filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_27874
from pprint import pprint import itertools as it BIGVALUE = 123 # replace with your input d_rose_func = {"E": lambda x,y: (x + 1, y), "N": lambda x,y: (x, y + 1), "W": lambda x,y: (x - 1, y), "S": lambda x,y: (x, y - 1), } def change_gold(d_coo_values, v_c): score = 0 for i,j in it.product((-1,0,1), repeat = 2): if i == 0 and j == 0: pass try: score += d_coo_values[(v_c[0] + i, v_c[1] + j)] except: pass return score def main(star): d_coo_values = {} value = 1 value_coords = (0,0) times = 1 turn = 0 flag = False d_coo_values[value_coords] = value for rose in it.cycle(d_rose_func): if turn == 2: turn = 0 times += 1 for i in range(times): value_coords = d_rose_func[rose](*value_coords) if star == "silver": value += 1 if star == "gold": value = change_gold(d_coo_values, value_coords) d_coo_values[value_coords] = value if value >= BIGVALUE: flag = True break if flag: break turn += 1 if star == "silver": inverted = {v:k for k,v in d_coo_values.items()} return sum(map(abs, inverted[BIGVALUE])) if star == "gold": return value print("silver", main("silver")) print("gold", main("gold"))
the-stack_0_27877
import os import numpy as np from tqdm import trange import tensorflow as tf from tensorflow.contrib.framework.python.ops import arg_scope from model import Model from buffer import Buffer import data.gaze_data as gaze_data import data.hand_data as hand_data import data.boxes_data as boxes_data from utils import imwrite, imread, img_tile class Trainer(object): def __init__(self, config, rng): self.config = config self.rng = rng self.task = config.task self.model_dir = config.model_dir self.gpu_memory_fraction = config.gpu_memory_fraction self.log_step = config.log_step self.max_step = config.max_step self.K_d = config.K_d self.K_g = config.K_g self.initial_K_d = config.initial_K_d self.initial_K_g = config.initial_K_g self.checkpoint_secs = config.checkpoint_secs DataLoader = { 'gaze': gaze_data.DataLoader, 'hand': hand_data.DataLoader, 'boxes': boxes_data.DataLoader, }[config.data_set] self.data_loader = DataLoader(config, rng=self.rng) self.model = Model(config, self.data_loader) self.history_buffer = Buffer(config, self.rng) self.summary_ops = { 'test_synthetic_images': { 'summary': tf.summary.image("test_synthetic_images", self.model.resized_x, max_outputs=config.max_image_summary), 'output': self.model.resized_x, }, 'test_refined_images': { 'summary': tf.summary.image("test_refined_images", self.model.denormalized_R_x, max_outputs=config.max_image_summary), 'output': self.model.denormalized_R_x, } } self.saver = tf.train.Saver() self.summary_writer = tf.summary.FileWriter(self.model_dir) sv = tf.train.Supervisor(logdir=self.model_dir, is_chief=True, saver=self.saver, summary_op=None, summary_writer=self.summary_writer, save_summaries_secs=300, save_model_secs=self.checkpoint_secs, global_step=self.model.discrim_step) gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=self.gpu_memory_fraction, allow_growth=True) # seems to be not working sess_config = tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options) self.sess = sv.prepare_or_wait_for_session(config=sess_config) def train(self): print("[*] Training starts...") self._summary_writer = None sample_num = reduce(lambda x, y: x * y, self.config.sample_image_grid) idxs = self.rng.choice( len(self.data_loader.synthetic_data_paths), sample_num) test_samples = np.expand_dims(np.stack( [imread(path) for path in self.data_loader.synthetic_data_paths[idxs]] ), -1) def train_refiner(push_buffer=False): feed_dict = { self.model.synthetic_batch_size: self.data_loader.batch_size, } res = self.model.train_refiner( self.sess, feed_dict, self._summary_writer, with_output=True) self._summary_writer = self._get_summary_writer(res) if push_buffer: self.history_buffer.push(res['output']) if res['step'] % self.log_step == 0: feed_dict = { self.model.x: test_samples, } self._inject_summary( 'test_refined_images', feed_dict, res['step']) if res['step'] / float(self.log_step) == 1.: self._inject_summary( 'test_synthetic_images', feed_dict, res['step']) def train_discrim(): feed_dict = { self.model.synthetic_batch_size: self.data_loader.batch_size / 2, self.model.R_x_history: self.history_buffer.sample(), self.model.y: self.data_loader.next(), } res = self.model.train_discrim( self.sess, feed_dict, self._summary_writer, with_history=True, with_output=False) self._summary_writer = self._get_summary_writer(res) for k in trange(self.initial_K_g, desc="Train refiner"): train_refiner(push_buffer=k > self.initial_K_g * 0.9) for k in trange(self.initial_K_d, desc="Train discrim"): train_discrim() for step in trange(self.max_step, desc="Train both"): for k in xrange(self.K_g): train_refiner(push_buffer=True) for k in xrange(self.K_d): train_discrim() def test(self): batch_size = self.data_loader.batch_size num_epoch = len(self.data_loader.synthetic_data_paths) / batch_size for idx in trange(num_epoch, desc="Refine all synthetic images"): feed_dict = { self.model.synthetic_batch_size: batch_size, } res = self.model.test_refiner( self.sess, feed_dict, None, with_output=True) for image, filename in zip(res['output'], res['filename']): basename = os.path.basename( filename).replace("_cropped", "_refined") path = os.path.join(self.config.output_model_dir, basename) imwrite(path, image[:, :, 0]) def _inject_summary(self, tag, feed_dict, step): summaries = self.sess.run(self.summary_ops[tag], feed_dict) self.summary_writer.add_summary(summaries['summary'], step) path = os.path.join( self.config.sample_model_dir, "{}.png".format(step)) imwrite(path, img_tile(summaries['output'], tile_shape=self.config.sample_image_grid)[:, :, 0]) def _get_summary_writer(self, result): if result['step'] % self.log_step == 0: return self.summary_writer else: return None
the-stack_0_27879
import argparse import torch import pandas as pd from fairseq import options, tasks, checkpoint_utils from fairseq.data import encoders from tqdm import tqdm import data def main(script_args, model_args): split = script_args.split predictions = predict(image_id_path=f'{model_args.captions_dir}/{split}-ids.txt', grid_features_path=f'{model_args.features_dir}/{split}-features-grid', obj_features_path=f'{model_args.features_dir}/{split}-features-obj', obj_features_meta_path=f'{model_args.features_dir}/{split}-features-obj/metadata.csv', model_args=model_args) if not script_args.no_console_output: print_predictions(predictions) if script_args.output: store_predictions_as_csv(predictions, script_args.output) def predict(image_id_path: str, grid_features_path: str, obj_features_path: str, obj_features_meta_path: str, model_args) -> pd.DataFrame: print(model_args) use_cuda = torch.cuda.is_available() and not model_args.cpu task = tasks.setup_task(model_args) captions_dict = task.target_dictionary models, _model_args = checkpoint_utils.load_model_ensemble(model_args.path.split(':'), task=task) for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if model_args.no_beamable_mm else model_args.beam, need_attn=model_args.print_alignment, ) if torch.cuda.is_available() and not model_args.cpu: model.cuda() generator = task.build_generator(model_args) tokenizer = encoders.build_tokenizer(model_args) bpe = encoders.build_bpe(model_args) def decode(x): if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x sample_ids = read_sample_ids(model_args.input) image_ids = data.read_image_ids(image_id_path) assert_sample_id_validity(sample_ids, image_ids) if model_args.features == 'grid': image_ds = data.GridFeaturesDataset(grid_features_path, image_ids) elif model_args.features == 'obj': image_md = data.read_image_metadata(obj_features_meta_path) image_ds = data.ObjectFeaturesDataset(obj_features_path, image_ids, image_md) else: raise ValueError(f'Invalid --features option: {model_args.features}') prediction_ids = [] prediction_results = [] for sample_id in tqdm(sample_ids): features, locations = image_ds.read_data(sample_id) length = features.shape[0] if use_cuda: features = features.cuda() locations = locations.cuda() sample = { 'net_input': { 'src_tokens': features.unsqueeze(0), 'src_locations': locations.unsqueeze(0), 'src_lengths': [length] } } translations = task.inference_step(generator, models, sample) prediction = decode(captions_dict.string(translations[0][0]['tokens'])) prediction_ids.append(sample_id) prediction_results.append(prediction) return pd.DataFrame.from_dict(data={ 'image_id': prediction_ids, 'caption': prediction_results }) def read_sample_ids(sample_id_file: str): with open(sample_id_file) as f: sample_ids = set([int(line.rstrip('\n')) for line in f]) return sample_ids def assert_sample_id_validity(sample_ids: iter, image_ids: iter): invalid_ids = [i for i in sample_ids if i not in image_ids] if len(invalid_ids) > 0: raise ValueError('Input sample ids {} are not present in the specified split.'.format(invalid_ids)) def print_predictions(predictions: pd.DataFrame) -> None: print('Predictions:') print('============') for sample_id, pred in predictions.to_numpy(): print('{}: {}'.format(sample_id, pred)) def store_predictions_as_csv(predictions: pd.DataFrame, file_path: str) -> None: print('\nWriting predictions to file "{}".'.format(file_path)) predictions.to_json(file_path, orient='records') def cli_main(): script_parser = get_script_parser() script_args, extra = script_parser.parse_known_args() parser = options.get_generation_parser(interactive=True, default_task='captioning') model_args = options.parse_args_and_arch(parser, input_args=extra) main(script_args, model_args) def get_script_parser(): parser = argparse.ArgumentParser() parser.add_argument('--split', choices=['train', 'valid', 'test'], required=True, help='The dataset split containing the samples provided in the input file (train|valid|test).') parser.add_argument('--output', type=str, help='An optional output file used to store the predictions in json-format.') parser.add_argument('--no-console-output', action='store_true', help='Suppress printing the prediction results to the console.') return parser if __name__ == '__main__': cli_main()
the-stack_0_27880
#!/usr/bin/python # # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example gets a placement by its id. To determine which ad units exist, run get_all_placements.py.""" __author__ = '[email protected] (Jeff Sham)' # Locate the client library. If module was installed via "setup.py" script, then # the following two lines are not needed. import os import sys sys.path.insert(0, os.path.join('..', '..', '..', '..')) # Import appropriate classes from the client library. from adspygoogle import DfpClient # Initialize client object. client = DfpClient(path=os.path.join('..', '..', '..', '..')) # Initialize appropriate service. placement_service = client.GetService('PlacementService', version='v201302') # Set the id of the placement to get. placement_id = 'INSERT_PLACEMENT_ID_HERE' # Get placement. placement = placement_service.GetPlacement(placement_id)[0] # Display results. print ('Placement with id \'%s\', name \'%s\', and status \'%s\' was found.' % (placement['id'], placement['name'], placement['status']))
the-stack_0_27881
""" MAP Client Plugin Step """ from PySide2 import QtGui import json from mapclient.mountpoints.workflowstep import WorkflowStepMountPoint from mapclientplugins.pointwiserigidregistrationstep.configuredialog import ConfigureDialog from gias2.registration import alignment_fitting as AF from gias2.common import transform3D from mapclientplugins.pointwiserigidregistrationstep.mayaviregistrationviewerwidget import \ MayaviRegistrationViewerWidget from gias2.mappluginutils.datatypes import transformations as T import numpy as np regMethods = { 'Correspondent Rigid': AF.fitRigid, 'Correspondent Rigid+Scale': AF.fitRigidScale, 'Correspondent Affine': AF.fitAffine, 'ICP Rigid Source-Target': AF.fitDataRigidEPDP, 'ICP Rigid Target-Source': AF.fitDataRigidDPEP, 'ICP Rigid+Scale Source-Target': AF.fitDataRigidScaleEPDP, 'ICP Rigid+Scale Target-Source': AF.fitDataRigidScaleDPEP, } regMethodTransforms = { 'Correspondent Rigid': T.RigidTransformAboutPoint, 'Correspondent Rigid+Scale': T.RigidScaleTransformAboutPoint, 'Correspondent Affine': T.AffineTransform, 'ICP Rigid Source-Target': T.RigidTransformAboutPoint, 'ICP Rigid Target-Source': T.RigidTransformAboutPoint, 'ICP Rigid+Scale Source-Target': T.RigidScaleTransformAboutPoint, 'ICP Rigid+Scale Target-Source': T.RigidScaleTransformAboutPoint, } class PointWiseRigidRegistrationStep(WorkflowStepMountPoint): """ Step for rigid-body and scaling registration of 2 point clouds. """ def __init__(self, location): super(PointWiseRigidRegistrationStep, self).__init__('Point-wise Rigid Registration', location) self._configured = False # A step cannot be executed until it has been configured. self._category = 'Registration' # Add any other initialisation code here: self._icon = QtGui.QImage(':/pointwiserigidregistrationstep/images/pointwiserigidregicon.png') # Ports: self.addPort(('http://physiomeproject.org/workflow/1.0/rdf-schema#port', 'http://physiomeproject.org/workflow/1.0/rdf-schema#uses', 'http://physiomeproject.org/workflow/1.0/rdf-schema#pointcloud')) # source self.addPort(('http://physiomeproject.org/workflow/1.0/rdf-schema#port', 'http://physiomeproject.org/workflow/1.0/rdf-schema#uses', 'http://physiomeproject.org/workflow/1.0/rdf-schema#pointcloud')) # target self.addPort(('http://physiomeproject.org/workflow/1.0/rdf-schema#port', 'http://physiomeproject.org/workflow/1.0/rdf-schema#provides', 'http://physiomeproject.org/workflow/1.0/rdf-schema#pointcloud')) self.addPort(('http://physiomeproject.org/workflow/1.0/rdf-schema#port', 'http://physiomeproject.org/workflow/1.0/rdf-schema#provides', 'ju#geometrictransform')) self.addPort(('http://physiomeproject.org/workflow/1.0/rdf-schema#port', 'http://physiomeproject.org/workflow/1.0/rdf-schema#provides', 'python#float')) self._config = {} self._config['identifier'] = '' self._config['UI Mode'] = True self._config['Registration Method'] = 'Correspondent Affine' self._config['Min Relative Error'] = '1e-3' self._config['Points to Sample'] = '1000' self._config['Init Trans'] = [0.0, 0.0, 0.0] self._config['Init Rot'] = [0.0, 0.0, 0.0] self._config['Init Scale'] = 1.0 self.sourceData = None self.targetData = None self.sourceDataAligned = None self.transform = None self.RMSE = -1.0 self._widget = None def execute(self): """ Add your code here that will kick off the execution of the step. Make sure you call the _doneExecution() method when finished. This method may be connected up to a button in a widget for example. """ # Put your execute step code here before calling the '_doneExecution' method. if self._config['UI Mode']: self._widget = MayaviRegistrationViewerWidget( self.sourceData, self.targetData, self._config, self._register, sorted(regMethods.keys()), self._manualTransform ) self._widget._ui.acceptButton.clicked.connect(self._doneExecution) self._widget._ui.abortButton.clicked.connect(self._abort) self._widget._ui.resetButton.clicked.connect(self._reset) self._setCurrentWidget(self._widget) else: self._register() self._doneExecution() def _makeX0(self): t0 = self._config['Init Trans'] r0 = [np.deg2rad(x) for x in self._config['Init Rot']] s0 = self._config['Init Scale'] # auto initialise translation if t0 == [0, 0, 0]: t0 = self.targetData.mean(0) - self.sourceData.mean(0) print('t0, r0, s0:', t0, r0, s0) reg = self._config['Registration Method'] if reg == 'Correspondent Affine': return None elif 'Rigid+Scale' in reg: return np.hstack([t0, r0, s0]) elif 'Rigid' in reg: return np.hstack([t0, r0]) else: return None def _manualTransform(self): t0 = self._config['Init Trans'] r0 = [np.deg2rad(x) for x in self._config['Init Rot']] s0 = self._config['Init Scale'] print('t0, r0, s0:', t0, r0, s0) # apply transform to source points T = np.hstack([t0, r0, s0]) self.sourceDataAligned = transform3D.transformRigidScale3DAboutCoM(self.sourceData, T) self.transform = regMethodTransforms[self._config['Registration Method']](T) self.transform.setP(self.sourceData.mean(0)) return self.transform, self.sourceDataAligned def _register(self): reg = regMethods[self._config['Registration Method']] xtol = float(self._config['Min Relative Error']) samples = int(self._config['Points to Sample']) x0 = self._makeX0() print('T0:', x0) if x0 is None: T, self.sourceDataAligned, \ (rmse0, self.RMSE) = reg(self.sourceData, self.targetData, xtol=xtol, sample=samples, outputErrors=True) else: T, self.sourceDataAligned, \ (rmse0, self.RMSE) = reg(self.sourceData, self.targetData, t0=x0, xtol=xtol, sample=samples, outputErrors=True) self.transform = regMethodTransforms[self._config['Registration Method']](T) if self._config['Registration Method'] != 'Correspondent Affine': self.transform.setP(self.sourceData.mean(0)) print('Registered...') print('RMSE:', self.RMSE) print('T:', T) return self.transform, self.sourceDataAligned, self.RMSE def _abort(self): # self._doneExecution() raise RuntimeError('registration aborted') def _reset(self): self.sourceDataAligned = None self.transform = None self.RMSE = None def setPortData(self, index, dataIn): """ Add your code here that will set the appropriate objects for this step. The index is the index of the port in the port list. If there is only one uses port for this step then the index can be ignored. """ if index == 0: self.sourceData = np.array(dataIn, dtype=float) # ju#pointcloud else: self.targetData = np.array(dataIn, dtype=float) # ju#pointcloud def getPortData(self, index): """ Add your code here that will return the appropriate objects for this step. The index is the index of the port in the port list. If there is only one provides port for this step then the index can be ignored. """ if index == 2: portData2 = self.sourceDataAligned # ju#pointcloud return portData2.tolist() elif index == 3: portData3 = self.transform # ju#rigidtransformvector return portData3 else: portData4 = self.RMSE # ju#float return portData4 def configure(self): """ This function will be called when the configure icon on the step is clicked. It is appropriate to display a configuration dialog at this time. If the conditions for the configuration of this step are complete then set: self._configured = True """ dlg = ConfigureDialog(sorted(regMethods.keys()), self._main_window) dlg.identifierOccursCount = self._identifierOccursCount dlg.setConfig(self._config) dlg.validate() dlg.setModal(True) if dlg.exec_(): self._config = dlg.getConfig() self._configured = dlg.validate() self._configuredObserver() def getIdentifier(self): """ The identifier is a string that must be unique within a workflow. """ return self._config['identifier'] def setIdentifier(self, identifier): """ The framework will set the identifier for this step when it is loaded. """ self._config['identifier'] = identifier def serialize(self): """ Add code to serialize this step to disk. Returns a json string for mapclient to serialise. """ return json.dumps(self._config, default=lambda o: o.__dict__, sort_keys=True, indent=4) def deserialize(self, string): """ Add code to deserialize this step from disk. Parses a json string given by mapclient """ self._config.update(json.loads(string)) self._parseLegacyParams() d = ConfigureDialog(sorted(regMethods.keys())) d.identifierOccursCount = self._identifierOccursCount d.setConfig(self._config) self._configured = d.validate() def _parseLegacyParams(self): """ Turn strs of lists into lists in config """ def _parseStrList(s): _s1 = s[1:-1] return [float(x) for x in _s1.split(',')] if isinstance(self._config['Init Trans'], str): self._config['Init Trans'] = _parseStrList(self._config['Init Trans']) if isinstance(self._config['Init Rot'], str): self._config['Init Rot'] = _parseStrList(self._config['Init Rot']) if isinstance(self._config['Init Scale'], str): self._config['Init Scale'] = float(self._config['Init Scale'])
the-stack_0_27882
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor, context from mindspore.ops import operations as P from mindspore.common.api import _cell_graph_executor from mindspore.nn.wrap.cell_wrapper import MicroBatchInterleaved class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2) def construct(self, x, y, b): out = self.matmul1(x, y) out = self.matmul2(out, b) return out class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = P.ReLU() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) def compile_net(net, x, y, b): net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x, y, b) def test_micro_batch_interleaved(): """ Feature: test MicroBatchInterleaved in auto parallel. Description: net with MicroBatchInterleaved in semi auto parallel. Expectation: compile done without error. """ context.set_context(mode=context.GRAPH_MODE) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") context.set_auto_parallel_context(device_num=8, global_rank=0, gradients_mean=True) strategy1 = ((4, 2), (2, 1)) strategy2 = ((2, 4), (4, 1)) micro_batch_interleaved = 2 net = MicroBatchInterleaved(NetWithLoss(Net(strategy1, strategy2)), micro_batch_interleaved) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32 * micro_batch_interleaved, 64]), dtype=ms.float32) b = Tensor(np.ones([64 * micro_batch_interleaved, 64]), dtype=ms.float32) compile_net(net, x, y, b)
the-stack_0_27883
"""Test a ODENet on the MNIST dataset.""" # %% import torch from torch import nn from sacred import Experiment from pytorch_utils.sacred_utils import read_config, get_model_path, import_source from training_functions import validate # %% ex = Experiment('test_mnist') @ex.config def input_config(): """Parameters for sampling using the given model""" run_dir = 'runs/ODEMnistClassification/8' epoch = 'latest' device = 'cpu' min_end_time = 10 max_end_time = 100 tol = 1e-3 @ex.automain def main(run_dir, epoch, device, min_end_time, max_end_time, tol, _log): config = read_config(run_dir) _log.info(f"Read config from {run_dir}") model_ing = import_source(run_dir, "model_ingredient") model = model_ing.make_model(**{**config['model'], 'device':device}, _log=_log) path = get_model_path(run_dir, epoch) if isinstance(model, nn.DataParallel): model.module.load_state_dict(torch.load(path)) else: model.load_state_dict(torch.load(path, map_location=device)) model = model.eval() _log.info(f"Loaded state dict from {path}") if hasattr(model, "odeblock"): _log.info(f"Updated times to {[min_end_time, max_end_time]}") model.odeblock.min_end_time = min_end_time model.odeblock.max_end_time = max_end_time model.odeblock.atol = tol model.odeblock.rtol = tol data_ing = import_source(run_dir, "data_ingredient") dset, tl, vl, test_loader = data_ing.make_dataloaders(**{**config['dataset'], 'device':device}, _log=_log) _log.info("Testing model...") test_loss, test_acc = validate(model, test_loader) _log.info(f"Test loss = {test_loss:.6f}, Test accuracy = {test_acc:.4f}")
the-stack_0_27885
""" # flake8: noqa pythonanywhere Usage: pythonanywhere webapps create <domain_name> <python_version> [--api_key=<api_key>] [--user=<user>] pythonanywhere webapps delete <domain_name> [--api_key=<api_key>] [--user=<user>] pythonanywhere webapps reload <domain_name> [--api_key=<api_key>] [--user=<user>] pythonanywhere webapps update <domain_name> [--python_version=<python_version>] [--virtualenv_path=<virtualenv_path>] [--api_key=<api_key>] [--user=<user>] pythonanywhere static_mapping create <domain_name> <url> <path> [--api_key=<api_key>] [--user=<user>] pythonanywhere static_mapping delete <domain_name> <static_id> [--api_key=<api_key>] [--user=<user>] pythonanywhere static_mapping list <domain_name> [--api_key=<api_key>] [--user=<user>] pythonanywhere static_mapping update <domain_name> <static_id> [--url=<url>] [--path=<path>] [--api_key=<api_key>] [--user=<user>] pythonanywhere -h | --help pythonanywhere --version Options: -h --help Show this screen. --version Show version. Help: For help using this tool, please open an issue on the Github repository: https://github.com/cfc603/pythonanywhere-cli """ from docopt import docopt from . import __version__ as VERSION from .commands import StaticFile, Webapps COMMANDS = { "webapps": "Webapps", "static_mapping": "StaticFile", } def main(): options = docopt(__doc__, version=VERSION) for command, command_class in COMMANDS.items(): if command in options and options[command]: command_instance = globals()[command_class](options) command_instance.run()
the-stack_0_27886
# hg.py - repository classes for mercurial # # Copyright 2005-2007 Matt Mackall <[email protected]> # Copyright 2006 Vadim Gelfer <[email protected]> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import errno import os import shutil import stat from .i18n import _ from .node import ( hex, nullhex, nullid, short, ) from .pycompat import getattr from . import ( bookmarks, bundlerepo, cacheutil, cmdutil, destutil, discovery, error, exchange, extensions, httppeer, localrepo, lock, logcmdutil, logexchange, merge as mergemod, mergestate as mergestatemod, narrowspec, phases, pycompat, requirements, scmutil, sshpeer, statichttprepo, ui as uimod, unionrepo, url, util, verify as verifymod, vfs as vfsmod, ) from .utils import hashutil release = lock.release # shared features sharedbookmarks = b'bookmarks' def _local(path): path = util.expandpath(util.urllocalpath(path)) try: # we use os.stat() directly here instead of os.path.isfile() # because the latter started returning `False` on invalid path # exceptions starting in 3.8 and we care about handling # invalid paths specially here. st = os.stat(path) isfile = stat.S_ISREG(st.st_mode) # Python 2 raises TypeError, Python 3 ValueError. except (TypeError, ValueError) as e: raise error.Abort( _(b'invalid path %s: %s') % (path, pycompat.bytestr(e)) ) except OSError: isfile = False return isfile and bundlerepo or localrepo def addbranchrevs(lrepo, other, branches, revs): peer = other.peer() # a courtesy to callers using a localrepo for other hashbranch, branches = branches if not hashbranch and not branches: x = revs or None if revs: y = revs[0] else: y = None return x, y if revs: revs = list(revs) else: revs = [] if not peer.capable(b'branchmap'): if branches: raise error.Abort(_(b"remote branch lookup not supported")) revs.append(hashbranch) return revs, revs[0] with peer.commandexecutor() as e: branchmap = e.callcommand(b'branchmap', {}).result() def primary(branch): if branch == b'.': if not lrepo: raise error.Abort(_(b"dirstate branch not accessible")) branch = lrepo.dirstate.branch() if branch in branchmap: revs.extend(hex(r) for r in reversed(branchmap[branch])) return True else: return False for branch in branches: if not primary(branch): raise error.RepoLookupError(_(b"unknown branch '%s'") % branch) if hashbranch: if not primary(hashbranch): revs.append(hashbranch) return revs, revs[0] def parseurl(path, branches=None): '''parse url#branch, returning (url, (branch, branches))''' u = util.url(path) branch = None if u.fragment: branch = u.fragment u.fragment = None return bytes(u), (branch, branches or []) schemes = { b'bundle': bundlerepo, b'union': unionrepo, b'file': _local, b'http': httppeer, b'https': httppeer, b'ssh': sshpeer, b'static-http': statichttprepo, } def _peerlookup(path): u = util.url(path) scheme = u.scheme or b'file' thing = schemes.get(scheme) or schemes[b'file'] try: return thing(path) except TypeError: # we can't test callable(thing) because 'thing' can be an unloaded # module that implements __call__ if not util.safehasattr(thing, b'instance'): raise return thing def islocal(repo): '''return true if repo (or path pointing to repo) is local''' if isinstance(repo, bytes): try: return _peerlookup(repo).islocal(repo) except AttributeError: return False return repo.local() def openpath(ui, path, sendaccept=True): '''open path with open if local, url.open if remote''' pathurl = util.url(path, parsequery=False, parsefragment=False) if pathurl.islocal(): return util.posixfile(pathurl.localpath(), b'rb') else: return url.open(ui, path, sendaccept=sendaccept) # a list of (ui, repo) functions called for wire peer initialization wirepeersetupfuncs = [] def _peerorrepo( ui, path, create=False, presetupfuncs=None, intents=None, createopts=None ): """return a repository object for the specified path""" obj = _peerlookup(path).instance( ui, path, create, intents=intents, createopts=createopts ) ui = getattr(obj, "ui", ui) for f in presetupfuncs or []: f(ui, obj) ui.log(b'extension', b'- executing reposetup hooks\n') with util.timedcm('all reposetup') as allreposetupstats: for name, module in extensions.extensions(ui): ui.log(b'extension', b' - running reposetup for %s\n', name) hook = getattr(module, 'reposetup', None) if hook: with util.timedcm('reposetup %r', name) as stats: hook(ui, obj) ui.log( b'extension', b' > reposetup for %s took %s\n', name, stats ) ui.log(b'extension', b'> all reposetup took %s\n', allreposetupstats) if not obj.local(): for f in wirepeersetupfuncs: f(ui, obj) return obj def repository( ui, path=b'', create=False, presetupfuncs=None, intents=None, createopts=None, ): """return a repository object for the specified path""" peer = _peerorrepo( ui, path, create, presetupfuncs=presetupfuncs, intents=intents, createopts=createopts, ) repo = peer.local() if not repo: raise error.Abort( _(b"repository '%s' is not local") % (path or peer.url()) ) return repo.filtered(b'visible') def peer(uiorrepo, opts, path, create=False, intents=None, createopts=None): '''return a repository peer for the specified path''' rui = remoteui(uiorrepo, opts) return _peerorrepo( rui, path, create, intents=intents, createopts=createopts ).peer() def defaultdest(source): """return default destination of clone if none is given >>> defaultdest(b'foo') 'foo' >>> defaultdest(b'/foo/bar') 'bar' >>> defaultdest(b'/') '' >>> defaultdest(b'') '' >>> defaultdest(b'http://example.org/') '' >>> defaultdest(b'http://example.org/foo/') 'foo' """ path = util.url(source).path if not path: return b'' return os.path.basename(os.path.normpath(path)) def sharedreposource(repo): """Returns repository object for source repository of a shared repo. If repo is not a shared repository, returns None. """ if repo.sharedpath == repo.path: return None if util.safehasattr(repo, b'srcrepo') and repo.srcrepo: return repo.srcrepo # the sharedpath always ends in the .hg; we want the path to the repo source = repo.vfs.split(repo.sharedpath)[0] srcurl, branches = parseurl(source) srcrepo = repository(repo.ui, srcurl) repo.srcrepo = srcrepo return srcrepo def share( ui, source, dest=None, update=True, bookmarks=True, defaultpath=None, relative=False, ): '''create a shared repository''' if not islocal(source): raise error.Abort(_(b'can only share local repositories')) if not dest: dest = defaultdest(source) else: dest = ui.expandpath(dest) if isinstance(source, bytes): origsource = ui.expandpath(source) source, branches = parseurl(origsource) srcrepo = repository(ui, source) rev, checkout = addbranchrevs(srcrepo, srcrepo, branches, None) else: srcrepo = source.local() checkout = None shareditems = set() if bookmarks: shareditems.add(sharedbookmarks) r = repository( ui, dest, create=True, createopts={ b'sharedrepo': srcrepo, b'sharedrelative': relative, b'shareditems': shareditems, }, ) postshare(srcrepo, r, defaultpath=defaultpath) r = repository(ui, dest) _postshareupdate(r, update, checkout=checkout) return r def _prependsourcehgrc(repo): """copies the source repo config and prepend it in current repo .hg/hgrc on unshare. This is only done if the share was perfomed using share safe method where we share config of source in shares""" srcvfs = vfsmod.vfs(repo.sharedpath) dstvfs = vfsmod.vfs(repo.path) if not srcvfs.exists(b'hgrc'): return currentconfig = b'' if dstvfs.exists(b'hgrc'): currentconfig = dstvfs.read(b'hgrc') with dstvfs(b'hgrc', b'wb') as fp: sourceconfig = srcvfs.read(b'hgrc') fp.write(b"# Config copied from shared source\n") fp.write(sourceconfig) fp.write(b'\n') fp.write(currentconfig) def unshare(ui, repo): """convert a shared repository to a normal one Copy the store data to the repo and remove the sharedpath data. Returns a new repository object representing the unshared repository. The passed repository object is not usable after this function is called. """ with repo.lock(): # we use locks here because if we race with commit, we # can end up with extra data in the cloned revlogs that's # not pointed to by changesets, thus causing verify to # fail destlock = copystore(ui, repo, repo.path) with destlock or util.nullcontextmanager(): if requirements.SHARESAFE_REQUIREMENT in repo.requirements: # we were sharing .hg/hgrc of the share source with the current # repo. We need to copy that while unsharing otherwise it can # disable hooks and other checks _prependsourcehgrc(repo) sharefile = repo.vfs.join(b'sharedpath') util.rename(sharefile, sharefile + b'.old') repo.requirements.discard(requirements.SHARED_REQUIREMENT) repo.requirements.discard(requirements.RELATIVE_SHARED_REQUIREMENT) scmutil.writereporequirements(repo) # Removing share changes some fundamental properties of the repo instance. # So we instantiate a new repo object and operate on it rather than # try to keep the existing repo usable. newrepo = repository(repo.baseui, repo.root, create=False) # TODO: figure out how to access subrepos that exist, but were previously # removed from .hgsub c = newrepo[b'.'] subs = c.substate for s in sorted(subs): c.sub(s).unshare() localrepo.poisonrepository(repo) return newrepo def postshare(sourcerepo, destrepo, defaultpath=None): """Called after a new shared repo is created. The new repo only has a requirements file and pointer to the source. This function configures additional shared data. Extensions can wrap this function and write additional entries to destrepo/.hg/shared to indicate additional pieces of data to be shared. """ default = defaultpath or sourcerepo.ui.config(b'paths', b'default') if default: template = b'[paths]\ndefault = %s\n' destrepo.vfs.write(b'hgrc', util.tonativeeol(template % default)) if requirements.NARROW_REQUIREMENT in sourcerepo.requirements: with destrepo.wlock(): narrowspec.copytoworkingcopy(destrepo) def _postshareupdate(repo, update, checkout=None): """Maybe perform a working directory update after a shared repo is created. ``update`` can be a boolean or a revision to update to. """ if not update: return repo.ui.status(_(b"updating working directory\n")) if update is not True: checkout = update for test in (checkout, b'default', b'tip'): if test is None: continue try: uprev = repo.lookup(test) break except error.RepoLookupError: continue _update(repo, uprev) def copystore(ui, srcrepo, destpath): """copy files from store of srcrepo in destpath returns destlock """ destlock = None try: hardlink = None topic = _(b'linking') if hardlink else _(b'copying') with ui.makeprogress(topic, unit=_(b'files')) as progress: num = 0 srcpublishing = srcrepo.publishing() srcvfs = vfsmod.vfs(srcrepo.sharedpath) dstvfs = vfsmod.vfs(destpath) for f in srcrepo.store.copylist(): if srcpublishing and f.endswith(b'phaseroots'): continue dstbase = os.path.dirname(f) if dstbase and not dstvfs.exists(dstbase): dstvfs.mkdir(dstbase) if srcvfs.exists(f): if f.endswith(b'data'): # 'dstbase' may be empty (e.g. revlog format 0) lockfile = os.path.join(dstbase, b"lock") # lock to avoid premature writing to the target destlock = lock.lock(dstvfs, lockfile) hardlink, n = util.copyfiles( srcvfs.join(f), dstvfs.join(f), hardlink, progress ) num += n if hardlink: ui.debug(b"linked %d files\n" % num) else: ui.debug(b"copied %d files\n" % num) return destlock except: # re-raises release(destlock) raise def clonewithshare( ui, peeropts, sharepath, source, srcpeer, dest, pull=False, rev=None, update=True, stream=False, ): """Perform a clone using a shared repo. The store for the repository will be located at <sharepath>/.hg. The specified revisions will be cloned or pulled from "source". A shared repo will be created at "dest" and a working copy will be created if "update" is True. """ revs = None if rev: if not srcpeer.capable(b'lookup'): raise error.Abort( _( b"src repository does not support " b"revision lookup and so doesn't " b"support clone by revision" ) ) # TODO this is batchable. remoterevs = [] for r in rev: with srcpeer.commandexecutor() as e: remoterevs.append( e.callcommand( b'lookup', { b'key': r, }, ).result() ) revs = remoterevs # Obtain a lock before checking for or cloning the pooled repo otherwise # 2 clients may race creating or populating it. pooldir = os.path.dirname(sharepath) # lock class requires the directory to exist. try: util.makedir(pooldir, False) except OSError as e: if e.errno != errno.EEXIST: raise poolvfs = vfsmod.vfs(pooldir) basename = os.path.basename(sharepath) with lock.lock(poolvfs, b'%s.lock' % basename): if os.path.exists(sharepath): ui.status( _(b'(sharing from existing pooled repository %s)\n') % basename ) else: ui.status( _(b'(sharing from new pooled repository %s)\n') % basename ) # Always use pull mode because hardlinks in share mode don't work # well. Never update because working copies aren't necessary in # share mode. clone( ui, peeropts, source, dest=sharepath, pull=True, revs=rev, update=False, stream=stream, ) # Resolve the value to put in [paths] section for the source. if islocal(source): defaultpath = os.path.abspath(util.urllocalpath(source)) else: defaultpath = source sharerepo = repository(ui, path=sharepath) destrepo = share( ui, sharerepo, dest=dest, update=False, bookmarks=False, defaultpath=defaultpath, ) # We need to perform a pull against the dest repo to fetch bookmarks # and other non-store data that isn't shared by default. In the case of # non-existing shared repo, this means we pull from the remote twice. This # is a bit weird. But at the time it was implemented, there wasn't an easy # way to pull just non-changegroup data. exchange.pull(destrepo, srcpeer, heads=revs) _postshareupdate(destrepo, update) return srcpeer, peer(ui, peeropts, dest) # Recomputing caches is often slow on big repos, so copy them. def _copycache(srcrepo, dstcachedir, fname): """copy a cache from srcrepo to destcachedir (if it exists)""" srcfname = srcrepo.cachevfs.join(fname) dstfname = os.path.join(dstcachedir, fname) if os.path.exists(srcfname): if not os.path.exists(dstcachedir): os.mkdir(dstcachedir) util.copyfile(srcfname, dstfname) def clone( ui, peeropts, source, dest=None, pull=False, revs=None, update=True, stream=False, branch=None, shareopts=None, storeincludepats=None, storeexcludepats=None, depth=None, ): """Make a copy of an existing repository. Create a copy of an existing repository in a new directory. The source and destination are URLs, as passed to the repository function. Returns a pair of repository peers, the source and newly created destination. The location of the source is added to the new repository's .hg/hgrc file, as the default to be used for future pulls and pushes. If an exception is raised, the partly cloned/updated destination repository will be deleted. Arguments: source: repository object or URL dest: URL of destination repository to create (defaults to base name of source repository) pull: always pull from source repository, even in local case or if the server prefers streaming stream: stream raw data uncompressed from repository (fast over LAN, slow over WAN) revs: revision to clone up to (implies pull=True) update: update working directory after clone completes, if destination is local repository (True means update to default rev, anything else is treated as a revision) branch: branches to clone shareopts: dict of options to control auto sharing behavior. The "pool" key activates auto sharing mode and defines the directory for stores. The "mode" key determines how to construct the directory name of the shared repository. "identity" means the name is derived from the node of the first changeset in the repository. "remote" means the name is derived from the remote's path/URL. Defaults to "identity." storeincludepats and storeexcludepats: sets of file patterns to include and exclude in the repository copy, respectively. If not defined, all files will be included (a "full" clone). Otherwise a "narrow" clone containing only the requested files will be performed. If ``storeincludepats`` is not defined but ``storeexcludepats`` is, ``storeincludepats`` is assumed to be ``path:.``. If both are empty sets, no files will be cloned. """ if isinstance(source, bytes): origsource = ui.expandpath(source) source, branches = parseurl(origsource, branch) srcpeer = peer(ui, peeropts, source) else: srcpeer = source.peer() # in case we were called with a localrepo branches = (None, branch or []) origsource = source = srcpeer.url() revs, checkout = addbranchrevs(srcpeer, srcpeer, branches, revs) if dest is None: dest = defaultdest(source) if dest: ui.status(_(b"destination directory: %s\n") % dest) else: dest = ui.expandpath(dest) dest = util.urllocalpath(dest) source = util.urllocalpath(source) if not dest: raise error.InputError(_(b"empty destination path is not valid")) destvfs = vfsmod.vfs(dest, expandpath=True) if destvfs.lexists(): if not destvfs.isdir(): raise error.InputError(_(b"destination '%s' already exists") % dest) elif destvfs.listdir(): raise error.InputError(_(b"destination '%s' is not empty") % dest) createopts = {} narrow = False if storeincludepats is not None: narrowspec.validatepatterns(storeincludepats) narrow = True if storeexcludepats is not None: narrowspec.validatepatterns(storeexcludepats) narrow = True if narrow: # Include everything by default if only exclusion patterns defined. if storeexcludepats and not storeincludepats: storeincludepats = {b'path:.'} createopts[b'narrowfiles'] = True if depth: createopts[b'shallowfilestore'] = True if srcpeer.capable(b'lfs-serve'): # Repository creation honors the config if it disabled the extension, so # we can't just announce that lfs will be enabled. This check avoids # saying that lfs will be enabled, and then saying it's an unknown # feature. The lfs creation option is set in either case so that a # requirement is added. If the extension is explicitly disabled but the # requirement is set, the clone aborts early, before transferring any # data. createopts[b'lfs'] = True if extensions.disabled_help(b'lfs'): ui.status( _( b'(remote is using large file support (lfs), but it is ' b'explicitly disabled in the local configuration)\n' ) ) else: ui.status( _( b'(remote is using large file support (lfs); lfs will ' b'be enabled for this repository)\n' ) ) shareopts = shareopts or {} sharepool = shareopts.get(b'pool') sharenamemode = shareopts.get(b'mode') if sharepool and islocal(dest): sharepath = None if sharenamemode == b'identity': # Resolve the name from the initial changeset in the remote # repository. This returns nullid when the remote is empty. It # raises RepoLookupError if revision 0 is filtered or otherwise # not available. If we fail to resolve, sharing is not enabled. try: with srcpeer.commandexecutor() as e: rootnode = e.callcommand( b'lookup', { b'key': b'0', }, ).result() if rootnode != nullid: sharepath = os.path.join(sharepool, hex(rootnode)) else: ui.status( _( b'(not using pooled storage: ' b'remote appears to be empty)\n' ) ) except error.RepoLookupError: ui.status( _( b'(not using pooled storage: ' b'unable to resolve identity of remote)\n' ) ) elif sharenamemode == b'remote': sharepath = os.path.join( sharepool, hex(hashutil.sha1(source).digest()) ) else: raise error.Abort( _(b'unknown share naming mode: %s') % sharenamemode ) # TODO this is a somewhat arbitrary restriction. if narrow: ui.status(_(b'(pooled storage not supported for narrow clones)\n')) sharepath = None if sharepath: return clonewithshare( ui, peeropts, sharepath, source, srcpeer, dest, pull=pull, rev=revs, update=update, stream=stream, ) srclock = destlock = cleandir = None srcrepo = srcpeer.local() try: abspath = origsource if islocal(origsource): abspath = os.path.abspath(util.urllocalpath(origsource)) if islocal(dest): cleandir = dest copy = False if ( srcrepo and srcrepo.cancopy() and islocal(dest) and not phases.hassecret(srcrepo) ): copy = not pull and not revs # TODO this is a somewhat arbitrary restriction. if narrow: copy = False if copy: try: # we use a lock here because if we race with commit, we # can end up with extra data in the cloned revlogs that's # not pointed to by changesets, thus causing verify to # fail srclock = srcrepo.lock(wait=False) except error.LockError: copy = False if copy: srcrepo.hook(b'preoutgoing', throw=True, source=b'clone') hgdir = os.path.realpath(os.path.join(dest, b".hg")) if not os.path.exists(dest): util.makedirs(dest) else: # only clean up directories we create ourselves cleandir = hgdir try: destpath = hgdir util.makedir(destpath, notindexed=True) except OSError as inst: if inst.errno == errno.EEXIST: cleandir = None raise error.Abort( _(b"destination '%s' already exists") % dest ) raise destlock = copystore(ui, srcrepo, destpath) # copy bookmarks over srcbookmarks = srcrepo.vfs.join(b'bookmarks') dstbookmarks = os.path.join(destpath, b'bookmarks') if os.path.exists(srcbookmarks): util.copyfile(srcbookmarks, dstbookmarks) dstcachedir = os.path.join(destpath, b'cache') for cache in cacheutil.cachetocopy(srcrepo): _copycache(srcrepo, dstcachedir, cache) # we need to re-init the repo after manually copying the data # into it destpeer = peer(srcrepo, peeropts, dest) srcrepo.hook(b'outgoing', source=b'clone', node=nullhex) else: try: # only pass ui when no srcrepo destpeer = peer( srcrepo or ui, peeropts, dest, create=True, createopts=createopts, ) except OSError as inst: if inst.errno == errno.EEXIST: cleandir = None raise error.Abort( _(b"destination '%s' already exists") % dest ) raise if revs: if not srcpeer.capable(b'lookup'): raise error.Abort( _( b"src repository does not support " b"revision lookup and so doesn't " b"support clone by revision" ) ) # TODO this is batchable. remoterevs = [] for rev in revs: with srcpeer.commandexecutor() as e: remoterevs.append( e.callcommand( b'lookup', { b'key': rev, }, ).result() ) revs = remoterevs checkout = revs[0] else: revs = None local = destpeer.local() if local: if narrow: with local.wlock(), local.lock(): local.setnarrowpats(storeincludepats, storeexcludepats) narrowspec.copytoworkingcopy(local) u = util.url(abspath) defaulturl = bytes(u) local.ui.setconfig(b'paths', b'default', defaulturl, b'clone') if not stream: if pull: stream = False else: stream = None # internal config: ui.quietbookmarkmove overrides = {(b'ui', b'quietbookmarkmove'): True} with local.ui.configoverride(overrides, b'clone'): exchange.pull( local, srcpeer, revs, streamclonerequested=stream, includepats=storeincludepats, excludepats=storeexcludepats, depth=depth, ) elif srcrepo: # TODO lift restriction once exchange.push() accepts narrow # push. if narrow: raise error.Abort( _( b'narrow clone not available for ' b'remote destinations' ) ) exchange.push( srcrepo, destpeer, revs=revs, bookmarks=srcrepo._bookmarks.keys(), ) else: raise error.Abort( _(b"clone from remote to remote not supported") ) cleandir = None destrepo = destpeer.local() if destrepo: template = uimod.samplehgrcs[b'cloned'] u = util.url(abspath) u.passwd = None defaulturl = bytes(u) destrepo.vfs.write(b'hgrc', util.tonativeeol(template % defaulturl)) destrepo.ui.setconfig(b'paths', b'default', defaulturl, b'clone') if ui.configbool(b'experimental', b'remotenames'): logexchange.pullremotenames(destrepo, srcpeer) if update: if update is not True: with srcpeer.commandexecutor() as e: checkout = e.callcommand( b'lookup', { b'key': update, }, ).result() uprev = None status = None if checkout is not None: # Some extensions (at least hg-git and hg-subversion) have # a peer.lookup() implementation that returns a name instead # of a nodeid. We work around it here until we've figured # out a better solution. if len(checkout) == 20 and checkout in destrepo: uprev = checkout elif scmutil.isrevsymbol(destrepo, checkout): uprev = scmutil.revsymbol(destrepo, checkout).node() else: if update is not True: try: uprev = destrepo.lookup(update) except error.RepoLookupError: pass if uprev is None: try: if destrepo._activebookmark: uprev = destrepo.lookup(destrepo._activebookmark) update = destrepo._activebookmark else: uprev = destrepo._bookmarks[b'@'] update = b'@' bn = destrepo[uprev].branch() if bn == b'default': status = _(b"updating to bookmark %s\n" % update) else: status = ( _(b"updating to bookmark %s on branch %s\n") ) % (update, bn) except KeyError: try: uprev = destrepo.branchtip(b'default') except error.RepoLookupError: uprev = destrepo.lookup(b'tip') if not status: bn = destrepo[uprev].branch() status = _(b"updating to branch %s\n") % bn destrepo.ui.status(status) _update(destrepo, uprev) if update in destrepo._bookmarks: bookmarks.activate(destrepo, update) if destlock is not None: release(destlock) # here is a tiny windows were someone could end up writing the # repository before the cache are sure to be warm. This is "fine" # as the only "bad" outcome would be some slowness. That potential # slowness already affect reader. with destrepo.lock(): destrepo.updatecaches(full=True) finally: release(srclock, destlock) if cleandir is not None: shutil.rmtree(cleandir, True) if srcpeer is not None: srcpeer.close() return srcpeer, destpeer def _showstats(repo, stats, quietempty=False): if quietempty and stats.isempty(): return repo.ui.status( _( b"%d files updated, %d files merged, " b"%d files removed, %d files unresolved\n" ) % ( stats.updatedcount, stats.mergedcount, stats.removedcount, stats.unresolvedcount, ) ) def updaterepo(repo, node, overwrite, updatecheck=None): """Update the working directory to node. When overwrite is set, changes are clobbered, merged else returns stats (see pydoc mercurial.merge.applyupdates)""" repo.ui.deprecwarn( b'prefer merge.update() or merge.clean_update() over hg.updaterepo()', b'5.7', ) return mergemod._update( repo, node, branchmerge=False, force=overwrite, labels=[b'working copy', b'destination'], updatecheck=updatecheck, ) def update(repo, node, quietempty=False, updatecheck=None): """update the working directory to node""" stats = mergemod.update(repo[node], updatecheck=updatecheck) _showstats(repo, stats, quietempty) if stats.unresolvedcount: repo.ui.status(_(b"use 'hg resolve' to retry unresolved file merges\n")) return stats.unresolvedcount > 0 # naming conflict in clone() _update = update def clean(repo, node, show_stats=True, quietempty=False): """forcibly switch the working directory to node, clobbering changes""" stats = mergemod.clean_update(repo[node]) assert stats.unresolvedcount == 0 if show_stats: _showstats(repo, stats, quietempty) # naming conflict in updatetotally() _clean = clean _VALID_UPDATECHECKS = { mergemod.UPDATECHECK_ABORT, mergemod.UPDATECHECK_NONE, mergemod.UPDATECHECK_LINEAR, mergemod.UPDATECHECK_NO_CONFLICT, } def updatetotally(ui, repo, checkout, brev, clean=False, updatecheck=None): """Update the working directory with extra care for non-file components This takes care of non-file components below: :bookmark: might be advanced or (in)activated This takes arguments below: :checkout: to which revision the working directory is updated :brev: a name, which might be a bookmark to be activated after updating :clean: whether changes in the working directory can be discarded :updatecheck: how to deal with a dirty working directory Valid values for updatecheck are the UPDATECHECK_* constants defined in the merge module. Passing `None` will result in using the configured default. * ABORT: abort if the working directory is dirty * NONE: don't check (merge working directory changes into destination) * LINEAR: check that update is linear before merging working directory changes into destination * NO_CONFLICT: check that the update does not result in file merges This returns whether conflict is detected at updating or not. """ if updatecheck is None: updatecheck = ui.config(b'commands', b'update.check') if updatecheck not in _VALID_UPDATECHECKS: # If not configured, or invalid value configured updatecheck = mergemod.UPDATECHECK_LINEAR if updatecheck not in _VALID_UPDATECHECKS: raise ValueError( r'Invalid updatecheck value %r (can accept %r)' % (updatecheck, _VALID_UPDATECHECKS) ) with repo.wlock(): movemarkfrom = None warndest = False if checkout is None: updata = destutil.destupdate(repo, clean=clean) checkout, movemarkfrom, brev = updata warndest = True if clean: ret = _clean(repo, checkout) else: if updatecheck == mergemod.UPDATECHECK_ABORT: cmdutil.bailifchanged(repo, merge=False) updatecheck = mergemod.UPDATECHECK_NONE ret = _update(repo, checkout, updatecheck=updatecheck) if not ret and movemarkfrom: if movemarkfrom == repo[b'.'].node(): pass # no-op update elif bookmarks.update(repo, [movemarkfrom], repo[b'.'].node()): b = ui.label(repo._activebookmark, b'bookmarks.active') ui.status(_(b"updating bookmark %s\n") % b) else: # this can happen with a non-linear update b = ui.label(repo._activebookmark, b'bookmarks') ui.status(_(b"(leaving bookmark %s)\n") % b) bookmarks.deactivate(repo) elif brev in repo._bookmarks: if brev != repo._activebookmark: b = ui.label(brev, b'bookmarks.active') ui.status(_(b"(activating bookmark %s)\n") % b) bookmarks.activate(repo, brev) elif brev: if repo._activebookmark: b = ui.label(repo._activebookmark, b'bookmarks') ui.status(_(b"(leaving bookmark %s)\n") % b) bookmarks.deactivate(repo) if warndest: destutil.statusotherdests(ui, repo) return ret def merge( ctx, force=False, remind=True, labels=None, ): """Branch merge with node, resolving changes. Return true if any unresolved conflicts.""" repo = ctx.repo() stats = mergemod.merge(ctx, force=force, labels=labels) _showstats(repo, stats) if stats.unresolvedcount: repo.ui.status( _( b"use 'hg resolve' to retry unresolved file merges " b"or 'hg merge --abort' to abandon\n" ) ) elif remind: repo.ui.status(_(b"(branch merge, don't forget to commit)\n")) return stats.unresolvedcount > 0 def abortmerge(ui, repo): ms = mergestatemod.mergestate.read(repo) if ms.active(): # there were conflicts node = ms.localctx.hex() else: # there were no conficts, mergestate was not stored node = repo[b'.'].hex() repo.ui.status(_(b"aborting the merge, updating back to %s\n") % node[:12]) stats = mergemod.clean_update(repo[node]) assert stats.unresolvedcount == 0 _showstats(repo, stats) def _incoming( displaychlist, subreporecurse, ui, repo, source, opts, buffered=False ): """ Helper for incoming / gincoming. displaychlist gets called with (remoterepo, incomingchangesetlist, displayer) parameters, and is supposed to contain only code that can't be unified. """ source, branches = parseurl(ui.expandpath(source), opts.get(b'branch')) other = peer(repo, opts, source) ui.status(_(b'comparing with %s\n') % util.hidepassword(source)) revs, checkout = addbranchrevs(repo, other, branches, opts.get(b'rev')) if revs: revs = [other.lookup(rev) for rev in revs] other, chlist, cleanupfn = bundlerepo.getremotechanges( ui, repo, other, revs, opts[b"bundle"], opts[b"force"] ) try: if not chlist: ui.status(_(b"no changes found\n")) return subreporecurse() ui.pager(b'incoming') displayer = logcmdutil.changesetdisplayer( ui, other, opts, buffered=buffered ) displaychlist(other, chlist, displayer) displayer.close() finally: cleanupfn() subreporecurse() return 0 # exit code is zero since we found incoming changes def incoming(ui, repo, source, opts): def subreporecurse(): ret = 1 if opts.get(b'subrepos'): ctx = repo[None] for subpath in sorted(ctx.substate): sub = ctx.sub(subpath) ret = min(ret, sub.incoming(ui, source, opts)) return ret def display(other, chlist, displayer): limit = logcmdutil.getlimit(opts) if opts.get(b'newest_first'): chlist.reverse() count = 0 for n in chlist: if limit is not None and count >= limit: break parents = [p for p in other.changelog.parents(n) if p != nullid] if opts.get(b'no_merges') and len(parents) == 2: continue count += 1 displayer.show(other[n]) return _incoming(display, subreporecurse, ui, repo, source, opts) def _outgoing(ui, repo, dest, opts): path = ui.paths.getpath(dest, default=(b'default-push', b'default')) if not path: raise error.Abort( _(b'default repository not configured!'), hint=_(b"see 'hg help config.paths'"), ) dest = path.pushloc or path.loc branches = path.branch, opts.get(b'branch') or [] ui.status(_(b'comparing with %s\n') % util.hidepassword(dest)) revs, checkout = addbranchrevs(repo, repo, branches, opts.get(b'rev')) if revs: revs = [repo[rev].node() for rev in scmutil.revrange(repo, revs)] other = peer(repo, opts, dest) outgoing = discovery.findcommonoutgoing( repo, other, revs, force=opts.get(b'force') ) o = outgoing.missing if not o: scmutil.nochangesfound(repo.ui, repo, outgoing.excluded) return o, other def outgoing(ui, repo, dest, opts): def recurse(): ret = 1 if opts.get(b'subrepos'): ctx = repo[None] for subpath in sorted(ctx.substate): sub = ctx.sub(subpath) ret = min(ret, sub.outgoing(ui, dest, opts)) return ret limit = logcmdutil.getlimit(opts) o, other = _outgoing(ui, repo, dest, opts) if not o: cmdutil.outgoinghooks(ui, repo, other, opts, o) return recurse() if opts.get(b'newest_first'): o.reverse() ui.pager(b'outgoing') displayer = logcmdutil.changesetdisplayer(ui, repo, opts) count = 0 for n in o: if limit is not None and count >= limit: break parents = [p for p in repo.changelog.parents(n) if p != nullid] if opts.get(b'no_merges') and len(parents) == 2: continue count += 1 displayer.show(repo[n]) displayer.close() cmdutil.outgoinghooks(ui, repo, other, opts, o) recurse() return 0 # exit code is zero since we found outgoing changes def verify(repo, level=None): """verify the consistency of a repository""" ret = verifymod.verify(repo, level=level) # Broken subrepo references in hidden csets don't seem worth worrying about, # since they can't be pushed/pulled, and --hidden can be used if they are a # concern. # pathto() is needed for -R case revs = repo.revs( b"filelog(%s)", util.pathto(repo.root, repo.getcwd(), b'.hgsubstate') ) if revs: repo.ui.status(_(b'checking subrepo links\n')) for rev in revs: ctx = repo[rev] try: for subpath in ctx.substate: try: ret = ( ctx.sub(subpath, allowcreate=False).verify() or ret ) except error.RepoError as e: repo.ui.warn(b'%d: %s\n' % (rev, e)) except Exception: repo.ui.warn( _(b'.hgsubstate is corrupt in revision %s\n') % short(ctx.node()) ) return ret def remoteui(src, opts): """build a remote ui from ui or repo and opts""" if util.safehasattr(src, b'baseui'): # looks like a repository dst = src.baseui.copy() # drop repo-specific config src = src.ui # copy target options from repo else: # assume it's a global ui object dst = src.copy() # keep all global options # copy ssh-specific options for o in b'ssh', b'remotecmd': v = opts.get(o) or src.config(b'ui', o) if v: dst.setconfig(b"ui", o, v, b'copied') # copy bundle-specific options r = src.config(b'bundle', b'mainreporoot') if r: dst.setconfig(b'bundle', b'mainreporoot', r, b'copied') # copy selected local settings to the remote ui for sect in (b'auth', b'hostfingerprints', b'hostsecurity', b'http_proxy'): for key, val in src.configitems(sect): dst.setconfig(sect, key, val, b'copied') v = src.config(b'web', b'cacerts') if v: dst.setconfig(b'web', b'cacerts', util.expandpath(v), b'copied') return dst # Files of interest # Used to check if the repository has changed looking at mtime and size of # these files. foi = [ (b'spath', b'00changelog.i'), (b'spath', b'phaseroots'), # ! phase can change content at the same size (b'spath', b'obsstore'), (b'path', b'bookmarks'), # ! bookmark can change content at the same size ] class cachedlocalrepo(object): """Holds a localrepository that can be cached and reused.""" def __init__(self, repo): """Create a new cached repo from an existing repo. We assume the passed in repo was recently created. If the repo has changed between when it was created and when it was turned into a cache, it may not refresh properly. """ assert isinstance(repo, localrepo.localrepository) self._repo = repo self._state, self.mtime = self._repostate() self._filtername = repo.filtername def fetch(self): """Refresh (if necessary) and return a repository. If the cached instance is out of date, it will be recreated automatically and returned. Returns a tuple of the repo and a boolean indicating whether a new repo instance was created. """ # We compare the mtimes and sizes of some well-known files to # determine if the repo changed. This is not precise, as mtimes # are susceptible to clock skew and imprecise filesystems and # file content can change while maintaining the same size. state, mtime = self._repostate() if state == self._state: return self._repo, False repo = repository(self._repo.baseui, self._repo.url()) if self._filtername: self._repo = repo.filtered(self._filtername) else: self._repo = repo.unfiltered() self._state = state self.mtime = mtime return self._repo, True def _repostate(self): state = [] maxmtime = -1 for attr, fname in foi: prefix = getattr(self._repo, attr) p = os.path.join(prefix, fname) try: st = os.stat(p) except OSError: st = os.stat(prefix) state.append((st[stat.ST_MTIME], st.st_size)) maxmtime = max(maxmtime, st[stat.ST_MTIME]) return tuple(state), maxmtime def copy(self): """Obtain a copy of this class instance. A new localrepository instance is obtained. The new instance should be completely independent of the original. """ repo = repository(self._repo.baseui, self._repo.origroot) if self._filtername: repo = repo.filtered(self._filtername) else: repo = repo.unfiltered() c = cachedlocalrepo(repo) c._state = self._state c.mtime = self.mtime return c
the-stack_0_27888
import json from typing import List, Optional from eth_typing.evm import HexAddress from eth_utils import to_checksum_address from web3 import Web3 from web3.contract import Contract from raiden_contracts.constants import ( CONTRACT_MONITORING_SERVICE, CONTRACT_ONE_TO_N, CONTRACT_SECRET_REGISTRY, CONTRACT_SERVICE_REGISTRY, CONTRACT_TOKEN_NETWORK_REGISTRY, CONTRACT_USER_DEPOSIT, DeploymentModule, ) from raiden_contracts.contract_manager import ( ContractManager, DeployedContracts, contracts_deployed_path, contracts_precompiled_path, get_contracts_deployment_info, ) from raiden_contracts.utils.type_aliases import ChainID class ContractVerifier: def __init__(self, web3: Web3, contracts_version: Optional[str] = None): self.web3 = web3 self.contracts_version = contracts_version self.precompiled_path = contracts_precompiled_path(self.contracts_version) self.contract_manager = ContractManager(self.precompiled_path) def verify_deployed_contracts_in_filesystem(self) -> None: chain_id = ChainID(int(self.web3.version.network)) deployment_data = get_contracts_deployment_info( chain_id=chain_id, version=self.contract_manager.contracts_version, module=DeploymentModule.RAIDEN, ) deployment_file_path = contracts_deployed_path( chain_id=chain_id, version=self.contract_manager.contracts_version ) if deployment_data is None: raise RuntimeError(f"Deployment data cannot be found at {deployment_file_path}") if self.verify_deployment_data(deployment_data): print( f"Deployment info from {deployment_file_path} has been verified " "and it is CORRECT." ) def verify_deployed_service_contracts_in_filesystem( self, token_address: HexAddress, user_deposit_whole_balance_limit: int, token_network_registry_address: HexAddress, ) -> None: chain_id = ChainID(int(self.web3.version.network)) deployment_data = get_contracts_deployment_info( chain_id=chain_id, version=self.contract_manager.contracts_version, module=DeploymentModule.SERVICES, ) deployment_file_path = contracts_deployed_path( chain_id=chain_id, version=self.contract_manager.contracts_version, services=True ) if deployment_data is None: raise RuntimeError(f"Deployment data cannot be found at {deployment_file_path}") if self.verify_service_contracts_deployment_data( token_address=token_address, user_deposit_whole_balance_limit=user_deposit_whole_balance_limit, deployed_contracts_info=deployment_data, token_network_registry_address=token_network_registry_address, ): print( f"Deployment info from {deployment_file_path} has been verified " "and it is CORRECT." ) def store_and_verify_deployment_info_raiden( self, deployed_contracts_info: DeployedContracts ) -> None: self._store_deployment_info(deployment_info=deployed_contracts_info, services=False) self.verify_deployed_contracts_in_filesystem() def store_and_verify_deployment_info_services( self, deployed_contracts_info: DeployedContracts, token_address: HexAddress, user_deposit_whole_balance_limit: int, token_network_registry_address: HexAddress, ) -> None: self._store_deployment_info(services=True, deployment_info=deployed_contracts_info) self.verify_deployed_service_contracts_in_filesystem( token_address=token_address, user_deposit_whole_balance_limit=user_deposit_whole_balance_limit, token_network_registry_address=token_network_registry_address, ) def _store_deployment_info(self, services: bool, deployment_info: DeployedContracts) -> None: deployment_file_path = contracts_deployed_path( chain_id=ChainID(int(self.web3.version.network)), version=self.contracts_version, services=services, ) with deployment_file_path.open(mode="w") as target_file: target_file.write(json.dumps(deployment_info, indent=2)) print( f'Deployment information for chain id = {deployment_info["chain_id"]} ' f" has been updated at {deployment_file_path}." ) def verify_deployment_data(self, deployment_data: DeployedContracts) -> bool: chain_id = int(self.web3.version.network) if self.contract_manager.contracts_version != deployment_data["contracts_version"]: raise RuntimeError("Version string mismatch.") if chain_id != deployment_data["chain_id"]: raise RuntimeError("chain id mismatch.") secret_registry, _ = self._verify_deployed_contract( deployment_data=deployment_data, contract_name=CONTRACT_SECRET_REGISTRY ) token_network_registry, constructor_arguments = self._verify_deployed_contract( deployment_data=deployment_data, contract_name=CONTRACT_TOKEN_NETWORK_REGISTRY ) # We need to also check the constructor parameters against the chain if ( to_checksum_address(token_network_registry.functions.secret_registry_address().call()) != secret_registry.address ): raise RuntimeError("secret_registry_address onchain has an unexpected value.") if len(constructor_arguments) != 5: raise RuntimeError( "TokenNetworkRegistry received a wrong number of constructor arguments." ) if secret_registry.address != constructor_arguments[0]: raise RuntimeError( "TokenNetworkRegistry's constructor received a different SecretRegistry address." ) if token_network_registry.functions.chain_id().call() != constructor_arguments[1]: raise RuntimeError("TokenNetwork remembers a wrong chain_id.") assert ( token_network_registry.functions.settlement_timeout_min().call() == constructor_arguments[2] ) assert ( token_network_registry.functions.settlement_timeout_max().call() == constructor_arguments[3] ) return True def _verify_deployed_contract( self, deployment_data: DeployedContracts, contract_name: str ) -> Contract: """ Verify deployment info against the chain Verifies: - the runtime bytecode - precompiled data against the chain - information stored in deployment_*.json against the chain, except for the constructor arguments, which have to be checked separately. Returns: (onchain_instance, constructor_arguments) """ contract_instance = self.contract_instance_from_deployment_data( deployment_data, contract_name ) contracts = deployment_data["contracts"] # Check blockchain transaction hash & block information receipt = self.web3.eth.getTransactionReceipt(contracts[contract_name]["transaction_hash"]) if receipt["blockNumber"] != contracts[contract_name]["block_number"]: raise RuntimeError( f'We have block_number {contracts[contract_name]["block_number"]} in the ' f'deployment info, but {receipt["blockNumber"]} in the transaction receipt ' "from web3." ) if receipt["gasUsed"] != contracts[contract_name]["gas_cost"]: raise RuntimeError( f'We have gasUsed {contracts[contract_name]["gas_cost"]} in the deployment info, ' f'but {receipt["gasUsed"]} in the transaction receipt from web3.' ) if receipt["contractAddress"] != contracts[contract_name]["address"]: raise RuntimeError( f'We have contractAddress {contracts[contract_name]["address"]} in the deployment' f' info but {receipt["contractAddress"]} in the transaction receipt from web3.' ) # Check that the deployed bytecode matches the precompiled data blockchain_bytecode = self.web3.eth.getCode(contract_instance.address).hex() compiled_bytecode = self.contract_manager.get_runtime_hexcode(contract_name) if blockchain_bytecode == compiled_bytecode: print( f"{contract_name} at {contract_instance.address} " f"matches the compiled data from contracts.json" ) else: raise RuntimeError(f"{contract_name} at {contract_instance.address} has wrong code") return contract_instance, contracts[contract_name]["constructor_arguments"] def contract_instance_from_deployment_data( self, deployment_data: DeployedContracts, contract_name: str ) -> Contract: contracts = deployment_data["contracts"] contract_address = contracts[contract_name]["address"] contract_instance = self.web3.eth.contract( abi=self.contract_manager.get_contract_abi(contract_name), address=contract_address ) return contract_instance def verify_service_contracts_deployment_data( self, token_address: HexAddress, user_deposit_whole_balance_limit: int, token_network_registry_address: HexAddress, deployed_contracts_info: DeployedContracts, ) -> bool: chain_id = int(self.web3.version.network) assert deployed_contracts_info is not None if self.contract_manager.contracts_version != deployed_contracts_info["contracts_version"]: raise RuntimeError("Version string mismatch") if chain_id != deployed_contracts_info["chain_id"]: raise RuntimeError("chain_id mismatch") service_registry, service_registry_constructor_arguments = self._verify_deployed_contract( deployment_data=deployed_contracts_info, contract_name=CONTRACT_SERVICE_REGISTRY ) user_deposit, user_deposit_constructor_arguments = self._verify_deployed_contract( deployment_data=deployed_contracts_info, contract_name=CONTRACT_USER_DEPOSIT ) one_to_n, one_to_n_constructor_arguments = self._verify_deployed_contract( deployment_data=deployed_contracts_info, contract_name=CONTRACT_ONE_TO_N ) monitoring_service, ms_constructor_arguments = self._verify_deployed_contract( deployed_contracts_info, CONTRACT_MONITORING_SERVICE ) _verify_service_registry_deployment( service_registry=service_registry, constructor_arguments=service_registry_constructor_arguments, token_address=token_address, ) _verify_user_deposit_deployment( user_deposit=user_deposit, constructor_arguments=user_deposit_constructor_arguments, token_address=token_address, user_deposit_whole_balance_limit=user_deposit_whole_balance_limit, one_to_n_address=one_to_n.address, monitoring_service_address=monitoring_service.address, ) _verify_monitoring_service_deployment( monitoring_service=monitoring_service, constructor_arguments=ms_constructor_arguments, token_address=token_address, service_registry_address=service_registry.address, user_deposit_address=user_deposit.address, token_network_registry_address=token_network_registry_address, ) _verify_one_to_n_deployment( one_to_n=one_to_n, constructor_arguments=one_to_n_constructor_arguments, user_deposit_address=user_deposit.address, chain_id=chain_id, service_registry_address=service_registry.address, ) return True def _verify_user_deposit_deployment( user_deposit: Contract, constructor_arguments: List, token_address: HexAddress, user_deposit_whole_balance_limit: int, one_to_n_address: HexAddress, monitoring_service_address: HexAddress, ) -> None: """ Check an onchain deployment of UserDeposit and constructor arguments at deployment time """ if len(constructor_arguments) != 2: raise RuntimeError("UserDeposit has a wrong number of constructor arguments.") if token_address != constructor_arguments[0]: raise RuntimeError("UserDeposit received a wrong token address during construction.") if to_checksum_address(user_deposit.functions.token().call()) != token_address: raise RuntimeError("UserDeposit has a wrong token address onchain.") if user_deposit.functions.whole_balance_limit().call() != user_deposit_whole_balance_limit: raise RuntimeError("UserDeposit has a wrong whole_balance_limit onchain") if user_deposit_whole_balance_limit != constructor_arguments[1]: raise RuntimeError("UserDeposit received a wrong whole_balance_limit during construction.") if to_checksum_address(user_deposit.functions.one_to_n_address().call()) != one_to_n_address: raise RuntimeError("UserDeposit has a wrong OneToN address onchain.") onchain_msc_address = to_checksum_address(user_deposit.functions.msc_address().call()) if onchain_msc_address != monitoring_service_address: raise RuntimeError( f"MSC address found onchain: {onchain_msc_address}, " f"expected: {monitoring_service_address}" ) def _verify_monitoring_service_deployment( monitoring_service: Contract, constructor_arguments: List, token_address: HexAddress, service_registry_address: HexAddress, user_deposit_address: HexAddress, token_network_registry_address: HexAddress, ) -> None: """ Check an onchain deployment of MonitoringService and constructor arguments """ if len(constructor_arguments) != 4: raise RuntimeError("MonitoringService has a wrong number of constructor arguments.") if to_checksum_address(monitoring_service.functions.token().call()) != token_address: raise RuntimeError("MonitoringService has a wrong token address onchain.") if token_address != constructor_arguments[0]: raise RuntimeError("MonitoringService received a wrong token address during construction") if ( to_checksum_address(monitoring_service.functions.service_registry().call()) != service_registry_address ): raise RuntimeError("MonitoringService has a wrong ServiceRegistry address onchain.") if service_registry_address != constructor_arguments[1]: raise RuntimeError("MonitoringService received a wrong address during construction.") if ( to_checksum_address(monitoring_service.functions.user_deposit().call()) != user_deposit_address ): raise RuntimeError("MonitoringService has a wrong UserDeposit address onchain.") if user_deposit_address != constructor_arguments[2]: raise RuntimeError( "MonitoringService received a wrong UserDeposit address during construction." ) if ( to_checksum_address(monitoring_service.functions.token_network_registry().call()) != token_network_registry_address ): raise RuntimeError("MonitoringService has a wrong TokenNetworkRegistry address onchain.") if token_network_registry_address != constructor_arguments[3]: raise RuntimeError( "MonitoringService received a wrong TokenNetworkRegistry address during construction." ) def _verify_one_to_n_deployment( one_to_n: Contract, constructor_arguments: List, user_deposit_address: HexAddress, service_registry_address: HexAddress, chain_id: int, ) -> None: """ Check an onchain deployment of OneToN and constructor arguments """ if to_checksum_address(one_to_n.functions.deposit_contract().call()) != user_deposit_address: raise RuntimeError("OneToN has a wrong UserDeposit address onchain.") if user_deposit_address != constructor_arguments[0]: raise RuntimeError("OneToN received a wrong UserDeposit address during construction.") if chain_id != constructor_arguments[1]: raise RuntimeError("OneToN received a wrong chain ID during construction.") if service_registry_address != constructor_arguments[2]: raise RuntimeError("OneToN received a wrong ServiceRegistry address during construction.") if len(constructor_arguments) != 3: raise RuntimeError("OneToN received a wrong number of constructor arguments.") def _verify_service_registry_deployment( service_registry: Contract, constructor_arguments: List, token_address: HexAddress ) -> None: """ Check an onchain deployment of ServiceRegistry and constructor arguments """ if len(constructor_arguments) != 8: raise RuntimeError( "ServiceRegistry was deployed with a wrong number of constructor arguments" ) if to_checksum_address(service_registry.functions.token().call()) != token_address: raise RuntimeError("ServiceRegistry has a wrong token address") if token_address != constructor_arguments[0]: raise RuntimeError( f"expected token address {token_address} " f"but the constructor argument for {CONTRACT_SERVICE_REGISTRY} is " f"{constructor_arguments[0]}" ) controller_onchain = to_checksum_address(service_registry.functions.controller().call()) if controller_onchain != constructor_arguments[1]: raise RuntimeError( f"the deployment data contains the controller address {constructor_arguments[1]} " f"but the contract remembers {controller_onchain} onchain." ) # All other parameters can change after the deployment, so the checks are omitted.
the-stack_0_27889
import json from decimal import * from django.db import transaction from django.db.models import Q from django.shortcuts import get_object_or_404 from django_filters.rest_framework import DjangoFilterBackend from rest_framework import permissions, generics, status, viewsets, filters from rest_framework.decorators import detail_route, list_route from rest_framework.response import Response from callback_functions.transfer_callback import transfer_callback from .serializer import * class RegisterView(generics.CreateAPIView): """ Create User """ permission_classes = (permissions.AllowAny,) queryset = User.objects.all() serializer_class = UserSerializer @transaction.atomic def post(self, request): serializer = UserSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class UserViewSet(viewsets.ReadOnlyModelViewSet): permission_classes = (permissions.IsAuthenticated,) serializer_class = UserSerializer def get_queryset(self): return User.objects.filter(pk=self.request.user.id) class AccountViewSet(viewsets.ReadOnlyModelViewSet): permission_classes = (permissions.IsAuthenticated,) serializer_class = AccountSerializer def get_queryset(self): return Account.objects.filter(user=self.request.user) class EthAccountViewSet(viewsets.ReadOnlyModelViewSet): permission_classes = (permissions.IsAuthenticated,) serializer_class = EthAccountSerializer def get_queryset(self): return EthAccount.objects.filter(user=self.request.user) @detail_route() def get_balance(self, request, pk=None): eth_account = get_object_or_404(EthAccount, address=pk) address = pk # Get UTCoin balance num_suffix = 1000 w3 = Web3(HTTPProvider(settings.WEB3_PROVIDER)) eth_balance = w3.fromWei(w3.eth.getBalance(address), 'ether') abi = self.load_abi(settings.ARTIFACT_PATH) UTCoin = w3.eth.contract(abi=abi, address=settings.UTCOIN_ADDRESS) balance_int = UTCoin.call().balanceOf(address) balance = float(balance_int / num_suffix) context = { 'address': address, 'eth_balance': eth_balance, 'balance': balance, 'balance_int': balance_int } return Response(context) @detail_route() def get_qrcode(self, request, pk=None): eth_account = get_object_or_404(EthAccount, address=pk) address = pk eth_qrcode = eth_account.qrcode if not eth_qrcode: # Generate QR code img = qrcode.make(address) file_name = address + '.png' file_path = '/images/qrcode/' + file_name img.save(settings.MEDIA_ROOT + file_path) eth_account.qrcode = file_path eth_account.save() eth_qrcode = eth_account.qrcode context = { 'address': address, 'qrcode_url': eth_qrcode.url } return Response(context) @staticmethod def load_abi(file_path): """ :param str file_path: :return dict: abi """ artifact = open(file_path, 'r') json_dict = json.load(artifact) abi = json_dict['abi'] return abi class TransactionViewSet(viewsets.ReadOnlyModelViewSet): permission_classes = (permissions.IsAuthenticated,) serializer_class = TransactionSerializer filter_backends = (DjangoFilterBackend, filters.OrderingFilter) filter_fields = ('from_address', 'to_address', 'amount', 'is_active', 'created_at') ordering_fields = ('id', 'amount', 'created_at') def get_queryset(self): address = self.request.user.account.address return Transaction.objects.filter(Q(from_address=address) | Q(to_address=address)) @list_route(methods=['post']) @transaction.atomic def transfer(self, request): from_account = request.user.account # Receive params body = json.loads(request.body) to_address = body['address'] amount = body['amount'] if not (to_address and amount): error_msg = 'アドレスまたは金額が入力されていません。' print('Error:', error_msg) context = { 'success': False, 'detail': error_msg } return Response(context) # Validate address if not self.is_ut_address(to_address): error_msg = '無効なアドレスです。' print('Error:', error_msg) context = { 'success': False, 'detail': error_msg } return Response(context) amount = Decimal(amount) to_account = Account.objects.get(address=to_address) # Validate amount if from_account.balance < amount: error_msg = '送金可能額を超えています。' print('Error:', error_msg) context = { 'success': False, 'detail': error_msg } return Response(context) # UTCoin 送金 with transaction.atomic(): from_account.balance -= amount to_account.balance += amount from_account.save() to_account.save() # Create Transaction tx = Transaction.objects.create( from_address=from_account.address, to_address=to_address, amount=amount ) # TODO: コントラクト実行 # try: # transfer_callback(tx_hash, from_address, to_address, amount_int, amount) # except Exception as e: # print(e) # error_msg = 'コールバック処理に失敗しました。' # print('Error:', error_msg) # # else: # error_msg = 'アカウントのアンロックに失敗しました。' # print('Error:', error_msg) # context = { # 'success': False, # 'detail': error_msg # } # return Response(context) context = { 'success': True, 'transaction': TransactionSerializer(tx).data } return Response(context, status=status.HTTP_201_CREATED) @staticmethod def is_ut_address(address): """ :param str address: :return bool: """ if address[0:2] == 'UT' and len(address) == 42: if Account.objects.filter(address=address).exists(): return True return False class EthTransactionViewSet(viewsets.ReadOnlyModelViewSet): permission_classes = (permissions.IsAuthenticated,) serializer_class = EthTransactionSerializer filter_backends = (DjangoFilterBackend, filters.OrderingFilter) filter_fields = ( 'tx_hash', 'from_address', 'to_address', 'amount', 'gas', 'gas_price', 'value', 'network_id', 'is_active', 'created_at') ordering_fields = ('id', 'amount', 'gas', 'gas_price', 'value', 'created_at') def get_queryset(self): eth_account = get_object_or_404(EthAccount, user=self.request.user) address = eth_account.address return EthTransaction.objects.filter(Q(from_address=address) | Q(to_address=address)) @list_route(methods=['post']) @transaction.atomic def transfer(self, request): eth_account = get_object_or_404(EthAccount, user=request.user) from_address = eth_account.address num_suffix = 1000 amount_min = 1 / num_suffix fee = 0.001 # Receive params body = json.loads(request.body) to_address = body['address'] amount = body['amount'] if not (to_address and amount): error_msg = 'アドレスまたは金額が入力されていません。' print('Error:', error_msg) context = { 'success': False, 'detail': error_msg } return Response(context) amount = float(amount) amount_int = int(amount * num_suffix) # Validate address w3 = Web3(HTTPProvider(settings.WEB3_PROVIDER)) if not w3.isAddress(to_address): error_msg = '無効なアドレスです。' print('Error:', error_msg) context = { 'success': False, 'detail': error_msg } return Response(context) # Validate amount if amount < amount_min: error_msg = '金額が不正です。' print('Error:', error_msg) context = { 'success': False, 'detail': error_msg } return Response(context) # Get UTCoin balance abi = self.load_abi(settings.ARTIFACT_PATH) UTCoin = w3.eadth.contract(abi=abi, address=settings.UTCOIN_ADDRESS) balance = UTCoin.call().balanceOf(from_address) if balance < amount + fee: error_msg = '残高が不足しています。' print('Error:', error_msg) context = { 'success': False, 'detail': error_msg } return Response(context) # Transfer UTCoin if w3.personal.unlockAccount(from_address, eth_account.password, duration=hex(300)): try: tx_hash = UTCoin.transact({'from': from_address}).transfer(to_address, amount_int) # Create Transaction transaction_info = w3.eth.getTransaction(tx_hash) Transaction.objects.create( tx_hash=tx_hash, from_address=from_address, to_address=to_address, amount=amount_int, gas=transaction_info['gas'], gas_price=transaction_info['gasPrice'], value=transaction_info['value'], network_id=transaction_info['networkId'] ) except Exception as e: print(e) error_msg = 'トランザクションに失敗しました。' print('Error:', error_msg) context = { 'success': False, 'detail': error_msg } return Response(context) # Execute callback function try: transfer_callback(tx_hash, from_address, to_address, amount_int, amount) except Exception as e: print(e) error_msg = 'コールバック処理に失敗しました。' print('Error:', error_msg) else: error_msg = 'アカウントのアンロックに失敗しました。' print('Error:', error_msg) context = { 'success': False, 'detail': error_msg } return Response(context) context = { 'success': True, 'address': to_address, 'amount': amount, 'fee': fee, 'transaction': TransactionSerializer(transaction).data } return Response(context, status=status.HTTP_201_CREATED) @staticmethod def load_abi(file_path): """ :param str file_path: :return dict: abi """ artifact = open(file_path, 'r') json_dict = json.load(artifact) abi = json_dict['abi'] return abi class ContractViewSet(viewsets.ModelViewSet): permission_classes = (permissions.IsAuthenticated,) serializer_class = ContractSerializer queryset = Contract.objects.all() def list(self, request): queryset = Contract.objects.filter(user=self.request.user) page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) serializer = self.get_serializer(queryset, many=True) return Response(serializer.data) def retrieve(self, request, pk=None): queryset = Contract.objects.all() contract = get_object_or_404(queryset, address=pk) serializer = ContractSerializer(contract) return Response(serializer.data)
the-stack_0_27890
"""A file interface for handling local and remote data files. The goal of datasource is to abstract some of the file system operations when dealing with data files so the researcher doesn't have to know all the low-level details. Through datasource, a researcher can obtain and use a file with one function call, regardless of location of the file. DataSource is meant to augment standard python libraries, not replace them. It should work seemlessly with standard file IO operations and the os module. DataSource files can originate locally or remotely: - local files : '/home/guido/src/local/data.txt' - URLs (http, ftp, ...) : 'http://www.scipy.org/not/real/data.txt' DataSource files can also be compressed or uncompressed. Currently only gzip and bz2 are supported. Example:: >>> # Create a DataSource, use os.curdir (default) for local storage. >>> ds = datasource.DataSource() >>> >>> # Open a remote file. >>> # DataSource downloads the file, stores it locally in: >>> # './www.google.com/index.html' >>> # opens the file and returns a file object. >>> fp = ds.open('http://www.google.com/index.html') >>> >>> # Use the file as you normally would >>> fp.read() >>> fp.close() """ __docformat__ = "restructuredtext en" import os from shutil import rmtree, copyfile, copyfileobj _open = open # Using a class instead of a module-level dictionary # to reduce the inital 'import numpy' overhead by # deferring the import of bz2 and gzip until needed # TODO: .zip support, .tar support? class _FileOpeners(object): """ Container for different methods to open (un-)compressed files. `_FileOpeners` contains a dictionary that holds one method for each supported file format. Attribute lookup is implemented in such a way that an instance of `_FileOpeners` itself can be indexed with the keys of that dictionary. Currently uncompressed files as well as files compressed with ``gzip`` or ``bz2`` compression are supported. Notes ----- `_file_openers`, an instance of `_FileOpeners`, is made available for use in the `_datasource` module. Examples -------- >>> np.lib._datasource._file_openers.keys() [None, '.bz2', '.gz'] >>> np.lib._datasource._file_openers['.gz'] is gzip.open True """ def __init__(self): self._loaded = False self._file_openers = {None: open} def _load(self): if self._loaded: return try: import bz2 self._file_openers[".bz2"] = bz2.BZ2File except ImportError: pass try: import gzip self._file_openers[".gz"] = gzip.open except ImportError: pass self._loaded = True def keys(self): """ Return the keys of currently supported file openers. Parameters ---------- None Returns ------- keys : list The keys are None for uncompressed files and the file extension strings (i.e. ``'.gz'``, ``'.bz2'``) for supported compression methods. """ self._load() return list(self._file_openers.keys()) def __getitem__(self, key): self._load() return self._file_openers[key] _file_openers = _FileOpeners() def open(path, mode='r', destpath=os.curdir): """ Open `path` with `mode` and return the file object. If ``path`` is an URL, it will be downloaded, stored in the `DataSource` `destpath` directory and opened from there. Parameters ---------- path : str Local file path or URL to open. mode : str, optional Mode to open `path`. Mode 'r' for reading, 'w' for writing, 'a' to append. Available modes depend on the type of object specified by path. Default is 'r'. destpath : str, optional Path to the directory where the source file gets downloaded to for use. If `destpath` is None, a temporary directory will be created. The default path is the current directory. Returns ------- out : file object The opened file. Notes ----- This is a convenience function that instantiates a `DataSource` and returns the file object from ``DataSource.open(path)``. """ ds = DataSource(destpath) return ds.open(path, mode) class DataSource (object): """ DataSource(destpath='.') A generic data source file (file, http, ftp, ...). DataSources can be local files or remote files/URLs. The files may also be compressed or uncompressed. DataSource hides some of the low-level details of downloading the file, allowing you to simply pass in a valid file path (or URL) and obtain a file object. Parameters ---------- destpath : str or None, optional Path to the directory where the source file gets downloaded to for use. If `destpath` is None, a temporary directory will be created. The default path is the current directory. Notes ----- URLs require a scheme string (``http://``) to be used, without it they will fail:: >>> repos = DataSource() >>> repos.exists('www.google.com/index.html') False >>> repos.exists('http://www.google.com/index.html') True Temporary directories are deleted when the DataSource is deleted. Examples -------- :: >>> ds = DataSource('/home/guido') >>> urlname = 'http://www.google.com/index.html' >>> gfile = ds.open('http://www.google.com/index.html') # remote file >>> ds.abspath(urlname) '/home/guido/www.google.com/site/index.html' >>> ds = DataSource(None) # use with temporary file >>> ds.open('/home/guido/foobar.txt') <open file '/home/guido.foobar.txt', mode 'r' at 0x91d4430> >>> ds.abspath('/home/guido/foobar.txt') '/tmp/tmpy4pgsP/home/guido/foobar.txt' """ def __init__(self, destpath=os.curdir): """Create a DataSource with a local path at destpath.""" if destpath: self._destpath = os.path.abspath(destpath) self._istmpdest = False else: import tempfile # deferring import to improve startup time self._destpath = tempfile.mkdtemp() self._istmpdest = True def __del__(self): # Remove temp directories if self._istmpdest: rmtree(self._destpath) def _iszip(self, filename): """Test if the filename is a zip file by looking at the file extension. """ fname, ext = os.path.splitext(filename) return ext in list(_file_openers.keys()) def _iswritemode(self, mode): """Test if the given mode will open a file for writing.""" # Currently only used to test the bz2 files. _writemodes = ("w", "+") for c in mode: if c in _writemodes: return True return False def _splitzipext(self, filename): """Split zip extension from filename and return filename. *Returns*: base, zip_ext : {tuple} """ if self._iszip(filename): return os.path.splitext(filename) else: return filename, None def _possible_names(self, filename): """Return a tuple containing compressed filename variations.""" names = [filename] if not self._iszip(filename): for zipext in list(_file_openers.keys()): if zipext: names.append(filename+zipext) return names def _isurl(self, path): """Test if path is a net location. Tests the scheme and netloc.""" # We do this here to reduce the 'import numpy' initial import time. from urllib.parse import urlparse # BUG : URLs require a scheme string ('http://') to be used. # www.google.com will fail. # Should we prepend the scheme for those that don't have it and # test that also? Similar to the way we append .gz and test for # for compressed versions of files. scheme, netloc, upath, uparams, uquery, ufrag = urlparse(path) return bool(scheme and netloc) def _cache(self, path): """Cache the file specified by path. Creates a copy of the file in the datasource cache. """ # We import these here because importing urllib2 is slow and # a significant fraction of numpy's total import time. from urllib.request import urlopen from urllib.error import URLError upath = self.abspath(path) # ensure directory exists if not os.path.exists(os.path.dirname(upath)): os.makedirs(os.path.dirname(upath)) # TODO: Doesn't handle compressed files! if self._isurl(path): try: openedurl = urlopen(path) f = _open(upath, 'wb') try: copyfileobj(openedurl, f) finally: f.close() except URLError: raise URLError("URL not found: %s" % path) else: shutil.copyfile(path, upath) return upath def _findfile(self, path): """Searches for ``path`` and returns full path if found. If path is an URL, _findfile will cache a local copy and return the path to the cached file. If path is a local file, _findfile will return a path to that local file. The search will include possible compressed versions of the file and return the first occurence found. """ # Build list of possible local file paths if not self._isurl(path): # Valid local paths filelist = self._possible_names(path) # Paths in self._destpath filelist += self._possible_names(self.abspath(path)) else: # Cached URLs in self._destpath filelist = self._possible_names(self.abspath(path)) # Remote URLs filelist = filelist + self._possible_names(path) for name in filelist: if self.exists(name): if self._isurl(name): name = self._cache(name) return name return None def abspath(self, path): """ Return absolute path of file in the DataSource directory. If `path` is an URL, then `abspath` will return either the location the file exists locally or the location it would exist when opened using the `open` method. Parameters ---------- path : str Can be a local file or a remote URL. Returns ------- out : str Complete path, including the `DataSource` destination directory. Notes ----- The functionality is based on `os.path.abspath`. """ # We do this here to reduce the 'import numpy' initial import time. from urllib.parse import urlparse # TODO: This should be more robust. Handles case where path includes # the destpath, but not other sub-paths. Failing case: # path = /home/guido/datafile.txt # destpath = /home/alex/ # upath = self.abspath(path) # upath == '/home/alex/home/guido/datafile.txt' # handle case where path includes self._destpath splitpath = path.split(self._destpath, 2) if len(splitpath) > 1: path = splitpath[1] scheme, netloc, upath, uparams, uquery, ufrag = urlparse(path) netloc = self._sanitize_relative_path(netloc) upath = self._sanitize_relative_path(upath) return os.path.join(self._destpath, netloc, upath) def _sanitize_relative_path(self, path): """Return a sanitised relative path for which os.path.abspath(os.path.join(base, path)).startswith(base) """ last = None path = os.path.normpath(path) while path != last: last = path # Note: os.path.join treats '/' as os.sep on Windows path = path.lstrip(os.sep).lstrip('/') path = path.lstrip(os.pardir).lstrip('..') drive, path = os.path.splitdrive(path) # for Windows return path def exists(self, path): """ Test if path exists. Test if `path` exists as (and in this order): - a local file. - a remote URL that has been downloaded and stored locally in the `DataSource` directory. - a remote URL that has not been downloaded, but is valid and accessible. Parameters ---------- path : str Can be a local file or a remote URL. Returns ------- out : bool True if `path` exists. Notes ----- When `path` is an URL, `exists` will return True if it's either stored locally in the `DataSource` directory, or is a valid remote URL. `DataSource` does not discriminate between the two, the file is accessible if it exists in either location. """ # We import this here because importing urllib2 is slow and # a significant fraction of numpy's total import time. from urllib.request import urlopen from urllib.error import URLError # Test local path if os.path.exists(path): return True # Test cached url upath = self.abspath(path) if os.path.exists(upath): return True # Test remote url if self._isurl(path): try: netfile = urlopen(path) del(netfile) return True except URLError: return False return False def open(self, path, mode='r'): """ Open and return file-like object. If `path` is an URL, it will be downloaded, stored in the `DataSource` directory and opened from there. Parameters ---------- path : str Local file path or URL to open. mode : {'r', 'w', 'a'}, optional Mode to open `path`. Mode 'r' for reading, 'w' for writing, 'a' to append. Available modes depend on the type of object specified by `path`. Default is 'r'. Returns ------- out : file object File object. """ # TODO: There is no support for opening a file for writing which # doesn't exist yet (creating a file). Should there be? # TODO: Add a ``subdir`` parameter for specifying the subdirectory # used to store URLs in self._destpath. if self._isurl(path) and self._iswritemode(mode): raise ValueError("URLs are not writeable") # NOTE: _findfile will fail on a new file opened for writing. found = self._findfile(path) if found: _fname, ext = self._splitzipext(found) if ext == 'bz2': mode.replace("+", "") return _file_openers[ext](found, mode=mode) else: raise IOError("%s not found." % path) class Repository (DataSource): """ Repository(baseurl, destpath='.') A data repository where multiple DataSource's share a base URL/directory. `Repository` extends `DataSource` by prepending a base URL (or directory) to all the files it handles. Use `Repository` when you will be working with multiple files from one base URL. Initialize `Repository` with the base URL, then refer to each file by its filename only. Parameters ---------- baseurl : str Path to the local directory or remote location that contains the data files. destpath : str or None, optional Path to the directory where the source file gets downloaded to for use. If `destpath` is None, a temporary directory will be created. The default path is the current directory. Examples -------- To analyze all files in the repository, do something like this (note: this is not self-contained code):: >>> repos = np.lib._datasource.Repository('/home/user/data/dir/') >>> for filename in filelist: ... fp = repos.open(filename) ... fp.analyze() ... fp.close() Similarly you could use a URL for a repository:: >>> repos = np.lib._datasource.Repository('http://www.xyz.edu/data') """ def __init__(self, baseurl, destpath=os.curdir): """Create a Repository with a shared url or directory of baseurl.""" DataSource.__init__(self, destpath=destpath) self._baseurl = baseurl def __del__(self): DataSource.__del__(self) def _fullpath(self, path): """Return complete path for path. Prepends baseurl if necessary.""" splitpath = path.split(self._baseurl, 2) if len(splitpath) == 1: result = os.path.join(self._baseurl, path) else: result = path # path contains baseurl already return result def _findfile(self, path): """Extend DataSource method to prepend baseurl to ``path``.""" return DataSource._findfile(self, self._fullpath(path)) def abspath(self, path): """ Return absolute path of file in the Repository directory. If `path` is an URL, then `abspath` will return either the location the file exists locally or the location it would exist when opened using the `open` method. Parameters ---------- path : str Can be a local file or a remote URL. This may, but does not have to, include the `baseurl` with which the `Repository` was initialized. Returns ------- out : str Complete path, including the `DataSource` destination directory. """ return DataSource.abspath(self, self._fullpath(path)) def exists(self, path): """ Test if path exists prepending Repository base URL to path. Test if `path` exists as (and in this order): - a local file. - a remote URL that has been downloaded and stored locally in the `DataSource` directory. - a remote URL that has not been downloaded, but is valid and accessible. Parameters ---------- path : str Can be a local file or a remote URL. This may, but does not have to, include the `baseurl` with which the `Repository` was initialized. Returns ------- out : bool True if `path` exists. Notes ----- When `path` is an URL, `exists` will return True if it's either stored locally in the `DataSource` directory, or is a valid remote URL. `DataSource` does not discriminate between the two, the file is accessible if it exists in either location. """ return DataSource.exists(self, self._fullpath(path)) def open(self, path, mode='r'): """ Open and return file-like object prepending Repository base URL. If `path` is an URL, it will be downloaded, stored in the DataSource directory and opened from there. Parameters ---------- path : str Local file path or URL to open. This may, but does not have to, include the `baseurl` with which the `Repository` was initialized. mode : {'r', 'w', 'a'}, optional Mode to open `path`. Mode 'r' for reading, 'w' for writing, 'a' to append. Available modes depend on the type of object specified by `path`. Default is 'r'. Returns ------- out : file object File object. """ return DataSource.open(self, self._fullpath(path), mode) def listdir(self): """ List files in the source Repository. Returns ------- files : list of str List of file names (not containing a directory part). Notes ----- Does not currently work for remote repositories. """ if self._isurl(self._baseurl): raise NotImplementedError("Directory listing of URLs, not supported yet.") else: return os.listdir(self._baseurl)
the-stack_0_27891
from a10sdk.common.A10BaseClass import A10BaseClass class Lw4O6(A10BaseClass): """Class Description:: Configure LW-4over6 interface. Class lw-4o6 supports CRUD Operations and inherits from `common/A10BaseClass`. This class is the `"PARENT"` class for this module.` :param outside: {"default": 0, "optional": true, "type": "number", "description": "Configure LW-4over6 inside interface", "format": "flag"} :param inside: {"default": 0, "optional": true, "type": "number", "description": "Configure LW-4over6 outside interface", "format": "flag"} :param uuid: {"description": "uuid of the object", "format": "string", "minLength": 1, "modify-not-allowed": 1, "optional": true, "maxLength": 64, "type": "string"} :param DeviceProxy: The device proxy for REST operations and session handling. Refer to `common/device_proxy.py` URL for this object:: `https://<Hostname|Ip address>//axapi/v3/interface/ethernet/{ifnum}/lw-4o6`. """ def __init__(self, **kwargs): self.ERROR_MSG = "" self.required=[] self.b_key = "lw-4o6" self.a10_url="/axapi/v3/interface/ethernet/{ifnum}/lw-4o6" self.DeviceProxy = "" self.outside = "" self.inside = "" self.uuid = "" for keys, value in kwargs.items(): setattr(self,keys, value)
the-stack_0_27892
# -*- coding: utf-8 -*- import random import time import pytest from sqlalchemy.exc import IntegrityError from sqlalchemy_mate.crud.inserting import smart_insert from sqlalchemy_mate.crud.selecting import count_row from sqlalchemy_mate.crud.deleting import delete_all from sqlalchemy_mate.tests import ( IS_WINDOWS, engine_sqlite, engine_psql, t_smart_insert, BaseTest ) class InsertingApiBaseTest(BaseTest): def teardown_method(self, method): """ Make sure data in all table is cleared after each test cases. """ self.delete_all_data_in_core_table() def test_smart_insert(self): """ Test performance of smart insert. **中文文档** 测试smart_insert的基本功能, 以及与普通的insert比较性能。 """ # Use Smart Insert Method # ------ Before State ------ scale = 10 # 测试数据的数量级, 总数据量是已有的数据量的立方, 建议 5 ~ 10 n_exist = scale n_all = scale ** 3 exist_id_list = [random.randint(1, n_all) for _ in range(n_exist)] exist_id_list = list(set(exist_id_list)) exist_id_list.sort() n_exist = len(exist_id_list) # Smart Insert exist_data = [{"id": id} for id in exist_id_list] all_data = [{"id": i} for i in range(1, 1 + n_all)] op_count, ins_count = smart_insert(self.engine, t_smart_insert, exist_data, 5) assert op_count == 1 assert ins_count == n_exist assert count_row(self.engine, t_smart_insert) == n_exist # ------ Invoke ------ st = time.process_time() op_count, ins_count = smart_insert(self.engine, t_smart_insert, all_data, 5) assert op_count <= (0.5 * n_all) assert ins_count == (n_all - n_exist) elapse1 = time.process_time() - st # ------ After State ------ assert count_row(self.engine, t_smart_insert) == n_all # Use Regular Insert Method # ------ Before State ------ with self.engine.connect() as connection: connection.execute(t_smart_insert.delete()) ins = t_smart_insert.insert() with self.engine.connect() as connection: connection.execute(ins, exist_data) assert count_row(self.engine, t_smart_insert) == n_exist # ------ Invoke ------ st = time.process_time() with self.engine.connect() as connection: for row in all_data: try: connection.execute(ins, row) except IntegrityError: pass elapse2 = time.process_time() - st assert count_row(self.engine, t_smart_insert) == n_all # ------ After State ------ assert elapse1 < elapse2 def test_smart_insert_single_row(self): assert count_row(self.engine, t_smart_insert) == 0 data = {"id": 1} op_count, ins_count = smart_insert(self.engine, t_smart_insert, data) assert op_count == 1 assert ins_count == 1 assert count_row(self.engine, t_smart_insert) == 1 op_count, ins_count = smart_insert(self.engine, t_smart_insert, data) assert op_count == 0 assert ins_count == 0 assert count_row(self.engine, t_smart_insert) == 1 class TestInsertingApiSqlite(InsertingApiBaseTest): engine = engine_sqlite @pytest.mark.skipif( IS_WINDOWS, reason="no psql service container for windows", ) class TestInsertingApiPostgres(InsertingApiBaseTest): engine = engine_psql if __name__ == "__main__": import os basename = os.path.basename(__file__) pytest.main([basename, "-s", "--tb=native"])
the-stack_0_27894
# -*- coding: utf-8 -*- """ 从列表中找出最大的或最小的N个元素 堆结构(大根堆/小根堆) """ import heapq list1 = [34, 25, 12, 99, 87, 63, 58, 78, 88, 92] list2 = [ {'name': 'IBM', 'shares': 100, 'price': 91.1}, {'name': 'AAPL', 'shares': 50, 'price': 543.22}, {'name': 'FB', 'shares': 200, 'price': 21.09}, {'name': 'HPQ', 'shares': 35, 'price': 31.75}, {'name': 'YHOO', 'shares': 45, 'price': 16.35}, {'name': 'ACME', 'shares': 75, 'price': 115.65} ] print(heapq.nlargest(3, list1)) print(heapq.nsmallest(3, list1)) print(heapq.nlargest(2, list2, key=lambda x: x['price'])) print(heapq.nlargest(2, list2, key=lambda x: x['shares']))
the-stack_0_27896
import asyncio from utilities import utilities from Db.dev_sql import addDevUser, getDevsUsers, getDevUser, remDevUser from telethon import utils, errors import re async def addDev_user(message, from_id): try: if getDevUser(from_id): return await message.reply("User already added as Dev.") addDevUser(from_id) utilities.devs.append(from_id) return await message.reply("❏︙تم رفع مطور") except Exception as e: utilities.prRed(str(type(e)) + " Error : " + str(e)) return await message.reply(str(e)) async def remDev_user(message, from_id): try: if not getDevUser(from_id): return await message.reply("User already not dev.") remDevUser(from_id) utilities.devs.remove(from_id) return await message.reply("❏︙تم تنزيل مطور") except Exception as e: utilities.prRed(str(type(e)) + " Error : " + str(e)) return await message.reply(str(e)) async def run(message, matches, chat_id, step, crons=None): response = [] if message.sender_id not in utilities.config["sudo_members"]: return [] if matches == "المطورين": devlist = getDevsUsers() res = "" i = 1 for user in devlist: userId = int("%.0f" % user.user_id) try: _user = await utilities.client.get_entity(userId) strin = ( str(i) + " - [%s](tg://user?id=%s)" % (_user.first_name, int("%.0f" % userId)) + "\n" ) except Exception as e: strin = ( str(i) + " - [%s](tg://user?id=%s)" % (("dev" + str(i)), int("%.0f" % userId)) + "\n" ) i += 1 res = res + strin return [message.reply(res if (len(res) != 0) else "❏︙لا يوجد مطورين")] if matches[0] == "رفع مطور": if re.match(r"@[a-zA-Z][\w\d]{3,30}[a-zA-Z\d]", matches[1]): user = await utilities.client.get_entity(matches[1]) return [addDev_user(message, user.id)] elif re.match(r"(\d)", matches[1]): return [addDev_user(message, matches[1])] else: return [message.reply("please, use by reply or use valid username and id")] elif matches[0] == "rdev": if re.match(r"@[a-zA-Z][\w\d]{3,30}[a-zA-Z\d]", matches[1]): user = await utilities.client.get_entity(matches[1]) name = user.first_name return [remDev_user(message, user.id)] elif re.match(r"(\d)", matches[1]): return [remDev_user(message, matches[1])] else: return [message.reply("please, use by reply or use valid username and id")] elif matches == "رفع مطور": if message.is_reply: msg = await message.get_reply_message() fromId = msg.from_id chat_id = msg.chat_id name = (await msg.get_sender()).first_name return [addDev_user(message, fromId)] elif matches == "rdev": if message.is_reply: msg = await message.get_reply_message() fromId = msg.from_id chat_id = msg.chat_id return [remDev_user(message, fromId)] elif matches == "مسح المطورين": devlist = getDevsUsers() for user in devlist: remDevUser(user.user_id) utilities.devs.remove(user.user_id) return [message.reply("❏︙تم تنزيل جميع المطورين")] return response plugin = { "name": "", "desc": "Make someone dev", "usage": [ "/مسح المطورين", "/المطورين", "/تنزيل مطور + برد", "/رفع مطور + برد", ], "run": run, "sudo": True, "patterns": [ "^[!/#](مسح المطورين)$", "^[!/#](المطورين)", "^[!/#](dev)$", "^[!/#](تنزيل مطور)$", "^[!/#](رفع مطور) (.+)$", "^[!/#](rdev) (.+)$", ], }
the-stack_0_27898
#!/usr/bin/env python # # Copyright 2009 Facebook # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Simplified chat demo for websockets. Authentication, error handling, etc are left as an exercise for the reader :) """ import logging import tornado.escape import tornado.ioloop import tornado.options import tornado.web import tornado.websocket import os.path import uuid from tornado.options import define, options define("port", default=8888, help="run on the given port", type=int) class Application(tornado.web.Application): def __init__(self): handlers = [(r"/", MainHandler), (r"/chatsocket", ChatSocketHandler)] settings = dict( cookie_secret="__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__", template_path=os.path.join(os.path.dirname(__file__), "templates"), static_path=os.path.join(os.path.dirname(__file__), "static"), xsrf_cookies=True, ) super().__init__(handlers, **settings) class MainHandler(tornado.web.RequestHandler): def get(self): self.render("index.html", messages=ChatSocketHandler.cache) class ChatSocketHandler(tornado.websocket.WebSocketHandler): waiters = set() cache = [] cache_size = 200 def get_compression_options(self): # Non-None enables compression with default options. return {} def open(self): ChatSocketHandler.waiters.add(self) def on_close(self): ChatSocketHandler.waiters.remove(self) @classmethod def update_cache(cls, chat): cls.cache.append(chat) if len(cls.cache) > cls.cache_size: cls.cache = cls.cache[-cls.cache_size :] @classmethod def send_updates(cls, chat): logging.info("sending message to %d waiters", len(cls.waiters)) for waiter in cls.waiters: try: waiter.write_message(chat) except: logging.error("Error sending message", exc_info=True) def on_message(self, message): logging.info("got message %r", message) parsed = tornado.escape.json_decode(message) chat = {"id": str(uuid.uuid4()), "body": parsed["body"]} chat["html"] = tornado.escape.to_basestring( self.render_string("message.html", message=chat) ) ChatSocketHandler.update_cache(chat) ChatSocketHandler.send_updates(chat) def main(): tornado.options.parse_command_line() app = Application() app.listen(options.port) tornado.ioloop.IOLoop.current().start() if __name__ == "__main__": main()
the-stack_0_27899
""" Statistics-related constants. """ from __future__ import division, print_function, absolute_import import numpy as np # The smallest representable positive number such that 1.0 + _EPS != 1.0. _EPS = np.finfo(float).eps # The largest [in magnitude] usable floating value. _XMAX = np.finfo(float).machar.xmax # The smallest [in magnitude] usable floating value. _XMIN = np.finfo(float).machar.xmin # -special.psi(1) _EULER = 0.577215664901532860606512090082402431042 # special.zeta(3, 1) Apery's constant _ZETA3 = 1.202056903159594285399738161511449990765
the-stack_0_27900
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of Cluster Resolvers for Cloud TPUs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from six.moves.urllib.request import Request from six.moves.urllib.request import urlopen from tensorflow.contrib.cluster_resolver.python.training.cluster_resolver import ClusterResolver from tensorflow.contrib.cluster_resolver.python.training.cluster_resolver import format_master_url from tensorflow.python.training import server_lib from tensorflow.python.util import compat _GOOGLE_API_CLIENT_INSTALLED = True try: from googleapiclient import discovery # pylint: disable=g-import-not-at-top from oauth2client.client import GoogleCredentials # pylint: disable=g-import-not-at-top except ImportError: _GOOGLE_API_CLIENT_INSTALLED = False _GKE_ENV_VARIABLE = 'KUBE_GOOGLE_CLOUD_TPU_ENDPOINTS' _ENDPOINTS_SEPARATOR = ',' _DEFAULT_ENV_VARIABLE = 'TPU_NAME' _DISCOVERY_SERVICE_URL_ENV_VARIABLE = 'TPU_API_DISCOVERY_URL' class TPUClusterResolver(ClusterResolver): """Cluster Resolver for Google Cloud TPUs. This is an implementation of cluster resolvers for the Google Cloud TPU service. As Cloud TPUs are in alpha, you will need to specify a API definition file for this to consume, in addition to a list of Cloud TPUs in your Google Cloud Platform project. """ def _tpuService(self): """Creates a new Cloud TPU API object. This works around an issue where the underlying HTTP connection sometimes times out when the script has been running for too long. Other methods in this object calls this method to get a new API object whenever they need to communicate with the Cloud API. Returns: A Google Cloud TPU API object. """ if self._service: return self._service credentials = self._credentials if credentials is None or credentials == 'default': credentials = GoogleCredentials.get_application_default() if self._discovery_url: return discovery.build( 'tpu', 'v1alpha1', credentials=credentials, discoveryServiceUrl=self._discovery_url) else: return discovery.build( 'tpu', 'v1alpha1', credentials=credentials) def _requestComputeMetadata(self, path): req = Request('http://metadata/computeMetadata/v1/%s' % path, headers={'Metadata-Flavor': 'Google'}) resp = urlopen(req) return compat.as_bytes(resp.read()) def _shouldResolve(self): if isinstance(self._should_resolve_override, bool): return self._should_resolve_override if (self._tpu == compat.as_bytes('') or self._tpu == compat.as_bytes('local') or self._tpu.startswith(compat.as_bytes('/bns')) or self._tpu.startswith(compat.as_bytes('localhost:')) or self._tpu.startswith(compat.as_bytes('grpc://'))): return False return True @staticmethod def _inGke(): """When running in GKE, the environment variable will be set.""" return _GKE_ENV_VARIABLE in os.environ @staticmethod def _gkeEndpoints(): return os.environ[_GKE_ENV_VARIABLE] @staticmethod def _envVarFallback(): if _DEFAULT_ENV_VARIABLE in os.environ: return os.environ[_DEFAULT_ENV_VARIABLE] return None @staticmethod def _environmentDiscoveryUrl(): return os.environ.get(_DISCOVERY_SERVICE_URL_ENV_VARIABLE) def __init__(self, tpu=None, zone=None, project=None, job_name='worker', coordinator_name=None, coordinator_address=None, credentials='default', service=None, discovery_url=None): """Creates a new TPUClusterResolver object. The ClusterResolver will then use the parameters to query the Cloud TPU APIs for the IP addresses and ports of each Cloud TPU listed. Args: tpu: Either a string, or a list of strings corresponding to the TPUs to use. If the single string is the empty string, the string 'local', or a string that begins with 'grpc://' or '/bns', then it is assumed to not correspond with a Cloud TPU and will instead be passed as the session master and no ClusterSpec propagation will be done. zone: Zone where the TPUs are located. If omitted or empty, we will assume that the zone of the TPU is the same as the zone of the GCE VM, which we will try to discover from the GCE metadata service. project: Name of the GCP project containing Cloud TPUs. If omitted or empty, we will try to discover the project name of the GCE VM from the GCE metadata service. job_name: Name of the TensorFlow job the TPUs belong to. coordinator_name: The name to use for the coordinator. Set to None if the coordinator should not be included in the computed ClusterSpec. coordinator_address: The address of the coordinator (typically an ip:port pair). If set to None, a TF server will be started. If coordinator_name is None, a TF server will not be started even if coordinator_address is None. credentials: GCE Credentials. If None, then we use default credentials from the oauth2client service: The GCE API object returned by the googleapiclient.discovery function. If you specify a custom service object, then the credentials parameter will be ignored. discovery_url: A URL template that points to the location of the discovery service. It should have two parameters {api} and {apiVersion} that when filled in produce an absolute URL to the discovery document for that service. The environment variable 'TPU_API_DISCOVERY_URL' will override this. Raises: ImportError: If the googleapiclient is not installed. ValueError: If no TPUs are specified. """ if isinstance(tpu, list): if not tpu: raise ValueError('At least one TPU must be specified.') if len(tpu) != 1: raise NotImplementedError( 'Using multiple TPUs in a single session is not yet implemented') tpu = tpu[0] in_gke = self._inGke() # When using GKE with Cloud TPUs, the env variable will be set. if tpu is None: if in_gke: tpu = self._gkeEndpoints() else: tpu = self._envVarFallback() if tpu is None: raise ValueError('Please provide a TPU Name to connect to.') self._tpu = compat.as_bytes(tpu) # self._tpu is always bytes # By default the task_type is 'worker` and the task_index is 0 (which is the # first worker in the task). self.task_type = job_name self.task_index = 0 if tpu.startswith('grpc://'): # Cloud environment, where we are using GRPC to communicate to TPUs. self.environment = '' elif tpu == 'local' or not tpu: # Google environment, where the TPU is attached to the host. self.environment = 'google' elif tpu.startswith('/bns'): # Google environment, where we reach the TPU through BNS. self.environment = 'google' # If TPU is in the Google environment or exists locally, we don't use any # RPC layer. if tpu.startswith('/bns') or tpu == 'local' or not tpu: self.rpc_layer = None else: self.rpc_layer = 'grpc' # Setting this overrides the return value of self._shouldResolve() self._should_resolve_override = None # We strip out the protocol if it is included, and override the # shouldResolve function to never resolve. We are adding the protocol back # in later in self.master(). if self.rpc_layer is not None and tpu.startswith(self.rpc_layer + '://'): tpu = tpu[len(self.rpc_layer + '://'):] self._tpu = tpu self._should_resolve_override = False # Whether we should actually attempt to contact Cloud APIs should_resolve = self._shouldResolve() # We error out if we are in a non-Cloud environment which cannot talk to the # Cloud APIs using the standard class and a special object is not passed in. self._service = service if (self._service is None and should_resolve and not _GOOGLE_API_CLIENT_INSTALLED): raise ImportError('googleapiclient and oauth2client must be installed ' 'before using the TPU cluster resolver. Execute: ' '`pip install --upgrade google-api-python-client` ' 'and `pip install --upgrade oauth2client` to ' 'install with pip.') # We save user-passed credentials, unless the user didn't pass in anything. self._credentials = credentials if (credentials == 'default' and should_resolve and _GOOGLE_API_CLIENT_INSTALLED): self._credentials = None # Automatically detect project and zone if unspecified. if not project and should_resolve: project = compat.as_str( self._requestComputeMetadata('project/project-id')) if not zone and should_resolve: zone_path = compat.as_str(self._requestComputeMetadata('instance/zone')) zone = zone_path.split('/')[-1] self._project = project self._zone = zone self._discovery_url = self._environmentDiscoveryUrl() or discovery_url self._coordinator_name = coordinator_name if (coordinator_name and not coordinator_address and (should_resolve or in_gke)): self._start_local_server() else: self._coordinator_address = coordinator_address def master(self, task_type=None, task_index=None, rpc_layer=None): """Get the Master string to be used for the session. In the normal case, this returns the grpc path (grpc://1.2.3.4:8470) of first instance in the ClusterSpec returned by the cluster_spec function. If a non-TPU name is used when constructing a TPUClusterResolver, that will be returned instead (e.g. If the tpus argument's value when constructing this TPUClusterResolver was 'grpc://10.240.1.2:8470', 'grpc://10.240.1.2:8470' will be returned). Args: task_type: (Optional, string) The type of the TensorFlow task of the master. task_index: (Optional, integer) The index of the TensorFlow task of the master. rpc_layer: (Optional, string) The RPC protocol TensorFlow should use to communicate with TPUs. Returns: string, the connection string to use when creating a session. Raises: ValueError: If none of the TPUs specified exists. """ if self._shouldResolve(): # We are going to communicate with the Cloud TPU APIs to get a Cluster. cluster_spec = self.cluster_spec() if task_type is not None and task_index is not None: # task_type and task_index is from the function parameter master = cluster_spec.task_address(task_type, task_index) elif self.task_type is not None and self.task_index is not None: # task_type and task_index is from the object master = cluster_spec.task_address(self.task_type, self.task_index) else: # by default we take the first item in the cluster with the right name job_tasks = cluster_spec.job_tasks(self.task_type) if not job_tasks: raise ValueError('No TPUs with the specified names exist.') master = job_tasks[0] else: if isinstance(self._tpu, (bytes, bytearray)): master = self._tpu.split(compat.as_bytes(_ENDPOINTS_SEPARATOR))[0] else: master = self._tpu.split(_ENDPOINTS_SEPARATOR)[0] return format_master_url(master, rpc_layer or self.rpc_layer) def get_master(self): return self.master() def get_job_name(self): if self._shouldResolve(): return self.task_type def cluster_spec(self): """Returns a ClusterSpec object based on the latest TPU information. We retrieve the information from the GCE APIs every time this method is called. Returns: A ClusterSpec containing host information returned from Cloud TPUs. Raises: RuntimeError: If the provided TPU is not healthy. """ ############################################################################ # There are 5 potential cases this code must handle: # 1. [Normal case.] We should resolve the TPU name to a set of tasks, and # a. Create a ClusterSpec that includes the coordinator job # b. Create a ClusterSpec without the coordinator job. # 2. [GKE / No API Access.] We should not resolve the TPU name to a set of # tasks and # a. Create a ClusterSpec with the coordinator # b. Create a ClusterSpec without the coordinator # 3. [Other (legacy non-gRPC).] We should return an empty ClusterSpec. ############################################################################ if self._shouldResolve(): # Case 1. full_name = 'projects/%s/locations/%s/nodes/%s' % ( self._project, self._zone, compat.as_text(self._tpu)) service = self._tpuService() request = service.projects().locations().nodes().get(name=full_name) response = request.execute() if 'state' in response and response['state'] != 'READY': raise RuntimeError('TPU "%s" is not yet ready; state: "%s"' % (compat.as_text(self._tpu), response['state'])) if 'health' in response and response['health'] != 'HEALTHY': raise RuntimeError('TPU "%s" is unhealthy: "%s"' % (compat.as_text(self._tpu), response['health'])) if 'networkEndpoints' in response: worker_list = [ '%s:%s' % (endpoint['ipAddress'], endpoint['port']) for endpoint in response['networkEndpoints'] ] else: # Fall back to the deprecated response format instance_url = '%s:%s' % (response['ipAddress'], response['port']) worker_list = [instance_url] cluster_spec = {self.task_type: worker_list} else: if self.rpc_layer is None: # Case 3. return None # Case 2. tpus = [] for tpu in self._tpu.split(_ENDPOINTS_SEPARATOR): # We are working around the fact that GKE environment variable that is # supplied to us has the protocol string embedded in it, but we want # to strip it out for the ClusterSpec. if (self.rpc_layer is not None and tpu.startswith(self.rpc_layer + '://')): tpus.append(tpu[len(self.rpc_layer + '://'):]) else: tpus.append(tpu) cluster_spec = {self.task_type: tpus} if self._coordinator_address: # {1, 2}.a cluster_spec[self._coordinator_name] = [self._coordinator_address] return server_lib.ClusterSpec(cluster_spec) def num_accelerators_per_worker(self, session_config=None): """Returns the number of TPU cores per worker. This defaults to 8 for all current TPU configurations, and we do not need to query any remote systems for this. Args: session_config: Unused. Not currently necessary to query anything as this number is 8 for all TPU configurations. """ del session_config # Unused. Not necessary to query anything. return 8 def _start_local_server(self): address = self._requestComputeMetadata('instance/network-interfaces/0/ip') self._server = server_lib.Server( { 'local': ['0.0.0.0:0'] }, protocol='grpc', config=None, start=True) # self._server.target is of the form: grpc://ipaddress:port target = compat.as_bytes(self._server.target) splits = target.split(compat.as_bytes(':')) assert len(splits) == 3, self._server.target assert splits[0] == compat.as_bytes('grpc'), self._server.target self._coordinator_port = compat.as_text(splits[2]) self._coordinator_address = '%s:%s' % ( address, compat.as_text(self._coordinator_port)) def __deepcopy__(self, memo): # TODO(b/73668574): Remove this once RunConfig avoids performing deepcopy. return self
the-stack_0_27904
#!/usr/bin/env python3 import spotipy from spotipy.oauth2 import SpotifyClientCredentials from utils import display_num, convert_num, download_image from tweet import twitter_post, twitter_post_image module = "Spotify" def login(): """Logs in to Spotify Client credential authorization flow The following API keys are needed to be set as environment variables: * SPOTIPY_CLIENT_ID * SPOTIPY_CLIENT_SECRET You can request API keys on the `Spotify Developer Dashboard <https://developer.spotify.com/dashboard/>`_ See https://spotipy.readthedocs.io/en/2.16.1/#authorization-code-flow for more details """ print("[{}] Logging in...".format(module)) auth_manager = SpotifyClientCredentials() spotify = spotipy.Spotify(auth_manager=auth_manager) return spotify def get_artist(spotify, artist, hashtags): """Gets details about an artist It tweets if the artist reaches a new goal of followers on Spotify Args: - spotify: The Spotify instance - artist: dictionary that contains all the data about the single artist - hashtags: hashtags to append to the Tweet Returns: an artist dictionary with updated profile details """ # Generate URI artist["uri"] = 'spotify:artist:' + artist["id"] artist_details = spotify.artist(artist["uri"]) artist["name"] = artist_details["name"] print("[{}] ({}) Getting details... (ID: {})".format(module, artist["name"], artist["id"])) artist["popularity"] = artist_details["popularity"] artist["genres"] = artist_details["genres"] try: artist["image"] = artist_details["images"][0]["url"] except: artist["image"] = None print("WARNING: Cannot fetch image of {}".format(artist["name"])) # This fix is needed for artists without a profile image if convert_num("100K", artist_details["followers"]["total"]) > convert_num("100K", artist["followers"]): artist["followers"] = artist_details["followers"]["total"] twitter_post_image( "{} reached {} followers on #Spotify\n{}\n{}".format(artist["name"], display_num(artist["followers"], decimal=True), link_artist(artist["id"]), hashtags), download_image(artist["image"]), display_num(artist["followers"], short=True, decimal=True), text_size=125 ) return artist def get_discography(spotify, artist): """Gets all the releases of an artist A release is single, EP, mini-album or album: Spotify simply calls them all "albums" Example: * `DDU-DU-DDU-DU <https://open.spotify.com/album/2811CkGSYR9SUtIoFWWiTk>`_ of BLACKPINK is a **single** * `SQUARE UP <https://open.spotify.com/album/0wOiWrujRbxlKEGWRQpKYc>`_ of BLACKPINK is a **mini-album** * `THE ALBUM <https://open.spotify.com/album/71O60S5gIJSIAhdnrDIh3N>`_ of BLACKPINK is (really) an **album** It also gets releases where the artist is **featured**. Example: * `Sour Candy <https://open.spotify.com/album/6y6lP1WRfqEhv8RLy4ufZB>`_ is a song of Lady Gaga, but BLACKPINK are featured Spotify also makes many "clones" of the same album: there could be extended albums or albums that later added tracks. Each one of this makes a duplicate of the same album. So this function also tries to clean up the discography by removing duplicates. Args: - spotify: The Spotify instance - artist: dictionary that contains all the data about the single artist Returns: an dictionary with updated discography details """ print("[{}] ({}) Fetching discography...".format(module, artist["name"])) # ALBUM DETAILS albumResults = spotify.artist_albums(artist["uri"], limit=50) albumResults = albumResults['items'] z = 0 # Loop over album collection = [] for album in albumResults: # TRACK DETAILS trackResults = spotify.album_tracks(album['id']) trackResults = trackResults['items'] ## Loop over tracks tracks = [] for track in trackResults: artists_names =[] artists_ids = [] for artist_track in track['artists']: artists_names.append(artist_track['name']) artists_ids.append(artist_track['id']) ## Extract track data and fill database if artist["id"] in artists_ids: z+=1 tracks.append({'name':track['name'], 'id': track['id']} ) if album['album_group'] != 'appears_on': collection.append({'name':album['name'], 'id': album['id'], 'release_date':album['release_date'], 'total_tracks':album['total_tracks'], 'type':album['album_group'], 'image':album['images'][0]['url'], 'tracks': tracks} ) else: collection.append({'name':album['name'], 'id': album['id'], 'release_date':album['release_date'], 'total_tracks':album['total_tracks'], 'type':album['album_group'], 'image':album['images'][0]['url'], 'artist_collab':album['artists'][0]['name'], 'tracks': tracks} ) print("[{}] ({}) Fetched {} songs".format(module, artist["name"], z)) # Remove duplicates seen = set() result = [] z = 0 for album in collection: key = album['name'] if key in seen: continue result.append(album) z += 1 seen.add(key) print("[{}] ({}) After removing duplicates we have {} releases (singles/EPs/albums)".format(module, artist["name"], z)) # Uncomment for debug: it prints all the albums and singles fetched # # for album in result: # print(album["name"].upper()) # for track in album["tracks"]: # print(track["name"]) # print() return result def check_new_songs(artist, collection, hashtags): """Checks if there is any new song It compares the old discography of the artist with the new (already fetched) discography. It tweets if there is a new release or featuring of the artist. Args: - artist: dictionary that contains all the data about the single artist - collection: dictionary that contains all the updated discography of the artist - hashtags: hashtags to append to the Tweet Returns: an artist dictionary with updated discography details """ print("[{}] ({}) Checking new songs...".format(module, artist["name"])) # Skip check if discography is empty if "discography" in artist: old = artist["discography"] for album in collection: found = False for old_album in old: if album["name"] == old_album["name"]: found = True break if not found: if album["type"] != 'appears_on': twitter_post_image( "{} released a new {} on #Spotify: {}\n{}\n{}".format(artist["name"], album["type"], album["name"], link_album(album["id"]), hashtags), download_image(album["image"]), None ) else: twitter_post("{} appeared on {} by {} with the song {}\n{}\n{} #spotify".format(artist["name"], album["name"], album["artist_collab"], album["tracks"][0]["name"], link_album(album["id"]), hashtags)) artist["discography"] = collection return artist def link_album(album_id): """Generates a link to an album Args: album_id: ID of the album Returns: The link to that album on Spotify """ return "https://open.spotify.com/album/" + album_id def link_artist(artist_id): """Generates a link to an artist Args: artist_id: ID of the artist Returns: The link to that artist on Spotify """ return "https://open.spotify.com/artist/" + artist_id def spotify_data(group): """Runs all the Spotify related tasks It scrapes data from Spotify for the whole group and the single artists Args: group: dictionary with the data of the group to scrape Returns: the same group dictionary with updated data """ print("[{}] Starting tasks...".format(module)) spotify = login() group["spotify"] = get_artist(spotify, group["spotify"], group["hashtags"]) collection = get_discography(spotify, group["spotify"]) group["spotify"] = check_new_songs(group["spotify"], collection, group["hashtags"]) for member in group["members"]: if "spotify" in member: member["spotify"] = get_artist(spotify, member["spotify"], member["hashtags"]) collection = get_discography(spotify, member["spotify"]) member["spotify"] = check_new_songs(member["spotify"], collection, member["hashtags"]) print() return group
the-stack_0_27905
# -*- coding: utf-8 -*- """ Created on Sat Sep 4 11:42:49 2021 @author: Easin """ in1 = input() in1 = int(in1) if in1 %2 != 0: x = in1 -9 y = 9 else: x = in1 -4 y = 4 print(x,y)
the-stack_0_27906
""" Define a set of classes that function like forecasters, akin to the R forecast package. """ import copy import itertools from typing import List, Tuple, Callable import pandas as pd import numpy as np import scipy.linalg as spla import tensorly as tl from scipy.fftpack import rfft, irfft, dct from tensorly.decomposition import parafac, tucker from .utils import mad, multifold, rmse TENSOR_MAX_ITER = 500 class ForecasterResult: def __init__( self, inputs: pd.Series, forecaster: "SeasonalForecaster", in_sample_approx: pd.Series, forecast: pd.Series, in_errors: List[float], out_errors: List[float], nr_total_params: int, ): self.inputs = inputs self.forecaster = forecaster self.in_sample_approx = in_sample_approx self.forecast = forecast self.in_errors = in_errors self.out_errors = out_errors self.nr_total_params = nr_total_params class SeasonalForecaster: def __init__( self, nr_params: int, folds: Tuple[int], error_callbacks: Tuple[Callable] = (rmse, mad), ): """ :param nr_params: number of parameters for the forecaster. specific definitions change by forecaster. :param folds: a tuple representing the folds of the seasonality. faster period comes first. i.e., (24, 7) not (7, 24) :param error_callbacks: """ self.nr_params = nr_params self.folds = folds self.error_callbacks = error_callbacks self.nr_total_params = self.nr_params def run_forecast(self, vals: pd.Series, nr_in_cycles: int) -> Tuple[np.ndarray, np.ndarray]: raise NotImplemented() def __call__(self, vals: pd.Series, nr_in_cycles: int, **kwargs): assert nr_in_cycles > 1, "number of cycles in sample must be > 1" assert nr_in_cycles * np.prod(self.folds) > len(vals) / 2, ( "provide more data in sample then out of sample" ) in_sample_approx, forecast = self.run_forecast(vals, nr_in_cycles) nr_in_steps = int(nr_in_cycles * np.prod(self.folds)) data_in, data_out = ( vals.values[:nr_in_steps], vals.values[nr_in_steps:] ) in_errors = [ callback(data_in, in_sample_approx) for callback in self.error_callbacks ] out_errors = [ callback(data_out, forecast) for callback in self.error_callbacks ] return ForecasterResult( inputs=vals, forecaster=self, in_sample_approx=pd.Series(in_sample_approx, index=vals.index[:nr_in_steps]), forecast=pd.Series(forecast, index=vals.index[nr_in_steps:]), in_errors=in_errors, out_errors=out_errors, nr_total_params=self.nr_total_params, ) class DCTForecaster(SeasonalForecaster): def __init__( self, nr_params: int, folds: Tuple[int], error_callbacks: Tuple[Callable] = (rmse, mad), ): """ :param nr_params: number of DCT components to forecast with. """ super().__init__(nr_params, folds, error_callbacks) def run_forecast(self, vals: pd.Series, nr_in_cycles: int): nr_in_steps = int(nr_in_cycles * np.prod(self.folds)) data_in, data_out = ( vals.values[:nr_in_steps], vals.values[nr_in_steps:] ) z = dct(data_in) # take the DCT # get the frequencies with most magnitude top_n = np.argsort(np.abs(z))[-self.nr_params:] mask = np.zeros(len(z), dtype=bool) mask[top_n] = True # zero out the other frequencies z_masked = np.array(z) z_masked[~mask] = 0 # reconstruct y = dct(z_masked, type=3) / len(z) / 2 return ( y, # in-sample reconstruction y[:len(data_out)], # forecasts ) class DFTForecaster(SeasonalForecaster): def __init__( self, nr_params: int, folds: Tuple[int], error_callbacks: Tuple[Callable] = (rmse, mad), ): """ :param nr_params: number of DFT components to forecast with. """ super().__init__(nr_params, folds, error_callbacks) def run_forecast(self, vals: pd.Series, nr_in_cycles: int): nr_steps = len(vals) nr_in_steps = int(nr_in_cycles * np.prod(self.folds)) data_in, data_out = ( vals.values[:nr_in_steps], vals.values[nr_in_steps:] ) z = rfft(data_in) # take the DCT # get the frequencies with most magnitude top_n = np.argsort(np.abs(z))[-self.nr_params:] mask = np.zeros(len(z), dtype=bool) mask[top_n] = True # zero out the other frequencies z_masked = np.array(z) z_masked[~mask] = 0 # reconstruct y = irfft(z_masked) return ( y, # in-sample reconstruction y[:(nr_steps - nr_in_steps)], # forecasts ) class TensorForecaster(SeasonalForecaster): def tensor_reconstruction(self, data_in: np.ndarray) -> np.ndarray: raise NotImplemented() def run_forecast(self, vals: pd.Series, nr_in_cycles: int) -> Tuple[np.ndarray, np.ndarray]: nr_in_steps = int(nr_in_cycles * np.prod(self.folds)) nr_out_steps = len(vals) - nr_in_steps nr_steps_per_cycle = np.prod(self.folds) nr_out_cycles = int(np.ceil(nr_out_steps / nr_steps_per_cycle)) data_in, _ = ( vals.values[:nr_in_steps], vals.values[nr_in_steps:] ) in_sample_approx = self.tensor_reconstruction(data_in) cycle_approx = in_sample_approx[-nr_steps_per_cycle:] forecast = np.tile(cycle_approx, nr_out_cycles)[:nr_out_steps] return in_sample_approx, forecast class CPForecaster(TensorForecaster): def __init__( self, nr_params: int, folds: Tuple[int], error_callbacks: Tuple[Callable] = (rmse, mad), alpha: float = 1.0, ): """ Parameters ---------- nr_params rank of tensor alpha smoothing parameter for the time factor """ super().__init__(nr_params, folds, error_callbacks) self.alpha = alpha self.nr_total_params = int(nr_params * np.sum(folds)) def tensor_reconstruction(self, data_in: np.ndarray) -> np.ndarray: tensor = multifold(data_in, list(self.folds)) tensor = copy.deepcopy(tensor) fac = parafac(tensor, rank=self.nr_params, n_iter_max=TENSOR_MAX_ITER, tol=1.0e-13, linesearch=True) if self.alpha < 1: time_factor = fac.factors[0] for i in range(time_factor.shape[0]): time_factor[i] = time_factor[i] * self.alpha + time_factor[i-1] * (1 - self.alpha) fac.factors = [time_factor] + fac.factors[1:] return tl.cp_to_tensor(fac).ravel() class TuckerForecaster(TensorForecaster): def __init__( self, nr_params: int, folds: Tuple[int], error_callbacks: Tuple[Callable] = (rmse, mad), alpha: float = 1.0, ): """ Parameters ---------- nr_params rank of tensor alpha smoothing parameter for the time factor """ super().__init__(nr_params, folds, error_callbacks) ranks_ = self._get_tucker_ranks() self.alpha = alpha self.nr_total_params = int( np.sum(np.array(self.folds) * np.array(ranks_[1:])) + np.prod(ranks_[1:]) ) def _get_tucker_ranks(self): ranks = np.minimum( list(self.folds), [self.nr_params for _ in range(len(self.folds))] ) return np.r_[1, ranks].astype(int).tolist() def tensor_reconstruction(self, data_in: np.ndarray) -> np.ndarray: tensor = multifold(data_in, list(self.folds)) tensor = copy.deepcopy(tensor) assert isinstance(self.nr_params, int) ranks = self._get_tucker_ranks() core, factors = tucker(tensor, ranks=ranks, n_iter_max=TENSOR_MAX_ITER, tol=1.0e-13) if self.alpha < 1: time_factor = factors[0] for i in range(time_factor.shape[0]): time_factor[i] = time_factor[i] * self.alpha + time_factor[i-1] * (1 - self.alpha) factors = [time_factor] + factors[1:] return tl.tucker_to_tensor((core, factors)).ravel() class SmoothingCPForecaster(CPForecaster): def __init__(self, alpha=0.5, **kwargs): super().__init__(alpha=alpha, **kwargs) class SmoothingTuckerForecaster(TuckerForecaster): def __init__(self, alpha=0.5, **kwargs): super().__init__(alpha=alpha, **kwargs) class HoltWintersForecaster(TensorForecaster): def __init__( self, folds: Tuple[int], error_callbacks: Tuple[Callable] = (rmse, mad), nr_params: int = 1, alpha: float = 0.5, ): """ """ super().__init__(nr_params, folds, error_callbacks) self.alpha = alpha self.nr_total_params = int(np.prod(folds)) def tensor_reconstruction(self, data_in: np.ndarray) -> np.ndarray: tensor = multifold(data_in, list(self.folds)) tensor = copy.deepcopy(tensor) for i in range(1, tensor.shape[0]): tensor[i] = tensor[i] * self.alpha + tensor[i-1] * (1 - self.alpha) return tensor.ravel() class FourierBasisRegressionForecaster(SeasonalForecaster): def __init__( self, folds: Tuple[int], error_callbacks: Tuple[Callable] = (rmse, mad), nr_params: int = 1, ): """ Parameters ---------- nr_params: number of Fourier basis components to generate for each fold """ super().__init__(nr_params, folds, error_callbacks) self.nr_total_params = int(len(folds) * nr_params * 2 + 1) def run_forecast(self, vals: pd.Series, nr_in_cycles: int) -> Tuple[np.ndarray, np.ndarray]: nr_in_steps = int(nr_in_cycles * np.prod(self.folds)) t = np.arange(len(vals), dtype=float) periods = [np.prod(self.folds[:n]) for n in range(1, len(self.folds) + 1)] basis_tuples = [ (np.sin(2 * np.pi * t * n / P), np.cos(2 * np.pi * t * n / P)) for n, P in itertools.product(range(1, self.nr_params + 1), periods) ] basis = np.concatenate([np.array(x) for x in basis_tuples]) X = np.concatenate([np.ones(basis.shape[-1])[np.newaxis, :], basis]).T y = vals.values y_in = y[:nr_in_steps] X_in, X_out = X[:nr_in_steps], X[nr_in_steps:] beta, _, _, _ = spla.lstsq(X_in, y_in) return X_in.dot(beta), X_out.dot(beta)
the-stack_0_27907
import json import praw with open('.secrets/tokens.json') as f: secrets = json.load(f) reddit = praw.Reddit( user_agent=secrets['user_agent'], client_id=secrets['client_id'], client_secret=secrets['client_secret'], ) thread_details = (('2019', 'cib77j'), ('2021', 'm20rd1')) for year, thread_id in thread_details: submission = reddit.submission(id=thread_id) submission.comments.replace_more(limit=None) op_file = f'top_comments_{year}.txt' with open(op_file, 'w') as f: for top_level_comment in submission.comments: f.write(top_level_comment.body + '\n')
the-stack_0_27908
import pytest from typing import Callable from _pytest.pytester import RunResult @pytest.mark.repeat(3) def test_cli_start(run: Callable[..., RunResult]): """ Startup of cli should not take longer than n seconds """ import time start = time.time() run("--help") end = time.time() duration = end - start # When run in parallel, it takes a little longer assert duration <= 5 def test_data_convert_help(run: Callable[..., RunResult]): output = run("--help") help_text = """usage: rasa [-h] [--version] {init,run,shell,train,interactive,test,visualize,data,x} ...""" lines = help_text.split("\n") for i, line in enumerate(lines): assert output.outlines[i] == line
the-stack_0_27909
import fractions import logging import math from itertools import tee from struct import pack, unpack_from import av from ..mediastreams import VIDEO_TIME_BASE, convert_timebase logger = logging.getLogger('codec.h264') MAX_FRAME_RATE = 30 PACKET_MAX = 1300 NAL_TYPE_FU_A = 28 NAL_TYPE_STAP_A = 24 NAL_HEADER_SIZE = 1 FU_A_HEADER_SIZE = 2 LENGTH_FIELD_SIZE = 2 STAP_A_HEADER_SIZE = NAL_HEADER_SIZE + LENGTH_FIELD_SIZE def pairwise(iterable): a, b = tee(iterable) next(b, None) return zip(a, b) class H264PayloadDescriptor: def __init__(self, first_fragment): self.first_fragment = first_fragment def __repr__(self): return 'H264PayloadDescriptor(FF={})'.format(self.first_fragment) @classmethod def parse(cls, data): output = bytes() # NAL unit header if len(data) < 2: raise ValueError('NAL unit is too short') nal_type = data[0] & 0x1f f_nri = data[0] & (0x80 | 0x60) pos = NAL_HEADER_SIZE if nal_type in range(1, 24): # single NAL unit output = bytes([0, 0, 0, 1]) + data obj = cls(first_fragment=True) elif nal_type == NAL_TYPE_FU_A: # fragmentation unit original_nal_type = data[pos] & 0x1f first_fragment = bool(data[pos] & 0x80) pos += 1 if first_fragment: original_nal_header = bytes([f_nri | original_nal_type]) output += bytes([0, 0, 0, 1]) output += original_nal_header output += data[pos:] obj = cls(first_fragment=first_fragment) elif nal_type == NAL_TYPE_STAP_A: # single time aggregation packet offsets = [] while pos < len(data): if len(data) < pos + LENGTH_FIELD_SIZE: raise ValueError('STAP-A length field is truncated') nulu_size = unpack_from('!H', data, pos)[0] pos += LENGTH_FIELD_SIZE offsets.append(pos) pos += nulu_size if len(data) < pos: raise ValueError('STAP-A data is truncated') offsets.append(len(data) + LENGTH_FIELD_SIZE) for start, end in pairwise(offsets): end -= LENGTH_FIELD_SIZE output += bytes([0, 0, 0, 1]) output += data[start:end] obj = cls(first_fragment=True) else: raise ValueError('NAL unit type %d is not supported' % nal_type) return obj, output class H264Decoder: def __init__(self): self.codec = av.CodecContext.create('h264', 'r') def decode(self, encoded_frame): try: packet = av.Packet(encoded_frame.data) packet.pts = encoded_frame.timestamp packet.time_base = VIDEO_TIME_BASE frames = self.codec.decode(packet) except av.AVError as e: logger.warning('failed to decode, skipping package: ' + str(e)) return [] return frames class H264Encoder: def __init__(self): self.codec = None self.frame_idx = 0 @staticmethod def _packetize_fu_a(data): available_size = PACKET_MAX - FU_A_HEADER_SIZE payload_size = len(data) - NAL_HEADER_SIZE num_packets = math.ceil(payload_size / available_size) num_larger_packets = payload_size % num_packets package_size = payload_size // num_packets f_nri = data[0] & (0x80 | 0x60) # fni of original header nal = data[0] & 0x1f fu_indicator = f_nri | NAL_TYPE_FU_A fu_header_end = bytes([fu_indicator, nal | 0x40]) fu_header_middle = bytes([fu_indicator, nal]) fu_header_start = bytes([fu_indicator, nal | 0x80]) fu_header = fu_header_start packages = [] offset = NAL_HEADER_SIZE while offset < len(data): if num_larger_packets > 0: num_larger_packets -= 1 payload = data[offset:offset+package_size+1] offset += package_size+1 else: payload = data[offset:offset+package_size] offset += package_size if offset == len(data): fu_header = fu_header_end packages.append(fu_header + payload) fu_header = fu_header_middle assert offset == len(data), 'incorrect fragment data' return packages @staticmethod def _packetize_stap_a(data, packages_iterator): counter = 0 available_size = PACKET_MAX - STAP_A_HEADER_SIZE stap_header = NAL_TYPE_STAP_A | (data[0] & 0xe0) payload = bytes() try: nalu = data # with header while len(nalu) <= available_size: stap_header |= nalu[0] & 0x80 nri = nalu[0] & 0x60 if stap_header & 0x60 < nri: stap_header = (stap_header & 0x9f | nri) available_size -= LENGTH_FIELD_SIZE + len(nalu) counter += 1 payload += pack('!H', len(nalu)) + nalu nalu = next(packages_iterator) if counter == 0: nalu = next(packages_iterator) except StopIteration: nalu = None if counter <= 1: return data, nalu else: return bytes([stap_header]) + payload, nalu @staticmethod def _split_bitstream(buf): # TODO: write in a more pytonic way, # translate from: https://github.com/aizvorski/h264bitstream/blob/master/h264_nal.c#L134 i = 0 while True: while ((buf[i] != 0 or buf[i+1] != 0 or buf[i+2] != 0x01) and (buf[i] != 0 or buf[i+1] != 0 or buf[i+2] != 0 or buf[i+3] != 0x01)): i += 1 # skip leading zero if i+4 >= len(buf): return if buf[i] != 0 or buf[i+1] != 0 or buf[i+2] != 0x01: i += 1 i += 3 nal_start = i while ((buf[i] != 0 or buf[i+1] != 0 or buf[i+2] != 0) and (buf[i] != 0 or buf[i+1] != 0 or buf[i+2] != 0x01)): i += 1 # FIXME: the next line fails when reading a nal that ends # exactly at the end of the data if i+3 >= len(buf): nal_end = len(buf) yield buf[nal_start:nal_end] return # did not find nal end, stream ended first nal_end = i yield buf[nal_start:nal_end] @classmethod def _packetize(cls, packages): packetized_packages = [] packages_iterator = iter(packages) package = next(packages_iterator, None) while package is not None: if len(package) > PACKET_MAX: packetized_packages.extend(cls._packetize_fu_a(package)) package = next(packages_iterator, None) else: packetized, package = cls._packetize_stap_a(package, packages_iterator) packetized_packages.append(packetized) return packetized_packages def init_codec(self): self.codec = av.CodecContext.create('libx264', 'w') self.codec.width = 1280 self.codec.height = 720 self.codec.pix_fmt = 'yuv420p' self.codec.time_base = fractions.Fraction(1, MAX_FRAME_RATE) def __pack(self, frame): yield from self._split_bitstream(b''.join( [p.to_bytes() for p in frame])) def encode(self, frame, force_keyframe=False): if not self.codec: self.init_codec() #packages = self._encode_frame(frame, force_keyframe) self.frame_idx += 1 timestamp = convert_timebase(self.frame_idx, self.codec.time_base, VIDEO_TIME_BASE) pc = self.__pack(frame) return self._packetize(pc), timestamp """ def _encode_frame(self, frame, force_keyframe): if self.codec and (frame.width != self.codec.width or frame.height != self.codec.height): self.codec = None if self.codec is None: self.codec = av.CodecContext.create('libx264', 'w') self.codec.width = frame.width self.codec.height = frame.height self.codec.pix_fmt = 'yuv420p' self.codec.time_base = fractions.Fraction(1, MAX_FRAME_RATE) self.codec.options = { 'profile': 'baseline', 'level': '31', 'tune': 'zerolatency' } packages = self.codec.encode(frame) yield from self._split_bitstream(b''.join(p.to_bytes() for p in packages)) def encode(self, frame, force_keyframe=False): packages = self._encode_frame(frame, force_keyframe) timestamp = convert_timebase(frame.pts, frame.time_base, VIDEO_TIME_BASE) return self._packetize(packages), timestamp """ def h264_depayload(payload): descriptor, data = H264PayloadDescriptor.parse(payload) return data
the-stack_0_27910
from collections import defaultdict, namedtuple from queue import Queue from collections import deque from copy import deepcopy import inspect from threading import Event Parameter = namedtuple("Parameter", ["address", "value"]) def init_queue(initial_values): queue = Queue() for x in initial_values: queue.put(x) return queue class Halt: PARAMETERS = 0 def execute(self, intcode, parameters): intcode.halted = True return -1 class Add: PARAMETERS = 3 def execute(self, intcode, parameters): intcode[parameters[2].address] = parameters[0].value + parameters[1].value return intcode.advance_pointer(self.PARAMETERS) class Mul: PARAMETERS = 3 def execute(self, intcode, parameters): intcode[parameters[2].address] = parameters[0].value * parameters[1].value return intcode.advance_pointer(self.PARAMETERS) class Input: PARAMETERS = 1 def execute(self, intcode, parameters): intcode[parameters[0].address] = intcode.input_provider() return intcode.advance_pointer(self.PARAMETERS) class Output: PARAMETERS = 1 def execute(self, intcode, parameters): intcode.output(parameters[0].value) return intcode.advance_pointer(self.PARAMETERS) class JumpIfNotZero: PARAMETERS = 2 def execute(self, intcode, parameters): if parameters[0].value != 0: return parameters[1].value else: return intcode.advance_pointer(self.PARAMETERS) class JumpIfZero: PARAMETERS = 2 def execute(self, intcode, parameters): if parameters[0].value == 0: return parameters[1].value else: return intcode.advance_pointer(self.PARAMETERS) class LessThen: PARAMETERS = 3 def execute(self, intcode, parameters): intcode[parameters[2].address] = int(parameters[0].value < parameters[1].value) return intcode.advance_pointer(self.PARAMETERS) class Equal: PARAMETERS = 3 def execute(self, intcode, parameters): intcode[parameters[2].address] = int(parameters[0].value == parameters[1].value) return intcode.advance_pointer(self.PARAMETERS) class SetRelativeBaseOffset: PARAMETERS = 1 def execute(self, intcode, parameters): intcode.relative_base += parameters[0].value return intcode.advance_pointer(self.PARAMETERS) class Intcode: INSTRUCTIONS = { 99: Halt, 1: Add, 2: Mul, 3: Input, 4: Output, 5: JumpIfNotZero, 6: JumpIfZero, 7: LessThen, 8: Equal, 9: SetRelativeBaseOffset, } def __init__(self, code, inputs=None, outputs=None, initial_memory=None): self.code = code self.memory = defaultdict(int) self.inputs = inputs if inputs is not None else [] self.outputs = outputs if outputs is not None else [] self.pointer = 0 self.relative_base = 0 self.halted = False self.shutdown_event = Event() # initialize with given memory if initial_memory: for address, value in initial_memory.items(): self[address] = value if callable(self.inputs): self.input_provider = inputs elif isinstance(self.inputs, Queue): self.input_provider = self.inputs.get elif isinstance(self.inputs, deque): self.input_provider = self.inputs.popleft elif isinstance(self.inputs, list): self.input_provider = lambda: self.inputs.pop(0) elif inspect.isgenerator(self.inputs): self.input_provider = lambda: next(self.inputs) else: assert False, f"Unknown Input {type(self.inputs)}" if isinstance(self.outputs, Queue): self.output = self.outputs.put self.output_ready = lambda: not self.outputs.empty() self.output_consume = self.outputs.get elif isinstance(self.outputs, deque): self.output = self.outputs.append self.output_ready = lambda: len(self.outputs) > 0 self.output_consume = self.outputs.popleft elif isinstance(self.outputs, list): self.output = self.outputs.append self.output_ready = lambda: len(self.outputs) > 0 self.output_consume = lambda: self.outputs.pop(0) else: assert False, f"Unknown Output {type(self.outputs)}" def __deepcopy__(self, memo): copy = Intcode( deepcopy(self.code), inputs=deepcopy(self.inputs), outputs=deepcopy(self.outputs), initial_memory=deepcopy(self.memory), ) copy.pointer = self.pointer copy.relative_base = self.relative_base copy.halted = self.halted return copy def run(self): self.shutdown_event.clear() while not self.halted and not self.shutdown_event.is_set(): self.step() return self.outputs def step(self): self.pointer = self._execute_instruction_at(self.pointer) def step_to_next_output(self): while not self.halted and not self.output_ready(): self.step() if self.halted: return None return self.output_consume() def _execute_instruction_at(self, pointer): instruction_code = str(self.code[pointer]).zfill(5) opcode = int(instruction_code[-2:]) parameter_modes = instruction_code[:-2][::-1] instruction = self.INSTRUCTIONS[opcode]() # parse parameter w.r.t. the parameter mode parameters = [] for i in range(instruction.PARAMETERS): value = self.code[pointer + 1 + i] + (self.relative_base if parameter_modes[i] == "2" else 0) if parameter_modes[i] == "1": parameters.append(Parameter(value, value)) else: parameters.append(Parameter(value, self[value])) return instruction.execute(self, parameters) def __getitem__(self, address): return self.code[address] if address < len(self.code) else self.memory[address] def __setitem__(self, address, value): if address < len(self.code): self.code[address] = value else: self.memory[address] = value def advance_pointer(self, parameters): return self.pointer + 1 + parameters def shutdown(self): self.shutdown_event.set()
the-stack_0_27911
"""Handle connection information interface with non-secrets storage.""" import json from enum import Enum from typing import Any, Union from marshmallow import fields, validate from ...config.injection_context import InjectionContext from ...messaging.models.base_record import BaseRecord, BaseRecordSchema from ...messaging.valid import INDY_DID, INDY_RAW_PUBLIC_KEY, UUIDFour from ...protocols.connections.v1_0.message_types import CONNECTION_INVITATION from ...protocols.connections.v1_0.messages.connection_invitation import ( ConnectionInvitation, ) from ...protocols.connections.v1_0.messages.connection_request import ConnectionRequest from ...protocols.didcomm_prefix import DIDCommPrefix from ...protocols.out_of_band.v1_0.messages.invitation import ( Invitation as OOBInvitation, ) from ...storage.base import BaseStorage from ...storage.record import StorageRecord class ConnRecord(BaseRecord): """Represents a single pairwise connection.""" class Meta: """ConnRecord metadata.""" schema_class = "ConnRecordSchema" class Role(Enum): """RFC 160 (inviter, invitee) = RFC 23 (responder, requester).""" REQUESTER = ("invitee", "requester") # == RFC 23 initiator, RFC 434 receiver RESPONDER = ("inviter", "responder") # == RFC 160 initiator(!), RFC 434 sender @property def rfc160(self): """Return RFC 160 (connection protocol) nomenclature.""" return self.value[0] @property def rfc23(self): """Return RFC 23 (DID exchange protocol) nomenclature.""" return self.value[1] @classmethod def get(cls, label: Union[str, "ConnRecord.Role"]): """Get role enum for label.""" if isinstance(label, str): for role in ConnRecord.Role: if label in role.value: return role elif isinstance(label, ConnRecord.Role): return label return None def flip(self): """Return interlocutor role.""" return ( ConnRecord.Role.REQUESTER if self is ConnRecord.Role.RESPONDER else ConnRecord.Role.RESPONDER ) def __eq__(self, other: Union[str, "ConnRecord.Role"]) -> bool: """Comparison between roles.""" return self is ConnRecord.Role.get(other) class State(Enum): """Collator for equivalent states between RFC 160 and RFC 23.""" INIT = ("init", "start") INVITATION = ("invitation", "invitation") REQUEST = ("request", "request") RESPONSE = ("response", "response") COMPLETED = ("active", "completed") ABANDONED = ("error", "abandoned") @property def rfc160(self): """Return RFC 160 (connection protocol) nomenclature.""" return self.value[0] @property def rfc23(self): """Return RFC 23 (DID exchange protocol) nomenclature.""" return self.value[1] @classmethod def get(cls, label: Union[str, "ConnRecord.State"]): """Get state enum for label.""" if isinstance(label, str): for state in ConnRecord.State: if label in state.value: return state elif isinstance(label, ConnRecord.State): return label return None def __eq__(self, other: Union[str, "ConnRecord.State"]) -> bool: """Comparison between states.""" return self is ConnRecord.State.get(other) RECORD_ID_NAME = "connection_id" WEBHOOK_TOPIC = "connections" LOG_STATE_FLAG = "debug.connections" CACHE_ENABLED = True TAG_NAMES = {"my_did", "their_did", "request_id", "invitation_key"} RECORD_TYPE = "connection" RECORD_TYPE_INVITATION = "connection_invitation" RECORD_TYPE_REQUEST = "connection_request" INVITATION_MODE_ONCE = "once" INVITATION_MODE_MULTI = "multi" INVITATION_MODE_STATIC = "static" ROUTING_STATE_NONE = "none" ROUTING_STATE_REQUEST = "request" ROUTING_STATE_ACTIVE = "active" ROUTING_STATE_ERROR = "error" ACCEPT_MANUAL = "manual" ACCEPT_AUTO = "auto" def __init__( self, *, connection_id: str = None, my_did: str = None, their_did: str = None, their_label: str = None, their_role: Union[str, "ConnRecord.Role"] = None, invitation_key: str = None, request_id: str = None, state: Union[str, "ConnRecord.State"] = None, inbound_connection_id: str = None, error_msg: str = None, routing_state: str = None, accept: str = None, invitation_mode: str = None, alias: str = None, **kwargs, ): """Initialize a new ConnRecord.""" super().__init__( connection_id, state=(ConnRecord.State.get(state) or ConnRecord.State.INIT).rfc23, **kwargs, ) self.my_did = my_did self.their_did = their_did self.their_label = their_label self.their_role = ( ConnRecord.Role.get(their_role).rfc23 if isinstance(their_role, str) else None if their_role is None else their_role.rfc23 ) self.invitation_key = invitation_key self.request_id = request_id self.error_msg = error_msg self.inbound_connection_id = inbound_connection_id self.routing_state = routing_state or self.ROUTING_STATE_NONE self.accept = accept or self.ACCEPT_MANUAL self.invitation_mode = invitation_mode or self.INVITATION_MODE_ONCE self.alias = alias @property def connection_id(self) -> str: """Accessor for the ID associated with this connection.""" return self._id @property def record_value(self) -> dict: """Accessor to for the JSON record value properties for this connection.""" return { prop: getattr(self, prop) for prop in ( "their_role", "inbound_connection_id", "routing_state", "accept", "invitation_mode", "alias", "error_msg", "their_label", "state", ) } @classmethod async def retrieve_by_did( cls, context: InjectionContext, their_did: str = None, my_did: str = None, their_role: str = None, ) -> "ConnRecord": """Retrieve a connection record by target DID. Args: context: The injection context to use their_did: The target DID to filter by my_did: One of our DIDs to filter by my_role: Filter connections by their role """ tag_filter = {} if their_did: tag_filter["their_did"] = their_did if my_did: tag_filter["my_did"] = my_did post_filter = {} if their_role: post_filter["their_role"] = cls.Role.get(their_role).rfc23 return await cls.retrieve_by_tag_filter(context, tag_filter, post_filter) @classmethod async def retrieve_by_invitation_key( cls, context: InjectionContext, invitation_key: str, their_role: str = None ) -> "ConnRecord": """Retrieve a connection record by invitation key. Args: context: The injection context to use invitation_key: The key on the originating invitation initiator: Filter by the initiator value """ tag_filter = {"invitation_key": invitation_key} post_filter = {"state": cls.State.INVITATION.rfc23} if their_role: post_filter["their_role"] = cls.Role.get(their_role).rfc23 return await cls.retrieve_by_tag_filter(context, tag_filter, post_filter) @classmethod async def retrieve_by_request_id( cls, context: InjectionContext, request_id: str ) -> "ConnRecord": """Retrieve a connection record from our previous request ID. Args: context: The injection context to use request_id: The ID of the originating connection request """ tag_filter = {"request_id": request_id} return await cls.retrieve_by_tag_filter(context, tag_filter) async def attach_invitation( self, context: InjectionContext, invitation: Union[ConnectionInvitation, OOBInvitation], ): """Persist the related connection invitation to storage. Args: context: The injection context to use invitation: The invitation to relate to this connection record """ assert self.connection_id record = StorageRecord( self.RECORD_TYPE_INVITATION, invitation.to_json(), {"connection_id": self.connection_id}, ) storage: BaseStorage = await context.inject(BaseStorage) await storage.add_record(record) async def retrieve_invitation( self, context: InjectionContext ) -> Union[ConnectionInvitation, OOBInvitation]: """Retrieve the related connection invitation. Args: context: The injection context to use """ assert self.connection_id storage: BaseStorage = await context.inject(BaseStorage) result = await storage.find_record( self.RECORD_TYPE_INVITATION, {"connection_id": self.connection_id} ) ser = json.loads(result.value) return ( ConnectionInvitation if DIDCommPrefix.unqualify(ser["@type"]) == CONNECTION_INVITATION else OOBInvitation ).deserialize(ser) async def attach_request( self, context: InjectionContext, request: ConnectionRequest, # will be Union[ConnectionRequest, DIDEx Request] ): """Persist the related connection request to storage. Args: context: The injection context to use request: The request to relate to this connection record """ assert self.connection_id record = StorageRecord( self.RECORD_TYPE_REQUEST, request.to_json(), {"connection_id": self.connection_id}, ) storage: BaseStorage = await context.inject(BaseStorage) await storage.add_record(record) async def retrieve_request( self, context: InjectionContext, ) -> ConnectionRequest: # will be Union[ConnectionRequest, DIDEx Request] """Retrieve the related connection invitation. Args: context: The injection context to use """ assert self.connection_id storage: BaseStorage = await context.inject(BaseStorage) result = await storage.find_record( self.RECORD_TYPE_REQUEST, {"connection_id": self.connection_id} ) return ConnectionRequest.from_json(result.value) @property def is_ready(self) -> str: """Accessor for connection readiness.""" return ConnRecord.State.get(self.state) in ( ConnRecord.State.COMPLETED, ConnRecord.State.RESPONSE, ) @property def is_multiuse_invitation(self) -> bool: """Accessor for multi use invitation mode.""" return self.invitation_mode == self.INVITATION_MODE_MULTI async def post_save(self, context: InjectionContext, *args, **kwargs): """Perform post-save actions. Args: context: The injection context to use """ await super().post_save(context, *args, **kwargs) # clear cache key set by connection manager cache_key = self.cache_key(self.connection_id, "connection_target") await self.clear_cached_key(context, cache_key) def __eq__(self, other: Any) -> bool: """Comparison between records.""" return super().__eq__(other) class ConnRecordSchema(BaseRecordSchema): """Schema to allow serialization/deserialization of connection records.""" class Meta: """ConnRecordSchema metadata.""" model_class = ConnRecord connection_id = fields.Str( required=False, description="Connection identifier", example=UUIDFour.EXAMPLE ) my_did = fields.Str( required=False, description="Our DID for connection", **INDY_DID ) their_did = fields.Str( required=False, description="Their DID for connection", **INDY_DID ) their_label = fields.Str( required=False, description="Their label for connection", example="Bob" ) their_role = fields.Str( required=False, description="Their role in the connection protocol", validate=validate.OneOf( [label for role in ConnRecord.Role for label in role.value] ), example=ConnRecord.Role.REQUESTER.rfc23, ) inbound_connection_id = fields.Str( required=False, description="Inbound routing connection id to use", example=UUIDFour.EXAMPLE, ) invitation_key = fields.Str( required=False, description="Public key for connection", **INDY_RAW_PUBLIC_KEY ) request_id = fields.Str( required=False, description="Connection request identifier", example=UUIDFour.EXAMPLE, ) routing_state = fields.Str( required=False, description="Routing state of connection", validate=validate.OneOf( [ getattr(ConnRecord, m) for m in vars(ConnRecord) if m.startswith("ROUTING_STATE_") ] ), example=ConnRecord.ROUTING_STATE_ACTIVE, ) accept = fields.Str( required=False, description="Connection acceptance: manual or auto", example=ConnRecord.ACCEPT_AUTO, validate=validate.OneOf( [ getattr(ConnRecord, a) for a in vars(ConnRecord) if a.startswith("ACCEPT_") ] ), ) error_msg = fields.Str( required=False, description="Error message", example="No DIDDoc provided; cannot connect to public DID", ) invitation_mode = fields.Str( required=False, description="Invitation mode", example=ConnRecord.INVITATION_MODE_ONCE, validate=validate.OneOf( [ getattr(ConnRecord, i) for i in vars(ConnRecord) if i.startswith("INVITATION_MODE_") ] ), ) alias = fields.Str( required=False, description="Optional alias to apply to connection for later use", example="Bob, providing quotes", )
the-stack_0_27914
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Module that contains widget implementation """ from __future__ import print_function, division, absolute_import from tpDcc.libs.qt.core import base from tpDcc.libs.qt.widgets import layouts, label class WelcomeWidget(base.BaseWidget, object): def __init__(self, project, parent=None): self._project = project super(WelcomeWidget, self).__init__(parent=parent) def get_main_layout(self): return layouts.HorizontalLayout(spacing=2, margins=(2, 2, 2, 2)) def ui(self): super(WelcomeWidget, self).ui() self.main_layout.addStretch() lbl = label.BaseLabel('Welcome to {}!'.format(self._project.name.title()), parent=self) lbl.setStyleSheet('font-size: 35px; font-family: "Montserrat";') self.main_layout.addWidget(lbl) self.main_layout.addStretch()
the-stack_0_27916
#!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import re import json import time from collections import defaultdict, OrderedDict import requests import demjson LINUX_PRICING_URLS = [ # Deprecated instances (JSON format) 'https://aws.amazon.com/ec2/pricing/json/linux-od.json', # Previous generation instances (JavaScript file) 'https://a0.awsstatic.com/pricing/1/ec2/previous-generation/linux-od.min.js', # New generation instances (JavaScript file) 'https://a0.awsstatic.com/pricing/1/ec2/linux-od.min.js' ] EC2_REGIONS = [ 'us-east-1', 'us-west-1', 'us-west-2', 'eu-west-1', 'eu-central-1', 'ap-southeast-1', 'ap-southeast-2', 'ap-northeast-1', 'ap-northeast-2', 'sa-east-1' ] EC2_INSTANCE_TYPES = [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'm3.medium', 'm3.large', 'm3.xlarge', 'm3.2xlarge', 'c1.medium', 'c1.xlarge', 'cc1.4xlarge', 'cc2.8xlarge', 'c3.large', 'c3.xlarge', 'c3.2xlarge', 'c3.4xlarge', 'c3.8xlarge', 'd2.xlarge', 'd2.2xlarge', 'd2.4xlarge', 'd2.8xlarge', 'cg1.4xlarge', 'g2.2xlarge', 'g2.8xlarge', 'cr1.8xlarge', 'hs1.4xlarge', 'hs1.8xlarge', 'i2.xlarge', 'i2.2xlarge', 'i2.4xlarge', 'i2.8xlarge', 'r3.large', 'r3.xlarge', 'r3.2xlarge', 'r3.4xlarge', 'r3.8xlarge', 't2.micro', 't2.small', 't2.medium', 't2.large', 'x1.32xlarge' ] # Maps EC2 region name to region name used in the pricing file REGION_NAME_MAP = { 'us-east': 'ec2_us_east', 'us-east-1': 'ec2_us_east', 'us-west': 'ec2_us_west', 'us-west-1': 'ec2_us_west', 'us-west-2': 'ec2_us_west_oregon', 'eu-west-1': 'ec2_eu_west', 'eu-ireland': 'ec2_eu_west', 'eu-central-1': 'ec2_eu_central', 'apac-sin': 'ec2_ap_southeast', 'ap-southeast-1': 'ec2_ap_southeast', 'apac-syd': 'ec2_ap_southeast_2', 'ap-southeast-2': 'ec2_ap_southeast_2', 'apac-tokyo': 'ec2_ap_northeast', 'ap-northeast-1': 'ec2_ap_northeast', 'ap-northeast-2': 'ec2_ap_northeast', 'sa-east-1': 'ec2_sa_east', 'us-gov-west-1': 'ec2_us_govwest' } INSTANCE_SIZES = [ 'micro', 'small', 'medium', 'large', 'xlarge', 'x-large', 'extra-large' ] RE_NUMERIC_OTHER = re.compile(r'(?:([0-9]+)|([-A-Z_a-z]+)|([^-0-9A-Z_a-z]+))') BASE_PATH = os.path.dirname(os.path.abspath(__file__)) PRICING_FILE_PATH = os.path.join(BASE_PATH, '../libcloud/data/pricing.json') PRICING_FILE_PATH = os.path.abspath(PRICING_FILE_PATH) def scrape_ec2_pricing(): result = defaultdict(OrderedDict) for url in LINUX_PRICING_URLS: response = requests.get(url) if re.match('.*?\.json$', url): data = response.json() elif re.match('.*?\.js$', url): data = response.content match = re.match('^.*callback\((.*?)\);?$', data, re.MULTILINE | re.DOTALL) data = match.group(1) # demjson supports non-strict mode and can parse unquoted objects data = demjson.decode(data) regions = data['config']['regions'] for region_data in regions: region_name = region_data['region'] libcloud_region_name = REGION_NAME_MAP[region_name] instance_types = region_data['instanceTypes'] for instance_type in instance_types: sizes = instance_type['sizes'] for size in sizes: price = size['valueColumns'][0]['prices']['USD'] if str(price).lower() == 'n/a': # Price not available continue result[libcloud_region_name][size['size']] = float(price) return result def update_pricing_file(pricing_file_path, pricing_data): with open(pricing_file_path, 'r') as fp: content = fp.read() data = json.loads(content) data['updated'] = int(time.time()) data['compute'].update(pricing_data) # Always sort the pricing info data = sort_nested_dict(data) content = json.dumps(data, indent=4) lines = content.splitlines() lines = [line.rstrip() for line in lines] content = '\n'.join(lines) with open(pricing_file_path, 'w') as fp: fp.write(content) def sort_nested_dict(value): """ Recursively sort a nested dict. """ result = OrderedDict() for key, value in sorted(value.items(), key=sort_key_by_numeric_other): if isinstance(value, (dict, OrderedDict)): result[key] = sort_nested_dict(value) else: result[key] = value return result def sort_key_by_numeric_other(key_value): """ Split key into numeric, alpha and other part and sort accordingly. """ return tuple(( int(numeric) if numeric else None, INSTANCE_SIZES.index(alpha) if alpha in INSTANCE_SIZES else alpha, other ) for (numeric, alpha, other) in RE_NUMERIC_OTHER.findall(key_value[0])) def main(): print('Scraping EC2 pricing data') pricing_data = scrape_ec2_pricing() update_pricing_file(pricing_file_path=PRICING_FILE_PATH, pricing_data=pricing_data) print('Pricing data updated') if __name__ == '__main__': main()
the-stack_0_27918
# Custom imports below import json import requests import validators from icon_trendmicro_apex.util.util import get_expiration_utc_date_string from requests.exceptions import RequestException import komand from komand.exceptions import PluginException from .schema import BlacklistInput, BlacklistOutput, Input, Output, Component class Blacklist(komand.Action): def __init__(self): super(self.__class__, self).__init__( name="blacklist", description=Component.DESCRIPTION, input=BlacklistInput(), output=BlacklistOutput(), ) self.api_path = "/WebApp/api/SuspiciousObjects/UserDefinedSO" self.MAX_NOTES_LENGTH = 256 self.MAX_SHA_LENGTH = 40 self.MAX_URL_LENGTH = 2046 def run(self, params={}): payload = self.generate_payload(params) json_payload = json.dumps(payload) blacklist_state = params.get(Input.BLACKLIST_STATE, True) if blacklist_state is False: method = "DELETE" payload_type = payload.get("param", {}).get("type") content = payload["param"]["content"] self.api_path = f"{self.api_path}?type={payload_type}&content={content}" else: method = "PUT" self.connection.create_jwt_token(self.api_path, method, json_payload) request_url = self.connection.url + self.api_path response = None try: response = requests.request( method.lower(), request_url, headers=self.connection.header_dict, data=json_payload, verify=False, ) response.raise_for_status() return {Output.SUCCESS: response is not None} except RequestException as rex: if response: self.logger.error(f"Received status code: {response.status_code}") self.logger.error(f"Response was: {response.text}") raise PluginException( assistance="Please verify the connection details and input data.", cause=f"Error processing the Apex request: {rex}", ) @staticmethod def get_data_type(indicator): if validators.ipv4(indicator) or validators.ipv6(indicator): return "IP" elif validators.url(indicator): return "URL" elif validators.domain(indicator): return "DOMAIN" elif validators.sha1(indicator): return "FILE_SHA1" raise PluginException( cause="Invalid indicator input provided.", assistance="Supported indicators are IP, URL, domain and SHA1 hash.", ) def generate_payload(self, params): payload_notes = "" user_notes = params.get(Input.DESCRIPTION) if user_notes: if len(user_notes) > self.MAX_NOTES_LENGTH: self.logger.warning(f"Note: exceeds maximum length, truncated to {self.MAX_NOTES_LENGTH} characters") payload_notes = user_notes[: self.MAX_NOTES_LENGTH] indicator = params.get(Input.INDICATOR).lower() payload_type = self.get_data_type(indicator) payload_scan_action = params.get(Input.SCAN_ACTION, "BLOCK") num_days = params.get(Input.EXPIRY_DATE, 30) payload_expiry_date = get_expiration_utc_date_string(int(num_days)) return { "param": { "content": indicator, "expiration_utc_date": payload_expiry_date, "notes": payload_notes, "scan_action": payload_scan_action.lower(), "type": payload_type.lower(), } }
the-stack_0_27919
# -*- coding: utf-8 -*- ''' Mounting of filesystems ======================= Mount any type of mountable filesystem with the mounted function: .. code-block:: yaml /mnt/sdb: mount.mounted: - device: /dev/sdb1 - fstype: ext4 - mkmnt: True - opts: - defaults /srv/bigdata: mount.mounted: - device: UUID=066e0200-2867-4ebe-b9e6-f30026ca2314 - fstype: xfs - opts: nobootwait,noatime,nodiratime,nobarrier,logbufs=8 - dump: 0 - pass_num: 2 - persist: True - mkmnt: True /var/lib/bigdata: mount.mounted: - device: /srv/bigdata - fstype: none - opts: bind - dump: 0 - pass_num: 0 - persist: True - mkmnt: True ''' from __future__ import absolute_import, print_function, unicode_literals # Import python libs import os.path import re # Import salt libs from salt.ext.six import string_types import logging from salt.ext import six log = logging.getLogger(__name__) def _size_convert(_re_size): converted_size = int(_re_size.group('size_value')) if _re_size.group('size_unit') == 'm': converted_size = int(converted_size) * 1024 if _re_size.group('size_unit') == 'g': converted_size = int(converted_size) * 1024 * 1024 return converted_size def mounted(name, device, fstype, mkmnt=False, opts='defaults', dump=0, pass_num=0, config='/etc/fstab', persist=True, mount=True, user=None, match_on='auto', device_name_regex=None, extra_mount_invisible_options=None, extra_mount_invisible_keys=None, extra_mount_ignore_fs_keys=None, extra_mount_translate_options=None, hidden_opts=None, **kwargs): ''' Verify that a device is mounted name The path to the location where the device is to be mounted device The device name, typically the device node, such as ``/dev/sdb1`` or ``UUID=066e0200-2867-4ebe-b9e6-f30026ca2314`` or ``LABEL=DATA`` fstype The filesystem type, this will be ``xfs``, ``ext2/3/4`` in the case of classic filesystems, ``fuse`` in the case of fuse mounts, and ``nfs`` in the case of nfs mounts mkmnt If the mount point is not present then the state will fail, set ``mkmnt: True`` to create the mount point if it is otherwise not present opts A list object of options or a comma delimited list dump The dump value to be passed into the fstab, Default is ``0`` pass_num The pass value to be passed into the fstab, Default is ``0`` config Set an alternative location for the fstab, Default is ``/etc/fstab`` persist Set if the mount should be saved in the fstab, Default is ``True`` mount Set if the mount should be mounted immediately, Default is ``True`` user The account used to execute the mount; this defaults to the user salt is running as on the minion match_on A name or list of fstab properties on which this state should be applied. Default is ``auto``, a special value indicating to guess based on fstype. In general, ``auto`` matches on name for recognized special devices and device otherwise. device_name_regex A list of device exact names or regular expressions which should not force a remount. For example, glusterfs may be mounted with a comma-separated list of servers in fstab, but the /proc/self/mountinfo will show only the first available server. .. code-block:: jinja {% set glusterfs_ip_list = ['10.0.0.1', '10.0.0.2', '10.0.0.3'] %} mount glusterfs volume: mount.mounted: - name: /mnt/glusterfs_mount_point - device: {{ glusterfs_ip_list|join(',') }}:/volume_name - fstype: glusterfs - opts: _netdev,rw,defaults,direct-io-mode=disable - mkmnt: True - persist: True - dump: 0 - pass_num: 0 - device_name_regex: - ({{ glusterfs_ip_list|join('|') }}):/volume_name .. versionadded:: 2016.11.0 extra_mount_invisible_options A list of extra options that are not visible through the ``/proc/self/mountinfo`` interface. If a option is not visible through this interface it will always remount the device. This option extends the builtin ``mount_invisible_options`` list. extra_mount_invisible_keys A list of extra key options that are not visible through the ``/proc/self/mountinfo`` interface. If a key option is not visible through this interface it will always remount the device. This option extends the builtin ``mount_invisible_keys`` list. A good example for a key option is the password option:: password=badsecret extra_mount_ignore_fs_keys A dict of filesystem options which should not force a remount. This will update the internal dictionary. The dict should look like this:: { 'ramfs': ['size'] } extra_mount_translate_options A dict of mount options that gets translated when mounted. To prevent a remount add additional options to the default dictionary. This will update the internal dictionary. The dictionary should look like this:: { 'tcp': 'proto=tcp', 'udp': 'proto=udp' } hidden_opts A list of mount options that will be ignored when considering a remount as part of the state application .. versionadded:: 2015.8.2 ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} update_mount_cache = False if not name: ret['result'] = False ret['comment'] = 'Must provide name to mount.mounted' return ret if not device: ret['result'] = False ret['comment'] = 'Must provide device to mount.mounted' return ret if not fstype: ret['result'] = False ret['comment'] = 'Must provide fstype to mount.mounted' return ret if device_name_regex is None: device_name_regex = [] # Defaults is not a valid option on Mac OS if __grains__['os'] in ['MacOS', 'Darwin'] and opts == 'defaults': opts = 'noowners' # Defaults is not a valid option on AIX if __grains__['os'] in ['AIX']: if opts == 'defaults': opts = '' # Make sure that opts is correct, it can be a list or a comma delimited # string if isinstance(opts, string_types): opts = opts.split(',') if isinstance(hidden_opts, string_types): hidden_opts = hidden_opts.split(',') # remove possible trailing slash if not name == '/': name = name.rstrip('/') device_list = [] # Get the active data active = __salt__['mount.active'](extended=True) real_name = os.path.realpath(name) if device.startswith('/'): if 'bind' in opts and real_name in active: _device = device if active[real_name]['device'].startswith('/'): # Find the device that the bind really points at. while True: if _device in active: _real_device = active[_device]['device'] opts = list(set(opts + active[_device]['opts'] + active[_device]['superopts'])) active[real_name]['opts'].append('bind') break _device = os.path.dirname(_device) real_device = _real_device else: # Remote file systems act differently. if _device in active: opts = list(set(opts + active[_device]['opts'] + active[_device]['superopts'])) active[real_name]['opts'].append('bind') real_device = active[real_name]['device'] else: real_device = os.path.realpath(device) elif device.upper().startswith('UUID='): real_device = device.split('=')[1].strip('"').lower() elif device.upper().startswith('LABEL='): _label = device.split('=')[1] cmd = 'blkid -t LABEL={0}'.format(_label) res = __salt__['cmd.run_all']('{0}'.format(cmd)) if res['retcode'] > 0: ret['comment'] = 'Unable to find device with label {0}.'.format(_label) ret['result'] = False return ret else: # output is a list of entries like this: # /dev/sda: LABEL="<label>" UUID="<uuid>" UUID_SUB="<uuid>" TYPE="btrfs" # exact list of properties varies between filesystems, but we're # only interested in the device in the first column for line in res['stdout']: dev_with_label = line.split(':')[0] device_list.append(dev_with_label) real_device = device_list[0] else: real_device = device # LVS devices have 2 names under /dev: # /dev/mapper/vg--name-lv--name and /dev/vg-name/lv-name # No matter what name is used for mounting, # mount always displays the device as /dev/mapper/vg--name-lv--name # Note the double-dash escaping. # So, let's call that the canonical device name # We should normalize names of the /dev/vg-name/lv-name type to the canonical name lvs_match = re.match(r'^/dev/(?P<vg_name>[^/]+)/(?P<lv_name>[^/]+$)', device) if lvs_match: double_dash_escaped = dict((k, re.sub(r'-', '--', v)) for k, v in six.iteritems(lvs_match.groupdict())) mapper_device = '/dev/mapper/{vg_name}-{lv_name}'.format(**double_dash_escaped) if os.path.exists(mapper_device): real_device = mapper_device # When included in a Salt state file, FUSE devices are prefaced by the # filesystem type and a hash, e.g. sshfs. In the mount list only the # hostname is included. So if we detect that the device is a FUSE device # then we remove the prefaced string so that the device in state matches # the device in the mount list. fuse_match = re.match(r'^\w+\#(?P<device_name>.+)', device) if fuse_match: if 'device_name' in fuse_match.groupdict(): real_device = fuse_match.group('device_name') if real_name in active: if 'superopts' not in active[real_name]: active[real_name]['superopts'] = [] if mount: device_list.append(active[real_name]['device']) device_list.append(os.path.realpath(device_list[0])) alt_device = active[real_name]['alt_device'] if 'alt_device' in active[real_name] else None uuid_device = active[real_name]['device_uuid'] if 'device_uuid' in active[real_name] else None label_device = active[real_name]['device_label'] if 'device_label' in active[real_name] else None if alt_device and alt_device not in device_list: device_list.append(alt_device) if uuid_device and uuid_device not in device_list: device_list.append(uuid_device) if label_device and label_device not in device_list: device_list.append(label_device) if opts: opts.sort() mount_invisible_options = [ '_netdev', 'actimeo', 'bg', 'comment', 'defaults', 'delay_connect', 'direct-io-mode', 'intr', 'loop', 'nointr', 'nobootwait', 'nofail', 'password', 'reconnect', 'retry', 'soft', 'auto', 'users', 'bind', 'nonempty', 'transform_symlinks', 'port', 'backup-volfile-servers', ] if extra_mount_invisible_options: mount_invisible_options.extend(extra_mount_invisible_options) if hidden_opts: mount_invisible_options = list(set(mount_invisible_options) | set(hidden_opts)) # options which are provided as key=value (e.g. password=Zohp5ohb) mount_invisible_keys = [ 'actimeo', 'comment', 'credentials', 'direct-io-mode', 'password', 'port', 'retry', 'secretfile', ] if extra_mount_invisible_keys: mount_invisible_keys.extend(extra_mount_invisible_keys) # Some filesystems have options which should not force a remount. mount_ignore_fs_keys = { 'ramfs': ['size'] } if extra_mount_ignore_fs_keys: mount_ignore_fs_keys.update(extra_mount_ignore_fs_keys) # Some options are translated once mounted mount_translate_options = { 'tcp': 'proto=tcp', 'udp': 'proto=udp', } if extra_mount_translate_options: mount_translate_options.update(extra_mount_translate_options) for opt in opts: if opt in mount_translate_options: opt = mount_translate_options[opt] keyval_option = opt.split('=')[0] if keyval_option in mount_invisible_keys: opt = keyval_option size_match = re.match(r'size=(?P<size_value>[0-9]+)(?P<size_unit>k|m|g)', opt) if size_match: converted_size = _size_convert(size_match) opt = "size={0}k".format(converted_size) # make cifs option user synonym for option username which is reported by /proc/mounts if fstype in ['cifs'] and opt.split('=')[0] == 'user': opt = "username={0}".format(opt.split('=')[1]) if opt.split('=')[0] in mount_ignore_fs_keys.get(fstype, []): opt = opt.split('=')[0] # convert uid/gid to numeric value from user/group name name_id_opts = {'uid': 'user.info', 'gid': 'group.info'} if opt.split('=')[0] in name_id_opts and len(opt.split('=')) > 1: _givenid = opt.split('=')[1] _param = opt.split('=')[0] _id = _givenid if not re.match('[0-9]+$', _givenid): _info = __salt__[name_id_opts[_param]](_givenid) if _info and _param in _info: _id = _info[_param] opt = _param + '=' + six.text_type(_id) _active_superopts = active[real_name].get('superopts', []) for _active_opt in _active_superopts: size_match = re.match(r'size=(?P<size_value>[0-9]+)(?P<size_unit>k|m|g)', _active_opt) if size_match: converted_size = _size_convert(size_match) opt = "size={0}k".format(converted_size) _active_superopts.remove(_active_opt) _active_opt = "size={0}k".format(converted_size) _active_superopts.append(_active_opt) if opt not in active[real_name]['opts'] \ and opt not in _active_superopts \ and opt not in mount_invisible_options \ and opt not in mount_ignore_fs_keys.get(fstype, []) \ and opt not in mount_invisible_keys: if __opts__['test']: ret['result'] = None ret['comment'] = "Remount would be forced because options ({0}) changed".format(opt) return ret else: # Some file systems require umounting and mounting if options change # add others to list that require similiar functionality if fstype in ['nfs', 'cvfs'] or fstype.startswith('fuse'): ret['changes']['umount'] = "Forced unmount and mount because " \ + "options ({0}) changed".format(opt) unmount_result = __salt__['mount.umount'](real_name) if unmount_result is True: mount_result = __salt__['mount.mount'](real_name, device, mkmnt=mkmnt, fstype=fstype, opts=opts) ret['result'] = mount_result else: ret['result'] = False ret['comment'] = 'Unable to unmount {0}: {1}.'.format(real_name, unmount_result) return ret else: ret['changes']['umount'] = "Forced remount because " \ + "options ({0}) changed".format(opt) remount_result = __salt__['mount.remount'](real_name, device, mkmnt=mkmnt, fstype=fstype, opts=opts) ret['result'] = remount_result # Cleanup after the remount, so we # don't write remount into fstab if 'remount' in opts: opts.remove('remount') # Update the cache update_mount_cache = True mount_cache = __salt__['mount.read_mount_cache'](real_name) if 'opts' in mount_cache: _missing = [opt for opt in mount_cache['opts'] if opt not in opts] if _missing: if __opts__['test']: ret['result'] = None ret['comment'] = ('Remount would be forced because' ' options ({0})' 'changed'.format(','.join(_missing))) return ret else: # Some file systems require umounting and mounting if options change # add others to list that require similiar functionality if fstype in ['nfs', 'cvfs'] or fstype.startswith('fuse'): ret['changes']['umount'] = "Forced unmount and mount because " \ + "options ({0}) changed".format(opt) unmount_result = __salt__['mount.umount'](real_name) if unmount_result is True: mount_result = __salt__['mount.mount'](real_name, device, mkmnt=mkmnt, fstype=fstype, opts=opts) ret['result'] = mount_result else: ret['result'] = False ret['comment'] = 'Unable to unmount {0}: {1}.'.format(real_name, unmount_result) return ret else: ret['changes']['umount'] = "Forced remount because " \ + "options ({0}) changed".format(opt) remount_result = __salt__['mount.remount'](real_name, device, mkmnt=mkmnt, fstype=fstype, opts=opts) ret['result'] = remount_result # Cleanup after the remount, so we # don't write remount into fstab if 'remount' in opts: opts.remove('remount') update_mount_cache = True else: update_mount_cache = True if real_device not in device_list: # name matches but device doesn't - need to umount _device_mismatch_is_ignored = None for regex in list(device_name_regex): for _device in device_list: if re.match(regex, _device): _device_mismatch_is_ignored = _device break if _device_mismatch_is_ignored: ret['result'] = True ret['comment'] = "An umount will not be forced " \ + "because device matched device_name_regex: " \ + _device_mismatch_is_ignored elif __opts__['test']: ret['result'] = None ret['comment'] = "An umount would have been forced " \ + "because devices do not match. Watched: " \ + device else: ret['changes']['umount'] = "Forced unmount because devices " \ + "don't match. Wanted: " + device if real_device != device: ret['changes']['umount'] += " (" + real_device + ")" ret['changes']['umount'] += ", current: " + ', '.join(device_list) out = __salt__['mount.umount'](real_name, user=user) active = __salt__['mount.active'](extended=True) if real_name in active: ret['comment'] = "Unable to unmount" ret['result'] = None return ret update_mount_cache = True else: ret['comment'] = 'Target was already mounted' # using a duplicate check so I can catch the results of a umount if real_name not in active: if mount: # The mount is not present! Mount it if __opts__['test']: ret['result'] = None if os.path.exists(name): ret['comment'] = '{0} would be mounted'.format(name) elif mkmnt: ret['comment'] = '{0} would be created and mounted'.format(name) else: ret['comment'] = '{0} does not exist and would not be created'.format(name) return ret if not os.path.exists(name) and not mkmnt: ret['result'] = False ret['comment'] = 'Mount directory is not present' return ret out = __salt__['mount.mount'](name, device, mkmnt, fstype, opts, user=user) active = __salt__['mount.active'](extended=True) update_mount_cache = True if isinstance(out, string_types): # Failed to (re)mount, the state has failed! ret['comment'] = out ret['result'] = False return ret elif real_name in active: # (Re)mount worked! ret['comment'] = 'Target was successfully mounted' ret['changes']['mount'] = True elif not os.path.exists(name): if __opts__['test']: ret['result'] = None if mkmnt: ret['comment'] = '{0} would be created, but not mounted'.format(name) else: ret['comment'] = '{0} does not exist and would neither be created nor mounted'.format(name) elif mkmnt: __salt__['file.mkdir'](name, user=user) ret['comment'] = '{0} was created, not mounted'.format(name) else: ret['comment'] = '{0} not present and not mounted'.format(name) else: if __opts__['test']: ret['result'] = None ret['comment'] = '{0} would not be mounted'.format(name) else: ret['comment'] = '{0} not mounted'.format(name) if persist: if '/etc/fstab' == config: # Override default for Mac OS if __grains__['os'] in ['MacOS', 'Darwin']: config = "/etc/auto_salt" # Override default for AIX elif 'AIX' in __grains__['os']: config = "/etc/filesystems" if __opts__['test']: if __grains__['os'] in ['MacOS', 'Darwin']: out = __salt__['mount.set_automaster'](name, device, fstype, opts, config, test=True) elif __grains__['os'] in ['AIX']: out = __salt__['mount.set_filesystems'](name, device, fstype, opts, mount, config, test=True, match_on=match_on) else: out = __salt__['mount.set_fstab'](name, device, fstype, opts, dump, pass_num, config, test=True, match_on=match_on) if out != 'present': ret['result'] = None if out == 'new': if mount: comment = ('{0} is mounted, but needs to be ' 'written to the fstab in order to be ' 'made persistent.').format(name) else: comment = ('{0} needs to be ' 'written to the fstab in order to be ' 'made persistent.').format(name) elif out == 'change': if mount: comment = ('{0} is mounted, but its fstab entry ' 'must be updated.').format(name) else: comment = ('The {0} fstab entry ' 'must be updated.').format(name) else: ret['result'] = False comment = ('Unable to detect fstab status for ' 'mount point {0} due to unexpected ' 'output \'{1}\' from call to ' 'mount.set_fstab. This is most likely ' 'a bug.').format(name, out) if 'comment' in ret: ret['comment'] = '{0}. {1}'.format(ret['comment'], comment) else: ret['comment'] = comment return ret else: if __grains__['os'] in ['MacOS', 'Darwin']: out = __salt__['mount.set_automaster'](name, device, fstype, opts, config) elif __grains__['os'] in ['AIX']: out = __salt__['mount.set_filesystems'](name, device, fstype, opts, mount, config, match_on=match_on) else: out = __salt__['mount.set_fstab'](name, device, fstype, opts, dump, pass_num, config, match_on=match_on) if update_mount_cache: cache_result = __salt__['mount.write_mount_cache'](real_name, device, mkmnt=mkmnt, fstype=fstype, mount_opts=opts) if out == 'present': ret['comment'] += '. Entry already exists in the fstab.' return ret if out == 'new': ret['changes']['persist'] = 'new' ret['comment'] += '. Added new entry to the fstab.' return ret if out == 'change': ret['changes']['persist'] = 'update' ret['comment'] += '. Updated the entry in the fstab.' return ret if out == 'bad config': ret['result'] = False ret['comment'] += '. However, the fstab was not found.' return ret return ret def swap(name, persist=True, config='/etc/fstab'): ''' Activates a swap device .. code-block:: yaml /root/swapfile: mount.swap .. note:: ``swap`` does not currently support LABEL ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} on_ = __salt__['mount.swaps']() if __salt__['file.is_link'](name): real_swap_device = __salt__['file.readlink'](name) if not real_swap_device.startswith('/'): real_swap_device = '/dev/{0}'.format(os.path.basename(real_swap_device)) else: real_swap_device = name if real_swap_device in on_: ret['comment'] = 'Swap {0} already active'.format(name) elif __opts__['test']: ret['result'] = None ret['comment'] = 'Swap {0} is set to be activated'.format(name) else: __salt__['mount.swapon'](real_swap_device) on_ = __salt__['mount.swaps']() if real_swap_device in on_: ret['comment'] = 'Swap {0} activated'.format(name) ret['changes'] = on_[real_swap_device] else: ret['comment'] = 'Swap {0} failed to activate'.format(name) ret['result'] = False if persist: device_key_name = 'device' if 'AIX' in __grains__['os']: device_key_name = 'dev' if '/etc/fstab' == config: # Override default for AIX config = "/etc/filesystems" fstab_data = __salt__['mount.filesystems'](config) else: fstab_data = __salt__['mount.fstab'](config) if __opts__['test']: if name not in fstab_data and name not in [fstab_data[item]['device'] for item in fstab_data]: ret['result'] = None if name in on_: ret['comment'] = ('Swap {0} is set to be added to the ' 'fstab and to be activated').format(name) return ret if 'none' in fstab_data: if fstab_data['none'][device_key_name] == name and \ fstab_data['none']['fstype'] != 'swap': return ret if 'AIX' in __grains__['os']: out = None ret['result'] = False ret['comment'] += '. swap not present in /etc/filesystems on AIX.' return ret else: # present, new, change, bad config # Make sure the entry is in the fstab out = __salt__['mount.set_fstab']('none', name, 'swap', ['defaults'], 0, 0, config) if out == 'present': return ret if out == 'new': ret['changes']['persist'] = 'new' ret['comment'] += '. Added new entry to the fstab.' return ret if out == 'change': ret['changes']['persist'] = 'update' ret['comment'] += '. Updated the entry in the fstab.' return ret if out == 'bad config': ret['result'] = False ret['comment'] += '. However, the fstab was not found.' return ret return ret def unmounted(name, device=None, config='/etc/fstab', persist=False, user=None, **kwargs): ''' .. versionadded:: 0.17.0 Verify that a device is not mounted name The path to the location where the device is to be unmounted from device The device to be unmounted. This is optional because the device could be mounted in multiple places. .. versionadded:: 2015.5.0 config Set an alternative location for the fstab, Default is ``/etc/fstab`` persist Set if the mount should be purged from the fstab, Default is ``False`` user The user to own the mount; this defaults to the user salt is running as on the minion ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} update_mount_cache = False if not name: ret['result'] = False ret['comment'] = 'Must provide name to mount.unmounted' return ret # Get the active data active = __salt__['mount.active'](extended=True) if name not in active: # Nothing to unmount ret['comment'] = 'Target was already unmounted' if name in active: # The mount is present! Unmount it if __opts__['test']: ret['result'] = None ret['comment'] = ('Mount point {0} is mounted but should not ' 'be').format(name) return ret if device: out = __salt__['mount.umount'](name, device, user=user) update_mount_cache = True else: out = __salt__['mount.umount'](name, user=user) update_mount_cache = True if isinstance(out, string_types): # Failed to umount, the state has failed! ret['comment'] = out ret['result'] = False elif out is True: # umount worked! ret['comment'] = 'Target was successfully unmounted' ret['changes']['umount'] = True else: ret['comment'] = 'Execute set to False, Target was not unmounted' ret['result'] = True if update_mount_cache: cache_result = __salt__['mount.delete_mount_cache'](name) if persist: device_key_name = 'device' # Override default for Mac OS if __grains__['os'] in ['MacOS', 'Darwin'] and config == '/etc/fstab': config = "/etc/auto_salt" fstab_data = __salt__['mount.automaster'](config) elif 'AIX' in __grains__['os']: device_key_name = 'dev' if config == '/etc/fstab': config = "/etc/filesystems" fstab_data = __salt__['mount.filesystems'](config) else: fstab_data = __salt__['mount.fstab'](config) if name not in fstab_data: ret['comment'] += '. fstab entry not found' else: if device: if fstab_data[name][device_key_name] != device: ret['comment'] += '. fstab entry for device {0} not found'.format(device) return ret if __opts__['test']: ret['result'] = None ret['comment'] = ('Mount point {0} is unmounted but needs to ' 'be purged from {1} to be made ' 'persistent').format(name, config) return ret else: if __grains__['os'] in ['MacOS', 'Darwin']: out = __salt__['mount.rm_automaster'](name, device, config) elif 'AIX' in __grains__['os']: out = __salt__['mount.rm_filesystems'](name, device, config) else: out = __salt__['mount.rm_fstab'](name, device, config) if out is not True: ret['result'] = False ret['comment'] += '. Failed to persist purge' else: ret['comment'] += '. Removed target from fstab' ret['changes']['persist'] = 'purged' return ret def mod_watch(name, user=None, **kwargs): ''' The mounted watcher, called to invoke the watch command. .. note:: This state exists to support special handling of the ``watch`` :ref:`requisite <requisites>`. It should not be called directly. Parameters for this function should be set by the state being triggered. name The name of the mount point ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if kwargs['sfun'] == 'mounted': out = __salt__['mount.remount'](name, kwargs['device'], False, kwargs['fstype'], kwargs['opts'], user=user) if out: ret['comment'] = '{0} remounted'.format(name) else: ret['result'] = False ret['comment'] = '{0} failed to remount: {1}'.format(name, out) else: ret['comment'] = 'Watch not supported in {0} at this time'.format(kwargs['sfun']) return ret def _convert_to(maybe_device, convert_to): ''' Convert a device name, UUID or LABEL to a device name, UUID or LABEL. Return the fs_spec required for fstab. ''' # Fast path. If we already have the information required, we can # save one blkid call if not convert_to or \ (convert_to == 'device' and maybe_device.startswith('/')) or \ maybe_device.startswith('{}='.format(convert_to.upper())): return maybe_device # Get the device information if maybe_device.startswith('/'): blkid = __salt__['disk.blkid'](maybe_device) else: blkid = __salt__['disk.blkid'](token=maybe_device) result = None if len(blkid) == 1: if convert_to == 'device': result = list(blkid.keys())[0] else: key = convert_to.upper() result = '{}={}'.format(key, list(blkid.values())[0][key]) return result def fstab_present(name, fs_file, fs_vfstype, fs_mntops='defaults', fs_freq=0, fs_passno=0, mount_by=None, config='/etc/fstab', mount=True, match_on='auto', not_change=False): '''Makes sure that a fstab mount point is pressent. name The name of block device. Can be any valid fs_spec value. fs_file Mount point (target) for the filesystem. fs_vfstype The type of the filesystem (e.g. ext4, xfs, btrfs, ...) fs_mntops The mount options associated with the filesystem. Default is ``defaults``. fs_freq Field is used by dump to determine which fs need to be dumped. Default is ``0`` fs_passno Field is used by fsck to determine the order in which filesystem checks are done at boot time. Default is ``0`` mount_by Select the final value for fs_spec. Can be [``None``, ``device``, ``label``, ``uuid``, ``partlabel``, ``partuuid``]. If ``None``, the value for fs_spect will be the parameter ``name``, in other case will search the correct value based on the device name. For example, for ``uuid``, the value for fs_spec will be of type 'UUID=xxx' instead of the device name set in ``name``. config Place where the fstab file lives. Default is ``/etc/fstab`` mount Set if the mount should be mounted immediately. Default is ``True`` match_on A name or list of fstab properties on which this state should be applied. Default is ``auto``, a special value indicating to guess based on fstype. In general, ``auto`` matches on name for recognized special devices and device otherwise. not_change By default, if the entry is found in the fstab file but is different from the expected content (like different options), the entry will be replaced with the correct content. If this parameter is set to ``True`` and the line is found, the original content will be preserved. ''' ret = { 'name': name, 'result': False, 'changes': {}, 'comment': [], } # Adjust fs_mntops based on the OS if fs_mntops == 'defaults': if __grains__['os'] in ['MacOS', 'Darwin']: fs_mntops = 'noowners' elif __grains__['os'] == 'AIX': fs_mntops = '' # Adjust the config file based on the OS if config == '/etc/fstab': if __grains__['os'] in ['MacOS', 'Darwin']: config = '/etc/auto_salt' elif __grains__['os'] == 'AIX': config = '/etc/filesystems' if not fs_file == '/': fs_file = fs_file.rstrip('/') fs_spec = _convert_to(name, mount_by) # Validate that the device is valid after the conversion if not fs_spec: msg = 'Device {} cannot be converted to {}' ret['comment'].append(msg.format(name, mount_by)) return ret if __opts__['test']: if __grains__['os'] in ['MacOS', 'Darwin']: out = __salt__['mount.set_automaster'](name=fs_file, device=fs_spec, fstype=fs_vfstype, opts=fs_mntops, config=config, test=True, not_change=not_change) elif __grains__['os'] == 'AIX': out = __salt__['mount.set_filesystems'](name=fs_file, device=fs_spec, fstype=fs_vfstype, opts=fs_mntops, mount=mount, config=config, test=True, match_on=match_on, not_change=not_change) else: out = __salt__['mount.set_fstab'](name=fs_file, device=fs_spec, fstype=fs_vfstype, opts=fs_mntops, dump=fs_freq, pass_num=fs_passno, config=config, test=True, match_on=match_on, not_change=not_change) ret['result'] = None if out == 'present': msg = '{} entry is already in {}.' ret['comment'].append(msg.format(fs_file, config)) elif out == 'new': msg = '{} entry will be written in {}.' ret['comment'].append(msg.format(fs_file, config)) elif out == 'change': msg = '{} entry will be updated in {}.' ret['comment'].append(msg.format(fs_file, config)) else: ret['result'] = False msg = '{} entry cannot be created in {}: {}.' ret['comment'].append(msg.format(fs_file, config, out)) return ret if __grains__['os'] in ['MacOS', 'Darwin']: out = __salt__['mount.set_automaster'](name=fs_file, device=fs_spec, fstype=fs_vfstype, opts=fs_mntops, config=config, not_change=not_change) elif __grains__['os'] == 'AIX': out = __salt__['mount.set_filesystems'](name=fs_file, device=fs_spec, fstype=fs_vfstype, opts=fs_mntops, mount=mount, config=config, match_on=match_on, not_change=not_change) else: out = __salt__['mount.set_fstab'](name=fs_file, device=fs_spec, fstype=fs_vfstype, opts=fs_mntops, dump=fs_freq, pass_num=fs_passno, config=config, match_on=match_on, not_change=not_change) ret['result'] = True if out == 'present': msg = '{} entry was already in {}.' ret['comment'].append(msg.format(fs_file, config)) elif out == 'new': ret['changes']['persist'] = out msg = '{} entry added in {}.' ret['comment'].append(msg.format(fs_file, config)) elif out == 'change': ret['changes']['persist'] = out msg = '{} entry updated in {}.' ret['comment'].append(msg.format(fs_file, config)) else: ret['result'] = False msg = '{} entry cannot be changed in {}: {}.' ret['comment'].append(msg.format(fs_file, config, out)) return ret def fstab_absent(name, fs_file, mount_by=None, config='/etc/fstab'): ''' Makes sure that a fstab mount point is absent. name The name of block device. Can be any valid fs_spec value. fs_file Mount point (target) for the filesystem. mount_by Select the final value for fs_spec. Can be [``None``, ``device``, ``label``, ``uuid``, ``partlabel``, ``partuuid``]. If ``None``, the value for fs_spect will be the parameter ``name``, in other case will search the correct value based on the device name. For example, for ``uuid``, the value for fs_spec will be of type 'UUID=xxx' instead of the device name set in ``name``. config Place where the fstab file lives ''' ret = { 'name': name, 'result': False, 'changes': {}, 'comment': [], } # Adjust the config file based on the OS if config == '/etc/fstab': if __grains__['os'] in ['MacOS', 'Darwin']: config = '/etc/auto_salt' elif __grains__['os'] == 'AIX': config = '/etc/filesystems' if not fs_file == '/': fs_file = fs_file.rstrip('/') fs_spec = _convert_to(name, mount_by) if __grains__['os'] in ['MacOS', 'Darwin']: fstab_data = __salt__['mount.automaster'](config) elif __grains__['os'] == 'AIX': fstab_data = __salt__['mount.filesystems'](config) else: fstab_data = __salt__['mount.fstab'](config) if __opts__['test']: ret['result'] = None if fs_file not in fstab_data: msg = '{} entry is already missing in {}.' ret['comment'].append(msg.format(fs_file, config)) else: msg = '{} entry will be removed from {}.' ret['comment'].append(msg.format(fs_file, config)) return ret if fs_file in fstab_data: if __grains__['os'] in ['MacOS', 'Darwin']: out = __salt__['mount.rm_automaster'](name=fs_file, device=fs_spec, config=config) elif __grains__['os'] == 'AIX': out = __salt__['mount.rm_filesystems'](name=fs_file, device=fs_spec, config=config) else: out = __salt__['mount.rm_fstab'](name=fs_file, device=fs_spec, config=config) if out is not True: ret['result'] = False msg = '{} entry failed when removing from {}.' ret['comment'].append(msg.format(fs_file, config)) else: ret['result'] = True ret['changes']['persist'] = 'removed' msg = '{} entry removed from {}.' ret['comment'].append(msg.format(fs_file, config)) else: ret['result'] = True msg = '{} entry is already missing in {}.' ret['comment'].append(msg.format(fs_file, config)) return ret
the-stack_0_27920
# alias to keep the 'bytecode' variable free import sys from _pydevd_frame_eval.vendored import bytecode as _bytecode from _pydevd_frame_eval.vendored.bytecode.instr import UNSET, Label, SetLineno, Instr from _pydevd_frame_eval.vendored.bytecode.flags import infer_flags class BaseBytecode: def __init__(self): self.argcount = 0 if sys.version_info > (3, 8): self.posonlyargcount = 0 self.kwonlyargcount = 0 self.first_lineno = 1 self.name = "<module>" self.filename = "<string>" self.docstring = UNSET self.cellvars = [] # we cannot recreate freevars from instructions because of super() # special-case self.freevars = [] self._flags = _bytecode.CompilerFlags(0) def _copy_attr_from(self, bytecode): self.argcount = bytecode.argcount if sys.version_info > (3, 8): self.posonlyargcount = bytecode.posonlyargcount self.kwonlyargcount = bytecode.kwonlyargcount self.flags = bytecode.flags self.first_lineno = bytecode.first_lineno self.name = bytecode.name self.filename = bytecode.filename self.docstring = bytecode.docstring self.cellvars = list(bytecode.cellvars) self.freevars = list(bytecode.freevars) def __eq__(self, other): if type(self) != type(other): return False if self.argcount != other.argcount: return False if sys.version_info > (3, 8): if self.posonlyargcount != other.posonlyargcount: return False if self.kwonlyargcount != other.kwonlyargcount: return False if self.flags != other.flags: return False if self.first_lineno != other.first_lineno: return False if self.filename != other.filename: return False if self.name != other.name: return False if self.docstring != other.docstring: return False if self.cellvars != other.cellvars: return False if self.freevars != other.freevars: return False if self.compute_stacksize() != other.compute_stacksize(): return False return True @property def flags(self): return self._flags @flags.setter def flags(self, value): if not isinstance(value, _bytecode.CompilerFlags): value = _bytecode.CompilerFlags(value) self._flags = value def update_flags(self, *, is_async=None): self.flags = infer_flags(self, is_async) class _BaseBytecodeList(BaseBytecode, list): """List subclass providing type stable slicing and copying. """ def __getitem__(self, index): value = super().__getitem__(index) if isinstance(index, slice): value = type(self)(value) value._copy_attr_from(self) return value def copy(self): new = type(self)(super().copy()) new._copy_attr_from(self) return new def legalize(self): """Check that all the element of the list are valid and remove SetLineno. """ lineno_pos = [] set_lineno = None current_lineno = self.first_lineno for pos, instr in enumerate(self): if isinstance(instr, SetLineno): set_lineno = instr.lineno lineno_pos.append(pos) continue # Filter out Labels if not isinstance(instr, Instr): continue if set_lineno is not None: instr.lineno = set_lineno elif instr.lineno is None: instr.lineno = current_lineno else: current_lineno = instr.lineno for i in reversed(lineno_pos): del self[i] def __iter__(self): instructions = super().__iter__() for instr in instructions: self._check_instr(instr) yield instr def _check_instr(self, instr): raise NotImplementedError() class _InstrList(list): def _flat(self): instructions = [] labels = {} jumps = [] offset = 0 for index, instr in enumerate(self): if isinstance(instr, Label): instructions.append("label_instr%s" % index) labels[instr] = offset else: if isinstance(instr, Instr) and isinstance(instr.arg, Label): target_label = instr.arg instr = _bytecode.ConcreteInstr(instr.name, 0, lineno=instr.lineno) jumps.append((target_label, instr)) instructions.append(instr) offset += 1 for target_label, instr in jumps: instr.arg = labels[target_label] return instructions def __eq__(self, other): if not isinstance(other, _InstrList): other = _InstrList(other) return self._flat() == other._flat() class Bytecode(_InstrList, _BaseBytecodeList): def __init__(self, instructions=()): BaseBytecode.__init__(self) self.argnames = [] for instr in instructions: self._check_instr(instr) self.extend(instructions) def __iter__(self): instructions = super().__iter__() for instr in instructions: self._check_instr(instr) yield instr def _check_instr(self, instr): if not isinstance(instr, (Label, SetLineno, Instr)): raise ValueError( "Bytecode must only contain Label, " "SetLineno, and Instr objects, " "but %s was found" % type(instr).__name__ ) def _copy_attr_from(self, bytecode): super()._copy_attr_from(bytecode) if isinstance(bytecode, Bytecode): self.argnames = bytecode.argnames @staticmethod def from_code(code): concrete = _bytecode.ConcreteBytecode.from_code(code) return concrete.to_bytecode() def compute_stacksize(self): cfg = _bytecode.ControlFlowGraph.from_bytecode(self) return cfg.compute_stacksize() def to_code(self, compute_jumps_passes=None, stacksize=None): bc = self.to_concrete_bytecode(compute_jumps_passes=compute_jumps_passes) return bc.to_code(stacksize=stacksize) def to_concrete_bytecode(self, compute_jumps_passes=None): converter = _bytecode._ConvertBytecodeToConcrete(self) return converter.to_concrete_bytecode(compute_jumps_passes=compute_jumps_passes)
the-stack_0_27921
# Copyright The IETF Trust 2013-2020, All Rights Reserved # -*- coding: utf-8 -*- from collections import defaultdict import datetime import io import os import re from tempfile import mkstemp from django.http import Http404 from django.db.models import F, Prefetch from django.conf import settings from django.contrib.auth.models import AnonymousUser from django.urls import reverse from django.shortcuts import get_object_or_404 from django.template.loader import render_to_string import debug # pyflakes:ignore from ietf.doc.models import Document from ietf.group.models import Group from ietf.group.utils import can_manage_some_groups, can_manage_group from ietf.ietfauth.utils import has_role, user_is_person from ietf.liaisons.utils import get_person_for_user from ietf.mailtrigger.utils import gather_address_lists from ietf.person.models import Person from ietf.meeting.models import Meeting, Schedule, TimeSlot, SchedTimeSessAssignment, ImportantDate, SchedulingEvent, Session from ietf.meeting.utils import session_requested_by, add_event_info_to_session_qs from ietf.name.models import ImportantDateName, SessionPurposeName from ietf.utils import log from ietf.utils.history import find_history_replacements_active_at from ietf.utils.mail import send_mail from ietf.utils.pipe import pipe from ietf.utils.text import xslugify def get_meeting(num=None,type_in=['ietf',],days=28): meetings = Meeting.objects if type_in: meetings = meetings.filter(type__in=type_in) if num == None: meetings = meetings.filter(date__gte=datetime.datetime.today()-datetime.timedelta(days=days)).order_by('date') else: meetings = meetings.filter(number=num) if meetings.exists(): return meetings.first() else: raise Http404("No such meeting found: %s" % num) def get_current_ietf_meeting(): meetings = Meeting.objects.filter(type='ietf',date__gte=datetime.datetime.today()-datetime.timedelta(days=31)).order_by('date') return meetings.first() def get_current_ietf_meeting_num(): return get_current_ietf_meeting().number def get_ietf_meeting(num=None): if num: meeting = Meeting.objects.filter(number=num).first() else: meeting = get_current_ietf_meeting() return meeting def get_schedule(meeting, name=None): if name is None: schedule = meeting.schedule else: schedule = get_object_or_404(meeting.schedule_set, name=name) return schedule # seems this belongs in ietf/person/utils.py? def get_person_by_email(email): # email == None may actually match people who haven't set an email! if email is None: return None return Person.objects.filter(email__address=email).distinct().first() def get_schedule_by_name(meeting, owner, name): if owner is not None: return meeting.schedule_set.filter(owner = owner, name = name).first() else: return meeting.schedule_set.filter(name = name).first() def preprocess_assignments_for_agenda(assignments_queryset, meeting, extra_prefetches=()): """Add computed properties to assignments For each assignment a, adds a.start_timestamp a.end_timestamp a.session.historic_group a.session.historic_parent a.session.rescheduled_to (if rescheduled) a.session.prefetched_active_materials """ assignments_queryset = assignments_queryset.prefetch_related( 'timeslot', 'timeslot__type', 'timeslot__meeting', 'timeslot__location', 'timeslot__location__floorplan', 'timeslot__location__urlresource_set', Prefetch( "session", queryset=add_event_info_to_session_qs(Session.objects.all().prefetch_related( 'group', 'group__charter', 'group__charter__group', Prefetch('materials', queryset=Document.objects.exclude(states__type=F("type"), states__slug='deleted').order_by('sessionpresentation__order').prefetch_related('states'), to_attr='prefetched_active_materials' ) )) ), *extra_prefetches ) # removed list(); it was consuming a very large amount of processor time # assignments = list(assignments_queryset) # make sure we're set in stone assignments = assignments_queryset meeting_time = datetime.datetime.combine(meeting.date, datetime.time()) # replace groups with historic counterparts groups = [ ] for a in assignments: if a.session: a.session.historic_group = None a.session.order_number = None if a.session.group and a.session.group not in groups: groups.append(a.session.group) sessions_for_groups = defaultdict(list) for a in assignments: if a.session and a.session.group: sessions_for_groups[(a.session.group, a.session.type_id)].append(a) group_replacements = find_history_replacements_active_at(groups, meeting_time) parent_id_set = set() for a in assignments: if a.session and a.session.group: a.session.historic_group = group_replacements.get(a.session.group_id) if a.session.historic_group: a.session.historic_group.historic_parent = None if a.session.historic_group.parent_id: parent_id_set.add(a.session.historic_group.parent_id) l = sessions_for_groups.get((a.session.group, a.session.type_id), []) a.session.order_number = l.index(a) + 1 if a in l else 0 parents = Group.objects.filter(pk__in=parent_id_set) parent_replacements = find_history_replacements_active_at(parents, meeting_time) timeslot_by_session_pk = {a.session_id: a.timeslot for a in assignments} for a in assignments: if a.session and a.session.historic_group and a.session.historic_group.parent_id: a.session.historic_group.historic_parent = parent_replacements.get(a.session.historic_group.parent_id) if a.session.current_status == 'resched': a.session.rescheduled_to = timeslot_by_session_pk.get(a.session.tombstone_for_id) for d in a.session.prefetched_active_materials: # make sure these are precomputed with the meeting instead # of having to look it up d.get_href(meeting=meeting) d.get_versionless_href(meeting=meeting) a.start_timestamp = int(a.timeslot.utc_start_time().timestamp()) a.end_timestamp = int(a.timeslot.utc_end_time().timestamp()) return assignments class AgendaKeywordTool: """Base class for agenda keyword-related organizers The purpose of this class is to hold utility methods and data needed by keyword generation helper classes. It ensures consistency of, e.g., definitions of when to use legacy keywords or what timeslot types should be used to define filters. """ def __init__(self, *, assignments=None, sessions=None): # n.b., single star argument means only keyword parameters are allowed when calling constructor if assignments is not None and sessions is None: self.assignments = assignments self.sessions = [a.session for a in self.assignments if a.session] elif sessions is not None and assignments is None: self.assignments = None self.sessions = sessions else: raise RuntimeError('Exactly one of assignments or sessions must be specified') self.meeting = self.sessions[0].meeting if len(self.sessions) > 0 else None def _use_legacy_keywords(self): """Should legacy keyword handling be used for this meeting?""" # Only IETF meetings need legacy handling. These are identified # by having a purely numeric meeting.number. return (self.meeting is not None and self.meeting.number.isdigit() and int(self.meeting.number) <= settings.MEETING_LEGACY_OFFICE_HOURS_END) # Helper methods @staticmethod def _get_group(s): """Get group of a session, handling historic groups""" return getattr(s, 'historic_group', s.group) def _get_group_parent(self, s): """Get parent of a group or parent of a session's group, handling historic groups""" g = self._get_group(s) if isinstance(s, Session) else s # accept a group or a session arg return getattr(g, 'historic_parent', g.parent) def _purpose_keyword(self, purpose): """Get the keyword corresponding to a session purpose""" return purpose.slug.lower() def _group_keyword(self, group): """Get the keyword corresponding to a session group""" return group.acronym.lower() def _session_name_keyword(self, session): """Get the keyword identifying a session by name""" return xslugify(session.name) if session.name else None @property def filterable_purposes(self): return SessionPurposeName.objects.exclude(slug='none').order_by('name') class AgendaFilterOrganizer(AgendaKeywordTool): """Helper class to organize agenda filters given a list of assignments or sessions Either assignments or sessions must be specified (but not both). Keywords should be applied to these items before calling either of the 'get_' methods, otherwise some special filters may not be included (e.g., 'BoF' or 'Plenary'). If historic_group and/or historic_parent attributes are present, these will be used instead of group/parent. The organizer will process its inputs once, when one of its get_ methods is first called. Terminology: * column: group of related buttons, usually with a heading button. * heading: button at the top of a column, e.g. an area. Has a keyword that applies to all in its column. * category: a set of columns displayed as separate from other categories * group filters: filters whose keywords derive from the group owning the session, such as for working groups * non-group filters: filters whose keywords come from something other than a session's group * special filters: group filters of type "special" that have no heading, end up in the catch-all column * extra filters: ad hoc filters created based on the extra_labels list, go in the catch-all column * catch-all column: column with no heading where extra filters and special filters are gathered """ # group acronyms in this list will never be used as filter buttons exclude_acronyms = ('iesg', 'ietf', 'secretariat') # extra keywords to include in the no-heading column if they apply to any sessions extra_labels = ('BoF',) # group types whose acronyms should be word-capitalized capitalized_group_types = ('team',) # group types whose acronyms should be all-caps uppercased_group_types = ('area', 'ietf', 'irtf') # check that the group labeling sets are disjoint assert(set(capitalized_group_types).isdisjoint(uppercased_group_types)) # group acronyms that need special handling special_group_labels = dict(edu='EDU', iepg='IEPG') def __init__(self, *, single_category=False, **kwargs): super(AgendaFilterOrganizer, self).__init__(**kwargs) self.single_category = single_category # filled in when _organize_filters() is called self.filter_categories = None self.special_filters = None if self._use_legacy_keywords(): self.extra_labels += ('Plenary',) # need this when not using session purpose def get_non_area_keywords(self): """Get list of any 'non-area' (aka 'special') keywords These are the keywords corresponding to the right-most, headingless button column. """ if self.special_filters is None: self._organize_filters() return [sf['keyword'] for sf in self.special_filters['children']] def get_filter_categories(self): """Get a list of filter categories If single_category is True, this will be a list with one element. Otherwise it may have multiple elements. Each element is a list of filter columns. """ if self.filter_categories is None: self._organize_filters() return self.filter_categories def _organize_filters(self): """Process inputs to construct and categorize filter lists""" headings, special = self._group_filter_headings() self.filter_categories = self._categorize_group_filters(headings) # Create an additional category with non-group filters and special/extra filters non_group_category = self._non_group_filters() # special filters include self.extra_labels and any 'special' group filters self.special_filters = self._extra_filters() for g in special: self.special_filters['children'].append(self._group_filter_entry(g)) if len(self.special_filters['children']) > 0: self.special_filters['children'].sort(key=self._group_sort_key) non_group_category.append(self.special_filters) # if we have any additional filters, add them if len(non_group_category) > 0: if self.single_category: # if a single category is requested, just add them to that category self.filter_categories[0].extend(non_group_category) else: # otherwise add these as a separate category self.filter_categories.append(non_group_category) def _group_filter_headings(self): """Collect group-based filters Output is a tuple (dict(group->set), set). The dict keys are groups to be used as headings with sets of child groups as associated values. The set is 'special' groups that have no heading group. """ # groups in the schedule that have a historic_parent group groups = set(self._get_group(s) for s in self.sessions if s and self._get_group(s)) log.assertion('len(groups) == len(set(g.acronym for g in groups))') # no repeated acros group_parents = set(self._get_group_parent(g) for g in groups if self._get_group_parent(g)) log.assertion('len(group_parents) == len(set(gp.acronym for gp in group_parents))') # no repeated acros all_groups = groups.union(group_parents) all_groups.difference_update([g for g in all_groups if g.acronym in self.exclude_acronyms]) headings = {g: set() for g in all_groups if g.features.agenda_filter_type_id == 'heading'} special = set(g for g in all_groups if g.features.agenda_filter_type_id == 'special') for g in groups: if g.features.agenda_filter_type_id == 'normal': # normal filter group with a heading parent goes in that column p = self._get_group_parent(g) if p in headings: headings[p].add(g) else: # normal filter group with no heading parent is 'special' special.add(g) return headings, special def _categorize_group_filters(self, headings): """Categorize the group-based filters Returns a list of one or more categories of filter columns. When single_category is True, it will always be only one category. """ area_category = [] # headings are area groups non_area_category = [] # headings are non-area groups for h in headings: if h.type_id == 'area' or self.single_category: area_category.append(self._group_filter_column(h, headings[h])) else: non_area_category.append(self._group_filter_column(h, headings[h])) area_category.sort(key=self._group_sort_key) if self.single_category: return [area_category] non_area_category.sort(key=self._group_sort_key) return [area_category, non_area_category] def _non_group_filters(self): """Get list of non-group filter columns Empty columns will be omitted. """ if self.sessions is None: sessions = [a.session for a in self.assignments] else: sessions = self.sessions # Call legacy version for older meetings if self._use_legacy_keywords(): return self._legacy_non_group_filters(sessions) # Not using legacy version filter_cols = [] for purpose in self.filterable_purposes: if purpose.slug == 'regular': continue # Map label to its keyword, discarding duplicate labels. # This does what we want as long as sessions with the same # name and purpose belong to the same group. sessions_by_name = { session.name: session for session in sessions if session.purpose == purpose } if len(sessions_by_name) > 0: # keyword needs to match what's tagged in filter_keywords_for_session() heading_kw = self._purpose_keyword(purpose) children = [] for name, session in sessions_by_name.items(): children.append(self._filter_entry( label=name, keyword=self._session_name_keyword(session), toggled_by=[self._group_keyword(session.group)] if session.group else None, is_bof=False, )) column = self._filter_column( label=purpose.name, keyword=heading_kw, children=children, ) filter_cols.append(column) return filter_cols def _legacy_non_group_filters(self, sessions): """Get list of non-group filters for older meetings Returns a list of filter columns """ office_hours_items = set() suffix = ' office hours' for s in sessions: if s.name.lower().endswith(suffix): office_hours_items.add((s.name[:-len(suffix)].strip(), s.group)) headings = [] # currently we only do office hours if len(office_hours_items) > 0: column = self._filter_column( label='Office Hours', keyword='officehours', children=[ self._filter_entry( label=label, keyword=f'{label.lower().replace(" ", "")}-officehours', toggled_by=[self._group_keyword(group)] if group else None, is_bof=False, ) for label, group in sorted(office_hours_items, key=lambda item: item[0].upper()) ]) headings.append(column) return headings def _extra_filters(self): """Get list of filters corresponding to self.extra_labels""" item_source = self.assignments or self.sessions or [] candidates = set(self.extra_labels) return self._filter_column( label=None, keyword=None, children=[ self._filter_entry(label=label, keyword=xslugify(label), toggled_by=[], is_bof=False) for label in candidates if any( # Keep only those that will affect at least one session [label.lower() in item.filter_keywords for item in item_source] )] ) @staticmethod def _filter_entry(label, keyword, is_bof, toggled_by=None): """Construct a filter entry representation""" # get our own copy of the list for toggled_by if toggled_by is None: toggled_by = [] if is_bof: toggled_by = ['bof'] + toggled_by return dict( label=label, keyword=keyword, toggled_by=toggled_by, is_bof=is_bof, ) def _filter_column(self, label, keyword, children): """Construct a filter column given a label, keyword, and list of child entries""" entry = self._filter_entry(label, keyword, False) # heading entry['children'] = children # all children should be controlled by the heading keyword if keyword: for child in children: if keyword not in child['toggled_by']: child['toggled_by'] = [keyword] + child['toggled_by'] return entry def _group_label(self, group): """Generate a label for a group filter button""" label = group.acronym if label in self.special_group_labels: return self.special_group_labels[label] elif group.type_id in self.capitalized_group_types: return label.capitalize() elif group.type_id in self.uppercased_group_types: return label.upper() return label def _group_filter_entry(self, group): """Construct a filter_entry for a group filter button""" return self._filter_entry( label=self._group_label(group), keyword=self._group_keyword(group), toggled_by=[self._group_keyword(group.parent)] if group.parent else None, is_bof=group.is_bof(), ) def _group_filter_column(self, heading, children): """Construct a filter column given a heading group and a list of its child groups""" return self._filter_column( label=None if heading is None else self._group_label(heading), keyword=self._group_keyword(heading), children=sorted([self._group_filter_entry(g) for g in children], key=self._group_sort_key), ) @staticmethod def _group_sort_key(g): return 'zzzzzzzz' if g is None else g['label'].upper() # sort blank to the end class AgendaKeywordTagger(AgendaKeywordTool): """Class for applying keywords to agenda timeslot assignments. This is the other side of the agenda filtering: AgendaFilterOrganizer generates the filter buttons, this applies keywords to the entries being filtered. """ def apply(self): """Apply tags to sessions / assignments""" if self.assignments is not None: self._tag_assignments_with_filter_keywords() else: self._tag_sessions_with_filter_keywords() def apply_session_keywords(self): """Tag each item with its session-specific keyword""" if self.assignments is not None: for a in self.assignments: a.session_keyword = self.filter_keyword_for_specific_session(a.session) else: for s in self.sessions: s.session_keyword = self.filter_keyword_for_specific_session(s) def _is_regular_agenda_filter_group(self, group): """Should this group appear in the 'regular' agenda filter button lists?""" parent = self._get_group_parent(group) return ( group.features.agenda_filter_type_id == 'normal' and parent and parent.features.agenda_filter_type_id == 'heading' ) def _tag_assignments_with_filter_keywords(self): """Add keywords for agenda filtering Keywords are all lower case. """ for a in self.assignments: a.filter_keywords = self._filter_keywords_for_assignment(a) a.filter_keywords = sorted(list(a.filter_keywords)) def _tag_sessions_with_filter_keywords(self): for s in self.sessions: s.filter_keywords = self._filter_keywords_for_session(s) s.filter_keywords = sorted(list(s.filter_keywords)) @staticmethod def _legacy_extra_session_keywords(session): """Get extra keywords for a session at a legacy meeting""" extra = [] if session.type_id == 'plenary': extra.append('plenary') office_hours_match = re.match(r'^ *\w+(?: +\w+)* +office hours *$', session.name, re.IGNORECASE) if office_hours_match is not None: suffix = 'officehours' extra.extend([ 'officehours', session.name.lower().replace(' ', '')[:-len(suffix)] + '-officehours', ]) return extra def _filter_keywords_for_session(self, session): keywords = set() if session.purpose in self.filterable_purposes: keywords.add(self._purpose_keyword(session.purpose)) group = self._get_group(session) if group is not None: if group.state_id == 'bof': keywords.add('bof') keywords.add(self._group_keyword(group)) specific_kw = self.filter_keyword_for_specific_session(session) if specific_kw is not None: keywords.add(specific_kw) kw = self._session_name_keyword(session) if kw: keywords.add(kw) # Only sessions belonging to "regular" groups should respond to the # parent group filter keyword (often the 'area'). This must match # the test used by the agenda() view to decide whether a group # gets an area or non-area filter button. if self._is_regular_agenda_filter_group(group): area = self._get_group_parent(group) if area is not None: keywords.add(self._group_keyword(area)) if self._use_legacy_keywords(): keywords.update(self._legacy_extra_session_keywords(session)) return sorted(keywords) def _filter_keywords_for_assignment(self, assignment): keywords = self._filter_keywords_for_session(assignment.session) return sorted(keywords) def filter_keyword_for_specific_session(self, session): """Get keyword that identifies a specific session Returns None if the session cannot be selected individually. """ group = self._get_group(session) if group is None: return None kw = self._group_keyword(group) # start with this token = session.docname_token_only_for_multiple() return kw if token is None else '{}-{}'.format(kw, token) def read_session_file(type, num, doc): # XXXX FIXME: the path fragment in the code below should be moved to # settings.py. The *_PATH settings should be generalized to format() # style python format, something like this: # DOC_PATH_FORMAT = { "agenda": "/foo/bar/agenda-{meeting.number}/agenda-{meeting-number}-{doc.group}*", } # # FIXME: uploaded_filename should be replaced with a function call that computes names that are fixed path = os.path.join(settings.AGENDA_PATH, "%s/%s/%s" % (num, type, doc.uploaded_filename)) if doc.uploaded_filename and os.path.exists(path): with io.open(path, 'rb') as f: return f.read(), path else: return None, path def read_agenda_file(num, doc): return read_session_file('agenda', num, doc) def convert_draft_to_pdf(doc_name): inpath = os.path.join(settings.IDSUBMIT_REPOSITORY_PATH, doc_name + ".txt") outpath = os.path.join(settings.INTERNET_DRAFT_PDF_PATH, doc_name + ".pdf") try: infile = io.open(inpath, "r") except IOError: return t,tempname = mkstemp() os.close(t) tempfile = io.open(tempname, "w") pageend = 0; newpage = 0; formfeed = 0; for line in infile: line = re.sub("\r","",line) line = re.sub("[ \t]+$","",line) if re.search(r"\[?[Pp]age [0-9ivx]+\]?[ \t]*$",line): pageend=1 tempfile.write(line) continue if re.search("^[ \t]*\f",line): formfeed=1 tempfile.write(line) continue if re.search("^ *INTERNET.DRAFT.+[0-9]+ *$",line) or re.search("^ *Internet.Draft.+[0-9]+ *$",line) or re.search("^draft-[-a-z0-9_.]+.*[0-9][0-9][0-9][0-9]$",line) or re.search("^RFC.+[0-9]+$",line): newpage=1 if re.search("^[ \t]*$",line) and pageend and not newpage: continue if pageend and newpage and not formfeed: tempfile.write("\f") pageend=0 formfeed=0 newpage=0 tempfile.write(line) infile.close() tempfile.close() t,psname = mkstemp() os.close(t) pipe("enscript --margins 76::76: -B -q -p "+psname + " " +tempname) os.unlink(tempname) pipe("ps2pdf "+psname+" "+outpath) os.unlink(psname) def schedule_permissions(meeting, schedule, user): # do this in positive logic. cansee = False canedit = False secretariat = False if has_role(user, 'Secretariat'): cansee = True secretariat = True # NOTE: secretariat is not superuser for edit! elif schedule.public: cansee = True elif schedule.visible and has_role(user, ['Area Director', 'IAB Chair', 'IRTF Chair']): cansee = True if user_is_person(user, schedule.owner): cansee = True canedit = not schedule.is_official_record return cansee, canedit, secretariat # ------------------------------------------------- # Interim Meeting Helpers # ------------------------------------------------- def can_approve_interim_request(meeting, user): '''Returns True if the user has permissions to approve an interim meeting request''' if not user or isinstance(user,AnonymousUser): return False if meeting.type.slug != 'interim': return False if has_role(user, 'Secretariat'): return True person = get_person_for_user(user) session = meeting.session_set.first() if not session: return False group = session.group if group.type.slug in ['wg','ag']: if group.parent.role_set.filter(name='ad', person=person) or group.role_set.filter(name='ad', person=person): return True if group.type.slug in ['rg','rag'] and group.parent.role_set.filter(name='chair', person=person): return True if group.type.slug == 'program': if person.role_set.filter(group__acronym='iab', name='member'): return True return False def can_edit_interim_request(meeting, user): '''Returns True if the user can edit the interim meeting request''' if meeting.type.slug != 'interim': return False if has_role(user, 'Secretariat'): # Consider removing - can_manage_group should handle this return True session = meeting.session_set.first() if not session: return False group = session.group if can_manage_group(user, group): return True elif can_approve_interim_request(meeting, user): return True else: return False def can_request_interim_meeting(user): return can_manage_some_groups(user) def can_view_interim_request(meeting, user): '''Returns True if the user can see the pending interim request in the pending interim view''' if meeting.type.slug != 'interim': return False session = meeting.session_set.first() if not session: return False group = session.group return can_manage_group(user, group) def create_interim_meeting(group, date, city='', country='', timezone='UTC', person=None): """Helper function to create interim meeting and associated schedule""" if not person: person = Person.objects.get(name='(System)') number = get_next_interim_number(group.acronym, date) meeting = Meeting.objects.create( number=number, type_id='interim', date=date, days=1, city=city, country=country, time_zone=timezone) schedule = Schedule.objects.create( meeting=meeting, owner=person, visible=True, public=True) meeting.schedule = schedule meeting.save() return meeting def get_announcement_initial(meeting, is_change=False): '''Returns a dictionary suitable to initialize an InterimAnnouncementForm (Message ModelForm)''' group = meeting.session_set.first().group in_person = bool(meeting.city) initial = {} addrs = gather_address_lists('interim_announced',group=group).as_strings() initial['to'] = addrs.to initial['cc'] = addrs.cc initial['frm'] = settings.INTERIM_ANNOUNCE_FROM_EMAIL_PROGRAM if group.type_id=='program' else settings.INTERIM_ANNOUNCE_FROM_EMAIL_DEFAULT if in_person: desc = 'Interim' else: desc = 'Virtual' if is_change: change = ' CHANGED' else: change = '' type = group.type.slug.upper() if group.type.slug == 'wg' and group.state.slug == 'bof': type = 'BOF' assignments = SchedTimeSessAssignment.objects.filter( schedule__in=[meeting.schedule, meeting.schedule.base if meeting.schedule else None], session__in=meeting.session_set.not_canceled() ).order_by('timeslot__time') initial['subject'] = '{name} ({acronym}) {type} {desc} Meeting: {date}{change}'.format( name=group.name, acronym=group.acronym, type=type, desc=desc, date=meeting.date, change=change) body = render_to_string('meeting/interim_announcement.txt', locals()) initial['body'] = body return initial def get_earliest_session_date(formset): '''Return earliest date from InterimSession Formset''' return sorted([f.cleaned_data['date'] for f in formset.forms if f.cleaned_data.get('date')])[0] def is_interim_meeting_approved(meeting): return add_event_info_to_session_qs(meeting.session_set.all()).first().current_status == 'apprw' def get_next_interim_number(acronym,date): ''' This function takes a group acronym and date object and returns the next number to use for an interim meeting. The format is interim-[year]-[acronym]-[01-99] ''' base = 'interim-%s-%s-' % (date.year, acronym) # can't use count() to calculate the next number in case one was deleted meetings = Meeting.objects.filter(type='interim', number__startswith=base) if meetings: serial = sorted([ int(x.number.split('-')[-1]) for x in meetings ])[-1] else: serial = 0 return "%s%02d" % (base, serial+1) def get_next_agenda_name(meeting): """Returns the next name to use for an agenda document for *meeting*""" group = meeting.session_set.first().group documents = Document.objects.filter(type='agenda', session__meeting=meeting) if documents: sequences = [int(d.name.split('-')[-1]) for d in documents] last_sequence = sorted(sequences)[-1] else: last_sequence = 0 return 'agenda-{meeting}-{group}-{sequence}'.format( meeting=meeting.number, group=group.acronym, sequence=str(last_sequence + 1).zfill(2)) def make_materials_directories(meeting): ''' This function takes a meeting object and creates the appropriate materials directories ''' path = meeting.get_materials_path() # Default umask is 0x022, meaning strip write premission for group and others. # Change this temporarily to 0x0, to keep write permission for group and others. # (WHY??) (Note: this code is old -- was present already when the secretariat code # was merged with the regular datatracker code; then in secr/proceedings/views.py # in make_directories()) saved_umask = os.umask(0) for leaf in ('slides','agenda','minutes','id','rfc','bluesheets'): target = os.path.join(path,leaf) if not os.path.exists(target): os.makedirs(target) os.umask(saved_umask) def send_interim_approval_request(meetings): """Sends an email to the secretariat, group chairs, and responsible area director or the IRTF chair noting that approval has been requested for a new interim meeting. Takes a list of one or more meetings.""" first_session = meetings[0].session_set.first() group = first_session.group requester = session_requested_by(first_session) (to_email, cc_list) = gather_address_lists('session_requested',group=group,person=requester) from_email = (settings.SESSION_REQUEST_FROM_EMAIL) subject = '{group} - New Interim Meeting Request'.format(group=group.acronym) template = 'meeting/interim_approval_request.txt' approval_urls = [] for meeting in meetings: url = settings.IDTRACKER_BASE_URL + reverse('ietf.meeting.views.interim_request_details', kwargs={'number': meeting.number}) approval_urls.append(url) if len(meetings) > 1: is_series = True else: is_series = False approver_set = set() for authrole in group.features.groupman_authroles: # NOTE: This makes an assumption that the authroles are exactly the set of approvers approver_set.add(authrole) approvers = list(approver_set) context = { 'group': group, 'is_series': is_series, 'meetings': meetings, 'approvers': approvers, 'requester': requester, 'approval_urls': approval_urls, } send_mail(None, to_email, from_email, subject, template, context, cc=cc_list) def send_interim_approval(user, meeting): """Send an email to chairs and whoever initiated the action that resulted in approval that an interim is approved""" first_session = meeting.session_set.first() (to_email,cc_list) = gather_address_lists('interim_approved',group=first_session.group,person=user.person) from_email = (settings.SESSION_REQUEST_FROM_EMAIL) subject = f'{meeting.number} interim approved' template = 'meeting/interim_approval.txt' context = { 'meeting': meeting, } send_mail(None, to_email, from_email, subject, template, context, cc=cc_list) def send_interim_announcement_request(meeting): """Sends an email to the secretariat that an interim meeting is ready for announcement, includes the link to send the official announcement""" first_session = meeting.session_set.first() group = first_session.group requester = session_requested_by(first_session) (to_email, cc_list) = gather_address_lists('interim_announce_requested') from_email = (settings.SESSION_REQUEST_FROM_EMAIL) subject = '{group} - interim meeting ready for announcement'.format(group=group.acronym) template = 'meeting/interim_announcement_request.txt' announce_url = settings.IDTRACKER_BASE_URL + reverse('ietf.meeting.views.interim_request_details', kwargs={'number': meeting.number}) context = locals() send_mail(None, to_email, from_email, subject, template, context, cc_list) def send_interim_meeting_cancellation_notice(meeting): """Sends an email that a scheduled interim meeting has been cancelled.""" session = meeting.session_set.first() group = session.group (to_email, cc_list) = gather_address_lists('interim_cancelled',group=group) from_email = settings.INTERIM_ANNOUNCE_FROM_EMAIL_PROGRAM if group.type_id=='program' else settings.INTERIM_ANNOUNCE_FROM_EMAIL_DEFAULT subject = '{group} ({acronym}) {type} Interim Meeting Cancelled (was {date})'.format( group=group.name, acronym=group.acronym, type=group.type.slug.upper(), date=meeting.date.strftime('%Y-%m-%d')) start_time = session.official_timeslotassignment().timeslot.time end_time = start_time + session.requested_duration is_multi_day = session.meeting.session_set.with_current_status().filter(current_status='sched').count() > 1 template = 'meeting/interim_meeting_cancellation_notice.txt' context = locals() send_mail(None, to_email, from_email, subject, template, context, cc=cc_list) def send_interim_session_cancellation_notice(session): """Sends an email that one session of a scheduled interim meeting has been cancelled.""" group = session.group start_time = session.official_timeslotassignment().timeslot.time end_time = start_time + session.requested_duration (to_email, cc_list) = gather_address_lists('interim_cancelled',group=group) from_email = settings.INTERIM_ANNOUNCE_FROM_EMAIL_PROGRAM if group.type_id=='program' else settings.INTERIM_ANNOUNCE_FROM_EMAIL_DEFAULT if session.name: description = '"%s" session' % session.name else: description = 'interim meeting session' subject = '{group} ({acronym}) {type} {description} cancelled (was {date})'.format( group=group.name, acronym=group.acronym, type=group.type.slug.upper(), description=description, date=start_time.date().strftime('%Y-%m-%d')) is_multi_day = session.meeting.session_set.with_current_status().filter(current_status='sched').count() > 1 template = 'meeting/interim_session_cancellation_notice.txt' context = locals() send_mail(None, to_email, from_email, subject, template, context, cc=cc_list) def send_interim_minutes_reminder(meeting): """Sends an email reminding chairs to submit minutes of interim *meeting*""" session = meeting.session_set.first() group = session.group (to_email, cc_list) = gather_address_lists('session_minutes_reminder',group=group) from_email = '[email protected]' subject = 'Action Required: Minutes from {group} ({acronym}) {type} Interim Meeting on {date}'.format( group=group.name, acronym=group.acronym, type=group.type.slug.upper(), date=meeting.date.strftime('%Y-%m-%d')) template = 'meeting/interim_minutes_reminder.txt' context = locals() send_mail(None, to_email, from_email, subject, template, context, cc=cc_list) def sessions_post_save(request, forms): """Helper function to perform various post save operations on each form of a InterimSessionModelForm formset""" for form in forms: if not form.has_changed(): continue if form.instance.pk is not None and not SchedulingEvent.objects.filter(session=form.instance).exists(): if not form.requires_approval: status_id = 'scheda' else: status_id = 'apprw' SchedulingEvent.objects.create( session=form.instance, status_id=status_id, by=request.user.person, ) if ('date' in form.changed_data) or ('time' in form.changed_data): update_interim_session_assignment(form) if 'agenda' in form.changed_data: form.save_agenda() def update_interim_session_assignment(form): """Helper function to create / update timeslot assigned to interim session""" time = datetime.datetime.combine( form.cleaned_data['date'], form.cleaned_data['time']) session = form.instance if session.official_timeslotassignment(): slot = session.official_timeslotassignment().timeslot slot.time = time slot.duration = session.requested_duration slot.save() else: slot = TimeSlot.objects.create( meeting=session.meeting, type_id='regular', duration=session.requested_duration, time=time) SchedTimeSessAssignment.objects.create( timeslot=slot, session=session, schedule=session.meeting.schedule) def populate_important_dates(meeting): assert ImportantDate.objects.filter(meeting=meeting).exists() is False assert meeting.type_id=='ietf' for datename in ImportantDateName.objects.filter(used=True): ImportantDate.objects.create(meeting=meeting,name=datename,date=meeting.date+datetime.timedelta(days=datename.default_offset_days)) def update_important_dates(meeting): assert meeting.type_id=='ietf' for datename in ImportantDateName.objects.filter(used=True): date = meeting.date+datetime.timedelta(days=datename.default_offset_days) d = ImportantDate.objects.filter(meeting=meeting, name=datename).first() if d: d.date = date d.save() else: ImportantDate.objects.create(meeting=meeting, name=datename, date=date)
the-stack_0_27922
#*****************************************************# # This file is part of GRIDOPT. # # # # Copyright (c) 2015, Tomas Tinoco De Rubira. # # # # GRIDOPT is released under the BSD 2-clause license. # #*****************************************************# from __future__ import print_function import time import numpy as np from .method_error import * from .method import PFmethod from numpy.linalg import norm class ACPF(PFmethod): """ AC power flow method. """ CONTROL_MODE_LOCKED = 'locked' CONTROL_MODE_FREE = 'free' CONTROL_MODE_REG = 'regulating' name = 'ACPF' _parameters = {'weight_vmag': 1e0, # weight for voltage magnitude regularization 'weight_vang': 1e-3, # weight for angle difference regularization 'weight_powers': 1e-3, # weight for gen powers regularization 'weight_controls': 1e0, # weight for control deviation penalty 'weight_var': 1e-5, # weight for general variable regularization 'v_min_clip': 0.5, # lower v threshold for clipping 'v_max_clip': 1.5, # upper v threshold for clipping 'v_limits': False, # voltage magnitude limits 'Q_limits': True, # flag for enforcing generator, VSC and FACTS reactive power limits 'Q_mode': 'regulating', # reactive power mode: free, regulating 'shunt_limits': True, # flag for enforcing switched shunt susceptance limits 'shunt_mode': 'locked', # switched shunts mode: locked, free, regulating 'tap_limits': True, # flag for enforcing transformer tap ratio limits 'tap_mode': 'locked', # transformer tap ratio mode: locked, free, regulating 'lock_vsc_P_dc': True, # flag for locking vsc P dc 'lock_csc_P_dc': True, # flag for locking csc P dc 'lock_csc_i_dc': True, # flag for locking csc i dc 'vdep_loads': False, # flag for modeling voltage dependent loads 'pvpq_start_k': 0, # start iteration number for PVPQ switching heuristics 'vmin_thresh': 0.1, # minimum voltage magnitude threshold 'gens_redispatch': False, # flag for allowing active power redispatch 'shunts_round': True, # flag for rounding discrete switched shunt susceptances (not supported yet) 'taps_round': True, # flag for rounding discrete transformer tap ratios (not supported yet) 'v_mag_warm_ref': False, # flag for using current v_mag as reference in v_mag regularization 'solver': 'nr', # OPTALG optimization solver: augl, ipopt, nr, inlp 'tap_step': 0.5, # tap ratio acceleration factor (NR only) 'shunt_step': 0.5, # susceptance acceleration factor (NR only) 'dtap': 1e-4, # tap ratio perturbation (NR only) 'dsus': 1e-4} # susceptance perturbation (NR only) _parameters_augl = {'feastol' : 1e-4, 'optol' : 1e0, 'kappa' : 1e-5, 'theta_max': 1e-6, 'sigma_init_max': 1e9} _parameters_ipopt = {} _parameters_inlp = {'feastol' : 1e-4, 'optol' : 1e0} _parameters_nr = {} def __init__(self): from optalg.opt_solver import OptSolverAugL, OptSolverIpopt, OptSolverNR, OptSolverINLP # Parent init PFmethod.__init__(self) # Solver params augl_params = OptSolverAugL.parameters.copy() augl_params.update(self._parameters_augl) # overwrite defaults ipopt_params = OptSolverIpopt.parameters.copy() ipopt_params.update(self._parameters_ipopt) # overwrite defaults inlp_params = OptSolverINLP.parameters.copy() inlp_params.update(self._parameters_inlp) # overwrite defaults nr_params = OptSolverNR.parameters.copy() nr_params.update(self._parameters_nr) # overwrite defaults self._parameters = ACPF._parameters.copy() self._parameters['solver_parameters'] = {'augl': augl_params, 'ipopt': ipopt_params, 'nr': nr_params, 'inlp': inlp_params} def create_problem(self, net): solver_name = self._parameters['solver'] if solver_name == 'nr': return self.create_problem_nr(net) else: return self.create_problem_opt(net) def create_problem_nr(self, net): import pfnet # Parameters params = self._parameters Q_mode = params['Q_mode'] Q_limits = params['Q_limits'] shunt_mode = params['shunt_mode'] shunt_limits = params['shunt_limits'] tap_mode = params['tap_mode'] tap_limits = params['tap_limits'] lock_vsc_P_dc = params['lock_vsc_P_dc'] lock_csc_P_dc = params['lock_csc_P_dc'] lock_csc_i_dc = params['lock_csc_i_dc'] vdep_loads = params['vdep_loads'] gens_redispatch = params['gens_redispatch'] # Check shunt options if shunt_mode not in [self.CONTROL_MODE_LOCKED, self.CONTROL_MODE_REG]: raise ValueError('invalid shunts mode') if shunt_mode == self.CONTROL_MODE_REG and not shunt_limits: raise ValueError('unsupported shunts configuration') # Check tap options if tap_mode not in [self.CONTROL_MODE_LOCKED, self.CONTROL_MODE_REG]: raise ValueError('invalid taps mode') if tap_mode == self.CONTROL_MODE_REG and not tap_limits: raise ValueError('unsupported taps configuration') # Check Q options if Q_mode != self.CONTROL_MODE_REG: raise ValueError('invalid reactive power mode') # Check other options if gens_redispatch: raise ValueError('generation redispatch not supported') if not lock_vsc_P_dc: raise ValueError('VSC P DC must be locked') if not lock_csc_P_dc: raise ValueError('CSC P DC must be locked') if not lock_csc_i_dc: raise ValueError('CSC i DC must be locked') # Clear flags net.clear_flags() # Buses net.set_flags('bus', 'variable', 'not slack', 'voltage angle') net.set_flags('bus', 'variable', 'any', 'voltage magnitude') # Generators net.set_flags('generator', 'variable', 'slack', 'active power') net.set_flags('generator', 'variable', 'regulator', 'reactive power') # VSC HVDC net.set_flags('vsc converter', 'variable', 'any', ['dc power', 'active power', 'reactive power']) # CSC HVDC net.set_flags('csc converter', 'variable', 'any', ['dc power', 'active power', 'reactive power']) # DC buses net.set_flags('dc bus', 'variable', 'any', 'voltage') # FACTS net.set_flags('facts', 'variable', 'any', 'all') # Loads if vdep_loads: for load in net.loads: if load.is_voltage_dependent() and load.is_in_service(): net.set_flags_of_component(load, 'variable', ['active power', 'reactive power']) # Tap changers if tap_mode != self.CONTROL_MODE_LOCKED: net.set_flags('branch', ['variable', 'fixed'], 'tap changer - v', 'tap ratio') # Switched shunts if shunt_mode != self.CONTROL_MODE_LOCKED: net.set_flags('shunt', ['variable', 'fixed'], 'switching - v', 'susceptance') # Set up problem problem = pfnet.Problem(net) problem.add_constraint(pfnet.Constraint('AC power balance', net)) problem.add_constraint(pfnet.Constraint('HVDC power balance', net)) problem.add_constraint(pfnet.Constraint('generator active power participation', net)) problem.add_constraint(pfnet.Constraint('variable fixing', net)) problem.add_constraint(pfnet.Constraint('VSC converter equations', net)) problem.add_constraint(pfnet.Constraint('CSC converter equations', net)) problem.add_constraint(pfnet.Constraint('FACTS equations', net)) problem.add_constraint(pfnet.Constraint('VSC DC voltage control', net)) problem.add_constraint(pfnet.Constraint('CSC DC voltage control', net)) problem.add_constraint(pfnet.Constraint('VSC DC power control', net)) problem.add_constraint(pfnet.Constraint('CSC DC power control', net)) problem.add_constraint(pfnet.Constraint('CSC DC current control', net)) problem.add_constraint(pfnet.Constraint('PVPQ switching', net)) problem.add_constraint(pfnet.Constraint('switching power factor regulation', net)) problem.add_constraint(pfnet.Constraint('switching FACTS active power control', net)) problem.add_constraint(pfnet.Constraint('switching FACTS reactive power control', net)) if vdep_loads: problem.add_constraint(pfnet.Constraint('load voltage dependence', net)) if Q_limits: problem.add_heuristic(pfnet.Heuristic('PVPQ switching', net)) problem.add_heuristic(pfnet.Heuristic('switching power factor regulation', net)) problem.analyze() # Check if (problem.J.shape[0] + problem.A.shape[0] != problem.get_num_primal_variables()): raise PFmethodError_BadProblem() # Return return problem def create_problem_opt(self, net): import pfnet # Parameters params = self._parameters wm = params['weight_vmag'] wa = params['weight_vang'] wp = params['weight_powers'] wc = params['weight_controls'] wv = params['weight_var'] v_limits = params['v_limits'] Q_mode = params['Q_mode'] Q_limits = params['Q_limits'] shunt_mode = params['shunt_mode'] shunt_limits = params['shunt_limits'] tap_mode = params['tap_mode'] tap_limits = params['tap_limits'] lock_vsc_P_dc = params['lock_vsc_P_dc'] lock_csc_P_dc = params['lock_csc_P_dc'] lock_csc_i_dc = params['lock_csc_i_dc'] vdep_loads = params['vdep_loads'] v_mag_warm_ref = params['v_mag_warm_ref'] gens_redispatch = params['gens_redispatch'] # Check shunt options if shunt_mode not in [self.CONTROL_MODE_LOCKED, self.CONTROL_MODE_FREE, self.CONTROL_MODE_REG]: raise ValueError('invalid shunts mode') if shunt_mode == self.CONTROL_MODE_REG and not shunt_limits: raise ValueError('unsupported shunts configuration') # Check tap options if tap_mode not in [self.CONTROL_MODE_LOCKED, self.CONTROL_MODE_FREE, self.CONTROL_MODE_REG]: raise ValueError('invalid taps mode') if tap_mode == self.CONTROL_MODE_REG and not tap_limits: raise ValueError('unsupported taps configuration') # Check Q options if Q_mode not in [self.CONTROL_MODE_REG, self.CONTROL_MODE_FREE]: raise ValueError('invalid reactive power mode') # Clear flags net.clear_flags() # Buses net.set_flags('bus', 'variable', 'not slack', 'voltage angle') net.set_flags('bus', 'variable', 'any', 'voltage magnitude') if Q_mode == self.CONTROL_MODE_REG and not Q_limits: net.set_flags('bus', 'fixed', 'v set regulated', 'voltage magnitude') if v_limits: net.set_flags('bus', 'bounded', 'any', 'voltage magnitude') # Genertors if gens_redispatch: net.set_flags('generator', ['variable', 'bounded'], 'any', 'active power') else: net.set_flags('generator', 'variable', 'slack', 'active power') net.set_flags('generator', 'variable', 'regulator', 'reactive power') if Q_mode == self.CONTROL_MODE_FREE and Q_limits: net.set_flags('generator', 'bounded', 'regulator', 'reactive power') # Loads if vdep_loads: for load in net.loads: if load.is_voltage_dependent() and load.is_in_service(): net.set_flags_of_component(load, 'variable', ['active power', 'reactive power']) # VSC HVDC net.set_flags('vsc converter', 'variable', 'any', ['dc power', 'active power', 'reactive power']) if Q_mode == self.CONTROL_MODE_FREE and Q_limits: net.set_flags('vsc converter', 'bounded', 'any', 'reactive power') # CSC HVDC net.set_flags('csc converter', 'variable', 'any', ['dc power', 'active power', 'reactive power']) # DC buses net.set_flags('dc bus', 'variable', 'any', 'voltage') # FACTS net.set_flags('facts', 'variable', 'any', 'all') if Q_mode == self.CONTROL_MODE_FREE and Q_limits: net.set_flags('facts', 'bounded', 'any', 'reactive power') # Tap changers if tap_mode != self.CONTROL_MODE_LOCKED: net.set_flags('branch', 'variable', 'tap changer - v', 'tap ratio') if tap_mode == self.CONTROL_MODE_FREE and tap_limits: net.set_flags('branch', 'bounded', 'tap changer - v', 'tap ratio') # Swtiched shunts if shunt_mode != self.CONTROL_MODE_LOCKED: net.set_flags('shunt', 'variable', 'switching - v', 'susceptance') if shunt_mode == self.CONTROL_MODE_FREE and shunt_limits: net.set_flags('shunt', 'bounded', 'switching - v', 'susceptance') # Set up problem problem = pfnet.Problem(net) problem.add_constraint(pfnet.Constraint('AC power balance', net)) problem.add_constraint(pfnet.Constraint('HVDC power balance', net)) problem.add_constraint(pfnet.Constraint('generator active power participation', net)) problem.add_constraint(pfnet.Constraint('VSC converter equations', net)) problem.add_constraint(pfnet.Constraint('CSC converter equations', net)) problem.add_constraint(pfnet.Constraint('FACTS equations', net)) problem.add_constraint(pfnet.Constraint('VSC DC voltage control', net)) problem.add_constraint(pfnet.Constraint('CSC DC voltage control', net)) problem.add_constraint(pfnet.Constraint('power factor regulation', net)) if lock_vsc_P_dc: problem.add_constraint(pfnet.Constraint('VSC DC power control', net)) if lock_csc_P_dc: problem.add_constraint(pfnet.Constraint('CSC DC power control', net)) if lock_csc_i_dc: problem.add_constraint(pfnet.Constraint('CSC DC current control', net)) func = pfnet.Function('voltage magnitude regularization', wm/(net.get_num_buses(True)+1.), net) func.set_parameter('v_set_reference', not v_mag_warm_ref) problem.add_function(func) problem.add_function(pfnet.Function('variable regularization', wv/(net.num_vars+1.), net)) problem.add_function(pfnet.Function('voltage angle regularization', wa/(net.get_num_buses(True)+1.), net)) problem.add_function(pfnet.Function('generator powers regularization', wp/(net.get_num_generators(True)+1.), net)) problem.add_function(pfnet.Function('VSC DC power control', wc/(net.get_num_vsc_converters(True)+1.), net)) problem.add_function(pfnet.Function('CSC DC power control', wc/(net.get_num_csc_converters(True)+1.), net)) problem.add_function(pfnet.Function('CSC DC current control', wc/(net.get_num_csc_converters(True)+1.), net)) problem.add_function(pfnet.Function('FACTS active power control', wc/(net.get_num_facts(True)+1.), net)) problem.add_function(pfnet.Function('FACTS reactive power control', wc/(net.get_num_facts(True)+1.), net)) if gens_redispatch: problem.add_function(pfnet.Function('generation redispatch penalty', wc/(net.get_num_generators(True)+1.), net)) if Q_mode == self.CONTROL_MODE_REG and Q_limits: problem.add_constraint(pfnet.Constraint('voltage set point regulation', net)) if net.num_fixed > 0: problem.add_constraint(pfnet.Constraint('variable fixing', net)) if tap_mode != self.CONTROL_MODE_LOCKED: problem.add_function(pfnet.Function('tap ratio regularization', wc/(net.get_num_tap_changers_v(True)+1.), net)) if tap_mode == self.CONTROL_MODE_REG and tap_limits: problem.add_constraint(pfnet.Constraint('voltage regulation by transformers', net)) if shunt_mode != self.CONTROL_MODE_LOCKED: problem.add_function(pfnet.Function('susceptance regularization', wc/(net.get_num_switched_v_shunts(True)+1.), net)) if shunt_mode == self.CONTROL_MODE_REG and shunt_limits: problem.add_constraint(pfnet.Constraint('voltage regulation by shunts', net)) if vdep_loads: problem.add_constraint(pfnet.Constraint('load voltage dependence', net)) if net.num_bounded > 0: problem.add_constraint(pfnet.Constraint('variable bounds', net)) # Analyze problem.analyze() # Return return problem def solve(self, net, save_problem=False): from optalg.opt_solver import OptSolverError, OptTermination, OptCallback from optalg.opt_solver import OptSolverAugL, OptSolverIpopt, OptSolverNR, OptSolverINLP # Parameters params = self._parameters Q_mode = params['Q_mode'] shunt_mode = params['shunt_mode'] shunts_round = params['shunts_round'] tap_mode = params['tap_mode'] taps_round = params['taps_round'] vmin_thresh = params['vmin_thresh'] solver_name = params['solver'] solver_params = params['solver_parameters'] v_min_clip = params['v_min_clip'] v_max_clip = params['v_max_clip'] # Opt solver if solver_name == 'augl': solver = OptSolverAugL() elif solver_name == 'ipopt': solver = OptSolverIpopt() elif solver_name == 'inlp': solver = OptSolverINLP() elif solver_name == 'nr': solver = OptSolverNR() else: raise PFmethodError_BadOptSolver() solver.set_parameters(solver_params[solver_name]) # Copy network net = net.get_copy(merge_buses=True) self.set_network_snapshot(net) # Clipping for bus in net.buses: bus.v_mag = np.minimum(np.maximum(bus.v_mag, v_min_clip), v_max_clip) # Problem t0 = time.time() problem = self.create_problem(net) problem_time = time.time()-t0 # Callbacks def c1(s): if (s.k != 0 and params['tap_limits'] and tap_mode == self.CONTROL_MODE_REG and norm(s.problem.f, np.inf) < 100.*solver_params['nr']['feastol']): try: self.apply_tran_v_regulation(s) except Exception as e: raise PFmethodError_TranVReg(e) def c2(s): if (s.k != 0 and params['shunt_limits'] and shunt_mode == self.CONTROL_MODE_REG and norm(s.problem.f, np.inf) < 100.*solver_params['nr']['feastol']): try: self.apply_shunt_v_regulation(s) except Exception as e: raise PFmethodError_ShuntVReg(e) def c3(s): if (s.k >= params['pvpq_start_k'] and params['Q_limits'] and Q_mode == self.CONTROL_MODE_REG): prob = s.problem.wrapped_problem prob.apply_heuristics(s.x) s.problem.A = prob.A s.problem.b = prob.b if solver_name == 'nr': solver.add_callback(OptCallback(c1)) solver.add_callback(OptCallback(c2)) solver.add_callback(OptCallback(c3)) # Termination def t1(s): if np.min(s.problem.wrapped_problem.network.bus_v_min) < vmin_thresh: return True else: return False solver.add_termination(OptTermination(t1, 'low voltage')) # Info printer info_printer = self.get_info_printer() solver.set_info_printer(info_printer) # Solve update = True t0 = time.time() try: solver.solve(problem) except OptSolverError as e: raise PFmethodError_SolverError(e) except Exception as e: update = False raise e finally: # Update network if update: net.set_var_values(solver.get_primal_variables()[:net.num_vars]) net.update_properties() net.clear_sensitivities() if solver_name != 'nr': problem.store_sensitivities(*solver.get_dual_variables()) # Save results self.set_solver_name(solver_name) self.set_solver_status(solver.get_status()) self.set_solver_message(solver.get_error_msg()) self.set_solver_iterations(solver.get_iterations()) self.set_solver_time(time.time()-t0) self.set_solver_primal_variables(solver.get_primal_variables()) self.set_solver_dual_variables(solver.get_dual_variables()) self.set_problem(problem if save_problem else None) self.set_problem_time(problem_time) self.set_network_snapshot(net) def get_info_printer(self): # Parameters solver_name = self._parameters['solver'] # Define def info_printer(solver,header): net = solver.problem.wrapped_problem.network if header: print('{0:^5}'.format('vmax'), end=' ') print('{0:^5}'.format('vmin'), end=' ') print('{0:^8}'.format('gvdev'), end=' ') print('{0:^8}'.format('gQvio')) else: print('{0:^5.2f}'.format(np.average(net.bus_v_max)), end=' ') print('{0:^5.2f}'.format(np.average(net.bus_v_min)), end=' ') print('{0:^8.1e}'.format(np.average(net.gen_v_dev)), end=' ') print('{0:^8.1e}'.format(np.average(net.gen_Q_vio))) # Return return info_printer def apply_shunt_v_regulation(self,solver): # Local variables dsus = self._parameters['dsus'] step = self._parameters['shunt_step'] p = solver.problem.wrapped_problem net = p.network x = solver.x eps = 1e-8 # Fix constraints c = p.find_constraint('variable fixing') A = c.A b = c.b # Rhs rhs = np.hstack((np.zeros(p.f.size),np.zeros(p.b.size))) # Offset offset = 0 for c in p.constraints: if c.name == 'variable fixing': break else: offset += c.A.shape[0] # Violation check for i in range(net.num_buses): bus = net.get_bus(i) if bus.is_regulated_by_shunt(True) and not bus.is_slack(): assert(bus.has_flags('variable','voltage magnitude')) for t in range(net.num_periods): v = x[bus.index_v_mag[t]] vmax = bus.v_max_reg vmin = bus.v_min_reg assert(len(bus.reg_shunts) > 0) assert(vmax >= vmin) # Violation if v > vmax or v < vmin: for reg_shunt in bus.reg_shunts: if not reg_shunt.is_in_service(): continue assert(reg_shunt.has_flags('variable','susceptance')) s = x[reg_shunt.index_b[t]] smax = reg_shunt.b_max smin = reg_shunt.b_min assert(smin <= smax) # Fix constr index k = int(np.where(A.col == reg_shunt.index_b[t])[0]) i = A.row[k] assert(np.abs(b[i]-x[reg_shunt.index_b[t]]) < eps) assert(A.data[k] == 1.) # Sensitivity assert(rhs[p.f.size+offset+i] == 0.) rhs[p.f.size+offset+i] = dsus dx = solver.linsolver.solve(rhs) dv = dx[bus.index_v_mag[t]] dvds = dv/dsus rhs[p.f.size+offset+i] = 0. # Adjustment dv = (vmax+vmin)/2.-v ds = step*dv/dvds if dvds != 0. else 0. snew = np.maximum(np.minimum(s+ds,smax),smin) x[reg_shunt.index_b[t]] = snew b[i] = snew if np.abs(snew-s) > eps: break # Update solver.func(x) p.update_lin() solver.problem.A = p.A solver.problem.b = p.b def apply_tran_v_regulation(self,solver): # Local variables dtap = self._parameters['dtap'] step = self._parameters['tap_step'] p = solver.problem.wrapped_problem net = p.network x = solver.x eps = 1e-8 # Fix constraints c = p.find_constraint('variable fixing') A = c.A b = c.b # Rhs rhs = np.hstack((np.zeros(p.f.size),np.zeros(p.b.size))) # Offset offset = 0 for c in p.constraints: if c.name == 'variable fixing': break else: offset += c.A.shape[0] # Violation check for i in range(net.num_buses): bus = net.get_bus(i) if bus.is_regulated_by_tran(True) and not bus.is_slack(): assert(bus.has_flags('variable','voltage magnitude')) for tau in range(net.num_periods): v = x[bus.index_v_mag[tau]] vmax = bus.v_max_reg vmin = bus.v_min_reg assert(len(bus.reg_trans) > 0) assert(vmax > vmin) # Violation if v > vmax or v < vmin: for reg_tran in bus.reg_trans: if not reg_tran.is_in_service(): continue assert(reg_tran.has_flags('variable','tap ratio')) t = x[reg_tran.index_ratio[tau]] tmax = reg_tran.ratio_max tmin = reg_tran.ratio_min assert(tmax >= tmin) # Fix constr index k = int(np.where(A.col == reg_tran.index_ratio[tau])[0]) i = A.row[k] assert(np.abs(b[i]-x[reg_tran.index_ratio[tau]]) < eps) assert(A.data[k] == 1.) # Sensitivity assert(rhs[p.f.size+offset+i] == 0.) rhs[p.f.size+offset+i] = dtap dx = solver.linsolver.solve(rhs) dv = dx[bus.index_v_mag[tau]] dvdt = dv/dtap rhs[p.f.size+offset+i] = 0. # Adjustment dv = (vmax+vmin)/2.-v dt = step*dv/dvdt if dvdt != 0. else 0. tnew = np.maximum(np.minimum(t+dt,tmax),tmin) x[reg_tran.index_ratio[tau]] = tnew b[i] = tnew if np.abs(tnew-t) > eps: break # Update solver.func(x) p.update_lin() solver.problem.A = p.A solver.problem.b = p.b
the-stack_0_27925
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Argument processors for Game Servers surface arguments.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.core import properties DEFAULT_LOCATION = 'global' PARENT_TEMPLATE = 'projects/{}/locations/{}' PARENT_DEPLOYMENT_TEMPLATE = 'projects/{}/locations/{}/gameServerDeployments/{}' PARENT_REALM_TEMPLATE = 'projects/{}/locations/{}/realms/{}' DEPLOYMENT_WILDCARD = '-' LOCATION_WILDCARD = '-' REALM_WILDCARD = '-' def AddDefaultLocationToListRequest(ref, args, req): """Python hook for yaml commands to wildcard the location in list requests.""" del ref # Unused project = properties.VALUES.core.project.Get(required=True) location = args.location or LOCATION_WILDCARD req.parent = PARENT_TEMPLATE.format(project, location) return req def AddDefaultLocationAndRealmToListRequest(ref, args, req): """Python hook for yaml commands to wildcard the realm and location in list requests.""" del ref project = properties.VALUES.core.project.Get(required=True) location = args.location or LOCATION_WILDCARD # If realm is specified but location is not, we fall back to global, which is # the default location for realms. if args.realm and not args.location: location = DEFAULT_LOCATION realm = args.realm or REALM_WILDCARD req.parent = PARENT_REALM_TEMPLATE.format(project, location, realm) return req def AddDefaultLocationAndDeploymentToListRequest(ref, args, req): """Python hook for yaml commands to wildcard the deployment and location in list requests.""" del ref project = properties.VALUES.core.project.Get(required=True) location = args.location or LOCATION_WILDCARD # If deployment is specified but location is not, we fall back to global # which is the default location for realms. if args.deployment and not args.location: location = DEFAULT_LOCATION deployment = args.deployment or DEPLOYMENT_WILDCARD req.parent = PARENT_DEPLOYMENT_TEMPLATE.format(project, location, deployment) return req
the-stack_0_27926
import os import re import socket import time from netmiko.cisco_base_connection import CiscoSSHConnection from netmiko.cisco_base_connection import CiscoFileTransfer from netmiko.ssh_exception import NetmikoTimeoutException LINUX_PROMPT_PRI = os.getenv("NETMIKO_LINUX_PROMPT_PRI", "$") LINUX_PROMPT_ALT = os.getenv("NETMIKO_LINUX_PROMPT_ALT", "#") LINUX_PROMPT_ROOT = os.getenv("NETMIKO_LINUX_PROMPT_ROOT", "#") class LinuxSSH(CiscoSSHConnection): def session_preparation(self): """Prepare the session after the connection has been established.""" self.ansi_escape_codes = True return super().session_preparation() def _enter_shell(self): """Already in shell.""" return "" def _return_cli(self): """The shell is the CLI.""" return "" def disable_paging(self, *args, **kwargs): """Linux doesn't have paging by default.""" return "" def set_base_prompt( self, pri_prompt_terminator=LINUX_PROMPT_PRI, alt_prompt_terminator=LINUX_PROMPT_ALT, delay_factor=1, ): """Determine base prompt.""" return super().set_base_prompt( pri_prompt_terminator=pri_prompt_terminator, alt_prompt_terminator=alt_prompt_terminator, delay_factor=delay_factor, ) def send_config_set(self, config_commands=None, exit_config_mode=True, **kwargs): """Can't exit from root (if root)""" if self.username == "root": exit_config_mode = False return super().send_config_set( config_commands=config_commands, exit_config_mode=exit_config_mode, **kwargs ) def check_config_mode(self, check_string=LINUX_PROMPT_ROOT, pattern=""): """Verify root""" return self.check_enable_mode(check_string=check_string) def config_mode( self, config_command: str = "sudo -s", pattern: str = "ssword", re_flags: int = re.IGNORECASE, ) -> str: """Attempt to become root.""" return self.enable(cmd=config_command, pattern=pattern, re_flags=re_flags) def exit_config_mode(self, exit_config="exit"): return self.exit_enable_mode(exit_command=exit_config) def check_enable_mode(self, check_string=LINUX_PROMPT_ROOT): """Verify root""" return super().check_enable_mode(check_string=check_string) def exit_enable_mode(self, exit_command="exit"): """Exit enable mode.""" delay_factor = self.select_delay_factor(delay_factor=0) output = "" if self.check_enable_mode(): self.write_channel(self.normalize_cmd(exit_command)) time.sleep(0.3 * delay_factor) self.set_base_prompt() if self.check_enable_mode(): raise ValueError("Failed to exit enable mode.") return output def enable(self, cmd="sudo -s", pattern="ssword", re_flags=re.IGNORECASE): """Attempt to become root.""" delay_factor = self.select_delay_factor(delay_factor=0) output = "" if not self.check_enable_mode(): self.write_channel(self.normalize_cmd(cmd)) time.sleep(0.3 * delay_factor) try: output += self.read_channel() if re.search(pattern, output, flags=re_flags): self.write_channel(self.normalize_cmd(self.secret)) self.set_base_prompt() except socket.timeout: raise NetmikoTimeoutException( "Timed-out reading channel, data not available." ) if not self.check_enable_mode(): msg = ( "Failed to enter enable mode. Please ensure you pass " "the 'secret' argument to ConnectHandler." ) raise ValueError(msg) return output def cleanup(self, command="exit"): """Try to Gracefully exit the SSH session.""" return super().cleanup(command=command) def save_config(self, *args, **kwargs): """Not Implemented""" raise NotImplementedError class LinuxFileTransfer(CiscoFileTransfer): """ Linux SCP File Transfer driver. Mostly for testing purposes. """ def __init__( self, ssh_conn, source_file, dest_file, file_system="/var/tmp", direction="put", **kwargs, ): return super().__init__( ssh_conn=ssh_conn, source_file=source_file, dest_file=dest_file, file_system=file_system, direction=direction, **kwargs, ) def remote_space_available(self, search_pattern=""): """Return space available on remote device.""" return self._remote_space_available_unix(search_pattern=search_pattern) def check_file_exists(self, remote_cmd=""): """Check if the dest_file already exists on the file system (return boolean).""" return self._check_file_exists_unix(remote_cmd=remote_cmd) def remote_file_size(self, remote_cmd="", remote_file=None): """Get the file size of the remote file.""" return self._remote_file_size_unix( remote_cmd=remote_cmd, remote_file=remote_file ) def remote_md5(self, base_cmd="md5sum", remote_file=None): if remote_file is None: if self.direction == "put": remote_file = self.dest_file elif self.direction == "get": remote_file = self.source_file remote_md5_cmd = f"{base_cmd} {self.file_system}/{remote_file}" dest_md5 = self.ssh_ctl_chan.send_command(remote_md5_cmd, read_timeout=300) dest_md5 = self.process_md5(dest_md5) return dest_md5 @staticmethod def process_md5(md5_output, pattern=r"^(\S+)\s+"): return super(LinuxFileTransfer, LinuxFileTransfer).process_md5( md5_output, pattern=pattern ) def enable_scp(self, cmd=None): raise NotImplementedError def disable_scp(self, cmd=None): raise NotImplementedError
the-stack_0_27927
import nbgrader, csv, codecs, sys, os, shutil from nbgrader.apps import NbGraderAPI import zipfile import pandas as pd import logging logger = logging.getLogger('moodle_nbgrader') logger.setLevel(logging.INFO) def zip(out, root): shutil.make_archive(out, 'zip', root) def add_feedback_to_zip(archive, unique_id, ident, fullname, assignment): fbk_path = os.path.join("feedback", str(unique_id), assignment) try: files = [os.path.join(fbk_path, f) for f in os.listdir(fbk_path) if f.endswith('.html')] assign_id = ident.strip('Participant ') # remove asterisks name = 'blank' # create the path to the feedback file for f in files: archive.write(f, arcname=os.path.join(f"{fullname}_{assign_id}_assignsubmission_file_", os.path.basename(f))) except FileNotFoundError: logger.error(f"HTML feedback file for {fullname} {unique_id} {assignment} is missing") # no feedback to generate def update_grade(out_df, index, unique_id, fullname, submission): out_df.loc[index, 'Grade'] = submission.score # warn about dubious scores if submission.score <= 0 or submission.score > submission.max_score: logger.warning(f"Warning: {unique_id} {fullname} has a score of {submission.score}") # correct the maximum grade out_df.loc[index, 'Maximum Grade'] = submission.max_score def moodle_gradesheet(assignment, with_feedback=True): api = NbGraderAPI() gradebook = api.gradebook csvfile = os.path.join("imports", assignment + ".csv") grading_df = pd.read_csv(csvfile) fname = os.path.join("exports", assignment + ".csv") if with_feedback: archive = zipfile.ZipFile(os.path.join("exports", "feedback_"+assignment+".zip"), 'w', zipfile.ZIP_DEFLATED) out_df = grading_df.copy() # these are the students that are grouped grading_df['actual_group'] = grading_df['Group'] individuals = (grading_df['Department'] == grading_df['Group']) | (grading_df['Group'] == 'Default group') grading_df.loc[individuals, 'actual_group'] = grading_df.loc[individuals, 'Identifier'] n_groups = len(grading_df['actual_group'].unique()) for index, line in grading_df.drop_duplicates(subset='actual_group').iterrows(): if line['actual_group'] == 'Default Group': continue try: submission = gradebook.find_submission(assignment, line['ID number']) except: if "Submitted" in line['Status']: logger.warning(f"No submission for {line['ID number']} in assignment {assignment}") else: logger.info(f"No submission for {line['ID number']} in assignment {assignment}, as expected") else: logger.info(f"Processing submission for {line['ID number']} in assignment {assignment}") # add feedback and grading to all students with the same submission in the same group for group_index, group_line in grading_df[grading_df['actual_group'] == line['actual_group']].iterrows(): if with_feedback: add_feedback_to_zip(archive, line['ID number'], group_line['Identifier'], group_line['Full name'], assignment) update_grade(out_df, group_index, group_line['ID number'], group_line['Full name'], submission) out_df.to_csv(fname, index=False) logger.info(f"Wrote to {fname}") # tidy up the feedback file if with_feedback: archive.close() import argparse parser = argparse.ArgumentParser(description=''' Updates a CSV file gradesheet (which must have be downloaded from Moodle with "offline gradesheets" enabled in the assignment settings) with the results from grading the assignment <assign>. The input will be imports/<assign>.csv The output will be in exports/<assign>.csv Feedback will be zipped up into the file exports/<assign>_feedback.zip and this can be uploaded to Moodle if "Feedback files" is enabled. This uploads all student feedback in one go. ''') parser.add_argument('assignment', type=str, help='Name of the assignment csv file downloaded from moodle') args = parser.parse_args() moodle_gradesheet(args.assignment)
the-stack_0_27929
import os from unittest import SkipTest import param import holoviews from pyviz_comms import nb_mime_js from IPython import version_info from param import ipython as param_ext from IPython.display import HTML, publish_display_data from ..core.dimension import LabelledData from ..core.tree import AttrTree from ..core.options import Store from ..core.util import mimebundle_to_html from ..element.comparison import ComparisonTestCase from ..util import extension from ..plotting.renderer import Renderer, MIME_TYPES from .magics import load_magics from .display_hooks import display # noqa (API import) from .display_hooks import pprint_display, png_display, svg_display AttrTree._disabled_prefixes = ['_repr_','_ipython_canary_method_should_not_exist'] def show_traceback(): """ Display the full traceback after an abbreviated traceback has occurred. """ from .display_hooks import FULL_TRACEBACK print(FULL_TRACEBACK) class IPTestCase(ComparisonTestCase): """ This class extends ComparisonTestCase to handle IPython specific objects and support the execution of cells and magic. """ def setUp(self): super(IPTestCase, self).setUp() try: import IPython from IPython.display import HTML, SVG self.ip = IPython.InteractiveShell() if self.ip is None: raise TypeError() except Exception: raise SkipTest("IPython could not be started") self.addTypeEqualityFunc(HTML, self.skip_comparison) self.addTypeEqualityFunc(SVG, self.skip_comparison) def skip_comparison(self, obj1, obj2, msg): pass def get_object(self, name): obj = self.ip._object_find(name).obj if obj is None: raise self.failureException("Could not find object %s" % name) return obj def cell(self, line): "Run an IPython cell" self.ip.run_cell(line, silent=True) def cell_magic(self, *args, **kwargs): "Run an IPython cell magic" self.ip.run_cell_magic(*args, **kwargs) def line_magic(self, *args, **kwargs): "Run an IPython line magic" self.ip.run_line_magic(*args, **kwargs) class notebook_extension(extension): """ Notebook specific extension to hv.extension that offers options for controlling the notebook environment. """ css = param.String(default='', doc="Optional CSS rule set to apply to the notebook.") logo = param.Boolean(default=True, doc="Toggles display of HoloViews logo") inline = param.Boolean(default=True, doc=""" Whether to inline JS and CSS resources. If disabled, resources are loaded from CDN if one is available.""") width = param.Number(default=None, bounds=(0, 100), doc=""" Width of the notebook as a percentage of the browser screen window width.""") display_formats = param.List(default=['html'], doc=""" A list of formats that are rendered to the notebook where multiple formats may be selected at once (although only one format will be displayed). Although the 'html' format is supported across backends, other formats supported by the current backend (e.g 'png' and 'svg' using the matplotlib backend) may be used. This may be useful to export figures to other formats such as PDF with nbconvert. """) case_sensitive_completion = param.Boolean(default=False, doc=""" Whether to monkey patch IPython to use the correct tab-completion behavior. """) _loaded = False def __call__(self, *args, **params): super(notebook_extension, self).__call__(*args, **params) # Abort if IPython not found try: ip = params.pop('ip', None) or get_ipython() # noqa (get_ipython) except: return # Notebook archive relies on display hooks being set to work. try: if version_info[0] >= 4: import nbformat # noqa (ensures availability) else: from IPython import nbformat # noqa (ensures availability) from .archive import notebook_archive holoviews.archive = notebook_archive except ImportError: pass # Not quite right, should be set when switching backends if 'matplotlib' in Store.renderers and not notebook_extension._loaded: svg_exporter = Store.renderers['matplotlib'].instance(holomap=None,fig='svg') holoviews.archive.exporters = [svg_exporter] + holoviews.archive.exporters p = param.ParamOverrides(self, {k:v for k,v in params.items() if k!='config'}) if p.case_sensitive_completion: from IPython.core import completer completer.completions_sorting_key = self.completions_sorting_key resources = self._get_resources(args, params) Store.display_formats = p.display_formats if 'html' not in p.display_formats and len(p.display_formats) > 1: msg = ('Output magic unable to control displayed format ' 'as IPython notebook uses fixed precedence ' 'between %r' % p.display_formats) display(HTML('<b>Warning</b>: %s' % msg)) loaded = notebook_extension._loaded if loaded == False: param_ext.load_ipython_extension(ip, verbose=False) load_magics(ip) Store.output_settings.initialize(list(Store.renderers.keys())) Store.set_display_hook('html+js', LabelledData, pprint_display) Store.set_display_hook('png', LabelledData, png_display) Store.set_display_hook('svg', LabelledData, svg_display) notebook_extension._loaded = True css = '' if p.width is not None: css += '<style>div.container { width: %s%% }</style>' % p.width if p.css: css += '<style>%s</style>' % p.css if css: display(HTML(css)) resources = list(resources) if len(resources) == 0: return Renderer.load_nb() for r in [r for r in resources if r != 'holoviews']: Store.renderers[r].load_nb(inline=p.inline) if hasattr(ip, 'kernel') and not loaded: Renderer.comm_manager.get_client_comm(notebook_extension._process_comm_msg, "hv-extension-comm") # Create a message for the logo (if shown) self.load_hvjs(logo=p.logo, bokeh_logo= p.logo and ('bokeh' in resources), mpl_logo= p.logo and (('matplotlib' in resources) or resources==['holoviews']), plotly_logo= p.logo and ('plotly' in resources), JS=('holoviews' in resources)) @classmethod def completions_sorting_key(cls, word): "Fixed version of IPyton.completer.completions_sorting_key" prio1, prio2 = 0, 0 if word.startswith('__'): prio1 = 2 elif word.startswith('_'): prio1 = 1 if word.endswith('='): prio1 = -1 if word.startswith('%%'): if not "%" in word[2:]: word = word[2:]; prio2 = 2 elif word.startswith('%'): if not "%" in word[1:]: word = word[1:]; prio2 = 1 return prio1, word, prio2 def _get_resources(self, args, params): """ Finds the list of resources from the keyword parameters and pops them out of the params dictionary. """ resources = [] disabled = [] for resource in ['holoviews'] + list(Store.renderers.keys()): if resource in args: resources.append(resource) if resource in params: setting = params.pop(resource) if setting is True and resource != 'matplotlib': if resource not in resources: resources.append(resource) if setting is False: disabled.append(resource) unmatched_args = set(args) - set(resources) if unmatched_args: display(HTML('<b>Warning:</b> Unrecognized resources %s' % ', '.join(unmatched_args))) resources = [r for r in resources if r not in disabled] if ('holoviews' not in disabled) and ('holoviews' not in resources): resources = ['holoviews'] + resources return resources @classmethod def load_hvjs(cls, logo=False, bokeh_logo=False, mpl_logo=False, plotly_logo=False, JS=True, message='HoloViewsJS successfully loaded.'): """ Displays javascript and CSS to initialize HoloViews widgets. """ import jinja2 # Evaluate load_notebook.html template with widgetjs code if JS: widgetjs, widgetcss = Renderer.html_assets(extras=False, backends=[], script=True) else: widgetjs, widgetcss = '', '' # Add classic notebook MIME renderer widgetjs += nb_mime_js templateLoader = jinja2.FileSystemLoader(os.path.dirname(os.path.abspath(__file__))) jinjaEnv = jinja2.Environment(loader=templateLoader) template = jinjaEnv.get_template('load_notebook.html') html = template.render({'widgetcss': widgetcss, 'logo': logo, 'bokeh_logo': bokeh_logo, 'mpl_logo': mpl_logo, 'plotly_logo': plotly_logo, 'message': message}) publish_display_data(data={'text/html': html}) # Vanilla JS mime type is only consumed by classic notebook # Custom mime type is only consumed by JupyterLab if JS: mimebundle = { MIME_TYPES['js'] : widgetjs, MIME_TYPES['jlab-hv-load'] : widgetjs } if os.environ.get('HV_DOC_HTML', False): mimebundle = {'text/html': mimebundle_to_html(mimebundle)} publish_display_data(data=mimebundle) @param.parameterized.bothmethod def tab_completion_docstring(self_or_cls): """ Generates a docstring that can be used to enable tab-completion of resources. """ elements = ['%s=Boolean' %k for k in list(Store.renderers.keys())] for name, p in self_or_cls.params().items(): param_type = p.__class__.__name__ elements.append("%s=%s" % (name, param_type)) return "params(%s)" % ', '.join(['holoviews=Boolean'] + elements) notebook_extension.__doc__ = notebook_extension.tab_completion_docstring() notebook_extension.add_delete_action(Renderer._delete_plot) def load_ipython_extension(ip): notebook_extension(ip=ip) def unload_ipython_extension(ip): notebook_extension._loaded = False
the-stack_0_27930
from django.db import models from django.contrib.auth.models import User class UserProfile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) name = models.CharField(max_length=45) photo = models.ImageField(upload_to='admin/') gender_select = ( ('male', 'Male'), ('female', 'Female') ) gender = models.CharField(choices=gender_select, max_length=6) employee_select = ( ('admin', 'Admin'), ('professor', 'Professor'), ('teacher', 'Teacher'), ('register', 'Register'), ('student', 'Student'), ) employee_type = models.CharField(choices=employee_select, max_length=15) def __str__(self): return self.name
the-stack_0_27931
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. __all__ = [ "ImproperlyConfigured", "ElasticsearchException", "SerializationError", "TransportError", "NotFoundError", "ConflictError", "RequestError", "ConnectionError", "SSLError", "ConnectionTimeout", "AuthenticationException", "AuthorizationException", ] class ImproperlyConfigured(Exception): """ Exception raised when the config passed to the client is inconsistent or invalid. """ class ElasticsearchException(Exception): """ Base class for all exceptions raised by this package's operations (doesn't apply to :class:`~elasticsearch.ImproperlyConfigured`). """ class SerializationError(ElasticsearchException): """ Data passed in failed to serialize properly in the ``Serializer`` being used. """ class TransportError(ElasticsearchException): """ Exception raised when ES returns a non-OK (>=400) HTTP status code. Or when an actual connection error happens; in that case the ``status_code`` will be set to ``'N/A'``. """ @property def status_code(self): """ The HTTP status code of the response that precipitated the error or ``'N/A'`` if not applicable. """ return self.args[0] @property def error(self): """A string error message.""" return self.args[1] @property def info(self): """ Dict of returned error info from ES, where available, underlying exception when not. """ return self.args[2] def __str__(self): cause = "" try: if self.info and "error" in self.info: if isinstance(self.info["error"], dict): root_cause = self.info["error"]["root_cause"][0] cause = ", ".join( filter( None, [ repr(root_cause["reason"]), root_cause.get("resource.id"), root_cause.get("resource.type"), ], ) ) else: cause = repr(self.info["error"]) except LookupError: pass msg = ", ".join(filter(None, [str(self.status_code), repr(self.error), cause])) return "%s(%s)" % (self.__class__.__name__, msg) class ConnectionError(TransportError): """ Error raised when there was an exception while talking to ES. Original exception from the underlying :class:`~elasticsearch.Connection` implementation is available as ``.info``. """ def __str__(self): return "ConnectionError(%s) caused by: %s(%s)" % ( self.error, self.info.__class__.__name__, self.info, ) class SSLError(ConnectionError): """Error raised when encountering SSL errors.""" class ConnectionTimeout(ConnectionError): """A network timeout. Doesn't cause a node retry by default.""" def __str__(self): return "ConnectionTimeout caused by - %s(%s)" % ( self.info.__class__.__name__, self.info, ) class NotFoundError(TransportError): """Exception representing a 404 status code.""" class ConflictError(TransportError): """Exception representing a 409 status code.""" class RequestError(TransportError): """Exception representing a 400 status code.""" class AuthenticationException(TransportError): """Exception representing a 401 status code.""" class AuthorizationException(TransportError): """Exception representing a 403 status code.""" class ElasticsearchWarning(Warning): """Warning that is raised when a deprecated option or incorrect usage is flagged via the 'Warning' HTTP header. """ # Alias of 'ElasticsearchWarning' for backwards compatibility. # Additional functionality was added to the 'Warning' HTTP header # not related to deprecations. ElasticsearchDeprecationWarning = ElasticsearchWarning # more generic mappings from status_code to python exceptions HTTP_EXCEPTIONS = { 400: RequestError, 401: AuthenticationException, 403: AuthorizationException, 404: NotFoundError, 409: ConflictError, }
the-stack_0_27932
from ..css_matcher import scan, split_value, TokenType from .utils import push_range, SelectItemModel class CSSSection: __slots__ = ('start', 'end', 'body_start', 'body_end', 'properties') def __init__(self, start: int, end: int, body_start: int, body_end: int, properties: list=None): self.start = start self.end = end self.body_start = body_start self.body_end = body_end self.properties = properties def to_json(self): result = { 'start': self.start, 'end': self.end, 'body_start': self.body_start, 'body_end': self.body_end } if self.properties: result['properties'] = [prop.to_json() for prop in self.properties] return result class CSSProperty: __slots__ = ('name', 'value', 'value_tokens', 'before', 'after') def __init__(self, code: str, name: list, before: int, start: int, end: int, delimiter: int, offset=0): self.name = (offset + name[0], offset + name[1]) self.value = (offset + start, offset + end) self.value_tokens = split_value(code[start:end], offset + start) self.before = before self.after = offset + delimiter + 1 def to_json(self): return { 'name': self.name, 'value': self.value, 'value_tokens': self.value_tokens, 'before': self.before, 'after': self.after } class ParseState: __slots__ = ('type', 'start', 'end', 'value_start', 'value_end', 'value_delimiter') def __init__(self): self.type = None self.start = -1 self.end = -1 self.value_start = -1 self.value_end = -1 self.value_delimiter = -1 def get_css_section(code: str, pos: int, properties=False) -> CSSSection: """ Returns context CSS section for given location in source code :param properties Parse inner properties """ stack = [] pool = [] result = [] result.append(None) # Skip pylint warnings def scan_callback(token_type: str, start: int, end: int, delimiter: int): if start > pos and not stack: return False if token_type == TokenType.Selector: stack.append(alloc_range(pool, start, end, delimiter)) elif token_type == TokenType.BlockEnd: sel = stack and stack.pop() if sel and sel[0] <= pos <= end: result[0] = CSSSection(sel[0], end, sel[2] + 1, start) return False release_range(pool, sel) scan(code, scan_callback) section = result[0] if section and properties: section.properties = parse_properties(code, section.body_start, section.body_end) return section def select_item_css(code: str, pos: int, is_prev=False) -> SelectItemModel: "Returns list of ranges for Select Next/Previous CSS Item action" if is_prev: return select_previous_item(code, pos) return select_next_item(code, pos) def select_next_item(code: str, pos: int) -> SelectItemModel: "Returns regions for selecting next item in CSS" result = [] result.append(None) pending_property = [] pending_property.append(None) def scan_callback(token_type: str, start: int, end: int, delimiter: int): if start < pos: return if token_type == TokenType.Selector: result[0] = SelectItemModel(start, end, [(start, end)]) return False elif token_type == TokenType.PropertyName: pending_property[0] = (start, end, delimiter) elif token_type == TokenType.PropertyValue: section = SelectItemModel(start, delimiter + 1 if delimiter != -1 else end, []) result[0] = section if pending_property[0]: # Full property range prop = pending_property[0] section.start = prop[0] push_range(section.ranges, (prop[0], section.end)) # Full value range push_range(section.ranges, (start, end)) # Value fragments for r in split_value(code[start:end]): push_range(section.ranges, (r[0] + start, r[1] + start)) return False elif pending_property[0]: prop = pending_property[0] result[0] = SelectItemModel(prop[0], prop[1], [(prop[0], prop[1])]) return False scan(code, scan_callback) return result[0] def select_previous_item(code: str, pos: int) -> SelectItemModel: "Returns regions for selecting previous item in CSS" state = ParseState() def scan_callback(token_type, start, end, delimiter): # Accumulate context until we reach given position if start >= pos and token_type != TokenType.PropertyValue: return False if token_type in (TokenType.Selector, TokenType.PropertyName): state.start = start state.end = end state.type = token_type state.value_start = state.value_end = state.value_delimiter = -1 elif token_type == TokenType.PropertyValue: state.value_start = start state.value_end = end state.value_delimiter = delimiter scan(code, scan_callback) if state.type == TokenType.Selector: return SelectItemModel(state.start, state.end, [(state.start, state.end)]) if state.type == TokenType.PropertyName: result = SelectItemModel(state.start, state.end, []) if state.value_start != -1: result.end = state.value_delimiter + 1 if state.value_delimiter != -1 else state.value_end # Full property range push_range(result.ranges, (state.start, result.end)) # Full value range push_range(result.ranges, (state.value_start, state.value_end)) # Value fragments for r in split_value(code[state.value_start:state.value_end]): push_range(result.ranges, (r[0] + state.value_start, r[1] + state.value_start)) else: push_range(result.ranges, (state.start, state.end)) return result class ParsePropertiesState: __slots__ = ('pending_name', 'nested', 'before') def __init__(self, before: int): self.pending_name = None self.nested = 0 self.before= before def parse_properties(code: str, parse_from=0, parse_to=None) -> list: """ Parses properties in `from:to` fragment of `code`. Note that `from:to` must point to CSS section content, e.g. *inside* `{` and `}` (or top-level code context), all properties found in nested sections will be ignored """ if parse_to is None: parse_to = len(code) fragment = code[parse_from:parse_to] result = [] pool = [] state = ParsePropertiesState(parse_from) def scan_callback(token_type, start: int, end: int, delimiter: int): if token_type == TokenType.Selector: state.nested += 1 elif token_type == TokenType.BlockEnd: state.nested -= 1 state.before = parse_from + end elif not state.nested: if token_type == TokenType.PropertyName: if state.pending_name: # Create property with empty value value_pos = state.pending_name[2] result.append( CSSProperty(fragment, state.pending_name, state.before, value_pos, value_pos, value_pos, parse_from)) release_range(pool, state.pending_name) state.before = parse_from + start state.pending_name = alloc_range(pool, start, end, delimiter) elif token_type == TokenType.PropertyValue: if state.pending_name: result.append( CSSProperty(fragment, state.pending_name, state.before, start, end, delimiter, parse_from)) release_range(pool, state.pending_name) state.pending_name = None state.before = parse_from + delimiter + 1 scan(fragment, scan_callback) return result def alloc_range(pool: list, start: int, end: int, delimiter: int) -> list: "Allocates new token range from pool" if pool: rng = pool.pop() rng[0] = start rng[1] = end rng[2] = delimiter return rng return [start, end, delimiter] def release_range(pool: list, rng: list): "Releases given token range and pushes it back into the pool" if rng: pool.append(rng)
the-stack_0_27934
# pylint: disable=missing-docstring, global-statement, unused-argument, broad-except from __future__ import print_function import sys import os import random import uuid import time import datetime import subprocess import json import traceback import base64 import signal try: # for python 3 from http.client import HTTPConnection except ImportError: # for python 2 from httplib import HTTPConnection signal.signal(signal.SIGINT, lambda x, y: sys.exit(0)) ORIG_STDOUT = sys.stdout ORIG_STDERR = sys.stderr LOGS = '' LOG_TAIL = False STAY_OPEN = os.environ.get('DOCKER_LAMBDA_STAY_OPEN', '') HANDLER = sys.argv[1] if len(sys.argv) > 1 else os.environ.get('AWS_LAMBDA_FUNCTION_HANDLER', \ os.environ.get('_HANDLER', 'lambda_function.lambda_handler')) EVENT_BODY = sys.argv[2] if len(sys.argv) > 2 else os.environ.get('AWS_LAMBDA_EVENT_BODY', \ (sys.stdin.read() if os.environ.get('DOCKER_LAMBDA_USE_STDIN', False) else '{}')) FUNCTION_NAME = os.environ.get('AWS_LAMBDA_FUNCTION_NAME', 'test') FUNCTION_VERSION = os.environ.get('AWS_LAMBDA_FUNCTION_VERSION', '$LATEST') MEM_SIZE = os.environ.get('AWS_LAMBDA_FUNCTION_MEMORY_SIZE', '1536') DEADLINE_MS = int(time.time() * 1000) + int(os.environ.get('AWS_LAMBDA_FUNCTION_TIMEOUT', '300')) REGION = os.environ.get('AWS_REGION', os.environ.get('AWS_DEFAULT_REGION', 'us-east-1')) ACCOUNT_ID = os.environ.get('AWS_ACCOUNT_ID', random.randint(100000000000, 999999999999)) ACCESS_KEY_ID = os.environ.get('AWS_ACCESS_KEY_ID', 'SOME_ACCESS_KEY_ID') SECRET_ACCESS_KEY = os.environ.get('AWS_SECRET_ACCESS_KEY', 'SOME_SECRET_ACCESS_KEY') SESSION_TOKEN = os.environ.get('AWS_SESSION_TOKEN', None) INVOKEID = str(uuid.uuid4()) INVOKE_MODE = 'event' # Either 'http' or 'event' SUPPRESS_INIT = True # Forces calling _get_handlers_delayed() DATA_SOCK = -1 CONTEXT_OBJS = { 'clientcontext': None, 'cognitoidentityid': None, 'cognitopoolid': None, } CREDENTIALS = { 'key': ACCESS_KEY_ID, 'secret': SECRET_ACCESS_KEY, 'session': SESSION_TOKEN } INVOKED_FUNCTION_ARN = os.environ.get('AWS_LAMBDA_FUNCTION_INVOKED_ARN', \ 'arn:aws:lambda:%s:%s:function:%s' % (REGION, ACCOUNT_ID, FUNCTION_NAME)) XRAY_TRACE_ID = os.environ.get('_X_AMZN_TRACE_ID', None) XRAY_PARENT_ID = None XRAY_SAMPLED = None TRACE_ID = None INVOKED = False ERRORED = False TODAY = datetime.date.today() # export needed stuff os.environ['AWS_LAMBDA_LOG_GROUP_NAME'] = '/aws/lambda/%s' % FUNCTION_NAME os.environ['AWS_LAMBDA_LOG_STREAM_NAME'] = "%s/%s/%s/[%s]%s" % ( TODAY.year, TODAY.month, TODAY.day, FUNCTION_VERSION, '%016x' % random.randrange(16**16) ) os.environ["AWS_LAMBDA_FUNCTION_NAME"] = FUNCTION_NAME os.environ['AWS_LAMBDA_FUNCTION_MEMORY_SIZE'] = MEM_SIZE os.environ['AWS_LAMBDA_FUNCTION_VERSION'] = FUNCTION_VERSION os.environ['AWS_REGION'] = REGION os.environ['AWS_DEFAULT_REGION'] = REGION os.environ['_HANDLER'] = HANDLER MOCKSERVER_ENV = os.environ.copy() MOCKSERVER_ENV['DOCKER_LAMBDA_NO_BOOTSTRAP'] = '1' MOCKSERVER_ENV['DOCKER_LAMBDA_USE_STDIN'] = '1' MOCKSERVER_PROCESS = subprocess.Popen( '/var/runtime/mockserver', stdin=subprocess.PIPE, env=MOCKSERVER_ENV) MOCKSERVER_PROCESS.stdin.write(EVENT_BODY.encode()) MOCKSERVER_PROCESS.stdin.close() MOCKSERVER_CONN = HTTPConnection("127.0.0.1", 9001) def eprint(*args, **kwargs): print(*args, file=ORIG_STDERR, **kwargs) def report_user_init_start(): return def report_user_init_end(): return def report_user_invoke_start(): return def report_user_invoke_end(): return def receive_start(): global MOCKSERVER_CONN for retry in range(20): try: MOCKSERVER_CONN = HTTPConnection("127.0.0.1", 9001) MOCKSERVER_CONN.request("GET", "/2018-06-01/ping") resp = MOCKSERVER_CONN.getresponse() if resp.status != 200: raise Exception("Mock server returned %d" % resp.status) resp.read() break except Exception: if retry >= 19: raise else: time.sleep(.005) continue return ( INVOKEID, INVOKE_MODE, HANDLER, SUPPRESS_INIT, CREDENTIALS ) def report_running(invokeid): return def receive_invoke(): global INVOKED global INVOKEID global DEADLINE_MS global INVOKED_FUNCTION_ARN global XRAY_TRACE_ID global EVENT_BODY global CONTEXT_OBJS global LOGS global LOG_TAIL try: MOCKSERVER_CONN.request("GET", "/2018-06-01/runtime/invocation/next") resp = MOCKSERVER_CONN.getresponse() if resp.status != 200: raise Exception("/invocation/next return status %d" % resp.status) except Exception: if INVOKED and not STAY_OPEN: sys.exit(1 if ERRORED else 0) return () raise if INVOKED: LOGS = "" INVOKED = True INVOKEID = resp.getheader('Lambda-Runtime-Aws-Request-Id') DEADLINE_MS = resp.getheader('Lambda-Runtime-Deadline-Ms') INVOKED_FUNCTION_ARN = resp.getheader( 'Lambda-Runtime-Invoked-Function-Arn') XRAY_TRACE_ID = resp.getheader('Lambda-Runtime-Trace-Id') cognito_identity = json.loads(resp.getheader( 'Lambda-Runtime-Cognito-Identity', '{}')) CONTEXT_OBJS['cognitoidentityid'] = cognito_identity.get('identity_id') CONTEXT_OBJS['cognitopoolid'] = cognito_identity.get('identity_pool_id') CONTEXT_OBJS['clientcontext'] = resp.getheader( 'Lambda-Runtime-Client-Context') LOG_TAIL = resp.getheader('docker-lambda-log-type') == 'Tail' EVENT_BODY = resp.read() return ( INVOKEID, DATA_SOCK, CREDENTIALS, EVENT_BODY, CONTEXT_OBJS, INVOKED_FUNCTION_ARN, XRAY_TRACE_ID, ) def report_fault(invokeid, msg, except_value, trace): global ERRORED ERRORED = True if msg and except_value: eprint('%s: %s' % (msg, except_value)) if trace: eprint('%s' % trace) def report_done(invokeid, errortype, result, is_fatal): global ERRORED if not INVOKED: return if errortype is not None: ERRORED = True result_obj = json.loads(result) stack_trace = result_obj.get('stackTrace') if stack_trace is not None: result_obj['stackTrace'] = traceback.format_list(stack_trace) result = json.dumps(result_obj) headers = {"Docker-Lambda-Log-Result": base64.b64encode(LOGS.encode())} if LOG_TAIL else {} MOCKSERVER_CONN.request("POST", "/2018-06-01/runtime/invocation/%s/%s" % \ (invokeid, "response" if errortype is None else "error"), result, headers) resp = MOCKSERVER_CONN.getresponse() if resp.status != 202: raise Exception("/invocation/response return status %d" % resp.status) resp.read() def report_xray_exception(xray_json): return def log_bytes(msg, fileno): global LOGS if STAY_OPEN: if LOG_TAIL: LOGS += msg (ORIG_STDOUT if fileno == 1 else ORIG_STDERR).write(msg) else: ORIG_STDERR.write(msg) def log_sb(msg): return def get_remaining_time(): return DEADLINE_MS - int(time.time() * 1000) def send_console_message(msg, byte_length): log_bytes(msg + '\n', 1)
the-stack_0_27938
import logging import os.path as osp import tempfile import mmcv import numpy as np from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from mmdet.core import eval_recalls from mmdet.utils import print_log from .custom import CustomDataset from .registry import DATASETS @DATASETS.register_module class CocoDataset(CustomDataset): CLASSES = ( "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic_light", "fire_hydrant", "stop_sign", "parking_meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports_ball", "kite", "baseball_bat", "baseball_glove", "skateboard", "surfboard", "tennis_racket", "bottle", "wine_glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot_dog", "pizza", "donut", "cake", "chair", "couch", "potted_plant", "bed", "dining_table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell_phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy_bear", "hair_drier", "toothbrush", ) def load_annotations(self, ann_file): self.coco = COCO(ann_file) self.cat_ids = self.coco.getCatIds() self.cat2label = {cat_id: i + 1 for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.getImgIds() img_infos = [] for i in self.img_ids: info = self.coco.loadImgs([i])[0] info["filename"] = info["file_name"] img_infos.append(info) return img_infos def get_ann_info(self, idx): img_id = self.img_infos[idx]["id"] ann_ids = self.coco.getAnnIds(imgIds=[img_id]) ann_info = self.coco.loadAnns(ann_ids) return self._parse_ann_info(self.img_infos[idx], ann_info) def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] ids_with_ann = set(_["image_id"] for _ in self.coco.anns.values()) for i, img_info in enumerate(self.img_infos): if self.filter_empty_gt and self.img_ids[i] not in ids_with_ann: continue if min(img_info["width"], img_info["height"]) >= min_size: valid_inds.append(i) return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore, labels, masks, seg_map. "masks" are raw annotations and not decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get("ignore", False): continue x1, y1, w, h = ann["bbox"] if ann["area"] <= 0 or w < 1 or h < 1: continue bbox = [x1, y1, x1 + w - 1, y1 + h - 1] if ann.get("iscrowd", False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann["category_id"]]) gt_masks_ann.append(ann["segmentation"]) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info["filename"].replace("jpg", "png") ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map, ) return ann def xyxy2xywh(self, bbox): _bbox = bbox.tolist() return [_bbox[0], _bbox[1], _bbox[2] - _bbox[0] + 1, _bbox[3] - _bbox[1] + 1] def _proposal2json(self, results): json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] bboxes = results[idx] for i in range(bboxes.shape[0]): data = dict() data["image_id"] = img_id data["bbox"] = self.xyxy2xywh(bboxes[i]) data["score"] = float(bboxes[i][4]) data["category_id"] = 1 json_results.append(data) return json_results def _det2json(self, results): json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data["image_id"] = img_id data["bbox"] = self.xyxy2xywh(bboxes[i]) data["score"] = float(bboxes[i][4]) data["category_id"] = self.cat_ids[label] json_results.append(data) return json_results def _segm2json(self, results): bbox_json_results = [] segm_json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] det, seg = results[idx] for label in range(len(det)): # bbox results bboxes = det[label] for i in range(bboxes.shape[0]): data = dict() data["image_id"] = img_id data["bbox"] = self.xyxy2xywh(bboxes[i]) data["score"] = float(bboxes[i][4]) data["category_id"] = self.cat_ids[label] bbox_json_results.append(data) # segm results # some detectors use different scores for bbox and mask if isinstance(seg, tuple): segms = seg[0][label] mask_score = seg[1][label] else: segms = seg[label] mask_score = [bbox[4] for bbox in bboxes] for i in range(bboxes.shape[0]): data = dict() data["image_id"] = img_id data["bbox"] = self.xyxy2xywh(bboxes[i]) data["score"] = float(mask_score[i]) data["category_id"] = self.cat_ids[label] if isinstance(segms[i]["counts"], bytes): segms[i]["counts"] = segms[i]["counts"].decode() data["segmentation"] = segms[i] segm_json_results.append(data) return bbox_json_results, segm_json_results def results2json(self, results, outfile_prefix): """Dump the detection results to a json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and values are corresponding filenames. """ result_files = dict() if isinstance(results[0], list): json_results = self._det2json(results) result_files["bbox"] = "{}.{}.json".format(outfile_prefix, "bbox") result_files["proposal"] = "{}.{}.json".format(outfile_prefix, "bbox") mmcv.dump(json_results, result_files["bbox"]) elif isinstance(results[0], tuple): json_results = self._segm2json(results) result_files["bbox"] = "{}.{}.json".format(outfile_prefix, "bbox") result_files["proposal"] = "{}.{}.json".format(outfile_prefix, "bbox") result_files["segm"] = "{}.{}.json".format(outfile_prefix, "segm") mmcv.dump(json_results[0], result_files["bbox"]) mmcv.dump(json_results[1], result_files["segm"]) elif isinstance(results[0], np.ndarray): json_results = self._proposal2json(results) result_files["proposal"] = "{}.{}.json".format(outfile_prefix, "proposal") mmcv.dump(json_results, result_files["proposal"]) else: raise TypeError("invalid type of results") return result_files def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.getAnnIds(imgIds=self.img_ids[i]) ann_info = self.coco.loadAnns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get("ignore", False) or ann["iscrowd"]: continue x1, y1, w, h = ann["bbox"] bboxes.append([x1, y1, x1 + w - 1, y1 + h - 1]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger ) ar = recalls.mean(axis=1) return ar def format_results(self, results, jsonfile_prefix=None, **kwargs): """Format the results to json (standard format for COCO evaluation). Args: results (list): Testing results of the dataset. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing the json filepaths, tmp_dir is the temporal directory created for saving json files when jsonfile_prefix is not specified. """ assert isinstance(results, list), "results must be a list" assert len(results) == len( self ), "The length of results is not equal to the dataset len: {} != {}".format( len(results), len(self) ) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, "results") else: tmp_dir = None result_files = self.results2json(results, jsonfile_prefix) return result_files, tmp_dir def evaluate( self, results, metric="bbox", logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=np.arange(0.5, 0.96, 0.05), ): """Evaluation in COCO protocol. Args: results (list): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float]): IoU threshold used for evaluating recalls. If set to a list, the average recall of all IoUs will also be computed. Default: 0.5. Returns: dict[str: float] """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ["bbox", "segm", "proposal", "proposal_fast"] for metric in metrics: if metric not in allowed_metrics: raise KeyError("metric {} is not supported".format(metric)) result_files, tmp_dir = self.format_results(results, jsonfile_prefix) eval_results = {} cocoGt = self.coco for metric in metrics: msg = "Evaluating {}...".format(metric) if logger is None: msg = "\n" + msg print_log(msg, logger=logger) if metric == "proposal_fast": ar = self.fast_eval_recall( results, proposal_nums, iou_thrs, logger="silent" ) log_msg = [] for i, num in enumerate(proposal_nums): eval_results["AR@{}".format(num)] = ar[i] log_msg.append("\nAR@{}\t{:.4f}".format(num, ar[i])) log_msg = "".join(log_msg) print_log(log_msg, logger=logger) continue if metric not in result_files: raise KeyError("{} is not in results".format(metric)) try: cocoDt = cocoGt.loadRes(result_files[metric]) except IndexError: print_log( "The testing results of the whole dataset is empty.", logger=logger, level=logging.ERROR, ) break iou_type = "bbox" if metric == "proposal" else metric cocoEval = COCOeval(cocoGt, cocoDt, iou_type) cocoEval.params.imgIds = self.img_ids if metric == "proposal": cocoEval.params.useCats = 0 cocoEval.params.maxDets = list(proposal_nums) cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() metric_items = [ "AR@100", "AR@300", "AR@1000", "AR_s@1000", "AR_m@1000", "AR_l@1000", ] for i, item in enumerate(metric_items): val = float("{:.3f}".format(cocoEval.stats[i + 6])) eval_results[item] = val else: cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if classwise: # Compute per-category AP pass # TODO metric_items = ["mAP", "mAP_50", "mAP_75", "mAP_s", "mAP_m", "mAP_l"] for i in range(len(metric_items)): key = "{}_{}".format(metric, metric_items[i]) val = float("{:.3f}".format(cocoEval.stats[i])) eval_results[key] = val eval_results["{}_mAP_copypaste".format(metric)] = ( "{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} " "{ap[4]:.3f} {ap[5]:.3f}" ).format(ap=cocoEval.stats[:6]) if tmp_dir is not None: tmp_dir.cleanup() return eval_results
the-stack_0_27941
from typing import Callable from rx3.core import Observable from rx3.core.typing import Mapper from rx3.disposable import SerialDisposable, CompositeDisposable, SingleAssignmentDisposable from rx3.scheduler import ImmediateScheduler def _expand(mapper: Mapper) -> Callable[[Observable], Observable]: def expand(source: Observable) -> Observable: """Expands an observable sequence by recursively invoking mapper. Args: source: Source obserable to expand. Returns: An observable sequence containing all the elements produced by the recursive expansion. """ def subscribe(observer, scheduler=None): scheduler = scheduler or ImmediateScheduler.singleton() queue = [] m = SerialDisposable() d = CompositeDisposable(m) active_count = [0] is_acquired = [False] def ensure_active(): is_owner = False if queue: is_owner = not is_acquired[0] is_acquired[0] = True def action(scheduler, state): if queue: work = queue.pop(0) else: is_acquired[0] = False return sad = SingleAssignmentDisposable() d.add(sad) def on_next(value): observer.on_next(value) result = None try: result = mapper(value) except Exception as ex: observer.on_error(ex) return queue.append(result) active_count[0] += 1 ensure_active() def on_complete(): d.remove(sad) active_count[0] -= 1 if active_count[0] == 0: observer.on_completed() sad.disposable = work.subscribe_(on_next, observer.on_error, on_complete, scheduler) m.disposable = scheduler.schedule(action) if is_owner: m.disposable = scheduler.schedule(action) queue.append(source) active_count[0] += 1 ensure_active() return d return Observable(subscribe) return expand
the-stack_0_27942
""" Lock Exchange Test case ======================= Solves hydrostatic flow in a closed rectangular channel. Dianeutral mixing depends on mesh Reynolds number [1] Re_h = U dx / nu U = 0.5 m/s characteristic velocity ~ 0.5*sqrt(g_h drho/rho_0) dx = horizontal mesh size nu = background viscosity Smagorinsky factor should be C_s = 1/sqrt(Re_h) Mesh resolutions: - ilicak [1]: dx = 500 m, 20 layers COMODO lock exchange benchmark [2]: - coarse: dx = 2000 m, 10 layers - coarse2 (*): dx = 1000 m, 20 layers - medium: dx = 500 m, 40 layers - medium2 (*): dx = 250 m, 80 layers - fine: dx = 125 m, 160 layers (*) not part of the original benchmark [1] Ilicak et al. (2012). Spurious dianeutral mixing and the role of momentum closure. Ocean Modelling, 45-46(0):37-58. http://dx.doi.org/10.1016/j.ocemod.2011.10.003 [2] COMODO Lock Exchange test. http://indi.imag.fr/wordpress/?page_id=446 [3] Petersen et al. (2015). Evaluation of the arbitrary Lagrangian-Eulerian vertical coordinate method in the MPAS-Ocean model. Ocean Modelling, 86:93-113. http://dx.doi.org/10.1016/j.ocemod.2014.12.004 """ from thetis import * from diagnostics import * from plotting import * def run_lockexchange(reso_str='coarse', poly_order=1, element_family='dg-dg', reynolds_number=1.0, use_limiter=True, dt=None, viscosity='const', laxfriedrichs_vel=0.0, laxfriedrichs_trc=0.0, elem_type='tri', load_export_ix=None, iterate=True, **custom_options): """ Runs lock exchange problem with a bunch of user defined options. """ comm = COMM_WORLD if laxfriedrichs_vel is None: laxfriedrichs_vel = 0.0 if laxfriedrichs_trc is None: laxfriedrichs_trc = 0.0 depth = 20.0 refinement = {'huge': 0.6, 'coarse': 1, 'coarse2': 2, 'medium': 4, 'medium2': 8, 'fine': 16, 'ilicak': 4} # set mesh resolution if '-' in reso_str: words = reso_str.split('-') delta_x, delta_z = [float(f) for f in words] layers = int(np.ceil(depth/delta_z)) else: delta_x = 2000.0/refinement[reso_str] layers = int(round(10*refinement[reso_str])) if reso_str == 'ilicak': layers = 20 # generate unit mesh and transform its coords x_max = 32.0e3 x_min = -32.0e3 n_x = (x_max - x_min)/delta_x mesh2d = UnitSquareMesh(n_x, 2, quadrilateral=(elem_type == 'quad')) coords = mesh2d.coordinates # x in [x_min, x_max], y in [-dx, dx] coords.dat.data[:, 0] = coords.dat.data[:, 0]*(x_max - x_min) + x_min coords.dat.data[:, 1] = coords.dat.data[:, 1]*2*delta_x - delta_x # temperature and salinity, for linear eq. of state (from Petersen, 2015) temp_left = 5.0 temp_right = 30.0 salt_const = 35.0 rho_0 = 1000.0 physical_constants['rho0'].assign(rho_0) # compute horizontal viscosity uscale = 0.5 nu_scale = uscale * delta_x / reynolds_number if reynolds_number < 0: reynolds_number = float("inf") nu_scale = 0.0 u_max = 1.0 w_max = 1.2e-2 t_end = 25 * 3600 t_export = 15*60.0 if os.getenv('THETIS_REGRESSION_TEST') is not None: t_end = 5*t_export lim_str = '_lim' if use_limiter else '' options_str = '_'.join([reso_str, element_family, elem_type, 'p{:}'.format(poly_order), 'visc-{:}'.format(viscosity), 'Re{:}'.format(reynolds_number), 'lf-vel{:.1f}'.format(laxfriedrichs_vel), 'lf-trc{:.1f}'.format(laxfriedrichs_trc), ]) + lim_str outputdir = 'outputs_' + options_str # bathymetry p1_2d = FunctionSpace(mesh2d, 'CG', 1) bathymetry_2d = Function(p1_2d, name='Bathymetry') bathymetry_2d.assign(depth) # create solver solver_obj = solver.FlowSolver(mesh2d, bathymetry_2d, layers) options = solver_obj.options options.polynomial_degree = poly_order options.element_family = element_family options.timestepper_type = 'SSPRK22' options.solve_salinity = False options.constant_salinity = Constant(salt_const) options.solve_temperature = True options.use_implicit_vertical_diffusion = False options.use_bottom_friction = False options.use_ale_moving_mesh = True options.use_baroclinic_formulation = True options.use_lax_friedrichs_velocity = laxfriedrichs_vel > 0.0 options.use_lax_friedrichs_tracer = laxfriedrichs_trc > 0.0 options.lax_friedrichs_velocity_scaling_factor = Constant(laxfriedrichs_vel) options.lax_friedrichs_tracer_scaling_factor = Constant(laxfriedrichs_trc) options.use_limiter_for_tracers = use_limiter options.use_limiter_for_velocity = use_limiter # To keep const grid Re_h, viscosity scales with grid: nu = U dx / Re_h if viscosity == 'smag': options.use_smagorinsky_viscosity = True options.smagorinsky_coefficient = Constant(1.0/np.sqrt(reynolds_number)) elif viscosity == 'const': options.horizontal_viscosity = Constant(nu_scale) else: raise Exception('Unknow viscosity type {:}'.format(viscosity)) options.vertical_viscosity = Constant(1e-4) options.horizontal_diffusivity = None options.horizontal_viscosity_scale = Constant(nu_scale) options.horizontal_velocity_scale = Constant(u_max) options.vertical_velocity_scale = Constant(w_max) if dt is not None: options.timestepper_options.use_automatic_timestep = False options.timestep = dt options.simulation_export_time = t_export options.simulation_end_time = t_end options.output_directory = outputdir options.check_volume_conservation_2d = True options.check_volume_conservation_3d = True options.check_temperature_conservation = True options.check_temperature_overshoot = True options.fields_to_export = ['uv_2d', 'elev_2d', 'uv_3d', 'w_3d', 'w_mesh_3d', 'temp_3d', 'density_3d', 'uv_dav_2d', 'uv_dav_3d', 'baroc_head_3d', 'smag_visc_3d'] options.fields_to_export_hdf5 = list(options.fields_to_export) options.equation_of_state_type = 'linear' options.equation_of_state_options.rho_ref = rho_0 options.equation_of_state_options.s_ref = 35.0 options.equation_of_state_options.th_ref = 5.0 options.equation_of_state_options.alpha = 0.2 options.equation_of_state_options.beta = 0.0 options.update(custom_options) if comm.size == 1: solver_obj.add_callback(RPECalculator(solver_obj)) solver_obj.add_callback(FrontLocationCalculator(solver_obj)) # solver_obj.add_callback(PlotCallback(solver_obj, append_to_log=False)) solver_obj.create_equations() print_output('Running lock exchange problem with options:') print_output('Resolution: {:}'.format(reso_str)) print_output('Reynolds number: {:}'.format(reynolds_number)) print_output('Use slope limiters: {:}'.format(use_limiter)) print_output('Horizontal viscosity: {:}'.format(nu_scale)) print_output('Lax-Friedrichs factor vel: {:}'.format(laxfriedrichs_vel)) print_output('Lax-Friedrichs factor trc: {:}'.format(laxfriedrichs_trc)) print_output('Exporting to {:}'.format(outputdir)) esize = solver_obj.fields.h_elem_size_2d min_elem_size = comm.allreduce(np.min(esize.dat.data), op=MPI.MIN) max_elem_size = comm.allreduce(np.max(esize.dat.data), op=MPI.MAX) print_output('Elem size: {:} {:}'.format(min_elem_size, max_elem_size)) temp_init3d = Function(solver_obj.function_spaces.H, name='initial temperature') x, y, z = SpatialCoordinate(solver_obj.mesh) # vertical barrier # temp_init3d.interpolate(conditional(x > 0.0, temp_right, temp_left)) # smooth condition sigma = 10.0 temp_init3d.interpolate( temp_left - (temp_left - temp_right)*0.5*(tanh(x/sigma) + 1.0) ) if load_export_ix is None: solver_obj.assign_initial_conditions(temp=temp_init3d) else: assert isinstance(load_export_ix, int) solver_obj.load_state(load_export_ix) if iterate: solver_obj.iterate() return solver_obj def get_argparser(): import argparse parser = argparse.ArgumentParser() parser.add_argument('-r', '--reso_str', type=str, help='mesh resolution string. A named mesh or "dx-dz" string', default='coarse') parser.add_argument('--no-limiter', action='store_false', dest='use_limiter', help='do not use slope limiter for tracers') parser.add_argument('-p', '--poly_order', type=int, default=1, help='order of finite element space') parser.add_argument('-f', '--element-family', type=str, help='finite element family', default='dg-dg') parser.add_argument('-re', '--reynolds-number', type=float, default=1.0, help='mesh Reynolds number for Smagorinsky scheme') parser.add_argument('-dt', '--dt', type=float, help='force value for 3D time step') parser.add_argument('-visc', '--viscosity', type=str, help='Type of horizontal viscosity', default='const', choices=['const', 'smag']) parser.add_argument('-lf-trc', '--laxfriedrichs-trc', type=float, help='Lax-Friedrichs flux factor for tracers', default=0.0) parser.add_argument('-lf-vel', '--laxfriedrichs-vel', type=float, help='Lax-Friedrichs flux factor for velocity', default=0.0) parser.add_argument('-e', '--elem-type', type=str, help='Type of 2D element, either "tri" or "quad"', default='tri') return parser def parse_options(): parser = get_argparser() args, unknown_args = parser.parse_known_args() args_dict = vars(args) run_lockexchange(**args_dict) if __name__ == '__main__': parse_options()
the-stack_0_27943
import cv2 import os def get_file_name(path): file_names = [x for x in os.walk(path)][0][2] file_names = ['.'.join(x.split('.')[:-1]) for x in file_names] return file_names def load_data(data_path:str,label_path:str): cap = cv2.VideoCapture(data_path) data_list = [] while cap.isOpened(): ret,frame = cap.read() if not ret: break data_list.append(cv2.resize(frame,(300,300))) save_shape=[300,300] with open(label_path, "r", encoding="utf-8") as f: readlines = f.readlines() boxs = [] for readline in readlines: readline_split = readline.strip().split(",") box = [ [int(float(readline_split[0]) * save_shape[1]), int(float(readline_split[1]) * save_shape[0])], [int(float(readline_split[2]) * save_shape[1]), int(float(readline_split[3]) * save_shape[0])], readline_split[4]] boxs.append(box) return data_list,boxs if __name__ == '__main__': import cv2 import numpy as np org_data_dirs=[ # "D:\data\smoke_car\\rebuild_data_slim\\base_dataset", # "D:\data\smoke_car\\rebuild_data_slim\\DeAn_dataset", # "D:\data\smoke_car\\rebuild_data_slim\\GuRun_dataset", # "D:\data\smoke_car\\rebuild_data_slim\\HeNeng_dataset", # "D:\data\smoke_car\\rebuild_data_slim\\TongHua_dataset", # "D:\data\smoke_car\\rebuild_data_slim\\WanZai_dataset", # "D:\data\smoke_car\\rebuild_data_slim\\XinXiang_dataset", # "D:\data\smoke_car\\rebuild_data_slim\\YunJing_dataset", # "D:\data\smoke_car\\rebuild_data_slim\\ZhangYe_dataset", "D:\data\smoke_car\\rebuild_data_slim\\test_dataset", ] save_data_pardir="D:\data\smoke_car/smoke_classification_data" for org_data_dir in org_data_dirs: save_data_dir = save_data_pardir+"/%s"%os.path.basename(org_data_dir) if not os.path.exists(save_data_dir): os.makedirs(save_data_dir) file_names = get_file_name(org_data_dir+"/data") for file_name in file_names: data, label = load_data( "%s/data/%s.mp4"%(org_data_dir,file_name), "%s/label/%s.txt"%(org_data_dir,file_name)) have_smoke=False for x in label: if x[-1] == "smoke": have_smoke=True label = x break elif "smoke" in x[-1]: print("") continue if not have_smoke: continue center_point = np.random.randint(0, 300, 2) max_wh = 50 else: # continue center_point = (np.array(label[0])+np.array(label[1]))//2 max_wh = np.max(np.array(label[1])-np.array(label[0]))//2*3 max_wh = min(80,max_wh) center_point=np.clip(center_point,max_wh,300-max_wh) video_data=[] for d in data: show_data = d[center_point[1]-max_wh:center_point[1]+max_wh,center_point[0]-max_wh:center_point[0]+max_wh,:] show_data = cv2.resize(show_data,(100,100)) video_data.append(show_data) video_data = np.concatenate(video_data,0) save_path = "%s/data/%s.jpg"%(save_data_dir,file_name) if not os.path.exists(os.path.dirname(save_path)): os.makedirs(os.path.dirname(save_path)) cv2.imencode(".jpg",video_data)[1].tofile(save_path) save_path = "%s/label/%s.txt"%(save_data_dir,file_name) if not os.path.exists(os.path.dirname(save_path)): os.makedirs(os.path.dirname(save_path)) with open(save_path,"w",encoding="utf-8") as f: if have_smoke: f.write("T") else: f.write("F")
the-stack_0_27947
# -*- coding: utf-8 -*- from __future__ import absolute_import from operator import itemgetter from functools import wraps import re from six import (iterkeys, binary_type, text_type, string_types, integer_types, iteritems, PY3) from six.moves import xrange from six.moves.urllib.parse import urlparse, urlencode, quote_plus import certifi from elasticsearch.connection_pool import RandomSelector from elasticsearch.exceptions import (ConnectionError, ConnectionTimeout, TransportError, SerializationError) from elasticsearch.transport import Transport import simplejson as json # for use_decimal from pyelasticsearch.exceptions import (ElasticHttpError, ElasticHttpNotFoundError, IndexAlreadyExistsError, InvalidJsonResponseError, BulkError) def _add_es_kwarg_docs(params, method): """ Add stub documentation for any args in ``params`` that aren't already in the docstring of ``method``. The stubs may not tell much about each arg, but they serve the important purpose of letting the user know that they're safe to use--we won't be paving over them in the future for something pyelasticsearch-specific. """ def docs_for_kwarg(p): return '\n :arg %s: See the ES docs.' % p doc = method.__doc__ if doc is not None: # It's none under python -OO. # Handle the case where there are no :arg declarations to key off: if '\n :arg' not in doc and params: first_param, params = params[0], params[1:] doc = doc.replace('\n (Insert es_kwargs here.)', docs_for_kwarg(first_param)) for p in params: if ('\n :arg %s: ' % p) not in doc: # Find the last documented arg so we can put our generated docs # after it. No need to explicitly compile this; the regex cache # should serve. insertion_point = re.search( r' :arg (.*?)(?=\n+ (?:$|[^: ]))', doc, re.MULTILINE | re.DOTALL).end() doc = ''.join([doc[:insertion_point], docs_for_kwarg(p), doc[insertion_point:]]) method.__doc__ = doc def es_kwargs(*args_to_convert): """ Mark which kwargs will become query string params in the eventual ES call. Return a decorator that grabs the kwargs of the given names, plus any beginning with "es_", subtracts them from the ordinary kwargs, and passes them to the decorated function through the ``query_params`` kwarg. The remaining kwargs and the args are passed through unscathed. Also, if any of the given kwargs are undocumented in the decorated method's docstring, add stub documentation for them. """ convertible_args = set(args_to_convert) def decorator(func): # Add docs for any missing query params: _add_es_kwarg_docs(args_to_convert, func) @wraps(func) def decorate(*args, **kwargs): # Make kwargs the map of normal kwargs and query_params the map of # kwargs destined for query string params. # Let one @es_kwargs-wrapped function call another: query_params = kwargs.pop('query_params', {}) for k in list(iterkeys(kwargs)): # Make a copy; we mutate kwargs. if k.startswith('es_'): query_params[k[3:]] = kwargs.pop(k) elif k in convertible_args: query_params[k] = kwargs.pop(k) return func(*args, query_params=query_params, **kwargs) return decorate return decorator class JsonEncoder(json.JSONEncoder): def default(self, value): """Convert more Python data types to ES-understandable JSON.""" iso = _iso_datetime(value) if iso: return iso if not PY3 and isinstance(value, str): return unicode(value, errors='replace') # TODO: Be stricter. if isinstance(value, set): return list(value) return super(JsonEncoder, self).default(value) class ElasticSearch(object): """ An object which manages connections to elasticsearch and acts as a go-between for API calls to it This object is thread-safe. You can create one instance and share it among all threads. """ #: You can set this attribute on an instance to customize JSON encoding. #: The stock JsonEncoder class maps Python datetimes to ES-style datetimes #: and Python sets to ES lists. You can subclass it to add more. json_encoder = JsonEncoder def __init__(self, urls='http://localhost', timeout=60, max_retries=0, port=9200, username=None, password=None, ca_certs=certifi.where(), client_cert=None): """ :arg urls: A URL or iterable of URLs of ES nodes. These can be full URLs with port numbers, like ``http://elasticsearch.example.com:9200``, or you can pass the port separately using the ``port`` kwarg. To do HTTP basic authentication, you can use RFC-2617-style URLs like ``http://someuser:[email protected]:9200`` or the separate ``username`` and ``password`` kwargs below. :arg timeout: Number of seconds to wait for each request before raising Timeout :arg max_retries: How many other servers to try, in series, after a request times out or a connection fails :arg username: Authentication username to send via HTTP basic auth :arg password: Password to use in HTTP basic auth. If a username and password are embedded in a URL, those are favored. :arg port: The default port to connect on, for URLs that don't include an explicit port :arg ca_certs: A path to a bundle of CA certificates to trust. The default is to use Mozilla's bundle, the same one used by Firefox. :arg client_cert: A certificate to authenticate the client to the server """ if isinstance(urls, string_types): urls = [urls] urls = [u.rstrip('/') for u in urls] # Automatic node sniffing is off for now. parsed_urls = (urlparse(url) for url in urls) auth_default = None if username is None else (username, password) self._transport = Transport( [{'host': url.hostname, 'port': url.port or port, 'http_auth': (url.username, url.password) if url.username or url.password else auth_default, 'use_ssl': url.scheme == 'https', 'verify_certs': True, 'ca_certs': ca_certs, 'cert_file': client_cert} for url in parsed_urls], max_retries=max_retries, retry_on_timeout=True, timeout=timeout, selector_class=RandomSelector) def _concat(self, items): """ Return a comma-delimited concatenation of the elements of ``items``. If ``items`` is a string, promote it to a 1-item list. """ if items is None: return '' if isinstance(items, string_types): items = [items] return ','.join(items) def _to_query(self, obj): """ Convert a native-Python object to a unicode or bytestring representation suitable for a query string. """ # Quick and dirty thus far if isinstance(obj, string_types): return obj if isinstance(obj, bool): return 'true' if obj else 'false' if isinstance(obj, integer_types): return str(obj) if isinstance(obj, float): return repr(obj) # str loses precision. if isinstance(obj, (list, tuple)): return ','.join(self._to_query(o) for o in obj) iso = _iso_datetime(obj) if iso: return iso raise TypeError("_to_query() doesn't know how to represent %r in an ES" ' query string.' % obj) def _utf8(self, thing): """Convert any arbitrary ``thing`` to a utf-8 bytestring.""" if isinstance(thing, binary_type): return thing if not isinstance(thing, text_type): thing = text_type(thing) return thing.encode('utf-8') def _join_path(self, path_components): """ Smush together the path components, omitting '' and None ones. Unicodes get encoded to strings via utf-8. Incoming strings are assumed to be utf-8-encoded already. """ path = '/'.join(quote_plus(self._utf8(p), '') for p in path_components if p is not None and p != '') if not path.startswith('/'): path = '/' + path return path def send_request(self, method, path_components, body='', query_params=None): """ Send an HTTP request to ES, and return the JSON-decoded response. This is mostly an internal method, but it also comes in handy if you need to use a brand new ES API that isn't yet explicitly supported by pyelasticsearch, while still taking advantage of our connection pooling and retrying. Retry the request on different servers if the first one is down and the ``max_retries`` constructor arg was > 0. On failure, raise an :class:`~pyelasticsearch.exceptions.ElasticHttpError`, a :class:`~pyelasticsearch.exceptions.ConnectionError`, or a :class:`~pyelasticsearch.exceptions.Timeout`. :arg method: An HTTP method, like "GET" :arg path_components: An iterable of path components, to be joined by "/" :arg body: A map of key/value pairs to be sent as the JSON request body. Alternatively, a string to be sent verbatim, without further JSON encoding. :arg query_params: A map of querystring param names to values or ``None`` """ if query_params is None: query_params = {} path = self._join_path(path_components) # We wrap to use pyelasticsearch's exception hierarchy for backward # compatibility: try: # This implicitly converts dicts to JSON. Strings are left alone: _, prepped_response = self._transport.perform_request( method, path, params=dict((k, self._utf8(self._to_query(v))) for k, v in iteritems(query_params)), body=body) except SerializationError as exc: raise InvalidJsonResponseError(exc.args[0]) except (ConnectionError, ConnectionTimeout) as exc: # Pull the urllib3-native exception out, and raise it: raise exc.info except TransportError as exc: status = exc.args[0] error_message = exc.args[1] self._raise_exception(status, error_message) return prepped_response def _raise_exception(self, status, error_message): """Raise an exception based on an error-indicating response from ES.""" error_class = ElasticHttpError if status == 404: error_class = ElasticHttpNotFoundError elif (hasattr(error_message, 'startswith') and (error_message.startswith('IndexAlreadyExistsException') or 'nested: IndexAlreadyExistsException' in error_message)): error_class = IndexAlreadyExistsError raise error_class(status, error_message) def _encode_json(self, value): """ Convert a Python value to a form suitable for ElasticSearch's JSON DSL. """ return json.dumps(value, cls=self.json_encoder, use_decimal=True) ## REST API @es_kwargs('routing', 'parent', 'timestamp', 'ttl', 'percolate', 'consistency', 'replication', 'refresh', 'timeout', 'fields') def index(self, index, doc_type, doc, id=None, overwrite_existing=True, query_params=None): """ Put a typed JSON document into a specific index to make it searchable. :arg index: The name of the index to which to add the document :arg doc_type: The type of the document :arg doc: A Python mapping object, convertible to JSON, representing the document :arg id: The ID to give the document. Leave blank to make one up. :arg overwrite_existing: Whether we should overwrite existing documents of the same ID and doc type :arg routing: A value hashed to determine which shard this indexing request is routed to :arg parent: The ID of a parent document, which leads this document to be routed to the same shard as the parent, unless ``routing`` overrides it. :arg timestamp: An explicit value for the (typically automatic) timestamp associated with a document, for use with ``ttl`` and such :arg ttl: The time until this document is automatically removed from the index. Can be an integral number of milliseconds or a duration like '1d'. :arg percolate: An indication of which percolator queries, registered against this index, should be checked against the new document: '*' or a query string like 'color:green' :arg consistency: An indication of how many active shards the contact node should demand to see in order to let the index operation succeed: 'one', 'quorum', or 'all' :arg replication: Set to 'async' to return from ES before finishing replication. :arg refresh: Pass True to refresh the index after adding the document. :arg timeout: A duration to wait for the relevant primary shard to become available, in the event that it isn't: for example, "5m" See `ES's index API`_ for more detail. .. _`ES's index API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-index_.html """ # :arg query_params: A map of other querystring params to pass along to # ES. This lets you use future ES features without waiting for an # update to pyelasticsearch. If we just used **kwargs for this, ES # could start using a querystring param that we already used as a # kwarg, and we'd shadow it. Name these params according to the names # they have in ES's REST API, but prepend "\es_": for example, # ``es_version=2``. # TODO: Support version along with associated "preference" and # "version_type" params. if not overwrite_existing: query_params['op_type'] = 'create' return self.send_request('POST' if id is None else 'PUT', [index, doc_type, id], doc, query_params) @es_kwargs('consistency', 'refresh', 'replication', 'routing', 'timeout') def bulk(self, actions, index=None, doc_type=None, query_params=None): """ Perform multiple index, delete, create, or update actions per request. Used with helper routines :meth:`index_op()`, :meth:`delete_op()`, and :meth:`update_op()`, this provides an efficient, readable way to do large-scale changes. This contrived example illustrates the structure:: es.bulk([es.index_op({'title': 'All About Cats', 'pages': 20}), es.index_op({'title': 'And Rats', 'pages': 47}), es.index_op({'title': 'And Bats', 'pages': 23})], doc_type='book', index='library') More often, you'll want to index (or delete or update) a larger number of documents. In those cases, yield your documents from a generator, and use :func:`~pyelasticsearch.bulk_chunks()` to divide them into multiple requests:: from pyelasticsearch import bulk_chunks def documents(): for book in books: yield es.index_op({'title': book.title, 'pages': book.pages}) # index_op() also takes kwargs like index= and id= in case # you want more control. # # You could also yield some delete_ops or update_ops here. # bulk_chunks() breaks your documents into smaller requests for speed: for chunk in bulk_chunks(documents(), docs_per_chunk=500, bytes_per_chunk=10000): # We specify a default index and doc type here so we don't # have to repeat them in every operation: es.bulk(chunk, doc_type='book', index='library') :arg actions: An iterable of bulk actions, generally the output of :func:`~pyelasticsearch.bulk_chunks()` but sometimes a list of calls to :meth:`index_op()`, :meth:`delete_op()`, and :meth:`update_op()` directly. Specifically, an iterable of JSON-encoded bytestrings that can be joined with newlines and sent to ES. :arg index: Default index to operate on :arg doc_type: Default type of document to operate on. Cannot be specified without ``index``. Return the decoded JSON response on success. Raise :class:`~pyelasticsearch.exceptions.BulkError` if any of the individual actions fail. The exception provides enough about the failed actions to identify them for retrying. Sometimes there is an error with the request in general, not with any individual actions. If there is a connection error, timeout, or other transport error, a more general exception will be raised, as with other methods; see :ref:`error-handling`. See `ES's bulk API`_ for more detail. .. _`ES's bulk API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html """ # To summarize the flow: index_op() encodes a bytestring. # bulk_chunks() groups. # bulk() joins with \n. if doc_type is not None and index is None: raise ValueError( 'Please also pass `index` if you pass `doc_type`.') def is_error(item): for op, subdict in iteritems(item): break return not 200 <= subdict.get('status', 999) < 300 response = self.send_request('POST', [index, doc_type, '_bulk'], body='\n'.join(actions) + '\n', query_params=query_params) # Sometimes the request worked, but individual actions fail: if response.get('errors', True): # Try a shortcut to avoid looking # at every item on success. errors, successes = [], [] for item in response['items']: if is_error(item): errors.append(item) else: successes.append(item) if errors: raise BulkError(errors, successes) return response def index_op(self, doc, doc_type=None, overwrite_existing=True, **meta): """ Return a document-indexing operation that can be passed to :meth:`bulk()`. (See there for examples.) Specifically, return a 2-line, JSON-encoded bytestring. :arg doc: A mapping of property names to values. :arg doc_type: The type of the document to index, if different from the one you pass to :meth:`bulk()` :arg overwrite_existing: Whether we should overwrite existing documents of the same ID and doc type. (If False, this does a `create` operation.) :arg meta: Other args controlling how the document is indexed, like ``id`` (most common), ``index`` (next most common), ``version``, and ``routing``. See `ES's bulk API`_ for details on these. .. _`ES's bulk API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html """ operation = 'index' if overwrite_existing else 'create' return self._bulk_op(operation, doc=doc, meta=meta, doc_type=doc_type) def delete_op(self, doc_type=None, **meta): """ Return a document-deleting operation that can be passed to :meth:`bulk()`. :: def actions(): ... yield es.delete_op(id=7) yield es.delete_op(id=9, index='some-non-default-index', doc_type='some-non-default-type') ... es.bulk(actions(), ...) Specifically, return a JSON-encoded bytestring. :arg doc_type: The type of the document to delete, if different from the one passed to :meth:`bulk()` :arg meta: A description of what document to delete and how to do it. Example: ``{"index": "library", "id": 2, "version": 4}``. See `ES's bulk API`_ for a list of all the options. .. _`ES's bulk API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html """ return self._bulk_op('delete', meta=meta, doc_type=doc_type) def update_op(self, doc=None, doc_type=None, upsert=None, doc_as_upsert=None, script=None, params=None, lang=None, **meta): """ Return a document-updating operation that can be passed to :meth:`bulk()`. :: def actions(): ... yield es.update_op(doc={'pages': 4}, id=7, version=21) ... es.bulk(actions(), ...) Specifically, return a JSON-encoded bytestring. :arg doc: A partial document to be merged into the existing document :arg doc_type: The type of the document to update, if different from the one passed to :meth:`bulk()` :arg upsert: The content for the new document created if the document does not exist :arg script: The script to be used to update the document :arg params: A dict of the params to be put in scope of the script :arg lang: The language of the script. Omit to use the default, specified by ``script.default_lang``. :arg meta: Other args controlling what document to update and how to do it, like ``id``, ``index``, and ``retry_on_conflict``, destined for the action line itself rather than the payload. See `ES's bulk API`_ for details on these. .. _`ES's bulk API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html """ payload = dict((k, v) for k, v in [('doc', doc), ('upsert', upsert), ('doc_as_upsert', doc_as_upsert), ('script', script), ('params', params), ('lang', lang)] if v is not None) return self._bulk_op('update', doc=payload, meta=meta, doc_type=doc_type) def _bulk_op(self, operation, doc=None, meta=None, doc_type=None): """ Return an arbitrary bulk indexing operation as a bytestring. :arg operation: One of 'index', 'delete', 'update', or 'create' :arg doc: A mapping of fields :arg meta: A mapping of underscore-prefixed fields with special meaning to ES, like ``_id`` and ``_type`` :arg doc_type: The value that is to become the ``_type`` field of the action line. We go to special trouble to keep the name "doc_type" for consistency with other routines. """ def underscore_keys(d): """Return a dict with every key prefixed by an underscore.""" return dict(('_%s' % k, v) for k, v in iteritems(d)) if meta is None: meta = {} if doc_type is not None: meta['type'] = doc_type ret = self._encode_json({operation: underscore_keys(meta)}) if doc is not None: ret += '\n' + self._encode_json(doc) return ret @es_kwargs('consistency', 'refresh', 'replication', 'routing', 'timeout') def bulk_index(self, index, doc_type, docs, id_field='id', parent_field='_parent', index_field='_index', type_field='_type', query_params=None): """ Index a list of documents as efficiently as possible. .. note:: This is deprecated in favor of :meth:`bulk()`, which supports all types of bulk actions, not just indexing, is compatible with :func:`~pyelasticsearch.bulk_chunks()` for batching, and has a simpler, more flexible design. :arg index: The name of the index to which to add the document. Pass None if you will specify indices individual in each doc. :arg doc_type: The type of the document :arg docs: An iterable of Python mapping objects, convertible to JSON, representing documents to index :arg id_field: The field of each document that holds its ID. Removed from document before indexing. :arg parent_field: The field of each document that holds its parent ID, if any. Removed from document before indexing. :arg index_field: The field of each document that holds the index to put it into, if different from the ``index`` arg. Removed from document before indexing. :arg type_field: The field of each document that holds the doc type it should become, if different from the ``doc_type`` arg. Removed from the document before indexing. Raise :class:`~pyelasticsearch.exceptions.BulkError` if the request as a whole succeeded but some of the individual actions failed. You can pull enough about the failed actions out of the exception to identify them for retrying. See `ES's bulk API`_ for more detail. .. _`ES's bulk API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html """ if not docs: raise ValueError('No documents provided for bulk indexing!') meta_fields = [(index_field, 'index'), (id_field, 'id'), (parent_field, 'parent')] def encoded_docs(): for doc in docs: action = {} for doc_key, bulk_key in meta_fields: if doc.get(doc_key) is not None: action[bulk_key] = doc.pop(doc_key) yield self.index_op(doc, doc_type=doc.pop(type_field, None), **action) return self.bulk(encoded_docs(), index=index, doc_type=doc_type, query_params=query_params) @es_kwargs('routing', 'parent', 'replication', 'consistency', 'refresh') def delete(self, index, doc_type, id, query_params=None): """ Delete a typed JSON document from a specific index based on its ID. :arg index: The name of the index from which to delete :arg doc_type: The type of the document to delete :arg id: The (string or int) ID of the document to delete See `ES's delete API`_ for more detail. .. _`ES's delete API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-delete.html """ # id should never be None, and it's not particular dangerous # (equivalent to deleting a doc with ID "None", but it's almost # certainly not what the caller meant: if id is None or id == '': raise ValueError('No ID specified. To delete all documents in ' 'an index, use delete_all().') return self.send_request('DELETE', [index, doc_type, id], query_params=query_params) @es_kwargs('routing', 'parent', 'replication', 'consistency', 'refresh') def delete_all(self, index, doc_type, query_params=None): """ Delete all documents of the given doc type from an index. :arg index: The name of the index from which to delete. ES does not support this being empty or "_all" or a comma-delimited list of index names (in 0.19.9). :arg doc_type: The name of a document type See `ES's delete API`_ for more detail. .. _`ES's delete API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-delete.html """ return self.send_request('DELETE', [index, doc_type], query_params=query_params) @es_kwargs('q', 'df', 'analyzer', 'default_operator', 'source' 'routing', 'replication', 'consistency') def delete_by_query(self, index, doc_type, query, query_params=None): """ Delete typed JSON documents from a specific index based on query. :arg index: An index or iterable thereof from which to delete :arg doc_type: The type of document or iterable thereof to delete :arg query: A dictionary that will convert to ES's query DSL or a string that will serve as a textual query to be passed as the ``q`` query string parameter. (Passing the ``q`` kwarg yourself is deprecated.) See `ES's delete-by-query API`_ for more detail. .. _`ES's delete-by-query API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-delete-by-query.html """ if isinstance(query, string_types) and 'q' not in query_params: query_params['q'] = query body = '' else: body = {'query': query} return self.send_request( 'DELETE', [self._concat(index), self._concat(doc_type), '_query'], body, query_params=query_params) @es_kwargs('realtime', 'fields', 'routing', 'preference', 'refresh') def get(self, index, doc_type, id, query_params=None): """ Get a typed JSON document from an index by ID. :arg index: The name of the index from which to retrieve :arg doc_type: The type of document to get :arg id: The ID of the document to retrieve See `ES's get API`_ for more detail. .. _`ES's get API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-get.html """ return self.send_request('GET', [index, doc_type, id], query_params=query_params) @es_kwargs() def multi_get(self, ids, index=None, doc_type=None, fields=None, query_params=None): """ Get multiple typed JSON documents from ES. :arg ids: An iterable, each element of which can be either an a dict or an id (int or string). IDs are taken to be document IDs. Dicts are passed through the Multi Get API essentially verbatim, except that any missing ``_type``, ``_index``, or ``fields`` keys are filled in from the defaults given in the ``doc_type``, ``index``, and ``fields`` args. :arg index: Default index name from which to retrieve :arg doc_type: Default type of document to get :arg fields: Default fields to return See `ES's Multi Get API`_ for more detail. .. _`ES's Multi Get API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-multi-get.html """ doc_template = dict( filter( itemgetter(1), [('_index', index), ('_type', doc_type), ('fields', fields)])) docs = [] for id in ids: doc = doc_template.copy() if isinstance(id, dict): doc.update(id) else: doc['_id'] = id docs.append(doc) return self.send_request( 'GET', ['_mget'], {'docs': docs}, query_params=query_params) @es_kwargs('routing', 'parent', 'timeout', 'replication', 'consistency', 'percolate', 'refresh', 'retry_on_conflict', 'fields') def update(self, index, doc_type, id, script=None, params=None, lang=None, query_params=None, doc=None, upsert=None, doc_as_upsert=None): """ Update an existing document. Raise ``TypeError`` if ``script``, ``doc`` and ``upsert`` are all unspecified. :arg index: The name of the index containing the document :arg doc_type: The type of the document :arg id: The ID of the document :arg script: The script to be used to update the document :arg params: A dict of the params to be put in scope of the script :arg lang: The language of the script. Omit to use the default, specified by ``script.default_lang``. :arg doc: A partial document to be merged into the existing document :arg upsert: The content for the new document created if the document does not exist :arg doc_as_upsert: The provided document will be inserted if the document does not already exist See `ES's Update API`_ for more detail. .. _`ES's Update API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-update.html """ if script is None and doc is None and upsert is None: raise TypeError('At least one of the script, doc, or upsert ' 'kwargs must be provided.') body = {} if script: body['script'] = script if lang and script: body['lang'] = lang if doc: body['doc'] = doc if upsert: body['upsert'] = upsert if params: body['params'] = params if doc_as_upsert: body['doc_as_upsert'] = doc_as_upsert return self.send_request( 'POST', [index, doc_type, id, '_update'], body=body, query_params=query_params) def _search_or_count(self, kind, query, index=None, doc_type=None, query_params=None): if isinstance(query, string_types): query_params['q'] = query body = '' else: body = query return self.send_request( 'GET', [self._concat(index), self._concat(doc_type), kind], body, query_params=query_params) @es_kwargs('routing', 'size') def search(self, query, **kwargs): """ Execute a search query against one or more indices and get back search hits. :arg query: A dictionary that will convert to ES's query DSL or a string that will serve as a textual query to be passed as the ``q`` query string parameter :arg index: An index or iterable of indexes to search. Omit to search all. :arg doc_type: A document type or iterable thereof to search. Omit to search all. :arg size: Limit the number of results to ``size``. Use with ``es_from`` to implement paginated searching. See `ES's search API`_ for more detail. .. _`ES's search API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/_the_search_api.html """ return self._search_or_count('_search', query, **kwargs) @es_kwargs('df', 'analyzer', 'default_operator', 'source', 'routing') def count(self, query, **kwargs): """ Execute a query against one or more indices and get hit count. :arg query: A dictionary that will convert to ES's query DSL or a string that will serve as a textual query to be passed as the ``q`` query string parameter :arg index: An index or iterable of indexes to search. Omit to search all. :arg doc_type: A document type or iterable thereof to search. Omit to search all. See `ES's count API`_ for more detail. .. _`ES's count API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/search-count.html """ return self._search_or_count('_count', query, **kwargs) @es_kwargs() def get_mapping(self, index=None, doc_type=None, query_params=None): """ Fetch the mapping definition for a specific index and type. :arg index: An index or iterable thereof :arg doc_type: A document type or iterable thereof Omit both arguments to get mappings for all types and indexes. See `ES's get-mapping API`_ for more detail. .. _`ES's get-mapping API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html """ # TODO: Think about turning index=None into _all if doc_type is non- # None, per the ES doc page. return self.send_request( 'GET', [self._concat(index), self._concat(doc_type), '_mapping'], query_params=query_params) @es_kwargs('ignore_conflicts') def put_mapping(self, index, doc_type, mapping, query_params=None): """ Register specific mapping definition for a specific type against one or more indices. :arg index: An index or iterable thereof :arg doc_type: The document type to set the mapping of :arg mapping: A dict representing the mapping to install. For example, this dict can have top-level keys that are the names of doc types. See `ES's put-mapping API`_ for more detail. .. _`ES's put-mapping API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-put-mapping.html """ # TODO: Perhaps add a put_all_mappings() for consistency and so we # don't need to expose the "_all" magic string. We haven't done it yet # since this routine is not dangerous: ES makes you explicily pass # "_all" to update all mappings. return self.send_request( 'PUT', [self._concat(index), doc_type, '_mapping'], mapping, query_params=query_params) @es_kwargs('search_type', 'search_indices', 'search_types', 'search_scroll', 'search_size', 'search_from', 'like_text', 'percent_terms_to_match', 'min_term_freq', 'max_query_terms', 'stop_words', 'min_doc_freq', 'max_doc_freq', 'min_word_len', 'max_word_len', 'boost_terms', 'boost', 'analyzer') def more_like_this(self, index, doc_type, id, mlt_fields, body='', query_params=None): """ Execute a "more like this" search query against one or more fields and get back search hits. :arg index: The index to search and where the document for comparison lives :arg doc_type: The type of document to find others like :arg id: The ID of the document to find others like :arg mlt_fields: The list of fields to compare on :arg body: A dictionary that will convert to ES's query DSL and be passed as the request body See `ES's more-like-this API`_ for more detail. .. _`ES's more-like-this API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/search-more-like-this.html """ query_params['mlt_fields'] = self._concat(mlt_fields) return self.send_request('GET', [index, doc_type, id, '_mlt'], body=body, query_params=query_params) ## Index Admin API @es_kwargs('recovery', 'snapshot') def status(self, index=None, query_params=None): """ Retrieve the status of one or more indices :arg index: An index or iterable thereof See `ES's index-status API`_ for more detail. .. _`ES's index-status API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-status.html """ return self.send_request('GET', [self._concat(index), '_status'], query_params=query_params) @es_kwargs() def update_aliases(self, actions, query_params=None): """ Atomically add, remove, or update aliases in bulk. :arg actions: A list of the actions to perform See `ES's indices-aliases API`_. .. _`ES's indices-aliases API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html """ return self.send_request('POST', ['_aliases'], body={'actions': actions}, query_params=query_params) @es_kwargs('ignore_unavailable') def get_aliases(self, index=None, alias='*', query_params=None): """ Retrieve a listing of aliases :arg index: The name of an index or an iterable of indices from which to fetch aliases. If omitted, look in all indices. :arg alias: The name of the alias to return or an iterable of them. Wildcard * is supported. If this arg is omitted, return all aliases. See `ES's indices-aliases API`_. .. _`ES's indices-aliases API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html """ return self.send_request( 'GET', [self._concat(index), '_aliases', self._concat(alias)], query_params=query_params) def aliases(self, *args, **kwargs): # Deprecated. return self.get_aliases(*args, **kwargs) @es_kwargs() def create_index(self, index, settings=None, query_params=None): """ Create an index with optional settings. :arg index: The name of the index to create :arg settings: A dictionary of settings If the index already exists, raise :class:`~pyelasticsearch.exceptions.IndexAlreadyExistsError`. See `ES's create-index API`_ for more detail. .. _`ES's create-index API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-create-index.html """ return self.send_request('PUT', [index], body=settings or {}, query_params=query_params) @es_kwargs() def delete_index(self, index, query_params=None): """ Delete an index. :arg index: An index or iterable thereof to delete If the index is not found, raise :class:`~pyelasticsearch.exceptions.ElasticHttpNotFoundError`. See `ES's delete-index API`_ for more detail. .. _`ES's delete-index API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-delete-index.html """ if not index: raise ValueError('No indexes specified. To delete all indexes, use' ' delete_all_indexes().') return self.send_request('DELETE', [self._concat(index)], query_params=query_params) def delete_all_indexes(self, **kwargs): """Delete all indexes.""" return self.delete_index('_all', **kwargs) @es_kwargs() def close_index(self, index, query_params=None): """ Close an index. :arg index: The index to close See `ES's close-index API`_ for more detail. .. _`ES's close-index API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-open-close.html """ return self.send_request('POST', [index, '_close'], query_params=query_params) @es_kwargs() def open_index(self, index, query_params=None): """ Open an index. :arg index: The index to open See `ES's open-index API`_ for more detail. .. _`ES's open-index API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-open-close.html """ return self.send_request('POST', [index, '_open'], query_params=query_params) @es_kwargs() def get_settings(self, index, query_params=None): """ Get the settings of one or more indexes. :arg index: An index or iterable of indexes See `ES's get-settings API`_ for more detail. .. _`ES's get-settings API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-settings.html """ return self.send_request('GET', [self._concat(index), '_settings'], query_params=query_params) @es_kwargs() def update_settings(self, index, settings, query_params=None): """ Change the settings of one or more indexes. :arg index: An index or iterable of indexes :arg settings: A dictionary of settings See `ES's update-settings API`_ for more detail. .. _`ES's update-settings API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-update-settings.html """ if not index: raise ValueError('No indexes specified. To update all indexes, use' ' update_all_settings().') # If we implement the "update cluster settings" API, call that # update_cluster_settings(). return self.send_request('PUT', [self._concat(index), '_settings'], body=settings, query_params=query_params) @es_kwargs() def update_all_settings(self, settings, query_params=None): """ Update the settings of all indexes. :arg settings: A dictionary of settings See `ES's update-settings API`_ for more detail. .. _`ES's update-settings API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-update-settings.html """ return self.send_request('PUT', ['_settings'], body=settings, query_params=query_params) @es_kwargs('refresh') def flush(self, index=None, query_params=None): """ Flush one or more indices (clear memory). :arg index: An index or iterable of indexes See `ES's flush API`_ for more detail. .. _`ES's flush API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-flush.html """ return self.send_request('POST', [self._concat(index), '_flush'], query_params=query_params) @es_kwargs() def refresh(self, index=None, query_params=None): """ Refresh one or more indices. :arg index: An index or iterable of indexes See `ES's refresh API`_ for more detail. .. _`ES's refresh API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-refresh.html """ return self.send_request('POST', [self._concat(index), '_refresh'], query_params=query_params) @es_kwargs() def gateway_snapshot(self, index=None, query_params=None): """ Gateway snapshot one or more indices. :arg index: An index or iterable of indexes See `ES's gateway-snapshot API`_ for more detail. .. _`ES's gateway-snapshot API`: http://www.elasticsearch.org/guide/reference/api/admin-indices-gateway-snapshot.html """ return self.send_request( 'POST', [self._concat(index), '_gateway', 'snapshot'], query_params=query_params) @es_kwargs('max_num_segments', 'only_expunge_deletes', 'refresh', 'flush', 'wait_for_merge') def optimize(self, index=None, query_params=None): """ Optimize one or more indices. :arg index: An index or iterable of indexes See `ES's optimize API`_ for more detail. .. _`ES's optimize API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-optimize.html """ return self.send_request('POST', [self._concat(index), '_optimize'], query_params=query_params) @es_kwargs('level', 'wait_for_status', 'wait_for_relocating_shards', 'wait_for_nodes', 'timeout') def health(self, index=None, query_params=None): """ Report on the health of the cluster or certain indices. :arg index: The index or iterable of indexes to examine See `ES's cluster-health API`_ for more detail. .. _`ES's cluster-health API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-health.html """ return self.send_request( 'GET', ['_cluster', 'health', self._concat(index)], query_params=query_params) @es_kwargs('local') def cluster_state(self, metric='_all', index='_all', query_params=None): """ Return state information about the cluster. :arg metric: Which metric to return: one of "version", "master_node", "nodes", "routing_table", "meatadata", or "blocks", an iterable of them, or a comma-delimited string of them. Defaults to all metrics. :arg index: An index or iterable of indexes to return info about See `ES's cluster-state API`_ for more detail. .. _`ES's cluster-state API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html """ return self.send_request( 'GET', ['_cluster', 'state', self._concat(metric), self._concat(index)], query_params=query_params) @es_kwargs('routing', 'preference', 'ignore_unavailable', 'percolate_format') def percolate(self, index, doc_type, doc, query_params=None): """ Run a JSON document through the registered percolator queries, and return which ones match. :arg index: The name of the index to which the document pretends to belong :arg doc_type: The type the document should be treated as if it has :arg doc: A Python mapping object, convertible to JSON, representing the document Use :meth:`index()` to register percolators. See `ES's percolate API`_ for more detail. .. _`ES's percolate API`: http://www.elastic.co/guide/en/elasticsearch/reference/current/search-percolate.html#_percolate_api """ return self.send_request('GET', [index, doc_type, '_percolate'], doc, query_params=query_params) def _iso_datetime(value): """ If value appears to be something datetime-like, return it in ISO format. Otherwise, return None. """ if hasattr(value, 'strftime'): if hasattr(value, 'hour'): return value.isoformat() else: return '%sT00:00:00' % value.isoformat()
the-stack_0_27948
#!/usr/bin/env python # -*- coding: utf-8 -*- import django_sysadmin import os from setuptools import setup, find_packages ## dependencies install_requires = [ 'Django>=1.4.1', 'wsgiref==0.1.2', ] packages = find_packages() setup( name='django-sysadmin', version=django_sysadmin.__version__, author='Bernhard Maeser', author_email='[email protected]', url='https://github.com/bmaeser/django-sysadmin', license="MIT", description="Django models to make a sysadmins life easier", long_description=open('README.rst').read(), packages = packages, include_package_data=True, install_requires = install_requires, zip_safe=False, classifiers=( 'Development Status :: 5 - Production/Stable', 'Intended Audience :: System Administrators', 'Topic :: System :: Systems Administration', 'Topic :: System :: Installation/Setup', 'Operating System :: POSIX', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.5', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', ), )
the-stack_0_27949
import os import detect_and_align from scipy import misc import numpy as np class ID_Data(): def __init__(self, name, image_path): self.name = name self.image_path = image_path self.embedding = [] def get_id_data(id_folder, pnet, rnet, onet, sess, embeddings, images_placeholder, phase_train_placeholder): id_dataset = [] ids = os.listdir(os.path.expanduser(id_folder)) ids.sort() for id_name in ids: id_dir = os.path.join(id_folder, id_name) image_names = os.listdir(id_dir) image_paths = [os.path.join(id_dir, img) for img in image_names] for image_path in image_paths: id_dataset.append(ID_Data(id_name, image_path)) aligned_images = align_id_dataset(id_dataset, pnet, rnet, onet) feed_dict = {images_placeholder: aligned_images, phase_train_placeholder: False} emb = sess.run(embeddings, feed_dict=feed_dict) for i in range(len(id_dataset)): id_dataset[i].embedding = emb[i, :] return id_dataset def align_id_dataset(id_dataset, pnet, rnet, onet): aligned_images = [] for i in range(len(id_dataset)): image = misc.imread(os.path.expanduser(id_dataset[i].image_path), mode='RGB') face_patches, _, _ = detect_and_align.align_image(image, pnet, rnet, onet) aligned_images = aligned_images + face_patches aligned_images = np.stack(aligned_images) return aligned_images if __name__ == "__main__": main()
the-stack_0_27950
# -*- coding: utf-8 -*- # # Copyright 2015 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Resource definitions for cloud platform apis.""" import enum BASE_URL = 'https://serviceusage.googleapis.com/v1beta1/' DOCS_URL = 'https://cloud.google.com/service-usage/' class Collections(enum.Enum): """Collections for all supported apis.""" OPERATIONS = ( 'operations', '{+name}', { '': 'operations/{operationsId}', }, ['name'], True ) SERVICES = ( 'services', '{+name}', { '': '{v1beta1Id}/{v1beta1Id1}/services/{servicesId}', }, ['name'], True ) SERVICES_CONSUMERQUOTAMETRICS = ( 'services.consumerQuotaMetrics', '{+name}', { '': '{v1beta1Id}/{v1beta1Id1}/services/{servicesId}/' 'consumerQuotaMetrics/{consumerQuotaMetricsId}', }, ['name'], True ) SERVICES_CONSUMERQUOTAMETRICS_LIMITS = ( 'services.consumerQuotaMetrics.limits', '{+name}', { '': '{v1beta1Id}/{v1beta1Id1}/services/{servicesId}/' 'consumerQuotaMetrics/{consumerQuotaMetricsId}/limits/' '{limitsId}', }, ['name'], True ) def __init__(self, collection_name, path, flat_paths, params, enable_uri_parsing): self.collection_name = collection_name self.path = path self.flat_paths = flat_paths self.params = params self.enable_uri_parsing = enable_uri_parsing
the-stack_0_27951
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2012 thomasv@gitorious # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import gettext LOCALE_DIR = os.path.join(os.path.dirname(__file__), 'locale') language = gettext.translation('electrum', LOCALE_DIR, fallback=True) def _(x): global language dic = [('Bitcoin', 'Sugarchain'), ('bitcoin', 'sugarchain'), ('bitcoins', 'sugarchains'), ('mBTC/kB', 'mSUGAR/kB'), ('ビットコイン', 'シュガーチェーン')] for b, m in dic: x = x.replace(m, b) t = language.gettext(x) for b, m in dic: t = t.replace(b, m) return t def set_language(x): global language if x: language = gettext.translation('electrum', LOCALE_DIR, fallback=True, languages=[x]) languages = { '': _('Default'), 'ar_SA': _('Arabic'), 'bg_BG': _('Bulgarian'), 'cs_CZ': _('Czech'), 'da_DK': _('Danish'), 'de_DE': _('German'), 'el_GR': _('Greek'), 'eo_UY': _('Esperanto'), 'en_UK': _('English'), 'es_ES': _('Spanish'), 'fa_IR': _('Persian'), 'fr_FR': _('French'), 'hu_HU': _('Hungarian'), 'hy_AM': _('Armenian'), 'id_ID': _('Indonesian'), 'it_IT': _('Italian'), 'ja_JP': _('Japanese'), 'ky_KG': _('Kyrgyz'), 'lv_LV': _('Latvian'), 'nb_NO': _('Norwegian Bokmal'), 'nl_NL': _('Dutch'), 'pl_PL': _('Polish'), 'pt_BR': _('Brasilian'), 'pt_PT': _('Portuguese'), 'ro_RO': _('Romanian'), 'ru_RU': _('Russian'), 'sk_SK': _('Slovak'), 'sl_SI': _('Slovenian'), 'sv_SE': _('Swedish'), 'ta_IN': _('Tamil'), 'th_TH': _('Thai'), 'tr_TR': _('Turkish'), 'uk_UA': _('Ukrainian'), 'vi_VN': _('Vietnamese'), 'zh_CN': _('Chinese Simplified'), 'zh_TW': _('Chinese Traditional') }
the-stack_0_27952
from __future__ import print_function from giggle import Giggle import os import sys HERE = os.path.dirname(__file__) INDEX = os.path.join(HERE, "test-index") def teardown(): import shutil if os.path.exists(INDEX): shutil.rmtree(INDEX) def setup(): import shutil if os.path.exists(INDEX): shutil.rmtree(INDEX) Giggle.create(INDEX, "lib/giggle/test/data/many/*.bed.gz") def test_load(): g = Giggle(INDEX) def test_query(): g = Giggle(INDEX) res = g.query('chr1', 14135106, 16279607) assert res.n_total_hits == 65, res.n_total_hits tot = 0 for i in range(0, res.n_files): tot += res.n_hits(i) assert tot == res.n_total_hits def test_result_iter(): g = Giggle(INDEX) res = g.query('chr1', 14135106, 16279607) lines = 0 for i in range(0, res.n_files): for r in res[i]: lines += 1 assert lines == res.n_total_hits, (lines, res.n_total_hits) def test_files(): g = Giggle(INDEX) assert len(g.files) != 0, g.files for f in g.files: assert f.endswith(".bed.gz") def test_leak(): g = Giggle(INDEX) res = g.query('chr1', 4135106, 116279607) j = 0 while j < 1000000: j += 1 tot = 0 for i in range(0, res.n_files): tot += res.n_hits(i) assert tot == res.n_total_hits
the-stack_0_27953
# -------------- # Importing header files import numpy as np # Path of the file has been stored in variable called 'path' #New record new_record=np.array([[50, 9, 4, 1, 0, 0, 40, 0]]) #Code starts here data = np.genfromtxt(path, delimiter=",", skip_header=1) census = np.array(np.concatenate((data, new_record))) # -------------- #Code starts here age = np.array(census[:,0]) max_age = np.max(age) min_age = np.min(age) age_mean = (np.sum(age)/(np.size(age))) age_std = np.std(age) # -------------- #Code starts here #Race = (census[:,2]) #print(Race) race_0 = (census[census[:,2]==0]) race_1 = (census[census[:,2]==1]) race_2 = (census[census[:,2]==2]) race_3 = (census[census[:,2]==3]) race_4 = (census[census[:,2]==4]) len_0 = len(race_0) len_1 = len(race_1) len_2 = len(race_2) len_3 = len(race_3) len_4 = len(race_4) minority = min([len_0, len_1, len_2, len_3, len_4]) if minority == len_0: minority_race = 0 elif minority == len_1: minority_race = 1 elif minority == len_2: minority_race = 2 elif minority == len_3: minority_race = 3 else: minority_race = 4 print(minority_race) # -------------- #Code starts here senior_citizens = (census[census[:,0]>60]) #print(senior_citizens) working_hours= senior_citizens[:,6] #print(working_hours) working_hours_sum = sum(working_hours) #print(working_hours_sum) senior_citizens_len = len(senior_citizens) avg_working_hours = working_hours_sum / senior_citizens_len print(avg_working_hours) # -------------- #Code starts here high = census[census[:,1]>10] low = census[census[:,1]<=10] avg_pay_high = np.mean(high[:,7]) avg_pay_low = np.mean(low[:,7]) print(avg_pay_high, avg_pay_low)
the-stack_0_27954
# PyDIP 3.0, Python bindings for DIPlib 3.0 # # (c)2017-2019, Flagship Biosciences, Inc., written by Cris Luengo. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The portion of the PyDIP module that contains Python code. """ import PyDIP import importlib.util import os.path hasMatPlotLib = True if importlib.util.find_spec('matplotlib') is None: print(""" PyDIP requires matplotlib for its display functionality. Matplotlib was not found on your system. Image display (PyDIP.Show and PyDIP.Image.Show) will not do anything. You can install matplotlib by typing on your Linux/MacOS command prompt: pip3 install matplotlib or under Windows: python3 -m pip install matplotlib """) hasMatPlotLib = False else: import matplotlib import matplotlib.pyplot as pp import numpy as np # Label color map from the function of the same name in DIPimage: def _label_colormap(): if hasMatPlotLib: cm = np.array([ [1.0000, 0.0000, 0.0000], [0.0000, 1.0000, 0.0000], [0.0000, 0.0000, 1.0000], [1.0000, 1.0000, 0.0000], [0.0000, 1.0000, 1.0000], [1.0000, 0.0000, 1.0000], [1.0000, 0.3333, 0.0000], [0.6667, 1.0000, 0.0000], [0.0000, 0.6667, 1.0000], [0.3333, 0.0000, 1.0000], [1.0000, 0.0000, 0.6667], [1.0000, 0.6667, 0.0000], [0.0000, 1.0000, 0.5000], [0.0000, 0.3333, 1.0000], [0.6667, 0.0000, 1.0000], [1.0000, 0.0000, 0.3333], ]) n = len(cm) index = list(i % n for i in range(0, 255)) cm = np.concatenate((np.array([[0, 0, 0]]), cm[index])) return matplotlib.colors.ListedColormap(cm) return None def Show(img, range=(), complexMode='abs', projectionMode='mean', coordinates=(), dim1=0, dim2=1, colormap=''): """Show an image in the current pyplot window Keyword arguments: range -- a 2-tuple indicating the range of input values to map to the output range, or a string indicating how to compute the range and how to map. Valid strings are: - `'unit'`: use the `(0,1)` range. - `'8bit'` or `'normal'`: use the `(0,255)` range. - `'12bit'`: use the `(0,2**12)` range. - `'16bit'`: use the `(0,2**16)` range. - `'s8bit'`: use the `(-128,127)` range. - `'s12bit'`: use the `(-2**11,12**11-1)` range. - `'s16bit'`: use the `(-2**15,12**15-1)` range. - `'angle'`: use the `(0,2*pi)` range, with folding of out-of- range values by modulo operation. Additionally, it sets the color map such that 0 and 2*pi are shown in the same color. - `'orientation'`: use the `(0,pi)` range, with folding of out-of- range values by modulo operation. Additionally, it sets the color map such that 0 and pi are shown in the same color. - `'lin'` or `'all'`: use the range from lowest to highest value in `img`. This is the default. - `'percentile'`: use the range from 5th to 95th percentile value in `img`. - `'base'` or `'based'`: like 'lin', but setting the value of 0 to the middle of the output range. Additionally, it sets the color map to `'coolwarm'`, such that negative and positive values have blue and red colors, respectively, and 0 is a neutral gray. - `'log'`: use a logarithmic mapping. - `'modulo'` or `'labels'`: use the `(0,255)` range, with folding of out-of-range values by modulo operation. Additionally, it sets the color map such that nearby values get very different colors. This mode is suitable for labeled images. complexMode -- a string indicating how to convert complex values to real values for display. One of `'abs'` or `'magnitude'`, `'phase'`, `'real'`, `'imag'`. The default is `'abs'`. projectionMode -- a string indicating how to extract a 2D slice from a multi-dimensional image for display. One of `'slice'`, `'max'`, `'mean'`. The default is `'mean'`. coordinates -- Coordinates of a pixel to be shown, as a tuple with as many elements as image dimensions. Determines which slice is shown out of a multi-dimensional image. dim1 -- Image dimension to be shown along x-axis of display. dim2 -- Image dimension to be shown along y-axis of display. colormap -- Name of a color map to use for display. For images with more than 2 dimensions, a slice is extracted for display. The direction of the slice is determined using the `dim1` and `dim2` parameters, and the location using the `coordinates` parameter. If `projectionMode` is `'slice'`, then the single slice is shown. If `projectionMode` is `'max'` or `'mean'`, then a projection is computed across the full image volume along the non-displayed dimensions. For 1D images, or if `dim1==dim2`, a line is plotted. In this case, the `colormap` is ignored. Note that, if `dim1==dim2`, a 2D image is also projected as described above for higher-dimensional images. """ if hasMatPlotLib: out = PyDIP.ImageDisplay(img, range, complexMode, projectionMode, coordinates, dim1, dim2) if out.Dimensionality() == 1: axes = pp.gca() axes.clear() axes.plot(out) axes.set_ylim((0, 255)) axes.set_xlim((0, out.Size(0) - 1)) else: if colormap == '': if range == 'base' or range == 'based': colormap = 'coolwarm' elif range == 'modulo' or range == 'labels': colormap = 'labels' elif range == 'angle' or range == 'orientation': colormap = 'hsv' else: colormap = 'gray' if colormap == 'labels': cmap = _label_colormap() else: cmap = pp.get_cmap(colormap) pp.imshow(out, cmap=cmap, norm=matplotlib.colors.NoNorm(), interpolation='none') pp.show(block=False) PyDIP.Image.Show = Show def ImageRead(filename, format=''): """Reads the image from the file called filename. format can be one of: - 'ics': The file is an ICS file, use PyDIP.ImageReadICS. - 'tiff': The file is a TIFF file, use PyDIP.ImageReadTIFF. Reads only the first image plane. - 'jpeg': The file is a JPEG file, use PyDIP.ImageReadJPEG. - 'bioformats': Use PyDIP.javaio.ImageReadJavaIO to read the file with the Bio-Formats library. - '': Select the format by looking at the file name extension. This is the default. Use the filetype-specific functions directly for more control over how the image is read. """ if format == '': base, ext = os.path.splitext(filename) ext = ext.lower() if ext == '.ics' or ext == '.ids': format = 'ics' elif ext == '.tif' or ext == '.tiff': format = 'tiff' elif ext == '.jpg' or ext == '.jpeg': format = 'jpeg' else: format = 'bioformats' if format == 'ics': return PyDIP.ImageReadICS(filename) if format == 'tiff': return PyDIP.ImageReadTIFF(filename) if format == 'jpeg': return PyDIP.ImageReadJPEG(filename) if format == 'bioformats': if not PyDIP.hasDIPjavaio: raise ValueError('Bio-Formats not available') return PyDIP.javaio.ImageReadJavaIO(filename) raise ValueError('Unknown format') def ImageWrite(image, filename, format='', compression=''): """Writes image to a file called filename. format can be one of: - 'ics' or 'icsv2': Create an ICS version 2 file, use PyDIP.ImageWriteICS. - 'icsv1': Create an ICS version 1 file, use PyDIP.ImageWriteICS. - 'tiff': Create a TIFF file, use PyDIP.ImageWriteTIFF. - 'jpeg': Create a JPEG file, use PyDIP.ImageWriteJPEG. - '': Select the format by looking at the file name extension. If no extension is present, it defaults to ICS version 2. This is the default. The ICS format can store any image, with all its information, such that reading the file using PyDIP.ImageRead or PyDIP.ImageReadICS yields an image that is identical (except the strides might be different). The TIFF format can store 2D images, as well as 3D images as a series of 2D slides (not yet implemented). Most metadata will be lost. Complex data is not supported, other data types are. But note that images other than 8-bit or 16-bit unsigned integer lead to files that are not recognized by most readers. The JPEG format can store 2D images. Tensor images are always tagged as RGB. Most metadata will be lost. Image data is converted to 8-bit unsigned integer, without scaling. compression determines the compression method used when writing the pixel data. It can be one of the following strings: - 'none': no compression. - '': gzip compression (default). TIFF files with gzip compression are not universally recognized. - 'LZW', 'PackBits', 'JPEG': compression formats supported only by the TIFF format. For the JPEG format, compression is ignored. Use the filetype-specific functions directly for more control over how the image is written. See those functions for more information about the file types. """ if format == '': base, ext = os.path.splitext(filename) ext = ext.lower() if ext == '.ics' or ext == '.ids': format = 'ics' elif ext == '.tif' or ext == '.tiff': format = 'tiff' elif ext == '.jpg' or ext == '.jpeg': format = 'jpeg' else: raise ValueError('File extension not recognized') options = set() if format == 'icsv2': format = 'ics' elif format == 'icsv1': format = 'ics' options.add('v1') if format == 'ics': if compression == '': options.add('gzip') elif compression == 'none': options.add('uncompressed') else: raise ValueError('Compression flag not valid for ICS file') return PyDIP.ImageWriteICS(image, filename, options=options) if format == 'tiff': return PyDIP.ImageWriteTIFF(image, filename, compression) if format == 'jpeg': return PyDIP.ImageWriteJPEG(image, filename) raise ValueError('Unknown format')
the-stack_0_27955
import fechbase class Records(fechbase.RecordsBase): def __init__(self): fechbase.RecordsBase.__init__(self) self.fields = [ {'name': 'FORM TYPE', 'number': '1'}, {'name': 'FILER FEC CMTE ID (PCC)', 'number': '2'}, {'name': 'COMMITTEE NAME (PCC)', 'number': '3'}, {'name': 'Coverage From', 'number': '4-'}, {'name': 'Coverage To', 'number': '5-'}, {'name': 'FEC COMMITTEE ID NUMBER (Auth)', 'number': '6'}, {'name': 'COMMITTEE NAME (Auth)', 'number': '7'}, {'name': 'individuals total', 'number': '8-(a) 11(a)iii'}, {'name': 'Political party committees', 'number': '9-(b) 11(b)'}, {'name': 'other pol. committees (PACs)', 'number': '10-(c) 11(c)'}, {'name': 'the candidate', 'number': '11-(d) 11(d)'}, {'name': 'total contributions', 'number': '12-(e) 11(e)'}, {'name': 'Transfers from other auth Committees', 'number': '13-(f) 12.'}, {'name': 'made or guarn. by candidate', 'number': '14-(g) 13(a)'}, {'name': 'all other loans', 'number': '15-(h) 13(b)'}, {'name': 'total loans', 'number': '16-(i) 13(c)'}, {'name': 'offsets to operating expend', 'number': '17-(j) 14.'}, {'name': 'Other receipts', 'number': '18-(k) 15.'}, {'name': 'total receipts', 'number': '19-(l) 16.'}, {'name': 'Operating Expenditures', 'number': '20-(m) 17.'}, {'name': 'Transfers to other auth Committees', 'number': '21-(n) 18.'}, {'name': 'made or guaranteed by cand', 'number': '22-(o) 19(a)'}, {'name': 'all other loans', 'number': '23-(p) 19(b)'}, {'name': 'total loan repayments', 'number': '24-(q) 19(c)'}, {'name': 'total refunds individuals', 'number': '25-(r) 20(a)'}, {'name': 'Refunds Political Party Committees', 'number': '26-(s) 20(b)'}, {'name': 'Refunds other Political Committees', 'number': '27-(t) 20(c)'}, {'name': 'total contribution refunds', 'number': '28-(u) 20(d)'}, {'name': 'Other disbursements', 'number': '29-(v) 21.'}, {'name': 'Total disbursements', 'number': '30-(w) 22.'}, {'name': 'COH beginning reporting period', 'number': '31-(x) 23.'}, {'name': 'COH at close of period', 'number': '32-(y) 27.'}, {'name': 'Debts to', 'number': '33-(z) 9.'}, {'name': 'Debts by', 'number': '34-(aa) 12.'}, {'name': 'net contributions', 'number': '35-(bb) 6(c)'}, {'name': 'net operating expenditures', 'number': '36-(cc) 7(c)'}, ] self.fields_names = self.hash_names(self.fields)
the-stack_0_27960
import sys import os.path as osp from vis_utils import * sys.path.append(osp.dirname(osp.dirname(__file__))) from demo_toolkit import * import os import numpy as np from keypoints.get_keypoints import * sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) pdir_path = osp.dirname(osp.dirname(__file__)) os.environ['CUDA_VISIBLE_DEVICES'] = "1" if __name__ == "__main__": data_path = "/home/wj/ai/mldata/keypoints_data/test_imgs" files = glob.glob(osp.join(data_path,"*.png")) save_dir = "/home/wj/ai/mldata/0day/tmp/kps" if not osp.exists(save_dir): os.makedirs(save_dir) model = KPDetection() for file in files: img = cv2.imread(file) img = img[...,::-1] ans = model(img) img = show_keypoints(img,ans,threshold=0.2) save_path = osp.join(save_dir,osp.basename(file)) cv2.imwrite(save_path,img)
the-stack_0_27961
from yamo import * class E(EmbeddedDocument): a = StringField() b = StringField() class Q(Document): es = ListField(EmbeddedField(E)) Connection().register_all() def test_embedded(): Q.drop() q = Q({'es': [{'a': 'a', 'b': 'b'}]}) q.save() if __name__ == '__main__': test_embedded()
the-stack_0_27962
"""Example showing how to build an API on top of Gemini using Scooter.""" import base64 from io import BytesIO import numpy as np import tensorflow as tf from keras.models import Model, load_model from keras.preprocessing.image import img_to_array from PIL import Image from sklearn.neighbors import NearestNeighbors from gemini.cards import read_card_list from gemini.image import flatten from scooter.model_server import start_model_server from scooter.web_server import start_web_server IMAGE_WIDTH = 320 IMAGE_HEIGHT = 448 IMAGE_CHANS = 3 IMAGE_DTYPE = "float32" class Classifier(object): """Class for classifying Magic cards from photos.""" def __init__(self, cards, knn, encoder, graph): """Initialize a classifier.""" self._cards = cards self._knn = knn self._encoder = encoder self._graph = graph self._encoded_dim = np.prod(self._encoder.output.shape[1:]).value def predict(self, batch): # TODO: Clean this up print("encoding user image") encoded = np.zeros((1, self._encoded_dim)) with self._graph.as_default(): batch_encoded = self._encoder.predict(batch) batch_encoded_flat = flatten(batch_encoded) encoded[0, :] = batch_encoded_flat print(encoded.shape) print("finding most similar") most_similar = self._knn.kneighbors(encoded, return_distance=True) print("found most similar") print("batch shape:", batch.shape) print("most_similar length:", len(most_similar)) results = [] for i in range(batch.shape[0]): scores = most_similar[0][i] indices = most_similar[1][i] k_val = scores.shape[0] temp_results = [] for top_pos in range(k_val): card_index = indices[top_pos] temp = (top_pos + 1, self._cards[card_index].name + " / " + self._cards[card_index].edition, scores[top_pos]) temp_results.append(temp) results.append(temp_results) print("results length", len(results)) print("returning results") return results def load_classifier(card_list_file, encodings_file, encoder_file): print("loading cards") cards = read_card_list(card_list_file) print("loading encodings") encoded_img = np.load(encodings_file) print("encodings shape: %s", encoded_img.shape) print("fitting knn") knn = NearestNeighbors(n_neighbors=3, algorithm="brute", metric="cosine") knn.fit(encoded_img) print("loading encoder model") model = load_model(encoder_file) encoder = Model(inputs=model.input, outputs=model.get_layer('encoder_output').output) graph = tf.get_default_graph() print("classifier loaded") return Classifier(cards, knn, encoder, graph) def load_gemini_model(): print("Loading Gemini model...") card_list_file = "/users/sorenlind/Data/mtg/cards_en.csv" encodings_file = "/users/sorenlind/Data/mtg/encodings/encoded_master_v03_no_aug.npy" encoder_file = "/users/sorenlind/Data/mtg/models/gcp/autoencoder_master_v03_no_aug/autoencoder_master_v03_no_aug" model = load_classifier(card_list_file, encodings_file, encoder_file) print("Gemini model loaded") return model def decode_sample(base64_image): loaded_image_data = Image.open(BytesIO(base64.b64decode(base64_image))) assert loaded_image_data.size == (320, 448) image = img_to_array(loaded_image_data) image = np.expand_dims(image, axis=0) image = image.astype('float32') / 255. return image def decode_predictions(predictions): #return imagenet_utils.decode_predictions(predictions) return predictions if __name__ == "__main__": start_model_server(load_gemini_model, decode_sample, decode_predictions) start_web_server(debug=None)
the-stack_0_27963
from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import torch from progress.bar import Bar from models.data_parallel import DataParallel from utils.utils import AverageMeter class ModelWithLoss(torch.nn.Module): def __init__(self, model, loss): super(ModelWithLoss, self).__init__() self.model = model self.loss = loss def forward(self, batch): outputs = self.model(batch['input']) loss, loss_stats = self.loss(outputs, batch) return outputs[-1], loss, loss_stats class BaseTrainer(object): def __init__( self, opt, model, optimizer=None): self.opt = opt self.optimizer = optimizer self.loss_stats, self.loss = self._get_losses(opt) self.model_with_loss = ModelWithLoss(model, self.loss) def set_device(self, gpus, chunk_sizes, device): if len(gpus) > 1: self.model_with_loss = DataParallel( self.model_with_loss, device_ids=gpus, chunk_sizes=chunk_sizes).to(device) else: self.model_with_loss = self.model_with_loss.to(device) for state in self.optimizer.state.values(): for k, v in state.items(): if isinstance(v, torch.Tensor): state[k] = v.to(device=device, non_blocking=True) def run_epoch(self, phase, epoch, data_loader): print('----------------->>> run_epoch step 1') model_with_loss = self.model_with_loss if phase == 'train': model_with_loss.train() else: if len(self.opt.gpus) > 1: model_with_loss = self.model_with_loss.module model_with_loss.eval() torch.cuda.empty_cache() opt = self.opt results = {} data_time, batch_time = AverageMeter(), AverageMeter() avg_loss_stats = {l: AverageMeter() for l in self.loss_stats} # print('----------------->>> run_epoch step 2') num_iters = len(data_loader) if opt.num_iters < 0 else opt.num_iters # print('----------------->>> run_epoch step 3',num_iters) bar = Bar('{}/{}'.format(opt.task, opt.exp_id), max=num_iters) end = time.time() # print('---------------------------------->>>> train data_loader') for iter_id, batch in enumerate(data_loader): if iter_id >= num_iters: break data_time.update(time.time() - end) for k in batch: if k != 'meta': batch[k] = batch[k].to(device=opt.device, non_blocking=True) output, loss, loss_stats = model_with_loss(batch) loss = loss.mean() if phase == 'train': self.optimizer.zero_grad() loss.backward() self.optimizer.step() batch_time.update(time.time() - end) end = time.time() Bar.suffix = '{phase}: [{0}][{1}/{2}]|Tot: {total:} |ETA: {eta:} '.format( epoch, iter_id, num_iters, phase=phase, total=bar.elapsed_td, eta=bar.eta_td) for l in avg_loss_stats: avg_loss_stats[l].update( loss_stats[l].mean().item(), batch['input'].size(0)) Bar.suffix = Bar.suffix + '|{} {:.4f} '.format(l, avg_loss_stats[l].avg) if not opt.hide_data_time: Bar.suffix = Bar.suffix + '|Data {dt.val:.3f}s({dt.avg:.3f}s) ' \ '|Net {bt.avg:.3f}s'.format(dt=data_time, bt=batch_time) if opt.print_iter > 0: if iter_id % opt.print_iter == 0: print('{}/{}| {}'.format(opt.task, opt.exp_id, Bar.suffix)) else: bar.next() if opt.debug > 0: self.debug(batch, output, iter_id) if opt.test: self.save_result(output, batch, results) del output, loss, loss_stats bar.finish() ret = {k: v.avg for k, v in avg_loss_stats.items()} ret['time'] = bar.elapsed_td.total_seconds() / 60. return ret, results def debug(self, batch, output, iter_id): raise NotImplementedError def save_result(self, output, batch, results): raise NotImplementedError def _get_losses(self, opt): raise NotImplementedError def val(self, epoch, data_loader): return self.run_epoch('val', epoch, data_loader) def train(self, epoch, data_loader): return self.run_epoch('train', epoch, data_loader)
the-stack_0_27964
""" sentry.utils.http ~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import import sentry import ipaddress import six import socket import requests import warnings from sentry import options from django.conf import settings from requests.adapters import HTTPAdapter from requests.exceptions import SSLError from six.moves.urllib.parse import urlparse from sentry.exceptions import RestrictedIPAddress # In case SSL is unavailable (light builds) we can't import this here. try: from OpenSSL.SSL import ZeroReturnError except ImportError: class ZeroReturnError(Exception): pass USER_AGENT = 'sentry/{version} (https://sentry.io)'.format( version=sentry.VERSION, ) DISALLOWED_IPS = { ipaddress.ip_network(six.text_type(i), strict=False) for i in settings.SENTRY_DISALLOWED_IPS } def get_server_hostname(): return urlparse(options.get('system.url-prefix')).hostname def is_valid_url(url): """ Tests a URL to ensure it doesn't appear to be a blacklisted IP range. """ # If we have no disallowed ips, we can skip any further validation # and there's no point in doing a DNS lookup to validate against # an empty list. if not DISALLOWED_IPS: return True parsed = urlparse(url) if not parsed.hostname: return False server_hostname = get_server_hostname() if parsed.hostname == server_hostname: return True # NOTE: The use of `socket.gethostbyname` is slightly flawed. # `gethostbyname` doesn't handle octal IP addresses correctly, nor # does it fetch all of the IP addresses for the record. # `getaddrinfo` does the correct thing with octals here, and also returns all # ip addresses for the hostname. # # WARNING: This behavior is only correct on Linux. On OSX, `getaddrinfo` also # returns the wrong IP. # # The following should all technically resolve to `127.0.0.1`: # Python 2.7.11 Linux # >>> socket.gethostbyname('0177.0000.0000.0001') # '177.0.0.1' # >>> socket.getaddrinfo('0177.0000.0000.0001', 0)[0] # (2, 1, 6, '', ('127.0.0.1', 0)) # Python 2.7.11 macOS # >>> socket.gethostbyname('0177.0000.0000.0001') # '177.0.0.1' # >>> socket.getaddrinfo('0177.0000.0000.0001', None)[0] # (2, 2, 17, '', ('177.0.0.1', 0)) try: ip_addresses = set(addr for _, _, _, _, addr in socket.getaddrinfo(parsed.hostname, 0)) except socket.gaierror: return False for addr in ip_addresses: ip_address = addr[0] if ip_address == server_hostname: return True ip_address = ipaddress.ip_address(six.text_type(ip_address)) for ip_network in DISALLOWED_IPS: if ip_address in ip_network: return False return True class BlacklistAdapter(HTTPAdapter): def send(self, request, *args, **kwargs): if not is_valid_url(request.url): raise RestrictedIPAddress('%s matches the URL blacklist' % (request.url,)) return super(BlacklistAdapter, self).send(request, *args, **kwargs) def build_session(): session = requests.Session() session.headers.update({'User-Agent': USER_AGENT}) session.mount('https://', BlacklistAdapter()) session.mount('http://', BlacklistAdapter()) return session def safe_urlopen(url, method=None, params=None, data=None, json=None, headers=None, allow_redirects=False, timeout=30, verify_ssl=True, user_agent=None): """ A slightly safer version of ``urlib2.urlopen`` which prevents redirection and ensures the URL isn't attempting to hit a blacklisted IP range. """ if user_agent is not None: warnings.warn('user_agent is no longer used with safe_urlopen') session = build_session() kwargs = {} if json: kwargs['json'] = json if not headers: headers = {} headers.setdefault('Content-Type', 'application/json') if data: kwargs['data'] = data if params: kwargs['params'] = params if headers: kwargs['headers'] = headers if method is None: method = 'POST' if (data or json) else 'GET' try: response = session.request( method=method, url=url, allow_redirects=allow_redirects, timeout=timeout, verify=verify_ssl, **kwargs ) # Our version of requests does not transform ZeroReturnError into an # appropriately generically catchable exception except ZeroReturnError as exc: import sys exc_tb = sys.exc_info()[2] six.reraise(SSLError, exc, exc_tb) del exc_tb # requests' attempts to use chardet internally when no encoding is found # and we want to avoid that slow behavior if not response.encoding: response.encoding = 'utf-8' return response def safe_urlread(response): return response.content
the-stack_0_27965
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def getDecimalValue(self, head: ListNode) -> int: ''' T: O(n) and S: O(1) ''' def reverseLinkedList(head): prev = None tail = head while tail: temp = tail.next tail.next = prev prev = tail tail = temp return prev head = reverseLinkedList(head) i, decimal = 0, 0 tail = head while tail: if tail.val: decimal += tail.val * 2 ** i tail = tail.next i += 1 return decimal
the-stack_0_27967
from keras.models import Sequential, Model from keras.layers import Dense, Dropout, Flatten, Reshape, Concatenate from keras.layers import Input, Conv2D, MaxPooling2D, ZeroPadding2D from keras.layers import SimpleRNN, LSTM, GRU from keras.optimizers import SGD import cv2, numpy as np def get_symbol(input_shape1,input_shape2,weights_path=None): input1 = Input(shape=input_shape1) input2 = Input(shape=input_shape2) # group 1 padd1_1=ZeroPadding2D((1,0))(input1) conv1_1=Conv2D(64, (3, 1), activation='relu')(padd1_1) padd1_2=ZeroPadding2D((0,1))(conv1_1) conv1_2=Conv2D(64, (1, 3), activation='relu')(padd1_2) pool1=MaxPooling2D((2,2), strides=(2,2))(conv1_2) # group 2 padd2_1=ZeroPadding2D((1,0))(pool1) conv2_1=Conv2D(128, (3, 1), activation='relu')(padd2_1) padd2_2=ZeroPadding2D((0,1))(conv2_1) conv2_2=Conv2D(128, (1, 3), activation='relu')(padd2_2) padd2_3=ZeroPadding2D((1,0))(conv2_2) conv2_3=Conv2D(128, (3, 1), activation='relu')(padd2_3) padd2_4=ZeroPadding2D((0,1))(conv2_3) conv2_4=Conv2D(128, (1, 3), activation='relu')(padd2_4) pool2=MaxPooling2D((2,2), strides=(2,2))(conv2_4) flat1=Flatten()(pool2) dens1=Dense(1024, activation='relu')(flat1) drop1=Dropout(0.5)(dens1) rnn=SimpleRNN(units=128,dropout=0.2,return_sequences=True)(input2) flatr=Flatten()(rnn) densr=Dense(256,activation='relu')(flatr) dropr=Dropout(0.5)(densr) concat=Concatenate(axis=1)([drop1,dropr]) dens2=Dense(2048, activation='relu')(concat) drop2=Dropout(0.5)(dens2) out=Dense(2,activation='softmax')(drop2) if weights_path: model.load_weights(weights_path) return Model([input1,input2],out) def rc(): return "rc"
the-stack_0_27968
from __future__ import unicode_literals import frappe def execute(): frappe.reload_doctype("Comment") for comment in frappe.get_all('Communication', fields = ['*'], filters = dict(communication_type = 'Comment')): new_comment = frappe.new_doc('Comment') new_comment.comment_type = comment.comment_type new_comment.comment_email = comment.sender new_comment.comment_by = comment.sender_full_name new_comment.subject = comment.subject new_comment.content = comment.content or comment.subject new_comment.reference_doctype = comment.reference_doctype new_comment.reference_name = comment.reference_name new_comment.link_doctype = comment.link_doctype new_comment.link_name = comment.link_name new_comment.creation = comment.creation new_comment.modified = comment.modified new_comment.owner = comment.owner new_comment.modified_by = comment.modified_by new_comment.db_insert() # clean up frappe.db.sql('delete from tabCommunication where communication_type = "Comment"')
the-stack_0_27969
#!/usr/bin/env python # # Hi There! # You may be wondering what this giant blob of binary data here is, you might # even be worried that we're up to something nefarious (good for you for being # paranoid!). This is a base85 encoding of a zip file, this zip file contains # an entire copy of pip (version {installed_version}). # # Pip is a thing that installs packages, pip itself is a package that someone # might want to install, especially if they're looking to run this get-pip.py # script. Pip has a lot of code to deal with the security of installing # packages, various edge cases on various platforms, and other such sort of # "tribal knowledge" that has been encoded in its code base. Because of this # we basically include an entire copy of pip inside this blob. We do this # because the alternatives are attempt to implement a "minipip" that probably # doesn't do things correctly and has weird edge cases, or compress pip itself # down into a single file. # # If you're wondering how this is created, it is using an invoke task located # in tasks/generate.py called "installer". It can be invoked by using # ``invoke generate.installer``. import os.path import pkgutil import shutil import sys import struct import tempfile # Useful for very coarse version differentiation. PY2 = sys.version_info[0] == 2 PY3 = sys.version_info[0] == 3 if PY3: iterbytes = iter else: def iterbytes(buf): return (ord(byte) for byte in buf) try: from base64 import b85decode except ImportError: _b85alphabet = (b"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" b"abcdefghijklmnopqrstuvwxyz!#$%&()*+-;<=>?@^_`{{|}}~") def b85decode(b): _b85dec = [None] * 256 for i, c in enumerate(iterbytes(_b85alphabet)): _b85dec[c] = i padding = (-len(b)) % 5 b = b + b'~' * padding out = [] packI = struct.Struct('!I').pack for i in range(0, len(b), 5): chunk = b[i:i + 5] acc = 0 try: for c in iterbytes(chunk): acc = acc * 85 + _b85dec[c] except TypeError: for j, c in enumerate(iterbytes(chunk)): if _b85dec[c] is None: raise ValueError( 'bad base85 character at position %d' % (i + j) ) raise try: out.append(packI(acc)) except struct.error: raise ValueError('base85 overflow in hunk starting at byte %d' % i) result = b''.join(out) if padding: result = result[:-padding] return result def bootstrap(tmpdir=None): # Import pip so we can use it to install pip and maybe setuptools too import pip from pip.commands.install import InstallCommand from pip.req import InstallRequirement # Wrapper to provide default certificate with the lowest priority class CertInstallCommand(InstallCommand): def parse_args(self, args): # If cert isn't specified in config or environment, we provide our # own certificate through defaults. # This allows user to specify custom cert anywhere one likes: # config, environment variable or argv. if not self.parser.get_default_values().cert: self.parser.defaults["cert"] = cert_path # calculated below return super(CertInstallCommand, self).parse_args(args) pip.commands_dict["install"] = CertInstallCommand implicit_pip = True implicit_setuptools = True implicit_wheel = True # Check if the user has requested us not to install setuptools if "--no-setuptools" in sys.argv or os.environ.get("PIP_NO_SETUPTOOLS"): args = [x for x in sys.argv[1:] if x != "--no-setuptools"] implicit_setuptools = False else: args = sys.argv[1:] # Check if the user has requested us not to install wheel if "--no-wheel" in args or os.environ.get("PIP_NO_WHEEL"): args = [x for x in args if x != "--no-wheel"] implicit_wheel = False # We only want to implicitly install setuptools and wheel if they don't # already exist on the target platform. if implicit_setuptools: try: import setuptools # noqa implicit_setuptools = False except ImportError: pass if implicit_wheel: try: import wheel # noqa implicit_wheel = False except ImportError: pass # We want to support people passing things like 'pip<8' to get-pip.py which # will let them install a specific version. However because of the dreaded # DoubleRequirement error if any of the args look like they might be a # specific for one of our packages, then we'll turn off the implicit # install of them. for arg in args: try: req = InstallRequirement.from_line(arg) except Exception: continue if implicit_pip and req.name == "pip": implicit_pip = False elif implicit_setuptools and req.name == "setuptools": implicit_setuptools = False elif implicit_wheel and req.name == "wheel": implicit_wheel = False # Add any implicit installations to the end of our args if implicit_pip: args += ["pip{pip_version}"] if implicit_setuptools: args += ["setuptools{setuptools_version}"] if implicit_wheel: args += ["wheel{wheel_version}"] delete_tmpdir = False try: # Create a temporary directory to act as a working directory if we were # not given one. if tmpdir is None: tmpdir = tempfile.mkdtemp() delete_tmpdir = True # We need to extract the SSL certificates from requests so that they # can be passed to --cert cert_path = os.path.join(tmpdir, "cacert.pem") with open(cert_path, "wb") as cert: cert.write(pkgutil.get_data("pip._vendor.requests", "cacert.pem")) # Execute the included pip and use it to install the latest pip and # setuptools from PyPI sys.exit(pip.main(["install", "--upgrade"] + args)) finally: # Remove our temporary directory if delete_tmpdir and tmpdir: shutil.rmtree(tmpdir, ignore_errors=True) def main(): tmpdir = None try: # Create a temporary working directory tmpdir = tempfile.mkdtemp() # Unpack the zipfile into the temporary directory pip_zip = os.path.join(tmpdir, "pip.zip") with open(pip_zip, "wb") as fp: fp.write(b85decode(DATA.replace(b"\n", b""))) # Add the zipfile to sys.path so that we can import it sys.path.insert(0, pip_zip) # Run the bootstrap bootstrap(tmpdir=tmpdir) finally: # Clean up our temporary working directory if tmpdir: shutil.rmtree(tmpdir, ignore_errors=True) DATA = b""" {zipfile} """ if __name__ == "__main__": main()
the-stack_0_27970
# Copyright (c) 2012-2015 Netforce Co. Ltd. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. from netforce.model import Model, fields, get_model import datetime from dateutil.relativedelta import * from netforce import access class ReportCurrency(Model): _name = "report.currency" _transient = True _fields = { "date_from": fields.Date("From Date"), "date_to": fields.Date("To Date"), } def default_get(self, field_names=None, context={}, **kw): defaults = context.get("defaults", {}) date_from = defaults.get("date_from") date_to = defaults.get("date_to") if not date_from and not date_to: date_from = datetime.date.today().strftime("%Y-%m-01") date_to = (datetime.date.today() + relativedelta(day=31)).strftime("%Y-%m-%d") return { "date_from": date_from, "date_to": date_to, } def get_report_data(self, ids, context={}): company_id = access.get_active_company() comp = get_model("company").browse(company_id) if ids: params = self.read(ids, load_m2o=False)[0] else: params = self.default_get(load_m2o=False, context=context) settings = get_model("settings").browse(1) date_from = params.get("date_from") date_to = params.get("date_to") receivable_accounts = [] payable_accounts = [] bank_accounts = [] deposit_accounts = [] ctx = { #"date_from": date_from, # TODO: double-check that don't need date from "date_to": date_to, "currency_date": date_to, } for acc in get_model("account.account").search_browse([["type", "=", "receivable"]], context=ctx): bal_reval = get_model("currency").convert( acc.balance_cur, acc.currency_id.id, acc.company_currency_id.id, date=date_to, rate_type="sell") vals = { "code": acc.code, "name": acc.name, "balance_cur": acc.balance_cur, "account_currency_code": acc.currency_id.code, "company_currency_code": acc.company_currency_id.code, "balance": acc.balance, "balance_reval": bal_reval, "unreal_gain": get_model("currency").convert(bal_reval - acc.balance, acc.company_currency_id.id, settings.currency_id.id, date=date_to, rate_type="sell"), } receivable_accounts.append(vals) for acc in get_model("account.account").search_browse([["type", "=", "payable"]], context=ctx): bal_reval = get_model("currency").convert( acc.balance_cur, acc.currency_id.id, acc.company_currency_id.id, date=date_to, rate_type="buy") vals = { "code": acc.code, "name": acc.name, "balance_cur": acc.balance_cur, "account_currency_code": acc.currency_id.code, "company_currency_code": acc.company_currency_id.code, "balance": acc.balance, "balance_reval": bal_reval, "unreal_gain": get_model("currency").convert(bal_reval - acc.balance, acc.company_currency_id.id, settings.currency_id.id, date=date_to, rate_type="buy"), } payable_accounts.append(vals) for acc in get_model("account.account").search_browse([["type", "=", "bank"]], context=ctx): bal_reval = get_model("currency").convert( acc.balance_cur, acc.currency_id.id, acc.company_currency_id.id, date=date_to, rate_type="sell") vals = { "code": acc.code, "name": acc.name, "balance_cur": acc.balance_cur, "account_currency_code": acc.currency_id.code, "company_currency_code": acc.company_currency_id.code, "balance": acc.balance, "balance_reval": bal_reval, "unreal_gain": get_model("currency").convert(bal_reval - acc.balance, acc.company_currency_id.id, settings.currency_id.id, date=date_to, rate_type="sell"), } bank_accounts.append(vals) for acc in get_model("account.account").search_browse([["type", "=", "cur_liability"]], context=ctx): bal_reval = get_model("currency").convert( acc.balance_cur, acc.currency_id.id, acc.company_currency_id.id, date=date_to, rate_type="sell") vals = { "code": acc.code, "name": acc.name, "balance_cur": acc.balance_cur, "account_currency_code": acc.currency_id.code, "company_currency_code": acc.company_currency_id.code, "balance": acc.balance, "balance_reval": bal_reval, "unreal_gain": get_model("currency").convert(bal_reval - acc.balance, acc.company_currency_id.id, settings.currency_id.id, date=date_to, rate_type="sell"), } deposit_accounts.append(vals) data = { "date_from": date_from, "date_to": date_to, "company_name": comp.name, "company_currency": settings.currency_id.code, "receivable_accounts": receivable_accounts, "payable_accounts": payable_accounts, "bank_accounts": bank_accounts, "deposit_accounts": deposit_accounts, "totals_receivable": { "unreal_gain": sum(a["unreal_gain"] for a in receivable_accounts), }, "totals_payable": { "unreal_gain": sum(a["unreal_gain"] for a in payable_accounts), }, "totals_bank": { "unreal_gain": sum(a["unreal_gain"] for a in bank_accounts), }, "totals_deposit": { "unreal_gain": sum(a["unreal_gain"] for a in deposit_accounts), }, "total_exposure": sum(a["unreal_gain"] for a in receivable_accounts) + sum(a["unreal_gain"] for a in payable_accounts) + sum(a["unreal_gain"] for a in bank_accounts) + sum(a["unreal_gain"] for a in deposit_accounts), } return data def get_fx_exposure(self, date_from, date_to, track_id=None, track2_id=None, context={}): ctx = { "defaults": { "date_from": date_from, "date_to": date_to, "track_id": track_id, "track2_id": track2_id, } } data = self.get_report_data(None, ctx) return data["total_exposure"] ReportCurrency.register()
the-stack_0_27973
def massfractionvtime(datafile, end, datafile2 = 'None', min_mf = .00000001, time_spacing = 10, h_ratio = [3, 1], zz_wanted = 'None', zz_wanted2 = 'None', aa_wanted = 'None', aa_wanted2 = 'None', nuc_names_wanted = 'None', nuc_names_wanted2 = 'None'): ''' Inputs: datafile = ts file datafile2 = optional second ts file end = k value at end of desired time min_mf = cutoff point below which mass fraction does not appear on the graph, default to .00000001 time_spacing = desired interval between x-axis ticks, default to .2 h_ratio = height ratio (if plotting multiple plots), default to 3:1 zz_wanted = list of atomic numbers of desired isotopes (if multiple isotopes of the same element are desired, their zz values must be added multiple times) zz_wanted2 = list of atomic numbers of desired istopes from second data file (if multiple isotopes of the same elemtn are desire, their zz values must be added multiple times) aa_wanted = list of atomic masses of desired isotopes (used in conjunction with zz_wanted) aa_wanted2 = list of atomic masses of desired isotopes of second data file(used in conjunctino with zz_wanted) nuc_names_wanted = list of desired species names, formatted as '$^{aa}$Symbol' (best option when plotting specific isotopes) nuc_names_wanted2 = list of desired species names from second data file, formatted as '$^{aa}$Symbol' (best option when plotting specific isotopes) Outputs: plot of mass fraction vs time ''' import numpy as np import matplotlib.pyplot as plt from matplotlib import colors import matplotlib.ticker as plticker import matplotlib.gridspec as gridspec import find_file_type as fft import read_ts_file as rtf file_type = fft.find_file_type(datafile) if file_type != 'ts': print("Data file must be ts file") elif file_type == 'ts': #create plot space plt.figure(1) #set up grid layout total_height = h_ratio[0] + h_ratio[1] gs = gridspec.GridSpec(total_height, 1) #Read ts file, use variables. zz, aa, xmf, time, temperature, density, timestep, edot, flx_end, flx = rtf.read_ts_file(datafile) print ("File read.") element = rtf.build_element_symbol() nuc_name = rtf.build_isotope_symbol(zz, aa) num_species_total = np.shape(xmf)[1] #Assign each species a random color. colors_array = [] for counter in np.arange(1, num_species_total+1): item1 = np.random.rand(counter)[0] item2 = np.random.rand(counter)[0] item3 = np.random.rand(counter)[0] colors_array.append(item1) colors_array.append(item2) colors_array.append(item3) colors_array = np.asarray(colors_array) colors_array = colors_array.reshape((num_species_total,3)) print ("Colors assigned.") ax1 = plt.subplot(1, 1, 1) for counter in np.arange(0, num_species_total): if zz_wanted != 'None': if zz[counter] in zz_wanted and aa_wanted == 'None': #Plot all isotopes of an element. if datafile2 == "None": plt.plot(time, xmf[:, counter], label = nuc_name[counter]) else: plt.plot(time, xmf[:, counter], label = datafile + ": " + nuc_name[counter]) print ("Data assigned to plot.") elif zz[counter] in zz_wanted and aa[counter] in aa_wanted: #Plot by atomic number and mass number. if datafile2 == "None": plt.plot(time, xmf[:, counter], label = nuc_name[counter]) else: plt.plot(time, xmf[:, counter], label = datafile + ": " + nuc_name[counter]) print ("Data assigned to plot.") zz_wanted.remove(zz[counter]) elif nuc_names_wanted != 'None': #Listed nuclear names switch plotting mechanism. break elif np.amax(xmf[:, counter]) >= min_mf: #Plot all species over specified threshold. plt.plot(time, xmf[:, counter]) if nuc_names_wanted != 'None': #Sort through list to find mass fraction of named species, and plot. for counter in np.arange(0, len(nuc_names_wanted)): species_number = nuc_name.index(nuc_names_wanted[counter]) species_number = int(species_number) if datafile2 == "None": plt.plot(time, xmf[:, species_number], color = colors_array[species_number], label = nuc_name[species_number]) else: plt.plot(time, xmf[:, species_number], color = colors_array[species_number], label = datafile + ": " + nuc_name[species_number]) print ("Data assigned to plot.") #Read and Plot optional second ts file if datafile2 != 'None': #Error check file type file_type = fft.find_file_type(datafile2) if file_type != 'ts': print("Second data file must be ts file") elif file_type == 'ts': zz, aa, xmf, time, temperature, density, timestep, edot, flx_end, flx = rtf.read_ts_file(datafile2) element = rtf.build_element_symbol() nuc_name = rtf.build_isotope_symbol(zz, aa) num_species_total = np.shape(xmf)[1] print("Second File Read") for counter in np.arange(0, num_species_total): if zz_wanted2 != 'None': if zz[counter] in zz_wanted2 and aa_wanted2 == 'None': #Plot all isotopes of an element plt.plot(time, xmf[:, counter], linestyle = 'dashed', label = datafile2 + ": " + nuc_name[counter]) print("Second File Data Assigned to Plot") elif zz[counter] in zz_wanted2 and aa[counter] in aa_wanted2:#Sort through list to find mass fraction of named species, and plot. plt.plot(time, xmf[:, counter], linestyle = 'dashed', label = datafile2 + ": " + nuc_name[counter]) zz_wanted2.remove(zz[counter]) print("Second File Data Assigned to Plot") elif nuc_names_wanted2 != 'None': break elif np.amax(xmf[:, counter]) >= min_mf: #Plot all species over specified threshold. plt.plot(time, xmf[:, counter], linestyle = 'dashed') print("Second Data File Assigned to Plot") if nuc_names_wanted2 != 'None':#Sort through list to find mass fraction of named species, and plot. for counter in np.arange(0, len(nuc_names_wanted2)): species_number = nuc_name.index(nuc_names_wanted2[counter]) species_number = int(species_number) plt.plot(time, xmf[:, species_number], color = colors_array[species_number], linestyle = 'dashed', label = datafile2 + ": " + nuc_name[species_number]) print("Second File Data Assigned to Plot") #Format axes box = ax1.get_position() ax1.set_position([box.x0, box.y0, box.width * 0.995, box.height]) #Create legend if nuc_names_wanted or nuc_names_wanted2 or zz_wanted or zz_wanted2 or aa_wanted or aa_wanted2 != "None": ax1.legend(loc = 'center left', bbox_to_anchor = (1, 0.5), fontsize = 10) #Format and label axes plt.yscale('log') plt.ylim(min_mf, 1.5) plt.ylabel("Mass Fraction") plt.xscale('linear') plt.xlim(time[0], time[end]) plt.xlabel ("Time (s)") print ("Axes formatted.") #Add x ticks at specified intervals x_labels = [] tick = time[0] while tick <= time[end]: tick = float("{0:.1f}".format(tick)) x_labels.append(tick) tick += time_spacing loc = plticker.MultipleLocator(base=time_spacing) ax1.xaxis.set_major_locator(loc) plt.xticks(x_labels, x_labels) print ("Axes labeled.") #Remove superfluous ticks, show grid line instead plt.tick_params(axis='both', which='both', bottom='on', top='on', labelbottom='on', left='off', right='off', labelleft='on') plt.grid(True) print ("Grid line.") #Show graph plt.show() print ("Plot shown.")
the-stack_0_27974
from pypykatz.registry.offline_parser import OffineRegistry import subprocess import json import os class sam: def __init__(self): self.output='./output/' self.system_hive_filename="system.hive" self.sam_hive_filename="sam.hive" self.security_hive_filename="security.hive" self.result_filename="sam_result.json" self.pypykatz=".\\pypykatz\\pypykatz" def dump_hive(self): system_hive_path=self.output+self.system_hive_filename sam_hive_path=self.output+self.sam_hive_filename security_hive_path=self.output+self.security_hive_filename save_system_command="reg save hklm\\system {filename} -y".format(filename=system_hive_path) run_save_system=subprocess.Popen(args=save_system_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, close_fds=True) run_save_system.communicate() save_sam_command="reg save hklm\\sam {filename} -y".format(filename=sam_hive_path) run_save_sam=subprocess.Popen(args=save_sam_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, close_fds=True) run_save_sam.communicate() save_security_command="reg save hklm\\security {filename} -y".format(filename=security_hive_path) run_save_security=subprocess.Popen(args=save_security_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, close_fds=True) run_save_security.communicate() if os.path.isfile(system_hive_path) and os.path.isfile(sam_hive_path) and os.path.isfile(security_hive_path): system_size=os.path.getsize(system_hive_path) sam_size=os.path.getsize(sam_hive_path) security_size=os.path.getsize(security_hive_path) if system_size==0 and sam_size==0 and security_size==0: return False else: return True else: return False def get_secret_data(self,secret_data_json): ''' with open(secret_file, 'r') as json_file: json_data=json.load(json_file) ''' json_data=json.loads(secret_data_json) secret_data=[] for item in json_data['SAM']['local_users']: secret_data.append(item) return secret_data def get_result(self,target_name,login_data): desc=target_name+" Secret Data" result={} result['desc']=desc data=[] for item in login_data: data_item={} data_item['username']=item['username'] data_item['nt_hash']=item['nt_hash'] data_item['lm_hash']=item['lm_hash'] data_item['rid']=item['rid'] data.append(data_item) result['data']=data return result def run(self,target_list): result=[] if 'sam' in target_list: res=self.dump_hive() if res: try: system_hive=self.output+self.system_hive_filename sam_hive=self.output+self.sam_hive_filename security_hive=self.output+self.security_hive_filename or_result = OffineRegistry.from_files(system_hive,sam_hive,security_hive) or_result_json=or_result.to_json() secret_data=self.get_secret_data(or_result_json) sam_result=self.get_result('SAM',secret_data) result.append(sam_result) except Exception as e: pass else: print('[-]Insufficient permissions') return result
the-stack_0_27975
import numpy as np import sys import matplotlib.pyplot as plt from UTILS.Calculus import Calculus from UTILS.EVOL.ALIMITevol import ALIMITevol from UTILS.Tools import Tools # Theoretical background https://arxiv.org/abs/1401.5176 # Mocak, Meakin, Viallet, Arnett, 2014, Compressible Hydrodynamic Mean-Field # # Equations in Spherical Geometry and their Application to Turbulent Stellar # # Convection Data # class ConvectiveTurnoverTimescaleEvolutionResolutionStudy(Calculus, ALIMITevol, Tools, object): def __init__(self, filename, ig, data_prefix): super(ConvectiveTurnoverTimescaleEvolutionResolutionStudy, self).__init__(ig) # load data to a list of structured arrays eht = [] for ffile in filename: eht.append(self.customLoad(ffile)) # declare data lists t_timec, t_tc = [], [] nx, ny, nz = [], [], [] tavg = [] for i in range(len(filename)): # load temporal evolution t_timec.append(self.getRAdata(eht[i],'t_timec')) t_tc.append(self.getRAdata(eht[i],'t_tc')) nx.append(self.getRAdata(eht[i],'nx')) ny.append(self.getRAdata(eht[i],'ny')) nz.append(self.getRAdata(eht[i],'nz')) tavg.append(self.getRAdata(eht[i], 'tavg')) # share data across the whole class self.t_timec = t_timec self.t_tc = t_tc self.data_prefix = data_prefix self.nx = nx self.ny = ny self.nz = nz self.tavg = tavg def plot_tconvturn_evolution(self, LAXIS, xbl, xbr, ybu, ybd, ilg): grd = self.t_timec plt1 = self.t_tc # plt2 = self.t_epsD # load resolution nx = self.nx ny = self.ny nz = self.nz tavg = self.tavg t_tc = self.t_tc # find maximum resolution data grd_maxres = self.maxresdata(grd) plt1_maxres = self.maxresdata(plt1) plt_interp = [] for i in range(len(grd)): plt_interp.append(np.interp(grd_maxres, grd[i], plt1[i])) # create FIGURE plt.figure(figsize=(7, 6)) # format AXIS, make sure it is exponential plt.gca().yaxis.get_major_formatter().set_powerlimits((0, 0)) if (LAXIS != 2): print("ERROR(ConvectiveTurnoverTimescaleEvolutionStudy.py): Only LAXIS=2 is supported.") sys.exit() plt10_tmp = plt1[0] plt11_tmp = plt1[0] plt1_foraxislimit = [] plt1max = np.max(plt1[0]) for plt1i in plt1: if (np.max(plt1i) > plt1max): plt1_foraxislimit = plt1i # set plot boundaries to_plot = [plt1_foraxislimit] self.set_plt_axis(LAXIS, xbl, xbr, ybu, ybd, to_plot) # plot DATA plt.title('convective turnover timescale evolution') for i in range(len(grd)): plt.plot(grd[i], plt1[i], label=str(nx[i]) + ' x ' + str(ny[i]) + ' x ' + str(nz[i]) + ' ' + '(tavg = ' + str(np.round(tavg[i],1)) + ' s = ' + str(np.round(tavg[i]/np.mean(t_tc[i]),1)) + ' TOs)') # plt.plot(grd1,plt2,color='g',label = r'$epsD$') # define and show x/y LABELS setxlabel = r"t (s)" setylabel = r"timescale (s)" plt.xlabel(setxlabel) plt.ylabel(setylabel) # show LEGEND plt.legend(loc=ilg, prop={'size': 12}) # display PLOT plt.show(block=False) # save PLOT plt.savefig('RESULTS/' + self.data_prefix + 'tconvturnover_evol_res.png') # find data with maximum resolution def maxresdata(self, data): tmp = 0 for idata in data: if idata.shape[0] > tmp: data_maxres = idata else: tmp = idata.shape[0] return data_maxres
the-stack_0_27976
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example script to train the DNC on a repeated copy task.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import sonnet as snt from tensorflow.contrib.layers.python.layers import initializers from dnc import dnc import numpy as np import cv2 from scipy import ndimage as nd from PIL import Image import os, sys import time from utility import alrc experiment_number = 118 FLAGS = tf.flags.FLAGS # Model parameters tf.flags.DEFINE_integer("hidden_size", 128, "Size of LSTM hidden layer.") tf.flags.DEFINE_integer("memory_size", 16, "The number of memory slots.") tf.flags.DEFINE_integer("word_size", 64, "The width of each memory slot.") tf.flags.DEFINE_integer("num_write_heads", 1, "Number of memory write heads.") tf.flags.DEFINE_integer("num_read_heads", 4, "Number of memory read heads.") tf.flags.DEFINE_integer("clip_value", 0, "Maximum absolute value of controller and dnc outputs.") tf.flags.DEFINE_bool("use_batch_norm", True, "Use batch normalization in generator.") tf.flags.DEFINE_string("model", "LSTM", "LSTM or DNC.") tf.flags.DEFINE_integer("projection_size", 0, "Size of projection layer. Zero for no projection.") tf.flags.DEFINE_bool("is_input_embedder", False, "Embed inputs before they are input.") # Optimizer parameters. tf.flags.DEFINE_integer("batch_size", 32, "Batch size for training.") tf.flags.DEFINE_integer("replay_size", 25000, "Maximum examples in ring buffer.") tf.flags.DEFINE_integer("avg_replays", 4, "Mean frequency each experience is used.") tf.flags.DEFINE_float("max_grad_norm", 50, "Gradient clipping norm limit.") tf.flags.DEFINE_float("learning_rate", 1e-4, "Optimizer learning rate.") tf.flags.DEFINE_float("optimizer_epsilon", 1e-10, "Epsilon used for RMSProp optimizer.") tf.flags.DEFINE_float("L2_norm", 1.e-5, "Decay rate for L2 regularization. 0 for no regularization.") # Task parameters tf.flags.DEFINE_integer("img_side", 96, "Number of image pixels for square image") tf.flags.DEFINE_integer("num_steps", 20, "Number of image pixels for square image") tf.flags.DEFINE_integer("step_size", 20, "Distance STEM probe moves at each step (in px).") tf.flags.DEFINE_integer("num_actions", 2, "Number of parameters to describe actions.") tf.flags.DEFINE_integer("shuffle_size", 2000, "Size of moving buffer to sample data from.") tf.flags.DEFINE_integer("prefetch_size", 10, "Number of batches to prepare in advance.") # Training options. tf.flags.DEFINE_float("actor_lr", 0.0007, "Actor learning rate.") tf.flags.DEFINE_float("critic_lr", 0.001, "Critic learning rate.") tf.flags.DEFINE_float("generator_lr", 0.003, "Generator learning rate.") tf.flags.DEFINE_float("gamma", 0.97, "Reward/loss decay.") tf.flags.DEFINE_bool("is_advantage_actor_critic", False, "Use advantage rather than Q errors for actor.") tf.flags.DEFINE_bool("is_cyclic_generator_learning_rate", True, "Use advantage rather than Q errors for actor.") tf.flags.DEFINE_integer("supervision_iters", 100_000, "Starting value for supeversion.") tf.flags.DEFINE_float("supervision_start", 1., "Starting value for supeversion.") tf.flags.DEFINE_float("supervision_end", 0., "Starting value for supeversion.") if FLAGS.supervision_iters: #Flag will not be used tf.flags.DEFINE_float("supervision", 0.5, "Weighting for known discounted future reward.") else: #Flag will be used tf.flags.DEFINE_float("supervision", 0.0, "Weighting for known discounted future reward.") tf.flags.DEFINE_bool("is_target_actor", True and FLAGS.supervision != 1, "True to use target actor.") tf.flags.DEFINE_bool("is_target_critic", True and FLAGS.supervision != 1, "True to use target critic.") tf.flags.DEFINE_bool("is_target_generator", False, "True to use target generator.") tf.flags.DEFINE_integer("update_frequency", 0, "Frequency of hard target network updates. Zero for soft updates.") tf.flags.DEFINE_float("target_decay", 0.9997, "Decay rate for target network soft updates.") tf.flags.DEFINE_bool("is_generator_batch_norm_tracked", False, "True to track generator batch normalization.") tf.flags.DEFINE_bool("is_positive_qs", True, "Whether to clip qs to be positive.") tf.flags.DEFINE_bool("is_infilled", False, "True to use infilling rather than generator.") tf.flags.DEFINE_bool("is_prev_position_input", True, "True to input previous positions.") tf.flags.DEFINE_bool("is_ornstein_uhlenbeck", True, "True for O-U exploration noise.") tf.flags.DEFINE_bool("is_noise_decay", True, "Decay noise if true.") tf.flags.DEFINE_float("ou_theta", 0.1, "Drift back to mean.") tf.flags.DEFINE_float("ou_sigma", 0.2, "Size of random process.") tf.flags.DEFINE_bool("is_rel_to_truth", False, "True to normalize losses using expected losses.") tf.flags.DEFINE_bool("is_clipped_reward", True, "True to clip rewards.") tf.flags.DEFINE_bool("is_clipped_critic", False, "True to clip critic predictions for actor training.") tf.flags.DEFINE_float("over_edge_penalty", 0.05, "Penalty for action going over edge of image.") tf.flags.DEFINE_bool("is_prioritized_replay", False, "True to prioritize the replay of difficult experiences.") tf.flags.DEFINE_bool("is_biased_prioritized_replay", False, "Priority sampling without bias correction.") tf.flags.DEFINE_bool("is_relative_to_spirals", False, "True to compare generator losses against losses for spirals.") tf.flags.DEFINE_bool("is_self_competition", False, "Oh it is on. True to compete against past versions of itself.") tf.flags.DEFINE_float("norm_generator_losses_decay", 0.997, "Divide generator losses by their running mean. Zero for no normalization.") tf.flags.DEFINE_bool("is_minmax_reward", False, "True to use highest losses for actor loss.") tf.flags.DEFINE_integer("start_iter", 0, "Starting iteration") tf.flags.DEFINE_integer("train_iters", 500_000, "Training iterations") tf.flags.DEFINE_integer("val_examples", 20_000, "Number of validation examples") tf.flags.DEFINE_integer("style_loss", 0, "Weighting of style loss. Zero for no style loss.") tf.flags.DEFINE_string("model_dir", f"//ads.warwick.ac.uk/shared/HCSS6/Shared305/Microscopy/Jeffrey-Ede/models/recurrent_conv-1/{experiment_number}/", "Working directory.") tf.flags.DEFINE_string("data_file", "//Desktop-sa1evjv/h/96x96_stem_crops.npy", "Datafile containing 19769 96x96 downsampled STEM crops.") tf.flags.DEFINE_integer("report_freq", 10, "How often to print losses to the console.") os.chdir(FLAGS.model_dir) sys.path.insert(0, FLAGS.model_dir) def norm_img(img, min=None, max=None, get_min_and_max=False): if min == None: min = np.min(img) if max == None: max = np.max(img) if np.absolute(min-max) < 1.e-6: img.fill(0.) else: a = 0.5*(min+max) b = 0.5*(max-min) img = (img-a) / b if get_min_and_max: return img.astype(np.float32), (min, max) else: return img.astype(np.float32) def scale0to1(img): """Rescale image between 0 and 1""" img = img.astype(np.float32) min = np.min(img) max = np.max(img) if np.absolute(min-max) < 1.e-6: img.fill(0.5) else: img = (img - min)/(max - min) return img.astype(np.float32) def disp(img): #if len(img.shape) == 3: # img = np.sum(img, axis=2) cv2.namedWindow('CV_Window', cv2.WINDOW_NORMAL) cv2.imshow('CV_Window', scale0to1(img)) cv2.waitKey(0) return def run_model(input_sequence, output_size): """Runs model on input sequence.""" access_config = { "memory_size": FLAGS.memory_size, "word_size": FLAGS.word_size, "num_reads": FLAGS.num_read_heads, "num_writes": FLAGS.num_write_heads, } controller_config = { "hidden_size": FLAGS.hidden_size, } clip_value = FLAGS.clip_value dnc_core = dnc.DNC(access_config, controller_config, output_size, clip_value) initial_state = dnc_core.initial_state(FLAGS.batch_size) output_sequence, _ = tf.nn.dynamic_rnn( cell=dnc_core, inputs=input_sequence, time_major=True, initial_state=initial_state) return output_sequence class RingBuffer(object): def __init__( self, action_shape, observation_shape, full_scan_shape, batch_size, buffer_size=1000, num_past_losses=None, ): self.buffer_size = buffer_size self.actions = np.zeros([buffer_size]+list(action_shape)[1:]) self.observations = np.zeros([buffer_size]+list(observation_shape)[1:]) self.full_scans = np.zeros([buffer_size]+list(full_scan_shape)[1:]) self.position = 0 self._batch_size = batch_size if FLAGS.is_prioritized_replay or FLAGS.is_biased_prioritized_replay: self.priorities = np.zeros([buffer_size]) self.indices = np.arange(buffer_size) if FLAGS.is_self_competition: self.past_losses = np.zeros([num_past_losses]) self.labels = np.zeros([buffer_size], np.int32) def add(self, actions, observations, full_scans, labels=None): i0 = self.position % self.buffer_size num_before_cycle = min(self.buffer_size-i0, self._batch_size) self.actions[i0:i0+num_before_cycle] = actions[:num_before_cycle] self.observations[i0:i0+num_before_cycle] = observations[:num_before_cycle] self.full_scans[i0:i0+num_before_cycle] = full_scans[:num_before_cycle] num_remaining = self._batch_size - num_before_cycle if num_remaining > 0: self.actions[0:num_remaining] = actions[num_before_cycle:] self.observations[:num_remaining] = observations[num_before_cycle:] self.full_scans[:num_remaining] = full_scans[num_before_cycle:] if FLAGS.is_prioritized_replay or FLAGS.is_biased_prioritized_replay: if self.position: mean_priority = np.sum(self.priorities) / min(self.position, self.buffer_size) else: mean_priority = 0.3 self.priorities[i0:i0+num_before_cycle] = mean_priority*np.ones([num_before_cycle]) if num_before_cycle < self._batch_size: self.priorities[0:num_remaining] = mean_priority*np.ones([self._batch_size - num_before_cycle]) if FLAGS.is_self_competition: self.labels[i0:i0+num_before_cycle] = labels[:num_before_cycle] if num_remaining > 0: self.labels[0:num_remaining] = labels[num_before_cycle:] self.position += self._batch_size def get(self): limit = min(self.position, self.buffer_size) if FLAGS.is_prioritized_replay: sample_idxs = np.random.choice( self.indices, size=self._batch_size, replace=False, p=self.priorities/np.sum(self.priorities) ) #alpha=1 beta = 0.5 + 0.5*(FLAGS.train_iters - self.position)/FLAGS.train_iters sampled_priority_weights = self.priorities[sample_idxs]**( -beta ) sampled_priority_weights /= np.max(sampled_priority_weights) elif FLAGS.is_biased_prioritized_replay: alpha = (FLAGS.train_iters - self.position)/FLAGS.train_iters priorities = self.priorities**alpha sample_idxs = np.random.choice( self.indices, size=self._batch_size, replace=False, p=self.priorities/np.sum(self.priorities) ) else: sample_idxs = np.random.randint(0, limit, size=self._batch_size) sampled_actions = np.stack([self.actions[i] for i in sample_idxs]) sampled_observations = np.stack([self.observations[i] for i in sample_idxs]) sampled_full_scans = np.stack([self.full_scans[i] for i in sample_idxs]) if FLAGS.is_prioritized_replay: return sampled_actions, sampled_observations, sampled_full_scans, sample_idxs, sampled_priority_weights elif FLAGS.is_biased_prioritized_replay: return sampled_actions, sampled_observations, sampled_full_scans, sample_idxs elif FLAGS.is_self_competition: sampled_labels = np.stack([self.labels[i] for i in sample_idxs]) sampled_past_losses = np.stack([self.past_losses[i] for i in sampled_labels]) return sampled_actions, sampled_observations, sampled_full_scans, sampled_labels, sampled_past_losses else: return sampled_actions, sampled_observations, sampled_full_scans def update_priorities(self, idxs, priorities): """For prioritized experience replay""" self.priorities[idxs] = priorities def update_past_losses(self, idxs, losses): self.past_losses[idxs] = losses class Agent(snt.AbstractModule): def __init__( self, num_outputs, name, is_new=False, noise_decay=None, is_double_critic=False, sampled_full_scans=None, val_full_scans=None ): super(Agent, self).__init__(name=name) access_config = { "memory_size": FLAGS.memory_size, "word_size": FLAGS.word_size, "num_reads": FLAGS.num_read_heads, "num_writes": FLAGS.num_write_heads, } controller_config = { "hidden_size": FLAGS.hidden_size, "projection_size": FLAGS.projection_size or None, } clip_value = FLAGS.clip_value with self._enter_variable_scope(): components = dnc.Components(access_config, controller_config, num_outputs) self._dnc_core = dnc.DNC(components, num_outputs, clip_value, is_new=False, is_double_critic=is_double_critic) if is_new: self._dnc_core_new = dnc.DNC( components, num_outputs, clip_value, is_new=True, noise_decay=noise_decay, sampled_full_scans=sampled_full_scans, is_noise=True ) if not val_full_scans is None: self._dnc_core_val = dnc.DNC( components, num_outputs, clip_value, is_new=True, sampled_full_scans=val_full_scans ) self._initial_state = self._dnc_core.initial_state(FLAGS.batch_size) #self._action_embedder = snt.Linear(output_size=64) #self._observation_embedder = snt.Linear(output_size=64) def _build(self, observations, actions): #Tiling here is a hack to make inputs the same size num_tiles = 2 // (actions.get_shape().as_list()[-1] // FLAGS.num_actions) tiled_actions = tf.tile(actions, [1, 1, num_tiles]) input_sequence = tf.concat([observations, tiled_actions], axis=-1) output_sequence, _ = tf.nn.dynamic_rnn( cell=self._dnc_core, inputs=input_sequence, time_major=False, initial_state=self._initial_state ) return output_sequence def get_new_experience(self): output_sequence, _ = tf.nn.dynamic_rnn( cell=self._dnc_core_new, inputs=tf.zeros([FLAGS.batch_size, FLAGS.num_steps, 1]), time_major=False, initial_state=self._initial_state ) if hasattr(tf, 'ensure_shape'): output_sequence = tf.ensure_shape(output_sequence, [FLAGS.batch_size, FLAGS.num_steps, FLAGS.step_size+FLAGS.num_actions]) else: output_sequence = tf.reshape(output_sequence, [FLAGS.batch_size, FLAGS.num_steps, FLAGS.step_size+FLAGS.num_actions]) observations = output_sequence[:,:,:FLAGS.step_size] actions = output_sequence[:,:,FLAGS.step_size:] return observations, actions def get_val_experience(self): output_sequence, _ = tf.nn.dynamic_rnn( cell=self._dnc_core_val, inputs=tf.zeros([FLAGS.batch_size, FLAGS.num_steps, 1]), time_major=False, initial_state=self._initial_state ) if hasattr(tf, 'ensure_shape'): output_sequence = tf.ensure_shape(output_sequence, [FLAGS.batch_size, FLAGS.num_steps, FLAGS.step_size+FLAGS.num_actions]) else: output_sequence = tf.reshape(output_sequence, [FLAGS.batch_size, FLAGS.num_steps, FLAGS.step_size+FLAGS.num_actions]) observations = output_sequence[:,:,:FLAGS.step_size] actions = output_sequence[:,:,FLAGS.step_size:] return observations, actions @property def variables(self): with self._enter_variable_scope(): return tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name ) @property def trainable_variables(self): with self._enter_variable_scope(): return tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=tf.get_variable_scope().name ) def spectral_norm(w, iteration=1, in_place_updates=False): """Spectral normalization. It imposes Lipschitz continuity by constraining the spectral norm (maximum singular value) of weight matrices. Inputs: w: Weight matrix to spectrally normalize. iteration: Number of times to apply the power iteration method to enforce spectral norm. Returns: Weight matrix with spectral normalization control dependencies. """ w0 = w w_shape = w.shape.as_list() w = tf.reshape(w, [-1, w_shape[-1]]) u = tf.get_variable(auto_name("u"), [1, w_shape[-1]], initializer=tf.random_normal_initializer(mean=0.,stddev=0.03), trainable=False) u_hat = u v_hat = None for i in range(iteration): """ power iteration Usually iteration = 1 will be enough """ v_ = tf.matmul(u_hat, tf.transpose(w)) v_hat = tf.nn.l2_normalize(v_) u_ = tf.matmul(v_hat, w) u_hat = tf.nn.l2_normalize(u_) u_hat = tf.stop_gradient(u_hat) v_hat = tf.stop_gradient(v_hat) sigma = tf.matmul(tf.matmul(v_hat, w), tf.transpose(u_hat)) if in_place_updates: #In-place control dependencies bottlenect training with tf.control_dependencies([u.assign(u_hat)]): w_norm = w / sigma w_norm = tf.reshape(w_norm, w_shape) else: #Execute control dependency in parallel with other update ops tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, u.assign(u_hat)) w_norm = w / sigma w_norm = tf.reshape(w_norm, w_shape) return w_norm def spectral_norm_conv( inputs, num_outputs, stride=1, kernel_size=3, padding='VALID', biases_initializer=tf.zeros_initializer() ): """Convolutional layer with spectrally normalized weights.""" w = tf.get_variable(auto_name("kernel"), shape=[kernel_size, kernel_size, inputs.get_shape()[-1], num_outputs]) x = tf.nn.conv2d(input=inputs, filter=spectral_norm(w), strides=[1, stride, stride, 1], padding=padding) if biases_initializer != None: b = tf.get_variable(auto_name("bias"), [num_outputs], initializer=biases_initializer) x = tf.nn.bias_add(x, b) return x def conv( inputs, num_outputs, kernel_size=3, stride=1, padding='SAME', data_format="NHWC", actv_fn=tf.nn.relu, is_batch_norm=True, is_spectral_norm=False, is_depthwise_sep=False, extra_batch_norm=False, biases_initializer=tf.zeros_initializer, weights_initializer=initializers.xavier_initializer, transpose=False, is_training=True ): """Convenience function for a strided convolutional or transpositional convolutional layer. Intro: https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1. The order is: Activation (Optional) -> Batch Normalization (optional) -> Convolutions. Inputs: inputs: Tensor of shape `[batch_size, height, width, channels]` to apply convolutions to. num_outputs: Number of feature channels to output. kernel_size: Side lenth of square convolutional kernels. stride: Distance between convolutional kernel applications. padding: 'SAME' for zero padding where kernels go over the edge. 'VALID' to discard features where kernels go over the edge. activ_fn: non-linearity to apply after summing convolutions. is_batch_norm: If True, add batch normalization after activation. is_spectral_norm: If True, spectrally normalize weights. is_depthwise_sep: If True, depthwise separate convolutions into depthwise spatial convolutions, then 1x1 pointwise convolutions. extra_batch_norm: If True and convolutions are depthwise separable, implement batch normalization between depthwise and pointwise convolutions. biases_initializer: Function to initialize biases with. None for no biases. weights_initializer: Function to initialize weights with. None for no weights. transpose: If True, apply convolutional layer transpositionally to the described convolutional layer. is_training: If True, use training specific operations e.g. batch normalization update ops. Returns: Output of convolutional layer. """ x = inputs num_spatial_dims = len(x.get_shape().as_list()) - 2 if biases_initializer == None: biases_initializer = lambda: None if weights_initializer == None: weights_initializer = lambda: None if not is_spectral_norm: #Convolutional layer without spectral normalization if transpose: stride0 = 1 if type(stride) == list or is_depthwise_sep or stride % 1: #Apparently there is no implementation of transpositional #depthwise separable convolutions, so bilinearly upsample then #depthwise separably convolute if kernel_size != 1: x = tf.image.resize_bilinear( images=x, size=stride if type(stride) == list else \ [int(stride*d) for d in x.get_shape().as_list()[1:3]], align_corners=True ) stride0 = stride stride = 1 if type(stride0) == list and not is_depthwise_sep: layer = tf.contrib.layers.conv2d elif is_depthwise_sep: layer = tf.contrib.layers.separable_conv2d else: layer = tf.contrib.layers.conv2d_transpose x = layer( inputs=x, num_outputs=num_outputs, kernel_size=kernel_size, stride=stride, padding=padding, data_format=data_format, activation_fn=None, weights_initializer=weights_initializer(), biases_initializer=biases_initializer()) if type(stride0) != list: if (is_depthwise_sep or stride0 % 1) and kernel_size == 1: x = tf.image.resize_bilinear( images=x, size=[int(stride0*d) for d in x.get_shape().as_list()[1:3]], align_corners=True ) else: if num_spatial_dims == 1: layer = tf.contrib.layers.conv1d elif num_spatial_dims == 2: if is_depthwise_sep: layer = tf.contrib.layers.separable_conv2d else: layer = tf.contrib.layers.conv2d x = layer( inputs=x, num_outputs=num_outputs, kernel_size=kernel_size, stride=stride, padding=padding, data_format=data_format, activation_fn=None, weights_initializer=weights_initializer(), biases_initializer=biases_initializer()) else: #Weights are spectrally normalized x = spectral_norm_conv( inputs=x, num_outputs=num_outputs, stride=stride, kernel_size=kernel_size, padding=padding, biases_initializer=biases_initializer()) if actv_fn: x = actv_fn(x) if is_batch_norm and FLAGS.use_batch_norm: x = tf.contrib.layers.batch_norm(x, is_training=is_training) return x def residual_block(inputs, skip=3, is_training=True): """Residual block whre the input is added to the signal after skipping some layers. This architecture is good for learning purturbative transformations. If no layer is provided, it defaults to a convolutional layer. Deep residual learning: https://arxiv.org/abs/1512.03385. Inputs: inputs: Tensor to apply residual block to. Outputs of every layer will have the same shape. skip: Number of layers to skip before adding input to layer output. layer: Layer to apply in residual block. Defaults to convolutional layer. Custom layers must support `inputs`, `num_outputs` and `is_training` arguments. Returns: Final output of residual block. """ x = x0 = inputs def layer(inputs, num_outputs, is_training, is_batch_norm, actv_fn): x = conv( inputs=inputs, num_outputs=num_outputs, is_training=is_training, actv_fn=actv_fn ) return x for i in range(skip): x = layer( inputs=x, num_outputs=x.get_shape()[-1], is_training=is_training, is_batch_norm=i < skip - 1, actv_fn=tf.nn.relu ) x += x0 if FLAGS.use_batch_norm: x = tf.contrib.layers.batch_norm(x, is_training=is_training) return x class Generator(snt.AbstractModule): def __init__(self, name, is_training ): super(Generator, self).__init__(name=name) self._is_training = is_training def _build(self, inputs): x = inputs std_actv = tf.nn.relu#lambda x: tf.nn.leaky_relu(x, alpha=0.1) is_training = self._is_training is_depthwise_sep = False base_size = 32 #x = tf.contrib.layers.batch_norm(x, is_training=is_training) x = conv( x, num_outputs=32, is_training=is_training, actv_fn=std_actv ) #Encoder for i in range(1, 3): x = conv( x, num_outputs=base_size*2**i, stride=2, is_depthwise_sep=is_depthwise_sep, is_training=is_training, actv_fn=std_actv ) if i == 2: low_level = x #Residual blocks for _ in range(5): #Number of blocks x = residual_block( x, skip=3, is_training=is_training ) #Decoder for i in range(1, -1, -1): x = conv( x, num_outputs=base_size*2**i, stride=2, is_depthwise_sep=is_depthwise_sep, is_training=is_training, transpose=True, actv_fn=std_actv ) x = conv( x, num_outputs=base_size, is_depthwise_sep=is_depthwise_sep, is_training=is_training ) #Project features onto output image x = conv( x, num_outputs=1, biases_initializer=None, actv_fn=None, is_batch_norm=False, is_training=is_training ) return x @property def variables(self): with self._enter_variable_scope(): return tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name ) @property def trainable_variables(self): with self._enter_variable_scope(): return tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=tf.get_variable_scope().name ) def construct_partial_scans(actions, observations): """ actions: [batch_size, num_steps, 2] observations: [batch_size, num_steps, 10] """ #Last action unused and the first action is always the same actions = np.concatenate((np.ones([FLAGS.batch_size, 1, 2]), actions[:,:-1,:]), axis=1) starts = 0.5*FLAGS.img_side + FLAGS.step_size*(np.cumsum(actions, axis=1) - actions) #starts = np.zeros(actions.shape) #starts[:,0,:] = actions[:,0,:] #for i in range(1, FLAGS.num_steps): # starts[:,i,:] = actions[:,i,:] + starts[:,i-1,:] #starts -= actions #starts *= FLAGS.step_size #starts += 0.5*FLAGS.img_side positions = np.stack([starts + i*actions for i in range(FLAGS.step_size)], axis=-2) x = np.minimum(np.maximum(positions, 0), FLAGS.img_side-1) indices = [] for j in range(FLAGS.batch_size): for k in range(FLAGS.num_steps): for i in range(FLAGS.step_size): indices.append( [j, int(x[j,k,i,0]), int(x[j,k,i,1])] ) indices = np.array(indices) indices = tuple([indices[:,i] for i in range(3)]) partial_scans = np.zeros([FLAGS.batch_size, FLAGS.img_side, FLAGS.img_side]) masks = np.zeros([FLAGS.batch_size, FLAGS.img_side, FLAGS.img_side]) partial_scans[indices] = observations.reshape([-1]) masks[indices] = 1 partial_scans /= np.maximum(masks, 1) masks = np.minimum(masks, 1) partial_scans = np.stack([partial_scans, masks], axis=-1) return partial_scans def target_update_ops(target_network, network, decay=FLAGS.target_decay, l2_norm=False): t_vars = target_network.variables v_vars = network.variables update_ops = [] for t, v in zip(t_vars, v_vars): if FLAGS.is_generator_batch_norm_tracked or not "BatchNorm" in t.name: #Don't track batch normalization if l2_norm: v_new = (1-FLAGS.L2_norm)*v op = v.assign(v_new) update_ops.append(op) op = t.assign(decay*t + (1-decay)*v_new) update_ops.append(op) else: op = t.assign(decay*t + (1-decay)*v) update_ops.append(op) print(t.name.replace("target_", "") == v.name, t.name.replace("target_", ""), v.name) return update_ops def load_data(shape): data_ph = tf.placeholder(tf.float32, shape=list(shape)) ds = tf.data.Dataset.from_tensor_slices(tuple([data_ph])) if FLAGS.is_self_competition: labels = tf.data.Dataset.range(0, list(shape)[0]) ds = tf.data.Dataset.zip((ds, labels)) ds = ds.shuffle(buffer_size=FLAGS.shuffle_size) ds = ds.repeat() ds = ds.batch(FLAGS.batch_size) ds = ds.prefetch(FLAGS.prefetch_size) iterator = ds.make_initializable_iterator() return data_ph, iterator @tf.custom_gradient def overwrite_grads(x, y): print("OG", x, y) def grad(dy): return y, None return x, grad def infill(data, mask): return data[tuple(nd.distance_transform_edt(np.equal(mask, 0), return_distances=False, return_indices=True))] #def infill(data, mask): # x = np.zeros(data.shape) # c = (cv2.GaussianBlur(mask.astype(np.float32), (7, 7), 3.5, None, 3.5) > 0).astype(np.float32) # truth = data[tuple(nd.distance_transform_edt(np.equal(mask, 0), return_distances=False, return_indices=True))] # x = (truth*c).astype(np.float32) # return x def fill(input): return np.expand_dims(np.stack([infill(img, mask) for img, mask in zip(input[:,:,:,0], input[:,:,:,1])]), -1) def flip_rotate(img, choice): """Applies a random flip || rotation to the image, possibly leaving it unchanged""" if choice == 0: return img elif choice == 1: return np.rot90(img, 1) elif choice == 2: return np.rot90(img, 2) elif choice == 3: return np.rot90(img, 3) elif choice == 4: return np.flip(img, 0) elif choice == 5: return np.flip(img, 1) elif choice == 6: return np.flip(np.rot90(img, 1), 0) else: return np.flip(np.rot90(img, 1), 1) def draw_spiral(coverage, side, num_steps=10_000): """Duration spent at each location as a particle falls in a magnetic field. Trajectory chosen so that the duration density is (approx.) evenly distributed. Trajectory is calculated stepwise. Args: coverage: Average amount of time spent at a random pixel side: Sidelength of square image that the motion is inscribed on. Returns: A spiral """ #Use size that is larger than the image size = int(np.ceil(np.sqrt(2)*side)) #Maximum radius of motion R = size/2 #Get constant in equation of motion k = 1/ (2*np.pi*coverage) #Maximum theta that is in the image theta_max = R / k #Equispaced steps theta = np.arange(0, theta_max, theta_max/num_steps) r = k * theta #Convert to cartesian, with (0,0) at the center of the image x = r*np.cos(theta) + R y = r*np.sin(theta) + R #Draw spiral z = np.empty((x.size + y.size,), dtype=x.dtype) z[0::2] = x z[1::2] = y z = list(z) img = Image.new('F', (size,size), "black") img_draw = ImageDraw.Draw(img) img_draw = img_draw.line(z) img = np.asarray(img) img = img[size//2-side//2:size//2+side//2+side%2, size//2-side//2:size//2+side//2+side%2] return img def average_filter(image): kernel = tf.ones([5,5,1,1]) filtered_image = tf.nn.conv2d(image, kernel, strides=[1, 1, 1, 1], padding="VALID") return filtered_image def pad(tensor, size): d1_pad = size[0] d2_pad = size[1] paddings = tf.constant([[0, 0], [d1_pad, d1_pad], [d2_pad, d2_pad], [0, 0]], dtype=tf.int32) padded = tf.pad(tensor, paddings, mode="REFLECT") return padded def gaussian_kernel(size: int, mean: float, std: float, ): """Makes 2D gaussian Kernel for convolution.""" d = tf.distributions.Normal(mean, std) vals = d.prob(tf.range(start = -size, limit = size + 1, dtype = tf.float32)) gauss_kernel = tf.einsum('i,j->ij', vals, vals) return gauss_kernel / tf.reduce_sum(gauss_kernel) def blur(image): gauss_kernel = gaussian_kernel( 2, 0., 2.5 ) #Expand dimensions of `gauss_kernel` for `tf.nn.conv2d` signature gauss_kernel = gauss_kernel[:, :, tf.newaxis, tf.newaxis] #Convolve image = pad(image, (2,2)) return tf.nn.conv2d(image, gauss_kernel, strides=[1, 1, 1, 1], padding="VALID") def calc_generator_losses(img1, img2): if FLAGS.data_file == "//Desktop-sa1evjv/h/96x96_stem_crops.npy": img2 = blur(img2) #Gaussian blur generator_losses = 10*tf.reduce_mean( (img1 - img2)**2, axis=[1,2,3] ) losses = generator_losses if FLAGS.style_loss: edges1 = tf.image.sobel_edges(img1) edges2 = tf.image.sobel_edges(img2) print("Edges:", edges1) generator_losses += FLAGS.style_loss*tf.reduce_mean( (edges1 - edges2)**2, axis=[1,2,3,4] ) return generator_losses, losses def main(unused_argv): """Trains the DNC and periodically reports the loss.""" graph = tf.get_default_graph() action_shape = [FLAGS.batch_size, FLAGS.num_steps, FLAGS.num_actions] observation_shape = [FLAGS.batch_size, FLAGS.num_steps, FLAGS.step_size] full_scan_shape = [FLAGS.batch_size, FLAGS.img_side, FLAGS.img_side, 1] partial_scan_shape = [FLAGS.batch_size, FLAGS.img_side, FLAGS.img_side, 2] images = np.load(FLAGS.data_file) images[np.logical_not(np.isfinite(images))] = 0 images = np.stack([norm_img(x) for x in images]) train_images = images[:int(0.8*len(images))] val_images = images[int(0.8*len(images)):] train_data_ph, train_iterator = load_data(train_images.shape) val_data_ph, val_iterator = load_data(val_images.shape) if FLAGS.is_self_competition: (full_scans, labels) = train_iterator.get_next() (val_full_scans, val_labels) = val_iterator.get_next() full_scans = full_scans[0] val_full_scans = val_full_scans[0] else: (full_scans, ) = train_iterator.get_next() (val_full_scans, ) = val_iterator.get_next() if hasattr(tf, 'ensure_shape'): full_scans = tf.ensure_shape(full_scans, full_scan_shape) val_full_scans = tf.ensure_shape(val_full_scans, full_scan_shape) else: full_scans = tf.reshape(full_scans, full_scan_shape) val_full_scans = tf.reshape(full_scans, full_scan_shape) replay = RingBuffer( action_shape=action_shape, observation_shape=observation_shape, full_scan_shape=full_scan_shape, batch_size=FLAGS.batch_size, buffer_size=FLAGS.replay_size, num_past_losses=train_images.shape[0], ) replay_actions_ph = tf.placeholder(tf.float32, shape=action_shape, name="replay_action") replay_observations_ph = tf.placeholder(tf.float32, shape=observation_shape, name="replay_observation") replay_full_scans_ph = tf.placeholder(tf.float32, shape=full_scan_shape, name="replay_full_scan") partial_scans_ph = tf.placeholder(tf.float32, shape=partial_scan_shape, name="replay_partial_scan") is_training_ph = tf.placeholder(tf.bool, name="is_training") if FLAGS.is_noise_decay: noise_decay_ph = tf.placeholder(tf.float32, shape=(), name="noise_decay") else: noise_decay_ph = None if FLAGS.supervision_iters: supervision_ph = tf.placeholder(tf.float32, name="supervision") else: supervision_ph = FLAGS.supervision if FLAGS.is_prioritized_replay: priority_weights_ph = tf.placeholder(tf.float32, shape=[FLAGS.batch_size], name="priority_weights") if FLAGS.is_self_competition: past_losses_ph = tf.placeholder(tf.float32, shape=[FLAGS.batch_size], name="past_losses") batch_size = FLAGS.batch_size if FLAGS.is_relative_to_spirals: coverage = FLAGS.num_steps*FLAGS.step_size/FLAGS.img_side**2 spiral = draw_spiral(coverage=coverage, side=FLAGS.img_side) ys = [1/i**2 for i in range(9, 2, -1)] xs = [np.sum(draw_spiral(coverage=c, side=FLAGS.img_side)) / FLAGS.img_side**2 for c in ys] ub_idx = next(i for i, x in xs if x > coverage) lb = xs[ub_idx-1] ub = xs[ub_idx] input_coverage = ( (coverage - lb)*X + (ub - coverage)*Y ) / (lb - ub) actor = Agent( num_outputs=FLAGS.num_actions, is_new=True, noise_decay=noise_decay_ph, sampled_full_scans=full_scans, val_full_scans=val_full_scans, name="actor" ) target_actor = Agent(num_outputs=FLAGS.num_actions, name="target_actor") critic = Agent(num_outputs=1, is_double_critic=True, name="critic") target_critic = Agent(num_outputs=1, is_double_critic=True, name="target_critic") new_observations, new_actions = actor.get_new_experience() #Last actions are unused replay_observations = replay_observations_ph[:,:-1,:] replay_actions = replay_actions_ph[:,:-1,:] #First action must be added for actors (not critics) start_actions = tf.ones([FLAGS.batch_size, 1, FLAGS.num_actions])/np.sqrt(2) started_replay_actions = tf.concat([start_actions, replay_actions[:,:-1,:]], axis=1) actions = actor(replay_observations, started_replay_actions) if FLAGS.is_target_actor: target_actions = target_actor(replay_observations, started_replay_actions) elif FLAGS.supervision != 1: target_actions = tf.stop_gradient(actions) #The last action is never used, and the first action is diagonally north-east #Shifting because network expect actions from previous steps to be inputted #start_actions = tf.ones([FLAGS.batch_size, 1, FLAGS.num_actions])/np.sqrt(2) #actions = tf.concat([start_actions, actions[:, :-1, :]], axis=1) #target_actions = tf.concat([start_actions, target_actions[:, :-1, :]], axis=1) actor_actions = tf.concat([replay_actions, actions], axis=-1) qs = critic(replay_observations, actor_actions) critic_qs = qs[:,:,:1] actor_qs = qs[:,:,1:] if FLAGS.is_target_critic: target_actor_actions = tf.concat([replay_actions, target_actions], axis=-1) target_actor_qs = target_critic(replay_observations, target_actor_actions)[:,:,1:] target_actor_qs = tf.stop_gradient(target_actor_qs) elif FLAGS.supervision != 1: target_actor_qs = actor_qs#critic(replay_observations, target_actor_actions)[:,:,1:] target_actor_qs = tf.stop_gradient(target_actor_qs) if not FLAGS.is_infilled: generator = Generator(name="generator", is_training=is_training_ph) generation = generator(partial_scans_ph) else: generation = tf.py_func(fill, [partial_scans_ph], tf.float32) if hasattr(tf, 'ensure_shape'): generation = tf.ensure_shape(generation, full_scan_shape) else: generation = tf.reshape(generation, full_scan_shape) generator_losses, losses = calc_generator_losses(generation, replay_full_scans_ph) if FLAGS.is_target_generator and not FLAGS.is_infilled: target_generator = Generator(name="target_generator", is_training=is_training_ph) target_generation = target_generator(partial_scans_ph) if FLAGS.is_minmax_reward: errors = (target_generation - replay_full_scans_ph)**2 losses = tf.reduce_max( average_filter(errors), reduction_indices=[1,2,3] ) else: target_generator_losses, losses = calc_generator_losses(target_generation, replay_full_scans_ph) losses = target_generator_losses #For RL else: if FLAGS.is_minmax_reward: errors = (generation - replay_full_scans_ph)**2 losses = tf.reduce_max( average_filter(errors), reduction_indices=[1,2,3] ) val_observations, val_actions = actor.get_val_experience() unclipped_losses = losses if FLAGS.is_positive_qs and (FLAGS.is_target_critic or FLAGS.supervision != 1): target_actor_qs = tf.nn.relu(target_actor_qs) if FLAGS.norm_generator_losses_decay: mu = tf.get_variable(name="loss_mean", initializer=tf.constant(1., dtype=tf.float32)) mu_op = mu.assign(FLAGS.norm_generator_losses_decay*mu+(1-FLAGS.norm_generator_losses_decay)*tf.reduce_mean(losses)) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, mu_op) losses /= tf.stop_gradient(mu) if FLAGS.is_clipped_reward: losses = alrc(losses) if FLAGS.is_self_competition: self_competition_losses = tf.where( past_losses_ph > unclipped_losses, tf.ones([FLAGS.batch_size]), tf.zeros([FLAGS.batch_size]) ) losses += self_competition_losses if FLAGS.over_edge_penalty: positions = ( 0.5 + #middle of image FLAGS.step_size/(np.sqrt(2)*FLAGS.img_side) + #First step (FLAGS.step_size/FLAGS.img_side)*tf.cumsum(replay_actions_ph[:,:-1,:], axis=1) # Actions ) #new_positions = ( # positions - replay_actions_ph[:,:-1,:] + #Go back one action # (FLAGS.step_size/FLAGS.img_side)*actions #New actions # ) is_over_edge = tf.logical_or(tf.greater(positions, 1), tf.less(positions, 0)) is_over_edge = tf.logical_or(is_over_edge[:,:,0], is_over_edge[:,:,1]) over_edge_losses = tf.where( is_over_edge, FLAGS.over_edge_penalty*tf.ones(is_over_edge.get_shape()), tf.zeros(is_over_edge.get_shape()) ) over_edge_losses = tf.cumsum(over_edge_losses, axis=1) if FLAGS.supervision > 0 or FLAGS.is_advantage_actor_critic: supervised_losses = [] for i in reversed(range(FLAGS.num_steps-1)): if i == FLAGS.num_steps-1 - 1: #Extra -1 as idxs start from 0 step_loss = tf.expand_dims(losses, axis=-1) else: step_loss = FLAGS.gamma*step_loss if FLAGS.over_edge_penalty: step_loss += over_edge_losses[:,i:i+1] supervised_losses.append(step_loss) supervised_losses = tf.concat(supervised_losses, axis=-1) if FLAGS.supervision < 1: bellman_losses = tf.concat( [FLAGS.gamma*target_actor_qs[:,1:,0], tf.expand_dims(losses, axis=-1)], axis=-1 ) if FLAGS.over_edge_penalty: bellman_losses += over_edge_losses bellman_losses = supervision_ph * supervised_losses + (1 - supervision_ph) * bellman_losses else: bellman_losses = supervised_losses if FLAGS.is_prioritized_replay: unweighted_critic_losses = tf.reduce_mean( ( critic_qs[:,:,0] - bellman_losses )**2, axis=-1 ) critic_losses = tf.reduce_mean( priority_weights_ph*unweighted_critic_losses ) else: critic_losses = tf.reduce_mean( ( critic_qs[:,:,0] - bellman_losses )**2 ) if FLAGS.is_biased_prioritized_replay: unweighted_critic_losses = tf.reduce_mean( ( critic_qs[:,:,0] - bellman_losses )**2, axis=-1 ) if FLAGS.is_clipped_critic: actor_qs = alrc(actor_qs) if FLAGS.is_advantage_actor_critic: actor_losses = tf.reduce_mean( supervised_losses - actor_qs[:,:,0] ) else: actor_losses = tf.reduce_mean( actor_qs ) #critic_losses /= FLAGS.num_steps #actor_losses /= FLAGS.num_steps #Outputs to provide feedback for the developer info = { "actor_losses": actor_losses, "critic_losses": critic_losses, "generator_losses": tf.reduce_mean(unclipped_losses) } if FLAGS.is_prioritized_replay or FLAGS.is_biased_prioritized_replay: info.update( {"priority_weights": unweighted_critic_losses} ) if FLAGS.is_self_competition: info.update( {"unclipped_losses": unclipped_losses} ) outputs = { "generation": generation[0,:,:,0], "truth": replay_full_scans_ph[0,:,:,0], "input": partial_scans_ph[0,:,:,0] } history_op = { "actions": new_actions, "observations": new_observations, "full_scans": full_scans } if FLAGS.is_self_competition: history_op.update( {"labels": labels} ) ##Modify actor gradients #[actor_grads] = tf.gradients(actor_losses, replay_actions_ph) #actor_losses = overwrite_grads(actions, actor_grads) start_iter = FLAGS.start_iter train_iters = FLAGS.train_iters config = tf.ConfigProto() config.gpu_options.allow_growth = True #Only use required GPU memory #config.gpu_options.force_gpu_compatible = True model_dir = FLAGS.model_dir log_filepath = model_dir + "log.txt" save_period = 1; save_period *= 3600 log_file = open(log_filepath, "a") with tf.Session(config=config) as sess: if FLAGS.is_target_actor: if FLAGS.update_frequency <= 1: update_target_critic_op = target_update_ops(target_actor, actor) else: update_target_critic_op = [] initial_update_target_critic_op = target_update_ops(target_actor, actor, decay=0) else: update_target_critic_op = [] initial_update_target_critic_op = [] if FLAGS.is_target_critic: if FLAGS.update_frequency <= 1: update_target_actor_op = target_update_ops(target_critic, critic) else: update_target_actor_op = [] initial_update_target_actor_op = target_update_ops(target_critic, critic, decay=0) else: update_target_actor_op = [] initial_update_target_actor_op = [] if FLAGS.is_target_generator and not FLAGS.is_infilled: if FLAGS.update_frequency <= 1: update_target_generator_op = target_update_ops(target_generator, generator, l2_norm=FLAGS.L2_norm) else: update_target_generator_op = [] initial_update_target_generator_op = target_update_ops(target_generator, generator, decay=0) else: update_target_generator_op = [] initial_update_target_generator_op = [] initial_update_target_network_ops = ( initial_update_target_actor_op + initial_update_target_critic_op + initial_update_target_generator_op ) actor_lr = FLAGS.actor_lr critic_lr = FLAGS.critic_lr if FLAGS.is_cyclic_generator_learning_rate and not FLAGS.is_infilled: generator_lr = tf.placeholder(tf.float32, name="generator_lr") else: generator_lr = FLAGS.generator_lr #critic_rep = (critic_qs[:,:,0] - bellman_losses)**2 #ps = [critic_qs[0,:,0], target_actor_qs[0,:,0], bellman_losses[0], critic_rep[0]] #ps = [critic.trainable_variables[0], target_critic.trainable_variables[0]] ps = [] #p = bellman_losses[0] #p = generation[0,:,:,0] train_op_dependencies = [tf.print(p) for p in ps] + tf.get_collection(tf.GraphKeys.UPDATE_OPS) if not FLAGS.update_frequency: update_target_network_ops = ( update_target_actor_op + update_target_critic_op + update_target_generator_op ) train_op_dependencies += update_target_network_ops train_ops = [] with tf.control_dependencies(train_op_dependencies): actor_train_op = tf.train.AdamOptimizer(learning_rate=actor_lr).minimize( loss=actor_losses, var_list=actor.trainable_variables) critic_train_op = tf.train.AdamOptimizer(learning_rate=critic_lr).minimize( loss=critic_losses, var_list=critic.trainable_variables) train_ops += [actor_train_op, critic_train_op] if not FLAGS.is_infilled: generator_train_op = tf.train.AdamOptimizer(learning_rate=generator_lr).minimize( loss=generator_losses, var_list=generator.trainable_variables) train_ops.append(generator_train_op) else: generator_train_op = tf.no_op() feed_dict = {} sess.run(tf.global_variables_initializer(), feed_dict=feed_dict) saver = tf.train.Saver(max_to_keep=1) noteable_saver = tf.train.Saver(max_to_keep=2) if start_iter: saver.restore( sess, tf.train.latest_checkpoint(model_dir+"model/") ) else: if len(initial_update_target_network_ops): sess.run(initial_update_target_network_ops, feed_dict=feed_dict) sess.run(train_iterator.initializer, feed_dict={train_data_ph: train_images}) sess.run(val_iterator.initializer, feed_dict={val_data_ph: val_images}) time0 = time.time() for iter in range(start_iter, train_iters): if iter < FLAGS.replay_size or not iter % FLAGS.avg_replays: #Add experiences to the replay feed_dict = {is_training_ph: np.bool(True)} if FLAGS.is_noise_decay: noise_decay = np.float32( (train_iters - iter)/train_iters ) feed_dict.update( {noise_decay_ph: noise_decay} ) history = sess.run( history_op, feed_dict=feed_dict) replay.add(**history) #Sample experiences from the replay if FLAGS.is_prioritized_replay: sampled_actions, sampled_observations, replay_sampled_full_scans, sample_idxs, sampled_priority_weights = replay.get() elif FLAGS.is_biased_prioritized_replay: sampled_actions, sampled_observations, replay_sampled_full_scans, sample_idxs = replay.get() elif FLAGS.is_self_competition: sampled_actions, sampled_observations, replay_sampled_full_scans, sampled_labels, sampled_past_losses = replay.get() else: sampled_actions, sampled_observations, replay_sampled_full_scans = replay.get() replay_partial_scans = construct_partial_scans(sampled_actions, sampled_observations) if not FLAGS.is_infilled: sampled_full_scans = [] partial_scans = [] spiral_scans = [] for sampled_full_scan, partial_scan in zip(replay_sampled_full_scans, replay_partial_scans): c = np.random.randint(0, 8) sampled_full_scans.append( flip_rotate(sampled_full_scan, c) ) partial_scans.append( flip_rotate(partial_scan, c) ) if FLAGS.is_relative_to_spirals: spiral_scan = spiral * sampled_full_scan spiral_scans.append( flip_rotate(spiral_scan, c) ) sampled_full_scans = np.stack( sampled_full_scans ) partial_scans = np.stack( partial_scans ) else: sampled_full_scans = replay_sampled_full_scans partial_scans = replay_partial_scans feed_dict = { replay_actions_ph: sampled_actions, replay_observations_ph: sampled_observations, replay_full_scans_ph: sampled_full_scans, partial_scans_ph: partial_scans, is_training_ph: np.bool(True) } if FLAGS.is_prioritized_replay: feed_dict.update({priority_weights_ph: sampled_priority_weights}) if FLAGS.supervision_iters: supervision = FLAGS.supervision_start + min(iter, FLAGS.supervision_iters)*(FLAGS.supervision_end-FLAGS.supervision_start) / FLAGS.supervision_iters feed_dict.update( {supervision_ph: supervision } ) if FLAGS.is_self_competition: feed_dict.update( {past_losses_ph: sampled_past_losses} ) if FLAGS.is_cyclic_generator_learning_rate and not FLAGS.is_infilled: envelope = FLAGS.generator_lr * 0.75**(iter/(train_iters//5)) cycle_half = train_iters//(10 - 1) cycle_full = 2*cycle_half cyclic_sawtooth = 1 - (min(iter%cycle_full, cycle_half) - min(iter%cycle_full - cycle_half, 0))/cycle_half cyclic_lr = envelope*(0.2 + 0.8*cyclic_sawtooth) feed_dict.update( {generator_lr: np.float32(cyclic_lr)} ) #Train if iter in [0, 100, 500] or not iter % 25_000 or (0 <= iter < 10_000 and not iter % 1000) or iter == start_iter: _, step_info, step_outputs = sess.run([train_ops, info, outputs], feed_dict=feed_dict) for k in step_outputs: save_loc = FLAGS.model_dir + k + str(iter)+".tif" Image.fromarray( (0.5*step_outputs[k]+0.5).astype(np.float32) ).save( save_loc ) else: _, step_info = sess.run([train_ops, info], feed_dict=feed_dict) if FLAGS.update_frequency and not iter % FLAGS.update_frequency: sess.run(initial_update_target_network_ops, feed_dict=feed_dict) if FLAGS.is_prioritized_replay: replay.update_priorities(sample_idxs, step_info["priority_weights"]) if FLAGS.is_self_competition: replay.update_past_losses(sampled_labels, step_info["unclipped_losses"]) output = f"Iter: {iter}" for k in step_info: if k not in ["priority_weights", "unclipped_losses"]: output += f", {k}: {step_info[k]}" if not iter % FLAGS.report_freq: print(output) #if "nan" in output: # saver.restore( # sess, # tf.train.latest_checkpoint(model_dir+"model/") # ) try: log_file.write(output) except: while True: print("Issue writing log.") time.sleep(1) log_file = open(log_filepath, "a") try: log_file.write(output) break except: continue if iter in [train_iters//2-1, train_iters-1]: noteable_saver.save(sess, save_path=model_dir+"noteable_ckpt/model", global_step=iter) time0 = time.time() start_iter = iter elif time.time() >= time0 + save_period: saver.save(sess, save_path=model_dir+"model/model", global_step=iter) time0 = time.time() val_losses_list = [] for iter in range(0, FLAGS.val_examples//FLAGS.batch_size): #Add experiences to the replay feed_dict = {is_training_ph: np.bool(True)} sampled_actions, sampled_observations, sampled_full_scans = sess.run( [val_actions, val_observations, val_full_scans], feed_dict=feed_dict ) partial_scans = construct_partial_scans(sampled_actions, sampled_observations) feed_dict = { replay_actions_ph: sampled_actions, replay_observations_ph: sampled_observations, replay_full_scans_ph: sampled_full_scans, partial_scans_ph: partial_scans, is_training_ph: np.bool(False) } val_losses = sess.run( unclipped_losses, feed_dict=feed_dict ) val_losses_list.append( val_losses ) val_losses = np.concatenate(tuple(val_losses_list), axis=0) np.save(model_dir + "val_losses.npy", val_losses) if __name__ == "__main__": tf.app.run()
the-stack_0_27977
# adapted from https://ogertranslate.ml/translation/de-oger.js # originally authored by https://github.com/MoriPastaPizza translations = { "Rainer": ["Ruiner", "Reiner", "Dreger", "Kaschber", "Legasdeniger", "Fettsack", "viddl Iddaliener", "Butter", "Mastoger", "Suppengmogo", "Speggi", "Vierteltonner"], "Rainerle": ["Ruinerle", "Reinerle", "Dregerle", "Kaschberle", "Legasdenigerle", "Fettsackle", "viddl Iddaliener", "Butter", "Mastogerle", "Suppengmogole", "Speggi"], "Winkler": ["Wongl", "Winggl", "Lard", "Bummsdi", "Golem", "Oger", "Jutubber", "Fettsack", "Mastoger", "Winklar", "Dr.Dr.h.c.M.A Winkler", "Speggi"], "Drachenlord": ["Fettsack", "Wiggsgrübbl", "Speckeimer", "Lügenlord", "Hoch IQ Lord", "Jutubber", "Butter Golem", "Mastoger", "Mastsau", "Oger", "Suppengmogo", "Gumbllord", "Lustlord", "Informatiklord", "Speggi", "Vierteltonner", "Animewelt Lord", "Diabetesdumbo", "selbständiger Schichtarbeiter"], "Lord": ["Lard", "Lerd", "Bummsdi", "Lügenlord", "Schwitzlord", "Sifflord", "Fettsack", "begnadeter Jutubber", "Butter Golem", "Oger", "Suppengmogo", "Arbeitslord"], "Video": ["fideo", "fidio"], "Videos": ["fideos", "fidios"], "Drache": ["Dreche", "Dreger", "Fettsack", "viddl Iddaliener", "Wiggsgrübbl", "Net der Drache verdammte Aggst", "Speckeimer", "Suppengmogo", "Wuchtbrummer"], "Bauch": ["Plautze", "Wampe", "Kessel", "Wuchtbrumme"], "Haus": ["Schanze", "Schimmelschanze", "Ruine"], "Schanze": ["Schanze", "Schimmelschanze", "Ruine"], "alter": ["alda", "alla "], "Alter": ["Alda", "Alla "], "hallo": [*["meddl loide"]*2, "servus und wilkommne", "servus unn an herdsliches wilkommne", "gonitschiwa"], "Hallo": [*["Meddl loide"]*2, "Servus und wilkommne", "Servus unn an herdsliches wilkommne", "Gonitschiwa"], "leute": ["loide"], "Leute": ["Loide"], "schmeißen": ["nausgschmaßen"], "geschmissen": ["nausgschmaßt"], "schmeißt": ["nausschmaßen"], "schmeiß": ["schmuaß"], "blasen": ["blubber"], "boxen": ["Brüggel Rausschmiß"], "billig": ["billich"], "Axt": ["Aggst"], "Polizei": ["Bolizei"], "Popcorn": ["Bobgorn"], "popcorn": ["Bobgorn"], "Post": ["Boscht"], "post": ["boscht"], "Idiot": ["Kaggnazi", "Wiggsgrübbl", "Affennecher", "Spaggn"], "idiot": ["Kaggnazi", "Wiggsgrübbl", "Affennecher", "Spaggn"], "Nazi": ["Kaggnazi"], "nazi": ["kaggnazi"], "Rudi": ["Rudi", "Rudi aus Buddeln", "SS-Obersturmbannführer Rudolf Winkler", "Nazi-Kriegsverbrecher Rudolf Winkler"], "Rita": ["Rita", "Riter", "Rita aus Weiden"], "Ramona": ["Ramona", "Ramoner"], "reddit": ["Lachschon"], "Musik hören": ["headbangen"], "Musik gehört": ["geheadbangt"], "dumm": ["brainschaden"], "Energy": ["Enertschie"], "energy": ["enertschie"], "ein": ["a", "oa"], "fit": ["fidd"], "nicht hören": ["Ich hör dich ned du Spack, ich hab Kopfhörer auf", "can you not hear"], "Job": ["Tschobb"], "job": ["Tschobb"], "Hater": ["Haider"], "hater": ["Haider"], "Hate": ["Haid"], "hate": ["Haid"], "zerstören": ["zermeddln"], "zerstört": ["zermeddld"], "kann": ["koa"], "Boneclinks": ["Bonklix"], "boneclinks": ["bonklix"], "jetzt": ["etzadla"], "ja?": ["und weida?"], "na und?": ["und weida?"], "na und": ["und weida?"], "Geld": ["Barrne"], "Euro": ["Barrne €"], "geld": ["Barrne"], "euro": ["Barrne €"], "Upvote": ["Barrne"], "upvote": ["Barrne"], "wütend": ["neutral"], "Wütend": ["Neutral"], "gemacht": ["nausgrendert"], "raus gehaun": ["nausgrendert"], "raus hauen": ["nausrendern"], "gegessen": ["neigschürt", "neigerendert", "neigstopft", "neimeddld", "in's gsicht gedrüggd", "gnadenlos in's gsicht nei gedrüggt"], "fressen": ["neinschüren", "reinnrendern", "neistopfen", "neimeddln"], "gefressen": ["neigschürt", "neigerendert", "neigstopft", "neimeddld"], "essen": ["neinschüren", "reinnrendern", "neistopfen", "neimeddln", "in's gsicht drüggen", "gnadenlos in's gsicht drüggen" ], "isst": ["neirenderd", "neischürd", "neistopft", "neimeddlt", "in's gsicht drüggt", "gnadenlos in's gsicht drüggt"], "Angst": ["wie se immer zuggen"], "angst": ["wie se immer zuggen"], "freundin": ["froindin", "lel als ob", "Gummipubbe"], "Freundin": ["Froindin", "Lel als ob", "Gummipubbe"], "Gummipuppe": ["Froindin"], "gummipuppe": ["Froindin"], "Freund": ["Gumbl", "Froind"], "freund": ["Gumbl", "Froind"], "Freunde": ["ihr Wahnsinnichen"], "Penis": ["Speer", "Pimml", "Späher", "Pensi"], "penis": ["Speer", "Pimml", "Späher", "pensi"], "Katana": ["Blechklinge", "hamstori hanser schwerd"], "katana": ["Blechklinge", "hamstori hanser schwerd"], "sagst": ["sachste"], "programmieren": ["HDML proggrammiert", "in Gimb nei speichern"], "sauer": ["mett"], "Kumpel": ["Gumbl"], "kumpel": ["gumbl"], "Jungfrau": ["ungefickt"], "jungfräulich": ["ungefickt"], "Frau": ["Mulle", "Weib"], "frau": ["mulle", "weib"], "Frauen": ["Mullen", "Weiber"], "bedeuten": ["imblementieren"], "bedeutet": ["imblementiert"], "nice": ["nais"], "gelaufen": ["gemeddeld"], "laufen": ["meddeln"], "amen": ["OHNE DREGG ALDER"], "so ist es": ["OHNE DREGG ALDER"], "Stock": ["Sdogg"], "mal": ["mol", "moal"], "einma": ["amol ", "amoal "], "einmal": ["amol ", "amoal "], "Gimp": ["Gimb"], "Cola": ["Koler"], "cola": ["Koler"], "raus": ["naus"], "Raus": ["Naus"], "wie heißt du": ["anaddanowanaiwa Nandeska"], "freut mich": ["hadschimi masde"], "Zelda": ["Zelad bride of the Wind", "Tselda bref of se wild", "Tselda"], "Bier": ["Löschzwerg", "Vigginger-Blud"], "Manieren": ["Alda kein Erziehung genossen?", "Eure Eltern würden sich schämen"], "manieren": ["Alda kein Erziehung genossen?", "Eure Eltern würden sich schämen"], "Franken": ["Meddlfranggen"], "franken": ["meddlfranggen"], "mittel": ["meddl"], "Mittel": ["Meddl"], "schlau": ["hoher Ikuh"], "clever": ["hoher Ikuh"], "klug": ["hoher Ikuh"], "gut in": ["hoher Ikuh in"], "IQ": ["Ikuh"], "japanisch": ["jaboanisch"], "Früher": [" mit 4 mit'm Vadda im Wald "], "früher": [" mit 4 mit'm Vadda im Wald "], "Life is strange": ["Life is stranger"], "Kleinstadt": ["Klingelständer"], "speichern": ["in Gimb neispeichern"], "Kampfsport": ["Muay-Thai"], "kampfsport": ["Muay-Thai"], "hacken": ["in Gimb neispeichern", "in Gimb neirendern"], "gehackt": ["in Gimb neispeichert", "in Gimb neigrendert"], "arbeitet": ["Schneidet, rendert, läd-hoch", "Frisst, Wiggst, Zockt", "Led's plaiet"], "Arbeit": ["Schneiden, rendern, hochladen", "Fressne, Wiggsne, Zockne", "Led's plaien"], "arbeit": ["schneiden, rendern, hochladen", "fressne, Wiggsne, Zockne", "Led's plaien"], "arbeiten": ["schneiden, rendern, hochladen", "fressne, Wiggsne, Zockne", "Led's plain"], "besonders": ["höchste Wesne"], "Gott": ["Dreche himself"], "gott": ["Dreche himself"], "Wahnsinnig": ["Wahnsinnicn"], "Wahnsinnigen": ["Wahnsinnichen"], "geschaut": ["gschaut"], "rein": ["'nei"], "arbeitslos": ["abbeidslos"], "derjenige": ["derjeniche "], "Derjenige": ["Derjeniche "], "poetry slam": ["boedri slemm"], "Poetry slam": ["boedri slemm"], "Haut": ["kein Organ"], "haut": ["kein Organ"], "wtf": ["Wottse fack"], "WTF": ["Wottse fack"], "Wtf": ["Wottse fack"], "what the fuck": ["Wottse fack"], "What the fuck": ["Wottse fack"], "Wow": ["Alta Falta"], "wow": ["Alta Falta"], "verpiss": ["fapiss"], "hübsch": ["geiles stück du geiles"], "Geil": ["geiles stück du geiles"], "geil": ["geiles stück du geiles"], "ist gut": ["bin gerückt"], "Ist gut": ["Bin gerückt"], "gut": ["richtig und wichtig!", "naise Sache"], "nicht": ["ned"], "auf": ["uff"], "ist er": ["issa"], "wieder": ["widda"], "Pizza": ["Piddsa"], "pizza": ["piddsa"], "Bombe": ["risiche Bombe"], "Böller": ["risiche Bombe"], "Sprengstoff": ["risiche Bombe"], "Dynamit": ["risiche Bombe"], "TNT": ["risiche Bombe"], "bannen": ["den Banhammer schwingen"], "gebannt": ["vom Banhammer erschlagen"], "bann": ["schwing den Banhammer"], "Frosch": ["HAHAHAHA a Frosch"], "frosch": ["HAHAHAHA a Frosch"], "Biker": ["Beiker"], "biker": ["beiker"], "awesome": ["awsem"], "Thread": ["Treid"], "thread": ["treid"], "Why": ["Wai"], "why": ["wai"], "Bandana": ["Tabaktuch"], "Claire": ["Klähger"], "Cloe": ["Klöten"], "cloe": ["klöten"], "Collage": ["Kolasche"], "collage": ["kolasche"], "Computer": ["Gombjuta"], "computer": ["gombjuta"], "Challenge": ["Schälensch"], "challenge": ["schälensch"], "Details": ["Deteis"], "details": ["deteis"], "Flughafen": ["Flugstation"], "flughafen": ["flugstation"], "Footage": ["Futitch"], "footage": ["futitch"], "Genre": ["Genere"], "genre": ["genere"], "Hass": ["-"], "hass": ["-"], "Interview": ["Intervieu"], "interview": ["intervieu"], "Ironie": ["Iruni"], "ironie": ["iruni"], "Mettwurst": ["Meddworsd"], "mettwurst": ["meddworsd"], "Mittwoch": ["Mettwoch", "Meddlwoch"], "mittwoch": ["mettwoch", "meddlwoch"], "nationalsozialistisch": ["narzistisch"], "Nationalsozialist": ["Narzist"], "nationalsozialist": ["narzist"], "Paparazzi": ["Parpazins"], "paparazzi": ["parpazins"], "PC": ["Bezeh"], "Pc": ["Bezeh"], "pc": ["Bezeh"], "Pointe": ["Puernte"], "pointe": ["puernte"], "Realtalk": ["Real Tack"], "realtalk": ["Real Tack"], "recherchieren": ["reschaschieren"], "Snapchat": ["Snapchet"], "snapchat": ["snapchet"], "Spaghetti": ["Spaketie"], "spaghetti": ["spaketie"], "Summer Breeze": ["Zummer Briis"], "summer breeze": ["Zummer Briis"], "summerbreeze": ["Zummer Briis"], "Summerbreeze": ["Zummer Briis"], "Twitter": ["Twidda"], "twitter": ["Twidda"], "Weiter so": ["Meddl on"], "weiter so": ["meddl on"], "Polizist": ["Herr Müller"], "polizist": ["Herr Müller"], "im ernst": ["ohne Spass alda", "ohne dregg alda"], "im Ernst": ["ohne Spass alda", "ohne dregg alda"], "Verhütung": ["Ferienhütte"], "verhütung": ["Ferienhütte"], "Verprügeln": ["Brügel rausschmeißen"], "verprügeln": ["Brügel rausschmeißen"], "Younow": ["Junau"], "younow": ["Junau"], "you now": ["Junau"], "You Now": ["Junau"], "You-Now": ["Junau"], "you-now": ["Junau"], "Youtube": ["Jutjub"], "YouTube": ["Jutjub"], "youtube": ["Jutjub"], "You tube": ["Jutjub"], "You Tube": ["Jutjub"], "You-tube": ["Jutjub"], "You-Tube": ["Jutjub"], "typ": ["düb"], "Typ": ["Düb"], "dünn": ["dünn (Du meintest wohl fett)", "hahaha"], "Dünn": ["Dünn (Du meintest wohl fett)", "hahaha"], "schlank": ["schlank (Du meintest wohl fett)", "hahaha"], "Schlank": ["Schlank (Du meintest wohl fett)", "hahaha"], "Gehirn": ["Hörn"], "gehirn": ["hörn"], "Rewe": ["Zwingel"], "rewe": ["Zwingel"], "Ezio": ["ETZIO, ALDA", "ETZIO", "ÄZZIOH", "ÄZZIO DU BIST EIN VERDAMMTER HURENSOHN"], "ETZIO": ["ETZIO, ALDA", "ETZIO", "ÄZZIOH", "ÄZZIO DU BIST EIN VERDAMMTER HURENSOHN"], "trivial": ["trivago"], "Trivial": ["Trivago"], "Photoshop": ["fotoschobb"], "dass": ["das"], "wenn": ["wen"], "ficken": ["positzioniren", "bositzioniren"], "wichsen": ["wiggsne"], "masturbieren": ["wiggsne"], "Sexschreiben": ["seggsschreibne"], "PornHub": ["PH"], "Pornhub": ["PH"], "pornhub": ["PH"], "warum": ["warummäh"], "Warum": ["Warummäh"], "Juden": ["jetzt der Drache"], "juden": ["jetzt der Drache"], "Jude": ["jetzt der Drache"], "jude": ["jetzt der Drache"], "TL;DR": ["könnt ihr selber lesen, bin zu faul"], "tl;dr": ["könnt ihr selber lesen, bin zu faul"], "Danke": ["Danke dafür iBlali"], "weniger": ["wenicher"], "wenig": ["a weng"], "fake": ["feek"], "Fakemulle": ["Feekmulle", "Beerchen"], "Halts Maul": ["HALT *atmen* DEINE *atmen* FRESSE"], "halts Maul": ["HALT *atmen* DEINE *atmen* FRESSE"], "Halts maul": ["HALT *atmen* DEINE *atmen* FRESSE"], "halts maul": ["HALT *atmen* DEINE *atmen* FRESSE"], "tatsächlich": ["tazächlich", "tadzächlich", "etzala tazächlich sogar", "etzala tadzächlich sogar"], "Besuche": ["Pilgerreisen"], "Besuch": ["Pilgerreise"], "implizier": ["implementier"], "Mund": ["Schlund"], "Gerade": ["Grad", "Jeds grad", "Etzadla grad", "Etzadla"], "gerade": ["grad", "jeds grad", "etzadla grad", "etzadla"], "...": ["und so", "und so weida", "joaa", "ähh", "... ..."], "Metal": ["Meddl"], "metal": ["meddl"] } questionMark = [ "? Oda wat?", ", hä?", " und weida?", *["?"]*3 ] exclamationMark = [ ", etzala!", ", tazächlich!", ", tazächlich sogar!", ", hätt ich gsachd!", ", alda!", ", des bascht scho!", "!", "!" ] dot = [" hätt ich gsachd.", ", des bascht scho.", ", alda.", ", tadsächlich sogar.", ". Etzala.", *["."]*4 ] colon = [", des heißd im Glaadegsd:", ":", " häd ich jeds gsacht:" ] twistedChars = { "hen$": ["hn$"], "gegen": ["gechen"], "Gegen": ["Gechen"], "en$": ["ne$"], "tz": ["ds"], "tel$": ["dl$"], "ph": ["f"], "Ph": ["F"], "pa": ["boa"], "ck": ["gg"], "Sp": ["Schb"], "sp": ["schb"], "St": ["Schd"], "st": ["schd"], "eug$": ["euch$"], "t": ["d"], "T": ["D"], "v": ["f"], "V": ["F"], "v": ["f"], "v": ["w"], "V": ["W"], "xx": ["ggs"], "XX": ["gss"], "x": ["ggs"], "X": ["ggs"], "p": ["b"], "P": ["B"], "k": ["g"], "K": ["G"], "^gem": ["^gm"], "^Gem": ["^Gm"], "^ges": ["^gs"], "^Ges": ["Gs"], "tag$": ["dach$"], "...$": [" und so$", " und so weida$", " joaa$", " ähh$", "... ...$"] } quotationMark = [" *ferstellt Stimme:* \"Üh, "] punctuations = {'.': dot, '!': exclamationMark, '?': questionMark, ',': [','], ':': colon}
the-stack_0_27978
#!/usr/bin/python # -*- coding: utf-8 -*- r""" Print a list of pages, as defined by page generator parameters. Optionally, it also prints page content to STDOUT or save it to a file in the current directory. These parameters are supported to specify which pages titles to print: -format Defines the output format. Can be a custom string according to python string.format() notation or can be selected by a number from following list (1 is default format): 1 - u'{num:4d} {page.title}' --> 10 PageTitle 2 - u'{num:4d} [[{page.title}]]' --> 10 [[PageTitle]] 3 - u'{page.title}' --> PageTitle 4 - u'[[{page.title}]]' --> [[PageTitle]] 5 - u'{num:4d} \03{{lightred}}{page.loc_title:<40}\03{{default}}' --> 10 localised_Namespace:PageTitle (colorised in lightred) 6 - u'{num:4d} {page.loc_title:<40} {page.can_title:<40}' --> 10 localised_Namespace:PageTitle canonical_Namespace:PageTitle 7 - u'{num:4d} {page.loc_title:<40} {page.trs_title:<40}' --> 10 localised_Namespace:PageTitle outputlang_Namespace:PageTitle (*) requires "outputlang:lang" set. num is the sequential number of the listed page. An empty format is equal to -notitle and just shows the total amount of pages. -outputlang Language for translation of namespaces. -notitle Page title is not printed. -get Page content is printed. -save Save Page content to a file named as page.title(as_filename=True). Directory can be set with -save:dir_name If no dir is specified, current direcory will be used. -encode File encoding can be specified with '-encode:name' (name must be a valid python encoding: utf-8, etc.). If not specified, it defaults to config.textfile_encoding. -put: Save the list to the defined page of the wiki. By default it does not overwrite an exisiting page. -overwrite Overwrite the page if it exists. Can only by applied with -put. -summary: The summary text when the page is written. If it's one word just containing letters, dashes and underscores it uses that as a translation key. Custom format can be applied to the following items extrapolated from a page object: site: obtained from page._link._site. title: obtained from page._link._title. loc_title: obtained from page._link.canonical_title(). can_title: obtained from page._link.ns_title(). based either the canonical namespace name or on the namespace name in the language specified by the -trans param; a default value '******' will be used if no ns is found. onsite: obtained from pywikibot.Site(outputlang, self.site.family). trs_title: obtained from page._link.ns_title(onsite=onsite). If selected format requires trs_title, outputlang must be set. &params; """ # # (C) Pywikibot team, 2008-2017 # # Distributed under the terms of the MIT license. # from __future__ import absolute_import, unicode_literals import os import re import pywikibot from pywikibot import config2 as config, i18n from pywikibot.pagegenerators import GeneratorFactory, parameterHelp docuReplacements = {'&params;': parameterHelp} class Formatter(object): """Structure with Page attributes exposed for formatting from cmd line.""" fmt_options = { '1': u"{num:4d} {page.title}", '2': u"{num:4d} [[{page.title}]]", '3': u"{page.title}", '4': u"[[{page.title}]]", '5': u"{num:4d} \03{{lightred}}{page.loc_title:<40}\03{{default}}", '6': u"{num:4d} {page.loc_title:<40} {page.can_title:<40}", '7': u"{num:4d} {page.loc_title:<40} {page.trs_title:<40}", } # Identify which formats need outputlang fmt_need_lang = [k for k, v in fmt_options.items() if 'trs_title' in v] def __init__(self, page, outputlang=None, default='******'): """ Constructor. @param page: the page to be formatted. @type page: Page object. @param outputlang: language code in which namespace before title should be translated. Page ns will be searched in Site(outputlang, page.site.family) and, if found, its custom name will be used in page.title(). @type outputlang: str or None, if no translation is wanted. @param default: default string to be used if no corresponding namespace is found when outputlang is not None. """ self.site = page._link.site self.title = page._link.title self.loc_title = page._link.canonical_title() self.can_title = page._link.ns_title() self.outputlang = outputlang if outputlang is not None: # Cache onsite in case of translations. if not hasattr(self, "onsite"): self.onsite = pywikibot.Site(outputlang, self.site.family) try: self.trs_title = page._link.ns_title(onsite=self.onsite) # Fallback if no corresponding namespace is found in onsite. except pywikibot.Error: self.trs_title = u'%s:%s' % (default, page._link.title) def output(self, num=None, fmt=1): """Output formatted string.""" fmt = self.fmt_options.get(fmt, fmt) # If selected format requires trs_title, outputlang must be set. if (fmt in self.fmt_need_lang or 'trs_title' in fmt and self.outputlang is None): raise ValueError( u"Required format code needs 'outputlang' parameter set.") if num is None: return fmt.format(page=self) else: return fmt.format(num=num, page=self) def main(*args): """ Process command line arguments and invoke bot. If args is an empty list, sys.argv is used. @param args: command line arguments @type args: list of unicode """ gen = None notitle = False fmt = '1' outputlang = None page_get = False base_dir = None encoding = config.textfile_encoding page_target = None overwrite = False summary = 'listpages-save-list' # Process global args and prepare generator args parser local_args = pywikibot.handle_args(args) genFactory = GeneratorFactory() for arg in local_args: option, sep, value = arg.partition(':') if option == '-notitle': notitle = True elif option == '-format': fmt = value.replace('\\03{{', '\03{{') if not fmt.strip(): notitle = True elif option == '-outputlang:': outputlang = value elif option == '-get': page_get = True elif option == '-save': base_dir = value or '.' elif option == '-encode': encoding = value elif option == '-put': page_target = value elif option == '-overwrite': overwrite = True elif option == '-summary': summary = value else: genFactory.handleArg(arg) if base_dir: base_dir = os.path.expanduser(base_dir) if not os.path.isabs(base_dir): base_dir = os.path.normpath(os.path.join(os.getcwd(), base_dir)) if not os.path.exists(base_dir): pywikibot.output(u'Directory "%s" does not exist.' % base_dir) choice = pywikibot.input_yn( u'Do you want to create it ("No" to continue without saving)?') if choice: os.makedirs(base_dir, mode=0o744) else: base_dir = None elif not os.path.isdir(base_dir): # base_dir is a file. pywikibot.warning(u'Not a directory: "%s"\n' u'Skipping saving ...' % base_dir) base_dir = None if page_target: site = pywikibot.Site() page_target = pywikibot.Page(site, page_target) if not overwrite and page_target.exists(): pywikibot.bot.suggest_help( additional_text='Page {0} already exists.\n' 'You can use the -overwrite argument to ' 'replace the content of this page.' .format(page_target.title(asLink=True))) return False if re.match('^[a-z_-]+$', summary): summary = i18n.twtranslate(site, summary) gen = genFactory.getCombinedGenerator() if gen: i = 0 output_list = [] for i, page in enumerate(gen, start=1): if not notitle: page_fmt = Formatter(page, outputlang) output_list += [page_fmt.output(num=i, fmt=fmt)] pywikibot.stdout(output_list[-1]) if page_get: try: pywikibot.stdout(page.text) except pywikibot.Error as err: pywikibot.output(err) if base_dir: filename = os.path.join(base_dir, page.title(as_filename=True)) pywikibot.output(u'Saving %s to %s' % (page.title(), filename)) with open(filename, mode='wb') as f: f.write(page.text.encode(encoding)) pywikibot.output(u"%i page(s) found" % i) if page_target: page_target.text = '\n'.join(output_list) page_target.save(summary=summary) return True else: pywikibot.bot.suggest_help(missing_generator=True) return False if __name__ == "__main__": main()
the-stack_0_27979
"""Implement your own custom search agent using any combination of techniques you choose. This agent will compete against other students (and past champions) in a tournament. COMPLETING AND SUBMITTING A COMPETITION AGENT IS OPTIONAL """ import random from math import sqrt class SearchTimeout(Exception): """Subclass base exception for code clarity. """ pass def custom_score(game, player): if game.is_loser(player): return float("-inf") if game.is_winner(player): return float("inf") w, h = game.width / 2., game.height / 2. y_me, x_me = game.get_player_location(player) dist_center = sqrt((h - y_me) ** 2 + (w - x_me) ** 2) future_moves = 0 for move in game.get_legal_moves(player): _ = len(game.forecast_move(move).get_legal_moves(player)) if _ > future_moves: future_moves = _ own_moves = len(game.get_legal_moves(player)) opp_moves = len(game.get_legal_moves(game.get_opponent(player))) return float(2*future_moves + (own_moves - opp_moves)/(1 + dist_center)) class CustomPlayer: def __init__(self, data=None, timeout=1.): self.score = custom_score self.time_left = None self.TIMER_THRESHOLD = timeout def get_move(self, game, time_left, it_dp=True): self.time_left = time_left # Initialize the best move so that this function returns something # in case the search fails due to timeout best_move = (-1, -1) try: if it_dp: total_depth = 1 while True: depth = total_depth best_move = self.alphabeta(game, depth) total_depth += 1 else: best_move = self.alphabeta(game, self.search_depth) except SearchTimeout: pass # Handle any actions required after timeout as needed # Return the best move from the last completed search iteration return best_move def alphabeta(self, game, depth, alpha=float("-inf"), beta=float("inf")): if self.time_left() < self.TIMER_THRESHOLD: raise SearchTimeout() best_score = float("-inf") best_move = None for move in game.get_legal_moves(): v = self.min_value(game.forecast_move(move), depth - 1, alpha, beta) if v > best_score: best_score = v best_move = move alpha = max(alpha, v) return best_move def max_value(self, game, depth, alpha, beta): if self.time_left() < self.TIMER_THRESHOLD: raise SearchTimeout() if depth <= 0: return self.score(game, self) v = float('-inf') for move in game.get_legal_moves(): v = max(v, self.min_value(game.forecast_move(move), depth - 1, alpha, beta)) if v >= beta: return v alpha = max(alpha, v) return v def min_value(self, game, depth, alpha, beta): if self.time_left() < self.TIMER_THRESHOLD: raise SearchTimeout() if depth <= 0: return self.score(game, self) v = float('inf') for move in game.get_legal_moves(): v = min(v, self.max_value(game.forecast_move(move), depth - 1, alpha, beta)) if v <= alpha: return v beta = min(beta, v) return v
the-stack_0_27981
###################################################################################### # # Copyright (c) 2015 Twist Bioscience # # File: app/routes/pages.py # # These are the handlers for all the web pages of the application. (These are not JSON/REST routes, they # are only web page routes.) # ###################################################################################### from flask import g, render_template from app import db # # This is the "home" page, which is actually the "enter a sample movement" page. # def home(): raise DeprecationWarning sample_transfer_types = db.session.query(TransferType).order_by(TransferType.name) return render_template('recordTransfer.html',sample_transfer_types=sample_transfer_types, current_user_first_and_last=g.user.first_and_last_name) # # The list of sample transfers # def sample_transfers_page(): raise DeprecationWarning rows = db.session.query(Transfer, TransferDetail).filter( TransferDetail.transfer_id==Transfer.id).order_by( Transfer.date_transfer.desc()).all() sample_transfer_details = [] seen = [] for transfer,details in rows: if (transfer.id,details.source_plate_id,details.destination_plate_id) not in seen: seen.append((transfer.id,details.source_plate_id,details.destination_plate_id)) sample_transfer_details.append((transfer,details)) return render_template('viewTransfers.html', sample_transfer_details=sample_transfer_details, current_user_first_and_last=g.user.first_and_last_name) # # This is the page allowing the user to add a barcode to a sample plate. # def edit_sample_plate(): raise DeprecationWarning return render_template('edit_plate.html',current_user_first_and_last=g.user.first_and_last_name) # # This is "Sample Report" page # def sample_report_page(sample_id): raise DeprecationWarning return render_template('sample_report.html',sample_id=sample_id,current_user_first_and_last=g.user.first_and_last_name) # # This is the "Plate Details Report" page # def plate_report_page(plate_barcode): raise DeprecationWarning return render_template('plate_report.html',plate_barcode=plate_barcode,current_user_first_and_last=g.user.first_and_last_name)
the-stack_0_27982
############################################################################################# # CREATOR: ANJAL.P # # ON: 2020 NOV. # # AIM: To Extend the capability of the PySide2 and PyQt5 Python library with easy to # # use extension containing commonly used widgets which is not natively supported # # by the Qt Frame work (or atleast for Python version of Qt). # # VERSION: v1.0.0 # # NOTES: Demo Application # # REFER: Github: https://github.com/anjalp/PySide2extn # ############################################################################################# from PySide2.QtCore import (QCoreApplication, QDate, QDateTime, QMetaObject, QObject, QPoint, QRect, QSize, QTime, QUrl, Qt) from PySide2.QtGui import (QBrush, QColor, QConicalGradient, QCursor, QFont, QFontDatabase, QIcon, QKeySequence, QLinearGradient, QPalette, QPainter, QPixmap, QRadialGradient) from PySide2.QtWidgets import * from PySide2extn.RoundProgressBar import roundProgressBar from PySide2extn.SpiralProgressBar import spiralProgressBar class Ui_MainWindow(object): def setupUi(self, MainWindow): if not MainWindow.objectName(): MainWindow.setObjectName(u"MainWindow") MainWindow.resize(800, 415) MainWindow.setMinimumSize(QSize(800, 415)) self.centralwidget = QWidget(MainWindow) self.centralwidget.setObjectName(u"centralwidget") self.gridLayout = QGridLayout(self.centralwidget) self.gridLayout.setSpacing(0) self.gridLayout.setObjectName(u"gridLayout") self.gridLayout.setContentsMargins(0, 0, 0, 0) self.tabWidget = QTabWidget(self.centralwidget) self.tabWidget.setObjectName(u"tabWidget") self.tab = QWidget() self.tab.setObjectName(u"tab") self.verticalLayout = QVBoxLayout(self.tab) self.verticalLayout.setSpacing(0) self.verticalLayout.setObjectName(u"verticalLayout") self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.widget = QWidget(self.tab) self.widget.setObjectName(u"widget") self.gridLayout_2 = QGridLayout(self.widget) self.gridLayout_2.setSpacing(0) self.gridLayout_2.setObjectName(u"gridLayout_2") self.gridLayout_2.setContentsMargins(0, 0, 0, 0) self.b1 = QPushButton(self.widget) self.b1.setObjectName(u"b1") self.b1.setMinimumSize(QSize(20, 20)) self.b1.setMaximumSize(QSize(20, 20)) self.gridLayout_2.addWidget(self.b1, 0, 1, 1, 1) self.b3 = QPushButton(self.widget) self.b3.setObjectName(u"b3") self.b3.setMinimumSize(QSize(20, 20)) self.b3.setMaximumSize(QSize(20, 20)) self.gridLayout_2.addWidget(self.b3, 0, 5, 1, 1) self.rpb4 = roundProgressBar(self.widget) self.rpb4.setObjectName(u"rpb4") self.gridLayout_2.addWidget(self.rpb4, 0, 6, 3, 1) self.rpb3 = roundProgressBar(self.widget) self.rpb3.setObjectName(u"rpb3") self.gridLayout_2.addWidget(self.rpb3, 0, 4, 3, 1) self.rpb2 = roundProgressBar(self.widget) self.rpb2.setObjectName(u"rpb2") self.rpb2.setStyleSheet(u"") self.gridLayout_2.addWidget(self.rpb2, 0, 2, 3, 1) self.rpb1 = roundProgressBar(self.widget) self.rpb1.setObjectName(u"rpb1") self.gridLayout_2.addWidget(self.rpb1, 0, 0, 3, 1) self.b2 = QPushButton(self.widget) self.b2.setObjectName(u"b2") self.b2.setMinimumSize(QSize(20, 20)) self.b2.setMaximumSize(QSize(20, 20)) self.gridLayout_2.addWidget(self.b2, 2, 1, 1, 1) self.vs1 = QSlider(self.widget) self.vs1.setObjectName(u"vs1") self.vs1.setOrientation(Qt.Vertical) self.gridLayout_2.addWidget(self.vs1, 0, 3, 3, 1) self.b4 = QPushButton(self.widget) self.b4.setObjectName(u"b4") self.b4.setMinimumSize(QSize(20, 20)) self.b4.setMaximumSize(QSize(20, 20)) self.gridLayout_2.addWidget(self.b4, 2, 5, 1, 1) self.verticalLayout.addWidget(self.widget) self.hs1 = QSlider(self.tab) self.hs1.setObjectName(u"hs1") self.hs1.setOrientation(Qt.Horizontal) self.verticalLayout.addWidget(self.hs1) self.widget_2 = QWidget(self.tab) self.widget_2.setObjectName(u"widget_2") self.gridLayout_3 = QGridLayout(self.widget_2) self.gridLayout_3.setSpacing(0) self.gridLayout_3.setObjectName(u"gridLayout_3") self.gridLayout_3.setContentsMargins(0, 0, 0, 0) self.vs2 = QSlider(self.widget_2) self.vs2.setObjectName(u"vs2") self.vs2.setOrientation(Qt.Vertical) self.vs2.setInvertedAppearance(True) self.gridLayout_3.addWidget(self.vs2, 0, 3, 4, 1) self.b6 = QPushButton(self.widget_2) self.b6.setObjectName(u"b6") self.b6.setMinimumSize(QSize(20, 20)) self.b6.setMaximumSize(QSize(20, 20)) self.gridLayout_3.addWidget(self.b6, 3, 5, 1, 1) self.b5 = QPushButton(self.widget_2) self.b5.setObjectName(u"b5") self.b5.setMinimumSize(QSize(20, 20)) self.b5.setMaximumSize(QSize(20, 20)) self.gridLayout_3.addWidget(self.b5, 0, 5, 1, 1) self.b8 = QPushButton(self.widget_2) self.b8.setObjectName(u"b8") self.b8.setMinimumSize(QSize(20, 20)) self.b8.setMaximumSize(QSize(20, 20)) self.gridLayout_3.addWidget(self.b8, 3, 1, 1, 1) self.rpb5 = roundProgressBar(self.widget_2) self.rpb5.setObjectName(u"rpb5") self.gridLayout_3.addWidget(self.rpb5, 0, 0, 4, 1) self.b7 = QPushButton(self.widget_2) self.b7.setObjectName(u"b7") self.b7.setMinimumSize(QSize(20, 20)) self.b7.setMaximumSize(QSize(20, 20)) self.gridLayout_3.addWidget(self.b7, 0, 1, 1, 1) self.rpb7 = roundProgressBar(self.widget_2) self.rpb7.setObjectName(u"rpb7") self.gridLayout_3.addWidget(self.rpb7, 0, 4, 4, 1) self.rpb8 = roundProgressBar(self.widget_2) self.rpb8.setObjectName(u"rpb8") self.gridLayout_3.addWidget(self.rpb8, 0, 6, 4, 1) self.rpb6 = roundProgressBar(self.widget_2) self.rpb6.setObjectName(u"rpb6") self.gridLayout_3.addWidget(self.rpb6, 0, 2, 4, 1) self.verticalLayout.addWidget(self.widget_2) self.tabWidget.addTab(self.tab, "") self.tab_2 = QWidget() self.tab_2.setObjectName(u"tab_2") self.verticalLayout_2 = QVBoxLayout(self.tab_2) self.verticalLayout_2.setSpacing(0) self.verticalLayout_2.setObjectName(u"verticalLayout_2") self.verticalLayout_2.setContentsMargins(0, 0, 0, 0) self.widget_3 = QWidget(self.tab_2) self.widget_3.setObjectName(u"widget_3") self.gridLayout_4 = QGridLayout(self.widget_3) self.gridLayout_4.setSpacing(0) self.gridLayout_4.setObjectName(u"gridLayout_4") self.gridLayout_4.setContentsMargins(0, 0, 0, 0) self.pushButton_9 = QPushButton(self.widget_3) self.pushButton_9.setObjectName(u"pushButton_9") self.pushButton_9.setMinimumSize(QSize(20, 20)) self.pushButton_9.setMaximumSize(QSize(20, 20)) self.gridLayout_4.addWidget(self.pushButton_9, 0, 1, 1, 1) self.pushButton_11 = QPushButton(self.widget_3) self.pushButton_11.setObjectName(u"pushButton_11") self.pushButton_11.setMinimumSize(QSize(20, 20)) self.pushButton_11.setMaximumSize(QSize(20, 20)) self.gridLayout_4.addWidget(self.pushButton_11, 0, 5, 1, 1) self.pushButton_10 = QPushButton(self.widget_3) self.pushButton_10.setObjectName(u"pushButton_10") self.pushButton_10.setMinimumSize(QSize(20, 20)) self.pushButton_10.setMaximumSize(QSize(20, 20)) self.gridLayout_4.addWidget(self.pushButton_10, 3, 1, 1, 1) self.vs3 = QSlider(self.widget_3) self.vs3.setObjectName(u"vs3") self.vs3.setOrientation(Qt.Vertical) self.gridLayout_4.addWidget(self.vs3, 0, 3, 4, 1) self.spb2 = spiralProgressBar(self.widget_3) self.spb2.setObjectName(u"spb2") self.gridLayout_4.addWidget(self.spb2, 0, 2, 4, 1) self.spb1 = spiralProgressBar(self.widget_3) self.spb1.setObjectName(u"spb1") self.gridLayout_4.addWidget(self.spb1, 0, 0, 4, 1) self.spb3 = spiralProgressBar(self.widget_3) self.spb3.setObjectName(u"spb3") self.gridLayout_4.addWidget(self.spb3, 0, 4, 4, 1) self.pushButton_12 = QPushButton(self.widget_3) self.pushButton_12.setObjectName(u"pushButton_12") self.pushButton_12.setMinimumSize(QSize(20, 20)) self.pushButton_12.setMaximumSize(QSize(20, 20)) self.gridLayout_4.addWidget(self.pushButton_12, 3, 5, 1, 1) self.spb4 = spiralProgressBar(self.widget_3) self.spb4.setObjectName(u"spb4") self.gridLayout_4.addWidget(self.spb4, 0, 6, 4, 1) self.verticalLayout_2.addWidget(self.widget_3) self.hs2 = QSlider(self.tab_2) self.hs2.setObjectName(u"hs2") self.hs2.setOrientation(Qt.Horizontal) self.verticalLayout_2.addWidget(self.hs2) self.widget_4 = QWidget(self.tab_2) self.widget_4.setObjectName(u"widget_4") self.gridLayout_5 = QGridLayout(self.widget_4) self.gridLayout_5.setSpacing(0) self.gridLayout_5.setObjectName(u"gridLayout_5") self.gridLayout_5.setContentsMargins(0, 0, 0, 0) self.pushButton_15 = QPushButton(self.widget_4) self.pushButton_15.setObjectName(u"pushButton_15") self.pushButton_15.setMinimumSize(QSize(20, 20)) self.pushButton_15.setMaximumSize(QSize(20, 20)) self.gridLayout_5.addWidget(self.pushButton_15, 0, 5, 1, 1) self.pushButton_13 = QPushButton(self.widget_4) self.pushButton_13.setObjectName(u"pushButton_13") self.pushButton_13.setMinimumSize(QSize(20, 20)) self.pushButton_13.setMaximumSize(QSize(20, 20)) self.gridLayout_5.addWidget(self.pushButton_13, 0, 1, 1, 1) self.pushButton_16 = QPushButton(self.widget_4) self.pushButton_16.setObjectName(u"pushButton_16") self.pushButton_16.setMinimumSize(QSize(20, 20)) self.pushButton_16.setMaximumSize(QSize(20, 20)) self.gridLayout_5.addWidget(self.pushButton_16, 3, 5, 1, 1) self.pushButton_14 = QPushButton(self.widget_4) self.pushButton_14.setObjectName(u"pushButton_14") self.pushButton_14.setMinimumSize(QSize(20, 20)) self.pushButton_14.setMaximumSize(QSize(20, 20)) self.gridLayout_5.addWidget(self.pushButton_14, 3, 1, 1, 1) self.spb5 = spiralProgressBar(self.widget_4) self.spb5.setObjectName(u"spb5") self.gridLayout_5.addWidget(self.spb5, 0, 0, 4, 1) self.spb6 = spiralProgressBar(self.widget_4) self.spb6.setObjectName(u"spb6") self.gridLayout_5.addWidget(self.spb6, 0, 2, 4, 1) self.spb7 = spiralProgressBar(self.widget_4) self.spb7.setObjectName(u"spb7") self.gridLayout_5.addWidget(self.spb7, 0, 4, 4, 1) self.spb8 = spiralProgressBar(self.widget_4) self.spb8.setObjectName(u"spb8") self.gridLayout_5.addWidget(self.spb8, 0, 6, 4, 1) self.vs4 = QSlider(self.widget_4) self.vs4.setObjectName(u"vs4") self.vs4.setOrientation(Qt.Vertical) self.vs4.setInvertedAppearance(True) self.gridLayout_5.addWidget(self.vs4, 0, 3, 4, 1) self.verticalLayout_2.addWidget(self.widget_4) self.tabWidget.addTab(self.tab_2, "") self.gridLayout.addWidget(self.tabWidget, 0, 0, 1, 1) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) self.tabWidget.setCurrentIndex(0) QMetaObject.connectSlotsByName(MainWindow) # setupUi def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(QCoreApplication.translate("MainWindow", u"Demo Application PySide2extn", None)) self.b1.setText(QCoreApplication.translate("MainWindow", u"S", None)) self.b3.setText(QCoreApplication.translate("MainWindow", u"D", None)) self.b2.setText(QCoreApplication.translate("MainWindow", u"I", None)) self.b4.setText(QCoreApplication.translate("MainWindow", u"R", None)) self.b6.setText(QCoreApplication.translate("MainWindow", u"I", None)) self.b5.setText(QCoreApplication.translate("MainWindow", u"S", None)) self.b8.setText(QCoreApplication.translate("MainWindow", u"D", None)) self.b7.setText(QCoreApplication.translate("MainWindow", u"R", None)) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab), QCoreApplication.translate("MainWindow", u"RoundProgressBar", None)) self.pushButton_9.setText(QCoreApplication.translate("MainWindow", u"R", None)) self.pushButton_11.setText(QCoreApplication.translate("MainWindow", u"S", None)) self.pushButton_10.setText(QCoreApplication.translate("MainWindow", u"D", None)) self.pushButton_12.setText(QCoreApplication.translate("MainWindow", u"I", None)) self.pushButton_15.setText(QCoreApplication.translate("MainWindow", u"R", None)) self.pushButton_13.setText(QCoreApplication.translate("MainWindow", u"I", None)) self.pushButton_16.setText(QCoreApplication.translate("MainWindow", u"D", None)) self.pushButton_14.setText(QCoreApplication.translate("MainWindow", u"S", None)) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_2), QCoreApplication.translate("MainWindow", u"SpiralProgressBar", None)) self.addDesignTothis() def addDesignTothis(self): self.widget_rpb() self.widget_spb() def widget_rpb(self): self.rpb1.rpb_setValue(55) self.rpb2.rpb_setValue(84) self.rpb3.rpb_setValue(0) self.rpb4.rpb_setValue(46) self.rpb5.rpb_setValue(75) self.rpb6.rpb_setValue(66) self.rpb7.rpb_setValue(5) self.rpb8.rpb_setValue(95) self.rpb2.rpb_setBarStyle("Line") self.rpb2.rpb_setLineColor((0, 10, 15)) self.rpb2.rpb_setTextColor((0, 10, 15)) self.rpb3.rpb_setBarStyle("Pie") self.rpb3.rpb_setMaximum(360) self.rpb3.rpb_setTextFormat('Value') self.rpb3.rpb_setTextColor((210, 240, 210)) self.rpb3.rpb_setPieColor((0, 125, 125)) self.rpb4.rpb_setBarStyle("Pizza") self.rpb4.rpb_setRange(0, 200) self.rpb4.rpb_setCircleColor((210, 100, 0)) self.rpb4.rpb_setLineColor((160, 50, 0)) self.rpb4.rpb_setTextColor((250, 250, 250)) self.rpb4.rpb_setCircleRatio(1) self.rpb5.rpb_setBarStyle("Hybrid1") self.rpb5.rpb_setRange(0, 360) self.rpb5.rpb_setTextFormat('Value') self.rpb5.rpb_setPathWidth(2) self.rpb5.rpb_setLineWidth(8) self.rpb5.rpb_setPathColor((100, 100, 100)) self.rpb5.rpb_setCircleColor((100, 100, 100)) self.rpb5.rpb_setTextColor((250, 250, 250)) self.rpb6.rpb_setBarStyle("Hybrid2") self.rpb8.rpb_setBarStyle("Hybrid1") self.rpb8.rpb_setRange(0, 360) self.rpb7.rpb_setLineWidth(2) self.rpb7.rpb_setLineColor((20, 20, 20)) self.rpb7.rpb_setMaximum(200) self.rpb7.rpb_enableText(False) self.rpb7.rpb_setPathWidth(8) self.hs1.valueChanged.connect(lambda: self.rpb1.rpb_setValue(self.hs1.value())) self.hs1.valueChanged.connect(lambda: self.rpb8.rpb_setValue(100 - self.hs1.value())) self.hs1.valueChanged.connect(lambda: self.rpb4.rpb_setValue(200 - self.hs1.value())) self.hs1.valueChanged.connect(lambda: self.rpb5.rpb_setValue(2*self.hs1.value())) self.vs1.valueChanged.connect(lambda: self.rpb2.rpb_setValue(self.vs1.value())) self.vs1.valueChanged.connect(lambda: self.rpb3.rpb_setValue(360 - self.vs1.value())) self.vs2.valueChanged.connect(lambda: self.rpb6.rpb_setValue(self.vs2.value())) self.vs2.valueChanged.connect(lambda: self.rpb7.rpb_setValue(self.vs2.value())) self.b1.clicked.connect(lambda: self.rpb1.rpb_setLineColor((128, 40, 152))) self.b2.clicked.connect(lambda: self.rpb8.rpb_setCircleColor((0, 192, 175))) self.b5.clicked.connect(lambda: self.rpb6.rpb_setTextColor((0, 192, 175))) self.b3.clicked.connect(lambda: self.rpb3.rpb_setValue(0)) self.b4.clicked.connect(lambda: self.rpb3.rpb_setValue(100)) self.b6.clicked.connect(lambda: self.rpb5.rpb_setValue(0)) self.b7.clicked.connect(lambda: self.rpb6.rpb_setValue(100)) self.b8.clicked.connect(lambda: self.rpb8.rpb_setValue(360)) def widget_spb(self): self.spb1.spb_setValue((82, 56, 5)) self.spb2.spb_setNoProgressBar(2) self.spb2.spb_lineWidth(15) self.spb2.spb_setGap(18) self.spb2.spb_setValue((65, 60)) self.spb2.spb_lineColor(((28, 129, 196), (90, 193, 211))) self.spb2.spb_pathColor(((195, 225, 242), (208, 234, 244))) self.spb3.spb_setRange((0, 0, 0), (360, 360, 360)) self.spb3.spb_lineWidth(15) self.spb3.spb_setGap(17) self.spb3.spb_setInitialPos(('East', 'East', 'East')) self.spb3.spb_setValue((246, 315, 198)) self.spb3.spb_setPathHidden(True) self.spb4.spb_setNoProgressBar(6) self.spb4.spb_lineWidth(10) self.spb4.spb_setGap(11) self.spb4.spb_setValue((59, 16, 27, 65, 84, 95)) self.spb5.spb_lineStyle(('DotLine', 'DotLine', 'DotLine')) self.spb5.spb_setValue((65, 90, 25)) self.spb6.spb_setNoProgressBar(5) self.spb6.spb_lineWidth(10) self.spb6.spb_setGap(11) self.spb6.spb_setDirection(('Clockwise', 'AntiClockwise', 'AntiClockwise', 'Clockwise', 'Clockwise')) self.spb6.spb_setValue((65, 25, 86, 45, 75)) self.spb7.spb_setGap(12) self.spb7.variableWidth(True) self.spb7.spb_widthIncrement(2) self.spb8.spb_lineWidth(8) self.spb8.spb_setGap(9) self.spb8.spb_lineCap(('RoundCap', 'SquareCap', 'SquareCap')) self.spb8.spb_setValue((65, 23, 95)) self.hs2.valueChanged.connect(lambda: self.spb1.spb_setValue((self.hs2.value(), self.hs2.value()*1.5, self.hs2.value()*1.75))) self.hs2.valueChanged.connect(lambda: self.spb4.spb_setValue((self.hs2.value()*1.25, self.hs2.value()*1.35, self.hs2.value()*1, self.hs2.value()*1.75, self.hs2.value()*1.55, self.hs2.value()*0.45))) self.hs2.valueChanged.connect(lambda: self.spb5.spb_setValue((360 - self.hs2.value()*3.6, 360 - self.hs2.value()*4, 360 - self.hs2.value()*4.2))) self.hs2.valueChanged.connect(lambda: self.spb8.spb_setValue((self.hs2.value(), self.hs2.value()*1.26, self.hs2.value()*2))) self.vs3.valueChanged.connect(lambda: self.spb2.spb_setValue((100 - self.vs3.value()*1.2, 100 - self.vs3.value()))) self.vs3.valueChanged.connect(lambda: self.spb3.spb_setValue((self.vs3.value()*3.6, 3.6*0.75*self.vs3.value(), 3.6*0.5*self.vs3.value()))) self.vs4.valueChanged.connect(lambda: self.spb6.spb_setValue((self.vs4.value(), self.vs4.value()*0.9, self.vs4.value()*0.7, self.vs4.value()*0.6, self.vs4.value()*0.5))) self.vs4.valueChanged.connect(lambda: self.spb7.spb_setValue((self.vs4.value(), self.vs4.value(), self.vs4.value()))) def main(): import sys app = QApplication(sys.argv) MainWindow = QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
the-stack_0_27983
# Copyright 2017,2018,2019,2020,2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil from nnabla.config import nnabla_config from nnabla.utils.create_cache import CreateCache from nnabla.utils.data_source import DataSourceWithFileCache from nnabla.utils.data_source_implements import CacheDataSource, CsvDataSource from tqdm import tqdm def _convert(args, source): _, ext = os.path.splitext(args.destination) if ext.lower() == '.cache': with DataSourceWithFileCache(source, cache_dir=args.destination, shuffle=args.shuffle) as ds: print('Number of Data: {}'.format(ds.size)) print('Shuffle: {}'.format(args.shuffle)) print('Normalize: {}'.format(args.normalize)) pbar = None if nnabla_config.get('MISC', 'misc_show_progress') == 'True': pbar = tqdm(total=ds.size) for i in range(ds.size): ds._get_data(i) if pbar is not None: pbar.update(1) else: print('Command `conv_dataset` only supports CACHE as destination.') def conv_dataset_command(args): if type(args.num_of_threads) == int and args.num_of_threads <= 0: print( "The numbers of threads [{}] must be positive integer.".format(args.num_of_threads)) return False if os.path.exists(args.destination): if not args.force: print( 'File or directory [{}] is exists use `-F` option to overwrite it.'.format(args.destination)) return False elif os.path.isdir(args.destination): print('Overwrite destination [{}].'.format(args.destination)) shutil.rmtree(args.destination, ignore_errors=True) os.mkdir(args.destination) else: print('Cannot overwrite file [{}] please delete it.'.format( args.destination)) return False else: os.mkdir(args.destination) _, ext = os.path.splitext(args.source) if ext.lower() == '.csv': if os.path.exists(args.source): cc = CreateCache(args.source, shuffle=args.shuffle, num_of_threads=args.num_of_threads) print('Number of Data: {}'.format(cc._size)) print('Shuffle: {}'.format(cc._shuffle)) print('Normalize: {}'.format(args.normalize)) cc.create(args.destination, normalize=args.normalize) else: with CsvDataSource(args.source, shuffle=args.shuffle, normalize=args.normalize) as source: _convert(args, source) elif ext.lower() == '.cache': with CacheDataSource(args.source, shuffle=args.shuffle, normalize=args.normalize) as source: _convert(args, source) else: print('Command `conv_dataset` only supports CSV or CACHE as source.') return True def add_conv_dataset_command(subparsers): # Convert dataset subparser = subparsers.add_parser( 'conv_dataset', help='Convert CSV dataset to cache.') subparser.add_argument('-F', '--force', action='store_true', help='force overwrite destination', required=False) subparser.add_argument( '-S', '--shuffle', action='store_true', help='shuffle data', required=False) subparser.add_argument('-N', '--normalize', action='store_true', help='normalize data range', required=False) subparser.add_argument('-t', "--num_of_threads", type=int, required=False, help='use multithreading to convert cache, default to 10') subparser.add_argument('source') subparser.add_argument('destination') subparser.set_defaults(func=conv_dataset_command)
the-stack_0_27984
import tensorflow as tf from absl import app, flags, logging from absl.flags import FLAGS from core.yolov4 import YOLO, decode, filter_boxes import core.utils as utils from core.config import cfg flags.DEFINE_string('weights', './data/custom-yolov4-tiny-detector_final (2).weights', 'path to weights file') flags.DEFINE_string('output', './checkpoints/yolov4-416-tiny-tflite', 'path to output') flags.DEFINE_boolean('tiny', False, 'is yolo-tiny or not') flags.DEFINE_integer('input_size', 416, 'define input size of export model') flags.DEFINE_float('score_thres', 0.2, 'define score threshold') flags.DEFINE_string('framework', 'tf', 'define what framework do you want to convert (tf, trt, tflite)') flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4') def save_tf(): STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS) input_layer = tf.keras.layers.Input([FLAGS.input_size, FLAGS.input_size, 3]) feature_maps = YOLO(input_layer, NUM_CLASS, FLAGS.model, FLAGS.tiny) bbox_tensors = [] prob_tensors = [] if FLAGS.tiny: for i, fm in enumerate(feature_maps): if i == 0: output_tensors = decode(fm, FLAGS.input_size // 16, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework) else: output_tensors = decode(fm, FLAGS.input_size // 32, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework) bbox_tensors.append(output_tensors[0]) prob_tensors.append(output_tensors[1]) else: for i, fm in enumerate(feature_maps): if i == 0: output_tensors = decode(fm, FLAGS.input_size // 8, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework) elif i == 1: output_tensors = decode(fm, FLAGS.input_size // 16, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework) else: output_tensors = decode(fm, FLAGS.input_size // 32, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework) bbox_tensors.append(output_tensors[0]) prob_tensors.append(output_tensors[1]) pred_bbox = tf.concat(bbox_tensors, axis=1) pred_prob = tf.concat(prob_tensors, axis=1) if FLAGS.framework == 'tflite': pred = (pred_bbox, pred_prob) else: boxes, pred_conf = filter_boxes(pred_bbox, pred_prob, score_threshold=FLAGS.score_thres, input_shape=tf.constant([FLAGS.input_size, FLAGS.input_size])) pred = tf.concat([boxes, pred_conf], axis=-1) model = tf.keras.Model(input_layer, pred) utils.load_weights(model, FLAGS.weights, FLAGS.model, FLAGS.tiny) model.summary() model.save(FLAGS.output) def main(_argv): save_tf() if __name__ == '__main__': try: app.run(main) except SystemExit: pass
the-stack_0_27985
""" Class Features Name: drv_configuration_time_ascat Author(s): Fabio Delogu ([email protected]) Date: '20190729' Version: '1.0.0' """ ####################################################################################### # Library import logging import time import pandas as pd from src.hyde.algorithm.settings.satellite.hsaf.lib_ascat_args import logger_name, time_format from src.hyde.driver.configuration.generic.drv_configuration_debug import Exc # Log log_stream = logging.getLogger(logger_name) # Debug # import matplotlib.pylab as plt ####################################################################################### # ------------------------------------------------------------------------------------- class DataObject(dict): pass # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Class Time class DataTime: # ------------------------------------------------------------------------------------- # Global Variable(s) time_now = None time_settings = None time_run = None time_from = None time_to = None time_frequency = None time_period = None time_rounding = None time_steps = {} # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method class initialization def __init__(self, time_arg=time.strftime(time_format, time.gmtime()), time_settings=None, time_now=None, time_period_past=0, time_period_future=0, time_frequency='H', time_rounding='H'): # ------------------------------------------------------------------------------------- # Store information in global workspace self.time_arg = time_arg self.time_settings=time_settings self.time_now = time_now self.time_period_past = int(time_period_past) self.time_period_future = int(time_period_future) self.time_frequency = time_frequency self.time_rounding = time_rounding # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to set times def getDataTime(self, time_reverse=False): # ------------------------------------------------------------------------------------- # Info start log_stream.info(' ---> Configure time ... ') # Get time now self.time_now = self.__getTimeNow() # Get time argument self.time_arg = self.__getTimeArg() # Set time run self.time_run = self.__setTimeRun(self.time_now, self.time_arg) # Round time to reference self.time_run = self.__computeTimeRound(self.time_rounding) # Get initial time step (taking care restart time condition) self.time_from = self.__getTimeFrom(self.time_run, time_period=self.time_period_past, time_frequency=self.time_frequency) # Get ending time step self.time_to = self.__getTimeTo(self.time_run, time_period=self.time_period_future, time_frequency=self.time_frequency) # Compute period time steps self.time_steps = self.__computeTimePeriod(self.time_from, self.time_to, time_frequency=self.time_frequency, time_reverse=time_reverse) # Info end log_stream.info(' ---> Configure time ... OK') return DataObject(self.__dict__) # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to round time to reference def __computeTimeRound(self, time_rounding): log_stream.info(' ----> Round time run ... ') time_round = self.time_run.round(time_rounding) if time_round > self.time_run: time_round = pd.date_range(end=time_round, periods=2, freq=time_rounding)[0] log_stream.info(' -----> Algorithm time run: [' + time_round.strftime(time_format) + ']') log_stream.info(' ----> Round time run ... DONE') return time_round # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to get time now def __getTimeNow(self): log_stream.info(' ----> Configure time now ... ') time_now = None try: if self.time_now is None: log_stream.info(' -----> Time now is not set. Time will be taken using time library.') self.time_now = time.strftime(time_format, time.gmtime()) else: log_stream.info(' -----> Time argument is set using script configuration file') time_now = pd.to_datetime(self.time_now, format=time_format) time_now = time_now.floor('min') time_now = time_now.replace(minute=0) self.time_now = time_now.strftime(time_format) log_stream.info(' ----> Configure time now ... DONE [' + self.time_now + ']') except BaseException: Exc.getExc(' =====> ERROR: time now definition failed! Check your data and settings!', 1, 1) return time_now # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to get time set in argument(s) def __getTimeArg(self): log_stream.info(' ----> Configure time argument ... ') time_arg = None try: if self.time_arg is None: if self.time_settings is not None: self.time_arg = self.time_settings log_stream.info(' -----> Time argument is not set. Time will be taken using time in settings file.') else: log_stream.info(' -----> Time argument is not set. Time will be taken using time library.') self.time_arg = time.strftime(time_format, time.gmtime()) else: log_stream.info(' -----> Time argument is set using script arg(s)') time_arg = pd.to_datetime(self.time_arg, format=time_format) time_arg = time_arg.floor('min') time_arg = time_arg.replace(minute=0) self.time_arg = time_arg.strftime(time_format) log_stream.info(' ----> Configure time argument ... DONE [' + self.time_arg + ']') except BaseException: Exc.getExc(' =====> ERROR: time argument definition failed! Check your data and settings!', 1, 1) return time_arg # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to set time run @staticmethod def __setTimeRun(time_now, time_arg): log_stream.info(' ----> Set time run ... ') if time_arg is not None: log_stream.info(' -----> Time argument is used as time run [' + time_arg.strftime(time_format) + ']') log_stream.info(' ----> Set time run ... DONE') return time_arg else: log_stream.info(' -----> Time now is used as time run [' + time_now.strftime(time_format) + ']') log_stream.info(' ----> Set time run ... DONE') return time_now # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to define time restart @staticmethod def __getTimeFrom(time_run, time_period=0, time_frequency='H'): if time_period == 0: time_from = time_run else: time_period = time_period + 1 time_from = pd.date_range(end=time_run, periods=time_period, freq=time_frequency)[0] return time_from # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to get time to @staticmethod def __getTimeTo(time_run, time_period=0, time_frequency='H'): if time_period == 0: time_to = time_run else: time_period = time_period + 1 time_to = pd.date_range(start=time_run, periods=time_period, freq=time_frequency)[-1] return time_to # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to compute period time steps @staticmethod def __computeTimePeriod(time_from, time_to, time_frequency='H', time_reverse=False): time_range = pd.date_range(time_from, time_to, freq=time_frequency) time_range = time_range.floor(time_frequency) if time_reverse: time_range = time_range.sort_values(return_indexer=False, ascending=False) return time_range # -------------------------------------------------------------------------------------
the-stack_0_27988
#!/usr/bin/env python3 import os import re import subprocess import sys from common import HOME, config PAT_MAPS_KEY = re.compile(r'"com\.google\.android\.maps\.v2\.API_KEY" android:value=".*"') def main(release): generate_build_config(release) subprocess.check_call(r''' builddir="$MOD_HOME/build" rm -rf $builddir/ifc $builddir/src $builddir/proguard $builddir/dex.apk $builddir/smali $MOD_HOME/app/smali/blind $MOD_HOME/app/smali/a/*.smali mkdir -p $builddir/ifc $builddir/src javac -Xlint:-options -g:none -source 6 -target 6 -cp $MOD_HOME/lib/android.jar:$MOD_HOME/lib/google-play-services.jar:$MOD_HOME/lib/maps.jar -d $builddir/ifc `find -H $MOD_HOME/ifc -type f -iname "*.java"` javac -Xlint:-options -g -source 6 -target 6 -cp $builddir/ifc:$MOD_HOME/lib/android.jar:$MOD_HOME/lib/google-play-services.jar:$MOD_HOME/lib/maps.jar -d $builddir/src `find -H $MOD_HOME/src -type f -iname "*.java"` proguard.sh @$MOD_HOME/res/%s.pg dx --dex --output=$builddir/dex.apk $builddir/proguard.zip java -jar $MOD_HOME/lib/baksmali.jar $builddir/dex.apk -o $builddir/smali cp -r $builddir/smali/* $MOD_HOME/app/smali/ java -jar $MOD_HOME/lib/apktool.jar b%s $MOD_HOME/app $MOD_HOME/bin/sign_apk.py `ls $MOD_HOME/app/dist/*.apk` %s ''' % (('release', '', 'release') if release else ('debug', ' -d', 'debug')), shell=True) def generate_build_config(release): maps_key = config['maps_key']['release' if release else 'debug'] if maps_key: s = open('%s/app/AndroidManifest.xml' % HOME).read() s = PAT_MAPS_KEY.sub('"com.google.android.maps.v2.API_KEY" android:value="%s"' % maps_key, s) open('%s/app/AndroidManifest.xml' % HOME, 'w').write(s) mod_version = '"' + config['version'] \ + ('' if os.path.exists(HOME + '/app/assets/sounds') else '-mute') \ + ('' if release else '-dev') + '"' # bc_str = open(HOME + '/src/broot/ingress/mod/BuildConfig.java').read() # bc_str = bc_str.replace('MOD_VERSION = null', 'MOD_VERSION = ' + mod_version) # open(HOME + '/build/BuildConfig.java', 'w').write(bc_str) def generate_asset_string(asset): name = 'normal' if asset=='data' else asset.replace('data-','').replace('-','_') caption = config['assets'].get(asset, {'caption': "Custom " + name.replace('_', ' ')})['caption'] parent = config['assets'].get(asset,{}).get('parent') string = [asset, caption, parent] if parent else [asset, caption] return '%s(%s)' % (name, ', '.join(['"%s"' % s for s in string])) if __name__ == '__main__': main(len(sys.argv) > 1 and sys.argv[1] == 'release')
the-stack_0_27989
"""Parser of Excel data files.""" from datetime import datetime import xlsxio from xlrd import open_workbook from virtual_warehouse.data.data_model import ( Inventory, Item, ItemUnit, Location, Order, RackLocation, ) from virtual_warehouse.data.utils import convert_date, convert_type, estimate_sheet_type class Document: """Document class which loads xls or xlsx file and parse different data objects.""" def __init__(self, file_path): # Determines backend for loading documents (xlsx files uses openpyxl) self.is_xlsx = Document.check_xlsx(file_path) self.locations = {} self.items = {} self.balance = {} self.orders = {} if self.is_xlsx: self.doc = xlsxio.XlsxioReader(file_path) else: self.doc = open_workbook(file_path) @staticmethod def check_xlsx(file_path): """Check if document is .xlsx document (required for openpyxl library).""" return file_path[-5:] == ".xlsx" @staticmethod def get_sheet_names(file_path): """Get names of all sheets in document.""" if Document.check_xlsx(file_path): with xlsxio.XlsxioReader(file_path) as reader: names = reader.get_sheet_names() else: doc = open_workbook(file_path, on_demand=True) names = doc.sheet_names() return [[n, estimate_sheet_type(n)] for n in names] def close(self): """Release resources owned by the document.""" if self.is_xlsx: self.doc.close() def parse_locations(self, sheet_name="LOCATIONmaster"): """Parse LOCATIONmaster sheet.""" if self.is_xlsx: types = [str, str, str, str, float, float, float, str, float, str, str] with self.doc.get_sheet(sheet_name, types=types) as sheet: sheet.read_header() for row in sheet.iter_rows(): if len(row) == 0 or not row[0]: continue location_id = row[0] if convert_type(row[1]) == "rack": self.locations[location_id] = RackLocation.create(*row[:11]) else: self.locations[location_id] = Location.create(*row[:11]) else: sheet = self.doc.sheet_by_name(sheet_name) for row in range(1, sheet.nrows): location_id = str(sheet.cell(row, 0).value) if not location_id: continue values = [sheet.cell(row, i).value for i in range(11)] if convert_type(values[1]) == "rack": self.locations[location_id] = RackLocation.create(*values) else: self.locations[location_id] = Location.create(*values) return self.locations def parse_coordinates(self, sheet_name="XYZ_coordinates"): """Parse XYZ_coordinates sheet.""" if self.is_xlsx: types = [str, float, float, float] with self.doc.get_sheet(sheet_name, types=types) as sheet: sheet.read_header() for row in sheet.iter_rows(): if len(row) == 0 or not row[0]: continue location_id = row[0] self.locations[location_id].set_coord(*row[1:4]) else: sheet = self.doc.sheet_by_name(sheet_name) for row in range(1, sheet.nrows): location_id = str(sheet.cell(row, 0).value) if not location_id: continue self.locations[location_id].set_coord( *(sheet.cell(row, i).value for i in range(1, 4)) ) return self.locations def parse_items(self, sheet_name="ITEMmaster"): """Parse ITEMmaster sheet.""" if self.is_xlsx: types = [str, str, str, str] + 5 * [ int, str, float, float, float, str, float, str, ] with self.doc.get_sheet(sheet_name, types=types) as sheet: sheet.read_header() for row in sheet.iter_rows(): if len(row) == 0 or not row[0]: continue item_id, description, gtype, zone = row[:4] unit_levels = [] for col in range(4, len(row), 8): unit_levels.append( ItemUnit.create(f"{item_id}-u{col}", *row[col : col + 8],) ) self.items[item_id] = Item.create( item_id, description, gtype, zone, unit_levels[0], unit_levels ) else: sheet = self.doc.sheet_by_name(sheet_name) for row in range(1, sheet.nrows): item_id, description, gtype, zone = ( sheet.cell(row, i).value for i in range(4) ) item_id = str(item_id) if not item_id: continue unit_levels = [] for col in range(4, sheet.ncols, 8): unit_levels.append( ItemUnit.create( f"{item_id}-u{col}", *(sheet.cell(row, col + i).value for i in range(8)), ) ) self.items[item_id] = Item.create( item_id, description, gtype, zone, unit_levels[0], unit_levels ) return self.items def parse_inventory_balance(self, sheet_name="Inventory Ballance"): """Parse Inventory Balance sheet ('balance' in final version, most likely).""" if self.is_xlsx: types = [datetime, str, str, str, datetime, int, int, int, int, int] with self.doc.get_sheet(sheet_name, types=types) as sheet: sheet.read_header() for row in sheet.iter_rows(): if len(row) == 0 or not row[0]: continue date, location_id = row[:2] if date not in self.balance: self.balance[date] = {location_id: []} elif location_id not in self.balance[date]: self.balance[date][location_id] = [] self.balance[date][location_id].append(Inventory.create(*row[:10])) else: sheet = self.doc.sheet_by_name(sheet_name) for row in range(1, sheet.nrows): date = convert_date(sheet.cell(row, 0).value, "%d.%m.%Y") location_id = str(sheet.cell(row, 1).value) if not date: continue if date not in self.balance: self.balance[date] = {location_id: []} elif location_id not in self.balance[date]: self.balance[date][location_id] = [] self.balance[date][location_id].append( Inventory.create( date, *(sheet.cell(row, i).value for i in range(1, 10)) ) ) return self.balance def parse_orders(self, sheet_name="Order"): """Parse Order sheet.""" if self.is_xlsx: types = [str, str, str, str, str, str, int, str, int, int, str] with self.doc.get_sheet(sheet_name, types=types) as sheet: sheet.read_header() for row in sheet.iter_rows(): if len(row) == 0 or not row[0]: continue order_id = row[0] if order_id in self.orders: self.orders[order_id].add_item(*row[7:11]) else: self.orders[order_id] = Order.create(*row[:11]) else: sheet = self.doc.sheet_by_name(sheet_name) for row in range(1, sheet.nrows): order_id = str(sheet.cell(row, 0).value) if not order_id: continue if order_id in self.orders: self.orders[order_id].add_item( *(sheet.cell(row, i).value for i in range(7, 11)) ) else: self.orders[order_id] = Order.create( *(sheet.cell(row, i).value for i in range(11)) ) return self.orders def parse_document(self): """Parse the whole document.""" locations = self.parse_locations() locations = self.parse_coordinates() items = self.parse_items() balance = self.parse_inventory_balance() orders = self.parse_orders() return locations, items, balance, orders
the-stack_0_27990
import threading from contextlib import contextmanager import sys import logging import copy from honeybadger.plugins import default_plugin_manager import honeybadger.connection as connection import honeybadger.fake_connection as fake_connection from .payload import create_payload from .config import Configuration logging.getLogger('honeybadger').addHandler(logging.NullHandler()) class Honeybadger(object): def __init__(self): self.config = Configuration() self.thread_local = threading.local() self.thread_local.context = {} def _send_notice(self, exception, exc_traceback=None, context=None): payload = create_payload(exception, exc_traceback, config=self.config, context=context) if self.config.is_dev() and not self.config.force_report_data: fake_connection.send_notice(self.config, payload) else: connection.send_notice(self.config, payload) def _get_context(self): return getattr(self.thread_local, 'context', {}) def begin_request(self, request): self.thread_local.context = self._get_context() def wrap_excepthook(self, func): self.existing_except_hook = func sys.excepthook = self.exception_hook def exception_hook(self, type, value, exc_traceback): self._send_notice(value, exc_traceback, context=self._get_context()) self.existing_except_hook(type, value, exc_traceback) def notify(self, exception=None, error_class=None, error_message=None, context={}): if exception and exception.__class__.__name__ in self.config.excluded_exceptions: return #Terminate the function if exception is None: exception = { 'error_class': error_class, 'error_message': error_message } merged_context = self._get_context() if context: merged_context.update(context) self._send_notice(exception, context=merged_context) def configure(self, **kwargs): self.config.set_config_from_dict(kwargs) self.auto_discover_plugins() def auto_discover_plugins(self): #Avoiding circular import error from honeybadger import contrib if self.config.is_aws_lambda_environment: default_plugin_manager.register(contrib.AWSLambdaPlugin()) def set_context(self, **kwargs): # This operation is an update, not a set! self.thread_local.context = self._get_context() self.thread_local.context.update(kwargs) def reset_context(self): self.thread_local.context = {} @contextmanager def context(self, **kwargs): original_context = copy.copy(self._get_context()) self.set_context(**kwargs) try: yield except: raise else: self.thread_local.context = original_context
the-stack_0_27995
# Copyright (C) By StarkGang [@STARKXD] # Don't edit credits # Works On Bases Of Cyberboysumanjay's Inshorts News Api # Test import requests from userbot.utils import admin_cmd, edit_or_reply, sudo_cmd from var import Var newslog = Var.NEWS_CHANNEL_ID @borg.on(admin_cmd("news (.*)")) @borg.on(sudo_cmd("news (.*)", allow_sudo=True)) async def _(event): if event.fwd_from: return if Var.NEWS_CHANNEL_ID is None: await edit_or_reply( event, "`Please ADD NEWS_CHANNEL_ID For This Module To Work`" ) return infintyvar = event.pattern_match.group(1) main_url = f"https://inshortsapi.vercel.app/news?category={infintyvar}" stuber = await edit_or_reply( event, f"Ok ! Fectching {infintyvar} From inshortsapi Server And Sending To News Channel", ) await stuber.edit("All News Has Been Sucessfully Send To News Channel") starknews = requests.get(main_url).json() for item in starknews["data"]: sedlyf = item["content"] img = item["imageUrl"] writter = item["author"] dateis = item["date"] readthis = item["readMoreUrl"] titles = item["title"] sed1 = img sedm = f"**Title : {titles}** \n{sedlyf} \nDate : {dateis} \nAuthor : {writter} \nReadMore : {readthis}" await borg.send_file(newslog, sed1, caption=sedm)
the-stack_0_27996
# This is a modified version of cocoeval.py where we also have the densepose evaluation. __author__ = 'tsungyi' import numpy as np import datetime import time from collections import defaultdict from pycocotools import mask as maskUtils import copy import h5py import pickle from scipy.io import loadmat import scipy.spatial.distance as ssd import os import itertools class denseposeCOCOeval: # Interface for evaluating detection on the Microsoft COCO dataset. # # The usage for CocoEval is as follows: # cocoGt=..., cocoDt=... # load dataset and results # E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object # E.params.recThrs = ...; # set parameters as desired # E.evaluate(); # run per image evaluation # E.accumulate(); # accumulate per image results # E.summarize(); # display summary metrics of results # For example usage see evalDemo.m and http://mscoco.org/. # # The evaluation parameters are as follows (defaults in brackets): # imgIds - [all] N img ids to use for evaluation # catIds - [all] K cat ids to use for evaluation # iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation # recThrs - [0:.01:1] R=101 recall thresholds for evaluation # areaRng - [...] A=4 object area ranges for evaluation # maxDets - [1 10 100] M=3 thresholds on max detections per image # iouType - ['segm'] set iouType to 'segm', 'bbox', 'keypoints' or 'uv' # iouType replaced the now DEPRECATED useSegm parameter. # useCats - [1] if true use category labels for evaluation # Note: if useCats=0 category labels are ignored as in proposal scoring. # Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified. # # evaluate(): evaluates detections on every image and every category and # concats the results into the "evalImgs" with fields: # dtIds - [1xD] id for each of the D detections (dt) # gtIds - [1xG] id for each of the G ground truths (gt) # dtMatches - [TxD] matching gt id at each IoU or 0 # gtMatches - [TxG] matching dt id at each IoU or 0 # dtScores - [1xD] confidence of each dt # gtIgnore - [1xG] ignore flag for each gt # dtIgnore - [TxD] ignore flag for each dt at each IoU # # accumulate(): accumulates the per-image, per-category evaluation # results in "evalImgs" into the dictionary "eval" with fields: # params - parameters used for evaluation # date - date evaluation was performed # counts - [T,R,K,A,M] parameter dimensions (see above) # precision - [TxRxKxAxM] precision for every evaluation setting # recall - [TxKxAxM] max recall for every evaluation setting # Note: precision and recall==-1 for settings with no gt objects. # # See also coco, mask, pycocoDemo, pycocoEvalDemo # # Microsoft COCO Toolbox. version 2.0 # Data, paper, and tutorials available at: http://mscoco.org/ # Code written by Piotr Dollar and Tsung-Yi Lin, 2015. # Licensed under the Simplified BSD License [see coco/license.txt] def __init__(self, cocoGt=None, cocoDt=None, iouType='segm', sigma=1.): ''' Initialize CocoEval using coco APIs for gt and dt :param cocoGt: coco object with ground truth annotations :param cocoDt: coco object with detection results :return: None ''' if not iouType: print('iouType not specified. use default iouType segm') self.cocoGt = cocoGt # ground truth COCO API self.cocoDt = cocoDt # detections COCO API self.params = {} # evaluation parameters self.evalImgs = defaultdict(list) # per-image per-category evaluation results [KxAxI] elements self.eval = {} # accumulated evaluation results self._gts = defaultdict(list) # gt for evaluation self._dts = defaultdict(list) # dt for evaluation self.params = Params(iouType=iouType) # parameters self._paramsEval = {} # parameters for evaluation self.stats = [] # result summarization self.ious = {} # ious between all gts and dts if not cocoGt is None: self.params.imgIds = sorted(cocoGt.getImgIds()) self.params.catIds = sorted(cocoGt.getCatIds()) if iouType == 'uv': self.sigma = sigma self.ignoreThrBB = 0.7 self.ignoreThrUV = 0.9 def _loadGEval(self): print('Loading densereg GT..') # prefix = os.path.dirname(__file__) + '/../../DensePoseData/eval_data/' prefix = "data/coco_densepose/eval_data/" print(prefix) SMPL_subdiv = loadmat(prefix + 'SMPL_subdiv.mat') self.PDIST_transform = loadmat(prefix + 'SMPL_SUBDIV_TRANSFORM.mat') self.PDIST_transform = self.PDIST_transform['index'].squeeze() UV = np.array([ SMPL_subdiv['U_subdiv'], SMPL_subdiv['V_subdiv'] ]).squeeze() ClosestVertInds = np.arange(UV.shape[1])+1 self.Part_UVs = [] self.Part_ClosestVertInds = [] for i in np.arange(24): self.Part_UVs.append( UV[:, SMPL_subdiv['Part_ID_subdiv'].squeeze()==(i+1)] ) self.Part_ClosestVertInds.append( ClosestVertInds[SMPL_subdiv['Part_ID_subdiv'].squeeze()==(i+1)] ) arrays = {} f = h5py.File( prefix + 'Pdist_matrix.mat', 'r') for k, v in f.items(): arrays[k] = np.array(v) self.Pdist_matrix = arrays['Pdist_matrix'] self.Part_ids = np.array( SMPL_subdiv['Part_ID_subdiv'].squeeze()) # Mean geodesic distances for parts. self.Mean_Distances = np.array( [0, 0.351, 0.107, 0.126,0.237,0.173,0.142,0.128,0.150] ) # Coarse Part labels. self.CoarseParts = np.array( [ 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8] ) print('Loaded') def _prepare(self): ''' Prepare ._gts and ._dts for evaluation based on params :return: None ''' def _toMask(anns, coco): # modify ann['segmentation'] by reference for ann in anns: rle = coco.annToRLE(ann) ann['segmentation'] = rle def _getIgnoreRegion(iid, coco): img = coco.imgs[iid] if not 'ignore_regions_x' in img.keys(): return None if len(img['ignore_regions_x']) == 0: return None rgns_merged = [] for region_x, region_y in zip(img['ignore_regions_x'], img['ignore_regions_y']): rgns = [iter(region_x), iter(region_y)] rgns_merged.append(list(it.next() for it in itertools.cycle(rgns))) rles = maskUtils.frPyObjects(rgns_merged, img['height'], img['width']) rle = maskUtils.merge(rles) return maskUtils.decode(rle) def _checkIgnore(dt, iregion): if iregion is None: return True bb = np.array(dt['bbox']).astype(np.int) x1,y1,x2,y2 = bb[0],bb[1],bb[0]+bb[2],bb[1]+bb[3] x2 = min([x2,iregion.shape[1]]) y2 = min([y2,iregion.shape[0]]) if bb[2]* bb[3] == 0: return False crop_iregion = iregion[y1:y2, x1:x2] if crop_iregion.sum() == 0: return True if not 'uv' in dt.keys(): # filtering boxes return crop_iregion.sum()/bb[2]/bb[3] < self.ignoreThrBB # filtering UVs ignoremask = np.require(crop_iregion, requirements=['F']) uvmask = np.require(np.asarray(dt['uv'][0]>0), dtype = np.uint8, requirements=['F']) uvmask_ = maskUtils.encode(uvmask) ignoremask_ = maskUtils.encode(ignoremask) uviou = maskUtils.iou([uvmask_], [ignoremask_], [1])[0] return uviou < self.ignoreThrUV p = self.params if p.useCats: gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) else: gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds)) dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds)) # if iouType == 'uv', add point gt annotations if p.iouType == 'uv': self._loadGEval() # convert ground truth to mask if iouType == 'segm' if p.iouType == 'segm': _toMask(gts, self.cocoGt) _toMask(dts, self.cocoDt) # set ignore flag for gt in gts: gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0 gt['ignore'] = 'iscrowd' in gt and gt['iscrowd'] if p.iouType == 'keypoints': gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore'] if p.iouType == 'uv': gt['ignore'] = ('dp_x' in gt)==0 self._gts = defaultdict(list) # gt for evaluation self._dts = defaultdict(list) # dt for evaluation self._igrgns = defaultdict(list) for gt in gts: iid = gt['image_id'] if not iid in self._igrgns.keys(): self._igrgns[iid] = _getIgnoreRegion(iid, self.cocoGt) if _checkIgnore(gt, self._igrgns[iid]): self._gts[iid, gt['category_id']].append(gt) for dt in dts: if _checkIgnore(dt, self._igrgns[dt['image_id']]): self._dts[dt['image_id'], dt['category_id']].append(dt) self.evalImgs = defaultdict(list) # per-image per-category evaluation results self.eval = {} # accumulated evaluation results def evaluate(self): ''' Run per image evaluation on given images and store results (a list of dict) in self.evalImgs :return: None ''' tic = time.time() print('Running per image evaluation...') p = self.params # add backward compatibility if useSegm is specified in params if not p.useSegm is None: p.iouType = 'segm' if p.useSegm == 1 else 'bbox' print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType)) print('Evaluate annotation type *{}*'.format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params=p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType in ['segm', 'bbox']: computeIoU = self.computeIoU elif p.iouType == 'keypoints': computeIoU = self.computeOks elif p.iouType == 'uv': computeIoU = self.computeOgps self.ious = {(imgId, catId): computeIoU(imgId, catId) \ for imgId in p.imgIds for catId in catIds} evaluateImg = self.evaluateImg maxDet = p.maxDets[-1] self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] self._paramsEval = copy.deepcopy(self.params) toc = time.time() print('DONE (t={:0.2f}s).'.format(toc-tic)) def computeIoU(self, imgId, catId): p = self.params if p.useCats: gt = self._gts[imgId,catId] dt = self._dts[imgId,catId] else: gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]] dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]] if len(gt) == 0 and len(dt) ==0: return [] inds = np.argsort([-d['score'] for d in dt], kind='mergesort') dt = [dt[i] for i in inds] if len(dt) > p.maxDets[-1]: dt=dt[0:p.maxDets[-1]] if p.iouType == 'segm': g = [g['segmentation'] for g in gt] d = [d['segmentation'] for d in dt] elif p.iouType == 'bbox': g = [g['bbox'] for g in gt] d = [d['bbox'] for d in dt] else: raise Exception('unknown iouType for iou computation') # compute iou between each dt and gt region iscrowd = [int(o['iscrowd']) for o in gt] ious = maskUtils.iou(d, g, iscrowd) return ious def computeOks(self, imgId, catId): p = self.params # dimention here should be Nxm gts = self._gts[imgId, catId] dts = self._dts[imgId, catId] inds = np.argsort([-d['score'] for d in dts], kind='mergesort') dts = [dts[i] for i in inds] if len(dts) > p.maxDets[-1]: dts = dts[0:p.maxDets[-1]] # if len(gts) == 0 and len(dts) == 0: if len(gts) == 0 or len(dts) == 0: return [] ious = np.zeros((len(dts), len(gts))) sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62,.62, 1.07, 1.07, .87, .87, .89, .89])/10.0 vars = (sigmas * 2)**2 k = len(sigmas) # compute oks between each detection and ground truth object for j, gt in enumerate(gts): # create bounds for ignore regions(double the gt bbox) g = np.array(gt['keypoints']) xg = g[0::3]; yg = g[1::3]; vg = g[2::3] k1 = np.count_nonzero(vg > 0) bb = gt['bbox'] x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2 y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2 for i, dt in enumerate(dts): d = np.array(dt['keypoints']) xd = d[0::3]; yd = d[1::3] if k1>0: # measure the per-keypoint distance if keypoints visible dx = xd - xg dy = yd - yg else: # measure minimum distance to keypoints in (x0,y0) & (x1,y1) z = np.zeros((k)) dx = np.max((z, x0-xd), axis=0) + np.max((z, xd-x1), axis=0) dy = np.max((z, y0-yd), axis=0) + np.max((z, yd-y1), axis=0) e = (dx**2 + dy**2) / vars / (gt['area'] + np.spacing(1)) / 2 if k1 > 0: e=e[vg > 0] ious[i, j] = np.sum(np.exp(-e)) / e.shape[0] return ious def computeOgps(self, imgId, catId): p = self.params # dimention here should be Nxm g = self._gts[imgId, catId] d = self._dts[imgId, catId] inds = np.argsort([-d_['score'] for d_ in d], kind='mergesort') d = [d[i] for i in inds] if len(d) > p.maxDets[-1]: d = d[0:p.maxDets[-1]] # if len(gts) == 0 and len(dts) == 0: if len(g) == 0 or len(d) == 0: return [] ious = np.zeros((len(d), len(g))) # compute opgs between each detection and ground truth object sigma = self.sigma #0.255 # dist = 0.3m corresponds to ogps = 0.5 # 1 # dist = 0.3m corresponds to ogps = 0.96 # 1.45 # dist = 1.7m (person height) corresponds to ogps = 0.5) for j, gt in enumerate(g): if not gt['ignore']: g_ = gt['bbox'] for i, dt in enumerate(d): # dx = dt['bbox'][3] dy = dt['bbox'][2] dp_x = np.array( gt['dp_x'] )*g_[2]/255. dp_y = np.array( gt['dp_y'] )*g_[3]/255. px = ( dp_y + g_[1] - dt['bbox'][1]).astype(np.int) py = ( dp_x + g_[0] - dt['bbox'][0]).astype(np.int) # pts = np.zeros(len(px)) pts[px>=dx] = -1; pts[py>=dy] = -1 pts[px<0] = -1; pts[py<0] = -1 #print(pts.shape) if len(pts) < 1: ogps = 0. elif np.max(pts) == -1: ogps = 0. else: px[pts==-1] = 0; py[pts==-1] = 0; ipoints = dt['uv'][0, px, py] upoints = dt['uv'][1, px, py]/255. # convert from uint8 by /255. vpoints = dt['uv'][2, px, py]/255. ipoints[pts==-1] = 0 ## Find closest vertices in subsampled mesh. cVerts, cVertsGT = self.findAllClosestVerts(gt, upoints, vpoints, ipoints) ## Get pairwise geodesic distances between gt and estimated mesh points. dist = self.getDistances(cVertsGT, cVerts) ## Compute the Ogps measure. # Find the mean geodesic normalization distance for each GT point, based on which part it is on. Current_Mean_Distances = self.Mean_Distances[ self.CoarseParts[ self.Part_ids [ cVertsGT[cVertsGT>0].astype(int)-1] ] ] # Compute gps ogps_values = np.exp(-(dist**2)/(2*(Current_Mean_Distances**2))) # if len(dist)>0: ogps = np.sum(ogps_values)/ len(dist) ious[i, j] = ogps gbb = [gt['bbox'] for gt in g] dbb = [dt['bbox'] for dt in d] # compute iou between each dt and gt region iscrowd = [int(o['iscrowd']) for o in g] ious_bb = maskUtils.iou(dbb, gbb, iscrowd) return ious, ious_bb def evaluateImg(self, imgId, catId, aRng, maxDet): ''' perform evaluation for single category and image :return: dict (single image results) ''' p = self.params if p.useCats: gt = self._gts[imgId,catId] dt = self._dts[imgId,catId] else: gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]] dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]] if len(gt) == 0 and len(dt) == 0: return None for g in gt: #g['_ignore'] = g['ignore'] if g['ignore'] or (g['area']<aRng[0] or g['area']>aRng[1]): g['_ignore'] = True else: g['_ignore'] = False # sort dt highest score first, sort gt ignore last gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort') gt = [gt[i] for i in gtind] dtind = np.argsort([-d['score'] for d in dt], kind='mergesort') dt = [dt[i] for i in dtind[0:maxDet]] iscrowd = [int(o['iscrowd']) for o in gt] # load computed ious if p.iouType == 'uv': #print('Checking the length', len(self.ious[imgId, catId])) #if len(self.ious[imgId, catId]) == 0: # print(self.ious[imgId, catId]) ious = self.ious[imgId, catId][0][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId] ioubs = self.ious[imgId, catId][1][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId] else: ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId] T = len(p.iouThrs) G = len(gt) D = len(dt) gtm = np.zeros((T,G)) dtm = np.zeros((T,D)) gtIg = np.array([g['_ignore'] for g in gt]) dtIg = np.zeros((T,D)) if np.all(gtIg) == True and p.iouType == 'uv': dtIg = np.logical_or(dtIg, True) if len(ious)>0: # and not p.iouType == 'uv': for tind, t in enumerate(p.iouThrs): for dind, d in enumerate(dt): # information about best match so far (m=-1 -> unmatched) iou = min([t,1-1e-10]) m = -1 for gind, g in enumerate(gt): # if this gt already matched, and not a crowd, continue if gtm[tind,gind]>0 and not iscrowd[gind]: continue # if dt matched to reg gt, and on ignore gt, stop if m>-1 and gtIg[m]==0 and gtIg[gind]==1: break # continue to next gt unless better match made if ious[dind,gind] < iou: continue if ious[dind,gind] == 0.: continue # if match successful and best so far, store appropriately iou = ious[dind, gind] m = gind # if match made store id of match for both dt and gt if m == -1: continue dtIg[tind, dind] = gtIg[m] dtm[tind, dind] = gt[m]['id'] gtm[tind, m] = d['id'] if p.iouType == 'uv': if not len(ioubs)==0: for dind, d in enumerate(dt): # information about best match so far (m=-1 -> unmatched) if dtm[tind, dind] == 0: ioub = 0.8 m = -1 for gind, g in enumerate(gt): # if this gt already matched, and not a crowd, continue if gtm[tind,gind]>0 and not iscrowd[gind]: continue # continue to next gt unless better match made if ioubs[dind,gind] < ioub: continue # if match successful and best so far, store appropriately ioub = ioubs[dind,gind] m = gind # if match made store id of match for both dt and gt if m > -1: dtIg[:, dind] = gtIg[m] if gtIg[m]: dtm[tind, dind] = gt[m]['id'] gtm[tind, m] = d['id'] # set unmatched detections outside of area range to ignore a = np.array([d['area']<aRng[0] or d['area']>aRng[1] for d in dt]).reshape((1, len(dt))) dtIg = np.logical_or(dtIg, np.logical_and(dtm==0, np.repeat(a,T,0))) # store results for given image and category #print('Done with the function', len(self.ious[imgId, catId])) return { 'image_id': imgId, 'category_id': catId, 'aRng': aRng, 'maxDet': maxDet, 'dtIds': [d['id'] for d in dt], 'gtIds': [g['id'] for g in gt], 'dtMatches': dtm, 'gtMatches': gtm, 'dtScores': [d['score'] for d in dt], 'gtIgnore': gtIg, 'dtIgnore': dtIg, } def accumulate(self, p = None): ''' Accumulate per image evaluation results and store the result in self.eval :param p: input params for evaluation :return: None ''' print('Accumulating evaluation results...') tic = time.time() if not self.evalImgs: print('Please run evaluate() first') # allows input customized parameters if p is None: p = self.params p.catIds = p.catIds if p.useCats == 1 else [-1] T = len(p.iouThrs) R = len(p.recThrs) K = len(p.catIds) if p.useCats else 1 A = len(p.areaRng) M = len(p.maxDets) precision = -np.ones((T,R,K,A,M)) # -1 for the precision of absent categories recall = -np.ones((T,K,A,M)) # create dictionary for future indexing print('Categories:', p.catIds) _pe = self._paramsEval catIds = _pe.catIds if _pe.useCats else [-1] setK = set(catIds) setA = set(map(tuple, _pe.areaRng)) setM = set(_pe.maxDets) setI = set(_pe.imgIds) # get inds to evaluate k_list = [n for n, k in enumerate(p.catIds) if k in setK] m_list = [m for n, m in enumerate(p.maxDets) if m in setM] a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA] i_list = [n for n, i in enumerate(p.imgIds) if i in setI] I0 = len(_pe.imgIds) A0 = len(_pe.areaRng) # retrieve E at each category, area range, and max number of detections for k, k0 in enumerate(k_list): Nk = k0 * A0 * I0 for a, a0 in enumerate(a_list): Na = a0 * I0 for m, maxDet in enumerate(m_list): E = [self.evalImgs[Nk + Na + i] for i in i_list] E = [e for e in E if not e is None] if len(E) == 0: continue dtScores = np.concatenate([e['dtScores'][0:maxDet] for e in E]) # different sorting method generates slightly different results. # mergesort is used to be consistent as Matlab implementation. inds = np.argsort(-dtScores, kind='mergesort') dtm = np.concatenate([e['dtMatches'][:,0:maxDet] for e in E], axis=1)[:,inds] dtIg = np.concatenate([e['dtIgnore'][:,0:maxDet] for e in E], axis=1)[:,inds] gtIg = np.concatenate([e['gtIgnore'] for e in E]) npig = np.count_nonzero(gtIg==0) #print('DTIG', np.sum(np.logical_not(dtIg)), len(dtIg)) #print('GTIG', np.sum(np.logical_not(gtIg)), len(gtIg)) if npig == 0: continue tps = np.logical_and( dtm, np.logical_not(dtIg)) fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg)) tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float) fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float) #print('TP_SUM', tp_sum, 'FP_SUM', fp_sum) for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)): tp = np.array(tp) fp = np.array(fp) nd = len(tp) rc = tp / npig pr = tp / (fp+tp+np.spacing(1)) q = np.zeros((R,)) if nd: recall[t,k,a,m] = rc[-1] else: recall[t,k,a,m] = 0 # numpy is slow without cython optimization for accessing elements # use python array gets significant speed improvement pr = pr.tolist(); q = q.tolist() for i in range(nd-1, 0, -1): if pr[i] > pr[i-1]: pr[i-1] = pr[i] inds = np.searchsorted(rc, p.recThrs, side='left') try: for ri, pi in enumerate(inds): q[ri] = pr[pi] except: pass precision[t,:,k,a,m] = np.array(q) print('Final', np.max(precision), np.min(precision)) self.eval = { 'params': p, 'counts': [T, R, K, A, M], 'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'precision': precision, 'recall': recall, } toc = time.time() print('DONE (t={:0.2f}s).'.format( toc-tic)) def summarize(self): ''' Compute and display summary metrics for evaluation results. Note this functin can *only* be applied on the default parameter setting ''' def _summarize( ap=1, iouThr=None, areaRng='all', maxDets=100 ): p = self.params iStr = ' {:<18} {} @[ {}={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}' titleStr = 'Average Precision' if ap == 1 else 'Average Recall' typeStr = '(AP)' if ap==1 else '(AR)' measure = 'IoU' if self.params.iouType == 'keypoints': measure = 'OKS' elif self.params.iouType =='uv': measure = 'OGPS' iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \ if iouThr is None else '{:0.2f}'.format(iouThr) aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] if ap == 1: # dimension of precision: [TxRxKxAxM] s = self.eval['precision'] # IoU if iouThr is not None: t = np.where(np.abs(iouThr - p.iouThrs)<0.001)[0] s = s[t] s = s[:,:,:,aind,mind] else: # dimension of recall: [TxKxAxM] s = self.eval['recall'] if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:,:,aind,mind] if len(s[s>-1])==0: mean_s = -1 else: mean_s = np.mean(s[s>-1]) print(iStr.format(titleStr, typeStr, measure, iouStr, areaRng, maxDets, mean_s)) return mean_s def _summarizeDets(): stats = np.zeros((12,)) stats[0] = _summarize(1) stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2]) stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2]) stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2]) stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2]) stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2]) stats[6] = _summarize(0, maxDets=self.params.maxDets[0]) stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2]) stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2]) stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2]) return stats def _summarizeKps(): stats = np.zeros((10,)) stats[0] = _summarize(1, maxDets=20) stats[1] = _summarize(1, maxDets=20, iouThr=.5) stats[2] = _summarize(1, maxDets=20, iouThr=.75) stats[3] = _summarize(1, maxDets=20, areaRng='medium') stats[4] = _summarize(1, maxDets=20, areaRng='large') stats[5] = _summarize(0, maxDets=20) stats[6] = _summarize(0, maxDets=20, iouThr=.5) stats[7] = _summarize(0, maxDets=20, iouThr=.75) stats[8] = _summarize(0, maxDets=20, areaRng='medium') stats[9] = _summarize(0, maxDets=20, areaRng='large') return stats def _summarizeUvs(): stats = np.zeros((18,)) stats[0] = _summarize(1, maxDets=self.params.maxDets[0]) stats[1] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=.5) stats[2] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=.55) stats[3] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=.60) stats[4] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=.65) stats[5] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=.70) stats[6] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=.75) stats[7] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=.80) stats[8] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=.85) stats[9] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=.90) stats[10] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=.95) stats[11] = _summarize(1, maxDets=self.params.maxDets[0], areaRng='medium') stats[12] = _summarize(1, maxDets=self.params.maxDets[0], areaRng='large') stats[13] = _summarize(0, maxDets=self.params.maxDets[0]) stats[14] = _summarize(0, maxDets=self.params.maxDets[0], iouThr=.5) stats[15] = _summarize(0, maxDets=self.params.maxDets[0], iouThr=.75) stats[16] = _summarize(0, maxDets=self.params.maxDets[0], areaRng='medium') stats[17] = _summarize(0, maxDets=self.params.maxDets[0], areaRng='large') return stats if not self.eval: raise Exception('Please run accumulate() first') iouType = self.params.iouType if iouType in ['segm','bbox']: summarize = _summarizeDets elif iouType in ['keypoints']: summarize = _summarizeKps elif iouType in ['uv']: summarize = _summarizeUvs self.stats = summarize() def __str__(self): self.summarize() # ================ functions for dense pose ============================== def findAllClosestVerts(self, gt, U_points, V_points, Index_points): # I_gt = np.array(gt['dp_I']) U_gt = np.array(gt['dp_U']) V_gt = np.array(gt['dp_V']) # #print(I_gt) # ClosestVerts = np.ones(Index_points.shape)*-1 for i in np.arange(24): # if sum(Index_points == (i+1))>0: UVs = np.array( [U_points[Index_points == (i+1)],V_points[Index_points == (i+1)]]) Current_Part_UVs = self.Part_UVs[i] Current_Part_ClosestVertInds = self.Part_ClosestVertInds[i] D = ssd.cdist( Current_Part_UVs.transpose(), UVs.transpose()).squeeze() ClosestVerts[Index_points == (i+1)] = Current_Part_ClosestVertInds[ np.argmin(D,axis=0) ] # ClosestVertsGT = np.ones(Index_points.shape)*-1 for i in np.arange(24): if sum(I_gt==(i+1))>0: UVs = np.array([ U_gt[I_gt==(i+1)], V_gt[I_gt==(i+1)] ]) Current_Part_UVs = self.Part_UVs[i] Current_Part_ClosestVertInds = self.Part_ClosestVertInds[i] D = ssd.cdist( Current_Part_UVs.transpose(), UVs.transpose()).squeeze() ClosestVertsGT[I_gt==(i+1)] = Current_Part_ClosestVertInds[ np.argmin(D,axis=0) ] # return ClosestVerts, ClosestVertsGT def getDistances(self, cVertsGT, cVerts): ClosestVertsTransformed = self.PDIST_transform[cVerts.astype(int)-1] ClosestVertsGTTransformed = self.PDIST_transform[cVertsGT.astype(int)-1] # ClosestVertsTransformed[cVerts<0] = 0 ClosestVertsGTTransformed[cVertsGT<0] = 0 # cVertsGT = ClosestVertsGTTransformed cVerts = ClosestVertsTransformed # n = 27554 dists = [] for d in range(len(cVertsGT)): if cVertsGT[d] > 0: if cVerts[d] > 0: i = cVertsGT[d] - 1 j = cVerts[d] - 1 if j == i: dists.append(0) elif j > i: ccc = i i = j j = ccc i = n-i-1 j = n-j-1 k = (n*(n-1)/2) - (n-i)*((n-i)-1)/2 + j - i - 1 k = ( n*n - n )/2 -k -1 dists.append(self.Pdist_matrix[int(k)][0]) else: i= n-i-1 j= n-j-1 k = (n*(n-1)/2) - (n-i)*((n-i)-1)/2 + j - i - 1 k = ( n*n - n )/2 -k -1 dists.append(self.Pdist_matrix[int(k)][0]) else: dists.append(np.inf) return np.array(dists).squeeze() class Params: ''' Params for coco evaluation api ''' def setDetParams(self): self.imgIds = [] self.catIds = [] # np.arange causes trouble. the data point on arange is slightly larger than the true value self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True) self.maxDets = [1, 10, 100] self.areaRng = [[0 ** 2, 1e5 ** 2], [0 ** 2, 32 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]] self.areaRngLbl = ['all', 'small', 'medium', 'large'] self.useCats = 1 def setKpParams(self): self.imgIds = [] self.catIds = [] # np.arange causes trouble. the data point on arange is slightly larger than the true value self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True) self.maxDets = [20] self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]] self.areaRngLbl = ['all', 'medium', 'large'] self.useCats = 1 def setUvParams(self): self.imgIds = [] self.catIds = [] self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True) self.maxDets = [20] self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]] self.areaRngLbl = ['all', 'medium', 'large'] self.useCats = 1 def __init__(self, iouType='segm'): if iouType == 'segm' or iouType == 'bbox': self.setDetParams() elif iouType == 'keypoints': self.setKpParams() elif iouType == 'uv': self.setUvParams() else: raise Exception('iouType not supported') self.iouType = iouType # useSegm is deprecated self.useSegm = None
the-stack_0_27997
import requests import json class UrlscanException(Exception): pass class Urlscan: def __init__(self): self.base_url = "https://urlscan.io/api/" self.version = "v1" def search(self, query): assert len(query) > 0, "Qeury must be defined" payload = {"q": query} url = self.url_for("/search/") r = requests.get(url, params=payload) if r.status_code == 200: return r.json() else: raise UrlscanException("urlscan.io returns %s" % r.status_code) def result(self, uuid): assert len(uuid) > 0, "UUID must be defined" url = self.url_for("/result/{}/".format(uuid)) r = requests.get(url) if r.status_code == 200: return r.json() else: raise UrlscanException("urlscan.io returns %s" % r.status_code) def url_for(self, path): return "{}{}{}".format(self.base_url, self.version, path)
the-stack_0_27998
# -*- coding: utf-8 -*- # MOMOの大気中飛行時の荷重計算 # 軸力と曲げモーメントを計算する # 参考文献:液体ロケットの構造システム設計 from __future__ import print_function import sys import numpy as np import scipy.integrate as integrate from scipy.interpolate import interp1d import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.font_manager from matplotlib.font_manager import FontProperties from matplotlib.backends.backend_pdf import PdfPages import time as tm from fitting import fitting_6lines plt.close("all") process_start = tm.time() class Component: def __init__(self, length, weight_dry, prop_init, prop_end, burntime, press=0.0): self.length = length self.weight_dry = weight_dry self.prop_init = prop_init self.prop_end = prop_end self.burntime = burntime self.prop = np.linspace(prop_init, prop_end, burntime) self.weight_wet = np.linspace(weight_dry, weight_dry, burntime) + self.prop self.press = press # NOT USED NOW # イナートセット self.density = self.weight_dry/self.length*np.ones([burntime,self.length]) # 推進剤セット if self.prop_init != 0.0: density_prop_init = prop_init/self.length # 初期推進剤線密度 for time in range(self.burntime): num_block_prop = int(self.prop[time]/density_prop_init+1e-8) array_current_prop = density_prop_init*np.ones(self.length) array_current_prop[0:self.length-num_block_prop]=0 self.density[time] = self.density[time] + array_current_prop amari = self.weight_wet[time]-sum(self.density[time]) if amari < -1e-8: print("ERROR: NEGATIVE MASS") print(time,self.burntime,num_block_prop,self.length,array_current_prop,amari) exit(1) if abs(amari)>1e-8: self.density[time][-num_block_prop-1] = self.density[time][-num_block_prop-1] + amari # 整合性確認 for time in range(self.burntime): if abs(sum(self.density[time])-self.weight_wet[time])>1e-8: print(u"ERROR: 質量と密度積分値が一致しません。") print(self.weight_wet[time]-sum(self.density[time]),density_prop_init) exit(1) def show(self): print(u"[%d mm,\t%d kg,\t%d kg,\t%d kg]" %(self.length, self.weight_dry, self.prop_init, self.prop_end)) class Rocket: def __init__(self, burntime, diameter): # 以下はFinalizeが必要 # dmdx self.burntime = burntime self.length = 0 self.weight_dry = 0 self.weight_wet = 0 self.prop = np.zeros(self.burntime) self.dmdx = np.zeros([self.burntime, self.length]) self.mass = np.zeros(self.burntime) self.inertia = np.zeros(self.burntime) self.x_CG = np.zeros(self.burntime) self.x_CP = np.zeros(self.burntime) self.x = np.arange(self.length) #self.inertia_distribution = np.zeros([self.burntime, self.length+1]) self.diameter= diameter self.area = 1.0/4 * np.pi * diameter**2 # 面積 m2 self.divid = [0] def add_component(self, component): # 部品を加えてロケットのパラメータを更新 length_start = self.length self.length = self.length + component.length self.weight_dry = self.weight_dry + component.weight_dry self.prop = self.prop + component.prop self.weight_wet = self.weight_wet + component.weight_wet self.divid.append(self.length) self.dmdx = np.concatenate((self.dmdx,np.zeros([self.burntime, component.length])),axis=1) #self.inertia_distribution = np.zeros([self.burntime, self.length]) for time in range(self.burntime): self.dmdx[time][length_start:self.length] = component.density[time] def set_C_A(self, C_A): # 部品を加えた後に軸力係数をセット # C_A:全機の軸力係数、今後は入力を分布にできるように関数だけ用意 self.C_A = C_A self.dC_Adx = np.zeros([self.burntime, self.length+1]) for time in range(self.burntime): self.dC_Adx[time][0] = C_A def set_C_N(self, C_N, nose, fin, engine): # 部品を加えた後に法線力係数をセット # C_N:全機の法線力係数、今後は入力を分布にできるように関数を用意 self.dC_Ndx = np.zeros([self.burntime, self.length+1]) pos_nose = int(nose.length/2) pos_fin = int(self.length - (engine.length + fin.length / 2)) for time in range(self.burntime): self.C_N_nose = C_N * (self.x_CP[time] - pos_fin ) / (pos_nose - pos_fin) self.C_N_tail = C_N * (self.x_CP[time] - pos_nose) / (pos_fin - pos_nose) self.dC_Ndx[time][pos_nose] = self.C_N_nose self.dC_Ndx[time][pos_fin] = self.C_N_tail def set_x_CP(self, x_CP): self.x_CP = x_CP*np.ones(self.burntime) def finalize(self): # dmdxの境界値処理(機体後端を0) self.x = np.arange(rocket.length+1) self.dmdx = np.concatenate((self.dmdx,np.zeros([self.burntime, 1])),axis=1) # 慣性諸元計算 for time in range(self.burntime): self.mass[time] = np.sum(self.dmdx[time]) self.x_CG[time] = np.sum(self.dmdx[time] * self.x) self.inertia[time] = np.sum(self.dmdx[time] * self.x ** 2) self.x_CG[time] = self.x_CG[time] / self.mass[time] # [mm] self.inertia[time] = self.inertia[time] - self.mass[time] * self.x_CG[time] ** 2 # [kg*mm2] def calc_axial_load(rocket,thrust_a,q_a,rating_time): drag = np.zeros([rocket.burntime, rocket.length+1]) force_A = np.zeros([rocket.burntime, rocket.length+1]) X_dotdot = np.zeros(rocket.burntime) #for time in range(burntime): # for all the duration. for time in rating_time: X_dotdot[time] = (thrust_a[time] - rocket.area * q_a[time] * rocket.C_A) / rocket.mass[time] # [m/s2] drag[time] = rocket.area * q_a[time] * np.cumsum(rocket.dC_Adx[time]) force_A[time] = - drag[time] - X_dotdot[time] * np.cumsum(rocket.dmdx[time]) return [X_dotdot,drag,force_A] def calc_bending_moment(rocket,thrust_a,q_a,rating_time): M_a = np.zeros([rocket.burntime, rocket.length+1]) M_a1 = np.zeros([rocket.burntime, rocket.length+1]) M_a2 = np.zeros([rocket.burntime, rocket.length+1]) M_d = np.zeros([rocket.burntime, rocket.length+1]) M_d1 = np.zeros([rocket.burntime, rocket.length+1]) M_d2 = np.zeros([rocket.burntime, rocket.length+1]) M1 = np.zeros([rocket.burntime, rocket.length+1]) M2 = np.zeros([rocket.burntime, rocket.length+1]) Z_dotdot_d = np.zeros(rocket.burntime) Z_dotdot_a = np.zeros(rocket.burntime) Omega_dot_d = np.zeros(rocket.burntime) Omega_dot_a = np.zeros(rocket.burntime) #for time in range(burntime): # for all the duration for time in rating_time: #if(time%10==0):print(u"曲げモーメント計算:燃焼時間 %d 秒"% (time)) # for all the duration ## Symbol: # *_d: Moment by Gimbal # *_a: Moment by Air Force # gimbal Z_dotdot_d[time] = T_g_a[time] / rocket.mass[time] # [m/s2] Omega_dot_d[time] = T_g_a[time] * rocket.x_CG[time] / rocket.inertia[time] # [m/mm/s2] for pos in range(rocket.length+1): M_d1[time][pos] = T_g_a[time] * pos * 1e-3 # [Nm] M_d2[time][pos] = - np.sum(\ (Z_dotdot_d[time] + Omega_dot_d[time]*(rocket.x_CG[time]- rocket.x[:pos]))\ * rocket.dmdx[time][:pos]\ * (pos - rocket.x[:pos])) * 1e-3 # [Nm] # air force Z_dotdot_a[time] = rocket.area * q_a[time] * np.sum(rocket.dC_Ndx[time]) / rocket.mass[time] # [m/s2] Omega_dot_a[time] = rocket.area * q_a[time] * np.sum(rocket.dC_Ndx[time]*(rocket.x_CG[time]-rocket.x)) / rocket.inertia[time] # [m/mm/s2] for pos in range(rocket.length+1): M_a1[time][pos] = + rocket.area * q_a[time] * np.sum(rocket.dC_Ndx[time][:pos] * (pos - rocket.x[:pos])) * 1e-3 # [Nm] M_a2[time][pos] = - np.sum(\ (Z_dotdot_a[time] + Omega_dot_a[time]*(rocket.x_CG[time]- rocket.x[:pos]))\ * rocket.dmdx[time][:pos]\ * (pos - rocket.x[:pos])) * 1e-3 # [Nm] M_a = M_a1 + M_a2 M_d = M_d1 + M_d2 M1 = M_a + M_d M2 = M_a - M_d M_max = np.maximum (abs(M1),abs(M2)) return [M_a, M_d, M1, M2, M_max, Z_dotdot_d, Z_dotdot_a, Omega_dot_d, Omega_dot_a] def calc_equivalent_axial_force(force_A,M_max,diameter): F_eq_comp = force_A-M_max*4/diameter F_eq_tens = force_A+M_max*4/diameter return [F_eq_comp, F_eq_tens] def calc_rating_load(load,divid,rating_time,sign): load_rating = [] for i in range(len(divid)-1): i_start = divid[i] i_end = divid[i+1]+1 val = 0 for j,time in enumerate(rating_time): cur = max(load[time][i_start:i_end]*sign) val = max(val,cur) load_rating.append(val*sign) return load_rating if __name__ == "__main__": print(u"****** IST 荷重計算プログラム ******") g0 = 9.80665 #======諸元入力ゾーン==================================================================================================================== #===================================================================================================================================== #===================================================================================================================================== # 軌道情報 ZERO Phase6E軌道設計 参考 burntime = 163 # 燃焼時間 秒 rating_label = ["LiftOff" , "MaxQ" , "MaxDrag" , "MECO" ] rating_time = [0 , 55 , 60 , 162 ] # 評定となる時刻 秒 thrust = [500400 , 570600 , 570600 , 571000 ] # 推力 N q = [6.4E+00 , 3.1E+04 , 3.1E+04 , 0.2E+03 ] # 動圧 Pa max_gimbal_angle = 8 * np.pi/180 # 最大舵角[rad] T_g = [v*np.sin(max_gimbal_angle) for v in thrust]# ジンバルによる横推力 N # 空力諸元 MISSILE DATCOM or CFD dia = 2.0 # 機体直径 m C_A = 0.746 # 軸力係数 ND C_N = 2.1 # 法線力係数 ND x_CP = 6600 # ノーズからの風圧中心位置 mm savefig_flag = True # 出力を保存するかどうか savepdf_flag = True # PDF出力するかどうか save_name = u"ZERO_Ph6F_NP_Case1" if(savepdf_flag):pdf = PdfPages(save_name + u"_plot.pdf") sys.stdout = sys.__stdout__ print(u"コンポーネント設定開始") # === コンポーネント ==== # comp = Component(length_mm, weight_kg, prop_init_kg, prop_end_kg, burntime_sec, press_MPa) nose = Component(3000, 235, 0, 0, burntime, 0.0) tank_2nd_LOx = Component(500, 142, 3967, 3967, burntime, 0.5) tank_2nd_inter = Component(2180, 364, 0, 0, burntime, 0.0) tank_2nd_fuel = Component(900, 80, 1853, 1853, burntime, 0.5) tank_interstage = Component(3000, 300, 0, 0, burntime, 0.0) tank_1st_LOx = Component(5400, 686, 19477, 109, burntime, 0.5) tank_1st_inter = Component(1500, 2457, 0, 0, burntime, 0.0) tank_1st_fuel = Component(3800, 517, 10223, 97, burntime, 0.5) fin = Component(1000, 200, 0, 0, burntime, 0.0) engine = Component(1000, 1080, 0, 0, burntime, 0.0) # === 曲げモーメントの曲線フィッティング === fitting_flag = False # 関数フィッティングするかどうか ## x1~6 : 集中荷重を受ける機体頭からの距離 mm #x1 = 0 #x2 = 1096 #x3 = 3497 #x4 = 5605 #x5 = 6105 #x6 = 8905 #x_end = 9884 # ==== 入力ここまで ===================================================================================================================== #===================================================================================================================================== #===================================================================================================================================== # === コンポーネントをRocketクラスにAdd ==== rocket = Rocket(burntime, dia) rocket.add_component(nose) rocket.add_component(tank_2nd_LOx) rocket.add_component(tank_2nd_inter) rocket.add_component(tank_2nd_fuel) rocket.add_component(tank_interstage) rocket.add_component(tank_1st_LOx) rocket.add_component(tank_1st_inter) rocket.add_component(tank_1st_fuel) rocket.add_component(fin) rocket.add_component(engine) rocket.set_x_CP(x_CP) rocket.set_C_A(C_A) rocket.set_C_N(C_N,nose,fin,engine) rocket.finalize() print(u"コンポーネント設定終了") print(u"入力値出力開始") # ==== 補間 ==== time_a = np.linspace(0,burntime, burntime+1) T_g_f = interp1d(rating_time, T_g, fill_value="extrapolate") thrust_f = interp1d(rating_time, thrust, fill_value="extrapolate") q_f = interp1d(rating_time, q, fill_value="extrapolate") T_g_a = T_g_f(time_a) thrust_a = thrust_f(time_a) q_a = q_f(time_a) # ==== 重量分布のプロット ==== plt.figure(1) for (i, time) in enumerate(rating_time): plt.plot(range(rocket.length+1),rocket.dmdx[time], label= "%s" % (rating_label[i])) for j in rocket.divid: plt.axvline(x=j, color = "k", linestyle="--", alpha = 0.1) plt.xlabel("STA mm") plt.ylabel("mass distribution kg/mm") plt.title("mass distribution") plt.legend(loc="best") if(savefig_flag):plt.savefig(save_name + "_load_calculation_mass distribution.png") if(savepdf_flag):pdf.savefig() # ==== 軸力係数&法線力係数のプロット ===== time_force = 0 plt.figure(2) plt.plot(range(rocket.length+1),rocket.dC_Adx[time_force], linewidth=5) for j in rocket.divid: plt.axvline(x=j, color = "k", linestyle="--", alpha = 0.2) plt.xlabel("STA [mm]") plt.ylabel("dC_A/dx [kg/mm]") plt.xlim([-100, rocket.length+100]) plt.title(r"$\frac{dC_A}{dx}$") if(savefig_flag):plt.savefig(save_name + "_load_calculation_dCAdx.png") if(savepdf_flag):pdf.savefig() plt.figure(3) plt.plot(range(rocket.length+1),rocket.dC_Ndx[time_force], linewidth=5) for j in rocket.divid: plt.axvline(x=j, color = "k", linestyle="--", alpha = 0.2) plt.xlabel("STA [mm]") plt.ylabel("dC_N/dx [kg/mm]") plt.xlim([-100, rocket.length+100]) plt.title(r"$\frac{dC_N}{dx}$") if(savefig_flag):plt.savefig(save_name + "_load_calculation_dCNdx.png") if(savepdf_flag):pdf.savefig() print(u"入力値出力終了") # ==== 軸力 ==== print(u"軸力計算中...") [X_dotdot,drag,force_A] = calc_axial_load(rocket,thrust_a,q_a,rating_time) print(u"軸力計算終了") print(u"軸力出力開始") plt.figure(4) X_dotdot_a =[] for (i, time) in enumerate(rating_time): plt.plot(range(rocket.length+1),force_A[time], label = "%s" % (rating_label[i])) X_dotdot_a.append(X_dotdot[time]) for j in rocket.divid: plt.axvline(x=j, color = "k", linestyle="--", alpha = 0.2) plt.xlabel("STA mm") plt.ylabel("Axial load N") plt.ylim(ymin=-18000) plt.title("Axial load") plt.legend(loc="best") if(savefig_flag):plt.savefig(save_name + "_load_calculation_axial_load.png") if(savepdf_flag):pdf.savefig() print(u"軸力出力終了") # ==== 曲げモーメント ==== print(u"曲げモーメント計算中...") [M_a, M_d, M1, M2, M_max, Z_dotdot_d, Z_dotdot_a, Omega_dot_d, Omega_dot_a] = calc_bending_moment(rocket,thrust_a,q_a,rating_time) print(u"曲げモーメント計算終了") # ==== 曲げモーメントのPLOT ==== print(u"曲げモーメント出力開始") Z_dotdot_d_a = [] Z_dotdot_a_a = [] Omega_dot_d_a = [] Omega_dot_a_a = [] for (i, time) in enumerate(rating_time): Z_dotdot_d_a.append(Z_dotdot_d[time]) Z_dotdot_a_a.append(Z_dotdot_a[time]) # 集約表作成 plt.figure(5) plt.plot(range(rocket.length+1),M1[time], label="%s" % (rating_label[i])) plt.figure(6) plt.plot(range(rocket.length+1),M2[time], label="%s" % (rating_label[i])) plt.figure(7) plt.plot(range(rocket.length+1),M_max[time], label="%s" % (rating_label[i])) # 曲げモーメント内訳 plt.figure() #plt.plot(range(rocket.length+1),M_a1[time], label = "Air Force") #plt.plot(range(rocket.length+1),M_a2[time], label = "Air Force Inertia") #plt.plot(range(rocket.length+1),M_d1[time], label = "Gimbal") #plt.plot(range(rocket.length+1),M_d2[time], label = "Gimbal Inertia") plt.plot(range(rocket.length+1),M_a[time], label = "Air Force") plt.plot(range(rocket.length+1),M_d[time], label = "Gimbal") plt.axhline(y=0, color = "k", linestyle="--", alpha = 0.2) for j in rocket.divid: plt.axvline(x=j, color = "k", linestyle="--", alpha = 0.2) plt.legend(loc = "best") plt.xlabel("STA mm") plt.ylabel("Bending Moment Nm") plt.title("%s Breakdown of BMD" % (rating_label[i])) if(savefig_flag):plt.savefig(save_name + "_load_calculation_bending_moment_%s.png" % (rating_label[i])) if(savepdf_flag):pdf.savefig() if(fitting_flag): # 曲げモーメント曲線のフィッティング fitting_6lines(rocket.x, M1[time], x1, x2, x3, x4, x5, x6, x_end,True, True, True, "%s_M++_%s" % (save_name, rating_label[i]), "%s_M++_%s" % (save_name, rating_label[i])) if(savepdf_flag):pdf.savefig() fitting_6lines(rocket.x, M2[time], x1, x2, x3, x4, x5, x6, x_end,True, False, True, "%s_M+-_%s" % (save_name, rating_label[i]), "%s_M+-_%s" % (save_name, rating_label[i])) if(savepdf_flag):pdf.savefig() plt.figure(5) plt.axhline(y=0, color = "k", linestyle="--", alpha = 0.2) for j in rocket.divid: plt.axvline(x=j, color = "k", linestyle="--", alpha = 0.2) plt.xlabel("STA mm") plt.ylabel("Bending Moment Nm") plt.title("Bending Moment (Airforce + Gimbal)") plt.legend(loc="best") if(savefig_flag):plt.savefig(save_name + u"_load_calculation_BendingMoment_same_sign.png") if(savepdf_flag):pdf.savefig() plt.figure(6) plt.axhline(y=0, color = "k", linestyle="--", alpha = 0.2) for j in rocket.divid: plt.axvline(x=j, color = "k", linestyle="--", alpha = 0.2) plt.xlabel("STA mm") plt.ylabel("Bending Moment Nm") plt.title("Bending Moment (Airforce - Gimbal)") plt.legend(loc="best") if(savefig_flag):plt.savefig(save_name + u"_load_calculation_BendingMoment_different_sign.png") if(savepdf_flag):pdf.savefig() plt.figure(7) plt.axhline(y=0, color = "k", linestyle="--", alpha = 0.2) for j in rocket.divid: plt.axvline(x=j, color = "k", linestyle="--", alpha = 0.2) plt.xlabel("STA mm") plt.ylabel("Bending Moment Nm") plt.title("Max Bending Moment(abs)") plt.legend(loc="best") if(savefig_flag):plt.savefig(save_name + u"_load_calculation_BendingMoment_Max.png") if(savepdf_flag):pdf.savefig() print(u"曲げモーメント出力終了") # ==== 等価軸力 ==== print(u"等価軸力計算中...") [F_eq_comp, F_eq_tens]=calc_equivalent_axial_force(force_A,M_max,dia) print(u"等価軸力計算終了") print(u"等価軸力出力開始") plt.figure() F_eq_comp_a =[] for (i, time) in enumerate(rating_time): plt.plot(range(rocket.length+1),-F_eq_comp[time], label = "%s" % (rating_label[i])) F_eq_comp_a.append(F_eq_comp[time]) for j in rocket.divid: plt.axvline(x=j, color = "k", linestyle="--", alpha = 0.2) plt.xlabel("STA mm") plt.ylabel("Axial force N") plt.ylim(ymin=0) plt.title("Equivalent Axial Force (Compression)") plt.legend(loc="best") if(savefig_flag):plt.savefig(save_name + "_load_calculation_equivalent_axial_force_compressive.png") if(savepdf_flag):pdf.savefig() #plt.figure() #F_eq_tens_a =[] #for (i, time) in enumerate(rating_time): # plt.plot(range(rocket.length+1),F_eq_tens[time], label = "%s" % (rating_label[i])) # F_eq_tens_a.append(F_eq_tens[time]) #for j in rocket.divid: # plt.axvline(x=j, color = "k", linestyle="--", alpha = 0.2) #plt.xlabel("STA mm") #plt.ylabel("Axial force N") #plt.ylim(ymin=0) #plt.title("Equivalent Axial Force (Tensile)") #plt.legend(loc="best") #if(savefig_flag):plt.savefig(save_name + "_load_calculation_equivalent_axial_force_tensile.png") #if(savepdf_flag):pdf.savefig() print(u"等価軸力出力終了") # ==== 評定荷重 ==== print(u"評定荷重計算中...") force_A_rating = calc_rating_load(force_A, rocket.divid,rating_time,-1) M_max_rating = calc_rating_load(M_max, rocket.divid,rating_time, 1) F_eq_tens_rating = calc_rating_load(F_eq_tens,rocket.divid,rating_time, 1) F_eq_comp_rating = calc_rating_load(F_eq_comp,rocket.divid,rating_time,-1) print(u"評定荷重計算終了") print(u"評定荷重出力開始") fp = open(save_name + "_rating.csv", "w") # 出力先をファイルに変更 rocket_divid_sta = [v for v in rocket.divid] fp.write("開始位置[mm]," + ",".join(map(str,rocket_divid_sta[0:-1]))+"\n") fp.write("終了位置[mm]," + ",".join(map(str,rocket_divid_sta[1:]))+"\n") fp.write("軸力[N]," + ",".join(map(str,force_A_rating))+"\n") fp.write("曲げモーメント[Nm]," + ",".join(map(str,M_max_rating))+"\n") #fp.write("等価軸引張力[N]," + ",".join(map(str,F_eq_tens_rating))+"\n") fp.write("等価軸圧縮力[N]," + ",".join(map(str,F_eq_comp_rating))+"\n") fp.close() print(u"評定荷重出力終了") # ==== 後処理==== # plt.show() if(savepdf_flag):pdf.close() print(u"処理時間:%.1f sec" % (tm.time() - process_start)) # ==== 文字出力 ==== sys.stdout = open(save_name + u"_output.txt", "w") # 出力先をファイルに変更 print(u"==== 結果出力 ====") print(u"★ 入力値") print(u"機体直径 = %d mm,\t機体断面積 = %.3f m2" % (dia*1e3, rocket.area)) print(u"燃焼時間 = %d 秒" % (burntime)) # print(u"") print(u"凡例 :\t\t\t[LiftOff, MaxQ, MaxDrag, MECO]") print(u"時刻 :\t\t\t[%d sec, %d sec, %d sec, %d sec]" % (rating_time[0], rating_time[1], rating_time[2], rating_time[3])) print(u"動圧 :\t\t\t[%.1f Pa, %.1f Pa, %.1f Pa, %.1f Pa]" % (q[0], q[1], q[2], q[3])) print(u"推力 :\t\t\t[%.1f N, %.1f N, %.1f N, %.1f N]" % (thrust[0], thrust[1], thrust[2], thrust[3])) print(u"ジンバル横推力 :\t[%.1f N, %.1f N, %.1f N, %.1f N]" % (T_g[0], T_g[1], T_g[2], T_g[3])) print(u"軸力係数C_A :\t\t[%.1f , %.1f , %.1f , %.1f ]" % (C_A, C_A, C_A, C_A)) print(u"法線力係数C_N :\t\t[%.1f , %.1f , %.1f , %.1f ]" % (C_N, C_N, C_N, C_N)) print(u"風圧中心x_CP :\t\t[%.1f mm, %.1f mm, %.1f mm, %.1f mm]" % (rocket.x_CP[rating_time[0]], rocket.x_CP[rating_time[1]], rocket.x_CP[rating_time[2]], rocket.x_CP[rating_time[3]])) print(u"重心x_CG(参考) :\t[%.1f mm, %.1f mm, %.1f mm, %.1f mm]" % (rocket.x_CG[rating_time[0]], rocket.x_CG[rating_time[1]], rocket.x_CG[rating_time[2]], rocket.x_CG[rating_time[3]])) print(u"分割点[mm] :\t\t", end="") print(rocket.divid) print(u"") print(u"★ 計算結果") print(u"軸方向加速度 :\t\t\t[%.1f m/s2, %.1f m/s2, %.1f m/s2, %.1f m/s2]" % (X_dotdot_a[0], X_dotdot_a[1], X_dotdot_a[2], X_dotdot_a[3])) print(u"垂直方向加速度(空気力) :\t[%.1f m/s2, %.1f m/s2, %.1f m/s2, %.1f m/s2]" % (Z_dotdot_a_a[0], Z_dotdot_a_a[1], Z_dotdot_a_a[2], Z_dotdot_a_a[3])) print(u"垂直方向加速度(ジンバル) :\t[%.1f m/s2, %.1f m/s2, %.1f m/s2, %.1f m/s2]" % (Z_dotdot_d_a[0], Z_dotdot_d_a[1], Z_dotdot_d_a[2], Z_dotdot_d_a[3])) print(u"") print(u"==== コンポーネント ====") print(u"[長さ mm,\tドライ重量 kg,\t推進剤重量 kg,\t推進剤空時 kg]") print(u"fairing :\t", end="") nose.show() print(u"2nd_LOx_tank :\t", end="") tank_2nd_LOx.show() print(u"2nd_fuel_tank :\t", end="") tank_2nd_fuel.show() print(u"1st_LOx_tank :\t", end="") tank_1st_LOx.show() print(u"1st_fuel_tank :\t", end="") tank_1st_fuel.show() print(u"fin :\t", end="") fin.show() print(u"engine :\t", end="") engine.show() # 一端ファイルに出力させたものを標準出力に呼び出している sys.stdout.close() sys.stdout = sys.__stdout__ print(open(save_name + u"_output.txt","r").read())
the-stack_0_27999
# Desenpacotamento de parametros: def contador(* num): # o * sinaliza um desenpacotamento de parametros print(num) contador(2, 1, 4, 6) contador(4, 9) contador(5, 6, 2, 7, 0, 9, 6, 7) print('*' * 30) print('*' * 30) # --------------------------- # outro jeito de imprimir, com for def contador2(* num2): for valor in num2: print(f'{valor} ', end='') print('Fim') contador2(2, 1, 4, 6) contador2(4, 9) contador2(5, 6, 2, 7, 0, 9, 6, 7) print('*' * 30) print('*' * 30) #--------------------------- # usando len: def contador3(* num): tamanho = len(num) print(f'Recebi os valores {num} e são ao todo {tamanho} números!') contador3(2, 1, 4, 6) contador3(4, 9) contador3(5, 6, 2, 7, 0, 9, 6, 7)
the-stack_0_28000
# https://gist.github.com/adoc/8550490 def unpad(bytestring, k=16): """ Remove the PKCS#7 padding from a text bytestring. """ val = bytestring[-1] if val > k: raise ValueError('Input is not padded or padding is corrupt') l = len(bytestring) - val return bytestring[:l] ## @param bytestring The text to encode. ## @param k The padding block size. # @return bytestring The padded bytestring. def pad(bytestring, k=16): """ Pad an input bytestring according to PKCS#7 """ l = len(bytestring) val = k - (l % k) return bytestring + bytearray([val] * val)
the-stack_0_28001
from helper import unittest, PillowTestCase, hopper from array import array import sys from PIL import Image class TestImagePutData(PillowTestCase): def test_sanity(self): im1 = hopper() data = list(im1.getdata()) im2 = Image.new(im1.mode, im1.size, 0) im2.putdata(data) self.assert_image_equal(im1, im2) # readonly im2 = Image.new(im1.mode, im2.size, 0) im2.readonly = 1 im2.putdata(data) self.assertFalse(im2.readonly) self.assert_image_equal(im1, im2) def test_long_integers(self): # see bug-200802-systemerror def put(value): im = Image.new("RGBA", (1, 1)) im.putdata([value]) return im.getpixel((0, 0)) self.assertEqual(put(0xFFFFFFFF), (255, 255, 255, 255)) self.assertEqual(put(0xFFFFFFFF), (255, 255, 255, 255)) self.assertEqual(put(-1), (255, 255, 255, 255)) self.assertEqual(put(-1), (255, 255, 255, 255)) if sys.maxsize > 2**32: self.assertEqual(put(sys.maxsize), (255, 255, 255, 255)) else: self.assertEqual(put(sys.maxsize), (255, 255, 255, 127)) def test_pypy_performance(self): im = Image.new('L', (256, 256)) im.putdata(list(range(256))*256) def test_mode_i(self): src = hopper('L') data = list(src.getdata()) im = Image.new('I', src.size, 0) im.putdata(data, 2, 256) target = [2 * elt + 256 for elt in data] self.assertEqual(list(im.getdata()), target) def test_mode_F(self): src = hopper('L') data = list(src.getdata()) im = Image.new('F', src.size, 0) im.putdata(data, 2.0, 256.0) target = [2.0 * float(elt) + 256.0 for elt in data] self.assertEqual(list(im.getdata()), target) def test_array_B(self): # shouldn't segfault # see https://github.com/python-pillow/Pillow/issues/1008 arr = array('B', [0])*15000 im = Image.new('L', (150, 100)) im.putdata(arr) self.assertEqual(len(im.getdata()), len(arr)) def test_array_F(self): # shouldn't segfault # see https://github.com/python-pillow/Pillow/issues/1008 im = Image.new('F', (150, 100)) arr = array('f', [0.0])*15000 im.putdata(arr) self.assertEqual(len(im.getdata()), len(arr)) if __name__ == '__main__': unittest.main()
the-stack_0_28002
#!/usr/bin/env python # -*- coding: utf8 -*- import pickle import io, os import lockdir class DontHaveLockError(Exception): def __init__(self): Exception.__init__(self, 'error: you don\'t have lock (thread_safe is enabled so you need to get_lock())') # When locking is set to True, multiprocess safety is ensured using the lockdir module: # # * The load() method automatically locks the object's file before reading it. # * The create() method locks the file before it creates it. # * The delete() method releases the file after it deletes it. # * The save() method doesn't do anything with the lock, as it works with a locked file. # # The PickleStorage object keeps track of all its locked files and releases them # when it is destructed (the __del__() method). # # The user should call the release() method on an object when no longer using it. # This makes it possible to once again load() it. Calling load() on an object whose # file is locked fails because it is unable to lock it. # # The file being locked only prevents other processes from accessing it, # not the process that created it (see "locked_by_me" in _lock_file()). # So the user of PickleStorage doesn't really need to care about releasing # the files if the PickleStorage object only lasts for a moment. In that # case it is enough that the destructor (the __del__() method) takes care # of releasing the locks. # # Still, it is better to release the object as soon as it is no longer used. # # An alternative to waiting for the PickleStorage object's destruction is # to call its close() method. Like the destructor, it releases all the locks. # After calling close(), the PickleStorage object is no longer usable. # class PickleStorage: PERMISSIONS = 0o777 def __init__(self, directory, locking=True): self._storage_dir = directory self._closed = False if locking: self._locking = True self._my_locked_files = set() # the files locked by this instance of PickleStorage else: self._locking = False def storage_dir(self): return self._storage_dir def load(self, class_, args_to_key_func, args, obj_to_key_func): if self._closed: raise Exception('this %s object has been closed' % self.__class__.__name) classkey = class_.__name__ key = args_to_key_func(**args) filename = self._filename(classkey, key) if self._locking: self._lock_file(filename) # lock the file before reading it try: text_io = io.open(filename, mode='rb') except IOError: raise KeyError('cannot load: \n\ object %s %s \n\ does not exist in the storage \n\ (failed to open file "%s" for reading)' % (classkey, key, filename)) obj = pickle.load(text_io) text_io.close() assert key == obj_to_key_func(obj) return obj def save(self, obj_to_key_func, obj): if self._closed: raise Exception('this %s object has been closed' % self.__class__.__name) classkey = obj.__class__.__name__ key = obj_to_key_func(obj) filename = self._filename(classkey, key) try: text_io = io.open(filename, mode='rb+') except IOError: raise KeyError('cannot save: \n\ object %s %s \n\ does not exist in the storage \n\ (failed to open file "%s" for modification)' % (classkey, key, filename)) pickle.dump(obj, text_io) text_io.close() def create(self, obj_to_key_func, obj): if self._closed: raise Exception('this %s object has been closed' % self.__class__.__name) classkey = obj.__class__.__name__ key = obj_to_key_func(obj) filename = self._filename(classkey, key) if os.path.isfile(filename): raise KeyError('cannot create: \n\ object %s %s \n\ already exists in the storage \n\ (file %s exists)' % (classkey, key, filename)) self._ensure_class_dir(classkey) if self._locking: self._lock_file(filename) # lock the file before creating it text_io = io.open(filename, mode='wb') pickle.dump(obj, text_io) text_io.close() if self.PERMISSIONS is not None: os.chmod(filename, self.PERMISSIONS) def delete(self, obj_to_key_func, obj): if self._closed: raise Exception('this %s object has been closed' % self.__class__.__name) classkey = obj.__class__.__name__ key = obj_to_key_func(obj) filename = self._filename(classkey, key) if not os.path.isfile(filename): raise KeyError('cannot delete: \n\ object %s %s \n\ does not exist in the storage \n\ (file %s does not exist)' % (classkey, key, filename)) os.remove(filename) if self._locking: self._release_file(filename) # release the file after deleting it def _filename(self, classkey, objkey): return self._storage_dir + '/' + classkey + '/' + objkey + '.pickle' def _class_dir_name(self, classkey): return self._storage_dir + '/' + classkey def _ensure_class_dir(self, classkey): class_dir = self._class_dir_name(classkey) if not os.path.isdir(class_dir): os.mkdir(class_dir) if self.PERMISSIONS is not None: os.chmod(class_dir, self.PERMISSIONS) assert os.path.isdir(class_dir) def release(self, obj_to_key_func, obj): assert self._locking classkey = obj.__class__.__name__ key = obj_to_key_func(obj) filename = self._filename(classkey, key) self._release_file(filename) def close(self): if self._locking: files = self._my_locked_files.copy() for filename in files: self._release_file(filename) self._closed = True def __del__(self): if self._locking: files = self._my_locked_files.copy() for filename in files: self._release_file(filename) def _lock_file(self, filename): assert self._locking # if the file is locked and it is locked by this process, then allow access without locking; # otherwise, lock the file if lockdir.is_locked(filename, lockdir.RWLOCK) and lockdir.pid_of_lock(filename, lockdir.RWLOCK) == os.getpid(): locked_by_me = True else: locked_by_me = False if not locked_by_me: # lock the file lockdir.lock(filename, lockdir.RWLOCK) assert lockdir.is_locked(filename, lockdir.RWLOCK) assert lockdir.pid_of_lock(filename, lockdir.RWLOCK) == os.getpid() # register the filename to the set of open files so the lock can be released # automatically by __del__() self._my_locked_files.add(filename) def _release_file(self, filename): assert self._locking lockdir.release(filename, lockdir.RWLOCK) self._my_locked_files.remove(filename)
the-stack_0_28003
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import six from airflow.contrib.utils.weekday import WeekDay from airflow.sensors.base_sensor_operator import BaseSensorOperator from airflow.utils import timezone from airflow.utils.decorators import apply_defaults class DayOfWeekSensor(BaseSensorOperator): """ Waits until the first specified day of the week. For example, if the execution day of the task is '2018-12-22' (Saturday) and you pass 'FRIDAY', the task will wait until next Friday. **Example** (with single day): :: weekend_check = DayOfWeekSensor( task_id='weekend_check', week_day='Saturday', use_task_execution_day=True, dag=dag) **Example** (with multiple day using set): :: weekend_check = DayOfWeekSensor( task_id='weekend_check', week_day={'Saturday', 'Sunday'}, use_task_execution_day=True, dag=dag) **Example** (with :class:`~airflow.contrib.utils.weekday.WeekDay` enum): :: # import WeekDay Enum from airflow.contrib.utils.weekday import WeekDay weekend_check = DayOfWeekSensor( task_id='weekend_check', week_day={WeekDay.SATURDAY, WeekDay.SUNDAY}, use_task_execution_day=True, dag=dag) :param week_day: Day of the week to check (full name). Optionally, a set of days can also be provided using a set. Example values: * ``"MONDAY"``, * ``{"Saturday", "Sunday"}`` * ``{WeekDay.TUESDAY}`` * ``{WeekDay.SATURDAY, WeekDay.SUNDAY}`` :type week_day: set or str or WeekDay :param use_task_execution_day: If ``True``, uses task's execution day to compare with week_day. Execution Date is Useful for backfilling. If ``False``, uses system's day of the week. Useful when you don't want to run anything on weekdays on the system. :type use_task_execution_day: bool """ @apply_defaults def __init__(self, week_day, use_task_execution_day=False, *args, **kwargs): super(DayOfWeekSensor, self).__init__(*args, **kwargs) self.week_day = week_day self.use_task_execution_day = use_task_execution_day if isinstance(self.week_day, six.string_types): self._week_day_num = {WeekDay.get_weekday_number(week_day_str=self.week_day)} elif isinstance(self.week_day, WeekDay): self._week_day_num = {self.week_day} elif isinstance(self.week_day, set): if all(isinstance(day, six.string_types) for day in self.week_day): self._week_day_num = {WeekDay.get_weekday_number(day) for day in week_day} elif all(isinstance(day, WeekDay) for day in self.week_day): self._week_day_num = self.week_day else: raise TypeError( 'Unsupported Type for week_day parameter: {}. It should be one of str' ', set or Weekday enum type'.format(type(week_day))) def poke(self, context): self.log.info('Poking until weekday is in %s, Today is %s', self.week_day, WeekDay(timezone.utcnow().isoweekday()).name) if self.use_task_execution_day: return context['execution_date'].isoweekday() in self._week_day_num else: return timezone.utcnow().isoweekday() in self._week_day_num
the-stack_0_28004
from __future__ import unicode_literals import sys import warnings from collections import deque from functools import total_ordering from django.db.migrations.state import ProjectState from django.utils import six from django.utils.datastructures import OrderedSet from django.utils.encoding import python_2_unicode_compatible from .exceptions import CircularDependencyError, NodeNotFoundError RECURSION_DEPTH_WARNING = ( "Maximum recursion depth exceeded while generating migration graph, " "falling back to iterative approach. If you're experiencing performance issues, " "consider squashing migrations as described at " "https://docs.djangoproject.com/en/dev/topics/migrations/#squashing-migrations." ) @python_2_unicode_compatible @total_ordering class Node(object): """ A single node in the migration graph. Contains direct links to adjacent nodes in either direction. """ def __init__(self, key): self.key = key self.children = set() self.parents = set() def __eq__(self, other): return self.key == other def __lt__(self, other): return self.key < other def __hash__(self): return hash(self.key) def __getitem__(self, item): return self.key[item] def __str__(self): return str(self.key) def __repr__(self): return '<Node: (%r, %r)>' % self.key def add_child(self, child): self.children.add(child) def add_parent(self, parent): self.parents.add(parent) # Use manual caching, @cached_property effectively doubles the # recursion depth for each recursion. def ancestors(self): # Use self.key instead of self to speed up the frequent hashing # when constructing an OrderedSet. if '_ancestors' not in self.__dict__: ancestors = deque([self.key]) for parent in sorted(self.parents): ancestors.extendleft(reversed(parent.ancestors())) self.__dict__['_ancestors'] = list(OrderedSet(ancestors)) return self.__dict__['_ancestors'] # Use manual caching, @cached_property effectively doubles the # recursion depth for each recursion. def descendants(self): # Use self.key instead of self to speed up the frequent hashing # when constructing an OrderedSet. if '_descendants' not in self.__dict__: descendants = deque([self.key]) for child in sorted(self.children): descendants.extendleft(reversed(child.descendants())) self.__dict__['_descendants'] = list(OrderedSet(descendants)) return self.__dict__['_descendants'] class DummyNode(Node): def __init__(self, key, origin, error_message): super(DummyNode, self).__init__(key) self.origin = origin self.error_message = error_message def __repr__(self): return '<DummyNode: (%r, %r)>' % self.key def promote(self): """ Transition dummy to a normal node and clean off excess attribs. Creating a Node object from scratch would be too much of a hassle as many dependendies would need to be remapped. """ del self.origin del self.error_message self.__class__ = Node def raise_error(self): raise NodeNotFoundError(self.error_message, self.key, origin=self.origin) @python_2_unicode_compatible class MigrationGraph(object): """ Represents the digraph of all migrations in a project. Each migration is a node, and each dependency is an edge. There are no implicit dependencies between numbered migrations - the numbering is merely a convention to aid file listing. Every new numbered migration has a declared dependency to the previous number, meaning that VCS branch merges can be detected and resolved. Migrations files can be marked as replacing another set of migrations - this is to support the "squash" feature. The graph handler isn't responsible for these; instead, the code to load them in here should examine the migration files and if the replaced migrations are all either unapplied or not present, it should ignore the replaced ones, load in just the replacing migration, and repoint any dependencies that pointed to the replaced migrations to point to the replacing one. A node should be a tuple: (app_path, migration_name). The tree special-cases things within an app - namely, root nodes and leaf nodes ignore dependencies to other apps. """ def __init__(self): self.node_map = {} self.nodes = {} self.cached = False def add_node(self, key, migration): # If the key already exists, then it must be a dummy node. dummy_node = self.node_map.get(key) if dummy_node: # Promote DummyNode to Node. dummy_node.promote() else: node = Node(key) self.node_map[key] = node self.nodes[key] = migration self.clear_cache() def add_dummy_node(self, key, origin, error_message): node = DummyNode(key, origin, error_message) self.node_map[key] = node self.nodes[key] = None def add_dependency(self, migration, child, parent, skip_validation=False): """ This may create dummy nodes if they don't yet exist. If `skip_validation` is set, validate_consistency should be called afterwards. """ if child not in self.nodes: error_message = ( "Migration %s dependencies reference nonexistent" " child node %r" % (migration, child) ) self.add_dummy_node(child, migration, error_message) if parent not in self.nodes: error_message = ( "Migration %s dependencies reference nonexistent" " parent node %r" % (migration, parent) ) self.add_dummy_node(parent, migration, error_message) self.node_map[child].add_parent(self.node_map[parent]) self.node_map[parent].add_child(self.node_map[child]) if not skip_validation: self.validate_consistency() self.clear_cache() def remove_replaced_nodes(self, replacement, replaced): """ Removes each of the `replaced` nodes (when they exist). Any dependencies that were referencing them are changed to reference the `replacement` node instead. """ # Cast list of replaced keys to set to speed up lookup later. replaced = set(replaced) try: replacement_node = self.node_map[replacement] except KeyError as exc: exc_value = NodeNotFoundError( "Unable to find replacement node %r. It was either never added" " to the migration graph, or has been removed." % (replacement, ), replacement ) exc_value.__cause__ = exc if not hasattr(exc, '__traceback__'): exc.__traceback__ = sys.exc_info()[2] six.reraise(NodeNotFoundError, exc_value, sys.exc_info()[2]) for replaced_key in replaced: self.nodes.pop(replaced_key, None) replaced_node = self.node_map.pop(replaced_key, None) if replaced_node: for child in replaced_node.children: child.parents.remove(replaced_node) # We don't want to create dependencies between the replaced # node and the replacement node as this would lead to # self-referencing on the replacement node at a later iteration. if child.key not in replaced: replacement_node.add_child(child) child.add_parent(replacement_node) for parent in replaced_node.parents: parent.children.remove(replaced_node) # Again, to avoid self-referencing. if parent.key not in replaced: replacement_node.add_parent(parent) parent.add_child(replacement_node) self.clear_cache() def remove_replacement_node(self, replacement, replaced): """ The inverse operation to `remove_replaced_nodes`. Almost. Removes the replacement node `replacement` and remaps its child nodes to `replaced` - the list of nodes it would have replaced. Its parent nodes are not remapped as they are expected to be correct already. """ self.nodes.pop(replacement, None) try: replacement_node = self.node_map.pop(replacement) except KeyError as exc: exc_value = NodeNotFoundError( "Unable to remove replacement node %r. It was either never added" " to the migration graph, or has been removed already." % (replacement, ), replacement ) exc_value.__cause__ = exc if not hasattr(exc, '__traceback__'): exc.__traceback__ = sys.exc_info()[2] six.reraise(NodeNotFoundError, exc_value, sys.exc_info()[2]) replaced_nodes = set() replaced_nodes_parents = set() for key in replaced: replaced_node = self.node_map.get(key) if replaced_node: replaced_nodes.add(replaced_node) replaced_nodes_parents |= replaced_node.parents # We're only interested in the latest replaced node, so filter out # replaced nodes that are parents of other replaced nodes. replaced_nodes -= replaced_nodes_parents for child in replacement_node.children: child.parents.remove(replacement_node) for replaced_node in replaced_nodes: replaced_node.add_child(child) child.add_parent(replaced_node) for parent in replacement_node.parents: parent.children.remove(replacement_node) # NOTE: There is no need to remap parent dependencies as we can # assume the replaced nodes already have the correct ancestry. self.clear_cache() def validate_consistency(self): """ Ensure there are no dummy nodes remaining in the graph. """ [n.raise_error() for n in self.node_map.values() if isinstance(n, DummyNode)] def clear_cache(self): if self.cached: for node in self.nodes: self.node_map[node].__dict__.pop('_ancestors', None) self.node_map[node].__dict__.pop('_descendants', None) self.cached = False def forwards_plan(self, target): """ Given a node, returns a list of which previous nodes (dependencies) must be applied, ending with the node itself. This is the list you would follow if applying the migrations to a database. """ if target not in self.nodes: raise NodeNotFoundError("Node %r not a valid node" % (target, ), target) # Use parent.key instead of parent to speed up the frequent hashing in ensure_not_cyclic self.ensure_not_cyclic(target, lambda x: (parent.key for parent in self.node_map[x].parents)) self.cached = True node = self.node_map[target] try: return node.ancestors() except RuntimeError: # fallback to iterative dfs warnings.warn(RECURSION_DEPTH_WARNING, RuntimeWarning) return self.iterative_dfs(node) def backwards_plan(self, target): """ Given a node, returns a list of which dependent nodes (dependencies) must be unapplied, ending with the node itself. This is the list you would follow if removing the migrations from a database. """ if target not in self.nodes: raise NodeNotFoundError("Node %r not a valid node" % (target, ), target) # Use child.key instead of child to speed up the frequent hashing in ensure_not_cyclic self.ensure_not_cyclic(target, lambda x: (child.key for child in self.node_map[x].children)) self.cached = True node = self.node_map[target] try: return node.descendants() except RuntimeError: # fallback to iterative dfs warnings.warn(RECURSION_DEPTH_WARNING, RuntimeWarning) return self.iterative_dfs(node, forwards=False) def iterative_dfs(self, start, forwards=True): """ Iterative depth first search, for finding dependencies. """ visited = deque() visited.append(start) if forwards: stack = deque(sorted(start.parents)) else: stack = deque(sorted(start.children)) while stack: node = stack.popleft() visited.appendleft(node) if forwards: children = sorted(node.parents, reverse=True) else: children = sorted(node.children, reverse=True) # reverse sorting is needed because prepending using deque.extendleft # also effectively reverses values stack.extendleft(children) return list(OrderedSet(visited)) def root_nodes(self, app=None): """ Returns all root nodes - that is, nodes with no dependencies inside their app. These are the starting point for an app. """ roots = set() for node in self.nodes: if not any(key[0] == node[0] for key in self.node_map[node].parents) and (not app or app == node[0]): roots.add(node) return sorted(roots) def leaf_nodes(self, app=None): """ Returns all leaf nodes - that is, nodes with no dependents in their app. These are the "most current" version of an app's schema. Having more than one per app is technically an error, but one that gets handled further up, in the interactive command - it's usually the result of a VCS merge and needs some user input. """ leaves = set() for node in self.nodes: if not any(key[0] == node[0] for key in self.node_map[node].children) and (not app or app == node[0]): leaves.add(node) return sorted(leaves) def ensure_not_cyclic(self, start, get_children): # Algo from GvR: # http://neopythonic.blogspot.co.uk/2009/01/detecting-cycles-in-directed-graph.html todo = set(self.nodes) while todo: node = todo.pop() stack = [node] while stack: top = stack[-1] for node in get_children(top): if node in stack: cycle = stack[stack.index(node):] raise CircularDependencyError(", ".join("%s.%s" % n for n in cycle)) if node in todo: stack.append(node) todo.remove(node) break else: node = stack.pop() def __str__(self): return 'Graph: %s nodes, %s edges' % self._nodes_and_edges() def __repr__(self): nodes, edges = self._nodes_and_edges() return '<%s: nodes=%s, edges=%s>' % (self.__class__.__name__, nodes, edges) def _nodes_and_edges(self): return len(self.nodes), sum(len(node.parents) for node in self.node_map.values()) def make_state(self, nodes=None, at_end=True, real_apps=None): """ Given a migration node or nodes, returns a complete ProjectState for it. If at_end is False, returns the state before the migration has run. If nodes is not provided, returns the overall most current project state. """ if nodes is None: nodes = list(self.leaf_nodes()) if len(nodes) == 0: return ProjectState() if not isinstance(nodes[0], tuple): nodes = [nodes] plan = [] for node in nodes: for migration in self.forwards_plan(node): if migration not in plan: if not at_end and migration in nodes: continue plan.append(migration) project_state = ProjectState(real_apps=real_apps) for node in plan: project_state = self.nodes[node].mutate_state(project_state, preserve=False) return project_state def __contains__(self, node): return node in self.nodes
the-stack_0_28008
# # Tencent is pleased to support the open source community by making Angel available. # # Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License") you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/Apache-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific language governing permissions and # import tempfile from hadoop.local_fs import LocalFileSystem from pyangel.conf import AngelConf from pyangel.context import Configuration from pyangel.ml.conf import MLConf from pyangel.ml.regression.runner import LinearRegRunner class LinearRegLocalExample(object): """ Linear Regression Example used for user test, similar to "com.tencent.angel.example.ml.LinearRegLocalExample". """ def __init__(self): self.conf= Configuration() def set_conf(self): """ Set up self.configuration for runtime environment. """ # Feature number of train data feature_num = 101 # Total iteration number epoch_num = 20 # Validation sample ratio v_ratio = 0.5 # Data format,libsvm or dummy data_fmt = 'libsvm' # Train batch number per epoch sp_ratio = 1 # Learning rate learn_rate = 0.1 # Decay of learning rate decay = 0.01 # Regularization coefficient reg = 0 # Set job queue, if you use YARN deploy mode, you can set job queue by # self.conf.set('mapreduce.job.queue.name', 'default') # Set local deploy mode self.conf.set(AngelConf.ANGEL_DEPLOY_MODE, 'LOCAL') # Set basic self.configuration keys self.conf.set_boolean('mapred.mapper.new-api', True) self.conf.set(AngelConf.ANGEL_INPUTFORMAT_CLASS, 'org.apache.hadoop.mapreduce.lib.input.CombineTextInputFormat') self.conf.set_boolean(AngelConf.ANGEL_JOB_OUTPUT_PATH_DELETEONEXIST, True) # Set data format self.conf.set(MLConf.ML_DATAFORMAT, data_fmt) # set angel resource parameters #worker, #tast, #ps self.conf.set_int(AngelConf.ANGEL_WORKERGROUP_NUMBER, 2) self.conf.set_int(AngelConf.ANGEL_WORKER_TASK_NUMBER, 10) self.conf.set_int(AngelConf.ANGEL_PS_NUMBER, 2) # set sgd LR algorithim parameters # feature # epoch self.conf.set(MLConf.ML_FEATURE_NUM, str(feature_num)) self.conf.set(MLConf.ML_EPOCH_NUM, str(epoch_num)) self.conf.set(MLConf.ML_BATCH_SAMPLE_Ratio, str(sp_ratio)) self.conf.set(MLConf.ML_VALIDATE_RATIO, str(v_ratio)) self.conf.set(MLConf.ML_LEARN_RATE, str(learn_rate)) self.conf.set(MLConf.ML_LEARN_DECAY, str(decay)) self.conf.set(MLConf.ML_REG_L2, str(reg)) def train_on_local_cluster(self): """ Train model on local cluster """ self.set_conf() input_path = '../data/exampledata/LinearRegression' LOCAL_FS = LocalFileSystem.DEFAULT_FS TMP_PATH = tempfile.gettempdir() log_path = ".src/test/log" model_path = 'file:///tmp/angel/model' self.conf.set(AngelConf.ANGEL_TRAIN_DATA_PATH, input_path) self.conf.set(AngelConf.ANGEL_SAVE_MODEL_PATH, model_path) self.conf.set(AngelConf.ANGEL_LOG_PATH, log_path) self.conf.set(AngelConf.ANGEL_ACTION_TYPE, MLConf.ANGEL_ML_TRAIN) self.conf.set("fs.defaultFS", LOCAL_FS + TMP_PATH) runner = LinearRegRunner() runner.train(self.conf) def inc_train(self): self.set_conf() input_path = "../data/exampledata/LinearRegression/LinearReg100.train" LOCAL_FS = LocalFileSystem.DEFAULT_FS TMP_PATH = tempfile.gettempdir() log_path = "./src/test/log" # Set trainning data path self.conf.set(AngelConf.ANGEL_TRAIN_DATA_PATH, inputPath) # Set load model path self.conf.set(AngelConf.ANGEL_LOAD_MODEL_PATH, LOCAL_FS + TMP_PATH + "/model") # Set save model path self.conf.set(AngelConf.ANGEL_SAVE_MODEL_PATH, LOCAL_FS + TMP_PATH + "/newmodel") # Set actionType incremental train self.conf.set(AngelConf.ANGEL_ACTION_TYPE, MLConf.ANGEL_ML_INC_TRAIN()) # Set log path self.conf.set(AngelConf.ANGEL_LOG_PATH, logPath) runner = LinearRegRunner() runner.incTrain(self.conf) def predict(self): self.set_conf() input_path = "../data/exampledata/LinearRegression/LinearReg100.train" LOCAL_FS = LocalFileSystem.DEFAULT_FS TMP_PATH = tempfile.gettempdir() # Set trainning data path self.conf.set(AngelConf.ANGEL_TRAIN_DATA_PATH, inputPath) # Set load model path self.conf.set(AngelConf.ANGEL_LOAD_MODEL_PATH, LOCAL_FS + TMP_PATH + "/model") # Set predict result path self.conf.set(AngelConf.ANGEL_PREDICT_PATH, LOCAL_FS + TMP_PATH + "/predict") # Set actionType prediction self.conf.set(AngelConf.ANGEL_ACTION_TYPE, MLConf.ANGEL_ML_PREDICT()) runner = LinearRegRunner() runner.predict(self.conf) example = LinearRegLocalExample() example.train_on_local_cluster()
the-stack_0_28010
# 653. Two Sum IV - Input is a BST easy # Given a Binary Search Tree and a target number, return true if there exist two elements in the BST such that their sum is equal to the given target. # # Example 1: # # Input: # 5 # / \ # 3 6 # / \ \ # 2 4 7 # # Target = 9 # # Output: True # # # Example 2: # # Input: # 5 # / \ # 3 6 # / \ \ # 2 4 7 # # Target = 28 # # Output: False def findTarget(self, root: TreeNode, k: int) -> bool: import queue seen_nums = {} q = queue.Queue() q.put(root) while(not q.empty()): node = q.get() if node.val in seen_nums: return True else: seen_nums[k-node.val] = 1 if node.left: q.put(node.left) if node.right: q.put(node.right) return False
the-stack_0_28013
import pandas as pd import numpy as np import random as rd from pathlib import Path from datetime import datetime as dt import tensorflow as tf import tensorflow.keras.optimizers as opt from tensorflow.keras import Input from tensorflow.keras import backend as K from tensorflow.keras.models import Sequential, load_model, clone_model, Model from tensorflow.keras.layers import Dense, Dropout, BatchNormalization, concatenate from tensorflow.keras.callbacks import EarlyStopping, LearningRateScheduler, ModelCheckpoint def initGPU(): gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # Currently, memory growth needs to be the same across GPUs for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: # Memory growth must be set before GPUs have been initialized print(e) def getBiasFreeIndex(boolSeries, size, seed=1337): rd.seed(seed) def getCenteredIndex(onSize=True): def flatter(a, b): c = [] for i in range(len(a)): c.append(a[i]) c.append(b[i]) return c positive = boolSeries[boolSeries==True] negative = boolSeries[boolSeries==False] if onSize: positive = rd.sample(list(positive.index), size//2) negative = rd.sample(list(negative.index), size//2) else: if len(positive) > len(negative): positive = rd.sample(list(positive.index), len(negative)) negative = negative.index.tolist() else: positive = positive.index.tolist() negative = rd.sample(list(negative.index), len(positive)) return flatter(positive, negative) training = getCenteredIndex() boolSeries = boolSeries.loc[list(set(boolSeries.index)-set(training))] validation = getCenteredIndex(False) return training, validation def divideDataByIndex(data, index): return data.loc[index[0]], data.loc[index[1]] def saveData(path, dataTuple): dataTuple[0][0].to_csv(path/'predictors_training.csv') dataTuple[0][1].to_csv(path/'predictors_validation.csv') dataTuple[1][0].to_csv(path/'targets_training.csv') dataTuple[1][1].to_csv(path/'targets_validation.csv') def loadData(path): predictors = [None, None] targets = [None, None] predictors[0] = pd.read_csv(path/'predictors_training.csv', index_col=0) predictors[1] = pd.read_csv(path/'predictors_validation.csv', index_col=0) targets[0] = pd.read_csv(path/'targets_training.csv', index_col=0) targets[1] = pd.read_csv(path/'targets_validation.csv', index_col=0) return tuple(predictors), tuple(targets) def getModel(blueprint, predictors, targets, metric): def getOutput(): if bool==targets[0].dtypes[0]: activation = 'sigmoid' loss = 'binary_crossentropy' else: activation = None loss = 'MSE' model.add(Dense(targets[0].columns.size, activation=activation, kernel_initializer='ones', name=("T_"+str(hash(name))[-4:]+"_"+str(len(model.layers)+2)))) model.compile(optimizer=blueprint['optimizer'], loss=loss, metrics=[metric]) return model name = blueprint['identifier'] model = Sequential(name=name) model.add(Input(shape=(predictors[0].columns.size,), name=("I_"+str(hash(name))[-8:]+"_"+str(0)))) for index, nodes in enumerate(blueprint['layers']): activation = blueprint['activations'][index] if activation=='None': activation = None model.add(Dense(nodes, activation, kernel_initializer='ones', name=("D_"+str(hash(name))[-4:]+"_"+str(index+1)))) if blueprint['dropouts'][index]>0: model.add(Dropout(blueprint['dropouts'][index]/nodes, name=("O_"+str(hash(name))[-4:]+"_"+str(index+1)))) model.add(BatchNormalization(name=("B_"+str(hash(name))[-4:]+"_"+str(len(model.layers)+1)))) return getOutput() def getBatchSize(size, minimum=1000): sizes = [] for i in range((size//2)+1, 2, -1): if ((size % i)) == 0 and (size//i>1000) and (size//i<size//6): sizes.append(size//i) return sizes[len(sizes)//2] def row2string(row): s = "" for value in row.values(): if isinstance(value, list): v = '"'+str(value)+'",' else: v = str(value)+"," s = s + v return s[0:-1] def metrics2row(blueprint, metrics): def sumNodes(layers): return len(layers), sum(layers) row = {} row['timestamp'] = dt.now() row.update(blueprint.copy()) row['dimensions'] = len(blueprint['predictors']) row['length'], row['nodes'] = sumNodes(blueprint['layers']) row.update(metrics) return row2string(row) def training(path, blueprint, predictors, targets, metric, epochs=100, start=0.1, stop=0.01, output='row'): stepping = round(epochs/(start/stop)**0.7) epochRange = range(epochs, 0, -stepping) decrease = (stop/start)**(1/(len(epochRange)-1)) model = getModel(blueprint, predictors, targets, metric) model.optimizer.lr = start lr = start modelPath = path/(blueprint['identifier']+'.h5') model.save(modelPath) trained = 0 start = dt.now() for epoch in epochRange: monitor = EarlyStopping(monitor=('val_'+metric),restore_best_weights=True, patience=epoch) history = model.fit(predictors[0], targets[0], getBatchSize(len(targets[0])), epoch, 0, [monitor], validation_data=(predictors[1], targets[1])) image = load_model(modelPath) imageMetric = image.evaluate(predictors[1], targets[1], return_dict=True, verbose=0)[metric] modelMetric = model.evaluate(predictors[1], targets[1], return_dict=True, verbose=0)[metric] if imageMetric>modelMetric: model = image else: trained = trained+len(history.history[metric]) model.save(modelPath) lr = lr*decrease model.optimizer.lr = lr time = round((dt.now()-start).microseconds/1000000, 2) metrics = model.evaluate(predictors[1], targets[1], return_dict=True, verbose=0) metrics['time'] = time metrics['epochs'] = trained if output=='metric': return metrics elif output=='row': return metrics2row(blueprint, metrics) elif output=='ensemble': return metrics2row(blueprint, metrics),( pd.DataFrame(model.predict(predictors[0]), columns=targets[0].columns, index=targets[0].index), pd.DataFrame(model.predict(predictors[1]), columns=targets[1].columns, index=targets[1].index)) def trainingRoutine(path, predictors, targets, metric, minimise, minDuration, maxDuration, start, stop): def row2log(name, row): with open(path/name,'a') as logCSV: logCSV.write('\n') logCSV.write(row) def loadLog(name): df = pd.read_csv(path/name, index_col=False) if df.empty: return df df['identifier'] = df['identifier'].astype(str) for column in df: if df[column].dtype==object: if (df[column][0].find("[")>-1 and df[column][0].find("]")>-1): df[column] = df[column].str.replace("'","").str.replace(", ",",").str.replace("[","").str.replace("]","").str.split(",") if column=='layers' or column=='dropouts': newCol = [] for element in df[column].tolist(): newElement = [] for value in element: newElement.append(int(value)) newCol.append(newElement) df[column] = pd.Series(newCol) return df def getBest(frame, identifier, output=[]): if not output: output = list(frame.columns) frame = frame[frame['identifier']==identifier] if minimise: frame = frame[frame[metric]==frame[metric].min()] else: frame = frame[frame[metric]==frame[metric].max()] if len(frame)>1: frame = frame[frame['loss']==frame['loss'].min()] if len(frame)>1: frame = frame[frame['epochs']==frame['epochs'].min()] if len(frame)>1: frame = frame[frame['nodes']==frame['nodes'].min()] if len(frame)>1: frame = frame[frame['time']==frame['time'].min()] return frame[output].to_dict('records')[0] else: return frame[output].to_dict('records')[0] else: return frame[output].to_dict('records')[0] else: return frame[output].to_dict('records')[0] else: return frame[output].to_dict('records')[0] def getIdentifier(sample): def string2int(string): value = 0 for char in string: value = value+ord(char)*1337*len(string)*31 return value identifier = 0 for string in sample: identifier = identifier + string2int(string) return str(identifier)[-16:] def predictorTraining(epsilon=8): def sample(columns, bias, maxNodes): tries = [] def appendTry(tries, row): if row[metric]<bias: return if len(tries)<epsilon: tries.append(row) tries = sorted(tries, key=lambda tup: tup[metric]) elif tries[0][metric]<row[metric]: tries[0] = row tries = sorted(tries, key=lambda tup: tup[metric]) def check(identifier): frame = loadLog('predictors_log.csv') if frame.empty: return frame else: return frame[frame['identifier']==identifier] pool = list(set(predictors[0].columns)-set(columns)) for column in pool: samples = columns+[column] identifier = getIdentifier(samples) backlog = check(identifier) if backlog.empty: samples = (predictors[0][samples], predictors[1][samples]) print("Trying: ", column) print("Identifier:", identifier) tryStart = dt.now() row = parameterTraining(samples, maxNodes, identifier, maxNodes*10) print("Endurance:", dt.now()-tryStart) row2log('predictors_log.csv', row) row = getBest(loadLog('predictors_log.csv'), identifier) print("Metric: ", row[metric]) appendTry(tries, row) else: backlog = getBest(backlog, identifier) print("Skipping: ", column) print("Identifier:", identifier) print("Metric: ", backlog[metric]) appendTry(tries, backlog) return tries def trace(line, bias, nodes): trial = sample(line, bias, nodes) if not trial: return for entry in trial: preds = entry['predictors'] maxNodes = max([(entry['nodes']/len(preds))*(len(preds)+1), len(preds)*5]) print(maxNodes) trace(preds, entry[metric], round(maxNodes)) trace([], 0.5, 10) def parameterTraining(predictors, maxNodes, identifier, epochs): keys = ['predictors','identifier','optimizer','layers','activations','dropouts'] def getDuration(nodes): return minDuration+round((maxDuration-minDuration)*((nodes-1)/(maxNodes-1))) def check(blueprint): frame = loadLog('parameter_log.csv').astype(str) return frame[frame[list(blueprint.keys())].isin(pd.Series(blueprint).astype(str).tolist()).all(axis=1)] def evaluating(model, epochs): monitor = EarlyStopping(monitor=('val_'+metric),restore_best_weights=True, patience=minDuration) start = dt.now() history = model.fit(predictors[0], targets[0], getBatchSize(len(targets[0])), epochs, 0, [monitor], validation_data=(predictors[1], targets[1])) time = (dt.now()-start).total_seconds() metrics = model.evaluate(predictors[1], targets[1], return_dict=True, verbose=0) metrics['time'] = time metrics['epochs'] = len(history.history[metric]) return metrics def getSize(): blueprint = dict(zip(keys, [list(predictors[0].columns),identifier,'adam',[0],['None'],[0]])) for i in range(maxNodes): i = i for width in range(1, maxNodes-sum(blueprint['layers'])+1): blueprint['layers'][-1] = width backlog = check(blueprint) if backlog.empty: model = getModel(blueprint, predictors, targets, metric) metrics = evaluating(model, getDuration(sum(blueprint['layers']))) row2log('parameter_log.csv', metrics2row(blueprint, metrics)) blueprint = getBest(loadLog('parameter_log.csv'), identifier, output=list(blueprint.keys())) if blueprint['layers'][-1]==1: break blueprint['layers'] = blueprint['layers']+[0] blueprint['activations'] = blueprint['activations']+[blueprint['activations'][0]] blueprint['dropouts'] = blueprint['dropouts']+[blueprint['dropouts'][0]] def getActivations(): maxD = maxDuration possibilities = ['None','relu','selu','elu','tanh','softsign','softplus'] blueprint = getBest(loadLog('parameter_log.csv'), identifier, output=keys) for i in range(len(blueprint['layers'])): for activation in possibilities: blueprint['activations'][i] = activation backlog = check(blueprint) if backlog.empty: model = getModel(blueprint, predictors, targets, metric) metrics = evaluating(model, maxD) row2log('parameter_log.csv', metrics2row(blueprint, metrics)) else: best = getBest(backlog, identifier=identifier) maxD = int(best['epochs']) blueprint = getBest(loadLog('parameter_log.csv'), identifier, output=keys) def getDropouts(): maxD = maxDuration blueprint = getBest(loadLog('parameter_log.csv'), identifier, output=keys) for i, v in enumerate(blueprint['layers']): for drop in range(v): blueprint['dropouts'][i] = drop backlog = check(blueprint) if backlog.empty: model = getModel(blueprint, predictors, targets, metric) metrics = evaluating(model, maxD) row2log('parameter_log.csv', metrics2row(blueprint, metrics)) else: best = getBest(backlog, identifier=identifier) maxD = int(best['epochs']) blueprint = getBest(loadLog('parameter_log.csv'), identifier, output=keys) def getOptimizer(): maxD = maxDuration blueprint = getBest(loadLog('parameter_log.csv'), identifier, output=keys) possibilities = ['adam','sgd','rmsprop','adadelta','adagrad','adamax','nadam'] for optimizer in possibilities: blueprint['optimizer'] = optimizer backlog = check(blueprint) if backlog.empty: model = getModel(blueprint, predictors, targets, metric) metrics = evaluating(model, maxD) row2log('parameter_log.csv', metrics2row(blueprint, metrics)) else: best = getBest(backlog, identifier=identifier) maxD = int(best['epochs']) getSize() getActivations() getDropouts() getOptimizer() return training(path/'Models', getBest(loadLog('parameter_log.csv'), identifier, output=keys), predictors, targets, metric, epochs, start, stop) predictorTraining() path = Path(__file__).parent.absolute()/'Learning'/'Deep Training' #targets = pd.read_csv(Path(__file__).parent.absolute()/'Learning'/'None_Targets.csv', index_col=False, usecols=['Home: Win', 'Visiting: Win']) #index = getBiasFreeIndex(targets['Home: Win'], 72500) #targets = divideDataByIndex(targets, index) #predictors = pd.read_csv(Path(__file__).parent.absolute()/'Learning'/'None_Predictors.csv', index_col=False) #predictors = divideDataByIndex(predictors, index) #saveData(path/'Data', (predictors, targets)) predictors, targets = loadData(path/'Data') trainingRoutine(path, predictors, targets, 'binary_accuracy', False, 20, 100, 0.1, 0.01)
the-stack_0_28014
from plotly.basedatatypes import BaseTraceHierarchyType import copy class Domain(BaseTraceHierarchyType): # column # ------ @property def column(self): """ If there is a layout grid, use the domain for this column in the grid for this parcoords trace . The 'column' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int """ return self['column'] @column.setter def column(self, val): self['column'] = val # row # --- @property def row(self): """ If there is a layout grid, use the domain for this row in the grid for this parcoords trace . The 'row' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int """ return self['row'] @row.setter def row(self, val): self['row'] = val # x # - @property def x(self): """ Sets the horizontal domain of this parcoords trace (in plot fraction). The 'x' property is an info array that may be specified as a list or tuple of 2 elements where: (0) The 'x[0]' property is a number and may be specified as: - An int or float in the interval [0, 1] (1) The 'x[1]' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- list """ return self['x'] @x.setter def x(self, val): self['x'] = val # y # - @property def y(self): """ Sets the vertical domain of this parcoords trace (in plot fraction). The 'y' property is an info array that may be specified as a list or tuple of 2 elements where: (0) The 'y[0]' property is a number and may be specified as: - An int or float in the interval [0, 1] (1) The 'y[1]' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- list """ return self['y'] @y.setter def y(self, val): self['y'] = val # property parent name # -------------------- @property def _parent_path_str(self): return 'parcoords' # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ column If there is a layout grid, use the domain for this column in the grid for this parcoords trace . row If there is a layout grid, use the domain for this row in the grid for this parcoords trace . x Sets the horizontal domain of this parcoords trace (in plot fraction). y Sets the vertical domain of this parcoords trace (in plot fraction). """ def __init__( self, arg=None, column=None, row=None, x=None, y=None, **kwargs ): """ Construct a new Domain object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.parcoords.Domain column If there is a layout grid, use the domain for this column in the grid for this parcoords trace . row If there is a layout grid, use the domain for this row in the grid for this parcoords trace . x Sets the horizontal domain of this parcoords trace (in plot fraction). y Sets the vertical domain of this parcoords trace (in plot fraction). Returns ------- Domain """ super(Domain, self).__init__('domain') # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.parcoords.Domain constructor must be a dict or an instance of plotly.graph_objs.parcoords.Domain""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop('skip_invalid', False) # Import validators # ----------------- from plotly.validators.parcoords import (domain as v_domain) # Initialize validators # --------------------- self._validators['column'] = v_domain.ColumnValidator() self._validators['row'] = v_domain.RowValidator() self._validators['x'] = v_domain.XValidator() self._validators['y'] = v_domain.YValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop('column', None) self['column'] = column if column is not None else _v _v = arg.pop('row', None) self['row'] = row if row is not None else _v _v = arg.pop('x', None) self['x'] = x if x is not None else _v _v = arg.pop('y', None) self['y'] = y if y is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
the-stack_0_28015
""" The 'instructions' widget for Morse Trainer. Used to show a QLabel containing instructions. Read only. instructions = Instructions() """ from PyQt5.QtWidgets import (QWidget, QTextEdit, QVBoxLayout) class Instructions(QWidget): def __init__(self, text): """Create instructions containing 'text'.""" QWidget.__init__(self) self.initUI(text) self.show() def initUI(self, text): # define the widgets in this group doc = QTextEdit(self) doc.setReadOnly(True) doc.insertPlainText(text) # start the layout layout = QVBoxLayout() layout.addWidget(doc) self.setLayout(layout)
the-stack_0_28016
from pydantic import BaseModel, EmailStr, HttpUrl, ValidationError class User(BaseModel): email: EmailStr website: HttpUrl # Invalid email try: User(email="jdoe", website="https://www.example.com") except ValidationError as e: print(str(e)) # Invalid URL try: User(email="[email protected]", website="jdoe") except ValidationError as e: print(str(e)) # Valid user = User(email="[email protected]", website="https://www.example.com") # email='[email protected]' website=HttpUrl('https://www.example.com', scheme='https', host='www.example.com', tld='com', host_type='domain') print(user)
the-stack_0_28017
from klampt import * from klampt.control.robotinterfaceutils import RobotInterfaceCompleter,MultiRobotInterface from klampt.control.robotinterface import RobotInterfaceBase from klampt.control.interop import RobotInterfacetoVis from klampt.control.simrobotinterface import * from klampt.control.cartesian_drive import * from klampt.math import vectorops,so3 from klampt import vis import math import time import csv def testCompleter(): w = WorldModel() w.readFile("../../data/tx90scenario0.xml") r = w.robot(0) sim = Simulator(w) #TODO: CHANGE ME #controller = RobotInterfaceCompleter(KinematicSimControlInterface(r)) #controller = RobotInterfaceCompleter(SimPositionControlInterface(sim.controller(0),sim)) #controller = RobotInterfaceCompleter(SimMoveToControlInterface(sim.controller(0),sim)) #controller = RobotInterfaceCompleter(SimVelocityControlInterface(sim.controller(0),sim)) controller = RobotInterfaceCompleter(SimFullControlInterface(sim.controller(0),sim)) testProperties = ['controlRate','parts','sensors','numDOFs','indices'] testFuncs = ['clock','status','isMoving', 'sensedPosition','sensedVelocity','sensedTorque','commandedPosition','commandedVelocity','commandedTorque', 'destinationPosition','destinationVelocity','destinationTime'] if not controller.initialize(): raise RuntimeError("There was some problem initializing controller "+str(controller)) #start logger testFile = open('controllertest_results.csv','w',newline='') testWriter = csv.writer(testFile) testWriter.writerow(testProperties) results = [] for prop in testProperties: try: results.append(str(getattr(controller,prop)())) except Exception as e: results.append('Error '+str(e)) testWriter.writerow(results) testWriter.writerow(['emulatorControlMode','baseControlMode']+testFuncs) if controller.numDOFs() != r.numDrivers(): raise RuntimeError("Invalid DOFs") if controller.klamptModel() is None: raise RuntimeError("Can't get Klampt model") q = r.getConfig()[1:] q2 = [x for x in q] q2[2] -= 1.0 q2[3] -= 1.0 controller.setToolCoordinates([0,0,0]) #TODO: CHANGE ME """ #testing a single movement moves = [(1.0,lambda: controller.setPiecewiseLinear([1],[q[:2]+[q[2]+1.0]+q[3:]]))] """ #testing general movements with interruption moves = [(0.5,lambda: controller.setVelocity([0]*2+[1.0]+[0]*(len(q)-3),1.0)), (1.0,lambda: controller.setPiecewiseLinear([1],[q[:2]+[q[2]+1.0]+q[3:]])), (3.0,lambda: controller.setPiecewiseCubic([1],[q],[[0]*len(q)])), (3.5,lambda: controller.moveToPosition(q[:2]+[q[2]-1.0]+q[3:])), (5.0,lambda: controller.moveToPosition(q,0.1)), (5.5,lambda: controller.moveToPosition(q2,1.0)), (8.0,lambda: controller.moveToCartesianPosition((so3.identity(),[0.5,0,1.0]))), (10.0,lambda: controller.setCartesianVelocity([0,0,0.2],3.0)), (11.0,lambda: controller.moveToCartesianPosition((so3.identity(),[0.5,0,1.0]))) ] """ #testing interrupted cartesian velocity movements moves = [(0.5,lambda: controller.moveToCartesianPosition((so3.identity(),[0.5,0,1.0]))), (2.0,lambda: controller.setCartesianVelocity([0,0,0.1],5.0)) , #(3.0,lambda: controller.moveToPosition(q,1)) (3.0,lambda: controller.moveToCartesianPosition((so3.identity(),[0.5,0,1.0]))) ] """ """ #testing cartesian velocity movements moves = [(0.5,lambda: controller.moveToCartesianPosition((so3.identity(),[0.5,0,1.0]))), (2.0,lambda: controller.setCartesianVelocity([0,0,0.1],5.0)) ] """ visplugin = RobotInterfacetoVis(controller) #visplugin.tag = '' endTime = 13.0 lastClock = 0 dt = 1.0/controller.controlRate() vis.add("world",w) vis.show() while controller.status() == 'ok' and vis.shown(): #no error handling done here... t0 = time.time() vis.lock() controller.startStep() clock = controller.clock() if (clock % 1.0) <= dt: controller.print_status() for (trigger,callback) in moves: if clock > trigger and lastClock <= trigger: print("Calling trigger",trigger) callback() lastClock = clock visplugin.update() if controller.clock() > endTime: vis.unlock() break controller.endStep() #log results to disk results = [controller._emulatorControlMode,controller._baseControlMode] for func in testFuncs: try: results.append(str(getattr(controller,func)())) except Exception as e: results.append('Error '+str(e)) testWriter.writerow(results) if isinstance(controller._base,KinematicSimControlInterface): r.setConfig(controller.configToKlampt(controller.commandedPosition())) else: sim.updateWorld() #give visualization some chance to update vis.unlock() t1 = time.time() telapsed = t1 - t0 time.sleep(max(dt - telapsed,0)) if vis.shown(): print("STATUS CHANGED TO",controller.status()) print("FINAL CLOCK",controller.clock()) controller.print_status() vis.show(False) vis.clear() testFile.close() def testCartesianDrive(): w = WorldModel() #w.readFile("../../data/tx90scenario0.xml") w.readFile("../../data/robots/jaco.rob") r = w.robot(0) solver = CartesianDriveSolver(r) #set a non-singular configuration q = r.getConfig() q[3] = 0.5 r.setConfig(q) solver.start(q,6) vis.add("world",w) vis.addPlot("timing") vis.addPlot("info") vis.show() time.sleep(0.1) dt = 0.01 t = 0 while t < 20 and vis.shown(): vis.lock() if t < 2: v = [0,0,0.25] elif t < 3: v = [0,0,-0.1] elif t < 3.2: v = [0,0,-1] elif t < 8: v = [0,0,0] elif t < 10: v = [-1,0,0] else: v = [1,0,0] if t < 4: w = [0,0,0] elif t < 10: w = [0,-0.25,0] else: w = None t0 = time.time() progress, qnext = solver.drive(q,w,v,dt) t1 = time.time() vis.addText("debug","Vel %s"%(str(v),)) vis.logPlot("timing","t",t1-t0) vis.logPlot("info","progress",progress) vis.logPlot("info","adj",solver.driveSpeedAdjustment) r.setConfig(qnext) q = qnext vis.unlock() vis.add("tgt",solver.driveTransforms[0]) t += dt time.sleep(max(0.005-(t1-t0),0)) vis.show(False) vis.clear() def testMultiRobot(): #Create a world with two robots -- this will be the simulation world w = WorldModel() w.readFile("../../data/tx90scenario0.xml") w.readFile("../../data/robots/jaco.rob") r1 = w.robot(0) r2 = w.robot(1) #Create a world with a unified robot -- this will be the controller's model of the robot w2 = w.copy() w2.robot(0).mount(-1,w2.robot(1),so3.identity(),[1,0,0.5]) w2.remove(w2.robot(1)) whole_robot_model = w2.robot(0) robot_1_indices = list(range(r1.numLinks())) robot_2_indices = list(range(r1.numLinks(),r1.numLinks()+r2.numLinks())) #update the base transform of robot 2 T0 = r2.link(0).getParentTransform() r2.link(0).setParentTransform(T0[0],vectorops.add(T0[1],[1,0,0.5])) r2.setConfig(r2.getConfig()) #Note: don't pass sim as the second argument to SimXControlInterface; we will need to simulate ourselves sim = Simulator(w) sim_controller1 = RobotInterfaceCompleter(SimFullControlInterface(sim.controller(0))) sim_controller2 = RobotInterfaceCompleter(SimFullControlInterface(sim.controller(1))) whole_robot_controller = MultiRobotInterface() whole_robot_controller.addPart("Robot 1",sim_controller1,whole_robot_model,robot_1_indices) whole_robot_controller.addPart("Robot 2",sim_controller2,whole_robot_model,robot_2_indices) print("Num total DOFs",whole_robot_controller.numDOFs()) print("Parts:") for k,v in whole_robot_controller.parts().items(): print(" ",k,":",v) print("Control rate",whole_robot_controller.controlRate()) print(whole_robot_controller.getPartInterface("Robot 1").__class__.__name__) print(whole_robot_controller.getPartInterface("Robot 2").__class__.__name__) if not whole_robot_controller.initialize(): raise RuntimeError("Failed to initialize") visplugin1 = RobotInterfacetoVis(whole_robot_controller.getPartInterface("Robot 1"),0) visplugin1.text_x = 10 visplugin1.tag = '' visplugin2 = RobotInterfacetoVis(whole_robot_controller.getPartInterface("Robot 2"),1) visplugin2.text_x = 200 visplugin2.tag = 'a' vis.add("world",w) #vis.add("world",w2) #vis.edit(("world",whole_robot_model)) vis.add("qdes",sim_controller1.configToKlampt(sim_controller1.sensedPosition()),color=[1,0,0,0.5],robot=0) vis.add("qdes2",sim_controller2.configToKlampt(sim_controller2.sensedPosition()),color=[1,1,0,0.5],robot=1) vis.show() dt = 1.0/whole_robot_controller.controlRate() while vis.shown(): t0 = time.time() vis.lock() whole_robot_controller.startStep() #send commands here clock = whole_robot_controller.clock() if clock > 0.5 and clock < 2.5: velocity = [0]*whole_robot_controller.numDOFs() velocity[2] = -0.1 velocity[10] = 0.3 whole_robot_controller.setVelocity(velocity,None) elif clock >= 2.5 and clock < 2.75: velocity = [0]*whole_robot_controller.numDOFs() whole_robot_controller.setVelocity(velocity) elif clock > 2.75 and clock < 2.80: tgt = [0]*sim_controller1.numDOFs() tgt[2] = 1.0 whole_robot_controller.getPartInterface("Robot 1").moveToPosition(tgt) visplugin1.update() visplugin2.update() whole_robot_controller.endStep() #update the simulator sim.simulate(dt) #update the visualization world sim.updateWorld() vis.add("qdes",sim_controller1.configToKlampt(sim_controller1.sensedPosition()),color=[1,0,0,0.5],robot=0) vis.add("qdes2",sim_controller2.configToKlampt(sim_controller2.sensedPosition()),color=[1,1,0,0.5],robot=1) #whole_robot_model.setConfig(r1.getConfig()+r2.getConfig()) vis.unlock() t1 = time.time() telapsed = t1 - t0 time.sleep(max(dt - telapsed,0)) vis.clear() #testCartesianDrive() #testCompleter() #testJoints() testMultiRobot() vis.kill()
the-stack_0_28018
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test beam search helper methods.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-bad-import-order from official.transformer.model import beam_search class BeamSearchHelperTests(tf.test.TestCase): def setUp(self): super(BeamSearchHelperTests, self).setUp() tf.compat.v1.disable_eager_execution() def test_expand_to_beam_size(self): x = tf.ones([7, 4, 2, 5]) x = beam_search._expand_to_beam_size(x, 3) with self.session() as sess: shape = sess.run(tf.shape(x)) self.assertAllEqual([7, 3, 4, 2, 5], shape) def test_shape_list(self): y = tf.compat.v1.placeholder(dtype=tf.int32, shape=[]) x = tf.ones([7, y, 2, 5]) shape = beam_search._shape_list(x) self.assertIsInstance(shape[0], int) self.assertIsInstance(shape[1], tf.Tensor) self.assertIsInstance(shape[2], int) self.assertIsInstance(shape[3], int) def test_get_shape_keep_last_dim(self): y = tf.constant(4.0) x = tf.ones([7, tf.cast(tf.sqrt(y), tf.int32), 2, 5]) shape = beam_search._get_shape_keep_last_dim(x) self.assertAllEqual([None, None, None, 5], shape.as_list()) def test_flatten_beam_dim(self): x = tf.ones([7, 4, 2, 5]) x = beam_search._flatten_beam_dim(x) with self.session() as sess: shape = sess.run(tf.shape(x)) self.assertAllEqual([28, 2, 5], shape) def test_unflatten_beam_dim(self): x = tf.ones([28, 2, 5]) x = beam_search._unflatten_beam_dim(x, 7, 4) with self.session() as sess: shape = sess.run(tf.shape(x)) self.assertAllEqual([7, 4, 2, 5], shape) def test_gather_beams(self): x = tf.reshape(tf.range(24), [2, 3, 4]) # x looks like: [[[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] # # [[12 13 14 15] # [16 17 18 19] # [20 21 22 23]]] y = beam_search._gather_beams(x, [[1, 2], [0, 2]], 2, 2) with self.session() as sess: y = sess.run(y) self.assertAllEqual([[[4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [20, 21, 22, 23]]], y) def test_gather_topk_beams(self): x = tf.reshape(tf.range(24), [2, 3, 4]) x_scores = [[0, 1, 1], [1, 0, 1]] y = beam_search._gather_topk_beams(x, x_scores, 2, 2) with self.session() as sess: y = sess.run(y) self.assertAllEqual([[[4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [20, 21, 22, 23]]], y) if __name__ == "__main__": tf.test.main()
the-stack_0_28019
#!/usr/bin/env ambari-python-wrap """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import math from ambari_commons.str_utils import string_set_equals from resource_management.core.logger import Logger from resource_management.core.exceptions import Fail from resource_management.libraries.functions.get_bare_principal import get_bare_principal class ADH15StackAdvisor(ADH14StackAdvisor): def __init__(self): super(ADH15StackAdvisor, self).__init__() Logger.initialize_logger() self.HIVE_INTERACTIVE_SITE = 'hive-interactive-site' self.YARN_ROOT_DEFAULT_QUEUE_NAME = 'default' self.AMBARI_MANAGED_LLAP_QUEUE_NAME = 'llap' self.CONFIG_VALUE_UINITIALIZED = 'SET_ON_FIRST_INVOCATION' self.CLUSTER_CREATE_OPERATION = "ClusterCreate" def recommendOozieConfigurations(self, configurations, clusterData, services, hosts): super(ADH15StackAdvisor,self).recommendOozieConfigurations(configurations, clusterData, services, hosts) putOozieEnvProperty = self.putProperty(configurations, "oozie-env", services) if not "oozie-env" in services["configurations"] : Logger.info("No oozie configurations available") return if not "FALCON_SERVER" in clusterData["components"] : Logger.info("Falcon is not part of the installation") return falconUser = 'falcon' if "falcon-env" in services["configurations"] : if "falcon_user" in services["configurations"]["falcon-env"]["properties"] : falconUser = services["configurations"]["falcon-env"]["properties"]["falcon_user"] Logger.info("Falcon user from configuration: %s " % falconUser) Logger.info("Falcon user : %s" % falconUser) oozieUser = 'oozie' if "oozie_user" \ in services["configurations"]["oozie-env"]["properties"] : oozieUser = services["configurations"]["oozie-env"]["properties"]["oozie_user"] Logger.info("Oozie user from configuration %s" % oozieUser) Logger.info("Oozie user %s" % oozieUser) if "oozie_admin_users" \ in services["configurations"]["oozie-env"]["properties"] : currentAdminUsers = services["configurations"]["oozie-env"]["properties"]["oozie_admin_users"] Logger.info("Oozie admin users from configuration %s" % currentAdminUsers) else : currentAdminUsers = "{0}, oozie-admin".format(oozieUser) Logger.info("Setting default oozie admin users to %s" % currentAdminUsers) if falconUser in currentAdminUsers : Logger.info("Falcon user %s already member of oozie admin users " % falconUser) return newAdminUsers = "{0},{1}".format(currentAdminUsers, falconUser) Logger.info("new oozie admin users : %s" % newAdminUsers) services["forced-configurations"].append({"type" : "oozie-env", "name" : "oozie_admin_users"}) putOozieEnvProperty("oozie_admin_users", newAdminUsers) def createComponentLayoutRecommendations(self, services, hosts): parentComponentLayoutRecommendations = super(ADH15StackAdvisor, self).createComponentLayoutRecommendations( services, hosts) return parentComponentLayoutRecommendations def getComponentLayoutValidations(self, services, hosts): parentItems = super(ADH15StackAdvisor, self).getComponentLayoutValidations(services, hosts) childItems = [] hsi_hosts = self.getHostsForComponent(services, "HIVE", "HIVE_SERVER_INTERACTIVE") if len(hsi_hosts) > 1: message = "Only one host can install HIVE_SERVER_INTERACTIVE. " childItems.append( {"type": 'host-component', "level": 'ERROR', "message": message, "component-name": 'HIVE_SERVER_INTERACTIVE'}) parentItems.extend(childItems) return parentItems def getServiceConfigurationValidators(self): parentValidators = super(ADH15StackAdvisor, self).getServiceConfigurationValidators() childValidators = { "ATLAS": {"application-properties": self.validateAtlasConfigurations}, "HIVE": {"hive-interactive-env": self.validateHiveInteractiveEnvConfigurations, "hive-interactive-site": self.validateHiveInteractiveSiteConfigurations, "hive-env": self.validateHiveConfigurationsEnv}, "YARN": {"yarn-site": self.validateYARNConfigurations}, "RANGER": {"ranger-tagsync-site": self.validateRangerTagsyncConfigurations}, "SPARK2": {"spark2-defaults": self.validateSpark2Defaults, "spark2-thrift-sparkconf": self.validateSpark2ThriftSparkConf}, "STORM": {"storm-site": self.validateStormConfigurations}, } self.mergeValidators(parentValidators, childValidators) return parentValidators def validateStormConfigurations(self, properties, recommendedDefaults, configurations, services, hosts): super(ADH15StackAdvisor, self).validateStormConfigurations(properties, recommendedDefaults, configurations, services, hosts) validationItems = [] servicesList = [service["StackServices"]["service_name"] for service in services["services"]] # Storm AMS integration if 'AMBARI_METRICS' in servicesList: if "storm.cluster.metrics.consumer.register" in properties and \ 'null' in properties.get("storm.cluster.metrics.consumer.register"): validationItems.append({"config-name": 'storm.cluster.metrics.consumer.register', "item": self.getWarnItem( "Should be set to recommended value to report metrics to Ambari Metrics service.")}) if "topology.metrics.consumer.register" in properties and \ 'null' in properties.get("topology.metrics.consumer.register"): validationItems.append({"config-name": 'topology.metrics.consumer.register', "item": self.getWarnItem( "Should be set to recommended value to report metrics to Ambari Metrics service.")}) return self.toConfigurationValidationProblems(validationItems, "storm-site") def getCardinalitiesDict(self, hosts): result = super(ADH15StackAdvisor, self).getCardinalitiesDict(hosts) min_val = 1 if len(hosts["items"]) > 999: min_val = 2 result['METRICS_COLLECTOR'] = {"min": min_val} return result def validateAtlasConfigurations(self, properties, recommendedDefaults, configurations, services, hosts): application_properties = self.getSiteProperties(configurations, "application-properties") validationItems = [] auth_type = application_properties['atlas.authentication.method.ldap.type'] auth_ldap_enable = application_properties['atlas.authentication.method.ldap'].lower() == 'true' Logger.info("Validating Atlas configs, authentication type: %s" % str(auth_type)) # Required props ldap_props = {"atlas.authentication.method.ldap.url": "", "atlas.authentication.method.ldap.userDNpattern": "uid=", "atlas.authentication.method.ldap.groupSearchBase": "", "atlas.authentication.method.ldap.groupSearchFilter": "", "atlas.authentication.method.ldap.groupRoleAttribute": "cn", "atlas.authentication.method.ldap.base.dn": "", "atlas.authentication.method.ldap.bind.dn": "", "atlas.authentication.method.ldap.bind.password": "", "atlas.authentication.method.ldap.user.searchfilter": "" } ad_props = {"atlas.authentication.method.ldap.ad.domain": "", "atlas.authentication.method.ldap.ad.url": "", "atlas.authentication.method.ldap.ad.base.dn": "", "atlas.authentication.method.ldap.ad.bind.dn": "", "atlas.authentication.method.ldap.ad.bind.password": "", "atlas.authentication.method.ldap.ad.user.searchfilter": "(sAMAccountName={0})" } props_to_require = set() if auth_type.lower() == "ldap": props_to_require = set(ldap_props.keys()) elif auth_type.lower() == "ad": props_to_require = set(ad_props.keys()) elif auth_type.lower() == "none": pass if auth_ldap_enable: for prop in props_to_require: if prop not in application_properties or application_properties[prop] is None or application_properties[prop].strip() == "": validationItems.append({"config-name": prop, "item": self.getErrorItem("If authentication type is %s, this property is required." % auth_type)}) if application_properties['atlas.graph.index.search.backend'] == 'solr5' and \ not application_properties['atlas.graph.index.search.solr.zookeeper-url']: validationItems.append({"config-name": "atlas.graph.index.search.solr.zookeeper-url", "item": self.getErrorItem( "If AMBARI_INFRA is not installed then the SOLR zookeeper url configuration must be specified.")}) if not application_properties['atlas.kafka.bootstrap.servers']: validationItems.append({"config-name": "atlas.kafka.bootstrap.servers", "item": self.getErrorItem( "If KAFKA is not installed then the Kafka bootstrap servers configuration must be specified.")}) if not application_properties['atlas.kafka.zookeeper.connect']: validationItems.append({"config-name": "atlas.kafka.zookeeper.connect", "item": self.getErrorItem( "If KAFKA is not installed then the Kafka zookeeper quorum configuration must be specified.")}) if application_properties['atlas.graph.storage.backend'] == 'hbase' and 'hbase-site' in services['configurations']: hbase_zookeeper_quorum = services['configurations']['hbase-site']['properties']['hbase.zookeeper.quorum'] if not application_properties['atlas.graph.storage.hostname']: validationItems.append({"config-name": "atlas.graph.storage.hostname", "item": self.getErrorItem( "If HBASE is not installed then the hbase zookeeper quorum configuration must be specified.")}) elif string_set_equals(application_properties['atlas.graph.storage.hostname'], hbase_zookeeper_quorum): validationItems.append({"config-name": "atlas.graph.storage.hostname", "item": self.getWarnItem( "Atlas is configured to use the HBase installed in this cluster. If you would like Atlas to use another HBase instance, please configure this property and HBASE_CONF_DIR variable in atlas-env appropriately.")}) if not application_properties['atlas.audit.hbase.zookeeper.quorum']: validationItems.append({"config-name": "atlas.audit.hbase.zookeeper.quorum", "item": self.getErrorItem( "If HBASE is not installed then the audit hbase zookeeper quorum configuration must be specified.")}) elif application_properties['atlas.graph.storage.backend'] == 'hbase' and 'hbase-site' not in services[ 'configurations']: if not application_properties['atlas.graph.storage.hostname']: validationItems.append({"config-name": "atlas.graph.storage.hostname", "item": self.getErrorItem( "Atlas is not configured to use the HBase installed in this cluster. If you would like Atlas to use another HBase instance, please configure this property and HBASE_CONF_DIR variable in atlas-env appropriately.")}) if not application_properties['atlas.audit.hbase.zookeeper.quorum']: validationItems.append({"config-name": "atlas.audit.hbase.zookeeper.quorum", "item": self.getErrorItem( "If HBASE is not installed then the audit hbase zookeeper quorum configuration must be specified.")}) validationProblems = self.toConfigurationValidationProblems(validationItems, "application-properties") return validationProblems def validateSpark2Defaults(self, properties, recommendedDefaults, configurations, services, hosts): validationItems = [ { "config-name": 'spark.yarn.queue', "item": self.validatorYarnQueue(properties, recommendedDefaults, 'spark.yarn.queue', services) } ] return self.toConfigurationValidationProblems(validationItems, "spark2-defaults") def validateSpark2ThriftSparkConf(self, properties, recommendedDefaults, configurations, services, hosts): validationItems = [ { "config-name": 'spark.yarn.queue', "item": self.validatorYarnQueue(properties, recommendedDefaults, 'spark.yarn.queue', services) } ] return self.toConfigurationValidationProblems(validationItems, "spark2-thrift-sparkconf") def validateYARNConfigurations(self, properties, recommendedDefaults, configurations, services, hosts): parentValidationProblems = super(ADH15StackAdvisor, self).validateYARNConfigurations(properties, recommendedDefaults, configurations, services, hosts) yarn_site_properties = self.getSiteProperties(configurations, "yarn-site") servicesList = [service["StackServices"]["service_name"] for service in services["services"]] componentsListList = [service["components"] for service in services["services"]] componentsList = [item["StackServiceComponents"] for sublist in componentsListList for item in sublist] validationItems = [] hsi_hosts = self.getHostsForComponent(services, "HIVE", "HIVE_SERVER_INTERACTIVE") if len(hsi_hosts) > 0: # HIVE_SERVER_INTERACTIVE is mapped to a host if 'yarn.resourcemanager.work-preserving-recovery.enabled' not in yarn_site_properties or \ 'true' != yarn_site_properties['yarn.resourcemanager.work-preserving-recovery.enabled']: validationItems.append({"config-name": "yarn.resourcemanager.work-preserving-recovery.enabled", "item": self.getWarnItem( "While enabling HIVE_SERVER_INTERACTIVE it is recommended that you enable work preserving restart in YARN.")}) validationProblems = self.toConfigurationValidationProblems(validationItems, "yarn-site") validationProblems.extend(parentValidationProblems) return validationProblems def validateHiveInteractiveSiteConfigurations(self, properties, recommendedDefaults, configurations, services, hosts): """ Does the following validation checks for HIVE_SERVER_INTERACTIVE's hive-interactive-site configs. 1. Queue selected in 'hive.llap.daemon.queue.name' config should be sized >= to minimum required to run LLAP and Hive2 app. 2. Queue selected in 'hive.llap.daemon.queue.name' config state should not be 'STOPPED'. 3. 'hive.server2.enable.doAs' config should be set to 'false' for Hive2. 4. 'Maximum Total Concurrent Queries'(hive.server2.tez.sessions.per.default.queue) should not consume more that 50% of selected queue for LLAP. 5. if 'llap' queue is selected, in order to run Service Checks, 'remaining available capacity' in cluster is atleast 512 MB. """ validationItems = [] hsi_hosts = self.getHostsForComponent(services, "HIVE", "HIVE_SERVER_INTERACTIVE") llap_queue_name = None llap_queue_cap_perc = None MIN_ASSUMED_CAP_REQUIRED_FOR_SERVICE_CHECKS = 512 llap_queue_cap = None hsi_site = self.getServicesSiteProperties(services, self.HIVE_INTERACTIVE_SITE) if len(hsi_hosts) == 0: return [] # Get total cluster capacity node_manager_host_list = self.getHostsForComponent(services, "YARN", "NODEMANAGER") node_manager_cnt = len(node_manager_host_list) yarn_nm_mem_in_mb = self.get_yarn_nm_mem_in_mb(services, configurations) total_cluster_cap = node_manager_cnt * yarn_nm_mem_in_mb capacity_scheduler_properties, received_as_key_value_pair = self.getCapacitySchedulerProperties(services) if not capacity_scheduler_properties: Logger.warning("Couldn't retrieve 'capacity-scheduler' properties while doing validation checks for Hive Server Interactive.") return [] if hsi_site: if "hive.llap.daemon.queue.name" in hsi_site and hsi_site['hive.llap.daemon.queue.name']: llap_queue_name = hsi_site['hive.llap.daemon.queue.name'] llap_queue_cap = self.__getSelectedQueueTotalCap(capacity_scheduler_properties, llap_queue_name, total_cluster_cap) if llap_queue_cap: llap_queue_cap_perc = float(llap_queue_cap * 100 / total_cluster_cap) min_reqd_queue_cap_perc = self.min_queue_perc_reqd_for_llap_and_hive_app(services, hosts, configurations) # Validate that the selected queue in 'hive.llap.daemon.queue.name' should be sized >= to minimum required # to run LLAP and Hive2 app. if llap_queue_cap_perc < min_reqd_queue_cap_perc: errMsg1 = "Selected queue '{0}' capacity ({1}%) is less than minimum required capacity ({2}%) for LLAP " \ "app to run".format(llap_queue_name, llap_queue_cap_perc, min_reqd_queue_cap_perc) validationItems.append({"config-name": "hive.llap.daemon.queue.name", "item": self.getErrorItem(errMsg1)}) else: Logger.error("Couldn't retrieve '{0}' queue's capacity from 'capacity-scheduler' while doing validation checks for " "Hive Server Interactive.".format(llap_queue_name)) # Validate that current selected queue in 'hive.llap.daemon.queue.name' state is not STOPPED. llap_selected_queue_state = self.__getQueueStateFromCapacityScheduler(capacity_scheduler_properties, llap_queue_name) if llap_selected_queue_state: if llap_selected_queue_state == "STOPPED": errMsg2 = "Selected queue '{0}' current state is : '{1}'. It is required to be in 'RUNNING' state for LLAP to run"\ .format(llap_queue_name, llap_selected_queue_state) validationItems.append({"config-name": "hive.llap.daemon.queue.name","item": self.getErrorItem(errMsg2)}) else: Logger.error("Couldn't retrieve '{0}' queue's state from 'capacity-scheduler' while doing validation checks for " "Hive Server Interactive.".format(llap_queue_name)) else: Logger.error("Couldn't retrieve 'hive.llap.daemon.queue.name' config from 'hive-interactive-site' while doing " "validation checks for Hive Server Interactive.") # Validate that 'hive.server2.enable.doAs' config is not set to 'true' for Hive2. if 'hive.server2.enable.doAs' in hsi_site and hsi_site['hive.server2.enable.doAs'] == "true": validationItems.append({"config-name": "hive.server2.enable.doAs", "item": self.getErrorItem("Value should be set to 'false' for Hive2.")}) # Validate that 'Maximum Total Concurrent Queries'(hive.server2.tez.sessions.per.default.queue) is not consuming more that # 50% of selected queue for LLAP. if llap_queue_cap and 'hive.server2.tez.sessions.per.default.queue' in hsi_site: num_tez_sessions = hsi_site['hive.server2.tez.sessions.per.default.queue'] if num_tez_sessions: num_tez_sessions = long(num_tez_sessions) yarn_min_container_size = long(self.get_yarn_min_container_size(services, configurations)) tez_am_container_size = self.calculate_tez_am_container_size(services, long(total_cluster_cap)) normalized_tez_am_container_size = self._normalizeUp(tez_am_container_size, yarn_min_container_size) llap_selected_queue_cap_remaining = llap_queue_cap - (normalized_tez_am_container_size * num_tez_sessions) if llap_selected_queue_cap_remaining <= llap_queue_cap/2: errMsg3 = " Reducing the 'Maximum Total Concurrent Queries' (value: {0}) is advisable as it is consuming more than 50% of " \ "'{1}' queue for LLAP.".format(num_tez_sessions, llap_queue_name) validationItems.append({"config-name": "hive.server2.tez.sessions.per.default.queue","item": self.getWarnItem(errMsg3)}) # Validate that 'remaining available capacity' in cluster is at least 512 MB, after 'llap' queue is selected, # in order to run Service Checks. if llap_queue_name and llap_queue_cap_perc and llap_queue_name == self.AMBARI_MANAGED_LLAP_QUEUE_NAME: curr_selected_queue_for_llap_cap = float(llap_queue_cap_perc) / 100 * total_cluster_cap available_cap_in_cluster = total_cluster_cap - curr_selected_queue_for_llap_cap if available_cap_in_cluster < MIN_ASSUMED_CAP_REQUIRED_FOR_SERVICE_CHECKS: errMsg4 = "Capacity used by '{0}' queue is '{1}'. Service checks may not run as remaining available capacity " \ "({2}) in cluster is less than 512 MB.".format(self.AMBARI_MANAGED_LLAP_QUEUE_NAME, curr_selected_queue_for_llap_cap, available_cap_in_cluster) validationItems.append({"config-name": "hive.llap.daemon.queue.name","item": self.getWarnItem(errMsg4)}) validationProblems = self.toConfigurationValidationProblems(validationItems, "hive-interactive-site") return validationProblems def validateHiveConfigurationsEnv(self, properties, recommendedDefaults, configurations, services, hosts): parentValidationProblems = super(ADH15StackAdvisor, self).validateHiveConfigurationsEnv(properties, recommendedDefaults, configurations, services, hosts) hive_site_properties = self.getSiteProperties(configurations, "hive-site") hive_env_properties = self.getSiteProperties(configurations, "hive-env") validationItems = [] if 'hive.server2.authentication' in hive_site_properties and "LDAP" == hive_site_properties['hive.server2.authentication']: if 'alert_ldap_username' not in hive_env_properties or hive_env_properties['alert_ldap_username'] == "": validationItems.append({"config-name": "alert_ldap_username", "item": self.getWarnItem( "Provide an user to be used for alerts. Hive authentication type LDAP requires valid LDAP credentials for the alerts.")}) if 'alert_ldap_password' not in hive_env_properties or hive_env_properties['alert_ldap_password'] == "": validationItems.append({"config-name": "alert_ldap_password", "item": self.getWarnItem( "Provide the password for the alert user. Hive authentication type LDAP requires valid LDAP credentials for the alerts.")}) validationProblems = self.toConfigurationValidationProblems(validationItems, "hive-env") validationProblems.extend(parentValidationProblems) return validationProblems def validateHiveInteractiveEnvConfigurations(self, properties, recommendedDefaults, configurations, services, hosts): hive_site_env_properties = self.getSiteProperties(configurations, "hive-interactive-env") yarn_site_properties = self.getSiteProperties(configurations, "yarn-site") validationItems = [] hsi_hosts = self.getHostsForComponent(services, "HIVE", "HIVE_SERVER_INTERACTIVE") # Check for expecting 'enable_hive_interactive' is ON given that there is HSI on atleast one host present. if len(hsi_hosts) > 0: # HIVE_SERVER_INTERACTIVE is mapped to a host if 'enable_hive_interactive' not in hive_site_env_properties or ( 'enable_hive_interactive' in hive_site_env_properties and hive_site_env_properties['enable_hive_interactive'].lower() != 'true'): validationItems.append({"config-name": "enable_hive_interactive", "item": self.getErrorItem( "HIVE_SERVER_INTERACTIVE requires enable_hive_interactive in hive-interactive-env set to true.")}) else: # no HIVE_SERVER_INTERACTIVE if 'enable_hive_interactive' in hive_site_env_properties and hive_site_env_properties[ 'enable_hive_interactive'].lower() != 'false': validationItems.append({"config-name": "enable_hive_interactive", "item": self.getErrorItem( "enable_hive_interactive in hive-interactive-env should be set to false.")}) # Check for 'yarn.resourcemanager.scheduler.monitor.enable' config to be true if HSI is ON. if yarn_site_properties and 'yarn.resourcemanager.scheduler.monitor.enable' in yarn_site_properties: scheduler_monitor_enabled = yarn_site_properties['yarn.resourcemanager.scheduler.monitor.enable'] if scheduler_monitor_enabled.lower() == 'false' and hive_site_env_properties and 'enable_hive_interactive' in hive_site_env_properties and \ hive_site_env_properties['enable_hive_interactive'].lower() == 'true': validationItems.append({"config-name": "enable_hive_interactive", "item": self.getWarnItem( "When enabling LLAP, set 'yarn.resourcemanager.scheduler.monitor.enable' to true to ensure that LLAP gets the full allocated capacity.")}) validationProblems = self.toConfigurationValidationProblems(validationItems, "hive-interactive-env") return validationProblems def getServiceConfigurationRecommenderDict(self): parentRecommendConfDict = super(ADH15StackAdvisor, self).getServiceConfigurationRecommenderDict() childRecommendConfDict = { "RANGER": self.recommendRangerConfigurations, "HBASE": self.recommendHBASEConfigurations, "HIVE": self.recommendHIVEConfigurations, "ATLAS": self.recommendAtlasConfigurations, "RANGER_KMS": self.recommendRangerKMSConfigurations, "STORM": self.recommendStormConfigurations, "OOZIE": self.recommendOozieConfigurations, "SPARK2": self.recommendSpark2Configurations } parentRecommendConfDict.update(childRecommendConfDict) return parentRecommendConfDict def recommendSpark2Configurations(self, configurations, clusterData, services, hosts): """ :type configurations dict :type clusterData dict :type services dict :type hosts dict """ putSparkProperty = self.putProperty(configurations, "spark2-defaults", services) putSparkThriftSparkConf = self.putProperty(configurations, "spark2-thrift-sparkconf", services) spark_queue = self.recommendYarnQueue(services, "spark2-defaults", "spark.yarn.queue") if spark_queue is not None: putSparkProperty("spark.yarn.queue", spark_queue) spart_thrift_queue = self.recommendYarnQueue(services, "spark2-thrift-sparkconf", "spark.yarn.queue") if spart_thrift_queue is not None: putSparkThriftSparkConf("spark.yarn.queue", spart_thrift_queue) def recommendStormConfigurations(self, configurations, clusterData, services, hosts): super(ADH15StackAdvisor, self).recommendStormConfigurations(configurations, clusterData, services, hosts) storm_site = self.getServicesSiteProperties(services, "storm-site") storm_env = self.getServicesSiteProperties(services, "storm-env") putStormSiteProperty = self.putProperty(configurations, "storm-site", services) putStormSiteAttributes = self.putPropertyAttribute(configurations, "storm-site") security_enabled = self.isSecurityEnabled(services) if storm_env and storm_site: if security_enabled: _storm_principal_name = storm_env['storm_principal_name'] if 'storm_principal_name' in storm_env else None storm_bare_jaas_principal = get_bare_principal(_storm_principal_name) if 'nimbus.impersonation.acl' in storm_site: storm_nimbus_impersonation_acl = storm_site["nimbus.impersonation.acl"] storm_nimbus_impersonation_acl.replace('{{storm_bare_jaas_principal}}', storm_bare_jaas_principal) putStormSiteProperty('nimbus.impersonation.acl', storm_nimbus_impersonation_acl) else: if 'nimbus.impersonation.acl' in storm_site: putStormSiteAttributes('nimbus.impersonation.acl', 'delete', 'true') if 'nimbus.impersonation.authorizer' in storm_site: putStormSiteAttributes('nimbus.impersonation.authorizer', 'delete', 'true') rangerPluginEnabled = '' if 'ranger-storm-plugin-properties' in configurations and 'ranger-storm-plugin-enabled' in configurations['ranger-storm-plugin-properties']['properties']: rangerPluginEnabled = configurations['ranger-storm-plugin-properties']['properties']['ranger-storm-plugin-enabled'] elif 'ranger-storm-plugin-properties' in services['configurations'] and 'ranger-storm-plugin-enabled' in services['configurations']['ranger-storm-plugin-properties']['properties']: rangerPluginEnabled = services['configurations']['ranger-storm-plugin-properties']['properties']['ranger-storm-plugin-enabled'] storm_authorizer_class = 'org.apache.storm.security.auth.authorizer.SimpleACLAuthorizer' ranger_authorizer_class = 'org.apache.ranger.authorization.storm.authorizer.RangerStormAuthorizer' # Cluster is kerberized if security_enabled: if rangerPluginEnabled and (rangerPluginEnabled.lower() == 'Yes'.lower()): putStormSiteProperty('nimbus.authorizer',ranger_authorizer_class) else: putStormSiteProperty('nimbus.authorizer', storm_authorizer_class) else: putStormSiteAttributes('nimbus.authorizer', 'delete', 'true') servicesList = [service["StackServices"]["service_name"] for service in services["services"]] # Storm AMS integration if 'AMBARI_METRICS' in servicesList: putStormSiteProperty('storm.cluster.metrics.consumer.register', '[{"class": "org.apache.hadoop.metrics2.sink.storm.StormTimelineMetricsReporter"}]') putStormSiteProperty('topology.metrics.consumer.register', '[{"class": "org.apache.hadoop.metrics2.sink.storm.StormTimelineMetricsSink", ' '"parallelism.hint": 1, ' '"whitelist": ["kafkaOffset\\\..+/", "__complete-latency", "__process-latency", ' '"__receive\\\.population$", "__sendqueue\\\.population$", "__execute-count", "__emit-count", ' '"__ack-count", "__fail-count", "memory/heap\\\.usedBytes$", "memory/nonHeap\\\.usedBytes$", ' '"GC/.+\\\.count$", "GC/.+\\\.timeMs$"]}]') else: putStormSiteProperty('storm.cluster.metrics.consumer.register', 'null') putStormSiteProperty('topology.metrics.consumer.register', 'null') def constructAtlasRestAddress(self, services, hosts): """ :param services: Collection of services in the cluster with configs :param hosts: Collection of hosts in the cluster :return: The suggested property for atlas.rest.address if it is valid, otherwise, None """ atlas_rest_address = None services_list = [service["StackServices"]["service_name"] for service in services["services"]] is_atlas_in_cluster = "ATLAS" in services_list atlas_server_hosts_info = self.getHostsWithComponent("ATLAS", "ATLAS_SERVER", services, hosts) if is_atlas_in_cluster and atlas_server_hosts_info and len(atlas_server_hosts_info) > 0: # Multiple Atlas Servers can exist, so sort by hostname to create deterministic csv atlas_host_names = [e['Hosts']['host_name'] for e in atlas_server_hosts_info] if len(atlas_host_names) > 1: atlas_host_names = sorted(atlas_host_names) scheme = "http" metadata_port = "21000" atlas_server_default_https_port = "21443" tls_enabled = "false" if 'application-properties' in services['configurations']: if 'atlas.enableTLS' in services['configurations']['application-properties']['properties']: tls_enabled = services['configurations']['application-properties']['properties']['atlas.enableTLS'] if 'atlas.server.http.port' in services['configurations']['application-properties']['properties']: metadata_port = str(services['configurations']['application-properties']['properties']['atlas.server.http.port']) if str(tls_enabled).lower() == "true": scheme = "https" if 'atlas.server.https.port' in services['configurations']['application-properties']['properties']: metadata_port = str(services['configurations']['application-properties']['properties']['atlas.server.https.port']) else: metadata_port = atlas_server_default_https_port atlas_rest_address_list = ["{0}://{1}:{2}".format(scheme, hostname, metadata_port) for hostname in atlas_host_names] atlas_rest_address = ",".join(atlas_rest_address_list) Logger.info("Constructing atlas.rest.address=%s" % atlas_rest_address) return atlas_rest_address def recommendAtlasConfigurations(self, configurations, clusterData, services, hosts): putAtlasApplicationProperty = self.putProperty(configurations, "application-properties", services) putAtlasRangerPluginProperty = self.putProperty(configurations, "ranger-atlas-plugin-properties", services) putAtlasEnvProperty = self.putProperty(configurations, "atlas-env", services) servicesList = [service["StackServices"]["service_name"] for service in services["services"]] # Generate atlas.rest.address since the value is always computed atlas_rest_address = self.constructAtlasRestAddress(services, hosts) if atlas_rest_address is not None: putAtlasApplicationProperty("atlas.rest.address", atlas_rest_address) if "AMBARI_INFRA" in servicesList and 'infra-solr-env' in services['configurations']: if 'infra_solr_znode' in services['configurations']['infra-solr-env']['properties']: infra_solr_znode = services['configurations']['infra-solr-env']['properties']['infra_solr_znode'] else: infra_solr_znode = None zookeeper_hosts = self.getHostNamesWithComponent("ZOOKEEPER", "ZOOKEEPER_SERVER", services) zookeeper_host_arr = [] zookeeper_port = self.getZKPort(services) for i in range(len(zookeeper_hosts)): zookeeper_host = zookeeper_hosts[i] + ':' + zookeeper_port if infra_solr_znode is not None: zookeeper_host += infra_solr_znode zookeeper_host_arr.append(zookeeper_host) solr_zookeeper_url = ",".join(zookeeper_host_arr) putAtlasApplicationProperty('atlas.graph.index.search.solr.zookeeper-url', solr_zookeeper_url) else: putAtlasApplicationProperty('atlas.graph.index.search.solr.zookeeper-url', "") # Kafka section if "KAFKA" in servicesList and 'kafka-broker' in services['configurations']: kafka_hosts = self.getHostNamesWithComponent("KAFKA", "KAFKA_BROKER", services) if 'port' in services['configurations']['kafka-broker']['properties']: kafka_broker_port = services['configurations']['kafka-broker']['properties']['port'] else: kafka_broker_port = '6667' if 'kafka-broker' in services['configurations'] and 'listeners' in services['configurations']['kafka-broker']['properties']: kafka_server_listeners = services['configurations']['kafka-broker']['properties']['listeners'] else: kafka_server_listeners = 'PLAINTEXT://localhost:6667' security_enabled = self.isSecurityEnabled(services) if ',' in kafka_server_listeners and len(kafka_server_listeners.split(',')) > 1: for listener in kafka_server_listeners.split(','): listener = listener.strip().split(':') if len(listener) == 3: if 'SASL' in listener[0] and security_enabled: kafka_broker_port = listener[2] break elif 'SASL' not in listener[0] and not security_enabled: kafka_broker_port = listener[2] else: listener = kafka_server_listeners.strip().split(':') if len(listener) == 3: kafka_broker_port = listener[2] kafka_host_arr = [] for i in range(len(kafka_hosts)): kafka_host_arr.append(kafka_hosts[i] + ':' + kafka_broker_port) kafka_bootstrap_servers = ",".join(kafka_host_arr) if 'zookeeper.connect' in services['configurations']['kafka-broker']['properties']: kafka_zookeeper_connect = services['configurations']['kafka-broker']['properties']['zookeeper.connect'] else: kafka_zookeeper_connect = None putAtlasApplicationProperty('atlas.kafka.bootstrap.servers', kafka_bootstrap_servers) putAtlasApplicationProperty('atlas.kafka.zookeeper.connect', kafka_zookeeper_connect) else: putAtlasApplicationProperty('atlas.kafka.bootstrap.servers', "") putAtlasApplicationProperty('atlas.kafka.zookeeper.connect', "") if "HBASE" in servicesList and 'hbase-site' in services['configurations']: if 'hbase.zookeeper.quorum' in services['configurations']['hbase-site']['properties']: hbase_zookeeper_quorum = services['configurations']['hbase-site']['properties']['hbase.zookeeper.quorum'] else: hbase_zookeeper_quorum = "" putAtlasApplicationProperty('atlas.graph.storage.hostname', hbase_zookeeper_quorum) putAtlasApplicationProperty('atlas.audit.hbase.zookeeper.quorum', hbase_zookeeper_quorum) else: putAtlasApplicationProperty('atlas.graph.storage.hostname', "") putAtlasApplicationProperty('atlas.audit.hbase.zookeeper.quorum', "") if "ranger-env" in services["configurations"] and "ranger-atlas-plugin-properties" in services["configurations"] and \ "ranger-atlas-plugin-enabled" in services["configurations"]["ranger-env"]["properties"]: ranger_atlas_plugin_enabled = services["configurations"]["ranger-env"]["properties"]["ranger-atlas-plugin-enabled"] putAtlasRangerPluginProperty('ranger-atlas-plugin-enabled', ranger_atlas_plugin_enabled) ranger_atlas_plugin_enabled = '' if 'ranger-atlas-plugin-properties' in configurations and 'ranger-atlas-plugin-enabled' in configurations['ranger-atlas-plugin-properties']['properties']: ranger_atlas_plugin_enabled = configurations['ranger-atlas-plugin-properties']['properties']['ranger-atlas-plugin-enabled'] elif 'ranger-atlas-plugin-properties' in services['configurations'] and 'ranger-atlas-plugin-enabled' in services['configurations']['ranger-atlas-plugin-properties']['properties']: ranger_atlas_plugin_enabled = services['configurations']['ranger-atlas-plugin-properties']['properties']['ranger-atlas-plugin-enabled'] if ranger_atlas_plugin_enabled and (ranger_atlas_plugin_enabled.lower() == 'Yes'.lower()): putAtlasApplicationProperty('atlas.authorizer.impl','ranger') else: putAtlasApplicationProperty('atlas.authorizer.impl','simple') #atlas server memory settings if 'atlas-env' in services['configurations']: atlas_server_metadata_size = 50000 if 'atlas_server_metadata_size' in services['configurations']['atlas-env']['properties']: atlas_server_metadata_size = float(services['configurations']['atlas-env']['properties']['atlas_server_metadata_size']) atlas_server_xmx = 2048 if 300000 <= atlas_server_metadata_size < 500000: atlas_server_xmx = 1024*5 if 500000 <= atlas_server_metadata_size < 1000000: atlas_server_xmx = 1024*10 if atlas_server_metadata_size >= 1000000: atlas_server_xmx = 1024*16 atlas_server_max_new_size = (atlas_server_xmx / 100) * 30 putAtlasEnvProperty("atlas_server_xmx", atlas_server_xmx) putAtlasEnvProperty("atlas_server_max_new_size", atlas_server_max_new_size) def recommendHBASEConfigurations(self, configurations, clusterData, services, hosts): super(ADH15StackAdvisor, self).recommendHBASEConfigurations(configurations, clusterData, services, hosts) putHbaseSiteProperty = self.putProperty(configurations, "hbase-site", services) putCoreSiteProperty = self.putProperty(configurations, "core-site", services) if "cluster-env" in services["configurations"] \ and "security_enabled" in services["configurations"]["cluster-env"]["properties"] \ and services["configurations"]["cluster-env"]["properties"]["security_enabled"].lower() == "true": # Set the master's UI to readonly putHbaseSiteProperty('hbase.master.ui.readonly', 'true') phoenix_query_server_hosts = self.get_phoenix_query_server_hosts(services, hosts) Logger.debug("Calculated Phoenix Query Server hosts: %s" % str(phoenix_query_server_hosts)) if phoenix_query_server_hosts: Logger.debug("Attempting to update hadoop.proxyuser.HTTP.hosts with %s" % str(phoenix_query_server_hosts)) # The PQS hosts we want to ensure are set new_value = ','.join(phoenix_query_server_hosts) # Update the proxyuser setting, deferring to out callback to merge results together self.put_proxyuser_value("HTTP", new_value, services=services, configurations=configurations, put_function=putCoreSiteProperty) else: Logger.debug("No phoenix query server hosts to update") else: putHbaseSiteProperty('hbase.master.ui.readonly', 'false') """ Returns the list of Phoenix Query Server host names, or None. """ def get_phoenix_query_server_hosts(self, services, hosts): if len(hosts['items']) > 0: phoenix_query_server_hosts = self.getHostsWithComponent("HBASE", "PHOENIX_QUERY_SERVER", services, hosts) if phoenix_query_server_hosts is None: return [] return [host['Hosts']['host_name'] for host in phoenix_query_server_hosts] def recommendHIVEConfigurations(self, configurations, clusterData, services, hosts): Logger.info("DBG: Invoked recommendHiveConfiguration") super(ADH15StackAdvisor, self).recommendHIVEConfigurations(configurations, clusterData, services, hosts) putHiveInteractiveEnvProperty = self.putProperty(configurations, "hive-interactive-env", services) putHiveInteractiveSiteProperty = self.putProperty(configurations, self.HIVE_INTERACTIVE_SITE, services) putHiveInteractiveEnvPropertyAttribute = self.putPropertyAttribute(configurations, "hive-interactive-env") # For 'Hive Server Interactive', if the component exists. hsi_hosts = self.getHostsForComponent(services, "HIVE", "HIVE_SERVER_INTERACTIVE") hsi_properties = self.getServicesSiteProperties(services, self.HIVE_INTERACTIVE_SITE) if len(hsi_hosts) > 0: putHiveInteractiveEnvProperty('enable_hive_interactive', 'true') # Update 'hive.llap.daemon.queue.name' property attributes if capacity scheduler is changed. if hsi_properties and 'hive.llap.daemon.queue.name' in hsi_properties: self.setLlapDaemonQueuePropAttributes(services, configurations) hsi_conf_properties = self.getSiteProperties(configurations, self.HIVE_INTERACTIVE_SITE) hive_tez_default_queue = hsi_properties["hive.llap.daemon.queue.name"] if hsi_conf_properties and "hive.llap.daemon.queue.name" in hsi_conf_properties: hive_tez_default_queue = hsi_conf_properties['hive.llap.daemon.queue.name'] if hive_tez_default_queue: putHiveInteractiveSiteProperty("hive.server2.tez.default.queues", hive_tez_default_queue) Logger.debug("Updated 'hive.server2.tez.default.queues' config : '{0}'".format(hive_tez_default_queue)) else: Logger.info("DBG: Setting 'num_llap_nodes' config's READ ONLY attribute as 'True'.") putHiveInteractiveEnvProperty('enable_hive_interactive', 'false') putHiveInteractiveEnvPropertyAttribute("num_llap_nodes", "read_only", "true") if hsi_properties and "hive.llap.zk.sm.connectionString" in hsi_properties: zookeeper_host_port = self.getZKHostPortString(services) if zookeeper_host_port: putHiveInteractiveSiteProperty("hive.llap.zk.sm.connectionString", zookeeper_host_port) def recommendYARNConfigurations(self, configurations, clusterData, services, hosts): super(ADH15StackAdvisor, self).recommendYARNConfigurations(configurations, clusterData, services, hosts) hsi_env_poperties = self.getServicesSiteProperties(services, "hive-interactive-env") cluster_env = self.getServicesSiteProperties(services, "cluster-env") # Queue 'llap' creation/removal logic (Used by Hive Interactive server and associated LLAP) if hsi_env_poperties and 'enable_hive_interactive' in hsi_env_poperties: enable_hive_interactive = hsi_env_poperties['enable_hive_interactive'] LLAP_QUEUE_NAME = 'llap' # Hive Server interactive is already added or getting added if enable_hive_interactive == 'true': self.updateLlapConfigs(configurations, services, hosts, LLAP_QUEUE_NAME) else: # When Hive Interactive Server is in 'off/removed' state. self.checkAndStopLlapQueue(services, configurations, LLAP_QUEUE_NAME) putYarnSiteProperty = self.putProperty(configurations, "yarn-site", services) stack_root = "/usr/lib" if cluster_env and "stack_root" in cluster_env: stack_root = cluster_env["stack_root"] timeline_plugin_classes_values = [] timeline_plugin_classpath_values = [] if self.__isServiceDeployed(services, "TEZ"): timeline_plugin_classes_values.append('org.apache.tez.dag.history.logging.ats.TimelineCachePluginImpl') if self.__isServiceDeployed(services, "SPARK2"): timeline_plugin_classes_values.append('org.apache.spark.deploy.history.yarn.plugin.SparkATSPlugin') timeline_plugin_classpath_values.append(stack_root + "/spark/jars/*") putYarnSiteProperty('yarn.timeline-service.entity-group-fs-store.group-id-plugin-classes', ",".join(timeline_plugin_classes_values)) putYarnSiteProperty('yarn.timeline-service.entity-group-fs-store.group-id-plugin-classpath', ":".join(timeline_plugin_classpath_values)) def updateLlapConfigs(self, configurations, services, hosts, llap_queue_name): """ Entry point for updating Hive's 'LLAP app' configs namely : (1). num_llap_nodes (2). hive.llap.daemon.yarn.container.mb (3). hive.llap.daemon.num.executors (4). hive.llap.io.memory.size (5). llap_heap_size (6). slider_am_container_mb, (7). hive.server2.tez.sessions.per.default.queue, (8). tez.am.resource.memory.mb (9). hive.tez.container.size (10). tez.runtime.io.sort.mb (11). tez.runtime.unordered.output.buffer.size-mb (12). hive.llap.io.threadpool.size, and (13). hive.llap.io.enabled. The trigger point for updating LLAP configs (mentioned above) is change in values of any of the following: (1). 'enable_hive_interactive' set to 'true' (2). 'num_llap_nodes' (3). 'hive.server2.tez.sessions.per.default.queue' (4). Change in queue selection for config 'hive.llap.daemon.queue.name'. If change in value for 'num_llap_nodes' or 'hive.server2.tez.sessions.per.default.queue' is detected, that config value is not calulated, but read and use in calculation for dependent configs. Note: All memory calculations are in MB, unless specified otherwise. """ Logger.info("DBG: Entered updateLlapConfigs"); # Determine if we entered here during cluster creation. operation = getUserOperationContext(services, "operation") is_cluster_create_opr = False if operation == self.CLUSTER_CREATE_OPERATION: is_cluster_create_opr = True Logger.info("Is cluster create operation ? = {0}".format(is_cluster_create_opr)) putHiveInteractiveSiteProperty = self.putProperty(configurations, self.HIVE_INTERACTIVE_SITE, services) putHiveInteractiveSitePropertyAttribute = self.putPropertyAttribute(configurations, self.HIVE_INTERACTIVE_SITE) putHiveInteractiveEnvProperty = self.putProperty(configurations, "hive-interactive-env", services) putHiveInteractiveEnvPropertyAttribute = self.putPropertyAttribute(configurations, "hive-interactive-env") putTezInteractiveSiteProperty = self.putProperty(configurations, "tez-interactive-site", services) llap_daemon_selected_queue_name = None selected_queue_is_ambari_managed_llap = None # Queue named 'llap' at root level is Ambari managed. llap_selected_queue_am_percent = None DEFAULT_EXECUTOR_TO_AM_RATIO = 20 MIN_EXECUTOR_TO_AM_RATIO = 10 MAX_CONCURRENT_QUERIES = 32 MAX_CONCURRENT_QUERIES_SMALL_CLUSTERS = 4 # Concurrency for clusters with <10 executors leafQueueNames = None MB_TO_BYTES = 1048576 hsi_site = self.getServicesSiteProperties(services, self.HIVE_INTERACTIVE_SITE) yarn_site = self.getServicesSiteProperties(services, "yarn-site") min_memory_required = 0 # Update 'hive.llap.daemon.queue.name' prop combo entries self.setLlapDaemonQueuePropAttributes(services, configurations) if not services["changed-configurations"]: read_llap_daemon_yarn_cont_mb = long(self.get_yarn_min_container_size(services, configurations)) putHiveInteractiveSiteProperty("hive.llap.daemon.yarn.container.mb", read_llap_daemon_yarn_cont_mb) if hsi_site and "hive.llap.daemon.queue.name" in hsi_site: llap_daemon_selected_queue_name = hsi_site["hive.llap.daemon.queue.name"] # Update Visibility of 'num_llap_nodes' slider. Visible only if selected queue is Ambari created 'llap'. capacity_scheduler_properties, received_as_key_value_pair = self.getCapacitySchedulerProperties(services) if capacity_scheduler_properties: # Get all leaf queues. leafQueueNames = self.getAllYarnLeafQueues(capacity_scheduler_properties) Logger.info("YARN leaf Queues = {0}".format(leafQueueNames)) if len(leafQueueNames) == 0: Logger.error("Queue(s) couldn't be retrieved from capacity-scheduler.") return # Check if it's 1st invocation after enabling Hive Server Interactive (config: enable_hive_interactive). changed_configs_has_enable_hive_int = self.isConfigPropertiesChanged(services, "hive-interactive-env", ['enable_hive_interactive'], False) llap_named_queue_selected_in_curr_invocation = None # Check if its : 1. 1st invocation from UI ('enable_hive_interactive' in changed-configurations) # OR 2. 1st invocation from BP (services['changed-configurations'] should be empty in this case) if (changed_configs_has_enable_hive_int or 0 == len(services['changed-configurations']))\ and services['configurations']['hive-interactive-env']['properties']['enable_hive_interactive']: if len(leafQueueNames) == 1 or (len(leafQueueNames) == 2 and llap_queue_name in leafQueueNames): llap_named_queue_selected_in_curr_invocation = True putHiveInteractiveSiteProperty('hive.llap.daemon.queue.name', llap_queue_name) putHiveInteractiveSiteProperty('hive.server2.tez.default.queues', llap_queue_name) else: first_leaf_queue = list(leafQueueNames)[0] # 1st invocation, pick the 1st leaf queue and set it as selected. putHiveInteractiveSiteProperty('hive.llap.daemon.queue.name', first_leaf_queue) putHiveInteractiveSiteProperty('hive.server2.tez.default.queues', first_leaf_queue) llap_named_queue_selected_in_curr_invocation = False Logger.info("DBG: llap_named_queue_selected_in_curr_invocation = {0}".format(llap_named_queue_selected_in_curr_invocation)) if (len(leafQueueNames) == 2 and (llap_daemon_selected_queue_name and llap_daemon_selected_queue_name == llap_queue_name) or llap_named_queue_selected_in_curr_invocation) or \ (len(leafQueueNames) == 1 and llap_daemon_selected_queue_name == 'default' and llap_named_queue_selected_in_curr_invocation): Logger.info("DBG: Setting 'num_llap_nodes' config's READ ONLY attribute as 'False'.") putHiveInteractiveEnvPropertyAttribute("num_llap_nodes", "read_only", "false") selected_queue_is_ambari_managed_llap = True Logger.info("DBG: Selected YARN queue for LLAP is : '{0}'. Current YARN queues : {1}. Setting 'Number of LLAP nodes' " "slider visibility to 'True'".format(llap_queue_name, list(leafQueueNames))) else: Logger.info("DBG: Setting 'num_llap_nodes' config's READ ONLY attribute as 'True'.") putHiveInteractiveEnvPropertyAttribute("num_llap_nodes", "read_only", "true") Logger.info("Selected YARN queue for LLAP is : '{0}'. Current YARN queues : {1}. Setting 'Number of LLAP nodes' " "visibility to 'False'.".format(llap_daemon_selected_queue_name, list(leafQueueNames))) selected_queue_is_ambari_managed_llap = False if not llap_named_queue_selected_in_curr_invocation: # We would be creating the 'llap' queue later. Thus, cap-sched doesn't have # state information pertaining to 'llap' queue. # Check: State of the selected queue should not be STOPPED. if llap_daemon_selected_queue_name: llap_selected_queue_state = self.__getQueueStateFromCapacityScheduler(capacity_scheduler_properties, llap_daemon_selected_queue_name) if llap_selected_queue_state is None or llap_selected_queue_state == "STOPPED": Logger.error("Selected LLAP app queue '{0}' current state is : '{1}'. Setting LLAP configs to default " "values.".format(llap_daemon_selected_queue_name, llap_selected_queue_state)) self.recommendDefaultLlapConfiguration(configurations, services, hosts) return else: Logger.error("Retrieved LLAP app queue name is : '{0}'. Setting LLAP configs to default values." .format(llap_daemon_selected_queue_name)) self.recommendDefaultLlapConfiguration(configurations, services, hosts) return else: Logger.error("Couldn't retrieve 'capacity-scheduler' properties while doing YARN queue adjustment for Hive Server Interactive." " Not calculating LLAP configs.") return changed_configs_in_hive_int_env = None llap_concurrency_in_changed_configs = None llap_daemon_queue_in_changed_configs = None # Calculations are triggered only if there is change in any one of the following props : # 'num_llap_nodes', 'enable_hive_interactive', 'hive.server2.tez.sessions.per.default.queue' # or 'hive.llap.daemon.queue.name' has change in value selection. # OR # services['changed-configurations'] is empty implying that this is the Blueprint call. (1st invocation) if 'changed-configurations' in services.keys(): config_names_to_be_checked = set(['num_llap_nodes', 'enable_hive_interactive']) changed_configs_in_hive_int_env = self.isConfigPropertiesChanged(services, "hive-interactive-env", config_names_to_be_checked, False) # Determine if there is change detected in "hive-interactive-site's" configs based on which we calculate llap configs. llap_concurrency_in_changed_configs = self.isConfigPropertiesChanged(services, self.HIVE_INTERACTIVE_SITE, ['hive.server2.tez.sessions.per.default.queue'], False) llap_daemon_queue_in_changed_configs = self.isConfigPropertiesChanged(services, self.HIVE_INTERACTIVE_SITE, ['hive.llap.daemon.queue.name'], False) if not changed_configs_in_hive_int_env and not llap_concurrency_in_changed_configs and \ not llap_daemon_queue_in_changed_configs and services["changed-configurations"]: Logger.info("DBG: LLAP parameters not modified. Not adjusting LLAP configs.") Logger.info("DBG: Current 'changed-configuration' received is : {0}".format(services["changed-configurations"])) return Logger.info("\nDBG: Performing LLAP config calculations ......") node_manager_host_list = self.getHostsForComponent(services, "YARN", "NODEMANAGER") node_manager_cnt = len(node_manager_host_list) yarn_nm_mem_in_mb = self.get_yarn_nm_mem_in_mb(services, configurations) total_cluster_capacity = node_manager_cnt * yarn_nm_mem_in_mb Logger.info("DBG: Calculated total_cluster_capacity : {0}, using following : node_manager_cnt : {1}, " "yarn_nm_mem_in_mb : {2}".format(total_cluster_capacity, node_manager_cnt, yarn_nm_mem_in_mb)) yarn_min_container_size = float(self.get_yarn_min_container_size(services, configurations)) tez_am_container_size = self.calculate_tez_am_container_size(services, long(total_cluster_capacity), is_cluster_create_opr, changed_configs_has_enable_hive_int) normalized_tez_am_container_size = self._normalizeUp(tez_am_container_size, yarn_min_container_size) if yarn_site and "yarn.nodemanager.resource.cpu-vcores" in yarn_site: cpu_per_nm_host = float(yarn_site["yarn.nodemanager.resource.cpu-vcores"]) else: self.recommendDefaultLlapConfiguration(configurations, services, hosts) return Logger.info("DBG Calculated normalized_tez_am_container_size : {0}, using following : tez_am_container_size : {1}, " "total_cluster_capacity : {2}".format(normalized_tez_am_container_size, tez_am_container_size, total_cluster_capacity)) # Calculate the available memory for LLAP app yarn_nm_mem_in_mb_normalized = self._normalizeDown(yarn_nm_mem_in_mb, yarn_min_container_size) mem_per_thread_for_llap = float(self.calculate_mem_per_thread_for_llap(services, yarn_nm_mem_in_mb_normalized, cpu_per_nm_host, is_cluster_create_opr, changed_configs_has_enable_hive_int)) Logger.info("DBG: Calculated mem_per_thread_for_llap : {0}, using following: yarn_nm_mem_in_mb_normalized : {1}, " "cpu_per_nm_host : {2}".format(mem_per_thread_for_llap, yarn_nm_mem_in_mb_normalized, cpu_per_nm_host)) if mem_per_thread_for_llap is None: self.recommendDefaultLlapConfiguration(configurations, services, hosts) return # Get calculated value for Slider AM container Size slider_am_container_size = self._normalizeUp(self.calculate_slider_am_size(yarn_min_container_size), yarn_min_container_size) Logger.info("DBG: Calculated 'slider_am_container_size' : {0}, using following: yarn_min_container_size : " "{1}".format(slider_am_container_size, yarn_min_container_size)) min_memory_required = normalized_tez_am_container_size + slider_am_container_size + self._normalizeUp(mem_per_thread_for_llap, yarn_min_container_size) Logger.info("DBG: Calculated 'min_memory_required': {0} using following : slider_am_container_size: {1}, " "normalized_tez_am_container_size : {2}, mem_per_thread_for_llap : {3}, yarn_min_container_size : " "{4}".format(min_memory_required, slider_am_container_size, normalized_tez_am_container_size, mem_per_thread_for_llap, yarn_min_container_size)) min_nodes_required = int(math.ceil( min_memory_required / yarn_nm_mem_in_mb_normalized)) Logger.info("DBG: Calculated 'min_node_required': {0}, using following : min_memory_required : {1}, yarn_nm_mem_in_mb_normalized " ": {2}".format(min_nodes_required, min_memory_required, yarn_nm_mem_in_mb_normalized)) if min_nodes_required > node_manager_cnt: Logger.warning("ERROR: Not enough memory/nodes to run LLAP"); self.recommendDefaultLlapConfiguration(configurations, services, hosts) return mem_per_thread_for_llap = float(mem_per_thread_for_llap) Logger.info("DBG: selected_queue_is_ambari_managed_llap = {0}".format(selected_queue_is_ambari_managed_llap)) if not selected_queue_is_ambari_managed_llap: llap_daemon_selected_queue_cap = self.__getSelectedQueueTotalCap(capacity_scheduler_properties, llap_daemon_selected_queue_name, total_cluster_capacity) if llap_daemon_selected_queue_cap <= 0: Logger.warning("'{0}' queue capacity percentage retrieved = {1}. Expected > 0.".format( llap_daemon_selected_queue_name, llap_daemon_selected_queue_cap)) self.recommendDefaultLlapConfiguration(configurations, services, hosts) return total_llap_mem_normalized = self._normalizeDown(llap_daemon_selected_queue_cap, yarn_min_container_size) Logger.info("DBG: Calculated '{0}' queue available capacity : {1}, using following: llap_daemon_selected_queue_cap : {2}, " "yarn_min_container_size : {3}".format(llap_daemon_selected_queue_name, total_llap_mem_normalized, llap_daemon_selected_queue_cap, yarn_min_container_size)) '''Rounding up numNodes so that we run more daemons, and utilitze more CPUs. The rest of the calcaulations will take care of cutting this down if required''' num_llap_nodes_requested = math.ceil(total_llap_mem_normalized / yarn_nm_mem_in_mb_normalized) Logger.info("DBG: Calculated 'num_llap_nodes_requested' : {0}, using following: total_llap_mem_normalized : {1}, " "yarn_nm_mem_in_mb_normalized : {2}".format(num_llap_nodes_requested, total_llap_mem_normalized, yarn_nm_mem_in_mb_normalized)) # Pouplate the 'num_llap_nodes_requested' in config 'num_llap_nodes', a read only config for non-Ambari managed queue case. putHiveInteractiveEnvProperty('num_llap_nodes', num_llap_nodes_requested) Logger.info("Setting config 'num_llap_nodes' as : {0}".format(num_llap_nodes_requested)) queue_am_fraction_perc = float(self.__getQueueAmFractionFromCapacityScheduler(capacity_scheduler_properties, llap_daemon_selected_queue_name)) hive_tez_am_cap_available = queue_am_fraction_perc * total_llap_mem_normalized Logger.info("DBG: Calculated 'hive_tez_am_cap_available' : {0}, using following: queue_am_fraction_perc : {1}, " "total_llap_mem_normalized : {2}".format(hive_tez_am_cap_available, queue_am_fraction_perc, total_llap_mem_normalized)) else: # Ambari managed 'llap' named queue at root level. # Set 'num_llap_nodes_requested' for 1st invocation, as it gets passed as 1 otherwise, read from config. # Check if its : 1. 1st invocation from UI ('enable_hive_interactive' in changed-configurations) # OR 2. 1st invocation from BP (services['changed-configurations'] should be empty in this case) if (changed_configs_has_enable_hive_int or 0 == len(services['changed-configurations'])) \ and services['configurations']['hive-interactive-env']['properties']['enable_hive_interactive']: num_llap_nodes_requested = min_nodes_required else: num_llap_nodes_requested = self.get_num_llap_nodes(services, configurations) #Input total_llap_mem = num_llap_nodes_requested * yarn_nm_mem_in_mb_normalized Logger.info("DBG: Calculated 'total_llap_mem' : {0}, using following: num_llap_nodes_requested : {1}, " "yarn_nm_mem_in_mb_normalized : {2}".format(total_llap_mem, num_llap_nodes_requested, yarn_nm_mem_in_mb_normalized)) total_llap_mem_normalized = float(self._normalizeDown(total_llap_mem, yarn_min_container_size)) Logger.info("DBG: Calculated 'total_llap_mem_normalized' : {0}, using following: total_llap_mem : {1}, " "yarn_min_container_size : {2}".format(total_llap_mem_normalized, total_llap_mem, yarn_min_container_size)) # What percent is 'total_llap_mem' of 'total_cluster_capacity' ? llap_named_queue_cap_fraction = math.ceil(total_llap_mem_normalized / total_cluster_capacity * 100) Logger.info("DBG: Calculated '{0}' queue capacity percent = {1}.".format(llap_queue_name, llap_named_queue_cap_fraction)) if llap_named_queue_cap_fraction > 100: Logger.warning("Calculated '{0}' queue size = {1}. Cannot be > 100.".format(llap_queue_name, llap_named_queue_cap_fraction)) self.recommendDefaultLlapConfiguration(configurations, services, hosts) return # Adjust capacity scheduler for the 'llap' named queue. self.checkAndManageLlapQueue(services, configurations, hosts, llap_queue_name, llap_named_queue_cap_fraction) hive_tez_am_cap_available = total_llap_mem_normalized Logger.info("DBG: hive_tez_am_cap_available : {0}".format(hive_tez_am_cap_available)) # Common calculations now, irrespective of the queue selected. llap_mem_for_tezAm_and_daemons = total_llap_mem_normalized - slider_am_container_size Logger.info("DBG: Calculated 'llap_mem_for_tezAm_and_daemons' : {0}, using following : total_llap_mem_normalized : {1}, " "slider_am_container_size : {2}".format(llap_mem_for_tezAm_and_daemons, total_llap_mem_normalized, slider_am_container_size)) if llap_mem_for_tezAm_and_daemons < 2 * yarn_min_container_size: Logger.warning("Not enough capacity available on the cluster to run LLAP") self.recommendDefaultLlapConfiguration(configurations, services, hosts) return # Calculate llap concurrency (i.e. Number of Tez AM's) max_executors_per_node = self.get_max_executors_per_node(yarn_nm_mem_in_mb_normalized, cpu_per_nm_host, mem_per_thread_for_llap) # Read 'hive.server2.tez.sessions.per.default.queue' prop if it's in changed-configs, else calculate it. if not llap_concurrency_in_changed_configs: if max_executors_per_node <= 0: Logger.warning("Calculated 'max_executors_per_node' = {0}. Expected value >= 1.".format(max_executors_per_node)) self.recommendDefaultLlapConfiguration(configurations, services, hosts) return Logger.info("DBG: Calculated 'max_executors_per_node' : {0}, using following: yarn_nm_mem_in_mb_normalized : {1}, cpu_per_nm_host : {2}, " "mem_per_thread_for_llap: {3}".format(max_executors_per_node, yarn_nm_mem_in_mb_normalized, cpu_per_nm_host, mem_per_thread_for_llap)) # Default 1 AM for every 20 executor threads. # The second part of the min calculates based on mem required for DEFAULT_EXECUTOR_TO_AM_RATIO executors + 1 AM, # making use of total memory. However, it's possible that total memory will not be used - and the numExecutors is # instead limited by #CPUs. Use maxPerNode to factor this in. llap_concurreny_limit = min(math.floor(max_executors_per_node * num_llap_nodes_requested / DEFAULT_EXECUTOR_TO_AM_RATIO), MAX_CONCURRENT_QUERIES) Logger.info("DBG: Calculated 'llap_concurreny_limit' : {0}, using following : max_executors_per_node : {1}, num_llap_nodes_requested : {2}, DEFAULT_EXECUTOR_TO_AM_RATIO " ": {3}, MAX_CONCURRENT_QUERIES : {4}".format(llap_concurreny_limit, max_executors_per_node, num_llap_nodes_requested, DEFAULT_EXECUTOR_TO_AM_RATIO, MAX_CONCURRENT_QUERIES)) llap_concurrency = min(llap_concurreny_limit, math.floor(llap_mem_for_tezAm_and_daemons / (DEFAULT_EXECUTOR_TO_AM_RATIO * mem_per_thread_for_llap + normalized_tez_am_container_size))) Logger.info("DBG: Calculated 'llap_concurrency' : {0}, using following : llap_concurreny_limit : {1}, llap_mem_for_tezAm_and_daemons : " "{2}, DEFAULT_EXECUTOR_TO_AM_RATIO : {3}, mem_per_thread_for_llap : {4}, normalized_tez_am_container_size : " "{5}".format(llap_concurrency, llap_concurreny_limit, llap_mem_for_tezAm_and_daemons, DEFAULT_EXECUTOR_TO_AM_RATIO, mem_per_thread_for_llap, normalized_tez_am_container_size)) if llap_concurrency == 0: llap_concurrency = 1 Logger.info("DBG: Readjusted 'llap_concurrency' to : 1. Earlier calculated value : 0") if llap_concurrency * normalized_tez_am_container_size > hive_tez_am_cap_available: llap_concurrency = long(math.floor(hive_tez_am_cap_available / normalized_tez_am_container_size)) Logger.info("DBG: Readjusted 'llap_concurrency' to : {0}, as llap_concurrency({1}) * normalized_tez_am_container_size({2}) > hive_tez_am_cap_available({3}))" .format(llap_concurrency, llap_concurrency, normalized_tez_am_container_size, hive_tez_am_cap_available)) if llap_concurrency <= 0: Logger.warning("DBG: Calculated 'LLAP Concurrent Queries' = {0}. Expected value >= 1.".format(llap_concurrency)) self.recommendDefaultLlapConfiguration(configurations, services, hosts) return Logger.info("DBG: Adjusted 'llap_concurrency' : {0}, using following: hive_tez_am_cap_available : {1}, normalized_tez_am_container_size: " "{2}".format(llap_concurrency, hive_tez_am_cap_available, normalized_tez_am_container_size)) else: # Read current value if 'hive.server2.tez.sessions.per.default.queue' in hsi_site: llap_concurrency = long(hsi_site['hive.server2.tez.sessions.per.default.queue']) if llap_concurrency <= 0: Logger.warning("'hive.server2.tez.sessions.per.default.queue' current value : {0}. Expected value : >= 1".format(llap_concurrency)) self.recommendDefaultLlapConfiguration(configurations, services, hosts) return Logger.info("DBG: Read 'llap_concurrency' : {0}".format(llap_concurrency )) else: llap_concurrency = 1 Logger.warning("Couldn't retrieve Hive Server interactive's 'hive.server2.tez.sessions.per.default.queue' config. Setting default value 1.") self.recommendDefaultLlapConfiguration(configurations, services, hosts) return # Calculate 'Max LLAP Consurrency', irrespective of whether 'llap_concurrency' was read or calculated. max_llap_concurreny_limit = min(math.floor(max_executors_per_node * num_llap_nodes_requested / MIN_EXECUTOR_TO_AM_RATIO), MAX_CONCURRENT_QUERIES) Logger.info("DBG: Calculated 'max_llap_concurreny_limit' : {0}, using following : max_executors_per_node : {1}, num_llap_nodes_requested " ": {2}, MIN_EXECUTOR_TO_AM_RATIO : {3}, MAX_CONCURRENT_QUERIES : {4}".format(max_llap_concurreny_limit, max_executors_per_node, num_llap_nodes_requested, MIN_EXECUTOR_TO_AM_RATIO, MAX_CONCURRENT_QUERIES)) max_llap_concurreny = long(min(max_llap_concurreny_limit, math.floor(llap_mem_for_tezAm_and_daemons / (MIN_EXECUTOR_TO_AM_RATIO * mem_per_thread_for_llap + normalized_tez_am_container_size)))) Logger.info("DBG: Calculated 'max_llap_concurreny' : {0}, using following : max_llap_concurreny_limit : {1}, llap_mem_for_tezAm_and_daemons : " "{2}, MIN_EXECUTOR_TO_AM_RATIO : {3}, mem_per_thread_for_llap : {4}, normalized_tez_am_container_size : " "{5}".format(max_llap_concurreny, max_llap_concurreny_limit, llap_mem_for_tezAm_and_daemons, MIN_EXECUTOR_TO_AM_RATIO, mem_per_thread_for_llap, normalized_tez_am_container_size)) if int(max_llap_concurreny) < MAX_CONCURRENT_QUERIES_SMALL_CLUSTERS: Logger.info("DBG: Adjusting 'max_llap_concurreny' from {0} to {1}".format(max_llap_concurreny, MAX_CONCURRENT_QUERIES_SMALL_CLUSTERS)) max_llap_concurreny = MAX_CONCURRENT_QUERIES_SMALL_CLUSTERS if (max_llap_concurreny * normalized_tez_am_container_size) > hive_tez_am_cap_available: max_llap_concurreny = math.floor(hive_tez_am_cap_available / normalized_tez_am_container_size) if max_llap_concurreny <= 0: Logger.warning("Calculated 'Max. LLAP Concurrent Queries' = {0}. Expected value > 1".format(max_llap_concurreny)) self.recommendDefaultLlapConfiguration(configurations, services, hosts) return Logger.info("DBG: Adjusted 'max_llap_concurreny' : {0}, using following: hive_tez_am_cap_available : {1}, normalized_tez_am_container_size: " "{2}".format(max_llap_concurreny, hive_tez_am_cap_available, normalized_tez_am_container_size)) # Calculate value for 'num_llap_nodes', an across cluster config. tez_am_memory_required = llap_concurrency * normalized_tez_am_container_size Logger.info("DBG: Calculated 'tez_am_memory_required' : {0}, using following : llap_concurrency : {1}, normalized_tez_am_container_size : " "{2}".format(tez_am_memory_required, llap_concurrency, normalized_tez_am_container_size)) llap_mem_daemon_size = llap_mem_for_tezAm_and_daemons - tez_am_memory_required if llap_mem_daemon_size < yarn_min_container_size: Logger.warning("Calculated 'LLAP Daemon Size = {0}'. Expected >= 'YARN Minimum Container Size' ({1})'".format( llap_mem_daemon_size, yarn_min_container_size)) self.recommendDefaultLlapConfiguration(configurations, services, hosts) return if llap_mem_daemon_size < mem_per_thread_for_llap or llap_mem_daemon_size < yarn_min_container_size: Logger.warning("Not enough memory available for executors.") self.recommendDefaultLlapConfiguration(configurations, services, hosts) return Logger.info("DBG: Calculated 'llap_mem_daemon_size' : {0}, using following : llap_mem_for_tezAm_and_daemons : {1}, tez_am_memory_required : " "{2}".format(llap_mem_daemon_size, llap_mem_for_tezAm_and_daemons, tez_am_memory_required)) llap_daemon_mem_per_node = self._normalizeDown(llap_mem_daemon_size / num_llap_nodes_requested, yarn_min_container_size) # This value takes into account total cluster capacity, and may not have left enough capcaity on each node to launch an AM. Logger.info("DBG: Calculated 'llap_daemon_mem_per_node' : {0}, using following : llap_mem_daemon_size : {1}, num_llap_nodes_requested : {2}, " "yarn_min_container_size: {3}".format(llap_daemon_mem_per_node, llap_mem_daemon_size, num_llap_nodes_requested, yarn_min_container_size)) if llap_daemon_mem_per_node == 0: # Small cluster. No capacity left on a node after running AMs. llap_daemon_mem_per_node = self._normalizeUp(mem_per_thread_for_llap, yarn_min_container_size) num_llap_nodes = math.floor(llap_mem_daemon_size / llap_daemon_mem_per_node) Logger.info("DBG: 'llap_daemon_mem_per_node' : 0, adjusted 'llap_daemon_mem_per_node' : {0}, 'num_llap_nodes' : {1}, using following: llap_mem_daemon_size : {2}, " "mem_per_thread_for_llap : {3}".format(llap_daemon_mem_per_node, num_llap_nodes, llap_mem_daemon_size, mem_per_thread_for_llap)) elif llap_daemon_mem_per_node < mem_per_thread_for_llap: # Previously computed value of memory per thread may be too high. Cut the number of nodes. (Alternately reduce memory per node) llap_daemon_mem_per_node = mem_per_thread_for_llap num_llap_nodes = math.floor(llap_mem_daemon_size / mem_per_thread_for_llap) Logger.info("DBG: 'llap_daemon_mem_per_node'({0}) < mem_per_thread_for_llap({1}), adjusted 'llap_daemon_mem_per_node' " ": {2}".format(llap_daemon_mem_per_node, mem_per_thread_for_llap, llap_daemon_mem_per_node)) else: # All good. We have a proper value for memoryPerNode. num_llap_nodes = num_llap_nodes_requested Logger.info("DBG: num_llap_nodes : {0}".format(num_llap_nodes)) # Make sure we have enough memory on each node to run AMs. # If nodes vs nodes_requested is different - AM memory is already factored in. # If llap_node_count < total_cluster_nodes - assuming AMs can run on a different node. # Else factor in min_concurrency_per_node * tez_am_size, and slider_am_size # Also needs to factor in whether num_llap_nodes = cluster_node_count min_mem_reserved_per_node = 0 if num_llap_nodes == num_llap_nodes_requested and num_llap_nodes == node_manager_cnt: min_mem_reserved_per_node = max(normalized_tez_am_container_size, slider_am_container_size) tez_AMs_per_node = llap_concurrency / num_llap_nodes tez_AMs_per_node_low = int(math.floor(tez_AMs_per_node)) tez_AMs_per_node_high = int(math.ceil(tez_AMs_per_node)) min_mem_reserved_per_node = int(max(tez_AMs_per_node_high * normalized_tez_am_container_size, tez_AMs_per_node_low * normalized_tez_am_container_size + slider_am_container_size)) Logger.info("DBG: Determined 'AM reservation per node': {0}, using following : concurrency: {1}, num_llap_nodes: {2}, AMsPerNode: {3}" .format(min_mem_reserved_per_node, llap_concurrency, num_llap_nodes, tez_AMs_per_node)) max_single_node_mem_available_for_daemon = self._normalizeDown(yarn_nm_mem_in_mb_normalized - min_mem_reserved_per_node, yarn_min_container_size) if max_single_node_mem_available_for_daemon <=0 or max_single_node_mem_available_for_daemon < mem_per_thread_for_llap: Logger.warning("Not enough capacity available per node for daemons after factoring in AM memory requirements. NM Mem: {0}, " "minAMMemPerNode: {1}, available: {2}".format(yarn_nm_mem_in_mb_normalized, min_mem_reserved_per_node, max_single_node_mem_available_for_daemon)) self.recommendDefaultLlapConfiguration(configurations, services, hosts) llap_daemon_mem_per_node = min(max_single_node_mem_available_for_daemon, llap_daemon_mem_per_node) Logger.info("DBG: Determined final memPerDaemon: {0}, using following: concurrency: {1}, numNMNodes: {2}, numLlapNodes: {3} " .format(llap_daemon_mem_per_node, llap_concurrency, node_manager_cnt, num_llap_nodes)) num_executors_per_node_max = self.get_max_executors_per_node(yarn_nm_mem_in_mb_normalized, cpu_per_nm_host, mem_per_thread_for_llap) if num_executors_per_node_max < 1: Logger.warning("Calculated 'Max. Executors per Node' = {0}. Expected values >= 1.".format(num_executors_per_node_max)) self.recommendDefaultLlapConfiguration(configurations, services, hosts) return Logger.info("DBG: Calculated 'num_executors_per_node_max' : {0}, using following : yarn_nm_mem_in_mb_normalized : {1}, cpu_per_nm_host : {2}, " "mem_per_thread_for_llap: {3}".format(num_executors_per_node_max, yarn_nm_mem_in_mb_normalized, cpu_per_nm_host, mem_per_thread_for_llap)) # NumExecutorsPerNode is not necessarily max - since some capacity would have been reserved for AMs, if this value were based on mem. num_executors_per_node = min(math.floor(llap_daemon_mem_per_node / mem_per_thread_for_llap), num_executors_per_node_max) if num_executors_per_node <= 0: Logger.warning("Calculated 'Number of Executors Per Node' = {0}. Expected value >= 1".format(num_executors_per_node)) self.recommendDefaultLlapConfiguration(configurations, services, hosts) return Logger.info("DBG: Calculated 'num_executors_per_node' : {0}, using following : llap_daemon_mem_per_node : {1}, num_executors_per_node_max : {2}, " "mem_per_thread_for_llap: {3}".format(num_executors_per_node, llap_daemon_mem_per_node, num_executors_per_node_max, mem_per_thread_for_llap)) # Now figure out how much of the memory will be used by the executors, and how much will be used by the cache. total_mem_for_executors_per_node = num_executors_per_node * mem_per_thread_for_llap cache_mem_per_node = llap_daemon_mem_per_node - total_mem_for_executors_per_node Logger.info("DBG: Calculated 'Cache per node' : {0}, using following : llap_daemon_mem_per_node : {1}, total_mem_for_executors_per_node : {2}" .format(cache_mem_per_node, llap_daemon_mem_per_node, total_mem_for_executors_per_node)) tez_runtime_io_sort_mb = (long((0.8 * mem_per_thread_for_llap) / 3)) tez_runtime_unordered_output_buffer_size = long(0.8 * 0.075 * mem_per_thread_for_llap) # 'hive_auto_convert_join_noconditionaltask_size' value is in bytes. Thus, multiplying it by 1048576. hive_auto_convert_join_noconditionaltask_size = (long((0.8 * mem_per_thread_for_llap) / 3)) * MB_TO_BYTES # Calculate value for prop 'llap_heap_size' llap_xmx = max(total_mem_for_executors_per_node * 0.8, total_mem_for_executors_per_node - self.get_llap_headroom_space(services, configurations)) Logger.info("DBG: Calculated llap_app_heap_size : {0}, using following : total_mem_for_executors : {1}".format(llap_xmx, total_mem_for_executors_per_node)) # Calculate 'hive_heapsize' for Hive2/HiveServer2 (HSI) hive_server_interactive_heapsize = None hive_server_interactive_hosts = self.getHostsWithComponent("HIVE", "HIVE_SERVER_INTERACTIVE", services, hosts) if hive_server_interactive_hosts is None: # If its None, read the base service YARN's NODEMANAGER node memory, as are host are considered homogenous. hive_server_interactive_hosts = self.getHostsWithComponent("YARN", "NODEMANAGER", services, hosts) if hive_server_interactive_hosts is not None and len(hive_server_interactive_hosts) > 0: host_mem = long(hive_server_interactive_hosts[0]["Hosts"]["total_mem"]) hive_server_interactive_heapsize = min(max(2048.0, 400.0*llap_concurrency), 3.0/8 * host_mem) Logger.info("DBG: Calculated 'hive_server_interactive_heapsize' : {0}, using following : llap_concurrency : {1}, host_mem : " "{2}".format(hive_server_interactive_heapsize, llap_concurrency, host_mem)) # Done with calculations, updating calculated configs. Logger.info("DBG: Applying the calculated values....") if is_cluster_create_opr or changed_configs_has_enable_hive_int: normalized_tez_am_container_size = long(normalized_tez_am_container_size) putTezInteractiveSiteProperty('tez.am.resource.memory.mb', normalized_tez_am_container_size) Logger.info("DBG: Setting 'tez.am.resource.memory.mb' config value as : {0}".format(normalized_tez_am_container_size)) if not llap_concurrency_in_changed_configs: min_llap_concurrency = 1 putHiveInteractiveSiteProperty('hive.server2.tez.sessions.per.default.queue', llap_concurrency) putHiveInteractiveSitePropertyAttribute('hive.server2.tez.sessions.per.default.queue', "minimum", min_llap_concurrency) putHiveInteractiveSitePropertyAttribute('hive.server2.tez.sessions.per.default.queue', "maximum", max_llap_concurreny) num_llap_nodes = long(num_llap_nodes) putHiveInteractiveEnvPropertyAttribute('num_llap_nodes', "minimum", min_nodes_required) putHiveInteractiveEnvPropertyAttribute('num_llap_nodes', "maximum", node_manager_cnt) #TODO A single value is not being set for numNodes in case of a custom queue. Also the attribute is set to non-visible, so the UI likely ends up using an old cached value if (num_llap_nodes != num_llap_nodes_requested): Logger.info("DBG: User requested num_llap_nodes : {0}, but used/adjusted value for calculations is : {1}".format(num_llap_nodes_requested, num_llap_nodes)) else: Logger.info("DBG: Used num_llap_nodes for calculations : {0}".format(num_llap_nodes_requested)) # Safeguard for not adding "num_llap_nodes_for_llap_daemons" if it doesnt exist in hive-interactive-site. # This can happen if we upgrade from Ambari 2.4 (with HDP 2.5) to Ambari 2.5, as this config is from 2.6 stack onwards only. if "hive-interactive-env" in services["configurations"] and \ "num_llap_nodes_for_llap_daemons" in services["configurations"]["hive-interactive-env"]["properties"]: putHiveInteractiveEnvProperty('num_llap_nodes_for_llap_daemons', num_llap_nodes) Logger.info("DBG: Setting config 'num_llap_nodes_for_llap_daemons' as : {0}".format(num_llap_nodes)) llap_container_size = long(llap_daemon_mem_per_node) putHiveInteractiveSiteProperty('hive.llap.daemon.yarn.container.mb', llap_container_size) # Set 'hive.tez.container.size' only if it is read as "SET_ON_FIRST_INVOCATION", implying initialization. # Else, we don't (1). Override the previous calculated value or (2). User provided value. if is_cluster_create_opr or changed_configs_has_enable_hive_int: mem_per_thread_for_llap = long(mem_per_thread_for_llap) putHiveInteractiveSiteProperty('hive.tez.container.size', mem_per_thread_for_llap) Logger.info("DBG: Setting 'hive.tez.container.size' config value as : {0}".format(mem_per_thread_for_llap)) putTezInteractiveSiteProperty('tez.runtime.io.sort.mb', tez_runtime_io_sort_mb) if "tez-site" in services["configurations"] and "tez.runtime.sorter.class" in services["configurations"]["tez-site"]["properties"]: if services["configurations"]["tez-site"]["properties"]["tez.runtime.sorter.class"] == "LEGACY": putTezInteractiveSiteProperty("tez.runtime.io.sort.mb", "maximum", 1800) putTezInteractiveSiteProperty('tez.runtime.unordered.output.buffer.size-mb', tez_runtime_unordered_output_buffer_size) putHiveInteractiveSiteProperty('hive.auto.convert.join.noconditionaltask.size', hive_auto_convert_join_noconditionaltask_size) num_executors_per_node = long(num_executors_per_node) Logger.info("DBG: Putting num_executors_per_node as {0}".format(num_executors_per_node)) putHiveInteractiveSiteProperty('hive.llap.daemon.num.executors', num_executors_per_node) putHiveInteractiveSitePropertyAttribute('hive.llap.daemon.num.executors', "minimum", 1) putHiveInteractiveSitePropertyAttribute('hive.llap.daemon.num.executors', "maximum", long(num_executors_per_node_max)) # 'hive.llap.io.threadpool.size' config value is to be set same as value calculated for # 'hive.llap.daemon.num.executors' at all times. cache_mem_per_node = long(cache_mem_per_node) putHiveInteractiveSiteProperty('hive.llap.io.threadpool.size', num_executors_per_node) putHiveInteractiveSiteProperty('hive.llap.io.memory.size', cache_mem_per_node) if hive_server_interactive_heapsize is not None: putHiveInteractiveEnvProperty("hive_heapsize", int(hive_server_interactive_heapsize)) llap_io_enabled = 'true' if long(cache_mem_per_node) >= 64 else 'false' putHiveInteractiveSiteProperty('hive.llap.io.enabled', llap_io_enabled) putHiveInteractiveEnvProperty('llap_heap_size', long(llap_xmx)) putHiveInteractiveEnvProperty('slider_am_container_mb', long(slider_am_container_size)) Logger.info("DBG: Done putting all configs") #TODO: What is this doing? What error will be displayed on the UI if something like this is hit? def recommendDefaultLlapConfiguration(self, configurations, services, hosts): Logger.info("DBG: Something likely went wrong. recommendDefaultLlapConfiguration") putHiveInteractiveSiteProperty = self.putProperty(configurations, self.HIVE_INTERACTIVE_SITE, services) putHiveInteractiveSitePropertyAttribute = self.putPropertyAttribute(configurations, self.HIVE_INTERACTIVE_SITE) putHiveInteractiveEnvProperty = self.putProperty(configurations, "hive-interactive-env", services) putHiveInteractiveEnvPropertyAttribute = self.putPropertyAttribute(configurations, "hive-interactive-env") yarn_min_container_size = long(self.get_yarn_min_container_size(services, configurations)) slider_am_container_size = long(self.calculate_slider_am_size(yarn_min_container_size)) node_manager_host_list = self.getHostsForComponent(services, "YARN", "NODEMANAGER") node_manager_cnt = len(node_manager_host_list) putHiveInteractiveSiteProperty('hive.server2.tez.sessions.per.default.queue', 1) putHiveInteractiveSitePropertyAttribute('hive.server2.tez.sessions.per.default.queue', "minimum", 1) putHiveInteractiveSitePropertyAttribute('hive.server2.tez.sessions.per.default.queue', "maximum", 1) putHiveInteractiveEnvProperty('num_llap_nodes', 0) # Safeguard for not adding "num_llap_nodes_for_llap_daemons" if it doesnt exist in hive-interactive-site. # This can happen if we upgrade from Ambari 2.4 (with HDP 2.5) to Ambari 2.5, as this config is from 2.6 stack onwards only. if "hive-interactive-env" in services["configurations"] and \ "num_llap_nodes_for_llap_daemons" in services["configurations"]["hive-interactive-env"]["properties"]: putHiveInteractiveEnvProperty('num_llap_nodes_for_llap_daemons', 0) putHiveInteractiveEnvPropertyAttribute('num_llap_nodes', "minimum", 1) putHiveInteractiveEnvPropertyAttribute('num_llap_nodes', "maximum", node_manager_cnt) #putHiveInteractiveSiteProperty('hive.llap.daemon.yarn.container.mb', yarn_min_container_size) putHiveInteractiveSitePropertyAttribute('hive.llap.daemon.yarn.container.mb', "minimum", yarn_min_container_size) #putHiveInteractiveSiteProperty('hive.llap.daemon.num.executors', 0) putHiveInteractiveSitePropertyAttribute('hive.llap.daemon.num.executors', "minimum", 1) #putHiveInteractiveSiteProperty('hive.llap.io.threadpool.size', 0) #putHiveInteractiveSiteProperty('hive.llap.io.memory.size', 0) #putHiveInteractiveEnvProperty('llap_heap_size', 0) putHiveInteractiveEnvProperty('slider_am_container_mb', slider_am_container_size) def isConfigPropertiesChanged(self, services, config_type, config_names, all_exists=True): """ Checks for the presence of passed-in configuration properties in a given config, if they are changed. Reads from services["changed-configurations"]. :argument services: Configuration information for the cluster :argument config_type: Type of the configuration :argument config_names: Set of configuration properties to be checked if they are changed. :argument all_exists: If True: returns True only if all properties mentioned in 'config_names_set' we found in services["changed-configurations"]. Otherwise, returns False. If False: return True, if any of the properties mentioned in config_names_set we found in services["changed-configurations"]. Otherwise, returns False. :type services: dict :type config_type: str :type config_names: list|set :type all_exists: bool """ changedConfigs = services["changed-configurations"] changed_config_names_set = set([changedConfig['name'] for changedConfig in changedConfigs if changedConfig['type'] == config_type]) config_names_set = set(config_names) configs_intersection = changed_config_names_set & config_names_set if all_exists and configs_intersection == config_names_set: return True elif not all_exists and len(configs_intersection) > 0: return True return False def get_num_llap_nodes(self, services, configurations): """ Returns current value of number of LLAP nodes in cluster (num_llap_nodes) :type services: dict :type configurations: dict :rtype int """ hsi_env = self.getServicesSiteProperties(services, "hive-interactive-env") hsi_env_properties = self.getSiteProperties(configurations, "hive-interactive-env") num_llap_nodes = 0 # Check if 'num_llap_nodes' is modified in current ST invocation. if hsi_env_properties and 'num_llap_nodes' in hsi_env_properties: num_llap_nodes = hsi_env_properties['num_llap_nodes'] elif hsi_env and 'num_llap_nodes' in hsi_env: num_llap_nodes = hsi_env['num_llap_nodes'] else: Logger.error("Couldn't retrieve Hive Server 'num_llap_nodes' config. Setting value to {0}".format(num_llap_nodes)) return float(num_llap_nodes) def get_max_executors_per_node(self, nm_mem_per_node_normalized, nm_cpus_per_node, mem_per_thread): # TODO: This potentially takes up the entire node leaving no space for AMs. return min(math.floor(nm_mem_per_node_normalized / mem_per_thread), nm_cpus_per_node) def calculate_mem_per_thread_for_llap(self, services, nm_mem_per_node_normalized, cpu_per_nm_host, is_cluster_create_opr=False, enable_hive_interactive_1st_invocation=False): """ Calculates 'mem_per_thread_for_llap' for 1st time initialization. Else returns 'hive.tez.container.size' read value. """ hive_tez_container_size = self.get_hive_tez_container_size(services) if is_cluster_create_opr or enable_hive_interactive_1st_invocation: if nm_mem_per_node_normalized <= 1024: calculated_hive_tez_container_size = min(512, nm_mem_per_node_normalized) elif nm_mem_per_node_normalized <= 4096: calculated_hive_tez_container_size = 1024 elif nm_mem_per_node_normalized <= 10240: calculated_hive_tez_container_size = 2048 elif nm_mem_per_node_normalized <= 24576: calculated_hive_tez_container_size = 3072 else: calculated_hive_tez_container_size = 4096 Logger.info("DBG: Calculated and returning 'hive_tez_container_size' : {0}".format(calculated_hive_tez_container_size)) return calculated_hive_tez_container_size else: Logger.info("DBG: Returning 'hive_tez_container_size' : {0}".format(hive_tez_container_size)) return hive_tez_container_size def get_hive_tez_container_size(self, services): """ Gets HIVE Tez container size (hive.tez.container.size). """ hive_container_size = None hsi_site = self.getServicesSiteProperties(services, self.HIVE_INTERACTIVE_SITE) if hsi_site and 'hive.tez.container.size' in hsi_site: hive_container_size = hsi_site['hive.tez.container.size'] if not hive_container_size: # This can happen (1). If config is missing in hive-interactive-site or (2). its an # upgrade scenario from Ambari 2.4 to Ambari 2.5 with HDP 2.5 installed. Read it # from hive-site. # # If Ambari 2.5 after upgrade from 2.4 is managing HDP 2.6 here, this config would have # already been added in hive-interactive-site as part of HDP upgrade from 2.5 to 2.6, # and we wont end up in this block to look up in hive-site. hive_site = self.getServicesSiteProperties(services, "hive-site") if hive_site and 'hive.tez.container.size' in hive_site: hive_container_size = hive_site['hive.tez.container.size'] return hive_container_size def get_llap_headroom_space(self, services, configurations): """ Gets HIVE Server Interactive's 'llap_headroom_space' config. (Default value set to 6144 bytes). """ llap_headroom_space = None # Check if 'llap_headroom_space' is modified in current SA invocation. if 'hive-interactive-env' in configurations and 'llap_headroom_space' in configurations['hive-interactive-env']['properties']: hive_container_size = float(configurations['hive-interactive-env']['properties']['llap_headroom_space']) Logger.info("'llap_headroom_space' read from configurations as : {0}".format(llap_headroom_space)) if llap_headroom_space is None: # Check if 'llap_headroom_space' is input in services array. if 'llap_headroom_space' in services['configurations']['hive-interactive-env']['properties']: llap_headroom_space = float(services['configurations']['hive-interactive-env']['properties']['llap_headroom_space']) Logger.info("'llap_headroom_space' read from services as : {0}".format(llap_headroom_space)) if not llap_headroom_space or llap_headroom_space < 1: llap_headroom_space = 6144 # 6GB Logger.info("Couldn't read 'llap_headroom_space' from services or configurations. Returing default value : 6144 bytes") return llap_headroom_space #TODO Convert this to a helper. It can apply to any property. Check config, or check if in the list of changed configurations and read the latest value def get_yarn_min_container_size(self, services, configurations): """ Gets YARN's minimum container size (yarn.scheduler.minimum-allocation-mb). Reads from: - configurations (if changed as part of current Stack Advisor invocation (output)), and services["changed-configurations"] is empty, else - services['configurations'] (input). services["changed-configurations"] would be empty if Stack Advisor call is made from Blueprints (1st invocation). Subsequent Stack Advisor calls will have it non-empty. We do this because in subsequent invocations, even if Stack Advisor calculates this value (configurations), it is finally not recommended, making 'input' value to survive. :type services dict :type configurations dict :rtype str """ yarn_min_container_size = None yarn_min_allocation_property = "yarn.scheduler.minimum-allocation-mb" yarn_site = self.getSiteProperties(configurations, "yarn-site") yarn_site_properties = self.getServicesSiteProperties(services, "yarn-site") # Check if services["changed-configurations"] is empty and 'yarn.scheduler.minimum-allocation-mb' is modified in current ST invocation. if not services["changed-configurations"] and yarn_site and yarn_min_allocation_property in yarn_site: yarn_min_container_size = yarn_site[yarn_min_allocation_property] Logger.info("DBG: 'yarn.scheduler.minimum-allocation-mb' read from output as : {0}".format(yarn_min_container_size)) # Check if 'yarn.scheduler.minimum-allocation-mb' is input in services array. elif yarn_site_properties and yarn_min_allocation_property in yarn_site_properties: yarn_min_container_size = yarn_site_properties[yarn_min_allocation_property] Logger.info("DBG: 'yarn.scheduler.minimum-allocation-mb' read from services as : {0}".format(yarn_min_container_size)) if not yarn_min_container_size: Logger.error("{0} was not found in the configuration".format(yarn_min_allocation_property)) return yarn_min_container_size def calculate_slider_am_size(self, yarn_min_container_size): """ Calculates the Slider App Master size based on YARN's Minimum Container Size. :type yarn_min_container_size int """ if yarn_min_container_size >= 1024: return 1024 else: return 512 def calculate_tez_am_container_size(self, services, total_cluster_capacity, is_cluster_create_opr=False, enable_hive_interactive_1st_invocation=False): """ Calculates Tez App Master container size (tez.am.resource.memory.mb) for tez_hive2/tez-site on initialization if values read is 0. Else returns the read value. """ tez_am_resource_memory_mb = self.get_tez_am_resource_memory_mb(services) calculated_tez_am_resource_memory_mb = None if is_cluster_create_opr or enable_hive_interactive_1st_invocation: if total_cluster_capacity <= 4096: calculated_tez_am_resource_memory_mb = 512 elif total_cluster_capacity > 4096 and total_cluster_capacity <= 98304: calculated_tez_am_resource_memory_mb = 1024 elif total_cluster_capacity > 98304: calculated_tez_am_resource_memory_mb = 4096 Logger.info("DBG: Calculated and returning 'tez_am_resource_memory_mb' as : {0}".format(calculated_tez_am_resource_memory_mb)) return float(calculated_tez_am_resource_memory_mb) else: Logger.info("DBG: Returning 'tez_am_resource_memory_mb' as : {0}".format(tez_am_resource_memory_mb)) return float(tez_am_resource_memory_mb) def get_tez_am_resource_memory_mb(self, services): """ Gets Tez's AM resource memory (tez.am.resource.memory.mb) from services. """ tez_am_resource_memory_mb = None if 'tez.am.resource.memory.mb' in services['configurations']['tez-interactive-site']['properties']: tez_am_resource_memory_mb = services['configurations']['tez-interactive-site']['properties']['tez.am.resource.memory.mb'] return tez_am_resource_memory_mb def min_queue_perc_reqd_for_llap_and_hive_app(self, services, hosts, configurations): """ Calculate minimum queue capacity required in order to get LLAP and HIVE2 app into running state. """ # Get queue size if sized at 20% node_manager_hosts = self.getHostsForComponent(services, "YARN", "NODEMANAGER") yarn_rm_mem_in_mb = self.get_yarn_nm_mem_in_mb(services, configurations) total_cluster_cap = len(node_manager_hosts) * yarn_rm_mem_in_mb total_queue_size_at_20_perc = 20.0 / 100 * total_cluster_cap # Calculate based on minimum size required by containers. yarn_min_container_size = long(self.get_yarn_min_container_size(services, configurations)) slider_am_size = self.calculate_slider_am_size(float(yarn_min_container_size)) hive_tez_container_size = long(self.get_hive_tez_container_size(services)) tez_am_container_size = self.calculate_tez_am_container_size(services, long(total_cluster_cap)) normalized_val = self._normalizeUp(slider_am_size, yarn_min_container_size) \ + self._normalizeUp(hive_tez_container_size, yarn_min_container_size) \ + self._normalizeUp(tez_am_container_size, yarn_min_container_size) min_required = max(total_queue_size_at_20_perc, normalized_val) min_required_perc = min_required * 100 / total_cluster_cap return int(math.ceil(min_required_perc)) def _normalizeDown(self, val1, val2): """ Normalize down 'val2' with respect to 'val1'. """ tmp = math.floor(val1 / val2) if tmp < 1.00: return 0 return tmp * val2 def _normalizeUp(self, val1, val2): """ Normalize up 'val2' with respect to 'val1'. """ tmp = math.ceil(val1 / val2) return tmp * val2 def checkAndManageLlapQueue(self, services, configurations, hosts, llap_queue_name, llap_queue_cap_perc): """ Checks and (1). Creates 'llap' queue if only 'default' queue exist at leaf level and is consuming 100% capacity OR (2). Updates 'llap' queue capacity and state, if current selected queue is 'llap', and only 2 queues exist at root level : 'default' and 'llap'. """ Logger.info("Determining creation/adjustment of 'capacity-scheduler' for 'llap' queue.") putHiveInteractiveEnvProperty = self.putProperty(configurations, "hive-interactive-env", services) putHiveInteractiveSiteProperty = self.putProperty(configurations, self.HIVE_INTERACTIVE_SITE, services) putHiveInteractiveEnvPropertyAttribute = self.putPropertyAttribute(configurations, "hive-interactive-env") putCapSchedProperty = self.putProperty(configurations, "capacity-scheduler", services) leafQueueNames = None hsi_site = self.getServicesSiteProperties(services, self.HIVE_INTERACTIVE_SITE) capacity_scheduler_properties, received_as_key_value_pair = self.getCapacitySchedulerProperties(services) if capacity_scheduler_properties: leafQueueNames = self.getAllYarnLeafQueues(capacity_scheduler_properties) cap_sched_config_keys = capacity_scheduler_properties.keys() yarn_default_queue_capacity = -1 if 'yarn.scheduler.capacity.root.default.capacity' in cap_sched_config_keys: yarn_default_queue_capacity = float(capacity_scheduler_properties.get('yarn.scheduler.capacity.root.default.capacity')) # Get 'llap' queue state currLlapQueueState = '' if 'yarn.scheduler.capacity.root.'+llap_queue_name+'.state' in cap_sched_config_keys: currLlapQueueState = capacity_scheduler_properties.get('yarn.scheduler.capacity.root.'+llap_queue_name+'.state') # Get 'llap' queue capacity currLlapQueueCap = -1 if 'yarn.scheduler.capacity.root.'+llap_queue_name+'.capacity' in cap_sched_config_keys: currLlapQueueCap = int(float(capacity_scheduler_properties.get('yarn.scheduler.capacity.root.'+llap_queue_name+'.capacity'))) updated_cap_sched_configs_str = '' enabled_hive_int_in_changed_configs = self.isConfigPropertiesChanged(services, "hive-interactive-env", ['enable_hive_interactive'], False) """ We create OR "modify 'llap' queue 'state and/or capacity' " based on below conditions: - if only 1 queue exists at root level and is 'default' queue and has 100% cap -> Create 'llap' queue, OR - if 2 queues exists at root level ('llap' and 'default') : - Queue selected is 'llap' and state is STOPPED -> Modify 'llap' queue state to RUNNING, adjust capacity, OR - Queue selected is 'llap', state is RUNNING and 'llap_queue_capacity' prop != 'llap' queue current running capacity -> Modify 'llap' queue capacity to 'llap_queue_capacity' """ if 'default' in leafQueueNames and \ ((len(leafQueueNames) == 1 and int(yarn_default_queue_capacity) == 100) or \ ((len(leafQueueNames) == 2 and llap_queue_name in leafQueueNames) and \ ((currLlapQueueState == 'STOPPED' and enabled_hive_int_in_changed_configs) or (currLlapQueueState == 'RUNNING' and currLlapQueueCap != llap_queue_cap_perc)))): adjusted_default_queue_cap = str(100 - llap_queue_cap_perc) hive_user = '*' # Open to all if 'hive_user' in services['configurations']['hive-env']['properties']: hive_user = services['configurations']['hive-env']['properties']['hive_user'] llap_queue_cap_perc = str(llap_queue_cap_perc) # If capacity-scheduler configs are received as one concatenated string, we deposit the changed configs back as # one concatenated string. updated_cap_sched_configs_as_dict = False if not received_as_key_value_pair: for prop, val in capacity_scheduler_properties.items(): if llap_queue_name not in prop: if prop == 'yarn.scheduler.capacity.root.queues': updated_cap_sched_configs_str = updated_cap_sched_configs_str \ + prop + "=default,llap\n" elif prop == 'yarn.scheduler.capacity.root.default.capacity': updated_cap_sched_configs_str = updated_cap_sched_configs_str \ + prop + "=" + adjusted_default_queue_cap + "\n" elif prop == 'yarn.scheduler.capacity.root.default.maximum-capacity': updated_cap_sched_configs_str = updated_cap_sched_configs_str \ + prop + "=" + adjusted_default_queue_cap + "\n" elif prop == 'yarn.scheduler.capacity.root.ordering-policy': # Don't put this in again. We're re-writing the llap section. pass elif prop.startswith('yarn.') and '.llap.' not in prop: updated_cap_sched_configs_str = updated_cap_sched_configs_str + prop + "=" + val + "\n" # Now, append the 'llap' queue related properties updated_cap_sched_configs_str += """yarn.scheduler.capacity.root.ordering-policy=priority-utilization yarn.scheduler.capacity.root.{0}.user-limit-factor=1 yarn.scheduler.capacity.root.{0}.state=RUNNING yarn.scheduler.capacity.root.{0}.ordering-policy=fifo yarn.scheduler.capacity.root.{0}.priority=10 yarn.scheduler.capacity.root.{0}.minimum-user-limit-percent=100 yarn.scheduler.capacity.root.{0}.maximum-capacity={1} yarn.scheduler.capacity.root.{0}.capacity={1} yarn.scheduler.capacity.root.{0}.acl_submit_applications={2} yarn.scheduler.capacity.root.{0}.acl_administer_queue={2} yarn.scheduler.capacity.root.{0}.maximum-am-resource-percent=1""".format(llap_queue_name, llap_queue_cap_perc, hive_user) putCapSchedProperty("capacity-scheduler", updated_cap_sched_configs_str) Logger.info("Updated 'capacity-scheduler' configs as one concatenated string.") else: # If capacity-scheduler configs are received as a dictionary (generally 1st time), we deposit the changed # values back as dictionary itself. # Update existing configs in 'capacity-scheduler'. for prop, val in capacity_scheduler_properties.items(): if llap_queue_name not in prop: if prop == 'yarn.scheduler.capacity.root.queues': putCapSchedProperty(prop, 'default,llap') elif prop == 'yarn.scheduler.capacity.root.default.capacity': putCapSchedProperty(prop, adjusted_default_queue_cap) elif prop == 'yarn.scheduler.capacity.root.default.maximum-capacity': putCapSchedProperty(prop, adjusted_default_queue_cap) elif prop == 'yarn.scheduler.capacity.root.ordering-policy': # Don't put this in again. We're re-writing the llap section. pass elif prop.startswith('yarn.') and '.llap.' not in prop: putCapSchedProperty(prop, val) # Add new 'llap' queue related configs. putCapSchedProperty("yarn.scheduler.capacity.root.ordering-policy", "priority-utilization") putCapSchedProperty("yarn.scheduler.capacity.root." + llap_queue_name + ".user-limit-factor", "1") putCapSchedProperty("yarn.scheduler.capacity.root." + llap_queue_name + ".state", "RUNNING") putCapSchedProperty("yarn.scheduler.capacity.root." + llap_queue_name + ".ordering-policy", "fifo") putCapSchedProperty("yarn.scheduler.capacity.root." + llap_queue_name + ".priority", "10") putCapSchedProperty("yarn.scheduler.capacity.root." + llap_queue_name + ".minimum-user-limit-percent", "100") putCapSchedProperty("yarn.scheduler.capacity.root." + llap_queue_name + ".maximum-capacity", llap_queue_cap_perc) putCapSchedProperty("yarn.scheduler.capacity.root." + llap_queue_name + ".capacity", llap_queue_cap_perc) putCapSchedProperty("yarn.scheduler.capacity.root." + llap_queue_name + ".acl_submit_applications", hive_user) putCapSchedProperty("yarn.scheduler.capacity.root." + llap_queue_name + ".acl_administer_queue", hive_user) putCapSchedProperty("yarn.scheduler.capacity.root." + llap_queue_name + ".maximum-am-resource-percent", "1") Logger.info("Updated 'capacity-scheduler' configs as a dictionary.") updated_cap_sched_configs_as_dict = True if updated_cap_sched_configs_str or updated_cap_sched_configs_as_dict: if len(leafQueueNames) == 1: # 'llap' queue didn't exist before Logger.info("Created YARN Queue : '{0}' with capacity : {1}%. Adjusted 'default' queue capacity to : {2}%" \ .format(llap_queue_name, llap_queue_cap_perc, adjusted_default_queue_cap)) else: # Queue existed, only adjustments done. Logger.info("Adjusted YARN Queue : '{0}'. Current capacity : {1}%. State: RUNNING.".format(llap_queue_name, llap_queue_cap_perc)) Logger.info("Adjusted 'default' queue capacity to : {0}%".format(adjusted_default_queue_cap)) # Update Hive 'hive.llap.daemon.queue.name' prop to use 'llap' queue. putHiveInteractiveSiteProperty('hive.llap.daemon.queue.name', llap_queue_name) putHiveInteractiveSiteProperty('hive.server2.tez.default.queues', llap_queue_name) # Update 'hive.llap.daemon.queue.name' prop combo entries and llap capacity slider visibility. self.setLlapDaemonQueuePropAttributes(services, configurations) else: Logger.debug("Not creating/adjusting {0} queue. Current YARN queues : {1}".format(llap_queue_name, list(leafQueueNames))) else: Logger.error("Couldn't retrieve 'capacity-scheduler' properties while doing YARN queue adjustment for Hive Server Interactive.") """ Checks and sees (1). If only two leaf queues exist at root level, namely: 'default' and 'llap', and (2). 'llap' is in RUNNING state. If yes, performs the following actions: (1). 'llap' queue state set to STOPPED, (2). 'llap' queue capacity set to 0 %, (3). 'default' queue capacity set to 100 % """ def checkAndStopLlapQueue(self, services, configurations, llap_queue_name): putCapSchedProperty = self.putProperty(configurations, "capacity-scheduler", services) putHiveInteractiveSiteProperty = self.putProperty(configurations, self.HIVE_INTERACTIVE_SITE, services) capacity_scheduler_properties, received_as_key_value_pair = self.getCapacitySchedulerProperties(services) updated_default_queue_configs = '' updated_llap_queue_configs = '' if capacity_scheduler_properties: # Get all leaf queues. leafQueueNames = self.getAllYarnLeafQueues(capacity_scheduler_properties) if len(leafQueueNames) == 2 and llap_queue_name in leafQueueNames and 'default' in leafQueueNames: # Get 'llap' queue state currLlapQueueState = 'STOPPED' if 'yarn.scheduler.capacity.root.'+llap_queue_name+'.state' in capacity_scheduler_properties.keys(): currLlapQueueState = capacity_scheduler_properties.get('yarn.scheduler.capacity.root.'+llap_queue_name+'.state') else: Logger.error("{0} queue 'state' property not present in capacity scheduler. Skipping adjusting queues.".format(llap_queue_name)) return if currLlapQueueState == 'RUNNING': DEFAULT_MAX_CAPACITY = '100' for prop, val in capacity_scheduler_properties.items(): # Update 'default' related configs in 'updated_default_queue_configs' if llap_queue_name not in prop: if prop == 'yarn.scheduler.capacity.root.default.capacity': # Set 'default' capacity back to maximum val updated_default_queue_configs = updated_default_queue_configs \ + prop + "="+DEFAULT_MAX_CAPACITY + "\n" elif prop == 'yarn.scheduler.capacity.root.default.maximum-capacity': # Set 'default' max. capacity back to maximum val updated_default_queue_configs = updated_default_queue_configs \ + prop + "="+DEFAULT_MAX_CAPACITY + "\n" elif prop == 'yarn.scheduler.capacity.root.ordering-policy': # Don't set this property. The default will be picked up. pass elif prop.startswith('yarn.'): updated_default_queue_configs = updated_default_queue_configs + prop + "=" + val + "\n" else: # Update 'llap' related configs in 'updated_llap_queue_configs' if prop == 'yarn.scheduler.capacity.root.'+llap_queue_name+'.state': updated_llap_queue_configs = updated_llap_queue_configs \ + prop + "=STOPPED\n" elif prop == 'yarn.scheduler.capacity.root.'+llap_queue_name+'.capacity': updated_llap_queue_configs = updated_llap_queue_configs \ + prop + "=0\n" elif prop == 'yarn.scheduler.capacity.root.'+llap_queue_name+'.maximum-capacity': updated_llap_queue_configs = updated_llap_queue_configs \ + prop + "=0\n" elif prop.startswith('yarn.'): updated_llap_queue_configs = updated_llap_queue_configs + prop + "=" + val + "\n" else: Logger.debug("{0} queue state is : {1}. Skipping adjusting queues.".format(llap_queue_name, currLlapQueueState)) return if updated_default_queue_configs and updated_llap_queue_configs: putCapSchedProperty("capacity-scheduler", updated_default_queue_configs+updated_llap_queue_configs) Logger.info("Changed YARN '{0}' queue state to 'STOPPED', and capacity to 0%. Adjusted 'default' queue capacity to : {1}%" \ .format(llap_queue_name, DEFAULT_MAX_CAPACITY)) # Update Hive 'hive.llap.daemon.queue.name' prop to use 'default' queue. putHiveInteractiveSiteProperty('hive.llap.daemon.queue.name', self.YARN_ROOT_DEFAULT_QUEUE_NAME) putHiveInteractiveSiteProperty('hive.server2.tez.default.queues', self.YARN_ROOT_DEFAULT_QUEUE_NAME) else: Logger.debug("Not removing '{0}' queue as number of Queues not equal to 2. Current YARN queues : {1}".format(llap_queue_name, list(leafQueueNames))) else: Logger.error("Couldn't retrieve 'capacity-scheduler' properties while doing YARN queue adjustment for Hive Server Interactive.") def setLlapDaemonQueuePropAttributes(self, services, configurations): """ Checks and sets the 'Hive Server Interactive' 'hive.llap.daemon.queue.name' config Property Attributes. Takes into account that 'capacity-scheduler' may have changed (got updated) in current Stack Advisor invocation. """ Logger.info("Determining 'hive.llap.daemon.queue.name' config Property Attributes.") #TODO Determine if this is doing the right thing if some queue is setup with capacity=0, or is STOPPED. Maybe don't list it. putHiveInteractiveSitePropertyAttribute = self.putPropertyAttribute(configurations, self.HIVE_INTERACTIVE_SITE) capacity_scheduler_properties = dict() # Read 'capacity-scheduler' from configurations if we modified and added recommendation to it, as part of current # StackAdvisor invocation. if "capacity-scheduler" in configurations: cap_sched_props_as_dict = configurations["capacity-scheduler"]["properties"] if 'capacity-scheduler' in cap_sched_props_as_dict: cap_sched_props_as_str = configurations['capacity-scheduler']['properties']['capacity-scheduler'] if cap_sched_props_as_str: cap_sched_props_as_str = str(cap_sched_props_as_str).split('\n') if len(cap_sched_props_as_str) > 0 and cap_sched_props_as_str[0] != 'null': # Got 'capacity-scheduler' configs as one "\n" separated string for property in cap_sched_props_as_str: key, sep, value = property.partition("=") capacity_scheduler_properties[key] = value Logger.info("'capacity-scheduler' configs is set as a single '\\n' separated string in current invocation. " "count(configurations['capacity-scheduler']['properties']['capacity-scheduler']) = " "{0}".format(len(capacity_scheduler_properties))) else: Logger.info("Read configurations['capacity-scheduler']['properties']['capacity-scheduler'] is : {0}".format(cap_sched_props_as_str)) else: Logger.info("configurations['capacity-scheduler']['properties']['capacity-scheduler'] : {0}.".format(cap_sched_props_as_str)) # if 'capacity_scheduler_properties' is empty, implies we may have 'capacity-scheduler' configs as dictionary # in configurations, if 'capacity-scheduler' changed in current invocation. if not capacity_scheduler_properties: if isinstance(cap_sched_props_as_dict, dict) and len(cap_sched_props_as_dict) > 1: capacity_scheduler_properties = cap_sched_props_as_dict Logger.info("'capacity-scheduler' changed in current Stack Advisor invocation. Retrieved the configs as dictionary from configurations.") else: Logger.info("Read configurations['capacity-scheduler']['properties'] is : {0}".format(cap_sched_props_as_dict)) else: Logger.info("'capacity-scheduler' not modified in the current Stack Advisor invocation.") # if 'capacity_scheduler_properties' is still empty, implies 'capacity_scheduler' wasn't change in current # SA invocation. Thus, read it from input : 'services'. if not capacity_scheduler_properties: capacity_scheduler_properties, received_as_key_value_pair = self.getCapacitySchedulerProperties(services) Logger.info("'capacity-scheduler' not changed in current Stack Advisor invocation. Retrieved the configs from services.") # Get set of current YARN leaf queues. leafQueueNames = self.getAllYarnLeafQueues(capacity_scheduler_properties) if leafQueueNames: leafQueues = [{"label": str(queueName), "value": queueName} for queueName in leafQueueNames] leafQueues = sorted(leafQueues, key=lambda q: q['value']) putHiveInteractiveSitePropertyAttribute("hive.llap.daemon.queue.name", "entries", leafQueues) Logger.info("'hive.llap.daemon.queue.name' config Property Attributes set to : {0}".format(leafQueues)) else: Logger.error("Problem retrieving YARN queues. Skipping updating HIVE Server Interactve " "'hive.server2.tez.default.queues' property attributes.") def __getQueueCapacityKeyFromCapacityScheduler(self, capacity_scheduler_properties, llap_daemon_selected_queue_name): """ Retrieves the passed in queue's 'capacity' related key from Capacity Scheduler. """ # Identify the key which contains the capacity for 'llap_daemon_selected_queue_name'. cap_sched_keys = capacity_scheduler_properties.keys() llap_selected_queue_cap_key = None current_selected_queue_for_llap_cap = None for key in cap_sched_keys: # Expected capacity prop key is of form : 'yarn.scheduler.capacity.<one or more queues in path separated by '.'>.[llap_daemon_selected_queue_name].capacity' if key.endswith(llap_daemon_selected_queue_name+".capacity") and key.startswith("yarn.scheduler.capacity.root"): Logger.info("DBG: Selected queue name as: " + key) llap_selected_queue_cap_key = key break; return llap_selected_queue_cap_key def __getQueueStateFromCapacityScheduler(self, capacity_scheduler_properties, llap_daemon_selected_queue_name): """ Retrieves the passed in queue's 'state' from Capacity Scheduler. """ # Identify the key which contains the state for 'llap_daemon_selected_queue_name'. cap_sched_keys = capacity_scheduler_properties.keys() llap_selected_queue_state_key = None llap_selected_queue_state = None for key in cap_sched_keys: if key.endswith(llap_daemon_selected_queue_name+".state"): llap_selected_queue_state_key = key break; llap_selected_queue_state = capacity_scheduler_properties.get(llap_selected_queue_state_key) return llap_selected_queue_state def __getQueueAmFractionFromCapacityScheduler(self, capacity_scheduler_properties, llap_daemon_selected_queue_name): """ Retrieves the passed in queue's 'AM fraction' from Capacity Scheduler. Returns default value of 0.1 if AM Percent pertaining to passed-in queue is not present. """ # Identify the key which contains the AM fraction for 'llap_daemon_selected_queue_name'. cap_sched_keys = capacity_scheduler_properties.keys() llap_selected_queue_am_percent_key = None for key in cap_sched_keys: if key.endswith("."+llap_daemon_selected_queue_name+".maximum-am-resource-percent"): llap_selected_queue_am_percent_key = key Logger.info("AM percent key got for '{0}' queue is : '{1}'".format(llap_daemon_selected_queue_name, llap_selected_queue_am_percent_key)) break; if llap_selected_queue_am_percent_key is None: Logger.info("Returning default AM percent value : '0.1' for queue : {0}".format(llap_daemon_selected_queue_name)) return 0.1 # Default value to use if we couldn't retrieve queue's corresponding AM Percent key. else: llap_selected_queue_am_percent = capacity_scheduler_properties.get(llap_selected_queue_am_percent_key) Logger.info("Returning read value for key '{0}' as : '{1}' for queue : '{2}'".format(llap_selected_queue_am_percent_key, llap_selected_queue_am_percent, llap_daemon_selected_queue_name)) return llap_selected_queue_am_percent def __getSelectedQueueTotalCap(self, capacity_scheduler_properties, llap_daemon_selected_queue_name, total_cluster_capacity): """ Calculates the total available capacity for the passed-in YARN queue of any level based on the percentages. """ Logger.info("Entered __getSelectedQueueTotalCap fn() with llap_daemon_selected_queue_name= '{0}'.".format(llap_daemon_selected_queue_name)) available_capacity = total_cluster_capacity queue_cap_key = self.__getQueueCapacityKeyFromCapacityScheduler(capacity_scheduler_properties, llap_daemon_selected_queue_name) if queue_cap_key: queue_cap_key = queue_cap_key.strip() if len(queue_cap_key) >= 34: # len('yarn.scheduler.capacity.<single letter queue name>.capacity') = 34 # Expected capacity prop key is of form : 'yarn.scheduler.capacity.<one or more queues (path)>.capacity' queue_path = queue_cap_key[24:] # Strip from beginning 'yarn.scheduler.capacity.' queue_path = queue_path[0:-9] # Strip from end '.capacity' queues_list = queue_path.split('.') Logger.info("Queue list : {0}".format(queues_list)) if queues_list: for queue in queues_list: queue_cap_key = self.__getQueueCapacityKeyFromCapacityScheduler(capacity_scheduler_properties, queue) queue_cap_perc = float(capacity_scheduler_properties.get(queue_cap_key)) available_capacity = queue_cap_perc / 100 * available_capacity Logger.info("Total capacity available for queue {0} is : {1}".format(queue, available_capacity)) # returns the capacity calculated for passed-in queue in 'llap_daemon_selected_queue_name'. return available_capacity def recommendRangerKMSConfigurations(self, configurations, clusterData, services, hosts): super(ADH15StackAdvisor, self).recommendRangerKMSConfigurations(configurations, clusterData, services, hosts) security_enabled = self.isSecurityEnabled(services) required_services = [{'service' : 'RANGER', 'config-type': 'ranger-env', 'property-name': 'ranger_user', 'proxy-category': ['hosts', 'users', 'groups']}] if security_enabled: # recommendations for kms proxy related properties self.recommendKMSProxyUsers(configurations, services, hosts, required_services) else: self.deleteKMSProxyUsers(configurations, services, hosts, required_services) def recommendRangerConfigurations(self, configurations, clusterData, services, hosts): super(ADH15StackAdvisor, self).recommendRangerConfigurations(configurations, clusterData, services, hosts) servicesList = [service["StackServices"]["service_name"] for service in services["services"]] has_ranger_tagsync = False putTagsyncAppProperty = self.putProperty(configurations, "tagsync-application-properties", services) putTagsyncSiteProperty = self.putProperty(configurations, "ranger-tagsync-site", services) putRangerAdminProperty = self.putProperty(configurations, "ranger-admin-site", services) putRangerEnvProperty = self.putProperty(configurations, "ranger-env", services) application_properties = self.getServicesSiteProperties(services, "application-properties") ranger_tagsync_host = self.getHostsForComponent(services, "RANGER", "RANGER_TAGSYNC") has_ranger_tagsync = len(ranger_tagsync_host) > 0 if 'ATLAS' in servicesList and has_ranger_tagsync: atlas_hosts = self.getHostNamesWithComponent("ATLAS", "ATLAS_SERVER", services) atlas_host = 'localhost' if len(atlas_hosts) == 0 else atlas_hosts[0] protocol = 'http' atlas_port = '21000' if application_properties and 'atlas.enableTLS' in application_properties and application_properties['atlas.enableTLS'].lower() == 'true': protocol = 'https' if 'atlas.server.https.port' in application_properties: atlas_port = application_properties['atlas.server.https.port'] else: protocol = 'http' if application_properties and 'atlas.server.http.port' in application_properties: atlas_port = application_properties['atlas.server.http.port'] atlas_rest_endpoint = '{0}://{1}:{2}'.format(protocol, atlas_host, atlas_port) putTagsyncSiteProperty('ranger.tagsync.source.atlas', 'true') putTagsyncSiteProperty('ranger.tagsync.source.atlasrest.endpoint', atlas_rest_endpoint) zookeeper_host_port = self.getZKHostPortString(services) if zookeeper_host_port and has_ranger_tagsync: putTagsyncAppProperty('atlas.kafka.zookeeper.connect', zookeeper_host_port) if 'KAFKA' in servicesList and has_ranger_tagsync: kafka_hosts = self.getHostNamesWithComponent("KAFKA", "KAFKA_BROKER", services) kafka_port = '6667' if 'kafka-broker' in services['configurations'] and ( 'port' in services['configurations']['kafka-broker']['properties']): kafka_port = services['configurations']['kafka-broker']['properties']['port'] kafka_host_port = [] for i in range(len(kafka_hosts)): kafka_host_port.append(kafka_hosts[i] + ':' + kafka_port) final_kafka_host = ",".join(kafka_host_port) putTagsyncAppProperty('atlas.kafka.bootstrap.servers', final_kafka_host) is_solr_cloud_enabled = False if 'ranger-env' in services['configurations'] and 'is_solrCloud_enabled' in services['configurations']['ranger-env']['properties']: is_solr_cloud_enabled = services['configurations']['ranger-env']['properties']['is_solrCloud_enabled'] == 'true' is_external_solr_cloud_enabled = False if 'ranger-env' in services['configurations'] and 'is_external_solrCloud_enabled' in services['configurations']['ranger-env']['properties']: is_external_solr_cloud_enabled = services['configurations']['ranger-env']['properties']['is_external_solrCloud_enabled'] == 'true' ranger_audit_zk_port = '' if 'AMBARI_INFRA' in servicesList and zookeeper_host_port and is_solr_cloud_enabled and not is_external_solr_cloud_enabled: zookeeper_host_port = zookeeper_host_port.split(',') zookeeper_host_port.sort() zookeeper_host_port = ",".join(zookeeper_host_port) infra_solr_znode = '/infra-solr' if 'infra-solr-env' in services['configurations'] and \ ('infra_solr_znode' in services['configurations']['infra-solr-env']['properties']): infra_solr_znode = services['configurations']['infra-solr-env']['properties']['infra_solr_znode'] ranger_audit_zk_port = '{0}{1}'.format(zookeeper_host_port, infra_solr_znode) putRangerAdminProperty('ranger.audit.solr.zookeepers', ranger_audit_zk_port) elif zookeeper_host_port and is_solr_cloud_enabled and is_external_solr_cloud_enabled: ranger_audit_zk_port = '{0}/{1}'.format(zookeeper_host_port, 'ranger_audits') putRangerAdminProperty('ranger.audit.solr.zookeepers', ranger_audit_zk_port) else: putRangerAdminProperty('ranger.audit.solr.zookeepers', 'NONE') ranger_services = [ {'service_name': 'HDFS', 'audit_file': 'ranger-hdfs-audit'}, {'service_name': 'YARN', 'audit_file': 'ranger-yarn-audit'}, {'service_name': 'HBASE', 'audit_file': 'ranger-hbase-audit'}, {'service_name': 'HIVE', 'audit_file': 'ranger-hive-audit'}, {'service_name': 'KNOX', 'audit_file': 'ranger-knox-audit'}, {'service_name': 'KAFKA', 'audit_file': 'ranger-kafka-audit'}, {'service_name': 'STORM', 'audit_file': 'ranger-storm-audit'}, {'service_name': 'RANGER_KMS', 'audit_file': 'ranger-kms-audit'}, {'service_name': 'ATLAS', 'audit_file': 'ranger-atlas-audit'} ] for item in range(len(ranger_services)): if ranger_services[item]['service_name'] in servicesList: component_audit_file = ranger_services[item]['audit_file'] if component_audit_file in services["configurations"]: ranger_audit_dict = [ {'filename': 'ranger-admin-site', 'configname': 'ranger.audit.solr.urls', 'target_configname': 'xasecure.audit.destination.solr.urls'}, {'filename': 'ranger-admin-site', 'configname': 'ranger.audit.solr.zookeepers', 'target_configname': 'xasecure.audit.destination.solr.zookeepers'} ] putRangerAuditProperty = self.putProperty(configurations, component_audit_file, services) for item in ranger_audit_dict: if item['filename'] in services["configurations"] and item['configname'] in services["configurations"][item['filename']]["properties"]: if item['filename'] in configurations and item['configname'] in configurations[item['filename']]["properties"]: rangerAuditProperty = configurations[item['filename']]["properties"][item['configname']] else: rangerAuditProperty = services["configurations"][item['filename']]["properties"][item['configname']] putRangerAuditProperty(item['target_configname'], rangerAuditProperty) if "HDFS" in servicesList: hdfs_user = None if "hadoop-env" in services["configurations"] and "hdfs_user" in services["configurations"]["hadoop-env"]["properties"]: hdfs_user = services["configurations"]["hadoop-env"]["properties"]["hdfs_user"] putRangerAdminProperty('ranger.kms.service.user.hdfs', hdfs_user) if "HIVE" in servicesList: hive_user = None if "hive-env" in services["configurations"] and "hive_user" in services["configurations"]["hive-env"]["properties"]: hive_user = services["configurations"]["hive-env"]["properties"]["hive_user"] putRangerAdminProperty('ranger.kms.service.user.hive', hive_user) ranger_plugins_serviceuser = [ {'service_name': 'HDFS', 'file_name': 'hadoop-env', 'config_name': 'hdfs_user', 'target_configname': 'ranger.plugins.hdfs.serviceuser'}, {'service_name': 'HIVE', 'file_name': 'hive-env', 'config_name': 'hive_user', 'target_configname': 'ranger.plugins.hive.serviceuser'}, {'service_name': 'YARN', 'file_name': 'yarn-env', 'config_name': 'yarn_user', 'target_configname': 'ranger.plugins.yarn.serviceuser'}, {'service_name': 'HBASE', 'file_name': 'hbase-env', 'config_name': 'hbase_user', 'target_configname': 'ranger.plugins.hbase.serviceuser'}, {'service_name': 'KNOX', 'file_name': 'knox-env', 'config_name': 'knox_user', 'target_configname': 'ranger.plugins.knox.serviceuser'}, {'service_name': 'STORM', 'file_name': 'storm-env', 'config_name': 'storm_user', 'target_configname': 'ranger.plugins.storm.serviceuser'}, {'service_name': 'KAFKA', 'file_name': 'kafka-env', 'config_name': 'kafka_user', 'target_configname': 'ranger.plugins.kafka.serviceuser'}, {'service_name': 'RANGER_KMS', 'file_name': 'kms-env', 'config_name': 'kms_user', 'target_configname': 'ranger.plugins.kms.serviceuser'}, {'service_name': 'ATLAS', 'file_name': 'atlas-env', 'config_name': 'metadata_user', 'target_configname': 'ranger.plugins.atlas.serviceuser'} ] for item in range(len(ranger_plugins_serviceuser)): if ranger_plugins_serviceuser[item]['service_name'] in servicesList: file_name = ranger_plugins_serviceuser[item]['file_name'] config_name = ranger_plugins_serviceuser[item]['config_name'] target_configname = ranger_plugins_serviceuser[item]['target_configname'] if file_name in services["configurations"] and config_name in services["configurations"][file_name]["properties"]: service_user = services["configurations"][file_name]["properties"][config_name] putRangerAdminProperty(target_configname, service_user) if "ATLAS" in servicesList: if "ranger-env" in services["configurations"]: putAtlasRangerAuditProperty = self.putProperty(configurations, 'ranger-atlas-audit', services) xasecure_audit_destination_hdfs = '' xasecure_audit_destination_hdfs_dir = '' xasecure_audit_destination_solr = '' if 'xasecure.audit.destination.hdfs' in configurations['ranger-env']['properties']: xasecure_audit_destination_hdfs = configurations['ranger-env']['properties']['xasecure.audit.destination.hdfs'] else: xasecure_audit_destination_hdfs = services['configurations']['ranger-env']['properties']['xasecure.audit.destination.hdfs'] if 'core-site' in services['configurations'] and ('fs.defaultFS' in services['configurations']['core-site']['properties']): xasecure_audit_destination_hdfs_dir = '{0}/{1}/{2}'.format(services['configurations']['core-site']['properties']['fs.defaultFS'] ,'ranger','audit') if 'xasecure.audit.destination.solr' in configurations['ranger-env']['properties']: xasecure_audit_destination_solr = configurations['ranger-env']['properties']['xasecure.audit.destination.solr'] else: xasecure_audit_destination_solr = services['configurations']['ranger-env']['properties']['xasecure.audit.destination.solr'] putAtlasRangerAuditProperty('xasecure.audit.destination.hdfs',xasecure_audit_destination_hdfs) putAtlasRangerAuditProperty('xasecure.audit.destination.hdfs.dir',xasecure_audit_destination_hdfs_dir) putAtlasRangerAuditProperty('xasecure.audit.destination.solr',xasecure_audit_destination_solr) required_services = [ {'service_name': 'ATLAS', 'config_type': 'ranger-atlas-security'} ] # recommendation for ranger url for ranger-supported plugins self.recommendRangerUrlConfigurations(configurations, services, required_services) def validateRangerTagsyncConfigurations(self, properties, recommendedDefaults, configurations, services, hosts): ranger_tagsync_properties = properties validationItems = [] servicesList = [service["StackServices"]["service_name"] for service in services["services"]] has_atlas = False if "RANGER" in servicesList: has_atlas = not "ATLAS" in servicesList if has_atlas and 'ranger.tagsync.source.atlas' in ranger_tagsync_properties and \ ranger_tagsync_properties['ranger.tagsync.source.atlas'].lower() == 'true': validationItems.append({"config-name": "ranger.tagsync.source.atlas", "item": self.getWarnItem( "Need to Install ATLAS service to set ranger.tagsync.source.atlas as true.")}) return self.toConfigurationValidationProblems(validationItems, "ranger-tagsync-site") def __isServiceDeployed(self, services, serviceName): servicesList = [service["StackServices"]["service_name"] for service in services["services"]] return serviceName in servicesList def isComponentUsingCardinalityForLayout(self, componentName): return super(ADH15StackAdvisor, self).isComponentUsingCardinalityForLayout (componentName) or componentName in ['SPARK2_THRIFTSERVER', 'LIVY2_SERVER', 'LIVY_SERVER']
the-stack_0_28020
from jsonize.utils.json import * from jsonize.utils.json import _write_item_in_array, _write_item_in_dict, _write_item_in_path from copy import deepcopy import unittest test_json_path = JSONPath('$.key1.key2.key3') test_json_path_2 = JSONPath('$.key2.key1.key3') test_json_path_3 = JSONPath('$') sample_dict_1 = {'key1': {'key2': {'key3': 42, 'other_key': -35, 'key4': {'key5': True, 'key6': False}}}} sample_dict_2 = {'key1': 42} sample_dict_3 = {'key2': {'key1': {'key3': True}}} class TestGetItemJSONPath(unittest.TestCase): def test_item_exists(self): with self.subTest(): self.assertEqual(get_item_from_json_path(test_json_path, deepcopy(sample_dict_1)), 42) with self.subTest(): self.assertEqual(get_item_from_json_path(JSONPath('$.key1.key2.key4'), deepcopy(sample_dict_1)), {'key5': True, 'key6': False}) def test_get_root(self): with self.subTest(): self.assertEqual(get_item_from_json_path(JSONPath('$'), sample_dict_1), deepcopy(sample_dict_1)) with self.subTest(): self.assertEqual(get_item_from_json_path(JSONPath('$'), sample_dict_2), deepcopy(sample_dict_2)) with self.subTest(): self.assertEqual(get_item_from_json_path(JSONPath('$'), sample_dict_3), deepcopy(sample_dict_3)) with self.subTest(): self.assertEqual(get_item_from_json_path(JSONPath('@'), sample_dict_2), deepcopy(sample_dict_2)) def test_item_doesnt_exist(self): with self.assertRaises(KeyError): get_item_from_json_path(JSONPath('$.key1.key2.another_key'), deepcopy(sample_dict_1)) with self.assertRaises(KeyError): get_item_from_json_path(test_json_path_2, deepcopy(sample_dict_1)) def test_item_not_suscriptable(self): with self.assertRaises(TypeError): get_item_from_json_path(test_json_path, deepcopy(sample_dict_2)) def test_get_item_in_array(self): input_array = [0, 1, 2, 3, 4, 5, 6] self.assertEqual(get_item_from_json_path(JSONPath('$[3]'), input_array), 3) def test_get_item_nested_arrays(self): input = {'key1': 43, 'key2': [0, 1, [{'key3': True}, {'key4': False}]]} self.assertEqual(get_item_from_json_path(JSONPath('$.key2[2][-1].key4'), input), False) class TestWriteItemJSONPath(unittest.TestCase): def test_overwrite_item(self): with self.subTest(): result = write_item_in_path({'key2': {'key3': 42, 'other_key': -35, 'key4': {'key5': True, 'key6': False}}}, JSONPath('$.key1'), sample_dict_1) self.assertEqual(result, {'key1': {'key2': {'key3': 42, 'other_key': -35, 'key4': {'key5': True, 'key6': False}}}}) with self.subTest(): result_2 = write_item_in_path(9, JSONPath('$.key1'), deepcopy(sample_dict_2)) self.assertEqual(result_2, {'key1': 9}) def test_write_new_item(self): with self.subTest(): result = write_item_in_path('New value', JSONPath('$.new_key'), deepcopy(sample_dict_1)) reference = sample_dict_1 reference['new_key'] = 'New value' self.assertEqual(reference, result) with self.subTest(): result_2 = write_item_in_path({'new_subkey': True}, JSONPath('$.key2.new_key'), deepcopy(sample_dict_3)) reference_2 = sample_dict_3 reference_2['key2']['new_key'] = {'new_subkey': True} self.assertEqual(result_2, reference_2) def test_write_new_item_in_new_path(self): result = write_item_in_path('New value', JSONPath('$.key2.key3'), deepcopy(sample_dict_2)) reference = {'key1': 42, 'key2': {'key3': 'New value'}} self.assertEqual(reference, result) def test_write_deeply_nested_item_in_new_path(self): result = write_item_in_path('New Value', JSONPath('$.key1.key2.key3.key4.key5.key6'), deepcopy(sample_dict_3)) reference = {'key2': {'key1': {'key3': True} }, 'key1': {'key2': {'key3': {'key4': {'key5': {'key6': 'New Value'} } } } } } self.assertEqual(reference, result) def test_overwrite_item_conflicting_path(self): reference = {'key1': {'key2': {'key3': 42, 'other_key': -35, 'key4': {'key5': {'bad_key': 'Overwrite'}, 'key6': False}}}} result = write_item_in_path('Overwrite', JSONPath('$.key1.key2.key4.key5.bad_key'), deepcopy(sample_dict_1)) self.assertEqual(reference, result) def test_write_item_in_array(self): with self.subTest('write dictionary in array'): initial = {'key1': True, 'key2': {'key3': [{'key4': 42}]}} reference = {'key1': True, 'key2': {'key3': [{'key4': 42}, {'key5': 43}]} } result = _write_item_in_array({'key5': 43}, JSONPath('$.key2.key3[-1]'), initial) self.assertEqual(reference, result) with self.subTest('write item in array at root'): initial = [] reference = [3] result = _write_item_in_array(3, JSONPath('$[0]'), initial) self.assertEqual(reference, result) with self.subTest('write item in array at relative root'): initial = [] reference = [5] result = _write_item_in_array(5, JSONPath('@[0]'), initial) self.assertEqual(reference, result) with self.subTest('write item in array in nested location'): initial = {'key1': 1, 'key2': {'key3': [1, 1, 2, 3, 5], 'key4': 5} } reference = {'key1': 1, 'key2': {'key3': [1, 1, 8, 2, 3, 5], 'key4': 5} } result = _write_item_in_array(8, JSONPath('$.key2.key3[2]'), initial) self.assertEqual(reference, result) def test_write_item_nested_arrays(self): with self.subTest(): initial = {'key1': 43, 'key2': [0, 1, [{'key3': True}, {'key4': False}]]} reference = {'key1': 43, 'key2': [0, 1, [{'key3': True}, {'key4': False, 'key5': 'New Value'}]]} self.assertEqual(write_item_in_path('New Value', JSONPath('$.key2[-1][-1].key5'), initial), reference) with self.subTest(): initial = {'key1': 43, 'key2': [[0, 1, 2], [3, 4, 5], [6, 7, 8]]} reference = {'key1': 43, 'key2': [[0, 1, 2], [3, 4, 5], [6, 7, 8, 9]]} self.assertEqual(_write_item_in_array(9, JSONPath('$.key2[2][3]'), initial), reference) with self.subTest(): initial = {'key1': 43, 'key2': [[0, 1, 2], [3, 4, 5], [6, 7, 8]]} reference = {'key1': 43, 'key2': [[0, 1, 2], [3, 4, 5], [6, 7, 8, 9]]} self.assertEqual(_write_item_in_array(9, JSONPath('$.key2[-1][-1]'), initial), reference) def test_write_deep_item_in_array(self): with self.subTest('write new deep item in array'): initial = {'key1': 1, 'key2': { 'key3': [ {'subelement': 42, 'other': True, 'yet_another': [1, 2]} ], 'key4': 5} } reference = {'key1': 1, 'key2': { 'key3': [ {'subelement': 42, 'other': True, 'yet_another': [1, 2]}, {'subelement': 43} ], 'key4': 5} } self.assertEqual(write_item_in_path(43, JSONPath('$.key2.key3[1].subelement'), initial), reference) class TestJSONPath(unittest.TestCase): def test_split_absolute(self): absolute_path = JSONPath('$.key1.key2.key3.key4') split = absolute_path.split(2) reference = JSONPath('$.key1'), JSONPath('@.key2.key3.key4') self.assertTupleEqual(split, reference) def test_split_relative(self): relative_path = JSONPath('@.key1.key2.key3.key4') split = relative_path.split(-2) reference = JSONPath('@.key1.key2'), JSONPath('@.key3.key4') self.assertTupleEqual(split, reference) def test_split_root(self): absolute_path = JSONPath('$') split = absolute_path.split(-1) reference = JSONPath('$'), JSONPath('@') self.assertTupleEqual(split, reference) def test_fail_out_of_bound(self): absolute_path = JSONPath('$.key1.key2.key3.key4') with self.assertRaises(IndexError): absolute_path.split(6) def test_split_at_final_node(self): absolute_path = JSONPath('$.key1.key2.key3.key4') split = absolute_path.split(5) reference = absolute_path, JSONPath('@') self.assertTupleEqual(split, reference) def test_is_relative(self): with self.subTest(): self.assertTrue(JSONPath('@.key1').is_relative()) with self.subTest(): self.assertFalse(JSONPath('$.key1.key2').is_relative()) def test_is_absolute(self): with self.subTest(): self.assertTrue(JSONPath('$.key1').is_absolute()) with self.subTest(): self.assertFalse(JSONPath('@.key1.key2').is_absolute()) def test_append(self): reference = JSONPath('$.key1.key2.key3.key4') path = JSONPath('$.key1.key2') path.append(JSONPath('@.key3.key4')) self.assertEqual(reference, path) def test_fail_append(self): with self.assertRaises(ValueError): reference = JSONPath('$.key1.key2.key3.key4') self.assertEqual(reference, JSONPath('$.key1.key2').append(JSONPath('$.key3.key4'))) def test_json_path_structure(self): with self.subTest(): reference_string = '$' reference_path_structure = ['$'] self.assertEqual(JSONPath._json_path_structure(reference_string), reference_path_structure) with self.subTest(): reference_string = '@' reference_path_structure = ['@'] self.assertEqual(JSONPath._json_path_structure(reference_string), reference_path_structure) with self.subTest(): reference_string = '$.key1.key2[-1].key3[1:5:2].key4[0:3][-1]' reference_path_structure = ['$', 'key1', 'key2', -1, 'key3', slice(1, 5, 2), 'key4', slice(0, 3), -1] self.assertEqual(JSONPath._json_path_structure(reference_string), reference_path_structure) with self.subTest(): reference_string = '@[1].key2.key3' reference_path_structure = ['@', 1, 'key2', 'key3'] self.assertEqual(JSONPath._json_path_structure(reference_string), reference_path_structure) with self.subTest(): reference_string = '@[:3].key2.key3' reference_path_structure = ['@', slice(None, 3), 'key2', 'key3'] self.assertEqual(JSONPath._json_path_structure(reference_string), reference_path_structure) def test_string_representation(self): with self.subTest(): reference_string = '$' reference_path_structure = ['$'] self.assertEqual(JSONPath.string_representation(reference_path_structure), reference_string) with self.subTest(): reference_string = '@' reference_path_structure = ['@'] self.assertEqual(JSONPath.string_representation(reference_path_structure), reference_string) with self.subTest(): reference_string = '$.key1.key2[-1].key3[1:5:2].key4[1:3][-1]' reference_path_structure = ['$', 'key1', 'key2', -1, 'key3', slice(1, 5, 2), 'key4', slice(1, 3), -1] self.assertEqual(JSONPath.string_representation(reference_path_structure), reference_string) with self.subTest(): reference_string = '@[:3].key2.key3' reference_path_structure = ['@', slice(None, 3), 'key2', 'key3'] self.assertEqual(JSONPath.string_representation(reference_path_structure), reference_string) def test_build_from_path_structure(self): with self.subTest(): from_string = JSONPath('$') from_path_structure = JSONPath.from_json_path_structure(['$']) self.assertEqual(from_string, from_path_structure) with self.subTest(): from_string = JSONPath('@') from_path_structure = JSONPath.from_json_path_structure(['@']) self.assertEqual(from_string, from_path_structure) with self.subTest(): from_string = JSONPath('$.key1.key2[-1].key3[1:5:2].key4[1:3][-1]') from_path_structure = JSONPath.from_json_path_structure(['$', 'key1', 'key2', -1, 'key3', slice(1, 5, 2), 'key4', slice(1, 3), -1]) self.assertEqual(from_string, from_path_structure) with self.subTest(): from_string = JSONPath('$.key1.key2[-1].key3[1:5:2].key4[1:3][-1]') from_path_structure = JSONPath.from_json_path_structure(['$', 'key1', 'key2', -1, 'key3', slice(1, 5, 2), 'key4', slice(1, 3), -1]) self.assertEqual(from_string, from_path_structure) class TestStringCasting(unittest.TestCase): value_1 = '3' value_2 = '2.0' value_3 = '-4' value_4 = 'inf' value_5 = '-inf' def test_str_is_int(self): with self.subTest(): self.assertTrue(str_is_int(self.value_1)) with self.subTest(): self.assertTrue(str_is_int(self.value_3)) def test_str_is_not_int(self): with self.subTest(): self.assertFalse(str_is_int(self.value_2)) with self.subTest(): self.assertFalse(str_is_int(self.value_4)) with self.subTest(): self.assertFalse(str_is_int(self.value_5)) def test_str_is_float(self): with self.subTest(): self.assertTrue(str_is_float(self.value_2)) def test_str_is_not_float(self): with self.subTest(): self.assertFalse(str_is_float(self.value_4)) with self.subTest(): self.assertFalse(str_is_float(self.value_5)) if __name__ == '__main__': unittest.main()