filename
stringlengths 13
19
| text
stringlengths 134
1.04M
|
---|---|
the-stack_0_4199 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
import featuretools as ft
import pandas as pd
import pytest
from numpy import nan
from cardea.data_loader import EntitySetLoader
from cardea.problem_definition import MissedAppointment
@pytest.fixture()
def missed_appointment():
return MissedAppointment()
@pytest.fixture()
def es_loader():
return EntitySetLoader()
@pytest.fixture()
def cutoff_times():
return pd.DataFrame(
{"instance_id": [10, 11, 12],
"time": [7 / 22 / 2018, 8 / 21 / 2018, 9 / 16 / 2018],
"label": ['noshow', 'noshow', 'fulfilled']
})
@pytest.fixture()
def objects(es_loader):
appointment_df = pd.DataFrame({"identifier": [10, 11, 12],
"status": ['noshow', 'noshow', 'fulfilled'],
"start": [7 / 22 / 2018, 8 / 21 / 2018, 9 / 16 / 2018],
"participant": [120, 121, 122],
"created": [7 / 22 / 2018, 8 / 21 / 2018, 9 / 16 / 2018]})
participant_df = pd.DataFrame({"object_id": [120, 121, 122],
"actor": [0, 1, 2]})
patient_df = pd.DataFrame({"identifier": [0, 1, 2],
"gender": ['female', 'female', 'male'],
"birthDate": ['10/21/2000', '7/2/2000', '1/10/2000'],
"active": ['True', 'True', 'nan']})
appointment = es_loader.create_object(appointment_df, 'Appointment')
participant = es_loader.create_object(participant_df, 'Appointment_Participant')
patient = es_loader.create_object(patient_df, 'Patient')
return [appointment, participant, patient]
@pytest.fixture()
def es_success(objects, es_loader):
es = ft.EntitySet(id="test")
identifiers = es_loader.get_object_ids(objects)
fhir_dict = es_loader.get_dataframes(objects)
es_loader.create_entity(fhir_dict, identifiers, entity_set=es)
relationships = es_loader.get_relationships(objects, list(fhir_dict.keys()))
es_loader.create_relationships(relationships, entity_set=es)
return es
@pytest.fixture()
def object_error_missing_label(es_loader):
appointment_df = pd.DataFrame({"identifier": [10, 11, 12],
"start": [7 / 22 / 2018, 8 / 21 / 2018, 9 / 16 / 2018],
"participant": [120, 121, 122],
"created": [7 / 22 / 2018, 8 / 21 / 2018, 9 / 16 / 2018]})
appointment = es_loader.create_object(appointment_df, 'Appointment')
return appointment
@pytest.fixture()
def objects_error_missing_cutoff_label(es_loader):
appointment_df = pd.DataFrame({"identifier": [10, 11, 12],
"start": [7 / 22 / 2018, 8 / 21 / 2018, 9 / 16 / 2018],
"status": ['noshow', 'noshow', 'fulfilled'],
"participant": [120, 121, 122]})
appointment = es_loader.create_object(appointment_df, 'Appointment')
return appointment
@pytest.fixture()
def entityset_error_missing_label(objects, object_error_missing_label, es_loader):
es = ft.EntitySet(id="test")
objects.extend([object_error_missing_label])
identifiers = es_loader.get_object_ids(objects)
fhir_dict = es_loader.get_dataframes(objects)
es_loader.create_entity(fhir_dict, identifiers, entity_set=es)
relationships = es_loader.get_relationships(objects, list(fhir_dict.keys()))
es_loader.create_relationships(relationships, entity_set=es)
return es
@pytest.fixture()
def entityset_error_missing_cutoff_label(objects, objects_error_missing_cutoff_label, es_loader):
es = ft.EntitySet(id="test")
for object in objects:
es_loader.create_entity(object, entity_set=es)
for object in objects:
es_loader.create_relationships(object, entity_set=es)
es_loader.create_entity(objects_error_missing_cutoff_label, entity_set=es)
es_loader.create_relationships(objects_error_missing_cutoff_label, entity_set=es)
return es
def test_generate_cutoff_times_success(
es_success, missed_appointment, cutoff_times):
_, _, generated_df = missed_appointment.generate_cutoff_times(es_success)
generated_df.index = cutoff_times.index # both should have the same index
generated_df = generated_df[cutoff_times.columns] # same columns order
assert generated_df.equals(cutoff_times)
def test_generate_cutoff_times_error(
entityset_error_missing_label, missed_appointment):
with pytest.raises(ValueError):
missed_appointment.generate_cutoff_times(
entityset_error_missing_label)
def test_generate_cutoff_times_error_value(es_success, missed_appointment):
es_success['Appointment'].df.loc[len(es_success['Appointment'].df)] = [
nan, nan, nan, nan, nan]
with pytest.raises(ValueError):
missed_appointment.generate_cutoff_times(
es_success)
def test_generate_cutoff_times_missing_cutoff_time(
es_success, missed_appointment):
es_success['Appointment'].delete_variables(['created'])
with pytest.raises(ValueError):
missed_appointment.generate_cutoff_times(
es_success)
|
the-stack_0_4201 | from django.shortcuts import render
from vdw.raw.sources.models import Source
def sources(request):
sources = Source.objects.filter(published=True, archived=False)\
.select_related('stats')
return render(request, 'sources/sources.html', {
'sources': sources,
})
|
the-stack_0_4202 |
from setuptools import find_packages, setup
with open('README.md', 'r') as fh:
long_description = fh.read()
setup(
name='backoid',
description='backoid',
version="0.0.1",
long_description=long_description,
long_description_content_type="text/markdown",
packages=find_packages("src"),
package_dir={"": "src"},
install_requires=[
'pymysql>=0.9.3',
'azure-storage-blob',
'pyyaml'
],
classifiers=[
"Natural Language :: English",
"Operating System :: POSIX",
"Operating System :: POSIX :: Linux",
"Programming Language :: Python :: 3.7",
],
entry_points={
'console_scripts': [
'backoid = backoid.cli:main'
]
}
)
|
the-stack_0_4204 | # coding=utf-8
# Copyright 2016 Pants project contributors (see CONTRIBUTORS.md).
# Licensed under the Apache License, Version 2.0 (see LICENSE).
from __future__ import absolute_import, division, print_function, unicode_literals
import os
from pants.base.file_system_project_tree import FileSystemProjectTree
from pants_test.pants_run_integration_test import PantsRunIntegrationTest
class FilemapIntegrationTest(PantsRunIntegrationTest):
PATH_PREFIX = 'testprojects/tests/python/pants/file_sets/'
TEST_EXCLUDE_FILES = {
'a.py', 'aa.py', 'aaa.py', 'ab.py', 'aabb.py', 'test_a.py',
'dir1/a.py', 'dir1/aa.py', 'dir1/aaa.py',
'dir1/ab.py', 'dir1/aabb.py', 'dir1/dirdir1/a.py', 'dir1/dirdir1/aa.py', 'dir1/dirdir1/ab.py'
}
def setUp(self):
super(FilemapIntegrationTest, self).setUp()
project_tree = FileSystemProjectTree(os.path.abspath(self.PATH_PREFIX), ['BUILD', '.*'])
scan_set = set()
def should_ignore(file):
return file.endswith('.pyc')
for root, dirs, files in project_tree.walk(''):
scan_set.update({os.path.join(root, f) for f in files if not should_ignore(f)})
self.assertEqual(scan_set, self.TEST_EXCLUDE_FILES)
def _mk_target(self, test_name):
return '{}:{}'.format(self.PATH_PREFIX, test_name)
def _extract_exclude_output(self, test_name):
stdout_data = self.do_command('filemap',
self._mk_target(test_name),
success=True).stdout_data
return {s.split(' ')[0].replace(self.PATH_PREFIX, '')
for s in stdout_data.split('\n') if s.startswith(self.PATH_PREFIX)}
def test_testprojects(self):
self.do_command('filemap', 'testprojects::', success=True)
def test_python_sources(self):
run = self.do_command('filemap',
'testprojects/src/python/sources',
success=True)
self.assertIn('testprojects/src/python/sources/sources.py', run.stdout_data)
def test_exclude_invalid_string(self):
build_path = os.path.join(self.PATH_PREFIX, 'BUILD.invalid')
build_content = '''python_library(name='exclude_strings_disallowed',
sources=rglobs('*.py', exclude='aa.py'))'''
with self.temporary_file_content(build_path, build_content):
pants_run = self.do_command('filemap',
self._mk_target('exclude_strings_disallowed'),
success=False)
self.assertRegexpMatches(pants_run.stderr_data,
r'Excludes of type `.*` are not supported')
def test_exclude_list_of_strings(self):
test_out = self._extract_exclude_output('exclude_list_of_strings')
self.assertEqual(self.TEST_EXCLUDE_FILES - {'aaa.py', 'dir1/aaa.py'},
test_out)
def test_exclude_globs(self):
test_out = self._extract_exclude_output('exclude_globs')
self.assertEqual(self.TEST_EXCLUDE_FILES - {'aabb.py', 'dir1/dirdir1/aa.py'},
test_out)
def test_exclude_strings(self):
test_out = self._extract_exclude_output('exclude_strings')
self.assertEqual(self.TEST_EXCLUDE_FILES - {'aa.py', 'ab.py'},
test_out)
def test_exclude_set(self):
test_out = self._extract_exclude_output('exclude_set')
self.assertEqual(self.TEST_EXCLUDE_FILES - {'aaa.py', 'a.py'},
test_out)
def test_exclude_rglobs(self):
test_out = self._extract_exclude_output('exclude_rglobs')
self.assertEqual(self.TEST_EXCLUDE_FILES - {'ab.py', 'aabb.py', 'dir1/ab.py', 'dir1/aabb.py', 'dir1/dirdir1/ab.py'},
test_out)
def test_exclude_zglobs(self):
test_out = self._extract_exclude_output('exclude_zglobs')
self.assertEqual(self.TEST_EXCLUDE_FILES - {'ab.py', 'aabb.py', 'dir1/ab.py', 'dir1/aabb.py', 'dir1/dirdir1/ab.py'},
test_out)
def test_exclude_composite(self):
test_out = self._extract_exclude_output('exclude_composite')
self.assertEqual(self.TEST_EXCLUDE_FILES -
{'a.py', 'aaa.py', 'dir1/a.py', 'dir1/dirdir1/a.py'},
test_out)
def test_implicit_sources(self):
test_out = self._extract_exclude_output('implicit_sources')
self.assertEqual({'a.py', 'aa.py', 'aaa.py', 'aabb.py', 'ab.py'},
test_out)
test_out = self._extract_exclude_output('test_with_implicit_sources')
self.assertEqual({'test_a.py'}, test_out)
|
the-stack_0_4207 | import json
import zipfile
import os
import sys
import pytest
from click.testing import CliRunner
import mock
from chalice import cli
from chalice.cli import factory
from chalice.config import Config
from chalice.utils import record_deployed_values
from chalice import local
from chalice.constants import DEFAULT_APIGATEWAY_STAGE_NAME
@pytest.fixture
def runner():
return CliRunner()
@pytest.fixture
def mock_cli_factory():
cli_factory = mock.Mock(spec=factory.CLIFactory)
cli_factory.create_config_obj.return_value = Config.create(project_dir='.')
cli_factory.create_botocore_session.return_value = mock.sentinel.Session
return cli_factory
def assert_chalice_app_structure_created(dirname):
app_contents = os.listdir(os.path.join(os.getcwd(), dirname))
assert 'app.py' in app_contents
assert 'requirements.txt' in app_contents
assert '.chalice' in app_contents
assert '.gitignore' in app_contents
def _run_cli_command(runner, function, args, cli_factory=None):
# Handles passing in 'obj' so we can get commands
# that use @pass_context to work properly.
# click doesn't support this natively so we have to duplicate
# what 'def cli(...)' is doing.
if cli_factory is None:
cli_factory = factory.CLIFactory('.')
result = runner.invoke(
function, args, obj={'project_dir': '.', 'debug': False,
'factory': cli_factory})
return result
def test_create_new_project_creates_app(runner):
with runner.isolated_filesystem():
result = runner.invoke(cli.new_project, ['testproject'])
assert result.exit_code == 0
# The 'new-project' command creates a directory based on
# the project name
assert os.listdir(os.getcwd()) == ['testproject']
assert_chalice_app_structure_created(dirname='testproject')
def test_create_project_with_prompted_app_name(runner):
with runner.isolated_filesystem():
result = runner.invoke(cli.new_project, input='testproject')
assert result.exit_code == 0
assert os.listdir(os.getcwd()) == ['testproject']
assert_chalice_app_structure_created(dirname='testproject')
def test_error_raised_if_dir_already_exists(runner):
with runner.isolated_filesystem():
os.mkdir('testproject')
result = runner.invoke(cli.new_project, ['testproject'])
assert result.exit_code == 1
assert 'Directory already exists: testproject' in result.output
def test_can_load_project_config_after_project_creation(runner):
with runner.isolated_filesystem():
result = runner.invoke(cli.new_project, ['testproject'])
assert result.exit_code == 0
config = factory.CLIFactory('testproject').load_project_config()
assert config == {
'version': '2.0',
'app_name': 'testproject',
'stages': {
'dev': {'api_gateway_stage': DEFAULT_APIGATEWAY_STAGE_NAME},
}
}
def test_default_new_project_adds_index_route(runner):
with runner.isolated_filesystem():
result = runner.invoke(cli.new_project, ['testproject'])
assert result.exit_code == 0
app = factory.CLIFactory('testproject').load_chalice_app()
assert '/' in app.routes
def test_gen_policy_command_creates_policy(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = runner.invoke(cli.cli, ['gen-policy'], obj={})
assert result.exit_code == 0
# The output should be valid JSON.
parsed_policy = json.loads(result.output)
# We don't want to validate the specific parts of the policy
# (that's tested elsewhere), but we'll check to make sure
# it looks like a policy document.
assert 'Version' in parsed_policy
assert 'Statement' in parsed_policy
def test_can_package_command(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(runner, cli.package, ['outdir'])
assert result.exit_code == 0, result.output
assert os.path.isdir('outdir')
dir_contents = os.listdir('outdir')
assert 'sam.json' in dir_contents
assert 'deployment.zip' in dir_contents
def test_can_package_with_single_file(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(
runner, cli.package, ['--single-file', 'package.zip'])
assert result.exit_code == 0, result.output
assert os.path.isfile('package.zip')
with zipfile.ZipFile('package.zip', 'r') as f:
assert sorted(f.namelist()) == ['deployment.zip', 'sam.json']
def test_does_deploy_with_default_api_gateway_stage_name(runner,
mock_cli_factory):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
# This isn't perfect as we're assuming we know how to
# create the config_obj like the deploy() command does,
# it should give us more confidence that the api gateway
# stage defaults are still working.
cli_factory = factory.CLIFactory('.')
config = cli_factory.create_config_obj(
chalice_stage_name='dev',
autogen_policy=None,
api_gateway_stage=None
)
assert config.api_gateway_stage == DEFAULT_APIGATEWAY_STAGE_NAME
def test_can_specify_api_gateway_stage(runner, mock_cli_factory):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(runner, cli.deploy,
['--api-gateway-stage', 'notdev'],
cli_factory=mock_cli_factory)
assert result.exit_code == 0
mock_cli_factory.create_config_obj.assert_called_with(
autogen_policy=None, chalice_stage_name='dev',
api_gateway_stage='notdev'
)
def test_can_deploy_specify_connection_timeout(runner, mock_cli_factory):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(runner, cli.deploy,
['--connection-timeout', 100],
cli_factory=mock_cli_factory)
assert result.exit_code == 0
mock_cli_factory.create_botocore_session.assert_called_with(
connection_timeout=100
)
def test_can_retrieve_url(runner, mock_cli_factory):
deployed_values_dev = {
"schema_version": "2.0",
"resources": [
{"rest_api_url": "https://dev-url/",
"name": "rest_api",
"resource_type": "rest_api"},
]
}
deployed_values_prod = {
"schema_version": "2.0",
"resources": [
{"rest_api_url": "https://prod-url/",
"name": "rest_api",
"resource_type": "rest_api"},
]
}
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
deployed_dir = os.path.join('.chalice', 'deployed')
os.makedirs(deployed_dir)
record_deployed_values(
deployed_values_dev,
os.path.join(deployed_dir, 'dev.json')
)
record_deployed_values(
deployed_values_prod,
os.path.join(deployed_dir, 'prod.json')
)
result = _run_cli_command(runner, cli.url, [],
cli_factory=mock_cli_factory)
assert result.exit_code == 0
assert result.output == 'https://dev-url/\n'
prod_result = _run_cli_command(runner, cli.url, ['--stage', 'prod'],
cli_factory=mock_cli_factory)
assert prod_result.exit_code == 0
assert prod_result.output == 'https://prod-url/\n'
def test_error_when_no_deployed_record(runner, mock_cli_factory):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(runner, cli.url, [],
cli_factory=mock_cli_factory)
assert result.exit_code == 2
assert 'not find' in result.output
@pytest.mark.skipif(sys.version_info[0] == 3,
reason=('Python Version 3 cannot create pipelines due to '
'CodeBuild not having a Python 3.6 image. This '
'mark can be removed when that image exists.'))
def test_can_generate_pipeline_for_all(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(
runner, cli.generate_pipeline, ['pipeline.json'])
assert result.exit_code == 0, result.output
assert os.path.isfile('pipeline.json')
with open('pipeline.json', 'r') as f:
template = json.load(f)
# The actual contents are tested in the unit
# tests. Just a sanity check that it looks right.
assert "AWSTemplateFormatVersion" in template
assert "Outputs" in template
def test_no_errors_if_override_codebuild_image(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(
runner, cli.generate_pipeline,
['-i', 'python:3.6.1', 'pipeline.json'])
assert result.exit_code == 0, result.output
assert os.path.isfile('pipeline.json')
with open('pipeline.json', 'r') as f:
template = json.load(f)
# The actual contents are tested in the unit
# tests. Just a sanity check that it looks right.
image = template['Parameters']['CodeBuildImage']['Default']
assert image == 'python:3.6.1'
def test_can_configure_github(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
# The -i option is provided so we don't have to skip this
# test on python3.6
result = _run_cli_command(
runner, cli.generate_pipeline,
['--source', 'github', '-i' 'python:3.6.1', 'pipeline.json'])
assert result.exit_code == 0, result.output
assert os.path.isfile('pipeline.json')
with open('pipeline.json', 'r') as f:
template = json.load(f)
# The template is already tested in the unit tests
# for template generation. We just want a basic
# sanity check to make sure things are mapped
# properly.
assert 'GithubOwner' in template['Parameters']
assert 'GithubRepoName' in template['Parameters']
def test_can_extract_buildspec_yaml(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(
runner, cli.generate_pipeline,
['--buildspec-file', 'buildspec.yml',
'-i', 'python:3.6.1',
'pipeline.json'])
assert result.exit_code == 0, result.output
assert os.path.isfile('buildspec.yml')
with open('buildspec.yml') as f:
data = f.read()
# The contents of this file are tested elsewhere,
# we just want a basic sanity check here.
assert 'chalice package' in data
def test_env_vars_set_in_local(runner, mock_cli_factory,
monkeypatch):
local_server = mock.Mock(spec=local.LocalDevServer)
mock_cli_factory.create_local_server.return_value = local_server
mock_cli_factory.create_config_obj.return_value = Config.create(
project_dir='.', environment_variables={'foo': 'bar'})
actual_env = {}
monkeypatch.setattr(os, 'environ', actual_env)
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
_run_cli_command(runner, cli.local, [],
cli_factory=mock_cli_factory)
assert actual_env['foo'] == 'bar'
def test_can_specify_profile_for_logs(runner, mock_cli_factory):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(
runner, cli.logs, ['--profile', 'my-profile'],
cli_factory=mock_cli_factory
)
assert result.exit_code == 0
assert mock_cli_factory.profile == 'my-profile'
|
the-stack_0_4208 | import os
import pandas as pd
def read_synchronisation_file(experiment_root):
filepath = os.path.join(experiment_root, "labels", "synchronisation.csv")
return pd.read_csv(filepath)
def convert_timestamps(experiment_root, timestamps, from_reference, to_reference):
"""
Convert numeric timestamps (seconds for start of the video or posix timestamp) of a reference time (e.g. P3_eyetracker) to a different reference time (e.g. video time)
Parameters
----------
experiment_root: str
Root of the current experiment (to find the right synchronisation matrix)
timestamps: float or array like
timestamps to be converted
from_reference: str
name of the reference of the original timestamps
to_reference: str
name of the reference time the timestamp has to be converted to
Returns
-------
converted_timestamps: float or array like
Timestamps given in to_reference time values
"""
synchronisation_file = read_synchronisation_file(experiment_root)
offset = synchronisation_file.loc[synchronisation_file["from"] == from_reference, to_reference].values[0]
converted_timestamps = timestamps + offset
return converted_timestamps
if __name__ == '__main__':
exp_root = "/Volumes/DataDrive/igroups_recordings/igroups_experiment_8"
print(convert_timestamps(exp_root, [1482326641, 1482326642], "P3_eyetracker", "video")) |
the-stack_0_4209 | # coding: utf-8
# Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department
# Distributed under the terms of "New BSD License", see the LICENSE file.
import unittest
from pyiron_base.job.template import PythonTemplateJob
from pyiron_base._tests import TestWithProject
class ToyJob(PythonTemplateJob):
def __init__(self, project, job_name):
super(ToyJob, self).__init__(project, job_name)
self.input['input_energy'] = 100
def run_static(self):
with self.project_hdf5.open("output/generic") as h5out:
h5out["energy_tot"] = self.input["input_energy"]
self.status.finished = True
class TestProjectData(TestWithProject):
@classmethod
def setUpClass(cls):
super().setUpClass()
for i, c in enumerate("abcd"):
j = cls.project.create_job(ToyJob, f"test_{c}")
j.input['input_energy'] = i
j.run()
def setUp(self):
self.table = self.project.create.table('test_table')
self.table.filter_function = lambda j: j.name in ["test_a", "test_b"]
self.table.add['name'] = lambda j: j.name
self.table.run()
def tearDown(self):
self.project.remove_job(self.table.name)
def test_filter(self):
"""Filter functions should restrict jobs included in the table."""
df = self.table.get_dataframe()
self.assertEqual(2, len(df), "Table not correctly filtered.")
self.assertEqual(["test_a", "test_b"], df.name.to_list(), "Table not correctly filtered.")
def test_filter_reload(self):
"""Lambdas should work as filter functions even if read from HDF5."""
try:
table_loaded = self.project.load(self.table.name)
except:
self.fail("Error on reloading table with filter lambda.")
if __name__ == '__main__':
unittest.main()
|
the-stack_0_4210 | """
Calculations that deal with seismic moment tensors.
Notes from Lay and Wallace Chapter 8:
* Decomposition 1: Mij = isotropic + deviatoric
* Decomposition 2: Mij = isotropic + 3 vector dipoles
* Decomposition 3: Mij = isotropic + 3 double couples
* Decomposition 4: Mij = isotropic + 3 CLVDs
* Decomposition 5: Mij = isotropic + major DC + minor DC
* Decomposition 6: Mij = isotropic + DC + CLVD
The most useful in practice are Decomposition 1 and Decomposition 6.
"""
import numpy as np
def get_MT(mrr, mtt, mpp, mrt, mrp, mtp):
"""Build a matrix from the six components of the moment tensor"""
MT = np.array([[mrr, mrt, mrp], [mrt, mtt, mtp], [mrp, mtp, mpp]]);
return MT;
def diagonalize_MT(MT):
"""Return a diagonal matrix whose elements are the ordered eigenvalues."""
eigvals, eigvecs = np.linalg.eig(MT);
eigvals = sorted(eigvals)[::-1];
return np.diag(eigvals);
def get_deviatoric_MT(MT):
"""Get deviatoric MT (returns a matrix)"""
iso_MT = get_iso_MT(MT);
M_dev = np.subtract(MT, iso_MT);
return M_dev;
def get_iso_MT(MT):
"""Return the isotropic moment tensor (returns a matrix)"""
x = (1 / 3) * np.trace(MT);
iso_MT = np.multiply(np.eye(3), x);
return iso_MT
def get_clvd_dc_from_deviatoric_MT(MT):
"""
Return the dc and clvd components of a deviatoric MT, from Shearer Equation 9.14.
Returns two matricies.
"""
eigenvalues = np.diag(MT);
assert(eigenvalues[0] > eigenvalues[1] > eigenvalues[2]), ValueError("Deviatoric eigenvalues out of order.")
dc_component = (1/2)*(eigenvalues[0]-eigenvalues[2]);
clvd_component = eigenvalues[1]*(1/2);
M_dc = np.diag([dc_component, 0, -dc_component]);
M_clvd = np.diag([-clvd_component, 2*clvd_component, -clvd_component]);
return M_clvd, M_dc;
def decompose_iso_dc_clvd(MT):
"""
A useful function to decompose a full moment tensor into an isotropic part, a double-couple, and a CLVD component.
Returns three matrices.
"""
diag_MT = diagonalize_MT(MT); # equivalent to a coordinate transformation
M_iso = get_iso_MT(diag_MT); # get the trace
M_dev = get_deviatoric_MT(diag_MT);
M_dev = diagonalize_MT(M_dev); # diagonalized in the proper order
M_clvd, M_dc = get_clvd_dc_from_deviatoric_MT(M_dev);
return M_iso, M_clvd, M_dc;
# def get_separate_scalar_moments(MT):
# """return isotropic, clvd, and double couple moments. Not frequently used."""
# M_iso, M_clvd, M_dc = decompose_iso_dc_clvd(MT);
# iso_moment = abs(M_iso[0][0]);
# clvd_moment = abs(M_clvd[0][0]);
# dc_moment = abs(M_dc[0][0]);
# return iso_moment, clvd_moment, dc_moment;
def get_total_scalar_moment(MT):
"""Shearer Equation 9.8: quadratic sum of element of moment tensor components, in newton-meters"""
MT = np.divide(MT, 1e16); # done to prevent computer buffer overflow
total = 0;
for i in range(3):
for j in range(3):
total = total + MT[i][j]*MT[i][j];
Mo = (1/np.sqrt(2)) * np.sqrt(total);
Mo = np.multiply(Mo, 1e16);
return Mo;
def get_percent_double_couple(MT):
"""Get the percent double couple and percent clvd moment from a deviatoric moment tensor.
When isotropic term is involved, this can get more complicated and there are several approaches.
See Shearer equation 9.17 for epsilon.
See Vavrycuk, 2001 for other approaches when isotropic component is involved. """
m_dev = diagonalize_MT(get_deviatoric_MT(MT));
epsilon = np.diag(m_dev)[1] / np.max([np.abs(np.diag(m_dev)[0]), np.abs(np.diag(m_dev)[2])]);
fraction = epsilon * 2;
perc_clvd = 100 * (abs(fraction));
perc_dc = 100 - perc_clvd;
return perc_dc, perc_clvd;
|
the-stack_0_4211 | # Copyright 2019 ZTE corporation. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
from typing import Any, Mapping, NamedTuple, Optional, Sequence
from itertools import zip_longest
from . import utilities
from .models.data_format import DataFormat
def get_tensor_by_fuzzy_name(graph, name):
if ':' in name:
tensor = graph.get_tensor_by_name(name)
else:
tensor = graph.get_operation_by_name(name).outputs[0]
return tensor
class Config(NamedTuple):
input_names: Optional[Sequence[str]]
data_formats: Sequence[Optional[DataFormat]]
output_names: Optional[Sequence[str]]
@staticmethod
def from_json(value: Mapping[str, Any]) -> 'Config':
return Config(input_names=value.get('input_names'),
data_formats=utilities.get_data_formats(value.get('input_formats')),
output_names=value.get('output_names'))
@staticmethod
def from_env(env: Mapping[str, str]) -> 'Config':
return Config(input_names=utilities.split_by(env.get('INPUT_NAMES'), ','),
data_formats=utilities.get_data_formats(utilities.split_by(env.get('INPUT_FORMATS'), ',')),
output_names=utilities.split_by(env.get('OUTPUT_NAMES'), ','))
def get_input_tensors_from_graph(self, graph):
if self.input_names is None:
input_tensors = [operation.outputs[0]
for operation in graph.get_operations()
if operation.type == 'Placeholder']
else:
input_tensors = [get_tensor_by_fuzzy_name(graph, name) for name in self.input_names]
return input_tensors
def get_output_tensors_from_graph(self, graph):
if self.output_names is None:
output_tensors = [output_tensor for operation in graph.get_operations()
if operation.type not in
['Assign', 'Const', 'Identity', 'IsVariableInitialized', 'NoOp', 'Placeholder', 'SaveV2',
'VarIsInitializedOp']
for output_tensor in operation.outputs
if not output_tensor.consumers()]
else:
output_tensors = [get_tensor_by_fuzzy_name(graph, name) for name in self.output_names]
return output_tensors
def get_inputs(graph, config):
return zip_longest(config.get_input_tensors_from_graph(graph), config.data_formats)
|
the-stack_0_4212 | #!/usr/bin/env python3
# Copyright 2021 The Pigweed Authors
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations under
# the License.
"""Command line interface for mcuxpresso_builder."""
import argparse
import pathlib
import sys
from pw_build_mcuxpresso import components
def _parse_args() -> argparse.Namespace:
"""Setup argparse and parse command line args."""
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest='command',
metavar='<command>',
required=True)
project_parser = subparsers.add_parser(
'project', help='output components of an MCUXpresso project')
project_parser.add_argument('manifest_filename', type=pathlib.Path)
project_parser.add_argument('--include', type=str, action='append')
project_parser.add_argument('--exclude', type=str, action='append')
project_parser.add_argument('--prefix', dest='path_prefix', type=str)
return parser.parse_args()
def main():
"""Main command line function."""
args = _parse_args()
if args.command == 'project':
components.project(args.manifest_filename,
include=args.include,
exclude=args.exclude,
path_prefix=args.path_prefix)
sys.exit(0)
if __name__ == '__main__':
main()
|
the-stack_0_4214 | import cv2
import os
import scipy as scp
import scipy.misc
import matplotlib
from sklearn.cluster import KMeans
import numpy as np
import evaluationClass_tools as evTools
import random
from sklearn import svm
from sklearn import preprocessing
import pickle
import triangle_detection as triang
def oneClass(image_seg):
rows, cols = image_seg.shape[:2]
color = [0, 0, 0]
for i in range(rows):
for j in range(cols):
if (image_seg[i][j][0] == 0 and image_seg[i][j][1] == 0 and image_seg[i][j][2] == 0):
continue
else:
if (color[0] == 0 and color[1] == 0 and color[2] == [0]):
color[0] = image_seg[i][j][0]
color[1] = image_seg[i][j][1]
color[2] = image_seg[i][j][2]
continue
if (image_seg[i][j][0] != color[0] or image_seg[i][j][1] != color[1] and image_seg[i][j][2] != color[2]):
return False
return True, color
# def triangStats(img, singleColor = True):
# imggray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# ret, imbw = cv2.threshold(imggray, 10, 255, 0)
# _, contours, _ = cv2.findContours(imbw, 1, 2)
# maxArea = 0;
# Ax = Ay = Bx = By = Cx = Cy = 0
# areaCnt = 0
# maxCnt = None
# idx = -1
# for cnt in contours:
# idx += 1
# retval, triangle = cv2.minEnclosingTriangle(cnt)
# if (triangle is None):
# continue
# areaCnt = cv2.contourArea(cnt)
# if (areaCnt <= maxArea):
# continue
# maxArea = areaCnt
# maxCnt = idx
# Ax = triangle[0][0][0]
# Ay = triangle[0][0][1]
# Bx = triangle[1][0][0]
# By = triangle[1][0][1]
# Cx = triangle[2][0][0]
# Cy = triangle[2][0][1]
# if (maxArea < 0.1 * imggray.shape[0] * imggray.shape[1]):
# return False, None, None, None
# v1x = 0
# v1y = 0
# v2x = 0
# v2y = 0
# v3x = 0
# v3y = 0
# imgCnt = np.zeros((img.shape[0], img.shape[1], 3), np.uint8)
# mask = np.zeros((img.shape[0], img.shape[1], 3), np.uint8)
# cv2.drawContours(mask, contours, maxCnt, color=(255, 255, 255), thickness=cv2.FILLED)
# color = [0, 0, 0]
# contActivePixels = 0
# valret = True
# for i in range(mask.shape[0]):
# for j in range(mask.shape[1]):
# if (mask[i, j, 0] == 255 and mask[i, j, 1] == 255 and mask[i, j, 2] == 255):
# if(img[i, j, 0] != 0 or img[i, j, 1] != 0 or img[i, j, 2] != 0):
# contActivePixels+=1
# if (color[0] == 0 and color[1] == 0 and color[2] == 0):
# color[0] = int(img[i][j][0])
# color[1] = int(img[i][j][1])
# color[2] = int(img[i][j][2])
# else:
# if (img[i][j][0] != color[0] or img[i][j][1] != color[1] or img[i][j][2] != color[2]):
# valret = False
# if(singleColor == True and valret == False):
# return False, None, None, None
# cv2.drawContours(imgCnt, contours, maxCnt, color=color, thickness=cv2.FILLED)
# if (Cy < By and Cy < Ay):
# v1y = Cy
# v1x = Cx
# if (Ax < Bx):
# v2x = Ax
# v2y = Ay
# v3x = Bx
# v3y = By
# else:
# v2x = Bx
# v2y = By
# v3x = Ax
# v3y = Ay
# elif (By < Cy and By < Ay):
# v1y = By
# v1x = Bx
# if (Ax < Cx):
# v2x = Ax
# v2y = Ay
# v3x = Cx
# v3y = Cy
# else:
# v2x = Cx
# v2y = Cy
# v3x = Ax
# v3y = Ay
# else:
# v1y = Ay
# v1x = Ax
# if (Bx < Cx):
# v2x = Bx
# v2y = By
# v3x = Cx
# v3y = Cy
# else:
# v2x = Cx
# v2y = Cy
# v3x = Bx
# v3y = By
# # (x,y),radius = cv2.minEnclosingCircle(cnt)
# triangleArea = abs((v2x * (v1y - v3y) + v1x * (v3y - v2y) + v3x * (v2y - v1y)) / 2)
# # print(f"({v1x},{v1y}) ({v2x},{v2y}) ({v3x},{v3y}) {maxArea} {triangleArea}")
# # a=input('pare')
# # center = (int(x),int(y))
# # radius = int(radius)
# # cv2.circle(img,center,radius,(255,255,0),2)
# #desc = [maxArea / triangleArea, 0 if v3y - v1y == 0 else (v2y - v1y) / (v3y - v1y),
# #1 if v1x - v2x > 0 and v3x - v1x > 0 else 0, np.rad2deg(np.arctan( abs(v3y-v2y) / (v3x - v2x)))]
# desc = [contActivePixels/triangleArea, np.rad2deg(np.arctan(abs(v3y - v2y) / (v3x - v2x))), 1 if v1x - v2x > 0 and v3x - v1x > 0 else 0 ]
# return True, np.array([desc]), imgCnt, color
def applySmv(desc, svmModel):
return svmModel.predict(desc)
def sortImgByNumberOfActivePixels(elem):
return elem[1]
def sortImgByFilledTriangPerc(elem):
return elem[1]
def allPxDominantStreet(image_seg, avgPavedPx, avgRockPx, avgNonPavedPx, th):
rows,cols = image_seg.shape[:2]
endLoop = 0
validNonZeroPx = 0
for i in range(rows):
for j in range(cols):
if (image_seg[i][j][0] == 0 and image_seg[i][j][1] == 0 and image_seg[i][j][2] == 0):
continue
if avgPavedPx >= th:
if (image_seg[i][j][0] != 0 or image_seg[i][j][1] != 0 or image_seg[i][j][2] != 255):
return False
else:
validNonZeroPx = validNonZeroPx + 1
if avgRockPx >= th:
if (image_seg[i][j][0] != 255 or image_seg[i][j][1] != 0 or image_seg[i][j][2] != 0):
return False
else:
validNonZeroPx = validNonZeroPx + 1
if avgNonPavedPx >= th:
if (image_seg[i][j][0] != 0 or (image_seg[i][j][1] != 255 and image_seg[i][j][1] != 100) or image_seg[i][j][2] != 0):
return False
else:
validNonZeroPx = validNonZeroPx + 1
if validNonZeroPx == 0:
return False, 0
else:
return True, validNonZeroPx
file_smv_model = 'svm_model3.sav'
svm_model = pickle.load(open(file_smv_model, 'rb'))
baseGTtrainfile = 'gt_image_4_balanced_train.txt'
baseGTvalfile = 'gt_image_4_balanced_val.txt'
file_scaler = 'scaler3.sav'
scaler = pickle.load(open(file_scaler, 'rb'))
classes = evTools.ClassesDef.PAVED_NONPAVED_ROCK
basedirretrain='retrain_SVM_balanced_novo_1'
dir_test = 'C:\\Pesquisa\\codigos\\KittiSeg_shivam\\KittiSeg\\data\\dataset_Olinda_varHeading_fov90\\teste2\\';
dir_segmented = 'C:\\Pesquisa\\codigos\\KittiSeg_shivam\\KittiSeg\\RUNS\\'+basedirretrain+'\\results\\';
path_retraindataset = 'C:\\Pesquisa\\codigos\\KittiSeg_shivam\\KittiSeg\\data\\data_road\\training\\'
dir_retraindataset = 'image_4retrain'
dir_gt_retraindataset = 'retrain_SVM_balanced_novo'
dirpath = 'RUNS\\'+basedirretrain
txt_retrain_name = 'retrain_SVM_balanced_novo_2_train.txt'
txt_val_retrain_name = 'retrain_SVM_balanced_novo_2_val.txt'
txtBestResults = 'retrain_SVM_balanced_novo_updatedResults.txt';
firstRetrain = False
try:
fileBestResults = open(txtBestResults, 'r')
except IOError:
firstRetrain = True
fileBestResults = open(txtBestResults, 'w')
fileBestResults.close()
fileBestResults = open(txtBestResults, 'r')
fileBestResults.close()
newBestResults = []
resFile = open(os.path.join(dirpath,'results.txt'),'r', encoding="utf8")
line = resFile.readline()
labelGT = '?'
count = 0
streetsPaved = []
streetsRock = []
streetsNP = []
while line:
streetname = line.replace('\t',' ')
streetname = streetname.split(' [')[0]
print('PROCESSING STREET: '+streetname)
th = 0.99
fileBestResults = open(txtBestResults, 'r')
lineBestResult = fileBestResults.readline()
newLineBestResult = line
bestResultUpdated = False
while lineBestResult:
streetnameBestResult = lineBestResult.replace('\t',' ')
streetnameBestResult = streetnameBestResult.split(' [')[0]
if streetname == streetnameBestResult:
break
lineBestResult = fileBestResults.readline()
fileBestResults.close()
# label, npav, nrock, nnonp, avgPavedPx, avgRockPx, avgNonPavedPx = evTools.getNumberOfImagesFromClass(line,classes,0)
# labelBR, npavBR, nrockBR, nnonpBR, avgPavedPxBR, avgRockPxBR, avgNonPavedPxBR = evTools.getNumberOfImagesFromClass(lineBestResult,classes,0)
# print(lineBestResult)
# if (avgPavedPxBR >= th and avgPavedPxBR > avgPavedPx) or (avgRockPxBR >= th and avgRockPxBR > avgRockPx) or (avgNonPavedPxBR >= th and avgNonPavedPxBR >= avgNonPavedPx):
# newLineBestResult = lineBestResult
# if avgNonPavedPx < th and avgRockPx < th and avgPavedPx < th and avgNonPavedPxBR < th and avgRockPxBR < th and avgPavedPxBR < th:
# line = resFile.readline()
# newBestResults.append(newLineBestResult)
# continue
streetpath_test = os.path.join(dir_test,streetname)
streetpath_seg = os.path.join(dir_segmented,streetname)
for filename in os.listdir(streetpath_test):
filename_seg = filename.replace('.png','_raw.png');
# print(filename_seg)
dirToSaveResult = path_retraindataset+dir_gt_retraindataset+'\\'+streetname+'\\';
# currentImgForegPix = 0
# BRimgForegPix = 0
# try:
# current_image_seg = scp.misc.imread(streetpath_seg+'\\'+filename_seg,mode='')
# if avgNonPavedPx < th and avgRockPx < th and avgPavedPx < th:
# currentimgOK = False
# print('currentimgok = -false')
# else:
# currentimgOK, currentImgForegPix = allPxDominantStreet(current_image_seg, avgPavedPx, avgRockPx, avgNonPavedPx, th)
# #currentimgOK = currentimgOK and evTools.good_res_image(current_image_seg)
# print('currentimgok = '+str(currentimgOK))
# except Exception as e:
# print('exc curr: '+ str(e))
# print('error to read curr img: '+os.path.join(streetpath_seg,filename_seg))
# currentimgOK = False
# try:
# BR_image_seg = scp.misc.imread(dirToSaveResult+filename_seg,mode='')
# if avgNonPavedPxBR < th and avgRockPxBR < th and avgPavedPxBR < th:
# BRimgOK = False
# print('brimgok = -false')
# else:
# BRimgOK, BRimgForegPix = allPxDominantStreet(BR_image_seg, avgPavedPxBR, avgRockPxBR, avgNonPavedPxBR, th)
# #BRimgOK = BRimgOK and evTools.good_res_image(BR_image_seg)
# print('brimgok = '+str(BRimgOK))
# except Exception as e:
# print('Exc: '+ str(e))
# print('error to read BR: '+os.path.join(dirToSaveResult+filename_seg))
# BRimgOK = False
# if currentimgOK == False and BRimgOK == False:
# print('continue')
# continue
try:
current_image_seg = scp.misc.imread(streetpath_seg+'\\'+filename_seg,mode='')
currentimgOK = True
except Exception as e:
currentimgOK = False
try:
BR_image_seg = scp.misc.imread(dirToSaveResult+filename_seg,mode='')
BRimgOK = True
except Exception as e:
BRimgOK = False
perfCurrentImage = 0
if currentimgOK:
oneClassContour,descCurrImg, _, curImgTriang, colorCurrImg = triang.triangStats(current_image_seg)
if(oneClassContour):
goodCurImg = applySmv(scaler.transform(descCurrImg),svm_model)
if(goodCurImg==1):
perfCurrentImage = descCurrImg[0][0]
perfBRImage = 0
if BRimgOK:
oneClassContour, descBRImg,_, brImgTriang, colorBRImg = triang.triangStats(BR_image_seg)
#goodBRImage = applySmv(scaler.transform(descBRImg),svm_model)
#if(goodBRImage==1):
perfBRImage = descBRImg[0][0]
#if avgPavedPx >= th or avgPavedPxBR >= th:
if perfCurrentImage > perfBRImage:
if not os.path.exists(dirToSaveResult):
os.makedirs(dirToSaveResult)
print('image updated')
print('path saved to file:')
print('training/'+ dir_retraindataset +'/'+streetname+ '/' +filename+ ' '+'training/'+ dir_gt_retraindataset+'/'+streetname+ '/' +filename_seg+'\n')
arr = ['training/'+ dir_retraindataset +'/'+streetname+ '/' +filename+ ' '+'training/'+ dir_gt_retraindataset+'/'+streetname+ '/' +filename_seg+'\n',perfCurrentImage]
if (colorCurrImg[0] == 255 and colorCurrImg[1] == 0 and colorCurrImg[2] == 0):
streetsPaved.append(arr)
elif colorCurrImg[0] == 0 and colorCurrImg[1] == 255 and colorCurrImg[2] == 0:
streetsNP.append(arr)
else:
streetsRock.append(arr)
scp.misc.imsave(dirToSaveResult+filename_seg, curImgTriang)
elif BRimgOK:
arr = ['training/'+ dir_retraindataset +'/'+streetname+ '/' +filename+ ' '+'training/'+ dir_gt_retraindataset+'/'+streetname+ '/' +filename_seg+'\n',perfBRImage]
if (colorBRImg[0] == 255 and colorBRImg[1] == 0 and colorBRImg[2] == 0):
streetsPaved.append(arr)
elif (colorBRImg[0] == 0 and colorBRImg[1] == 255 and colorBRImg[2] == 0):
streetsNP.append(arr)
else:
streetsRock.append(arr)
#scp.misc.imsave(dirToSaveResult+filename_seg, BR_image_seg)
newBestResults.append(newLineBestResult)
line = resFile.readline()
fileBestResults = open(txtBestResults, 'w')
for l in newBestResults:
fileBestResults.write(l)
fileBestResults.close()
#trainfile = open(os.path.join(dirpath,'train4_retrainpercsemlateral3.txt'),'a')
#valfile = open(os.path.join(dirpath,'val4_retrainpercsemlateral3.txt'),'a')
trainfile = open(os.path.join(dirpath,txt_retrain_name),'w')
valfile = open(os.path.join(dirpath,txt_val_retrain_name),'w')
with open(baseGTtrainfile) as f:
for line in f:
trainfile.write(line)
trainfile.write('\n')
with open(baseGTvalfile) as f:
for line in f:
valfile.write(line)
valfile.write('\n')
#streetsPaved.sort(key=sortImgByFilledTriangPerc, reverse=True)
#streetsNP.sort(key=sortImgByFilledTriangPerc, reverse=True)
#streetsRock.sort(key=sortImgByFilledTriangPerc, reverse=True)
print(len(streetsPaved))
print(len(streetsNP))
print(len(streetsRock))
#minClass = min(len(streetsPaved),len(streetsNP))
#minClass = min(minClass,len(streetsRock))
# for i in range(minClass):
# if i % 3 != 0:
# trainfile.write(streetsPaved[i][0])
# trainfile.write(streetsNP[i][0])
# #trainfile.write(streetsRock[i][0])
# else:
# valfile.write(streetsPaved[i][0])
# valfile.write(streetsNP[i][0])
# #valfile.write(streetsRock[i][0])
# maxClass = max(len(streetsPaved),len(streetsNP))
# maxClass= max(maxClass,len(streetsRock))
# for i in range(maxClass):
# if i % 3 != 0:
# if i < len(streetsPaved):
# trainfile.write(streetsPaved[i][0])
# print(f"train paved: {streetsPaved[i][0]}")
# if i < len(streetsRock):
# trainfile.write(streetsRock[i][0])
# print(f"train rock: {streetsRock[i][0]}")
# if i < len(streetsNP):
# trainfile.write(streetsNP[i][0])
# print(f"train nonpaved: {streetsNP[i][0]}")
# else:
# if i < len(streetsPaved):
# valfile.write(streetsPaved[i][0])
# print(f"val paved: {streetsPaved[i][0]}")
# if i < len(streetsRock):
# valfile.write(streetsRock[i][0])
# print(f"val rock: {streetsRock[i][0]}")
# if i < len(streetsNP):
# valfile.write(streetsNP[i][0])
# print(f"val nonpaved: {streetsNP[i][0]}")
minClass = min(len(streetsPaved)+len(streetsRock),len(streetsNP))
flagRock = False
ipaved = 0
irock = 0
inonpaved = 0
for i in range(minClass):
if i % 3 != 0:
if( i % 2 == 0):
trainfile.write(streetsNP[inonpaved][0])
inonpaved += 1
else:
if(flagRock == True or ipaved >= len(streetsPaved)):
trainfile.write(streetsRock[irock][0])
flagRock = False
irock += 1
elif(flagRock == False or irock >= len(streetsRock)):
trainfile.write(streetsPaved[ipaved][0])
flagRock = True
ipaved += 1
else:
if( i % 2 == 0):
valfile.write(streetsNP[inonpaved][0])
inonpaved += 1
else:
if(flagRock == True or ipaved >= len(streetsPaved)):
valfile.write(streetsRock[irock][0])
flagRock = False
irock += 1
elif(flagRock == False or irock >= len(streetsRock)):
valfile.write(streetsPaved[ipaved][0])
flagRock = True
ipaved += 1
trainfile.close();
valfile.close();
|
the-stack_0_4215 | # encoding: utf-8
import datetime
from django.test import TestCase
from haystack import connections
from haystack.inputs import AltParser, Exact
from haystack.models import SearchResult
from haystack.query import SQ, SearchQuerySet
from ..core.models import AnotherMockModel, MockModel
class SolrSearchQueryTestCase(TestCase):
fixtures = ["base_data"]
def setUp(self):
super(SolrSearchQueryTestCase, self).setUp()
self.sq = connections["solr"].get_query()
def test_build_query_all(self):
self.assertEqual(self.sq.build_query(), "*:*")
def test_build_query_single_word(self):
self.sq.add_filter(SQ(content="hello"))
self.assertEqual(self.sq.build_query(), "(hello)")
def test_build_query_boolean(self):
self.sq.add_filter(SQ(content=True))
self.assertEqual(self.sq.build_query(), "(true)")
def test_build_query_datetime(self):
self.sq.add_filter(SQ(content=datetime.datetime(2009, 5, 8, 11, 28)))
self.assertEqual(self.sq.build_query(), "(2009-05-08T11:28:00Z)")
def test_build_query_multiple_words_and(self):
self.sq.add_filter(SQ(content="hello"))
self.sq.add_filter(SQ(content="world"))
self.assertEqual(self.sq.build_query(), "((hello) AND (world))")
def test_build_query_multiple_words_not(self):
self.sq.add_filter(~SQ(content="hello"))
self.sq.add_filter(~SQ(content="world"))
self.assertEqual(self.sq.build_query(), "(NOT ((hello)) AND NOT ((world)))")
def test_build_query_multiple_words_or(self):
self.sq.add_filter(~SQ(content="hello"))
self.sq.add_filter(SQ(content="hello"), use_or=True)
self.assertEqual(self.sq.build_query(), "(NOT ((hello)) OR (hello))")
def test_build_query_multiple_words_mixed(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(content="hello"), use_or=True)
self.sq.add_filter(~SQ(content="world"))
self.assertEqual(
self.sq.build_query(), "(((why) OR (hello)) AND NOT ((world)))"
)
def test_build_query_phrase(self):
self.sq.add_filter(SQ(content="hello world"))
self.assertEqual(self.sq.build_query(), "(hello AND world)")
self.sq.add_filter(SQ(content__exact="hello world"))
self.assertEqual(
self.sq.build_query(), '((hello AND world) AND ("hello world"))'
)
def test_build_query_boost(self):
self.sq.add_filter(SQ(content="hello"))
self.sq.add_boost("world", 5)
self.assertEqual(self.sq.build_query(), "(hello) world^5")
def test_correct_exact(self):
self.sq.add_filter(SQ(content=Exact("hello world")))
self.assertEqual(self.sq.build_query(), '("hello world")')
def test_build_query_multiple_filter_types(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(pub_date__lte=Exact("2009-02-10 01:59:00")))
self.sq.add_filter(SQ(author__gt="daniel"))
self.sq.add_filter(SQ(created__lt=Exact("2009-02-12 12:13:00")))
self.sq.add_filter(SQ(title__gte="B"))
self.sq.add_filter(SQ(id__in=[1, 2, 3]))
self.sq.add_filter(SQ(rating__range=[3, 5]))
self.assertEqual(
self.sq.build_query(),
'((why) AND pub_date:([* TO "2009-02-10 01:59:00"]) AND author:({"daniel" TO *}) AND created:({* TO "2009-02-12 12:13:00"}) AND title:(["B" TO *]) AND id:("1" OR "2" OR "3") AND rating:(["3" TO "5"]))',
)
def test_build_complex_altparser_query(self):
self.sq.add_filter(SQ(content=AltParser("dismax", "Don't panic", qf="text")))
self.sq.add_filter(SQ(pub_date__lte=Exact("2009-02-10 01:59:00")))
self.sq.add_filter(SQ(author__gt="daniel"))
self.sq.add_filter(SQ(created__lt=Exact("2009-02-12 12:13:00")))
self.sq.add_filter(SQ(title__gte="B"))
self.sq.add_filter(SQ(id__in=[1, 2, 3]))
self.sq.add_filter(SQ(rating__range=[3, 5]))
query = self.sq.build_query()
self.assertTrue('(_query_:"{!dismax qf=text}Don\'t panic")' in query)
self.assertTrue('pub_date:([* TO "2009-02-10 01:59:00"])' in query)
self.assertTrue('author:({"daniel" TO *})' in query)
self.assertTrue('created:({* TO "2009-02-12 12:13:00"})' in query)
self.assertTrue('title:(["B" TO *])' in query)
self.assertTrue('id:("1" OR "2" OR "3")' in query)
self.assertTrue('rating:(["3" TO "5"])' in query)
def test_build_query_multiple_filter_types_with_datetimes(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(pub_date__lte=datetime.datetime(2009, 2, 10, 1, 59, 0)))
self.sq.add_filter(SQ(author__gt="daniel"))
self.sq.add_filter(SQ(created__lt=datetime.datetime(2009, 2, 12, 12, 13, 0)))
self.sq.add_filter(SQ(title__gte="B"))
self.sq.add_filter(SQ(id__in=[1, 2, 3]))
self.sq.add_filter(SQ(rating__range=[3, 5]))
self.assertEqual(
self.sq.build_query(),
'((why) AND pub_date:([* TO "2009-02-10T01:59:00Z"]) AND author:({"daniel" TO *}) AND created:({* TO "2009-02-12T12:13:00Z"}) AND title:(["B" TO *]) AND id:("1" OR "2" OR "3") AND rating:(["3" TO "5"]))',
)
def test_build_query_in_filter_multiple_words(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(title__in=["A Famous Paper", "An Infamous Article"]))
self.assertEqual(
self.sq.build_query(),
'((why) AND title:("A Famous Paper" OR "An Infamous Article"))',
)
def test_build_query_in_filter_datetime(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(pub_date__in=[datetime.datetime(2009, 7, 6, 1, 56, 21)]))
self.assertEqual(
self.sq.build_query(), '((why) AND pub_date:("2009-07-06T01:56:21Z"))'
)
def test_build_query_in_with_set(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(title__in=set(["A Famous Paper", "An Infamous Article"])))
query = self.sq.build_query()
self.assertTrue("(why)" in query)
# Because ordering in Py3 is now random.
if 'title:("A ' in query:
self.assertTrue(
'title:("A Famous Paper" OR "An Infamous Article")' in query
)
else:
self.assertTrue(
'title:("An Infamous Article" OR "A Famous Paper")' in query
)
def test_build_query_with_contains(self):
self.sq.add_filter(SQ(content="circular"))
self.sq.add_filter(SQ(title__contains="haystack"))
self.assertEqual(self.sq.build_query(), "((circular) AND title:(*haystack*))")
def test_build_query_with_endswith(self):
self.sq.add_filter(SQ(content="circular"))
self.sq.add_filter(SQ(title__endswith="haystack"))
self.assertEqual(self.sq.build_query(), "((circular) AND title:(*haystack))")
def test_build_query_wildcard_filter_types(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(title__startswith="haystack"))
self.assertEqual(self.sq.build_query(), "((why) AND title:(haystack*))")
def test_build_query_fuzzy_filter_types(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(title__fuzzy="haystack"))
self.assertEqual(self.sq.build_query(), "((why) AND title:(haystack~))")
def test_clean(self):
self.assertEqual(self.sq.clean("hello world"), "hello world")
self.assertEqual(self.sq.clean("hello AND world"), "hello and world")
self.assertEqual(
self.sq.clean(
'hello AND OR NOT TO + - && || ! ( ) { } [ ] ^ " ~ * ? : \ / world'
),
'hello and or not to \\+ \\- \\&& \\|| \\! \\( \\) \\{ \\} \\[ \\] \\^ \\" \\~ \\* \\? \\: \\\\ \\/ world',
)
self.assertEqual(
self.sq.clean("so please NOTe i am in a bAND and bORed"),
"so please NOTe i am in a bAND and bORed",
)
def test_build_query_with_models(self):
self.sq.add_filter(SQ(content="hello"))
self.sq.add_model(MockModel)
self.assertEqual(self.sq.build_query(), "(hello)")
self.sq.add_model(AnotherMockModel)
self.assertEqual(self.sq.build_query(), "(hello)")
def test_set_result_class(self):
# Assert that we're defaulting to ``SearchResult``.
self.assertTrue(issubclass(self.sq.result_class, SearchResult))
# Custom class.
class IttyBittyResult(object):
pass
self.sq.set_result_class(IttyBittyResult)
self.assertTrue(issubclass(self.sq.result_class, IttyBittyResult))
# Reset to default.
self.sq.set_result_class(None)
self.assertTrue(issubclass(self.sq.result_class, SearchResult))
def test_in_filter_values_list(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(title__in=MockModel.objects.values_list("id", flat=True)))
self.assertEqual(self.sq.build_query(), '((why) AND title:("1" OR "2" OR "3"))')
def test_narrow_sq(self):
sqs = SearchQuerySet(using="solr").narrow(SQ(foo="moof"))
self.assertTrue(isinstance(sqs, SearchQuerySet))
self.assertEqual(len(sqs.query.narrow_queries), 1)
self.assertEqual(sqs.query.narrow_queries.pop(), "foo:(moof)")
def test_query__in(self):
sqs = SearchQuerySet(using="solr").filter(id__in=[1, 2, 3])
self.assertEqual(sqs.query.build_query(), 'id:("1" OR "2" OR "3")')
def test_query__in_empty_list(self):
"""Confirm that an empty list avoids a Solr exception"""
sqs = SearchQuerySet(using="solr").filter(id__in=[])
self.assertEqual(sqs.query.build_query(), "id:(!*:*)")
|
the-stack_0_4216 | from select import select
from scapy.all import conf, ETH_P_ALL, MTU, plist
# Stop sniff() asynchronously
# Source: https://github.com/secdev/scapy/issues/989#issuecomment-380044430
def sniff(store=False, prn=None, lfilter=None,
stop_event=None, refresh=.1, *args, **kwargs):
"""Sniff packets
sniff([count=0,] [prn=None,] [store=1,] [offline=None,] [lfilter=None,] + L2ListenSocket args)
store: wether to store sniffed packets or discard them
prn: function to apply to each packet. If something is returned,
it is displayed. Ex:
ex: prn = lambda x: x.summary()
lfilter: python function applied to each packet to determine
if further action may be done
ex: lfilter = lambda x: x.haslayer(Padding)
stop_event: Event that stops the function when set
refresh: check stop_event.set() every refresh seconds
"""
s = conf.L2listen(type=ETH_P_ALL, *args, **kwargs)
lst = []
try:
while True:
if stop_event and stop_event.is_set():
break
sel = select([s], [], [], refresh)
if s in sel[0]: # if the packet s is ready to be read from
p = s.recv(MTU) # recieve from somewhere ()
if p is None:
break
if lfilter and not lfilter(p):
continue
if store:
lst.append(p)
if prn:
r = prn(p)
if r is not None:
print(r)
except KeyboardInterrupt:
pass
finally:
s.close()
return plist.PacketList(lst, "Sniffed")
|
the-stack_0_4218 | import logging as log
from django.core.management.base import BaseCommand
from django.contrib.auth import get_user_model
from django_keycloak.keycloak import Connect
class Command(BaseCommand):
help = "Synchronize users with keycloak"
def handle(self, *args, **options):
keycloak = Connect()
User = get_user_model()
remote_users = set([user.get("id") for user in keycloak.get_users()])
local_users = set(str(_u.id) for _u in User.objects.all())
users_to_remove = local_users.difference(remote_users)
users_to_add = remote_users.difference(local_users)
# Delete users that are no longer in keycloak
User.objects.filter(id__in=list(users_to_remove)).delete()
log.info(
"Removed {} users".format(len(users_to_remove)),
"and there are {} new users in keycloak that are not"
" locally".format(len(users_to_add)),
)
|
the-stack_0_4220 | import os
import logging
from functools import partial
import pandas as pd
from solarforecastarbiter.io.fetch import eia
from solarforecastarbiter.io.reference_observations import (
common, default_forecasts)
from requests.exceptions import HTTPError
logger = logging.getLogger('reference_data')
def initialize_site_observations(api, site):
"""Creates an observation at the site.
Parameters
----------
api : solarforecastarbiter.io.api.APISession
API Session object, authenticated for the Reference user.
site : solarforecastarbiter.datamodel.Site
The site object for which to create the Observations.
Notes
-----
Currently only creates observations for net load [MW]
(`f"EBA.{eia_site_id}.D.H"`), but EIA contains other variables that may be
incorporated later (e.g. solar generation:
`f"EBA.{eia_site_id}.NG.SUN.H"`).
"""
sfa_var = "net_load"
logger.info(f'Creating {sfa_var} at {site.name}')
try:
common.create_observation(api, site, sfa_var)
except HTTPError as e:
logger.error(f'Could not create Observation for "{sfa_var}" '
f'at EIA site {site.name}')
logger.debug(f'Error: {e.response.text}')
def initialize_site_forecasts(api, site):
"""Creates a forecast at the site.
Parameters
----------
api : solarforecastarbiter.io.api.APISession
API Session object, authenticated for the Reference user.
site : solarforecastarbiter.datamodel.Site
The site object for which to create the Observations.
"""
common.create_forecasts(
api, site, ["net_load"],
default_forecasts.TEMPLATE_NETLOAD_PERSISTENCE_FORECASTS)
def fetch(api, site, start, end, *, eia_api_key):
"""Retrieve observation data for a EIA site between start and end.
Parameters
----------
api : solarforecastarbiter.io.APISession
Unused but conforms to common.update_site_observations call
site : solarforecastarbiter.datamodel.Site
Site object with the appropriate metadata.
start : datetime
The beginning of the period to request data for.
end : datetime
The end of the period to request data for.
eia_api_key : str
API key for api.eia.gov
Returns
-------
data : pandas.DataFrame
All of the requested data as a single DataFrame.
Notes
-----
Currently only fetches observations for net load [MW]
(`f"EBA.{eia_site_id}.D.H"`), but EIA contains other variables that may be
incorporated later (e.g. solar generation:
`f"EBA.{eia_site_id}.NG.SUN.H"`).
"""
try:
site_extra_params = common.decode_extra_parameters(site)
except ValueError:
return pd.DataFrame()
eia_site_id = site_extra_params['network_api_id']
series_id = f"EBA.{eia_site_id}.D.H" # hourly net load (demand)
obs_df = eia.get_eia_data(
series_id, eia_api_key,
start,
end
)
if obs_df.empty:
logger.warning(f'Data for site {site.name} contained no '
f'entries from {start} to {end}.')
return pd.DataFrame()
obs_df = obs_df.rename(columns={"value": "net_load"})
return obs_df
def update_observation_data(api, sites, observations, start, end):
"""Retrieve data from the network, and then format and post it to each
observation at the site.
Parameters
----------
api : solarforecastarbiter.io.api.APISession
An active Reference user session.
sites: list of solarforecastarbiter.datamodel.Site
List of all reference sites.
observations: list of solarforecastarbiter.datamodel.Observation
List of all reference observations.
start : datetime
The beginning of the period to request data for.
end : datetime
The end of the period to request data for.
Raises
------
KeyError
If EIA_API_KEY environmental variable is not set.
"""
eia_api_key = os.getenv("EIA_API_KEY")
if eia_api_key is None:
raise KeyError('"EIA_API_KEY" environment variable must be '
'set to update EIA observation data.')
eia_sites = common.filter_by_networks(sites, ['EIA'])
for site in eia_sites:
common.update_site_observations(
api, partial(fetch, eia_api_key=eia_api_key),
site, observations, start, end)
|
the-stack_0_4223 | import math
file = open('day-5.input')
result = 0
# F, ==> lower half ==> [min, math.floor((max - min) / 2)]
# B,R ==> upper half
def get_row(expression):
min = 0
max = 127
for i in range(7):
selector = expression[i]
if selector == 'F':
max = math.floor((max+min)/ 2)
elif selector == 'B':
min = math.ceil((max + min) / 2)
return max
def get_column(expression):
min = 0
max = 7
for i in range(3):
selector = expression[i]
if selector == 'L':
max = math.floor((max+min)/ 2)
elif selector == 'R':
min = math.ceil((max + min) / 2)
return max
def get_seat_id(seat_row, seat_column):
return 8 * seat_row + seat_column
all_seats =[]
min_found_seat_row = 127
max_found_seat_row = 0
for row in range(1,126): #exclude very front and very back rows
for column in range(8):
all_seats.append((row, column))
for line in file:
line = line.strip()
seat_row = get_row(line[0:7])
if seat_row < min_found_seat_row:
min_found_seat_row = seat_row
if seat_row > max_found_seat_row:
max_found_seat_row = seat_row
seat_column = get_column(line[-3:])
all_seats.remove((seat_row, seat_column))
for (row, column) in all_seats[:]:
if row < min_found_seat_row + 1:
all_seats.remove((row, column))
if row > max_found_seat_row - 1:
all_seats.remove((row, column))
print(min_found_seat_row)
print(max_found_seat_row)
found_seat = all_seats[0]
result = get_seat_id(found_seat[0], found_seat[1])
print(result) |
the-stack_0_4224 | # coding: utf-8
"""
NiFi Rest Api
The Rest Api provides programmatic access to command and control a NiFi instance in real time. Start and stop processors, monitor queues, query provenance data, and more. Each endpoint below includes a description, definitions of the expected input and output, potential response codes, and the authorizations required to invoke each service.
OpenAPI spec version: 1.11.1-SNAPSHOT
Contact: [email protected]
Generated by: https://github.com/swagger-api/swagger-codegen.git
"""
from pprint import pformat
from six import iteritems
import re
class PositionDTO(object):
"""
NOTE: This class is auto generated by the swagger code generator program.
Do not edit the class manually.
"""
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'x': 'float',
'y': 'float'
}
attribute_map = {
'x': 'x',
'y': 'y'
}
def __init__(self, x=None, y=None):
"""
PositionDTO - a model defined in Swagger
"""
self._x = None
self._y = None
if x is not None:
self.x = x
if y is not None:
self.y = y
@property
def x(self):
"""
Gets the x of this PositionDTO.
The x coordinate.
:return: The x of this PositionDTO.
:rtype: float
"""
return self._x
@x.setter
def x(self, x):
"""
Sets the x of this PositionDTO.
The x coordinate.
:param x: The x of this PositionDTO.
:type: float
"""
self._x = x
@property
def y(self):
"""
Gets the y of this PositionDTO.
The y coordinate.
:return: The y of this PositionDTO.
:rtype: float
"""
return self._y
@y.setter
def y(self, y):
"""
Sets the y of this PositionDTO.
The y coordinate.
:param y: The y of this PositionDTO.
:type: float
"""
self._y = y
def to_dict(self):
"""
Returns the model properties as a dict
"""
result = {}
for attr, _ in iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
"""
Returns the string representation of the model
"""
return pformat(self.to_dict())
def __repr__(self):
"""
For `print` and `pprint`
"""
return self.to_str()
def __eq__(self, other):
"""
Returns true if both objects are equal
"""
if not isinstance(other, PositionDTO):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
"""
Returns true if both objects are not equal
"""
return not self == other
|
the-stack_0_4225 | #!/usr/bin/env python3
#-------------------------------------------------------------------------------
# ============LICENSE_START=======================================================
# Copyright (C) 2018 Sven van der Meer. All rights reserved.
# ================================================================================
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# ============LICENSE_END=========================================================
#-------------------------------------------------------------------------------
##
## acronyms-val - validates YAML files of SKB acronyms
##
## @author Sven van der Meer <[email protected]>
## @version v0.0.0
##
##
## Includes, all we need
##
import yaml ## parsing YAML files
import os ## operating system, e.g. file handling
from os import walk ## for walking directories
import functools ## some tools for functions
import sys, getopt ## system for exit, getopt for CLI parsing
import glob ## gobal globbing to get YAML files recursively
import pathlib ## mkdirs in Python
import datetime ## to get date/time for ADOC files
##
## Global variables
##
task_level = "warn" ## warning level
yaml_dir = '' ## YAML directory
acronyms = {} ## dictionary of acronyms
##
## DO NOT CHANGE CODE BELOW, unless you know what you are doing
##
##
## function: print help, for empty or wrong command line
##
def help():
print("")
print("acronyms-val - validates YAML files of SKB acronyms\n")
print(" Usage: acronyms-val [options]\n")
print(" Options")
print(" [-h | --help] - this help screen")
print(" [-T | --task-level] <level> - task log level: error, warn, warn-strict, info, debug, trace")
print(" [-y | --yaml-directory] <dir> - top YAML directory")
print("\n")
##
## function: parse command line
##
def cli(argv):
global yaml_dir
global task_level
try:
opts, args = getopt.getopt(argv,"hT:y:",["yaml-directory=","help","task-level="])
except getopt.GetoptError:
help()
sys.exit(70)
for opt, arg in opts:
if opt in ("-h", "--help"):
help()
sys.exit(0)
elif opt in ("-T", "--task-level"):
task_level = arg
elif opt in ("-y", "--yaml-directory"):
yaml_dir = arg
##
## function: validates a single YAML file
##
def validate_file(file, entries, key):
## check for required keys
found_keys = True
expected_keys = ( 'short' , 'short-target', 'long', 'long-target', 'description', 'notes', 'urls')
errors = ""
if not 'short' in entries:
errors += " --> did not find key 'short'\n"
found_keys = False
else:
if len(entries['short']) == 0:
errors += " --> key 'short' with no entry\n"
found_keys = False
if not 'long' in entries:
errors += " --> did not find key 'long'\n"
found_keys = False
else:
if len(entries['long']) == 0:
errors += " --> key 'long' with no entry\n"
found_keys = False
if 'long-target' in entries and len(entries['long-target']) == 0:
errors += " --> key 'long-target' with no entry\n"
found_keys = False
if 'description' in entries and len(entries['description']) == 0:
errors += " --> key 'description' with no entry\n"
found_keys = False
if 'notes' in entries and len(entries['notes']) == 0:
errors += " --> key 'notes' with no entry\n"
found_keys = False
if 'urls' in entries and len(entries['urls']) == 0:
errors += " --> key 'urls' with no entry\n"
found_keys = False
if not all(elem in expected_keys for elem in entries):
errors += " --> unknown key\n"
found_keys = False
file_short = file[len(yaml_dir)+1:]
dir_short = file_short.rsplit('/', 1)[0]
key_short = key.rsplit('/', 1)[0]
if not key_short == dir_short:
errors += " --> something wrong in key path (" + key_short + ") and directory (" + dir_short + ")\n"
found_keys = False
if found_keys == False:
print(" -> validation failed")
print("%s" % errors)
sys.exit(80)
##
## function: process a single YAML file
##
def process_file(file):
file_exists = os.path.isfile(file)
if file_exists == True:
stream = open(file,'r')
data = yaml.load(stream)
stream.close()
entries = data[list(data.keys())[0]] ## dictionary with all entries
key = list(data.keys())[0] ## key name of the YAML spec
validate_file(file, entries, key)
if not key in acronyms:
entries['src-file'] = file
acronyms[key] = entries
else:
print(" -> key %s already in dictionary, defined in %s" % (key, acronyms[key]['src-file']))
sys.exit(80)
else:
print("error: could not open file: %s" % file)
sys.exit(72)
##
## function: main function
##
def main(argv):
cli(argv)
print(" > YAML directory: %s" % yaml_dir)
dir_exists = os.path.isdir(yaml_dir)
if dir_exists == True:
files = glob.glob(yaml_dir + '/**/*.yaml', recursive=True)
for file in files:
print("\n > processing: .../%s" % file[len(yaml_dir)+1:])
process_file(file)
print("\n > processed %d YAML files, found %d acronyms" % (len(files), len(acronyms)))
else:
print("error: could not open YAML directory: %s" % yaml_dir)
sys.exit(71)
##
## Call main
##
if __name__ == "__main__":
main(sys.argv[1:])
print(" > done")
|
the-stack_0_4227 | """
The Sponge Roll Problem with Columnwise Column Generation for the PuLP Modeller
Authors: Antony Phillips, Dr Stuart Mitchell 2008
"""
# Import Column Generation functions
from CGcolumnwise import *
# The Master Problem is created
prob, obj, constraints = createMaster()
# A list of starting patterns is created
newPatterns = [[1,0,0],[0,1,0],[0,0,1]]
# New patterns will be added until newPatterns is an empty list
while newPatterns:
# The new patterns are added to the problem
addPatterns(obj,constraints,newPatterns)
# The master problem is solved, and the dual variables are returned
duals = masterSolve(prob)
# The sub problem is solved and a new pattern will be returned if there is one
# which can reduce the master objective function
newPatterns = subSolve(duals)
# The master problem is solved with Integer Constraints not relaxed
solution, varsdict = masterSolve(prob,relax = False)
# Display Solution
for i,j in list(varsdict.items()):
print(i, "=", j)
print("objective = ", solution) |
the-stack_0_4230 | # Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License.
# This product includes software developed at Datadog (https://www.datadoghq.com/).
# Copyright 2019-Present Datadog, Inc.
import re # noqa: F401
import sys # noqa: F401
from datadog_api_client.v2.model_utils import ( # noqa: F401
ApiTypeError,
ModelComposed,
ModelNormal,
ModelSimple,
cached_property,
change_keys_js_to_python,
convert_js_args_to_python_args,
date,
datetime,
file_type,
none_type,
validate_get_composed_info,
)
class LogsListRequestPage(ModelNormal):
"""NOTE: This class is auto generated by OpenAPI Generator.
Ref: https://openapi-generator.tech
Do not edit the class manually.
Attributes:
allowed_values (dict): The key is the tuple path to the attribute
and the for var_name this is (var_name,). The value is a dict
with a capitalized key describing the allowed value and an allowed
value. These dicts store the allowed enum values.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
discriminator_value_class_map (dict): A dict to go from the discriminator
variable value to the discriminator class name.
validations (dict): The key is the tuple path to the attribute
and the for var_name this is (var_name,). The value is a dict
that stores validations for max_length, min_length, max_items,
min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
inclusive_minimum, and regex.
additional_properties_type (tuple): A tuple of classes accepted
as additional properties values.
"""
allowed_values = {}
validations = {
("limit",): {
"inclusive_maximum": 1000,
},
}
additional_properties_type = None
_nullable = False
@cached_property
def openapi_types():
"""
This must be a method because a model may have properties that are
of type self, this must run after the class is loaded
Returns
openapi_types (dict): The key is attribute name
and the value is attribute type.
"""
return {
"cursor": (str,), # noqa: E501
"limit": (int,), # noqa: E501
}
@cached_property
def discriminator():
return None
attribute_map = {
"cursor": "cursor", # noqa: E501
"limit": "limit", # noqa: E501
}
_composed_schemas = {}
required_properties = set(
[
"_data_store",
"_check_type",
"_spec_property_naming",
"_path_to_item",
"_configuration",
"_visited_composed_classes",
]
)
@convert_js_args_to_python_args
def __init__(self, *args, **kwargs): # noqa: E501
"""LogsListRequestPage - a model defined in OpenAPI
Keyword Args:
_check_type (bool): if True, values for parameters in openapi_types
will be type checked and a TypeError will be
raised if the wrong type is input.
Defaults to True
_path_to_item (tuple/list): This is a list of keys or values to
drill down to the model in received_data
when deserializing a response
_spec_property_naming (bool): True if the variable names in the input data
are serialized names, as specified in the OpenAPI document.
False if the variable names in the input data
are pythonic names, e.g. snake case (default)
_configuration (Configuration): the instance to use when
deserializing a file_type parameter.
If passed, type conversion is attempted
If omitted no type conversion is done.
_visited_composed_classes (tuple): This stores a tuple of
classes that we have traveled through so that
if we see that class again we will not use its
discriminator again.
When traveling through a discriminator, the
composed schema that is
is traveled through is added to this set.
For example if Animal has a discriminator
petType and we pass in "Dog", and the class Dog
allOf includes Animal, we move through Animal
once using the discriminator, and pick Dog.
Then in Dog, we will make an instance of the
Animal class but this time we won't travel
through its discriminator because we passed in
_visited_composed_classes = (Animal,)
cursor (str): List following results with a cursor provided in the previous query.. [optional] # noqa: E501
limit (int): Maximum number of logs in the response.. [optional] if omitted the server will use the default value of 10 # noqa: E501
"""
_check_type = kwargs.pop("_check_type", True)
_spec_property_naming = kwargs.pop("_spec_property_naming", False)
_path_to_item = kwargs.pop("_path_to_item", ())
_configuration = kwargs.pop("_configuration", None)
_visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
if args:
raise ApiTypeError(
"Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
% (
args,
self.__class__.__name__,
),
path_to_item=_path_to_item,
valid_classes=(self.__class__,),
)
self._data_store = {}
self._check_type = _check_type
self._spec_property_naming = _spec_property_naming
self._path_to_item = _path_to_item
self._configuration = _configuration
self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
for var_name, var_value in kwargs.items():
if (
var_name not in self.attribute_map
and self._configuration is not None
and self._configuration.discard_unknown_keys
and self.additional_properties_type is None
):
# discard variable.
continue
setattr(self, var_name, var_value)
|
the-stack_0_4231 | # Copyright 2021, The TensorFlow Federated Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# pytype: skip-file
# This modules disables the Pytype analyzer, see
# https://github.com/tensorflow/federated/blob/main/docs/pytype.md for more
# information.
"""A set of utility methods for serializing Value protos using pybind11 bindings."""
import collections
import os
import os.path
import tempfile
from typing import Any, Collection, List, Mapping, Optional, Sequence, Tuple, Union
import warnings
import zipfile
import numpy as np
import tensorflow as tf
from tensorflow_federated.proto.v0 import computation_pb2
from tensorflow_federated.proto.v0 import executor_pb2
from tensorflow_federated.python.common_libs import py_typecheck
from tensorflow_federated.python.common_libs import structure
from tensorflow_federated.python.common_libs import tracing
from tensorflow_federated.python.core.impl.computation import computation_impl
from tensorflow_federated.python.core.impl.executors import executor_bindings
from tensorflow_federated.python.core.impl.executors import executor_utils
from tensorflow_federated.python.core.impl.types import computation_types
from tensorflow_federated.python.core.impl.types import placements
from tensorflow_federated.python.core.impl.types import type_analysis
from tensorflow_federated.python.core.impl.types import type_conversions
from tensorflow_federated.python.core.impl.types import type_serialization
from tensorflow_federated.python.core.impl.types import type_transformations
from tensorflow_federated.python.core.impl.utils import tensorflow_utils
_SerializeReturnType = Tuple[executor_pb2.Value, computation_types.Type]
_DeserializeReturnType = Tuple[Any, computation_types.Type]
# The maximum size allowed for serialized sequence values. Sequence that
# serialize to values larger than this will result in errors being raised. This
# likely occurs when the sequence is dependent on, and thus pulling in, many of
# variables from the graph.
_DEFAULT_MAX_SERIALIZED_SEQUENCE_SIZE_BYTES = 20 * (1024**2) # 20 MB
class DatasetSerializationError(Exception):
"""Error raised during Dataset serialization or deserialization."""
pass
@tracing.trace
def _serialize_computation(
comp: computation_pb2.Computation,
type_spec: Optional[computation_types.Type]) -> _SerializeReturnType:
"""Serializes a TFF computation."""
type_spec = executor_utils.reconcile_value_type_with_type_spec(
type_serialization.deserialize_type(comp.type), type_spec)
return executor_pb2.Value(computation=comp), type_spec
@tracing.trace
def _serialize_tensor_value(
value: Any, type_spec: computation_types.TensorType
) -> Tuple[executor_pb2.Value, computation_types.TensorType]:
"""Serializes a tensor value into `executor_pb2.Value`.
Args:
value: A Numpy array or other object understood by `tf.make_tensor_proto`.
type_spec: A `tff.TensorType`.
Returns:
A tuple `(value_proto, ret_type_spec)` in which `value_proto` is an instance
of `executor_pb2.Value` with the serialized content of `value`,
and `ret_type_spec` is the type of the serialized value. The `ret_type_spec`
is the same as the argument `type_spec` if that argument was not `None`. If
the argument was `None`, `ret_type_spec` is a type determined from `value`.
Raises:
TypeError: If the arguments are of the wrong types.
ValueError: If the value is malformed.
"""
original_value = value
if tf.is_tensor(value):
if isinstance(value, tf.Variable):
value = value.read_value()
if tf.executing_eagerly():
value = value.numpy()
else:
# Attempt to extract the value using the current graph context.
with tf.compat.v1.Session() as sess:
value = sess.run(value)
# If we got a string or bytes scalar, wrap it in numpy so it has a dtype and
# shape.
if isinstance(value, bytes):
value = np.bytes_(value)
elif isinstance(value, str):
value = np.str_(value)
else:
value = np.asarray(value)
if not tf.TensorShape(value.shape).is_compatible_with(type_spec.shape):
raise TypeError(f'Cannot serialize tensor with shape {value.shape} to '
f'shape {type_spec.shape}.')
if value.dtype != type_spec.dtype.as_numpy_dtype:
try:
value = value.astype(type_spec.dtype.as_numpy_dtype, casting='same_kind')
except TypeError as te:
value_type_string = py_typecheck.type_string(type(original_value))
raise TypeError(
f'Failed to serialize value of Python type {value_type_string} to '
f'a tensor of type {type_spec}.\nValue: {original_value}') from te
return executor_bindings.serialize_tensor_value(value), type_spec
def _serialize_dataset(
dataset,
max_serialized_size_bytes=_DEFAULT_MAX_SERIALIZED_SEQUENCE_SIZE_BYTES):
"""Serializes a `tf.data.Dataset` value into a `bytes` object.
Args:
dataset: A `tf.data.Dataset`.
max_serialized_size_bytes: An `int` size in bytes designating the threshold
on when to raise an error if the resulting serialization is too big.
Returns:
A `bytes` object that can be sent to
`tensorflow_serialization.deserialize_dataset` to recover the original
`tf.data.Dataset`.
Raises:
SerializationError: if there was an error in TensorFlow during
serialization.
"""
py_typecheck.check_type(dataset,
type_conversions.TF_DATASET_REPRESENTATION_TYPES)
dataset_graph = tf.raw_ops.DatasetToGraphV2(
input_dataset=tf.data.experimental.to_variant(dataset))
if tf.executing_eagerly():
dataset_graph_def_bytes = dataset_graph.numpy()
else:
dataset_graph_def_bytes = tf.compat.v1.Session().run(dataset_graph)
if len(dataset_graph_def_bytes) > max_serialized_size_bytes:
raise ValueError('Serialized size of Dataset ({:d} bytes) exceeds maximum '
'allowed ({:d} bytes)'.format(
len(dataset_graph_def_bytes),
max_serialized_size_bytes))
return dataset_graph_def_bytes
def _check_container_compat_with_tf_nest(type_spec: computation_types.Type):
"""Asserts that all `StructTypes` with names have OrderedDict containers."""
def _names_are_in_sorted_order(name_sequence: Sequence[str]) -> bool:
return sorted(name_sequence) == name_sequence
def _check_ordereddict_container_for_struct(type_to_check):
if not type_to_check.is_struct():
return type_to_check, False
# We can't use `dir` here, since it sorts the names before returning. We
# also must filter to names which are actually present.
names_in_sequence_order = structure.name_list(type_to_check)
names_are_sorted = _names_are_in_sorted_order(names_in_sequence_order)
has_no_names = not bool(names_in_sequence_order)
if has_no_names or (names_in_sequence_order and names_are_sorted):
# If alphabetical order matches sequence order, TFF's deserialization will
# traverse the structure correctly; there is no ambiguity here. On the
# other hand, if there are no names, sequence order is the only method of
# traversal, so there is no ambiguity here either.
return type_to_check, False
elif not type_to_check.is_struct_with_python():
raise ValueError('Attempting to serialize a named struct type with '
'ambiguous traversal order (sequence order distinct '
'from alphabetical order) without a Python container; '
'this is an unsafe operation, as TFF cannot determine '
'the intended traversal order after deserializing the '
'proto due to inconsistent behavior of tf.nest.')
container_type = computation_types.StructWithPythonType.get_container_type(
type_to_check)
if (not names_are_sorted) and container_type is not collections.OrderedDict:
raise ValueError('Attempted to serialize a dataset yielding named '
'elements in non-sorted sequence order with '
f'non-OrderedDict container (type {container_type}). '
'This is an ambiguous operation; `tf.nest` behaves in '
'a manner which depends on the Python type of this '
'container, so coercing the dataset reconstructed '
'from the resulting Value proto depends on assuming a '
'single Python type here. Please prefer to use '
'`collections.OrderedDict` containers for the elements '
'your dataset yields.')
return type_to_check, False
type_transformations.transform_type_postorder(
type_spec, _check_ordereddict_container_for_struct)
@tracing.trace
def _serialize_sequence_value(
value: Union[Union[type_conversions.TF_DATASET_REPRESENTATION_TYPES],
List[Any]], type_spec: computation_types.SequenceType
) -> computation_types.SequenceType:
"""Serializes a `tf.data.Dataset` value into `executor_pb2.Value`.
Args:
value: A `tf.data.Dataset`, or equivalent list of values convertible to
(potentially structures of) tensors.
type_spec: A `computation_types.Type` specifying the TFF sequence type of
`value.`
Returns:
A tuple `(value_proto, type_spec)` in which `value_proto` is an instance
of `executor_pb2.Value` with the serialized content of `value`,
and `type_spec` is the type of the serialized value.
"""
if isinstance(value, list):
value = tensorflow_utils.make_data_set_from_elements(
None, value, type_spec.element)
if not isinstance(value, type_conversions.TF_DATASET_REPRESENTATION_TYPES):
raise TypeError(
'Cannot serialize Python type {!s} as TFF type {!s}.'.format(
py_typecheck.type_string(type(value)),
type_spec if type_spec is not None else 'unknown'))
element_type = computation_types.to_type(value.element_spec)
_check_container_compat_with_tf_nest(element_type)
value_type = computation_types.SequenceType(element_type)
if not type_spec.is_assignable_from(value_type):
raise TypeError(
'Cannot serialize dataset with elements of type {!s} as TFF type {!s}.'
.format(value_type, type_spec if type_spec is not None else 'unknown'))
value_proto = executor_pb2.Value()
# TFF must store the type spec here because TF will lose the ordering of the
# names for `tf.data.Dataset` that return elements of
# `collections.abc.Mapping` type. This allows TFF to preserve and restore the
# key ordering upon deserialization.
value_proto.sequence.serialized_graph_def = _serialize_dataset(value)
value_proto.sequence.element_type.CopyFrom(
type_serialization.serialize_type(element_type))
return value_proto, type_spec
@tracing.trace
def _serialize_struct_type(
struct_typed_value: Any,
type_spec: computation_types.StructType,
) -> computation_types.StructType:
"""Serializes a value of tuple type."""
value_structure = structure.from_container(struct_typed_value)
if len(value_structure) != len(type_spec):
raise TypeError('Cannot serialize a struct value of '
f'{len(value_structure)} elements to a struct type '
f'requiring {len(type_spec)} elements. Trying to serialize'
f'\n{struct_typed_value!r}\nto\n{type_spec}.')
type_elem_iter = structure.iter_elements(type_spec)
val_elem_iter = structure.iter_elements(value_structure)
elements = []
for (e_name, e_type), (_, e_val) in zip(type_elem_iter, val_elem_iter):
e_value, _ = serialize_value(e_val, e_type)
if e_name:
element = executor_pb2.Value.Struct.Element(name=e_name, value=e_value)
else:
element = executor_pb2.Value.Struct.Element(value=e_value)
elements.append(element)
value_proto = executor_pb2.Value(
struct=executor_pb2.Value.Struct(element=elements))
return value_proto, type_spec
@tracing.trace
def _serialize_federated_value(
federated_value: Any, type_spec: computation_types.FederatedType
) -> computation_types.FederatedType:
"""Serializes a value of federated type."""
if type_spec.all_equal:
value = [federated_value]
else:
value = federated_value
py_typecheck.check_type(value, list)
value_proto = executor_pb2.Value()
for v in value:
federated_value_proto, it_type = serialize_value(v, type_spec.member)
type_spec.member.check_assignable_from(it_type)
value_proto.federated.value.append(federated_value_proto)
value_proto.federated.type.CopyFrom(
type_serialization.serialize_type(type_spec).federated)
return value_proto, type_spec
@tracing.trace
def serialize_value(
value: Any,
type_spec: Optional[computation_types.Type] = None,
) -> _SerializeReturnType:
"""Serializes a value into `executor_pb2.Value`.
We use a switch/function pattern in the body here (and in `deserialize_value`
below in order to persist more information in traces and profiling.
Args:
value: A value to be serialized.
type_spec: Optional type spec, a `tff.Type` or something convertible to it.
Returns:
A 2-tuple of serialized value and `tff.Type` that represents the TFF type of
the serialized value.
Raises:
TypeError: If the arguments are of the wrong types.
ValueError: If the value is malformed.
"""
type_spec = computation_types.to_type(type_spec)
if isinstance(value, computation_pb2.Computation):
return _serialize_computation(value, type_spec)
elif isinstance(value, computation_impl.ConcreteComputation):
return _serialize_computation(
computation_impl.ConcreteComputation.get_proto(value),
executor_utils.reconcile_value_with_type_spec(value, type_spec))
elif type_spec is None:
raise TypeError('A type hint is required when serializing a value which '
'is not a TFF computation. Asked to serialized value {v} '
' of type {t} with None type spec.'.format(
v=value, t=type(value)))
elif type_spec.is_tensor():
return _serialize_tensor_value(value, type_spec)
elif type_spec.is_sequence():
return _serialize_sequence_value(value, type_spec)
elif type_spec.is_struct():
return _serialize_struct_type(value, type_spec)
elif type_spec.is_federated():
return _serialize_federated_value(value, type_spec)
else:
raise ValueError(
'Unable to serialize value with Python type {} and {} TFF type.'.format(
str(py_typecheck.type_string(type(value))),
str(type_spec) if type_spec is not None else 'unknown'))
@tracing.trace
def _deserialize_computation(
value_proto: executor_pb2.Value) -> _DeserializeReturnType:
"""Deserializes a TFF computation."""
return (value_proto.computation,
type_serialization.deserialize_type(value_proto.computation.type))
@tracing.trace
def _deserialize_tensor_value(
value_proto: executor_pb2.Value) -> _DeserializeReturnType:
"""Deserializes a tensor value from `.Value`.
Args:
value_proto: An instance of `executor_pb2.Value`.
Returns:
A tuple `(value, type_spec)`, where `value` is a Numpy array that represents
the deserialized value, and `type_spec` is an instance of `tff.TensorType`
that represents its type.
Raises:
TypeError: If the arguments are of the wrong types.
ValueError: If the value is malformed.
"""
value = executor_bindings.deserialize_tensor_value(value_proto)
value_type = computation_types.TensorType(
dtype=value.dtype, shape=value.shape)
if not value.shape:
# Unwrap the scalar array as just a primitive numeric.
value = value.dtype.type(value)
return value, value_type
def _deserialize_dataset_from_zipped_saved_model(serialized_bytes):
"""Deserializes a zipped SavedModel `bytes` object to a `tf.data.Dataset`.
DEPRECATED: this method is deprecated and replaced by
`_deserialize_dataset_from_graph_def`.
Args:
serialized_bytes: `bytes` object produced by older versions of
`tensorflow_serialization.serialize_dataset` that produced zipped
SavedModel `bytes` strings.
Returns:
A `tf.data.Dataset` instance.
Raises:
SerializationError: if there was an error in TensorFlow during
serialization.
"""
py_typecheck.check_type(serialized_bytes, bytes)
temp_dir = tempfile.mkdtemp('dataset')
fd, temp_zip = tempfile.mkstemp('zip')
os.close(fd)
try:
with open(temp_zip, 'wb') as f:
f.write(serialized_bytes)
with zipfile.ZipFile(temp_zip, 'r') as z:
z.extractall(path=temp_dir)
loaded = tf.saved_model.load(temp_dir)
# TODO(b/156302055): Follow up here when bug is resolved, either remove
# if this function call stops failing by default, or leave if this is
# working as intended.
with tf.device('cpu'):
ds = loaded.dataset_fn()
except Exception as e: # pylint: disable=broad-except
raise DatasetSerializationError(
'Error deserializing tff.Sequence value. Inner error: {!s}'.format(
e)) from e
finally:
tf.io.gfile.rmtree(temp_dir)
tf.io.gfile.remove(temp_zip)
return ds
def _deserialize_dataset_from_graph_def(serialized_graph_def: bytes,
element_type: computation_types.Type):
"""Deserializes a serialized `tf.compat.v1.GraphDef` to a `tf.data.Dataset`.
Args:
serialized_graph_def: `bytes` object produced by
`tensorflow_serialization.serialize_dataset`
element_type: a `tff.Type` object representing the type structure of the
elements yielded from the dataset.
Returns:
A `tf.data.Dataset` instance.
"""
py_typecheck.check_type(element_type, computation_types.Type)
type_analysis.check_tensorflow_compatible_type(element_type)
def transform_to_tff_known_type(
type_spec: computation_types.Type) -> Tuple[computation_types.Type, bool]:
"""Transforms `StructType` to `StructWithPythonType`."""
if type_spec.is_struct() and not type_spec.is_struct_with_python():
field_is_named = tuple(
name is not None for name, _ in structure.iter_elements(type_spec))
has_names = any(field_is_named)
is_all_named = all(field_is_named)
if is_all_named:
return computation_types.StructWithPythonType(
elements=structure.iter_elements(type_spec),
container_type=collections.OrderedDict), True
elif not has_names:
return computation_types.StructWithPythonType(
elements=structure.iter_elements(type_spec),
container_type=tuple), True
else:
raise TypeError('Cannot represent TFF type in TF because it contains '
f'partially named structures. Type: {type_spec}')
return type_spec, False
if element_type.is_struct():
# TF doesn't support `structure.Struct` types, so we must transform the
# `StructType` into a `StructWithPythonType` for use as the
# `tf.data.Dataset.element_spec` later.
tf_compatible_type, _ = type_transformations.transform_type_postorder(
element_type, transform_to_tff_known_type)
else:
# We've checked this is only a struct or tensors, so we know this is a
# `TensorType` here and will use as-is.
tf_compatible_type = element_type
def type_to_tensorspec(t: computation_types.TensorType) -> tf.TensorSpec:
return tf.TensorSpec(shape=t.shape, dtype=t.dtype)
element_spec = type_conversions.structure_from_tensor_type_tree(
type_to_tensorspec, tf_compatible_type)
ds = tf.data.experimental.from_variant(
tf.raw_ops.DatasetFromGraph(graph_def=serialized_graph_def),
structure=element_spec)
# If a serialized dataset had elements of nested structes of tensors (e.g.
# `dict`, `OrderedDict`), the deserialized dataset will return `dict`,
# `tuple`, or `namedtuple` (loses `collections.OrderedDict` in a conversion).
#
# Since the dataset will only be used inside TFF, we wrap the dictionary
# coming from TF in an `OrderedDict` when necessary (a type that both TF and
# TFF understand), using the field order stored in the TFF type stored during
# serialization.
return tensorflow_utils.coerce_dataset_elements_to_tff_type_spec(
ds, tf_compatible_type)
@tracing.trace
def _deserialize_sequence_value(
sequence_value_proto: executor_pb2.Value.Sequence,
type_hint: Optional[computation_types.Type] = None
) -> _DeserializeReturnType:
"""Deserializes a `tf.data.Dataset`.
Args:
sequence_value_proto: `Sequence` protocol buffer message.
type_hint: A `computation_types.Type` that hints at what the value type
should be for executors that only return values. If the
`sequence_value_proto.element_type` field was not set, the `type_hint` is
used instead.
Returns:
A tuple of `(tf.data.Dataset, tff.Type)`.
"""
if sequence_value_proto.HasField('element_type'):
element_type = type_serialization.deserialize_type(
sequence_value_proto.element_type)
elif type_hint is not None:
element_type = type_hint.element
else:
raise ValueError(
'Cannot deserialize a sequence Value proto that without one of '
'`element_type` proto field or `element_type_hint`')
which_value = sequence_value_proto.WhichOneof('value')
if which_value == 'zipped_saved_model':
warnings.warn(
'Deserializng a sequence value that was encoded as a zipped SavedModel.'
' This is a deprecated path, please update the binary that is '
'serializing the sequences.', DeprecationWarning)
ds = _deserialize_dataset_from_zipped_saved_model(
sequence_value_proto.zipped_saved_model)
ds = tensorflow_utils.coerce_dataset_elements_to_tff_type_spec(
ds, element_type)
elif which_value == 'serialized_graph_def':
ds = _deserialize_dataset_from_graph_def(
sequence_value_proto.serialized_graph_def, element_type)
else:
raise NotImplementedError(
'Deserializing Sequences enocded as {!s} has not been implemented'
.format(which_value))
return ds, computation_types.SequenceType(element=element_type)
@tracing.trace
def _deserialize_struct_value(
value_proto: executor_pb2.Value,
type_hint: Optional[computation_types.Type] = None
) -> _DeserializeReturnType:
"""Deserializes a value of struct type."""
val_elems = []
type_elems = []
if type_hint is not None:
element_types = tuple(type_hint)
else:
element_types = [None] * len(value_proto.struct.element)
for e, e_type in zip(value_proto.struct.element, element_types):
name = e.name if e.name else None
e_val, e_type = deserialize_value(e.value, e_type)
val_elems.append((name, e_val))
type_elems.append((name, e_type) if name else e_type)
return (structure.Struct(val_elems), computation_types.StructType(type_elems))
def _ensure_deserialized_types_compatible(
previous_type: Optional[computation_types.Type],
next_type: computation_types.Type) -> computation_types.Type:
"""Ensures one of `previous_type` or `next_type` is assignable to the other.
Returns the type which is assignable from the other.
Args:
previous_type: Instance of `computation_types.Type` or `None`.
next_type: Instance of `computation_types.Type`.
Returns:
The supertype of `previous_type` and `next_type`.
Raises:
TypeError if neither type is assignable from the other.
"""
if previous_type is None:
return next_type
else:
if next_type.is_assignable_from(previous_type):
return next_type
elif previous_type.is_assignable_from(next_type):
return previous_type
raise TypeError('Type mismatch checking member assignability under a '
'federated value. Deserialized type {} is incompatible '
'with previously deserialized {}.'.format(
next_type, previous_type))
@tracing.trace
def _deserialize_federated_value(
value_proto: executor_pb2.Value,
type_hint: Optional[computation_types.Type] = None
) -> _DeserializeReturnType:
"""Deserializes a value of federated type."""
if not value_proto.federated.value:
raise ValueError('Attempting to deserialize federated value with no data.')
# The C++ runtime doesn't use the `all_equal` boolean (and doesn't report it
# in returned values), however the type_hint on the computation may contain
# it.
if type_hint is not None:
all_equal = type_hint.all_equal
else:
all_equal = value_proto.federated.type.all_equal
placement_uri = value_proto.federated.type.placement.value.uri
# item_type will represent a supertype of all deserialized member types in the
# federated value. This will be the hint used for deserialize member values.
if type_hint is not None:
item_type_hint = type_hint.member
else:
item_type_hint = None
item_type = None
if all_equal:
# As an optimization, we only deserialize the first value of an
# `all_equal=True` federated value.
items = [value_proto.federated.value[0]]
else:
items = value_proto.federated.value
value = []
for item in items:
item_value, next_item_type = deserialize_value(item, item_type_hint)
item_type = _ensure_deserialized_types_compatible(item_type, next_item_type)
value.append(item_value)
type_spec = computation_types.FederatedType(
item_type,
placement=placements.uri_to_placement_literal(placement_uri),
all_equal=all_equal)
if all_equal:
value = value[0]
return value, type_spec
@tracing.trace
def deserialize_value(
value_proto: executor_pb2.Value,
type_hint: Optional[computation_types.Type] = None
) -> _DeserializeReturnType:
"""Deserializes a value (of any type) from `executor_pb2.Value`.
Args:
value_proto: An instance of `executor_pb2.Value`.
type_hint: A `comptuations_types.Type` that hints at what the value type
should be for executors that only return values.
Returns:
A tuple `(value, type_spec)`, where `value` is a deserialized
representation of the transmitted value (e.g., Numpy array, or a
`pb.Computation` instance), and `type_spec` is an instance of
`tff.TensorType` that represents its type.
Raises:
TypeError: If the arguments are of the wrong types.
ValueError: If the value is malformed.
"""
if not hasattr(value_proto, 'WhichOneof'):
raise TypeError('`value_proto` must be a protocol buffer message with a '
'`value` oneof field.')
which_value = value_proto.WhichOneof('value')
if which_value == 'tensor':
return _deserialize_tensor_value(value_proto)
elif which_value == 'computation':
return _deserialize_computation(value_proto)
elif which_value == 'sequence':
return _deserialize_sequence_value(value_proto.sequence, type_hint)
elif which_value == 'struct':
return _deserialize_struct_value(value_proto, type_hint)
elif which_value == 'federated':
return _deserialize_federated_value(value_proto, type_hint)
else:
raise ValueError(
'Unable to deserialize a value of type {}.'.format(which_value))
CardinalitiesType = Mapping[placements.PlacementLiteral, int]
def serialize_cardinalities(
cardinalities: CardinalitiesType) -> List[executor_pb2.Cardinality]:
serialized_cardinalities = []
for placement, cardinality in cardinalities.items():
cardinality_message = executor_pb2.Cardinality(
placement=computation_pb2.Placement(uri=placement.uri),
cardinality=cardinality)
serialized_cardinalities.append(cardinality_message)
return serialized_cardinalities
def deserialize_cardinalities(
serialized_cardinalities: Collection[executor_pb2.Cardinality]
) -> CardinalitiesType:
cardinalities_dict = {}
for cardinality_spec in serialized_cardinalities:
literal = placements.uri_to_placement_literal(
cardinality_spec.placement.uri)
cardinalities_dict[literal] = cardinality_spec.cardinality
return cardinalities_dict
|
the-stack_0_4232 | #!/usr/bin/env python3
"""
Utility functions for testing.
"""
import copy
import numpy as np
SEED = 42
def round_dict(d, precision=3):
"""Round all numerical values in a dictionary recursively."""
d = copy.deepcopy(d)
if isinstance(d, dict):
for k, v in d.items():
try:
d[k] = round(v, precision)
except TypeError:
d[k] = round_dict(v)
return d
elif isinstance(d, list):
return [round_dict(v) for v in d]
elif isinstance(d, tuple):
return tuple([round_dict(v) for v in d])
return d
def random_real_series(x, add_null=False, limit_from=0, limit_to=5, seed=SEED):
np.random.seed(seed)
s = np.random.normal(x['mean'], x['std'], size=limit_to)
s = np.minimum(np.maximum(s, x['minValue']), x['maxValue'])
if add_null and len(s):
s[np.random.choice(limit_to)] = None
return list(s)[limit_from:]
def random_integer_series(x, **kwargs):
s = random_real_series(x, **kwargs)
return [int(e) if e is not None else None for e in s]
def random_nominal_series(x, add_null=False, limit_from=0, limit_to=5, seed=SEED):
np.random.seed(seed)
s = np.random.choice(x['type']['enumeration'], size=limit_to)
if add_null and len(s):
s[np.random.choice(limit_to)] = None
return list(s)[limit_from:]
def independent(include_real=True, include_integer=True, include_nominal=False, **kwargs):
if 'add_independent_null' in kwargs:
kwargs['add_null'] = kwargs.pop('add_independent_null')
ret = []
if include_real:
x = {
'name': 'subjectage',
'type': {
'name': 'real'
},
'series': [],
'mean': 70.4,
'std': 8.3,
'minValue': 30.,
'maxValue': 90.,
'label': 'Exact age'
}
x['series'] = random_real_series(x, seed=1, **kwargs)
ret.append(x)
if include_integer:
x = {
'name': 'minimentalstate',
'type': {
'name': 'integer'
},
'series': [],
'mean': 24.4,
'std': 5.2,
'minValue': 0,
'maxValue': 30,
'label': 'MMSE Total scores'
}
x['series'] = random_integer_series(x, seed=2, **kwargs)
ret.append(x)
if include_nominal:
x = {
'name': 'agegroup',
'type': {
'name': 'polynominal',
'enumeration': ['-50y', '50-59y']
},
'label': 'Age Group',
'series': []
}
x['series'] = random_nominal_series(x, seed=3, **kwargs)
ret.append(x)
return ret
def inputs_regression(add_null=False, limit_from=0, limit_to=5, **kwargs):
x = {
'name': 'lefthippocampus',
'label': 'Left Hippocampus',
'type': {
'name': 'real'
},
'series': [],
'mean': 3.,
'std': 0.39,
'minValue': 1.,
'maxValue': 5.,
}
x['series'] = random_real_series(x, seed=4, add_null=add_null, limit_from=limit_from, limit_to=limit_to)
return {
'data': {
'dependent': [x],
'independent': independent(limit_from=limit_from, limit_to=limit_to, **kwargs)
},
'parameters': []
}
def inputs_classification(add_null=False, limit_from=0, limit_to=5, **kwargs):
x = {
'name': 'adnicategory',
'label': 'ADNI category',
'type': {
'name': 'polynominal',
'enumeration': ['AD', 'CN', 'Other'],
'enumeration_labels': ['Alzheimers disease', 'Cognitively Normal', 'Other']
},
'series': []
}
x['series'] = random_nominal_series(x, seed=5, add_null=add_null, limit_from=limit_from, limit_to=limit_to)
return {
'data': {
'dependent': [x],
'independent': independent(limit_from=limit_from, limit_to=limit_to, **kwargs)
},
'parameters': []
}
|
the-stack_0_4233 | import random
import os.path
import sys
import logging
import gtk
import gs
import gs.ui.rtgraph as rtgraph
import gs.config as config
LOG = logging.getLogger("graph")
class FieldChannel(rtgraph.Channel):
def __init__(self, msg, field):
rtgraph.Channel.__init__(self)
i = 0
for f in msg.fields:
if f.name == field.name:
self._fidx = i
i += 1
self._val = 0
def getValue(self):
return self._val
def update_msg_value(self, vals):
self._val = vals[self._fidx]
class RandomChannel(FieldChannel):
def getValue(self):
return random.random()
class Graph(rtgraph.HScrollLineGraph):
def __init__(self, source, msg, field, double_buffer, ymin=0.0, ymax=1.0, width=150, height=50, rate=30):
rtgraph.HScrollLineGraph.__init__(self,
scrollRate=rate,
size=(width,height),
range=(ymin,ymax),
autoScale=True,
axisLabel=True,
channels=[FieldChannel(msg, field)],
doubleBuffer=double_buffer
)
self._source = source
self._source.register_interest(self._on_msg, 0, msg.name)
def _on_msg(self, msg, header, payload):
vals = msg.unpack_values(payload)
for f in self.channels:
f.update_msg_value(vals)
def get_scroll_rate_widget(self):
return self.getTweakControls()[0]
def delete(self):
self._source.unregister_interest(self._on_msg)
class _GraphRange(gtk.VBox):
def __init__(self, graph):
gtk.VBox.__init__(self)
graph.connect("range-changed", self._on_range_changed)
mal = gtk.Label("Max:")
self.maxadj = gtk.Adjustment()
self._update_adjustment(self.maxadj)
masb = gtk.SpinButton(self.maxadj)
masb.props.digits = 1
self.maxadj.connect("value-changed", self._on_adj_changed, graph, 1)
mil = gtk.Label("Min:")
self.minadj = gtk.Adjustment()
self._update_adjustment(self.minadj)
misb = gtk.SpinButton(self.minadj)
misb.props.digits = 1
self.minadj.connect("value-changed", self._on_adj_changed, graph, 0)
self.pack_start(mal, False)
self.pack_start(masb, False)
self.pack_start(mil, False)
self.pack_start(misb, False)
def _update_adjustment(self, adj, value=0.0, lower=0.0, upper=0.0):
adj.lower = lower
adj.page_increment = 1.0
adj.step_increment = 0.1
adj.upper = upper
adj.value = value
def _on_range_changed(self, graph, min_, max_):
self._update_adjustment(self.maxadj, value=max_, lower=min_, upper=(max_*1.5))
self._update_adjustment(self.minadj, value=min_, lower=(min_*1.5), upper=max_)
def _on_adj_changed(self, adj, graph, idx):
graph.handler_block_by_func(self._on_range_changed)
graph.rescale(adj.get_value(), idx)
graph.handler_unblock_by_func(self._on_range_changed)
class GraphHolder(gtk.HBox):
"""
Composite widget holding a rtgraph and controls
graph is a hbox:
frame |
[\___ ] | vertical buttons (pause, remove, etc)
[ \ ] | range widgets
"""
def __init__(self, g, name, adjustable, on_pause, on_print, on_remove, on_fullscreen, on_log_data):
gtk.HBox.__init__(self, spacing=5)
self.graph = g
frame = gtk.Frame(name)
vb = gtk.VBox()
vb.pack_start(g, True, True)
tweak = None
if adjustable:
tweak = g.get_scroll_rate_widget()
vb.pack_start(tweak.widget, False, False)
frame.add(vb)
self.pack_start(frame)
vb = gtk.VBox()
bbox = gtk.VButtonBox()
bbox.set_layout(gtk.BUTTONBOX_END)
vb.pack_start(bbox, True, True)
if on_pause:
b = gs.ui.get_button(stock=gtk.STOCK_MEDIA_PAUSE, xalign=0)
b.connect("clicked", on_pause, tweak)
bbox.pack_start(b, False, False)
if on_print:
b = gs.ui.get_button(stock=gtk.STOCK_PRINT, xalign=0)
b.connect("clicked", on_print, g, name)
bbox.pack_start(b, False, False)
if on_remove:
b = gs.ui.get_button(stock=gtk.STOCK_REMOVE, xalign=0)
b.connect("clicked", on_remove, name)
bbox.pack_start(b, False, False)
if on_fullscreen:
b = gs.ui.get_button(stock=gtk.STOCK_FULLSCREEN, xalign=0)
b.connect("clicked", on_fullscreen, name)
bbox.pack_start(b, False, False)
if on_log_data:
b = gs.ui.get_button("Log Message",image_stock=gtk.STOCK_FILE, xalign=0)
b.connect("clicked", on_log_data, name)
bbox.pack_start(b, False, False)
if adjustable:
r = _GraphRange(g)
vb.pack_start(r, False, False)
self.pack_start(vb, False, False)
self.show_all()
class GraphManager(config.ConfigurableIface):
CONFIG_SECTION = "GRAPHMANAGER"
def __init__(self, conf, source, messages, box, main_window):
config.ConfigurableIface.__init__(self, conf)
self._source = source
self._messages = messages
self._box = box
self._main_window = main_window
self._graphs = {}
def _on_log_data(self, sender, name):
self._source.register_csv_logger(None, name.split(':')[0])
def _on_pause(self, sender, tweakScrollRate):
if tweakScrollRate:
tweakScrollRate.setValue(0)
tweakScrollRate.refresh()
def _on_remove(self, sender, name):
gh = self._graphs[name]
gh.graph.delete()
self._box.remove(gh)
del(self._graphs[name])
def _on_print(self, sender, graph, name):
def on_print_page(operation, context, page_nr):
cr = context.get_cairo_context()
graph.drawIntoCairoContext(cr, name=name)
print_op = gtk.PrintOperation()
print_op.set_n_pages(1)
print_op.connect("draw_page", on_print_page)
res = print_op.run(gtk.PRINT_OPERATION_ACTION_PRINT_DIALOG, None)
def _on_fs_window_closed(self, widget, event, name, btn):
gh = self._graphs[name]
gh.hide()
gh.reparent(self._box)
gh.show_all()
btn.set_sensitive(True)
def _on_fullscreen(self, btn, name):
gh = self._graphs[name]
w = gtk.Window()
w.connect("delete-event", self._on_fs_window_closed, name, btn)
w.set_title(name)
gh.hide()
gh.reparent(w)
w.show_all()
btn.set_sensitive(False)
def update_state_from_config(self):
num = self.config_get("num_graphs", 0)
if num:
LOG.info("Restoring %s graphs" % num)
for i in range(0, int(num)):
name = self.config_get("graph_%d" % i, ":")
try:
msg_name, field_name = name.split(":")
if msg_name and field_name:
msg = self._messages.get_message_by_name(msg_name)
field = msg.get_field_by_name(field_name)
if msg and field:
self.add_graph(msg, field)
except Exception:
LOG.warn("Error adding graph", exc_info=True)
def update_config_from_state(self):
self.config_delete_keys_in_section()
num = 0
for name in self._graphs:
self.config_set("graph_%d" % num, name)
num += 1
LOG.info("Saved %s graphs" % num)
self.config_set("num_graphs", num)
def add_graph(self, msg, field, adjustable=True, double_buffer=False):
name = "%s:%s" % (msg.name, field.name)
if name not in self._graphs:
LOG.info("Adding graph: %s" % name)
gh = GraphHolder(
Graph(self._source, msg, field, double_buffer),
name,
adjustable,
self._on_pause,
self._on_print,
self._on_remove,
self._on_fullscreen,
self._on_log_data)
self._box.pack_start(gh)
self._graphs[name] = gh
|
the-stack_0_4234 | #!/usr/bin/env python3
# coding: utf8
"""
Description:
Using fasta files (scaffold/chromosme/contig file, protein file), gff file, annotation tsv file and the species name
this script writes a genbank file.
The annotation tsv file contains association between gene and annotation (EC number, GO term, Interpro)
to add information to the genbank.
The species name needs to be compatible with the taxonomy of the EBI.
Informations need a good formating:
gene ID should be correctly written (like XXX_001 and no XXX_1 if you got more thant 100 genes).
Currently when there is multiple GO terms/InterPro/EC the script split them when they are separated by ";" or by "," like GO:0006979;GO:0020037;GO:0004601,
if you use another separator add to the re.split(',|;').
For the gff file ensure that the element start position is at least 1.
If it's 0 gffutils will return an error (source : https://github.com/daler/gffutils/issues/104).
Other informations can be added by adding a dictionary with gene ID as key and the information
as value and adapt the condition used for the others annotations (EC, Interpro, Go term).
Usage:
gbk_creator_from_gff.py -fg <Genome fasta file> -fp <Protein Fasta file> -a <Annotation TSV file> -g <GFF file> -s <Species name> -o <GBK Output file name>
"""
import argparse
import datetime
import gffutils
import numpy as np
import os
import pandas as pa
import pronto
import re
import requests
import shutil
from Bio import SeqFeature as sf
from Bio import SeqIO
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from collections import OrderedDict
try:
from Bio.Alphabet import IUPAC
except ImportError:
IUPAC = None
def merging_mini_gff(gff_folder):
"""
Merge multiple gff files into one.
Return the path to the merged file.
"""
mini_gff_path = os.path.dirname(os.path.realpath(os.listdir(gff_folder)[0])) + "/" + gff_folder + "/"
gff_merged_path = mini_gff_path + 'merged_gff.gff'
with open(gff_merged_path, 'w') as gff_file_merged:
gff_files = os.listdir(gff_folder)
gff_files.remove('merged_gff.gff')
for mini_gff in gff_files:
with open(mini_gff_path + mini_gff, 'rb') as mini_gff_file:
shutil.copyfileobj(mini_gff_file, gff_file_merged)
return gff_merged_path
def create_GO_dataframes():
"""
Use pronto to query the Gene Ontology and to create the Ontology.
Create a dataframe which contains for all GO terms their GO namespaces (molecular_function, ..).
Create a second dataframe containing alternative ID for some GO terms (deprecated ones).
"""
go_ontology = pronto.Ontology('http://purl.obolibrary.org/obo/go/go-basic.obo')
# For each GO terms look to the namespaces associated with them.
go_namespaces = {}
for go_term in go_ontology:
if 'GO:' in go_term:
go_namespaces[go_term] = go_ontology[go_term].namespace
df_go_namespace = pa.DataFrame.from_dict(go_namespaces, orient='index')
df_go_namespace.reset_index(inplace=True)
df_go_namespace.columns = ['GO', 'namespace']
# For each GO terms look if there is an alternative ID fo them.
go_alt_ids = {}
for go_term in go_ontology:
if go_ontology[go_term].alternate_ids != frozenset():
for go_alt in go_ontology[go_term].alternate_ids:
go_alt_ids[go_alt] = go_term
df_go_alternative = pa.DataFrame.from_dict(go_alt_ids, orient='index')
df_go_alternative.reset_index(inplace=True)
df_go_alternative.columns = ['GO', 'alternative_GO']
return df_go_namespace, df_go_alternative
def create_taxonomic_data(species_name):
"""
Query the EBI with the species name to create a dictionary containing taxon id,
taxonomy and some other informations.
"""
species_informations = {}
species_name_url = species_name.replace(' ', '%20')
url = 'https://www.ebi.ac.uk/ena/data/taxonomy/v1/taxon/scientific-name/' + species_name_url
response = requests.get(url)
temp_species_informations = response.json()[0]
for temp_species_information in temp_species_informations:
if temp_species_information == 'lineage':
species_informations['taxonomy'] = temp_species_informations[temp_species_information].split('; ')[:-1]
elif temp_species_information == 'division':
species_informations['data_file_division'] = temp_species_informations[temp_species_information]
elif temp_species_information == 'taxId':
species_informations['db_xref'] = 'taxon:' + str(temp_species_informations[temp_species_information])
else:
species_informations[temp_species_information] = temp_species_informations[temp_species_information]
compatible_species_name = species_name.replace('/', '_')
species_informations['description'] = compatible_species_name + ' genome'
species_informations['organism'] = compatible_species_name
species_informations['keywords'] = [compatible_species_name]
return species_informations
def find_column_of_interest(df):
'''
Gene column is supposed to be the first one.
Detect columns containing GO number, EC number and Interpro ID.
To do this, regular expression are used, for each types of data.
The occurrence of each regular expression is counted.
Then the column containing the maximum of occurrence for a type of data is associated with it by returning it's name.
'''
columns = df.columns.tolist()
gene_column = columns[0]
go_number_expression = r"[FPC]?:?GO[:_][\d]{7}"
ec_expression = r"[Ee]?[Cc]?:?[\d]{1}[\.]{1}[\d]{,2}[\.]{,1}[\d]{,2}[\.]{,1}[\d]{,3}"
ipr_expression = r"IPR[\d]{6}"
go_number_columns = {}
ec_columns = {}
ipr_columns = {}
for column in columns:
df[column] = df[column].astype(str)
go_number_columns[column] = len(df[df[column].str.match(go_number_expression)])
ec_columns[column] = len(df[df[column].str.match(ec_expression)])
ipr_columns[column] = len(df[df[column].str.match(ipr_expression)])
if go_number_columns:
go_number_column = max(go_number_columns, key=go_number_columns.get)
go_column = go_number_column
if ec_columns != []:
ec_column = max(ec_columns, key=ec_columns.get)
else:
ec_column = np.nan
if ipr_columns != []:
ipr_column = max(ipr_columns, key=ipr_columns.get)
else:
ipr_column = np.nan
return gene_column, go_column, ec_column, ipr_column
def contig_info(contig_id, contig_seq, species_informations):
"""
Create contig information from species_informations dictionary and contig id and contig seq.
"""
record = SeqRecord(contig_seq, id=contig_id, name=contig_id,
description=species_informations['description'],
annotations={"molecule_type": "DNA"})
if IUPAC:
record.seq.alphabet = IUPAC.ambiguous_dna
if 'data_file_division' in species_informations:
record.annotations['data_file_division'] = species_informations['data_file_division']
record.annotations['date'] = datetime.date.today().strftime('%d-%b-%Y').upper()
if 'topology' in species_informations:
record.annotations['topology'] = species_informations['topology']
record.annotations['accessions'] = contig_id
if 'organism' in species_informations:
record.annotations['organism'] = species_informations['organism']
# Use of literal_eval for taxonomy and keywords to retrieve list.
if 'taxonomy' in species_informations:
record.annotations['taxonomy'] = species_informations['taxonomy']
if 'keywords' in species_informations:
record.annotations['keywords'] = species_informations['keywords']
if 'source' in species_informations:
record.annotations['source'] = species_informations['source']
new_feature_source = sf.SeqFeature(sf.FeatureLocation(1-1,
len(contig_seq)),
type="source")
new_feature_source.qualifiers['scaffold'] = contig_id
if 'isolate' in species_informations:
new_feature_source.qualifiers['isolate'] = species_informations['isolate']
# db_xref corresponds to the taxon NCBI ID.
# Important if you want to use Pathway Tools after.
if 'db_xref' in species_informations:
new_feature_source.qualifiers['db_xref'] = species_informations['db_xref']
if 'cell_type' in species_informations:
new_feature_source.qualifiers['cell_type'] = species_informations['cell_type']
if 'dev_stage' in species_informations:
new_feature_source.qualifiers['dev_stage'] = species_informations['dev_stage']
if 'mol_type' in species_informations:
new_feature_source.qualifiers['mol_type'] = species_informations['mol_type']
record.features.append(new_feature_source)
return record
def strand_change(input_strand):
"""
The input is strand in str ('-', '+') modify it to be a strand in int (-1, +1) to
be compatible with SeqIO strand reading.
"""
if isinstance(input_strand, str):
if input_strand == '-':
new_strand = -1
elif input_strand == '+':
new_strand = +1
if input_strand == '.':
new_strand = None
elif input_strand == '?':
new_strand = 0
elif isinstance(input_strand, int):
if input_strand == -1:
new_strand = input_strand
elif input_strand == +1:
new_strand = input_strand
return new_strand
def search_and_add_RNA(gff_database, gene_informations, record, type_RNA):
"""
Search in the gff_database if the gene have RNA of the (type_RNA).
For the RNA it will add a feature to the contig record of the genbank.
Then it returns the contig record.
gene_informations contain:
[0] -> gene feature
[1] -> gene ID cleaned
[2] -> gene start position
[3] -> gene end postion
[4] -> gene strand modified (str -> int)
"""
for rna in gff_database.children(gene_informations[0], featuretype=type_RNA, order_by='start'):
new_feature_RNA = sf.SeqFeature(sf.FeatureLocation(gene_informations[2],
gene_informations[3],
gene_informations[4]),
type=type_RNA)
new_feature_RNA.qualifiers['locus_tag'] = gene_informations[1]
record.features.append(new_feature_RNA)
return record
def search_and_add_pseudogene(gff_database, gene, record, df_exons, gene_protein_seq):
"""
Search in the gff_database if the gene is a pseudogene.
Add it to the record.
"""
location_exons = []
for pseudogene in gff_database.children(gene, featuretype="pseudogene", order_by='start'):
# Select exon corresponding to the gene.
# Then iterate for each exon and extract information.
df_temp = df_exons[df_exons['gene_id'] == pseudogene.id]
for _, row in df_temp.iterrows():
new_feature_location_exons = sf.FeatureLocation(row['start'],
row['end'],
row['strand'])
location_exons.append(new_feature_location_exons)
if location_exons and len(location_exons)>=2:
exon_compound_locations = sf.CompoundLocation(location_exons, operator='join')
new_feature_cds = sf.SeqFeature(exon_compound_locations, type='CDS')
else:
start_position = gene.start -1
end_position = gene.end
strand = strand_change(gene.strand)
new_feature_cds = sf.SeqFeature(sf.FeatureLocation(start_position,
end_position,
strand),
type="CDS")
new_feature_cds.qualifiers['translation'] = gene_protein_seq[pseudogene.id]
new_feature_cds.qualifiers['locus_tag'] = gene.id
new_feature_cds.qualifiers['pseudo'] = None
record.features.append(new_feature_cds)
return record
def gff_to_gbk(genome_fasta, prot_fasta, annot_table, gff_file, species_name, gbk_out):
"""
From a genome fasta (containing each contigs of the genome),
a protein fasta (containing each protein sequence),
an annotation table (containing gene name associated with GO terms, InterPro and EC),
a gff file (containing gene, exon, mRNA, ncRNA, tRNA),
a contig information table (containing species name, taxon ID, ..)
create a genbank file.
"""
print('Creating GFF database (gffutils)')
# Create the gff database file.
# gffutils use sqlite3 file-based database to access data inside GFF.
# ':memory:' ask gffutils to keep database in memory instead of writting in a file.
gff_database = gffutils.create_db(gff_file, ':memory:', force=True, keep_order=True, merge_strategy='merge', sort_attribute_values=True)
# Length of your gene ID.
# Catch it in the GFF database.
# It's pretty dumb as we go into a loop for one information.
# But I don't find another way to catch the length of gene_id.
length_gene_id = 0
for gene in gff_database.features_of_type('gene'):
length_gene_id = len(gene.id.replace('gene:', ''))
break
# Get the longest contig ID to check if all contig IDs have the
# same length, if not add 0 (at the supposed position of the number).
longest_contig_id = ""
for contig_for_length_id in gff_database.features_of_type('sequence_assembly'):
if len(longest_contig_id) < len(contig_for_length_id.id):
longest_contig_id = contig_for_length_id.id
print('Formatting fasta and annotation file')
# Dictionary with scaffold/chromosome id as key and sequence as value.
contig_seqs = OrderedDict()
for record in SeqIO.parse(genome_fasta, "fasta"):
id_contig = record.id
contig_seqs[id_contig] = record.seq
# Dictionary with gene id as key and protein sequence as value.
gene_protein_seq = {}
for record in SeqIO.parse(prot_fasta, "fasta"):
gene_protein_seq[record.id] = record.seq
# Create a taxonomy dictionary querying the EBI.
species_informations = create_taxonomic_data(species_name)
# Read a tsv file containing GO terms, Interpro and EC associated with gene name.
mapping_data = pa.read_csv(annot_table, sep='\t')
mapping_data.replace(np.nan, '', inplace=True)
gene_column, go_column, ec_column, ipr_column = find_column_of_interest(mapping_data)
mapping_data.set_index(gene_column, inplace=True)
# Dictionary with gene id as key and GO terms/Interpro/EC as value.
annot_GOs = mapping_data[go_column].to_dict()
annot_IPRs = mapping_data[ipr_column].to_dict()
annot_ECs = mapping_data[ec_column].to_dict()
# Query Gene Ontology to extract namespaces and alternative IDs.
df_go_namespace, df_go_alternative = create_GO_dataframes()
# Dictionary GO id as term and GO namespace as value.
df_go_namespace.set_index('GO', inplace=True)
go_namespaces = df_go_namespace['namespace'].to_dict()
# Dictionary GO id as term and GO alternatives id as value.
df_go_alternative.set_index('GO', inplace=True)
go_alternatives = df_go_alternative['alternative_GO'].to_dict()
# Create a dataframe containing each exon with informations (gene, start, end and strand)
df_exons = pa.DataFrame(columns=['exon_id', 'gene_id', 'start', 'end', 'strand'])
print('Searching for exons')
temporary_datas = []
# Search for all exons in gff database and extract start position (have to minus one to get the right position)
# the end position, the strand (have to change from str to int) and the gene ID.
# Then add it to a list of dictionary that will be added to the dataframe.
for exon in gff_database.features_of_type('exon'):
start_position = exon.start - 1
end_position = exon.end
strand = strand_change(exon.strand)
gene_id = exon.id.replace('exon:', '')[:-2]
temporary_datas.append({'exon_id': exon.id, 'gene_id': gene_id,
'start': start_position, 'end':end_position, 'strand': strand})
df_exons = df_exons.append(temporary_datas)
# All SeqRecord objects will be stored in a list and then give to the SeqIO writer to create the genbank.
seq_objects = []
print('Assembling Genbank informations')
# Iterate through each contig.
# Then iterate through gene and throug RNA linked with the gene.
# Then look if protein informations are available.
for contig_id in sorted(contig_seqs):
# Data for each contig.
record = contig_info(contig_id, contig_seqs[contig_id], species_informations)
for gene in gff_database.features_of_type('gene'):
gene_contig = gene.chrom
if gene_contig == contig_id:
id_gene = gene.id
start_position = gene.start -1
end_position = gene.end
strand = strand_change(gene.strand)
new_feature_gene = sf.SeqFeature(sf.FeatureLocation(start_position,
end_position,
strand),
type="gene")
new_feature_gene.qualifiers['locus_tag'] = id_gene
# Add gene information to contig record.
record.features.append(new_feature_gene)
# Search and add RNAs.
gene_informations = [gene, id_gene, start_position, end_position, strand]
record = search_and_add_RNA(gff_database, gene_informations, record, 'mRNA')
record = search_and_add_RNA(gff_database, gene_informations, record,'tRNA')
record = search_and_add_RNA(gff_database, gene_informations, record, 'ncRNA')
record = search_and_add_RNA(gff_database, gene_informations, record, 'lncRNA')
# Search for pseudogene and add them.
record = search_and_add_pseudogene(gff_database, gene, record, df_exons, gene_protein_seq)
# Create CDS using exons, if no exon use gene information
location_exons = []
# Use parent mRNA in gff to find CDS.
# With this we take the isoform of gene.
for mrna in gff_database.children(gene, featuretype="mRNA", order_by='start'):
mrna_id = mrna.id
# Select exon corresponding to the gene.
# Then iterate for each exon and extract information.
df_temp = df_exons[df_exons['gene_id'] == mrna_id]
for _, row in df_temp.iterrows():
new_feature_location_exons = sf.FeatureLocation(row['start'],
row['end'],
row['strand'])
location_exons.append(new_feature_location_exons)
if location_exons and len(location_exons)>=2:
exon_compound_locations = sf.CompoundLocation(location_exons, operator='join')
new_feature_cds = sf.SeqFeature(exon_compound_locations, type='CDS')
else:
new_feature_cds = sf.SeqFeature(sf.FeatureLocation(start_position,
end_position,
strand),
type="CDS")
new_feature_cds.qualifiers['translation'] = gene_protein_seq[mrna_id]
new_feature_cds.qualifiers['locus_tag'] = id_gene
# Add GO annotation according to the namespace.
if mrna_id in annot_GOs:
gene_gos = re.split(';|,', annot_GOs[mrna_id])
if gene_gos != [""]:
go_components = []
go_functions = []
go_process = []
for go in gene_gos:
# Check if GO term is not a deprecated one.
# If yes take the corresponding one in alternative GO.
if go not in go_namespaces:
go_test = go_alternatives[go]
else:
go_test = go
if go_namespaces[go_test] == 'cellular_component':
go_components.append(go)
if go_namespaces[go_test] == 'molecular_function':
go_functions.append(go)
if go_namespaces[go_test] == 'biological_process':
go_process.append(go)
new_feature_cds.qualifiers['go_component'] = go_components
new_feature_cds.qualifiers['go_function'] = go_functions
new_feature_cds.qualifiers['go_process'] = go_process
# Add InterPro annotation.
if mrna_id in annot_IPRs:
gene_iprs = re.split(';|,', annot_IPRs[mrna_id])
if gene_iprs != [""]:
new_feature_cds.qualifiers['db_xref'] = ["InterPro:"+interpro for interpro in gene_iprs]
# Add EC annotation.
if mrna_id in annot_ECs:
gene_ecs = re.split(';|,', annot_ECs[mrna_id])
if gene_ecs != [""]:
new_feature_cds.qualifiers['EC_number'] = [ec.replace('ec:', '') for ec in gene_ecs]
# Add CDS information to contig record
record.features.append(new_feature_cds)
seq_objects.append(record)
# Create Genbank with the list of SeqRecord.
SeqIO.write(seq_objects, gbk_out, 'genbank')
def main(genome_fasta, prot_fasta, annot_table, gff_file_folder, species_name, gbk_out):
# Check if gff is a file or is multiple files in a folder.
# If it's multiple files, it wil merge them in one.
if os.path.isfile(gff_file_folder):
gff_file = gff_file_folder
if not os.path.isfile(gff_file_folder):
gff_file = merging_mini_gff(gff_file_folder)
gff_to_gbk(genome_fasta, prot_fasta, annot_table, gff_file, species_name, gbk_out)
def run():
parser = argparse.ArgumentParser(prog = "gbk_creator_from_gff.py")
parser.add_argument("-fg", "--fgen", dest = "genome_fasta", metavar = "FILE", help = "contig fasta file", required = True)
parser.add_argument("-fp", "--fprot", dest = "prot_fasta", metavar = "FILE", help = "protein fasta file", required = True)
parser.add_argument("-a", "--annot", dest = "annot_table", metavar = "FILE", help = "annotation tsv file", required = True)
parser.add_argument("-g", "--gff", dest = "gff_file_folder", metavar = "FILE or FOLDER", help = "gff file or folder containing multiple gff", required = True)
parser.add_argument("-s", "--speciesname", dest = "species_name", metavar = "STRING", help = "species scientific name", required = True)
parser.add_argument("-o", "--output", dest = "gbk_out", metavar = "FILE", help = "output file", default = "mygbk.gbk")
args = parser.parse_args()
main(genome_fasta=args.genome_fasta, prot_fasta=args.prot_fasta, annot_table=args.annot_table,
gff_file_folder=args.gff_file_folder, species_name=args.species_name, gbk_out=args.gbk_out)
if __name__ == '__main__':
run()
|
the-stack_0_4235 | #! /usr/bin/env python
# -*- coding: utf-8 -*-
from django.conf.urls import url, include
from config import views
urlpatterns = [
url(r'^$', views.index, name='config'),
url(r'^config_save/$', views.config_save, name='config_save'),
url(r'^token/', views.get_token, name='token'),
] |
the-stack_0_4236 | from functools import partial
import pandas as pd
from cellphonedb.src.core.core_logger import core_logger
from cellphonedb.src.core.exceptions.AllCountsFilteredException import AllCountsFilteredException
from cellphonedb.src.core.exceptions.NoInteractionsFound import NoInteractionsFound
from cellphonedb.src.core.methods import cpdb_statistical_analysis_helper
def call(meta: pd.DataFrame,
counts: pd.DataFrame,
counts_data: str,
interactions: pd.DataFrame,
genes: pd.DataFrame,
complexes: pd.DataFrame,
complex_compositions: pd.DataFrame,
pvalue: float,
separator: str,
iterations: int = 1000,
threshold: float = 0.1,
threads: int = 4,
debug_seed: int = -1,
result_precision: int = 3,
) -> (pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame):
core_logger.info(
'[Cluster Statistical Analysis] '
'Threshold:{} Iterations:{} Debug-seed:{} Threads:{} Precision:{}'.format(threshold,
iterations,
debug_seed,
threads,
result_precision))
if debug_seed >= 0:
pd.np.random.seed(debug_seed)
core_logger.warning('Debug random seed enabled. Setted to {}'.format(debug_seed))
cells_names = sorted(counts.columns)
interactions.set_index('id_interaction', drop=True, inplace=True)
interactions_reduced = interactions[['multidata_1_id', 'multidata_2_id']].drop_duplicates()
complex_compositions.set_index('id_complex_composition', inplace=True, drop=True)
# Add id multidata to counts input
counts: pd.DataFrame = counts.merge(genes[['id_multidata', 'ensembl', 'gene_name', 'hgnc_symbol']],
left_index=True, right_on=counts_data)
counts_relations = counts[['id_multidata', 'ensembl', 'gene_name', 'hgnc_symbol']].copy()
counts.set_index('id_multidata', inplace=True, drop=True)
counts = counts[cells_names]
counts = counts.astype('float32')
counts = counts.groupby(counts.index).mean()
if counts.empty:
raise AllCountsFilteredException(hint='Are you using human data?')
# End add id multidata
interactions_filtered, counts_filtered, complex_composition_filtered = \
cpdb_statistical_analysis_helper.prefilters(interactions_reduced,
counts,
complexes,
complex_compositions)
if interactions_filtered.empty:
raise NoInteractionsFound()
clusters = cpdb_statistical_analysis_helper.build_clusters(meta, counts_filtered, complex_composition_filtered)
core_logger.info('Running Real Analysis')
cluster_interactions = cpdb_statistical_analysis_helper.get_cluster_combinations(clusters['names'])
base_result = cpdb_statistical_analysis_helper.build_result_matrix(interactions_filtered,
cluster_interactions,
separator)
real_mean_analysis = cpdb_statistical_analysis_helper.mean_analysis(interactions_filtered,
clusters,
cluster_interactions,
base_result,
separator)
real_percents_analysis = cpdb_statistical_analysis_helper.percent_analysis(clusters,
threshold,
interactions_filtered,
cluster_interactions,
base_result,
separator)
core_logger.info('Running Statistical Analysis')
statistical_mean_analysis = cpdb_statistical_analysis_helper.shuffled_analysis(iterations,
meta,
counts_filtered,
interactions_filtered,
cluster_interactions,
complex_composition_filtered,
base_result,
threads,
separator)
result_percent = cpdb_statistical_analysis_helper.build_percent_result(real_mean_analysis,
real_percents_analysis,
statistical_mean_analysis,
interactions_filtered,
cluster_interactions,
base_result,
separator)
pvalues_result, means_result, significant_means, deconvoluted_result = build_results(
interactions_filtered,
interactions,
counts_relations,
real_mean_analysis,
result_percent,
clusters['means'],
complex_composition_filtered,
counts,
genes,
result_precision,
pvalue,
counts_data
)
return pvalues_result, means_result, significant_means, deconvoluted_result
def build_results(interactions: pd.DataFrame,
interactions_original: pd.DataFrame,
counts_relations: pd.DataFrame,
real_mean_analysis: pd.DataFrame,
result_percent: pd.DataFrame,
clusters_means: pd.DataFrame,
complex_compositions: pd.DataFrame,
counts: pd.DataFrame,
genes: pd.DataFrame,
result_precision: int,
pvalue: float,
counts_data: str
) -> (pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame):
"""
Sets the results data structure from method generated data. Results documents are defined by specs.
"""
core_logger.info('Building results')
interactions: pd.DataFrame = interactions_original.loc[interactions.index]
interactions['interaction_index'] = interactions.index
interactions = interactions.merge(counts_relations, how='left', left_on='multidata_1_id', right_on='id_multidata', )
interactions = interactions.merge(counts_relations, how='left', left_on='multidata_2_id', right_on='id_multidata',
suffixes=('_1', '_2'))
interactions.set_index('interaction_index', inplace=True, drop=True)
interacting_pair = cpdb_statistical_analysis_helper.interacting_pair_build(interactions)
def simple_complex_indicator(interaction: pd.Series, suffix: str) -> str:
"""
Add simple/complex prefixes to interaction components
"""
if interaction['is_complex{}'.format(suffix)]:
return 'complex:{}'.format(interaction['name{}'.format(suffix)])
return 'simple:{}'.format(interaction['name{}'.format(suffix)])
interactions['partner_a'] = interactions.apply(lambda interaction: simple_complex_indicator(interaction, '_1'),
axis=1)
interactions['partner_b'] = interactions.apply(lambda interaction: simple_complex_indicator(interaction, '_2'),
axis=1)
significant_mean_rank, significant_means = cpdb_statistical_analysis_helper.build_significant_means(
real_mean_analysis, result_percent, pvalue)
significant_means = significant_means.round(result_precision)
gene_columns = ['{}_{}'.format(counts_data, suffix) for suffix in ('1', '2')]
gene_renames = {column: 'gene_{}'.format(suffix) for column, suffix in zip(gene_columns, ['a', 'b'])}
# Remove useless columns
interactions_data_result = pd.DataFrame(
interactions[['id_cp_interaction', 'partner_a', 'partner_b', 'receptor_1', 'receptor_2', *gene_columns,
'annotation_strategy']].copy())
interactions_data_result = pd.concat([interacting_pair, interactions_data_result], axis=1, sort=False)
interactions_data_result['secreted'] = (interactions['secreted_1'] | interactions['secreted_2'])
interactions_data_result['is_integrin'] = (interactions['integrin_1'] | interactions['integrin_2'])
interactions_data_result.rename(
columns={**gene_renames, 'receptor_1': 'receptor_a', 'receptor_2': 'receptor_b'},
inplace=True)
# Dedupe rows and filter only desired columns
interactions_data_result.drop_duplicates(inplace=True)
means_columns = ['id_cp_interaction', 'interacting_pair', 'partner_a', 'partner_b', 'gene_a', 'gene_b', 'secreted',
'receptor_a', 'receptor_b', 'annotation_strategy', 'is_integrin']
interactions_data_result = interactions_data_result[means_columns]
real_mean_analysis = real_mean_analysis.round(result_precision)
significant_means = significant_means.round(result_precision)
# Round result decimals
for key, cluster_means in clusters_means.items():
clusters_means[key] = cluster_means.round(result_precision)
# Document 1
pvalues_result = pd.concat([interactions_data_result, result_percent], axis=1, join='inner', sort=False)
# Document 2
means_result = pd.concat([interactions_data_result, real_mean_analysis], axis=1, join='inner', sort=False)
# Document 3
significant_means_result = pd.concat([interactions_data_result, significant_mean_rank, significant_means], axis=1,
join='inner', sort=False)
# Document 5
deconvoluted_result = deconvoluted_complex_result_build(clusters_means,
interactions,
complex_compositions,
counts,
genes,
counts_data)
return pvalues_result, means_result, significant_means_result, deconvoluted_result
def deconvoluted_complex_result_build(clusters_means: pd.DataFrame,
interactions: pd.DataFrame,
complex_compositions: pd.DataFrame,
counts: pd.DataFrame,
genes: pd.DataFrame,
counts_data: str) -> pd.DataFrame:
genes_counts = list(counts.index)
genes_filtered = genes[genes['id_multidata'].apply(lambda gene: gene in genes_counts)]
deconvoluted_complex_result_1 = deconvolute_complex_interaction_component(complex_compositions,
genes_filtered,
interactions,
'_1',
counts_data)
deconvoluted_simple_result_1 = deconvolute_interaction_component(interactions,
'_1',
counts_data)
deconvoluted_complex_result_2 = deconvolute_complex_interaction_component(complex_compositions,
genes_filtered,
interactions,
'_2',
counts_data)
deconvoluted_simple_result_2 = deconvolute_interaction_component(interactions,
'_2',
counts_data)
deconvoluted_result = deconvoluted_complex_result_1.append(
[deconvoluted_simple_result_1, deconvoluted_complex_result_2, deconvoluted_simple_result_2], sort=False)
deconvoluted_result.set_index('multidata_id', inplace=True, drop=True)
deconvoluted_columns = ['gene_name', 'name', 'is_complex', 'protein_name', 'complex_name', 'id_cp_interaction',
'gene']
deconvoluted_result = deconvoluted_result[deconvoluted_columns]
deconvoluted_result.rename({'name': 'uniprot'}, axis=1, inplace=True)
deconvoluted_result = pd.concat([deconvoluted_result, clusters_means], axis=1, join='inner', sort=False)
deconvoluted_result.set_index('gene', inplace=True, drop=True)
deconvoluted_result.drop_duplicates(inplace=True)
return deconvoluted_result
def deconvolute_interaction_component(interactions, suffix, counts_data):
interactions = interactions[~interactions['is_complex{}'.format(suffix)]]
deconvoluted_result = pd.DataFrame()
deconvoluted_result['gene'] = interactions['{}{}'.format(counts_data, suffix)]
deconvoluted_result[
['multidata_id', 'protein_name', 'gene_name', 'name', 'is_complex', 'id_cp_interaction', 'receptor']] = \
interactions[
['multidata{}_id'.format(suffix), 'protein_name{}'.format(suffix), 'gene_name{}'.format(suffix),
'name{}'.format(suffix),
'is_complex{}'.format(suffix), 'id_cp_interaction', 'receptor{}'.format(suffix)]]
deconvoluted_result['complex_name'] = pd.np.nan
return deconvoluted_result
def deconvolute_complex_interaction_component(complex_compositions,
genes_filtered,
interactions,
suffix,
counts_data):
return_properties = [counts_data, 'protein_name', 'gene_name', 'name', 'is_complex', 'id_cp_interaction',
'receptor', 'complex_name']
if complex_compositions.empty:
return pd.DataFrame(
columns=return_properties)
deconvoluted_result = pd.DataFrame()
component = pd.DataFrame()
component[counts_data] = interactions['{}{}'.format(counts_data, suffix)]
component[[counts_data, 'protein_name', 'gene_name', 'name', 'is_complex', 'id_cp_interaction', 'id_multidata',
'receptor']] = \
interactions[['{}{}'.format(counts_data, suffix), 'protein_name{}'.format(suffix), 'gene_name{}'.format(suffix),
'name{}'.format(suffix), 'is_complex{}'.format(suffix), 'id_cp_interaction',
'multidata{}_id'.format(suffix), 'receptor{}'.format(suffix)]]
deconvolution_complex = pd.merge(complex_compositions,
component,
left_on='complex_multidata_id',
right_on='id_multidata')
deconvolution_complex = pd.merge(deconvolution_complex,
genes_filtered,
left_on='protein_multidata_id',
right_on='protein_multidata_id',
suffixes=['_complex', '_simple'])
deconvoluted_result['gene'] = deconvolution_complex['{}_simple'.format(counts_data)]
deconvoluted_result[
['multidata_id', 'protein_name', 'gene_name', 'name', 'is_complex', 'id_cp_interaction', 'receptor',
'complex_name']] = \
deconvolution_complex[
['complex_multidata_id', 'protein_name_simple', 'gene_name_simple', 'name_simple',
'is_complex_complex', 'id_cp_interaction', 'receptor_simple', 'name_complex']]
return deconvoluted_result
|
the-stack_0_4237 | #!/usr/bin/python
# -*- coding:utf-8 -*-
"""
CNN/Convnets/Convolutional neural networks
keras tensorflow
"""
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers import Dense
from keras.constraints import maxnorm
from keras.layers import Dropout
from keras.layers import Flatten
from keras.utils import np_utils
from keras.optimizers import SGD
def train():
"""
训练
"""
epochs = 10
lrate = 0.01
decay = lrate/epochs
sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False)
model = create_model()
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
print(model.summary())
model.fit(X_train, Y_train, validation_data=(X_test, Y_test), epochs=epochs, batch_size=32)
return model
def create_model():
"""
创建模型
"""
model = Sequential()
# 52.59%的准确率(3, 32, 32)
#model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(3, 32, 32), padding = "same", kernel_constraint=maxnorm(3)))
#model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(3, 32, 32), padding="same", kernel_constraint=maxnorm(3)))
# 68.28%的准确率(32, 32, 3)
model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(32, 32, 3), padding = "same", kernel_constraint=maxnorm(3)))
model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(32, 32, 3), padding="same", kernel_constraint=maxnorm(3)))
# 防止过拟合
# model.add(Dropout(0.2))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu', kernel_constraint=maxnorm(3)))
# model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
return model
if __name__ == '__main__':
# 加载测试数据,一堆32*32*3的图片
# 10类
# 50000训练数据
# 10000测试数据
(X_train,Y_train),(X_test,Y_test)=cifar10.load_data()
print(X_train.shape)
print(X_test.shape)
# 将数据转换为0-1的浮点数
X_train=X_train/255.0
X_test=X_test/255.0
# 将Y转换为标签矩阵
# 属于哪一类,哪一列为1,其余为0
Y_train=np_utils.to_categorical(Y_train)
Y_test=np_utils.to_categorical(Y_test)
# reshape for tf
#X_train = X_train.reshape(X_train.shape[0], 3, 32, 32)
#X_test = X_test.reshape(-1, 3, 32, 32)
# 训练
model = train()
# 模型准群率评估
# 52.59%的准确率(3, 32, 32)
# 68.28%的准确率(32, 32, 3)
scores = model.evaluate(X_test, Y_test, verbose=0)
print("Final Accuracy: %.2f%%" % (scores[1]*100))
#保存模型及训练结果
jsonFile=model.to_json()
with open('output/cifar10.json','w') as file:
file.write(jsonFile)
model.save_weights('output/cifar10.h5')
|
the-stack_0_4238 | # -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) 2014, Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
# Author: Nicolas P .Rougier
# Date: 04/03/2014
# -----------------------------------------------------------------------------
from vispy import gloo, app
from vispy.gloo import Program
vertex = """
uniform float theta;
attribute vec4 color;
attribute vec2 position;
varying vec4 v_color;
void main()
{
float ct = cos(theta);
float st = sin(theta);
float x = 0.75* (position.x*ct - position.y*st);
float y = 0.75* (position.x*st + position.y*ct);
gl_Position = vec4(x, y, 0.0, 1.0);
v_color = color;
} """
fragment = """
varying vec4 v_color;
void main()
{
gl_FragColor = v_color;
} """
class Canvas(app.Canvas):
def __init__(self):
app.Canvas.__init__(self, size=(512, 512), title='Rotating quad',
close_keys='escape')
self.timer = app.Timer(1./60., self.on_timer)
def on_initialize(self, event):
# Build program & data
self.program = Program(vertex, fragment, count=4)
self.program['color'] = [(1, 0, 0, 1), (0, 1, 0, 1),
(0, 0, 1, 1), (1, 1, 0, 1)]
self.program['position'] = [(-1, -1), (-1, +1),
(+1, -1), (+1, +1)]
self.clock = 0
self.timer.start()
def on_draw(self, event):
gloo.set_clear_color('white')
gloo.clear(color=True)
self.program.draw('triangle_strip')
def on_resize(self, event):
gloo.set_viewport(0, 0, *event.size)
def on_timer(self, event):
self.clock += 0.001 * 1000.0 / 60.
self.program['theta'] = self.clock
self.update()
if __name__ == '__main__':
c = Canvas()
c.show()
app.run()
|
the-stack_0_4240 | from icalendar import vCalAddress
from app.config import ICAL_VERSION, PRODUCT_ID
from app.routers.export import (
create_ical_calendar, create_ical_event, event_to_ical
)
class TestExport:
def test_create_ical_calendar(self):
cal = create_ical_calendar()
assert cal.get('version') == ICAL_VERSION
assert cal.get('prodid') == PRODUCT_ID
def test_create_ical_event(self, event):
ical_event = create_ical_event(event)
assert event.owner.email in ical_event.get('organizer')
assert ical_event.get('summary') == event.title
def test_add_attendees(self, event, user):
ical_event = create_ical_event(event)
ical_event.add(
'attendee',
vCalAddress(f'MAILTO:{user.email}'),
encode=0
)
attendee = vCalAddress(f'MAILTO:{user.email}')
assert attendee == ical_event.get('attendee')
def test_event_to_ical(self, user, event):
ical_event = event_to_ical(event, [user.email])
def does_contain(item: str) -> bool:
"""Returns if calendar contains item."""
return bytes(item, encoding='utf8') in bytes(ical_event)
assert does_contain(ICAL_VERSION)
assert does_contain(PRODUCT_ID)
assert does_contain(event.owner.email)
assert does_contain(event.title)
|
the-stack_0_4242 |
# step 1. imports
from sqlalchemy import (create_engine, MetaData, Table, Column, Integer,
String, ForeignKey, Float, DateTime)
from sqlalchemy.orm import sessionmaker, mapper, relationship
from sqlalchemy.ext.horizontal_shard import ShardedSession
from sqlalchemy.sql import operators, visitors
import datetime
# step 2. databases
echo = True
db1 = create_engine('sqlite://', echo=echo)
db2 = create_engine('sqlite://', echo=echo)
db3 = create_engine('sqlite://', echo=echo)
db4 = create_engine('sqlite://', echo=echo)
# step 3. create session function. this binds the shard ids
# to databases within a ShardedSession and returns it.
create_session = sessionmaker(class_=ShardedSession)
create_session.configure(shards={
'north_america':db1,
'asia':db2,
'europe':db3,
'south_america':db4
})
# step 4. table setup.
meta = MetaData()
# we need a way to create identifiers which are unique across all
# databases. one easy way would be to just use a composite primary key, where one
# value is the shard id. but here, we'll show something more "generic", an
# id generation function. we'll use a simplistic "id table" stored in database
# #1. Any other method will do just as well; UUID, hilo, application-specific, etc.
ids = Table('ids', meta,
Column('nextid', Integer, nullable=False))
def id_generator(ctx):
# in reality, might want to use a separate transaction for this.
c = db1.connect()
nextid = c.execute(ids.select(for_update=True)).scalar()
c.execute(ids.update(values={ids.c.nextid : ids.c.nextid + 1}))
return nextid
# table setup. we'll store a lead table of continents/cities,
# and a secondary table storing locations.
# a particular row will be placed in the database whose shard id corresponds to the
# 'continent'. in this setup, secondary rows in 'weather_reports' will
# be placed in the same DB as that of the parent, but this can be changed
# if you're willing to write more complex sharding functions.
weather_locations = Table("weather_locations", meta,
Column('id', Integer, primary_key=True, default=id_generator),
Column('continent', String(30), nullable=False),
Column('city', String(50), nullable=False)
)
weather_reports = Table("weather_reports", meta,
Column('id', Integer, primary_key=True),
Column('location_id', Integer, ForeignKey('weather_locations.id')),
Column('temperature', Float),
Column('report_time', DateTime, default=datetime.datetime.now),
)
# create tables
for db in (db1, db2, db3, db4):
meta.drop_all(db)
meta.create_all(db)
# establish initial "id" in db1
db1.execute(ids.insert(), nextid=1)
# step 5. define sharding functions.
# we'll use a straight mapping of a particular set of "country"
# attributes to shard id.
shard_lookup = {
'North America':'north_america',
'Asia':'asia',
'Europe':'europe',
'South America':'south_america'
}
def shard_chooser(mapper, instance, clause=None):
"""shard chooser.
looks at the given instance and returns a shard id
note that we need to define conditions for
the WeatherLocation class, as well as our secondary Report class which will
point back to its WeatherLocation via its 'location' attribute.
"""
if isinstance(instance, WeatherLocation):
return shard_lookup[instance.continent]
else:
return shard_chooser(mapper, instance.location)
def id_chooser(query, ident):
"""id chooser.
given a primary key, returns a list of shards
to search. here, we don't have any particular information from a
pk so we just return all shard ids. often, youd want to do some
kind of round-robin strategy here so that requests are evenly
distributed among DBs.
"""
return ['north_america', 'asia', 'europe', 'south_america']
def query_chooser(query):
"""query chooser.
this also returns a list of shard ids, which can
just be all of them. but here we'll search into the Query in order
to try to narrow down the list of shards to query.
"""
ids = []
# we'll grab continent names as we find them
# and convert to shard ids
for column, operator, value in _get_query_comparisons(query):
# "shares_lineage()" returns True if both columns refer to the same
# statement column, adjusting for any annotations present.
# (an annotation is an internal clone of a Column object
# and occur when using ORM-mapped attributes like
# "WeatherLocation.continent"). A simpler comparison, though less accurate,
# would be "column.key == 'continent'".
if column.shares_lineage(weather_locations.c.continent):
if operator == operators.eq:
ids.append(shard_lookup[value])
elif operator == operators.in_op:
ids.extend(shard_lookup[v] for v in value)
if len(ids) == 0:
return ['north_america', 'asia', 'europe', 'south_america']
else:
return ids
def _get_query_comparisons(query):
"""Search an orm.Query object for binary expressions.
Returns expressions which match a Column against one or more
literal values as a list of tuples of the form
(column, operator, values). "values" is a single value
or tuple of values depending on the operator.
"""
binds = {}
clauses = set()
comparisons = []
def visit_bindparam(bind):
# visit a bind parameter. Below we ensure
# that we get the value whether it was specified
# as part of query.params(), or is directly embedded
# in the bind's "value" attribute.
value = query._params.get(bind.key, bind.value)
# some ORM functions place the bind's value as a
# callable for deferred evaulation. Get that
# actual value here.
if callable(value):
value = value()
binds[bind] = value
def visit_column(column):
clauses.add(column)
def visit_binary(binary):
# special handling for "col IN (params)"
if binary.left in clauses and \
binary.operator == operators.in_op and \
hasattr(binary.right, 'clauses'):
comparisons.append(
(binary.left, binary.operator,
tuple(binds[bind] for bind in binary.right.clauses)
)
)
elif binary.left in clauses and binary.right in binds:
comparisons.append(
(binary.left, binary.operator,binds[binary.right])
)
elif binary.left in binds and binary.right in clauses:
comparisons.append(
(binary.right, binary.operator,binds[binary.left])
)
# here we will traverse through the query's criterion, searching
# for SQL constructs. We will place simple column comparisons
# into a list.
if query._criterion is not None:
visitors.traverse_depthfirst(query._criterion, {},
{'bindparam':visit_bindparam,
'binary':visit_binary,
'column':visit_column
}
)
return comparisons
# further configure create_session to use these functions
create_session.configure(
shard_chooser=shard_chooser,
id_chooser=id_chooser,
query_chooser=query_chooser
)
# step 6. mapped classes.
class WeatherLocation(object):
def __init__(self, continent, city):
self.continent = continent
self.city = city
class Report(object):
def __init__(self, temperature):
self.temperature = temperature
# step 7. mappers
mapper(WeatherLocation, weather_locations, properties={
'reports':relationship(Report, backref='location')
})
mapper(Report, weather_reports)
# save and load objects!
tokyo = WeatherLocation('Asia', 'Tokyo')
newyork = WeatherLocation('North America', 'New York')
toronto = WeatherLocation('North America', 'Toronto')
london = WeatherLocation('Europe', 'London')
dublin = WeatherLocation('Europe', 'Dublin')
brasilia = WeatherLocation('South America', 'Brasila')
quito = WeatherLocation('South America', 'Quito')
tokyo.reports.append(Report(80.0))
newyork.reports.append(Report(75))
quito.reports.append(Report(85))
sess = create_session()
for c in [tokyo, newyork, toronto, london, dublin, brasilia, quito]:
sess.add(c)
sess.flush()
sess.expunge_all()
t = sess.query(WeatherLocation).get(tokyo.id)
assert t.city == tokyo.city
assert t.reports[0].temperature == 80.0
north_american_cities = sess.query(WeatherLocation).filter(WeatherLocation.continent == 'North America')
assert [c.city for c in north_american_cities] == ['New York', 'Toronto']
asia_and_europe = sess.query(WeatherLocation).filter(WeatherLocation.continent.in_(['Europe', 'Asia']))
assert set([c.city for c in asia_and_europe]) == set(['Tokyo', 'London', 'Dublin'])
|
the-stack_0_4243 | from setuptools import setup
import os
VERSION = "2.8.3"
def get_long_description():
with open(
os.path.join(os.path.dirname(os.path.abspath(__file__)), "README.md"),
encoding="utf8",
) as fp:
return fp.read()
setup(
name="github-to-sqlite",
description="Save data from GitHub to a SQLite database",
long_description=get_long_description(),
long_description_content_type="text/markdown",
author="Simon Willison",
url="https://github.com/dogsheep/github-to-sqlite",
license="Apache License, Version 2.0",
version=VERSION,
packages=["github_to_sqlite"],
entry_points="""
[console_scripts]
github-to-sqlite=github_to_sqlite.cli:cli
""",
install_requires=["sqlite-utils>=2.7.2", "requests", "PyYAML"],
extras_require={"test": ["pytest", "requests-mock", "bs4"]},
tests_require=["github-to-sqlite[test]"],
)
|
the-stack_0_4244 | class Team:
def __init__(self, NO):
self.NO = NO
self.fighter_list = None
self.order = None
# previous index of the order
self.fight_cnt = 0
@property
def fighter_list(self):
return self._fighter_list
@fighter_list.setter
def fighter_list(self, fighter_list):
self._fighter_list = fighter_list
def set_order(self, order):
self.order = []
for a_order in order:
self.order.append(int(a_order))
self.fight_cnt = 0
def get_next_fighter(self):
if self.fight_cnt >= len(self.order):
return None
prev_fighter_idx = self.order[self.fight_cnt]
fighter = None
for _fighter in self.fighter_list:
if _fighter.properties["NO"] == prev_fighter_idx:
fighter = _fighter
break
self.fight_cnt += 1
return fighter
|
the-stack_0_4245 | import asyncio
import logging
import signal
import sys
from functools import partial
from typing import Union, List, Callable, Tuple
import serial
from bleak import BleakClient
from serial_asyncio import open_serial_connection
from genki_wave.callbacks import WaveCallback
from genki_wave.constants import API_CHAR_UUID, BAUDRATE
from genki_wave.data.writing import get_start_api_package
from genki_wave.protocols import ProtocolAsyncio, ProtocolThread, CommunicateCancel
from genki_wave.utils import get_serial_port, get_or_create_event_loop
logging.basicConfig(format="%(levelname).4s:%(asctime)s [%(filename)s:%(lineno)d] - %(message)s ")
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def prepare_protocol_as_bleak_callback_asyncio(protocol: ProtocolAsyncio) -> Callable:
async def _inner(sender: str, data: bytearray) -> None:
# NOTE: `bleak` expects a function with this signature
await protocol.data_received(data)
return _inner
def prepare_protocol_as_bleak_callback(protocol: ProtocolThread) -> Callable:
def _inner(sender: str, data: bytearray) -> None:
# NOTE: `bleak` expects a function with this signature
protocol.data_received(data)
return _inner
def bleak_callback(protocol: ProtocolAsyncio) -> Callable:
"""Wraps our protocol as a callback with the correct signature bleak expects
NOTE: 1) Bleak checks if a function is a co-routine so we need to wrap the class method into an `async` function
and 2) we need to take care that `asyncio.Queue` is correctly handled so we have 2 different wrappers, one
for a regular `queue.Queue` and one for `asyncio.Queue`.
"""
if isinstance(protocol, ProtocolAsyncio):
callback = prepare_protocol_as_bleak_callback_asyncio(protocol)
elif isinstance(protocol, ProtocolThread):
callback = prepare_protocol_as_bleak_callback(protocol)
else:
raise ValueError(f"Unknown protocol type {type(protocol)}")
return callback
def make_disconnect_callback(comm: CommunicateCancel):
def cb(client):
if not comm.cancel:
print(f"Client {client.address} disconnected unexpectedly, exiting")
sys.exit(1)
return cb
async def producer_bluetooth(
protocol: Union[ProtocolAsyncio, ProtocolThread],
comm: CommunicateCancel,
ble_address: str,
) -> None:
"""Receives data from a serially connected wave ring and passes it to the `protocol`
Args:
protocol: An object that knows how to process the raw data sent from the Wave ring into a structured format
and passes it along between `producer` and `consumer`.
comm: An object that allows `producer` and `consumer` to communicate when to cancel the process
ble_address: Address of the bluetooth device to connect to. E.g. 'D5:73:DB:85:B4:A1'
Note:
The producer doesn't return a value, but the data gets added to the `protocol` that can be accessed from other
parts of the program i.e. some `consumer`
"""
print(f"Connecting to wave at address {ble_address}")
callback = bleak_callback(protocol)
async with BleakClient(ble_address, disconnected_callback=make_disconnect_callback(comm)) as client:
await client.start_notify(API_CHAR_UUID, callback)
await client.write_gatt_char(API_CHAR_UUID, get_start_api_package(), False)
print("Connected to Wave")
while True:
# This `while` loop and `asyncio.sleep` statement is some magic that is required to continually fetch
# the data from the bluetooth device.
await asyncio.sleep(0.1)
if comm.cancel:
print("Recieved a cancel signal, stopping ble client")
break
await client.stop_notify(API_CHAR_UUID)
async def producer_serial(protocol: ProtocolAsyncio, comm: CommunicateCancel, serial_port: str):
"""Receives data from a serially connected wave ring and passes it to the `protocol`
Args:
protocol: An object that knows how to process the raw data sent from the Wave ring into a structured format
and passes it along between `producer` and `consumer`.
comm: An object that allows `producer` and `consumer` to communicate when to cancel the process
serial_port: The serial port to read from
Note:
The producer doesn't return a value, but the data gets added to the `protocol` that can be accessed from other
parts of the program i.e. some `consumer`
"""
reader, writer = await open_serial_connection(url=serial_port, baudrate=BAUDRATE, parity=serial.PARITY_EVEN)
writer.write(get_start_api_package())
while True:
# The number of bytes read here is an arbitrary power of 2 on the order of a size of a single package
packet = await reader.read(n=128)
await protocol.data_received(packet)
if comm.cancel:
print("Recieved a cancel signal, stopping serial connection")
break
async def consumer(
protocol: ProtocolAsyncio,
comm: CommunicateCancel,
callbacks: Union[List[WaveCallback], Tuple[WaveCallback]],
) -> None:
"""Consumes the data from a producer via a protocol
Args:
protocol: An object that knows how to process the raw data sent from the Wave ring into a structured format
and passes it along between `producer` and `consumer`.
comm: An object that allows `producer` and `consumer` to communicate when to cancel the process
callbacks: A list/tuple of callbacks that handle the data passed from the wave ring when available
"""
while True:
package = await protocol.queue.get()
if comm.is_cancel(package) or comm.cancel:
print("Got a cancel message. Exiting consumer loop...")
comm.cancel = True
break
for callback in callbacks:
callback(package)
def make_sigint_handler(comm: CommunicateCancel):
"""Create a signal handler to cancel an asyncio loop using signals."""
def handler(*args):
comm.cancel = True
return handler
def _run_asyncio(
callbacks: List[WaveCallback], producer: Union[producer_bluetooth, producer_serial], protocol: ProtocolAsyncio
) -> None:
"""Runs a producer and a consumer, hooking into the data using the supplied callbacks
Args:
callbacks: See docs for `consumer`
producer: A callable that takes 2 arguments, a protocol and a communication object
protocol: An object that knows how to process the raw data sent from the Wave ring into a structured format
and passes it along between `producer` and `consumer`.
"""
# A singleton that sends messages about whether the data transfer has been canceled.
comm = CommunicateCancel()
loop = get_or_create_event_loop()
loop.add_signal_handler(signal.SIGINT, make_sigint_handler(comm))
# Note: The consumer and the producer send the data via the instance of `protocol`
tasks = asyncio.gather(producer(protocol, comm), consumer(protocol, comm, callbacks))
loop.run_until_complete(tasks)
def run_asyncio_bluetooth(callbacks: List[WaveCallback], ble_address) -> None:
"""Runs an async `consumer-producer` loop using user supplied callbacks for a bluetooth device
Args:
callbacks: A list/tuple of callbacks that handle the data passed from the wave ring
ble_address: Address of the bluetooth device to connect to. E.g. 'D5:73:DB:85:B4:A1'
"""
_run_asyncio(callbacks, partial(producer_bluetooth, ble_address=ble_address), ProtocolAsyncio())
def run_asyncio_serial(callbacks: List[WaveCallback], serial_port: str = None) -> None:
"""Runs an async `consumer-producer` loop using user supplied callbacks for a serial device
Args:
callbacks: A list/tuple of callbacks that handle the data passed from the wave ring
serial_port: The serial port to read from. If `None` will try to determine it automatically based on the
operating system the script is running on
"""
serial_port = get_serial_port() if serial_port is None else serial_port
_run_asyncio(callbacks, partial(producer_serial, serial_port=serial_port), ProtocolAsyncio())
|
the-stack_0_4246 | # Copyright 2018-2020 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains the mixin interface class for creating differentiable quantum tapes with
TensorFlow.
"""
# pylint: disable=protected-access, attribute-defined-outside-init
import numpy as np
import tensorflow as tf
try:
from tensorflow.python.eager.tape import should_record_backprop
except ImportError:
from tensorflow.python.eager.tape import should_record as should_record_backprop
from pennylane.tape.queuing import AnnotatedQueue
class TFInterface(AnnotatedQueue):
"""Mixin class for applying an TensorFlow interface to a :class:`~.JacobianTape`.
TensorFlow-compatible quantum tape classes can be created via subclassing:
.. code-block:: python
class MyTFQuantumTape(TFInterface, JacobianTape):
Alternatively, the TensorFlow interface can be dynamically applied to existing
quantum tapes via the :meth:`~.apply` class method. This modifies the
tape **in place**.
Once created, the TensorFlow interface can be used to perform quantum-classical
differentiable programming.
.. note::
If using a device that supports native TensorFlow computation and backpropagation, such as
:class:`~.DefaultQubitTF`, the TensorFlow interface **does not need to be applied**. It is
only applied to tapes executed on non-TensorFlow compatible devices.
**Example**
Once a TensorFlow quantum tape has been created, it can be differentiated using the gradient tape:
.. code-block:: python
dev = qml.device("default.qubit", wires=1)
p = tf.Variable([0.1, 0.2, 0.3], dtype=tf.float64)
with tf.GradientTape() as tape:
with TFInterface.apply(JacobianTape()) as qtape:
qml.Rot(p[0], p[1] ** 2 + p[0] * p[2], p[1] * tf.sin(p[2]), wires=0)
expval(qml.PauliX(0))
result = qtape.execute(dev)
>>> print(result)
tf.Tensor([0.06982072], shape=(1,), dtype=float64)
>>> grad = tape.gradient(result, p)
>>> print(grad)
tf.Tensor([0.29874274 0.39710271 0.09958091], shape=(3,), dtype=float64)
The TensorFlow interface defaults to ``tf.float64`` output. This can be modified by
providing the ``dtype`` argument when applying the interface:
>>> p = tf.Variable([0.1, 0.2, 0.3], dtype=tf.float32)
>>> with tf.GradientTape() as tape:
... TFInterface.apply(qtape, dtype=tf.float32) # reusing the previous qtape
... result = qtape.execute(dev)
>>> print(result)
tf.Tensor([0.06982072], shape=(1,), dtype=float32)
>>> grad = tape.gradient(result, p)
>>> print(grad)
tf.Tensor([0.2895088 0.38464668 0.09645163], shape=(3,), dtype=float32)
"""
dtype = tf.float64
@property
def interface(self): # pylint: disable=missing-function-docstring
return "tf"
def _update_trainable_params(self):
params = self.get_parameters(trainable_only=False)
trainable_params = set()
for idx, p in enumerate(params):
# Determine which input tensors/Variables are being recorded for backpropagation.
# The function should_record_backprop, documented here:
# https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/eager/tape.py#L167
# accepts lists of *Tensors* (not Variables), returning True if all are being watched by one or more
# existing gradient tapes, False if not.
if isinstance(p, (tf.Variable, tf.Tensor)) and should_record_backprop(
# we need to convert any Variable objects to Tensors here, otherwise
# should_record_backprop will raise an error
[tf.convert_to_tensor(p)]
):
trainable_params.add(idx)
self.trainable_params = trainable_params
@staticmethod
def convert_to_numpy(tensors):
"""Converts any TensorFlow tensors in a sequence to NumPy arrays.
Args:
tensors (Sequence[Any, tf.Variable, tf.Tensor]): input sequence
Returns:
list[Any, array]: list with all tensors converted to NumPy arrays
"""
return [i.numpy() if isinstance(i, (tf.Variable, tf.Tensor)) else i for i in tensors]
@tf.custom_gradient
def _execute(self, params, **input_kwargs):
# unwrap free parameters
args = self.convert_to_numpy(params)
# unwrap constant parameters
all_params = self.get_parameters(trainable_only=False)
all_params_unwrapped = self.convert_to_numpy(all_params)
self.set_parameters(all_params_unwrapped, trainable_only=False)
res = self.execute_device(args, input_kwargs["device"])
self.set_parameters(all_params, trainable_only=False)
def grad(grad_output, **tfkwargs):
variables = tfkwargs.get("variables", None)
self.set_parameters(all_params_unwrapped, trainable_only=False)
jacobian = self.jacobian(input_kwargs["device"], params=args, **self.jacobian_options)
self.set_parameters(all_params, trainable_only=False)
jacobian = tf.constant(jacobian, dtype=self.dtype)
# Reshape gradient output array as a 2D row-vector.
grad_output_row = tf.reshape(grad_output, [1, -1])
# Calculate the vector-Jacobian matrix product, and unstack the output.
grad_input = tf.matmul(grad_output_row, jacobian)
grad_input = tf.unstack(tf.reshape(grad_input, [-1]))
if variables is not None:
return grad_input, variables
return grad_input
if res.dtype == np.dtype("object"):
res = np.hstack(res)
return tf.convert_to_tensor(res, dtype=self.dtype), grad
@classmethod
def apply(cls, tape, dtype=tf.float64):
"""Apply the TensorFlow interface to an existing tape in-place.
Args:
tape (.JacobianTape): a quantum tape to apply the TF interface to
dtype (tf.dtype): the dtype that the returned quantum tape should
output
**Example**
>>> with JacobianTape() as tape:
... qml.RX(0.5, wires=0)
... expval(qml.PauliZ(0))
>>> TFInterface.apply(tape)
>>> tape
<TFQuantumTape: wires=<Wires = [0]>, params=1>
"""
tape_class = getattr(tape, "__bare__", tape.__class__)
tape.__bare__ = tape_class
tape.__class__ = type("TFQuantumTape", (cls, tape_class), {"dtype": dtype})
tape._update_trainable_params()
return tape
|
the-stack_0_4248 | # Copyright (c) Microsoft Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import pytest
from playwright.async_api import Error, Page
from tests.server import Server
async def test_evaluate_handle(page, server):
await page.goto(server.EMPTY_PAGE)
main_frame = page.main_frame
assert main_frame.page == page
window_handle = await main_frame.evaluate_handle("window")
assert window_handle
async def test_frame_element(page, server, utils):
await page.goto(server.EMPTY_PAGE)
frame1 = await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
await utils.attach_frame(page, "frame2", server.EMPTY_PAGE)
frame3 = await utils.attach_frame(page, "frame3", server.EMPTY_PAGE)
frame1handle1 = await page.query_selector("#frame1")
frame1handle2 = await frame1.frame_element()
frame3handle1 = await page.query_selector("#frame3")
frame3handle2 = await frame3.frame_element()
assert await frame1handle1.evaluate("(a, b) => a === b", frame1handle2)
assert await frame3handle1.evaluate("(a, b) => a === b", frame3handle2)
assert await frame1handle1.evaluate("(a, b) => a === b", frame3handle1) is False
async def test_frame_element_with_content_frame(page, server, utils):
await page.goto(server.EMPTY_PAGE)
frame = await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
handle = await frame.frame_element()
content_frame = await handle.content_frame()
assert content_frame == frame
async def test_frame_element_throw_when_detached(page, server, utils):
await page.goto(server.EMPTY_PAGE)
frame1 = await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
await page.eval_on_selector("#frame1", "e => e.remove()")
error = None
try:
await frame1.frame_element()
except Error as e:
error = e
assert error.message == "Frame has been detached."
async def test_evaluate_throw_for_detached_frames(page, server, utils):
frame1 = await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
await utils.detach_frame(page, "frame1")
error = None
try:
await frame1.evaluate("7 * 8")
except Error as e:
error = e
assert "Execution Context is not available in detached frame" in error.message
async def test_evaluate_isolated_between_frames(page, server, utils):
await page.goto(server.EMPTY_PAGE)
await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
assert len(page.frames) == 2
[frame1, frame2] = page.frames
assert frame1 != frame2
await asyncio.gather(
frame1.evaluate("window.a = 1"), frame2.evaluate("window.a = 2")
)
[a1, a2] = await asyncio.gather(
frame1.evaluate("window.a"), frame2.evaluate("window.a")
)
assert a1 == 1
assert a2 == 2
async def test_should_handle_nested_frames(page, server, utils):
await page.goto(server.PREFIX + "/frames/nested-frames.html")
assert utils.dump_frames(page.main_frame) == [
"http://localhost:<PORT>/frames/nested-frames.html",
" http://localhost:<PORT>/frames/frame.html (aframe)",
" http://localhost:<PORT>/frames/two-frames.html (2frames)",
" http://localhost:<PORT>/frames/frame.html (dos)",
" http://localhost:<PORT>/frames/frame.html (uno)",
]
async def test_should_send_events_when_frames_are_manipulated_dynamically(
page, server, utils
):
await page.goto(server.EMPTY_PAGE)
# validate frameattached events
attached_frames = []
page.on("frameattached", lambda frame: attached_frames.append(frame))
await utils.attach_frame(page, "frame1", "./assets/frame.html")
assert len(attached_frames) == 1
assert "/assets/frame.html" in attached_frames[0].url
# validate framenavigated events
navigated_frames = []
page.on("framenavigated", lambda frame: navigated_frames.append(frame))
await page.evaluate(
"""() => {
frame = document.getElementById('frame1')
frame.src = './empty.html'
return new Promise(x => frame.onload = x)
}"""
)
assert len(navigated_frames) == 1
assert navigated_frames[0].url == server.EMPTY_PAGE
# validate framedetached events
detached_frames = []
page.on("framedetached", lambda frame: detached_frames.append(frame))
await utils.detach_frame(page, "frame1")
assert len(detached_frames) == 1
assert detached_frames[0].is_detached()
async def test_framenavigated_when_navigating_on_anchor_urls(page, server):
await page.goto(server.EMPTY_PAGE)
async with page.expect_event("framenavigated"):
await page.goto(server.EMPTY_PAGE + "#foo")
assert page.url == server.EMPTY_PAGE + "#foo"
async def test_persist_main_frame_on_cross_process_navigation(page, server):
await page.goto(server.EMPTY_PAGE)
main_frame = page.main_frame
await page.goto(server.CROSS_PROCESS_PREFIX + "/empty.html")
assert page.main_frame == main_frame
async def test_should_not_send_attach_detach_events_for_main_frame(page, server):
has_events = []
page.on("frameattached", lambda frame: has_events.append(True))
page.on("framedetached", lambda frame: has_events.append(True))
await page.goto(server.EMPTY_PAGE)
assert has_events == []
async def test_detach_child_frames_on_navigation(page, server):
attached_frames = []
detached_frames = []
navigated_frames = []
page.on("frameattached", lambda frame: attached_frames.append(frame))
page.on("framedetached", lambda frame: detached_frames.append(frame))
page.on("framenavigated", lambda frame: navigated_frames.append(frame))
await page.goto(server.PREFIX + "/frames/nested-frames.html")
assert len(attached_frames) == 4
assert len(detached_frames) == 0
assert len(navigated_frames) == 5
attached_frames = []
detached_frames = []
navigated_frames = []
await page.goto(server.EMPTY_PAGE)
assert len(attached_frames) == 0
assert len(detached_frames) == 4
assert len(navigated_frames) == 1
async def test_framesets(page, server):
attached_frames = []
detached_frames = []
navigated_frames = []
page.on("frameattached", lambda frame: attached_frames.append(frame))
page.on("framedetached", lambda frame: detached_frames.append(frame))
page.on("framenavigated", lambda frame: navigated_frames.append(frame))
await page.goto(server.PREFIX + "/frames/frameset.html")
assert len(attached_frames) == 4
assert len(detached_frames) == 0
assert len(navigated_frames) == 5
attached_frames = []
detached_frames = []
navigated_frames = []
await page.goto(server.EMPTY_PAGE)
assert len(attached_frames) == 0
assert len(detached_frames) == 4
assert len(navigated_frames) == 1
async def test_frame_from_inside_shadow_dom(page, server):
await page.goto(server.PREFIX + "/shadow.html")
await page.evaluate(
"""async url => {
frame = document.createElement('iframe');
frame.src = url;
document.body.shadowRoot.appendChild(frame);
await new Promise(x => frame.onload = x);
}""",
server.EMPTY_PAGE,
)
assert len(page.frames) == 2
assert page.frames[1].url == server.EMPTY_PAGE
async def test_frame_name(page, server, utils):
await utils.attach_frame(page, "theFrameId", server.EMPTY_PAGE)
await page.evaluate(
"""url => {
frame = document.createElement('iframe');
frame.name = 'theFrameName';
frame.src = url;
document.body.appendChild(frame);
return new Promise(x => frame.onload = x);
}""",
server.EMPTY_PAGE,
)
assert page.frames[0].name == ""
assert page.frames[1].name == "theFrameId"
assert page.frames[2].name == "theFrameName"
async def test_frame_parent(page, server, utils):
await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
await utils.attach_frame(page, "frame2", server.EMPTY_PAGE)
assert page.frames[0].parent_frame is None
assert page.frames[1].parent_frame == page.main_frame
assert page.frames[2].parent_frame == page.main_frame
async def test_should_report_different_frame_instance_when_frame_re_attaches(
page, server, utils
):
frame1 = await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
await page.evaluate(
"""() => {
window.frame = document.querySelector('#frame1')
window.frame.remove()
}"""
)
assert frame1.is_detached()
async with page.expect_event("frameattached") as frame2_info:
await page.evaluate("() => document.body.appendChild(window.frame)")
frame2 = await frame2_info.value
assert frame2.is_detached() is False
assert frame1 != frame2
async def test_strict_mode(page: Page, server: Server):
await page.goto(server.EMPTY_PAGE)
await page.set_content(
"""
<button>Hello</button>
<button>Hello</button>
"""
)
with pytest.raises(Error):
await page.text_content("button", strict=True)
with pytest.raises(Error):
await page.query_selector("button", strict=True)
|
the-stack_0_4249 | # -*- coding: utf-8 -*-
"""
werkzeug
~~~~~~~~
Werkzeug is the Swiss Army knife of Python web development.
It provides useful classes and functions for any WSGI application to make
the life of a python web developer much easier. All of the provided
classes are independent from each other so you can mix it with any other
library.
:copyright: 2007 Pallets
:license: BSD-3-Clause
"""
import sys
from types import ModuleType
__version__ = "0.15.4"
# This import magic raises concerns quite often which is why the implementation
# and motivation is explained here in detail now.
#
# The majority of the functions and classes provided by Werkzeug work on the
# HTTP and WSGI layer. There is no useful grouping for those which is why
# they are all importable from "werkzeug" instead of the modules where they are
# implemented. The downside of that is, that now everything would be loaded at
# once, even if unused.
#
# The implementation of a lazy-loading module in this file replaces the
# werkzeug package when imported from within. Attribute access to the werkzeug
# module will then lazily import from the modules that implement the objects.
# import mapping to objects in other modules
all_by_module = {
"werkzeug.debug": ["DebuggedApplication"],
"werkzeug.local": [
"Local",
"LocalManager",
"LocalProxy",
"LocalStack",
"release_local",
],
"werkzeug.serving": ["run_simple"],
"werkzeug.test": ["Client", "EnvironBuilder", "create_environ", "run_wsgi_app"],
"werkzeug.testapp": ["test_app"],
"werkzeug.exceptions": ["abort", "Aborter"],
"werkzeug.urls": [
"url_decode",
"url_encode",
"url_quote",
"url_quote_plus",
"url_unquote",
"url_unquote_plus",
"url_fix",
"Href",
"iri_to_uri",
"uri_to_iri",
],
"werkzeug.formparser": ["parse_form_data"],
"werkzeug.utils": [
"escape",
"environ_property",
"append_slash_redirect",
"redirect",
"cached_property",
"import_string",
"dump_cookie",
"parse_cookie",
"unescape",
"format_string",
"find_modules",
"header_property",
"html",
"xhtml",
"HTMLBuilder",
"validate_arguments",
"ArgumentValidationError",
"bind_arguments",
"secure_filename",
],
"werkzeug.wsgi": [
"get_current_url",
"get_host",
"pop_path_info",
"peek_path_info",
"ClosingIterator",
"FileWrapper",
"make_line_iter",
"LimitedStream",
"responder",
"wrap_file",
"extract_path_info",
],
"werkzeug.datastructures": [
"MultiDict",
"CombinedMultiDict",
"Headers",
"EnvironHeaders",
"ImmutableList",
"ImmutableDict",
"ImmutableMultiDict",
"TypeConversionDict",
"ImmutableTypeConversionDict",
"Accept",
"MIMEAccept",
"CharsetAccept",
"LanguageAccept",
"RequestCacheControl",
"ResponseCacheControl",
"ETags",
"HeaderSet",
"WWWAuthenticate",
"Authorization",
"FileMultiDict",
"CallbackDict",
"FileStorage",
"OrderedMultiDict",
"ImmutableOrderedMultiDict",
],
"werkzeug.useragents": ["UserAgent"],
"werkzeug.http": [
"parse_etags",
"parse_date",
"http_date",
"cookie_date",
"parse_cache_control_header",
"is_resource_modified",
"parse_accept_header",
"parse_set_header",
"quote_etag",
"unquote_etag",
"generate_etag",
"dump_header",
"parse_list_header",
"parse_dict_header",
"parse_authorization_header",
"parse_www_authenticate_header",
"remove_entity_headers",
"is_entity_header",
"remove_hop_by_hop_headers",
"parse_options_header",
"dump_options_header",
"is_hop_by_hop_header",
"unquote_header_value",
"quote_header_value",
"HTTP_STATUS_CODES",
],
"werkzeug.wrappers": [
"BaseResponse",
"BaseRequest",
"Request",
"Response",
"AcceptMixin",
"ETagRequestMixin",
"ETagResponseMixin",
"ResponseStreamMixin",
"CommonResponseDescriptorsMixin",
"UserAgentMixin",
"AuthorizationMixin",
"WWWAuthenticateMixin",
"CommonRequestDescriptorsMixin",
],
"werkzeug.middleware.dispatcher": ["DispatcherMiddleware"],
"werkzeug.middleware.shared_data": ["SharedDataMiddleware"],
"werkzeug.security": ["generate_password_hash", "check_password_hash"],
# the undocumented easteregg ;-)
"werkzeug._internal": ["_easteregg"],
}
# modules that should be imported when accessed as attributes of werkzeug
attribute_modules = frozenset(["exceptions", "routing"])
object_origins = {}
for module, items in all_by_module.items():
for item in items:
object_origins[item] = module
class module(ModuleType):
"""Automatically import objects from the modules."""
def __getattr__(self, name):
if name in object_origins:
module = __import__(object_origins[name], None, None, [name])
for extra_name in all_by_module[module.__name__]:
setattr(self, extra_name, getattr(module, extra_name))
return getattr(module, name)
elif name in attribute_modules:
__import__("werkzeug." + name)
return ModuleType.__getattribute__(self, name)
def __dir__(self):
"""Just show what we want to show."""
result = list(new_module.__all__)
result.extend(
(
"__file__",
"__doc__",
"__all__",
"__docformat__",
"__name__",
"__path__",
"__package__",
"__version__",
)
)
return result
# keep a reference to this module so that it's not garbage collected
old_module = sys.modules["werkzeug"]
# setup the new module and patch it into the dict of loaded modules
new_module = sys.modules["werkzeug"] = module("werkzeug")
new_module.__dict__.update(
{
"__file__": __file__,
"__package__": "werkzeug",
"__path__": __path__,
"__doc__": __doc__,
"__version__": __version__,
"__all__": tuple(object_origins) + tuple(attribute_modules),
"__docformat__": "restructuredtext en",
}
)
# Due to bootstrapping issues we need to import exceptions here.
# Don't ask :-(
__import__("werkzeug.exceptions")
|
the-stack_0_4255 | from django.contrib.auth.models import AnonymousUser
from core.models.group import get_user_group
from core.models.project import Project
from rest_framework import serializers
class ProjectsField(serializers.Field):
def to_representation(self, project_mgr):
request_user = self.parent.request_user
if isinstance(request_user, AnonymousUser):
return None
try:
group = get_user_group(request_user.username)
projects = project_mgr.filter(owner=group)
# Modifications to how 'project' should be displayed here:
return [p.uuid for p in projects]
except Project.DoesNotExist:
return None
def to_internal_value(self, data, files, field_name, into):
value = data.get(field_name)
if value is None:
return
related_obj = self.parent.instance
user = self.parent.request_user
group = get_user_group(user.username)
# Retrieve the New Project(s)
if isinstance(value, list):
project_id = value[0]
else:
project_id = value
new_project = Project.objects.get(id=project_id, owner=group)
related_obj.project = new_project
related_obj.save()
# Modifications to how 'project' should be displayed here:
into[field_name] = project_id
|
the-stack_0_4258 | from __future__ import absolute_import
import urlparse
import boto3
class S3DirectoryGenerator(object):
def __init__(self, s3_url):
parsed_s3_url = urlparse.urlparse(s3_url)
if parsed_s3_url.scheme != 's3':
raise SyntaxError('Invalid S3 scheme')
self.bucket_name = parsed_s3_url.netloc
self.bucket_path = parsed_s3_url.path[1:] if parsed_s3_url.path.startswith('/') else parsed_s3_url.path
bucket_path_split = self.bucket_path.split('/')
try:
client = boto3.client('s3')
region = client.get_bucket_location(Bucket=self.bucket_name)['LocationConstraint']
except:
region=None
s3_connection = boto3.resource('s3', region_name=region)
self.bucket = s3_connection.Bucket(self.bucket_name)
if bucket_path_split[-1] == '':
# directory listing
self.strip_length = len(self.bucket_path)
else:
# prefix listing
self.strip_length = len('/'.join(bucket_path_split[:-1]))
def __iter__(self):
return self.generator()
def generator(self):
for o in self.bucket.objects.filter(Prefix=self.bucket_path):
key = o.key[self.strip_length:]
# S3 doesn't really have a concept of dirs. The convention is '/' is path separator, we do the same
path = key.split('/')
if path[0] == '' and not self.bucket_path.endswith('/'):
# we assume the S3 prefix is a directory that wasn't terminated with a '/'
path.pop(0)
yield (path, o.size)
|
the-stack_0_4259 | # qubit number=4
# total number=40
import cirq
import qiskit
from qiskit import IBMQ
from qiskit.providers.ibmq import least_busy
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit import BasicAer, execute, transpile
from pprint import pprint
from qiskit.test.mock import FakeVigo
from math import log2
import numpy as np
import networkx as nx
def bitwise_xor(s: str, t: str) -> str:
length = len(s)
res = []
for i in range(length):
res.append(str(int(s[i]) ^ int(t[i])))
return ''.join(res[::-1])
def bitwise_dot(s: str, t: str) -> str:
length = len(s)
res = 0
for i in range(length):
res += int(s[i]) * int(t[i])
return str(res % 2)
def build_oracle(n: int, f) -> QuantumCircuit:
# implement the oracle O_f
# NOTE: use multi_control_toffoli_gate ('noancilla' mode)
# https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html
# https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates
# https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate
controls = QuantumRegister(n, "ofc")
target = QuantumRegister(1, "oft")
oracle = QuantumCircuit(controls, target, name="Of")
for i in range(2 ** n):
rep = np.binary_repr(i, n)
if f(rep) == "1":
for j in range(n):
if rep[j] == "0":
oracle.x(controls[j])
oracle.mct(controls, target[0], None, mode='noancilla')
for j in range(n):
if rep[j] == "0":
oracle.x(controls[j])
# oracle.barrier()
return oracle
def make_circuit(n:int,f) -> QuantumCircuit:
# circuit begin
input_qubit = QuantumRegister(n,"qc")
classical = ClassicalRegister(n, "qm")
prog = QuantumCircuit(input_qubit, classical)
prog.h(input_qubit[3]) # number=19
prog.cz(input_qubit[0],input_qubit[3]) # number=20
prog.h(input_qubit[3]) # number=21
prog.cx(input_qubit[0],input_qubit[3]) # number=23
prog.x(input_qubit[3]) # number=24
prog.cx(input_qubit[0],input_qubit[3]) # number=25
prog.cx(input_qubit[0],input_qubit[3]) # number=17
prog.rx(-0.48380526865282825,input_qubit[3]) # number=26
prog.h(input_qubit[1]) # number=2
prog.y(input_qubit[3]) # number=18
prog.h(input_qubit[2]) # number=3
prog.h(input_qubit[3]) # number=4
prog.y(input_qubit[3]) # number=12
prog.h(input_qubit[0]) # number=5
oracle = build_oracle(n-1, f)
prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]])
prog.h(input_qubit[1]) # number=6
prog.h(input_qubit[2]) # number=7
prog.h(input_qubit[1]) # number=34
prog.cz(input_qubit[0],input_qubit[1]) # number=35
prog.h(input_qubit[1]) # number=36
prog.cx(input_qubit[0],input_qubit[1]) # number=31
prog.cx(input_qubit[0],input_qubit[1]) # number=37
prog.x(input_qubit[1]) # number=38
prog.cx(input_qubit[0],input_qubit[1]) # number=39
prog.cx(input_qubit[0],input_qubit[1]) # number=33
prog.cx(input_qubit[0],input_qubit[1]) # number=30
prog.h(input_qubit[3]) # number=8
prog.h(input_qubit[0]) # number=9
prog.y(input_qubit[2]) # number=10
prog.x(input_qubit[2]) # number=22
prog.y(input_qubit[2]) # number=11
prog.x(input_qubit[0]) # number=13
prog.x(input_qubit[0]) # number=14
# circuit end
for i in range(n):
prog.measure(input_qubit[i], classical[i])
return prog
if __name__ == '__main__':
a = "111"
b = "0"
f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b)
prog = make_circuit(4,f)
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
provider.backends()
backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational == True))
sample_shot =8000
info = execute(prog, backend=backend, shots=sample_shot).result().get_counts()
backend = FakeVigo()
circuit1 = transpile(prog,backend,optimization_level=2)
writefile = open("../data/startQiskit_QC2762.csv","w")
print(info,file=writefile)
print("results end", file=writefile)
print(circuit1.__len__(),file=writefile)
print(circuit1,file=writefile)
writefile.close()
|
the-stack_0_4260 | import json
import random
import sys
from allennlp_reasoning_explainqa.common.constants import CORRECT_OPTION_TAG
from allennlp_reasoning_explainqa.training.metrics.confusion_matrix import (
F1MeasureCustomRetrievalEval,
)
from allennlp_reasoning_explainqa.training.metrics.explanation_eval import (
ExplanationEval,
)
# Sets random seed to a nothing-up-my-sleeve number so that we have
# deterministic evaluation scores.
random.seed(12345)
# Sets random seed to a nothing-up-my-sleeve number so that we have
# deterministic evaluation scores.
random.seed(12345)
def evaluate(prediction_filename, label_filename):
chainid_to_label = json.load(open(label_filename, "r"))
chain_count = len(chainid_to_label)
predictions_lines = open(prediction_filename, "r").readlines()
predictions = [json.loads(row) for row in predictions_lines]
prediction_count = len(predictions)
if chain_count != prediction_count:
print(
f"Label file {label_filename} has {chain_count} chains, but prediction file {prediction_filename} has {prediction_count} predictions. These must be equal."
)
sys.exit(1)
f1eval = F1MeasureCustomRetrievalEval(pos_label=1)
explanation_eval = ExplanationEval()
chain_ids_covered = []
cnt = 0
for row in predictions:
assert "score" in row, "Prediction should contain field score"
assert "chain_id" in row, "Prediction should contain field chain_id"
score = row["score"]
chain_id = row["chain_id"]
qid = chain_id.strip().split("_")[0]
print("qid,chain_id,score = ", qid, chain_id, score)
gtlabel = chainid_to_label[chain_id]
f1eval(int(gtlabel), score)
explanation_eval(qid, CORRECT_OPTION_TAG, int(gtlabel), score)
chain_ids_covered.append(chain_id)
cnt += 1
assert len(chain_ids_covered) == len(
chainid_to_label
), "Found {} chains but expected {} chains".format(
len(chain_ids_covered), len(chainid_to_label)
)
binclf_performance = f1eval.get_metric(reset=True)
print("f1.get_metric() = ", binclf_performance)
explanation_performance = explanation_eval.get_metric(reset=True)
print("explanation_eval.get_metric() = ", explanation_performance)
final_metrics = {
"auc_roc": binclf_performance["auc_roc"],
"explainP1": explanation_performance["explainP1"],
"explainNDCG": explanation_performance["explainNDCG"],
}
print("=" * 32)
print(": auc_roc = ", binclf_performance["auc_roc"])
print(": P1 = ", explanation_performance["explainP1"])
print(": explainNDCG = ", explanation_performance["explainNDCG"])
print("=" * 32)
return final_metrics
if __name__ == "__main__":
prediction_filename = sys.argv[1]
label_filename = sys.argv[2]
metrics_filename = sys.argv[3]
print(
f"Evaluating prediction file {prediction_filename} with label file {label_filename}"
)
metrics = evaluate(prediction_filename, label_filename)
print(f"Writing final metrics to file: {metrics_filename}")
json.dump(metrics, open(metrics_filename, "w"))
|
the-stack_0_4261 | import matplotlib.pyplot as plt
import pandas as pd
from rich import pretty, print
from rich.progress import BarColumn, Progress
from sklearn.metrics import (
accuracy_score,
auc,
classification_report,
f1_score,
plot_confusion_matrix,
roc_auc_score,
roc_curve,
)
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import LabelBinarizer, LabelEncoder
import utils
def draw_roc(y_test, y_pred):
lb = LabelBinarizer()
lb.fit(y_test)
lb.classes_.tolist()
fpr = dict()
tpr = dict()
roc_auc = dict()
by_test = lb.transform(y_test)
by_pred = lb.transform(y_pred)
for i in range(4):
fpr[i], tpr[i], _ = roc_curve(by_test[:, i], by_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
roc_auc = roc_auc_score(by_test, by_pred, average=None)
plt.figure(figsize=(8, 5))
for i in range(4):
plt.plot(
fpr[i],
tpr[i],
label="%s ROC curve (area = %0.2f)" % (lb.classes_.tolist()[i], roc_auc[i]),
)
plt.plot([0, 1], [0, 1], "k--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.title("Single Hidden Layer Neural Network Roc-Curve")
plt.xlabel("False Positive Rate", fontsize=10)
plt.ylabel("True Positive Rate", fontsize=10)
plt.tick_params(axis="both", which="major", labelsize=12)
plt.legend(loc="lower right", fontsize=7, frameon=False)
plt.show()
def draw_confusion_matrix(Clf, X, y):
titles_options = [
("Confusion matrix, without normalization", None),
("Neural network confusion matrix", "true"),
]
# colors: Wistia too yellow
for title, normalize in titles_options:
disp = plot_confusion_matrix(Clf, X, y, cmap="PuBuGn", normalize=normalize)
disp.ax_.set_title(title)
plt.show()
def execute_and_report(learn_rate, acti, current_params):
clf = MLPClassifier(
activation=acti,
learning_rate_init=learn_rate,
random_state=5213890,
hidden_layer_sizes=current_params,
)
clf.fit(train_x, train_y)
# Apply on the training set
print("Training set:")
y_pred = clf.predict(train_x)
print(classification_report(train_y, y_pred))
# Apply on the test set and evaluate the performance
y_pred = clf.predict(test_x)
print("Test set:")
print(classification_report(test_y, y_pred))
acc = accuracy_score(test_y, y_pred) * 100
f1 = f1_score(test_y, y_pred, average="weighted") * 100
# draw draw
draw_confusion_matrix(clf, test_x, test_y)
draw_roc(test_y, y_pred)
# plt.plot(clf.loss_curve_)
# plt.show()
# report
return {
"Params": f"{acti}, {learn_rate}, {current_params}",
"accuracy %": round(acc, 2),
"F1 weighted %": round(f1, 2),
}
pretty.install()
pd.set_option("display.max_rows", None)
# DATASET
train_x, train_y, test_x, test_y = utils.load_tracks_xyz(
buckets="discrete", extractclass=("album", "type"), splits=2
).values()
# feature to reshape
label_encoders = dict()
column2encode = [
("track", "language_code"),
("album", "listens"),
("track", "license"),
("album", "comments"),
("album", "date_created"),
("album", "favorites"),
("artist", "comments"),
("artist", "date_created"),
("artist", "favorites"),
("track", "comments"),
("track", "date_created"),
("track", "duration"),
("track", "favorites"),
("track", "interest"),
("track", "listens"),
]
for col in column2encode:
le = LabelEncoder()
le.fit(test_x[col])
train_x[col] = le.fit_transform(train_x[col])
test_x[col] = le.fit_transform(test_x[col])
label_encoders[col] = le
le = LabelEncoder()
le.fit(train_y)
test_y = le.fit_transform(test_y)
train_y = le.fit_transform(train_y)
class_name = ("album", "type")
# Preparation
count = 0
reports = pd.DataFrame(columns=["Params", "accuracy %", "F1 weighted %"])
params = [
{
"activations": "identity",
"learning_rate_inits": 0.001,
"hidden_layer_sizes": (40, 40),
},
{
"activations": "identity",
"learning_rate_inits": 0.001,
"hidden_layer_sizes": (40, 20, 8),
# old single layer "learning_rate_inits": 0.02,
# old single layer "hidden_layer_sizes": (40,),
},
]
testing_params = [params[-1]]
activations = ["identity", "logistic", "tanh", "relu"]
learning_rate_inits = [0.01, 0.001, 0.02]
# progress reporting init
progress = Progress(
"[progress.description]{task.description}",
BarColumn(),
"[progress.percentage]{task.percentage:>3.0f}%",
"{task.completed} of {task.total}",
)
with progress:
# adjust len if needed
task_layers = progress.add_task("[red]Building…", total=len(params) * 2)
for best_params in params:
learn_rate = best_params["learning_rate_inits"]
acti = best_params["activations"]
hidd = best_params["hidden_layer_sizes"]
row = execute_and_report(learn_rate, acti, hidd)
reports = reports.append(row, ignore_index=True)
count += 1
progress.advance(task_layers)
# ------- switch up datasets: put in the 10-feature dataframe
train_x, train_y, test_x, test_y = utils.load_tracks_xyz(
buckets="discrete", extractclass=("album", "type"), splits=2, small=True
).values()
# feature to reshape
label_encoders = dict()
column2encode = [
("track", "duration"),
("track", "interest"),
("track", "listens"),
]
for col in column2encode:
le = LabelEncoder()
le.fit(test_x[col])
train_x[col] = le.fit_transform(train_x[col])
test_x[col] = le.fit_transform(test_x[col])
label_encoders[col] = le
le = LabelEncoder()
le.fit(train_y)
test_y = le.fit_transform(test_y)
train_y = le.fit_transform(train_y)
class_name = ("album", "type")
# rerun neural networks
for best_params in params:
learn_rate = best_params["learning_rate_inits"]
acti = best_params["activations"]
hidd = best_params["hidden_layer_sizes"]
row = execute_and_report(learn_rate, acti, hidd)
reports = reports.append(row, ignore_index=True)
count += 1
progress.advance(task_layers)
# end switching up datasets -------
# results
print(reports.sort_values(by=["accuracy %", "F1 weighted %"], ascending=False))
print(f"I have built {count} neural networks")
|
the-stack_0_4262 | import secrets;
from app import app;
from .rvp import pvr;
from .algo import final;
from flask import render_template, request, redirect, flash
@app.route("/", methods=["GET","POST"])
def index():
secret_key=secrets.token_hex(16)
app.config["SECRET_KEY"]=secret_key
if(request.method=="POST"):
req=request.form
percentile=req["percentile"]
rank=req["rank"]
state=req["state"]
pwd=req["pwd"]
gender=req["gender"]
category=req["category"]
sortby=str(req["sortby"])
if(percentile=="" and rank==""):
flash("Please enter either your Rank or your Percentile",'error')
return redirect(request.url)
if(rank==""):
ranks=pvr(float(percentile),pwd,category);
ranks=int(ranks);
if(ranks<=0):
ranks=2;
result=final(ranks,float(percentile),category,state,gender,pwd,sortby);
if(rank):
result=final(int(rank),percentile,category,state,gender,pwd,sortby);
ranks=rank;
return render_template("public/result.html",ranks=ranks,category=category,tables=[result.to_html(classes='data')], titles=result.columns.values)
return render_template("public/index.html")
|
the-stack_0_4263 | from __future__ import print_function
from builtins import object
from pyethapp.eth_protocol import ETHProtocol, TransientBlockBody
from devp2p.service import WiredService
from devp2p.protocol import BaseProtocol
from devp2p.app import BaseApp
from ethereum.tools import tester
import rlp
class PeerMock(object):
packets = []
config = dict()
def send_packet(self, packet):
self.packets.append(packet)
def setup():
peer = PeerMock()
proto = ETHProtocol(peer, WiredService(BaseApp()))
proto.service.app.config['eth'] = dict(network_id=1337)
chain = tester.Chain()
cb_data = []
def cb(proto, **data):
cb_data.append((proto, data))
return peer, proto, chain, cb_data, cb
def test_basics():
peer, proto, chain, cb_data, cb = setup()
assert isinstance(proto, BaseProtocol)
d = dict()
d[proto] = 1
assert proto in d
assert d[proto] == 1
assert not proto
proto.start()
assert proto
def test_status():
peer, proto, chain, cb_data, cb = setup()
genesis = head = chain.chain.get_descendants(chain.chain.get_block_by_number(0))[-1]
# test status
proto.send_status(
chain_difficulty=chain.chain.get_score(head),
chain_head_hash=head.hash,
genesis_hash=genesis.hash
)
packet = peer.packets.pop()
proto.receive_status_callbacks.append(cb)
proto._receive_status(packet)
_p, _d = cb_data.pop()
assert _p == proto
assert isinstance(_d, dict)
assert _d['chain_difficulty'] == chain.chain.get_score(head)
print(_d)
assert _d['chain_head_hash'] == head.hash
assert _d['genesis_hash'] == genesis.hash
assert 'eth_version' in _d
assert 'network_id' in _d
def test_blocks():
peer, proto, chain, cb_data, cb = setup()
# test blocks
chain.mine(number_of_blocks=2)
assert chain.block.number == 3
# monkey patch to make "blocks" attribute available
chain.blocks = chain.chain.get_descendants(chain.chain.get_block_by_number(0))
proto.send_blockbodies(*chain.blocks)
packet = peer.packets.pop()
assert len(rlp.decode(packet.payload)) == 3
def list_cb(proto, blocks): # different cb, as we expect a list of blocks
cb_data.append((proto, blocks))
proto.receive_blockbodies_callbacks.append(list_cb)
proto._receive_blockbodies(packet)
_p, blocks = cb_data.pop()
assert isinstance(blocks, tuple)
for block in blocks:
assert isinstance(block, TransientBlockBody)
assert isinstance(block.transactions, tuple)
assert isinstance(block.uncles, tuple)
# assert that transactions and uncles have not been decoded
assert len(block.transactions) == 0
assert len(block.uncles) == 0
# newblock
approximate_difficulty = chain.blocks[-1].difficulty * 3
proto.send_newblock(block=chain.blocks[-1], chain_difficulty=approximate_difficulty)
packet = peer.packets.pop()
proto.receive_newblock_callbacks.append(cb)
proto._receive_newblock(packet)
_p, _d = cb_data.pop()
assert 'block' in _d
assert 'chain_difficulty' in _d
assert _d['chain_difficulty'] == approximate_difficulty
assert _d['block'].header == chain.blocks[-1].header
assert isinstance(_d['block'].transactions, tuple)
assert isinstance(_d['block'].uncles, tuple)
# assert that transactions and uncles have not been decoded
assert len(_d['block'].transactions) == 0
assert len(_d['block'].uncles) == 0
|
the-stack_0_4264 | """Provide the Message class."""
from typing import TYPE_CHECKING, Any, Dict
from ...const import API_PATH
from .base import RedditBase
from .mixins import FullnameMixin, InboxableMixin, ReplyableMixin
from .redditor import Redditor
from .subreddit import Subreddit
if TYPE_CHECKING: # pragma: no cover
from ... import Reddit
class Message(InboxableMixin, ReplyableMixin, FullnameMixin, RedditBase):
"""A class for private messages.
**Typical Attributes**
This table describes attributes that typically belong to objects of this class.
Since attributes are dynamically provided (see
:ref:`determine-available-attributes-of-an-object`), there is not a guarantee that
these attributes will always be present, nor is this list necessarily complete.
======================= ============================================================
Attribute Description
======================= ============================================================
``author`` Provides an instance of :class:`.Redditor`.
``body`` The body of the message, as Markdown.
``body_html`` The body of the message, as HTML.
``created_utc`` Time the message was created, represented in
`Unix Time`_.
``dest`` Provides an instance of :class:`.Redditor`. The
recipient of the message.
``id`` The ID of the message.
``name`` The full ID of the message, prefixed with ``t4_``.
``subject`` The subject of the message.
``was_comment`` Whether or not the message was a comment reply.
======================= ============================================================
.. _Unix Time: https://en.wikipedia.org/wiki/Unix_time
"""
STR_FIELD = "id"
@classmethod
def parse(cls, data: Dict[str, Any], reddit: "Reddit"):
"""Return an instance of Message or SubredditMessage from ``data``.
:param data: The structured data.
:param reddit: An instance of :class:`.Reddit`.
"""
if data["author"]:
data["author"] = Redditor(reddit, data["author"])
if data["dest"].startswith("#"):
data["dest"] = Subreddit(reddit, data["dest"][1:])
else:
data["dest"] = Redditor(reddit, data["dest"])
if data["replies"]:
replies = data["replies"]
data["replies"] = reddit._objector.objectify(replies["data"]["children"])
else:
data["replies"] = []
if data["subreddit"]:
data["subreddit"] = Subreddit(reddit, data["subreddit"])
return SubredditMessage(reddit, _data=data)
return cls(reddit, _data=data)
@property
def _kind(self) -> str:
"""Return the class's kind."""
return self._reddit.config.kinds["message"]
def __init__(self, reddit: "Reddit", _data: Dict[str, Any]):
"""Construct an instance of the Message object."""
super().__init__(reddit, _data=_data)
self._fetched = True
def delete(self):
"""Delete the message.
.. note::
Reddit does not return an indication of whether or not the message was
successfully deleted.
For example, to delete the most recent message in your inbox:
.. code-block:: python
next(reddit.inbox.all()).delete()
"""
self._reddit.post(API_PATH["delete_message"], data={"id": self.fullname})
class SubredditMessage(Message):
"""A class for messages to a subreddit.
**Typical Attributes**
This table describes attributes that typically belong to objects of this class.
Since attributes are dynamically provided (see
:ref:`determine-available-attributes-of-an-object`), there is not a guarantee that
these attributes will always be present, nor is this list necessarily complete.
======================= ============================================================
Attribute Description
======================= ============================================================
``author`` Provides an instance of :class:`.Redditor`.
``body`` The body of the message, as Markdown.
``body_html`` The body of the message, as HTML.
``created_utc`` Time the message was created, represented in `Unix Time`_.
``dest`` Provides an instance of :class:`.Redditor`. The recipient of
the message.
``id`` The ID of the message.
``name`` The full ID of the message, prefixed with ``t4_``.
``subject`` The subject of the message.
``subreddit`` If the message was sent from a subreddit, provides an
instance of :class:`.Subreddit`.
``was_comment`` Whether or not the message was a comment reply.
======================= ============================================================
.. _Unix Time: https://en.wikipedia.org/wiki/Unix_time
"""
def mute(self):
"""Mute the sender of this SubredditMessage.
For example, to mute the sender of the first SubredditMessage in the
authenticated users' inbox:
.. code-block:: python
from praw.models import SubredditMessage
msg = next(
message for message in reddit.inbox.all() if isinstance(message, SubredditMessage)
)
msg.mute()
"""
self._reddit.post(API_PATH["mute_sender"], data={"id": self.fullname})
def unmute(self):
"""Unmute the sender of this SubredditMessage.
For example, to unmute the sender of the first SubredditMessage in the
authenticated users' inbox:
.. code-block:: python
from praw.models import SubredditMessage
msg = next(
message for message in reddit.inbox.all() if isinstance(message, SubredditMessage)
)
msg.unmute()
"""
self._reddit.post(API_PATH["unmute_sender"], data={"id": self.fullname})
|
the-stack_0_4265 | # Copyright 2013-2019 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
from spack import *
class Cmor(AutotoolsPackage):
"""Climate Model Output Rewriter is used to produce CF-compliant netCDF
files. The structure of the files created by the library and the metadata
they contain fulfill the requirements of many of the climate community's
standard model experiments."""
homepage = "http://cmor.llnl.gov"
url = "https://github.com/PCMDI/cmor/archive/3.1.2.tar.gz"
version('3.3.0', 'cfdeeddab1aedb823e26ec38723bd67e')
version('3.2.0', 'b48105105d4261012c19cd65e89ff7a6')
version('3.1.2', '72f7227159c901e4bcf80d2c73a8ce77')
variant('fortran', default=True, description='Enable Fortran API')
variant('python', default=False, description='Enable PYTHON support')
depends_on('uuid')
depends_on('netcdf')
depends_on('udunits2')
depends_on('hdf5@:1.8.19')
extends('python', when='+python')
depends_on('python@:2.8', when='+python')
depends_on('py-numpy', type=('build', 'run'), when='+python')
@run_before('configure')
def validate(self):
if '+fortran' in self.spec and not self.compiler.fc:
msg = 'cannot build a fortran variant without a fortran compiler'
raise RuntimeError(msg)
def configure_args(self):
extra_args = ['--disable-debug']
if '+fortran' in self.spec:
extra_args.append('--enable-fortran')
else:
extra_args.append('--disable-fortran')
return extra_args
def install(self, spec, prefix):
make('install')
if '+python' in spec:
setup_py('install', '--prefix=' + prefix)
|
the-stack_0_4266 | '''
https://blog.csdn.net/xuzhexing/article/details/90729390
https://blog.csdn.net/weixin_44580210/article/details/90314878
粒子滤波定位可以比单纯地利用观测值更精确
步骤: 1.初始:用大量粒子模拟运动状态,这些粒子在整个运动空间内均匀分布
2.预测:根据状态转移方程(运动方程),将每一个粒子带入,得到预测粒子,这里应该包括粒子的速度角速度,以及xy值,进行高维的预测
3.校正:对预测粒子进行评价,这里用下一时刻的观测值(有噪声)与预测粒子的距离作评价
距离越短,则对应粒子的权重越大,可以用高斯方程计算距离与对应权重的关系
4.重采样:对所有粒子的权重归一化,并进行筛选,既要保留权重大的粒子,又要小部分权重
小的粒子,具体的方法:
1.多项式重采样
2.残差重采样
3.分层重采样
4.系统重采样
重采样带来的新问题是,权值越大的粒子子代越多,相反则子代越少甚至无子代。
这样重采样后的粒子群多样性减弱,从而不足以用来近似表征后验密度。克服这一
问题的方法有多种,最简单的就是直接增加足够多的粒子,但这常会导致运算量的
急剧膨胀。其它方法可以去查看有关文献,这里暂不做介绍。
5.更新:用重采样后生成的粒子更新原有的粒子,用这些粒子的位置均值代表粒子滤波的结果,重复步骤2
'''
import numpy as np
import math
import matplotlib.pyplot as plgt
'''
假设 速度的测量方差为0.5
角速度的测量方差为5度,0.087
传感器测量rf标志物的误差为0.5m,
'''
def guassian_noise(sigma):#这里用标准差
y=np.random.randn()*sigma
return y
v_error=guassian_noise(0.5)
w_error=guassian_noise(0.087)
dist_error=guassian_noise(0.5)
RANGE_DITECT=10#最大探测距离
NP=200
NTh = NP / 2.0 # Number of particle for re-sampling
T_max=100.0
dt=0.1
L=2.5#车长
#用的是最简单的运动方程,根据此时的状态[x y yaw]',以及速度角速度[u,w],求出下一时刻的状态
def motion_model(x, u):
# F = np.array([[1.0, 0, 0],
# [0, 1.0, 0],
# [0, 0, 1.0]])#第四行为0,表示输入的x的最后一个数字没有用,只是为了利于矩阵方程的求解,所以加入了第四列
# print(x.shape)
B = np.array([[dt * math.cos(x[2, 0]), 0],
[dt * math.sin(x[2, 0]), 0],
[0.0, dt]])
x = x+ B@u
return x
def dead_reckoning(x_true,u):
u[0]+=v_error#给速度和角速度加上高斯噪声
u[1]+=w_error
return motion_model(x_true,u)
def gauss_likelihood(x, sigma):
p = 1.0 / math.sqrt(2.0 * math.pi * sigma ** 2) * \
math.exp(-x ** 2 / (2 * sigma ** 2))
return p
#根据上一时刻的真实值,和这一时刻测量得到的速度角速度,得到下一时刻的真实值,以及rf目标的观测值,速度角速度的测量值(加了噪声)
def observation(x_true, u, rf_id):
x_true_real=motion_model(x_true,u)#根据匀速圆周运动模型获得这一时刻的真实值
z=np.zeros((0,3))# 0*3的数列,为了后面方便进行堆叠
for i in range(len(rf_id[:,0])):
dx=x_true[0,0]-rf_id[i,0]
dy=x_true[1,0]-rf_id[i,1]
dist=math.hypot(dx,dy)
if dist<RANGE_DITECT:
dist+=dist_error#距离加上噪声,表示传感器测量的有误差
zi=np.array([[dist,rf_id[i,0],rf_id[i,1]]])
z=np.vstack(z,zi)
ud=np.array([[0,0]]).T
ud[0,0]=u[0,0]+v_error
ud[1,0]=u[1,0]+w_error
return x_true_real, z,ud
def re_sampling(px,pw):
N_eff = 1.0 / (pw.dot(pw.T))[0, 0] # Effective particle number,计算有效粒子数 1/(权值的平方和)
if N_eff < NTh:#如果有效粒子数太少,则进行重采样
w_cum = np.cumsum(pw) #每个位置的权值是前面权值和[1,3,5]->[1,4,9],即为轮盘采样的方法
base = np.arange(0.0, 1.0, 1 / NP)#返回0.0-1.0步长为1/NP的数列
re_sample_id = base + np.random.uniform(0, 1 / NP)#加上噪声,形成均匀分布的随机采样值
indexes = []
ind = 0
for ip in range(NP):
while re_sample_id[ip] > w_cum[ind]:
ind += 1
indexes.append(ind) #存储重采样后的id
px = px[:, indexes]
pw = np.zeros((1, NP)) + 1.0 / NP # init weight
return px,pw
#输入 粒子群,权重,rf目标观测值,以及测量的速度角速度(有噪声)
def pf_localization(px, pw, z, ud):
# 预测:根据状态转移方程(运动方程),将每一个粒子带入,得到预测粒子,这里应该包括粒子的速度角速度,以及xy值,进行高维的预测
for i in range(NP):
x_pf_tmp=px[:,i] #每一个粒子的状态 x y yaw
w_tmp=pw[0,i]#每一个粒子的权重
x_pf_tmp=motion_model(x_pf_tmp,ud)#根据粒子的状态以及测量得到的速度角速度预测粒子的下一个位置
#根据粒子滤波预测得到的rf距离值和传感器测量的rf距离进行粒子权重的更新????这里的rf的距离真实值无法获取?????????
for j in range(len(z[0,:])):
dx=x_pf_tmp[0]-z[j,1]
dy=x_pf_tmp[1]-z[j,2]
pre_dist=math.hypot(dx,dy)
dz=pre_dist-z[j,0]
w_tmp*=gauss_likelihood(dz, math.sqrt(0.2*0.2))#用预测得到的距离与测量得到的距离的高斯值作为权重
px[:,i]=x_pf_tmp#更新粒子的状态
pw[0,i]=w_tmp#更新粒子权重
#权重归一化
pw=pw/pw.sum()
px,pw=re_sampling(px,pw) # 重采样
[email protected] # 计算得到的粒子滤波的结果。这里感觉应该先进行重采样,与原文作者不一样
return px,pw,x_pf
def main():
print(__file__ + " start!!")
time = 0.0
# RF_ID positions [x, y],用来代替一些已知位置的点
rf_id = np.array([[10.0, 0.0],
[10.0, 10.0],
[0.0, 15.0],
[-5.0, 20.0]])
# State Vector [x y yaw]' 第四列只是为了便于进行矩阵计算
x_pf = np.zeros((3, 1))
x_true = np.zeros((3, 1))#3*1
#粒子及其权重的初始化
px = np.zeros((3, NP)) # Particle store 粒子群,x y yaw各对应一群粒子
pw = np.zeros((1, NP)) + 1.0 / NP # Particle weight 粒子权重均匀分布
# x_dr = x_true # Dead reckoning
# history
h_true=np.array([[x_true[0,0],x_true[1,0]]]) # 保存真实值 x y
# h_dead_reckoning=np.array([[x_true[0],x_true[1]]])#保存航迹推算的值
h_pf=np.array([[x_pf[0],x_pf[1]]])#保存粒子滤波的结果
v=1.0 # m/s
yaw_rate=0.1 # rad/s
while time<T_max:
time+=dt
u=np.array([[v, yaw_rate]]).T#获得转置矩阵 (2,1)矩阵
x_true_real, z,ud=observation(x_true, u, rf_id)
# x_dr=dead_reckoning(x_true) #根据上一时刻的真实值和
px,pw,x_pf=pf_localization(px, pw, z, ud)
h_true=np.vstack(h_true,np.array([[x_true[0],x_true[1]]])) #保存真实值
h_pf=np.vstack(h_pf,np.array([[x_pf[0],x_pf[1]]]))
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(h_true[:,0],h_true[:,1],'-g')
plt.plot(h_pf[:,0],h_pf[:,1],'-b')
plt.plot(rf_id[:,0],rf_id[:,1],'*r')
for i in range(len(z[:,0])):
plt.plot([x_true[0, 0], z[i, 1]], [x_true[1, 0], z[i, 2]], "-k")
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
if __name__ == '__main__':
main() |
the-stack_0_4270 | #!/usr/bin/env python
"""Package: mininet
Test creation and pings for topologies with link and/or CPU options."""
import unittest
import sys
from functools import partial
from mininet.net import Mininet
from mininet.node import OVSSwitch, UserSwitch, IVSSwitch
from mininet.node import CPULimitedHost
from mininet.link import TCLink
from mininet.topo import Topo
from mininet.log import setLogLevel
from mininet.util import quietRun
from mininet.clean import cleanup
# Number of hosts for each test
N = 2
class SingleSwitchOptionsTopo(Topo):
"Single switch connected to n hosts."
def __init__(self, n=2, hopts=None, lopts=None):
if not hopts:
hopts = {}
if not lopts:
lopts = {}
Topo.__init__(self, hopts=hopts, lopts=lopts)
switch = self.addSwitch('s1')
for h in range(n):
host = self.addHost('h%s' % (h + 1))
self.addLink(host, switch)
# Tell pylint not to complain about calls to other class
# pylint: disable=E1101
class testOptionsTopoCommon( object ):
"""Verify ability to create networks with host and link options
(common code)."""
switchClass = None # overridden in subclasses
@staticmethod
def tearDown():
"Clean up if necessary"
if sys.exc_info != ( None, None, None ):
cleanup()
def runOptionsTopoTest( self, n, msg, hopts=None, lopts=None ):
"Generic topology-with-options test runner."
mn = Mininet( topo=SingleSwitchOptionsTopo( n=n, hopts=hopts,
lopts=lopts ),
host=CPULimitedHost, link=TCLink,
switch=self.switchClass, waitConnected=True )
dropped = mn.run( mn.ping )
hoptsStr = ', '.join( '%s: %s' % ( opt, value )
for opt, value in hopts.items() )
loptsStr = ', '.join( '%s: %s' % ( opt, value )
for opt, value in lopts.items() )
msg += ( '%s%% of pings were dropped during mininet.ping().\n'
'Topo = SingleSwitchTopo, %s hosts\n'
'hopts = %s\n'
'lopts = %s\n'
'host = CPULimitedHost\n'
'link = TCLink\n'
'Switch = %s\n'
% ( dropped, n, hoptsStr, loptsStr, self.switchClass ) )
self.assertEqual( dropped, 0, msg=msg )
def assertWithinTolerance( self, measured, expected, tolerance_frac, msg ):
"""Check that a given value is within a tolerance of expected
tolerance_frac: less-than-1.0 value; 0.8 would yield 20% tolerance.
"""
upperBound = ( float( expected ) + ( 1 - tolerance_frac ) *
float( expected ) )
lowerBound = float( expected ) * tolerance_frac
info = ( 'measured value is out of bounds\n'
'expected value: %s\n'
'measured value: %s\n'
'failure tolerance: %s\n'
'upper bound: %s\n'
'lower bound: %s\n'
% ( expected, measured, tolerance_frac,
upperBound, lowerBound ) )
msg += info
self.assertGreaterEqual( float( measured ), lowerBound, msg=msg )
self.assertLessEqual( float( measured ), upperBound, msg=msg )
def testCPULimits( self ):
"Verify topology creation with CPU limits set for both schedulers."
CPU_FRACTION = 0.1
CPU_TOLERANCE = 0.8 # CPU fraction below which test should fail
hopts = { 'cpu': CPU_FRACTION }
#self.runOptionsTopoTest( N, hopts=hopts )
mn = Mininet( SingleSwitchOptionsTopo( n=N, hopts=hopts ),
host=CPULimitedHost, switch=self.switchClass,
waitConnected=True )
mn.start()
results = mn.runCpuLimitTest( cpu=CPU_FRACTION )
mn.stop()
hostUsage = '\n'.join( 'h%s: %s' %
( n + 1,
results[ (n - 1) * 5 : (n * 5) - 1 ] )
for n in range( N ) )
hoptsStr = ', '.join( '%s: %s' % ( opt, value )
for opt, value in hopts.items() )
msg = ( '\nTesting cpu limited to %d%% of cpu per host\n'
'cpu usage percent per host:\n%s\n'
'Topo = SingleSwitchTopo, %s hosts\n'
'hopts = %s\n'
'host = CPULimitedHost\n'
'Switch = %s\n'
% ( CPU_FRACTION * 100, hostUsage, N, hoptsStr,
self.switchClass ) )
for pct in results:
#divide cpu by 100 to convert from percentage to fraction
self.assertWithinTolerance( pct/100, CPU_FRACTION,
CPU_TOLERANCE, msg )
def testLinkBandwidth( self ):
"Verify that link bandwidths are accurate within a bound."
if self.switchClass is UserSwitch:
self.skipTest( 'UserSwitch has very poor performance -'
' skipping for now' )
BW = 5 # Mbps
BW_TOLERANCE = 0.8 # BW fraction below which test should fail
# Verify ability to create limited-link topo first;
lopts = { 'bw': BW, 'use_htb': True }
# Also verify correctness of limit limitng within a bound.
mn = Mininet( SingleSwitchOptionsTopo( n=N, lopts=lopts ),
link=TCLink, switch=self.switchClass,
waitConnected=True )
bw_strs = mn.run( mn.iperf, fmt='m' )
loptsStr = ', '.join( '%s: %s' % ( opt, value )
for opt, value in lopts.items() )
msg = ( '\nTesting link bandwidth limited to %d Mbps per link\n'
'iperf results[ client, server ]: %s\n'
'Topo = SingleSwitchTopo, %s hosts\n'
'Link = TCLink\n'
'lopts = %s\n'
'host = default\n'
'switch = %s\n'
% ( BW, bw_strs, N, loptsStr, self.switchClass ) )
# On the client side, iperf doesn't wait for ACKs - it simply
# reports how long it took to fill up the TCP send buffer.
# As long as the kernel doesn't wait a long time before
# delivering bytes to the iperf server, its reported data rate
# should be close to the actual receive rate.
serverRate, _clientRate = bw_strs
bw = float( serverRate.split(' ')[0] )
self.assertWithinTolerance( bw, BW, BW_TOLERANCE, msg )
def testLinkDelay( self ):
"Verify that link delays are accurate within a bound."
DELAY_MS = 15
DELAY_TOLERANCE = 0.8 # Delay fraction below which test should fail
REPS = 3
lopts = { 'delay': '%sms' % DELAY_MS, 'use_htb': True }
mn = Mininet( SingleSwitchOptionsTopo( n=N, lopts=lopts ),
link=TCLink, switch=self.switchClass, autoStaticArp=True,
waitConnected=True )
mn.start()
for _ in range( REPS ):
ping_delays = mn.pingFull()
mn.stop()
test_outputs = ping_delays[0]
# Ignore unused variables below
# pylint: disable=W0612
node, dest, ping_outputs = test_outputs
sent, received, rttmin, rttavg, rttmax, rttdev = ping_outputs
pingFailMsg = 'sent %s pings, only received %s' % ( sent, received )
self.assertEqual( sent, received, msg=pingFailMsg )
# pylint: enable=W0612
loptsStr = ', '.join( '%s: %s' % ( opt, value )
for opt, value in lopts.items() )
msg = ( '\nTesting Link Delay of %s ms\n'
'ping results across 4 links:\n'
'(Sent, Received, rttmin, rttavg, rttmax, rttdev)\n'
'%s\n'
'Topo = SingleSwitchTopo, %s hosts\n'
'Link = TCLink\n'
'lopts = %s\n'
'host = default'
'switch = %s\n'
% ( DELAY_MS, ping_outputs, N, loptsStr, self.switchClass ) )
for rttval in [rttmin, rttavg, rttmax]:
# Multiply delay by 4 to cover there & back on two links
self.assertWithinTolerance( rttval, DELAY_MS * 4.0,
DELAY_TOLERANCE, msg )
def testLinkLoss( self ):
"Verify that we see packet drops with a high configured loss rate."
LOSS_PERCENT = 99
REPS = 1
lopts = { 'loss': LOSS_PERCENT, 'use_htb': True }
mn = Mininet( topo=SingleSwitchOptionsTopo( n=N, lopts=lopts ),
host=CPULimitedHost, link=TCLink,
switch=self.switchClass,
waitConnected=True )
# Drops are probabilistic, but the chance of no dropped packets is
# 1 in 100 million with 4 hops for a link w/99% loss.
dropped_total = 0
mn.start()
for _ in range(REPS):
dropped_total += mn.ping(timeout='1')
mn.stop()
loptsStr = ', '.join( '%s: %s' % ( opt, value )
for opt, value in lopts.items() )
msg = ( '\nTesting packet loss with %d%% loss rate\n'
'number of dropped pings during mininet.ping(): %s\n'
'expected number of dropped packets: 1\n'
'Topo = SingleSwitchTopo, %s hosts\n'
'Link = TCLink\n'
'lopts = %s\n'
'host = default\n'
'switch = %s\n'
% ( LOSS_PERCENT, dropped_total, N, loptsStr,
self.switchClass ) )
self.assertGreater( dropped_total, 0, msg )
def testMostOptions( self ):
"Verify topology creation with most link options and CPU limits."
lopts = { 'bw': 10, 'delay': '5ms', 'use_htb': True }
hopts = { 'cpu': 0.5 / N }
msg = '\nTesting many cpu and link options\n'
self.runOptionsTopoTest( N, msg, hopts=hopts, lopts=lopts )
# pylint: enable=E1101
class testOptionsTopoOVSKernel( testOptionsTopoCommon, unittest.TestCase ):
"""Verify ability to create networks with host and link options
(OVS kernel switch)."""
longMessage = True
switchClass = OVSSwitch
@unittest.skip( 'Skipping OVS user switch test for now' )
class testOptionsTopoOVSUser( testOptionsTopoCommon, unittest.TestCase ):
"""Verify ability to create networks with host and link options
(OVS user switch)."""
longMessage = True
switchClass = partial( OVSSwitch, datapath='user' )
@unittest.skipUnless( quietRun( 'which ivs-ctl' ), 'IVS is not installed' )
class testOptionsTopoIVS( testOptionsTopoCommon, unittest.TestCase ):
"Verify ability to create networks with host and link options (IVS)."
longMessage = True
switchClass = IVSSwitch
@unittest.skipUnless( quietRun( 'which ofprotocol' ),
'Reference user switch is not installed' )
class testOptionsTopoUserspace( testOptionsTopoCommon, unittest.TestCase ):
"""Verify ability to create networks with host and link options
(UserSwitch)."""
longMessage = True
switchClass = UserSwitch
if __name__ == '__main__':
setLogLevel( 'warning' )
unittest.main()
|
the-stack_0_4271 | import datetime
import posixpath
from django import forms
from django.core import checks
from django.core.files.base import File
from django.core.files.images import ImageFile
from django.core.files.storage import Storage, default_storage
from django.core.files.utils import validate_file_name
from django.db.models import signals
from django.db.models.fields import Field
from django.db.models.query_utils import DeferredAttribute
from django.utils.translation import gettext_lazy as _
class FieldFile(File):
def __init__(self, instance, field, name):
super().__init__(None, name)
self.instance = instance
self.field = field
self.storage = field.storage
self._committed = True
def __eq__(self, other):
# Older code may be expecting FileField values to be simple strings.
# By overriding the == operator, it can remain backwards compatibility.
if hasattr(other, "name"):
return self.name == other.name
return self.name == other
def __hash__(self):
return hash(self.name)
# The standard File contains most of the necessary properties, but
# FieldFiles can be instantiated without a name, so that needs to
# be checked for here.
def _require_file(self):
if not self:
raise ValueError(
"The '%s' attribute has no file associated with it." % self.field.name
)
def _get_file(self):
self._require_file()
if getattr(self, "_file", None) is None:
self._file = self.storage.open(self.name, "rb")
return self._file
def _set_file(self, file):
self._file = file
def _del_file(self):
del self._file
file = property(_get_file, _set_file, _del_file)
@property
def path(self):
self._require_file()
return self.storage.path(self.name)
@property
def url(self):
self._require_file()
return self.storage.url(self.name)
@property
def size(self):
self._require_file()
if not self._committed:
return self.file.size
return self.storage.size(self.name)
def open(self, mode="rb"):
self._require_file()
if getattr(self, "_file", None) is None:
self.file = self.storage.open(self.name, mode)
else:
self.file.open(mode)
return self
# open() doesn't alter the file's contents, but it does reset the pointer
open.alters_data = True
# In addition to the standard File API, FieldFiles have extra methods
# to further manipulate the underlying file, as well as update the
# associated model instance.
def save(self, name, content, save=True):
name = self.field.generate_filename(self.instance, name)
self.name = self.storage.save(name, content, max_length=self.field.max_length)
setattr(self.instance, self.field.attname, self.name)
self._committed = True
# Save the object because it has changed, unless save is False
if save:
self.instance.save()
save.alters_data = True
def delete(self, save=True):
if not self:
return
# Only close the file if it's already open, which we know by the
# presence of self._file
if hasattr(self, "_file"):
self.close()
del self.file
self.storage.delete(self.name)
self.name = None
setattr(self.instance, self.field.attname, self.name)
self._committed = False
if save:
self.instance.save()
delete.alters_data = True
@property
def closed(self):
file = getattr(self, "_file", None)
return file is None or file.closed
def close(self):
file = getattr(self, "_file", None)
if file is not None:
file.close()
def __getstate__(self):
# FieldFile needs access to its associated model field, an instance and
# the file's name. Everything else will be restored later, by
# FileDescriptor below.
return {
"name": self.name,
"closed": False,
"_committed": True,
"_file": None,
"instance": self.instance,
"field": self.field,
}
def __setstate__(self, state):
self.__dict__.update(state)
self.storage = self.field.storage
class FileDescriptor(DeferredAttribute):
"""
The descriptor for the file attribute on the model instance. Return a
FieldFile when accessed so you can write code like::
>>> from myapp.models import MyModel
>>> instance = MyModel.objects.get(pk=1)
>>> instance.file.size
Assign a file object on assignment so you can do::
>>> with open('/path/to/hello.world') as f:
... instance.file = File(f)
"""
def __get__(self, instance, cls=None):
if instance is None:
return self
# This is slightly complicated, so worth an explanation.
# instance.file`needs to ultimately return some instance of `File`,
# probably a subclass. Additionally, this returned object needs to have
# the FieldFile API so that users can easily do things like
# instance.file.path and have that delegated to the file storage engine.
# Easy enough if we're strict about assignment in __set__, but if you
# peek below you can see that we're not. So depending on the current
# value of the field we have to dynamically construct some sort of
# "thing" to return.
# The instance dict contains whatever was originally assigned
# in __set__.
file = super().__get__(instance, cls)
# If this value is a string (instance.file = "path/to/file") or None
# then we simply wrap it with the appropriate attribute class according
# to the file field. [This is FieldFile for FileFields and
# ImageFieldFile for ImageFields; it's also conceivable that user
# subclasses might also want to subclass the attribute class]. This
# object understands how to convert a path to a file, and also how to
# handle None.
if isinstance(file, str) or file is None:
attr = self.field.attr_class(instance, self.field, file)
instance.__dict__[self.field.attname] = attr
# Other types of files may be assigned as well, but they need to have
# the FieldFile interface added to them. Thus, we wrap any other type of
# File inside a FieldFile (well, the field's attr_class, which is
# usually FieldFile).
elif isinstance(file, File) and not isinstance(file, FieldFile):
file_copy = self.field.attr_class(instance, self.field, file.name)
file_copy.file = file
file_copy._committed = False
instance.__dict__[self.field.attname] = file_copy
# Finally, because of the (some would say boneheaded) way pickle works,
# the underlying FieldFile might not actually itself have an associated
# file. So we need to reset the details of the FieldFile in those cases.
elif isinstance(file, FieldFile) and not hasattr(file, "field"):
file.instance = instance
file.field = self.field
file.storage = self.field.storage
# Make sure that the instance is correct.
elif isinstance(file, FieldFile) and instance is not file.instance:
file.instance = instance
# That was fun, wasn't it?
return instance.__dict__[self.field.attname]
def __set__(self, instance, value):
instance.__dict__[self.field.attname] = value
class FileField(Field):
# The class to wrap instance attributes in. Accessing the file object off
# the instance will always return an instance of attr_class.
attr_class = FieldFile
# The descriptor to use for accessing the attribute off of the class.
descriptor_class = FileDescriptor
description = _("File")
def __init__(
self, verbose_name=None, name=None, upload_to="", storage=None, **kwargs
):
self._primary_key_set_explicitly = "primary_key" in kwargs
self.storage = storage or default_storage
if callable(self.storage):
# Hold a reference to the callable for deconstruct().
self._storage_callable = self.storage
self.storage = self.storage()
if not isinstance(self.storage, Storage):
raise TypeError(
"%s.storage must be a subclass/instance of %s.%s"
% (
self.__class__.__qualname__,
Storage.__module__,
Storage.__qualname__,
)
)
self.upload_to = upload_to
kwargs.setdefault("max_length", 100)
super().__init__(verbose_name, name, **kwargs)
def check(self, **kwargs):
return [
*super().check(**kwargs),
*self._check_primary_key(),
*self._check_upload_to(),
]
def _check_primary_key(self):
if self._primary_key_set_explicitly:
return [
checks.Error(
"'primary_key' is not a valid argument for a %s."
% self.__class__.__name__,
obj=self,
id="fields.E201",
)
]
else:
return []
def _check_upload_to(self):
if isinstance(self.upload_to, str) and self.upload_to.startswith("/"):
return [
checks.Error(
"%s's 'upload_to' argument must be a relative path, not an "
"absolute path." % self.__class__.__name__,
obj=self,
id="fields.E202",
hint="Remove the leading slash.",
)
]
else:
return []
def deconstruct(self):
name, path, args, kwargs = super().deconstruct()
if kwargs.get("max_length") == 100:
del kwargs["max_length"]
kwargs["upload_to"] = self.upload_to
if self.storage is not default_storage:
kwargs["storage"] = getattr(self, "_storage_callable", self.storage)
return name, path, args, kwargs
def get_internal_type(self):
return "FileField"
def get_prep_value(self, value):
value = super().get_prep_value(value)
# Need to convert File objects provided via a form to string for
# database insertion.
if value is None:
return None
return str(value)
def pre_save(self, model_instance, add):
file = super().pre_save(model_instance, add)
if file and not file._committed:
# Commit the file to storage prior to saving the model
file.save(file.name, file.file, save=False)
return file
def contribute_to_class(self, cls, name, **kwargs):
super().contribute_to_class(cls, name, **kwargs)
setattr(cls, self.attname, self.descriptor_class(self))
def generate_filename(self, instance, filename):
"""
Apply (if callable) or prepend (if a string) upload_to to the filename,
then delegate further processing of the name to the storage backend.
Until the storage layer, all file paths are expected to be Unix style
(with forward slashes).
"""
if callable(self.upload_to):
filename = self.upload_to(instance, filename)
else:
dirname = datetime.datetime.now().strftime(str(self.upload_to))
filename = posixpath.join(dirname, filename)
filename = validate_file_name(filename, allow_relative_path=True)
return self.storage.generate_filename(filename)
def save_form_data(self, instance, data):
# Important: None means "no change", other false value means "clear"
# This subtle distinction (rather than a more explicit marker) is
# needed because we need to consume values that are also sane for a
# regular (non Model-) Form to find in its cleaned_data dictionary.
if data is not None:
# This value will be converted to str and stored in the
# database, so leaving False as-is is not acceptable.
setattr(instance, self.name, data or "")
def formfield(self, **kwargs):
return super().formfield(
**{
"form_class": forms.FileField,
"max_length": self.max_length,
**kwargs,
}
)
class ImageFileDescriptor(FileDescriptor):
"""
Just like the FileDescriptor, but for ImageFields. The only difference is
assigning the width/height to the width_field/height_field, if appropriate.
"""
def __set__(self, instance, value):
previous_file = instance.__dict__.get(self.field.attname)
super().__set__(instance, value)
# To prevent recalculating image dimensions when we are instantiating
# an object from the database (bug #11084), only update dimensions if
# the field had a value before this assignment. Since the default
# value for FileField subclasses is an instance of field.attr_class,
# previous_file will only be None when we are called from
# Model.__init__(). The ImageField.update_dimension_fields method
# hooked up to the post_init signal handles the Model.__init__() cases.
# Assignment happening outside of Model.__init__() will trigger the
# update right here.
if previous_file is not None:
self.field.update_dimension_fields(instance, force=True)
class ImageFieldFile(ImageFile, FieldFile):
def delete(self, save=True):
# Clear the image dimensions cache
if hasattr(self, "_dimensions_cache"):
del self._dimensions_cache
super().delete(save)
class ImageField(FileField):
attr_class = ImageFieldFile
descriptor_class = ImageFileDescriptor
description = _("Image")
def __init__(
self,
verbose_name=None,
name=None,
width_field=None,
height_field=None,
**kwargs,
):
self.width_field, self.height_field = width_field, height_field
super().__init__(verbose_name, name, **kwargs)
def check(self, **kwargs):
return [
*super().check(**kwargs),
*self._check_image_library_installed(),
]
def _check_image_library_installed(self):
try:
from PIL import Image # NOQA
except ImportError:
return [
checks.Error(
"Cannot use ImageField because Pillow is not installed.",
hint=(
"Get Pillow at https://pypi.org/project/Pillow/ "
'or run command "python -m pip install Pillow".'
),
obj=self,
id="fields.E210",
)
]
else:
return []
def deconstruct(self):
name, path, args, kwargs = super().deconstruct()
if self.width_field:
kwargs["width_field"] = self.width_field
if self.height_field:
kwargs["height_field"] = self.height_field
return name, path, args, kwargs
def contribute_to_class(self, cls, name, **kwargs):
super().contribute_to_class(cls, name, **kwargs)
# Attach update_dimension_fields so that dimension fields declared
# after their corresponding image field don't stay cleared by
# Model.__init__, see bug #11196.
# Only run post-initialization dimension update on non-abstract models
if not cls._meta.abstract:
signals.post_init.connect(self.update_dimension_fields, sender=cls)
def update_dimension_fields(self, instance, force=False, *args, **kwargs):
"""
Update field's width and height fields, if defined.
This method is hooked up to model's post_init signal to update
dimensions after instantiating a model instance. However, dimensions
won't be updated if the dimensions fields are already populated. This
avoids unnecessary recalculation when loading an object from the
database.
Dimensions can be forced to update with force=True, which is how
ImageFileDescriptor.__set__ calls this method.
"""
# Nothing to update if the field doesn't have dimension fields or if
# the field is deferred.
has_dimension_fields = self.width_field or self.height_field
if not has_dimension_fields or self.attname not in instance.__dict__:
return
# getattr will call the ImageFileDescriptor's __get__ method, which
# coerces the assigned value into an instance of self.attr_class
# (ImageFieldFile in this case).
file = getattr(instance, self.attname)
# Nothing to update if we have no file and not being forced to update.
if not file and not force:
return
dimension_fields_filled = not (
(self.width_field and not getattr(instance, self.width_field))
or (self.height_field and not getattr(instance, self.height_field))
)
# When both dimension fields have values, we are most likely loading
# data from the database or updating an image field that already had
# an image stored. In the first case, we don't want to update the
# dimension fields because we are already getting their values from the
# database. In the second case, we do want to update the dimensions
# fields and will skip this return because force will be True since we
# were called from ImageFileDescriptor.__set__.
if dimension_fields_filled and not force:
return
# file should be an instance of ImageFieldFile or should be None.
if file:
width = file.width
height = file.height
else:
# No file, so clear dimensions fields.
width = None
height = None
# Update the width and height fields.
if self.width_field:
setattr(instance, self.width_field, width)
if self.height_field:
setattr(instance, self.height_field, height)
def formfield(self, **kwargs):
return super().formfield(
**{
"form_class": forms.ImageField,
**kwargs,
}
)
|
the-stack_0_4273 | #!/usr/bin/env python3
import argparse
import ctypes
import os
import readline
import socket
import subprocess
import sys
import threading
readline.get_history_length()
# throw this away because we import readline for prompt stuff
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-l', '--listen', type=str, dest='listen', default='0.0.0.0',
help='address to bind and sniff packets')
parser.description = """\
This is a Python program to scan a network for live hosts by spraying UDP traffic and inspecting responses.
"""
args = parser.parse_args()
def main():
# make this work on windows too
if os.name == 'nt':
socket_protocol = socket.IPPROTO_IP
else:
socket_protocol = socket.IPPROTO_ICMP
# set up raw socket and bind
sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket_protocol)
sniffer.bind((args.listen,0))
# we want to include headers
sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)
# if windows explicitly set promiscuous mode
if os.name == 'nt':
sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)
# read a single packet
data = sniffer.recv(65536)
print(data)
hexdump(data)
# if windows explicitly set promiscuous mode
if os.name == 'nt':
sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)
def hexdump(src, length=16, sep='.'):
"""
https://gist.github.com/1mm0rt41PC/c340564823f283fe530b
"""
result = []
for i in range(0, len(src), length):
subSrc = src[i:i + length]
hexa = ''
for h in range(0, len(subSrc)):
if h == length / 2:
hexa += ' '
h = subSrc[h]
if not isinstance(h, int):
h = ord(h)
h = hex(h).replace('0x', '')
if len(h) == 1:
h = '0' + h
hexa += h + ' '
hexa = hexa.strip(' ')
text = ''
for c in subSrc:
if not isinstance(c, int):
c = ord(c)
if 0x20 <= c < 0x7F:
text += chr(c)
else:
text += sep
result.append(('%08X: %-' + str(length * (2 + 1) + 1) + 's |%s|') % (i, hexa, text))
print('\n'.join(result))
if __name__ == '__main__':
main()
|
the-stack_0_4274 | """
Single-subject data (two sessions) in native space
==================================================
The example shows the analysis of an SPM dataset studying face perception. The
analysis is performed in native space. Realignment parameters are provided with
the input images, but those have not been resampled to a common space.
The experimental paradigm is simple, with two conditions; viewing a face image
or a scrambled face image, supposedly with the same low-level statistical
properties, to find face-specific responses.
For details on the data, please see:
Henson, R.N., Goshen-Gottstein, Y., Ganel, T., Otten, L.J., Quayle, A.,
Rugg, M.D. Electrophysiological and haemodynamic correlates of face
perception, recognition and priming. Cereb Cortex. 2003 Jul;13(7):793-805.
http://www.dx.doi.org/10.1093/cercor/13.7.793
This example takes a lot of time because the input are lists of 3D images
sampled in different positions (encoded by different affine functions).
"""
print(__doc__)
#########################################################################
# Fetch the SPM multimodal_faces data.
from nilearn.datasets import fetch_spm_multimodal_fmri
subject_data = fetch_spm_multimodal_fmri()
#########################################################################
# Specfiy timing and design matrix parameters.
tr = 2. # repetition time, in seconds
slice_time_ref = 0. # Sample at the beginning of each acquisition.
drift_model = 'Cosine' # We use a discrete cosine transform to model signal drifts.
high_pass = .01 # The cutoff for the drift model is 0.01 Hz.
hrf_model = 'spm + derivative' # The hemodynamic response function is the SPM canonical one.
#########################################################################
# Resample the images.
#
# This is achieved by the concat_imgs function of Nilearn.
from nilearn.image import concat_imgs, resample_img, mean_img
fmri_img = [concat_imgs(subject_data.func1, auto_resample=True),
concat_imgs(subject_data.func2, auto_resample=True)]
affine, shape = fmri_img[0].affine, fmri_img[0].shape
print('Resampling the second image (this takes time)...')
fmri_img[1] = resample_img(fmri_img[1], affine, shape[:3])
#########################################################################
# Let's create mean image for display purposes.
mean_image = mean_img(fmri_img)
#########################################################################
# Make the design matrices.
import numpy as np
import pandas as pd
from nilearn.glm.first_level import make_first_level_design_matrix
design_matrices = []
#########################################################################
# Loop over the two sessions.
for idx, img in enumerate(fmri_img, start=1):
# Build experimental paradigm
n_scans = img.shape[-1]
events = pd.read_table(subject_data['events{}'.format(idx)])
# Define the sampling times for the design matrix
frame_times = np.arange(n_scans) * tr
# Build design matrix with the reviously defined parameters
design_matrix = make_first_level_design_matrix(
frame_times,
events,
hrf_model=hrf_model,
drift_model=drift_model,
high_pass=high_pass,
)
# put the design matrices in a list
design_matrices.append(design_matrix)
#########################################################################
# We can specify basic contrasts (to get beta maps).
# We start by specifying canonical contrast that isolate design matrix columns.
contrast_matrix = np.eye(design_matrix.shape[1])
basic_contrasts = dict([(column, contrast_matrix[i])
for i, column in enumerate(design_matrix.columns)])
#########################################################################
# We actually want more interesting contrasts. The simplest contrast
# just makes the difference between the two main conditions. We
# define the two opposite versions to run one-tailed t-tests. We also
# define the effects of interest contrast, a 2-dimensional contrasts
# spanning the two conditions.
contrasts = {
'faces-scrambled': basic_contrasts['faces'] - basic_contrasts['scrambled'],
'scrambled-faces': -basic_contrasts['faces'] + basic_contrasts['scrambled'],
'effects_of_interest': np.vstack((basic_contrasts['faces'],
basic_contrasts['scrambled']))
}
#########################################################################
# Fit the GLM for the 2 sessions by specifying a FirstLevelModel and then
# fitting it.
from nilearn.glm.first_level import FirstLevelModel
print('Fitting a GLM')
fmri_glm = FirstLevelModel()
fmri_glm = fmri_glm.fit(fmri_img, design_matrices=design_matrices)
#########################################################################
# Now we can compute contrast-related statistical maps (in z-scale), and plot
# them.
print('Computing contrasts')
from nilearn import plotting
# Iterate on contrasts
for contrast_id, contrast_val in contrasts.items():
print("\tcontrast id: %s" % contrast_id)
# compute the contrasts
z_map = fmri_glm.compute_contrast(
contrast_val, output_type='z_score')
# plot the contrasts as soon as they're generated
# the display is overlaid on the mean fMRI image
# a threshold of 3.0 is used, more sophisticated choices are possible
plotting.plot_stat_map(
z_map, bg_img=mean_image, threshold=3.0, display_mode='z',
cut_coords=3, black_bg=True, title=contrast_id)
plotting.show()
#########################################################################
# Based on the resulting maps we observe that the analysis results in
# wide activity for the 'effects of interest' contrast, showing the
# implications of large portions of the visual cortex in the
# conditions. By contrast, the differential effect between "faces" and
# "scrambled" involves sparser, more anterior and lateral regions. It
# also displays some responses in the frontal lobe.
|
the-stack_0_4276 | """
Exercício Python 113: Reescreva a função leiaInt() que fizemos no desafio 104, incluindo agora a possibilidade da digitação de um número de tipo inválido. Aproveite e crie também uma função leiaFloat() com a mesma funcionalidade.
"""
def leiaInt(mensagem):
value = 0
while True:
try:
value = int(input(mensagem))
except KeyboardInterrupt:
print('O usuario decidiu nao informar o numero')
break
except:
print('Ocorreu um erro, certifique-se de que digitou um numero inteiro...')
else:
break
return value
def leiaFloat(mensagem):
value = 0
while True:
try:
value = float(input(mensagem))
except KeyboardInterrupt:
print('\n\nO usuario decidiu nao informar o numero')
break
except:
print('Ocorreu um erro, certifique-se de que digitou um numero inteiro...')
else:
break
return value
# MainProgram
try:
number1 = leiaInt('insira um numero inteiro: ')
number2 = leiaFloat('insira um numero real:')
except:
print('Erros localizados, da proxima insira os dados corretamente')
finally:
print(f'o numero int {number1} e o real {number2}')
|
the-stack_0_4277 | #!/usr/bin/env python2.5
#
# Copyright 2010 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper classes which help converting a url to a list of SB expressions."""
import array
import logging
import re
import string
import urllib
import urlparse
import util
class UrlParseError(Exception):
pass
def GenerateSafeChars():
"""
Return a string containing all 'safe' characters that shouldn't be escaped
for url encoding. This includes all printable characters except '#%' and
whitespace characters.
"""
unfiltered_chars = string.digits + string.ascii_letters + string.punctuation
filtered_list = [c for c in unfiltered_chars if c not in '%#']
return array.array('c', filtered_list).tostring()
class ExpressionGenerator(object):
"""Class does the conversion url -> list of SafeBrowsing expressions.
This class converts a given url into the list of all SafeBrowsing host-suffix,
path-prefix expressions for that url. These are expressions that are on the
SafeBrowsing lists.
"""
HEX = re.compile(r'^0x([a-fA-F0-9]+)$')
OCT = re.compile(r'^0([0-7]+)$')
DEC = re.compile(r'^(\d+)$')
IP_WITH_TRAILING_SPACE = re.compile(r'^(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) ')
POSSIBLE_IP = re.compile(r'^(?i)((?:0x[0-9a-f]+|[0-9\\.])+)$')
FIND_BAD_OCTAL_REGEXP = re.compile(r'(^|\.)0\d*[89]')
# This regular expression parses the host and port from a hostname. Note: any
# user and password are removed from the hostname.
HOST_PORT_REGEXP = re.compile(r'^(?:.*@)?(?P<host>[^:]*)(:(?P<port>\d+))?$')
SAFE_CHARS = GenerateSafeChars()
# Dict that maps supported schemes to their default port number.
DEFAULT_PORTS = {'http': '80', 'https': '443', 'ftp': '21'}
def __init__(self, url):
parse_exception = UrlParseError('failed to parse URL "%s"' % (url,))
canonical_url = ExpressionGenerator.CanonicalizeUrl(url)
if not canonical_url:
raise parse_exception
# Each element is a list of host components used to build expressions.
self._host_lists = []
# A list of paths used to build expressions.
self._path_exprs = []
url_split = urlparse.urlsplit(canonical_url)
canonical_host, canonical_path = url_split[1], url_split[2]
self._MakeHostLists(canonical_host, parse_exception)
if url_split[3]:
# Include canonicalized path with query arguments
self._path_exprs.append(canonical_path + '?' + url_split[3])
self._path_exprs.append(canonical_path)
# Get the first three directory path components and create the 4 path
# expressions starting at the root (/) and successively appending directory
# path components, including the trailing slash. E.g.:
# /a/b/c/d.html -> [/, /a/, /a/b/, /a/b/c/]
path_parts = canonical_path.rstrip('/').lstrip('/').split('/')[:3]
if canonical_path.count('/') < 4:
# If the last component in not a directory we remove it.
path_parts.pop()
while path_parts:
self._path_exprs.append('/' + '/'.join(path_parts) + '/')
path_parts.pop()
if canonical_path != '/':
self._path_exprs.append('/')
@staticmethod
def CanonicalizeUrl(url):
"""Canonicalize the given URL for the SafeBrowsing protocol.
Args:
url: URL to canonicalize.
Returns:
A canonical URL or None if the URL could not be canonicalized.
"""
# Start by stripping off the fragment identifier.
tmp_pos = url.find('#')
if tmp_pos >= 0:
url = url[0:tmp_pos]
# Stripping off leading and trailing white spaces.
url = url.lstrip().rstrip()
# Remove any embedded tabs and CR/LF characters which aren't escaped.
url = url.replace('\t', '').replace('\r', '').replace('\n', '')
# Un-escape and re-escpae the URL just in case there are some encoded
# characters in the url scheme for example.
url = ExpressionGenerator._Escape(url)
url_split = urlparse.urlsplit(url)
if not url_split[0]:
# URL had no scheme. In this case we assume it is http://.
url = 'http://' + url
url_split = urlparse.urlsplit(url)
url_scheme = url_split[0].lower()
if url_scheme not in ExpressionGenerator.DEFAULT_PORTS:
return None # Unsupported scheme.
# Note: applying HOST_PORT_REGEXP also removes any user and password.
m = ExpressionGenerator.HOST_PORT_REGEXP.match(url_split[1])
if not m:
return None
host, port = m.group('host'), m.group('port')
canonical_host = ExpressionGenerator.CanonicalizeHost(host)
if not canonical_host:
return None
# Now that the host is canonicalized we add the port back if it's not the
# default port for that url scheme.
if port and port != ExpressionGenerator.DEFAULT_PORTS[url_scheme]:
canonical_host += ':' + port
canonical_path = ExpressionGenerator.CanonicalizePath(url_split[2])
# If the URL ends with ? we want to keep the ?.
canonical_url = url_split[0] + '://' + canonical_host + canonical_path
if url_split[3] != '' or url.endswith('?'):
canonical_url += '?' + url_split[3]
return canonical_url
@staticmethod
def CanonicalizePath(path):
"""Canonicalize the given path."""
if not path:
return '/'
# There are some cases where the path will not start with '/'. Example:
# "ftp://host.com?q" -- the hostname is 'host.com' and the path '%3Fq'.
# Browsers typically do prepend a leading slash to the path in this case,
# we'll do the same.
if path[0] != '/':
path = '/' + path
path = ExpressionGenerator._Escape(path)
path_components = []
for path_component in path.split('/'):
# If the path component is '..' we skip it and remove the preceding path
# component if there are any.
if path_component == '..':
if len(path_components) > 0:
path_components.pop()
# We skip empty path components to remove successive slashes (i.e.,
# // -> /). Note: this means that the leading and trailing slash will
# also be removed and need to be re-added afterwards.
#
# If the path component is '.' we also skip it (i.e., /./ -> /).
elif path_component != '.' and path_component != '':
path_components.append(path_component)
# Put the path components back together and re-add the leading slash which
# got stipped by removing empty path components.
canonical_path = '/' + '/'.join(path_components)
# If necessary we also re-add the trailing slash.
if path.endswith('/') and not canonical_path.endswith('/'):
canonical_path += '/'
return canonical_path
@staticmethod
def CanonicalizeHost(host):
"""Canonicalize the given host. Returns None in case of an error."""
if not host:
return None
host = ExpressionGenerator._Escape(host.lower())
ip = ExpressionGenerator.CanonicalizeIp(host)
if ip:
# Host is an IP address.
host = ip
else:
# Host is a normal hostname.
# Skip trailing, leading and consecutive dots.
host_split = [part for part in host.split('.') if part]
if len(host_split) < 2:
return None
host = '.'.join(host_split)
return host
@staticmethod
def CanonicalizeIp(host):
"""
Return a canonicalized IP if host can represent an IP and None otherwise.
"""
if len(host) <= 15:
# The Windows resolver allows a 4-part dotted decimal IP address to have a
# space followed by any old rubbish, so long as the total length of the
# string doesn't get above 15 characters. So, "10.192.95.89 xy" is
# resolved to 10.192.95.89.
# If the string length is greater than 15 characters,
# e.g. "10.192.95.89 xy.wildcard.example.com", it will be resolved through
# DNS.
m = ExpressionGenerator.IP_WITH_TRAILING_SPACE.match(host)
if m:
host = m.group(1)
if not ExpressionGenerator.POSSIBLE_IP.match(host):
return None
# Basically we should parse octal if we can, but if there are illegal octal
# numbers, i.e. 08 or 09, then we should just look at decimal and hex.
allow_octal = not ExpressionGenerator.FIND_BAD_OCTAL_REGEXP.search(host)
# Skip trailing, leading and consecutive dots.
host_split = [part for part in host.split('.') if part]
if len(host_split) > 4:
return None
ip = []
for i in xrange(len(host_split)):
m = ExpressionGenerator.HEX.match(host_split[i])
if m:
base = 16
else:
m = ExpressionGenerator.OCT.match(host_split[i])
if m and allow_octal:
base = 8
else:
m = ExpressionGenerator.DEC.match(host_split[i])
if m:
base = 10
else:
return None
n = long(m.group(1), base)
if n > 255:
if i < len(host_split) - 1:
n &= 0xff
ip.append(n)
else:
bytes = []
shift = 0
while n > 0 and len(bytes) < 4:
bytes.append(n & 0xff)
n >>= 8
if len(ip) + len(bytes) > 4:
return None
bytes.reverse()
ip.extend(bytes)
else:
ip.append(n)
while len(ip) < 4:
ip.append(0)
return '%u.%u.%u.%u' % tuple(ip)
def Expressions(self):
"""
A generator of the possible expressions.
"""
for host_parts in self._host_lists:
host = '.'.join(host_parts)
for p in self._path_exprs:
yield Expression(host, p)
@staticmethod
def _Escape(unescaped_str):
"""Fully unescape the given string, then re-escape once.
Args:
unescaped_str: string that should be escaped.
Returns:
Escaped string according to the SafeBrowsing protocol.
"""
unquoted = urllib.unquote(unescaped_str)
while unquoted != unescaped_str:
unescaped_str = unquoted
unquoted = urllib.unquote(unquoted)
return urllib.quote(unquoted, ExpressionGenerator.SAFE_CHARS)
def _MakeHostLists(self, host, parse_exception):
"""
Canonicalize host and build self._host_lists.
"""
ip = ExpressionGenerator.CanonicalizeIp(host)
if ip is not None:
# Is an IP.
self._host_lists.append([ip])
return
# Is a hostname.
# Skip trailing, leading and consecutive dots.
host_split = [part for part in host.split('.') if part]
if len(host_split) < 2:
raise parse_exception
start = len(host_split) - 5
stop = len(host_split) - 1
if start <= 0:
start = 1
self._host_lists.append(host_split)
for i in xrange(start, stop):
self._host_lists.append(host_split[i:])
class Expression(object):
"""Class which represents a host-suffix, path-prefix expression."""
def __init__(self, host, path):
self._host = host
self._path = path
self._value = host + path
self._hash_value = util.GetHash256(self._value)
def __str__(self):
return self.Value()
def __repr__(self):
"""
Not really a good repr. This is for debugging.
"""
return self.Value()
def Value(self):
return self._value
def HashValue(self):
return self._hash_value
|
the-stack_0_4279 | from .model import Model
from radar.models.geofence import Geofence
from radar.models.region import Region
from radar.models.place import Place
class RadarContext(Model):
"""Location context
Parameters:
live (bool)
geofences (`list` of :class:`~radar.models.geofence.Geofence`)
place (`list` of :class:`~radar.models.place.Place`, optional)
country (:class:`~radar.models.region.Region`, optional)
state (:class:`~radar.models.region.Region`, optional)
dma (:class:`~radar.models.region.Region`, optional)
postalCode (:class:`~radar.models.region.Region`, optional)
fraud (FraudObject, optional)
"""
OBJECT_NAME = "Context"
_DISPLAY_ATTRIBUTES = (
"live",
"geofences",
"place",
"country",
"state",
"dma",
"postalCode",
)
def __init__(self, radar, data={}):
"""Initialize a Radar Model instance
Args:
radar (:class:`~radar.RadarClient`): RadarClient for instance CRUD actions
raw_json (dict): raw data to initialize the model with
"""
self._radar = radar
self.raw_json = data
for attribute, value in data.items():
if attribute == "geofences":
geofences = [Geofence(radar, geofence) for geofence in data[attribute]]
setattr(self, attribute, geofences)
elif attribute == "place":
place = Place(radar, data[attribute])
setattr(self, attribute, place)
elif attribute in ["country", "state", "dma", "postalCode"]:
region = Region(radar, data[attribute])
setattr(self, attribute, region)
else:
setattr(self, attribute, value)
|
the-stack_0_4281 | from pprint import pprint
import yaml
from tabulate import tabulate
from funcy import project
from wws.commands import utils
class Rm:
def __init__(self):
super().__init__()
def process(self, args):
""" edits the warp database """
if args['debug']:
pprint(args)
with open(args['workspace_warp_database'],'r+') as f:
data = yaml.load(f, Loader=yaml.FullLoader)
if not data:
data = []
remove_entries = dict()
keep_entries = dict()
remove_entries = [ d for d in data if any( [ a for a in args['alias'] if a.upper() in d['alias'].upper() ] ) ]
keep_entries = [ d for d in data if not any( [ a for a in args['alias'] if a.upper() in d['alias'].upper() ] ) ]
if not args['verbose']:
data = [ project(d,['alias', 'local', 'remote' ]) for d in remove_entries]
else:
data = remove_entries
if not data:
print("Nothing to remove.")
exit()
print("Entries to remove:")
print(tabulate(data, headers="keys", tablefmt = "psql"))
rm = utils._confirm("Are you sure to remove these entries?")
if rm:
f.seek(0)
f.truncate()
yaml.dump(keep_entries, f, default_flow_style=False)
print("Aliases were removed but data remain untouched. Please remove the listed source directories.")
|
the-stack_0_4283 | #!/usr/bin/env python3
import asyncio
import time
from psnawp_api import psnawp
from pypresence import Presence
from asset_updater import add_game_icon
from playstationpresence.lib.files import load_config, load_game_data, load_game_icons
from playstationpresence.lib.notifiable import Notifiable
from playstationpresence.lib.rpc_retry import rpc_retry
from requests.exceptions import *
from threading import Event
class PlaystationPresence:
def __init__(self):
self.notifier = None
self.rpc = None
self.exit_event = Event()
self.old_info: dict = {'onlineStatus': None, 'titleId': None}
self.config: dict = load_config()
self.supported_games: set[str] = load_game_data()
self.game_icons: set[str] = load_game_icons()
self.psapi = psnawp.PSNAWP(self.config['npsso'])
self.psnid = self.config['PSNID']
self.initRpc()
def initRpc(self):
self.rpc = Presence(self.config['discordClientId'], pipe=0, loop=asyncio.new_event_loop())
self.rpc.connect()
def quit(self):
self.exit_event.set()
if self.notifier is not None:
self.notifier.visible = False
self.notifier.stop()
def notify(self, message):
print(message)
if self.notifier is not None:
self.notifier.title = message
self.notifier.notify(message, "playstationpresence")
@rpc_retry
def clearStatus(self):
self.rpc.clear()
self.notify(f"Status changed to Offline")
@rpc_retry
def updateStatus(self, show_time: bool, state: str, large_image: str, details: str):
if show_time:
start_time = int(time.time())
self.rpc.update(state=state, start=start_time, small_image="ps5_main", small_text=self.psnid, large_image=large_image, large_text=state, details=details)
else:
self.rpc.update(state=state, small_image="ps5_main", small_text=self.psnid, large_image=large_image, large_text=state, details=details)
self.notify(f"Status changed to {state}")
def processPresenceInfo(self, mainpresence: dict):
if mainpresence is None:
return
# Read PSN API data
onlineStatus: str = mainpresence['primaryPlatformInfo']['onlineStatus']
onlinePlatform: str = mainpresence['primaryPlatformInfo']['platform']
game_info: list[dict] = mainpresence.get('gameTitleInfoList', None)
# Check online status
if onlineStatus == "offline":
if self.old_info['onlineStatus'] != onlineStatus:
self.clearStatus()
self.old_info = {'onlineStatus': onlineStatus, 'titleId': None}
elif game_info == None:
# Set home menu state
if self.old_info['onlineStatus'] != "online" or self.old_info['titleId'] != None:
self.updateStatus(False, "Home Menu", "ps5_main", f"Online on {onlinePlatform}")
self.old_info = {'onlineStatus': onlineStatus, 'titleId': None}
elif self.old_info['titleId'] != game_info[0]['npTitleId']:
# New title id is different -> update
# Read game data
game: dict[str, str] = game_info[0]
# large_icon logic
if game['npTitleId'] in self.supported_games:
large_icon = game['npTitleId'].lower()
else:
# Game not known
self.notify("Game not in library, checking for icon")
# Check if icon exists
if game['npTitleId'] in self.game_icons:
self.notify("Game icon found\CONSIDER PUSHING NEW DISCORD ASSETS")
else:
# Get icon
add_game_icon(game['npTitleId'], game['npTitleIconUrl'])
self.notify("Reloading icons")
self.game_icons = load_game_icons()
large_icon = "ps5_main"
# Update status
self.updateStatus(True, game['titleName'], large_icon, f"Playing on {game['launchPlatform']}")
self.old_info = {'onlineStatus': onlineStatus, 'titleId': game['npTitleId']}
def mainloop(self, notifier: Notifiable):
if notifier is not None:
self.notifier = notifier
self.notifier.visible = True
while not self.exit_event.is_set():
mainpresence: dict = None
user_online_id = None
try:
user_online_id = self.psapi.user(online_id=self.psnid)
mainpresence = user_online_id.get_presence()
# Uncomment for debug info about currently running game
#print(mainpresence)
except (ConnectionError, HTTPError) as e:
print("Error when trying to read presence")
print(e)
self.processPresenceInfo(mainpresence)
# Adjust this to be higher if you get ratelimited
self.exit_event.wait(30)
self.clearStatus()
self.rpc.close()
|
the-stack_0_4284 | #! /usr/bin/env python
"""
based on this quickstart:
from https://developers.google.com/google-apps/calendar/quickstart/python
Don't forget to put CLIENT_SECRET_FILE in ~/.credentials
Note: the above URL redirects to
https://developers.google.com/calendar/quickstart/python
which has a different sequence for get_credentials(). The one in this file still
seems to work... TODO: test that it really does work and perhaps update to the newer version.
Usage:
The google calendar is the database. Calendar events are added as they are made known to the
calendar owner (me). Members are encouraged to add this calendar to their calendar viewing
apps so they can see who else will be in the cabin on any given night. The first word in the
event 'summary' (the thing that shows up in your calendar view) shold be the member name.
Append something in Camel-case to avoid name collisions e.g. 'BobB' and 'BobS'. Guests are
indicated by a +N (separated by whitespace. N is the guest count).
Around Thursday of each week, I assign rooms by inserting the room name into the 'description'
in the calendar event. Then I run this script and, if the output looks OK, paste it into the
communication to the members (Slack, email, whatever). Often, members have a room preference
which I keep in an event in my personal calendar. I try to honor their preferences and follow
other social norms such as not booking un-related men and women in the same bed/room but
on popular nights, that might be unavoidable.
As members pay their guest fees, I add a '$' (w/ whitespace) to the 'summary'. The '$'
moves them from the 'deadbeat' list to the 'sponsor' list in the weekly communications.
Customization:
Obviously, you need to use your own google calendar.
Replace ROOMS with the appropriate selection for your situation.
DAYS_PEAK, GUEST_FEES_MID, and GUEST_FEES_PEAK may also need your attention.
Member names are extracted from the calendar, so no need to do anything in this file, but
you should probably examine fix_spelling() and add_guest_fees() since they implement rules
that are specific to my cabin.
I don't use f-strings because the raspberry pi that I sometimes run this on only has python 3.4
and I'm too lazy to install 3.7
"""
import datetime
import os
import json
USE_STR = """
--Show room usage in Lone Clone Ski Cabin--
Note: Enter guests as 'member +N' and, when paid, 'member $ +N'
Usage:
rooms [--counts] [--debug] [--nights] [--offline] [--peak] [--raw] [--shift=<S>] [--whosup] [--year=<Y>]
rooms -h | --help
rooms -v | --version
Options:
-h --help Show this screen.
-c --counts show how many times each member has used each room
-d --debug show stuff
-n --nights show who slept where, each night
-o --offline don't get the live calendar. Use a test data set
-p --peak Show peak nights for this season, exlcuding Fri and Sat
-r --raw show the raw calendar events
-s --shift <S> move 'today' by integer number of days
-v --version show the version
-w --whosup show who's up in the next week
-y --year <Y> year season starts [default: 2019]
"""
try:
import httplib2
from googleapiclient import discovery
from oauth2client import client
from oauth2client import tools
from oauth2client.file import Storage
import docopt
except ImportError:
IMP_ERR_STR = '** Failed import! Type "workon rooms" and try again, Bob **'
print('\n%s\n'%('*'*len(IMP_ERR_STR)), IMP_ERR_STR, '\n%s\n'%('*'*len(IMP_ERR_STR)))
# If modifying these scopes, delete your previously saved credentials
# at ~/.credentials/calendar-python-quickstart.json
SCOPES = 'https://www.googleapis.com/auth/calendar.readonly'
APPLICATION_NAME = 'Google Calendar API Python Quickstart'
# why do I have 2 different client secret files? TODO
CLIENT_SECRET_FILE = 'calendar-python-quickstart.json'
CLIENT_SECRET_FILE_ANOTHER = 'client_secret.json'
ROOMS = ('in-law', 'master', 'middle', 'bunk', 'loft',) # assignable rooms in the cabin
""" DAYS_PEAK is a list of days-of-the-week or dates that guest fee is higher than not.
The dates are specific to the Julian calendar of each season.
The year index is the season *start* year.
Note: Fri and Sat should always be the first 2 entries
"""
NIGHTS_PEAK = {
'2016': ['Fri', 'Sat']+['12/%2d'%x for x in range(18, 32)]+['01/01', '01/02', '02/19',], #pylint: disable=C0326
'2017': ['Fri', 'Sat']+['12/%2d'%x for x in range(17, 32)]+['01/01', '02/18',], #pylint: disable=C0326
'2018': ['Fri', 'Sat']+['12/%2d'%x for x in range(16, 32)]+['01/01', '02/17',], #pylint: disable=C0326
'2019': ['Fri', 'Sat']+['12/%2d'%x for x in range(15, 32)]+['01/01', '02/16',], #pylint: disable=C0326
'2020': ['Fri', 'Sat']+['12/%2d'%x for x in range(20, 32)]+['01/01', '02/14',], #pylint: disable=C0326
}
# "mid week" and "weekend/holiday" guest fee in dollars
GUEST_FEE_MID = 30
GUEST_FEE_PEAK = 35
def get_credentials(opts):
"""Gets valid user credentials from storage.
If nothing has been stored, or if the stored credentials are invalid,
the OAuth2 flow is completed to obtain the new credentials.
Returns:
Credentials, the obtained credential.
"""
home_dir = os.path.expanduser('~')
credential_dir = os.path.join(home_dir, '.credentials')
if not os.path.exists(credential_dir):
os.makedirs(credential_dir)
credential_path = os.path.join(credential_dir, CLIENT_SECRET_FILE)
if opts['--debug']:
print('** using credentials at '+credential_path)
with open(credential_path) as cred_file:
cred_text = cred_file.read()
print('\n'.join(cred_text.split(',')))
store = Storage(credential_path)
credentials = store.get()
if not credentials or credentials.invalid:
flow = client.flow_from_clientsecrets(CLIENT_SECRET_FILE_ANOTHER, SCOPES)
flow.user_agent = APPLICATION_NAME
# if flags:
credentials = tools.run_flow(flow, store) #, flags)
# else: # Needed only for compatibility with Python 2.6
# credentials = tools.run(flow, store)
print('Storing credentials to ' + credential_path) # except, I'm not storing them?
return credentials
def get_events(cred, **kwargs):
""" Wraps the service.events() call
"""
http = cred.authorize(httplib2.Http())
service = discovery.build('calendar', 'v3', http=http) # throws Warning and ImportError
# print(f'service.events={dir(service.events)}')
""" #pylint: disable=E1101 pylint thinks there is no events()... but there is
""" #pylint: disable=W0105
cal_events = service.events().list(**kwargs).execute() #pylint: disable=E1101
return cal_events.get('items', [])
def get_events_raw(credentials, opts):
""" Grab the entire calendar for the season from Nov 29 to May 1
ctor the dicts with night, leave, summary, description keys.
nightShort is added later by more_dates()
"""
day0 = datetime.datetime(*opts['season_start']).isoformat()+'Z'
day1 = datetime.datetime(*opts['season_end']).isoformat()+'Z'
events = get_events(
credentials,
timeMin=day0,
timeMax=day1,
singleEvents=True,
orderBy='startTime',
calendarId="primary")
return events
def events_to_raw_dates(events, opts): #pylint: disable=W0613
""" make a new list: dates_raw
that has only the fields I care about: night, leave, member, and room
"""
dates_raw = []
for event in events:
day_dict = {}
day_dict['night'] = event['start'].get('dateTime', event['start'].get('date'))[:10]
day_dict['leave'] = event['end'].get('dateTime', event['end'].get('date'))[:10]
# summary is the member name, description has room assignment
for k in (('summary', 'member',), ('description', 'where', ),):
try:
day_dict[k[1]] = event[k[0]].strip()
except KeyError:
day_dict[k[1]] = ''
dates_raw += [day_dict]
# dates_raw[] is a list of
# {'night':'2016-12-15', 'summary':'Logan', 'where':'master', 'leave':'2016-12-16',}
return dates_raw
def expand_multi_nights(dates_raw):
""" expand multi-night stays into individual nights
"""
dates_multi_night = []
for one_date in dates_raw: # add day of week
one_date['date'] = datetime.datetime.strptime(one_date['night'], '%Y-%m-%d')
nights = (datetime.datetime.strptime(one_date['leave'], '%Y-%m-%d').date()
- one_date['date'].date()).days - 1
for i in range(nights):
new_date = one_date.copy()
new_date['date'] = datetime.datetime.strptime(one_date['night'], '%Y-%m-%d') \
+ datetime.timedelta(days=i+1)
dates_multi_night += [new_date]
dates_raw += dates_multi_night
def add_day_of_week(dates_raw):
""" Use 'date of "2016-12-23" to make night_abrev of "Fri 12/23" """
for one_date in dates_raw:
one_date['night_abrev'] = one_date['date'].strftime('%a %m/%d')
dates_raw = dates_raw.sort(key=lambda x: x['date'])
def fix_spelling(dates_raw):
""" Common data entry errors: fix the dict and flag it for me to fix the google calendar
"""
for date in dates_raw:
for field, wrong, right in [
('where', 'inlaw', 'in-law',), ('member', 'Sarah', 'Sara',),
]:
if wrong in date[field]:
print('** spellcheck:', date)
date[field] = date[field].replace(wrong, right) # in-law, not inlaw, e.g.
if 'Glen ' in date['member']: # special treatment for missing n in Glenn
print('** spellcheck:', date)
date['member'] = date['summary'].replace('Glen', 'Glenn') # two n in Glenn
return dates_raw
def select_dates(dates_raw, opts, day0=None, day1=None):
""" return a subset of the events from today+day0 to today+day1
None in day0 means begining of current ski season
None in day1 means end of current ski season
"""
dt_today = datetime.datetime.utcnow()
if opts['--shift']:
dt_today += datetime.timedelta(days=int(opts['--shift']))
season_start = datetime.datetime(*opts['season_start'])
season_end = datetime.datetime(*opts['season_end'])
date0 = season_start if day0 is None else dt_today + datetime.timedelta(days=day0)
date1 = season_end if day1 is None else dt_today + datetime.timedelta(days=day1)
if opts['--debug']:
print('select', date0.strftime('%a %m/%d'), date1.strftime('%a %m/%d'))
return [e for e in dates_raw if bool(date0 <= e['date'] <= date1)]
def debug_print_raw(dates_raw):
""" Debugging aid
formatted to copy into code
"""
print('** dates_raw')
print('{'+ '},\n{'.join([', '.join(
["'%s':'%s'"%(n, e[n]) for n in ('night', 'leave', 'member', 'where')]
) for e in dates_raw]) +'}')
def show_raw(dates_raw):
""" Debugging aid
formatted for humans
"""
print('')
print('%10s %20s %-20s'%('', '', 'Raw Calendar',)+' '.join(['%10s'%r for r in ROOMS]))
for date in dates_raw:
print('%10s %-20s %-20s'%(date['night'],
date['member'],
date['where'].strip()) +
' '.join(['%10s'%date[room] for room in ROOMS]))
def put_members_in_rooms(dates_raw):
""" add ['middle']='Logan', ['bunk']='' etc
so that all dates have all rooms as keys, w/ or w/o a member
"""
for date in dates_raw:
for room in ROOMS:
if room in date['where'].lower():
date[room] = gevent_to_member_name(date) # just the first name
else:
date[room] = ''
def add_guest_fee(event, opts):
""" add 'guest_fee' key to a dates_raw event
0 means no guest, negative means fee is OWED, positive means paid
a '+ indicatees guests but not Z+1 (Sam is not charged).
Enter "Z +1" to indicate not Sam (chargable)
"""
if '+' in event['member'] and 'Z+1' not in event['member']:
event['guest_fee'] = GUEST_FEE_PEAK if any([x in event['night_abrev'] \
for x in NIGHTS_PEAK[opts['--year']]]) else GUEST_FEE_MID
# remove the 'paid' indicator ('$')
str_guest_count = event['member'].replace('$','')
# look for the guest count after the '+'
# we don't get here if 'Z+1' in the event so OK to split on '+'
str_guest_count = str_guest_count.split('+')[-1].strip()
try:
guest_count = int(str_guest_count)
except ValueError:
print('** FAILED to convert guest count', event['member'], 'on', event['night_abrev'])
guest_count = 1
event['guest_fee'] = guest_count * event['guest_fee']
# look for 'paid' indicator to see who's been naughty and who's been nice
if '$' not in event['member']:
event['guest_fee'] = -event['guest_fee'] # OWED
else:
event['guest_fee'] = 0
return event
def get_deadbeat_sponsors(dates_past):
""" return dicts of members and their guest fee accounts.
deadbeats owe guest fees
sponsors have paid their guest fees. A member may appear in both.
"""
# init the member dicts with {name: []}
deadbeats = {gevent_to_member_name(event): [] for event in dates_past}
sponsors = {gevent_to_member_name(event): [] for event in dates_past}
for event in dates_past:
if event['guest_fee'] < 0:
deadbeats[gevent_to_member_name(event)] += [(event['night_abrev'], -event['guest_fee'])]
if event['guest_fee'] > 0:
sponsors[gevent_to_member_name(event)] += [(event['night_abrev'], event['guest_fee'])]
return deadbeats, sponsors
def show_guest_fees(members):
""" members is a dict created by get_deadbeat_sponsors():
member: [(night, fee), (night, fee), (night, fee), ...]
for each member, prints $sum, member, dates
or ' none' if there are no guest fees.
"""
out_lst = []
total = 0
for member in members:
mem_total = sum([x[1] for x in members[member]])
dates = [x[0].split()[1] for x in members[member]]
if mem_total:
out_lst += ['$%4d %10s: %s'%(mem_total, member, ", ".join(dates))]
total += mem_total
if out_lst:
print('\n'.join(out_lst))
print('$%4d %10s'%(total, 'total'))
else:
print(' none')
def get_whos_up(dates_selected):
""" return members_dict['Bob'] = [0, 'Bob', ('middle','Mon 12/24'), ('middle','Tue 12/25'), ]
for use by show_whos_up()
"""
members_dict = {}
p_ord = 0
for event in dates_selected:
member = event['member']
try:
members_dict[member] += [(event['where'], event['night_abrev']),]
except KeyError:
members_dict[member] = [p_ord, member, (event['where'], event['night_abrev']),]
p_ord += 1
return members_dict
def show_whos_up(whos_up_dict):
""" This output gets pasted into my periodic emails
who room: day date, date, date [, room: date, date]
I generate a dict, keyed on the member, with values of a list:
[order#, member, (rooms,day),(rooms,day),...)]
I repeat the rooms for each day because it can change during a stay.
"""
# whos_up_dict['Bob'] = [0, 'Bob', ('middle','Mon 12/24'), ('middle','Tue 12/25'), ]
# sort by the begining night of stay (the p_ord value, above)
# for member_ass in sorted(list(whos_up_dict.items()), key=lambda k_v: k_v[1][0]):
for member_ass in list(whos_up_dict.items()):
# member_ass = ('Bob', [0, 'Bob', ('middle','Mon 12/24'), ('middle','Tue 12/25'), ])
day_tup = member_ass[1][2:] # [('middle','Mon 12/24'), ('middle','Tue 12/25'),]
room = day_tup[0][0] # save the room so we only print it when it changes
print('%20s %7s: %s,'%(member_ass[0], day_tup[0][0], day_tup[0][1]), end=' ')
for a_day in day_tup[1:]:
if a_day[0] == room:
print(a_day[1].split()[1]+',', end=' ')
else:
print('%7s: %s,'%(a_day[0], a_day[1].split()[1]), end=' ')
room = a_day[0] # save the room again
print('')
def show_missing_rooms(dates_raw, opts):
""" Flag the data entry error condition: all members in the cabin on a given night
must be in a room.
Otherwise, the count will be wrong and the priority system breaks down.
"""
dates_raw = select_dates(dates_raw, opts, None, 0)
missing_rooms_str = []
for date in dates_raw:
if not date['where']: # catch members in cabin but not assigned to any room
missing_rooms_str += \
['** On %s, where did "%s" sleep?'%(date['night_abrev'], date['member'])]
if missing_rooms_str:
print('** Missing rooms ! **')
print('\n'.join(missing_rooms_str))
def show_nights(dates_past, opts): #pylint: disable=W0613
""" colapse the raw calendar to show each night on one line
date, inlaw, master, middle, bunk, loft
who, who, who, who, who
"""
if dates_past:
dates_combo = [dates_past[0].copy()]
for date in dates_past[1:]:
if dates_combo[-1]['night_abrev'] not in date['night_abrev']: # new date
dates_combo += [date.copy()]
else:
for room in ROOMS:
sep = ',' if date[room] and dates_combo[-1][room] else ''
dates_combo[-1][room] = dates_combo[-1][room]+sep+date[room]
# dates_combo[] is {'night':'2016-12-15', 'member':'Logan', 'where':'master',
# 'master':'Logan', 'in-law':'Bob', 'middle':'Mark', ...}
print('\n%10s '%('Nights')+' '.join(['%16s'%room for room in ROOMS]))
for date in dates_combo:
print('%10s '%(date['night_abrev'])+' '.join(['%16s'%date[room] for room in ROOMS]))
else:
print('\n** no events found by show_dates()')
def count_members_in_rooms(dates_raw, opts): #pylint: disable=W0613
""" Construct the memberCount dict { 'Bob': {'inlaw': count, 'master' count, ...}...}
for season up to today.
"""
# init the member_counts with the first {name: {rooms}}
member_counts = {gevent_to_member_name(event): \
{room:0 for room in ROOMS+('total',)} for event in dates_raw}
# add ['middle']='Logan' or blank for all rooms
for event in dates_raw:
# print '*****',gevent_to_member_name(event),
# '+++', event['member'], '====', event['where'], '*****'
member_counts[gevent_to_member_name(event)]['total'] = \
member_counts[gevent_to_member_name(event)]['total']+1
for room in ROOMS:
if room in event['where'].lower():
try:
member_counts[event[room]][room] = member_counts[event[room]][room]+1
except KeyError as why:
msg = getattr(why, 'message', repr(why))
print("FAILED room=%s\nevent=%r\n%s\n"%(room, event, msg))
print("member_counts=%r\n"%member_counts)
return member_counts
def show_room_counts(member_counts):
""" Room priority is based on which member has used the room the least.
display:
date, who, where inlaw, master, middle, bunk, loft
total who, count, count, count, count, count
"""
# show how many times each member has slept in each room
print('\n%4s%10s'%('', 'Counts')+' '.join(['%8s'%room for room in ROOMS]))
for member in member_counts:
print('%4d%10s'%(member_counts[member]['total'], member)+
' '.join(['%8s'%('%d'%member_counts[member][room]
if member_counts[member][room]
else '') for room in ROOMS]))
def gevent_to_member_name(event):
""" Each calendar event has only one member name as the first word in the summary.
extract the member name ignoring whatever else is in the summary.
Should be run *after* fix_spelling()
"""
member = event['member'].split()[0].replace(',', '')
return member
def opts_add_season(opts):
""" The Lone CLone cabin runs for the first weekend in Dec to the last in April.
Sometimes, that includes the end of November ;-)
"""
opts['season_start'] = (int(opts['--year']), 11, 29,)
opts['season_end'] = (int(opts['--year'])+1, 5, 1,)
def read_test_dates_raw(file_name):
"""Read test data from a json encoded file.
"""
with open(file_name,'r') as fp:
dates_raw_test = json.load(fp)
return dates_raw_test
def write_test_dates_raw(file_name, test_data):
"""Write test data to a json encoded file.
"""
with open(file_name,'w') as fp:
json.dump(test_data, fp)
def create_test_dates_raw():
"""Todo: make a list of dicts as expected from google calendar
"""
return []
# yes, lots of branches and statements
#pylint: disable=R0912
def main(opts): #pylint: disable=R0915
""" the program
"""
# ignore line-to-long
#pylint: disable=C0301
if opts['--offline']:
dates_raw = read_test_dates_raw('test.json')
# start in the middle of the test data
test_shift = datetime.datetime.strptime(dates_raw[len(dates_raw)//2]['night'], '%Y-%m-%d')
opts['--year'] = str(datetime.datetime.strptime(dates_raw[0]['night'], '%Y-%m-%d').year)
opts_add_season(opts)
test_shift -= datetime.datetime.utcnow()
test_shift = test_shift.days
if opts['--shift']:
opts['--shift'] = str(int(opts['--shift']) + test_shift)
else:
opts['--shift'] = str(test_shift)
else:
opts_add_season(opts)
credentials = get_credentials(opts)
events_raw = get_events_raw(credentials, opts)
# print('events', ',\n'.join([repr(x) for x in events_raw]))
# translate 'start' and 'end' to 'night' and 'leave'
# translate 'summary' and 'description' to 'member' and 'where'
dates_raw = events_to_raw_dates(events_raw, opts)
# print ',\n'.join([repr(x) for x in dates_raw])
#pylint: enable=C0301
if opts['--debug']:
print('opts:\n', '\n'.join(['%s: %r'%(k, opts[k]) for k in opts if '--' in k]))
debug_print_raw(dates_raw)
# dates_raw is a list of dicts. The dates_raw dicts need a few more fields...
expand_multi_nights(dates_raw) # add more date dicts to fill in between night and leaving
add_day_of_week(dates_raw) # add 'night_abrev' field to the date dicts
dates_raw = fix_spelling(dates_raw) # catch data entry errors
put_members_in_rooms(dates_raw) # to each date, add entries for each room
if opts['--shift']:
dt_today = datetime.datetime.now() + datetime.timedelta(days=int(opts['--shift']))
print('Shifted to ', ('%s'%dt_today)[:16])
# dates_raw[] is now a list of {'night':'2016-12-15', 'member':'Peter',
# 'where':'master', 'master':'Peter', 'in-law':'', 'middle':'', ...}
# always flag any members I failed to assign to a room
show_missing_rooms(select_dates(dates_raw, opts, None, 0), opts)
if opts['--whosup']:
print("Here's who I've heard from:")
dates_coming_up = select_dates(dates_raw, opts, -2, 7)
whos_up_dict = get_whos_up(dates_coming_up)
if whos_up_dict:
show_whos_up(whos_up_dict)
else:
print(' no one!\n')
if opts['--raw']:
show_raw(dates_raw)
# always show the guest fee accounts
# give members 2 days before mentioning guest fees
dates_guests = [add_guest_fee(event, opts) for event in select_dates(dates_raw, opts, None, -2)]
# dates_guests[] includes a 'guest_fee' key (+ paid, - owed)
deadbeats, sponsors = get_deadbeat_sponsors(dates_guests)
print('\nMembers who owe guest fees:')
show_guest_fees(deadbeats)
print('\nMembers who have paid their guest fees: (Yay!)')
show_guest_fees(sponsors)
dates_past = select_dates(dates_raw, opts, None, 0)
if opts['--nights']:
show_nights(dates_past, opts)
if opts['--counts']:
member_counts = count_members_in_rooms(dates_past, opts)
# member_counts{} = {'Bob':{'in-law':1, 'master':0, 'middle':0,
# 'bunk':1, 'loft':0}, 'Mark:{'master':1,...},...}
show_room_counts(member_counts)
if opts['--peak']:
nights_extra = NIGHTS_PEAK[opts['--year']][2:] # ignore Fri, Sat entries
print('\nPeak nights starting %s, excluding Fri & Sat nights:'%opts['--year'], end='')
str_peak = ', '.join(['%s%s'%('' if i%8 != 0 else '\n ',
x) for i, x in enumerate(nights_extra)])
print(str_peak)
if __name__ == '__main__':
OPTS = docopt.docopt(USE_STR, version='0.9.0')
main(OPTS)
|
the-stack_0_4285 | # coding: utf8
""" Implementation of finite DPP MCMC samplers:
- `add_exchange_delete_sampler`
- `add_delete_sampler`
- `basis_exchange_sampler`
- `zonotope_sampler`
.. seealso:
`Documentation on ReadTheDocs <https://dppy.readthedocs.io/en/latest/finite_dpps/mcmc_sampling.html>`_
"""
import time
import numpy as np
import scipy.linalg as la
# For zonotope sampler
from cvxopt import matrix, spmatrix, solvers
solvers.options['show_progress'] = False
solvers.options['glpk'] = {'msg_lev': 'GLP_MSG_OFF'}
from dppy.utils import det_ST, check_random_state
############################################
# Approximate samplers for projection DPPs #
############################################
def dpp_sampler_mcmc(kernel, mode='AED', **params):
""" Interface function with initializations and samplers for MCMC schemes.
.. seealso::
- :ref:`finite_dpps_mcmc_sampling_add_exchange_delete`
- :func:`add_exchange_delete_sampler <add_exchange_delete_sampler>`
- :func:`initialize_AED_sampler <initialize_AED_sampler>`
- :func:`add_delete_sampler <add_delete_sampler>`
- :func:`basis_exchange_sampler <basis_exchange_sampler>`
- :func:`initialize_AD_and_E_sampler <initialize_AD_and_E_sampler>`
"""
rng = check_random_state(params.get('random_state', None))
s_init = params.get('s_init', None)
nb_iter = params.get('nb_iter', 10)
T_max = params.get('T_max', None)
size = params.get('size', None) # = Tr(K) for projection correlation K
if mode == 'AED': # Add-Exchange-Delete S'=S+t, S-t+u, S-t
if s_init is None:
s_init = initialize_AED_sampler(kernel, random_state=rng)
sampl = add_exchange_delete_sampler(kernel, s_init, nb_iter, T_max,
random_state=rng)
elif mode == 'AD': # Add-Delete S'=S+t, S-t
if s_init is None:
s_init = initialize_AD_and_E_sampler(kernel, random_state=rng)
sampl = add_delete_sampler(kernel, s_init, nb_iter, T_max,
random_state=rng)
elif mode == 'E': # Exchange S'=S-t+u
if s_init is None:
s_init = initialize_AD_and_E_sampler(kernel, size,
random_state=rng)
sampl = basis_exchange_sampler(kernel, s_init, nb_iter, T_max,
random_state=rng)
return sampl
def initialize_AED_sampler(kernel, random_state=None):
"""
.. seealso::
- :func:`add_delete_sampler <add_delete_sampler>`
- :func:`basis_exchange_sampler <basis_exchange_sampler>`
- :func:`initialize_AED_sampler <initialize_AED_sampler>`
- :func:`add_exchange_delete_sampler <add_exchange_delete_sampler>`
"""
rng = check_random_state(random_state)
N = kernel.shape[0]
ground_set = np.arange(N)
S0, det_S0 = [], 0.0
nb_iter = 100
tol = 1e-9
for _ in range(nb_iter):
if det_S0 > tol:
break
else:
T = rng.choice(2 * N, size=N, replace=False)
S0 = np.intersect1d(T, ground_set, assume_unique=True)
det_S0 = det_ST(kernel, S0)
else:
raise ValueError('Initialization problem, you may be using a size `k` > rank of the kernel')
return S0.tolist()
def initialize_AD_and_E_sampler(kernel, size=None, random_state=None):
"""
.. seealso::
- :func:`add_delete_sampler <add_delete_sampler>`
- :func:`basis_exchange_sampler <basis_exchange_sampler>`
- :func:`initialize_AED_sampler <initialize_AED_sampler>`
- :func:`add_exchange_delete_sampler <add_exchange_delete_sampler>`
"""
rng = check_random_state(random_state)
N = kernel.shape[0]
S0, det_S0 = [], 0.0
it_max = 100
tol = 1e-9
for _ in range(it_max):
if det_S0 > tol:
break
else:
S0 = rng.choice(N,
size=size if size else rng.randint(1, N + 1),
replace=False)
det_S0 = det_ST(kernel, S0)
else:
raise ValueError('Initialization problem, you may be using a size `k` > rank of the kernel')
return S0.tolist()
def add_exchange_delete_sampler(kernel, s_init=None, nb_iter=10, T_max=None,
random_state=None):
""" MCMC sampler for generic DPPs, it is a mix of add/delete and basis exchange MCMC samplers.
:param kernel:
Kernel martrix
:type kernel:
array_like
:param s_init:
Initial sample.
:type s_init:
list
:param nb_iter:
Maximum number of iterations performed by the the algorithm.
Default is 10.
:type nb_iter:
int
:param T_max:
Maximum running time of the algorithm (in seconds).
:type T_max:
float
:param random_state:
:type random_state:
None, np.random, int, np.random.RandomState
:return:
list of `nb_iter` approximate sample of DPP(kernel)
:rtype:
array_like
.. seealso::
Algorithm 3 in :cite:`LiJeSr16c`
"""
rng = check_random_state(random_state)
# Initialization
N = kernel.shape[0]
ground_set = np.arange(N)
S0, det_S0 = s_init, det_ST(kernel, s_init)
size_S0 = len(S0) # Size of the current sample
chain = [S0] # Initialize the collection (list) of sample
# Evaluate running time...
t_start = time.time() if T_max else 0
for _ in range(1, nb_iter):
S1 = S0.copy() # S1 = S0
# Pick one element s in S_0 by index uniformly at random
s_ind = rng.choice(size_S0 if size_S0 else N) # , size=1)[0]
# Unif t in [N]-S0
t = rng.choice(np.delete(ground_set, S0))
U = rng.rand()
ratio = size_S0 / N # Proportion of items in current sample
# Add: S1 = S0 + t
if U < 0.5 * (1 - ratio)**2:
S1.append(t) # S1 = S0 + t
# Accept_reject the move
det_S1 = det_ST(kernel, S1) # det K_S1
if rng.rand() < det_S1 / det_S0 * (size_S0 + 1) / (N - size_S0):
S0, det_S0 = S1, det_S1
chain.append(S1)
size_S0 += 1
else:
chain.append(S0)
# Exchange: S1 = S0 - s + t
elif (0.5 * (1 - ratio)**2 <= U) & (U < 0.5 * (1 - ratio)):
del S1[s_ind] # S1 = S0 - s
S1.append(t) # S1 = S1 + t = S0 - s + t
# Accept_reject the move
det_S1 = det_ST(kernel, S1) # det K_S1
if rng.rand() < (det_S1 / det_S0):
S0, det_S0 = S1, det_S1
chain.append(S1)
# size_S0 stays the same
else:
chain.append(S0)
# Delete: S1 = S0 - s
elif (0.5 * (1 - ratio) <= U) & (U < 0.5 * (ratio**2 + (1 - ratio))):
del S1[s_ind] # S0 - s
# Accept_reject the move
det_S1 = det_ST(kernel, S1) # det K_S1
if rng.rand() < det_S1 / det_S0 * size_S0 / (N - (size_S0 - 1)):
S0, det_S0 = S1, det_S1
chain.append(S1)
size_S0 -= 1
else:
chain.append(S0)
else:
chain.append(S0)
if T_max:
if time.time() - t_start < T_max:
break
return chain
def add_delete_sampler(kernel, s_init, nb_iter=10, T_max=None,
random_state=None):
""" MCMC sampler for generic DPP(kernel), it performs local moves by removing/adding one element at a time.
:param kernel:
Kernel martrix
:type kernel:
array_like
:param s_init:
Initial sample.
:type s_init:
list
:param nb_iter:
Maximum number of iterations performed by the the algorithm.
Default is 10.
:type nb_iter:
int
:param T_max:
Maximum running time of the algorithm (in seconds).
Default is None.
:type T_max:
float
:param random_state:
:type random_state:
None, np.random, int, np.random.RandomState
:return:
list of `nb_iter` approximate sample of DPP(kernel)
:rtype:
array_like
.. seealso::
Algorithm 1 in :cite:`LiJeSr16c`
"""
rng = check_random_state(random_state)
# Initialization
N = kernel.shape[0] # Number of elements
# Initialization
S0, det_S0 = s_init, det_ST(kernel, s_init)
chain = [S0] # Initialize the collection (list) of sample
# Evaluate running time...
t_start = time.time() if T_max else 0
for _ in range(1, nb_iter):
# With proba 1/2 try to add/delete an element
if rng.rand() < 0.5:
# Perform the potential add/delete move S1 = S0 +/- s
S1 = S0.copy() # S1 = S0
s = rng.choice(N) # Uniform item in [N]
if s in S1:
S1.remove(s) # S1 = S0 - s
else:
S1.append(s) # S1 = SO + s
# Accept_reject the move
det_S1 = det_ST(kernel, S1) # det K_S1
if rng.rand() < det_S1 / det_S0:
S0, det_S0 = S1, det_S1
chain.append(S1)
else:
chain.append(S0)
else:
chain.append(S0)
if T_max:
if time.time() - t_start < T_max:
break
return chain
def basis_exchange_sampler(kernel, s_init, nb_iter=10, T_max=None,
random_state=None):
""" MCMC sampler for projection DPPs, based on the basis exchange property.
:param kernel:
Feature vector matrix, feature vectors are stacked columnwise.
It is assumed to be full row rank.
:type kernel:
array_like
:param s_init:
Initial sample.
:type s_init:
list
:param nb_iter:
Maximum number of iterations performed by the the algorithm.
Default is 10.
:type nb_iter:
int
:param T_max:
Maximum running time of the algorithm (in seconds).
Default is None.
:type T_max:
float
:param random_state:
:type random_state:
None, np.random, int, np.random.RandomState
:return:
MCMC chain of approximate sample (stacked row_wise i.e. nb_iter rows).
:rtype:
array_like
.. seealso::
Algorithm 2 in :cite:`LiJeSr16c`
"""
rng = check_random_state(random_state)
# Initialization
N = kernel.shape[0] # Number of elements
ground_set = np.arange(N) # Ground set
size = len(s_init) # Size of the sample (cardinality is fixed)
# Initialization
S0, det_S0 = s_init, det_ST(kernel, s_init)
chain = np.zeros((nb_iter, size), dtype=int)
chain[0] = S0
# Evaluate running time...
t_start = time.time() if T_max else 0
for it in range(1, nb_iter):
# With proba 1/2 try to swap 2 elements
if rng.rand() < 0.5:
# Perform the potential exchange move S1 = S0 - s + t
S1 = S0.copy() # S1 = S0
# Pick one element s in S0 by index uniformly at random
s_ind = rng.choice(size)
# Pick one element t in [N]\S0 uniformly at random
t = rng.choice(np.delete(ground_set, S0))
S1[s_ind] = t # S_1 = S0 - S0[s_ind] + t
det_S1 = det_ST(kernel, S1) # det K_S1
# Accept_reject the move w. proba
if rng.rand() < det_S1 / det_S0:
S0, det_S0 = S1, det_S1
chain[it] = S1
else: # if reject, stay in the same state
chain[it] = S0
else:
chain[it] = S0
if T_max:
if time.time() - t_start < T_max:
break
return chain.tolist()
############
# ZONOTOPE #
############
def extract_basis(y_sol, eps=1e-5):
""" Subroutine of zono_sampling to extract the tile of the zonotope
in which a point lies. It extracts the indices of entries of the solution
of LP :eq:`eq:Px` that are in (0,1).
:param y_sol:
Optimal solution of LP :eq:`eq:Px`
:type y_sol:
list
:param eps:
Tolerance :math:`y_i^* \\in (\\epsilon, 1-\\epsilon), \\quad \\epsilon \\geq 0`
:eps type:
float
:return:
Indices of the feature vectors spanning the tile in which the point is lies.
:math:`B_{x} = \\left\\{ i \\, ; \\, y_i^* \\in (0,1) \\right\\}`
:rtype:
list
.. seealso::
Algorithm 3 in :cite:`GaBaVa17`
- :func:`zono_sampling <zono_sampling>`
"""
basis = np.where((eps < y_sol) & (y_sol < 1 - eps))[0]
return basis
def zonotope_sampler(A_zono, **params):
""" MCMC based sampler for projection DPPs.
The similarity matrix is the orthogonal projection matrix onto
the row span of the feature vector matrix.
Samples are of size equal to the ransampl_size of the projection matrix
also equal to the rank of the feature matrix (assumed to be full row rank).
:param A_zono:
Feature vector matrix, feature vectors are stacked columnwise.
It is assumed to be full row rank.
:type A_zono:
array_like
:param params: Dictionary containing the parameters
- ``'lin_obj'`` (list): Linear objective (:math:`c`) of the linear program used to identify the tile in which a point lies. Default is a random Gaussian vector.
- ``'x_0'` (list): Initial point.
- ``'nb_iter'`` (int): Number of iterations of the MCMC chain. Default is 10.
- ``'T_max'`` (float): Maximum running time of the algorithm (in seconds).
Default is None.
- ``'random_state`` (default None)
:type params: dict
:return:
MCMC chain of approximate samples (stacked row_wise i.e. nb_iter rows).
:rtype:
array_like
.. seealso::
Algorithm 5 in :cite:`GaBaVa17`
- :func:`extract_basis <extract_basis>`
- :func:`basis_exchange_sampler <basis_exchange_sampler>`
"""
rng = check_random_state(params.get('random_state', None))
r, N = A_zono.shape # Sizes of r=samples=rank(A_zono), N=ground set
# Linear objective
c = matrix(params.get('lin_obj', rng.randn(N)))
# Initial point x0 = A*u, u~U[0,1]^n
x0 = matrix(params.get('x_0', A_zono.dot(rng.rand(N))))
nb_iter = params.get('nb_iter', 10)
T_max = params.get('T_max', None)
###################
# Linear problems #
###################
# Canonical form
# min c.T*x min c.T*x
# s.t. G*x <= h <=> s.t. G*x + s = h
# A*x = b A*x = b
# s >= 0
# CVXOPT
# =====> solvers.lp(c, G, h, A, b, solver='glpk')
#################################################
# To access the tile Z(B_x)
# Solve P_x(A,c)
######################################################
# y^* =
# argmin c.T*y argmin c.T*y
# s.t. A*y = x <=> s.t. A *y = x
# 0 <= y <= 1 [ I_n] *y <= [1^n]
# [-I_n] [0^n]
######################################################
# Then B_x = \{ i ; y_i^* \in ]0,1[ \}
A = spmatrix(0.0, [], [], (r, N))
A[:, :] = A_zono
G = spmatrix(0.0, [], [], (2 * N, N))
G[:N, :] = spmatrix(1.0, range(N), range(N))
G[N:, :] = spmatrix(-1.0, range(N), range(N))
# Endpoints of segment
# D_x \cap Z(A) = [x+alpha_m*d, x-alpha_M*d]
###########################################################################
# alpha_m/_M = argmin +/-alpha argmin [+/-1 0^N].T * [alpha,lambda]
# s.t. x + alpha d = A lambda <=> s.t. [-d A] *[alpha, lambda] = x
# 0 <= lambda <= 1 [0^N I_N] *[alpha, lambda] <= [1^N]
# [0^N -I_N] [0^N]
##########################################################################
c_mM = matrix(0.0, (N + 1, 1))
c_mM[0] = 1.0
A_mM = spmatrix(0.0, [], [], (r, N + 1))
A_mM[:, 1:] = A
G_mM = spmatrix(0.0, [], [], (2 * N, N + 1))
G_mM[:, 1:] = G
# Common h to both kind of LP
# cf. 0 <= y <= 1 and 0 <= lambda <= 1
h = matrix(0.0, (2 * N, 1))
h[:N, :] = 1.0
##################
# Initialization #
##################
B_x0 = []
while len(B_x0) != r:
# Initial tile B_x0
# Solve P_x0(A,c)
y_star = solvers.lp(c, G, h, A, x0, solver='glpk')['x']
# Get the tile
B_x0 = extract_basis(np.asarray(y_star))
# Initialize sequence of sample
chain = np.zeros((nb_iter, r), dtype=int)
chain[0] = B_x0
# Compute the det of the tile (Vol(B)=abs(det(B)))
det_B_x0 = la.det(A_zono[:, B_x0])
t_start = time.time() if T_max else 0
for it in range(1, nb_iter):
# Take uniform direction d defining D_x0
d = matrix(rng.randn(r, 1))
# Define D_x0 \cap Z(A) = [x0 + alpha_m*d, x0 - alpha_M*d]
# Update the constraint [-d A] * [alpha,lambda] = x
A_mM[:, 0] = -d
# Find alpha_m/M
alpha_m = solvers.lp(c_mM, G_mM, h, A_mM, x0, solver='glpk')['x'][0]
alpha_M = solvers.lp(-c_mM, G_mM, h, A_mM, x0, solver='glpk')['x'][0]
# Propose x1 ~ U_{[x0+alpha_m*d, x0-alpha_M*d]}
x1 = x0 + (alpha_m + (alpha_M - alpha_m) * rng.rand()) * d
# Proposed tile B_x1
# Solve P_x1(A,c)
y_star = solvers.lp(c, G, h, A, x1, solver='glpk')['x']
# Get the tile
B_x1 = extract_basis(np.asarray(y_star))
# Accept/Reject the move with proba Vol(B1)/Vol(B0)
if len(B_x1) != r: # if extract_basis returned smtg ill conditioned
chain[it] = B_x0
else:
det_B_x1 = la.det(A_zono[:, B_x1])
if rng.rand() < abs(det_B_x1 / det_B_x0):
x0, B_x0, det_B_x0 = x1, B_x1, det_B_x1
chain[it] = B_x1
else:
chain[it] = B_x0
if T_max:
if time.time() - t_start < T_max:
break
return chain
|
the-stack_0_4286 | def checkPangram(s):
List = []
# create list of 26 charecters and set false each entry
for i in range(26):
List.append(False)
# converting the sentence to lowercase and iterating
# over the sentence
for c in s.lower():
if not c == " ":
# make the corresponding entry True
List[ord(c) -ord('a')]= True
# check if any charecter is missing then return False
for ch in List:
if ch == False:
return False
return True
# Driver Program to test above functions
sentence = input()
if (checkPangram(sentence)):
print("Yes")
else:
print("No") |
the-stack_0_4289 | import logging
import json
import os
import shutil
import subprocess
from .base import BaseExporter
logger = logging.getLogger(__name__)
__all__ = ["JSONExporter"]
class JSONExporter(BaseExporter):
short_name = "json_file"
TESTS_DIR_NAME = "tests"
SOLUTION_DIR_NAME = "solutions"
VALIDATOR_DIR_NAME = "validators"
SUBTASKS_DIR_NAME = "subtasks"
CHECKER_DIR_NAME = "checker"
GRADER_DIR_NAME = "graders"
OTHER_FILES_DIR_NAME = "others"
def __init__(self, revision):
super().__init__(revision)
def _do_export(self):
def export_resources_to_path(prefix):
for resource in self.revision.resource_set.all():
self.extract_from_storage_to_path(
resource.file,
os.path.join(
prefix,
resource.name
)
)
def generate_clean_name(name):
return name.replace(' ', '_').lower()
# Exporting problem global data
problem_data = self.revision.problem_data
problem_data_dict = {
"code": problem_data.code_name,
"name": problem_data.title,
"time_limit": problem_data.time_limit,
"memory_limit": problem_data.memory_limit,
"score_precision": problem_data.score_precision,
}
if problem_data.task_type:
problem_data_dict.update({
"task_type": problem_data.task_type,
"task_type_params": problem_data.task_type_parameters,
})
self.write_to_file(
"problem.json".format(problem_code=problem_data.code_name),
json.dumps(problem_data_dict)
)
self.write_to_file(
"statement.md",
self.revision.statement_set.get().content
)
# Exporting problem files
self.create_directory(self.OTHER_FILES_DIR_NAME)
for file in self.revision.problem.files.all():
self.extract_from_storage_to_path(
file,
os.path.join(
self.OTHER_FILES_DIR_NAME,
file.name
)
)
# Exporting testcases
self.create_directory(self.TESTS_DIR_NAME)
ignored_testcases = []
for testcase in self.revision.testcase_set.all():
if not testcase.input_file_generated() or not testcase.output_file_generated():
ignored_testcases.append(testcase)
logger.warning("Testcase {} couldn't be generated. Skipping".format(testcase.name))
continue
self.extract_from_storage_to_path(
testcase.input_file,
os.path.join(
self.TESTS_DIR_NAME,
"{testcase_name}.in".format(testcase_name=generate_clean_name(testcase.name))
),
)
self.extract_from_storage_to_path(
testcase.output_file,
os.path.join(
"tests",
"{testcase_name}.out".format(testcase_name=generate_clean_name(testcase.name))
)
)
# Exporting graders
self.create_directory(self.GRADER_DIR_NAME)
for grader in self.revision.grader_set.all():
self.extract_from_storage_to_path(
grader.code,
os.path.join(
self.GRADER_DIR_NAME,
grader.name,
)
)
# Exporting subtasks
self.create_directory(self.SUBTASKS_DIR_NAME)
for subtask in self.revision.subtasks.all():
self.write_to_file(
os.path.join(
self.SUBTASKS_DIR_NAME,
"{subtask_index:02}-{subtask_name}.json".format(
subtask_index=subtask.index,
subtask_name=subtask.name,
)),
json.dumps(
{
"score": subtask.score,
"testcases":
[
generate_clean_name(t.name)
for t in subtask.testcases.all()
]
}
)
)
# Exporting solutions
self.create_directory(self.SOLUTION_DIR_NAME)
for solution in self.revision.solution_set.all():
if solution.verdict:
solution_dir = os.path.join(self.SOLUTION_DIR_NAME, generate_clean_name(solution.verdict.name))
else:
solution_dir = os.path.join(self.SOLUTION_DIR_NAME, "unknown_verdict")
self.create_directory(solution_dir)
self.extract_from_storage_to_path(solution.code, os.path.join(solution_dir, solution.name))
# We don't export generators. Tests are already generated so there is no use for them
# Exporting checker( We only extract main checker)
self.create_directory(self.CHECKER_DIR_NAME)
for resource in self.revision.checker_set.all():
self.extract_from_storage_to_path(
resource.file,
os.path.join(self.CHECKER_DIR_NAME, resource.name)
)
checker = problem_data.checker
if checker is not None:
self.extract_from_storage_to_path(
checker.file,
os.path.join(self.CHECKER_DIR_NAME, "checker{ext}".format(
ext=os.path.splitext(checker.name)[1]
))
)
export_resources_to_path("checker")
# Exporting validators
self.create_directory(self.VALIDATOR_DIR_NAME)
for validator in self.revision.validator_set.all():
dirs = []
for subtask in validator.subtasks:
dirs.append(subtask.name)
for dir in dirs:
full_dir = os.path.join(self.VALIDATOR_DIR_NAME, dir)
self.create_directory(full_dir)
self.extract_from_storage_to_path(
validator.file,
os.path.join(
full_dir,
validator.name
)
)
export_resources_to_path("validators")
# Exporting public
self.create_directory("repo")
os.system('git --git-dir="{repo_dir}" worktree add {work_dir} {commit_id}'.format(
repo_dir=self.revision.repository_path,
work_dir=self.get_absolute_path("repo"),
commit_id=self.revision.commit_id
))
tests_dir_in_repo = os.path.join('repo', 'tests')
self.create_directory(tests_dir_in_repo)
for testcase in self.revision.testcase_set.all():
if not testcase.input_file_generated() or not testcase.output_file_generated():
ignored_testcases.append(testcase)
logger.warning("Testcase {} couldn't be generated. Skipping".format(testcase.name))
continue
self.extract_from_storage_to_path(
testcase.input_file,
os.path.join(
tests_dir_in_repo,
"{testcase_name}.in".format(testcase_name=testcase.name)
),
)
self.extract_from_storage_to_path(
testcase.output_file,
os.path.join(
tests_dir_in_repo,
"{testcase_name}.out".format(testcase_name=testcase.name)
)
)
try:
print(subprocess.check_output(['tps', 'make-public'], cwd=self.get_absolute_path("repo"), stderr=subprocess.STDOUT))
except subprocess.CalledProcessError as e:
print(e.output)
raise e
self.create_directory("attachments")
try:
shutil.move(os.path.join(self.get_absolute_path("repo"),
"{}.zip".format(problem_data.code_name)),
self.get_absolute_path("attachments"))
except OSError:
try:
shutil.move(os.path.join(self.get_absolute_path("repo"),
"{}.zip".format(problem_data.code_name)),
self.get_absolute_path("attachments"))
except OSError as e:
logger.error("Public archive not found")
raise e
shutil.rmtree(self.get_absolute_path("repo"))
|
the-stack_0_4290 | # -*- coding: utf-8 -*-
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import warnings
from typing import Callable, Dict, Optional, Sequence, Tuple
from google.api_core import grpc_helpers # type: ignore
from google.api_core import gapic_v1 # type: ignore
import google.auth # type: ignore
from google.auth import credentials as ga_credentials # type: ignore
from google.auth.transport.grpc import SslCredentials # type: ignore
import grpc # type: ignore
from google.ads.googleads.v7.resources.types import ad_group_criterion_label
from google.ads.googleads.v7.services.types import ad_group_criterion_label_service
from .base import AdGroupCriterionLabelServiceTransport, DEFAULT_CLIENT_INFO
class AdGroupCriterionLabelServiceGrpcTransport(AdGroupCriterionLabelServiceTransport):
"""gRPC backend transport for AdGroupCriterionLabelService.
Service to manage labels on ad group criteria.
This class defines the same methods as the primary client, so the
primary client can load the underlying transport implementation
and call it.
It sends protocol buffers over the wire using gRPC (which is built on
top of HTTP/2); the ``grpcio`` package must be installed.
"""
def __init__(self, *,
host: str = 'googleads.googleapis.com',
credentials: ga_credentials.Credentials = None,
credentials_file: str = None,
scopes: Sequence[str] = None,
channel: grpc.Channel = None,
api_mtls_endpoint: str = None,
client_cert_source: Callable[[], Tuple[bytes, bytes]] = None,
ssl_channel_credentials: grpc.ChannelCredentials = None,
quota_project_id: Optional[str] = None,
client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
) -> None:
"""Instantiate the transport.
Args:
host (Optional[str]):
The hostname to connect to.
credentials (Optional[google.auth.credentials.Credentials]): The
authorization credentials to attach to requests. These
credentials identify the application to the service; if none
are specified, the client will attempt to ascertain the
credentials from the environment.
This argument is ignored if ``channel`` is provided.
credentials_file (Optional[str]): A file with credentials that can
be loaded with :func:`google.auth.load_credentials_from_file`.
This argument is ignored if ``channel`` is provided.
scopes (Optional(Sequence[str])): A list of scopes. This argument is
ignored if ``channel`` is provided.
channel (Optional[grpc.Channel]): A ``Channel`` instance through
which to make calls.
api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint.
If provided, it overrides the ``host`` argument and tries to create
a mutual TLS channel with client SSL credentials from
``client_cert_source`` or application default SSL credentials.
client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]):
Deprecated. A callback to provide client SSL certificate bytes and
private key bytes, both in PEM format. It is ignored if
``api_mtls_endpoint`` is None.
ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials
for grpc channel. It is ignored if ``channel`` is provided.
quota_project_id (Optional[str]): An optional project to use for billing
and quota.
client_info (google.api_core.gapic_v1.client_info.ClientInfo):
The client info used to send a user-agent string along with
API requests. If ``None``, then default info will be used.
Generally, you only need to set this if you're developing
your own client library.
Raises:
google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport
creation failed for any reason.
"""
self._ssl_channel_credentials = ssl_channel_credentials
if channel:
# Sanity check: Ensure that channel and credentials are not both
# provided.
credentials = False
# If a channel was explicitly provided, set it.
self._grpc_channel = channel
self._ssl_channel_credentials = None
elif api_mtls_endpoint:
warnings.warn("api_mtls_endpoint and client_cert_source are deprecated", DeprecationWarning)
host = api_mtls_endpoint if ":" in api_mtls_endpoint else api_mtls_endpoint + ":443"
if credentials is None:
credentials, _ = google.auth.default(scopes=self.AUTH_SCOPES, quota_project_id=quota_project_id)
# Create SSL credentials with client_cert_source or application
# default SSL credentials.
if client_cert_source:
cert, key = client_cert_source()
ssl_credentials = grpc.ssl_channel_credentials(
certificate_chain=cert, private_key=key
)
else:
ssl_credentials = SslCredentials().ssl_credentials
# create a new channel. The provided one is ignored.
self._grpc_channel = type(self).create_channel(
host,
credentials=credentials,
credentials_file=credentials_file,
ssl_credentials=ssl_credentials,
scopes=scopes or self.AUTH_SCOPES,
quota_project_id=quota_project_id,
options=[
("grpc.max_send_message_length", -1),
("grpc.max_receive_message_length", -1),
],
)
self._ssl_channel_credentials = ssl_credentials
else:
host = host if ":" in host else host + ":443"
if credentials is None:
credentials, _ = google.auth.default(scopes=self.AUTH_SCOPES)
# create a new channel. The provided one is ignored.
self._grpc_channel = type(self).create_channel(
host,
credentials=credentials,
ssl_credentials=ssl_channel_credentials,
scopes=self.AUTH_SCOPES,
options=[
("grpc.max_send_message_length", -1),
("grpc.max_receive_message_length", -1),
],
)
self._stubs = {} # type: Dict[str, Callable]
# Run the base constructor.
super().__init__(
host=host,
credentials=credentials,
client_info=client_info,
)
@classmethod
def create_channel(cls,
host: str = 'googleads.googleapis.com',
credentials: ga_credentials.Credentials = None,
scopes: Optional[Sequence[str]] = None,
**kwargs) -> grpc.Channel:
"""Create and return a gRPC channel object.
Args:
address (Optionsl[str]): The host for the channel to use.
credentials (Optional[~.Credentials]): The
authorization credentials to attach to requests. These
credentials identify this application to the service. If
none are specified, the client will attempt to ascertain
the credentials from the environment.
scopes (Optional[Sequence[str]]): A optional list of scopes needed for this
service. These are only used when credentials are not specified and
are passed to :func:`google.auth.default`.
kwargs (Optional[dict]): Keyword arguments, which are passed to the
channel creation.
Returns:
grpc.Channel: A gRPC channel object.
"""
return grpc_helpers.create_channel(
host,
credentials=credentials,
scopes=scopes or cls.AUTH_SCOPES,
**kwargs
)
def close(self):
self.grpc_channel.close()
@property
def grpc_channel(self) -> grpc.Channel:
"""Return the channel designed to connect to this service.
"""
return self._grpc_channel
@property
def get_ad_group_criterion_label(self) -> Callable[
[ad_group_criterion_label_service.GetAdGroupCriterionLabelRequest],
ad_group_criterion_label.AdGroupCriterionLabel]:
r"""Return a callable for the get ad group criterion label method over gRPC.
Returns the requested ad group criterion label in full detail.
List of thrown errors: `AuthenticationError <>`__
`AuthorizationError <>`__ `HeaderError <>`__
`InternalError <>`__ `QuotaError <>`__ `RequestError <>`__
Returns:
Callable[[~.GetAdGroupCriterionLabelRequest],
~.AdGroupCriterionLabel]:
A function that, when called, will call the underlying RPC
on the server.
"""
# Generate a "stub function" on-the-fly which will actually make
# the request.
# gRPC handles serialization and deserialization, so we just need
# to pass in the functions for each.
if 'get_ad_group_criterion_label' not in self._stubs:
self._stubs['get_ad_group_criterion_label'] = self.grpc_channel.unary_unary(
'/google.ads.googleads.v7.services.AdGroupCriterionLabelService/GetAdGroupCriterionLabel',
request_serializer=ad_group_criterion_label_service.GetAdGroupCriterionLabelRequest.serialize,
response_deserializer=ad_group_criterion_label.AdGroupCriterionLabel.deserialize,
)
return self._stubs['get_ad_group_criterion_label']
@property
def mutate_ad_group_criterion_labels(self) -> Callable[
[ad_group_criterion_label_service.MutateAdGroupCriterionLabelsRequest],
ad_group_criterion_label_service.MutateAdGroupCriterionLabelsResponse]:
r"""Return a callable for the mutate ad group criterion
labels method over gRPC.
Creates and removes ad group criterion labels. Operation
statuses are returned.
List of thrown errors: `AuthenticationError <>`__
`AuthorizationError <>`__ `DatabaseError <>`__ `FieldError <>`__
`HeaderError <>`__ `InternalError <>`__ `QuotaError <>`__
`RequestError <>`__
Returns:
Callable[[~.MutateAdGroupCriterionLabelsRequest],
~.MutateAdGroupCriterionLabelsResponse]:
A function that, when called, will call the underlying RPC
on the server.
"""
# Generate a "stub function" on-the-fly which will actually make
# the request.
# gRPC handles serialization and deserialization, so we just need
# to pass in the functions for each.
if 'mutate_ad_group_criterion_labels' not in self._stubs:
self._stubs['mutate_ad_group_criterion_labels'] = self.grpc_channel.unary_unary(
'/google.ads.googleads.v7.services.AdGroupCriterionLabelService/MutateAdGroupCriterionLabels',
request_serializer=ad_group_criterion_label_service.MutateAdGroupCriterionLabelsRequest.serialize,
response_deserializer=ad_group_criterion_label_service.MutateAdGroupCriterionLabelsResponse.deserialize,
)
return self._stubs['mutate_ad_group_criterion_labels']
__all__ = (
'AdGroupCriterionLabelServiceGrpcTransport',
)
|
the-stack_0_4292 | # -*- coding: utf-8 -*-
import copy
import json
from freezegun import freeze_time
from mantarray_desktop_app import MICRO_TO_BASE_CONVERSION
from mantarray_desktop_app import SERIAL_COMM_DEFAULT_DATA_CHANNEL
from mantarray_desktop_app import START_MANAGED_ACQUISITION_COMMUNICATION
from mantarray_desktop_app import STOP_MANAGED_ACQUISITION_COMMUNICATION
import numpy as np
from stdlib_utils import drain_queue
from stdlib_utils import invoke_process_run_and_check_errors
from stdlib_utils import put_object_into_queue_and_raise_error_if_eventually_still_empty
from ..fixtures import QUEUE_CHECK_TIMEOUT_SECONDS
from ..fixtures_data_analyzer import fixture_four_board_analyzer_process_beta_2_mode
from ..fixtures_data_analyzer import set_magnetometer_config
from ..fixtures_file_writer import GENERIC_BOARD_MAGNETOMETER_CONFIGURATION
from ..helpers import confirm_queue_is_eventually_empty
from ..helpers import confirm_queue_is_eventually_of_size
from ..parsed_channel_data_packets import SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS
__fixtures__ = [
fixture_four_board_analyzer_process_beta_2_mode,
]
@freeze_time("2021-06-15 16:39:10.120589")
def test_DataAnalyzerProcess__sends_outgoing_data_dict_to_main_as_soon_as_it_retrieves_a_data_packet_from_file_writer__and_sends_data_available_message_to_main(
four_board_analyzer_process_beta_2_mode, mocker
):
da_process = four_board_analyzer_process_beta_2_mode["da_process"]
from_main_queue = four_board_analyzer_process_beta_2_mode["from_main_queue"]
to_main_queue = four_board_analyzer_process_beta_2_mode["to_main_queue"]
incoming_data_queue = four_board_analyzer_process_beta_2_mode["board_queues"][0][0]
outgoing_data_queue = four_board_analyzer_process_beta_2_mode["board_queues"][0][1]
# mock so that well metrics don't populate outgoing data queue
mocker.patch.object(da_process, "_dump_outgoing_well_metrics", autospec=True)
# mock so performance log messages don't populate queue to main
mocker.patch.object(da_process, "_handle_performance_logging", autospec=True)
da_process.init_streams()
# set config arbitrary sampling period
test_sampling_period = 1000
set_magnetometer_config(
four_board_analyzer_process_beta_2_mode,
{
"magnetometer_config": GENERIC_BOARD_MAGNETOMETER_CONFIGURATION,
"sampling_period": test_sampling_period,
},
)
# start managed_acquisition
put_object_into_queue_and_raise_error_if_eventually_still_empty(
dict(START_MANAGED_ACQUISITION_COMMUNICATION), from_main_queue
)
invoke_process_run_and_check_errors(da_process)
confirm_queue_is_eventually_of_size(to_main_queue, 1)
# remove message to main
to_main_queue.get(timeout=QUEUE_CHECK_TIMEOUT_SECONDS)
invoke_process_run_and_check_errors(da_process)
confirm_queue_is_eventually_empty(outgoing_data_queue)
confirm_queue_is_eventually_empty(to_main_queue)
test_data_packet = copy.deepcopy(SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS)
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_data_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
confirm_queue_is_eventually_of_size(outgoing_data_queue, 1)
confirm_queue_is_eventually_of_size(to_main_queue, 1)
# test data dump
waveform_data_points = dict()
for well_idx in range(24):
default_channel_data = test_data_packet[well_idx][SERIAL_COMM_DEFAULT_DATA_CHANNEL]
pipeline = da_process.get_pipeline_template().create_pipeline()
pipeline.load_raw_gmr_data(
np.array([test_data_packet["time_indices"], default_channel_data], np.int64),
np.zeros((2, len(default_channel_data))),
)
compressed_data = pipeline.get_force()
waveform_data_points[well_idx] = {
"x_data_points": compressed_data[0].tolist(),
"y_data_points": (compressed_data[1] * MICRO_TO_BASE_CONVERSION).tolist(),
}
expected_outgoing_dict = {
"waveform_data": {"basic_data": {"waveform_data_points": waveform_data_points}},
"earliest_timepoint": test_data_packet["time_indices"][0].item(),
"latest_timepoint": test_data_packet["time_indices"][-1].item(),
"num_data_points": len(test_data_packet["time_indices"]),
}
outgoing_msg = outgoing_data_queue.get(timeout=QUEUE_CHECK_TIMEOUT_SECONDS)
assert outgoing_msg["data_type"] == "waveform_data"
assert outgoing_msg["data_json"] == json.dumps(expected_outgoing_dict)
# test message sent to main
outgoing_msg = to_main_queue.get(timeout=QUEUE_CHECK_TIMEOUT_SECONDS)
expected_msg = {
"communication_type": "data_available",
"timestamp": "2021-06-15 16:39:10.120589",
"num_data_points": len(test_data_packet["time_indices"]),
"earliest_timepoint": test_data_packet["time_indices"][0],
"latest_timepoint": test_data_packet["time_indices"][-1],
}
assert outgoing_msg == expected_msg
def test_DataAnalyzerProcess__does_not_process_data_packets_after_receiving_stop_managed_acquisition_command_until_receiving_first_packet_of_new_stream(
four_board_analyzer_process_beta_2_mode, mocker
):
da_process = four_board_analyzer_process_beta_2_mode["da_process"]
from_main_queue = four_board_analyzer_process_beta_2_mode["from_main_queue"]
to_main_queue = four_board_analyzer_process_beta_2_mode["to_main_queue"]
incoming_data_queue = four_board_analyzer_process_beta_2_mode["board_queues"][0][0]
# mock so these since not using real data
mocked_process_data = mocker.patch.object(
da_process, "_process_beta_2_data", autospec=True, return_value={}
)
invoke_process_run_and_check_errors(da_process, perform_setup_before_loop=True)
# set config arbitrary sampling period
test_sampling_period = 10000
set_magnetometer_config(
four_board_analyzer_process_beta_2_mode,
{
"magnetometer_config": GENERIC_BOARD_MAGNETOMETER_CONFIGURATION,
"sampling_period": test_sampling_period,
},
)
# start managed_acquisition
put_object_into_queue_and_raise_error_if_eventually_still_empty(
dict(START_MANAGED_ACQUISITION_COMMUNICATION), from_main_queue
)
invoke_process_run_and_check_errors(da_process)
# send first packet of first stream and make sure it is processed
test_data_packet = copy.deepcopy(SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS)
test_data_packet["is_first_packet_of_stream"] = True
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_data_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
assert mocked_process_data.call_count == 1
# send another packet of first stream and make sure it is processed
test_data_packet = copy.deepcopy(SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS)
test_data_packet["is_first_packet_of_stream"] = False
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_data_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
assert mocked_process_data.call_count == 2
# stop managed acquisition and make sure next data packet in the first stream is not processed
put_object_into_queue_and_raise_error_if_eventually_still_empty(
dict(STOP_MANAGED_ACQUISITION_COMMUNICATION), from_main_queue
)
invoke_process_run_and_check_errors(da_process)
test_data_packet = copy.deepcopy(SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS)
test_data_packet["is_first_packet_of_stream"] = False
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_data_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
assert mocked_process_data.call_count == 2
# start managed acquisition again and make sure next data packet in the first stream is not processed
put_object_into_queue_and_raise_error_if_eventually_still_empty(
dict(START_MANAGED_ACQUISITION_COMMUNICATION), from_main_queue
)
invoke_process_run_and_check_errors(da_process)
test_data_packet = copy.deepcopy(SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS)
test_data_packet["is_first_packet_of_stream"] = False
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_data_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
assert mocked_process_data.call_count == 2
# send first data packet from second stream and make sure it is processed
test_data_packet = copy.deepcopy(SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS)
test_data_packet["is_first_packet_of_stream"] = True
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_data_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
assert mocked_process_data.call_count == 3
# prevent BrokenPipeErrors
drain_queue(to_main_queue)
def test_DataAnalyzerProcess__processes_incoming_stim_packet(four_board_analyzer_process_beta_2_mode, mocker):
# TODO Tanner (10/20/21): add to this test when ready to add stim handling
da_process = four_board_analyzer_process_beta_2_mode["da_process"]
incoming_data_queue = four_board_analyzer_process_beta_2_mode["board_queues"][0][0]
# can probably remove this spy and assertion once actual handling is implemented
spied_process_stim_packet = mocker.spy(da_process, "_process_stim_packet")
test_stim_packet = {"data_type": "stimulation"}
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_stim_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
spied_process_stim_packet.assert_called_once_with(test_stim_packet)
|
the-stack_0_4293 | import setuptools
with open("README.md", "r") as fh:
long_description = fh.read()
setuptools.setup(
name="findmylibs",
version="0.0.1",
author="The Nomadic Coder",
author_email="[email protected]",
description="A package to probe installed libraries",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/atemysemicolon/findMyLibs",
install_requires=['cmake'],
packages=["findmylibs"],
entry_points={
'console_scripts': [
'findmylibs = findmylibs.__main__:main',
]},
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: POSIX :: Linux",
],
) |
the-stack_0_4295 | import numpy as np
trials=10_00_000
dice=int(input("Enter the no of dices :"))
for i in np.arange(1*dice,dice*6 + 1):
found=0
for _ in np.arange(trials):
total=0
for _ in np.arange(dice):
total+=np.random.randint(1,7)
if(total==i):
found+=1
print("Sum Value :",i,"probability",np.round((found/trials)*100,4),"%")
|
the-stack_0_4296 | #!/usr/bin/env python3
############################################################################################
# #
# Program purpose: Find all the common characters in lexicographical order from #
# two given lower case strings. If there are no common letters #
# print “No common characters". #
# Program Author : Happi Yvan <[email protected]> #
# Creation Date : October 30, 2019 #
# #
############################################################################################
from collections import Counter
def find_common_chars(str1: str, str2: str) -> dict:
data = {'found': False, 'info': ''}
d1 = Counter(str1)
d2 = Counter(str2)
common_dict = d1 & d2
if len(common_dict) == 0:
data['info'] = 'No common characters'
return data
data['found'] = True
# list of common elements
common_chars = list(common_dict.elements())
common_chars = sorted(common_chars)
data['data'] = ''.join(common_chars)
return data
if __name__ == "__main__":
str1 = 'Python'
str2 = 'PHP'
data_info = find_common_chars(str1=str1, str2=str2)
if data_info['found']:
print(f"Two strings: '{str1}' and '{str2}': {data_info['data']}")
else:
print(f"Two strings: '{str1}' and '{str2}': {data_info['info']}")
str1 = 'Java'
str2 = 'PHP'
data_info = find_common_chars(str1=str1, str2=str2)
if data_info['found']:
print(f"Two strings: '{str1}' and '{str2}': {data_info['data']}")
else:
print(f"Two strings: '{str1}' and '{str2}': {data_info['info']}")
|
the-stack_0_4297 | """
Copyright 2021 Inmanta
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Contact: [email protected]
"""
from setuptools import setup, find_packages
from os import path
requires = [
'inmanta-core',
'intervaltree'
]
# read the contents of your README file
this_directory = path.abspath(path.dirname(__file__))
with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
setup(
name="inmantals",
package_dir={"": "src"},
packages=find_packages("src"),
install_requires=requires,
version="1.2.0",
description="Inmanta Language Server",
long_description=long_description,
long_description_content_type='text/markdown',
author="Inmanta",
author_email="[email protected]",
license="Apache Software License",
url="https://github.com/inmanta/vscode-inmanta",
keywords=["ide", "language-server", "vscode", "inmanta"],
classifiers=["Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Telecommunications Industry",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Topic :: System :: Systems Administration",
"Topic :: Utilities"],
entry_points={
'console_scripts': [
'inmanta-language-server-tcp = inmantals.tcpserver:main',
],
},
)
|
the-stack_0_4299 | #!/usr/bin/python3
# -*- coding: utf-8 -*-
import logging
import sys
import time
import _ssl
from sleekxmpp import ClientXMPP
import config
import events
from common import VERSION
class IdleBot(ClientXMPP):
def __init__(self, jid, password, rooms, nick):
ClientXMPP.__init__(self, jid, password)
self.ssl_version = _ssl.PROTOCOL_TLSv1_2
self.rooms = rooms
self.nick = nick
self.add_event_handler('session_start', self.session_start)
self.add_event_handler('groupchat_message', self.muc_message)
self.add_event_handler('disconnected', self.disconnected)
self.add_event_handler('presence_error', self.disconnected)
self.add_event_handler('session_end', self.disconnected)
self.priority = 0
self.status = None
self.show = None
self.logger = logging.getLogger(__name__)
for room in self.rooms:
self.add_event_handler('muc::%s::got_offline' % room, self.muc_offline)
def talked_to_me(self, text):
return text[:len(self.nick)].lower() == self.nick.lower()
def disconnected(self, _):
self.logger.warn("Disconnected! dbg: {}".format(str(_)))
self.disconnect(wait=True)
def session_start(self, _):
self.get_roster()
self.send_presence(ppriority=self.priority, pstatus=self.status, pshow=self.show)
for room in self.rooms:
self.logger.info('%s: joining' % room)
ret = self.plugin['xep_0045'].joinMUC(
room,
self.nick,
wait=True
)
self.logger.info('%s: joined with code %s' % (room, ret))
def muc_message(self, msg_obj):
"""
Handle muc messages, return if irrelevant content or die by hangup.
:param msg_obj:
:return:
"""
# don't talk to yourself
if msg_obj['mucnick'] == self.nick or 'groupchat' != msg_obj['type']:
return False
elif self.talked_to_me(msg_obj['body']) and 'hangup' in msg_obj['body']:
self.logger.warn("got 'hangup' from '%s': '%s'" % (
msg_obj['mucnick'], msg_obj['body']
))
self.hangup()
return False
# elif msg_obj['mucnick'] in config.runtimeconf_get("other_bots", ()):
# self.logger.debug("not talking to the other bot named {}".format( msg_obj['mucnick']))
# return False
else:
return True
def muc_offline(self, msg_obj):
if 'muc' in msg_obj.values:
room = msg_obj.values['muc']['room']
user = msg_obj.values['muc']['nick']
if user == config.conf_get('bot_nickname'):
self.logger.warn("Left my room, rejoin")
self.plugin['xep_0045'].joinMUC(
room,
self.nick,
wait=True
)
def hangup(self):
"""
disconnect and exit
"""
self.disconnect(wait=True)
def start(botclass, active=False):
logging.basicConfig(
level=config.conf_get('loglevel'),
format=sys.argv[0] + ' %(asctime)s %(levelname).1s %(funcName)-15s %(message)s'
)
logger = logging.getLogger(__name__)
logger.info(VERSION)
jid = config.conf_get('jid')
if '/' not in jid:
jid = '%s/%s' % (jid, botclass.__name__)
bot = botclass(
jid=jid,
password=config.conf_get('password'),
rooms=config.conf_get('rooms'),
nick=config.conf_get('bot_nickname')
)
bot.connect()
bot.register_plugin('xep_0045')
bot.register_plugin('xep_0199', {'keepalive': True})
bot.register_plugin('xep_0308')
bot.process()
config.runtimeconf_set('start_time', -time.time())
if active:
pass
events.event_loop.start()
if '__main__' == __name__:
start(IdleBot)
|
the-stack_0_4300 | #!/usr/bin/python3 -i
#
# Copyright (c) 2015-2021 The Khronos Group Inc.
# Copyright (c) 2015-2021 Valve Corporation
# Copyright (c) 2015-2021 LunarG, Inc.
# Copyright (c) 2015-2021 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Dustin Graves <[email protected]>
# Author: Mark Lobodzinski <[email protected]>
# Author: Dave Houlton <[email protected]>
import os,re,sys,string,json
import xml.etree.ElementTree as etree
from generator import *
from collections import namedtuple
from common_codegen import *
# This is a workaround to use a Python 2.7 and 3.x compatible syntax.
from io import open
# ParameterValidationGeneratorOptions - subclass of GeneratorOptions.
#
# Adds options used by ParameterValidationOutputGenerator object during Parameter validation layer generation.
#
# Additional members
# prefixText - list of strings to prefix generated header with
# (usually a copyright statement + calling convention macros).
# protectFile - True if multiple inclusion protection should be
# generated (based on the filename) around the entire header.
# protectFeature - True if #ifndef..#endif protection should be
# generated around a feature interface in the header file.
# genFuncPointers - True if function pointer typedefs should be
# generated
# protectProto - If conditional protection should be generated
# around prototype declarations, set to either '#ifdef'
# to require opt-in (#ifdef protectProtoStr) or '#ifndef'
# to require opt-out (#ifndef protectProtoStr). Otherwise
# set to None.
# protectProtoStr - #ifdef/#ifndef symbol to use around prototype
# declarations, if protectProto is set
# apicall - string to use for the function declaration prefix,
# such as APICALL on Windows.
# apientry - string to use for the calling convention macro,
# in typedefs, such as APIENTRY.
# apientryp - string to use for the calling convention macro
# in function pointer typedefs, such as APIENTRYP.
# indentFuncProto - True if prototype declarations should put each
# parameter on a separate line
# indentFuncPointer - True if typedefed function pointers should put each
# parameter on a separate line
# alignFuncParam - if nonzero and parameters are being put on a
# separate line, align parameter names at the specified column
class ParameterValidationGeneratorOptions(GeneratorOptions):
def __init__(self,
conventions = None,
filename = None,
directory = '.',
genpath = None,
apiname = None,
profile = None,
versions = '.*',
emitversions = '.*',
defaultExtensions = None,
addExtensions = None,
removeExtensions = None,
emitExtensions = None,
emitSpirv = None,
sortProcedure = regSortFeatures,
prefixText = "",
apicall = '',
apientry = '',
apientryp = '',
indentFuncProto = True,
indentFuncPointer = False,
alignFuncParam = 0,
expandEnumerants = True,
valid_usage_path = ''):
GeneratorOptions.__init__(self,
conventions = conventions,
filename = filename,
directory = directory,
genpath = genpath,
apiname = apiname,
profile = profile,
versions = versions,
emitversions = emitversions,
defaultExtensions = defaultExtensions,
addExtensions = addExtensions,
removeExtensions = removeExtensions,
emitExtensions = emitExtensions,
emitSpirv = emitSpirv,
sortProcedure = sortProcedure)
self.prefixText = prefixText
self.apicall = apicall
self.apientry = apientry
self.apientryp = apientryp
self.indentFuncProto = indentFuncProto
self.indentFuncPointer = indentFuncPointer
self.alignFuncParam = alignFuncParam
self.expandEnumerants = expandEnumerants
self.valid_usage_path = valid_usage_path
# ParameterValidationOutputGenerator - subclass of OutputGenerator.
# Generates param checker layer code.
#
# ---- methods ----
# ParamCheckerOutputGenerator(errFile, warnFile, diagFile) - args as for
# OutputGenerator. Defines additional internal state.
# ---- methods overriding base class ----
# beginFile(genOpts)
# endFile()
# beginFeature(interface, emit)
# endFeature()
# genType(typeinfo,name)
# genStruct(typeinfo,name)
# genGroup(groupinfo,name)
# genEnum(enuminfo, name)
# genCmd(cmdinfo)
class ParameterValidationOutputGenerator(OutputGenerator):
"""Generate Parameter Validation code based on XML element attributes"""
# This is an ordered list of sections in the header file.
ALL_SECTIONS = ['command']
def __init__(self,
errFile = sys.stderr,
warnFile = sys.stderr,
diagFile = sys.stdout):
OutputGenerator.__init__(self, errFile, warnFile, diagFile)
self.INDENT_SPACES = 4
self.declarations = []
inline_custom_source_preamble = """
"""
# These functions have additional, custom-written checks in the utils cpp file. CodeGen will automatically add a call
# to those functions of the form 'bool manual_PreCallValidateAPIName', where the 'vk' is dropped.
# see 'manual_PreCallValidateCreateGraphicsPipelines' as an example.
self.functions_with_manual_checks = [
'vkCreateInstance',
'vkCreateDevice',
'vkCreateQueryPool',
'vkCreateRenderPass',
'vkCreateRenderPass2',
'vkCreateRenderPass2KHR',
'vkCreateBuffer',
'vkCreateImage',
'vkCreatePipelineLayout',
'vkCreateGraphicsPipelines',
'vkCreateComputePipelines',
'vkCreateRayTracingPipelinesNV',
'vkCreateRayTracingPipelinesKHR',
'vkCreateSampler',
'vkCreateDescriptorSetLayout',
'vkFreeDescriptorSets',
'vkUpdateDescriptorSets',
'vkBeginCommandBuffer',
'vkCmdSetViewport',
'vkCmdSetScissor',
'vkCmdSetLineWidth',
'vkCmdDrawIndirect',
'vkCmdDrawIndexedIndirect',
'vkCmdDrawMultiEXT',
'vkCmdDrawMultiIndexedEXT',
'vkCmdClearAttachments',
'vkCmdBindIndexBuffer',
'vkCmdCopyBuffer',
'vkCmdUpdateBuffer',
'vkCmdFillBuffer',
'vkCreateSwapchainKHR',
'vkCreateSharedSwapchainsKHR',
'vkQueuePresentKHR',
'vkCreateDescriptorPool',
'vkCmdDispatch',
'vkCmdDispatchIndirect',
'vkCmdDispatchBaseKHR',
'vkCmdPushDescriptorSetKHR',
'vkCmdSetExclusiveScissorNV',
'vkCmdSetViewportShadingRatePaletteNV',
'vkCmdSetCoarseSampleOrderNV',
'vkCmdDrawMeshTasksNV',
'vkCmdDrawMeshTasksIndirectNV',
'vkCmdDrawMeshTasksIndirectCountNV',
'vkAllocateMemory',
'vkCreateAccelerationStructureNV',
'vkCreateAccelerationStructureKHR',
'vkGetAccelerationStructureHandleNV',
'vkGetPhysicalDeviceImageFormatProperties',
'vkGetPhysicalDeviceImageFormatProperties2',
'vkGetPhysicalDeviceImageFormatProperties2KHR',
'vkCmdBuildAccelerationStructureNV',
'vkCreateFramebuffer',
'vkCmdSetLineStippleEXT',
'vkSetDebugUtilsObjectNameEXT',
'vkSetDebugUtilsObjectTagEXT',
'vkCmdSetViewportWScalingNV',
'vkAcquireNextImageKHR',
'vkAcquireNextImage2KHR',
'vkCmdBindTransformFeedbackBuffersEXT',
'vkCmdBeginTransformFeedbackEXT',
'vkCmdEndTransformFeedbackEXT',
'vkCmdDrawIndirectByteCountEXT',
'vkCreateSamplerYcbcrConversion',
'vkCreateSamplerYcbcrConversionKHR',
'vkImportSemaphoreFdKHR',
'vkCmdBindVertexBuffers',
'vkCreateImageView',
'vkCopyAccelerationStructureToMemoryKHR',
'vkCmdCopyAccelerationStructureToMemoryKHR',
'vkCopyAccelerationStructureKHR',
'vkCmdCopyAccelerationStructureKHR',
'vkCopyMemoryToAccelerationStructureKHR',
'vkCmdCopyMemoryToAccelerationStructureKHR',
'vkCmdDrawIndirectCount',
'vkCmdDrawIndirectCountKHR',
'vkCmdDrawIndexedIndirectCount',
'vkCmdDrawIndexedIndirectCountKHR',
'vkCmdWriteAccelerationStructuresPropertiesKHR',
'vkWriteAccelerationStructuresPropertiesKHR',
'vkGetRayTracingCaptureReplayShaderGroupHandlesKHR',
'vkCmdTraceRaysKHR',
'vkCmdTraceRaysNV',
'vkCmdTraceRaysIndirectKHR',
'vkCmdBuildAccelerationStructureIndirectKHR',
'vkGetDeviceAccelerationStructureCompatibilityKHR',
'vkCmdSetViewportWithCountEXT',
'vkCmdSetScissorWithCountEXT',
'vkCmdBindVertexBuffers2EXT',
'vkCmdCopyBuffer2KHR',
'vkCmdBuildAccelerationStructuresKHR',
'vkCmdBuildAccelerationStructuresIndirectKHR',
'vkBuildAccelerationStructuresKHR',
'vkGetAccelerationStructureBuildSizesKHR',
'vkCmdWriteAccelerationStructuresPropertiesNV',
'vkCreateDisplayModeKHR',
'vkCreatePrivateDataSlotEXT',
'vkCmdSetVertexInputEXT',
'vkCmdPushConstants',
'vkMergePipelineCaches'
]
# Commands to ignore
self.blacklist = [
'vkGetInstanceProcAddr',
'vkGetDeviceProcAddr',
'vkEnumerateInstanceVersion',
'vkEnumerateInstanceLayerProperties',
'vkEnumerateInstanceExtensionProperties',
'vkEnumerateDeviceLayerProperties',
'vkEnumerateDeviceExtensionProperties',
'vkGetDeviceGroupSurfacePresentModes2EXT'
]
# Structure fields to ignore
self.structMemberBlacklist = { 'VkWriteDescriptorSet' : ['dstSet'], 'VkAccelerationStructureGeometryKHR' :['geometry'] }
# Validation conditions for some special case struct members that are conditionally validated
self.structMemberValidationConditions = { 'VkPipelineColorBlendStateCreateInfo' : { 'logicOp' : '{}logicOpEnable == VK_TRUE' } }
# Header version
self.headerVersion = None
# Internal state - accumulators for different inner block text
self.validation = [] # Text comprising the main per-api parameter validation routines
self.stypes = [] # Values from the VkStructureType enumeration
self.structTypes = dict() # Map of Vulkan struct typename to required VkStructureType
self.handleTypes = set() # Set of handle type names
self.commands = [] # List of CommandData records for all Vulkan commands
self.structMembers = [] # List of StructMemberData records for all Vulkan structs
self.validatedStructs = dict() # Map of structs type names to generated validation code for that struct type
self.enumRanges = set() # Set of enum names
self.enum_values_definitions = dict() # [enum, string] containing enumerated type map definitions
self.flag_values_definitions = dict() # [flag, string] containing flag type map definitions
self.stype_version_dict = dict() # String containing structtype to version map data
self.flags = set() # Map of flags typenames
self.flagBits = dict() # Map of flag bits typename to list of values
self.newFlags = set() # Map of flags typenames /defined in the current feature/
self.required_extensions = dict() # Dictionary of required extensions for each item in the current extension
self.extension_type = '' # Type of active feature (extension), device or instance
self.extension_names = dict() # Dictionary of extension names to extension name defines
self.structextends_list = [] # List of extensions which extend another struct
self.struct_feature_protect = dict() # Dictionary of structnames and FeatureExtraProtect strings
self.valid_vuids = set() # Set of all valid VUIDs
self.vuid_dict = dict() # VUID dictionary (from JSON)
self.alias_dict = dict() # Dict of cmd|struct aliases
self.header_file = False # Header file generation flag
self.source_file = False # Source file generation flag
self.instance_extension_list = '' # List of instance extension name defines
self.device_extension_list = '' # List of device extension name defines
self.returnedonly_structs = [] # List of structs with 'returnonly' attribute
self.called_types = set() # Set of types called via function/struct - not in list == app never passes in to validate
# Named tuples to store struct and command data
self.CommandParam = namedtuple('CommandParam', ['type', 'name', 'ispointer', 'isstaticarray', 'isbool', 'israngedenum',
'isconst', 'isoptional', 'iscount', 'noautovalidity',
'len', 'extstructs', 'condition', 'cdecl'])
self.CommandData = namedtuple('CommandData', ['name', 'params', 'cdecl', 'extension_type', 'result', 'promotion_info'])
self.StructMemberData = namedtuple('StructMemberData', ['name', 'members'])
#
# Generate Copyright comment block for file
def GenerateCopyright(self):
copyright = '/* *** THIS FILE IS GENERATED - DO NOT EDIT! ***\n'
copyright += ' * See parameter_validation_generator.py for modifications\n'
copyright += ' *\n'
copyright += ' * Copyright (c) 2015-2021 The Khronos Group Inc.\n'
copyright += ' * Copyright (c) 2015-2021 LunarG, Inc.\n'
copyright += ' * Copyright (C) 2015-2021 Google Inc.\n'
copyright += ' *\n'
copyright += ' * Licensed under the Apache License, Version 2.0 (the "License");\n'
copyright += ' * you may not use this file except in compliance with the License.\n'
copyright += ' * Copyright (c) 2015-2017 Valve Corporation\n'
copyright += ' * You may obtain a copy of the License at\n'
copyright += ' *\n'
copyright += ' * http://www.apache.org/licenses/LICENSE-2.0\n'
copyright += ' *\n'
copyright += ' * Unless required by applicable law or agreed to in writing, software\n'
copyright += ' * distributed under the License is distributed on an "AS IS" BASIS,\n'
copyright += ' * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n'
copyright += ' * See the License for the specific language governing permissions and\n'
copyright += ' * limitations under the License.\n'
copyright += ' *\n'
copyright += ' * Author: Mark Lobodzinski <[email protected]>\n'
copyright += ' * Author: Dave Houlton <[email protected]>\n'
copyright += ' */\n\n'
return copyright
#
# Increases the global indent variable
def incIndent(self, indent):
inc = ' ' * self.INDENT_SPACES
if indent:
return indent + inc
return inc
#
# Decreases the global indent variable
def decIndent(self, indent):
if indent and (len(indent) > self.INDENT_SPACES):
return indent[:-self.INDENT_SPACES]
return ''
#
# Walk the JSON-derived dict and find all "vuid" key values
def ExtractVUIDs(self, d):
if hasattr(d, 'items'):
for k, v in d.items():
if k == "vuid":
yield v
elif isinstance(v, dict):
for s in self.ExtractVUIDs(v):
yield s
elif isinstance (v, list):
for l in v:
for s in self.ExtractVUIDs(l):
yield s
#
# Called at file creation time
def beginFile(self, genOpts):
OutputGenerator.beginFile(self, genOpts)
self.header_file = (genOpts.filename == 'parameter_validation.h')
self.source_file = (genOpts.filename == 'parameter_validation.cpp')
if not self.header_file and not self.source_file:
print("Error: Output Filenames have changed, update generator source.\n")
sys.exit(1)
if self.source_file or self.header_file:
# Output Copyright text
s = self.GenerateCopyright()
write(s, file=self.outFile)
if self.header_file:
return
stype_map = ''
stype_version_dict = dict()
# Create contents of Structs->API version unordered map
root = self.registry.reg
for node in root.findall('feature'):
version_name = node.get('name')
version_name = version_name.replace('VK_', 'VK_API_')
for enum_item in node.iter('enum'):
if enum_item.get('extends') == "VkStructureType":
struct_type_id = enum_item.get('name')
self.stype_version_dict[struct_type_id] = version_name
for extensions in root.findall('extensions'):
for extension in extensions.findall('extension'):
for entry in extension.iterfind('require/enum[@extends="VkStructureType"]'):
alias = entry.get('alias')
if alias is not None and (entry.get('comment') is None or 'typo' not in entry.get('comment')):
self.stype_version_dict[alias] = extension.get('name')
# Build map of structure type names to VkStructureType enum values
# Find all types of category "struct"
for struct in self.registry.tree.iterfind('types/type[@category="struct"]'):
# Check if struct has member named "sType" of type "VkStructureType" which has values defined
stype = struct.find('member[name="sType"][type="VkStructureType"][@values]')
if stype is not None:
# Store VkStructureType value for this type
self.structTypes[struct.get('name')] = stype.get('values')
self.valid_usage_path = genOpts.valid_usage_path
vu_json_filename = os.path.join(self.valid_usage_path + os.sep, 'validusage.json')
if os.path.isfile(vu_json_filename):
json_file = open(vu_json_filename, 'r', encoding='utf-8')
self.vuid_dict = json.load(json_file)
json_file.close()
if len(self.vuid_dict) == 0:
print("Error: Could not find, or error loading %s/validusage.json\n", vu_json_filename)
sys.exit(1)
#
# Build a set of all vuid text strings found in validusage.json
for json_vuid_string in self.ExtractVUIDs(self.vuid_dict):
self.valid_vuids.add(json_vuid_string)
#
# Headers
write('#include "chassis.h"', file=self.outFile)
self.newline()
write('#include "stateless_validation.h"', file=self.outFile)
self.newline()
#
# Called at end-time for final content output
def endFile(self):
if self.source_file:
# C-specific
self.newline()
# Don't need flag/enum lists if app can never call it to be validated
# But need to save everything as not all information is known until endFile()
for flag, string in self.flag_values_definitions.items():
if flag == 'VkGeometryInstanceFlagsKHR':
# only called in VkAccelerationStructureInstanceKHR which is never called anywhere explicitly
continue
flagBits = flag.replace('Flags', 'FlagBits')
if flag in self.called_types or flagBits in self.called_types:
write(string, file=self.outFile)
for enum, string in self.enum_values_definitions.items():
if enum in self.called_types:
write(string, file=self.outFile)
self.newline()
self.newline()
api_func = 'bool StatelessValidation::CheckPromotedApiAgainstVulkanVersion(VkInstance instance, const char *api_name, const uint32_t promoted_version) const {\n'
api_func += ' bool skip = false;\n'
api_func += ' if (api_version < promoted_version) {\n'
api_func += ' skip = LogError(instance,\n'
api_func += ' kVUID_PVError_ApiVersionViolation, "Attemped to call %s() with an effective API version of %s"\n'
api_func += ' "but this API was not promoted until version %s.", api_name, StringAPIVersion(api_version).c_str(),\n'
api_func += ' StringAPIVersion(promoted_version).c_str());\n'
api_func += ' }\n'
api_func += ' return skip;\n'
api_func += '}\n\n'
api_func += 'bool StatelessValidation::CheckPromotedApiAgainstVulkanVersion(VkPhysicalDevice pdev, const char *api_name, const uint32_t promoted_version) const {\n'
api_func += ' bool skip = false;\n'
api_func += ' const auto &target_pdev = physical_device_properties_map.find(pdev);\n'
api_func += ' if (target_pdev != physical_device_properties_map.end()) {\n'
api_func += ' auto effective_api_version = std::min(target_pdev->second->apiVersion, api_version);\n'
api_func += ' if (effective_api_version < promoted_version) {\n'
api_func += ' skip = LogError(instance,\n'
api_func += ' kVUID_PVError_ApiVersionViolation, "Attemped to call %s() with an effective API version of %s, "\n'
api_func += ' "which is the minimum of version requested in pApplicationInfo (%s) and supported by this physical device (%s), "\n'
api_func += ' "but this API was not promoted until version %s.", api_name, StringAPIVersion(api_version).c_str(),\n'
api_func += ' StringAPIVersion(target_pdev->second->apiVersion).c_str(), StringAPIVersion(effective_api_version).c_str(),\n'
api_func += ' StringAPIVersion(promoted_version).c_str());\n'
api_func += ' }\n'
api_func += ' }\n'
api_func += ' return skip;\n'
api_func += '}\n'
write(api_func, file=self.outFile)
pnext_handler = 'bool StatelessValidation::ValidatePnextStructContents(const char *api_name, const ParameterName ¶meter_name,\n'
pnext_handler += ' const VkBaseOutStructure* header, const char *pnext_vuid) const {\n'
pnext_handler += ' bool skip = false;\n'
pnext_handler += ' switch(header->sType) {\n'
# Do some processing here to extract data from validatedstructs...
for item in self.structextends_list:
postProcSpec = {}
postProcSpec['ppp'] = '' if not item else '{postProcPrefix}'
postProcSpec['pps'] = '' if not item else '{postProcSuffix}'
postProcSpec['ppi'] = '' if not item else '{postProcInsert}'
pnext_case = '\n'
pnext_check = ''
protect = ''
# Guard struct cases with feature ifdefs, if necessary
if item in self.struct_feature_protect.keys():
protect = self.struct_feature_protect[item]
pnext_case += '#ifdef %s\n' % protect
pnext_case += ' // Validation code for %s structure members\n' % item
pnext_case += ' case %s: { // Covers VUID-%s-sType-sType\n' % (self.structTypes[item], item)
# pNext version/extension-enabled checks
ver_info = ''
struct_type = self.structTypes[item]
if struct_type in self.stype_version_dict.keys():
ver_info = self.stype_version_dict[struct_type]
else:
struct_type[:-4]
if struct_type[:-4] in self.stype_version_dict.values():
ver_info = self.stype_version_dict[struct_type[:-4]]
else:
ver_info = None
if ver_info is not None:
if 'VK_API_VERSION_' in ver_info:
api_version = ver_info;
pnext_check += ' if (api_version < %s) {\n' % ver_info
pnext_check += ' skip |= LogError(\n'
pnext_check += ' instance, pnext_vuid,\n'
pnext_check += ' "%%s: Includes a pNext pointer (%%s) to a VkStructureType (%s) which was added in %s but the "\n' % (struct_type, ver_info)
pnext_check += ' "current effective API version is %s.",\n'
pnext_check += ' api_name, parameter_name.get_name().c_str(), StringAPIVersion(api_version).c_str());\n'
pnext_check += ' }\n'
else:
# Dependent on enabled extension
ext_name = ver_info
ext_name_define = self.extension_names[ver_info]
table_type = ''
if ext_name_define in self.instance_extension_list:
table_type = 'instance'
elif ext_name_define in self.device_extension_list:
table_type = 'device'
else:
print("Error in parameter_validation_generator.py CodeGen.")
norm_ext_name = ext_name_define[:-15].lower()
if table_type == 'device':
pnext_check += ' if ((!SupportedByPdev(physical_device, %s)) && !%s_extensions.%s) {\n' % (ext_name_define, table_type, norm_ext_name.lower())
else:
pnext_check += ' if (!%s_extensions.%s) {\n' % (table_type, norm_ext_name.lower())
pnext_check += ' skip |= LogError(\n'
pnext_check += ' instance, pnext_vuid,\n'
pnext_check += ' "%%s: Includes a pNext pointer (%%s) to a VkStructureType (%s), but its parent extension "\n' % struct_type
pnext_check += ' "%s has not been enabled.",\n' % ext_name
pnext_check += ' api_name, parameter_name.get_name().c_str());\n'
pnext_check += ' }\n'
pnext_check += '\n'
expr = self.expandStructCode(item, item, 'structure->', '', ' ', [], postProcSpec)
struct_validation_source = self.ScrubStructCode(expr)
if struct_validation_source != '':
pnext_case += ' %s *structure = (%s *) header;\n' % (item, item)
pnext_case += '%s%s' % (pnext_check, struct_validation_source)
pnext_case += ' } break;\n'
if protect:
pnext_case += '#endif // %s\n' % protect
# Skip functions containing no validation
if struct_validation_source or pnext_check != '':
pnext_handler += pnext_case;
else:
pnext_handler += '\n // No Validation code for %s structure members -- Covers VUID-%s-sType-sType\n' % (item, item)
pnext_handler += ' default:\n'
pnext_handler += ' skip = false;\n'
pnext_handler += ' }\n'
pnext_handler += ' return skip;\n'
pnext_handler += '}\n'
write(pnext_handler, file=self.outFile)
self.newline()
ext_template = 'bool StatelessValidation::OutputExtensionError(const std::string &api_name, const std::string &extension_name) const {\n'
ext_template += ' return LogError(instance,\n'
ext_template += ' kVUID_PVError_ExtensionNotEnabled, "Attemped to call %s() but its required extension %s has not been enabled\\n",\n'
ext_template += ' api_name.c_str(), extension_name.c_str());\n'
ext_template += '}\n'
write(ext_template, file=self.outFile)
self.newline()
commands_text = '\n'.join(self.validation)
write(commands_text, file=self.outFile)
self.newline()
if self.header_file:
# Output declarations and record intercepted procedures
write('\n'.join(self.declarations), file=self.outFile)
# Finish processing in superclass
OutputGenerator.endFile(self)
#
# Processing at beginning of each feature or extension
def beginFeature(self, interface, emit):
# Start processing in superclass
OutputGenerator.beginFeature(self, interface, emit)
# C-specific
# Accumulate includes, defines, types, enums, function pointer typedefs, end function prototypes separately for this
# feature. They're only printed in endFeature().
self.headerVersion = None
self.stypes = []
self.commands = []
self.structMembers = []
self.newFlags = set()
self.featureExtraProtect = GetFeatureProtect(interface)
# Get base list of extension dependencies for all items in this extension
base_required_extensions = []
if "VK_VERSION_1" not in self.featureName:
nameElem = interface[0][1]
name = nameElem.get('name')
# Save Name Define to get correct enable name later
self.extension_names[self.featureName] = name
# This extension is the first dependency for this command
base_required_extensions.append(self.featureName)
# Add any defined extension dependencies to the base dependency list for this extension
requires = interface.get('requires')
if requires is not None:
base_required_extensions.extend(requires.split(','))
# Build dictionary of extension dependencies for each item in this extension
self.required_extensions = dict()
for require_element in interface.findall('require'):
# Copy base extension dependency list
required_extensions = list(base_required_extensions)
# Add any additional extension dependencies specified in this require block
additional_extensions = require_element.get('extension')
if additional_extensions:
required_extensions.extend(additional_extensions.split(','))
# Save full extension list for all named items
for element in require_element.findall('*[@name]'):
self.required_extensions[element.get('name')] = required_extensions
# And note if this is an Instance or Device extension
self.extension_type = interface.get('type')
if interface.tag == 'extension':
name_elem = interface[0][1]
name_definition = name_elem.get('name')
if 'EXTENSION_NAME' not in name_definition:
print("Error in vk.xml file -- extension name is not available")
if interface.get('type') == 'instance':
self.instance_extension_list += '%s, ' % name_definition
else:
self.device_extension_list += '%s, ' % name_definition
#
# Called at the end of each extension (feature)
def endFeature(self):
if self.header_file:
return
# C-specific
# Actually write the interface to the output file.
if (self.emit):
# If type declarations are needed by other features based on this one, it may be necessary to suppress the ExtraProtect,
# or move it below the 'for section...' loop.
ifdef = ''
if (self.featureExtraProtect is not None):
ifdef = '#ifdef %s\n' % self.featureExtraProtect
self.validation.append(ifdef)
# Generate the struct member checking code from the captured data
self.processStructMemberData()
# Generate the command parameter checking code from the captured data
self.processCmdData()
# Write the declaration for the HeaderVersion
if self.headerVersion:
write('const uint32_t GeneratedVulkanHeaderVersion = {};'.format(self.headerVersion), file=self.outFile)
# Write the declarations for the VkFlags values combining all flag bits
for flag in sorted(self.newFlags):
flagBits = flag.replace('Flags', 'FlagBits')
if flagBits in self.flagBits:
bits = self.flagBits[flagBits]
decl = 'const {} All{} = {}'.format(flag, flagBits, bits[0])
for bit in bits[1:]:
decl += '|' + bit
decl += ';'
self.flag_values_definitions[flag] = decl
endif = '\n'
if (self.featureExtraProtect is not None):
endif = '#endif // %s\n' % self.featureExtraProtect
self.validation.append(endif)
# Finish processing in superclass
OutputGenerator.endFeature(self)
#
# Type generation
def genType(self, typeinfo, name, alias):
# record the name/alias pair
if alias is not None:
self.alias_dict[name]=alias
OutputGenerator.genType(self, typeinfo, name, alias)
typeElem = typeinfo.elem
# If the type is a struct type, traverse the embedded <member> tags generating a structure. Otherwise, emit the tag text.
category = typeElem.get('category')
if (category == 'struct' or category == 'union'):
self.genStruct(typeinfo, name, alias)
elif (category == 'handle'):
self.handleTypes.add(name)
elif (category == 'bitmask'):
self.flags.add(name)
self.newFlags.add(name)
elif (category == 'define'):
if name == 'VK_HEADER_VERSION':
nameElem = typeElem.find('name')
self.headerVersion = noneStr(nameElem.tail).strip()
#
# Struct parameter check generation.
# This is a special case of the <type> tag where the contents are interpreted as a set of <member> tags instead of freeform C
# type declarations. The <member> tags are just like <param> tags - they are a declaration of a struct or union member.
# Only simple member declarations are supported (no nested structs etc.)
def genStruct(self, typeinfo, typeName, alias):
if not self.source_file:
return
# alias has already been recorded in genType, above
OutputGenerator.genStruct(self, typeinfo, typeName, alias)
conditions = self.structMemberValidationConditions[typeName] if typeName in self.structMemberValidationConditions else None
members = typeinfo.elem.findall('.//member')
if self.featureExtraProtect is not None:
self.struct_feature_protect[typeName] = self.featureExtraProtect
#
# Iterate over members once to get length parameters for arrays
lens = set()
for member in members:
len = self.getLen(member)
if len:
lens.add(len)
#
# Generate member info
membersInfo = []
returned_only = typeinfo.elem.attrib.get('returnedonly') is not None
for member in members:
# Get the member's type and name
info = self.getTypeNameTuple(member)
type = info[0]
name = info[1]
stypeValue = ''
cdecl = self.makeCParamDecl(member, 0)
ispointer = self.paramIsPointer(member)
isconst = True if 'const' in cdecl else False
# Store pointer/array/string info -- Check for parameter name in lens set
iscount = False
if name in lens:
iscount = True
# The pNext members are not tagged as optional, but are treated as optional for parameter NULL checks. Static array
# members are also treated as optional to skip NULL pointer validation, as they won't be NULL.
isstaticarray = self.paramIsStaticArray(member)
isoptional = False
if self.paramIsOptional(member) or (name == 'pNext') or (isstaticarray):
isoptional = True
# Determine if value should be ignored by code generation.
noautovalidity = False
if (member.attrib.get('noautovalidity') is not None) or ((typeName in self.structMemberBlacklist) and (name in self.structMemberBlacklist[typeName])):
noautovalidity = True
# Some types are marked as noautovalidity, but stateless_validation.h will still want them for manual validation
noautovalidity_type_exceptions = [
"VkQueryPipelineStatisticFlags",
"VkBorderColor"
]
# Store all types that are from incoming calls if auto validity
# non-const pointers don't have auto gen code as used for return values
if (noautovalidity == False) or (type in noautovalidity_type_exceptions):
if not returned_only and (not ispointer or isconst):
self.called_types.add(type)
structextends = False
membersInfo.append(self.CommandParam(type=type, name=name,
ispointer=ispointer,
isstaticarray=isstaticarray,
isbool=True if type == 'VkBool32' else False,
israngedenum=True if type in self.enumRanges else False,
isconst=isconst,
isoptional=isoptional,
iscount=iscount,
noautovalidity=noautovalidity,
len=self.getLen(member),
extstructs=self.registry.validextensionstructs[typeName] if name == 'pNext' else None,
condition=conditions[name] if conditions and name in conditions else None,
cdecl=cdecl))
# If this struct extends another, keep its name in list for further processing
if typeinfo.elem.attrib.get('structextends') is not None:
self.structextends_list.append(typeName)
# Returnedonly structs should have most of their members ignored -- on entry, we only care about validating the sType and
# pNext members. Everything else will be overwritten by the callee.
if returned_only:
self.returnedonly_structs.append(typeName)
membersInfo = [m for m in membersInfo if m.name in ('sType', 'pNext')]
self.structMembers.append(self.StructMemberData(name=typeName, members=membersInfo))
#
# Capture group (e.g. C "enum" type) info to be used for param check code generation.
# These are concatenated together with other types.
def genGroup(self, groupinfo, groupName, alias):
if not self.source_file:
return
# record the name/alias pair
if alias is not None:
self.alias_dict[groupName]=alias
OutputGenerator.genGroup(self, groupinfo, groupName, alias)
groupElem = groupinfo.elem
# Store the sType values
if groupName == 'VkStructureType':
for elem in groupElem.findall('enum'):
self.stypes.append(elem.get('name'))
elif 'FlagBits' in groupName:
bits = []
for elem in groupElem.findall('enum'):
if elem.get('supported') != 'disabled':
bits.append(elem.get('name'))
if bits:
self.flagBits[groupName] = bits
else:
# Determine if begin/end ranges are needed (we don't do this for VkStructureType, which has a more finely grained check)
expandName = re.sub(r'([0-9a-z_])([A-Z0-9][^A-Z0-9]?)',r'\1_\2',groupName).upper()
expandPrefix = expandName
expandSuffix = ''
expandSuffixMatch = re.search(r'[A-Z][A-Z]+$',groupName)
if expandSuffixMatch:
expandSuffix = '_' + expandSuffixMatch.group()
# Strip off the suffix from the prefix
expandPrefix = expandName.rsplit(expandSuffix, 1)[0]
isEnum = ('FLAG_BITS' not in expandPrefix)
if isEnum:
self.enumRanges.add(groupName)
# Create definition for a list containing valid enum values for this enumerated type
if self.featureExtraProtect is not None:
enum_entry = '#ifdef %s\n' % self.featureExtraProtect
else:
enum_entry = ''
enum_entry += 'const std::vector<%s> All%sEnums = {' % (groupName, groupName)
for enum in groupElem:
name = enum.get('name')
if name is not None and enum.get('supported') != 'disabled':
enum_entry += '%s, ' % name
enum_entry += '};'
if self.featureExtraProtect is not None:
enum_entry += '\n#endif // %s' % self.featureExtraProtect
self.enum_values_definitions[groupName] = enum_entry
#
# Capture command parameter info to be used for param check code generation.
def genCmd(self, cmdinfo, name, alias):
# record the name/alias pair
if alias is not None:
self.alias_dict[name]=alias
OutputGenerator.genCmd(self, cmdinfo, name, alias)
decls = self.makeCDecls(cmdinfo.elem)
typedef = decls[1]
typedef = typedef.split(')',1)[1]
if self.header_file:
if name not in self.blacklist:
if (self.featureExtraProtect is not None):
self.declarations += [ '#ifdef %s' % self.featureExtraProtect ]
# Strip off 'vk' from API name
decl = '%s%s' % ('bool PreCallValidate', decls[0].split("VKAPI_CALL vk")[1])
decl_terminator = ' const override;'
if 'ValidationCache' in name:
decl_terminator = ' const;'
decl = str(decl).replace(';', decl_terminator)
self.declarations += [ decl ]
if (self.featureExtraProtect is not None):
self.declarations += [ '#endif' ]
if self.source_file:
if name not in self.blacklist:
params = cmdinfo.elem.findall('param')
# Get list of array lengths
lens = set()
for param in params:
len = self.getLen(param)
if len:
lens.add(len)
# Get param info
paramsInfo = []
for param in params:
paramInfo = self.getTypeNameTuple(param)
cdecl = self.makeCParamDecl(param, 0)
ispointer = self.paramIsPointer(param)
isconst = True if 'const' in cdecl else False
# non-const pointers don't have auto gen code as used for return values
if not ispointer or isconst:
self.called_types.add(paramInfo[0])
# Check for parameter name in lens set
iscount = False
if paramInfo[1] in lens:
iscount = True
paramsInfo.append(self.CommandParam(type=paramInfo[0], name=paramInfo[1],
ispointer=ispointer,
isstaticarray=self.paramIsStaticArray(param),
isbool=True if paramInfo[0] == 'VkBool32' else False,
israngedenum=True if paramInfo[0] in self.enumRanges else False,
isconst=isconst,
isoptional=self.paramIsOptional(param),
iscount=iscount,
noautovalidity=True if param.attrib.get('noautovalidity') is not None else False,
len=self.getLen(param),
extstructs=None,
condition=None,
cdecl=cdecl))
# Save return value information, if any
result_type = ''
promotion_info = ''
resultinfo = cmdinfo.elem.find('proto/type')
if (resultinfo is not None and resultinfo.text != 'void'):
result_type = resultinfo.text
if "VK_VERSION" in self.featureName and "VK_VERSION_1_0" != self.featureName:
if ('VkInstance' == paramsInfo[0].type or 'VkPhysicalDevice' == paramsInfo[0].type):
promotion_info = [paramsInfo[0].name, self.featureName]
self.commands.append(self.CommandData(name=name, params=paramsInfo, cdecl=self.makeCDecls(cmdinfo.elem)[0], extension_type=self.extension_type, result=result_type, promotion_info=promotion_info))
#
# Check if the parameter passed in is a pointer
def paramIsPointer(self, param):
ispointer = 0
paramtype = param.find('type')
if (paramtype.tail is not None) and ('*' in paramtype.tail):
ispointer = paramtype.tail.count('*')
elif paramtype.text[:4] == 'PFN_':
# Treat function pointer typedefs as a pointer to a single value
ispointer = 1
return ispointer
#
# Check if the parameter passed in is a static array
def paramIsStaticArray(self, param):
isstaticarray = 0
paramname = param.find('name')
if (paramname.tail is not None) and ('[' in paramname.tail):
isstaticarray = paramname.tail.count('[')
return isstaticarray
#
# Check if the parameter passed in is optional
# Returns a list of Boolean values for comma separated len attributes (len='false,true')
def paramIsOptional(self, param):
# See if the handle is optional
isoptional = False
# Simple, if it's optional, return true
optString = param.attrib.get('optional')
if optString:
if optString == 'true':
isoptional = True
elif ',' in optString:
opts = []
for opt in optString.split(','):
val = opt.strip()
if val == 'true':
opts.append(True)
elif val == 'false':
opts.append(False)
else:
print('Unrecognized len attribute value',val)
isoptional = opts
return isoptional
#
# Check if the handle passed in is optional
# Uses the same logic as ValidityOutputGenerator.isHandleOptional
def isHandleOptional(self, param, lenParam):
# Simple, if it's optional, return true
if param.isoptional:
return True
# If no validity is being generated, it usually means that validity is complex and not absolute, so let's say yes.
if param.noautovalidity:
return True
# If the parameter is an array and we haven't already returned, find out if any of the len parameters are optional
if lenParam and lenParam.isoptional:
return True
return False
#
# Retrieve the value of the len tag
def getLen(self, param):
result = None
# Default to altlen when available to avoid LaTeX markup
if 'altlen' in param.attrib:
len = param.attrib.get('altlen')
else:
len = param.attrib.get('len')
if len and len != 'null-terminated':
# Only first level is supported for multidimensional arrays. Conveniently, this also strips the trailing
# 'null-terminated' from arrays of strings
len = len.split(',')[0]
# Convert scope notation to pointer access
result = str(len).replace('::', '->')
elif self.paramIsStaticArray(param):
# For static arrays get length from inside []
array_match = re.search(r'\[(\d+)\]', param.find('name').tail)
if array_match:
result = array_match.group(1)
return result
#
# Retrieve the type and name for a parameter
def getTypeNameTuple(self, param):
type = ''
name = ''
for elem in param:
if elem.tag == 'type':
type = noneStr(elem.text)
elif elem.tag == 'name':
name = noneStr(elem.text)
return (type, name)
#
# Find a named parameter in a parameter list
def getParamByName(self, params, name):
for param in params:
if param.name == name:
return param
return None
#
# Get the length paramater record for the specified length expression
def getLenParam(self, params, length):
# First check if any element of params matches length exactly
lenParam = self.getParamByName(params, length)
if not lenParam:
# Otherwise, look for any elements of params that appear within length
len_candidates = [p for p in params if re.search(r'\b{}\b'.format(p.name), length)]
# 0 or 1 matches are expected, >1 would require a special case and/or explicit validation
if len(len_candidates) == 0:
lenParam = None
elif len(len_candidates) == 1:
lenParam = len_candidates[0]
else:
raise Exception('Cannot determine length parameter for len attribute value {}'.format(length))
return lenParam
#
# Convert a vulkan.h command declaration into a parameter_validation.h definition
def getCmdDef(self, cmd):
# Strip the trailing ';' and split into individual lines
lines = cmd.cdecl[:-1].split('\n')
cmd_hdr = '\n'.join(lines)
return cmd_hdr
#
# Generate the code to check for a NULL dereference before calling the
# validation function
def genCheckedLengthCall(self, name, exprs):
count = name.count('->')
if count:
checkedExpr = []
localIndent = ''
elements = name.split('->')
# Open the if expression blocks
for i in range(0, count):
checkedExpr.append(localIndent + 'if ({} != NULL) {{\n'.format('->'.join(elements[0:i+1])))
localIndent = self.incIndent(localIndent)
# Add the validation expression
for expr in exprs:
checkedExpr.append(localIndent + expr)
# Close the if blocks
for i in range(0, count):
localIndent = self.decIndent(localIndent)
checkedExpr.append(localIndent + '}\n')
return [checkedExpr]
# No if statements were required
return exprs
#
# Generate code to check for a specific condition before executing validation code
def genConditionalCall(self, prefix, condition, exprs):
checkedExpr = []
localIndent = ''
formattedCondition = condition.format(prefix)
checkedExpr.append(localIndent + 'if ({})\n'.format(formattedCondition))
checkedExpr.append(localIndent + '{\n')
localIndent = self.incIndent(localIndent)
for expr in exprs:
checkedExpr.append(localIndent + expr)
localIndent = self.decIndent(localIndent)
checkedExpr.append(localIndent + '}\n')
return [checkedExpr]
#
# Get VUID identifier from implicit VUID tag
def GetVuid(self, name, suffix):
vuid_string = 'VUID-%s-%s' % (name, suffix)
vuid = "kVUIDUndefined"
if '->' in vuid_string:
return vuid
if vuid_string in self.valid_vuids:
vuid = "\"%s\"" % vuid_string
else:
if name in self.alias_dict:
alias_string = 'VUID-%s-%s' % (self.alias_dict[name], suffix)
if alias_string in self.valid_vuids:
vuid = "\"%s\"" % alias_string
return vuid
#
# Generate the sType check string
def makeStructTypeCheck(self, prefix, value, lenValue, valueRequired, lenValueRequired, lenPtrRequired, funcPrintName, lenPrintName, valuePrintName, postProcSpec, struct_type_name):
checkExpr = []
stype = self.structTypes[value.type]
vuid_name = struct_type_name if struct_type_name is not None else funcPrintName
stype_vuid = self.GetVuid(value.type, "sType-sType")
param_vuid = self.GetVuid(vuid_name, "%s-parameter" % value.name)
if lenValue:
count_required_vuid = self.GetVuid(vuid_name, "%s-arraylength" % value.len)
# This is an array of struct pointers
if value.ispointer == 2:
checkExpr.append('skip |= validate_struct_pointer_type_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, "{sv}", {pf}{ln}, {pf}{vn}, {sv}, {}, {}, {}, {}, {});\n'.format(
funcPrintName, lenValueRequired, valueRequired, stype_vuid, param_vuid, count_required_vuid, ln=lenValue.name, ldn=lenPrintName, dn=valuePrintName, vn=value.name, sv=stype, pf=prefix, **postProcSpec))
# This is an array with a pointer to a count value
elif lenValue.ispointer:
# When the length parameter is a pointer, there is an extra Boolean parameter in the function call to indicate if it is required
checkExpr.append('skip |= validate_struct_type_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, "{sv}", {pf}{ln}, {pf}{vn}, {sv}, {}, {}, {}, {}, {}, {});\n'.format(
funcPrintName, lenPtrRequired, lenValueRequired, valueRequired, stype_vuid, param_vuid, count_required_vuid, ln=value.len, ldn=lenPrintName, dn=valuePrintName, vn=value.name, sv=stype, pf=prefix, **postProcSpec))
# This is an array with an integer count value
else:
checkExpr.append('skip |= validate_struct_type_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, "{sv}", {pf}{ln}, {pf}{vn}, {sv}, {}, {}, {}, {}, {});\n'.format(
funcPrintName, lenValueRequired, valueRequired, stype_vuid, param_vuid, count_required_vuid, ln=value.len, ldn=lenPrintName, dn=valuePrintName, vn=value.name, sv=stype, pf=prefix, **postProcSpec))
# This is an individual struct
else:
checkExpr.append('skip |= validate_struct_type("{}", {ppp}"{}"{pps}, "{sv}", {}{vn}, {sv}, {}, {}, {});\n'.format(
funcPrintName, valuePrintName, prefix, valueRequired, param_vuid, stype_vuid, vn=value.name, sv=stype, vt=value.type, **postProcSpec))
return checkExpr
#
# Generate the handle check string
def makeHandleCheck(self, prefix, value, lenValue, valueRequired, lenValueRequired, funcPrintName, lenPrintName, valuePrintName, postProcSpec):
checkExpr = []
if lenValue:
if lenValue.ispointer:
# This is assumed to be an output array with a pointer to a count value
raise('Unsupported parameter validation case: Output handle array elements are not NULL checked')
else:
count_required_vuid = self.GetVuid(funcPrintName, "%s-arraylength" % (value.len))
# This is an array with an integer count value
checkExpr.append('skip |= validate_handle_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, {pf}{ln}, {pf}{vn}, {}, {}, {});\n'.format(
funcPrintName, lenValueRequired, valueRequired, count_required_vuid, ln=value.len, ldn=lenPrintName, dn=valuePrintName, vn=value.name, pf=prefix, **postProcSpec))
else:
# This is assumed to be an output handle pointer
raise('Unsupported parameter validation case: Output handles are not NULL checked')
return checkExpr
#
# Generate check string for an array of VkFlags values
def makeFlagsArrayCheck(self, prefix, value, lenValue, valueRequired, lenValueRequired, funcPrintName, lenPrintName, valuePrintName, postProcSpec):
checkExpr = []
flagBitsName = value.type.replace('Flags', 'FlagBits')
if not flagBitsName in self.flagBits:
raise('Unsupported parameter validation case: array of reserved VkFlags')
else:
allFlags = 'All' + flagBitsName
checkExpr.append('skip |= validate_flags_array("{}", {ppp}"{}"{pps}, {ppp}"{}"{pps}, "{}", {}, {pf}{}, {pf}{}, {}, {});\n'.format(funcPrintName, lenPrintName, valuePrintName, flagBitsName, allFlags, value.len, value.name, lenValueRequired, valueRequired, pf=prefix, **postProcSpec))
return checkExpr
#
# Generate pNext check string
def makeStructNextCheck(self, prefix, value, funcPrintName, valuePrintName, postProcSpec, struct_type_name):
checkExpr = []
# Generate an array of acceptable VkStructureType values for pNext
extStructCount = 0
extStructVar = 'NULL'
extStructNames = 'NULL'
pNextVuid = self.GetVuid(struct_type_name, "pNext-pNext")
sTypeVuid = self.GetVuid(struct_type_name, "sType-unique")
if value.extstructs:
extStructVar = 'allowed_structs_{}'.format(struct_type_name)
extStructCount = 'ARRAY_SIZE({})'.format(extStructVar)
extStructNames = '"' + ', '.join(value.extstructs) + '"'
checkExpr.append('const VkStructureType {}[] = {{ {} }};\n'.format(extStructVar, ', '.join([self.structTypes[s] for s in value.extstructs])))
checkExpr.append('skip |= validate_struct_pnext("{}", {ppp}"{}"{pps}, {}, {}{}, {}, {}, GeneratedVulkanHeaderVersion, {}, {});\n'.format(
funcPrintName, valuePrintName, extStructNames, prefix, value.name, extStructCount, extStructVar, pNextVuid, sTypeVuid, **postProcSpec))
return checkExpr
#
# Generate the pointer check string
def makePointerCheck(self, prefix, value, lenValue, valueRequired, lenValueRequired, lenPtrRequired, funcPrintName, lenPrintName, valuePrintName, postProcSpec, struct_type_name):
checkExpr = []
vuid_tag_name = struct_type_name if struct_type_name is not None else funcPrintName
if lenValue:
length_deref = '->' in value.len
count_required_vuid = self.GetVuid(vuid_tag_name, "%s-arraylength" % (value.len))
array_required_vuid = self.GetVuid(vuid_tag_name, "%s-parameter" % (value.name))
# TODO: Remove workaround for missing optional tag in vk.xml
if array_required_vuid == '"VUID-VkFramebufferCreateInfo-pAttachments-parameter"':
return []
# This is an array with a pointer to a count value
if lenValue.ispointer and not length_deref:
# If count and array parameters are optional, there will be no validation
if valueRequired == 'true' or lenPtrRequired == 'true' or lenValueRequired == 'true':
# When the length parameter is a pointer, there is an extra Boolean parameter in the function call to indicate if it is required
checkExpr.append('skip |= validate_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, {pf}{ln}, &{pf}{vn}, {}, {}, {}, {}, {});\n'.format(
funcPrintName, lenPtrRequired, lenValueRequired, valueRequired, count_required_vuid, array_required_vuid, ln=value.len, ldn=lenPrintName, dn=valuePrintName, vn=value.name, pf=prefix, **postProcSpec))
# This is an array with an integer count value
else:
# If count and array parameters are optional, there will be no validation
if valueRequired == 'true' or lenValueRequired == 'true':
if value.type != 'char':
# A valid VU can't use '->' in the middle so the generated VUID from the spec uses '::' instead
count_required_vuid = self.GetVuid(vuid_tag_name, "%s-arraylength" % (value.len.replace('->', '::')))
checkExpr.append('skip |= validate_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, {pf}{ln}, &{pf}{vn}, {}, {}, {}, {});\n'.format(
funcPrintName, lenValueRequired, valueRequired, count_required_vuid, array_required_vuid, ln=value.len, ldn=lenPrintName, dn=valuePrintName, vn=value.name, pf=prefix, **postProcSpec))
else:
# Arrays of strings receive special processing
checkExpr.append('skip |= validate_string_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, {pf}{ln}, {pf}{vn}, {}, {}, {}, {});\n'.format(
funcPrintName, lenValueRequired, valueRequired, count_required_vuid, array_required_vuid, ln=value.len, ldn=lenPrintName, dn=valuePrintName, vn=value.name, pf=prefix, **postProcSpec))
if checkExpr:
if lenValue and length_deref:
# Add checks to ensure the validation call does not dereference a NULL pointer to obtain the count
checkExpr = self.genCheckedLengthCall(value.len, checkExpr)
# This is an individual struct that is not allowed to be NULL
elif not value.isoptional:
# Function pointers need a reinterpret_cast to void*
ptr_required_vuid = self.GetVuid(vuid_tag_name, "%s-parameter" % (value.name))
if value.type[:4] == 'PFN_':
allocator_dict = {'pfnAllocation': '"VUID-VkAllocationCallbacks-pfnAllocation-00632"',
'pfnReallocation': '"VUID-VkAllocationCallbacks-pfnReallocation-00633"',
'pfnFree': '"VUID-VkAllocationCallbacks-pfnFree-00634"',
}
vuid = allocator_dict.get(value.name)
if vuid is not None:
ptr_required_vuid = vuid
checkExpr.append('skip |= validate_required_pointer("{}", {ppp}"{}"{pps}, reinterpret_cast<const void*>({}{}), {});\n'.format(funcPrintName, valuePrintName, prefix, value.name, ptr_required_vuid, **postProcSpec))
else:
checkExpr.append('skip |= validate_required_pointer("{}", {ppp}"{}"{pps}, {}{}, {});\n'.format(funcPrintName, valuePrintName, prefix, value.name, ptr_required_vuid, **postProcSpec))
else:
# Special case for optional internal allocation function pointers.
if (value.type, value.name) == ('PFN_vkInternalAllocationNotification', 'pfnInternalAllocation'):
checkExpr.extend(self.internalAllocationCheck(funcPrintName, prefix, value.name, 'pfnInternalFree', postProcSpec))
elif (value.type, value.name) == ('PFN_vkInternalFreeNotification', 'pfnInternalFree'):
checkExpr.extend(self.internalAllocationCheck(funcPrintName, prefix, value.name, 'pfnInternalAllocation', postProcSpec))
return checkExpr
#
# Generate internal allocation function pointer check.
def internalAllocationCheck(self, funcPrintName, prefix, name, complementaryName, postProcSpec):
checkExpr = []
vuid = '"VUID-VkAllocationCallbacks-pfnInternalAllocation-00635"'
checkExpr.append('if ({}{} != NULL)'.format(prefix, name))
checkExpr.append('{')
local_indent = self.incIndent('')
# Function pointers need a reinterpret_cast to void*
checkExpr.append(local_indent + 'skip |= validate_required_pointer("{}", {ppp}"{}{}"{pps}, reinterpret_cast<const void*>({}{}), {});\n'.format(funcPrintName, prefix, complementaryName, prefix, complementaryName, vuid, **postProcSpec))
checkExpr.append('}\n')
return checkExpr
#
# Process struct member validation code, performing name substitution if required
def processStructMemberCode(self, line, funcName, memberNamePrefix, memberDisplayNamePrefix, postProcSpec):
# Build format specifier list
kwargs = {}
if '{postProcPrefix}' in line:
# If we have a tuple that includes a format string and format parameters, need to use ParameterName class
if type(memberDisplayNamePrefix) is tuple:
kwargs['postProcPrefix'] = 'ParameterName('
else:
kwargs['postProcPrefix'] = postProcSpec['ppp']
if '{postProcSuffix}' in line:
# If we have a tuple that includes a format string and format parameters, need to use ParameterName class
if type(memberDisplayNamePrefix) is tuple:
kwargs['postProcSuffix'] = ', ParameterName::IndexVector{{ {}{} }})'.format(postProcSpec['ppi'], memberDisplayNamePrefix[1])
else:
kwargs['postProcSuffix'] = postProcSpec['pps']
if '{postProcInsert}' in line:
# If we have a tuple that includes a format string and format parameters, need to use ParameterName class
if type(memberDisplayNamePrefix) is tuple:
kwargs['postProcInsert'] = '{}{}, '.format(postProcSpec['ppi'], memberDisplayNamePrefix[1])
else:
kwargs['postProcInsert'] = postProcSpec['ppi']
if '{funcName}' in line:
kwargs['funcName'] = funcName
if '{valuePrefix}' in line:
kwargs['valuePrefix'] = memberNamePrefix
if '{displayNamePrefix}' in line:
# Check for a tuple that includes a format string and format parameters to be used with the ParameterName class
if type(memberDisplayNamePrefix) is tuple:
kwargs['displayNamePrefix'] = memberDisplayNamePrefix[0]
else:
kwargs['displayNamePrefix'] = memberDisplayNamePrefix
if kwargs:
# Need to escape the C++ curly braces
if 'IndexVector' in line:
line = line.replace('IndexVector{ ', 'IndexVector{{ ')
line = line.replace(' }),', ' }}),')
return line.format(**kwargs)
return line
#
# Process struct member validation code, stripping metadata
def ScrubStructCode(self, code):
scrubbed_lines = ''
for line in code:
if 'validate_struct_pnext' in line:
continue
if 'allowed_structs' in line:
continue
if 'xml-driven validation' in line:
continue
line = line.replace('{postProcPrefix}', '')
line = line.replace('{postProcSuffix}', '')
line = line.replace('{postProcInsert}', '')
line = line.replace('{funcName}', '')
line = line.replace('{valuePrefix}', '')
line = line.replace('{displayNamePrefix}', '')
line = line.replace('{IndexVector}', '')
line = line.replace('local_data->', '')
scrubbed_lines += line
return scrubbed_lines
#
# Process struct validation code for inclusion in function or parent struct validation code
def expandStructCode(self, item_type, funcName, memberNamePrefix, memberDisplayNamePrefix, indent, output, postProcSpec):
lines = self.validatedStructs[item_type]
for line in lines:
if output:
output[-1] += '\n'
if type(line) is list:
for sub in line:
output.append(self.processStructMemberCode(indent + sub, funcName, memberNamePrefix, memberDisplayNamePrefix, postProcSpec))
else:
output.append(self.processStructMemberCode(indent + line, funcName, memberNamePrefix, memberDisplayNamePrefix, postProcSpec))
return output
#
# Process struct pointer/array validation code, performing name substitution if required
def expandStructPointerCode(self, prefix, value, lenValue, funcName, valueDisplayName, postProcSpec):
expr = []
expr.append('if ({}{} != NULL)\n'.format(prefix, value.name))
expr.append('{')
indent = self.incIndent(None)
if lenValue:
# Need to process all elements in the array
indexName = value.len.replace('Count', 'Index')
expr[-1] += '\n'
if lenValue.ispointer:
# If the length value is a pointer, de-reference it for the count.
expr.append(indent + 'for (uint32_t {iname} = 0; {iname} < *{}{}; ++{iname})\n'.format(prefix, value.len, iname=indexName))
else:
expr.append(indent + 'for (uint32_t {iname} = 0; {iname} < {}{}; ++{iname})\n'.format(prefix, value.len, iname=indexName))
expr.append(indent + '{')
indent = self.incIndent(indent)
# Prefix for value name to display in error message
if value.ispointer == 2:
memberNamePrefix = '{}{}[{}]->'.format(prefix, value.name, indexName)
memberDisplayNamePrefix = ('{}[%i]->'.format(valueDisplayName), indexName)
else:
memberNamePrefix = '{}{}[{}].'.format(prefix, value.name, indexName)
memberDisplayNamePrefix = ('{}[%i].'.format(valueDisplayName), indexName)
else:
memberNamePrefix = '{}{}->'.format(prefix, value.name)
memberDisplayNamePrefix = '{}->'.format(valueDisplayName)
# Expand the struct validation lines
expr = self.expandStructCode(value.type, funcName, memberNamePrefix, memberDisplayNamePrefix, indent, expr, postProcSpec)
if lenValue:
# Close if and for scopes
indent = self.decIndent(indent)
expr.append(indent + '}\n')
expr.append('}\n')
return expr
#
# Generate the parameter checking code
def genFuncBody(self, funcName, values, valuePrefix, displayNamePrefix, structTypeName):
lines = [] # Generated lines of code
unused = [] # Unused variable names
duplicateCountVuid = [] # prevent duplicate VUs being generated
for value in values:
usedLines = []
lenParam = None
#
# Prefix and suffix for post processing of parameter names for struct members. Arrays of structures need special processing to include the array index in the full parameter name.
postProcSpec = {}
postProcSpec['ppp'] = '' if not structTypeName else '{postProcPrefix}'
postProcSpec['pps'] = '' if not structTypeName else '{postProcSuffix}'
postProcSpec['ppi'] = '' if not structTypeName else '{postProcInsert}'
#
# Generate the full name of the value, which will be printed in the error message, by adding the variable prefix to the value name
valueDisplayName = '{}{}'.format(displayNamePrefix, value.name)
#
# Check for NULL pointers, ignore the in-out count parameters that
# will be validated with their associated array
if (value.ispointer or value.isstaticarray) and not value.iscount:
# Parameters for function argument generation
req = 'true' # Parameter cannot be NULL
cpReq = 'true' # Count pointer cannot be NULL
cvReq = 'true' # Count value cannot be 0
lenDisplayName = None # Name of length parameter to print with validation messages; parameter name with prefix applied
countRequiredVuid = None # If there is a count required VUID to check
# Generate required/optional parameter strings for the pointer and count values
if value.isoptional:
req = 'false'
if value.len:
# The parameter is an array with an explicit count parameter
lenParam = self.getLenParam(values, value.len)
if lenParam:
lenDisplayName = value.len.replace(lenParam.name, displayNamePrefix + lenParam.name)
if lenParam.ispointer:
# Count parameters that are pointers are inout
if type(lenParam.isoptional) is list:
if lenParam.isoptional[0]:
cpReq = 'false'
if lenParam.isoptional[1]:
cvReq = 'false'
else:
if lenParam.isoptional:
cpReq = 'false'
else:
if lenParam.isoptional:
cvReq = 'false'
elif value.noautovalidity:
# Handle edge case where XML expresses a non-optional non-pointer value length with noautovalidity
# ex: <param noautovalidity="true"len="commandBufferCount">
vuidNameTag = structTypeName if structTypeName is not None else funcName
countRequiredVuid = self.GetVuid(vuidNameTag, "%s-arraylength" % (lenParam.name))
if countRequiredVuid in duplicateCountVuid:
countRequiredVuid = None
else:
duplicateCountVuid.append(countRequiredVuid)
else:
# Do not generate length checks for constant sized arrays
cpReq = 'false'
cvReq = 'false'
#
# The parameter will not be processed when tagged as 'noautovalidity'
# For the pointer to struct case, the struct pointer will not be validated, but any
# members not tagged as 'noautovalidity' will be validated
# We special-case the custom allocator checks, as they are explicit but can be auto-generated.
AllocatorFunctions = ['PFN_vkAllocationFunction', 'PFN_vkReallocationFunction', 'PFN_vkFreeFunction', 'PFN_vkInternalAllocationNotification', 'PFN_vkInternalFreeNotification']
if value.noautovalidity and value.type not in AllocatorFunctions and not countRequiredVuid:
# Log a diagnostic message when validation cannot be automatically generated and must be implemented manually
self.logMsg('diag', 'ParameterValidation: No validation for {} {}'.format(structTypeName if structTypeName else funcName, value.name))
elif countRequiredVuid:
usedLines.append('skip |= validate_array("{}", {ppp}"{ldn}"{pps}, "", {pf}{ln}, &{pf}{vn}, true, false, {}, kVUIDUndefined);\n'.format(
funcName, countRequiredVuid, pf=valuePrefix, ldn=lenDisplayName, ln=value.len, vn=value.name, **postProcSpec))
else:
if value.type in self.structTypes:
# If this is a pointer to a struct with an sType field, verify the type
usedLines += self.makeStructTypeCheck(valuePrefix, value, lenParam, req, cvReq, cpReq, funcName, lenDisplayName, valueDisplayName, postProcSpec, structTypeName)
# If this is an input handle array that is not allowed to contain NULL handles, verify that none of the handles are VK_NULL_HANDLE
elif value.type in self.handleTypes and value.isconst and not self.isHandleOptional(value, lenParam):
usedLines += self.makeHandleCheck(valuePrefix, value, lenParam, req, cvReq, funcName, lenDisplayName, valueDisplayName, postProcSpec)
elif value.type in self.flags and value.isconst:
usedLines += self.makeFlagsArrayCheck(valuePrefix, value, lenParam, req, cvReq, funcName, lenDisplayName, valueDisplayName, postProcSpec)
elif value.isbool and value.isconst:
usedLines.append('skip |= validate_bool32_array("{}", {ppp}"{}"{pps}, {ppp}"{}"{pps}, {pf}{}, {pf}{}, {}, {});\n'.format(funcName, lenDisplayName, valueDisplayName, value.len, value.name, cvReq, req, pf=valuePrefix, **postProcSpec))
elif value.israngedenum and value.isconst:
enum_value_list = 'All%sEnums' % value.type
usedLines.append('skip |= validate_ranged_enum_array("{}", {ppp}"{}"{pps}, {ppp}"{}"{pps}, "{}", {}, {pf}{}, {pf}{}, {}, {});\n'.format(funcName, lenDisplayName, valueDisplayName, value.type, enum_value_list, value.len, value.name, cvReq, req, pf=valuePrefix, **postProcSpec))
elif value.name == 'pNext':
usedLines += self.makeStructNextCheck(valuePrefix, value, funcName, valueDisplayName, postProcSpec, structTypeName)
else:
usedLines += self.makePointerCheck(valuePrefix, value, lenParam, req, cvReq, cpReq, funcName, lenDisplayName, valueDisplayName, postProcSpec, structTypeName)
# If this is a pointer to a struct (input), see if it contains members that need to be checked
if value.type in self.validatedStructs:
if value.isconst: # or value.type in self.returnedonly_structs:
usedLines.append(self.expandStructPointerCode(valuePrefix, value, lenParam, funcName, valueDisplayName, postProcSpec))
elif value.type in self.returnedonly_structs:
usedLines.append(self.expandStructPointerCode(valuePrefix, value, lenParam, funcName, valueDisplayName, postProcSpec))
# Non-pointer types
else:
# The parameter will not be processes when tagged as 'noautovalidity'
# For the struct case, the struct type will not be validated, but any
# members not tagged as 'noautovalidity' will be validated
if value.noautovalidity:
# Log a diagnostic message when validation cannot be automatically generated and must be implemented manually
self.logMsg('diag', 'ParameterValidation: No validation for {} {}'.format(structTypeName if structTypeName else funcName, value.name))
else:
vuid_name_tag = structTypeName if structTypeName is not None else funcName
if value.type in self.structTypes:
stype = self.structTypes[value.type]
vuid = self.GetVuid(value.type, "sType-sType")
undefined_vuid = '"kVUIDUndefined"'
usedLines.append('skip |= validate_struct_type("{}", {ppp}"{}"{pps}, "{sv}", &({}{vn}), {sv}, false, kVUIDUndefined, {});\n'.format(
funcName, valueDisplayName, valuePrefix, vuid, vn=value.name, sv=stype, vt=value.type, **postProcSpec))
elif value.type in self.handleTypes:
if not self.isHandleOptional(value, None):
usedLines.append('skip |= validate_required_handle("{}", {ppp}"{}"{pps}, {}{});\n'.format(funcName, valueDisplayName, valuePrefix, value.name, **postProcSpec))
elif value.type in self.flags and value.type.replace('Flags', 'FlagBits') not in self.flagBits:
vuid = self.GetVuid(vuid_name_tag, "%s-zerobitmask" % (value.name))
usedLines.append('skip |= validate_reserved_flags("{}", {ppp}"{}"{pps}, {pf}{}, {});\n'.format(funcName, valueDisplayName, value.name, vuid, pf=valuePrefix, **postProcSpec))
elif value.type in self.flags or value.type in self.flagBits:
if value.type in self.flags:
flagBitsName = value.type.replace('Flags', 'FlagBits')
flagsType = 'kOptionalFlags' if value.isoptional else 'kRequiredFlags'
invalidVuid = self.GetVuid(vuid_name_tag, "%s-parameter" % (value.name))
zeroVuid = self.GetVuid(vuid_name_tag, "%s-requiredbitmask" % (value.name))
elif value.type in self.flagBits:
flagBitsName = value.type
flagsType = 'kOptionalSingleBit' if value.isoptional else 'kRequiredSingleBit'
invalidVuid = self.GetVuid(vuid_name_tag, "%s-parameter" % (value.name))
zeroVuid = invalidVuid
allFlagsName = 'All' + flagBitsName
invalid_vuid = self.GetVuid(vuid_name_tag, "%s-parameter" % (value.name))
allFlagsName = 'All' + flagBitsName
zeroVuidArg = '' if value.isoptional else ', ' + zeroVuid
usedLines.append('skip |= validate_flags("{}", {ppp}"{}"{pps}, "{}", {}, {pf}{}, {}, {}{});\n'.format(funcName, valueDisplayName, flagBitsName, allFlagsName, value.name, flagsType, invalidVuid, zeroVuidArg, pf=valuePrefix, **postProcSpec))
elif value.isbool:
usedLines.append('skip |= validate_bool32("{}", {ppp}"{}"{pps}, {}{});\n'.format(funcName, valueDisplayName, valuePrefix, value.name, **postProcSpec))
elif value.israngedenum:
vuid = self.GetVuid(vuid_name_tag, "%s-parameter" % (value.name))
enum_value_list = 'All%sEnums' % value.type
usedLines.append('skip |= validate_ranged_enum("{}", {ppp}"{}"{pps}, "{}", {}, {}{}, {});\n'.format(funcName, valueDisplayName, value.type, enum_value_list, valuePrefix, value.name, vuid, **postProcSpec))
# If this is a struct, see if it contains members that need to be checked
if value.type in self.validatedStructs:
memberNamePrefix = '{}{}.'.format(valuePrefix, value.name)
memberDisplayNamePrefix = '{}.'.format(valueDisplayName)
usedLines.append(self.expandStructCode(value.type, funcName, memberNamePrefix, memberDisplayNamePrefix, '', [], postProcSpec))
# Append the parameter check to the function body for the current command
if usedLines:
# Apply special conditional checks
if value.condition:
usedLines = self.genConditionalCall(valuePrefix, value.condition, usedLines)
lines += usedLines
elif not value.iscount:
# If no expression was generated for this value, it is unreferenced by the validation function, unless
# it is an array count, which is indirectly referenced for array valiadation.
unused.append(value.name)
if not lines:
lines.append('// No xml-driven validation\n')
return lines, unused
#
# Generate the struct member check code from the captured data
def processStructMemberData(self):
indent = self.incIndent(None)
for struct in self.structMembers:
#
# The string returned by genFuncBody will be nested in an if check for a NULL pointer, so needs its indent incremented
lines, unused = self.genFuncBody('{funcName}', struct.members, '{valuePrefix}', '{displayNamePrefix}', struct.name)
if lines:
self.validatedStructs[struct.name] = lines
#
# Generate the command param check code from the captured data
def processCmdData(self):
indent = self.incIndent(None)
for command in self.commands:
# Skip first parameter if it is a dispatch handle (everything except vkCreateInstance)
startIndex = 0 if command.name == 'vkCreateInstance' else 1
lines, unused = self.genFuncBody(command.name, command.params[startIndex:], '', '', None)
# Cannot validate extension dependencies for device extension APIs having a physical device as their dispatchable object
if (command.name in self.required_extensions) and (self.extension_type != 'device' or command.params[0].type != 'VkPhysicalDevice'):
ext_test = ''
if command.params[0].type in ["VkInstance", "VkPhysicalDevice"] or command.name == 'vkCreateInstance':
ext_table_type = 'instance'
else:
ext_table_type = 'device'
for ext in self.required_extensions[command.name]:
ext_name_define = ''
ext_enable_name = ''
for extension in self.registry.extensions:
if extension.attrib['name'] == ext:
ext_name_define = extension[0][1].get('name')
ext_enable_name = ext_name_define.lower()
ext_enable_name = re.sub('_extension_name', '', ext_enable_name)
break
ext_test = 'if (!%s_extensions.%s) skip |= OutputExtensionError("%s", %s);\n' % (ext_table_type, ext_enable_name, command.name, ext_name_define)
lines.insert(0, ext_test)
if lines:
func_sig = self.getCmdDef(command) + ' const {\n'
func_sig = func_sig.split('VKAPI_CALL vk')[1]
cmdDef = 'bool StatelessValidation::PreCallValidate' + func_sig
cmdDef += '%sbool skip = false;\n' % indent
if isinstance(command.promotion_info, list):
version_flag = command.promotion_info[1]
version_id = version_flag.replace('VK_VERSION', 'VK_API_VERSION')
cmdDef += '%s if (CheckPromotedApiAgainstVulkanVersion(%s, "%s", %s)) return true;\n' % (indent, command.promotion_info[0], command.name, version_id)
for line in lines:
if type(line) is list:
for sub in line:
cmdDef += indent + sub
else:
cmdDef += indent + line
# Insert call to custom-written function if present
if command.name in self.functions_with_manual_checks:
# Generate parameter list for manual fcn and down-chain calls
params_text = ''
for param in command.params:
params_text += '%s, ' % param.name
params_text = params_text[:-2] + ');\n'
cmdDef += ' if (!skip) skip |= manual_PreCallValidate'+ command.name[2:] + '(' + params_text
cmdDef += '%sreturn skip;\n' % indent
cmdDef += '}\n'
self.validation.append(cmdDef)
|
the-stack_0_4301 | #!/usr/bin/python3
# -*- coding: utf-8 -*-
# from trainer import Trainer
import pyximport
pyximport.install()
from cython_train.trainer_cython import Trainer
from ssd_v2 import SSD300v2
import keras
import argparse
def main():
parser = argparse.ArgumentParser(description="Training ssd model with keras")
parser.add_argument("-c", "--class_number", metavar="class_number",
type=int, default=21,
dest="class_number", help="set the classify number ")
parser.add_argument("-b", "--prior_boxes_ssd300", metavar="prior_boxes_ssd300",
type=str, default='prior_boxes_ssd300.pkl',
dest="prior_boxes_ssd300", help="set the prior boxes file")
parser.add_argument("-t", "--train_file", metavar="train_file",
type=str, default='VOC2007.pkl',
dest="train_file", help="set the train file")
parser.add_argument("-p", "--path_prefix", metavar="path_prefix",
type=str, default='./VOCdevkit/VOC2007/JPEGImages/',
dest="path_prefix", help="set the path prefix")
parser.add_argument("-w", "--weight_file", metavar="weight_file",
type=str, default='weights_SSD300.hdf5',
dest="weight_file", help="set the weight file")
parser.add_argument("-s", "--save_weight_file", metavar="save_weight_file",
type=str,
default='./resource/checkpoints/weights.{epoch:02d}-{val_loss:.2f}.hdf5',
dest="save_weight_file", help="set the save weight file")
parser.add_argument("-n", "--nb_epoch", metavar="nb_epoch",
type=int,
default=100,
dest="nb_epoch", help="set the number of epoch")
args = parser.parse_args()
input_shape = (300, 300, 3)
model = SSD300v2(input_shape, num_classes=args.class_number)
base_lr=3e-4
trainer = Trainer(class_number=args.class_number,
input_shape=input_shape,
priors_file=args.prior_boxes_ssd300,
train_file=args.train_file,
path_prefix=args.path_prefix,
model=model,
weight_file=args.weight_file,
freeze=('input_1', 'conv1_1', 'conv1_2', 'pool1',
'conv2_1', 'conv2_2', 'pool2',
'conv3_1', 'conv3_2', 'conv3_3', 'pool3'),
save_weight_file=args.save_weight_file,
optim=keras.optimizers.Adam(lr=base_lr),
)
trainer.train(nb_epoch=args.nb_epoch)
if __name__ == "__main__":
main()
|
the-stack_0_4306 | #!/usr/bin/env python
__copyright__ = 'Copyright 2013-2014, http://radical.rutgers.edu'
__license__ = 'MIT'
import os
import sys
verbose = os.environ.get('RADICAL_PILOT_VERBOSE', 'REPORT')
os.environ['RADICAL_PILOT_VERBOSE'] = verbose
import radical.pilot as rp
import radical.utils as ru
# ------------------------------------------------------------------------------
#
# READ the RADICAL-Pilot documentation: https://radicalpilot.readthedocs.io/
#
# ------------------------------------------------------------------------------
# -----------------------------------------------------------------------------
#
if __name__ == '__main__':
# we use a reporter class for nicer output
report = ru.Reporter(name='radical.pilot')
report.title('Getting Started (RP version %s)' % rp.version)
# use the resource specified as argument, fall back to localhost
if len(sys.argv) > 2: report.exit('Usage:\t%s [resource]\n\n' % sys.argv[0])
elif len(sys.argv) == 2: resource = sys.argv[1]
else : resource = 'local.localhost'
# Create a new session. No need to try/except this: if session creation
# fails, there is not much we can do anyways...
session = rp.Session()
# all other pilot code is now tried/excepted. If an exception is caught, we
# can rely on the session object to exist and be valid, and we can thus tear
# the whole RP stack down via a 'session.close()' call in the 'finally'
# clause...
try:
# read the config used for resource details
report.info('read config')
config = ru.read_json('%s/config.json' % os.path.dirname(os.path.abspath(__file__)))
report.ok('>>ok\n')
report.header('submit pilots')
# Add a Pilot Manager. Pilot managers manage one or more ComputePilots.
pmgr = rp.PilotManager(session=session)
# Define an [n]-core local pilot that runs for [x] minutes
# Here we use a dict to initialize the description object
pd_init = {
'resource' : resource,
'runtime' : 15, # pilot runtime (min)
'exit_on_error' : True,
'project' : config[resource].get('project', None),
'queue' : config[resource].get('queue', None),
'access_schema' : config[resource].get('schema', None),
'cores' : config[resource].get('cores', 1),
'gpus' : config[resource].get('gpus', 0),
}
pdesc = rp.ComputePilotDescription(pd_init)
# Launch the pilot.
pilot = pmgr.submit_pilots(pdesc)
report.header('submit units')
# Register the ComputePilot in a UnitManager object.
umgr = rp.UnitManager(session=session)
umgr.add_pilots(pilot)
# Create a workload of ComputeUnits.
# Each compute unit runs a specific `echo` command
n = 128 # number of units to run
report.info('create %d unit description(s)\n\t' % n)
cuds = list()
for i in range(0, n):
# create a new CU description, and fill it.
# Here we don't use dict initialization.
cud = rp.ComputeUnitDescription()
cud.environment = {'TEST' : 'jabberwocky'}
cud.executable = '/bin/echo'
cud.arguments = ['$RP_UNIT_ID greets $TEST']
cuds.append(cud)
report.progress()
report.ok('>>ok\n')
# Submit the previously created ComputeUnit descriptions to the
# PilotManager. This will trigger the selected scheduler to start
# assigning ComputeUnits to the ComputePilots.
units = umgr.submit_units(cuds)
# Wait for all compute units to reach a final state (DONE, CANCELED or FAILED).
report.header('gather results')
umgr.wait_units()
report.info('\n')
for unit in units:
report.plain(' * %s: %s, exit: %3s, out: %s\n'
% (unit.uid, unit.state[:4],
unit.exit_code, unit.stdout.strip()[:35]))
except Exception as e:
# Something unexpected happened in the pilot code above
report.error('caught Exception: %s\n' % e)
raise
except (KeyboardInterrupt, SystemExit):
# the callback called sys.exit(), and we can here catch the
# corresponding KeyboardInterrupt exception for shutdown. We also catch
# SystemExit (which gets raised if the main threads exits for some other
# reason).
report.warn('exit requested\n')
finally:
# always clean up the session, no matter if we caught an exception or
# not. This will kill all remaining pilots.
report.header('finalize')
session.close()
report.header()
# ------------------------------------------------------------------------------
|
the-stack_0_4307 | """
File: 1514.py
Title: Path with Maximum Probability
Difficulty: Medium
URL: https://leetcode.com/problems/path-with-maximum-probability/
"""
import heapq
import unittest
from collections import defaultdict, deque
from typing import List
class Solution:
def maxProbability(self,
n: int,
edges: List[List[int]],
probs: List[float],
start: int,
end: int) -> float:
adjacents = defaultdict(dict)
for edge, prob in zip(edges, probs):
a, b = edge
adjacents[a][b] = prob
adjacents[b][a] = prob
heap = [(-1, start)]
visited = [False] * n
while heap:
neg_prob, here = heapq.heappop(heap)
if visited[here]:
continue
if here == end:
return -neg_prob
visited[here] = True
for there in adjacents[here]:
if not visited[there]:
there_prob = neg_prob * adjacents[here][there]
heapq.heappush(heap, (there_prob, there))
return 0.0
class SolutionTestCase(unittest.TestCase):
def test_example1(self):
# Input
n = 3
edges = [[0, 1], [1, 2], [0, 2]]
probs = [0.5, 0.5, 0.2]
start = 0
end = 2
# Output
output = 0.25000
solution = Solution()
self.assertEqual(solution.maxProbability(n, edges, probs, start, end),
output)
def test_example2(self):
# Input
n = 3
edges = [[0, 1], [1, 2], [0, 2]]
probs = [0.5, 0.5, 0.3]
start = 0
end = 2
# Output
output = 0.30000
solution = Solution()
self.assertEqual(solution.maxProbability(n, edges, probs, start, end),
output)
def test_example3(self):
# Input
n = 3
edges = [[0, 1]]
probs = [0.5]
start = 0
end = 2
# Output
output = 0.00000
solution = Solution()
self.assertEqual(solution.maxProbability(n, edges, probs, start, end),
output)
if __name__ == "__main__":
unittest.main()
|
the-stack_0_4308 | """arikefoods URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/3.1/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))
"""
from django.contrib import admin
from django.urls import path, include
from django.conf import settings
from django.conf.urls.static import static
urlpatterns = [
path('admin/', admin.site.urls),
path('accounts/', include('allauth.urls')),
path('', include('home.urls')),
path('food_menu/', include('menu.urls')),
path('', include('order.urls')),
path('checkout/', include('checkout.urls')),
path('', include('recipe_blog.urls')),
path('feedback/', include('feedback.urls')),
] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
|
the-stack_0_4312 | #coding=utf8
import traceback
from extensions.database import db
from extensions.hueyext import hueyapp
from extensions.celeryext import celeryapp
from models.asyncmodel import Async
from models.warehouse import Warehouse, Area, Workarea, Location
from models.inv import Good, Category, Inv
from models.auth import Partner, Seq
from models.stockout import Stockout, StockoutLine
from blueprints.stockout.action import StockoutAction
from utils.upload import get_file_content
from utils.functions import clear_empty
from utils.base import DictNone
#
#@hueyapp.task()
@celeryapp.task
def import_stockout(company_code, warehouse_code, owner_code, args, task_id, user_code=None, user_name=None):
ret = import_stockout_sync(company_code, warehouse_code, owner_code, args, task_id, user_code=user_code, user_name=user_name)
db.session.close()
return ret
def import_stockout_sync(company_code, warehouse_code, owner_code, args, task_id, user_code=None, user_name=None):
task = Async.query.get(task_id)
print('handle async task_id ==> ', task_id, task.async_id)
task.get_file()
content = get_file_content(task.link)
success = True
exc_info = ''
try:
order_dict = DictNone()
task.code = 'stockout'
for row in content:
d = DictNone(clear_empty(row))
if not d.erp_order_code:
continue
# 创建订单
if d.erp_order_code not in order_dict:
if Stockout.query.filter_by(company_code=company_code, warehouse_code=warehouse_code, owner_code=owner_code, \
erp_order_code=d.erp_order_code).count() > 0:
continue
order = Stockout(company_code=company_code, warehouse_code=warehouse_code, owner_code=owner_code,
source='import', user_code=user_code, user_name=user_name)
order_dict[d.erp_order_code] = order
order.erp_order_code = d.erp_order_code
order.order_code = Seq.make_order_code('C', company_code, warehouse_code, owner_code)
order.xtype = d.xtype or 'B2B'
order.order_type = d.order_type
order.date_planned = d.date_planned
order.source = 'custom'
order.remark = d.remark or ''
order.partner_code = d.partner_code or ''
order.partner_name = d.partner_name or ''
order.sender_info = {'name': d.sender, 'tel': d.sender_tel, 'address': d.sender_address}
order.receiver_info = {'name': d.receiver, 'tel': d.receiver_tel, 'address': d.receiver_address}
order.supplier_info = {'supplier_code': d.supplier_code}
order.express_info = {'express_code': d.express_code}
order.invoice_info = {'invoice': d.invoice}
# order.JSON = {'custom1': d.custom1, 'custom2': d.custom2, 'custom3': d.custom3, 'custom4': d.custom4}
db.session.add(order)
else:
order = order_dict[d.erp_order_code]
if not d.sku or not d.qty:
continue
line = StockoutLine(company_code=company_code, warehouse_code=warehouse_code, owner_code=owner_code)
line.erp_order_code = order.erp_order_code
line.order_code = order.order_code
line.sku = d.sku
line.barcode = d.barcode or d.sku
line.name = d.name or d.sku
line.qty = int(d.qty)
line.remark = d.remark or ''
line.supplier_code = d.supplier_code or ''
# line.supplier_code = d.supplier_code or ''
# line.quality_type = d.quality_type or 'ZP'
# line.product_date = d.product_date or None
# line.expire_date = d.expire_date or None
# line.batch_code = d.batch_code or ''
# line.virtual_warehouse = d.virtual_warehouse or ''
# line.spec = d.spec or ''
line.style = d.style or ''
line.color = d.color or ''
line.size = d.size or ''
line.unit = d.unit or ''
# line.JSON = {'custom1': d.custom1, 'custom2': d.custom2, 'custom3': d.custom3, 'custom4': d.custom4}
db.session.add(line)
line.stockout = order
db.session.flush()
exc_info = 'save stockout: %s'%len(content)
except:
exc_info = traceback.format_exc()
success = False
if success:
db.session.commit()
task.state = 'done'
task.exc_info = 'SUCCESS'
else:
db.session.rollback()
task.state = 'fail'
task.exc_info = exc_info[-1500:]
print(exc_info)
db.session.commit()
|
the-stack_0_4313 | # -*- coding:utf-8 -*-
from __future__ import absolute_import
"""
词向量测试 20K
词向量:
- 规模: 19527 x 300D
- 来源: [Chinese-Word-Vectors: sgns.sikuquanshu.word.bz2](https://github.com/Embedding/Chinese-Word-Vectors)
测试结果:
- faiss: load index, 0.82s; search 100 times by word, 1.08s; search 100 times by vec, 1.06s
- gensim: load index, 5.80s; search 100 times by word, 1.64s; search 100 times by vec, 1.62s
"""
import bz2
import logging
import pickle
import time
import gensim
import numpy as np
import os
from pyxtools import global_init_logger
from pyxtools.faiss_tools import faiss
class BasicBenchmark(object):
""" Basic Class """
def __init__(self, similar_top_n: int = 20):
""" init """
self.logger = logging.getLogger(self.__class__.__name__)
self.similar_top_n = similar_top_n
self.dimension = None
self.result_dict = {}
self.word_vec_model_file = "vec.model"
self._word_vec_dict = {}
def prepare(self):
""" 准备工作 """
self._global_prepare()
def _global_prepare(self):
""" """
if not os.path.exists(self.word_vec_model_file):
with open(self.word_vec_model_file, "wb") as fw:
with bz2.BZ2File('./sgns.sikuquanshu.word.bz2', 'rb') as fr:
fw.write(fr.read())
@staticmethod
def get_word_list() -> [str]:
""" 测试词 """
return ["计", "算", "机", "词", "向", "量", "囧"]
def run(self):
# prepare
self.prepare()
# init
time_start = time.time()
self.init()
self.logger.info("Init: cost {} s!".format(time.time() - time_start))
# search similar words
time_start = time.time()
for i in range(100):
self.search()
for word in self.get_word_list():
result_list = self.result_dict[word]
self.logger.info("{}>>\n{}".format(
word, "\n".join([result for result in result_list])
))
self.logger.info("Search 100 times by word: cost {} s!".format(time.time() - time_start))
# search similar words by vec
self.result_dict.clear()
time_start = time.time()
for i in range(100):
self.vec_search()
for word in self.get_word_list():
result_list = self.result_dict[word]
self.logger.info("{}>>\n{}".format(
word, "\n".join([result for result in result_list])
))
self.logger.info("Search 100 times by vec: cost {} s!".format(time.time() - time_start))
def init(self):
raise NotImplementedError
def search(self):
raise NotImplementedError
def vec_search(self, ):
raise NotImplementedError
def save_result_dict(self, word: str, result: str):
if word not in self.result_dict:
self.result_dict[word] = [result]
else:
result_list = self.result_dict[word]
if result not in result_list:
self.result_dict[word].append(result)
def load_pre_trained_model(self, ):
""" 返回预训练好的模型 """
gensim_model = gensim.models.KeyedVectors.load_word2vec_format(self.word_vec_model_file, binary=False)
self.dimension = gensim_model.vector_size
return gensim_model
class GensimBenchmark(BasicBenchmark):
""" Gensim """
def __init__(self):
super(GensimBenchmark, self).__init__()
self._model = None
def init(self):
self._model = self.load_pre_trained_model()
for word in self.get_word_list():
self._word_vec_dict[word] = self._model.get_vector(word)
def search(self):
for word in self.get_word_list():
result = ", ".join([item[0] for item in self._model.similar_by_word(word, topn=self.similar_top_n)])
self.save_result_dict(word, result)
def vec_search(self):
""" 直接使用词向量搜索 """
for word in self.get_word_list():
word_vec = self._word_vec_dict[word]
result = ", ".join(
[item[0] for item in self._model.similar_by_word(word_vec, topn=self.similar_top_n + 1)[1:]]
)
self.save_result_dict(word, result)
class FaissBenchmark(BasicBenchmark):
""" Faiss """
def __init__(self):
super(FaissBenchmark, self).__init__()
self._model = None
self._word_detail_info = None
self.faiss_index_file = "./faiss.index"
self.faiss_index_detail_pkl = "./faiss.pkl"
def prepare(self):
""" 将Gensim 版本的模型转化为Faiss模型 """
super(FaissBenchmark, self).prepare()
# turn model from gensim to faiss index
if os.path.exists(self.faiss_index_file) and os.path.exists(self.faiss_index_detail_pkl):
return
# load model to dict
self.logger.info("loading model...")
time_start = time.time()
gensim_model = self.load_pre_trained_model()
model_size = len(gensim_model.vocab)
self.dimension = gensim_model.vector_size
feature = np.zeros(shape=(model_size, self.dimension), dtype=np.float32)
word_list = [word for word in gensim_model.vocab]
for i, word in enumerate(word_list):
feature[i] = gensim_model.get_vector(word) # not normed
self.logger.info("success to load index! Cost {} seconds!".format(time.time() - time_start))
# train faiss index
index_factory = "Flat"
normed_feature = feature / np.linalg.norm(feature, axis=1, keepdims=True)
faiss_index = faiss.index_factory(self.dimension, index_factory)
self.logger.info("training index...")
time_start = time.time()
faiss_index.train(normed_feature) # nb * d
faiss_index.add(normed_feature)
self.logger.info("success to train index! Cost {} seconds!".format(time.time() - time_start))
# save in file
faiss.write_index(faiss_index, self.faiss_index_file)
with open(self.faiss_index_detail_pkl, "wb") as f:
pickle.dump((word_list, feature), f)
def init(self):
""" load model """
self._model = faiss.read_index(self.faiss_index_file)
with open(self.faiss_index_detail_pkl, "rb") as f:
self._word_detail_info = pickle.load(f)
self.dimension = self._word_detail_info[1].shape[-1]
for word in self.get_word_list():
self._word_vec_dict[word] = self._word_detail_info[1][self._word_detail_info[0].index(word)]
def _search_by_vec(self, feature_list, ):
""" 向量搜索 """
normed_feature_list = feature_list / np.linalg.norm(feature_list, axis=1, keepdims=True)
length = normed_feature_list.shape[0]
distance_list, indices = self._model.search(normed_feature_list, self.similar_top_n + 1)
distance_list = distance_list.reshape((length, self.similar_top_n + 1))
indices = indices.reshape((length, self.similar_top_n + 1))
return distance_list, indices
def search(self):
""" search similar words """
# 获取查询词向量
word_list = self.get_word_list()
word_feature_list = np.zeros(shape=(len(word_list), self.dimension), dtype=np.float32)
for i, word in enumerate(word_list):
word_feature_list[i] = self._word_detail_info[1][self._word_detail_info[0].index(word)]
# search
_, indices_arr = self._search_by_vec(word_feature_list)
# show result
for i, word in enumerate(word_list):
result = ", ".join([self._word_detail_info[0][word_index] for word_index in indices_arr[i][1:]])
self.save_result_dict(word, result)
def vec_search(self):
""" 直接使用词向量搜索 """
# 获取查询词向量
word_list = self.get_word_list()
word_feature_list = np.zeros(shape=(len(word_list), self.dimension), dtype=np.float32)
for i, word in enumerate(word_list):
word_feature_list[i] = self._word_vec_dict[word]
# search
_, indices_arr = self._search_by_vec(word_feature_list)
# show result
for i, word in enumerate(word_list):
result = ", ".join([self._word_detail_info[0][word_index] for word_index in indices_arr[i][1:]])
self.save_result_dict(word, result)
if __name__ == '__main__':
# global logger
global_init_logger()
# benchmark
for method_cls in [FaissBenchmark, GensimBenchmark, ]:
method_cls().run()
|
the-stack_0_4314 | # Imports
from datetime import timedelta
from typing import List, Tuple
import hypothesis.strategies as st
import numpy as np
import numpy.testing as npt
import pandas as pd
import pyarrow as pa
import pytest
from hypothesis import given, settings
from fletcher._algorithms import (
_extract_data_buffer_as_np_array,
_merge_valid_bitmaps,
max_op,
min_op,
np_ufunc_op,
prod_op,
sum_op,
)
from fletcher.algorithms.utils.chunking import (
_calculate_chunk_offsets,
_combined_in_chunk_offsets,
_in_chunk_offsets,
)
def _is_na(a):
return (a is pa.NA) or (a is None) or (np.isnan(a))
def assert_allclose_na(a, b):
"""assert_allclose with a broader NA/nan/None definition."""
if _is_na(a) and _is_na(b):
pass
else:
npt.assert_allclose(a, b)
@pytest.mark.parametrize(
"op, pandas_op", [(sum_op, pd.Series.sum), (prod_op, pd.Series.prod)]
)
@settings(deadline=timedelta(milliseconds=1000))
@given(
data=st.lists(st.one_of(st.floats(max_value=10.0, min_value=-10), st.none())),
skipna=st.booleans(),
)
def test_reduce_op(data, skipna, op, pandas_op):
arrow = pa.array(data, type=pa.float64(), from_pandas=True)
pandas = pd.Series(data, dtype=float)
assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna))
# Split in the middle and check whether this still works
if len(data) > 2:
arrow = pa.chunked_array(
[
pa.array(data[: len(data) // 2], type=pa.float64(), from_pandas=True),
pa.array(data[len(data) // 2 :], type=pa.float64(), from_pandas=True),
]
)
assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna))
@pytest.mark.parametrize(
"op, pandas_op", [(min_op, pd.Series.min), (max_op, pd.Series.max)]
)
@settings(deadline=timedelta(milliseconds=1000))
@given(
data=st.lists(st.one_of(st.floats(max_value=10.0), st.none())), skipna=st.booleans()
)
def test_reduce_op_no_identity(data, skipna, op, pandas_op):
arrow = pa.array(data, type=pa.float64(), from_pandas=True)
pandas = pd.Series(data, dtype=float)
should_raise = arrow.null_count == len(arrow) and (skipna or len(arrow) == 0)
if should_raise:
with pytest.raises(ValueError):
assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna))
else:
assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna))
# Split in the middle and check whether this still works
if len(data) > 2:
arrow = pa.chunked_array(
[
pa.array(data[: len(data) // 2], type=pa.float64(), from_pandas=True),
pa.array(data[len(data) // 2 :], type=pa.float64(), from_pandas=True),
]
)
if should_raise:
with pytest.raises(ValueError):
assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna))
else:
assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna))
def test_calculate_chunk_offsets():
arr = pa.chunked_array([[1, 1, 1]])
npt.assert_array_equal(_calculate_chunk_offsets(arr), np.array([0]))
arr = pa.chunked_array([[1], [1, 1]])
npt.assert_array_equal(_calculate_chunk_offsets(arr), np.array([0, 1]))
arr = pa.chunked_array([[1, 1], [1]])
npt.assert_array_equal(_calculate_chunk_offsets(arr), np.array([0, 2]))
def check_valid_in_offsets(
arr: pa.ChunkedArray, in_offsets: List[Tuple[int, int, int]]
) -> None:
if arr.num_chunks == 0:
assert in_offsets == []
return
# We always start at the beginning
assert in_offsets[0][0] == 0
assert in_offsets[0][1] == 0
# Overall, the chunk offsets must have the same length as the array
assert sum(x[2] for x in in_offsets) == len(arr)
@given(data=st.lists(st.lists(st.integers(min_value=0, max_value=10))))
def test_in_chunk_offsets(data: List[List[int]]):
arr = pa.chunked_array(data, type=pa.int64())
# Simple case: Passing in the actual chunk offsets should yield a valid selection
offsets = list(_calculate_chunk_offsets(arr))
in_offsets = _in_chunk_offsets(arr, offsets)
check_valid_in_offsets(arr, in_offsets)
def test_combined_in_chunk_offsets():
a = pa.chunked_array([[]])
b = pa.chunked_array([[]])
in_a_offsets, in_b_offsets = _combined_in_chunk_offsets(a, b)
assert in_a_offsets == [(0, 0, 0)]
assert in_b_offsets == [(0, 0, 0)]
a = pa.chunked_array([[1]])
b = pa.chunked_array([[2]])
in_a_offsets, in_b_offsets = _combined_in_chunk_offsets(a, b)
assert in_a_offsets == [(0, 0, 1)]
assert in_b_offsets == [(0, 0, 1)]
a = pa.chunked_array([[1, 2], [3, 4, 5]])
b = pa.chunked_array([[1], [2, 3], [4, 5]])
in_a_offsets, in_b_offsets = _combined_in_chunk_offsets(a, b)
assert in_a_offsets == [(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 2)]
assert in_b_offsets == [(0, 0, 1), (1, 0, 1), (1, 1, 1), (2, 0, 2)]
@pytest.mark.parametrize("data", [[1, 2, 4, 5], [1.0, 0.5, 4.0, 5.0]])
def test_extract_data_buffer_as_np_array(data):
arr = pa.array(data)
result = _extract_data_buffer_as_np_array(arr)
expected = np.array(data)
npt.assert_array_equal(result, expected)
result = _extract_data_buffer_as_np_array(arr[2:4])
expected = np.array(data[2:4])
npt.assert_array_equal(result, expected)
def assert_content_equals_array(result, expected):
"""Assert that the result is an Arrow structure and the content matches an array."""
assert isinstance(result, (pa.Array, pa.ChunkedArray))
if isinstance(result, pa.ChunkedArray):
result = pa.concat_arrays(result.iterchunks())
assert result.equals(expected)
def check_np_ufunc(a, b, expected):
result = np_ufunc_op(a, b, np.ndarray.__add__)
assert_content_equals_array(result, expected)
result = np_ufunc_op(b, a, np.ndarray.__add__)
assert_content_equals_array(result, expected)
def test_np_ufunc_op_chunked_chunked():
a = pa.chunked_array([[1, 2], [3, None, None]])
b = pa.chunked_array([[1], [2, 3], [4, None]])
expected = pa.array([2, 4, 6, None, None])
check_np_ufunc(a, b, expected)
def test_np_ufunc_op_chunked_flat():
a = pa.chunked_array([[1, 2], [3, None, None]])
b = pa.array([1, 2, 3, 4, None])
expected = pa.array([2, 4, 6, None, None])
check_np_ufunc(a, b, expected)
def test_np_ufunc_op_chunked_np_array():
a = pa.chunked_array([[1, 2], [3, None]])
b = np.array([1, 2, 3, 4])
expected = pa.array([2, 4, 6, None])
check_np_ufunc(a, b, expected)
def test_np_ufunc_op_chunked_scalar():
a = pa.chunked_array([[1, 2], [3, None]])
b = 4
expected = pa.array([5, 6, 7, None])
check_np_ufunc(a, b, expected)
def test_np_ufunc_op_flat_flat():
a = pa.array([1, 2, 3, None, None])
b = pa.array([1, 2, 3, 4, None])
expected = pa.array([2, 4, 6, None, None])
check_np_ufunc(a, b, expected)
def test_np_ufunc_op_flat_np_array():
a = pa.array([1, 2, 3, None])
b = np.array([1, 2, 3, 4])
expected = pa.array([2, 4, 6, None])
check_np_ufunc(a, b, expected)
def test_np_ufunc_op_flat_scalar():
a = pa.array([1, 2, 3, None])
b = 4
expected = pa.array([5, 6, 7, None])
check_np_ufunc(a, b, expected)
def test_merge_valid_bitmaps():
a = pa.array([1, 1, 1, 1, 1, 1, 1, 1, 1])
b = pa.array([1, 1, 1, None, None, None, 1, 1, 1])
expected = np.array([0xFF, 0x1], dtype=np.uint8)
result = _merge_valid_bitmaps(a, a)
npt.assert_array_equal(result, expected)
expected = np.array([0xC7, 0x1], dtype=np.uint8)
result = _merge_valid_bitmaps(a, b)
npt.assert_array_equal(result, expected)
expected = np.array([0x1], dtype=np.uint8)
result = _merge_valid_bitmaps(a.slice(8, 1), a.slice(8, 1))
npt.assert_array_equal(result, expected)
expected = np.array([0xF], dtype=np.uint8)
result = _merge_valid_bitmaps(a.slice(0, 4), a.slice(0, 4))
npt.assert_array_equal(result, expected)
expected = np.array([0x7], dtype=np.uint8)
result = _merge_valid_bitmaps(a.slice(0, 4), b.slice(0, 4))
npt.assert_array_equal(result, expected)
expected = np.array([0xF], dtype=np.uint8)
result = _merge_valid_bitmaps(a.slice(5, 4), a.slice(5, 4))
npt.assert_array_equal(result, expected)
expected = np.array([0xE], dtype=np.uint8)
result = _merge_valid_bitmaps(a.slice(5, 4), b.slice(5, 4))
npt.assert_array_equal(result, expected)
expected = np.array([0x3], dtype=np.uint8)
result = _merge_valid_bitmaps(a.slice(5, 2), a.slice(5, 2))
npt.assert_array_equal(result, expected)
expected = np.array([0x2], dtype=np.uint8)
result = _merge_valid_bitmaps(a.slice(5, 2), b.slice(5, 2))
npt.assert_array_equal(result, expected)
expected = np.array([0x3], dtype=np.uint8)
result = _merge_valid_bitmaps(a.slice(5, 2), a.slice(3, 2))
npt.assert_array_equal(result, expected)
expected = np.array([0x0], dtype=np.uint8)
result = _merge_valid_bitmaps(a.slice(5, 2), b.slice(3, 2))
npt.assert_array_equal(result, expected)
|
the-stack_0_4317 | from __future__ import print_function
import gdbremote_testcase
from lldbsuite.test.decorators import *
from lldbsuite.test.lldbtest import *
from lldbsuite.test import lldbutil
class TestGdbRemoteAuxvSupport(gdbremote_testcase.GdbRemoteTestCaseBase):
mydir = TestBase.compute_mydir(__file__)
AUXV_SUPPORT_FEATURE_NAME = "qXfer:auxv:read"
@skipIfDarwinEmbedded # <rdar://problem/34539270> lldb-server tests not updated to work on ios etc yet
def has_auxv_support(self):
inferior_args = ["message:main entered", "sleep:5"]
procs = self.prep_debug_monitor_and_inferior(
inferior_args=inferior_args)
# Don't do anything until we match the launched inferior main entry output.
# Then immediately interrupt the process.
# This prevents auxv data being asked for before it's ready and leaves
# us in a stopped state.
self.test_sequence.add_log_lines([
# Start the inferior...
"read packet: $c#63",
# ... match output....
{"type": "output_match", "regex": self.maybe_strict_output_regex(
r"message:main entered\r\n")},
], True)
# ... then interrupt.
self.add_interrupt_packets()
self.add_qSupported_packets()
context = self.expect_gdbremote_sequence()
self.assertIsNotNone(context)
features = self.parse_qSupported_response(context)
return self.AUXV_SUPPORT_FEATURE_NAME in features and features[
self.AUXV_SUPPORT_FEATURE_NAME] == "+"
def get_raw_auxv_data(self):
# Start up llgs and inferior, and check for auxv support.
if not self.has_auxv_support():
self.skipTest("auxv data not supported")
# Grab pointer size for target. We'll assume that is equivalent to an unsigned long on the target.
# Auxv is specified in terms of pairs of unsigned longs.
self.reset_test_sequence()
self.add_process_info_collection_packets()
context = self.expect_gdbremote_sequence()
self.assertIsNotNone(context)
proc_info = self.parse_process_info_response(context)
self.assertIsNotNone(proc_info)
self.assertTrue("ptrsize" in proc_info)
word_size = int(proc_info["ptrsize"])
OFFSET = 0
LENGTH = 0x400
# Grab the auxv data.
self.reset_test_sequence()
self.test_sequence.add_log_lines(
[
"read packet: $qXfer:auxv:read::{:x},{:x}:#00".format(
OFFSET,
LENGTH),
{
"direction": "send",
"regex": re.compile(
r"^\$([^E])(.*)#[0-9a-fA-F]{2}$",
re.MULTILINE | re.DOTALL),
"capture": {
1: "response_type",
2: "content_raw"}}],
True)
context = self.expect_gdbremote_sequence()
self.assertIsNotNone(context)
# Ensure we end up with all auxv data in one packet.
# FIXME don't assume it all comes back in one packet.
self.assertEqual(context.get("response_type"), "l")
# Decode binary data.
content_raw = context.get("content_raw")
self.assertIsNotNone(content_raw)
return (word_size, self.decode_gdbremote_binary(content_raw))
def supports_auxv(self):
# When non-auxv platforms support llgs, skip the test on platforms
# that don't support auxv.
self.assertTrue(self.has_auxv_support())
#
# We skip the "supports_auxv" test on debugserver. The rest of the tests
# appropriately skip the auxv tests if the support flag is not present
# in the qSupported response, so the debugserver test bits are still there
# in case debugserver code one day does have auxv support and thus those
# tests don't get skipped.
#
@skipIfWindows # no auxv support.
@llgs_test
def test_supports_auxv_llgs(self):
self.init_llgs_test()
self.build()
self.set_inferior_startup_launch()
self.supports_auxv()
def auxv_data_is_correct_size(self):
(word_size, auxv_data) = self.get_raw_auxv_data()
self.assertIsNotNone(auxv_data)
# Ensure auxv data is a multiple of 2*word_size (there should be two
# unsigned long fields per auxv entry).
self.assertEqual(len(auxv_data) % (2 * word_size), 0)
# print("auxv contains {} entries".format(len(auxv_data) / (2*word_size)))
@debugserver_test
def test_auxv_data_is_correct_size_debugserver(self):
self.init_debugserver_test()
self.build()
self.set_inferior_startup_launch()
self.auxv_data_is_correct_size()
@skipIfWindows
@expectedFailureNetBSD
@llgs_test
def test_auxv_data_is_correct_size_llgs(self):
self.init_llgs_test()
self.build()
self.set_inferior_startup_launch()
self.auxv_data_is_correct_size()
def auxv_keys_look_valid(self):
(word_size, auxv_data) = self.get_raw_auxv_data()
self.assertIsNotNone(auxv_data)
# Grab endian.
self.reset_test_sequence()
self.add_process_info_collection_packets()
context = self.expect_gdbremote_sequence()
self.assertIsNotNone(context)
process_info = self.parse_process_info_response(context)
self.assertIsNotNone(process_info)
endian = process_info.get("endian")
self.assertIsNotNone(endian)
auxv_dict = self.build_auxv_dict(endian, word_size, auxv_data)
self.assertIsNotNone(auxv_dict)
# Verify keys look reasonable.
for auxv_key in auxv_dict:
self.assertTrue(auxv_key >= 1)
self.assertTrue(auxv_key <= 1000)
# print("auxv dict: {}".format(auxv_dict))
@debugserver_test
def test_auxv_keys_look_valid_debugserver(self):
self.init_debugserver_test()
self.build()
self.set_inferior_startup_launch()
self.auxv_keys_look_valid()
@skipIfWindows
@expectedFailureNetBSD
@llgs_test
def test_auxv_keys_look_valid_llgs(self):
self.init_llgs_test()
self.build()
self.set_inferior_startup_launch()
self.auxv_keys_look_valid()
def auxv_chunked_reads_work(self):
# Verify that multiple smaller offset,length reads of auxv data
# return the same data as a single larger read.
# Grab the auxv data with a single large read here.
(word_size, auxv_data) = self.get_raw_auxv_data()
self.assertIsNotNone(auxv_data)
# Grab endian.
self.reset_test_sequence()
self.add_process_info_collection_packets()
context = self.expect_gdbremote_sequence()
self.assertIsNotNone(context)
process_info = self.parse_process_info_response(context)
self.assertIsNotNone(process_info)
endian = process_info.get("endian")
self.assertIsNotNone(endian)
auxv_dict = self.build_auxv_dict(endian, word_size, auxv_data)
self.assertIsNotNone(auxv_dict)
iterated_auxv_data = self.read_binary_data_in_chunks(
"qXfer:auxv:read::", 2 * word_size)
self.assertIsNotNone(iterated_auxv_data)
auxv_dict_iterated = self.build_auxv_dict(
endian, word_size, iterated_auxv_data)
self.assertIsNotNone(auxv_dict_iterated)
# Verify both types of data collection returned same content.
self.assertEqual(auxv_dict_iterated, auxv_dict)
@debugserver_test
def test_auxv_chunked_reads_work_debugserver(self):
self.init_debugserver_test()
self.build()
self.set_inferior_startup_launch()
self.auxv_chunked_reads_work()
@skipIfWindows
@expectedFailureNetBSD
@llgs_test
def test_auxv_chunked_reads_work_llgs(self):
self.init_llgs_test()
self.build()
self.set_inferior_startup_launch()
self.auxv_chunked_reads_work()
|
the-stack_0_4322 | # -*- coding: utf-8 -*-
"""This file contains a parser for the Google Drive snapshots.
The Google Drive snapshots are stored in SQLite database files named
snapshot.db.
"""
from __future__ import unicode_literals
from dfdatetime import posix_time as dfdatetime_posix_time
from plaso.containers import events
from plaso.containers import time_events
from plaso.lib import definitions
from plaso.parsers import sqlite
from plaso.parsers.sqlite_plugins import interface
class GoogleDriveSnapshotCloudEntryEventData(events.EventData):
"""Google Drive snapshot cloud entry event data.
Attributes:
doc_type (int): document type.
path (str): path of the file.
shared (bool): True if the file is shared, False if the file is private.
size (int): size of the file.
url (str): URL of the file.
"""
DATA_TYPE = 'gdrive:snapshot:cloud_entry'
def __init__(self):
"""Initializes event data."""
super(GoogleDriveSnapshotCloudEntryEventData, self).__init__(
data_type=self.DATA_TYPE)
self.document_type = None
self.path = None
self.shared = None
self.size = None
self.url = None
class GoogleDriveSnapshotLocalEntryEventData(events.EventData):
"""Google Drive snapshot local entry event data.
Attributes:
path (str): path of the file.
size (int): size of the file.
"""
DATA_TYPE = 'gdrive:snapshot:local_entry'
def __init__(self):
"""Initializes event data."""
super(GoogleDriveSnapshotLocalEntryEventData, self).__init__(
data_type=self.DATA_TYPE)
self.path = None
self.size = None
class GoogleDrivePlugin(interface.SQLitePlugin):
"""SQLite plugin for Google Drive snapshot.db files."""
NAME = 'google_drive'
DESCRIPTION = 'Parser for Google Drive SQLite database files.'
# Define the needed queries.
QUERIES = [
(('SELECT cloud_entry.resource_id, cloud_entry.filename, '
'cloud_entry.modified, cloud_entry.created, cloud_entry.size, '
'cloud_entry.doc_type, cloud_entry.shared, cloud_entry.checksum, '
'cloud_entry.url, cloud_relations.parent_resource_id '
'FROM cloud_entry, cloud_relations '
'WHERE cloud_relations.child_resource_id = cloud_entry.resource_id '
'AND cloud_entry.modified IS NOT NULL;'),
'ParseCloudEntryRow'),
(('SELECT inode_number, filename, modified, checksum, size '
'FROM local_entry WHERE modified IS NOT NULL;'),
'ParseLocalEntryRow')]
# The required tables.
REQUIRED_TABLES = frozenset([
'cloud_entry', 'cloud_relations', 'local_entry', 'local_relations',
'mapping', 'overlay_status'])
SCHEMAS = [{
'cloud_entry': (
'CREATE TABLE cloud_entry (resource_id TEXT, filename TEXT, '
'modified INTEGER, created INTEGER, acl_role INTEGER, doc_type '
'INTEGER, removed INTEGER, url TEXT, size INTEGER, checksum TEXT, '
'shared INTEGER, PRIMARY KEY (resource_id))'),
'cloud_relations': (
'CREATE TABLE cloud_relations (child_resource_id TEXT, '
'parent_resource_id TEXT, UNIQUE (child_resource_id, '
'parent_resource_id), FOREIGN KEY (child_resource_id) REFERENCES '
'cloud_entry(resource_id), FOREIGN KEY (parent_resource_id) '
'REFERENCES cloud_entry(resource_id))'),
'local_entry': (
'CREATE TABLE local_entry (inode_number INTEGER, filename TEXT, '
'modified INTEGER, checksum TEXT, size INTEGER, PRIMARY KEY '
'(inode_number))'),
'local_relations': (
'CREATE TABLE local_relations (child_inode_number INTEGER, '
'parent_inode_number INTEGER, UNIQUE (child_inode_number), FOREIGN '
'KEY (parent_inode_number) REFERENCES local_entry(inode_number), '
'FOREIGN KEY (child_inode_number) REFERENCES '
'local_entry(inode_number))'),
'mapping': (
'CREATE TABLE mapping (inode_number INTEGER, resource_id TEXT, '
'UNIQUE (inode_number), FOREIGN KEY (inode_number) REFERENCES '
'local_entry(inode_number), FOREIGN KEY (resource_id) REFERENCES '
'cloud_entry(resource_id))'),
'overlay_status': (
'CREATE TABLE overlay_status (path TEXT, overlay_status INTEGER, '
'PRIMARY KEY (path))')}]
# Queries used to build cache.
LOCAL_PATH_CACHE_QUERY = (
'SELECT local_relations.child_inode_number, '
'local_relations.parent_inode_number, local_entry.filename '
'FROM local_relations, local_entry '
'WHERE local_relations.child_inode_number = local_entry.inode_number')
CLOUD_PATH_CACHE_QUERY = (
'SELECT cloud_entry.filename, cloud_entry.resource_id, '
'cloud_relations.parent_resource_id AS parent '
'FROM cloud_entry, cloud_relations '
'WHERE cloud_entry.doc_type = 0 '
'AND cloud_entry.resource_id = cloud_relations.child_resource_id')
def GetLocalPath(self, inode, cache, database):
"""Return local path for a given inode.
Args:
inode: The inode number for the file.
cache (SQLiteCache): cache.
database (SQLiteDatabase): database.
Returns:
A full path, including the filename of the given inode value.
"""
local_path = cache.GetResults('local_path')
if not local_path:
results = database.Query(self.LOCAL_PATH_CACHE_QUERY)
cache.CacheQueryResults(
results, 'local_path', 'child_inode_number',
('parent_inode_number', 'filename'))
local_path = cache.GetResults('local_path')
parent, path = local_path.get(inode, [None, None])
# TODO: Read the local_sync_root from the sync_config.db and use that
# for a root value.
root_value = '%local_sync_root%/'
if not path:
return root_value
paths = []
while path:
paths.append(path)
parent, path = local_path.get(parent, [None, None])
if not paths:
return root_value
# Paths are built top level to root so we need to reverse the list to
# represent them in the traditional order.
paths.reverse()
return root_value + '/'.join(paths)
def GetCloudPath(self, resource_id, cache, database):
"""Return cloud path given a resource id.
Args:
resource_id: The resource_id for the file.
cache: The local cache object.
database: A database object (instance of SQLiteDatabase).
Returns:
A full path to the resource value.
"""
cloud_path = cache.GetResults('cloud_path')
if not cloud_path:
results = database.Query(self.CLOUD_PATH_CACHE_QUERY)
cache.CacheQueryResults(
results, 'cloud_path', 'resource_id', ('filename', 'parent'))
cloud_path = cache.GetResults('cloud_path')
if resource_id == 'folder:root':
return '/'
paths = []
parent_path, parent_id = cloud_path.get(resource_id, ['', ''])
while parent_path:
if parent_path == 'folder:root':
break
paths.append(parent_path)
parent_path, parent_id = cloud_path.get(parent_id, ['', ''])
if not paths:
return '/'
# Paths are built top level to root so we need to reverse the list to
# represent them in the traditional order.
paths.reverse()
return '/{0:s}/'.format('/'.join(paths))
def ParseCloudEntryRow(
self, parser_mediator, query, row, cache=None, database=None,
**unused_kwargs):
"""Parses a cloud entry row.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
query (str): query that created the row.
row (sqlite3.Row): row.
cache (SQLiteCache): cache.
database (SQLiteDatabase): database.
"""
query_hash = hash(query)
parent_resource_id = self._GetRowValue(
query_hash, row, 'parent_resource_id')
filename = self._GetRowValue(query_hash, row, 'filename')
cloud_path = self.GetCloudPath(parent_resource_id, cache, database)
cloud_filename = '{0:s}{1:s}'.format(cloud_path, filename)
event_data = GoogleDriveSnapshotCloudEntryEventData()
event_data.document_type = self._GetRowValue(query_hash, row, 'doc_type')
event_data.path = cloud_filename
event_data.query = query
event_data.shared = bool(self._GetRowValue(query_hash, row, 'shared'))
event_data.size = self._GetRowValue(query_hash, row, 'size')
event_data.url = self._GetRowValue(query_hash, row, 'url')
timestamp = self._GetRowValue(query_hash, row, 'modified')
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_MODIFICATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
timestamp = self._GetRowValue(query_hash, row, 'created')
if timestamp:
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_CREATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
def ParseLocalEntryRow(
self, parser_mediator, query, row, cache=None, database=None,
**unused_kwargs):
"""Parses a local entry row.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
query (str): query that created the row.
row (sqlite3.Row): row.
cache (Optional[SQLiteCache]): cache.
database (Optional[SQLiteDatabase]): database.
"""
query_hash = hash(query)
inode_number = self._GetRowValue(query_hash, row, 'inode_number')
local_path = self.GetLocalPath(inode_number, cache, database)
event_data = GoogleDriveSnapshotLocalEntryEventData()
event_data.path = local_path
event_data.query = query
event_data.size = self._GetRowValue(query_hash, row, 'size')
timestamp = self._GetRowValue(query_hash, row, 'modified')
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_MODIFICATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
sqlite.SQLiteParser.RegisterPlugin(GoogleDrivePlugin)
|
the-stack_0_4323 | import os
import pytest
from conda_build import api
from .utils import fail_dir, metadata_dir
@pytest.mark.parametrize("pkg_format,pkg_ext", [(None, ".tar.bz2"), ("2", ".conda")])
def test_conda_pkg_format(
pkg_format, pkg_ext, testing_config, testing_workdir, monkeypatch, capfd
):
"""Conda package format "2" builds .conda packages."""
# Build the "entry_points" recipe, which contains a test pass for package.
recipe = os.path.join(metadata_dir, "entry_points")
# These variables are defined solely for testing purposes,
# so they can be checked within build scripts
testing_config.activate = True
testing_config.conda_pkg_format = pkg_format
monkeypatch.setenv("CONDA_TEST_VAR", "conda_test")
monkeypatch.setenv("CONDA_TEST_VAR_2", "conda_test_2")
output_file, = api.get_output_file_paths(recipe, config=testing_config)
assert output_file.endswith(pkg_ext)
api.build(recipe, config=testing_config)
assert os.path.exists(output_file)
out, err = capfd.readouterr()
# Verify that test pass ran through api
assert "Manual entry point" in out
assert "TEST END: %s" % output_file in out
|
the-stack_0_4324 | from openpyxl import load_workbook
from docx import Document
from docx.oxml.ns import qn
import os
# 设置文档字体
def set_font(document):
document.styles['Normal'].font.name = u'宋体'
document.styles['Normal']._element.rPr.rFonts.set(qn('w:eastAsia'), u'宋体')
def get_ws(file_path):
# 读取excel xlsx文件
wb = load_workbook(file_path) # 打开现有工作表
ws = wb.active # 默认对第一张工作表进行操作
return ws
def get_title(ws):
title = []
for col_index in range(ws.max_column):
title.append(ws.cell(row=1, column=col_index+1).value)
return title
def print_title(title):
print("表头字段如下:")
for t in title:
print(t,end=" ")
print()
def enter_choice():
optional = '是否YyNn'
sure = '是Yy'
while True:
try:
choice = input("是否采用与字段内容无关的数值递增的文件命名方式?(是/否)(y/n):\n")
if choice not in optional: # 如果输入不在可选字符范围
raise ValueError("需输入'是'、'否'、'y'、'n'中的一个字符")
break
except Exception as err:
print("输入不符合要求:{}\n请重新输入".format(repr(err)))
if choice in sure:
return True
else:
return False
def enter_name_rules(title):
while True:
try:
print("请输入命名字段")
name_title = input()
if name_title not in title:
raise ValueError("请原样输入表头中的一个字段")
name_rules = title.index(name_title)
break
except Exception as err:
print(err)
return name_rules
# 转换成word表格
def excel_to_table(ws,name_rules,default_value,save_dir='ExcelToWordResult'):
'''
:param ws: load_workbook处理后的工作簿对象
:param name_rules: 命名规则
:param default_value: 命名缺省值
:return:
'''
# 获取行列数
if not os.path.exists(save_dir):
os.makedirs(save_dir)
row_num = ws.max_row
column_num = ws.max_column
# for row in ws.rows: # ws.rows是一个存储每行ceil的元组
# for ceil in row:
# print(ceil.value)
# 写入word文件
for row_index in range(1,row_num): # 跳过表头,写入每个记录
# 创建word文档
document = Document()
# 设置文档字体
set_font(document)
# 在word文档中添加表格
tbobj = document.add_table(rows=2, cols=column_num, style="Table Grid")
# 添加表头以及记录
for col_index in range(column_num):
tbobj.cell(0, col_index).text = str(ws.cell(row=1, column=col_index+1).value) # 添加表头
tbobj.cell(1, col_index).text = str(ws.cell(row=row_index+1, column=col_index+1).value) # 添加记录
if name_rules == default_value: # 如果采用默认命名(数字递增)
filename = str(row_index) + '.docx'
# 文件名
else:
filename = str(ws.cell(row=row_index+1, column=name_rules+1).value) + '.docx'
# 保存文件
save_path = save_dir + '\\' + filename
try: # 涉及文件IO,进行异常处理
document.save(save_path)
# 输出文件存储路径的提示信息
current_path = os.getcwd() # 获得当前路径
print("当前路径是{}".format(current_path))
print("{} 存储成功".format(save_path))
except Exception as err:
print(err)
print("文件存储失败")
def main(file_path):
ws = get_ws(file_path) # 获取工作簿对象
title = get_title(ws) # 获取其表头字段
print_title(title)
choice = enter_choice() # 由用户指定是否采用数值递增命名
default_value = -1 # 命名方式缺省值
if choice:
name_rules = default_value
else:
name_rules = enter_name_rules(title)
excel_to_table(ws, name_rules, default_value) # 以表格形式写入批量word
if __name__ == "__main__":
file_path = '学生信息表.xlsx'
main(file_path) |
the-stack_0_4325 | import datetime
import inspect
import json
import logging
import logging.config
import os
import pathlib
from types import ModuleType
from typing import Any, Callable, ContextManager, List, Optional, Union
import dotenv
import orjson # type: ignore
import sentry_sdk
import structlog
import platform
import tempfile
from structlog_sentry_logger import structlog_sentry
ROOT_DIR = pathlib.Path("/tmp" if platform.system() == "Darwin" else tempfile.gettempdir())
LOG_DATA_DIR = ROOT_DIR / ".logs"
LOG_DATA_DIR.mkdir(exist_ok=True)
DATETIME_FORMAT = "iso"
_CONFIGS = {"USE_ORJSON": True}
def _toggle_json_library(use_orjson: bool = True) -> None:
_CONFIGS["USE_ORJSON"] = use_orjson
def get_namespaced_module_name(__file__: Union[pathlib.Path, str]) -> str:
fully_qualified_path = pathlib.Path(__file__).resolve()
prefix_dir = str(ROOT_DIR) if str(ROOT_DIR) in str(fully_qualified_path) else "/"
namespaces = fully_qualified_path.relative_to(prefix_dir).with_suffix("").parts
return ".".join(namespaces)
def get_caller_name(prev_stack_frame: inspect.FrameInfo) -> str:
deduced_calling_module = deduce_module(prev_stack_frame)
return (
deduced_calling_module.__name__
if deduced_calling_module
and not is_caller_main(deduced_calling_module.__name__)
else get_namespaced_module_name(prev_stack_frame.filename)
)
def deduce_module(prev_stack_frame: inspect.FrameInfo) -> Optional[ModuleType]:
return inspect.getmodule(prev_stack_frame[0])
def get_caller_name_from_frames(stack_frames: List[inspect.FrameInfo]) -> str:
prev_stack_frame = stack_frames[1] if __file__.endswith(".py") else stack_frames[0]
return get_caller_name(prev_stack_frame)
def get_logger(name: Optional[str] = None) -> Any:
"""
Convenience function that returns a logger
Returns: A proxy that creates a correctly configured logger bound to
the __name__ of the calling module
"""
del name
stack_frames = inspect.stack()
caller_name = get_caller_name_from_frames(stack_frames)
if not structlog.is_configured():
timestamper = structlog.processors.TimeStamper(fmt=DATETIME_FORMAT)
set_logging_config(caller_name, timestamper)
set_structlog_config(timestamper)
logger = structlog.get_logger(caller_name)
logger.setLevel(logging.DEBUG)
return logger
getLogger = get_logger
"""
CamelCase alias for `structlog_sentry_logger.get_logger`.
"""
def get_config_dict() -> dict:
"""
Convenience function to get the local logging configuration dictionary,
e.g., to help configure loggers from other libraries.
Returns: The logging configuration dictionary that would be used to
configure the Python logging library component of the logger
"""
stack_frames = inspect.stack()
caller_name = get_caller_name_from_frames(stack_frames)
timestamper = structlog.processors.TimeStamper(fmt=DATETIME_FORMAT)
return get_logging_config(caller_name, timestamper)
def is_caller_main(caller_name: str) -> bool:
return caller_name == "__main__"
def get_logging_config(
module_name: str, timestamper: structlog.processors.TimeStamper
) -> dict:
handlers = get_handlers(module_name)
return {
"version": 1,
"disable_existing_loggers": False,
"formatters": (get_formatters(timestamper)),
"handlers": handlers,
"loggers": {
"": {
"handlers": list(handlers.keys()),
"level": "WARNING",
"propagate": True,
}
},
}
def set_logging_config(
module_name: str, timestamper: structlog.processors.TimeStamper
) -> None:
config_dict = get_logging_config(module_name, timestamper)
logging.config.dictConfig(config_dict)
def get_formatters(timestamper: structlog.processors.TimeStamper) -> dict:
pre_chain = [
# Add the log level and a timestamp to the event_dict if the log
# entry is not from structlog.
structlog.stdlib.add_log_level,
timestamper,
structlog.stdlib.add_logger_name,
]
return {
"plain": {
"()": structlog.stdlib.ProcessorFormatter,
"processor": structlog.processors.JSONRenderer(
serializer=serializer,
option=orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS,
),
"foreign_pre_chain": pre_chain,
},
"colored": {
"()": structlog.stdlib.ProcessorFormatter,
"processor": structlog.dev.ConsoleRenderer(colors=True),
"format": "%(message)s [in %(funcName)s]",
"foreign_pre_chain": pre_chain,
},
}
def serializer(
*args: Any,
default: Optional[Callable[[Any], Any]] = None,
option: Optional[int] = orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS,
) -> str:
if _CONFIGS["USE_ORJSON"]:
return orjson.dumps(*args, default=default, option=option).decode() # type: ignore[misc]
return json.dumps(*args, sort_keys=True)
def get_handlers(module_name: str) -> dict:
default_key = "default"
base_handlers = {
default_key: {
"level": "DEBUG",
"class": "logging.StreamHandler",
"stream": "ext://sys.stdout",
}
}
if _ENV_VARS_REQUIRED_BY_LIBRARY[get_handlers] in os.environ:
# Prettify stdout/stderr streams
base_handlers[default_key]["formatter"] = "colored"
# Add filename handler
file_timestamp = datetime.datetime.utcnow().isoformat().replace(":", "-")
log_file_name = f"{file_timestamp}_{module_name}.jsonl"
log_file_path = LOG_DATA_DIR / log_file_name
base_handlers["filename"] = {
"level": "DEBUG",
"class": "logging.handlers.RotatingFileHandler",
"filename": str(log_file_path),
# 1 MB
"maxBytes": 1 << 20, # type: ignore[dict-item]
"backupCount": 3, # type: ignore[dict-item]
"formatter": "plain",
}
else:
base_handlers[default_key]["formatter"] = "plain"
return base_handlers
def set_structlog_config(timestamper: structlog.processors.TimeStamper) -> None:
structlog_processors = [
timestamper,
structlog.processors.StackInfoRenderer(),
add_severity_field_from_level_if_in_cloud_environment,
]
stdlib_log_compatibility_processors = [
structlog.stdlib.filter_by_level,
structlog.stdlib.add_log_level,
structlog.stdlib.add_logger_name,
structlog.stdlib.PositionalArgumentsFormatter(),
SentryBreadcrumbJsonProcessor(level=logging.ERROR, tag_keys="__all__"),
]
# Note: MUST come last!
format_wrapper_processer = [structlog.stdlib.ProcessorFormatter.wrap_for_formatter]
structlog.configure(
processors=(
stdlib_log_compatibility_processors # type: ignore[arg-type]
+ structlog_processors
+ format_wrapper_processer # type: ignore[arg-type,operator]
),
# See [Performance](https://www.structlog.org/en/stable/performance.html)
# for an in-depth explanation of the below settings
context_class=dict,
logger_factory=structlog.stdlib.LoggerFactory(),
wrapper_class=structlog.stdlib.BoundLogger,
cache_logger_on_first_use=True,
)
def add_severity_field_from_level_if_in_cloud_environment(
logger: Any, # pylint: disable=unused-argument
method: str, # pylint: disable=unused-argument
event_dict: structlog.types.EventDict,
) -> structlog.types.EventDict:
"""A custom processor for structlog for Cloud Logging compatibility
Since Cloud Logging infers log levels from the `severity` key, simply duplicates
`level` to the `severity` field in the logger's event dictionary.
"""
if (
is_cloud_logging_compatibility_mode_requested()
or is_probably_in_cloud_environment()
):
cloud_logging_log_level_key, python_log_level_key = "severity", "level"
if cloud_logging_log_level_key in event_dict:
# Dogfood by instantiating a local logger with own library.
# Note: NO infinite loop since the below log message does *NOT* use
# `severity` as a key in the emitted event.
local_logger = get_logger()
local_logger.warning(
"Existing log value being overwritten",
src_key=python_log_level_key,
dest_key=cloud_logging_log_level_key,
old_value=event_dict[cloud_logging_log_level_key],
new_value=event_dict[python_log_level_key],
logger_name=logger.name,
)
event_dict[cloud_logging_log_level_key] = event_dict[python_log_level_key]
return event_dict
def is_cloud_logging_compatibility_mode_requested() -> bool:
return (
_ENV_VARS_REQUIRED_BY_LIBRARY[is_cloud_logging_compatibility_mode_requested]
in os.environ
)
def is_probably_in_cloud_environment() -> bool:
"""Returns True if it is *likely* (but not guaranteed) logging is occurring in the context of a Cloud Logging environment"""
for env_var in [
# GKE
# There are no GKE-specific environment variable that definitively imply we are
# running in GKE... Falling back to detecting Kubernetes-injected environment
# variables since those are the only ones present in GKE pods that *could* imply
# we are running in GKE.
# Kubernetes
# see: https://kubernetes.io/docs/concepts/services-networking/connect-applications-service/#environment-variables
"KUBERNETES_SERVICE_HOST",
# Cloud Function
# see: https://cloud.google.com/functions/docs/configuring/env-var#runtime_environment_variables_set_automatically
"GCP_PROJECT",
# GAE
# see: https://cloud.google.com/functions/docs/configuring/env-var#runtime_environment_variables_set_automatically
"GOOGLE_CLOUD_PROJECT",
]:
if env_var in os.environ:
return True
return False
_ENV_VARS_REQUIRED_BY_LIBRARY = {
get_handlers: "STRUCTLOG_SENTRY_LOGGER_LOCAL_DEVELOPMENT_LOGGING_MODE_ON",
is_cloud_logging_compatibility_mode_requested: "STRUCTLOG_SENTRY_LOGGER_CLOUD_LOGGING_COMPATIBILITY_MODE_ON",
sentry_sdk.init: "SENTRY_DSN",
}
class SentryBreadcrumbJsonProcessor(structlog_sentry.SentryJsonProcessor):
"""
Addresses: `SentryJsonProcessor breaks logging breadcrumbs #25`_
(source_)
.. _`SentryJsonProcessor breaks logging breadcrumbs #25`: https://github.com/kiwicom/structlog-sentry/issues/25
.. _`source`: https://github.com/kiwicom/structlog-sentry/issues/25#issuecomment-660292563
"""
def __init__( # pylint: disable=too-many-arguments
self,
breadcrumb_level: int = logging.INFO,
level: int = logging.WARNING,
active: bool = True,
as_extra: bool = True,
tag_keys: Union[List[str], str] = None,
) -> None:
self.breadcrumb_level = breadcrumb_level
super().__init__(
level=level, active=active, as_extra=as_extra, tag_keys=tag_keys
)
@staticmethod
def save_breadcrumb(logger: Any, event_dict: structlog.types.EventDict) -> None:
data = event_dict.copy() # type: ignore[attr-defined]
data.pop("event")
data.pop("logger", None)
data.pop("level", None)
data.pop("timestamp", None)
breadcrumb = {
"ty": "log",
"level": event_dict["level"].lower(),
"category": event_dict.get("logger") or logger.name,
"message": event_dict["event"],
"data": data,
}
sentry_sdk.add_breadcrumb(breadcrumb, hint={"event_dict": event_dict})
def __call__(
self, logger: Any, method: str, event_dict: structlog.types.EventDict
) -> structlog.types.EventDict:
do_breadcrumb = (
getattr(logging, event_dict["level"].upper()) >= self.breadcrumb_level
)
if do_breadcrumb:
self.save_breadcrumb(logger, event_dict)
return super().__call__(logger=logger, method=method, event_dict=event_dict)
def _load_library_specific_env_vars() -> None:
# Inject into the environment ONLY the env vars required by the library;
# we manually update/add to the the environment ONLY the keys in a user's `.env` for
# which the library is inspecting (i.e., the set intersection between the
# aforementioned), and only if they weren't already defined in the environment.
users_dotenv_values = dotenv.dotenv_values(dotenv.find_dotenv())
legal_env_vars_keys = (
_ENV_VARS_REQUIRED_BY_LIBRARY.values() & users_dotenv_values.keys()
)
for k in legal_env_vars_keys:
v = users_dotenv_values[k]
# Any env-var-to-add already defined in the environment will take precedent over
# what is defined in a user's `.env` file.
if k not in os.environ and v is not None:
os.environ[k] = v
def _init_sentry() -> ContextManager[Any]:
# Note: if DSN isn't defined, will silently not transmit telemetry
return sentry_sdk.init() # pylint: disable=abstract-class-instantiated
|
the-stack_0_4326 | ##############################################################################
# Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC.
# Produced at the Lawrence Livermore National Laboratory.
#
# This file is part of Spack.
# Created by Todd Gamblin, [email protected], All rights reserved.
# LLNL-CODE-647188
#
# For details, see https://github.com/spack/spack
# Please also see the LICENSE file for our notice and the LGPL.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License (as
# published by the Free Software Foundation) version 2.1, February 1999.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and
# conditions of the GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
##############################################################################
from spack import *
class PerlIntervaltree(PerlPackage):
"""Set::IntervalTree uses Interval Trees to store and efficiently look up
ranges using a range-based lookup."""
homepage = "https://metacpan.org/release/Set-IntervalTree"
url = "https://cpan.metacpan.org/authors/id/B/BE/BENBOOTH/Set-IntervalTree-0.10.tar.gz"
version('0.10', '42efe9369f1b30e7fd04e10c07226b06')
depends_on('perl-extutils-makemaker', type='build')
|
the-stack_0_4327 | from machine import mem32
# import time
import sys
import uasyncio
from i2c_responder_base import I2CResponderBase
import calc_icmpv6_chksum
class I2CResponder(I2CResponderBase):
"""Implementation of a (polled) Raspberry Pico I2C Responder.
Subclass of the original I2CResponder class which has been renamed
I2CReponderBase. See that class for more info.
This new version I2CResponder implments a protocol which both Controller and Responder must adhere to
in order to send longer messages.
Created: March 30, 2022 By: D. Garrett
"""
VERSION = "2.0.1"
def __init__(self, i2c_device_id=0, sda_gpio=0, scl_gpio=1, responder_address=0x41):
"""Initialize.
Args:
i2c_device_id (int, optional): The internal Pico I2C device to use (0 or 1).
sda_gpio (int, optional): The gpio number of the pin to use for SDA.
scl_gpio (int, optional): The gpio number of the pin to use for SCL.
responder_address (int, required): The I2C address to assign to this Responder.
"""
super().__init__(i2c_device_id=i2c_device_id, sda_gpio=sda_gpio,
scl_gpio=scl_gpio, responder_address=responder_address)
"""
Send a long message to the Controller
16 bytes at a time.
First send 4 byte length of message.
Then send blocks of up to 16 bytes.
"""
async def send_msg(self, msg):
# send length of message
# UTF8 may have multibyte characters
buff = bytearray(msg.encode('utf8'))
rem_bytes = len(buff)
len_buff = bytearray(rem_bytes.to_bytes(4,sys.byteorder))
await self.send_bytes(len_buff)
# print("sending: " + str(len_buff))
# send message
msg_pos = 0
# if controller no longer requesting input
# stop sending data
while rem_bytes > 0: # and self.read_is_pending():
if rem_bytes <= 16:
await self.send_bytes(buff[msg_pos:])
return
await self.send_bytes(buff[msg_pos:msg_pos+16])
msg_pos += 16
rem_bytes -= 16
"""
Send a block bytes of up to 16 bytes of data
"""
async def send_bytes(self,buffer_out):
for value in buffer_out:
# loop (polling) until the Controller issues an I2C READ.
while not self.read_is_pending():
await uasyncio.sleep_ms(0)
# stop sending if controller no longer soliciting input
# if not self.read_is_pending():
# return
self.put_read_data(value)
"""
Read a long message from the Controller.
Send an acknowledgment to the Controller of
if the receive was successful.
If receive failed, retry up to 5 times, then send 2
telling controller it was a permanent error and
don't bother to resend.
If failed receive, returns an empty string,
else returns the string received.
"""
async def rcv_msg(self):
if not self.write_data_is_available():
return ""
retry = 8
ok = False
while not ok and retry > 0:
b_array, ok = await self.rcv_block()
retry = retry - 1
if retry > 0:
# Controller will resend if not okay
await self.send_ack(int(ok))
if not ok:
"""
print("receive error... ",end="")
print((5-retry))
print("received: ", end="")
print(b_array)
"""
# await uasyncio.sleep_ms(0)
else:
# permanent error - don't resend
print("***** permanent receive error *****")
await self.send_ack(2)
if ok:
# don't try to decode invalid receive.
# may result in decode error.
return b_array.decode('utf8')
else:
return ""
"""
Send a 2 byte int acknowledgement to the Controller of
message received.
1 = message received ok and checksum matched
0 = message not received ok, resend
2 = message not received ok, but don't resend
"""
async def send_ack(self, ok):
b = bytearray(ok.to_bytes(2,sys.byteorder))
await self.send_bytes(b)
"""
Receive a byte array data where the first two bytes
of the input stream contain the msg length and the
next two contain a checksum.
Return a byte array of data and True/False for if the
checksum matched.
"""
async def rcv_block(self):
# read length of message and checksum
data = self.get_write_data(max_size=4)
n_bytes = int.from_bytes(bytes(data[0:2]),sys.byteorder)
chksum = int.from_bytes(bytes(data[2:4]),sys.byteorder)
"""
print("rcv bytes: ",end="")
print(n_bytes, end="")
print(", checksum: ",end="")
print(chksum)
"""
r = await self.rcv_bytes(n_bytes)
# print("returning results")
# r = bytearray(data)
cs = calc_icmpv6_chksum.calc_icmpv6_chksum(r)
# wait until all sent data is received
# and controller issues a read for the ack
while not self.read_is_pending():
if self.write_data_is_available():
self.get_write_data(max_size=16)
return r, cs == chksum
"""
Receive bytes in blocks of 16 bytes or less until
n_bytes of data received or "times out".
Here, "times out" means no bytes received
for 50ms.
Returns a list of bytes.
"""
async def rcv_bytes(self, rem_bytes):
data = bytearray(rem_bytes)
data_offset = 0
wait_cnt = 0
empty = []
while rem_bytes > 0:
if self.write_data_is_available():
b = self.get_write_data(max_size=16)
else:
b = empty
if len(b) == 0:
print("+",end="")
await uasyncio.sleep_ms(5)
wait_cnt = wait_cnt + 1
if wait_cnt > 50:
# time out receive - exit early
# print("i2c_responder.rcv_msg() tired of waiting, exiting before EOD")
return data[:data_offset]
else:
wait_cnt = 0
r_cnt = len(b)
rem_bytes = rem_bytes - r_cnt
for i in range(r_cnt):
data[data_offset] = b[i]
data_offset = data_offset + 1
if rem_bytes > 0 and r_cnt != 16:
# received a short block
print("**** <16 bytes in block: ", end="")
print(len(b))
return data[:data_offset]
"""
print("v2 rcvd '", end="")
print(bytearray(b),end="")
print("' blk remain: ",end="")
print(rem_bytes)
"""
return data
|
the-stack_0_4328 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import print_function, unicode_literals
from unittest import TestCase, skip
from docutils.core import Publisher
from docutils import io
from m2rr import prolog, convert
class RendererTestBase(TestCase):
def conv(self, src, **kwargs):
out = convert(src, **kwargs)
self.check_rst(out)
return out
def conv_no_check(self, src, **kwargs):
out = convert(src, **kwargs)
return out
def check_rst(self, rst):
pub = Publisher(reader=None, parser=None, writer=None, settings=None,
source_class=io.StringInput,
destination_class=io.StringOutput)
pub.set_components(reader_name='standalone',
parser_name='restructuredtext',
writer_name='pseudoxml')
pub.process_programmatic_settings(
settings_spec=None,
settings_overrides={'output_encoding': 'unicode'},
config_section=None,
)
pub.set_source(rst, source_path=None)
pub.set_destination(destination=None, destination_path=None)
output = pub.publish(enable_exit_status=False)
self.assertLess(pub.document.reporter.max_level, 0)
return output, pub
class TestBasic(RendererTestBase):
def test_fail_rst(self):
with self.assertRaises(AssertionError):
# This check should be failed and report warning
self.check_rst('```')
def test_simple_paragraph(self):
src = 'this is a sentence.\n'
out = self.conv(src)
self.assertEqual(out, '\n' + src)
def test_multiline_paragraph(self):
src = '\n'.join([
'first sentence.',
'second sentence.',
])
out = self.conv(src)
self.assertEqual(out, '\n' + src + '\n')
def test_multi_paragraph(self):
src = '\n'.join([
'first paragraph.',
'',
'second paragraph.',
])
out = self.conv(src)
self.assertEqual(out, '\n' + src + '\n')
def test_hr(self):
src = 'a\n\n---\n\nb'
out = self.conv(src)
self.assertEqual(out, '\na\n\n----\n\nb\n')
def test_linebreak(self):
src = 'abc def \nghi'
out = self.conv(src)
self.assertEqual(
out,
prolog + '\nabc def\\ :raw-html-m2rr:`<br>`\nghi' + '\n',
)
class TestInlineMarkdown(RendererTestBase):
def test_inline_code(self):
src = '`a`'
out = self.conv(src)
self.assertEqual(out.replace('\n', ''), '``a``')
def test_inline_code_with_backticks(self):
src = '```a``a```'
out = self.conv(src)
self.assertEqual(out.strip(),
'.. role:: raw-html-m2rr(raw)\n'
' :format: html\n\n\n'
':raw-html-m2rr:`<code class="docutils literal">'
'<span class="pre">a``a</span></code>`'
)
def test_strikethrough(self):
src = ('~~a~~')
self.conv(src)
def test_emphasis(self):
src = '*a*'
out = self.conv(src)
self.assertEqual(out.replace('\n', ''), '*a*')
def test_emphasis_(self):
src = '_a_'
out = self.conv(src)
self.assertEqual(out.replace('\n', ''), '*a*')
def test_emphasis_no_(self):
src = '_a_'
out = self.conv(src, no_underscore_emphasis=True)
self.assertEqual(out.replace('\n', ''), '_a_')
def test_double_emphasis(self):
src = '**a**'
out = self.conv(src)
self.assertEqual(out.replace('\n', ''), '**a**')
def test_double_emphasis__(self):
src = '__a__'
out = self.conv(src)
self.assertEqual(out.replace('\n', ''), '**a**')
def test_emphasis_no__(self):
src = '__a__'
out = self.conv(src, no_underscore_emphasis=True)
self.assertEqual(out.replace('\n', ''), '__a__')
def test_autolink(self):
src = 'link to http://example.com/ in sentence.'
out = self.conv(src)
self.assertEqual(out, '\n' + src + '\n')
def test_link(self):
src = 'this is a [link](http://example.com/).'
out = self.conv(src)
self.assertEqual(
out, '\nthis is a `link <http://example.com/>`_.\n')
def test_anonymous_link(self):
src = 'this is a [link](http://example.com/).'
out = self.conv(src, anonymous_references=True)
self.assertEqual(
out, '\nthis is a `link <http://example.com/>`__.\n')
def test_link_with_rel_link_enabled(self):
src = 'this is a [link](http://example.com/).'
out = self.conv_no_check(
src,
parse_relative_links=True
)
self.assertEqual(
out, '\nthis is a `link <http://example.com/>`_.\n')
def test_anonymous_link_with_rel_link_enabled(self):
src = 'this is a [link](http://example.com/).'
out = self.conv_no_check(
src,
parse_relative_links=True,
anonymous_references=True
)
self.assertEqual(
out, '\nthis is a `link <http://example.com/>`__.\n')
def test_anchor(self):
src = 'this is an [anchor](#anchor).'
out = self.conv_no_check(
src,
parse_relative_links=True
)
self.assertEqual(
out, '\nthis is an :ref:`anchor <anchor>`.\n')
def test_relative_link(self):
src = 'this is a [relative link](a_file.md).'
out = self.conv_no_check(
src,
parse_relative_links=True
)
self.assertEqual(
out, '\nthis is a :doc:`relative link <a_file>`.\n')
def test_relative_link_with_anchor(self):
src = 'this is a [relative link](a_file.md#anchor).'
out = self.conv_no_check(
src,
parse_relative_links=True
)
self.assertEqual(
out, '\nthis is a :doc:`relative link <a_file>`.\n')
def test_link_title(self):
src = 'this is a [link](http://example.com/ "example").'
out = self.conv(src)
self.assertEqual(
out,
'.. role:: raw-html-m2rr(raw)\n'
' :format: html\n\n\n'
'this is a :raw-html-m2rr:'
'`<a href="http://example.com/" title="example">link</a>`.\n'
)
def test_image_link(self):
src = '[](link_target_url)'
out = self.conv(src)
self.assertEqual(
out,
'\n\n.. image:: image_taget_url\n'
' :target: link_target_url\n :alt: Alt Text\n\n',
)
def test_rest_role(self):
src = 'a :code:`some code` inline.'
out = self.conv(src)
self.assertEqual(out, '\n' + src + '\n')
def test_rest_role2(self):
src = 'a `some code`:code: inline.'
out = self.conv(src)
self.assertEqual(out, '\n' + src + '\n')
def test_rest_link(self):
src = 'a `RefLink <http://example.com>`_ here.'
out = self.conv(src)
self.assertEqual(out, '\n' + src + '\n')
def test_rest_link_and_role(self):
src = 'a :code:`a` and `RefLink <http://example.com>`_ here.'
out = self.conv(src)
self.assertEqual(out, '\n' + src + '\n')
def test_rest_link_and_role2(self):
src = 'a `a`:code: and `RefLink <http://example.com>`_ here.'
out = self.conv(src)
self.assertEqual(out, '\n' + src + '\n')
def test_rest_role_incomplete(self):
src = 'a co:`de` and `RefLink <http://example.com>`_ here.'
out = self.conv(src)
self.assertEqual(
out,
'\na co:\\ ``de`` and `RefLink <http://example.com>`_ here.\n',
)
def test_rest_role_incomplete2(self):
src = 'a `RefLink <http://example.com>`_ and co:`de` here.'
out = self.conv(src)
self.assertEqual(
out,
'\na `RefLink <http://example.com>`_ and co:\\ ``de`` here.\n',
)
def test_rest_role_with_code(self):
src = 'a `code` and :code:`rest` here.'
out = self.conv(src)
self.assertEqual(out, '\na ``code`` and :code:`rest` here.\n')
def test_rest2_role_with_code(self):
src = 'a `code` and `rest`:code: here.'
out = self.conv(src)
self.assertEqual(out, '\na ``code`` and `rest`:code: here.\n')
def test_code_with_rest_role(self):
src = 'a :code:`rest` and `code` here.'
out = self.conv(src)
self.assertEqual(out, '\na :code:`rest` and ``code`` here.\n')
def test_code_with_rest_role2(self):
src = 'a `rest`:code: and `code` here.'
out = self.conv(src)
self.assertEqual(out, '\na `rest`:code: and ``code`` here.\n')
def test_rest_link_with_code(self):
src = 'a `RefLink <a>`_ and `code` here.'
out = self.conv(src)
self.assertEqual(out, '\na `RefLink <a>`_ and ``code`` here.\n')
def test_code_with_rest_link(self):
src = 'a `code` and `RefLink <a>`_ here.'
out = self.conv(src)
self.assertEqual(out, '\na ``code`` and `RefLink <a>`_ here.\n')
def test_inline_math(self):
src = 'this is `$E = mc^2$` inline math.'
out = self.conv(src)
self.assertEqual(out, '\nthis is :math:`E = mc^2` inline math.\n')
def test_disable_inline_math(self):
src = 'this is `$E = mc^2$` inline math.'
out = self.conv(src, disable_inline_math=True)
self.assertEqual(out, '\nthis is ``$E = mc^2$`` inline math.\n')
def test_inline_html(self):
src = 'this is <s>html</s>.'
out = self.conv(src)
self.assertEqual(
out, prolog + '\nthis is :raw-html-m2rr:`<s>html</s>`.\n')
def test_block_html(self):
src = '<h1>title</h1>'
out = self.conv(src)
self.assertEqual(out, '\n\n.. raw:: html\n\n <h1>title</h1>\n\n')
class TestBlockQuote(RendererTestBase):
def test_block_quote(self):
src = '> q1\n> q2'
out = self.conv(src)
self.assertEqual(out, '\n..\n\n q1\n q2\n\n')
def test_block_quote_nested(self):
src = '> q1\n> > q2'
out = self.conv(src)
# one extra empty line is inserted, but still valid rst anyway
self.assertEqual(out, '\n..\n\n q1\n\n ..\n\n q2\n\n')
@skip('markdown does not support dedent in block quote')
def test_block_quote_nested_2(self):
src = '> q1\n> > q2\n> q3'
out = self.conv(src)
self.assertEqual(out, '\n..\n\n q1\n\n ..\n q2\n\n q3\n\n')
class TestCodeBlock(RendererTestBase):
def test_plain_code_block(self):
src = '\n'.join([
'```',
'pip install sphinx',
'```',
])
out = self.conv(src)
# Default to text block if non specified
self.assertEqual(out, '\n.. code-block:: text\n\n\
pip install sphinx\n')
def test_plain_code_block_tilda(self):
src = '\n'.join([
'~~~',
'pip install sphinx',
'~~~',
])
out = self.conv(src)
self.assertEqual(out, '\n.. code-block:: text\n\n pip install \
sphinx\n')
def test_code_block_math(self):
src = '\n'.join([
'```math',
'E = mc^2',
'```',
])
out = self.conv(src)
self.assertEqual(out, '\n.. math::\n\n E = mc^2\n')
def test_plain_code_block_indent(self):
src = '\n'.join([
'```',
'pip install sphinx',
' new line',
'```',
])
out = self.conv(src)
self.assertEqual(
out,
'\n.. code-block:: text\n\n pip install \
sphinx\n new line\n',
)
def test_python_code_block(self):
src = '\n'.join([
'```python',
'print(1)',
'```',
])
out = self.conv(src)
self.assertEqual(out, '\n.. code-block:: python\n\n print(1)\n')
def test_python_code_block_indent(self):
src = '\n'.join([
'```python',
'def a(i):',
' print(i)',
'```',
])
out = self.conv(src)
self.assertEqual(
out,
'\n.. code-block:: python\n\n def a(i):\n print(i)\n',
)
class TestImage(RendererTestBase):
def test_image(self):
src = ''
out = self.conv(src)
# first and last newline is inserted by paragraph
self.assertEqual(
out,
'\n\n.. image:: a.png\n :target: a.png\n :alt: alt text\n\n',
)
def test_image_title(self):
src = ''
self.conv(src)
# title is not supported now
class TestHeading(RendererTestBase):
def test_heading(self):
src = '# head 1'
out = self.conv(src)
self.assertEqual(out, '\nhead 1\n' + '=' * 6 + '\n')
def test_heading_multibyte(self):
src = '# マルチバイト文字\n'
out = self.conv(src)
self.assertEqual(out, '\nマルチバイト文字\n' + '=' * 16 + '\n')
class TestList(RendererTestBase):
def test_ul(self):
src = '* list'
out = self.conv(src)
self.assertEqual(out, '\n\n* list\n')
def test_ol(self):
src = '1. list'
out = self.conv(src)
self.assertEqual(out, '\n\n#. list\n')
def test_nested_ul(self):
src = '\n'.join([
'* list 1',
'* list 2',
' * list 2.1',
' * list 2.2',
'* list 3',
])
out = self.conv(src)
self.assertEqual(
out,
'\n\n* list 1\n'
'* list 2\n\n'
' * list 2.1\n'
' * list 2.2\n\n'
'* list 3\n',
)
def test_nested_ul_2(self):
src = '\n'.join([
'* list 1',
'* list 2',
' * list 2.1',
' * list 2.2',
' * list 2.2.1',
' * list 2.2.2',
'* list 3',
])
out = self.conv(src)
self.assertEqual(
out,
'\n\n* list 1\n'
'* list 2\n\n'
' * list 2.1\n'
' * list 2.2\n\n'
' * list 2.2.1\n'
' * list 2.2.2\n\n'
'* list 3\n'
)
def test_nested_ol(self):
src = '\n'.join([
'1. list 1',
'2. list 2',
' 2. list 2.1',
' 3. list 2.2',
'3. list 3',
])
out = self.conv(src)
self.assertEqual(
out,
'\n\n#. list 1\n'
'#. list 2\n'
'\n'
' #. list 2.1\n'
' #. list 2.2\n'
'\n'
'#. list 3\n',
)
def test_nested_ol_2(self):
src = '\n'.join([
'1. list 1',
'2. list 2',
' 3. list 2.1',
' 4. list 2.2',
' 5. list 2.2.1',
' 6. list 2.2.2',
'7. list 3',
])
out = self.conv(src)
self.assertEqual(
out,
'\n'.join([
'\n\n#. list 1',
'#. list 2',
'',
' #. list 2.1',
' #. list 2.2',
'',
' #. list 2.2.1',
' #. list 2.2.2',
'',
'#. list 3\n',
])
)
def test_nested_mixed_1(self):
src = '\n'.join([
'1. list 1',
'2. list 2',
' * list 2.1',
' * list 2.2',
' 1. list 2.2.1',
' 2. list 2.2.2',
'7. list 3',
])
out = self.conv(src)
self.assertEqual(
out,
'\n'.join([
'\n\n#. list 1',
'#. list 2',
'',
' * list 2.1',
' * list 2.2',
'',
' #. list 2.2.1',
' #. list 2.2.2',
'',
'#. list 3\n',
])
)
def test_nested_multiline_1(self):
src = '\n'.join([
'* list 1',
' list 1 cont',
'* list 2',
' list 2 cont',
' * list 2.1',
' list 2.1 cont',
' * list 2.2',
' list 2.2 cont',
' * list 2.2.1',
' * list 2.2.2',
'* list 3',
])
out = self.conv(src)
self.assertEqual(
out,
'\n'.join([
'\n\n* list 1',
' list 1 cont',
'* list 2',
' list 2 cont',
'',
' * list 2.1',
' list 2.1 cont',
' * list 2.2',
' list 2.2 cont',
'',
' * list 2.2.1',
' * list 2.2.2',
'',
'* list 3\n',
])
)
def test_nested_multiline_2(self):
src = '\n'.join([
'1. list 1',
' list 1 cont',
'1. list 2',
' list 2 cont',
' 1. list 2.1',
' list 2.1 cont',
' 1. list 2.2',
' list 2.2 cont',
' 1. list 2.2.1',
' 1. list 2.2.2',
'1. list 3',
])
out = self.conv(src)
self.assertEqual(
out,
'\n'.join([
'\n\n#. list 1',
' list 1 cont',
'#. list 2',
' list 2 cont',
'',
' #. list 2.1',
' list 2.1 cont',
' #. list 2.2',
' list 2.2 cont',
'',
' #. list 2.2.1',
' #. list 2.2.2',
'',
'#. list 3\n',
])
)
def test_nested_multiline_3(self):
src = '\n'.join([
'1. list 1',
' list 1 cont',
'1. list 2',
' list 2 cont',
' * list 2.1',
' list 2.1 cont',
' * list 2.2',
' list 2.2 cont',
' 1. list 2.2.1',
' 1. list 2.2.2',
'1. list 3',
])
out = self.conv(src)
self.assertEqual(
out,
'\n'.join([
'\n\n#. list 1',
' list 1 cont',
'#. list 2',
' list 2 cont',
'',
' * list 2.1',
' list 2.1 cont',
' * list 2.2',
' list 2.2 cont',
'',
' #. list 2.2.1',
' #. list 2.2.2',
'',
'#. list 3\n',
])
)
class TestConplexText(RendererTestBase):
def test_code(self):
src = '''
some sentence
```python
print(1)
```
some sentence
# title
```python
print(1)
```
---
end
'''
self.conv(src)
class TestTable(RendererTestBase):
def test_table(self):
src = '''h1 | h2 | h3\n--- | --- | ---\n1 | 2 | 3\n4 | 5 | 6'''
out = self.conv(src)
self.assertEqual(out, '\n'.join([
'',
'.. list-table::',
' :header-rows: 1',
'',
' * - h1',
' - h2',
' - h3',
' * - 1',
' - 2',
' - 3',
' * - 4',
' - 5',
' - 6',
'',
'',
]))
class TestFootNote(RendererTestBase):
def test_footnote(self):
src = '\n'.join([
'This is a[^1] footnote[^2] ref[^ref] with rst [#a]_.',
'',
'[^1]: note 1',
'[^2]: note 2',
'[^ref]: note ref',
'.. [#a] note rst',
])
out = self.conv(src)
self.assertEqual(out, '\n'.join([
'',
'This is a\\ [#fn-1]_ '
'footnote\\ [#fn-2]_ ref\\ [#fn-ref]_ with rst [#a]_.',
'',
'.. [#a] note rst', # one empty line inserted...
'',
'.. [#fn-1] note 1',
'.. [#fn-2] note 2',
'.. [#fn-ref] note ref',
'',
]))
def test_sphinx_ref(self):
src = 'This is a sphinx [ref]_ global ref.\n\n.. [ref] ref text'
out = self.conv(src)
self.assertEqual(out, '\n' + src)
class TestDirective(RendererTestBase):
def test_comment_oneline(self):
src = '.. a'
out = self.conv(src)
self.assertEqual(out, '\n.. a')
def test_comment_indented(self):
src = ' .. a'
out = self.conv(src)
self.assertEqual(out, '\n .. a')
def test_comment_newline(self):
src = '..\n\n comment\n\nnewline'
out = self.conv(src)
self.assertEqual(out, '\n..\n\n comment\n\nnewline\n')
def test_comment_multiline(self):
comment = (
'.. this is comment.\n'
' this is also comment.\n'
'\n'
'\n'
' comment may include empty line.\n'
'\n\n')
src = comment + '`eoc`'
out = self.conv(src)
self.assertEqual(out, '\n' + comment + '``eoc``\n')
class TestRestCode(RendererTestBase):
def test_rest_code_block_empty(self):
src = '\n\n::\n\n'
out = self.conv(src)
self.assertEqual(out, '\n\n')
def test_eol_marker(self):
src = 'a::\n\n code\n'
out = self.conv(src)
self.assertEqual(out, '\na:\n\n.. code-block:: text\n\n code\n')
def test_eol_marker_remove(self):
src = 'a ::\n\n code\n'
out = self.conv(src)
self.assertEqual(out, '\na\n\n.. code-block:: text\n\n code\n')
|
the-stack_0_4330 | # flake8: noqa
import base64
import collections
import datetime
import inspect
import os
import os.path as osp
import pickle
import re
import subprocess
import sys
import cloudpickle
import dateutil.tz
import numpy as np
from garage.core import Serializable
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def flatten(l):
return [item for sublist in l for item in sublist]
class BinaryOp(Serializable):
def __init__(self):
Serializable.quick_init(self, locals())
def rdiv(self, a, b):
return b / a
# def __init__(self, opname, a, b):
# self.opname = opname
# self.a = a
# self.b = b
class VariantDict(AttrDict):
def __init__(self, d, hidden_keys):
super(VariantDict, self).__init__(d)
self._hidden_keys = hidden_keys
def dump(self):
return {k: v for k, v in self.items() if k not in self._hidden_keys}
class VariantGenerator:
"""
Usage:
vg = VariantGenerator()
vg.add("param1", [1, 2, 3])
vg.add("param2", ['x', 'y'])
vg.variants() => # all combinations of [1,2,3] x ['x','y']
Supports noncyclic dependency among parameters:
vg = VariantGenerator()
vg.add("param1", [1, 2, 3])
vg.add("param2", lambda param1: [param1+1, param1+2])
vg.variants() => # ..
"""
def __init__(self):
self._variants = []
self._populate_variants()
self._hidden_keys = []
for k, vs, cfg in self._variants:
if cfg.get('hide', False):
self._hidden_keys.append(k)
def add(self, key, vals, **kwargs):
self._variants.append((key, vals, kwargs))
def _populate_variants(self):
methods = inspect.getmembers(
self.__class__,
predicate=lambda x: inspect.isfunction(x) or inspect.ismethod(x))
methods = [
x[1].__get__(self, self.__class__) for x in methods
if getattr(x[1], '__is_variant', False)
]
for m in methods:
self.add(m.__name__, m, **getattr(m, '__variant_config', dict()))
def variants(self, randomized=False):
ret = list(self.ivariants())
if randomized:
np.random.shuffle(ret)
return list(map(self.variant_dict, ret))
def variant_dict(self, variant):
return VariantDict(variant, self._hidden_keys)
def to_name_suffix(self, variant):
suffix = []
for k, vs, cfg in self._variants:
if not cfg.get('hide', False):
suffix.append(k + '_' + str(variant[k]))
return '_'.join(suffix)
def ivariants(self):
dependencies = list()
for key, vals, _ in self._variants:
if hasattr(vals, '__call__'):
args = inspect.getfullargspec(vals).args
if hasattr(vals, 'im_self') or hasattr(vals, '__self__'):
# remove the first 'self' parameter
args = args[1:]
dependencies.append((key, set(args)))
else:
dependencies.append((key, set()))
sorted_keys = []
# topo sort all nodes
while len(sorted_keys) < len(self._variants):
# get all nodes with zero in-degree
free_nodes = [k for k, v in dependencies if not v]
if not free_nodes:
error_msg = 'Invalid parameter dependency: \n'
for k, v in dependencies:
if v:
error_msg += k + ' depends on ' + ' & '.join(v) + '\n'
raise ValueError(error_msg)
dependencies = [(k, v) for k, v in dependencies
if k not in free_nodes]
# remove the free nodes from the remaining dependencies
for _, v in dependencies:
v.difference_update(free_nodes)
sorted_keys += free_nodes
return self._ivariants_sorted(sorted_keys)
def _ivariants_sorted(self, sorted_keys):
if not sorted_keys:
yield dict()
else:
first_keys = sorted_keys[:-1]
first_variants = self._ivariants_sorted(first_keys)
last_key = sorted_keys[-1]
last_vals = [v for k, v, _ in self._variants if k == last_key][0]
if hasattr(last_vals, '__call__'):
last_val_keys = inspect.getfullargspec(last_vals).args
if hasattr(last_vals, 'im_self') or hasattr(
last_vals, '__self__'):
last_val_keys = last_val_keys[1:]
else:
last_val_keys = None
for variant in first_variants:
if hasattr(last_vals, '__call__'):
last_variants = last_vals(
**{k: variant[k]
for k in last_val_keys})
for last_choice in last_variants:
yield AttrDict(variant, **{last_key: last_choice})
else:
for last_choice in last_vals:
yield AttrDict(variant, **{last_key: last_choice})
def variant(*args, **kwargs):
def _variant(fn):
fn.__is_variant = True
fn.__variant_config = kwargs
return fn
if len(args) == 1 and isinstance(args[0], collections.Callable):
return _variant(args[0])
return _variant
def query_yes_no(question, default='yes'):
"""Ask a yes/no question via raw_input() and return their answer.
"question" is a string that is presented to the user.
"default" is the presumed answer if the user just hits <Enter>.
It must be "yes" (the default), "no" or None (meaning
an answer is required of the user).
The "answer" return value is True for "yes" or False for "no".
"""
valid = {'yes': True, 'y': True, 'ye': True, 'no': False, 'n': False}
if default is None:
prompt = ' [y/n] '
elif default == 'yes':
prompt = ' [Y/n] '
elif default == 'no':
prompt = ' [y/N] '
else:
raise ValueError("invalid default answer: '%s'" % default)
while True:
sys.stdout.write(question + prompt)
choice = input().lower()
if default is not None and choice == '':
return valid[default]
elif choice in valid:
return valid[choice]
else:
sys.stdout.write("Please respond with 'yes' or 'no' "
"(or 'y' or 'n').\n")
exp_count = 0
now = datetime.datetime.now(dateutil.tz.tzlocal())
timestamp = now.strftime('%Y_%m_%d_%H_%M_%S')
def run_experiment(method_call=None,
batch_tasks=None,
exp_prefix='experiment',
exp_name=None,
log_dir=None,
script='garage.experiment.experiment_wrapper',
python_command='python',
dry=False,
env=None,
variant=None,
use_tf=False,
use_gpu=False,
pre_commands=None,
**kwargs):
"""Serialize the method call and run the experiment using the
specified mode.
Args:
method_call (callable): A method call.
batch_tasks (list[dict]): A batch of method calls.
exp_prefix (str): Name prefix for the experiment.
exp_name (str): Name of the experiment.
log_dir (str): Log directory for the experiment.
script (str): The name of the entrance point python script.
python_command (str): Python command to run the experiment.
dry (bool): Whether to do a dry-run, which only prints the
commands without executing them.
env (dict): Extra environment variables.
variant (dict): If provided, should be a dictionary of parameters.
use_tf (bool): Used along with the Theano and GPU configuration
when using TensorFlow
use_gpu (bool): Whether the launched task is running on GPU.
This triggers a few configuration changes including certain
environment flags.
pre_commands (str): Pre commands to run the experiment.
"""
if method_call is None and batch_tasks is None:
raise Exception(
'Must provide at least either method_call or batch_tasks')
for task in (batch_tasks or [method_call]):
if not hasattr(task, '__call__'):
raise ValueError('batch_tasks should be callable')
# ensure variant exists
if variant is None:
variant = dict()
if batch_tasks is None:
batch_tasks = [
dict(
kwargs,
pre_commands=pre_commands,
method_call=method_call,
exp_name=exp_name,
log_dir=log_dir,
env=env,
variant=variant)
]
global exp_count
if use_tf:
if not use_gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
else:
os.unsetenv('CUDA_VISIBLE_DEVICES')
for task in batch_tasks:
call = task.pop('method_call')
data = base64.b64encode(cloudpickle.dumps(call)).decode('utf-8')
task['args_data'] = data
exp_count += 1
if task.get('exp_name', None) is None:
task['exp_name'] = '{}_{}_{:04n}'.format(exp_prefix, timestamp,
exp_count)
if task.get('log_dir', None) is None:
task['log_dir'] = (
'{log_dir}/local/{exp_prefix}/{exp_name}'.format(
log_dir=osp.join(os.getcwd(), 'data'),
exp_prefix=exp_prefix.replace('_', '-'),
exp_name=task['exp_name']))
if task.get('variant', None) is not None:
variant = task.pop('variant')
if 'exp_name' not in variant:
variant['exp_name'] = task['exp_name']
task['variant_data'] = base64.b64encode(
pickle.dumps(variant)).decode('utf-8')
elif 'variant' in task:
del task['variant']
task['env'] = task.get('env', dict()) or dict()
task['env']['GARAGE_USE_GPU'] = str(use_gpu)
task['env']['GARAGE_USE_TF'] = str(use_tf)
for task in batch_tasks:
env = task.pop('env', None)
command = to_local_command(
task, python_command=python_command, script=script)
print(command)
if dry:
return
try:
if env is None:
env = dict()
subprocess.call(command, shell=True, env=dict(os.environ, **env))
except Exception as e:
print(e)
if isinstance(e, KeyboardInterrupt):
raise
_find_unsafe = re.compile(r'[a-zA-Z0-9_^@%+=:,./-]').search
def _shellquote(s):
"""Return a shell-escaped version of the string *s*."""
if not s:
return "''"
if _find_unsafe(s) is None:
return s
# use single quotes, and put single quotes into double quotes
# the string $'b is then quoted as '$'"'"'b'
return "'" + s.replace("'", "'\"'\"'") + "'"
def _to_param_val(v):
if v is None:
return ''
elif isinstance(v, list):
return ' '.join(map(_shellquote, list(map(str, v))))
else:
return _shellquote(str(v))
def to_local_command(params,
python_command='python',
script='garage.experiment.experiment_wrapper'):
command = python_command + ' -m ' + script
garage_env = eval(os.environ.get('GARAGE_ENV', '{}'))
for k, v in garage_env.items():
command = '{}={} '.format(k, v) + command
pre_commands = params.pop('pre_commands', None)
post_commands = params.pop('post_commands', None)
if pre_commands is not None or post_commands is not None:
print('Not executing the pre_commands: ', pre_commands,
', nor post_commands: ', post_commands)
for k, v in params.items():
if isinstance(v, dict):
for nk, nv in v.items():
if str(nk) == '_name':
command += ' --{} {}'.format(k, _to_param_val(nv))
else:
command += \
' --{}_{} {}'.format(k, nk, _to_param_val(nv))
else:
command += ' --{} {}'.format(k, _to_param_val(v))
return command
def concretize(obj):
if isinstance(obj, dict):
# make sure that there's no hidden caveat
ret = dict()
for k, v in obj.items():
ret[concretize(k)] = concretize(v)
return ret
elif isinstance(obj, (list, tuple)):
return obj.__class__(list(map(concretize, obj)))
else:
return obj
|
the-stack_0_4332 | # -*- coding: utf-8 -*-
# Copyright 2019-2021 The Matrix.org Foundation C.I.C.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from http import HTTPStatus
from typing import TYPE_CHECKING, List, Optional, Tuple
from urllib import parse as urlparse
from synapse.api.constants import EventTypes, JoinRules, Membership
from synapse.api.errors import AuthError, Codes, NotFoundError, SynapseError
from synapse.api.filtering import Filter
from synapse.http.servlet import (
RestServlet,
assert_params_in_dict,
parse_integer,
parse_json_object_from_request,
parse_string,
)
from synapse.http.site import SynapseRequest
from synapse.rest.admin._base import (
admin_patterns,
assert_requester_is_admin,
assert_user_is_admin,
)
from synapse.storage.databases.main.room import RoomSortOrder
from synapse.types import JsonDict, RoomAlias, RoomID, UserID, create_requester
from synapse.util import json_decoder
if TYPE_CHECKING:
from synapse.server import HomeServer
logger = logging.getLogger(__name__)
class ShutdownRoomRestServlet(RestServlet):
"""Shuts down a room by removing all local users from the room and blocking
all future invites and joins to the room. Any local aliases will be repointed
to a new room created by `new_room_user_id` and kicked users will be auto
joined to the new room.
"""
PATTERNS = admin_patterns("/shutdown_room/(?P<room_id>[^/]+)")
def __init__(self, hs: "HomeServer"):
self.hs = hs
self.auth = hs.get_auth()
self.room_shutdown_handler = hs.get_room_shutdown_handler()
async def on_POST(
self, request: SynapseRequest, room_id: str
) -> Tuple[int, JsonDict]:
requester = await self.auth.get_user_by_req(request)
await assert_user_is_admin(self.auth, requester.user)
content = parse_json_object_from_request(request)
assert_params_in_dict(content, ["new_room_user_id"])
ret = await self.room_shutdown_handler.shutdown_room(
room_id=room_id,
new_room_user_id=content["new_room_user_id"],
new_room_name=content.get("room_name"),
message=content.get("message"),
requester_user_id=requester.user.to_string(),
block=True,
)
return (200, ret)
class DeleteRoomRestServlet(RestServlet):
"""Delete a room from server.
It is a combination and improvement of shutdown and purge room.
Shuts down a room by removing all local users from the room.
Blocking all future invites and joins to the room is optional.
If desired any local aliases will be repointed to a new room
created by `new_room_user_id` and kicked users will be auto-
joined to the new room.
If 'purge' is true, it will remove all traces of a room from the database.
"""
PATTERNS = admin_patterns("/rooms/(?P<room_id>[^/]+)/delete$")
def __init__(self, hs: "HomeServer"):
self.hs = hs
self.auth = hs.get_auth()
self.room_shutdown_handler = hs.get_room_shutdown_handler()
self.pagination_handler = hs.get_pagination_handler()
async def on_POST(
self, request: SynapseRequest, room_id: str
) -> Tuple[int, JsonDict]:
requester = await self.auth.get_user_by_req(request)
await assert_user_is_admin(self.auth, requester.user)
content = parse_json_object_from_request(request)
block = content.get("block", False)
if not isinstance(block, bool):
raise SynapseError(
HTTPStatus.BAD_REQUEST,
"Param 'block' must be a boolean, if given",
Codes.BAD_JSON,
)
purge = content.get("purge", True)
if not isinstance(purge, bool):
raise SynapseError(
HTTPStatus.BAD_REQUEST,
"Param 'purge' must be a boolean, if given",
Codes.BAD_JSON,
)
force_purge = content.get("force_purge", False)
if not isinstance(force_purge, bool):
raise SynapseError(
HTTPStatus.BAD_REQUEST,
"Param 'force_purge' must be a boolean, if given",
Codes.BAD_JSON,
)
ret = await self.room_shutdown_handler.shutdown_room(
room_id=room_id,
new_room_user_id=content.get("new_room_user_id"),
new_room_name=content.get("room_name"),
message=content.get("message"),
requester_user_id=requester.user.to_string(),
block=block,
)
# Purge room
if purge:
await self.pagination_handler.purge_room(room_id, force=force_purge)
return (200, ret)
class ListRoomRestServlet(RestServlet):
"""
List all rooms that are known to the homeserver. Results are returned
in a dictionary containing room information. Supports pagination.
"""
PATTERNS = admin_patterns("/rooms$")
def __init__(self, hs: "HomeServer"):
self.store = hs.get_datastore()
self.auth = hs.get_auth()
self.admin_handler = hs.get_admin_handler()
async def on_GET(self, request: SynapseRequest) -> Tuple[int, JsonDict]:
requester = await self.auth.get_user_by_req(request)
await assert_user_is_admin(self.auth, requester.user)
# Extract query parameters
start = parse_integer(request, "from", default=0)
limit = parse_integer(request, "limit", default=100)
order_by = parse_string(request, "order_by", default=RoomSortOrder.NAME.value)
if order_by not in (
RoomSortOrder.ALPHABETICAL.value,
RoomSortOrder.SIZE.value,
RoomSortOrder.NAME.value,
RoomSortOrder.CANONICAL_ALIAS.value,
RoomSortOrder.JOINED_MEMBERS.value,
RoomSortOrder.JOINED_LOCAL_MEMBERS.value,
RoomSortOrder.VERSION.value,
RoomSortOrder.CREATOR.value,
RoomSortOrder.ENCRYPTION.value,
RoomSortOrder.FEDERATABLE.value,
RoomSortOrder.PUBLIC.value,
RoomSortOrder.JOIN_RULES.value,
RoomSortOrder.GUEST_ACCESS.value,
RoomSortOrder.HISTORY_VISIBILITY.value,
RoomSortOrder.STATE_EVENTS.value,
):
raise SynapseError(
400,
"Unknown value for order_by: %s" % (order_by,),
errcode=Codes.INVALID_PARAM,
)
search_term = parse_string(request, "search_term")
if search_term == "":
raise SynapseError(
400,
"search_term cannot be an empty string",
errcode=Codes.INVALID_PARAM,
)
direction = parse_string(request, "dir", default="f")
if direction not in ("f", "b"):
raise SynapseError(
400, "Unknown direction: %s" % (direction,), errcode=Codes.INVALID_PARAM
)
reverse_order = True if direction == "b" else False
# Return list of rooms according to parameters
rooms, total_rooms = await self.store.get_rooms_paginate(
start, limit, order_by, reverse_order, search_term
)
response = {
# next_token should be opaque, so return a value the client can parse
"offset": start,
"rooms": rooms,
"total_rooms": total_rooms,
}
# Are there more rooms to paginate through after this?
if (start + limit) < total_rooms:
# There are. Calculate where the query should start from next time
# to get the next part of the list
response["next_batch"] = start + limit
# Is it possible to paginate backwards? Check if we currently have an
# offset
if start > 0:
if start > limit:
# Going back one iteration won't take us to the start.
# Calculate new offset
response["prev_batch"] = start - limit
else:
response["prev_batch"] = 0
return 200, response
class RoomRestServlet(RestServlet):
"""Get room details.
TODO: Add on_POST to allow room creation without joining the room
"""
PATTERNS = admin_patterns("/rooms/(?P<room_id>[^/]+)$")
def __init__(self, hs: "HomeServer"):
self.hs = hs
self.auth = hs.get_auth()
self.store = hs.get_datastore()
async def on_GET(
self, request: SynapseRequest, room_id: str
) -> Tuple[int, JsonDict]:
await assert_requester_is_admin(self.auth, request)
ret = await self.store.get_room_with_stats(room_id)
if not ret:
raise NotFoundError("Room not found")
members = await self.store.get_users_in_room(room_id)
ret["joined_local_devices"] = await self.store.count_devices_by_users(members)
return (200, ret)
class RoomMembersRestServlet(RestServlet):
"""
Get members list of a room.
"""
PATTERNS = admin_patterns("/rooms/(?P<room_id>[^/]+)/members")
def __init__(self, hs: "HomeServer"):
self.hs = hs
self.auth = hs.get_auth()
self.store = hs.get_datastore()
async def on_GET(
self, request: SynapseRequest, room_id: str
) -> Tuple[int, JsonDict]:
await assert_requester_is_admin(self.auth, request)
ret = await self.store.get_room(room_id)
if not ret:
raise NotFoundError("Room not found")
members = await self.store.get_users_in_room(room_id)
ret = {"members": members, "total": len(members)}
return 200, ret
class RoomStateRestServlet(RestServlet):
"""
Get full state within a room.
"""
PATTERNS = admin_patterns("/rooms/(?P<room_id>[^/]+)/state")
def __init__(self, hs: "HomeServer"):
self.hs = hs
self.auth = hs.get_auth()
self.store = hs.get_datastore()
self.clock = hs.get_clock()
self._event_serializer = hs.get_event_client_serializer()
async def on_GET(
self, request: SynapseRequest, room_id: str
) -> Tuple[int, JsonDict]:
requester = await self.auth.get_user_by_req(request)
await assert_user_is_admin(self.auth, requester.user)
ret = await self.store.get_room(room_id)
if not ret:
raise NotFoundError("Room not found")
event_ids = await self.store.get_current_state_ids(room_id)
events = await self.store.get_events(event_ids.values())
now = self.clock.time_msec()
room_state = await self._event_serializer.serialize_events(
events.values(),
now,
# We don't bother bundling aggregations in when asked for state
# events, as clients won't use them.
bundle_aggregations=False,
)
ret = {"state": room_state}
return 200, ret
class JoinRoomAliasServlet(RestServlet):
PATTERNS = admin_patterns("/join/(?P<room_identifier>[^/]*)")
def __init__(self, hs: "HomeServer"):
self.hs = hs
self.auth = hs.get_auth()
self.room_member_handler = hs.get_room_member_handler()
self.admin_handler = hs.get_admin_handler()
self.state_handler = hs.get_state_handler()
async def on_POST(
self, request: SynapseRequest, room_identifier: str
) -> Tuple[int, JsonDict]:
requester = await self.auth.get_user_by_req(request)
await assert_user_is_admin(self.auth, requester.user)
content = parse_json_object_from_request(request)
assert_params_in_dict(content, ["user_id"])
target_user = UserID.from_string(content["user_id"])
if not self.hs.is_mine(target_user):
raise SynapseError(400, "This endpoint can only be used with local users")
if not await self.admin_handler.get_user(target_user):
raise NotFoundError("User not found")
if RoomID.is_valid(room_identifier):
room_id = room_identifier
try:
remote_room_hosts = [
x.decode("ascii") for x in request.args[b"server_name"]
] # type: Optional[List[str]]
except Exception:
remote_room_hosts = None
elif RoomAlias.is_valid(room_identifier):
handler = self.room_member_handler
room_alias = RoomAlias.from_string(room_identifier)
room_id, remote_room_hosts = await handler.lookup_room_alias(room_alias)
else:
raise SynapseError(
400, "%s was not legal room ID or room alias" % (room_identifier,)
)
fake_requester = create_requester(
target_user, authenticated_entity=requester.authenticated_entity
)
# send invite if room has "JoinRules.INVITE"
room_state = await self.state_handler.get_current_state(room_id)
join_rules_event = room_state.get((EventTypes.JoinRules, ""))
if join_rules_event:
if not (join_rules_event.content.get("join_rule") == JoinRules.PUBLIC):
# update_membership with an action of "invite" can raise a
# ShadowBanError. This is not handled since it is assumed that
# an admin isn't going to call this API with a shadow-banned user.
await self.room_member_handler.update_membership(
requester=requester,
target=fake_requester.user,
room_id=room_id,
action="invite",
remote_room_hosts=remote_room_hosts,
ratelimit=False,
)
await self.room_member_handler.update_membership(
requester=fake_requester,
target=fake_requester.user,
room_id=room_id,
action="join",
remote_room_hosts=remote_room_hosts,
ratelimit=False,
)
return 200, {"room_id": room_id}
class MakeRoomAdminRestServlet(RestServlet):
"""Allows a server admin to get power in a room if a local user has power in
a room. Will also invite the user if they're not in the room and it's a
private room. Can specify another user (rather than the admin user) to be
granted power, e.g.:
POST/_synapse/admin/v1/rooms/<room_id_or_alias>/make_room_admin
{
"user_id": "@foo:example.com"
}
"""
PATTERNS = admin_patterns("/rooms/(?P<room_identifier>[^/]*)/make_room_admin")
def __init__(self, hs: "HomeServer"):
self.hs = hs
self.auth = hs.get_auth()
self.room_member_handler = hs.get_room_member_handler()
self.event_creation_handler = hs.get_event_creation_handler()
self.state_handler = hs.get_state_handler()
self.is_mine_id = hs.is_mine_id
async def on_POST(self, request, room_identifier):
requester = await self.auth.get_user_by_req(request)
await assert_user_is_admin(self.auth, requester.user)
content = parse_json_object_from_request(request, allow_empty_body=True)
# Resolve to a room ID, if necessary.
if RoomID.is_valid(room_identifier):
room_id = room_identifier
elif RoomAlias.is_valid(room_identifier):
room_alias = RoomAlias.from_string(room_identifier)
room_id, _ = await self.room_member_handler.lookup_room_alias(room_alias)
room_id = room_id.to_string()
else:
raise SynapseError(
400, "%s was not legal room ID or room alias" % (room_identifier,)
)
# Which user to grant room admin rights to.
user_to_add = content.get("user_id", requester.user.to_string())
# Figure out which local users currently have power in the room, if any.
room_state = await self.state_handler.get_current_state(room_id)
if not room_state:
raise SynapseError(400, "Server not in room")
create_event = room_state[(EventTypes.Create, "")]
power_levels = room_state.get((EventTypes.PowerLevels, ""))
if power_levels is not None:
# We pick the local user with the highest power.
user_power = power_levels.content.get("users", {})
admin_users = [
user_id for user_id in user_power if self.is_mine_id(user_id)
]
admin_users.sort(key=lambda user: user_power[user])
if not admin_users:
raise SynapseError(400, "No local admin user in room")
admin_user_id = None
for admin_user in reversed(admin_users):
if room_state.get((EventTypes.Member, admin_user)):
admin_user_id = admin_user
break
if not admin_user_id:
raise SynapseError(
400,
"No local admin user in room",
)
pl_content = power_levels.content
else:
# If there is no power level events then the creator has rights.
pl_content = {}
admin_user_id = create_event.sender
if not self.is_mine_id(admin_user_id):
raise SynapseError(
400,
"No local admin user in room",
)
# Grant the user power equal to the room admin by attempting to send an
# updated power level event.
new_pl_content = dict(pl_content)
new_pl_content["users"] = dict(pl_content.get("users", {}))
new_pl_content["users"][user_to_add] = new_pl_content["users"][admin_user_id]
fake_requester = create_requester(
admin_user_id,
authenticated_entity=requester.authenticated_entity,
)
try:
await self.event_creation_handler.create_and_send_nonmember_event(
fake_requester,
event_dict={
"content": new_pl_content,
"sender": admin_user_id,
"type": EventTypes.PowerLevels,
"state_key": "",
"room_id": room_id,
},
)
except AuthError:
# The admin user we found turned out not to have enough power.
raise SynapseError(
400, "No local admin user in room with power to update power levels."
)
# Now we check if the user we're granting admin rights to is already in
# the room. If not and it's not a public room we invite them.
member_event = room_state.get((EventTypes.Member, user_to_add))
is_joined = False
if member_event:
is_joined = member_event.content["membership"] in (
Membership.JOIN,
Membership.INVITE,
)
if is_joined:
return 200, {}
join_rules = room_state.get((EventTypes.JoinRules, ""))
is_public = False
if join_rules:
is_public = join_rules.content.get("join_rule") == JoinRules.PUBLIC
if is_public:
return 200, {}
await self.room_member_handler.update_membership(
fake_requester,
target=UserID.from_string(user_to_add),
room_id=room_id,
action=Membership.INVITE,
)
return 200, {}
class ForwardExtremitiesRestServlet(RestServlet):
"""Allows a server admin to get or clear forward extremities.
Clearing does not require restarting the server.
Clear forward extremities:
DELETE /_synapse/admin/v1/rooms/<room_id_or_alias>/forward_extremities
Get forward_extremities:
GET /_synapse/admin/v1/rooms/<room_id_or_alias>/forward_extremities
"""
PATTERNS = admin_patterns("/rooms/(?P<room_identifier>[^/]*)/forward_extremities")
def __init__(self, hs: "HomeServer"):
self.hs = hs
self.auth = hs.get_auth()
self.room_member_handler = hs.get_room_member_handler()
self.store = hs.get_datastore()
async def resolve_room_id(self, room_identifier: str) -> str:
"""Resolve to a room ID, if necessary."""
if RoomID.is_valid(room_identifier):
resolved_room_id = room_identifier
elif RoomAlias.is_valid(room_identifier):
room_alias = RoomAlias.from_string(room_identifier)
room_id, _ = await self.room_member_handler.lookup_room_alias(room_alias)
resolved_room_id = room_id.to_string()
else:
raise SynapseError(
400, "%s was not legal room ID or room alias" % (room_identifier,)
)
if not resolved_room_id:
raise SynapseError(
400, "Unknown room ID or room alias %s" % room_identifier
)
return resolved_room_id
async def on_DELETE(self, request, room_identifier):
requester = await self.auth.get_user_by_req(request)
await assert_user_is_admin(self.auth, requester.user)
room_id = await self.resolve_room_id(room_identifier)
deleted_count = await self.store.delete_forward_extremities_for_room(room_id)
return 200, {"deleted": deleted_count}
async def on_GET(self, request, room_identifier):
requester = await self.auth.get_user_by_req(request)
await assert_user_is_admin(self.auth, requester.user)
room_id = await self.resolve_room_id(room_identifier)
extremities = await self.store.get_forward_extremities_for_room(room_id)
return 200, {"count": len(extremities), "results": extremities}
class RoomEventContextServlet(RestServlet):
"""
Provide the context for an event.
This API is designed to be used when system administrators wish to look at
an abuse report and understand what happened during and immediately prior
to this event.
"""
PATTERNS = admin_patterns("/rooms/(?P<room_id>[^/]*)/context/(?P<event_id>[^/]*)$")
def __init__(self, hs):
super().__init__()
self.clock = hs.get_clock()
self.room_context_handler = hs.get_room_context_handler()
self._event_serializer = hs.get_event_client_serializer()
self.auth = hs.get_auth()
async def on_GET(self, request, room_id, event_id):
requester = await self.auth.get_user_by_req(request, allow_guest=False)
await assert_user_is_admin(self.auth, requester.user)
limit = parse_integer(request, "limit", default=10)
# picking the API shape for symmetry with /messages
filter_str = parse_string(request, b"filter", encoding="utf-8")
if filter_str:
filter_json = urlparse.unquote(filter_str)
event_filter = Filter(
json_decoder.decode(filter_json)
) # type: Optional[Filter]
else:
event_filter = None
results = await self.room_context_handler.get_event_context(
requester,
room_id,
event_id,
limit,
event_filter,
use_admin_priviledge=True,
)
if not results:
raise SynapseError(404, "Event not found.", errcode=Codes.NOT_FOUND)
time_now = self.clock.time_msec()
results["events_before"] = await self._event_serializer.serialize_events(
results["events_before"], time_now
)
results["event"] = await self._event_serializer.serialize_event(
results["event"], time_now
)
results["events_after"] = await self._event_serializer.serialize_events(
results["events_after"], time_now
)
results["state"] = await self._event_serializer.serialize_events(
results["state"], time_now
)
return 200, results
|
the-stack_0_4333 | import smtplib
from smtplib import SMTPServerDisconnected
from email.message import EmailMessage
import mimetypes
import os
import logging
class MailClient(object):
"""
Example mail client using SMTPlib
Uses config
"""
def __init__(self, config=None, logger=None):
self.mailserver = None
self.logger = logger if logger else logging.getLogger("MailClient")
self.C = config
self.fromaddr = self.C["mail.connection.user"]
self.connect()
def connect(self):
self.mailserver = smtplib.SMTP(self.C["mail.connection.host"], self.C["mail.connection.port"])
self.mailserver.ehlo()
self.mailserver.starttls()
self.mailserver.login(self.fromaddr, self.C["mail.connection.passwd"])
self.logger.info("self.Connected successfully to mail server.")
@staticmethod
def add_attachment(msg, fpath):
"""
Liberated from docs
"""
ctype, encoding = mimetypes.guess_type(fpath)
if ctype is None or encoding is not None:
ctype = 'application/octet-stream'
maintype, subtype = ctype.split('/', 1)
with open(fpath, "rb") as f:
msg.add_attachment(f.read(), maintype=maintype, subtype=subtype, filename=os.path.basename(fpath))
def compose_mail(self, title, body, attachments=None, to=None):
msg = EmailMessage()
msg.set_content(body)
msg["To"] = to if to else ", ".join(self.C["mail.recipients"])
msg["From"] = self.fromaddr
msg["Subject"] = title
if attachments:
if not isinstance(attachments, list):
attachments = [attachments]
self.logger.info("Found {} attachment. Processing".format(len(attachments)))
for attachment in attachments:
self.logger.info("Attaching \"{}\"".format(attachment))
self.add_attachment(msg, attachment)
self.logger.debug("Attached \"{}\"".format(attachment))
return msg
def send(self, msg):
try:
self.mailserver.send_message(msg)
self.logger.info("Mail sent to the {} recipients".format(len(self.C["mail.recipients"])))
except SMTPServerDisconnected:
self.logger.warning("Mail server disconnected. Reconnecting.")
self.connect()
self.send(msg)
if __name__ == '__main__':
from src.config.config import Config
c = Config("mail.yaml")
m = MailClient(config=c)
mail = m.compose_mail("test mail",
"this is a test mail. \n Please ignore the content",
attachments=["attachments/1.txt", "attachments/2.txt"])
m.send(mail)
|
the-stack_0_4335 | from django.shortcuts import render, HttpResponse
from posts.models import Post
# Create your views here.
def index(request):
posts = Post.objects.all().order_by('-registered_at')[:5]
context = {
'posts' : posts
}
return render(request, 'home/index.html', context) |
the-stack_0_4336 | from elegantrl.agents.AgentSAC import AgentSAC
from elegantrl.agents.net import Critic, ActorSAC, ActorFixSAC, CriticREDQ
import torch
import numpy as np
from copy import deepcopy
class AgentREDQ(AgentSAC): # [ElegantRL.2021.11.11]
"""
Bases: ``AgentBase``
Randomized Ensemble Double Q-learning algorithm. “Randomized Ensembled Double Q-Learning: Learning Fast Without A Model”. Xinyue Chen et al.. 2021.
:param net_dim[int]: the dimension of networks (the width of neural networks)
:param state_dim[int]: the dimension of state (the number of state vector)
:param action_dim[int]: the dimension of action (the number of discrete action)
:param reward_scale: scale the reward to get a appropriate scale Q value
:param gamma: the discount factor of Reinforcement Learning
:param learning_rate: learning rate of optimizer
:param if_per_or_gae: PER (off-policy) or GAE (on-policy) for sparse reward
:param env_num: the env number of VectorEnv. env_num == 1 means don't use VectorEnv
:param gpu_id: the gpu_id of the training device. Use CPU when cuda is not available.
:param G: Update to date ratio
:param M: subset size of critics
:param N: ensemble number of critics
"""
def __init__(self, net_dim, state_dim, action_dim, gpu_id=0, args=None):
self.ClassCri = Critic
self.get_obj_critic = self.get_obj_critic_raw
self.ClassAct = ActorSAC
self.if_use_cri_target = True
self.if_use_act_target = False
self.alpha_log = None
self.alpha_optim = None
self.target_entropy = None
self.obj_critic = (-np.log(0.5)) ** 0.5 # for reliable_lambda
self.act_class = getattr(self, "act_class", ActorFixSAC)
self.cri_class = getattr(self, "cri_class", CriticREDQ)
super().__init__(net_dim, state_dim, action_dim, gpu_id, args)
self.obj_c = (-np.log(0.5)) ** 0.5 # for reliable_lambda
def init(
self,
net_dim=256,
state_dim=8,
action_dim=2,
reward_scale=1.0,
gamma=0.99,
learning_rate=3e-4,
if_per_or_gae=False,
env_num=1,
gpu_id=0,
G=20,
M=2,
N=10,
):
self.gamma = gamma
self.state_dim = state_dim
self.action_dim = action_dim
self.reward_scale = reward_scale
self.traj_list = [[] for _ in range(env_num)]
self.G = G
self.M = M
self.N = N
self.device = torch.device(
f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu"
)
self.cri_list = [
self.ClassCri(net_dim, state_dim, action_dim).to(self.device)
for i in range(self.N)
]
self.act = self.ClassAct(net_dim, state_dim, action_dim).to(self.device)
self.cri_target_list = [deepcopy(self.cri_list[i]) for i in range(N)]
self.cri_optim_list = [
torch.optim.Adam(self.cri_list[i].parameters(), learning_rate)
for i in range(self.N)
]
self.act_optim = torch.optim.Adam(self.act.parameters(), learning_rate)
assert isinstance(if_per_or_gae, bool)
if env_num == 1:
self.explore_env = self.explore_one_env
else:
self.explore_env = self.explore_vec_env
self.alpha_log = torch.zeros(
1, requires_grad=True, device=self.device
) # trainable parameter
self.alpha_optim = torch.optim.Adam([self.alpha_log], lr=learning_rate)
self.target_entropy = np.log(action_dim)
self.criterion = torch.nn.MSELoss()
def get_obj_critic_raw(self, buffer, batch_size):
with torch.no_grad():
reward, mask, action, state, next_s = buffer.sample_batch(batch_size)
next_a, next_log_prob = self.act_target.get_action_logprob(
next_s
) # stochastic policy
next_q = self.cri_target.get_q_min(next_s, next_a)
alpha = self.alpha_log.exp().detach()
q_label = reward + mask * (next_q + next_log_prob * alpha)
qs = self.cri.get_q_values(state, action)
obj_critic = self.criterion(qs, q_label * torch.ones_like(qs))
return obj_critic, state
def get_obj_critic_per(self, buffer, batch_size):
with torch.no_grad():
reward, mask, action, state, next_s, is_weights = buffer.sample_batch(
batch_size
)
next_a, next_log_prob = self.act_target.get_action_logprob(
next_s
) # stochastic policy
next_q = self.cri_target.get_q_min(next_s, next_a)
alpha = self.alpha_log.exp().detach()
q_label = reward + mask * (next_q + next_log_prob * alpha)
qs = self.cri.get_q_values(state, action)
td_error = self.criterion(qs, q_label * torch.ones_like(qs)).mean(dim=1)
obj_critic = (td_error * is_weights).mean()
buffer.td_error_update(td_error.detach())
return obj_critic, state
def get_obj_critic_raw_(self, buffer, batch_size, alpha):
"""
Calculate the loss of networks with **uniform sampling**.
:param buffer: the ReplayBuffer instance that stores the trajectories.
:param batch_size: the size of batch data for Stochastic Gradient Descent (SGD).
:param alpha: the trade-off coefficient of entropy regularization.
:return: the loss of the network and states.
"""
with torch.no_grad():
batch = buffer.sample_batch(batch_size)
state = torch.Tensor(batch["obs1"]).to(self.device)
next_s = torch.Tensor(batch["obs2"]).to(self.device)
action = torch.Tensor(batch["acts"]).to(self.device)
reward = torch.Tensor(batch["rews"]).unsqueeze(1).to(self.device)
mask = torch.Tensor(batch["done"]).unsqueeze(1).to(self.device)
# state, next_s, actions, reward, mask = buffer.sample_batch(batch_size)
# print(batch_size,reward.shape,mask.shape,action.shape, state.shape, next_s.shape)
next_a, next_log_prob = self.act.get_action_logprob(
next_s
) # stochastic policy
g = torch.Generator()
g.manual_seed(torch.randint(high=10000000, size=(1,))[0].item())
a = torch.randperm(self.N, generator=g)
# a = np.random.choice(self.N, self.M, replace=False)
# print(a[:M])
q_tmp = [self.cri_target_list[a[j]](next_s, next_a) for j in range(self.M)]
q_prediction_next_cat = torch.cat(q_tmp, 1)
min_q, min_indices = torch.min(q_prediction_next_cat, dim=1, keepdim=True)
next_q_with_log_prob = min_q - alpha * next_log_prob
y_q = reward + (1 - mask) * self.gamma * next_q_with_log_prob
q_values = [
self.cri_list[j](state, action) for j in range(self.N)
] # todo ensemble
q_values_cat = torch.cat(q_values, dim=1)
y_q = y_q.expand(-1, self.N) if y_q.shape[1] == 1 else y_q
obj_critic = self.criterion(q_values_cat, y_q) * self.N
return obj_critic, state
# return y_q, state,action
def select_actions_(self, state, size, env):
"""
Select continuous actions for exploration
:param state: states.shape==(batch_size, state_dim, )
:return: actions.shape==(batch_size, action_dim, ), -1 < action < +1
"""
state = state.to(self.device)
actions = self.act.get_action(state)
return actions.detach().cpu()
def cri_multi_train_(self, k):
q_values = self.cri_list[k](self.state, self.action)
obj = self.criterion(q_values, self.y_q)
self.cri_optim_list[k].zero_grad()
obj.backward()
self.cri_optim_list[k].step()
def update_net_(self, buffer, batch_size, soft_update_tau):
# buffer.update_now_len()
"""
Update the neural networks by sampling batch data from ``ReplayBuffer``.
:param buffer: the ReplayBuffer instance that stores the trajectories.
:param batch_size: the size of batch data for Stochastic Gradient Descent (SGD).
:param soft_update_tau: the soft update parameter.
:return: a tuple of the log information.
"""
for i in range(self.G):
alpha = self.alpha_log.cpu().exp().item()
"""objective of critic (loss function of critic)"""
obj_critic, state = self.get_obj_critic(buffer, batch_size, alpha)
# self.y_q, self.state,self.action = self.get_obj_critic(buffer, batch_size, alpha)
for q_i in range(self.N):
self.cri_optim_list[q_i].zero_grad()
obj_critic.backward()
if ((i + 1) % self.G == 0) or i == self.G - 1:
a_noise_pg, logprob = self.act.get_action_logprob(
state
) # policy gradient
"""objective of alpha (temperature parameter automatic adjustment)"""
cri_tmp = []
for j in range(self.N):
self.cri_list[j].requires_grad_(False)
cri_tmp.append(self.cri_list[j](state, a_noise_pg))
q_value_pg = torch.cat(cri_tmp, 1)
q_value_pg = torch.mean(q_value_pg, dim=1, keepdim=True)
obj_actor = (-q_value_pg + logprob * alpha).mean() # todo ensemble
self.act_optim.zero_grad()
obj_actor.backward()
for j in range(self.N):
self.cri_list[j].requires_grad_(True)
obj_alpha = -(self.alpha_log * (logprob - 1).detach()).mean()
self.optim_update(self.alpha_optim, obj_alpha)
for q_i in range(self.N):
self.cri_optim_list[q_i].step()
if ((i + 1) % self.G == 0) or i == self.G - 1:
self.act_optim.step()
for q_i in range(self.N):
self.soft_update(
self.cri_target_list[q_i], self.cri_list[q_i], soft_update_tau
)
return obj_actor, alpha
|
the-stack_0_4338 | """
Run a large scale benchmark.
We measure: {dataset, encoder, model, train and test accuracy measures, train and test runtimes, feature count}.
Note: A reasonably recent version of sklearn is required to run GradientBoostingClassifier and MLPClassifier.
"""
import os
import warnings
import pandas as pd
import numpy as np
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
import category_encoders
from examples.benchmarking_large import arff_loader
from examples.benchmarking_large.util import train_model, train_encoder
# The settings are taken from:
# Data-driven advice for applying machine learning to bioinformatics problems, Olson et al.
# Following models have high variance of results: SGD, SVC and DecisionTree. That is not a big deal.
# Just be careful during result interpretation.
# Also, following models are slow because of their configuration: GradientBoosting and RandomForest.
# SGD and DecisionTree benefit from stronger regularization.
models = [SGDClassifier(loss='modified_huber', max_iter=50, tol=1e-3),
LogisticRegression(C=1.5, penalty='l1', fit_intercept=True),
SVC(kernel='poly', probability=True, C=0.01, gamma=0.1, degree=3, coef0=10.0),
KNeighborsClassifier(),
GaussianNB(),
DecisionTreeClassifier(max_depth=4),
GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=500, max_depth=3, max_features='log2'),
RandomForestClassifier(n_estimators=500, max_features=0.25, criterion='entropy'),
MLPClassifier()]
# We use Arff datasets on GitHub. But once OpenML loader will be part of scikit-learn:
# https://github.com/scikit-learn/scikit-learn/pull/11419
# the plan is to move on OpenML.
# We ignore datasets without any polynomial feature.
# We also ignore 'splice.arff', 'anneal.arff', 'anneal.orig.arff' due to high runtime.
# Datasets sensitive to amount of regularization are:
# breast.cancer.arff Medium impact
# bridges.version1.arff
# bridges.version2.arff
# car.arff
# colic.arff
# cylinder.bands.arff Medium impact
# flags.arff Large impact
# heart.c.arff
# hepatitis.arff
# hypothyroid.arff
# kr.vs.kp.arff
# labor.arff Large impact
# lymph.arff
# nursery.arff
# postoperative.patient.data.arff Large impact
# primary.tumor.arff
# solar.flare1.arff Medium impact
# solar.flare2.arff Medium impact
# soybean.arff Large impact
# sick.arff
# spectrometer.arff Large impact
# sponge.arff Large impact
# tic-tac-toe.arff
# trains.arff Medium impact (note that this is a tiny dataset -> with high variance)
datasets = [#'audiology.arff', 'autos.arff', 'breast.cancer.arff', 'bridges.version1.arff', 'bridges.version2.arff', 'car.arff',
# 'colic.arff',
'credit.a.arff', 'credit.g.arff', 'cylinder.bands.arff', 'flags.arff', 'heart.c.arff', 'heart.h.arff',
'hepatitis.arff', 'hypothyroid.arff', 'kr.vs.kp.arff', 'labor.arff', 'lymph.arff', 'mushroom.arff', 'nursery.arff',
'postoperative.patient.data.arff', 'primary.tumor.arff', 'sick.arff', 'solar.flare1.arff', 'solar.flare2.arff',
'soybean.arff', 'spectrometer.arff', 'sponge.arff', 'tic-tac-toe.arff', 'trains.arff', 'vote.arff', 'vowel.arff']
# datasets = ['postoperative.patient.data.arff']
# datasets = ['amazon.csv', 'carvana.csv', 'erasmus.csv', 'internetusage.csv', 'ipumsla97small.csv', 'kobe.csv', 'pbcseq.csv', 'phpvcoG8S.csv', 'westnile.csv']
# We ignore encoders {BackwardDifferenceEncoder, HelmertEncoder, PolynomialEncoder and SumEncoder} because of:
# https://github.com/scikit-learn-contrib/categorical-encoding/issues/91
encoders = [ category_encoders.TargetEncoderV2()]
# Initialization
if os.path.isfile('./output/result.csv'):
os.remove('./output/result.csv')
# Ok...
warnings.filterwarnings('ignore')
# Loop over datasets, then over encoders, and finally, over the models
for dataset_name in datasets:
X, y, fold_count = arff_loader.load(dataset_name)
non_numeric = list(X.select_dtypes(exclude=[np.number]).columns.values)
for encoder in encoders:
print("Encoding:", dataset_name, y.name, encoder.__class__.__name__)
folds, fit_encoder_time, score_encoder_time = train_encoder(X, y, fold_count, encoder)
for model in models:
print('Evaluating:', dataset_name, encoder.__class__.__name__, model.__class__.__name__)
scores, fit_model_time, score_model_time = train_model(folds, model)
# Log into csv
result = pd.DataFrame([dataset_name, y.name, encoder.__class__.__name__, model.__class__.__name__, X.shape[1],
folds[0][0].shape[1], fit_encoder_time, score_encoder_time, fit_model_time, score_model_time]
+ list(scores)).T
if not os.path.isfile('./output/result.csv'):
result.to_csv('./output/result.csv',
header=['dataset', 'target', 'encoder', 'model', 'input_features', 'output_features', 'fit_encoder_time',
'score_encoder_time', 'fit_model_time', 'score_model_time', 'test_matthews', 'train_matthews',
'test_auc', 'train_auc', 'test_brier', 'train_brier'], index=False)
else:
result.to_csv('./output/result.csv', mode='a', header=False, index=False)
print('Finished. The result was stored into ./output/result.csv.')
|
the-stack_0_4339 | #!/usr/bin/python
# -*- coding: utf-8 -*-
"""
Django settings for scrapy_joy project.
For more information on this file, see
https://docs.djangoproject.com/en/1.6/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/1.6/ref/settings/
"""
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
import os
BASE_DIR = os.path.dirname(os.path.dirname(__file__))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = '$k70*9=58#2%p(!b_1ox*!96^&vuvwz)3oq8&-yvofetyjyy)#'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
TEMPLATE_DEBUG = True
ALLOWED_HOSTS = ['*']
CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
'LOCATION': 'unique-snowflake',
}
}
# Application definition
INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'xadmin',
'crispy_forms',
# 'reversion',
'kombu.transport.django',
'djcelery',
'dynamic_scraper',
'debug_toolbar',
'scrapy_joy',
'open_news',
'open_loan',
'open_insurance',
)
MIDDLEWARE_CLASSES = (
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
'debug_toolbar.middleware.DebugToolbarMiddleware',
)
ROOT_URLCONF = 'scrapy_joy.urls'
WSGI_APPLICATION = 'scrapy_joy.wsgi.application'
# Database
# https://docs.djangoproject.com/en/1.6/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'scrapy_joy2',
'USER': 'root',
'PASSWORD': '123456',
'HOST': '127.0.0.1',
'PORT': '3306',
'OPTIONS': {'init_command': 'SET storage_engine=INNODB;'}
}
}
# Internationalization
# https://docs.djangoproject.com/en/1.6/topics/i18n/
LANGUAGE_CODE = 'zh_cn'
TIME_ZONE = 'Asia/Shanghai'
USE_I18N = True
USE_L10N = True
USE_TZ = False
DATE_FORMAT = 'Y-m-d'
DATETIME_FORMAT = 'Y-m-d H:i'
TIME_FORMAT = 'H:i'
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/1.6/howto/static-files/
STATIC_URL = '/static/'
STATICFILES_DIRS = (
os.path.join(BASE_DIR, "static"),
)
TEMPLATE_DIRS = (
# Put strings here, like "/home/html/django_templates" or "C:/www/django/templates".
# Always use forward slashes, even on Windows.
# Don't forget to use absolute paths, not relative paths.
os.path.join(BASE_DIR, 'templates'),
)
# **** 发送邮件设置****
EMAIL_HOST = 'smtp.163.com'
EMAIL_PORT = 25
EMAIL_HOST_USER = '[email protected]'
EMAIL_HOST_PASSWORD = 'dafcnranfmcvwrds'
EMAIL_SUBJECT_PREFIX = u'[Kaisa利率]'
DEFAULT_FROM_EMAIL = u'Kaisa利率 <[email protected]>'
SERVER_EMAIL = '[email protected]'
HOST_NAME = 'http://127.0.0.1:8000'
# **** cacheops缓存设置 ****
CACHEOPS_REDIS = {
'host': 'localhost',
'port': 6379,
'db': 1,
'socket_timeout': 3,
'password': '',
}
CACHEOPS_DEFAULTS = {
'timeout': 60*60
}
CACHEOPS = {
'auth.user': {'ops': 'get', 'timeout': 60*15},
'auth.*': {'ops': ('fetch', 'get')},
'auth.permission': {'ops': 'all'},
'*.*': {},
}
DEBUG_TOOLBAR_PATCH_SETTINGS = False
INTERNAL_IPS = '127.0.0.1'
# django-celery settings
import djcelery
djcelery.setup_loader()
BROKER_HOST = "localhost"
BROKER_PORT = 5672
BROKER_BACKEND = "django"
BROKER_USER = "guest"
BROKER_PASSWORD = "guest"
BROKER_VHOST = "/"
CELERYBEAT_SCHEDULER = 'djcelery.schedulers.DatabaseScheduler'
try:
from local_settings import *
except:
pass |
the-stack_0_4341 | from fractions import Fraction
from unittest import TestCase
from musurgia.fractaltree.fractaltree import FractalTree
class Test(TestCase):
def setUp(self) -> None:
self.ft = FractalTree(proportions=[1, 2, 3], tree_permutation_order=[3, 1, 2], value=10)
def test_0(self):
with self.assertRaises(Exception):
self.ft.get_layer(1)
def test_1(self):
self.assertEqual([self.ft], self.ft.get_layer(0))
def test_2(self):
self.ft.add_layer()
result = self.ft.get_children()
self.assertEqual(result, self.ft.get_layer(1))
def test_3(self):
for i in range(3):
self.ft.add_layer()
result = self.ft.get_children()
self.assertEqual(result, self.ft.get_layer(1))
def test_4(self):
for i in range(3):
self.ft.add_layer()
result = [child.get_children() for child in self.ft.get_children()]
self.assertEqual(result, self.ft.get_layer(2))
def test_5(self):
for i in range(3):
self.ft.add_layer()
result = self.ft.get_leaves()
self.assertEqual(result, self.ft.get_layer(3))
def test_6(self):
for i in range(3):
self.ft.add_layer()
with self.assertRaises(ValueError):
self.ft.get_layer(4)
def test_7(self):
self.ft.add_layer()
self.ft.add_layer(lambda n: True if n.fractal_order > 1 else False)
self.ft.add_layer(lambda n: True if n.fractal_order > 1 else False)
self.ft.add_layer(lambda n: True if n.fractal_order > 1 else False)
self.ft.add_layer(lambda n: True if n.fractal_order > 1 else False)
result = [[['1.1'], [['1.2.1'], ['1.2.2.1', '1.2.2.2', '1.2.2.3'], ['1.2.3.1', '1.2.3.2', '1.2.3.3']],
[['1.3.1.1', '1.3.1.2', '1.3.1.3'], ['1.3.2'], ['1.3.3.1', '1.3.3.2', '1.3.3.3']]], '2',
[[['3.1.1'], ['3.1.2.1', '3.1.2.2', '3.1.2.3'], ['3.1.3.1', '3.1.3.2', '3.1.3.3']],
[['3.2.1.1', '3.2.1.2', '3.2.1.3'], ['3.2.2'], ['3.2.3.1', '3.2.3.2', '3.2.3.3']], ['3.3']]]
self.assertEqual(result, [name for name in self.ft.get_layer(4, key='name')])
def test_7_1(self):
self.ft.add_layer()
self.ft.add_layer()
self.assertEqual([10], self.ft.get_layer(0, key='value'))
def test_7_2(self):
self.ft.add_layer()
self.ft.add_layer()
result = [Fraction(5, 1), Fraction(5, 3), Fraction(10, 3)]
self.assertEqual(result, self.ft.get_layer(1, key='value'))
def test_7_3(self):
self.ft.add_layer()
self.ft.add_layer()
result = [[Fraction(5, 6), Fraction(5, 3), Fraction(5, 2)], [Fraction(5, 6), Fraction(5, 18), Fraction(5, 9)],
[Fraction(10, 9), Fraction(5, 3), Fraction(5, 9)]]
self.assertEqual(result, self.ft.get_layer(2, key='value'))
def test_get_layer_key_lambda(self):
self.ft.add_layer()
self.ft.add_layer()
result = [[0.83, 1.67, 2.5], [0.83, 0.28, 0.56], [1.11, 1.67, 0.56]]
self.assertEqual(result, self.ft.get_layer(2, key=lambda node: round(float(node.value), 2)))
|
the-stack_0_4346 | import unittest
import openfigi
class MyTestCase(unittest.TestCase):
def test_wkn_ticker_anonymous(self):
"""Get an ETF by WKN and check if response makes sense"""
ofg = openfigi.OpenFigi()
ofg.enqueue_request(id_type='ID_WERTPAPIER', id_value='A0YEDG')
response = ofg.fetch_response()
self.assertTrue(type(response) is list)
self.assertTrue(len(response) > 0)
self.assertTrue(type(response[0]) is dict)
self.assertTrue('data' in response[0].keys())
self.assertTrue(len(response[0]['data']) > 0)
if __name__ == '__main__':
unittest.main()
|
the-stack_0_4348 | import numpy as np
import scipy.sparse as sp
import tensorflow as tf
from keras import backend as K
modes = {
'S': 1, # Single (rank(A)=2, rank(B)=2)
'M': 2, # Mixed (rank(A)=2, rank(B)=3)
'iM': 3, # Inverted mixed (rank(A)=3, rank(B)=2)
'B': 4, # Batch (rank(A)=3, rank(B)=3)
'UNK': -1 # Unknown
}
################################################################################
# Ops for convolutions / Laplacians
################################################################################
def filter_dot(fltr, features):
"""
Performs the multiplication of a graph filter (N x N) with the node features,
automatically dealing with single, mixed, and batch modes.
:param fltr: the graph filter(s) (N x N in single and mixed mode,
batch x N x N in batch mode).
:param features: the node features (N x F in single mode, batch x N x F in
mixed and batch mode).
:return: the filtered features.
"""
if len(K.int_shape(features)) == 2:
# Single mode
return K.dot(fltr, features)
else:
if len(K.int_shape(fltr)) == 3:
# Batch mode
return K.batch_dot(fltr, features)
else:
# Mixed mode
return mixed_mode_dot(fltr, features)
def normalize_A(A):
"""
Computes symmetric normalization of A, dealing with sparse A and batch mode
automatically.
:param A: Tensor or SparseTensor with rank k = {2, 3}.
:return: SparseTensor of rank k.
"""
D = degrees(A)
D = tf.sqrt(D)[:, None] + K.epsilon()
if K.ndim(A) == 3:
# Batch mode
output = (A / D) / transpose(D, perm=(0, 2, 1))
else:
# Single mode
output = (A / D) / transpose(D)
return output
def degrees(A):
"""
Computes the degrees of each node in A, dealing with sparse A and batch mode
automatically.
:param A: Tensor or SparseTensor with rank k = {2, 3}.
:return: Tensor or SparseTensor of rank k - 1.
"""
if K.is_sparse(A):
D = tf.sparse.reduce_sum(A, axis=-1)
else:
D = tf.reduce_sum(A, axis=-1)
return D
def degree_matrix(A, return_sparse_batch=False):
"""
Computes the degree matrix of A, deals with sparse A and batch mode
automatically.
:param A: Tensor or SparseTensor with rank k = {2, 3}.
:param return_sparse_batch: if operating in batch mode, return a
SparseTensor. Note that the sparse degree tensor returned by this function
cannot be used for sparse matrix multiplication afterwards.
:return: SparseTensor of rank k.
"""
D = degrees(A)
batch_mode = K.ndim(D) == 2
N = tf.shape(D)[-1]
batch_size = tf.shape(D)[0] if batch_mode else 1
inner_index = tf.tile(tf.stack([tf.range(N)] * 2, axis=1), (batch_size, 1))
if batch_mode:
if return_sparse_batch:
outer_index = repeat(
tf.range(batch_size), tf.ones(batch_size) * tf.cast(N, tf.float32)
)
indices = tf.concat([outer_index[:, None], inner_index], 1)
dense_shape = (batch_size, N, N)
else:
return tf.linalg.diag(D)
else:
indices = inner_index
dense_shape = (N, N)
indices = tf.cast(indices, tf.int64)
values = tf.reshape(D, (-1, ))
return tf.SparseTensor(indices, values, dense_shape)
################################################################################
# Scipy to tf.sparse conversion
################################################################################
def sp_matrix_to_sp_tensor_value(x):
"""
Converts a Scipy sparse matrix to a tf.SparseTensorValue
:param x: a Scipy sparse matrix
:return: tf.SparseTensorValue
"""
if not hasattr(x, 'tocoo'):
try:
x = sp.coo_matrix(x)
except:
raise TypeError('x must be convertible to scipy.coo_matrix')
else:
x = x.tocoo()
return tf.SparseTensorValue(
indices=np.array([x.row, x.col]).T,
values=x.data,
dense_shape=x.shape
)
def sp_matrix_to_sp_tensor(x):
"""
Converts a Scipy sparse matrix to a tf.SparseTensor
:param x: a Scipy sparse matrix
:return: tf.SparseTensor
"""
if not hasattr(x, 'tocoo'):
try:
x = sp.coo_matrix(x)
except:
raise TypeError('x must be convertible to scipy.coo_matrix')
else:
x = x.tocoo()
return tf.SparseTensor(
indices=np.array([x.row, x.col]).T,
values=x.data,
dense_shape=x.shape
)
################################################################################
# Matrix multiplication
################################################################################
def matmul_A_B(A, B):
"""
Computes A * B, dealing with sparsity and single/batch/mixed modes
automatically. Mixed mode multiplication also works when A has rank 3 and
B has rank 2. Sparse multiplication does not work with batch mode.
:param A: Tensor or SparseTensor with rank 2 or 3.
:param B: Tensor or SparseTensor with rank 2 or 3.
:return:
"""
mode = autodetect_mode(A, B)
if mode == modes['S']:
# Single mode
output = single_mode_dot(A, B)
elif mode == modes['M']:
# Mixed mode
output = mixed_mode_dot(A, B)
elif mode == modes['iM']:
# Inverted mixed (rank(A)=3, rank(B)=2)
# Works only with dense tensors
output = K.dot(A, B)
elif mode == modes['B']:
# Batch mode
# Works only with dense tensors
output = K.batch_dot(A, B)
else:
raise ValueError('A and B must have rank 2 or 3.')
return output
def matmul_AT_B_A(A, B):
"""
Computes A.T * B * A, dealing with sparsity and single/batch/mixed modes
automatically. Mixed mode multiplication also works when A has rank 3 and
B has rank 2. Sparse multiplication does not work with batch mode.
:param A: Tensor or SparseTensor with rank 2 or 3.
:param B: Tensor or SparseTensor with rank 2 or 3.
:return:
"""
mode = autodetect_mode(A, B)
if mode == modes['S']:
# Single (rank(A)=2, rank(B)=2)
output = single_mode_dot(single_mode_dot(transpose(A), B), A)
elif mode == modes['M']:
# Mixed (rank(A)=2, rank(B)=3)
output = mixed_mode_dot(transpose(A), B)
if K.is_sparse(A):
output = transpose(
mixed_mode_dot(transpose(A), transpose(output, (0, 2, 1))),
(0, 2, 1)
)
else:
output = K.dot(output, A)
elif mode == modes['iM']:
# Inverted mixed (rank(A)=3, rank(B)=2)
# Works only with dense tensors
output = mixed_mode_dot(B, A)
output = K.batch_dot(transpose(A, (0, 2, 1)), output)
elif mode == modes['B']:
# Batch (rank(A)=3, rank(B)=3)
# Works only with dense tensors
output = K.batch_dot(
K.batch_dot(
transpose(A, (0, 2, 1)),
B
),
A
)
else:
raise ValueError('A and B must have rank 2 or 3.')
return output
def matmul_AT_B(A, B):
"""
Computes A.T * B, dealing with sparsity and single/batch/mixed modes
automatically. Mixed mode multiplication also works when A has rank 3 and
B has rank 2. Sparse multiplication does not work with batch mode.
:param A: Tensor or SparseTensor with rank 2 or 3.
:param B: Tensor or SparseTensor with rank 2 or 3.
:return:
"""
mode = autodetect_mode(A, B)
if mode == modes['S']:
# Single (rank(A)=2, rank(B)=2)
output = single_mode_dot(transpose(A), B)
elif mode == modes['M']:
# Mixed (rank(A)=2, rank(B)=3)
output = mixed_mode_dot(transpose(A), B)
elif mode == modes['iM']:
# Inverted mixed (rank(A)=3, rank(B)=2)
# Works only with dense tensors
output = K.dot(transpose(A, (0, 2, 1)), B)
elif mode == modes['B']:
# Batch (rank(A)=3, rank(B)=3)
# Works only with dense tensors
output = K.batch_dot(transpose(A, (0, 2, 1)), B)
else:
raise ValueError('A and B must have rank 2 or 3.')
return output
def matmul_A_BT(A, B):
"""
Computes A * B.T, dealing with sparsity and single/batch/mixed modes
automatically. Mixed mode multiplication also works when A has rank 3 and
B has rank 2. Sparse multiplication does not work with batch mode.
:param A: Tensor or SparseTensor with rank 2 or 3.
:param B: Tensor or SparseTensor with rank 2 or 3.
:return:
"""
mode = autodetect_mode(A, B)
if mode == modes['S']:
# Single (rank(A)=2, rank(B)=2)
output = single_mode_dot(A, transpose(B))
elif mode == modes['M']:
# Mixed (rank(A)=2, rank(B)=3)
output = mixed_mode_dot(A, transpose(B, (0, 2, 1)))
elif mode == modes['iM']:
# Inverted mixed (rank(A)=3, rank(B)=2)
# Works only with dense tensors
output = K.dot(A, transpose(B))
elif mode == modes['B']:
# Batch (rank(A)=3, rank(B)=3)
# Works only with dense tensors
output = K.batch_dot(A, transpose(B, (0, 2, 1)))
else:
raise ValueError('A and B must have rank 2 or 3.')
return output
################################################################################
# Ops related to the modes of operation (single, mixed, batch)
################################################################################
def autodetect_mode(A, X):
"""
Return a code identifying the mode of operation (single, mixed, batch),
given A and X. See the modes variable for meaning of codes.
:param A: Tensor.
:param X: Tensor.
:return: mode of operation.
"""
if K.ndim(X) == 2:
if K.ndim(A) == 2:
return modes['S']
elif K.ndim(A) == 3:
return modes['iM']
else:
return modes['UNK']
elif K.ndim(X) == 3:
if K.ndim(A) == 2:
return modes['M']
elif K.ndim(A) == 3:
return modes['B']
else:
return modes['UNK']
else:
return modes['UNK']
def single_mode_dot(A, B):
"""
Dot product between two rank 2 matrices. Deals automatically with either A
or B being sparse.
:param A: rank 2 Tensor or SparseTensor.
:param B: rank 2 Tensor or SparseTensor.
:return: rank 2 Tensor or SparseTensor.
"""
a_sparse = K.is_sparse(A)
b_sparse = K.is_sparse(B)
if a_sparse and b_sparse:
raise ValueError('Sparse x Sparse matmul is not implemented yet.')
elif a_sparse:
output = tf.sparse_tensor_dense_matmul(A, B)
elif b_sparse:
output = transpose(
tf.sparse_tensor_dense_matmul(
transpose(B), transpose(A)
)
)
else:
output = tf.matmul(A, B)
return output
def mixed_mode_dot(A, B):
"""
Computes the equivalent of `tf.einsum('ij,bjk->bik', fltr, output)`, but
works for both dense and sparse input filters.
:param A: rank 2 Tensor or SparseTensor.
:param B: rank 3 Tensor or SparseTensor.
:return: rank 3 Tensor or SparseTensor.
"""
s_0_, s_1_, s_2_ = K.int_shape(B)
B_T = transpose(B, (1, 2, 0))
B_T = reshape(B_T, (s_1_, -1))
output = single_mode_dot(A, B_T)
output = reshape(output, (s_1_, s_2_, -1))
output = transpose(output, (2, 0, 1))
return output
################################################################################
# Wrappers for automatic switching between dense and sparse ops
################################################################################
def transpose(A, perm=None, name=None):
"""
Transposes A according to perm, dealing with sparse A automatically.
:param A: Tensor or SparseTensor with rank k.
:param perm: permutation indices of size k.
:param name: name for the operation.
:return: Tensor or SparseTensor with rank k.
"""
if K.is_sparse(A):
transpose_op = tf.sparse.transpose
else:
transpose_op = tf.transpose
if perm is None:
perm = (1, 0) # Make explicit so that shape will always be preserved
return transpose_op(A, perm=perm, name=name)
def reshape(A, shape=None, name=None):
"""
Reshapes A according to shape, dealing with sparse A automatically.
:param A: Tensor or SparseTensor.
:param shape: new shape.
:param name: name for the operation.
:return: Tensor or SparseTensor.
"""
if K.is_sparse(A):
reshape_op = tf.sparse.reshape
else:
reshape_op = tf.reshape
return reshape_op(A, shape=shape, name=name)
################################################################################
# Misc ops
################################################################################
def matrix_power(x, k):
"""
Computes the k-th power of a square matrix.
:param x: a square matrix (Tensor or SparseTensor)
:param k: exponent
:return: matrix of same type and dtype as the input
"""
if K.ndim(x) != 2:
raise ValueError('x must have rank 2.')
sparse = K.is_sparse(x)
if sparse:
x_dense = tf.sparse.to_dense(x)
else:
x_dense = x
x_k = x_dense
for _ in range(k - 1):
x_k = K.dot(x_k, x_dense)
if sparse:
return tf.contrib.layers.dense_to_sparse(x_k)
else:
return x_k
def repeat(x, repeats):
"""
Repeats elements of a Tensor (equivalent to np.repeat, but only for 1D
tensors).
:param x: rank 1 tensor;
:param repeats: rank 1 tensor with same shape as x, the number of
repetitions for each element;
:return: rank 1 tensor, of shape `(sum(repeats), )`.
"""
x = tf.expand_dims(x, 1)
max_repeats = tf.reduce_max(repeats)
tile_repeats = [1, max_repeats]
arr_tiled = tf.tile(x, tile_repeats)
mask = tf.less(tf.range(max_repeats), tf.expand_dims(repeats, 1))
result = tf.reshape(tf.boolean_mask(arr_tiled, mask), [-1])
return result
def segment_top_k(x, I, ratio, top_k_var):
"""
Returns indices to get the top K values in x segment-wise, according to
the segments defined in I. K is not fixed, but it is defined as a ratio of
the number of elements in each segment.
:param x: a rank 1 tensor;
:param I: a rank 1 tensor with segment IDs for x;
:param ratio: float, ratio of elements to keep for each segment;
:param top_k_var: a tf.Variable created without shape validation (i.e.,
`tf.Variable(0.0, validate_shape=False)`);
:return: a rank 1 tensor containing the indices to get the top K values of
each segment in x.
"""
num_nodes = tf.segment_sum(tf.ones_like(I), I) # Number of nodes in each graph
cumsum = tf.cumsum(num_nodes) # Cumulative number of nodes (A, A+B, A+B+C)
cumsum_start = cumsum - num_nodes # Start index of each graph
n_graphs = tf.shape(num_nodes)[0] # Number of graphs in batch
max_n_nodes = tf.reduce_max(num_nodes) # Order of biggest graph in batch
batch_n_nodes = tf.shape(I)[0] # Number of overall nodes in batch
to_keep = tf.ceil(ratio * tf.cast(num_nodes, tf.float32))
to_keep = tf.cast(to_keep, tf.int32) # Nodes to keep in each graph
index = tf.range(batch_n_nodes)
index = (index - tf.gather(cumsum_start, I)) + (I * max_n_nodes)
y_min = tf.reduce_min(x)
dense_y = tf.ones((n_graphs * max_n_nodes,))
# subtract 1 to ensure that filler values do not get picked
dense_y = dense_y * tf.cast(y_min - 1, tf.float32)
# top_k_var is a variable with unknown shape defined in the elsewhere
dense_y = tf.assign(top_k_var, dense_y, validate_shape=False)
dense_y = tf.scatter_update(dense_y, index, x)
dense_y = tf.reshape(dense_y, (n_graphs, max_n_nodes))
perm = tf.argsort(dense_y, direction='DESCENDING')
perm = perm + cumsum_start[:, None]
perm = tf.reshape(perm, (-1,))
to_rep = tf.tile(tf.constant([1., 0.]), (n_graphs,))
rep_times = tf.reshape(tf.concat((to_keep[:, None], (max_n_nodes - to_keep)[:, None]), -1), (-1,))
mask = repeat(to_rep, rep_times)
perm = tf.boolean_mask(perm, mask)
return perm
|
the-stack_0_4350 | # Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors
# MIT License. See license.txt
from __future__ import unicode_literals
from six.moves import range
import json, os
from semantic_version import Version
import frappe
import requests
import subprocess # nosec
from frappe.utils import cstr
from frappe.utils.gitutils import get_app_branch
from frappe import _, safe_decode
import git
def get_change_log(user=None):
if not user: user = frappe.session.user
last_known_versions = frappe._dict(json.loads(frappe.db.get_value("User",
user, "last_known_versions") or "{}"))
current_versions = get_versions()
if not last_known_versions:
update_last_known_versions()
return []
change_log = []
def set_in_change_log(app, opts, change_log):
from_version = last_known_versions.get(app, {}).get("version") or "0.0.1"
to_version = opts["version"]
if from_version != to_version:
app_change_log = get_change_log_for_app(app, from_version=from_version, to_version=to_version)
if app_change_log:
change_log.append({
"title": opts["title"],
"description": opts["description"],
"version": to_version,
"change_log": app_change_log
})
for app, opts in current_versions.items():
if app != "frappe":
set_in_change_log(app, opts, change_log)
if "frappe" in current_versions:
set_in_change_log("frappe", current_versions["frappe"], change_log)
return change_log
def get_change_log_for_app(app, from_version, to_version):
change_log_folder = os.path.join(frappe.get_app_path(app), "change_log")
if not os.path.exists(change_log_folder):
return
from_version = Version(from_version)
to_version = Version(to_version)
# remove pre-release part
to_version.prerelease = None
major_version_folders = ["v{0}".format(i) for i in range(from_version.major, to_version.major + 1)]
app_change_log = []
for folder in os.listdir(change_log_folder):
if folder in major_version_folders:
for file in os.listdir(os.path.join(change_log_folder, folder)):
version = Version(os.path.splitext(file)[0][1:].replace("_", "."))
if from_version < version <= to_version:
file_path = os.path.join(change_log_folder, folder, file)
content = frappe.read_file(file_path)
app_change_log.append([version, content])
app_change_log = sorted(app_change_log, key=lambda d: d[0], reverse=True)
# convert version to string and send
return [[cstr(d[0]), d[1]] for d in app_change_log]
@frappe.whitelist()
def update_last_known_versions():
frappe.db.set_value("User", frappe.session.user, "last_known_versions",
json.dumps(get_versions()), update_modified=False)
@frappe.whitelist()
def get_versions():
"""Get versions of all installed apps.
Example:
{
"frappe": {
"title": "Frappe Framework",
"version": "5.0.0"
}
}"""
versions = {}
for app in frappe.get_installed_apps(sort=True):
app_hooks = frappe.get_hooks(app_name=app)
versions[app] = {
"title": app_hooks.get("app_title")[0],
"description": app_hooks.get("app_description")[0],
"branch": get_app_branch(app)
}
if versions[app]['branch'] != 'master':
branch_version = app_hooks.get('{0}_version'.format(versions[app]['branch']))
if branch_version:
versions[app]['branch_version'] = branch_version[0] + ' ({0})'.format(get_app_last_commit_ref(app))
try:
versions[app]["version"] = frappe.get_attr(app + ".__version__")
except AttributeError:
versions[app]["version"] = '0.0.1'
return versions
def get_app_branch(app):
'''Returns branch of an app'''
try:
result = subprocess.check_output('cd ../apps/{0} && git rev-parse --abbrev-ref HEAD'.format(app),
shell=True)
result = safe_decode(result)
result = result.strip()
return result
except Exception as e:
return ''
def get_app_last_commit_ref(app):
try:
result = subprocess.check_output('cd ../apps/{0} && git rev-parse HEAD --short 7'.format(app),
shell=True)
result = safe_decode(result)
result = result.strip()
return result
except Exception as e:
return ''
def check_for_update():
updates = frappe._dict(major=[], minor=[], patch=[])
apps = get_versions()
for app in apps:
app_details = check_release_on_github(app)
if not app_details: continue
github_version, org_name = app_details
# Get local instance's current version or the app
branch_version = apps[app]['branch_version'].split(' ')[0] if apps[app].get('branch_version', '') else ''
instance_version = Version(branch_version or apps[app].get('version'))
# Compare and popup update message
for update_type in updates:
if github_version.__dict__[update_type] > instance_version.__dict__[update_type]:
updates[update_type].append(frappe._dict(
current_version = str(instance_version),
available_version = str(github_version),
org_name = org_name,
app_name = app,
title = apps[app]['title'],
))
break
if github_version.__dict__[update_type] < instance_version.__dict__[update_type]: break
add_message_to_redis(updates)
def parse_latest_non_beta_release(response):
"""
Pasrses the response JSON for all the releases and returns the latest non prerelease
Parameters
response (list): response object returned by github
Returns
json : json object pertaining to the latest non-beta release
"""
for release in response:
if release['prerelease'] == True: continue
return release
def check_release_on_github(app):
# Check if repo remote is on github
from subprocess import CalledProcessError
try:
remote_url = subprocess.check_output("cd ../apps/{} && git ls-remote --get-url".format(app), shell=True).decode()
except CalledProcessError:
# Passing this since some apps may not have git initializaed in them
return None
if isinstance(remote_url, bytes):
remote_url = remote_url.decode()
if "github.com" not in remote_url:
return None
# Get latest version from github
if 'https' not in remote_url:
return None
org_name = remote_url.split('/')[3]
r = requests.get('https://api.github.com/repos/{}/{}/releases'.format(org_name, app))
if r.status_code == 200 and r.json():
lastest_non_beta_release = parse_latest_non_beta_release(r.json())
return Version(lastest_non_beta_release['tag_name'].strip('v')), org_name
else:
# In case of an improper response or if there are no releases
return None
def add_message_to_redis(update_json):
# "update-message" will store the update message string
# "update-user-set" will be a set of users
cache = frappe.cache()
cache.set_value("update-info", json.dumps(update_json))
user_list = [x.name for x in frappe.get_all("User", filters={"enabled": True})]
system_managers = [user for user in user_list if 'System Manager' in frappe.get_roles(user)]
cache.sadd("update-user-set", *system_managers)
@frappe.whitelist()
def show_update_popup():
cache = frappe.cache()
user = frappe.session.user
update_info = cache.get_value("update-info")
if not update_info:
return
updates = json.loads(update_info)
current_versions = get_versions()
# Check if user is int the set of users to send update message to
update_message = ""
if cache.sismember("update-user-set", user):
for update_type in updates:
release_links = ""
for app in updates[update_type]:
app = frappe._dict(app)
release_links += "<a href='https://github.com/{org_name}/{app_name}/releases/tag/v{available_version}'><b>{title}</b>: v{available_version}</a><br>".format(
available_version = app.available_version,
org_name = app.org_name,
app_name = app.app_name,
title = app.title
)
if release_links:
update_message += _("New {} releases for the following apps are available".format(update_type)) + ":<br><br>{}".format(release_links)
if update_message:
frappe.msgprint(update_message, title=_("New updates are available"), indicator='green')
cache.srem("update-user-set", user)
|
the-stack_0_4351 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
import vim
import re
import os
import os.path
from functools import wraps
from .utils import *
from .explorer import *
from .manager import *
from .mru import *
from .devicons import (
webDevIconsGetFileTypeSymbol,
webDevIconsStrLen,
webDevIconsBytesLen,
matchaddDevIconsDefault,
matchaddDevIconsExact,
matchaddDevIconsExtension,
)
#*****************************************************
# BufferExplorer
#*****************************************************
class BufferExplorer(Explorer):
def __init__(self):
self._prefix_length = 0
self._max_bufname_len = 0
def getContent(self, *args, **kwargs):
mru_bufnrs = []
for num in reversed(lfEval("g:Lf_MruBufnrs")):
if num not in mru_bufnrs:
mru_bufnrs.append(int(num))
for num in reversed(mru_bufnrs):
mru.setBufferTimestamp(num)
lfCmd("let g:Lf_MruBufnrs = []")
if "--all" not in kwargs.get("arguments", {}):
if "--tabpage" not in kwargs.get("arguments", {}):
buffers = {b.number: b for b in vim.buffers
if lfEval("buflisted(%d)" % b.number) == '1'}
else:
buffers = {w.buffer.number: w.buffer for w in vim.current.tabpage.windows
if lfEval("buflisted(%d)" % w.buffer.number) == '1'}
else:
if "--tabpage" not in kwargs.get("arguments", {}):
buffers = {b.number: b for b in vim.buffers
if os.path.basename(b.name) != "LeaderF"}
else:
buffers = {w.buffer.number: w.buffer for w in vim.current.tabpage.windows
if os.path.basename(w.buffer.name) != "LeaderF"}
# e.g., 12 u %a+- aaa.txt
bufnr_len = len(lfEval("bufnr('$')"))
self._prefix_length = bufnr_len + 8
if lfEval("get(g:, 'Lf_ShowDevIcons', 1)") == '1':
self._prefix_length += webDevIconsStrLen()
self._max_bufname_len = max([int(lfEval("strdisplaywidth('%s')"
% escQuote(getBasename(buffers[nr].name))))
for nr in mru.getMruBufnrs() if nr in buffers] + [len('[No Name]')] or [0])
bufnames = []
for nr in mru.getMruBufnrs():
if nr in buffers:
buf_name = buffers[nr].name
if not buf_name:
buf_name = "[No Name]"
if lfEval("g:Lf_ShowRelativePath") == '1':
buf_name = lfRelpath(buf_name)
basename = getBasename(buf_name)
dirname = getDirname(buf_name)
space_num = self._max_bufname_len \
- int(lfEval("strdisplaywidth('%s')" % escQuote(basename)))
if lfEval("get(g:, 'Lf_ShowDevIcons', 1)") == '1':
icon = webDevIconsGetFileTypeSymbol(basename)
else:
icon = ''
# e.g., 12 u %a+- aaa.txt
buf_name = '{:{width}d} {:1s} {:1s}{:1s}{:1s}{:1s} {}{}{} "{}"'.format(nr,
'' if buffers[nr].options["buflisted"] else 'u',
'%' if int(lfEval("bufnr('%')")) == nr
else '#' if int(lfEval("bufnr('#')")) == nr else '',
'a' if lfEval("bufwinnr(%d)" % nr) != '-1' else 'h',
'+' if buffers[nr].options["modified"] else '',
'-' if not buffers[nr].options["modifiable"] else '',
icon, basename, ' ' * space_num,
dirname if dirname else '.' + os.sep,
width=bufnr_len)
bufnames.append(buf_name)
del buffers[nr]
elif lfEval("bufnr(%d)" % nr) == '-1':
mru.delMruBufnr(nr)
return bufnames
def getStlCategory(self):
return 'Buffer'
def getStlCurDir(self):
return escQuote(lfEncode(os.getcwd()))
def supportsNameOnly(self):
return True
def getPrefixLength(self):
return self._prefix_length
def getMaxBufnameLen(self):
return self._max_bufname_len
#*****************************************************
# BufExplManager
#*****************************************************
class BufExplManager(Manager):
def __init__(self):
super(BufExplManager, self).__init__()
def _getExplClass(self):
return BufferExplorer
def _defineMaps(self):
lfCmd("call leaderf#Buffer#Maps()")
def _acceptSelection(self, *args, **kwargs):
if len(args) == 0:
return
line = args[0]
buf_number = int(re.sub(r"^.*?(\d+).*$", r"\1", line))
if kwargs.get("mode", '') == 't':
buf_name = lfEval("bufname(%s)" % buf_number)
lfCmd("tab drop %s" % escSpecial(buf_name))
else:
if lfEval("get(g:, 'Lf_JumpToExistingWindow', 0)") == '1':
buf_name = lfEval("bufname(%s)" % buf_number)
lfCmd("hide drop %s" % escSpecial(buf_name))
else:
lfCmd("hide buffer %d" % buf_number)
def _getDigest(self, line, mode):
"""
specify what part in the line to be processed and highlighted
Args:
mode: 0, return the full path
1, return the name only
2, return the directory name
"""
if not line:
return ''
prefix_len = self._getExplorer().getPrefixLength()
if mode == 0:
return line[prefix_len:]
elif mode == 1:
buf_number = int(re.sub(r"^.*?(\d+).*$", r"\1", line))
basename = getBasename(vim.buffers[buf_number].name)
return basename if basename else "[No Name]"
else:
start_pos = line.find(' "')
return line[start_pos+2 : -1]
def _getDigestStartPos(self, line, mode):
"""
return the start position of the digest returned by _getDigest()
Args:
mode: 0, return the start postion of full path
1, return the start postion of name only
2, return the start postion of directory name
"""
if not line:
return 0
prefix_len = self._getExplorer().getPrefixLength() - webDevIconsStrLen() + webDevIconsBytesLen()
if mode == 0:
return prefix_len
elif mode == 1:
return prefix_len
else:
buf_number = int(re.sub(r"^.*?(\d+).*$", r"\1", line))
basename = getBasename(vim.buffers[buf_number].name)
space_num = self._getExplorer().getMaxBufnameLen() \
- int(lfEval("strdisplaywidth('%s')" % escQuote(basename)))
return prefix_len + lfBytesLen(basename) + space_num + 2
def _createHelp(self):
help = []
help.append('" <CR>/<double-click>/o : open file under cursor')
help.append('" x : open file under cursor in a horizontally split window')
help.append('" v : open file under cursor in a vertically split window')
help.append('" t : open file under cursor in a new tabpage')
help.append('" d : wipe out buffer under cursor')
help.append('" D : delete buffer under cursor')
help.append('" i/<Tab> : switch to input mode')
help.append('" q : quit')
help.append('" <F1> : toggle this help')
help.append('" ---------------------------------------------------------')
return help
def _afterEnter(self):
super(BufExplManager, self)._afterEnter()
winid = None
if self._getInstance().getWinPos() == 'popup':
lfCmd("""call win_execute(%d, 'let matchid = matchadd(''Lf_hl_bufNumber'', ''^\s*\zs\d\+'')')"""
% self._getInstance().getPopupWinId())
id = int(lfEval("matchid"))
self._match_ids.append(id)
lfCmd("""call win_execute(%d, 'let matchid = matchadd(''Lf_hl_bufIndicators'', ''^\s*\d\+\s*\zsu\=\s*[#%%]\=...'')')"""
% self._getInstance().getPopupWinId())
id = int(lfEval("matchid"))
self._match_ids.append(id)
lfCmd("""call win_execute(%d, 'let matchid = matchadd(''Lf_hl_bufModified'', ''^\s*\d\+\s*u\=\s*[#%%]\=.+\s*\zs.*$'')')"""
% self._getInstance().getPopupWinId())
id = int(lfEval("matchid"))
self._match_ids.append(id)
lfCmd("""call win_execute(%d, 'let matchid = matchadd(''Lf_hl_bufNomodifiable'', ''^\s*\d\+\s*u\=\s*[#%%]\=..-\s*\zs.*$'')')"""
% self._getInstance().getPopupWinId())
id = int(lfEval("matchid"))
self._match_ids.append(id)
lfCmd("""call win_execute(%d, 'let matchid = matchadd(''Lf_hl_bufDirname'', '' \zs".*"$'')')"""
% self._getInstance().getPopupWinId())
id = int(lfEval("matchid"))
self._match_ids.append(id)
winid = self._getInstance().getPopupWinId()
else:
id = int(lfEval("matchadd('Lf_hl_bufNumber', '^\s*\zs\d\+')"))
self._match_ids.append(id)
id = int(lfEval("matchadd('Lf_hl_bufIndicators', '^\s*\d\+\s*\zsu\=\s*[#%]\=...')"))
self._match_ids.append(id)
id = int(lfEval("matchadd('Lf_hl_bufModified', '^\s*\d\+\s*u\=\s*[#%]\=.+\s*\zs.*$')"))
self._match_ids.append(id)
id = int(lfEval("matchadd('Lf_hl_bufNomodifiable', '^\s*\d\+\s*u\=\s*[#%]\=..-\s*\zs.*$')"))
self._match_ids.append(id)
id = int(lfEval('''matchadd('Lf_hl_bufDirname', ' \zs".*"$')'''))
self._match_ids.append(id)
# devicons
if lfEval("get(g:, 'Lf_ShowDevIcons', 1)") == '1':
self._match_ids.extend(matchaddDevIconsExtension(r'__icon__\ze\s\+\S\+\.__name__\($\|\s\)', winid))
self._match_ids.extend(matchaddDevIconsExact(r'__icon__\ze\s\+__name__\($\|\s\)', winid))
self._match_ids.extend(matchaddDevIconsDefault(r'__icon__\ze\s\+\S\+\($\|\s\)', winid))
def _beforeExit(self):
super(BufExplManager, self)._beforeExit()
def deleteBuffer(self, wipe=0):
instance = self._getInstance()
if self._inHelpLines():
return
if instance.getWinPos() == 'popup':
lfCmd("call win_execute(%d, 'setlocal modifiable')" % instance.getPopupWinId())
else:
lfCmd("setlocal modifiable")
line = instance._buffer_object[instance.window.cursor[0] - 1]
if len(self._content) > 0:
self._content.remove(line)
self._getInstance().setStlTotal(len(self._content)//self._getUnit())
self._getInstance().setStlResultsCount(len(self._content)//self._getUnit())
buf_number = int(re.sub(r"^.*?(\d+).*$", r"\1", line))
lfCmd("confirm %s %d" % ('bw' if wipe else 'bd', buf_number))
del instance._buffer_object[instance.window.cursor[0] - 1]
if instance.getWinPos() == 'popup':
instance.refreshPopupStatusline()
lfCmd("call win_execute(%d, 'setlocal nomodifiable')" % instance.getPopupWinId())
else:
lfCmd("setlocal nomodifiable")
def _previewInPopup(self, *args, **kwargs):
line = args[0]
buf_number = int(re.sub(r"^.*?(\d+).*$", r"\1", line))
self._createPopupPreview(vim.buffers[buf_number].name, buf_number, 0)
#*****************************************************
# bufExplManager is a singleton
#*****************************************************
bufExplManager = BufExplManager()
__all__ = ['bufExplManager']
|
the-stack_0_4352 | #! /usr/bin/python
# -*- coding: utf-8 -*-
import base64
import gzip
import json
import math
import os
import pickle
import re
import shutil
# import ast
import sys
import tarfile
import time
import zipfile
import cloudpickle
import h5py
import numpy as np
import scipy.io as sio
from six.moves import cPickle
import progressbar
import tensorflow as tf
import tensorlayer as tl
from tensorflow.python.keras.saving import model_config as model_config_lib
from tensorflow.python.platform import gfile
from tensorflow.python.util import serialization
from tensorflow.python.util.tf_export import keras_export
from tensorlayer import logging, nlp, utils, visualize
import cloudpickle
import base64
from tensorflow.python.keras.saving import model_config as model_config_lib
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util import serialization
import json
import datetime
# from six.moves import zip
if sys.version_info[0] == 2:
from urllib import urlretrieve
else:
from urllib.request import urlretrieve
# import tensorflow.contrib.eager.python.saver as tfes
# TODO: tf2.0 not stable, cannot import tensorflow.contrib.eager.python.saver
__all__ = [
'assign_weights',
'del_file',
'del_folder',
'download_file_from_google_drive',
'exists_or_mkdir',
'file_exists',
'folder_exists',
'load_and_assign_npz',
'load_and_assign_npz_dict',
'load_ckpt',
'load_cropped_svhn',
'load_file_list',
'load_folder_list',
'load_npy_to_any',
'load_npz',
'maybe_download_and_extract',
'natural_keys',
'npz_to_W_pdf',
'read_file',
'save_any_to_npy',
'save_ckpt',
'save_npz',
'save_npz_dict',
'tf_variables_to_numpy',
'assign_tf_variable',
'save_weights_to_hdf5',
'load_hdf5_to_weights_in_order',
'load_hdf5_to_weights',
'save_hdf5_graph',
'load_hdf5_graph',
# 'net2static_graph',
'static_graph2net',
# 'save_pkl_graph',
# 'load_pkl_graph',
]
def func2str(expr):
b = cloudpickle.dumps(expr)
s = base64.b64encode(b).decode()
return s
def str2func(s):
b = base64.b64decode(s)
expr = cloudpickle.loads(b)
return expr
# def net2static_graph(network):
# saved_file = dict()
# # if network._NameNone is True:
# # saved_file.update({"name": None})
# # else:
# # saved_file.update({"name": network.name})
# # if not isinstance(network.inputs, list):
# # saved_file.update({"inputs": network.inputs._info[0].name})
# # else:
# # saved_inputs = []
# # for saved_input in network.inputs:
# # saved_inputs.append(saved_input._info[0].name)
# # saved_file.update({"inputs": saved_inputs})
# # if not isinstance(network.outputs, list):
# # saved_file.update({"outputs": network.outputs._info[0].name})
# # else:
# # saved_outputs = []
# # for saved_output in network.outputs:
# # saved_outputs.append(saved_output._info[0].name)
# # saved_file.update({"outputs": saved_outputs})
# saved_file.update({"config": network.config})
#
# return saved_file
@keras_export('keras.models.save_model')
def save_keras_model(model):
# f.attrs['keras_model_config'] = json.dumps(
# {
# 'class_name': model.__class__.__name__,
# 'config': model.get_config()
# },
# default=serialization.get_json_type).encode('utf8')
#
# f.flush()
return json.dumps(
{
'class_name': model.__class__.__name__,
'config': model.get_config()
}, default=serialization.get_json_type
).encode('utf8')
@keras_export('keras.models.load_model')
def load_keras_model(model_config):
custom_objects = {}
if model_config is None:
raise ValueError('No model found in config.')
model_config = json.loads(model_config.decode('utf-8'))
model = model_config_lib.model_from_config(model_config, custom_objects=custom_objects)
return model
def save_hdf5_graph(network, filepath='model.hdf5', save_weights=False, customized_data=None):
"""Save the architecture of TL model into a hdf5 file. Support saving model weights.
Parameters
-----------
network : TensorLayer Model.
The network to save.
filepath : str
The name of model file.
save_weights : bool
Whether to save model weights.
customized_data : dict
The user customized meta data.
Examples
--------
>>> # Save the architecture (with parameters)
>>> tl.files.save_hdf5_graph(network, filepath='model.hdf5', save_weights=True)
>>> # Save the architecture (without parameters)
>>> tl.files.save_hdf5_graph(network, filepath='model.hdf5', save_weights=False)
>>> # Load the architecture in another script (no parameters restore)
>>> net = tl.files.load_hdf5_graph(filepath='model.hdf5', load_weights=False)
>>> # Load the architecture in another script (restore parameters)
>>> net = tl.files.load_hdf5_graph(filepath='model.hdf5', load_weights=True)
"""
if network.outputs is None:
raise RuntimeError("save_hdf5_graph not support dynamic mode yet")
logging.info("[*] Saving TL model into {}, saving weights={}".format(filepath, save_weights))
model_config = network.config # net2static_graph(network)
model_config["version_info"]["save_date"] = datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc
).isoformat()
model_config_str = str(model_config)
customized_data_str = str(customized_data)
# version_info = {
# "tensorlayer_version": tl.__version__,
# "backend": "tensorflow",
# "backend_version": tf.__version__,
# "training_device": "gpu",
# "save_date": datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat()
# }
# version_info_str = str(version_info)
with h5py.File(filepath, 'w') as f:
f.attrs["model_config"] = model_config_str.encode('utf8')
f.attrs["customized_data"] = customized_data_str.encode('utf8')
# f.attrs["version_info"] = version_info_str.encode('utf8')
if save_weights:
_save_weights_to_hdf5_group(f, network.all_layers)
f.flush()
logging.info("[*] Saved TL model into {}, saving weights={}".format(filepath, save_weights))
def generate_func(args):
for key in args:
if isinstance(args[key], tuple) and args[key][0] == 'is_Func':
fn = str2func(args[key][1])
args[key] = fn
# if key in ['act']:
# # fn_dict = args[key]
# # module_path = fn_dict['module_path']
# # func_name = fn_dict['func_name']
# # lib = importlib.import_module(module_path)
# # fn = getattr(lib, func_name)
# # args[key] = fn
# fn = str2func(args[key])
# args[key] = fn
# elif key in ['fn']:
# fn = str2func(args[key])
# args[key] = fn
def eval_layer(layer_kwargs):
layer_class = layer_kwargs.pop('class')
args = layer_kwargs['args']
layer_type = args.pop('layer_type')
if layer_type == "normal":
generate_func(args)
return eval('tl.layers.' + layer_class)(**args)
elif layer_type == "layerlist":
ret_layer = []
layers = args["layers"]
for layer_graph in layers:
ret_layer.append(eval_layer(layer_graph))
args['layers'] = ret_layer
return eval('tl.layers.' + layer_class)(**args)
elif layer_type == "modellayer":
M = static_graph2net(args['model'])
args['model'] = M
return eval('tl.layers.' + layer_class)(**args)
elif layer_type == "keraslayer":
M = load_keras_model(args['fn'])
input_shape = args.pop('keras_input_shape')
_ = M(np.random.random(input_shape).astype(np.float32))
args['fn'] = M
args['fn_weights'] = M.trainable_variables
return eval('tl.layers.' + layer_class)(**args)
else:
raise RuntimeError("Unknown layer type.")
def static_graph2net(model_config):
layer_dict = {}
model_name = model_config["name"]
inputs_tensors = model_config["inputs"]
outputs_tensors = model_config["outputs"]
all_args = model_config["model_architecture"]
for idx, layer_kwargs in enumerate(all_args):
layer_class = layer_kwargs["class"] # class of current layer
prev_layers = layer_kwargs.pop("prev_layer") # name of previous layers
net = eval_layer(layer_kwargs)
if layer_class in tl.layers.inputs.__all__:
net = net._nodes[0].out_tensors[0]
if prev_layers is not None:
for prev_layer in prev_layers:
if not isinstance(prev_layer, list):
output = net(layer_dict[prev_layer])
layer_dict[output._info[0].name] = output
else:
list_layers = [layer_dict[layer] for layer in prev_layer]
output = net(list_layers)
layer_dict[output._info[0].name] = output
else:
layer_dict[net._info[0].name] = net
if not isinstance(inputs_tensors, list):
model_inputs = layer_dict[inputs_tensors]
else:
model_inputs = []
for inputs_tensor in inputs_tensors:
model_inputs.append(layer_dict[inputs_tensor])
if not isinstance(outputs_tensors, list):
model_outputs = layer_dict[outputs_tensors]
else:
model_outputs = []
for outputs_tensor in outputs_tensors:
model_outputs.append(layer_dict[outputs_tensor])
from tensorlayer.models import Model
M = Model(inputs=model_inputs, outputs=model_outputs, name=model_name)
logging.info("[*] Load graph finished")
return M
def load_hdf5_graph(filepath='model.hdf5', load_weights=False):
"""Restore TL model archtecture from a a pickle file. Support loading model weights.
Parameters
-----------
filepath : str
The name of model file.
load_weights : bool
Whether to load model weights.
Returns
--------
network : TensorLayer Model.
Examples
--------
- see ``tl.files.save_hdf5_graph``
"""
logging.info("[*] Loading TL model from {}, loading weights={}".format(filepath, load_weights))
f = h5py.File(filepath, 'r')
model_config_str = f.attrs["model_config"].decode('utf8')
model_config = eval(model_config_str)
# version_info_str = f.attrs["version_info"].decode('utf8')
# version_info = eval(version_info_str)
version_info = model_config["version_info"]
backend_version = version_info["backend_version"]
tensorlayer_version = version_info["tensorlayer_version"]
if backend_version != tf.__version__:
logging.warning(
"Saved model uses tensorflow version {}, but now you are using tensorflow version {}".format(
backend_version, tf.__version__
)
)
if tensorlayer_version != tl.__version__:
logging.warning(
"Saved model uses tensorlayer version {}, but now you are using tensorlayer version {}".format(
tensorlayer_version, tl.__version__
)
)
M = static_graph2net(model_config)
if load_weights:
if not ('layer_names' in f.attrs.keys()):
raise RuntimeError("Saved model does not contain weights.")
M.load_weights(filepath=filepath)
f.close()
logging.info("[*] Loaded TL model from {}, loading weights={}".format(filepath, load_weights))
return M
# def load_pkl_graph(name='model.pkl'):
# """Restore TL model archtecture from a a pickle file. No parameters be restored.
#
# Parameters
# -----------
# name : str
# The name of graph file.
#
# Returns
# --------
# network : TensorLayer Model.
#
# Examples
# --------
# >>> # It is better to use load_hdf5_graph
# """
# logging.info("[*] Loading TL graph from {}".format(name))
# with open(name, 'rb') as file:
# saved_file = pickle.load(file)
#
# M = static_graph2net(saved_file)
#
# return M
#
#
# def save_pkl_graph(network, name='model.pkl'):
# """Save the architecture of TL model into a pickle file. No parameters be saved.
#
# Parameters
# -----------
# network : TensorLayer layer
# The network to save.
# name : str
# The name of graph file.
#
# Example
# --------
# >>> # It is better to use save_hdf5_graph
# """
# if network.outputs is None:
# raise AssertionError("save_graph not support dynamic mode yet")
#
# logging.info("[*] Saving TL graph into {}".format(name))
#
# saved_file = net2static_graph(network)
#
# with open(name, 'wb') as file:
# pickle.dump(saved_file, file, protocol=pickle.HIGHEST_PROTOCOL)
# logging.info("[*] Saved graph")
# Load dataset functions
def load_mnist_dataset(shape=(-1, 784), path='data'):
"""Load the original mnist.
Automatically download MNIST dataset and return the training, validation and test set with 50000, 10000 and 10000 digit images respectively.
Parameters
----------
shape : tuple
The shape of digit images (the default is (-1, 784), alternatively (-1, 28, 28, 1)).
path : str
The path that the data is downloaded to.
Returns
-------
X_train, y_train, X_val, y_val, X_test, y_test: tuple
Return splitted training/validation/test set respectively.
Examples
--------
>>> X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1,784), path='datasets')
>>> X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 28, 28, 1))
"""
return _load_mnist_dataset(shape, path, name='mnist', url='http://yann.lecun.com/exdb/mnist/')
def load_fashion_mnist_dataset(shape=(-1, 784), path='data'):
"""Load the fashion mnist.
Automatically download fashion-MNIST dataset and return the training, validation and test set with 50000, 10000 and 10000 fashion images respectively, `examples <http://marubon-ds.blogspot.co.uk/2017/09/fashion-mnist-exploring.html>`__.
Parameters
----------
shape : tuple
The shape of digit images (the default is (-1, 784), alternatively (-1, 28, 28, 1)).
path : str
The path that the data is downloaded to.
Returns
-------
X_train, y_train, X_val, y_val, X_test, y_test: tuple
Return splitted training/validation/test set respectively.
Examples
--------
>>> X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_fashion_mnist_dataset(shape=(-1,784), path='datasets')
>>> X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_fashion_mnist_dataset(shape=(-1, 28, 28, 1))
"""
return _load_mnist_dataset(
shape, path, name='fashion_mnist', url='http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/'
)
def _load_mnist_dataset(shape, path, name='mnist', url='http://yann.lecun.com/exdb/mnist/'):
"""A generic function to load mnist-like dataset.
Parameters:
----------
shape : tuple
The shape of digit images.
path : str
The path that the data is downloaded to.
name : str
The dataset name you want to use(the default is 'mnist').
url : str
The url of dataset(the default is 'http://yann.lecun.com/exdb/mnist/').
"""
path = os.path.join(path, name)
# Define functions for loading mnist-like data's images and labels.
# For convenience, they also download the requested files if needed.
def load_mnist_images(path, filename):
filepath = maybe_download_and_extract(filename, path, url)
logging.info(filepath)
# Read the inputs in Yann LeCun's binary format.
with gzip.open(filepath, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
# The inputs are vectors now, we reshape them to monochrome 2D images,
# following the shape convention: (examples, channels, rows, columns)
data = data.reshape(shape)
# The inputs come as bytes, we convert them to float32 in range [0,1].
# (Actually to range [0, 255/256], for compatibility to the version
# provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.)
return data / np.float32(256)
def load_mnist_labels(path, filename):
filepath = maybe_download_and_extract(filename, path, url)
# Read the labels in Yann LeCun's binary format.
with gzip.open(filepath, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=8)
# The labels are vectors of integers now, that's exactly what we want.
return data
# Download and read the training and test set images and labels.
logging.info("Load or Download {0} > {1}".format(name.upper(), path))
X_train = load_mnist_images(path, 'train-images-idx3-ubyte.gz')
y_train = load_mnist_labels(path, 'train-labels-idx1-ubyte.gz')
X_test = load_mnist_images(path, 't10k-images-idx3-ubyte.gz')
y_test = load_mnist_labels(path, 't10k-labels-idx1-ubyte.gz')
# We reserve the last 10000 training examples for validation.
X_train, X_val = X_train[:-10000], X_train[-10000:]
y_train, y_val = y_train[:-10000], y_train[-10000:]
# We just return all the arrays in order, as expected in main().
# (It doesn't matter how we do this as long as we can read them again.)
X_train = np.asarray(X_train, dtype=np.float32)
y_train = np.asarray(y_train, dtype=np.int32)
X_val = np.asarray(X_val, dtype=np.float32)
y_val = np.asarray(y_val, dtype=np.int32)
X_test = np.asarray(X_test, dtype=np.float32)
y_test = np.asarray(y_test, dtype=np.int32)
return X_train, y_train, X_val, y_val, X_test, y_test
def load_cifar10_dataset(shape=(-1, 32, 32, 3), path='data', plotable=False):
"""Load CIFAR-10 dataset.
It consists of 60000 32x32 colour images in 10 classes, with
6000 images per class. There are 50000 training images and 10000 test images.
The dataset is divided into five training batches and one test batch, each with
10000 images. The test batch contains exactly 1000 randomly-selected images from
each class. The training batches contain the remaining images in random order,
but some training batches may contain more images from one class than another.
Between them, the training batches contain exactly 5000 images from each class.
Parameters
----------
shape : tupe
The shape of digit images e.g. (-1, 3, 32, 32) and (-1, 32, 32, 3).
path : str
The path that the data is downloaded to, defaults is ``data/cifar10/``.
plotable : boolean
Whether to plot some image examples, False as default.
Examples
--------
>>> X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3))
References
----------
- `CIFAR website <https://www.cs.toronto.edu/~kriz/cifar.html>`__
- `Data download link <https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz>`__
- `<https://teratail.com/questions/28932>`__
"""
path = os.path.join(path, 'cifar10')
logging.info("Load or Download cifar10 > {}".format(path))
# Helper function to unpickle the data
def unpickle(file):
fp = open(file, 'rb')
if sys.version_info.major == 2:
data = pickle.load(fp)
elif sys.version_info.major == 3:
data = pickle.load(fp, encoding='latin-1')
fp.close()
return data
filename = 'cifar-10-python.tar.gz'
url = 'https://www.cs.toronto.edu/~kriz/'
# Download and uncompress file
maybe_download_and_extract(filename, path, url, extract=True)
# Unpickle file and fill in data
X_train = None
y_train = []
for i in range(1, 6):
data_dic = unpickle(os.path.join(path, 'cifar-10-batches-py/', "data_batch_{}".format(i)))
if i == 1:
X_train = data_dic['data']
else:
X_train = np.vstack((X_train, data_dic['data']))
y_train += data_dic['labels']
test_data_dic = unpickle(os.path.join(path, 'cifar-10-batches-py/', "test_batch"))
X_test = test_data_dic['data']
y_test = np.array(test_data_dic['labels'])
if shape == (-1, 3, 32, 32):
X_test = X_test.reshape(shape)
X_train = X_train.reshape(shape)
elif shape == (-1, 32, 32, 3):
X_test = X_test.reshape(shape, order='F')
X_train = X_train.reshape(shape, order='F')
X_test = np.transpose(X_test, (0, 2, 1, 3))
X_train = np.transpose(X_train, (0, 2, 1, 3))
else:
X_test = X_test.reshape(shape)
X_train = X_train.reshape(shape)
y_train = np.array(y_train)
if plotable:
if sys.platform.startswith('darwin'):
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
logging.info('\nCIFAR-10')
fig = plt.figure(1)
logging.info('Shape of a training image: X_train[0] %s' % X_train[0].shape)
plt.ion() # interactive mode
count = 1
for _ in range(10): # each row
for _ in range(10): # each column
_ = fig.add_subplot(10, 10, count)
if shape == (-1, 3, 32, 32):
# plt.imshow(X_train[count-1], interpolation='nearest')
plt.imshow(np.transpose(X_train[count - 1], (1, 2, 0)), interpolation='nearest')
# plt.imshow(np.transpose(X_train[count-1], (2, 1, 0)), interpolation='nearest')
elif shape == (-1, 32, 32, 3):
plt.imshow(X_train[count - 1], interpolation='nearest')
# plt.imshow(np.transpose(X_train[count-1], (1, 0, 2)), interpolation='nearest')
else:
raise Exception("Do not support the given 'shape' to plot the image examples")
plt.gca().xaxis.set_major_locator(plt.NullLocator()) # 不显示刻度(tick)
plt.gca().yaxis.set_major_locator(plt.NullLocator())
count = count + 1
plt.draw() # interactive mode
plt.pause(3) # interactive mode
logging.info("X_train: %s" % X_train.shape)
logging.info("y_train: %s" % y_train.shape)
logging.info("X_test: %s" % X_test.shape)
logging.info("y_test: %s" % y_test.shape)
X_train = np.asarray(X_train, dtype=np.float32)
X_test = np.asarray(X_test, dtype=np.float32)
y_train = np.asarray(y_train, dtype=np.int32)
y_test = np.asarray(y_test, dtype=np.int32)
return X_train, y_train, X_test, y_test
def load_cropped_svhn(path='data', include_extra=True):
"""Load Cropped SVHN.
The Cropped Street View House Numbers (SVHN) Dataset contains 32x32x3 RGB images.
Digit '1' has label 1, '9' has label 9 and '0' has label 0 (the original dataset uses 10 to represent '0'), see `ufldl website <http://ufldl.stanford.edu/housenumbers/>`__.
Parameters
----------
path : str
The path that the data is downloaded to.
include_extra : boolean
If True (default), add extra images to the training set.
Returns
-------
X_train, y_train, X_test, y_test: tuple
Return splitted training/test set respectively.
Examples
---------
>>> X_train, y_train, X_test, y_test = tl.files.load_cropped_svhn(include_extra=False)
>>> tl.vis.save_images(X_train[0:100], [10, 10], 'svhn.png')
"""
start_time = time.time()
path = os.path.join(path, 'cropped_svhn')
logging.info("Load or Download Cropped SVHN > {} | include extra images: {}".format(path, include_extra))
url = "http://ufldl.stanford.edu/housenumbers/"
np_file = os.path.join(path, "train_32x32.npz")
if file_exists(np_file) is False:
filename = "train_32x32.mat"
filepath = maybe_download_and_extract(filename, path, url)
mat = sio.loadmat(filepath)
X_train = mat['X'] / 255.0 # to [0, 1]
X_train = np.transpose(X_train, (3, 0, 1, 2))
y_train = np.squeeze(mat['y'], axis=1)
y_train[y_train == 10] = 0 # replace 10 to 0
np.savez(np_file, X=X_train, y=y_train)
del_file(filepath)
else:
v = np.load(np_file, allow_pickle=True)
X_train = v['X']
y_train = v['y']
logging.info(" n_train: {}".format(len(y_train)))
np_file = os.path.join(path, "test_32x32.npz")
if file_exists(np_file) is False:
filename = "test_32x32.mat"
filepath = maybe_download_and_extract(filename, path, url)
mat = sio.loadmat(filepath)
X_test = mat['X'] / 255.0
X_test = np.transpose(X_test, (3, 0, 1, 2))
y_test = np.squeeze(mat['y'], axis=1)
y_test[y_test == 10] = 0
np.savez(np_file, X=X_test, y=y_test)
del_file(filepath)
else:
v = np.load(np_file, allow_pickle=True)
X_test = v['X']
y_test = v['y']
logging.info(" n_test: {}".format(len(y_test)))
if include_extra:
logging.info(" getting extra 531131 images, please wait ...")
np_file = os.path.join(path, "extra_32x32.npz")
if file_exists(np_file) is False:
logging.info(" the first time to load extra images will take long time to convert the file format ...")
filename = "extra_32x32.mat"
filepath = maybe_download_and_extract(filename, path, url)
mat = sio.loadmat(filepath)
X_extra = mat['X'] / 255.0
X_extra = np.transpose(X_extra, (3, 0, 1, 2))
y_extra = np.squeeze(mat['y'], axis=1)
y_extra[y_extra == 10] = 0
np.savez(np_file, X=X_extra, y=y_extra)
del_file(filepath)
else:
v = np.load(np_file, allow_pickle=True)
X_extra = v['X']
y_extra = v['y']
# print(X_train.shape, X_extra.shape)
logging.info(" adding n_extra {} to n_train {}".format(len(y_extra), len(y_train)))
t = time.time()
X_train = np.concatenate((X_train, X_extra), 0)
y_train = np.concatenate((y_train, y_extra), 0)
# X_train = np.append(X_train, X_extra, axis=0)
# y_train = np.append(y_train, y_extra, axis=0)
logging.info(" added n_extra {} to n_train {} took {}s".format(len(y_extra), len(y_train), time.time() - t))
else:
logging.info(" no extra images are included")
logging.info(" image size: %s n_train: %d n_test: %d" % (str(X_train.shape[1:4]), len(y_train), len(y_test)))
logging.info(" took: {}s".format(int(time.time() - start_time)))
return X_train, y_train, X_test, y_test
def load_ptb_dataset(path='data'):
"""Load Penn TreeBank (PTB) dataset.
It is used in many LANGUAGE MODELING papers,
including "Empirical Evaluation and Combination of Advanced Language
Modeling Techniques", "Recurrent Neural Network Regularization".
It consists of 929k training words, 73k validation words, and 82k test
words. It has 10k words in its vocabulary.
Parameters
----------
path : str
The path that the data is downloaded to, defaults is ``data/ptb/``.
Returns
--------
train_data, valid_data, test_data : list of int
The training, validating and testing data in integer format.
vocab_size : int
The vocabulary size.
Examples
--------
>>> train_data, valid_data, test_data, vocab_size = tl.files.load_ptb_dataset()
References
---------------
- ``tensorflow.models.rnn.ptb import reader``
- `Manual download <http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz>`__
Notes
------
- If you want to get the raw data, see the source code.
"""
path = os.path.join(path, 'ptb')
logging.info("Load or Download Penn TreeBank (PTB) dataset > {}".format(path))
# Maybe dowload and uncompress tar, or load exsisting files
filename = 'simple-examples.tgz'
url = 'http://www.fit.vutbr.cz/~imikolov/rnnlm/'
maybe_download_and_extract(filename, path, url, extract=True)
data_path = os.path.join(path, 'simple-examples', 'data')
train_path = os.path.join(data_path, "ptb.train.txt")
valid_path = os.path.join(data_path, "ptb.valid.txt")
test_path = os.path.join(data_path, "ptb.test.txt")
word_to_id = nlp.build_vocab(nlp.read_words(train_path))
train_data = nlp.words_to_word_ids(nlp.read_words(train_path), word_to_id)
valid_data = nlp.words_to_word_ids(nlp.read_words(valid_path), word_to_id)
test_data = nlp.words_to_word_ids(nlp.read_words(test_path), word_to_id)
vocab_size = len(word_to_id)
# logging.info(nlp.read_words(train_path)) # ... 'according', 'to', 'mr.', '<unk>', '<eos>']
# logging.info(train_data) # ... 214, 5, 23, 1, 2]
# logging.info(word_to_id) # ... 'beyond': 1295, 'anti-nuclear': 9599, 'trouble': 1520, '<eos>': 2 ... }
# logging.info(vocabulary) # 10000
# exit()
return train_data, valid_data, test_data, vocab_size
def load_matt_mahoney_text8_dataset(path='data'):
"""Load Matt Mahoney's dataset.
Download a text file from Matt Mahoney's website
if not present, and make sure it's the right size.
Extract the first file enclosed in a zip file as a list of words.
This dataset can be used for Word Embedding.
Parameters
----------
path : str
The path that the data is downloaded to, defaults is ``data/mm_test8/``.
Returns
--------
list of str
The raw text data e.g. [.... 'their', 'families', 'who', 'were', 'expelled', 'from', 'jerusalem', ...]
Examples
--------
>>> words = tl.files.load_matt_mahoney_text8_dataset()
>>> print('Data size', len(words))
"""
path = os.path.join(path, 'mm_test8')
logging.info("Load or Download matt_mahoney_text8 Dataset> {}".format(path))
filename = 'text8.zip'
url = 'http://mattmahoney.net/dc/'
maybe_download_and_extract(filename, path, url, expected_bytes=31344016)
with zipfile.ZipFile(os.path.join(path, filename)) as f:
word_list = f.read(f.namelist()[0]).split()
for idx, _ in enumerate(word_list):
word_list[idx] = word_list[idx].decode()
return word_list
def load_imdb_dataset(
path='data', nb_words=None, skip_top=0, maxlen=None, test_split=0.2, seed=113, start_char=1, oov_char=2,
index_from=3
):
"""Load IMDB dataset.
Parameters
----------
path : str
The path that the data is downloaded to, defaults is ``data/imdb/``.
nb_words : int
Number of words to get.
skip_top : int
Top most frequent words to ignore (they will appear as oov_char value in the sequence data).
maxlen : int
Maximum sequence length. Any longer sequence will be truncated.
seed : int
Seed for reproducible data shuffling.
start_char : int
The start of a sequence will be marked with this character. Set to 1 because 0 is usually the padding character.
oov_char : int
Words that were cut out because of the num_words or skip_top limit will be replaced with this character.
index_from : int
Index actual words with this index and higher.
Examples
--------
>>> X_train, y_train, X_test, y_test = tl.files.load_imdb_dataset(
... nb_words=20000, test_split=0.2)
>>> print('X_train.shape', X_train.shape)
(20000,) [[1, 62, 74, ... 1033, 507, 27],[1, 60, 33, ... 13, 1053, 7]..]
>>> print('y_train.shape', y_train.shape)
(20000,) [1 0 0 ..., 1 0 1]
References
-----------
- `Modified from keras. <https://github.com/fchollet/keras/blob/master/keras/datasets/imdb.py>`__
"""
path = os.path.join(path, 'imdb')
filename = "imdb.pkl"
url = 'https://s3.amazonaws.com/text-datasets/'
maybe_download_and_extract(filename, path, url)
if filename.endswith(".gz"):
f = gzip.open(os.path.join(path, filename), 'rb')
else:
f = open(os.path.join(path, filename), 'rb')
X, labels = cPickle.load(f)
f.close()
np.random.seed(seed)
np.random.shuffle(X)
np.random.seed(seed)
np.random.shuffle(labels)
if start_char is not None:
X = [[start_char] + [w + index_from for w in x] for x in X]
elif index_from:
X = [[w + index_from for w in x] for x in X]
if maxlen:
new_X = []
new_labels = []
for x, y in zip(X, labels):
if len(x) < maxlen:
new_X.append(x)
new_labels.append(y)
X = new_X
labels = new_labels
if not X:
raise Exception(
'After filtering for sequences shorter than maxlen=' + str(maxlen) + ', no sequence was kept. '
'Increase maxlen.'
)
if not nb_words:
nb_words = max([max(x) for x in X])
# by convention, use 2 as OOV word
# reserve 'index_from' (=3 by default) characters: 0 (padding), 1 (start), 2 (OOV)
if oov_char is not None:
X = [[oov_char if (w >= nb_words or w < skip_top) else w for w in x] for x in X]
else:
nX = []
for x in X:
nx = []
for w in x:
if (w >= nb_words or w < skip_top):
nx.append(w)
nX.append(nx)
X = nX
X_train = np.array(X[:int(len(X) * (1 - test_split))])
y_train = np.array(labels[:int(len(X) * (1 - test_split))])
X_test = np.array(X[int(len(X) * (1 - test_split)):])
y_test = np.array(labels[int(len(X) * (1 - test_split)):])
return X_train, y_train, X_test, y_test
def load_nietzsche_dataset(path='data'):
"""Load Nietzsche dataset.
Parameters
----------
path : str
The path that the data is downloaded to, defaults is ``data/nietzsche/``.
Returns
--------
str
The content.
Examples
--------
>>> see tutorial_generate_text.py
>>> words = tl.files.load_nietzsche_dataset()
>>> words = basic_clean_str(words)
>>> words = words.split()
"""
logging.info("Load or Download nietzsche dataset > {}".format(path))
path = os.path.join(path, 'nietzsche')
filename = "nietzsche.txt"
url = 'https://s3.amazonaws.com/text-datasets/'
filepath = maybe_download_and_extract(filename, path, url)
with open(filepath, "r") as f:
words = f.read()
return words
def load_wmt_en_fr_dataset(path='data'):
"""Load WMT'15 English-to-French translation dataset.
It will download the data from the WMT'15 Website (10^9-French-English corpus), and the 2013 news test from the same site as development set.
Returns the directories of training data and test data.
Parameters
----------
path : str
The path that the data is downloaded to, defaults is ``data/wmt_en_fr/``.
References
----------
- Code modified from /tensorflow/models/rnn/translation/data_utils.py
Notes
-----
Usually, it will take a long time to download this dataset.
"""
path = os.path.join(path, 'wmt_en_fr')
# URLs for WMT data.
_WMT_ENFR_TRAIN_URL = "http://www.statmt.org/wmt10/"
_WMT_ENFR_DEV_URL = "http://www.statmt.org/wmt15/"
def gunzip_file(gz_path, new_path):
"""Unzips from gz_path into new_path."""
logging.info("Unpacking %s to %s" % (gz_path, new_path))
with gzip.open(gz_path, "rb") as gz_file:
with open(new_path, "wb") as new_file:
for line in gz_file:
new_file.write(line)
def get_wmt_enfr_train_set(path):
"""Download the WMT en-fr training corpus to directory unless it's there."""
filename = "training-giga-fren.tar"
maybe_download_and_extract(filename, path, _WMT_ENFR_TRAIN_URL, extract=True)
train_path = os.path.join(path, "giga-fren.release2.fixed")
gunzip_file(train_path + ".fr.gz", train_path + ".fr")
gunzip_file(train_path + ".en.gz", train_path + ".en")
return train_path
def get_wmt_enfr_dev_set(path):
"""Download the WMT en-fr training corpus to directory unless it's there."""
filename = "dev-v2.tgz"
dev_file = maybe_download_and_extract(filename, path, _WMT_ENFR_DEV_URL, extract=False)
dev_name = "newstest2013"
dev_path = os.path.join(path, "newstest2013")
if not (gfile.Exists(dev_path + ".fr") and gfile.Exists(dev_path + ".en")):
logging.info("Extracting tgz file %s" % dev_file)
with tarfile.open(dev_file, "r:gz") as dev_tar:
fr_dev_file = dev_tar.getmember("dev/" + dev_name + ".fr")
en_dev_file = dev_tar.getmember("dev/" + dev_name + ".en")
fr_dev_file.name = dev_name + ".fr" # Extract without "dev/" prefix.
en_dev_file.name = dev_name + ".en"
dev_tar.extract(fr_dev_file, path)
dev_tar.extract(en_dev_file, path)
return dev_path
logging.info("Load or Download WMT English-to-French translation > {}".format(path))
train_path = get_wmt_enfr_train_set(path)
dev_path = get_wmt_enfr_dev_set(path)
return train_path, dev_path
def load_flickr25k_dataset(tag='sky', path="data", n_threads=50, printable=False):
"""Load Flickr25K dataset.
Returns a list of images by a given tag from Flick25k dataset,
it will download Flickr25k from `the official website <http://press.liacs.nl/mirflickr/mirdownload.html>`__
at the first time you use it.
Parameters
------------
tag : str or None
What images to return.
- If you want to get images with tag, use string like 'dog', 'red', see `Flickr Search <https://www.flickr.com/search/>`__.
- If you want to get all images, set to ``None``.
path : str
The path that the data is downloaded to, defaults is ``data/flickr25k/``.
n_threads : int
The number of thread to read image.
printable : boolean
Whether to print infomation when reading images, default is ``False``.
Examples
-----------
Get images with tag of sky
>>> images = tl.files.load_flickr25k_dataset(tag='sky')
Get all images
>>> images = tl.files.load_flickr25k_dataset(tag=None, n_threads=100, printable=True)
"""
path = os.path.join(path, 'flickr25k')
filename = 'mirflickr25k.zip'
url = 'http://press.liacs.nl/mirflickr/mirflickr25k/'
# download dataset
if folder_exists(os.path.join(path, "mirflickr")) is False:
logging.info("[*] Flickr25k is nonexistent in {}".format(path))
maybe_download_and_extract(filename, path, url, extract=True)
del_file(os.path.join(path, filename))
# return images by the given tag.
# 1. image path list
folder_imgs = os.path.join(path, "mirflickr")
path_imgs = load_file_list(path=folder_imgs, regx='\\.jpg', printable=False)
path_imgs.sort(key=natural_keys)
# 2. tag path list
folder_tags = os.path.join(path, "mirflickr", "meta", "tags")
path_tags = load_file_list(path=folder_tags, regx='\\.txt', printable=False)
path_tags.sort(key=natural_keys)
# 3. select images
if tag is None:
logging.info("[Flickr25k] reading all images")
else:
logging.info("[Flickr25k] reading images with tag: {}".format(tag))
images_list = []
for idx, _v in enumerate(path_tags):
tags = read_file(os.path.join(folder_tags, path_tags[idx])).split('\n')
# logging.info(idx+1, tags)
if tag is None or tag in tags:
images_list.append(path_imgs[idx])
images = visualize.read_images(images_list, folder_imgs, n_threads=n_threads, printable=printable)
return images
def load_flickr1M_dataset(tag='sky', size=10, path="data", n_threads=50, printable=False):
"""Load Flick1M dataset.
Returns a list of images by a given tag from Flickr1M dataset,
it will download Flickr1M from `the official website <http://press.liacs.nl/mirflickr/mirdownload.html>`__
at the first time you use it.
Parameters
------------
tag : str or None
What images to return.
- If you want to get images with tag, use string like 'dog', 'red', see `Flickr Search <https://www.flickr.com/search/>`__.
- If you want to get all images, set to ``None``.
size : int
integer between 1 to 10. 1 means 100k images ... 5 means 500k images, 10 means all 1 million images. Default is 10.
path : str
The path that the data is downloaded to, defaults is ``data/flickr25k/``.
n_threads : int
The number of thread to read image.
printable : boolean
Whether to print infomation when reading images, default is ``False``.
Examples
----------
Use 200k images
>>> images = tl.files.load_flickr1M_dataset(tag='zebra', size=2)
Use 1 Million images
>>> images = tl.files.load_flickr1M_dataset(tag='zebra')
"""
path = os.path.join(path, 'flickr1M')
logging.info("[Flickr1M] using {}% of images = {}".format(size * 10, size * 100000))
images_zip = [
'images0.zip', 'images1.zip', 'images2.zip', 'images3.zip', 'images4.zip', 'images5.zip', 'images6.zip',
'images7.zip', 'images8.zip', 'images9.zip'
]
tag_zip = 'tags.zip'
url = 'http://press.liacs.nl/mirflickr/mirflickr1m/'
# download dataset
for image_zip in images_zip[0:size]:
image_folder = image_zip.split(".")[0]
# logging.info(path+"/"+image_folder)
if folder_exists(os.path.join(path, image_folder)) is False:
# logging.info(image_zip)
logging.info("[Flickr1M] {} is missing in {}".format(image_folder, path))
maybe_download_and_extract(image_zip, path, url, extract=True)
del_file(os.path.join(path, image_zip))
# os.system("mv {} {}".format(os.path.join(path, 'images'), os.path.join(path, image_folder)))
shutil.move(os.path.join(path, 'images'), os.path.join(path, image_folder))
else:
logging.info("[Flickr1M] {} exists in {}".format(image_folder, path))
# download tag
if folder_exists(os.path.join(path, "tags")) is False:
logging.info("[Flickr1M] tag files is nonexistent in {}".format(path))
maybe_download_and_extract(tag_zip, path, url, extract=True)
del_file(os.path.join(path, tag_zip))
else:
logging.info("[Flickr1M] tags exists in {}".format(path))
# 1. image path list
images_list = []
images_folder_list = []
for i in range(0, size):
images_folder_list += load_folder_list(path=os.path.join(path, 'images%d' % i))
images_folder_list.sort(key=lambda s: int(s.split('/')[-1])) # folder/images/ddd
for folder in images_folder_list[0:size * 10]:
tmp = load_file_list(path=folder, regx='\\.jpg', printable=False)
tmp.sort(key=lambda s: int(s.split('.')[-2])) # ddd.jpg
images_list.extend([os.path.join(folder, x) for x in tmp])
# 2. tag path list
tag_list = []
tag_folder_list = load_folder_list(os.path.join(path, "tags"))
# tag_folder_list.sort(key=lambda s: int(s.split("/")[-1])) # folder/images/ddd
tag_folder_list.sort(key=lambda s: int(os.path.basename(s)))
for folder in tag_folder_list[0:size * 10]:
tmp = load_file_list(path=folder, regx='\\.txt', printable=False)
tmp.sort(key=lambda s: int(s.split('.')[-2])) # ddd.txt
tmp = [os.path.join(folder, s) for s in tmp]
tag_list += tmp
# 3. select images
logging.info("[Flickr1M] searching tag: {}".format(tag))
select_images_list = []
for idx, _val in enumerate(tag_list):
tags = read_file(tag_list[idx]).split('\n')
if tag in tags:
select_images_list.append(images_list[idx])
logging.info("[Flickr1M] reading images with tag: {}".format(tag))
images = visualize.read_images(select_images_list, '', n_threads=n_threads, printable=printable)
return images
def load_cyclegan_dataset(filename='summer2winter_yosemite', path='data'):
"""Load images from CycleGAN's database, see `this link <https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/>`__.
Parameters
------------
filename : str
The dataset you want, see `this link <https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/>`__.
path : str
The path that the data is downloaded to, defaults is `data/cyclegan`
Examples
---------
>>> im_train_A, im_train_B, im_test_A, im_test_B = load_cyclegan_dataset(filename='summer2winter_yosemite')
"""
path = os.path.join(path, 'cyclegan')
url = 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/'
if folder_exists(os.path.join(path, filename)) is False:
logging.info("[*] {} is nonexistent in {}".format(filename, path))
maybe_download_and_extract(filename + '.zip', path, url, extract=True)
del_file(os.path.join(path, filename + '.zip'))
def load_image_from_folder(path):
path_imgs = load_file_list(path=path, regx='\\.jpg', printable=False)
return visualize.read_images(path_imgs, path=path, n_threads=10, printable=False)
im_train_A = load_image_from_folder(os.path.join(path, filename, "trainA"))
im_train_B = load_image_from_folder(os.path.join(path, filename, "trainB"))
im_test_A = load_image_from_folder(os.path.join(path, filename, "testA"))
im_test_B = load_image_from_folder(os.path.join(path, filename, "testB"))
def if_2d_to_3d(images): # [h, w] --> [h, w, 3]
for i, _v in enumerate(images):
if len(images[i].shape) == 2:
images[i] = images[i][:, :, np.newaxis]
images[i] = np.tile(images[i], (1, 1, 3))
return images
im_train_A = if_2d_to_3d(im_train_A)
im_train_B = if_2d_to_3d(im_train_B)
im_test_A = if_2d_to_3d(im_test_A)
im_test_B = if_2d_to_3d(im_test_B)
return im_train_A, im_train_B, im_test_A, im_test_B
def download_file_from_google_drive(ID, destination):
"""Download file from Google Drive.
See ``tl.files.load_celebA_dataset`` for example.
Parameters
--------------
ID : str
The driver ID.
destination : str
The destination for save file.
"""
try:
from tqdm import tqdm
except ImportError as e:
print(e)
raise ImportError("Module tqdm not found. Please install tqdm via pip or other package managers.")
try:
import requests
except ImportError as e:
print(e)
raise ImportError("Module requests not found. Please install requests via pip or other package managers.")
def save_response_content(response, destination, chunk_size=32 * 1024):
total_size = int(response.headers.get('content-length', 0))
with open(destination, "wb") as f:
for chunk in tqdm(response.iter_content(chunk_size), total=total_size, unit='B', unit_scale=True,
desc=destination):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
def get_confirm_token(response):
for key, value in response.cookies.items():
if key.startswith('download_warning'):
return value
return None
URL = "https://docs.google.com/uc?export=download"
session = requests.Session()
response = session.get(URL, params={'id': ID}, stream=True)
token = get_confirm_token(response)
if token:
params = {'id': ID, 'confirm': token}
response = session.get(URL, params=params, stream=True)
save_response_content(response, destination)
def load_celebA_dataset(path='data'):
"""Load CelebA dataset
Return a list of image path.
Parameters
-----------
path : str
The path that the data is downloaded to, defaults is ``data/celebA/``.
"""
data_dir = 'celebA'
filename, drive_id = "img_align_celeba.zip", "0B7EVK8r0v71pZjFTYXZWM3FlRnM"
save_path = os.path.join(path, filename)
image_path = os.path.join(path, data_dir)
if os.path.exists(image_path):
logging.info('[*] {} already exists'.format(save_path))
else:
exists_or_mkdir(path)
download_file_from_google_drive(drive_id, save_path)
zip_dir = ''
with zipfile.ZipFile(save_path) as zf:
zip_dir = zf.namelist()[0]
zf.extractall(path)
os.remove(save_path)
os.rename(os.path.join(path, zip_dir), image_path)
data_files = load_file_list(path=image_path, regx='\\.jpg', printable=False)
for i, _v in enumerate(data_files):
data_files[i] = os.path.join(image_path, data_files[i])
return data_files
def load_voc_dataset(path='data', dataset='2012', contain_classes_in_person=False):
"""Pascal VOC 2007/2012 Dataset.
It has 20 objects:
aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tvmonitor
and additional 3 classes : head, hand, foot for person.
Parameters
-----------
path : str
The path that the data is downloaded to, defaults is ``data/VOC``.
dataset : str
The VOC dataset version, `2012`, `2007`, `2007test` or `2012test`. We usually train model on `2007+2012` and test it on `2007test`.
contain_classes_in_person : boolean
Whether include head, hand and foot annotation, default is False.
Returns
---------
imgs_file_list : list of str
Full paths of all images.
imgs_semseg_file_list : list of str
Full paths of all maps for semantic segmentation. Note that not all images have this map!
imgs_insseg_file_list : list of str
Full paths of all maps for instance segmentation. Note that not all images have this map!
imgs_ann_file_list : list of str
Full paths of all annotations for bounding box and object class, all images have this annotations.
classes : list of str
Classes in order.
classes_in_person : list of str
Classes in person.
classes_dict : dictionary
Class label to integer.
n_objs_list : list of int
Number of objects in all images in ``imgs_file_list`` in order.
objs_info_list : list of str
Darknet format for the annotation of all images in ``imgs_file_list`` in order. ``[class_id x_centre y_centre width height]`` in ratio format.
objs_info_dicts : dictionary
The annotation of all images in ``imgs_file_list``, ``{imgs_file_list : dictionary for annotation}``,
format from `TensorFlow/Models/object-detection <https://github.com/tensorflow/models/blob/master/object_detection/create_pascal_tf_record.py>`__.
Examples
----------
>>> imgs_file_list, imgs_semseg_file_list, imgs_insseg_file_list, imgs_ann_file_list,
>>> classes, classes_in_person, classes_dict,
>>> n_objs_list, objs_info_list, objs_info_dicts = tl.files.load_voc_dataset(dataset="2012", contain_classes_in_person=False)
>>> idx = 26
>>> print(classes)
['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']
>>> print(classes_dict)
{'sheep': 16, 'horse': 12, 'bicycle': 1, 'bottle': 4, 'cow': 9, 'sofa': 17, 'car': 6, 'dog': 11, 'cat': 7, 'person': 14, 'train': 18, 'diningtable': 10, 'aeroplane': 0, 'bus': 5, 'pottedplant': 15, 'tvmonitor': 19, 'chair': 8, 'bird': 2, 'boat': 3, 'motorbike': 13}
>>> print(imgs_file_list[idx])
data/VOC/VOC2012/JPEGImages/2007_000423.jpg
>>> print(n_objs_list[idx])
2
>>> print(imgs_ann_file_list[idx])
data/VOC/VOC2012/Annotations/2007_000423.xml
>>> print(objs_info_list[idx])
14 0.173 0.461333333333 0.142 0.496
14 0.828 0.542666666667 0.188 0.594666666667
>>> ann = tl.prepro.parse_darknet_ann_str_to_list(objs_info_list[idx])
>>> print(ann)
[[14, 0.173, 0.461333333333, 0.142, 0.496], [14, 0.828, 0.542666666667, 0.188, 0.594666666667]]
>>> c, b = tl.prepro.parse_darknet_ann_list_to_cls_box(ann)
>>> print(c, b)
[14, 14] [[0.173, 0.461333333333, 0.142, 0.496], [0.828, 0.542666666667, 0.188, 0.594666666667]]
References
-------------
- `Pascal VOC2012 Website <http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit>`__.
- `Pascal VOC2007 Website <http://host.robots.ox.ac.uk/pascal/VOC/voc2007/>`__.
"""
import xml.etree.ElementTree as ET
try:
import lxml.etree as etree
except ImportError as e:
print(e)
raise ImportError("Module lxml not found. Please install lxml via pip or other package managers.")
path = os.path.join(path, 'VOC')
def _recursive_parse_xml_to_dict(xml):
"""Recursively parses XML contents to python dict.
We assume that `object` tags are the only ones that can appear
multiple times at the same level of a tree.
Args:
xml: xml tree obtained by parsing XML file contents using lxml.etree
Returns:
Python dictionary holding XML contents.
"""
if not xml:
# if xml is not None:
return {xml.tag: xml.text}
result = {}
for child in xml:
child_result = _recursive_parse_xml_to_dict(child)
if child.tag != 'object':
result[child.tag] = child_result[child.tag]
else:
if child.tag not in result:
result[child.tag] = []
result[child.tag].append(child_result[child.tag])
return {xml.tag: result}
if dataset == "2012":
url = "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/"
tar_filename = "VOCtrainval_11-May-2012.tar"
extracted_filename = "VOC2012" # "VOCdevkit/VOC2012"
logging.info(" [============= VOC 2012 =============]")
elif dataset == "2012test":
extracted_filename = "VOC2012test" # "VOCdevkit/VOC2012"
logging.info(" [============= VOC 2012 Test Set =============]")
logging.info(
" \nAuthor: 2012test only have person annotation, so 2007test is highly recommended for testing !\n"
)
time.sleep(3)
if os.path.isdir(os.path.join(path, extracted_filename)) is False:
logging.info("For VOC 2012 Test data - online registration required")
logging.info(
" Please download VOC2012test.tar from: \n register: http://host.robots.ox.ac.uk:8080 \n voc2012 : http://host.robots.ox.ac.uk:8080/eval/challenges/voc2012/ \ndownload: http://host.robots.ox.ac.uk:8080/eval/downloads/VOC2012test.tar"
)
logging.info(" unzip VOC2012test.tar,rename the folder to VOC2012test and put it into %s" % path)
exit()
# # http://host.robots.ox.ac.uk:8080/eval/downloads/VOC2012test.tar
# url = "http://host.robots.ox.ac.uk:8080/eval/downloads/"
# tar_filename = "VOC2012test.tar"
elif dataset == "2007":
url = "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/"
tar_filename = "VOCtrainval_06-Nov-2007.tar"
extracted_filename = "VOC2007"
logging.info(" [============= VOC 2007 =============]")
elif dataset == "2007test":
# http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html#testdata
# http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
url = "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/"
tar_filename = "VOCtest_06-Nov-2007.tar"
extracted_filename = "VOC2007test"
logging.info(" [============= VOC 2007 Test Set =============]")
else:
raise Exception("Please set the dataset aug to 2012, 2012test or 2007.")
# download dataset
if dataset != "2012test":
_platform = sys.platform
if folder_exists(os.path.join(path, extracted_filename)) is False:
logging.info("[VOC] {} is nonexistent in {}".format(extracted_filename, path))
maybe_download_and_extract(tar_filename, path, url, extract=True)
del_file(os.path.join(path, tar_filename))
if dataset == "2012":
if _platform == "win32":
os.system("mv {}\VOCdevkit\VOC2012 {}\VOC2012".format(path, path))
else:
os.system("mv {}/VOCdevkit/VOC2012 {}/VOC2012".format(path, path))
elif dataset == "2007":
if _platform == "win32":
os.system("mv {}\VOCdevkit\VOC2007 {}\VOC2007".format(path, path))
else:
os.system("mv {}/VOCdevkit/VOC2007 {}/VOC2007".format(path, path))
elif dataset == "2007test":
if _platform == "win32":
os.system("mv {}\VOCdevkit\VOC2007 {}\VOC2007test".format(path, path))
else:
os.system("mv {}/VOCdevkit/VOC2007 {}/VOC2007test".format(path, path))
del_folder(os.path.join(path, 'VOCdevkit'))
# object classes(labels) NOTE: YOU CAN CUSTOMIZE THIS LIST
classes = [
"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog",
"horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"
]
if contain_classes_in_person:
classes_in_person = ["head", "hand", "foot"]
else:
classes_in_person = []
classes += classes_in_person # use extra 3 classes for person
classes_dict = utils.list_string_to_dict(classes)
logging.info("[VOC] object classes {}".format(classes_dict))
# 1. image path list
# folder_imgs = path+"/"+extracted_filename+"/JPEGImages/"
folder_imgs = os.path.join(path, extracted_filename, "JPEGImages")
imgs_file_list = load_file_list(path=folder_imgs, regx='\\.jpg', printable=False)
logging.info("[VOC] {} images found".format(len(imgs_file_list)))
imgs_file_list.sort(
key=lambda s: int(s.replace('.', ' ').replace('_', '').split(' ')[-2])
) # 2007_000027.jpg --> 2007000027
imgs_file_list = [os.path.join(folder_imgs, s) for s in imgs_file_list]
# logging.info('IM',imgs_file_list[0::3333], imgs_file_list[-1])
if dataset != "2012test":
# ======== 2. semantic segmentation maps path list
# folder_semseg = path+"/"+extracted_filename+"/SegmentationClass/"
folder_semseg = os.path.join(path, extracted_filename, "SegmentationClass")
imgs_semseg_file_list = load_file_list(path=folder_semseg, regx='\\.png', printable=False)
logging.info("[VOC] {} maps for semantic segmentation found".format(len(imgs_semseg_file_list)))
imgs_semseg_file_list.sort(
key=lambda s: int(s.replace('.', ' ').replace('_', '').split(' ')[-2])
) # 2007_000032.png --> 2007000032
imgs_semseg_file_list = [os.path.join(folder_semseg, s) for s in imgs_semseg_file_list]
# logging.info('Semantic Seg IM',imgs_semseg_file_list[0::333], imgs_semseg_file_list[-1])
# ======== 3. instance segmentation maps path list
# folder_insseg = path+"/"+extracted_filename+"/SegmentationObject/"
folder_insseg = os.path.join(path, extracted_filename, "SegmentationObject")
imgs_insseg_file_list = load_file_list(path=folder_insseg, regx='\\.png', printable=False)
logging.info("[VOC] {} maps for instance segmentation found".format(len(imgs_semseg_file_list)))
imgs_insseg_file_list.sort(
key=lambda s: int(s.replace('.', ' ').replace('_', '').split(' ')[-2])
) # 2007_000032.png --> 2007000032
imgs_insseg_file_list = [os.path.join(folder_insseg, s) for s in imgs_insseg_file_list]
# logging.info('Instance Seg IM',imgs_insseg_file_list[0::333], imgs_insseg_file_list[-1])
else:
imgs_semseg_file_list = []
imgs_insseg_file_list = []
# 4. annotations for bounding box and object class
# folder_ann = path+"/"+extracted_filename+"/Annotations/"
folder_ann = os.path.join(path, extracted_filename, "Annotations")
imgs_ann_file_list = load_file_list(path=folder_ann, regx='\\.xml', printable=False)
logging.info(
"[VOC] {} XML annotation files for bounding box and object class found".format(len(imgs_ann_file_list))
)
imgs_ann_file_list.sort(
key=lambda s: int(s.replace('.', ' ').replace('_', '').split(' ')[-2])
) # 2007_000027.xml --> 2007000027
imgs_ann_file_list = [os.path.join(folder_ann, s) for s in imgs_ann_file_list]
# logging.info('ANN',imgs_ann_file_list[0::3333], imgs_ann_file_list[-1])
if dataset == "2012test": # remove unused images in JPEG folder
imgs_file_list_new = []
for ann in imgs_ann_file_list:
ann = os.path.split(ann)[-1].split('.')[0]
for im in imgs_file_list:
if ann in im:
imgs_file_list_new.append(im)
break
imgs_file_list = imgs_file_list_new
logging.info("[VOC] keep %d images" % len(imgs_file_list_new))
# parse XML annotations
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(file_name):
"""Given VOC2012 XML Annotations, returns number of objects and info."""
in_file = open(file_name)
out_file = ""
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
n_objs = 0
for obj in root.iter('object'):
if dataset != "2012test":
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
else:
cls = obj.find('name').text
if cls not in classes:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (
float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text)
)
bb = convert((w, h), b)
out_file += str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n'
n_objs += 1
if cls in "person":
for part in obj.iter('part'):
cls = part.find('name').text
if cls not in classes_in_person:
continue
cls_id = classes.index(cls)
xmlbox = part.find('bndbox')
b = (
float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text),
float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)
)
bb = convert((w, h), b)
# out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
out_file += str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n'
n_objs += 1
in_file.close()
return n_objs, out_file
logging.info("[VOC] Parsing xml annotations files")
n_objs_list = []
objs_info_list = [] # Darknet Format list of string
objs_info_dicts = {}
for idx, ann_file in enumerate(imgs_ann_file_list):
n_objs, objs_info = convert_annotation(ann_file)
n_objs_list.append(n_objs)
objs_info_list.append(objs_info)
with tf.io.gfile.GFile(ann_file, 'r') as fid:
xml_str = fid.read()
xml = etree.fromstring(xml_str)
data = _recursive_parse_xml_to_dict(xml)['annotation']
objs_info_dicts.update({imgs_file_list[idx]: data})
return imgs_file_list, imgs_semseg_file_list, imgs_insseg_file_list, imgs_ann_file_list, classes, classes_in_person, classes_dict, n_objs_list, objs_info_list, objs_info_dicts
def load_mpii_pose_dataset(path='data', is_16_pos_only=False):
"""Load MPII Human Pose Dataset.
Parameters
-----------
path : str
The path that the data is downloaded to.
is_16_pos_only : boolean
If True, only return the peoples contain 16 pose keypoints. (Usually be used for single person pose estimation)
Returns
----------
img_train_list : list of str
The image directories of training data.
ann_train_list : list of dict
The annotations of training data.
img_test_list : list of str
The image directories of testing data.
ann_test_list : list of dict
The annotations of testing data.
Examples
--------
>>> import pprint
>>> import tensorlayer as tl
>>> img_train_list, ann_train_list, img_test_list, ann_test_list = tl.files.load_mpii_pose_dataset()
>>> image = tl.vis.read_image(img_train_list[0])
>>> tl.vis.draw_mpii_pose_to_image(image, ann_train_list[0], 'image.png')
>>> pprint.pprint(ann_train_list[0])
References
-----------
- `MPII Human Pose Dataset. CVPR 14 <http://human-pose.mpi-inf.mpg.de>`__
- `MPII Human Pose Models. CVPR 16 <http://pose.mpi-inf.mpg.de>`__
- `MPII Human Shape, Poselet Conditioned Pictorial Structures and etc <http://pose.mpi-inf.mpg.de/#related>`__
- `MPII Keyponts and ID <http://human-pose.mpi-inf.mpg.de/#download>`__
"""
path = os.path.join(path, 'mpii_human_pose')
logging.info("Load or Download MPII Human Pose > {}".format(path))
# annotation
url = "http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/"
tar_filename = "mpii_human_pose_v1_u12_2.zip"
extracted_filename = "mpii_human_pose_v1_u12_2"
if folder_exists(os.path.join(path, extracted_filename)) is False:
logging.info("[MPII] (annotation) {} is nonexistent in {}".format(extracted_filename, path))
maybe_download_and_extract(tar_filename, path, url, extract=True)
del_file(os.path.join(path, tar_filename))
# images
url = "http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/"
tar_filename = "mpii_human_pose_v1.tar.gz"
extracted_filename2 = "images"
if folder_exists(os.path.join(path, extracted_filename2)) is False:
logging.info("[MPII] (images) {} is nonexistent in {}".format(extracted_filename, path))
maybe_download_and_extract(tar_filename, path, url, extract=True)
del_file(os.path.join(path, tar_filename))
# parse annotation, format see http://human-pose.mpi-inf.mpg.de/#download
logging.info("reading annotations from mat file ...")
# mat = sio.loadmat(os.path.join(path, extracted_filename, "mpii_human_pose_v1_u12_1.mat"))
# def fix_wrong_joints(joint): # https://github.com/mitmul/deeppose/blob/master/datasets/mpii_dataset.py
# if '12' in joint and '13' in joint and '2' in joint and '3' in joint:
# if ((joint['12'][0] < joint['13'][0]) and
# (joint['3'][0] < joint['2'][0])):
# joint['2'], joint['3'] = joint['3'], joint['2']
# if ((joint['12'][0] > joint['13'][0]) and
# (joint['3'][0] > joint['2'][0])):
# joint['2'], joint['3'] = joint['3'], joint['2']
# return joint
ann_train_list = []
ann_test_list = []
img_train_list = []
img_test_list = []
def save_joints():
# joint_data_fn = os.path.join(path, 'data.json')
# fp = open(joint_data_fn, 'w')
mat = sio.loadmat(os.path.join(path, extracted_filename, "mpii_human_pose_v1_u12_1.mat"))
for _, (anno, train_flag) in enumerate( # all images
zip(mat['RELEASE']['annolist'][0, 0][0], mat['RELEASE']['img_train'][0, 0][0])):
img_fn = anno['image']['name'][0, 0][0]
train_flag = int(train_flag)
# print(i, img_fn, train_flag) # DEBUG print all images
if train_flag:
img_train_list.append(img_fn)
ann_train_list.append([])
else:
img_test_list.append(img_fn)
ann_test_list.append([])
head_rect = []
if 'x1' in str(anno['annorect'].dtype):
head_rect = zip(
[x1[0, 0] for x1 in anno['annorect']['x1'][0]], [y1[0, 0] for y1 in anno['annorect']['y1'][0]],
[x2[0, 0] for x2 in anno['annorect']['x2'][0]], [y2[0, 0] for y2 in anno['annorect']['y2'][0]]
)
else:
head_rect = [] # TODO
if 'annopoints' in str(anno['annorect'].dtype):
annopoints = anno['annorect']['annopoints'][0]
head_x1s = anno['annorect']['x1'][0]
head_y1s = anno['annorect']['y1'][0]
head_x2s = anno['annorect']['x2'][0]
head_y2s = anno['annorect']['y2'][0]
for annopoint, head_x1, head_y1, head_x2, head_y2 in zip(annopoints, head_x1s, head_y1s, head_x2s,
head_y2s):
# if annopoint != []:
# if len(annopoint) != 0:
if annopoint.size:
head_rect = [
float(head_x1[0, 0]),
float(head_y1[0, 0]),
float(head_x2[0, 0]),
float(head_y2[0, 0])
]
# joint coordinates
annopoint = annopoint['point'][0, 0]
j_id = [str(j_i[0, 0]) for j_i in annopoint['id'][0]]
x = [x[0, 0] for x in annopoint['x'][0]]
y = [y[0, 0] for y in annopoint['y'][0]]
joint_pos = {}
for _j_id, (_x, _y) in zip(j_id, zip(x, y)):
joint_pos[int(_j_id)] = [float(_x), float(_y)]
# joint_pos = fix_wrong_joints(joint_pos)
# visibility list
if 'is_visible' in str(annopoint.dtype):
vis = [v[0] if v.size > 0 else [0] for v in annopoint['is_visible'][0]]
vis = dict([(k, int(v[0])) if len(v) > 0 else v for k, v in zip(j_id, vis)])
else:
vis = None
# if len(joint_pos) == 16:
if ((is_16_pos_only ==True) and (len(joint_pos) == 16)) or (is_16_pos_only == False):
# only use image with 16 key points / or use all
data = {
'filename': img_fn,
'train': train_flag,
'head_rect': head_rect,
'is_visible': vis,
'joint_pos': joint_pos
}
# print(json.dumps(data), file=fp) # py3
if train_flag:
ann_train_list[-1].append(data)
else:
ann_test_list[-1].append(data)
# def write_line(datum, fp):
# joints = sorted([[int(k), v] for k, v in datum['joint_pos'].items()])
# joints = np.array([j for i, j in joints]).flatten()
#
# out = [datum['filename']]
# out.extend(joints)
# out = [str(o) for o in out]
# out = ','.join(out)
#
# print(out, file=fp)
# def split_train_test():
# # fp_test = open('data/mpii/test_joints.csv', 'w')
# fp_test = open(os.path.join(path, 'test_joints.csv'), 'w')
# # fp_train = open('data/mpii/train_joints.csv', 'w')
# fp_train = open(os.path.join(path, 'train_joints.csv'), 'w')
# # all_data = open('data/mpii/data.json').readlines()
# all_data = open(os.path.join(path, 'data.json')).readlines()
# N = len(all_data)
# N_test = int(N * 0.1)
# N_train = N - N_test
#
# print('N:{}'.format(N))
# print('N_train:{}'.format(N_train))
# print('N_test:{}'.format(N_test))
#
# np.random.seed(1701)
# perm = np.random.permutation(N)
# test_indices = perm[:N_test]
# train_indices = perm[N_test:]
#
# print('train_indices:{}'.format(len(train_indices)))
# print('test_indices:{}'.format(len(test_indices)))
#
# for i in train_indices:
# datum = json.loads(all_data[i].strip())
# write_line(datum, fp_train)
#
# for i in test_indices:
# datum = json.loads(all_data[i].strip())
# write_line(datum, fp_test)
save_joints()
# split_train_test() #
# read images dir
logging.info("reading images list ...")
img_dir = os.path.join(path, extracted_filename2)
_img_list = load_file_list(path=os.path.join(path, extracted_filename2), regx='\\.jpg', printable=False)
# ann_list = json.load(open(os.path.join(path, 'data.json')))
for i, im in enumerate(img_train_list):
if im not in _img_list:
print('missing training image {} in {} (remove from img(ann)_train_list)'.format(im, img_dir))
# img_train_list.remove(im)
del img_train_list[i]
del ann_train_list[i]
for i, im in enumerate(img_test_list):
if im not in _img_list:
print('missing testing image {} in {} (remove from img(ann)_test_list)'.format(im, img_dir))
# img_test_list.remove(im)
del img_train_list[i]
del ann_train_list[i]
# check annotation and images
n_train_images = len(img_train_list)
n_test_images = len(img_test_list)
n_images = n_train_images + n_test_images
logging.info("n_images: {} n_train_images: {} n_test_images: {}".format(n_images, n_train_images, n_test_images))
n_train_ann = len(ann_train_list)
n_test_ann = len(ann_test_list)
n_ann = n_train_ann + n_test_ann
logging.info("n_ann: {} n_train_ann: {} n_test_ann: {}".format(n_ann, n_train_ann, n_test_ann))
n_train_people = len(sum(ann_train_list, []))
n_test_people = len(sum(ann_test_list, []))
n_people = n_train_people + n_test_people
logging.info("n_people: {} n_train_people: {} n_test_people: {}".format(n_people, n_train_people, n_test_people))
# add path to all image file name
for i, value in enumerate(img_train_list):
img_train_list[i] = os.path.join(img_dir, value)
for i, value in enumerate(img_test_list):
img_test_list[i] = os.path.join(img_dir, value)
return img_train_list, ann_train_list, img_test_list, ann_test_list
def save_npz(save_list=None, name='model.npz'):
"""Input parameters and the file name, save parameters into .npz file. Use tl.utils.load_npz() to restore.
Parameters
----------
save_list : list of tensor
A list of parameters (tensor) to be saved.
name : str
The name of the `.npz` file.
Examples
--------
Save model to npz
>>> tl.files.save_npz(network.all_weights, name='model.npz')
Load model from npz (Method 1)
>>> load_params = tl.files.load_npz(name='model.npz')
>>> tl.files.assign_weights(load_params, network)
Load model from npz (Method 2)
>>> tl.files.load_and_assign_npz(name='model.npz', network=network)
References
----------
`Saving dictionary using numpy <http://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez>`__
"""
logging.info("[*] Saving TL weights into %s" % name)
if save_list is None:
save_list = []
save_list_var = tf_variables_to_numpy(save_list)
np.savez(name, params=save_list_var)
save_list_var = None
del save_list_var
logging.info("[*] Saved")
def load_npz(path='', name='model.npz'):
"""Load the parameters of a Model saved by tl.files.save_npz().
Parameters
----------
path : str
Folder path to `.npz` file.
name : str
The name of the `.npz` file.
Returns
--------
list of array
A list of parameters in order.
Examples
--------
- See ``tl.files.save_npz``
References
----------
- `Saving dictionary using numpy <http://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez>`__
"""
d = np.load(os.path.join(path, name), allow_pickle=True)
return d['params']
def assign_params(**kwargs):
raise Exception("please change assign_params --> assign_weights")
def assign_weights(weights, network):
"""Assign the given parameters to the TensorLayer network.
Parameters
----------
weights : list of array
A list of model weights (array) in order.
network : :class:`Layer`
The network to be assigned.
Returns
--------
1) list of operations if in graph mode
A list of tf ops in order that assign weights. Support sess.run(ops) manually.
2) list of tf variables if in eager mode
A list of tf variables (assigned weights) in order.
Examples
--------
References
----------
- `Assign value to a TensorFlow variable <http://stackoverflow.com/questions/34220532/how-to-assign-value-to-a-tensorflow-variable>`__
"""
ops = []
for idx, param in enumerate(weights):
ops.append(network.all_weights[idx].assign(param))
return ops
def load_and_assign_npz(name=None, network=None):
"""Load model from npz and assign to a network.
Parameters
-------------
name : str
The name of the `.npz` file.
network : :class:`Model`
The network to be assigned.
Examples
--------
- See ``tl.files.save_npz``
"""
if network is None:
raise ValueError("network is None.")
if not os.path.exists(name):
logging.error("file {} doesn't exist.".format(name))
return False
else:
weights = load_npz(name=name)
assign_weights(weights, network)
logging.info("[*] Load {} SUCCESS!".format(name))
def save_npz_dict(save_list=None, name='model.npz'):
"""Input parameters and the file name, save parameters as a dictionary into .npz file.
Use ``tl.files.load_and_assign_npz_dict()`` to restore.
Parameters
----------
save_list : list of parameters
A list of parameters (tensor) to be saved.
name : str
The name of the `.npz` file.
"""
if save_list is None:
save_list = []
save_list_names = [tensor.name for tensor in save_list]
save_list_var = tf_variables_to_numpy(save_list)
save_var_dict = {save_list_names[idx]: val for idx, val in enumerate(save_list_var)}
np.savez(name, **save_var_dict)
save_list_var = None
save_var_dict = None
del save_list_var
del save_var_dict
logging.info("[*] Model saved in npz_dict %s" % name)
def load_and_assign_npz_dict(name='model.npz', network=None, skip=False):
"""Restore the parameters saved by ``tl.files.save_npz_dict()``.
Parameters
-------------
name : str
The name of the `.npz` file.
network : :class:`Model`
The network to be assigned.
skip : boolean
If 'skip' == True, loaded weights whose name is not found in network's weights will be skipped.
If 'skip' is False, error will be raised when mismatch is found. Default False.
"""
if not os.path.exists(name):
logging.error("file {} doesn't exist.".format(name))
return False
weights = np.load(name, allow_pickle=True)
if len(weights.keys()) != len(set(weights.keys())):
raise Exception("Duplication in model npz_dict %s" % name)
net_weights_name = [w.name for w in network.all_weights]
for key in weights.keys():
if key not in net_weights_name:
if skip:
logging.warning("Weights named '%s' not found in network. Skip it." % key)
else:
raise RuntimeError(
"Weights named '%s' not found in network. Hint: set argument skip=Ture "
"if you want to skip redundant or mismatch weights." % key
)
else:
assign_tf_variable(network.all_weights[net_weights_name.index(key)], weights[key])
logging.info("[*] Model restored from npz_dict %s" % name)
def save_ckpt(mode_name='model.ckpt', save_dir='checkpoint', var_list=None, global_step=None, printable=False):
"""Save parameters into `ckpt` file.
Parameters
------------
mode_name : str
The name of the model, default is ``model.ckpt``.
save_dir : str
The path / file directory to the `ckpt`, default is ``checkpoint``.
var_list : list of tensor
The parameters / variables (tensor) to be saved. If empty, save all global variables (default).
global_step : int or None
Step number.
printable : boolean
Whether to print all parameters information.
See Also
--------
load_ckpt
"""
if var_list is None:
if sess is None:
# FIXME: not sure whether global variables can be accessed in eager mode
raise ValueError(
"If var_list is None, sess must be specified. "
"In eager mode, can not access global variables easily. "
)
var_list = []
ckpt_file = os.path.join(save_dir, mode_name)
if var_list == []:
var_list = tf.global_variables()
logging.info("[*] save %s n_weights: %d" % (ckpt_file, len(var_list)))
if printable:
for idx, v in enumerate(var_list):
logging.info(" param {:3}: {:15} {}".format(idx, v.name, str(v.get_shape())))
if sess:
# graph mode
saver = tf.train.Saver(var_list)
saver.save(sess, ckpt_file, global_step=global_step)
else:
# eager mode
# saver = tfes.Saver(var_list)
# saver.save(ckpt_file, global_step=global_step)
# TODO: tf2.0 not stable, cannot import tensorflow.contrib.eager.python.saver
pass
def load_ckpt(sess=None, mode_name='model.ckpt', save_dir='checkpoint', var_list=None, is_latest=True, printable=False):
"""Load parameters from `ckpt` file.
Parameters
------------
sess : Session
TensorFlow Session.
mode_name : str
The name of the model, default is ``model.ckpt``.
save_dir : str
The path / file directory to the `ckpt`, default is ``checkpoint``.
var_list : list of tensor
The parameters / variables (tensor) to be saved. If empty, save all global variables (default).
is_latest : boolean
Whether to load the latest `ckpt`, if False, load the `ckpt` with the name of ```mode_name``.
printable : boolean
Whether to print all parameters information.
Examples
----------
- Save all global parameters.
>>> tl.files.save_ckpt(sess=sess, mode_name='model.ckpt', save_dir='model', printable=True)
- Save specific parameters.
>>> tl.files.save_ckpt(sess=sess, mode_name='model.ckpt', var_list=net.all_params, save_dir='model', printable=True)
- Load latest ckpt.
>>> tl.files.load_ckpt(sess=sess, var_list=net.all_params, save_dir='model', printable=True)
- Load specific ckpt.
>>> tl.files.load_ckpt(sess=sess, mode_name='model.ckpt', var_list=net.all_params, save_dir='model', is_latest=False, printable=True)
"""
# if sess is None:
# raise ValueError("session is None.")
if var_list is None:
if sess is None:
# FIXME: not sure whether global variables can be accessed in eager mode
raise ValueError(
"If var_list is None, sess must be specified. "
"In eager mode, can not access global variables easily. "
)
var_list = []
if is_latest:
ckpt_file = tf.train.latest_checkpoint(save_dir)
else:
ckpt_file = os.path.join(save_dir, mode_name)
if not var_list:
var_list = tf.global_variables()
logging.info("[*] load %s n_weights: %d" % (ckpt_file, len(var_list)))
if printable:
for idx, v in enumerate(var_list):
logging.info(" weights {:3}: {:15} {}".format(idx, v.name, str(v.get_shape())))
try:
if sess:
# graph mode
saver = tf.train.Saver(var_list)
saver.restore(sess, ckpt_file)
else:
# eager mode
# saver = tfes.Saver(var_list)
# saver.restore(ckpt_file)
# TODO: tf2.0 not stable, cannot import tensorflow.contrib.eager.python.saver
pass
except Exception as e:
logging.info(e)
logging.info("[*] load ckpt fail ...")
def save_any_to_npy(save_dict=None, name='file.npy'):
"""Save variables to `.npy` file.
Parameters
------------
save_dict : directory
The variables to be saved.
name : str
File name.
Examples
---------
>>> tl.files.save_any_to_npy(save_dict={'data': ['a','b']}, name='test.npy')
>>> data = tl.files.load_npy_to_any(name='test.npy')
>>> print(data)
{'data': ['a','b']}
"""
if save_dict is None:
save_dict = {}
np.save(name, save_dict)
def load_npy_to_any(path='', name='file.npy'):
"""Load `.npy` file.
Parameters
------------
path : str
Path to the file (optional).
name : str
File name.
Examples
---------
- see tl.files.save_any_to_npy()
"""
file_path = os.path.join(path, name)
try:
return np.load(file_path, allow_pickle=True).item()
except Exception:
return np.load(file_path, allow_pickle=True)
raise Exception("[!] Fail to load %s" % file_path)
def file_exists(filepath):
"""Check whether a file exists by given file path."""
return os.path.isfile(filepath)
def folder_exists(folderpath):
"""Check whether a folder exists by given folder path."""
return os.path.isdir(folderpath)
def del_file(filepath):
"""Delete a file by given file path."""
os.remove(filepath)
def del_folder(folderpath):
"""Delete a folder by given folder path."""
shutil.rmtree(folderpath)
def read_file(filepath):
"""Read a file and return a string.
Examples
---------
>>> data = tl.files.read_file('data.txt')
"""
with open(filepath, 'r') as afile:
return afile.read()
def load_file_list(path=None, regx='\.jpg', printable=True, keep_prefix=False):
r"""Return a file list in a folder by given a path and regular expression.
Parameters
----------
path : str or None
A folder path, if `None`, use the current directory.
regx : str
The regx of file name.
printable : boolean
Whether to print the files infomation.
keep_prefix : boolean
Whether to keep path in the file name.
Examples
----------
>>> file_list = tl.files.load_file_list(path=None, regx='w1pre_[0-9]+\.(npz)')
"""
if path is None:
path = os.getcwd()
file_list = os.listdir(path)
return_list = []
for _, f in enumerate(file_list):
if re.search(regx, f):
return_list.append(f)
# return_list.sort()
if keep_prefix:
for i, f in enumerate(return_list):
return_list[i] = os.path.join(path, f)
if printable:
logging.info('Match file list = %s' % return_list)
logging.info('Number of files = %d' % len(return_list))
return return_list
def load_folder_list(path=""):
"""Return a folder list in a folder by given a folder path.
Parameters
----------
path : str
A folder path.
"""
return [os.path.join(path, o) for o in os.listdir(path) if os.path.isdir(os.path.join(path, o))]
def exists_or_mkdir(path, verbose=True):
"""Check a folder by given name, if not exist, create the folder and return False,
if directory exists, return True.
Parameters
----------
path : str
A folder path.
verbose : boolean
If True (default), prints results.
Returns
--------
boolean
True if folder already exist, otherwise, returns False and create the folder.
Examples
--------
>>> tl.files.exists_or_mkdir("checkpoints/train")
"""
if not os.path.exists(path):
if verbose:
logging.info("[*] creates %s ..." % path)
os.makedirs(path)
return False
else:
if verbose:
logging.info("[!] %s exists ..." % path)
return True
def maybe_download_and_extract(filename, working_directory, url_source, extract=False, expected_bytes=None):
"""Checks if file exists in working_directory otherwise tries to dowload the file,
and optionally also tries to extract the file if format is ".zip" or ".tar"
Parameters
-----------
filename : str
The name of the (to be) dowloaded file.
working_directory : str
A folder path to search for the file in and dowload the file to
url : str
The URL to download the file from
extract : boolean
If True, tries to uncompress the dowloaded file is ".tar.gz/.tar.bz2" or ".zip" file, default is False.
expected_bytes : int or None
If set tries to verify that the downloaded file is of the specified size, otherwise raises an Exception, defaults is None which corresponds to no check being performed.
Returns
----------
str
File path of the dowloaded (uncompressed) file.
Examples
--------
>>> down_file = tl.files.maybe_download_and_extract(filename='train-images-idx3-ubyte.gz',
... working_directory='data/',
... url_source='http://yann.lecun.com/exdb/mnist/')
>>> tl.files.maybe_download_and_extract(filename='ADEChallengeData2016.zip',
... working_directory='data/',
... url_source='http://sceneparsing.csail.mit.edu/data/',
... extract=True)
"""
# We first define a download function, supporting both Python 2 and 3.
def _download(filename, working_directory, url_source):
progress_bar = progressbar.ProgressBar()
def _dlProgress(count, blockSize, totalSize, pbar=progress_bar):
if (totalSize != 0):
if not pbar.max_value:
totalBlocks = math.ceil(float(totalSize) / float(blockSize))
pbar.max_value = int(totalBlocks)
pbar.update(count, force=True)
filepath = os.path.join(working_directory, filename)
logging.info('Downloading %s...\n' % filename)
urlretrieve(url_source + filename, filepath, reporthook=_dlProgress)
exists_or_mkdir(working_directory, verbose=False)
filepath = os.path.join(working_directory, filename)
if not os.path.exists(filepath):
_download(filename, working_directory, url_source)
statinfo = os.stat(filepath)
logging.info('Succesfully downloaded %s %s bytes.' % (filename, statinfo.st_size)) # , 'bytes.')
if (not (expected_bytes is None) and (expected_bytes != statinfo.st_size)):
raise Exception('Failed to verify ' + filename + '. Can you get to it with a browser?')
if (extract):
if tarfile.is_tarfile(filepath):
logging.info('Trying to extract tar file')
tarfile.open(filepath, 'r').extractall(working_directory)
logging.info('... Success!')
elif zipfile.is_zipfile(filepath):
logging.info('Trying to extract zip file')
with zipfile.ZipFile(filepath) as zf:
zf.extractall(working_directory)
logging.info('... Success!')
else:
logging.info("Unknown compression_format only .tar.gz/.tar.bz2/.tar and .zip supported")
return filepath
def natural_keys(text):
"""Sort list of string with number in human order.
Examples
----------
>>> l = ['im1.jpg', 'im31.jpg', 'im11.jpg', 'im21.jpg', 'im03.jpg', 'im05.jpg']
>>> l.sort(key=tl.files.natural_keys)
['im1.jpg', 'im03.jpg', 'im05', 'im11.jpg', 'im21.jpg', 'im31.jpg']
>>> l.sort() # that is what we dont want
['im03.jpg', 'im05', 'im1.jpg', 'im11.jpg', 'im21.jpg', 'im31.jpg']
References
----------
- `link <http://nedbatchelder.com/blog/200712/human_sorting.html>`__
"""
# - alist.sort(key=natural_keys) sorts in human order
# http://nedbatchelder.com/blog/200712/human_sorting.html
# (See Toothy's implementation in the comments)
def atoi(text):
return int(text) if text.isdigit() else text
return [atoi(c) for c in re.split('(\d+)', text)]
# Visualizing npz files
def npz_to_W_pdf(path=None, regx='w1pre_[0-9]+\.(npz)'):
r"""Convert the first weight matrix of `.npz` file to `.pdf` by using `tl.visualize.W()`.
Parameters
----------
path : str
A folder path to `npz` files.
regx : str
Regx for the file name.
Examples
---------
Convert the first weight matrix of w1_pre...npz file to w1_pre...pdf.
>>> tl.files.npz_to_W_pdf(path='/Users/.../npz_file/', regx='w1pre_[0-9]+\.(npz)')
"""
file_list = load_file_list(path=path, regx=regx)
for f in file_list:
W = load_npz(path, f)[0]
logging.info("%s --> %s" % (f, f.split('.')[0] + '.pdf'))
visualize.draw_weights(W, second=10, saveable=True, name=f.split('.')[0], fig_idx=2012)
def tf_variables_to_numpy(variables):
"""Convert TF tensor or a list of tensors into a list of numpy array"""
if not isinstance(variables, list):
var_list = [variables]
else:
var_list = variables
results = [v.numpy() for v in var_list]
return results
def assign_tf_variable(variable, value):
"""Assign value to a TF variable"""
variable.assign(value)
def _save_weights_to_hdf5_group(f, layers):
"""
Save layer/model weights into hdf5 group recursively.
Parameters
----------
f: hdf5 group
A hdf5 group created by h5py.File() or create_group().
layers: list
A list of layers to save weights.
"""
f.attrs['layer_names'] = [layer.name.encode('utf8') for layer in layers]
for layer in layers:
g = f.create_group(layer.name)
if isinstance(layer, tl.models.Model):
_save_weights_to_hdf5_group(g, layer.all_layers)
elif isinstance(layer, tl.layers.ModelLayer):
_save_weights_to_hdf5_group(g, layer.model.all_layers)
elif isinstance(layer, tl.layers.LayerList):
_save_weights_to_hdf5_group(g, layer.layers)
elif isinstance(layer, tl.layers.Layer):
if layer.all_weights is not None:
weight_values = tf_variables_to_numpy(layer.all_weights)
weight_names = [w.name.encode('utf8') for w in layer.all_weights]
else:
weight_values = []
weight_names = []
g.attrs['weight_names'] = weight_names
for name, val in zip(weight_names, weight_values):
val_dataset = g.create_dataset(name, val.shape, dtype=val.dtype)
if not val.shape:
# scalar
val_dataset[()] = val
else:
val_dataset[:] = val
else:
raise Exception("Only layer or model can be saved into hdf5.")
def _load_weights_from_hdf5_group_in_order(f, layers):
"""
Load layer weights from a hdf5 group sequentially.
Parameters
----------
f: hdf5 group
A hdf5 group created by h5py.File() or create_group().
layers: list
A list of layers to load weights.
"""
layer_names = [n.decode('utf8') for n in f.attrs["layer_names"]]
for idx, name in enumerate(layer_names):
g = f[name]
layer = layers[idx]
if isinstance(layer, tl.models.Model):
_load_weights_from_hdf5_group_in_order(g, layer.all_layers)
elif isinstance(layer, tl.layers.ModelLayer):
_load_weights_from_hdf5_group_in_order(g, layer.model.all_layers)
elif isinstance(layer, tl.layers.LayerList):
_load_weights_from_hdf5_group_in_order(g, layer.layers)
elif isinstance(layer, tl.layers.Layer):
weight_names = [n.decode('utf8') for n in g.attrs['weight_names']]
for iid, w_name in enumerate(weight_names):
assign_tf_variable(layer.all_weights[iid], np.asarray(g[w_name]))
else:
raise Exception("Only layer or model can be saved into hdf5.")
if idx == len(layers) - 1:
break
def _load_weights_from_hdf5_group(f, layers, skip=False):
"""
Load layer weights from a hdf5 group by layer name.
Parameters
----------
f: hdf5 group
A hdf5 group created by h5py.File() or create_group().
layers: list
A list of layers to load weights.
skip : boolean
If 'skip' == True, loaded layer whose name is not found in 'layers' will be skipped. If 'skip' is False,
error will be raised when mismatch is found. Default False.
"""
layer_names = [n.decode('utf8') for n in f.attrs["layer_names"]]
layer_index = {layer.name: layer for layer in layers}
for idx, name in enumerate(layer_names):
if name not in layer_index.keys():
if skip:
logging.warning("Layer named '%s' not found in network. Skip it." % name)
else:
raise RuntimeError(
"Layer named '%s' not found in network. Hint: set argument skip=Ture "
"if you want to skip redundant or mismatch Layers." % name
)
else:
g = f[name]
layer = layer_index[name]
if isinstance(layer, tl.models.Model):
_load_weights_from_hdf5_group(g, layer.all_layers, skip)
elif isinstance(layer, tl.layers.ModelLayer):
_load_weights_from_hdf5_group(g, layer.model.all_layers, skip)
elif isinstance(layer, tl.layers.LayerList):
_load_weights_from_hdf5_group(g, layer.layers, skip)
elif isinstance(layer, tl.layers.Layer):
weight_names = [n.decode('utf8') for n in g.attrs['weight_names']]
for iid, w_name in enumerate(weight_names):
# FIXME : this is only for compatibility
if isinstance(layer, tl.layers.BatchNorm) and np.asarray(g[w_name]).ndim > 1:
assign_tf_variable(layer.all_weights[iid], np.asarray(g[w_name]).squeeze())
continue
assign_tf_variable(layer.all_weights[iid], np.asarray(g[w_name]))
else:
raise Exception("Only layer or model can be saved into hdf5.")
def save_weights_to_hdf5(filepath, network):
"""Input filepath and save weights in hdf5 format.
Parameters
----------
filepath : str
Filename to which the weights will be saved.
network : Model
TL model.
Returns
-------
"""
logging.info("[*] Saving TL weights into %s" % filepath)
with h5py.File(filepath, 'w') as f:
_save_weights_to_hdf5_group(f, network.all_layers)
logging.info("[*] Saved")
def load_hdf5_to_weights_in_order(filepath, network):
"""Load weights sequentially from a given file of hdf5 format
Parameters
----------
filepath : str
Filename to which the weights will be loaded, should be of hdf5 format.
network : Model
TL model.
Notes:
If the file contains more weights than given 'weights', then the redundant ones will be ignored
if all previous weights match perfectly.
Returns
-------
"""
f = h5py.File(filepath, 'r')
try:
layer_names = [n.decode('utf8') for n in f.attrs["layer_names"]]
except Exception:
raise NameError(
"The loaded hdf5 file needs to have 'layer_names' as attributes. "
"Please check whether this hdf5 file is saved from TL."
)
if len(network.all_layers) != len(layer_names):
logging.warning(
"Number of weights mismatch."
"Trying to load a saved file with " + str(len(layer_names)) + " layers into a model with " +
str(len(network.all_layers)) + " layers."
)
_load_weights_from_hdf5_group_in_order(f, network.all_layers)
f.close()
logging.info("[*] Load %s SUCCESS!" % filepath)
def load_hdf5_to_weights(filepath, network, skip=False):
"""Load weights by name from a given file of hdf5 format
Parameters
----------
filepath : str
Filename to which the weights will be loaded, should be of hdf5 format.
network : Model
TL model.
skip : bool
If 'skip' == True, loaded weights whose name is not found in 'weights' will be skipped. If 'skip' is False,
error will be raised when mismatch is found. Default False.
Returns
-------
"""
f = h5py.File(filepath, 'r')
try:
layer_names = [n.decode('utf8') for n in f.attrs["layer_names"]]
except Exception:
raise NameError(
"The loaded hdf5 file needs to have 'layer_names' as attributes. "
"Please check whether this hdf5 file is saved from TL."
)
net_index = {layer.name: layer for layer in network.all_layers}
if len(network.all_layers) != len(layer_names):
logging.warning(
"Number of weights mismatch."
"Trying to load a saved file with " + str(len(layer_names)) + " layers into a model with " +
str(len(network.all_layers)) + " layers."
)
# check mismatch form network weights to hdf5
for name in net_index.keys():
if name not in layer_names:
logging.warning("Network layer named '%s' not found in loaded hdf5 file. It will be skipped." % name)
# load weights from hdf5 to network
_load_weights_from_hdf5_group(f, network.all_layers, skip)
f.close()
logging.info("[*] Load %s SUCCESS!" % filepath)
|
the-stack_0_4353 | import logging
from typing import Dict
from synch.factory import get_reader, get_writer
from synch.settings import Settings
logger = logging.getLogger("synch.replication.etl")
def etl_full(
alias: str, schema: str, tables_pk: Dict, renew=False, full=True
):
"""
full etl
"""
reader = get_reader(alias)
source_db_database = Settings.get_source_db_database(alias, schema)
schema = source_db_database.get("database")
writer = get_writer()
if not writer.check_database_exists(schema):
if source_db_database.get("auto_create") is not False:
writer.create_database(schema, Settings.cluster_name())
else:
logger.warning(
f"Can't etl since no database {schema} found in ClickHouse and auto_create=false"
)
exit(-1)
for table in source_db_database.get("tables"):
if not full:
if table['table'] not in list(tables_pk.keys()):
continue
if table.get("auto_full_etl") is False:
continue
table_name = table.get("table")
pk = tables_pk.get(table_name)
writer = get_writer(table.get("clickhouse_engine"))
if not pk and not renew:
logger.warning(f"No pk found in {schema}.{table_name}, skip")
continue
elif isinstance(pk, tuple):
pk = f"({','.join(pk)})"
if renew:
drop_sql = f"drop table if exists {schema}.{table_name}"
writer.execute(drop_sql)
logger.info(f"drop table success:{schema}.{table_name}")
if not writer.check_table_exists(schema, table_name):
sign_column = table.get("sign_column")
version_column = table.get("version_column")
order_by = table.get("order_by")
writer.execute(
writer.get_table_create_sql(
reader,
schema,
table_name,
pk,
table.get("partition_by"),
table.get("engine_settings"),
sign_column=sign_column,
version_column=version_column,
order_by=order_by,
)
)
if Settings.is_cluster():
for w in get_writer(choice=False):
w.execute(
w.get_distributed_table_create_sql(
schema, table_name, Settings.get("clickhouse.distributed_suffix")
)
)
if reader.fix_column_type and not table.get("skip_decimal"):
writer.fix_table_column_type(reader, schema, table_name)
full_insert_sql = writer.get_full_insert_sql(reader, schema, table_name, sign_column)
logger.info(f"{full_insert_sql}")
writer.execute(full_insert_sql)
logger.info(f"full data etl for {schema}.{table_name} success")
else:
logger.debug(
f"{schema}.{table_name} exists, skip, or use --renew force etl with drop old tables"
)
|
the-stack_0_4354 | #! /usr/bin/env python3
import struct
import enum
def printMessage(s):
return ' '.join("{:02x}".format(c) for c in s)
class MessageType(enum.Enum):
Text = 0
Numeric = 1
Logic = 2
def decodeMessage(s, msgType):
payloadSize = struct.unpack_from('<H', s, 0)[0]
if payloadSize < 5: # includes the mailSize
raise BufferError('Payload size is too small')
a, b, c, d = struct.unpack_from('<4B', s, 2)
if a != 1 or b != 0 or c != 0x81 or d != 0x9e:
raise BufferError('Header is not correct. Expecting 01 00 81 9e')
mailSize = struct.unpack_from('<B', s, 6)[0]
if payloadSize < (5 + mailSize): # includes the valueSize
raise BufferError('Payload size is too small')
mailBytes = struct.unpack_from('<' + str(mailSize) + 's', s, 7)[0]
mail = mailBytes.decode('ascii')[:-1]
valueSize = struct.unpack_from('<H', s, 7 + mailSize)[0]
if payloadSize < (7 + mailSize + valueSize): # includes the valueSize
raise BufferError('Payload size does not match the packet')
if msgType == MessageType.Logic:
if valueSize != 1:
raise BufferError('Value size is not one byte required for Logic Type')
valueBytes = struct.unpack_from('<B', s, 9 + mailSize)[0]
value = True if valueBytes != 0 else False
elif msgType == MessageType.Numeric:
if valueSize != 4:
raise BufferError('Value size is not four bytes required for Numeric Type')
value = struct.unpack_from('<f', s, 9 + mailSize)[0]
else:
valueBytes = struct.unpack_from('<' + str(valueSize) + 's', s, 9 + mailSize)[0]
value = valueBytes.decode('ascii')[:-1]
remnant = None
if len(s) > (payloadSize + 2):
remnant = s[(payloadSize) + 2:]
return (mail, value, remnant)
def encodeMessage(msgType, mail, value):
mail = mail + '\x00'
mailBytes = mail.encode('ascii')
mailSize = len(mailBytes)
fmt = '<H4BB' + str(mailSize) + 'sH'
if msgType == MessageType.Logic:
valueSize = 1
valueBytes = 1 if value is True else 0
fmt += 'B'
elif msgType == MessageType.Numeric:
valueSize = 4
valueBytes = float(value)
fmt += 'f'
else:
value = value + '\x00'
valueBytes = value.encode('ascii')
valueSize = len(valueBytes)
fmt += str(valueSize) + 's'
payloadSize = 7 + mailSize + valueSize
s = struct.pack(fmt, payloadSize, 0x01, 0x00, 0x81, 0x9e, mailSize, mailBytes, valueSize, valueBytes)
return s
if __name__ == "__main__":
s = encodeMessage(MessageType.Text, 'abc', 'Hello')
print(printMessage(s))
|
the-stack_0_4357 | # Electrum - Lightweight Bitcoin Client
# Copyright (c) 2015 Thomas Voegtlin
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import re
import dns
import json
import traceback
import sys
from .address import Address
from . import dnssec
from .util import FileImportFailed, FileImportFailedEncrypted
class Contacts(dict):
def __init__(self, storage):
self.storage = storage
d = self.storage.get('contacts', {})
try:
self.update(d)
except:
return
# backward compatibility
for k, v in self.items():
_type, n = v
if _type == 'address' and Address.is_valid(n):
self.pop(k)
self[n] = ('address', k)
def save(self):
self.storage.put('contacts', dict(self))
def import_file(self, path):
try:
with open(path, 'r') as f:
d = self._validate(json.loads(f.read()))
except json.decoder.JSONDecodeError:
traceback.print_exc(file=sys.stderr)
raise FileImportFailedEncrypted()
except BaseException:
traceback.print_exc(file=sys.stdout)
raise FileImportFailed()
self.update(d)
self.save()
def __setitem__(self, key, value):
dict.__setitem__(self, key, value)
self.save()
def pop(self, key):
if key in self.keys():
dict.pop(self, key)
self.save()
def resolve(self, k):
if Address.is_valid(k):
return {
'address': Address.from_string(k),
'type': 'address'
}
if k in self.keys():
_type, addr = self[k]
if _type == 'address':
return {
'address': addr,
'type': 'contact'
}
out = self.resolve_openalias(k)
if out:
address, name, validated = out
return {
'address': address,
'name': name,
'type': 'openalias',
'validated': validated
}
raise Exception("Invalid Bitcoin address or alias", k)
def resolve_openalias(self, url):
# support email-style addresses, per the OA standard
url = url.replace('@', '.')
records, validated = dnssec.query(url, dns.rdatatype.TXT)
prefix = 'btc'
for record in records:
string = record.strings[0]
if string.startswith('oa1:' + prefix):
address = self.find_regex(string, r'recipient_address=([A-Za-z0-9]+)')
name = self.find_regex(string, r'recipient_name=([^;]+)')
if not name:
name = address
if not address:
continue
return Address.from_string(address), name, validated
def find_regex(self, haystack, needle):
regex = re.compile(needle)
try:
return regex.search(haystack).groups()[0]
except AttributeError:
return None
def _validate(self, data):
for k,v in list(data.items()):
if k == 'contacts':
return self._validate(v)
if not Address.is_valid(k):
data.pop(k)
else:
_type,_ = v
if _type != 'address':
data.pop(k)
return data
|
the-stack_0_4359 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import json
import numpy as np
from scipy import misc as scp_misc
import tensorflow as tf
import facenet
import align.detect_face as detect_face
# from PIL import Image
def initialize_mtcnn(gpu_memory_fraction):
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = detect_face.create_mtcnn(sess, None)
return pnet, rnet, onet
def align_image(input_image, output_image, pnet, rnet, onet, image_size=182, margin=44, random_order=True,
gpu_memory_fraction=1.0, debug=False, just_count=False):
minsize = 20 # minimum size of face
threshold = [0.7, 0.7, 0.9] # three steps's threshold
factor = 0.709 # scale factor
if not os.path.exists(output_image):
try:
img = scp_misc.imread(input_image)
except (IOError, ValueError, IndexError) as e:
errorMessage = '{}: {}'.format(input_image, e)
if debug:
print(errorMessage)
else:
if img.ndim < 2:
if debug:
print('Unable to align "%s"' % image_path)
if img.ndim == 2:
img = facenet.to_rgb(img)
img = img[:, :, 0:3]
bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
nrof_faces = bounding_boxes.shape[0]
if just_count == True:
return True, nrof_faces
if nrof_faces > 0:
det = bounding_boxes[:, 0:4]
img_size = np.asarray(img.shape)[0:2]
if nrof_faces > 1:
det = np.squeeze(det)
counter = 0
scaled_list = []
for d in det:
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(d[0] - margin / 2, 0)
bb[1] = np.maximum(d[1] - margin / 2, 0)
bb[2] = np.minimum(d[2] + margin / 2, img_size[1])
bb[3] = np.minimum(d[3] + margin / 2, img_size[0])
cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
scaled = scp_misc.imresize(cropped, (image_size, image_size), interp='bilinear')
filename = "{}_{}.jpg".format(output_image.split(".")[0] + "image", str(counter))
scp_misc.imsave(filename, scaled)
scaled_list.append(scaled)
counter = counter +1
return True, scaled_list
if nrof_faces == 1:
det = np.squeeze(det)
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0] - margin / 2, 0)
bb[1] = np.maximum(det[1] - margin / 2, 0)
bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
scaled = scp_misc.imresize(cropped, (image_size, image_size), interp='bilinear')
scp_misc.imsave(output_image, scaled)
return True, scaled
else:
if debug:
print('Unable to align "%s"' % input_image)
return False, 1
def main(args):
# TODO Check why this was previously being initialised inside the image loop
file_to_facecount = dict()
pnet, rnet, onet = initialize_mtcnn(0.8)
for filename in os.listdir(args.input_dir):
input_image = filename
output_image = filename
if os.path.isfile(os.path.join(args.input_dir, input_image)) == False:
continue
input_image = os.path.join(args.input_dir, input_image)
output_image = os.path.join(args.output_dir, output_image)
_, result = align_image(input_image, output_image, pnet, rnet, onet, image_size=args.image_size, margin=args.margin, random_order=args.random_order,
gpu_memory_fraction=args.gpu_memory_fraction, debug=False, just_count=args.just_count)
if args.just_count == True:
file_to_facecount[filename] = result
if args.just_count:
json.dump(file_to_facecount, open(os.path.join(args.output_dir, args.count_file), "w"))
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('input_dir', type=str, help='Directory with unaligned images.')
parser.add_argument('output_dir', type=str, help='Directory with aligned face thumbnails.')
parser.add_argument('--image_size', type=int,
help='Image size (height, width) in pixels.', default=182)
parser.add_argument('--margin', type=int,
help='Margin for the crop around the bounding box (height, width) in pixels.', default=44)
parser.add_argument('--random_order',
help='Shuffles the order of images to enable alignment using multiple processes.',
action='store_true')
parser.add_argument('--gpu_memory_fraction', type=float,
help='Upper bound on the amount of GPU memory that will be used by the process.',
default=1.0)
parser.add_argument('--has_classes', dest='has_classes', action='store_true',
help='Input folder is split into class subfolders, and these should be replicated',
default=True)
parser.add_argument('--no_classes', dest='has_classes', action='store_false',
help='Input folder is split into class subfolders, and these should be replicated',
default=True)
parser.add_argument('--just_count', dest='just_count', action='store_true',
help='Just save out a JSON mapping filenames to counts of faces found',
default=False)
parser.add_argument('--count_file', type=str,
help='Where to save counts of faces',
default="face_counts.json")
return parser.parse_args(argv)
if __name__ == "__main__":
main(parse_arguments(sys.argv[1:]))
#
#print(ads)
#print("bleh"\
#print(os.listdir(path))
#
# for filename in os.listdir(path):
# print(filename)
# x = filename.split('_')[0]
# ads.append(x)
# directory = (path + "/" + x)
# if not os.path.exists(directory):
# os.makedirs(directory)
# #shutil.copy(newpath + "/" + filename, directory) |
the-stack_0_4360 |
from sqlalchemy.testing import eq_, assert_raises, \
assert_raises_message, is_
from sqlalchemy.ext import declarative as decl
import sqlalchemy as sa
from sqlalchemy import testing
from sqlalchemy import Integer, String, ForeignKey
from sqlalchemy.testing.schema import Table, Column
from sqlalchemy.orm import relationship, create_session, class_mapper, \
configure_mappers, clear_mappers, \
polymorphic_union, deferred, Session
from sqlalchemy.ext.declarative import declared_attr, AbstractConcreteBase, \
ConcreteBase, has_inherited_table
from sqlalchemy.testing import fixtures
Base = None
class DeclarativeTestBase(fixtures.TestBase, testing.AssertsExecutionResults):
def setup(self):
global Base
Base = decl.declarative_base(testing.db)
def teardown(self):
Session.close_all()
clear_mappers()
Base.metadata.drop_all()
class DeclarativeInheritanceTest(DeclarativeTestBase):
def test_we_must_copy_mapper_args(self):
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator,
'polymorphic_identity': 'person'}
class Engineer(Person):
primary_language = Column(String(50))
assert 'inherits' not in Person.__mapper_args__
assert class_mapper(Engineer).polymorphic_identity is None
assert class_mapper(Engineer).polymorphic_on is Person.__table__.c.type
def test_we_must_only_copy_column_mapper_args(self):
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
a = Column(Integer)
b = Column(Integer)
c = Column(Integer)
d = Column(Integer)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator,
'polymorphic_identity': 'person',
'version_id_col': 'a',
'column_prefix': 'bar',
'include_properties': ['id', 'a', 'b'],
}
assert class_mapper(Person).version_id_col == 'a'
assert class_mapper(Person).include_properties == set(['id', 'a', 'b'])
def test_custom_join_condition(self):
class Foo(Base):
__tablename__ = 'foo'
id = Column('id', Integer, primary_key=True)
class Bar(Foo):
__tablename__ = 'bar'
id = Column('id', Integer, primary_key=True)
foo_id = Column('foo_id', Integer)
__mapper_args__ = {'inherit_condition': foo_id == Foo.id}
# compile succeeds because inherit_condition is honored
configure_mappers()
def test_joined(self):
class Company(Base, fixtures.ComparableEntity):
__tablename__ = 'companies'
id = Column('id', Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column('name', String(50))
employees = relationship('Person')
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column('id', Integer, primary_key=True,
test_needs_autoincrement=True)
company_id = Column('company_id', Integer,
ForeignKey('companies.id'))
name = Column('name', String(50))
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__tablename__ = 'engineers'
__mapper_args__ = {'polymorphic_identity': 'engineer'}
id = Column('id', Integer, ForeignKey('people.id'),
primary_key=True)
primary_language = Column('primary_language', String(50))
class Manager(Person):
__tablename__ = 'managers'
__mapper_args__ = {'polymorphic_identity': 'manager'}
id = Column('id', Integer, ForeignKey('people.id'),
primary_key=True)
golf_swing = Column('golf_swing', String(50))
Base.metadata.create_all()
sess = create_session()
c1 = Company(name='MegaCorp, Inc.',
employees=[Engineer(name='dilbert',
primary_language='java'), Engineer(name='wally',
primary_language='c++'), Manager(name='dogbert',
golf_swing='fore!')])
c2 = Company(name='Elbonia, Inc.',
employees=[Engineer(name='vlad',
primary_language='cobol')])
sess.add(c1)
sess.add(c2)
sess.flush()
sess.expunge_all()
eq_(sess.query(Company).filter(Company.employees.of_type(Engineer).
any(Engineer.primary_language
== 'cobol')).first(), c2)
# ensure that the Manager mapper was compiled with the Manager id
# column as higher priority. this ensures that "Manager.id"
# is appropriately treated as the "id" column in the "manager"
# table (reversed from 0.6's behavior.)
eq_(
Manager.id.property.columns,
[Manager.__table__.c.id, Person.__table__.c.id]
)
# assert that the "id" column is available without a second
# load. as of 0.7, the ColumnProperty tests all columns
# in it's list to see which is present in the row.
sess.expunge_all()
def go():
assert sess.query(Manager).filter(Manager.name == 'dogbert'
).one().id
self.assert_sql_count(testing.db, go, 1)
sess.expunge_all()
def go():
assert sess.query(Person).filter(Manager.name == 'dogbert'
).one().id
self.assert_sql_count(testing.db, go, 1)
def test_add_subcol_after_the_fact(self):
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column('id', Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column('name', String(50))
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__tablename__ = 'engineers'
__mapper_args__ = {'polymorphic_identity': 'engineer'}
id = Column('id', Integer, ForeignKey('people.id'),
primary_key=True)
Engineer.primary_language = Column('primary_language',
String(50))
Base.metadata.create_all()
sess = create_session()
e1 = Engineer(primary_language='java', name='dilbert')
sess.add(e1)
sess.flush()
sess.expunge_all()
eq_(sess.query(Person).first(),
Engineer(primary_language='java', name='dilbert'))
def test_add_parentcol_after_the_fact(self):
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column('id', Integer, primary_key=True,
test_needs_autoincrement=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__tablename__ = 'engineers'
__mapper_args__ = {'polymorphic_identity': 'engineer'}
primary_language = Column(String(50))
id = Column('id', Integer, ForeignKey('people.id'),
primary_key=True)
Person.name = Column('name', String(50))
Base.metadata.create_all()
sess = create_session()
e1 = Engineer(primary_language='java', name='dilbert')
sess.add(e1)
sess.flush()
sess.expunge_all()
eq_(sess.query(Person).first(),
Engineer(primary_language='java', name='dilbert'))
def test_add_sub_parentcol_after_the_fact(self):
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column('id', Integer, primary_key=True,
test_needs_autoincrement=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__tablename__ = 'engineers'
__mapper_args__ = {'polymorphic_identity': 'engineer'}
primary_language = Column(String(50))
id = Column('id', Integer, ForeignKey('people.id'),
primary_key=True)
class Admin(Engineer):
__tablename__ = 'admins'
__mapper_args__ = {'polymorphic_identity': 'admin'}
workstation = Column(String(50))
id = Column('id', Integer, ForeignKey('engineers.id'),
primary_key=True)
Person.name = Column('name', String(50))
Base.metadata.create_all()
sess = create_session()
e1 = Admin(primary_language='java', name='dilbert',
workstation='foo')
sess.add(e1)
sess.flush()
sess.expunge_all()
eq_(sess.query(Person).first(), Admin(primary_language='java',
name='dilbert', workstation='foo'))
def test_subclass_mixin(self):
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column('id', Integer, primary_key=True)
name = Column('name', String(50))
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class MyMixin(object):
pass
class Engineer(MyMixin, Person):
__tablename__ = 'engineers'
__mapper_args__ = {'polymorphic_identity': 'engineer'}
id = Column('id', Integer, ForeignKey('people.id'),
primary_key=True)
primary_language = Column('primary_language', String(50))
assert class_mapper(Engineer).inherits is class_mapper(Person)
def test_with_undefined_foreignkey(self):
class Parent(Base):
__tablename__ = 'parent'
id = Column('id', Integer, primary_key=True)
tp = Column('type', String(50))
__mapper_args__ = dict(polymorphic_on=tp)
class Child1(Parent):
__tablename__ = 'child1'
id = Column('id', Integer, ForeignKey('parent.id'),
primary_key=True)
related_child2 = Column('c2', Integer,
ForeignKey('child2.id'))
__mapper_args__ = dict(polymorphic_identity='child1')
# no exception is raised by the ForeignKey to "child2" even
# though child2 doesn't exist yet
class Child2(Parent):
__tablename__ = 'child2'
id = Column('id', Integer, ForeignKey('parent.id'),
primary_key=True)
related_child1 = Column('c1', Integer)
__mapper_args__ = dict(polymorphic_identity='child2')
sa.orm.configure_mappers() # no exceptions here
def test_foreign_keys_with_col(self):
"""Test that foreign keys that reference a literal 'id' subclass
'id' attribute behave intuitively.
See [ticket:1892].
"""
class Booking(Base):
__tablename__ = 'booking'
id = Column(Integer, primary_key=True)
class PlanBooking(Booking):
__tablename__ = 'plan_booking'
id = Column(Integer, ForeignKey(Booking.id),
primary_key=True)
# referencing PlanBooking.id gives us the column
# on plan_booking, not booking
class FeatureBooking(Booking):
__tablename__ = 'feature_booking'
id = Column(Integer, ForeignKey(Booking.id),
primary_key=True)
plan_booking_id = Column(Integer,
ForeignKey(PlanBooking.id))
plan_booking = relationship(PlanBooking,
backref='feature_bookings')
assert FeatureBooking.__table__.c.plan_booking_id.\
references(PlanBooking.__table__.c.id)
assert FeatureBooking.__table__.c.id.\
references(Booking.__table__.c.id)
def test_single_colsonbase(self):
"""test single inheritance where all the columns are on the base
class."""
class Company(Base, fixtures.ComparableEntity):
__tablename__ = 'companies'
id = Column('id', Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column('name', String(50))
employees = relationship('Person')
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column('id', Integer, primary_key=True,
test_needs_autoincrement=True)
company_id = Column('company_id', Integer,
ForeignKey('companies.id'))
name = Column('name', String(50))
discriminator = Column('type', String(50))
primary_language = Column('primary_language', String(50))
golf_swing = Column('golf_swing', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__mapper_args__ = {'polymorphic_identity': 'engineer'}
class Manager(Person):
__mapper_args__ = {'polymorphic_identity': 'manager'}
Base.metadata.create_all()
sess = create_session()
c1 = Company(name='MegaCorp, Inc.',
employees=[Engineer(name='dilbert',
primary_language='java'), Engineer(name='wally',
primary_language='c++'), Manager(name='dogbert',
golf_swing='fore!')])
c2 = Company(name='Elbonia, Inc.',
employees=[Engineer(name='vlad',
primary_language='cobol')])
sess.add(c1)
sess.add(c2)
sess.flush()
sess.expunge_all()
eq_(sess.query(Person).filter(Engineer.primary_language
== 'cobol').first(), Engineer(name='vlad'))
eq_(sess.query(Company).filter(Company.employees.of_type(Engineer).
any(Engineer.primary_language
== 'cobol')).first(), c2)
def test_single_colsonsub(self):
"""test single inheritance where the columns are local to their
class.
this is a newer usage.
"""
class Company(Base, fixtures.ComparableEntity):
__tablename__ = 'companies'
id = Column('id', Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column('name', String(50))
employees = relationship('Person')
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
company_id = Column(Integer, ForeignKey('companies.id'))
name = Column(String(50))
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__mapper_args__ = {'polymorphic_identity': 'engineer'}
primary_language = Column(String(50))
class Manager(Person):
__mapper_args__ = {'polymorphic_identity': 'manager'}
golf_swing = Column(String(50))
# we have here a situation that is somewhat unique. the Person
# class is mapped to the "people" table, but it was mapped when
# the table did not include the "primary_language" or
# "golf_swing" columns. declarative will also manipulate the
# exclude_properties collection so that sibling classes don't
# cross-pollinate.
assert Person.__table__.c.company_id is not None
assert Person.__table__.c.golf_swing is not None
assert Person.__table__.c.primary_language is not None
assert Engineer.primary_language is not None
assert Manager.golf_swing is not None
assert not hasattr(Person, 'primary_language')
assert not hasattr(Person, 'golf_swing')
assert not hasattr(Engineer, 'golf_swing')
assert not hasattr(Manager, 'primary_language')
Base.metadata.create_all()
sess = create_session()
e1 = Engineer(name='dilbert', primary_language='java')
e2 = Engineer(name='wally', primary_language='c++')
m1 = Manager(name='dogbert', golf_swing='fore!')
c1 = Company(name='MegaCorp, Inc.', employees=[e1, e2, m1])
e3 = Engineer(name='vlad', primary_language='cobol')
c2 = Company(name='Elbonia, Inc.', employees=[e3])
sess.add(c1)
sess.add(c2)
sess.flush()
sess.expunge_all()
eq_(sess.query(Person).filter(Engineer.primary_language
== 'cobol').first(), Engineer(name='vlad'))
eq_(sess.query(Company).filter(Company.employees.of_type(Engineer).
any(Engineer.primary_language
== 'cobol')).first(), c2)
eq_(sess.query(Engineer).filter_by(primary_language='cobol'
).one(), Engineer(name='vlad', primary_language='cobol'))
@testing.skip_if(lambda: testing.against('oracle'),
"Test has an empty insert in it at the moment")
def test_columns_single_inheritance_conflict_resolution(self):
"""Test that a declared_attr can return the existing column and it will
be ignored. this allows conditional columns to be added.
See [ticket:2472].
"""
class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
class Engineer(Person):
"""single table inheritance"""
@declared_attr
def target_id(cls):
return cls.__table__.c.get('target_id',
Column(Integer, ForeignKey('other.id'))
)
@declared_attr
def target(cls):
return relationship("Other")
class Manager(Person):
"""single table inheritance"""
@declared_attr
def target_id(cls):
return cls.__table__.c.get('target_id',
Column(Integer, ForeignKey('other.id'))
)
@declared_attr
def target(cls):
return relationship("Other")
class Other(Base):
__tablename__ = 'other'
id = Column(Integer, primary_key=True)
is_(
Engineer.target_id.property.columns[0],
Person.__table__.c.target_id
)
is_(
Manager.target_id.property.columns[0],
Person.__table__.c.target_id
)
# do a brief round trip on this
Base.metadata.create_all()
session = Session()
o1, o2 = Other(), Other()
session.add_all([
Engineer(target=o1),
Manager(target=o2),
Manager(target=o1)
])
session.commit()
eq_(session.query(Engineer).first().target, o1)
def test_joined_from_single(self):
class Company(Base, fixtures.ComparableEntity):
__tablename__ = 'companies'
id = Column('id', Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column('name', String(50))
employees = relationship('Person')
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
company_id = Column(Integer, ForeignKey('companies.id'))
name = Column(String(50))
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Manager(Person):
__mapper_args__ = {'polymorphic_identity': 'manager'}
golf_swing = Column(String(50))
class Engineer(Person):
__tablename__ = 'engineers'
__mapper_args__ = {'polymorphic_identity': 'engineer'}
id = Column(Integer, ForeignKey('people.id'),
primary_key=True)
primary_language = Column(String(50))
assert Person.__table__.c.golf_swing is not None
assert not Person.__table__.c.has_key('primary_language')
assert Engineer.__table__.c.primary_language is not None
assert Engineer.primary_language is not None
assert Manager.golf_swing is not None
assert not hasattr(Person, 'primary_language')
assert not hasattr(Person, 'golf_swing')
assert not hasattr(Engineer, 'golf_swing')
assert not hasattr(Manager, 'primary_language')
Base.metadata.create_all()
sess = create_session()
e1 = Engineer(name='dilbert', primary_language='java')
e2 = Engineer(name='wally', primary_language='c++')
m1 = Manager(name='dogbert', golf_swing='fore!')
c1 = Company(name='MegaCorp, Inc.', employees=[e1, e2, m1])
e3 = Engineer(name='vlad', primary_language='cobol')
c2 = Company(name='Elbonia, Inc.', employees=[e3])
sess.add(c1)
sess.add(c2)
sess.flush()
sess.expunge_all()
eq_(sess.query(Person).with_polymorphic(Engineer).
filter(Engineer.primary_language
== 'cobol').first(), Engineer(name='vlad'))
eq_(sess.query(Company).filter(Company.employees.of_type(Engineer).
any(Engineer.primary_language
== 'cobol')).first(), c2)
eq_(sess.query(Engineer).filter_by(primary_language='cobol'
).one(), Engineer(name='vlad', primary_language='cobol'))
def test_single_from_joined_colsonsub(self):
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Manager(Person):
__tablename__ = 'manager'
__mapper_args__ = {'polymorphic_identity': 'manager'}
id = Column(Integer, ForeignKey('people.id'), primary_key=True)
golf_swing = Column(String(50))
class Boss(Manager):
boss_name = Column(String(50))
is_(
Boss.__mapper__.column_attrs['boss_name'].columns[0],
Manager.__table__.c.boss_name
)
def test_polymorphic_on_converted_from_inst(self):
class A(Base):
__tablename__ = 'A'
id = Column(Integer, primary_key=True)
discriminator = Column(String)
@declared_attr
def __mapper_args__(cls):
return {
'polymorphic_identity': cls.__name__,
'polymorphic_on': cls.discriminator
}
class B(A):
pass
is_(B.__mapper__.polymorphic_on, A.__table__.c.discriminator)
def test_add_deferred(self):
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column('id', Integer, primary_key=True,
test_needs_autoincrement=True)
Person.name = deferred(Column(String(10)))
Base.metadata.create_all()
sess = create_session()
p = Person(name='ratbert')
sess.add(p)
sess.flush()
sess.expunge_all()
eq_(sess.query(Person).all(), [Person(name='ratbert')])
sess.expunge_all()
person = sess.query(Person).filter(Person.name == 'ratbert'
).one()
assert 'name' not in person.__dict__
def test_single_fksonsub(self):
"""test single inheritance with a foreign key-holding column on
a subclass.
"""
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__mapper_args__ = {'polymorphic_identity': 'engineer'}
primary_language_id = Column(Integer,
ForeignKey('languages.id'))
primary_language = relationship('Language')
class Language(Base, fixtures.ComparableEntity):
__tablename__ = 'languages'
id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
assert not hasattr(Person, 'primary_language_id')
Base.metadata.create_all()
sess = create_session()
java, cpp, cobol = Language(name='java'), Language(name='cpp'), \
Language(name='cobol')
e1 = Engineer(name='dilbert', primary_language=java)
e2 = Engineer(name='wally', primary_language=cpp)
e3 = Engineer(name='vlad', primary_language=cobol)
sess.add_all([e1, e2, e3])
sess.flush()
sess.expunge_all()
eq_(sess.query(Person).filter(Engineer.primary_language.has(
Language.name
== 'cobol')).first(), Engineer(name='vlad',
primary_language=Language(name='cobol')))
eq_(sess.query(Engineer).filter(Engineer.primary_language.has(
Language.name
== 'cobol')).one(), Engineer(name='vlad',
primary_language=Language(name='cobol')))
eq_(sess.query(Person).join(Engineer.primary_language).order_by(
Language.name).all(),
[Engineer(name='vlad',
primary_language=Language(name='cobol')),
Engineer(name='wally', primary_language=Language(name='cpp'
)), Engineer(name='dilbert',
primary_language=Language(name='java'))])
def test_single_three_levels(self):
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
name = Column(String(50))
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__mapper_args__ = {'polymorphic_identity': 'engineer'}
primary_language = Column(String(50))
class JuniorEngineer(Engineer):
__mapper_args__ = \
{'polymorphic_identity': 'junior_engineer'}
nerf_gun = Column(String(50))
class Manager(Person):
__mapper_args__ = {'polymorphic_identity': 'manager'}
golf_swing = Column(String(50))
assert JuniorEngineer.nerf_gun
assert JuniorEngineer.primary_language
assert JuniorEngineer.name
assert Manager.golf_swing
assert Engineer.primary_language
assert not hasattr(Engineer, 'golf_swing')
assert not hasattr(Engineer, 'nerf_gun')
assert not hasattr(Manager, 'nerf_gun')
assert not hasattr(Manager, 'primary_language')
def test_single_detects_conflict(self):
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
name = Column(String(50))
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__mapper_args__ = {'polymorphic_identity': 'engineer'}
primary_language = Column(String(50))
# test sibling col conflict
def go():
class Manager(Person):
__mapper_args__ = {'polymorphic_identity': 'manager'}
golf_swing = Column(String(50))
primary_language = Column(String(50))
assert_raises(sa.exc.ArgumentError, go)
# test parent col conflict
def go():
class Salesman(Person):
__mapper_args__ = {'polymorphic_identity': 'manager'}
name = Column(String(50))
assert_raises(sa.exc.ArgumentError, go)
def test_single_no_special_cols(self):
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column('id', Integer, primary_key=True)
name = Column('name', String(50))
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
def go():
class Engineer(Person):
__mapper_args__ = {'polymorphic_identity': 'engineer'}
primary_language = Column('primary_language',
String(50))
foo_bar = Column(Integer, primary_key=True)
assert_raises_message(sa.exc.ArgumentError,
'place primary key', go)
def test_single_no_table_args(self):
class Person(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column('id', Integer, primary_key=True)
name = Column('name', String(50))
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
def go():
class Engineer(Person):
__mapper_args__ = {'polymorphic_identity': 'engineer'}
primary_language = Column('primary_language',
String(50))
# this should be on the Person class, as this is single
# table inheritance, which is why we test that this
# throws an exception!
__table_args__ = {'mysql_engine': 'InnoDB'}
assert_raises_message(sa.exc.ArgumentError,
'place __table_args__', go)
@testing.emits_warning("This declarative")
def test_dupe_name_in_hierarchy(self):
class A(Base):
__tablename__ = "a"
id = Column(Integer, primary_key=True)
a_1 = A
class A(a_1):
__tablename__ = 'b'
id = Column(Integer(), ForeignKey(a_1.id), primary_key=True)
assert A.__mapper__.inherits is a_1.__mapper__
class OverlapColPrecedenceTest(DeclarativeTestBase):
"""test #1892 cases when declarative does column precedence."""
def _run_test(self, Engineer, e_id, p_id):
p_table = Base.metadata.tables['person']
e_table = Base.metadata.tables['engineer']
assert Engineer.id.property.columns[0] is e_table.c[e_id]
assert Engineer.id.property.columns[1] is p_table.c[p_id]
def test_basic(self):
class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
class Engineer(Person):
__tablename__ = 'engineer'
id = Column(Integer, ForeignKey('person.id'), primary_key=True)
self._run_test(Engineer, "id", "id")
def test_alt_name_base(self):
class Person(Base):
__tablename__ = 'person'
id = Column("pid", Integer, primary_key=True)
class Engineer(Person):
__tablename__ = 'engineer'
id = Column(Integer, ForeignKey('person.pid'), primary_key=True)
self._run_test(Engineer, "id", "pid")
def test_alt_name_sub(self):
class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
class Engineer(Person):
__tablename__ = 'engineer'
id = Column("eid", Integer, ForeignKey('person.id'),
primary_key=True)
self._run_test(Engineer, "eid", "id")
def test_alt_name_both(self):
class Person(Base):
__tablename__ = 'person'
id = Column("pid", Integer, primary_key=True)
class Engineer(Person):
__tablename__ = 'engineer'
id = Column("eid", Integer, ForeignKey('person.pid'),
primary_key=True)
self._run_test(Engineer, "eid", "pid")
from test.orm.test_events import _RemoveListeners
class ConcreteInhTest(_RemoveListeners, DeclarativeTestBase):
def _roundtrip(self, Employee, Manager, Engineer, Boss,
polymorphic=True, explicit_type=False):
Base.metadata.create_all()
sess = create_session()
e1 = Engineer(name='dilbert', primary_language='java')
e2 = Engineer(name='wally', primary_language='c++')
m1 = Manager(name='dogbert', golf_swing='fore!')
e3 = Engineer(name='vlad', primary_language='cobol')
b1 = Boss(name="pointy haired")
if polymorphic:
for obj in [e1, e2, m1, e3, b1]:
if explicit_type:
eq_(obj.type, obj.__mapper__.polymorphic_identity)
else:
assert_raises_message(
AttributeError,
"does not implement attribute .?'type' "
"at the instance level.",
getattr, obj, "type"
)
else:
assert "type" not in Engineer.__dict__
assert "type" not in Manager.__dict__
assert "type" not in Boss.__dict__
sess.add_all([e1, e2, m1, e3, b1])
sess.flush()
sess.expunge_all()
if polymorphic:
eq_(sess.query(Employee).order_by(Employee.name).all(),
[Engineer(name='dilbert'), Manager(name='dogbert'),
Boss(name='pointy haired'), Engineer(name='vlad'), Engineer(name='wally')])
else:
eq_(sess.query(Engineer).order_by(Engineer.name).all(),
[Engineer(name='dilbert'), Engineer(name='vlad'),
Engineer(name='wally')])
eq_(sess.query(Manager).all(), [Manager(name='dogbert')])
eq_(sess.query(Boss).all(), [Boss(name='pointy haired')])
def test_explicit(self):
engineers = Table('engineers', Base.metadata, Column('id',
Integer, primary_key=True,
test_needs_autoincrement=True),
Column('name', String(50)),
Column('primary_language', String(50)))
managers = Table('managers', Base.metadata,
Column('id', Integer, primary_key=True,
test_needs_autoincrement=True),
Column('name', String(50)),
Column('golf_swing', String(50))
)
boss = Table('boss', Base.metadata,
Column('id', Integer, primary_key=True,
test_needs_autoincrement=True),
Column('name', String(50)),
Column('golf_swing', String(50))
)
punion = polymorphic_union({
'engineer': engineers,
'manager': managers,
'boss': boss}, 'type', 'punion')
class Employee(Base, fixtures.ComparableEntity):
__table__ = punion
__mapper_args__ = {'polymorphic_on': punion.c.type}
class Engineer(Employee):
__table__ = engineers
__mapper_args__ = {'polymorphic_identity': 'engineer',
'concrete': True}
class Manager(Employee):
__table__ = managers
__mapper_args__ = {'polymorphic_identity': 'manager',
'concrete': True}
class Boss(Manager):
__table__ = boss
__mapper_args__ = {'polymorphic_identity': 'boss',
'concrete': True}
self._roundtrip(Employee, Manager, Engineer, Boss)
def test_concrete_inline_non_polymorphic(self):
"""test the example from the declarative docs."""
class Employee(Base, fixtures.ComparableEntity):
__tablename__ = 'people'
id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
class Engineer(Employee):
__tablename__ = 'engineers'
__mapper_args__ = {'concrete': True}
id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
primary_language = Column(String(50))
name = Column(String(50))
class Manager(Employee):
__tablename__ = 'manager'
__mapper_args__ = {'concrete': True}
id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
golf_swing = Column(String(50))
name = Column(String(50))
class Boss(Manager):
__tablename__ = 'boss'
__mapper_args__ = {'concrete': True}
id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
golf_swing = Column(String(50))
name = Column(String(50))
self._roundtrip(Employee, Manager, Engineer, Boss, polymorphic=False)
def test_abstract_concrete_extension(self):
class Employee(AbstractConcreteBase, Base, fixtures.ComparableEntity):
pass
class Manager(Employee):
__tablename__ = 'manager'
employee_id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
golf_swing = Column(String(40))
__mapper_args__ = {
'polymorphic_identity': 'manager',
'concrete': True}
class Boss(Manager):
__tablename__ = 'boss'
employee_id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
golf_swing = Column(String(40))
__mapper_args__ = {
'polymorphic_identity': 'boss',
'concrete': True}
class Engineer(Employee):
__tablename__ = 'engineer'
employee_id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
primary_language = Column(String(40))
__mapper_args__ = {'polymorphic_identity': 'engineer',
'concrete': True}
self._roundtrip(Employee, Manager, Engineer, Boss)
def test_concrete_extension(self):
class Employee(ConcreteBase, Base, fixtures.ComparableEntity):
__tablename__ = 'employee'
employee_id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
__mapper_args__ = {
'polymorphic_identity': 'employee',
'concrete': True}
class Manager(Employee):
__tablename__ = 'manager'
employee_id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
golf_swing = Column(String(40))
__mapper_args__ = {
'polymorphic_identity': 'manager',
'concrete': True}
class Boss(Manager):
__tablename__ = 'boss'
employee_id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
golf_swing = Column(String(40))
__mapper_args__ = {
'polymorphic_identity': 'boss',
'concrete': True}
class Engineer(Employee):
__tablename__ = 'engineer'
employee_id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
primary_language = Column(String(40))
__mapper_args__ = {'polymorphic_identity': 'engineer',
'concrete': True}
self._roundtrip(Employee, Manager, Engineer, Boss)
def test_has_inherited_table_doesnt_consider_base(self):
class A(Base):
__tablename__ = 'a'
id = Column(Integer, primary_key=True)
assert not has_inherited_table(A)
class B(A):
__tablename__ = 'b'
id = Column(Integer, ForeignKey('a.id'), primary_key=True)
assert has_inherited_table(B)
def test_has_inherited_table_in_mapper_args(self):
class Test(Base):
__tablename__ = 'test'
id = Column(Integer, primary_key=True)
type = Column(String(20))
@declared_attr
def __mapper_args__(cls):
if not has_inherited_table(cls):
ret = {
'polymorphic_identity': 'default',
'polymorphic_on': cls.type,
}
else:
ret = {'polymorphic_identity': cls.__name__}
return ret
class PolyTest(Test):
__tablename__ = 'poly_test'
id = Column(Integer, ForeignKey(Test.id), primary_key=True)
configure_mappers()
assert Test.__mapper__.polymorphic_on is Test.__table__.c.type
assert PolyTest.__mapper__.polymorphic_on is Test.__table__.c.type
def test_ok_to_override_type_from_abstract(self):
class Employee(AbstractConcreteBase, Base, fixtures.ComparableEntity):
pass
class Manager(Employee):
__tablename__ = 'manager'
employee_id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
golf_swing = Column(String(40))
@property
def type(self):
return "manager"
__mapper_args__ = {
'polymorphic_identity': "manager",
'concrete': True}
class Boss(Manager):
__tablename__ = 'boss'
employee_id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
golf_swing = Column(String(40))
@property
def type(self):
return "boss"
__mapper_args__ = {
'polymorphic_identity': "boss",
'concrete': True}
class Engineer(Employee):
__tablename__ = 'engineer'
employee_id = Column(Integer, primary_key=True,
test_needs_autoincrement=True)
name = Column(String(50))
primary_language = Column(String(40))
@property
def type(self):
return "engineer"
__mapper_args__ = {'polymorphic_identity': "engineer",
'concrete': True}
self._roundtrip(Employee, Manager, Engineer, Boss, explicit_type=True)
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.