filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_26870
import pandas as pd import glob from dotenv import load_dotenv import os, sys sys.path.append( os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) ) from db import connect_to_db # USAGE: $ python populate_price_table.py <PATH_TO_FILES> args = sys.argv[1:] path = args[0] # Create database connection engine = connect_to_db() # Looping through all the timeframes directories timeframe_dirs = os.listdir(f"{path}") for timeframe in timeframe_dirs: # Removes '.DS_Store' in case the script is running in a mac computer if timeframe == ".DS_Store": timeframe_dirs.remove(".DS_Store") for timeframe in timeframe_dirs: os.chdir(f"{path}/{timeframe}") assets_files = glob.glob("*.csv") symbol_list = [s[:-4] for s in assets_files] # Looping through all the symbols and adding it to the price table for symbol in symbol_list: df = pd.read_csv(f"{path}/{timeframe}/{symbol}.csv")[ ["time", "open", "high", "low", "close", "real_volume"] ] df.rename( columns={"time": "datetime", "real_volume": "volume"}, inplace=True ) # Importing asset_id and timeframe_id from tables in PostgreSQL asset_id = pd.read_sql( f"SELECT id FROM asset WHERE symbol = '{symbol}';", engine ) if len(asset_id) == 0: query = f"INSERT INTO asset (symbol) VALUES ('{symbol}');" engine.execute(query) asset_id = pd.read_sql( f"SELECT id FROM asset WHERE symbol = '{symbol}';", engine ) # Creating the columns df["asset_id"] = int(asset_id["id"]) df["timeframe_id"] = f"{timeframe}" # Writing the SQL query to populate price table insert_init = """ INSERT INTO price (datetime, open, high, low, close, volume, asset_id, timeframe_id) VALUES """ values = ",".join( [ "('{}', '{}', '{}', '{}', '{}', '{}', '{}', '{}')".format( row["datetime"], row["open"], row["high"], row["low"], row["close"], row["volume"], row["asset_id"], row["timeframe_id"] ) for datetime, row in df.iterrows() ] ) insert_end = """ ON CONFLICT (datetime, asset_id, timeframe_id) DO UPDATE SET open = EXCLUDED.open, high = EXCLUDED.high, low = EXCLUDED.low, close = EXCLUDED.close, volume = EXCLUDED.volume; """ query = insert_init + values + insert_end engine.execute(query) print("Script Successfully Executed!")
the-stack_0_26872
import sqlite3 def create_connection(db_file): try: conn = sqlite3.connect(db_file) cursor = conn.cursor() print(sqlite3.version) return conn except sqlite3.Error as e: print(e) return e def display_weather_table(c): query = """ SELECT * FROM Weather; """ c.execute(query) rows = c.fetchall() for row in range(len(rows)): print(row, rows[row]) #CREATING THE TABLE "WEATHER" if __name__=="__main__": conn = create_connection("database.db") c = conn.cursor() create_weather_table = """ CREATE TABLE IF NOT EXISTS Weather( _id TEXT PRIMARY KEY, _index TEXT, _type TEXT, _score INTEGER, _location TEXT, timestamp TEXT, humidity FLOAT, temperature FLOAT, wind_desc TEXT, wind_direc TEXT, feels_like FLOAT ); """ c.execute(create_weather_table) c.close() conn.close()
the-stack_0_26873
""" sqlite_releases ~~~~~~~~~~~~~~~ Create a feed out of the SQLite release history pages at: * https://www.sqlite.org/changes.html * https://www.sqlite.org/chronology.html Also serves as an example of how to write custom parsers. This plugin needs additional dependencies, use the ``unstable-plugins`` extra to install them: .. code-block:: bash pip install reader[unstable-plugins] To load:: READER_PLUGIN='reader._plugins.sqlite_releases:init' \\ python -m reader serve """ import warnings from datetime import datetime from urllib.parse import urlparse from urllib.parse import urlunparse import bs4 from reader._parser import wrap_exceptions from reader._types import EntryData from reader._types import FeedData warnings.filterwarnings( 'ignore', message='No parser was explicitly specified', module='reader._plugins.sqlite_releases', ) FULL_URL = 'https://www.sqlite.org/changes.html' URLS = [FULL_URL, 'https://www.sqlite.org/chronology.html'] def extract_text(soup): for h3 in soup.select('body h3'): a_name = None for element, _ in zip(h3.previous_siblings, range(3)): if element.name == 'h3': break if element.name == 'a' and 'name' in element.attrs: a_name = element break content = [] last_a_name_index = None for i, element in enumerate(h3.next_siblings): if element.name == 'h3': break if element.name == 'a' and 'name' in element.attrs: last_a_name_index = i content.append(element) if last_a_name_index and len(content) - last_a_name_index <= 3: content = content[:last_a_name_index] yield h3.text, a_name['name'] if a_name else None, ''.join(map(str, content)) def make_entries(feed_url, url, soup): for title, fragment, content in extract_text(soup): try: updated = datetime.strptime(title.split()[0], '%Y-%m-%d') except (ValueError, IndexError): continue link = urlunparse(urlparse(url)._replace(fragment=fragment)) yield EntryData( feed_url=feed_url, id=title, updated=updated, title=title, link=link, summary=content, ) def make_feed(feed_url, url, soup): return FeedData(url=feed_url, title=soup.title and soup.title.text, link=url) def parse(url, file, headers): with wrap_exceptions(url, "while reading feed"): soup = bs4.BeautifulSoup(file) with wrap_exceptions(url, "while parsing page"): feed = make_feed(url, FULL_URL, soup) entries = list(make_entries(url, FULL_URL, soup)) feed = feed._replace(updated=max(e.updated for e in entries)) return feed, entries def init(reader): for url in URLS: reader._parser.mount_parser_by_url(url, parse)
the-stack_0_26874
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2020 Palo Alto Networks, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: prismacloud_alibaba_cloud_account short_description: Manage an Alibaba cloud account onboarded to Prisma Cloud. description: - Manage an Alibaba cloud account onboarded to Prisma Cloud. author: - Garfield Lee Freeman (@shinmog) version_added: "2.9" extends_documentation_fragment: - paloaltonetworks.prismacloud.fragments.state options: accountId: description: - Alibaba account ID. - Either the accountId or the name must be specified. groupIds: description: - List of account group IDs to which you are assigning this account. type: list name: description: - Name to be used for the account on the Prisma Cloud platform. - Must be unique. - Either the accountId or the name must be specified. ramArn: description: - Unique identifier for an Alibaba RAM role resource. enabled: description: - Whether or not the account is enabled. type: bool default: false ''' EXAMPLES = ''' - name: add alibaba accont prismacloud_alibaba_cloud_account: name: 'foo' ramArn: 'myRamArn' enabled: true ''' RETURN = ''' changed: description: if a change was necessary returned: success type: bool before: description: the config before this module is invoked returned: success type: complex after: description: the config after this module is invoked returned: success type: complex ''' from ansible.module_utils.basic import AnsibleModule from ansible_collections.paloaltonetworks.prismacloud.plugins.module_utils import errors from ansible_collections.paloaltonetworks.prismacloud.plugins.module_utils import prismacloud as pc def identify(client, name): listing = client.get(['cloud', 'name'], {'cloudType': 'alibaba_cloud'}) for x in listing: if x['name'] == name: return x['id'] def main(): module = AnsibleModule( argument_spec=dict( accountId=dict(), enabled=dict(type='bool', default=False), groupIds=dict(type='list'), name=dict(), ramArn=dict(), state=pc.state_spec(), ), required_one_of=[ ['accountId', 'name'], ], supports_check_mode=True, ) client = pc.PrismaCloudRequest(module) # Variables. obj = None results = {'changed': False} # Retrieve obj details. if module.params['accountId'] is not None: try: obj = client.get(['cloud', 'alibaba_cloud', module.params['accountId']]) except errors.ObjectNotFoundError: pass else: the_id = identify(client, module.params['name']) if the_id is not None: obj = client.get(['cloud', 'alibaba_cloud', the_id]) results['before'] = obj if module.params['state'] == 'present': fields = ['accountId', 'enabled', 'groupIds', 'name', 'ramArn'] req_obj = { 'accountId': '', 'groupIds': [], 'name': '', 'enabled': False, 'ramArn': '', } for field in fields: if module.params[field] is not None: req_obj[field] = module.params[field] if obj is None: results['changed'] = True if not module.check_mode: client.post(['cloud', 'alibaba_cloud'], req_obj) req_obj['accountId'] = identify(client, req_obj['name']) else: if not req_obj['accountId']: req_obj['accountId'] = obj['accountId'] for field in fields: if obj.get(field) != req_obj.get(field): results['changed'] = True if not module.check_mode: client.put(['cloud', 'alibaba_cloud', req_obj['accountId']], req_obj) break results['after'] = req_obj elif module.params['state'] == 'absent': results['after'] = None if obj is not None: results['changed'] = True if not module.check_mode: client.delete(['cloud', 'alibaba_cloud', obj['accountId']]) # Done. module.exit_json(**results) if __name__ == '__main__': main()
the-stack_0_26875
import io import os import re import sys from setuptools import setup, find_packages PATH_BASE = os.path.dirname(__file__) PACKAGE_DIR = PACKAGE_NAME = 'djsommo' def read_file(fpath): """Reads a file within package directories.""" with io.open(os.path.join(PATH_BASE, fpath)) as f: return f.read() def get_version(): """Returns version number, without module import (which can lead to ImportError if some dependencies are unavailable before install.""" contents = read_file(os.path.join(PACKAGE_DIR, '__init__.py')) version = re.search('VERSION = \(([^)]+)\)', contents) version = version.group(1).replace(', ', '.').strip() return version setup( name=PACKAGE_NAME, version=get_version(), url='http://github.com/jayvdb/' + PACKAGE_NAME, description='Reusable Django app to safely use non-core optional model Meta options', long_description=read_file('README.md'), long_description_content_type="text/markdown", license='MIT', author='John Mark Vandenberg', author_email='[email protected]', packages=find_packages(), zip_safe=True, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], )
the-stack_0_26876
import math from abc import abstractmethod import pycode_similar from diff_match_patch import diff_match_patch class Comparator: @abstractmethod def compare(self, a, b): pass class PycodeComparison(Comparator): def compare(self, a, b): res = pycode_similar.detect([a, b], diff_method=pycode_similar.UnifiedDiff) val = res[0][1][0].plagiarism_percent return val class DiffComparator(Comparator): def __init__(self, base=None) -> None: super().__init__() self.H = None if base is not None: self.H = set() for e in base: self.H.add(e) def filter(self, s): return [e for e in s if e not in self.H] def compare(self, a, b): if self.H is not None: a, b = self.filter(a), self.filter(b) dmp = diff_match_patch() dmp.Diff_Timeout = math.inf ret = dmp.diff_linesToChars("\n".join(a), "\n".join(b)) diff = dmp.diff_main(*ret) dmp.diff_charsToLines(diff, ret[2]) #dmp.diff_cleanupSemantic(diff) perc = 1 - len([e for e in diff if e[0] != 0]) / (len(a) + len(b)) #html = dmp.diff_prettyHtml(diff) #with open("test.html", "w") as f: # f.write(html) return perc
the-stack_0_26878
import pandas as pd dataset = pd.read_csv('https://storage.googleapis.com/dqlab-dataset/pythonTutorial/online_raw.csv') dataset.fillna(dataset.mean(), inplace = True) from sklearn.preprocessing import MinMaxScaler #Define MinMaxScaler as scaler scaler = MinMaxScaler() #list all the feature that need to be scaled scaling_column = ['Administrative', 'Administrative_Duration', 'Informational', 'Informational_Duration', 'ProductRelated', 'ProductRelated_Duration', 'BounceRates', 'ExitRates', 'PageValues'] #Apply fit_transfrom to scale selected feature dataset[scaling_column] = scaler.fit_transform(dataset[scaling_column]) #Cheking min and max value of the scaling_column print(dataset[scaling_column].describe().T[['min','max']])
the-stack_0_26879
#!/usr/bin/env python # -*- coding: utf-8 -*- # from __future__ import unicode_literals AUTHOR = 'Mark Feltner' SITENAME = "Mark Feltner's Website" SITENAME_SHORT = "Mark Feltner's Website" EMAIL = '[email protected]' SITEURL = '' DESCRIPTION = "The thoughts and writings of Mark James Feltner." THEME = 'theme/feltnerm' DEVELOP = True PATH = 'content' TIMEZONE = 'America/Chicago' READERS = { 'html': None } DEFAULT_LANG = 'en' # Feed generation is usually not desired when developing FEED_ALL_ATOM = None CATEGORY_FEED_ATOM = None TRANSLATION_FEED_ATOM = None AUTHOR_FEED_ATOM = None AUTHOR_FEED_RSS = None STATIC_PATHS = [ 'static/CNAME', 'static/robots.txt', 'static/hackers.txt', 'static/humans.txt' ] EXTRA_PATH_METADATA = { 'static/CNAME': { 'path': 'CNAME' }, 'static/robots.txt': { 'path': 'robots.txt' }, 'static/hackers.txt': { 'path': 'hackers.txt' }, 'static/humans.txt': { 'path': 'humans.txt' } } REPO_HOME = 'https://github.com/feltnerm/blog' TWITTER_USERNAME = 'feltnermj' GITHUB_USERNAME = 'feltnerm' LASTFM_USERNAME = 'plugitin' FACEBOOK_USERNAME = 'feltnerm' ANALYTICS = { 'GOOGLE': '' } DEFAULT_PAGINATION = 10 # Uncomment following line if you want document-relative URLs when developing #RELATIVE_URLS = True DIRECT_TEMPLATES = ['index', 'archives', 'tags'] ARTICLE_URL = 'blog/{date:%Y}/{date:%m}/{date:%d}/{slug}/' ARTICLE_SAVE_AS = 'blog/{date:%Y}/{date:%m}/{date:%d}/{slug}/index.html' ARTICLE_URL = 'blog/{date:%Y}/{date:%m}/{date:%d}/{slug}/' ARTICLE_SAVE_AS = 'blog/{date:%Y}/{date:%m}/{date:%d}/{slug}/index.html' PAGE_URL = '{slug}/' PAGE_SAVE_AS = '{slug}.html' INDEX_SAVE_AS = 'blog/index.html' ARCHIVES_URL = 'blog/archive' ARCHIVES_SAVE_AS = 'blog/archive/index.html' YEAR_ARCHIVE_URL = 'blog/{date:%Y}/' YEAR_ARCHIVE_SAVE_AS = 'blog/{date:%Y}/index.html' MONTH_ARCHIVE_URL = 'blog/{date:%Y}/{date:%m}' MONTH_ARCHIVE_SAVE_AS = 'blog/{date:%Y}/{date:%m}/index.html' DAY_ARCHIVE_URL = 'blog/{date:%Y}/{date:%m}/{date:%d}/' DAY_ARCHIVE_SAVE_AS = 'blog/{date:%Y}/{date:%m}/{date:%d}/index.html' TAG_URL = 'blog/tag/{slug}/' TAG_SAVE_AS = 'blog/tag/{slug}/index.html' TAGS_URL = 'blog/tags/' TAGS_SAVE_AS = 'blog/tags/index.html' # don't generate these: AUTHOR_SAVE_AS = '' CATEGORY_SAVE_AS = '' CATEGORIES_SAVE_AS = '' MARKDOWN = { 'extension_configs': { # 'markdown.extensions.codehilite': {'css_class': 'highlight'}, 'markdown.extensions.smarty': {}, 'markdown.extensions.sane_lists': {}, # "proxy" for `markdown.extensions.extra`` 'pymdownx.extra': {}, # emphasis that is more like GFM 'pymdownx.betterem': {}, # use emoji shortcodes 'pymdownx.emoji': {}, # code highlighting 'pymdownx.highlight': {}, 'pymdownx.inlinehilite': {}, 'pymdownx.superfences': {}, # turn markdown links into ... links 'pymdownx.magiclink': {}, # strict parsing of headers 'pymdownx.saneheaders': {}, # fancy symbols 'pymdownx.smartsymbols': {}, # @todo: where did this extension go?! # 'markdown.extensions.headerid': {}, }, 'output_format': 'html5', }
the-stack_0_26880
#!/usr/bin/env python3 # Copyright (c) 2020 The PIVX developers # Distributed under the MIT software license, see the accompanying # file COPYING or https://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import infincoincashTier2TestFramework from test_framework.util import ( assert_equal, assert_true, Decimal, ) import time """ Test checking: 1) Masternodes setup/creation. 2) Proposal creation. 3) Vote creation. 4) Proposal and vote broadcast. 5) Proposal and vote sync. """ class MasternodeGovernanceBasicTest(infincoincashTier2TestFramework): def check_budget_finalization_sync(self, votesCount, status): for i in range(0, len(self.nodes)): node = self.nodes[i] budFin = node.mnfinalbudget("show") assert_true(len(budFin) == 1, "MN budget finalization not synced in node" + str(i)) budget = budFin[next(iter(budFin))] assert_equal(budget["VoteCount"], votesCount) assert_equal(budget["Status"], status) def broadcastbudgetfinalization(self, node, with_ping_mns=[]): self.log.info("suggesting the budget finalization..") assert (node.mnfinalbudgetsuggest() is not None) self.log.info("confirming the budget finalization..") time.sleep(1) self.stake(4, with_ping_mns) self.log.info("broadcasting the budget finalization..") return node.mnfinalbudgetsuggest() def check_proposal_existence(self, proposalName, proposalHash): for node in self.nodes: proposals = node.getbudgetinfo(proposalName) assert(len(proposals) > 0) assert_equal(proposals[0]["Hash"], proposalHash) def check_vote_existence(self, proposalName, mnCollateralHash, voteType): for i in range(0, len(self.nodes)): node = self.nodes[i] votesInfo = node.getbudgetvotes(proposalName) assert(len(votesInfo) > 0) found = False for voteInfo in votesInfo: if (voteInfo["mnId"].split("-")[0] == mnCollateralHash) : assert_equal(voteInfo["Vote"], voteType) found = True assert_true(found, "Error checking vote existence in node " + str(i)) def get_proposal_obj(self, Name, URL, Hash, FeeHash, BlockStart, BlockEnd, TotalPaymentCount, RemainingPaymentCount, PaymentAddress, Ratio, Yeas, Nays, Abstains, TotalPayment, MonthlyPayment, IsEstablished, IsValid, Allotted, TotalBudgetAllotted, IsInvalidReason = ""): obj = {} obj["Name"] = Name obj["URL"] = URL obj["Hash"] = Hash obj["FeeHash"] = FeeHash obj["BlockStart"] = BlockStart obj["BlockEnd"] = BlockEnd obj["TotalPaymentCount"] = TotalPaymentCount obj["RemainingPaymentCount"] = RemainingPaymentCount obj["PaymentAddress"] = PaymentAddress obj["Ratio"] = Ratio obj["Yeas"] = Yeas obj["Nays"] = Nays obj["Abstains"] = Abstains obj["TotalPayment"] = TotalPayment obj["MonthlyPayment"] = MonthlyPayment obj["IsEstablished"] = IsEstablished obj["IsValid"] = IsValid if IsInvalidReason != "": obj["IsInvalidReason"] = IsInvalidReason obj["Allotted"] = Allotted obj["TotalBudgetAllotted"] = TotalBudgetAllotted return obj def check_budgetprojection(self, expected): for i in range(self.num_nodes): assert_equal(self.nodes[i].getbudgetprojection(), expected) self.log.info("Budget projection valid for node %d" % i) def run_test(self): self.enable_mocktime() self.setup_2_masternodes_network() # Prepare the proposal self.log.info("preparing budget proposal..") firstProposalName = "super-cool" firstProposalLink = "https://forum.infincoincash.org/t/test-proposal" firstProposalCycles = 2 firstProposalAddress = self.miner.getnewaddress() firstProposalAmountPerCycle = 300 nextSuperBlockHeight = self.miner.getnextsuperblock() proposalFeeTxId = self.miner.preparebudget( firstProposalName, firstProposalLink, firstProposalCycles, nextSuperBlockHeight, firstProposalAddress, firstProposalAmountPerCycle) # generate 3 blocks to confirm the tx (and update the mnping) self.stake(3, [self.remoteOne, self.remoteTwo]) # activate sporks self.activate_spork(self.minerPos, "SPORK_8_MASTERNODE_PAYMENT_ENFORCEMENT") self.activate_spork(self.minerPos, "SPORK_9_MASTERNODE_BUDGET_ENFORCEMENT") self.activate_spork(self.minerPos, "SPORK_13_ENABLE_SUPERBLOCKS") txinfo = self.miner.gettransaction(proposalFeeTxId) assert_equal(txinfo['amount'], -50.00) self.log.info("submitting the budget proposal..") proposalHash = self.miner.submitbudget( firstProposalName, firstProposalLink, firstProposalCycles, nextSuperBlockHeight, firstProposalAddress, firstProposalAmountPerCycle, proposalFeeTxId) # let's wait a little bit and see if all nodes are sync time.sleep(1) self.check_proposal_existence(firstProposalName, proposalHash) self.log.info("proposal broadcast successful!") # Proposal is established after 5 minutes. Mine 7 blocks # Proposal needs to be on the chain > 5 min. self.stake(7, [self.remoteOne, self.remoteTwo]) # now let's vote for the proposal with the first MN self.log.info("broadcasting votes for the proposal now..") voteResult = self.ownerOne.mnbudgetvote("alias", proposalHash, "yes", self.masternodeOneAlias) assert_equal(voteResult["detail"][0]["result"], "success") # check that the vote was accepted everywhere self.stake(1, [self.remoteOne, self.remoteTwo]) self.check_vote_existence(firstProposalName, self.mnOneTxHash, "YES") self.log.info("all good, MN1 vote accepted everywhere!") # now let's vote for the proposal with the second MN voteResult = self.ownerTwo.mnbudgetvote("alias", proposalHash, "yes", self.masternodeTwoAlias) assert_equal(voteResult["detail"][0]["result"], "success") # check that the vote was accepted everywhere self.stake(1, [self.remoteOne, self.remoteTwo]) self.check_vote_existence(firstProposalName, self.mnTwoTxHash, "YES") self.log.info("all good, MN2 vote accepted everywhere!") # Now check the budget blockStart = nextSuperBlockHeight blockEnd = blockStart + firstProposalCycles * 145 TotalPayment = firstProposalAmountPerCycle * firstProposalCycles Allotted = firstProposalAmountPerCycle RemainingPaymentCount = firstProposalCycles expected_budget = [ self.get_proposal_obj(firstProposalName, firstProposalLink, proposalHash, proposalFeeTxId, blockStart, blockEnd, firstProposalCycles, RemainingPaymentCount, firstProposalAddress, 1, 2, 0, 0, Decimal(str(TotalPayment)), Decimal(str(firstProposalAmountPerCycle)), True, True, Decimal(str(Allotted)), Decimal(str(Allotted))) ] self.check_budgetprojection(expected_budget) # Quick block count check. assert_equal(self.ownerOne.getblockcount(), 276) self.log.info("starting budget finalization sync test..") self.stake(5, [self.remoteOne, self.remoteTwo]) # assert that there is no budget finalization first. assert_true(len(self.ownerOne.mnfinalbudget("show")) == 0) # suggest the budget finalization and confirm the tx (+4 blocks). budgetFinHash = self.broadcastbudgetfinalization(self.miner, with_ping_mns=[self.remoteOne, self.remoteTwo]) assert (budgetFinHash != "") time.sleep(1) self.log.info("checking budget finalization sync..") self.check_budget_finalization_sync(0, "OK") self.log.info("budget finalization synced!, now voting for the budget finalization..") self.ownerOne.mnfinalbudget("vote-many", budgetFinHash) self.ownerTwo.mnfinalbudget("vote-many", budgetFinHash) self.stake(2, [self.remoteOne, self.remoteTwo]) self.log.info("checking finalization votes..") self.check_budget_finalization_sync(2, "OK") self.stake(8, [self.remoteOne, self.remoteTwo]) addrInfo = self.miner.listreceivedbyaddress(0, False, False, firstProposalAddress) assert_equal(addrInfo[0]["amount"], firstProposalAmountPerCycle) self.log.info("budget proposal paid!, all good") # Check that the proposal info returns updated payment count expected_budget[0]["RemainingPaymentCount"] -= 1 self.check_budgetprojection(expected_budget) if __name__ == '__main__': MasternodeGovernanceBasicTest().main()
the-stack_0_26881
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2012 thomasv@gitorious # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import socket import time from enum import IntEnum from typing import Tuple from PyQt5.QtCore import Qt, pyqtSignal, QThread from PyQt5.QtWidgets import (QTreeWidget, QTreeWidgetItem, QMenu, QGridLayout, QComboBox, QLineEdit, QDialog, QVBoxLayout, QHeaderView, QCheckBox, QTabWidget, QWidget, QLabel) from PyQt5.QtGui import QFontMetrics from electrum_axe.i18n import _ from electrum_axe import constants, blockchain from electrum_axe.interface import serialize_server, deserialize_server from electrum_axe.network import Network from electrum_axe.logging import get_logger from .util import Buttons, CloseButton, HelpButton, read_QIcon, char_width_in_lineedit _logger = get_logger(__name__) protocol_names = ['TCP', 'SSL'] protocol_letters = 'ts' class NetworkDialog(QDialog): def __init__(self, network, config, network_updated_signal_obj): QDialog.__init__(self) self.setWindowTitle(_('Electrum Network')) self.setMinimumSize(500, 300) self.nlayout = NetworkChoiceLayout(network, config) self.network_updated_signal_obj = network_updated_signal_obj vbox = QVBoxLayout(self) vbox.addLayout(self.nlayout.layout()) vbox.addLayout(Buttons(CloseButton(self))) self.network_updated_signal_obj.network_updated_signal.connect( self.on_update) network.register_callback(self.on_network, ['network_updated']) def on_network(self, event, *args): self.network_updated_signal_obj.network_updated_signal.emit(event, args) def on_update(self): self.nlayout.update() class NodesListWidget(QTreeWidget): def __init__(self, parent): QTreeWidget.__init__(self) self.parent = parent self.setHeaderLabels([_('Connected node'), _('Height')]) self.setContextMenuPolicy(Qt.CustomContextMenu) self.customContextMenuRequested.connect(self.create_menu) def create_menu(self, position): item = self.currentItem() if not item: return is_server = not bool(item.data(0, Qt.UserRole)) menu = QMenu() if is_server: server = item.data(1, Qt.UserRole) menu.addAction(_("Use as server"), lambda: self.parent.follow_server(server)) else: chain_id = item.data(1, Qt.UserRole) menu.addAction(_("Follow this branch"), lambda: self.parent.follow_branch(chain_id)) menu.exec_(self.viewport().mapToGlobal(position)) def keyPressEvent(self, event): if event.key() in [ Qt.Key_F2, Qt.Key_Return ]: self.on_activated(self.currentItem(), self.currentColumn()) else: QTreeWidget.keyPressEvent(self, event) def on_activated(self, item, column): # on 'enter' we show the menu pt = self.visualItemRect(item).bottomLeft() pt.setX(50) self.customContextMenuRequested.emit(pt) def update(self, network: Network): self.clear() self.addChild = self.addTopLevelItem chains = network.get_blockchains() n_chains = len(chains) for chain_id, interfaces in chains.items(): b = blockchain.blockchains.get(chain_id) if b is None: continue name = b.get_name() if n_chains > 1: x = QTreeWidgetItem([name + '@%d'%b.get_max_forkpoint(), '%d'%b.height()]) x.setData(0, Qt.UserRole, 1) x.setData(1, Qt.UserRole, b.get_id()) else: x = self for i in interfaces: star = ' *' if i == network.interface else '' item = QTreeWidgetItem([i.host + star, '%d'%i.tip]) item.setData(0, Qt.UserRole, 0) item.setData(1, Qt.UserRole, i.server) x.addChild(item) if n_chains > 1: self.addTopLevelItem(x) x.setExpanded(True) h = self.header() h.setStretchLastSection(False) h.setSectionResizeMode(0, QHeaderView.Stretch) h.setSectionResizeMode(1, QHeaderView.ResizeToContents) super().update() class ServerListWidget(QTreeWidget): class Columns(IntEnum): HOST = 0 PORT = 1 SERVER_STR_ROLE = Qt.UserRole + 100 def __init__(self, parent): QTreeWidget.__init__(self) self.parent = parent self.setHeaderLabels([_('Host'), _('Port')]) self.setContextMenuPolicy(Qt.CustomContextMenu) self.customContextMenuRequested.connect(self.create_menu) def create_menu(self, position): item = self.currentItem() if not item: return menu = QMenu() server = item.data(self.Columns.HOST, self.SERVER_STR_ROLE) menu.addAction(_("Use as server"), lambda: self.set_server(server)) menu.exec_(self.viewport().mapToGlobal(position)) def set_server(self, s): host, port, protocol = deserialize_server(s) self.parent.server_host.setText(host) self.parent.server_port.setText(port) self.parent.set_server() def keyPressEvent(self, event): if event.key() in [ Qt.Key_F2, Qt.Key_Return ]: self.on_activated(self.currentItem(), self.currentColumn()) else: QTreeWidget.keyPressEvent(self, event) def on_activated(self, item, column): # on 'enter' we show the menu pt = self.visualItemRect(item).bottomLeft() pt.setX(50) self.customContextMenuRequested.emit(pt) def update(self, servers, protocol, use_tor): self.clear() for _host, d in sorted(servers.items()): if _host.endswith('.onion') and not use_tor: continue port = d.get(protocol) if port: x = QTreeWidgetItem([_host, port]) server = serialize_server(_host, port, protocol) x.setData(self.Columns.HOST, self.SERVER_STR_ROLE, server) self.addTopLevelItem(x) h = self.header() h.setStretchLastSection(False) h.setSectionResizeMode(self.Columns.HOST, QHeaderView.Stretch) h.setSectionResizeMode(self.Columns.PORT, QHeaderView.ResizeToContents) super().update() class NetworkChoiceLayout(object): def __init__(self, network: Network, config, wizard=False): self.network = network self.config = config self.protocol = None self.tor_proxy = None self.tabs = tabs = QTabWidget() server_tab = QWidget() proxy_tab = QWidget() blockchain_tab = QWidget() tabs.addTab(blockchain_tab, _('Overview')) tabs.addTab(server_tab, _('Server')) tabs.addTab(proxy_tab, _('Proxy')) fixed_width_hostname = 24 * char_width_in_lineedit() fixed_width_port = 6 * char_width_in_lineedit() # server tab grid = QGridLayout(server_tab) grid.setSpacing(8) self.server_host = QLineEdit() self.server_host.setFixedWidth(fixed_width_hostname) self.server_port = QLineEdit() self.server_port.setFixedWidth(fixed_width_port) self.autoconnect_cb = QCheckBox(_('Select server automatically')) self.autoconnect_cb.setEnabled(self.config.is_modifiable('auto_connect')) self.server_host.editingFinished.connect(self.set_server) self.server_port.editingFinished.connect(self.set_server) self.autoconnect_cb.clicked.connect(self.set_server) self.autoconnect_cb.clicked.connect(self.update) msg = ' '.join([ _("If auto-connect is enabled, Axe Electrum will always use a server that is on the longest blockchain."), _("If it is disabled, you have to choose a server you want to use. Axe Electrum will warn you if your server is lagging.") ]) grid.addWidget(self.autoconnect_cb, 0, 0, 1, 3) grid.addWidget(HelpButton(msg), 0, 4) grid.addWidget(QLabel(_('Server') + ':'), 1, 0) grid.addWidget(self.server_host, 1, 1, 1, 2) grid.addWidget(self.server_port, 1, 3) label = _('Server peers') if network.is_connected() else _('Default Servers') grid.addWidget(QLabel(label), 2, 0, 1, 5) self.servers_list = ServerListWidget(self) grid.addWidget(self.servers_list, 3, 0, 1, 5) # Proxy tab grid = QGridLayout(proxy_tab) grid.setSpacing(8) # proxy setting self.proxy_cb = QCheckBox(_('Use proxy')) self.proxy_cb.clicked.connect(self.check_disable_proxy) self.proxy_cb.clicked.connect(self.set_proxy) self.proxy_cb.setEnabled(self.config.is_modifiable('proxy')) self.proxy_mode = QComboBox() self.proxy_mode.addItems(['SOCKS4', 'SOCKS5']) self.proxy_host = QLineEdit() self.proxy_host.setFixedWidth(fixed_width_hostname) self.proxy_port = QLineEdit() self.proxy_port.setFixedWidth(fixed_width_port) self.proxy_user = QLineEdit() self.proxy_user.setPlaceholderText(_("Proxy user")) self.proxy_password = QLineEdit() self.proxy_password.setPlaceholderText(_("Password")) self.proxy_password.setEchoMode(QLineEdit.Password) self.proxy_password.setFixedWidth(fixed_width_port) self.proxy_mode.currentIndexChanged.connect(self.set_proxy) self.proxy_host.editingFinished.connect(self.set_proxy) self.proxy_port.editingFinished.connect(self.set_proxy) self.proxy_user.editingFinished.connect(self.set_proxy) self.proxy_password.editingFinished.connect(self.set_proxy) self.proxy_mode.currentIndexChanged.connect(self.proxy_settings_changed) self.proxy_host.textEdited.connect(self.proxy_settings_changed) self.proxy_port.textEdited.connect(self.proxy_settings_changed) self.proxy_user.textEdited.connect(self.proxy_settings_changed) self.proxy_password.textEdited.connect(self.proxy_settings_changed) self.tor_cb = QCheckBox(_("Use Tor Proxy")) self.tor_cb.setIcon(read_QIcon("tor_logo.png")) self.tor_cb.hide() self.tor_cb.clicked.connect(self.use_tor_proxy) self.tor_auto_on_cb = QCheckBox(self.network.TOR_AUTO_ON_MSG) self.tor_auto_on_cb.setIcon(read_QIcon("tor_logo.png")) self.tor_auto_on_cb.setChecked(self.config.get('tor_auto_on', True)) self.tor_auto_on_cb.clicked.connect(self.use_tor_auto_on) self.fiat_bypass_tor_cb = QCheckBox(self.network.FIAT_BYPASS_TOR_MSG) fiat_bypass_tor = self.config.get('fiat_bypass_tor', False) self.fiat_bypass_tor_cb.setChecked(fiat_bypass_tor) self.fiat_bypass_tor_cb.clicked.connect(self.fiat_bypass_tor) grid.addWidget(self.tor_cb, 1, 0, 1, 3) grid.addWidget(self.proxy_cb, 2, 0, 1, 3) grid.addWidget(HelpButton(_('Proxy settings apply to all connections: with Axe Electrum servers, but also with third-party services.')), 2, 4) grid.addWidget(self.proxy_mode, 4, 1) grid.addWidget(self.proxy_host, 4, 2) grid.addWidget(self.proxy_port, 4, 3) grid.addWidget(self.proxy_user, 5, 2) grid.addWidget(self.proxy_password, 5, 3) grid.addWidget(self.tor_auto_on_cb, 6, 0, 1, 3) grid.addWidget(HelpButton(_('During wallet startup try to detect and use Tor Proxy.')), 6, 4) grid.addWidget(self.fiat_bypass_tor_cb, 7, 0, 1, 3) grid.setRowStretch(8, 1) # Blockchain Tab grid = QGridLayout(blockchain_tab) msg = ' '.join([ _("Axe Electrum connects to several nodes in order to download block headers and find out the longest blockchain."), _("This blockchain is used to verify the transactions sent by your transaction server.") ]) self.status_label = QLabel('') grid.addWidget(QLabel(_('Status') + ':'), 0, 0) grid.addWidget(self.status_label, 0, 1, 1, 3) grid.addWidget(HelpButton(msg), 0, 4) self.server_label = QLabel('') msg = _("Axe Electrum sends your wallet addresses to a single server, in order to receive your transaction history.") grid.addWidget(QLabel(_('Server') + ':'), 1, 0) grid.addWidget(self.server_label, 1, 1, 1, 3) grid.addWidget(HelpButton(msg), 1, 4) self.height_label = QLabel('') msg = _('This is the height of your local copy of the blockchain.') grid.addWidget(QLabel(_('Blockchain') + ':'), 2, 0) grid.addWidget(self.height_label, 2, 1) grid.addWidget(HelpButton(msg), 2, 4) self.split_label = QLabel('') grid.addWidget(self.split_label, 3, 0, 1, 3) self.nodes_list_widget = NodesListWidget(self) grid.addWidget(self.nodes_list_widget, 5, 0, 1, 5) vbox = QVBoxLayout() vbox.addWidget(tabs) self.layout_ = vbox # tor detector self.td = td = TorDetector() td.found_proxy.connect(self.suggest_proxy) td.start() self.fill_in_proxy_settings() self.update() def check_disable_proxy(self, b): if not self.config.is_modifiable('proxy'): b = False for w in [self.proxy_mode, self.proxy_host, self.proxy_port, self.proxy_user, self.proxy_password]: w.setEnabled(b) def enable_set_server(self): if self.config.is_modifiable('server'): enabled = not self.autoconnect_cb.isChecked() self.server_host.setEnabled(enabled) self.server_port.setEnabled(enabled) self.servers_list.setEnabled(enabled) else: for w in [self.autoconnect_cb, self.server_host, self.server_port, self.servers_list]: w.setEnabled(False) def update(self): net_params = self.network.get_parameters() host, port, protocol = net_params.host, net_params.port, net_params.protocol proxy_config, auto_connect = net_params.proxy, net_params.auto_connect if not self.server_host.hasFocus() and not self.server_port.hasFocus(): self.server_host.setText(host) self.server_port.setText(str(port)) self.autoconnect_cb.setChecked(auto_connect) interface = self.network.interface host = interface.host if interface else _('None') self.server_label.setText(host) self.set_protocol(protocol) self.servers = self.network.get_servers() self.servers_list.update(self.servers, self.protocol, self.tor_cb.isChecked()) self.enable_set_server() height_str = "%d "%(self.network.get_local_height()) + _('blocks') self.height_label.setText(height_str) n = len(self.network.get_interfaces()) status = _("Connected to {0} nodes.").format(n) if n else _("Not connected") self.status_label.setText(status) chains = self.network.get_blockchains() if len(chains) > 1: chain = self.network.blockchain() forkpoint = chain.get_max_forkpoint() name = chain.get_name() msg = _('Chain split detected at block {0}').format(forkpoint) + '\n' msg += (_('You are following branch') if auto_connect else _('Your server is on branch'))+ ' ' + name msg += ' (%d %s)' % (chain.get_branch_size(), _('blocks')) else: msg = '' self.split_label.setText(msg) self.nodes_list_widget.update(self.network) def fill_in_proxy_settings(self): proxy_config = self.network.get_parameters().proxy if not proxy_config: proxy_config = {"mode": "none", "host": "localhost", "port": "9050"} b = proxy_config.get('mode') != "none" self.check_disable_proxy(b) if b: self.proxy_cb.setChecked(True) self.proxy_mode.setCurrentIndex( self.proxy_mode.findText(str(proxy_config.get("mode").upper()))) self.proxy_host.setText(proxy_config.get("host")) self.proxy_port.setText(proxy_config.get("port")) self.proxy_user.setText(proxy_config.get("user", "")) self.proxy_password.setText(proxy_config.get("password", "")) def layout(self): return self.layout_ def set_protocol(self, protocol): if protocol != self.protocol: self.protocol = protocol def change_protocol(self, use_ssl): p = 's' if use_ssl else 't' host = self.server_host.text() pp = self.servers.get(host, constants.net.DEFAULT_PORTS) if p not in pp.keys(): p = list(pp.keys())[0] port = pp[p] self.server_host.setText(host) self.server_port.setText(port) self.set_protocol(p) self.set_server() def follow_branch(self, chain_id): self.network.run_from_another_thread(self.network.follow_chain_given_id(chain_id)) self.update() def follow_server(self, server): self.network.run_from_another_thread(self.network.follow_chain_given_server(server)) self.update() def server_changed(self, x): if x: self.change_server(str(x.text(0)), self.protocol) def change_server(self, host, protocol): pp = self.servers.get(host, constants.net.DEFAULT_PORTS) if protocol and protocol not in protocol_letters: protocol = None if protocol: port = pp.get(protocol) if port is None: protocol = None if not protocol: if 's' in pp.keys(): protocol = 's' port = pp.get(protocol) else: protocol = list(pp.keys())[0] port = pp.get(protocol) self.server_host.setText(host) self.server_port.setText(port) def accept(self): pass def set_server(self): net_params = self.network.get_parameters() net_params = net_params._replace(host=str(self.server_host.text()), port=str(self.server_port.text()), auto_connect=self.autoconnect_cb.isChecked()) self.network.run_from_another_thread(self.network.set_parameters(net_params)) def set_proxy(self): net_params = self.network.get_parameters() if self.proxy_cb.isChecked(): proxy = { 'mode':str(self.proxy_mode.currentText()).lower(), 'host':str(self.proxy_host.text()), 'port':str(self.proxy_port.text()), 'user':str(self.proxy_user.text()), 'password':str(self.proxy_password.text())} else: proxy = None self.tor_cb.setChecked(False) net_params = net_params._replace(proxy=proxy) self.network.run_from_another_thread(self.network.set_parameters(net_params)) def suggest_proxy(self, found_proxy): if found_proxy is None: self.tor_cb.hide() return self.tor_proxy = found_proxy self.tor_cb.setText("Use Tor proxy at port " + str(found_proxy[1])) if (self.proxy_cb.isChecked() and self.proxy_mode.currentIndex() == self.proxy_mode.findText('SOCKS5') and self.proxy_host.text() == "127.0.0.1" and self.proxy_port.text() == str(found_proxy[1])): self.tor_cb.setChecked(True) self.tor_cb.show() def use_tor_proxy(self, use_it): if not use_it: self.proxy_cb.setChecked(False) else: socks5_mode_index = self.proxy_mode.findText('SOCKS5') if socks5_mode_index == -1: _logger.info("can't find proxy_mode 'SOCKS5'") return self.proxy_mode.setCurrentIndex(socks5_mode_index) self.proxy_host.setText("127.0.0.1") self.proxy_port.setText(str(self.tor_proxy[1])) self.proxy_user.setText("") self.proxy_password.setText("") self.tor_cb.setChecked(True) self.proxy_cb.setChecked(True) self.check_disable_proxy(use_it) self.set_proxy() def fiat_bypass_tor(self, bypass): self.config.set_key('fiat_bypass_tor', bypass, False) coro = self.network.restart() self.network.run_from_another_thread(coro) def proxy_settings_changed(self): self.tor_cb.setChecked(False) def use_tor_auto_on(self, use_it): self.config.set_key('tor_auto_on', use_it, True) class TorDetector(QThread): found_proxy = pyqtSignal(object) def __init__(self): QThread.__init__(self) def run(self): # Probable ports for Tor to listen at ports = [9050, 9150] while True: for p in ports: net_addr = ("127.0.0.1", p) if TorDetector.is_tor_port(net_addr): try: self.found_proxy.emit(net_addr) except AttributeError as e: _logger.info('found_proxy signal is already unbound') return break else: try: self.found_proxy.emit(None) except AttributeError: _logger.info('found_proxy signal is already unbound') return time.sleep(10) @staticmethod def is_tor_port(net_addr: Tuple[str, int]) -> bool: try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(0.1) s.connect(net_addr) # Tor responds uniquely to HTTP-like requests s.send(b"GET\n") if b"Tor is not an HTTP Proxy" in s.recv(1024): return True except socket.error: pass return False
the-stack_0_26882
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. load("//antlir/bzl:shape.bzl", "shape") load("//antlir/bzl:target_tagger.shape.bzl", "target_tagged_image_source_t") tarball_t = shape.shape( force_root_ownership = shape.field(bool, optional = True), into_dir = shape.path, source = target_tagged_image_source_t, )
the-stack_0_26884
import datetime import logging import threading import time from django.conf import settings from django.contrib.auth.models import User from django.core.management.base import CommandError from djutils.management.commands.queue_consumer import Command as QueueConsumer from djutils.queue.decorators import crontab, queue_command, periodic_command from djutils.queue.queue import QueueCommand, PeriodicQueueCommand, QueueException, invoker from djutils.queue.registry import registry from djutils.test import TestCase from djutils.utils.helpers import ObjectDict class DummyThreadQueue(): """A replacement for the stdlib Queue.Queue""" def put(self, message): command = registry.get_command_for_message(message) command.execute() def join(self): pass class TestQueueConsumer(QueueConsumer): """Subclass of the consumer for test purposes""" def get_logger(self, verbosity): return logging.getLogger('djutils.tests.queue.logger') def initialize_options(self, options): super(TestQueueConsumer, self).initialize_options(options) self._queue = DummyThreadQueue() class UserCommand(QueueCommand): def execute(self): user, old_email, new_email = self.data user.email = new_email user.save() @queue_command def user_command(user, data): user.email = data user.save() class BampfException(Exception): pass @queue_command def throw_error(): raise BampfException('bampf') class TestPeriodicCommand(PeriodicQueueCommand): def execute(self): User.objects.create_user('thirty', 'thirty', 'thirty') def validate_datetime(self, dt): return crontab(minute='*/30')(dt) @periodic_command(crontab(minute='*/15')) def every_fifteen(): User.objects.create_user('fifteen', 'fifteen', 'fifteen') class QueueTest(TestCase): def setUp(self): self.orig_always_eager = getattr(settings, 'QUEUE_ALWAYS_EAGER', False) settings.QUEUE_ALWAYS_EAGER = False self.dummy = User.objects.create_user('username', '[email protected]', 'password') self.consumer_options = ObjectDict( logfile='', delay=.1, backoff=2, max_delay=.4, no_periodic=False, threads=2, verbosity=1, ) invoker.flush() def tearDown(self): settings.QUEUE_ALWAYS_EAGER = self.orig_always_eager def test_basic_processing(self): # make sure UserCommand got registered self.assertTrue('djutils.tests.queue.UserCommand' in registry) self.assertEqual(registry._registry['djutils.tests.queue.UserCommand'], UserCommand) # create a command command = UserCommand((self.dummy, self.dummy.email, '[email protected]')) # enqueueing the command won't execute it - it just hangs out invoker.enqueue(command) # did the message get enqueued? self.assertEqual(len(invoker.queue), 1) # dequeueing loads from the queue, creates a command and executes it invoker.dequeue() # make sure the command's execute() method got called dummy = User.objects.get(username='username') self.assertEqual(dummy.email, '[email protected]') def test_decorated_function(self): user_command(self.dummy, '[email protected]') self.assertEqual(len(invoker.queue), 1) # the user's email address hasn't changed yet dummy = User.objects.get(username='username') self.assertEqual(dummy.email, '[email protected]') # dequeue invoker.dequeue() # make sure that the command was executed dummy = User.objects.get(username='username') self.assertEqual(dummy.email, '[email protected]') self.assertEqual(len(invoker.queue), 0) def test_always_eager(self): settings.QUEUE_ALWAYS_EAGER = True user_command(self.dummy, '[email protected]') self.assertEqual(len(invoker.queue), 0) # the user's email address was changed dummy = User.objects.get(username='username') self.assertEqual(dummy.email, '[email protected]') def test_error_raised(self): throw_error() self.assertRaises(BampfException, invoker.dequeue) def test_crontab_month(self): # validates the following months, 1, 4, 7, 8, 9 valids = [1, 4, 7, 8, 9] validate_m = crontab(month='1,4,*/6,8-9') for x in xrange(1, 13): res = validate_m(datetime.datetime(2011, x, 1)) self.assertEqual(res, x in valids) def test_crontab_day(self): # validates the following days valids = [1, 4, 7, 8, 9, 13, 19, 25, 31] validate_d = crontab(day='*/6,1,4,8-9') for x in xrange(1, 32): res = validate_d(datetime.datetime(2011, 1, x)) self.assertEqual(res, x in valids) def test_crontab_hour(self): # validates the following hours valids = [0, 1, 4, 6, 8, 9, 12, 18] validate_h = crontab(hour='8-9,*/6,1,4') for x in xrange(24): res = validate_h(datetime.datetime(2011, 1, 1, x)) self.assertEqual(res, x in valids) edge = crontab(hour=0) self.assertTrue(edge(datetime.datetime(2011, 1, 1, 0, 0))) self.assertFalse(edge(datetime.datetime(2011, 1, 1, 12, 0))) def test_crontab_minute(self): # validates the following minutes valids = [0, 1, 4, 6, 8, 9, 12, 18, 24, 30, 36, 42, 48, 54] validate_m = crontab(minute='4,8-9,*/6,1') for x in xrange(60): res = validate_m(datetime.datetime(2011, 1, 1, 1, x)) self.assertEqual(res, x in valids) def test_crontab_day_of_week(self): # validates the following days of week # jan, 1, 2011 is a saturday valids = [2, 4, 9, 11, 16, 18, 23, 25, 30] validate_dow = crontab(day_of_week='0,2') for x in xrange(1, 32): res = validate_dow(datetime.datetime(2011, 1, x)) self.assertEqual(res, x in valids) def test_crontab_all_together(self): # jan 1, 2011 is a saturday # may 1, 2011 is a sunday validate = crontab( month='1,5', day='1,4,7', day_of_week='0,6', hour='*/4', minute='1-5,10-15,50' ) self.assertTrue(validate(datetime.datetime(2011, 5, 1, 4, 11))) self.assertTrue(validate(datetime.datetime(2011, 5, 7, 20, 50))) self.assertTrue(validate(datetime.datetime(2011, 1, 1, 0, 1))) # fails validation on month self.assertFalse(validate(datetime.datetime(2011, 6, 4, 4, 11))) # fails validation on day self.assertFalse(validate(datetime.datetime(2011, 1, 6, 4, 11))) # fails validation on day_of_week self.assertFalse(validate(datetime.datetime(2011, 1, 4, 4, 11))) # fails validation on hour self.assertFalse(validate(datetime.datetime(2011, 1, 1, 1, 11))) # fails validation on minute self.assertFalse(validate(datetime.datetime(2011, 1, 1, 4, 6))) def test_registry_get_periodic_commands(self): # three, one for the base class, one for the TestPeriodicCommand, and # one for the decorated function self.assertEqual(len(registry.get_periodic_commands()), 3) def test_periodic_command_registration(self): # make sure TestPeriodicCommand got registered self.assertTrue('djutils.tests.queue.TestPeriodicCommand' in registry) self.assertEqual(registry._registry['djutils.tests.queue.TestPeriodicCommand'], TestPeriodicCommand) # create a command command = TestPeriodicCommand() # enqueueing the command won't execute it - it just hangs out invoker.enqueue(command) # check that there are no users in the db self.assertEqual(User.objects.all().count(), 1) # did the message get enqueued? self.assertEqual(len(invoker.queue), 1) # dequeueing loads from the queue, creates a command and executes it invoker.dequeue() # a new user should have been added self.assertEqual(User.objects.all().count(), 2) def test_periodic_command_enqueueing(self): on_time = datetime.datetime(2011, 1, 1, 1, 15) # matches */15 off_time = datetime.datetime(2011, 1, 1, 1, 16) # doesn't match */15 both_time = datetime.datetime(2011, 1, 1, 1, 30) # there should be nothing in the queue self.assertEqual(len(invoker.queue), 0) # no commands should be enqueued invoker.enqueue_periodic_commands(off_time) self.assertEqual(len(invoker.queue), 0) # running it at 1:15 will pick up the */15 command invoker.enqueue_periodic_commands(on_time) self.assertEqual(len(invoker.queue), 1) # dequeue and execute, should get a new user named 'fifteen' invoker.dequeue() # verify user created, then delete the user self.assertEqual(User.objects.filter(username='fifteen').count(), 1) User.objects.all().delete() # make sure the queue is empty self.assertEqual(len(invoker.queue), 0) # running it at :30 will pick up both the */15 and the */30 commands invoker.enqueue_periodic_commands(both_time) self.assertEqual(len(invoker.queue), 2) # execute both commands invoker.dequeue() invoker.dequeue() # check that the users were created self.assertEqual(User.objects.all().count(), 2) self.assertEqual(User.objects.filter(username='fifteen').count(), 1) self.assertEqual(User.objects.filter(username='thirty').count(), 1) def test_daemon_initialization(self): consumer = TestQueueConsumer() db_name = 'testqueue' consumer.initialize_options(self.consumer_options) self.assertEqual(consumer.logfile, '/var/log/djutils-%s.log' % db_name) self.assertEqual(consumer.delay, 0.1) self.assertEqual(consumer.max_delay, 0.4) self.assertEqual(consumer.backoff_factor, 2) self.assertEqual(consumer.periodic_commands, True) self.assertEqual(consumer.threads, 2) self.consumer_options['logfile'] = '/var/log/custom.log' consumer.initialize_options(self.consumer_options) self.consumer_options['backoff'] = 0.5 self.assertRaises(CommandError, consumer.initialize_options, self.consumer_options) self.consumer_options['backoff'] = 2 self.consumer_options['threads'] = 0 self.assertRaises(CommandError, consumer.initialize_options, self.consumer_options) def test_consumer_delay(self): consumer = TestQueueConsumer() consumer.initialize_options(self.consumer_options) # processing when there is no message will sleep start = time.time() consumer.process_message() end = time.time() # make sure it slept the initial amount self.assertTrue(.09 < end - start < .11) # try processing another message -- will delay longer start = time.time() consumer.process_message() end = time.time() self.assertTrue(.19 < end - start < .21) # cause a command to be enqueued user_command(self.dummy, '[email protected]') dummy = User.objects.get(username='username') self.assertEqual(dummy.email, '[email protected]') # processing the message will reset the delay to initial state consumer.process_message() # make sure the command was executed dummy = User.objects.get(username='username') self.assertEqual(dummy.email, '[email protected]') # make sure the delay was reset self.assertEqual(consumer.delay, .1) def test_daemon_multithreading(self): pass def test_daemon_periodic_commands(self): pass def test_daemon_worker_exception(self): pass def test_daemon_periodic_thread_exception(self): pass
the-stack_0_26885
import argparse import os import pickle import sys from datetime import datetime import numpy as np import torch import iic.archs as archs from iic.utils.cluster.cluster_eval import \ _get_assignment_data_matches from iic.utils.cluster.transforms import sobel_process from iic.utils.segmentation.data import make_Coco_dataloaders, \ make_Potsdam_dataloaders from iic.utils.segmentation.render import render from iic.utils.segmentation.segmentation_eval import \ _segmentation_get_data, segmentation_eval # Render images for segmentation models parser = argparse.ArgumentParser() parser.add_argument("--model_inds", type=int, nargs="+", default=[]) parser.add_argument("--net_name", type=str, default="best") parser.add_argument("--imgs_dataloaders", type=str, nargs="+", default=["test"]) parser.add_argument("--num", type=int, default=100) parser.add_argument("--reassess_acc", default=False, action="store_true") parser.add_argument("--get_match_only", default=False, action="store_true") args = parser.parse_args() model_inds = args.model_inds epochs = args.epochs net_name_prefix = args.net_name num = args.num reassess_acc = args.reassess_acc print("imgs_dataloaders passed:") print(args.imgs_dataloaders) out_root = "/scratch/shared/slow/xuji/iid_private" for model_ind in model_inds: out_dir = os.path.join(out_root, str(model_ind)) net_names = [net_name_prefix + "_net.pytorch"] reloaded_config_path = os.path.join(out_dir, "config.pickle") print("Loading restarting config from: %s" % reloaded_config_path) with open(reloaded_config_path, "rb") as config_f: config = pickle.load(config_f) assert (config.model_ind == model_ind) if not hasattr(config, "use_doersch_datasets"): config.use_doersch_datasets = False if "Coco" in config.dataset: dataloaders_train, mapping_assignment_dataloader, mapping_test_dataloader \ = make_Coco_dataloaders(config) all_label_names = [ "sky-stuff", "plant-stuff", "ground-stuff", ] if config.include_things_labels: all_label_names += ["person-things"] if config.incl_animal_things: all_label_names += ["animal-things"] elif config.dataset == "Potsdam": dataloaders_train, mapping_assignment_dataloader, mapping_test_dataloader \ = make_Potsdam_dataloaders(config) if config.use_coarse_labels: all_label_names = ["roads and cars", "buildings and clutter", "vegetation and trees"] else: all_label_names = ["roads", "buildings", "vegetation", "trees", "cars", "clutter"] assert (len(all_label_names) == config.gt_k) print("dataloader sizes: %d %d %d" % (len(dataloaders_train[0]), len(mapping_assignment_dataloader), len(mapping_test_dataloader))) # ------------------------------ for imgs_dataloader_name in args.imgs_dataloaders: for net_name in net_names: print("%s %s %s" % ( config.out_dir, imgs_dataloader_name, net_name.split(".")[0])) net_name_outdir = os.path.join(config.out_dir, imgs_dataloader_name, net_name.split(".")[0]) if not os.path.exists(net_name_outdir): os.makedirs(net_name_outdir) print("doing net_name %s to %s" % (net_name, net_name_outdir)) sys.stdout.flush() # load model net = archs.__dict__[config.arch](config) model_path = os.path.join(config.out_dir, net_name) print("getting model path %s " % model_path) net.load_state_dict( torch.load(model_path, map_location=lambda storage, loc: storage)) net.cuda() net = torch.nn.DataParallel(net) net.module.eval() if reassess_acc: print("... reassessing acc %s" % datetime.now()) sys.stdout.flush() stats_dict = segmentation_eval(config, net, mapping_assignment_dataloader, mapping_test_dataloader, sobel=(not config.no_sobel), return_only=True, verbose=0) acc = stats_dict["best"] print("... reassessment finished, got acc %f" % acc) sys.stdout.flush() continue print( "starting to run test data through for rendering %s" % datetime.now()) all_matches, all_accs = _get_assignment_data_matches(net, mapping_assignment_dataloader, config, sobel=(not config.no_sobel), using_IR=config.using_IR, get_data_fn=_segmentation_get_data, just_matches=False, verbose=1) head_i = np.argmax(all_accs) match = all_matches[head_i] print("got best head %d %s" % (head_i, datetime.now())) print("best match %s" % str(match)) if args.get_match_only: exit(0) colour_map_raw = [(np.random.rand(3) * 255.).astype(np.uint8) for _ in range(max(config.output_k, config.gt_k))] # coco: green (veg) (7, 130, 42), blue (sky) (39, 159, 216), # grey (road) (82, 91, 96), red (person - if used) (229, 57, 57) if "Coco" in config.dataset: colour_map_gt = [np.array([39, 159, 216], dtype=np.uint8), np.array([7, 130, 42], dtype=np.uint8), np.array([82, 91, 96], dtype=np.uint8), np.array([229, 57, 57], dtype=np.uint8) ] else: colour_map_gt = colour_map_raw # render first batch predicted_all = [0 for _ in range(config.gt_k)] correct_all = [0 for _ in range(config.gt_k)] all_all = [0 for _ in range(config.gt_k)] if imgs_dataloader_name == "test": imgs_dataloader = mapping_test_dataloader elif imgs_dataloader_name == "train": imgs_dataloader = mapping_assignment_dataloader else: assert (False) print("length of imgs_dataloader %d" % len(imgs_dataloader)) next_img_ind = 0 for b_i, batch in enumerate(imgs_dataloader): orig_imgs, flat_targets, mask = batch orig_imgs, flat_targets, mask = \ orig_imgs.cuda(), flat_targets.numpy(), mask.numpy().astype(np.bool) if not config.no_sobel: imgs = sobel_process(orig_imgs, config.include_rgb, using_IR=config.using_IR) else: imgs = orig_imgs with torch.no_grad(): x_outs_all = net(imgs) x_outs = x_outs_all[head_i] x_outs = x_outs.cpu().numpy() flat_preds = np.argmax(x_outs, axis=1) n, h, w = flat_preds.shape num_imgs_curr = flat_preds.shape[0] reordered_preds = np.zeros((num_imgs_curr, h, w), dtype=flat_targets.dtype) for pred_i, target_i in match: reordered_preds[flat_preds == pred_i] = target_i assert (mask.shape == reordered_preds.shape) assert (flat_targets.shape == reordered_preds.shape) masked = np.logical_not(mask) reordered_preds[masked] = -1 flat_targets[masked] = -1 # not in colourmaps, hence will be black assert (reordered_preds.max() < config.gt_k) assert (flat_targets.max() < config.gt_k) # print iou per class for c in range(config.gt_k): preds = (reordered_preds == c) targets = (flat_targets == c) predicted = preds.sum() correct = (preds * targets).sum() all = ((preds + targets) >= 1).sum() predicted_all[c] += predicted correct_all[c] += correct all_all[c] += all if next_img_ind >= num: print("not rendering batch") continue # already rendered num elif next_img_ind + num_imgs_curr > num: relevant_inds = range(0, num - next_img_ind) else: relevant_inds = range(0, num_imgs_curr) orig_imgs = orig_imgs[relevant_inds, :, :, :] imgs = imgs[relevant_inds, :, :, :] flat_preds = flat_preds[relevant_inds, :, :] reordered_preds = reordered_preds[relevant_inds, :, :] flat_targets = flat_targets[relevant_inds, :, :] if "Coco" in config.dataset: # blue and red channels are swapped orig_imgs_swapped = torch.zeros(orig_imgs.shape, dtype=orig_imgs.dtype) orig_imgs_swapped[:, 0, :, :] = orig_imgs[:, 2, :, :] orig_imgs_swapped[:, 1, :, :] = orig_imgs[:, 1, :, :] orig_imgs_swapped[:, 2, :, :] = orig_imgs[:, 0, :, :] # ignore others render(orig_imgs_swapped, mode="image", name=("%d_img" % model_ind), offset=next_img_ind, out_dir=net_name_outdir) render(imgs, mode="image_as_feat", name=("%d_img_feat" % model_ind), offset=next_img_ind, out_dir=net_name_outdir) elif "Potsdam" in config.dataset: render(orig_imgs, mode="image_ir", name=("%d_img" % model_ind), offset=next_img_ind, out_dir=net_name_outdir) render(flat_preds, mode="preds", name=("%d_raw_preds" % model_ind), offset=next_img_ind, colour_map=colour_map_raw, out_dir=net_name_outdir) render(reordered_preds, mode="preds", name=("%d_reordered_preds" % model_ind), offset=next_img_ind, colour_map=colour_map_gt, out_dir=net_name_outdir) render(flat_targets, mode="preds", name=("%d_targets" % model_ind), offset=next_img_ind, colour_map=colour_map_gt, out_dir=net_name_outdir) next_img_ind += num_imgs_curr print("... rendered batch %d, next_img_ind %d " % (b_i, next_img_ind)) sys.stdout.flush() for c in range(config.gt_k): iou = correct_all[c] / float(all_all[c]) print("class %d: name %s: pred %d correct %d all %d %f iou" % (c, all_label_names[c], predicted_all[c], correct_all[c], all_all[c], iou))
the-stack_0_26886
import time from contextlib import suppress import pytest from _pytest.fixtures import FixtureLookupError from junit_report import JunitTestSuite from test_infra.consts import OperatorStatus from tests.base_test import BaseTest from tests.config import ClusterConfig from tests.conftest import get_available_openshift_versions, get_api_client class TestInstall(BaseTest): @pytest.fixture def new_cluster_configuration(self, request): # Overriding the default BaseTest.new_cluster_configuration fixture to set the openshift version. config = ClusterConfig() with suppress(FixtureLookupError): # Resolving the param value. version = request.getfixturevalue("openshift_version") config.openshift_version = version return config @JunitTestSuite() @pytest.mark.parametrize("openshift_version", get_available_openshift_versions()) def test_install(self, cluster, openshift_version): cluster.prepare_for_installation() cluster.start_install_and_wait_for_installed() @JunitTestSuite() @pytest.mark.parametrize("operators", sorted(get_api_client().get_supported_operators())) def test_olm_operator(self, configs, get_nodes, get_cluster, operators, update_olm_config): cluster_config, tf_config = configs update_olm_config(tf_config=tf_config, cluster_config=cluster_config, operators=operators) new_cluster = get_cluster(get_nodes(tf_config, cluster_config), cluster_config) new_cluster.prepare_for_installation() new_cluster.start_install_and_wait_for_installed() assert new_cluster.is_operator_in_status(operators, OperatorStatus.AVAILABLE)
the-stack_0_26887
import os import json from enum import Enum from attributes import AttributeSet from entity import Entity from entity_database import EntityDatabase ItemType = Enum("ItemType", "WEAPON ARMOR HEALING") base = os.path.dirname(__file__) data_file = os.path.join(base, "..", "data", "items.json") item_database = None ######################################################################## class Item(Entity): #################################################################### def __init__(self): super(Item, self).__init__() self.type = ItemType.ARMOR self.min = 0 self.max = 0 self.speed = 0 self.price = 0 self.attributes = AttributeSet() #################################################################### @staticmethod def deserialize_from_dict(item_data): item = Item() for field, value in item_data.items(): if field in ["id", "name", "min", "max", "speed", "price"]: setattr(item, field, value) elif field == "type": item.type = getattr(ItemType, value) else: setattr(item.attributes, field, value) return item ######################################################################## class ItemDatabase(EntityDatabase): #################################################################### def __init__(self): super(ItemDatabase, self).__init__() global item_database item_database = self #################################################################### @staticmethod def load(force=False): global item_database if item_database is None or force: item_database = ItemDatabase() items_data = json.load(open(data_file)) for item_data in items_data: item = Item.deserialize_from_dict(item_data) item_database.by_id[item.id] = item item_database.by_name[item.name.lower()] = item return item_database
the-stack_0_26888
# -*- coding: utf-8 -*- # ---------------------------------------------------------------------- # Dashboard storage # ---------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # Python modules import datetime # Third-party modules import six from mongoengine.document import Document, EmbeddedDocument from mongoengine.fields import ( StringField, DateTimeField, ListField, IntField, BinaryField, EmbeddedDocumentField, ) # NOC modules from noc.aaa.models.user import User from noc.aaa.models.group import Group from noc.core.mongo.fields import ForeignKeyField DAL_NONE = -1 DAL_RO = 0 DAL_MODIFY = 1 DAL_ADMIN = 2 class DashboardAccess(EmbeddedDocument): user = ForeignKeyField(User) group = ForeignKeyField(Group) level = IntField(choices=[(DAL_RO, "Read-only"), (DAL_MODIFY, "Modify"), (DAL_ADMIN, "Admin")]) @six.python_2_unicode_compatible class Dashboard(Document): meta = { "collection": "noc.dashboards", "strict": False, "auto_create_index": False, "indexes": ["owner", "tags"], } title = StringField() # Username owner = ForeignKeyField(User) # description = StringField() # tags = ListField(StringField()) # Config format version format = IntField(default=1) # gzip'ed data config = BinaryField() # created = DateTimeField(default=datetime.datetime.now) changed = DateTimeField(default=datetime.datetime.now) # access = ListField(EmbeddedDocumentField(DashboardAccess)) def __str__(self): return self.title def get_user_access(self, user): # Direct match as owner if user == self.owner or user.is_superuser: return DAL_ADMIN level = DAL_NONE groups = user.groups.all() for ar in self.access: if ar.user and ar.user == user: level = max(level, ar.level) if ar.group and ar.group in groups: level = max(level, ar.level) if level == DAL_ADMIN: return level return level def save( self, force_insert=False, validate=True, clean=True, write_concern=None, cascade=None, cascade_kwargs=None, _refs=None, save_condition=None, **kwargs ): # Split DashBoard Acces to {User, level}, {Group, level} # self.update(add_to_set__access=[parent_1, parent_2, parent_1]) if "access" in getattr(self, "_changed_fields", []): # Check unique processed = [] access = [] for da in sorted(self.access, reverse=True): # Deduplicate rights # @todo changing priority (reverse order) if da.user and "u%d" % da.user.id in processed: continue elif da.group and "g%d" % da.group.id in processed: continue if da.user and da.group: # Split User and Group rights access += [ DashboardAccess(user=da.user.id, level=da.level), DashboardAccess(group=da.group.id, level=da.level), ] processed += ["u%d" % da.user.id, "g%d" % da.group.id] continue access += [da] if da.user: processed += ["u%d" % da.user.id] if da.group: processed += ["g%d" % da.group.id] self.access = access super(Dashboard, self).save( force_insert=force_insert, validate=validate, clean=clean, write_concern=write_concern, cascade=cascade, cascade_kwargs=cascade_kwargs, _refs=_refs, save_condition=save_condition, **kwargs ) def clean_access(self, item=None): """ Clean access rights update2 = {"$push": {"access": {"$each": [{"user": i.user.id, "level": i.level} for i in items]}}} :param item: All, user, group :return: """ match = {"_id": self.id} if item == "user": update = {"$pull": {"access": {"user": {"$exists": True}}}} elif item == "group": update = {"$pull": {"access": {"group": {"$exists": True}}}} else: update = {"$pull": "access"} self._get_collection().update(match, update)
the-stack_0_26889
"""A collection of functions to manipulate polynomials and their coefficients Authors ------- - Colin Cox - Johannes Sahlmann (minor contributions and fixes) References ---------- """ from __future__ import absolute_import, print_function, division import numpy as np import pylab as pl import scipy as sp from scipy import linalg def choose(n, r): """The number of ways of choosing r items from n""" if n < 0 or r < 0: print('Negative values not allowed') return 0 if r > n: print('r must not be greater than n') return 0 combin = 1 if r > n / 2: r1 = n - r else: r1 = r for k in range(r1): combin = combin * (n - k) // (k + 1) return combin def dpdx(a, x, y, order=4): """Differential with respect to x :param a: :param x: :param y: :param order: :return: """ dpdx = 0.0 k = 1 # index for coefficients for i in range(1, order + 1): for j in range(i + 1): if i - j > 0: dpdx = dpdx + (i - j) * a[k] * x ** (i - j - 1) * y ** j k += 1 return dpdx def dpdy(a, x, y, order=4): """Differential with respect to y :param a: :param x: :param y: :param order: :return: """ dpdy = 0.0 k = 1 # index for coefficients for i in range(1, order + 1): for j in range(i + 1): if j > 0: dpdy = dpdy + j * a[k] * x ** (i - j) * y ** (j - 1) k += 1 return dpdy def flatten(A, order): """Convert triangular layout to linear array""" terms = (order+1)*(order+2)//2 AF = sp.zeros(terms) k = 0 for i in range(order+1): for j in range(i+1): AF[k] = A[i, j] k += 1 return AF def FlipX(A, order=4): """Change sign of all coefficients with odd x power""" terms = (order+1)*(order+2)//2 AF = sp.zeros(terms) k = 0 for i in range(order+1): for j in range(i+1): AF[k] = (-1)**(i-j)*A[k] k += 1 return AF def FlipXY(A, order=4): "Change sign for coeffs where sum of x and y powers is odd" terms = (order+1)*(order+2)//2 AF = sp.zeros(terms) k = 0 for i in range(order+1): for j in range(i+1): AF[k] = (-1)**(i)*A[k] k += 1 return AF def FlipY(A, order = 4): """Change sign of all coefficients with odd y power""" terms = (order+1)*(order+2)//2 AF = sp.zeros(terms) k = 0 for i in range(order+1): for j in range(i+1): AF[k] = (-1)**(j)*A[k] k += 1 return AF def invert(a, b, u, v, n, verbose=False): """Given that order n polynomials of (x,y) have the result (u,v), find (x,y) Newton Raphson method in two dimensions""" tol = 1.0e-6 err = 1.0 # Initial guesses - Linear approximation det = a[1] * b[2] - a[2] * b[1] x0 = (b[2] * u - a[2] * v) / det y0 = (-b[1] * u + a[1] * v) / det if verbose: print('Initial guesses', x0, y0) x = x0 y = y0 X = sp.array([x, y]) iter = 0 while err > tol: f1 = sp.array([poly(a, x, y, n) - u, poly(b, x, y, n) - v]) j = sp.array([[dpdx(a, x, y, n), dpdy(a, x, y, n)], [dpdx(b, x, y, n), dpdy(b, x, y, n)]]) invj = sp.linalg.inv(j) X = X - sp.dot(invj, f1) if verbose: print('[X1,Y1]', X) x1 = X[0] y1 = X[1] err = sp.hypot(x - x1, y - y1) if verbose: print('Error %10.2e' % err) [x, y] = [x1, y1] iter += 1 return x, y, err, iter def jacob(a, b, x, y, order=4): """Calculation of Jacobean, or relative area""" j = dpdx(a, x, y,order)*dpdy(b, x, y,order) - dpdx(b, x, y,order)*dpdy(a, x, y,order) j = sp.fabs(j) return j def nircam_reorder(A, B, order): """Changes coefficient order from y**2 xy x**2 to x**2 xy y**2 :param A: :param B: :param order: :return: """ terms = (order + 1) * (order + 2) // 2 A2 = np.zeros((terms)) B2 = np.zeros((terms)) for i in range(order + 1): ti = i * (i + 1) // 2 for j in range(i + 1): A2[ti + j] = A[ti + i - j] B2[ti + j] = B[ti + i - j] return (A2, B2) def poly(a, x, y, order=4): """Return polynomial :param a: :param x: :param y: :param order: :return: """ pol = 0.0 k = 0 # index for coefficients for i in range(order+1): for j in range(i+1): pol = pol + a[k]*x**(i-j)*y**j k+=1 return pol def polyfit(u, x, y, order): """Fit polynomial to a set of u values on an x,y grid u is a function u(x,y) being a polynomial of the form u = a[i, j] x**(i-j) y**j. x and y can be on a grid or be arbitrary values""" # First set up x and y powers for each coefficient px = [] py = [] for i in range(order + 1): for j in range(i + 1): px.append(i - j) py.append(j) terms = len(px) # print terms, ' terms for order ', order # print px # print py # Make up matrix and vector vector = sp.zeros((terms)) mat = sp.zeros((terms, terms)) for i in range(terms): vector[i] = (u * x ** px[i] * y ** py[i]).sum() for j in range(terms): mat[i, j] = (x ** px[i] * y ** py[i] * x ** px[j] * y ** py[j]).sum() # print 'Vector', vector # print 'Matrix' # print mat imat = linalg.inv(mat) # print 'Inverse' # print imat # Check that inversion worked # print sp.dot(mat,imat) coeffs = sp.dot(imat, vector) return coeffs def polyfit2(u, x, y, order): """Fit polynomial to a set of u values on an x,y grid u is a function u(x,y) being a polynomial of the form u = a[i, j]x**(i-j)y**j. x and y can be on a grid or be arbitrary values This version uses solve instead of matrix inversion""" # First set up x and y powers for each coefficient px = [] py = [] for i in range(order + 1): for j in range(i + 1): px.append(i - j) py.append(j) terms = len(px) # print terms, ' terms for order ', order # print px # print py # Make up matrix and vector vector = sp.zeros((terms)) mat = sp.zeros((terms, terms)) for i in range(terms): vector[i] = (u * x ** px[i] * y ** py[i]).sum() # Summing over all x,y for j in range(terms): mat[i, j] = (x ** px[i] * y ** py[i] * x ** px[j] * y ** py[j]).sum() coeffs = linalg.solve(mat, vector) return coeffs def reorder(A, B, verbose=False) : """Reorder Sabatke coefficients to Cox convention""" order = 5 terms = (order+1)*(order+2)//2 Aarray = sp.zeros((order+1,order+1)) Barray = sp.zeros((order+1,order+1)) k1 = 0 for i in range(order+1): for j in range(order+1-i): Aarray[j,i] = A[k1] Barray[j,i] = B[k1] k1 += 1 A2 = sp.zeros((terms)) B2 = sp.zeros((terms)) k2 = 0 for i in range(order+1): for j in range(i+1): A2[k2] = Aarray[j,i-j] B2[k2] = Barray[j,i-j] k2 += 1 if verbose: print('A') triangle(A2, order) print('\nB') triangle(B2, order) return (A2, B2) def rescale(A, B, C, D, order, scale): """ Change coefficients to arcsec scale Ported here from makeSIAF.py J. Sahlmann 2018-01-03 J. Sahlmann 2018-01-04: fixed side-effect on ABCD variables :param A: :param B: :param C: :param D: :param order: :param scale: :return: """ A_scaled = scale*A B_scaled = scale*B number_of_coefficients = np.int((order + 1) * (order + 2) / 2) C_scaled = np.zeros(number_of_coefficients) D_scaled = np.zeros(number_of_coefficients) k = 0 for i in range(order+1): factor = scale**i for j in range(i+1): C_scaled[k] = C[k]/factor D_scaled[k] = D[k]/factor k += 1 return A_scaled, B_scaled, C_scaled, D_scaled def Rotate(A,B,theta): """ Ported to here from makeSIAF.py J. Sahlmann 2018-01-03 :param A: :param B: :param theta: :return: """ A2 = A*np.cos(theta) + B*np.sin(theta) B2 = - A*np.sin(theta) + B*np.cos(theta) return (A2,B2) def rotate_coefficients(A, B, angle_deg): """ J. Sahlmann: this version of rotate_coeffs is used in nircam_get_polynomial_both :param A: :param B: :param angle_deg: :return: """ AR = A * np.cos(np.deg2rad(angle_deg)) - B * np.sin(np.deg2rad(angle_deg)) BR = A * np.sin(np.deg2rad(angle_deg)) + B * np.cos(np.deg2rad(angle_deg)) return AR, BR def RotateCoeffs(a, theta, order=4, verbose=False): """Rotate axes of coefficients by theta degrees""" c = np.cos(np.deg2rad(theta)) s = np.sin(np.deg2rad(theta)) # First place in triangular layout at = sp.zeros([order+1,order+1]) k = 0 for m in range(order+1): for n in range(m+1): at[m, n] = a[k] k+=1 # Apply rotation atrotate = sp.zeros([order+1,order+1]) arotate = sp.zeros([len(a)]) # Copy shape of a for m in range(order+1): for n in range(m+1): for mu in range(0,m-n+1): for j in range(m-n-mu, m-mu+1): factor = (-1)**(m-n-mu)*choose(m-j, mu)*choose(j, m-n-mu) cosSin = c**(j+2*mu-m+n)*s**(2*m-2*mu-j-n) atrotate[m, n] = atrotate[m, n] + factor*cosSin*at[m, j] if verbose: print(m, n, j, factor, 'cos^', j+2*mu-m+n, 'sin^',2*m-2*mu-j-n, ' A',m, j) # Put back in linear layout k = 0 for m in range(order+1): for n in range(m+1): arotate[k] = atrotate[m, n] k+=1 return arotate def ShiftCoeffs(a, xshift, yshift, order=4, verbose=False): """Calculate coefficients of polynomial when shifted to new origin""" # First place in triangular layout at = sp.zeros([order + 1, order + 1]) atshift = sp.zeros([order + 1, order + 1]) ashift = sp.zeros([len(a)]) # Copy shape of a k = 0 for p in range(order + 1): for q in range(p + 1): at[p, q] = a[k] k += 1 # Apply shift for p in range(order + 1): for q in range(p + 1): if verbose: print("A'%1d%1d" % (p, q)) for i in range(p, order + 1): for j in range(q, i + 1 - (p - q)): f = choose(j, q) * choose(i - j, p - q) atshift[p, q] = atshift[p, q] + f * xshift ** ((i - j) - (p - q)) * yshift ** ( j - q) * at[i, j] if verbose: print('%2d A(%1d,%1d) x^%1d y^%1d' % (f, i, j, i - j - (p - q), (j - q))) if verbose: print() # Put back in linear layout k = 0 for p in range(order + 1): for q in range(p + 1): ashift[k] = atshift[p, q] k += 1 return ashift def testpoly(): [x, y] = sp.mgrid[0:10, 0:10] # print 'X' # print x # print 'Y' # print y u = sp.zeros((10, 10)) v = sp.zeros((10, 10)) # Random polynomials a0 = sp.random.rand(1) a1 = 0.1 * (sp.random.rand(2) - 0.5) a2 = 0.01 * (sp.random.rand(3) - 0.5) a = sp.concatenate((a0, a1)) a = sp.concatenate((a, a2)) a[2] = 0.01 * a[2] print('A coefficients') print(a) b0 = sp.random.rand(1) b1 = 0.1 * (sp.random.rand(2) - 0.5) b2 = 0.01 * (sp.random.rand(3) - 0.5) b = sp.concatenate((b0, b1)) b = sp.concatenate((b, b2)) b[1] = 0.01 * b[1] print('B coeffcicients') print(b) for i in range(10): for j in range(10): u[i, j] = poly(a, x[i, j], y[i, j], 2) # + sp.random.normal(0.0, 0.01) v[i, j] = poly(b, x[i, j], y[i, j], 2) # + sp.random.normal(0.0,0.01) # print z s1 = polyFit2(u, x, y, 2) s2 = polyFit2(v, x, y, 2) print('S1', s1) print('S2', s2) uc = poly(s1, x, y, 2) vc = poly(s2, x, y, 2) pl.figure(1) pl.clf() pl.grid(True) pl.plot(u, v, 'gx') pl.plot(uc, vc, 'r+') def TransCoeffs(A, a, b, c, d, order=4, verbose=False): """Transform polynomial coefficients to allow for xp = a*x + b*y yp = c*x + d*y""" A1 = sp.zeros((order + 1, order + 1)) A2 = sp.zeros((order + 1, order + 1)) ncoeffs = (order + 1) * (order + 2) // 2 if verbose: print(ncoeffs, 'coefficients for order', order) AT = sp.zeros((ncoeffs)) # First place A in triangular layout k = 0 for i in range(order + 1): for j in range(i + 1): A1[i, j] = A[k] k += 1 for m in range(order + 1): for n in range(m + 1): if verbose: print('\nM,N', m, n) for mu in range(m - n + 1): for j in range(m - n - mu, m - mu + 1): if verbose: print('J, MU', j, mu) if verbose: print('Choose', m - j, mu, 'and', j, m - n - mu) factor = choose(m - j, mu) * choose(j, m - n - mu) A2[m, n] += factor * a ** mu * b ** (m - j - mu) * c ** (m - n - mu) * d ** ( mu + j - m + n) * A1[m, j] if verbose: print(m, j, ' Factor', factor) # Restore A2 to flat layout in AT k = 0 for m in range(order + 1): for n in range(m + 1): AT[k] = A2[m, n] k += 1 return AT def triangle(A, order=4): """Print coefficients in triangular layout""" k = 0 for i in range(order + 1): for j in range(i + 1): print('%12.5e' % A[k], end=' ') k += 1 print() def triangulate(A, order): """Convert linear array to 2-D array with triangular coefficient layout""" AT = sp.zeros((order + 1, order + 1)) k = 0 for i in range(order + 1): for j in range(i + 1): AT[i, j] = A[k] k += 1 return AT def two_step(A, B, a, b, order): """ Change coefficients when xp = a[0] + a[1].x + a[2].y yp = b[0] + b[1].x + b[2].y :param A: :param B: :param a: :param b: :param order: :return: """ terms = (order+1)*(order+2)//2 A2 = sp.zeros((order+1,order+1)) B2 = sp.zeros((order+1,order+1)) k=0 for i in range(order+1): for j in range(i+1): for alpha in range(i-j+1): for beta in range(i-j-alpha+1): f1 = choose(i-j,alpha)*choose(i-j-alpha, beta)*a[0]**(i-j-alpha-beta)*a[1]**alpha*a[2]**beta for gamma in range(j+1): for delta in range(j-gamma+1): f2 = choose(j,gamma)*choose(j-gamma,delta)*b[0]**(j-gamma-delta)*b[1]**gamma*b[2]**delta A2[alpha+beta+gamma+delta, beta+delta] += A[k]*f1*f2 B2[alpha+beta+gamma+delta, beta+delta] += B[k]*f1*f2 k += 1 # Flatten A@ and B2 k = 0 Aflat = sp.zeros(terms) Bflat = sp.zeros(terms) for i in range(order+1): for j in range(i+1): Aflat[k] = A2[i, j] Bflat[k] = B2[i, j] k += 1 return (Aflat, Bflat) # def TestTwoStep(): # A = sp.array([10.0, 2.0, 0.1, 0.01, -0.02, 0.03]) # B = sp.array([4.0, 1.8, 0.2, 0.02, 0.03, -0.02]) # a = sp.array([1.0, 0.5, 0.1]) # b = sp.array([2.0, 0.2, 0.6]) # print('\nA') # triangle(A,2) # print('B') # triangle(B,2) # print('a\n',a) # print('b\n', b) # (A2, B2) = TwoStep(A,B,a, b,2) # print('\nA2') # triangle(A2,2) # print('B2') # triangle(B2,2) # # # Now do a test calculation # (x,y) = (10,5) # xp = a[0] + a[1]*x + a[2]*y # yp = b[0] + b[1]*x + b[2]*y # print('x,y', x,y) # print('xp,yp', xp,yp) # # u = poly(A, xp, yp, 2) # v = poly(B, xp, yp, 2) # up = poly(A2, x, y,2) # vp = poly(B2, x, y,2) # print('Two step', u, v) # print('One step', up, vp) # return
the-stack_0_26890
import numpy as np import pandas as pd import nltk nltk.download('stopwords') nltk.download('punkt') nltk.download('averaged_perceptron_tagger') nltk.download('wordnet') from numpy import random from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import BernoulliNB from sklearn.naive_bayes import MultinomialNB from sklearn.neighbors import KNeighborsClassifier from nltk.corpus import stopwords from nltk.corpus import wordnet from nltk.stem import WordNetLemmatizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.linear_model import LogisticRegression from app.http.api.dbquery import doInsertRequest def pre_processing(inputStr): data = pd.read_csv('./Symptom_severity_training_data_updated.csv') STOPWORDS = (stopwords.words('english')) STOPWORDS.remove('not') STOPWORDS.remove('very') STOPWORDS.append('need') STOPWORDS.append('want') STOPWORDS.append('feel') lemmatizer = WordNetLemmatizer() def nltk_tag_to_wordnet_tag(nltk_tag): if nltk_tag.startswith('J'): return wordnet.ADJ elif nltk_tag.startswith('V'): return wordnet.VERB elif nltk_tag.startswith('N'): return wordnet.NOUN elif nltk_tag.startswith('R'): return wordnet.ADV else: return None def lemmatize_sentence(sentence): nltk_tagged = nltk.pos_tag(nltk.word_tokenize(sentence)) wordnet_tagged = map(lambda x: (x[0], nltk_tag_to_wordnet_tag(x[1])), nltk_tagged) lemmatized_sentence = [] for word, tag in wordnet_tagged: if tag is None: lemmatized_sentence.append(word) else: lemmatized_sentence.append(lemmatizer.lemmatize(word, tag)) return " ".join(lemmatized_sentence) def clean_text(text): """ text: a string return: modified initial string """ text = text.lower() text = lemmatize_sentence(text) text =' '.join(word for word in text.split() if word not in STOPWORDS) return text data['Symptom']=data['Symptom'].apply(clean_text) X = data.Symptom Y_classification = data.weight X_train, X_test, y_train, y_test = train_test_split(X, Y_classification, test_size=0.2, random_state=2) nb=Pipeline([('Vect', CountVectorizer(ngram_range=([1,3]))), ('tfidf', TfidfTransformer()), ('clf', MultinomialNB()), ]) nb.fit(X_train, y_train) sgd =Pipeline([('Vect', CountVectorizer(ngram_range=([1,3]))), ('tfidf', TfidfTransformer()), ('clf', SGDClassifier(loss='hinge', random_state=2, max_iter=5, tol=None)), ]) sgd.fit(X_train, y_train) logreg =Pipeline([('Vect', CountVectorizer(ngram_range=([1,3]))), ('tfidf', TfidfTransformer()), ('clf', LogisticRegression(C=1e5)), ]) logreg.fit(X_train, y_train) dt =Pipeline([('Vect', CountVectorizer(ngram_range=([1,3]))), ('tfidf', TfidfTransformer()), ('clf', DecisionTreeClassifier(criterion='gini',random_state=2)), ]) dt.fit(X_train, y_train) knn =Pipeline([('Vect', CountVectorizer(ngram_range=([1,3]))), ('tfidf', TfidfTransformer()), ('clf', KNeighborsClassifier(n_neighbors=5)), ]) knn.fit(X_train, y_train) input = clean_text(inputStr) result1=nb.predict([input]) result2=sgd.predict([input]) result3=logreg.predict([input]) result4=dt.predict([input]) result5=knn.predict([input]) def most_frequent(List): counter=0 num=0 for i in List: curr_freq=List.count(i) if(curr_freq>counter): counter=curr_freq num=i return num result=[result1, result2, result3, result4, result5] finalresult=' '.join([str(elem) for elem in most_frequent(result)]) print(result, finalresult) random_roomno=random.randint(1,20) request_args = {'req_src_room':str(random_roomno), 'req_message':input, 'req_class':int(finalresult)} return doInsertRequest(**request_args)
the-stack_0_26891
import numpy as np import easyvvuq as uq import os import fabsim3_cmd_api as fab import matplotlib.pyplot as plt from scipy import stats def get_kde(X, Npoints = 100): kernel = stats.gaussian_kde(X) x = np.linspace(np.min(X), np.max(X), Npoints) pde = kernel.evaluate(x) return x, pde #post processing of UQ samples executed via FabSim. All samples must have been completed #before this subroutine is executed. Use 'fabsim <machine_name> job_stat' to check their status def post_proc(state_file, work_dir): #Reload the campaign my_campaign = uq.Campaign(state_file = state_file, work_dir = work_dir) print('========================================================') print('Reloaded campaign', my_campaign.campaign_dir.split('/')[-1]) print('========================================================') #get sampler and output columns from my_campaign object my_sampler = my_campaign._active_sampler output_columns = my_campaign._active_app_decoder.output_columns #copy the samples back to EasyVVUQ dir fab.fetch_results() #copy the results back to the EasyVVUQ Campaign directory fab.get_uq_samples('ocean', my_campaign.campaign_dir, my_sampler._number_of_samples) #collate output my_campaign.collate() # Post-processing analysis sc_analysis = uq.analysis.SCAnalysis(sampler=my_sampler, qoi_cols=output_columns) my_campaign.apply_analysis(sc_analysis) results = my_campaign.get_last_analysis() return results, sc_analysis, my_sampler, my_campaign if __name__ == "__main__": #home dir of this file HOME = os.path.abspath(os.path.dirname(__file__)) work_dir = "/tmp" results, sc_analysis, my_sampler, my_campaign = post_proc(state_file="campaign_state_test.json", work_dir = work_dir) print('========================================================') print('First order Sobol indices Energy:') print(results['sobols_first']['E_mean']) for param in my_sampler.vary.get_keys(): print('Parameter', param, 'accounts for', np.around(results['sobols_first']['E_mean'][param], 2)[0]*100, '% of the total variance of the energy.') print('========================================================') ################################# # Use SC expansion as surrogate # ################################# #number of MC samples n_mc = 50000 fig = plt.figure() ax = fig.add_subplot(111, xlabel=r'$Energy$', yticks = []) #get the input distributions theta = my_sampler.vary.get_values() xi = np.zeros([n_mc, 2]) idx = 0 #draw random sampler from the input distributions for theta_i in theta: xi[:, idx] = theta_i.sample(n_mc) idx += 1 #evaluate the surrogate at the random values Q = 'E_mean' qoi = np.zeros(n_mc) for i in range(n_mc): qoi[i] = sc_analysis.surrogate(Q, xi[i]) #plot kernel density estimate of surrogate samples x, kde = get_kde(qoi) plt.plot(x, kde, label=r'$\mathrm{Energy\;pdf}$') plt.legend() plt.tight_layout() plt.show()
the-stack_0_26893
import os import re from setuptools import find_packages, setup ROOT = os.path.dirname(__file__) VERSION_RE = re.compile(r"""__version__ = ['"]([0-9.]+)['"]""") requires = [ "boto3>=1.16.63", "cryptography>=3.3.1", ] def get_version(): """Reads the version from this module.""" init = open(os.path.join(ROOT, "s3_encryption_sdk", "__init__.py")).read() return VERSION_RE.search(init).group(1) setup( name="s3-encryption-sdk", version=get_version(), description="S3 Encryption Client for Python", long_description=open("README.rst").read(), keywords="aws s3 kms client-side-encryption", author="hupe1980", url="https://github.com/hupe1980/aws-s3-encryption-python", packages=find_packages(exclude=["tests*"]), install_requires=requires, data_files=["README.rst", "LICENSE"], license="MIT", python_requires=">= 3.6", classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Natural Language :: English", "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Topic :: Security", "Topic :: Security :: Cryptography", ], )
the-stack_0_26895
# *************************************************************** # Copyright (c) 2021 Jittor. All Rights Reserved. # Maintainers: Dun Liang <[email protected]>. # This file is subject to the terms and conditions defined in # file 'LICENSE.txt', which is part of this source code package. # *************************************************************** import re import os from jittor_utils import LOG, run_cmd, simple_timer import json from collections import OrderedDict import glob def parse_attrs(s): '''parse @attrs(..., x=y) syntax''' attrs = {} if s is None: return attrs for a in s.split(','): a = a.strip() if len(a)==0: continue if '=' in a: k, v = a.split('=') attrs[k] = v else: attrs[a] = 1 return attrs pytype_map = { "const char*": ["PyUnicode_AsUTF8", "PyUnicode_FromString", "PyUnicode_CheckExact"], "int": ["PyLong_AsLong", "PyLong_FromLong", "PyLong_CheckExact"], "int64": ["PyLong_AsLongLong", "PyLong_FromLongLong", "PyLong_CheckExact"], "uint": ["PyLong_AsUnsignedLong", "PyLong_FromUnsignedLong", "PyLong_CheckExact"], "uint64": ["PyLong_AsUnsignedLongLong", "PyLong_FromUnsignedLongLong", "PyLong_CheckExact"], "void": ["...", "GET_PY_NONE", "..."], "PyObject*": ["","",""], } def get_pytype_map(T, i): assert T != "" if T in pytype_map: return pytype_map[T][i] return ["from_py_object", "to_py_object", "is_type"][i]+"<"+T+">" binary_number_slots = { "__add__": "nb_add", "__sub__": "nb_subtract", "__mul__": "nb_multiply", "__mod__": "nb_remainder", "__divmod__": "nb_divmod", "__pow__": "nb_power", "__lshift__": "nb_lshift", "__rshift__": "nb_rshift", "__and__": "nb_and", "__xor__": "nb_xor", "__or__": "nb_or", "__floordiv__": "nb_floor_divide", "__truediv__": "nb_true_divide", "__matmul__": "nb_matrix_multiply", } for k,v in list(binary_number_slots.items()): # __add__: nb_add ----> __iadd: nb_inplace_add binary_number_slots["__i"+k[2:]] = "nb_inplace"+v[2:] unary_number_slots = { "__neg__": "nb_negative", "__abs__": "nb_absolute", } def split_args(s): # split args xxx,xxx, xx<xx,xx>, xx s = s.strip() if s=="": return [] prev = -1 presum = 0 args = [] for i in range(len(s)): if s[i]=='<': presum += 1 elif s[i]=='>': presum -= 1 if presum==0 and s[i]==',': args.append(s[prev+1:i]) prev = i args.append(s[prev+1:]) return args def get_def_code(df, scope_name, pyname, self_as_arg0=False): is_fast_call = not pyname.startswith("__") no_need_convert = pyname == "__getitem__" args = df["args"] # n==1 && PyXXX__CheckExact(args[0]) && ... max_args = len(args) min_args = max_args for tid, a in enumerate(args): if a[2] != "": min_args = tid break arg_names = [ f"args[{i}]" for i in range(len(args))] if self_as_arg0: max_args -= 1 min_args -= 1 arg_names = ["self"] + arg_names[:-1] kw_args_id = [] for aid, arg in enumerate(args): if "VarHolder*" != arg[0] and is_fast_call: kw_args_id.append(aid) func_quick_check_runable = "" func_quick_check_size = f"n<={max_args} && n>={min_args}" if len(kw_args_id): func_quick_check_size = f"n+(kw?Py_SIZE(kw):0)<={max_args} && n+(kw?Py_SIZE(kw):0)>={min_args}" fill_with_default = "" func_args_convert = "" func_call = df["func_name"]+"(" pytypes = [ get_pytype_map(a[0],0) for a in args ] holder_dec_array = [] holder_set_array = [] for tid, tpc in enumerate(pytypes): check = get_pytype_map(args[tid][0],2) default_arg = args[tid][2] jtp = args[tid][0] holder_dec = "" holder_set = "" if jtp == "VarHolder*": holder_dec = f"unique_ptr<VarHolder> arg{tid}_holder" holder_set = f", arg{tid}_holder" if jtp == "VarSlices": holder_dec = f"vector<unique_ptr<VarHolder>> arg{tid}_holder" holder_set = f", arg{tid}_holder" holder_dec_array.append(holder_dec) holder_set_array.append(holder_set) if len(default_arg): func_args_convert += f""" {holder_dec}; {jtp} arg{tid}; if (n>{tid-self_as_arg0}) {{ CHECK(({check}({arg_names[tid]}))); arg{tid} = {tpc}({arg_names[tid]}{holder_set}); arg_filled |= 1ull << {tid}; }} """ fill_with_default += f""" if (!(arg_filled & (1ull<<{tid}))) {{ arg{tid} = {default_arg}; }} """ else: func_quick_check_runable += f" && {check}({arg_names[tid]})" func_args_convert += f""" {holder_dec}; {jtp} arg{tid} = {tpc}({arg_names[tid]}{holder_set}); """ if tid: func_call += "," if args[tid][3].endswith("&&"): func_call += f"move(arg{tid})" else: func_call += f"arg{tid}" if pyname == "__richcmp__": for rname in [ "__lt__", "__le__", "__gt__", "__ge__", "__eq__", "__ne__"]: if rname in df["attrs"]: func_quick_check_runable += " && op==Py_"+rname[2:-2].upper() # fill args with keyword arguments fill_with_kw = "" if is_fast_call and len(kw_args_id): fill_with_kw = f""" if (kw) {{ auto kw_n = Py_SIZE(kw); for (int i=0; i<kw_n; i++) {{ auto ko = PyTuple_GET_ITEM(kw, i); auto vo = args[i+n]; auto ks = PyUnicode_AsUTF8(ko); uint khash = hash(ks); {"".join([ f''' if (khash == {get_hash(args[aid][1])}u) {{ // hash match {args[aid][1]} CHECK(({get_pytype_map(args[aid][0],2)}(vo))); arg{aid} = {pytypes[aid]}(vo{holder_set_array[aid]}); arg_filled |= 1ull << {aid}; continue; }} ''' for aid in kw_args_id ])} LOGf << "Not a valid keyword:" << ks; }} }} """ if len(args): func_args_convert += """ CHECK(!PyErr_Occurred()); """ func_call += ")" if df["is_property"]: if pyname.startswith("__get__"): func_call = df["func_name"] else: assert pyname.startswith("__set__"), pyname func_call = df["func_name"] + "= arg0" has_return = df["return_t"]!="void" and df["return_t"]!="" # add XXX::xxx or XXX->xxx if is class def if df["is_scope_def"]: if df["is_static"]: func_call = f"{scope_name}::" + func_call else: func_call = f"(GET_RAW_PTR({scope_name},self))->" + func_call if pyname == "__init__": # XXX->xxx(...) ---> new XXX xxx(...) assert "->" in func_call, func_call func_call = "new " + func_call.replace("->", " ") if no_need_convert: func_quick_check_runable = "" func_args_convert = "" fill_with_kw = fill_with_default = "" return ( func_quick_check_size + func_quick_check_runable, func_args_convert, fill_with_kw+fill_with_default, func_call, has_return ) hash_to_key_map = {} def get_hash(s): mask = (1<<32)-1 v=0 mul = 1 for c in s: v += mul * ord(c) mul *= 55 v &= mask mul &= mask if v in hash_to_key_map: assert hash_to_key_map[v] == s, \ f"hash conflict {hash_to_key_map[v]} {s} {hash_to_key_map}" hash_to_key_map[v] = s return v reg = re.compile( '(/\\*(.*?)\\*/\\s*)?(//\\s*@pyjt\\(([^\\n]*)\\)\\s*)' # ^^^^^^^^^^^^^^^^^ ^^^^ ^^^^ # doc string $1 pyjt args $3 + '(//\\s*@attrs\\(([^\\n]*)\\)\\s*)?' # ^^^^^ ^^^^^^^ # attrs args $5 , re.DOTALL) def generate_error_code_from_func_header(func_head, target_scope_name, name, dfs, basename, h, class_info): # func_head is a string like: # (PyObject* self, PyObject** args, int64 n, PyObject* kw) -> PyObject* lib_name = os.path.basename(h).split("_")[0] # TODO: fix/add var help if target_scope_name == "Var": target_scope_name = None if target_scope_name: if target_scope_name == "flags": help_name = "flags" else: help_name = ""+target_scope_name+'.'+name else: help_name = name if lib_name in ["mpi", "nccl", "cudnn", "curand", "cublas", "mkl"]: help_name = lib_name+'.'+help_name help_cmd = f"help(jt.{help_name})" LOG.vvv("gen err from func_head", func_head) args = func_head[1:].split(")")[0].split(",") error_code = f" << \"Wrong inputs arguments, Please refer to examples({help_cmd}).\"" error_code += r' << "\n\nTypes of your inputs are:\n"' for arg in args: arg = arg.strip() if arg.startswith("PyObject* "): t, n = arg.split(' ') if n == "args" or n == "_args": error_code += f" << PyTupleArgPrinter{{{n}, \"args\"}} " elif n == "kw": error_code += f" << PyKwArgPrinter{{{n}}} " else: error_code += f" << PyArgPrinter{{{n}, \"{n}\"}} " elif arg.startswith("PyObject** "): t, n = arg.split(' ') error_code += f" << PyFastCallArgPrinter{{{n}, n, kw}} " break else: LOG.vvv("Unhandled arg", arg) LOG.vvv("gen err from func_head", func_head, " -> ", error_code) return error_code def compile_src(src, h, basename): res = list(reg.finditer(src, re.S)) if len(res)==0: return class_ranges = None class_name = None class_info = None submodule_name = None submodule_ranges = None submodule_info = None defs = [] LOG.vv(("find in", h)) for x in res: LOG.vvv((x, x.groups())) g = x.groups() doc = g[1] pyjt = g[3] attrs = g[5] esplit = lambda x: [] if x==None else \ [ a.strip() for a in x.split(",") if len(a.strip()) ] attrs = parse_attrs(attrs) pynames = esplit(pyjt) end = x.end() def find_bc(i): while src[i] not in "({;": i += 1 j = i+1 if src[i]==';': return i, j presum = 1 while True: if src[j] in "({[": presum += 1 elif src[j] in ")}]": presum -= 1 if presum==0: s = src[i]+src[j] assert s in ("()","{}","()"), "braces not match "+s return i, j j += 1 # // @pyjt(DType) # struct DType { # ^ --> a # ..... # } <--- b # or # // @pyjt(hash) # inline uint hash(const char* input) # ^ --> a ^ --> b a, b = find_bc(end) is_property = 0 if src[a] == ';': # This case # class XXX { # // @pyjt(property) # T property; # } is_property = 1 if src[a] == '{': assert len(pynames)==1 if "submodule" in attrs: assert submodule_ranges==None submodule_ranges = (a, b) submodule_name = src[end:a-1].strip().split()[-1] submodule_info = { "pynames": pynames, "attrs": attrs } continue assert class_ranges==None class_ranges = (a, b) class_name = src[end:a-1].strip().split()[-1] class_info = { "pynames": pynames, "attrs": attrs } continue is_scope_def = False is_static = False scope_name = "" if class_ranges != None: if class_ranges[0] < a and a < class_ranges[1]: is_scope_def = True scope_name = class_name if submodule_ranges != None: if submodule_ranges[0] < a and a < submodule_ranges[1]: is_scope_def = True scope_name = submodule_name is_static = True dec = src[end:b+1].strip() arr = src[end:a].strip().split() func_name = arr[-1] is_constructor = False if is_scope_def and func_name==class_name: is_constructor = True args = [] for arg in split_args(src[a+1:b]): if arg=="": continue default = "" if "=" in arg: arg, default = arg.split('=') default = default arg = arg.strip() name = arg.split(' ')[-1] tp = arg[:-len(name)] tp = tp.strip() prev_tp = tp # const string& ----> string if tp.startswith("const") and tp.endswith("&"): tp = tp[5:-1].strip() # T&& -> T if tp.endswith("&&"): tp = tp[:-2].strip() # ArrayArgs& -> ArrayArgs if tp.endswith("&"): tp = tp[:-1].strip() args.append((tp, name.strip(), default.strip(), prev_tp)) return_t = "" for a in arr[:-1]: if a in ["", "inline", "constexpr"]: continue if a == "static": is_static = True continue if return_t != "": return_t += " " return_t += a if is_scope_def and class_info and "submodule" in class_info["attrs"]: is_static = True for pid, pyname in enumerate(pynames): for rname in [ "__lt__", "__le__", "__gt__", "__ge__", "__eq__", "__ne__"]: if pyname.endswith(rname): attrs[rname] = 1 pynames[pid] = pyname.replace(rname, "__richcmp__") def_info = { "is_scope_def": is_scope_def, "is_constructor": is_constructor, "is_static": is_static, "is_property": is_property, "func_name": func_name, "args": args, # [(type,name,defaut), ...] "return_t": return_t, # return type "dec": dec, # full string of xxx(A a, B b) "pynames": pynames, # names in @pyjt(...) "attrs": attrs, # attrs in @attrs(...) "doc": doc, "scope_name": scope_name, } if is_property: # This case # class XXX { # // @pyjt(property) # T property; # } assert is_scope_def and not is_static def_info["is_property"] = 1 def_info["pynames"] = ["__get__"+n for n in pynames] assert return_t != "void" defs.append(dict(def_info)) def_info["pynames"] = ["__set__"+n for n in pynames] assert len(args) == 0 def_info["args"] = [(def_info["return_t"], func_name, "", "")] def_info["return_t"] = "void" defs.append(dict(def_info)) continue else: defs.append(def_info) LOG.vvv(lambda: json.dumps(def_info, indent=4)) # deal with defs if len(defs) == 0: return # include_name = h[4:] # remove "src/" prefix include_name = h code = [] class_defs_code = [] class_getsets_code = [] class_gets = OrderedDict() class_sets = OrderedDict() class_slots_code = [] submodule_defs_code = [] def_targets = OrderedDict() for df in defs: for name in df["pynames"]: if df["is_scope_def"] and '.' not in name: if df["scope_name"] == class_name: name = class_info["pynames"][0] + '.' + name else: name = submodule_info["pynames"][0] + '.' + name if name not in def_targets: def_targets[name] = [] def_targets[name].append(df) for name in def_targets: dfs = def_targets[name] target_scope_name = None LOG.vv(name) if "." in name: target_scope_name, name = name.split(".") # array for each df: arr_func_quick_check_runable = [] arr_func_args_convert = [] arr_fill_with_default = [] arr_func_call = [] arr_has_return = [] self_as_arg0 = False for df in dfs: self_as_arg0 = class_info and \ target_scope_name == class_info["pynames"][0] and \ df["scope_name"] == submodule_name \ and not name.startswith("__") res = get_def_code(df, df["scope_name"], name, bool(self_as_arg0)) arr_func_quick_check_runable.append(res[0]) arr_func_args_convert.append(res[1]) arr_fill_with_default.append(res[2]) arr_func_call.append(res[3]) arr_has_return.append(res[4]) slot_name = None func_cast = "" func_fill = "" before_return = "" if name == "__init__": slot_name = "tp_init" func_head = "(PyObject* self, PyObject* _args, PyObject* kw) -> int" func_fill = """ int64 n = Py_SIZE(_args); auto args = (PyObject**)&PyTuple_GET_ITEM(_args, 0); (void)n, (void)args; // TODO: support kw CHECK(kw==0); """ elif name == "__repr__": slot_name = "tp_repr" func_head = "(PyObject* self) -> PyObject*" func_fill = "int64 n = 0; (void)n;" elif name.startswith("__get__"): slot_name = "tp_gets" name = name[len("__get__"):] func_head = "(PyObject* self, void*) -> PyObject*" func_fill = "int64 n = 0; (void)n;" elif name.startswith("__set__"): slot_name = "tp_sets" name = name[len("__set__"):] func_head = "(PyObject* self, PyObject* arg, void*) -> int" func_fill = """ int64 n=1; PyObject** args = &arg; (void)n, (void)args; """ elif name == "__call__": slot_name = "tp_call" func_head = "(PyObject* self, PyObject* _args, PyObject* kw) -> PyObject*" func_fill = """ int64 n = Py_SIZE(_args); auto args = (PyObject**)&PyTuple_GET_ITEM(_args, 0); (void)n, (void)args; // TODO: support kw CHECK(kw==0); """ elif name == "__dealloc__": slot_name = "tp_dealloc" func_head = "(PyObject* self) -> void" func_fill = "int64 n = 0" before_return = "Py_TYPE(self)->tp_free((PyObject *) self);" elif name in binary_number_slots: slot_name = "tp_as_number->"+binary_number_slots[name] func_head = "(PyObject* self, PyObject* b) -> PyObject*" if name.endswith("pow__"): func_head = "(PyObject* self, PyObject* b, PyObject*) -> PyObject*" func_fill = """ int64 n = 2; PyObject* args[] = {self, b}; (void)n, (void)args; """ elif name in unary_number_slots: slot_name = "tp_as_number->"+unary_number_slots[name] func_head = "(PyObject* self) -> PyObject*" func_fill = """ int64 n = 1; PyObject* args[] = {self}; (void)n, (void)args; """ elif name == "__richcmp__": slot_name = "tp_richcompare" func_head = "(PyObject* self, PyObject* b, int op) -> PyObject*" func_fill = """ int64 n = 2; PyObject* args[] = {self, b}; (void)n, (void)args; """ elif name == "__len__": slot_name = "tp_as_sequence->sq_length" func_head = "(PyObject* self) -> Py_ssize_t" func_fill = """ int64 n = 0; (void)n; """ elif name == "__map_len__": slot_name = "tp_as_mapping->mp_length" func_head = "(PyObject* self) -> Py_ssize_t" func_fill = """ int64 n = 0; (void)n; """ elif name == "__getitem__": slot_name = "tp_as_sequence->sq_item" func_head = "(PyObject* self, Py_ssize_t arg0) -> PyObject*" func_fill = f""" int64 n = 1; (void)n; if (arg0 >= GET_RAW_PTR({dfs[0]["scope_name"]},self)->size()) {{ PyErr_SetString(PyExc_IndexError, ""); return (PyObject*)nullptr; }} """ elif name == "__map_getitem__": slot_name = "tp_as_mapping->mp_subscript" func_head = "(PyObject* self, PyObject* arg0) -> PyObject*" func_fill = f""" int64 n = 1; PyObject* args[] = {{arg0}}; (void)n; """ elif name.startswith("__"): LOG.f(f"Not support slot {name}") continue else: func_head = "(PyObject* self, PyObject** args, int64 n, PyObject* kw) -> PyObject*" func_cast = f"(PyCFunction)(PyObject* (*)(PyObject*,PyObject**,int64,PyObject*))" # if not return, return py_none arr_has_return = [ True for _ in arr_has_return ] arr_func_return = [] doc_all = "" decs = "The function declarations are:\n" for did, has_return in enumerate(arr_has_return): df = dfs[did] func_call = arr_func_call[did] if df["doc"] and not (did > 0 and df["doc"] == dfs[did - 1]["doc"]): doc_all += "Document:\n" doc_all += df["doc"]+'\n' doc_all += "Declaration:\n" doc_all += df["dec"]+'\n\n' decs += " " + df["dec"]+'\n' if has_return: assert "-> int" not in func_head if "-> PyObject*" in func_head: if "return_self" in df["attrs"]: arr_func_return.append( f"return (({func_call}), Py_INCREF(self), self)") else: arr_func_return.append( f"return {get_pytype_map(df['return_t'],1)}(({func_call}))") func_return_failed = "return nullptr" else: arr_func_return.append( f"return ({func_call});") func_return_failed = "return -1" else: if "-> int" in func_head: arr_func_return.append(f"return ({func_call},0)") func_return_failed = "return -1" else: assert "-> void" in func_head, func_head arr_func_return.append(f"{func_call};{before_return}return") func_return_failed = "return" # generate error msg when not a valid call error_log_code = generate_error_code_from_func_header(func_head, target_scope_name, name, dfs, basename ,h, class_info) func = f""" {func_cast}[]{func_head} {{ try {{ {func_fill}; uint64 arg_filled=0; (void)arg_filled; {"".join([f''' if ({arr_func_quick_check_runable[did]}) {{ {arr_func_args_convert[did]}; {arr_fill_with_default[did]}; {arr_func_return[did]}; }} ''' for did in range(len(arr_func_return)) ])} LOGf << "Not a valid call."; }} catch (const std::exception& e) {{ if (!PyErr_Occurred()) {{ std::stringstream ss; if (check_async_executor_error(e, ss)) {{ PyErr_Format(PyExc_RuntimeError, "%s", ss.str().c_str() ); }} else {{ ss {error_log_code}; PyErr_Format(PyExc_RuntimeError, "%s\\n%s\\nFailed reason:%s", ss.str().c_str(), R""({decs})"", e.what() ); }} }} }} {func_return_failed}; }} """ if slot_name: if slot_name=="tp_gets": class_gets[name] = { "func": func, "doc": doc_all } continue if slot_name=="tp_sets": class_sets[name] = { "func": func, "doc": "" } continue class_slots_code.append(f""" tp.{slot_name} = {func}; """) continue need_static = "" if df["is_scope_def"] and df["is_static"] and \ df["scope_name"] == class_name and \ "submodule" not in class_info["attrs"]: need_static = " | METH_STATIC" func = (f""" {{ R""({name})"", {func}, METH_FASTCALL | METH_KEYWORDS{need_static}, R""({doc_all})"" }}""") if df["is_scope_def"]: if df["scope_name"] == class_name or \ (class_info and \ target_scope_name == class_info["pynames"][0]): class_defs_code.append(func) else: submodule_defs_code.append(func) else: code.append(func) prop_names = list(set(class_gets.keys()).union(class_sets.keys())) prop_names = sorted(prop_names) for prop_name in prop_names: get_func = "NULL" set_func = "NULL" doc = "" if prop_name in class_gets: get_func = class_gets[prop_name]["func"] if class_gets[prop_name]["doc"]: doc += class_gets[prop_name]["doc"] if prop_name in class_sets: set_func = class_sets[prop_name]["func"] if class_sets[prop_name]["doc"]: doc += class_sets[prop_name]["doc"] class_getsets_code.append(f""" {{"{prop_name}", {get_func}, {set_func}, R""({doc})""}} """) code.append("{0,0,0,0}") class_defs_code.append("{0,0,0,0}") class_getsets_code.append("{0,0,0,0}") submodule_defs_code.append("{0,0,0,0}") core_name = "jittor_core" if class_info and "attrs" in class_info and "core_name" in class_info["attrs"]: core_name = class_info["attrs"]["core_name"] if submodule_info and "attrs" in submodule_info and "core_name" in submodule_info["attrs"]: core_name = submodule_info["attrs"]["core_name"] has_map = class_name in ["VarHolder", "NanoVector"] has_seq = class_name == "NanoVector" # add extra include to avoid compile error src_code = "" if include_name.endswith("var_slices.h"): src_code += '#include "var_holder.h"\n' src_code += f""" #include "utils/seh.h" #include "pyjt/py_converter.h" #include "pyjt/py_arg_printer.h" #include "common.h" #include "{include_name}" namespace jittor {{ { "" if class_name is None else f"PyHeapTypeObject Pyjt{class_name};" if "heaptype" in class_info["attrs"] else f"PyTypeObject Pyjt{class_name};" } void pyjt_def_{basename}(PyObject* m) {{ static PyMethodDef defs[] = {{ {",".join(code)} }}; ASSERT(PyModule_AddFunctions(m, defs)==0); { f''' static PyMethodDef class_defs[] = {{ {",".join(class_defs_code)} }}; static PyGetSetDef class_getsets[] = {{ {",".join(class_getsets_code)} }}; static PyNumberMethods number_methods = {{0}}; {f"auto& htp =Pyjt{class_name}; auto& tp = htp.ht_type;" if "heaptype" in class_info["attrs"] else f"auto& tp = Pyjt{class_name};"} tp.tp_as_number = &number_methods; {f"static PyMappingMethods class_map_defs = {{0}};" if has_map else ""} {f"tp.tp_as_mapping = &class_map_defs;" if has_map else ""} {f"static PySequenceMethods class_seq_defs = {{0}};" if has_seq else ""} {f"tp.tp_as_sequence = &class_seq_defs;" if has_seq else ""} tp.tp_name = "{core_name}.{class_info["pynames"][0]}"; tp.tp_basicsize = GET_OBJ_SIZE({class_name}); tp.tp_new = PyType_GenericNew; tp.tp_flags = Py_TPFLAGS_DEFAULT; {"tp.tp_flags |= Py_TPFLAGS_HEAPTYPE; htp.ht_name = htp.ht_qualname = to_py_object<string>(tp.tp_name);" if "heaptype" in class_info["attrs"] else ""} tp.tp_methods = &class_defs[0]; tp.tp_getset = &class_getsets[0]; {"".join(class_slots_code)}; ASSERT(0==PyType_Ready(&tp)) << (PyErr_Print(), 0); Py_INCREF(&tp); ASSERT(0==PyModule_AddObject(m, "{class_info["pynames"][0]}", (PyObject*)&tp)); ''' if class_name is not None else "" } {f''' // sub module def static PyMethodDef submodule_defs[] = {{ {",".join(submodule_defs_code)} }}; auto sub = PyImport_AddModule("{core_name}.{submodule_info["pynames"][0]}"); ASSERT(PyModule_AddFunctions(sub, submodule_defs)==0); ASSERT(sub); ASSERT(0==PyModule_AddObject(m, "{submodule_info["pynames"][0]}", sub)); ''' if submodule_name is not None else "" } }} }} """ return src_code def compile_single(head_file_name, src_file_name, src=None): basename = os.path.basename(head_file_name).split(".")[0] if src==None: with open(head_file_name, 'r') as f: src = f.read() code = compile_src(src, head_file_name, basename) if not code: return False LOG.vvv("write to", src_file_name) LOG.vvvv(code) with open(src_file_name, 'w') as f: f.write(code) return True def compile(cache_path, jittor_path): headers1 = glob.glob(jittor_path+"/src/**/*.h", recursive=True) headers2 = glob.glob(cache_path+"/gen/**/*.h", recursive=True) headers = headers1 + headers2 basenames = [] pyjt_names = [] for h in headers: with open(h, 'r') as f: src = f.read() bh = os.path.basename(h) # jit_op_maker.h merge compile with var_holder.h if bh == "var_holder.h": continue if bh == "jit_op_maker.h": with open(os.path.join(jittor_path, "src", "var_holder.h"), "r") as f: src = f.read() + src basename = bh.split(".")[0] fname = "pyjt_"+basename+".cc" fname = os.path.join(cache_path, "gen", fname) check = compile_single(h, fname, src) if not check: continue basenames.append(basename) pyjt_names.append(fname) code = f""" #include "pyjt/numpy.h" #include "pyjt/py_converter.h" #include "common.h" namespace jittor {{ { " ".join([f"extern void pyjt_def_{n}(PyObject* m);" for n in basenames])} void pyjt_def_all(PyObject* m) {{ numpy_init(); { " ".join([f"pyjt_def_{n}(m);" for n in basenames])} }} }} """ fname = os.path.join(cache_path, "gen", "pyjt_all.cc") LOG.vvv(("write to", fname)) LOG.vvvv(code) with open(fname, "w") as f: f.write(code) pyjt_names.append(fname) return pyjt_names
the-stack_0_26896
#!/usr/bin/env python3 import os import sqlite3 from itertools import cycle from inspect import getsourcefile def createDatabase(path): '''Creates empty tables in path. Returns connection and cursor.''' con = sqlite3.connect(path) cur = con.cursor() # Replace templates table cur.execute('DROP TABLE IF EXISTS templates') cur.execute('CREATE TABLE templates(id INTEGER PRIMARY KEY, template TEXT NOT NULL)') # Replace names table cur.execute('DROP TABLE IF EXISTS names') cur.execute( '''CREATE TABLE names(id INTEGER PRIMARY KEY, name TEXT UNIQUE COLLATE NOCASE, template_id REFERENCES templates(id))''') # Replace extensions table cur.execute('DROP TABLE IF EXISTS extensions') cur.execute( '''CREATE TABLE extensions(id INTEGER PRIMARY KEY, extension TEXT UNIQUE COLLATE NOCASE, template_id REFERENCES templates(id))''') con.commit() cur.close() return con def extractTemplateInfo(file_name): ''' Returns a tuple of template (names, extensions).''' file_name, file_ext = file_name.split('.', 1) names = file_name.split(',') exts = file_ext.split('.') return (names, exts) def addTemplate(cursor, template, names, extensions): '''Adds a template to the cursor's database.''' # Insert template if template is not None: cursor.execute('INSERT INTO templates(template) VALUES(?)', [template]) template_id = cursor.lastrowid # Insert names if names: try: cursor.executemany( 'INSERT INTO names(name, template_id) VALUES(?, ?)', zip(names, cycle([template_id]))) except sqlite3.IntegrityError: pass # Insert extensions if extensions: try: cursor.executemany( 'INSERT INTO extensions(extension, template_id) VALUES(?, ?)', zip(extensions, cycle([template_id]))) except sqlite3.IntegrityError: pass def makeTemplates(plates_path, base_path): '''Loads code templates from plates_path into database.''' # Initialize database with createDatabase(base_path) as con: cur = con.cursor() file_names = os.listdir(plates_path) file_names.sort() for file_name in file_names: template = open(os.path.join(plates_path, file_name)).read() names, extensions = extractTemplateInfo(file_name) addTemplate(cur, template, names, extensions) cur.close() con.commit() def main(): source_file = os.path.realpath(getsourcefile(lambda:None)) source_dir = os.path.split(source_file)[0] plates_path = os.path.join(source_dir, 'plates') dest_path = os.path.join(source_dir, 'boil/plates.db') makeTemplates(plates_path, dest_path) if __name__ == '__main__': main()
the-stack_0_26897
# This file is part of OpenQUA. # # Copyright (c) 2014 Iain R. Learmonth and contributors. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of openqua nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from urllib2 import urlopen import csv from repeater import Repeater CSV_URL = "http://www.ukrepeater.net/csvcreate.php" # Format of CSV file is: # # * Callsign # * Band # * Channel # * TX Frequency # * RX Frequency # * Mode # * Maidenhead Locator # * Natural Language Location # * National Grid Reference # * Region # * CTCSS Tone # * Keeper Callsign # * Latitude # * Longitude # # The first line of the file is a header and should be discarded. # The fields are seperated by commas and quoted with double quotes. f = urlopen(CSV_URL) count = 0 data = csv.reader(f, delimiter=',', quotechar='"') for row in data: count += 1 if count == 1: continue repeater = Repeater(row[0]) repeater.tx = float(row[3]) repeater.rx = float(row[4]) if row[10] != '': repeater.ctcss = float(row[10]) if row[5] == "AV": repeater.mode = "FM" if row[5] == "DSTAR": repeater.mode = "DSTAR" if row[5] == "DMR": repeater.mode = "DMR" if row[5] == "DUALMODE": repeater.mode = "FM" repeater.locator = row[6] repeater.town = row[7] repeater.keeper = row[11] repeater.lat = row[12] repeater.lon = row[13] repeater.source = "http://ukrepeater.net/" print(repeater) repeater.update() f.close()
the-stack_0_26898
import logging from typing import Tuple, List, Optional from blspy import G1Element from clvm.casts import int_from_bytes, int_to_bytes from bytecash.clvm.singleton import SINGLETON_LAUNCHER from bytecash.consensus.block_rewards import calculate_pool_reward from bytecash.consensus.coinbase import pool_parent_id from bytecash.pools.pool_wallet_info import PoolState, LEAVING_POOL, SELF_POOLING from bytecash.types.blockchain_format.coin import Coin from bytecash.types.blockchain_format.program import Program, SerializedProgram from bytecash.types.blockchain_format.sized_bytes import bytes32 from bytecash.types.coin_spend import CoinSpend from bytecash.wallet.puzzles.load_clvm import load_clvm from bytecash.wallet.puzzles.singleton_top_layer import puzzle_for_singleton from bytecash.util.ints import uint32, uint64 log = logging.getLogger(__name__) # "Full" is the outer singleton, with the inner puzzle filled in SINGLETON_MOD = load_clvm("singleton_top_layer.clvm") POOL_WAITING_ROOM_MOD = load_clvm("pool_waitingroom_innerpuz.clvm") POOL_MEMBER_MOD = load_clvm("pool_member_innerpuz.clvm") P2_SINGLETON_MOD = load_clvm("p2_singleton_or_delayed_puzhash.clvm") POOL_OUTER_MOD = SINGLETON_MOD POOL_MEMBER_HASH = POOL_MEMBER_MOD.get_tree_hash() POOL_WAITING_ROOM_HASH = POOL_WAITING_ROOM_MOD.get_tree_hash() P2_SINGLETON_HASH = P2_SINGLETON_MOD.get_tree_hash() POOL_OUTER_MOD_HASH = POOL_OUTER_MOD.get_tree_hash() SINGLETON_LAUNCHER_HASH = SINGLETON_LAUNCHER.get_tree_hash() SINGLETON_MOD_HASH = POOL_OUTER_MOD_HASH SINGLETON_MOD_HASH_HASH = Program.to(SINGLETON_MOD_HASH).get_tree_hash() def create_waiting_room_inner_puzzle( target_puzzle_hash: bytes32, relative_lock_height: uint32, owner_pubkey: G1Element, launcher_id: bytes32, genesis_challenge: bytes32, delay_time: uint64, delay_ph: bytes32, ) -> Program: pool_reward_prefix = bytes32(genesis_challenge[:16] + b"\x00" * 16) p2_singleton_puzzle_hash: bytes32 = launcher_id_to_p2_puzzle_hash(launcher_id, delay_time, delay_ph) return POOL_WAITING_ROOM_MOD.curry( target_puzzle_hash, p2_singleton_puzzle_hash, bytes(owner_pubkey), pool_reward_prefix, relative_lock_height ) def create_pooling_inner_puzzle( target_puzzle_hash: bytes, pool_waiting_room_inner_hash: bytes32, owner_pubkey: G1Element, launcher_id: bytes32, genesis_challenge: bytes32, delay_time: uint64, delay_ph: bytes32, ) -> Program: pool_reward_prefix = bytes32(genesis_challenge[:16] + b"\x00" * 16) p2_singleton_puzzle_hash: bytes32 = launcher_id_to_p2_puzzle_hash(launcher_id, delay_time, delay_ph) return POOL_MEMBER_MOD.curry( target_puzzle_hash, p2_singleton_puzzle_hash, bytes(owner_pubkey), pool_reward_prefix, pool_waiting_room_inner_hash, ) def create_full_puzzle(inner_puzzle: Program, launcher_id: bytes32) -> Program: return puzzle_for_singleton(launcher_id, inner_puzzle) def create_p2_singleton_puzzle( singleton_mod_hash: bytes, launcher_id: bytes32, seconds_delay: uint64, delayed_puzzle_hash: bytes32, ) -> Program: # curry params are SINGLETON_MOD_HASH LAUNCHER_ID LAUNCHER_PUZZLE_HASH SECONDS_DELAY DELAYED_PUZZLE_HASH return P2_SINGLETON_MOD.curry( singleton_mod_hash, launcher_id, SINGLETON_LAUNCHER_HASH, seconds_delay, delayed_puzzle_hash ) def launcher_id_to_p2_puzzle_hash(launcher_id: bytes32, seconds_delay: uint64, delayed_puzzle_hash: bytes32) -> bytes32: return create_p2_singleton_puzzle( SINGLETON_MOD_HASH, launcher_id, int_to_bytes(seconds_delay), delayed_puzzle_hash ).get_tree_hash() def get_delayed_puz_info_from_launcher_spend(coinsol: CoinSpend) -> Tuple[uint64, bytes32]: extra_data = Program.from_bytes(bytes(coinsol.solution)).rest().rest().first() # Extra data is (pool_state delayed_puz_info) # Delayed puz info is (seconds delayed_puzzle_hash) seconds: Optional[uint64] = None delayed_puzzle_hash: Optional[bytes32] = None for key, value in extra_data.as_python(): if key == b"t": seconds = int_from_bytes(value) if key == b"h": delayed_puzzle_hash = bytes32(value) assert seconds is not None assert delayed_puzzle_hash is not None return seconds, delayed_puzzle_hash ###################################### def get_template_singleton_inner_puzzle(inner_puzzle: Program): r = inner_puzzle.uncurry() if r is None: return False uncurried_inner_puzzle, args = r return uncurried_inner_puzzle def get_seconds_and_delayed_puzhash_from_p2_singleton_puzzle(puzzle: Program) -> Tuple[uint64, bytes32]: r = puzzle.uncurry() if r is None: return False inner_f, args = r singleton_mod_hash, launcher_id, launcher_puzzle_hash, seconds_delay, delayed_puzzle_hash = list(args.as_iter()) seconds_delay = uint64(seconds_delay.as_int()) return seconds_delay, delayed_puzzle_hash.as_atom() # Verify that a puzzle is a Pool Wallet Singleton def is_pool_singleton_inner_puzzle(inner_puzzle: Program) -> bool: inner_f = get_template_singleton_inner_puzzle(inner_puzzle) return inner_f in [POOL_WAITING_ROOM_MOD, POOL_MEMBER_MOD] def is_pool_waitingroom_inner_puzzle(inner_puzzle: Program) -> bool: inner_f = get_template_singleton_inner_puzzle(inner_puzzle) return inner_f in [POOL_WAITING_ROOM_MOD] def is_pool_member_inner_puzzle(inner_puzzle: Program) -> bool: inner_f = get_template_singleton_inner_puzzle(inner_puzzle) return inner_f in [POOL_MEMBER_MOD] # This spend will use the escape-type spend path for whichever state you are currently in # If you are currently a waiting inner puzzle, then it will look at your target_state to determine the next # inner puzzle hash to go to. The member inner puzzle is already committed to its next puzzle hash. def create_travel_spend( last_coin_spend: CoinSpend, launcher_coin: Coin, current: PoolState, target: PoolState, genesis_challenge: bytes32, delay_time: uint64, delay_ph: bytes32, ) -> Tuple[CoinSpend, Program]: inner_puzzle: Program = pool_state_to_inner_puzzle( current, launcher_coin.name(), genesis_challenge, delay_time, delay_ph, ) if is_pool_member_inner_puzzle(inner_puzzle): # inner sol is key_value_list () # key_value_list is: # "ps" -> poolstate as bytes inner_sol: Program = Program.to([[("p", bytes(target))], 0]) elif is_pool_waitingroom_inner_puzzle(inner_puzzle): # inner sol is (spend_type, key_value_list, pool_reward_height) destination_inner: Program = pool_state_to_inner_puzzle( target, launcher_coin.name(), genesis_challenge, delay_time, delay_ph ) log.debug( f"create_travel_spend: waitingroom: target PoolState bytes:\n{bytes(target).hex()}\n" f"{target}" f"hash:{Program.to(bytes(target)).get_tree_hash()}" ) # key_value_list is: # "ps" -> poolstate as bytes inner_sol = Program.to([1, [("p", bytes(target))], destination_inner.get_tree_hash()]) # current or target else: raise ValueError current_singleton: Optional[Coin] = get_most_recent_singleton_coin_from_coin_spend(last_coin_spend) assert current_singleton is not None if current_singleton.parent_coin_info == launcher_coin.name(): parent_info_list = Program.to([launcher_coin.parent_coin_info, launcher_coin.amount]) else: p = Program.from_bytes(bytes(last_coin_spend.puzzle_reveal)) last_coin_spend_inner_puzzle: Optional[Program] = get_inner_puzzle_from_puzzle(p) assert last_coin_spend_inner_puzzle is not None parent_info_list = Program.to( [ last_coin_spend.coin.parent_coin_info, last_coin_spend_inner_puzzle.get_tree_hash(), last_coin_spend.coin.amount, ] ) full_solution: Program = Program.to([parent_info_list, current_singleton.amount, inner_sol]) full_puzzle: Program = create_full_puzzle(inner_puzzle, launcher_coin.name()) return ( CoinSpend( current_singleton, SerializedProgram.from_program(full_puzzle), SerializedProgram.from_program(full_solution), ), inner_puzzle, ) def create_absorb_spend( last_coin_spend: CoinSpend, current_state: PoolState, launcher_coin: Coin, height: uint32, genesis_challenge: bytes32, delay_time: uint64, delay_ph: bytes32, ) -> List[CoinSpend]: inner_puzzle: Program = pool_state_to_inner_puzzle( current_state, launcher_coin.name(), genesis_challenge, delay_time, delay_ph ) reward_amount: uint64 = calculate_pool_reward(height) if is_pool_member_inner_puzzle(inner_puzzle): # inner sol is (spend_type, pool_reward_amount, pool_reward_height, extra_data) inner_sol: Program = Program.to([reward_amount, height]) elif is_pool_waitingroom_inner_puzzle(inner_puzzle): # inner sol is (spend_type, destination_puzhash, pool_reward_amount, pool_reward_height, extra_data) inner_sol = Program.to([0, reward_amount, height]) else: raise ValueError # full sol = (parent_info, my_amount, inner_solution) coin: Optional[Coin] = get_most_recent_singleton_coin_from_coin_spend(last_coin_spend) assert coin is not None if coin.parent_coin_info == launcher_coin.name(): parent_info: Program = Program.to([launcher_coin.parent_coin_info, launcher_coin.amount]) else: p = Program.from_bytes(bytes(last_coin_spend.puzzle_reveal)) last_coin_spend_inner_puzzle: Optional[Program] = get_inner_puzzle_from_puzzle(p) assert last_coin_spend_inner_puzzle is not None parent_info = Program.to( [ last_coin_spend.coin.parent_coin_info, last_coin_spend_inner_puzzle.get_tree_hash(), last_coin_spend.coin.amount, ] ) full_solution: SerializedProgram = SerializedProgram.from_program( Program.to([parent_info, last_coin_spend.coin.amount, inner_sol]) ) full_puzzle: SerializedProgram = SerializedProgram.from_program( create_full_puzzle(inner_puzzle, launcher_coin.name()) ) assert coin.puzzle_hash == full_puzzle.get_tree_hash() reward_parent: bytes32 = pool_parent_id(height, genesis_challenge) p2_singleton_puzzle: SerializedProgram = SerializedProgram.from_program( create_p2_singleton_puzzle(SINGLETON_MOD_HASH, launcher_coin.name(), delay_time, delay_ph) ) reward_coin: Coin = Coin(reward_parent, p2_singleton_puzzle.get_tree_hash(), reward_amount) p2_singleton_solution: SerializedProgram = SerializedProgram.from_program( Program.to([inner_puzzle.get_tree_hash(), reward_coin.name()]) ) assert p2_singleton_puzzle.get_tree_hash() == reward_coin.puzzle_hash assert full_puzzle.get_tree_hash() == coin.puzzle_hash assert get_inner_puzzle_from_puzzle(Program.from_bytes(bytes(full_puzzle))) is not None coin_spends = [ CoinSpend(coin, full_puzzle, full_solution), CoinSpend(reward_coin, p2_singleton_puzzle, p2_singleton_solution), ] return coin_spends def get_most_recent_singleton_coin_from_coin_spend(coin_sol: CoinSpend) -> Optional[Coin]: additions: List[Coin] = coin_sol.additions() for coin in additions: if coin.amount % 2 == 1: return coin return None def get_pubkey_from_member_inner_puzzle(inner_puzzle: Program) -> G1Element: args = uncurry_pool_member_inner_puzzle(inner_puzzle) if args is not None: ( _inner_f, _target_puzzle_hash, _p2_singleton_hash, pubkey_program, _pool_reward_prefix, _escape_puzzlehash, ) = args else: raise ValueError("Unable to extract pubkey") pubkey = G1Element.from_bytes(pubkey_program.as_atom()) return pubkey def uncurry_pool_member_inner_puzzle(inner_puzzle: Program): # -> Optional[Tuple[Program, Program, Program]]: """ Take a puzzle and return `None` if it's not a "pool member" inner puzzle, or a triple of `mod_hash, relative_lock_height, pubkey` if it is. """ if not is_pool_member_inner_puzzle(inner_puzzle): raise ValueError("Attempting to unpack a non-waitingroom inner puzzle") r = inner_puzzle.uncurry() if r is None: raise ValueError("Failed to unpack inner puzzle") inner_f, args = r # p2_singleton_hash is the tree hash of the unique, curried P2_SINGLETON_MOD. See `create_p2_singleton_puzzle` # escape_puzzlehash is of the unique, curried POOL_WAITING_ROOM_MOD. See `create_waiting_room_inner_puzzle` target_puzzle_hash, p2_singleton_hash, owner_pubkey, pool_reward_prefix, escape_puzzlehash = tuple(args.as_iter()) return inner_f, target_puzzle_hash, p2_singleton_hash, owner_pubkey, pool_reward_prefix, escape_puzzlehash def uncurry_pool_waitingroom_inner_puzzle(inner_puzzle: Program) -> Tuple[Program, Program, Program, Program]: """ Take a puzzle and return `None` if it's not a "pool member" inner puzzle, or a triple of `mod_hash, relative_lock_height, pubkey` if it is. """ if not is_pool_waitingroom_inner_puzzle(inner_puzzle): raise ValueError("Attempting to unpack a non-waitingroom inner puzzle") r = inner_puzzle.uncurry() if r is None: raise ValueError("Failed to unpack inner puzzle") inner_f, args = r v = args.as_iter() target_puzzle_hash, p2_singleton_hash, owner_pubkey, genesis_challenge, relative_lock_height = tuple(v) return target_puzzle_hash, relative_lock_height, owner_pubkey, p2_singleton_hash def get_inner_puzzle_from_puzzle(full_puzzle: Program) -> Optional[Program]: p = Program.from_bytes(bytes(full_puzzle)) r = p.uncurry() if r is None: return None _, args = r _, inner_puzzle = list(args.as_iter()) if not is_pool_singleton_inner_puzzle(inner_puzzle): return None return inner_puzzle def pool_state_from_extra_data(extra_data: Program) -> Optional[PoolState]: state_bytes: Optional[bytes] = None try: for key, value in extra_data.as_python(): if key == b"p": state_bytes = value break if state_bytes is None: return None return PoolState.from_bytes(state_bytes) except TypeError as e: log.error(f"Unexpected return from PoolWallet Smart Contract code {e}") return None def solution_to_pool_state(full_spend: CoinSpend) -> Optional[PoolState]: full_solution_ser: SerializedProgram = full_spend.solution full_solution: Program = Program.from_bytes(bytes(full_solution_ser)) if full_spend.coin.puzzle_hash == SINGLETON_LAUNCHER_HASH: # Launcher spend extra_data: Program = full_solution.rest().rest().first() return pool_state_from_extra_data(extra_data) # Not launcher spend inner_solution: Program = full_solution.rest().rest().first() # Spend which is not absorb, and is not the launcher num_args = len(inner_solution.as_python()) assert num_args in (2, 3) if num_args == 2: # pool member if inner_solution.rest().first().as_int() != 0: return None # This is referred to as p1 in the chialisp code # spend_type is absorbing money if p1 is a cons box, spend_type is escape if p1 is an atom # TODO: The comment above, and in the CLVM, seems wrong extra_data = inner_solution.first() if isinstance(extra_data.as_python(), bytes): # Absorbing return None return pool_state_from_extra_data(extra_data) else: # pool waitingroom if inner_solution.first().as_int() == 0: return None extra_data = inner_solution.rest().first() return pool_state_from_extra_data(extra_data) def pool_state_to_inner_puzzle( pool_state: PoolState, launcher_id: bytes32, genesis_challenge: bytes32, delay_time: uint64, delay_ph: bytes32 ) -> Program: escaping_inner_puzzle: Program = create_waiting_room_inner_puzzle( pool_state.target_puzzle_hash, pool_state.relative_lock_height, pool_state.owner_pubkey, launcher_id, genesis_challenge, delay_time, delay_ph, ) if pool_state.state in [LEAVING_POOL, SELF_POOLING]: return escaping_inner_puzzle else: return create_pooling_inner_puzzle( pool_state.target_puzzle_hash, escaping_inner_puzzle.get_tree_hash(), pool_state.owner_pubkey, launcher_id, genesis_challenge, delay_time, delay_ph, )
the-stack_0_26899
#!/usr/bin/env python # # License: BSD # https://raw.githubusercontent.com/stonier/py_trees/devel/LICENSE # ############################################################################## # Documentation ############################################################################## """ About ^^^^^ A few new items arriving in tantalising bowls of flying spaghetti here: * A gui for manually triggering events * A gui (same one) for visualising the led strip status * A lower priority work branch triggered from the gui * A first action client behaviour * A kind of pre-emption, via behaviour tree decision logic Tree ^^^^ .. graphviz:: dot/tutorial-five.dot .. literalinclude:: ../py_trees_ros/tutorials/five.py :language: python :linenos: :lines: 121-179 :caption: py_trees_ros/tutorials/five.py#create_root **Guards** .. graphviz:: dot/tutorial-five-guard.dot The entire scan branch is protected by a :term:`guard` (note that the blackbox in the above diagram is exactly that, a black box representing the lower part of the tree). Once the scan event is received, this branch gets to work until it either finishes, or is pre-empted by the higher priority low battery branch. **A Kind of Preemption** .. graphviz:: dot/tutorial-five-preempt.dot The second part of the tree enables a kind of pre-emption on the scanning action. If a new request comes in, it will trigger the secondary scan event check, invalidating whatever scanning action was currently running. This will clear the led command and cancel the rotate action. On the next tick, the scan event check will fail (it was consumed on the last tick) and the scanning will restart. .. note:: This is not true pre-emption since it cancels the rotate action and restarts it. It is however, exactly the pattern that is required in many instances. For true pre-emption you could bundle both scan check and rotation action in the same behaviour or dynamically insert action goals on the fly from the parent class. **Handling Failure** If the rotate action should fail, then the whole branch will also fail. Subsequently dropping the robot back to its idle state. A failure event could be generated by simply watching either the 'Scanning' parallel or the :meth:`~py_trees.trees.BehaviourTree.tip` of the tree and reacting to it's state change. Behaviours ^^^^^^^^^^ Introducing the rotate action client behaviour! .. literalinclude:: ../py_trees_ros/tutorials/five.py :language: python :linenos: :lines: 158-163 :caption: py_trees_ros/tutorials/five.py#action_client_instantiation .. literalinclude:: ../py_trees_ros/actions.py :language: python :linenos: :lines: 28-121 :caption: py_trees_ros/actions.py#ActionClient The :class:`~py_trees_ros.actions.ActionClient` is a generic template that can be used as a drop-in for very simply monitoring the aborted/cancelled/running/success state of an underlying controller with a pre-configured goal. See the :class:`api <py_trees_ros.actions.ActionClient>` for details on when/how you might wish to extend this. Running ^^^^^^^ .. code-block:: bash $ roslaunch py_trees_ros tutorial_five.launch --screen **Playing with the Spaghetti** * Press the scan button to start a scan * Press the scan button again while mid-scanning to pre-empt * Set battery low in reconfigure whilst mid-scanning to priority switch .. image:: images/tutorial-five-scanning.png """ ############################################################################## # Imports ############################################################################## import functools import py_trees import py_trees_ros import py_trees.console as console import py_trees_msgs.msg as py_trees_msgs import rospy import sys #from actionlib_msgs.msg import * from phoenix_msgs.msg import * import move_base_msgs.msg as move_base_msgs from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal from geometry_msgs.msg import PoseStamped from geometry_msgs.msg import PoseWithCovarianceStamped, Quaternion from tf.transformations import quaternion_from_euler, euler_from_quaternion from math import radians, degrees ############################################################################## # Behaviours ############################################################################## def create_root(): # behaviours root = py_trees.composites.Parallel("gizmo") topics2bb = py_trees.composites.Sequence("Topics2BB") scan2bb = py_trees_ros.subscribers.EventToBlackboard( name="Scan2BB", topic_name="/dashboard/scan", variable_name="event_scan_button" ) priorities = py_trees.composites.Selector("Priorities") ######################### scan Showtime = py_trees.composites.Sequence(name="Showtime") is_scan_requested = py_trees.blackboard.CheckBlackboardVariable( name="Start show?", variable_name='event_scan_button', expected_value=True ) Stage_center = py_trees.composites.Sequence(name="stage_center") Stage_left = py_trees.composites.Sequence(name="stage_left") Stage_right = py_trees.composites.Sequence(name="stage_right") move_center = py_trees_ros.actions.ActionClient( name="Move Center", action_namespace="/move_base", action_spec=move_base_msgs.MoveBaseAction, action_goal= create_nav_goal(1.593, -0.350,1.363), override_feedback_message_on_running="rotating" ) move_left = py_trees_ros.actions.ActionClient( name="Move left", action_namespace="/move_base", action_spec=move_base_msgs.MoveBaseAction, action_goal= create_nav_goal(1.777, 0.406,1.042), override_feedback_message_on_running="rotating" ) move_right = py_trees_ros.actions.ActionClient( name="Move right", action_namespace="/move_base", action_spec=move_base_msgs.MoveBaseAction, action_goal= create_nav_goal(1.546, -0.411,1.581), override_feedback_message_on_running="rotating" ) home = py_trees_ros.actions.ActionClient( name="home", action_namespace="/move_base", action_spec=move_base_msgs.MoveBaseAction, action_goal= create_nav_goal(-0.045, 0.172,0.486), override_feedback_message_on_running="rotating" ) voice1 = py_trees_ros.actions.ActionClient( name="Welcome", action_namespace="/voice_action", action_spec=VoiceAction, action_goal=voice_msg("Welcome to SHOW time. my name is Robbie, This is where I get to demonstrate my capabilities"), override_feedback_message_on_running="rotating" ) voice2 = py_trees_ros.actions.ActionClient( name="left_talk", action_namespace="/voice_action", action_spec=VoiceAction, action_goal=voice_msg("I can move to my left"), override_feedback_message_on_running="rotating" ) voice3 = py_trees_ros.actions.ActionClient( name="Right talk", action_namespace="/voice_action", action_spec=VoiceAction, action_goal=voice_msg("I can move to my right"), override_feedback_message_on_running="rotating" ) voice4 = py_trees_ros.actions.ActionClient( name="return center", action_namespace="/voice_action", action_spec=VoiceAction, action_goal=voice_msg("And back to the center"), override_feedback_message_on_running="rotating" ) voice5 = py_trees_ros.actions.ActionClient( name="end talk", action_namespace="/voice_action", action_spec=VoiceAction, action_goal=voice_msg("Thank you very much for yourtime. Goodbye"), override_feedback_message_on_running="rotating" ) idle = py_trees.behaviours.Running(name="Idle") ################### tree root.add_children([topics2bb, priorities]) topics2bb.add_children([scan2bb]) priorities.add_children([Showtime, idle]) Showtime.add_children([is_scan_requested, Stage_center, Stage_left, Stage_right]) Stage_center.add_children([move_center, voice1]) Stage_left.add_children([voice2, move_left, voice4, move_center]) Stage_right.add_children([voice3, move_right, voice4, move_center, voice5, home]) return root def voice_msg(text): g = VoiceGoal() g.text = text return g def create_nav_goal(x, y, yaw): """Create a MoveBaseGoal with x, y position and yaw rotation (in degrees). Returns a MoveBaseGoal""" mb_goal = MoveBaseGoal() mb_goal.target_pose.header.frame_id = 'map' # Note: the frame_id must be map mb_goal.target_pose.pose.position.x = x mb_goal.target_pose.pose.position.y = y mb_goal.target_pose.pose.position.z = 0.0 # z must be 0.0 (no height in the map) # Orientation of the robot is expressed in the yaw value of euler angles angle = radians(yaw) # angles are expressed in radians quat = quaternion_from_euler(0.0, 0.0, angle) # roll, pitch, yaw mb_goal.target_pose.pose.orientation = Quaternion(*quat.tolist()) return mb_goal def shutdown(behaviour_tree): behaviour_tree.interrupt() ############################################################################## # Main ############################################################################## def main(): """ Entry point for the demo script. """ rospy.init_node("tree") root = create_root() behaviour_tree = py_trees_ros.trees.BehaviourTree(root) rospy.on_shutdown(functools.partial(shutdown, behaviour_tree)) if not behaviour_tree.setup(timeout=15): console.logerror("failed to setup the tree, aborting.") sys.exit(1) behaviour_tree.tick_tock(500) if __name__ == '__main__': main()
the-stack_0_26900
# -*- coding: utf-8 -*- # Author: TDC Team # License: MIT import numpy as np from typing import List try: from rdkit import Chem, DataStructs from rdkit.Chem import AllChem from rdkit import rdBase rdBase.DisableLog('rdApp.error') from rdkit.Chem.Fingerprints import FingerprintMols from rdkit.Chem import MACCSkeys except: raise ImportError("Please install rdkit by 'conda install -c conda-forge rdkit'! ") from ...utils import print_sys from ..oracle.oracle import smiles_to_rdkit_mol, smiles_2_fingerprint_ECFP4, smiles_2_fingerprint_FCFP4, smiles_2_fingerprint_AP, smiles_2_fingerprint_ECFP6 from ._smiles2pubchem import smiles2pubchem def canonicalize(smiles): mol = Chem.MolFromSmiles(smiles) if mol is not None: return Chem.MolToSmiles(mol, isomericSmiles=True) else: return None def smiles2morgan(s, radius = 2, nBits = 1024): """Convert smiles into Morgan Fingerprint. Args: smiles: str radius: int (default: 2) nBits: int (default: 1024) Returns: fp: numpy.array """ try: s = canonicalize(s) mol = Chem.MolFromSmiles(s) features_vec = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=nBits) features = np.zeros((1,)) DataStructs.ConvertToNumpyArray(features_vec, features) except: print_sys('rdkit not found this smiles for morgan: ' + s + ' convert to all 0 features') features = np.zeros((nBits, )) return features def smiles2rdkit2d(s): """Convert smiles into 200-dim Normalized RDKit 2D vector. Args: smiles: str Returns: fp: numpy.array """ s = canonicalize(s) try: from descriptastorus.descriptors import rdDescriptors, rdNormalizedDescriptors except: raise ImportError("Please install pip install git+https://github.com/bp-kelley/descriptastorus and pip install pandas-flavor") try: generator = rdNormalizedDescriptors.RDKit2DNormalized() features = np.array(generator.process(s)[1:]) NaNs = np.isnan(features) features[NaNs] = 0 except: print_sys('descriptastorus not found this smiles: ' + s + ' convert to all 0 features') features = np.zeros((200, )) return np.array(features) def smiles2daylight(s): """Convert smiles into 2048-dim Daylight feature. Args: smiles: str Returns: fp: numpy.array """ try: s = canonicalize(s) NumFinger = 2048 mol = Chem.MolFromSmiles(s) bv = FingerprintMols.FingerprintMol(mol) temp = tuple(bv.GetOnBits()) features = np.zeros((NumFinger, )) features[np.array(temp)] = 1 except: print_sys('rdkit not found this smiles: ' + s + ' convert to all 0 features') features = np.zeros((2048, )) return np.array(features) def smiles2maccs(s): """Convert smiles into maccs feature. Args: smiles: str Returns: fp: numpy.array """ s = canonicalize(s) mol = Chem.MolFromSmiles(s) fp = MACCSkeys.GenMACCSKeys(mol) arr = np.zeros((0,), dtype=np.float64) DataStructs.ConvertToNumpyArray(fp,arr) return arr ''' ECFP2 ---- 1 ECFP4 ---- 2 ECFP6 ---- 3 xxxxxxxxx ------ https://github.com/rdkit/benchmarking_platform/blob/master/scoring/fingerprint_lib.py ''' def smiles2ECFP2(smiles): """Convert smiles into ECFP2 Morgan Fingerprint. Args: smiles: str Returns: fp: rdkit.DataStructs.cDataStructs.UIntSparseIntVect """ nbits = 2048 smiles = canonicalize(smiles) molecule = smiles_to_rdkit_mol(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(molecule, 1, nBits=nbits) arr = np.zeros((0,), dtype=np.float64) DataStructs.ConvertToNumpyArray(fp,arr) return arr def smiles2ECFP4(smiles): """Convert smiles into ECFP4 Morgan Fingerprint. Args: smiles: str Returns: fp: rdkit.DataStructs.cDataStructs.UIntSparseIntVect """ nbits = 2048 smiles = canonicalize(smiles) molecule = smiles_to_rdkit_mol(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(molecule, 2, nBits=nbits) arr = np.zeros((0,), dtype=np.float64) DataStructs.ConvertToNumpyArray(fp,arr) return arr def smiles2ECFP6(smiles): """Convert smiles into ECFP6 Morgan Fingerprint. Args: smiles: str, a SMILES string Returns: fp: rdkit.DataStructs.cDataStructs.UIntSparseIntVect """ nbits = 2048 smiles = canonicalize(smiles) molecule = smiles_to_rdkit_mol(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(molecule, 1, nBits=nbits) arr = np.zeros((0,), dtype=np.float64) DataStructs.ConvertToNumpyArray(fp,arr) return arr # def smiles2smart(smiles): class MoleculeFingerprint: ''' Example: MolFP = MoleculeFingerprint(fp = 'ECFP6') out = MolFp('Clc1ccccc1C2C(=C(/N/C(=C2/C(=O)OCC)COCCN)C)\C(=O)OC') # np.array([1, 0, 1, .....]) out = MolFp(['Clc1ccccc1C2C(=C(/N/C(=C2/C(=O)OCC)COCCN)C)\C(=O)OC', 'CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C']) # np.array([[1, 0, 1, .....], [0, 0, 1, .....]]) Supporting FPs: Basic_Descriptors(atoms, chirality, ....), ECFP2, ECFP4, ECFP6, MACCS, Daylight-type, RDKit2D, Morgan, PubChem ''' def __init__(self, fp = 'ECFP4'): fp2func = {'ECFP2': smiles2ECFP2, 'ECFP4': smiles2ECFP4, 'ECFP6': smiles2ECFP6, 'MACCS': smiles2maccs, 'Daylight': smiles2daylight, 'RDKit2D': smiles2rdkit2d, 'Morgan': smiles2morgan, 'PubChem': smiles2pubchem} try: assert fp in fp2func except: raise Exception("The fingerprint you specify are not supported. \ It can only among 'ECFP2', 'ECFP4', 'ECFP6', 'MACCS', 'Daylight', 'RDKit2D', 'Morgan', 'PubChem'") self.fp = fp self.func = fp2func[fp] def __call__(self, x): if type(x)==str: return self.func(x) elif type(x)==list: lst = list(map(self.func, x)) arr = np.vstack(lst) return arr def smiles2selfies(smiles): """Convert smiles into selfies. Args: smiles: str, a SMILES string Returns: selfies: str, a SELFIES string. """ smiles = canonicalize(smiles) return sf.encoder(smiles) def selfies2smiles(selfies): """Convert selfies into smiles. Args: selfies: str, a SELFIES string. Returns: smiles: str, a SMILES string """ return canonicalize(sf.decoder(selfies)) def smiles2mol(smiles): """Convert SMILES string into rdkit.Chem.rdchem.Mol. Args: smiles: str, a SMILES string. Returns: mol: rdkit.Chem.rdchem.Mol """ smiles = canonicalize(smiles) mol = Chem.MolFromSmiles(smiles) if mol is None: return None Chem.Kekulize(mol) return mol def bondtype2idx(bond_type): if bond_type == Chem.rdchem.BondType.SINGLE: return 1 elif bond_type == Chem.rdchem.BondType.DOUBLE: return 2 elif bond_type == Chem.rdchem.BondType.TRIPLE: return 3 elif bond_type == Chem.rdchem.BondType.AROMATIC: return 4 def smiles2graph2D(smiles): """convert SMILES string into two-dimensional molecular graph feature Args: smiles, str, a SMILES string Returns: idx2atom: dict, map from index to atom's symbol, e.g., {0:'C', 1:'N', ...} adj_matrix: np.array """ smiles = canonicalize(smiles) mol = smiles2mol(smiles) n_atoms = mol.GetNumAtoms() idx2atom = {atom.GetIdx():atom.GetSymbol() for atom in mol.GetAtoms()} adj_matrix = np.zeros((n_atoms, n_atoms), dtype = int) for bond in mol.GetBonds(): a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() idx1 = a1.GetIdx() idx2 = a2.GetIdx() bond_type = bond.GetBondType() bond_idx = bondtype2idx(bond_type) adj_matrix[idx1,idx2] = bond_idx adj_matrix[idx2,idx1] = bond_idx return idx2atom, adj_matrix def get_mol(smiles): mol = Chem.MolFromSmiles(smiles) if mol is None: return None Chem.Kekulize(mol) return mol ############### PyG begin ############### ELEM_LIST = ['C', 'N', 'O', 'S', 'F', 'Si', 'P', 'Cl', 'Br', 'Mg', 'Na', 'Ca', 'Fe', 'Al', 'I', 'B', 'K', 'Se', 'Zn', 'H', 'Cu', 'Mn', 'unknown'] ATOM_FDIM = len(ELEM_LIST) + 6 + 5 + 4 + 1 BOND_FDIM = 5 + 6 MAX_NB = 6 # https://github.com/kexinhuang12345/DeepPurpose/blob/master/DeepPurpose/chemutils.py def onek_encoding_unk(x, allowable_set): if x not in allowable_set: x = allowable_set[-1] return list(map(lambda s: x == s, allowable_set)) def get_atom_features(atom): return torch.Tensor(onek_encoding_unk(atom.GetSymbol(), ELEM_LIST) + onek_encoding_unk(atom.GetDegree(), [0,1,2,3,4,5]) + onek_encoding_unk(atom.GetFormalCharge(), [-1,-2,1,2,0]) + onek_encoding_unk(int(atom.GetChiralTag()), [0,1,2,3]) + [atom.GetIsAromatic()]) def smiles2PyG(smiles): """convert SMILES string into torch_geometric.data.Data Args: smiles, str, a SMILES string Returns: data, torch_geometric.data.Data """ smiles = canonicalize(smiles) mol = Chem.MolFromSmiles(smiles) n_atoms = mol.GetNumAtoms() atom_features = [get_atom_features(atom) for atom in mol.GetAtoms()] atom_features = torch.stack(atom_features) y = [atom.GetSymbol() for atom in mol.GetAtoms()] y = list(map(lambda x: ELEM_LIST.index(x) if x in ELEM_LIST else len(ELEM_LIST)-1 , y)) y = torch.LongTensor(y) bond_features = [] for bond in mol.GetBonds(): a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() idx1 = a1.GetIdx() idx2 = a2.GetIdx() bond_features.extend([[idx1, idx2], [idx2, idx1]]) bond_features = torch.LongTensor(bond_features) data = Data(x=atom_features, edge_index=bond_features.T) return data def molfile2PyG(molfile): smiles = molfile2smiles(molfile) smiles = canonicalize(smiles) return smiles2PyG(smiles) ############### PyG end ############### ############### DGL begin ############### def smiles2DGL(smiles): """convert SMILES string into dgl.DGLGraph Args: smiles, str, a SMILES string Returns: g: dgl.DGLGraph() """ smiles = canonicalize(smiles) mol = Chem.MolFromSmiles(smiles) n_atoms = mol.GetNumAtoms() bond_features = [] for bond in mol.GetBonds(): a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() idx1 = a1.GetIdx() idx2 = a2.GetIdx() bond_features.extend([[idx1, idx2], [idx2, idx1]]) src, dst = tuple(zip(*bond_features)) g = dgl.DGLGraph() g.add_nodes(n_atoms) g.add_edges(src, dst) return g ############### DGL end ############### from ._xyz2mol import xyzfile2mol def mol2smiles(mol): smiles = Chem.MolToSmiles(mol) smiles = canonicalize(smiles) return smiles def xyzfile2smiles(xyzfile): """convert xyzfile into smiles string. Args: xyzfile: str, file Returns: smiles: str, a SMILES string """ mol, _ = xyzfile2mol(xyzfile) smiles = mol2smiles(mol) smiles = canonicalize(smiles) return smiles def xyzfile2selfies(xyzfile): """convert xyzfile into SELFIES string. Args: xyzfile: str, file Returns: selfies: str, a SELFIES string. """ smiles = xyzfile2smiles(xyzfile) smiles = canonicalize(smiles) selfies = smiles2selfies(smiles) return selfies def distance3d(coordinate_1, coordinate_2): return np.sqrt(sum([(c1-c2)**2 for c1,c2 in zip(coordinate_1, coordinate_2)])) def upper_atom(atomsymbol): return atomsymbol[0].upper() + atomsymbol[1:] def xyzfile2graph3d(xyzfile): atoms, charge, xyz_coordinates = read_xyz_file(file) num_atoms = len(atoms) distance_adj_matrix = np.zeros((num_atoms, num_atoms)) for i in range(num_atoms): for j in range(i+1, num_atoms): distance = distance3d(xyz_coordinates[i], xyz_coordinates[j]) distance_adj_matrix[i,j] = distance_adj_matrix[j,i] = distance idx2atom = {idx:upper_atom(str_atom(atom)) for idx,atom in enumerate(atoms)} mol, BO = xyzfile2mol(xyzfile) return idx2atom, distance_adj_matrix, BO ############## end xyz2mol ################ def sdffile2smiles_lst(sdffile): """convert SDF file into a list of SMILES string. Args: sdffile: str, file Returns: smiles_lst: a list of SMILES strings. """ from rdkit.Chem.PandasTools import LoadSDF df = LoadSDF(sdffile, smilesName='SMILES') smiles_lst = df['SMILES'].to_list() return smiles_lst def sdffile2mol_conformer(sdffile): """convert sdffile into a list of molecule conformers. Args: sdffile: str, file Returns: smiles_lst: a list of molecule conformers. """ from rdkit.Chem.PandasTools import LoadSDF df = LoadSDF(sdffile, smilesName='SMILES') mol_lst = df['ROMol'].tolist() conformer_lst = [] for mol in mol_lst: conformer = mol.GetConformer(id=0) conformer_lst.append(conformer) mol_conformer_lst = list(zip(mol_lst, conformer_lst)) return mol_conformer_lst def mol_conformer2graph3d(mol_conformer_lst): """convert list of (molecule, conformer) into a list of 3D graph. Args: mol_conformer_lst: list of tuple (molecule, conformer) Returns: graph3d_lst: a list of 3D graph. each graph has (i) idx2atom (dict); (ii) distance_adj_matrix (np.array); (iii) bondtype_adj_matrix (np.array) """ graph3d_lst = [] bond2num = {'SINGLE': 1, 'DOUBLE':2, 'TRIPLE':3, "AROMATIC":4} for mol, conformer in mol_conformer_lst: atom_num = mol.GetNumAtoms() distance_adj_matrix = np.zeros((atom_num, atom_num)) bondtype_adj_matrix = np.zeros((atom_num, atom_num), dtype = int) idx2atom = {i:v.GetSymbol() for i,v in enumerate(mol.GetAtoms())} positions = [] for i in range(atom_num): pos = conformer.GetAtomPosition(i) coordinate = np.array([pos.x, pos.y, pos.z]).reshape(1,3) positions.append(coordinate) positions = np.concatenate(positions, 0) for i in range(atom_num): for j in range(i+1, atom_num): distance_adj_matrix[i,j] = distance_adj_matrix[j,i] = distance3d(positions[i], positions[j]) for bond in mol.GetBonds(): a1 = bond.GetBeginAtom().GetIdx() a2 = bond.GetEndAtom().GetIdx() bt = bond.GetBondType() bondtype_adj_matrix[a1,a2] = bond2num[str(bt)] bondtype_adj_matrix[a1,a2] = bond2num[str(bt)] graph3d_lst.append((idx2atom, distance_adj_matrix, bondtype_adj_matrix)) return graph3d_lst def sdffile2graph3d_lst(sdffile): """convert SDF file into a list of 3D graph. Args: sdffile: SDF file Returns: graph3d_lst: a list of 3D graph. each graph has (i) idx2atom (dict); (ii) distance_adj_matrix (np.array); (iii) bondtype_adj_matrix (np.array) """ mol_conformer_lst = sdffile2mol_conformer(sdffile) graph3d_lst = mol_conformer2graph3d(mol_conformer_lst) return graph3d_lst def sdffile2selfies_lst(sdf): """convert sdffile into a list of SELFIES strings. Args: sdffile: str, file Returns: selfies_lst: a list of SELFIES strings. """ smiles_lst = sdffile2smiles_lst(sdf) selfies_lst = list(map(smiles2selfies, smiles_lst)) return selfies_lst def smiles_lst2coulomb(smiles_lst): """convert a list of SMILES strings into coulomb format. Args: smiles_lst: a list of SELFIES strings. Returns: features: np.array """ molecules = [Molecule(smiles, 'smiles') for smiles in smiles_lst] for mol in molecules: mol.to_xyz(optimizer='UFF') cm = CoulombMatrix(cm_type='UM', n_jobs=-1) features = cm.represent(molecules) features = features.to_numpy() return features ## (nmol, max_atom_n**2), ## where max_atom_n is maximal number of atom in the smiles_lst ## features[i].reshape(max_atom_n, max_atom_n)[:3,:3] -> 3*3 Coulomb matrix def sdffile2coulomb(sdf): """convert sdffile into a list of coulomb feature. Args: sdffile: str, file Returns: coulomb feature: np.array """ smiles_lst = sdffile2smiles_lst(sdf) return smiles_lst2coulomb(smiles_lst) def xyzfile2coulomb(xyzfile): smiles = xyzfile2smiles(xyzfile) smiles = canonicalize(smiles) return smiles_lst2coulomb([smiles]) #2D_format = ['SMILES', 'SELFIES', 'Graph2D', 'PyG', 'DGL', 'ECFP2', 'ECFP4', 'ECFP6', 'MACCS', 'Daylight', 'RDKit2D', 'Morgan', 'PubChem'] #3D_format = ['Graph3D', 'Coulumb'] ## XXX2smiles def molfile2smiles(molfile): """convert molfile into SMILES string Args: molfile: str, a file. Returns: smiles: str, SMILES strings """ mol = Chem.MolFromMolFile(molfile) smiles = Chem.MolToSmiles(mol) smiles = canonicalize(smiles) return smiles def mol2file2smiles(molfile): """convert mol2file into SMILES string Args: mol2file: str, a file. Returns: smiles: str, SMILES strings """ mol = Chem.MolFromMol2File(molfile) smiles = Chem.MolToSmiles(mol) smiles = canonicalize(smiles) return smiles ## smiles2xxx convert_dict = { 'SMILES': ['SELFIES', 'Graph2D', 'PyG', 'DGL', 'ECFP2', 'ECFP4', 'ECFP6', 'MACCS', 'Daylight', 'RDKit2D', 'Morgan', 'PubChem'], 'SELFIES': ['SMILES', 'Graph2D', 'PyG', 'DGL', 'ECFP2', 'ECFP4', 'ECFP6', 'MACCS', 'Daylight', 'RDKit2D', 'Morgan', 'PubChem'], 'mol': ['SMILES', 'SELFIES', 'Graph2D', 'PyG', 'DGL', 'ECFP2', 'ECFP4', 'ECFP6', 'MACCS', 'Daylight', 'RDKit2D', 'Morgan', 'PubChem'], 'mol2': ['SMILES', 'SELFIES', 'Graph2D', 'PyG', 'DGL', 'ECFP2', 'ECFP4', 'ECFP6', 'MACCS', 'Daylight', 'RDKit2D', 'Morgan', 'PubChem'], 'SDF': ['SMILES', 'SELFIES', 'Graph3D', 'Coulumb'], 'XYZ': ['SMILES', 'SELFIES', 'Graph3D', 'Coulumb'], } fingerprints_list = ['ECFP2', 'ECFP4', 'ECFP6', 'MACCS', 'Daylight', 'RDKit2D', 'Morgan', 'PubChem'] twoD_format = ['SMILES', 'SELFIES', 'mol', 'mol2', ] threeD_format = ['SDF', 'XYZ', ] class MolConvert: """MolConvert: convert the molecule from src formet to dst format. Example: convert = MolConvert(src = ‘SMILES’, dst = ‘Graph2D’) g = convert(‘Clc1ccccc1C2C(=C(/N/C(=C2/C(=O)OCC)COCCN)C)\C(=O)OC’) # g: graph with edge, node features g = convert(['Clc1ccccc1C2C(=C(/N/C(=C2/C(=O)OCC)COCCN)C)\C(=O)OC', 'CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C']) # g: a list of graphs with edge, node features if src is 2D, dst can be only 2D output if src is 3D, dst can be both 2D and 3D outputs src: 2D - [SMILES, SELFIES] 3D - [SDF file, XYZ file] dst: 2D - [2D Graph (+ PyG, DGL format), Canonical SMILES, SELFIES, Fingerprints] 3D - [3D graphs (adj matrix entry is (distance, bond type)), Coulumb Matrix] """ def __init__(self, src = 'SMILES', dst = 'Graph2D', radius = 2, nBits = 1024): self._src = src self._dst = dst self._radius = radius self._nbits = nBits self.convert_dict = convert_dict if 'SELFIES' == src or 'SELFIES' == dst: try: import selfies as sf global sf except: raise Exception("Please install selfies via 'pip install selfies'") if 'Coulumb' == dst: try: from chemml.chem import CoulombMatrix, Molecule global CoulombMatrix, Molecule except: raise Exception("Please install chemml via 'pip install pybel' and 'pip install chemml'. ") if 'PyG' == dst: try: import torch from torch_geometric.data import Data global torch global Data except: raise Exception("Please install PyTorch Geometric via 'https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html'.") if 'DGL' == dst: try: import dgl global dgl except: raise Exception("Please install DGL via 'pip install dgl'.") try: assert src in self.convert_dict except: raise Exception("src format is not supported") try: assert dst in self.convert_dict[src] except: raise Exception('It is not supported to convert src to dst.') if src in twoD_format: ### 1. src -> SMILES if src == "SMILES": f1 = canonicalize elif src == "SELFIES": f1 = selfies2smiles elif src == "mol": f1 = molfile2smiles elif src == "mol2": f1 = mol2file2smiles ### 2. SMILES -> all # 'SMILES', 'SELFIES', 'Graph2D', 'PyG', 'DGL', 'ECFP2', 'ECFP4', 'ECFP6', 'MACCS', 'Daylight', 'RDKit2D', 'Morgan', 'PubChem' if dst == 'SMILES': f2 = canonicalize elif dst == 'SELFIES': f2 = smiles2selfies elif dst == "Graph2D": f2 = smiles2graph2D elif dst == "PyG": f2 = smiles2PyG elif dst == "DGL": f2 = smiles2DGL elif dst == "ECFP2": f2 = smiles2ECFP2 elif dst == "ECFP4": f2 = smiles2ECFP4 elif dst == "MACCS": f2 = smiles2maccs elif dst == "Daylight": f2 = smiles2daylight elif dst == "RDKit2D": f2 = smiles2rdkit2d elif dst == "Morgan": f2 = smiles2morgan elif dst == 'PubChem': f2 = smiles2pubchem self.func = lambda x:f2(f1(x)) elif src in threeD_format: pass ### load from xyz file, input is a filename (str), only contain one smiles if src == 'XYZ' and dst == 'SMILES': self.func = xyzfile2smiles elif src == 'XYZ' and dst == 'SELFIES': self.func = xyzfile2selfies elif src == 'XYZ' and dst == 'Graph3D': self.func = xyzfile2graph3d elif src == 'XYZ' and dst == 'Coulumb': self.func = xyzfile2coulomb ### SDF file elif src == 'SDF' and dst == 'Graph3D': self.func = sdffile2graph3d_lst elif src == 'SDF' and dst == 'SMILES': self.func = sdffile2smiles_lst elif src == 'SDF' and dst == 'SELFIES': self.func = sdffile2selfies_lst elif src == 'SDF' and dst == 'Coulumb': self.func = sdffile2coulomb def __call__(self, x): if type(x) == np.ndarray: x = x.tolist() if type(x) == str: if self.func != smiles2morgan: return self.func(x) else: return self.func(x, radius = self._radius, nBits = self._nbits) elif type(x) == list: if self.func != smiles2morgan: out = list(map(self.func, x)) else: lst = [] for x0 in x: lst.append(self.func(x0, radius = self._radius, nBits = self._nbits)) out = lst if self._dst in fingerprints_list: out = np.array(out) return out @staticmethod def eligible_format(src = None): ''' given a src format, output all the available format of the src format Example MoleculeLink.eligible_format('SMILES') ## ['Graph', 'SMARTS', ...] ''' if src is not None: try: assert src in convert_dict except: raise Exception("src format is not supported") return convert_dict[src] else: return convert_dict
the-stack_0_26902
#!/usr/bin/env python """ Mathematical tools for audio signal processing. """ # # Authors: Juan Sebastian ULLOA <[email protected]> # Sylvain HAUPERT <[email protected]> # # License: New BSD License # ============================================================================= # Load the modules # ============================================================================= # Import external modules import matplotlib.pyplot as plt import numpy as np from numpy import mean, median, var from scipy.ndimage.filters import uniform_filter1d # for fast running mean from scipy.signal import periodogram, welch import pandas as pd # min value import sys _MIN_ = sys.float_info.min # Import internal modules from maad.util import linear_scale #%% # ============================================================================= # public functions # ============================================================================= def running_mean(x, N, mode="nearest"): """ Compute fast running mean for a window size N. Parameters ---------- x : 1d ndarray of scalars Vector mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional, The `mode` parameter determines how the input array is extended when the filter overlaps a border. Default is 'nearest'. Behavior for each valid value is as follows: 'reflect' (`d c b a | a b c d | d c b a`) The input is extended by reflecting about the edge of the last pixel. 'constant' (`k k k k | a b c d | k k k k`) The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter. 'nearest' (`a a a a | a b c d | d d d d`) The input is extended by replicating the last pixel. 'mirror' (`d c b | a b c d | c b a`) The input is extended by reflecting about the center of the last pixel. 'wrap' (`a b c d | a b c d | a b c d`) The input is extended by wrapping around to the opposite edge. N : int length of window to compute the mean Returns ------- x_mean : 1d ndarray of scalars Vector with the same dimensions than the original variable x Examples -------- >>> maad.util.running_mean([2, 8, 0, 4, 1, 9, 9, 0], N=3) array([4, 3, 4, 1, 4, 6, 6, 3]) """ x_mean = uniform_filter1d(x, size=N, mode="nearest") return x_mean #%% def get_unimode (X, mode ='median', axis=1, N=7, N_bins=100, verbose=False): """ Get the statistical mode or modal value which is the most common number in the dataset. Parameters ---------- X : 1d or 2d ndarray of scalars Vector or matrix mode : str, optional, default is 'median' Select the mode to remove the noise Possible values for mode are : - 'ale' : Adaptative Level Equalization algorithm [Lamel & al. 1981] - 'median' : subtract the median value - 'mean' : subtract the mean value (DC) axis : integer, default is 1 if matrix, estimate the mode for each row (axis=0) or each column (axis=1) N : int (only for mode = "ale") length of window to compute the running mean of the histogram N_bins : int (only for mode = "ale") number of bins to compute the histogram verbose : boolean, optional, default is False print messages into the consol or terminal if verbose is True Returns ------- unimode_value : float The most common number in the dataset Notes ----- ale : Adaptative Level Equalization algorithm from Lamel et al., 1981 : L.F. Lamel, L.R. Rabiner, A.E. Rosenberg, J.G. Wilpon An improved endpoint detector for isolated word recognition IEEE Trans. ASSP, ASSP-29 (1981), pp. 777-785 `DOI: 10.1109/TASSP.1981.1163642 <https://doi.org/10.1109/TASSP.1981.1163642>`_ Examples -------- This function is interesting to obtain the background noise (BGN) profile (e.g. frequency bin by frequency bin) of a spectrogram >>> w, fs = maad.sound.load('../data/cold_forest_daylight.wav') >>> Sxx_power,tn,fn,_ = maad.sound.spectrogram(w,fs,window='hanning',noverlap=512, nFFT=1024) >>> Sxx_dB = maad.util.power2dB(Sxx_power) >>> BGN_med = maad.util.get_unimode (Sxx_dB, mode='median', axis=1) >>> import matplotlib.pyplot as plt >>> plt.plot(fn,maad.util.mean_dB(Sxx_dB,axis=1)) >>> plt.plot(fn,BGN_med) Extract the background noise from mean >>> BGN_mean = maad.util.get_unimode (Sxx_dB, mode='mean', axis=1) >>> plt.plot(fn,BGN_mean) Extract the background noise from ale (i.e. unimode) >>> BGN_ale = maad.util.get_unimode (Sxx_dB, mode='ale', N=7, N_bins=100, axis=1) >>> plt.plot(fn,BGN_ale) """ if X.ndim ==2: if axis == 0: X = X.transpose() axis = 1 elif X.ndim ==1: axis = 0 if mode=='ale': if X.ndim ==2: unimode_value = [] for i, x in enumerate(X): # Min and Max of the envelope (without taking into account nan) x_min = np.nanmin(x) x_max = np.nanmax(x) # Compute a 50-bin histogram ranging between Min and Max values hist, bin_edges = np.histogram(x, bins=N_bins, range=(x_min, x_max)) # smooth the histogram by running mean hist_smooth = running_mean(hist, N, mode="nearest") # find the maximum of the peak with quadratic interpolation # don't take into account the first 4 bins. imax = np.argmax(hist_smooth) unimode_value.append(bin_edges[imax]) # transpose the vector unimode_value = np.asarray(unimode_value) unimode_value = unimode_value.transpose() else: x = X # Min and Max of the envelope (without taking into account nan) x_min = np.nanmin(x) x_max = np.nanmax(x) # Compute a 50-bin histogram ranging between Min and Max values hist, bin_edges = np.histogram(x, bins=N_bins, range=(x_min, x_max)) # smooth the histogram by running mean hist_smooth = running_mean(hist, N, mode="nearest") # find the maximum of the peak with quadratic interpolation imax = np.argmax(hist_smooth) # assuming an additive noise model : noise_bckg is the max of the histogram # as it is an histogram, the value is unimode_value = bin_edges_interp[np.argmax(hist_interp)] unimode_value = bin_edges[imax] elif mode=='median': unimode_value = median(X, axis=axis) elif mode=='mean': unimode_value = mean(X, axis=axis) return unimode_value #%% def rms(s): """ Compute the root-mean-square (RMS) level of an input signal. RMS is defined as the square root of the arithmetic mean of the square of a set of numbers [1]. The RMS is used to estimate de mean amplitude level of an audio signal or any alternative time series. Parameters ---------- s : 1D array Input signal to process Returns ------- rms: float Root mean square of input signal References ---------- .. [1] 'Root mean square' (2010). Wikipedia. Available at https://en.wikipedia.org/wiki/Root_mean_square Examples -------- >>> from maad import sound, util >>> s, fs = sound.load('../data/spinetail.wav') >>> rms_value = util.rms(s) """ return np.sqrt(np.mean(s**2)) #%% def skewness (x, axis=None): """ Compute the skewness (asymetry) of an audio signal. Parameters ---------- x : ndarray of floats 1d signal or 2d matrix axis : integer, optional, default is None select the axis to compute the kurtosis The default is to compute the mean of the flattened array. Returns ------- sk : float or ndarray of floats skewness of x if x is a 1d vector => single value if x is a 2d matrix => array of values corresponding to the number of points in the other axis Examples -------- >>> from maad import sound, util >>> s, fs = sound.load('../data/spinetail.wav') >>> util.skewness(s) -0.006547980427883208 """ if isinstance(x, (np.ndarray)) == True: if axis is None: # flatten the array Nf = len(np.ndarray.flatten((x))) else: Nf = x.shape[axis] mean_x = np.mean(x, axis=axis) std_x = np.std(x, axis=axis) if axis == 0 : z = x - mean_x[np.newaxis, ...] else : z = x - mean_x[..., np.newaxis] sk = (np.sum(z**3, axis=axis)/(Nf-1))/std_x**3 else: print ("WARNING: type of x must be ndarray") sk = None # test if ku is an array with a single value if (isinstance(sk, (np.ndarray)) == True) and (len(sk) == 1): sk = float(sk) return sk #%% def kurtosis (x, axis=None): """ Compute the kurtosis (tailedness or curved or arching) of an audio signal. Parameters ---------- x : ndarray of floats 1d signal or 2d matrix axis : integer, optional, default is None select the axis to compute the kurtosis The default is to compute the mean of the flattened array. Returns ------- ku : float or ndarray of floats kurtosis of x if x is a 1d vector => single value if x is a 2d matrix => array of values corresponding to the number of points in the other axis Examples -------- >>> from maad import sound, util >>> s, fs = sound.load('../data/spinetail.wav') >>> util.kurtosis(s) 24.711610834321217 """ if isinstance(x, (np.ndarray)) == True: if axis is None: # flatten the array Nf = len(np.ndarray.flatten((x))) else: Nf = x.shape[axis] mean_x = np.mean(x, axis=axis) std_x = np.std(x, axis=axis) if axis==0 : z = x - mean_x[np.newaxis, ...] else: z = x - mean_x[..., np.newaxis] ku = (np.sum(z**4, axis=axis)/(Nf-1))/std_x**4 else: print ("WARNING: type of x must be ndarray") ku = None # test if ku is an array with a single value if (isinstance(ku, (np.ndarray)) == True) and (len(ku) == 1): ku = float(ku) return ku #%% def moments (X, axis=None): """ Computes the first 4th moments of a vector (1d, ie. spectrum or waveform) or spectrogram (2d) - mean - variance - skewness - kurtosis Parameters ---------- X : ndarray of floats vector (1d : spectrum, waveform) or matrix (2d : spectrogram). axis : interger, optional, default is None if spectrogram (2d), select the axis to estimate the moments. Returns ------- mean : float mean of X var : float variance of X skew : float skewness of X kurt : float kurtosis of X Examples -------- >>> from maad import sound, util >>> s, fs = sound.load('../data/spinetail.wav') >>> mean, var, skew, kurt = util.moments(s) >>> print ('mean:%2.4f / var:%2.4f / skew:%2.4f / kurt:%2.4f' %(mean, var, skew, kurt)) mean:-0.0000 / var:0.0012 / skew:-0.0065 / kurt:24.7116 """ # force P to be ndarray X = np.asarray(X) return mean(X, axis), var(X, axis), skewness(X, axis), kurtosis(X, axis) #%% def entropy (x, axis=0): """ Compute the entropy of a vector (waveform) or matrix (spectrogram). Parameters ---------- x : ndarray of floats x is a vector (1d) or a matrix (2d) axis : int, optional, default is 0 select the axis where the entropy is computed if x is a vector, axis=0 if x is a 2d ndarray, axis=0 => rows, axis=1 => columns Returns ------- H : float or ndarray of floats entropy of x Examples -------- >>> from maad import sound, util >>> s, fs = sound.load('../data/spinetail.wav') >>> H = util.entropy(s) >>> print ('Entropy is %2.4f' %H) Entropy is 0.9998 """ if isinstance(x, (np.ndarray)) == True: if x.ndim > axis: if x.shape[axis] == 0: print ("WARNING: x is empty") H = None elif x.shape[axis] == 1: H = 0 # null entropy elif x.all() == 0: if x.ndim == 1 : # case vector H = 0 # null entropy else : # case matrix if axis == 0 : H = np.zeros(x.shape[1]) # null entropy if axis == 1 : H = np.zeros(x.shape[0]) # null entropy else: # if datain contains negative values -> rescale the signal between # between posSitive values (for example (0,1)) if np.min(x)<0: x = linear_scale(x,minval=0,maxval=1) # length of datain along axis n = x.shape[axis] # Tranform the signal into a Probability mass function (pmf) # Sum(pmf) = 1 if axis == 0 : pmf = x/np.sum(x,axis) elif axis == 1 : pmf = (x.transpose()/np.sum(x,axis)).transpose() pmf[pmf==0] = _MIN_ #normalized by the length : H=>[0,1] H = -np.sum(pmf*np.log(pmf),axis)/np.log(n) else: print ("WARNING :axis is greater than the dimension of the array") H = None else: print ("WARNING: x must be ndarray") H = None return H
the-stack_0_26903
from collections import defaultdict from urllib.parse import urlparse import dvc.output as output from dvc.dependency.azure import AzureDependency from dvc.dependency.gs import GSDependency from dvc.dependency.hdfs import HDFSDependency from dvc.dependency.http import HTTPDependency from dvc.dependency.https import HTTPSDependency from dvc.dependency.local import LocalDependency from dvc.dependency.param import ParamsDependency from dvc.dependency.s3 import S3Dependency from dvc.dependency.ssh import SSHDependency from dvc.output.base import BaseOutput from dvc.remote import Remote from dvc.scheme import Schemes from .repo import RepoDependency DEPS = [ AzureDependency, GSDependency, HDFSDependency, HTTPDependency, HTTPSDependency, S3Dependency, SSHDependency, # NOTE: LocalDependency is the default choice ] DEP_MAP = { Schemes.LOCAL: LocalDependency, Schemes.SSH: SSHDependency, Schemes.S3: S3Dependency, Schemes.AZURE: AzureDependency, Schemes.GS: GSDependency, Schemes.HDFS: HDFSDependency, Schemes.HTTP: HTTPDependency, Schemes.HTTPS: HTTPSDependency, } # NOTE: schema for dependencies is basically the same as for outputs, but # without output-specific entries like 'cache' (whether or not output is # cached, see -o and -O flags for `dvc run`) and 'metric' (whether or not # output is a metric file and how to parse it, see `-M` flag for `dvc run`). SCHEMA = output.SCHEMA.copy() del SCHEMA[BaseOutput.PARAM_CACHE] del SCHEMA[BaseOutput.PARAM_METRIC] SCHEMA.update(RepoDependency.REPO_SCHEMA) SCHEMA.update(ParamsDependency.PARAM_SCHEMA) def _get(stage, p, info): parsed = urlparse(p) if p else None if parsed and parsed.scheme == "remote": remote = Remote(stage.repo, name=parsed.netloc) return DEP_MAP[remote.scheme](stage, p, info, remote=remote) if info and info.get(RepoDependency.PARAM_REPO): repo = info.pop(RepoDependency.PARAM_REPO) return RepoDependency(repo, stage, p, info) if info and info.get(ParamsDependency.PARAM_PARAMS): params = info.pop(ParamsDependency.PARAM_PARAMS) return ParamsDependency(stage, p, params) for d in DEPS: if d.supported(p): return d(stage, p, info) return LocalDependency(stage, p, info) def loadd_from(stage, d_list): ret = [] for d in d_list: p = d.pop(BaseOutput.PARAM_PATH, None) ret.append(_get(stage, p, d)) return ret def loads_from(stage, s_list, erepo=None): assert isinstance(s_list, list) ret = [] for s in s_list: info = {RepoDependency.PARAM_REPO: erepo} if erepo else {} ret.append(_get(stage, s, info)) return ret def _merge_params(s_list): d = defaultdict(list) default_file = ParamsDependency.DEFAULT_PARAMS_FILE for key in s_list: if isinstance(key, str): d[default_file].append(key) continue if not isinstance(key, dict): msg = "Only list of str/dict is supported. Got: " msg += f"'{type(key).__name__}'." raise ValueError(msg) for k, params in key.items(): if not isinstance(params, list): msg = "Expected list of params for custom params file " msg += f"'{k}', got '{type(params).__name__}'." raise ValueError(msg) d[k].extend(params) return d def loads_params(stage, s_list): d = _merge_params(s_list) return [ ParamsDependency(stage, path, params) for path, params in d.items() ]
the-stack_0_26906
import typing import re from pydantic import BaseModel from better_graph.utils.base_model import InputModel, OutputModel from better_graph.utils.check_type import check_instance from better_graph.utils.str_converter import StringConverter as sc, StringConverter class TypingParser: """ TODO: // NOT FOR NOW // Implementation of __NODE__type // NOT FOR NOW // """ custom_types: typing.Dict = dict() @classmethod def parse( cls, value: typing.Union[str, dict], key: str = None, make_optional: bool = False, is_query_input: bool = None ) -> typing.Union[typing.Type, str]: if isinstance(value, dict): if make_optional: return typing.Optional[cls._parse_nested_dict( value, key=key, make_optional=make_optional, is_query_input=is_query_input )] return cls._parse_nested_dict(value, key) check_instance(value, str) if is_query_input: return typing.Optional[typing.Union[str, int]] if make_optional: if not isinstance(make_optional, bool): raise TypeError('make_optional must be type: bool') return eval(cls._make_str_optional(cls._parse_str(value))) return eval(cls._parse_str(value)) @classmethod def parse_fields( cls, fields: typing.Dict, excluded_fields: typing.List[str], make_optional: bool = False, is_query_input: bool = False ) -> dict: return { k: TypingParser.parse(v, key=k, make_optional=make_optional, is_query_input=is_query_input) \ for k, v in fields.items() \ if k not in excluded_fields } @classmethod def get_class_model( cls, name: str, fields: dict, excluded_fields: list, make_optional: bool = False, is_input: bool = False, is_query: bool = False ): is_query_input = (is_query and is_input) fields_ = cls.parse_fields( fields=fields, excluded_fields=excluded_fields, make_optional=make_optional, is_query_input=is_query_input ) return type( StringConverter.snake_to_pascal(name), (OutputModel if not is_input else InputModel,), { '__annotations__': fields_ } ) @classmethod def _parse_nested_dict( cls, dict_: dict, key: str, make_optional: bool = False, is_query_input: str = None ): nested_name = '{}Model'.format(sc.snake_to_pascal(key)) nested_fields = { k: cls.parse(v, key=k, make_optional=make_optional, is_query_input=is_query_input) for k, v in dict_.items() } return type( nested_name, (BaseModel,), {'__annotations__': nested_fields} ) @classmethod def _make_str_optional(cls, str_: str) -> str: if not isinstance(str_, str): raise TypeError('Please provide an argument of type: str') return 'typing.Optional[{}]'.format(str_) @classmethod def _parse_str(cls, str_: str): list_ = re.sub("[0-9a-zA-Z]", " ", str_).split(' ') # Remove all alphanumerical pre_format = '{}' + '{}'.join([s for s in list_ if s]) list__ = re.sub("[^0-9a-zA-Z]+", '_', str_).split('_') # Remove non-alphanumerical sanitized_ = [cls._str_to_type(s) for s in list__ if s] return pre_format.format(*sanitized_) @classmethod def _str_to_type(cls, str_: str): builtins = { 'int': int, 'float': float, 'str': str, 'list': list, 'dict': dict, 'bool': bool } if str_ == 'None' or str_ == 'NoneType': return None if str_ in builtins: return str_ else: if str_ in typing.__dict__: return typing.__dict__[str_] else: raise TypeError('invalid type of element: {}'.format(str(str_)))
the-stack_0_26907
"""Utilities for parsing document handles and series information. """ __all__ = ('SERIES', 'DOCUMENT_HANDLE_PATTERN') import re SERIES = { 'LPM': 'LSST Project Management', 'LSE': 'LSST Systems Engineering', 'LDM': 'LSST Data Management', 'DMTR': 'LSST DM Test Report', 'SQR': 'SQuaRE Technical Note', 'DMTN': 'Data Management Technical Note', 'SMTN': 'Simulations Technical Note', 'PSTN': 'Project Science Team Technical Note', 'SITCOMTN': 'Systems Integration, Testing, and Commissioning Technical ' 'Note', 'OPSTN': 'LSST Operations Technical Note', 'TSTN': 'LSST Telescope & Site Technical Note', } """Mapping between LSST document series (handle prefixes) and the title of the series. """ DOCUMENT_HANDLE_PATTERN = re.compile( r'^(?P<series>' + '|'.join([h for h in SERIES]) + ')' r'-(?P<serial>\d+)', re.IGNORECASE) """Pattern that matches the handle of any LSST document. Notes ----- The pattern exposes two named groups in the match object: - ``'series'``. The document series. For example, ``'LDM'``. - ``'serial'``. The serial number, as a `str`. For example, ``'151'``. Note that the pattern is **case insensitive.** If you input text is normalized to lower case, it will still match, but the series will be in lower case. Examples -------- >>> m = DOCUMENT_HANDLE_PATTERN.match('LDM-151'.lower()) >>> m.group('series') 'LDM' >>> m.group('serial') '151' """
the-stack_0_26911
from unittest import mock from django.apps import apps from django.test import TestCase from django.test.utils import modify_settings from django.urls import path from django.views.generic import View @modify_settings(INSTALLED_APPS={ 'append': 'tests._site.apps.myapp.apps.TestConfig', }) class OscarConfigTestCase(TestCase): def setUp(self): self.myapp = apps.get_app_config('myapp') def test_get_permissions_required_uses_map(self): perms = self.myapp.get_permissions('index') self.assertEqual(perms, 'is_staff') def test_permissions_required_falls_back_to_default(self): perms = self.myapp.get_permissions('notinmap') self.assertEqual(perms, 'is_superuser') @mock.patch('oscar.views.decorators.permissions_required') def test_get_url_decorator_fetches_correct_perms(self, mock_permissions_required): pattern = path('', View.as_view(), name='index') self.myapp.get_url_decorator(pattern) mock_permissions_required.assert_called_once_with('is_staff', login_url=None) def test_post_process_urls_adds_decorator(self): fake_decorator = mock.Mock() fake_decorator.return_value = 'fake_callback' self.myapp.get_url_decorator = mock.Mock() self.myapp.get_url_decorator.return_value = fake_decorator pattern = path('', View.as_view(), name='index') processed_patterns = self.myapp.post_process_urls([pattern]) self.myapp.get_url_decorator.assert_called_once_with(pattern) self.assertEqual(processed_patterns[0].callback, 'fake_callback')
the-stack_0_26914
#!/usr/bin/python import numpy as np import os from functools import partial import json import argparse from sklearn.model_selection import train_test_split try: import bnnbench except: import sys sys.path.append(os.path.expandvars('$BNNBENCHPATH')) import bnnbench.utils.data_utils from bnnbench.models import MLP, MCDropout, MCBatchNorm, DNGO, DeepEnsemble from bnnbench.config import globalConfig as conf from bnnbench import _log as bnnbench_logger from bnnbench.toy_functions import parameterisedObjectiveFunctions, nonParameterisedObjectiveFunctions, SamplingMethods from bnnbench.toy_functions.toy_1d import ObjectiveFunction1D from bnnbench.toy_functions.sampler import sample_1d_func from bnnbench.utils.attrDict import AttrDict import bnnbench.utils.universal_utils as utils json_config_keys = utils.config_top_level_keys # json_config_keys = AttrDict() # json_config_keys.obj_func = "objective_function" # json_config_keys.dataset_size = "dataset_size" # json_config_keys.test_frac = "testset_fraction" # json_config_keys.mparams = "model_parameters" # json_config_keys.eparams = "experiment_parameters" model_types = AttrDict() model_types.mlp = MLP model_types.mcdropout = MCDropout model_types.mcbatchnorm = MCBatchNorm model_types.dngo = DNGO model_types.ensemble = DeepEnsemble # ---------------------------------------------------------------------------------------------------------------------- # --------------------------------------Set up default experiment parameters-------------------------------------------- # ---------------------------------------------------------------------------------------------------------------------- config = AttrDict() config.OBJECTIVE_FUNC = nonParameterisedObjectiveFunctions.infinityGO7 config.DATASET_SIZE = 100 config.TEST_FRACTION = 0.2 config.model_params = {} config.exp_params = {} config.mtype = MLP # ---------------------------------------------------------------------------------------------------------------------- # ---------------------------------------------Check command line args-------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------------- def handle_cli(): print("Handling command line arguments.") # global config parser = argparse.ArgumentParser(add_help=True) parser.add_argument('--model', type=str, default='mlp', help='Case-insensitive string indicating the type of model to be used for this experiment. ' 'Valid options are: ["mlp", "mcdropout", "mcbatchnorm", "ensemble", "dngo"]') parser.add_argument('--config', type=str, default=None, help='Filename of JSON file containing experiment configuration. If not provided, default ' 'configurations are used.') for argument, helptext in conf.cli_arguments.items(): argname = '--' + argument defaultval = conf.defaults[argument] if type(defaultval) is bool: action = "store_false" if defaultval else "store_true" elif isinstance(defaultval, str): action = "store" parser.add_argument(argname, default=None, action=action, help=helptext) parser.add_argument('--plotdata', action='store_true', default=False, required=False, help='When given, generates a plot of the training/test data. Only supported for 1D ' 'datasets.') parser.add_argument('--summarize', action='store_true', default=False, required=False, help='When given, generates a summary of the network generated by the model using ' 'torchsummary.') args = parser.parse_args() config.plotdata = args.plotdata config.summarize = args.summarize mtype = str.lower(args.model) if mtype not in model_types: raise RuntimeError("Unknown model type %s specified." % mtype) else: config.mtype = model_types[mtype] default_model_params = model_types[mtype]._default_model_params._asdict() if args.config is not None: print("--config flag detected.") config_file_path = utils.standard_pathcheck(args.config) with open(config_file_path, 'r') as fp: new_config = json.load(fp) if json_config_keys.obj_func in new_config: print("Attempting to fetch objective function %s" % new_config[json_config_keys.obj_func]) if isinstance(new_config[json_config_keys.obj_func], dict): raise RuntimeError("This script no longer supports datasets as objective functions and until further " "notice, can only be used for toy functions specified using the old interface by " "specifying the complete toy function name as defined in bnnbench.toy_functions.toy_1d " "as a string value for the top-level key %s in the JSON config file." % json_config_keys.obj_func) # utils.parse_objective(config=new_config[json_config_keys.obj_func], out=config) else: from bnnbench.toy_functions.toy_1d import get_func_from_attrdict config.OBJECTIVE_FUNC = get_func_from_attrdict(new_config[json_config_keys.obj_func], nonParameterisedObjectiveFunctions) print("Fetched objective function.") if json_config_keys.dataset_size in new_config: config.DATASET_SIZE = int(new_config[json_config_keys.dataset_size]) print("Using dataset size %d provided by config file." % config.DATASET_SIZE) if json_config_keys.test_frac in new_config: config.TEST_FRACTION = float(new_config[json_config_keys.test_frac]) print("Using test set fraction %.3f provided by config file." % config.TEST_FRACTION) if json_config_keys.mparams in new_config: config_model_params = new_config[json_config_keys.mparams] print("Using model parameters provided by config file.") for key, val in default_model_params.items(): config.model_params[key] = val if config_model_params.get(key, None) is None else \ config_model_params[key] print("Final model parameters: %s" % config.model_params) if json_config_keys.eparams in new_config: print("Using experiment parameters provided by config file.") config_exp_params = new_config[json_config_keys.eparams] for key, val in conf.defaults.items(): if key in conf.cli_arguments: # Only handle those settings that can be modified using the CLI or JSON config file. # Priorities: 1. CLI, 2. Config file, 3. Defaults clival = getattr(args, key) config.exp_params[key] = clival if clival is not None else val if \ config_exp_params.get(key, None) is None else config_exp_params[key] print("Final experiment parameters: %s" % config.exp_params) else: print("No config file detected, using default parameters.") config.model_params = default_model_params config.exp_params = config.default_exp_params print("Finished reading command line arguments.") def perform_experiment(): model = config.mtype(model_params=config.model_params) # if config.exp_params['tbdir'] is None: if config.exp_params.get('tbdir', None) in [None, '']: config.exp_params['tbdir'] = model.modeldir print(f"Tensorboard directory set to: {config.exp_params['tbdir']}") conf.params = config.exp_params rng: np.random.RandomState = model.rng mean_only = True if config.mtype is model_types.mlp else False print("Saving new model to: %s" % config.model_params["model_path"]) # -----------------------------------------------Generate data------------------------------------------------------ if isinstance(config.OBJECTIVE_FUNC, AttrDict): X, y = bnnbench.utils.data_utils.data_generator(config.OBJECTIVE_FUNC) print(f"Loaded dataset with feature set of shape {X.shape} and targets of shape {y.shape}") plotting1d = False else: X, y = sample_1d_func(config.OBJECTIVE_FUNC, rng=rng, nsamples=config.DATASET_SIZE, method=SamplingMethods.RANDOM) plotting1d = True # I give up. New rule: No more vectors. if len(X.shape) == 1: X = X[:, None] if len(y.shape) == 1: y = y[:, None] Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=config.TEST_FRACTION, random_state=rng, shuffle=True) print(f"Shapes after splitting: X, y - {Xtrain.shape}, {ytrain.shape}") # -----------------------------------------------Set up plotting---------------------------------------------------- if plotting1d: domain = config.OBJECTIVE_FUNC.domain grid = np.linspace(domain[0], domain[1], max(1000, config.DATASET_SIZE * 10)) fvals = config.OBJECTIVE_FUNC(grid) tb_plotter = partial(utils.network_output_plotter_toy, grid=grid, fvals=fvals, trainx=Xtrain, trainy=ytrain, plot_variances=not mean_only) # -------------------------------------------------Let it roll------------------------------------------------------ model.preprocess_training_data(Xtrain, ytrain) if plotting1d: model.train_network(plotter=tb_plotter) else: model.train_network() # Don't save interim progress plots predicted_y = model.predict(Xtest) savedir = utils.ensure_path_exists(model.modeldir) if mean_only: # out = np.zeros((Xtest.shape[0], Xtest.shape[1] + 1)) out = np.concatenate((Xtest, predicted_y), axis=1) else: # Assume the model predicted means and variances, returned as a tuple # Treat both elements of the tuple as individual numpy arrays out = np.concatenate((Xtest, predicted_y[0], predicted_y[1]), axis=1) print(f"Saving model performance results in {savedir}") if config.plotdata: from bnnbench.utils.universal_utils import simple_plotter import matplotlib.pyplot as plt traindata = np.concatenate((Xtrain, ytrain), axis=1) testdata = np.concatenate((Xtest, ytest), axis=1) print(f"Displaying:\nTraining data of shape {traindata.shape}\nTest data of shape {testdata.shape}\n" f"Prediction data of shape {out.shape}") fig = simple_plotter( pred=out, train=traindata, test=testdata, plot_variances=not mean_only ) plt.show() np.save(file=os.path.join(savedir, 'trainset'), arr=np.concatenate((Xtrain, ytrain), axis=1), allow_pickle=True) np.save(file=os.path.join(savedir, 'testset'), arr=np.concatenate((Xtest, ytest), axis=1), allow_pickle=True) np.save(file=os.path.join(savedir, 'test_predictions'), arr=out, allow_pickle=True) utils.make_model_params_json_compatible(config.model_params) utils.make_exp_params_json_compatible(config.exp_params) jdict = { json_config_keys.obj_func: str(config.OBJECTIVE_FUNC), json_config_keys.dataset_size: config.DATASET_SIZE, json_config_keys.test_frac: config.TEST_FRACTION, json_config_keys.mparams: config.model_params, json_config_keys.eparams: config.exp_params } with open(os.path.join(savedir, 'config.json'), 'w') as fp: try: json.dump(jdict, fp, indent=4) except TypeError as e: print("Could not write configuration file for config:\n%s" % jdict) print("Finished experiment.") if config.summarize: model.network.to('cuda') from torchsummary import summary summary(model.network, input_size=(model.batch_size, model.input_dims)) if __name__ == '__main__': handle_cli() perform_experiment()
the-stack_0_26916
#!/usr/bin/env python3 import os resources_dir = '../../Assets/Resources/' out_filename = os.path.join(resources_dir, 'LocalizedResourcePaths.txt') with open(out_filename, 'w', encoding='utf-8', newline='\n') as f: for root, dirs, files in os.walk( os.path.join(resources_dir, 'LocalizedResources')): for file in sorted(files): if file.endswith('.meta'): continue filename = os.path.join(root, os.path.splitext(file)[0]) filename = filename.replace('\\', '/') filename = filename.replace(resources_dir + '/', '') print(filename) f.write(filename + '\n')
the-stack_0_26918
class Solution: def lengthOfLongestSubstringKDistinct(self, s: str, k: int) -> int: x={} l=0 r=0 max_len=1 if len(s)*k==0: return 0 while r<len(s): x[s[r]]=r r+=1 if len(set(x))>k: del_idx = min(x.values()) del x[s[del_idx]] l = del_idx + 1 max_len = max(max_len, r - l) return max_len
the-stack_0_26919
# coding: utf-8 # # The MIT License (MIT) # # Copyright (c) 2016-2018 yutiansut/QUANTAXIS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import json import pandas as pd import tushare as QATs from QUANTAXIS.QAUtil import (QA_util_date_int2str, QA_util_date_stamp, QA_util_log_info, QA_util_to_json_from_pandas) def QA_fetch_get_stock_day(name, start='', end='', if_fq='01', type_='pd'): if (len(name) != 6): name = str(name)[0:6] if str(if_fq) in ['qfq', '01']: if_fq = 'qfq' elif str(if_fq) in ['hfq', '02']: if_fq = 'hfq' elif str(if_fq) in ['bfq', '00']: if_fq = 'bfq' else: QA_util_log_info('wrong with fq_factor! using qfq') if_fq = 'qfq' data = QATs.get_k_data(str(name), start, end, ktype='D', autype=if_fq, retry_count=200, pause=0.005).sort_index() data['date_stamp'] = data['date'].apply(lambda x: QA_util_date_stamp(x)) data['fqtype'] = if_fq if type_ in ['json']: data_json = QA_util_to_json_from_pandas(data) return data_json elif type_ in ['pd', 'pandas', 'p']: data['date'] = pd.to_datetime(data['date']) data = data.set_index('date', drop=False) data['date'] = data['date'].apply(lambda x: str(x)[0:10]) return data def QA_fetch_get_stock_realtime(): data = QATs.get_today_all() data_json = QA_util_to_json_from_pandas(data) return data_json def QA_fetch_get_stock_info(name): data = QATs.get_stock_basics() try: return data.loc[name] except: return None def QA_fetch_get_stock_tick(name, date): if (len(name) != 6): name = str(name)[0:6] return QATs.get_tick_data(name, date) def QA_fetch_get_stock_list(): df = QATs.get_stock_basics() return list(df.index) def QA_fetch_get_stock_time_to_market(): data = QATs.get_stock_basics() return data[data['timeToMarket'] != 0]['timeToMarket'].apply(lambda x: QA_util_date_int2str(x)) def QA_fetch_get_trade_date(end, exchange): data = QATs.trade_cal() da = data[data.isOpen > 0] data_json = QA_util_to_json_from_pandas(data) message = [] for i in range(0, len(data_json) - 1, 1): date = data_json[i]['calendarDate'] num = i + 1 exchangeName = 'SSE' data_stamp = QA_util_date_stamp(date) mes = {'date': date, 'num': num, 'exchangeName': exchangeName, 'date_stamp': data_stamp} message.append(mes) return message def QA_fetch_get_lhb(date): return QATs.top_list(date) # test # print(get_stock_day("000001",'2001-01-01','2010-01-01')) # print(get_stock_tick("000001.SZ","2017-02-21"))
the-stack_0_26922
# Copyright 2020 Tensorforce Team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf from tensorforce.core import ModuleDict, parameter_modules, SignatureDict, TensorDict, TensorSpec, \ TensorsSpec, tf_function, tf_util from tensorforce.core.policies import Policy class StochasticPolicy(Policy): """ Base class for stochastic policies. Args: temperature (parameter | dict[parameter], float >= 0.0): Sampling temperature, global or per action (<span style="color:#00C000"><b>default</b></span>: 1.0). device (string): Device name (<span style="color:#00C000"><b>default</b></span>: inherit value of parent module). l2_regularization (float >= 0.0): Scalar controlling L2 regularization (<span style="color:#00C000"><b>default</b></span>: inherit value of parent module). name (string): <span style="color:#0000C0"><b>internal use</b></span>. states_spec (specification): <span style="color:#0000C0"><b>internal use</b></span>. auxiliaries_spec (specification): <span style="color:#0000C0"><b>internal use</b></span>. actions_spec (specification): <span style="color:#0000C0"><b>internal use</b></span>. kldiv_reference_spec (specification): <span style="color:#0000C0"><b>internal use</b></span>. """ def __init__( self, *, temperature=1.0, device=None, l2_regularization=None, name=None, states_spec=None, auxiliaries_spec=None, internals_spec=None, actions_spec=None, kldiv_reference_spec=None ): super().__init__( device=device, l2_regularization=l2_regularization, name=name, states_spec=states_spec, auxiliaries_spec=auxiliaries_spec, actions_spec=actions_spec ) self.kldiv_reference_spec = kldiv_reference_spec # Sampling temperature if temperature is None: temperature = 1.0 if isinstance(temperature, dict) and all(name in self.actions_spec for name in temperature): # Different temperature per action def function(name, spec): return self.submodule( name=(name + '_temperature'), module=temperature.get(name, 0.0), modules=parameter_modules, is_trainable=False, dtype='float', min_value=0.0 ) self.temperature = self.actions_spec.fmap( function=function, cls=ModuleDict, with_names=True ) else: # Same temperature for all actions self.temperature = self.submodule( name='temperature', module=temperature, modules=parameter_modules, is_trainable=False, dtype='float', min_value=0.0 ) def input_signature(self, *, function): if function == 'act_entropy': return SignatureDict( states=self.states_spec.signature(batched=True), horizons=TensorSpec(type='int', shape=(2,)).signature(batched=True), internals=self.internals_spec.signature(batched=True), auxiliaries=self.auxiliaries_spec.signature(batched=True), deterministic=TensorSpec(type='bool', shape=()).signature(batched=False) ) elif function == 'entropy': return SignatureDict( states=self.states_spec.signature(batched=True), horizons=TensorSpec(type='int', shape=(2,)).signature(batched=True), internals=self.internals_spec.signature(batched=True), auxiliaries=self.auxiliaries_spec.signature(batched=True) ) elif function == 'entropies': return SignatureDict( states=self.states_spec.signature(batched=True), horizons=TensorSpec(type='int', shape=(2,)).signature(batched=True), internals=self.internals_spec.signature(batched=True), auxiliaries=self.auxiliaries_spec.signature(batched=True) ) elif function == 'kl_divergence': return SignatureDict( states=self.states_spec.signature(batched=True), horizons=TensorSpec(type='int', shape=(2,)).signature(batched=True), internals=self.internals_spec.signature(batched=True), auxiliaries=self.auxiliaries_spec.signature(batched=True), reference=self.distributions.fmap( function=(lambda x: x.parameters_spec), cls=TensorsSpec ).signature(batched=True) ) elif function == 'kl_divergences': return SignatureDict( states=self.states_spec.signature(batched=True), horizons=TensorSpec(type='int', shape=(2,)).signature(batched=True), internals=self.internals_spec.signature(batched=True), auxiliaries=self.auxiliaries_spec.signature(batched=True), reference=self.distributions.fmap( function=(lambda x: x.parameters_spec), cls=TensorsSpec ).signature(batched=True) ) elif function == 'kldiv_reference': return SignatureDict( states=self.states_spec.signature(batched=True), horizons=TensorSpec(type='int', shape=(2,)).signature(batched=True), internals=self.internals_spec.signature(batched=True), auxiliaries=self.auxiliaries_spec.signature(batched=True) ) elif function == 'log_probability': return SignatureDict( states=self.states_spec.signature(batched=True), horizons=TensorSpec(type='int', shape=(2,)).signature(batched=True), internals=self.internals_spec.signature(batched=True), auxiliaries=self.auxiliaries_spec.signature(batched=True), actions=self.actions_spec.signature(batched=True) ) elif function == 'log_probabilities': return SignatureDict( states=self.states_spec.signature(batched=True), horizons=TensorSpec(type='int', shape=(2,)).signature(batched=True), internals=self.internals_spec.signature(batched=True), auxiliaries=self.auxiliaries_spec.signature(batched=True), actions=self.actions_spec.signature(batched=True) ) else: return super().input_signature(function=function) def output_signature(self, *, function): if function == 'act_entropy': return SignatureDict( actions=self.actions_spec.signature(batched=True), internals=self.internals_spec.signature(batched=True), entropy=TensorSpec(type='float', shape=()).signature(batched=True) ) elif function == 'entropy': return SignatureDict( singleton=TensorSpec(type='float', shape=()).signature(batched=True) ) elif function == 'entropies': return SignatureDict( singleton=self.actions_spec.fmap(function=( lambda spec: TensorSpec(type='float', shape=spec.shape).signature(batched=True) ), cls=SignatureDict) ) elif function == 'kl_divergence': return SignatureDict( singleton=TensorSpec(type='float', shape=()).signature(batched=True) ) elif function == 'kl_divergences': return SignatureDict( singleton=self.actions_spec.fmap(function=( lambda spec: TensorSpec(type='float', shape=spec.shape).signature(batched=True) ), cls=SignatureDict) ) elif function == 'kldiv_reference': return SignatureDict( singleton=self.kldiv_reference_spec.signature(batched=True) ) elif function == 'log_probability': return SignatureDict( singleton=TensorSpec(type='float', shape=()).signature(batched=True) ) elif function == 'log_probabilities': return SignatureDict( singleton=self.actions_spec.fmap(function=( lambda spec: TensorSpec(type='float', shape=spec.shape).signature(batched=True) ), cls=SignatureDict) ) else: return super().output_signature(function=function) @tf_function(num_args=5) def log_probability(self, *, states, horizons, internals, auxiliaries, actions): log_probabilities = self.log_probabilities( states=states, horizons=horizons, internals=internals, auxiliaries=auxiliaries, actions=actions ) def function(value, spec): return tf.reshape(tensor=value, shape=(-1, spec.size)) log_probabilities = log_probabilities.fmap(function=function, zip_values=self.actions_spec) log_probabilities = tf.concat(values=tuple(log_probabilities.values()), axis=1) return tf.math.reduce_sum(input_tensor=log_probabilities, axis=1) @tf_function(num_args=4) def entropy(self, *, states, horizons, internals, auxiliaries): entropies = self.entropies( states=states, horizons=horizons, internals=internals, auxiliaries=auxiliaries ) def function(value, spec): return tf.reshape(tensor=value, shape=(-1, spec.size)) # See also implementation of ParametrizedDistributions.act_entropy() entropies = entropies.fmap(function=function, zip_values=self.actions_spec) entropies = tf.concat(values=tuple(entropies.values()), axis=1) return tf.math.reduce_mean(input_tensor=entropies, axis=1) @tf_function(num_args=5) def kl_divergence(self, *, states, horizons, internals, auxiliaries, reference): kl_divergences = self.kl_divergences( states=states, horizons=horizons, internals=internals, auxiliaries=auxiliaries, reference=reference ) def function(value, spec): return tf.reshape(tensor=value, shape=(-1, spec.size)) kl_divergences = kl_divergences.fmap(function=function, zip_values=self.actions_spec) kl_divergences = tf.concat(values=tuple(kl_divergences.values()), axis=1) return tf.math.reduce_mean(input_tensor=kl_divergences, axis=1) @tf_function(num_args=5) def act(self, *, states, horizons, internals, auxiliaries, deterministic, independent): raise NotImplementedError @tf_function(num_args=5) def act_entropy(self, *, states, horizons, internals, auxiliaries, deterministic, independent): raise NotImplementedError @tf_function(num_args=4) def entropies(self, *, states, horizons, internals, auxiliaries): raise NotImplementedError @tf_function(num_args=5) def kl_divergences(self, *, states, horizons, internals, auxiliaries, reference): raise NotImplementedError @tf_function(num_args=4) def kldiv_reference(self, *, states, horizons, internals, auxiliaries): raise NotImplementedError @tf_function(num_args=5) def log_probabilities(self, *, states, horizons, internals, auxiliaries, actions): raise NotImplementedError
the-stack_0_26923
#!/usr/bin/env python """ Read in YAML file with software management plan advice and guidance and print it out in Markdown. usage: python yaml_to_markdown.py [-h] [-f FILE] [-t TYPE] optional arguments: -h, --help show this help message and exit -f FILE, --file FILE YAML configuration file -t TYPE, --type TYPE Document type ('paper' | 'template' | 'markdown-template') The YAML file must hold a single document. The document must be structured as follows: --- metadata: title: Title. author: Author. date-meta: Data for HTML meta-data tag. citation-date: Human-readable date. version: Version number. doi: DOI of document being produced. website: URL of web site associated with document. keywords: list of keywords. licence: licence information. licence-tag: licence tag, from SPDX, https://spdx.org/licenses/. changelog: # Record only notes for current version as date, version, doi inferred # from metadata above. - notes: Notes about current version. - version: Previous version number. doi: Previous version's DOI. date: Previous version's publication date. notes: Notes about previous version. - ... intro: - Introductory text. - ... usage: Usage conditions. acks: Acknowledgements. sections: - section: Section name e.g. About your software consider: - A sub-question to consider. - Another sub-question to consider. guidance: - Some guidance. - Each entry corresponds to a paragraph. - Bulleted list entry within guidance. - Bulleted list entry within guidance. - Some more guidance. - section: Another section name. ... The following constraints hold for each field: * metadata: 1 * title: 1 * author: 1 * date-meta: 1 * citation-date: 1 * version: 1 * doi: 1 * website: 1 * keywords: 0+ * licence: 1 * licence-tag: 1 * changelog: 1, with 1+ entries. * notes: 1 per changelog entry. * intro: 1, with 1+ entries. * version: 1 for all but first changelog entry. * doi: 1 for all but first changelog entry. * date: 1 for all but first changelog entry. * sections: 1 * section: 0+ * consider: 0 or 1 per section. If provided then its sequence must have 1+ entries. * guidance: 0 or 1 per section. If provided then its sequence must have 1+ entries. * Colons, :, in text should be surrounded by text or, for a lead-in to a list use a ",". Otherwise YAML will interpret the colon as its delimiter. As an example: - guidance: - Examples of this approach include:one, two, three - Other examples include, - - four. - five. """ from argparse import ArgumentParser import yaml METADATA = "metadata" DATE = "date" DATEMETA = "date-meta" DOI = "doi" TITLE = "title" VERSION = "version" INTRO = "intro" USAGE = "usage" ACKS = "acks" CHANGELOG = "changelog" NOTES = "notes" SECTIONS = "sections" SECTION = "section" CONSIDER = "consider" GUIDANCE = "guidance" PAPER = "paper" MARKDOWN_TEMPLATE = "markdown-template" TEMPLATE = "template" def read_file(file_name): """ Read YAML file and return contents. :param file_name: file name :type file_name: str or unicode :return: document :rtype: dict """ document = None with open(file_name, "r") as stream: document = yaml.load(stream) return document def write_paper(document): """ Write out software management plan paper as Markdown. :param document: software management plan :type document: dict """ print("---") for (key, value) in list(document[METADATA].items()): print((key + ": " + str(value))) print("---\n") print("## Einleitung\n") for intro in document[INTRO]: print((intro + "\n")) print("## Benutzung dieser Checkliste\n") print((document[USAGE] + "\n")) print("## Danksagung\n") print((document[ACKS] + "\n")) print("## Änderungen\n") changes = document[CHANGELOG] change = changes[0] print(("* " + str(document[METADATA][VERSION]) + " (" + str(document[METADATA][DATEMETA]) + ") " + change[NOTES] + " " + "doi:" + document[METADATA][DOI])) for change in changes[1:]: print(("* " + str(change[VERSION]) + " (" + str(change[DATE]) + ") " + change[NOTES] + " " + "doi:" + change[DOI])) print("\n") write_paper_body(document[SECTIONS]) def write_paper_body(sections): """ Write out software management plan paper body as Markdown. Process given list of dictionaries, each corresponding to a single section of a software management plan and output these as Markdown. * Each section title is represented as a level 2 heading. * Each sections's questions to consider and guidance are represented as bulleted lists. :param sections: sections :type sections: list of dict """ for section in sections: print(("## " + section[SECTION] + "\n")) if CONSIDER in list(section.keys()): print("**Zu berücksichtigende Fragen:**\n") for consider in section[CONSIDER]: print(("* " + consider)) print("") if GUIDANCE in list(section.keys()): print(("**Anleitung:**\n")) for guidance in section[GUIDANCE]: if isinstance(guidance, list): for element in guidance: print(("* " + element)) print("") else: print((guidance + "\n")) def write_template(document): """ Write out software management plan template as Markdown. This Markdown is intended to be used as an intermediary before onward conversion into another format e.g. to docx, odt or html, using, for example, pandoc. The Markdown starts with: --- title: PROJECT-NAME Software Management Plan --- :param document: software management plan :type document: dict """ print("---") print((TITLE + ": PROJECT-NAME Software Management Plan")) print("---\n") write_template_body(document[SECTIONS]) def write_template_body(sections): """ Write out software management plan template body as Markdown. Process given list of dictionaries, each corresponding to a single section of a software management plan and output these as Markdown. * Each section title is represented as a level 2 heading. * Each section's questions to consider are represented as plain text on separate lines. This Markdown is intended to be used as an intermediary before onward conversion into another format e.g. to docx, odt or html, using, for example, pandoc. :param sections: sections :type sections: list of dict """ for section in sections: print(("## " + section[SECTION] + "\n")) if CONSIDER in list(section.keys()): for consider in section[CONSIDER]: print((consider + "\n")) else: # Insert non-breaking spaces into Markdown so that # they are not ignored during downstream conversion. print("&nbsp;\n\n&nbsp;\n\n&nbsp;\n\n") def write_markdown_template(document): """ Write out software management plan template as Markdown. This Markdown is intended to be used as a standalone Markdown document. :param document: software management plan :type document: dict """ print(("# PROJECT-NAME Software Management Plan\n")) write_markdown_template_body(document[SECTIONS]) def write_markdown_template_body(sections): """ Write out software management plan template body as Markdown. Process given list of dictionaries, each corresponding to a single section of a software management plan and output these as Markdown. * Each section title is represented as a level 2 heading. * Each section's questions to consider are represented as a bulleted list on separate lines, embedded within a block quote. :param sections: sections :type sections: list of dict """ for section in sections: print(("## " + section[SECTION] + "\n")) if CONSIDER in list(section.keys()): for consider in section[CONSIDER]: print(("> * " + consider)) else: print("> ...") print("") def parse_command_line_arguments(): """ Parse command-line arguments, printing usage information if there are any problems. :return: command-line arguments :rtype: argparse.Namespace """ parser = ArgumentParser("python yaml_to_markdown.py") parser.add_argument("-f", "--file", dest="file", help="YAML configuration file") parser.add_argument("-t", "--type", default=PAPER, dest="type", help="Document type ('paper' | 'template')") args = parser.parse_args() if not args.file: parser.error("Missing file name") return args def yaml_to_markdown(args): """ Process YAML file and output desired file. :param args: command-line arguments. :type args: argparse.Namespace """ file_name = args.file doc_type = args.type document = read_file(file_name) if doc_type == TEMPLATE: write_template(document) elif doc_type == MARKDOWN_TEMPLATE: write_markdown_template(document) else: write_paper(document) if __name__ == '__main__': command_line_args = parse_command_line_arguments() yaml_to_markdown(command_line_args)
the-stack_0_26925
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .layernorm import BertLayerNorm import torch from torch import nn class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None): position_ids = self.get_position_ids(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def get_position_ids(self, input_ids): seq_length = input_ids.size(1) position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) return position_ids
the-stack_0_26926
#!/usr/bin/env python3 import sys import getopt import glob from os.path import isfile, join, dirname, split, isdir from os import remove, walk import math import numpy as np from soundfile import SoundFile blocklenSec = 3 RMSpercentage = 20 NhighestPeak = 2 textout = True def main(argv): recurse = False try: opts, args = getopt.getopt(argv, "h", ["help"]) except getopt.GetoptError: print("drmeter.py <audiofile or path>") sys.exit(2) for arg in args: filelist = [] if isfile(arg) is True: try: SoundFile(arg) except RuntimeError: continue filelist.append(arg) elif isdir(arg) is True: for root, dirs, files in walk(arg): for file in files: try: SoundFile(join(root, file)) except RuntimeError: continue filelist.append(join(root, file)) else: print("Ignoring '{0}' (not a file or folder)".format(arg)) continue if len(filelist) == 0: raise IOError("No matching files have been found") if textout is True: path = dirname(filelist[0]) textpath = join(path, "{0}_dr.txt".format(split(path)[-1])) try: f = open(textpath, "x") except FileExistsError: remove(textpath) f = open(textpath, "x") linewidth = 75 dashedline = "".join(["-"[:5]] * linewidth) if len(path) > linewidth - 18: path = split(path)[-1] f.write(dashedline + "\n") f.write(" Analyzed folder: {0}\n".format(path)) f.write(dashedline + "\n") f.write(" DR Peak RMS Filename\n") f.write(dashedline + "\n\n") f.close() idx = 0 for nfile in filelist: # try: DR, Peak, RMS = calc_drscore(nfile) # except RuntimeError: # For unrecognizable (non-audio) files # continue if idx == 0: DR_all = np.zeros((len(filelist), len(DR))) DR_all[idx, :] = DR else: DR_all[idx, :] = DR idx += 1 if textout is True: f = open(textpath, "a") f.write(" DR{0:02.0f} {1:+6.2f} dB {2:+6.2f} dB {3}\n" .format( DR.mean(), 10 * np.log10(np.power(10, Peak / 10).mean()), 10 * np.log10(np.power(10, RMS / 10).mean()), split(nfile)[-1])) f.close() if textout is True: f = open(textpath, "a") f.write(dashedline + "\n\n") f.write(" Number of files:\t{0:d}\n".format(len(filelist))) f.write(" Official DR value:\tDR{0:.0f}\n\n".format(DR_all.mean())) f.write("".join(["="[:5]] * linewidth) + "\n") f.close() return def calc_drscore(filename): data = SoundFile(filename) NblockLen = round(blocklenSec * data.samplerate) NblockIdx = math.ceil(data.frames / NblockLen) Nchannels = data.channels RMS = np.zeros((NblockIdx, Nchannels)) Pk = np.zeros((NblockIdx, Nchannels)) for nn in range(NblockIdx): curData = np.array(data.read(NblockLen), ndmin=2) for cc in range(Nchannels): interim = 2 * (np.power(np.abs(curData[:, cc]), 2)) RMS[nn, cc] = math.sqrt(interim.mean()) Pk[nn, cc] = max(abs(curData[:, cc])) iUpmostBlocks = round(NblockIdx * RMSpercentage * 0.01) RMS.sort(axis=0) Pk.sort(axis=0) RMS[:] = RMS[::-1, :] Pk[:] = Pk[::-1, :] RMS_upmost = RMS[:iUpmostBlocks, :] RMS_total = np.sqrt((np.power(RMS, 2)).mean(axis=0)) pre0 = np.power(RMS_upmost, 2).sum(axis=0) pre1 = np.repeat(iUpmostBlocks, Nchannels, axis=0) pre2 = np.sqrt(pre0 / pre1) DR_score = Pk[NhighestPeak - 1, :] / pre2 RMS_score = RMS_total Peak_score = Pk[0, :] DR_score_log = 20 * np.log10(DR_score) RMS_score_log = 20 * np.log10(RMS_score) Peak_score_log = 20 * np.log10(Peak_score) print() print("DR analysis results:") print("====================") print(filename) print() print(" : ", end="") for n in range(Nchannels): print(" Chann {0:2d} :: ".format(n + 1), end="") print() print("Peak : ", end="") for peak in Peak_score_log: print("{0:7.2f} dB :: ".format(peak), end="") print() print("RMS : ", end="") for rms in RMS_score_log: print("{0:7.2f} dB :: ".format(rms), end="") print() print("DR : ", end="") for dr in DR_score_log: print("{0:7.2f} :: ".format(dr), end="") print() return DR_score_log, Peak_score_log, RMS_score_log if __name__ == "__main__": main(sys.argv[1:])
the-stack_0_26927
import torch import torch.nn as nn from sota.cnn.operations import * import sys sys.path.insert(0, '../../') from nasbench201.utils import drop_path class Cell(nn.Module): def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev): super(Cell, self).__init__() if reduction_prev: self.preprocess0 = FactorizedReduce(C_prev_prev, C) else: self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0) self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0) if reduction: op_names, indices = zip(*genotype.reduce) concat = genotype.reduce_concat else: op_names, indices = zip(*genotype.normal) concat = genotype.normal_concat self._compile(C, op_names, indices, concat, reduction) def _compile(self, C, op_names, indices, concat, reduction): assert len(op_names) == len(indices) self._steps = len(op_names) // 2 self._concat = concat self.multiplier = len(concat) self._ops = nn.ModuleList() for name, index in zip(op_names, indices): stride = 2 if reduction and index < 2 else 1 op = OPS[name](C, stride, True) self._ops += [op] self._indices = indices def forward(self, s0, s1, drop_prob): s0 = self.preprocess0(s0) s1 = self.preprocess1(s1) states = [s0, s1] for i in range(self._steps): h1 = states[self._indices[2 * i]] h2 = states[self._indices[2 * i + 1]] op1 = self._ops[2 * i] op2 = self._ops[2 * i + 1] h1 = op1(h1) h2 = op2(h2) if self.training and drop_prob > 0.: if not isinstance(op1, Identity): h1 = drop_path(h1, drop_prob) if not isinstance(op2, Identity): h2 = drop_path(h2, drop_prob) s = h1 + h2 states += [s] return torch.cat([states[i] for i in self._concat], dim=1) class AuxiliaryHead(nn.Module): def __init__(self, C, num_classes): """assuming input size 8x8""" super(AuxiliaryHead, self).__init__() self.features = nn.Sequential( nn.ReLU(inplace=True), # image size = 2 x 2 nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), nn.Conv2d(C, 128, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 768, 2, bias=False), nn.BatchNorm2d(768), nn.ReLU(inplace=True) ) self.classifier = nn.Linear(768, num_classes) def forward(self, x): x = self.features(x) x = self.classifier(x.view(x.size(0), -1)) return x class Network(nn.Module): def __init__(self, C, num_classes, layers, auxiliary, genotype): super(Network, self).__init__() self._layers = layers self._auxiliary = auxiliary stem_multiplier = 3 C_curr = stem_multiplier * C self.stem = nn.Sequential( nn.Conv2d(3, C_curr, 3, padding=1, bias=False), nn.BatchNorm2d(C_curr) ) C_prev_prev, C_prev, C_curr = C_curr, C_curr, C self.cells = nn.ModuleList() reduction_prev = False for i in range(layers): if i in [layers // 3, 2 * layers // 3]: C_curr *= 2 reduction = True else: reduction = False cell = Cell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev) reduction_prev = reduction self.cells += [cell] C_prev_prev, C_prev = C_prev, cell.multiplier * C_curr if i == 2 * layers // 3: C_to_auxiliary = C_prev if auxiliary: self.auxiliary_head = AuxiliaryHead(C_to_auxiliary, num_classes) self.global_pooling = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(C_prev, num_classes) def forward(self, input): logits_aux = None s0 = s1 = self.stem(input) for i, cell in enumerate(self.cells): s0, s1 = s1, cell(s0, s1, self.drop_path_prob) if i == 2 * self._layers // 3: if self._auxiliary and self.training: logits_aux = self.auxiliary_head(s1) out = self.global_pooling(s1) logits = self.classifier(out.view(out.size(0), -1)) return logits, logits_aux
the-stack_0_26929
############################################################################### # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. ############################################################################### import os import sys import unittest import keras2onnx import numpy as np from keras2onnx.proto import keras from keras.regularizers import l2 from keras.initializers import TruncatedNormal from os.path import dirname, abspath sys.path.insert(0, os.path.join(dirname(abspath(__file__)), '../../tests/')) from test_utils import run_keras_and_ort, test_level_0 K = keras.backend Activation = keras.layers.Activation AveragePooling2D = keras.layers.AveragePooling2D Add = keras.layers.Add BatchNormalization = keras.layers.BatchNormalization concatenate = keras.layers.concatenate Conv1D = keras.layers.Conv1D Dense = keras.layers.Dense Dropout = keras.layers.Dropout Embedding = keras.layers.Embedding Flatten = keras.layers.Flatten GlobalAveragePooling2D = keras.layers.GlobalAveragePooling2D Input = keras.layers.Input Lambda = keras.layers.Lambda LeakyReLU = keras.layers.LeakyReLU MaxPooling2D = keras.layers.MaxPooling2D multiply = keras.layers.multiply Permute = keras.layers.Permute Reshape = keras.layers.Reshape SeparableConv2D = keras.layers.SeparableConv2D UpSampling2D = keras.layers.UpSampling2D ZeroPadding2D = keras.layers.ZeroPadding2D Sequential = keras.models.Sequential Model = keras.models.Model def DC_CNN_Block(nb_filter, filter_length, dilation, l2_layer_reg): def f(input_): residual = input_ layer_out = Conv1D(filters=nb_filter, kernel_size=filter_length, dilation_rate=dilation, activation='linear', padding='causal', use_bias=False, kernel_initializer=TruncatedNormal(mean=0.0, stddev=0.05, seed=42), kernel_regularizer=l2(l2_layer_reg))(input_) layer_out = Activation('selu')(layer_out) skip_out = Conv1D(1, 1, activation='linear', use_bias=False, kernel_initializer=TruncatedNormal(mean=0.0, stddev=0.05, seed=42), kernel_regularizer=l2(l2_layer_reg))(layer_out) network_in = Conv1D(1, 1, activation='linear', use_bias=False, kernel_initializer=TruncatedNormal(mean=0.0, stddev=0.05, seed=42), kernel_regularizer=l2(l2_layer_reg))(layer_out) network_out = Add()([residual, network_in]) return network_out, skip_out return f def DC_CNN_Model(length): input = Input(shape=(length, 1)) l1a, l1b = DC_CNN_Block(32, 2, 1, 0.001)(input) l2a, l2b = DC_CNN_Block(32, 2, 2, 0.001)(l1a) l3a, l3b = DC_CNN_Block(32, 2, 4, 0.001)(l2a) l4a, l4b = DC_CNN_Block(32, 2, 8, 0.001)(l3a) l5a, l5b = DC_CNN_Block(32, 2, 16, 0.001)(l4a) l6a, l6b = DC_CNN_Block(32, 2, 32, 0.001)(l5a) l6b = Dropout(0.8)(l6b) # dropout used to limit influence of earlier data l7a, l7b = DC_CNN_Block(32, 2, 64, 0.001)(l6a) l7b = Dropout(0.8)(l7b) # dropout used to limit influence of earlier data l8 = Add()([l1b, l2b, l3b, l4b, l5b, l6b, l7b]) l9 = Activation('relu')(l8) l21 = Conv1D(1, 1, activation='linear', use_bias=False, kernel_initializer=TruncatedNormal(mean=0.0, stddev=0.05, seed=42), kernel_regularizer=l2(0.001))(l9) model = Model(input=input, output=l21) return model # Model from https://github.com/kristpapadopoulos/seriesnet class TestSeriesNet(unittest.TestCase): def setUp(self): self.model_files = [] def tearDown(self): for fl in self.model_files: os.remove(fl) @unittest.skipIf(False, "Test level 0 only.") def test_series_net(self): K.clear_session() keras_model = DC_CNN_Model(20) data = np.random.rand(2000, 20, 1).astype(np.float32) expected = keras_model.predict(data) onnx_model = keras2onnx.convert_keras(keras_model, keras_model.name) self.assertTrue( run_keras_and_ort(onnx_model.graph.name, onnx_model, keras_model, data, expected, self.model_files)) if __name__ == "__main__": unittest.main()
the-stack_0_26930
# -*- coding: utf-8 -*- import pandas as pd from zvt.api import TIME_FORMAT_DAY, get_str_schema from zvt.contract.api import df_to_db from zvt.contract.recorder import TimeSeriesDataRecorder from zvt.domain import HolderTrading from zvt.domain import StockDetail from zvt.recorders.emquantapi.common import mainCallback, to_em_entity_id from zvt.utils.pd_utils import pd_is_not_null from zvt.utils.time_utils import now_pd_timestamp, to_time_str try: from EmQuantAPI import * except: pass class HolderTradingRecorder(TimeSeriesDataRecorder): entity_provider = 'joinquant' entity_schema = StockDetail # 数据来自jq provider = 'emquantapi' data_schema = HolderTrading def __init__(self, entity_type='stock', exchanges=['sh', 'sz'], entity_ids=None, codes=None, batch_size=10, force_update=False, sleeping_time=5, default_size=2000, real_time=False, fix_duplicate_way='add', start_timestamp=None, end_timestamp=None, close_hour=0, close_minute=0) -> None: self.data_schema = get_str_schema('HolderTrading') super().__init__(entity_type, exchanges, entity_ids, codes, batch_size, force_update, sleeping_time, default_size, real_time, fix_duplicate_way, start_timestamp, end_timestamp, close_hour, close_minute) # 调用登录函数(激活后使用,不需要用户名密码) loginResult = c.start("ForceLogin=1", '', mainCallback) if (loginResult.ErrorCode != 0): print("login in fail") exit() def on_finish(self): # 退出 loginresult = c.stop() if (loginresult.ErrorCode != 0): print("login in fail") exit() def record(self, entity, start, end, size, timestamps): if not end: end = to_time_str(now_pd_timestamp()) start = to_time_str(start) em_code = to_em_entity_id(entity) columns_list = list(self.data_schema.get_data_map(self)) data = c.ctr("HoldTradeDetailInfo", columns_list, "secucode=" + em_code + ",StartDate=" + start + ",EndDate=" + end + ",HoldType=0") if data.Data=={}: return None df = pd.DataFrame(data.Data).T df.columns = data.Indicators df = df.sort_values("NOTICEDATE", ascending=True) df['TOTALSHARE'] = df.NOTICEDATE.apply( lambda x: c.css(em_code, "TOTALSHARE", "EndDate=" + x + ",ispandas=1").TOTALSHARE[0]) # 变动比例(千分位) h = (df['变动_流通股数量(万股)'] / (df['变动后_持股总数(万股)'] / (df['变动后_占总股本比例(%)'] / 100))) df['CHANGENUM'] = df['CHANGENUM'] * 10000 df['BDHCGZS'] = df['BDHCGZS'] * 10000 # 变动后_持股总数 df['change_pct'] = abs(df['CHANGENUM'] / df['TOTALSHARE']).astype(float) * 1000 df['change_pct'] = df['change_pct'].round(5) if pd_is_not_null(df): df.reset_index(drop=True, inplace=True) df.rename(columns=self.data_schema.get_data_map(self), inplace=True) df['entity_id'] = entity.id df['timestamp'] = pd.to_datetime(df.holder_end_date) df['provider'] = 'emquantapi' df['code'] = entity.code def generate_id(se): return "{}_{}_{}".format(se['entity_id'], to_time_str(se['timestamp'], fmt=TIME_FORMAT_DAY), se.name) df_res = pd.concat([i.reset_index(drop=True) for i in dict(list(df.groupby('timestamp'))).values()]) df_res.index+=1 df_res['id'] = df_res[['entity_id', 'timestamp']].apply(generate_id, axis=1) df_to_db(df=df_res, data_schema=self.data_schema, provider=self.provider, force_update=self.force_update) return None __all__ = ['HolderTradingRecorder'] if __name__ == '__main__': # 上证50 HolderTradingRecorder(codes=['000002'],sleeping_time=0.1).run() # JqChinaEtfValuationRecorder(codes=['512290']).run()
the-stack_0_26933
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # This example is inspired by https://github.com/jason71995/Keras-GAN-Library, # https://github.com/kazizzad/DCGAN-Gluon-MxNet/blob/master/MxnetDCGAN.ipynb # https://github.com/apache/incubator-mxnet/blob/master/example/gluon/dc_gan/dcgan.py import math import numpy as np import imageio def save_image(data, epoch, image_size, batch_size, output_dir, padding=2): """ save image """ data = data.asnumpy().transpose((0, 2, 3, 1)) datanp = np.clip( (data - np.min(data))*(255.0/(np.max(data) - np.min(data))), 0, 255).astype(np.uint8) x_dim = min(8, batch_size) y_dim = int(math.ceil(float(batch_size) / x_dim)) height, width = int(image_size + padding), int(image_size + padding) grid = np.zeros((height * y_dim + 1 + padding // 2, width * x_dim + 1 + padding // 2, 3), dtype=np.uint8) k = 0 for y in range(y_dim): for x in range(x_dim): if k >= batch_size: break start_y = y * height + 1 + padding // 2 end_y = start_y + height - padding start_x = x * width + 1 + padding // 2 end_x = start_x + width - padding np.copyto(grid[start_y:end_y, start_x:end_x, :], datanp[k]) k += 1 imageio.imwrite( '{}/fake_samples_epoch_{}.png'.format(output_dir, epoch), grid)
the-stack_0_26934
import base64 import binascii import logging import re from Crypto.Cipher import AES from streamlink.plugin import Plugin from streamlink.plugin.api import validate from streamlink.stream import HLSStream from streamlink.utils import parse_json, update_scheme from streamlink.utils.crypto import unpad_pkcs5 log = logging.getLogger(__name__) class WebTV(Plugin): _url_re = re.compile(r"http(?:s)?://(\w+)\.web.tv/?") _sources_re = re.compile(r'"sources": (\[.*?\]),', re.DOTALL) _sources_schema = validate.Schema([ { "src": validate.any( validate.contains("m3u8"), validate.all( validate.text, validate.transform(lambda x: WebTV.decrypt_stream_url(x)), validate.contains("m3u8") ) ), "type": validate.text, "label": validate.text } ]) @classmethod def can_handle_url(cls, url): return cls._url_re.match(url) is not None @staticmethod def decrypt_stream_url(encoded_url): data = base64.b64decode(encoded_url) cipher_text = binascii.unhexlify(data[96:]) decryptor = AES.new(binascii.unhexlify(data[32:96]), AES.MODE_CBC, binascii.unhexlify(data[:32])) return unpad_pkcs5(decryptor.decrypt(cipher_text)).decode("utf8") def _get_streams(self): """ Find the streams for web.tv :return: """ headers = {} res = self.session.http.get(self.url, headers=headers) headers["Referer"] = self.url sources = self._sources_re.findall(res.text) if len(sources): sdata = parse_json(sources[0], schema=self._sources_schema) for source in sdata: log.debug(f"Found stream of type: {source['type']}") if source["type"] == "application/vnd.apple.mpegurl": url = update_scheme(self.url, source["src"]) try: # try to parse the stream as a variant playlist variant = HLSStream.parse_variant_playlist(self.session, url, headers=headers) if variant: yield from variant.items() else: # and if that fails, try it as a plain HLS stream yield 'live', HLSStream(self.session, url, headers=headers) except OSError: log.warning("Could not open the stream, perhaps the channel is offline") __plugin__ = WebTV
the-stack_0_26935
import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets('/root/PycharmProjects/tf/data',one_hot=True) lr=tf.Variable(1.0) batch_size=tf.placeholder(tf.int32,[]) keep_prob=tf.placeholder(tf.float32,[]) input_size=num_step=28 hidden_size=256 layer_num=2 class_num=10 x=tf.placeholder(tf.float32,[None,784]) y=tf.placeholder(tf.float32,[None,class_num]) X=tf.reshape(x, [-1, num_step, input_size]) def get_lstm_cell(): lstmcell=rnn.BasicLSTMCell(hidden_size,reuse=tf.get_variable_scope().reuse) return rnn.DropoutWrapper(lstmcell,input_keep_prob=keep_prob,output_keep_prob=keep_prob) rnncell=rnn.MultiRNNCell([get_lstm_cell() for _ in range(layer_num)]) init_state=rnncell.zero_state(batch_size,dtype=tf.float32) inputs=tf.unstack(X,axis=1) # with tf.variable_scope('rnn',reuse=tf.AUTO_REUSE) as scope: outputs,state=tf.nn.static_rnn(rnncell,inputs,initial_state=init_state) # output=tf.reshape(tf.concat(outputs,1),[-1,num_step,hidden_size]) # h_state=output[:,-1,:] h_state=outputs[-1] w=tf.Variable(tf.truncated_normal([hidden_size,class_num],stddev=0.1),dtype=tf.float32) b=tf.Variable(tf.constant(0.1,shape=[class_num]),dtype=tf.float32) pre=tf.nn.softmax(tf.nn.xw_plus_b(h_state,w,b)) # loss=tf.reduce_mean(tf.losses.softmax_cross_entropy(onehot_labels=y,logits=pre)) loss=-tf.reduce_mean(tf.multiply(y,tf.log(pre))) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tvars),10) optimizer = tf.train.GradientDescentOptimizer(lr) train_op=optimizer.apply_gradients(zip(grads,tvars),global_step=tf.train.get_or_create_global_step()) # train_op=tf.train.AdamOptimizer(0.001).minimize(loss) correct=tf.equal(tf.argmax(pre,1),tf.argmax(y,1)) accuracy=tf.reduce_mean(tf.cast(correct,tf.float32)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(2000): _batch_size = 128 batch = mnist.train.next_batch(_batch_size) if (i + 1) % 200 == 0: train_accuracy = sess.run(accuracy, feed_dict={ x: batch[0], y: batch[1], keep_prob: 1.0, batch_size: _batch_size}) print("Iter%d, step %d, training accuracy %g" % (mnist.train.epochs_completed, (i + 1), train_accuracy)) sess.run(train_op, feed_dict={x: batch[0], y: batch[1], keep_prob: 0.5, batch_size: _batch_size}) testdata=mnist.test.next_batch(500) print("test accuracy %g" % sess.run(accuracy, feed_dict={ x: testdata[0], y: testdata[1], keep_prob: 1.0, batch_size:500}))
the-stack_0_26936
""" Test the file templates with some logic inside them """ from pathlib import Path from projects_boilerplate import file_templates from projects_boilerplate.structs import License def test_manifest_template(): template = file_templates.ManifestTemplate() assert template.file_name == 'MANIFEST.in' def test_license_apache(monkeypatch): monkeypatch.setattr(file_templates.LicenseTemplate, 'licenses_location', Path('tests/location')) template = file_templates.LicenseApacheTemplate() assert template.template_location == Path('tests/location/license_apache.tpl') def test_license_mit(monkeypatch): monkeypatch.setattr(file_templates.LicenseTemplate, 'licenses_location', Path('tests/location')) template = file_templates.LicenseMitTemplate() assert template.template_location == Path('tests/location/license_mit.tpl') def test_license_gpl(monkeypatch): monkeypatch.setattr(file_templates.LicenseTemplate, 'licenses_location', Path('tests/location')) template = file_templates.LicenseGplTemplate() assert template.template_location == Path('tests/location/license_gpl.tpl') def test_pytest_template(tmp_path): template = file_templates.PytestTemplate('project_test') template.build_template(tmp_path) assert (tmp_path / 'pytest.ini').read_text() == """\ [pytest] testpaths = tests/ project_test/ cache_dir = .cache mccabe-complexity = 10 log_format = %(filename)s:%(lineno)d: [%(name)s:%(levelname)s] %(asctime)s: %(message)s log_date_format = %Y-%m-%d %H:%M:%S addopts = --cov-config coverage.ini --cov-report term --cov-report html:coverage/html --cov project_test/ --pycodestyle --isort --mccabe --mypy --pylint --pylint-rcfile pylint.ini --verbose\ """ def test_sample_test_template(tmp_path): template = file_templates.SampleTestTemplate('project_test') template.build_template(tmp_path) assert (tmp_path / 'test_sample.py').read_text() == """\ \"\"\" This is a test for the sample file \"\"\" from project_test import sample def test_sample(): assert sample.sample_method(2) == 4 """ def test_setup_py_template(tmp_path): template = file_templates.SetupPyTemplate('project-test', License.MIT, 'project_test') template.build_template(tmp_path) assert (tmp_path / 'setup.py').read_text() == """\ import sys from setuptools import find_packages, setup from pathlib import Path with open(str(Path(".") / "README.md"), "r", encoding="utf-8") as f: README = f.read() setup( name="project-test", version="0.0.0", license="MIT", url="url_to_your_project", description="Add your description here", long_description=README, long_description_content_type="text/markdown", author="Add your name here", author_email="Add your email here", packages=find_packages(exclude=["tests*"]), test_suite="tests", extras_require={ "dev": [ "pylint" ], "test": [ "pytest", "pytest-cov", "pytest-pycodestyle", "pytest-isort", "pytest-mccabe", "pytest-mypy", "pytest-pylint", "tox" ] }, python_requires=">=3.6", entry_points={ "console_scripts": [ "project-test=project_test.main:main", ] }, classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], ) """ def test_python_dockerfile_template(tmp_path): template = file_templates.PythonDockerfileTemplate('project-test', 'project_test') template.build_template(tmp_path) assert (tmp_path / 'Dockerfile').read_text() == """\ FROM python:3.7-alpine LABEL maintainer="your email here" LABEL description="You description here" LABEL version="0.0.0" WORKDIR /usr/app COPY setup.py README.md MANIFEST.in ./ COPY project_test ./project_test RUN pip install . RUN mkdir /files VOLUME /files ENTRYPOINT [ "project-test" ] CMD [] """ def test_flask_dockerfile_template(tmp_path): template = file_templates.FlaskDockerfileTemplate('project_test') template.build_template(tmp_path) assert (tmp_path / 'Dockerfile').read_text() == """\ FROM python:3.7-alpine LABEL maintainer="your email here" LABEL description="You description here" LABEL version="0.0.0" WORKDIR /usr/app COPY app.py README.md requirements.txt ./ COPY project_test ./project_test RUN pip install gunicorn RUN pip install -r requirements.txt RUN mkdir /config VOLUME /config ENTRYPOINT [ "gunicorn" ] CMD ["wsgi:app"] """ def test_flask_app_template(tmp_path): template = file_templates.FlaskAppTemplate('project_test') template.build_template(tmp_path) assert (tmp_path / 'app.py').read_text() == """\ from project_test import create_app if __name__ == '__main__': app = create_app(debug=True) app.run(port=5000, host='0.0.0.0') """ def test_flask_wsgi_template(tmp_path): template = file_templates.WsgiTemplate('project_test') template.build_template(tmp_path) assert (tmp_path / 'wsgi.py').read_text() == """\ from project_test import create_app app = create_app(debug=False) """ def test_flask_init_template(tmp_path): template = file_templates.FlaskInitTemplate('toto') (tmp_path / 'toto').mkdir() template.build_template(tmp_path) assert (tmp_path / 'toto/__init__.py').read_text() == """\ \"\"\" Main package for the application \"\"\" from flask import Flask from .views import MAIN_VIEWS def create_app(debug=False): app = Flask(__name__) app.debug = debug app.register_blueprint(MAIN_VIEWS) return app """ def test_flask_requirements_template(tmp_path): template = file_templates.FlaskRequirementsTemplate() template.build_template(tmp_path) assert (tmp_path / 'requirements.txt').read_text() == """\ Flask """ def test_flask_test_requirements_template(tmp_path): template = file_templates.FlaskTestRequirementsTemplate() template.build_template(tmp_path) assert (tmp_path / 'test-requirements.txt').read_text() == """\ pytest pylint pytest-cov pytest-pycodestyle pytest-isort pytest-mccabe pytest-mypy pytest-pylint pytest-flask """ def test_flask_test_app_template(tmp_path): template = file_templates.FlaskTestAppTemplate('project_test', 'tests') (tmp_path / 'tests').mkdir() template.build_template(tmp_path) assert (tmp_path / 'tests/test_app.py').read_text() == """\ \"\"\" Test the base application \"\"\" import pytest from project_test import create_app @pytest.fixture(name='app') def fixture_app(): app = create_app() return app def test_app(client): response = client.get('/') assert response.status_code == 200 assert "Flask Dockerized" in str(response.data) """ def test_python_readme_template(tmp_path): template = file_templates.PythonReadmeTemplate("project-test") template.build_template(tmp_path) assert (tmp_path / 'README.md').read_text() == """\ # project-test Project automatically generated with [projects boilerplate](https://github.com/aHugues/projects-boilerplate) ## Install and run the project ``` pip install . ``` ``` project-test ``` ## Run the tests ``` pip install -r test-requirements.txt pytest ``` """ def test_flask_readme_template(tmp_path): template = file_templates.FlaskReadmeTemplate("project-test") template.build_template(tmp_path) assert (tmp_path / 'README.md').read_text() == """\ # project-test Flask server automatically generated with [projects boilerplate](https://github.com/aHugues/projects-boilerplate) ## Install and run the project ``` pip install . ``` ``` python app.py ``` ## Run in production ``` pip install gunicorn gunicorn wsgi:app ``` ## Run the tests ``` pip install -r test-requirements.txt pytest ``` """ def test_init_template(): template = file_templates.InitTemplate() assert template.file_name == '__init__.py'
the-stack_0_26937
# Copyright (c) PyZMQ Developers. # Distributed under the terms of the Modified BSD License. import sys import time from threading import Thread from unittest import TestCase try: from unittest import SkipTest except ImportError: from unittest2 import SkipTest from pytest import mark import zmq from zmq.utils import jsonapi try: import gevent from zmq import green as gzmq have_gevent = True except ImportError: have_gevent = False PYPY = 'PyPy' in sys.version #----------------------------------------------------------------------------- # skip decorators (directly from unittest) #----------------------------------------------------------------------------- _id = lambda x: x skip_pypy = mark.skipif(PYPY, reason="Doesn't work on PyPy") require_zmq_4 = mark.skipif(zmq.zmq_version_info() < (4,), reason="requires zmq >= 4") #----------------------------------------------------------------------------- # Base test class #----------------------------------------------------------------------------- class BaseZMQTestCase(TestCase): green = False @property def Context(self): if self.green: return gzmq.Context else: return zmq.Context def socket(self, socket_type): s = self.context.socket(socket_type) self.sockets.append(s) return s def setUp(self): super(BaseZMQTestCase, self).setUp() if self.green and not have_gevent: raise SkipTest("requires gevent") self.context = self.Context.instance() self.sockets = [] def tearDown(self): contexts = set([self.context]) while self.sockets: sock = self.sockets.pop() contexts.add(sock.context) # in case additional contexts are created sock.close(0) for ctx in contexts: t = Thread(target=ctx.term) t.daemon = True t.start() t.join(timeout=2) if t.is_alive(): # reset Context.instance, so the failure to term doesn't corrupt subsequent tests zmq.sugar.context.Context._instance = None raise RuntimeError("context could not terminate, open sockets likely remain in test") super(BaseZMQTestCase, self).tearDown() def create_bound_pair(self, type1=zmq.PAIR, type2=zmq.PAIR, interface='tcp://127.0.0.1'): """Create a bound socket pair using a random port.""" s1 = self.context.socket(type1) s1.setsockopt(zmq.LINGER, 0) port = s1.bind_to_random_port(interface) s2 = self.context.socket(type2) s2.setsockopt(zmq.LINGER, 0) s2.connect('%s:%s' % (interface, port)) self.sockets.extend([s1,s2]) return s1, s2 def ping_pong(self, s1, s2, msg): s1.send(msg) msg2 = s2.recv() s2.send(msg2) msg3 = s1.recv() return msg3 def ping_pong_json(self, s1, s2, o): if jsonapi.jsonmod is None: raise SkipTest("No json library") s1.send_json(o) o2 = s2.recv_json() s2.send_json(o2) o3 = s1.recv_json() return o3 def ping_pong_pyobj(self, s1, s2, o): s1.send_pyobj(o) o2 = s2.recv_pyobj() s2.send_pyobj(o2) o3 = s1.recv_pyobj() return o3 def assertRaisesErrno(self, errno, func, *args, **kwargs): try: func(*args, **kwargs) except zmq.ZMQError as e: self.assertEqual(e.errno, errno, "wrong error raised, expected '%s' \ got '%s'" % (zmq.ZMQError(errno), zmq.ZMQError(e.errno))) else: self.fail("Function did not raise any error") def _select_recv(self, multipart, socket, **kwargs): """call recv[_multipart] in a way that raises if there is nothing to receive""" if zmq.zmq_version_info() >= (3,1,0): # zmq 3.1 has a bug, where poll can return false positives, # so we wait a little bit just in case # See LIBZMQ-280 on JIRA time.sleep(0.1) r,w,x = zmq.select([socket], [], [], timeout=kwargs.pop('timeout', 5)) assert len(r) > 0, "Should have received a message" kwargs['flags'] = zmq.DONTWAIT | kwargs.get('flags', 0) recv = socket.recv_multipart if multipart else socket.recv return recv(**kwargs) def recv(self, socket, **kwargs): """call recv in a way that raises if there is nothing to receive""" return self._select_recv(False, socket, **kwargs) def recv_multipart(self, socket, **kwargs): """call recv_multipart in a way that raises if there is nothing to receive""" return self._select_recv(True, socket, **kwargs) class PollZMQTestCase(BaseZMQTestCase): pass class GreenTest: """Mixin for making green versions of test classes""" green = True def assertRaisesErrno(self, errno, func, *args, **kwargs): if errno == zmq.EAGAIN: raise SkipTest("Skipping because we're green.") try: func(*args, **kwargs) except zmq.ZMQError: e = sys.exc_info()[1] self.assertEqual(e.errno, errno, "wrong error raised, expected '%s' \ got '%s'" % (zmq.ZMQError(errno), zmq.ZMQError(e.errno))) else: self.fail("Function did not raise any error") def tearDown(self): contexts = set([self.context]) while self.sockets: sock = self.sockets.pop() contexts.add(sock.context) # in case additional contexts are created sock.close() try: gevent.joinall([gevent.spawn(ctx.term) for ctx in contexts], timeout=2, raise_error=True) except gevent.Timeout: raise RuntimeError("context could not terminate, open sockets likely remain in test") def skip_green(self): raise SkipTest("Skipping because we are green") def skip_green(f): def skipping_test(self, *args, **kwargs): if self.green: raise SkipTest("Skipping because we are green") else: return f(self, *args, **kwargs) return skipping_test
the-stack_0_26940
import re import datetime from lndmanage.lib.network_info import NetworkAnalysis from lndmanage.lib import ln_utilities from lndmanage import settings import logging logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) # width of a column in the ouptput in characters COL_WIDTH = 66 def padded_column_string(string1, string2, unit, shift=10, max_len_string1=25): """ Padded_column_string is a helper function which returns a formatted string representing object, quantity and unit of a piece of information. :param string1: information :type string1: str :param string2: quantity :type string2: str :param unit: unit of the information :type unit: str :param shift: whitespace shift to the right (indentation) :type shift: int :param max_len_string1: needed to calculate padding to the right :type max_len_string1: int :return: :rtype: """ string = f" " * shift + f"{string1:<{max_len_string1}} {string2} {unit}" if type(string2) == float: string = f" " * shift + f"{string1:<{max_len_string1}} " \ f"{string2:0.6f} {unit}" return string class Info(object): """ Implements the info command, which displays info on individual channels and nodes. """ def __init__(self, node): """ :param node: node object :type node: lndmanage.lib.node.LndNode """ self.node = node self.network_info = NetworkAnalysis(self.node) def parse_and_print(self, info): """ Parses an info string for a channel id or node public key and prints out the information gathered about the object. :param info: channel id or node public key :type info: str """ # analyzer = NetworkAnalysis(self.node) try: channel_id, node_pub_key = self.parse(info) except ValueError: logger.info("Info didn't represent neither a channel nor a node.") return # Info was a channel. if channel_id is not None: try: general_info = self.node.network.edges[channel_id] except KeyError: logger.info("Channel id %s is not known in the public graph.", channel_id) return # Add some more information on the channel. general_info['node1_alias'] = \ self.node.network.node_alias(general_info['node1_pub']) general_info['node2_alias'] = \ self.node.network.node_alias(general_info['node2_pub']) general_info['blockheight'] = \ ln_utilities.convert_channel_id_to_short_channel_id( channel_id)[0] general_info['open_timestamp'] = ln_utilities.height_to_timestamp( self.node, general_info['blockheight']) # TODO: if it's our channel, add extra info extra_info = None self.print_channel_info(general_info) # Info was a node. else: try: general_info = self.network_info.node_info_basic(node_pub_key) except KeyError: return # TODO: if it's a (channel) peer or our node, add extra info extra_info = None self.print_node_info(general_info) def parse(self, info): """ Parse whether info contains a channel id or node public key and hand it back. If no info could be extracted, raise a ValueError. :param info: :type info: str :return: channel_id, node_pub_key :rtype: int, str """ exp_channel_id = re.compile("^[0-9]{18}$") exp_short_channel_id = re.compile("^[0-9]{6}x[0-9]{3}x[0-9]$") exp_chan_point = re.compile("^[a-z0-9]{64}:[0-9]$") exp_node_id = re.compile("^[a-z0-9]{66}$") channel_id = None node_pub_key = None # prepare input string info if exp_channel_id.match(info) is not None: logger.debug("Info represents channel id.") channel_id = int(info) elif exp_short_channel_id.match(info) is not None: logger.debug("Info represents short channel id.") # TODO: convert short channel id to channel id channel_id = 0 elif exp_chan_point.match(info) is not None: # TODO: convert chan point to channel id logger.debug("Info represents short channel id.") channel_id = 0 elif exp_node_id.match(info) is not None: logger.debug("Info represents node public key.") node_pub_key = info else: raise ValueError("Info string doesn't match any pattern.") return channel_id, node_pub_key def print_channel_info(self, general_info): """ Prints the channel info with peer information. :param general_info: information about the channel in the public graph :type general_info: dict """ logger.info("-------- Channel info --------") logger.info(f"channel id: {general_info['channel_id']} " f"channel point: {general_info['chan_point']}") # capactiy string = padded_column_string( 'capacity:', general_info['capacity'], 'sat') logger.info(f"{string:{COL_WIDTH*2}}") # blockheight string = padded_column_string( 'blockheight:', general_info['blockheight'], '') logger.info(f"{string:{COL_WIDTH*2}}") # opening time time = datetime.datetime.utcfromtimestamp( general_info['open_timestamp']).strftime('%Y-%m-%d %H:%M:%S') string = padded_column_string('open since:', time, '') logger.info(f"{string:{COL_WIDTH*2}}") # channel age age = round( (self.node.blockheight - general_info['blockheight']) / 6 / 24, 2) string = padded_column_string('channel age:', age, 'days') logger.info(f"{string:{COL_WIDTH*2}}") # last update last_update = general_info['last_update'] last_update_time = datetime.datetime.utcfromtimestamp( last_update).strftime('%Y-%m-%d %H:%M:%S') string = padded_column_string('last update:', last_update_time, '') logger.info(f"{string:{COL_WIDTH*2}}") logger.info("") # channel partner overview logger.info("-------- Channel partners --------") logger.info(f"{general_info['node1_pub']:{COL_WIDTH}} | " f"{general_info['node2_pub']:{COL_WIDTH}}") logger.info(f"{general_info['node1_alias']:^{COL_WIDTH}} | " f"{general_info['node2_alias']:^{COL_WIDTH}}") np1 = general_info['node1_policy'] np2 = general_info['node2_policy'] last_update_1 = np1['last_update'] last_update_2 = np2['last_update'] last_update_time_1 = datetime.datetime.utcfromtimestamp( last_update_1).strftime('%Y-%m-%d %H:%M:%S') last_update_time_2 = datetime.datetime.utcfromtimestamp( last_update_2).strftime('%Y-%m-%d %H:%M:%S') # base fee string_left = padded_column_string( 'base fee:', np1['fee_base_msat'], 'msat') string_right = padded_column_string( 'base fee:', np2['fee_base_msat'], 'msat') logger.info( f"{string_left:{COL_WIDTH}} | {string_right:{COL_WIDTH}}") # fee rate string_left = padded_column_string( 'fee rate:', np1['fee_rate_milli_msat'] / 1E6, 'sat/sat') string_right = padded_column_string( 'fee rate:', np2['fee_rate_milli_msat'] / 1E6, 'sat/sat') logger.info( f"{string_left:{COL_WIDTH}} | {string_right:{COL_WIDTH}}") # time lock delta string_left = padded_column_string( 'time lock delta:', np1['time_lock_delta'], 'blocks') string_right = padded_column_string( 'time lock delta:', np2['time_lock_delta'], 'blocks') logger.info( f"{string_left:{COL_WIDTH}} | {string_right:{COL_WIDTH}}") # disabled string_left = padded_column_string('disabled:', np1['disabled'], '') string_right = padded_column_string('disabled:', np2['disabled'], '') logger.info( f"{string_left:{COL_WIDTH}} | {string_right:{COL_WIDTH}}") # last update string_left = padded_column_string( 'last update:', last_update_time_1, '') string_right = padded_column_string( 'last update:', last_update_time_2, '') logger.info( f"{string_left:{COL_WIDTH}} | {string_right:{COL_WIDTH}}") def print_node_info(self, general_info): """ Prints the node info. :param general_info: information about the node in the public graph :type general_info: dict """ logger.info("-------- Node info --------") logger.info(general_info['pub_key']) # alias string = padded_column_string('alias:', general_info['alias'], '') logger.info(f"{string:{COL_WIDTH*2}}") # last update last_update = general_info['last_update'] last_update_time = datetime.datetime.utcfromtimestamp( last_update).strftime('%Y-%m-%d %H:%M:%S') string = padded_column_string('last update:', last_update_time, '') logger.info(f"{string:{COL_WIDTH*2}}") # numer of channels string = padded_column_string( 'number of channels:', general_info['num_channels'], '') logger.info(f"{string:{COL_WIDTH*2}}") # total capacity string = padded_column_string( 'total capacity:', general_info['total_capacity'], 'sat') logger.info(f"{string:{COL_WIDTH*2}}") # capacity per channel string = padded_column_string( 'capacity (median):', general_info['median_capacity'], 'sat') logger.info(f"{string:{COL_WIDTH*2}}") string = padded_column_string( 'capacity (mean):', general_info['mean_capacity'], 'sat') logger.info(f"{string:{COL_WIDTH*2}}") # fees string = padded_column_string( 'base fee (median):', general_info['median_base_fee'], 'msat') logger.info(f"{string:{COL_WIDTH*2}}") string = padded_column_string( 'base fee (mean):', general_info['mean_base_fee'], 'msat') logger.info(f"{string:{COL_WIDTH*2}}") string = padded_column_string( 'fee rate (median):', general_info['median_fee_rate'], 'sat/sat') logger.info(f"{string:{COL_WIDTH*2}}") string = padded_column_string( 'fee rate (mean):', general_info['mean_fee_rate'], 'sat/sat') logger.info(f"{string:{COL_WIDTH*2}}") # addresses logger.info("-------- Addresses --------") for addr in general_info['addresses']: logger.info(5 * " " + general_info['pub_key'] + "@" + addr)
the-stack_0_26941
# -*- coding: utf-8 -*- # pylint: skip-file # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../../hepdata_lib')) if (sys.version_info > (3, 3)): # Python 3.3 from unittest.mock import MagicMock else: # Python 2 and < 3.3 from mock import Mock as MagicMock class Mock(MagicMock): """Mocking class for missing packages.""" @classmethod def __getattr__(cls, name): return MagicMock() try: import ROOT # pylint: disable=W0611 except ImportError: MOCK_MODULES = ['ROOT'] sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES) # -- Project information ----------------------------------------------------- project = 'hepdata_lib' copyright = '2018-2020, Andreas Albert, Clemens Lange' author = 'Andreas Albert, Clemens Lange' # The short X.Y version version = '0.8.1' # The full version, including alpha/beta/rc tags release = '0.8.1' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.githubpages', 'm2r', 'sphinx.ext.autodoc' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] # source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'hepdata_libdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'hepdata_lib.tex', 'hepdata\\_lib Documentation', 'Andreas Albert, Clemens Lange', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'hepdata_lib', 'hepdata_lib Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'hepdata_lib', 'hepdata_lib Documentation', author, 'hepdata_lib', 'One line description of project.', 'Miscellaneous'), ] # -- Extension configuration ------------------------------------------------- autodoc_mock_imports = ["ROOT"]
the-stack_0_26942
import sqlite3 import discord import re from discord.ext import commands from discord.utils import find import secrets from bank import Bank from bank import Meme bank = Bank() memedb = Meme() i_string = ('^(?:http:\/\/|https:\/\/).*\.?(?:imgur.com|redd.i' 't)\/[^\ ]*(?:.gif|.gifv|.png|.jpg|.jpeg|.mp4|.apng|.tiff)$') v_string = ('^(?:http:\/\/|https:\/\/).*\.?(?:gfycat.com|streamable.com' '|youtu.be|youtube.com|twitch.tv)\/[^\ ]*') memebuck = '[̲̅$̲̅(̲̅ ͡° ͜ʖ ͡°̲̅)̲̅$̲' THUMBS_UP = "\U0001F44D" THUMBS_DOWN = "\U0001F44E" def account_exists(ctx): return bank.check_if_exists(ctx.message.author.id) def is_admin(ctx): admin_roles = secrets.ADMIN_ROLES user_roles = ctx.message.author.roles for role in user_roles: if role.name in admin_roles: return True return False class Memes: def __init__(self, yeebot): self.yeebot = yeebot self.conn = sqlite3.connect('db/yee.db') self.cur = self.conn.cursor() self.image_link = re.compile(i_string) self.video_link = re.compile(v_string) @commands.check(account_exists) @commands.group(pass_context=True, description='Return a random meme. Cost: 1 memebuck.') async def meme(self, ctx): if ctx.invoked_subcommand is None: if bank.check_balance(ctx.message.author.id) > 1: bank.withdraw(ctx.message.author.id, 1) returned_meme = memedb.retrieve(user=ctx.message.author) return await self.yeebot.say('{} Please enjoy this delicious meme brought to you by {}'.format(returned_meme[0], returned_meme[1])) else: return await self.yeebot.say("You don't have enough memebucks to do that.") @commands.check(account_exists) @meme.command(pass_context=True, description="Submit a meme to be reviewed and potentially added to the database.") async def add(self, ctx, link): if link: v_link = self.video_link.match(link) i_link = self.image_link.match(link) vote_count = 0 neg_vote = 0 pos_vote = 0 if v_link or i_link: if memedb.retrieve(link=link): await self.yeebot.delete_message(ctx.message) return await self.yeebot.say("Sorry, that link is already in the database.") else: # Add the link to the database, status = review memedb.add(ctx.message.author, link) # delete the submission message await self.yeebot.delete_message(ctx.message) # post the image for voting msg = await self.yeebot.send_message(ctx.message.channel, 'Please vote on the following meme: {}'.format(link)) # add thumbs up and thumbs down to the image await self.yeebot.add_reaction(msg, THUMBS_UP) await self.yeebot.add_reaction(msg, THUMBS_DOWN) # wait for votes on the image while vote_count < secrets.VOTES_TO_COMPLETE: reaction = await self.yeebot.wait_for_reaction(message=msg, emoji=[THUMBS_UP, THUMBS_DOWN]) print('Reaction added for {}'.format(link)) if reaction.reaction.emoji == THUMBS_UP and reaction.user != msg.author: self.cur.execute("SELECT vote FROM votes WHERE voter_id = ? AND link = ?;", (reaction.user.id, link)) row = self.cur.fetchone() if row: user_vote = row[0] if user_vote: if user_vote == 'NEG': print('User already has an active vote. Removing emoji and updating row.') await self.yeebot.remove_reaction(msg, THUMBS_DOWN, reaction.user) self.cur.execute("UPDATE votes SET vote = 'POS' WHERE voter_id = ? AND link = ?;", (reaction.user.id, link)) self.conn.commit() pos_vote += 1 neg_vote -= 1 print('Positive vote: {}'.format(pos_vote)) print('Negative vote: {}'.format(neg_vote)) else: print('User already made a positive vote. Do nothing.') else: pos_vote += 1 vote_count += 1 self.cur.execute("INSERT INTO votes (link, voter_id, vote) VALUES(?, ?, 'POS');", (link, reaction.user.id)) self.conn.commit() print('Positive vote: {}'.format(pos_vote)) print('Negative vote: {}'.format(neg_vote)) elif reaction.reaction.emoji == THUMBS_DOWN and reaction.user != msg.author: self.cur.execute("SELECT vote FROM votes WHERE voter_id = ? AND link = ?;", (reaction.user.id, link)) row = self.cur.fetchone() if row: user_vote = row[0] if user_vote: if user_vote == 'POS': print('User has an active vote. Removing emoji and updating row') await self.yeebot.remove_reaction(msg, THUMBS_UP, reaction.user) self.cur.execute("UPDATE votes SET vote = 'NEG' WHERE voter_id = ? AND link = ?;", (reaction.user.id, link)) self.conn.commit() pos_vote -= 1 neg_vote += 1 print('Positive vote: {}'.format(pos_vote)) print('Negative vote: {}'.format(neg_vote)) else: print('User already made a negative vote. Do nothing.') else: neg_vote += 1 vote_count += 1 self.cur.execute("INSERT INTO votes (link, voter_id, vote) VALUES(?, ?, 'NEG');", (link, reaction.user.id)) self.conn.commit() print('Positive vote: {}'.format(pos_vote)) print('Negative vote: {}'.format(neg_vote)) print('{} vote over'.format(link)) if pos_vote > neg_vote: memedb.approve(link) bank.deposit(ctx.message.author.id, 10) await self.yeebot.delete_message(msg) return await self.yeebot.say("{}'s link `{}` has been approved.".format(ctx.message.author.mention, link)) elif neg_vote > pos_vote: memedb.reject(link) await self.yeebot.delete_message(msg) return await self.yeebot.say("{}'s link `{}` has been rejected.".format(ctx.message.author.mention, link)) else: await self.yeebot.delete_message(ctx.message) return await self.yeebot.say('Please only submit links from Youtube, GfyCat, Streamable, Twitch, Imgur, and Reddit. Only direct image links are accepted. Regular video links are ok.') @commands.check(is_admin) @meme.command(pass_context=True, hidden=True) async def reject(self, ctx, link): if link: memedb.reject(link) await self.yeebot.delete_message(ctx.message) return await self.yeebot.say('<{}> has been rejected.'.format(link)) else: return await self.yeebot.say('Reject what?') @commands.check(is_admin) @meme.command(pass_context=True, hidden=True) async def approve (self, ctx, link): if link: memedb.approve(link) await self.yeebot.delete_message(ctx.message) return await self.yeebot.say('<{}> has been approved.'.format(link)) else: return await self.yeebot.say('Approve what?') def setup(yeebot): yeebot.add_cog(Memes(yeebot))
the-stack_0_26943
# -*- coding: utf-8 -*- """ Created on Thu Feb 14 16:33:19 2019 @author: Zymieth """ from operator import itemgetter with open('APSP1.txt') as file: x1 = [row[:-1] for row in file] x1 = [[int(r) for r in row.split(" ")] for row in x1] with open('APSP2.txt') as file: x2 = [row[:-1] for row in file] x2 = [[int(r) for r in row.split(" ")] for row in x2] with open('APSP3.txt') as file: x3 = [row[:-1] for row in file] x3 = [[int(r) for r in row.split(" ")] for row in x3] def adj_listify(g): ''' Returns the adjacency list representation of a directed graph G from a naive list of the form [tail, head, edge_cost] ''' graph = [] sol = [] g = sorted(g, key=itemgetter(0)) curr = g[0][0] sol.append([curr]) for idx, row in enumerate(g): if curr == row[0]: sol.append([row[1], row[2]]) else: graph.append(sol) sol = [] curr = row[0] sol.append([curr]) sol.append([row[1], row[2]]) # final remaining sublist graph.append(sol) return graph def adj_listify_target(g): ''' Returns the adjacency list representation of a directed graph G from a naive list of the form [tail, head, edge_cost] where the first element of each sublist is the head of an edge ''' graph = [] sol = [] g = sorted(g, key=itemgetter(1)) curr = g[0][1] sol.append([curr]) for idx, row in enumerate(g): if curr == row[1]: sol.append([row[0], row[2]]) else: graph.append(sol) sol = [] curr = row[1] sol.append([curr]) sol.append([row[0], row[2]]) # final remaining sublist graph.append(sol) return graph class Graph(object): def __init__(self, adj_list, adj_list_targets): self.nodes = [n[0][0] for n in adj_list] self.edges = [n for n in adj_list] self.heads = [n for n in adj_list_targets] self.visited = [] def augment(self): ''' augments graph with artificial node with 0 edge connections to all other vertices ''' new = len(self.nodes)+1 self.nodes.append(new) for row in self.heads: row.append([new, 0]) def restoreOriginal(self) : ''' restores the original G from the augmented version ''' def dijkstra(self, start): A = {} node = start # initialization of hash for n in range(1,len(self.nodes)+1): A[n] = float('inf') A[node] = 0 while self.visited != self.nodes: if len(self.visited) == len(self.nodes) - 1: self.visited.append(node) break self.visited.append(node) opt = float('inf') mcost = float('inf') for n in self.visited: candidates = [e for e in self.edges[n-1][1:] if e[0] not in self.visited] if len(candidates) != 0: for c in candidates: nxt, cost = c # check optimality of edge selection if A[n]+cost < A[n]+mcost and A[n]+cost < opt: opt = A[n]+cost mnxt, mcost, origin = nxt, cost, n A[mnxt] = A[origin] + mcost node = mnxt # reset visited self.visited = [] return A def bellmanFord(self, start): A_prev, A = {}, {} for n in range(1,len(self.nodes)+1): A_prev[n] = float('inf') A_prev[1] = 0 # edge budget for i in range(1, len(self.nodes)+1): # destination vertex for j in range(1, len(self.nodes)+1): # bruteforce search to find min edge going into vertex j candidate = min(self.heads[j-1][1:],\ key = lambda x: x[1] + A_prev[x[0]]) source, cost = candidate[0], candidate[1] A[j] = min(A_prev[j], A_prev[source] + cost) A_prev, A = A, {} return A_prev # test on small undirected graph sg = [[1, 2, 20], [1, 4, 30], [2, 1, 20], [2, 3, 20], [3, 2, 30], [3, 4, 20], [4, 1, 30], [4, 3, 20]] sg1 = adj_listify(sg) sg2 = adj_listify_target(sg) sG = Graph(sg1, sg2) a1 = sG.dijkstra(1) a2 = sG.bellmanFord(1) # x1 = adj_listify(x1) # x2 = adj_listify(x2) # x3 = adj_listify(x3) # # g1 = Graph(x1) # =============================================================================
the-stack_0_26944
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class Operations(object): """Operations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.purview.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, **kwargs # type: Any ): # type: (...) -> Iterable["_models.OperationList"] """Lists the available operations. List of available operations. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either OperationList or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.purview.models.OperationList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.OperationList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-07-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('OperationList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.ErrorResponseModel, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/providers/Microsoft.Purview/operations'} # type: ignore
the-stack_0_26945
#!/usr/bin/env python """ # # # File Name: scale/specifity.py # Description: """ import numpy as np import pandas as pd import scipy as sp def jsd(p, q, base=np.e): """ Jensen Shannon_divergence """ ## convert to np.array p, q = np.asarray(p), np.asarray(q) ## normalize p, q to probabilities p, q = p/p.sum(), q/q.sum() m = 1./2*(p + q) return sp.stats.entropy(p,m, base=base)/2. + sp.stats.entropy(q, m, base=base)/2. def jsd_sp(p, q, base=np.e): """ Define specificity score: score = 1 - sqrt(jsd(p, q)) """ return 1- jsd(p, q, base=np.e)**0.5 def log2norm(e): """ log2(e+1) normalization """ loge = np.log2(e+1) return loge/sum(loge) def predefined_pattern(t, labels): q = np.zeros(len(labels)) q[np.where(labels==t)[0]] = 1 return q def vec_specificity_score(e, t, labels): """ Calculate a vector specificity for cluster t """ e = log2norm(e) et = log2norm(predefined_pattern(t, labels)) return jsd_sp(e, et) def mat_specificity_score(mat, labels): """ Calculate all peaks or genes specificity across all clusters Return: peaks/genes x clusters dataframe """ scores = [] for i in np.unique(labels): score = mat.apply(lambda x: vec_specificity_score(x, i, labels), axis=1) scores.append(score) return pd.concat(scores, axis=1) def cluster_specific(score_mat, classes=None, top=0): """ Identify top specific peaks for each cluster Input: score_mat calculated by mat_specificity_score Return: specific peaks index and peaks labels """ scores = score_mat.max(1) peak_labels = np.argmax(score_mat.values, axis=1) inds = [] labels = [] if classes is None: classes = np.unique(peak_labels) for i in classes: index = np.where(peak_labels==i)[0] ind = np.argsort(scores[index])[-top:] ind = index[ind] inds.append(ind) labels.append(peak_labels[ind]) return np.concatenate(inds), np.concatenate(labels)
the-stack_0_26946
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.PromotionRelationDTO import PromotionRelationDTO class AlipayOpenSpIsvRelationQueryResponse(AlipayResponse): def __init__(self): super(AlipayOpenSpIsvRelationQueryResponse, self).__init__() self._current_page = None self._page_size = None self._promotion_relations = None self._total_size = None @property def current_page(self): return self._current_page @current_page.setter def current_page(self, value): self._current_page = value @property def page_size(self): return self._page_size @page_size.setter def page_size(self, value): self._page_size = value @property def promotion_relations(self): return self._promotion_relations @promotion_relations.setter def promotion_relations(self, value): if isinstance(value, list): self._promotion_relations = list() for i in value: if isinstance(i, PromotionRelationDTO): self._promotion_relations.append(i) else: self._promotion_relations.append(PromotionRelationDTO.from_alipay_dict(i)) @property def total_size(self): return self._total_size @total_size.setter def total_size(self, value): self._total_size = value def parse_response_content(self, response_content): response = super(AlipayOpenSpIsvRelationQueryResponse, self).parse_response_content(response_content) if 'current_page' in response: self.current_page = response['current_page'] if 'page_size' in response: self.page_size = response['page_size'] if 'promotion_relations' in response: self.promotion_relations = response['promotion_relations'] if 'total_size' in response: self.total_size = response['total_size']
the-stack_0_26947
import dgl import numpy as np import torch as th import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.multiprocessing as mp import dgl.function as fn import dgl.nn.pytorch as dglnn import time import argparse import tqdm from _thread import start_new_thread from functools import wraps from dgl.data import RedditDataset from torch.utils.data import DataLoader from torch.nn.parallel import DistributedDataParallel class SAGEConvWithCV(nn.Module): def __init__(self, in_feats, out_feats, activation): super().__init__() self.W = nn.Linear(in_feats * 2, out_feats) self.activation = activation self.reset_parameters() def reset_parameters(self): gain = nn.init.calculate_gain('relu') nn.init.xavier_uniform_(self.W.weight, gain=gain) nn.init.constant_(self.W.bias, 0) def forward(self, block, H, HBar=None): if self.training: with block.local_scope(): H_src, H_dst = H HBar_src, agg_HBar_dst = HBar block.dstdata['agg_hbar'] = agg_HBar_dst block.srcdata['hdelta'] = H_src - HBar_src block.update_all(fn.copy_u('hdelta', 'm'), fn.mean('m', 'hdelta_new')) h_neigh = block.dstdata['agg_hbar'] + block.dstdata['hdelta_new'] h = self.W(th.cat([H_dst, h_neigh], 1)) if self.activation is not None: h = self.activation(h) return h else: with block.local_scope(): H_src, H_dst = H block.srcdata['h'] = H_src block.update_all(fn.copy_u('h', 'm'), fn.mean('m', 'h_new')) h_neigh = block.dstdata['h_new'] h = self.W(th.cat([H_dst, h_neigh], 1)) if self.activation is not None: h = self.activation(h) return h class SAGE(nn.Module): def __init__(self, in_feats, n_hidden, n_classes, n_layers, activation): super().__init__() self.n_layers = n_layers self.n_hidden = n_hidden self.n_classes = n_classes self.layers = nn.ModuleList() self.layers.append(SAGEConvWithCV(in_feats, n_hidden, activation)) for i in range(1, n_layers - 1): self.layers.append(SAGEConvWithCV(n_hidden, n_hidden, activation)) self.layers.append(SAGEConvWithCV(n_hidden, n_classes, None)) def forward(self, blocks): h = blocks[0].srcdata['features'] updates = [] for layer, block in zip(self.layers, blocks): # We need to first copy the representation of nodes on the RHS from the # appropriate nodes on the LHS. # Note that the shape of h is (num_nodes_LHS, D) and the shape of h_dst # would be (num_nodes_RHS, D) h_dst = h[:block.number_of_dst_nodes()] hbar_src = block.srcdata['hist'] agg_hbar_dst = block.dstdata['agg_hist'] # Then we compute the updated representation on the RHS. # The shape of h now becomes (num_nodes_RHS, D) h = layer(block, (h, h_dst), (hbar_src, agg_hbar_dst)) block.dstdata['h_new'] = h return h def inference(self, g, x, batch_size, device): """ Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling). g : the entire graph. x : the input of entire node set. The inference code is written in a fashion that it could handle any number of nodes and layers. """ # During inference with sampling, multi-layer blocks are very inefficient because # lots of computations in the first few layers are repeated. # Therefore, we compute the representation of all nodes layer by layer. The nodes # on each layer are of course splitted in batches. # TODO: can we standardize this? nodes = th.arange(g.number_of_nodes()) ys = [] for l, layer in enumerate(self.layers): y = th.zeros(g.number_of_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes) for start in tqdm.trange(0, len(nodes), batch_size): end = start + batch_size batch_nodes = nodes[start:end] block = dgl.to_block(dgl.in_subgraph(g, batch_nodes), batch_nodes) block = block.to(device) induced_nodes = block.srcdata[dgl.NID] h = x[induced_nodes].to(device) h_dst = h[:block.number_of_dst_nodes()] h = layer(block, (h, h_dst)) y[start:end] = h.cpu() ys.append(y) x = y return y, ys class NeighborSampler(object): def __init__(self, g, fanouts): self.g = g self.fanouts = fanouts def sample_blocks(self, seeds): seeds = th.LongTensor(seeds) blocks = [] hist_blocks = [] for fanout in self.fanouts: # For each seed node, sample ``fanout`` neighbors. frontier = dgl.sampling.sample_neighbors(self.g, seeds, fanout) hist_frontier = dgl.in_subgraph(self.g, seeds) # Then we compact the frontier into a bipartite graph for message passing. block = dgl.to_block(frontier, seeds) hist_block = dgl.to_block(hist_frontier, seeds) # Obtain the seed nodes for next layer. seeds = block.srcdata[dgl.NID] blocks.insert(0, block) hist_blocks.insert(0, hist_block) return blocks, hist_blocks def compute_acc(pred, labels): """ Compute the accuracy of prediction given the labels. """ return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred) def evaluate(model, g, labels, val_mask, batch_size, device): """ Evaluate the model on the validation set specified by ``val_mask``. g : The entire graph. inputs : The features of all the nodes. labels : The labels of all the nodes. val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for. batch_size : Number of nodes to compute at the same time. device : The GPU device to evaluate on. """ model.eval() with th.no_grad(): inputs = g.ndata['features'] pred, _ = model.inference(g, inputs, batch_size, device) model.train() return compute_acc(pred[val_mask], labels[val_mask]) def load_subtensor(g, labels, blocks, hist_blocks, dev_id, aggregation_on_device=False): """ Copys features and labels of a set of nodes onto GPU. """ blocks[0].srcdata['features'] = g.ndata['features'][blocks[0].srcdata[dgl.NID]] blocks[-1].dstdata['label'] = labels[blocks[-1].dstdata[dgl.NID]] ret_blocks = [] ret_hist_blocks = [] for i, (block, hist_block) in enumerate(zip(blocks, hist_blocks)): hist_col = 'features' if i == 0 else 'hist_%d' % i block.srcdata['hist'] = g.ndata[hist_col][block.srcdata[dgl.NID]] # Aggregate history hist_block.srcdata['hist'] = g.ndata[hist_col][hist_block.srcdata[dgl.NID]] if aggregation_on_device: hist_block = hist_block.to(dev_id) hist_block.update_all(fn.copy_u('hist', 'm'), fn.mean('m', 'agg_hist')) block = block.to(dev_id) if not aggregation_on_device: hist_block = hist_block.to(dev_id) block.dstdata['agg_hist'] = hist_block.dstdata['agg_hist'] ret_blocks.append(block) ret_hist_blocks.append(hist_block) return ret_blocks, ret_hist_blocks def init_history(g, model, dev_id): with th.no_grad(): history = model.inference(g, g.ndata['features'], 1000, dev_id)[1] for layer in range(args.num_layers + 1): if layer > 0: hist_col = 'hist_%d' % layer g.ndata['hist_%d' % layer] = history[layer - 1] def update_history(g, blocks): with th.no_grad(): for i, block in enumerate(blocks): ids = block.dstdata[dgl.NID].cpu() hist_col = 'hist_%d' % (i + 1) h_new = block.dstdata['h_new'].cpu() g.ndata[hist_col][ids] = h_new def run(args, dev_id, data): dropout = 0.2 th.cuda.set_device(dev_id) # Unpack data train_mask, val_mask, in_feats, labels, n_classes, g = data train_nid = th.LongTensor(np.nonzero(train_mask)[0]) val_nid = th.LongTensor(np.nonzero(val_mask)[0]) train_mask = th.BoolTensor(train_mask) val_mask = th.BoolTensor(val_mask) # Create sampler sampler = NeighborSampler(g, [int(_) for _ in args.fan_out.split(',')]) # Create PyTorch DataLoader for constructing blocks dataloader = DataLoader( dataset=train_nid.numpy(), batch_size=args.batch_size, collate_fn=sampler.sample_blocks, shuffle=True, drop_last=False, num_workers=args.num_workers_per_gpu) # Define model model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu) # Move the model to GPU and define optimizer model = model.to(dev_id) loss_fcn = nn.CrossEntropyLoss() loss_fcn = loss_fcn.to(dev_id) optimizer = optim.Adam(model.parameters(), lr=args.lr) # Compute history tensor and their aggregation before training on CPU model.eval() init_history(g, model, dev_id) model.train() # Training loop avg = 0 iter_tput = [] for epoch in range(args.num_epochs): tic = time.time() model.train() tic_step = time.time() for step, (blocks, hist_blocks) in enumerate(dataloader): # The nodes for input lies at the LHS side of the first block. # The nodes for output lies at the RHS side of the last block. input_nodes = blocks[0].srcdata[dgl.NID] seeds = blocks[-1].dstdata[dgl.NID] blocks, hist_blocks = load_subtensor(g, labels, blocks, hist_blocks, dev_id, True) # forward batch_pred = model(blocks) # update history update_history(g, blocks) # compute loss batch_labels = blocks[-1].dstdata['label'] loss = loss_fcn(batch_pred, batch_labels) # backward optimizer.zero_grad() loss.backward() optimizer.step() iter_tput.append(len(seeds) / (time.time() - tic_step)) if step % args.log_every == 0: acc = compute_acc(batch_pred, batch_labels) print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f}'.format( epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]))) tic_step = time.time() toc = time.time() print('Epoch Time(s): {:.4f}'.format(toc - tic)) if epoch >= 5: avg += toc - tic if epoch % args.eval_every == 0 and epoch != 0: model.eval() eval_acc = evaluate(model, g, labels, val_nid, args.val_batch_size, dev_id) print('Eval Acc {:.4f}'.format(eval_acc)) print('Avg epoch time: {}'.format(avg / (epoch - 4))) if __name__ == '__main__': argparser = argparse.ArgumentParser("multi-gpu training") argparser.add_argument('--gpu', type=str, default='0') argparser.add_argument('--num-epochs', type=int, default=20) argparser.add_argument('--num-hidden', type=int, default=16) argparser.add_argument('--num-layers', type=int, default=2) argparser.add_argument('--fan-out', type=str, default='1,1') argparser.add_argument('--batch-size', type=int, default=1000) argparser.add_argument('--val-batch-size', type=int, default=1000) argparser.add_argument('--log-every', type=int, default=20) argparser.add_argument('--eval-every', type=int, default=5) argparser.add_argument('--lr', type=float, default=0.003) argparser.add_argument('--num-workers-per-gpu', type=int, default=0) args = argparser.parse_args() # load reddit data data = RedditDataset(self_loop=True) n_classes = data.num_classes g = data[0] features = g.ndata['feat'] in_feats = features.shape[1] labels = g.ndata['label'] train_mask = g.ndata['train_mask'] val_mask = g.ndata['val_mask'] g.ndata['features'] = features g.create_format_() # Pack data data = train_mask, val_mask, in_feats, labels, n_classes, g run(args, int(args.gpu), data)
the-stack_0_26949
import logging from dataclasses import asdict from typing import Optional, Tuple from dacite import from_dict from common.Db import get_db from common.SlackBot import BotsConversation, Bot, TwoWayBot logger = logging.getLogger(__name__) def register_bot(authentication_code: str, bot: Bot): """ Register bot to the system. """ get_db().hmset(f'registration.{authentication_code}', asdict(bot)) def get_bot(authentication_code: str) -> Tuple[Bot, Optional[TwoWayBot]]: """ Retrieves bot by auth code. """ data = get_db().hgetall(f'registration.{authentication_code}') # find out whether this bot has URL, if so it is TwoWayBot if data and data.get('bot_url'): two_way = from_dict(data_class=TwoWayBot, data=data) return two_way, two_way return from_dict(data_class=Bot, data=data), None def register_conversation(authentication_code: str, bot_id: str, roman_token: str): """ Register new conversation for the authentication_code. """ bot, _ = get_bot(authentication_code) payload = BotsConversation(bot_api_key=bot.bot_api_key, roman_token=roman_token) get_db().hmset(f'conversation.{bot_id}', asdict(payload)) def delete_conversation(bot_id: str): """ Deletes conversation. """ count = get_db().delete(f'conversation.{bot_id}') logger.info(f'{count} conversation(s) deleted for bot {bot_id}.') def get_conversation(bot_id: str) -> BotsConversation: """ Retrieves conversation by bot id. """ data = get_db().hgetall(f'conversation.{bot_id}') logger.debug(f'Retrieved payload - {data}') return BotsConversation(bot_api_key=data['bot_api_key'], roman_token=data['roman_token']) def get_conversation_checked(bot_id: str, used_api_key: str) -> Optional[BotsConversation]: """ Retrieves conversation and checks token. Returns None if api keys don't match. """ try: conversation = get_conversation(bot_id) if conversation.bot_api_key == used_api_key: return conversation else: logger.warning(f'Bot {bot_id} used API key {used_api_key}, but different was expected.') except Exception: logger.warning(f'It was not possible to obtain conversation! Bot {bot_id} and api key {used_api_key}.') return None
the-stack_0_26950
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence # Paper: https://arxiv.org/pdf/1508.04025 class Encoder(nn.Module): """ 编码器,非常简单,双向RNN,考虑前后上下文 """ def __init__(self, vocab_size, embed_size, enc_hidden_size, dec_hidden_size, dropout=0.2): super(Encoder, self).__init__() self.embed = nn.Embedding(vocab_size, embed_size) self.rnn = nn.GRU(embed_size, enc_hidden_size, batch_first=True, bidirectional=True) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(enc_hidden_size * 2, dec_hidden_size) def forward(self, x, lengths): x = self.dropout(self.embed(x)) # 句子长度不一样,需使用pack_padded_sequence,告诉rnn,长度之后pad不需要处理 x = pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False) out, hid = self.rnn(x) # -> batch_size, x_len,2*hidden_size out, _ = pad_packed_sequence(out, batch_first=True) # hid dim: 2, batch_size, hidden_size -> batch_size,hidden_size*2 hid = torch.cat((hid[-2], hid[-1]), dim=1) # hid匹配到dec_hidden_size,作为encoder hid 的输入 hid = torch.tanh(self.fc(hid)).unsqueeze(0) return out, hid class Attention(nn.Module): """ att = softmax(<encoded_ys,encoded_xs>) att_xs = att * encoded_xs output = [att_xs,ys] """ def __init__(self, enc_hidden_size, dec_hidden_size): super(Attention, self).__init__() self.enc_hidden_size = enc_hidden_size self.dec_hidden_size = dec_hidden_size self.fc_in = nn.Linear(enc_hidden_size * 2, dec_hidden_size, bias=False) self.fc_out = nn.Linear(enc_hidden_size * 2 + dec_hidden_size, dec_hidden_size) def forward(self, xs, ys, mask): """ 1. 转换维度: xs' = fc(xs) 2. 计算Att系数:att = softmax(<ys,xs'>) 3. 获得Att: att_xs = att * xs 4. 拼接:cat(att_xs,ys) :param xs: encoded inputs.dim: batch_size, x_len, x_size(encode_hidden_size) :param ys: encoded labels.dim: batch_size, 1 or y_len, y_size(decode_hidden_size) :param mask: PAD 字符为True,其他False :return: dim: batch_size,y_len,y_size """ batch_size = xs.size(0) input_len = xs.size(1) output_len = ys.size(1) # 1.转换维度: 使得输入的维度,和输出维度匹配,否则没法做内积。 batch_size , x_len, x_size -> batch_size , x_len, y_size xs_ = self.fc_in(xs.view(batch_size * input_len, -1)).view(batch_size, input_len, -1) # 2.计算Att系数:x,y直接做内积获得x,y的相关性 , # att = <x,y> = Y*X^T in batch -> batch_size , y_len , x_len(每个字符上的权重) att = torch.bmm(ys, xs_.transpose(1, 2)) # PAD 字符的系数应趋于0 att.masked_fill_(mask, -1e6) att = F.softmax(att, dim=2) # 3. 获得Att: ->batch_size,y_len,y_size att_xs = torch.bmm(att, xs) # 4. 拼接:cat(att_xs,ys) -> batch_size, y_len, x_size+y+size output = torch.cat((att_xs, ys), dim=2) # 下面两步:转换到输出维度 -> batch_size,y_len,y_size output = output.view(batch_size * output_len, -1) output = torch.tanh(self.fc_out(output)).view(batch_size, output_len, -1) return output, att class Decoder(nn.Module): def __init__(self, vocab_size, embed_size, enc_hidden_size, dec_hidden_size, dropout=0.2): super(Decoder, self).__init__() self.embed = nn.Embedding(vocab_size, embed_size) self.attention = Attention(enc_hidden_size, dec_hidden_size) self.rnn = nn.GRU(embed_size, dec_hidden_size, batch_first=True) self.dropout = nn.Dropout(dropout) self.out_fc = nn.Linear(dec_hidden_size, vocab_size) def create_mask(self, ys_len, xs_len): """ 和输入字符无关的字符(PAD)标记为0,否则标记为1 :param ys_len: :param xs_len: :return: (batch_size, ys_len, xs_len) """ y_max = ys_len.max() x_max = xs_len.max() # 有效字符为true y_mask = ys_len[:, None] > torch.arange(y_max)[None, :] x_mask = xs_len[:, None] > torch.arange(x_max)[None, :] # true: y字符存在并且x字符也存在 , 然后取反 return ~(y_mask[:, :, None] * x_mask[:, None, :]) def forward(self, xs, xs_len, ys, ys_len, hid): ys = self.dropout(self.embed(ys)) ys = pack_padded_sequence(ys, ys_len, batch_first=True, enforce_sorted=False) out, hid = self.rnn(ys, hid) out, _ = pad_packed_sequence(out, batch_first=True) mask = self.create_mask(ys_len, xs_len) out, att = self.attention(xs, out, mask) out = F.log_softmax(self.out_fc(out), -1) return out, hid, att class Seq2Seq(nn.Module): def __init__(self, encoder, decoder): super(Seq2Seq, self).__init__() self.encoder = encoder self.decoder = decoder def forward(self, xs, xs_len, ys, ys_len): enc_xs, hid = self.encoder(xs, xs_len) output, hid, att = self.decoder(enc_xs, xs_len, ys, ys_len, hid) return output, att def translate(self, xs, xs_len, ys, max_length=20): enc_xs, hid = self.encoder(xs, xs_len) preds = [] batch_size = xs.size(0) atts = [] for i in range(max_length): ys_len = torch.ones(batch_size) output, hid, att = self.decoder(enc_xs, xs_len, ys, ys_len, hid) ys = output.max(2)[1].view(batch_size, 1) preds.append(ys) atts.append(att) return torch.cat(preds, 1), torch.cat(atts, 1) class LanguageCriterion(nn.Module): def __init__(self): super(LanguageCriterion, self).__init__() def forward(self, pred, target, mask): pred = pred.contiguous().view(-1, pred.size(2)) target = target.contiguous().view(-1, 1) mask = mask.contiguous().view(-1, 1) # 交叉熵 mask = mask.float() output = -pred.gather(1, target) * mask output = torch.sum(output) / torch.sum(mask) return output from seq2seq.data_loader import train_dataloader, en_total_words, cn_total_words, test_dataloader, decode_sents, BOS, \ cn_dict hidden_size = 100 embedding_size = 100 encoder = Encoder(en_total_words, embedding_size, hidden_size, hidden_size) decoder = Decoder(cn_total_words, embedding_size, hidden_size, hidden_size) model = Seq2Seq(encoder, decoder) loss_fn = LanguageCriterion() optimizer = torch.optim.Adam(model.parameters()) def eval(): model.eval() total_num_words = total_loss = 0. with torch.no_grad(): for i, (en, en_lens, cn, cn_lens) in enumerate(test_dataloader): cn_input = cn[:, :-1] # 去掉最后一个字符 cn_output = cn[:, 1:] # 输出从第一个字符开始,不是<BOS>; <BOS> -> 第一个字符;最后一个字符-> <EOS> cn_lens = cn_lens - 1 cn_lens[cn_lens <= 0] = 1 # 仅保留[<BOS>] pred, _ = model(en, en_lens, cn_input, cn_lens) # 只计算句子长度之内的损失。 output_mask = torch.arange(cn_lens.max().item())[None, :] < cn_lens[:, None] loss = loss_fn(pred, cn_output, output_mask) num_words = torch.sum(cn_lens).item() total_loss += loss.item() * num_words total_num_words += num_words print("Evaluation loss", total_loss / total_num_words) def train(num_epoch=10): print(torch.__config__.parallel_info()) for epoch in range(num_epoch): model.train() total_num_words = 0 total_loss = 0 for i, (en, en_lens, cn, cn_lens) in enumerate(train_dataloader): cn_input = cn[:, :-1] # 去掉最后一个字符 cn_output = cn[:, 1:] # 输出从第一个字符开始,不是<BOS>; <BOS> -> 第一个字符;最后一个字符-> <EOS> cn_lens = cn_lens - 1 cn_lens[cn_lens <= 0] = 1 # 修补长度为1的句子 # cn_input: 全部传入,可做teacher,优化训练 # 输出:[batch, sentence_len , pb_on_cn_words] pred, _ = model(en, en_lens, cn_input, cn_lens) # 只计算句子长度之内的损失。 output_mask = torch.arange(cn_lens.max().item())[None, :] < cn_lens[:, None] loss = loss_fn(pred, cn_output, output_mask) num_words = torch.sum(cn_lens).item() total_loss += loss.item() * num_words total_num_words += num_words optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 5.) optimizer.step() if i % 100 == 0: print("Epoch", epoch, "iteration", i, " training loss", loss.item()) translate() eval() torch.save(model.state_dict(), f"rnn_attention_model_epoch_{epoch}.model") print("Epoch", epoch, "Training loss", total_loss / total_num_words) def translate(): # model.eval() total_num_words = total_loss = 0. with torch.no_grad(): for i, (en, en_lens, cn, cn_lens) in enumerate(test_dataloader): # cn_input = cn[:, :-1] # 去掉最后一个字符 cn_output = cn[:, 1:] # 输出从第一个字符开始,不是<BOS>; <BOS> -> 第一个字符;最后一个字符-> <EOS> # cn_lens = cn_lens - 1 # cn_lens[cn_lens <= 0] = 1 # 仅保留[<BOS>] bos = torch.zeros(en.size(0), 1) bos.fill_(cn_dict[BOS]) # cn_input: 全部传入,可做teacher,优化训练 # 输出:[batch, sentence_len , pb_on_cn_words] pred, atts = model.translate(en, en_lens, cn_output) print(decode_sents(en, False)) print(decode_sents(cn)) print(decode_sents(pred)) return if __name__ == '__main__': # translate() train()
the-stack_0_26951
"""Copy and paste using the internet""" __version__ = '0.1' import argparse import pyperclip as clipboard import requests from bs4 import BeautifulSoup from colorama import Fore def create_clip(l, m): """Create clip """ url = 'https://cl1p.net/' + l response = requests.get(url) page = response.content soup = BeautifulSoup(page, 'html.parser') clipContent = soup.find("div", {"id": "cl1pContent"}) if clipContent is not None: action = soup.find("input", {"name": "action"})['value'].strip() pageHash = soup.find("input", {"name": "pageHash"})['value'].strip() seqHash = soup.find("input", {"name": "seqHash"})['value'].strip() data = {'content': m, 'action': action, 'pageHash': pageHash, 'seqHash': seqHash} r = requests.post(url=url, data=data) pastebin_url = r.text print("") print(Fore.BLUE + "The cl1p URL is : %s" % url) print("") else: print("") print(Fore.RED + "" + url + " is already in use please use different url . Use \'-l\' flag to specify url ") print("") def get_clip(l, c): """get clip from cl1p.net""" url = 'https://cl1p.net/' + l response = requests.get(url) page = response.content soup = BeautifulSoup(page, 'html.parser') contentRead = soup.find("div", {"class": "contentRead"}) if contentRead is not None: textContetnt = soup.find("textarea", {"name": "content"}) if c: clipboard.copy(textContetnt.text) print("") print(Fore.BLUE + "Content copied to clipboard") print("") else: print(" ") print(Fore.BLUE + "*************************************") print(Fore.BLUE + "\t\tClip data") print(Fore.BLUE + "*************************************") print(Fore.RESET + "") print(textContetnt.text) print(" ") else: print(" ") print(Fore.RED + "No clip is present at " + url + ".") print(" ") def run(): parser = argparse.ArgumentParser( description="cl1p.net lets you move information between computers using your internet") parser.add_argument("-l", "--l", action='store', help='Set URL', type=str, required=True) parser.add_argument("-m", "--m", action='store', help='Set clip message', type=str, required=False) parser.add_argument("-c", "--c", action='store_true', help='Copy clip content directly to clipboard', required=False) parser.add_argument("-d", "--d", action='store_true', help='Create clip directly from clipboard', required=False) args = parser.parse_args() if args.m is not None: create_clip(args.l, args.m) elif args.d: text = clipboard.paste() create_clip(args.l, text) else: get_clip(args.l, args.c) if __name__ == '__main__': run()
the-stack_0_26953
# -*- coding: utf8 -*- # Copyright 2012 Harald Schilly <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from panobbgo.core import Heuristic class Extremal(Heuristic): """ This heuristic is specifically seeking for points at the border of the box and around 0. The @where parameter takes a list or tuple, which has values from 0 to 1, which indicate the probability for sampling from the minimum, zero, center and the maximum. default = ( 1, .2, .2, 1 ) """ def __init__(self, strategy, diameter=1. / 10, prob=None): Heuristic.__init__(self, strategy, name="Extremal") import numpy as np if prob is None: prob = (1, .2, .2, 1) prob = np.array(prob) / float(np.sum(prob)) self.probabilities = prob.cumsum() self.diameter = diameter # inside the box or around zero self.vals = None def __start__(self): import numpy as np problem = self.problem low = problem.box[:, 0] high = problem.box[:, 1] zero = np.zeros(problem.dim) center = low + (high - low) / 2. self.vals = np.row_stack((low, zero, center, high)) def on_start(self): import numpy as np while True: ret = np.empty(self.problem.dim) for i in range(self.problem.dim): r = np.random.rand() for idx, val in enumerate(self.probabilities): if val > r: radius = self.problem.ranges[i] * self.diameter # jitter = radius * (np.random.rand() - .5) jitter = np.random.normal(0, radius) if idx == 0: # minimum border ret[i] = self.vals[idx, i] + abs(jitter) elif idx == len(self.probabilities) - 1: # maximum border ret[i] = self.vals[idx, i] - abs(jitter) else: # around center or zero ret[i] = self.vals[idx, i] + jitter break # since we found the idx, break! self.emit(ret) # stop early, if run by unittests if self.strategy.config.testing_mode: return
the-stack_0_26955
import base64 import logging import shutil from enum import Enum from typing import NamedTuple, Optional from typing_extensions import Literal from rotkehlchen.data_handler import DataHandler from rotkehlchen.errors import ( PremiumAuthenticationError, RemoteError, RotkehlchenPermissionError, UnableToDecryptRemoteData, ) from rotkehlchen.logging import RotkehlchenLogsAdapter from rotkehlchen.premium.premium import Premium, PremiumCredentials, premium_create_and_verify from rotkehlchen.utils.misc import timestamp_to_date, ts_now logger = logging.getLogger(__name__) log = RotkehlchenLogsAdapter(logger) class CanSync(Enum): YES = 0 NO = 1 ASK_USER = 2 class SyncCheckResult(NamedTuple): # The result of the sync check can_sync: CanSync # If result is ASK_USER, what should the message be? message: str class PremiumSyncManager(): def __init__(self, data: DataHandler, password: str) -> None: self.last_data_upload_ts = 0 self.data = data self.password = password self.premium: Optional[Premium] = None def _can_sync_data_from_server(self, new_account: bool) -> SyncCheckResult: """ Checks if the remote data can be pulled from the server. Returns a SyncCheckResult denoting whether we can pull for sure, whether we can't pull or whether the user should be asked. If the user should be asked a message is also returned """ log.debug('can sync data from server -- start') if self.premium is None: return SyncCheckResult(can_sync=CanSync.NO, message='') b64_encoded_data, our_hash = self.data.compress_and_encrypt_db(self.password) try: metadata = self.premium.query_last_data_metadata() except RemoteError as e: log.debug('can sync data from server failed', error=str(e)) return SyncCheckResult(can_sync=CanSync.NO, message='') if new_account: return SyncCheckResult(can_sync=CanSync.YES, message='') if not self.data.db.get_premium_sync(): # If it's not a new account and the db setting for premium syncin is off stop return SyncCheckResult(can_sync=CanSync.NO, message='') log.debug( 'CAN_PULL', ours=our_hash, theirs=metadata.data_hash, ) if our_hash == metadata.data_hash: log.debug('sync from server stopped -- same hash') # same hash -- no need to get anything return SyncCheckResult(can_sync=CanSync.NO, message='') our_last_write_ts = self.data.db.get_last_write_ts() data_bytes_size = len(base64.b64decode(b64_encoded_data)) if our_last_write_ts >= metadata.last_modify_ts: message_prefix = ( 'Detected remote database BUT with older last modification timestamp ' 'than the local one. ' ) else: if data_bytes_size > metadata.data_size: message_prefix = ( 'Detected newer remote database BUT with smaller size than the local one. ' ) else: message_prefix = 'Detected newer remote database. ' message = ( f'{message_prefix}' f'Local size: {data_bytes_size} Remote size: {metadata.data_size} ' f'Local last modified time: {timestamp_to_date(our_last_write_ts)} ' f'Remote last modified time: {timestamp_to_date(metadata.last_modify_ts)} ' f'Would you like to replace the local DB with the remote one?' ) return SyncCheckResult( can_sync=CanSync.ASK_USER, message=message, ) def _sync_data_from_server_and_replace_local(self) -> bool: """ Performs syncing of data from server and replaces local db Returns true for success and False for error/failure May raise: - PremiumAuthenticationError due to an UnableToDecryptRemoteData coming from decompress_and_decrypt_db. This happens when the given password does not match the one on the saved DB. """ assert self.premium, 'This function has to be called with a not None premium' try: result = self.premium.pull_data() except RemoteError as e: log.debug('sync from server -- pulling failed.', error=str(e)) return False try: self.data.decompress_and_decrypt_db(self.password, result['data']) except UnableToDecryptRemoteData: raise PremiumAuthenticationError( 'The given password can not unlock the database that was retrieved from ' 'the server. Make sure to use the same password as when the account was created.', ) return True def maybe_upload_data_to_server(self) -> None: # if user has no premium do nothing if self.premium is None: return # upload only once per hour diff = ts_now() - self.last_data_upload_ts if diff < 3600: return b64_encoded_data, our_hash = self.data.compress_and_encrypt_db(self.password) try: metadata = self.premium.query_last_data_metadata() except RemoteError as e: log.debug( 'upload to server stopped -- query last metadata failed', error=str(e), ) return log.debug( 'CAN_PUSH', ours=our_hash, theirs=metadata.data_hash, ) if our_hash == metadata.data_hash: log.debug('upload to server stopped -- same hash') # same hash -- no need to upload anything return our_last_write_ts = self.data.db.get_last_write_ts() if our_last_write_ts <= metadata.last_modify_ts: # Server's DB was modified after our local DB log.debug('upload to server stopped -- remote db more recent than local') return data_bytes_size = len(base64.b64decode(b64_encoded_data)) if data_bytes_size < metadata.data_size: # Let's be conservative. # TODO: Here perhaps prompt user in the future log.debug('upload to server stopped -- remote db bigger than local') return try: self.premium.upload_data( data_blob=b64_encoded_data, our_hash=our_hash, last_modify_ts=our_last_write_ts, compression_type='zlib', ) except RemoteError as e: log.debug('upload to server -- upload error', error=str(e)) return # update the last data upload value self.last_data_upload_ts = ts_now() self.data.db.update_last_data_upload_ts(self.last_data_upload_ts) log.debug('upload to server -- success') def try_premium_at_start( self, given_premium_credentials: Optional[PremiumCredentials], username: str, create_new: bool, sync_approval: Literal['yes', 'no', 'unknown'], ) -> Optional[Premium]: """ Check if new user provided api pair or we already got one in the DB Returns the created premium if user's premium credentials were fine. If not it will raise PremiumAuthenticationError. If no credentials were given it returns None """ if given_premium_credentials is not None: assert create_new, 'We should never get here for an already existing account' try: self.premium = premium_create_and_verify(given_premium_credentials) except PremiumAuthenticationError as e: log.error('Given API key is invalid') # At this point we are at a new user trying to create an account with # premium API keys and we failed. But a directory was created. Remove it. # But create a backup of it in case something went really wrong # and the directory contained data we did not want to lose shutil.move( self.data.user_data_dir, # type: ignore self.data.data_directory / f'auto_backup_{username}_{ts_now()}', ) raise PremiumAuthenticationError( 'Could not verify keys for the new account. ' '{}'.format(str(e)), ) # else, if we got premium data in the DB initialize it and try to sync with the server db_credentials = self.data.db.get_rotkehlchen_premium() if db_credentials: assert not create_new, 'We should never get here for a new account' try: self.premium = premium_create_and_verify(db_credentials) except PremiumAuthenticationError as e: message = ( f'Could not authenticate with the rotkehlchen server with ' f'the API keys found in the Database. Error: {str(e)}' ) log.error(message) raise PremiumAuthenticationError(message) if self.premium is None: return None result = self._can_sync_data_from_server(new_account=create_new) if result.can_sync == CanSync.ASK_USER: if sync_approval == 'unknown': log.info('DB data at server newer than local') raise RotkehlchenPermissionError(result.message) elif sync_approval == 'yes': log.info('User approved data sync from server') if self._sync_data_from_server_and_replace_local(): if create_new: # if we successfully synced data from the server and this is # a new account, make sure the api keys are properly stored # in the DB self.data.db.set_rotkehlchen_premium(self.premium.credentials) else: log.debug('Could sync data from server but user refused') elif result.can_sync == CanSync.YES: log.info('User approved data sync from server') if self._sync_data_from_server_and_replace_local(): if create_new: # if we successfully synced data from the server and this is # a new account, make sure the api keys are properly stored # in the DB self.data.db.set_rotkehlchen_premium(self.premium.credentials) # else result.can_sync was no, so we do nothing # Success, return premium return self.premium
the-stack_0_26957
#!/usr/bin/env python3 # coding: utf-8 import sfml as sf RESOLUTION = 1024, 512 TILE_SIZE = 16 TEXTURE_UNKNOWN = sf.Texture.from_file('src/assets/textures/blocks/unknown.png') ENTITY_MOVE_DURATION = .2 PLAYER_ANIM_INTERVAL = ENTITY_MOVE_DURATION / 3 BIOME_SIZE = 16, 16
the-stack_0_26960
# field lookup values OBS_PII_NAME_FIRST = 1585596 OBS_PII_NAME_MIDDLE = 1585597 OBS_PII_NAME_LAST = 1585598 OBS_PII_EMAIL_ADDRESS = 1585260 OBS_PII_PHONE = 1585252 OBS_PII_STREET_ADDRESS_ONE = 1585246 OBS_PII_STREET_ADDRESS_TWO = 1585247 OBS_PII_STREET_ADDRESS_CITY = 1585248 OBS_PII_STREET_ADDRESS_STATE = 1585249 OBS_PII_STREET_ADDRESS_ZIP = 1585250 OBS_PII_CONSENT_PRIMARY_PHONE = None OBS_PII_BIRTH_DATETIME = 1585259 OBS_PII_SEX = 1585845 SEX_CONCEPT_IDS = {1585846: 'male', 1585847: 'female', 1585848: 'intersex'} # DRC match responses MATCH = "match" MISMATCH = "no_match" MISSING = "missing" # Date format strings DATE = '%Y-%m-%d' DRC_DATE_FORMAT = '%Y%m%d' DRC_DATE_REGEX = '\d{8}' # Table names OBSERVATION_TABLE = 'observation' PERSON_TABLE = 'person' ID_MATCH_TABLE = 'id_match_table' PII_EMAIL_TABLE = '_pii_email' PII_PHONE_TABLE = '_pii_phone_number' PII_ADDRESS_TABLE = '_pii_address' PII_NAME_TABLE = '_pii_name' EHR_PERSON_TABLE_SUFFIX = '_person' VALIDATION_TABLE_SUFFIX = '_identity_match' # Field names PERSON_ID_FIELD = 'person_id' FIRST_NAME_FIELD = 'first_name' MIDDLE_NAME_FIELD = 'middle_name' LAST_NAME_FIELD = 'last_name' EMAIL_FIELD = 'email' PHONE_NUMBER_FIELD = 'phone_number' SEX_FIELD = 'sex' ZIP_CODE_FIELD = 'zip' STATE_FIELD = 'state' CITY_FIELD = 'city' ADDRESS_ONE_FIELD = 'address_1' ADDRESS_TWO_FIELD = 'address_2' BIRTH_DATE_FIELD = 'birth_date' GENDER_FIELD = 'gender_concept_id' BIRTH_DATETIME_FIELD = 'birth_datetime' VALIDATION_FIELDS = [ FIRST_NAME_FIELD, MIDDLE_NAME_FIELD, LAST_NAME_FIELD, EMAIL_FIELD, PHONE_NUMBER_FIELD, ZIP_CODE_FIELD, STATE_FIELD, CITY_FIELD, ADDRESS_ONE_FIELD, ADDRESS_TWO_FIELD, BIRTH_DATE_FIELD, SEX_FIELD ] # Report names and directories REPORT_TITLE = 'id-validation.csv' REPORT_DIRECTORY = 'drc-validations-{date}' REPORT_DIRECTORY_REGEX = 'drc-validations-\d{8}' # Validation dataset name DESTINATION_DATASET_DESCRIPTION = '{version} {rdr_dataset} + {ehr_dataset}'
the-stack_0_26961
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """FiniteDiscrete distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python.distributions import categorical from tensorflow_probability.python.distributions import distribution from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import distribution_util as dist_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import prefer_static from tensorflow_probability.python.internal import reparameterization from tensorflow_probability.python.internal import tensor_util from tensorflow_probability.python.internal import tensorshape_util __all__ = [ 'FiniteDiscrete', ] class FiniteDiscrete(distribution.Distribution): """The finite discrete distribution. The FiniteDiscrete distribution is parameterized by either probabilities or log-probabilities of a set of `K` possible outcomes, which is defined by a strictly ascending list of `K` values. Note: log_prob, prob, cdf, mode, and entropy are differentiable with respect to `logits` or `probs` but not with respect to `outcomes`. #### Mathematical Details The probability mass function (pmf) is, ```none pmf(x; pi, qi) = prod_j pi_j**[x == qi_j] ``` #### Examples ```python # Initialize a discrete distribution with 4 possible outcomes and the 2nd # outcome being most likely. dist = FiniteDiscrete([1., 2., 4., 8.], probs=[0.1, 0.4, 0.3, 0.2]) dist.prob(2.) # ==> 0.4 # Using logits to initialize a discrete distribution with 4 possible outcomes # and the 2nd outcome being most likely. dist = FiniteDiscrete([1., 2., 4., 8.], logits=np.log([0.1, 0.4, 0.3, 0.2])) dist.prob(2.) # ==> 0.4 ``` """ def __init__(self, outcomes, logits=None, probs=None, rtol=None, atol=None, validate_args=False, allow_nan_stats=True, name='FiniteDiscrete'): """Construct a finite discrete contribution. Args: outcomes: A 1-D floating or integer `Tensor`, representing a list of possible outcomes in strictly ascending order. logits: A floating N-D `Tensor`, `N >= 1`, representing the log probabilities of a set of FiniteDiscrete distributions. The first `N - 1` dimensions index into a batch of independent distributions and the last dimension represents a vector of logits for each discrete value. Only one of `logits` or `probs` should be passed in. probs: A floating N-D `Tensor`, `N >= 1`, representing the probabilities of a set of FiniteDiscrete distributions. The first `N - 1` dimensions index into a batch of independent distributions and the last dimension represents a vector of probabilities for each discrete value. Only one of `logits` or `probs` should be passed in. rtol: `Tensor` with same `dtype` as `outcomes`. The relative tolerance for floating number comparison. Only effective when `outcomes` is a floating `Tensor`. Default is `10 * eps`. atol: `Tensor` with same `dtype` as `outcomes`. The absolute tolerance for floating number comparison. Only effective when `outcomes` is a floating `Tensor`. Default is `10 * eps`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value '`NaN`' to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) with tf.name_scope(name) as name: outcomes_dtype = dtype_util.common_dtype( [outcomes], dtype_hint=tf.float32) self._outcomes = tensor_util.convert_nonref_to_tensor( outcomes, dtype_hint=outcomes_dtype, name='outcomes') if dtype_util.is_floating(self._outcomes.dtype): eps = np.finfo(dtype_util.as_numpy_dtype(outcomes_dtype)).eps self._rtol = 10 * eps if rtol is None else rtol self._atol = 10 * eps if atol is None else atol else: self._rtol = None self._atol = None self._categorical = categorical.Categorical( logits=logits, probs=probs, dtype=tf.int32, validate_args=validate_args, allow_nan_stats=allow_nan_stats) super(FiniteDiscrete, self).__init__( dtype=self._outcomes.dtype, reparameterization_type=reparameterization.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, name=name) @classmethod def _params_event_ndims(cls): # outcomes is currently not sliceable. return dict(logits=1, probs=1) @property def outcomes(self): return self._outcomes @property def logits(self): """Input argument `logits`.""" return self._categorical.logits @property def probs(self): """Input argument `probs`.""" return self._categorical.probs def _batch_shape_tensor(self): return self._categorical.batch_shape_tensor() def _batch_shape(self): return self._categorical.batch_shape def _event_shape_tensor(self): return tf.constant([], dtype=tf.int32) def _event_shape(self): return tf.TensorShape([]) def _cdf(self, x): x = tf.convert_to_tensor(x, name='x') flat_x = tf.reshape(x, shape=[-1]) upper_bound = tf.searchsorted(self.outcomes, values=flat_x, side='right') values_at_ub = tf.gather( self.outcomes, indices=tf.minimum(upper_bound, prefer_static.shape(self.outcomes)[-1] - 1)) should_use_upper_bound = self._is_equal_or_close(flat_x, values_at_ub) indices = tf.where(should_use_upper_bound, upper_bound, upper_bound - 1) indices = tf.reshape(indices, shape=dist_util.prefer_static_shape(x)) indices_non_negative = tf.where( tf.equal(indices, -1), tf.zeros([], indices.dtype), indices) cdf = self._categorical.cdf(indices_non_negative) return tf.where(tf.equal(indices, -1), tf.zeros([], cdf.dtype), cdf) def _entropy(self): return self._categorical.entropy() def _is_equal_or_close(self, a, b): if dtype_util.is_integer(self.outcomes.dtype): return tf.equal(a, b) return tf.abs(a - b) < self._atol + self._rtol * tf.abs(b) def _log_prob(self, x): x = tf.convert_to_tensor(x, name='x') right_indices = tf.minimum( tf.size(self.outcomes) - 1, tf.reshape( tf.searchsorted( self.outcomes, values=tf.reshape(x, shape=[-1]), side='right'), prefer_static.shape(x))) use_right_indices = self._is_equal_or_close( x, tf.gather(self.outcomes, indices=right_indices)) left_indices = tf.maximum(0, right_indices - 1) use_left_indices = self._is_equal_or_close( x, tf.gather(self.outcomes, indices=left_indices)) log_probs = self._categorical.log_prob( tf.where(use_left_indices, left_indices, right_indices)) return tf.where( tf.logical_not(use_left_indices | use_right_indices), dtype_util.as_numpy_dtype(log_probs.dtype)(-np.inf), log_probs) def _mean(self, probs=None): if probs is None: probs = self._categorical.probs_parameter() outcomes = self.outcomes if dtype_util.is_integer(outcomes.dtype): if self._validate_args: outcomes = dist_util.embed_check_integer_casting_closed( outcomes, target_dtype=probs.dtype) outcomes = tf.cast(outcomes, dtype=probs.dtype) return tf.tensordot(outcomes, probs, axes=[[0], [-1]]) def _mode(self): return tf.gather(self.outcomes, indices=self._categorical.mode()) def _sample_n(self, n, seed=None, **distribution_kwargs): return tf.gather( self.outcomes, indices=self._categorical.sample( sample_shape=[n], seed=seed, **distribution_kwargs)) def _variance(self): probs = self._categorical.probs_parameter() outcomes = tf.broadcast_to(self.outcomes, shape=prefer_static.shape(probs)) if dtype_util.is_integer(outcomes.dtype): if self._validate_args: outcomes = dist_util.embed_check_integer_casting_closed( outcomes, target_dtype=probs.dtype) outcomes = tf.cast(outcomes, dtype=probs.dtype) square_d = tf.math.squared_difference( outcomes, self._mean(probs)[..., tf.newaxis]) return tf.reduce_sum(probs * square_d, axis=-1) def logits_parameter(self, name=None): """Logits vec computed from non-`None` input arg (`probs` or `logits`).""" with self._name_and_control_scope(name or 'logits_parameter'): return self._categorical.logits_parameter() def probs_parameter(self, name=None): """Probs vec computed from non-`None` input arg (`probs` or `logits`).""" with self._name_and_control_scope(name or 'probs_parameter'): return self._categorical.probs_parameter() def _default_event_space_bijector(self): return def _parameter_control_dependencies(self, is_init): assertions = [] # For `logits` and `probs`, we only want to have an assertion on what the # user actually passed. For now, we access the underlying categorical's # _logits and _probs directly. After the 2019-10-01 deprecation, it would # also work to use .logits() and .probs(). logits = self._categorical._logits probs = self._categorical._probs outcomes = self._outcomes validate_args = self._validate_args # Build all shape and dtype checks during the `is_init` call. if is_init: def validate_equal_last_dim(tensor_a, tensor_b, message): event_size_a = tf.compat.dimension_value(tensor_a.shape[-1]) event_size_b = tf.compat.dimension_value(tensor_b.shape[-1]) if event_size_a is not None and event_size_b is not None: if event_size_a != event_size_b: raise ValueError(message) elif validate_args: return assert_util.assert_equal( tf.shape(tensor_a)[-1], tf.shape(tensor_b)[-1], message=message) message = 'Size of outcomes must be greater than 0.' if tensorshape_util.num_elements(outcomes.shape) is not None: if tensorshape_util.num_elements(outcomes.shape) == 0: raise ValueError(message) elif validate_args: assertions.append( tf.assert_greater(tf.size(outcomes), 0, message=message)) if logits is not None: maybe_assert = validate_equal_last_dim( outcomes, # pylint: disable=protected-access self._categorical._logits, # pylint: enable=protected-access message='Last dimension of outcomes and logits must be equal size.') if maybe_assert: assertions.append(maybe_assert) if probs is not None: maybe_assert = validate_equal_last_dim( outcomes, probs, message='Last dimension of outcomes and probs must be equal size.') if maybe_assert: assertions.append(maybe_assert) message = 'Rank of outcomes must be 1.' ndims = tensorshape_util.rank(outcomes.shape) if ndims is not None: if ndims != 1: raise ValueError(message) elif validate_args: assertions.append(assert_util.assert_rank(outcomes, 1, message=message)) if not validate_args: assert not assertions # Should never happen. return [] if is_init != tensor_util.is_ref(outcomes): assertions.append( assert_util.assert_equal( tf.math.is_strictly_increasing(outcomes), True, message='outcomes is not strictly increasing.')) return assertions
the-stack_0_26964
from typing import Any, Dict, Iterable, Iterator, List, Optional, Union import torch import torch.distributed as dist # Import the entire FSDP file to avoid circular imports import torch.distributed.fsdp.fully_sharded_data_parallel as FSDP from torch.distributed.fsdp.flatten_params_wrapper import FlatParameter OPTIM_TARGET_RANK = 0 # rank on which to save full optimizer state class ConsolidatedOptimState: """ This holds the consolidated optimizer state on the target rank. Positive- dimension tensor state is communicated across ranks, while zero-dimension tensor state and non-tensor state is taken directly from the target rank. PyTorch version 1.12 moved to using zero-dimension tensors for scalar values, but user implemented optimizers may still use float (i.e. a non-tensor). Thus, we support both and handle them identically. Attributes: tensor_state (Dict[str, torch.Tensor]): Mapping from positive-dimension tensor state name to the unsharded flattened tensor representing the state. zero_dim_tensor_state (Dict[str, torch.Tensor]): Mapping from zero- dimension tensor state name to its value. non_tensor_state (Dict[str, Any]): Mapping from non-tensor state name to its value. """ tensor_state: Dict[str, torch.Tensor] = {} zero_dim_tensor_state: Dict[str, torch.Tensor] = {} non_tensor_state: Dict[str, Any] = {} def _unflatten_optim_state( fsdp_module, flat_param: FlatParameter, flat_param_state: Dict[str, Any], ) -> List[Dict[str, Any]]: """ Unflattens the optimizer state, consisting of the "state" part and the "param_groups" part. Unflattening the "state" part involves consolidating the state on the target rank and remapping from flattened to unflattened parameter IDs, and the "param_groups" part only involves remapping from flattened to unflattened parameter IDs. Args: fsdp_module (FullyShardedDataParallel): FSDP module that owns ``flat_param``, i.e. holds it in ``self.params``. flat_param (FlatParameter): The flattened parameter. flat_param_state (Dict[str, Any]): Entry for the flattened parameter in the "state" part of the optimizer state dict. Returns: unflat_param_state (List[Dict[str, Any]]): A :class:`list` holding the entries in the "state" part of the optimizer state dict corresponding to the unflattened parameters comprising the flattened parameter ``flat_param`` if on the target rank or an empty :class:`list` otherwise. The final optimizer state dict will need to map these entries using the proper unflattened parameter IDs. """ assert sum(p is flat_param for p in fsdp_module.params) == 1, \ "`fsdp_module` must own `flat_param`" consolidated_state = _communicate_optim_state( fsdp_module, flat_param, flat_param_state, ) to_save = fsdp_module.rank == OPTIM_TARGET_RANK unflat_param_state = _unflatten_communicated_optim_state( fsdp_module, flat_param, consolidated_state, ) if to_save else [] return unflat_param_state def _communicate_optim_state( fsdp_module, flat_param: FlatParameter, flat_param_state: Dict[str, Any], ) -> ConsolidatedOptimState: """ Communicates the optimizer state for a flattened parameter ``flat_param`` across ranks so that the target rank holds the entire non-sharded optimizer state. If ``N`` is the number of tensor optimizer states in the optimizer state dict, then the communication complexity is 0 if ``N = 0`` and ``N + 1`` otherwise (where the plus 1 comes from all-gathering the padding per rank). Args: flat_param (FlatParameter): The flattened parameter. flat_param_state (Dict[str, Any]): The entry in the "state" part of the optimizer state dict corresponding to the flattened parameter. Returns: state (ConsolidatedOptimState): Consolidated optimizer state for ``flat_param``; the state is not populated for non-target ranks. """ param_index = -1 for i, param in enumerate(fsdp_module.params): if param is flat_param: param_index = i break assert param_index >= 0, "`fsdp_module` must own `flat_param`" state = ConsolidatedOptimState() tensor_state, zero_dim_tensor_state, non_tensor_state = \ state.tensor_state, state.zero_dim_tensor_state, state.non_tensor_state process_group = fsdp_module.process_group tensor_buffer = None # initialize lazily in case it is not needed to_save = fsdp_module.rank == OPTIM_TARGET_RANK for state_name, value in flat_param_state.items(): # Positive-dimension tensor state: communicate across ranks if torch.is_tensor(value) and value.dim() > 0: # If the parameter is not sharded (e.g. world size of 1), then # neither is the positive-dimension tensor state, so no need to # communicate it -- we take the target rank's value if not flat_param._is_sharded: tensor_state[state_name] = value.cpu() continue if tensor_buffer is None: # Assume that positive-dimension tensor optimizer state # has the same shape as the sharded flattened parameter buffer_size = flat_param._full_param_padded.size() # type: ignore[attr-defined] tensor_buffer = value.new_zeros(*buffer_size) dist._all_gather_base(tensor_buffer, value, group=process_group) if to_save: assert hasattr(flat_param, "_orig_size"), \ "Sharded flattened parameter should have `_orig_size` set" unpadded_numel = flat_param._orig_size.numel() # type: ignore[attr-defined] tensor_state[state_name] = tensor_buffer[:unpadded_numel].cpu() # Zero-dimension tensor state and non-tensor state: take this rank's # value directly elif to_save: if _is_zero_dim_tensor(value): zero_dim_tensor_state[state_name] = value.cpu() else: non_tensor_state[state_name] = value return state def _unflatten_communicated_optim_state( fsdp_module, flat_param: FlatParameter, state: ConsolidatedOptimState, ) -> List[Dict[str, Any]]: """ Unflattens the communicated optimizer state (given by ``tensor_state``, ``non_tensor_state``, and ``zero_dim_tensor_state``) for a single flattened parameter ``flat_param``. This should only be called on the target rank. Args: fsdp_module (FullyShardedDataParallel): FSDP module that owns ``flat_param``, i.e. holds it in ``self.params``. flat_param (FlatParameter): The flattened parameter. state (ConsolidatedOptimState): Consolidated optimizer state. Returns: unflat_param_state (List[Dict[str, Any]]): A :class:`list` holding the entries in the "state" part of the optimizer state dict corresponding to the unflattened parameters comprising the flattened parameter ``flat_param``. The final optimizer state dict will need to map these entries using the proper unflattened parameter IDs. """ assert sum(p is flat_param for p in fsdp_module.params) == 1, \ "`fsdp_module` must own `flat_param`" unflat_param_state: List[Dict[str, Any]] = [] flat_param_views: Dict[str, Iterator] = {} num_unflat_params = flat_param._num_unflattened_params tensor_state, zero_dim_tensor_state, non_tensor_state = \ state.tensor_state, state.zero_dim_tensor_state, state.non_tensor_state for _ in range(num_unflat_params): unflat_state_param = {} # Add positive-dimension tensor state: unflatten with views for state_name, flat_tensor in tensor_state.items(): views_generated = state_name in flat_param_views if not views_generated: param_views = flat_param.get_param_views(flat_tensor) flat_param_views[state_name] = param_views else: param_views = flat_param_views[state_name] unflat_state_param[state_name] = next(param_views) # Add zero-dimension tensor state: take the target rank's value for state_name, zero_dim_tensor in zero_dim_tensor_state.items(): unflat_state_param[state_name] = zero_dim_tensor # Add non-tensor state: take the target rank's value for state_name, non_tensor in non_tensor_state.items(): unflat_state_param[state_name] = non_tensor unflat_param_state.append(unflat_state_param) return unflat_param_state def _flatten_optim_state( unflat_osd_state: Dict[str, Dict[str, Any]], unflat_param_names: List[str], fsdp_module, flat_param: FlatParameter, ) -> Dict[str, Any]: """ Flattens the optimizer state in ``full_optim_state_dict`` for a single flattened parameter ``flat_param`` in ``fsdp_module`` corresponding to the unflattened parameter names in ``unflat_param_names``. Args: unflat_osd_state (Dict[str, Dict[str, Any]]): The "state" part of the optimizer state dict corresponding to the unflattened parameters. unflat_param_names (List[str]): A :class:`list` of unflattened parameter names corresponding to the flattened parameter ``flat_param``. fsdp_module (FullyShardedDataParallel): FSDP module owning the flattened parameter. flat_param (FlatParameter): The flattened parameter. Returns: flat_state (Dict[str, Any]): A :class:`dict` mapping state names to their values for a particular flattened parameter. The sharded optimizer state dict's "state" part will map the flattened parameter ID to this returned value. """ num_unflat_params = len(unflat_param_names) assert num_unflat_params > 0, \ "Expects at least one unflattened parameter corresponding to the " \ "flattened parameter" unflat_param_shapes = flat_param._param_shapes num_unflat_param_shapes = len(unflat_param_shapes) assert num_unflat_params == num_unflat_param_shapes, \ f"Expects {num_unflat_params} shapes but got {num_unflat_param_shapes}" # Check if these unflattened parameters have any optimizer state has_state = [ bool(unflat_param_name in unflat_osd_state) for unflat_param_name in unflat_param_names ] # If none of the unflattened parameters comprising this flattened parameter # have any state, then we do not want an entry in the optimizer state dict if not any(has_state): return {} # no need to flatten any state # There may still be some unflattened parameters with state and some # without unflat_param_states = [ unflat_osd_state[unflat_param_name] if unflat_param_name in unflat_osd_state else None for unflat_param_name in unflat_param_names ] # Check that the unflattened parameters have the same state names state_names = None for unflat_param_state in unflat_param_states: if unflat_param_state is None: continue if state_names is None: state_names = set(unflat_param_state.keys()) else: if state_names != set(unflat_param_state.keys()): raise ValueError( "Differing optimizer state names for the unflattened " f"parameters: {unflat_param_names}" ) assert state_names is not None # Flatten the state flat_state: Dict[str, Any] = {} for state_name in state_names: state_values = [ unflat_param_state[state_name] if unflat_param_state is not None else None for unflat_param_state in unflat_param_states ] non_none_state_values = [v for v in state_values if v is not None] are_pos_dim_tensors = are_zero_dim_tensors = are_non_tensors = True for v in non_none_state_values: are_pos_dim_tensors &= torch.is_tensor(v) and v.dim() > 0 are_zero_dim_tensors &= _is_zero_dim_tensor(v) are_non_tensors &= not torch.is_tensor(v) types = set(type(v) for v in non_none_state_values) if len(types) != 1 or not ( are_pos_dim_tensors or are_zero_dim_tensors or are_non_tensors ): raise ValueError( f"Differing optimizer state types for state {state_name}, " f"values {non_none_state_values}, and unflattened parameter " f"names {unflat_param_names}" ) if are_pos_dim_tensors: flat_tensor = _flatten_tensor_optim_state( state_name, state_values, unflat_param_names, unflat_param_shapes, flat_param, ) # Shard the flattened tensor immediately to minimize the max memory # usage sharded_flat_tensor, _ = fsdp_module._get_shard(flat_tensor) flat_state[state_name] = sharded_flat_tensor elif are_zero_dim_tensors: flat_state[state_name] = _flatten_zero_dim_tensor_optim_state( state_name, state_values, unflat_param_names, ) else: assert are_non_tensors flat_state[state_name] = _flatten_non_tensor_optim_state( state_name, state_values, unflat_param_names, ) return flat_state def _flatten_tensor_optim_state( state_name: str, pos_dim_tensors: List[torch.Tensor], unflat_param_names: List[str], unflat_param_shapes: List[torch.Size], flat_param: FlatParameter, ) -> torch.Tensor: """ Flattens the positive-dimension tensor optimizer state given by the values ``tensors`` for the state ``state_name`` for a single flattened parameter ``flat_param`` corresponding to the unflattened parameter names ``unflat_param_names`` and unflatted parameter shapes ``unflat_param_shapes``. This flattens each unflattened parameter's tensor state into one tensor. NOTE: We use zero tensors for any unflattened parameters without state since some value is required to fill those entries. This assumes that the zero tensor is mathematically equivalent to having no state, which is true for Adam's ``exp_avg`` and ``exp_avg_sq`` but may not be true for all optimizers. Args: state_name (str): Optimizer state name. pos_dim_tensors (List[torch.Tensor]): Positive-dimension tensor optimizer state values for the unflattened parameters corresponding to the single flattened parameter. unflat_param_names (List[str]): A :class:`list` of unflattened parameter names corresponding to the single flattened parameter. unflat_param_shapes (List[torch.Size]): Unflattened parameter shapes corresponding to the single flattened parameter. flat_param (FlatParameter): The flattened parameter. Returns: flat_tensor (torch.Tensor): A flattened tensor containing the optimizer state corresponding to ``state_name`` constructed by concatenating the unflattened parameter tensor states in ``pos_dim_tensors`` (using zero tensors for any unflattened parameters without the state). """ non_none_tensors = [t for t in pos_dim_tensors if t is not None] # Check that all are tensors with the same dtype dtypes = set(t.dtype for t in non_none_tensors) if len(dtypes) != 1: raise ValueError( "All unflattened parameters comprising a single flattened " "parameter must have positive-dimension tensor state with the " f"same dtype but got dtypes {dtypes} for state {state_name} and " f"unflattened parameter names {unflat_param_names}" ) dtype = next(iter(dtypes)) # Check that each tensor state matches its parameter's shape for tensor, shape in zip(pos_dim_tensors, unflat_param_shapes): if tensor is None and len(shape) == 0: raise ValueError( "Flattening a zero-dimension parameter is not supported" ) elif tensor is not None and tensor.shape != shape: raise ValueError( "Tensor optimizer state does not have same shape as its " f"parameter: {tensor.shape} {shape}" ) # Flatten the tensor states cpu_device = torch.device("cpu") tensors = [ torch.flatten(state_value.to(cpu_device)) if state_value is not None else torch.flatten(torch.zeros( size=shape, dtype=dtype, device=cpu_device, )) for state_value, shape in zip(pos_dim_tensors, unflat_param_shapes) ] padding = flat_param.num_padded if padding > 0: tensors.append(torch.zeros(padding, dtype=dtype, device=cpu_device)) flat_tensor = torch.cat(tensors) # `flat_tensor`'s shape should be 1D and less than or equal to the # flattened parameter's shape (where the inequality is strict for positive # padding) if not flat_param._is_sharded: # currently, only when world size is 1 # If the parameter is not sharded, then `_full_param_padded` is not # used, so we skip the shape check return flat_tensor full_padded_dim = flat_param._full_param_padded.dim() # type: ignore[attr-defined] full_padded_shape = flat_param._full_param_padded.shape # type: ignore[attr-defined] assert flat_tensor.dim() == 1, \ f"`flat_tensor` should be 1D but got {flat_tensor.dim()} dims" assert full_padded_dim == 1, \ f"`_full_param_padded` should be 1D but got {full_padded_dim} dims" assert flat_tensor.shape[0] <= full_padded_shape[0], \ f"tensor optim state: {flat_tensor.shape} " \ f"parameter: {full_padded_shape}" return flat_tensor def _flatten_zero_dim_tensor_optim_state( state_name: str, zero_dim_tensors: List[torch.Tensor], unflat_param_names: List[str], ) -> torch.Tensor: """ Flattens the zero-dimension tensor optimizer state given by the values ``zero_dim_tensors`` for the state ``state_name`` for a single flattened parameter corresponding to the unflattened parameter names ``unflat_param_names`` by enforcing that all tensors are the same and using that common value. NOTE: The requirement that the tensors are the same across all unflattened parameters comprising the flattened parameter is needed to maintain the invariant that FSDP performs the same computation as its non-sharded equivalent. This means that none of the unflattened parameters can be missing this state since imposing a value may differ from having no value. For example, for Adam's "step", no value means maximum bias correction, while having some positive value means less bias correction. Args: state_name (str): Optimizer state name. zero_dim_tensors (List[torch.Tensor]): Zero-dimension optimizer state for the unflattened parameters corresponding to the single flattened parameter. unflat_param_names (List[str]): A :class:`list` of unflattened parameter names corresponding to the single flattened parameter. Returns: zero_dim_tensor (torch.Tensor): A zero-dimensional tensor giving the value of the state ``state_name`` for all unflattened parameters corresponding to the names ``unflat_param_names``. """ non_none_tensors = [t for t in zero_dim_tensors if t is not None] # Enforce that all have the same value and dtype values_set = set(t.item() for t in zero_dim_tensors) dtypes = set(t.dtype for t in zero_dim_tensors) if len(non_none_tensors) != len(zero_dim_tensors) or \ len(values_set) != 1 or len(dtypes) != 1: raise ValueError( "All unflattened parameters comprising a single flattened " "parameter must have scalar state with the same value and dtype " f"but got values {values_set} and dtypes {dtypes} for state " f"{state_name} and unflattened parameter names " f"{unflat_param_names}" ) value = next(iter(values_set)) dtype = next(iter(dtypes)) return torch.tensor(value, dtype=dtype, device=torch.device("cpu")) def _flatten_non_tensor_optim_state( state_name: str, non_tensors: List[Any], unflat_param_names: List[str], ) -> Any: """ Flattens the non-tensor optimizer state given by the values ``non_tensors`` for the state ``state_name`` for a single flattened parameter corresponding to the unflattened parameter names ``unflat_param_names`` by enforcing that all values are the same and using that common value. See the note in :func:`_flatten_zero_dim_tensor_optim_state`. Args: state_name (str): Optimizer state name. non_tensors (List[Any]): Non-tensor optimizer state for the unflattened parameters corresponding to the single flattened parameter. unflat_param_names (List[str]): A :class:`list` of unflattened parameter names corresponding to the single flattened parameter. Returns: non_tensor (Any): A non-tensor giving the value of the state ``state_name`` for all unflattened parameters corresponding to the names ``unflat_param_names``. """ non_none_non_tensors = [nt for nt in non_tensors if nt is not None] # Enforce that all have the same value (same type already checked) non_tensor_set = set(non_tensors) if len(non_none_non_tensors) != len(non_tensors) or \ len(non_tensor_set) != 1: raise ValueError( "All unflattened parameters comprising a single flattened " "parameter must have scalar state with the same value and dtype " f"but got values {non_tensor_set} for state {state_name} and " f"unflattened parameter names {unflat_param_names}" ) non_tensor = next(iter(non_tensor_set)) return non_tensor def _get_flat_param_to_fsdp_module( model: torch.nn.Module, ): """ Constructs a mapping from FSDP flattened parameters to their owning FSDP modules and ensures that all FSDP modules are initialized. Args: model (torch.nn.model): Root module (which may or may not be a :class:`FullyShardedDataParallel` instance). """ flat_param_to_fsdp_module = {} for module in model.modules(): if isinstance(module, FSDP.FullyShardedDataParallel): module._lazy_init() for param in module.params: # may have none flat_param_to_fsdp_module[param] = module return flat_param_to_fsdp_module def _get_param_id_to_param( model: torch.nn.Module, optim_input: Optional[Union[ List[Dict[str, Any]], Iterable[torch.nn.Parameter], ]] = None, ) -> List[torch.nn.Parameter]: """ Constructs a mapping from parameter IDs to parameters. This may be used both for models with ``FlatParameter`` s and without. NOTE: We critically assume that, whether the optimizer input is a list of parameters or a list of parameter groups, :class:`torch.optim.Optimizer` enumerates the parameter IDs in order. In other words, for a parameter list input, the parameter IDs should be in that list order, and for a parameter groups input, the parameter IDs should be in order within each parameter group and in order across parameter groups. Args: model (torch.nn.Module): Model whose parameters are passed into the optimizer. optim_input (Optional[Union[List[Dict[str, Any]], Iterable[torch.nn.Parameter]]]): Input passed into the optimizer representing either a :class:`list` of parameter groups or an iterable of parameters; if ``None``, then this method assumes the input was ``model.parameters()``. (Default: ``None``) Returns: param_id_to_param (List[torch.nn.Parameter]): Mapping from parameter IDs to parameters, where the parameter ID is implicitly the index in the :class:`list`. """ # Assume the standard case of passing `model.parameters()` to the optimizer # if `optim_input` is not specified if optim_input is None: return list(model.parameters()) try: params = list(optim_input) except TypeError: raise TypeError( "Optimizer input should be an iterable of Tensors or dicts, " f"but got {optim_input}" ) if len(params) == 0: raise ValueError("Optimizer input should not be empty") # Check if the optimizer input represents tensors or parameter groups all_tensors = True all_dicts = True for param in params: all_tensors &= isinstance(param, torch.Tensor) all_dicts &= isinstance(param, dict) if not all_tensors and not all_dicts: raise TypeError( "Optimizer input should be an iterable of Tensors or dicts" ) if all_tensors: return params # type: ignore[return-value] assert all_dicts param_id_to_param = [] for param_group in params: has_params_key = "params" in param_group # type: ignore[operator] assert has_params_key, \ "A parameter group should map \"params\" to a list of the " \ "parameters in the group" for param in param_group["params"]: # type: ignore[index] # Implicitly map `flat_param_id` (current length of the list) to # `param` param_id_to_param.append(param) return param_id_to_param # type: ignore[return-value] def _get_param_to_param_id( model: torch.nn.Module, optim_input: Optional[Union[ List[Dict[str, Any]], Iterable[torch.nn.Parameter], ]] = None, ) -> Dict[torch.nn.Parameter, int]: """Constructs the inverse mapping of :func:`_get_param_id_to_param`.""" param_id_to_param = _get_param_id_to_param(model, optim_input) return { param: param_id for param_id, param in enumerate(param_id_to_param) } def _get_unflat_to_flat_param_ids( flat_to_unflat_param_ids: Dict[int, List[int]], ) -> List[int]: """ Inverts the mapping ``flat_to_unflat_param_ids`` to be from unflattened parameter ID to flattened parameter ID, where the unflattened parameter ID is the index in the returned :class:`list`. There may be multiple unflattened parameter IDs mapping to the same flattened parameter ID. Args: flat_to_unflat_param_ids (Dict[int, List[int]]): A mapping from flattened parameter ID to a :class:`list` of corresponding unflattened parameter IDs. Returns: unflat_to_flat_param_ids (List[int]): A mapping from unflattened parameter ID to flattened parameter ID, where the unflattened parameter ID is the index in the :class:`list`. """ # Construct as a dict and then convert to list unflat_to_flat_param_ids = {} for flat_param_id, unflat_param_ids in flat_to_unflat_param_ids.items(): for unflat_param_id in unflat_param_ids: assert unflat_param_id not in unflat_to_flat_param_ids, \ "`flat_to_unflat_param_ids` has the unflattened parameter " \ f"ID {unflat_param_id} mapped to multiple flattened " \ "parameter IDs" unflat_to_flat_param_ids[unflat_param_id] = flat_param_id num_unflat_param_ids = len(unflat_to_flat_param_ids) unflat_param_ids_set = set(unflat_to_flat_param_ids.keys()) assert unflat_param_ids_set == set(range(num_unflat_param_ids)), \ "The set of unflattened parameter IDs should be {0, ..., " + \ str(num_unflat_param_ids - 1) + "} but got " + \ f"{unflat_param_ids_set}" return [ unflat_to_flat_param_ids[unflat_param_id] for unflat_param_id in range(num_unflat_param_ids) ] def _is_zero_dim_tensor(x: Any) -> bool: return torch.is_tensor(x) and x.dim() == 0
the-stack_0_26965
# -*- coding: utf-8 -*- import unetsl.data import numpy def upsample(stack, shape): """ upsamples the last three dimensions and keeps the other dimensions unchanged. """ scale = [o//i for o,i in zip(shape[-3:], stack.shape[-3:])] return numpy.kron(stack, numpy.ones(tuple(scale))) def createSliceTuple(origin, size): ret = [] for i,j in zip(origin, size): ret.append(slice(i, j+i)) return tuple(ret) MODEL_KEY = "model file" IMG_KEY = "image to predict" OUT_KEY = "output image" REDUCTION_TYPE = "reduction type" DEBUG = "debug" OUTPUT_INDEX = "output index" LAYER_SHAPER = "layer shaper" CATEGORICAL_REDUCTION = 0 MULTICLASS_REDUCTION = 1 LINEAR_REDUCTION = 2 def cropShaper(batch, target_shape): """ The target shape should the shape of the destination image. A batch should be (N, C, Z, Y, X) and target_shape should be (N, C, Z*, Y*, X*) Args: batch (numpy.array): data to be reshaped in the space dimensions. target_shape ( [int, ...]): target shape, only last 3 dimensions are used. Return: A zero padded version of batch. """ #possibly a list. target_shape = tuple(target_shape[-3:]) #total dimensions - should be 5 dims = len(batch.shape) #patch dimensions, currently 3. pls = len(target_shape) fill = dims - pls view = batch.shape[-pls:] offset = tuple( (ti - vi)//2 for vi, ti in zip(view, target_shape) ) lows = (0, )*fill + offset span = batch.shape[:fill] + view highs = tuple(l + s for l, s in zip(lows, span)) slc = tuple(slice(l, h) for l, h in zip(lows, highs) ) shape = batch.shape[ : fill ] + target_shape out = numpy.zeros(shape, dtype=batch.dtype) out[slc] = batch return out def getShaper(shaper_name): """ cannot know the shaper without knowing the head! """ if shaper_name=="upsample": return upsample if shaper_name == "crop": return cropShaper class LayerShaper: def __init__(self): pass def __call__(stack, shape): """ shape is the desired output shape and stack is a batch of data, expected shape. (n, c, z, y, x) (n, c, z, y, x) """ pass DEFAULT_REDUCTION_TYPES = { "Sigmoid" : MULTICLASS_REDUCTION, "Softmax" : CATEGORICAL_REDUCTION, "Relu" : LINEAR_REDUCTION } def guessReduction(output): try: return DEFAULT_REDUCTION_TYPES[output.op.type] except: pass return MULTICLASS_REDUCTION def guessOutputReductionTypes(model): guessed_types = {} om = unetsl.model.getOutputMap(model) for key in om: guessed_types[key] = guessReduction(om[key]) print("guessed reductions") return tuple( guessed_types[key] for key in guessed_types) class MultiChannelPredictor: def __init__(self, model, image, reduction_types =[ ], stride=None, sample_normalize=False, batch_size=2, debug=False, GPUS=1, layer_shapers=[upsample,]): self.model = model self.image = image self.reduction_types = reduction_types self.stride = stride self.sample_normalize = sample_normalize self.batch_size = batch_size self.debug = debug self.GPUS = GPUS self.layer_shapers=layer_shapers def predict(self): return self.predictImage(self.image); def predictImage(self, image): if len(self.reduction_types) < 1: self.reduction_types = guessOutputReductionTypes(self.model) return predictMultiChannelImage( self.model, image, reduction_type = self.reduction_types, stride = self.stride, sample_normalize = self.sample_normalize, batch_size = self.batch_size, debug = self.debug, GPUS = self.GPUS, shapers = self.layer_shapers ) def predictionToLabelledImage(prediction, reduction_type, labelled_shape): """ recieves a prediction (labels, z, y, x) and returns a labeled image. (1, z, y, x), probabilities """ if reduction_type==CATEGORICAL_REDUCTION: probabilities = numpy.max(prediction, axis=0) dexes = numpy.argmax(prediction, axis=0) labelled = 1<<numpy.array(dexes, dtype='uint8') elif reduction_type==MULTICLASS_REDUCTION: labelled = numpy.zeros(labelled_shape, dtype='uint8') for label in range(prediction.shape[0]): patch = numpy.array((prediction[label]>0.5)*(1<<label), dtype='uint16') labelled |= patch probabilities = numpy.max(prediction, axis=0, keepdims=True) elif reduction_type==LINEAR_REDUCTION: labelled = numpy.array((prediction), dtype='uint16') probabilities = None return labelled, probabilities def generateProbabilityWindow(input_shape, labelled_shape, stride): body = 1.0 face = 0.75 edge = 0.5 corner = 0.25 window = numpy.zeros(labelled_shape, dtype='float32') + edge r0 = (input_shape[1:] - stride)//2 important = createSliceTuple(r0, stride) window[0][important] = body #corner at origin ox = 0 oy = 0 oz = 0 window[0][ createSliceTuple( (ox, oy, oz ), r0 ) ] = corner oy = r0[1] + stride[1] window[0][ createSliceTuple( (ox, oy, oz ), r0 ) ] = corner oz = r0[0] + stride[0] window[0][ createSliceTuple( (ox, oy, oz ), r0 ) ] = corner oy = 0 window[0][ createSliceTuple( (ox, oy, oz ), r0 ) ] = corner ox = r0[2] + stride[2] window[0][ createSliceTuple( (ox, oy, oz ), r0 ) ] = corner oz = 0 window[0][ createSliceTuple( (ox, oy, oz ), r0 ) ] = corner oy = r0[1] + stride[1] window[0][ createSliceTuple( (ox, oy, oz ), r0 ) ] = corner oz = r0[0] + stride[0] window[0][ createSliceTuple( (ox, oy, oz ), r0 ) ] = corner #xfaces xface_shape = (stride[0], stride[1], r0[2]) window[0][ createSliceTuple( (r0[0], r0[1], 0), xface_shape ) ] = face window[0][ createSliceTuple( (r0[0], r0[1], stride[2] + r0[2]), xface_shape ) ] = face #yfaces yface_shape = (stride[0], r0[1], stride[2]) window[0][ createSliceTuple((r0[0], 0, r0[2]), yface_shape)] = face window[0][ createSliceTuple( (r0[0], stride[1] + r0[1], r0[2]), yface_shape )] = face #zfaces zface_shape = (r0[0], stride[1], stride[2]) window[0][ createSliceTuple( (0, r0[1], r0[2]), zface_shape ) ] = face window[0][ createSliceTuple( (stride[0] + r0[0], r0[1], r0[2]), zface_shape ) ] = face return window def predictImage(model, image, reduction_type = MULTICLASS_REDUCTION, stride=None, output_index=-1, sample_normalize=False, batch_size=2, debug=False, GPUS=1, shaper=upsample): #input shape is (c, z, y, x) input_shape = unetsl.model.getInputShape(model) #TODO fix this. image = unetsl.data.splitIntoChannels(input_shape, image) #spatial dimensions patch_shape = numpy.array(input_shape[1:]) if stride is None: stride = patch_shape//2 for i, s in enumerate(stride): if s==0: stride[i] = 1 else: stride=numpy.array(stride) #single channel output, input shape spatial dimension. out_shape = [1] + [s for s in image.shape[-3:]] labelled_shape = [1] + list(patch_shape) slices = [] chunks = [] for k in unetsl.data.fullRange(image.shape[-3], input_shape[-3], stride[-3]): for j in unetsl.data.fullRange(image.shape[-2], input_shape[-2], stride[-2]): for i in unetsl.data.fullRange(image.shape[-1], input_shape[-1], stride[-1]): slc = createSliceTuple((0, k, j, i), input_shape) slices.append(slc) while len(slices)%GPUS != 0: slices.append(slices[0]) if batch_size < 0: batch_size = len(slices) else: if batch_size < GPUS: batch_size=GPUS #TODO improve the prediction window to not overwrite more edge-cases. window = generateProbabilityWindow(input_shape, labelled_shape, stride) out_stack = [] debug_out_stack = [] nslices = len(slices) nframes = image.shape[0] for n_frame, frame in enumerate(image): out = numpy.zeros(out_shape, dtype="uint8") debug_out = numpy.zeros(out_shape, dtype="float32") for j in range(0, len(slices), batch_size): to_send = batch_size if len(slices)<j + batch_size: to_send = len(slices) - j s_slices = slices[j:j+to_send] chunks = numpy.array( [ frame[slc] for slc in s_slices ], dtype="uint16" ) if sample_normalize: chunks = unetsl.data.normalizeImages(chunks) predictions = model.predict(chunks) print(j + n_frame*nslices, " of ", nslices*nframes) if isinstance(predictions, list): predictions = shaper(predictions[output_index], patch_shape) for (slc, prediction) in zip(s_slices, predictions): labels, probs = predictionToLabelledImage(prediction, reduction_type, labelled_shape) if reduction_type==CATEGORICAL_REDUCTION: #TODO include the window for probability comparisons. org = out[slc] old = debug_out[slc] imp = (probs>old)*1 nimp = 1-imp upd = (probs==old)*labels debug_out[slc] =probs*imp + old*nimp out[slc] = (nimp)*(org | upd ) + labels*imp elif reduction_type==MULTICLASS_REDUCTION: original_probs = debug_out[slc] improving = numpy.where(window>original_probs) updating = numpy.where(window==original_probs) out[slc][improving] = labels[improving] out[slc][updating] |= labels[updating] debug_out[slc][improving] = window[improving] elif reduction_type==LINEAR_REDUCTION: original_probs = debug_out[slc] improving = numpy.where(window>original_probs) updating = numpy.where(window==original_probs) out[slc][improving] = labels[improving] out[slc][updating] = (labels[updating] + out[slc][updating])/2 debug_out[slc][improving] = window[improving] out_stack.append(out) debug_out_stack.append(debug_out) return numpy.array(out_stack), numpy.array(debug_out_stack) def predictMultiChannelImage(model, image, reduction_type =[], stride=None, output_index=None, sample_normalize=False, batch_size=2, debug=False, GPUS=1, shapers=[upsample, ]): """ The goal is to support multi-channel predictions where a channel denotes an output. Each channel will then have an associated reduction type and sizer. If not supplied the reduction type will be inferred by the op name of output tensor. The sizer operation will default to "upsample" as there is no way to infer the re-sizing operation from the information in the model. Possibly include the sizer type in the output-name. output_index needs to be indexes for reduction_type and shapers eg: if reduction_type and shapers are dictionaries, the output index should be keys (probably strings) and if they're lists then the output index should be valid integers. Args: model ( tf.Model ): image ( numpy.array ): reduction_type (): stride () output_index sample_normalize batch_size debug GPUS shapers Return: numpy array, numpy array: The first image is the prediction, after processing. The second image is a debug image, if applicable. """ reduction_types = reduction_type #input shape is (c, z, y, x) input_shape = unetsl.model.getInputShape(model) image = unetsl.data.splitIntoChannels(input_shape, image) print("predicting with shape (n, c, z, y, x) :: ", image.shape) patch_shape = numpy.array(input_shape[1:]) if stride is None: stride = patch_shape//2 for i, s in enumerate(stride): if s==0: stride[i] = 1 else: stride=numpy.array(stride) outputs = unetsl.model.getOutputMap(model) if output_index is None: output_index = [i for i in range(len(outputs))] noc = len(output_index) if len(reduction_type) == 0: reduction_types = guessOutputReductionTypes(model) if len(reduction_type)==noc: reduction_types = reduction_type elif len(reduction_type)==1: reduction_types = noc*reduction_type #output channels / spatial dimensions out_shape = [noc] + [s for s in image.shape[-3:]] labelled_shape = [1] + list(patch_shape) slices = [] for k in unetsl.data.fullRange(image.shape[-3], input_shape[-3], stride[-3]): for j in unetsl.data.fullRange(image.shape[-2], input_shape[-2], stride[-2]): for i in unetsl.data.fullRange(image.shape[-1], input_shape[-1], stride[-1]): slc = createSliceTuple((0, k, j, i), input_shape) slices.append(slc) while len(slices)%GPUS != 0: slices.append(slices[0]) if batch_size < 0: batch_size = len(slices) else: if batch_size < GPUS: batch_size=GPUS #TODO improve the prediction window to not overwrite more edge-cases. window = generateProbabilityWindow(input_shape, labelled_shape, stride) full_out_stack = [] debug_out_stack = [] for frame in image: full_out = numpy.zeros(out_shape, dtype="uint8") full_debug_out = numpy.zeros(out_shape, dtype="float32") for j in range(0, len(slices), batch_size): to_send = batch_size if len(slices)<j + batch_size: to_send = len(slices) - j s_slices = slices[j:j+to_send] chunks = numpy.array( [ frame[slc] for slc in s_slices ], dtype="uint16" ) if sample_normalize: chunks = unetsl.data.normalizeImages(chunks) predictions = model.predict(chunks) for index, oi in enumerate(output_index): predictions[index] = shapers[oi]( predictions[index], labelled_shape ) for ch, pred in enumerate(predictions): out = full_out[ch:ch+1] debug_out = full_debug_out[ch:ch+1] reduction_type = reduction_types[ch] for (slc, prediction) in zip(s_slices, pred): labels, probs = predictionToLabelledImage(prediction, reduction_type, labelled_shape) if reduction_type==CATEGORICAL_REDUCTION: #TODO include the window for probability comparisons. probs = probs*window org = out[slc] old = debug_out[slc] imp = (probs>old)*1 nimp = 1-imp upd = (probs==old)*labels debug_out[slc] =probs*imp + old*nimp out[slc] = (nimp)*(org | upd ) + labels*imp elif reduction_type==MULTICLASS_REDUCTION: original_probs = debug_out[slc] improving = numpy.where(window>original_probs) updating = numpy.where(window==original_probs) out[slc][improving] = labels[improving] out[slc][updating] |= labels[updating] debug_out[slc][improving] = window[improving] elif reduction_type==LINEAR_REDUCTION: original_probs = debug_out[slc] improving = numpy.where(window>original_probs) updating = numpy.where(window==original_probs) out[slc][improving] = labels[improving] out[slc][updating] = (labels[updating] + out[slc][updating])/2 debug_out[slc][improving] = window[improving] print( ( j+ batch_size), "completed of:", len(slices) ) debug_out_stack.append(debug_out) full_out_stack.append(full_out); return numpy.array(full_out_stack), numpy.array(debug_out_stack)
the-stack_0_26966
#This contains settings for the whole project access #import other settings from .local_settings import * USSD={ 'code':'421', 'sub_code':'22', #if no subscode, let it be assigned to None 'endpoint':'http://127.0.0.1:9000/ussd' }
the-stack_0_26970
#!/usr/bin/env python # coding: utf-8 # ## Importing Required libraries # In[271]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.model_selection import train_test_split,RandomizedSearchCV from sklearn.metrics import mean_squared_error from math import sqrt import statsmodels.api as sm from sklearn.linear_model import LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor # In[272]: # Loading the dataset data = pd.read_csv("day.csv") # In[273]: #Checking the dimensions of dataset data.shape # In[274]: data.head() # In[275]: #Inital insight of datset data.describe() # In[276]: data.dtypes # In[277]: ## Removing unnessary variables from dataset # instant - It is basically index number # dteday - All the values from dteday are present in datset under differnet variables # casual and registered - cnt is basically the sum of casual amd registerd variables data = data.drop(['instant','dteday','casual','registered'],axis=1) # In[278]: #Creating a copy of original dataset data_vis = data.copy() data.head() # In[279]: ##Converting the interger values into proper naming data_vis['season'] = data_vis['season'].replace([1,2,3,4],['Springer','summer','fall','winter']) data_vis['yr'] = data_vis['yr'].replace([0,1],[2011,2012]) data_vis['weathersit'] = data_vis['weathersit'].replace([1,2,3,4],[' Clear+Few clouds+Partly cloudy','Mist + Cloudy, Mist + Broken clouds, ',' Light Snow, Light Rain + Thunderstorm ','Heavy Rain + Ice Pallets ']) data_vis['holiday'] = data_vis['holiday'].replace([0,1],['working Day','Holiday']) data_vis.head() # In[280]: print(data.dtypes) print(data.head()) # ## Univarient Analysis # In[281]: ## Bar Graph for Categorical data sns.set_style("whitegrid") sns.factorplot(data=data_vis,x='season',kind='count',size=4,aspect=2) sns.factorplot(data=data_vis,x='yr',kind='count',size=4,aspect=2) sns.factorplot(data=data_vis,x='mnth',kind='count',size=4,aspect=2) sns.factorplot(data=data_vis,x='holiday',kind='count',size=4,aspect=2) sns.factorplot(data=data_vis,x='workingday',kind='count',size=4,aspect=2) sns.factorplot(data=data_vis,x='weathersit',kind='count',size=4,aspect=2) # In[282]: plt.hist(data_vis['temp'],bins=30) plt.xlabel('temp') plt.ylabel('Frequency') plt.show() # In[283]: plt.hist(data_vis['atemp'],bins=30) plt.xlabel('atemp') plt.ylabel('Frequency') plt.show() # In[284]: plt.hist(data_vis['hum'],bins=30) plt.xlabel('humidity') plt.ylabel('Frequency') plt.show() # In[285]: plt.hist(data_vis['windspeed'],bins=30) plt.xlabel('WindSpeed') plt.ylabel('Frequency') plt.show() # In[286]: #Dimensions of dataset after removing outliers data.shape # ## Bivariant Analysis # In[287]: ## Using Scatter Plot # Index(['instant', 'season', 'yr', 'mnth', 'holiday', 'weekday', 'workingday', # 'weathersit', 'temp', 'atemp', 'hum', 'windspeed', 'casual', # 'registered', 'cnt'], # dtype='object') # In[288]: fig,x = plt.subplots(nrows= 2,ncols=2) fig.set_size_inches(12,15) sns.scatterplot(x="temp",y = "cnt",data = data_vis,palette="Set3",ax=x[0][0]) sns.scatterplot(x="atemp",y = "cnt",data = data_vis,palette="Set3",ax=x[0][1]) sns.scatterplot(x="hum",y = "cnt",data = data_vis,palette="Set3",ax=x[1][0]) sns.scatterplot(x="windspeed",y = "cnt",data = data_vis,palette="Set3",ax=x[1][1]) # ## Outlier Analysis # In[289]: ## Checking the presence of outlier in continous variables sns.boxplot(data = data[['temp','atemp','windspeed','hum']]) fig = plt.gcf() fig.set_size_inches(8,8) # In[290]: ## Removing outlier and checking correlation between target variable and independent continous variables print(data.shape) print(data['hum'].corr(data['cnt'])) print(data['windspeed'].corr(data['cnt'])) q75, q25 = np.percentile(data.loc[:,'hum'],[75,25]) iqr = q75 - q25 min = q25-(iqr*1.5) max = q75+(iqr*1.5) print(min) print(max) data = data.drop(data[data.loc[:,'hum']<min].index) data = data.drop(data[data.loc[:,'hum']>max].index) q75, q25 = np.percentile(data.loc[:,'windspeed'],[75,25]) iqr = q75 - q25 min = q25-(iqr*1.5) max = q75+(iqr*1.5) print(min) print(max) data = data.drop(data[data.loc[:,'windspeed']<min].index) data = data.drop(data[data.loc[:,'windspeed']>max].index) # ## Missing Value Analysis # In[291]: total = data.isnull().sum().sort_values(ascending=False) percent = (data.isnull().sum()/data.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing_data.head(30) # There are no missing vlaues present after outlier analysis # ## Feature Selection # In[292]: def Correlation(df): df_corr = df.loc[:,df.columns] corr = df_corr.corr() sns.set() plt.figure(figsize=(10,10)) sns.heatmap(corr,annot=True,fmt=".3f",square=True,linewidths=0.5) Correlation(data) # In[293]: ## There is high correlation between temp and atemp variable ## there is very weak relation between holiday, weekday and working day variables ## So we will drop those variables data_fs = data.drop(['atemp','holiday','weekday','workingday'],axis=1) data_fs.head() # In[294]: # Splitting Dataset into train and test dataset train,test = train_test_split(data_fs,test_size=0.2,random_state=121) # ## Feature Scaling # In[295]: ## Data is normalized no need to do feature scaling train.head() # ## Error Metrics # In[296]: ## Defining Performance Metrics def MAPE(y_true, y_pred): MAE = np.mean(np.abs((y_true - y_pred))) mape = np.mean(np.abs((y_true - y_pred) / y_true)) print("MAE is:", MAE) print("MAPE is:", mape) return mape def RMSE(y_true, y_pred): mse = np.mean((y_true - y_pred)**2) rmse = np.sqrt(mse) print("MSE: ",mse) print("RMSE: ",rmse) return rmse # ## Linear Regression # In[297]: LR_model = sm.OLS(train.iloc[:,7],train.iloc[:,0:6]).fit() #Summary print(LR_model.summary()) #Predict LR_Model_predict = LR_model.predict(test.iloc[:,0:6]) # In[298]: MAPE(test.iloc[:,7],LR_Model_predict) RMSE(test.iloc[:,7],LR_Model_predict) # In[299]: result = pd.DataFrame({'Actual Value':test.iloc[:,7],'Linear Regression':LR_Model_predict}) result.head() # ## Desicion Tree # In[300]: DT_model = DecisionTreeRegressor(random_state=100).fit(train.iloc[:,0:6],train.iloc[:,7]) #prediction DT_model_predict = DT_model.predict(test.iloc[:,0:6],DT_model) # In[ ]: # In[301]: MAPE(test.iloc[:,7],DT_model_predict) RMSE(test.iloc[:,7],DT_model_predict) # In[302]: result['Desicion Tree'] = DT_model_predict result.head() # ## Random Forest # In[303]: RF_model = RandomForestRegressor(random_state=123) np.random.seed(10) arg_dict = {'max_depth':[2,4,6,8,10], 'bootstrap':[True,False], 'max_features':['auto','sqrt','log2',None], 'n_estimators':[100,200,300,400,500]} gs_randomForest = RandomizedSearchCV(RF_model,cv=10,param_distributions=arg_dict, n_iter=10) gs_randomForest.fit(train.iloc[:,0:6],train.iloc[:,7]) print("Best Parameters using random Search", gs_randomForest.best_params_) # In[304]: RF_model.set_params(n_estimators = 500, max_features='sqrt', max_depth=8, bootstrap=True) RF_model.fit(train.iloc[:,0:6],train.iloc[:,7]) RF_model_predict = RF_model.predict(test.iloc[:,0:6]) # In[305]: MAPE(test.iloc[:,7],RF_model_predict) RMSE(test.iloc[:,7],RF_model_predict) # In[306]: result['Random Forest'] = RF_model_predict result.head() # From above models Random forest is performing well according to RMSE values # In[307]: #Saving the result of test data onto local machine result.to_csv("Test_Result_python.csv",index=False) # In[ ]:
the-stack_0_26971
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Fri Apr 21 17:43:57 2017 @author: robert """ import sys if sys.version_info > (3, 3): from pymysql import cursors else: from MySQLdb import cursors from . import mono_tools import logging RECORDING = 0 #true if we want scapy magic DECRYPTING = 0 #true if we want MITM magic ID_CURRENT_SESSION = 0 #current id_session logger = logging.getLogger("mono_param") #Deprecated def set_recording(recording, db): set_int_param("recording", recording, db) logging.getLogger("mono_param").debug("recording set to %s" % (recording)) def get_recording(db): return get_int_param("recording", db) def set_decrypting(decrypting, db): set_int_param("decrypting", decrypting, db) logging.getLogger("mono_param").debug("decrypting set to %s" % (decrypting)) def get_decrypting(db): return get_int_param("decrypting", db) def set_id_session(id_session, db): set_int_param("id_session", id_session, db) logging.getLogger("mono_param").debug("id_session set to %s" % (id_session)) def get_id_session(db): return get_int_param("id_session", db) #set current id_session def set_int_param(param_name, param_value, db): try: cursor = db.cursor() sql = "UPDATE PARAMS SET value_int = %s WHERE name=%s" # Execute the SQL command cursor.execute(sql, (param_value, param_name)) db.commit() except Exception as e: mono_tools.handle_db_exception(e, db, cursor) raise #set current id_session def set_str_param(param_name, param_value, db): try: cursor = db.cursor() sql = "UPDATE PARAMS SET value_str = %s WHERE name=%s" # Execute the SQL command cursor.execute(sql, (param_value, param_name)) db.commit() except Exception as e: mono_tools.handle_db_exception(e, db, cursor) raise #set current id_session def get_int_param(param_name, db): try: cursor = db.cursor(cursors.DictCursor) sql = "SELECT value_int FROM PARAMS WHERE name=%s" # Execute the SQL command cursor.execute(sql, (param_name,)) db.commit() param = cursor.fetchone() return param["value_int"] except Exception as e: mono_tools.handle_db_exception(e, db, cursor) raise #set current id_session def get_str_param(param_name, db): try: cursor = db.cursor(cursors.DictCursor) sql = "SELECT value_str FROM PARAMS WHERE name=%s" # Execute the SQL command cursor.execute(sql,(param_name,)) db.commit() param = cursor.fetchone() return param["value_str"] except Exception as e: mono_tools.handle_db_exception(e, db, cursor) raise
the-stack_0_26974
import csv import cv2 if __name__ == "__main__": file = open("dataCSV.csv", 'w') image = cv2.imread("pylogo.jpg", 1) file.write("X,Y,R,G,B\n") for y in range(0, image.shape[0]): for x in range(0, image.shape[1]): line = str(x)+","+str(y)+","+str(image[y,x][2])+","+str(image[y,x][1])+","+str(image[y,x][0])+"\n" file.write(line) file.close()
the-stack_0_26975
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import time import base64 from math import log import ressources.config as config def bytes_to_int(b: bytes): """Take bytes as input and return associated integer.""" return int().from_bytes(b, "big") def int_to_bits(i: int): """Take an integer as input and return the bits written version.""" return "{:0{}b}".format(i, i.bit_length()) def isBase64(sb): """ Check if both string and bytes objects are in base64. """ try: if isinstance(sb, str): # If there's any unicode here, an exception will be thrown and the function will return false sb_bytes = bytes(sb, "ascii") elif isinstance(sb, bytes): sb_bytes = sb else: raise ValueError("Argument must be string or bytes") return base64.b64encode(base64.b64decode(sb_bytes)) == sb_bytes except Exception: return False def bytes_needed(n: int): """Return BYTES needed to encode an integer.""" if n == 0: return 1 return int(log(n, 256)) + 1 def mult_to_bytes(obj: object) -> bytes: """Convert given {array of bits, bytes, int, str, b64} to bytes""" if isinstance(obj, list): i = int("".join(["{:01b}".format(x) for x in obj]), 2) res = i.to_bytes(bytes_needed(i), byteorder="big") elif isinstance(obj, int): res = obj.to_bytes(bytes_needed(obj), "big") elif isBase64(obj): res = base64.b64decode(obj) elif isinstance(obj, bytes): res = obj elif isinstance(obj, str): alphabet = max([int(c) for c in obj]) + 1 res = int(obj, alphabet) return mult_to_bytes(res) else: res = bytes(obj) return res def swapPos(toSwap, pos1, pos2): toSwap[pos1], toSwap[pos2] = toSwap[pos2], toSwap[pos1] return toSwap def fileToBytes(file, message=True, directory=config.DIRECTORY_PROCESSING, Verbose=False): """ Read a file and convert to bytearray. True if it's a .txt file with a message. """ if Verbose: print(f"Opening the {file} file.") readTime = time.time() with open(os.path.join(directory, file), "rb") as f: data = bytearray(f.read()) config.WATCH_READ_TIME = time.time() - readTime if not message: # If it's a file if len(data) < 1024: # At least some kilo_octets raise Exception("Give in input at least some kilo_octets file's.") return data ###################### - File Manager def codeOut(thing, coded=True, inFile=""): """ Choose what to do with the text (ciphered or not) and deal with it. thing: Array of bytesArrays """ # Pack and remove null bytes added by z_filling. if not coded: thing[-1] = thing[-1].replace(b"\x00", b"") packed = packSplittedBytes(thing) if inFile: wTime = time.time() if coded: # Let's write byte per byte into a .kat file katFile = open(inFile + ".kat", "wb") katFile.write(bytes(packed)) else: katFile = open( os.path.join(os.path.dirname(inFile), f"dec_{os.path.basename(inFile)[:-4]}"), "wb", ) katFile.write(bytes(packed)) katFile.close() config.WATCH_WRITE_TIME = time.time() - wTime config.WATCH_EXEC_STATUS = False return "" else: if coded: return base64.b64encode(packed).decode() try: decoded = packed.decode() return decoded except UnicodeDecodeError: raise UnicodeDecodeError( "Unable to decode the message, the decryption method does not match the encryption method, the wrong key is used or the encrypted message has been corrupted.\n" ) def zfill_b(byteA, n: int): """ Fill byte till length n. Output: bytes """ if not isinstance(byteA, bytearray): byteA = bytearray(byteA) while n > len(byteA): byteA.insert(0, 0) return bytes(byteA) def b_op(b1, b2, ope="XOR"): """ Bitwise operation between two bytes (XOR, AND, OR available) Output: bytes """ by = 0 m = max(len(b1), len(b2)) if len(b1) != len(b2): b1 = zfill_b(b1, m) b2 = zfill_b(b2, m) b1 = bytes_to_int(b1) b2 = bytes_to_int(b2) if ope == "XOR": by = b1 ^ b2 elif ope == "AND": by = b1 & b2 elif ope == "OR": by = b1 | b2 else: raise ValueError("Operation unvailable") return int.to_bytes(by, m, "big") def splitBytes(data, n=8): """Split BytesArray into chunks of n (=8 by default) bytes.""" return [data[i: i + n] for i in range(0, len(data), n)] def packSplittedBytes(pSplitted): """ Unsplit splitted array of bytes. Output: byterarray """ packed = bytearray() for elt in pSplitted: packed += elt return packed def circularRotation(arr, direction=0, n=1): """ Circular shift to direction (left=0, right=1) of n (=1 by default) bits Output: bytes """ nB = len(arr) * 8 arrInt = int.from_bytes(arr, "big") # Generate full bytes of 1 of the size of the array size = int("0x" + "".join(["FF" for _ in range(0, len(arr))]), 16) # ((arrInt << n) shift to left, create 0 to the right # (arrInt >> (nB - n))) get all bytes from left who needs to go right to the right, remainder is 0 # AND the two bytes # & size remove from left the oversized bits r = 0 if direction == 0: r = ((arrInt << n) | (arrInt >> (nB - n))) & size else: r = ((arrInt >> n) | (arrInt << (nB - n))) & size return r.to_bytes(len(arr), "big") def hammingWeight(n: object): """ The number of symbols that are different from the zero-symbol in binary. """ n = bytes_to_int(mult_to_bytes(n)) weight = 0 for i in range(n.bit_length()): if (n >> i) & 1: weight += 1 return weight
the-stack_0_26978
""" # Copyright 2022 Red Hat # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ from cibyl.exceptions import CibylException CONFIG_DOCS_URL = "https://cibyl.readthedocs.io/en/latest/configuration.html" class InvalidConfiguration(CibylException): """Invalid configuration exception""" def __init__(self, message=""" Invalid Configuration. A valid configuration should specify an environment, its system(s) and the system(s) details environments: env_1: jenkins_system: system_type: jenkins"""): self.message = message super().__init__(self.message) class ConfigurationNotFound(CibylException): """Configuration file not found exception""" def __init__(self, paths): if paths: paths = f" at: {paths}" else: paths = "" self.message = f"""Could not find configuration file{paths}.\n Check the documentation at {CONFIG_DOCS_URL} for more information""" super().__init__(self.message) class EmptyConfiguration(CibylException): """Configuration file is empty exception.""" def __init__(self, file): self.message = f"""Configuration file {file} is empty.\n Check the documentation at {CONFIG_DOCS_URL} for more \ details about the configuration syntax.""" super().__init__(self.message) class InvalidSourceConfiguration(CibylException): """Invalid source configuration exception.""" def __init__(self, source_name, source_data): self.message = f"""Invalid source configuration. {source_name}: {source_data} Check the documentation at {CONFIG_DOCS_URL} for more information""" super().__init__(self.message)
the-stack_0_26980
# ---------------------------------------------------------------------------- # Copyright 2016 Nervana Systems Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- import numpy as np import pytest from neon import NervanaObject from neon.backends import gen_backend from neon.layers.layer import Convolution import ngraph as ng from ngraph.frontends.neon import ax, ar from ngraph.frontends.neon.layer import output_dim from ngraph.testing import ExecutorFactory, RandomTensorGenerator, executor rng = RandomTensorGenerator(0, np.float32) NervanaObject.be = gen_backend() class DummyDeltaBuffers(object): """ Dummy class for delta buffers needed by neon """ def __init__(self): self.buffers = [None] def test_wrong_filters_shape_length(): """ test wrong filters shape length """ padding = dict(pad_d=0, pad_h=0, pad_w=0) strides = dict(str_d=1, str_h=1, str_w=1) dilation = dict(dil_d=1, dil_h=1, dil_w=1) conv_params = padding.copy() conv_params.update(strides) conv_params.update(dilation) ax_i = ng.make_axes([ax.C, ax.D, ax.H, ax.W, ax.N]) ax_f = ng.make_axes([ax.C, ax.T, ax.R, ax.S]) inputs = ng.placeholder(ax_i) filters = ng.placeholder(ax_f) with pytest.raises(ValueError) as exinfo: ng.convolution(conv_params, inputs, filters, {}) assert str(exinfo.value) == 'convolution filter shape must be length 5, found {}'\ .format(len(ax_f)) def test_first_axes_not_same(): """ test first axes are not the same """ padding = dict(pad_d=0, pad_h=0, pad_w=0) strides = dict(str_d=1, str_h=1, str_w=1) dilation = dict(dil_d=1, dil_h=1, dil_w=1) conv_params = padding.copy() conv_params.update(strides) conv_params.update(dilation) ax_i = ng.make_axes([ax.D, ax.C, ax.H, ax.W, ax.N]) ax_f = ng.make_axes([ax.C, ax.T, ax.R, ax.S, ax.K]) inputs = ng.placeholder(ax_i) filters = ng.placeholder(ax_f) with pytest.raises(ValueError) as exinfo: ng.convolution(conv_params, inputs, filters, {}) assert str(exinfo.value) == 'the first axis in input {inputs} and filter {filters} ' \ 'are not the same.'.format( inputs=inputs.axes[0], filters=filters.axes[0]) def test_wrong_number_of_batch_axes_at_input(): """ test wrong number of batch axes at input """ padding = dict(pad_d=0, pad_h=0, pad_w=0) strides = dict(str_d=1, str_h=1, str_w=1) dilation = dict(dil_d=1, dil_h=1, dil_w=1) conv_params = padding.copy() conv_params.update(strides) conv_params.update(dilation) C = 3 D = 1 ax_C = ng.make_axis(name='N', length=C) ax_D = ng.make_axis(name='N', length=D) ax_i = ng.make_axes([ax_C, ax_D, ax.H, ax.W, ax.N]) ax_f = ng.make_axes([ax_C, ax.T, ax.R, ax.S, ax.K]) inputs = ng.placeholder(axes=ax_i) filters = ng.placeholder(ax_f) with pytest.raises(ValueError) as exinfo: ng.convolution(conv_params, inputs, filters, {}) assert str(exinfo.value) == "Input must have one batch axis. Found {n_batch_axes} " \ "batch axes: {batch_axes} Found {n_sample_axes} sample axes: {sample_axes}.".format( n_batch_axes=len(inputs.axes.batch_axes()), batch_axes=inputs.axes.batch_axes(), n_sample_axes=len(inputs.axes.sample_axes()), sample_axes=inputs.axes.sample_axes()) def test_convolution_backprop(transformer_factory): """ test convolution backprop path """ N = 128 C, K = 3, 2 D, T = 1, 1 H = W = 32 R = S = 2 padding = dict(pad_d=0, pad_h=0, pad_w=0) strides = dict(str_d=1, str_h=1, str_w=1) dilation = dict(dil_d=1, dil_h=1, dil_w=1) conv_params = padding.copy() conv_params.update(strides) conv_params.update(dilation) ax_i = ng.make_axes([ax.C, ax.D, ax.H, ax.W, ax.N]) ax_f = ng.make_axes([ax.C, ax.T, ax.R, ax.S, ax.K]) ax_i.set_shape((C, D, H, W, N)) ax_f.set_shape((C, T, R, S, K)) ax_o = ng.make_axes([ ng.make_axis(roles=[ar.features_input]).named('C'), ng.make_axis(roles=[ar.features_0]).named('D'), ng.make_axis(roles=[ar.features_1]).named('H'), ng.make_axis(roles=[ar.features_2]).named('W'), ax.N ]) ax_o[:-1].set_shape(( K, output_dim(D, T, padding['pad_d'], strides['str_d']), output_dim(H, R, padding['pad_h'], strides['str_h']), output_dim(W, S, padding['pad_w'], strides['str_w'])) ) inputs = ng.placeholder(axes=ax_i) filters = ng.placeholder(axes=ax_f) # randomly initialize input_value = rng.uniform(-1, 1, ax_i) filter_value = rng.uniform(-1, 1, ax_f) assert input_value.shape == ax_i.lengths assert filter_value.shape == ax_f.lengths output = ng.sum(ng.convolution(conv_params, inputs, filters, ax_o), out_axes=()) with ExecutorFactory() as factory: dcdf_sym_fun = factory.derivative(output, filters, inputs) dcdf_num_fun = factory.numeric_derivative(output, filters, .01, inputs) dcdf_sym_val = dcdf_sym_fun(filter_value, input_value) dcdf_num_val = dcdf_num_fun(filter_value, input_value) ng.testing.assert_allclose(dcdf_sym_val, dcdf_num_val, rtol=1) def test_convolution(transformer_factory): """ test convolution forward path """ N = 128 C, K = 3, 8 D, T = 1, 1 H = W = 32 R = S = 2 padding = dict(pad_d=0, pad_h=0, pad_w=0) strides = dict(str_d=1, str_h=1, str_w=1) dilation = dict(dil_d=1, dil_h=1, dil_w=1) conv_params = padding.copy() conv_params.update(strides) conv_params.update(dilation) ax_i = ng.make_axes([ax.C, ax.D, ax.H, ax.W, ax.N]) ax_f = ng.make_axes([ax.C, ax.T, ax.R, ax.S, ax.K]) ax_i.set_shape((C, D, H, W, N)) ax_f.set_shape((C, T, R, S, K)) ax_o = ng.make_axes([ ng.make_axis(roles=[ar.features_input]).named('C'), ng.make_axis(roles=[ar.features_0]).named('D'), ng.make_axis(roles=[ar.features_1]).named('H'), ng.make_axis(roles=[ar.features_2]).named('W'), ax.N ]) ax_o[:-1].set_shape(( K, output_dim(D, T, padding['pad_d'], strides['str_d']), output_dim(H, R, padding['pad_h'], strides['str_h']), output_dim(W, S, padding['pad_w'], strides['str_w'])) ) inputs = ng.placeholder(axes=ax_i) filters = ng.placeholder(axes=ax_f) # randomly initialize input_value = rng.uniform(-1, 1, ax_i) filter_value = rng.uniform(-1, 1, ax_f) assert input_value.shape == ax_i.lengths assert filter_value.shape == ax_f.lengths inputs = ng.placeholder(ax_i) filters = ng.placeholder(ax_f) output = ng.convolution(conv_params, inputs, filters, axes=ax_o) targets = ng.placeholder(axes=output.axes) costs = ng.cross_entropy_binary(ng.sigmoid(output), targets) error = ng.sum(costs, out_axes=()) / ng.batch_size(costs) d_inputs = ng.deriv(error, inputs) d_filters = ng.deriv(error, filters) targets_value = rng.uniform(.1, 0.9, output.axes) with executor([output, error, d_inputs, d_filters], inputs, filters, targets) as conv_executor: result_ng, err_ng, gradI_ng, gradF_ng = \ conv_executor(input_value, filter_value, targets_value) # Now compute reference values via NEON NervanaObject.be.bsz = N neon_layer = Convolution(fshape=(R, S, K), padding=padding, strides=strides) inp = neon_layer.be.array(input_value.reshape(C * H * W * D, N)) neon_layer.W = neon_layer.be.array(filter_value.reshape(C * R * S * T, K)) neon_layer.dW = neon_layer.be.empty_like(neon_layer.W) neon_layer.configure((C, H, W)) neon_layer.prev_layer = True neon_layer.allocate() neon_layer.set_deltas(DummyDeltaBuffers()) result_ne = neon_layer.fprop(inp).get().reshape(output.axes.lengths) act_result_ne = 1. / (1.0 + np.exp(-result_ne)) err = neon_layer.be.array((act_result_ne - targets_value).reshape(-1, N) / float(N)) gradI_ne = neon_layer.bprop(err).get().reshape(ax_i.lengths) gradF_ne = neon_layer.dW.get().reshape(ax_f.lengths) # Compare fprop ng.testing.assert_allclose(result_ng, result_ne, rtol=0, atol=1e-6) # Compare bprop ng.testing.assert_allclose(gradI_ng, gradI_ne, rtol=0, atol=1e-6) # Compare update ng.testing.assert_allclose(gradF_ng, gradF_ne, rtol=0, atol=1e-4) def test_conv_flatten_deriv(transformer_factory): """ Test deriv of conv followed by flatten """ # set shape # NOTE: N must be >= 4 for GPU, but for CPU this could be decreased to # speed up the test N = 4 C, D, H, W = (3, 1, 28, 28) T, R, S, K = (1, 5, 5, 8) params = dict(pad_d=0, pad_h=0, pad_w=0, str_d=1, str_h=1, str_w=1, dil_d=1, dil_h=1, dil_w=1) # i, f, o axes ax_i = ng.make_axes([ax.C, ax.D, ax.H, ax.W, ax.N]) ax_f = ng.make_axes([ax.C, ax.T, ax.R, ax.S, ax.K]) ax_o = ng.make_axes([ ng.make_axis(roles=[ar.features_input]).named('C'), ng.make_axis(roles=[ar.features_0]).named('D'), ng.make_axis(roles=[ar.features_1]).named('H'), ng.make_axis(roles=[ar.features_2]).named('W'), ax.N ]) ax_i.set_shape((C, D, H, W, N)) ax_f.set_shape((C, T, R, S, K)) ax_o.set_shape((K, D - T + 1, H - R + 1, W - S + 1, N)) axes_rsck = ng.make_axes([ax.R, ax.S, ax.C, ax.K]) axes_rsck_prime = ng.make_axes([ng.make_axis(axis.length).named(axis.name + 'p') for axis in axes_rsck]) axes_nmpqk = ng.make_axes([ax_o[-1], ax_o[1], ax_o[2], ax_o[3], ax_o[0]]) # broadcast input / filter axes input_var = ng.variable(ax_i).named('input') input_var.input = True input_val = np.ones(input_var.axes.lengths) filter_rsck_prime = ng.variable(axes_rsck_prime) filter_var = filter_rsck_prime filter_rsck = ng.cast_axes(filter_rsck_prime, axes_rsck) filter_trsck = ng.expand_dims(filter_rsck, ax.T, 0) filter_ctrsk = ng.axes_with_order(filter_trsck, axes=ax_f) # convolution output_kmpqn = ng.convolution(params, input_var, filter_ctrsk, axes=ax_o) output_nmpqk = ng.axes_with_order(output_kmpqn, axes=axes_nmpqk) # slice away the oD out_slicing = [slice(None), 0, slice(None), slice(None), slice(None)] output_npqk = ng.tensor_slice(output_nmpqk, out_slicing) output = ng.flatten_at(output_npqk, idx=1) # cost and grad cost = ng.sum(output, out_axes=()) filter_var.input = True filter_var.named('filter') filter_val = np.ones(filter_var.axes.lengths) with ExecutorFactory() as factory: conv_comp = factory.executor(output, filter_var, input_var) grad_filter_num_comp = factory.numeric_derivative(cost, filter_var, 1.0, input_var) grad_filter_sym_comp = factory.derivative(cost, filter_var, input_var) grad_input_num_comp = factory.numeric_derivative(cost, input_var, 1.0, filter_var) grad_input_sym_comp = factory.derivative(cost, input_var, filter_var) conv_val = conv_comp(filter_val, input_val) conv_val_num = np.empty_like(conv_val) conv_val_num.fill(C * T * R * S) assert ng.testing.allclose(conv_val, conv_val_num) grad_filter_num_val = grad_filter_num_comp(filter_val, input_val) grad_filter_sym_val = grad_filter_sym_comp(filter_val, input_val) assert ng.testing.allclose(grad_filter_num_val, grad_filter_sym_val) grad_input_num_val = grad_input_num_comp(input_val, filter_val) grad_input_sym_val = grad_input_sym_comp(input_val, filter_val) assert ng.testing.allclose(grad_input_num_val, grad_input_sym_val)
the-stack_0_26981
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import glob import os.path import pathlib import pickle import time import typing as t from dataclasses import dataclass from datetime import datetime, timedelta from threatexchange.signal_type.index import SignalTypeIndex from threatexchange.signal_type.pdq_index import PDQIndex from hmalib.common.logging import get_logger from hmalib.common.models.pipeline import HashRecord from hmalib.common.timebucketizer import TimeBucketizer starttime = time.time() logger = get_logger(__name__) class LCCIndexer: @classmethod def get_recent_index(cls, storage_path, signal_type) -> PDQIndex: """Get the most recent index.""" directory = os.path.join(storage_path, signal_type) latest_directory = max(pathlib.Path(directory).glob("*/"), key=os.path.getmtime) with open(latest_directory, "rb") as f: return pickle.load(f) @classmethod def build_index_from_last_24h(cls, signal_type, storage_path, bucket_width) -> None: """Create an index""" d = timedelta(days=1) past_day_content = TimeBucketizer.get_records( (datetime.now() - d), datetime.now(), signal_type, storage_path, bucket_width, HashRecord, ) record_list = [] for record in past_day_content: record_list.append((record.content_hash, record.content_id)) testIndex = PDQIndex.build(record_list) return testIndex @classmethod def override_recent_index( cls, index: SignalTypeIndex, signal_type, storage_path, bucket_width, ) -> None: """ get most recent index of type PDQ write most recent index of specific index type """ creation_time = str(datetime.now().strftime("%Y-%m-%d_%H:%M")) directory = os.path.join(storage_path, signal_type, creation_time) with open(directory, "wb") as f: pickle.dump(index, f)
the-stack_0_26983
from ...builder import DETECTORS from .single_stage import SingleStageDetectorRbbox @DETECTORS.register_module() class RetinaNetOBB(SingleStageDetectorRbbox): """Implementation of `RetinaNet <https://arxiv.org/abs/1708.02002>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(RetinaNetOBB, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
the-stack_0_26987
"""Views pertaining to builds.""" import json import logging import re from django.http import HttpResponse, HttpResponseNotFound from django.shortcuts import redirect from django.views.decorators.csrf import csrf_exempt from readthedocs.builds.constants import LATEST from readthedocs.core.utils import trigger_build from readthedocs.projects import constants from readthedocs.projects.models import Feature, Project from readthedocs.projects.tasks import sync_repository_task log = logging.getLogger(__name__) class NoProjectException(Exception): pass def _allow_deprecated_webhook(project): return project.has_feature(Feature.ALLOW_DEPRECATED_WEBHOOKS) def _build_version(project, slug, already_built=()): """ Where we actually trigger builds for a project and slug. All webhook logic should route here to call ``trigger_build``. """ if not project.has_valid_webhook: project.has_valid_webhook = True project.save() # Previously we were building the latest version (inactive or active) # when building the default version, # some users may have relied on this to update the version list #4450 version = project.versions.filter(active=True, slug=slug).first() if version and slug not in already_built: log.info( '(Version build) Building %s:%s', project.slug, version.slug, ) trigger_build(project=project, version=version, force=True) return slug log.info('(Version build) Not Building %s', slug) return None def build_branches(project, branch_list): """ Build the branches for a specific project. Returns: to_build - a list of branches that were built not_building - a list of branches that we won't build """ to_build = set() not_building = set() for branch in branch_list: versions = project.versions_from_branch_name(branch) for version in versions: log.info( '(Branch Build) Processing %s:%s', project.slug, version.slug, ) ret = _build_version(project, version.slug, already_built=to_build) if ret: to_build.add(ret) else: not_building.add(version.slug) return (to_build, not_building) def sync_versions(project): """ Sync the versions of a repo using its latest version. This doesn't register a new build, but clones the repo and syncs the versions. Due that `sync_repository_task` is bound to a version, we always pass the default version. :returns: The version slug that was used to trigger the clone. :rtype: str """ try: version_identifier = project.get_default_branch() version = ( project.versions.filter( identifier=version_identifier, ).first() ) if not version: log.info('Unable to sync from %s version', version_identifier) return None sync_repository_task.delay(version.pk) return version.slug except Exception: log.exception('Unknown sync versions exception') return None def get_project_from_url(url): if not url: return Project.objects.none() projects = ( Project.objects.filter(repo__iendswith=url) | Project.objects.filter(repo__iendswith=url + '.git') ) return projects def log_info(project, msg): log.info( constants.LOG_TEMPLATE, { 'project': project, 'version': '', 'msg': msg, } ) def _build_url(url, projects, branches): """ Map a URL onto specific projects to build that are linked to that URL. Check each of the ``branches`` to see if they are active and should be built. """ ret = '' all_built = {} all_not_building = {} # This endpoint doesn't require authorization, we shouldn't allow builds to # be triggered from this any longer. Deprecation plan is to selectively # allow access to this endpoint for now. if not any(_allow_deprecated_webhook(project) for project in projects): return HttpResponse('This API endpoint is deprecated', status=403) for project in projects: (built, not_building) = build_branches(project, branches) if not built: # Call sync_repository_task to update tag/branch info version = project.versions.get(slug=LATEST) sync_repository_task.delay(version.pk) msg = '(URL Build) Syncing versions for %s' % project.slug log.info(msg) all_built[project.slug] = built all_not_building[project.slug] = not_building for project_slug, built in list(all_built.items()): if built: msg = '(URL Build) Build Started: {} [{}]'.format( url, ' '.join(built), ) log_info(project_slug, msg=msg) ret += msg for project_slug, not_building in list(all_not_building.items()): if not_building: msg = '(URL Build) Not Building: {} [{}]'.format( url, ' '.join(not_building), ) log_info(project_slug, msg=msg) ret += msg if not ret: ret = '(URL Build) No known branches were pushed to.' return HttpResponse(ret) @csrf_exempt def github_build(request): # noqa: D205 """ GitHub webhook consumer. .. warning:: **DEPRECATED** Use :py:class:`readthedocs.api.v2.views.integrations.GitHubWebhookView` instead of this view function This will search for projects matching either a stripped down HTTP or SSH URL. The search is error prone, use the API v2 webhook for new webhooks. Old webhooks may not have specified the content type to POST with, and therefore can use ``application/x-www-form-urlencoded`` to pass the JSON payload. More information on the API docs here: https://developer.github.com/webhooks/creating/#content-type """ if request.method == 'POST': try: if request.META['CONTENT_TYPE'] == 'application/x-www-form-urlencoded': data = json.loads(request.POST.get('payload')) else: data = json.loads(request.body) http_url = data['repository']['url'] http_search_url = http_url.replace('http://', '').replace('https://', '') ssh_url = data['repository']['ssh_url'] ssh_search_url = ssh_url.replace('git@', '').replace('.git', '') branches = [data['ref'].replace('refs/heads/', '')] except (ValueError, TypeError, KeyError): log.exception('Invalid GitHub webhook payload') return HttpResponse('Invalid request', status=400) try: repo_projects = get_project_from_url(http_search_url) if repo_projects: log.info( 'GitHub webhook search: url=%s branches=%s', http_search_url, branches, ) ssh_projects = get_project_from_url(ssh_search_url) if ssh_projects: log.info( 'GitHub webhook search: url=%s branches=%s', ssh_search_url, branches, ) projects = repo_projects | ssh_projects return _build_url(http_search_url, projects, branches) except NoProjectException: log.exception('Project match not found: url=%s', http_search_url) return HttpResponseNotFound('Project not found') else: return HttpResponse('Method not allowed, POST is required', status=405) @csrf_exempt def gitlab_build(request): # noqa: D205 """ GitLab webhook consumer. .. warning:: **DEPRECATED** Use :py:class:`readthedocs.api.v2.views.integrations.GitLabWebhookView` instead of this view function Search project repository URLs using the site URL from GitLab webhook payload. This search is error-prone, use the API v2 webhook view for new webhooks. """ if request.method == 'POST': try: data = json.loads(request.body) url = data['project']['http_url'] search_url = re.sub(r'^https?://(.*?)(?:\.git|)$', '\\1', url) branches = [data['ref'].replace('refs/heads/', '')] except (ValueError, TypeError, KeyError): log.exception('Invalid GitLab webhook payload') return HttpResponse('Invalid request', status=400) log.info( 'GitLab webhook search: url=%s branches=%s', search_url, branches, ) projects = get_project_from_url(search_url) if projects: return _build_url(search_url, projects, branches) log.info('Project match not found: url=%s', search_url) return HttpResponseNotFound('Project match not found') return HttpResponse('Method not allowed, POST is required', status=405) @csrf_exempt def bitbucket_build(request): """ Consume webhooks from multiple versions of Bitbucket's API. .. warning:: **DEPRECATED** Use :py:class:`readthedocs.api.v2.views.integrations.BitbucketWebhookView` instead of this view function New webhooks are set up with v2, but v1 webhooks will still point to this endpoint. There are also "services" that point here and submit ``application/x-www-form-urlencoded`` data. API v1 https://confluence.atlassian.com/bitbucket/events-resources-296095220.html API v2 https://confluence.atlassian.com/bitbucket/event-payloads-740262817.html#EventPayloads-Push Services https://confluence.atlassian.com/bitbucket/post-service-management-223216518.html """ if request.method == 'POST': try: if request.META['CONTENT_TYPE'] == 'application/x-www-form-urlencoded': data = json.loads(request.POST.get('payload')) else: data = json.loads(request.body) version = 2 if request.META.get('HTTP_USER_AGENT') == 'Bitbucket-Webhooks/2.0' else 1 # yapf: disabled # noqa if version == 1: branches = [ commit.get('branch', '') for commit in data['commits'] ] repository = data['repository'] if not repository['absolute_url']: return HttpResponse('Invalid request', status=400) search_url = 'bitbucket.org{}'.format( repository['absolute_url'].rstrip('/'), ) elif version == 2: changes = data['push']['changes'] branches = [change['new']['name'] for change in changes] if not data['repository']['full_name']: return HttpResponse('Invalid request', status=400) search_url = 'bitbucket.org/{}'.format( data['repository']['full_name'], ) except (TypeError, ValueError, KeyError): log.exception('Invalid Bitbucket webhook payload') return HttpResponse('Invalid request', status=400) log.info( 'Bitbucket webhook search: url=%s branches=%s', search_url, branches, ) log.debug('Bitbucket webhook payload:\n\n%s\n\n', data) projects = get_project_from_url(search_url) if projects and branches: return _build_url(search_url, projects, branches) if not branches: log.info( 'Commit/branch not found url=%s branches=%s', search_url, branches, ) return HttpResponseNotFound('Commit/branch not found') log.info('Project match not found: url=%s', search_url) return HttpResponseNotFound('Project match not found') return HttpResponse('Method not allowed, POST is required', status=405) @csrf_exempt def generic_build(request, project_id_or_slug=None): """ Generic webhook build endpoint. .. warning:: **DEPRECATED** Use :py:class:`readthedocs.api.v2.views.integrations.GenericWebhookView` instead of this view function """ try: project = Project.objects.get(pk=project_id_or_slug) # Allow slugs too except (Project.DoesNotExist, ValueError): try: project = Project.objects.get(slug=project_id_or_slug) except (Project.DoesNotExist, ValueError): log.exception( '(Incoming Generic Build) Repo not found: %s', project_id_or_slug, ) return HttpResponseNotFound( 'Repo not found: %s' % project_id_or_slug, ) # This endpoint doesn't require authorization, we shouldn't allow builds to # be triggered from this any longer. Deprecation plan is to selectively # allow access to this endpoint for now. if not _allow_deprecated_webhook(project): return HttpResponse('This API endpoint is deprecated', status=403) if request.method == 'POST': slug = request.POST.get('version_slug', project.default_version) log.info( '(Incoming Generic Build) %s [%s]', project.slug, slug, ) _build_version(project, slug) else: return HttpResponse('You must POST to this resource.') return redirect('builds_project_list', project.slug)
the-stack_0_26988
# -------------- import pandas as pd from sklearn.model_selection import train_test_split #path - Path of file df = pd.read_csv(path) # Code starts here ## Lets split the dependent and independent variables X = df.drop(['customerID','Churn'],1) y = df['Churn'].copy() # Test train split X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3, random_state = 0) # -------------- import numpy as np from sklearn.preprocessing import LabelEncoder # Code starts here #Replacing spaces with 'NaN' in train dataset X_train['TotalCharges'].replace(' ',np.NaN, inplace=True) #Replacing spaces with 'NaN' in test dataset X_test['TotalCharges'].replace(' ',np.NaN, inplace=True) #Converting the type of column from X_train to float X_train['TotalCharges'] = X_train['TotalCharges'].astype(float) #Converting the type of column from X_test to float X_test['TotalCharges'] = X_test['TotalCharges'].astype(float) #Filling missing values X_train['TotalCharges'].fillna(X_train['TotalCharges'].mean(),inplace=True) X_test['TotalCharges'].fillna(X_train['TotalCharges'].mean(), inplace=True) #Check value counts print(X_train.isnull().sum()) cat_cols = X_train.select_dtypes(include='O').columns.tolist() #Label encoding train data for x in cat_cols: le = LabelEncoder() X_train[x] = le.fit_transform(X_train[x]) #Label encoding test data for x in cat_cols: le = LabelEncoder() X_test[x] = le.fit_transform(X_test[x]) #Encoding train data target y_train = y_train.replace({'No':0, 'Yes':1}) #Encoding test data target y_test = y_test.replace({'No':0, 'Yes':1}) # -------------- from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score,classification_report,confusion_matrix # Code starts here X_train.head() X_test.head() y_train.head() y_test.head() ada_model = AdaBoostClassifier(random_state=0) ada_model.fit(X_train,y_train) y_pred = ada_model.predict(X_test) ada_score = accuracy_score(y_test,y_pred) ada_cm = confusion_matrix(y_test,y_pred) ada_cr = classification_report(y_pred,y_test) # -------------- from xgboost import XGBClassifier from sklearn.model_selection import GridSearchCV #Parameter list parameters={'learning_rate':[0.1,0.15,0.2,0.25,0.3], 'max_depth':range(1,3)} # Code starts here xgb_model = XGBClassifier(random_state=0) xgb_model.fit(X_train,y_train) y_pred = xgb_model.predict(X_test) xgb_score = accuracy_score(y_test,y_pred) xgb_cm = confusion_matrix(y_test,y_pred) xgb_cr = classification_report(y_pred,y_test) clf_model = GridSearchCV(estimator=xgb_model,param_grid=parameters) clf_model.fit(X_train,y_train) y_pred = clf_model.predict(X_test) clf_score = accuracy_score(y_test,y_pred) clf_cm = confusion_matrix(y_test,y_pred) clf_cr = classification_report(y_pred,y_test) print(xgb_score) print(xgb_cm) print(xgb_cr) print('='*20) print(clf_score) print(clf_cm) print(clf_cr)
the-stack_0_26989
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # SOURCE: https://ru.wikipedia.org/wiki/BMP # SOURCE: https://en.wikipedia.org/wiki/BMP_file_format import glob import struct # https://en.wikipedia.org/wiki/BMP_file_format#DIB_header_(bitmap_information_header) SIZE_BY_HEADER_TYPE = { 12: 'BITMAPCOREHEADER / OS21XBITMAPHEADER', 64: 'OS22XBITMAPHEADER', 16: 'OS22XBITMAPHEADER', 40: 'BITMAPINFOHEADER', 52: 'BITMAPV2INFOHEADER', 56: 'BITMAPV3INFOHEADER', 108: 'BITMAPV4HEADER', 124: 'BITMAPV5HEADER', } def print_info(file_name: str): with open(file_name, 'rb') as f: # Bitmap file header # BITMAPFILEHEADER bfType = f.read(2) print('bfType:', bfType) data = f.read(12) bfSize, bfReserved1, bfReserved2, bfOffBits \ = struct.unpack('<IHHI', data) print('bfSize:', bfSize) print('bfReserved1:', bfReserved1) print('bfReserved2:', bfReserved2) print('bfOffBits:', bfOffBits) # DIB header data = f.read(4) size = struct.unpack('<I', data)[0] print('size:', size) print('Header:', SIZE_BY_HEADER_TYPE.get(size, '<Unknown>')) if __name__ == '__main__': for file_name in glob.glob('*.bmp'): print(file_name) print_info(file_name) print()
the-stack_0_26990
import os os.environ['CUDA_VISIBLE_DEVICES'] = '1' import pickle as pkl import torch import torch.nn as nn import torch.optim as optim import pandas as pd import torch.nn.functional as F from torch.autograd import Variable from model import AttentionLSTMClassifier from torch.utils.data import Dataset, DataLoader from early_stop import EarlyStop from measurement import CalculateFM import numpy as np import matplotlib.pyplot as plt class DataSet(Dataset): def __init__(self, __fold_path, __pad_len, __word2id, __num_labels, max_size=None): self.pad_len = __pad_len self.word2id = __word2id self.pad_int = __word2id['<pad>'] if max_size is not None: self.source = self.source[:max_size] self.target = self.target[:max_size] self.tag = self.tag[:max_size] self.data = [] self.label = [] self.num_label = __num_labels self.seq_len = [] self.read_data(__fold_path) assert len(self.seq_len) == len(self.data) == len(self.label) def read_data(self, __fold_path): with open(__fold_path, 'r') as f: for line in f.readlines(): tokens = line.split('\t') tmp = [self.word2id[x] for x in tokens[1].split() if x in self.word2id] if len(tmp) == 0: tmp = [self.word2id['<unk>']] self.seq_len.append(len(tmp) if len(tmp) < self.pad_len else self.pad_len) if len(tmp) > self.pad_len: tmp = tmp[: self.pad_len] self.data.append(tmp + [self.pad_int] * (self.pad_len - len(tmp))) tmp2 = tokens[2:] a_label = [0] * self.num_label for item in tmp2: a_label[int(item)] = 1 self.label.append(a_label) def __len__(self): return len(self.data) def __getitem__(self, idx): return torch.LongTensor(self.data[idx]), torch.LongTensor([self.seq_len[idx]]), torch.FloatTensor(self.label[idx]) def build_vocab(fold_path, use_unk=True): word_count = {} word2id = {} id2word = {} with open(os.path.join(fold_path, 'vocubulary.txt')) as f: # add <pad> first word2id['<pad>'] = 0 id2word[0] = '<pad>' if use_unk: word2id['<unk>'] = 1 id2word[1] = '<unk>' n = len(word2id) for word in f.readlines(): w = word.strip() word2id[w] = n id2word[n] = w n += 1 return word2id, id2word def sort_batch(batch, ys, lengths): seq_lengths, perm_idx = lengths.sort(0, descending=True) seq_tensor = batch[perm_idx] targ_tensor = ys[perm_idx] return seq_tensor, targ_tensor, seq_lengths def one_fold(fold_int, is_nine_folds): fold_id = str(fold_int) if is_nine_folds: fold_path = 'data/Folds_9_Emotions/fold_' + fold_id num_labels = 9 else: fold_path = 'data/Folds/fold_' + fold_id num_labels = 16 pad_len = 30 batch_size = 64 hidden_dim = 600 word2id, id2word = build_vocab(fold_path, use_unk=True) vocab_size = len(word2id) embedding_dim = len(word2id) es = EarlyStop(2) train_data = DataSet(os.path.join(fold_path, 'train.csv'), pad_len, word2id, num_labels) train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) test_data = DataSet(os.path.join(fold_path, 'test.csv'), pad_len, word2id, num_labels) test_loader = DataLoader(test_data, batch_size=batch_size) model = AttentionLSTMClassifier(embedding_dim, hidden_dim, vocab_size, word2id, num_labels, batch_size) model.load_bog_embedding(word2id) model.cuda() optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters())) loss_criterion = nn.BCELoss() for epoch in range(4): print('Epoch:', epoch, '===================================') train_loss = 0 for i, (data, seq_len, label) in enumerate(train_loader): data, label, seq_len = sort_batch(data, label, seq_len.view(-1)) y_pred = model(Variable(data).cuda(), seq_len) optimizer.zero_grad() loss = loss_criterion(y_pred, Variable(label).cuda()) loss.backward() optimizer.step() train_loss += loss.data[0] pred_list = [] gold_list = [] test_loss = 0 for i, (data, seq_len, label) in enumerate(test_loader): data, label, seq_len = sort_batch(data, label, seq_len.view(-1)) y_pred = model(Variable(data, volatile=True).cuda(), seq_len) loss = loss_criterion(y_pred, Variable(label, volatile=True).cuda()) test_loss += loss.data[0] pred_list.append(y_pred.data.cpu().numpy()) gold_list.append(label.numpy()) print("Train Loss: ", train_loss, " Evaluation: ", test_loss) es.new_loss(test_loss) if es.if_stop(): print('Start over fitting') break f_ma = [] f_mi = [] for threshold in range(0, 100, 5): threshold /= 100 tmp = CalculateFM(np.concatenate(pred_list, axis=0), np.concatenate(gold_list, axis=0), threshold=threshold) f_ma.append(tmp['MacroFM']) f_mi.append(tmp['MicroFM']) return f_ma, f_mi if __name__ == '__main__': f_ma_list = [] f_mi_list = [] for i in range(5): f_ma, f_mi = one_fold(i, is_nine_folds=True) f_ma_list.append(f_ma) f_mi_list.append(f_mi) f_ma_np_9 = np.asarray(f_ma_list)#.mean(axis=0) f_mi_np_9 = np.asarray(f_mi_list)#.mean(axis=0) f_ma_list = [] f_mi_list = [] for i in range(5): f_ma, f_mi = one_fold(i, is_nine_folds=False) f_ma_list.append(f_ma) f_mi_list.append(f_mi) f_ma_np_16 = np.asarray(f_ma_list)#.mean(axis=0) f_mi_np_16 = np.asarray(f_mi_list)#.mean(axis=0) import scipy.io as sio sio.savemat('bow5k.mat', {'bow_9_ma': f_ma_np_9, 'bow_9_mi': f_mi_np_9, 'bow_16_ma': f_ma_np_16, 'bow_16_mi': f_mi_np_16}) # print(f_ma_np_16[3]) # print(f_mi_np_16[3]) # # t = np.arange(0., 1., 0.05) # # plt.plot(t, f_ma_np_16, 'b--', label='Macro FM') # plt.plot(t, f_ma_np_16, 'r-.', label='Micro FM') # plt.legend() # # plt.show()
the-stack_0_26992
import numpy as np import tensorflow as tf import locale locale.setlocale(locale.LC_ALL, '') _params = {} _qparams = {} _param_aliases = {} def qparam(name, cls, args): if name not in _qparams: instance = cls(**args) _qparams[name] = instance result = _qparams[name] return result def param(name, *args, **kwargs): """ A wrapper for `tf.Variable` which enables parameter sharing in models. Creates and returns theano shared variables similarly to `tf.Variable`, except if you try to create a param with the same name as a previously-created one, `param(...)` will just return the old one instead of making a new one. This constructor also adds a `param` attribute to the shared variables it creates, so that you can easily search a graph for all params. """ if name not in _params: kwargs['name'] = name param = tf.Variable(*args, **kwargs) param.param = True _params[name] = param result = _params[name] i = 0 while result in _param_aliases: # print 'following alias {}: {} to {}'.format(i, result, _param_aliases[result]) i += 1 result = _param_aliases[result] return result def params_with_name(name): tf_params = [p for n,p in _params.items() if name in n] keras_list = [p.trainable_weights for n,p in _qparams.items() if name in n] keras_params = [item for sublist in keras_list for item in sublist] print([n for n,p in _qparams.items() if name in n]) return tf_params + keras_params def delete_all_params(): _params.clear() def alias_params(replace_dict): for old,new in replace_dict.items(): # print "aliasing {} to {}".format(old,new) _param_aliases[old] = new def delete_param_aliases(): _param_aliases.clear() # def search(node, critereon): # """ # Traverse the Theano graph starting at `node` and return a list of all nodes # which match the `critereon` function. When optimizing a cost function, you # can use this to get a list of all of the trainable params in the graph, like # so: # `lib.search(cost, lambda x: hasattr(x, "param"))` # """ # def _search(node, critereon, visited): # if node in visited: # return [] # visited.add(node) # results = [] # if isinstance(node, T.Apply): # for inp in node.inputs: # results += _search(inp, critereon, visited) # else: # Variable node # if critereon(node): # results.append(node) # if node.owner is not None: # results += _search(node.owner, critereon, visited) # return results # return _search(node, critereon, set()) # def print_params_info(params): # """Print information about the parameters in the given param set.""" # params = sorted(params, key=lambda p: p.name) # values = [p.get_value(borrow=True) for p in params] # shapes = [p.shape for p in values] # print "Params for cost:" # for param, value, shape in zip(params, values, shapes): # print "\t{0} ({1})".format( # param.name, # ",".join([str(x) for x in shape]) # ) # total_param_count = 0 # for shape in shapes: # param_count = 1 # for dim in shape: # param_count *= dim # total_param_count += param_count # print "Total parameter count: {0}".format( # locale.format("%d", total_param_count, grouping=True) # ) def print_model_settings(locals_): print("Uppercase local vars:") all_vars = [(k,v) for (k,v) in locals_.items() if (k.isupper() and k!='T' and k!='SETTINGS' and k!='ALL_SETTINGS')] all_vars = sorted(all_vars, key=lambda x: x[0]) for var_name, var_value in all_vars: print("\t{}: {}".format(var_name, var_value)) def print_model_settings_dict(settings): print("Settings dict:") all_vars = [(k,v) for (k,v) in settings.items()] all_vars = sorted(all_vars, key=lambda x: x[0]) for var_name, var_value in all_vars: print("\t{}: {}".format(var_name, var_value))
the-stack_0_26994
from tkinter import * from factory import Factory Config = Factory.get('Config') from ark.thread_handler import ThreadHandler from ark.gui.tasks import GuiTasks from ark.gui.control import Control import time class PyArcGui(Frame): gui_title = "pyarc - Rcon for Ark Survival" gui_size = "1200x700" def __init__(self, master): Frame.__init__(self,master) self.pack(fill=BOTH, expand=1) self.create_widgets() ThreadHandler.create_thread(GuiTasks.loop) def create_widgets(self): self.feedback = Text(self,width=100,height=40,wrap=WORD) self.feedback.place(x=0,y=0) self.feedback_scrollbar = Scrollbar(self.feedback) self.feedback_scrollbar.place(x=785,y=0,height=640) self.feedback.config(yscrollcommand=self.feedback_scrollbar.set) self.feedback_scrollbar.config(command=self.feedback.yview) Label(self,text="Command:", width=10).place(y=650,x=0) self.command = Entry(self, width=120) self.command.bind('<Return>',Control.process_input) self.command.place(y=650,x=80) Label(self,text="Server version:", width=20, anchor=W).place(y=0,x=810) self.server_version = Label(self,text="[Unknown]", width=20, anchor=W, relief=GROOVE) self.server_version.place(y=0,x=960) Label(self,text="Server address:", width=20, anchor=W).place(y=25,x=810) self.server_info = Label(self,text=Config.rcon_host, width=20, anchor=W, relief=GROOVE) self.server_info.place(y=25,x=960) Label(self,text="Config file:", width=20, anchor=W).place(y=50,x=810) self.config_file = Label(self,text=Config.filename, width=20, anchor=W, relief=GROOVE) self.config_file.place(y=50,x=960) Label(self,text="Last keepalive:", width=20, anchor=W).place(y=75,x=810) self.last_keepalive = Label(self,text="Never", width=20, anchor=W, relief=GROOVE) self.last_keepalive.place(y=75,x=960) Label(self,text="Last server response:", width=20, anchor=W).place(y=100,x=810) self.last_serverresponse = Label(self,text="Never", width=20, anchor=W, relief=GROOVE) self.last_serverresponse.place(y=100,x=960) Label(self,text="Last player activity:", width=20, anchor=W).place(y=125,x=810) self.last_player_activity = Label(self,text="Never", width=20, anchor=W, relief=GROOVE) self.last_player_activity.place(y=125,x=960) Label(self,text="Active threads:", width=20, anchor=W).place(y=150,x=810) self.active_threads = Label(self,text="", width=20, anchor=W, relief=GROOVE) self.active_threads.place(y=150,x=960) Label(self,text="List of players:").place(y=400,x=810) self.player_list = Listbox(self, relief=SUNKEN, height=10, width=40) self.player_list.insert(END,'[Not available]') self.player_list.place(y=425,x=810) Button(text='Restart Now',command=self.ev_restart_now, bg='#666', fg="#EEE").place(y=600,x=810) Button(text='Restart 60min',command=lambda:self.ev_restart_min(60), bg='#666', fg="#EEE").place(y=600,x=900) Button(text='Restart 30min',command=lambda:self.ev_restart_min(30), bg='#666', fg="#EEE").place(y=600,x=990) Button(text='Restart 10min',command=lambda:self.ev_restart_min(10), bg='#666', fg="#EEE").place(y=600,x=1080) def write(self,message): self.feedback.insert(END,message) self.feedback.see('end') def log(self,message): self.feedback.insert(END,message + "\n") self.feedback.see('end') def is_online(self): #self.log('Not connected to RCON') return True def ev_restart_min(self,minutes): if not self.is_online(): return False from ark.rcon import Rcon Rcon.delayed_restart(minutes) def ev_restart_now(self): if not self.is_online(): return False self.log('Restart button pressed') from ark.rcon import Rcon Rcon.callback_restart()
the-stack_0_26995
import asyncio import pytest import time from greenberry.consensus.block_rewards import calculate_base_farmer_reward, calculate_pool_reward from greenberry.protocols.full_node_protocol import RespondBlock from greenberry.server.server import GreenBerryServer from greenberry.simulator.simulator_protocol import FarmNewBlockProtocol, ReorgProtocol from greenberry.types.peer_info import PeerInfo from greenberry.util.ints import uint16, uint32, uint64 from greenberry.wallet.util.transaction_type import TransactionType from greenberry.wallet.transaction_record import TransactionRecord from greenberry.wallet.wallet_node import WalletNode from greenberry.wallet.wallet_state_manager import WalletStateManager from tests.setup_nodes import self_hostname, setup_simulators_and_wallets from tests.time_out_assert import time_out_assert, time_out_assert_not_none from tests.wallet.cc_wallet.test_cc_wallet import tx_in_pool @pytest.fixture(scope="module") def event_loop(): loop = asyncio.get_event_loop() yield loop class TestWalletSimulator: @pytest.fixture(scope="function") async def wallet_node(self): async for _ in setup_simulators_and_wallets(1, 1, {}): yield _ @pytest.fixture(scope="function") async def two_wallet_nodes(self): async for _ in setup_simulators_and_wallets(1, 2, {}): yield _ @pytest.fixture(scope="function") async def two_wallet_nodes_five_freeze(self): async for _ in setup_simulators_and_wallets(1, 2, {}): yield _ @pytest.fixture(scope="function") async def three_sim_two_wallets(self): async for _ in setup_simulators_and_wallets(3, 2, {}): yield _ @pytest.mark.asyncio async def test_wallet_coinbase(self, wallet_node): num_blocks = 10 full_nodes, wallets = wallet_node full_node_api = full_nodes[0] server_1: GreenBerryServer = full_node_api.full_node.server wallet_node, server_2 = wallets[0] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(server_1._port)), None) for i in range(0, num_blocks): await full_node_api.farm_new_block(FarmNewBlockProtocol(ph)) await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks + 2) ] ) async def check_tx_are_pool_farm_rewards(): wsm: WalletStateManager = wallet_node.wallet_state_manager all_txs = await wsm.get_all_transactions(1) expected_count = (num_blocks + 1) * 2 if len(all_txs) != expected_count: return False pool_rewards = 0 farm_rewards = 0 for tx in all_txs: if tx.type == TransactionType.COINBASE_REWARD: pool_rewards += 1 elif tx.type == TransactionType.FEE_REWARD: farm_rewards += 1 if pool_rewards != expected_count / 2: return False if farm_rewards != expected_count / 2: return False return True await time_out_assert(10, check_tx_are_pool_farm_rewards, True) await time_out_assert(5, wallet.get_confirmed_balance, funds) @pytest.mark.asyncio async def test_wallet_make_transaction(self, two_wallet_nodes): num_blocks = 5 full_nodes, wallets = two_wallet_nodes full_node_api = full_nodes[0] server_1 = full_node_api.full_node.server wallet_node, server_2 = wallets[0] wallet_node_2, server_3 = wallets[1] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(server_1._port)), None) for i in range(0, num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet.get_confirmed_balance, funds) await time_out_assert(5, wallet.get_unconfirmed_balance, funds) tx = await wallet.generate_signed_transaction( 10, await wallet_node_2.wallet_state_manager.main_wallet.get_new_puzzlehash(), 0, ) await wallet.push_transaction(tx) await time_out_assert(5, wallet.get_confirmed_balance, funds) await time_out_assert(5, wallet.get_unconfirmed_balance, funds - 10) for i in range(0, num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) new_funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, (2 * num_blocks)) ] ) await time_out_assert(5, wallet.get_confirmed_balance, new_funds - 10) await time_out_assert(5, wallet.get_unconfirmed_balance, new_funds - 10) @pytest.mark.asyncio async def test_wallet_coinbase_reorg(self, wallet_node): num_blocks = 5 full_nodes, wallets = wallet_node full_node_api = full_nodes[0] fn_server = full_node_api.full_node.server wallet_node, server_2 = wallets[0] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(fn_server._port)), None) for i in range(0, num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet.get_confirmed_balance, funds) await full_node_api.reorg_from_index_to_new_index(ReorgProtocol(uint32(2), uint32(num_blocks + 6), 32 * b"0")) funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks - 2) ] ) await time_out_assert(5, wallet.get_confirmed_balance, funds) @pytest.mark.asyncio async def test_wallet_send_to_three_peers(self, three_sim_two_wallets): num_blocks = 10 full_nodes, wallets = three_sim_two_wallets wallet_0, wallet_server_0 = wallets[0] full_node_api_0 = full_nodes[0] full_node_api_1 = full_nodes[1] full_node_api_2 = full_nodes[2] full_node_0 = full_node_api_0.full_node full_node_1 = full_node_api_1.full_node full_node_2 = full_node_api_2.full_node server_0 = full_node_0.server server_1 = full_node_1.server server_2 = full_node_2.server ph = await wallet_0.wallet_state_manager.main_wallet.get_new_puzzlehash() # wallet0 <-> sever0 await wallet_server_0.start_client(PeerInfo(self_hostname, uint16(server_0._port)), None) for i in range(0, num_blocks): await full_node_api_0.farm_new_transaction_block(FarmNewBlockProtocol(ph)) all_blocks = await full_node_api_0.get_all_full_blocks() for block in all_blocks: await full_node_1.respond_block(RespondBlock(block)) await full_node_2.respond_block(RespondBlock(block)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet_0.wallet_state_manager.main_wallet.get_confirmed_balance, funds) tx = await wallet_0.wallet_state_manager.main_wallet.generate_signed_transaction(10, 32 * b"0", 0) await wallet_0.wallet_state_manager.main_wallet.push_transaction(tx) await time_out_assert_not_none(5, full_node_0.mempool_manager.get_spendbundle, tx.spend_bundle.name()) # wallet0 <-> sever1 await wallet_server_0.start_client(PeerInfo(self_hostname, uint16(server_1._port)), wallet_0.on_connect) await time_out_assert_not_none(5, full_node_1.mempool_manager.get_spendbundle, tx.spend_bundle.name()) # wallet0 <-> sever2 await wallet_server_0.start_client(PeerInfo(self_hostname, uint16(server_2._port)), wallet_0.on_connect) await time_out_assert_not_none(5, full_node_2.mempool_manager.get_spendbundle, tx.spend_bundle.name()) @pytest.mark.asyncio async def test_wallet_make_transaction_hop(self, two_wallet_nodes_five_freeze): num_blocks = 10 full_nodes, wallets = two_wallet_nodes_five_freeze full_node_api_0 = full_nodes[0] full_node_0 = full_node_api_0.full_node server_0 = full_node_0.server wallet_node_0, wallet_0_server = wallets[0] wallet_node_1, wallet_1_server = wallets[1] wallet_0 = wallet_node_0.wallet_state_manager.main_wallet wallet_1 = wallet_node_1.wallet_state_manager.main_wallet ph = await wallet_0.get_new_puzzlehash() await wallet_0_server.start_client(PeerInfo(self_hostname, uint16(server_0._port)), None) await wallet_1_server.start_client(PeerInfo(self_hostname, uint16(server_0._port)), None) for i in range(0, num_blocks): await full_node_api_0.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet_0.get_confirmed_balance, funds) await time_out_assert(5, wallet_0.get_unconfirmed_balance, funds) assert await wallet_0.get_confirmed_balance() == funds assert await wallet_0.get_unconfirmed_balance() == funds tx = await wallet_0.generate_signed_transaction( 10, await wallet_node_1.wallet_state_manager.main_wallet.get_new_puzzlehash(), 0, ) await wallet_0.push_transaction(tx) # Full node height 11, wallet height 9 await time_out_assert(5, wallet_0.get_confirmed_balance, funds) await time_out_assert(5, wallet_0.get_unconfirmed_balance, funds - 10) for i in range(0, 4): await full_node_api_0.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) # here it's num_blocks + 1 because our last reward is included in the first block that we just farmed new_funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks + 1) ] ) # Full node height 17, wallet height 15 await time_out_assert(5, wallet_0.get_confirmed_balance, new_funds - 10) await time_out_assert(5, wallet_0.get_unconfirmed_balance, new_funds - 10) await time_out_assert(5, wallet_1.get_confirmed_balance, 10) tx = await wallet_1.generate_signed_transaction(5, await wallet_0.get_new_puzzlehash(), 0) await wallet_1.push_transaction(tx) for i in range(0, 4): await full_node_api_0.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) await wallet_0.get_confirmed_balance() await wallet_0.get_unconfirmed_balance() await wallet_1.get_confirmed_balance() await time_out_assert(5, wallet_0.get_confirmed_balance, new_funds - 5) await time_out_assert(5, wallet_0.get_unconfirmed_balance, new_funds - 5) await time_out_assert(5, wallet_1.get_confirmed_balance, 5) # @pytest.mark.asyncio # async def test_wallet_finds_full_node(self): # node_iters = [ # setup_full_node( # test_constants, # "blockchain_test.db", # 11234, # introducer_port=11236, # simulator=False, # ), # setup_wallet_node( # 11235, # test_constants, # None, # introducer_port=11236, # ), # setup_introducer(11236), # ] # # full_node_api = await node_iters[0].__anext__() # wallet, wallet_server = await node_iters[1].__anext__() # introducer, introducer_server = await node_iters[2].__anext__() # # async def has_full_node(): # outbound: List[WSGreenBerryConnection] = wallet.server.get_outgoing_connections() # for connection in outbound: # if connection.connection_type is NodeType.FULL_NODE: # return True # return False # # await time_out_assert( # 2 * 60, # has_full_node, # True, # ) # await _teardown_nodes(node_iters) @pytest.mark.asyncio async def test_wallet_make_transaction_with_fee(self, two_wallet_nodes): num_blocks = 5 full_nodes, wallets = two_wallet_nodes full_node_1 = full_nodes[0] wallet_node, server_2 = wallets[0] wallet_node_2, server_3 = wallets[1] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(full_node_1.full_node.server._port)), None) for i in range(0, num_blocks): await full_node_1.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet.get_confirmed_balance, funds) await time_out_assert(5, wallet.get_unconfirmed_balance, funds) assert await wallet.get_confirmed_balance() == funds assert await wallet.get_unconfirmed_balance() == funds tx_amount = 3200000000000 tx_fee = 10 tx = await wallet.generate_signed_transaction( tx_amount, await wallet_node_2.wallet_state_manager.main_wallet.get_new_puzzlehash(), tx_fee, ) fees = tx.spend_bundle.fees() assert fees == tx_fee await wallet.push_transaction(tx) await time_out_assert(5, wallet.get_confirmed_balance, funds) await time_out_assert(5, wallet.get_unconfirmed_balance, funds - tx_amount - tx_fee) for i in range(0, num_blocks): await full_node_1.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) new_funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks + 1) ] ) await time_out_assert(5, wallet.get_confirmed_balance, new_funds - tx_amount - tx_fee) await time_out_assert(5, wallet.get_unconfirmed_balance, new_funds - tx_amount - tx_fee) @pytest.mark.asyncio async def test_wallet_create_hit_max_send_amount(self, two_wallet_nodes): num_blocks = 5 full_nodes, wallets = two_wallet_nodes full_node_1 = full_nodes[0] wallet_node, server_2 = wallets[0] wallet_node_2, server_3 = wallets[1] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(full_node_1.full_node.server._port)), None) for i in range(0, num_blocks): await full_node_1.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet.get_confirmed_balance, funds) primaries = [] for i in range(0, 600): primaries.append({"puzzlehash": ph, "amount": 100000000 + i}) tx_split_coins = await wallet.generate_signed_transaction(1, ph, 0, primaries=primaries) await wallet.push_transaction(tx_split_coins) await time_out_assert( 15, tx_in_pool, True, full_node_1.full_node.mempool_manager, tx_split_coins.spend_bundle.name() ) for i in range(0, num_blocks): await full_node_1.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks + 1) ] ) await time_out_assert(90, wallet.get_confirmed_balance, funds) max_sent_amount = await wallet.get_max_send_amount() # 1) Generate transaction that is under the limit under_limit_tx = None try: under_limit_tx = await wallet.generate_signed_transaction( max_sent_amount - 1, ph, 0, ) except ValueError: assert ValueError assert under_limit_tx is not None # 2) Generate transaction that is equal to limit at_limit_tx = None try: at_limit_tx = await wallet.generate_signed_transaction( max_sent_amount, ph, 0, ) except ValueError: assert ValueError assert at_limit_tx is not None # 3) Generate transaction that is greater than limit above_limit_tx = None try: above_limit_tx = await wallet.generate_signed_transaction( max_sent_amount + 1, ph, 0, ) except ValueError: pass assert above_limit_tx is None @pytest.mark.asyncio async def test_wallet_prevent_fee_theft(self, two_wallet_nodes): num_blocks = 5 full_nodes, wallets = two_wallet_nodes full_node_1 = full_nodes[0] wallet_node, server_2 = wallets[0] wallet_node_2, server_3 = wallets[1] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(full_node_1.full_node.server._port)), None) for i in range(0, num_blocks): await full_node_1.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet.get_confirmed_balance, funds) await time_out_assert(5, wallet.get_unconfirmed_balance, funds) assert await wallet.get_confirmed_balance() == funds assert await wallet.get_unconfirmed_balance() == funds tx_amount = 3200000000000 tx_fee = 300000000000 tx = await wallet.generate_signed_transaction( tx_amount, await wallet_node_2.wallet_state_manager.main_wallet.get_new_puzzlehash(), tx_fee, ) # extract coin_solution from generated spend_bundle for cs in tx.spend_bundle.coin_solutions: if cs.additions() == []: stolen_cs = cs # get a legit signature stolen_sb = await wallet.sign_transaction([stolen_cs]) now = uint64(int(time.time())) add_list = list(stolen_sb.additions()) rem_list = list(stolen_sb.removals()) name = stolen_sb.name() stolen_tx = TransactionRecord( confirmed_at_height=uint32(0), created_at_time=now, to_puzzle_hash=32 * b"0", amount=0, fee_amount=stolen_cs.coin.amount, confirmed=False, sent=uint32(0), spend_bundle=stolen_sb, additions=add_list, removals=rem_list, wallet_id=wallet.id(), sent_to=[], trade_id=None, type=uint32(TransactionType.OUTGOING_TX.value), name=name, ) await wallet.push_transaction(stolen_tx) await time_out_assert(5, wallet.get_confirmed_balance, funds) await time_out_assert(5, wallet.get_unconfirmed_balance, funds - stolen_cs.coin.amount) for i in range(0, num_blocks): await full_node_1.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) # Funds have not decreased because stolen_tx was rejected outstanding_coinbase_rewards = 2000000000000 await time_out_assert(5, wallet.get_confirmed_balance, funds + outstanding_coinbase_rewards) await time_out_assert(5, wallet.get_confirmed_balance, funds + outstanding_coinbase_rewards) @pytest.mark.asyncio async def test_wallet_tx_reorg(self, two_wallet_nodes): num_blocks = 5 full_nodes, wallets = two_wallet_nodes full_node_api = full_nodes[0] fn_server = full_node_api.full_node.server wallet_node, server_2 = wallets[0] wallet_node: WalletNode = wallet_node wallet_node_2, server_3 = wallets[1] wallet = wallet_node.wallet_state_manager.main_wallet wallet_2 = wallet_node_2.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() ph2 = await wallet_2.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(fn_server._port)), None) await server_3.start_client(PeerInfo(self_hostname, uint16(fn_server._port)), None) for i in range(0, num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) # Waits a few seconds to receive rewards all_blocks = await full_node_api.get_all_full_blocks() # Ensure that we use a coin that we will not reorg out coin = list(all_blocks[-3].get_included_reward_coins())[0] await asyncio.sleep(5) tx = await wallet.generate_signed_transaction(1000, ph2, coins={coin}) await wallet.push_transaction(tx) await full_node_api.full_node.respond_transaction(tx.spend_bundle, tx.name) await time_out_assert(5, wallet.get_confirmed_balance, funds) for i in range(0, 2): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) await time_out_assert(5, wallet_2.get_confirmed_balance, 1000) await time_out_assert(5, wallet_node.wallet_state_manager.blockchain.get_peak_height, 7) peak_height = full_node_api.full_node.blockchain.get_peak().height print(peak_height) # Perform a reorg, which will revert the transaction in the full node and wallet, and cause wallet to resubmit await full_node_api.reorg_from_index_to_new_index( ReorgProtocol(uint32(peak_height - 3), uint32(peak_height + 3), 32 * b"0") ) funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, peak_height - 2) ] ) await time_out_assert(7, full_node_api.full_node.blockchain.get_peak_height, peak_height + 3) await time_out_assert(7, wallet_node.wallet_state_manager.blockchain.get_peak_height, peak_height + 3) # Farm a few blocks so we can confirm the resubmitted transaction for i in range(0, num_blocks): await asyncio.sleep(1) await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) # By this point, the transaction should be confirmed print(await wallet.get_confirmed_balance()) await time_out_assert(15, wallet.get_confirmed_balance, funds - 1000) unconfirmed = await wallet_node.wallet_state_manager.tx_store.get_unconfirmed_for_wallet(int(wallet.id())) assert len(unconfirmed) == 0 tx_record = await wallet_node.wallet_state_manager.tx_store.get_transaction_record(tx.name) removed = tx_record.removals[0] added = tx_record.additions[0] added_1 = tx_record.additions[1] wallet_coin_record_rem = await wallet_node.wallet_state_manager.coin_store.get_coin_record(removed.name()) assert wallet_coin_record_rem.spent coin_record_full_node = await full_node_api.full_node.coin_store.get_coin_record(removed.name()) assert coin_record_full_node.spent add_1_coin_record_full_node = await full_node_api.full_node.coin_store.get_coin_record(added.name()) assert add_1_coin_record_full_node is not None assert add_1_coin_record_full_node.confirmed_block_index > 0 add_2_coin_record_full_node = await full_node_api.full_node.coin_store.get_coin_record(added_1.name()) assert add_2_coin_record_full_node is not None assert add_2_coin_record_full_node.confirmed_block_index > 0
the-stack_0_26996
import copy import enum import logging import time from typing import Tuple import cv2 from matplotlib import pyplot as plt from data_labeling import labeling_config from data_labeling.frame_annotation import FrameAnnotation from data_labeling.labeling_utils import get_extrapolated_ir_frame_heatmap_flipped class KeyAction(enum.Enum): UNKNOWN = None a_ACCEPT = ord('a') d_DISCARD = ord('d') e_PREVIOUS = ord('e') r_NEXT = ord('r') c_CLEAR = ord('c') z_RECTANGLE = ord('z') x_POINT = ord('x') n_AUTOMOVE_TO_NEXT_FRAME = ord('n') q_QUIT = ord('q') @classmethod def from_pressed_key(cls, key): try: return cls(key) except: return KeyAction.UNKNOWN def as_char(self): return chr(self.value) @classmethod def get_help_message(cls): return f'Key controls:\n' \ f' {KeyAction.a_ACCEPT.as_char()}) accept annotation and move to the next one\n' \ f' {KeyAction.d_DISCARD.as_char()}) discard annotation on this frame and move to the next one this frame will be marked as ignored)\n' \ f' {KeyAction.e_PREVIOUS.as_char()}) just move to to the previous frame\n' \ f' {KeyAction.r_NEXT.as_char()}) just move to to the next frame\n' \ f' {KeyAction.c_CLEAR.as_char()}) clear annotation on this frame\n' \ f' {KeyAction.z_RECTANGLE.as_char()}) annotate person with a rectangle\n' \ f' {KeyAction.x_POINT.as_char()}) annotate person centre with single point\n' \ f' {KeyAction.n_AUTOMOVE_TO_NEXT_FRAME.as_char()}) enable/disable automatic move to the next frame after button release\n' \ f' {KeyAction.q_QUIT.as_char()}) quit annotating' class DrawingMode(enum.Enum): RECTANGLE = KeyAction.z_RECTANGLE.value SINGLE_POINT = KeyAction.x_POINT.value class SingleFrameAnnotator: def __init__(self, ir_frame, rgb_frame, drawing_mode: DrawingMode, initial_annotations: FrameAnnotation = None, automove_to_next_frame_after_mouse_released=False): self.ir_frame_interpolated = get_extrapolated_ir_frame_heatmap_flipped( frame_2d=ir_frame, multiplier=labeling_config.IR_FRAME_RESIZE_MULTIPLIER, interpolation=labeling_config.IR_FRAME_INTERPOLATION_METHOD, min_temp=labeling_config.MIN_TEMPERATURE_ON_PLOT, max_temp=labeling_config.MAX_TEMPERATURE_ON_PLOT, colormap=plt.get_cmap('inferno')) self.ir_frame_pixel_resized = get_extrapolated_ir_frame_heatmap_flipped( frame_2d=ir_frame, multiplier=labeling_config.IR_FRAME_RESIZE_MULTIPLIER, interpolation=cv2.INTER_NEAREST_EXACT, min_temp=None, max_temp=None, colormap=plt.get_cmap('viridis')) new_rgb_frame_size = (labeling_config.RGB_FRAME_RESIZE_MULTIPLIER * rgb_frame.shape[1], labeling_config.RGB_FRAME_RESIZE_MULTIPLIER * rgb_frame.shape[0]) self.rgb_frame_resized = cv2.resize(src=rgb_frame, dsize=new_rgb_frame_size, interpolation=cv2.INTER_LINEAR) self.initial_annotations = initial_annotations self.new_annotations = copy.deepcopy(self.initial_annotations or FrameAnnotation()) self._button_press_location = None self._last_mouse_location = None self._button_pressed_and_released = False self.automove_to_next_frame_after_mouse_released = automove_to_next_frame_after_mouse_released # for mode when we move to the next frame after annotaiting one point self.drawing_mode = drawing_mode def _draw_frame(self): ir_frame_interpolated_with_annotation = copy.copy(self.ir_frame_interpolated) ir_frame_pixel_resized_with_annotation = copy.copy(self.ir_frame_pixel_resized) self.add_annotations_on_img(ir_frame_interpolated_with_annotation) self.add_annotations_on_img(ir_frame_pixel_resized_with_annotation) window_is_shown = False try: window_is_shown = (cv2.getWindowProperty("rgb_frame", 0) != -1.0) except: pass # windows is not shown cv2.imshow('rgb_frame', self.rgb_frame_resized) cv2.imshow('ir_frame_interpolated', ir_frame_interpolated_with_annotation) cv2.imshow('ir_frame_pixel_resized', ir_frame_pixel_resized_with_annotation) if not window_is_shown: cv2.moveWindow("rgb_frame", 10, 10) cv2.moveWindow("ir_frame_interpolated", 610, 10) cv2.moveWindow("ir_frame_pixel_resized", 610, 470) def get_annotation_for_frame(self) -> Tuple[KeyAction, FrameAnnotation]: self._draw_frame() cv2.setMouseCallback('ir_frame_interpolated', self._mouse_event) cv2.setMouseCallback('ir_frame_pixel_resized', self._mouse_event) key_action = KeyAction.UNKNOWN while key_action not in [KeyAction.a_ACCEPT, KeyAction.d_DISCARD, KeyAction.e_PREVIOUS, KeyAction.r_NEXT, KeyAction.q_QUIT]: key = cv2.waitKey(100) if key == -1: if self.automove_to_next_frame_after_mouse_released and self._button_pressed_and_released: key_action = KeyAction.r_NEXT # simulate action of moving to the next frame else: continue else: key_action = KeyAction.from_pressed_key(key) logging.info(f"Key pressed action: {key_action.name}") if key_action == KeyAction.x_POINT: self.drawing_mode = DrawingMode.SINGLE_POINT if key_action == KeyAction.z_RECTANGLE: self.drawing_mode = DrawingMode.RECTANGLE if key_action == KeyAction.n_AUTOMOVE_TO_NEXT_FRAME: self.automove_to_next_frame_after_mouse_released = not self.automove_to_next_frame_after_mouse_released logging.info(f"automove_to_next_frame_after_mouse_released state set to {self.automove_to_next_frame_after_mouse_released}") if key_action == KeyAction.c_CLEAR: self.new_annotations = FrameAnnotation() self._draw_frame() if key_action == KeyAction.a_ACCEPT: self.new_annotations.accepted = True self.new_annotations.discarded = False key_action = KeyAction.r_NEXT if key_action == KeyAction.d_DISCARD: self.new_annotations.discarded = True self.new_annotations.accepted = False key_action = KeyAction.r_NEXT return key_action, self.new_annotations def _mouse_event(self, event, x, y, flags, param): redraw = False self._last_mouse_location = x, y if event == cv2.EVENT_LBUTTONDOWN: self._button_press_location = x, y elif event == cv2.EVENT_MOUSEMOVE: if self._button_press_location is not None: redraw = True elif event == cv2.EVENT_LBUTTONUP: self._add_annotation(button_release_location=(x, y)) self._button_press_location = None redraw = True self._button_pressed_and_released = True if redraw: self._draw_frame() def _add_annotation(self, button_release_location): drawing_mode = self.drawing_mode button_press_location = self._button_press_location logging.info(f"Adding annotation at {button_press_location}, mode {drawing_mode.name}") if drawing_mode == DrawingMode.SINGLE_POINT: self.new_annotations.centre_points.append(button_release_location) elif drawing_mode == DrawingMode.RECTANGLE: if not button_press_location: logging.warning("No press location!") return self.new_annotations.rectangles.append((button_press_location, button_release_location)) def add_annotations_on_img(self, img): if self.new_annotations.discarded: color = (33, 33, 33) elif self.new_annotations.accepted: color = (0, 120, 60) else: color = (200, 100, 200) for centre_point in self.new_annotations.centre_points: cv2.circle(img=img, center=centre_point, color=color, radius=4, thickness=3) for top_left, bottom_right in self.new_annotations.rectangles: cv2.rectangle(img=img, pt1=top_left, pt2=bottom_right, color=color, thickness=2) # draw also annotation in progress if self.drawing_mode == DrawingMode.RECTANGLE and self._button_press_location: cv2.rectangle(img=img, pt1=self._button_press_location, pt2=self._last_mouse_location, color=color, thickness=3) if self.new_annotations.discarded: cv2.line(img=img, pt1=(0,0), pt2=img.shape[:2][::-1], color=color, thickness=3) cv2.line(img=img, pt1=(img.shape[1], 0), pt2=(0, img.shape[0]), color=color, thickness=3)
the-stack_0_26997
# Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis Engemann <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import linalg from scipy import stats from scipy.sparse.linalg import eigsh from scipy.special import expit import pytest from sklearn.utils import gen_batches from sklearn.utils._arpack import _init_arpack_v0 from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_allclose from sklearn.utils._testing import assert_allclose_dense_sparse from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_warns from sklearn.utils._testing import assert_warns_message from sklearn.utils._testing import skip_if_32bit from sklearn.utils.extmath import density, _safe_accumulator_op from sklearn.utils.extmath import randomized_svd, _randomized_eigsh from sklearn.utils.extmath import row_norms from sklearn.utils.extmath import weighted_mode from sklearn.utils.extmath import cartesian from sklearn.utils.extmath import log_logistic from sklearn.utils.extmath import svd_flip from sklearn.utils.extmath import _incremental_mean_and_var from sklearn.utils.extmath import _deterministic_vector_sign_flip from sklearn.utils.extmath import softmax from sklearn.utils.extmath import stable_cumsum from sklearn.utils.extmath import safe_sparse_dot from sklearn.datasets import make_low_rank_matrix, make_sparse_spd_matrix def test_density(): rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 5)) X[1, 2] = 0 X[5, 3] = 0 X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_coo = sparse.coo_matrix(X) X_lil = sparse.lil_matrix(X) for X_ in (X_csr, X_csc, X_coo, X_lil): assert density(X_) == density(X) def test_uniform_weights(): # with uniform weights, results should be identical to stats.mode rng = np.random.RandomState(0) x = rng.randint(10, size=(10, 5)) weights = np.ones(x.shape) for axis in (None, 0, 1): mode, score = stats.mode(x, axis) mode2, score2 = weighted_mode(x, weights, axis=axis) assert_array_equal(mode, mode2) assert_array_equal(score, score2) def test_random_weights(): # set this up so that each row should have a weighted mode of 6, # with a score that is easily reproduced mode_result = 6 rng = np.random.RandomState(0) x = rng.randint(mode_result, size=(100, 10)) w = rng.random_sample(x.shape) x[:, :5] = mode_result w[:, :5] += 1 mode, score = weighted_mode(x, w, axis=1) assert_array_equal(mode, mode_result) assert_array_almost_equal(score.ravel(), w[:, :5].sum(1)) def check_randomized_svd_low_rank(dtype): # Check that extmath.randomized_svd is consistent with linalg.svd n_samples = 100 n_features = 500 rank = 5 k = 10 decimal = 5 if dtype == np.float32 else 7 dtype = np.dtype(dtype) # generate a matrix X of approximate effective rank `rank` and no noise # component (very structured signal): X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.0, random_state=0).astype(dtype, copy=False) assert X.shape == (n_samples, n_features) # compute the singular values of X using the slow exact method U, s, Vt = linalg.svd(X, full_matrices=False) # Convert the singular values to the specific dtype U = U.astype(dtype, copy=False) s = s.astype(dtype, copy=False) Vt = Vt.astype(dtype, copy=False) for normalizer in ['auto', 'LU', 'QR']: # 'none' would not be stable # compute the singular values of X using the fast approximate method Ua, sa, Va = randomized_svd( X, k, power_iteration_normalizer=normalizer, random_state=0) # If the input dtype is float, then the output dtype is float of the # same bit size (f32 is not upcast to f64) # But if the input dtype is int, the output dtype is float64 if dtype.kind == 'f': assert Ua.dtype == dtype assert sa.dtype == dtype assert Va.dtype == dtype else: assert Ua.dtype == np.float64 assert sa.dtype == np.float64 assert Va.dtype == np.float64 assert Ua.shape == (n_samples, k) assert sa.shape == (k,) assert Va.shape == (k, n_features) # ensure that the singular values of both methods are equal up to the # real rank of the matrix assert_almost_equal(s[:k], sa, decimal=decimal) # check the singular vectors too (while not checking the sign) assert_almost_equal(np.dot(U[:, :k], Vt[:k, :]), np.dot(Ua, Va), decimal=decimal) # check the sparse matrix representation X = sparse.csr_matrix(X) # compute the singular values of X using the fast approximate method Ua, sa, Va = \ randomized_svd(X, k, power_iteration_normalizer=normalizer, random_state=0) if dtype.kind == 'f': assert Ua.dtype == dtype assert sa.dtype == dtype assert Va.dtype == dtype else: assert Ua.dtype.kind == 'f' assert sa.dtype.kind == 'f' assert Va.dtype.kind == 'f' assert_almost_equal(s[:rank], sa[:rank], decimal=decimal) @pytest.mark.parametrize('dtype', (np.int32, np.int64, np.float32, np.float64)) def test_randomized_svd_low_rank_all_dtypes(dtype): check_randomized_svd_low_rank(dtype) @pytest.mark.parametrize('dtype', (np.int32, np.int64, np.float32, np.float64)) def test_randomized_eigsh(dtype): """Test that `_randomized_eigsh` returns the appropriate components""" rng = np.random.RandomState(42) X = np.diag(np.array([1., -2., 0., 3.], dtype=dtype)) # random rotation that preserves the eigenvalues of X rand_rot = np.linalg.qr(rng.normal(size=X.shape))[0] X = rand_rot @ X @ rand_rot.T # with 'module' selection method, the negative eigenvalue shows up eigvals, eigvecs = _randomized_eigsh(X, n_components=2, selection='module') # eigenvalues assert eigvals.shape == (2,) assert_array_almost_equal(eigvals, [3., -2.]) # negative eigenvalue here # eigenvectors assert eigvecs.shape == (4, 2) # with 'value' selection method, the negative eigenvalue does not show up with pytest.raises(NotImplementedError): _randomized_eigsh(X, n_components=2, selection='value') @pytest.mark.parametrize('k', (10, 50, 100, 199, 200)) def test_randomized_eigsh_compared_to_others(k): """Check that `_randomized_eigsh` is similar to other `eigsh` Tests that for a random PSD matrix, `_randomized_eigsh` provides results comparable to LAPACK (scipy.linalg.eigh) and ARPACK (scipy.sparse.linalg.eigsh). Note: some versions of ARPACK do not support k=n_features. """ # make a random PSD matrix n_features = 200 X = make_sparse_spd_matrix(n_features, random_state=0) # compare two versions of randomized # rough and fast eigvals, eigvecs = _randomized_eigsh(X, n_components=k, selection='module', n_iter=25, random_state=0) # more accurate but slow (TODO find realistic settings here) eigvals_qr, eigvecs_qr = _randomized_eigsh( X, n_components=k, n_iter=25, n_oversamples=20, random_state=0, power_iteration_normalizer="QR", selection='module' ) # with LAPACK eigvals_lapack, eigvecs_lapack = linalg.eigh(X, eigvals=(n_features - k, n_features - 1)) indices = eigvals_lapack.argsort()[::-1] eigvals_lapack = eigvals_lapack[indices] eigvecs_lapack = eigvecs_lapack[:, indices] # -- eigenvalues comparison assert eigvals_lapack.shape == (k,) # comparison precision assert_array_almost_equal(eigvals, eigvals_lapack, decimal=6) assert_array_almost_equal(eigvals_qr, eigvals_lapack, decimal=6) # -- eigenvectors comparison assert eigvecs_lapack.shape == (n_features, k) # flip eigenvectors' sign to enforce deterministic output dummy_vecs = np.zeros_like(eigvecs).T eigvecs, _ = svd_flip(eigvecs, dummy_vecs) eigvecs_qr, _ = svd_flip(eigvecs_qr, dummy_vecs) eigvecs_lapack, _ = svd_flip(eigvecs_lapack, dummy_vecs) assert_array_almost_equal(eigvecs, eigvecs_lapack, decimal=4) assert_array_almost_equal(eigvecs_qr, eigvecs_lapack, decimal=6) # comparison ARPACK ~ LAPACK (some ARPACK implems do not support k=n) if k < n_features: v0 = _init_arpack_v0(n_features, random_state=0) # "LA" largest algebraic <=> selection="value" in randomized_eigsh eigvals_arpack, eigvecs_arpack = eigsh(X, k, which="LA", tol=0, maxiter=None, v0=v0) indices = eigvals_arpack.argsort()[::-1] # eigenvalues eigvals_arpack = eigvals_arpack[indices] assert_array_almost_equal(eigvals_lapack, eigvals_arpack, decimal=10) # eigenvectors eigvecs_arpack = eigvecs_arpack[:, indices] eigvecs_arpack, _ = svd_flip(eigvecs_arpack, dummy_vecs) assert_array_almost_equal(eigvecs_arpack, eigvecs_lapack, decimal=8) @pytest.mark.parametrize("n,rank", [ (10, 7), (100, 10), (100, 80), (500, 10), (500, 250), (500, 400), ]) def test_randomized_eigsh_reconst_low_rank(n, rank): """Check that randomized_eigsh is able to reconstruct a low rank psd matrix Tests that the decomposition provided by `_randomized_eigsh` leads to orthonormal eigenvectors, and that a low rank PSD matrix can be effectively reconstructed with good accuracy using it. """ assert rank < n # create a low rank PSD rng = np.random.RandomState(69) X = rng.randn(n, rank) A = X @ X.T # approximate A with the "right" number of components S, V = _randomized_eigsh(A, n_components=rank, random_state=rng) # orthonormality checks assert_array_almost_equal(np.linalg.norm(V, axis=0), np.ones(S.shape)) assert_array_almost_equal(V.T @ V, np.diag(np.ones(S.shape))) # reconstruction A_reconstruct = V @ np.diag(S) @ V.T # test that the approximation is good assert_array_almost_equal(A_reconstruct, A, decimal=6) @pytest.mark.parametrize('dtype', (np.float32, np.float64)) def test_row_norms(dtype): X = np.random.RandomState(42).randn(100, 100) if dtype is np.float32: precision = 4 else: precision = 5 X = X.astype(dtype, copy=False) sq_norm = (X ** 2).sum(axis=1) assert_array_almost_equal(sq_norm, row_norms(X, squared=True), precision) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X), precision) for csr_index_dtype in [np.int32, np.int64]: Xcsr = sparse.csr_matrix(X, dtype=dtype) # csr_matrix will use int32 indices by default, # up-casting those to int64 when necessary if csr_index_dtype is np.int64: Xcsr.indptr = Xcsr.indptr.astype(csr_index_dtype, copy=False) Xcsr.indices = Xcsr.indices.astype(csr_index_dtype, copy=False) assert Xcsr.indices.dtype == csr_index_dtype assert Xcsr.indptr.dtype == csr_index_dtype assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True), precision) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr), precision) def test_randomized_svd_low_rank_with_noise(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X wity structure approximate rank `rank` and an # important noisy component X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.1, random_state=0) assert X.shape == (n_samples, n_features) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) for normalizer in ['auto', 'none', 'LU', 'QR']: # compute the singular values of X using the fast approximate # method without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0, power_iteration_normalizer=normalizer, random_state=0) # the approximation does not tolerate the noise: assert np.abs(s[:k] - sa).max() > 0.01 # compute the singular values of X using the fast approximate # method with iterated power method _, sap, _ = randomized_svd(X, k, power_iteration_normalizer=normalizer, random_state=0) # the iterated power method is helping getting rid of the noise: assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_infinite_rank(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # let us try again without 'low_rank component': just regularly but slowly # decreasing singular values: the rank of the data matrix is infinite X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=1.0, random_state=0) assert X.shape == (n_samples, n_features) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) for normalizer in ['auto', 'none', 'LU', 'QR']: # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0, power_iteration_normalizer=normalizer, random_state=0) # the approximation does not tolerate the noise: assert np.abs(s[:k] - sa).max() > 0.1 # compute the singular values of X using the fast approximate method # with iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5, power_iteration_normalizer=normalizer, random_state=0) # the iterated power method is still managing to get most of the # structure at the requested rank assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_transpose_consistency(): # Check that transposing the design matrix has limited impact n_samples = 100 n_features = 500 rank = 4 k = 10 X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert X.shape == (n_samples, n_features) U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False, random_state=0) U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True, random_state=0) U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose='auto', random_state=0) U4, s4, V4 = linalg.svd(X, full_matrices=False) assert_almost_equal(s1, s4[:k], decimal=3) assert_almost_equal(s2, s4[:k], decimal=3) assert_almost_equal(s3, s4[:k], decimal=3) assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]), decimal=2) assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]), decimal=2) # in this case 'auto' is equivalent to transpose assert_almost_equal(s2, s3) def test_randomized_svd_power_iteration_normalizer(): # randomized_svd with power_iteration_normalized='none' diverges for # large number of power iterations on this dataset rng = np.random.RandomState(42) X = make_low_rank_matrix(100, 500, effective_rank=50, random_state=rng) X += 3 * rng.randint(0, 2, size=X.shape) n_components = 50 # Check that it diverges with many (non-normalized) power iterations U, s, Vt = randomized_svd(X, n_components, n_iter=2, power_iteration_normalizer='none', random_state=0) A = X - U.dot(np.diag(s).dot(Vt)) error_2 = linalg.norm(A, ord='fro') U, s, Vt = randomized_svd(X, n_components, n_iter=20, power_iteration_normalizer='none', random_state=0) A = X - U.dot(np.diag(s).dot(Vt)) error_20 = linalg.norm(A, ord='fro') assert np.abs(error_2 - error_20) > 100 for normalizer in ['LU', 'QR', 'auto']: U, s, Vt = randomized_svd(X, n_components, n_iter=2, power_iteration_normalizer=normalizer, random_state=0) A = X - U.dot(np.diag(s).dot(Vt)) error_2 = linalg.norm(A, ord='fro') for i in [5, 10, 50]: U, s, Vt = randomized_svd(X, n_components, n_iter=i, power_iteration_normalizer=normalizer, random_state=0) A = X - U.dot(np.diag(s).dot(Vt)) error = linalg.norm(A, ord='fro') assert 15 > np.abs(error_2 - error) def test_randomized_svd_sparse_warnings(): # randomized_svd throws a warning for lil and dok matrix rng = np.random.RandomState(42) X = make_low_rank_matrix(50, 20, effective_rank=10, random_state=rng) n_components = 5 for cls in (sparse.lil_matrix, sparse.dok_matrix): X = cls(X) assert_warns_message( sparse.SparseEfficiencyWarning, "Calculating SVD of a {} is expensive. " "csr_matrix is more efficient.".format(cls.__name__), randomized_svd, X, n_components, n_iter=1, power_iteration_normalizer='none') def test_svd_flip(): # Check that svd_flip works in both situations, and reconstructs input. rs = np.random.RandomState(1999) n_samples = 20 n_features = 10 X = rs.randn(n_samples, n_features) # Check matrix reconstruction U, S, Vt = linalg.svd(X, full_matrices=False) U1, V1 = svd_flip(U, Vt, u_based_decision=False) assert_almost_equal(np.dot(U1 * S, V1), X, decimal=6) # Check transposed matrix reconstruction XT = X.T U, S, Vt = linalg.svd(XT, full_matrices=False) U2, V2 = svd_flip(U, Vt, u_based_decision=True) assert_almost_equal(np.dot(U2 * S, V2), XT, decimal=6) # Check that different flip methods are equivalent under reconstruction U_flip1, V_flip1 = svd_flip(U, Vt, u_based_decision=True) assert_almost_equal(np.dot(U_flip1 * S, V_flip1), XT, decimal=6) U_flip2, V_flip2 = svd_flip(U, Vt, u_based_decision=False) assert_almost_equal(np.dot(U_flip2 * S, V_flip2), XT, decimal=6) def test_randomized_svd_sign_flip(): a = np.array([[2.0, 0.0], [0.0, 1.0]]) u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41) for seed in range(10): u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed) assert_almost_equal(u1, u2) assert_almost_equal(v1, v2) assert_almost_equal(np.dot(u2 * s2, v2), a) assert_almost_equal(np.dot(u2.T, u2), np.eye(2)) assert_almost_equal(np.dot(v2.T, v2), np.eye(2)) def test_randomized_svd_sign_flip_with_transpose(): # Check if the randomized_svd sign flipping is always done based on u # irrespective of transpose. # See https://github.com/scikit-learn/scikit-learn/issues/5608 # for more details. def max_loading_is_positive(u, v): """ returns bool tuple indicating if the values maximising np.abs are positive across all rows for u and across all columns for v. """ u_based = (np.abs(u).max(axis=0) == u.max(axis=0)).all() v_based = (np.abs(v).max(axis=1) == v.max(axis=1)).all() return u_based, v_based mat = np.arange(10 * 8).reshape(10, -1) # Without transpose u_flipped, _, v_flipped = randomized_svd(mat, 3, flip_sign=True, random_state=0) u_based, v_based = max_loading_is_positive(u_flipped, v_flipped) assert u_based assert not v_based # With transpose u_flipped_with_transpose, _, v_flipped_with_transpose = randomized_svd( mat, 3, flip_sign=True, transpose=True, random_state=0) u_based, v_based = max_loading_is_positive( u_flipped_with_transpose, v_flipped_with_transpose) assert u_based assert not v_based def test_cartesian(): # Check if cartesian product delivers the right results axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7])) true_out = np.array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) out = cartesian(axes) assert_array_equal(true_out, out) # check single axis x = np.arange(3) assert_array_equal(x[:, np.newaxis], cartesian((x,))) def test_logistic_sigmoid(): # Check correctness and robustness of logistic sigmoid implementation def naive_log_logistic(x): return np.log(expit(x)) x = np.linspace(-2, 2, 50) assert_array_almost_equal(log_logistic(x), naive_log_logistic(x)) extreme_x = np.array([-100., 100.]) assert_array_almost_equal(log_logistic(extreme_x), [-100, 0]) @pytest.fixture() def rng(): return np.random.RandomState(42) @pytest.mark.parametrize("dtype", [np.float32, np.float64]) def test_incremental_weighted_mean_and_variance_simple(rng, dtype): mult = 10 X = rng.rand(1000, 20).astype(dtype)*mult sample_weight = rng.rand(X.shape[0]) * mult mean, var, _ = _incremental_mean_and_var(X, 0, 0, 0, sample_weight=sample_weight) expected_mean = np.average(X, weights=sample_weight, axis=0) expected_var = np.average(X**2, weights=sample_weight, axis=0) - \ expected_mean**2 assert_almost_equal(mean, expected_mean) assert_almost_equal(var, expected_var) @pytest.mark.parametrize("mean", [0, 1e7, -1e7]) @pytest.mark.parametrize("var", [1, 1e-8, 1e5]) @pytest.mark.parametrize("weight_loc, weight_scale", [ (0, 1), (0, 1e-8), (1, 1e-8), (10, 1), (1e7, 1)]) def test_incremental_weighted_mean_and_variance(mean, var, weight_loc, weight_scale, rng): # Testing of correctness and numerical stability def _assert(X, sample_weight, expected_mean, expected_var): n = X.shape[0] for chunk_size in [1, n//10 + 1, n//4 + 1, n//2 + 1, n]: last_mean, last_weight_sum, last_var = 0, 0, 0 for batch in gen_batches(n, chunk_size): last_mean, last_var, last_weight_sum = \ _incremental_mean_and_var( X[batch], last_mean, last_var, last_weight_sum, sample_weight=sample_weight[batch]) assert_allclose(last_mean, expected_mean) assert_allclose(last_var, expected_var, atol=1e-6) size = (100, 20) weight = rng.normal(loc=weight_loc, scale=weight_scale, size=size[0]) # Compare to weighted average: np.average X = rng.normal(loc=mean, scale=var, size=size) expected_mean = _safe_accumulator_op(np.average, X, weights=weight, axis=0) expected_var = _safe_accumulator_op( np.average, (X - expected_mean) ** 2, weights=weight, axis=0) _assert(X, weight, expected_mean, expected_var) # Compare to unweighted mean: np.mean X = rng.normal(loc=mean, scale=var, size=size) ones_weight = np.ones(size[0]) expected_mean = _safe_accumulator_op(np.mean, X, axis=0) expected_var = _safe_accumulator_op(np.var, X, axis=0) _assert(X, ones_weight, expected_mean, expected_var) @pytest.mark.parametrize("dtype", [np.float32, np.float64]) def test_incremental_weighted_mean_and_variance_ignore_nan(dtype): old_means = np.array([535., 535., 535., 535.]) old_variances = np.array([4225., 4225., 4225., 4225.]) old_weight_sum = np.array([2, 2, 2, 2], dtype=np.int32) sample_weights_X = np.ones(3) sample_weights_X_nan = np.ones(4) X = np.array([[170, 170, 170, 170], [430, 430, 430, 430], [300, 300, 300, 300]]).astype(dtype) X_nan = np.array([[170, np.nan, 170, 170], [np.nan, 170, 430, 430], [430, 430, np.nan, 300], [300, 300, 300, np.nan]]).astype(dtype) X_means, X_variances, X_count = \ _incremental_mean_and_var(X, old_means, old_variances, old_weight_sum, sample_weight=sample_weights_X) X_nan_means, X_nan_variances, X_nan_count = \ _incremental_mean_and_var(X_nan, old_means, old_variances, old_weight_sum, sample_weight=sample_weights_X_nan) assert_allclose(X_nan_means, X_means) assert_allclose(X_nan_variances, X_variances) assert_allclose(X_nan_count, X_count) def test_incremental_variance_update_formulas(): # Test Youngs and Cramer incremental variance formulas. # Doggie data from https://www.mathsisfun.com/data/standard-deviation.html A = np.array([[600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300]]).T idx = 2 X1 = A[:idx, :] X2 = A[idx:, :] old_means = X1.mean(axis=0) old_variances = X1.var(axis=0) old_sample_count = np.full(X1.shape[1], X1.shape[0], dtype=np.int32) final_means, final_variances, final_count = \ _incremental_mean_and_var(X2, old_means, old_variances, old_sample_count) assert_almost_equal(final_means, A.mean(axis=0), 6) assert_almost_equal(final_variances, A.var(axis=0), 6) assert_almost_equal(final_count, A.shape[0]) def test_incremental_mean_and_variance_ignore_nan(): old_means = np.array([535., 535., 535., 535.]) old_variances = np.array([4225., 4225., 4225., 4225.]) old_sample_count = np.array([2, 2, 2, 2], dtype=np.int32) X = np.array([[170, 170, 170, 170], [430, 430, 430, 430], [300, 300, 300, 300]]) X_nan = np.array([[170, np.nan, 170, 170], [np.nan, 170, 430, 430], [430, 430, np.nan, 300], [300, 300, 300, np.nan]]) X_means, X_variances, X_count = _incremental_mean_and_var( X, old_means, old_variances, old_sample_count) X_nan_means, X_nan_variances, X_nan_count = _incremental_mean_and_var( X_nan, old_means, old_variances, old_sample_count) assert_allclose(X_nan_means, X_means) assert_allclose(X_nan_variances, X_variances) assert_allclose(X_nan_count, X_count) @skip_if_32bit def test_incremental_variance_numerical_stability(): # Test Youngs and Cramer incremental variance formulas. def np_var(A): return A.var(axis=0) # Naive one pass variance computation - not numerically stable # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance def one_pass_var(X): n = X.shape[0] exp_x2 = (X ** 2).sum(axis=0) / n expx_2 = (X.sum(axis=0) / n) ** 2 return exp_x2 - expx_2 # Two-pass algorithm, stable. # We use it as a benchmark. It is not an online algorithm # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Two-pass_algorithm def two_pass_var(X): mean = X.mean(axis=0) Y = X.copy() return np.mean((Y - mean)**2, axis=0) # Naive online implementation # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm # This works only for chunks for size 1 def naive_mean_variance_update(x, last_mean, last_variance, last_sample_count): updated_sample_count = (last_sample_count + 1) samples_ratio = last_sample_count / float(updated_sample_count) updated_mean = x / updated_sample_count + last_mean * samples_ratio updated_variance = last_variance * samples_ratio + \ (x - last_mean) * (x - updated_mean) / updated_sample_count return updated_mean, updated_variance, updated_sample_count # We want to show a case when one_pass_var has error > 1e-3 while # _batch_mean_variance_update has less. tol = 200 n_features = 2 n_samples = 10000 x1 = np.array(1e8, dtype=np.float64) x2 = np.log(1e-5, dtype=np.float64) A0 = np.full((n_samples // 2, n_features), x1, dtype=np.float64) A1 = np.full((n_samples // 2, n_features), x2, dtype=np.float64) A = np.vstack((A0, A1)) # Naive one pass var: >tol (=1063) assert np.abs(np_var(A) - one_pass_var(A)).max() > tol # Starting point for online algorithms: after A0 # Naive implementation: >tol (436) mean, var, n = A0[0, :], np.zeros(n_features), n_samples // 2 for i in range(A1.shape[0]): mean, var, n = \ naive_mean_variance_update(A1[i, :], mean, var, n) assert n == A.shape[0] # the mean is also slightly unstable assert np.abs(A.mean(axis=0) - mean).max() > 1e-6 assert np.abs(np_var(A) - var).max() > tol # Robust implementation: <tol (177) mean, var = A0[0, :], np.zeros(n_features) n = np.full(n_features, n_samples // 2, dtype=np.int32) for i in range(A1.shape[0]): mean, var, n = \ _incremental_mean_and_var(A1[i, :].reshape((1, A1.shape[1])), mean, var, n) assert_array_equal(n, A.shape[0]) assert_array_almost_equal(A.mean(axis=0), mean) assert tol > np.abs(np_var(A) - var).max() def test_incremental_variance_ddof(): # Test that degrees of freedom parameter for calculations are correct. rng = np.random.RandomState(1999) X = rng.randn(50, 10) n_samples, n_features = X.shape for batch_size in [11, 20, 37]: steps = np.arange(0, X.shape[0], batch_size) if steps[-1] != X.shape[0]: steps = np.hstack([steps, n_samples]) for i, j in zip(steps[:-1], steps[1:]): batch = X[i:j, :] if i == 0: incremental_means = batch.mean(axis=0) incremental_variances = batch.var(axis=0) # Assign this twice so that the test logic is consistent incremental_count = batch.shape[0] sample_count = np.full(batch.shape[1], batch.shape[0], dtype=np.int32) else: result = _incremental_mean_and_var( batch, incremental_means, incremental_variances, sample_count) (incremental_means, incremental_variances, incremental_count) = result sample_count += batch.shape[0] calculated_means = np.mean(X[:j], axis=0) calculated_variances = np.var(X[:j], axis=0) assert_almost_equal(incremental_means, calculated_means, 6) assert_almost_equal(incremental_variances, calculated_variances, 6) assert_array_equal(incremental_count, sample_count) def test_vector_sign_flip(): # Testing that sign flip is working & largest value has positive sign data = np.random.RandomState(36).randn(5, 5) max_abs_rows = np.argmax(np.abs(data), axis=1) data_flipped = _deterministic_vector_sign_flip(data) max_rows = np.argmax(data_flipped, axis=1) assert_array_equal(max_abs_rows, max_rows) signs = np.sign(data[range(data.shape[0]), max_abs_rows]) assert_array_equal(data, data_flipped * signs[:, np.newaxis]) def test_softmax(): rng = np.random.RandomState(0) X = rng.randn(3, 5) exp_X = np.exp(X) sum_exp_X = np.sum(exp_X, axis=1).reshape((-1, 1)) assert_array_almost_equal(softmax(X), exp_X / sum_exp_X) def test_stable_cumsum(): assert_array_equal(stable_cumsum([1, 2, 3]), np.cumsum([1, 2, 3])) r = np.random.RandomState(0).rand(100000) assert_warns(RuntimeWarning, stable_cumsum, r, rtol=0, atol=0) # test axis parameter A = np.random.RandomState(36).randint(1000, size=(5, 5, 5)) assert_array_equal(stable_cumsum(A, axis=0), np.cumsum(A, axis=0)) assert_array_equal(stable_cumsum(A, axis=1), np.cumsum(A, axis=1)) assert_array_equal(stable_cumsum(A, axis=2), np.cumsum(A, axis=2)) @pytest.mark.parametrize("A_array_constr", [np.array, sparse.csr_matrix], ids=["dense", "sparse"]) @pytest.mark.parametrize("B_array_constr", [np.array, sparse.csr_matrix], ids=["dense", "sparse"]) def test_safe_sparse_dot_2d(A_array_constr, B_array_constr): rng = np.random.RandomState(0) A = rng.random_sample((30, 10)) B = rng.random_sample((10, 20)) expected = np.dot(A, B) A = A_array_constr(A) B = B_array_constr(B) actual = safe_sparse_dot(A, B, dense_output=True) assert_allclose(actual, expected) def test_safe_sparse_dot_nd(): rng = np.random.RandomState(0) # dense ND / sparse A = rng.random_sample((2, 3, 4, 5, 6)) B = rng.random_sample((6, 7)) expected = np.dot(A, B) B = sparse.csr_matrix(B) actual = safe_sparse_dot(A, B) assert_allclose(actual, expected) # sparse / dense ND A = rng.random_sample((2, 3)) B = rng.random_sample((4, 5, 3, 6)) expected = np.dot(A, B) A = sparse.csr_matrix(A) actual = safe_sparse_dot(A, B) assert_allclose(actual, expected) @pytest.mark.parametrize("A_array_constr", [np.array, sparse.csr_matrix], ids=["dense", "sparse"]) def test_safe_sparse_dot_2d_1d(A_array_constr): rng = np.random.RandomState(0) B = rng.random_sample((10)) # 2D @ 1D A = rng.random_sample((30, 10)) expected = np.dot(A, B) A = A_array_constr(A) actual = safe_sparse_dot(A, B) assert_allclose(actual, expected) # 1D @ 2D A = rng.random_sample((10, 30)) expected = np.dot(B, A) A = A_array_constr(A) actual = safe_sparse_dot(B, A) assert_allclose(actual, expected) @pytest.mark.parametrize("dense_output", [True, False]) def test_safe_sparse_dot_dense_output(dense_output): rng = np.random.RandomState(0) A = sparse.random(30, 10, density=0.1, random_state=rng) B = sparse.random(10, 20, density=0.1, random_state=rng) expected = A.dot(B) actual = safe_sparse_dot(A, B, dense_output=dense_output) assert sparse.issparse(actual) == (not dense_output) if dense_output: expected = expected.toarray() assert_allclose_dense_sparse(actual, expected)
the-stack_0_26998
# Return the options to use for a C++ library or binary build. # Uses the ":optmode" config_setting to pick the options. load( "//tensorflow/core/platform:build_config_root.bzl", "if_dynamic_kernels", "if_static", "register_extension_info", "tf_additional_grpc_deps_py", "tf_additional_xla_deps_py", "tf_exec_properties", "tf_gpu_tests_tags", "tf_sycl_tests_tags", ) load( "//tensorflow/core/platform:rules_cc.bzl", "cc_binary", "cc_library", "cc_test", ) load( "@local_config_tensorrt//:build_defs.bzl", "if_tensorrt", ) load( "//tensorflow/core/platform/default:cuda_build_defs.bzl", "if_cuda_is_configured", ) load( "@local_config_cuda//cuda:build_defs.bzl", "cuda_library", "if_cuda", ) load( "@local_config_rocm//rocm:build_defs.bzl", "if_rocm", "if_rocm_is_configured", "rocm_copts", ) load( "//third_party/mkl:build_defs.bzl", "if_enable_mkl", "if_mkl", "if_mkl_lnx_x64", "if_mkl_ml", "mkl_deps", ) load( "//third_party/mkl_dnn:build_defs.bzl", "if_mkl_open_source_only", "if_mkl_v1_open_source_only", ) load( "//third_party/ngraph:build_defs.bzl", "if_ngraph", ) # version for the shared libraries, can # not contain rc or alpha, only numbers. # Also update tensorflow/core/public/version.h # and tensorflow/tools/pip_package/setup.py VERSION = "2.1.0" VERSION_MAJOR = VERSION.split(".")[0] # Sanitize a dependency so that it works correctly from code that includes # TensorFlow as a submodule. def clean_dep(dep): return str(Label(dep)) def if_v2(a): return select({ clean_dep("//tensorflow:api_version_2"): a, "//conditions:default": [], }) def if_not_v2(a): return select({ clean_dep("//tensorflow:api_version_2"): [], "//conditions:default": a, }) def if_nvcc(a): return select({ "@local_config_cuda//cuda:using_nvcc": a, "//conditions:default": [], }) def if_cuda_is_configured_compat(x): return if_cuda_is_configured(x) def if_xla_available(if_true, if_false = []): return select({ clean_dep("//tensorflow:with_xla_support"): if_true, "//conditions:default": if_false, }) # Given a source file, generate a test name. # i.e. "common_runtime/direct_session_test.cc" becomes # "common_runtime_direct_session_test" def src_to_test_name(src): return src.replace("/", "_").replace(":", "_").split(".")[0] def full_path(relative_paths): return [native.package_name() + "/" + relative for relative in relative_paths] def _add_tfcore_prefix(src): if src.startswith("//"): return src return "//tensorflow/core:" + src def tf_android_core_proto_headers(core_proto_sources_relative): """Returns the list of pb.h and proto.h headers that are generated for the provided sources.""" return ([ _add_tfcore_prefix(p).replace(":", "/").replace(".proto", ".pb.h") for p in core_proto_sources_relative ] + [ _add_tfcore_prefix(p).replace(":", "/").replace(".proto", ".proto.h") for p in core_proto_sources_relative ]) # Wrapper for portable protos which currently just creates an empty rule. def tf_portable_proto_library(name, proto_deps, deps = [], **kwargs): _ignore = [kwargs] cc_library(name = name, deps = deps + [dep + "_cc" for dep in proto_deps]) def tf_portable_full_lite_protos(full, lite): return select({ "//tensorflow:mobile_lite_protos": lite, "//tensorflow:mobile_full_protos": full, # The default should probably be lite runtime, but since most clients # seem to use the non-lite version, let's make that the default for now. "//conditions:default": full, }) def if_android_x86(a): return select({ clean_dep("//tensorflow:android_x86"): a, clean_dep("//tensorflow:android_x86_64"): a, "//conditions:default": [], }) def if_android_arm(a): return select({ clean_dep("//tensorflow:android_arm"): a, "//conditions:default": [], }) def if_android_arm64(a): return select({ clean_dep("//tensorflow:android_arm64"): a, "//conditions:default": [], }) def if_android_mips(a): return select({ clean_dep("//tensorflow:android_mips"): a, "//conditions:default": [], }) def if_not_android(a): return select({ clean_dep("//tensorflow:android"): [], "//conditions:default": a, }) def if_not_android_mips_and_mips64(a): return select({ clean_dep("//tensorflow:android_mips"): [], clean_dep("//tensorflow:android_mips64"): [], "//conditions:default": a, }) def if_android(a): return select({ clean_dep("//tensorflow:android"): a, "//conditions:default": [], }) def if_emscripten(a): return select({ clean_dep("//tensorflow:emscripten"): a, "//conditions:default": [], }) def if_chromiumos(a, otherwise = []): return select({ clean_dep("//tensorflow:chromiumos"): a, "//conditions:default": otherwise, }) def if_macos(a, otherwise = []): return select({ clean_dep("//tensorflow:macos"): a, "//conditions:default": otherwise, }) def if_ios(a): return select({ clean_dep("//tensorflow:ios"): a, "//conditions:default": [], }) def if_ios_x86_64(a): return select({ clean_dep("//tensorflow:ios_x86_64"): a, "//conditions:default": [], }) def if_mobile(a): return select({ clean_dep("//tensorflow:mobile"): a, "//conditions:default": [], }) def if_not_mobile(a): return select({ clean_dep("//tensorflow:mobile"): [], "//conditions:default": a, }) # Config setting selector used when building for products # which requires restricted licenses to be avoided. def if_not_lgpl_restricted(a): _ = (a,) return select({ "//conditions:default": [], }) def if_not_windows(a): return select({ clean_dep("//tensorflow:windows"): [], "//conditions:default": a, }) def if_windows(a, otherwise = []): return select({ clean_dep("//tensorflow:windows"): a, "//conditions:default": otherwise, }) def if_windows_cuda(a, otherwise = []): return select({ clean_dep("//tensorflow:with_cuda_support_windows_override"): a, "//conditions:default": otherwise, }) def if_linux_x86_64(a): return select({ clean_dep("//tensorflow:linux_x86_64"): a, "//conditions:default": [], }) def if_override_eigen_strong_inline(a): return select({ clean_dep("//tensorflow:override_eigen_strong_inline"): a, "//conditions:default": [], }) def if_nccl(if_true, if_false = []): return select({ "//tensorflow:no_nccl_support": if_false, "//tensorflow:windows": if_false, "//conditions:default": if_true, }) def get_win_copts(is_external = False): WINDOWS_COPTS = [ "/DPLATFORM_WINDOWS", "/DEIGEN_HAS_C99_MATH", "/DTENSORFLOW_USE_EIGEN_THREADPOOL", "/DEIGEN_AVOID_STL_ARRAY", "/Iexternal/gemmlowp", "/wd4018", # -Wno-sign-compare # Bazel's CROSSTOOL currently pass /EHsc to enable exception by # default. We can't pass /EHs-c- to disable exception, otherwise # we will get a waterfall of flag conflict warnings. Wait for # Bazel to fix this. # "/D_HAS_EXCEPTIONS=0", # "/EHs-c-", "/wd4577", "/DNOGDI", # Also see build:windows lines in tensorflow/opensource_only/.bazelrc # where we set some other options globally. ] if is_external: return WINDOWS_COPTS + ["/UTF_COMPILE_LIBRARY"] else: return WINDOWS_COPTS + ["/DTF_COMPILE_LIBRARY"] def tf_copts( android_optimization_level_override = "-O2", is_external = False, allow_exceptions = False): # For compatibility reasons, android_optimization_level_override # is currently only being set for Android. # To clear this value, and allow the CROSSTOOL default # to be used, pass android_optimization_level_override=None android_copts = [ "-DTF_LEAN_BINARY", "-Wno-narrowing", "-fomit-frame-pointer", ] if android_optimization_level_override: android_copts.append(android_optimization_level_override) return ( if_not_windows([ "-DEIGEN_AVOID_STL_ARRAY", "-Iexternal/gemmlowp", "-Wno-sign-compare", "-ftemplate-depth=900", ]) + (if_not_windows(["-fno-exceptions"]) if not allow_exceptions else []) + if_cuda(["-DGOOGLE_CUDA=1"]) + if_nvcc(["-DTENSORFLOW_USE_NVCC=1"]) + if_xla_available(["-DTENSORFLOW_USE_XLA=1"]) + if_tensorrt(["-DGOOGLE_TENSORRT=1"]) + if_mkl(["-DINTEL_MKL=1", "-DEIGEN_USE_VML"]) + if_mkl_open_source_only(["-DINTEL_MKL_DNN_ONLY"]) + if_mkl_v1_open_source_only(["-DENABLE_MKLDNN_V1"]) + if_enable_mkl(["-DENABLE_MKL"]) + if_ngraph(["-DINTEL_NGRAPH=1"]) + if_android_arm(["-mfpu=neon"]) + if_linux_x86_64(["-msse3"]) + if_ios_x86_64(["-msse4.1"]) + select({ clean_dep("//tensorflow:framework_shared_object"): [], "//conditions:default": ["-DTENSORFLOW_MONOLITHIC_BUILD"], }) + select({ clean_dep("//tensorflow:android"): android_copts, clean_dep("//tensorflow:macos"): [], clean_dep("//tensorflow:windows"): get_win_copts(is_external), clean_dep("//tensorflow:ios"): [], clean_dep("//tensorflow:no_lgpl_deps"): ["-D__TENSORFLOW_NO_LGPL_DEPS__", "-pthread"], "//conditions:default": ["-pthread"], }) ) def tf_openmp_copts(): return if_mkl_lnx_x64(["-fopenmp"]) def tfe_xla_copts(): return select({ "//tensorflow:with_xla_support": ["-DTENSORFLOW_EAGER_USE_XLA"], "//conditions:default": [], }) def tf_opts_nortti(): return [ "-fno-rtti", "-DGOOGLE_PROTOBUF_NO_RTTI", "-DGOOGLE_PROTOBUF_NO_STATIC_INITIALIZER", ] def tf_opts_nortti_if_android(): return if_android(tf_opts_nortti()) def tf_opts_nortti_if_mobile(): return if_mobile(tf_opts_nortti()) def tf_defines_nortti(): return [ "GOOGLE_PROTOBUF_NO_RTTI", "GOOGLE_PROTOBUF_NO_STATIC_INITIALIZER", ] def tf_defines_nortti_if_android(): return if_android(tf_defines_nortti()) def tf_features_nomodules_if_android(): return if_android(["-use_header_modules"]) def tf_features_nomodules_if_mobile(): return if_mobile(["-use_header_modules"]) def tf_opts_nortti_if_lite_protos(): return tf_portable_full_lite_protos( full = [], lite = tf_opts_nortti(), ) def tf_defines_nortti_if_lite_protos(): return tf_portable_full_lite_protos( full = [], lite = tf_defines_nortti(), ) # Given a list of "op_lib_names" (a list of files in the ops directory # without their .cc extensions), generate a library for that file. def tf_gen_op_libs(op_lib_names, deps = None, is_external = True): # Make library out of each op so it can also be used to generate wrappers # for various languages. if not deps: deps = [] for n in op_lib_names: cc_library( name = n + "_op_lib", copts = tf_copts(is_external = is_external), srcs = ["ops/" + n + ".cc"], deps = deps + [clean_dep("//tensorflow/core:framework")], visibility = ["//visibility:public"], alwayslink = 1, linkstatic = 1, ) def _make_search_paths(prefix, levels_to_root): return ",".join( [ "-rpath,%s/%s" % (prefix, "/".join([".."] * search_level)) for search_level in range(levels_to_root + 1) ], ) def _rpath_linkopts(name): # Search parent directories up to the TensorFlow root directory for shared # object dependencies, even if this op shared object is deeply nested # (e.g. tensorflow/contrib/package:python/ops/_op_lib.so). tensorflow/ is then # the root and tensorflow/libtensorflow_framework.so should exist when # deployed. Other shared object dependencies (e.g. shared between contrib/ # ops) are picked up as long as they are in either the same or a parent # directory in the tensorflow/ tree. levels_to_root = native.package_name().count("/") + name.count("/") return select({ clean_dep("//tensorflow:macos"): [ "-Wl,%s" % (_make_search_paths("@loader_path", levels_to_root),), ], clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "-Wl,%s" % (_make_search_paths("$$ORIGIN", levels_to_root),), ], }) # Bazel-generated shared objects which must be linked into TensorFlow binaries # to define symbols from //tensorflow/core:framework and //tensorflow/core:lib. def tf_binary_additional_srcs(fullversion = False): if fullversion: suffix = "." + VERSION else: suffix = "." + VERSION_MAJOR return if_static( extra_deps = [], macos = [ clean_dep("//tensorflow:libtensorflow_framework%s.dylib" % suffix), ], otherwise = [ clean_dep("//tensorflow:libtensorflow_framework.so%s" % suffix), ], ) def tf_binary_additional_data_deps(): return if_static( extra_deps = [], macos = [ clean_dep("//tensorflow:libtensorflow_framework.dylib"), clean_dep("//tensorflow:libtensorflow_framework.%s.dylib" % VERSION_MAJOR), clean_dep("//tensorflow:libtensorflow_framework.%s.dylib" % VERSION), ], otherwise = [ clean_dep("//tensorflow:libtensorflow_framework.so"), clean_dep("//tensorflow:libtensorflow_framework.so.%s" % VERSION_MAJOR), clean_dep("//tensorflow:libtensorflow_framework.so.%s" % VERSION), ], ) def tf_binary_pybind_deps(): return select({ clean_dep("//tensorflow:macos"): [ clean_dep( "//tensorflow/python:_pywrap_tensorflow_internal_macos", ), ], clean_dep("//tensorflow:windows"): [ clean_dep( "//tensorflow/python:_pywrap_tensorflow_internal_windows", ), ], "//conditions:default": [ clean_dep( "//tensorflow/python:_pywrap_tensorflow_internal_linux", ), ], }) # Helper function for the per-OS tensorflow libraries and their version symlinks def tf_shared_library_deps(): return select({ clean_dep("//tensorflow:macos_with_framework_shared_object"): [ clean_dep("//tensorflow:libtensorflow.dylib"), clean_dep("//tensorflow:libtensorflow.%s.dylib" % VERSION_MAJOR), clean_dep("//tensorflow:libtensorflow.%s.dylib" % VERSION), ], clean_dep("//tensorflow:macos"): [], clean_dep("//tensorflow:windows"): [ clean_dep("//tensorflow:tensorflow.dll"), clean_dep("//tensorflow:tensorflow_dll_import_lib"), ], clean_dep("//tensorflow:framework_shared_object"): [ clean_dep("//tensorflow:libtensorflow.so"), clean_dep("//tensorflow:libtensorflow.so.%s" % VERSION_MAJOR), clean_dep("//tensorflow:libtensorflow.so.%s" % VERSION), ], "//conditions:default": [], }) + tf_binary_additional_srcs() # Helper functions to add kernel dependencies to tf binaries when using dynamic # kernel linking. def tf_binary_dynamic_kernel_dsos(): return if_dynamic_kernels( extra_deps = [ # TODO(gunan): Remove dependencies on these, and make them load dynamically. # "//tensorflow/core/kernels:libtfkernel_all_kernels.so", ], otherwise = [], ) # Helper functions to add kernel dependencies to tf binaries when using static # kernel linking. def tf_binary_dynamic_kernel_deps(kernels): return if_dynamic_kernels( extra_deps = [], otherwise = kernels, ) # Shared libraries have different name pattern on different platforms, # but cc_binary cannot output correct artifact name yet, # so we generate multiple cc_binary targets with all name patterns when necessary. # TODO(pcloudy): Remove this workaround when https://github.com/bazelbuild/bazel/issues/4570 # is done and cc_shared_library is available. SHARED_LIBRARY_NAME_PATTERNS = [ "lib%s.so%s", # On Linux, shared libraries are usually named as libfoo.so "lib%s%s.dylib", # On macos, shared libraries are usually named as libfoo.dylib "%s%s.dll", # On Windows, shared libraries are usually named as foo.dll ] def tf_cc_shared_object( name, srcs = [], deps = [], data = [], linkopts = [], framework_so = tf_binary_additional_srcs(), soversion = None, kernels = [], per_os_targets = False, # Generate targets with SHARED_LIBRARY_NAME_PATTERNS visibility = None, **kwargs): """Configure the shared object (.so) file for TensorFlow.""" if soversion != None: suffix = "." + str(soversion).split(".")[0] longsuffix = "." + str(soversion) else: suffix = "" longsuffix = "" if per_os_targets: names = [ ( pattern % (name, ""), pattern % (name, suffix), pattern % (name, longsuffix), ) for pattern in SHARED_LIBRARY_NAME_PATTERNS ] else: names = [( name, name + suffix, name + longsuffix, )] for name_os, name_os_major, name_os_full in names: # Windows DLLs cant be versioned if name_os.endswith(".dll"): name_os_major = name_os name_os_full = name_os if name_os != name_os_major: native.genrule( name = name_os + "_sym", outs = [name_os], srcs = [name_os_major], output_to_bindir = 1, cmd = "ln -sf $$(basename $<) $@", ) native.genrule( name = name_os_major + "_sym", outs = [name_os_major], srcs = [name_os_full], output_to_bindir = 1, cmd = "ln -sf $$(basename $<) $@", ) soname = name_os_major.split("/")[-1] data_extra = [] if framework_so != []: data_extra = tf_binary_additional_data_deps() cc_binary( name = name_os_full, srcs = srcs + framework_so, deps = deps, linkshared = 1, data = data + data_extra, linkopts = linkopts + _rpath_linkopts(name_os_full) + select({ clean_dep("//tensorflow:macos"): [ "-Wl,-install_name,@rpath/" + soname, ], clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "-Wl,-soname," + soname, ], }), visibility = visibility, **kwargs ) flat_names = [item for sublist in names for item in sublist] if name not in flat_names: native.filegroup( name = name, srcs = select({ "//tensorflow:windows": [":%s.dll" % (name)], "//tensorflow:macos": [":lib%s%s.dylib" % (name, longsuffix)], "//conditions:default": [":lib%s.so%s" % (name, longsuffix)], }), visibility = visibility, ) register_extension_info( extension_name = "tf_cc_shared_object", label_regex_for_dep = "{extension_name}", ) # Links in the framework shared object # (//third_party/tensorflow:libtensorflow_framework.so) when not building # statically. Also adds linker options (rpaths) so that the framework shared # object can be found. def tf_cc_binary( name, srcs = [], deps = [], data = [], linkopts = [], copts = tf_copts(), kernels = [], per_os_targets = False, # Generate targets with SHARED_LIBRARY_NAME_PATTERNS visibility = None, **kwargs): if kernels: added_data_deps = tf_binary_dynamic_kernel_dsos() else: added_data_deps = [] if per_os_targets: names = [pattern % (name, "") for pattern in SHARED_LIBRARY_NAME_PATTERNS] else: names = [name] for name_os in names: cc_binary( name = name_os, copts = copts, srcs = srcs + tf_binary_additional_srcs(), deps = deps + tf_binary_dynamic_kernel_deps(kernels) + if_mkl_ml( [ clean_dep("//third_party/mkl:intel_binary_blob"), ], ) + if_static( extra_deps = [], otherwise = [ clean_dep("//tensorflow:libtensorflow_framework_import_lib"), ], ), data = depset(data + added_data_deps), linkopts = linkopts + _rpath_linkopts(name_os), visibility = visibility, **kwargs ) if name not in names: native.filegroup( name = name, srcs = select({ "//tensorflow:windows": [":%s.dll" % name], "//tensorflow:macos": [":lib%s.dylib" % name], "//conditions:default": [":lib%s.so" % name], }), visibility = visibility, ) register_extension_info( extension_name = "tf_cc_binary", label_regex_for_dep = "{extension_name}.*", ) # A simple wrap around native.cc_binary rule. # When using this rule, you should realize it doesn't link to any tensorflow # dependencies by default. def tf_native_cc_binary( name, copts = tf_copts(), linkopts = [], **kwargs): cc_binary( name = name, copts = copts, linkopts = select({ clean_dep("//tensorflow:windows"): [], clean_dep("//tensorflow:macos"): [ "-lm", ], "//conditions:default": [ "-lpthread", "-lm", ], }) + linkopts + _rpath_linkopts(name), **kwargs ) register_extension_info( extension_name = "tf_native_cc_binary", label_regex_for_dep = "{extension_name}.*", ) def tf_gen_op_wrapper_cc( name, out_ops_file, pkg = "", op_gen = clean_dep("//tensorflow/cc:cc_op_gen_main"), deps = None, include_internal_ops = 0, # ApiDefs will be loaded in the order specified in this list. api_def_srcs = []): # Construct an op generator binary for these ops. tool = out_ops_file + "_gen_cc" if deps == None: deps = [pkg + ":" + name + "_op_lib"] tf_cc_binary( name = tool, copts = tf_copts(), linkopts = if_not_windows(["-lm", "-Wl,-ldl"]), linkstatic = 1, # Faster to link this one-time-use binary dynamically deps = [op_gen] + deps, ) srcs = api_def_srcs[:] if not api_def_srcs: api_def_args_str = "," else: api_def_args = [] for api_def_src in api_def_srcs: # Add directory of the first ApiDef source to args. # We are assuming all ApiDefs in a single api_def_src are in the # same directory. api_def_args.append( " $$(dirname $$(echo $(locations " + api_def_src + ") | cut -d\" \" -f1))", ) api_def_args_str = ",".join(api_def_args) native.genrule( name = name + "_genrule", outs = [ out_ops_file + ".h", out_ops_file + ".cc", out_ops_file + "_internal.h", out_ops_file + "_internal.cc", ], srcs = srcs, exec_tools = [":" + tool] + tf_binary_additional_srcs(), cmd = ("$(location :" + tool + ") $(location :" + out_ops_file + ".h) " + "$(location :" + out_ops_file + ".cc) " + str(include_internal_ops) + " " + api_def_args_str), ) # Given a list of "op_lib_names" (a list of files in the ops directory # without their .cc extensions), generate individual C++ .cc and .h # files for each of the ops files mentioned, and then generate a # single cc_library called "name" that combines all the # generated C++ code. # # For example, for: # tf_gen_op_wrappers_cc("tf_ops_lib", [ "array_ops", "math_ops" ]) # # # This will ultimately generate ops/* files and a library like: # # cc_library(name = "tf_ops_lib", # srcs = [ "ops/array_ops.cc", # "ops/math_ops.cc" ], # hdrs = [ "ops/array_ops.h", # "ops/math_ops.h" ], # deps = [ ... ]) # # Plus a private library for the "hidden" ops. # cc_library(name = "tf_ops_lib_internal", # srcs = [ "ops/array_ops_internal.cc", # "ops/math_ops_internal.cc" ], # hdrs = [ "ops/array_ops_internal.h", # "ops/math_ops_internal.h" ], # deps = [ ... ]) # TODO(joshl): Cleaner approach for hidden ops. def tf_gen_op_wrappers_cc( name, op_lib_names = [], other_srcs = [], other_hdrs = [], other_srcs_internal = [], other_hdrs_internal = [], pkg = "", deps = [ clean_dep("//tensorflow/cc:ops"), clean_dep("//tensorflow/cc:scope"), clean_dep("//tensorflow/cc:const_op"), ], deps_internal = [], op_gen = clean_dep("//tensorflow/cc:cc_op_gen_main"), include_internal_ops = 0, visibility = None, # ApiDefs will be loaded in the order specified in this list. api_def_srcs = [], # Any extra dependencies that the wrapper generator might need. extra_gen_deps = []): subsrcs = other_srcs[:] subhdrs = other_hdrs[:] internalsrcs = other_srcs_internal[:] internalhdrs = other_hdrs_internal[:] for n in op_lib_names: tf_gen_op_wrapper_cc( n, "ops/" + n, api_def_srcs = api_def_srcs, include_internal_ops = include_internal_ops, op_gen = op_gen, pkg = pkg, deps = [pkg + ":" + n + "_op_lib"] + extra_gen_deps, ) subsrcs += ["ops/" + n + ".cc"] subhdrs += ["ops/" + n + ".h"] internalsrcs += ["ops/" + n + "_internal.cc"] internalhdrs += ["ops/" + n + "_internal.h"] cc_library( name = name, srcs = subsrcs, hdrs = subhdrs, deps = deps + if_not_android([ clean_dep("//tensorflow/core:core_cpu"), clean_dep("//tensorflow/core:framework"), clean_dep("//tensorflow/core:lib"), clean_dep("//tensorflow/core:ops"), clean_dep("//tensorflow/core:protos_all_cc"), ]) + if_android([ clean_dep("//tensorflow/core:android_tensorflow_lib"), ]), copts = tf_copts(), alwayslink = 1, visibility = visibility, ) cc_library( name = name + "_internal", srcs = internalsrcs, hdrs = internalhdrs, deps = deps + deps_internal + if_not_android([ clean_dep("//tensorflow/core:core_cpu"), clean_dep("//tensorflow/core:framework"), clean_dep("//tensorflow/core:lib"), clean_dep("//tensorflow/core:ops"), clean_dep("//tensorflow/core:protos_all_cc"), ]) + if_android([ clean_dep("//tensorflow/core:android_tensorflow_lib"), ]), copts = tf_copts(), alwayslink = 1, visibility = [clean_dep("//tensorflow:internal")], ) # Generates a Python library target wrapping the ops registered in "deps". # # Args: # name: used as the name of the generated target and as a name component of # the intermediate files. # out: name of the python file created by this rule. If None, then # "ops/gen_{name}.py" is used. # hidden: Optional list of ops names to make private in the Python module. # It is invalid to specify both "hidden" and "op_whitelist". # visibility: passed to py_library. # deps: list of dependencies for the intermediate tool used to generate the # python target. NOTE these `deps` are not applied to the final python # library target itself. # require_shape_functions: Unused. Leave this as False. # hidden_file: optional file that contains a list of op names to make private # in the generated Python module. Each op name should be on a line by # itself. Lines that start with characters that are invalid op name # starting characters are treated as comments and ignored. # generated_target_name: name of the generated target (overrides the # "name" arg) # op_whitelist: if not empty, only op names in this list will be wrapped. It # is invalid to specify both "hidden" and "op_whitelist". # cc_linkopts: Optional linkopts to be added to tf_cc_binary that contains the # specified ops. def tf_gen_op_wrapper_py( name, out = None, hidden = None, visibility = None, deps = [], require_shape_functions = False, hidden_file = None, generated_target_name = None, op_whitelist = [], cc_linkopts = [], api_def_srcs = []): _ = require_shape_functions # Unused. if (hidden or hidden_file) and op_whitelist: fail("Cannot pass specify both hidden and op_whitelist.") # Construct a cc_binary containing the specified ops. tool_name = "gen_" + name + "_py_wrappers_cc" if not deps: deps = [str(Label("//tensorflow/core:" + name + "_op_lib"))] tf_cc_binary( name = tool_name, copts = tf_copts(), linkopts = if_not_windows(["-lm", "-Wl,-ldl"]) + cc_linkopts, linkstatic = 1, # Faster to link this one-time-use binary dynamically visibility = [clean_dep("//tensorflow:internal")], deps = ([ clean_dep("//tensorflow/core:framework"), clean_dep("//tensorflow/python:python_op_gen_main"), ] + deps), ) # Invoke the previous cc_binary to generate a python file. if not out: out = "ops/gen_" + name + ".py" if hidden: op_list_arg = ",".join(hidden) op_list_is_whitelist = False elif op_whitelist: op_list_arg = ",".join(op_whitelist) op_list_is_whitelist = True else: op_list_arg = "''" op_list_is_whitelist = False # Prepare ApiDef directories to pass to the genrule. if not api_def_srcs: api_def_args_str = "," else: api_def_args = [] for api_def_src in api_def_srcs: # Add directory of the first ApiDef source to args. # We are assuming all ApiDefs in a single api_def_src are in the # same directory. api_def_args.append( "$$(dirname $$(echo $(locations " + api_def_src + ") | cut -d\" \" -f1))", ) api_def_args_str = ",".join(api_def_args) if hidden_file: # `hidden_file` is file containing a list of op names to be hidden in the # generated module. native.genrule( name = name + "_pygenrule", outs = [out], srcs = api_def_srcs + [hidden_file], exec_tools = [tool_name] + tf_binary_additional_srcs(), cmd = ("$(location " + tool_name + ") " + api_def_args_str + " @$(location " + hidden_file + ") > $@"), ) else: native.genrule( name = name + "_pygenrule", outs = [out], srcs = api_def_srcs, exec_tools = [tool_name] + tf_binary_additional_srcs(), cmd = ("$(location " + tool_name + ") " + api_def_args_str + " " + op_list_arg + " " + ("1" if op_list_is_whitelist else "0") + " > $@"), ) # Make a py_library out of the generated python file. if not generated_target_name: generated_target_name = name native.py_library( name = generated_target_name, srcs = [out], srcs_version = "PY2AND3", visibility = visibility, deps = [ clean_dep("//tensorflow/python:framework_for_generated_wrappers_v2"), ], # Instruct build_cleaner to try to avoid using this rule; typically ops # creators will provide their own tf_custom_op_py_library based target # that wraps this one. tags = ["avoid_dep"], ) # Define a bazel macro that creates cc_test for tensorflow. # # Links in the framework shared object # (//third_party/tensorflow:libtensorflow_framework.so) when not building # statically. Also adds linker options (rpaths) so that the framework shared # object can be found. # # TODO(opensource): we need to enable this to work around the hidden symbol # __cudaRegisterFatBinary error. Need more investigations. def tf_cc_test( name, srcs, deps, data = [], linkstatic = 0, extra_copts = [], suffix = "", linkopts = [], kernels = [], **kwargs): cc_test( name = "%s%s" % (name, suffix), srcs = srcs + tf_binary_additional_srcs(), copts = tf_copts() + extra_copts, linkopts = select({ clean_dep("//tensorflow:android"): [ "-pie", ], clean_dep("//tensorflow:windows"): [], clean_dep("//tensorflow:macos"): [ "-lm", ], "//conditions:default": [ "-lpthread", "-lm", ], }) + linkopts + _rpath_linkopts(name), deps = deps + tf_binary_dynamic_kernel_deps(kernels) + if_mkl_ml( [ clean_dep("//third_party/mkl:intel_binary_blob"), ], ), data = data + tf_binary_dynamic_kernel_dsos() + tf_binary_additional_srcs(), exec_properties = tf_exec_properties(kwargs), # Nested select() statements seem not to be supported when passed to # linkstatic, and we already have a cuda select() passed in to this # function. linkstatic = linkstatic or select({ # cc_tests with ".so"s in srcs incorrectly link on Darwin unless # linkstatic=1 (https://github.com/bazelbuild/bazel/issues/3450). # TODO(allenl): Remove Mac static linking when Bazel 0.6 is out. clean_dep("//tensorflow:macos"): 1, "//conditions:default": 0, }), **kwargs ) register_extension_info( extension_name = "tf_cc_test", label_regex_for_dep = "{extension_name}.*", ) # Part of the testing workflow requires a distinguishable name for the build # rules that involve a GPU, even if otherwise identical to the base rule. def tf_cc_test_gpu( name, srcs, deps, linkstatic = 0, tags = [], data = [], size = "medium", suffix = "", args = None): tf_cc_test( name, srcs, deps, size = size, args = args, data = data, linkstatic = linkstatic, suffix = suffix, tags = tags, ) register_extension_info( extension_name = "tf_cc_test_gpu", label_regex_for_dep = "{extension_name}", ) def tf_gpu_cc_test( name, srcs = [], deps = [], tags = [], data = [], size = "medium", extra_copts = [], linkstatic = 0, args = [], kernels = [], linkopts = []): tf_cc_test( name = name, size = size, srcs = srcs, args = args, data = data, extra_copts = extra_copts, kernels = kernels, linkopts = linkopts, linkstatic = linkstatic, tags = tags + ["manual"], deps = deps, ) tf_cc_test( name = name, size = size, srcs = srcs, args = args, data = data, extra_copts = extra_copts, kernels = kernels, linkopts = linkopts, linkstatic = select({ # TODO(allenl): Remove Mac static linking when Bazel 0.6 is out. clean_dep("//tensorflow:macos"): 1, "@local_config_cuda//cuda:using_nvcc": 1, "@local_config_cuda//cuda:using_clang": 1, "//conditions:default": 0, }), suffix = "_gpu", tags = tags + tf_gpu_tests_tags(), deps = deps + if_cuda_is_configured([ clean_dep("//tensorflow/core:gpu_runtime"), ]) + if_rocm_is_configured([ clean_dep("//tensorflow/core:gpu_runtime"), ]), ) register_extension_info( extension_name = "tf_gpu_cc_test", label_regex_for_dep = "{extension_name}", ) # terminology changes: saving tf_cuda_* definition for compatibility def tf_cuda_cc_test(*args, **kwargs): tf_gpu_cc_test(*args, **kwargs) register_extension_info( extension_name = "tf_cuda_cc_test", label_regex_for_dep = "{extension_name}", ) def tf_gpu_only_cc_test( name, srcs = [], deps = [], tags = [], data = [], size = "medium", linkstatic = 0, args = [], kernels = [], linkopts = []): tags = tags + tf_gpu_tests_tags() gpu_lib_name = "%s%s" % (name, "_gpu_lib") tf_gpu_kernel_library( name = gpu_lib_name, srcs = srcs + tf_binary_additional_srcs(), deps = deps, testonly = 1, ) cc_test( name = "%s%s" % (name, "_gpu"), size = size, args = args, features = if_cuda(["-use_header_modules"]), data = data + tf_binary_dynamic_kernel_dsos(), deps = [":" + gpu_lib_name], linkopts = if_not_windows(["-lpthread", "-lm"]) + linkopts + _rpath_linkopts(name), linkstatic = linkstatic or select({ # cc_tests with ".so"s in srcs incorrectly link on Darwin # unless linkstatic=1. # TODO(allenl): Remove Mac static linking when Bazel 0.6 is out. clean_dep("//tensorflow:macos"): 1, "//conditions:default": 0, }), tags = tags, exec_properties = tf_exec_properties({"tags": tags}), ) register_extension_info( extension_name = "tf_gpu_only_cc_test", label_regex_for_dep = "{extension_name}_gpu", ) # terminology changes: saving tf_cuda_* definition for compatibility def tf_cuda_only_cc_test(*args, **kwargs): tf_gpu_only_cc_test(*args, **kwargs) register_extension_info( extension_name = "tf_cuda_only_cc_test", label_regex_for_dep = "{extension_name}_gpu", ) # Create a cc_test for each of the tensorflow tests listed in "tests", along # with a test suite of the given name, if provided. def tf_cc_tests( srcs, deps, name = "", linkstatic = 0, tags = [], size = "medium", args = None, linkopts = [], kernels = [], create_named_test_suite = False, visibility = None): test_names = [] for src in srcs: test_name = src_to_test_name(src) tf_cc_test( name = test_name, size = size, srcs = [src], args = args, kernels = kernels, linkopts = linkopts, linkstatic = linkstatic, tags = tags, deps = deps, visibility = visibility, ) test_names.append(test_name) # Add a test suite with the generated tests if a name was provided and # it does not conflict any of the test names. if create_named_test_suite: native.test_suite( name = name, tests = test_names, visibility = visibility, ) def tf_cc_test_mkl( srcs, deps, name = "", data = [], linkstatic = 0, tags = [], size = "medium", kernels = [], args = None): # -fno-exceptions in nocopts breaks compilation if header modules are enabled. disable_header_modules = ["-use_header_modules"] for src in srcs: cc_test( name = src_to_test_name(src), srcs = if_mkl([src]) + tf_binary_additional_srcs(), copts = tf_copts(allow_exceptions = True) + tf_openmp_copts(), linkopts = select({ clean_dep("//tensorflow:android"): [ "-pie", ], clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "-lpthread", "-lm", ], }) + _rpath_linkopts(src_to_test_name(src)), deps = deps + tf_binary_dynamic_kernel_deps(kernels) + mkl_deps(), data = data + tf_binary_dynamic_kernel_dsos(), exec_properties = tf_exec_properties({"tags": tags}), linkstatic = linkstatic, tags = tags, size = size, args = args, features = disable_header_modules, ) def tf_cc_tests_gpu( srcs, deps, name = "", linkstatic = 0, tags = [], size = "medium", kernels = [], args = None): tf_cc_tests(srcs, deps, linkstatic, size = size, args = args, kernels = kernels, tags = tags) def tf_gpu_cc_tests( srcs, deps, name = "", tags = [], size = "medium", linkstatic = 0, args = None, kernels = [], linkopts = []): for src in srcs: tf_gpu_cc_test( name = src_to_test_name(src), size = size, srcs = [src], args = args, kernels = kernels, linkopts = linkopts, linkstatic = linkstatic, tags = tags, deps = deps, ) # terminology changes: saving tf_cuda_* definition for compatibility def tf_cuda_cc_tests(*args, **kwargs): tf_gpu_cc_tests(*args, **kwargs) def tf_java_test( name, srcs = [], deps = [], kernels = [], *args, **kwargs): native.java_test( name = name, srcs = srcs, deps = deps + tf_binary_additional_srcs(fullversion = True) + tf_binary_dynamic_kernel_dsos() + tf_binary_dynamic_kernel_deps(kernels), *args, **kwargs ) register_extension_info( extension_name = "tf_java_test", label_regex_for_dep = "{extension_name}", ) def _cuda_copts(opts = []): """Gets the appropriate set of copts for (maybe) CUDA compilation. If we're doing CUDA compilation, returns copts for our particular CUDA compiler. If we're not doing CUDA compilation, returns an empty list. """ return select({ "//conditions:default": [], "@local_config_cuda//cuda:using_nvcc": ([ "-nvcc_options=relaxed-constexpr", "-nvcc_options=ftz=true", ]), "@local_config_cuda//cuda:using_clang": ([ "-fcuda-flush-denormals-to-zero", ]), }) + if_cuda_is_configured_compat(opts) # Build defs for TensorFlow kernels # When this target is built using --config=cuda, a cc_library is built # that passes -DGOOGLE_CUDA=1 and '-x cuda', linking in additional # libraries needed by GPU kernels. # # When this target is built using --config=rocm, a cc_library is built # that passes -DTENSORFLOW_USE_ROCM and '-x rocm', linking in additional # libraries needed by GPU kernels. def tf_gpu_kernel_library( srcs, copts = [], cuda_copts = [], deps = [], hdrs = [], **kwargs): copts = copts + tf_copts() + _cuda_copts(opts = cuda_copts) + rocm_copts(opts = cuda_copts) kwargs["features"] = kwargs.get("features", []) + ["-use_header_modules"] cuda_library( srcs = srcs, hdrs = hdrs, copts = copts, deps = deps + if_cuda_is_configured_compat([ clean_dep("//tensorflow/stream_executor/cuda:cudart_stub"), clean_dep("//tensorflow/core:gpu_lib"), ]) + if_rocm_is_configured([ clean_dep("//tensorflow/core:gpu_lib"), ]), alwayslink = 1, **kwargs ) register_extension_info( extension_name = "tf_gpu_kernel_library", label_regex_for_dep = "{extension_name}", ) def tf_gpu_library(deps = None, cuda_deps = None, copts = tf_copts(), **kwargs): """Generate a cc_library with a conditional set of CUDA dependencies. When the library is built with --config=cuda: - Both deps and cuda_deps are used as dependencies. - The cuda runtime is added as a dependency (if necessary). - The library additionally passes -DGOOGLE_CUDA=1 to the list of copts. - In addition, when the library is also built with TensorRT enabled, it additionally passes -DGOOGLE_TENSORRT=1 to the list of copts. Args: - cuda_deps: BUILD dependencies which will be linked if and only if: '--config=cuda' is passed to the bazel command line. - deps: dependencies which will always be linked. - copts: copts always passed to the cc_library. - kwargs: Any other argument to cc_library. """ if not deps: deps = [] if not cuda_deps: cuda_deps = [] kwargs["features"] = kwargs.get("features", []) + ["-use_header_modules"] cc_library( deps = deps + if_cuda_is_configured_compat(cuda_deps + [ clean_dep("//tensorflow/stream_executor/cuda:cudart_stub"), "@local_config_cuda//cuda:cuda_headers", ]) + if_rocm_is_configured(cuda_deps + [ "@local_config_rocm//rocm:rocm_headers", ]), copts = (copts + if_cuda(["-DGOOGLE_CUDA=1"]) + if_rocm(["-DTENSORFLOW_USE_ROCM=1"]) + if_xla_available(["-DTENSORFLOW_USE_XLA=1"]) + if_mkl(["-DINTEL_MKL=1"]) + if_mkl_open_source_only(["-DINTEL_MKL_DNN_ONLY"]) + if_enable_mkl(["-DENABLE_MKL"]) + if_tensorrt(["-DGOOGLE_TENSORRT=1"])), **kwargs ) register_extension_info( extension_name = "tf_gpu_library", label_regex_for_dep = "{extension_name}", ) # terminology changes: saving tf_cuda_* definition for compatibility def tf_cuda_library(*args, **kwargs): tf_gpu_library(*args, **kwargs) register_extension_info( extension_name = "tf_cuda_library", label_regex_for_dep = "{extension_name}", ) def tf_kernel_library( name, prefix = None, srcs = None, gpu_srcs = None, hdrs = None, deps = None, alwayslink = 1, copts = None, gpu_copts = None, is_external = False, **kwargs): """A rule to build a TensorFlow OpKernel. May either specify srcs/hdrs or prefix. Similar to tf_gpu_library, but with alwayslink=1 by default. If prefix is specified: * prefix*.cc (except *.cu.cc) is added to srcs * prefix*.h (except *.cu.h) is added to hdrs * prefix*.cu.cc and prefix*.h (including *.cu.h) are added to gpu_srcs. With the exception that test files are excluded. For example, with prefix = "cast_op", * srcs = ["cast_op.cc"] * hdrs = ["cast_op.h"] * gpu_srcs = ["cast_op_gpu.cu.cc", "cast_op.h"] * "cast_op_test.cc" is excluded With prefix = "cwise_op" * srcs = ["cwise_op_abs.cc", ..., "cwise_op_tanh.cc"], * hdrs = ["cwise_ops.h", "cwise_ops_common.h"], * gpu_srcs = ["cwise_op_gpu_abs.cu.cc", ..., "cwise_op_gpu_tanh.cu.cc", "cwise_ops.h", "cwise_ops_common.h", "cwise_ops_gpu_common.cu.h"] * "cwise_ops_test.cc" is excluded """ if not srcs: srcs = [] if not hdrs: hdrs = [] if not deps: deps = [] if not copts: copts = [] if not gpu_copts: gpu_copts = [] textual_hdrs = [] copts = copts + tf_copts(is_external = is_external) # Override EIGEN_STRONG_INLINE to inline when # --define=override_eigen_strong_inline=true to avoid long compiling time. # See https://github.com/tensorflow/tensorflow/issues/10521 copts = copts + if_override_eigen_strong_inline(["/DEIGEN_STRONG_INLINE=inline"]) if prefix: if native.glob([prefix + "*.cu.cc"], exclude = ["*test*"]): if not gpu_srcs: gpu_srcs = [] gpu_srcs = gpu_srcs + native.glob( [prefix + "*.cu.cc", prefix + "*.h"], exclude = [prefix + "*test*"], ) srcs = srcs + native.glob( [prefix + "*.cc"], exclude = [prefix + "*test*", prefix + "*.cu.cc"], ) hdrs = hdrs + native.glob( [prefix + "*.h"], exclude = [prefix + "*test*", prefix + "*.cu.h", prefix + "*impl.h"], ) textual_hdrs = native.glob( [prefix + "*impl.h"], exclude = [prefix + "*test*", prefix + "*.cu.h"], ) cuda_deps = [clean_dep("//tensorflow/core:gpu_lib")] if gpu_srcs: for gpu_src in gpu_srcs: if gpu_src.endswith(".cc") and not gpu_src.endswith(".cu.cc"): fail("{} not allowed in gpu_srcs. .cc sources must end with .cu.cc" .format(gpu_src)) tf_gpu_kernel_library( name = name + "_gpu", srcs = gpu_srcs, deps = deps, copts = gpu_copts, **kwargs ) cuda_deps.extend([":" + name + "_gpu"]) kwargs["tags"] = kwargs.get("tags", []) + [ "req_dep=%s" % clean_dep("//tensorflow/core:gpu_lib"), "req_dep=@local_config_cuda//cuda:cuda_headers", ] tf_gpu_library( name = name, srcs = srcs, hdrs = hdrs, textual_hdrs = textual_hdrs, copts = copts, cuda_deps = cuda_deps, linkstatic = 1, # Needed since alwayslink is broken in bazel b/27630669 alwayslink = alwayslink, deps = deps, **kwargs ) # TODO(gunan): CUDA dependency not clear here. Fix it. tf_cc_shared_object( name = "libtfkernel_%s.so" % name, srcs = srcs + hdrs, copts = copts, tags = ["manual", "notap"], deps = deps, ) register_extension_info( extension_name = "tf_kernel_library", label_regex_for_dep = "({extension_name}(_gpu)?|libtfkernel_{extension_name}\\.so)", ) def tf_mkl_kernel_library( name, prefix = None, srcs = None, hdrs = None, deps = None, alwayslink = 1, copts = tf_copts(allow_exceptions = True) + tf_openmp_copts()): """A rule to build MKL-based TensorFlow kernel libraries.""" if not bool(srcs): srcs = [] if not bool(hdrs): hdrs = [] if prefix: srcs = srcs + native.glob( [prefix + "*.cc"], exclude = [prefix + "*test*"], ) hdrs = hdrs + native.glob( [prefix + "*.h"], exclude = [prefix + "*test*"], ) # -fno-exceptions in nocopts breaks compilation if header modules are enabled. disable_header_modules = ["-use_header_modules"] cc_library( name = name, srcs = if_mkl(srcs), hdrs = hdrs, deps = deps, alwayslink = alwayslink, copts = copts, features = disable_header_modules, ) register_extension_info( extension_name = "tf_mkl_kernel_library", label_regex_for_dep = "{extension_name}", ) def _get_transitive_headers(hdrs, deps): """Obtain the header files for a target and its transitive dependencies. Args: hdrs: a list of header files deps: a list of targets that are direct dependencies Returns: a collection of the transitive headers """ return depset( hdrs, transitive = [dep[CcInfo].compilation_context.headers for dep in deps], ) # Bazel rules for building swig files. def _py_wrap_cc_impl(ctx): srcs = ctx.files.srcs if len(srcs) != 1: fail("Exactly one SWIG source file label must be specified.", "srcs") module_name = ctx.attr.module_name src = ctx.files.srcs[0] inputs = _get_transitive_headers([src] + ctx.files.swig_includes, ctx.attr.deps) inputs = depset(ctx.files._swiglib, transitive = [inputs]) inputs = depset(ctx.files.toolchain_deps, transitive = [inputs]) swig_include_dirs = depset(_get_repository_roots(ctx, inputs)) swig_include_dirs = depset(sorted([f.dirname for f in ctx.files._swiglib]), transitive = [swig_include_dirs]) args = [ "-c++", "-python", "-module", module_name, "-o", ctx.outputs.cc_out.path, "-outdir", ctx.outputs.py_out.dirname, ] args += ["-l" + f.path for f in ctx.files.swig_includes] args += ["-I" + i for i in swig_include_dirs.to_list()] args.append(src.path) outputs = [ctx.outputs.cc_out, ctx.outputs.py_out] ctx.actions.run( executable = ctx.executable._swig, arguments = args, inputs = inputs, outputs = outputs, mnemonic = "PythonSwig", progress_message = "SWIGing " + src.path, ) return struct(files = depset(outputs)) _py_wrap_cc = rule( attrs = { "srcs": attr.label_list( mandatory = True, allow_files = True, ), "swig_includes": attr.label_list( allow_files = True, ), "deps": attr.label_list( allow_files = True, providers = [CcInfo], ), "toolchain_deps": attr.label_list( allow_files = True, ), "module_name": attr.string(mandatory = True), "py_module_name": attr.string(mandatory = True), "_swig": attr.label( default = Label("@swig//:swig"), executable = True, cfg = "host", ), "_swiglib": attr.label( default = Label("@swig//:templates"), allow_files = True, ), }, outputs = { "cc_out": "%{module_name}.cc", "py_out": "%{py_module_name}.py", }, implementation = _py_wrap_cc_impl, ) def _get_repository_roots(ctx, files): """Returns abnormal root directories under which files reside. When running a ctx.action, source files within the main repository are all relative to the current directory; however, files that are generated or exist in remote repositories will have their root directory be a subdirectory, e.g. bazel-out/local-fastbuild/genfiles/external/jpeg_archive. This function returns the set of these devious directories, ranked and sorted by popularity in order to hopefully minimize the number of I/O system calls within the compiler, because includes have quadratic complexity. """ result = {} for f in files.to_list(): root = f.root.path if root: if root not in result: result[root] = 0 result[root] -= 1 work = f.owner.workspace_root if work: if root: root += "/" root += work if root: if root not in result: result[root] = 0 result[root] -= 1 return [k for v, k in sorted([(v, k) for k, v in result.items()])] # Bazel rule for collecting the header files that a target depends on. def _transitive_hdrs_impl(ctx): outputs = _get_transitive_headers([], ctx.attr.deps) return struct(files = outputs) _transitive_hdrs = rule( attrs = { "deps": attr.label_list( allow_files = True, providers = [CcInfo], ), }, implementation = _transitive_hdrs_impl, ) def transitive_hdrs(name, deps = [], **kwargs): _transitive_hdrs(name = name + "_gather", deps = deps) native.filegroup(name = name, srcs = [":" + name + "_gather"]) # Create a header only library that includes all the headers exported by # the libraries in deps. # # **NOTE**: The headers brought in are **NOT** fully transitive; certain # deep headers may be missing. Furthermore, the `includes` argument of # cc_libraries in the dependencies are *not* going to be respected # when you use cc_header_only_library. Some cases where this creates # problems include: Eigen, grpc, MLIR. In cases such as these, you must # find a header-only version of the cc_library rule you care about and # link it *directly* in addition to your use of the cc_header_only_library # intermediary. # # For: # * Eigen: it's a header-only library. Add it directly to your deps. # * GRPC: add a direct dep on @com_github_grpc_grpc//:grpc++_public_hdrs. # def cc_header_only_library(name, deps = [], includes = [], extra_deps = [], **kwargs): _transitive_hdrs(name = name + "_gather", deps = deps) cc_library( name = name, hdrs = [":" + name + "_gather"], includes = includes, deps = extra_deps, **kwargs ) def tf_custom_op_library_additional_deps(): return [ "@com_google_protobuf//:protobuf_headers", clean_dep("//third_party/eigen3"), clean_dep("//tensorflow/core:framework_headers_lib"), ] + if_windows([clean_dep("//tensorflow/python:pywrap_tensorflow_import_lib")]) # A list of targets that contains the implemenation of # tf_custom_op_library_additional_deps. It's used to generate a DEF file for # exporting symbols from _pywrap_tensorflow.dll on Windows. def tf_custom_op_library_additional_deps_impl(): return [ "@com_google_protobuf//:protobuf", "@nsync//:nsync_cpp", # for //third_party/eigen3 clean_dep("//third_party/eigen3"), # for //tensorflow/core:framework_headers_lib clean_dep("//tensorflow/core:framework"), clean_dep("//tensorflow/core:reader_base"), ] # Traverse the dependency graph along the "deps" attribute of the # target and return a struct with one field called 'tf_collected_deps'. # tf_collected_deps will be the union of the deps of the current target # and the tf_collected_deps of the dependencies of this target. def _collect_deps_aspect_impl(target, ctx): alldeps = depset() if hasattr(ctx.rule.attr, "deps"): for dep in ctx.rule.attr.deps: alldeps = depset([dep.label], transitive = [alldeps]) if hasattr(dep, "tf_collected_deps"): alldeps = depset(transitive = [alldeps, dep.tf_collected_deps]) return struct(tf_collected_deps = alldeps) collect_deps_aspect = aspect( attr_aspects = ["deps"], implementation = _collect_deps_aspect_impl, ) def _dep_label(dep): label = dep.label return label.package + ":" + label.name # This rule checks that the transitive dependencies of targets listed # in the 'deps' attribute don't depend on the targets listed in # the 'disallowed_deps' attribute. def _check_deps_impl(ctx): disallowed_deps = ctx.attr.disallowed_deps for input_dep in ctx.attr.deps: if not hasattr(input_dep, "tf_collected_deps"): continue for dep in input_dep.tf_collected_deps.to_list(): for disallowed_dep in disallowed_deps: if dep == disallowed_dep.label: fail( _dep_label(input_dep) + " cannot depend on " + _dep_label( disallowed_dep, ), ) return struct() check_deps = rule( _check_deps_impl, attrs = { "deps": attr.label_list( aspects = [collect_deps_aspect], mandatory = True, allow_files = True, ), "disallowed_deps": attr.label_list( mandatory = True, allow_files = True, ), }, ) def tf_custom_op_library(name, srcs = [], gpu_srcs = [], deps = [], linkopts = [], copts = [], **kwargs): """Helper to build a dynamic library (.so) from the sources containing implementations of custom ops and kernels. """ cuda_deps = [ clean_dep("//tensorflow/core:stream_executor_headers_lib"), "@local_config_cuda//cuda:cuda_headers", "@local_config_cuda//cuda:cudart_static", ] rocm_deps = [ clean_dep("//tensorflow/core:stream_executor_headers_lib"), ] deps = deps + tf_custom_op_library_additional_deps() # Override EIGEN_STRONG_INLINE to inline when # --define=override_eigen_strong_inline=true to avoid long compiling time. # See https://github.com/tensorflow/tensorflow/issues/10521 copts = copts + if_override_eigen_strong_inline(["/DEIGEN_STRONG_INLINE=inline"]) if gpu_srcs: basename = name.split(".")[0] cuda_library( name = basename + "_gpu", srcs = gpu_srcs, copts = copts + tf_copts() + _cuda_copts() + rocm_copts() + if_tensorrt(["-DGOOGLE_TENSORRT=1"]), deps = deps + if_cuda_is_configured_compat(cuda_deps) + if_rocm_is_configured(rocm_deps), **kwargs ) cuda_deps.extend([":" + basename + "_gpu"]) rocm_deps.extend([":" + basename + "_gpu"]) check_deps( name = name + "_check_deps", disallowed_deps = [ clean_dep("//tensorflow/core:framework"), clean_dep("//tensorflow/core:lib"), ], deps = deps + if_cuda_is_configured_compat(cuda_deps) + if_rocm_is_configured(rocm_deps), ) tf_cc_shared_object( name = name, srcs = srcs, deps = deps + if_cuda_is_configured_compat(cuda_deps) + if_rocm_is_configured(rocm_deps), data = if_static([name + "_check_deps"]), copts = copts + tf_copts(is_external = True), features = ["windows_export_all_symbols"], linkopts = linkopts + select({ "//conditions:default": [ "-lm", ], clean_dep("//tensorflow:windows"): [], clean_dep("//tensorflow:macos"): [], }), **kwargs ) register_extension_info( extension_name = "tf_custom_op_library", label_regex_for_dep = "{extension_name}", ) # Placeholder to use until bazel supports py_strict_library. def py_strict_library(name, **kwargs): native.py_library(name = name, **kwargs) def tf_custom_op_py_library( name, srcs = [], dso = [], kernels = [], srcs_version = "PY2AND3", visibility = None, deps = []): _ignore = [kernels] native.py_library( name = name, data = dso, srcs = srcs, srcs_version = srcs_version, visibility = visibility, deps = deps, ) register_extension_info( extension_name = "tf_custom_op_py_library", label_regex_for_dep = "{extension_name}", ) # In tf_py_wrap_cc generated libraries # module init functions are not exported unless # they contain one of the keywords in the version file # this prevents custom python modules. # This function attempts to append init_module_name to list of # exported functions in version script def _append_init_to_versionscript_impl(ctx): mod_name = ctx.attr.module_name if ctx.attr.is_version_script: ctx.actions.expand_template( template = ctx.file.template_file, output = ctx.outputs.versionscript, substitutions = { "global:": "global:\n init_%s;\n _init_%s;\n PyInit_*;\n _PyInit_*;" % (mod_name, mod_name), }, is_executable = False, ) else: ctx.actions.expand_template( template = ctx.file.template_file, output = ctx.outputs.versionscript, substitutions = { "*tensorflow*": "*tensorflow*\ninit_%s\n_init_%s\nPyInit_*\n_PyInit_*\n" % (mod_name, mod_name), }, is_executable = False, ) _append_init_to_versionscript = rule( attrs = { "module_name": attr.string(mandatory = True), "template_file": attr.label( allow_single_file = True, mandatory = True, ), "is_version_script": attr.bool( default = True, doc = "whether target is a ld version script or exported symbol list", mandatory = False, ), }, outputs = {"versionscript": "%{name}.lds"}, implementation = _append_init_to_versionscript_impl, ) def tf_py_wrap_cc( name, srcs = [], swig_includes = [], deps = [], copts = [], version_script = None, **kwargs): """Builds a Python extension module.""" module_name = name.split("/")[-1] # Convert a rule name such as foo/bar/baz to foo/bar/_baz.so # and use that as the name for the rule producing the .so file. cc_library_base = "/".join(name.split("/")[:-1] + ["_" + module_name]) # TODO(b/137885063): tf_cc_shared_object needs to be cleaned up; we really # shouldn't be passing a name qualified with .so here. cc_library_name = cc_library_base + ".so" cc_library_pyd_name = "/".join( name.split("/")[:-1] + ["_" + module_name + ".pyd"], ) extra_deps = [] # TODO(amitpatankar): Migrate from py_wrap_cc to cc_shared_library. # TensorFlow python does not use any SWIG sources so we create # an empty SWIG file. This rule cannot be cleaned up until bazel shared # library support lands. if srcs == []: srcs = ["default.swig"] native.genrule( name = "default_swig_rule", outs = srcs, cmd = "touch $@", ) _py_wrap_cc( name = name + "_py_wrap", srcs = srcs, module_name = module_name, py_module_name = name, swig_includes = swig_includes, toolchain_deps = ["@bazel_tools//tools/cpp:current_cc_toolchain"], deps = deps + extra_deps, ) if not version_script: version_script = select({ "@local_config_cuda//cuda:darwin": clean_dep("//tensorflow:tf_exported_symbols.lds"), "//conditions:default": clean_dep("//tensorflow:tf_version_script.lds"), }) vscriptname = name + "_versionscript" _append_init_to_versionscript( name = vscriptname, is_version_script = select({ "@local_config_cuda//cuda:darwin": False, "//conditions:default": True, }), module_name = module_name, template_file = version_script, ) extra_linkopts = select({ "@local_config_cuda//cuda:darwin": [ "-Wl,-exported_symbols_list,$(location %s.lds)" % vscriptname, ], clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "-Wl,--version-script", "$(location %s.lds)" % vscriptname, ], }) extra_deps += select({ "@local_config_cuda//cuda:darwin": [ "%s.lds" % vscriptname, ], clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "%s.lds" % vscriptname, ], }) # Due to b/149224972 we have to add libtensorflow_framework.so # as a dependency so the linker doesn't try and optimize and # remove it from pywrap_tensorflow_internal.so # Issue: https://github.com/tensorflow/tensorflow/issues/34117 # Fix: https://github.com/tensorflow/tensorflow/commit/5caa9e83798cb510c9b49acee8a64efdb746207c extra_deps += if_static( extra_deps = [], otherwise = [ clean_dep("//tensorflow:libtensorflow_framework_import_lib"), ], ) tf_cc_shared_object( name = cc_library_name, srcs = [module_name + ".cc"], # framework_so is no longer needed as libtf.so is included via the extra_deps. framework_so = [], copts = copts + if_not_windows([ "-Wno-self-assign", "-Wno-sign-compare", "-Wno-write-strings", ]), linkopts = extra_linkopts, linkstatic = 1, deps = deps + extra_deps, **kwargs ) # When a non-versioned .so is added as a 'src' to a bazel target, it uses # -l%(so_name) instead of -l:%(so_file) during linking. When -l%(so_name) # is passed to ld, it will look for an associated file with the schema # lib%(so_name).so. Since pywrap_tensorflow is not explicitly versioned # and is not prefixed with lib_, we add a rule for the creation of an .so # file with the canonical lib schema (e.g. libNAME.so), so that # -l%(so_name) is resolved during linking. # # See: https://github.com/bazelbuild/bazel/blob/7a6808260a733d50983c1adf0cf5a7493472267f/src/main/java/com/google/devtools/build/lib/rules/cpp/LibrariesToLinkCollector.java#L319 for pattern in SHARED_LIBRARY_NAME_PATTERNS: name_os = pattern % (cc_library_base, "") native.genrule( name = name_os + "_rule", srcs = [":" + cc_library_name], outs = [name_os], cmd = "cp $< $@", ) native.genrule( name = "gen_" + cc_library_pyd_name, srcs = [":" + cc_library_name], outs = [cc_library_pyd_name], cmd = "cp $< $@", ) native.py_library( name = name, srcs = [":" + name + ".py"], srcs_version = "PY2AND3", data = select({ clean_dep("//tensorflow:windows"): [":" + cc_library_pyd_name], "//conditions:default": [":" + cc_library_name], }), ) # This macro is for running python tests against system installed pip package # on Windows. # # py_test is built as an executable python zip file on Windows, which contains all # dependencies of the target. Because of the C++ extensions, it would be very # inefficient if the py_test zips all runfiles, plus we don't need them when running # tests against system installed pip package. So we'd like to get rid of the deps # of py_test in this case. # # In order to trigger the tests without bazel clean after getting rid of deps, # we introduce the following : # 1. When --define=no_tensorflow_py_deps=true, the py_test depends on a marker # file of the pip package, the test gets to rerun when the pip package change. # Note that this only works on Windows. See the definition of # //third_party/tensorflow/tools/pip_package:win_pip_package_marker for specific reasons. # 2. When --define=no_tensorflow_py_deps=false (by default), it's a normal py_test. def py_test(deps = [], data = [], kernels = [], **kwargs): # Python version placeholder native.py_test( # TODO(jlebar): Ideally we'd use tcmalloc here., deps = select({ "//conditions:default": deps, clean_dep("//tensorflow:no_tensorflow_py_deps"): [], }), data = data + select({ "//conditions:default": kernels, clean_dep("//tensorflow:no_tensorflow_py_deps"): ["//tensorflow/tools/pip_package:win_pip_package_marker"], }), exec_properties = tf_exec_properties(kwargs), **kwargs ) register_extension_info( extension_name = "py_test", label_regex_for_dep = "{extension_name}", ) # Similar to py_test above, this macro is used to exclude dependencies for some py_binary # targets in order to reduce the size of //tensorflow/tools/pip_package:simple_console_windows. # See https://github.com/tensorflow/tensorflow/issues/22390 def py_binary(name, deps = [], **kwargs): # Add an extra target for dependencies to avoid nested select statement. native.py_library( name = name + "_deps", deps = deps, ) # Python version placeholder native.py_binary( name = name, deps = select({ "//conditions:default": [":" + name + "_deps"], clean_dep("//tensorflow:no_tensorflow_py_deps"): [], }), **kwargs ) register_extension_info( extension_name = "py_binary", label_regex_for_dep = "{extension_name}", ) def tf_py_test( name, srcs, size = "medium", data = [], main = None, args = [], tags = [], shard_count = 1, additional_visibility = [], kernels = [], flaky = 0, xla_enable_strict_auto_jit = False, xla_enabled = False, grpc_enabled = False, **kwargs): """Create one or more python tests with extra tensorflow dependencies.""" xla_test_true_list = [] if "additional_deps" in kwargs: fail("Use `deps` to specify dependencies. `additional_deps` has been replaced with the standard pattern of `deps`.") deps = kwargs.pop("deps", []) # xla_enable_strict_auto_jit is used to run Tensorflow unit tests with all XLA compilable # kernels compiled with XLA. if xla_enable_strict_auto_jit: xla_enabled = True xla_test_true_list += ["//tensorflow/python:is_xla_test_true"] if xla_enabled: deps = deps + tf_additional_xla_deps_py() if grpc_enabled: deps = deps + tf_additional_grpc_deps_py() # NOTE(ebrevdo): This is a workaround for depset() not being able to tell # the difference between 'dep' and 'clean_dep(dep)'. for to_add in [ "//tensorflow/python:extra_py_tests_deps", "//tensorflow/python:gradient_checker", ]: if to_add not in deps and clean_dep(to_add) not in deps: deps.append(clean_dep(to_add)) # Python version placeholder kwargs.setdefault("srcs_version", "PY2AND3") py_test( name = name, size = size, srcs = srcs, args = args, data = data, flaky = flaky, kernels = kernels, main = main, shard_count = shard_count, tags = tags, visibility = [clean_dep("//tensorflow:internal")] + additional_visibility, deps = depset(deps + xla_test_true_list), **kwargs ) register_extension_info( extension_name = "tf_py_test", label_regex_map = {"deps": "deps:{extension_name}"}, ) def gpu_py_test( name, srcs, size = "medium", data = [], main = None, args = [], shard_count = 1, kernels = [], tags = [], flaky = 0, xla_enable_strict_auto_jit = False, xla_enabled = False, grpc_enabled = False, **kwargs): # TODO(b/122522101): Don't ignore xla_enable_strict_auto_jit and enable additional # XLA tests once enough compute resources are available. _ignored = [xla_enable_strict_auto_jit] if main == None: main = name + ".py" if "additional_deps" in kwargs: fail("Use `deps` to specify dependencies. `additional_deps` has been replaced with the standard pattern of `deps`.") for config in ["cpu", "gpu"]: test_name = name test_tags = tags if config == "gpu": test_name += "_gpu" test_tags = test_tags + tf_gpu_tests_tags() tf_py_test( name = test_name, size = size, srcs = srcs, args = args, data = data, flaky = flaky, grpc_enabled = grpc_enabled, kernels = kernels, main = main, shard_count = shard_count, tags = test_tags, xla_enabled = xla_enabled, xla_enable_strict_auto_jit = False, **kwargs ) register_extension_info( extension_name = "gpu_py_test", label_regex_map = {"deps": "deps:{extension_name}"}, ) # terminology changes: saving cuda_* definition for compatibility def cuda_py_test(*args, **kwargs): gpu_py_test(*args, **kwargs) register_extension_info( extension_name = "cuda_py_test", label_regex_map = {"deps": "deps:{extension_name}"}, ) def sycl_py_test( name, srcs, size = "medium", data = [], main = None, args = [], shard_count = 1, kernels = [], tags = [], flaky = 0, xla_enabled = False, grpc_enabled = False, **kwargs): test_tags = tags + tf_sycl_tests_tags() if "additional_deps" in kwargs: fail("Use `deps` to specify dependencies. `additional_deps` has been replaced with the standard pattern of `deps`.") tf_py_test( name = name, size = size, srcs = srcs, args = args, data = data, flaky = flaky, grpc_enabled = grpc_enabled, kernels = kernels, main = main, shard_count = shard_count, tags = test_tags, xla_enabled = xla_enabled, **kwargs ) register_extension_info( extension_name = "sycl_py_test", label_regex_map = {"deps": "deps:{extension_name}"}, ) def py_tests( name, srcs, size = "medium", kernels = [], data = [], tags = [], shard_count = 1, prefix = "", xla_enable_strict_auto_jit = False, xla_enabled = False, grpc_enabled = False, **kwargs): if "additional_deps" in kwargs: fail("Use `deps` to specify dependencies. `additional_deps` has been replaced with the standard pattern of `deps`.") for src in srcs: test_name = src.split("/")[-1].split(".")[0] if prefix: test_name = "%s_%s" % (prefix, test_name) tf_py_test( name = test_name, size = size, srcs = [src], data = data, grpc_enabled = grpc_enabled, kernels = kernels, main = src, shard_count = shard_count, tags = tags, xla_enabled = xla_enabled, xla_enable_strict_auto_jit = xla_enable_strict_auto_jit, **kwargs ) def gpu_py_tests( name, srcs, size = "medium", kernels = [], data = [], shard_count = 1, tags = [], prefix = "", xla_enable_strict_auto_jit = False, xla_enabled = False, grpc_enabled = False, **kwargs): # TODO(b/122522101): Don't ignore xla_enable_strict_auto_jit and enable additional # XLA tests once enough compute resources are available. _ignored = [xla_enable_strict_auto_jit] test_tags = tags + tf_gpu_tests_tags() if "additional_deps" in kwargs: fail("Use `deps` to specify dependencies. `additional_deps` has been replaced with the standard pattern of `deps`.") py_tests( name = name, size = size, srcs = srcs, data = data, grpc_enabled = grpc_enabled, kernels = kernels, prefix = prefix, shard_count = shard_count, tags = test_tags, xla_enabled = xla_enabled, xla_enable_strict_auto_jit = False, **kwargs ) # terminology changes: saving cuda_* definition for compatibility def cuda_py_tests(*args, **kwargs): gpu_py_tests(*args, **kwargs) # Creates a genrule named <name> for running tools/proto_text's generator to # make the proto_text functions, for the protos passed in <srcs>. # # Return a struct with fields (hdrs, srcs) containing the names of the # generated files. def tf_generate_proto_text_sources(name, srcs_relative_dir, srcs, protodeps = [], deps = [], visibility = None): out_hdrs = ( [ p.replace(".proto", ".pb_text.h") for p in srcs ] + [p.replace(".proto", ".pb_text-impl.h") for p in srcs] ) out_srcs = [p.replace(".proto", ".pb_text.cc") for p in srcs] native.genrule( name = name + "_srcs", srcs = srcs + protodeps + [clean_dep("//tensorflow/tools/proto_text:placeholder.txt")], outs = out_hdrs + out_srcs, visibility = visibility, cmd = "$(location //tensorflow/tools/proto_text:gen_proto_text_functions) " + "$(@D) " + srcs_relative_dir + " $(SRCS)", exec_tools = [ clean_dep("//tensorflow/tools/proto_text:gen_proto_text_functions"), ], ) native.filegroup( name = name + "_hdrs", srcs = out_hdrs, visibility = visibility, ) cc_library( name = name, srcs = out_srcs, hdrs = out_hdrs, visibility = visibility, deps = deps, alwayslink = 1, ) def tf_genrule_cmd_append_to_srcs(to_append): return ("cat $(SRCS) > $(@) && " + "echo >> $(@) && " + "echo " + to_append + " >> $(@)") def tf_version_info_genrule(name, out): native.genrule( name = name, srcs = [ clean_dep("@local_config_git//:gen/spec.json"), clean_dep("@local_config_git//:gen/head"), clean_dep("@local_config_git//:gen/branch_ref"), ], outs = [out], cmd = "$(location //tensorflow/tools/git:gen_git_source) --generate $(SRCS) \"$@\" --git_tag_override=$${GIT_TAG_OVERRIDE:-}", local = 1, exec_tools = [clean_dep("//tensorflow/tools/git:gen_git_source")], ) def tf_py_build_info_genrule(name, out, **kwargs): native.genrule( name = name, outs = [out], cmd = "$(location //tensorflow/tools/build_info:gen_build_info) --raw_generate \"$@\" " + " --is_config_cuda " + if_cuda("True", "False") + " --is_config_rocm " + if_rocm("True", "False") + " --key_value " + if_cuda(" cuda_version_number=$${TF_CUDA_VERSION:-} cudnn_version_number=$${TF_CUDNN_VERSION:-} ", "") + if_windows(" msvcp_dll_names=msvcp140.dll,msvcp140_1.dll ", "") + if_windows_cuda(" ".join([ "nvcuda_dll_name=nvcuda.dll", "cudart_dll_name=cudart64_$$(echo $${TF_CUDA_VERSION:-} | sed \"s/\\.//\").dll", "cudnn_dll_name=cudnn64_$${TF_CUDNN_VERSION:-}.dll", ]), ""), local = 1, exec_tools = [clean_dep("//tensorflow/tools/build_info:gen_build_info")], **kwargs ) def cc_library_with_android_deps( deps, android_deps = [], common_deps = [], copts = tf_copts(), **kwargs): deps = if_not_android(deps) + if_android(android_deps) + common_deps cc_library(deps = deps, copts = copts, **kwargs) register_extension_info( extension_name = "cc_library_with_android_deps", label_regex_for_dep = "{extension_name}", ) def tensorflow_opensource_extra_deps(): return [] # buildozer: disable=function-docstring-args def pybind_extension( name, srcs, module_name, hdrs = [], features = [], srcs_version = "PY2AND3", data = [], copts = [], linkopts = [], deps = [], defines = [], visibility = None, testonly = None, licenses = None, compatible_with = None, restricted_to = None, deprecation = None, link_in_framework = False): """Builds a generic Python extension module.""" _ignore = [module_name] p = name.rfind("/") if p == -1: sname = name prefix = "" else: sname = name[p + 1:] prefix = name[:p + 1] so_file = "%s%s.so" % (prefix, sname) pyd_file = "%s%s.pyd" % (prefix, sname) symbol = "init%s" % sname symbol2 = "init_%s" % sname symbol3 = "PyInit_%s" % sname exported_symbols_file = "%s-exported-symbols.lds" % name version_script_file = "%s-version-script.lds" % name native.genrule( name = name + "_exported_symbols", outs = [exported_symbols_file], cmd = "echo '_%s\n_%s\n_%s' >$@" % (symbol, symbol2, symbol3), output_licenses = ["unencumbered"], visibility = ["//visibility:private"], testonly = testonly, ) native.genrule( name = name + "_version_script", outs = [version_script_file], cmd = "echo '{global:\n %s;\n %s;\n %s;\n local: *;};' >$@" % (symbol, symbol2, symbol3), output_licenses = ["unencumbered"], visibility = ["//visibility:private"], testonly = testonly, ) # If we are to link to libtensorflow_framework.so, add # it as a source. if link_in_framework: srcs += tf_binary_additional_srcs() cc_binary( name = so_file, srcs = srcs + hdrs, data = data, copts = copts + [ "-fno-strict-aliasing", "-fexceptions", ] + select({ clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "-fvisibility=hidden", ], }), linkopts = linkopts + _rpath_linkopts(name) + select({ "@local_config_cuda//cuda:darwin": [ "-Wl,-exported_symbols_list,$(location %s)" % exported_symbols_file, ], clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "-Wl,--version-script", "$(location %s)" % version_script_file, ], }), deps = deps + [ exported_symbols_file, version_script_file, ], defines = defines, features = features + ["-use_header_modules"], linkshared = 1, testonly = testonly, licenses = licenses, visibility = visibility, deprecation = deprecation, restricted_to = restricted_to, compatible_with = compatible_with, ) native.genrule( name = name + "_pyd_copy", srcs = [so_file], outs = [pyd_file], cmd = "cp $< $@", output_to_bindir = True, visibility = visibility, deprecation = deprecation, restricted_to = restricted_to, compatible_with = compatible_with, ) native.py_library( name = name, data = select({ "@org_tensorflow//tensorflow:windows": [pyd_file], "//conditions:default": [so_file], }), srcs_version = srcs_version, licenses = licenses, testonly = testonly, visibility = visibility, deprecation = deprecation, restricted_to = restricted_to, compatible_with = compatible_with, ) # buildozer: enable=function-docstring-args def tf_python_pybind_extension( name, srcs, module_name, features = [], copts = [], hdrs = [], deps = [], defines = [], visibility = None): """A wrapper macro for pybind_extension that is used in tensorflow/python/BUILD. Please do not use it anywhere else as it may behave unexpectedly. b/146445820 It is used for targets under //third_party/tensorflow/python that link against libtensorflow_framework.so and pywrap_tensorflow_internal.so. """ pybind_extension( name, srcs, module_name, features = features, copts = copts, hdrs = hdrs, deps = deps + tf_binary_pybind_deps() + mkl_deps(), defines = defines, visibility = visibility, link_in_framework = True, ) def tf_pybind_cc_library_wrapper(name, deps, visibility = None): """Wrapper for cc_library and proto dependencies used by tf_python_pybind_extension. This wrapper ensures that cc libraries' and protos' headers are made available to pybind code, without creating ODR violations in the dynamically linked case. The symbols in these deps symbols should be linked to, and exported by, the core pywrap_tensorflow_internal.so """ cc_header_only_library(name = name, deps = deps, visibility = visibility) def if_cuda_or_rocm(if_true, if_false = []): """Shorthand for select()'ing whether to build for either CUDA or ROCm. Returns a select statement which evaluates to if_true if we're building with either CUDA or ROCm enabled. if_false, otherwise. Sometimes a target has additional CUDa or ROCm specific dependencies. The `if_cuda` / `if_rocm` functions are used to specify these additional dependencies. For eg, see the `//tensorflow/core/kernels:bias_op` target If the same additional dependency is needed for both CUDA and ROCm (for eg. `reduction_ops` dependency for the `bias_op` target above), then specifying that dependency in both both `if_cuda` and `if_rocm` will result in both those functions returning a select statement, which contains the same dependency, which then leads to a duplicate dependency bazel error. In order to work around this error, any additional dependency that is common to both the CUDA and ROCm platforms, should be specified using this function. Doing so will eliminate the cause of the bazel error (i.e. the same dependency showing up in two different select statements) """ return select({ "@local_config_cuda//cuda:using_nvcc": if_true, "@local_config_cuda//cuda:using_clang": if_true, "@local_config_rocm//rocm:using_hipcc": if_true, "//conditions:default": if_false, }) def tf_monitoring_deps(): return [] def tf_jit_compilation_passes_extra_deps(): return [] def if_mlir(if_true, if_false = []): return select({ str(Label("//tensorflow:with_mlir_support")): if_true, "//conditions:default": if_false, }) def tfcompile_extra_flags(): return "" def tf_external_workspace_visible(visibility): # External workspaces can see this target. return ["//visibility:public"] def _filegroup_as_file_impl(ctx): out = ctx.actions.declare_file(ctx.label.name) ctx.actions.write( output = out, content = "\n".join([f.short_path for f in ctx.files.dep]), ) return DefaultInfo(files = depset([out])) _filegroup_as_file = rule( implementation = _filegroup_as_file_impl, attrs = { "dep": attr.label(), }, ) def filegroup_as_file(name, dep, visibility = []): """Creates a filegroup ${name}_file which contains the file ${name}.""" _filegroup_as_file(name = name, dep = dep) native.filegroup( name = name + "_file", srcs = [name], visibility = visibility, )
the-stack_0_26999
inp = open('../input/1.txt', 'r').read().split(', ') positions = set() tp = [] direc, pos, trans = (0, [0, 0], {0: [0, 1], 1: [1, 0], 2: [0, -1], 3: [-1, 0]}) for x in inp: direc = (direc + 1) % 4 if x[0] == 'L' else (direc - 1) % 4 for j in range(int(x[1:])): pos = [e + (trans[direc][i]) for i, e in enumerate(pos)] if tuple(pos) in positions: tp.append(pos) positions.add(tuple(pos)) dists = ([sum([abs(i) for i in x]) for x in tp], sum([abs(i) for i in pos])) print(dists)
the-stack_0_27000
#!/usr/bin/env python #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import re import os.path from io import open from setuptools import find_packages, setup # Change the PACKAGE_NAME only to change folder and different name PACKAGE_NAME = "azure-mgmt-storage" PACKAGE_PPRINT_NAME = "Storage Management" # a-b-c => a/b/c package_folder_path = PACKAGE_NAME.replace('-', '/') # a-b-c => a.b.c namespace_name = PACKAGE_NAME.replace('-', '.') # azure v0.x is not compatible with this package # azure v0.x used to have a __version__ attribute (newer versions don't) try: import azure try: ver = azure.__version__ raise Exception( 'This package is incompatible with azure=={}. '.format(ver) + 'Uninstall it with "pip uninstall azure".' ) except AttributeError: pass except ImportError: pass # Version extraction inspired from 'requests' with open(os.path.join(package_folder_path, 'version.py') if os.path.exists(os.path.join(package_folder_path, 'version.py')) else os.path.join(package_folder_path, '_version.py'), 'r') as fd: version = re.search(r'^VERSION\s*=\s*[\'"]([^\'"]*)[\'"]', fd.read(), re.MULTILINE).group(1) if not version: raise RuntimeError('Cannot find version information') with open('README.md', encoding='utf-8') as f: readme = f.read() with open('CHANGELOG.md', encoding='utf-8') as f: changelog = f.read() setup( name=PACKAGE_NAME, version=version, description='Microsoft Azure {} Client Library for Python'.format(PACKAGE_PPRINT_NAME), long_description=readme + '\n\n' + changelog, long_description_content_type='text/markdown', license='MIT License', author='Microsoft Corporation', author_email='[email protected]', url='https://github.com/Azure/azure-sdk-for-python', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'License :: OSI Approved :: MIT License', ], zip_safe=False, packages=find_packages(exclude=[ 'tests', # Exclude packages that will be covered by PEP420 or nspkg 'azure', 'azure.mgmt', ]), install_requires=[ 'msrest>=0.5.0', 'azure-common~=1.1', 'azure-mgmt-core>=1.0.0,<2.0.0', ], extras_require={ ":python_version<'3.0'": ['azure-mgmt-nspkg'], } )
the-stack_0_27002
import copy import re from abc import ABCMeta, abstractmethod from collections import OrderedDict, defaultdict import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from mmcv.runner import auto_fp16 from .. import builder from ...core.ops import rsc, NormRegularizer, balance_losses class EvalModeSetter: def __init__(self, module, m_type): self.module = module self.modes_storage = dict() self.m_types = m_type if not isinstance(self.m_types, (tuple, list)): self.m_types = [self.m_types] def __enter__(self): for name, module in self.module.named_modules(): matched = any(isinstance(module, m_type) for m_type in self.m_types) if matched: self.modes_storage[name] = module.training module.train(mode=False) return self def __exit__(self, exc_type, exc_val, exc_tb): for name, module in self.module.named_modules(): if name in self.modes_storage: module.train(mode=self.modes_storage[name]) class BaseRecognizer(nn.Module, metaclass=ABCMeta): """Base class for recognizers. All recognizers should subclass it. All subclass should overwrite: - Methods:``reshape_images``, supporting the input reshape. Args: backbone (dict): Backbone modules to extract feature. reducer (dict): Spatial-temporal modules to reduce feature. Default: None. cls_head (dict): Classification head to process feature. class_sizes (list): Number of samples for each class in each task. Default: None. train_cfg (dict): Config for training. Default: None. test_cfg (dict): Config for testing. Default: None. bn_eval (bool): Whether to switch all BN in eval mode. Default: False. bn_frozen (bool): Whether to disable backprop for all BN. Default: False. """ def __init__(self, backbone, cls_head, reducer=None, class_sizes=None, class_maps=None, train_cfg=None, test_cfg=None, bn_eval=False, bn_frozen=False, reg_cfg=None): super().__init__() self.train_cfg = train_cfg self.test_cfg = test_cfg self.bn_eval = bn_eval self.bn_frozen = bn_frozen self.fp16_enabled = False self.multi_head = class_sizes is not None and len(class_sizes) > 1 self.with_self_challenging = hasattr(train_cfg, 'self_challenging') and train_cfg.self_challenging.enable self.with_clip_mixing = hasattr(train_cfg, 'clip_mixing') and train_cfg.clip_mixing.enable self.with_loss_norm = hasattr(train_cfg, 'loss_norm') and train_cfg.loss_norm.enable self.with_sample_filtering = hasattr(train_cfg, 'sample_filtering') and train_cfg.sample_filtering.enable if class_maps is None: num_classes = cls_head.num_classes self.CLASSES = {0: {ii: ii for ii in range(num_classes)}} else: self.CLASSES = copy.deepcopy(class_maps) self.train_meta = {} self.backbone = builder.build_backbone(backbone) self.spatial_temporal_module = builder.build_reducer(reducer) self.cls_head = builder.build_head(cls_head, class_sizes) if self.with_clip_mixing: self.clip_mixing_loss = builder.build_loss(dict( type='ClipMixingLoss', mode=train_cfg.clip_mixing.mode, loss_weight=train_cfg.clip_mixing.weight )) self.losses_meta = None if self.with_loss_norm: assert 0.0 < train_cfg.loss_norm.gamma <= 1.0 self.losses_meta = dict() self.regularizer = NormRegularizer(**reg_cfg) if reg_cfg is not None else None self.init_weights() def init_weights(self): for module in self.children(): if hasattr(module, 'init_weights'): module.init_weights() heads = self.cls_head if self.multi_head else [self.cls_head] for head in heads: if hasattr(head, 'init_weights'): head.init_weights() def update_state(self, *args, **kwargs): for module in self.children(): if hasattr(module, 'update_state'): module.update_state(*args, **kwargs) heads = self.cls_head if self.multi_head else [self.cls_head] for head in heads: if hasattr(head, 'update_state'): head.update_state(*args, **kwargs) @auto_fp16() def _forward_module_train(self, module, x, losses, squeeze=False, **kwargs): if module is None: y = x elif hasattr(module, 'loss'): y, extra_data = module(x, return_extra_data=True) losses.update(module.loss(**extra_data, **kwargs)) else: y = module(x) if squeeze and isinstance(y, (list, tuple)): assert len(y) == 1 y = y[0] return y @auto_fp16() def _extract_features_test(self, imgs): """Extract features through a backbone. Args: imgs (torch.Tensor): The input images. Returns: torch.tensor: The extracted features. """ y = self.backbone(imgs) if isinstance(y, (list, tuple)): assert len(y) == 1 y = y[0] if self.spatial_temporal_module is not None: y = self.spatial_temporal_module(y) return y def _average_clip(self, cls_score): """Averaging class score over multiple clips. Using different averaging types ('score' or 'prob' or None, which defined in test_cfg) to computed the final averaged class score. Args: cls_score (torch.Tensor): Class score to be averaged. return: torch.Tensor: Averaged class score. """ if 'average_clips' not in self.test_cfg.keys(): raise KeyError('"average_clips" must defined in test_cfg\'s keys') average_clips = self.test_cfg['average_clips'] if average_clips not in ['score', 'prob', None]: raise ValueError(f'{average_clips} is not supported. ' f'Currently supported ones are ' f'["score", "prob", None]') if average_clips == 'prob': cls_score = F.softmax(cls_score, dim=1).mean(dim=0, keepdim=True) elif average_clips == 'score': cls_score = cls_score.mean(dim=0, keepdim=True) return cls_score @abstractmethod def reshape_input(self, imgs, masks=None): pass @abstractmethod def reshape_input_inference(self, imgs, masks=None): pass @staticmethod def _infer_head(head_module, *args, **kwargs): out = head_module(*args, **kwargs) if isinstance(out, (tuple, list)): assert len(out) == 3 return out else: return out, None, None @staticmethod def _filter(x, mask): if x is None: return None elif mask is None: return x elif isinstance(x, (tuple, list)): return [_x[mask] for _x in x] else: return x[mask] def forward_train(self, imgs, labels, dataset_id=None, attention_mask=None, **kwargs): imgs, attention_mask, head_args = self.reshape_input(imgs, attention_mask) losses = dict() num_clips = imgs.size(0) // labels.size(0) if num_clips > 1: labels = labels.view(-1, 1).repeat(1, num_clips).view(-1) if dataset_id is not None: dataset_id = dataset_id.view(-1, 1).repeat(1, num_clips).view(-1) features = self._forward_module_train( self.backbone, imgs, losses, squeeze=True, attention_mask=attention_mask ) features = self._forward_module_train( self.spatial_temporal_module, features, losses ) if self.with_self_challenging and not features.requires_grad: features.requires_grad = True if self.with_sample_filtering: pred_labels = torch.zeros_like(labels.view(-1)) heads = self.cls_head if self.multi_head else [self.cls_head] for head_id, cl_head in enumerate(heads): trg_mask = (dataset_id == head_id).view(-1) if dataset_id is not None else None trg_labels = self._filter(labels, trg_mask) trg_num_samples = trg_labels.numel() if trg_num_samples == 0: continue if self.with_self_challenging: trg_features = self._filter(features, trg_mask) trg_main_scores, _, _ = self._infer_head( cl_head, *([trg_features] + head_args), labels=trg_labels.view(-1) ) trg_features = rsc( trg_features, trg_main_scores, trg_labels, 1.0 - self.train_cfg.self_challenging.drop_p ) with EvalModeSetter(cl_head, m_type=(nn.BatchNorm2d, nn.BatchNorm3d)): trg_main_scores, trg_norm_embd, trg_extra_scores = self._infer_head( cl_head, *([trg_features] + head_args), labels=trg_labels.view(-1), return_extra_data=True ) else: all_main_scores, all_norm_embd, all_extra_scores = self._infer_head( cl_head, *([features] + head_args), labels=labels.view(-1), return_extra_data=True ) trg_main_scores = self._filter(all_main_scores, trg_mask) trg_extra_scores = self._filter(all_extra_scores, trg_mask) trg_norm_embd = self._filter(all_norm_embd, trg_mask) # main head loss losses.update(cl_head.loss( main_cls_score=trg_main_scores, extra_cls_score=trg_extra_scores, labels=trg_labels.view(-1), norm_embd=trg_norm_embd, name=str(head_id) )) # clip mixing loss if self.with_clip_mixing: losses['loss/clip_mix' + str(head_id)] = self.clip_mixing_loss( trg_main_scores, trg_norm_embd, num_clips, cl_head.last_scale ) if self.with_sample_filtering: with torch.no_grad(): pred_labels[trg_mask] = torch.argmax(trg_main_scores, dim=1) if self.regularizer is not None: losses['loss/reg'] = self.regularizer(self.backbone) if self.with_sample_filtering: self._add_train_meta_info(pred_labels=pred_labels, **kwargs) return losses def _add_train_meta_info(self, **kwargs): for meta_name in ['pred_labels', 'sample_idx', 'clip_starts', 'clip_ends']: assert meta_name in kwargs.keys(), f'There is no {meta_name} in meta info' assert kwargs[meta_name] is not None, f'The value of {meta_name} is None' self.train_meta[meta_name] = kwargs[meta_name].clone().view(-1).detach() def forward_test(self, imgs, dataset_id=None): """Defines the computation performed at every call when evaluation and testing.""" imgs, _, head_args = self.reshape_input(imgs) y = self._extract_features_test(imgs) if self.multi_head: assert dataset_id is not None head_outs = [] for cls_head in self.cls_head: head_y = cls_head(y, *head_args) head_out = self._average_clip(head_y) head_outs.append(head_out.cpu().numpy()) out = [] dataset_id = dataset_id.view(-1).cpu().numpy() for idx, head_id in enumerate(dataset_id): out.extend(head_outs[head_id][idx].reshape([1, -1])) else: y = self.cls_head(y, *head_args) out = self._average_clip(y).cpu().numpy() return out def forward_inference(self, imgs): """Used for computing network FLOPs and ONNX export. See ``tools/analysis/get_flops.py``. Args: imgs (torch.Tensor): Input images. Returns: Tensor: Class score. """ if self.multi_head: raise NotImplementedError('Inference does not support multi-head architectures') imgs, _, head_args = self.reshape_input_inference(imgs) y = self._extract_features_test(imgs) out = self.cls_head(y, *head_args) return out def forward(self, imgs, label=None, return_loss=True, dataset_id=None, **kwargs): """Define the computation performed at every call.""" if return_loss: if label is None: raise ValueError('Label should not be None.') return self.forward_train(imgs, label, dataset_id, **kwargs) else: return self.forward_test(imgs, dataset_id) @staticmethod def _parse_losses(losses, multi_head, enable_loss_norm=False, losses_meta=None, gamma=0.9): """Parse the raw outputs (losses) of the network. Args: losses (dict): Raw output of the network, which usually contain losses and other necessary information. Returns: tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor which may be a weighted sum of all losses, log_vars contains all the variables to be sent to the logger. """ log_vars = OrderedDict() for loss_name, loss_value in losses.items(): if isinstance(loss_value, torch.Tensor): log_vars[loss_name] = loss_value.mean() elif isinstance(loss_value, list): log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) elif isinstance(loss_value, float): log_vars[loss_name] = loss_value else: raise TypeError(f'{loss_name} is not a tensor or list of tensors') if enable_loss_norm and losses_meta is not None: loss_groups = defaultdict(list) single_losses = [] for _key, _value in log_vars.items(): if 'loss' not in _key: continue end_digits_match = re.search(r'\d+$', _key) if end_digits_match is None: single_losses.append(_value) else: end_digits = end_digits_match.group() loss_group_name = _key[:-len(end_digits)] loss_groups[loss_group_name].append((_key, _value)) group_losses = [] for loss_group in loss_groups.values(): group_losses.extend(balance_losses(loss_group, losses_meta, gamma)) loss = sum(single_losses + group_losses) else: loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key) log_vars['loss'] = loss for loss_name, loss_value in log_vars.items(): if not isinstance(loss_value, torch.Tensor): continue # reduce loss when distributed training if dist.is_available() and dist.is_initialized(): if not multi_head or loss_name == 'loss': loss_value = loss_value.clone().detach() dist.all_reduce(loss_value.div_(dist.get_world_size())) log_vars[loss_name] = loss_value.item() return loss, log_vars def train_step(self, data_batch, optimizer, **kwargs): """The iteration step during training. This method defines an iteration step during training, except for the back propagation and optimizer updating, which are done in an optimizer hook. Note that in some complicated cases or models, the whole process including back propagation and optimizer updating is also defined in this method, such as GAN. Args: data_batch (dict): The output of dataloader. optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of runner is passed to ``train_step()``. This argument is unused and reserved. Returns: dict: It should contain at least 3 keys: ``loss``, ``log_vars``, ``num_samples``. ``loss`` is a tensor for back propagation, which can be a weighted sum of multiple losses. ``log_vars`` contains all the variables to be sent to the logger. ``num_samples`` indicates the batch size (when the model is DDP, it means the batch size on each GPU), which is used for averaging the logs. """ losses = self(**data_batch) loss, log_vars = self._parse_losses( losses, self.multi_head, self.with_loss_norm, self.losses_meta, self.train_cfg.loss_norm.gamma if self.with_loss_norm else 0.9 ) outputs = dict( loss=loss, log_vars=log_vars, num_samples=len(next(iter(data_batch.values())))) return outputs def val_step(self, data_batch, optimizer, **kwargs): """The iteration step during validation. This method shares the same signature as :func:`train_step`, but used during val epochs. Note that the evaluation after training epochs is not implemented with this method, but an evaluation hook. """ losses = self(**data_batch) loss, log_vars = self._parse_losses( losses, self.multi_head, self.with_loss_norm, self.losses_meta, self.train_cfg.loss_norm.gamma if self.with_loss_norm else 0.9 ) outputs = dict( loss=loss, log_vars=log_vars, num_samples=len(next(iter(data_batch.values())))) return outputs def train(self, train_mode=True): super(BaseRecognizer, self).train(train_mode) if self.bn_eval: for m in self.modules(): if isinstance(m, nn.BatchNorm3d): m.eval() if self.bn_frozen: for params in m.parameters(): params.requires_grad = False return self
the-stack_0_27005
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Iterable import numpy as np from ... import opcodes as OperandDef from ...core import ENTITY_TYPE, recursive_tile from ...core.context import get_context from ...serialization.serializables import KeyField, AnyField, StringField, BoolField from ...utils import has_unknown_shape from ..datasource import tensor as astensor from ..base import moveaxis, where from ..indexing import take from ..arithmetic import isnan, add from ..reduction import any as tensor_any from ..operands import TensorOperand, TensorOperandMixin from ..core import TENSOR_TYPE, TENSOR_CHUNK_TYPE, TensorOrder from ..utils import check_out_param from ..array_utils import as_same_device, device from .core import _ureduce def _quantile_is_valid(q): # avoid expensive reductions, relevant for arrays with < O(1000) elements if q.ndim == 1 and q.size < 10: for i in range(q.size): if q[i] < 0.0 or q[i] > 1.0: return False else: # faster than any() if np.count_nonzero(q < 0.0) or np.count_nonzero(q > 1.0): return False return True def _quantile_ureduce_func( a, q, axis=None, out=None, overwrite_input=False, interpolation="linear", keepdims=False, ): a = astensor(a) out = astensor(out) if out is not None else None if q.ndim == 0: # Do not allow 0-d arrays because following code fails for scalar zerod = True q = q[None] else: zerod = False # prepare a for partitioning if overwrite_input: if axis is None: ap = a.ravel() else: ap = a else: if axis is None: ap = a.flatten() else: ap = a.copy() if axis is None: axis = 0 Nx = ap.shape[axis] indices = q * (Nx - 1) # round fractional indices according to interpolation method if interpolation == "lower": indices = np.floor(indices).astype(np.intp) elif interpolation == "higher": indices = np.ceil(indices).astype(np.intp) elif interpolation == "midpoint": indices = 0.5 * (np.floor(indices) + np.ceil(indices)) elif interpolation == "nearest": indices = np.around(indices).astype(np.intp) else: assert interpolation == "linear" # keep index as fraction and interpolate n = np.array(False, dtype=bool) # check for nan's flag if indices.dtype == np.intp: # take the points along axis # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): indices = np.concatenate((indices, [-1])) ap.partition(indices, axis=axis, need_align=True) # ensure axis with q-th is first ap = moveaxis(ap, axis, 0) axis = 0 # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): indices = indices[:-1] n = isnan(ap[-1:, ...]) if zerod: indices = indices[0] r = take(ap, indices, axis=axis, out=out) else: # weight the points above and below the indices indices_below = np.floor(indices).astype(np.intp) indices_above = indices_below + 1 indices_above[indices_above > Nx - 1] = Nx - 1 # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): indices_above = np.concatenate((indices_above, [-1])) weights_above = indices - indices_below weights_below = 1 - weights_above weights_shape = [1] * ap.ndim weights_shape[axis] = len(indices) weights_below.shape = weights_shape weights_above.shape = weights_shape ap.partition( np.concatenate((indices_below, indices_above)), axis=axis, need_align=True ) # ensure axis with q-th is first ap = moveaxis(ap, axis, 0) weights_below = np.moveaxis(weights_below, axis, 0) weights_above = np.moveaxis(weights_above, axis, 0) axis = 0 # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): indices_above = indices_above[:-1] n = isnan(ap[-1:, ...]) x1 = take(ap, indices_below, axis=axis) * weights_below x2 = take(ap, indices_above, axis=axis) * weights_above # ensure axis with q-th is first x1 = moveaxis(x1, axis, 0) x2 = moveaxis(x2, axis, 0) if zerod: x1 = x1.squeeze(0) x2 = x2.squeeze(0) if out is not None: r = add(x1, x2, out=out) else: r = add(x1, x2) if isinstance(n, TENSOR_TYPE): if zerod: if ap.ndim == 1: r.data = where(tensor_any(n), a.dtype.type(np.nan), r).data if out is not None: out.data = r.data else: r[:] = where( tensor_any(n), where(n.squeeze(0), a.dtype.type(np.nan), r), r ) else: if r.ndim == 1: r[:] = where(tensor_any(n), np.full(r.shape, a.dtype.type(np.nan)), r) else: r[:] = where( tensor_any(n), where(n.repeat(q.size, 0), a.dtype.type(np.nan), r), r, ) return r q_error_msg = "Quantiles must be in the range [0, 1]" class TensorQuantile(TensorOperand, TensorOperandMixin): __slots__ = ("q_error_msg",) _op_type_ = OperandDef.QUANTILE _a = KeyField("a") _q = AnyField("q") _axis = AnyField("axis") _out = KeyField("out") _overwrite_input = BoolField("overwrite_input") _interpolation = StringField("interpolation") _keepdims = BoolField("keepdims") def __init__( self, q=None, axis=None, out=None, overwrite_input=None, interpolation=None, keepdims=None, **kw, ): self.q_error_msg = kw.pop("q_error_msg", q_error_msg) super().__init__( _q=q, _axis=axis, _interpolation=interpolation, _out=out, _overwrite_input=overwrite_input, _keepdims=keepdims, **kw, ) def _set_inputs(self, inputs): super()._set_inputs(inputs) self._a = self._inputs[0] if isinstance(self._q, (TENSOR_TYPE, TENSOR_CHUNK_TYPE)): self._q = self._inputs[1] if isinstance(self._out, (TENSOR_TYPE, TENSOR_CHUNK_TYPE)): self._out = self._inputs[-1] @property def a(self): return self._a @property def q(self): return self._q @property def axis(self): return self._axis @property def out(self): return self._out @property def overwrite_input(self): return self._overwrite_input @property def interpolation(self): return self._interpolation @property def keepdims(self): return self._keepdims def __call__(self, a, q=None, out=None): shape = [self._q.size] if self._q.ndim > 0 else [] if self._axis is None: exclude_axes = set(range(a.ndim)) elif isinstance(self._axis, tuple): exclude_axes = set(self._axis) else: exclude_axes = {self._axis} for ax, s in enumerate(a.shape): if ax not in exclude_axes: shape.append(s) elif self._keepdims: shape.append(1) inputs = [a] if q is None else [a, q] order = TensorOrder.C_ORDER if out is not None: inputs.append(out) order = out.order shape = out.shape t = self.new_tensor(inputs, shape=tuple(shape), order=order) if out is not None: check_out_param(out, t, "same_kind") out.data = t.data return out else: return t @classmethod def _tile(cls, op, q): r, k = _ureduce( op.a, func=_quantile_ureduce_func, q=q, axis=op.axis, out=op.out, overwrite_input=op.overwrite_input, interpolation=op.interpolation, ) if op.keepdims: return r.reshape(q.shape + k) else: return r @classmethod def _tile_one_chunk(cls, op, q): in_tensor = op.inputs[0] out_tensor = op.outputs[0] chunk_op = op.copy().reset_key() chunk_op._q = q chunk_inputs = [in_tensor.chunks[0]] if op.out is not None: chunk_inputs.append(op.out.chunks[0]) chunk = chunk_op.new_chunk( chunk_inputs, shape=out_tensor.shape, index=(0,) * out_tensor.ndim, order=out_tensor.order, ) op = op.copy() return op.new_tensors( op.inputs, shape=out_tensor.shape, order=out_tensor.order, nsplits=tuple((s,) for s in out_tensor.shape), chunks=[chunk], ) @classmethod def tile(cls, op): if isinstance(op.q, TENSOR_TYPE): # trigger execution of `q` yield op.q.chunks ctx = get_context() # get q's data q_chunk_keys = [c.key for c in op.q.chunks] q_data = ctx.get_chunks_result(q_chunk_keys) op._q = q = np.concatenate(q_data) if not _quantile_is_valid(q): raise ValueError(op.q_error_msg) else: if has_unknown_shape(*op.inputs): yield q = np.asarray(op.q) if len(op.a.chunks) == 1 and (op.out is None or len(op.out.chunks) == 1): return cls._tile_one_chunk(op, q) else: tiled = yield from recursive_tile(cls._tile(op, q)) return [tiled] @classmethod def execute(cls, ctx, op): inputs, device_id, xp = as_same_device( [ctx[inp.key] for inp in op.inputs], device=op.device, ret_extra=True ) a = inputs[0] out = inputs[-1].copy() if op.out is not None else None with device(device_id): ctx[op.outputs[0].key] = xp.quantile( a, q=op.q, axis=op.axis, out=out, interpolation=op.interpolation, keepdims=op.keepdims, ) INTERPOLATION_TYPES = {"linear", "lower", "higher", "midpoint", "nearest"} def _quantile_unchecked( a, q, axis=None, out=None, overwrite_input=False, interpolation="linear", keepdims=False, q_error_msg=None, handle_non_numeric=None, ): a = astensor(a) raw_dtype = a.dtype need_view_back = False if handle_non_numeric and not np.issubdtype(a.dtype, np.number): # enable handle_non_numeric is often used # to handle the datetime-like dtype a = a.astype("i8") need_view_back = True if isinstance(q, ENTITY_TYPE): q = astensor(q) # do check in tile q_input = q else: q_input = None if isinstance(axis, Iterable): axis = tuple(axis) if q.ndim > 1: raise ValueError("`q` should be a scalar or array of float") if out is not None and not isinstance(out, TENSOR_TYPE): raise TypeError(f"`out` should be a tensor, got {type(out)}") if interpolation not in INTERPOLATION_TYPES: raise ValueError( "interpolation can only be 'linear', 'lower' " "'higher', 'midpoint', or 'nearest'" ) # infer dtype q_tiny = np.random.rand(2 if q.size % 2 == 0 else 1).astype(q.dtype) if handle_non_numeric and not np.issubdtype(a.dtype, np.number): dtype = a.dtype else: dtype = np.quantile( np.empty(1, dtype=a.dtype), q_tiny, interpolation=interpolation ).dtype op = TensorQuantile( q=q, axis=axis, out=out, overwrite_input=overwrite_input, interpolation=interpolation, keepdims=keepdims, handle_non_numeric=handle_non_numeric, q_error_msg=q_error_msg, dtype=dtype, gpu=a.op.gpu, ) ret = op(a, q=q_input, out=out) if need_view_back: ret = ret.astype(raw_dtype) return ret def quantile( a, q, axis=None, out=None, overwrite_input=False, interpolation="linear", keepdims=False, **kw, ): """ Compute the q-th quantile of the data along the specified axis. Parameters ---------- a : array_like Input tensor or object that can be converted to a tensor. q : array_like of float Quantile or sequence of quantiles to compute, which must be between 0 and 1 inclusive. axis : {int, tuple of int, None}, optional Axis or axes along which the quantiles are computed. The default is to compute the quantile(s) along a flattened version of the tensor. out : Tensor, optional Alternative output tensor in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional Just for compatibility with Numpy, would not take effect. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points ``i < j``: * linear: ``i + (j - i) * fraction``, where ``fraction`` is the fractional part of the index surrounded by ``i`` and ``j``. * lower: ``i``. * higher: ``j``. * nearest: ``i`` or ``j``, whichever is nearest. * midpoint: ``(i + j) / 2``. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original tensor `a`. Returns ------- quantile : scalar or Tensor If `q` is a single quantile and `axis=None`, then the result is a scalar. If multiple quantiles are given, first axis of the result corresponds to the quantiles. The other axes are the axes that remain after the reduction of `a`. If the input contains integers or floats smaller than ``float64``, the output data-type is ``float64``. Otherwise, the output data-type is the same as that of the input. If `out` is specified, that tensor is returned instead. See Also -------- mean percentile : equivalent to quantile, but with q in the range [0, 100]. median : equivalent to ``quantile(..., 0.5)`` nanquantile Notes ----- Given a vector ``V`` of length ``N``, the q-th quantile of ``V`` is the value ``q`` of the way from the minimum to the maximum in a sorted copy of ``V``. The values and distances of the two nearest neighbors as well as the `interpolation` parameter will determine the quantile if the normalized ranking does not match the location of ``q`` exactly. This function is the same as the median if ``q=0.5``, the same as the minimum if ``q=0.0`` and the same as the maximum if ``q=1.0``. Examples -------- >>> import mars.tensor as mt >>> a = mt.array([[10, 7, 4], [3, 2, 1]]) >>> a.execute() array([[10, 7, 4], [ 3, 2, 1]]) >>> mt.quantile(a, 0.5).execute() 3.5 >>> mt.quantile(a, 0.5, axis=0).execute() array([6.5, 4.5, 2.5]) >>> mt.quantile(a, 0.5, axis=1).execute() array([7., 2.]) >>> mt.quantile(a, 0.5, axis=1, keepdims=True).execute() array([[7.], [2.]]) >>> m = mt.quantile(a, 0.5, axis=0) >>> out = mt.zeros_like(m) >>> mt.quantile(a, 0.5, axis=0, out=out).execute() array([6.5, 4.5, 2.5]) >>> m.execute() array([6.5, 4.5, 2.5]) """ handle_non_numeric = kw.pop("handle_non_numeric", None) if len(kw) > 0: # pragma: no cover raise TypeError( "quantile() got an unexpected keyword " f"argument '{next(iter(kw))}'" ) if not isinstance(q, ENTITY_TYPE): q = np.asanyarray(q) # do check instantly if q is not a tensor if not _quantile_is_valid(q): raise ValueError(q_error_msg) return _quantile_unchecked( a, q, axis=axis, out=out, overwrite_input=overwrite_input, interpolation=interpolation, keepdims=keepdims, handle_non_numeric=handle_non_numeric, )
the-stack_0_27007
import streamlit as st from PIL import Image import numpy as np from cloudwine.inference import inference_tfidf, inference_docvec, inference_bert from cloudwine.utils import show_metrics_graph, download_data, update_embedding, init_data, logger # Start execution def main(): # Download data from GCP bucket download_data() # Initialise the data module for the app data_module = init_data() # Determine app mode to run app_mode = st.sidebar.selectbox("Choose the app mode", ["Run the app", "Data Exploration", "Model deep dive"]) if app_mode == "Run the app": run_app(data_module) elif app_mode == "Data Exploration": run_data_analysis(data_module) elif app_mode == "Model deep dive": run_model_analysis() # Main app def run_app(data_module): # Render mardown text f = open("cloudwine/resources/intro.md", 'r') readme_text = st.markdown(f.read()) f.close() # Filters # Select model to use embed_model = st.sidebar.selectbox("Embedding model", ["BERT", "Doc2Vec", "TF-IDF"]) update_embedding(data_module, embed_model) st.sidebar.header("Filters") # Select varieties df = data_module.data variety_options = df.variety.value_counts().index.tolist() # dataframe['name'].value_counts()[:n].index.tolist() varieties = st.sidebar.multiselect( 'Wine Variety', variety_options) price_range = st.sidebar.slider("Price Range ($)", 0, int(df.price.max()), (0, int(df.price.max())), 5) # Apply filters df_subset = apply_filters(df, varieties, price_range) data_module.data_filtered = df_subset # Main page # Input description from user user_input = st.text_area("Describe your favourite wine here") if user_input: st.table(perform_inference(data_module, user_input, embed_model)) else: if varieties or (price_range != (0,df.price.max())): st.table(df_subset[['title', 'description', 'variety', 'price']]) # Analysis app def run_data_analysis(data_module): df = data_module.data st.image(load_image('cloudwine/resources/wine_reviews_image.jpg'), use_column_width=True) st.title('"Wine Reviews" Dataset Analysis') st.write('One this page we explore the Kaggle 2017 "Wine Reviews" dataset.') # Dataframe samples st.subheader("Sample of raw dataset") st.write(df.head()) st.subheader("Features used in training") st.table(df[['description', 'variety', 'region_1']].head(3)) # Description length histogram st.subheader("Text Length") hist_values = np.histogram( df['description'].str.len().tolist(), bins=24)[0] st.bar_chart(hist_values) # Model analysis app def run_model_analysis(): # f = open("cloudwine/resources/model_analysis.md", 'r') # readme_text = st.markdown(f.read()) # f.close() st.title('Model Evaluation') st.markdown("This project explored three different Natural Language Processing (NLP) text vectorisation techniques:") st.markdown("1. [Term Frequency-Inverse Document Frequency (TF-IDF)] (https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089)") st.markdown("2. [Doc2Vec] (https://medium.com/wisio/a-gentle-introduction-to-doc2vec-db3e8c0cce5e)") st.markdown("3. [Bidirectional Encoder Representations from Transformers (BERT)] (https://towardsdatascience.com/word-embedding-using-bert-in-python-dd5a86c00342)") st.subheader("Metric for sucess") st.markdown("""So how do we determine which model gives the best vector representation? First step is to cluster the text vectors by creating a joint label of 'variety' and 'region', as these are the biggest influencers of taste. As the embedding model improves and incorporates more semantic relationships between text, the the intra-cluster cosine similarity will increase (see [diversity metric] (https://gab41.lab41.org/recommender-systems-its-not-all-about-the-accuracy-562c7dceeaff#.5exl13wqv).""") st.image(load_image('cloudwine/resources/metric_figure.png'), use_column_width=True) st.subheader('Experimental Results') st.write("""The BERT embedding outperformed the baseline TF-IDF model by over 100%. To see the different models in action, go to 'Run the App' in the sidebar and select a model type in the dropdown.""") show_metrics_graph() # Returns dataframe subset with filters applied def apply_filters(df, varieties, price_range): df_subset = df.copy() # Varieties selection if varieties: df_subset = df_subset[df_subset['variety'].isin(varieties)] # Price range selection df_subset = df_subset[(df_subset['price']>price_range[0]) & (df_subset['price']<price_range[1])] return df_subset # @st.cache def perform_inference(data_module, user_input, embed_model): # Display recommendations as table if embed_model == 'BERT': df_recommend = inference_bert(data_module, user_input) elif embed_model == "Doc2Vec": df_recommend = inference_docvec(data_module, user_input) elif embed_model == "TF-IDF": df_recommend = inference_tfidf(data_module, user_input) return df_recommend[['title', 'description', 'variety', 'price', 'similarity']] @st.cache def load_image(path): im =Image.open(path) return im if __name__ == "__main__": # execute only if run as a script main()
the-stack_0_27011
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") def multirun_dependencies(): _maybe( http_archive, name = "bazel_skylib", sha256 = "b5f6abe419da897b7901f90cbab08af958b97a8f3575b0d3dd062ac7ce78541f", strip_prefix = "bazel-skylib-0.5.0", urls = ["https://github.com/bazelbuild/bazel-skylib/archive/0.5.0.tar.gz"], ) def _maybe(repo_rule, name, **kwargs): if name not in native.existing_rules(): repo_rule(name = name, **kwargs)
the-stack_0_27012
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2020 Dan <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. from io import BytesIO from pyrogram.raw.core.primitives import Int, Long, Int128, Int256, Bool, Bytes, String, Double, Vector from pyrogram.raw.core import TLObject from pyrogram import raw from typing import List, Union, Any # # # # # # # # # # # # # # # # # # # # # # # # # !!! WARNING !!! # # This is a generated file! # # All changes made in this file will be lost! # # # # # # # # # # # # # # # # # # # # # # # # # class GetStatsURL(TLObject): # type: ignore """Telegram API method. Details: - Layer: ``117`` - ID: ``0x812c2ae6`` Parameters: peer: :obj:`InputPeer <pyrogram.raw.base.InputPeer>` params: ``str`` dark (optional): ``bool`` Returns: :obj:`StatsURL <pyrogram.raw.base.StatsURL>` """ __slots__: List[str] = ["peer", "params", "dark"] ID = 0x812c2ae6 QUALNAME = "functions.messages.GetStatsURL" def __init__(self, *, peer: "raw.base.InputPeer", params: str, dark: Union[None, bool] = None) -> None: self.peer = peer # InputPeer self.params = params # string self.dark = dark # flags.0?true @staticmethod def read(data: BytesIO, *args: Any) -> "GetStatsURL": flags = Int.read(data) dark = True if flags & (1 << 0) else False peer = TLObject.read(data) params = String.read(data) return GetStatsURL(peer=peer, params=params, dark=dark) def write(self) -> bytes: data = BytesIO() data.write(Int(self.ID, False)) flags = 0 flags |= (1 << 0) if self.dark is not None else 0 data.write(Int(flags)) data.write(self.peer.write()) data.write(String(self.params)) return data.getvalue()
the-stack_0_27014
# # This file is part of LUNA. # # Copyright (c) 2020 Great Scott Gadgets <[email protected]> # SPDX-License-Identifier: BSD-3-Clause """ Pre-made gateware that implements an ILA connection serial. """ from nmigen import Elaboratable, Module, Signal, Cat from ...debug.ila import StreamILA, ILAFrontend from ...stream import StreamInterface from ..usb2.device import USBDevice from ..usb2.request import USBRequestHandler, StallOnlyRequestHandler from ..usb2.endpoints.stream import USBMultibyteStreamInEndpoint from usb_protocol.types import USBRequestType from usb_protocol.emitters import DeviceDescriptorCollection from usb_protocol.emitters.descriptors import cdc class USBIntegratedLogicAnalyzer(Elaboratable): """ Pre-made gateware that presents a USB-connected ILA. Samples are presented over a USB endpoint. """ BULK_ENDPOINT_NUMBER = 1 def __init__(self, *args, bus=None, delayed_connect=False, max_packet_size=512, **kwargs): self._delayed_connect = delayed_connect self._max_packet_size = max_packet_size # Store our USB bus. self._bus = bus # Force the ILA's output into the USB domain. kwargs['o_domain'] = 'usb' # Create our core ILA, which we'll use later. self.ila = StreamILA(*args, **kwargs) # # I/O port # # Copy some core parameters from our inner ILA. self.signals = self.ila.signals self.sample_width = self.ila.sample_width self.sample_depth = self.ila.sample_depth self.sample_rate = self.ila.sample_rate self.sample_period = self.ila.sample_period self.bits_per_sample = self.ila.bits_per_sample self.bytes_per_sample = self.ila.bytes_per_sample # Expose our ILA's trigger and status ports directly. self.trigger = self.ila.trigger self.sampling = self.ila.sampling self.complete = self.ila.complete def create_descriptors(self): """ Create the descriptors we want to use for our device. """ descriptors = DeviceDescriptorCollection() # # We'll add the major components of the descriptors we we want. # The collection we build here will be necessary to create a standard endpoint. # # We'll need a device descriptor... with descriptors.DeviceDescriptor() as d: d.idVendor = 0x16d0 d.idProduct = 0x05a5 d.iManufacturer = "LUNA" d.iProduct = "Integrated Logic Analyzer" d.iSerialNumber = "no serial" d.bNumConfigurations = 1 # ... and a description of the USB configuration we'll provide. with descriptors.ConfigurationDescriptor() as c: with c.InterfaceDescriptor() as i: i.bInterfaceNumber = 0 with i.EndpointDescriptor() as e: e.bEndpointAddress = 0x80 | self.BULK_ENDPOINT_NUMBER e.wMaxPacketSize = self._max_packet_size return descriptors def elaborate(self, platform): m = Module() m.submodules.ila = self.ila # If we have a bus name rather than a bus object, # request the bus from our platform. if isinstance(self._bus, str): self._bus = platform.request(self._bus) # If we have no bus, grab the platform's default USB connection. if self._bus is None: self._bus = platform.request(platform.default_usb_connection) m.submodules.usb = usb = USBDevice(bus=self._bus) # Add our standard control endpoint to the device. descriptors = self.create_descriptors() usb.add_standard_control_endpoint(descriptors) # Add a stream endpoint to our device. stream_ep = USBMultibyteStreamInEndpoint( endpoint_number=self.BULK_ENDPOINT_NUMBER, max_packet_size=self._max_packet_size, byte_width=self.ila.bytes_per_sample ) usb.add_endpoint(stream_ep) # Handle our connection criteria: we'll either connect immediately, # or once sampling is done, depending on our _delayed_connect setting. connect = Signal() if self._delayed_connect: with m.If(self.ila.complete): m.d.usb += connect.eq(1) else: m.d.comb += connect.eq(1) # Connect up our I/O and our ILA streams. m.d.comb += [ stream_ep.stream .stream_eq(self.ila.stream), usb.connect .eq(connect) ] return m class USBIntegratedLogicAnalyzerFrontend(ILAFrontend): """ Frontend for USB-attached integrated logic analyzers. Parameters ------------ delay: int The number of seconds to wait before trying to connect. ila: IntegratedLogicAnalyzer The ILA object to work with. """ def __init__(self, *args, ila, delay=3, **kwargs): import usb import time # If we have a connection delay, wait that long. if delay: time.sleep(delay) # Create our USB connection the device self._device = usb.core.find(idVendor=0x16d0, idProduct=0x5a5) super().__init__(ila) def _split_samples(self, all_samples): """ Returns an iterator that iterates over each sample in the raw binary of samples. """ from luna.apollo.support.bits import bits sample_width_bytes = self.ila.bytes_per_sample # Iterate over each sample, and yield its value as a bits object. for i in range(0, len(all_samples), sample_width_bytes): raw_sample = all_samples[i:i + sample_width_bytes] sample_length = len(Cat(self.ila.signals)) yield bits.from_bytes(raw_sample, length=sample_length, byteorder='little') def _read_samples(self): """ Reads a set of ILA samples, and returns them. """ sample_width_bytes = self.ila.bytes_per_sample total_to_read = self.ila.sample_depth * sample_width_bytes # Fetch all of our samples from the given device. all_samples = self._device.read(0x81, total_to_read, timeout=0) return list(self._split_samples(all_samples))
the-stack_0_27015
import logging import torch import torch.nn as nn logger = logging.getLogger(__name__) class ModelConfig: """ Vanilla GAN Model Config """ latent_size = None discriminator_first_hidden_size = None discriminator_second_hidden_size = None discriminator_dropout = None generator_first_hidden_size = None generator_second_hidden_size = None generator_dropout = None negative_slope = None image_size = None def __init__(self, config): for k, v in config.items(): setattr(self, k, v) if not self.latent_size: logger.error("latent_size is not implemented") raise NotImplementedError if not self.discriminator_first_hidden_size: logger.error("discriminator_first_hidden_size is not implemented") raise NotImplementedError if not self.discriminator_second_hidden_size: logger.error("discriminator_second_hidden_size is not implemented") raise NotImplementedError if not self.discriminator_dropout: logger.error("discriminator_dropout is not implemented") raise NotImplementedError if not self.generator_first_hidden_size: logger.error("generator_first_hidden_size is not implemented") raise NotImplementedError if not self.generator_second_hidden_size: logger.error("generator_second_hidden_size is not implemented") raise NotImplementedError if not self.generator_dropout: logger.error("generator_dropout is not implemented") raise NotImplementedError if not self.negative_slope: logger.error("negative_slope is not implemented") raise NotImplementedError if not self.image_size: logger.error("image_size is not implemented") raise NotImplementedError class Generator(nn.Module): """ Generator with Linear Layers input : Gaussian Random Noise z output : Generated Image """ def __init__(self, config): super(Generator, self).__init__() assert int(config.image_size ** 0.5) ** 2 == config.image_size, "image size should be square number" self.image_len = int(config.image_size ** 0.5) self.generator = nn.Sequential( nn.Linear(config.latent_size, config.generator_first_hidden_size), nn.LeakyReLU(config.negative_slope), nn.Dropout(config.generator_dropout), nn.Linear(config.generator_first_hidden_size, config.generator_second_hidden_size), nn.LeakyReLU(config.negative_slope), nn.Dropout(config.generator_dropout), nn.Linear(config.generator_second_hidden_size, config.image_size), nn.Tanh() ) self.apply(self.init_weights) logger.info(f"number of total parameters for G: {sum(p.numel() for p in self.parameters())}") logger.info(f"number of trainable parameters for G: {sum(p.numel() for p in self.parameters() if p.requires_grad)}") @staticmethod def init_weights(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: module.bias.data.zero_() def forward(self, x): return self.generator(x).view(-1, 1, self.image_len, self.image_len) class Discriminator(nn.Module): """ Discriminator with Linear Layers input : Image output : 0~1 float (0: Fake Image, 1: Real Image) """ def __init__(self, config): super(Discriminator, self).__init__() assert int(config.image_size ** 0.5) ** 2 == config.image_size, "Image Size should be Square Number" self.image_size = config.image_size self.discriminator = nn.Sequential( nn.Linear(config.image_size, config.discriminator_first_hidden_size), nn.LeakyReLU(config.negative_slope), nn.Dropout(config.discriminator_dropout), nn.Linear(config.discriminator_first_hidden_size, config.discriminator_second_hidden_size), nn.LeakyReLU(config.negative_slope), nn.Dropout(config.discriminator_dropout), nn.Linear(config.discriminator_second_hidden_size, 1), nn.Sigmoid() ) self.apply(self.init_weights) logger.info(f"number of parameters for D: {sum(p.numel() for p in self.parameters())}") logger.info(f"number of trainable parameters for D: {sum(p.numel() for p in self.parameters() if p.requires_grad)}") @staticmethod def init_weights(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: module.bias.data.zero_() def forward(self, x): return self.discriminator(x.view(-1, self.image_size))
the-stack_0_27016
""" DatasetConfigManager.py Author: Jan Zahalka ([email protected]) Handles loading the dataset config. """ from django.conf import settings import json import os from data.BlackthornFeatures import BlackthornFeatures from data.CollectionIndex import CollectionIndex class DatasetConfigManager: """ Encapsulates all operations concerning dataset configs, which includes not only loading and validating the JSON configs, but notably also loading the datasets into the system during runtime. This is due to the dataset loading procedure being so closely tied to loading the dataset configs - whilst a decomposition into a DatasetConfigManager and DatasetLoader class might make semantic sense, it would be DatasetLoader calling DatasetConfigManager all the time, impairing code compactness. """ datasets = None DATASET_CONFIG_DIR = os.path.join(settings.BASE_DIR, "data/datasets") DEFAULT_IMAGE_ORDERING_PATH = "image_ordering.json" DEFAULT_IL_RAW_FEATURES_PATH = "ii20model/il_raw_features.h5" DEFAULT_IL_FEATURES_PATH = "ii20model/il_features.npz" DEFAULT_INDEX_FEATURES_PATH = "ii20model/index_features.h5" DEFAULT_INDEX_DIR = "ii20model/index" @classmethod def load_dataset_config(cls, dataset_name): """ Loads the dataset config, ensuring it is in the correct format with correct values. See the README file for the specs of how to format the config. Parameters ---------- dataset_name : str The name of the dataset. The method will look for a <dataset_name>.json config file in DATASET_CONFIG_DIR. Returns ------- dict The dataset config dict with proper values. """ # Open the dataset config and parse it into JSON dataset_config_path = os.path.join(cls.DATASET_CONFIG_DIR, "%s.json" % dataset_name) try: with open(dataset_config_path, "r") as f: dataset_config = json.loads(f.read()) # If config file not found, raise an error except OSError: err = ("Dataset config file '%s' not found." % dataset_config_path) raise DatasetConfigInvalidError(err) # If config file an invalid JSON, raise an error except json.decoder.JSONDecodeError: err = ("Config file '%s' is not a valid JSON file." % dataset_config_path) raise DatasetConfigInvalidError(err) # Fill in default values if there are optional entries missing dataset_config_path = cls._fill_defaults(dataset_config) # Validate that all the entries are correct cls._validate_config(dataset_config) return dataset_config @classmethod def load_datasets(cls): """ Loads the datasets into II-20 for use in the analytic session. This method is called on II-20 start-up (hooked via data.__init__.py and data.apps.py). It goes over the configs in the dataset config dir, and loads in the image ordering, IL features (BlackthornFeatures) and collection index for all datasets that have the "load" flag set. """ cls.datasets = dict() for dataset_config_file in os.listdir(cls.DATASET_CONFIG_DIR): dataset_name = dataset_config_file.split(".")[0] dataset_config = cls.load_dataset_config(dataset_name) if dataset_config["load"]: cls.datasets[dataset_name] = dataset_config root_dir = dataset_config["root_dir"] il_features_abs_path =\ os.path.join(root_dir, dataset_config["il_features_path"]) index_dir_abs_path =\ os.path.join(root_dir, dataset_config["index_dir"]) image_ordering_abs_path =\ os.path.join(root_dir, dataset_config["image_ordering"]) cls.datasets[dataset_name]["il_features"] =\ BlackthornFeatures(il_features_abs_path) cls.datasets[dataset_name]["index"] =\ CollectionIndex(index_dir_abs_path) with open(image_ordering_abs_path, "r") as f: cls.datasets[dataset_name]["image_ordering"] =\ json.loads(f.read()) @classmethod def loaded_datasets_list(cls): """ Produces a list of the names of the loaded and thus ready for analytics. Returns ------- dict_keys The names of the datasets loaded in II-20. """ return cls.datasets.keys() @classmethod def image_url(cls, dataset, image_idx): """ Constructs an image URL from the given image index. Parameters ---------- dataset : str The name of the dataset. image_idx : int The image index. Returns ------- str The image URL. """ return os.path.join(settings.STATIC_URL, dataset, cls.datasets[dataset]["image_ordering"][image_idx]) @classmethod def n(cls, dataset): """ Gets the number of images in the dataset. Parameters ---------- dataset : str The name of the dataset. Returns ------- n : int The number of images in the dataset. """ return cls.datasets[dataset]["il_features"].n @classmethod def index(cls, dataset): """ Gets the collection index of the given dataset. Parameters ---------- dataset : str The name of the dataset. Returns ------- data.CollectionIndex The index of the dataset. """ return cls.datasets[dataset]["index"] @classmethod def il_features(cls, dataset): """ Gets the IL features extracted from the given dataset. Parameters ---------- dataset : str The name of the dataset. Returns ------- data.BlackthornFeatures The dataset's IL features. """ return cls.datasets[dataset]["il_features"] @classmethod def _fill_defaults(cls, dataset_config): """ Goes over a dataset config and fills in the default values to all optional parameters that were not explicitly filled in. Parameters ---------- dataset_config : dict The dataset config to be filled in. Returns ------- dict The updated dataset config with the default values filled in (if any). """ if "image_ordering" not in dataset_config: dataset_config["image_ordering"] = cls.DEFAULT_IMAGE_ORDERING_PATH if "il_raw_features_path" not in dataset_config: dataset_config["il_raw_features_path"] =\ cls.DEFAULT_IL_RAW_FEATURES_PATH if "il_features_path" not in dataset_config: dataset_config["il_features_path"] = cls.DEFAULT_IL_FEATURES_PATH if "index_features_path" not in dataset_config: dataset_config["index_features_path"] =\ cls.DEFAULT_INDEX_FEATURES_PATH if "index_dir" not in dataset_config: dataset_config["index_dir"] = cls.DEFAULT_INDEX_DIR if "il_n_processes" not in dataset_config: dataset_config["il_n_processes"] =\ BlackthornFeatures.DEFAULT_N_PROCESSES if "il_n_feat_per_image" not in dataset_config: dataset_config["il_n_feat_per_image"] =\ BlackthornFeatures.DEFAULT_N_FEAT_PER_IMG if "index_n_submat" not in dataset_config: dataset_config["index_n_submat"] = CollectionIndex.DEFAULT_N_SUBMAT return dataset_config @classmethod def _validate_config(cls, dataset_config): """ Validates the config values in the dataset config. Parameters ---------- dataset_config : dict A dataset config to be validated. Raises ------ DatasetConfigInvalidError Raised if there are invalid values in the dataset config. """ # Dataset root directory is a mandatory entry, check existence # and validity if "root_dir" not in dataset_config: err = ("The 'root_dir' entry specifying the dataset root " "directory is missing, but it is mandatory.") raise DatasetConfigInvalidError(err) if not os.path.isdir(dataset_config["root_dir"]): err = ("The 'root_dir' entry does not point to " "a valid directory.") raise DatasetConfigInvalidError(err) # The number of IL processes, number of compressed IL features, and # number of PQ submatrices in index must all be positive integers for par in ["il_n_processes", "il_n_feat_per_image", "index_n_submat"]: err = ("The '%s' parameter in the dataset config JSON must be a " "positive integer." % par) try: if dataset_config[par] <= 0: # Is smaller than 0 raise DatasetConfigInvalidError(err) except TypeError: # Is not an integer raise DatasetConfigInvalidError(err) class DatasetConfigInvalidError(Exception): """ Raised in case the dataset config is invalid. """ pass
the-stack_0_27017
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest FIXTURES_DIR = os.path.join(os.path.dirname(__file__), 'fixture') def test_no_prefix_suffix(apply_runner): _, output = apply_runner(FIXTURES_DIR) assert output['names']['project']['tf'] == 'cloud-dev-tf' assert output['names']['bucket']['tf-org'] == 'cloud-dev-tf-org' assert output['labels']['project']['tf'] == { 'environment': 'dev', 'scope': 'global', 'team': 'cloud'} assert output['labels']['bucket']['tf-org'] == { 'environment': 'dev', 'team': 'cloud'} def test_prefix(apply_runner): _, output = apply_runner(FIXTURES_DIR, prefix='myco') assert output['names']['project']['tf'] == 'myco-cloud-dev-tf' assert output['names']['bucket']['tf-org'] == 'myco-cloud-dev-tf-org' def test_suffix(apply_runner): _, output = apply_runner(FIXTURES_DIR, suffix='myco') assert output['names']['project']['tf'] == 'cloud-dev-tf-myco' assert output['names']['bucket']['tf-org'] == 'cloud-dev-tf-org-myco' def test_resource_prefix(apply_runner): _, output = apply_runner(FIXTURES_DIR, prefix='myco', use_resource_prefixes='true') assert output['names']['project']['tf'] == 'project-myco-cloud-dev-tf' assert output['names']['bucket']['tf-org'] == 'bucket-myco-cloud-dev-tf-org' def test_separator(apply_runner): _, output = apply_runner( FIXTURES_DIR, separator_override='{ dataset = "_" }') assert output['names']['dataset'] == { 'foobar': 'cloud_dev_foobar', 'frobniz': 'cloud_dev_frobniz'}
the-stack_0_27018
# Copyright (c) 2004,2018 Python-Metar Developers. # Distributed under the terms of the BSD 2-Clause License. # SPDX-License-Identifier: BSD-2-Clause """Python classes to represent dimensioned quantities used in weather reports. """ import re from math import sin, cos, atan2, sqrt # exceptions class UnitsError(Exception): """Exception raised when unrecognized units are used.""" pass # regexp to match fractions (used by distance class) # [Note: numerator of fraction must be single digit.] FRACTION_RE = re.compile(r"^((?P<int>\d+)\s*)?(?P<num>\d)/(?P<den>\d+)$") # classes representing dimensioned values in METAR reports class temperature(object): """A class representing a temperature value.""" legal_units = ["F", "C", "K"] def __init__(self, value, units="C"): if not units.upper() in temperature.legal_units: raise UnitsError("unrecognized temperature unit: '" + units + "'") self._units = units.upper() try: self._value = float(value) except ValueError: if value.startswith("M"): self._value = -float(value[1:]) else: raise ValueError("temperature must be integer: '" + str(value) + "'") def __str__(self): return self.string() def value(self, units=None): """Return the temperature in the specified units.""" if units is None: return self._value else: if not units.upper() in temperature.legal_units: raise UnitsError("unrecognized temperature unit: '" + units + "'") units = units.upper() if self._units == "C": celsius_value = self._value elif self._units == "F": celsius_value = (self._value - 32.0) / 1.8 elif self._units == "K": celsius_value = self._value - 273.15 if units == "C": return celsius_value elif units == "K": return 273.15 + celsius_value elif units == "F": return 32.0 + celsius_value * 1.8 def string(self, units=None): """Return a string representation of the temperature, using the given units.""" if units is None: units = self._units else: if not units.upper() in temperature.legal_units: raise UnitsError("unrecognized temperature unit: '" + units + "'") units = units.upper() val = self.value(units) if units == "C": return "%.1f C" % val elif units == "F": return "%.1f F" % val elif units == "K": return "%.1f K" % val class pressure(object): """A class representing a barometric pressure value.""" legal_units = ["MB", "HPA", "IN"] def __init__(self, value, units="MB"): if not units.upper() in pressure.legal_units: raise UnitsError("unrecognized pressure unit: '" + units + "'") self._value = float(value) self._units = units.upper() def __str__(self): return self.string() def value(self, units=None): """Return the pressure in the specified units.""" if units is None: return self._value else: if not units.upper() in pressure.legal_units: raise UnitsError("unrecognized pressure unit: '" + units + "'") units = units.upper() if units == self._units: return self._value if self._units == "IN": mb_value = self._value * 33.86398 else: mb_value = self._value if units == "MB" or units == "HPA": return mb_value elif units == "IN": return mb_value / 33.86398 else: raise UnitsError("unrecognized pressure unit: '" + units + "'") def string(self, units=None): """Return a string representation of the pressure, using the given units.""" if not units: units = self._units else: if not units.upper() in pressure.legal_units: raise UnitsError("unrecognized pressure unit: '" + units + "'") units = units.upper() val = self.value(units) if units == "MB": return "%.1f mb" % val elif units == "HPA": return "%.1f hPa" % val elif units == "IN": return "%.2f inches" % val class speed(object): """A class representing a wind speed value.""" legal_units = ["KT", "MPS", "KMH", "MPH"] legal_gtlt = [">", "<"] def __init__(self, value, units=None, gtlt=None): if not units: self._units = "MPS" else: if not units.upper() in speed.legal_units: raise UnitsError("unrecognized speed unit: '" + units + "'") self._units = units.upper() if gtlt and not gtlt in speed.legal_gtlt: raise ValueError( "unrecognized greater-than/less-than symbol: '" + gtlt + "'" ) self._gtlt = gtlt self._value = float(value) def __str__(self): return self.string() def value(self, units=None): """Return the speed in the specified units.""" if not units: return self._value else: if not units.upper() in speed.legal_units: raise UnitsError("unrecognized speed unit: '" + units + "'") units = units.upper() if units == self._units: return self._value if self._units == "KMH": mps_value = self._value / 3.6 elif self._units == "KT": mps_value = self._value * 0.514444 elif self._units == "MPH": mps_value = self._value * 0.447000 else: mps_value = self._value if units == "KMH": return mps_value * 3.6 elif units == "KT": return mps_value / 0.514444 elif units == "MPH": return mps_value / 0.447000 elif units == "MPS": return mps_value def string(self, units=None): """Return a string representation of the speed in the given units.""" if not units: units = self._units else: if not units.upper() in speed.legal_units: raise UnitsError("unrecognized speed unit: '" + units + "'") units = units.upper() val = self.value(units) if units == "KMH": text = "%.0f km/h" % val elif units == "KT": text = "%.0f knots" % val elif units == "MPH": text = "%.0f mph" % val elif units == "MPS": text = "%.0f mps" % val if self._gtlt == ">": text = "greater than " + text elif self._gtlt == "<": text = "less than " + text return text class distance(object): """A class representing a distance value.""" legal_units = ["SM", "MI", "M", "KM", "FT", "IN"] legal_gtlt = [">", "<"] def __init__(self, value, units=None, gtlt=None): if not units: self._units = "M" else: if not units.upper() in distance.legal_units: raise UnitsError("unrecognized distance unit: '" + units + "'") self._units = units.upper() try: if value.startswith("M"): value = value[1:] gtlt = "<" elif value.startswith("P"): value = value[1:] gtlt = ">" except: pass if gtlt and not gtlt in distance.legal_gtlt: raise ValueError( "unrecognized greater-than/less-than symbol: '" + gtlt + "'" ) self._gtlt = gtlt try: self._value = float(value) self._num = None self._den = None except ValueError: mf = FRACTION_RE.match(value) if not mf: raise ValueError("distance is not parseable: '" + str(value) + "'") df = mf.groupdict() self._num = int(df["num"]) self._den = int(df["den"]) self._value = float(self._num) / float(self._den) if df["int"]: self._value += float(df["int"]) def __str__(self): return self.string() def value(self, units=None): """Return the distance in the specified units.""" if not units: return self._value else: if not units.upper() in distance.legal_units: raise UnitsError("unrecognized distance unit: '" + units + "'") units = units.upper() if units == self._units: return self._value if self._units == "SM" or self._units == "MI": m_value = self._value * 1609.344 elif self._units == "FT": m_value = self._value / 3.28084 elif self._units == "IN": m_value = self._value / 39.3701 elif self._units == "KM": m_value = self._value * 1000 else: m_value = self._value if units == "SM" or units == "MI": return m_value / 1609.344 elif units == "FT": return m_value * 3.28084 elif units == "IN": return m_value * 39.3701 elif units == "KM": return m_value / 1000 elif units == "M": return m_value def string(self, units=None): """Return a string representation of the distance in the given units.""" if not units: units = self._units else: if not units.upper() in distance.legal_units: raise UnitsError("unrecognized distance unit: '" + units + "'") units = units.upper() if self._num and self._den and units == self._units: val = int(self._value - self._num / self._den) if val: text = "%d %d/%d" % (val, self._num, self._den) else: text = "%d/%d" % (self._num, self._den) else: if units == "KM": text = "%.1f" % self.value(units) else: text = "%.0f" % self.value(units) if units == "SM" or units == "MI": text += " miles" elif units == "M": text += " meters" elif units == "KM": text += " km" elif units == "FT": text += " feet" elif units == "IN": text += " inches" if self._gtlt == ">": text = "greater than " + text elif self._gtlt == "<": text = "less than " + text return text class direction(object): """A class representing a compass direction.""" compass_dirs = { "N": 0.0, "NNE": 22.5, "NE": 45.0, "ENE": 67.5, "E": 90.0, "ESE": 112.5, "SE": 135.0, "SSE": 157.5, "S": 180.0, "SSW": 202.5, "SW": 225.0, "WSW": 247.5, "W": 270.0, "WNW": 292.5, "NW": 315.0, "NNW": 337.5, } def __init__(self, d): if d in direction.compass_dirs: self._compass = d self._degrees = direction.compass_dirs[d] else: self._compass = None value = float(d) if value < 0.0 or value > 360.0: raise ValueError("direction must be 0..360: '" + str(value) + "'") self._degrees = value def __str__(self): return self.string() def value(self): """Return the numerical direction, in degrees.""" return self._degrees def string(self): """Return a string representation of the numerical direction.""" return "%.0f degrees" % self._degrees def compass(self): """Return the compass direction, e.g., "N", "ESE", etc.).""" if not self._compass: degrees = 22.5 * round(self._degrees / 22.5) if degrees == 360.0: self._compass = "N" else: for name, d in direction.compass_dirs.items(): if d == degrees: self._compass = name break return self._compass class precipitation(object): """A class representing a precipitation value.""" legal_units = ["IN", "CM"] legal_gtlt = [">", "<"] def __init__(self, value, units=None, gtlt=None): if not units: self._units = "IN" else: if not units.upper() in precipitation.legal_units: raise UnitsError("unrecognized precipitation unit: '" + units + "'") self._units = units.upper() try: if value.startswith("M"): value = value[1:] gtlt = "<" elif value.startswith("P"): value = value[1:] gtlt = ">" except: pass if gtlt and not gtlt in precipitation.legal_gtlt: raise ValueError( "unrecognized greater-than/less-than symbol: '" + gtlt + "'" ) self._gtlt = gtlt self._value = float(value) # In METAR world, a string of just four or three zeros denotes trace self._istrace = value in ["0000", "000"] def __str__(self): return self.string() def value(self, units=None): """Return the precipitation in the specified units.""" if not units: return self._value else: if not units.upper() in precipitation.legal_units: raise UnitsError("unrecognized precipitation unit: '" + units + "'") units = units.upper() if units == self._units: return self._value if self._units == "CM": i_value = self._value * 2.54 else: i_value = self._value if units == "CM": return i_value * 2.54 else: return i_value def string(self, units=None): """Return a string representation of the precipitation in the given units.""" if not units: units = self._units else: if not units.upper() in precipitation.legal_units: raise UnitsError("unrecognized precipitation unit: '" + units + "'") units = units.upper() # A trace is a trace in any units if self._istrace: return "Trace" text = "%.2f" % self.value(units) if units == "CM": text += "cm" else: text += "in" if self._gtlt == ">": text = "greater than " + text elif self._gtlt == "<": text = "less than " + text return text def istrace(self): """Return a boolean on if this precipitation was a trace""" return self._istrace class position(object): """A class representing a location on the earth's surface.""" def __init__(self, latitude=None, longitude=None): self.latitude = latitude self.longitude = longitude def __str__(self): return self.string() def getdistance(self, position2): """ Calculate the great-circle distance to another location using the Haversine formula. See <http://www.movable-type.co.uk/scripts/LatLong.html> and <http://mathforum.org/library/drmath/sets/select/dm_lat_long.html> """ earth_radius = 637100.0 lat1 = self.latitude long1 = self.longitude lat2 = position2.latitude long2 = position2.longitude a = sin(0.5(lat2 - lat1)) + cos(lat1) * cos(lat2) * sin( 0.5 * (long2 - long1) ** 2 ) c = 2.0 * atan(sqrt(a) * sqrt(1.0 - a)) d = distance(earth_radius * c, "M") return d def getdirection(self, position2): """ Calculate the initial direction to another location. (The direction typically changes as you trace the great circle path to that location.) See <http://www.movable-type.co.uk/scripts/LatLong.html>. """ lat1 = self.latitude long1 = self.longitude lat2 = position2.latitude long2 = position2.longitude s = -sin(long1 - long2) * cos(lat2) c = cos(lat1) * sin(lat2) - sin(lat1) * cos(lat2) * cos(long1 - long2) d = atan2(s, c) * 180.0 / math.pi if d < 0.0: d += 360.0 return direction(d)
the-stack_0_27022
"""Three-dimensional mobjects.""" __all__ = [ "ThreeDVMobject", "ParametricSurface", "Sphere", "Dot3D", "Cube", "Prism", "Cone", "Arrow3D", "Cylinder", "Line3D", "Torus", ] import numpy as np from ..constants import * from ..mobject.geometry import Circle, Square from ..mobject.mobject import * from ..mobject.types.vectorized_mobject import VGroup, VMobject from ..utils.color import * from ..utils.iterables import tuplify from ..utils.space_ops import normalize, z_to_vector class ThreeDVMobject(VMobject): def __init__(self, shade_in_3d=True, **kwargs): super().__init__(shade_in_3d=shade_in_3d, **kwargs) class ParametricSurface(VGroup): def __init__( self, func, u_min=0, u_max=1, v_min=0, v_max=1, resolution=32, surface_piece_config={}, fill_color=BLUE_D, fill_opacity=1.0, checkerboard_colors=[BLUE_D, BLUE_E], stroke_color=LIGHT_GREY, stroke_width=0.5, should_make_jagged=False, pre_function_handle_to_anchor_scale_factor=0.00001, **kwargs ): VGroup.__init__(self, **kwargs) self.u_min = u_min self.u_max = u_max self.v_min = v_min self.v_max = v_max self.resolution = resolution self.surface_piece_config = surface_piece_config self.fill_color = fill_color self.fill_opacity = fill_opacity self.checkerboard_colors = checkerboard_colors self.stroke_color = stroke_color self.stroke_width = stroke_width self.should_make_jagged = should_make_jagged self.pre_function_handle_to_anchor_scale_factor = ( pre_function_handle_to_anchor_scale_factor ) self.func = func self.setup_in_uv_space() self.apply_function(lambda p: func(p[0], p[1])) if self.should_make_jagged: self.make_jagged() def get_u_values_and_v_values(self): res = tuplify(self.resolution) if len(res) == 1: u_res = v_res = res[0] else: u_res, v_res = res u_min = self.u_min u_max = self.u_max v_min = self.v_min v_max = self.v_max u_values = np.linspace(u_min, u_max, u_res + 1) v_values = np.linspace(v_min, v_max, v_res + 1) return u_values, v_values def setup_in_uv_space(self): u_values, v_values = self.get_u_values_and_v_values() faces = VGroup() for i in range(len(u_values) - 1): for j in range(len(v_values) - 1): u1, u2 = u_values[i : i + 2] v1, v2 = v_values[j : j + 2] face = ThreeDVMobject() face.set_points_as_corners( [ [u1, v1, 0], [u2, v1, 0], [u2, v2, 0], [u1, v2, 0], [u1, v1, 0], ] ) faces.add(face) face.u_index = i face.v_index = j face.u1 = u1 face.u2 = u2 face.v1 = v1 face.v2 = v2 faces.set_fill(color=self.fill_color, opacity=self.fill_opacity) faces.set_stroke( color=self.stroke_color, width=self.stroke_width, opacity=self.stroke_opacity, ) self.add(*faces) if self.checkerboard_colors: self.set_fill_by_checkerboard(*self.checkerboard_colors) def set_fill_by_checkerboard(self, *colors, opacity=None): n_colors = len(colors) for face in self: c_index = (face.u_index + face.v_index) % n_colors face.set_fill(colors[c_index], opacity=opacity) return self # Specific shapes class Sphere(ParametricSurface): def __init__( self, radius=1, resolution=(12, 24), u_min=0.001, u_max=PI - 0.001, v_min=0, v_max=TAU, **kwargs ): ParametricSurface.__init__( self, self.func, resolution=resolution, u_min=u_min, u_max=u_max, v_min=v_min, v_max=v_max, **kwargs, ) self.radius = radius self.scale(self.radius) def func( self, u, v ): # FIXME: An attribute defined in manim.mobject.three_dimensions line 56 hides this method return np.array([np.cos(v) * np.sin(u), np.sin(v) * np.sin(u), np.cos(u)]) class Dot3D(Sphere): """A spherical dot. Parameters -------- radius : :class:`float`, optional The radius of the dot. color : :class:`~.Colors`, optional The color of the :class:`Dot3D` Examples -------- .. manim:: Dot3DExample :save_last_frame: class Dot3DExample(ThreeDScene): def construct(self): self.set_camera_orientation(phi=75*DEGREES, theta=-45*DEGREES) axes = ThreeDAxes() dot_1 = Dot3D(color=RED).move_to(axes.coords_to_point(0, 0, 1)) dot_2 = Dot3D(radius=0.1, color=BLUE).move_to(axes.coords_to_point(2, 0, 0)) self.add(axes, dot_1, dot_2) """ def __init__(self, radius=DEFAULT_DOT_RADIUS, color=WHITE, **kwargs): Sphere.__init__(self, radius=radius, **kwargs) self.set_color(color) class Cube(VGroup): def __init__( self, side_length=2, fill_opacity=0.75, fill_color=BLUE, stroke_width=0, **kwargs ): self.side_length = side_length super().__init__( fill_color=fill_color, fill_opacity=fill_opacity, stroke_width=stroke_width, **kwargs, ) def generate_points(self): for vect in IN, OUT, LEFT, RIGHT, UP, DOWN: face = Square( side_length=self.side_length, shade_in_3d=True, ) face.flip() face.shift(self.side_length * OUT / 2.0) face.apply_matrix(z_to_vector(vect)) self.add(face) class Prism(Cube): def __init__(self, dimensions=[3, 2, 1], **kwargs): self.dimensions = dimensions Cube.__init__(self, **kwargs) def generate_points(self): Cube.generate_points(self) for dim, value in enumerate(self.dimensions): self.rescale_to_fit(value, dim, stretch=True) class Cone(ParametricSurface): """A circular cone. Can be defined using 2 parameters: its height, and its base radius. The polar angle, theta, can be calculated using arctan(base_radius / height) The spherical radius, r, is calculated using the pythagorean theorem. Examples -------- .. manim:: ExampleCone :save_last_frame: class ExampleCone(ThreeDScene): def construct(self): axes = ThreeDAxes() cone = Cone(direction=X_AXIS+Y_AXIS+2*Z_AXIS) self.set_camera_orientation(phi=5*PI/11, theta=PI/9) self.add(axes, cone) Parameters -------- base_radius : :class:`float` The base radius from which the cone tapers. height : :class:`float` The height measured from the plane formed by the base_radius to the apex of the cone. direction : :class:`numpy.array` The direction of the apex. show_base : :class:`bool` Whether to show the base plane or not. v_min : :class:`float` The azimuthal angle to start at. v_max : :class:`float` The azimuthal angle to end at. u_min : :class:`float` The radius at the apex. checkerboard_colors : :class:`bool` Show checkerboard grid texture on the cone. """ def __init__( self, base_radius=1, height=1, direction=Z_AXIS, show_base=False, v_min=0, v_max=TAU, u_min=0, checkerboard_colors=False, **kwargs ): self.direction = direction self.theta = PI - np.arctan(base_radius / height) ParametricSurface.__init__( self, self.func, v_min=v_min, v_max=v_max, u_min=u_min, u_max=np.sqrt(base_radius ** 2 + height ** 2), checkerboard_colors=checkerboard_colors, **kwargs, ) # used for rotations self._current_theta = 0 self._current_phi = 0 if show_base: self.base_circle = Circle( radius=base_radius, color=self.fill_color, fill_opacity=self.fill_opacity, stroke_width=0, ) self.base_circle.shift(height * IN) self.add(self.base_circle) self._rotate_to_direction() def func(self, u, v): """Converts from spherical coordinates to cartesian. Parameters --------- u : :class:`float` The radius. v : :class:`float` The azimuthal angle. """ r = u phi = v return np.array( [ r * np.sin(self.theta) * np.cos(phi), r * np.sin(self.theta) * np.sin(phi), r * np.cos(self.theta), ] ) def _rotate_to_direction(self): x, y, z = self.direction r = np.sqrt(x ** 2 + y ** 2 + z ** 2) theta = np.arccos(z / r) if x == 0: if y == 0: # along the z axis phi = 0 else: phi = np.arctan(np.inf) if y < 0: phi += PI else: phi = np.arctan(y / x) if x < 0: phi += PI # Undo old rotation (in reverse order) self.rotate(-self._current_phi, Z_AXIS, about_point=ORIGIN) self.rotate(-self._current_theta, Y_AXIS, about_point=ORIGIN) # Do new rotation self.rotate(theta, Y_AXIS, about_point=ORIGIN) self.rotate(phi, Z_AXIS, about_point=ORIGIN) # Store values self._current_theta = theta self._current_phi = phi def set_direction(self, direction): self.direction = direction self._rotate_to_direction() def get_direction(self): return self.direction class Cylinder(ParametricSurface): """A cylinder, defined by its height, radius and direction, Examples --------- .. manim:: ExampleCylinder :save_last_frame: class ExampleCylinder(ThreeDScene): def construct(self): axes = ThreeDAxes() cylinder = Cylinder(radius=2, height=3) self.set_camera_orientation(phi=75 * DEGREES, theta=30 * DEGREES) self.add(axes, cylinder) Parameters --------- radius : :class:`float` The radius of the cylinder. height : :class:`float` The height of the cylinder. direction : :class:`numpy.array` The direction of the central axis of the cylinder. v_min : :class:`float` The height along the height axis (given by direction) to start on. v_max : :class:`float` The height along the height axis (given by direction) to end on. show_ends : :class:`bool` Whether to show the end caps or not. """ def __init__( self, radius=1, height=2, direction=Z_AXIS, v_min=0, v_max=TAU, show_ends=True, resolution=24, **kwargs ): self._height = height self.radius = radius ParametricSurface.__init__( self, self.func, resolution=resolution, u_min=-self._height / 2, u_max=self._height / 2, v_min=v_min, v_max=v_max, **kwargs, ) if show_ends: self.add_bases() self._current_phi = 0 self._current_theta = 0 self.set_direction(direction) def func(self, u, v): """Converts from cylindrical coordinates to cartesian. Parameters --------- u : :class:`float` The height. v : :class:`float` The azimuthal angle. """ height = u phi = v r = self.radius return np.array([r * np.cos(phi), r * np.sin(phi), height]) def add_bases(self): """Adds the end caps of the cylinder.""" self.base_top = Circle( radius=self.radius, color=self.fill_color, fill_opacity=self.fill_opacity, shade_in_3d=True, stroke_width=0, ) self.base_top.shift(self.u_max * IN) self.base_bottom = Circle( radius=self.radius, color=self.fill_color, fill_opacity=self.fill_opacity, shade_in_3d=True, stroke_width=0, ) self.base_bottom.shift(self.u_min * IN) self.add(self.base_top, self.base_bottom) def _rotate_to_direction(self): x, y, z = self.direction r = np.sqrt(x ** 2 + y ** 2 + z ** 2) theta = np.arccos(z / r) if x == 0: if y == 0: # along the z axis phi = 0 else: # along the x axis phi = np.arctan(np.inf) if y < 0: phi += PI else: phi = np.arctan(y / x) if x < 0: phi += PI # undo old rotation (in reverse direction) self.rotate(-self._current_phi, Z_AXIS, about_point=ORIGIN) self.rotate(-self._current_theta, Y_AXIS, about_point=ORIGIN) # do new rotation self.rotate(theta, Y_AXIS, about_point=ORIGIN) self.rotate(phi, Z_AXIS, about_point=ORIGIN) # store new values self._current_theta = theta self._current_phi = phi def set_direction(self, direction): # if get_norm(direction) is get_norm(self.direction): # pass self.direction = direction self._rotate_to_direction() def get_direction(self): return self.direction class Line3D(Cylinder): """A cylindrical line, for use in ThreeDScene. Examples --------- .. manim:: ExampleLine3D :save_last_frame: class ExampleLine3D(ThreeDScene): def construct(self): axes = ThreeDAxes() line = Line3D(start=np.array([0, 0, 0]), end=np.array([2, 2, 2])) self.set_camera_orientation(phi=75 * DEGREES, theta=30 * DEGREES) self.add(axes, line) Parameters --------- start : :class:`numpy.array` The start position of the line. end : :class:`numpy.array` The end position of the line. thickness : :class:`float` The thickness of the line. """ def __init__(self, start=LEFT, end=RIGHT, thickness=0.02, color=None, **kwargs): self.thickness = thickness self.set_start_and_end_attrs(start, end, **kwargs) if color is not None: self.set_color(color) def set_start_and_end_attrs(self, start, end, **kwargs): """Sets the start and end points of the line. If either ``start`` or ``end`` are :class:`~.Mobject`s, this gives their centers. """ rough_start = self.pointify(start) rough_end = self.pointify(end) self.vect = rough_end - rough_start self.length = np.linalg.norm(self.vect) self.direction = normalize(self.vect) # Now that we know the direction between them, # we can the appropriate boundary point from # start and end, if they're mobjects self.start = self.pointify(start, self.direction) self.end = self.pointify(end, -self.direction) Cylinder.__init__( self, height=np.linalg.norm(self.vect), radius=self.thickness, direction=self.direction, **kwargs, ) self.shift((self.start + self.end) / 2) def pointify(self, mob_or_point, direction=None): if isinstance(mob_or_point, Mobject): mob = mob_or_point if direction is None: return mob.get_center() else: return mob.get_boundary_point(direction) return np.array(mob_or_point) def get_start(self): return self.start def get_end(self): return self.end class Arrow3D(Line3D): """An arrow made out of a cylindrical line and a conical tip. Examples --------- .. manim:: ExampleArrow3D :save_last_frame: class ExampleArrow3D(ThreeDScene): def construct(self): axes = ThreeDAxes() arrow = Arrow3D(start=np.array([0, 0, 0]), end=np.array([2, 2, 2])) self.set_camera_orientation(phi=75 * DEGREES, theta=30 * DEGREES) self.add(axes, arrow) Parameters --------- start : :class:`numpy.array` The start position of the arrow. end : :class:`numpy.array` The end position of the arrow. thickness : :class:`float` The thickness of the arrow. height : :class:`float` The height of the conical tip. base_radius: :class:`float` The base radius of the conical tip. """ def __init__( self, start=LEFT, end=RIGHT, thickness=0.02, height=0.5, base_radius=0.25, color=WHITE, **kwargs ): Line3D.__init__(self, start=start, end=end, **kwargs) self.length = np.linalg.norm(self.vect) self.set_start_and_end_attrs( self.start, self.end - height * self.direction, thickness=thickness, **kwargs, ) self.cone = Cone( direction=self.direction, base_radius=base_radius, height=height, **kwargs ) self.cone.shift(end) self.add(self.cone) self.set_color(color) class Torus(ParametricSurface): """A torus. Examples --------- .. manim :: ExampleTorus :save_last_frame: class ExampleTorus(ThreeDScene): def construct(self): axes = ThreeDAxes() torus = Torus() self.set_camera_orientation(phi=75 * DEGREES, theta=30 * DEGREES) self.add(axes, torus) Parameters --------- major_radius : :class:`float` Distance from the center of the tube to the center of the torus. minor_radius : :class:`float` Radius of the tube. """ def __init__( self, major_radius=3, minor_radius=1, u_min=0, u_max=TAU, v_min=0, v_max=TAU, resolution=24, **kwargs ): self.R = major_radius self.r = minor_radius ParametricSurface.__init__( self, self.func, u_min=u_min, u_max=u_max, v_min=v_min, v_max=v_max, resolution=resolution, **kwargs, ) def func(self, u, v): P = np.array([np.cos(u), np.sin(u), 0]) return (self.R - self.r * np.cos(v)) * P - self.r * np.sin(v) * OUT
the-stack_0_27023
"""Submodule to handle web requests in opsdroid.""" import json import logging import ssl from aiohttp import web from opsdroid import __version__ _LOGGER = logging.getLogger(__name__) class Web: """Create class for opsdroid Web server.""" def __init__(self, opsdroid): """Create web object.""" self.opsdroid = opsdroid try: self.config = self.opsdroid.config["web"] except KeyError: self.config = {} self.web_app = web.Application() self.runner = web.AppRunner(self.web_app) self.site = None self.web_app.router.add_get('/', self.web_index_handler) self.web_app.router.add_get('', self.web_index_handler) self.web_app.router.add_get('/stats', self.web_stats_handler) self.web_app.router.add_get('/stats/', self.web_stats_handler) @property def get_port(self): """Return port from config or the default. Args: self: instance method Returns: int: returns value of port being used, config or default """ try: port = self.config["port"] except KeyError: if self.get_ssl_context is not None: port = 8443 else: port = 8080 return port @property def get_host(self): """Return host from config or the default. Args: self: instance method Returns: string: returns address of host being used, config or default """ try: host = self.config["host"] except KeyError: host = '127.0.0.1' return host @property def get_ssl_context(self): """Return the ssl context or None. Args: self: instance method Returns: string (or NoneType): returns ssl context of None. """ try: ssl_config = self.config["ssl"] sslcontext = ssl.SSLContext(ssl.PROTOCOL_TLSv1) sslcontext.load_cert_chain(ssl_config["cert"], ssl_config["key"]) return sslcontext except FileNotFoundError: _LOGGER.error(_("Cannot find ssl cert or key.")) return None except KeyError: return None async def start(self): """Start web servers.""" _LOGGER.info(_("Started web server on %s://%s%s"), "http" if self.get_ssl_context is None else "https", self.get_host, ":{}".format(self.get_port) if self.get_port not in (80, 443) else "") await self.runner.setup() self.site = web.TCPSite(self.runner, host=self.get_host, port=self.get_port, ssl_context=self.get_ssl_context) await self.site.start() async def stop(self): """Stop the web server.""" await self.runner.cleanup() @staticmethod def build_response(status, result): """Build a json response object to power the bot reponses. Args: result: serialize obj as a JSON formated stream Returns: json: returns json object with list of responses for the bot """ return web.Response(text=json.dumps(result), status=status) def register_skill(self, opsdroid, skill, webhook): """Register a new skill in the web app router.""" async def wrapper(req, opsdroid=opsdroid, config=skill.config): """Wrap up the aiohttp handler.""" _LOGGER.info(_("Running skill %s via webhook"), webhook) opsdroid.stats["webhooks_called"] = \ opsdroid.stats["webhooks_called"] + 1 resp = await skill(opsdroid, config, req) if isinstance(resp, web.Response): return resp return Web.build_response(200, {"called_skill": webhook}) self.web_app.router.add_post( "/skill/{}/{}".format(skill.config["name"], webhook), wrapper) self.web_app.router.add_post( "/skill/{}/{}/".format(skill.config["name"], webhook), wrapper) def setup_webhooks(self, skills): """Add the webhooks for the webhook skills to the router.""" for skill in skills: for matcher in skill.matchers: if "webhook" in matcher: self.register_skill( self.opsdroid, skill, matcher["webhook"] ) async def web_index_handler(self, request): """Handle root web request to opsdroid API. Args: request: web request to the root (index) Returns: dict: returns successful status code and greeting for the root page """ return self.build_response(200, { "message": "Welcome to the opsdroid API"}) async def web_stats_handler(self, request): """Handle stats request. Args: request: web request to render opsdroid stats Returns: dict: returns successful status code and dictionary with stats requested """ stats = self.opsdroid.stats try: stats["average_response_time"] = \ stats["total_response_time"] / stats["total_responses"] except ZeroDivisionError: stats["average_response_time"] = 0 return self.build_response(200, { "version": __version__, "messages": { "total_parsed": stats["messages_parsed"], "webhooks_called": stats["webhooks_called"], "total_response_time": stats["total_response_time"], "total_responses": stats["total_responses"], "average_response_time": stats["average_response_time"] }, "modules": { "skills": len(self.opsdroid.skills), "connectors": len(self.opsdroid.connectors), "databases": len(self.opsdroid.memory.databases) } })
the-stack_0_27025
# -*- coding: utf-8 -*- # This technical data was produced for the U. S. Government under Contract No. W15P7T-13-C-F600, and # is subject to the Rights in Technical Data-Noncommercial Items clause at DFARS 252.227-7013 (FEB 2012) import json from django.contrib.auth.decorators import login_required from django.contrib.gis.geos import GEOSGeometry from django.core import serializers from django.core.exceptions import ValidationError, ObjectDoesNotExist from django.core.urlresolvers import reverse from django.http import HttpResponse, HttpResponseRedirect, Http404 from django.shortcuts import render_to_response, get_object_or_404 from django.template import RequestContext from django.views.generic import ListView, View, DeleteView from django.views.decorators.http import require_http_methods from forms import MapForm, MapInlineFormset, UploadKMZForm, UploadJSONForm from sodo.core.models import AOI from sodo.locations.models import Counties from models import Feature, FeatureType, Map, Layer, MapLayerUserRememberedParams, MapLayer, GeoeventsSource from kmz_handler import save_kmz_file from json import load import logging logger = logging.getLogger(__name__) class CreateFeatures(View): """ Reads GeoJSON from post request and creates AOIS for each features. """ http_method_names = ['post'] def post(self, request, *args, **kwargs): feature = None tpi = request.META.get('HTTP_TEMP_POINT_ID', "none") aoi = request.POST.get('aoi') geometry = request.POST.get('geometry') geojson = json.loads(geometry) properties = geojson.get('properties') aoi = AOI.objects.get(id=aoi) job = getattr(aoi, 'job') project = getattr(job, 'project') template = properties.get('template') if properties else None # TODO: handle exceptions if template: template = FeatureType.objects.get(id=template) attrs = dict(aoi=aoi, job=job, project=project, analyst=request.user, template=template) geometry = geojson.get('geometry') geom_obj = GEOSGeometry(json.dumps(geometry)) attrs['the_geom'] = geom_obj county_list = Counties.objects.filter(poly__contains=geom_obj.centroid.wkt) county = None if len(county_list): county = str(county_list[0].name) try: feature = Feature(**attrs) feature.full_clean() if not feature.properties: feature.properties = {} if county: feature.properties['county'] = county feature.save() except ValidationError as e: response = HttpResponse(content=json.dumps(dict(errors=e.messages)), mimetype="application/json", status=400) response['Temp-Point-Id'] = tpi return response # This feels a bit ugly but it does get the GeoJSON into the response feature_json = serializers.serialize('json', [feature,]) feature_list = json.loads(feature_json) feature_list[0]['geojson'] = feature.geoJSON(True) response = HttpResponse(json.dumps(feature_list), mimetype="application/json") response['Temp-Point-Id'] = tpi return response class EditFeatures(View): """ Reads feature info from post request and updates associated feature object. """ http_method_names = ['post'] def post(self, request, *args, **kwargs): geometry = request.POST.get('geometry') geojson = json.loads(geometry) properties = geojson.get('properties') try: feature = Feature.objects.get(pk=properties.get('id')) except ObjectDoesNotExist: raise Http404 geometry = geojson.get('geometry') feature.the_geom = GEOSGeometry(json.dumps(geometry)) template = properties.get('template') if properties else None # TODO: handle exceptions if template: feature.template = FeatureType.objects.get(id=template) try: feature.full_clean() feature.save() except ValidationError as e: return HttpResponse(content=json.dumps(dict(errors=e.messages)), mimetype="application/json", status=400) return HttpResponse("{}", mimetype="application/json") @login_required @require_http_methods(["POST"]) def update_user_maplayer_param(request, *args, **kwargs): user = request.user try: json_stuff = json.loads(request.body) except ValueError: return HttpResponse("{\"status\":\"Bad Request\"}", mimetype="application/json", status=400) mlq = MapLayer.objects.filter(id=json_stuff['maplayer']) if not mlq.exists(): return HttpResponse("{\"status:\":\"Bad Request\", \"reason\":\"MapLayer does not exist\"}", status=400) else: ml = mlq.get() mlurpq = MapLayerUserRememberedParams.objects.filter(maplayer=ml, user=user) if mlurpq.exists(): mlurp = mlurpq.get() else: mlurp = MapLayerUserRememberedParams(maplayer=ml, user=user, values={}) mlurp.values[json_stuff['param']] = json_stuff['newValue'] mlurp.save() return HttpResponse(json.dumps(mlurp.values), mimetype="application/json", status=200) def feature_delete(request, pk): try: feature = Feature.objects.get(pk=pk) feature.delete() except ObjectDoesNotExist: raise Http404 return HttpResponse( content=pk, status=200 ) @login_required def create_update_map(request, job_id, map_id): if map_id: map_obj = Map.objects.get(pk=map_id) else: map_obj = None if request.method == 'POST': form = MapForm(request.POST, prefix='map', instance=map_obj) maplayers_formset = MapInlineFormset(request.POST, prefix='layers', instance=map_obj) if form.is_valid() and maplayers_formset.is_valid(): form.save() maplayers_formset.instance = form.instance maplayers_formset.save() return HttpResponseRedirect(reverse('job-detail', kwargs = {'pk': job_id})) else: form = MapForm(prefix='map', instance=map_obj) maplayers_formset = MapInlineFormset(prefix='layers', instance=map_obj) # form = [f for f in form if f.name not in ['zoom', 'projection', 'center_x', 'center_y']] return render_to_response('core/generic_form.html', { 'form': form, 'layer_formset': maplayers_formset, 'custom_form': 'core/map_create.html', 'object': map_obj, }, context_instance=RequestContext(request)) class MapListView(ListView): model = Map def get_context_data(self, **kwargs): context = super(MapListView, self).get_context_data(**kwargs) context['admin'] = self.request.user.has_perm('maps.add_map') return context class MapDelete(DeleteView): model = Map template_name = "core/generic_confirm_delete.html" def get_success_url(self): return reverse('map-list') class FeatureTypeListView(ListView): model = FeatureType def get_context_data(self, **kwargs): context = super(FeatureTypeListView, self).get_context_data(**kwargs) context['admin'] = self.request.user.has_perm('maps.add_featuretype') return context class FeatureTypeDelete(DeleteView): model = FeatureType template_name = "core/generic_confirm_delete.html" def get_success_url(self): #TODO: Add a signal to context to #tell user that is was sucessful. return reverse('feature-type-list') class LayerListView(ListView): model = Layer def get_context_data(self, **kwargs): context = super(LayerListView, self).get_context_data(**kwargs) context['admin'] = self.request.user.has_perm('maps.add_layer') return context class LayerImport(ListView): model = Layer template_name = "maps/layer_import.html" def get_context_data(self, **kwargs): context = super(LayerImport, self).get_context_data(**kwargs) context['geoevents_sources'] = GeoeventsSource.objects.all() return context def post(self, request, *args, **kwargs): layers = request.POST.getlist('layer') for lay in layers: layer = json.loads(lay) # see if it's already in here. assume 'url' and 'layer' attributes make it unique l = Layer.objects.filter(url=layer['url'], layer=layer['layer']) if not l: # add the layer new_layer = Layer() for key, value in layer.iteritems(): # if key == 'layer_params': # # TODO: need to pass json object here # pass # else: setattr(new_layer, key, value) new_layer.save() return HttpResponseRedirect(reverse('layer-list')) class LayerDelete(DeleteView): model = Layer template_name = "core/generic_confirm_delete.html" def get_success_url(self): return reverse('layer-list') class KMZLayerImport(ListView): model = Layer template_name = "maps/kmz_upload.html" def get_context_data(self, **kwargs): context = super(KMZLayerImport, self).get_context_data(**kwargs) return context def post(self, request, *args, **kwargs): form = UploadKMZForm(request.POST, request.FILES) if form.is_valid(): localdir = save_kmz_file(request.FILES['kmzfile']) uri = request.build_absolute_uri(localdir) if localdir != None: layer = Layer.objects.create(name = request.POST['title'],type="KML",url=uri,layer="",styles="",description="") return HttpResponseRedirect(reverse('layer-list')) class JSONLayerImport(ListView): model = Layer template_name = "maps/json_upload.html" def get_context_data(self, **kwargs): context = super(JSONLayerImport, self).get_context_data(**kwargs) return context def post(self, request, *args, **kwargs): form = UploadJSONForm(request.POST, request.FILES) try: dataFromFile = load(request.FILES["jsonfile"]) except ValueError as e: ##This is a bad jsonFile, We should never get to this point but it is the last layer of defense. return HttpResponseRedirect(reverse('layer-list')) #Check to make sure that we actually have data if dataFromFile != None: layerName = request.POST['title'] if not layerName.strip(): layerName = dataFromFile["name"] #Due to the naming errors between the actual DB names and the exporting function built in the maps/models.py file for layers we have to do this in one line and not pretty. layer = Layer.objects.create(id=dataFromFile["id"], name = layerName, image_format=dataFromFile["format"], type=dataFromFile["type"], url=dataFromFile["url"], additional_domains=dataFromFile["subdomains"], layer=dataFromFile["layer"], transparent=dataFromFile["transparent"], layer_params=dataFromFile["layerParams"], dynamic_params=dataFromFile["dynamicParams"], refreshrate=dataFromFile["refreshrate"], token=dataFromFile["token"], attribution=dataFromFile["attribution"], spatial_reference=dataFromFile["spatialReference"], layer_parsing_function=dataFromFile["layerParsingFunction"], enable_identify=dataFromFile["enableIdentify"], root_field=dataFromFile["rootField"], info_format=dataFromFile["infoFormat"], fields_to_show=dataFromFile["fieldsToShow"], description=dataFromFile["description"], downloadableLink=dataFromFile["downloadableLink"], layer_info_link=dataFromFile["layer_info_link"], styles=dataFromFile["styles"]) return HttpResponseRedirect(reverse('layer-list')) class JSONLayerExport(ListView): model = Layer def get(self, request, *args, **kwargs): name = self.kwargs.get('pk').replace("%20", " "); layer = Layer.objects.get(name__iexact = name) layerJson = json.dumps(layer.layer_json(), indent=2); return HttpResponse(layerJson, mimetype="application/json", status=200)
the-stack_0_27026
import argparse import json import random from collections import deque from operator import itemgetter import os import cv2 import mmcv import numpy as np import torch from mmcv import Config, DictAction from mmcv.parallel import collate, scatter from mmaction.apis import init_recognizer from mmaction.datasets.pipelines import Compose FONTFACE = cv2.FONT_HERSHEY_COMPLEX_SMALL FONTSCALE = 1 THICKNESS = 1 LINETYPE = 1 EXCLUED_STEPS = [ 'OpenCVInit', 'OpenCVDecode', 'DecordInit', 'DecordDecode', 'PyAVInit', 'PyAVDecode', 'RawFrameDecode', 'FrameSelector' ] def parse_args(): parser = argparse.ArgumentParser( description='MMAction2 predict different labels in a long video demo') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file/url') parser.add_argument('video_path', help='video file/url') parser.add_argument('label', help='label file') #parser.add_argument('out_file', help='output result file in video/json') #parser.add_argument('--sample_length', help='sample_length * stride = amount of frames for a prediction') parser.add_argument( '--is-folder', type=bool, default=False, help='bool if video is file or folder') parser.add_argument( '--input-step', type=int, default=1, help='input step for sampling frames') parser.add_argument( '--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument( '--threshold', type=float, default=0.01, help='recognition score threshold') parser.add_argument( '--stride', type=float, default=1, help=('the prediction stride equals to stride * sample_length ' '(sample_length indicates the size of temporal window from ' 'which you sample frames, which equals to ' 'clip_len x frame_interval), if set as 0, the ' 'prediction stride is 1')) parser.add_argument( '--cfg-options', nargs='+', action=DictAction, default={}, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. For example, ' "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'") parser.add_argument( '--label-color', nargs='+', type=int, default=(0, 0, 255), help='font color (B, G, R) of the labels in output video') parser.add_argument( '--msg-color', nargs='+', type=int, default=(128, 128, 128), help='font color (B, G, R) of the messages in output video') args = parser.parse_args() print(args) return args def show_results_video(result_queue, text_info, thr, msg, frame, video_writer, ind, fps, label_color=(0, 0, 255), msg_color=(128, 128, 128), ): if len(result_queue) != 0: text_info = {} results = result_queue.popleft() for i, result in enumerate(results): selected_label, score = result if selected_label == "striking" and score >= 3.0: pass elif selected_label == "throwing" and score <= 5.0: break elif selected_label == 'spray' and score <= 6.0: break elif selected_label == 'aiming' and score <= 6.0: break elif score < thr: break location = (0, 40 + i * 20) score = str(round(score, 2)) text = selected_label + ': ' + score timestamp = str(round(ind/round(fps), 1)) text_info[location] = text #write threshold passers to a txt with open(f"{out_file_path}_detections.txt", 'a') as f: f.write(text + " " + timestamp + "\n") cv2.putText(frame, text, location, FONTFACE, FONTSCALE, label_color, THICKNESS, LINETYPE) elif len(text_info): for location, text in text_info.items(): cv2.putText(frame, text, location, FONTFACE, FONTSCALE, label_color, THICKNESS, LINETYPE) else: cv2.putText(frame, msg, (0, 40), FONTFACE, FONTSCALE, msg_color, THICKNESS, LINETYPE) video_writer.write(frame) return text_info def get_results_json(result_queue, text_info, thr, msg, ind, out_json): if len(result_queue) != 0: text_info = {} results = result_queue.popleft() for i, result in enumerate(results): selected_label, score = result if score < thr: break text_info[i + 1] = selected_label + ' ' + str(round(score, 2)) out_json[ind] = text_info elif len(text_info): out_json[ind] = text_info else: out_json[ind] = msg return text_info, out_json def show_results(model, data, label, args): print(args.sample_length) print("ARGS: ") print(args) #add indiviual video files to folder, if only a file then add just that to list, traverse subdirs try: #if declared folder if args.is_folder == True: video_list = [] already_done = os.listdir(f'{args.video_path}/survai_output/') #go through all sub dirs for roots,dirs,files in os.walk(args.video_path): for file_name in files: print("DIR:", roots) #skip videos already done if file_name.split('.')[0] + '_out.mp4' in already_done: print("skipping: "+ file_name) continue else: full_file_path = os.path.join(roots, file_name) video_list.append(full_file_path) #print(video_list) #video_list = os.listdir(args.video_path) #print(video_list) #print(args.video_path) except NotADirectoryError: video_list = [args.video_path] #print(video_list) for video in video_list: #if single video #if "." in args.video_path: # video = f"{args.video_path}" #else: # video = f"{args.video_path}{video}" print(" ", video, " ") if "survai_output" in video: print("skipping: ", video) continue frame_queue = deque(maxlen=args.sample_length) result_queue = deque(maxlen=1) cap = cv2.VideoCapture(video) num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) print("video info: ", num_frames, frame_width, frame_height, fps) msg = 'Preparing action recognition ...' text_info = {} out_json = {} fourcc = cv2.VideoWriter_fourcc(*'mp4v') frame_size = (frame_width, frame_height) ind = 0 #create new folder and automatic names of output files - modelmark + epoch output_folder_name = args.checkpoint.split("/")[1] + "__" + args.checkpoint.split("/")[2].split(".")[0] print("OUTPUT FOLDER: ", output_folder_name) out_name = video.split("/")[-1].split(".")[0] out_file_name = f"{out_name}_out.mp4" if not os.path.exists(f'outputs/{output_folder_name}'): os.makedirs(f'outputs/{output_folder_name}') global out_file_path if args.is_folder == True: out_file_path = f"{args.video_path}/survai_output/{out_file_name}" else: out_file_path = f"outputs/{output_folder_name}/{out_file_name}" print("video: ", video) print("out file path: ", out_file_path) video_writer = None if out_file_path.endswith('.json') \ else cv2.VideoWriter(out_file_path, fourcc, fps, frame_size) prog_bar = mmcv.ProgressBar(num_frames) backup_frames = [] while ind < num_frames: ind += 1 prog_bar.update() ret, frame = cap.read() #insure it has time to load in the frames if ret: pass else: ind -= 1 cv2.waitKey(100) continue if frame is None: # drop it when encounting None print("none") continue backup_frames.append(np.array(frame)[:, :, ::-1]) if ind == args.sample_length: # provide a quick show at the beginning frame_queue.extend(backup_frames) backup_frames = [] elif ((len(backup_frames) == args.input_step and ind > args.sample_length) or ind == num_frames): # pick a frame from the backup # when the backup is full or reach the last frame chosen_frame = random.choice(backup_frames) backup_frames = [] frame_queue.append(chosen_frame) ret, scores = inference(model, data, args, frame_queue) if ret: num_selected_labels = min(len(label), 5) scores_tuples = tuple(zip(label, scores)) scores_sorted = sorted( scores_tuples, key=itemgetter(1), reverse=True) results = scores_sorted[:num_selected_labels] result_queue.append(results) if out_file_path.endswith('.json'): text_info, out_json = get_results_json(result_queue, text_info, args.threshold, msg, ind, out_json) else: text_info = show_results_video(result_queue, text_info, args.threshold, msg, frame, video_writer, ind, fps, args.label_color, args.msg_color) cap.release() cv2.destroyAllWindows() if out_file_path.endswith('.json'): with open(out_file_path, 'w') as js: json.dump(out_json, js) def inference(model, data, args, frame_queue): if len(frame_queue) != args.sample_length: # Do no inference when there is no enough frames return False, None cur_windows = list(np.array(frame_queue)) if data['img_shape'] is None: data['img_shape'] = frame_queue[0].shape[:2] cur_data = data.copy() cur_data['imgs'] = cur_windows cur_data = args.test_pipeline(cur_data) cur_data = collate([cur_data], samples_per_gpu=1) if next(model.parameters()).is_cuda: cur_data = scatter(cur_data, [args.device])[0] with torch.no_grad(): scores = model(return_loss=False, **cur_data)[0] if args.stride > 0: pred_stride = int(args.sample_length * args.stride) for _ in range(pred_stride): frame_queue.popleft() # for case ``args.stride=0`` # deque will automatically popleft one element return True, scores def main(): args = parse_args() args.device = torch.device(args.device) cfg = Config.fromfile(args.config) cfg.merge_from_dict(args.cfg_options) model = init_recognizer(cfg, args.checkpoint, device=args.device) data = dict(img_shape=None, modality='RGB', label=-1) with open(args.label, 'r') as f: label = [line.strip() for line in f] # prepare test pipeline from non-camera pipeline cfg = model.cfg sample_length = 0 pipeline = cfg.data.test.pipeline pipeline_ = pipeline.copy() for step in pipeline: if 'SampleFrames' in step['type']: sample_length = step['clip_len'] * step['num_clips'] data['num_clips'] = step['num_clips'] data['clip_len'] = step['clip_len'] pipeline_.remove(step) if step['type'] in EXCLUED_STEPS: # remove step to decode frames pipeline_.remove(step) test_pipeline = Compose(pipeline_) assert sample_length > 0 args.sample_length = sample_length args.test_pipeline = test_pipeline show_results(model, data, label, args) if __name__ == '__main__': main()