filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_27554
''' # tpls_server.py functional implementation of the 'transport layer security sever' or tpls_server when i wrote this only God and I understood it. now only God does ''' import logging import datetime as dt import logging import sys import socketserver logging.basicConfig(level=logging.DEBUG, format='%(name)s: %(message)s', ) local_ip = "192.168.1.3" n_port = 1234 tw = ['nighthawk','22670bf1b10545e46f7d797c8e4bd7a77af1bb667f7e864aaca07fad65439f84','951c49bc88ce9a2cc31d4470423590a7c0bedbef953a06a72e6b5d4f74731ed6', '56b8ba882b6aeeb7fa43f9125d8d2909b8a734f82b46b67b3809105a28cfb05d'] trusted_wallet_hash = tw handshake = [] run = True def chash_0(input_string): handshake.clear() autolog('chash_0: input') packet = input_string for i in range(0, len(tw)) or packet == tw[i]: if packet != tw[i]: cs = 'ERROR: CONNECTION UNSUCCESSFUL' handshake.clear() handshake.append(0) autolog(cs) autolog(handshake) return cs elif packet == tw[i]: cs = 'CONNECTION SUCCESSFUL' handshake.clear() handshake.append(1) autolog(cs) autolog(handshake) return cs else: cs = 'ERROR: CONNECTION UNSUCCESSFUL' handshake.clear() handshake.append(0) autolog(cs) autolog(handshake) return cs def client_thread(conn, ip, port, MAX_BUFFER_SIZE = 4096): # incoming user wallet hash, id of user/node init_chash_b = conn.recv(MAX_BUFFER_SIZE) autolog('client_thread: ') # MAX_BUFFER_SIZE is how big the message can be import sys siz = sys.getsizeof(init_chash_b) if siz >= MAX_BUFFER_SIZE: print("The length of input is probably too long: {}".format(siz)) autolog('client_thread: ') # decode incoming user hash chash_0_r = init_chash_b.decode("utf8") autolog(chash_0_r) # analyze incoming user hash res = chash_0(chash_0_r) autolog('chash -> analyer') vysl = res.encode("utf8") # encode the result string conn.sendall(vysl) # send it to client if handshake[0] == 1: # fid tx autolog('FID INCOMING') data_bytes = conn.recv(MAX_BUFFER_SIZE) siz = sys.getsizeof(init_chash_b) if siz >= MAX_BUFFER_SIZE: print("The length of input is probably too long: {}".format(siz)) # decode the FID data = data_bytes.decode('utf-8') autolog(data) fid_analyze(data) # responce after fid execute replyb = 'DATA TRANSFER COMPLETE' conn.sendall(replyb.encode('utf-8')) else: conn.close() # close connection arnold = 'CONNECTION ' + ip + ':' + port + " TERMINATED" autolog(arnold) start_handshake() def fid_analyze(fid): autolog(type(fid)) if fid == '99': autolog(fid) run = False elif fid == '0': # pipe to execute function autolog('0_NETWORK_PROTOCOL') elif fid == '1': autolog('1_np') elif fid == 'msg': incoming_msg(fid) else: autolog('NO MATHCING FID EXECUTABLES') def post_fid_anal(): pass def incoming_msg(msg): autolog(msg) def start_handshake(): import socket soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # this is for easy starting/killing the app soc.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) autolog('SOCKET CREATED') try: soc.bind((local_ip, n_port)) autolog('SOCKET BIND COMPLETE') except socket.error as msg: import sys print(dt.datetime.now(), 'BIND_FAIL_ERROR: ' + str(sys.exc_info())) sys.exit() #Start listening on socket soc.listen(10) autolog('SOCKET LISTENING') # for handling task in separate jobs we need threading from threading import Thread # this will make an infinite loop needed for # not reseting server for every client conn, addr = soc.accept() ip, port = str(addr[0]), str(addr[1]) d = 'loop_0 > ACCEPTING CONNECTIONS FROM ' + ip + ':' + port autolog(d) try: Thread(target=client_thread, args=(conn, ip, port)).start() except: print(dt.datetime.now(), "Terible error!") import traceback autolog('loop: ERROR') traceback.print_exc() soc.close() def autolog(message): import inspect, logging # Get the previous frame in the stack, otherwise it would # be this function!!! func = inspect.currentframe().f_back.f_code # Dump the message + the name of this function to the log. logging.debug("{}\t{}\t{}\t{}".format( dt.datetime.now(), func.co_filename, func.co_name, message ))
the-stack_0_27555
""" @file util.py @author Tej Sukhatme some functions to be used """ import pandas as pd def load_features(path): if path.exists() and path.is_file(): df = pd.read_csv(path) features = df.drop(columns=['incidence']) return features.values def load_labels(path): if path.exists() and path.is_file(): df = pd.read_csv(path) labels = pd.Series(df['incidence']) return labels.values def load(path, is_labels=False): if path.exists() and path.is_file(): df = pd.read_csv(path) if is_labels: df = pd.Series(df['incidence']) return df.values
the-stack_0_27556
__all__: list = ['inherit_docstrings'] from collections import OrderedDict from inspect import Signature from io import StringIO from textwrap import indent from typing import Any, Dict, List, TypeVar, Type, Collection, Optional import docstring_parser from ..util import get_signature def _get_docstring_params_dict(obj: Any) -> Dict[str, docstring_parser.DocstringParam]: params = docstring_parser.google.parse(obj.__doc__).params params_dict = OrderedDict((param.arg_name, param) for param in params) return params_dict def _replace_params_in_docstring(docstring: docstring_parser.Docstring, new_params: Collection[docstring_parser.DocstringParam]) -> None: # erase old params from docstring new_meta = [meta for meta in docstring.meta if not isinstance(meta, docstring_parser.DocstringParam)] # replace them by new_params new_meta.extend(new_params) docstring.meta = new_meta T = TypeVar('T') def inherit_docstrings(cls: Type[T]) -> Type[T]: """Modifies docstring parameters list of class and nested members updating it with docstring parameters from parent classes and parent classes members. All args and attributes from all parent classes are added to applied class docstring. If any parameter present in more than a one class it is updated by the most recent version (according to mro order). The same applies to all nested members: nested member is considered to be a parent of other nested member if and only if corresponding outer classes have the same relationship and nested members have the same name. Args: cls: target class. """ cls_docstring = docstring_parser.google.parse(cls.__doc__) nested_docstrings = {} inherited_params = OrderedDict() nested_inherited_params = {} for member_name in dir(cls): if member_name.startswith('_'): continue nested_docstring = getattr(getattr(cls, member_name), '__doc__') if nested_docstring: nested_docstrings[member_name] = docstring_parser.google.parse(nested_docstring) nested_inherited_params[member_name] = OrderedDict() traverse_order = list(cls.__mro__[::-1]) traverse_order.append(cls) for parent in traverse_order: inherited_params.update(_get_docstring_params_dict(parent)) for member_name in dir(parent): if member_name in nested_inherited_params: nested_inherited_params[member_name].update(_get_docstring_params_dict(getattr(parent, member_name))) _replace_params_in_docstring(cls_docstring, inherited_params.values()) cls.__doc__ = _construct_docstring(cls_docstring, get_signature(cls)) for member_name in nested_docstrings: if nested_inherited_params[member_name]: _replace_params_in_docstring(nested_docstrings[member_name], nested_inherited_params[member_name].values()) member = getattr(cls, member_name) member_sig = None if isinstance(member, type): member_sig = get_signature(member) getattr(cls, member_name).__doc__ = _construct_docstring(nested_docstrings[member_name], member_sig) return cls def _indent_all_lines_except_first(text: str) -> str: first_line_end = text.find('\n') if first_line_end == -1: return text return text[:first_line_end + 1] + indent(text[first_line_end + 1:], ' ' * 4) def _get_key_value_chunk(title: str, keys: List[str], values: List[str]) -> str: io = StringIO() io.write(f'{title}:\n') for key, value in zip(keys, values): io.write(indent(f'{key}: {_indent_all_lines_except_first(value)}\n', ' ' * 4)) return io.getvalue().rstrip('\n') def _construct_docstring(parsed_docstring: docstring_parser.Docstring, sig: Optional[Signature] = None) -> str: chunks = [] docstring_prefix = '' if parsed_docstring.short_description: chunks.append(parsed_docstring.short_description) else: docstring_prefix = '\n' if parsed_docstring.long_description: chunks.append(parsed_docstring.long_description) arg_params = [] attr_params = [] params_dict = {param.arg_name: param for param in parsed_docstring.params} if sig: for sig_param_name in sig.parameters.keys(): param = params_dict.pop(sig_param_name, None) if not param: continue if param.args[0] == 'attribute': attr_params.append(param) elif param.args[0] == 'param': arg_params.append(param) for param in parsed_docstring.params: if param.arg_name not in params_dict: continue if param.args[0] == 'attribute': attr_params.append(param) elif param.args[0] == 'param': arg_params.append(param) if arg_params: chunk = _get_key_value_chunk(title='Args', keys=[param.arg_name for param in arg_params], values=[param.description for param in arg_params]) chunks.append(chunk) if attr_params: chunk = _get_key_value_chunk(title='Attributes', keys=[param.arg_name for param in attr_params], values=[param.description for param in attr_params]) chunks.append(chunk) returns = parsed_docstring.returns if returns: chunk = _get_key_value_chunk(title='Yields' if returns.is_generator else 'Returns', keys=[returns.type_name], values=[returns.description]) chunks.append(chunk) raises = parsed_docstring.raises if raises: chunk = _get_key_value_chunk(title='Raises', keys=[exception.type_name for exception in raises], values=[exception.description for exception in raises]) chunks.append(chunk) for meta in parsed_docstring.meta: if type(meta) not in [docstring_parser.DocstringParam, docstring_parser.DocstringReturns, docstring_parser.DocstringRaises]: io = StringIO() io.write(f'{meta.args[0].title()}:\n') io.write(indent(meta.description, ' ' * 4)) chunks.append(io.getvalue()) docstring = docstring_prefix + '\n\n'.join(chunks) return docstring
the-stack_0_27557
from __future__ import print_function import sys import os import argparse import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torchvision.transforms as transforms from torch.autograd import Variable from data import VOCroot, VOC_CLASSES as labelmap from PIL import Image from data import AnnotationTransform, VOCDetection, BaseTransform, VOC_CLASSES import torch.utils.data as data from ssd import build_ssd parser = argparse.ArgumentParser(description='Single Shot MultiBox Detection') parser.add_argument('--trained_model', default='weights/v2.pth', type=str, help='Trained state_dict file path to open') parser.add_argument('--save_folder', default='eval/', type=str, help='Dir to save results') parser.add_argument('--visual_threshold', default=0.6, type=float, help='Final confidence threshold') parser.add_argument('--cuda', default=True, type=bool, help='Use cuda to train model') parser.add_argument('--voc_root', default=VOCroot, help='Location of VOC root directory') args = parser.parse_args() if not os.path.exists(args.save_folder): os.mkdir(args.save_folder) def test_net(save_folder, net, cuda, testset, transform, thresh): # dump predictions and assoc. ground truth to text file for now filename = save_folder+'test1.txt' num_images = len(testset) for i in range(num_images): print('Testing image {:d}/{:d}....'.format(i+1, num_images)) img = testset.pull_image(i) img_id, annotation = testset.pull_anno(i) x = torch.from_numpy(transform(img)[0]).permute(2, 0, 1) x = Variable(x.unsqueeze(0)) with open(filename, mode='a') as f: f.write('\nGROUND TRUTH FOR: '+img_id+'\n') for box in annotation: f.write('label: '+' || '.join(str(b) for b in box)+'\n') if cuda: x = x.cuda() y = net(x) # forward pass detections = y.data # scale each detection back up to the image scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) pred_num = 0 for i in range(detections.size(1)): j = 0 while detections[0, i, j, 0] >= 0.6: if pred_num == 0: with open(filename, mode='a') as f: f.write('PREDICTIONS: '+'\n') score = detections[0, i, j, 0] label_name = labelmap[i-1] pt = (detections[0, i, j, 1:]*scale).cpu().numpy() coords = (pt[0], pt[1], pt[2], pt[3]) pred_num += 1 with open(filename, mode='a') as f: f.write(str(pred_num)+' label: '+label_name+' score: ' + str(score) + ' '+' || '.join(str(c) for c in coords) + '\n') j += 1 if __name__ == '__main__': # load net num_classes = len(VOC_CLASSES) + 1 # +1 background net = build_ssd('test', 300, num_classes) # initialize SSD net.load_state_dict(torch.load(args.trained_model)) net.eval() print('Finished loading model!') # load data testset = VOCDetection(args.voc_root, [('2007', 'test')], None, AnnotationTransform()) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.save_folder, net, args.cuda, testset, BaseTransform(net.size, (104, 117, 123)), thresh=args.visual_threshold)
the-stack_0_27558
from telethon import events import subprocess from telethon.errors import MessageEmptyError, MessageTooLongError, MessageNotModifiedError import io import asyncio import time from userbot.utils import admin_cmd import glob import os try: import instantmusic , subprocess except: os.system("pip install instantmusic") os.system("rm -rf *.mp3") def bruh(name): os.system("instantmusic -q -s "+name) @borg.on(admin_cmd(pattern="song ?(.*)")) async def _(event): if event.fwd_from: return DELAY_BETWEEN_EDITS = 0.5 PROCESS_RUN_TIME = 100 cmd = event.pattern_match.group(1) reply_to_id = event.message.id if event.reply_to_msg_id: reply_to_id = event.reply_to_msg_id await event.edit("ok finding the song") bruh(str(cmd)) l = glob.glob("*.mp3") loa = l[0] await event.edit("Trying To send This Song") await borg.send_file( event.chat_id, loa, force_document=True, allow_cache=False, caption=cmd, reply_to=reply_to_id ) os.system("rm -rf *.mp3") subprocess.check_output("rm -rf *.mp3",shell=True)
the-stack_0_27559
from urllib.parse import urlencode from allauth.account.adapter import DefaultAccountAdapter from allauth.exceptions import ImmediateHttpResponse from django.http import HttpResponseRedirect from django.urls import reverse from allauth_2fa.utils import user_has_valid_totp_device class OTPAdapter(DefaultAccountAdapter): def has_2fa_enabled(self, user): """Returns True if the user has 2FA configured.""" return user_has_valid_totp_device(user) def login(self, request, user): # Require two-factor authentication if it has been configured. if self.has_2fa_enabled(user): # Cast to string for the case when this is not a JSON serializable # object, e.g. a UUID. request.session['allauth_2fa_user_id'] = str(user.id) redirect_url = reverse('two-factor-authenticate') # Add "next" parameter to the URL. view = request.resolver_match.func.view_class() view.request = request success_url = view.get_success_url() query_params = request.GET.copy() if success_url: query_params[view.redirect_field_name] = success_url if query_params: redirect_url += '?' + urlencode(query_params) raise ImmediateHttpResponse( response=HttpResponseRedirect(redirect_url) ) # Otherwise defer to the original allauth adapter. return super(OTPAdapter, self).login(request, user)
the-stack_0_27560
# Copyright 2016, 2017 California Institute of Technology # Users must agree to abide by the restrictions listed in the # file "LegalStuff.txt" in the PROPER library directory. # # PROPER developed at Jet Propulsion Laboratory/California Inst. Technology # Original IDL version by John Krist # Python translation by Navtej Saini, with Luis Marchen and Nikta Amiri # # Modified by J. Krist - 19 April 2019 - added DFTI_THREAD_LIMIT import ctypes as _ctypes # enum DFTI_CONFIG_PARAM from mkl_dfti.h DFTI_FORWARD_DOMAIN = _ctypes.c_int(0) # Domain for forward transform, no default DFTI_DIMENSION = _ctypes.c_int(1) # Dimension, no default DFTI_LENGTHS = _ctypes.c_int(2) # length(s) of transform, no default DFTI_PRECISION = _ctypes.c_int(3) # Precision of computation, no default DFTI_FORWARD_SCALE = _ctypes.c_int(4) # Scale factor for forward transform, default = 1.0 DFTI_BACKWARD_SCALE = _ctypes.c_int(5) # Scale factor for backward transform, default = 1.0 DFTI_FORWARD_SIGN = _ctypes.c_int(6) # Default for forward transform = DFTI_NEGATIVE DFTI_NUMBER_OF_TRANSFORMS = _ctypes.c_int(7) # Number of data sets to be transformed, default = 1 DFTI_COMPLEX_STORAGE = _ctypes.c_int(8) # Representation for complex domain, default = DFTI_COMPLEX_COMPLEX DFTI_REAL_STORAGE = _ctypes.c_int(9) # Rep. for real domain, default = DFTI_REAL_REAL DFTI_CONJUGATE_EVEN_STORAGE = _ctypes.c_int(10) # Rep. for conjugate even domain, default = DFTI_COMPLEX_REAL DFTI_PLACEMENT = _ctypes.c_int(11) # Placement of result, default = DFTI_INPLACE DFTI_INPUT_STRIDES = _ctypes.c_int(12) # Stride information of input data, default = tigthly DFTI_OUTPUT_STRIDES = _ctypes.c_int(13) # Stride information of output data, default = tigthly DFTI_INPUT_DISTANCE = _ctypes.c_int(14) # Distance information of input data, default = 0 DFTI_OUTPUT_DISTANCE = _ctypes.c_int(15) # Distance information of output data, default = 0 DFTI_INITIALIZATION_EFFORT = _ctypes.c_int(16) # Effort spent in initialization, default = DFTI_MEDIUM DFTI_WORKSPACE = _ctypes.c_int(17) # Use of workspace during computation, default = DFTI_ALLOW DFTI_ORDERING = _ctypes.c_int(18) # Possible out of order computation, default = DFTI_ORDERED DFTI_TRANSPOSE = _ctypes.c_int(19) # Possible transposition of result, default = DFTI_NONE DFTI_DESCRIPTOR_NAME = _ctypes.c_int(20) # name of descriptor, default = string of zero length DFTI_PACKED_FORMAT = _ctypes.c_int(21) # packed format for real transform, default = DFTI_CCS_FORMAT # below 4 parameters for get_value functions only DFTI_COMMIT_STATUS = _ctypes.c_int(22) # Whether descriptor has been commited DFTI_VERSION = _ctypes.c_int(23) # DFTI implementation version number DFTI_FORWARD_ORDERING = _ctypes.c_int(24) # The ordering of forward transform DFTI_BACKWARD_ORDERING = _ctypes.c_int(25) # The ordering of backward transform # below for set_value and get_value functions DFTI_NUMBER_OF_USER_THREADS = _ctypes.c_int(26) # number of user's threads) default = 1 DFTI_THREAD_LIMIT = _ctypes.c_int(27) # number of user's threads) default = 1 # DFTI options values DFTI_COMMITTED = _ctypes.c_int(30) # status - commit DFTI_UNCOMMITTED = _ctypes.c_int(31) # status - uncommit DFTI_COMPLEX = _ctypes.c_int(32) # General domain DFTI_REAL = _ctypes.c_int(33) # Real domain DFTI_CONJUGATE_EVEN = _ctypes.c_int(34) # Conjugate even domain DFTI_SINGLE = _ctypes.c_int(35) # Single precision DFTI_DOUBLE = _ctypes.c_int(36) # Double precision DFTI_NEGATIVE = _ctypes.c_int(37) # -i, for setting definition of transform DFTI_POSITIVE = _ctypes.c_int(38) # +i, for setting definition of transform DFTI_COMPLEX_COMPLEX = _ctypes.c_int(39) # Representation method for domain DFTI_COMPLEX_REAL = _ctypes.c_int(40) # Representation method for domain DFTI_REAL_COMPLEX = _ctypes.c_int(41) # Representation method for domain DFTI_REAL_REAL = _ctypes.c_int(42) # Representation method for domain DFTI_INPLACE = _ctypes.c_int(43) # Result overwrites input DFTI_NOT_INPLACE = _ctypes.c_int(44) # Result placed differently than input DFTI_LOW = _ctypes.c_int(45) # A low setting DFTI_MEDIUM = _ctypes.c_int(46) # A medium setting DFTI_HIGH = _ctypes.c_int(47) # A high setting DFTI_ORDERED = _ctypes.c_int(48) # Data on forward and backward domain ordered DFTI_BACKWARD_SCRAMBLED = _ctypes.c_int(49) # Data on forward ordered and backward domain scrambled DFTI_FORWARD_SCRAMBLED = _ctypes.c_int(50) # Data on forward scrambled and backward domain ordered DFTI_ALLOW = _ctypes.c_int(51) # Allow certain request or usage DFTI_AVOID = _ctypes.c_int(52) # Avoid certain request or usage DFTI_NONE = _ctypes.c_int(53) # none certain request or usage DFTI_CCS_FORMAT = _ctypes.c_int(54) # ccs format for real DFT DFTI_PACK_FORMAT = _ctypes.c_int(55) # pack format for real DFT DFTI_PERM_FORMAT = _ctypes.c_int(56) # perm format for real DFT DFTI_CCE_FORMAT = _ctypes.c_int(57) # cce format for real DFT # and not scrambled: # error values: DFTI_NO_ERROR = _ctypes.c_int(0) DFTI_MEMORY_ERROR = _ctypes.c_int(1) DFTI_INVALID_CONFIGURATION = _ctypes.c_int(2) DFTI_INCONSISTENT_CONFIGURATION = _ctypes.c_int(3) DFTI_MULTITHREADED_ERROR = _ctypes.c_int(4) DFTI_BAD_DESCRIPTOR = _ctypes.c_int(5) DFTI_UNIMPLEMENTED = _ctypes.c_int(6) DFTI_MKL_INTERNAL_ERROR = _ctypes.c_int(7) DFTI_NUMBER_OF_THREADS_ERROR = _ctypes.c_int(8) DFTI_1D_LENGTH_EXCEEDS_INT32 = _ctypes.c_int(9) def DftiErrorMessage(e): """ Intel MKL DFT error messages. Parameters ---------- e : int DFT error code Returns ------- None """ if e == DFTI_NO_ERROR.value: pass elif e == DFTI_MEMORY_ERROR.value: print("DFTI Error : Memory error") elif e == DFTI_INVALID_CONFIGURATION.value: print("DFTI Error : Invalid configuration") elif e == DFTI_INCONSISTENT_CONFIGURATION.value: print("DFTI Error : Inconsistent configuration") elif e == DFTI_MULTITHREADED_ERROR.value: print("DFTI Error : Multithreaded error") elif e == DFTI_BAD_DESCRIPTOR.value: print("DFTI Error : Bad descriptor") elif e == DFTI_UNIMPLEMENTED.value: print("DFTI Error : Unimplemented") elif e == DFTI_MKL_INTERNAL_ERROR.value: print("DFTI Error : MKL internal error") elif e == DFTI_NUMBER_OF_THREADS_ERROR.value: print("DFTI Error : Number of threads error") elif e == DFTI_1D_LENGTH_EXCEEDS_INT32.value: print("DFTI Error : 1D length exceeds int32") else: print("Unknown error code")
the-stack_0_27561
# coding: utf-8 """ Swagger Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pprint import pformat from six import iteritems import re class HasOnlyReadOnly(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ HasOnlyReadOnly - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'bar': 'str', 'foo': 'str' } self.attribute_map = { 'bar': 'bar', 'foo': 'foo' } self._bar = None self._foo = None @property def bar(self): """ Gets the bar of this HasOnlyReadOnly. :return: The bar of this HasOnlyReadOnly. :rtype: str """ return self._bar @property def foo(self): """ Gets the foo of this HasOnlyReadOnly. :return: The foo of this HasOnlyReadOnly. :rtype: str """ return self._foo def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
the-stack_0_27562
import subprocess # Execute local command def run_command(command, no_wrapper=False, silent=False): """exec command """ if no_wrapper: proc = subprocess.Popen(command, bufsize=0, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = proc.communicate() if stderr: log.error("Error running command %s %s", ' '.join(command), stderr) return stdout, stderr, proc.returncode else: (ret, output) = commands.getstatusoutput(command) if ret: log.error("Executing command %s: %s", command, output) if not silent: raise ExecErrorException return output, None
the-stack_0_27563
import json import os import random import subprocess from enum import Enum from typing import List, Set import numpy as np from tqdm import tqdm import torch from torchvision import transforms from torchvision.transforms import Compose import h5py import nltk import torchmeta.datasets.helpers as datasets from gensim import corpora from gensim.utils import tokenize from nltk.corpus import stopwords from torchmeta.transforms import Categorical, ClassSplitter from torchmeta.utils.data import (BatchMetaDataLoader, ClassDataset, CombinationMetaDataset, Dataset) from transformers import BertTokenizer, BertModel from torch.utils.data import DataLoader import torch def get_dataset(args): """Return the appropriate dataset, with preprocessing transforms Returns: - train_loader (BatchMetaDataLoader): Train dataloader - val_loader (BatchMetaDataLoader): Validation dataloader - test_loader (BatchMetaDataLoader): Test dataloader - dictionary: token2id dict for word tokenisation if not BERT (else None) """ dataset = args.dataset data_dir = args.data_dir json_path = args.json_path num_way = args.num_ways num_shots = args.num_shots num_shots_test = args.num_shots_test text_encoder = args.text_encoder text_type = args.text_type remove_stop_words = args.remove_stop_words if dataset == "cub": train, val, test, dictionary = get_CUB(data_dir, num_way, num_shots, num_shots_test) elif dataset == "zanim": train, val, test, dictionary = get_zanim(data_dir, json_path, num_way, num_shots, num_shots_test, text_encoder, text_type, remove_stop_words, args.image_embedding_model) elif dataset == "supervised-zanim": train, val, test = get_supervised_zanim(data_dir, json_path, text_encoder, text_type, remove_stop_words, args.image_embedding_model, args.device) if text_encoder != 'BERT': raise NotImplementedError() dictionary = {} dataloaders = tuple( DataLoader(d, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True) for d in [train, val, test]) return tuple(x for x in [*dataloaders, dictionary]) else: raise NotImplementedError() train_loader = BatchMetaDataLoader(train, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) val_loader = BatchMetaDataLoader(val, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) test_loader = BatchMetaDataLoader(test, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) return train_loader, val_loader, test_loader, dictionary def _convert_zanim_arguments(text_encoder: str, text_type: List[str]): token_mode = TokenisationMode.BERT if text_encoder == "BERT" else TokenisationMode.STANDARD modes = { "description": DescriptionMode.FULL_DESCRIPTION, "label": DescriptionMode.LABEL, "common_name": DescriptionMode.COMMON_NAME } try: description_mode = set([modes[l] for l in text_type]) except KeyError: raise NameError(f"Invalid text type used") return (token_mode, description_mode) def get_supervised_zanim(data_dir: str, json_path: str, text_encoder: str, text_type: str, remove_stop_words: bool, image_embedding_model: str, device: str): splits = [] _, description_mode = _convert_zanim_arguments(text_encoder, text_type) for (train, val, test) in [(True, False, False), (False, True, False), (False, False, True)]: splits.append( SupervisedZanim(root=data_dir, json_path=json_path, train=train, val=val, test=test, description_mode=description_mode, remove_stop_words=remove_stop_words, image_embedding_model=image_embedding_model, device=device)) return tuple(splits) def get_zanim(data_dir: str, json_path: str, num_way: int, num_shots: int, num_shots_test: int, text_encoder: str, text_type: str, remove_stop_words: bool, image_embedding_model: str): token_mode, description_mode = _convert_zanim_arguments( text_encoder, text_type, ) train = Zanim(root=data_dir, json_path=json_path, num_classes_per_task=num_way, meta_train=True, tokenisation_mode=token_mode, description_mode=description_mode, remove_stop_words=remove_stop_words, image_embedding_model=image_embedding_model) train_split = ClassSplitter(train, shuffle=True, num_test_per_class=num_shots_test, num_train_per_class=num_shots) train_split.seed(0) val = Zanim(root=data_dir, json_path=json_path, num_classes_per_task=num_way, meta_val=True, tokenisation_mode=token_mode, description_mode=description_mode, remove_stop_words=remove_stop_words, image_embedding_model=image_embedding_model) val_split = ClassSplitter(val, shuffle=True, num_test_per_class=int(100 / num_way), num_train_per_class=num_shots) val_split.seed(0) test = Zanim(root=data_dir, json_path=json_path, num_classes_per_task=num_way, meta_test=True, tokenisation_mode=token_mode, description_mode=description_mode, remove_stop_words=remove_stop_words, image_embedding_model=image_embedding_model) test_split = ClassSplitter(test, shuffle=True, num_test_per_class=int(100 / num_way), num_train_per_class=num_shots) test_split.seed(0) dictionary = {} if text_encoder == "BERT" else train.dictionary return train_split, val_split, test_split, dictionary def get_CUB(data_dir: str, num_way: int, num_shots: int, num_shots_test: int): """Need to fix to get text as well """ train = datasets.cub(data_dir, ways=num_way, shots=num_shots, test_shots=num_shots_test, meta_split="train", download=True) val = datasets.cub(data_dir, ways=num_way, shots=num_shots, test_shots=int(100 / num_shots), meta_split="val", download=True) test = datasets.CUB(data_dir, ways=num_way, shots=num_shots, test_shots=int(100 / num_shots), meta_split="test", download=True) dictionary = {} return train, val, test, dictionary class TokenisationMode(Enum): BERT = 1 STANDARD = 2 class DescriptionMode(Enum): FULL_DESCRIPTION = 1 LABEL = 2 COMMON_NAME = 3 class SupervisedZanim(torch.utils.data.Dataset): def __init__(self, root, json_path="train.json", train=True, val=False, test=False, description_mode=[DescriptionMode.FULL_DESCRIPTION], remove_stop_words=False, image_embedding_model="resnet-152", device=None, pooling=lambda x: torch.mean(x, dim=1)): super().__init__() if (train + val + test > 1) or (train + val + test == 0): raise ValueError( "Only a single value of train, val, test can be true") self._zcd = ZanimClassDataset( root, json_path, meta_train=train, meta_val=val, meta_test=test, tokenisation_mode=TokenisationMode.BERT, description_mode=description_mode, remove_stop_words=remove_stop_words, image_embedding_model=image_embedding_model) self.model = BertModel.from_pretrained('bert-base-uncased') print("Precomputing BERT embeddings") if device is not None: self.model.to(device) batch_size = 64 self._bert_embeddings = torch.zeros(len(self._zcd.descriptions), self.model.config.hidden_size) for start in range(0, len(self._zcd.descriptions), batch_size): with torch.no_grad(): end = min(len(self._zcd.descriptions), start + batch_size) des, mas = (self._zcd.descriptions[start:end].to(device), self._zcd.mask[start:end].to(device) ) if device is not None else ( self._zcd.descriptions[start:end], self._zcd.mask[start:end]) self._bert_embeddings[start:end] = pooling( self.model(input_ids=des, attention_mask=mas, output_attentions=False).last_hidden_state) print("Completed embedding computation") self._bert_embeddings = self._bert_embeddings.cpu() def __len__(self): return len(self._zcd.category_id) def __getitem__(self, index): category_id = self._zcd.category_id[index] image_id = self._zcd.image_ids[index] bert_index = np.where(self._zcd.categories == category_id)[0][0] return self._zcd.image_embeddings[image_id], self._bert_embeddings[ bert_index], category_id class Zanim(CombinationMetaDataset): def __init__(self, root, json_path="train.json", num_classes_per_task=None, meta_train=False, meta_val=False, meta_test=False, tokenisation_mode: TokenisationMode = TokenisationMode.BERT, description_mode: Set[DescriptionMode] = [ DescriptionMode.FULL_DESCRIPTION ], remove_stop_words=True, image_embedding_model='resnet-152', target_transform=None, categories=None): """ :param root: the path to the root directory of the dataset :param json_path: the path to the json file containing the annotations """ if target_transform is None: target_transform = Categorical(num_classes_per_task) random.seed(0) np.random.seed(0) torch.manual_seed(0) self.dataset = ZanimClassDataset( root, json_path, meta_train=meta_train, meta_val=meta_val, meta_test=meta_test, tokenisation_mode=tokenisation_mode, description_mode=description_mode, image_embedding_model=image_embedding_model, remove_stop_words=remove_stop_words, categories=categories) super().__init__(self.dataset, num_classes_per_task, target_transform=target_transform) @property def dictionary(self): return self.dataset.dictionary.token2id class ZanimClassDataset(ClassDataset): def __init__(self, root: str, json_path: str, meta_train=False, meta_val=False, meta_test=False, tokenisation_mode=TokenisationMode.BERT, description_mode: Set[DescriptionMode] = [ DescriptionMode.FULL_DESCRIPTION ], remove_stop_words=True, image_embedding_model: str = "resnet-152", categories=None): super().__init__(meta_train=meta_train, meta_val=meta_val, meta_test=meta_test) if not (root in json_path): json_path = os.path.join(root, json_path) self.root = root self.tokenisation_mode = tokenisation_mode with open(json_path) as annotations: annotations = json.load(annotations) self.annotations = annotations N = len(annotations['categories']) self.categories = np.arange(N) np.random.shuffle(self.categories) if categories is None: if meta_train: self.categories = self.categories[:int(0.6 * N)] elif meta_val: self.categories = self.categories[int(0.6 * N):int(0.8 * N)] elif meta_test: self.categories = self.categories[int(0.8 * N):] else: raise ValueError( "One of meta_train, meta_val, meta_test must be true") else: self.categories = categories np.sort(self.categories) self.image_ids = [ i['id'] for i in annotations['images'] if annotations['annotations'][i['id']]['category_id'] in self.categories ] self.category_id = [ annotations['annotations'][id]['category_id'] for id in self.image_ids ] self.category_id_map = {} for id in range(len(self.image_ids)): cat_id = self.category_id[id] image_id = self.image_ids[id] if cat_id in self.category_id_map: self.category_id_map[cat_id].append(image_id) else: self.category_id_map[cat_id] = [image_id] for cat_id in self.category_id_map.keys(): self.category_id_map[cat_id] = np.array( self.category_id_map[cat_id]) self.descriptions = self._get_descriptions(self.annotations, self.categories, description_mode) print("Copying image embeddings to local disk") image_embedding_file = f"image-embedding-{image_embedding_model}.hdf5" local_image_embedding_path = os.path.join('/content', image_embedding_file) if not os.path.exists(local_image_embedding_path): self._copy_image_embeddings(image_embedding_file) self.image_embeddings = h5py.File(local_image_embedding_path, 'r')['images'] self._num_classes = len(self.categories) if remove_stop_words: nltk.download('stopwords') stop_words = stopwords.words('english') self.descriptions = [ " ".join([w for w in s.split() if not (w in stop_words)]) for s in self.descriptions ] if tokenisation_mode == TokenisationMode.BERT: tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") tokens = tokenizer(self.descriptions, return_token_type_ids=False, return_tensors="pt", padding=True, truncation=True) self.descriptions = tokens['input_ids'] self.mask = tokens['attention_mask'] elif tokenisation_mode == TokenisationMode.STANDARD: # since using a generator can't take len(tokenize(d)) lengths = [ sum([1 for w in tokenize(d)]) for d in self.descriptions ] max_length = max(lengths) self.descriptions = [ d.lower() + " " + " ".join(["<PAD>" for _ in range(max_length - lengths[i])]) for (i, d) in enumerate(self.descriptions) ] # the dictionary should be formed across all folds, so recompute set of 'descriptions' across all categories full_set_of_descriptions = self._get_descriptions( self.annotations, np.arange(N), description_mode) self.dictionary = corpora.Dictionary( [tokenize(d.lower()) for d in full_set_of_descriptions]) self.dictionary.add_documents([tokenize("<PAD>")]) self.descriptions = [[ self.dictionary.token2id[z] for z in tokenize(d) ] for d in self.descriptions] print("Completed tokenisation") def _get_descriptions(self, annotations, categories, description_mode): descriptions = ["" for i in categories] description_json_key_map = { DescriptionMode.FULL_DESCRIPTION: 'description', DescriptionMode.LABEL: 'name', DescriptionMode.COMMON_NAME: 'common_name' } description_mode = [ description_json_key_map[d] for d in description_mode ] descriptions = [ " ".join( [annotations['categories'][i][d] for d in description_mode]) for i in categories ] return descriptions def _copy_image_embeddings(self, image_file): self._run_command( ["cp", os.path.join(self.root, image_file), "/content/"]) def _run_command(self, command): pipes = subprocess.Popen(command, stderr=subprocess.PIPE) _, err = pipes.communicate() if pipes.returncode != 0: raise Exception( f"Error in running custom command {' '.join(command)}: {err.strip()}" ) def __len__(self): return self._num_classes @property def num_classes(self): return self._num_classes def __getitem__(self, index): indices = self.category_id_map[self.categories[index % self.num_classes]] mask = self.mask[ index] if self.tokenisation_mode == TokenisationMode.BERT else None return ZanimDataset(index, indices, self.image_embeddings[indices], self.descriptions[index], index % self.num_classes, attention_mask=mask, target_transform=self.get_target_transform(index)) class ZanimDataset(Dataset): def __init__(self, index, image_ids, data, description, category_id, attention_mask=None, target_transform=None): super().__init__(index, target_transform=target_transform) self.data = data self.category_id = category_id self.description = description self.image_ids = image_ids self.attention_mask = attention_mask def __len__(self): return len(self.data) def __getitem__(self, index): target = self.category_id if self.target_transform is not None: target = self.target_transform(target) if self.attention_mask is None: return (self.image_ids[index], torch.tensor(self.description), self.data[index]), target else: return (self.image_ids[index], torch.tensor(self.description), torch.tensor(self.attention_mask), self.data[index]), target if __name__ == "__main__": import sys import argparse parser = argparse.ArgumentParser(description="data module test") parser.add_argument("--text_type", type=str, default="label") parser.add_argument("--json_path", type=str, default="train.json") parser.add_argument("--text_encoder", type=str, default="BERT") parser.add_argument( "--data_dir", type=str, default="/content/drive/My Drive/MSc ML/NLP/NLP project/Dataset") parser.add_argument('--remove_stop_words', action='store_true', help="whether to remove stop words") args = parser.parse_args(sys.argv[1:]) args.device = torch.device("cuda") text_type = args.text_type text_encoder = args.text_encoder num_way = 3 num_shots = 5 num_shots_test = 32 batch_size = 5 remove_stop_words = True if args.remove_stop_words else False data_dir = args.data_dir train, val, test = get_supervised_zanim(data_dir, args.json_path, text_encoder, text_type, remove_stop_words, image_embedding_model='resnet-152', device=args.device) for batch_idx, batch in enumerate(DataLoader(train, batch_size=10)): image, text, cat = batch print(image.shape) print(text.shape) print(cat) if batch_idx > 10: break train, val, test, dictionary = get_zanim( data_dir, args.json_path, num_way, num_shots, num_shots_test, text_encoder, text_type, remove_stop_words, image_embedding_model="resnet-152") print("dictionary", len(dictionary), dictionary) train_loader = BatchMetaDataLoader(train, batch_size=batch_size, shuffle=True, num_workers=0) # check first couple batches for batch_idx, batch in enumerate(train_loader): train_inputs, train_targets = batch['train'] print("train targets") print(train_targets.shape, train_targets) test_inputs, test_targets = batch['test'] if text_encoder == "BERT": idx, text, attn_mask, im = train_inputs print("idx") print(idx.shape, idx) print("text") print(text.shape, text) print("attn_mask") print(attn_mask.shape, attn_mask) print("im") print(im.shape, im) else: idx, text, im = train_inputs print("idx") print(idx.shape, idx) print("text") print(text.shape, text) print("im") print(im.shape, im) if batch_idx > 1: break
the-stack_0_27564
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch_glow import torch import unittest from collections import OrderedDict def create_model(x, relu): """ x is an example input, relu is whether or not to include a fused relu""" with torch.no_grad(): x_size = len(x.size()) conv_op = None if x_size == 4: conv_op = torch.nn.Conv2d(3, 10, 3) elif x_size == 5: conv_op = torch.nn.Conv3d(3, 10, 3) else: print(f"Only 2d and 3d conv supported, got {x_size}d inputs") exit(1) conv_op.weight.random_(-1, 1) conv_op.bias.data.random_(-1, 1) model = None if relu: model = torch.nn.Sequential( OrderedDict([("conv", conv_op), ("relu", torch.nn.ReLU())]) ) model = torch.quantization.fuse_modules(model, [["conv", "relu"]]) else: model = torch.nn.Sequential(OrderedDict([("conv", conv_op)])) model = torch.quantization.QuantWrapper(model) model.qconfig = torch.quantization.get_default_qconfig("fbgemm") torch.quantization.prepare(model, inplace=True) model(x) torch.quantization.convert(model, inplace=True) return model def run_to_glow(m, x): """Trace the model m with input x and call to_glow""" traced_m = torch.jit.trace(m, (x)) spec = torch.classes.glow.GlowCompileSpec() spec.setBackend("Interpreter") sim = torch.classes.glow.SpecInputMeta() sim.set(x.size(), torch.float32) inputs = [sim] spec.addInputs(inputs) lowered_module = torch_glow.to_glow(traced_m, {"forward": spec}) return lowered_module class TestConvToGlow(unittest.TestCase): def test_conv2d_to_glow(self): x = torch.randn([1, 3, 30, 30]) m = create_model(x, False) run_to_glow(m, x) def test_conv2d_relu_to_glow(self): x = torch.randn([1, 3, 30, 30]) m = create_model(x, True) run_to_glow(m, x) def test_conv3d_to_glow(self): x = torch.randn([1, 3, 30, 30, 30]) m = create_model(x, False) run_to_glow(m, x) def test_conv3d_relu_to_glow(self): x = torch.randn([1, 3, 30, 30, 30]) m = create_model(x, True) run_to_glow(m, x)
the-stack_0_27565
import os import time from selenium.webdriver.support.select import Select from Data.parameters import Data from filenames import file_extention from get_dir import pwd from reuse_func import GetData class download_clusterwise_csv(): def __init__(self, driver): self.driver = driver def test_clusterwise(self): p = pwd() self.cal = GetData() self.fname = file_extention() self.driver.find_element_by_xpath(Data.hyper).click() self.cal.page_loading(self.driver) self.driver.find_element_by_id(Data.sr_cluster_btn).click() self.cal.page_loading(self.driver) self.driver.find_element_by_id(Data.Download).click() time.sleep(15) self.filename = p.get_download_dir() + "/" + self.fname.composite_cluster() self.cal.page_loading(self.driver) return os.path.isfile(self.filename) def remove_file(self): os.remove(self.filename)
the-stack_0_27568
# -*- coding: utf-8 -*- # @File : SimplePostPowershellModule.py # @Date : 2019/1/12 # @Desc : from Lib.ModuleAPI import * class PostModule(PostMSFPowershellFunctionModule): NAME = "获取域内主机名" DESC = "模块获取主机所在域的所有域主机名,如果主机不在域中,脚本可能报错." MODULETYPE = TAG2CH.Discovery PLATFORM = ["Windows"] # 平台 PERMISSIONS = ["Administrator", "SYSTEM", ] # 所需权限 ATTCK = ["T1018"] # ATTCK向量 README = ["https://www.yuque.com/funnywolfdoc/viperdoc/sp72lr"] REFERENCES = ["https://attack.mitre.org/techniques/T1018/"] AUTHOR = "Viper" def __init__(self, sessionid, hid, custom_param): super().__init__(sessionid, hid, custom_param) self.set_script("PowerView.ps1") # 设置目标机执行的脚本文件 self.set_execute_string('Get-NetComputer') def check(self): """执行前的检查函数""" session = Session(self._sessionid) if session.is_in_domain: self.set_execute_string('Get-NetComputer') return True, None else: return False, "此模块只支持Windows的Meterpreter,且必须在域中" def callback(self, status, message, data): if status: powershell_json_output = data.split("\n") if isinstance(powershell_json_output, list) and len(powershell_json_output) > 0: try: for one in powershell_json_output: if one is None or len(one) == 0: continue else: ouputstr = "主机名: {}".format(one) self.log_good(ouputstr) except Exception as E: pass else: self.log_error("脚本无有效输出") self.log_error(powershell_json_output) else: self.log_error("模块执行失败") self.log_error(message)
the-stack_0_27570
import time import os import logging import json from smac.scenario.scenario import Scenario __author__ = "Marius Lindauer" __copyright__ = "Copyright 2016, ML4AAD" __license__ = "3-clause BSD" __maintainer__ = "Marius Lindauer" __email__ = "[email protected]" __version__ = "0.0.1" class Stats(object): """ All statistics collected during configuration run. Written to output-directory to be restored Attributes ---------- ta_runs wallclock_time_used ta_time_used inc_changed """ def __init__(self, scenario: Scenario): """Constructor Parameters ---------- scenario : Scenario output_dir : str """ self.__scenario = scenario self.ta_runs = 0 self.n_configs = 0 self.wallclock_time_used = 0 self.ta_time_used = 0 self.inc_changed = 0 # debug stats self._n_configs_per_intensify = 0 self._n_calls_of_intensify = 0 ## exponential moving average self._ema_n_configs_per_intensifiy = 0 self._EMA_ALPHA = 0.2 self._start_time = None self._logger = logging.getLogger(self.__module__ + "." + self.__class__.__name__) def save(self): """ Save all relevant attributes to json-dictionary. """ if not self.__scenario.output_dir_for_this_run: self._logger.debug("No scenario.output_dir: not saving stats!") return # Set used_wallclock_time self.wallclock_time_used = self.get_used_wallclock_time() data = {} for v in vars(self): if not v in ['_Stats__scenario', '_logger', '_start_time']: data[v] = getattr(self, v) path = os.path.join( self.__scenario.output_dir_for_this_run, "stats.json" ) self._logger.debug("Saving stats to %s", path) with open(path, 'w') as fh: json.dump(data, fh) def load(self, fn=None): """ Load all attributes from dictionary in file into stats-object. Parameters ---------- fn: string or None Path to file to load stats from. If no path is given, the path given in the current scenario is used. """ if not fn: fn = os.path.join( self.__scenario.output_dir_for_this_run, "stats.json" ) with open(fn, 'r') as fh: data = json.load(fh) # Set attributes for key in data: if hasattr(self, key): setattr(self, key, data[key]) else: raise ValueError("Stats does not recognize {}".format(key)) def start_timing(self): """ Starts the timer (for the runtime configuration budget). Substracting wallclock time used so we can continue loaded Stats. """ if self.__scenario: self._start_time = time.time() - self.wallclock_time_used else: raise ValueError("Scenario is missing") def get_used_wallclock_time(self): """Returns used wallclock time Returns ------- wallclock_time : int used wallclock time in sec """ return time.time() - self._start_time def get_remaing_time_budget(self): """Subtracts the runtime configuration budget with the used wallclock time""" if self.__scenario: return self.__scenario.wallclock_limit - (time.time() - self._start_time) else: raise "Scenario is missing" def get_remaining_ta_runs(self): """Subtract the target algorithm runs in the scenario with the used ta runs""" if self.__scenario: return self.__scenario.ta_run_limit - self.ta_runs else: raise "Scenario is missing" def get_remaining_ta_budget(self): """Subtracts the ta running budget with the used time""" if self.__scenario: return self.__scenario.algo_runs_timelimit - self.ta_time_used def is_budget_exhausted(self): """Check whether the configuration budget for time budget, ta_budget and ta_runs is empty Returns ------- exhaustedness: boolean true if one of the budgets is exhausted """ return self.get_remaing_time_budget() < 0 or \ self.get_remaining_ta_budget() < 0 or \ self.get_remaining_ta_runs() <= 0 def update_average_configs_per_intensify(self, n_configs: int): """Updates statistics how many configurations on average per used in intensify Parameters ---------- n_configs: int number of configurations in current intensify """ self._n_calls_of_intensify += 1 self._n_configs_per_intensify += n_configs if self._n_calls_of_intensify == 1: self._ema_n_configs_per_intensifiy = n_configs else: self._ema_n_configs_per_intensifiy = (1 - self._EMA_ALPHA) * self._ema_n_configs_per_intensifiy \ + self._EMA_ALPHA * n_configs def print_stats(self, debug_out:bool=False): """Prints all statistics Parameters --------- debug: bool use logging.debug instead of logging.info if set to true """ log_func = self._logger.info if debug_out: log_func = self._logger.debug log_func("##########################################################") log_func("Statistics:") log_func("#Incumbent changed: %d" %(self.inc_changed - 1)) # first change is default conf log_func("#Target algorithm runs: %d / %s" %(self.ta_runs, str(self.__scenario.ta_run_limit))) log_func("#Configurations: %d" %(self.n_configs)) log_func("Used wallclock time: %.2f / %.2f sec " %(time.time() - self._start_time, self.__scenario.wallclock_limit)) log_func("Used target algorithm runtime: %.2f / %.2f sec" %(self.ta_time_used, self.__scenario.algo_runs_timelimit)) self._logger.debug("Debug Statistics:") if self._n_calls_of_intensify > 0: self._logger.debug("Average Configurations per Intensify: %.2f" %(self._n_configs_per_intensify / self._n_calls_of_intensify)) self._logger.debug("Exponential Moving Average of Configurations per Intensify: %.2f" %(self._ema_n_configs_per_intensifiy)) log_func("##########################################################")
the-stack_0_27571
#following tutorial: https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_core/py_image_arithmetics/py_image_arithmetics.html import numpy as np import cv2 scalar1 = np.uint8([250]) scalar2 = np.uint8([10]) print (cv2.add(scalar1,scalar2)) #cv addition: 250 + 10 = 260 => 255 print (scalar1 + scalar2) #numpy addition: 250 + 10 = 260 % 256 = 4 #since they are 8 bit arrays, they max out their size at 2^8 - 1 = 255 #Both images should be of same depth and type, or second image can just be a scalar value. #openCV provides better results when adding images img1 = cv2.imread("frame0.jpg") img2 = cv2.imread("opencv-logo-white.png") #need same sized image in order to add them img1_resized = cv2.resize(img1, (img2.shape[1], img2.shape[0])) addedImg = cv2.add(img1_resized,img2) #inputs: img1, alpha, img2, beta, lambda #equation dst = alpha * img1 + beta * img2 + lambda blendedImg = cv2.addWeighted(img1_resized, 0.7, img2, 0.3, 0) cv2.imshow("added Image",addedImg) cv2.imshow("blended Image",blendedImg) cv2.waitKey(0) cv2.destroyAllWindows() #selecting region of image (roi) rows,cols,channels = img2.shape roi = img1[0:rows,0:cols] #creates mask and inverse mask img2gray = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY) ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY) mask_inv = cv2.bitwise_not(mask) #blacks out area of roi img1_bg = cv2.bitwise_and(roi,roi,mask = mask_inv) #get only the logo img2_fg = cv2.bitwise_and(img2,img2,mask=mask) dst = cv2.add(img1_bg,img2_fg) img1[0:rows,0:cols] = dst cv2.imshow("grayed image",img2gray) cv2.imshow("mask",mask) cv2.imshow("inverse mask",mask_inv) cv2.imshow("background image",img1_bg) cv2.imshow("foreground image",img2_fg) cv2.imshow("destination roi image",dst) cv2.imshow("full result image" , img1) cv2.waitKey(0) cv2.destroyAllWindows()
the-stack_0_27572
# coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common utilities for TF-Agents.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections as cs import contextlib import distutils.version import functools import importlib import os from typing import Dict, Optional, Text from absl import logging import numpy as np import tensorflow as tf from tf_agents.specs import tensor_spec from tf_agents.trajectories import time_step as ts from tf_agents.typing import types from tf_agents.utils import nest_utils from tf_agents.utils import object_identity # pylint:disable=g-direct-tensorflow-import from tensorflow.core.protobuf import struct_pb2 # TF internal from tensorflow.python import tf2 as tf2_checker # TF internal from tensorflow.python.eager import monitoring # TF internal from tensorflow.python.saved_model import nested_structure_coder # TF internal # pylint:enable=g-direct-tensorflow-import try: importlib.import_module('tf_agents.utils.allow_tf1') except ImportError: _TF1_MODE_ALLOWED = False else: _TF1_MODE_ALLOWED = True tf_agents_gauge = monitoring.BoolGauge('/tensorflow/agents/agents', 'TF-Agents usage', 'method') MISSING_RESOURCE_VARIABLES_ERROR = """ Resource variables are not enabled. Please enable them by adding the following code to your main() method: tf.compat.v1.enable_resource_variables() For unit tests, subclass `tf_agents.utils.test_utils.TestCase`. """ def check_tf1_allowed(): """Raises an error if running in TF1 (non-eager) mode and this is disabled.""" if _TF1_MODE_ALLOWED: return if not tf2_checker.enabled(): raise RuntimeError( 'You are using TF1 or running TF with eager mode disabled. ' 'TF-Agents no longer supports TF1 mode (except for a shrinking list of ' 'internal allowed users). If this negatively affects you, please ' 'reach out to the TF-Agents team. Otherwise please use TF2.') def resource_variables_enabled(): return tf.compat.v1.resource_variables_enabled() _IN_LEGACY_TF1 = ( tf.__git_version__ != 'unknown' and tf.__version__ != '1.15.0' and (distutils.version.LooseVersion(tf.__version__) <= distutils.version.LooseVersion('1.15.0.dev20190821'))) def in_legacy_tf1(): return _IN_LEGACY_TF1 def set_default_tf_function_parameters(*args, **kwargs): """Generates a decorator that sets default parameters for `tf.function`. Args: *args: default arguments for the `tf.function`. **kwargs: default keyword arguments for the `tf.function`. Returns: Function decorator with preconfigured defaults for `tf.function`. """ def maybe_wrap(fn): """Helper function.""" wrapped = [None] @functools.wraps(fn) def preconfigured_function(*fn_args, **fn_kwargs): if tf.executing_eagerly(): return fn(*fn_args, **fn_kwargs) if wrapped[0] is None: wrapped[0] = function(*((fn,) + args), **kwargs) return wrapped[0](*fn_args, **fn_kwargs) # pylint: disable=not-callable return preconfigured_function return maybe_wrap def function(*args, **kwargs): """Wrapper for tf.function with TF Agents-specific customizations. Example: ```python @common.function() def my_eager_code(x, y): ... ``` Args: *args: Args for tf.function. **kwargs: Keyword args for tf.function. Returns: A tf.function wrapper. """ autograph = kwargs.pop('autograph', False) experimental_relax_shapes = kwargs.pop('experimental_relax_shapes', True) return tf.function( # allow-tf-function *args, autograph=autograph, experimental_relax_shapes=experimental_relax_shapes, **kwargs) def has_eager_been_enabled(): """Returns true iff in TF2 or in TF1 with eager execution enabled.""" with tf.init_scope(): return tf.executing_eagerly() def function_in_tf1(*args, **kwargs): """Wrapper that returns common.function if using TF1. This allows for code that assumes autodeps is available to be written once, in the same way, for both TF1 and TF2. Usage: ```python train = function_in_tf1()(agent.train) loss = train(experience) ``` Args: *args: Arguments for common.function. **kwargs: Keyword arguments for common.function. Returns: A callable that wraps a function. """ def maybe_wrap(fn): """Helper function.""" # We're in TF1 mode and want to wrap in common.function to get autodeps. wrapped = [None] @functools.wraps(fn) def with_check_resource_vars(*fn_args, **fn_kwargs): """Helper function for calling common.function.""" check_tf1_allowed() if has_eager_been_enabled(): # We're either in eager mode or in tf.function mode (no in-between); so # autodep-like behavior is already expected of fn. return fn(*fn_args, **fn_kwargs) if not resource_variables_enabled(): raise RuntimeError(MISSING_RESOURCE_VARIABLES_ERROR) if wrapped[0] is None: wrapped[0] = function(*((fn,) + args), **kwargs) return wrapped[0](*fn_args, **fn_kwargs) # pylint: disable=not-callable return with_check_resource_vars return maybe_wrap def create_variable(name, initial_value=0, shape=(), dtype=tf.int64, use_local_variable=False, trainable=False, initializer=None, unique_name=True): """Create a variable.""" check_tf1_allowed() if has_eager_been_enabled(): if initializer is None: if shape: initial_value = tf.constant(initial_value, shape=shape, dtype=dtype) else: initial_value = tf.convert_to_tensor(initial_value, dtype=dtype) else: if callable(initializer): initial_value = lambda: initializer(shape, dtype) else: initial_value = initializer return tf.compat.v2.Variable( initial_value, trainable=trainable, dtype=dtype, name=name) collections = [tf.compat.v1.GraphKeys.GLOBAL_VARIABLES] if use_local_variable: collections = [tf.compat.v1.GraphKeys.LOCAL_VARIABLES] if initializer is None: initializer = tf.compat.v1.initializers.constant(initial_value, dtype=dtype) if shape is None: shape = tf.convert_to_tensor(initial_value).shape if unique_name: name = tf.compat.v1.get_default_graph().unique_name(name) return tf.compat.v1.get_variable( name=name, shape=shape, dtype=dtype, initializer=initializer, collections=collections, use_resource=True, trainable=trainable) def soft_variables_update(source_variables, target_variables, tau=1.0, tau_non_trainable=None, sort_variables_by_name=False): """Performs a soft/hard update of variables from the source to the target. Note: **when using this function with TF DistributionStrategy**, the `strategy.extended.update` call (below) needs to be done in a cross-replica context, i.e. inside a merge_call. Please use the Periodically class above that provides this wrapper for you. For each variable v_t in target variables and its corresponding variable v_s in source variables, a soft update is: v_t = (1 - tau) * v_t + tau * v_s When tau is 1.0 (the default), then it does a hard update: v_t = v_s Args: source_variables: list of source variables. target_variables: list of target variables. tau: A float scalar in [0, 1]. When tau is 1.0 (the default), we do a hard update. This is used for trainable variables. tau_non_trainable: A float scalar in [0, 1] for non_trainable variables. If None, will copy from tau. sort_variables_by_name: A bool, when True would sort the variables by name before doing the update. Returns: An operation that updates target variables from source variables. Raises: ValueError: if `tau not in [0, 1]`. ValueError: if `len(source_variables) != len(target_variables)`. ValueError: "Method requires being in cross-replica context, use get_replica_context().merge_call()" if used inside replica context. """ if tau < 0 or tau > 1: raise ValueError('Input `tau` should be in [0, 1].') if tau_non_trainable is None: tau_non_trainable = tau if tau_non_trainable < 0 or tau_non_trainable > 1: raise ValueError('Input `tau_non_trainable` should be in [0, 1].') updates = [] op_name = 'soft_variables_update' if tau == 0.0 or not source_variables or not target_variables: return tf.no_op(name=op_name) if len(source_variables) != len(target_variables): raise ValueError( 'Source and target variable lists have different lengths: ' '{} vs. {}'.format(len(source_variables), len(target_variables))) if sort_variables_by_name: source_variables = sorted(source_variables, key=lambda x: x.name) target_variables = sorted(target_variables, key=lambda x: x.name) strategy = tf.distribute.get_strategy() for (v_s, v_t) in zip(source_variables, target_variables): v_t.shape.assert_is_compatible_with(v_s.shape) def update_fn(v1, v2): """Update variables.""" # For not trainable variables do hard updates. # This helps stabilaze BatchNorm moving averagees TODO(b/144455039) if not v1.trainable: current_tau = tau_non_trainable else: current_tau = tau if current_tau == 1.0: return v1.assign(v2) else: return v1.assign((1 - current_tau) * v1 + current_tau * v2) # TODO(b/142508640): remove this when b/142802462 is fixed. # Workaround for b/142508640, only use extended.update for # MirroredVariable variables (which are trainable variables). # For other types of variables (i.e. SyncOnReadVariables, for example # batch norm stats) do a regular assign, which will cause a sync and # broadcast from replica 0, so will have slower performance but will be # correct and not cause a failure. if tf.distribute.has_strategy() and v_t.trainable: # Assignment happens independently on each replica, # see b/140690837 #46. update = strategy.extended.update(v_t, update_fn, args=(v_s,)) else: update = update_fn(v_t, v_s) updates.append(update) return tf.group(*updates, name=op_name) def join_scope(parent_scope, child_scope): """Joins a parent and child scope using `/`, checking for empty/none. Args: parent_scope: (string) parent/prefix scope. child_scope: (string) child/suffix scope. Returns: joined scope: (string) parent and child scopes joined by /. """ if not parent_scope: return child_scope if not child_scope: return parent_scope return '/'.join([parent_scope, child_scope]) # TODO(b/138322868): Add an optional action_spec for validation. def index_with_actions(q_values, actions, multi_dim_actions=False): """Index into q_values using actions. Note: this supports multiple outer dimensions (e.g. time, batch etc). Args: q_values: A float tensor of shape [outer_dim1, ... outer_dimK, action_dim1, ..., action_dimJ]. actions: An int tensor of shape [outer_dim1, ... outer_dimK] if multi_dim_actions=False [outer_dim1, ... outer_dimK, J] if multi_dim_actions=True I.e. in the multidimensional case, actions[outer_dim1, ... outer_dimK] is a vector [actions_1, ..., actions_J] where each element actions_j is an action in the range [0, num_actions_j). While in the single dimensional case, actions[outer_dim1, ... outer_dimK] is a scalar. multi_dim_actions: whether the actions are multidimensional. Returns: A [outer_dim1, ... outer_dimK] tensor of q_values for the given actions. Raises: ValueError: If actions have unknown rank. """ if actions.shape.rank is None: raise ValueError('actions should have known rank.') batch_dims = actions.shape.rank if multi_dim_actions: # In the multidimensional case, the last dimension of actions indexes the # vector of actions for each batch, so exclude it from the batch dimensions. batch_dims -= 1 outer_shape = tf.shape(input=actions) batch_indices = tf.meshgrid( *[tf.range(outer_shape[i]) for i in range(batch_dims)], indexing='ij') batch_indices = [tf.cast(tf.expand_dims(batch_index, -1), dtype=tf.int32) for batch_index in batch_indices] if not multi_dim_actions: actions = tf.expand_dims(actions, -1) # Cast actions to tf.int32 in order to avoid a TypeError in tf.concat. actions = tf.cast(actions, dtype=tf.int32) action_indices = tf.concat(batch_indices + [actions], -1) return tf.gather_nd(q_values, action_indices) def periodically(body, period, name='periodically'): """Periodically performs the tensorflow op in `body`. The body tensorflow op will be executed every `period` times the periodically op is executed. More specifically, with `n` the number of times the op has been executed, the body will be executed when `n` is a non zero positive multiple of `period` (i.e. there exist an integer `k > 0` such that `k * period == n`). If `period` is `None`, it will not perform any op and will return a `tf.no_op()`. If `period` is 1, it will just execute the body, and not create any counters or conditionals. Args: body: callable that returns the tensorflow op to be performed every time an internal counter is divisible by the period. The op must have no output (for example, a tf.group()). period: inverse frequency with which to perform the op. name: name of the variable_scope. Raises: TypeError: if body is not a callable. Returns: An op that periodically performs the specified op. """ if tf.executing_eagerly(): if isinstance(period, tf.Variable): return Periodically(body, period, name) return EagerPeriodically(body, period) else: return Periodically(body, period, name)() class Periodically(tf.Module): """Periodically performs the ops defined in `body`.""" def __init__(self, body, period, name='periodically'): """Periodically performs the ops defined in `body`. The body tensorflow op will be executed every `period` times the periodically op is executed. More specifically, with `n` the number of times the op has been executed, the body will be executed when `n` is a non zero positive multiple of `period` (i.e. there exist an integer `k > 0` such that `k * period == n`). If `period` is `None`, it will not perform any op and will return a `tf.no_op()`. If `period` is 1, it will just execute the body, and not create any counters or conditionals. Args: body: callable that returns the tensorflow op to be performed every time an internal counter is divisible by the period. The op must have no output (for example, a tf.group()). period: inverse frequency with which to perform the op. It can be a Tensor or a Variable. name: name of the object. Raises: TypeError: if body is not a callable. Returns: An op that periodically performs the specified op. """ super(Periodically, self).__init__(name=name) if not callable(body): raise TypeError('body must be callable.') self._body = body self._period = period self._counter = create_variable(self.name + '/counter', 0) def __call__(self): def call(strategy=None): del strategy # unused if self._period is None: return tf.no_op() if self._period == 1: return self._body() period = tf.cast(self._period, self._counter.dtype) remainder = tf.math.mod(self._counter.assign_add(1), period) return tf.cond( pred=tf.equal(remainder, 0), true_fn=self._body, false_fn=tf.no_op) # TODO(b/129083817) add an explicit unit test to ensure correct behavior ctx = tf.distribute.get_replica_context() if ctx: return tf.distribute.get_replica_context().merge_call(call) else: return call() class EagerPeriodically(object): """EagerPeriodically performs the ops defined in `body`. Only works in Eager mode. """ def __init__(self, body, period): """EagerPeriodically performs the ops defined in `body`. Args: body: callable that returns the tensorflow op to be performed every time an internal counter is divisible by the period. The op must have no output (for example, a tf.group()). period: inverse frequency with which to perform the op. Must be a simple python int/long. Raises: TypeError: if body is not a callable. Returns: An op that periodically performs the specified op. """ if not callable(body): raise TypeError('body must be callable.') self._body = body self._period = period self._counter = 0 def __call__(self): if self._period is None: return tf.no_op() if self._period == 1: return self._body() self._counter += 1 if self._counter % self._period == 0: self._body() def clip_to_spec(value, spec): """Clips value to a given bounded tensor spec. Args: value: (tensor) value to be clipped. spec: (BoundedTensorSpec) spec containing min. and max. values for clipping. Returns: clipped_value: (tensor) `value` clipped to be compatible with `spec`. """ return tf.clip_by_value(value, spec.minimum, spec.maximum) def spec_means_and_magnitudes(action_spec): """Get the center and magnitude of the ranges in action spec.""" action_means = tf.nest.map_structure( lambda spec: (spec.maximum + spec.minimum) / 2.0, action_spec) action_magnitudes = tf.nest.map_structure( lambda spec: (spec.maximum - spec.minimum) / 2.0, action_spec) return np.array( action_means, dtype=np.float32), np.array( action_magnitudes, dtype=np.float32) def scale_to_spec(tensor, spec): """Shapes and scales a batch into the given spec bounds. Args: tensor: A [batch x n] tensor with values in the range of [-1, 1]. spec: (BoundedTensorSpec) to use for scaling the action. Returns: A batch scaled the given spec bounds. """ tensor = tf.reshape(tensor, [-1] + spec.shape.as_list()) # Scale the tensor. means, magnitudes = spec_means_and_magnitudes(spec) tensor = means + magnitudes * tensor # Set type. return tf.cast(tensor, spec.dtype) def ornstein_uhlenbeck_process(initial_value, damping=0.15, stddev=0.2, seed=None, scope='ornstein_uhlenbeck_noise'): """An op for generating noise from a zero-mean Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process is a process that generates temporally correlated noise via a random walk with damping. This process describes the velocity of a particle undergoing brownian motion in the presence of friction. This can be useful for exploration in continuous action environments with momentum. The temporal update equation is: `x_next = (1 - damping) * x + N(0, std_dev)` Args: initial_value: Initial value of the process. damping: The rate at which the noise trajectory is damped towards the mean. We must have 0 <= damping <= 1, where a value of 0 gives an undamped random walk and a value of 1 gives uncorrelated Gaussian noise. Hence in most applications a small non-zero value is appropriate. stddev: Standard deviation of the Gaussian component. seed: Seed for random number generation. scope: Scope of the variables. Returns: An op that generates noise. """ if tf.executing_eagerly(): return OUProcess(initial_value, damping, stddev, seed, scope) else: return OUProcess(initial_value, damping, stddev, seed, scope)() class OUProcess(tf.Module): """A zero-mean Ornstein-Uhlenbeck process.""" def __init__(self, initial_value, damping=0.15, stddev=0.2, seed=None, scope='ornstein_uhlenbeck_noise'): """A Class for generating noise from a zero-mean Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process is a process that generates temporally correlated noise via a random walk with damping. This process describes the velocity of a particle undergoing brownian motion in the presence of friction. This can be useful for exploration in continuous action environments with momentum. The temporal update equation is: `x_next = (1 - damping) * x + N(0, std_dev)` Args: initial_value: Initial value of the process. damping: The rate at which the noise trajectory is damped towards the mean. We must have 0 <= damping <= 1, where a value of 0 gives an undamped random walk and a value of 1 gives uncorrelated Gaussian noise. Hence in most applications a small non-zero value is appropriate. stddev: Standard deviation of the Gaussian component. seed: Seed for random number generation. scope: Scope of the variables. """ super(OUProcess, self).__init__() self._damping = damping self._stddev = stddev self._seed = seed with tf.name_scope(scope): self._x = tf.compat.v2.Variable( initial_value=initial_value, trainable=False) def __call__(self): noise = tf.random.normal( shape=self._x.shape, stddev=self._stddev, dtype=self._x.dtype, seed=self._seed) return self._x.assign((1. - self._damping) * self._x + noise) def log_probability(distributions, actions, action_spec): """Computes log probability of actions given distribution. Args: distributions: A possibly batched tuple of distributions. actions: A possibly batched action tuple. action_spec: A nested tuple representing the action spec. Returns: A Tensor representing the log probability of each action in the batch. """ outer_rank = nest_utils.get_outer_rank(actions, action_spec) def _compute_log_prob(single_distribution, single_action): # sum log-probs over everything but the batch single_log_prob = single_distribution.log_prob(single_action) rank = single_log_prob.shape.rank reduce_dims = list(range(outer_rank, rank)) return tf.reduce_sum( input_tensor=single_log_prob, axis=reduce_dims) nest_utils.assert_same_structure(distributions, actions) log_probs = [ _compute_log_prob(dist, action) for (dist, action ) in zip(tf.nest.flatten(distributions), tf.nest.flatten(actions)) ] # sum log-probs over action tuple total_log_probs = tf.add_n(log_probs) return total_log_probs # TODO(ofirnachum): Move to distribution utils. def entropy(distributions, action_spec): """Computes total entropy of distribution. Args: distributions: A possibly batched tuple of distributions. action_spec: A nested tuple representing the action spec. Returns: A Tensor representing the entropy of each distribution in the batch. Assumes actions are independent, so that marginal entropies of each action may be summed. """ nested_modes = tf.nest.map_structure(lambda d: d.mode(), distributions) outer_rank = nest_utils.get_outer_rank(nested_modes, action_spec) def _compute_entropy(single_distribution): entropies = single_distribution.entropy() # Sum entropies over everything but the batch. rank = entropies.shape.rank reduce_dims = list(range(outer_rank, rank)) return tf.reduce_sum(input_tensor=entropies, axis=reduce_dims) entropies = [ _compute_entropy(dist) for dist in tf.nest.flatten(distributions) ] # Sum entropies over action tuple. total_entropies = tf.add_n(entropies) return total_entropies def discounted_future_sum(values, gamma, num_steps): """Discounted future sum of batch-major values. Args: values: A Tensor of shape [batch_size, total_steps] and dtype float32. gamma: A float discount value. num_steps: A positive integer number of future steps to sum. Returns: A Tensor of shape [batch_size, total_steps], where each entry `(i, j)` is the result of summing the entries of values starting from `gamma^0 * values[i, j]` to `gamma^(num_steps - 1) * values[i, j + num_steps - 1]`, with zeros padded to values. For example, values=[5, 6, 7], gamma=0.9, will result in sequence: ```python [(5 * 0.9^0 + 6 * 0.9^1 + 7 * 0.9^2), (6 * 0.9^0 + 7 * 0.9^1), 7 * 0.9^0] ``` Raises: ValueError: If values is not of rank 2. """ if values.get_shape().rank != 2: raise ValueError('Input must be rank 2 tensor. Got %d.' % values.get_shape().rank) (batch_size, total_steps) = values.get_shape().as_list() num_steps = tf.minimum(num_steps, total_steps) discount_filter = tf.reshape(gamma**tf.cast(tf.range(num_steps), tf.float32), [-1, 1, 1]) padded_values = tf.concat([values, tf.zeros([batch_size, num_steps - 1])], 1) convolved_values = tf.squeeze( tf.nn.conv1d( input=tf.expand_dims(padded_values, -1), filters=discount_filter, stride=1, padding='VALID'), -1) return convolved_values def discounted_future_sum_masked(values, gamma, num_steps, episode_lengths): """Discounted future sum of batch-major values. Args: values: A Tensor of shape [batch_size, total_steps] and dtype float32. gamma: A float discount value. num_steps: A positive integer number of future steps to sum. episode_lengths: A vector shape [batch_size] with num_steps per episode. Returns: A Tensor of shape [batch_size, total_steps], where each entry is the discounted sum as in discounted_future_sum, except with values after the end of episode_lengths masked to 0. Raises: ValueError: If values is not of rank 2, or if total_steps is not defined. """ if values.shape.rank != 2: raise ValueError('Input must be a rank 2 tensor. Got %d.' % values.shape) total_steps = tf.compat.dimension_value(values.shape[1]) if total_steps is None: raise ValueError('total_steps dimension in input ' 'values[batch_size, total_steps] must be fully defined.') episode_mask = tf.cast( tf.sequence_mask(episode_lengths, total_steps), tf.float32) values *= episode_mask return discounted_future_sum(values, gamma, num_steps) def shift_values(values, gamma, num_steps, final_values=None): """Shifts batch-major values in time by some amount. Args: values: A Tensor of shape [batch_size, total_steps] and dtype float32. gamma: A float discount value. num_steps: A nonnegative integer amount to shift values by. final_values: A float32 Tensor of shape [batch_size] corresponding to the values at step num_steps + 1. Defaults to None (all zeros). Returns: A Tensor of shape [batch_size, total_steps], where each entry (i, j) is gamma^num_steps * values[i, j + num_steps] if j + num_steps < total_steps; gamma^(total_steps - j) * final_values[i] otherwise. Raises: ValueError: If values is not of rank 2. """ if values.get_shape().rank != 2: raise ValueError('Input must be rank 2 tensor. Got %d.' % values.get_shape().rank) (batch_size, total_steps) = values.get_shape().as_list() num_steps = tf.minimum(num_steps, total_steps) if final_values is None: final_values = tf.zeros([batch_size]) padding_exponent = tf.expand_dims( tf.cast(tf.range(num_steps, 0, -1), tf.float32), 0) final_pad = tf.expand_dims(final_values, 1) * gamma**padding_exponent return tf.concat([ gamma**tf.cast(num_steps, tf.float32) * values[:, num_steps:], final_pad ], 1) def get_episode_mask(time_steps): """Create a mask that is 0.0 for all final steps, 1.0 elsewhere. Args: time_steps: A TimeStep namedtuple representing a batch of steps. Returns: A float32 Tensor with 0s where step_type == LAST and 1s otherwise. """ episode_mask = tf.cast( tf.not_equal(time_steps.step_type, ts.StepType.LAST), tf.float32) return episode_mask def get_contiguous_sub_episodes(next_time_steps_discount): """Computes mask on sub-episodes which includes only contiguous components. Args: next_time_steps_discount: Tensor of shape [batch_size, total_steps] corresponding to environment discounts on next time steps (i.e. next_time_steps.discount). Returns: A float Tensor of shape [batch_size, total_steps] specifying mask including only contiguous components. Each row will be of the form [1.0] * a + [0.0] * b, where a >= 1 and b >= 0, and in which the initial sequence of ones corresponds to a contiguous sub-episode. """ episode_end = tf.equal(next_time_steps_discount, tf.constant(0, dtype=next_time_steps_discount.dtype)) mask = tf.math.cumprod( 1.0 - tf.cast(episode_end, tf.float32), axis=1, exclusive=True) return mask def convert_q_logits_to_values(logits, support): """Converts a set of Q-value logits into Q-values using the provided support. Args: logits: A Tensor representing the Q-value logits. support: The support of the underlying distribution. Returns: A Tensor containing the expected Q-values. """ probabilities = tf.nn.softmax(logits) return tf.reduce_sum(input_tensor=support * probabilities, axis=-1) def generate_tensor_summaries(tag, tensor, step): """Generates various summaries of `tensor` such as histogram, max, min, etc. Args: tag: A namescope tag for the summaries. tensor: The tensor to generate summaries of. step: Variable to use for summaries. """ with tf.name_scope(tag): tf.compat.v2.summary.histogram(name='histogram', data=tensor, step=step) tf.compat.v2.summary.scalar( name='mean', data=tf.reduce_mean(input_tensor=tensor), step=step) tf.compat.v2.summary.scalar( name='mean_abs', data=tf.reduce_mean(input_tensor=tf.abs(tensor)), step=step) tf.compat.v2.summary.scalar( name='max', data=tf.reduce_max(input_tensor=tensor), step=step) tf.compat.v2.summary.scalar( name='min', data=tf.reduce_min(input_tensor=tensor), step=step) def summarize_tensor_dict(tensor_dict: Dict[Text, types.Tensor], step: Optional[types.Tensor]): """Generates summaries of all tensors in `tensor_dict`. Args: tensor_dict: A dictionary {name, tensor} to summarize. step: The global step """ for tag in tensor_dict: generate_tensor_summaries(tag, tensor_dict[tag], step) # TODO(kbanoop): Support batch mode def compute_returns(rewards, discounts): """Compute the return from each index in an episode. Args: rewards: Tensor of per-timestep reward in the episode. discounts: Tensor of per-timestep discount factor. Should be 0 for final step of each episode. Returns: Tensor of per-timestep cumulative returns. """ rewards.shape.assert_is_compatible_with(discounts.shape) if (not rewards.shape.is_fully_defined() or not discounts.shape.is_fully_defined()): check_shape = tf.compat.v1.assert_equal( tf.shape(input=rewards), tf.shape(input=discounts)) else: check_shape = tf.no_op() with tf.control_dependencies([check_shape]): # Reverse the rewards and discounting for accumulation. rewards, discounts = tf.reverse(rewards, [0]), tf.reverse(discounts, [0]) def discounted_accumulate_rewards(next_step_return, reward_and_discount): reward, discount = reward_and_discount return next_step_return * discount + reward # Cumulatively sum discounted reward R_t. # R_t = r_t + discount * (r_t+1 + discount * (r_t+2 * discount( ... # As discount is 0 for terminal states, ends of episode will not include # reward from subsequent timesteps. returns = tf.scan( discounted_accumulate_rewards, [rewards, discounts], initializer=tf.constant(0, dtype=discounts.dtype)) returns = tf.reverse(returns, [0]) return returns def initialize_uninitialized_variables(session, var_list=None): """Initialize any pending variables that are uninitialized.""" if var_list is None: var_list = tf.compat.v1.global_variables() + tf.compat.v1.local_variables() is_initialized = session.run( [tf.compat.v1.is_variable_initialized(v) for v in var_list]) uninitialized_vars = [] for flag, v in zip(is_initialized, var_list): if not flag: uninitialized_vars.append(v) if uninitialized_vars: logging.info('uninitialized_vars: %s', ', '.join([str(x) for x in uninitialized_vars])) session.run(tf.compat.v1.variables_initializer(uninitialized_vars)) class Checkpointer(object): """Checkpoints training state, policy state, and replay_buffer state.""" def __init__(self, ckpt_dir, max_to_keep=20, **kwargs): """A class for making checkpoints. If ckpt_dir doesn't exists it creates it. Args: ckpt_dir: The directory to save checkpoints. max_to_keep: Maximum number of checkpoints to keep (if greater than the max are saved, the oldest checkpoints are deleted). **kwargs: Items to include in the checkpoint. """ self._checkpoint = tf.train.Checkpoint(**kwargs) if not tf.io.gfile.exists(ckpt_dir): tf.io.gfile.makedirs(ckpt_dir) self._manager = tf.train.CheckpointManager( self._checkpoint, directory=ckpt_dir, max_to_keep=max_to_keep) if self._manager.latest_checkpoint is not None: logging.info('Checkpoint available: %s', self._manager.latest_checkpoint) self._checkpoint_exists = True else: logging.info('No checkpoint available at %s', ckpt_dir) self._checkpoint_exists = False self._load_status = self._checkpoint.restore( self._manager.latest_checkpoint) @property def checkpoint_exists(self): return self._checkpoint_exists @property def manager(self): """Returns the underlying tf.train.CheckpointManager.""" return self._manager def initialize_or_restore(self, session=None): """Initialize or restore graph (based on checkpoint if exists).""" self._load_status.initialize_or_restore(session) return self._load_status def save(self, global_step: tf.Tensor, options: tf.train.CheckpointOptions = None): """Save state to checkpoint.""" saved_checkpoint = self._manager.save( checkpoint_number=global_step, options=options) self._checkpoint_exists = True logging.info('%s', 'Saved checkpoint: {}'.format(saved_checkpoint)) def replicate(tensor, outer_shape): """Replicates a tensor so as to match the given outer shape. Example: - t = [[1, 2, 3], [4, 5, 6]] (shape = [2, 3]) - outer_shape = [2, 1] The shape of the resulting tensor is: [2, 1, 2, 3] and its content is: [[t], [t]] Args: tensor: A tf.Tensor. outer_shape: Outer shape given as a 1D tensor of type list, numpy or tf.Tensor. Returns: The replicated tensor. Raises: ValueError: when the outer shape is incorrect. """ outer_shape = tf.convert_to_tensor(value=outer_shape) if len(outer_shape.shape) != 1: raise ValueError('The outer shape must be a 1D tensor') outer_ndims = int(outer_shape.shape[0]) tensor_ndims = len(tensor.shape) # No need to replicate anything if there is no outer dim to add. if outer_ndims == 0: return tensor # Calculate target shape of replicated tensor target_shape = tf.concat([outer_shape, tf.shape(input=tensor)], axis=0) # tf.tile expects `tensor` to be at least 1D if tensor_ndims == 0: tensor = tensor[None] # Replicate tensor "t" along the 1st dimension. tiled_tensor = tf.tile(tensor, [tf.reduce_prod(input_tensor=outer_shape)] + [1] * (tensor_ndims - 1)) # Reshape to match outer_shape. return tf.reshape(tiled_tensor, target_shape) def assert_members_are_not_overridden(base_cls, instance, allowlist=(), denylist=()): """Asserts public members of `base_cls` are not overridden in `instance`. If both `allowlist` and `denylist` are empty, no public member of `base_cls` can be overridden. If a `allowlist` is provided, only public members in `allowlist` can be overridden. If a `denylist` is provided, all public members except those in `denylist` can be overridden. Both `allowlist` and `denylist` cannot be provided at the same, if so a ValueError will be raised. Args: base_cls: A Base class. instance: An instance of a subclass of `base_cls`. allowlist: Optional list of `base_cls` members that can be overridden. denylist: Optional list of `base_cls` members that cannot be overridden. Raises: ValueError if both allowlist and denylist are provided. """ if denylist and allowlist: raise ValueError('Both `denylist` and `allowlist` cannot be provided.') instance_type = type(instance) subclass_members = set(instance_type.__dict__.keys()) public_members = set( [m for m in base_cls.__dict__.keys() if not m.startswith('_')]) common_members = public_members & subclass_members if allowlist: common_members = common_members - set(allowlist) elif denylist: common_members = common_members & set(denylist) overridden_members = [ m for m in common_members if base_cls.__dict__[m] != instance_type.__dict__[m] ] if overridden_members: raise ValueError( 'Subclasses of {} cannot override most of its base members, but ' '{} overrides: {}'.format(base_cls, instance_type, overridden_members)) def element_wise_squared_loss(x, y): return tf.compat.v1.losses.mean_squared_error( x, y, reduction=tf.compat.v1.losses.Reduction.NONE) def element_wise_huber_loss(x, y): return tf.compat.v1.losses.huber_loss( x, y, reduction=tf.compat.v1.losses.Reduction.NONE) def transpose_batch_time(x): """Transposes the batch and time dimensions of a Tensor. If the input tensor has rank < 2 it returns the original tensor. Retains as much of the static shape information as possible. Args: x: A Tensor. Returns: x transposed along the first two dimensions. """ x_static_shape = x.get_shape() if x_static_shape.rank is not None and x_static_shape.rank < 2: return x x_rank = tf.rank(x) x_t = tf.transpose(a=x, perm=tf.concat(([1, 0], tf.range(2, x_rank)), axis=0)) x_t.set_shape( tf.TensorShape( [x_static_shape.dims[1].value, x_static_shape.dims[0].value]).concatenate(x_static_shape[2:])) return x_t def save_spec(spec, file_path): """Saves the given spec nest as a StructProto. **Note**: Currently this will convert BoundedTensorSpecs into regular TensorSpecs. Args: spec: A nested structure of TensorSpecs. file_path: Path to save the encoded spec to. """ signature_encoder = nested_structure_coder.StructureCoder() spec = tensor_spec.from_spec(spec) spec_proto = signature_encoder.encode_structure(spec) dir_path = os.path.dirname(file_path) if not tf.io.gfile.exists(dir_path): tf.io.gfile.makedirs(dir_path) with tf.compat.v2.io.gfile.GFile(file_path, 'wb') as gfile: gfile.write(spec_proto.SerializeToString()) def load_spec(file_path): """Loads a data spec from a file. **Note**: Types for Named tuple classes will not match. Users need to convert to these manually: # Convert from: # 'tensorflow.python.saved_model.nested_structure_coder.Trajectory' # to proper TrajectorySpec. # trajectory_spec = trajectory.Trajectory(*spec) Args: file_path: Path to the saved data spec. Returns: A nested structure of TensorSpecs. """ with tf.compat.v2.io.gfile.GFile(file_path, 'rb') as gfile: signature_proto = struct_pb2.StructuredValue.FromString(gfile.read()) signature_encoder = nested_structure_coder.StructureCoder() return signature_encoder.decode_proto(signature_proto) def extract_shared_variables(variables_1, variables_2): """Separates shared variables from the given collections. Args: variables_1: An iterable of Variables variables_2: An iterable of Variables Returns: A Tuple of ObjectIdentitySets described by the set operations ``` (variables_1 - variables_2, variables_2 - variables_1, variables_1 & variables_2) ``` """ var_refs1 = object_identity.ObjectIdentitySet(variables_1) var_refs2 = object_identity.ObjectIdentitySet(variables_2) shared_vars = var_refs1.intersection(var_refs2) return (var_refs1.difference(shared_vars), var_refs2.difference(shared_vars), shared_vars) def check_no_shared_variables(network_1, network_2): """Checks that there are no shared trainable variables in the two networks. Args: network_1: A network.Network. network_2: A network.Network. Raises: ValueError: if there are any common trainable variables. ValueError: if one of the networks has not yet been built (e.g. user must call `create_variables`). """ variables_1 = object_identity.ObjectIdentitySet(network_1.trainable_variables) variables_2 = object_identity.ObjectIdentitySet(network_2.trainable_variables) shared_variables = variables_1 & variables_2 if shared_variables: raise ValueError( 'After making a copy of network \'{}\' to create a target ' 'network \'{}\', the target network shares weights with ' 'the original network. This is not allowed. If ' 'you want explicitly share weights with the target network, or ' 'if your input network shares weights with others, please ' 'provide a target network which explicitly, selectively, shares ' 'layers/weights with the input network. If you are not intending to ' 'share weights make sure all the weights are created inside the Network' ' since a copy will be created by creating a new Network with the same ' 'args but a new name. Shared variables found: ' '\'{}\'.'.format( network_1.name, network_2.name, [x.name for x in shared_variables])) def check_matching_networks(network_1, network_2): """Check that two networks have matching input specs and variables. Args: network_1: A network.Network. network_2: A network.Network. Raises: ValueError: if the networks differ in input_spec, variables (number, dtype, or shape). ValueError: if either of the networks has not been built yet (e.g. user must call `create_variables`). """ if network_1.input_tensor_spec != network_2.input_tensor_spec: raise ValueError('Input tensor specs of network and target network ' 'do not match: {} vs. {}.'.format( network_1.input_tensor_spec, network_2.input_tensor_spec)) if len(network_1.variables) != len(network_2.variables): raise ValueError( 'Variables lengths do not match between Q network and target network: ' '{} vs. {}'.format(network_1.variables, network_2.variables)) for v1, v2 in zip(network_1.variables, network_2.variables): if v1.dtype != v2.dtype or v1.shape != v2.shape: raise ValueError( 'Variable dtypes or shapes do not match: {} vs. {}'.format(v1, v2)) def maybe_copy_target_network_with_checks(network, target_network=None, name=None, input_spec=None): """Copies the network into target if None and checks for shared variables.""" if target_network is None: target_network = network.copy(name=name) target_network.create_variables(input_spec) # Copy may have been shallow, and variables may inadvertently be shared # between the target and the original networks. This would be an unusual # setup, so we throw an error to protect users from accidentally doing so. # If you explicitly want this to be enabled, please open a feature request # with the team. check_no_shared_variables(network, target_network) check_matching_networks(network, target_network) return target_network AggregatedLosses = cs.namedtuple( 'AggregatedLosses', ['total_loss', # Total loss = weighted + regularization 'weighted', # Weighted sum of per_example_loss by sample_weight. 'regularization', # Total of regularization losses. ]) def aggregate_losses(per_example_loss=None, sample_weight=None, global_batch_size=None, regularization_loss=None): """Aggregates and scales per example loss and regularization losses. If `global_batch_size` is given it would be used for scaling, otherwise it would use the batch_dim of per_example_loss and number of replicas. Args: per_example_loss: Per-example loss [B] or [B, T, ...]. sample_weight: Optional weighting for each example, Tensor shaped [B] or [B, T, ...], or a scalar float. global_batch_size: Optional global batch size value. Defaults to (size of first dimension of `losses`) * (number of replicas). regularization_loss: Regularization loss. Returns: An AggregatedLosses named tuple with scalar losses to optimize. """ total_loss, weighted_loss, reg_loss = None, None, None if sample_weight is not None and not isinstance(sample_weight, tf.Tensor): sample_weight = tf.convert_to_tensor(sample_weight, dtype=tf.float32) # Compute loss that is scaled by global batch size. if per_example_loss is not None: loss_rank = per_example_loss.shape.rank if sample_weight is not None: weight_rank = sample_weight.shape.rank # Expand `sample_weight` to be broadcastable to the shape of # `per_example_loss`, to ensure that multiplication works properly. if weight_rank > 0 and loss_rank > weight_rank: for dim in range(weight_rank, loss_rank): sample_weight = tf.expand_dims(sample_weight, dim) # Sometimes we have an episode boundary or similar, and at this location # the loss is nonsensical (i.e., inf or nan); and sample_weight is zero. # In this case, we should respect the zero sample_weight and ignore the # frame. per_example_loss = tf.math.multiply_no_nan( per_example_loss, sample_weight) if loss_rank is not None and loss_rank == 0: err_msg = ( 'Need to use a loss function that computes losses per sample, ex: ' 'replace losses.mean_squared_error with tf.math.squared_difference. ' 'Invalid value passed for `per_example_loss`. Expected a tensor ' 'tensor with at least rank 1, received: {}'.format(per_example_loss)) if tf.distribute.has_strategy(): raise ValueError(err_msg) else: logging.warning(err_msg) # Add extra dimension to prevent error in compute_average_loss. per_example_loss = tf.expand_dims(per_example_loss, 0) elif loss_rank > 1: # If per_example_loss is shaped [B, T, ...], we need to compute the mean # across the extra dimensions, ex. time, as well. per_example_loss = tf.reduce_mean(per_example_loss, range(1, loss_rank)) global_batch_size = global_batch_size and tf.cast(global_batch_size, per_example_loss.dtype) weighted_loss = tf.nn.compute_average_loss( per_example_loss, global_batch_size=global_batch_size) total_loss = weighted_loss # Add scaled regularization losses. if regularization_loss is not None: reg_loss = tf.nn.scale_regularization_loss(regularization_loss) if total_loss is None: total_loss = reg_loss else: total_loss += reg_loss return AggregatedLosses(total_loss, weighted_loss, reg_loss) def summarize_scalar_dict(name_data, step, name_scope='Losses/'): if name_data: with tf.name_scope(name_scope): for name, data in name_data.items(): if data is not None: tf.compat.v2.summary.scalar( name=name, data=data, step=step) @contextlib.contextmanager def soft_device_placement(): """Context manager for soft device placement, allowing summaries on CPU. Eager and graph contexts have different default device placements. See b/148408921 for details. This context manager should be used whenever using summary writers contexts to make sure summaries work when executing on TPUs. Yields: Sets `tf.config.set_soft_device_placement(True)` within the context """ original_setting = tf.config.get_soft_device_placement() try: tf.config.set_soft_device_placement(True) yield finally: tf.config.set_soft_device_placement(original_setting) def deduped_network_variables(network, *args): """Returns a list of variables in net1 that are not in any other nets. Args: network: A Keras network. *args: other networks to check for duplicate variables. """ other_vars = object_identity.ObjectIdentitySet( [v for n in args for v in n.variables]) # pylint:disable=g-complex-comprehension return [v for v in network.variables if v not in other_vars] def safe_has_state(state): """Safely checks `state not in (None, (), [])`.""" # TODO(b/158804957): tf.function changes "s in ((),)" to a tensor bool expr. # pylint: disable=literal-comparison return state is not None and state is not () and state is not [] # pylint: enable=literal-comparison
the-stack_0_27574
from concurrent.futures import ThreadPoolExecutor import numpy as np from scipy.sparse import csr_matrix, vstack def parallel_argsort(matrix: np.ndarray, n_jobs: int = 4) -> np.ndarray: """ Parallel argsort, i.e. batched processing of matrix where each batch is processed in parallel. Args: matrix: matrix to sort along last axis. n_jobs: number of workers Returns: indexes of elements in a sorted array that they have in original one """ def task(batch): return np.argsort(batch, axis=-1)[:, ::-1] sorted_ids = np.zeros(matrix.shape, dtype=int) batch_size = int(np.ceil(matrix.shape[0] / n_jobs)) with ThreadPoolExecutor(max_workers=n_jobs) as pool: res_iter = pool.map( task, [matrix[i * batch_size : (i + 1) * batch_size] for i in range(n_jobs)] ) for i, ids in enumerate(res_iter): s, e = i * batch_size, (i + 1) * batch_size sorted_ids[s:e] = ids return sorted_ids def fast_np_sparse_batch_combine_two_dists( batch_fwd_dist: np.ndarray, batch_bwd_dist: np.ndarray ) -> np.ndarray: """ Performs parallel combination of two distributions coming from backward and forward passes. Used to combine forward and backward passes of recurrent neural networks. Args: batch_fwd_dist: distribution coming from the forward pass. batch_bwd_dist: distribution coming from the backward pass. Returns: `numpy.ndarray` - combination of distributions. """ vs = batch_fwd_dist.shape[-1] q_sparse = csr_matrix( (np.logspace(0.1, 100, num=vs, base=1.057)[::-1], (range(vs), range(vs))), shape=(vs, vs), ) fwd_sorted_ids = parallel_argsort(batch_fwd_dist, n_jobs=20) bwd_sorted_ids = parallel_argsort(batch_bwd_dist, n_jobs=20) matrices = [] for sample_num, (fwd_ids, bwd_ids) in enumerate( zip(fwd_sorted_ids, bwd_sorted_ids) ): rows = np.hstack([fwd_ids, bwd_ids]) cols = np.hstack([np.arange(vs), np.arange(vs)]) sparse_matrix = csr_matrix( (np.ones(2 * vs, dtype=bool), (rows, cols)), shape=(vs, vs) ).astype(np.int8) matrices.append(sparse_matrix) big_sparse_matrix = vstack(matrices) batch_logits = (big_sparse_matrix * q_sparse).max(axis=-1).toarray() return batch_logits.reshape(batch_fwd_dist.shape)
the-stack_0_27576
# 2019-11-12 01:01:32(JST) import sys # import collections # import math # from string import ascii_lowercase, ascii_uppercase, digits # from bisect import bisect_left as bi_l, bisect_right as bi_r # import itertools # from functools import reduce # import operator as op # from scipy.misc import comb # float # import numpy as np def main(): n, *h = [int(x) for x in sys.stdin.read().split()] mountain = [] valley = [] flat = 0 i = 0 while True: if h[i] == h[i+1]: i += 1 continue elif h[i] < h[i+1]: break else: mountain.append(h[i]) break i = -1 while True: if h[i-1] == h[i]: i -= 1 continue elif h[i-1] > h[i]: break else: mountain.append(h[i]) break for i in range(1, n-1): if flat == 0: if h[i-1] < h[i] > h[i+1]: mountain.append(h[i]) elif h[i-1] > h[i] < h[i+1]: valley.append(h[i]) elif h[i-1] < h[i] == h[i+1]: flat = 1 elif h[i-1] > h[i] == h[i+1]: flat = -1 else: if flat == 1: if h[i] > h[i+1]: mountain.append(h[i]) flat = 0 elif h[i] < h[i+1]: flat = 0 else: continue elif flat == -1: if h[i] < h[i+1]: valley.append(h[i]) flat = 0 elif h[i] > h[h+1]: flat = 0 else: continue ans = sum(mountain) - sum(valley) print(ans) if __name__ == "__main__": main()
the-stack_0_27577
import scrapy import json import pickle import os import ast from urllib import parse from scrapy.selector import Selector class HainanSpider(scrapy.Spider): name = "Hainan" if not os.path.exists("../../data/HTML_pk/%s" % name): os.makedirs("../../data/HTML_pk/%s" % name) if not os.path.exists("../../data/text/%s" % name): os.makedirs("../../data/text/%s" % name) def start_requests(self): total_page = 486 # total_page = 3 url_base = "http://www.hainan.gov.cn/u/search/wjk/rs?keywords=&docYear=&docName=&fwzh=&column=undefined&curPage={0}&PageSize=15" for i in range(total_page): yield scrapy.Request(url=url_base.format(i + 1), callback=self.parse) def parse(self, response): detail_page_links = [] for item in json.loads(response.text)["page"]["list"]: UID = item["url"].split("/")[-1].split(".")[0] item["date"] = None item["url"] = response.urljoin(item["url"]) item["UID"] = UID date = item["pubDate"] if date and len(date) > 10: date = date[:10] item["date"] = date item["FileNumber"] = item["c_wjbh"] if "?" not in UID: detail_page_links.append(item["url"]) item["crawl state"] = "half" item["text length"] = 0 yield item yield from response.follow_all(detail_page_links, callback=self.parse_content) def parse_content(self, response): UID = response.url.split("/")[-1].split(".")[0] paragraph_list = response.css("div#zoom p *::text").getall() attachment_link = response.css("div#zoom p a::attr(href)").getall() if len(paragraph_list) == 0: paragraph_list = response.css("table p *::text").getall() if len(paragraph_list) == 0: paragraph_list = response.css("p *::text").getall() length = len("".join(paragraph_list)) if length > 0: with open("../../data/text/%s/%s.txt" % (self.name, UID), "w") as f: f.write("\n".join(paragraph_list)) with open("../../data/HTML_pk/%s/%s.pkl" % (self.name, UID), "wb") as f: pickle.dump(response.text, f) state = "full" else: state = "empty" return { "UID": UID, "mainText": paragraph_list, "attachment_link": attachment_link, "crawl state": state, "text length": length, }
the-stack_0_27578
from collections import OrderedDict from datetime import datetime, timedelta import numpy as np import numpy.ma as ma import pytest from pandas._libs import lib from pandas._libs.tslib import iNaT from pandas.core.dtypes.common import is_categorical_dtype, is_datetime64tz_dtype from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, IntervalIndex, MultiIndex, NaT, Series, Timestamp, date_range, isna, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray, period_array class TestSeriesConstructors: @pytest.mark.parametrize( "constructor,check_index_type", [ # NOTE: some overlap with test_constructor_empty but that test does not # test for None or an empty generator. # test_constructor_pass_none tests None but only with the index also # passed. (lambda: Series(), True), (lambda: Series(None), True), (lambda: Series({}), True), (lambda: Series(()), False), # creates a RangeIndex (lambda: Series([]), False), # creates a RangeIndex (lambda: Series((_ for _ in [])), False), # creates a RangeIndex (lambda: Series(data=None), True), (lambda: Series(data={}), True), (lambda: Series(data=()), False), # creates a RangeIndex (lambda: Series(data=[]), False), # creates a RangeIndex (lambda: Series(data=(_ for _ in [])), False), # creates a RangeIndex ], ) def test_empty_constructor(self, constructor, check_index_type): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): expected = Series() result = constructor() assert len(result.index) == 0 tm.assert_series_equal(result, expected, check_index_type=check_index_type) def test_invalid_dtype(self): # GH15520 msg = "not understood" invalid_list = [pd.Timestamp, "pd.Timestamp", list] for dtype in invalid_list: with pytest.raises(TypeError, match=msg): Series([], name="time", dtype=dtype) def test_invalid_compound_dtype(self): # GH#13296 c_dtype = np.dtype([("a", "i8"), ("b", "f4")]) cdt_arr = np.array([(1, 0.4), (256, -13)], dtype=c_dtype) with pytest.raises(ValueError, match="Use DataFrame instead"): Series(cdt_arr, index=["A", "B"]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) assert not isinstance(scalar, float) # Coercion assert float(Series([1.0])) == 1.0 assert int(Series([1.0])) == 1 def test_constructor(self, datetime_series): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty_series = Series() assert datetime_series.index.is_all_dates # Pass in Series derived = Series(datetime_series) assert derived.index.is_all_dates assert tm.equalContents(derived.index, datetime_series.index) # Ensure new index is not created assert id(datetime_series.index) == id(derived.index) # Mixed type Series mixed = Series(["hello", np.NaN], index=[0, 1]) assert mixed.dtype == np.object_ assert mixed[1] is np.NaN assert not empty_series.index.is_all_dates with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert not Series().index.is_all_dates # exception raised is of type Exception with pytest.raises(Exception, match="Data must be 1-dimensional"): Series(np.random.randn(3, 3), index=np.arange(3)) mixed.name = "Series" rs = Series(mixed).name xp = "Series" assert rs == xp # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) msg = "initializing a Series from a MultiIndex is not supported" with pytest.raises(NotImplementedError, match=msg): Series(m) @pytest.mark.parametrize("input_class", [list, dict, OrderedDict]) def test_constructor_empty(self, input_class): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series() empty2 = Series(input_class()) # these are Index() and RangeIndex() which don't compare type equal # but are just .equals tm.assert_series_equal(empty, empty2, check_index_type=False) # With explicit dtype: empty = Series(dtype="float64") empty2 = Series(input_class(), dtype="float64") tm.assert_series_equal(empty, empty2, check_index_type=False) # GH 18515 : with dtype=category: empty = Series(dtype="category") empty2 = Series(input_class(), dtype="category") tm.assert_series_equal(empty, empty2, check_index_type=False) if input_class is not list: # With index: with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series(index=range(10)) empty2 = Series(input_class(), index=range(10)) tm.assert_series_equal(empty, empty2) # With index and dtype float64: empty = Series(np.nan, index=range(10)) empty2 = Series(input_class(), index=range(10), dtype="float64") tm.assert_series_equal(empty, empty2) # GH 19853 : with empty string, index and dtype str empty = Series("", dtype=str, index=range(3)) empty2 = Series("", index=range(3)) tm.assert_series_equal(empty, empty2) @pytest.mark.parametrize("input_arg", [np.nan, float("nan")]) def test_constructor_nan(self, input_arg): empty = Series(dtype="float64", index=range(10)) empty2 = Series(input_arg, index=range(10)) tm.assert_series_equal(empty, empty2, check_index_type=False) @pytest.mark.parametrize( "dtype", ["f8", "i8", "M8[ns]", "m8[ns]", "category", "object", "datetime64[ns, UTC]"], ) @pytest.mark.parametrize("index", [None, pd.Index([])]) def test_constructor_dtype_only(self, dtype, index): # GH-20865 result = pd.Series(dtype=dtype, index=index) assert result.dtype == dtype assert len(result) == 0 def test_constructor_no_data_index_order(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): result = pd.Series(index=["b", "a", "c"]) assert result.index.tolist() == ["b", "a", "c"] def test_constructor_no_data_string_type(self): # GH 22477 result = pd.Series(index=[1], dtype=str) assert np.isnan(result.iloc[0]) @pytest.mark.parametrize("item", ["entry", "ѐ", 13]) def test_constructor_string_element_string_type(self, item): # GH 22477 result = pd.Series(item, index=[1], dtype=str) assert result.iloc[0] == str(item) def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 ser = Series(["x", None], dtype=string_dtype) result = ser.isna() expected = Series([False, True]) tm.assert_series_equal(result, expected) assert ser.iloc[1] is None ser = Series(["x", np.nan], dtype=string_dtype) assert np.isnan(ser.iloc[1]) def test_constructor_series(self): index1 = ["d", "b", "a", "c"] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) tm.assert_series_equal(s2, s1.sort_index()) def test_constructor_iterable(self): # GH 21987 class Iter: def __iter__(self): for i in range(10): yield i expected = Series(list(range(10)), dtype="int64") result = Series(Iter(), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_sequence(self): # GH 21987 expected = Series(list(range(10)), dtype="int64") result = Series(range(10), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_single_str(self): # GH 21987 expected = Series(["abc"]) result = Series("abc") tm.assert_series_equal(result, expected) def test_constructor_list_like(self): # make sure that we are coercing different # list-likes to standard dtypes and not # platform specific expected = Series([1, 2, 3], dtype="int64") for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype="int64")]: result = Series(obj, index=[0, 1, 2]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["bool", "int32", "int64", "float64"]) def test_constructor_index_dtype(self, dtype): # GH 17088 s = Series(Index([0, 2, 4]), dtype=dtype) assert s.dtype == dtype @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), ([pd.Interval(left=0, right=5)]), ], ) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements from a list are converted to strings # when dtype is str, 'str', or 'U' result = Series(input_vals, dtype=string_dtype) expected = Series(input_vals).astype(string_dtype) tm.assert_series_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = Series([1.0, 2.0, np.nan], dtype=string_dtype) expected = Series(["1.0", "2.0", np.nan], dtype=object) tm.assert_series_equal(result, expected) assert np.isnan(result[2]) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(range(10)) tm.assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(range(10)) tm.assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ["a", "b", "c"], fastpath=True) res = Series(cat) tm.assert_categorical_equal(res.values, cat) # can cast to a new dtype result = Series(pd.Categorical([1, 2, 3]), dtype="int64") expected = pd.Series([1, 2, 3], dtype="int64") tm.assert_series_equal(result, expected) # GH12574 cat = Series(pd.Categorical([1, 2, 3]), dtype="category") assert is_categorical_dtype(cat) assert is_categorical_dtype(cat.dtype) s = Series([1, 2, 3], dtype="category") assert is_categorical_dtype(s) assert is_categorical_dtype(s.dtype) def test_constructor_categorical_with_coercion(self): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]) # test basic creation / coercion of categoricals s = Series(factor, name="A") assert s.dtype == "category" assert len(s) == len(factor) str(s.values) str(s) # in a frame df = DataFrame({"A": factor}) result = df["A"] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) df = DataFrame({"A": s}) result = df["A"] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) # multiples df = DataFrame({"A": s, "B": s, "C": 1}) result1 = df["A"] result2 = df["B"] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) assert result2.name == "B" assert len(df) == len(factor) str(df.values) str(df) # GH8623 x = DataFrame( [[1, "John P. Doe"], [2, "Jane Dove"], [1, "John P. Doe"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] assert result == expected result = x.person_name[0] assert result == expected result = x.person_name.loc[0] assert result == expected def test_constructor_categorical_dtype(self): result = pd.Series( ["a", "b"], dtype=CategoricalDtype(["a", "b", "c"], ordered=True) ) assert is_categorical_dtype(result) is True tm.assert_index_equal(result.cat.categories, pd.Index(["a", "b", "c"])) assert result.cat.ordered result = pd.Series(["a", "b"], dtype=CategoricalDtype(["b", "a"])) assert is_categorical_dtype(result) tm.assert_index_equal(result.cat.categories, pd.Index(["b", "a"])) assert result.cat.ordered is False # GH 19565 - Check broadcasting of scalar with Categorical dtype result = Series( "a", index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) expected = Series( ["a", "a"], index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) tm.assert_series_equal(result, expected, check_categorical=True) def test_constructor_categorical_string(self): # GH 26336: the string 'category' maintains existing CategoricalDtype cdt = CategoricalDtype(categories=list("dabc"), ordered=True) expected = Series(list("abcabc"), dtype=cdt) # Series(Categorical, dtype='category') keeps existing dtype cat = Categorical(list("abcabc"), dtype=cdt) result = Series(cat, dtype="category") tm.assert_series_equal(result, expected) # Series(Series[Categorical], dtype='category') keeps existing dtype result = Series(result, dtype="category") tm.assert_series_equal(result, expected) def test_categorical_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = Series(cat, copy=True) assert s.cat is not cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = Series(cat) assert s.values is cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_unordered_compare_equal(self): left = pd.Series(["a", "b", "c"], dtype=CategoricalDtype(["a", "b"])) right = pd.Series(pd.Categorical(["a", "b", np.nan], categories=["a", "b"])) tm.assert_series_equal(left, right) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0.0, np.nan, 2.0], index=index) tm.assert_series_equal(result, expected) data[1] = 1.0 result = Series(data, index=index) expected = Series([0.0, 1.0, 2.0], index=index) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=int) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=float) tm.assert_series_equal(result, expected) data[0] = 0 data[2] = 2 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0, np.nan, 2], index=index, dtype=float) tm.assert_series_equal(result, expected) data[1] = 1 result = Series(data, index=index) expected = Series([0, 1, 2], index=index, dtype=int) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=bool) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=object) tm.assert_series_equal(result, expected) data[0] = True data[2] = False index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([True, np.nan, False], index=index, dtype=object) tm.assert_series_equal(result, expected) data[1] = True result = Series(data, index=index) expected = Series([True, True, False], index=index, dtype=bool) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype="M8[ns]") result = Series(data) expected = Series([iNaT, iNaT, iNaT], dtype="M8[ns]") tm.assert_series_equal(result, expected) data[0] = datetime(2001, 1, 1) data[2] = datetime(2001, 1, 3) index = ["a", "b", "c"] result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), iNaT, datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) data[1] = datetime(2001, 1, 2) result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) def test_constructor_maskedarray_hardened(self): # Check numpy masked arrays with hard masks -- from GH24574 data = ma.masked_all((3,), dtype=float).harden_mask() result = pd.Series(data) expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) def test_series_ctor_plus_datetimeindex(self): rng = date_range("20090415", "20090519", freq="B") data = {k: 1 for k in rng} result = Series(data, index=rng) assert result.index is rng def test_constructor_default_index(self): s = Series([0, 1, 2]) tm.assert_index_equal(s.index, pd.Index(np.arange(3))) @pytest.mark.parametrize( "input", [ [1, 2, 3], (1, 2, 3), list(range(3)), pd.Categorical(["a", "b", "a"]), (i for i in range(3)), map(lambda x: x, range(3)), ], ) def test_constructor_index_mismatch(self, input): # GH 19342 # test that construction of a Series with an index of different length # raises an error msg = "Length of passed values is 3, index implies 4" with pytest.raises(ValueError, match=msg): Series(input, index=np.arange(4)) def test_constructor_numpy_scalar(self): # GH 19342 # construction with a numpy scalar # should not raise result = Series(np.array(100), index=np.arange(4), dtype="int64") expected = Series(100, index=np.arange(4), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_broadcast_list(self): # GH 19342 # construction with single-element container and index # should raise msg = "Length of passed values is 1, index implies 3" with pytest.raises(ValueError, match=msg): Series(["foo"], index=["a", "b", "c"]) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) assert isinstance(s, Series) def test_constructor_sanitize(self): s = Series(np.array([1.0, 1.0, 8.0]), dtype="i8") assert s.dtype == np.dtype("i8") s = Series(np.array([1.0, 1.0, np.nan]), copy=True, dtype="i8") assert s.dtype == np.dtype("f8") def test_constructor_copy(self): # GH15125 # test dtype parameter has no side effects on copy=True for data in [[1.0], np.array([1.0])]: x = Series(data) y = pd.Series(x, copy=True, dtype=float) # copy=True maintains original data in Series tm.assert_series_equal(x, y) # changes to origin of copy does not affect the copy x[0] = 2.0 assert not x.equals(y) assert x[0] == 2.0 assert y[0] == 1.0 @pytest.mark.parametrize( "index", [ pd.date_range("20170101", periods=3, tz="US/Eastern"), pd.date_range("20170101", periods=3), pd.timedelta_range("1 day", periods=3), pd.period_range("2012Q1", periods=3, freq="Q"), pd.Index(list("abc")), pd.Int64Index([1, 2, 3]), pd.RangeIndex(0, 3), ], ids=lambda x: type(x).__name__, ) def test_constructor_limit_copies(self, index): # GH 17449 # limit copies of input s = pd.Series(index) # we make 1 copy; this is just a smoke test here assert s._data.blocks[0].values is not index def test_constructor_pass_none(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): s = Series(None, index=range(5)) assert s.dtype == np.float64 s = Series(None, index=range(5), dtype=object) assert s.dtype == np.object_ # GH 7431 # inference on the index with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): s = Series(index=np.array([None])) expected = Series(index=Index([None])) tm.assert_series_equal(s, expected) def test_constructor_pass_nan_nat(self): # GH 13467 exp = Series([np.nan, np.nan], dtype=np.float64) assert exp.dtype == np.float64 tm.assert_series_equal(Series([np.nan, np.nan]), exp) tm.assert_series_equal(Series(np.array([np.nan, np.nan])), exp) exp = Series([pd.NaT, pd.NaT]) assert exp.dtype == "datetime64[ns]" tm.assert_series_equal(Series([pd.NaT, pd.NaT]), exp) tm.assert_series_equal(Series(np.array([pd.NaT, pd.NaT])), exp) tm.assert_series_equal(Series([pd.NaT, np.nan]), exp) tm.assert_series_equal(Series(np.array([pd.NaT, np.nan])), exp) tm.assert_series_equal(Series([np.nan, pd.NaT]), exp) tm.assert_series_equal(Series(np.array([np.nan, pd.NaT])), exp) def test_constructor_cast(self): msg = "could not convert string to float" with pytest.raises(ValueError, match=msg): Series(["a", "b", "c"], dtype=float) def test_constructor_unsigned_dtype_overflow(self, uint_dtype): # see gh-15832 msg = "Trying to coerce negative values to unsigned integers" with pytest.raises(OverflowError, match=msg): Series([-1], dtype=uint_dtype) def test_constructor_coerce_float_fail(self, any_int_dtype): # see gh-15832 msg = "Trying to coerce float values to integers" with pytest.raises(ValueError, match=msg): Series([1, 2, 3.5], dtype=any_int_dtype) def test_constructor_coerce_float_valid(self, float_dtype): s = Series([1, 2, 3.5], dtype=float_dtype) expected = Series([1, 2, 3.5]).astype(float_dtype) tm.assert_series_equal(s, expected) def test_constructor_dtype_no_cast(self): # see gh-1572 s = Series([1, 2, 3]) s2 = Series(s, dtype=np.int64) s2[1] = 5 assert s[1] == 5 def test_constructor_datelike_coercion(self): # GH 9477 # incorrectly inferring on dateimelike looking when object dtype is # specified s = Series([Timestamp("20130101"), "NOV"], dtype=object) assert s.iloc[0] == Timestamp("20130101") assert s.iloc[1] == "NOV" assert s.dtype == object # the dtype was being reset on the slicing and re-inferred to datetime # even thought the blocks are mixed belly = "216 3T19".split() wing1 = "2T15 4H19".split() wing2 = "416 4T20".split() mat = pd.to_datetime("2016-01-22 2019-09-07".split()) df = pd.DataFrame({"wing1": wing1, "wing2": wing2, "mat": mat}, index=belly) result = df.loc["3T19"] assert result.dtype == object result = df.loc["216"] assert result.dtype == object def test_constructor_datetimes_with_nulls(self): # gh-15869 for arr in [ np.array([None, None, None, None, datetime.now(), None]), np.array([None, None, datetime.now(), None]), ]: result = Series(arr) assert result.dtype == "M8[ns]" def test_constructor_dtype_datetime64(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) assert isna(s).all() # in theory this should be all nulls, but since # we are not specifying a dtype is ambiguous s = Series(iNaT, index=range(5)) assert not isna(s).all() s = Series(np.nan, dtype="M8[ns]", index=range(5)) assert isna(s).all() s = Series([datetime(2001, 1, 2, 0, 0), iNaT], dtype="M8[ns]") assert isna(s[1]) assert s.dtype == "M8[ns]" s = Series([datetime(2001, 1, 2, 0, 0), np.nan], dtype="M8[ns]") assert isna(s[1]) assert s.dtype == "M8[ns]" # GH3416 dates = [ np.datetime64(datetime(2013, 1, 1)), np.datetime64(datetime(2013, 1, 2)), np.datetime64(datetime(2013, 1, 3)), ] s = Series(dates) assert s.dtype == "M8[ns]" s.iloc[0] = np.nan assert s.dtype == "M8[ns]" # GH3414 related expected = Series( [datetime(2013, 1, 1), datetime(2013, 1, 2), datetime(2013, 1, 3)], dtype="datetime64[ns]", ) result = Series(Series(dates).astype(np.int64) / 1000000, dtype="M8[ms]") tm.assert_series_equal(result, expected) result = Series(dates, dtype="datetime64[ns]") tm.assert_series_equal(result, expected) expected = Series( [pd.NaT, datetime(2013, 1, 2), datetime(2013, 1, 3)], dtype="datetime64[ns]" ) result = Series([np.nan] + dates[1:], dtype="datetime64[ns]") tm.assert_series_equal(result, expected) dts = Series(dates, dtype="datetime64[ns]") # valid astype dts.astype("int64") # invalid casting msg = r"cannot astype a datetimelike from \[datetime64\[ns\]\] to \[int32\]" with pytest.raises(TypeError, match=msg): dts.astype("int32") # ints are ok # we test with np.int64 to get similar results on # windows / 32-bit platforms result = Series(dts, dtype=np.int64) expected = Series(dts.astype(np.int64)) tm.assert_series_equal(result, expected) # invalid dates can be help as object result = Series([datetime(2, 1, 1)]) assert result[0] == datetime(2, 1, 1, 0, 0) result = Series([datetime(3000, 1, 1)]) assert result[0] == datetime(3000, 1, 1, 0, 0) # don't mix types result = Series([Timestamp("20130101"), 1], index=["a", "b"]) assert result["a"] == Timestamp("20130101") assert result["b"] == 1 # GH6529 # coerce datetime64 non-ns properly dates = date_range("01-Jan-2015", "01-Dec-2015", freq="M") values2 = dates.view(np.ndarray).astype("datetime64[ns]") expected = Series(values2, index=dates) for dtype in ["s", "D", "ms", "us", "ns"]: values1 = dates.view(np.ndarray).astype(f"M8[{dtype}]") result = Series(values1, dates) tm.assert_series_equal(result, expected) # GH 13876 # coerce to non-ns to object properly expected = Series(values2, index=dates, dtype=object) for dtype in ["s", "D", "ms", "us", "ns"]: values1 = dates.view(np.ndarray).astype(f"M8[{dtype}]") result = Series(values1, index=dates, dtype=object) tm.assert_series_equal(result, expected) # leave datetime.date alone dates2 = np.array([d.date() for d in dates.to_pydatetime()], dtype=object) series1 = Series(dates2, dates) tm.assert_numpy_array_equal(series1.values, dates2) assert series1.dtype == object # these will correctly infer a datetime s = Series([None, pd.NaT, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" s = Series([np.nan, pd.NaT, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" s = Series([pd.NaT, None, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" s = Series([pd.NaT, np.nan, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" # tz-aware (UTC and other tz's) # GH 8411 dr = date_range("20130101", periods=3) assert Series(dr).iloc[0].tz is None dr = date_range("20130101", periods=3, tz="UTC") assert str(Series(dr).iloc[0].tz) == "UTC" dr = date_range("20130101", periods=3, tz="US/Eastern") assert str(Series(dr).iloc[0].tz) == "US/Eastern" # non-convertible s = Series([1479596223000, -1479590, pd.NaT]) assert s.dtype == "object" assert s[2] is pd.NaT assert "NaT" in str(s) # if we passed a NaT it remains s = Series([datetime(2010, 1, 1), datetime(2, 1, 1), pd.NaT]) assert s.dtype == "object" assert s[2] is pd.NaT assert "NaT" in str(s) # if we passed a nan it remains s = Series([datetime(2010, 1, 1), datetime(2, 1, 1), np.nan]) assert s.dtype == "object" assert s[2] is np.nan assert "NaN" in str(s) def test_constructor_with_datetime_tz(self): # 8260 # support datetime64 with tz dr = date_range("20130101", periods=3, tz="US/Eastern") s = Series(dr) assert s.dtype.name == "datetime64[ns, US/Eastern]" assert s.dtype == "datetime64[ns, US/Eastern]" assert is_datetime64tz_dtype(s.dtype) assert "datetime64[ns, US/Eastern]" in str(s) # export result = s.values assert isinstance(result, np.ndarray) assert result.dtype == "datetime64[ns]" exp = pd.DatetimeIndex(result) exp = exp.tz_localize("UTC").tz_convert(tz=s.dt.tz) tm.assert_index_equal(dr, exp) # indexing result = s.iloc[0] assert result == Timestamp( "2013-01-01 00:00:00-0500", tz="US/Eastern", freq="D" ) result = s[0] assert result == Timestamp( "2013-01-01 00:00:00-0500", tz="US/Eastern", freq="D" ) result = s[Series([True, True, False], index=s.index)] tm.assert_series_equal(result, s[0:2]) result = s.iloc[0:1] tm.assert_series_equal(result, Series(dr[0:1])) # concat result = pd.concat([s.iloc[0:1], s.iloc[1:]]) tm.assert_series_equal(result, s) # short str assert "datetime64[ns, US/Eastern]" in str(s) # formatting with NaT result = s.shift() assert "datetime64[ns, US/Eastern]" in str(result) assert "NaT" in str(result) # long str t = Series(date_range("20130101", periods=1000, tz="US/Eastern")) assert "datetime64[ns, US/Eastern]" in str(t) result = pd.DatetimeIndex(s, freq="infer") tm.assert_index_equal(result, dr) # inference s = Series( [ pd.Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), pd.Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ] ) assert s.dtype == "datetime64[ns, US/Pacific]" assert lib.infer_dtype(s, skipna=True) == "datetime64" s = Series( [ pd.Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), pd.Timestamp("2013-01-02 14:00:00-0800", tz="US/Eastern"), ] ) assert s.dtype == "object" assert lib.infer_dtype(s, skipna=True) == "datetime" # with all NaT s = Series(pd.NaT, index=[0, 1], dtype="datetime64[ns, US/Eastern]") expected = Series(pd.DatetimeIndex(["NaT", "NaT"], tz="US/Eastern")) tm.assert_series_equal(s, expected) @pytest.mark.parametrize("arr_dtype", [np.int64, np.float64]) @pytest.mark.parametrize("dtype", ["M8", "m8"]) @pytest.mark.parametrize("unit", ["ns", "us", "ms", "s", "h", "m", "D"]) def test_construction_to_datetimelike_unit(self, arr_dtype, dtype, unit): # tests all units # gh-19223 dtype = f"{dtype}[{unit}]" arr = np.array([1, 2, 3], dtype=arr_dtype) s = Series(arr) result = s.astype(dtype) expected = Series(arr.astype(dtype)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("arg", ["2013-01-01 00:00:00", pd.NaT, np.nan, None]) def test_constructor_with_naive_string_and_datetimetz_dtype(self, arg): # GH 17415: With naive string result = Series([arg], dtype="datetime64[ns, CET]") expected = Series(pd.Timestamp(arg)).dt.tz_localize("CET") tm.assert_series_equal(result, expected) def test_constructor_datetime64_bigendian(self): # GH#30976 ms = np.datetime64(1, "ms") arr = np.array([np.datetime64(1, "ms")], dtype=">M8[ms]") result = Series(arr) expected = Series([Timestamp(ms)]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("interval_constructor", [IntervalIndex, IntervalArray]) def test_construction_interval(self, interval_constructor): # construction from interval & array of intervals intervals = interval_constructor.from_breaks(np.arange(3), closed="right") result = Series(intervals) assert result.dtype == "interval[int64]" tm.assert_index_equal(Index(result.values), Index(intervals)) @pytest.mark.parametrize( "data_constructor", [list, np.array], ids=["list", "ndarray[object]"] ) def test_constructor_infer_interval(self, data_constructor): # GH 23563: consistent closed results in interval dtype data = [pd.Interval(0, 1), pd.Interval(0, 2), None] result = pd.Series(data_constructor(data)) expected = pd.Series(IntervalArray(data)) assert result.dtype == "interval[float64]" tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data_constructor", [list, np.array], ids=["list", "ndarray[object]"] ) def test_constructor_interval_mixed_closed(self, data_constructor): # GH 23563: mixed closed results in object dtype (not interval dtype) data = [pd.Interval(0, 1, closed="both"), pd.Interval(0, 2, closed="neither")] result = Series(data_constructor(data)) assert result.dtype == object assert result.tolist() == data def test_construction_consistency(self): # make sure that we are not re-localizing upon construction # GH 14928 s = Series(pd.date_range("20130101", periods=3, tz="US/Eastern")) result = Series(s, dtype=s.dtype) tm.assert_series_equal(result, s) result = Series(s.dt.tz_convert("UTC"), dtype=s.dtype) tm.assert_series_equal(result, s) result = Series(s.values, dtype=s.dtype) tm.assert_series_equal(result, s) @pytest.mark.parametrize( "data_constructor", [list, np.array], ids=["list", "ndarray[object]"] ) def test_constructor_infer_period(self, data_constructor): data = [pd.Period("2000", "D"), pd.Period("2001", "D"), None] result = pd.Series(data_constructor(data)) expected = pd.Series(period_array(data)) tm.assert_series_equal(result, expected) assert result.dtype == "Period[D]" def test_constructor_period_incompatible_frequency(self): data = [pd.Period("2000", "D"), pd.Period("2001", "A")] result = pd.Series(data) assert result.dtype == object assert result.tolist() == data def test_constructor_periodindex(self): # GH7932 # converting a PeriodIndex when put in a Series pi = period_range("20130101", periods=5, freq="D") s = Series(pi) assert s.dtype == "Period[D]" expected = Series(pi.astype(object)) tm.assert_series_equal(s, expected) def test_constructor_dict(self): d = {"a": 0.0, "b": 1.0, "c": 2.0} result = Series(d, index=["b", "c", "d", "a"]) expected = Series([1, 2, np.nan, 0], index=["b", "c", "d", "a"]) tm.assert_series_equal(result, expected) pidx = tm.makePeriodIndex(100) d = {pidx[0]: 0, pidx[1]: 1} result = Series(d, index=pidx) expected = Series(np.nan, pidx, dtype=np.float64) expected.iloc[0] = 0 expected.iloc[1] = 1 tm.assert_series_equal(result, expected) def test_constructor_dict_list_value_explicit_dtype(self): # GH 18625 d = {"a": [[2], [3], [4]]} result = Series(d, index=["a"], dtype="object") expected = Series(d, index=["a"]) tm.assert_series_equal(result, expected) def test_constructor_dict_order(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6, else # order by value d = {"b": 1, "a": 0, "c": 2} result = Series(d) expected = Series([1, 0, 2], index=list("bac")) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float("nan")]) def test_constructor_dict_nan_key(self, value): # GH 18480 d = {1: "a", value: "b", float("nan"): "c", 4: "d"} result = Series(d).sort_values() expected = Series(["a", "b", "c", "d"], index=[1, value, np.nan, 4]) tm.assert_series_equal(result, expected) # MultiIndex: d = {(1, 1): "a", (2, np.nan): "b", (3, value): "c"} result = Series(d).sort_values() expected = Series( ["a", "b", "c"], index=Index([(1, 1), (2, np.nan), (3, value)]) ) tm.assert_series_equal(result, expected) def test_constructor_dict_datetime64_index(self): # GH 9456 dates_as_str = ["1984-02-19", "1988-11-06", "1989-12-03", "1990-03-15"] values = [42544017.198965244, 1234565, 40512335.181958228, -1] def create_data(constructor): return dict(zip((constructor(x) for x in dates_as_str), values)) data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, "%Y-%m-%d")) data_Timestamp = create_data(Timestamp) expected = Series(values, (Timestamp(x) for x in dates_as_str)) result_datetime64 = Series(data_datetime64) result_datetime = Series(data_datetime) result_Timestamp = Series(data_Timestamp) tm.assert_series_equal(result_datetime64, expected) tm.assert_series_equal(result_datetime, expected) tm.assert_series_equal(result_Timestamp, expected) def test_contructor_dict_tuple_indexer(self): # GH 12948 data = {(1, 1, None): -1.0} result = Series(data) expected = Series( -1.0, index=MultiIndex(levels=[[1], [1], [np.nan]], codes=[[0], [0], [-1]]) ) tm.assert_series_equal(result, expected) def test_constructor_mapping(self, non_mapping_dict_subclass): # GH 29788 ndm = non_mapping_dict_subclass({3: "three"}) result = Series(ndm) expected = Series(["three"], index=[3]) tm.assert_series_equal(result, expected) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) assert list(s) == data def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) assert tuple(s) == data def test_constructor_dict_of_tuples(self): data = {(1, 2): 3, (None, 5): 6} result = Series(data).sort_values() expected = Series([3, 6], index=MultiIndex.from_tuples([(1, 2), (None, 5)])) tm.assert_series_equal(result, expected) def test_constructor_set(self): values = {1, 2, 3, 4, 5} with pytest.raises(TypeError, match="'set' type is unordered"): Series(values) values = frozenset(values) with pytest.raises(TypeError, match="'frozenset' type is unordered"): Series(values) # https://github.com/pandas-dev/pandas/issues/22698 @pytest.mark.filterwarnings("ignore:elementwise comparison:FutureWarning") def test_fromDict(self): data = {"a": 0, "b": 1, "c": 2, "d": 3} series = Series(data) tm.assert_is_sorted(series.index) data = {"a": 0, "b": "1", "c": "2", "d": datetime.now()} series = Series(data) assert series.dtype == np.object_ data = {"a": 0, "b": "1", "c": "2", "d": "3"} series = Series(data) assert series.dtype == np.object_ data = {"a": "0", "b": "1"} series = Series(data, dtype=float) assert series.dtype == np.float64 def test_fromValue(self, datetime_series): nans = Series(np.NaN, index=datetime_series.index, dtype=np.float64) assert nans.dtype == np.float_ assert len(nans) == len(datetime_series) strings = Series("foo", index=datetime_series.index) assert strings.dtype == np.object_ assert len(strings) == len(datetime_series) d = datetime.now() dates = Series(d, index=datetime_series.index) assert dates.dtype == "M8[ns]" assert len(dates) == len(datetime_series) # GH12336 # Test construction of categorical series from value categorical = Series(0, index=datetime_series.index, dtype="category") expected = Series(0, index=datetime_series.index).astype("category") assert categorical.dtype == "category" assert len(categorical) == len(datetime_series) tm.assert_series_equal(categorical, expected) def test_constructor_dtype_timedelta64(self): # basic td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == "timedelta64[ns]" td = Series([timedelta(days=1)]) assert td.dtype == "timedelta64[ns]" td = Series([timedelta(days=1), timedelta(days=2), np.timedelta64(1, "s")]) assert td.dtype == "timedelta64[ns]" # mixed with NaT td = Series([timedelta(days=1), NaT], dtype="m8[ns]") assert td.dtype == "timedelta64[ns]" td = Series([timedelta(days=1), np.nan], dtype="m8[ns]") assert td.dtype == "timedelta64[ns]" td = Series([np.timedelta64(300000000), pd.NaT], dtype="m8[ns]") assert td.dtype == "timedelta64[ns]" # improved inference # GH5689 td = Series([np.timedelta64(300000000), NaT]) assert td.dtype == "timedelta64[ns]" # because iNaT is int, not coerced to timedelta td = Series([np.timedelta64(300000000), iNaT]) assert td.dtype == "object" td = Series([np.timedelta64(300000000), np.nan]) assert td.dtype == "timedelta64[ns]" td = Series([pd.NaT, np.timedelta64(300000000)]) assert td.dtype == "timedelta64[ns]" td = Series([np.timedelta64(1, "s")]) assert td.dtype == "timedelta64[ns]" # these are frequency conversion astypes # for t in ['s', 'D', 'us', 'ms']: # with pytest.raises(TypeError): # td.astype('m8[%s]' % t) # valid astype td.astype("int64") # invalid casting msg = r"cannot astype a timedelta from \[timedelta64\[ns\]\] to \[int32\]" with pytest.raises(TypeError, match=msg): td.astype("int32") # this is an invalid casting msg = "Could not convert object to NumPy timedelta" with pytest.raises(ValueError, match=msg): Series([timedelta(days=1), "foo"], dtype="m8[ns]") # leave as object here td = Series([timedelta(days=i) for i in range(3)] + ["foo"]) assert td.dtype == "object" # these will correctly infer a timedelta s = Series([None, pd.NaT, "1 Day"]) assert s.dtype == "timedelta64[ns]" s = Series([np.nan, pd.NaT, "1 Day"]) assert s.dtype == "timedelta64[ns]" s = Series([pd.NaT, None, "1 Day"]) assert s.dtype == "timedelta64[ns]" s = Series([pd.NaT, np.nan, "1 Day"]) assert s.dtype == "timedelta64[ns]" # GH 16406 def test_constructor_mixed_tz(self): s = Series([Timestamp("20130101"), Timestamp("20130101", tz="US/Eastern")]) expected = Series( [Timestamp("20130101"), Timestamp("20130101", tz="US/Eastern")], dtype="object", ) tm.assert_series_equal(s, expected) def test_NaT_scalar(self): series = Series([0, 1000, 2000, iNaT], dtype="M8[ns]") val = series[3] assert isna(val) series[2] = val assert isna(series[2]) def test_NaT_cast(self): # GH10747 result = Series([np.nan]).astype("M8[ns]") expected = Series([NaT]) tm.assert_series_equal(result, expected) def test_constructor_name_hashable(self): for n in [777, 777.0, "name", datetime(2001, 11, 11), (1,), "\u05D0"]: for data in [[1, 2, 3], np.ones(3), {"a": 0, "b": 1}]: s = Series(data, name=n) assert s.name == n def test_constructor_name_unhashable(self): msg = r"Series\.name must be a hashable type" for n in [["name_list"], np.ones(2), {1: 2}]: for data in [["name_list"], np.ones(2), {1: 2}]: with pytest.raises(TypeError, match=msg): Series(data, name=n) def test_auto_conversion(self): series = Series(list(date_range("1/1/2000", periods=10))) assert series.dtype == "M8[ns]" def test_convert_non_ns(self): # convert from a numpy array of non-ns timedelta64 arr = np.array([1, 2, 3], dtype="timedelta64[s]") s = Series(arr) expected = Series(pd.timedelta_range("00:00:01", periods=3, freq="s")) tm.assert_series_equal(s, expected) # convert from a numpy array of non-ns datetime64 # note that creating a numpy datetime64 is in LOCAL time!!!! # seems to work for M8[D], but not for M8[s] s = Series( np.array(["2013-01-01", "2013-01-02", "2013-01-03"], dtype="datetime64[D]") ) tm.assert_series_equal(s, Series(date_range("20130101", periods=3, freq="D"))) # s = Series(np.array(['2013-01-01 00:00:01','2013-01-01 # 00:00:02','2013-01-01 00:00:03'],dtype='datetime64[s]')) # tm.assert_series_equal(s,date_range('20130101 # 00:00:01',period=3,freq='s')) @pytest.mark.parametrize( "index", [ date_range("1/1/2000", periods=10), timedelta_range("1 day", periods=10), period_range("2000-Q1", periods=10, freq="Q"), ], ids=lambda x: type(x).__name__, ) def test_constructor_cant_cast_datetimelike(self, index): # floats are not ok # strip Index to convert PeriodIndex -> Period # We don't care whether the error message says # PeriodIndex or PeriodArray msg = f"Cannot cast {type(index).__name__.rstrip('Index')}.*? to " with pytest.raises(TypeError, match=msg): Series(index, dtype=float) # ints are ok # we test with np.int64 to get similar results on # windows / 32-bit platforms result = Series(index, dtype=np.int64) expected = Series(index.astype(np.int64)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "index", [ date_range("1/1/2000", periods=10), timedelta_range("1 day", periods=10), period_range("2000-Q1", periods=10, freq="Q"), ], ids=lambda x: type(x).__name__, ) def test_constructor_cast_object(self, index): s = Series(index, dtype=object) exp = Series(index).astype(object) tm.assert_series_equal(s, exp) s = Series(pd.Index(index, dtype=object), dtype=object) exp = Series(index).astype(object) tm.assert_series_equal(s, exp) s = Series(index.astype(object), dtype=object) exp = Series(index).astype(object) tm.assert_series_equal(s, exp) @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64]) def test_constructor_generic_timestamp_no_frequency(self, dtype): # see gh-15524, gh-15987 msg = "dtype has no unit. Please pass in" with pytest.raises(ValueError, match=msg): Series([], dtype=dtype) @pytest.mark.parametrize( "dtype,msg", [ ("m8[ps]", "cannot convert timedeltalike"), ("M8[ps]", "cannot convert datetimelike"), ], ) def test_constructor_generic_timestamp_bad_frequency(self, dtype, msg): # see gh-15524, gh-15987 with pytest.raises(TypeError, match=msg): Series([], dtype=dtype) @pytest.mark.parametrize("dtype", [None, "uint8", "category"]) def test_constructor_range_dtype(self, dtype): # GH 16804 expected = Series([0, 1, 2, 3, 4], dtype=dtype or "int64") result = Series(range(5), dtype=dtype) tm.assert_series_equal(result, expected) def test_constructor_tz_mixed_data(self): # GH 13051 dt_list = [ Timestamp("2016-05-01 02:03:37"), Timestamp("2016-04-30 19:03:37-0700", tz="US/Pacific"), ] result = Series(dt_list) expected = Series(dt_list, dtype=object) tm.assert_series_equal(result, expected) def test_constructor_data_aware_dtype_naive(self, tz_aware_fixture): # GH#25843 tz = tz_aware_fixture result = Series([Timestamp("2019", tz=tz)], dtype="datetime64[ns]") expected = Series([Timestamp("2019")]) tm.assert_series_equal(result, expected)
the-stack_0_27580
import inspect from typing import TypeVar, Optional, Type, List, Dict from warnings import warn from cynergy.attributes import LifeCycle from cynergy.config import ConfigProvider, Plain, Config, ServiceByName from cynergy import attributes from cynergy.errors.ContainerException import ConfigProviderRequiredException T = TypeVar('T') class IocContainer(object): def __init__(self, config_provider: Optional[ConfigProvider]): self.__multiple_class_mapping = {} self.__instances = {} self.__class_mapping = {} self.__config_cache = {} self.__config = config_provider self.__primitives = (str, int, dict, list, set, float) self.__BY_NAME_FORMAT = "by_name|{}" def __resolve_argument(self, argument): if type(argument) in self.__primitives: return argument if type(argument) is Plain: return argument.value if type(argument) is Config: if self.__config is None: raise ValueError("Tried to access config while ConfigProvider is not initialized") if argument.default is None: return self.__config.get(argument.value) else: try: return self.__config.get(argument.value) except KeyError: return argument.default if type(argument) is ServiceByName: return self.get_by_name(argument.value) raise NotImplementedError( 'Argument type "{}" is not supported (did you pass argument type?)'.format(type(argument))) def __create_instance_for_single(self, class_to_init: Type, original: Type): arguments_mapping = {} if hasattr(class_to_init, attributes.IOC_ARGUMENTS_NAME): arguments_mapping = getattr(class_to_init, attributes.IOC_ARGUMENTS_NAME) try: arguments = inspect.signature(class_to_init) except Exception: raise Exception("Error while trying to access class signature [{}]. Maybe you tried to register a module " "instead of a class?".format(class_to_init.__name__)) initiated_arguments = {} for argument in arguments.parameters.values(): if argument.name in arguments_mapping: try: initiated_argument = self.__resolve_argument(arguments_mapping[argument.name]) except ValueError: raise ConfigProviderRequiredException(class_to_init, argument) else: if not argument.default == inspect._empty: initiated_argument = argument.default else: if not argument.default == inspect._empty: initiated_argument = argument.default else: if argument.annotation in self.__primitives: raise TypeError("Could not initialize primitive argument [{}] for class [{}] without " "argument mapping ".format(argument.name, class_to_init.__name__)) initiated_argument = self.get(argument.annotation) initiated_arguments[argument.name] = initiated_argument self.__set_instance(original, class_to_init(**initiated_arguments)) def __set_instance(self, cls: Type, instance): self.__instances[self._get_class_name(cls)] = instance def __get_instance(self, cls: Type): return self.__instances[self._get_class_name(cls)] def __create_instance_for_list_new(self, original, classes: List[Type]): self.__set_instance(original, [self.get(cls) for cls in classes]) def __create_instance(self, cls: Type): cls_name = self._get_class_name(cls) class_to_init = cls if cls_name not in self.__class_mapping else self.__class_mapping[cls_name] if isinstance(class_to_init, list): self.__create_instance_for_list_new(cls, class_to_init) else: self.__create_instance_for_single(class_to_init, cls) return self.__get_instance(cls) def register_instance(self, cls, instance): self.__register_instance_by_name(self._get_class_name(cls), instance) def register_class(self, cls, assign_to: Type): self.__class_mapping[self._get_class_name(cls)] = assign_to def register_many(self, cls, new_classes: List[Type]): self.__class_mapping[self._get_class_name(List[cls])] = new_classes @staticmethod def _get_class_name(cls: Type): if type(cls) == type(List): return 'List[{}]'.format(cls.__args__[0].__name__) return cls.__name__ def __register_instance_by_name(self, name, instance): self.__instances[name] = instance def register_instance_by_name(self, name, instance): self.__register_instance_by_name(self.__BY_NAME_FORMAT.format(name), instance) def get_by_name(self, name): key = self.__BY_NAME_FORMAT.format(name) if key not in self.__instances: KeyError('The service "{}" is not registered'.format(key)) return self.__instances[key] def get(self, cls: Type[T], life_cycle=LifeCycle.SINGLETON) -> T: if not life_cycle: life_cycle = attributes.LifeCycle.SINGLETON if hasattr(cls, attributes.LIFECYCLE_ARGUMENT_NAME): life_cycle = getattr(cls, attributes.LIFECYCLE_ARGUMENT_NAME) if life_cycle == attributes.LifeCycle.SINGLETON: if self._get_class_name(cls) not in self.__instances: self.__create_instance(cls) return self.__get_instance(cls) elif life_cycle == attributes.LifeCycle.MULTI_INSTANCE: return self.__create_instance(cls) raise NotImplementedError("Not implemented lifecycle", life_cycle) def clear_all(self): self.__instances = {} def register(self, cls: Type, class_or_instance): if isinstance(class_or_instance, list): self.register_many(cls, class_or_instance) elif inspect.isclass(class_or_instance): self.register_class(cls, class_or_instance) else: self.register_instance(cls, class_or_instance) def get_config(self, key: str): if key not in self.__config_cache: self.__config_cache[key] = self.__config.get(key) return self.__config_cache[key] __instance = None def __get_instance() -> IocContainer: global __instance if __instance is None: __instance = IocContainer(None) return __instance def get_config(key: str): return __get_instance().get_config(key) def initialize(config_provider: Optional[ConfigProvider] = None, class_mapping: Dict[Type, Type] = None): global __instance if __instance is not None: warn("Container already initialized. If you need multiple instances consider not use the container statically", UserWarning) __instance.clear_all() __instance = IocContainer(config_provider) if class_mapping is None: return for source_class, new_class in class_mapping.items(): __instance.register_class(source_class, new_class) def _clear_all(): return __get_instance().clear_all() def register_instance_by_name(name, instance): return __get_instance().register_instance_by_name(name, instance) def get(cls: Type[T], life_cycle=LifeCycle.SINGLETON) -> T: return __get_instance().get(cls, life_cycle) def register_instance(cls, instance): warn("This function is deprecated, can be now used as register(cls, obj)") return __get_instance().register_instance(cls, instance) def register_class(cls, assign_to): """ Register type (cls) to type assign_to - meaning everytime you'll ask the type cls you'll receive assign_to :param cls: Class to map from :param assign_to: Class to map to """ return __get_instance().register_class(cls, assign_to) def register(cls, class_or_instance): return __get_instance().register(cls, class_or_instance) def get_by_name(name): return __get_instance().get_by_name(name) def register_many(cls: Type, types: List[Type]): return __get_instance().register_many(cls, types)
the-stack_0_27581
# Copyright 2016 SAS Project Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Top main script of the test harness. If writing your own top level script to run the test harness, look here how the setup is performed. It is particularly important to correctly set the geo drivers and multiprocessing pool for best performance """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import sys import unittest from reference_models.common import mpool from reference_models.geo import drive #---------------------------------------- # Setup the command line arguments parser = argparse.ArgumentParser(description='Test Main') # - Generic config. parser.add_argument('--log_level', type=str, default='info', help='Logging level: debug, info, warning or error') # Setup the logger logger = logging.getLogger() handler = logging.StreamHandler(sys.stdout) handler.setFormatter( logging.Formatter( '[%(levelname)s] %(asctime)s %(filename)s:%(lineno)d %(message)s')) logger.addHandler(handler) logger.setLevel(logging.INFO) _LOGGER_MAP = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR } # Multi-processing # Number of worker processes allocated for heavy duty calculation, # typically DPA, PPA creation and IAP for PPA/GWPZ. # Values: # -1: Use half of the cpu available # -2: Use all available cpu minus one (one process should be reserved for # the IAP shared objects manager process). # Other: the number of process to allocate NUM_PROCESSES = -2 # Memory allocation management # A simple strategy is proposed by default, knowing the test harness usage: # - NLCD only used for PPA and GWPZ for deriving the Land Cover. Area size # is limited in general. LandCover extraction is done in main thread only # (except for PPA tests where worker processes check the CBSD landcover) # ==> Allocate most of the cache to main processes # - NED used by all others, with heavy terrain profile reading by the main # and worker threads. # ==> Allocate equal memory to worker processes, and twice to main process # This strategy could be tuned for best performance. # # A 2 level cache could also be used (with memmap or otherwise) in order to share # most of the in-memory tiles across processes. Not implemented. # # The memory allocated for geo cache across all sub-processes (in MB). # -1: automatic allocation # otherwise this number (in MB) is used for setting up the cache size MEM_ALLOCATION_GEO_CACHE_MB = -1 # When 'automatic allocation', the ratio of total physical memory # dedicated to the geo cache MEM_RATIO_FOR_GEO_CACHE = 0.5 # The weighting factor of the main processes vs worker processes. Use > 0 MEM_NED_WEIGHT_MASTER = 2.0 MEM_NLCD_WEIGHT_MASTER = 2.0 MEM_NLCD_CACHE_WORKERS = 6 def GetAvailableMemoryMb(): """Returns the available physical memory.""" import psutil return int(psutil.virtual_memory().total / 1e6) def GetGeoAllocatedMemory(): """Returns the memory available for Geo cache.""" if MEM_ALLOCATION_GEO_CACHE_MB > 0: return MEM_ALLOCATION_GEO_CACHE_MB else: return GetAvailableMemoryMb() * MEM_RATIO_FOR_GEO_CACHE def GetGeoCacheSize(num_workers): """Compute the number of geo tiles to cache for a given number of workers. This is derived according to a strategy taking into account respective use of the geo in master and workers processes. Args: num_workers: The number of workers. Returns: A tuple (n_master_ned, n_worker_ned, n_master_nlcd, n_worker_nlcd), holding the cache size to use for resp master/workers, and NED/NLCD. """ geo_mem = GetGeoAllocatedMemory() num_ned_work = num_workers + MEM_NED_WEIGHT_MASTER num_nlcd_work = MEM_NLCD_WEIGHT_MASTER NED_TILE_MB = 52 NLCD_TILE_MB = 13 num_tiles = float(geo_mem - MEM_NLCD_CACHE_WORKERS*num_workers*NLCD_TILE_MB) / ( num_ned_work * NED_TILE_MB + num_nlcd_work * NLCD_TILE_MB) num_tiles = max(4, int(round(num_tiles))) num_tiles_master_ned = int(round(num_tiles * MEM_NED_WEIGHT_MASTER)) num_tiles_worker_ned = num_tiles num_tiles_master_nlcd = int(round(num_tiles * MEM_NLCD_WEIGHT_MASTER)) num_tiles_worker_nlcd = MEM_NLCD_CACHE_WORKERS return (num_tiles_master_ned, num_tiles_worker_ned, num_tiles_master_nlcd, num_tiles_worker_nlcd) if __name__ == '__main__': # Process the commad line arguments. options = parser.parse_args() logging.getLogger().setLevel(_LOGGER_MAP[options.log_level.lower()]) # Configure the multiprocessing worker pool. # Your options are: # 0: single process (default if not called) # -1: use half of the cpus # -2: use all cpus (minus one) # a specific number of cpus # Or your own `pool`. logging.info('Start Worker processes') mpool.Configure(num_processes=NUM_PROCESSES) num_workers = mpool.GetNumWorkerProcesses() logging.info(' ... %d workers started' % num_workers) # Configure geo drivers logging.info('Configure geo drivers') (num_tiles_master_ned, num_tiles_worker_ned, num_tiles_master_nlcd, num_tiles_worker_nlcd) = GetGeoCacheSize(num_workers) if num_tiles_master_ned < 16: logging.warning('Required geo cache size %d (for master) is low' '- too few memory or too many workers' % num_tiles_master_ned) logging.info(' ... NED: cache size: %d per master, %d for workers' % (num_tiles_master_ned, num_tiles_worker_ned)) logging.info(' ... NLCD: cache size: %d per master, %d for workers' % (num_tiles_master_ned, num_tiles_worker_ned)) # - for main process drive.ConfigureTerrainDriver(cache_size=num_tiles_master_ned) drive.ConfigureNlcdDriver(cache_size=num_tiles_master_nlcd) # - for worker processes mpool.RunOnEachWorkerProcess(drive.ConfigureTerrainDriver, terrain_dir=None, cache_size=num_tiles_worker_ned) mpool.RunOnEachWorkerProcess(drive.ConfigureNlcdDriver, nlcd_dir=None, cache_size=num_tiles_worker_nlcd) # Run the tests tests = unittest.TestLoader().discover('testcases', '*_testcase.py') unittest.TextTestRunner(verbosity=2).run(tests)
the-stack_0_27585
#!/usr/bin/env python # # Copyright 2017-2018 University Of Southern California # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import os import platform from Pegasus.DAX3 import * __author__ = 'Rafael Ferreira da Silva' class OSType: LINUX = 'LINUX' SUNOS = 'SUNOS' AIX = 'AIX' MACOSX = 'MACOSX' WINDOWS = 'WINDOWS' class DirectoryType: SHARED_SCRATCH = 'shared-scratch' SHARED_STORAGE = 'shared-storage' LOCAL_SCRATCH = 'local-scratch' LOCAL_STORAGE = 'local-storage' class JobType: COMPUTE = 'compute' AUXILLARY = 'auxillary' TRANSFER = 'transfer' REGISTER = 'register' CLEANUP = 'cleanup' class GridType: GT2 = 'gt2' GT4 = 'gt4' GT5 = 'gt5' CONDOR = 'condor' CREAM = 'cream' BATCH = 'batch' PBS = 'pbs' LSF = 'lsf' SGE = 'sge' NORDUGRID = 'nordugrid' UNICORE = 'unicore' EC2 = 'ec2' DELTACLOUD = 'deltacloud' class SchedulerType: FORK = 'Fork' PBS = 'PBS' LSF = 'LSF' CONDOR = 'Condor' SGE = 'SGE' UNKNOWN = 'unknown' class SitesCatalog: def __init__(self, workflow_dir, filename='sites.xml'): """ Create a Pegasus site catalog. :param workflow_dir: Path to the workflow directory :param filename: sites catalog filename (default: sites.xml) """ self.workflow_dir = workflow_dir self.filename = filename self._create_local_site() def add_site(self, handle, arch=Arch.X86_64, os=OSType.LINUX): """ Add a site to the sites catalog :param handle: Site name :param arch: Site architecture (default: x86_64) :param os: Site OS (default: LINUX) """ if not handle: raise Exception('A site handle should be provided.') if handle in self._sites: raise Exception('Site "%s" already exists.' % handle) self._sites.update(self._create_site(handle, arch, os)) def add_site_profile(self, handle, namespace, key, value=''): """ Add a profile to a specific site. :param handle: Site name :param namespace: Namespace values recognized by Pegasus :param key: Profile key :param value: Profile value (default: '') """ if not handle or not namespace or not key: raise Exception( 'A site handle, a namespace, and a key should be provided.' ) if handle not in self._sites: raise Exception('There are no entries for site "%s".' % handle) profile = {'namespace': namespace, 'key': key, 'value': value} self._sites[handle]['profiles'].append(profile) def add_job_manager(self, handle, type, contact, scheduler, jobtype=None): """ Add a job manager to a specific site. :param handle: Site name :param type: The universe name is actually the primary key for the jobmanager identification :param contact: The contact string is the secondary key for any job manager :param scheduler: Grid scheduler :param jobtype: Type of Jobs in the executable workflow the grid supports """ if not handle or not type or not contact or not scheduler: raise Exception( 'A site handle, and a jobmanager type, contact, and scheduler should be provided.' ) if handle not in self._sites: raise Exception('There are no entries for site "%s".' % handle) grid = {'type': type, 'contact': contact, 'scheduler': scheduler} if jobtype: grid['jobtype'] = jobtype self._sites[handle]['grids'].append(grid) def write(self, force=False): """ Write the sites catalog to a file. :param force: whether to overwrite the catalog file """ sites_catalog_file = self.workflow_dir + '/' + self.filename if not os.path.isfile(sites_catalog_file) or force: with open(sites_catalog_file, 'w') as ppf: ppf.write('<?xml version="1.0" encoding="UTF-8"?>\n') ppf.write( '<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog" ' 'xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ' 'xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog ' 'http://pegasus.isi.edu/schema/sc-4.1.xsd" version="4.1">\n' ) # writing sites for handle in self._sites: ppf.write( '\t<site handle="%s" arch="%s" os="%s">\n' % ( handle, self._sites[handle]['arch'], self._sites[handle]['os'] ) ) # directories dirs = self._sites[handle]['directories'] for dir in dirs: ppf.write( '\t\t<directory type="%s" path="%s">\n' % (dir, dirs[dir]['path']) ) ppf.write( '\t\t\t<file-server operation="all" url="file://%s"/>\n' % dirs[dir]['path'] ) ppf.write('\t\t</directory>\n') # grids for grid in self._sites[handle]['grids']: ppf.write( '\t\t<grid type="%s" contact="%s" scheduler="%s" ' % (grid['type'], grid['contact'], grid['scheduler']) ) if 'jobtype' in grid: ppf.write('jobtype="%s" ' % grid['jobtype']) ppf.write('/>\n') # site profiles for p in self._sites[handle]['profiles']: ppf.write( '\t\t<profile namespace="%s" key="%s">%s</profile>\n' % (p['namespace'], p['key'], p['value']) ) ppf.write('\t</site>\n') ppf.write('</sitecatalog>\n') else: print( '\x1b[0;35mWARNING: Sites Catalog (%s) already exists. Use "force=True" ' 'to overwrite it.\n\x1b[0m' % sites_catalog_file ) def _create_local_site(self): """ Create a local site for the workflow """ os = platform.system() if os.lower() == 'linux': os = OSType.LINUX elif os.lower() == 'windows': os = OSType.WINDOWS else: os = OSType.MACOSX # create local site self._sites = self._create_site('local', platform.machine(), os) self._sites['local']['directories'] = { DirectoryType.SHARED_SCRATCH: { 'path': self.workflow_dir + '/scratch' }, DirectoryType.SHARED_STORAGE: { 'path': self.workflow_dir + '/output' } } def _create_site(self, handle, arch, os): """ Create a general site. :param handle: Site name :param arch: Site architecture :param os: Site operational system :return: The dictionary object of the site """ return { handle: { 'arch': arch, 'os': os, 'directories': {}, 'grids': [], 'profiles': [] } }
the-stack_0_27586
from setuptools import find_packages, setup from os import path def get_content_from_readme(file_name: str = 'README.md') -> str: this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, file_name), encoding='utf-8') as file: return file.read() url = "https://github.com/LostInDarkMath/pedantic-python-decorators" author = "Willi Sontopski" setup( name="pedantic", version="1.4.10", python_requires='>=3.6.1', packages=find_packages(), install_requires=['docstring_parser'], author=author, author_email="[email protected]", license="Apache-2.0 License", maintainer=author, description="Some useful Python decorators for cleaner software development.", long_description=get_content_from_readme(), long_description_content_type='text/markdown', keywords="decorators tools helpers type-checking pedantic type annotations", url=url, project_urls={ "Bug Tracker": f'{url}/issues', "Documentation": 'https://lostindarkmath.github.io/pedantic-python-decorators/pedantic/', "Source Code": url, }, include_package_data=False, zip_safe=True, )
the-stack_0_27588
from keras.layers import Dense, Embedding, Input, Lambda from keras.models import Model import tensorflow as tf from doc2vec.model import lambdas, model class DBOW(model.Doc2VecModel): def build(self): doc_input = Input(shape=(1,)) embedded_doc = Embedding(input_dim=self._num_docs, output_dim=self._embedding_size, input_length=1, name=model.DOC_EMBEDDINGS_LAYER_NAME)(doc_input) embedded_doc = Lambda(lambdas.squeeze(axis=1))(embedded_doc) stack = Lambda(lambdas.stack(self._window_size))(embedded_doc) softmax = Dense(self._vocab_size, activation='softmax')(stack) self._model = Model(inputs=doc_input, outputs=softmax)
the-stack_0_27591
import os from django.utils.deprecation import MiddlewareMixin class RangesMiddleware(MiddlewareMixin): def process_response(self, request, response): if response.status_code != 200 or not hasattr(response, 'file_to_stream'): return response http_range = request.META.get('HTTP_RANGE') if not (http_range and http_range.startswith('bytes=') and http_range.count('-') == 1): return response if_range = request.META.get('HTTP_IF_RANGE') if if_range and if_range != response.get('Last-Modified') and if_range != response.get('ETag'): return response f = response.file_to_stream statobj = os.fstat(f.fileno()) start, end = http_range.split('=')[1].split('-') if not start: # requesting the last N bytes start = max(0, statobj.st_size - int(end)) end = '' start, end = int(start or 0), int(end or statobj.st_size - 1) assert 0 <= start < statobj.st_size, (start, statobj.st_size) end = min(end, statobj.st_size - 1) f.seek(start) old_read = f.read f.read = lambda n: old_read(min(n, end + 1 - f.tell())) response.status_code = 206 response['Content-Length'] = end + 1 - start response['Content-Range'] = 'bytes %d-%d/%d' % (start, end, statobj.st_size) return response # "GET /static/image/Wild_Crane_Andy.mp4 HTTP/1.1" 200 417792
the-stack_0_27592
# This script is borrowed from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py # Adhere to their licence to use this script. import torch import torch.nn as nn from torchvision.models.utils import load_state_dict_from_url __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', } def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) # x = self.fc(x) return x def _resnet(arch, block, layers, pretrained, progress, **kwargs): model = ResNet(block, layers, **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict, strict=False) return model def resnet18(pretrained=False, progress=True, **kwargs): r"""ResNet-18 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def resnet34(pretrained=False, progress=True, **kwargs): r"""ResNet-34 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet50(pretrained=False, progress=True, **kwargs): r"""ResNet-50 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet101(pretrained=False, progress=True, **kwargs): r"""ResNet-101 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def resnet152(pretrained=False, progress=True, **kwargs): r"""ResNet-152 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs) def resnext50_32x4d(pretrained=False, progress=True, **kwargs): r"""ResNeXt-50 32x4d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 4 return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnext101_32x8d(pretrained=False, progress=True, **kwargs): r"""ResNeXt-101 32x8d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 8 return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def wide_resnet50_2(pretrained=False, progress=True, **kwargs): r"""Wide ResNet-50-2 model from `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def wide_resnet101_2(pretrained=False, progress=True, **kwargs): r"""Wide ResNet-101-2 model from `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
the-stack_0_27593
import logging import fabric.api import fabric.operations import cloudenvy.envy class Ssh(cloudenvy.envy.Command): def _build_subparser(self, subparsers): help_str = 'SSH into your Envy.' subparser = subparsers.add_parser('ssh', help=help_str, description=help_str) subparser.set_defaults(func=self.run) subparser.add_argument('-n', '--name', action='store', default='', help='Specify custom name for an Envy.') return subparser def run(self, config, args): envy = cloudenvy.envy.Envy(config) if envy.ip(): disable_known_hosts = ('-o UserKnownHostsFile=/dev/null' ' -o StrictHostKeyChecking=no') forward_agent = '-o ForwardAgent=yes' options = [disable_known_hosts] if envy.forward_agent: options.append(forward_agent) fabric.operations.local('ssh %s %s@%s' % (' '.join(options), envy.remote_user, envy.ip())) else: logging.error('Could not determine IP.')
the-stack_0_27594
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2019 David Lundgren <[email protected]> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = r''' --- author: - David Lundgren (@dlundgren) module: sysrc short_description: Manage FreeBSD using sysrc version_added: '2.0.0' description: - Manages C(/etc/rc.conf) for FreeBSD. options: name: description: - Name of variable in C(/etc/rc.conf) to manage. type: str required: true value: description: - The value to set when I(state=present). - The value to add when I(state=value_present). - The value to remove when I(state=value_absent). type: str state: description: - Use I(present) to add the variable. - Use I(absent) to remove the variable. - Use I(value_present) to add the value to the existing variable. - Use I(value_absent) to remove the value from the existing variable. type: str default: "present" choices: [ absent, present, value_present, value_absent ] path: description: - Path to file to use instead of C(/etc/rc.conf). type: str default: "/etc/rc.conf" delim: description: - Delimiter to be used instead of C( ). - Only used when I(state=value_present) or I(state=value_absent). default: " " type: str jail: description: - Name or ID of the jail to operate on. type: str notes: - The C(name) cannot contain periods as sysrc does not support OID style names. ''' EXAMPLES = r''' --- # enable mysql in the /etc/rc.conf - name: Configure mysql pid file community.general.sysrc: name: mysql_pidfile value: "/var/run/mysqld/mysqld.pid" # enable accf_http kld in the boot loader - name: Enable accf_http kld community.general.sysrc: name: accf_http_load state: present value: "YES" path: /boot/loader.conf # add gif0 to cloned_interfaces - name: Add gif0 interface community.general.sysrc: name: cloned_interfaces state: value_present value: "gif0" # enable nginx on a jail - name: Enable nginx in test jail community.general.sysrc: name: nginx_enable value: "YES" jail: testjail ''' RETURN = r''' changed: description: Return changed for sysrc actions. returned: always type: bool sample: true ''' from ansible.module_utils.basic import AnsibleModule import re class Sysrc(object): def __init__(self, module, name, value, path, delim, jail): self.module = module self.name = name self.changed = False self.value = value self.path = path self.delim = delim self.jail = jail self.sysrc = module.get_bin_path('sysrc', True) def has_unknown_variable(self, out, err): # newer versions of sysrc use stderr instead of stdout return err.find("unknown variable") > 0 or out.find("unknown variable") > 0 def exists(self): # sysrc doesn't really use exit codes (rc, out, err) = self.run_sysrc(self.name) if self.value is None: regex = "%s: " % re.escape(self.name) else: regex = "%s: %s$" % (re.escape(self.name), re.escape(self.value)) return not self.has_unknown_variable(out, err) and re.match(regex, out) is not None def contains(self): (rc, out, err) = self.run_sysrc('-n', self.name) if self.has_unknown_variable(out, err): return False return self.value in out.strip().split(self.delim) def present(self): if self.exists(): return if self.module.check_mode: self.changed = True return (rc, out, err) = self.run_sysrc("%s=%s" % (self.name, self.value)) if out.find("%s:" % self.name) == 0 and re.search("-> %s$" % re.escape(self.value), out) is not None: self.changed = True def absent(self): if not self.exists(): return # inversed since we still need to mark as changed if not self.module.check_mode: (rc, out, err) = self.run_sysrc('-x', self.name) if self.has_unknown_variable(out, err): return self.changed = True def value_present(self): if self.contains(): return if self.module.check_mode: self.changed = True return setstring = '%s+=%s%s' % (self.name, self.delim, self.value) (rc, out, err) = self.run_sysrc(setstring) if out.find("%s:" % self.name) == 0: values = out.split(' -> ')[1].strip().split(self.delim) if self.value in values: self.changed = True def value_absent(self): if not self.contains(): return if self.module.check_mode: self.changed = True return setstring = '%s-=%s%s' % (self.name, self.delim, self.value) (rc, out, err) = self.run_sysrc(setstring) if out.find("%s:" % self.name) == 0: values = out.split(' -> ')[1].strip().split(self.delim) if self.value not in values: self.changed = True def run_sysrc(self, *args): cmd = [self.sysrc, '-f', self.path] if self.jail: cmd += ['-j', self.jail] cmd.extend(args) (rc, out, err) = self.module.run_command(cmd) return (rc, out, err) def main(): module = AnsibleModule( argument_spec=dict( name=dict(type='str', required=True), value=dict(type='str', default=None), state=dict(type='str', default='present', choices=['absent', 'present', 'value_present', 'value_absent']), path=dict(type='str', default='/etc/rc.conf'), delim=dict(type='str', default=' '), jail=dict(type='str', default=None), ), supports_check_mode=True, ) name = module.params.pop('name') # OID style names are not supported if not re.match('^[a-zA-Z0-9_]+$', name): module.fail_json( msg="Name may only contain alpha-numeric and underscore characters" ) value = module.params.pop('value') state = module.params.pop('state') path = module.params.pop('path') delim = module.params.pop('delim') jail = module.params.pop('jail') result = dict( name=name, state=state, value=value, path=path, delim=delim, jail=jail ) rc_value = Sysrc(module, name, value, path, delim, jail) if state == 'present': rc_value.present() elif state == 'absent': rc_value.absent() elif state == 'value_present': rc_value.value_present() elif state == 'value_absent': rc_value.value_absent() result['changed'] = rc_value.changed module.exit_json(**result) if __name__ == '__main__': main()
the-stack_0_27596
# Copyright (c) 2021, Frappe Technologies and contributors # License: MIT. See LICENSE import json from datetime import datetime from typing import Dict, List from croniter import croniter import frappe from frappe.model.document import Document from frappe.utils import get_datetime, now_datetime from frappe.utils.background_jobs import enqueue, get_jobs class ScheduledJobType(Document): def autoname(self): self.name = ".".join(self.method.split(".")[-2:]) def validate(self): if self.frequency != "All": # force logging for all events other than continuous ones (ALL) self.create_log = 1 def enqueue(self, force=False): # enqueue event if last execution is done if self.is_event_due() or force: if frappe.flags.enqueued_jobs: frappe.flags.enqueued_jobs.append(self.method) if frappe.flags.execute_job: self.execute() else: if not self.is_job_in_queue(): enqueue('frappe.core.doctype.scheduled_job_type.scheduled_job_type.run_scheduled_job', queue = self.get_queue_name(), job_type=self.method) return True return False def is_event_due(self, current_time = None): '''Return true if event is due based on time lapsed since last execution''' # if the next scheduled event is before NOW, then its due! return self.get_next_execution() <= (current_time or now_datetime()) def is_job_in_queue(self): queued_jobs = get_jobs(site=frappe.local.site, key='job_type')[frappe.local.site] return self.method in queued_jobs def get_next_execution(self): CRON_MAP = { "Yearly": "0 0 1 1 *", "Annual": "0 0 1 1 *", "Monthly": "0 0 1 * *", "Monthly Long": "0 0 1 * *", "Weekly": "0 0 * * 0", "Weekly Long": "0 0 * * 0", "Daily": "0 0 * * *", "Daily Long": "0 0 * * *", "Hourly": "0 * * * *", "Hourly Long": "0 * * * *", "All": "0/" + str((frappe.get_conf().scheduler_interval or 240) // 60) + " * * * *", } if not self.cron_format: self.cron_format = CRON_MAP[self.frequency] return croniter(self.cron_format, get_datetime(self.last_execution or datetime(2000, 1, 1))).get_next(datetime) def execute(self): self.scheduler_log = None try: self.log_status('Start') if self.server_script: script_name = frappe.db.get_value("Server Script", self.server_script) if script_name: frappe.get_doc('Server Script', script_name).execute_scheduled_method() else: frappe.get_attr(self.method)() frappe.db.commit() self.log_status('Complete') except Exception: frappe.db.rollback() self.log_status('Failed') def log_status(self, status): # log file frappe.logger("scheduler").info(f"Scheduled Job {status}: {self.method} for {frappe.local.site}") self.update_scheduler_log(status) def update_scheduler_log(self, status): if not self.create_log: # self.get_next_execution will work properly iff self.last_execution is properly set if self.frequency == "All" and status == 'Start': self.db_set('last_execution', now_datetime(), update_modified=False) frappe.db.commit() return if not self.scheduler_log: self.scheduler_log = frappe.get_doc(dict(doctype = 'Scheduled Job Log', scheduled_job_type=self.name)).insert(ignore_permissions=True) self.scheduler_log.db_set('status', status) if status == 'Failed': self.scheduler_log.db_set('details', frappe.get_traceback()) if status == 'Start': self.db_set('last_execution', now_datetime(), update_modified=False) frappe.db.commit() def get_queue_name(self): return 'long' if ('Long' in self.frequency) else 'default' def on_trash(self): frappe.db.delete("Scheduled Job Log", {"scheduled_job_type": self.name}) @frappe.whitelist() def execute_event(doc: str): frappe.only_for("System Manager") doc = json.loads(doc) frappe.get_doc("Scheduled Job Type", doc.get("name")).enqueue(force=True) return doc def run_scheduled_job(job_type: str): """This is a wrapper function that runs a hooks.scheduler_events method""" try: frappe.get_doc("Scheduled Job Type", dict(method=job_type)).execute() except Exception: print(frappe.get_traceback()) def sync_jobs(hooks: Dict = None): frappe.reload_doc("core", "doctype", "scheduled_job_type") scheduler_events = hooks or frappe.get_hooks("scheduler_events") all_events = insert_events(scheduler_events) clear_events(all_events) def insert_events(scheduler_events: Dict) -> List: cron_jobs, event_jobs = [], [] for event_type in scheduler_events: events = scheduler_events.get(event_type) if isinstance(events, dict): cron_jobs += insert_cron_jobs(events) else: # hourly, daily etc event_jobs += insert_event_jobs(events, event_type) return cron_jobs + event_jobs def insert_cron_jobs(events: Dict) -> List: cron_jobs = [] for cron_format in events: for event in events.get(cron_format): cron_jobs.append(event) insert_single_event("Cron", event, cron_format) return cron_jobs def insert_event_jobs(events: List, event_type: str) -> List: event_jobs = [] for event in events: event_jobs.append(event) frequency = event_type.replace("_", " ").title() insert_single_event(frequency, event) return event_jobs def insert_single_event(frequency: str, event: str, cron_format: str = None): cron_expr = {"cron_format": cron_format} if cron_format else {} doc = frappe.get_doc( { "doctype": "Scheduled Job Type", "method": event, "cron_format": cron_format, "frequency": frequency, } ) if not frappe.db.exists( "Scheduled Job Type", {"method": event, "frequency": frequency, **cron_expr} ): try: doc.insert() except frappe.DuplicateEntryError: doc.delete() doc.insert() def clear_events(all_events: List): for event in frappe.get_all( "Scheduled Job Type", fields=["name", "method", "server_script"] ): is_server_script = event.server_script is_defined_in_hooks = event.method in all_events if not (is_defined_in_hooks or is_server_script): frappe.delete_doc("Scheduled Job Type", event.name)
the-stack_0_27597
""" Core components of Home Assistant. Home Assistant is a Home Automation framework for observing the state of entities and react to changes. """ from __future__ import annotations import asyncio from collections.abc import Awaitable, Collection, Coroutine, Iterable, Mapping import datetime import enum import functools import logging import os import pathlib import re import threading from time import monotonic from types import MappingProxyType from typing import TYPE_CHECKING, Any, Callable, Optional, TypeVar, cast from urllib.parse import urlparse import attr import voluptuous as vol import yarl from homeassistant import block_async_io, loader, util from homeassistant.const import ( ATTR_DOMAIN, ATTR_FRIENDLY_NAME, ATTR_NOW, ATTR_SECONDS, ATTR_SERVICE, ATTR_SERVICE_DATA, CONF_UNIT_SYSTEM_IMPERIAL, EVENT_CALL_SERVICE, EVENT_CORE_CONFIG_UPDATE, EVENT_HOMEASSISTANT_CLOSE, EVENT_HOMEASSISTANT_FINAL_WRITE, EVENT_HOMEASSISTANT_START, EVENT_HOMEASSISTANT_STARTED, EVENT_HOMEASSISTANT_STOP, EVENT_SERVICE_REGISTERED, EVENT_SERVICE_REMOVED, EVENT_STATE_CHANGED, EVENT_TIME_CHANGED, EVENT_TIMER_OUT_OF_SYNC, LENGTH_METERS, MATCH_ALL, MAX_LENGTH_EVENT_EVENT_TYPE, MAX_LENGTH_STATE_STATE, __version__, ) from homeassistant.exceptions import ( HomeAssistantError, InvalidEntityFormatError, InvalidStateError, MaxLengthExceeded, ServiceNotFound, Unauthorized, ) from homeassistant.util import location from homeassistant.util.async_ import ( fire_coroutine_threadsafe, run_callback_threadsafe, shutdown_run_callback_threadsafe, ) import homeassistant.util.dt as dt_util from homeassistant.util.timeout import TimeoutManager from homeassistant.util.unit_system import IMPERIAL_SYSTEM, METRIC_SYSTEM, UnitSystem import homeassistant.util.uuid as uuid_util # Typing imports that create a circular dependency if TYPE_CHECKING: from homeassistant.auth import AuthManager from homeassistant.components.http import HomeAssistantHTTP from homeassistant.config_entries import ConfigEntries STAGE_1_SHUTDOWN_TIMEOUT = 100 STAGE_2_SHUTDOWN_TIMEOUT = 60 STAGE_3_SHUTDOWN_TIMEOUT = 30 block_async_io.enable() T = TypeVar("T") _UNDEF: dict = {} # Internal; not helpers.typing.UNDEFINED due to circular dependency # pylint: disable=invalid-name CALLABLE_T = TypeVar("CALLABLE_T", bound=Callable) CALLBACK_TYPE = Callable[[], None] # pylint: enable=invalid-name CORE_STORAGE_KEY = "core.config" CORE_STORAGE_VERSION = 1 DOMAIN = "homeassistant" # How long to wait to log tasks that are blocking BLOCK_LOG_TIMEOUT = 60 # How long we wait for the result of a service call SERVICE_CALL_LIMIT = 10 # seconds # Source of core configuration SOURCE_DISCOVERED = "discovered" SOURCE_STORAGE = "storage" SOURCE_YAML = "yaml" # How long to wait until things that run on startup have to finish. TIMEOUT_EVENT_START = 15 _LOGGER = logging.getLogger(__name__) def split_entity_id(entity_id: str) -> list[str]: """Split a state entity ID into domain and object ID.""" return entity_id.split(".", 1) VALID_ENTITY_ID = re.compile(r"^(?!.+__)(?!_)[\da-z_]+(?<!_)\.(?!_)[\da-z_]+(?<!_)$") def valid_entity_id(entity_id: str) -> bool: """Test if an entity ID is a valid format. Format: <domain>.<entity> where both are slugs. """ return VALID_ENTITY_ID.match(entity_id) is not None def valid_state(state: str) -> bool: """Test if a state is valid.""" return len(state) <= MAX_LENGTH_STATE_STATE def callback(func: CALLABLE_T) -> CALLABLE_T: """Annotation to mark method as safe to call from within the event loop.""" setattr(func, "_hass_callback", True) return func def is_callback(func: Callable[..., Any]) -> bool: """Check if function is safe to be called in the event loop.""" return getattr(func, "_hass_callback", False) is True @enum.unique class HassJobType(enum.Enum): """Represent a job type.""" Coroutinefunction = 1 Callback = 2 Executor = 3 class HassJob: """Represent a job to be run later. We check the callable type in advance so we can avoid checking it every time we run the job. """ __slots__ = ("job_type", "target") def __init__(self, target: Callable) -> None: """Create a job object.""" if asyncio.iscoroutine(target): raise ValueError("Coroutine not allowed to be passed to HassJob") self.target = target self.job_type = _get_callable_job_type(target) def __repr__(self) -> str: """Return the job.""" return f"<Job {self.job_type} {self.target}>" def _get_callable_job_type(target: Callable) -> HassJobType: """Determine the job type from the callable.""" # Check for partials to properly determine if coroutine function check_target = target while isinstance(check_target, functools.partial): check_target = check_target.func if asyncio.iscoroutinefunction(check_target): return HassJobType.Coroutinefunction if is_callback(check_target): return HassJobType.Callback return HassJobType.Executor class CoreState(enum.Enum): """Represent the current state of Home Assistant.""" not_running = "NOT_RUNNING" starting = "STARTING" running = "RUNNING" stopping = "STOPPING" final_write = "FINAL_WRITE" stopped = "STOPPED" def __str__(self) -> str: """Return the event.""" return self.value class HomeAssistant: """Root object of the Home Assistant home automation.""" auth: AuthManager http: HomeAssistantHTTP = None # type: ignore config_entries: ConfigEntries = None # type: ignore def __init__(self) -> None: """Initialize new Home Assistant object.""" self.loop = asyncio.get_running_loop() self._pending_tasks: list = [] self._track_task = True self.bus = EventBus(self) self.services = ServiceRegistry(self) self.states = StateMachine(self.bus, self.loop) self.config = Config(self) self.components = loader.Components(self) self.helpers = loader.Helpers(self) # This is a dictionary that any component can store any data on. self.data: dict = {} self.state: CoreState = CoreState.not_running self.exit_code: int = 0 # If not None, use to signal end-of-loop self._stopped: asyncio.Event | None = None # Timeout handler for Core/Helper namespace self.timeout: TimeoutManager = TimeoutManager() @property def is_running(self) -> bool: """Return if Home Assistant is running.""" return self.state in (CoreState.starting, CoreState.running) @property def is_stopping(self) -> bool: """Return if Home Assistant is stopping.""" return self.state in (CoreState.stopping, CoreState.final_write) def start(self) -> int: """Start Home Assistant. Note: This function is only used for testing. For regular use, use "await hass.run()". """ # Register the async start fire_coroutine_threadsafe(self.async_start(), self.loop) # Run forever # Block until stopped _LOGGER.info("Starting Home Assistant core loop") self.loop.run_forever() return self.exit_code async def async_run(self, *, attach_signals: bool = True) -> int: """Home Assistant main entry point. Start Home Assistant and block until stopped. This method is a coroutine. """ if self.state != CoreState.not_running: raise RuntimeError("Home Assistant is already running") # _async_stop will set this instead of stopping the loop self._stopped = asyncio.Event() await self.async_start() if attach_signals: # pylint: disable=import-outside-toplevel from homeassistant.helpers.signal import async_register_signal_handling async_register_signal_handling(self) await self._stopped.wait() return self.exit_code async def async_start(self) -> None: """Finalize startup from inside the event loop. This method is a coroutine. """ _LOGGER.info("Starting Home Assistant") setattr(self.loop, "_thread_ident", threading.get_ident()) self.state = CoreState.starting self.bus.async_fire(EVENT_CORE_CONFIG_UPDATE) self.bus.async_fire(EVENT_HOMEASSISTANT_START) try: # Only block for EVENT_HOMEASSISTANT_START listener self.async_stop_track_tasks() async with self.timeout.async_timeout(TIMEOUT_EVENT_START): await self.async_block_till_done() except asyncio.TimeoutError: _LOGGER.warning( "Something is blocking Home Assistant from wrapping up the " "start up phase. We're going to continue anyway. Please " "report the following info at https://github.com/home-assistant/core/issues: %s", ", ".join(self.config.components), ) # Allow automations to set up the start triggers before changing state await asyncio.sleep(0) if self.state != CoreState.starting: _LOGGER.warning( "Home Assistant startup has been interrupted. " "Its state may be inconsistent" ) return self.state = CoreState.running self.bus.async_fire(EVENT_CORE_CONFIG_UPDATE) self.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) _async_create_timer(self) def add_job(self, target: Callable[..., Any], *args: Any) -> None: """Add job to the executor pool. target: target to call. args: parameters for method to call. """ if target is None: raise ValueError("Don't call add_job with None") self.loop.call_soon_threadsafe(self.async_add_job, target, *args) @callback def async_add_job( self, target: Callable[..., Any], *args: Any ) -> asyncio.Future | None: """Add a job from within the event loop. This method must be run in the event loop. target: target to call. args: parameters for method to call. """ if target is None: raise ValueError("Don't call async_add_job with None") if asyncio.iscoroutine(target): return self.async_create_task(cast(Coroutine, target)) return self.async_add_hass_job(HassJob(target), *args) @callback def async_add_hass_job(self, hassjob: HassJob, *args: Any) -> asyncio.Future | None: """Add a HassJob from within the event loop. This method must be run in the event loop. hassjob: HassJob to call. args: parameters for method to call. """ if hassjob.job_type == HassJobType.Coroutinefunction: task = self.loop.create_task(hassjob.target(*args)) elif hassjob.job_type == HassJobType.Callback: self.loop.call_soon(hassjob.target, *args) return None else: task = self.loop.run_in_executor( # type: ignore None, hassjob.target, *args ) # If a task is scheduled if self._track_task: self._pending_tasks.append(task) return task def create_task(self, target: Awaitable) -> None: """Add task to the executor pool. target: target to call. """ self.loop.call_soon_threadsafe(self.async_create_task, target) @callback def async_create_task(self, target: Awaitable) -> asyncio.Task: """Create a task from within the eventloop. This method must be run in the event loop. target: target to call. """ task: asyncio.Task = self.loop.create_task(target) if self._track_task: self._pending_tasks.append(task) return task @callback def async_add_executor_job( self, target: Callable[..., T], *args: Any ) -> Awaitable[T]: """Add an executor job from within the event loop.""" task = self.loop.run_in_executor(None, target, *args) # If a task is scheduled if self._track_task: self._pending_tasks.append(task) return task @callback def async_track_tasks(self) -> None: """Track tasks so you can wait for all tasks to be done.""" self._track_task = True @callback def async_stop_track_tasks(self) -> None: """Stop track tasks so you can't wait for all tasks to be done.""" self._track_task = False @callback def async_run_hass_job(self, hassjob: HassJob, *args: Any) -> asyncio.Future | None: """Run a HassJob from within the event loop. This method must be run in the event loop. hassjob: HassJob args: parameters for method to call. """ if hassjob.job_type == HassJobType.Callback: hassjob.target(*args) return None return self.async_add_hass_job(hassjob, *args) @callback def async_run_job( self, target: Callable[..., None | Awaitable], *args: Any ) -> asyncio.Future | None: """Run a job from within the event loop. This method must be run in the event loop. target: target to call. args: parameters for method to call. """ if asyncio.iscoroutine(target): return self.async_create_task(cast(Coroutine, target)) return self.async_run_hass_job(HassJob(target), *args) def block_till_done(self) -> None: """Block until all pending work is done.""" asyncio.run_coroutine_threadsafe( self.async_block_till_done(), self.loop ).result() async def async_block_till_done(self) -> None: """Block until all pending work is done.""" # To flush out any call_soon_threadsafe await asyncio.sleep(0) start_time: float | None = None while self._pending_tasks: pending = [task for task in self._pending_tasks if not task.done()] self._pending_tasks.clear() if pending: await self._await_and_log_pending(pending) if start_time is None: # Avoid calling monotonic() until we know # we may need to start logging blocked tasks. start_time = 0 elif start_time == 0: # If we have waited twice then we set the start # time start_time = monotonic() elif monotonic() - start_time > BLOCK_LOG_TIMEOUT: # We have waited at least three loops and new tasks # continue to block. At this point we start # logging all waiting tasks. for task in pending: _LOGGER.debug("Waiting for task: %s", task) else: await asyncio.sleep(0) async def _await_and_log_pending(self, pending: Iterable[Awaitable[Any]]) -> None: """Await and log tasks that take a long time.""" # pylint: disable=no-self-use wait_time = 0 while pending: _, pending = await asyncio.wait(pending, timeout=BLOCK_LOG_TIMEOUT) if not pending: return wait_time += BLOCK_LOG_TIMEOUT for task in pending: _LOGGER.debug("Waited %s seconds for task: %s", wait_time, task) def stop(self) -> None: """Stop Home Assistant and shuts down all threads.""" if self.state == CoreState.not_running: # just ignore return fire_coroutine_threadsafe(self.async_stop(), self.loop) async def async_stop(self, exit_code: int = 0, *, force: bool = False) -> None: """Stop Home Assistant and shuts down all threads. The "force" flag commands async_stop to proceed regardless of Home Assistan't current state. You should not set this flag unless you're testing. This method is a coroutine. """ if not force: # Some tests require async_stop to run, # regardless of the state of the loop. if self.state == CoreState.not_running: # just ignore return if self.state in [CoreState.stopping, CoreState.final_write]: _LOGGER.info("Additional call to async_stop was ignored") return if self.state == CoreState.starting: # This may not work _LOGGER.warning( "Stopping Home Assistant before startup has completed may fail" ) # stage 1 self.state = CoreState.stopping self.async_track_tasks() self.bus.async_fire(EVENT_HOMEASSISTANT_STOP) try: async with self.timeout.async_timeout(STAGE_1_SHUTDOWN_TIMEOUT): await self.async_block_till_done() except asyncio.TimeoutError: _LOGGER.warning( "Timed out waiting for shutdown stage 1 to complete, the shutdown will continue" ) # stage 2 self.state = CoreState.final_write self.bus.async_fire(EVENT_HOMEASSISTANT_FINAL_WRITE) try: async with self.timeout.async_timeout(STAGE_2_SHUTDOWN_TIMEOUT): await self.async_block_till_done() except asyncio.TimeoutError: _LOGGER.warning( "Timed out waiting for shutdown stage 2 to complete, the shutdown will continue" ) # stage 3 self.state = CoreState.not_running self.bus.async_fire(EVENT_HOMEASSISTANT_CLOSE) # Prevent run_callback_threadsafe from scheduling any additional # callbacks in the event loop as callbacks created on the futures # it returns will never run after the final `self.async_block_till_done` # which will cause the futures to block forever when waiting for # the `result()` which will cause a deadlock when shutting down the executor. shutdown_run_callback_threadsafe(self.loop) try: async with self.timeout.async_timeout(STAGE_3_SHUTDOWN_TIMEOUT): await self.async_block_till_done() except asyncio.TimeoutError: _LOGGER.warning( "Timed out waiting for shutdown stage 3 to complete, the shutdown will continue" ) self.exit_code = exit_code self.state = CoreState.stopped if self._stopped is not None: self._stopped.set() @attr.s(slots=True, frozen=True) class Context: """The context that triggered something.""" user_id: str = attr.ib(default=None) parent_id: str | None = attr.ib(default=None) id: str = attr.ib(factory=uuid_util.random_uuid_hex) def as_dict(self) -> dict[str, str | None]: """Return a dictionary representation of the context.""" return {"id": self.id, "parent_id": self.parent_id, "user_id": self.user_id} class EventOrigin(enum.Enum): """Represent the origin of an event.""" local = "LOCAL" remote = "REMOTE" def __str__(self) -> str: """Return the event.""" return self.value class Event: """Representation of an event within the bus.""" __slots__ = ["event_type", "data", "origin", "time_fired", "context"] def __init__( self, event_type: str, data: dict[str, Any] | None = None, origin: EventOrigin = EventOrigin.local, time_fired: datetime.datetime | None = None, context: Context | None = None, ) -> None: """Initialize a new event.""" self.event_type = event_type self.data = data or {} self.origin = origin self.time_fired = time_fired or dt_util.utcnow() self.context: Context = context or Context() def __hash__(self) -> int: """Make hashable.""" # The only event type that shares context are the TIME_CHANGED return hash((self.event_type, self.context.id, self.time_fired)) def as_dict(self) -> dict[str, Any]: """Create a dict representation of this Event. Async friendly. """ return { "event_type": self.event_type, "data": dict(self.data), "origin": str(self.origin.value), "time_fired": self.time_fired.isoformat(), "context": self.context.as_dict(), } def __repr__(self) -> str: """Return the representation.""" if self.data: return f"<Event {self.event_type}[{str(self.origin)[0]}]: {util.repr_helper(self.data)}>" return f"<Event {self.event_type}[{str(self.origin)[0]}]>" def __eq__(self, other: Any) -> bool: """Return the comparison.""" return ( # type: ignore self.__class__ == other.__class__ and self.event_type == other.event_type and self.data == other.data and self.origin == other.origin and self.time_fired == other.time_fired and self.context == other.context ) class EventBus: """Allow the firing of and listening for events.""" def __init__(self, hass: HomeAssistant) -> None: """Initialize a new event bus.""" self._listeners: dict[str, list[tuple[HassJob, Callable | None]]] = {} self._hass = hass @callback def async_listeners(self) -> dict[str, int]: """Return dictionary with events and the number of listeners. This method must be run in the event loop. """ return {key: len(listeners) for key, listeners in self._listeners.items()} @property def listeners(self) -> dict[str, int]: """Return dictionary with events and the number of listeners.""" return run_callback_threadsafe(self._hass.loop, self.async_listeners).result() def fire( self, event_type: str, event_data: dict | None = None, origin: EventOrigin = EventOrigin.local, context: Context | None = None, ) -> None: """Fire an event.""" self._hass.loop.call_soon_threadsafe( self.async_fire, event_type, event_data, origin, context ) @callback def async_fire( self, event_type: str, event_data: dict[str, Any] | None = None, origin: EventOrigin = EventOrigin.local, context: Context | None = None, time_fired: datetime.datetime | None = None, ) -> None: """Fire an event. This method must be run in the event loop. """ if len(event_type) > MAX_LENGTH_EVENT_EVENT_TYPE: raise MaxLengthExceeded( event_type, "event_type", MAX_LENGTH_EVENT_EVENT_TYPE ) listeners = self._listeners.get(event_type, []) # EVENT_HOMEASSISTANT_CLOSE should go only to his listeners match_all_listeners = self._listeners.get(MATCH_ALL) if match_all_listeners is not None and event_type != EVENT_HOMEASSISTANT_CLOSE: listeners = match_all_listeners + listeners event = Event(event_type, event_data, origin, time_fired, context) if event_type != EVENT_TIME_CHANGED: _LOGGER.debug("Bus:Handling %s", event) if not listeners: return for job, event_filter in listeners: if event_filter is not None: try: if not event_filter(event): continue except Exception: # pylint: disable=broad-except _LOGGER.exception("Error in event filter") continue self._hass.async_add_hass_job(job, event) def listen(self, event_type: str, listener: Callable) -> CALLBACK_TYPE: """Listen for all events or events of a specific type. To listen to all events specify the constant ``MATCH_ALL`` as event_type. """ async_remove_listener = run_callback_threadsafe( self._hass.loop, self.async_listen, event_type, listener ).result() def remove_listener() -> None: """Remove the listener.""" run_callback_threadsafe(self._hass.loop, async_remove_listener).result() return remove_listener @callback def async_listen( self, event_type: str, listener: Callable, event_filter: Callable | None = None, ) -> CALLBACK_TYPE: """Listen for all events or events of a specific type. To listen to all events specify the constant ``MATCH_ALL`` as event_type. An optional event_filter, which must be a callable decorated with @callback that returns a boolean value, determines if the listener callable should run. This method must be run in the event loop. """ if event_filter is not None and not is_callback(event_filter): raise HomeAssistantError(f"Event filter {event_filter} is not a callback") return self._async_listen_filterable_job( event_type, (HassJob(listener), event_filter) ) @callback def _async_listen_filterable_job( self, event_type: str, filterable_job: tuple[HassJob, Callable | None] ) -> CALLBACK_TYPE: self._listeners.setdefault(event_type, []).append(filterable_job) def remove_listener() -> None: """Remove the listener.""" self._async_remove_listener(event_type, filterable_job) return remove_listener def listen_once( self, event_type: str, listener: Callable[[Event], None] ) -> CALLBACK_TYPE: """Listen once for event of a specific type. To listen to all events specify the constant ``MATCH_ALL`` as event_type. Returns function to unsubscribe the listener. """ async_remove_listener = run_callback_threadsafe( self._hass.loop, self.async_listen_once, event_type, listener ).result() def remove_listener() -> None: """Remove the listener.""" run_callback_threadsafe(self._hass.loop, async_remove_listener).result() return remove_listener @callback def async_listen_once(self, event_type: str, listener: Callable) -> CALLBACK_TYPE: """Listen once for event of a specific type. To listen to all events specify the constant ``MATCH_ALL`` as event_type. Returns registered listener that can be used with remove_listener. This method must be run in the event loop. """ filterable_job: tuple[HassJob, Callable | None] | None = None @callback def _onetime_listener(event: Event) -> None: """Remove listener from event bus and then fire listener.""" nonlocal filterable_job if hasattr(_onetime_listener, "run"): return # Set variable so that we will never run twice. # Because the event bus loop might have async_fire queued multiple # times, its possible this listener may already be lined up # multiple times as well. # This will make sure the second time it does nothing. setattr(_onetime_listener, "run", True) assert filterable_job is not None self._async_remove_listener(event_type, filterable_job) self._hass.async_run_job(listener, event) filterable_job = (HassJob(_onetime_listener), None) return self._async_listen_filterable_job(event_type, filterable_job) @callback def _async_remove_listener( self, event_type: str, filterable_job: tuple[HassJob, Callable | None] ) -> None: """Remove a listener of a specific event_type. This method must be run in the event loop. """ try: self._listeners[event_type].remove(filterable_job) # delete event_type list if empty if not self._listeners[event_type]: self._listeners.pop(event_type) except (KeyError, ValueError): # KeyError is key event_type listener did not exist # ValueError if listener did not exist within event_type _LOGGER.exception( "Unable to remove unknown job listener %s", filterable_job ) class State: """Object to represent a state within the state machine. entity_id: the entity that is represented. state: the state of the entity attributes: extra information on entity and state last_changed: last time the state was changed, not the attributes. last_updated: last time this object was updated. context: Context in which it was created domain: Domain of this state. object_id: Object id of this state. """ __slots__ = [ "entity_id", "state", "attributes", "last_changed", "last_updated", "context", "domain", "object_id", "_as_dict", ] def __init__( self, entity_id: str, state: str, attributes: Mapping[str, Any] | None = None, last_changed: datetime.datetime | None = None, last_updated: datetime.datetime | None = None, context: Context | None = None, validate_entity_id: bool | None = True, ) -> None: """Initialize a new state.""" state = str(state) if validate_entity_id and not valid_entity_id(entity_id): raise InvalidEntityFormatError( f"Invalid entity id encountered: {entity_id}. " "Format should be <domain>.<object_id>" ) if not valid_state(state): raise InvalidStateError( f"Invalid state encountered for entity ID: {entity_id}. " "State max length is 255 characters." ) self.entity_id = entity_id.lower() self.state = state self.attributes = MappingProxyType(attributes or {}) self.last_updated = last_updated or dt_util.utcnow() self.last_changed = last_changed or self.last_updated self.context = context or Context() self.domain, self.object_id = split_entity_id(self.entity_id) self._as_dict: dict[str, Collection[Any]] | None = None @property def name(self) -> str: """Name of this state.""" return self.attributes.get(ATTR_FRIENDLY_NAME) or self.object_id.replace( "_", " " ) def as_dict(self) -> dict: """Return a dict representation of the State. Async friendly. To be used for JSON serialization. Ensures: state == State.from_dict(state.as_dict()) """ if not self._as_dict: last_changed_isoformat = self.last_changed.isoformat() if self.last_changed == self.last_updated: last_updated_isoformat = last_changed_isoformat else: last_updated_isoformat = self.last_updated.isoformat() self._as_dict = { "entity_id": self.entity_id, "state": self.state, "attributes": dict(self.attributes), "last_changed": last_changed_isoformat, "last_updated": last_updated_isoformat, "context": self.context.as_dict(), } return self._as_dict @classmethod def from_dict(cls, json_dict: dict) -> Any: """Initialize a state from a dict. Async friendly. Ensures: state == State.from_json_dict(state.to_json_dict()) """ if not (json_dict and "entity_id" in json_dict and "state" in json_dict): return None last_changed = json_dict.get("last_changed") if isinstance(last_changed, str): last_changed = dt_util.parse_datetime(last_changed) last_updated = json_dict.get("last_updated") if isinstance(last_updated, str): last_updated = dt_util.parse_datetime(last_updated) if context := json_dict.get("context"): context = Context(id=context.get("id"), user_id=context.get("user_id")) return cls( json_dict["entity_id"], json_dict["state"], json_dict.get("attributes"), last_changed, last_updated, context, ) def __eq__(self, other: Any) -> bool: """Return the comparison of the state.""" return ( # type: ignore self.__class__ == other.__class__ and self.entity_id == other.entity_id and self.state == other.state and self.attributes == other.attributes and self.context == other.context ) def __repr__(self) -> str: """Return the representation of the states.""" attrs = f"; {util.repr_helper(self.attributes)}" if self.attributes else "" return ( f"<state {self.entity_id}={self.state}{attrs}" f" @ {dt_util.as_local(self.last_changed).isoformat()}>" ) class StateMachine: """Helper class that tracks the state of different entities.""" def __init__(self, bus: EventBus, loop: asyncio.events.AbstractEventLoop) -> None: """Initialize state machine.""" self._states: dict[str, State] = {} self._reservations: set[str] = set() self._bus = bus self._loop = loop def entity_ids(self, domain_filter: str | None = None) -> list[str]: """List of entity ids that are being tracked.""" future = run_callback_threadsafe( self._loop, self.async_entity_ids, domain_filter ) return future.result() @callback def async_entity_ids( self, domain_filter: str | Iterable | None = None ) -> list[str]: """List of entity ids that are being tracked. This method must be run in the event loop. """ if domain_filter is None: return list(self._states) if isinstance(domain_filter, str): domain_filter = (domain_filter.lower(),) return [ state.entity_id for state in self._states.values() if state.domain in domain_filter ] @callback def async_entity_ids_count( self, domain_filter: str | Iterable | None = None ) -> int: """Count the entity ids that are being tracked. This method must be run in the event loop. """ if domain_filter is None: return len(self._states) if isinstance(domain_filter, str): domain_filter = (domain_filter.lower(),) return len( [None for state in self._states.values() if state.domain in domain_filter] ) def all(self, domain_filter: str | Iterable | None = None) -> list[State]: """Create a list of all states.""" return run_callback_threadsafe( self._loop, self.async_all, domain_filter ).result() @callback def async_all(self, domain_filter: str | Iterable | None = None) -> list[State]: """Create a list of all states matching the filter. This method must be run in the event loop. """ if domain_filter is None: return list(self._states.values()) if isinstance(domain_filter, str): domain_filter = (domain_filter.lower(),) return [ state for state in self._states.values() if state.domain in domain_filter ] def get(self, entity_id: str) -> State | None: """Retrieve state of entity_id or None if not found. Async friendly. """ return self._states.get(entity_id.lower()) def is_state(self, entity_id: str, state: str) -> bool: """Test if entity exists and is in specified state. Async friendly. """ state_obj = self.get(entity_id) return state_obj is not None and state_obj.state == state def remove(self, entity_id: str) -> bool: """Remove the state of an entity. Returns boolean to indicate if an entity was removed. """ return run_callback_threadsafe( self._loop, self.async_remove, entity_id ).result() @callback def async_remove(self, entity_id: str, context: Context | None = None) -> bool: """Remove the state of an entity. Returns boolean to indicate if an entity was removed. This method must be run in the event loop. """ entity_id = entity_id.lower() old_state = self._states.pop(entity_id, None) if entity_id in self._reservations: self._reservations.remove(entity_id) if old_state is None: return False self._bus.async_fire( EVENT_STATE_CHANGED, {"entity_id": entity_id, "old_state": old_state, "new_state": None}, EventOrigin.local, context=context, ) return True def set( self, entity_id: str, new_state: str, attributes: Mapping[str, Any] | None = None, force_update: bool = False, context: Context | None = None, ) -> None: """Set the state of an entity, add entity if it does not exist. Attributes is an optional dict to specify attributes of this state. If you just update the attributes and not the state, last changed will not be affected. """ run_callback_threadsafe( self._loop, self.async_set, entity_id, new_state, attributes, force_update, context, ).result() @callback def async_reserve(self, entity_id: str) -> None: """Reserve a state in the state machine for an entity being added. This must not fire an event when the state is reserved. This avoids a race condition where multiple entities with the same entity_id are added. """ entity_id = entity_id.lower() if entity_id in self._states or entity_id in self._reservations: raise HomeAssistantError( "async_reserve must not be called once the state is in the state machine." ) self._reservations.add(entity_id) @callback def async_available(self, entity_id: str) -> bool: """Check to see if an entity_id is available to be used.""" entity_id = entity_id.lower() return entity_id not in self._states and entity_id not in self._reservations @callback def async_set( self, entity_id: str, new_state: str, attributes: Mapping[str, Any] | None = None, force_update: bool = False, context: Context | None = None, ) -> None: """Set the state of an entity, add entity if it does not exist. Attributes is an optional dict to specify attributes of this state. If you just update the attributes and not the state, last changed will not be affected. This method must be run in the event loop. """ entity_id = entity_id.lower() new_state = str(new_state) attributes = attributes or {} if (old_state := self._states.get(entity_id)) is None: same_state = False same_attr = False last_changed = None else: same_state = old_state.state == new_state and not force_update same_attr = old_state.attributes == MappingProxyType(attributes) last_changed = old_state.last_changed if same_state else None if same_state and same_attr: return if context is None: context = Context() now = dt_util.utcnow() state = State( entity_id, new_state, attributes, last_changed, now, context, old_state is None, ) self._states[entity_id] = state self._bus.async_fire( EVENT_STATE_CHANGED, {"entity_id": entity_id, "old_state": old_state, "new_state": state}, EventOrigin.local, context, time_fired=now, ) class Service: """Representation of a callable service.""" __slots__ = ["job", "schema"] def __init__( self, func: Callable, schema: vol.Schema | None, context: Context | None = None, ) -> None: """Initialize a service.""" self.job = HassJob(func) self.schema = schema class ServiceCall: """Representation of a call to a service.""" __slots__ = ["domain", "service", "data", "context"] def __init__( self, domain: str, service: str, data: dict | None = None, context: Context | None = None, ) -> None: """Initialize a service call.""" self.domain = domain.lower() self.service = service.lower() self.data = MappingProxyType(data or {}) self.context = context or Context() def __repr__(self) -> str: """Return the representation of the service.""" if self.data: return ( f"<ServiceCall {self.domain}.{self.service} " f"(c:{self.context.id}): {util.repr_helper(self.data)}>" ) return f"<ServiceCall {self.domain}.{self.service} (c:{self.context.id})>" class ServiceRegistry: """Offer the services over the eventbus.""" def __init__(self, hass: HomeAssistant) -> None: """Initialize a service registry.""" self._services: dict[str, dict[str, Service]] = {} self._hass = hass @property def services(self) -> dict[str, dict[str, Service]]: """Return dictionary with per domain a list of available services.""" return run_callback_threadsafe(self._hass.loop, self.async_services).result() @callback def async_services(self) -> dict[str, dict[str, Service]]: """Return dictionary with per domain a list of available services. This method must be run in the event loop. """ return {domain: service.copy() for domain, service in self._services.items()} def has_service(self, domain: str, service: str) -> bool: """Test if specified service exists. Async friendly. """ return service.lower() in self._services.get(domain.lower(), []) def register( self, domain: str, service: str, service_func: Callable, schema: vol.Schema | None = None, ) -> None: """ Register a service. Schema is called to coerce and validate the service data. """ run_callback_threadsafe( self._hass.loop, self.async_register, domain, service, service_func, schema ).result() @callback def async_register( self, domain: str, service: str, service_func: Callable, schema: vol.Schema | None = None, ) -> None: """ Register a service. Schema is called to coerce and validate the service data. This method must be run in the event loop. """ domain = domain.lower() service = service.lower() service_obj = Service(service_func, schema) if domain in self._services: self._services[domain][service] = service_obj else: self._services[domain] = {service: service_obj} self._hass.bus.async_fire( EVENT_SERVICE_REGISTERED, {ATTR_DOMAIN: domain, ATTR_SERVICE: service} ) def remove(self, domain: str, service: str) -> None: """Remove a registered service from service handler.""" run_callback_threadsafe( self._hass.loop, self.async_remove, domain, service ).result() @callback def async_remove(self, domain: str, service: str) -> None: """Remove a registered service from service handler. This method must be run in the event loop. """ domain = domain.lower() service = service.lower() if service not in self._services.get(domain, {}): _LOGGER.warning("Unable to remove unknown service %s/%s", domain, service) return self._services[domain].pop(service) if not self._services[domain]: self._services.pop(domain) self._hass.bus.async_fire( EVENT_SERVICE_REMOVED, {ATTR_DOMAIN: domain, ATTR_SERVICE: service} ) def call( self, domain: str, service: str, service_data: dict | None = None, blocking: bool = False, context: Context | None = None, limit: float | None = SERVICE_CALL_LIMIT, target: dict | None = None, ) -> bool | None: """ Call a service. See description of async_call for details. """ return asyncio.run_coroutine_threadsafe( self.async_call( domain, service, service_data, blocking, context, limit, target ), self._hass.loop, ).result() async def async_call( self, domain: str, service: str, service_data: dict | None = None, blocking: bool = False, context: Context | None = None, limit: float | None = SERVICE_CALL_LIMIT, target: dict | None = None, ) -> bool | None: """ Call a service. Specify blocking=True to wait until service is executed. Waits a maximum of limit, which may be None for no timeout. If blocking = True, will return boolean if service executed successfully within limit. This method will fire an event to indicate the service has been called. Because the service is sent as an event you are not allowed to use the keys ATTR_DOMAIN and ATTR_SERVICE in your service_data. This method is a coroutine. """ domain = domain.lower() service = service.lower() context = context or Context() service_data = service_data or {} try: handler = self._services[domain][service] except KeyError: raise ServiceNotFound(domain, service) from None if target: service_data.update(target) if handler.schema: try: processed_data = handler.schema(service_data) except vol.Invalid: _LOGGER.debug( "Invalid data for service call %s.%s: %s", domain, service, service_data, ) raise else: processed_data = service_data service_call = ServiceCall(domain, service, processed_data, context) self._hass.bus.async_fire( EVENT_CALL_SERVICE, { ATTR_DOMAIN: domain.lower(), ATTR_SERVICE: service.lower(), ATTR_SERVICE_DATA: service_data, }, context=context, ) coro = self._execute_service(handler, service_call) if not blocking: self._run_service_in_background(coro, service_call) return None task = self._hass.async_create_task(coro) try: await asyncio.wait({task}, timeout=limit) except asyncio.CancelledError: # Task calling us was cancelled, so cancel service call task, and wait for # it to be cancelled, within reason, before leaving. _LOGGER.debug("Service call was cancelled: %s", service_call) task.cancel() await asyncio.wait({task}, timeout=SERVICE_CALL_LIMIT) raise if task.cancelled(): # Service call task was cancelled some other way, such as during shutdown. _LOGGER.debug("Service was cancelled: %s", service_call) raise asyncio.CancelledError if task.done(): # Propagate any exceptions that might have happened during service call. task.result() # Service call completed successfully! return True # Service call task did not complete before timeout expired. # Let it keep running in background. self._run_service_in_background(task, service_call) _LOGGER.debug("Service did not complete before timeout: %s", service_call) return False def _run_service_in_background( self, coro_or_task: Coroutine | asyncio.Task, service_call: ServiceCall ) -> None: """Run service call in background, catching and logging any exceptions.""" async def catch_exceptions() -> None: try: await coro_or_task except Unauthorized: _LOGGER.warning( "Unauthorized service called %s/%s", service_call.domain, service_call.service, ) except asyncio.CancelledError: _LOGGER.debug("Service was cancelled: %s", service_call) except Exception: # pylint: disable=broad-except _LOGGER.exception("Error executing service: %s", service_call) self._hass.async_create_task(catch_exceptions()) async def _execute_service( self, handler: Service, service_call: ServiceCall ) -> None: """Execute a service.""" if handler.job.job_type == HassJobType.Coroutinefunction: await handler.job.target(service_call) elif handler.job.job_type == HassJobType.Callback: handler.job.target(service_call) else: await self._hass.async_add_executor_job(handler.job.target, service_call) class Config: """Configuration settings for Home Assistant.""" def __init__(self, hass: HomeAssistant) -> None: """Initialize a new config object.""" self.hass = hass self.latitude: float = 0 self.longitude: float = 0 self.elevation: int = 0 self.location_name: str = "Home" self.time_zone: str = "UTC" self.units: UnitSystem = METRIC_SYSTEM self.internal_url: str | None = None self.external_url: str | None = None self.currency: str = "EUR" self.config_source: str = "default" # If True, pip install is skipped for requirements on startup self.skip_pip: bool = False # List of loaded components self.components: set[str] = set() # API (HTTP) server configuration, see components.http.ApiConfig self.api: Any | None = None # Directory that holds the configuration self.config_dir: str | None = None # List of allowed external dirs to access self.allowlist_external_dirs: set[str] = set() # List of allowed external URLs that integrations may use self.allowlist_external_urls: set[str] = set() # Dictionary of Media folders that integrations may use self.media_dirs: dict[str, str] = {} # If Home Assistant is running in safe mode self.safe_mode: bool = False # Use legacy template behavior self.legacy_templates: bool = False def distance(self, lat: float, lon: float) -> float | None: """Calculate distance from Home Assistant. Async friendly. """ return self.units.length( location.distance(self.latitude, self.longitude, lat, lon), LENGTH_METERS ) def path(self, *path: str) -> str: """Generate path to the file within the configuration directory. Async friendly. """ if self.config_dir is None: raise HomeAssistantError("config_dir is not set") return os.path.join(self.config_dir, *path) def is_allowed_external_url(self, url: str) -> bool: """Check if an external URL is allowed.""" parsed_url = f"{str(yarl.URL(url))}/" return any( allowed for allowed in self.allowlist_external_urls if parsed_url.startswith(allowed) ) def is_allowed_path(self, path: str) -> bool: """Check if the path is valid for access from outside.""" assert path is not None thepath = pathlib.Path(path) try: # The file path does not have to exist (it's parent should) if thepath.exists(): thepath = thepath.resolve() else: thepath = thepath.parent.resolve() except (FileNotFoundError, RuntimeError, PermissionError): return False for allowed_path in self.allowlist_external_dirs: try: thepath.relative_to(allowed_path) return True except ValueError: pass return False def as_dict(self) -> dict: """Create a dictionary representation of the configuration. Async friendly. """ return { "latitude": self.latitude, "longitude": self.longitude, "elevation": self.elevation, "unit_system": self.units.as_dict(), "location_name": self.location_name, "time_zone": self.time_zone, "components": self.components, "config_dir": self.config_dir, # legacy, backwards compat "whitelist_external_dirs": self.allowlist_external_dirs, "allowlist_external_dirs": self.allowlist_external_dirs, "allowlist_external_urls": self.allowlist_external_urls, "version": __version__, "config_source": self.config_source, "safe_mode": self.safe_mode, "state": self.hass.state.value, "external_url": self.external_url, "internal_url": self.internal_url, "currency": self.currency, } def set_time_zone(self, time_zone_str: str) -> None: """Help to set the time zone.""" if time_zone := dt_util.get_time_zone(time_zone_str): self.time_zone = time_zone_str dt_util.set_default_time_zone(time_zone) else: raise ValueError(f"Received invalid time zone {time_zone_str}") @callback def _update( self, *, source: str, latitude: float | None = None, longitude: float | None = None, elevation: int | None = None, unit_system: str | None = None, location_name: str | None = None, time_zone: str | None = None, # pylint: disable=dangerous-default-value # _UNDEFs not modified external_url: str | dict | None = _UNDEF, internal_url: str | dict | None = _UNDEF, currency: str | None = None, ) -> None: """Update the configuration from a dictionary.""" self.config_source = source if latitude is not None: self.latitude = latitude if longitude is not None: self.longitude = longitude if elevation is not None: self.elevation = elevation if unit_system is not None: if unit_system == CONF_UNIT_SYSTEM_IMPERIAL: self.units = IMPERIAL_SYSTEM else: self.units = METRIC_SYSTEM if location_name is not None: self.location_name = location_name if time_zone is not None: self.set_time_zone(time_zone) if external_url is not _UNDEF: self.external_url = cast(Optional[str], external_url) if internal_url is not _UNDEF: self.internal_url = cast(Optional[str], internal_url) if currency is not None: self.currency = currency async def async_update(self, **kwargs: Any) -> None: """Update the configuration from a dictionary.""" self._update(source=SOURCE_STORAGE, **kwargs) await self.async_store() self.hass.bus.async_fire(EVENT_CORE_CONFIG_UPDATE, kwargs) async def async_load(self) -> None: """Load [homeassistant] core config.""" store = self.hass.helpers.storage.Store( CORE_STORAGE_VERSION, CORE_STORAGE_KEY, private=True ) if not (data := await store.async_load()): return # In 2021.9 we fixed validation to disallow a path (because that's never correct) # but this data still lives in storage, so we print a warning. if data.get("external_url") and urlparse(data["external_url"]).path not in ( "", "/", ): _LOGGER.warning("Invalid external_url set. It's not allowed to have a path") if data.get("internal_url") and urlparse(data["internal_url"]).path not in ( "", "/", ): _LOGGER.warning("Invalid internal_url set. It's not allowed to have a path") self._update( source=SOURCE_STORAGE, latitude=data.get("latitude"), longitude=data.get("longitude"), elevation=data.get("elevation"), unit_system=data.get("unit_system"), location_name=data.get("location_name"), time_zone=data.get("time_zone"), external_url=data.get("external_url", _UNDEF), internal_url=data.get("internal_url", _UNDEF), currency=data.get("currency"), ) async def async_store(self) -> None: """Store [homeassistant] core config.""" data = { "latitude": self.latitude, "longitude": self.longitude, "elevation": self.elevation, "unit_system": self.units.name, "location_name": self.location_name, "time_zone": self.time_zone, "external_url": self.external_url, "internal_url": self.internal_url, "currency": self.currency, } store = self.hass.helpers.storage.Store( CORE_STORAGE_VERSION, CORE_STORAGE_KEY, private=True ) await store.async_save(data) def _async_create_timer(hass: HomeAssistant) -> None: """Create a timer that will start on HOMEASSISTANT_START.""" handle = None timer_context = Context() def schedule_tick(now: datetime.datetime) -> None: """Schedule a timer tick when the next second rolls around.""" nonlocal handle slp_seconds = 1 - (now.microsecond / 10 ** 6) target = monotonic() + slp_seconds handle = hass.loop.call_later(slp_seconds, fire_time_event, target) @callback def fire_time_event(target: float) -> None: """Fire next time event.""" now = dt_util.utcnow() hass.bus.async_fire( EVENT_TIME_CHANGED, {ATTR_NOW: now}, time_fired=now, context=timer_context ) # If we are more than a second late, a tick was missed if (late := monotonic() - target) > 1: hass.bus.async_fire( EVENT_TIMER_OUT_OF_SYNC, {ATTR_SECONDS: late}, time_fired=now, context=timer_context, ) schedule_tick(now) @callback def stop_timer(_: Event) -> None: """Stop the timer.""" if handle is not None: handle.cancel() hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, stop_timer) _LOGGER.info("Timer:starting") schedule_tick(dt_util.utcnow())
the-stack_0_27598
# Script to build bootstrapper image import argparse import os import shutil import tempfile import yaml FILE_PATH = os.path.dirname(os.path.abspath(__file__)) REG_FOLDER = "reg_tmp" # Clone repos to tmp folder and build docker images def main(unparsed_args=None): parser = argparse.ArgumentParser( description="Build bootstrapper image with ksonnet registries specified in config.") parser.add_argument( "--image", default="", type=str, help="Image name.") parser.add_argument( "--build_args", default="", type=str, help="Docker build args.") parser.add_argument( "--build_opts", default="", type=str, help="Docker build opts.") parser.add_argument( "--config", default="image_registries.yaml", type=str, help="Relative path to bootstrapper config file specify which registries to include.") parser.add_argument( "--test_registry", default="", type=str, help="e2e test target registry, format is <registry name>:<registry path>") parser.add_argument( "--target", default="", type=str, help="Docker build target.") args = parser.parse_args(args=unparsed_args) tmp_dir = os.path.join(FILE_PATH, REG_FOLDER) # Make local dir, clone repos into it and Docker build will copy whole folder. if os.path.exists(tmp_dir): shutil.rmtree(tmp_dir) os.mkdir(tmp_dir) os_tmp_dir = tempfile.mkdtemp() print("Using tmp dir: " + os_tmp_dir) with open(os.path.join(FILE_PATH, args.config), 'r') as conf_input: conf = yaml.load(conf_input) test_reg_name, test_reg_path = "", "" if args.test_registry != "" and len(args.test_registry.split(":")) == 2: test_reg_name = args.test_registry.split(":")[0] test_reg_path = args.test_registry.split(":")[1] for reg in conf['registries']: if test_reg_name == reg["name"]: excludes = [".git*", ".idea", "vendor", "node_modules"] sync_cmd = "rsync -a %s %s %s" % (test_reg_path, os_tmp_dir, " ".join(["--exclude=" + term for term in excludes])) print(sync_cmd) os.system(sync_cmd) else: reg_path = os.path.join(os_tmp_dir, reg["name"]) print("Adding registry %s from %s %s" % (reg["name"], reg["repo"], reg["version"])) os.system("git clone --depth 1 --branch %s %s %s" % (reg["version"], reg["repo"], reg_path)) os.system("cp -r %s/* %s" % (os_tmp_dir, tmp_dir)) bargs="" for buildarg in args.build_args.split(","): bargs+="--build-arg "+buildarg+" " print("docker build %s %s -t %s --build-arg registries=%s --target=%s %s" % (args.build_opts, bargs, args.image, REG_FOLDER, args.target, FILE_PATH)) os.system("docker build %s %s -t %s --build-arg registries=%s --target=%s %s" % (args.build_opts, bargs, args.image, REG_FOLDER, args.target, FILE_PATH)) if __name__ == '__main__': main()
the-stack_0_27599
import os import shutil import numpy as np import pandas as pd from pathlib import Path from tqdm import tqdm from numpy import loadtxt from sklearn.model_selection import train_test_split from utils import get_all_files_in_folder def generate_train_test(data_dir, split): images = get_all_files_in_folder(data_dir, ['*.jpg']) with open('data/darknet_prepare_for_train/' + split + '.txt', "w") as outfile: for image in images: outfile.write('data/darknet_prepare_for_train/' + split + '/' + image.name) outfile.write("\n") outfile.close() # darknet_path = Path('/home/vid/hdd/projects/darknet/my_data') root_dir = Path('data/darknet_prepare_for_train/0_dataset') root_data_jpg_dir = Path('data/darknet_prepare_for_train/data_jpg') root_data_txt_dir = Path('data/darknet_prepare_for_train/data_txt') train_dir = Path('data/darknet_prepare_for_train/train') test_dir = Path('data/darknet_prepare_for_train/test') backup_dir = Path('data/darknet_prepare_for_train/backup') dirpath = root_data_jpg_dir if dirpath.exists() and dirpath.is_dir(): shutil.rmtree(dirpath) Path(dirpath).mkdir(parents=True, exist_ok=True) dirpath = root_data_txt_dir if dirpath.exists() and dirpath.is_dir(): shutil.rmtree(dirpath) Path(dirpath).mkdir(parents=True, exist_ok=True) dirpath = train_dir if dirpath.exists() and dirpath.is_dir(): shutil.rmtree(dirpath) Path(dirpath).mkdir(parents=True, exist_ok=True) dirpath = test_dir if dirpath.exists() and dirpath.is_dir(): shutil.rmtree(dirpath) Path(dirpath).mkdir(parents=True, exist_ok=True) dirpath = backup_dir if dirpath.exists() and dirpath.is_dir(): shutil.rmtree(dirpath) Path(dirpath).mkdir(parents=True, exist_ok=True) all_images = get_all_files_in_folder(root_dir, ['*.jpg']) all_txts = get_all_files_in_folder(root_dir, ['*.txt']) print(f'Total images: {len(all_images)}') print(f'Total labels: {len(all_txts)}') val_part = 0.1 labels = [] images_list = [] for txt in tqdm(all_txts): lines = loadtxt(str(txt), delimiter=' ', unpack=False).tolist() if not isinstance(lines[0], list): lines = [lines] for line in lines: labels.append(line[0]) images_list.append(txt.stem) # classes + counts labels_dict = pd.DataFrame(labels, columns=["x"]).groupby('x').size().to_dict() all_labels = sum(labels_dict.values()) print('labels_dict', labels_dict) labels_parts = [] for key, value in labels_dict.items(): labels_parts.append(value / all_labels) print('labels_parts', labels_parts) print('classes ', len(labels_parts)) straify = False min_part = 0.1 if np.min(labels_parts) < min_part: straify = True type = 2 # or 1 if straify: if type == 1: # add 0.05 for accuracy stratification val_part += 0.05 # collect all classes # stratify X_train, X_test, y_train, y_test = train_test_split(images_list, labels, test_size=val_part, random_state=42, stratify=labels, shuffle=True) # remove dublicates X_train = np.unique(X_train).tolist() X_test = np.unique(X_test).tolist() # get images that exist in train and test dublicates = [] for xtr in tqdm(X_train): for xtt in X_test: if xtr == xtt: dublicates.append(xtr) # delete such images from train and test for dubl in dublicates: X_train.remove(dubl) X_test.remove(dubl) # add dubl images in train and test with stratify for i, dubl in tqdm(enumerate(dublicates)): if i % int((10 - (val_part) * 10)) == 0: X_test.append(dubl) else: X_train.append(dubl) # copy images and txts for name in tqdm(X_train): shutil.copy(root_dir.joinpath(name + '.jpg'), train_dir) shutil.copy(root_dir.joinpath(name + '.txt'), train_dir) for name in tqdm(X_test): shutil.copy(root_dir.joinpath(name + '.jpg'), test_dir) shutil.copy(root_dir.joinpath(name + '.txt'), test_dir) # check stratification all_txt_train = get_all_files_in_folder(train_dir, ['*.txt']) # collect train classes and compare with all classes labels_train = [] for txt in tqdm(all_txt_train): lines = loadtxt(str(txt), delimiter=' ', unpack=False).tolist() if not isinstance(lines[0], list): lines = [lines] for line in lines: labels_train.append(line[0]) labels_train_dict = pd.DataFrame(labels_train, columns=["x"]).groupby('x').size().to_dict() st = [] for key, value in labels_dict.items(): val = labels_train_dict[key] / value st.append(val) print(f'Class {key} | counts {value} | test_part {val}') print('Train part:', np.mean(st)) else: labels_dict[-1] = 99999999 # assign to image one class - rarest class x_all = [] labels_all = [] for txt in tqdm(all_txts): lines = loadtxt(str(txt), delimiter=' ', unpack=False).tolist() if not isinstance(lines[0], list): lines = [lines] lab = [] for line in lines: lab.append(line[0]) best_cat = -1 x_all.append(txt.stem) for l in lab: if labels_dict[l] < labels_dict[best_cat]: best_cat = l labels_all.append(best_cat) # stratify X_train, X_test, y_train, y_test = train_test_split(x_all, labels_all, test_size=val_part, random_state=42, shuffle=True) # copy images and txts for name in tqdm(X_train): shutil.copy(root_dir.joinpath(name + '.jpg'), train_dir) shutil.copy(root_dir.joinpath(name + '.txt'), train_dir) for name in tqdm(X_test): shutil.copy(root_dir.joinpath(name + '.jpg'), test_dir) shutil.copy(root_dir.joinpath(name + '.txt'), test_dir) # check stratification all_txt_train = get_all_files_in_folder(train_dir, ['*.txt']) # collect train classes and compare with all classes labels_train = [] for txt in tqdm(all_txt_train): lines = loadtxt(str(txt), delimiter=' ', unpack=False).tolist() if not isinstance(lines[0], list): lines = [lines] for line in lines: labels_train.append(line[0]) labels_train_dict = pd.DataFrame(labels_train, columns=["x"]).groupby('x').size().to_dict() st = [] labels_dict.pop(-1) for key, value in labels_dict.items(): val = labels_train_dict[key] / value st.append(val) print(f'Class {key} | counts {value} | test_part {val}') print('Train part:', np.mean(st)) else: # for img in tqdm(all_images): # shutil.copy(img, root_data_jpg_dir) # # for txt in tqdm(all_txts): # shutil.copy(txt, root_data_txt_dir) np.random.shuffle(all_images) train_FileNames, val_FileNames = np.split(np.array(all_images), [int(len(all_images) * (1 - val_part))]) for name in tqdm(train_FileNames): shutil.copy(name, train_dir) shutil.copy(root_dir.joinpath(name.stem + '.txt'), train_dir) for name in tqdm(val_FileNames): shutil.copy(name, test_dir) shutil.copy(root_dir.joinpath(name.stem + '.txt'), test_dir) generate_train_test(train_dir, 'train') generate_train_test(test_dir, 'test') # copy cfg data # shutil.copy('data/darknet_prepare_for_train/0_cfg/obj.data', darknet_path) # shutil.copy('data/darknet_prepare_for_train/0_cfg/obj.names', darknet_path) # shutil.copy('data/darknet_prepare_for_train/0_cfg/yolov4-obj-mycustom.cfg', darknet_path) # shutil.copy('data/darknet_prepare_for_train/0_weights/yolov4-p5.conv.232', darknet_path) # os.system("/home/vid/hdd/projects/darknet/darknet detector train " # "/home/vid/hdd/projects/PycharmProjects/Object-Detection-Metrics/data/darknet_prepare_for_train/0_cfg/obj.data " # "/home/vid/hdd/projects/PycharmProjects/Object-Detection-Metrics/data/darknet_prepare_for_train/0_cfg/yolov4-obj-mycustom.cfg " # "/home/vid/hdd/projects/PycharmProjects/Object-Detection-Metrics/data/darknet_prepare_for_train/0_weights/yolov4-p5.conv.232 -map") # ./darknet detector train my_data/obj.data my_data/yolov4-obj-mycustom.cfg my_data/yolov4-p5.conv.232 -dont_show -map
the-stack_0_27601
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## ## @package device_reduce_sum_bench # Module caffe2.experiments.python.device_reduce_sum_bench import argparse import itertools import logging import os from six import add_metaclass import numpy as np from caffe2.python import workspace, core from caffe2.python.hypothesis_test_util import runOpBenchmark, gpu_do logging.basicConfig() logger = logging.getLogger(os.path.basename(__file__)) logger.setLevel(logging.INFO) ALL_BENCHMARKS = {} class BenchmarkMeta(type): def __new__(metacls, name, bases, class_dict): cls = type.__new__(metacls, name, bases, class_dict) if name != 'Benchmark': ALL_BENCHMARKS[name] = cls return cls @add_metaclass(BenchmarkMeta) class Benchmark(object): def __init__(self): self.results = [] def display(self): print('Results ({}):'.format(type(self).__name__)) print('input size ms/iter') print('------------------------------ -----------') for size, ms in self.results: print('{!s:<30} {:.4f}'.format(size, ms)) class SumElements(Benchmark): def run(self): op = core.CreateOperator( "SumElements", ["X"], ["y"] ) for n in itertools.imap(pow, itertools.cycle([10]), range(10)): X = np.random.rand(n).astype(np.float32) logger.info('Running benchmark for n = {}'.format(n)) ret = runOpBenchmark(gpu_do, op, inputs=[X]) self.results.append((n, ret[1])) class SumSqrElements(Benchmark): def run(self): op = core.CreateOperator( "SumSqrElements", ["X"], ["y"] ) for n in itertools.imap(pow, itertools.cycle([10]), range(10)): X = np.random.rand(n).astype(np.float32) logger.info('Running benchmark for n = {}'.format(n)) ret = runOpBenchmark(gpu_do, op, inputs=[X]) self.results.append((n, ret[1])) class SoftMaxWithLoss(Benchmark): def run(self): op = core.CreateOperator( "SoftmaxWithLoss", ["X", "label"], ["probs", "avgloss"], ) for n in itertools.imap(pow, itertools.cycle([10]), range(8)): for D in itertools.imap(pow, itertools.cycle([10]), range(3)): X = np.random.rand(n, D).astype(np.float32) label = (np.random.rand(n) * D).astype(np.int32) logger.info('Running benchmark for n = {}, D= {}'.format(n, D)) ret = runOpBenchmark(gpu_do, op, inputs=[X, label]) self.results.append(((n, D), ret[1])) def parse_args(): parser = argparse.ArgumentParser(os.path.basename(__file__)) parser.add_argument('-b', '--benchmarks', nargs='+', default=ALL_BENCHMARKS.keys(), help='benchmarks to run (default: %(default)s))') return parser.parse_args() def main(): args = parse_args() benchmarks = [ALL_BENCHMARKS[name]() for name in args.benchmarks] for bench in benchmarks: bench.run() for bench in benchmarks: bench.display() if __name__ == '__main__': workspace.GlobalInit(['caffe2', '--caffe2_log_level=2']) main()
the-stack_0_27602
""" Pedigree-related functions """ from abc import ABC, abstractmethod import math from typing import Optional from collections import Counter, OrderedDict, defaultdict from dataclasses import dataclass import logging logger = logging.getLogger(__name__) class ParseError(Exception): pass @dataclass class RecombinationMapEntry: position: int cum_distance: int @dataclass class RecombinationEvent: position1: int position2: int transmitted_hap_father1: int transmitted_hap_father2: int transmitted_hap_mother1: int transmitted_hap_mother2: int recombination_cost: float def _interpolate(point, start_pos, end_pos, start_value, end_value): assert start_pos <= point <= end_pos if start_pos == point == end_pos: assert start_value == end_value return start_value return start_value + ((point - start_pos) * (end_value - start_value) / (end_pos - start_pos)) MINIMUM_GENETIC_DISTANCE = 1e-10 # cM def recombination_cost_map(genetic_map, positions): assert len(genetic_map) > 0 # Step 1: compute cumulative genetic distances from start of chromosome # to each position. cumulative_distances = [] # i and j are such that genetic_map[i].position <= position <= genetic_map[j].position # i and j are None if no such values exist (because we are at the end of the list) i = None j = 0 for position in positions: # update i to meet the invariant if (i is None) and (genetic_map[0].position <= position): i = 0 while ( (i is not None) and (i + 1 < len(genetic_map)) and (genetic_map[i + 1].position <= position) ): i += 1 # update j to meet the invariant while (j is not None) and (genetic_map[j].position < position): if j + 1 < len(genetic_map): j += 1 else: j = None # interpolate if i is None: assert j is not None d = _interpolate(position, 0, genetic_map[j].position, 0, genetic_map[j].cum_distance) elif j is None: # Point outside the genetic map --> extrapolating using average recombination rate avg_rate = genetic_map[-1].cum_distance / genetic_map[-1].position d = genetic_map[-1].cum_distance + (position - genetic_map[-1].position) * avg_rate else: assert genetic_map[i].position <= position <= genetic_map[j].position d = _interpolate( position, genetic_map[i].position, genetic_map[j].position, genetic_map[i].cum_distance, genetic_map[j].cum_distance, ) cumulative_distances.append(d) # Step 2: compute costs (= phred-scaled recombination probabilities between two positions) result = [0] for i in range(1, len(cumulative_distances)): d = cumulative_distances[i] - cumulative_distances[i - 1] d = max(d, MINIMUM_GENETIC_DISTANCE) result.append(round(centimorgen_to_phred(d))) return result def centimorgen_to_phred(distance): assert distance >= 0 if distance == 0: raise ValueError("Cannot convert genetic distance of zero to phred.") elif distance < 1e-10: return -10 * (math.log10(distance) - 2) else: p = (1.0 - math.exp(-(2.0 * distance) / 100)) / 2.0 return -10 * math.log10(p) def mendelian_conflict(genotypem, genotypef, genotypec): # TODO: Maybe inefficient alleles_m = genotypem.as_vector() alleles_f = genotypef.as_vector() alleles_c = genotypec.as_vector() if alleles_c[0] in alleles_m and alleles_c[1] in alleles_f: return False elif alleles_c[1] in alleles_m and alleles_c[0] in alleles_f: return False else: return True def find_recombination(transmission_vector, components, positions, recombcost): assert len(transmission_vector) == len(positions) == len(recombcost) assert set(components.keys()).issubset(set(positions)) position_to_index = {pos: i for i, pos in enumerate(positions)} blocks = defaultdict(list) for position, block_id in components.items(): blocks[block_id].append(position) event_list = [] cum_recomb_cost = 0 for block_id, block in blocks.items(): block.sort() block_transmission_vector = [transmission_vector[position_to_index[i]] for i in block] block_recomb_cost = [recombcost[position_to_index[i]] for i in block] if len(block) <= 2: continue for i in range(2, len(block)): if block_transmission_vector[i - 1] != block_transmission_vector[i]: event_list.append( RecombinationEvent( block[i - 1], block[i], block_transmission_vector[i - 1] % 2, block_transmission_vector[i] % 2, block_transmission_vector[i - 1] // 2, block_transmission_vector[i] // 2, block_recomb_cost[i], ) ) cum_recomb_cost += block_recomb_cost[i] logger.info("Cost accounted for by recombination events: %d", cum_recomb_cost) event_list.sort() return event_list class RecombinationCostComputer(ABC): @abstractmethod def compute(self, positions): pass class GeneticMapRecombinationCostComputer(RecombinationCostComputer): def __init__(self, genetic_map_path): self._genetic_map = self.load_genetic_map(genetic_map_path) @staticmethod def load_genetic_map(filename): genetic_map = [] warned_zero_distance = False with open(filename) as fid: for line_number, line in enumerate(fid, 1): if line_number == 1: continue fields = line.strip().split() if not fields: # Skip empty lines continue if len(fields) != 3: raise ParseError( "Error at line {} of genetic map file '{}': " "Found {} fields instead of 3".format(line_number, filename, len(fields)) ) try: position = int(fields[0]) cum_distance = float(fields[2]) except ValueError as e: raise ParseError( "Error at line {} of genetic map file '{}': {}".format( line_number, filename, e ) ) genetic_map.append( RecombinationMapEntry(position=position, cum_distance=cum_distance) ) if len(genetic_map) >= 2: if not warned_zero_distance and ( genetic_map[-2].cum_distance == genetic_map[-1].cum_distance ): logger.warning("Zero genetic distances encountered in %s", filename) warned_zero_distance = True return genetic_map def compute(self, positions): return recombination_cost_map(self._genetic_map, positions) class UniformRecombinationCostComputer(RecombinationCostComputer): def __init__(self, recombination_rate): self._recombination_rate = recombination_rate @staticmethod def uniform_recombination_map(recombrate, positions): """ For a list of positions and a constant recombination rate (in cM/Mb), return a list "results" of the same length as "positions" such that results[i] is the phred-scaled recombination probability between positions[i-1] and positions[i]. """ return [0] + [ round(centimorgen_to_phred((positions[i] - positions[i - 1]) * 1e-6 * recombrate)) for i in range(1, len(positions)) ] def compute(self, positions): return self.uniform_recombination_map(self._recombination_rate, positions) @dataclass class Trio: """Relationships are modelled as a set of trios (mother, father, child).""" child: Optional[int] father: Optional[int] mother: Optional[int] class PedReader: """ A parser for PED/FAM files as used by PLINK and other tools. According to <http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml>: The PED file is a white-space (space or tab) delimited file: the first six columns are mandatory: * Family ID * Individual ID * Paternal ID * Maternal ID * Sex (1=male; 2=female; other=unknown) * Phenotype All fields except the individual, maternal and paternal ID are ignored by this class. The entire file is read upon construction. """ def __init__(self, file): if isinstance(file, str): with open(file) as f: self.trios = self._parse(f) else: self.trios = self._parse(file) @staticmethod def _parse_record(line): """ Parse a single non-comment line of a PED or FAM file. """ fields = line.split() if len(fields) < 6: raise ParseError("Less than six fields found in PED/FAM file") individual_id, paternal_id, maternal_id = fields[1:4] if paternal_id == "0": paternal_id = None if maternal_id == "0": maternal_id = None return Trio(child=individual_id, father=paternal_id, mother=maternal_id) def _parse(self, file): trios = [] for line in file: if line.startswith("#") or line == "\n": continue trios.append(self._parse_record(line)) self._sanity_check(trios) return trios @staticmethod def _sanity_check(trios): """ Ensure that each individual occurs only once in the file. """ children = [trio.child for trio in trios] if not children: return id, count = Counter(children).most_common()[0] if count > 1: raise ParseError("Individual {!r} occurs more than once in PED file".format(id)) def __iter__(self): return iter(self.trios) def samples(self): """Return a list of all mentioned individuals""" samples = set() for trio in self.trios: if trio.child is None or trio.mother is None or trio.father is None: continue samples.add(trio.father) samples.add(trio.mother) samples.add(trio.child) return list(samples) class CyclicGraphError(Exception): pass class Graph: """Directed graph that can sort topologically""" def __init__(self): # map node to a list of neighbors self._neighbors = OrderedDict() def add_edge(self, node1, node2): """The edge is directed from node1 to node2""" if node1 not in self._neighbors: self._neighbors[node1] = [] self._neighbors[node1].append(node2) if node2 not in self._neighbors: self._neighbors[node2] = [] def toposorted(self): """ Return nodes of the graph sorted topologically. For all edges u -> v that the graph has, node v will appear before node u. """ order = [] colors = {node: "white" for node in self._neighbors} def visit(node): assert colors[node] == "white" colors[node] = "gray" for neighbor in self._neighbors[node]: if colors[neighbor] == "white": visit(neighbor) elif colors[neighbor] == "gray": raise CyclicGraphError( "Cycle involving {!r} and {!r} detected".format(node, neighbor) ) order.append(node) colors[node] = "black" for node in self._neighbors: if colors[node] == "white": visit(node) return order
the-stack_0_27603
# -*- coding: UTF-8 -*- # version 2 use database instead of csv. import DBOperation import StaticUtils import VerdictAnalyser import time def update_case_table(db_conn, case): fields_list = ['court_level', 'region', 'prosecutor', 'court_procedure', 'verdict'] data_list = list() for f in fields_list: data_list.append(case[f]) #print(fields_list, data_list) #fields_list.append('analysed') #data_list.append(5) db_conn.multi_update(StaticUtils.case_table, fields_list, data_list, 'doc_id=\'{}\' and name=\'{}\''.format(case['doc_id'], case['name'])) def update_defendant_table(db_conn, case): for index, defendant in enumerate(case['defendant']): fields_list = list() data_list = list() for k, v in defendant.items(): # if value is none, do nothing, ignore this field. if v is not None: fields_list.append(k) data_list.append(v) #print(fields_list, data_list) defendant_id = case['doc_id'] + '{:0>2}'.format(index) #print(defendant_id, defendant['name']) db_defendant_id = db_conn.get(StaticUtils.defendant_table, 'defendant_id', f'defendant_id=\'{defendant_id}\'') if not db_defendant_id: add_defendant(db_conn, case['doc_id'], defendant['name'], defendant_id) db_conn.multi_update(StaticUtils.defendant_table, fields_list, data_list, 'doc_id=\'{}\' and name=\'{}\''.format(case['doc_id'], defendant['name'])) def update_to_db(db_conn, case_list): for case in case_list: update_case_table(db_conn, case) update_defendant_table(db_conn, case) def add_defendant(db_conn, case_doc_id, case_defendant_name, defendant_id): #INSERT INTO `sichuan_cases`.`defendent_list` (`doc_id`, `name`) VALUES ('0002099c-c066-4f99-a119-a850009ef04b', 'test'); db_conn.insert(StaticUtils.defendant_table, ('`doc_id`, `name`,`defendant_id`'), (case_doc_id, case_defendant_name, defendant_id)) def analyse_case(db_conn): case_list_out = list() case_list = list() case_list = db_conn.get(StaticUtils.case_table, 'name, doc_id, court, YEAR(DATE), content', 'retry=2 and YEAR(DATE)=2017', rows=1000) #print(case_list) #case_list = db_conn.get(StaticUtils.case_table, 'name, doc_id, court, YEAR(DATE), content', # 'doc_id=\'83801051-e508-462b-9602-a8ff00a65e95\'') #for case_name, case_doc_id, case_court, case_year, case_content in case_list: for case_info in case_list: case = dict() case['name'], case['doc_id'], case['court'], case['year'], case['content'] = case_info db_conn.update(StaticUtils.case_table, 'retry', 3, 'doc_id=\'{}\''.format(case['doc_id'])) if not case['content'] or len(case['content']) < 100 : db_conn.update(StaticUtils.case_table, 'analysed', -1, 'doc_id=\'{}\''.format(case['doc_id'])) continue verdict = VerdictAnalyser.VerdictAnalyser(case['content'], case['year']) # collect data for case table case['court_level'] = verdict.get_court_level(case['court']) case['region'] = verdict.get_region(case['court']) case['prosecutor'] = verdict.get_prosecutor() case['court_procedure'] = verdict.get_procedure() case['verdict'] = verdict.get_verdict_name() # collect data for defendant table try: defendant_info_list, defendant_name_list = verdict.get_defendant_name_list( verdict.get_defendant_info_list()) except Exception as e: print(e) if not defendant_name_list: db_conn.update(StaticUtils.case_table, 'analysed', 0, 'doc_id=\'{}\''.format(case['doc_id'])) continue else: db_conn.update(StaticUtils.case_table, 'analysed', len(defendant_name_list), 'doc_id=\'{}\''.format(case['doc_id'])) case['defendant'] = list() convict_info = verdict.get_defendant_convict_info(defendant_name_list) for i in range(len(defendant_name_list)): lawyer_list = verdict.get_defendant_lawyer(defendant_info_list[i]) s_lawyer_list = verdict.get_defendant_s_lawyer(defendant_info_list[i]) case['defendant'].append(dict()) case['defendant'][i]['name'] = defendant_name_list[i] case['defendant'][i]['nation'] = verdict.get_defendant_nation(defendant_info_list[i]) case['defendant'][i]['age'] = verdict.get_defendant_age(defendant_info_list[i]) case['defendant'][i]['sex'] = verdict.get_defendant_sex(defendant_info_list[i]) case['defendant'][i]['education'] = verdict.get_defendant_education(defendant_info_list[i]) case['defendant'][i]['job'] = verdict.get_defendant_job(defendant_info_list[i]) case['defendant'][i]['charge'] = verdict.get_defendant_charge(defendant_name_list[i], convict_info) case['defendant'][i]['charge_c'] = verdict.get_charge_class(case['defendant'][i]['charge']) case['defendant'][i]['prison'] = verdict.get_defendant_prison(defendant_name_list[i], convict_info) case['defendant'][i]['prison_l'] = verdict.get_prison_len(case['defendant'][i]['prison']) case['defendant'][i]['probation'] = verdict.get_defendant_probation(defendant_name_list[i], convict_info) case['defendant'][i]['probation_l'] = verdict.get_prison_len(case['defendant'][i]['probation']) case['defendant'][i]['fine'] = verdict.get_defendant_fine(defendant_name_list[i], convict_info) case['defendant'][i]['lawyer_n'] = len(lawyer_list) if lawyer_list else None case['defendant'][i]['s_lawyer_n'] = len(s_lawyer_list) if s_lawyer_list else None case['defendant'][i]['has_lawyer'] = 'yes' if case['defendant'][i]['lawyer_n'] or case['defendant'][i]['s_lawyer_n'] else 'no' case_list_out.append(case) return case_list_out def main(): db_sc_cases = DBOperation.MyDatabase('127.0.0.1', 'root', '082666') t0 = time.time() cases = analyse_case(db_sc_cases) t1 = time.time() update_to_db(db_sc_cases, cases) t2 = time.time() db_sc_cases.commit() t3 = time.time() print(t1-t0, t2-t1, t3-t2) db_sc_cases.close() if __name__ == "__main__": main()
the-stack_0_27604
from typing import Optional, List, Tuple, cast import numpy as np try: from xbbo.alg_auxiliary.lamcts import MCTS from xbbo.alg_auxiliary.lamcts.latent_space import LatentConverterRNVP, LatentConverterVAE, LatentConverterPCA, LatentConverterCNN, LatentConverterIdentity except Exception as e: print(repr(e)) from xbbo.initial_design import ALL_avaliable_design from xbbo.utils.constants import MAXINT # from xbbo.configspace.feature_space import Uniform2Gaussian from xbbo.search_algorithm.base import AbstractOptimizer from xbbo.configspace.space import DenseConfiguration, DenseConfigurationSpace from xbbo.core.trials import Trial, Trials from . import alg_register @alg_register.register('lamcts') class LaMCTS(AbstractOptimizer): def __init__( self, space: DenseConfigurationSpace, seed: int = 42, initial_design: str = 'lh', init_budget: int = None, suggest_limit: int = np.inf, split_latent_model: str = 'identity', split_latent_dims: int = None, sample_latent_dims: int = None, sample_latent_model: str = 'identity', device: str = "cpu", leaf_size=20, kernel_type='rbf', gamma_type='auto', C_p: float = 10, solver="cmaes", split_metric='max', cmaes_sigma_mult=1.0, use_gpr=True, treeify_freq=1, init_within_leaf="mean", splitter_type="kmeans", normalize=True, split_use_predict=True, # False->kmeans result; True->svm **kwargs): AbstractOptimizer.__init__(self, space, encoding_cat='bin', encoding_ord='bin', seed=seed, suggest_limit=suggest_limit, **kwargs) # Uniform2Gaussian.__init__(self, ) if self.space.get_conditions(): raise NotImplementedError( "LaMCTS optimizer currently does not support conditional space!" ) self.dimension = self.space.get_dimensions() self.initial_design = ALL_avaliable_design[initial_design]( self.space, self.rng, ta_run_limit=suggest_limit, init_budget=init_budget, **kwargs) self.init_budget = self.initial_design.init_budget self.initial_design_configs = self.initial_design.select_configurations( ) self.bounds = self.space.get_bounds() if split_latent_model == 'identity': self.split_latent_converter = LatentConverterIdentity( self.bounds, dim=self.dimension, latent_dim=split_latent_dims, device=device, rng=self.rng, **kwargs) else: raise NotImplementedError # elif latent_model == 'pca': # latent_converter = LatentConverterPCA(args, latent_dim, device=device, **kwargs) # elif latent_model == 'cnn': # latent_converter = LatentConverterCNN(args, env_info, device=device) # elif latent_model == 'vae': # latent_converter = LatentConverterVAE(args, env_info, device=device) # elif latent_model == 'realnvp': # latent_converter = LatentConverterRNVP(args, env_info, device=device) # elif latent_model == 'identity': # latent_converter = LatentConverterIdentity(args, env_info, device=device) if sample_latent_model == 'identity': self.sample_latent_converter = LatentConverterIdentity( self.bounds, dim=self.dimension, latent_dim=sample_latent_dims, device=device, rng=self.rng, **kwargs) else: raise NotImplementedError self.sample_latent_dims = self.sample_latent_converter.latent_dim self.split_latent_dims = self.split_latent_converter.latent_dim self.sample_latent_bounds = self.sample_latent_converter.bounds # self.bounds = self.space.get_bounds() # self.es = cma.CMAEvolutionStrategy([0.5] * self.dimension, # 0.1, # inopts={ # 'seed': # self.rng.randint(MAXINT), # 'bounds': [0, 1] # }) # self.hp_num = len(configs) self.trials = Trials(space, dim=self.dimension) self.agent = MCTS( self.space, sample_latent_bounds=self.sample_latent_bounds, dims=self.dimension, split_latent_converter=self.split_latent_converter, sample_latent_converter=self.sample_latent_converter, split_latent_dims=self.split_latent_dims, sample_latent_dims=self.sample_latent_dims, solver=solver, split_metric=split_metric, cmaes_sigma_mult=cmaes_sigma_mult, use_gpr=use_gpr, treeify_freq=treeify_freq, init_within_leaf=init_within_leaf, splitter_type=splitter_type, C_p=C_p, leaf_size=leaf_size, kernel_type=kernel_type, gamma_type=gamma_type, normalize=normalize, rng=self.rng, split_use_predict=split_use_predict, **kwargs) # best_x, best_fx = agent.search(iterations = args.iterations, samples_per_iteration=args.samples_per_iteration, treeify_freq=args.treeify_freq) # assert func.counter == args.iterations # return best_x.reshape(args.horizon, env_info['action_dims']), agent def _suggest(self, n_suggestions=1): trial_list = [] # currently only suggest one if (self.trials.trials_num) < self.init_budget: assert self.trials.trials_num % n_suggestions == 0 configs = self.initial_design_configs[ int(n_suggestions * self.trials.trials_num):int(n_suggestions * (self.trials.trials_num + 1))] for config in configs: trial_list.append( Trial(configuration=config, config_dict=config.get_dictionary(), array=config.get_array(), _latent_sample=None, _leaf=None)) else: # if (self.trials.trials_num) < self.min_sample: # while len(trial_list) < n_suggestions: # remove history suggest # config = self.cs.sample_configuration(size=1)[0] # if not self.trials.is_contain(config): # trial_list.append( # Trial(configuration=config, # config_dict=config.get_dictionary(), # array=config.get_array())) # return trial_list leaf, latent_samples, samples = self.agent.suggest(n_suggestions) for n in range(n_suggestions): array = samples[n] config = DenseConfiguration.from_array(self.space, array) trial_list.append( Trial(config, config_dict=config.get_dictionary(), array=array, _latent_sample=latent_samples[n], _leaf=leaf)) return trial_list def _observe(self, trial_list): for trial in trial_list: self.trials.add_a_trial(trial) # self.listx.append(self.array_to_feature(trial.array)) # self.listx.append(trial.array) # self.listy.append(trial.observe_value) self.agent.observe(trial._leaf, trial._latent_sample, trial.array, -trial.observe_value) # LaMCTS Maximize opt_class = LaMCTS
the-stack_0_27605
#!/usr/bin/env python from flask import Flask from flask import request from flask import render_template from flask import redirect, url_for from raspipe import RasPipe app = Flask(__name__) rp = RasPipe(None) rp.input_lines.append('starting up...') rp.render_frame() @app.route('/') def index(): return render_template('index.html', rp=rp) @app.route('/display', methods=['POST']) def display(): rp.input_lines.append(request.form['line']) rp.render_frame() return redirect(url_for('index')) @app.route('/quit') def quit(): func = request.environ.get('werkzeug.server.shutdown') func() return "Quitting..." if __name__ == '__main__': app.debug = True app.run(host='0.0.0.0')
the-stack_0_27606
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models from odoo.tools import float_compare class SaleOrderLine(models.Model): _inherit = 'sale.order.line' @api.multi def _compute_qty_delivered(self): super(SaleOrderLine, self)._compute_qty_delivered() for line in self: if line.qty_delivered_method == 'stock_move': # In the case of a kit, we need to check if all components are shipped. Since the BOM might # have changed, we don't compute the quantities but verify the move state. bom = self.env['mrp.bom']._bom_find(product=line.product_id, company_id=line.company_id.id) if bom and bom.type == 'phantom': moves = line.move_ids.filtered(lambda m: m.picking_id and m.picking_id.state != 'cancel') bom_delivered = moves and all([move.state == 'done' for move in moves]) if bom_delivered: line.qty_delivered = line.product_uom_qty else: line.qty_delivered = 0.0 @api.multi def _get_bom_component_qty(self, bom): bom_quantity = self.product_uom._compute_quantity(1, bom.product_uom_id) boms, lines = bom.explode(self.product_id, bom_quantity) components = {} for line, line_data in lines: product = line.product_id.id uom = line.product_uom_id qty = line.product_qty if components.get(product, False): if uom.id != components[product]['uom']: from_uom = uom to_uom = self.env['uom.uom'].browse(components[product]['uom']) qty = from_uom._compute_quantity(qty, to_uom) components[product]['qty'] += qty else: # To be in the uom reference of the product to_uom = self.env['product.product'].browse(product).uom_id if uom.id != to_uom.id: from_uom = uom qty = from_uom._compute_quantity(qty, to_uom) components[product] = {'qty': qty, 'uom': to_uom.id} return components def _get_qty_procurement(self): self.ensure_one() # Specific case when we change the qty on a SO for a kit product. # We don't try to be too smart and keep a simple approach: we compare the quantity before # and after update, and return the difference. We don't take into account what was already # sent, or any other exceptional case. bom = self.env['mrp.bom']._bom_find(product=self.product_id) if bom and bom.type == 'phantom' and 'previous_product_uom_qty' in self.env.context: return self.env.context['previous_product_uom_qty'].get(self.id, 0.0) return super(SaleOrderLine, self)._get_qty_procurement() @api.multi @api.depends('product_id', 'move_ids.state') def _compute_qty_delivered_method(self): lines = self.env['sale.order.line'] for line in self: bom = self.env['mrp.bom']._bom_find(product=line.product_id, company_id=line.company_id.id) if bom and bom.type == 'phantom' and line.order_id.state == 'sale': bom_delivered = all([move.state == 'done' for move in line.move_ids]) if not bom_delivered: line.qty_delivered_method = 'manual' lines |= line super(SaleOrderLine, self - lines)._compute_qty_delivered_method() class AccountInvoiceLine(models.Model): # TDE FIXME: what is this code ?? _inherit = "account.invoice.line" def _get_anglo_saxon_price_unit(self): price_unit = super(AccountInvoiceLine, self)._get_anglo_saxon_price_unit() # in case of anglo saxon with a product configured as invoiced based on delivery, with perpetual # valuation and real price costing method, we must find the real price for the cost of good sold if self.product_id.invoice_policy == "delivery": for s_line in self.sale_line_ids: # qtys already invoiced qty_done = sum([x.uom_id._compute_quantity(x.quantity, x.product_id.uom_id) for x in s_line.invoice_lines if x.invoice_id.state in ('open', 'in_payment', 'paid')]) quantity = self.uom_id._compute_quantity(self.quantity, self.product_id.uom_id) # Put moves in fixed order by date executed moves = s_line.move_ids.sorted(lambda x: x.date) # Go through all the moves and do nothing until you get to qty_done # Beyond qty_done we need to calculate the average of the price_unit # on the moves we encounter. bom = s_line.product_id.product_tmpl_id.bom_ids and s_line.product_id.product_tmpl_id.bom_ids[0] if bom.type == 'phantom': average_price_unit = 0 components = s_line._get_bom_component_qty(bom) for product_id in components: factor = components[product_id]['qty'] prod_moves = [m for m in moves if m.product_id.id == product_id] prod_qty_done = factor * qty_done prod_quantity = factor * quantity average_price_unit += factor * self._compute_average_price(prod_qty_done, prod_quantity, prod_moves) price_unit = average_price_unit or price_unit price_unit = self.product_id.uom_id._compute_price(price_unit, self.uom_id) return price_unit
the-stack_0_27608
import socket HOST = '127.0.0.1' PORT = 4040 def create_listen_socket(host, port): """ Setup the sockets our server will receive connection requests on """ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((host, port)) sock.listen(100) return sock def parse_recvd_data(data): """ Break up raw received data into messages, delimited by null byte """ parts = data.split(b'\0') msgs = parts[:-1] rest = parts[-1] return msgs, rest def recv_msgs(sock, data=bytes()): """ Receive data and break into complete messages on null byte delimiter. Block until at least one message received, then return received messages """ msgs = [] while not msgs: recvd = sock.recv(4096) # <-- Blocks if not recvd: raise ConnectionError() data = data + recvd (msgs, rest) = parse_recvd_data(data) msgs = [msg.decode('utf-8') for msg in msgs] return msgs, rest def recv_msg(sock): """ Wait for data to arrive on the socket, then parse into messages using b'\0' as message delimiter """ data = bytearray() msg = '' # Repeatedly read 4096 bytes off the socket, storing the bytes # in data until we see a delimiter while not msg: recvd = sock.recv(4096) if not recvd: # Socket has been closed prematurely raise ConnectionError() data = data + recvd if b'\0' in recvd: # we know from out protocol rules that we only send # one message per connection, so b'\0' will always be # the last character msg = data.rstrip(b'\0') msg = msg.decode('utf-8') return msg def prep_msg(msg): """ Prepare a string to be sent as a message """ msg += '\0' return msg.encode('utf-8') def send_msg(sock, msg): """ Send a string over a socket, preparing it first """ data = prep_msg(msg) sock.sendall(data)
the-stack_0_27609
import pandas as pd from matplotlib import pyplot import os os.chdir('/Desktop/web_scraping/') data=pd.read_csv('final_movie_details.csv') # plot pyplot.scatter(data['imdb'],data['metascore']) pyplot.show() # plot pyplot.scatter(data['metascore'],data['votes']) pyplot.show() # We can see a bit of linear relationship between imdb score and metascore lets try linear regression on it ## ML model X = data.loc[:, 'metascore'].values y = data.loc[:, 'imdb'].values # Splitting the dataset into the Training set and Test set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_state = 0) from sklearn.linear_model import LinearRegression regressor = LinearRegression()#making object for reg package regressor.fit(X_train.reshape(-1,1), y_train.reshape(-1,1))#to fit the regressor to our training data #predict the test results y_pred =regressor.predict(X_test.reshape(-1,1)) #Now if we compare y_Pred and y_test we can see the current salary and model predicted salary in y_pred pyplot.scatter(X_train, y_train, color = 'red') pyplot.plot(X_train, regressor.predict(X_train.reshape(-1,1)), color = 'blue') #we have plotted the line where real salary in x axis and #predicted salary in y axis and we observe thatfew obs which are on line means its quite accurate i.e. real salary approx equal to predcted salary pyplot.title('IMDB V/S METASCORE (Training set)') pyplot.xlabel('Metascore') pyplot.ylabel('IMDB') pyplot.show() # Visualising the Test set results pyplot.scatter(X_test, y_test, color = 'red') pyplot.plot(X_train, regressor.predict(X_train.reshape(-1,1)), color = 'blue') pyplot.title('IMDB V/S METASCORE (Training set)') pyplot.xlabel('Metascore') pyplot.ylabel('IMDB') pyplot.show() from sklearn.metrics import mean_squared_error mean_squared_error(y_test, y_pred) # 0.18041462828221905 # Its a good score we are getting it means the meta score is having quite good linear relation with imdb ## Let try with imdb and votes X1 = data.loc[:, ['metascore','votes']].values y1 = data.loc[:, 'imdb'].values # Splitting the dataset into the Training set and Test set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X1, y1, test_size = 0.33, random_state = 0) from sklearn.linear_model import LinearRegression regressor = LinearRegression()#making object for reg package regressor.fit(X_train, y_train)#to fit the regressor to our training data #predict the test results y_pred =regressor.predict(X_test) from sklearn.metrics import mean_squared_error mean_squared_error(y_test, y_pred) # 0.15729132122310804 good score dur=data['movie duration'].value_counts() #https://www.analyticsvidhya.com/blog/2017/08/introduction-to-multi-label-classification/ #https://www.analyticsvidhya.com/blog/2019/04/predicting-movie-genres-nlp-multi-label-classification/ ### Soon will make a multilable text classfier as the movie description has multiple tags like some are action plus comedy etc.
the-stack_0_27610
# from: https://github.com/m-labs/nmigen/blob/master/examples/basic/uart.py from nmigen import * class UART_NMIGEN(Elaboratable): def __init__(self, divisor, data_bits=8): assert divisor >= 4 self.data_bits = data_bits self.divisor = divisor self.tx_o = Signal() self.rx_i = Signal() self.tx_data = Signal(data_bits) self.tx_rdy = Signal() self.tx_ack = Signal() self.rx_data = Signal(data_bits) self.rx_err = Signal() self.rx_ovf = Signal() self.rx_rdy = Signal() self.rx_ack = Signal() def elaborate(self, platform): m = Module() ### m.domains.sync = ClockDomain() tx_phase = Signal(len(Const(self.divisor))) tx_shreg = Signal(1 + self.data_bits + 1, reset=-1) tx_count = Signal(len(Const(len(tx_shreg) + 1))) m.d.comb += self.tx_o.eq(tx_shreg[0]) with m.If(tx_count == 0): m.d.comb += self.tx_ack.eq(1) with m.If(self.tx_rdy): m.d.sync += [ tx_shreg.eq(Cat(C(0, 1), self.tx_data, C(1, 1))), tx_count.eq(len(tx_shreg)), tx_phase.eq(self.divisor - 1), ] with m.Else(): with m.If(tx_phase != 0): m.d.sync += tx_phase.eq(tx_phase - 1) with m.Else(): m.d.sync += [ tx_shreg.eq(Cat(tx_shreg[1:], C(1, 1))), tx_count.eq(tx_count - 1), tx_phase.eq(self.divisor - 1), ] rx_phase = Signal(len(Const(self.divisor))) rx_shreg = Signal(1 + self.data_bits + 1, reset=-1) rx_count = Signal(len(Const(len(rx_shreg) + 1))) m.d.comb += self.rx_data.eq(rx_shreg[1:-1]) with m.If(rx_count == 0): m.d.comb += self.rx_err.eq(~(~rx_shreg[0] & rx_shreg[-1])) with m.If(~self.rx_i): with m.If(self.rx_ack | ~self.rx_rdy): m.d.sync += [ self.rx_rdy.eq(0), self.rx_ovf.eq(0), rx_count.eq(len(rx_shreg)), rx_phase.eq(self.divisor // 2), ] with m.Else(): m.d.sync += self.rx_ovf.eq(1) with m.Else(): with m.If(rx_phase != 0): m.d.sync += rx_phase.eq(rx_phase - 1) with m.Else(): m.d.sync += [ rx_shreg.eq(Cat(rx_shreg[1:], self.rx_i)), rx_count.eq(rx_count - 1), rx_phase.eq(self.divisor - 1), ] with m.If(rx_count == 1): m.d.sync += self.rx_rdy.eq(1) return m
the-stack_0_27614
""" Hexadecimal Notation ==================== Defines the objects for hexadecimal notation: - :func:`colour.notation.RGB_to_HEX` - :func:`colour.notation.HEX_to_RGB` """ from __future__ import annotations import numpy as np from colour.algebra import normalise_maximum from colour.hints import ArrayLike, List, NDArray, StrOrArrayLike, StrOrNDArray from colour.models import eotf_inverse_sRGB, eotf_sRGB from colour.utilities import ( as_float_array, as_int_array, from_range_1, to_domain_1, usage_warning, ) __author__ = "Colour Developers" __copyright__ = "Copyright 2013 Colour Developers" __license__ = "New BSD License - https://opensource.org/licenses/BSD-3-Clause" __maintainer__ = "Colour Developers" __email__ = "[email protected]" __status__ = "Production" __all__ = [ "RGB_to_HEX", "HEX_to_RGB", ] def RGB_to_HEX(RGB: ArrayLike) -> StrOrNDArray: """ Convert from *RGB* colourspace to hexadecimal representation. Parameters ---------- RGB *RGB* colourspace array. Returns ------- :class:`str` or :class:`numpy.array` Hexadecimal representation. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``RGB`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ Examples -------- >>> RGB = np.array([0.66666667, 0.86666667, 1.00000000]) >>> RGB_to_HEX(RGB) '#aaddff' """ RGB = to_domain_1(RGB) if np.any(RGB < 0): usage_warning( '"RGB" array contains negative values, those will be clipped, ' "unpredictable results may occur!" ) RGB = as_float_array(np.clip(RGB, 0, np.inf)) if np.any(RGB > 1): usage_warning( '"RGB" array contains values over 1 and will be normalised, ' "unpredictable results may occur!" ) RGB = eotf_inverse_sRGB(normalise_maximum(eotf_sRGB(RGB))) to_HEX = np.vectorize("{:02x}".format) HEX = to_HEX(as_int_array(RGB * 255, dtype=np.uint8)).astype(object) HEX = np.asarray("#") + HEX[..., 0] + HEX[..., 1] + HEX[..., 2] return HEX def HEX_to_RGB(HEX: StrOrArrayLike) -> NDArray: """ Convert from hexadecimal representation to *RGB* colourspace. Parameters ---------- HEX Hexadecimal representation. Returns ------- :class:`numpy.array` *RGB* colourspace array. Notes ----- +-----------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +===========+=======================+===============+ | ``RGB`` | [0, 1] | [0, 1] | +-----------+-----------------------+---------------+ Examples -------- >>> HEX = '#aaddff' >>> HEX_to_RGB(HEX) # doctest: +ELLIPSIS array([ 0.6666666..., 0.8666666..., 1. ]) """ HEX = np.core.defchararray.lstrip(HEX, "#") # type: ignore[arg-type] def to_RGB(x: List) -> List: """Convert given hexadecimal representation to *RGB*.""" l_x = len(x) return [ int(x[i : i + l_x // 3], 16) # type: ignore[call-overload] for i in range(0, l_x, l_x // 3) ] to_RGB_v = np.vectorize(to_RGB, otypes=[np.ndarray]) RGB = as_float_array(to_RGB_v(HEX).tolist()) / 255 return from_range_1(RGB)
the-stack_0_27616
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class WaitCriteriaSummary(object): """ Specifies wait criteria for the Wait stage. """ #: A constant which can be used with the wait_type property of a WaitCriteriaSummary. #: This constant has a value of "ABSOLUTE_WAIT" WAIT_TYPE_ABSOLUTE_WAIT = "ABSOLUTE_WAIT" def __init__(self, **kwargs): """ Initializes a new WaitCriteriaSummary object with values from keyword arguments. This class has the following subclasses and if you are using this class as input to a service operations then you should favor using a subclass over the base class: * :class:`~oci.devops.models.AbsoluteWaitCriteriaSummary` The following keyword arguments are supported (corresponding to the getters/setters of this class): :param wait_type: The value to assign to the wait_type property of this WaitCriteriaSummary. Allowed values for this property are: "ABSOLUTE_WAIT", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type wait_type: str """ self.swagger_types = { 'wait_type': 'str' } self.attribute_map = { 'wait_type': 'waitType' } self._wait_type = None @staticmethod def get_subtype(object_dictionary): """ Given the hash representation of a subtype of this class, use the info in the hash to return the class of the subtype. """ type = object_dictionary['waitType'] if type == 'ABSOLUTE_WAIT': return 'AbsoluteWaitCriteriaSummary' else: return 'WaitCriteriaSummary' @property def wait_type(self): """ **[Required]** Gets the wait_type of this WaitCriteriaSummary. wait criteria type Allowed values for this property are: "ABSOLUTE_WAIT", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The wait_type of this WaitCriteriaSummary. :rtype: str """ return self._wait_type @wait_type.setter def wait_type(self, wait_type): """ Sets the wait_type of this WaitCriteriaSummary. wait criteria type :param wait_type: The wait_type of this WaitCriteriaSummary. :type: str """ allowed_values = ["ABSOLUTE_WAIT"] if not value_allowed_none_or_none_sentinel(wait_type, allowed_values): wait_type = 'UNKNOWN_ENUM_VALUE' self._wait_type = wait_type def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
the-stack_0_27617
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Loss utility functions.""" import math import tensorflow as tf # Define measure types. TYPE_MEASURE_GAN = 'GAN' # Vanilla GAN. TYPE_MEASURE_JSD = 'JSD' # Jensen-Shannon divergence. TYPE_MEASURE_KL = 'KL' # KL-divergence. TYPE_MEASURE_RKL = 'RKL' # Reverse KL-divergence. TYPE_MEASURE_H2 = 'H2' # Squared Hellinger. TYPE_MEASURE_W1 = 'W1' # Wasserstein distance (1-Lipschitz). # Define generator loss types. TYPE_GENERATOR_LOSS_MM = 'MM' # Minimax. TYPE_GENERATOR_LOSS_NS = 'NS' # Non-saturating. def compute_positive_expectation(samples, measure, reduce_mean=False): """Computes the positive part of a divergence or difference. Args: samples: A tensor for the positive samples. measure: A string for measure to compute. See TYPE_MEASURE_* for supported measure types. reduce_mean: A boolean indicating whether to reduce results Returns: A tensor (has the same shape as samples) or scalar (if reduced) for the positive expectation of the inputs. """ if measure == TYPE_MEASURE_GAN: expectation = -tf.math.softplus(-samples) elif measure == TYPE_MEASURE_JSD: expectation = math.log(2.) - tf.math.softplus(-samples) elif measure == TYPE_MEASURE_KL: expectation = samples elif measure == TYPE_MEASURE_RKL: expectation = -tf.math.exp(-samples) elif measure == TYPE_MEASURE_H2: expectation = 1. - tf.math.exp(-samples) elif measure == TYPE_MEASURE_W1: expectation = samples else: raise ValueError('Measure {} not supported'.format(measure)) if reduce_mean: return tf.math.reduce_mean(expectation) else: return expectation def compute_negative_expectation(samples, measure, reduce_mean=False): """Computes the negative part of a divergence or difference. Args: samples: A tensor for the negative samples. measure: A string for measure to compute. See TYPE_MEASURE_* for supported measure types. reduce_mean: A boolean indicating whether to reduce results Returns: A tensor (has the same shape as samples) or scalar (if reduced) for the negative expectation of the inputs. """ if measure == TYPE_MEASURE_GAN: expectation = tf.math.softplus(-samples) + samples elif measure == TYPE_MEASURE_JSD: expectation = tf.math.softplus(-samples) + samples - math.log(2.) elif measure == TYPE_MEASURE_KL: expectation = tf.math.exp(samples - 1.) elif measure == TYPE_MEASURE_RKL: expectation = samples - 1. elif measure == TYPE_MEASURE_H2: expectation = tf.math.exp(samples) - 1. elif measure == TYPE_MEASURE_W1: expectation = samples else: raise ValueError('Measure {} not supported'.format(measure)) if reduce_mean: return tf.math.reduce_mean(expectation) else: return expectation def compute_fenchel_dual_loss(local_features, global_features, measure, positive_indicator_matrix=None): """Computes the f-divergence loss. It is the distance between positive and negative joint distributions. Divergences (measures) supported are Jensen-Shannon (JSD), GAN (equivalent to JSD), Squared Hellinger (H2), KL and reverse KL (RKL). Reference: Hjelm et al. Learning deep representations by mutual information estimation and maximization. https://arxiv.org/pdf/1808.06670.pdf. Args: local_features: A tensor for local features. Shape = [batch_size, num_locals, feature_dim]. global_features: A tensor for local features. Shape = [batch_size, num_globals, feature_dim]. measure: A string for f-divergence measure. positive_indicator_matrix: A tensor for indicating positive sample pairs. 1.0 means positive and otherwise 0.0. It should be symmetric with 1.0 at diagonal. Shape = [batch_size, batch_size]. Returns: A scalar for the computed loss. """ batch_size, num_locals, feature_dim = local_features.shape num_globals = global_features.shape[-2] # Make the input tensors the right shape. local_features = tf.reshape(local_features, (-1, feature_dim)) global_features = tf.reshape(global_features, (-1, feature_dim)) # Compute outer product, we want a [batch_size, num_locals, batch_size, # num_globals] tensor. product = tf.linalg.matmul(local_features, global_features, transpose_b=True) product = tf.reshape( product, (batch_size, num_locals, batch_size, num_globals)) # Compute the indicator_matrix for positive and negative samples. if positive_indicator_matrix is None: positive_indicator_matrix = tf.eye(batch_size, dtype=tf.dtypes.float32) negative_indicator_matrix = 1. - positive_indicator_matrix # Compute the positive and negative scores, and average the spatial locations. positive_expectation = compute_positive_expectation( product, measure, reduce_mean=False) negative_expectation = compute_negative_expectation( product, measure, reduce_mean=False) positive_expectation = tf.math.reduce_mean(positive_expectation, axis=[1, 3]) negative_expectation = tf.math.reduce_mean(negative_expectation, axis=[1, 3]) # Mask positive and negative terms. positive_expectation = tf.math.reduce_sum( positive_expectation * positive_indicator_matrix) / tf.math.maximum( tf.math.reduce_sum(positive_indicator_matrix), 1e-12) negative_expectation = tf.math.reduce_sum( negative_expectation * negative_indicator_matrix) / tf.math.maximum( tf.math.reduce_sum(negative_indicator_matrix), 1e-12) return negative_expectation - positive_expectation def compute_info_nce_loss(local_features, global_features, positive_indicator_matrix=None, temperature=1.0): """Computes the InfoNCE (CPC) loss. Reference: Oord et al. Representation Learning with Contrastive Predictive Coding. https://arxiv.org/pdf/1807.03748.pdf. Args: local_features: A tensor for local features. Shape = [batch_size, num_locals, feature_dim]. global_features: A tensor for local features. Shape = [batch_size, num_globals, feature_dim]. positive_indicator_matrix: A tensor for indicating positive sample pairs. 1.0 means positive and otherwise 0.0. It should be symmetric with 1.0 at diagonal. Shape = [batch_size, batch_size]. temperature: A float for temperature hyperparameter. Returns: A scalar for the computed loss. """ batch_size, num_locals, feature_dim = local_features.shape num_globals = global_features.shape[-2] # Make the input tensors the right shape. # -> Shape = [batch_size * num_locals, feature_dim]. local_features_reshaped = tf.reshape(local_features, (-1, feature_dim)) # -> Shape = [batch_size * num_globals, feature_dim]. global_features_reshaped = tf.reshape(global_features, (-1, feature_dim)) # Inner product for positive samples. # -> Shape = [batch_size, num_locals, num_globals] positive_expectation = tf.linalg.matmul( local_features, tf.transpose(global_features, (0, 2, 1))) if temperature != 1.0: positive_expectation /= temperature # -> Shape = [batch_size, num_locals, 1, num_globals] positive_expectation = tf.expand_dims(positive_expectation, axis=2) # Outer product for negative. We want a [batch_size, batch_size, num_locals, # num_globals] tensor. # -> Shape = [batch_size * num_globals, batch_size * num_locals]. product = tf.linalg.matmul( global_features_reshaped, local_features_reshaped, transpose_b=True) if temperature != 1.0: product /= temperature product = tf.reshape(product, (batch_size, num_globals, batch_size, num_locals)) # -> Shape = [batch_size, batch_size, num_locals, num_globals]. product = tf.transpose(product, (0, 2, 3, 1)) # Mask positive part of the negative tensor. if positive_indicator_matrix is None: positive_indicator_matrix = tf.eye(batch_size, dtype=tf.dtypes.float32) # -> Shape = [batch_size, batch_size, 1, 1]. positive_indicator_matrix = positive_indicator_matrix[:, :, tf.newaxis, tf.newaxis] # -> Shape = [batch_size, batch_size, 1, 1]. negative_indicator_matrix = 1. - positive_indicator_matrix # Masking is done by shifting the diagonal before exp. negative_expectation = ( negative_indicator_matrix * product - 1e12 * positive_indicator_matrix) negative_expectation = tf.reshape( negative_expectation, (batch_size, batch_size * num_locals, num_globals)) # -> Shape = [batch_size, 1, batch_size * num_locals, num_globals] negative_expectation = tf.expand_dims(negative_expectation, axis=1) # -> Shape = [batch_size, num_locals, batch_size * num_locals, num_globals] negative_expectation = tf.tile(negative_expectation, tf.constant((1, num_locals, 1, 1))) # -> Shape = [batch_size, num_locals, 1 + batch_size * num_locals, # num_globals]. logits = tf.concat([positive_expectation, negative_expectation], axis=2) # -> Shape = [batch_size, num_locals, num_globals]. loss = tf.nn.log_softmax(logits, axis=2) # The positive score is the first element of the log softmax. # -> Shape = [batch_size, num_locals]. loss = -loss[:, :, 0] # -> Shape = []. return tf.reduce_mean(loss) def compute_log_likelihood(x_mean, x_logvar, y): """Computes the log-likelihood of y|x. Args: x_mean: A tensor for mean of y estimated from x. Shape = [batch_size, feature_dim]. x_logvar: A tensor for log variance of y estimated from x. Shape = [ batch_size, feature_dim]. y: A tensor for value of y. Shape = [batch_size, feature_dim]. Returns: A scalar for the computed log-likelihood of y|x. """ likelihood = -(x_mean - y) ** 2 / tf.math.exp(x_logvar) / 2. - x_logvar / 2. return tf.math.reduce_mean(likelihood) def compute_contrastive_log_ratio(x_mean, x_logvar, y, positive_indicator_matrix=None): """Computes the contrastive log-ratio of y|x. The result can be used as a variational upper-bound estimation of the mutual information I(x, y). Reference: Cheng et al. CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information. https://arxiv.org/pdf/2006.12013.pdf. Args: x_mean: A tensor for mean of y estimated from x. Shape = [batch_size, feature_dim]. x_logvar: A tensor for log variance of y estimated from x. Shape = [ batch_size, feature_dim]. y: A tensor for value of y. Shape = [batch_size, feature_dim]. positive_indicator_matrix: A tensor for indicating positive sample pairs. 1.0 means positive and otherwise 0.0. It should be symmetric with 1.0 at diagonal. Shape = [batch_size, batch_size]. Returns: A scalar for the contrastive log-ratio of y|x. """ batch_size = tf.shape(x_logvar)[0] # Compute the indicator_matrix for positive and negative samples. if positive_indicator_matrix is None: positive_indicator_matrix = tf.eye(batch_size, dtype=tf.dtypes.float32) negative_indicator_matrix = 1. - positive_indicator_matrix # Compute the log-likelihood of y|x samples. y = tf.expand_dims(y, axis=0) x_mean = tf.expand_dims(x_mean, axis=1) x_logvar = tf.expand_dims(x_logvar, axis=1) log_likelihood = -(x_mean - y)**2 / tf.math.exp(x_logvar) / 2. - x_logvar / 2. log_likelihood = tf.math.reduce_mean(log_likelihood, axis=-1) # Compute the positive and negative scores. positive_expectation = tf.math.reduce_sum( log_likelihood * positive_indicator_matrix) / tf.math.maximum( tf.math.reduce_sum(positive_indicator_matrix), 1e-12) negative_expectation = tf.math.reduce_sum( log_likelihood * negative_indicator_matrix) / tf.math.maximum( tf.math.reduce_sum(negative_indicator_matrix), 1e-12) # Clip the loss to be non-negative since mutual information should always be # a non-negative scalar. return tf.math.maximum(0., positive_expectation - negative_expectation) def compute_gradient_penalty(discriminator, inputs, penalty_weight=1.0): """Computes the gradient penalty. Reference: Mescheder et al. Which Training Methods for GANs do actually Converge? https://arxiv.org/pdf/1801.04406.pdf. Args: discriminator: Network to apply penalty through. inputs: An input tensor. Shape = [batch_size, ...]. penalty_weight: A float for the weight of penalty. Returns: penalty: A scalar for the gradient penalty loss. outputs: A tensor for the network outputs. """ batch_size = tf.shape(inputs)[0] with tf.GradientTape() as tape: tape.watch(inputs) outputs = discriminator(inputs, training=True) gradients = tape.gradient(outputs, inputs) gradients = tf.reshape(gradients, (batch_size, -1)) penalty = tf.reduce_sum(tf.square(gradients), axis=-1) penalty = tf.reduce_mean(penalty) * penalty_weight return penalty, outputs def compute_discriminator_loss(discriminator, real_inputs, fake_inputs): """Computes the discriminator loss. Args: discriminator: The discriminator network. real_inputs: A tensor for the real inputs. Shape = [batch_size, ...]. fake_inputs: A tensor for the fake inputs. Shape = [batch_size, ...]. Returns: loss: A scalar for the discriminator loss. real_outputs: A tensor for the real outputs. fake_outputs: A tensor for the fake outputs. """ real_gradient_penalty, real_outputs = compute_gradient_penalty( discriminator, real_inputs) fake_gradient_penalty, fake_outputs = compute_gradient_penalty( discriminator, fake_inputs) gradient_penalty_loss = 0.5 * (real_gradient_penalty + fake_gradient_penalty) positive_expectation = compute_positive_expectation( real_outputs, TYPE_MEASURE_GAN, reduce_mean=True) negative_expectation = compute_negative_expectation( fake_outputs, TYPE_MEASURE_GAN, reduce_mean=True) expectation = 0.5 * (positive_expectation - negative_expectation) loss = -expectation + gradient_penalty_loss return loss, real_outputs, fake_outputs def compute_generator_loss(fake_samples, loss_type): """Computes the generator loss. Args: fake_samples: A tensor for the fake samples. Shape = [batch_size, ...]. loss_type: A string for the type of loss. See TYPE_GENERATOR_LOSS_* for supported loss types. Returns: A scalar for the generator loss. """ if loss_type == TYPE_GENERATOR_LOSS_MM: return compute_negative_expectation( fake_samples, TYPE_MEASURE_GAN, reduce_mean=True) elif loss_type == TYPE_GENERATOR_LOSS_NS: return -compute_positive_expectation( fake_samples, TYPE_MEASURE_GAN, reduce_mean=True) else: raise ValueError('Generator loss {} not supported'.format(loss_type))
the-stack_0_27619
import pylab import IPython.display def display_dataframes(dataframes, nColumns=3): table = "<table style='width:100%; border:0px'>{content}</table>" row = "<tr style='border:0px'>{content}</tr>" cell = "<td style='width:{width}%;vertical-align:top;border:0px'>{{content}}</td>" cell = cell.format(width=100 / nColumns) cells = [cell.format(content=df.to_html()) for df in dataframes] cells += (nColumns - (len(dataframes) % nColumns)) * [cell.format(content="")] # pad rows = [row.format(content="".join(cells[i:i + nColumns])) for i in range(0, len(cells), nColumns)] IPython.display.display(IPython.display.HTML(table.format(content="".join(rows)))) def figsize(w, h): pylab.rcParams['figure.figsize'] = w,h def linestyle(style, reset_color_counter=True): pylab.rcParams['lines.linestyle'] = style if reset_color_counter: pylab.gca().set_prop_cycle(None) # Reset Colors Counter
the-stack_0_27621
""" # Definition for a Node. class Node: def __init__(self, val=None, children=None): self.val = val self.children = children """ class Solution: def levelOrder(self, root: 'Node') -> List[List[int]]: if root is None: return [] result, previousLayer = [], [root,] while previousLayer: currentLayer = [] result.append([]) for node in previousLayer: result[-1].append(node.val) currentLayer.extend(node.children) previousLayer = currentLayer return result
the-stack_0_27623
import platform import os import json import sublime import sublime_plugin if platform.python_version() == '3.3.6': from importlib.machinery import SourceFileLoader def run_module(module_name, user_bindings, **kwargs): user_module = SourceFileLoader(module_name, user_bindings).load_module() user_module.keybinding(kwargs.get('key'), command=kwargs.get('command')) else: import importlib.util def run_module(module_name, user_bindings, **kwargs): spec = importlib.util.spec_from_file_location(module_name, user_bindings) user_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(user_module) user_module.keybinding(kwargs.get('key'), command=kwargs.get('command')) class SpkKeyBinding(sublime_plugin.ApplicationCommand): def __init__(self): self.path = '$packages/User/SublimeProKeyBindings/keybindings.py' self.dest = '$packages/User/SublimeProKeyBindings/Default ($platform).sublime-keymap' self.module = 'spk_user_bindings' def run(self, **kwargs): self.bindings = [] user_bindings = format(kwargs.get('bindings', self.path)) dest = format(kwargs.get('destination', self.dest)) if not os.path.isfile(user_bindings): sublime.error_message("Couldn't find %s\n\nMake sure the file exists." % user_bindings) return try: run_module(self.module, user_bindings, key=self.key, command=self.command) except Exception as err: sublime.error_message("Something went wrong.\nCheck out sublime console to see more information") self.bindings = [] raise err if len(self.bindings) == 0: sublime.error_message("Couldn't find any key bindings") return with open(dest, 'w') as file: json.dump(self.bindings, file, indent=2) self.bindings = [] sublime.message_dialog("Key bindings updated") def key(self, keys, command, *context, **args): if not isinstance(keys, list) or len(keys) < 1: raise Exception("The first argument needs to be an array of keys") if not isinstance(command, (str, list)) or len(keys) < 1: raise Exception("The command needs to be a string or an array") data = {} data['keys'] = keys if isinstance(command, list): data['command'] = 'spk_multi_cmd' data['args'] = {"commands": command} else: data['command'] = command if len(args) > 0: data['args'] = self.set_args(args) if len(context) > 0: data['context'] = self.context(context) self.bindings.append(data) def set_args(self, args): data = {} for arg in args: data[arg] = args.get(arg) return data def context(self, args): res = [] for a in args: if isinstance(a, list): res.extend(a) else: res.append(a) return res def command(self, name, **kwargs): data = {} data['command'] = name if len(kwargs) > 0: data['args'] = {} for k in kwargs: data['args'][k] = kwargs.get(k) return data class SpkMultiCmd(sublime_plugin.TextCommand): def run(self, edit, **kwargs): commands = kwargs.get('commands', []) if len(commands) == 0: return window = self.view.window() for cmd in commands: name = cmd.get('command', "") args = cmd.get('args', None) if len(name) < 1: return if args is None: window.run_command(name) else: window.run_command(name, args) def format(string): return sublime.expand_variables(string, sublime.active_window().extract_variables())
the-stack_0_27624
from functools import reduce from collections import namedtuple, Counter with open("input.txt", "r") as f: template = f.readline().strip() f.readline() # empty line insertions = dict(line.strip().split(" -> ") for line in f.readlines()) def apply_insertions(template): Acc = namedtuple("Accumulator", ["last_letter", "new_string"]) def f(acc: Acc, new_letter: str): code = f"{acc.last_letter}{new_letter}" return Acc(new_letter, f"{acc.new_string}{insertions.get(code, '')}{new_letter}") return reduce(f, template, Acc("", "")).new_string for i in range(10): template = apply_insertions(template) # print(template) c = Counter(template).most_common() print(c[0][1] - c[-1][1])
the-stack_0_27626
import pymongo import os from pycare_api.data import scrape_data as sdata from typing import Optional from pymongo import MongoClient db_username=os.environ.get('db_username') db_pass=os.environ.get('db_pass') url = "mongodb+srv://backend:[email protected]/covid19Report?retryWrites=true&w=majority".format(db_username,db_pass) client = pymongo.MongoClient(url.format( os.getenv("username"), os.getenv("password"))) db = client["covid19Report"] def getData(collectionName: str, fields: Optional[list] = None): if fields != None: showOnly = dict(zip(fields, [True]*len(fields))) showOnly["_id"] = False return db.get_collection(collectionName).find({}, showOnly) else: return db.get_collection(collectionName).find({}, {"_id": False}) def updateHospitalDetailsData(): collection = db["hospitalDetails"] try: for i in sdata.hospitalDetails(): collection.update_many({"hospitalName": i.hospitalName}, {"$set": {"isolationBeds.alloted": i.isolationBeds['alloted'], "isolationBeds.vacant": i.isolationBeds['vacant'], "oxygenBeds.alloted": i.oxygenBeds['alloted'], "oxygenBeds.vacant": i.oxygenBeds['vacant'], "ventilatorBeds.alloted": i.ventilatorBeds['alloted'], "ventilatorBeds.vacant": i.ventilatorBeds['vacant']}}) return "successfully updated hospitalDetails collection" except Exception as err: return str(err)+"failed to update data hospitalDetails collection" def updateStatusData(): collection = db["status"] a = sdata.status()[0] try: collection.update_one({}, {"$set": { "total": a["total"], "cured": a["cured"], "active": a["active"], "death": a["death"],"lastUpdatedOn":a["lastUpdatedOn"]}}) return "successfully updated status collection", a except Exception as err: return str(err)+"failed to update data status collection" def getTranslation(): cursor = db.get_collection("translation").find({}, {"_id": False}) cursor = list(cursor) data = {key: c[key] for c in cursor for key in c.keys()} return data def updateDistrictWiseReport(): collection = db["districtWiseReport"] try: for i in sdata.districtWiseReport(): collection.update_many({"district": i.district}, {"$set": { "reported": i.reported, "active": i.active, "cured": i.cured, "death": i.death, }}) return "successfully updated districtWiseReport collection" except Exception as err: return str(err)+"failed to update data districtWiseReport collection"
the-stack_0_27627
def movielens_preprocess(): total_data = {} # {user_id: [[interaction item_id, timestamp], [], ...]} item_cnt = {} # {item_id: count_int} # ratings.txt -> user_id :: item_id :: rating :: timestamp with open('ratings.txt', 'r') as f: while True: line = f.readline().strip() if not line: break tokens = line.split('::') uid = int(tokens[0]) # user_id iid = int(tokens[1]) # item_id if not iid in item_cnt: item_cnt[iid] = 0 item_cnt[iid] += 1 timestamp = int(tokens[3]) if not uid in total_data: total_data[uid] = [] total_data[uid].append([iid, timestamp]) tr_data = [] va_data = [] te_data = [] for uid in total_data: temp = sorted(total_data[uid], key=lambda x: x[1]) # 개별 user_id의 interaction item_id 를 timestamp 순으로 정렬 iids = list(map(lambda x: x[0], temp)) # interaction item_id 만 추출 후 list로 가공 iids = list(filter(lambda x: item_cnt[x] >= 20, iids)) # 전체 데이터에서 20회 이상 등장한 item_id만 사용 if len(iids) < 3: continue # 시퀀스 길이기 3초과일 경우만 사용 # Leave One Out setting te_data.append(iids) va_data.append(iids[:-1]) tr_data.append(iids[:-2]) return tr_data, va_data, te_data
the-stack_0_27631
import os import logging as log log_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../logs/", 'FeedbackBot.log') log_level = log.INFO fh = log.FileHandler(log_file) fh.setLevel(log_level) loggers = set() formatter = log.Formatter( "%(asctime)s %(name)s[%(lineno)s][%(funcName)s] - %(levelname)s: %(message)s", datefmt="%d/%m/%y %H:%M:%S" ) fh.setFormatter(formatter) log.setLoggerClass(log.Logger) def getlogger(name=None): logger = log.getLogger(name) logger.setLevel(log_level) logger.addHandler(fh) loggers.add(logger) return logger
the-stack_0_27632
# -*- coding: utf-8 -*- # ================================================================= # # Authors: Tom Kralidis <[email protected]> # # Copyright (c) 2015 Tom Kralidis # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # ================================================================= import os from pycsw.core import util from pycsw.core.etree import etree NAMESPACE = 'http://www.w3.org/2005/Atom' NAMESPACES = {'atom': NAMESPACE, 'georss': 'http://www.georss.org/georss'} XPATH_MAPPINGS = { 'pycsw:Identifier': 'atom:id', 'pycsw:Title': 'atom:title', 'pycsw:Creator': 'atom:author', 'pycsw:Abstract': 'atom:summary', 'pycsw:PublicationDate': 'atom:published', 'pycsw:Keywords': 'atom:category', 'pycsw:Contributor': 'atom:contributor', 'pycsw:AccessConstraints': 'atom:rights', 'pycsw:Modified': 'atom:updated', 'pycsw:Source': 'atom:source', } def write_record(result, esn, context, url=None): ''' Return csw:SearchResults child as lxml.etree.Element ''' typename = util.getqattr(result, context.md_core_model['mappings']['pycsw:Typename']) if esn == 'full' and typename == 'atom:entry': # dump record as is and exit return etree.fromstring(util.getqattr(result, context.md_core_model['mappings']['pycsw:XML']), context.parser) node = etree.Element(util.nspath_eval('atom:entry', NAMESPACES), nsmap=NAMESPACES) node.attrib[util.nspath_eval('xsi:schemaLocation', context.namespaces)] = \ '%s http://www.kbcafe.com/rss/atom.xsd.xml' % NAMESPACES['atom'] # author val = util.getqattr(result, context.md_core_model['mappings']['pycsw:Creator']) if val: author = etree.SubElement(node, util.nspath_eval('atom:author', NAMESPACES)) etree.SubElement(author, util.nspath_eval('atom:name', NAMESPACES)).text = val # category val = util.getqattr(result, context.md_core_model['mappings']['pycsw:Keywords']) if val: for kw in val.split(','): etree.SubElement(node, util.nspath_eval('atom:category', NAMESPACES), term=kw) for qval in ['pycsw:Contributor', 'pycsw:Identifier']: val = util.getqattr(result, context.md_core_model['mappings'][qval]) if val: etree.SubElement(node, util.nspath_eval(XPATH_MAPPINGS[qval], NAMESPACES)).text = val if qval == 'pycsw:Identifier': etree.SubElement(node, util.nspath_eval('dc:identifier', context.namespaces)).text = val rlinks = util.getqattr(result, context.md_core_model['mappings']['pycsw:Links']) if rlinks: for link in rlinks.split('^'): linkset = link.split(',') url2 = etree.SubElement(node, util.nspath_eval('atom:link', NAMESPACES), href=linkset[-1], type=linkset[2], title=linkset[1]) if linkset[2] == 'enclosure': url2.attrib['rel'] = linkset[2] etree.SubElement(node, util.nspath_eval('atom:link', NAMESPACES), href='%s?service=CSW&version=2.0.2&request=GetRepositoryItem&id=%s' % (url, util.getqattr(result, context.md_core_model['mappings']['pycsw:Identifier']))) # atom:title el = etree.SubElement(node, util.nspath_eval(XPATH_MAPPINGS['pycsw:Title'], NAMESPACES)) val = util.getqattr(result, context.md_core_model['mappings']['pycsw:Title']) if val: el.text =val # atom:updated el = etree.SubElement(node, util.nspath_eval(XPATH_MAPPINGS['pycsw:Modified'], NAMESPACES)) val = util.getqattr(result, context.md_core_model['mappings']['pycsw:Modified']) if val: el.text =val else: val = util.getqattr(result, context.md_core_model['mappings']['pycsw:InsertDate']) el.text = val for qval in ['pycsw:PublicationDate', 'pycsw:AccessConstraints', 'pycsw:Source', 'pycsw:Abstract']: val = util.getqattr(result, context.md_core_model['mappings'][qval]) if val: etree.SubElement(node, util.nspath_eval(XPATH_MAPPINGS[qval], NAMESPACES)).text = val # bbox extent val = util.getqattr(result, context.md_core_model['mappings']['pycsw:BoundingBox']) bboxel = write_extent(val, context.namespaces) if bboxel is not None: node.append(bboxel) return node def write_extent(bbox, nsmap): ''' Generate BBOX extent ''' if bbox is not None: try: bbox2 = util.wkt2geom(bbox) except: return None where = etree.Element(util.nspath_eval('georss:where', NAMESPACES)) envelope = etree.SubElement(where, util.nspath_eval('gml:Envelope', nsmap), srsName='http://www.opengis.net/def/crs/EPSG/0/4326') etree.SubElement(envelope, util.nspath_eval('gml:lowerCorner', nsmap)).text = '%s %s' % (bbox2[1], bbox2[0]) etree.SubElement(envelope, util.nspath_eval('gml:upperCorner', nsmap)).text = '%s %s' % (bbox2[3], bbox2[2]) return where return None
the-stack_0_27633
import re class Symbol(object): def __init__(self, element): self.value = element def __hash__(self): return hash(self.value) class InvalidPatternElement(Exception): pass class SymbolEncoder(object): def __init__(self): self._symbol_hashes = [] self._hash_to_hash_index = {} def encode(self, symbol): hash_index = self._hash_to_hash_index.get(hash(symbol), None) if hash_index is None: self._hash_to_hash_index[hash(symbol)] = len(self._symbol_hashes) self._symbol_hashes.append(hash(symbol)) return chr(self._hash_to_hash_index[hash(symbol)]) class Match(object): def __init__(self, match, start, end): self.match = match self.span = (start, end) def __repr__(self): return "<pygregex.Match object; span={0}, match='{1}'>".format(self.span, self.match) def _encode_pattern(pattern, encoder): encoded_pattern = [] for element_idx, element in enumerate(pattern): if isinstance(element, Symbol): encoded_pattern.append(encoder.encode(element)) elif isinstance(element, str): if len(element) > 1: raise InvalidPatternElement('Pattern element at index {0} is a string longer than one character. Maybe you meant it to be an instance of Symbol?'.format(element_idx)) else: encoded_pattern.append(element) else: raise InvalidPatternElement('Pattern element at index {0} is not an instance of Symbol.'.format(element_idx)) return ''.join(encoded_pattern) def _encode_sequence(sequence, encoder): encoded_sequence = [] for element in sequence: encoded_sequence.append(encoder.encode(element)) return ''.join(encoded_sequence) def search(pattern, sequence): encoder = SymbolEncoder() encoded_pattern = _encode_pattern(pattern, encoder) encoded_sequence = _encode_sequence(sequence, encoder) for match in re.finditer(encoded_pattern, encoded_sequence): yield Match(match=sequence[match.start(): match.end()], start=match.start(), end=match.end()) print([match for match in search( pattern=[Symbol('aa'), '.', '*', Symbol('aa')], sequence=['aa', 'bb', 'cc', 'aa'] )])
the-stack_0_27635
import csv from rdflib import Graph, Literal, Namespace, URIRef from rdflib.namespace import DCTERMS, RDF, RDFS, SKOS, XSD input_file = csv.DictReader(open("test_sheet.csv")) # make a graph output_graph = Graph() for row in input_file: # convert it from an OrderedDict to a regular dict row = dict(row) #{'Subject Label': 'Pearl Wilmer Booker', 'Subject URI': 'None', 'Predicate Label': 'Daughter Of', 'Predicate URI': '', 'Predicate Symmetry': 'Asymmetric', 'Object Label': 'Mary Booker', 'Object URI': 'None'} # make a literal and add it output_graph.add( (URIRef(row['Subject URI']), RDFS.label, Literal(row['Subject Label'], lang='en')) ) # make a triple with the object as uri output_graph.add( (URIRef(row['Subject URI']), URIRef(row['Predicate URI']), URIRef(row['Object URI'])) ) output_graph.serialize(destination='my_graph.nt', format='nt')
the-stack_0_27636
import taichi as ti from tests import test_utils @test_utils.test(require=ti.extension.sparse) def test_pointer(): x = ti.field(ti.f32) s = ti.field(ti.i32) n = 128 ti.root.pointer(ti.i, n).dense(ti.i, n).place(x) ti.root.place(s) @ti.kernel def activate(): for i in range(n): x[i * n] = 0 @ti.kernel def func(): for i in x: s[None] += 1 activate() func() assert s[None] == n * n @test_utils.test(require=ti.extension.sparse) def test_pointer2(): x = ti.field(ti.f32) s = ti.field(ti.i32) n = 128 ti.root.pointer(ti.i, n).dense(ti.i, n).place(x) ti.root.place(s) @ti.kernel def activate(): for i in range(n * n): x[i] = i @ti.kernel def func(): for i in x: s[None] += i activate() func() N = n * n assert s[None] == N * (N - 1) / 2 @test_utils.test(require=ti.extension.sparse) def test_nested_struct_fill_and_clear(): a = ti.field(dtype=ti.f32) N = 512 ti.root.pointer(ti.ij, [N, N]).dense(ti.ij, [8, 8]).place(a) @ti.kernel def fill(): for i, j in ti.ndrange(N * 8, N * 8): a[i, j] = 2.0 @ti.kernel def clear(): for i, j in a.parent(): ti.deactivate(a.parent().parent(), [i, j]) def task(): fill() clear() for i in range(10): task() ti.sync()
the-stack_0_27638
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """ This file contains primitives for multi-gpu communication. This is useful when doing distributed training. """ import os import pickle import tempfile import time import torch from torch import distributed as dist def get_world_size(): if not dist.is_initialized(): return 1 return dist.get_world_size() def get_rank(): if not dist.is_initialized(): return 0 return dist.get_rank() def is_main_process(): if not dist.is_initialized(): return True return dist.get_rank() == 0 def synchronize(): """ Helper function to synchronize between multiple processes when using distributed training """ if not dist.is_initialized(): return world_size = dist.get_world_size() rank = dist.get_rank() if world_size == 1: return def _send_and_wait(r): if rank == r: tensor = torch.tensor(0, device="cuda") else: tensor = torch.tensor(1, device="cuda") dist.broadcast(tensor, r) while tensor.item() == 1: time.sleep(1) _send_and_wait(0) # now sync on the main process _send_and_wait(1) def _encode(encoded_data, data): # gets a byte representation for the data encoded_bytes = pickle.dumps(data) # convert this byte string into a byte tensor storage = torch.ByteStorage.from_buffer(encoded_bytes) tensor = torch.ByteTensor(storage).to("cuda") # encoding: first byte is the size and then rest is the data s = tensor.numel() assert s <= 255, "Can't encode data greater than 255 bytes" # put the encoded data in encoded_data encoded_data[0] = s encoded_data[1:(s + 1)] = tensor def _decode(encoded_data): size = encoded_data[0] encoded_tensor = encoded_data[1:(size + 1)].to("cpu") return pickle.loads(bytearray(encoded_tensor.tolist())) # TODO try to use tensor in shared-memory instead of serializing to disk # this involves getting the all_gather to work def scatter_gather(data): """ This function gathers data from multiple processes, and returns them in a list, as they were obtained from each process. This function is useful for retrieving data from multiple processes, when launching the code with torch.distributed.launch Note: this function is slow and should not be used in tight loops, i.e., do not use it in the training loop. Arguments: data: the object to be gathered from multiple processes. It must be serializable Returns: result (list): a list with as many elements as there are processes, where each element i in the list corresponds to the data that was gathered from the process of rank i. """ # strategy: the main process creates a temporary directory, and communicates # the location of the temporary directory to all other processes. # each process will then serialize the data to the folder defined by # the main process, and then the main process reads all of the serialized # files and returns them in a list if not dist.is_initialized(): return [data] synchronize() # get rank of the current process rank = dist.get_rank() # the data to communicate should be small data_to_communicate = torch.empty(256, dtype=torch.uint8, device="cuda") if rank == 0: # manually creates a temporary directory, that needs to be cleaned # afterwards tmp_dir = tempfile.mkdtemp() _encode(data_to_communicate, tmp_dir) synchronize() # the main process (rank=0) communicates the data to all processes dist.broadcast(data_to_communicate, 0) # get the data that was communicated tmp_dir = _decode(data_to_communicate) # each process serializes to a different file file_template = "file{}.pth" tmp_file = os.path.join(tmp_dir, file_template.format(rank)) torch.save(data, tmp_file) # synchronize before loading the data synchronize() # only the master process returns the data if rank == 0: data_list = [] world_size = dist.get_world_size() for r in range(world_size): file_path = os.path.join(tmp_dir, file_template.format(r)) d = torch.load(file_path) data_list.append(d) # cleanup os.remove(file_path) # cleanup os.rmdir(tmp_dir) return data_list
the-stack_0_27641
# Copyright 2015 Sanghack Lee # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import shlee.RCDLight import shlee.RCDLight from causality.citest.CITest import Oracle from causality.dseparation.AbstractGroundGraph import AbstractGroundGraph from causality.learning import ModelEvaluation from causality.learning.RCD import RCD, SchemaDependencyWrapper from causality.model.RelationalDependency import RelationalVariable logger = logging.getLogger(__name__) logging.basicConfig(level=logging.ERROR) # Parameters schema, model = shlee.RCDLight.incompleteness_example() logger.info('Model: %s', model.dependencies) hopThreshold = max(len(d.relVar1.path) + 1 for d in model.dependencies) oracle = Oracle(model, 3 * hopThreshold) rcd = RCD(schema, oracle, hopThreshold, depth=2) rcd.identifyUndirectedDependencies() rcd.orientDependencies() print('Skeleton precision:', ModelEvaluation.skeletonPrecision(model, rcd.undirectedDependencies)) print('Skeleton recall:', ModelEvaluation.skeletonRecall(model, rcd.undirectedDependencies)) precision = ModelEvaluation.orientedPrecision(model, rcd.orientedDependencies) print('Oriented precision:', precision) print('Oriented recall:', ModelEvaluation.orientedRecall(model, rcd.orientedDependencies)) rcdl = shlee.RCDLight.RCDLight(schema, oracle, hopThreshold) rcdl.identifyUndirectedDependencies() rcdl.orientDependencies() print('Skeleton precision:', ModelEvaluation.skeletonPrecision(model, rcdl.undirectedDependencies)) print('Skeleton recall:', ModelEvaluation.skeletonRecall(model, rcdl.undirectedDependencies)) precision = ModelEvaluation.orientedPrecision(model, rcdl.orientedDependencies) print('Oriented precision:', precision) print('Oriented recall:', ModelEvaluation.orientedRecall(model, rcdl.orientedDependencies)) assert ModelEvaluation.orientedRecall(model, rcdl.orientedDependencies) == \ ModelEvaluation.orientedRecall(model, rcd.orientedDependencies) == \ 0.0 # Demonstrate that there is no 'unshielded triple' in AGGs for the counter-example. schema, model = shlee.RCDLight.incompleteness_example() hopThreshold = max(len(d.relVar1.path) + 1 for d in model.dependencies) oracle = Oracle(model, 3 * hopThreshold) schemaDepWrapper = SchemaDependencyWrapper(schema, model.dependencies) perspectives = [si.name for si in schema.getSchemaItems()] perspectiveToAgg = {perspective: AbstractGroundGraph(schemaDepWrapper, perspective, 3 * hopThreshold) for perspective in perspectives} for agg in perspectiveToAgg.values(): for node1 in agg.nodes(): neighbors1 = set(agg.predecessors(node1) + agg.successors(node1)) for node2 in neighbors1: neighbors2 = set(agg.predecessors(node2) + agg.successors(node2)) - {node1} for node3 in neighbors2: if node3 not in neighbors1: if not isinstance(node1, RelationalVariable) or not isinstance(node2, RelationalVariable) or \ not isinstance(node3, RelationalVariable): continue print(node1, node2, node3) assert False # There is no 'unshielded triple' in AGGs
the-stack_0_27642
import numpy as np import gc import unittest import geosoft import geosoft.gxapi as gxapi import geosoft.gxpy.gx as gx import geosoft.gxpy.va as gxva import geosoft.gxpy.vv as gxvv import geosoft.gxpy.gdb as gxdb class Test(unittest.TestCase): @classmethod def setUpClass(cls): cls.gx = gx.GXpy(log=print) def start(self): self._func = self.id().split('.')[-1] gx.gx().log('\n' + self._func) def test_vv(self): self.start() max = gxapi.iMAX // 16 npdata = np.empty(max) with gxvv.GXvv(npdata) as vv: self.assertTrue(vv.length, max) del npdata gc.collect() npdata = np.empty(gxapi.iMAX + 1) self.assertRaises(gxvv.VVException, gxvv.GXvv, npdata) del npdata gc.collect() def test_va(self): self.start() max = gxapi.iMAX // 16 print('max', max) npdata = np.empty(max * 2).reshape((max, 2)) with gxva.GXva(npdata) as va: self.assertTrue(va.length, gxapi.iMAX) del npdata gc.collect() npdata = np.empty((gxapi.iMAX + 1) * 2).reshape(((gxapi.iMAX + 1), 2)) self.assertRaises(gxva.VAException, gxva.GXva, npdata) del npdata gc.collect() def test_gdb(self): self.start() name = None pagesize = 4096 try: max_index = 65534 * pagesize // 8 print('maximum index', max_index) with gxdb.Geosoft_gdb.new('new', overwrite=True, comp=gxdb.COMP_NONE, page_size=pagesize) as gdb: name = gdb.file_name line = gdb.new_line('test') npd = np.zeros(max_index) npd_size = np.size(npd) gdb.write_line(line, npd, ['xx']) del npd npd2, ch, fid = gdb.read_line(line) self.assertEqual(len(ch), 1) self.assertEqual(np.size(npd2), npd_size) del npd2 finally: gxdb.delete_files(name) ############################################################################################## if __name__ == '__main__': unittest.main()
the-stack_0_27643
# Copyright 2021 DAI Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from ethtx import EthTx, EthTxConfig from flask import Flask from werkzeug.middleware.dispatcher import DispatcherMiddleware from ethtx_ce import frontend, api app = Flask(__name__) ethtx_config = EthTxConfig( mongo_connection_string=os.getenv("MONGO_CONNECTION_STRING"), mongo_database=os.getenv("MONGODB_DB"), etherscan_api_key=os.getenv("ETHERSCAN_KEY"), web3nodes={ "mainnet": dict(hook=os.getenv("MAINNET_NODE_URL", ""), poa=False), "goerli": dict(hook=os.getenv("GOERLI_NODE_URL", ""), poa=True), "rinkeby": dict(hook=os.getenv("RINKEBY_NODE_URL", ""), poa=True), }, default_chain="mainnet", etherscan_urls={ "mainnet": "https://api.etherscan.io/api", "goerli": "https://api-goerli.etherscan.io/api", "rinkeby": "https://api-rinkeby.etherscan.io/api", }, ) ethtx = EthTx.initialize(ethtx_config) app.wsgi_app = DispatcherMiddleware( frontend.create_app(engine=ethtx, settings_override=EthTxConfig), {"/api": api.create_app(engine=ethtx, settings_override=EthTxConfig)}, ) if __name__ == "__main__": app.run()
the-stack_0_27644
#!/usr/bin/env python from sebastian.midi.write_midi import SMF from sebastian.core import OSequence, DURATION_64 from sebastian.core.notes import Key, major_scale from sebastian.core.transforms import degree_in_key_with_octave, midi_pitch, transpose # Hanon 1 up_degrees = [1, 3, 4, 5, 6, 5, 4, 3] down_degrees = [6, 4, 3, 2, 1, 2, 3, 4] final_degree = [1] sections = [ (up_degrees, 4, range(14)), (down_degrees, 4, range(13, -2, -1)), (final_degree, 32, range(1)), ] hanon_1 = OSequence() for section in sections: pattern, duration_64, offset = section for o in offset: for note in pattern: hanon_1.append({"degree": note + o, DURATION_64: duration_64}) hanon_1 = hanon_1 | degree_in_key_with_octave(Key("C", major_scale), 4) | midi_pitch() hanon_rh_1 = hanon_1 hanon_lh_1 = hanon_1 | transpose(-12) seq = hanon_lh_1 // hanon_rh_1 if __name__ == "__main__": f = open("hanon.mid", "w") s = SMF([seq]) s.write(f) f.close()
the-stack_0_27645
#!/usr/bin/env python3 from rdt import Rdt class Server: def __init__(self, address: str, port: int): self.__port = port self.__conn = Rdt.create_server_connection(address, port) def run(self): print(f"Server is listening on port: {self.__port}") while True: data, client_address = self.__conn.recv() print(f"Msg received from: {client_address}: {data}") if __name__ == "__main__": server = Server("localhost", 12000) server.run()
the-stack_0_27646
# Copyright (c) 2018 Pablo Moreno-Munoz # Universidad Carlos III de Madrid and University of Sheffield import sys import numpy as np from GPy.likelihoods import link_functions from GPy.likelihoods import Likelihood from GPy.util.misc import safe_exp, safe_square from scipy.misc import logsumexp class Exponential(Likelihood): """ Exponential likelihood with a latent function over its parameter """ def __init__(self, gp_link=None): if gp_link is None: gp_link = link_functions.Identity() super(Exponential, self).__init__(gp_link, name='Exponential') def pdf(self, f, y, Y_metadata=None): b = safe_exp(-f) pdf = safe_exp(-y/b) / b return pdf def logpdf(self, f, y, Y_metadata=None): b = safe_exp(-f) # a veces se va a zero -> np.clip b = np.clip(b, 1e-9, 1e9) # numerical stability logpdf = - np.log(b) - (y/b) return logpdf def mean(self, f, Y_metadata=None): b = safe_exp(-f) b = np.clip(b, 1e-9, 1e9) # numerical stability mean = b return mean def mean_sq(self, f, Y_metadata=None): b = safe_exp(-f) b = np.clip(b, 1e-9, 1e9) # numerical stability mean_sq = safe_square(b) return mean_sq def variance(self, f, Y_metadata=None): b = safe_exp(-f) b = np.clip(b, 1e-9, 1e9) # numerical stability var = safe_square(b) return var def samples(self, f, num_samples, Y_metadata=None): b = safe_exp(-f) b = np.clip(b, 1e-9, 1e9) # numerical stability samples = np.random.exponential(scale=b) return samples def dlogp_df(self, f, y, Y_metadata=None): b = safe_exp(-f) b = np.clip(b, 1e-9, 1e9) # numerical stability dlogp = 1 - (y/b) return dlogp def d2logp_df2(self, f, y, Y_metadata=None): b = safe_exp(-f) b = np.clip(b, 1e-9, 1e9) # numerical stability d2logp = - y/b return d2logp def var_exp(self, Y, m, v, gh_points=None, Y_metadata=None): # Variational Expectation # gh: Gaussian-Hermite quadrature if gh_points is None: gh_f, gh_w = self._gh_points() else: gh_f, gh_w = gh_points gh_w = gh_w / np.sqrt(np.pi) m, v, Y = m.flatten(), v.flatten(), Y.flatten() f = gh_f[None, :] * np.sqrt(2. * v[:, None]) + m[:, None] logp = self.logpdf(f, np.tile(Y[:, None], (1, f.shape[1]))) var_exp = logp.dot(gh_w[:, None]) return var_exp def var_exp_derivatives(self, Y, m, v, gh_points=None, Y_metadata=None): # Variational Expectations of derivatives # gh: Gaussian-Hermite quadrature if gh_points is None: gh_f, gh_w = self._gh_points() else: gh_f, gh_w = gh_points gh_w = gh_w / np.sqrt(np.pi) m, v, Y = m.flatten(), v.flatten(), Y.flatten() f = gh_f[None, :] * np.sqrt(2. * v[:, None]) + m[:, None] dlogp_df = self.dlogp_df(f, np.tile(Y[:, None], (1, f.shape[1]))) d2logp_df2 = self.d2logp_df2(f, np.tile(Y[:, None], (1, f.shape[1]))) var_exp_dm = dlogp_df.dot(gh_w[:, None]) var_exp_dv = 0.5 * d2logp_df2.dot(gh_w[:, None]) return var_exp_dm, var_exp_dv def predictive(self, m, v, gh_points=None, Y_metadata=None): # Variational Expectation # gh: Gaussian-Hermite quadrature if gh_points is None: gh_f, gh_w = self._gh_points() else: gh_f, gh_w = gh_points gh_w = gh_w / np.sqrt(np.pi) m, v = m.flatten(), v.flatten() f = gh_f[None, :] * np.sqrt(2. * v[:, None]) + m[:, None] mean = self.mean(f) var = self.variance(f).dot(gh_w[:, None]) + self.mean_sq(f).dot(gh_w[:, None]) - np.square( mean.dot(gh_w[:, None])) mean_pred = mean.dot(gh_w[:, None]) var_pred = var return mean_pred, var_pred def log_predictive(self, Ytest, mu_F_star, v_F_star, num_samples): Ntest, D = mu_F_star.shape F_samples = np.empty((Ntest, num_samples, D)) # function samples: for d in range(D): mu_fd_star = mu_F_star[:, d][:, None] var_fd_star = v_F_star[:, d][:, None] F_samples[:,:,d] = np.random.normal(mu_fd_star, np.sqrt(var_fd_star), size=(Ntest, num_samples)) # monte-carlo: log_pred = -np.log(num_samples) + logsumexp(self.logpdf(F_samples[:,:,0], Ytest), axis=-1) log_pred = np.array(log_pred).reshape(*Ytest.shape) log_predictive = (1/num_samples)*log_pred.sum() return log_predictive def get_metadata(self): dim_y = 1 dim_f = 1 dim_p = 1 return dim_y, dim_f, dim_p def ismulti(self): # Returns if the distribution is multivariate return False
the-stack_0_27647
import numpy as np import torch import glob import numpy as np np.random.seed(1001) import torch from torch_geometric.data import Data, Dataset from sklearn.datasets import make_blobs class FakeDataset(Dataset): """ Random number dataset to test with. Generates numbers on the fly, but also caches them so .get(i) will return something consistent """ def __init__(self, n_events=100): super(FakeDataset, self).__init__('nofile') self.cache = {} self.n_events = n_events def get(self, i): if i >= self.n_events: raise IndexError if i not in self.cache: n_hits = np.random.randint(10, 100) n_clusters = min(np.random.randint(1, 6), n_hits) x = np.random.rand(n_hits, 5) y = (np.random.rand(n_hits) * n_clusters).astype(np.int8) # Also make a cluster 'truth': energy, boundary_x, boundary_y, pid (4) y_cluster = np.random.rand(n_clusters, 4) # pid (last column) should be an integer; do 3 particle classes now y_cluster[:,-1] = np.floor(y_cluster[:,-1] * 3) self.cache[i] = Data( x = torch.from_numpy(x).type(torch.float), y = torch.from_numpy(y), truth_cluster_props = torch.from_numpy(y_cluster) ) return self.cache[i] def __len__(self): return self.n_events def len(self): return self.n_events class BlobsDataset(Dataset): """ Dataset around sklearn.datasets.make_blobs """ def __init__(self, n_events=100, seed_offset=0): super(BlobsDataset, self).__init__('nofile') self.cache = {} self.n_events = n_events self.cluster_space_dim = 2 self.seed_offset = seed_offset def get(self, i): if i >= self.n_events: raise IndexError if i not in self.cache: n_hits = np.random.randint(50, 70) n_clusters = min(np.random.randint(2, 4), n_hits) n_bkg = np.random.randint(10, 20) # Generate the 'signal' X, y = make_blobs( n_samples=n_hits, centers=n_clusters, n_features=self.cluster_space_dim, random_state=i+self.seed_offset ) y += 1 # To reserve index 0 for background # Add background cluster_space_min = np.min(X, axis=0) cluster_space_max = np.max(X, axis=0) cluster_space_width = cluster_space_max - cluster_space_min X_bkg = cluster_space_min + np.random.rand(n_bkg, self.cluster_space_dim)*cluster_space_width y_bkg = np.zeros(n_bkg) X = np.concatenate((X,X_bkg)) y = np.concatenate((y,y_bkg)) # Calculate geom centers truth_cluster_props = np.zeros((n_hits+n_bkg,2)) for i in range(1,n_clusters+1): truth_cluster_props[y==i] = np.mean(X[y==i], axis=0) # shuffle order = np.random.permutation(n_hits+n_bkg) X = X[order] y = y[order] truth_cluster_props = truth_cluster_props[order] self.cache[i] = Data( x = torch.from_numpy(X).float(), y = torch.from_numpy(y).long(), truth_cluster_props = torch.from_numpy(truth_cluster_props).float() ) return self.cache[i] def __len__(self): return self.n_events def len(self): return self.n_events class TauDataset(Dataset): """Tau dataset. Features in x: 0 recHitEnergy, 1 recHitEta, 2 zeroFeature, #indicator if it is track or not 3 recHitTheta, 4 recHitR, 5 recHitX, 6 recHitY, 7 recHitZ, 8 recHitTime (https://github.com/cms-pepr/HGCalML/blob/master/modules/datastructures/TrainData_NanoML.py#L211-L221) Args: flip (bool): If True, flips the negative endcap z-values to positive reduce_noise (float): Randomly delete a fraction of noise. Useful to speed up training. """ def __init__(self, path, flip=True, reduce_noise: float=None): super(TauDataset, self).__init__(path) self.npzs = list(sorted(glob.iglob(path + '/*.npz'))) self.flip = flip self.reduce_noise = reduce_noise self.noise_index = -1 self.noise_mask_cache = {} def blacklist(self, npzs): """ Remove a list of npzs from the dataset Useful to remove bad events """ for npz in npzs: self.npzs.remove(npz) def get(self, i): d = np.load(self.npzs[i]) x = d['recHitFeatures'] y = d['recHitTruthClusterIdx'].squeeze() if self.flip and np.mean(x[:,7]) < 0: # Negative endcap: Flip z-dependent coordinates x[:,1] *= -1 # eta x[:,7] *= -1 # z if self.reduce_noise: # Throw away a fraction of noise # Have to be careful to throw away to same noise upon # future calls of this function. mask = self.noise_mask_cache.setdefault(i, mask_fraction_of_noise(y, self.reduce_noise, self.noise_index)) x = x[mask] y = y[mask] cluster_index = incremental_cluster_index_np(y.squeeze(), noise_index=self.noise_index) if np.all(cluster_index == 0): print('WARNING: No objects in', self.npzs[i]) truth_cluster_props = np.hstack(( d['recHitTruthEnergy'], d['recHitTruthPosition'], d['recHitTruthTime'], d['recHitTruthID'], )) if self.reduce_noise: truth_cluster_props = truth_cluster_props[mask] assert truth_cluster_props.shape == (x.shape[0], 5) order = cluster_index.argsort() return Data( x = torch.from_numpy(x[order]).type(torch.float), y = torch.from_numpy(cluster_index[order]).type(torch.int), truth_cluster_props = torch.from_numpy(truth_cluster_props[order]).type(torch.float), inpz = torch.Tensor([i]) ) def __len__(self): return len(self.npzs) def len(self): return len(self.npzs) def split(self, fraction): """ Creates two new instances of TauDataset with a fraction of events split """ left = self.__class__(self.root, self.flip, self.reduce_noise) right = self.__class__(self.root, self.flip, self.reduce_noise) split_index = int(fraction*len(self)) left.npzs = self.npzs[:split_index] right.npzs = self.npzs[split_index:] return left, right def incremental_cluster_index(input: torch.Tensor, noise_index=None): """ Build a map that translates arbitrary indices to ordered starting from zero By default the first unique index will be 0 in the output, the next 1, etc. E.g. [13 -1 -1 13 -1 13 13 42 -1 -1] -> [0 1 1 0 1 0 0 2 1 1] If noise_index is not None, the output will be 0 where input==noise_index: E.g. noise_index=-1, [13 -1 -1 13 -1 13 13 42 -1 -1] -> [1 0 0 1 0 1 1 2 0 0] If noise_index is not None but the input does not contain noise_index, 0 will still be reserved for it: E.g. noise_index=-1, [13 4 4 13 4 13 13 42 4 4] -> [1 2 2 1 2 1 1 3 2 2] """ unique_indices, locations = torch.unique(input, return_inverse=True, sorted=True) cluster_index_map = torch.arange(unique_indices.size(0)) if noise_index is not None: if noise_index in unique_indices: # Sort so that 0 aligns with the noise_index cluster_index_map = cluster_index_map[(unique_indices != noise_index).argsort()] else: # Still reserve 0 for noise, even if it's not present cluster_index_map += 1 return torch.gather(cluster_index_map, 0, locations).long() def incremental_cluster_index_np(input: np.array, noise_index=None): """ Reimplementation of incremental_cluster_index for numpy arrays """ unique_indices, locations = np.unique(input, return_inverse=True) cluster_index_map = np.arange(unique_indices.shape[0]) if noise_index is not None: if noise_index in unique_indices: # Sort so that 0 aligns with the noise_index cluster_index_map = cluster_index_map[(unique_indices != noise_index).argsort()] else: # Still reserve 0 for noise, even if it's not present cluster_index_map += 1 return np.take(cluster_index_map, locations) def mask_fraction_of_noise(y: np.array, reduce_fraction: float, noise_index: int=-1) -> np.array: """Create a mask that throws out a fraction of noise (but keeps all signal).""" is_noise = y == noise_index n_noise = is_noise.sum() n_target_noise = (1.-reduce_fraction) * n_noise noise_mask = np.random.permutation(n_noise) < n_target_noise mask = np.ones(y.shape[0], dtype=bool) mask[is_noise] = noise_mask return mask
the-stack_0_27650
# coding=utf-8 # Copyright 2014-2017 F5 Networks Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import glob import json import os import types from oslo_log import log as logging from f5_openstack_agent.lbaasv2.drivers.bigip import exceptions as f5_ex from f5_openstack_agent.lbaasv2.drivers.bigip.resource_helper import \ BigIPResourceHelper from f5_openstack_agent.lbaasv2.drivers.bigip.resource_helper import \ ResourceType LOG = logging.getLogger(__name__) class EsdJSONValidation(object): """Class reads the json file(s) It checks and parses the content of json file(s) to a dictionary """ def __init__(self, esddir): self.esdJSONFileList = glob.glob(os.path.join(esddir, '*.json')) self.esdJSONDict = {} def read_json(self): for fileList in self.esdJSONFileList: try: with open(fileList) as json_file: # Reading each file to a dictionary fileJSONDict = json.load(json_file) # Combine all dictionaries to one self.esdJSONDict.update(fileJSONDict) except ValueError as err: LOG.error('ESD JSON File is invalid: %s', err) raise f5_ex.esdJSONFileInvalidException() return self.esdJSONDict class EsdTagProcessor(EsdJSONValidation): """Class processes json dictionary It checks compares the tags from esdjson dictionary to list of valid tags """ def __init__(self, esddir): super(EsdTagProcessor, self).__init__(esddir) # this function will return intersection of known valid esd tags # and the ones that user provided def valid_tag_key_subset(self): self.validtags = list(set(self.esdJSONDict.keys()) & set(self.valid_esd_tags.keys())) if not self.validtags: LOG.error("Intersect of valid esd tags and user esd tags is empty") if set(self.validtags) != set(self.esdJSONDict.keys()): LOG.error("invalid tags in the user esd tags") def process_esd(self, bigips): try: dict = self.read_json() self.esd_dict = self.verify_esd_dict(bigips, dict) except f5_ex.esdJSONFileInvalidException: self.esd_dict = {} raise def get_esd(self, name): return self.esd_dict.get(name, None) def resource_exists(self, bigip, tag_name, resource_type): helper = BigIPResourceHelper(resource_type) name = tag_name # allow user to define chain cert name with or without '.crt' if resource_type == ResourceType.ssl_cert_file and not \ name.endswith('.crt'): name += '.crt' return helper.exists_in_collection(bigip, name) def get_resource_type(self, bigip, resource_type, value): if resource_type == ResourceType.persistence: return self.get_persistence_type(bigip, value) else: return resource_type def get_persistence_type(self, bigip, value): resource_types = [ ResourceType.cookie_persistence, ResourceType.dest_addr_persistence, ResourceType.source_addr_persistence, ResourceType.hash_persistence, ResourceType.msrdp_persistence, ResourceType.sip_persistence, ResourceType.ssl_persistence, ResourceType.universal_persistence] for resource_type in resource_types: if self.resource_exists(bigip, value, resource_type): return resource_type return None def is_valid_tag(self, tag): return self.valid_esd_tags.get(tag, None) is not None def is_valid_value(self, bigip, value, resource_type): return self.resource_exists(bigip, value, resource_type) def is_valid_value_list(self, bigip, value, resource_type): for v in value: if not self.resource_exists(bigip, v, resource_type): return False return True def verify_esd_dict(self, bigips, esd_dict): valid_esd_dict = {} for esd in esd_dict: # check that ESD is valid for every BIG-IP valid_esd = True for bigip in bigips: valid_esd = self.verify_esd(bigip, esd, esd_dict[esd]) if not valid_esd: break if valid_esd: # add non-empty valid ESD to return dict valid_esd_dict[esd] = valid_esd return valid_esd_dict def verify_esd(self, bigip, name, esd): valid_esd = {} for tag in esd: try: self.verify_tag(tag) self.verify_value(bigip, tag, esd[tag]) # add tag to valid ESD valid_esd[tag] = esd[tag] LOG.debug("Tag {0} is valid for ESD {1}.".format(tag, name)) except f5_ex.esdJSONFileInvalidException as err: LOG.info('Tag {0} failed validation for ESD {1} and was not ' 'added to ESD. Error: {2}'. format(tag, name, err.message)) return valid_esd def verify_value(self, bigip, tag, value): tag_def = self.valid_esd_tags.get(tag) # verify resource type resource_type = self.get_resource_type( bigip, tag_def['resource_type'], value) if not resource_type: msg = 'Unable to determine resource type for tag {0} and ' \ 'value {1}'.format(tag, value) raise f5_ex.esdJSONFileInvalidException(msg) # verify value type value_type = tag_def['value_type'] if not isinstance(value, value_type): msg = 'Invalid value {0} for tag {1}. ' \ 'Type must be {2}.'.format(value, tag, value_type) raise f5_ex.esdJSONFileInvalidException(msg) # verify value exists on BIG-IP if isinstance(value, list): is_valid = self.is_valid_value_list(bigip, value, resource_type) elif value=='': # ESD Processing we will handle this as a special case and use this to toggle things like fastl4 is_valid = True else: is_valid = self.is_valid_value(bigip, value, resource_type) if not is_valid: msg = ("Invalid value {0} for tag {1}".format(value, tag)) raise f5_ex.esdJSONFileInvalidException(msg) def verify_tag(self, tag): if not self.is_valid_tag(tag): msg = 'Tag {0} is not valid.'.format(tag) raise f5_ex.esdJSONFileInvalidException(msg) # this dictionary contains all the tags # that are listed in the esd confluence page: # https://docs.f5net.com/display/F5OPENSTACKPROJ/Enhanced+Service+Definition # we are implementing the tags that can be applied only to listeners valid_esd_tags = { 'lbaas_fastl4': { 'resource_type': ResourceType.fastl4_profile, 'value_type': types.StringTypes}, 'lbaas_ctcp': { 'resource_type': ResourceType.tcp_profile, 'value_type': types.StringTypes}, 'lbaas_stcp': { 'resource_type': ResourceType.tcp_profile, 'value_type': types.StringTypes}, 'lbaas_http': { 'resource_type': ResourceType.http_profile, 'value_type': types.StringTypes}, 'lbaas_one_connect': { 'resource_type': ResourceType.one_connect_profile, 'value_type': types.StringTypes}, 'lbaas_http_compression': { 'resource_type': ResourceType.http_compression_profile, 'value_type': types.StringTypes}, 'lbaas_cssl_profile': { 'resource_type': ResourceType.client_ssl_profile, 'value_type': types.StringTypes}, 'lbaas_sssl_profile': { 'resource_type': ResourceType.server_ssl_profile, 'value_type': types.StringTypes}, 'lbaas_irule': { 'resource_type': ResourceType.rule, 'value_type': types.ListType}, 'lbaas_policy': { 'resource_type': ResourceType.l7policy, 'value_type': types.ListType}, 'lbaas_persist': { 'resource_type': ResourceType.persistence, 'value_type': types.StringTypes}, 'lbaas_fallback_persist': { 'resource_type': ResourceType.persistence, 'value_type': types.StringTypes} }
the-stack_0_27651
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib from sklearn.metrics import jaccard_score from scipy.cluster.hierarchy import dendrogram, linkage from scipy.spatial.distance import squareform def plot_sgbars(result_df, size_results ,ylabel="target share", title="Discovered Subgroups", dynamic_widths=False, _suffix=""): result_df = result_df[:size_results] shares_sg = result_df["target_share_sg"] shares_compl = result_df["target_share_complement"] sg_relative_sizes = result_df["relative_size_sg"] x = np.arange(len(result_df)) base_width = 0.8 if dynamic_widths: width_sg = 0.02 + base_width * sg_relative_sizes width_compl = base_width - width_sg else: width_sg = base_width / 2 width_compl = base_width / 2 fig, ax = plt.subplots() rects1 = ax.bar(x, shares_sg, width_sg, align='edge') rects2 = ax.bar(x + width_sg, shares_compl, width_compl, align='edge', color='#61b76f') ax.set_ylabel(ylabel) ax.set_title(title) ax.set_xticks(x + base_width / 2) ax.set_xticklabels(result_df.subgroup, rotation=90) ax.legend((rects1[0], rects2[0]), ('subgroup', 'complement')) fig.set_size_inches(len(result_df),5) def plot_npspace(result_df, size_results, data, annotate=True, fixed_limits=False): result_df = result_df[:size_results] fig, ax = plt.subplots() for i, sg in result_df.iterrows(): target_share_sg = sg['target_share_sg'] size_sg = sg['size_sg'] ax.plot(size_sg, target_share_sg, 'ro', color='b') ax.set_ylabel('target share') ax.set_xlabel('size of subgroup') if annotate: ax.annotate(str(i), (size_sg, target_share_sg + 0.005)) def jaccard (sg, sg2, data) : return jaccard_score(sg.covers(data), sg2.covers(data)) def similarity_sgs(results_descriptions, result_size ,data, color=True): results_descriptions = results_descriptions[:result_size] sgs = [x[1] for x in results_descriptions] dists = [[jaccard(sg, sg2, data) for sg2 in sgs] for sg in sgs] dist_df = pd.DataFrame(dists) if color: dist_df = dist_df.style.background_gradient() return dist_df def similarity_dendrogram(result_descriptions, result_size, data, truncated = False, p = None): fig, _ = plt.subplots(figsize=(18, 9)) dist_df = similarity_sgs(result_descriptions, result_size, data, color=False) sgNames = [str(x[1]) for x in result_descriptions[:result_size]] mat = 1 - dist_df.values dists = squareform(mat) linkage_matrix = linkage(dists, "single") if truncated == True : r = dendrogram(linkage_matrix, labels=sgNames, leaf_rotation=90, p = p, truncate_mode='lastp') count = 0 l_count = [] for sg in r['ivl'] : if '(' in sg : # number print(sgNames[count]) l_count.append(count) count = count + int(sg[sg.find('(') + 1 : sg.find(')')]) else : print(sg) l_count.append(count) count = count + 1 jaccard_threshold = 1- min([j for i in r['dcoord'] for j in i[1:-1]]) print(jaccard_threshold) return l_count else : dendrogram(linkage_matrix, labels=sgNames, leaf_rotation=90) def greedy_jaccard(results_descriptions, result_size ,data, threshold) : results_descriptions = results_descriptions[:result_size] sgs = [x[1] for x in results_descriptions] sgNames = [str(x[1]) for x in results_descriptions[:result_size]] dists = pd.DataFrame([[jaccard(sg, sg2, data) for sg2 in sgs] for sg in sgs]).values d = {} d_names = {} l = [] for i in range(dists.shape[0]) : if i not in l : d[i] = [] d_names[sgNames[i]] = [] for j in range(i+1,dists.shape[0]) : if dists[i,j] >= threshold : l.append(j) d[i] = d.get(i,[]) + [j] d_names[sgNames[i]] = d_names.get(sgNames[i],[]) + [sgNames[j]] return(d,d_names,sgNames) def plot_distribution_numeric(sg, data, bins, target): fig, _ = plt.subplots(figsize=(4, 3)) target_values_sg = data[sg.covers(data)][target].values target_values_data = data[target].values plt.hist(target_values_sg, bins= 100, range = (np.amin(target_values_data),np.amax(target_values_data)) ,alpha=0.5, label="subgroup(1)", density=True) plt.hist(target_values_data, bins=100,range = (np.amin(target_values_data),np.amax(target_values_data)) ,alpha=0.5, label="Overall Data", density=True) plt.xlim(0, np.amax(target_values_sg)) plt.xlabel('time') #plt.yscale('log') plt.ticklabel_format(axis="x", style="sci", scilimits=(0,0)) plt.legend(loc='upper right') def plot_distribution_numeric_sgs(sgs, result_size ,data, bins, target): fig, _ = plt.subplots(figsize=(4, 2)) target_values_data = data[target].values maxlim = 0 for i in range(result_size): sg = sgs[i][1] target_values_sg = data[sg.covers(data)][target].values plt.hist(target_values_sg, bins= 20, range = (np.amin(target_values_data),np.amax(target_values_data)),linewidth=1.5,histtype=u'step' ,alpha=0.5, label="subgroup"+str(i+1), density=True) maxlim = max(maxlim,np.amax(target_values_sg)) plt.hist(target_values_data, bins=20,range = (np.amin(target_values_data),np.amax(target_values_data)),linewidth=1.5 ,alpha=0.5, label="Overall Data", density=True) plt.xlim(0, maxlim + 42000) plt.xlabel('time') #plt.yscale('log') plt.ticklabel_format(axis="x", style="sci", scilimits=(0,0)) plt.legend(loc='upper right') def compare_distributions_numeric(sgd_results, data, bins, target): fig, _ = plt.subplots() sgs = [x[1] for x in sgd_results] for sg in sgs: target_values_sg = data[sg.covers(data)][target].values plt.hist(target_values_sg, bins, alpha=0.3, label=str(sg), density=True) plt.legend(loc='upper right') def plot_npspace_numeric (result_df, size_results, data, annotate=True, fixed_limits=False): result_df = result_df[:size_results] print('mean of the dataset :',result_df['mean_dataset'].unique()[0]) fig, ax = plt.subplots() for i, sg in result_df.iterrows(): mean_sg = sg['mean_sg'] size_sg = sg['size_sg'] ax.plot(size_sg, mean_sg, 'ro', color='b') ax.set_ylabel('mean_sg') ax.set_xlabel('size of subgroup') if annotate: ax.annotate(str(i), (size_sg, mean_sg + 0.005))
the-stack_0_27652
class ListNode: def __init__(self, x): self.val = x self.next = None def print_list(head: ListNode) -> None: while head: print(head.val, end=" -> ") head = head.next class Solution: @staticmethod def has_cycle(head: ListNode) -> bool: slow, fast = head, head.next while slow != fast: if fast is None or fast.next is None: return False slow = slow.next fast = fast.next.next return True three = ListNode(3) # two = ListNode(2) # zero = ListNode(0) # neg_four = ListNode(-4) # three.next = two # two.next = zero # zero.next = neg_four # neg_four.next = two solution = Solution() print(solution.has_cycle(three))
the-stack_0_27653
# Copyright 2018 Neural Networks and Deep Learning lab, MIPT # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from pathlib import Path from typing import List, Any, Dict, Iterable, Tuple from deeppavlov.core.common.log import get_logger from deeppavlov.core.data.dataset_reader import DatasetReader from deeppavlov.core.common.registry import register from deeppavlov.core.commands.utils import expand_path from deeppavlov.core.data.utils import download_decompress, mark_done, is_done logger = get_logger(__name__) @register('amazon_ecommerce_reader') class AmazonEcommerceReader(DatasetReader): """Class to download and load ecommerce data catalog""" def read(self, data_path: str, catalog: list, **kwargs) -> Dict[str, List[Tuple[Any, Any]]]: """Load data from specific catalog Parameters: data_path: where the dataset is located catalog: names of the specific subcategories Returns: dataset: loaded dataset """ logger.info(f"Ecommerce loader is loaded with catalog {catalog}") if not isinstance(catalog, list): catalog = [catalog] ec_data_global: List[Any] = [] data_path = Path(expand_path(data_path)) if not is_done(data_path): self._download_data(data_path) if data_path.is_dir(): for fname in data_path.rglob("*.txt"): if any(cat in fname.name for cat in catalog): logger.info(f"File {fname.name} is loaded") ec_data_global += self._load_amazon_ecommerce_file(fname) dataset = { 'train': [((item['Title'], [], {}), item) for item in ec_data_global], 'valid': [], 'test': [] } logger.info(f"In total {len(ec_data_global)} items are loaded") return dataset def _download_data(self, data_path: str) -> None: """Download dataset""" url = "https://github.com/SamTube405/Amazon-E-commerce-Data-set/archive/master.zip" download_decompress(url, data_path) mark_done(data_path) def _load_amazon_ecommerce_file(self, fname: str) -> List[Dict[Any, Any]]: """Parse dataset Parameters: fname: catalog file Returns: ec_data: parsed catalog data """ ec_data = [] item: Dict = {} new_item_re = re.compile("ITEM *\d+") with open(fname, 'r', encoding='utf-8', errors='ignore') as file: for line in file: if new_item_re.match(line): if len(item.keys()) > 0: if 'Title' in item and 'Feature' in item: ec_data.append(item) item = {'Item': int(line[5:]), 'Category': fname.name.split("_")[1]} else: row = line.strip().split("=") if len(row) == 2: if row[0] in item: item[row[0]] += "." + row[1] else: item[row[0]] = row[1] return ec_data
the-stack_0_27656
import fileinput from functools import reduce lines = list(l for l in fileinput.input()) def narrow(nums, i, keep, pref): ones = [n[i] for n in nums].count('1') zeros = [n[i] for n in nums].count('0') if ones > zeros: pref = keep elif ones < zeros: pref = keep ^ 1 return [n for n in nums if int(n[i]) == pref] oxy, i = lines[:], 0 while len(oxy) > 1: oxy = narrow(oxy, i, 1, 1) i += 1 car, i = lines[:], 0 while len(car) > 1: car = narrow(car, i, 0, 0) i += 1 print(int(f'0b{oxy[0]}', 2) * int(f'0b{car[0]}', 2))
the-stack_0_27658
import torch.nn as nn import torch.nn.functional as F class SampleNet(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
the-stack_0_27659
#!/usr/bin/env python import subprocess import re import shutil import os from os.path import exists, join, split, splitext, normpath, abspath def ensuredir(path): if not exists(path): os.makedirs(path) def _cmd(*args): print(' '.join(args)) return subprocess.check_output(args) def extract_dependent_dylibs(dylib_fpath, filter_regex=None): 'Extracts the dependent libraries of the input dylib' out = _cmd('otool', '-L', dylib_fpath) out = [line.strip() for line in out.split('\n')] if filter_regex is not None: out = filter(lambda line: re.search(filter_regex, line), out) dylib_list = [line.split(' ')[0] for line in out] return dylib_list def append_suffix(fpath, suffix): 'appends sufix like /some/filename<suffix>.ext' root, fname = split(fpath) name, ext = splitext(fname) new_fname = name + suffix + ext new_fpath = join(root, new_fname) return new_fpath def get_localize_name_cmd(dylib_fpath, fpath_src): fname = split(fpath_src)[1] loader_dst = join('@loader_path', fname) instname_cmd = ['install_name_tool', '-change', fpath_src, loader_dst, dylib_fpath] return instname_cmd def inspect_dylib(dylib_fpath): print(_cmd('otool', '-L', dylib_fpath)) def make_distributable_dylib(dylib_fpath, filter_regex='/opt/local/lib/'): 'removes absolute paths from dylibs on mac using otool' print('[otool] making distributable: %r' % dylib_fpath) assert exists(dylib_fpath), 'does not exist dylib_fpath=%r' % dylib_fpath loader_path = split(dylib_fpath)[0] depends_list = extract_dependent_dylibs(dylib_fpath, filter_regex=filter_regex) dependency_moved = False # Build task list copy_list = [] instname_list = [] for fpath_src in depends_list: # Skip depenencies which are relative paths # they have probably already been fixed if not exists(fpath_src): continue fpath_dst = join(loader_path, split(fpath_src)[1]) # Only copy if the file doesnt already exist if not exists(fpath_dst): if re.search(filter_regex, fpath_src): dependency_moved = True copy_list.append((fpath_src, fpath_dst)) instname_list.append(get_localize_name_cmd(dylib_fpath, fpath_src)) # Change input name as well instname_list.append(get_localize_name_cmd(dylib_fpath, dylib_fpath)) # Copy the dependencies to the dylib location for (fpath_src, fpath_dst) in copy_list: shutil.copy(fpath_src, fpath_dst) # Change the dependencies in the dylib for instname_cmd in instname_list: _cmd(*instname_cmd) return dependency_moved def check_depends_dylib(dylib_fpath, filter_regex='/opt/local/lib/'): print('[otool] checking dependencies: %r' % dylib_fpath) assert exists(dylib_fpath), 'does not exist dylib_fpath=%r' % dylib_fpath depends_list = extract_dependent_dylibs(dylib_fpath, filter_regex=filter_regex) loader_path = split(dylib_fpath)[0] exists_list = [] missing_list = [] missing_abs_list = [] for fpath in depends_list: fixed_fpath = normpath(fpath.replace('@loader_path', loader_path)) absfpath = abspath(fixed_fpath) if exists(absfpath): exists_list.append(fpath) else: missing_list.append(fpath) missing_abs_list.append(absfpath) if len(exists_list) > 0: print('Verified Dependencies: ') print('\n'.join(exists_list)) print('----') else: print('Nothing exists') if len(missing_list) > 0: print('Missing Dependencies: ') print('\n'.join(missing_list)) print('----') print('Missing Dependencies: (absolute path)') print('\n'.join(missing_abs_list)) print('----') else: print('Nothing missing') if __name__ == '__main__': #from os.path import expanduser #dylib_fpath = expanduser('~/code/hotspotter/hstpl/extern_feat/libhesaff.dylib') import sys if len(sys.argv) == 3: dylib_fpath = sys.argv[2] if sys.argv[1] == 'make_distributable': make_distributable_dylib(dylib_fpath, filter_regex='/opt/local/lib/') elif sys.argv[1] == 'check_depends': check_depends_dylib(dylib_fpath, filter_regex='') else: print('[otool] unknown command') else: print('[otool] not enough arguments') print(sys.argv)
the-stack_0_27661
# Script to to create file structure based on lists #by SimpleShell import os from countries import * # Imports the list of folders from countries.py file main_dir = [Africa, Asia, Australia, Europe, NorthAmerica, SouthAmerica] # Loading the list of sub-directories root_dir = 'Continents' # Name of the sub-directories main_dir_names = ['Africa', 'Asia', 'Australia', 'Europe', 'North America', 'South America'] def main(): # Create directory for i in range(0, len(main_dir)): for j in range(0, len(main_dir[i])): global main_dir_names dirName = str(root_dir) + '/' + \ str(main_dir_names[i]) + '/' + str(main_dir[i][j]) try: # Create target Directory os.makedirs(dirName) print("Directory ", dirName, " Created ") except FileExistsError: print("Directory ", dirName, " already exists") # Create target Directory if don't exist if not os.path.exists(dirName): os.makedirs(dirName) print("Directory ", dirName, " Created ") else: print("Directory ", dirName, " already exists") for filename in main_dir_names: filename = str(root_dir) + \ '/' + str(main_dir_names[i]) + '/' + \ str(main_dir_names[i])+'.md' p = open(filename, 'w') p.write("Add " + str(main_dir_names[i]) + "'s Land Sector Data Analysis") p.close for j in range(0, len(main_dir[i])): filename1 = str(root_dir) + '/' + str(main_dir_names[i]) + \ '/' + str(main_dir[i][j]) + '/' + str(main_dir[i][j])+'.md' f = open(filename1, 'w') f.write("Add " + str(main_dir[i][j]) + "'s Land Sector Data Analysis") f.close if __name__ == '__main__': main()
the-stack_0_27662
from django.conf.urls import patterns, include, url from django.contrib import admin urlpatterns = patterns( '', url(r'^admin/', include(admin.site.urls)), url('', include('goggles.warehouse.urls', namespace='warehouse')), url('', include('social.apps.django_app.urls', namespace='social')) )
the-stack_0_27664
import pathlib, sys file_path = pathlib.Path(__file__).parent.absolute() import numpy as np import time import matplotlib.pyplot as plt from numpy import linalg as LA from matplotlib import cm import pressiodemoapps as pda nx=80 ny=40 def makePlot(meshPath, yn): fomCoords = np.loadtxt(meshPath+"/coordinates.dat", dtype=float) x_fom, y_fom = fomCoords[:,1], fomCoords[:,2] x_fom = np.reshape(x_fom, (ny,nx)) y_fom = np.reshape(y_fom, (ny,nx)) fig = plt.figure(1) fomS = np.reshape(yn, (nx*ny, 4)) rho = fomS[:,0] rho1 = np.reshape(rho, (ny,nx)) fig = plt.figure(1) ax = plt.gca() h = plt.contourf(x_fom, y_fom, rho1) ax.set_aspect(aspect=1.) plt.colorbar() plt.show() def test_run(): meshPath = str(file_path) meshObj = pda.load_cellcentered_uniform_mesh(meshPath) appObj = pda.create_problem(meshObj, pda.Euler2d.NormalShock, pda.InviscidFluxReconstruction.Weno3) yn = appObj.initialCondition() dt = 0.0005 Nsteps = int(0.1/dt) pda.advanceSSP3(appObj, yn, dt, Nsteps, showProgress=True) # makePlot(meshPath, yn) fomS = np.reshape(yn, (nx*ny, 4)) rho = fomS[:,0] goldD = np.loadtxt(str(file_path)+"/rho_gold.txt") assert(np.allclose(rho.shape, goldD.shape)) assert(np.isnan(rho).all() == False) assert(np.isnan(goldD).all() == False) assert(np.allclose(rho, goldD,rtol=1e-10, atol=1e-12)) # --------------------------- if __name__ == '__main__': # --------------------------- test_run()
the-stack_0_27666
#Modified from https://github.com/lernapparat/lernapparat/ import torch import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict import pickle import numpy as np class MyLinear(nn.Module): """Linear layer with equalized learning rate and custom learning rate multiplier.""" def __init__(self, input_size, output_size, gain=2**(0.5), use_wscale=False, lrmul=1, bias=True): super().__init__() he_std = gain * input_size**(-0.5) # He init # Equalized learning rate and custom learning rate multiplier. if use_wscale: init_std = 1.0 / lrmul self.w_mul = he_std * lrmul else: init_std = he_std / lrmul self.w_mul = lrmul self.weight = torch.nn.Parameter( torch.randn(output_size, input_size) * init_std) if bias: self.bias = torch.nn.Parameter(torch.zeros(output_size)) self.b_mul = lrmul else: self.bias = None def forward(self, x): bias = self.bias if bias is not None: bias = bias * self.b_mul return F.linear(x, self.weight * self.w_mul, bias) class MyConv2d(nn.Module): """Conv layer with equalized learning rate and custom learning rate multiplier.""" def __init__(self, input_channels, output_channels, kernel_size, gain=2**(0.5), use_wscale=False, lrmul=1, bias=True, intermediate=None, upscale=False): super().__init__() if upscale: self.upscale = Upscale2d() else: self.upscale = None he_std = gain * (input_channels * kernel_size ** 2) ** (-0.5) # He init self.kernel_size = kernel_size if use_wscale: init_std = 1.0 / lrmul self.w_mul = he_std * lrmul else: init_std = he_std / lrmul self.w_mul = lrmul self.weight = torch.nn.Parameter(torch.randn( output_channels, input_channels, kernel_size, kernel_size) * init_std) if bias: self.bias = torch.nn.Parameter(torch.zeros(output_channels)) self.b_mul = lrmul else: self.bias = None self.intermediate = intermediate def forward(self, x): bias = self.bias if bias is not None: bias = bias * self.b_mul have_convolution = False if self.upscale is not None and min(x.shape[2:]) * 2 >= 128: # this is the fused upscale + conv from StyleGAN, sadly this seems incompatible with the non-fused way # this really needs to be cleaned up and go into the conv... w = self.weight * self.w_mul w = w.permute(1, 0, 2, 3) # probably applying a conv on w would be more efficient. also this quadruples the weight (average)?! w = F.pad(w, (1, 1, 1, 1)) w = w[:, :, 1:, 1:] + w[:, :, :-1, 1:] + \ w[:, :, 1:, :-1] + w[:, :, :-1, :-1] x = F.conv_transpose2d( x, w, stride=2, padding=int((w.size(-1)-1)//2)) have_convolution = True elif self.upscale is not None: x = self.upscale(x) if not have_convolution and self.intermediate is None: return F.conv2d(x, self.weight * self.w_mul, bias, padding=int(self.kernel_size//2)) elif not have_convolution: x = F.conv2d(x, self.weight * self.w_mul, None, padding=int(self.kernel_size//2)) if self.intermediate is not None: x = self.intermediate(x) if bias is not None: x = x + bias.view(1, -1, 1, 1) return x class NoiseLayer(nn.Module): """adds noise. noise is per pixel (constant over channels) with per-channel weight""" def __init__(self, channels): super().__init__() self.weight = nn.Parameter(torch.zeros(channels)) self.noise = None def forward(self, x, noise=None): if noise is None and self.noise is None: noise = torch.randn(x.size(0), 1, x.size( 2), x.size(3), device=x.device, dtype=x.dtype) elif noise is None: # here is a little trick: if you get all the noiselayers and set each # modules .noise attribute, you can have pre-defined noise. # Very useful for analysis noise = self.noise x = x + self.weight.view(1, -1, 1, 1) * noise return x class StyleMod(nn.Module): def __init__(self, latent_size, channels, use_wscale): super(StyleMod, self).__init__() self.lin = MyLinear(latent_size, channels * 2, gain=1.0, use_wscale=use_wscale) def forward(self, x, latent): style = self.lin(latent) # style => [batch_size, n_channels*2] shape = [-1, 2, x.size(1)] + (x.dim() - 2) * [1] style = style.view(shape) # [batch_size, 2, n_channels, ...] x = x * (style[:, 0] + 1.) + style[:, 1] return x class PixelNormLayer(nn.Module): def __init__(self, epsilon=1e-8): super().__init__() self.epsilon = epsilon def forward(self, x): return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + self.epsilon) class BlurLayer(nn.Module): def __init__(self, kernel=[1, 2, 1], normalize=True, flip=False, stride=1): super(BlurLayer, self).__init__() kernel = [1, 2, 1] kernel = torch.tensor(kernel, dtype=torch.float32) kernel = kernel[:, None] * kernel[None, :] kernel = kernel[None, None] if normalize: kernel = kernel / kernel.sum() if flip: kernel = kernel[:, :, ::-1, ::-1] self.register_buffer('kernel', kernel) self.stride = stride def forward(self, x): # expand kernel channels kernel = self.kernel.expand(x.size(1), -1, -1, -1) x = F.conv2d( x, kernel, stride=self.stride, padding=int((self.kernel.size(2)-1)/2), groups=x.size(1) ) return x def upscale2d(x, factor=2, gain=1): assert x.dim() == 4 if gain != 1: x = x * gain if factor != 1: shape = x.shape x = x.view(shape[0], shape[1], shape[2], 1, shape[3], 1).expand(-1, -1, -1, factor, -1, factor) x = x.contiguous().view( shape[0], shape[1], factor * shape[2], factor * shape[3]) return x class Upscale2d(nn.Module): def __init__(self, factor=2, gain=1): super().__init__() assert isinstance(factor, int) and factor >= 1 self.gain = gain self.factor = factor def forward(self, x): return upscale2d(x, factor=self.factor, gain=self.gain) class G_mapping(nn.Sequential): def __init__(self, nonlinearity='lrelu', use_wscale=True): act, gain = {'relu': (torch.relu, np.sqrt(2)), 'lrelu': (nn.LeakyReLU(negative_slope=0.2), np.sqrt(2))}[nonlinearity] layers = [ ('pixel_norm', PixelNormLayer()), ('dense0', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)), ('dense0_act', act), ('dense1', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)), ('dense1_act', act), ('dense2', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)), ('dense2_act', act), ('dense3', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)), ('dense3_act', act), ('dense4', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)), ('dense4_act', act), ('dense5', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)), ('dense5_act', act), ('dense6', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)), ('dense6_act', act), ('dense7', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)), ('dense7_act', act) ] super().__init__(OrderedDict(layers)) def forward(self, x): x = super().forward(x) return x class Truncation(nn.Module): def __init__(self, avg_latent, max_layer=8, threshold=0.7): super().__init__() self.max_layer = max_layer self.threshold = threshold self.register_buffer('avg_latent', avg_latent) def forward(self, x): assert x.dim() == 3 interp = torch.lerp(self.avg_latent, x, self.threshold) do_trunc = (torch.arange(x.size(1)) < self.max_layer).view(1, -1, 1) return torch.where(do_trunc, interp, x) class LayerEpilogue(nn.Module): """Things to do at the end of each layer.""" def __init__(self, channels, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer): super().__init__() layers = [] if use_noise: self.noise = NoiseLayer(channels) else: self.noise = None layers.append(('activation', activation_layer)) if use_pixel_norm: layers.append(('pixel_norm', PixelNormLayer())) if use_instance_norm: layers.append(('instance_norm', nn.InstanceNorm2d(channels))) self.top_epi = nn.Sequential(OrderedDict(layers)) if use_styles: self.style_mod = StyleMod( dlatent_size, channels, use_wscale=use_wscale) else: self.style_mod = None def forward(self, x, dlatents_in_slice=None, noise_in_slice=None): if(self.noise is not None): x = self.noise(x, noise=noise_in_slice) x = self.top_epi(x) if self.style_mod is not None: x = self.style_mod(x, dlatents_in_slice) else: assert dlatents_in_slice is None return x class InputBlock(nn.Module): def __init__(self, nf, dlatent_size, const_input_layer, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer): super().__init__() self.const_input_layer = const_input_layer self.nf = nf if self.const_input_layer: # called 'const' in tf self.const = nn.Parameter(torch.ones(1, nf, 4, 4)) self.bias = nn.Parameter(torch.ones(nf)) else: # tweak gain to match the official implementation of Progressing GAN self.dense = MyLinear(dlatent_size, nf*16, gain=gain/4, use_wscale=use_wscale) self.epi1 = LayerEpilogue(nf, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer) self.conv = MyConv2d(nf, nf, 3, gain=gain, use_wscale=use_wscale) self.epi2 = LayerEpilogue(nf, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer) def forward(self, dlatents_in_range, noise_in_range): batch_size = dlatents_in_range.size(0) if self.const_input_layer: x = self.const.expand(batch_size, -1, -1, -1) x = x + self.bias.view(1, -1, 1, 1) else: x = self.dense(dlatents_in_range[:, 0]).view( batch_size, self.nf, 4, 4) x = self.epi1(x, dlatents_in_range[:, 0], noise_in_range[0]) x = self.conv(x) x = self.epi2(x, dlatents_in_range[:, 1], noise_in_range[1]) return x class GSynthesisBlock(nn.Module): def __init__(self, in_channels, out_channels, blur_filter, dlatent_size, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer): # 2**res x 2**res # res = 3..resolution_log2 super().__init__() if blur_filter: blur = BlurLayer(blur_filter) else: blur = None self.conv0_up = MyConv2d(in_channels, out_channels, kernel_size=3, gain=gain, use_wscale=use_wscale, intermediate=blur, upscale=True) self.epi1 = LayerEpilogue(out_channels, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer) self.conv1 = MyConv2d(out_channels, out_channels, kernel_size=3, gain=gain, use_wscale=use_wscale) self.epi2 = LayerEpilogue(out_channels, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer) def forward(self, x, dlatents_in_range, noise_in_range): x = self.conv0_up(x) x = self.epi1(x, dlatents_in_range[:, 0], noise_in_range[0]) x = self.conv1(x) x = self.epi2(x, dlatents_in_range[:, 1], noise_in_range[1]) return x class G_synthesis(nn.Module): def __init__(self, # Disentangled latent (W) dimensionality. dlatent_size=512, num_channels=3, # Number of output color channels. resolution=1024, # Output resolution. # Overall multiplier for the number of feature maps. fmap_base=8192, # log2 feature map reduction when doubling the resolution. fmap_decay=1.0, # Maximum number of feature maps in any layer. fmap_max=512, use_styles=True, # Enable style inputs? const_input_layer=True, # First layer is a learned constant? use_noise=True, # Enable noise inputs? # True = randomize noise inputs every time (non-deterministic), False = read noise inputs from variables. randomize_noise=True, nonlinearity='lrelu', # Activation function: 'relu', 'lrelu' use_wscale=True, # Enable equalized learning rate? use_pixel_norm=False, # Enable pixelwise feature vector normalization? use_instance_norm=True, # Enable instance normalization? # Data type to use for activations and outputs. dtype=torch.float32, # Low-pass filter to apply when resampling activations. None = no filtering. blur_filter=[1, 2, 1], ): super().__init__() def nf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max) self.dlatent_size = dlatent_size resolution_log2 = int(np.log2(resolution)) assert resolution == 2**resolution_log2 and resolution >= 4 act, gain = {'relu': (torch.relu, np.sqrt(2)), 'lrelu': (nn.LeakyReLU(negative_slope=0.2), np.sqrt(2))}[nonlinearity] num_layers = resolution_log2 * 2 - 2 num_styles = num_layers if use_styles else 1 torgbs = [] blocks = [] for res in range(2, resolution_log2 + 1): channels = nf(res-1) name = '{s}x{s}'.format(s=2**res) if res == 2: blocks.append((name, InputBlock(channels, dlatent_size, const_input_layer, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, act))) else: blocks.append((name, GSynthesisBlock(last_channels, channels, blur_filter, dlatent_size, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, act))) last_channels = channels self.torgb = MyConv2d(channels, num_channels, 1, gain=1, use_wscale=use_wscale) self.blocks = nn.ModuleDict(OrderedDict(blocks)) def forward(self, dlatents_in, noise_in): # Input: Disentangled latents (W) [minibatch, num_layers, dlatent_size]. # lod_in = tf.cast(tf.get_variable('lod', initializer=np.float32(0), trainable=False), dtype) batch_size = dlatents_in.size(0) for i, m in enumerate(self.blocks.values()): if i == 0: x = m(dlatents_in[:, 2*i:2*i+2], noise_in[2*i:2*i+2]) else: x = m(x, dlatents_in[:, 2*i:2*i+2], noise_in[2*i:2*i+2]) rgb = self.torgb(x) return rgb
the-stack_0_27669
import gym import numpy as np import matplotlib.pyplot as plt ACTION_DICT = {0: 'NOOP', 1: 'FIRE', 2:'RIGHT', 3:'LEFT'} def preprocess(observation): observation = observation / 255 return np.mean(observation[30:,:], axis=2).reshape(180,160) def stack_frames(stacked_frames, frame, stack_size, actions, action): if stacked_frames is None: stacked_frames = np.zeros((*frame.shape, stack_size)) actions = np.zeros(stack_size) for idx in range(stack_size): stacked_frames[:,:,idx] = frame else: stacked_frames[:,:,0:stack_size-1] = stacked_frames[:,:,1:] stacked_frames[:,:,stack_size-1] = frame actions[0:stack_size-1] = actions[1:] actions[stack_size-1] = action fig, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4) ax1.imshow(stacked_frames[:,:,0]) ax1.set_title(ACTION_DICT[actions[0]]) ax2.imshow(stacked_frames[:,:,1]) ax2.set_title(ACTION_DICT[actions[1]]) ax3.imshow(stacked_frames[:,:,2]) ax3.set_title(ACTION_DICT[actions[2]]) ax4.imshow(stacked_frames[:,:,3]) ax4.set_title(ACTION_DICT[actions[3]]) plt.show() return actions, stacked_frames if __name__ == '__main__': env = gym.make('Breakout-v0') stack_size = 4 for i in range(10): done = False observation = env.reset() observation = preprocess(observation) stacked_frames = None actions=None actions, stacked_frames = stack_frames(stacked_frames, observation, stack_size, actions, 0) while not done: action = env.action_space.sample() observation_, reward, done, info = env.step(action) actions, stacked_frames_ = stack_frames(stacked_frames, preprocess(observation_), stack_size, actions, action)
the-stack_0_27671
import numpy as np import cv2 thres = 0.5 # Threshold to detect object nms_threshold = 0.2 # (0.1 to 1) 1 means no suppress , 0.1 means high suppress cap = cv2.VideoCapture("Road_traffic_video2.mp4") cap.set(cv2.CAP_PROP_FRAME_WIDTH, 280) # width cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 120) # height cap.set(cv2.CAP_PROP_BRIGHTNESS, 150) # brightness classNames = [] with open("coco.names", "r") as f: classNames = f.read().splitlines() print(classNames) font = cv2.FONT_HERSHEY_PLAIN # font = cv2.FONT_HERSHEY_COMPLEX Colors = np.random.uniform(0, 255, size=(len(classNames), 3)) weightsPath = "frozen_inference_graph.pb" configPath = "ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt" net = cv2.dnn_DetectionModel(weightsPath, configPath) net.setInputSize(320, 320) net.setInputScale(1.0 / 127.5) net.setInputMean((127.5, 127.5, 127.5)) net.setInputSwapRB(True) while True: success, img = cap.read() classIds, confs, bbox = net.detect(img, confThreshold=thres) bbox = list(bbox) confs = list(np.array(confs).reshape(1, -1)[0]) confs = list(map(float, confs)) # print(type(confs[0])) # print(confs) indices = cv2.dnn.NMSBoxes(bbox, confs, thres, nms_threshold) if len(classIds) != 0: for i in indices: i = i[0] box = bbox[i] confidence = str(round(confs[i], 2)) color = Colors[classIds[i][0] - 1] x, y, w, h = box[0], box[1], box[2], box[3] cv2.rectangle(img, (x, y), (x + w, y + h), color, thickness=2) cv2.putText( img, classNames[classIds[i][0] - 1] + " " + confidence, (x + 10, y + 20), font, 1, color, 2, ) # cv2.putText(img,str(round(confidence,2)),(box[0]+100,box[1]+30), # font,1,colors[classId-1],2) cv2.imshow("Output", img) cv2.waitKey(1)
the-stack_0_27675
# Copyright (C) 2020-2021 Intel Corporation # # SPDX-License-Identifier: MIT from collections import OrderedDict, defaultdict from enum import Enum, auto from itertools import chain import logging as log import os import os.path as osp # Disable B410: import_lxml - the library is used for writing from lxml import etree as ET # nosec from datumaro.components.annotation import ( AnnotationType, CompiledMask, LabelCategories, ) from datumaro.components.converter import Converter from datumaro.components.dataset import ItemStatus from datumaro.components.extractor import DatasetItem from datumaro.util import find, str_to_bool from datumaro.util.annotation_util import make_label_id_mapping from datumaro.util.image import save_image from datumaro.util.mask_tools import paint_mask, remap_mask from .format import ( VocInstColormap, VocPath, VocTask, make_voc_categories, make_voc_label_map, parse_label_map, write_label_map, ) def _convert_attr(name, attributes, type_conv, default=None): d = object() value = attributes.get(name, d) if value is d: return default try: return type_conv(value) except Exception as e: log.warning("Failed to convert attribute '%s'='%s': %s" % \ (name, value, e)) return default def _write_xml_bbox(bbox, parent_elem): x, y, w, h = bbox bbox_elem = ET.SubElement(parent_elem, 'bndbox') ET.SubElement(bbox_elem, 'xmin').text = str(x) ET.SubElement(bbox_elem, 'ymin').text = str(y) ET.SubElement(bbox_elem, 'xmax').text = str(x + w) ET.SubElement(bbox_elem, 'ymax').text = str(y + h) return bbox_elem class LabelmapType(Enum): voc = auto() source = auto() class VocConverter(Converter): DEFAULT_IMAGE_EXT = VocPath.IMAGE_EXT BUILTIN_ATTRS = {'difficult', 'pose', 'truncated', 'occluded' } @staticmethod def _split_tasks_string(s): return [VocTask[i.strip()] for i in s.split(',')] @staticmethod def _get_labelmap(s): if osp.isfile(s): return s try: return LabelmapType[s].name except KeyError: import argparse raise argparse.ArgumentTypeError() @classmethod def build_cmdline_parser(cls, **kwargs): parser = super().build_cmdline_parser(**kwargs) parser.add_argument('--apply-colormap', type=str_to_bool, default=True, help="Use colormap for class and instance masks " "(default: %(default)s)") parser.add_argument('--label-map', type=cls._get_labelmap, default=None, help="Labelmap file path or one of %s" % \ ', '.join(t.name for t in LabelmapType)) parser.add_argument('--allow-attributes', type=str_to_bool, default=True, help="Allow export of attributes (default: %(default)s)") parser.add_argument('--keep-empty', type=str_to_bool, default=False, help="Write subset lists even if they are empty " "(default: %(default)s)") parser.add_argument('--tasks', type=cls._split_tasks_string, help="VOC task filter, comma-separated list of {%s} " "(default: all)" % ', '.join(t.name for t in VocTask)) return parser def __init__(self, extractor, save_dir, tasks=None, apply_colormap=True, label_map=None, allow_attributes=True, keep_empty=False, **kwargs): super().__init__(extractor, save_dir, **kwargs) assert tasks is None or isinstance(tasks, (VocTask, list, set)) if tasks is None: tasks = set(VocTask) elif isinstance(tasks, VocTask): tasks = {tasks} else: tasks = set(t if t in VocTask else VocTask[t] for t in tasks) self._tasks = tasks self._apply_colormap = apply_colormap self._allow_attributes = allow_attributes self._keep_empty = keep_empty if label_map is None: label_map = LabelmapType.source.name assert isinstance(label_map, (str, dict)), label_map self._load_categories(label_map) self._patch = None def apply(self): self.make_dirs() self.save_subsets() self.save_label_map() def make_dirs(self): save_dir = self._save_dir subsets_dir = osp.join(save_dir, VocPath.SUBSETS_DIR) cls_subsets_dir = osp.join(subsets_dir, VocPath.TASK_DIR[VocTask.classification]) action_subsets_dir = osp.join(subsets_dir, VocPath.TASK_DIR[VocTask.action_classification]) layout_subsets_dir = osp.join(subsets_dir, VocPath.TASK_DIR[VocTask.person_layout]) segm_subsets_dir = osp.join(subsets_dir, VocPath.TASK_DIR[VocTask.segmentation]) ann_dir = osp.join(save_dir, VocPath.ANNOTATIONS_DIR) img_dir = osp.join(save_dir, VocPath.IMAGES_DIR) segm_dir = osp.join(save_dir, VocPath.SEGMENTATION_DIR) inst_dir = osp.join(save_dir, VocPath.INSTANCES_DIR) images_dir = osp.join(save_dir, VocPath.IMAGES_DIR) os.makedirs(subsets_dir, exist_ok=True) os.makedirs(ann_dir, exist_ok=True) os.makedirs(img_dir, exist_ok=True) os.makedirs(segm_dir, exist_ok=True) os.makedirs(inst_dir, exist_ok=True) os.makedirs(images_dir, exist_ok=True) self._subsets_dir = subsets_dir self._cls_subsets_dir = cls_subsets_dir self._action_subsets_dir = action_subsets_dir self._layout_subsets_dir = layout_subsets_dir self._segm_subsets_dir = segm_subsets_dir self._ann_dir = ann_dir self._img_dir = img_dir self._segm_dir = segm_dir self._inst_dir = inst_dir self._images_dir = images_dir def get_label(self, label_id): return self._extractor. \ categories()[AnnotationType.label].items[label_id].name def save_subsets(self): for subset_name, subset in self._extractor.subsets().items(): class_lists = OrderedDict() clsdet_list = OrderedDict() action_list = OrderedDict() layout_list = OrderedDict() segm_list = OrderedDict() for item in subset: log.debug("Converting item '%s'", item.id) image_filename = self._make_image_filename(item) if self._save_images: if item.has_image and item.image.has_data: self._save_image(item, osp.join(self._images_dir, image_filename)) else: log.debug("Item '%s' has no image", item.id) labels = [] bboxes = [] masks = [] for a in item.annotations: if a.type == AnnotationType.label: labels.append(a) elif a.type == AnnotationType.bbox: bboxes.append(a) elif a.type == AnnotationType.mask: masks.append(a) if self._tasks & {VocTask.detection, VocTask.person_layout, VocTask.action_classification}: root_elem = ET.Element('annotation') if '_' in item.id: folder = item.id[ : item.id.find('_')] else: folder = '' ET.SubElement(root_elem, 'folder').text = folder ET.SubElement(root_elem, 'filename').text = image_filename source_elem = ET.SubElement(root_elem, 'source') ET.SubElement(source_elem, 'database').text = 'Unknown' ET.SubElement(source_elem, 'annotation').text = 'Unknown' ET.SubElement(source_elem, 'image').text = 'Unknown' if item.has_image and item.image.has_size: h, w = item.image.size size_elem = ET.SubElement(root_elem, 'size') ET.SubElement(size_elem, 'width').text = str(w) ET.SubElement(size_elem, 'height').text = str(h) ET.SubElement(size_elem, 'depth').text = '' item_segmented = 0 < len(masks) ET.SubElement(root_elem, 'segmented').text = \ str(int(item_segmented)) objects_with_parts = [] objects_with_actions = defaultdict(dict) main_bboxes = [] layout_bboxes = [] for bbox in bboxes: label = self.get_label(bbox.label) if self._is_part(label): layout_bboxes.append(bbox) elif self._is_label(label): main_bboxes.append(bbox) for new_obj_id, obj in enumerate(main_bboxes): attr = obj.attributes obj_elem = ET.SubElement(root_elem, 'object') obj_label = self.get_label(obj.label) ET.SubElement(obj_elem, 'name').text = obj_label if 'pose' in attr: ET.SubElement(obj_elem, 'pose').text = \ str(attr['pose']) ET.SubElement(obj_elem, 'truncated').text = \ '%d' % _convert_attr('truncated', attr, int, 0) ET.SubElement(obj_elem, 'occluded').text = \ '%d' % _convert_attr('occluded', attr, int, 0) ET.SubElement(obj_elem, 'difficult').text = \ '%d' % _convert_attr('difficult', attr, int, 0) bbox = obj.get_bbox() if bbox is not None: _write_xml_bbox(bbox, obj_elem) for part_bbox in filter( lambda x: obj.group and obj.group == x.group, layout_bboxes): part_elem = ET.SubElement(obj_elem, 'part') ET.SubElement(part_elem, 'name').text = \ self.get_label(part_bbox.label) _write_xml_bbox(part_bbox.get_bbox(), part_elem) objects_with_parts.append(new_obj_id) label_actions = self._get_actions(obj_label) actions_elem = ET.Element('actions') for action in label_actions: present = 0 if action in attr: present = _convert_attr(action, attr, lambda v: int(v == True), 0) ET.SubElement(actions_elem, action).text = \ '%d' % present objects_with_actions[new_obj_id][action] = present if len(actions_elem) != 0: obj_elem.append(actions_elem) if self._allow_attributes: native_attrs = set(self.BUILTIN_ATTRS) native_attrs.update(label_actions) attrs_elem = ET.Element('attributes') for k, v in attr.items(): if k in native_attrs: continue attr_elem = ET.SubElement(attrs_elem, 'attribute') ET.SubElement(attr_elem, 'name').text = str(k) ET.SubElement(attr_elem, 'value').text = str(v) if len(attrs_elem): obj_elem.append(attrs_elem) if self._tasks & {VocTask.detection, VocTask.person_layout, VocTask.action_classification}: ann_path = osp.join(self._ann_dir, item.id + '.xml') os.makedirs(osp.dirname(ann_path), exist_ok=True) with open(ann_path, 'w', encoding='utf-8') as f: f.write(ET.tostring(root_elem, encoding='unicode', pretty_print=True)) clsdet_list[item.id] = True if objects_with_parts: layout_list[item.id] = objects_with_parts if objects_with_actions: action_list[item.id] = objects_with_actions for label_ann in labels: label = self.get_label(label_ann.label) if not self._is_label(label): continue class_list = class_lists.get(item.id, set()) class_list.add(label_ann.label) class_lists[item.id] = class_list clsdet_list[item.id] = True if masks and VocTask.segmentation in self._tasks: compiled_mask = CompiledMask.from_instance_masks(masks, instance_labels=[self._label_id_mapping(m.label) for m in masks]) self.save_segm( osp.join(self._segm_dir, item.id + VocPath.SEGM_EXT), compiled_mask.class_mask) self.save_segm( osp.join(self._inst_dir, item.id + VocPath.SEGM_EXT), compiled_mask.instance_mask, colormap=VocInstColormap) segm_list[item.id] = True elif not masks and self._patch: cls_mask_path = osp.join(self._segm_dir, item.id + VocPath.SEGM_EXT) if osp.isfile(cls_mask_path): os.remove(cls_mask_path) inst_mask_path = osp.join(self._inst_dir, item.id + VocPath.SEGM_EXT) if osp.isfile(inst_mask_path): os.remove(inst_mask_path) if len(item.annotations) == 0: clsdet_list[item.id] = None layout_list[item.id] = None action_list[item.id] = None segm_list[item.id] = None if self._tasks & {VocTask.classification, VocTask.detection, VocTask.action_classification, VocTask.person_layout}: self.save_clsdet_lists(subset_name, clsdet_list) if self._tasks & {VocTask.classification}: self.save_class_lists(subset_name, class_lists) if self._tasks & {VocTask.action_classification}: self.save_action_lists(subset_name, action_list) if self._tasks & {VocTask.person_layout}: self.save_layout_lists(subset_name, layout_list) if self._tasks & {VocTask.segmentation}: self.save_segm_lists(subset_name, segm_list) @staticmethod def _get_filtered_lines(path, patch, subset, items=None): lines = {} with open(path, encoding='utf-8') as f: for line in f: line = line.strip() if not line: continue line_parts = line.split(maxsplit=1) if len(line_parts) < 2: line_parts.append('') item, text = line_parts if not patch or patch.updated_items.get((item, subset)) != \ ItemStatus.removed: lines.setdefault(item, []).append(text) if items is not None: items.update((k, True) for k in lines) return lines def save_action_lists(self, subset_name, action_list): os.makedirs(self._action_subsets_dir, exist_ok=True) ann_file = osp.join(self._action_subsets_dir, subset_name + '.txt') items = {k: True for k in action_list} if self._patch and osp.isfile(ann_file): self._get_filtered_lines(ann_file, self._patch, subset_name, items) if items or self._keep_empty: with open(ann_file, 'w', encoding='utf-8') as f: for item in items: f.write('%s\n' % item) elif osp.isfile(ann_file): os.remove(ann_file) if not items and not self._patch and not self._keep_empty: return def _write_item(f, item, objs, action): if not objs: return for obj_id, obj_actions in objs.items(): presented = obj_actions[action] f.write('%s %s % d\n' % \ (item, 1 + obj_id, 1 if presented else -1)) all_actions = { act: osp.join(self._action_subsets_dir, '%s_%s.txt' % (act, subset_name)) for act in chain(*(self._get_actions(l) for l in self._label_map)) } for action, ann_file in all_actions.items(): if not items and not self._keep_empty: if osp.isfile(ann_file): os.remove(ann_file) continue lines = {} if self._patch and osp.isfile(ann_file): lines = self._get_filtered_lines(ann_file, None, subset_name) with open(ann_file, 'w', encoding='utf-8') as f: for item in items: if item in action_list: _write_item(f, item, action_list[item], action) elif item in lines: print(item, *lines[item], file=f) def save_class_lists(self, subset_name, class_lists): def _write_item(f, item, item_labels): if not item_labels: return item_labels = [self.get_label(l) for l in item_labels] presented = label in item_labels f.write('%s % d\n' % (item, 1 if presented else -1)) os.makedirs(self._cls_subsets_dir, exist_ok=True) for label in self._label_map: ann_file = osp.join(self._cls_subsets_dir, '%s_%s.txt' % (label, subset_name)) items = {k: True for k in class_lists} lines = {} if self._patch and osp.isfile(ann_file): lines = self._get_filtered_lines(ann_file, self._patch, subset_name, items) if not items and not self._keep_empty: if osp.isfile(ann_file): os.remove(ann_file) continue with open(ann_file, 'w', encoding='utf-8') as f: for item in items: if item in class_lists: _write_item(f, item, class_lists[item]) elif item in lines: print(item, *lines[item], file=f) def save_clsdet_lists(self, subset_name, clsdet_list): os.makedirs(self._cls_subsets_dir, exist_ok=True) ann_file = osp.join(self._cls_subsets_dir, subset_name + '.txt') items = {k: True for k in clsdet_list} if self._patch and osp.isfile(ann_file): self._get_filtered_lines(ann_file, self._patch, subset_name, items) if items or self._keep_empty: with open(ann_file, 'w', encoding='utf-8') as f: for item in items: f.write('%s\n' % item) elif osp.isfile(ann_file): os.remove(ann_file) def save_segm_lists(self, subset_name, segm_list): os.makedirs(self._segm_subsets_dir, exist_ok=True) ann_file = osp.join(self._segm_subsets_dir, subset_name + '.txt') items = {k: True for k in segm_list} if self._patch and osp.isfile(ann_file): self._get_filtered_lines(ann_file, self._patch, subset_name, items) if items or self._keep_empty: with open(ann_file, 'w', encoding='utf-8') as f: for item in items: f.write('%s\n' % item) elif osp.isfile(ann_file): os.remove(ann_file) def save_layout_lists(self, subset_name, layout_list): def _write_item(f, item, item_layouts): if 1 < len(item.split()): item = '\"' + item + '\"' if item_layouts: for obj_id in item_layouts: f.write('%s % d\n' % (item, 1 + obj_id)) else: f.write('%s\n' % item) os.makedirs(self._layout_subsets_dir, exist_ok=True) ann_file = osp.join(self._layout_subsets_dir, subset_name + '.txt') items = {k: True for k in layout_list} lines = {} if self._patch and osp.isfile(ann_file): self._get_filtered_lines(ann_file, self._patch, subset_name, items) if not items and not self._keep_empty: if osp.isfile(ann_file): os.remove(ann_file) return with open(ann_file, 'w', encoding='utf-8') as f: for item in items: if item in layout_list: _write_item(f, item, layout_list[item]) elif item in lines: print(item, *lines[item], file=f) def save_segm(self, path, mask, colormap=None): if self._apply_colormap: if colormap is None: colormap = self._categories[AnnotationType.mask].colormap mask = paint_mask(mask, colormap) save_image(path, mask, create_dir=True) def save_label_map(self): path = osp.join(self._save_dir, VocPath.LABELMAP_FILE) write_label_map(path, self._label_map) def _load_categories(self, label_map_source): if label_map_source == LabelmapType.voc.name: # use the default VOC colormap label_map = make_voc_label_map() elif label_map_source == LabelmapType.source.name and \ AnnotationType.mask not in self._extractor.categories(): # generate colormap for input labels labels = self._extractor.categories() \ .get(AnnotationType.label, LabelCategories()) label_map = OrderedDict((item.name, [None, [], []]) for item in labels.items) elif label_map_source == LabelmapType.source.name and \ AnnotationType.mask in self._extractor.categories(): # use source colormap labels = self._extractor.categories()[AnnotationType.label] colors = self._extractor.categories()[AnnotationType.mask] label_map = OrderedDict() for idx, item in enumerate(labels.items): color = colors.colormap.get(idx) if color is not None: label_map[item.name] = [color, [], []] elif isinstance(label_map_source, dict): label_map = OrderedDict( sorted(label_map_source.items(), key=lambda e: e[0])) elif isinstance(label_map_source, str) and osp.isfile(label_map_source): label_map = parse_label_map(label_map_source) else: raise Exception("Wrong labelmap specified: '%s', " "expected one of %s or a file path" % \ (label_map_source, ', '.join(t.name for t in LabelmapType))) # There must always be a label with color (0, 0, 0) at index 0 bg_label = find(label_map.items(), lambda x: x[1][0] == (0, 0, 0)) if bg_label is not None: bg_label = bg_label[0] else: bg_label = 'background' if bg_label not in label_map: has_colors = any(v[0] is not None for v in label_map.values()) color = (0, 0, 0) if has_colors else None label_map[bg_label] = [color, [], []] label_map.move_to_end(bg_label, last=False) self._categories = make_voc_categories(label_map) # Update colors with assigned values colormap = self._categories[AnnotationType.mask].colormap for label_id, color in colormap.items(): label_desc = label_map[ self._categories[AnnotationType.label].items[label_id].name] label_desc[0] = color self._label_map = label_map self._label_id_mapping = self._make_label_id_map() def _is_label(self, s): return self._label_map.get(s) is not None def _is_part(self, s): for label_desc in self._label_map.values(): if s in label_desc[1]: return True return False def _is_action(self, label, s): return s in self._get_actions(label) def _get_actions(self, label): label_desc = self._label_map.get(label) if not label_desc: return [] return label_desc[2] def _make_label_id_map(self): map_id, id_mapping, src_labels, dst_labels = make_label_id_mapping( self._extractor.categories().get(AnnotationType.label), self._categories[AnnotationType.label]) void_labels = [src_label for src_id, src_label in src_labels.items() if src_label not in dst_labels] if void_labels: log.warning("The following labels are remapped to background: %s" % ', '.join(void_labels)) log.debug("Saving segmentations with the following label mapping: \n%s" % '\n'.join(["#%s '%s' -> #%s '%s'" % ( src_id, src_label, id_mapping[src_id], self._categories[AnnotationType.label] \ .items[id_mapping[src_id]].name ) for src_id, src_label in src_labels.items() ]) ) return map_id def _remap_mask(self, mask): return remap_mask(mask, self._label_id_mapping) @classmethod def patch(cls, dataset, patch, save_dir, **kwargs): conv = cls(patch.as_dataset(dataset), save_dir=save_dir, **kwargs) conv._patch = patch conv.apply() for filename in os.listdir(conv._cls_subsets_dir): if '_' not in filename or not filename.endswith('.txt'): continue label, subset = osp.splitext(filename)[0].split('_', maxsplit=1) if label not in conv._label_map or subset not in dataset.subsets(): os.remove(osp.join(conv._cls_subsets_dir, filename)) # Find images that need to be removed # images from different subsets are stored in the common directory # Avoid situations like: # (a, test): added # (a, train): removed # where the second line removes images from the first. ids_to_remove = {} for (item_id, subset), status in patch.updated_items.items(): if status != ItemStatus.removed: item = patch.data.get(item_id, subset) else: item = DatasetItem(item_id, subset=subset) if not (status == ItemStatus.removed or not item.has_image): ids_to_remove[item_id] = (item, False) else: ids_to_remove.setdefault(item_id, (item, True)) for item, to_remove in ids_to_remove.values(): if not to_remove: continue if conv._tasks & {VocTask.detection, VocTask.action_classification, VocTask.person_layout}: ann_path = osp.join(conv._ann_dir, item.id + '.xml') if osp.isfile(ann_path): os.remove(ann_path) image_path = osp.join(conv._images_dir, conv._make_image_filename(item)) if osp.isfile(image_path): os.unlink(image_path) if not [a for a in item.annotations if a.type is AnnotationType.mask]: path = osp.join(save_dir, VocPath.SEGMENTATION_DIR, item.id + VocPath.SEGM_EXT) if osp.isfile(path): os.unlink(path) path = osp.join(save_dir, VocPath.INSTANCES_DIR, item.id + VocPath.SEGM_EXT) if osp.isfile(path): os.unlink(path) class VocClassificationConverter(VocConverter): def __init__(self, *args, **kwargs): kwargs['tasks'] = VocTask.classification super().__init__(*args, **kwargs) class VocDetectionConverter(VocConverter): def __init__(self, *args, **kwargs): kwargs['tasks'] = VocTask.detection super().__init__(*args, **kwargs) class VocLayoutConverter(VocConverter): def __init__(self, *args, **kwargs): kwargs['tasks'] = VocTask.person_layout super().__init__(*args, **kwargs) class VocActionConverter(VocConverter): def __init__(self, *args, **kwargs): kwargs['tasks'] = VocTask.action_classification super().__init__(*args, **kwargs) class VocSegmentationConverter(VocConverter): def __init__(self, *args, **kwargs): kwargs['tasks'] = VocTask.segmentation super().__init__(*args, **kwargs)
the-stack_0_27676
# Copyright (c) 2011 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ FormPost Middleware Translates a browser form post into a regular Swift object PUT. The format of the form is:: <form action="<swift-url>" method="POST" enctype="multipart/form-data"> <input type="hidden" name="redirect" value="<redirect-url>" /> <input type="hidden" name="max_file_size" value="<bytes>" /> <input type="hidden" name="max_file_count" value="<count>" /> <input type="hidden" name="expires" value="<unix-timestamp>" /> <input type="hidden" name="signature" value="<hmac>" /> <input type="file" name="file1" /><br /> <input type="submit" /> </form> Optionally, if you want the uploaded files to be temporary you can set x-delete-at or x-delete-after attributes by adding one of these as a form input:: <input type="hidden" name="x_delete_at" value="<unix-timestamp>" /> <input type="hidden" name="x_delete_after" value="<seconds>" /> The <swift-url> is the URL of the Swift destination, such as:: https://swift-cluster.example.com/v1/AUTH_account/container/object_prefix The name of each file uploaded will be appended to the <swift-url> given. So, you can upload directly to the root of container with a url like:: https://swift-cluster.example.com/v1/AUTH_account/container/ Optionally, you can include an object prefix to better separate different users' uploads, such as:: https://swift-cluster.example.com/v1/AUTH_account/container/object_prefix Note the form method must be POST and the enctype must be set as "multipart/form-data". The redirect attribute is the URL to redirect the browser to after the upload completes. This is an optional parameter. If you are uploading the form via an XMLHttpRequest the redirect should not be included. The URL will have status and message query parameters added to it, indicating the HTTP status code for the upload (2xx is success) and a possible message for further information if there was an error (such as "max_file_size exceeded"). The max_file_size attribute must be included and indicates the largest single file upload that can be done, in bytes. The max_file_count attribute must be included and indicates the maximum number of files that can be uploaded with the form. Include additional ``<input type="file" name="filexx" />`` attributes if desired. The expires attribute is the Unix timestamp before which the form must be submitted before it is invalidated. The signature attribute is the HMAC-SHA1 signature of the form. Here is sample code for computing the signature:: import hmac from hashlib import sha1 from time import time path = '/v1/account/container/object_prefix' redirect = 'https://srv.com/some-page' # set to '' if redirect not in form max_file_size = 104857600 max_file_count = 10 expires = int(time() + 600) key = 'mykey' hmac_body = '%s\\n%s\\n%s\\n%s\\n%s' % (path, redirect, max_file_size, max_file_count, expires) signature = hmac.new(key, hmac_body, sha1).hexdigest() The key is the value of either the X-Account-Meta-Temp-URL-Key or the X-Account-Meta-Temp-Url-Key-2 header on the account. Be certain to use the full path, from the /v1/ onward. Note that x_delete_at and x_delete_after are not used in signature generation as they are both optional attributes. The command line tool ``swift-form-signature`` may be used (mostly just when testing) to compute expires and signature. Also note that the file attributes must be after the other attributes in order to be processed correctly. If attributes come after the file, they won't be sent with the subrequest (there is no way to parse all the attributes on the server-side without reading the whole thing into memory -- to service many requests, some with large files, there just isn't enough memory on the server, so attributes following the file are simply ignored). """ __all__ = ['FormPost', 'filter_factory', 'READ_CHUNK_SIZE', 'MAX_VALUE_LENGTH'] import hmac import rfc822 from hashlib import sha1 from time import time from urllib import quote from swift.common.exceptions import MimeInvalid from swift.common.middleware.tempurl import get_tempurl_keys_from_metadata from swift.common.utils import streq_const_time, register_swift_info, \ parse_content_disposition, iter_multipart_mime_documents from swift.common.wsgi import make_pre_authed_env from swift.common.swob import HTTPUnauthorized from swift.proxy.controllers.base import get_account_info #: The size of data to read from the form at any given time. READ_CHUNK_SIZE = 4096 #: The maximum size of any attribute's value. Any additional data will be #: truncated. MAX_VALUE_LENGTH = 4096 class FormInvalid(Exception): pass class FormUnauthorized(Exception): pass class _CappedFileLikeObject(object): """ A file-like object wrapping another file-like object that raises an EOFError if the amount of data read exceeds a given max_file_size. :param fp: The file-like object to wrap. :param max_file_size: The maximum bytes to read before raising an EOFError. """ def __init__(self, fp, max_file_size): self.fp = fp self.max_file_size = max_file_size self.amount_read = 0 self.file_size_exceeded = False def read(self, size=None): ret = self.fp.read(size) self.amount_read += len(ret) if self.amount_read > self.max_file_size: self.file_size_exceeded = True raise EOFError('max_file_size exceeded') return ret def readline(self): ret = self.fp.readline() self.amount_read += len(ret) if self.amount_read > self.max_file_size: self.file_size_exceeded = True raise EOFError('max_file_size exceeded') return ret class FormPost(object): """ FormPost Middleware See above for a full description. The proxy logs created for any subrequests made will have swift.source set to "FP". :param app: The next WSGI filter or app in the paste.deploy chain. :param conf: The configuration dict for the middleware. """ def __init__(self, app, conf): #: The next WSGI application/filter in the paste.deploy pipeline. self.app = app #: The filter configuration dict. self.conf = conf def __call__(self, env, start_response): """ Main hook into the WSGI paste.deploy filter/app pipeline. :param env: The WSGI environment dict. :param start_response: The WSGI start_response hook. :returns: Response as per WSGI. """ if env['REQUEST_METHOD'] == 'POST': try: content_type, attrs = \ parse_content_disposition(env.get('CONTENT_TYPE') or '') if content_type == 'multipart/form-data' and \ 'boundary' in attrs: http_user_agent = "%s FormPost" % ( env.get('HTTP_USER_AGENT', '')) env['HTTP_USER_AGENT'] = http_user_agent.strip() status, headers, body = self._translate_form( env, attrs['boundary']) start_response(status, headers) return [body] except (FormInvalid, MimeInvalid, EOFError) as err: body = 'FormPost: %s' % err start_response( '400 Bad Request', (('Content-Type', 'text/plain'), ('Content-Length', str(len(body))))) return [body] except FormUnauthorized as err: message = 'FormPost: %s' % str(err).title() return HTTPUnauthorized(body=message)( env, start_response) return self.app(env, start_response) def _translate_form(self, env, boundary): """ Translates the form data into subrequests and issues a response. :param env: The WSGI environment dict. :param boundary: The MIME type boundary to look for. :returns: status_line, headers_list, body """ keys = self._get_keys(env) status = message = '' attributes = {} subheaders = [] file_count = 0 for fp in iter_multipart_mime_documents( env['wsgi.input'], boundary, read_chunk_size=READ_CHUNK_SIZE): hdrs = rfc822.Message(fp, 0) disp, attrs = parse_content_disposition( hdrs.getheader('Content-Disposition', '')) if disp == 'form-data' and attrs.get('filename'): file_count += 1 try: if file_count > int(attributes.get('max_file_count') or 0): status = '400 Bad Request' message = 'max file count exceeded' break except ValueError: raise FormInvalid('max_file_count not an integer') attributes['filename'] = attrs['filename'] or 'filename' if 'content-type' not in attributes and 'content-type' in hdrs: attributes['content-type'] = \ hdrs['Content-Type'] or 'application/octet-stream' status, subheaders, message = \ self._perform_subrequest(env, attributes, fp, keys) if status[:1] != '2': break else: data = '' mxln = MAX_VALUE_LENGTH while mxln: chunk = fp.read(mxln) if not chunk: break mxln -= len(chunk) data += chunk while fp.read(READ_CHUNK_SIZE): pass if 'name' in attrs: attributes[attrs['name'].lower()] = data.rstrip('\r\n--') if not status: status = '400 Bad Request' message = 'no files to process' headers = [(k, v) for k, v in subheaders if k.lower().startswith('access-control')] redirect = attributes.get('redirect') if not redirect: body = status if message: body = status + '\r\nFormPost: ' + message.title() headers.extend([('Content-Type', 'text/plain'), ('Content-Length', len(body))]) return status, headers, body status = status.split(' ', 1)[0] if '?' in redirect: redirect += '&' else: redirect += '?' redirect += 'status=%s&message=%s' % (quote(status), quote(message)) body = '<html><body><p><a href="%s">' \ 'Click to continue...</a></p></body></html>' % redirect headers.extend( [('Location', redirect), ('Content-Length', str(len(body)))]) return '303 See Other', headers, body def _perform_subrequest(self, orig_env, attributes, fp, keys): """ Performs the subrequest and returns the response. :param orig_env: The WSGI environment dict; will only be used to form a new env for the subrequest. :param attributes: dict of the attributes of the form so far. :param fp: The file-like object containing the request body. :param keys: The account keys to validate the signature with. :returns: (status_line, headers_list, message) """ if not keys: raise FormUnauthorized('invalid signature') try: max_file_size = int(attributes.get('max_file_size') or 0) except ValueError: raise FormInvalid('max_file_size not an integer') subenv = make_pre_authed_env(orig_env, 'PUT', agent=None, swift_source='FP') if 'QUERY_STRING' in subenv: del subenv['QUERY_STRING'] subenv['HTTP_TRANSFER_ENCODING'] = 'chunked' subenv['wsgi.input'] = _CappedFileLikeObject(fp, max_file_size) if subenv['PATH_INFO'][-1] != '/' and \ subenv['PATH_INFO'].count('/') < 4: subenv['PATH_INFO'] += '/' subenv['PATH_INFO'] += attributes['filename'] or 'filename' if 'x_delete_at' in attributes: try: subenv['HTTP_X_DELETE_AT'] = int(attributes['x_delete_at']) except ValueError: raise FormInvalid('x_delete_at not an integer: ' 'Unix timestamp required.') if 'x_delete_after' in attributes: try: subenv['HTTP_X_DELETE_AFTER'] = int( attributes['x_delete_after']) except ValueError: raise FormInvalid('x_delete_after not an integer: ' 'Number of seconds required.') if 'content-type' in attributes: subenv['CONTENT_TYPE'] = \ attributes['content-type'] or 'application/octet-stream' elif 'CONTENT_TYPE' in subenv: del subenv['CONTENT_TYPE'] try: if int(attributes.get('expires') or 0) < time(): raise FormUnauthorized('form expired') except ValueError: raise FormInvalid('expired not an integer') hmac_body = '%s\n%s\n%s\n%s\n%s' % ( orig_env['PATH_INFO'], attributes.get('redirect') or '', attributes.get('max_file_size') or '0', attributes.get('max_file_count') or '0', attributes.get('expires') or '0') has_valid_sig = False for key in keys: sig = hmac.new(key, hmac_body, sha1).hexdigest() if streq_const_time(sig, (attributes.get('signature') or 'invalid')): has_valid_sig = True if not has_valid_sig: raise FormUnauthorized('invalid signature') substatus = [None] subheaders = [None] wsgi_input = subenv['wsgi.input'] def _start_response(status, headers, exc_info=None): if wsgi_input.file_size_exceeded: raise EOFError("max_file_size exceeded") substatus[0] = status subheaders[0] = headers i = iter(self.app(subenv, _start_response)) try: i.next() except StopIteration: pass return substatus[0], subheaders[0], '' def _get_keys(self, env): """ Fetch the tempurl keys for the account. Also validate that the request path indicates a valid container; if not, no keys will be returned. :param env: The WSGI environment for the request. :returns: list of tempurl keys """ parts = env['PATH_INFO'].split('/', 4) if len(parts) < 4 or parts[0] or parts[1] != 'v1' or not parts[2] or \ not parts[3]: return [] account_info = get_account_info(env, self.app, swift_source='FP') return get_tempurl_keys_from_metadata(account_info['meta']) def filter_factory(global_conf, **local_conf): """Returns the WSGI filter for use with paste.deploy.""" conf = global_conf.copy() conf.update(local_conf) register_swift_info('formpost') return lambda app: FormPost(app, conf)
the-stack_0_27677
#!/usr/bin/env python """Simple Bytes Editor / Binary Stream Editor. Usage: sbsed --file source[,target] --edit editor_action [editor_action_1 [editor_action_2] edit_action: target_offset:source_data:[data_length[:operation]] operation: can be either "overwrite" or "copy". Default: overwrite The 2-Clause BSD License: https://opensource.org/licenses/BSD-2-Clause Copyright (c) 2018, Timothy Lin All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the "Simple Binary Stream Editor" project.""" from __future__ import print_function import os import re import sys import math import shlex import argparse import traceback def ShlexSplit(shstr, splitters={','}, escape=''): """Syntactically split a string with specified splitters, which honors its sub-strings in the quotation marks.""" lex = shlex.shlex(shstr) lex.escape = escape lex.commenters = '' parms = [''] for dp in list(lex): dp = dp.strip() if dp not in splitters: parms[-1] += dp else: parms += [''] return parms def LengthAdjust(bstr, width=0): """Adjust the length of a byte-string to meet the byte-width with leading padding "0" regardless of its endianess. bstr - the byte string.\n width - the data length, counted in byte.""" blen = width*2 if width else len(bstr) if blen%2: bstr = '0' + bstr blen += 1 if blen > len(bstr): bstr = '0' * (blen - len(bstr)) + bstr return bstr, blen def Bs2Ba(bstr, width=0): """Conversion from a hex-digit byte-string to the network-byte-order hex-digit byte-array. bstr - the byte string.\n width - the data length, counted in byte.""" bstr, blen = LengthAdjust(bstr, width) return bytearray([int(bstr[b*2:(b+1)*2], base=0x10) for b in range(int(blen/2))]) def Le2N(bstr, width=0): """Conversion from the little-endian hex-digit byte-array to the network-byte-order hex-digit byte-array. bstr - the byte string.\n width - the data length, counted in byte.""" bstr, blen = LengthAdjust(bstr, width) return Bs2Ba(''.join(reversed([bstr[b*2:(b+1)*2] for b in range(int(blen/2))]))) def LeInt(source, width=0): """Conversion from a normal decimal-digit string to the network-byte-order hex-digit byte-array. bstr - the byte string.\n width - the data length, counted in byte.""" if sys.byteorder == 'little': return Le2N(hex(int(source)), width) else: return Bs2Ba(hex(int(source))) def Guid2N(gstr): """Conversion from a UUID string to to the network-byte-order hex-digit byte-array.""" # The canonical 8-4-4-4-12 format GUID string: # 123e4567-e89b-12d3-a456-426655440000 # xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx gs = gstr.split('-') try: if len(gs) != 5: raise Exception('') return Le2N(gs[0], 4) + Le2N(gs[1], 2) + Le2N(gs[2], 2) + Bs2Ba(gs[3], 2) + Bs2Ba(gs[4], 6) except Exception: raise Exception('Incorrect Guid format:%s' % gstr) def SafeEval(evalstr, default=None, globalz=None, localz=None): """A safer wrapper for eval().""" if not globalz: globalz = {} if not localz: localz = {} try: return eval(evalstr, globalz, localz) except SyntaxError: return default if default else evalstr class EditorAction(object): """The editor's action.""" def __init__(self, edstr): self.target_offset = None self.source_data = None self.length = None self.operation = 'overwrite' self.hexdata = None self.from_offset = None self.encoding = 'utf-8' eds = ShlexSplit(edstr, {':'}) try: self.target_offset = SafeEval(eds[0]) if eds[0] else None self.source_data = eds[1] self.length = SafeEval(eds[2]) if eds[2] else None self.operation = eds[3].lower() except IndexError: pass if not self.source_data: raise Exception('Error') data_x = self.source_data.lower().split('=') def strx(data): if data.startswith('"') and data.endswith('"'): data = data[1:-1] return bytearray(data, encoding=self.encoding) def intx(data, width): if data_data.startswith('0x'): return Le2N(data[2:], width) else: return LeInt(data, width) if len(data_x) == 1: self.hexdata = strx(self.source_data) elif len(data_x) == 2: data_type, data_data = data_x if not data_type or not data_data: raise Exception('Incorrect source data: [%s]' % self.source_data) intz = re.match('(i|int|integer)(\d+)', data_type) if intz: # Handle these integers: i8, int8, intger8, i16, int16, integer 16.... # Note: integer9 would be treated as integer16 self.hexdata=intx(data_data, int(math.ceil(int(intz.group(2))/8.))) elif data_type in {'b', 'bytes'}: if data_data.startswith('0x'): self.hexdata = Bs2Ba(data_data[2:]) elif data_type in {'g', 'guid'}: self.hexdata = Guid2N(data_data) # NEWREL: Format check? # NEWREL: Shall we cover GUID with "big-endian"? # self.hexdata = Bs2Ba(data_data.replace('-', '')) elif data_type in {'s', 'string'}: self.hexdata = strx(data_data) elif data_type in {'from'}: self.hexdata = strx(data_data) self.from_offset = int(data_data, base=0) if not self.hexdata: raise Exception('Invalid data type or format:%s.' % self.source_data) if isinstance(self.length, int): remain_len = self.length - len(self.hexdata) if remain_len > 0: self.hexdata += bytearray(remain_len) # NOTE: when the length of hexdata > the specified length, # its the editor's choice to either truncate or append the hexdata's content. elif self.length is None: self.length = len(self.hexdata) def __repr__(self): def _repr(member): if (member is None) or (not isinstance(member, int)): return '%s' % str(member) else: return '0x%X(%d)' % (member, member) return '\n'.join([ ' target offset : %s' % _repr(self.target_offset), ' source data : %s' % str(self.source_data), ' length : %s' % _repr(self.length), ' operation : %s' % self.operation, ]) class CommandArgument(argparse.ArgumentParser): def __init__(self, usage=''): if not usage: usage = 'bsed --file source[,target] --edit editor_action [editor_action_1 [editor_action_2]' argparse.ArgumentParser.__init__(self, usage=usage, prefix_chars='-/', fromfile_prefix_chars='@', add_help=False) self.add_argument('-f', '--file', dest='file', metavar='File', nargs='+', help='Specify the source file and the optional target file.') self.add_argument('-e', '--edit', dest='edit', metavar='Edit', nargs='+', help='The editor action that consists of offset:data[:length:[operation]]') args, __unknown = self.parse_known_args(sys.argv[1:]) self.edits = [] self.specific_help = '' self.need_help = self.format_help() if not args.file: self.specific_help = 'No specified file.' return if not args.edit: self.specific_help = 'No specified editor action.' return parms = ShlexSplit(','.join(args.file)) if len(parms) > 2: self.specific_help = 'Too many specified files.' return self.input_file = parms[0] if len(parms) == 2: self.output_file = parms[1] else: self.output_file = '' for ed in args.edit: try: self.edits += [EditorAction(ed)] except Exception: self.specific_help = 'Invalid editor action:%s' % ed raise #Exception('') self.need_help = '' def help(self): if arg.specific_help: print('Argument error: %s\n' % arg.specific_help) if arg.need_help: print('%s' % arg.need_help) sys.exit(1) def __repr__(self): strs = [] strs += ['Source File: %s' % self.input_file] strs += ['Target File: %s' % self.output_file] strs += ['Editor Action%s:' % ('s' if len(self.edits)>1 else '')] for ed in self.edits: strs += [str(ed), ''] return '\n'.join(strs) class Editor(object): """A UTF-8 editor""" def __init__(self, input_file, output_file=None): self.input_file = input_file self.output_file = output_file if output_file else input_file with open(input_file, 'rb') as fin: self.content = bytearray(fin.read()) self.changed = False self.PreviousAction = None def overwrite(self, action): if action.from_offset is not None: data = self.content[action.from_offset:action.from_offset+action.length] dlen = len(data) #elif action.from_file is not None: # pass else: dlen = min(action.length, len(self.content) - action.target_offset) data = action.hexdata[:dlen] if dlen < 1: return # Ignore the boundary-overrun error. Or, what else shall we do? # BUGBUG. verify this: boundary-hit. self.content[action.target_offset:action.target_offset+dlen] = data self.changed = True def edit(self, action): if action.target_offset in {None, '+'} and self.PreviousAction: action.target_offset = self.PreviousAction.target_offset if action.target_offset in {None, '+'}: raise Exception('Invalid target offset') action.target_offset += self.PreviousAction.length if action.operation in {'overwrite', 'copy'}: self.overwrite(action) else: print('Unsupported editor action: %s' % action.operation) self.PreviousAction = action def commit(self): """Apply the changes to the target file.""" if self.changed: with open(self.output_file, 'wb') as fout: fout.write(self.content) if __name__ == '__main__': arg = CommandArgument() if arg.need_help: arg.help() sys.exit(1) input_file = arg.input_file output_file = arg.output_file if arg.output_file else arg.input_file try: ed = Editor(input_file, output_file) except IOError: traceback.print_exc() sys.exit(2) for ar in arg.edits: ed.edit(ar) ed.commit() print('%s' % str(arg))
the-stack_0_27678
def mergesort(arr): if len(arr) == 1: return arr mid = len(arr) // 2 left = arr[:mid] right = arr[mid:] mergesort(left) mergesort(right) i = 0 j = 0 k = 0 while i < len(left) and j < len(right): if left[i] <= right[j]: arr[k] = left[i] i += 1 else: arr[k] = right[j] j += 1 k += 1 while i < len(left): arr[k] = left[i] i += 1 k += 1 while j < len(right): arr[k] = right[j] j += 1 k += 1
the-stack_0_27679
#!/usr/bin/env python2 # -*- coding: utf-8 -*- ''' Just render something...with trajectories. This script is stale. Use with caution. Usage: ./sclrq.py [options] (--show|-s) <i> ./sclrq.py [options] <i> <outname> Options: --help -h --show -s Show --verbose -v Make some noise. --nozip -U sclr/flds are NOT gzipped. --zip -Z sclr/flds are gzipped. If neither of these two are set, guess based on name. --log10 -l Log it. --lims=LIM Set lims [default: (1e2,6e8)] --highlight=H Set highlight [default: 3e8] --quantity=Q -Q Q Render this quantity [default: RhoN10] --dir=D -D D Read from this dir [default: .] --restrict=R Restrict it. --title=T Set the title [default: Electron density] --units=U Set the colorbar units [default: number/cc] --laser Plot contours of the laser poyting vector. --intensity=I -I I Make a contour of this intensity [default: 3e18] --traj=F Plot trajectories from this file. If not used, will not plot trajectories. --traj-offset=O Set the offset and factor to get the relevant trajectory timestep such that i_t = factor*i+offset, where i is the passed index in <i>. The factor and offset are passed to this option in the form of a tuple (factor, offset). If not used, script will search for the closest time in the trajectory file. --traj-n=N Plot only first N trajectories. --traj-energy Color the trajectory lines by their energy. --traj-E-log Logarithmic color for trajectories. --traj-maxE=E Set the maximum E in eV explicitly. If set, anything above will be cut off. --traj-minE=E Set the minimum E in eV. [default: 1] --equal -E Make spatial dimensions equal. --no-ticks Don't include ticks. ''' from docopt import docopt; import numpy as np; import numpy.linalg as lin; from pys import parse_ftuple, parse_ituple; from lspreader.flds import read_indexed, restrict from lspplot.sclr import S; from lspplot.pc import pc,highlight,trajectories; from lspplot.consts import c,mu0,e0; opts = docopt(__doc__,help=True); if opts['--nozip']: gzip = False; elif opts['--zip']: gzip = True; else: gzip = 'guess'; quantity = opts['--quantity']; fvar=['E','B'] if opts['--laser'] else None; titlestr=opts['--title'] units=opts['--units']; svar=[quantity]; ##################################### #reading data i = int(opts['<i>']); d = read_indexed(i, flds=fvar,sclr=svar, gzip=gzip,dir=opts['--dir'], gettime=True,vector_norms=False); t = d['t']; if opts['--traj']: factor, offset = None, None; if opts['--traj-offset']: factor, offset = parse_ituple(opts['--traj-offset'],length=2); with np.load(opts['--traj'], mmap_mode='r') as f: if factor: tri = i*factor+offset; trt = f['time'][tri]; if not np.isclose(trt,t): import sys sys.stderr.write( "warning: time from trajectory is {} while time from sclr is {}\n".format( trt,t)); else: tri = np.sum((f['time'] <= t).astype(int)); trt = f['time'][tri]; tr = f['data'][:tri+1,:]; if opts['--traj-n']: tr = tr[:,:int(opts['--traj-n'])]; if opts['--verbose']: print("size of trajectories: {}".format(tr.shape)); print("final time is {}".format(trt)); print("with sclr time as {}".format(t)); pass; if opts['--restrict']: res = parse_ituple(opts['--restrict'],length=None); restrict(d,res); #massaging data x,y = d['x']*1e4,d['y']*1e4 coords = ['x','y']; if np.isclose(y.max(),y.min()): y = d['z']*1e4 coords[1] = 'z'; q = d[quantity]; ##################################### #plotting #getting options from user mn,mx = parse_ftuple(opts['--lims'],length=2); myhi = float(opts['--highlight']); #plot the density title="{}\nTime: {:.2f} fs".format(titlestr,t*1e6); r=pc( q,(x,y), lims=(mx,mn),log=opts['--log10'], clabel=units, title=title, agg=not opts['--show']); highlight( r, myhi, color="lightyellow", alpha=0.5); if opts['--laser']: laser = S(d); I = float(opts['--intensity']); highlight(r, I, q=laser, color="red", alpha=0.15); import matplotlib.pyplot as plt; gm = lambda itr: np.sqrt(itr['ux']**2+itr['uy']**2+itr['uz']**2+1); massE = .511e6 if opts['--traj']: tr[coords[1]]*=1e4; tr[coords[0]]*=1e4; if opts['--traj-energy']: en = lambda itr:np.nan_to_num(massE*(gm(itr)-1)); if opts['--traj-E-log']: minE = float(opts['--traj-minE']); def _energy(itr): E = en(itr); return np.log10( np.where(E < minE, minE, E)); energy=_energy; else: energy=en; #find max energy if opts['--traj-maxE']: maxE=float(opts['--traj-maxE']); def _cf(itr): E = energy(itr); return np.where(E>maxE, 1.0, E/maxE) cf = _cf; else: maxE=np.max(energy(tr)); cf = lambda itr: energy(itr)/maxE; else: cf = None; #massaging alpha maxq=np.log10(np.max(np.abs(tr['q'])[0,:])); alphaf = lambda itr: np.log10(np.abs(itr['q'])[0])/maxq trajectories( r, tr, alpha=alphaf, lw=0, coords = list(reversed(coords)), cmap = 'copper', color_quantity=cf); if opts['--equal']: plt.axis('equal'); r['axes'].autoscale(tight=True); if opts['--no-ticks']: plt.tick_params( axis='both', which='both', bottom='off', top='off', right='off', left='off'); if opts['--show']: plt.show(); else: plt.savefig(opts['<outname>']);
the-stack_0_27683
import pytest from plenum.test.delayers import ppDelay from plenum.test.freshness.helper import has_freshness_instance_change from plenum.test.helper import freshness from plenum.test.node_request.helper import sdk_ensure_pool_functional from plenum.test.stasher import delay_rules from stp_core.loop.eventually import eventually FRESHNESS_TIMEOUT = 5 @pytest.fixture(scope="module") def tconf(tconf): with freshness(tconf, enabled=True, timeout=FRESHNESS_TIMEOUT): yield tconf def test_view_change_happens_if_ordering_is_halted(looper, tconf, txnPoolNodeSet, sdk_wallet_client, sdk_pool_handle): current_view_no = txnPoolNodeSet[0].viewNo for node in txnPoolNodeSet: assert node.viewNo == current_view_no def check_next_view(): for node in txnPoolNodeSet: assert node.viewNo > current_view_no stashers = [n.nodeIbStasher for n in txnPoolNodeSet] with delay_rules(stashers, ppDelay()): looper.run(eventually(check_next_view, timeout=FRESHNESS_TIMEOUT * 3)) assert sum(1 for node in txnPoolNodeSet if has_freshness_instance_change(node)) >= 3 sdk_ensure_pool_functional(looper, txnPoolNodeSet, sdk_wallet_client, sdk_pool_handle)
the-stack_0_27684
from io import StringIO from cms.constants import TEMPLATE_INHERITANCE_MAGIC from cms.models import Page from cms.models.pluginmodel import CMSPlugin from cms.models.static_placeholder import StaticPlaceholder from django.conf import settings from django.contrib.auth import get_user_model from django.contrib.sites.models import Site from django.core.management.base import OutputWrapper from django.db.models import Count from django.test import TestCase from devday.utils.devdata import DevData from event.models import Event from speaker.models import Speaker from talk import COMMITTEE_GROUP from talk.models import (Room, Talk, TalkFormat, TalkSlot, TimeSlot, Track, Vote) from twitterfeed.models import Tweet, TwitterProfileImage User = get_user_model() class DevDataTests(TestCase): @classmethod def setUpTestData(cls): cls.stdout = StringIO() cls.devdata = DevData(stdout=OutputWrapper(cls.stdout)) def setUp(self): self.stdout.seek(0) self.stdout.truncate(0) def test_create_objects_failure(self): class FooManager: def count(self): return 0 class Foo: objects = FooManager() def create(): raise Exception('testing') try: self.devdata.create_objects('foo', Foo, 1, create) except Exception: pass self.assertTrue('FAILED' in self.stdout.getvalue(), 'should have FAILED, but got: {}' .format(self.stdout.getvalue())) def subtest_create_admin_user(self): self.devdata.create_admin_user() u = User.objects.get(email=settings.ADMINUSER_EMAIL) self.assertEquals(u.email, settings.ADMINUSER_EMAIL) self.assertEquals(u.is_superuser, True) self.assertEquals(u.is_staff, True) def subtest_update_site(self): self.devdata.update_site() site = Site.objects.get(pk=1) self.assertEquals(site.domain, 'devday.de') self.assertEquals(site.name, 'Dev Data') def get_page(self, title): return Page.objects.get( title_set__title=title, title_set__published=True, publisher_is_draft=False) def check_plugin(self, page, slot, plugin_type): placeholder = page.placeholders.get(slot=slot) plugins = placeholder.get_plugins() self.assertEquals(len(plugins), 1, '{} placeholder has exactly one plugin' .format(slot)) self.assertEquals(plugins[0].plugin_type, plugin_type, '{} placeholder is of type {}' .format(slot, plugin_type)) def subtest_create_pages(self): self.devdata.create_objects('pages', Page, 3, self.devdata.create_pages) index = self.get_page('Deutsche Homepage') self.assertEquals(index.languages, 'de', 'Homepage is German') self.assertEquals(index.template, 'devday_index.html', 'Homepage uses correct template') self.assertTrue(index.is_home, 'Homepage is_home') self.check_plugin(index, 'eventinfo', 'TextPlugin') self.check_plugin(index, 'cfp_open', 'TextPlugin') self.check_plugin(index, 'save_the_date', 'TextPlugin') self.check_plugin(index, 'sign_up', 'TextPlugin') sponsoring = self.get_page('Sponsoring') self.assertEquals(sponsoring.languages, 'de', 'Sponsoring is German') self.assertEquals(sponsoring.template, 'devday_no_cta.html', 'Sponsoring uses correct template') impress = self.get_page('Impressum') self.assertEquals(impress.languages, 'de', 'Impress is German') self.assertEquals(impress.template, 'devday_no_cta.html', 'Impress uses correct template') def subtest_update_static_placeholders(self): self.devdata.update_static_placeholders() name = 'create-talk-introtext' lang = 'de' sph = StaticPlaceholder.objects.get(name=name) ph = sph.draft np = CMSPlugin.objects.filter(placeholder=ph, language=lang).count() self.assertEquals(np, 1, 'Exactly one static placeholder create') def subtest_create_talk_formats(self): self.devdata.create_objects('talk formats', TalkFormat, 3, self.devdata.create_talk_formats) formats = TalkFormat.objects.all().order_by('name', 'duration') self.assertEquals(len(formats), 4, 'There are four TalkFormats') self.assertEquals(formats[0].name, 'Lightning Talk') self.assertEquals(formats[0].duration, 10) self.assertEquals(formats[1].name, 'Vortrag') self.assertEquals(formats[1].duration, 30) self.assertEquals(formats[2].name, 'Vortrag') self.assertEquals(formats[2].duration, 60) self.assertEquals(formats[3].name, 'Workshop') self.assertEquals(formats[3].duration, 180) def subtest_update_events(self): self.devdata.update_events() events = list(Event.objects.order_by('start_time')) self.assertEquals(len(events), 3, 'there are three events') stdformat = TalkFormat.objects.get(name='Vortrag', duration=60) for e in events[:-1]: self.assertEquals(e.registration_open, False, 'registration not open') self.assertEquals(e.submission_open, False, 'submission not open') tf = e.talkformat.filter(id=stdformat.id) self.assertTrue(len(tf) == 1, 'standard format assigned') e = events[-1] self.assertEquals(e.registration_open, True, 'registration open') self.assertEquals(e.submission_open, True, 'submission open') tf = e.talkformat.all() self.assertTrue(len(tf) == 4, 'all formats assigned') def subtest_get_committee_members(self): count = len(self.devdata.get_committee_members() .strip().split('\n')) - 1 # one extra line self.assertEquals(count, 7, 'Seven users are committee members') def subtest_create_users_and_attendees(self): self.devdata.create_objects( 'users', User, 3, self.devdata.create_attendees, self.devdata.get_committee_members) users = len(User.objects.all()) self.assertTrue(520 <= users <= 522, 'About 520 users') events = Event.objects.annotate(natt=Count('attendee')) for e in events: self.assertTrue(users * 0.70 <= e.natt <= users * 0.80, 'about {:d} attend event {}: actual {}' .format(int(users * 0.8), e.title, e.natt)) self.subtest_get_committee_members() def subtest_get_speakers(self): count = len(self.devdata.get_speakers().strip().split( '\n')) - 1 # one extra line self.assertEquals(count, 10, 'At least 10 speakers') def subtest_create_speakers(self): self.devdata.create_objects( 'speakers', Speaker, 1, self.devdata.create_speakers, self.devdata.get_speakers) speakers = 150 number_of_speakers = Speaker.objects.count() self.assertTrue( speakers * 0.70 <= number_of_speakers <= speakers * 1.2, 'about {:d} speakers: actual {}' .format(speakers, number_of_speakers)) self.subtest_get_speakers() def subtest_create_talks(self): self.devdata.create_objects( 'talks', Talk, 1, self.devdata.create_talks) speakers = 50 # With a probability of 10% a speaker will submit 2 talks, and with # a probability of 75% will submit one talk. For each event, we will # have talk in the amount of about 0.95 times the number of speakers. talks = speakers * 0.95 events = Event.objects.annotate( ntalk=Count('talk')) for e in events: self.assertTrue(talks * 0.75 <= e.ntalk <= talks * 1.25, 'about {:d} talks at event {}: actual {}' .format(int(talks), e.title, e.ntalk)) def subtest_create_votes(self): event = Event.objects.current_event() self.devdata.create_objects( 'votes', Vote, 1, self.devdata.vote_for_talk) number_of_votes = Vote.objects.exclude(talk__event=event).count() self.assertEquals(number_of_votes, 0, 'No votes for older events') number_of_votes = Vote.objects.count() number_of_talks = Talk.objects.filter(event=event).count() potential_votes = number_of_talks * User.objects.filter( groups__name=COMMITTEE_GROUP).count() self.assertTrue( potential_votes * 0.7 <= number_of_votes <= potential_votes, 'about {} votes for {} talks: actual {}'.format( int(potential_votes * 0.8), number_of_talks, number_of_votes)) def subtest_create_tracks(self): self.devdata.create_objects( 'tracks', Track, 1, self.devdata.create_tracks) # FIXME implement data checks ntracks = Track.objects.filter( event=Event.objects.current_event()).count() self.assertEquals(ntracks, 0, 'No tracks for current event') ntracks = Track.objects.filter( event=Event.objects.get(title='devdata.17')).count() self.assertEquals(ntracks, 5, '5 tracks for devdata.17') ntracks = Track.objects.filter( event=Event.objects.get(title='devdata.18')).count() self.assertEquals(ntracks, 6, '6 tracks for devdata.18') def subtest_create_rooms(self): self.devdata.create_objects('rooms', Room, 1, self.devdata.create_rooms) nrooms = Room.objects.filter( event=Event.objects.get(title='devdata.17')).count() self.assertEquals(nrooms, 4, 'we have 4 rooms for devdata.17') nrooms = Room.objects.filter( event=Event.objects.get(title='devdata.18')).count() self.assertEquals(nrooms, 4, 'we have 4 rooms for devdata.18') def subtest_create_time_slots(self): self.devdata.create_objects('time slots', TimeSlot, 1, self.devdata.create_time_slots) events = Event.objects.exclude( id=Event.objects.current_event_id()).annotate( ntimeslot=Count('timeslot')) for e in events: self.assertEquals(e.ntimeslot, 13, 'we have 13 time slots for {}' .format(Event)) def subtest_create_talk_slots(self): self.devdata.create_objects('talk slots', TalkSlot, 1, self.devdata.create_talk_slots) events = Event.objects.exclude( id=Event.objects.current_event_id()).annotate( ntalkslot=Count('talk__talkslot')) for e in events: self.assertEquals(e.ntalkslot, 14, 'we have 14 talk slots for {}' .format(e)) def subtest_create_twitter_profiles(self): self.devdata.create_objects('twitter profiles', TwitterProfileImage, 1, self.devdata.create_twitter_profiles) ntpp = TwitterProfileImage.objects.count() self.assertEquals(ntpp, 1, 'we have 1 twitter profile picture') def subtest_create_tweets(self): self.devdata.create_objects( 'tweets', Tweet, 1, self.devdata.create_tweets) number_of_tweets = Tweet.objects.count() self.assertEquals(number_of_tweets, 7, 'we have 7 tweets') def test_get_name_from_email(self): self.assertEquals( self.devdata.get_name_from_email('[email protected]'), '[email protected]') self.assertEquals( self.devdata.get_name_from_email('[email protected]'), 'First Last') def test_create_devdata(self): self.subtest_create_admin_user() self.subtest_update_site() self.subtest_create_pages() self.subtest_update_static_placeholders() self.subtest_create_talk_formats() self.subtest_update_events() self.subtest_create_users_and_attendees() self.subtest_create_speakers() self.subtest_create_talks() self.subtest_create_votes() self.subtest_create_tracks() self.subtest_create_rooms() self.subtest_create_time_slots() self.subtest_create_talk_slots() self.subtest_create_twitter_profiles() self.subtest_create_tweets() self.stdout.seek(0) self.stdout.truncate(0) self.devdata.create_devdata() self.assertTrue('OK' in self.stdout.getvalue(), 'At least one OK in output') self.assertTrue('FAILED' not in self.stdout.getvalue(), 'No FAILED in output')
the-stack_0_27685
#! /usr/bin/env python3 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Author: Giangi Sacco # Copyright 2012, by the California Institute of Technology. ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged. # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ from builtins import str import sys from interferogram.Interferogram import Interferogram as InterferogramBase from utils.contextUtils import toContext from interferogram.createPrepareInterferogram import createPrepareInterferogram class Interferogram(InterferogramBase): def __init__(self): super(Interferogram,self).__init__() def run(self,ops): filename = ops.inputFile self._productList.append(filename); #try: process = 'InterferogramTrigger' try: listMeta = self.createMetadata(filename) self._sensor = listMeta[0][0].spacecraftName #db start #self._sensor = 'CSKS4' #db end self._prepareInterferogram = createPrepareInterferogram(self._sensor) self._inputFile = self.createInputFile(listMeta) # hack to make isce believe this is the command line self._insar = self._insarClass(cmdline=self._inputFile) self._insar._insar.unwrappedIntFilename = self._insar._insar.topophaseFlatFilename.replace('.flat','.unw') #these tow statements need to be here before configure in order to be set self._insar._insar.geocode_bbox = self.createGeoBBox(listMeta) self._insar._insar.geocode_list = self.createGeocodeList(self._insar._insar) self._insar._configure() self._insar.run() #here dump insar object # delete it and reload from file self.createPngList(self._insar._insar) self.createBrowseImages() self.createProductList() self.createProductJson(listMeta) except Exception as e: print(e) message = 'InterferogramTrigger.py: run failed with exception ' + str(e) exit = 1 toContext(process,exit,message) raise Exception exit = 0 message = 'InterferogramTrigger: completed' toContext(process,exit,message) return 0
the-stack_0_27686
# Copyright 2021 The Pigweed Authors # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """pw_console preferences""" from dataclasses import dataclass, field import os from pathlib import Path from typing import Any, Dict, List, Union import yaml from pw_console.style import get_theme_colors _DEFAULT_REPL_HISTORY: Path = Path.home() / '.pw_console_history' _DEFAULT_SEARCH_HISTORY: Path = Path.home() / '.pw_console_search' _DEFAULT_CONFIG = { 'pw_console': { # History files 'repl_history': _DEFAULT_REPL_HISTORY, 'search_history': _DEFAULT_SEARCH_HISTORY, # Appearance 'ui_theme': 'dark', 'code_theme': 'pigweed-code', 'swap_light_and_dark': False, 'spaces_between_columns': 2, 'column_order_omit_unspecified_columns': False, 'column_order': [], 'column_colors': {}, 'show_python_file': False, 'show_python_logger': False, 'hide_date_from_log_time': False, # Window arrangement 'windows': {}, 'window_column_split_method': 'vertical', }, } class UnknownWindowTitle(Exception): """Exception for window titles not present in the window manager layout.""" def error_unknown_window(window_title: str, existing_pane_titles: List[str]) -> None: """Raise an error when the window config has an unknown title. If a window title does not already exist on startup it must have a loggers: or duplicate_of: option set.""" pane_title_text = ' ' + '\n '.join(existing_pane_titles) existing_pane_title_example = 'Window Title' if existing_pane_titles: existing_pane_title_example = existing_pane_titles[0] raise UnknownWindowTitle( f'\n\n"{window_title}" does not exist.\n' 'Existing windows include:\n' f'{pane_title_text}\n' 'If this window should be a duplicate of one of the above,\n' f'add "duplicate_of: {existing_pane_title_example}" to your config.\n' 'If this is a brand new window, include a "loggers:" section.\n' 'See also: ' 'https://pigweed.dev/pw_console/docs/user_guide.html#example-config') @dataclass class ConsolePrefs: """Pigweed Console preferences storage class.""" project_file: Union[Path, bool] = Path('$PW_PROJECT_ROOT/.pw_console.yaml') user_file: Union[Path, bool] = Path('$HOME/.pw_console.yaml') _config: Dict[Any, Any] = field(default_factory=dict) def __post_init__(self) -> None: self._update_config(_DEFAULT_CONFIG) if self.project_file: assert isinstance(self.project_file, Path) self.project_file = Path( os.path.expandvars(str(self.project_file.expanduser()))) self.load_config(self.project_file) if self.user_file: assert isinstance(self.user_file, Path) self.user_file = Path( os.path.expandvars(str(self.user_file.expanduser()))) self.load_config(self.user_file) # Check for a config file specified by an environment variable. environment_config = os.environ.get('PW_CONSOLE_CONFIG_FILE', None) if environment_config: env_file_path = Path(environment_config) if not env_file_path.is_file(): raise FileNotFoundError( f'Cannot load config file: {env_file_path}') self.reset_config() self.load_config(env_file_path) def _update_config(self, cfg: Dict[Any, Any]) -> None: assert 'pw_console' in cfg self._config.update(cfg.get('pw_console', {})) def reset_config(self) -> None: self._config = {} self._update_config(_DEFAULT_CONFIG) def load_config(self, file_path: Path) -> None: if not file_path.is_file(): return cfg = yaml.load(file_path.read_text(), Loader=yaml.Loader) self._update_config(cfg) @property def ui_theme(self) -> str: return self._config.get('ui_theme', '') def set_ui_theme(self, theme_name: str): self._config['ui_theme'] = theme_name @property def theme_colors(self): return get_theme_colors(self.ui_theme) @property def code_theme(self) -> str: return self._config.get('code_theme', '') @property def swap_light_and_dark(self) -> bool: return self._config.get('swap_light_and_dark', False) @property def repl_history(self) -> Path: history = Path(self._config['repl_history']) history = Path(os.path.expandvars(str(history.expanduser()))) return history @property def search_history(self) -> Path: history = Path(self._config['search_history']) history = Path(os.path.expandvars(str(history.expanduser()))) return history @property def spaces_between_columns(self) -> int: spaces = self._config.get('spaces_between_columns', 2) assert isinstance(spaces, int) and spaces > 0 return spaces @property def omit_unspecified_columns(self) -> bool: return self._config.get('column_order_omit_unspecified_columns', False) @property def hide_date_from_log_time(self) -> bool: return self._config.get('hide_date_from_log_time', False) @property def show_python_file(self) -> bool: return self._config.get('show_python_file', False) @property def show_python_logger(self) -> bool: return self._config.get('show_python_logger', False) def toggle_bool_option(self, name: str): existing_setting = self._config[name] assert isinstance(existing_setting, bool) self._config[name] = not existing_setting @property def column_order(self) -> list: return self._config.get('column_order', []) def column_style(self, column_name: str, column_value: str, default='') -> str: column_colors = self._config.get('column_colors', {}) column_style = default if column_name in column_colors: # If key exists but doesn't have any values. if not column_colors[column_name]: return default # Check for user supplied default. column_style = column_colors[column_name].get('default', default) # Check for value specific color, otherwise use the default. column_style = column_colors[column_name].get( column_value, column_style) return column_style @property def window_column_split_method(self) -> str: return self._config.get('window_column_split_method', 'vertical') @property def windows(self) -> dict: return self._config.get('windows', {}) @property def window_column_modes(self) -> list: return list(column_type for column_type in self.windows.keys()) @property def unique_window_titles(self) -> set: titles = [] for column in self.windows.values(): for window_key_title, window_dict in column.items(): window_options = window_dict if window_dict else {} # Use 'duplicate_of: Title' if it exists, otherwise use the key. titles.append( window_options.get('duplicate_of', window_key_title)) return set(titles)
the-stack_0_27692
from six import string_types import unittest from six.moves import StringIO from robot.parsing.populators import FromFilePopulator, DataRow, FromDirectoryPopulator from robot.parsing.model import TestCaseFile from robot.utils.asserts import assert_equals, assert_true, assert_false from robot.output import LOGGER LOGGER.unregister_console_logger() class _MockLogger(object): def __init__(self): self._output = StringIO() def message(self, msg): self._output.write(msg.message) def value(self): return self._output.getvalue() class FromDirectoryPopulatorTest(unittest.TestCase): def test_included_suites_with_dot(self): create_included_suites = FromDirectoryPopulator()._create_included_suites for inp, exp in [([], []), (['foo'], ['foo']), (['bar.zoo'], ['bar.zoo', 'zoo']), (['1.2.3', 'x.y', 'z'], ['1.2.3', '2.3', '3', 'x.y', 'y', 'z'])]: assert_equals(list(create_included_suites(inp)), exp) class _PopulatorTest(unittest.TestCase): def setUp(self): self._datafile = TestCaseFile() self._datafile.directory = '/path/to' self._populator = FromFilePopulator(self._datafile) self._logger = _MockLogger() LOGGER.disable_message_cache() LOGGER.register_logger(self._logger) def tearDown(self): LOGGER.unregister_logger(self._logger) def _assert_no_parsing_errors(self): assert_true(self._logger.value() == '', self._logger.value()) def _start_table(self, name): if isinstance(name, string_types): name = [name] return self._populator.start_table(name) def _create_table(self, name, rows, eof=True): self._start_table(name) for r in rows: self._populator.add(r) if eof: self._populator.eof() def _assert_setting(self, name, exp_value, exp_comment=None): setting = self._setting_with(name) assert_equals(setting.value, exp_value) self._assert_comment(setting, exp_comment) def _assert_fixture(self, fixture_name, exp_name, exp_args, exp_comment=None): fixture = self._setting_with(fixture_name) self._assert_name_and_args(fixture, exp_name, exp_args) self._assert_comment(fixture, exp_comment) def _assert_import(self, index, exp_name, exp_args, exp_comment=None): imp = self._datafile.setting_table.imports[index] self._assert_name_and_args(imp, exp_name, exp_args) self._assert_comment(imp, exp_comment) def _assert_name_and_args(self, item, exp_name, exp_args): assert_equals(item.name, exp_name) assert_equals(item.args, exp_args) def _assert_meta(self, index, exp_name, exp_value, exp_comment=None): meta = self._setting_with('metadata')[index] assert_equals(meta.name, exp_name) assert_equals(meta.value, exp_value) self._assert_comment(meta, exp_comment) def _assert_tags(self, tag_name, exp_value): tag = self._setting_with(tag_name) assert_equals(tag.value, exp_value) def _assert_variable(self, index, exp_name, exp_value, exp_comment=[]): var = self._datafile.variable_table.variables[index] assert_equals(var.name, exp_name) assert_equals(var.value, exp_value) self._assert_comment(var, exp_comment) def _assert_comment(self, item, exp_comment): if exp_comment: assert_equals(item.comment.as_list(), exp_comment) def _setting_with(self, name): return getattr(self._datafile.setting_table, name) def _nth_test(self, index): return self._datafile.testcase_table.tests[index-1] def _first_test(self): return self._nth_test(1) def _nth_uk(self, index): return self._datafile.keyword_table.keywords[index-1] def _number_of_steps_should_be(self, test, expected_steps): assert_equals(len(test.steps), expected_steps) class TablePopulatorTest(_PopulatorTest): def test_starting_valid_table(self): for name in ['Test Cases', ' variables ', 'K E Y WO R D S']: assert_true(self._start_table(name)) def test_table_headers(self): header_list = ['seTTINGS', 'header', 'again'] self._create_table(header_list,[]) setting_table = self._datafile.setting_table assert_equals(setting_table.header, header_list) assert_equals(setting_table.name, header_list[0]) def test_starting_invalid_table(self): assert_false(self._start_table('Per Se')) def test_adding_empty_row_should_not_fail(self): self._create_table('Settings', [[]]) def test_curdir_handling(self): self._create_table('Test cases', [['My test name'], ['', 'Log', '${CURDIR}']]) assert_equals(self._first_test().steps[0].args, [self._datafile.directory]) def test_turn_off_curdir_handling(self): from robot.parsing import populators populators.PROCESS_CURDIR = False self.setUp() self._create_table('Test cases', [['My test name'], ['', 'Log', '${CURDIR}']]) assert_equals(self._first_test().steps[0].args, ['${CURDIR}']) populators.PROCESS_CURDIR = True def test_whitespace_is_ignored(self): self._create_table('Test Cases', [['My test'], [' ', '[Tags]', 'foo', ' \t '], [' '], [ '\t'], ['', 'Log Many', '', 'argh']]) test = self._first_test() assert_equals(test.name, 'My test') self._number_of_steps_should_be(test, 1) assert_equals(test.tags.value, ['foo']) def test_escaping_empty_cells(self): self._create_table('Settings', [['Documentation', '\\']],) self._assert_setting('doc', '') self._create_table('Test cases', [['test', '', 'Log Many', 'foo', '\\']],) assert_equals(self._first_test().steps[0].args, ['Log Many', 'foo', '']) def test_populator_happy_path_workflow(self): self._create_table('settings', [['Library', 'FooBarness']], eof=False) self._create_table('Variables', [['${scalar}', 'value']], eof=False) self._create_table('Test cases', [['My test name'], ['', 'Log', 'quux']], eof=False) self._create_table('More cases', [['My other test name'], ['', 'Log', 'foox']], eof=False) self._create_table('Keywords', [['My User Keyword'], ['', 'Foo', 'Bar']], eof=False) self._populator.eof() self._assert_import(0, 'FooBarness', []) assert_equals(len(self._datafile.variable_table.variables), 1) assert_equals(len(self._datafile.testcase_table.tests), 1) assert_equals(len(self._nth_uk(1).steps), 1) class SettingTablePopulatingTest(_PopulatorTest): def test_testcasefile_settings(self): self._try_testcasefile_settings_with_postfix('') def test_testcasefile_settings_with_colon(self): self._try_testcasefile_settings_with_postfix(':') def test_testcasefile_settings_with_colon_and_spaces(self): self._try_testcasefile_settings_with_postfix(' : ') def _try_testcasefile_settings_with_postfix(self, postfix): doc = 'This is doc' template = 'Foo' more_doc = 'smore' force_tags = 'force' more_tags = 'more tagness' even_more_tags = 'even more' default_tags = 'default' setup_name, setup_args = 'Keyword Name', ['a1', 'a2'] table = [['Documentation', doc], ['S uite Tear Down'] + [setup_name], ['S uite SeTUp'] + [setup_name] + setup_args, ['S uite teardown'] + setup_args, ['Doc um entati on', more_doc], ['force tags', force_tags], ['Default tags', default_tags], ['FORCETAGS', more_tags], ['test timeout', '1s'], ['De Fault TAGS', more_tags, even_more_tags], ['test timeout', 'timeout message'], ['test timeout', more_doc], ['test template', template] ] self._postfix_settings(table, postfix) self._create_table('Settings', table) self._assert_setting('doc', doc + ' ' + more_doc) self._assert_fixture('suite_setup', setup_name, setup_args) self._assert_fixture('suite_teardown', setup_name, setup_args) self._assert_tags('default_tags', [default_tags, more_tags, even_more_tags]) self._assert_tags('force_tags', [force_tags, more_tags]) timeout = self._setting_with('test_timeout') assert_equals(timeout.value, '1s') assert_equals(timeout.message, 'timeout message '+more_doc) self._assert_setting('test_template', template) def _postfix_settings(self, table, postfix): for setting in table: setting[0] = setting[0]+postfix def test_imports(self): self._create_table('settings', [['Library', 'FooBarness'], ['Library', 'BarFooness', 'arg1', 'arg2'], ['Resource', 'QuuxNess.txt'], ['Variables', 'varzors.py']]) assert_equals(len(self._datafile.setting_table.imports), 4) self._assert_import(0, 'FooBarness', []) self._assert_import(1, 'BarFooness', ['arg1', 'arg2']) self._assert_import(2, 'QuuxNess.txt', []) self._assert_import(3, 'varzors.py', []) def test_free_suite_metadata(self): self._create_table('settings', [['Meta: Foon:ess', 'Barness'], ['Metadata', 'Quux', 'Value']]) self._assert_meta(0, 'Foon:ess', 'Barness') self._assert_meta(1, 'Quux', 'Value') def test_line_continuation(self): self._create_table('Settings', [['Documentation', 'doc'], ['...'], ['...', 'in multiple lines'], ['Force Tags', 'one', 'two'], ['...'], ['', '...', 'three'] ]) self._assert_setting('doc', 'doc\\n\\nin multiple lines') self._assert_setting('force_tags', ['one', 'two', 'three']) def test_invalid_settings(self): self._create_table('Settings', [['In valid', 'val ue']]) assert_equals(self._logger.value(), "Error in file 'None': " "Non-existing setting 'In valid'.") def test_continuing_in_the_begining_of_the_table(self): self._create_table('Settings', [['...']]) assert_equals(self._logger.value(), "Error in file 'None': " "Non-existing setting '...'.") class DocumentationCatenationTest(_PopulatorTest): def test_multiple_cells_are_catenated_with_space(self): self._assert_doc([['doc', 'in two cells']], 'doc in two cells') def test_multiple_rows_are_catenated_with_newline(self): self._assert_doc([['doc'], ['...', 'in two lines']], 'doc\\nin two lines') def test_newline_is_not_added_if_it_already_exists(self): self._assert_doc([['doc\\n'], ['in two lines']], 'doc\\nin two lines') def test_newline_is_not_added_if_it_already_exists2(self): self._assert_doc([['doc\\\\n'], ['in multiple\\\\\\n'], ['lines']], 'doc\\\\n\\nin multiple\\\\\\nlines') def test_backslash_escapes_newline_adding(self): self._assert_doc([['doc\\'], ['in two lines']], 'doc\\ in two lines') def test_backslash_escapes_newline_adding2(self): self._assert_doc([['doc\\\\'], ['in multiple\\\\\\', 'lines']], 'doc\\\\\\nin multiple\\\\\\ lines') def test_documentation_defined_multiple_times(self): self._create_table('Settings', [['Documentation', 'some doc'], ['Documentation', 'other doc'], ['...', 'third line']]) self._assert_setting('doc', 'some doc other doc\\nthird line') def _assert_doc(self, doc_lines, expected): doc_lines = [['...'] + line for line in doc_lines] self._create_table('Settings', [['Documentation']] + doc_lines) self._assert_setting('doc', expected) class MetadataCatenationTest(_PopulatorTest): def test_value_on_many_cells_is_catenated_with_spaces(self): self._assert_metadata_value([['value', 'in', 'cells']], 'value in cells') def test_value_on_many_lines_is_catenated_with_newlines(self): self._assert_metadata_value([['value'], ['in'], ['lines']], 'value\\nin\\nlines') def _assert_metadata_value(self, doc_lines, expected): value_lines = [['...'] + line for line in doc_lines] self._create_table('Settings', [['Metadata', 'metaname']] + value_lines) self._assert_meta(0, 'metaname', expected) class VariableTablePopulatingTest(_PopulatorTest): def test_populating_variables(self): self._create_table('Variables', [['${scalar}', 'value'], ['${slist}', '[s, o, m, e]'], ['@{list}', 'v1', 'v2', 'v3', 'v4']]) assert_equals(len(self._datafile.variable_table.variables), 3) self._assert_variable(0, '${scalar}', ['value']) self._assert_variable(1, '${slist}', ['[s, o, m, e]']) self._assert_variable(2, '@{list}', ['v1', 'v2', 'v3', 'v4']) def test_line_continuation(self): self._create_table('Variables', [['@{list}'], ['...', 'v1'], ['', '...', 'v2'], ['', '', '...', 'v3', 'v4']]) self._assert_variable(0, '@{list}', ['v1', 'v2', 'v3', 'v4']) def test_continuing_in_the_begining_of_the_table(self): self._create_table('Variables', [['...', 'val']]) self._assert_variable(0, '...', ['val']) class TestCaseTablePopulatingTest(_PopulatorTest): def test_test_case_populating(self): self._create_table('Test cases', [['My test name'], ['', 'No operation'], ['Another test'], ['', 'Log', 'quux']]) assert_equals(len(self._datafile.testcase_table.tests), 2) test = self._first_test() assert_equals(len(test.steps), 1) assert_equals(test.steps[0].name, 'No operation') assert_equals(len(self._first_test().steps), 1) def test_case_name_and_first_step_on_same_row(self): self._create_table('Test cases', [['My test name', 'No Operation']]) assert_equals(len(self._first_test().steps), 1) def test_continuing_in_the_begining_of_the_table(self): self._create_table('test cases', [['...', 'foo']]) assert_equals(self._first_test().name, '...') def test_line_continuation(self): self._create_table('Test cases', [['My test name', 'Log Many', 'foo'], ['', '...', 'bar', 'quux'], ['Another test'], ['', 'Log Many', 'quux'], ['', '', '...', 'fooness'], ['', '', '', '...', 'and more'], ['', 'Log', 'barness']]) self._number_of_steps_should_be((self._first_test()), 1) self._number_of_steps_should_be(self._nth_test(2), 2) assert_equals(self._nth_test(2).steps[0].name, 'Log Many') assert_equals(self._nth_test(2).steps[0].args, ['quux', 'fooness', 'and more']) def test_unnamed_testcase(self): self._create_table('test cases', [['', 'foo', '#comment'], ['', '[documentation]', "What's up doc?"]]) test = self._first_test() assert_equals(test.name, '') assert_equals(test.doc.value, "What's up doc?") assert_equals(test.steps[0].comment.as_list(), ['#comment']) def test_unnamed_test_and_line_continuation(self): self._create_table('test cases', [['', '...', 'foo', '# comment']]) assert_equals(self._first_test().name, '') assert_equals(self._first_test().steps[0].name, 'foo') assert_equals(self._first_test().steps[0].comment.as_list(), ['# comment']) def test_test_settings(self): self._try_test_settings([['My test name'], ['', '[Documentation]', 'This is domumentation for the test case'], ['', '[ Tags ]', 'ankka', 'kameli'], ['', '... ', '', 'aasi'], ['', 'Log', 'barness']]) def test_test_settings_with_colons(self): self._try_test_settings([['My test name'], ['', '[Documentation:]', 'This is domumentation for the test case'], ['', '[ Tags : ]', 'ankka', 'kameli'], ['', '... ', '', 'aasi'], ['', 'Log', 'barness']]) def _try_test_settings(self, table): self._create_table('Test cases', table) test = self._first_test() assert_equals(len(test.steps), 1) assert_equals(test.doc.value, 'This is domumentation for the test case') assert_equals(test.tags.value, ['ankka', 'kameli', '', 'aasi']) def test_invalid_test_settings(self): self._create_table('Test cases', [['My test name'], ['', '[Aasi]']]) assert_equals(self._logger.value(), "Error in file 'None': " "Invalid syntax in test case " "'My test name': Non-existing " "setting 'Aasi'.") def test_test_template_overrides_setting(self): setting_test_template = 'Foo' test_test_template = 'Bar' self._create_table('Settings', [['Test Template', setting_test_template]], eof=False) self._create_table('Test Cases', [['','[Template]', test_test_template]]) test = self._first_test() assert_equals(test.template.value, test_test_template) class UserKeywordTablePopulatingTest(_PopulatorTest): def test_user_keyword_populating(self): self._create_table('Keywords', [['My User Keyword'], ['', '[Arguments]', '${foo}', '${bar}'], ['', 'Log Many', '${foo}'], ['', '...', 'bar'], ['', 'No Operation'], ['', '[Return]', 'ankka', 'kameli']]) uk = self._nth_uk(0) assert_equals(len(uk.steps), 2) assert_equals(uk.args.value, ['${foo}', '${bar}']) assert_equals(uk.return_.value, ['ankka', 'kameli']) def test_continuing_in_the_begining_of_the_table(self): self._create_table('keywords', [['...', 'foo']]) assert_equals(self._nth_uk(1).name, '...') def test_invalid_keyword_settings(self): self._create_table('Keywords', [['My User Keyword'], ['', '[ank ka]']]) assert_equals(self._logger.value(), "Error in file 'None': " "Invalid syntax in keyword " "'My User Keyword': Non-existing " "setting 'ank ka'.") class ForLoopPopulatingTest(_PopulatorTest): def test_single_loop(self): self._create_table('Test cases', [['For loop test'], ['', ':FOR', '${i}', 'IN', '@{list}'], ['', '', 'Log', '${i}']]) assert_equals(len(self._first_test().steps), 1) for_loop = self._first_test().steps[0] assert_equals(len(for_loop.steps), 1) assert_equals(for_loop.flavor, 'IN') assert_equals(for_loop.vars, ['${i}']) assert_equals(for_loop.items, ['@{list}']) def test_in_range_for_loop(self): self._create_table('Test cases', [['For loop test'], ['', 'Log', 'Before FOR'], ['', ': for', '${i}', '${j}', 'IN RANGE', '10'], ['', '', 'Log', '${i}'], ['', '', 'Fail', '${j}'], ['', 'Log', 'Outside FOR']]) assert_equals(len(self._first_test().steps), 3) for_loop = self._first_test().steps[1] assert_equals(len(for_loop.steps), 2) assert_equals(for_loop.flavor, 'IN RANGE') assert_equals(for_loop.vars, ['${i}', '${j}']) def test_line_continuation(self): self._create_table('Test cases', [['Malicious for loop test'], ['', 'Log', 'Before FOR'], ['', ':::: fOr', '${i}', 'IN', '10'], ['', '...', '20'], ['', '', '...', '30', '40'], ['', '', '', '...', '50', '60'], ['', '', 'Log Many', '${i}'], ['', '', '...', '${i}'], ['', '...', '${i}'], ['', 'Log', 'Outside FOR']]) assert_equals(len(self._first_test().steps), 3) for_loop = self._first_test().steps[1] assert_equals(len(for_loop.steps), 1) assert_equals(for_loop.flavor, 'IN') assert_equals(for_loop.vars, ['${i}']) assert_equals(for_loop.items, ['10', '20', '30', '40', '50', '60']) def test_with_empty_body(self): self._create_table('Test cases', [['For loop test'], ['', ':FOR ', '${var}', 'IN', 'foo'], ['', 'Log', 'outside FOR']]) test = self._first_test() assert_equals(len(test.steps), 2) assert_equals(test.steps[0].steps, []) class TestPopulatingComments(_PopulatorTest): def test_setting_table(self): self._create_table('settings', [['Force Tags', 'Foo', 'Bar', '#comment'], ['Library', 'Foo', '# Lib comment'], [' #Resource', 'resource.txt'], ['Resource', 'resource2.txt'], ['# comment', 'between rows', 'in many cells'], ['Default Tags', 'Quux', '# also eol'], ['Variables', 'varz.py'], ['# between values'], ['...', 'arg'], ['Metadata', 'metaname', 'metavalue'], ['### last line is commented'], ]) self._assert_no_parsing_errors() self._assert_setting('force_tags', ['Foo', 'Bar'], ['#comment']) self._assert_import(0, 'Foo', [], ['# Lib comment']) self._assert_import(1, 'resource2.txt', [], ['#Resource', 'resource.txt']) self._assert_setting('default_tags', ['Quux'], ['# comment', 'between rows', 'in many cells', '# also eol']) self._assert_import(2, 'varz.py', ['arg'], ['# between values']) self._assert_meta(0, 'metaname', 'metavalue', ['### last line is commented']) def test_variable_table(self): self._create_table('variables', [['# before'], ['${varname}', 'varvalue', '# has comment'], ['${name}', '# no value'], ['# middle', 'A', 'B', 'C'], ['@{items}', '1', '2', '3'], ['# s1'], ['', '# s2', ''], ['', '', '# s3'], ['@{X}', '# c1'], ['', '', '# c2'], ['...', 'V1', '# c3'], ['# c4'], ['...', 'V2', '# c5'], ['###EOT###']]) self._assert_no_parsing_errors() self._assert_variable(0, '', [], ['# before']) self._assert_variable(1, '${varname}', ['varvalue'], ['# has comment']) self._assert_variable(2, '${name}', [''], ['# no value']) self._assert_variable(3, '', [], ['# middle', 'A', 'B', 'C']) self._assert_variable(4, '@{items}', ['1', '2', '3']) self._assert_variable(5, '', [], ['# s1']) self._assert_variable(6, '', [], ['# s2']) self._assert_variable(7, '', [], ['# s3']) self._assert_variable(8, '@{X}', ['V1', 'V2'], ['# c1', '# c2', '# c3', '# c4', '# c5']) self._assert_variable(9, '', [], ['###EOT###']) def test_test_case_table(self): self._create_table('test cases', [['# start of table comment'], ['Test case'], ['', 'No operation', '# step comment'], ['', '', '#This step has', 'only comment'], ['Another test', '#comment in name row'], ['', 'Log many', 'argh'], ['#', 'Comment between step def'], ['', '...', 'urgh'], ['Test with for loop'], ['',':FOR', '${i}', 'IN', '1', '# FOR comment'], ['','...', '2', '3', '##continues', 'here'], ['#commented out in for loop'], ['', '#commented out in for loop, again'], ['','', 'Fooness in the bar', '###end commtne'], ['','# ', ' Barness '], ['', 'Lodi'] ]) self._assert_comment(self._first_test().steps[0], ['# start of table comment']) self._assert_comment(self._first_test().steps[1], ['# step comment']) self._assert_comment(self._first_test().steps[2], ['#This step has', 'only comment']) self._assert_comment(self._nth_test(2).steps[0], ['#comment in name row']) self._assert_comment(self._nth_test(2).steps[1], ['#', 'Comment between step def']) assert_equals(self._nth_test(2).steps[1].args, ['argh', 'urgh']) self._assert_comment(self._nth_test(3).steps[0], ['# FOR comment', '##continues', 'here']) self._assert_comment(self._nth_test(3).steps[0].steps[0], ['#commented out in for loop']) self._assert_comment(self._nth_test(3).steps[0].steps[1], ['#commented out in for loop, again']) self._assert_comment(self._nth_test(3).steps[0].steps[2], ['###end commtne']) self._assert_comment(self._nth_test(3).steps[1], ['#', 'Barness']) self._number_of_steps_should_be(self._nth_test(3), 3) def _assert_comment(self, step, expected_comment): assert_equals(step.comment.as_list(), expected_comment) class DataRowTest(unittest.TestCase): def test_commented_row(self): assert_true(DataRow(['#start of table comment']).is_commented()) def test_escaping_empty_cells(self): assert_equals(DataRow(['foo', '\\', '']).all, ['foo', '']) if __name__ == '__main__': unittest.main()
the-stack_0_27693
from __future__ import absolute_import # Set the right path to collections try: from collections.abc import Mapping, MutableMapping except ImportError: from collections import Mapping, MutableMapping try: from threading import RLock except ImportError: # Platform-specific: No threads available class RLock: def __enter__(self): pass def __exit__(self, exc_type, exc_value, traceback): pass try: # Python 2.7+ from collections import OrderedDict except ImportError: from .packages.ordered_dict import OrderedDict from .packages.six import iterkeys, itervalues, PY3 __all__ = ['RecentlyUsedContainer', 'HTTPHeaderDict'] _Null = object() class RecentlyUsedContainer(MutableMapping): """ Provides a thread-safe dict-like container which maintains up to ``maxsize`` keys while throwing away the least-recently-used keys beyond ``maxsize``. :param maxsize: Maximum number of recent elements to retain. :param dispose_func: Every time an item is evicted from the container, ``dispose_func(value)`` is called. Callback which will get called """ ContainerCls = OrderedDict def __init__(self, maxsize=10, dispose_func=None): self._maxsize = maxsize self.dispose_func = dispose_func self._container = self.ContainerCls() self.lock = RLock() def __getitem__(self, key): # Re-insert the item, moving it to the end of the eviction line. with self.lock: item = self._container.pop(key) self._container[key] = item return item def __setitem__(self, key, value): evicted_value = _Null with self.lock: # Possibly evict the existing value of 'key' evicted_value = self._container.get(key, _Null) self._container[key] = value # If we didn't evict an existing value, we might have to evict the # least recently used item from the beginning of the container. if len(self._container) > self._maxsize: _key, evicted_value = self._container.popitem(last=False) if self.dispose_func and evicted_value is not _Null: self.dispose_func(evicted_value) def __delitem__(self, key): with self.lock: value = self._container.pop(key) if self.dispose_func: self.dispose_func(value) def __len__(self): with self.lock: return len(self._container) def __iter__(self): raise NotImplementedError('Iteration over this class is unlikely to be threadsafe.') def clear(self): with self.lock: # Copy pointers to all values, then wipe the mapping values = list(itervalues(self._container)) self._container.clear() if self.dispose_func: for value in values: self.dispose_func(value) def keys(self): with self.lock: return list(iterkeys(self._container)) class HTTPHeaderDict(MutableMapping): """ :param headers: An iterable of field-value pairs. Must not contain multiple field names when compared case-insensitively. :param kwargs: Additional field-value pairs to pass in to ``dict.update``. A ``dict`` like container for storing HTTP Headers. Field names are stored and compared case-insensitively in compliance with RFC 7230. Iteration provides the first case-sensitive key seen for each case-insensitive pair. Using ``__setitem__`` syntax overwrites fields that compare equal case-insensitively in order to maintain ``dict``'s api. For fields that compare equal, instead create a new ``HTTPHeaderDict`` and use ``.add`` in a loop. If multiple fields that are equal case-insensitively are passed to the constructor or ``.update``, the behavior is undefined and some will be lost. >>> headers = HTTPHeaderDict() >>> headers.add('Set-Cookie', 'foo=bar') >>> headers.add('set-cookie', 'baz=quxx') >>> headers['content-length'] = '7' >>> headers['SET-cookie'] 'foo=bar, baz=quxx' >>> headers['Content-Length'] '7' """ def __init__(self, headers=None, **kwargs): super(HTTPHeaderDict, self).__init__() self._container = {} if headers is not None: if isinstance(headers, HTTPHeaderDict): self._copy_from(headers) else: self.extend(headers) if kwargs: self.extend(kwargs) def __setitem__(self, key, val): self._container[key.lower()] = (key, val) return self._container[key.lower()] def __getitem__(self, key): val = self._container[key.lower()] return ', '.join(val[1:]) def __delitem__(self, key): del self._container[key.lower()] def __contains__(self, key): return key.lower() in self._container def __eq__(self, other): if not isinstance(other, Mapping) and not hasattr(other, 'keys'): return False if not isinstance(other, type(self)): other = type(self)(other) return (dict((k.lower(), v) for k, v in self.itermerged()) == dict((k.lower(), v) for k, v in other.itermerged())) def __ne__(self, other): return not self.__eq__(other) if not PY3: # Python 2 iterkeys = MutableMapping.iterkeys itervalues = MutableMapping.itervalues __marker = object() def __len__(self): return len(self._container) def __iter__(self): # Only provide the originally cased names for vals in self._container.values(): yield vals[0] def pop(self, key, default=__marker): '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised. ''' # Using the MutableMapping function directly fails due to the private marker. # Using ordinary dict.pop would expose the internal structures. # So let's reinvent the wheel. try: value = self[key] except KeyError: if default is self.__marker: raise return default else: del self[key] return value def discard(self, key): try: del self[key] except KeyError: pass def add(self, key, val): """Adds a (name, value) pair, doesn't overwrite the value if it already exists. >>> headers = HTTPHeaderDict(foo='bar') >>> headers.add('Foo', 'baz') >>> headers['foo'] 'bar, baz' """ key_lower = key.lower() new_vals = key, val # Keep the common case aka no item present as fast as possible vals = self._container.setdefault(key_lower, new_vals) if new_vals is not vals: # new_vals was not inserted, as there was a previous one if isinstance(vals, list): # If already several items got inserted, we have a list vals.append(val) else: # vals should be a tuple then, i.e. only one item so far # Need to convert the tuple to list for further extension self._container[key_lower] = [vals[0], vals[1], val] def extend(self, *args, **kwargs): """Generic import function for any type of header-like object. Adapted version of MutableMapping.update in order to insert items with self.add instead of self.__setitem__ """ if len(args) > 1: raise TypeError("extend() takes at most 1 positional " "arguments ({0} given)".format(len(args))) other = args[0] if len(args) >= 1 else () if isinstance(other, HTTPHeaderDict): for key, val in other.iteritems(): self.add(key, val) elif isinstance(other, Mapping): for key in other: self.add(key, other[key]) elif hasattr(other, "keys"): for key in other.keys(): self.add(key, other[key]) else: for key, value in other: self.add(key, value) for key, value in kwargs.items(): self.add(key, value) def getlist(self, key): """Returns a list of all the values for the named field. Returns an empty list if the key doesn't exist.""" try: vals = self._container[key.lower()] except KeyError: return [] else: if isinstance(vals, tuple): return [vals[1]] else: return vals[1:] # Backwards compatibility for httplib getheaders = getlist getallmatchingheaders = getlist iget = getlist def __repr__(self): return "%s(%s)" % (type(self).__name__, dict(self.itermerged())) def _copy_from(self, other): for key in other: val = other.getlist(key) if isinstance(val, list): # Don't need to convert tuples val = list(val) self._container[key.lower()] = [key] + val def copy(self): clone = type(self)() clone._copy_from(self) return clone def iteritems(self): """Iterate over all header lines, including duplicate ones.""" for key in self: vals = self._container[key.lower()] for val in vals[1:]: yield vals[0], val def itermerged(self): """Iterate over all headers, merging duplicate ones together.""" for key in self: val = self._container[key.lower()] yield val[0], ', '.join(val[1:]) def items(self): return list(self.iteritems()) @classmethod def from_httplib(cls, message): # Python 2 """Read headers from a Python 2 httplib message object.""" # python2.7 does not expose a proper API for exporting multiheaders # efficiently. This function re-reads raw lines from the message # object and extracts the multiheaders properly. headers = [] for line in message.headers: if line.startswith((' ', '\t')): key, value = headers[-1] headers[-1] = (key, value + '\r\n' + line.rstrip()) continue key, value = line.split(':', 1) headers.append((key, value.strip())) return cls(headers)
the-stack_0_27694
#!/usr/bin/python3 #‑∗‑ coding: utf‑8 ‑∗‑ import torch import torch.nn as nn class DQNConv2D(nn.Module): def __init__(self, input_shape, action_space): super(DQNConv2D, self).__init__() self.conv2d = nn.Sequential( nn.Conv2d(input_shape[0], 128, 5, padding='same'), nn.ReLU(), nn.Conv2d(128, 128, 5), nn.ReLU(), ) out_size = self._get_conv_out(input_shape) self.fc_val = nn.Sequential( nn.Linear(out_size, 512), nn.ReLU(), nn.Linear(512, 1), ) self.fc_adv = nn.Sequential( nn.Linear(out_size, 512), nn.ReLU(), nn.Linear(512, action_space), ) def _get_conv_out(self, shape): out = self.conv2d(torch.zeros(1, *shape)) return int(torch.prod(torch.tensor(out.size()))) def forward(self, x): conv1d = self.conv1d(x).view(x.size()[0], -1) val = self.fc_val(conv1d) adv = self.fc_adv(conv1d) return val + (adv - adv.mean(dim=1, keepdim=True))
the-stack_0_27696
# ######################################################################### # Copyright (c) , UChicago Argonne, LLC. All rights reserved. # # # # See LICENSE file. # # ######################################################################### """ This user script manages reconstruction(s). Depending on configuration it starts either single reconstruction, GA, or multiple reconstructions. In multiple reconstruction scenario or split scans the script runs concurrent reconstructions. """ __author__ = "Barbara Frosik" __copyright__ = "Copyright (c), UChicago Argonne, LLC." __docformat__ = 'restructuredtext en' __all__ = ['rec_process', 'get_gpu_use', 'manage_reconstruction', 'main'] import sys import signal import os import argparse from multiprocessing import Process, Queue import cohere import convertconfig as conv MEM_FACTOR = 1500 ADJUST = 0.0 def rec_process(proc, conf_file, datafile, dir, gpus, r, q): """ Calls the reconstruction function in a module identified by parameter. After the reconstruction is finished, it enqueues th eprocess id wit associated list of gpus. Parameters ---------- proc : str processing library, chices are cpu, cuda, opencl conf_file : str configuration file with reconstruction parameters datafile : str name of file containing data dir : str parent directory to the <prefix>/results, or results directory gpus : list a list of gpus that will be used for reconstruction r : str a string indentifying the module to use for reconstruction q : Queue a queue that returns tuple of procees id and associated gpu list after the reconstruction process is done Returns ------- nothing """ if r == 'g': cohere.reconstruction_GA.reconstruction(proc, conf_file, datafile, dir, gpus) elif r == 'm': cohere.reconstruction_multi.reconstruction(proc, conf_file, datafile, dir, gpus) elif r == 's': cohere.reconstruction_single.reconstruction(proc, conf_file, datafile, dir, gpus) q.put((os.getpid(), gpus)) def get_gpu_use(devices, no_dir, no_rec, data_shape): """ Determines the use case, available GPUs that match configured devices, and selects the optimal distribution of reconstructions on available devices. Parameters ---------- devices : list list of configured GPU ids to use for reconstructions. If -1, operating system is assigning it no_dir : int number of directories to run independent reconstructions no_rec : int configured number of reconstructions to run in each directory data_shape : tuple shape of data array, needed to estimate how many reconstructions will fit into available memory Returns ------- gpu_use : list a list of int indicating number of runs per consecuitive GPUs """ from functools import reduce if sys.platform == 'darwin': # the gpu library is not working on OSX, so run one reconstruction on each GPU gpu_load = len(devices) * [1, ] else: # find size of data array data_size = reduce((lambda x, y: x * y), data_shape) rec_mem_size = data_size / MEM_FACTOR gpu_load = cohere.get_gpu_load(rec_mem_size, devices) no_runs = no_dir * no_rec gpu_distribution = cohere.get_gpu_distribution(no_runs, gpu_load) gpu_use = [] available = reduce((lambda x, y: x + y), gpu_distribution) dev_index = 0 i = 0 while i < available: if gpu_distribution[dev_index] > 0: gpu_use.append(devices[dev_index]) gpu_distribution[dev_index] = gpu_distribution[dev_index] - 1 i += 1 dev_index += 1 dev_index = dev_index % len(devices) if no_dir > 1: gpu_use = [gpu_use[x:x + no_rec] for x in range(0, len(gpu_use), no_rec)] return gpu_use def manage_reconstruction(experiment_dir, rec_id=None): """ This function starts the interruption discovery process and continues the recontruction processing. It reads configuration file defined as <experiment_dir>/conf/config_rec. If multiple generations are configured, or separate scans are discovered, it will start concurrent reconstructions. It creates image.npy file for each successful reconstruction. Parameters ---------- experiment_dir : str directory where the experiment files are loacted rec_id : str optional, if given, alternate configuration file will be used for reconstruction, (i.e. <rec_id>_config_rec) Returns ------- nothing """ print('starting reconstruction') # the rec_id is a postfix added to config_rec configuration file. If defined, use this configuration. conf_dir = os.path.join(experiment_dir, 'conf') # convert configuration files if needed main_conf = os.path.join(conf_dir, 'config') if os.path.isfile(main_conf): config_map = cohere.read_config(main_conf) if config_map is None: print ("info: can't read " + main_conf + " configuration file") return None else: print("info: missing " + main_conf + " configuration file") return None if 'converter_ver' not in config_map or conv.get_version() is None or conv.get_version() < config_map['converter_ver']: config_map = conv.convert(conf_dir, 'config') # verify main config file er_msg = cohere.verify('config', config_map) if len(er_msg) > 0: # the error message is printed in verifier return None if rec_id is None: conf_file = os.path.join(conf_dir, 'config_rec') else: conf_file = os.path.join(conf_dir, 'config_rec_' + rec_id) config_map = cohere.read_config(conf_file) if config_map is None: return # verify configuration er_msg = cohere.verify('config_rec', config_map) if len(er_msg) > 0: # the error message is printed in verifier return None # find which library to run it on, default is numpy ('np') if 'processing' in config_map: proc = config_map['processing'] else: proc = 'auto' lib = 'np' if proc == 'auto': try: import cupy lib = 'cp' except: # currently we could not install arrayfire on linux, so numpy is the second choice pass elif proc == 'cp': try: import cupy lib = 'cp' except: print('cupy is not installed, select different library (proc)') return elif proc == 'np': pass # lib set to 'np' elif proc == 'af' or 'cpu' or proc == 'cuda' or proc == 'opencl': try: import arrayfire lib = proc except: print('arrayfire is not installed, select different library (proc)') return else: print('invalid "proc" value', proc, 'is not supported') return # exp_dirs_data list hold pairs of data and directory, where the directory is the root of data/data.tif file, and # data is the data.tif file in this directory. exp_dirs_data = [] # experiment may be multi-scan in which case reconstruction will run for each scan for dir in os.listdir(experiment_dir): if dir.startswith('scan'): datafile = os.path.join(experiment_dir, dir, 'data', 'data.tif') if os.path.isfile(datafile): exp_dirs_data.append((datafile, os.path.join(experiment_dir, dir))) # if there are no scan directories, assume it is combined scans experiment if len(exp_dirs_data) == 0: # in typical scenario data_dir is not configured, and it is defaulted to <experiment_dir>/data # the data_dir is ignored in multi-scan scenario if 'data_dir' in config_map: data_dir = config_map['data_dir'] else: data_dir = os.path.join(experiment_dir, 'phasing_data') datafile = os.path.join(data_dir, 'data.tif') if os.path.isfile(datafile): exp_dirs_data.append((datafile, experiment_dir)) no_runs = len(exp_dirs_data) if no_runs == 0: print('did not find data.tif nor data.npy file(s). ') return if 'ga_generations' in config_map: generations = config_map['ga_generations'] else: generations = 0 if 'reconstructions' in config_map: reconstructions = config_map['reconstructions'] else: reconstructions = 1 device_use = [] if lib == 'cpu' or lib == 'np': cpu_use = [-1] * reconstructions if no_runs > 1: for _ in range(no_runs): device_use.append(cpu_use) else: device_use = cpu_use else: if 'device' in config_map: devices = config_map['device'] else: devices = [-1] if no_runs * reconstructions > 1: data_shape = cohere.read_tif(exp_dirs_data[0][0]).shape device_use = get_gpu_use(devices, no_runs, reconstructions, data_shape) else: device_use = devices if no_runs == 1: if len(device_use) == 0: device_use = [-1] dir_data = exp_dirs_data[0] datafile = dir_data[0] dir = dir_data[1] if generations > 1: cohere.reconstruction_GA.reconstruction(lib, conf_file, datafile, dir, device_use) elif reconstructions > 1: cohere.reconstruction_multi.reconstruction(lib, conf_file, datafile, dir, device_use) else: cohere.reconstruction_single.reconstruction(lib, conf_file, datafile, dir, device_use) else: if len(device_use) == 0: device_use = [[-1]] else: # check if is it worth to use last chunk if lib != 'cpu' and lib != 'np' and len(device_use[0]) > len(device_use[-1]) * 2: device_use = device_use[0:-1] if generations > 1: r = 'g' elif reconstructions > 1: r = 'm' else: r = 's' q = Queue() for gpus in device_use: q.put((None, gpus)) # index keeps track of the multiple directories index = 0 processes = {} pr = [] while index < no_runs: pid, gpus = q.get() if pid is not None: os.kill(pid, signal.SIGKILL) del processes[pid] datafile = exp_dirs_data[index][0] dir = exp_dirs_data[index][1] p = Process(target=rec_process, args=(lib, conf_file, datafile, dir, gpus, r, q)) p.start() pr.append(p) processes[p.pid] = index index += 1 for p in pr: p.join() # close the queue q.close() print('finished reconstruction') def main(arg): parser = argparse.ArgumentParser() parser.add_argument("experiment_dir", help="experiment directory.") parser.add_argument("--rec_id", help="reconstruction id, a postfix to 'results_phasing_' directory") args = parser.parse_args() experiment_dir = args.experiment_dir if args.rec_id: manage_reconstruction(experiment_dir, args.rec_id) else: manage_reconstruction(experiment_dir) if __name__ == "__main__": main(sys.argv[1:]) # python run_reconstruction.py opencl experiment_dir
the-stack_0_27697
# coding: utf-8 # ----------------------------------------------------------------------------------- # <copyright company="Aspose Pty Ltd" file="ObjectExist.py"> # Copyright (c) 2003-2021 Aspose Pty Ltd # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # </summary> # ----------------------------------------------------------------------------------- import pprint import re # noqa: F401 import six class ObjectExist(object): """ Object exists """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'exists': 'bool', 'is_folder': 'bool' } attribute_map = { 'exists': 'Exists', 'is_folder': 'IsFolder' } def __init__(self, exists=None, is_folder=None, **kwargs): # noqa: E501 """Initializes new instance of ObjectExist""" # noqa: E501 self._exists = None self._is_folder = None if exists is not None: self.exists = exists if is_folder is not None: self.is_folder = is_folder @property def exists(self): """ Gets the exists. # noqa: E501 Indicates that the file or folder exists. # noqa: E501 :return: The exists. # noqa: E501 :rtype: bool """ return self._exists @exists.setter def exists(self, exists): """ Sets the exists. Indicates that the file or folder exists. # noqa: E501 :param exists: The exists. # noqa: E501 :type: bool """ if exists is None: raise ValueError("Invalid value for `exists`, must not be `None`") # noqa: E501 self._exists = exists @property def is_folder(self): """ Gets the is_folder. # noqa: E501 True if it is a folder, false if it is a file. # noqa: E501 :return: The is_folder. # noqa: E501 :rtype: bool """ return self._is_folder @is_folder.setter def is_folder(self, is_folder): """ Sets the is_folder. True if it is a folder, false if it is a file. # noqa: E501 :param is_folder: The is_folder. # noqa: E501 :type: bool """ if is_folder is None: raise ValueError("Invalid value for `is_folder`, must not be `None`") # noqa: E501 self._is_folder = is_folder def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ObjectExist): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_0_27698
''' wget https://doc-0g-4s-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mbp1/327iep5nmg492g7968am9g08prba2usg/1500897600000/13951467387256278872/*/0Bz7KyqmuGsilT0J5dmRCM0ROVHc?e=download -O vgg16_weights.h5 This script goes along the blog post "Building powerful image classification models using very little data" from blog.keras.io. It uses data that can be downloaded at: https://www.kaggle.com/c/dogs-vs-cats/data In our setup, we: - created a data/ folder - created train/ and validation/ subfolders inside data/ - created cats/ and dogs/ subfolders inside train/ and validation/ - put the cat pictures index 0-999 in data/train/cats - put the cat pictures index 1000-1400 in data/validation/cats - put the dogs pictures index 12500-13499 in data/train/dogs - put the dog pictures index 13500-13900 in data/validation/dogs So that we have 1000 training examples for each class, and 400 validation examples for each class. In summary, this is our directory structure: data/ train/ dogs/ dog001.jpg dog002.jpg ... cats/ cat001.jpg cat002.jpg ... validation/ dogs/ dog001.jpg dog002.jpg ... cats/ cat001.jpg cat002.jpg ... ''' ### IMPORTS from __future__ import print_function import os import fnmatch from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.optimizers import RMSprop, Adagrad from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense from keras.callbacks import ModelCheckpoint, CSVLogger, TensorBoard, EarlyStopping import logging FORMAT = "[%(lineno)4s : %(funcName)-30s ] %(message)s" logging.basicConfig(level=logging.DEBUG, format=FORMAT) ### GLOBALS # dimensions of our images. # img_width = 150 # img_height = 150 img_width = 224 img_height = 224 # dataset_path = 'dataset_dogs_cats' dataset_path = 'dataset' dataset_train_path=os.path.join(dataset_path, 'train') dataset_val_path=os.path.join(dataset_path, 'validation') dataset_test_path=os.path.join(dataset_path, 'test') # path to the model weights files. weights_path = 'weights/vgg16_weights.h5' top_model_weights_path = 'output/bottleneck_fc_model.h5' top_model_weights_path = 'output/best-weights-015-0.5636-0.7923.hdf5' finetune_model_weights_path = 'output/finetune_bottleneck_fc_model.h5' #epochs = 50 epochs = 5 #batch_size = 16 batch_size = 1 # Count no. of images(.jpg) in a directory def get_images_count_recursive(path): matches = [] logging.debug('path {}'.format(path)) for root, dirnames, filenames in os.walk(path): for filename in fnmatch.filter(filenames, '*.jpg'): matches.append(os.path.join(root, filename)) # logging.debug('matches {}'.format(matches)) images_count = len(matches) return images_count # nb_train_samples = 2000 # nb_validation_samples = 800 nb_train_samples = get_images_count_recursive(dataset_train_path) logging.debug('nb_train_samples {}'.format(nb_train_samples)) nb_validation_samples = get_images_count_recursive(dataset_val_path) logging.debug('nb_validation_samples {}'.format(nb_validation_samples)) if not os.path.exists('output'): os.makedirs('output') if not os.path.exists('logs'): os.makedirs('logs') # TODO: HARDCODING - Should be same as used during training VGG; Else error (None, None, 512) input_shape = (img_width, img_height, 3) # Sorted subdirectories list def get_subdir_list(path): names=[] for name in sorted(os.listdir(path)): if os.path.isdir(os.path.join(path, name)): names.append(name) logging.debug('names {}'.format(names)) return names class_names = get_subdir_list(dataset_train_path) logging.debug('class_names {}'.format(class_names)) # build the VGG16 network base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=input_shape) print('Model loaded.') print(base_model.output_shape) # (None, None, None, 512) if input_shape not given in applications.VGG16 print(base_model.output_shape[1:]) # (None, None, 512) # build a classifier model to put on top of the convolutional model top_model = Sequential() top_model.add(Flatten(input_shape=base_model.output_shape[1:])) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(1, activation='sigmoid')) #top_model.add(Dense(len(class_names), activation='softmax')) # Binary to Multi classification changes # note that it is necessary to start with a fully-trained # classifier, including the top classifier, # in order to successfully do fine-tuning top_model.load_weights(top_model_weights_path) # add the model on top of the convolutional base # base_model.add(top_model) # Not working; AttributeError: 'Model' object has no attribute 'add' model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) print(model.summary()) # set the first 25 layers (up to the last conv block) # to non-trainable (weights will not be updated) for layer in model.layers[:15]: # Should be 15 instead of 25 I guess layer.trainable = False # compile the model with a SGD/momentum optimizer and a very slow learning rate. # rmsprop = RMSprop(lr=1e-4, rho=0.9, epsilon=1e-8, decay=0.0) # rmsprop = RMSprop(lr=1e-4, rho=0.9, epsilon=1e-8, decay=0.0) # adagrad = Adagrad(lr=1e-4, epsilon=1e-08, decay=0.0) model.compile(loss='binary_crossentropy', optimizer=optimizers.SGD(lr=1e-4, momentum=0.9), metrics=['accuracy']) # # with pre-precessing version # # Use keras 1.2.2 for preprocessing_function # # x = 3D tensor version # def preprocess_input(x): # # 'RGB'->'BGR' # x = x[:, :, ::-1] # # Zero-center by mean pixel # x[:, :, 0] -= 103.939 # x[:, :, 1] -= 116.779 # x[:, :, 2] -= 123.68 # return x # train_datagen = ImageDataGenerator( # preprocessing_function=preprocess_input, # shear_range=0.2, # zoom_range=0.2, # horizontal_flip=True) # test_datagen = ImageDataGenerator( # preprocessing_function=preprocess_input) # prepare data augmentation configuration train_datagen = ImageDataGenerator( rescale=1. / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( dataset_train_path, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary') # class_mode='sparse') # Binary to Multi classification changes # class_mode='categorical') # Binary to Multi classification changes validation_generator = test_datagen.flow_from_directory( dataset_val_path, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary') # class_mode='sparse') # Binary to Multi classification changes # class_mode='categorical') # Binary to Multi classification changes # Callbacks filename = 'output/model_train_finetune.csv' csv_log = CSVLogger(filename, separator=' ', append=False) early_stopping = EarlyStopping( monitor='val_loss', patience=50, verbose=1, mode='min') filepath = "output/best-weights-finetune-{epoch:03d}-{loss:.4f}-{acc:.4f}.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=False, mode='min', period=1) # min because we are monitoring val_loss that should decrease tensorboard = TensorBoard(log_dir='./logs', histogram_freq=0, write_graph=True, write_images=True) callbacks_list = [csv_log, early_stopping, checkpoint, tensorboard] logging.debug('callbacks_list {}'.format(callbacks_list)) # fine-tune the model model.fit_generator( train_generator, samples_per_epoch=nb_train_samples, epochs=epochs, validation_data=validation_generator, nb_val_samples=nb_validation_samples, callbacks=callbacks_list) # TODO: These are not the best weights model.save_weights(finetune_model_weights_path)
the-stack_0_27699
# -*- encoding: utf-8 -*- """ Created by eniocc at 11/10/2020 """ import ctypes from py_dss_interface.models.Base import Base class LineCodesS(Base): """ This interface can be used to read/modify the properties of the LineCode Class where the values are Strings. The structure of the interface is as follows: CStr LineCodesS(int32_t Parameter, CStr argument) This interface returns a string, the variable “parameter” is used to specify the property of the class to be used and the variable “argument” can be used to modify the value of the property when necessary. Reading and writing properties are separated and require a different parameter number to be executed. The properties (parameter) are integer numbers and are described as follows.; """ def linecodes_read_name(self) -> str: """Gets the name of the active LineCode element.""" result = ctypes.c_char_p(self.dss_obj.LineCodesS(ctypes.c_int32(0), ctypes.c_int32(0))) return result.value.decode('ascii') def linecodes_write_name(self, argument: str) -> str: """Sets the name of the active LineCode element. The new value must be specified in the argument as a string.""" argument = Base.check_string_param(argument) result = ctypes.c_char_p(self.dss_obj.LineCodesS(ctypes.c_int32(1), argument.encode('ascii'))) return result.value.decode('ascii')
the-stack_0_27701
import pybullet as p import time import math from datetime import datetime from numpy import * from pylab import * import struct import sys import os, fnmatch import argparse from time import sleep def readLogFile(filename, verbose=True): f = open(filename, 'rb') print('Opened'), print(filename) keys = f.readline().decode('utf8').rstrip('\n').split(',') fmt = f.readline().decode('utf8').rstrip('\n') # The byte number of one record sz = struct.calcsize(fmt) # The type number of one record ncols = len(fmt) if verbose: print('Keys:'), print(keys) print('Format:'), print(fmt) print('Size:'), print(sz) print('Columns:'), print(ncols) # Read data wholeFile = f.read() # split by alignment word chunks = wholeFile.split(b'\xaa\xbb') log = list() for chunk in chunks: if len(chunk) == sz: values = struct.unpack(fmt, chunk) record = list() for i in range(ncols): record.append(values[i]) log.append(record) return log #clid = p.connect(p.SHARED_MEMORY) p.connect(p.GUI) p.loadURDF("plane.urdf", [0, 0, -0.3]) p.loadURDF("kuka_iiwa/model.urdf", [0, 0, 1]) p.loadURDF("cube.urdf", [2, 2, 5]) p.loadURDF("cube.urdf", [-2, -2, 5]) p.loadURDF("cube.urdf", [2, -2, 5]) log = readLogFile("LOG0001.txt") recordNum = len(log) itemNum = len(log[0]) print('record num:'), print(recordNum) print('item num:'), print(itemNum) for record in log: Id = record[2] pos = [record[3], record[4], record[5]] orn = [record[6], record[7], record[8], record[9]] p.resetBasePositionAndOrientation(Id, pos, orn) numJoints = p.getNumJoints(Id) for i in range(numJoints): jointInfo = p.getJointInfo(Id, i) qIndex = jointInfo[3] if qIndex > -1: p.resetJointState(Id, i, record[qIndex - 7 + 17]) sleep(0.0005)
the-stack_0_27702
import ast import csv import eccpy.settings as eccpysettings import eccpy.tools as tools import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import sys # show wide pandas dataframes when using print function pd.set_option('display.expand_frame_repr', False) def run_gatherer(settings_excel_file, **kwargs): """ Gathers and compares EC50 data from multiple experiments. Collects and analyses the output files from previously executed "run_curvefit". Processes the datafiles in settings excel file marked as "TRUE" for "run gatherer." Parameters ---------- settings_excel_file : filepath Settings file containing the list of datafiles for analysis, and also chosen parameters savefig_with_longnames : boolean If True, output figures will be created with both long and short sample names. Usage ----- import eccpy settings = r"C:/path/to/your/settings/file.xlsx" eccpy.run_gatherer(settings) Saved Files ----------- EC50_barchart : Barchart of EC50 values from all experiments. Only data is included that is judged as good quality (i.e. not labelled as "data_needs_checking"). Four barcharts are created. 1) Original data, long sample names 2) Original data, short sample names 3) Adjusted data (e.g. fixed upper limit), long sample names 4) Adjusted data (e.g. fixed upper limit), short sample names EC50_datapoints: Scattergram, sample names on x-axis, EC50 on y-axis. Effectively the same data as the EC50_barchart, except that the datapoints from each experiment are displayed individually, as in a scattergram. A legend with colours for each experiment is included. Very useful to determine if the EC50 values from one particular day were uniformly higher or lower than the EC50 values calculated on the other days. As with the barchart, four variations are created. 1) Original data, long sample names 2) Original data, short sample names 3) Adjusted data (e.g. fixed upper limit), long sample names 4) Adjusted data (e.g. fixed upper limit), short sample names Notes ------- The gather scripts must be run after run_curvefit, and filepaths must not be changed. The output of the analysis is saved in the following folder: ORIGINAL_SUBFOLDER_WITH_SETTINGS_EXCEL_FILE/analysed/todays_date/ Running this script will overwrite any previous files with the same name (i.e., analysed on the same day). The "run_curvefit" program needs to be run to create the relevent output files, before the analysis program can be started. Shifting the location of the output files will result in an error. The output files begin as follows: todays_date_analysed_ todays_date is represented as YEAR|MONTH|DAY, e.g. 20151215. Figures are usually better displayed if a dictionary of long to short sample names is created. This can be saved in the settings_excel_file. Currently, the analysis automatically runs for original and adjusted datasets (e.g. fixed upper limit dataset). However summary graphs are created separately for each dataset. """ print("\nStarting run_gatherer program\n") # create output folder for analysed data, define basename outpath, basename = eccpysettings.setup_output_folder(settings_excel_file, "analysed") analysed_data_basename = os.path.join(outpath, basename) # add the relevant paths to the data files to the dataframe for files (dff) settings, dff, df_samplenames = eccpysettings.read_settings_file(settings_excel_file) # set the long sample name as the index df_samplenames.set_index("long name", inplace = True) # create t20 colour list t20 = tools.setup_t20_colour_list() # extract list of adjusted datasets for analysis datasets = ast.literal_eval(settings["datasets"]) """ COLLECT THE EC50 VALUES FROM ALL THE OUTPUT FILES """ # fix the suffixes denoting the datasets (_orig for original data, _ful for fixed upper limit) # if any of the files are labelled True for "run gatherer" if True in list(dff.loc[:, "run gatherer"]): # create an empty dataframe to hold the average EC50 values dfc = pd.DataFrame() # create another dataframe to hold all the boolean data dfcb = pd.DataFrame() # create dataframe for all individual EC50 datapoints (df_allp), including samples repeated in a single experiment df_allp = pd.DataFrame() print("Analysing data from multiple experiments. List of experiments analysed :") # iterate through only the files labelled "True" for "run gatherer", and join all output dataframes together for fn in dff.loc[dff["run gatherer"] == True].index: # define the response data file data_file = dff.loc[fn, "response data file"] print(data_file) # if it is a real file, open if os.path.isfile(dff.loc[fn,"ofd_EC50_eval_excel"]): # open as a new pandas dataframe df_eval_values = pd.read_excel(dff.loc[fn,"ofd_EC50_eval_excel"], sheet_name="v_" + data_file[:20]) # add the sample name to the dataframe, so it can be identified later df_eval_values["file"] = dff.loc[fn,"ofd_EC50_eval_excel"] # convert the sample_name column to a string datatype (forcing np.nan to be "nan") df_eval_values["sample_name"] = df_eval_values["sample_name"].astype(str) # drop any rows that contain "nan" as the sample name df_eval_values = df_eval_values.loc[df_eval_values["sample_name"] != "nan"] # join the dataframe with all previously joined dataframes dfc = pd.concat([dfc,df_eval_values], axis=0) # open the tab of the summary excel file that contains all the boolean values df_eval_bool = pd.read_excel(dff.loc[fn,"ofd_EC50_eval_excel"], sheet_name="b_" + data_file[:20]) # join the dataframe with all previously joined dataframes dfcb = pd.concat([dfcb,df_eval_bool], axis=0) # set the sample_name as the index df_eval_values = df_eval_values.set_index("sample_name") # iterate through datasets (save in the same df, by adding suffix to the column name) for d in datasets: # change the dataset name (e.g. "_orig" to "") to an empty string if there is only one dataset for analysis d_name = "" if len(datasets) == 1 else d # define the column name in the dataframe col_EC50 = "EC50" + d # select data which "seems okay" according the the automatic data analysis df_eval_values_OK = df_eval_values.loc[df_eval_values["data_seems_okay" + d] == True] # create a list of unique sample names unique_names = list(df_eval_values_OK.index.unique()) # create a new dataframe, called df_eval_uniq, which has a single row for each unique sample df_eval_uniq = pd.DataFrame().astype(object) for sn in unique_names: # select only the data for that sample df_sel = df_eval_values_OK.loc[sn,:] # if there is only one sample, the selected data will form a series if isinstance(df_sel, pd.Series): # add the n, the EC50, and the std df_eval_uniq.loc[sn,data_file + d] = df_sel["EC50{}".format(d)] # if the name is not unique, the selected data will form a dataframe. elif isinstance(df_sel, pd.DataFrame): # transfer the EC50 values as a stringlist df_eval_uniq.loc[sn,data_file + d] = str(["%0.2f"%l for l in df_sel[col_EC50]]) else: raise TypeError("expected a series or dataframe.") # add the dataframe containing _orig and other dataset columns for that exp to the final df with all data df_allp = pd.concat([df_allp,df_eval_uniq], axis=1) else: print("File not found! {}".format(dff.loc[fn,"ofd_EC50_eval_excel"])) print("\nPercentage data okay:") if dfc.empty: raise ValueError("No data collected for analysis! Double-check that run_curvefit program has been" " carried out for all the relevant files") for d in datasets: vc = dfc["data_seems_okay{}".format(d)].value_counts() if True in vc: n_data_okay = vc[True] else: n_data_okay = 0 if False in vc: n_data_not_okay = vc[False] else: n_data_not_okay = 0 perc_data_okay = n_data_okay / (n_data_okay + n_data_not_okay)*100 print("{b:0.0f}% ({a} dataset)".format(a=d[1:], b=perc_data_okay)) # select only the data labeled as "data_seems_okay" # save the current index as the sample letter dfc["sLet"] = dfc.index # convert the index to the sample name dfc.index = dfc.sample_name # create a new dataframe, called dfm, which has a single row for each unique sample, and contains MEAN values dfm = pd.DataFrame() for d in datasets: # select only the data labeled as "data_seems_okay" series_data_seems_okay = dfc["data_seems_okay{}".format(d)] == True dfc_ok = dfc.loc[series_data_seems_okay] # create list of unique sample names, where data is available list_unique_sample_names = list(dfc_ok.sample_name.dropna().unique()) for sn in list_unique_sample_names: # select data for that one sample, resulting in either a series, or dataframe (indicating mult. exper.) data_1_sample_name = dfc_ok.loc[sn,:] # if there is only one sample, df_sel will be a series. if isinstance(data_1_sample_name, pd.Series): # add the n, the EC50, and the std dfm.loc[sn,"n{}".format(d)] = 1 dfm.loc[sn,"mean{}".format(d)] = data_1_sample_name["EC50{}".format(d)] dfm.loc[sn,"std{}".format(d)] = 0 dfm.loc[sn,"SEM{}".format(d)] = 0 # if there are multiple datapoints with the same name, df_sel will be a DataFrame elif isinstance(data_1_sample_name, pd.DataFrame): # add the n, the mean EC50 of the samples, and the std dfm.loc[sn,"n{}".format(d)] = data_1_sample_name["EC50{}".format(d)].shape[0] dfm.loc[sn,"mean{}".format(d)] = data_1_sample_name["EC50{}".format(d)].mean() dfm.loc[sn,"std{}".format(d)] = data_1_sample_name["EC50{}".format(d)].std() dfm.loc[sn,"SEM{}".format(d)] = data_1_sample_name["EC50{}".format(d)].sem() # convert longnames in index to a new column dfm["longname"] = dfm.index df_allp["longname"] = df_allp.index # create a dictionary from the long and short sample names samplenames_dict = dict(zip(df_samplenames.index, df_samplenames["short name"])) # create a new column with the relevant shortnames for each sample, based on the samplenames_dict dfm["shortname"] = dfm["longname"].apply(lambda x : samplenames_dict[x] if x in list(samplenames_dict.keys()) else x) df_allp["shortname"] = df_allp["longname"].apply(lambda x : samplenames_dict[x] if x in list(samplenames_dict.keys()) else x) ########################################################################################## # reorder the samples according to desired order in the settings file # ########################################################################################## # sort original index, in case dfm.sort_index(inplace=True) df_allp.sort_index(inplace=True) # create a dictionary of the sample order sampleorder_dict = dict(zip(df_samplenames.index, df_samplenames["order in figure"])) # create a new column with the preferred sample order, if available in settings file. dfm["sampleorder"] = dfm.longname.apply(lambda x : sampleorder_dict[x] if x in list(sampleorder_dict.keys()) else np.nan) df_allp["sampleorder"] = df_allp.longname.apply(lambda x : sampleorder_dict[x] if x in list(sampleorder_dict.keys()) else np.nan) # sort by sample order dfm.sort_values(by="sampleorder", inplace=True) df_allp.sort_values(by="sampleorder", inplace=True) # save the dataframe with all mean data from all experiments to a csv # dfm.to_csv(analysed_data_basename + "_EC50_mean" + ".csv", sep=",", quoting=csv.QUOTE_NONNUMERIC) df_allp.to_csv(analysed_data_basename + "_EC50_indiv_exp" + ".csv", sep=",", quoting=csv.QUOTE_NONNUMERIC) # save both dataframes (mean data and indiv datapoints) from all experiments to excel writer = pd.ExcelWriter(analysed_data_basename + ".xlsx")#engine='xlsx' # dfm.to_excel(writer, sheet_name = "EC50_mean") df_allp.to_excel(writer, sheet_name="EC50_indiv_exp") # sort the columns df_allp.sort_index(axis=1, inplace=True) # replace index of df_allp with a simple range of integers df_allp.index = range(df_allp.shape[0]) # give the index a name, indicating sample numbers df_allp.index.name = "sSnum" # set the fontsize if df_allp.shape[0] < 10: fontsize = 10 else: fontsize = 6 plt.rcParams['font.size'] = fontsize # set matplotlib legend parameters plt.rcParams['legend.numpoints'] = 3 # iterate through the datasets (e.g. _orig, _ful) for d in datasets: col_mean = "mean" + d col_std = "std" + d col_SEM = "SEM" + d # create a subset to plot that contain data df_for_barchart = dfm.dropna(subset = [col_mean]).copy() # # use the dictionary of long to short names to obtain the short name for the datapoints # df_for_barchart["longname"] = df_for_barchart.index # df_for_barchart["shortname"] = df_for_barchart.longname.apply(lambda x : samplenames_dict[x] if x in list(samplenames_dict.keys()) else x) # setup normalisation by checking if a standard is listed in the settings file conduct_normalisation, list_norm_datasets = setup_normalisation(df_samplenames, df_allp) # identify the df_allp columns associated with that dataset col_contains_d = list(pd.Series(df_allp.columns).apply(lambda x: d in x)) # select only data for that dataset (e.g. only orig data) sel_df_allp = df_allp.loc[:,col_contains_d] # create separate figures for the long names, and the short names for norm_dataset in list_norm_datasets: sys.stdout.write(".") sys.stdout.flush() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # # # Analysis Scattergram, individual datapoints for multiple experiments # # by dataset (ful/orig), by name (long,short), by normalisation (orig/norm) # # # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # _________ # |XXXXXXXXX| Full Canvas # |XXXXXXXXX| # |XXXXXXXXX| # |XXXXXXXXX| # create a scattergram figure object scat_fig, scat_ax = plt.subplots() # create an lists to hold the individual sample numbers (x-values) from all experiments xvalues_all_exp = [] # create an lists to hold the individual datapoints (y-values) from all experiments yvalues_all_exp = [] # create a string for the dose units (e.g. "mg/L", or "% positive control") if norm_dataset == "": dose_units = settings["x-axis (dose) units"] elif norm_dataset == "_normalised": samplenames_selected = df_samplenames.loc[df_allp.longname, :] # find the sample longname that is marked "True" as a standard standard_name = samplenames_selected[samplenames_selected["standard for normalisation?"] == True].index[0] # check if the standard for normalisation has a short name if standard_name in samplenames_selected.index: standard_name_short = samplenames_selected.loc[standard_name, "short name"] if not isinstance(standard_name_short, str): raise ValueError("Standard for normalisation appears more than once in 'samplenames' tab of excel settings file.\n Samplenames:\n{}".format(standard_name_short)) else: # use the long name standard_name_short = standard_name # create a string to extend the y-axis label dose_units = "% {}".format(standard_name_short) else: raise TypeError("dataset for standardisation{} is not recognised".format(norm_dataset)) ylabel_str = "{a}{b}, {c} ({d})".format(a=settings["calculation_type"], b=str(settings["percentage_response"]), c=settings["x-axis (dose) label"], d=dose_units) # drop the non-numerical columns list_cols_to_drop = ["longname", "sampleorder", "shortname"] for col in list_cols_to_drop: if col in sel_df_allp.columns: sel_df_allp.drop(col, axis=1, inplace=True) # iterate through the experiment number (exp_nr) and columns (c) in the dataframe # Each column represents a single experiment for exp_nr, c in enumerate(sel_df_allp.columns): data_colour = t20[exp_nr] sys.stdout.write(".") sys.stdout.flush() # convert any stringlists to lists df_allp.loc[:,c] = df_allp.loc[:,c].apply(lambda x: ast.literal_eval(x) if isinstance(x,str) else x) # convert any lists of strings to lists of floats df_allp.loc[:,c] = df_allp.loc[:,c].apply(lambda x: [float(s) for s in x] if isinstance(x,list) else x) # convert any lists of floats to lists of numpy arrays df_allp.loc[:,c] = df_allp.loc[:,c].apply(lambda x: np.array(x) if isinstance(x,list) else x) #################################################################################################### # NORMALISATION TO A STANDARD FOR EACH EXPERIMENT # # a) find the standard sample number # # b) find the standard # # c) divide all datapoints by the standard (or mean of standard, if duplicated on that day)# # d) multiply by 100 to give a percentage # #################################################################################################### if norm_dataset == "": series_EC50_data = df_allp.loc[:,c].dropna() elif norm_dataset == "_normalised": # find the sample longname that is marked "True" as a standard standard_name = samplenames_selected[samplenames_selected["standard for normalisation?"] == True].index[0] # find the sSNum (index number) of the standard standard_sSnum = df_allp[df_allp.longname == standard_name].index[0] # calculated the average EC50 for the standard standard_EC50 = np.mean(df_allp.loc[standard_sSnum, c]) if standard_EC50 != 0.0: # calculate the normalised EC50 as a percentage (EC50/standard*100) series_EC50_data = df_allp.loc[:,c]/standard_EC50*100 series_EC50_data.dropna(inplace=True) else: print("Normalisation for experiment {} cannot be carried out, as the EC50 of the standard is 0.0. ".format(c)) break ######################################################################################## # # # Add values to a "scatterplot" which has the sample number on the x-axis, # # and the EC50 on the y-axis. # # For duplicate samples in that experiment, it's a bit tricky!! # # a) find data with duplicates [S1_EC50_1,S1_EC50_2] # # b) iterate through each sample with duplicates # # c) create matching list of sample numbers [S1,S1],[S1_EC50_1,S1_EC50_2] # # d) add to list of x-values and y-values from the samples with duplicates # # x=[S1,S1,S2,S2,S5,S5], # # y=[S1_EC50_1,S1_EC50_2,S2_EC50_1,S2_EC50_2,S5_EC50_1,S5_EC50_2] # # e) append(extend) to the list of samples # # x=[S2,S3,S4,S1,S1,S2,S2,S5,S5], # # y=[S2_EC50_1,S3_EC50_1,S4_EC50_1,S1_EC50_1,S1_EC50_2, # # S2_EC50_1,S2_EC50_2,S5_EC50_1,S5_EC50_2] # # f) plot as a scattergram, so multiple datapoints are on each sample # # g) append (extend) the sample names and datapoints to a list # # containing data from all experiments combined # # h) move and repeat for the next experiment # # i) after iteration through all experiments, use collected list to # # calculate the mean values (whether raw or normalised) for barchart # # # ######################################################################################## # set the transparency alpha = 0.5 # create a series of bools, describing if the data is a float is_float_series = series_EC50_data.apply(lambda x: isinstance(x,float)) # use boolean series to select the float data values_single_sample = series_EC50_data.loc[is_float_series] # create list of x-values (dose) and y-values (response) from the data with single samples xvalues_from_single = list(values_single_sample.index) yvalues_from_single = list(values_single_sample) # create a series of bools, describing if the data is a list is_array_series = series_EC50_data.apply(lambda x: isinstance(x,np.ndarray)) # if some of the datapoints are lists (multiple sample replicates in a single experiment) if True in list(is_array_series): # use boolean series to select the data with lists values_mult_sample = series_EC50_data.loc[is_array_series] # the multiple EC50 values belong to a single sample number. Identify list of sample numbers. index_ssNum_with_lists = values_mult_sample.index.tolist() # create a list of xvalues for the scattergram, for multiple samples per day list_xvalues_from_mult = [] # create a list of yvalues for the scattergram, for multiple samples per day list_yvalues_from_mult = [] # iterate through each selected sample number, associated with multiple EC50 values for sSnum in index_ssNum_with_lists: list_EC50_values = list(values_mult_sample[sSnum]) # create corresponding x-axis sample numbers (array of sSnum of length len(values_mult_sample)) list_index_values = list(np.ones(len(list_EC50_values)).astype(np.int64)*sSnum) # add x and y values to the lists for all samples list_xvalues_from_mult.extend(list_index_values) list_yvalues_from_mult.extend(list_EC50_values) # add the x and y-values from the multiple samples per experiment to the single sample data xvalues_all_single_exp = xvalues_from_single + list_xvalues_from_mult yvalues_all_single_exp = yvalues_from_single + list_yvalues_from_mult else: # there is no data from multiple samples in an experiment, therefore all data comes from single xvalues_all_single_exp = xvalues_from_single yvalues_all_single_exp = yvalues_from_single # plot the float data as a scattergram (x-axis is the range, resembling a bar or line chart) scat_ax.scatter(xvalues_all_single_exp, yvalues_all_single_exp, color=data_colour, s=40, alpha=alpha, label=c[:-5]) # add the values from that experiment to a list xvalues_all_exp.extend(xvalues_all_single_exp) yvalues_all_exp.extend(yvalues_all_single_exp) ####################################################### # format_and_save_analysis_scatterplot # ####################################################### settings_name = os.path.split(settings_excel_file)[1] # set the xticks and labels to match the index of df_allp scat_ax.set_xticks(np.arange(df_allp.shape[0])) # set the grid to go in between the sample names, as minor xticks scat_ax.set_xticks(np.arange(df_allp.shape[0])+0.5, minor=True) scat_ax.grid(which='minor', alpha=0.9) # set the x axis limits scat_ax.set_xlim(-0.5, df_allp.shape[0]-0.5) # set the y-axis title scat_ax.set_ylabel(ylabel_str) if "savefig_with_longnames" in kwargs.keys(): if kwargs["savefig_with_longnames"] == True: list_nametypes = ["longname", "shortname"] else: list_nametypes = ["shortname"] else: list_nametypes = ["shortname"] for nametype in list_nametypes: # add legend if nametype == "longname": scat_lgd = scat_ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), ncol=1, scatterpoints=1,numpoints=1, borderaxespad=1, fontsize=fontsize)# mode="expand", elif nametype == "shortname": scat_lgd = scat_ax.legend(loc='upper center', bbox_to_anchor=(0.5,-0.15), ncol=2, scatterpoints=1,numpoints=1, fontsize=fontsize) # define the x-axis labels (long or short) scat_xticklabels = list(df_allp[nametype]) scat_ax.set_xticklabels(scat_xticklabels, rotation=90) scat_ax.set_title("analysed data ({e} experiments), {b}".format(b=d_name,e=sel_df_allp.shape[1])) # save scatter figure scat_fig.savefig(analysed_data_basename + "_datapoints" + d_name + norm_dataset + '.png', format='png', dpi=300,bbox_extra_artists=(scat_lgd,), bbox_inches='tight') if settings["save_as_pdf"] in (True, "TRUE"): scat_fig.savefig(analysed_data_basename + "_datapoints" + d_name + norm_dataset + '.pdf', format='pdf', bbox_extra_artists=(scat_lgd,), bbox_inches='tight') # create figure object for the barchart with normalised data (collected from the scatter data) #barnorm_fig, barnorm_ax = plt.subplots() series_all_exp_redundant = pd.Series(yvalues_all_exp, index = xvalues_all_exp) # convert index to integer format series_all_exp_redundant.index = series_all_exp_redundant.index.astype(np.int64) # from the redundant index, create a unique, sorted index of sample numbers series_all_exp_redundant_index_uniq = pd.Series(series_all_exp_redundant.index.unique()) series_all_exp_redundant_index_uniq.sort_values() df_all_exp_nonredundant = pd.DataFrame(index=series_all_exp_redundant_index_uniq) for sSnum_b in series_all_exp_redundant_index_uniq: data_for_that_sSnum = series_all_exp_redundant.loc[sSnum_b] if isinstance(data_for_that_sSnum, pd.Series): n_samples = data_for_that_sSnum.shape[0] else: n_samples = 1 df_all_exp_nonredundant.loc[sSnum_b, "n{}{}".format(d, norm_dataset)] = n_samples df_all_exp_nonredundant.loc[sSnum_b, "mean{}{}".format(d,norm_dataset)] = data_for_that_sSnum.mean() df_all_exp_nonredundant.loc[sSnum_b, "std{}{}".format(d,norm_dataset)] = data_for_that_sSnum.std() df_all_exp_nonredundant.loc[sSnum_b, "SEM{}{}".format(d,norm_dataset)] = pd.Series(data_for_that_sSnum).sem() # extract the original longnames from dfm longname_series = dfm.longname longname_series.index = range(len(longname_series)) # add the longnames to df_all_exp_nonredundant (index should be sample number) df_all_exp_nonredundant["longname"] = longname_series # extract the shortnames from the dictionary in the settings file, if available df_all_exp_nonredundant["shortname"] = df_all_exp_nonredundant["longname"].apply(lambda x : samplenames_dict[x] if x in list(samplenames_dict.keys()) else x) ####################################################### # DEPRECATED BARCHART THAT HAD AN INDEXING ERROR # ####################################################### # # # count the number of samples (number of boxes in barchart) # bar_x_n_boxes = df_all_exp_nonredundant.shape[0] # # set the range of number of boxes as the indices # box_indices = range(bar_x_n_boxes) # # define error bar parameters # bar_error_kw = dict(ecolor='k', lw=1, capsize=2, capthick=1) # # # plot the data as a barchart # barcontainer_norm = barnorm_ax.bar(box_indices, # df_all_exp_nonredundant["mean{}{}".format(d,norm_dataset)], # yerr=df_all_exp_nonredundant["SEM{}{}".format(d,norm_dataset)], # align="center", # error_kw=bar_error_kw, color = '#1b9e77') # # set the xticks # barnorm_ax.set_xticks(box_indices) # # # set the limits of the x-axis # barnorm_ax.set_xlim([-1, bar_x_n_boxes]) # # set the limit of the y-axis # barnorm_ax.set_ylim(0) # # set the y-axis title # # bar_ax.set_ylabel("EC50 (ug/ml)") # # set the ylabel extension string # if norm_dataset == "": # dose_units = settings["x-axis (dose) units"] # elif norm_dataset == "_normalised": # samplenames_selected = df_samplenames.loc[df_allp.longname, :] # # find the sample longname that is marked "True" as a standard # standard_name = samplenames_selected[samplenames_selected["standard for normalisation?"] == True].index[0] # # check if the standard for normalisation has a short name # if standard_name in samplenames_selected.index: # standard_name_short = samplenames_selected.loc[standard_name, "short name"] # else: # # use the long name # standard_name_short = standard_name # # create a string to extend the y-axis label # dose_units = "% {}".format(standard_name_short) # else: # raise TypeError("dataset for standardisation{} is not recognised".format(norm_dataset)) # ylabel_str = "{a}{b}, {c} ({d})".format(a=settings["calculation_type"], # b=str(settings["percentage_response"]), # c=settings["x-axis (dose) label"], # d=dose_units) # barnorm_ax.set_ylabel(ylabel_str) # # for nametype in list_nametypes: # # define name on the x-axis # barnorm_x_names = df_for_barchart[nametype] # # set the labels of the x-bar_axis # barnorm_ax.set_xticklabels(barnorm_x_names, rotation=90) # # # ax.annotate(text="%s%s" % (nametype,d), xy=(0.015,0.93), fontsize=af, xycoords=xyc) # barnorm_ax.set_title("analysed data ({e} experiments), {b}".format(b=d_name, # e=dff.loc[dff["run gatherer"] == True].shape[0])) # # automatically tighten the layout and save figure # barnorm_fig.tight_layout() # # save the figure # barnorm_fig.savefig(analysed_data_basename + "_bar" + d_name + norm_dataset + '.png', format='png', dpi=300) # if settings["save_as_pdf"] in (True, "TRUE"): # barnorm_fig.savefig(analysed_data_basename + "_bar" + d_name + norm_dataset + '.pdf', format='pdf') # plt.close('all') # move sample names to index df_all_exp_nonredundant["sample_number"] = df_all_exp_nonredundant.index df_all_exp_nonredundant.set_index("shortname", inplace=True) df_all_exp_nonredundant.sort_values("sample_number", inplace=True) ####################################################### # NEW BARCHART BASED ON UNIQUE SAMPLENAMES # ####################################################### fig, ax = plt.subplots() mean_ser = df_all_exp_nonredundant["mean{}{}".format(d_name,norm_dataset)] SEM_ser = df_all_exp_nonredundant["SEM{}{}".format(d_name,norm_dataset)] mean_ser.plot(kind="bar", ax=ax, yerr=SEM_ser) ax.set_title("analysed data ({e} experiments), {b}".format(b=d_name, e=dff.loc[dff["run gatherer"] == True].shape[0])) ylabel_str = "{a}{b} {c}\n({d})".format(a=settings["calculation_type"], b=str(settings["percentage_response"]), c=settings["x-axis (dose) label"], d=dose_units) ax.set_ylabel(ylabel_str) ax.set_xlabel("") fig.tight_layout() fig.savefig(analysed_data_basename + "_bar" + d_name + norm_dataset + '.png', format='png', dpi=300) if settings["save_as_pdf"] in (True, "TRUE"): fig.savefig(analysed_data_basename + "_bar" + d_name + norm_dataset + '.pdf', format='pdf') plt.close('all') ####################################################### # SAVE TO EXCEL AND CSV # ####################################################### # revert back to longname for csv and excel df_all_exp_nonredundant.set_index("longname", inplace=True) # save to excel df_all_exp_nonredundant.to_excel(writer, sheet_name = "EC50_mean{}{}".format(d_name,norm_dataset)) df_all_exp_nonredundant.to_csv(analysed_data_basename + "_EC50_mean{}{}".format(d_name,norm_dataset) + ".csv", sep=",", quoting=csv.QUOTE_NONNUMERIC) writer.save() writer.close() print('\nCollection and analysis of data from multiple experiments is finished.\n' 'Output files are saved in the following directory:\n{}'.format(outpath)) else: print("\nNo files are selected for the run_gatherer program. Double-check TRUE/FALSE columns in settings file.") def setup_normalisation(df_samplenames, df_allp): """ Sets up the normalisation of data for that experiment relative to a control. Checks to see that a single sample is labelled TRUE for "standard for normalisation?" in the settings file. Parameters ---------- df_samplenames : pandas DataFrame Dataframe containing the samplenames and column identifying the sample for normalisation. df_allp : pandas Dataframe Dataframe for all individual EC50 datapoints from all experiments marked as "TRUE" in the run_gatherer column of the settings file. Includes individual values for samples found twice in a single experiment. index : unique sample numbers (sSnum) columns: experiment names (e.g. "Mon_23.05", "Tue_24.05", "Wed_25.05") values : EC50 values, or lists of EC50 values as strings Returns ------- conduct_normalisation : boolean If True, all necessary requirements for normalisation OF THAT DATASET are found, and it should proceed. list_norm_datasets : list Suffix for the datasets, e.g. ["", "_normalised"] if conduct_normalisation is True If conduct_normalisation is False, will contain a suffix for a single, non-normalised dataset, [""] """ # if any of the sample names with valid EC50 data extracted from output files are listed in the settings file dataset_contains_samples_in_settings_file = bool(set(df_allp.longname).intersection(set(df_samplenames.index))) if dataset_contains_samples_in_settings_file: # select the relevant sample names in the settings file samplenames_selected = df_samplenames.loc[df_allp.longname, :] # if any of the samples are labelled as a standard if True in list(samplenames_selected["standard for normalisation?"]): # determine number of samples labelled True as the "standard for normalisation?" n_standards_labelled_as_True = samplenames_selected["standard for normalisation?"].value_counts()[True] # if a single sample is labelled as the standard if n_standards_labelled_as_True == 1: # this particular experiment can be normalised to a standard conduct_normalisation = True # prepare suffixes for the filenames that will include both non-normalised and normalised data list_norm_datasets = ["", "_normalised"] elif n_standards_labelled_as_True > 1: raise ValueError("Multiple samples are labelled as standards for normalisation. " "Only a single sample can be labelled as a standard." "Please check the samplenames tab of your settings file.") else: conduct_normalisation = False list_norm_datasets = [""] else: conduct_normalisation = False list_norm_datasets = [""] print("Note: Full sample names were used in the output graphs. \n If you want to shorten sample names, normalise to a control, " " or reorder samples in the output graph, please check the samples tab of the settings file.") return conduct_normalisation, list_norm_datasets
the-stack_0_27704
from typing import Optional from discord.ext import commands from bot import ModmailBot from core import checks from core.models import PermissionLevel class Tagging(commands.Cog): """A plugin that enables mods to prefix the thread name with a tag.""" def __init__(self, bot: ModmailBot): self.bot = bot @checks.has_permissions(PermissionLevel.SUPPORTER) @commands.command() @checks.thread_only() async def tag(self, ctx: commands.Context, tag: Optional[str]) -> None: """ Append a tag at the beginning of the channel name. Using the command without any argument will reset it. """ clean_name = ctx.channel.name.split("|", maxsplit=1)[-1] if tag: name = f"{tag}|{clean_name}" else: name = clean_name await ctx.channel.edit(name=name) await ctx.message.add_reaction("\u2705") def setup(bot: ModmailBot) -> None: """Add the Tagging plugin.""" bot.add_cog(Tagging(bot))
the-stack_0_27705
""" There are a few important sets of datastructures: dimensions * N - Size of the dstore. * K - Number of retrieved neighbors. * D - Size of the key vectors. dstore - This is the "ground truth" source of keys, values, and other important items created by the KNN-LM. * dstore_keys.npy - The vectors. NxD * dstore_vals.npy - The source token. Note: These are NOT the values used in the KNN-LM paper. Nx1 * dstore_tgts.npy - The target token. Note: These ARE the values used in the KNN-LM paper. Nx1 * dstore_prob.npy - The predicted probability of the target token. This can be used to compute perplexity of the non-retrieval model. Nx1 lookup - This is a cache of retrieved neighbors on a subset of the dstore. * lookup_knns.npy - The retrieved neighbors. NxKx1 * lookup_dist.npy - The approximate distance determined by product quantization and faiss. NxKx1 * lookup_done.npy - We only compute `knns` and `dist` for a subset of the data, and we can use `done` to keep track of which rows we did this for. If `done` is 1, then the row has been computed, and 0 otherwise. Nx1 """ import argparse import collections import json import os import sys from vocab import Dictionary import numpy as np import torch from tqdm import tqdm _my_globals = {} class RunOriginal: def run(self, dstore, vocab, mask=None, mask_b=None, tag=None): if mask is None: p = dstore.prob[:].copy() else: p = dstore.prob[:].copy()[mask] p_ = torch.from_numpy(p).float() ppl = EvalUtil.eval_ppl(p_) out = {} out['ppl'] = ppl out['cfg'] = str(None) out['desc'] = 'original[shape={}]'.format(p.shape[0]) return out class RunKNNLM: def __init__(self, cfg): self.cfg = cfg self.use_exact = False self.flip_distance = True self.sort = True for k, v in cfg.items(): setattr(self, k, v) def run(self, dstore, vocab, mask=None, mask_b=None, tag=None): if mask is None: p = dstore.prob[:].copy() dist = dstore.dist[:].copy() knn_tgts = dstore.knn_tgts[:].copy() tgts = dstore.tgts[:].copy() else: p = dstore.prob[:].copy()[mask] dist = dstore.dist[:].copy()[mask] knn_tgts = dstore.knn_tgts[:].copy()[mask] tgts = dstore.tgts[:].copy()[mask] if self.use_exact: dist = dstore.exact[:].copy() if mask is not None: dist = dist[mask] if self.flip_distance: dist = -dist index = None if self.sort: assert len(dist.shape) == 3 index = np.argsort(dist, axis=1)[:, ::-1] dist = np.take_along_axis(dist, index, axis=1) knn_tgts = np.take_along_axis(knn_tgts, index, axis=1) p_ = torch.from_numpy(p).float() original_ppl = EvalUtil.eval_ppl(p_) best_val = None best_knn_p = None best_cfg = None limits_to_check = 8 limit_size = self.k // limits_to_check limits_to_check_lst = [i * limit_size for i in range(1, limits_to_check)] if not self.find_best_lim: limits_to_check_lst = [self.k] coeff_lst = np.arange(20) / 20 for lim in limits_to_check_lst: dist_ = dist[:, :lim] knn_tgts_ = knn_tgts[:, :lim] knn_p = EvalUtil.get_knn_log_prob(tgts, dist_, knn_tgts_) knn_p_ = torch.from_numpy(knn_p).float() for coeff in coeff_lst[1:]: new_p = EvalUtil.combine_knn_and_vocab_probs( knn_p_, p_, coeff) ppl = EvalUtil.eval_ppl(new_p) #print('lim={} coeff={} ppl={}'.format(lim, coeff, ppl)) if best_val is None or ppl < best_val: best_val = ppl best_knn_p = knn_p best_cfg = (lim, coeff) out = {} out['tgts'] = tgts out['knn_tgts'] = knn_tgts out['dist'] = dist out['knn_p'] = best_knn_p out['p'] = p out['ppl'] = best_val out['index'] = index out['cfg'] = str(tuple(best_cfg)) desc = self.cfg.copy() desc['n'] = p.shape[0] out['desc'] = 'knn-lm[{}]'.format(desc) if tag is not None: out['desc'] += '[{}]'.format(tag) return out def main(args): dstore = Dstore(args.dstore, args.dstore_size, 1024) dstore.initialize() dstore.add_neighbors(args.lookup, args.lookup_k) dstore.add_exact(args.lookup, args.lookup_k) #dstore.add_annotations(args.dstore) tgts = dstore.tgts[:] knn_tgts = dstore.knn_tgts[:, :args.k] label = (knn_tgts == tgts.reshape(-1, 1, 1)).astype(np.int) print('read vocab') vocab = Dictionary() vocab.add_from_file(args.vocab) vocab.finalize() print('found {} tokens'.format(len(vocab))) print('') def print_results(out, baseline): if isinstance(out, (list, tuple)): for x in out: print_results(x) return diff = 0 if baseline is not None: diff = out['ppl'] - baseline print('{:.4f} {:.4f} {:<16} {}'.format(diff, out['ppl'], out['cfg'], out['desc'])) def find_occurs_gte_pivot(vocab, count): self = vocab for i, count_ in enumerate(self.count): if i < vocab.nspecial: continue if count >= count_: return i return None freq_list = [10**i for i in range(1, 8)] for freq in freq_list: piv = find_occurs_gte_pivot(vocab, freq) mask = np.logical_and(tgts >= vocab.nspecial, tgts < piv) lt = mask.sum().item() gte = (mask == False).sum().item() print('freq = {}, piv = {}, lt = {}, gte = {}'.format(freq, piv, lt, gte)) print('') out_baseline = RunOriginal().run(dstore, vocab) baseline = out_baseline['ppl'] print_results(out_baseline, None) res_approx = RunKNNLM(dict(k=1024, find_best_lim=False, use_exact=False, flip_distance=False, sort=True)).run(dstore, vocab) print_results(res_approx, baseline) res_exact = RunKNNLM(dict(k=1024, find_best_lim=False, use_exact=True, flip_distance=True, sort=True)).run(dstore, vocab) print_results(res_exact, baseline) bin_0 = [None] + [10**i for i in range(1, 7)] bin_1 = bin_0[1:] + [None] sofar = 0 print('max-count={}'.format(max(vocab.count))) print('len-vocab={}'.format(len(vocab))) coeff = 0.25 for lo_freq, hi_freq in zip(bin_0, bin_1): if hi_freq is not None and lo_freq is not None: piv_start = find_occurs_gte_pivot(vocab, hi_freq + 1) piv_end = find_occurs_gte_pivot(vocab, lo_freq) elif hi_freq is not None: piv_start = find_occurs_gte_pivot(vocab, hi_freq + 1) piv_end = len(vocab) else: piv_start = vocab.nspecial piv_end = find_occurs_gte_pivot(vocab, lo_freq) assert piv_start < piv_end mask = np.logical_and(tgts >= piv_start, tgts <= piv_end) n = mask.sum().item() sofar += n # approx knn_p_, p_ = res_approx['knn_p'], res_approx['p'] knn_p_, p_ = knn_p_[mask], p_[mask] knn_p_ = torch.from_numpy(knn_p_).float() p_ = torch.from_numpy(p_).float() approx_p = EvalUtil.combine_knn_and_vocab_probs( knn_p_, p_, coeff) approx_ppl = EvalUtil.eval_ppl(approx_p).item() # exact knn_p_, p_ = res_exact['knn_p'], res_exact['p'] knn_p_, p_ = knn_p_[mask], p_[mask] knn_p_ = torch.from_numpy(knn_p_).float() p_ = torch.from_numpy(p_).float() exact_p = EvalUtil.combine_knn_and_vocab_probs( knn_p_, p_, coeff) exact_ppl = EvalUtil.eval_ppl(exact_p).item() # baseline baseline_ppl = EvalUtil.eval_ppl(p_).item() # main n = mask.sum().item() out = collections.OrderedDict() out['lo_freq'] = lo_freq out['hi_freq'] = hi_freq out['n'] = n out['approx-ppl'] = approx_ppl out['exact-ppl'] = exact_ppl out['baseline-ppl'] = baseline_ppl print(json.dumps(out)) ###### def pick(d, keys, mask=None): if mask is not None: return [d[k][mask] for k in keys] return [d[k] for k in keys] mask = mask.reshape(-1) tgts_ = tgts[mask] k = 128 # index_a, dist_a, knn_tgts_a = pick(res_approx, ['index', 'dist', 'knn_tgts'], mask) index_e, dist_e, knn_tgts_e = pick(res_exact, ['index', 'dist', 'knn_tgts'], mask) res_overlap = collections.defaultdict(list) res_ppl = {} for k in [16, 64, 256]: for i in range(index_a.shape[0]): #a_, e_ = knn_tgts_a[i, :k].flatten().tolist(), knn_tgts_e[i, :k].flatten().tolist() a_, e_ = index_a[i, :k].flatten().tolist(), index_e[i, :k].flatten().tolist() overlap = len(set.intersection(set(a_), set(e_))) res_overlap[k].append(overlap) out = collections.OrderedDict() for k, v in res_overlap.items(): out['overlap-{}'.format(k)] = np.mean(v) print(json.dumps(out)) #print('piv=[{}:{}), freq=[{}:{}], n={}/{}, sofar={}'.format( # piv_start, piv_end, lo_freq, hi_freq, n, mask.shape[0], sofar)) sys.exit() def edit_distance(x0, x1): m = len(x0) n = len(x1) d = [[i] for i in range(1, m + 1)] # d matrix rows d.insert(0, list(range(0, n + 1))) # d matrix columns for j in range(1, n + 1): for i in range(1, m + 1): if x0[i - 1] == x1[j - 1]: substitutionCost = 0 else: substitutionCost = 1 d[i].insert(j, min(d[i - 1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1] + substitutionCost)) return d[-1][-1] class Dstore: def __init__(self, path, dstore_size=None, vec_size=None): self.path = path self.dstore_size = dstore_size self.vec_size = vec_size self._initialized = False def initialize(self): path = self.path # self.keys = np.memmap(os.path.join(path, 'dstore_keys.npy'), dtype=np.float32, mode='r', shape=(self.dstore_size, self.vec_size)) self.tgts = np.memmap(os.path.join(path, 'dstore_tgts.npy'), dtype=np.int, mode='r', shape=(self.dstore_size, 1)) self.vals = np.memmap(os.path.join(path, 'dstore_vals.npy'), dtype=np.int, mode='r', shape=(self.dstore_size, 1)) self.prob = np.memmap(os.path.join(path, 'dstore_prob.npy'), dtype=np.float32, mode='r', shape=(self.dstore_size, 1)) self._initialized = True def add_neighbors(self, path, k): self.knns = np.memmap(os.path.join(path, 'lookup_knns.npy'), dtype=np.int, mode='r', shape=(self.dstore_size, k, 1)) self.knn_tgts = np.memmap(os.path.join(path, 'lookup_knn_tgts.npy'), dtype=np.int, mode='r', shape=(self.dstore_size, k, 1)) self.dist = np.memmap(os.path.join(path, 'lookup_dist.npy'), dtype=np.float32, mode='r', shape=(self.dstore_size, k, 1)) # self.lookup_done = np.memmap(os.path.join(path, 'lookup_done.npy'), dtype=np.int, mode='r', shape=(self.dstore_size, 1)) def add_exact(self, path, k): self.exact = np.memmap(os.path.join(path, 'lookup_exact.npy'), dtype=np.float32, mode='r', shape=(self.dstore_size, k, 1)) def add_annotations(self, path): self.src_pos = np.memmap(os.path.join(path, 'annotation_src_pos.npy'), dtype=np.int, mode='r', shape=(self.dstore_size, 1)) # read pos dict self.idx2tag = [] print('Reading POS Vocab...') path_pos_dict = os.path.join(path, 'pos_dict.txt') with open(path_pos_dict) as f: for line in f: print(line.strip()) idx, sym, _ = line.strip().split() self.idx2tag.append(sym) self.tag2idx = {v: k for k, v in enumerate(self.idx2tag)} print('done\n') class EvalUtil: @staticmethod def get_knn_log_prob(tgts, dists, knn_tgts): tgts = torch.from_numpy(tgts).long().view(-1) dists = torch.from_numpy(dists).float().squeeze(-1) #dists = -dists probs = torch.log_softmax(dists, dim=-1) index_mask = torch.eq(torch.from_numpy(knn_tgts).long().squeeze(-1), tgts.unsqueeze(-1)).float() index_mask[index_mask == 0] = -10000 # for stability index_mask[index_mask == 1] = 0 # (T_reducedxB) yhat_knn_prob = torch.logsumexp(probs + index_mask, dim=-1).clone().numpy() # Bx1 return yhat_knn_prob.reshape(-1, 1) @staticmethod def combine_knn_and_vocab_probs(knn_p, vocab_p, coeff): combine_probs = torch.stack([vocab_p, knn_p], dim=0) coeffs = torch.ones_like(combine_probs) coeffs[0] = np.log(1 - coeff) coeffs[1] = np.log(coeff) curr_prob = torch.logsumexp(combine_probs + coeffs, dim=0) return curr_prob @staticmethod def eval_ppl(p): avg_nll = -p.mean() / np.log(2) ppl = 2**avg_nll return ppl if __name__ == '__main__': parser = argparse.ArgumentParser() # dstore parser.add_argument('--dstore', default='from_dstore_valid/va', type=str) parser.add_argument('--dstore-size', default=10000, type=int) parser.add_argument('--vocab', default='data-bin/wikitext-103/dict.txt') # dstore neighbors parser.add_argument('--lookup', default='from_dstore_valid/lookup_va', type=str) parser.add_argument('--lookup-k', default=1024, type=int) # examine parser.add_argument('--k', default=1024, type=int) args = parser.parse_args() print(args) main(args)
the-stack_0_27707
from jingo import register, env import jinja2 from dashboards.personal import personal_dashboards @register.function @jinja2.contextfunction def personal_dashboard_tabs(context, active_tab): """Render the tabs for the user/group dashboard.""" c = {'dashboards': personal_dashboards(context['request']), 'user': context['request'].user, 'active_tab': active_tab, 'request': context['request']} t = env.get_template('dashboards/includes/personal_tabs.html').render(c) return jinja2.Markup(t)
the-stack_0_27709
import os.path import tempfile from dipy.core.gradients import GradientTable import numpy as np class MockDiffusionWeightedImage(): def __init__(self, data=None, gtab=None, mask=None): if data is None: data = np.random.uniform(100, 300, size=(50, 50, 3, 100)) if gtab is None: b0s = 20 * np.ones([20, 1]) b1000s = 1020 * np.ones([80, 1]) bvals = np.append(b0s, b1000s, 0) np.random.shuffle(bvals) phis = np.random.uniform(0, 2 * np.pi, (100, 1)) thetas = np.arccos(np.random.uniform(-1, 1, (100, 1))) x = bvals * np.sin(thetas) * np.cos(phis) y = bvals * np.sin(thetas) * np.cos(phis) z = bvals * np.cos(thetas) gradients = np.append(x, np.append(y, z, 1), 1) gtab = GradientTable(gradients) if mask is None: mask = np.ones([50, 50, 3]) self.data = data self.mask = mask self.gtab = gtab def get_image(self): return self.data def get_flat_data(self): return self.data.flatten() class MockDerivedImage(): def __init__(self, data=None, mask=None): if data is None: data = np.zeros([30, 30, 4]) mask = np.zeros([30, 30, 4]) centroid = np.array([15, 15]) z_slice = 2 for idx, val in np.ndenumerate(data[..., 2]): disp = idx - centroid r = np.linalg.norm(disp) if r <= 10: data[idx[0], idx[1], z_slice] = r mask[idx[0], idx[1], z_slice] = 1 self.data = data self.mask = mask def get_image(self): return self.data def get_flat_data(self): return self.data[mask == 1]
the-stack_0_27710
import sys from datetime import datetime now = datetime.now() def setup_db(module): module.app.config['SQLALCHEMY_DATABASE_URI'] = \ "sqlite:///./pushrodr.db" module.db.drop_all() module.db.create_all() with module.app.test_request_context(): author_one = module.Author() author_one.name = "Author One" author_one.description = "Spam" module.db.session.add(author_one) author_two = module.Author() author_two.name = "Author Two" author_two.description = "Eggs" module.db.session.add(author_two) post_one = module.Post() post_one.id = 1 post_one.timestamp = now post_one.title = "Hello, World!" post_one.content = "This is the first post" post_one.author = author_one module.db.session.add(post_one) post_two = module.Post() post_two.id = 2 post_two.timestamp = now post_two.title = "Another Test!" post_two.content = "This is the second post" post_two.author = author_one module.db.session.add(post_two) post_three = module.Post() post_three.id = 3 post_three.timestamp = now post_three.title = "Goodbye, World!" post_three.content = "This is the third post" post_three.author = author_two module.db.session.add(post_three) post_two_comment_one = module.Comment() post_two_comment_one.post = post_two post_two_comment_one.timestamp = now post_two_comment_one.author = "Anonymous Coward" post_two_comment_one.content = "THIS POST IS TERRIBLE" post_two_comment_two = module.Comment() post_two_comment_two.post = post_two post_two_comment_two.timestamp = now post_two_comment_two.author = "AAA" post_two_comment_two.content = "BBB" post_three_comment_one = module.Comment() post_three_comment_one.post = post_three post_three_comment_one.timestamp = now post_three_comment_one.author = "CCC" post_three_comment_one.content = "ASD" module.db.session.commit() if __name__ == '__main__': # pragma: no cover module = __import__(sys.argv[1]) setup_db(module) module.app.run(debug=True)