load_image(path_2) print('Shape 1: ', img_1.shape) print('Shape 2: ', img_2.shape) feature_1 = self.features[idx_1] feature_2 = self.features[idx_2] dist_euclid = euclidean_distances(feature_1, feature_2)[0, 0] print('Euclidian Distance: {}'.format(dist_euclid)) cos_sim = cosine_similarity(feature_1, feature_2)[0, 0] print('Cosine Similarity: {}'.format(cos_sim)) if plot: fig, (axL, axR) = plt.subplots(ncols=2, figsize=(10,4)) axL.imshow(img_1) axL.set_title('img_1') axR.imshow(img_2) axR.set_title('img_2') plt.show() return def most_similar(self, idx_1, idx_2, metrics='cosine'): pass
the-stack_0_26831
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Factory method for easily getting imdbs by name.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function __sets = {} from datasets.pascal_voc import pascal_voc from datasets.coco import coco from datasets.imagenet import imagenet from datasets.vg import vg from datasets.cityscape import cityscape from datasets.KITTI import KITTI from datasets.SIM import SIM from datasets.pascal_voc6cls import pascal_voc6cls import os from model.utils.config import cfg import numpy as np for year in ['2007']: for split in ['train_t', 'test_t']: name = 'voc_clipart_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: pascal_voc6cls(split, year, os.path.join(cfg.DATA_DIR, 'clipart/'))) for year in ['2007']: for split in ['train_cartoon', 'test_cartoon']: name = 'voc_cartoon_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: pascal_voc6cls(split, year, os.path.join(cfg.DATA_DIR, 'cartoon/'))) for year in ['2007', '2012']: for split in ['train_s', 'train_t', 'train_all', 'test_s', 'test_s500', 'test_t','test_all']: name = 'cityscape_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: cityscape(split, year)) for year in ['2007']: for split in ['trainall', 'train500']: name = 'KITTI_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: KITTI(split, year, os.path.join(cfg.DATA_DIR, 'KITTI/'))) for year in ['2007']: for split in ['train_s', 'test_s', 'train_t','test_t', 'test_s500']: name = 'KITTI_cityscape_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: KITTI(split, year, os.path.join(cfg.DATA_DIR, 'cityscape/'))) for year in ['2012']: for split in ['train_s']: name = 'SIM_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: SIM(split, year, os.path.join(cfg.DATA_DIR, 'SIM/'))) for year in ['2007']: for split in ['train_s', 'train_t', 'test_t', 'test_s500']: name = 'SIM_cityscape_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: SIM(split, year, os.path.join(cfg.DATA_DIR, 'cityscape/'))) # Set up voc_<year>_<split> for year in ['2007', '2012']: for split in ['train', 'val', 'trainval', 'test']: name = 'voc_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: pascal_voc6cls(split, year)) # Set up coco_2014_<split> for year in ['2014']: for split in ['train', 'val', 'minival', 'valminusminival', 'trainval']: name = 'coco_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: coco(split, year)) # Set up coco_2014_cap_<split> for year in ['2014']: for split in ['train', 'val', 'capval', 'valminuscapval', 'trainval']: name = 'coco_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: coco(split, year)) # Set up coco_2015_<split> for year in ['2015']: for split in ['test', 'test-dev']: name = 'coco_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: coco(split, year)) # Set up vg_<split> # for version in ['1600-400-20']: # for split in ['minitrain', 'train', 'minival', 'val', 'test']: # name = 'vg_{}_{}'.format(version,split) # __sets[name] = (lambda split=split, version=version: vg(version, split)) for version in ['150-50-20', '150-50-50', '500-150-80', '750-250-150', '1750-700-450', '1600-400-20']: for split in ['minitrain', 'smalltrain', 'train', 'minival', 'smallval', 'val', 'test']: name = 'vg_{}_{}'.format(version,split) __sets[name] = (lambda split=split, version=version: vg(version, split)) # set up image net. for split in ['train', 'val', 'val1', 'val2', 'test']: name = 'imagenet_{}'.format(split) devkit_path = 'data/imagenet/ILSVRC/devkit' data_path = 'data/imagenet/ILSVRC' __sets[name] = (lambda split=split, devkit_path=devkit_path, data_path=data_path: imagenet(split,devkit_path,data_path)) def get_imdb(name): """Get an imdb (image database) by name.""" if name not in __sets: raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]() def list_imdbs(): """List all registered imdbs.""" return list(__sets.keys())
the-stack_0_26832
import pytest import operator, os import common_code def error_if(f, f_symbol, data_field, actual_values, expected_values, model_name, errors, all_values, frequency_str): d = actual_values[data_field] if f_symbol == '<': # Every time a value is smaller, update archive_value archive_value = float('inf') elif f_symbol == '>': # Every time a value is greater, update archive_value archive_value = float('-inf') else: raise Exception('Invalid Function Symbol %s' % f_symbol) for model_id in sorted(d.keys()): for epoch_id in sorted(d[model_id].keys()): actual_value = d[model_id][epoch_id] expected_value = expected_values[model_name + frequency_str][data_field] if actual_value is None: errors.append('actual_value: d[%s][%s] is None' % (model_id, epoch_id)) else: print('actual_value={av}'.format(av=actual_value)) if expected_value is None: errors.append( 'expected_value: d[%s]([%s] is None' % (model_id, epoch_id)) else: print('expected_value={ev}'.format(ev=expected_value)) if (actual_value is not None) and (expected_value is not None): if f(actual_value, expected_value): errors.append('%f %s %f %s Model %s Epoch %s %s' % ( actual_value, f_symbol, expected_value, model_name, model_id, epoch_id, data_field)) all_values.append('%f %s Model %s Epoch %s %s' % ( actual_value, model_name, model_id, epoch_id, data_field)) if f(actual_value, archive_value): archive_value = actual_value else: print('archiving: either actual_value or expected_value is None.') return archive_value def run_tests(actual_performance, model_name, dir_name, should_log, compiler_name, cluster, frequency_str=''): expected_performance = common_code.csv_to_dict( '%s/bamboo/integration_tests/expected_values/%s/%s/expected_performance.csv' % (dir_name, cluster, compiler_name)) errors = [] all_values = [] greater_than = operator.gt less_than = operator.lt max_run_time = error_if(greater_than, '>', 'training_run_time', actual_performance, expected_performance, model_name, errors, all_values, frequency_str) max_mean = error_if(greater_than, '>', 'training_mean', actual_performance, expected_performance, model_name, errors, all_values, frequency_str) max_max = error_if(greater_than, '>', 'training_max', actual_performance, expected_performance, model_name, errors, all_values, frequency_str) max_min = error_if(greater_than, '>', 'training_min', actual_performance, expected_performance, model_name, errors, all_values, frequency_str) max_stdev = error_if(greater_than, '>', 'training_stdev', actual_performance, expected_performance, model_name, errors, all_values, frequency_str) min_accuracy = error_if(less_than, '<', 'test_accuracy', actual_performance, expected_performance, model_name, errors, all_values, frequency_str) archival_string = '%s, %f, %f, %f, %f, %f, %f\n' % ( os.environ['bamboo_buildNumber'], max_run_time, max_mean, max_max, max_min, max_stdev, min_accuracy) print('archival_string: ' + archival_string) if os.environ['LOGNAME'] == 'lbannusr': key = 'bamboo_planKey' if key in os.environ: plan = os.environ[key] if plan in ['LBANN-NIGHTD', 'LBANN-WD']: archive_file = '/usr/workspace/wsb/lbannusr/archives/%s/%s/%s/performance_%s.txt' % (plan, cluster, compiler_name, model_name) print('Archive file: ' + archive_file) with open(archive_file, 'a') as archive: print('Archiving to file.') archive.write(archival_string) else: print('The plan %s does not have archiving activated' % plan) else: print('%s is not in os.environ' % key) else: print('os.environ["LOGNAME"]=%s' % os.environ['LOGNAME']) print('Errors for: %s %s (%d)' % (model_name, compiler_name, len(errors))) for error in errors: print(error) if should_log: print('All values for: %s %s (%d)' % ( model_name, compiler_name, len(all_values))) for value in all_values: print(value) assert errors == [] DATA_FIELDS = [ 'training_run_time', 'training_mean', 'training_max', 'training_min', 'training_stdev', 'test_accuracy' ] def skeleton_performance_lenet_mnist(cluster, dir_name, executables, compiler_name): if compiler_name not in executables: e = 'skeleton_performance_lenet_mnist: default_exes[%s] does not exist' % compiler_name print('Skip - ' + e) pytest.skip(e) executable = executables[compiler_name] model_name = 'lenet_mnist' model_folder = 'models/' + model_name should_log = True actual_performance = common_code.skeleton( cluster, dir_name, executable, model_folder, model_name, DATA_FIELDS, should_log, compiler_name=compiler_name) run_tests(actual_performance, model_name, dir_name, should_log, compiler_name, cluster) def skeleton_performance_alexnet(cluster, dir_name, executables, compiler_name, weekly): if compiler_name not in executables: e = 'skeleton_performance_alexnet: default_exes[%s] does not exist' % compiler_name print('Skip - ' + e) pytest.skip(e) executable = executables[compiler_name] model_name = 'alexnet' model_folder = 'models/' + model_name should_log = True actual_performance = common_code.skeleton( cluster, dir_name, executable, model_folder, model_name, DATA_FIELDS, should_log, compiler_name=compiler_name, weekly=weekly) frequency_str = '_nightly' if weekly: frequency_str = '_weekly' run_tests(actual_performance, model_name, dir_name, should_log, compiler_name, cluster, frequency_str) def skeleton_performance_full_alexnet(cluster, dir_name, executables, compiler_name, weekly, run): if not run: e = 'skeleton_performance_full_alexnet: Ignored' print('Skip - ' + e) pytest.skip(e) if not weekly: e = 'skeleton_performance_full_alexnet: Non-local testing' print('Skip - ' + e) pytest.skip(e) if compiler_name not in executables: e = 'skeleton_performance_full_alexnet: default_exes[%s] does not exist' % compiler_name print('Skip - ' + e) pytest.skip(e) executable = executables[compiler_name] if not os.path.exists(executable): pytest.skip('Executable does not exist: %s' % executable) model_name = 'full_alexnet' should_log = True output_file_name = '%s/bamboo/integration_tests/output/%s_%s_output.txt' %(dir_name, model_name, compiler_name) error_file_name = '%s/bamboo/integration_tests/error/%s_%s_error.txt' %(dir_name, model_name, compiler_name) if cluster in ['catalyst']: command = 'salloc --nodes 128 %s/bamboo/integration_tests/%s.sh > %s 2> %s' % (dir_name, model_name, output_file_name, error_file_name) elif cluster in ['pascal', 'ray']: e = 'skeleton_performance_full_alexnet: Pascal, Ray are unsupported for skeleton_performance_full_alexnet' print('Skip - ' + e) pytest.skip(e) else: raise Exception('Unsupported Cluster %s' % cluster) common_code.run_lbann(command, model_name, output_file_name, error_file_name, should_log) # Don't need return value actual_performance = common_code.extract_data(output_file_name, DATA_FIELDS, should_log) run_tests(actual_performance, model_name, dir_name, should_log, compiler_name, cluster) def test_integration_performance_lenet_mnist_clang6(cluster, dirname, exes): skeleton_performance_lenet_mnist(cluster, dirname, exes, 'clang6') def test_integration_performance_alexnet_clang6(cluster, dirname, exes, weekly): skeleton_performance_alexnet(cluster, dirname, exes, 'clang6', weekly) def test_integration_performance_full_alexnet_clang6(cluster, dirname, exes, weekly, run): skeleton_performance_full_alexnet(cluster, dirname, exes, 'clang6', weekly, run) def test_integration_performance_lenet_mnist_gcc7(cluster, dirname, exes): skeleton_performance_lenet_mnist(cluster, dirname, exes, 'gcc7') def test_integration_performance_alexnet_gcc7(cluster, dirname, exes, weekly): skeleton_performance_alexnet(cluster, dirname, exes, 'gcc7', weekly) def test_integration_performance_full_alexnet_gcc7(cluster, dirname, exes, weekly, run): skeleton_performance_full_alexnet(cluster, dirname, exes, 'gcc7', weekly, run) def test_integration_performance_lenet_mnist_intel19(cluster, dirname, exes): skeleton_performance_lenet_mnist(cluster, dirname, exes, 'intel19') def test_integration_performance_alexnet_intel19(cluster, dirname, exes, weekly): skeleton_performance_alexnet(cluster, dirname, exes, 'intel19', weekly) def test_integration_performance_full_alexnet_intel19(cluster, dirname, exes, weekly, run): skeleton_performance_full_alexnet(cluster, dirname, exes, 'intel19', weekly, run) # Run with python -m pytest -s test_integration_performance.py -k 'test_integration_performance_lenet_mnist_exe' --exe=<executable> def test_integration_performance_lenet_mnist_exe(cluster, dirname, exe): if exe is None: e = 'test_integration_performance_lenet_mnist_exe: Non-local testing' print('Skip - ' + e) pytest.skip(e) exes = {'exe': exe} skeleton_performance_lenet_mnist(cluster, dirname, exes, 'exe') # Run with python -m pytest -s test_integration_performance.py -k 'test_integration_performance_alexnet_exe' --exe=<executable> def test_integration_performance_alexnet_exe(cluster, dirname, exe): if exe is None: e = 'stest_integration_performance_alexnet_exe: Non-local testing' print('Skip - ' + e) pytest.skip(e) exes = {'exe': exe} skeleton_performance_alexnet(cluster, dirname, exes, 'exe', True) # Run with python -m pytest -s test_integration_performance.py -k 'test_integration_performance_full_alexnet_exe' --exe=<executable> def test_integration_performance_full_alexnet_exe(cluster, dirname, exe): if exe is None: e = 'test_integration_performance_full_alexnet_exe: Non-local testing' print('Skip - ' + e) pytest.skip(e) exes = {'exe': exe} skeleton_performance_full_alexnet(cluster, dirname, exes, 'exe', True)
the-stack_0_26835
from django.shortcuts import render, redirect from .models import GroupUserConnection, GroupTaskConnection from Group.models import Group from Task.models import Task from django.contrib.auth.models import User from Users.is_user_in_group import is_user_in_group from Users.models import Profile from Group.destroy_group import destroy_group def my_groups(request): grps = GroupUserConnection.get_all_groups_of_user(request.user) return render(request, 'Connections/mygroups.html', {'groups':grps}) def view_group(request, group_id): curr_grp = Group.objects.filter(id=group_id).first() if not curr_grp: return redirect('home') elif not is_user_in_group(request.user,curr_grp): return redirect('home') else: grp_id = curr_grp.id is_creator = curr_grp.is_user_creator(request.user) name = curr_grp.name prize = curr_grp.prize tasks = GroupTaskConnection.get_all_tasks_of_group(curr_grp) participents = GroupUserConnection.get_all_users_of_group(curr_grp) return render(request, 'Connections/group.html', { 'grp_id':grp_id, 'is_creator':is_creator, 'name':name, 'prize':prize, 'tasks':tasks, 'par':participents }) def assign(request, task_id): curr_task = Task.objects.filter(id=task_id).first() if not curr_task: return redirect('home') grp = GroupTaskConnection.objects.filter(task=curr_task).first().group if not is_user_in_group(request.user,grp): return redirect('home') else: curr_task.assignee = request.user curr_task.save() name = grp.name prize = grp.prize tasks = GroupTaskConnection.get_all_tasks_of_group(grp) participents = GroupUserConnection.get_all_users_of_group(grp) return render(request, 'Connections/group.html', { 'name':name, 'prize':prize, 'tasks':tasks, 'par':participents }) def approve(request, task_id): curr_task = Task.objects.filter(id=task_id).first() if not curr_task: return redirect('home') grp = GroupTaskConnection.objects.filter(task=curr_task).first().group if grp.creator is not request.user: return redirect('home') else: curr_task.approve() curr_task.save() name = grp.name prize = grp.prize tasks = GroupTaskConnection.get_all_tasks_of_group(grp) participents = GroupUserConnection.get_all_users_of_group(grp) return render(request, 'Connections/group.html', { 'name':name, 'prize':prize, 'tasks':tasks, 'par':participents }) def dsapprove(request, task_id): curr_task = Task.objects.filter(id=task_id).first() if not curr_task: return redirect('home') grp = GroupTaskConnection.objects.filter(task=curr_task).first().group if grp.creator is not request.user: return redirect('home') else: curr_task.dis_approve() curr_task.save() name = grp.name prize = grp.prize tasks = GroupTaskConnection.get_all_tasks_of_group(grp) participents = GroupUserConnection.get_all_users_of_group(grp) return render(request, 'Connections/group.html', { 'name':name, 'prize':prize, 'tasks':tasks, 'par':participents }) def delete_group(request, group_id): grp = Group.objects.filter(id=group_id).first() if grp.is_user_creator(request.user): destroy_group(grp) return redirect('mygroups')
the-stack_0_26836
from django.contrib.auth import get_user_model from django.db import models class ObjectField(models.Model): note = models.TextField( blank=True, null=True, default='', ) submitted = models.DateTimeField( auto_now_add=True, ) submitter = models.ForeignKey( get_user_model(), on_delete=models.SET_NULL, blank=True, null=True, related_name='%(app_label)s_%(class)s_submitter_set', related_query_name='%(app_label)s_%(class)ss_submitter', ) changed = models.DateTimeField( auto_now=True, ) changer = models.ForeignKey( get_user_model(), on_delete=models.SET_NULL, blank=True, null=True, related_name='%(app_label)s_%(class)s_changer_set', related_query_name='%(app_label)s_%(class)ss_changer', ) class Meta: abstract = True
the-stack_0_26838
''' Triplet Sum You have been given a random integer array/list(ARR) and a number X. Find and return the number of triplets in the array/list which sum to X. Note : Given array/list can contain duplicate elements. Input format : The first line contains an Integer 't' which denotes the number of test cases or queries to be run. Then the test cases follow. First line of each test case or query contains an integer 'N' representing the size of the first array/list. Second line contains 'N' single space separated integers representing the elements in the array/list. Third line contains an integer 'X'. Output format : For each test case, print the total number of triplets present in the array/list. Output for every test case will be printed in a separate line. Constraints : 1 <= t <= 50 0 <= N <= 10^2 0 <= X <= 10^9 Time Limit: 1 sec Sample Input 1: 1 7 1 2 3 4 5 6 7 12 Sample Output 1: 5 Sample Input 2: 2 7 1 2 3 4 5 6 7 19 9 2 -5 8 -6 0 5 10 11 -3 10 Sample Output 2: 0 5 Explanation for Input 2: Since there doesn't exist any triplet with sum equal to 19 for the first query, we print 0. For the second query, we have 5 triplets in total that sum up to 10. They are, (2, 8, 0), (2, 11, -3), (-5, 5, 10), (8, 5, -3) and (-6, 5, 11) ''' from sys import stdin def findTriplet(arr, n, x) : c = 0 for i in range(n): for j in range(i+1, n): for k in range(j+1, n): if arr[i] + arr[j] + arr[k] == x: c += 1 return c #Your code goes here #return your answer #Taking Input Using Fast I/O def takeInput() : n = int(stdin.readline().strip()) if n == 0 : return list(), 0 arr = list(map(int, stdin.readline().strip().split(" "))) return arr, n #main t = int(stdin.readline().strip()) while t > 0 : arr, n = takeInput() x = int(stdin.readline().strip()) print(findTriplet(arr, n, x)) t -= 1
the-stack_0_26839
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import re import pkg_resources from esrally import paths from esrally.utils import git, io __version__ = pkg_resources.require("esrally")[0].version __RALLY_VERSION_PATTERN = re.compile(r"^(\d+)(?:\.(\d+))?(?:\.(\d+))?(?:.(.+))?$") def version(): """ :return: The release version string and an optional suffix for the current git revision if Rally is installed in development mode. """ release = __version__ # noinspection PyBroadException try: if git.is_working_copy(io.normalize_path("%s/.." % paths.rally_root())): revision = git.head_revision(paths.rally_root()) return "%s (git revision: %s)" % (release, revision.strip()) except BaseException: pass # cannot determine head revision so user has probably installed Rally via pip instead of git clone return release def release_version(): """ :return: The release version string split into its components: major, minor, patch and optional suffix. """ matches = __RALLY_VERSION_PATTERN.match(__version__) if matches.start(4) > 0: return int(matches.group(1)), int(matches.group(2)), int(matches.group(3)), matches.group(4) elif matches.start(3) > 0: return int(matches.group(1)), int(matches.group(2)), int(matches.group(3)), None
the-stack_0_26843
""" Codemonk link: https://www.hackerearth.com/practice/algorithms/graphs/minimum-spanning-tree/practice-problems/algorithm/mr-president/ You have recently started playing a brand new computer game called "Mr. President". The game is about ruling a country, building infrastructures and developing it. Your country consists of N cities and M bidirectional roads connecting them. Each road has assigned a cost of its maintenance. The greatest achievement in the game is called "Great administrator" and it is given to a player who manage to have all cities in the country connected by roads in such a way that it is possible to travel between any two cities and that the sum of maintenance costs of these roads is not greater than K. This is very hard to accomplish, but you are very close to do it. More precisely, you have just discovered a new method of transforming standard roads into super roads, with cost of maintenance just 1, due to their extreme durability. The bad news is that it is very expensive to transform a standard road into a super road, but you are so excited that you are going to do it anyway. In addition, because you have a lot of other expenses, you also want to first demolish as many roads as possible in order to safe some money on their maintenance first and then start working on getting the achievement. You can demolish any road in the country and that operation does not cost you anything. Because you want to spend the absolutely minimum money in order to get the achievement, you are interested in the smallest number of transformations of standard roads into super roads in such a way that you can do that. Input - Output: In the first line there are 3 integers N, M and K denoting the number of cities in the country, the number of roads in it and the desired sum of costs of maintenance. M lines describing these roads follow. In each of them there are 3 integers A, B and C, where A and B denote the endpoints of the road while C denotes the cost of its maintenance. Output the minimum number of roads which need to be transformed in order to get the achievement. If you cannot do it no matter what, output -1. Sample input: 3 3 25 1 2 10 2 3 20 3 1 30 Sample Output: 1 """ """ The problem is simple. We have to find the MST for the given graph (cities and roads connecting them can be represented by a graph) and then, iterate from the biggest to smallest weight and find how many roads we need to change to achieve our goal, of keeping the cost lower than K. That's possible if there is no MST for the graph or if even if we replace the roads the cost will still be greater than K. Think of it! Final complexity: O(E*INVERSE_ACKERMAN + ElogE) """ def balance(disjoint_set, i): if disjoint_set[i] != i: disjoint_set[i] = balance(disjoint_set, disjoint_set[i]) return disjoint_set[i] def kruskal(graph): disjoint_set = [i for i in range(n)] sizes = [1] * n priority_array = [] total = 0 count = 0 for i in range(m): root_a = balance(disjoint_set, graph[i][1]-1) root_b = balance(disjoint_set, graph[i][2]-1) if root_a != root_b: if sizes[root_a] <= sizes[root_b]: sizes[root_b] += sizes[root_a] disjoint_set[root_a] = root_b else: sizes[root_a] += sizes[root_a] disjoint_set[root_b] = root_a total += graph[i][0] priority_array.append(graph[i][0]) for i in range(len(priority_array)-1, -1, -1): if total > k: count += 1 total = total - priority_array[i] + 1 if total > k: return -1 current = balance(disjoint_set, 0) for i in range(1, len(disjoint_set)): temp = balance(disjoint_set, i) if temp != current: return -1 current = temp return count n, m, k = map(int, input().split()) sorted_graph = [] for _ in range(m): a, b, c = map(int, input().split()) sorted_graph.append((c, a, b)) sorted_graph = sorted(sorted_graph, key=lambda x: x[0]) print(kruskal(sorted_graph))
the-stack_0_26845
from django.conf.urls import url, include from django.views.generic.edit import CreateView from django.contrib.auth.forms import UserCreationForm from django.views.generic import RedirectView urlpatterns = [ url("^$", RedirectView.as_view(pattern_name="register")), url( "^register/", CreateView.as_view( template_name="register.html", form_class=UserCreationForm, success_url="/" ), name="register", ), url("^accounts/", include("django.contrib.auth.urls")), # rest of your URLs as normal ]
the-stack_0_26847
from os import listdir from os.path import isfile, join import gzip mypath = "../../data/tweets_clean/" hashtags = open("../../data/top-hash-tags/top300hashtags","r") wordsToRemove = open("../../data/top-words/unwanted-words","r") saida = gzip.open("../../data/entradaLDA/userDocument.gz","w") validTags = {tag.strip("#").strip() for tag in hashtags} invalidWords = {word.strip() for word in wordsToRemove} listValidTags = list(validTags) hashtags.close() wordsToRemove.close() onlyfiles = [ f for f in listdir(mypath) if isfile(join(mypath,f)) ] for f in onlyfiles: tags = set() words = set() entradaTweets = gzip.open(mypath+f,"r") for line in entradaTweets: tags = tags.union({tag.strip("#").strip() for tag in line.split() if tag.startswith("#")}) words = words.union({tweet.strip() for tweet in line.split()}) tagsUsed = validTags & tags tagUsedTranformed = {str(listValidTags.index(tag)) for tag in tagsUsed} wordsUsed = words - invalidWords if (tagUsedTranformed): saida.write("["+' '.join(tagUsedTranformed) +"] " + ' '.join(wordsUsed)+"\n") elif (wordsUsed): saida.write(' '.join(wordsUsed).strip()+"\n") saida.close()
the-stack_0_26848
#!/usr/bin/env python3 # Copyright (c) 2017-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test that the wallet resends transactions periodically.""" from collections import defaultdict import time from test_framework.blocktools import create_block, create_coinbase from test_framework.messages import ToHex from test_framework.mininode import P2PInterface, mininode_lock from test_framework.test_framework import DefiTestFramework from test_framework.util import assert_equal, wait_until class P2PStoreTxInvs(P2PInterface): def __init__(self): super().__init__() self.tx_invs_received = defaultdict(int) def on_inv(self, message): # Store how many times invs have been received for each tx. for i in message.inv: if i.type == 1: # save txid self.tx_invs_received[i.hash] += 1 class ResendWalletTransactionsTest(DefiTestFramework): def set_test_params(self): self.num_nodes = 1 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): node = self.nodes[0] # alias node.add_p2p_connection(P2PStoreTxInvs()) self.log.info("Create a new transaction and wait until it's broadcast") txid = int(node.sendtoaddress(node.getnewaddress(), 1), 16) # Wallet rebroadcast is first scheduled 1 sec after startup (see # nNextResend in ResendWalletTransactions()). Sleep for just over a # second to be certain that it has been called before the first # setmocktime call below. time.sleep(1.1) # Can take a few seconds due to transaction trickling wait_until(lambda: node.p2p.tx_invs_received[txid] >= 1, lock=mininode_lock) # Add a second peer since txs aren't rebroadcast to the same peer (see filterInventoryKnown) node.add_p2p_connection(P2PStoreTxInvs()) self.log.info("Create a block") # Create and submit a block without the transaction. # Transactions are only rebroadcast if there has been a block at least five minutes # after the last time we tried to broadcast. Use mocktime and give an extra minute to be sure. block_time = int(time.time()) + 6 * 60 node.setmocktime(block_time) block = create_block(int(node.getbestblockhash(), 16), create_coinbase(node.getblockcount() + 1), block_time) block.rehash() block.solve() node.submitblock(ToHex(block)) # Transaction should not be rebroadcast node.p2ps[1].sync_with_ping() assert_equal(node.p2ps[1].tx_invs_received[txid], 0) self.log.info("Transaction should be rebroadcast after 30 minutes") # Use mocktime and give an extra 5 minutes to be sure. rebroadcast_time = int(time.time()) + 41 * 60 node.setmocktime(rebroadcast_time) wait_until(lambda: node.p2ps[1].tx_invs_received[txid] >= 1, lock=mininode_lock) if __name__ == '__main__': ResendWalletTransactionsTest().main()
the-stack_0_26849
from django import forms class SearchForm(forms.Form): q = forms.CharField( widget=forms.TextInput(attrs={ 'id': 'q', 'title': 'Enter a company name or place' }), required=True, label='Search', help_text="""e.g. <a href="/search/nestle">Nestle</a> or <a href="/search/windsor">Windsor</a>""" )
the-stack_0_26850
from model import Generator from model import Discriminator from torch.autograd import Variable from torchvision.utils import save_image import torch import torch.nn.functional as F import numpy as np import os import time import datetime class Solver(object): """ Solver for training and testing StarGAN. """ def __init__(self, celeba_loader, rafd_loader, config): """Initialize configurations.""" # Data loader. self.celeba_loader = celeba_loader self.rafd_loader = rafd_loader # Model configurations. self.c_dim = config.c_dim self.c2_dim = config.c2_dim self.image_size = config.image_size self.g_conv_dim = config.g_conv_dim self.d_conv_dim = config.d_conv_dim self.g_repeat_num = config.g_repeat_num self.d_repeat_num = config.d_repeat_num self.lambda_cls = config.lambda_cls self.lambda_rec = config.lambda_rec self.lambda_gp = config.lambda_gp # Training configurations. self.dataset = config.dataset self.batch_size = config.batch_size self.num_iters = config.num_iters self.num_iters_decay = config.num_iters_decay self.g_lr = config.g_lr self.d_lr = config.d_lr self.n_critic = config.n_critic self.beta1 = config.beta1 self.beta2 = config.beta2 self.resume_iters = config.resume_iters self.selected_attrs = config.selected_attrs # Test configurations. self.test_iters = config.test_iters # Miscellaneous. self.use_tensorboard = config.use_tensorboard self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Directories. self.log_dir = config.log_dir self.sample_dir = config.sample_dir self.model_save_dir = config.model_save_dir self.result_dir = config.result_dir # Step size. self.log_step = config.log_step self.sample_step = config.sample_step self.model_save_step = config.model_save_step self.lr_update_step = config.lr_update_step # Build the model and tensorboard. self.build_model() if self.use_tensorboard: self.build_tensorboard() def build_model(self): """Create a generator and a discriminator.""" if self.dataset in ['CelebA', 'RaFD']: self.G = Generator(self.g_conv_dim, self.c_dim, self.g_repeat_num) self.D = Discriminator(self.image_size, self.d_conv_dim, self.c_dim, self.d_repeat_num) elif self.dataset in ['Both']: self.G = Generator(self.g_conv_dim, self.c_dim+self.c2_dim+2, self.g_repeat_num) # 2 for mask vector. self.D = Discriminator(self.image_size, self.d_conv_dim, self.c_dim+self.c2_dim, self.d_repeat_num) self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2]) self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2]) self.print_network(self.G, 'G') self.print_network(self.D, 'D') self.G.to(self.device) self.D.to(self.device) def print_network(self, model, name): """Print out the network information.""" num_params = 0 for p in model.parameters(): num_params += p.numel() print(model) print(name) print("The number of parameters: {}".format(num_params)) def restore_model(self, resume_iters): """Restore the trained generator and discriminator.""" print('Loading the trained models from step {}...'.format(resume_iters)) G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(resume_iters)) D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(resume_iters)) self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage)) self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage)) def build_tensorboard(self): """Build a tensorboard logger.""" from logger import Logger self.logger = Logger(self.log_dir) def update_lr(self, g_lr, d_lr): """Decay learning rates of the generator and discriminator.""" for param_group in self.g_optimizer.param_groups: param_group['lr'] = g_lr for param_group in self.d_optimizer.param_groups: param_group['lr'] = d_lr def reset_grad(self): """Reset the gradient buffers.""" self.g_optimizer.zero_grad() self.d_optimizer.zero_grad() def denorm(self, x): """Convert the range from [-1, 1] to [0, 1].""" out = (x + 1) / 2 return out.clamp_(0, 1) def gradient_penalty(self, y, x): """Compute gradient penalty: (L2_norm(dy/dx) - 1)**2.""" weight = torch.ones(y.size()).to(self.device) dydx = torch.autograd.grad(outputs=y, inputs=x, grad_outputs=weight, retain_graph=True, create_graph=True, only_inputs=True)[0] dydx = dydx.view(dydx.size(0), -1) dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1)) return torch.mean((dydx_l2norm-1)**2) def label2onehot(self, labels, dim): """Convert label indices to one-hot vectors.""" batch_size = labels.size(0) out = torch.zeros(batch_size, dim) out[np.arange(batch_size), labels.long()] = 1 return out def create_labels(self, c_org, c_dim=5, dataset='CelebA', selected_attrs=None): """Generate target domain labels for debugging and testing.""" # Get hair color indices. if dataset == 'CelebA': hair_color_indices = [] for i, attr_name in enumerate(selected_attrs): if attr_name in ['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Gray_Hair']: hair_color_indices.append(i) c_trg_list = [] for i in range(c_dim): if dataset == 'CelebA': c_trg = c_org.clone() if i in hair_color_indices: # Set one hair color to 1 and the rest to 0. c_trg[:, i] = 1 for j in hair_color_indices: if j != i: c_trg[:, j] = 0 else: c_trg[:, i] = (c_trg[:, i] == 0) # Reverse attribute value. elif dataset == 'RaFD': c_trg = self.label2onehot(torch.ones(c_org.size(0))*i, c_dim) c_trg_list.append(c_trg.to(self.device)) return c_trg_list def classification_loss(self, logit, target, dataset='CelebA'): """Compute binary or softmax cross entropy loss.""" if dataset == 'CelebA': return F.binary_cross_entropy_with_logits(logit, target, size_average=False) / logit.size(0) elif dataset == 'RaFD': return F.cross_entropy(logit, target) def train(self): """ Train StarGAN within a single dataset. """ # Set data loader. if self.dataset == 'CelebA': data_loader = self.celeba_loader elif self.dataset == 'RaFD': data_loader = self.rafd_loader # Fetch fixed inputs for debugging. data_iter = iter(data_loader) x_fixed, c_org = next(data_iter) x_fixed = x_fixed.to(self.device) c_fixed_list = self.create_labels(c_org, self.c_dim, self.dataset, self.selected_attrs) # Learning rate cache for decaying. g_lr = self.g_lr d_lr = self.d_lr # Start training from scratch or resume training. start_iters = 0 if self.resume_iters: start_iters = self.resume_iters self.restore_model(self.resume_iters) # Start training. print('Start training...') start_time = time.time() for i in range(start_iters, self.num_iters): # =================================================================================== # # 1. Preprocess input data # # =================================================================================== # # Fetch real images and labels. try: x_real, label_org = next(data_iter) except: data_iter = iter(data_loader) x_real, label_org = next(data_iter) # Generate target domain labels randomly. rand_idx = torch.randperm(label_org.size(0)) label_trg = label_org[rand_idx] if self.dataset == 'CelebA': c_org = label_org.clone() c_trg = label_trg.clone() elif self.dataset == 'RaFD': c_org = self.label2onehot(label_org, self.c_dim) c_trg = self.label2onehot(label_trg, self.c_dim) x_real = x_real.to(self.device) # Input images. c_org = c_org.to(self.device) # Original domain labels. c_trg = c_trg.to(self.device) # Target domain labels. label_org = label_org.to(self.device) # Labels for computing classification loss. label_trg = label_trg.to(self.device) # Labels for computing classification loss. # =================================================================================== # # 2. Train the discriminator # # =================================================================================== # # Compute loss with real images. out_src, out_cls = self.D(x_real) d_loss_real = - torch.mean(out_src) d_loss_cls = self.classification_loss(out_cls, label_org, self.dataset) # Compute loss with fake images. x_fake = self.G(x_real, c_trg) out_src, out_cls = self.D(x_fake.detach()) d_loss_fake = torch.mean(out_src) # Compute loss for gradient penalty. alpha = torch.rand(x_real.size(0), 1, 1, 1).to(self.device) x_hat = (alpha * x_real.data + (1 - alpha) * x_fake.data).requires_grad_(True) out_src, _ = self.D(x_hat) d_loss_gp = self.gradient_penalty(out_src, x_hat) # Backward and optimize. d_loss = d_loss_real + d_loss_fake + self.lambda_cls * d_loss_cls + self.lambda_gp * d_loss_gp self.reset_grad() d_loss.backward() self.d_optimizer.step() # Logging. loss = {} loss['D/loss_real'] = d_loss_real.item() loss['D/loss_fake'] = d_loss_fake.item() loss['D/loss_cls'] = d_loss_cls.item() loss['D/loss_gp'] = d_loss_gp.item() # =================================================================================== # # 3. Train the generator # # =================================================================================== # if (i+1) % self.n_critic == 0: # Original-to-target domain. x_fake = self.G(x_real, c_trg) out_src, out_cls = self.D(x_fake) g_loss_fake = - torch.mean(out_src) g_loss_cls = self.classification_loss(out_cls, label_trg, self.dataset) # Target-to-original domain. x_reconst = self.G(x_fake, c_org) g_loss_rec = torch.mean(torch.abs(x_real - x_reconst)) # Backward and optimize. g_loss = g_loss_fake + self.lambda_rec * g_loss_rec + self.lambda_cls * g_loss_cls self.reset_grad() g_loss.backward() self.g_optimizer.step() # Logging. loss['G/loss_fake'] = g_loss_fake.item() loss['G/loss_rec'] = g_loss_rec.item() loss['G/loss_cls'] = g_loss_cls.item() # =================================================================================== # # 4. Miscellaneous # # =================================================================================== # # Print out training information. if (i+1) % self.log_step == 0: et = time.time() - start_time et = str(datetime.timedelta(seconds=et))[:-7] log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters) for tag, value in loss.items(): log += ", {}: {:.4f}".format(tag, value) print(log) if self.use_tensorboard: for tag, value in loss.items(): self.logger.scalar_summary(tag, value, i+1) # Translate fixed images for debugging. if (i+1) % self.sample_step == 0: with torch.no_grad(): x_fake_list = [x_fixed] for c_fixed in c_fixed_list: x_fake_list.append(self.G(x_fixed, c_fixed)) x_concat = torch.cat(x_fake_list, dim=3) sample_path = os.path.join(self.sample_dir, '{}-images.jpg'.format(i+1)) save_image(self.denorm(x_concat.data.cpu()), sample_path, nrow=1, padding=0) print('Saved real and fake images into {}...'.format(sample_path)) # Save model checkpoints. if (i+1) % self.model_save_step == 0: G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1)) D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1)) torch.save(self.G.state_dict(), G_path) torch.save(self.D.state_dict(), D_path) print('Saved model checkpoints into {}...'.format(self.model_save_dir)) # Decay learning rates. if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay): g_lr -= (self.g_lr / float(self.num_iters_decay)) d_lr -= (self.d_lr / float(self.num_iters_decay)) self.update_lr(g_lr, d_lr) print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr)) def train_multi(self): """Train StarGAN with multiple datasets.""" # Data iterators. celeba_iter = iter(self.celeba_loader) rafd_iter = iter(self.rafd_loader) # Fetch fixed inputs for debugging. x_fixed, c_org = next(celeba_iter) x_fixed = x_fixed.to(self.device) c_celeba_list = self.create_labels(c_org, self.c_dim, 'CelebA', self.selected_attrs) c_rafd_list = self.create_labels(c_org, self.c2_dim, 'RaFD') zero_celeba = torch.zeros(x_fixed.size(0), self.c_dim).to(self.device) # Zero vector for CelebA. zero_rafd = torch.zeros(x_fixed.size(0), self.c2_dim).to(self.device) # Zero vector for RaFD. mask_celeba = self.label2onehot(torch.zeros(x_fixed.size(0)), 2).to(self.device) # Mask vector: [1, 0]. mask_rafd = self.label2onehot(torch.ones(x_fixed.size(0)), 2).to(self.device) # Mask vector: [0, 1]. # Learning rate cache for decaying. g_lr = self.g_lr d_lr = self.d_lr # Start training from scratch or resume training. start_iters = 0 if self.resume_iters: start_iters = self.resume_iters self.restore_model(self.resume_iters) # Start training. print('Start training...') start_time = time.time() for i in range(start_iters, self.num_iters): for dataset in ['CelebA', 'RaFD']: # =================================================================================== # # 1. Preprocess input data # # =================================================================================== # # Fetch real images and labels. data_iter = celeba_iter if dataset == 'CelebA' else rafd_iter try: x_real, label_org = next(data_iter) except: if dataset == 'CelebA': celeba_iter = iter(self.celeba_loader) x_real, label_org = next(celeba_iter) elif dataset == 'RaFD': rafd_iter = iter(self.rafd_loader) x_real, label_org = next(rafd_iter) # Generate target domain labels randomly. rand_idx = torch.randperm(label_org.size(0)) label_trg = label_org[rand_idx] if dataset == 'CelebA': c_org = label_org.clone() c_trg = label_trg.clone() zero = torch.zeros(x_real.size(0), self.c2_dim) mask = self.label2onehot(torch.zeros(x_real.size(0)), 2) c_org = torch.cat([c_org, zero, mask], dim=1) c_trg = torch.cat([c_trg, zero, mask], dim=1) elif dataset == 'RaFD': c_org = self.label2onehot(label_org, self.c2_dim) c_trg = self.label2onehot(label_trg, self.c2_dim) zero = torch.zeros(x_real.size(0), self.c_dim) mask = self.label2onehot(torch.ones(x_real.size(0)), 2) c_org = torch.cat([zero, c_org, mask], dim=1) c_trg = torch.cat([zero, c_trg, mask], dim=1) x_real = x_real.to(self.device) # Input images. c_org = c_org.to(self.device) # Original domain labels. c_trg = c_trg.to(self.device) # Target domain labels. label_org = label_org.to(self.device) # Labels for computing classification loss. label_trg = label_trg.to(self.device) # Labels for computing classification loss. # =================================================================================== # # 2. Train the discriminator # # =================================================================================== # # Compute loss with real images. out_src, out_cls = self.D(x_real) out_cls = out_cls[:, :self.c_dim] if dataset == 'CelebA' else out_cls[:, self.c_dim:] d_loss_real = - torch.mean(out_src) d_loss_cls = self.classification_loss(out_cls, label_org, dataset) # Compute loss with fake images. x_fake = self.G(x_real, c_trg) out_src, _ = self.D(x_fake.detach()) d_loss_fake = torch.mean(out_src) # Compute loss for gradient penalty. alpha = torch.rand(x_real.size(0), 1, 1, 1).to(self.device) x_hat = (alpha * x_real.data + (1 - alpha) * x_fake.data).requires_grad_(True) out_src, _ = self.D(x_hat) d_loss_gp = self.gradient_penalty(out_src, x_hat) # Backward and optimize. d_loss = d_loss_real + d_loss_fake + self.lambda_cls * d_loss_cls + self.lambda_gp * d_loss_gp self.reset_grad() d_loss.backward() self.d_optimizer.step() # Logging. loss = {} loss['D/loss_real'] = d_loss_real.item() loss['D/loss_fake'] = d_loss_fake.item() loss['D/loss_cls'] = d_loss_cls.item() loss['D/loss_gp'] = d_loss_gp.item() # =================================================================================== # # 3. Train the generator # # =================================================================================== # if (i+1) % self.n_critic == 0: # Original-to-target domain. x_fake = self.G(x_real, c_trg) out_src, out_cls = self.D(x_fake) out_cls = out_cls[:, :self.c_dim] if dataset == 'CelebA' else out_cls[:, self.c_dim:] g_loss_fake = - torch.mean(out_src) g_loss_cls = self.classification_loss(out_cls, label_trg, dataset) # Target-to-original domain. x_reconst = self.G(x_fake, c_org) g_loss_rec = torch.mean(torch.abs(x_real - x_reconst)) # Backward and optimize. g_loss = g_loss_fake + self.lambda_rec * g_loss_rec + self.lambda_cls * g_loss_cls self.reset_grad() g_loss.backward() self.g_optimizer.step() # Logging. loss['G/loss_fake'] = g_loss_fake.item() loss['G/loss_rec'] = g_loss_rec.item() loss['G/loss_cls'] = g_loss_cls.item() # =================================================================================== # # 4. Miscellaneous # # =================================================================================== # # Print out training info. if (i+1) % self.log_step == 0: et = time.time() - start_time et = str(datetime.timedelta(seconds=et))[:-7] log = "Elapsed [{}], Iteration [{}/{}], Dataset [{}]".format(et, i+1, self.num_iters, dataset) for tag, value in loss.items(): log += ", {}: {:.4f}".format(tag, value) print(log) if self.use_tensorboard: for tag, value in loss.items(): self.logger.scalar_summary(tag, value, i+1) # Translate fixed images for debugging. if (i+1) % self.sample_step == 0: with torch.no_grad(): x_fake_list = [x_fixed] for c_fixed in c_celeba_list: c_trg = torch.cat([c_fixed, zero_rafd, mask_celeba], dim=1) x_fake_list.append(self.G(x_fixed, c_trg)) for c_fixed in c_rafd_list: c_trg = torch.cat([zero_celeba, c_fixed, mask_rafd], dim=1) x_fake_list.append(self.G(x_fixed, c_trg)) x_concat = torch.cat(x_fake_list, dim=3) sample_path = os.path.join(self.sample_dir, '{}-images.jpg'.format(i+1)) save_image(self.denorm(x_concat.data.cpu()), sample_path, nrow=1, padding=0) print('Saved real and fake images into {}...'.format(sample_path)) # Save model checkpoints. if (i+1) % self.model_save_step == 0: G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1)) D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1)) torch.save(self.G.state_dict(), G_path) torch.save(self.D.state_dict(), D_path) print('Saved model checkpoints into {}...'.format(self.model_save_dir)) # Decay learning rates. if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay): g_lr -= (self.g_lr / float(self.num_iters_decay)) d_lr -= (self.d_lr / float(self.num_iters_decay)) self.update_lr(g_lr, d_lr) print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr)) def test(self): """Translate images using StarGAN trained on a single dataset.""" # Load the trained generator. self.restore_model(self.test_iters) # Set data loader. if self.dataset == 'CelebA': data_loader = self.celeba_loader elif self.dataset == 'RaFD': data_loader = self.rafd_loader with torch.no_grad(): for i, (x_real, c_org) in enumerate(data_loader): # Prepare input images and target domain labels. x_real = x_real.to(self.device) c_trg_list = self.create_labels(c_org, self.c_dim, self.dataset, self.selected_attrs) # Translate images. x_fake_list = [x_real] for c_trg in c_trg_list: x_fake_list.append(self.G(x_real, c_trg)) # Save the translated images. x_concat = torch.cat(x_fake_list, dim=3) result_path = os.path.join(self.result_dir, '{}-images.jpg'.format(i+1)) save_image(self.denorm(x_concat.data.cpu()), result_path, nrow=1, padding=0) print('Saved real and fake images into {}...'.format(result_path)) def test_multi(self): """Translate images using StarGAN trained on multiple datasets.""" # Load the trained generator. self.restore_model(self.test_iters) with torch.no_grad(): for i, (x_real, c_org) in enumerate(self.celeba_loader): # Prepare input images and target domain labels. x_real = x_real.to(self.device) c_celeba_list = self.create_labels(c_org, self.c_dim, 'CelebA', self.selected_attrs) c_rafd_list = self.create_labels(c_org, self.c2_dim, 'RaFD') zero_celeba = torch.zeros(x_real.size(0), self.c_dim).to(self.device) # Zero vector for CelebA. zero_rafd = torch.zeros(x_real.size(0), self.c2_dim).to(self.device) # Zero vector for RaFD. mask_celeba = self.label2onehot(torch.zeros(x_real.size(0)), 2).to(self.device) # Mask vector: [1, 0]. mask_rafd = self.label2onehot(torch.ones(x_real.size(0)), 2).to(self.device) # Mask vector: [0, 1]. # Translate images. x_fake_list = [x_real] for c_celeba in c_celeba_list: c_trg = torch.cat([c_celeba, zero_rafd, mask_celeba], dim=1) x_fake_list.append(self.G(x_real, c_trg)) for c_rafd in c_rafd_list: c_trg = torch.cat([zero_celeba, c_rafd, mask_rafd], dim=1) x_fake_list.append(self.G(x_real, c_trg)) # Save the translated images. x_concat = torch.cat(x_fake_list, dim=3) result_path = os.path.join(self.result_dir, '{}-images.jpg'.format(i+1)) save_image(self.denorm(x_concat.data.cpu()), result_path, nrow=1, padding=0) print('Saved real and fake images into {}...'.format(result_path))
the-stack_0_26851
# -*- coding: utf-8 -*- # # This file is part of the pyFDA project hosted at https://github.com/chipmuenk/pyfda # # Copyright © pyFDA Project Contributors # Licensed under the terms of the MIT License # (see file LICENSE in root directory for details) """ Helper classes and functions for generating and simulating fixpoint filters """ import sys import logging logger = logging.getLogger(__name__) #import numpy as np import pyfda.filterbroker as fb import pyfda.pyfda_fix_lib as fix from ..compat import (QWidget, QLabel, QLineEdit, QComboBox, QPushButton, QIcon, QVBoxLayout, QHBoxLayout, QFrame, pyqtSignal) from migen import Cat, If, Replicate, Signal from pyfda.pyfda_qt_lib import qget_cmb_box, qset_cmb_box from pyfda.pyfda_rc import params from pyfda.pyfda_lib import qstr, safe_eval, to_html def rescale(mod, sig_i, QI, QO): """ Change word length of input signal `sig_i` to `WO` bits, using the quantization and saturation methods specified by ``QO['quant']`` and ``QO['ovfl']``. Parameters ---------- mod: Module (migen) instance of migen module sig_i: Signal (migen) Signal to be requantized QI: dict Quantization dict for input word, only the keys 'WI' and 'WF' for integer and fractional wordlength are evaluated. QI['WI'] = 2 and QI['WF'] = 13 e.g. define Q-Format '2.13' with 2 integer, 13 fractional bits and 1 implied sign bit = 16 bits total. QO: dict Quantization dict for output word format; the keys 'WI' and 'WF' for integer and fractional wordlength are evaluated as well as the keys 'quant' and 'ovfl' describing requantization and overflow behaviour. **Input and output word are aligned at their binary points.** The following shows an example of rescaling an input word from Q2.4 to Q0.3 using wrap-around and truncation. It's easy to see that for simple wrap-around logic, the sign of the result may change. :: S | WI1 | WI0 * WF0 | WF1 | WF2 | WF3 : WI = 2, WF = 4, W = 7 0 | 1 | 0 * 1 | 0 | 1 | 1 = 43 (dec) or 43/16 = 2 + 11/16 (float) * | S * WF0 | WF1 | WF2 : WI = 0, WF = 3, W = 4 0 * 1 | 0 | 1 = 7 (dec) or 7/8 (float) The float or "real (world) value" is calculated by multiplying the integer value by 2 ** (-WF). For requantizing two numbers to the same WI and WF, imagine both binary numbers to be right-aligned. Changes in the number of integer bits `dWI` and fractional bits `dWF` are handled separately. Fractional Bits: - For reducing the number of fractional bits by `dWF`, simply right-shift the integer number by `dWF`. For rounding, add '1' to the bit below the truncation point before right-shifting. - Extend the number of fractional bits by left-shifting the integer by `dWF`, LSB's are filled with zeros. Integer Bits: - For reducing the number of integer bits by `dWI`, simply right-shift the integer by `dWI`. - The number of fractional bits is SIGN-EXTENDED by filling up the left-most bits with the sign bit. """ WI_I = QI['WI'] WI_F = QI['WF'] WI = WI_I + WI_F + 1 WO_I = QO['WI'] WO_F = QO['WF'] WO = WO_I + WO_F + 1 dWF = WI_F - WO_F # difference of fractional lengths dWI = WI_I - WO_I # difference of integer lengths # max. resp. min, output values MIN_o = - 1 << (WO - 1) MAX_o = -MIN_o - 1 sig_i_q = Signal((max(WI,WO), True)) sig_o = Signal((WO, True)) logger.debug("rescale: dWI={0}, dWF={1}, QU:{2}, OV:{3}".format(dWI, dWF, QO['quant'], QO['ovfl'] )) if dWF <= 0: # extend fractional word length of output word mod.comb += sig_i_q.eq(sig_i << -dWF) # shift input right by -dWF else: # dWF > 0, fractional output word length needs to be shortened if QO['quant'] == 'round': # add half an LSB (1 << (dWF - 1)) and divide by 2^dWF (shift left by dWF) mod.comb += sig_i_q.eq((sig_i + (1 << (dWF - 1))) >> dWF) elif QO['quant'] == 'floor': # just divide by 2^dWF (shift left by dWF) mod.comb += sig_i_q.eq(sig_i >> dWF) elif QO['quant'] == 'fix': # add sign bit as LSB (1 << dWF) and divide by 2^dWF (shift left by dWF) mod.comb += sig_i_q.eq((sig_i + (sig_i[-1] << dWF)) >> dWF) else: raise Exception(u'Unknown quantization method "%s"!'%(QI['quant'])) if dWI < 0: # WI_I < WO_I, sign extend integer part #mod.comb += sig_o.eq(sig_i_q >> -dWI) mod.comb += sig_o.eq(Cat(sig_i_q, Replicate(sig_i_q[-1], -dWI))) elif dWI == 0: # WI = WO, don't change integer part mod.comb += sig_o.eq(sig_i_q) elif QO['ovfl'] == 'sat': mod.comb += \ If(sig_i_q[-1] == 1, If(sig_i_q < MIN_o, #If(sig_i_q[-dWI-1:-1] != Replicate(sig_i_q[-1], dWI), sig_o.eq(MIN_o) ).Else(sig_o.eq(sig_i_q))#[:-dWI-1]))# >> dWI ).Elif(sig_i_q > MAX_o, #).Elif(sig_i_q[WO-1:] == 0b01, sig_o.eq(MAX_o) ).Else(sig_o.eq(sig_i_q)#[:-dWI-1])# >> dWI) ) elif QO['ovfl'] == 'wrap': # wrap around (shift left) mod.comb += sig_o.eq(sig_i_q)# >> dWI) #mod.comb += sig_o.eq(Replicate(sig_i_q[-1], abs(dWI))) #mod.comb += sig_o.eq(sig_i_q[-dWI-1:-1]) # ============================================================================= # If(sig_i_q[-1] == 1, # If(sig_i_q[-1:-dWI-1] != Replicate(sig_i_q[-1], dWI), # #If(sig_i_q < MIN_o, # #If(sig_i_q[WO-1:] == 0b10, # sig_o.eq(MIN_o) # ).Else(sig_o.eq(sig_i_q)# >> dWI # ).Elif(sig_i_q > MAX_o, # #).Elif(sig_i_q[WO-1:] == 0b01, # sig_o.eq(MAX_o) # ).Else(sig_o.eq(sig_i_q)# >> dWI) # ) # ============================================================================= else: raise Exception(u'Unknown overflow method "%s"!'%(QI['ovfl'])) return sig_o #------------------------------------------------------------------------------ class UI_W(QWidget): """ Widget for entering integer and fractional bits. The result can be read out via the attributes `self.WI`, `self.WF` and `self.W`. The constructor accepts a dictionary for initial widget settings. The following keys are defined; default values are used for missing keys: 'label' : 'WI.WF' # widget label 'lbl_sep' : '.' # label between WI and WF field 'max_led_width' : 30 # max. length of lineedit field 'WI' : 0 # number of frac. *bits* 'WI_len' : 2 # max. number of integer *digits* 'tip_WI' : 'Number of integer bits' # Mouse-over tooltip 'WF' : 15 # number of frac. *bits* 'WF_len' : 2 # max. number of frac. *digits* 'tip_WF' : 'Number of frac. bits' # Mouse-over tooltip 'enabled' : True # Is widget enabled? 'visible' : True # Is widget visible? 'fractional' : True # Display WF, otherwise WF=0 'lock_visible' : False # Pushbutton for locking visible 'tip_lock' : 'Lock input/output quant.'# Tooltip for lock push button """ # incoming, #sig_rx = pyqtSignal(object) # outcgoing sig_tx = pyqtSignal(object) def __init__(self, parent, q_dict, **kwargs): super(UI_W, self).__init__(parent) self.q_dict = q_dict # pass a dict with initial settings for construction #logger.warning(self.q_dict) self._construct_UI(**kwargs) self.ui2dict() # initialize the class attributes def _construct_UI(self, **kwargs): """ Construct widget from quantization dict, individual settings and the default dict below """ # default settings dict_ui = {'label':'WI.WF', 'lbl_sep':'.', 'max_led_width':30, 'WI':0, 'WI_len':2, 'tip_WI':'Number of integer bits', 'WF':15,'WF_len':2, 'tip_WF':'Number of fractional bits', 'enabled':True, 'visible':True, 'fractional':True, 'combo_visible':False, 'combo_items':['auto', 'full', 'man'], 'tip_combo':'Calculate Acc. width.', 'lock_visible':False, 'tip_lock':'Lock input/output quantization.' } #: default values if self.q_dict: dict_ui.update(self.q_dict) for k, v in kwargs.items(): if k not in dict_ui: logger.warning("Unknown key {0}".format(k)) else: dict_ui.update({k:v}) if not dict_ui['fractional']: dict_ui['WF'] = 0 self.WI = dict_ui['WI'] self.WF = dict_ui['WF'] self.W = int(self.WI + self.WF + 1) if self.q_dict: self.q_dict.update({'WI':self.WI, 'WF':self.WF, 'W':self.W}) else: self.q_dict = {'WI':self.WI, 'WF':self.WF, 'W':self.W} lblW = QLabel(to_html(dict_ui['label'], frmt='bi'), self) self.cmbW = QComboBox(self) self.cmbW.addItems(dict_ui['combo_items']) self.cmbW.setVisible(dict_ui['combo_visible']) self.cmbW.setToolTip(dict_ui['tip_combo']) self.cmbW.setObjectName("cmbW") self.butLock = QPushButton(self) self.butLock.setCheckable(True) self.butLock.setChecked(False) self.butLock.setVisible(dict_ui['lock_visible']) self.butLock.setToolTip(dict_ui['tip_lock']) self.ledWI = QLineEdit(self) self.ledWI.setToolTip(dict_ui['tip_WI']) self.ledWI.setMaxLength(dict_ui['WI_len']) # maximum of 2 digits self.ledWI.setFixedWidth(dict_ui['max_led_width']) # width of lineedit in points(?) self.ledWI.setObjectName("WI") lblDot = QLabel(dict_ui['lbl_sep'], self) lblDot.setVisible(dict_ui['fractional']) self.ledWF = QLineEdit(self) self.ledWF.setToolTip(dict_ui['tip_WF']) self.ledWF.setMaxLength(dict_ui['WI_len']) # maximum of 2 digits self.ledWF.setFixedWidth(dict_ui['max_led_width']) # width of lineedit in points(?) self.ledWF.setVisible(dict_ui['fractional']) self.ledWF.setObjectName("WF") layH = QHBoxLayout() layH.addWidget(lblW) layH.addStretch() layH.addWidget(self.cmbW) layH.addWidget(self.butLock) layH.addWidget(self.ledWI) layH.addWidget(lblDot) layH.addWidget(self.ledWF) layH.setContentsMargins(0,0,0,0) frmMain = QFrame(self) frmMain.setLayout(layH) layVMain = QVBoxLayout() # Widget main layout layVMain.addWidget(frmMain) layVMain.setContentsMargins(0,5,0,0)#*params['wdg_margins']) self.setLayout(layVMain) #---------------------------------------------------------------------- # INITIAL SETTINGS #---------------------------------------------------------------------- self.ledWI.setText(qstr(dict_ui['WI'])) self.ledWF.setText(qstr(dict_ui['WF'])) frmMain.setEnabled(dict_ui['enabled']) frmMain.setVisible(dict_ui['visible']) #---------------------------------------------------------------------- # LOCAL SIGNALS & SLOTs #---------------------------------------------------------------------- self.ledWI.editingFinished.connect(self.ui2dict) self.ledWF.editingFinished.connect(self.ui2dict) self.butLock.clicked.connect(self.but_clicked) self.cmbW.currentIndexChanged.connect(self.ui2dict) # initialize button icon self.but_clicked(self.butLock.isChecked()) def quant_coeffs(self, q_dict, coeffs): """ Quantize the coefficients, scale and convert them to integer and return them as a list of integers This is called every time one of the coefficient subwidgets is edited or changed. Parameters: ----------- None Returns: -------- A list of integer coeffcients, quantized and scaled with the settings of the passed quantization dict """ # Create coefficient quantizer instances using the quantization parameters dict # collected in `input_widgets/input_coeffs.py` (and stored in the central filter dict) Q_coeff = fix.Fixed(q_dict) Q_coeff.frmt = 'dec' # always use decimal format for coefficients if coeffs is None: logger.error("Coeffs empty!") # quantize floating point coefficients and convert them to the # selected numeric format (hex, bin, dec ...) with the selected scale (WI.WF), # next convert array float -> array of fixp - > list of int (scaled by 2^WF) return list(Q_coeff.float2frmt(coeffs) * (1 << Q_coeff.WF)) #-------------------------------------------------------------------------- def but_clicked(self, clicked): """ Update the icon of the push button depending on its state """ if clicked: self.butLock.setIcon(QIcon(':/lock-locked.svg')) else: self.butLock.setIcon(QIcon(':/lock-unlocked.svg')) q_icon_size = self.butLock.iconSize() # <- uncomment this for manual sizing self.butLock.setIconSize(q_icon_size) dict_sig = {'sender':__name__, 'ui':'butLock'} self.sig_tx.emit(dict_sig) #-------------------------------------------------------------------------- def ui2dict(self): """ Update the attributes `self.WI`, `self.WF` and `self.W` and `self.q_dict` when one of the QLineEdit widgets has been edited. Emit a signal with `{'ui':objectName of the sender}`. """ self.WI = int(safe_eval(self.ledWI.text(), self.WI, return_type="int", sign='pos')) self.ledWI.setText(qstr(self.WI)) self.WF = int(safe_eval(self.ledWF.text(), self.WF, return_type="int", sign='pos')) self.ledWF.setText(qstr(self.WF)) self.W = int(self.WI + self.WF + 1) self.q_dict.update({'WI':self.WI, 'WF':self.WF, 'W':self.W}) if self.sender(): name = self.sender().objectName() logger.debug("sender: {0}".format(name)) dict_sig = {'sender':__name__, 'ui':name} self.sig_tx.emit(dict_sig) else: logger.error("sender without name, shouldn't happen!") #-------------------------------------------------------------------------- def dict2ui(self, q_dict=None): """ Update the widgets `WI` and `WF` and the corresponding attributes from the dict passed as the argument """ if q_dict is None: q_dict = self.q_dict if 'WI' in q_dict: self.WI = safe_eval(q_dict['WI'], self.WI, return_type="int", sign='pos') self.ledWI.setText(qstr(self.WI)) else: logger.warning("No key 'WI' in dict!") if 'WF' in q_dict: self.WF = safe_eval(q_dict['WF'], self.WF, return_type="int", sign='pos') self.ledWF.setText(qstr(self.WF)) else: logger.warning("No key 'WF' in dict!") self.W = self.WF + self.WI + 1 #------------------------------------------------------------------------------ # #============================================================================== class UI_Q(QWidget): """ Widget for selecting quantization / overflow options. The result can be read out via the attributes `self.ovfl` and `self.quant`. The constructor accepts a reference to the quantization dictionary for initial widget settings and for (re-)storing values. The following keys are defined; default values are used for missing keys: 'label_q' : 'Quant.' # widget label 'tip_q' : 'Select the kind of quantization.' # Mouse-over tooltip 'enabled' : True # Is widget enabled? 'visible' : True # Is widget visible? """ # incoming, #sig_rx = pyqtSignal(object) # outcgoing sig_tx = pyqtSignal(object) def __init__(self, parent, q_dict, **kwargs): super(UI_Q, self).__init__(parent) self.q_dict = q_dict self._construct_UI(**kwargs) def _construct_UI(self, **kwargs): """ Construct widget """ dict_ui = {'label':'', 'label_q':'Quant.', 'tip_q':'Select the kind of quantization.', 'cmb_q':['round', 'fix', 'floor'], 'cur_q':'round', 'label_ov':'Ovfl.', 'tip_ov':'Select overflow behaviour.', 'cmb_ov':['wrap', 'sat'], 'cur_ov':'wrap', 'enabled':True, 'visible':True } #: default widget settings if 'quant' in self.q_dict and self.q_dict['quant'] in dict_ui['cmb_q']: dict_ui['cur_q'] = self.q_dict['quant'] if 'ovfl' in self.q_dict and self.q_dict['ovfl'] in dict_ui['cmb_ov']: dict_ui['cur_ov'] = self.q_dict['ovfl'] for key, val in kwargs.items(): dict_ui.update({key:val}) # dict_ui.update(map(kwargs)) # same as above? lblQuant = QLabel(dict_ui['label_q'], self) self.cmbQuant = QComboBox(self) self.cmbQuant.addItems(dict_ui['cmb_q']) qset_cmb_box(self.cmbQuant, dict_ui['cur_q']) self.cmbQuant.setToolTip(dict_ui['tip_q']) self.cmbQuant.setObjectName('quant') lblOvfl = QLabel(dict_ui['label_ov'], self) self.cmbOvfl = QComboBox(self) self.cmbOvfl.addItems(dict_ui['cmb_ov']) qset_cmb_box(self.cmbOvfl, dict_ui['cur_ov']) self.cmbOvfl.setToolTip(dict_ui['tip_ov']) self.cmbOvfl.setObjectName('ovfl') # ComboBox size is adjusted automatically to fit the longest element self.cmbQuant.setSizeAdjustPolicy(QComboBox.AdjustToContents) self.cmbOvfl.setSizeAdjustPolicy(QComboBox.AdjustToContents) layH = QHBoxLayout() if dict_ui['label'] != "": lblW = QLabel(to_html(dict_ui['label'], frmt='bi'), self) layH.addWidget(lblW) layH.addStretch() layH.addWidget(lblOvfl) layH.addWidget(self.cmbOvfl) #layH.addStretch(1) layH.addWidget(lblQuant) layH.addWidget(self.cmbQuant) layH.setContentsMargins(0,0,0,0) frmMain = QFrame(self) frmMain.setLayout(layH) layVMain = QVBoxLayout() # Widget main layout layVMain.addWidget(frmMain) layVMain.setContentsMargins(0,0,0,0)#*params['wdg_margins']) self.setLayout(layVMain) #---------------------------------------------------------------------- # INITIAL SETTINGS #---------------------------------------------------------------------- self.ovfl = qget_cmb_box(self.cmbOvfl, data=False) self.quant = qget_cmb_box(self.cmbQuant, data=False) frmMain.setEnabled(dict_ui['enabled']) frmMain.setVisible(dict_ui['visible']) #---------------------------------------------------------------------- # LOCAL SIGNALS & SLOTs #---------------------------------------------------------------------- self.cmbOvfl.currentIndexChanged.connect(self.ui2dict) self.cmbQuant.currentIndexChanged.connect(self.ui2dict) #-------------------------------------------------------------------------- def ui2dict(self): """ Update the quantization dict and the attributes `self.ovfl` and `self.quant` from the UI """ self.ovfl = self.cmbOvfl.currentText() self.quant = self.cmbQuant.currentText() self.q_dict.update({'ovfl': self.ovfl, 'quant': self.quant}) if self.sender(): name = self.sender().objectName() dict_sig = {'sender':__name__, 'ui':name} self.sig_tx.emit(dict_sig) #-------------------------------------------------------------------------- def dict2ui(self, q_dict): """ Update UI from passed dictionary """ pass #============================================================================== if __name__ == '__main__': from ..compat import QApplication app = QApplication(sys.argv) mainw = UI_W(None) mainw.show() app.exec_()
the-stack_0_26852
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from .test_configuration_common import ConfigTester from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class TFConvBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 384 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.embedding_size = 128 self.head_ratio = 2 self.conv_kernel_size = 9 self.num_groups = 1 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = ConvBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=True, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFConvBertModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFConvBertForMaskedLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFConvBertForSequenceClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFConvBertForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFConvBertForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFConvBertForQuestionAnswering(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFConvBertModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) test_pruning = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFConvBertModelTester(self) self.config_tester = ConfigTester(self, config_class=ConvBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_saved_model_creation_extended(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True if hasattr(config, "use_cache"): config.use_cache = True encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) num_out = len(model(class_inputs_dict)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=True) saved_model_dir = os.path.join(tmpdirname, "saved_model", "1") model = tf.keras.models.load_model(saved_model_dir) outputs = model(class_inputs_dict) if self.is_encoder_decoder: output_hidden_states = outputs["encoder_hidden_states"] output_attentions = outputs["encoder_attentions"] else: output_hidden_states = outputs["hidden_states"] output_attentions = outputs["attentions"] self.assertEqual(len(outputs), num_out) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(output_hidden_states), expected_num_layers) self.assertListEqual( list(output_hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) @slow def test_model_from_pretrained(self): model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base") self.assertIsNotNone(model) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) def check_decoder_attentions_output(outputs): out_len = len(outputs) self.assertEqual(out_len % 2, 0) decoder_attentions = outputs.decoder_attentions self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(outputs): attentions = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["use_cache"] = False config.output_hidden_states = False model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) out_len = len(outputs) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) if self.is_encoder_decoder: model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_decoder_attentions_output(outputs) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True config.output_hidden_states = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs)) self.assertEqual(model.config.output_hidden_states, True) check_encoder_attentions_output(outputs) @require_tf class TFConvBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6, 768] self.assertEqual(output.shape, expected_shape) print(output[:, :3, :3]) expected_slice = tf.constant( [ [ [-0.10334751, -0.37152207, -0.2682219], [0.20078957, -0.3918426, -0.78811496], [0.08000169, -0.509474, -0.59314483], ] ] ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
the-stack_0_26855
# (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from codecs import open # To use a consistent encoding from os import path from setuptools import setup HERE = path.dirname(path.abspath(__file__)) # Get version info ABOUT = {} with open(path.join(HERE, 'datadog_checks', 'postfix', '__about__.py')) as f: exec(f.read(), ABOUT) # Get the long description from the README file with open(path.join(HERE, 'README.md'), encoding='utf-8') as f: long_description = f.read() def get_dependencies(): dep_file = path.join(HERE, 'requirements.in') if not path.isfile(dep_file): return [] with open(dep_file, encoding='utf-8') as f: return f.readlines() CHECKS_BASE_REQ = 'datadog-checks-base' setup( name='datadog-postfix', version=ABOUT['__version__'], description='The Postfix check', long_description=long_description, long_description_content_type='text/markdown', keywords='datadog agent postfix check', # The project's main homepage. url='https://github.com/DataDog/integrations-core', # Author details author='Datadog', author_email='[email protected]', # License license='BSD', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Topic :: System :: Monitoring', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', ], # The package we're going to ship packages=['datadog_checks.postfix'], # Run-time dependencies install_requires=[CHECKS_BASE_REQ], extras_require={'deps': get_dependencies()}, # Extra files to ship with the wheel package include_package_data=True, )
the-stack_0_26856
#!/usr/bin/python # Copyright(C) 2012 Open Information Security Foundation # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 2 of the License. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. try: import simplejson as json except: import json import re import readline from socket import socket, AF_UNIX, error from time import sleep import select import sys SURICATASC_VERSION = "0.9" VERSION = "0.1" SIZE = 4096 class SuricataException(Exception): """ Generic class for suricatasc exception """ def __init__(self, value): self.value = value def __str__(self): return str(self.value) class SuricataNetException(SuricataException): """ Exception raised when network error occur. """ pass class SuricataCommandException(SuricataException): """ Exception raised when command is not correct. """ pass class SuricataReturnException(SuricataException): """ Exception raised when return message is not correct. """ pass class SuricataCompleter: def __init__(self, words): self.words = words self.generator = None def complete(self, text): for word in self.words: if word.startswith(text): yield word def __call__(self, text, state): if state == 0: self.generator = self.complete(text) try: return next(self.generator) except StopIteration: return None return None class SuricataSC: def __init__(self, sck_path, verbose=False): self.cmd_list=['shutdown','quit','pcap-file','pcap-file-number','pcap-file-list','iface-list','iface-stat','register-tenant','unregister-tenant','register-tenant-handler','unregister-tenant-handler'] self.sck_path = sck_path self.verbose = verbose def json_recv(self): cmdret = None i = 0 data = "" while i < 5: i += 1 if sys.version < '3': data += self.socket.recv(SIZE) else: data += self.socket.recv(SIZE).decode('iso-8859-1') try: cmdret = json.loads(data) break except: sleep(0.3) return cmdret def send_command(self, command, arguments = None): if command not in self.cmd_list and command != 'command-list': raise SuricataCommandException("No such command: %s", command) cmdmsg = {} cmdmsg['command'] = command if (arguments != None): cmdmsg['arguments'] = arguments if self.verbose: print("SND: " + json.dumps(cmdmsg)) if sys.version < '3': self.socket.send(json.dumps(cmdmsg)) else: self.socket.send(bytes(json.dumps(cmdmsg), 'iso-8859-1')) ready = select.select([self.socket], [], [], 600) if ready[0]: cmdret = self.json_recv() else: cmdret = None if cmdret == None: raise SuricataReturnException("Unable to get message from server") if self.verbose: print("RCV: "+ json.dumps(cmdret)) return cmdret def connect(self): try: self.socket = socket(AF_UNIX) self.socket.connect(self.sck_path) except error as err: raise SuricataNetException(err) self.socket.settimeout(10) #send version if self.verbose: print("SND: " + json.dumps({"version": VERSION})) if sys.version < '3': self.socket.send(json.dumps({"version": VERSION})) else: self.socket.send(bytes(json.dumps({"version": VERSION}), 'iso-8859-1')) ready = select.select([self.socket], [], [], 600) if ready[0]: cmdret = self.json_recv() else: cmdret = None if cmdret == None: raise SuricataReturnException("Unable to get message from server") if self.verbose: print("RCV: "+ json.dumps(cmdret)) if cmdret["return"] == "NOK": raise SuricataReturnException("Error: %s" % (cmdret["message"])) cmdret = self.send_command("command-list") # we silently ignore NOK as this means server is old if cmdret["return"] == "OK": self.cmd_list = cmdret["message"]["commands"] self.cmd_list.append("quit") def close(self): self.socket.close() def parse_command(self, command): arguments = None if command.split(' ', 2)[0] in self.cmd_list: if "pcap-file " in command: try: parts = command.split(' '); except: raise SuricataCommandException("Arguments to command '%s' is missing" % (command)) cmd, filename, output = parts[0], parts[1], parts[2] tenant = None if len(parts) > 3: tenant = parts[3] if cmd != "pcap-file": raise SuricataCommandException("Invalid command '%s'" % (command)) else: arguments = {} arguments["filename"] = filename arguments["output-dir"] = output if tenant != None: arguments["tenant"] = int(tenant) elif "iface-stat" in command: try: [cmd, iface] = command.split(' ', 1) except: raise SuricataCommandException("Unable to split command '%s'" % (command)) if cmd != "iface-stat": raise SuricataCommandException("Invalid command '%s'" % (command)) else: arguments = {} arguments["iface"] = iface elif "conf-get" in command: try: [cmd, variable] = command.split(' ', 1) except: raise SuricataCommandException("Unable to split command '%s'" % (command)) if cmd != "conf-get": raise SuricataCommandException("Invalid command '%s'" % (command)) else: arguments = {} arguments["variable"] = variable elif "unregister-tenant-handler" in command: try: parts = command.split(' ') except: raise SuricataCommandException("Arguments to command '%s' is missing" % (command)) cmd, tenantid, htype = parts[0], parts[1], parts[2] hargs = None if len(parts) > 3: hargs = parts[3] if cmd != "unregister-tenant-handler": raise SuricataCommandException("Invalid command '%s'" % (command)) else: arguments = {} arguments["id"] = int(tenantid) arguments["htype"] = htype if hargs != None: arguments["hargs"] = int(hargs) elif "register-tenant-handler" in command: try: parts = command.split(' ') except: raise SuricataCommandException("Arguments to command '%s' is missing" % (command)) cmd, tenantid, htype = parts[0], parts[1], parts[2] hargs = None if len(parts) > 3: hargs = parts[3] if cmd != "register-tenant-handler": raise SuricataCommandException("Invalid command '%s'" % (command)) else: arguments = {} arguments["id"] = int(tenantid) arguments["htype"] = htype if hargs != None: arguments["hargs"] = int(hargs) elif "unregister-tenant" in command: try: [cmd, tenantid] = command.split(' ', 1) except: raise SuricataCommandException("Unable to split command '%s'" % (command)) if cmd != "unregister-tenant": raise SuricataCommandException("Invalid command '%s'" % (command)) else: arguments = {} arguments["id"] = int(tenantid) elif "register-tenant" in command: try: [cmd, tenantid, filename] = command.split(' ', 2) except: raise SuricataCommandException("Arguments to command '%s' is missing" % (command)) if cmd != "register-tenant": raise SuricataCommandException("Invalid command '%s'" % (command)) else: arguments = {} arguments["id"] = int(tenantid) arguments["filename"] = filename elif "reload-tenant" in command: try: [cmd, tenantid, filename] = command.split(' ', 2) except: raise SuricataCommandException("Arguments to command '%s' is missing" % (command)) if cmd != "reload-tenant": raise SuricataCommandException("Invalid command '%s'" % (command)) else: arguments = {} arguments["id"] = int(tenantid) arguments["filename"] = filename else: cmd = command else: raise SuricataCommandException("Unknown command '%s'" % (command)) return (cmd, arguments) def interactive(self): print("Command list: " + ", ".join(self.cmd_list)) try: readline.set_completer(SuricataCompleter(self.cmd_list)) readline.set_completer_delims(";") readline.parse_and_bind('tab: complete') while True: if sys.version < '3': command = raw_input(">>> ").strip() else: command = input(">>> ").strip() if command == "quit": break; try: (cmd, arguments) = self.parse_command(command) except SuricataCommandException as err: print(err) continue cmdret = self.send_command(cmd, arguments) #decode json message if cmdret["return"] == "NOK": print("Error:") print(json.dumps(cmdret["message"], sort_keys=True, indent=4, separators=(',', ': '))) else: print("Success:") print(json.dumps(cmdret["message"], sort_keys=True, indent=4, separators=(',', ': '))) except KeyboardInterrupt: print("[!] Interrupted")
the-stack_0_26857
#!/usr/bin/python3 """Training and Validation On Classification Task.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import math import random import shutil import argparse import importlib BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = BASE_DIR sys.path.append(os.path.join(BASE_DIR, '..')) DATA_DIR = os.path.join(ROOT_DIR, '../../../../') import data_utils import numpy as np import pointfly as pf import tensorflow as tf from datetime import datetime import provider import h5py parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=1, help='GPU to use [default: GPU 0]') parser.add_argument('--load_ckpt', '-l', help='Path to a check point file for load') parser.add_argument('--log_dir', '-s', default='log/', help='Path to folder for saving check points and summary') parser.add_argument('--with_bg', default = True, help='Whether to have background or not [default: True]') parser.add_argument('--norm', default = True, help='Whether to normalize data or not [default: False]') parser.add_argument('--center_data', default = True, help='Whether to explicitly center the data [default: False]') parser.add_argument('--seg_weight', type=int, default=0.5, help='Segmentation weight in loss') parser.add_argument('--train_file', default = 'h5_files/main_split/training_objectdataset_augmentedrot_scale75.h5', help='Location of training file') parser.add_argument('--test_file', default = 'h5_files/main_split/test_objectdataset_augmentedrot_scale75.h5', help='Location of test file') parser.add_argument('--model', '-m', default = 'pointcnn_seg', help='Model to use') parser.add_argument('--setting', '-x', default = 'object_dataset_x3', help='Setting to use') parser.add_argument('--epochs', help='Number of training epochs (default defined in setting)', type=int) parser.add_argument('--batch_size', help='Batch size (default defined in setting)', type=int) parser.add_argument('--num_point', type=int, default=1024, help='Point Number [default: 1024]') args = parser.parse_args() GPU_INDEX = args.gpu time_string = datetime.now().strftime('%Y-%m-%d-%H-%M-%S') root_folder = args.log_dir if not os.path.exists(root_folder): os.makedirs(root_folder) WITH_BG = args.with_bg NORMALIZED = args.norm TRAIN_FILE = args.train_file TEST_FILE = args.test_file CENTER_DATA = args.center_data SEG_WEIGHT = args.seg_weight LOG_FOUT = open(os.path.join(root_folder, 'log_train.txt'), 'w') LOG_FOUT.write(str(args)+'\n') def log_string(out_str): LOG_FOUT.write(out_str+'\n') LOG_FOUT.flush() print(out_str) model = importlib.import_module(args.model) setting_path = os.path.join(os.path.dirname(__file__), args.model) sys.path.append(setting_path) setting = importlib.import_module(args.setting) num_epochs = args.epochs or setting.num_epochs batch_size = args.batch_size or setting.batch_size sample_num = args.num_point step_val = setting.step_val rotation_range = setting.rotation_range rotation_range_val = setting.rotation_range_val scaling_range = setting.scaling_range scaling_range_val = setting.scaling_range_val jitter = setting.jitter jitter_val = setting.jitter_val pool_setting_val = None if not hasattr(setting, 'pool_setting_val') else setting.pool_setting_val pool_setting_train = None if not hasattr(setting, 'pool_setting_train') else setting.pool_setting_train # Prepare inputs log_string('{}-Preparing datasets...'.format(datetime.now())) NUM_CLASSES = 15 print("Normalized: "+str(NORMALIZED)) print("Center Data: "+str(CENTER_DATA)) TRAIN_DATA, TRAIN_LABELS, TRAIN_MASKS = data_utils.load_withmask_h5(TRAIN_FILE) TEST_DATA, TEST_LABELS, TEST_MASKS = data_utils.load_withmask_h5(TEST_FILE) TRAIN_MASKS = data_utils.convert_to_binary_mask(TRAIN_MASKS) TEST_MASKS = data_utils.convert_to_binary_mask(TEST_MASKS) if (CENTER_DATA): TRAIN_DATA = data_utils.center_data(TRAIN_DATA) TEST_DATA = data_utils.center_data(TEST_DATA) if (NORMALIZED): TRAIN_DATA = data_utils.normalize_data(TRAIN_DATA) TEST_DATA = data_utils.normalize_data(TEST_DATA) num_train = len(TRAIN_DATA) num_val = len(TEST_DATA) print('{}-{:d}/{:d} training/validation samples.'.format(datetime.now(), num_train, num_val)) def train(): with tf.Graph().as_default(): with tf.device('/gpu:'+str(GPU_INDEX)): # Placeholders xforms = tf.placeholder(tf.float32, shape=(None, 3, 3), name="xforms") rotations = tf.placeholder(tf.float32, shape=(None, 3, 3), name="rotations") jitter_range = tf.placeholder(tf.float32, shape=(1), name="jitter_range") global_step = tf.Variable(0, trainable=False, name='global_step') is_training_pl = tf.placeholder(tf.bool, name='is_training') pointclouds_pl = tf.placeholder(tf.float32, shape=(batch_size, sample_num, 3), name='data') labels_pl = tf.placeholder(tf.int32, shape=(batch_size), name='label') masks_pl = tf.placeholder(tf.int32, shape=(batch_size, sample_num), name='mask') points_augmented = pf.augment(pointclouds_pl, xforms, jitter_range) net = model.Net(points=points_augmented, features=None, is_training=is_training_pl, setting=setting) classification_logits = net.classification_logits segmentation_logits = net.segmentation_logits probs = tf.nn.softmax(classification_logits, name='probs') predictions = tf.argmax(probs, axis=-1, name='predictions') ##classification loss labels_2d = tf.expand_dims(labels_pl, axis=-1, name='labels_2d') labels_tile = tf.tile(labels_2d, (1, tf.shape(classification_logits)[1]), name='labels_tile') classify_loss = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(labels=labels_tile, logits=classification_logits)) ##segmentation loss per_instance_seg_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=segmentation_logits, labels=masks_pl), axis=1) seg_loss = tf.reduce_mean(per_instance_seg_loss) loss_op = (1-SEG_WEIGHT)*classify_loss + SEG_WEIGHT*seg_loss tf.summary.scalar('total loss', loss_op) tf.summary.scalar('classify_loss', classify_loss) tf.summary.scalar('seg_loss', seg_loss) lr_exp_op = tf.train.exponential_decay(setting.learning_rate_base, global_step, setting.decay_steps, setting.decay_rate, staircase=True) lr_clip_op = tf.maximum(lr_exp_op, setting.learning_rate_min) _ = tf.summary.scalar('learning_rate', tensor=lr_clip_op, collections=['train']) reg_loss = setting.weight_decay * tf.losses.get_regularization_loss() if setting.optimizer == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate=lr_clip_op, epsilon=setting.epsilon) elif setting.optimizer == 'momentum': optimizer = tf.train.MomentumOptimizer(learning_rate=lr_clip_op, momentum=setting.momentum, use_nesterov=True) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss_op + reg_loss, global_step=global_step) # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) saver = tf.train.Saver(max_to_keep=None) # backup all code # code_folder = os.path.abspath(os.path.dirname(__file__)) # shutil.copytree(code_folder, os.path.join(root_folder) folder_ckpt = root_folder # if not os.path.exists(folder_ckpt): # os.makedirs(folder_ckpt) folder_summary = os.path.join(root_folder, 'summary') if not os.path.exists(folder_summary): os.makedirs(folder_summary) parameter_num = np.sum([np.prod(v.shape.as_list()) for v in tf.trainable_variables()]) print('{}-Parameter number: {:d}.'.format(datetime.now(), parameter_num)) sess.run(init_op) # saver.restore(sess, os.path.join(folder_ckpt, "model.ckpt")) # log_string("Model restored.") merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(os.path.join(folder_summary, 'train'), sess.graph) test_writer = tf.summary.FileWriter(os.path.join(folder_summary, 'test')) ops = {'pointclouds_pl': pointclouds_pl, 'labels_pl': labels_pl, 'masks_pl': masks_pl, 'is_training_pl': is_training_pl, 'pred': probs, 'seg_pred': segmentation_logits, 'loss': loss_op, 'classify_loss': classify_loss, 'seg_loss': seg_loss, 'train_op': train_op, 'merged': merged, 'step': global_step, 'xforms': xforms, 'rotations': rotations, 'jitter_range': jitter_range} for epoch in range(num_epochs): log_string('**** EPOCH %03d ****' % (epoch)) sys.stdout.flush() train_one_epoch(sess, ops, train_writer) eval_one_epoch(sess, ops, test_writer) # Save the variables to disk. # if epoch % 10 == 0: save_path = saver.save(sess, os.path.join(folder_ckpt, "model.ckpt")) log_string("Model saved in file: %s" % save_path) def train_one_epoch(sess, ops, train_writer): is_training = True current_data, current_label, current_mask = data_utils.get_current_data_withmask_h5(TRAIN_DATA, TRAIN_LABELS, TRAIN_MASKS, sample_num) current_label = np.squeeze(current_label) current_mask = np.squeeze(current_mask) num_batches = current_data.shape[0]//batch_size total_correct = 0 total_seen = 0 loss_sum = 0 total_correct_seg = 0 classify_loss_sum = 0 seg_loss_sum = 0 for batch_idx in range(num_batches): start_idx = batch_idx * batch_size end_idx = (batch_idx+1) * batch_size xforms_np, rotations_np = pf.get_xforms(batch_size, rotation_range=rotation_range, scaling_range=scaling_range, order=setting.rotation_order) # Augment batched point clouds by rotation and jittering feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :], ops['labels_pl']: current_label[start_idx:end_idx], ops['masks_pl']: current_mask[start_idx:end_idx], ops['is_training_pl']: is_training, ops['xforms']: xforms_np, ops['rotations']: rotations_np, ops['jitter_range']: np.array([jitter])} summary, step, _, loss_val, pred_val, seg_val, classify_loss, seg_loss = sess.run([ops['merged'], ops['step'], ops['train_op'], ops['loss'], ops['pred'], ops['seg_pred'], ops['classify_loss'], ops['seg_loss']], feed_dict=feed_dict) train_writer.add_summary(summary, step) pred_val = np.sum(pred_val, axis=1) pred_val = np.argmax(pred_val, 1) # print(pred_val) # print(current_label[start_idx:end_idx]) correct = np.sum(pred_val == current_label[start_idx:end_idx]) seg_val = np.argmax(seg_val, 2) seg_correct = np.sum(seg_val == current_mask[start_idx:end_idx]) total_correct_seg += seg_correct total_correct += correct total_seen += batch_size loss_sum += loss_val classify_loss_sum += classify_loss seg_loss_sum += seg_loss log_string('mean loss: %f' % (loss_sum / float(num_batches))) log_string('classify mean loss: %f' % (classify_loss_sum / float(num_batches))) log_string('seg mean loss: %f' % (seg_loss_sum / float(num_batches))) log_string('accuracy: %f' % (total_correct / float(total_seen))) log_string('seg accuracy: %f' % (total_correct_seg / (float(total_seen)*sample_num))) def eval_one_epoch(sess, ops, test_writer): is_training = False total_correct = 0 total_seen = 0 loss_sum = 0 classify_loss_sum = 0 seg_loss_sum = 0 total_correct_seg = 0 total_seen_class = [0 for _ in range(NUM_CLASSES)] total_correct_class = [0 for _ in range(NUM_CLASSES)] current_data, current_label, current_mask = data_utils.get_current_data_withmask_h5(TEST_DATA, TEST_LABELS, TEST_MASKS, sample_num) current_label = np.squeeze(current_label) current_mask = np.squeeze(current_mask) num_batches = current_data.shape[0]//batch_size for batch_idx in range(num_batches): start_idx = batch_idx * batch_size end_idx = (batch_idx+1) * batch_size xforms_np, rotations_np = pf.get_xforms(batch_size, rotation_range=rotation_range_val, scaling_range=scaling_range_val, order=setting.rotation_order) # Augment batched point clouds by rotation and jittering feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :], ops['labels_pl']: current_label[start_idx:end_idx], ops['masks_pl']: current_mask[start_idx:end_idx], ops['is_training_pl']: is_training, ops['xforms']: xforms_np, ops['rotations']: rotations_np, ops['jitter_range']: np.array([jitter_val])} summary, step, loss_val, pred_val, seg_val, classify_loss, seg_loss = sess.run([ops['merged'], ops['step'], ops['loss'], ops['pred'], ops['seg_pred'], ops['classify_loss'], ops['seg_loss']], feed_dict=feed_dict) pred_val = np.sum(pred_val, axis=1) pred_val = np.argmax(pred_val, 1) correct = np.sum(pred_val == current_label[start_idx:end_idx]) seg_val = np.argmax(seg_val, 2) seg_correct = np.sum(seg_val == current_mask[start_idx:end_idx]) total_correct_seg += seg_correct total_correct += correct total_seen += batch_size loss_sum += (loss_val*batch_size) for i in range(start_idx, end_idx): l = current_label[i] total_seen_class[l] += 1 total_correct_class[l] += (pred_val[i-start_idx] == l) log_string('eval mean loss: %f' % (loss_sum / float(total_seen))) log_string('eval accuracy: %f'% (total_correct / float(total_seen))) log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float)))) log_string('eval accuracy: %f'% (total_correct / float(total_seen))) log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float)))) log_string('eval seg accuracy: %f' % (total_correct_seg / (float(total_seen)*sample_num))) if __name__ == '__main__': train()
the-stack_0_26858
""" Pod API This document refers to Symphony API calls that do not need encryption or decryption of content. - sessionToken can be obtained by calling the authenticationAPI on the symphony back end and the key manager respectively. Refer to the methods described in authenticatorAPI.yaml. - Actions are defined to be atomic, ie will succeed in their entirety or fail and have changed nothing. - If it returns a 40X status then it will have made no change to the system even if ome subset of the request would have succeeded. - If this contract cannot be met for any reason then this is an error and the response code will be 50X. # noqa: E501 The version of the OpenAPI document: 20.14.0-SNAPSHOT Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from symphony.bdk.gen.api_client import ApiClient, Endpoint as _Endpoint from symphony.bdk.gen.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from symphony.bdk.gen.pod_model.error import Error from symphony.bdk.gen.pod_model.user_v2 import UserV2 class SessionApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client self.v2_sessioninfo_get_endpoint = _Endpoint( settings={ 'response_type': (UserV2,), 'auth': [], 'endpoint_path': '/v2/sessioninfo', 'operation_id': 'v2_sessioninfo_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'session_token', ], 'required': [ 'session_token', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'session_token': (str,), }, 'attribute_map': { 'session_token': 'sessionToken', }, 'location_map': { 'session_token': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client ) def v2_sessioninfo_get( self, session_token, **kwargs ): """Get information about the current user's session. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = pod_api.v2_sessioninfo_get(session_token, async_req=True) >>> result = thread.get() Args: session_token (str): Session authentication token. Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: UserV2 If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_spec_property_naming'] = kwargs.get( '_spec_property_naming', False ) kwargs['_content_type'] = kwargs.get( '_content_type') kwargs['_host_index'] = kwargs.get('_host_index') kwargs['session_token'] = \ session_token return self.v2_sessioninfo_get_endpoint.call_with_http_info(**kwargs)
the-stack_0_26859
#!/usr/bin/python from __future__ import print_function import itertools import numbers import os import subprocess import sys from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser HERE = os.path.dirname(os.path.realpath(__file__)) TEST_FOLDER = os.path.abspath(os.path.join(HERE, "..", "test")) sys.path.append(TEST_FOLDER) from sig_utils import * WORKING_FOLDER = "./benchmarks/" BENCHMARK_TEMPLATE = """ static void {benchmark_name}(benchmark::State& state) {{ {setup} for (auto _ : state) {{ {var_conversions} auto start = std::chrono::high_resolution_clock::now(); {code} auto end = std::chrono::high_resolution_clock::now(); auto elapsed_seconds = std::chrono::duration_cast<std::chrono::duration<double>>(end - start); state.SetIterationTime(elapsed_seconds.count()); stan::math::recover_memory(); benchmark::ClobberMemory(); }} }} BENCHMARK({benchmark_name})->RangeMultiplier({multi})->Range(1, {max_size})->UseManualTime(); """ CUSTOM_MAIN = """ int main(int argc, char** argv) {{ stan::math::ChainableStack::instance_->memalloc_.alloc({}); stan::math::recover_memory(); ::benchmark::Initialize(&argc, argv); ::benchmark::RunSpecifiedBenchmarks(); }} """ overload_scalar = { "Prim": "double", "Rev": "stan::math::var", "Fwd": "stan::math::fvar<double>", "Mix": "stan::math::fvar<stan::math::var>", } def run_command(command): """ Runs given command and waits until it finishes executing. :param command: command to execute """ print() print(" ".join(command)) p1 = subprocess.Popen(command) if p1.wait() != 0: raise RuntimeError("command failed: " + " ".join(command)) def build(exe_filepath): """ Builds a file using make. :param exe_filepath: File to build """ run_command([make, exe_filepath]) def run_benchmark(exe_filepath, n_repeats=1, csv_out_file=None): """ Runs a benchmark :param exe_filepath: path to the benchmark executable :param n_repeats: how many times to repeat each benchmark :param csv_out_file: path to csv fle to store benchmark results into """ command = [exe_filepath] if n_repeats > 1: command.append("--benchmark_repetitions={}".format(n_repeats)) command.append("--benchmark_report_aggregates_only=true") if csv_out_file is not None: command.append("--benchmark_out={}".format(csv_out_file)) command.append("--benchmark_out_format=csv") run_command(command) def pick_color(n): str_bit_reversed_n = "{:015b}".format(n + 1)[::-1] r = 0.9 * ((int(str_bit_reversed_n[0::3], 2) / 2.0 ** 5 + 0.3) % 1) g = 0.9 * ((int(str_bit_reversed_n[1::3], 2) / 2.0 ** 5 + 0.3) % 1) b = 0.9 * ((int(str_bit_reversed_n[2::3], 2) / 2.0 ** 5 + 0.3) % 1) return r, g, b def plot_results(csv_filename, out_file="", plot_log_y=False): """ Plots benchmark results. :param csv_filename: path to csv file containing results to plot :param out_file: path to image file to store figure into. If it equals to "window" opens it in an interactive window. """ import pandas import numpy import matplotlib if out_file != "window": matplotlib.use("Agg") import matplotlib.pyplot as plt with open(csv_filename) as f: # google benchmark writes some non-csv data at beginning for line in iter(f.readline, ""): if line.startswith("name,iterations"): f.seek(f.tell() - len(line) - 1, os.SEEK_SET) break data = pandas.read_csv(f) timing_data = pandas.concat( [data["name"].str.split("/", expand=True).iloc[:, :2], data["real_time"]], axis=1, ) timing_data.columns = ["signatures", "sizes", "times"] timing_data.loc[:, "sizes"] = timing_data["sizes"].astype(int) timing_data.loc[:, "times"] /= 1000 # convert to microseconds fig, ax = plt.subplots(figsize=(10, 10)) fig.set_tight_layout(True) ax.set_xscale("log") if plot_log_y: ax.set_yscale("log") ax.set_xlabel("size") ax.set_ylabel("time[us]") for n, (signature, sub_data) in enumerate(timing_data.groupby("signatures")): ax.plot( sub_data["sizes"], sub_data["times"], "x", color=pick_color(n), label="_nolegend_", ) avg_sig_times = ( sub_data.groupby(by="sizes")["times"] .median() .reset_index() .sort_values(by="sizes") ) ax.plot( avg_sig_times["sizes"], avg_sig_times["times"], label=signature, color=pick_color(n), ) [ spine.set_visible(False) for loc, spine in ax.spines.items() if loc in ["top", "right", "left", "bottom"] ] ax.minorticks_off() ax.grid() ax.legend() if out_file == "window": plt.show() else: fig.savefig(out_file, bbox_inches="tight", dpi=300) def plot_compare(csv_filename, reference_csv_filename, out_file="", plot_log_y=False): """ Plots benchmark speedup compared to reference results. :param csv_filename: path to csv file containing results to plot :param reference_csv_filename: path to csv file containing reference results to plot :param out_file: path to image file to store figure into. If it equals to "window" opens it in an interactive window. """ import pandas, numpy, matplotlib if out_file != "window": matplotlib.use("Agg") import matplotlib.pyplot as plt with open(csv_filename) as f: # google benchmark writes some non-csv data at beginning for line in iter(f.readline, ""): if line.startswith("name,iterations"): f.seek(f.tell() - len(line) - 1, os.SEEK_SET) break data = pandas.read_csv(f) with open(reference_csv_filename) as f: # google benchmark writes some non-csv data at beginning for line in iter(f.readline, ""): if line.startswith("name,iterations"): f.seek(f.tell() - len(line) - 1, os.SEEK_SET) break reference_data = pandas.read_csv(f) timing_data = pandas.concat( [data["name"].str.split("/", expand=True).iloc[:, :2], data["real_time"]], axis=1, ) reference_timing_data = pandas.concat( [ reference_data["name"].str.split("/", expand=True).iloc[:, :2], reference_data["real_time"], ], axis=1, ) timing_data.columns = reference_timing_data.columns = [ "signatures", "sizes", "times", ] same_in_last_selector = reference_timing_data["signatures"].isin( timing_data["signatures"] ) reference_timing_data = reference_timing_data.loc[same_in_last_selector, :] assert (reference_timing_data["signatures"] == timing_data["signatures"]).all() assert (reference_timing_data["sizes"] == timing_data["sizes"]).all() timing_data["speedup"] = reference_timing_data["times"] / timing_data["times"] timing_data["sizes"] = timing_data["sizes"].astype(int) fig, ax = plt.subplots(figsize=(10, 10)) fig.set_tight_layout(True) ax.set_xscale("log") if plot_log_y: ax.set_yscale("log") ax.set_xlabel("size") ax.set_ylabel("speedup") for n, (signature, sub_data) in enumerate(timing_data.groupby("signatures")): ax.plot( sub_data["sizes"], sub_data["speedup"], "x", color=pick_color(n), label="_nolegend_", ) avg_sig_speedups = ( sub_data.groupby(by="sizes")["speedup"] .median() .reset_index() .sort_values(by="sizes") ) ax.plot( avg_sig_speedups["sizes"], avg_sig_speedups["speedup"], label=signature, color=pick_color(n), ) plt.plot([1, max(timing_data["sizes"])], [1, 1], "--", color="gray") [ spine.set_visible(False) for loc, spine in ax.spines.items() if loc in ["top", "right", "left", "bottom"] ] ax.minorticks_off() ax.grid() ax.legend() if out_file == "window": plt.show() else: fig.savefig(out_file, bbox_inches="tight", dpi=300) def benchmark( functions_or_sigs, cpp_filename="benchmark.cpp", overloads=("Prim", "Rev"), multiplier_param=None, max_size_param=None, max_dim=3, n_repeats=1, skip_similar_signatures=False, csv_out_file=None, opencl=False, varmat=False, ): """ Generates benchmark code, compiles it and runs the benchmark. :param functions_or_sigs: List of function names and/or signatures to benchmark :param cpp_filename: filename of cpp file to use :param overloads: Which overloads to benchmark :param multiplier_param: Multiplyer, by which to increase argument size. :param max_size_param: Maximum argument size. :param max_dim: Maximum number of argument dimensions to benchmark. Signatures with any argument with larger number of dimensions are skipped." :param n_repeats: Number of times to repeat each benchmark. :param skip_similar_signatures: Whether to skip similar signatures. Two signatures are similar if they difffer only in similar vector types, which are vector, row_vector and real[]. :param csv_out_file: Filename of the csv file to store benchmark results in. """ all_signatures = get_signatures() functions, signatures = handle_function_list(functions_or_sigs) functions = set(functions) signatures = set(signatures) remaining_functions = set(functions) parsed_signatures = [] ref_signatures = set() for signature in all_signatures: return_type, function_name, stan_args = parse_signature(signature) reference_args = tuple(reference_vector_argument(i) for i in stan_args) if ( skip_similar_signatures and (function_name, reference_args) in ref_signatures ): continue if (signature in signatures) or (function_name in functions): parsed_signatures.append([return_type, function_name, stan_args]) remaining_functions.discard(function_name) ref_signatures.add((function_name, reference_args)) for signature in signatures: return_type, function_name, stan_args = parse_signature(signature) reference_args = tuple(reference_vector_argument(i) for i in stan_args) if ( skip_similar_signatures and (function_name, reference_args) in ref_signatures ): continue ref_signatures.add((function_name, reference_args)) parsed_signatures.append([return_type, function_name, stan_args]) remaining_functions.discard(function_name) if remaining_functions: raise NameError( "Functions not found: " + ", ".join(sorted(remaining_functions)) ) result = "" max_args_with_max_dimm = 0 default_max_size = 1024 * 1024 * 16 for return_type, function_name, stan_args in parsed_signatures: dimm = 0 args_with_max_dimm = 0 for arg in stan_args: arg_dimm = 0 if "vector" in arg: arg_dimm = 1 if "matrix" in arg: arg_dimm = 2 if "[" in arg: arg_dimm += len(arg.split("[")[1]) if arg_dimm == dimm: args_with_max_dimm += 1 elif arg_dimm > dimm: dimm = arg_dimm args_with_max_dimm = 1 if dimm > max_dim: continue max_args_with_max_dimm = max(max_args_with_max_dimm, args_with_max_dimm) if max_size_param is None: if dimm == 0: # signature with only scalar arguments max_size = 1 else: max_size = default_max_size max_size = int(max_size ** (1.0 / dimm)) else: max_size = max_size_param if multiplier_param is None: multiplier = 4 if dimm >= 2: multiplier = 2 else: multiplier = multiplier_param cpp_arg_templates = [] overload_opts = [] for n, stan_arg in enumerate(stan_args): cpp_arg_template = get_cpp_type(stan_arg) arg_overload_opts = ["Prim"] if "SCALAR" in cpp_arg_template and not ( function_name in non_differentiable_args and n in non_differentiable_args[function_name] ): arg_overload_opts = overloads cpp_arg_templates.append(cpp_arg_template) overload_opts.append(arg_overload_opts) for arg_overloads in itertools.product(*overload_opts): # generate one benchmark benchmark_name = function_name setup = "" var_conversions = "" code = " auto res = stan::math::eval(stan::math::{}(".format( function_name ) for ( n, (arg_overload, cpp_arg_template, stan_arg), ) in enumerate(zip(arg_overloads, cpp_arg_templates, stan_args)): if stan_arg.endswith("]"): stan_arg2, vec = stan_arg.split("[") benchmark_name += ( "_" + arg_overload + "_" + stan_arg2 + str(len(vec)) ) else: benchmark_name += "_" + arg_overload + "_" + stan_arg scalar = overload_scalar[arg_overload] arg_type = cpp_arg_template.replace("SCALAR", scalar) var_name = "arg" + str(n) make_arg_function = "make_arg" value = 0.4 if function_name in special_arg_values: if isinstance(special_arg_values[function_name][n], str): make_arg_function = special_arg_values[function_name][n] elif isinstance( special_arg_values[function_name][n], numbers.Number ): value = special_arg_values[function_name][n] if scalar == "double": setup += ( " {} {} = stan::test::{}<{}>({}, state.range(0));\n".format( arg_type, var_name, make_arg_function, arg_type, value, ) ) if opencl == "base": setup += " auto {} = stan::math::to_matrix_cl({});\n".format( var_name + "_cl", var_name ) var_name += "_cl" elif varmat == "base" and arg_overload == "Rev": setup += " auto {} = stan::math::to_var_value({});\n".format( var_name + "_varmat", var_name ) var_name += "_varmat" else: var_conversions += ( " {} {} = stan::test::{}<{}>({}, state.range(0));\n".format( arg_type, var_name, make_arg_function, arg_type, value, ) ) if opencl == "base": var_conversions += ( " auto {} = stan::math::to_matrix_cl({});\n".format( var_name + "_cl", var_name ) ) var_name += "_cl" elif varmat == "base" and arg_overload == "Rev": var_conversions += ( " auto {} = stan::math::to_var_value({});\n".format( var_name + "_varmat", var_name ) ) var_name += "_varmat" if opencl == "copy" and stan_arg not in ("int", "real"): code += "stan::math::to_matrix_cl({}), ".format(var_name) elif ( varmat == "copy" and stan_arg not in ("int", "real") and arg_overload == "Rev" ): code += "stan::math::to_var_value({}), ".format(var_name) else: code += var_name + ", " if opencl == "base": var_conversions += " stan::math::opencl_context.queue().finish();\n" code = code[:-2] + "));\n" if "Rev" in arg_overloads: code += " stan::math::grad();\n" result += BENCHMARK_TEMPLATE.format( benchmark_name=benchmark_name, setup=setup, var_conversions=var_conversions, code=code, multi=multiplier, max_size=max_size, ) cpp_filepath = os.path.join(WORKING_FOLDER, cpp_filename) with open(cpp_filepath, "w") as f: f.write("#include <benchmark/benchmark.h>\n") f.write("#include <test/expressions/expression_test_helpers.hpp>\n\n") f.write(result) if "Rev" in overloads: # estimate the amount of arena memory the benchmarks will need DOUBLE_SIZE = 8 N_ARRAYS = 4 # vals, adjoints, pointers + 1 for anything else f.write( CUSTOM_MAIN.format( (max_size_param or default_max_size) * DOUBLE_SIZE * N_ARRAYS * (max_args_with_max_dimm + 1) ) ) else: f.write("BENCHMARK_MAIN();") exe_filepath = cpp_filepath.replace(".cpp", exe_extension) build(exe_filepath) run_benchmark(exe_filepath, n_repeats, csv_out_file) def main( functions_or_sigs, cpp_filename="benchmark.cpp", overloads=("Prim", "Rev"), multiplier_param=None, max_size_param=None, max_dim=3, n_repeats=1, skip_similar_signatures=False, csv_out_file=None, opencl=False, varmat=False, plot=False, plot_log_y=False, plot_speedup=False, plot_reference=None, ): """ Generates benchmark code, compiles it and runs the benchmark. Optionally plots the results. :param functions_or_sigs: List of function names and/or signatures to benchmark :param cpp_filename: filename of cpp file to use :param overloads: Which overloads to benchmark :param multiplier_param: Multiplyer, by which to increase argument size. :param max_size_param: Maximum argument size. :param max_dim: Maximum number of argument dimensions to benchmark. Signatures with any argument with larger number of dimensions are skipped." :param n_repeats: Number of times to repeat each benchmark. :param skip_similar_signatures: Whether to skip similar signatures. Two signatures are similar if they difffer only in similar vector types, which are vector, row_vector and real[]. :param csv_out_file: Filename of the csv file to store benchmark results in. :param plot: Filename of bmp or csv fle to store plot into. If filename is empty, opens a window with graph. :param plot_log_y: Use logarithmic y axis for plotting :param plot_speedup: plot speedup of OpenCL or varmat overloads compared to CPU ones """ if plot and csv_out_file is None: csv_out_file = ".benchmark.csv" if plot_speedup and (opencl or varmat): if opencl: special = "_cl" else: special = "_varmat" opencl_csv_out_file = csv_out_file + special if "." in csv_out_file: base, ext = csv_out_file.rsplit(".", 1) opencl_csv_out_file = base + special + "." + ext benchmark( functions_or_sigs, cpp_filename, overloads, multiplier_param, max_size_param, max_dim, n_repeats, skip_similar_signatures, csv_out_file, False, False, ) benchmark( functions_or_sigs, cpp_filename, overloads, multiplier_param, max_size_param, max_dim, n_repeats, skip_similar_signatures, opencl_csv_out_file, opencl, varmat, ) plot_compare(opencl_csv_out_file, csv_out_file, plot) else: benchmark( functions_or_sigs, cpp_filename, overloads, multiplier_param, max_size_param, max_dim, n_repeats, skip_similar_signatures, csv_out_file, opencl, varmat, ) if plot_reference: plot_compare(csv_out_file, plot_reference, plot, plot_log_y) elif plot: plot_results(csv_out_file, plot, plot_log_y) class FullErrorMsgParser(ArgumentParser): """ Modified ArgumentParser that prints full error message on any error. """ def error(self, message): sys.stderr.write("error: %s\n" % message) self.print_help() sys.exit(2) def processCLIArgs(): """ Define and process the command line interface to the benchmark.py script. """ parser = FullErrorMsgParser( description="Generate and run_command benchmarks.", formatter_class=ArgumentDefaultsHelpFormatter, ) parser.add_argument( "functions", nargs="+", type=str, default=[], help="Signatures and/or function names to benchmark.", ) parser.add_argument( "--overloads", nargs="+", type=str, default=["Prim", "Rev"], help="Which overload combinations to benchmark. Possible values: Prim, Rev, Fwd, Mix. Defaults to Prim and Rev.", ) parser.add_argument( "--multiplier", type=int, default=None, help="Multiplyer, by which to increase argument size. Defaults to 4 for functions with " "1-dimensional arguments and 2 for other functions.", ) parser.add_argument( "--max_size", type=int, default=None, help="Maximum argument size. Defaults to (16000000)**(1/dimm), where dimm is the largest " "number of dimensions of arguments.", ) parser.add_argument( "--max_dim", type=int, default=3, help="Maximum number of argument dimensions to benchmark. Signatures with any argument with " "larger number of dimensions are skipped.", ) parser.add_argument( "--cpp", metavar="filename", type=str, default="benchmark.cpp", help="Filename of the cpp file to generate.", ) parser.add_argument( "--repeats", metavar="N", type=int, default=1, help="Number of times to repeat each benchmark.", ) parser.add_argument( "--csv", metavar="filename", type=str, default=None, help="Filename of the csv file to store benchmark results in. By default does not store results.", ) parser.add_argument( "--plot", metavar="filename", type=str, default=False, help="Filename store plotted graph into. If filename equals to 'window', opens a window with the graph." " Plotting requires matplotlib and pandas libraries. Default: no plotting.", ) parser.add_argument( "--plot_log_y", default=False, action="store_true", help="Use logarithmic y axis when plotting.", ) parser.add_argument( "--opencl", metavar="setting", type=str, default=False, help="Benchmark OpenCL overloads. Possible values: " "base - benchmark just the execution time, " "copy - include argument copying time", ) parser.add_argument( "--varmat", metavar="setting", type=str, default=False, help="Benchmark varmat overloads. Possible values: " "base - benchmark just the execution time, " "copy - include argument copying time", ) parser.add_argument( "--plot_speedup", default=False, action="store_true", help="Plots speedup of OpenCL or varmat overloads compared to Eigen matvar ones. Can only be specified together " "with both --plot and either --opencl or --varmat. Cannot be specified together with --plot_reference.", ) parser.add_argument( "--plot_reference", metavar="filename", type=str, default=None, help="Specify filename of reference run csv output. Plots speedup of this run compared to the reference. " "Reference run must have all parameters the same as this one, except possibly --opencl, output files and " "plotting parameters. Can only be specified together with --plot. Cannot be specified together with " "--plot_cl_speedup.", ) parser.add_argument( "--skip_similar_signatures", default=False, action="store_true", help="Skip similar signatures. Two signatures are similar if they" "difffer only in similar vector types, which are vector, row_vector and real[].", ) args = parser.parse_args() assert not (args.opencl and args.varmat), ValueError( "--opencl and --varmat cannot be specified at the same time!" ) if args.plot_reference or args.plot_speedup or args.plot_log_y: assert args.plot, ValueError( "--plot is required if you specify any of --plot_reference, --plot_speedup, --plot_log_y!" ) main( functions_or_sigs=args.functions, cpp_filename=args.cpp, overloads=args.overloads, multiplier_param=args.multiplier, max_size_param=args.max_size, max_dim=args.max_dim, csv_out_file=args.csv, n_repeats=args.repeats, skip_similar_signatures=args.skip_similar_signatures, plot=args.plot, plot_log_y=args.plot_log_y, opencl=args.opencl, plot_speedup=args.plot_speedup, plot_reference=args.plot_reference, varmat=args.varmat, ) if __name__ == "__main__": processCLIArgs()
the-stack_0_26861
import cv2 import numpy as np bgr = cv2.imread('files/gti.jpeg') C1 = bgr[:,:,0] C2 = bgr[:,:,1] C3 = bgr[:,:,2] cv2.imshow('BGR', np.hstack([C1, C2, C3])) cv2.waitKey(0) cv2.destroyAllWindows()
the-stack_0_26862
#!/usr/bin/python3 # this script will update the versions in packages and innosetup installer files to match that in config.h import plistlib, os, datetime, fileinput, glob, sys, string scriptpath = os.path.dirname(os.path.realpath(__file__)) projectpath = os.path.abspath(os.path.join(scriptpath, os.pardir)) IPLUG2_ROOT = "../../.." sys.path.insert(0, os.path.join(os.getcwd(), IPLUG2_ROOT + '/Scripts')) from parse_config import parse_config def replacestrs(filename, s, r): files = glob.glob(filename) for line in fileinput.input(files,inplace=1): string.find(line, s) line = line.replace(s, r) sys.stdout.write(line) def main(): demo = 0 if len(sys.argv) != 2: print("Usage: update_installer_version.py demo(0 or 1)") sys.exit(1) else: demo=int(sys.argv[1]) config = parse_config(projectpath) # MAC INSTALLER print("Updating Mac Installer version info...") plistpath = projectpath + "/installer/" + config['BUNDLE_NAME'] + ".pkgproj" with open(plistpath, 'rb') as fp: installer = plistlib.load(fp) # range = number of items in the installer (VST 2, VST 3, app, audiounit, aax) for x in range(0,5): installer['PACKAGES'][x]['PACKAGE_SETTINGS']['VERSION'] = config['FULL_VER_STR'] if demo: installer['PROJECT']['PROJECT_PRESENTATION']['TITLE']['LOCALIZATIONS'][0]['VALUE'] = config['BUNDLE_NAME'] + " Demo" installer['PROJECT']['PROJECT_PRESENTATION']['INTRODUCTION']['LOCALIZATIONS'][0]['VALUE']['PATH'] = "intro-demo.rtf" else: installer['PROJECT']['PROJECT_PRESENTATION']['TITLE']['LOCALIZATIONS'][0]['VALUE'] = config['BUNDLE_NAME'] installer['PROJECT']['PROJECT_PRESENTATION']['INTRODUCTION']['LOCALIZATIONS'][0]['VALUE']['PATH'] = "intro.rtf" with open(plistpath, 'wb') as fp: plistlib.dump(installer, fp) # replacestrs(plistpath, "//Apple//", "//Apple Computer//") # WIN INSTALLER print("Updating Windows Installer version info...") for line in fileinput.input(projectpath + "/installer/" + config['BUNDLE_NAME'] + ".iss",inplace=1): if "AppVersion" in line: line="AppVersion=" + config['FULL_VER_STR'] + "\n" if "OutputBaseFilename" in line: if demo: line="OutputBaseFilename=IPlugConvoEngine Demo Installer\n" else: line="OutputBaseFilename=IPlugConvoEngine Installer\n" if 'Source: "readme' in line: if demo: line='Source: "readme-win-demo.rtf"; DestDir: "{app}"; DestName: "readme.rtf"; Flags: isreadme\n' else: line='Source: "readme-win.rtf"; DestDir: "{app}"; DestName: "readme.rtf"; Flags: isreadme\n' if "WelcomeLabel1" in line: if demo: line="WelcomeLabel1=Welcome to the IPlugConvoEngine Demo installer\n" else: line="WelcomeLabel1=Welcome to the IPlugConvoEngine installer\n" if "SetupWindowTitle" in line: if demo: line="SetupWindowTitle=IPlugConvoEngine Demo installer\n" else: line="SetupWindowTitle=IPlugConvoEngine installer\n" sys.stdout.write(line) if __name__ == '__main__': main()
the-stack_0_26863
import asyncio import copy import csv import math import queue import threading import uuid import warnings from datetime import datetime from typing import List, Optional, Union, Callable, Coroutine, Iterable import pyarrow.parquet as pq import pandas import pytz from .dtypes import _termination_obj, Event, legal_time_units from .flow import Flow, Complete from .utils import url_to_file_system, drop_reserved_columns, find_filters class AwaitableResult: """Future result of a computation. Calling await_result() will return with the result once the computation is completed.""" def __init__(self, on_error: Optional[Callable[[], None]] = None): self._on_error = on_error self._q = queue.Queue(1) self._completed = False def await_result(self): """Returns the result, once the computation is completed""" result = self._q.get() if isinstance(result, BaseException): if self._on_error: self._on_error() raise result return result def _set_result(self, element): if not self._completed: self._completed = True self._q.put(element) def _set_error(self, ex): self._set_result(ex) def _convert_to_datetime(obj, time_format: Optional[str] = None): if isinstance(obj, datetime): return obj elif isinstance(obj, float) or isinstance(obj, int): return datetime.fromtimestamp(obj, tz=pytz.utc) elif isinstance(obj, str): if time_format is None: return datetime.fromisoformat(obj) else: return datetime.strptime(obj, time_format) else: raise ValueError(f"Could not parse '{obj}' (of type {type(obj)}) as a time.") class FlowControllerBase: def __init__(self, key_field: Optional[Union[str, List[str]]], time_field: Optional[str], time_format: Optional[str]): self._key_field = key_field self._time_field = time_field self._time_format = time_format self._current_uuid_base = None self._current_uuid_count = 0 def _get_uuid(self): if not self._current_uuid_base or self._current_uuid_count == 1024: self._current_uuid_base = uuid.uuid4().hex self._current_uuid_count = 0 result = f'{self._current_uuid_base}-{self._current_uuid_count:04}' self._current_uuid_count += 1 return result def _build_event(self, element, key, event_time): body = element element_is_event = hasattr(element, 'id') if element_is_event: body = element.body if not key and self._key_field: if isinstance(self._key_field, str): key = body[self._key_field] else: key = [] for field in self._key_field: key.append(body[field]) if not event_time and self._time_field: event_time = _convert_to_datetime(body[self._time_field], self._time_format) body[self._time_field] = event_time if element_is_event: if key: element.key = key if event_time: element.time = event_time return element else: return Event(body, id=self._get_uuid(), key=key, time=event_time) class FlowController(FlowControllerBase): """Used to emit events into the associated flow, terminate the flow, and await the flow's termination. To be used from a synchronous context. """ def __init__(self, emit_fn, await_termination_fn, return_awaitable_result, key_field: Optional[str] = None, time_field: Optional[str] = None, time_format: Optional[str] = None): super().__init__(key_field, time_field, time_format) self._emit_fn = emit_fn self._await_termination_fn = await_termination_fn self._return_awaitable_result = return_awaitable_result def emit(self, element: object, key: Optional[Union[str, List[str]]] = None, event_time: Optional[datetime] = None, return_awaitable_result: Optional[bool] = None): """Emits an event into the associated flow. :param element: The event data, or payload. To set metadata as well, pass an Event object. :param key: The event key(s) (optional) #add to async :param event_time: The event time (default to current time, UTC). :param return_awaitable_result: Deprecated! An awaitable result object will be returned if a Complete step appears in the flow. :returns: AsyncAwaitableResult if a Complete appears in the flow. None otherwise. """ if return_awaitable_result is not None: warnings.warn('return_awaitable_result is deprecated. An awaitable result object will be returned if a Complete step appears ' 'in the flow.', DeprecationWarning) event = self._build_event(element, key, event_time) awaitable_result = None if self._return_awaitable_result: awaitable_result = AwaitableResult(self.terminate) event._awaitable_result = awaitable_result self._emit_fn(event) return awaitable_result def terminate(self): """Terminates the associated flow.""" self._emit_fn(_termination_obj) def await_termination(self): """Awaits the termination of the flow. To be called after terminate. Returns the termination result of the flow (if any).""" return self._await_termination_fn() class FlowAwaiter: """Future termination result of a flow. Calling await_termination() will wait for the flow to terminate and return its termination result.""" def __init__(self, await_termination_fn): self._await_termination_fn = await_termination_fn def await_termination(self): """"waits for the flow to terminate and returns the result""" return self._await_termination_fn() class SyncEmitSource(Flow): """Synchronous entry point into a flow. Produces a FlowController when run, for use from inside a synchronous context. See AsyncEmitSource for use from inside an async context. :param buffer_size: size of the incoming event buffer. Defaults to 1024. :param key_field: Field to extract and use as the key. Optional. :param time_field: Field to extract and use as the time. Optional. :param time_format: Format of the event time. Needed when a nonstandard string timestamp is used (i.e. not ISO or epoch). Optional. :param name: Name of this step, as it should appear in logs. Defaults to class name (SyncEmitSource). :type name: string for additional params, see documentation of :class:`storey.flow.Flow` """ _legal_first_step = True def __init__(self, buffer_size: Optional[int] = None, key_field: Union[list, str, None] = None, time_field: Optional[str] = None, time_format: Optional[str] = None, **kwargs): if buffer_size is None: buffer_size = 1024 else: kwargs['buffer_size'] = buffer_size if key_field is not None: kwargs['key_field'] = key_field super().__init__(**kwargs) if buffer_size <= 0: raise ValueError('Buffer size must be positive') self._q = queue.Queue(buffer_size) self._key_field = key_field self._time_field = time_field self._time_format = time_format self._termination_q = queue.Queue(1) self._ex = None self._closeables = [] async def _run_loop(self): loop = asyncio.get_running_loop() self._termination_future = asyncio.get_running_loop().create_future() while True: event = await loop.run_in_executor(None, self._q.get) try: termination_result = await self._do_downstream(event) if event is _termination_obj: self._termination_future.set_result(termination_result) except BaseException as ex: if event is not _termination_obj and event._awaitable_result: event._awaitable_result._set_error(ex) self._ex = ex if not self._q.empty(): event = self._q.get() if event is not _termination_obj and event._awaitable_result: event._awaitable_result._set_error(ex) self._termination_future.set_result(None) break if event is _termination_obj: break for closeable in self._closeables: await closeable.close() def _loop_thread_main(self): asyncio.run(self._run_loop()) self._termination_q.put(self._ex) def _raise_on_error(self, ex): if ex: if self.verbose: raise type(self._ex)('Flow execution terminated') from self._ex raise self._ex def _emit(self, event): if event is not _termination_obj: self._raise_on_error(self._ex) self._q.put(event) if event is not _termination_obj: self._raise_on_error(self._ex) def run(self): """Starts the flow""" self._closeables = super().run() thread = threading.Thread(target=self._loop_thread_main) thread.start() def raise_error_or_return_termination_result(): self._raise_on_error(self._termination_q.get()) return self._termination_future.result() has_complete = self._check_step_in_flow(Complete) return FlowController(self._emit, raise_error_or_return_termination_result, has_complete, self._key_field, self._time_field, self._time_format) class AsyncAwaitableResult: """Future result of a computation. Calling await_result() will return with the result once the computation is completed. Same as AwaitableResult but for an async context.""" def __init__(self, on_error: Optional[Callable[[BaseException], Coroutine]] = None): self._on_error = on_error self._q = asyncio.Queue(1) self._completed = False async def await_result(self): """returns the result of the computation, once the computation is complete""" result = await self._q.get() if isinstance(result, BaseException): if self._on_error: await self._on_error() raise result return result async def _set_result(self, element): if not self._completed: self._completed = True await self._q.put(element) async def _set_error(self, ex): await self._set_result(ex) class AsyncFlowController(FlowControllerBase): """ Used to emit events into the associated flow, terminate the flow, and await the flow's termination. To be used from inside an async def. """ def __init__(self, emit_fn, loop_task, await_result, key_field: Optional[str] = None, time_field: Optional[str] = None, time_format: Optional[str] = None): super().__init__(key_field, time_field, time_format) self._emit_fn = emit_fn self._loop_task = loop_task self._key_field = key_field self._time_field = time_field self._time_format = time_format self._await_result = await_result async def emit(self, element: object, key: Optional[Union[str, List[str]]] = None, event_time: Optional[datetime] = None, await_result: Optional[bool] = None) -> object: """Emits an event into the associated flow. :param element: The event data, or payload. To set metadata as well, pass an Event object. :param key: The event key(s) (optional) :param event_time: The event time (default to current time, UTC). :param await_result: Deprecated. Will await a result if a Complete step appears in the flow. :returns: The result received from the flow if a Complete step appears in the flow. None otherwise. """ if await_result is not None: warnings.warn('await_result is deprecated. An awaitable result object will be returned if a Complete step appears ' 'in the flow.', DeprecationWarning) event = self._build_event(element, key, event_time) awaitable = None if self._await_result: awaitable = AsyncAwaitableResult(self.terminate) event._awaitable_result = awaitable await self._emit_fn(event) if self._await_result: result = await awaitable.await_result() if isinstance(result, BaseException): raise result return result async def terminate(self): """Terminates the associated flow.""" await self._emit_fn(_termination_obj) async def await_termination(self): """Awaits the termination of the flow. To be called after terminate. Returns the termination result of the flow (if any).""" return await self._loop_task class AsyncEmitSource(Flow): """ Asynchronous entry point into a flow. Produces an AsyncFlowController when run, for use from inside an async def. See SyncEmitSource for use from inside a synchronous context. :param buffer_size: size of the incoming event buffer. Defaults to 1024. :param name: Name of this step, as it should appear in logs. Defaults to class name (AsyncEmitSource). :type name: string :param time_field: Field to extract and use as the time. Optional. :param time_format: Format of the event time. Needed when a nonstandard string timestamp is used (i.e. not ISO or epoch). Optional. for additional params, see documentation of :class:`~storey.flow.Flow` """ _legal_first_step = True def __init__(self, buffer_size: int = 1024, key_field: Union[list, str, None] = None, time_field: Optional[str] = None, time_format: Optional[str] = None, **kwargs): super().__init__(**kwargs) if buffer_size <= 0: raise ValueError('Buffer size must be positive') self._q = asyncio.Queue(buffer_size) self._key_field = key_field self._time_field = time_field self._time_format = time_format self._ex = None self._closeables = [] async def _run_loop(self): while True: event = await self._q.get() try: termination_result = await self._do_downstream(event) if event is _termination_obj: return termination_result except BaseException as ex: self._ex = ex if event is not _termination_obj and event._awaitable_result: awaitable = event._awaitable_result._set_error(ex) if awaitable: await awaitable if not self._q.empty(): await self._q.get() self._raise_on_error() finally: if event is _termination_obj or self._ex: for closeable in self._closeables: await closeable.close() def _raise_on_error(self): if self._ex: if self.verbose: raise type(self._ex)('Flow execution terminated') from self._ex raise self._ex async def _emit(self, event): if event is not _termination_obj: self._raise_on_error() await self._q.put(event) if event is not _termination_obj: self._raise_on_error() def run(self): """Starts the flow""" self._closeables = super().run() loop_task = asyncio.get_running_loop().create_task(self._run_loop()) has_complete = self._check_step_in_flow(Complete) return AsyncFlowController(self._emit, loop_task, has_complete, self._key_field, self._time_field) class _IterableSource(Flow): _legal_first_step = True def __init__(self, **kwargs): super().__init__(**kwargs) self._termination_q = queue.Queue(1) self._ex = None self._closeables = [] def _init(self): pass async def _run_loop(self): raise NotImplementedError() async def _async_loop_thread_main(self): try: self._termination_future = asyncio.get_running_loop().create_future() termination_result = await self._run_loop() self._termination_future.set_result(termination_result) except BaseException as ex: self._ex = ex self._termination_future.set_result(None) finally: for closeable in self._closeables: await closeable.close() def _loop_thread_main(self): asyncio.run(self._async_loop_thread_main()) self._termination_q.put(self._ex) def _raise_on_error(self, ex): if ex: if self.verbose: raise type(self._ex)('Flow execution terminated') from self._ex raise self._ex def run(self): self._closeables = super().run() self._init() thread = threading.Thread(target=self._loop_thread_main) thread.start() def raise_error_or_return_termination_result(): self._raise_on_error(self._termination_q.get()) return self._termination_future.result() return FlowAwaiter(raise_error_or_return_termination_result) async def run_async(self): self._closeables = super().run() return await self._run_loop() class CSVSource(_IterableSource): """ Reads CSV files as input source for a flow. :parameter paths: paths to CSV files :parameter header: whether CSV files have a header or not. Defaults to False. :parameter build_dict: whether to format each record produced from the input file as a dictionary (as opposed to a list). Default to False. :parameter key_field: the CSV field to be use as the key for events. May be an int (field index) or string (field name) if with_header is True. Defaults to None (no key). Can be a list of keys :parameter time_field: the CSV field to be parsed as the timestamp for events. May be an int (field index) or string (field name) if with_header is True. Defaults to None (no timestamp field). :parameter timestamp_format: timestamp format as defined in datetime.strptime(). Default to ISO-8601 as defined in datetime.fromisoformat(). :parameter type_inference: Whether to infer data types from the data (when True), or read all fields in as strings (when False). Defaults to True. for additional params, see documentation of :class:`~storey.flow.Flow` """ def __init__(self, paths: Union[List[str], str], header: bool = False, build_dict: bool = False, key_field: Union[int, str, List[int], List[str], None] = None, time_field: Union[int, str, None] = None, timestamp_format: Optional[str] = None, type_inference: bool = True, **kwargs): kwargs['paths'] = paths kwargs['header'] = header kwargs['build_dict'] = build_dict if key_field is not None: kwargs['key_field'] = key_field if time_field is not None: kwargs['time_field'] = time_field if timestamp_format is not None: kwargs['timestamp_format'] = timestamp_format kwargs['type_inference'] = type_inference super().__init__(**kwargs) if isinstance(paths, str): paths = [paths] self._paths = paths self._with_header = header self._build_dict = build_dict self._key_field = key_field self._time_field = time_field self._timestamp_format = timestamp_format self._type_inference = type_inference self._storage_options = kwargs.get('storage_options') if not header and isinstance(key_field, str): raise ValueError('key_field can only be set to an integer when with_header is false') if not header and isinstance(time_field, str): raise ValueError('time_field can only be set to an integer when with_header is false') def _init(self): self._event_buffer = queue.Queue(1024) self._types = [] self._none_columns = set() def _infer_type(self, value): lowercase = value.lower() if lowercase == 'true' or lowercase == 'false': return 'b' try: self._datetime_from_timestamp(value) return 't' except ValueError: pass try: int(value) return 'i' except ValueError: pass try: float(value) return 'f' except ValueError: pass if value == '': return 'n' return 's' def _parse_field(self, field, index): typ = self._types[index] if typ == 's': return field if typ == 'f': return float(field) if field != '' else math.nan if typ == 'i': return int(field) if field != '' else math.nan if typ == 'b': lowercase = field.lower() if lowercase == 'true': return True if lowercase == 'false': return False if lowercase == '': return None raise TypeError(f'Expected boolean, got {field}') if typ == 't': if field == '': return None return self._datetime_from_timestamp(field) if typ == 'n': return None raise TypeError(f'Unknown type: {typ}') def _datetime_from_timestamp(self, timestamp): if self._timestamp_format: return pandas.to_datetime(timestamp, format=self._timestamp_format).floor('u').to_pydatetime() else: return datetime.fromisoformat(timestamp) def _blocking_io_loop(self): try: for path in self._paths: fs, file_path = url_to_file_system(path, self._storage_options) with fs.open(file_path, mode='r') as f: header = None field_name_to_index = None if self._with_header: line = f.readline() header = next(csv.reader([line])) field_name_to_index = {} for i in range(len(header)): field_name_to_index[header[i]] = i for line in f: create_event = True parsed_line = next(csv.reader([line])) if self._type_inference: if not self._types: for index, field in enumerate(parsed_line): type_field = self._infer_type(field) self._types.append(type_field) if type_field == 'n': self._none_columns.add(index) else: for index in copy.copy(self._none_columns): type_field = self._infer_type(parsed_line[index]) if type_field != 'n': self._types[index] = type_field self._none_columns.remove(index) for i in range(len(parsed_line)): parsed_line[i] = self._parse_field(parsed_line[i], i) element = parsed_line key = None if header: if len(parsed_line) != len(header): raise ValueError( f'CSV line with {len(parsed_line)} fields did not match header with {len(header)} fields') if self._build_dict: element = {} for i in range(len(parsed_line)): element[header[i]] = parsed_line[i] if self._key_field: if isinstance(self._key_field, list): key = [] for single_key_field in self._key_field: if self._with_header and isinstance(single_key_field, str): single_key_field = field_name_to_index[single_key_field] if parsed_line[single_key_field] is None: create_event = False break key.append(parsed_line[single_key_field]) else: key_field = self._key_field if self._with_header and isinstance(key_field, str): key_field = field_name_to_index[key_field] key = parsed_line[key_field] if key is None: create_event = False if create_event: if self._time_field: time_field = self._time_field if self._with_header and isinstance(time_field, str): time_field = field_name_to_index[time_field] time_as_datetime = parsed_line[time_field] else: time_as_datetime = datetime.now() event = Event(element, key=key, time=time_as_datetime) self._event_buffer.put(event) else: if self.context: self.context.logger.error( f"For {parsed_line} value of key {key_field} is None" ) except BaseException as ex: self._event_buffer.put(ex) self._event_buffer.put(_termination_obj) def _get_event(self): event = self._event_buffer.get() if isinstance(event, BaseException): raise event return event async def _run_loop(self): asyncio.get_running_loop().run_in_executor(None, self._blocking_io_loop) def get_multiple(): events = [self._get_event()] while not self._event_buffer.empty() and len(events) < 128: events.append(self._get_event()) return events while True: events = await asyncio.get_running_loop().run_in_executor(None, get_multiple) for event in events: res = await self._do_downstream(event) if event is _termination_obj: return res class DataframeSource(_IterableSource): """Use pandas dataframe as input source for a flow. :param dfs: A pandas dataframe, or dataframes, to be used as input source for the flow. :param key_field: column to be used as key for events. can be list of columns :param time_field: column to be used as time for events. :param id_field: column to be used as ID for events. for additional params, see documentation of :class:`~storey.flow.Flow` """ def __init__(self, dfs: Union[pandas.DataFrame, Iterable[pandas.DataFrame]], key_field: Optional[Union[str, List[str]]] = None, time_field: Optional[str] = None, id_field: Optional[str] = None, **kwargs): if key_field is not None: kwargs['key_field'] = key_field if time_field is not None: kwargs['time_field'] = time_field if id_field is not None: kwargs['id_field'] = id_field super().__init__(**kwargs) if isinstance(dfs, pandas.DataFrame): dfs = [dfs] self._dfs = dfs self._key_field = key_field self._time_field = time_field self._id_field = id_field async def _run_loop(self): for df in self._dfs: for namedtuple in df.itertuples(): create_event = True body = namedtuple._asdict() index = body.pop('Index') if len(df.index.names) > 1: for i, index_column in enumerate(df.index.names): body[index_column] = index[i] elif df.index.names[0] is not None: body[df.index.names[0]] = index key = None if self._key_field: if isinstance(self._key_field, list): key = [] for key_field in self._key_field: if body[key_field] is None: create_event = False break key.append(body[key_field]) else: key = body[self._key_field] if key is None: create_event = False if create_event: time = None if self._time_field: time = body[self._time_field] id = None if self._id_field: id = body[self._id_field] event = Event(body, key=key, time=time, id=id) await self._do_downstream(event) else: if self.context: self.context.logger.error( f"For {body} value of key {key_field} is None" ) return await self._do_downstream(_termination_obj) class ParquetSource(DataframeSource): """Reads Parquet files as input source for a flow. :parameter paths: paths to Parquet files :parameter columns : list, default=None. If not None, only these columns will be read from the file. :parameter start_filter: datetime. If not None, the results will be filtered by partitions and 'filter_column' >= start_filter. Default is None :parameter end_filter: datetime. If not None, the results will be filtered by partitions 'filter_column' < end_filter. Default is None :parameter filter_column: Optional. if not None, the results will be filtered by this column and before and/or after """ def __init__(self, paths: Union[str, Iterable[str]], columns=None, start_filter: Optional[datetime] = None, end_filter: Optional[datetime] = None, filter_column: Optional[str] = None, **kwargs): if end_filter or start_filter: start_filter = datetime.min if start_filter is None else start_filter end_filter = datetime.max if end_filter is None else end_filter if filter_column is None: raise TypeError('Filter column is required when passing start/end filters') self._paths = paths if isinstance(paths, str): self._paths = [paths] self._columns = columns self._start_filter = start_filter self._end_filter = end_filter self._filter_column = filter_column self._storage_options = kwargs.get('storage_options') super().__init__([], **kwargs) def _read_filtered_parquet(self, path): fs, file_path = url_to_file_system(path, self._storage_options) dataset = pq.ParquetDataset(path, filesystem=fs) if dataset.partitions: partitions = dataset.partitions.partition_names partitions_time_attributes = [j for j in legal_time_units if j in partitions] else: partitions_time_attributes = [] filters = [] find_filters(partitions_time_attributes, self._start_filter, self._end_filter, filters, self._filter_column) return pandas.read_parquet(path, columns=self._columns, filters=filters, storage_options=self._storage_options) def _init(self): self._dfs = [] for path in self._paths: if self._start_filter or self._end_filter: df = self._read_filtered_parquet(path) else: df = pandas.read_parquet(path, columns=self._columns, storage_options=self._storage_options) drop_reserved_columns(df) self._dfs.append(df)
the-stack_0_26865
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import hmac import json import random import os import secrets import time from hashlib import sha1 from urllib.request import Request, urlopen def make_changes(num_changes): changes = [] # One week ago max_time = time.time() - 604800 head_commit = None for x in range(num_changes): change_id = secrets.token_hex(20) unix_timestamp = time.time() - random.randrange(0, 604800) change = { "id": change_id, "timestamp": datetime.datetime.fromtimestamp(unix_timestamp), } if unix_timestamp > max_time: max_time = unix_timestamp head_commit = change changes.append(change) event = {"head_commit": head_commit, "commits": changes} return event def make_issue(root_cause): event = { "issue": { "created_at": root_cause["timestamp"], "updated_at": datetime.datetime.now(), "closed_at": datetime.datetime.now(), "number": random.randrange(0, 1000), "labels": [{"name": "Incident"}], "body": "root cause: %s" % root_cause["id"], } } return event def send_mock_github_events(event_type, data): webhook_url = os.environ.get("WEBHOOK") data = json.dumps(data, default=str).encode() secret = os.environ.get("SECRET").encode() signature = hmac.new(secret, data, sha1) request = Request(webhook_url, data) request.add_header("X-Github-Event", event_type) request.add_header("X-Hub-Signature", "sha1=" + signature.hexdigest()) request.add_header("User-Agent", "GitHub-Hookshot/mock") request.add_header("Content-Type", "application/json") request.add_header("Mock", True) token = os.environ.get("TOKEN") if token: request.add_header("Authorization", f"Bearer {token}") response = urlopen(request) if response.getcode() == 204: return 1 else: return 0 def create_deploy_event(change): deployment = { "deployment_status": { "updated_at": change["timestamp"], "id": secrets.token_hex(20), "state": "success", }, "deployment": { "sha": change["id"], } } return deployment def generate_data(): num_success = 0 changes = make_changes(2) # Send individual changes data for c in changes["commits"]: curr_change = {"head_commit": c, "commits": [c]} num_success += send_mock_github_events("push", curr_change) # Send fully associated push event num_success += send_mock_github_events("push", changes) # Make and send a deployment deploy = create_deploy_event(changes["head_commit"]) num_success += send_mock_github_events("deployment_status", deploy) # 15% of deployments create incidents x = random.randrange(0, 100) if x < 15: issue = make_issue(changes["head_commit"]) num_success += send_mock_github_events("issues", issue) return num_success num_success = 0 for x in range(10): num_success += generate_data() print(f"{num_success} changes successfully sent to event-handler")
the-stack_0_26868
#!/usr/bin/env python3 import os import sys import signal import pygame import time import math from displayhatmini import DisplayHATMini print("""Display HAT Mini: Basic Pygame Demo""") if pygame.vernum < (2, 0, 0): print("Need PyGame >= 2.0.0:\n python3 -m pip install pygame --upgrade") sys.exit(1) def _exit(sig, frame): global running running = False print("\nExiting!...\n") def update_display(): display_hat.st7789.set_window() # Grab the pygame screen as a bytes object pixelbytes = pygame.transform.rotate(screen, 180).convert(16, 0).get_buffer() # Lazy (slow) byteswap: pixelbytes = bytearray(pixelbytes) pixelbytes[0::2], pixelbytes[1::2] = pixelbytes[1::2], pixelbytes[0::2] # Bypass the ST7789 PIL image RGB888->RGB565 conversion for i in range(0, len(pixelbytes), 4096): display_hat.st7789.data(pixelbytes[i:i + 4096]) display_hat = DisplayHATMini(None) os.putenv('SDL_VIDEODRIVER', 'dummy') pygame.display.init() # Need to init for .convert() to work screen = pygame.Surface((display_hat.WIDTH, display_hat.HEIGHT)) signal.signal(signal.SIGINT, _exit) running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False break if event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: running = False break # Clear the screen screen.fill((0, 0, 0)) box_w = display_hat.WIDTH // 3 box_h = display_hat.HEIGHT // 2 pygame.draw.rect(screen, (255, 0, 0), (0, 0, box_w, box_h)) pygame.draw.rect(screen, (0, 255, 0), (box_w, 0, box_w, box_h)) pygame.draw.rect(screen, (0, 0, 255), (box_w * 2, 0, box_w, box_h)) pygame.draw.rect(screen, (255, 255, 0), (0, box_h, box_w, box_h)) pygame.draw.rect(screen, (255, 0, 255), (box_w, box_h, box_w, box_h)) pygame.draw.rect(screen, (0, 255, 255), (box_w * 2, box_h, box_w, box_h)) r = 50 x = math.sin(time.time() * 2) * (display_hat.WIDTH - r) / 2 y = math.cos(time.time()) * (display_hat.HEIGHT - r) / 2 x += display_hat.WIDTH // 2 y += display_hat.HEIGHT // 2 pygame.draw.circle(screen, (0, 0, 0), (int(x), int(y)), r) update_display() pygame.quit() sys.exit(0)
the-stack_0_26869
# Check whether the original sequence org can be uniquely reconstructed from the sequences in seqs. # The org sequence is a permutation of the integers from 1 to n, with 1 ≤ n ≤ 10^4. # Reconstruction means building a shortest common supersequence of the sequences in seqs # (i.e., a shortest sequence so that all sequences in seqs are subsequences of it). # Determine whether there is only one sequence that can be reconstructed from seqs and it is the org sequence. # Example 1: # Input: # org: [1,2,3], seqs: [[1,2],[1,3]] # Output: # false # Explanation: # [1,2,3] is not the only one sequence that can be reconstructed, because [1,3,2] is also a valid sequence that can be reconstructed. # Example 2: # Input: # org: [1,2,3], seqs: [[1,2]] # Output: # false # Explanation: # The reconstructed sequence can only be [1,2]. # Example 3: # Input: # org: [1,2,3], seqs: [[1,2],[1,3],[2,3]] # Output: # true # Explanation: # The sequences [1,2], [1,3], and [2,3] can uniquely reconstruct the original sequence [1,2,3]. # Example 4: # Input: # org: [4,1,5,2,6,3], seqs: [[5,2,6,3],[4,1,5,2]] # Output: # true # UPDATE (2017/1/8): # The seqs parameter had been changed to a list of list of strings (instead of a 2d array of strings). # Please reload the code definition to get the latest changes. class Solution(object): def sequenceReconstruction(self, org, seqs): """ :type org: List[int] :type seqs: List[List[int]] :rtype: bool """ # https://blog.csdn.net/liuchenjane/article/details/52983666 # 先判断seqs里的每一个seq是否是org里的子序列, # 首先记载每个元素在org中的下标,如果子序列的元素中,后面元素的下标比前面的小,则不是子序列。 # 然后,对于判断由这些子序列是否可以重构原始的org。 # 后面的seqs中必须满足以下下条件,对于org中任意相邻的两个数x和y,在seqs中必定存在相邻的x和y来表示它们的相对次序。 # 否则,x和y的位置是可交换的,与题目中的唯一重构的要求相悖。 if not seqs or not org: return False idx = {} for i, c in enumerate(org): idx[c] = i # org: [1,2,3], seqs: [[1,2],[1,3],[2,3]] pair = {} for seq in seqs: for i in range(len(seq)): # 子序列中有org中未出现的字母 if seq[i] not in idx: return False # 子序列中相邻的字符顺序与org中不一致 if i > 0 and idx[seq[i-1]] >= idx[seq[i]]: return False # 子序列中相邻的字符顺序与org中一致 if i > 0 and idx[seq[i-1]]+1 == idx[seq[i]]: pair[idx[s[i-1]]] = 1 if seq and seq[-1] == org[-1]: pair[len(org)-1] = 1 for i in range(len(org)): # org中前后相邻的字母没有完全出现在子序列中 if i not in pair: return False return True