filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_4361
import os from alipay import AliPay from django.conf import settings from django.shortcuts import render from rest_framework import status from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated from rest_framework.views import APIView from orders.models import OrderInfo # Create your views here. # PUT /payment/status/?<支付结果数据> from payment.models import Payment class PaymentStatusView(APIView): permission_classes = [IsAuthenticated] def put(self,request): """ 保存支付结果 1.获取支付结果数据并进行签名认证 2.校验订单是否有效 3.保存支付结果并修改订单支付状态 4.返回支付交易编号 """ data = request.query_params.dict() signature = data.pop('sign') alipay = AliPay( appid=settings.ALIPAY_APPID, # 开发应用appid app_notify_url=None, # 默认回调url app_private_key_path=os.path.join(settings.BASE_DIR, 'apps/payment/keys/app_private_key.pem'), # 网站的私钥文件路径 alipay_public_key_path=os.path.join(settings.BASE_DIR, 'apps/payment/keys/alipay_public_key.pem'), # 支付宝公钥文件路径 sign_type="RSA2", # RSA 或者 RSA2 debug=settings.ALIPAY_DEBUG # 默认False ) success = alipay.verify(data, signature) if not success: return Response({'message':'非法操作'},status=status.HTTP_403_FORBIDDEN) try: order = OrderInfo.objects.get(order_id=data.get('out_trade_no'), user=request.user, pay_method=OrderInfo.PAY_METHODS_ENUM['ALIPAY'], status=OrderInfo.ORDER_STATUS_ENUM['UNPAID'] ) except OrderInfo.DoesNotExist: return Response({'message': '无效的订单id'}, status=status.HTTP_400_BAD_REQUEST) trade_id = data.get('trade_no') Payment.objects.create( order = order, trade_id=trade_id ) order.status = OrderInfo.ORDER_STATUS_ENUM['UNSEND'] order.save() return Response({'trade_id':trade_id}) # GET /orders/(?P<order_id>\d+)/payment/ class PaymentView(APIView): permission_classes = [IsAuthenticated] def get(self,request,order_id): """ 获取支付宝支付网址 1.获取order_id并校验订单是否有效 2.组织支付宝支付网址和参数 3.返回支付宝支付网址 """ user = request.user try: order = OrderInfo.objects.get(order_id=order_id, user=user, pay_method=OrderInfo.PAY_METHODS_ENUM['ALIPAY'], status=OrderInfo.ORDER_STATUS_ENUM['UNPAID'] ) except OrderInfo.DoesNotExist: return Response({'message': '无效的订单id'}, status=status.HTTP_400_BAD_REQUEST) # 初始化 alipay = AliPay( appid=settings.ALIPAY_APPID, # 开发应用appid app_notify_url=None, # 默认回调url app_private_key_path=os.path.join(settings.BASE_DIR, 'apps/payment/keys/app_private_key.pem'), # 网站的私钥文件路径 alipay_public_key_path=os.path.join(settings.BASE_DIR, 'apps/payment/keys/alipay_public_key.pem'), # 支付宝公钥文件路径 sign_type="RSA2", # RSA 或者 RSA2 debug=settings.ALIPAY_DEBUG # 默认False ) # 组织支付参数 # 电脑网站支付,需要跳转到https://openapi.alipaydev.com/gateway.do? + order_string total_pay = order.total_amount # Decimal order_string = alipay.api_alipay_trade_page_pay( out_trade_no=order_id, # 订单id total_amount=str(total_pay), subject='闫氏商城%s' % order_id, # 订单标题 return_url="http://www.meiduo.site:8080/pay_success.html", # 回调地址 ) alipay_url = settings.ALIPAY_URL + '?' + order_string return Response({'alipay_url': alipay_url})
the-stack_0_4366
from itertools import chain import glob import torch from PIL import Image from os import path from torch.utils.data import Dataset class SegmentationDataset(Dataset): _EXTENSIONS = ["*.jpg", "*.jpeg", "*.png"] def __init__(self, in_dir, transform): super(SegmentationDataset, self).__init__() self.in_dir = in_dir self.transform = transform # Find all images self.images = [] for img_path in chain(*(glob.iglob(path.join(self.in_dir, ext)) for ext in SegmentationDataset._EXTENSIONS)): _, name_with_ext = path.split(img_path) idx, _ = path.splitext(name_with_ext) self.images.append({ "idx": idx, "path": img_path }) def __len__(self): return len(self.images) def __getitem__(self, item): # Load image with Image.open(self.images[item]["path"]) as img_raw: size = img_raw.size img = self.transform(img_raw.convert(mode="RGB")) return {"img": img, "meta": {"idx": self.images[item]["idx"], "size": size}} def segmentation_collate(items): imgs = torch.stack([item["img"] for item in items]) metas = [item["meta"] for item in items] return {"img": imgs, "meta": metas}
the-stack_0_4369
#!/usr/bin/env python ############################################################################### # Copyright (C) 1994 - 2009, Performance Dynamics Company # # # # This software is licensed as described in the file COPYING, which # # you should have received as part of this distribution. The terms # # are also available at http://www.perfdynamics.com/Tools/copyright.html. # # # # You may opt to use, copy, modify, merge, publish, distribute and/or sell # # copies of the Software, and permit persons to whom the Software is # # furnished to do so, under the terms of the COPYING file. # # # # This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY # # KIND, either express or implied. # ############################################################################### # # dbc.c - Teradata DBC-10/12 performance model # # PDQ calculation of optimal parallel configuration. # # $Id: dbc.py,v 4.3 2009/03/26 02:55:32 pfeller Exp $ # #--------------------------------------------------------------------- import pdq #--------------------------------------------------------------------- def itoa(n, s): sign = n if (sign < 0): n = -n i = 0 while (n > 0): # generate digits in reverse order s[i] = '0' + (n % 10) i += 1 n /= 10 if (sign < 0): s[i] = '-' i += 1 s[i] = '\0' # reverse l = len(s) j = l - 1 for i in range(l): c = s[i] s[i] = s[j] s[j] = c i += 1 j -= 1 if i >= j: break #--------------------------------------------------------------------- think = 10.0 importrs = 300 Sifp = 0.10 Samp = 0.60 Sdsu = 1.20 Nifp = 15 Namp = 50 Ndsu = 100 pdq.Init("Teradata DBC-10/12") # Create parallel centers for k in range(Nifp): name = "IFP%d" % k nodes = pdq.CreateNode(name, pdq.CEN, pdq.FCFS) for k in range(Namp): name = "AMP%d" % k nodes = pdq.CreateNode(name, pdq.CEN, pdq.FCFS) for k in range(Ndsu): name = "DSU%d" % k nodes = pdq.CreateNode(name, pdq.CEN, pdq.FCFS) streams = pdq.CreateClosed("query", pdq.TERM, importrs, think) # pdq.SetGraph("query", 100) - unsupported call for k in range(Nifp): name = "IFP%d" % k pdq.SetDemand(name, "query", Sifp / Nifp) for k in range(Namp): name = "AMP%d" % k pdq.SetDemand(name, "query", Samp / Namp) for k in range(Ndsu): name = "DSU%d" % k pdq.SetDemand(name, "query", Sdsu / Ndsu) # 300 nodes takes about a minute to solve on a PowerMac print("Solving ... ") pdq.Solve(pdq.EXACT) print("Done.\n") # pdq.PrintXLS() pdq.Report()
the-stack_0_4372
__author__ = 'Sergey Matyunin' import numpy as np def interp2linear(z, xi, yi, extrapval=np.nan): """ Linear interpolation equivalent to interp2(z, xi, yi,'linear') in MATLAB @param z: function defined on square lattice [0..width(z))X[0..height(z)) @param xi: matrix of x coordinates where interpolation is required @param yi: matrix of y coordinates where interpolation is required @param extrapval: value for out of range positions. default is numpy.nan @return: interpolated values in [xi,yi] points @raise Exception: """ x = xi.copy() y = yi.copy() nrows, ncols = z.shape if nrows < 2 or ncols < 2: raise Exception("z shape is too small") if not x.shape == y.shape: raise Exception("sizes of X indexes and Y-indexes must match") # find x values out of range x_bad = ( (x < 0) | (x > ncols - 1)) if x_bad.any(): x[x_bad] = 0 # find y values out of range y_bad = ((y < 0) | (y > nrows - 1)) if y_bad.any(): y[y_bad] = 0 # linear indexing. z must be in 'C' order ndx = np.floor(y) * ncols + np.floor(x) ndx = ndx.astype('int32') # fix parameters on x border d = (x == ncols - 1) x = (x - np.floor(x)) if d.any(): x[d] += 1 ndx[d] -= 1 # fix parameters on y border d = (y == nrows - 1) y = (y - np.floor(y)) if d.any(): y[d] += 1 ndx[d] -= ncols # interpolate one_minus_t = 1 - y z = z.ravel() f = (z[ndx] * one_minus_t + z[ndx + ncols] * y ) * (1 - x) + ( z[ndx + 1] * one_minus_t + z[ndx + ncols + 1] * y) * x # Set out of range positions to extrapval if x_bad.any(): f[x_bad] = extrapval if y_bad.any(): f[y_bad] = extrapval return f
the-stack_0_4379
import yaml d = {'subcommand': 'lottery', 'platform': 'local', 'display_output_location': False, 'num_workers': 0, 'gpu': '6', 'replicate': 2, 'default_hparams': 'mnist_lenet_300_100', 'quiet': False, 'evaluate_only_at_end': False, 'levels': 0, 'rewinding_steps': None, 'pretrain': False, 'dataset_name': 'fashionmnist', 'batch_size': 128, 'do_not_augment': False, 'transformation_seed': None, 'subsample_fraction': None, 'random_labels_fraction': None, 'unsupervised_labels': None, 'blur_factor': None, 'model_name': 'mnist_lenet_300_100', 'model_init': 'kaiming_normal', 'batchnorm_init': 'uniform', 'batchnorm_frozen': False, 'output_frozen': False, 'others_frozen': False, 'others_frozen_exceptions': None, 'optimizer_name': 'sgd', 'lr': 0.1, 'training_steps': '40ep', 'data_order_seed': None, 'momentum': 0.0, 'nesterov_momentum': 0.0, 'milestone_steps': None, 'gamma': None, 'warmup_steps': None, 'weight_decay': None, 'apex_fp16': False, 'pruning_strategy': 'sparse_global', 'pruning_fraction': 0.2, 'pruning_layers_to_ignore': 'fc.weight'} with open(r'./myyaml.yaml', 'w') as file: print(yaml.dump(d, file))
the-stack_0_4380
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import import numpy as np from alpharotate.utils.pretrain_zoo import PretrainModelZoo from configs._base_.models.retinanet_r50_fpn import * from configs._base_.datasets.dota_detection import * from configs._base_.schedules.schedule_1x import * # schedule BATCH_SIZE = 1 GPU_GROUP = "0" NUM_GPU = len(GPU_GROUP.strip().split(',')) LR = 1e-3 SAVE_WEIGHTS_INTE = 5000 DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE) # dataset DATASET_NAME = 'Total_Text' IMG_SHORT_SIDE_LEN = 512 IMG_MAX_LENGTH = 512 CLASS_NUM = 1 # model pretrain_zoo = PretrainModelZoo() PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH) TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights') # loss CLS_WEIGHT = 1.0 REG_WEIGHT = 0.01 POINT_SAMPLING_NUM = 12 # post-processing NMS = True NMS_IOU_THRESHOLD = 0.1 MAXIMUM_DETECTIONS = 20 FILTERED_SCORE = 0.05 VIS_SCORE = 0.75 VERSION = 'RetinaNet_Total-Text_RIDet_1x_20210519' """ FLOPs: 489267589; Trainable params: 33244941 """
the-stack_0_4382
#!/usr/bin/env python # encoding: utf-8 import argparse from zstacklib import * start_time = datetime.now() # set default value file_root = "files/appliancevm" pip_url = "https=//pypi.python.org/simple/" proxy = "" sproxy = "" chroot_env = 'false' zstack_repo = 'false' post_url = "" chrony_servers = None pkg_appliancevm = "" virtualenv_version = "12.1.1" remote_user = "root" remote_pass = None remote_port = None # get parameter from shell parser = argparse.ArgumentParser(description='Deploy appliancevm to management node') parser.add_argument('-i', type=str, help="""specify inventory host file default=/etc/ansible/hosts""") parser.add_argument('--private-key', type=str, help='use this file to authenticate the connection') parser.add_argument('-e', type=str, help='set additional variables as key=value or YAML/JSON') args = parser.parse_args() argument_dict = eval(args.e) locals().update(argument_dict) # update the variable from shell arguments virtenv_path = "%s/virtualenv/appliancevm/" % zstack_root appliancevm_root = "%s/appliancevm/package" % zstack_root # create log logger_dir = "/var/log/zstack/" create_log(logger_dir) host_post_info = HostPostInfo() host_post_info.host_inventory = args.i host_post_info.host = host host_post_info.post_url = post_url host_post_info.chrony_servers = chrony_servers host_post_info.private_key = args.private_key host_post_info.remote_user = remote_user host_post_info.remote_pass = remote_pass host_post_info.remote_port = remote_port if remote_pass is not None and remote_user != 'root': host_post_info.become = True # include zstacklib.py (distro, distro_version, distro_release) = get_remote_host_info(host_post_info) zstacklib_args = ZstackLibArgs() zstacklib_args.distro = distro zstacklib_args.distro_release = distro_release zstacklib_args.distro_version = distro_version zstacklib_args.zstack_repo = zstack_repo zstacklib_args.yum_server = yum_server zstacklib_args.zstack_root = zstack_root zstacklib_args.host_post_info = host_post_info zstacklib_args.pip_url = pip_url zstacklib_args.trusted_host = trusted_host zstacklib = ZstackLib(zstacklib_args) # name: judge this process is init install or upgrade if file_dir_exist("path=" + appliancevm_root, host_post_info): init_install = False else: init_install = True # name: create root directories command = 'mkdir -p %s %s' % (appliancevm_root, virtenv_path) run_remote_command(command, host_post_info) run_remote_command("rm -rf %s/*" % appliancevm_root, host_post_info) # name: copy zstacklib and install copy_arg = CopyArg() copy_arg.src = "files/zstacklib/%s" % pkg_zstacklib copy_arg.dest = "%s/%s" % (appliancevm_root, pkg_zstacklib) copy_zstacklib = copy(copy_arg, host_post_info) # name: copy appliancevm and install copy_arg = CopyArg() copy_arg.src = "%s/%s" % (file_root, pkg_appliancevm) copy_arg.dest = "%s/%s" % (appliancevm_root, pkg_appliancevm) copy_appliancevm = copy(copy_arg, host_post_info) # name: copy bootstrap script copy_arg = CopyArg() copy_arg.src = "%s/zstack-appliancevm-bootstrap.py" % file_root copy_arg.dest = '/sbin/zstack-appliancevm-bootstrap.py' copy_arg.args = "mode=0777" copy(copy_arg, host_post_info) # name: copy appliancevm service file copy_arg = CopyArg() copy_arg.src = "%s/zstack-appliancevm" % file_root copy_arg.dest = "/etc/init.d/" copy_arg.args = "mode=755" copy(copy_arg, host_post_info) # name: install virtualenv virtual_env_status = check_and_install_virtual_env(virtualenv_version, trusted_host, pip_url, host_post_info) if virtual_env_status is False: command = "rm -rf %s && rm -rf %s" % (virtenv_path, appliancevm_root) run_remote_command(command, host_post_info) sys.exit(1) # name: make sure virtualenv has been setup command = "[ -f %s/bin/python ] || virtualenv %s " % (virtenv_path, virtenv_path) run_remote_command(command, host_post_info) if distro in RPM_BASED_OS: if zstack_repo != 'false': # name: install appliance vm related packages on RedHat based OS from user defined repo command = ("pkg_list=`rpm -q iputils tcpdump ethtool | grep \"not installed\" | awk '{ print $2 }'` && for pkg" " in $pkg_list; do yum --disablerepo=* --enablerepo=%s install -y $pkg; done;") % zstack_repo run_remote_command(command, host_post_info) else: # name: install appliance vm related packages on RedHat based OS for pkg in ['iputils', 'tcpdump', 'ethtool']: yum_install_package("openssh-clients", host_post_info) if distro_version >= 7: # name: workaround RHEL7 iptables service issue command = 'mkdir -p /var/lock/subsys/' run_remote_command(command, host_post_info) # name: remove RHEL7 firewalld yum_remove_package("firewalld", host_post_info) # name: copy iptables initial rules in RedHat copy_arg = CopyArg() copy_arg.src = "%s/iptables" % file_root copy_arg.dest = "/etc/sysconfig/iptables" iptables_copy_result = copy(copy_arg, host_post_info) if chroot_env == 'false': if iptables_copy_result != "changed:False": service_status("iptables", "state=restarted enabled=yes", host_post_info) else: # name: enable appliancevm service for RedHat on chroot service_status("zstack-appliancevm", "enabled=yes state=stopped", host_post_info) elif distro in DEB_BASED_OS: install_pkg_list = ['iputils-arping', 'tcpdump', 'ethtool'] apt_install_packages(install_pkg_list, host_post_info) # name: copy iptables initial rules in Debian copy_arg = CopyArg() copy_arg.src = "%s/iptables" % file_root copy_arg.dest = "/etc/iptables" copy(copy_arg, host_post_info) # name: copy iptables initial start script in Debian copy_arg = CopyArg() copy_arg.src = "%s/iptables.up" % file_root copy_arg.dest = "/etc/network/if-pre-up.d/iptables.up" copy_arg.args = "mode=0777" iptables_script_result = copy(copy_arg, host_post_info) if iptables_script_result == "status:changed": command = "/etc/network/if-pre-up.d/iptables.up" run_remote_command(command, host_post_info) # name: enable appliancevm service for Debian -1 command = "sed -i '/zstack-appliancevm start/d' /etc/rc.local" run_remote_command(command, host_post_info) # name: enable appliancevm service for Debian -2 update_arg = "insertbefore='^exit 0' line='/etc/init.d/zstack-appliancevm start\n'" update_file("/etc/rc.local", update_arg, host_post_info) # name: restore iptables command = '/etc/network/if-pre-up.d/iptables.up' run_remote_command(command, host_post_info) else: error("unsupported OS!") # name: install zstacklib if copy_zstacklib != "changed:False": agent_install_arg = AgentInstallArg(trusted_host, pip_url, virtenv_path, init_install) agent_install_arg.agent_name = "appliancevm" agent_install_arg.agent_root = appliancevm_root agent_install_arg.pkg_name = pkg_zstacklib agent_install(agent_install_arg, host_post_info) # name: install appliancevm if copy_appliancevm != "changed:False": agent_install_arg = AgentInstallArg(trusted_host, pip_url, virtenv_path, init_install) agent_install_arg.agent_name = "appliancevm" agent_install_arg.agent_root = appliancevm_root agent_install_arg.pkg_name = pkg_appliancevm agent_install(agent_install_arg, host_post_info) if chroot_env == 'false': # name: restart appliancevm if distro in RPM_BASED_OS: command = "service zstack-appliancevm stop && service zstack-appliancevm start && chkconfig zstack-appliancevm on" elif distro in DEB_BASED_OS: command = "update-rc.d zstack-appliancevm start 97 3 4 5 . stop 3 0 1 2 6 . && service zstack-appliancevm stop && service zstack-appliancevm start" run_remote_command(command, host_post_info) else: if distro in RPM_BASED_OS: # name: restart iptables service_status("iptables", "state=restarted enabled=yes", host_post_info) host_post_info.start_time = start_time handle_ansible_info("SUCC: Deploy appliancevm successful", host_post_info, "INFO") sys.exit(0)
the-stack_0_4383
from typing import Union from pydantic.types import UUID5 from account.models import JWTModel import uuid from time import time from datetime import datetime, timedelta from pathlib import Path from config.conf import JWT_KEY_PATH, JWT_CERT_PATH from cryptography.x509 import load_pem_x509_certificate from fastapi import HTTPException import jwt class JWT: rsa_crt_path: Path = JWT_CERT_PATH rsa_JWT_KEY_PATH: Path = JWT_KEY_PATH JWT_NAMESPACE: uuid.UUID = uuid.UUID("69d3e8f4-0872-4f7f-9f35-d2ee437e0887") @classmethod def jti(cls, uid: str) -> str: now = round(time() * 1000) return str(uuid.uuid5(cls.JWT_NAMESPACE, str(uid) + str(now))) @classmethod def base_payload(cls, duration: int) -> dict: now = datetime.utcnow() nbf = {"nbf": now} iat = {"iat": now} exp = {"exp": now + timedelta(days=duration)} payload = {**nbf, **iat, **exp} return payload @classmethod def create(cls, user: dict, duration=30) -> str: try: jti = {"jti": cls.jti(user["uid"])} key = cls.rsa_JWT_KEY_PATH.read_text() payload = cls.base_payload(duration) payload = {**payload, **user, **jti} token = jwt.encode(payload, key, algorithm="RS256") return token except Exception as e: raise HTTPException(500, "JWT error DAG: " + str(e)) @classmethod def verify(cls, token: str) -> JWTModel: try: crt = cls.rsa_crt_path.read_text() cert_obj = load_pem_x509_certificate(crt.encode()) public_key = cert_obj.public_key() # private_key = cert_obj.private_key() decoded = jwt.decode(token, public_key, algorithms=["RS256"]) return JWTModel(**decoded) except Exception as e: raise HTTPException(500, "JWT verify error DAG: " + str(e))
the-stack_0_4385
import mdtraj as md import networkx as nx import numpy as np import matplotlib.pyplot as plt from collections import defaultdict import scipy.optimize import unyt as u class BondCalculator: def __init__(self, traj, T): self.traj = traj graph = traj.top.to_bondgraph() bonds = self.identify_bonds(graph) angles = self.identify_angles(graph) bond_params = dict() angle_params = dict() for bond_type, pairs in bonds.items(): bond_lengths, bond_prob = self.calc_lengths(pairs, range=[0, 1.0]) params = self.calc_parameters(bond_lengths, bond_prob) k = 2 * u.kb * (T*u.K) / (params[0] * u.nm)**2 * u.Na l0 = params[1] * u.nm bond_params[bond_type]= {"k": k, "x0": l0} for angle_type, triplets in angles.items(): bond_angles, angle_prob = self.calc_angles(triplets, range=[0, 2*np.pi]) params = self.calc_parameters(bond_angles, angle_prob) k = 2 * u.kb * (T*u.K) / (params[0] * u.rad)**2 * u.Na t0 = params[1] * u.rad angle_params[angle_type]= {"k": k, "x0": t0} self.bond_params = bond_params self.angle_params = angle_params def identify_bonds(self, graph): all_bonds = [edge for edge in graph.edges] bonds = defaultdict(list) for bond in all_bonds: index = tuple(sorted([bond[0].name, bond[1].name])) pair = tuple([particle.index for particle in bond]) bonds[index].append(pair) return bonds def identify_angles(self, graph): angle_subgraph = nx.Graph() angle_subgraph.add_edge(0, 1) angle_subgraph.add_edge(1, 2) matcher = nx.algorithms.isomorphism.GraphMatcher(graph, angle_subgraph) all_angles = [] for m in matcher.subgraph_isomorphisms_iter(): all_angles.append(tuple(k for k in m.keys())) angles = defaultdict(list) for angle in all_angles: index = tuple(particle.name for particle in angle) if angle[0].name < angle[2].name: index = tuple(reversed(index)) triplet = tuple(particle.index for particle in angle) angles[index].append(triplet) return angles def calc_lengths(self, pairs, range=None): quantity = md.compute_distances(self.traj, pairs) hist, edges = np.histogram(quantity, density=True, range=range, bins=200) bins = (edges[1:]+edges[:-1]) * 0.5 return bins, hist def calc_angles(self, triplets, range=None): quantity = md.compute_angles(self.traj, triplets) hist, edges = np.histogram(quantity, density=True, range=range, bins=200) bins = (edges[1:]+edges[:-1]) * 0.5 hist /= np.sin(bins) hist /= np.sum(hist)*(bins[1]-bins[0]) return bins, hist def cost_function(self, args, x, y): w, x0 = args return np.sum((self.gaussian(w, x0, x) - y)**2) def gaussian(self, w, x0, x): return ((w * np.sqrt(np.pi / 2))**-1)*(np.exp(-2 * (x - x0)**2 / (w**2))) def calc_parameters(self, x, y): res = scipy.optimize.minimize(lambda args: self.cost_function(args, x, y), [np.ptp(x)/10, x[np.argmax(y)]]) return res.x
the-stack_0_4388
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from __future__ import unicode_literals import re from ..._env import E2E_FIXTURE_NAME, deserialize_data CONFIG_MESSAGE_PATTERN = 'DDEV_E2E_START_MESSAGE (.+) DDEV_E2E_END_MESSAGE' def parse_config_from_result(env, result): if 'NO E2E FIXTURE AVAILABLE' in result.stdout: return None, None, 'The environment fixture `{}` does not exist.'.format(E2E_FIXTURE_NAME) if '{}: platform mismatch'.format(env) in result.stdout: return None, None, 'The environment `{}` does not support this platform.'.format(env) decoded = parse_encoded_config_data(result.stdout) if decoded is None: return ( None, None, ( '{}\n{}\nUnable to parse configuration. Try recreating your env to get the ' 'latest version of the dev package.'.format(result.stdout, result.stderr) ), ) config = decoded['config'] metadata = decoded['metadata'] if config is None: return None, None, 'The environment fixture `{}` did not yield any configuration.'.format(E2E_FIXTURE_NAME) return config, metadata, None def parse_encoded_config_data(output): match = re.search(CONFIG_MESSAGE_PATTERN, output) if match: return deserialize_data(match.group(1))
the-stack_0_4390
# -*- coding: utf-8 -*- import numpy as np """ This script is for outputting PC1/PC2/PC3 data from preprocd_dataset.npz of MD 1000K-LCx3 samples """ def makePC123(dtsetfile, outfile, grpname): dtset= np.load(dtsetfile, allow_pickle=True) #allow_pickle op is for adapting spec change of numpy 1.16.3 and later dts= dtset['dataset'] dataset0=[] for dt in dts: dt0=dt['inputs/0'] dataset0.append(dt0) dim0=len(dataset0) dim1=len(dataset0[0]) dim2=len(dataset0[0][0]) with open(outfile, 'w') as f1: for dt64 in dataset0: for dt in dt64: wdt=str(dt[0])+" "+str(dt[1])+" "+str(dt[2])+"\n" f1.write(wdt) print(f'Saved PC1/PC2/PC3 data of {grpname}: Shape= {dim0} x {dim1} x {dim2}') if __name__ == '__main__': mdfolder="/home/okugawa/HDNNP/Si-190808-md" outfolder=mdfolder+"/result-LC/PC123/" grps=['1000K0.99', '1000K1.0', '1000K1.01'] for grp in grps: for j in range(1,11): grpname=grp+"-"+str(j) dtsetdir=mdfolder+"/"+grp+"/"+str(j) dtsetfile=dtsetdir+"/data/CrystalSi64/preprocd_dataset.npz" outfile=outfolder+grpname+"-PC123.txt" makePC123(dtsetfile, outfile, grpname)
the-stack_0_4391
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Setup for pip package.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from setuptools import find_packages from setuptools import setup from setuptools.dist import Distribution __version__ = '1.2b1' class BinaryDistribution(Distribution): """This class is needed in order to create OS specific wheels.""" def has_ext_modules(self): return True setup( name='tensorflow-compression', version=__version__, description=('Data compression in TensorFlow'), url='https://tensorflow.github.io/compression/', author='Google LLC', # Contained modules and scripts. packages=find_packages(), install_requires=[ 'scipy >= 1.0.0', 'tensorflow >= 1.13.0', ], # Add in any packaged data. include_package_data=True, zip_safe=False, distclass=BinaryDistribution, # PyPI package information. classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: Libraries', ], project_urls={ 'Documentation': 'https://tensorflow.github.io/compression/docs/api_docs/python/tfc.html', 'Discussion': 'https://groups.google.com/forum/#!forum/tensorflow-compression', 'Source': 'https://github.com/tensorflow/compression', 'Tracker': 'https://github.com/tensorflow/compression/issues', }, license='Apache 2.0', keywords='compression data-compression tensorflow machine-learning python deep-learning deep-neural-networks neural-network ml', )
the-stack_0_4392
import time import dash import dash_html_components as html import dash_core_components as dcc import dash_bootstrap_components as dbc from dash.dependencies import Input, Output, State from transformers import BartTokenizer, BartForConditionalGeneration import torch device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Device: {device}") # Load Model pretrained = "sshleifer/distilbart-xsum-12-6" model = BartForConditionalGeneration.from_pretrained(pretrained) tokenizer = BartTokenizer.from_pretrained(pretrained) # Switch to cuda, eval mode, and FP16 for faster inference if device == "cuda": model = model.half() model.to(device) model.eval() # Define app app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) server = app.server controls = dbc.Card( [ dbc.FormGroup( [ dbc.Label("Output Length (# Tokens)"), dcc.Slider( id="max-length", min=10, max=50, value=30, marks={i: str(i) for i in range(10, 51, 10)}, ), ] ), dbc.FormGroup( [ dbc.Label("Beam Size"), dcc.Slider( id="num-beams", min=2, max=6, value=4, marks={i: str(i) for i in [2, 4, 6]}, ), ] ), dbc.FormGroup( [ dbc.Spinner( [ dbc.Button("Summarize", id="button-run"), html.Div(id="time-taken"), ] ) ] ), ], body=True, style={"height": "275px"}, ) # Define Layout app.layout = dbc.Container( fluid=True, children=[ html.H1("Dash Automatic Summarization (with DistilBART)"), html.Hr(), dbc.Row( [ dbc.Col( width=5, children=[ controls, dbc.Card( body=True, children=[ dbc.FormGroup( [ dbc.Label("Summarized Content"), dcc.Textarea( id="summarized-content", style={ "width": "100%", "height": "calc(75vh - 275px)", }, ), ] ) ], ), ], ), dbc.Col( width=7, children=[ dbc.Card( body=True, children=[ dbc.FormGroup( [ dbc.Label("Original Text (Paste here)"), dcc.Textarea( id="original-text", style={"width": "100%", "height": "75vh"}, ), ] ) ], ) ], ), ] ), ], ) @app.callback( [Output("summarized-content", "value"), Output("time-taken", "children")], [ Input("button-run", "n_clicks"), Input("max-length", "value"), Input("num-beams", "value"), ], [State("original-text", "value")], ) def summarize(n_clicks, max_len, num_beams, original_text): if original_text is None or original_text == "": return "", "Did not run" t0 = time.time() inputs = tokenizer.batch_encode_plus( [original_text], max_length=1024, return_tensors="pt" ) inputs = inputs.to(device) # Generate Summary summary_ids = model.generate( inputs["input_ids"], num_beams=num_beams, max_length=max_len, early_stopping=True, ) out = [ tokenizer.decode( g, skip_special_tokens=True, clean_up_tokenization_spaces=False ) for g in summary_ids ] t1 = time.time() time_taken = f"Summarized on {device} in {t1-t0:.2f}s" return out[0], time_taken if __name__ == "__main__": app.run_server(debug=True)
the-stack_0_4393
import requests import json import configparser as cfg class telegram_chatbot(): def __init__(self, config): self.token = self.read_token_from_config_file(config) self.base = "https://api.telegram.org/bot{}/".format(self.token) def get_updates(self, offset=None): url = self.base + "getUpdates?timeout=100" if offset: url = url + "&offset={}".format(offset + 1) r = requests.get(url) return json.loads(r.content) def send_message(self, msg, chat_id): url = self.base + "sendMessage?chat_id={}&text={}".format(chat_id, msg) if msg is not None: requests.get(url) def read_token_from_config_file(self, config): parser = cfg.ConfigParser() parser.read(config) return parser.get('creds', 'token')
the-stack_0_4394
from discord.ext.commands import Cog class Cancer(Cog): def __init__(self, bot): self.bot = bot self.ok_list = [198101180180594688, 246291440106340352] @Cog.listener() async def on_member_join(self, member): if member.guild.id not in self.ok_list: return await member.guild.system_channel.send("yes " + member.mention) @Cog.listener() async def on_member_remove(self, member): if member.guild.id not in self.ok_list: return await member.guild.system_channel.send("no " + member.mention) @Cog.listener() async def on_guild_emojis_update(self, guild, before, after): if guild.id not in self.ok_list: return await guild.system_channel.send("the emojis were updated") def setup(bot): bot.add_cog(Cancer(bot))
the-stack_0_4395
import pandas as pd train = pd.read_csv('../data/train_mapped.tsv', sep='\t', header=0) data = pd.DataFrame(columns=['SentenceId','Phrase', 'Sentiment']) temp = list(train['SentenceId']) count = 1 for index, row in train.iterrows(): if row['SentenceId'] == count: data = data.append(row[['SentenceId', 'Phrase', 'Sentiment']]) count += 1 # if count == 2628 or count == 2746 or count == 4044 or count == 4365: # count += 1 if count not in temp: print(count) count += 1 data = data.reset_index() data = data.drop('index', axis=1) print(len(data)) data.to_csv('../data/train_extract.tsv', sep='\t', index=False)
the-stack_0_4396
""" """ from __future__ import division from datetime import date import logging from date_helper import * logger = logging.getLogger(__name__).addHandler(logger.NullHandler()) def check_date_objects(date1, date2): if not(isinstance(date1, date) or isinstance(date2, date)): raise InputError(expr = "Dates must be instances of datetime.date class") class Error(Exception): """Base class for exceptions in this module. """ pass class InputError(Error): """Exception raised for errors in parameters. """ pass def _days_30_360_main(i_year, i_month, i_day, f_year, f_month, f_day): """Base formula calculation for the numerator and denominator of day count 30/360. """ num = 360 * (f_year - i_year) + 30 * (f_month - i_month) + (f_day - i_day) den = 360 log = "[%(num)r/%(den)r]" % {'num':num, 'den':den} logger.debug(log) return num / den def _daycount_act_act_ISDA(i_date, f_date): """Return factor to apply for interests between i_date and f_date. :i_date: initial date. :f_date: final date. *i_date* and *f_date* must be instances of datetime.date class from datetime module act/act, ISDA Days in a month: actual Days in a year: actual Flavor: ISDA This method splits up the actual number of days falling in leap years and in non-leap years. The year fraction is the sum of the actual number of days falling in leap years divided by 366 and the actual number of days falling in non-leap years divided by 365. """ days_in_commons, days_in_leaps = _days_in_leap_and_common_years(i_date, f_date) if days_in_commons == 0: num = days_in_leaps den = 366 elif days_in_leaps == 0: num = days_in_commons den = 365 else: num = (366 * days_in_commons) + (365 * days_in_leaps) den = 133590 #least common multiple between 366 and 365 log = "%(f_name)r(%(i_date)r, %(f_date)r)" % {'f_name':'daycount_act_act_ISDA', 'i_date':i_date, 'f_date':f_date} logger.debug(log) log = "[%(num)r/%(den)r]" % {'num':num, 'den':den} logger.debug(log) return num / den def _daycount_act_act_Euro(i_date, f_date): """Return factor to apply for interests between i_date and f_date. :i_date: initial date. :f_date: final date. *i_date* and *f_date* must be instances of datetime.date class from the datetime module act/act, Euro, AFB Days in a month: actual Days in a year: actual This method first calculates the number of full years counting backwards from the second date. For any resulting stub periods, the numerator is the actual number of days in the period, the denominator being 365 or 366 depending on whether February 29th falls in the stub period. """ # delta = f_date - i_date # days1 = delta.days # # log = "%(f_name)r(%(i_date)r, %(f_date)r)" % {'f_name':'daycount_act_act_Euro', 'i_date':i_date, 'f_date':f_date} # logger.debug(log) # log = "[%(num)r/%(den)r]" % {'num':num, 'den':den} # logger.debug(log) # return num / den def _daycount_act_365_Fixed(i_date, f_date): """Return factor to apply for interests between i_date and f_date. :i_date: initial date. :f_date: final date. *i_date* and *f_date* must be instances of datetime.date class from the datetime module act/365, act/365 fixed Days in a month: actual Days in a year: 365 Always Flavor: Fixed This method first calculates the number of full years counting backwards from the second date. For any resulting stub periods, the numerator is the actual number of days in the period, the denominator being 365 or 366 depending on whether February 29th falls in the stub period. """ delta = f_date - i_date num = delta.days den = 365 log = "%(f_name)r(%(i_date)r, %(f_date)r)" % {'f_name':'daycount_act_365_Fixed', 'i_date':i_date, 'f_date':f_date} logger.debug(log) log = "[%(num)r/%(den)r]" % {'num':num, 'den':den} logger.debug(log) return num / den def _daycount_30_360(i_date, f_date): """Return factor to apply for interests between i_date and f_date. :i_date: initial date. :f_date: final date. *i_date* and *f_date* must be instances of datetime.date class from the datetime module Days in a month: 30 Days in a year: 360 Flavor: None """ i_year = i_date.year i_month = i_date.month i_day = i_date.day f_year = f_date.year f_month = f_date.month f_day = f_date.day log = "%(f_name)r(%(i_date)r, %(f_date)r)" % {'f_name':'daycount_30_360', 'i_date':i_date, 'f_date':f_date} logger.debug(log) factor = _days_30_360_main(i_year, i_month, i_day, f_year, f_month, f_day) return factor def _daycount_30_360_US(i_date, f_date): """Return factor to apply for interests between i_date and f_date. :i_date: initial date. :f_date: final date. *i_date* and *f_date* must be instances of datetime.date class from the datetime module Days in a month: 30 Days in a year: 360 Flavor: US """ i_year = i_date.year i_month = i_date.month i_day = i_date.day f_year = f_date.year f_month = f_date.month f_day = f_date.day if (i_date.month == 2 and _is_end_of_month(i_date)) and (f_date.month == 2 and _is_end_of_month(f_date)): f_day = 30 if (i_date.month == 2 and _is_end_of_month(i_date)): i_day = 30 if (f_day == 31) and (i_day in [30, 31]): f_day = 30 if (i_day == 31): i_day = 30 log = "%(f_name)r(%(i_date)r, %(f_date)r)" % {'f_name':'daycount_30_360_US', 'i_date':i_date, 'f_date':f_date} logger.debug(log) factor = _days_30_360_main(i_year, i_month, i_day, f_year, f_month, f_day) return factor class InterestFactor(object): """. Usage:: >>> date1 = date(2012, 2, 5) >>> date2 = date(2012, 4, 6) >>> myCounter = DayCounter(30, 360, 'fixed') >>> myCounter.count(date1, date2) >>> """ def __init__(self, dim=30, diy=360, flavor=None): """Constructor. """ self.dim = dim self.diy = diy self.flavor = flavor method = '_'.join([str(self.dim), str(self.diy), str(self.flavor)]) #try: self.factor = self._methods[method] #except KeyError as e: #pass #TODO: catch this key error def __repr__(self): """Representation. """ return "interestFactor(dim=%(dim)r, diy=%(diy)r, flavor=%(flavor)r)" % {'dim':self.dim, 'diy':self.diy, 'flavor':self.flavor} _methods = { '30_360_None': _daycount_30_360, '30_360_US': _daycount_30_360_US, 'act_act_Fixed': _daycount_act_365_Fixed, 'act_act_ISDA': _daycount_act_act_ISDA, 'act_act_Euro': _daycount_act_act_Euro, } if __name__ == '__main__': date1 = date(2012, 2, 5) date2 = date(2012, 4, 6) days360 = InterestFactor(30, 360) print(days360) print(days360.factor(date1, date2))
the-stack_0_4398
# %% [markdown] # ## import os import warnings import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.transforms as transforms import numpy as np import pandas as pd import seaborn as sns from joblib import Parallel, delayed from sklearn.exceptions import ConvergenceWarning from sklearn.manifold import MDS, TSNE, Isomap from sklearn.metrics import pairwise_distances from sklearn.neighbors import NearestNeighbors from sklearn.utils.testing import ignore_warnings from tqdm.autonotebook import tqdm from umap import UMAP from graspy.embed import ( AdjacencySpectralEmbed, ClassicalMDS, LaplacianSpectralEmbed, OmnibusEmbed, select_dimension, selectSVD, ) from graspy.plot import pairplot from graspy.simulations import sbm from graspy.utils import ( augment_diagonal, binarize, pass_to_ranks, symmetrize, to_laplace, ) from src.align import Procrustes from src.cluster import MaggotCluster, get_paired_inds from src.data import load_metagraph from src.graph import preprocess from src.hierarchy import signal_flow from src.io import savecsv, savefig from src.visualization import ( CLASS_COLOR_DICT, add_connections, adjplot, barplot_text, draw_networkx_nice, gridmap, matrixplot, palplot, screeplot, set_axes_equal, stacked_barplot, ) warnings.filterwarnings(action="ignore", category=ConvergenceWarning) FNAME = os.path.basename(__file__)[:-3] print(FNAME) rc_dict = { "axes.spines.right": False, "axes.spines.top": False, "axes.formatter.limits": (-3, 3), "figure.figsize": (6, 3), "figure.dpi": 100, } for key, val in rc_dict.items(): mpl.rcParams[key] = val context = sns.plotting_context(context="talk", font_scale=1, rc=rc_dict) sns.set_context(context) np.random.seed(8888) def stashfig(name, **kws): savefig(name, foldername=FNAME, save_on=True, **kws) def stashcsv(df, name, **kws): savecsv(df, name, foldername=FNAME, **kws) graph_type = "G" def plot_pairs( X, labels, model=None, left_pair_inds=None, right_pair_inds=None, equal=False ): n_dims = X.shape[1] fig, axs = plt.subplots( n_dims, n_dims, sharex=False, sharey=False, figsize=(20, 20) ) data = pd.DataFrame(data=X) data["label"] = labels for i in range(n_dims): for j in range(n_dims): ax = axs[i, j] ax.axis("off") if i < j: sns.scatterplot( data=data, x=j, y=i, ax=ax, alpha=0.7, linewidth=0, s=8, legend=False, hue="label", palette=CLASS_COLOR_DICT, ) if left_pair_inds is not None and right_pair_inds is not None: add_connections( data.iloc[left_pair_inds, j], data.iloc[right_pair_inds, j], data.iloc[left_pair_inds, i], data.iloc[right_pair_inds, i], ax=ax, ) plt.tight_layout() return fig, axs def preprocess_adjs(adjs, method="ase"): adjs = [pass_to_ranks(a) for a in adjs] adjs = [a + 1 / a.size for a in adjs] if method == "ase": adjs = [augment_diagonal(a) for a in adjs] elif method == "lse": adjs = [to_laplace(a) for a in adjs] return adjs def omni( adjs, n_components=4, remove_first=None, concat_graphs=True, concat_directed=True, method="ase", ): adjs = preprocess_adjs(adjs, method=method) omni = OmnibusEmbed(n_components=n_components, check_lcc=False, n_iter=10) embed = omni.fit_transform(adjs) if concat_directed: embed = np.concatenate( embed, axis=-1 ) # this is for left/right latent positions if remove_first is not None: embed = embed[remove_first:] if concat_graphs: embed = np.concatenate(embed, axis=0) return embed def ipsi_omni(adj, lp_inds, rp_inds, co_adj=None, n_components=4, method="ase"): ll_adj = adj[np.ix_(lp_inds, lp_inds)] rr_adj = adj[np.ix_(rp_inds, rp_inds)] ipsi_adjs = [ll_adj, rr_adj] if co_adj is not None: co_ll_adj = co_adj[np.ix_(lp_inds, lp_inds)] co_rr_adj = co_adj[np.ix_(rp_inds, rp_inds)] ipsi_adjs += [co_ll_adj, co_rr_adj] out_ipsi, in_ipsi = omni( ipsi_adjs, n_components=n_components, concat_directed=False, concat_graphs=False, method=method, ) left_embed = np.concatenate((out_ipsi[0], in_ipsi[0]), axis=1) right_embed = np.concatenate((out_ipsi[1], in_ipsi[1]), axis=1) ipsi_embed = np.concatenate((left_embed, right_embed), axis=0) return ipsi_embed def contra_omni(adj, lp_inds, rp_inds, co_adj=None, n_components=4, method="ase"): lr_adj = adj[np.ix_(lp_inds, rp_inds)] rl_adj = adj[np.ix_(rp_inds, lp_inds)] contra_adjs = [lr_adj, rl_adj] if co_adj is not None: co_lr_adj = co_adj[np.ix_(lp_inds, rp_inds)] co_rl_adj = co_adj[np.ix_(rp_inds, lp_inds)] contra_adjs += [co_lr_adj, co_rl_adj] out_contra, in_contra = omni( contra_adjs, n_components=n_components, concat_directed=False, concat_graphs=False, method=method, ) left_embed = np.concatenate((out_contra[0], in_contra[1]), axis=1) right_embed = np.concatenate((out_contra[1], in_contra[0]), axis=1) contra_embed = np.concatenate((left_embed, right_embed), axis=0) return contra_embed def lateral_omni(adj, lp_inds, rp_inds, n_components=4, method="ase"): ipsi_embed = ipsi_omni( adj, lp_inds, rp_inds, n_components=n_components, method=method ) contra_embed = contra_omni( adj, lp_inds, rp_inds, n_components=n_components, method=method ) embed = np.concatenate((ipsi_embed, contra_embed), axis=1) return embed def multi_lateral_omni(adjs, lp_inds, rp_inds, n_components=4): ipsi_adjs = [] for a in adjs: ll_adj = a[np.ix_(lp_inds, lp_inds)] rr_adj = a[np.ix_(rp_inds, rp_inds)] ipsi_adjs.append(ll_adj) ipsi_adjs.append(rr_adj) ipsi_embed = omni(ipsi_adjs, concat_graphs=False, n_components=n_components) left = [] right = [] for i, e in enumerate(ipsi_embed): if i % 2 == 0: left.append(e) else: right.append(e) left = np.concatenate(left, axis=1) right = np.concatenate(right, axis=1) ipsi_embed = np.concatenate((left, right), axis=0) contra_adjs = [] for a in adjs: lr_adj = a[np.ix_(lp_inds, rp_inds)] rl_adj = a[np.ix_(rp_inds, lp_inds)] contra_adjs.append(lr_adj) contra_adjs.append(rl_adj) contra_embed = omni(contra_adjs, concat_graphs=False, n_components=n_components) left = [] right = [] for i, e in enumerate(contra_embed): if i % 2 == 0: left.append(e) else: right.append(e) left = np.concatenate(left, axis=1) right = np.concatenate(right, axis=1) contra_embed = np.concatenate((left, right), axis=0) embed = np.concatenate((ipsi_embed, contra_embed), axis=1) return embed def reg_lateral_omni(adj, base_adj, lp_inds, rp_inds, n_components=4): base_ll_adj = base_adj[np.ix_(lp_inds, lp_inds)] base_rr_adj = base_adj[np.ix_(rp_inds, rp_inds)] ll_adj = adj[np.ix_(lp_inds, lp_inds)] rr_adj = adj[np.ix_(rp_inds, rp_inds)] ipsi_adjs = [base_ll_adj, base_rr_adj, ll_adj, rr_adj] ipsi_embed = omni(ipsi_adjs, remove_first=2, n_components=n_components) base_lr_adj = base_adj[np.ix_(lp_inds, rp_inds)] base_rl_adj = base_adj[np.ix_(rp_inds, lp_inds)] lr_adj = adj[np.ix_(lp_inds, rp_inds)] rl_adj = adj[np.ix_(rp_inds, lp_inds)] contra_adjs = [base_lr_adj, base_rl_adj, lr_adj, rl_adj] contra_embed = omni(contra_adjs, remove_first=2, n_components=n_components) embed = np.concatenate((ipsi_embed, contra_embed), axis=1) return embed def quick_embed_viewer( embed, labels=None, lp_inds=None, rp_inds=None, left_right_indexing=False ): if left_right_indexing: lp_inds = np.arange(len(embed) // 2) rp_inds = np.arange(len(embed) // 2) + len(embed) // 2 fig, axs = plt.subplots(3, 2, figsize=(20, 30)) cmds = ClassicalMDS(n_components=2) cmds_euc = cmds.fit_transform(embed) plot_df = pd.DataFrame(data=cmds_euc) plot_df["labels"] = labels plot_kws = dict( x=0, y=1, hue="labels", palette=CLASS_COLOR_DICT, legend=False, s=20, linewidth=0.5, alpha=0.7, ) ax = axs[0, 0] sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") add_connections( plot_df.iloc[lp_inds, 0], plot_df.iloc[rp_inds, 0], plot_df.iloc[lp_inds, 1], plot_df.iloc[rp_inds, 1], ax=ax, ) ax.set_title("CMDS o euclidean") cmds = ClassicalMDS(n_components=2, dissimilarity="precomputed") pdist = symmetrize(pairwise_distances(embed, metric="cosine")) cmds_cos = cmds.fit_transform(pdist) plot_df[0] = cmds_cos[:, 0] plot_df[1] = cmds_cos[:, 1] ax = axs[0, 1] sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") add_connections( plot_df.iloc[lp_inds, 0], plot_df.iloc[rp_inds, 0], plot_df.iloc[lp_inds, 1], plot_df.iloc[rp_inds, 1], ax=ax, ) ax.set_title("CMDS o cosine") tsne = TSNE(metric="euclidean") tsne_euc = tsne.fit_transform(embed) plot_df[0] = tsne_euc[:, 0] plot_df[1] = tsne_euc[:, 1] ax = axs[1, 0] sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") add_connections( plot_df.iloc[lp_inds, 0], plot_df.iloc[rp_inds, 0], plot_df.iloc[lp_inds, 1], plot_df.iloc[rp_inds, 1], ax=ax, ) ax.set_title("TSNE o euclidean") tsne = TSNE(metric="precomputed") tsne_cos = tsne.fit_transform(pdist) plot_df[0] = tsne_cos[:, 0] plot_df[1] = tsne_cos[:, 1] ax = axs[1, 1] sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") add_connections( plot_df.iloc[lp_inds, 0], plot_df.iloc[rp_inds, 0], plot_df.iloc[lp_inds, 1], plot_df.iloc[rp_inds, 1], ax=ax, ) ax.set_title("TSNE o cosine") umap = UMAP(metric="euclidean", n_neighbors=30, min_dist=1) umap_euc = umap.fit_transform(embed) plot_df[0] = umap_euc[:, 0] plot_df[1] = umap_euc[:, 1] ax = axs[2, 0] sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") add_connections( plot_df.iloc[lp_inds, 0], plot_df.iloc[rp_inds, 0], plot_df.iloc[lp_inds, 1], plot_df.iloc[rp_inds, 1], ax=ax, ) ax.set_title("UMAP o euclidean") umap = UMAP(metric="cosine", n_neighbors=30, min_dist=1) umap_cos = umap.fit_transform(embed) plot_df[0] = umap_cos[:, 0] plot_df[1] = umap_cos[:, 1] ax = axs[2, 1] sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") add_connections( plot_df.iloc[lp_inds, 0], plot_df.iloc[rp_inds, 0], plot_df.iloc[lp_inds, 1], plot_df.iloc[rp_inds, 1], ax=ax, ) ax.set_title("UMAP o cosine") def umapper(embed, metric="euclidean", n_neighbors=30, min_dist=1, **kws): umap = UMAP(metric=metric, n_neighbors=n_neighbors, min_dist=min_dist) umap_euc = umap.fit_transform(embed) plot_df = pd.DataFrame(data=umap_euc) plot_df["labels"] = labels fig, ax = plt.subplots(1, 1, figsize=(10, 10)) plot_kws = dict( x=0, y=1, hue="labels", palette=CLASS_COLOR_DICT, legend=False, s=20, linewidth=0.5, alpha=0.7, ) sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") left_right_indexing = True if left_right_indexing: tlp_inds = np.arange(len(embed) // 2) trp_inds = np.arange(len(embed) // 2) + len(embed) // 2 add_connections( plot_df.iloc[tlp_inds, 0], plot_df.iloc[trp_inds, 0], plot_df.iloc[tlp_inds, 1], plot_df.iloc[trp_inds, 1], ax=ax, ) return fig, ax # %% [markdown] # ## Load and preprocess data VERSION = "2020-04-23" graph_type = "G" master_mg = load_metagraph(graph_type, version="2020-04-23") mg = preprocess( master_mg, threshold=0, sym_threshold=False, remove_pdiff=True, binarize=False, weight="weight", ) meta = mg.meta degrees = mg.calculate_degrees() quant_val = np.quantile(degrees["Total edgesum"], 0.05) # remove low degree neurons idx = meta[degrees["Total edgesum"] > quant_val].index print(quant_val) mg = mg.reindex(idx, use_ids=True) # remove center neurons # FIXME idx = mg.meta[mg.meta["hemisphere"].isin(["L", "R"])].index mg = mg.reindex(idx, use_ids=True) idx = mg.meta[mg.meta["Pair"].isin(mg.meta.index)].index mg = mg.reindex(idx, use_ids=True) mg = mg.make_lcc() mg.calculate_degrees(inplace=True) meta = mg.meta meta["pair_td"] = meta["Pair ID"].map(meta.groupby("Pair ID")["Total degree"].mean()) mg = mg.sort_values(["pair_td", "Pair ID"], ascending=False) meta["inds"] = range(len(meta)) adj = mg.adj.copy() lp_inds, rp_inds = get_paired_inds(meta) left_inds = meta[meta["left"]]["inds"] print(len(mg)) # %% [markdown] # ## Plot the ipsilateral connectomes if meta["pair_td"].max() > 0: meta["pair_td"] = -meta["pair_td"] ll_adj = adj[np.ix_(lp_inds, lp_inds)] rr_adj = adj[np.ix_(rp_inds, rp_inds)] left_meta = meta.iloc[lp_inds] right_meta = meta.iloc[rp_inds] plot_kws = dict( plot_type="scattermap", sort_class="merge_class", item_order=["pair_td", "Pair ID"], colors="merge_class", palette=CLASS_COLOR_DICT, ticks=False, class_order="pair_td", sizes=(1, 1), gridline_kws=dict(linewidth=0.2, color="grey", linestyle="--"), ) plot_adjs = False if plot_adjs: fig, axs = plt.subplots(1, 2, figsize=(20, 10)) _, _, top, _ = adjplot(ll_adj, ax=axs[0], meta=left_meta, **plot_kws) top.set_title(r"L $\to$ L") _, _, top, _ = adjplot(rr_adj, ax=axs[1], meta=right_meta, **plot_kws) top.set_title(r"R $\to$ R") plt.tight_layout() stashfig("ipsilateral-adj") lr_adj = adj[np.ix_(lp_inds, rp_inds)] rl_adj = adj[np.ix_(rp_inds, lp_inds)] fig, axs = plt.subplots(1, 2, figsize=(20, 10)) _, _, top, _ = adjplot(lr_adj, ax=axs[0], meta=left_meta, **plot_kws) top.set_title(r"L $\to$ R") _, _, top, _ = adjplot(rl_adj, ax=axs[1], meta=right_meta, **plot_kws) top.set_title(r"R $\to$ L") plt.tight_layout() stashfig("contralateral-adj") # %% [markdown] # ## Load the 4-color graphs graph_types = ["Gad", "Gaa", "Gdd", "Gda"] adjs = [] for g in graph_types: temp_mg = load_metagraph(g, version=VERSION) temp_mg.reindex(mg.meta.index, use_ids=True) temp_adj = temp_mg.adj adjs.append(temp_adj) # %% [markdown] # ## simple demo of "in" vs "out" latent positions # blocks 0, 1 differ only in their inputs, not their outputs B = np.array( [ [0.1, 0.1, 0.2, 0.05], [0.1, 0.1, 0.2, 0.05], [0.35, 0.15, 0.1, 0.1], [0.1, 0.05, 0.3, 0.4], ] ) sns.heatmap(B, square=True, annot=True) sbm_sample, sbm_labels = sbm([100, 100, 100, 100], B, directed=True, return_labels=True) ase = AdjacencySpectralEmbed() out_embed, in_embed = ase.fit_transform(sbm_sample) pairplot(out_embed, sbm_labels) # don't see separation between [0, 1] pairplot(in_embed, sbm_labels) # do see separation between [0, 1] # from this we can conclude that the "right" embedding or right singular vectors are the # ones corresponding to input # (out, in) # %% [markdown] # ## Options for the embedding # - ASE and procrustes (not shown here) # - Bilateral OMNI on G, SVD # - Bilateral OMNI on each of the 4-colors, concatenated, SVD # - Bilateral OMNI on each of the 4-colors, with regularization, concatenated, SVD # - Bilateral OMNI jointly with all 4-colors n_omni_components = 8 # this is used for all of the embedings initially n_svd_components = 16 # this is for the last step def svd(X, n_components=n_svd_components): return selectSVD(X, n_components=n_components, algorithm="full")[0] # %% [markdown] # ## only contra # just_contra_embed = omni( # [full_adjs[0], full_adjs[2]], # n_components=n_omni_components, # remove_first=None, # concat_graphs=True, # concat_directed=True, # method="ase", # ) # svd_contra_embed = svd(just_contra_embed) # %% [markdown] # # Omni of contra/ipsi together full_adjs = [ adj[np.ix_(lp_inds, lp_inds)], adj[np.ix_(lp_inds, rp_inds)], adj[np.ix_(rp_inds, rp_inds)], adj[np.ix_(rp_inds, lp_inds)], ] out_embed, in_embed = omni( full_adjs, n_components=n_omni_components, remove_first=None, concat_graphs=False, concat_directed=False, method="ase", ) # ipsi out, contra out, ipsi in, contra in left_embed = np.concatenate( (out_embed[0], out_embed[1], in_embed[0], in_embed[3]), axis=1 ) right_embed = np.concatenate( (out_embed[2], out_embed[3], in_embed[2], in_embed[1]), axis=1 ) omni_naive_embed = np.concatenate((left_embed, right_embed), axis=0) ase_naive_embed = svd(omni_naive_embed) # ## # out_embed, in_embed = omni( # full_adjs, # n_components=n_omni_components, # remove_first=None, # concat_graphs=False, # concat_directed=False, # method="lse", # ) # # ipsi out, contra out, ipsi in, contra in # left_embed = np.concatenate( # (out_embed[0], out_embed[1], in_embed[0], in_embed[3]), axis=1 # ) # right_embed = np.concatenate( # (out_embed[2], out_embed[3], in_embed[2], in_embed[1]), axis=1 # ) # omni_naive_embed = np.concatenate((left_embed, right_embed), axis=0) # lse_naive_embed = svd(omni_naive_embed) # %% [markdown] # ## Bilateral OMNI on G, SVD omni_flat_embed = lateral_omni( adj, lp_inds, rp_inds, n_components=n_omni_components, method="ase" ) ase_flat_embed = svd(omni_flat_embed) # %% [markdown] # ## just compare # %% [markdown] # ## Bilateral OMNI on each of the 4-colors, concatenated, SVD omni_multi_embed = [] for a in adjs: omni_multi_embed.append( lateral_omni(a, lp_inds, rp_inds, n_components=n_omni_components) ) omni_multi_embed = np.concatenate(omni_multi_embed, axis=1) ase_multi_embed = svd(omni_multi_embed) # %% [markdown] # ## Bilateral OMNI on each of the 4-colors, with regularization, concatenated, SVD omni_reg_embed = [] for a in adjs: omni_reg_embed.append( reg_lateral_omni(a, adj, lp_inds, rp_inds, n_components=n_omni_components) ) omni_reg_embed = np.concatenate(omni_reg_embed, axis=1) ase_reg_embed = svd(omni_reg_embed) # %% [markdown] # ## Bilateral OMNI on all 4-colors adjs_and_sum = adjs + [adj] omni_joint_embed = multi_lateral_omni( adjs_and_sum, lp_inds, rp_inds, n_components=n_omni_components ) ase_joint_embed = svd(omni_joint_embed) # %% [markdown] # ## Compute neighbors at K new_lp_inds = np.arange(len(mg) // 2) new_rp_inds = np.arange(len(mg) // 2) + len(mg) // 2 def compute_neighbors_at_k(X, left_inds, right_inds, k_max=10, metric="euclidean"): nn = NearestNeighbors(radius=0, n_neighbors=k_max + 1, metric=metric) nn.fit(X) neigh_dist, neigh_inds = nn.kneighbors(X) is_neighbor_mat = np.zeros((X.shape[0], k_max), dtype=bool) for left_ind, right_ind in zip(left_inds, right_inds): left_neigh_inds = neigh_inds[left_ind] right_neigh_inds = neigh_inds[right_ind] for k in range(k_max): if right_ind in left_neigh_inds[: k + 2]: is_neighbor_mat[left_ind, k] = True if left_ind in right_neigh_inds[: k + 2]: is_neighbor_mat[right_ind, k] = True neighbors_at_k = np.sum(is_neighbor_mat, axis=0) / is_neighbor_mat.shape[0] neighbors_at_k = pd.Series(data=neighbors_at_k, index=np.arange(1, k_max + 1)) neighbors_at_k.name = "p_at_k" return neighbors_at_k # names = ["flat", "multi", "joint", "reg", "naive"] # embeds = [ # ase_flat_embed, # ase_multi_embed, # ase_joint_embed, # ase_reg_embed, # ase_naive_embed, # ] names = ["iso", "aniso", "multi"] embeds = [ase_naive_embed, ase_flat_embed, ase_multi_embed] dims = np.arange(1, 16) dfs = [] for d in dims: for name, embed in zip(names, embeds): p_at_k = compute_neighbors_at_k(embed[:, :d], new_lp_inds, new_rp_inds) neighbor_df = p_at_k.to_frame() neighbor_df.reset_index(inplace=True) neighbor_df.rename(columns={"index": "K"}, inplace=True) neighbor_df["method"] = name neighbor_df["d"] = d dfs.append(neighbor_df) neighbor_df = pd.concat(dfs, ignore_index=True) # %% [markdown] # ## Plot nearest neighbor results fig, ax = plt.subplots(1, 1, figsize=(8, 4)) k = 5 sns.lineplot( data=neighbor_df[neighbor_df["K"] == k], x="d", y="p_at_k", hue="method", style="method", # style_order=["reg", "joint", "multi", "flat"], ) ax.set_ylabel(f"P @ K = {k}") ax.set_xlabel("# dimensions") stashfig(f"p_at_k={k}_embed-iso-aniso-multi") # %% [markdown] # ## Look at the best one! (ish) new_meta = meta.iloc[np.concatenate((lp_inds, rp_inds), axis=0)].copy() labels = new_meta["merge_class"].values plot_pairs( ase_flat_embed[:, :8], labels, left_pair_inds=new_lp_inds, right_pair_inds=new_rp_inds, ) stashfig("ase-flat-pairs") quick_embed_viewer( ase_flat_embed[:, :8], labels=labels, lp_inds=new_lp_inds, rp_inds=new_rp_inds ) stashfig("ase-flat-manifold") # %% [markdown] # ## Now, try to do a similar quantification but for classes # KC # MBON # MBIN # ORN # UPN # some of the antennal lobe stuff def class_neighbors_at_k(X, labels, target, k_max=10, metric="euclidean"): nn = NearestNeighbors(radius=0, n_neighbors=k_max + 1, metric=metric) nn.fit(X) neigh_dist, neigh_inds = nn.kneighbors(X) neigh_inds = neigh_inds[:, 1:] # remove self as neighbor mask = labels == target target_inds = np.arange(len(X))[mask] target_neigh_inds = neigh_inds[mask] p_nearby = [] neighbors_in_target = np.isin(target_neigh_inds, target_inds) for k in np.arange(1, k_max + 1): p_nearby_at_k = neighbors_in_target[:, :k].sum() / (k * len(target_inds)) p_nearby.append(p_nearby_at_k) p_nearby = np.array(p_nearby) neighbor_df = pd.DataFrame(data=p_nearby, index=np.arange(1, k_max + 1)) neighbor_df.index.name = "K" neighbor_df.rename(columns={0: target}, inplace=True) return neighbor_df new_meta = meta.iloc[np.concatenate((lp_inds, rp_inds), axis=0)].copy() labels = new_meta["merge_class"].values k_max = 10 embed_df = [] for name, embed in zip(names, embeds): neighbor_df = [] for d in np.arange(1, 16): X = embed[:, :d] class1 = new_meta["class1"].values neighbors = [] for target in ["uPN", "sens-ORN"]: neighbors.append(class_neighbors_at_k(X, labels, target)) for target in ["KC", "mPN", "MBON", "MBIN"]: neighbors.append(class_neighbors_at_k(X, class1, target)) neighbors = pd.concat(neighbors, ignore_index=False, axis=1) neighbors = neighbors.reset_index() neighbors = neighbors.melt(value_name="p_at_k", var_name="class", id_vars=["K"]) neighbors["d"] = d neighbor_df.append(neighbors) neighbor_df = pd.concat(neighbor_df, axis=0) neighbor_df["method"] = name embed_df.append(neighbor_df) embed_df = pd.concat(embed_df, axis=0) # k = 5 # temp_df = embed_df[embed_df["K"] == k] # fig, axs = plt.subplots(2, 2, figsize=(20, 10), sharex=True, sharey=True) # axs = axs.ravel() # for i, name in enumerate(names): # ax = axs[i] # plot_df = temp_df[temp_df["method"] == name] # sns.lineplot(data=plot_df, x="d", y="p_at_k", hue="class", ax=ax) # ax.set_title(name) # ax.get_legend().remove() # plt.tight_layout() # ax.legend(bbox_to_anchor=(1, 1), loc="upper left") # hard to compare directly on the above # %% [markdown] # ## # fix d # one plot for each class # line for each of the embeddings k = 5 plot_df = embed_df[embed_df["K"] == k] # plot_df = plot_df[plot_df["d"] == d] classes = ["uPN", "sens-ORN", "KC", "mPN", "MBON", "MBIN"] fig, axs = plt.subplots(2, 3, figsize=(20, 10), sharex=True, sharey=True) axs = axs.ravel() for i, cell_class in enumerate(classes): ax = axs[i] temp_df = plot_df[plot_df["class"] == cell_class] sns.lineplot( data=temp_df, x="d", y="p_at_k", hue="method", ax=ax, style="method", # style_order=["reg", "joint", "multi", "flat"], ) ax.set_title(cell_class) axs[0].set_ylabel(f"Prop. @ K = {k}") axs[3].set_ylabel(f"Prop. @ K = {k}") plt.tight_layout() stashfig(f"embed-class-knn-k={k}") # %% # # Notes # I like aniso better than iso # not sure about reg or not # for sides, we have {iso, aniso} # for method, we have {lse, ase} # for color, we have {flat, multi (separate), joint (omni), reg (multi but with G)} # there seems to be no single embedding that is winning at everything. n_levels = 12 metric = "bic" bic_ratio = 1 d = 8 basename = f"aniso-omni-bic_ratio={bic_ratio}-d={d}" mc = MaggotCluster( "0", adj=adj, n_init=25, meta=new_meta, stashfig=stashfig, min_clusters=1, max_clusters=3, X=ase_flat_embed[:, :d], bic_ratio=bic_ratio, reembed=False, min_split=4, ) for i in range(n_levels): for j, node in enumerate(mc.get_lowest_level()): node.fit_candidates(show_plot=False) for j, node in enumerate(mc.get_lowest_level()): node.select_model(k=None, metric=metric) mc.collect_labels() n_levels = mc.height fig, axs = plt.subplots(1, n_levels, figsize=(10 * n_levels, 40)) for i in range(n_levels): ax = axs[i] stacked_barplot( mc.meta[f"lvl{i}_labels_side"], mc.meta["merge_class"], category_order=np.unique(mc.meta[f"lvl{i}_labels_side"].values), color_dict=CLASS_COLOR_DICT, norm_bar_width=False, ax=ax, ) ax.set_yticks([]) ax.get_legend().remove() plt.tight_layout() stashfig(f"count-barplot-lvl{i}" + basename) plt.close() fig, axs = plt.subplots(1, n_levels, figsize=(10 * n_levels, 40)) for i in range(n_levels): ax = axs[i] stacked_barplot( mc.meta[f"lvl{i}_labels_side"], mc.meta["merge_class"], category_order=np.unique(mc.meta[f"lvl{i}_labels_side"].values), color_dict=CLASS_COLOR_DICT, norm_bar_width=True, ax=ax, ) ax.set_yticks([]) ax.get_legend().remove() plt.tight_layout() stashfig(f"prop-barplot-lvl{i}" + basename) plt.close() inds = np.concatenate((lp_inds, rp_inds)) new_adj = adj[np.ix_(inds, inds)] new_meta = mc.meta new_meta["sf"] = -signal_flow(new_adj) for l in range(n_levels): fig, ax = plt.subplots(1, 1, figsize=(20, 20)) sort_class = [f"lvl{i}_labels" for i in range(l)] sort_class += [f"lvl{l}_labels_side"] adjplot( new_adj, meta=new_meta, sort_class=sort_class, item_order="merge_class", plot_type="scattermap", class_order="sf", sizes=(0.5, 1), ticks=False, colors="merge_class", ax=ax, palette=CLASS_COLOR_DICT, gridline_kws=dict(linewidth=0.2, color="grey", linestyle="--"), ) stashfig(f"adj-lvl{l}" + basename) plt.close() pairs = np.unique(new_meta["Pair ID"]) p_same_clusters = [] for l in range(n_levels): n_same = 0 for p in pairs: if new_meta[new_meta["Pair ID"] == p][f"lvl{l}_labels"].nunique() == 1: n_same += 1 p_same = n_same / len(pairs) print(p_same) p_same_clusters.append(p_same) fig, ax = plt.subplots(1, 1, figsize=(8, 4)) sns.lineplot(x=range(n_levels), y=p_same_clusters, ax=ax) sns.scatterplot(x=range(n_levels), y=p_same_clusters, ax=ax) ax.set_ylabel("P same cluster") ax.set_xlabel("Level") stashfig("p_in_same_cluster" + basename) n_clusters = [] for l in range(n_levels): n_clusters.append(new_meta[f"lvl{l}_labels"].nunique()) fig, ax = plt.subplots(1, 1, figsize=(8, 4)) sns.lineplot(x=range(n_levels), y=n_clusters, ax=ax) sns.scatterplot(x=range(n_levels), y=n_clusters, ax=ax) ax.set_ylabel("Clusters per side") ax.set_xlabel("Level") stashfig("n_cluster" + basename) size_dfs = [] for l in range(n_levels): sizes = new_meta.groupby(f"lvl{l}_labels_side").size().values sizes = pd.DataFrame(data=sizes, columns=["Size"]) sizes["Level"] = l size_dfs.append(sizes) size_df = pd.concat(size_dfs) fig, ax = plt.subplots(1, 1, figsize=(8, 4)) sns.stripplot(data=size_df, x="Level", y="Size", ax=ax, jitter=0.45, alpha=0.5) ax.set_yscale("log") stashfig("log-sizes" + basename) # %% [markdown] # ## some other kind of visualization import networkx as nx import colorcet as cc def to_minigraph( adj, labels, drop_neg=True, remove_diag=True, size_scaler=1, use_counts=False, use_weights=True, color_map=None, ): # convert the adjacency and a partition to a minigraph based on SBM probs prob_df = get_blockmodel_df( adj, labels, return_counts=use_counts, use_weights=use_weights ) if drop_neg and ("-1" in prob_df.index): prob_df.drop("-1", axis=0, inplace=True) prob_df.drop("-1", axis=1, inplace=True) if remove_diag: adj = prob_df.values adj -= np.diag(np.diag(adj)) prob_df = pd.DataFrame(data=adj, index=prob_df.index, columns=prob_df.columns) g = nx.from_pandas_adjacency(prob_df, create_using=nx.DiGraph()) uni_labels, counts = np.unique(labels, return_counts=True) # add size attribute base on number of vertices size_map = dict(zip(uni_labels, size_scaler * counts)) nx.set_node_attributes(g, size_map, name="Size") # add signal flow attribute (for the minigraph itself) mini_adj = nx.to_numpy_array(g, nodelist=uni_labels) node_signal_flow = signal_flow(mini_adj) sf_map = dict(zip(uni_labels, node_signal_flow)) nx.set_node_attributes(g, sf_map, name="Signal Flow") # add spectral properties # sym_adj = symmetrize(mini_adj) # n_components = 10 # latent = AdjacencySpectralEmbed(n_components=n_components).fit_transform(sym_adj) # for i in range(n_components): # latent_dim = latent[:, i] # lap_map = dict(zip(uni_labels, latent_dim)) # nx.set_node_attributes(g, lap_map, name=f"AdjEvec-{i}") # add spring layout properties pos = nx.spring_layout(g) spring_x = {} spring_y = {} for key, val in pos.items(): spring_x[key] = val[0] spring_y[key] = val[1] nx.set_node_attributes(g, spring_x, name="Spring-x") nx.set_node_attributes(g, spring_y, name="Spring-y") # add colors if color_map is None: color_map = dict(zip(uni_labels, cc.glasbey_light)) nx.set_node_attributes(g, color_map, name="Color") return g from src.visualization import draw_networkx_nice from src.utils import get_blockmodel_df for l in range(n_levels): labels = new_meta[f"lvl{l}_labels_side"].values # block_df = get_blockmodel_df(new_adj, labels, return_counts=False, use_weights=True) mini_g = to_minigraph(new_adj, labels, use_counts=True, use_weights=True) draw_networkx_nice( mini_g, "Spring-x", "Signal Flow", colors="Color", sizes="Size", weight_scale=1 / 1000, ) # %% from src.visualization import plot_neurons from src.pymaid import start_instance lvl = 4 uni_labels = np.unique(new_meta[f"lvl{lvl}_labels"]) start_instance() for label in uni_labels: plot_neurons(new_meta, f"lvl{lvl}_labels", label=label, barplot=True) stashfig(f"label{label}_lvl{lvl}" + basename) # %% [markdown] # ## Do the distance thing for Michael d = 12 n_pairs = len(X) // 2 X = ase_flat_embed[:, :d] new_lp_inds = np.arange(n_pairs) new_rp_inds = np.arange(n_pairs).copy() + n_pairs left_X = X[new_lp_inds] right_X = X[new_rp_inds] left_meta = meta.iloc[lp_inds] right_meta = meta.iloc[rp_inds] # get nearest right neighbor for everyone on the left def rank_neighbors(source_X, target_X, metric="euclidean"): n_target = len(target_X) n_source = len(source_X) nn = NearestNeighbors(radius=0, n_neighbors=n_target, metric=metric) nn.fit(target_X) neigh_dist, neigh_inds = nn.kneighbors(source_X) source_rank_neighbors = np.empty((n_source, n_target), dtype=int) for i in range(n_source): source_rank_neighbors[i, neigh_inds[i]] = np.arange(1, n_target + 1, dtype=int) return source_rank_neighbors left_neighbors = rank_neighbors(left_X, right_X) right_neighbors = rank_neighbors(right_X, left_X) left_df = pd.DataFrame( index=left_meta.index, columns=right_meta.index, data=left_neighbors ) stashcsv(left_df, f"left_rank_neighbors_on_right-aniso_omni-d={d}") right_df = pd.DataFrame( index=right_meta.index, columns=left_meta.index, data=right_neighbors ) stashcsv(right_df, f"right_rank_neighbors_on_right-aniso_omni-d={d}") # %% [markdown] # ## fig, ax = plt.subplots(1, 1, figsize=(8, 4)) sns.distplot( np.diag(left_neighbors), bins=np.arange(0, n_pairs, 1), kde=False, norm_hist=True ) sns.distplot( np.diag(right_neighbors), bins=np.arange(0, n_pairs, 1), kde=False, norm_hist=True ) ax.set_xlim((0, 20)) ax.set_xticks(np.arange(0, 20, 2)) # ax.xaxis.set_major_locator(plt.IndexLocator(1, 2)) # %%
the-stack_0_4399
""" Mask R-CNN Multi-GPU Support for Keras. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla Ideas and a small code snippets from these sources: https://github.com/fchollet/keras/issues/2436 https://medium.com/@kuza55/transparent-multi-gpu-training-on-tensorflow-with-keras-8b0016fd9012 https://github.com/avolkov1/keras_experiments/blob/master/keras_exp/multigpu/ https://github.com/fchollet/keras/blob/master/keras/utils/training_utils.py """ #import tensorflow as tf #changing as tesorflow v2 does not support place holder import tensorflow.compat as tf tf.disable_v2_behavior() import keras.backend as K import keras.layers as KL import keras.models as KM class ParallelModel(KM.Model): """Subclasses the standard Keras Model and adds multi-GPU support. It works by creating a copy of the model on each GPU. Then it slices the inputs and sends a slice to each copy of the model, and then merges the outputs together and applies the loss on the combined outputs. """ def __init__(self, keras_model, gpu_count): """Class constructor. keras_model: The Keras model to parallelize gpu_count: Number of GPUs. Must be > 1 """ self.inner_model = keras_model self.gpu_count = gpu_count merged_outputs = self.make_parallel() super(ParallelModel, self).__init__(inputs=self.inner_model.inputs, outputs=merged_outputs) def __getattribute__(self, attrname): """Redirect loading and saving methods to the inner model. That's where the weights are stored.""" if 'load' in attrname or 'save' in attrname: return getattr(self.inner_model, attrname) return super(ParallelModel, self).__getattribute__(attrname) def summary(self, *args, **kwargs): """Override summary() to display summaries of both, the wrapper and inner models.""" super(ParallelModel, self).summary(*args, **kwargs) self.inner_model.summary(*args, **kwargs) def make_parallel(self): """Creates a new wrapper model that consists of multiple replicas of the original model placed on different GPUs. """ # Slice inputs. Slice inputs on the CPU to avoid sending a copy # of the full inputs to all GPUs. Saves on bandwidth and memory. input_slices = {name: tf.split(x, self.gpu_count) for name, x in zip(self.inner_model.input_names, self.inner_model.inputs)} output_names = self.inner_model.output_names outputs_all = [] for i in range(len(self.inner_model.outputs)): outputs_all.append([]) # Run the model call() on each GPU to place the ops there for i in range(self.gpu_count): with tf.device('/gpu:%d' % i): with tf.name_scope('tower_%d' % i): # Run a slice of inputs through this replica zipped_inputs = zip(self.inner_model.input_names, self.inner_model.inputs) inputs = [ KL.Lambda(lambda s: input_slices[name][i], output_shape=lambda s: (None,) + s[1:])(tensor) for name, tensor in zipped_inputs] # Create the model replica and get the outputs outputs = self.inner_model(inputs) if not isinstance(outputs, list): outputs = [outputs] # Save the outputs for merging back together later for l, o in enumerate(outputs): outputs_all[l].append(o) # Merge outputs on CPU with tf.device('/cpu:0'): merged = [] for outputs, name in zip(outputs_all, output_names): # Concatenate or average outputs? # Outputs usually have a batch dimension and we concatenate # across it. If they don't, then the output is likely a loss # or a metric value that gets averaged across the batch. # Keras expects losses and metrics to be scalars. if K.int_shape(outputs[0]) == (): # Average m = KL.Lambda(lambda o: tf.add_n(o) / len(outputs), name=name)(outputs) else: # Concatenate m = KL.Concatenate(axis=0, name=name)(outputs) merged.append(m) return merged if __name__ == "__main__": # Testing code below. It creates a simple model to train on MNIST and # tries to run it on 2 GPUs. It saves the graph so it can be viewed # in TensorBoard. Run it as: # # python3 parallel_model.py import os import numpy as np import keras.optimizers from keras.datasets import mnist from keras.preprocessing.image import ImageDataGenerator GPU_COUNT = 2 # Root directory of the project ROOT_DIR = os.path.abspath("../") # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") def build_model(x_train, num_classes): # Reset default graph. Keras leaves old ops in the graph, # which are ignored for execution but clutter graph # visualization in TensorBoard. tf.reset_default_graph() inputs = KL.Input(shape=x_train.shape[1:], name="input_image") x = KL.Conv2D(32, (3, 3), activation='relu', padding="same", name="conv1")(inputs) x = KL.Conv2D(64, (3, 3), activation='relu', padding="same", name="conv2")(x) x = KL.MaxPooling2D(pool_size=(2, 2), name="pool1")(x) x = KL.Flatten(name="flat1")(x) x = KL.Dense(128, activation='relu', name="dense1")(x) x = KL.Dense(num_classes, activation='softmax', name="dense2")(x) return KM.Model(inputs, x, "digit_classifier_model") # Load MNIST Data (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = np.expand_dims(x_train, -1).astype('float32') / 255 x_test = np.expand_dims(x_test, -1).astype('float32') / 255 print('x_train shape:', x_train.shape) print('x_test shape:', x_test.shape) # Build data generator and model datagen = ImageDataGenerator() model = build_model(x_train, 10) # Add multi-GPU support. model = ParallelModel(model, GPU_COUNT) optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.9, clipnorm=5.0) model.compile(loss='sparse_categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.summary() # Train model.fit_generator( datagen.flow(x_train, y_train, batch_size=64), steps_per_epoch=50, epochs=10, verbose=1, validation_data=(x_test, y_test), callbacks=[keras.callbacks.TensorBoard(log_dir=MODEL_DIR, write_graph=True)] )
the-stack_0_4401
import random import numpy as np import skimage.color as sc import torch def get_patch(*args, patch_size=96, scale=2, multi=False, input_large=False): ih, iw = args[0].shape[:2] if not input_large: p = scale if multi else 1 tp = p * patch_size ip = tp // scale else: tp = patch_size ip = patch_size ix = random.randrange(0, iw - ip + 1) iy = random.randrange(0, ih - ip + 1) if not input_large: tx, ty = scale * ix, scale * iy else: tx, ty = ix, iy ret = [ args[0][iy : iy + ip, ix : ix + ip, :], *[a[ty : ty + tp, tx : tx + tp, :] for a in args[1:]], ] return ret def set_channel(*args, n_channels=3): def _set_channel(img): if img.ndim == 2: img = np.expand_dims(img, axis=2) c = img.shape[2] if n_channels == 1 and c == 3: img = np.expand_dims(sc.rgb2ycbcr(img)[:, :, 0], 2) elif n_channels == 3 and c == 1: img = np.concatenate([img] * n_channels, 2) return img return [_set_channel(a) for a in args] def np2Tensor(*args, rgb_range=255): def _np2Tensor(img): np_transpose = np.ascontiguousarray(img.transpose((2, 0, 1))) tensor = torch.from_numpy(np_transpose).float() tensor.mul_(rgb_range / 255) return tensor return [_np2Tensor(a) for a in args] def augment(*args, hflip=True, rot=True): hflip = hflip and random.random() < 0.5 vflip = rot and random.random() < 0.5 rot90 = rot and random.random() < 0.5 def _augment(img): if hflip: img = img[:, ::-1, :] if vflip: img = img[::-1, :, :] if rot90: img = img.transpose(1, 0, 2) return img return [_augment(a) for a in args]
the-stack_0_4402
# Examples of mouse input import simplegui import math # intialize globals width = 450 height = 300 ball_list = [] ball_radius = 15 ball_color = "Red" # helper function def distance(p, q): return math.sqrt((p[0] - q[0]) ** 2 + (p[1] - q[1]) ** 2) # define event handler for mouse click, draw def click(pos): ball_list.append(pos) # if distance(ball_pos, pos) < ball_radius: # if ball_color == "Red": # ball_color = "Green" # else: # ball_pos = [pos[0], pos[1]] # ball_color = "Red" def draw(canvas): for ball_pos in ball_list: canvas.draw_circle(ball_pos, ball_radius, 1, "Black", ball_color) # create frame frame = simplegui.create_frame("Mouse selection", width, height) frame.set_canvas_background("White") # register event handler frame.set_mouseclick_handler(click) frame.set_draw_handler(draw) # start frame frame.start()
the-stack_0_4403
import time import shelve import datetime import settings from twython import Twython from contextlib import contextmanager @contextmanager def closing(this): try: yield this finally: this.close() class TwitterStats(): def __init__(self): # connect to twitter api self.twitter = Twython( app_key=settings.consumer_key, app_secret=settings.consumer_secret, oauth_token=settings.oauth_token, oauth_token_secret=settings.oauth_token_secret ) def init_storage(self): storage = shelve.open('twitter_stats', writeback=True) if not storage: storage['followers'] = set() storage['unfollowers'] = [] storage['unfollowers_since_last_check'] = None storage['last_update'] = None return storage def get_followers(self): follower_ids = self.twitter.getFollowersIDs()['ids'] return set(follower_ids) def show_screen_name(self, user_id): user = self.twitter.showUser(user_id=user_id) screen_name = user['screen_name'] return screen_name def update_unfollower_stats(self): with closing(self.init_storage()) as storage: previous_followers = storage['followers'] current_followers = self.get_followers() new_unfollower_ids = previous_followers - current_followers unfollowers_since_last_check = [] for follower_id in new_unfollower_ids: unfollower = { 'id': follower_id, 'screen_name': self.show_screen_name(follower_id), 'timestamp': datetime.datetime.now().strftime('%b %d %Y %H:%M:%S') } storage['unfollowers'].append(unfollower) unfollowers_since_last_check.append(unfollower) storage['followers'] = current_followers storage['unfollowers_since_last_check'] = unfollowers_since_last_check storage['last_update'] = datetime.datetime.now().strftime('%b %d %Y %H:%M:%S') def main(): twitter_stats = TwitterStats() while True: twitter_stats.update_unfollower_stats() time.sleep(settings.update_interval) if __name__ == '__main__': main()
the-stack_0_4404
#!/usr/bin/env python # # Copyright (c) 2001 - 2016 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "test/D/Scanner.py rel_2.5.1:3735:9dc6cee5c168 2016/11/03 14:02:02 bdbaddog" """ Verify that the D scanner can return multiple modules imported by a single statement. """ import TestSCons import sys from os.path import abspath, dirname, join sys.path.append(join(dirname(abspath(__file__)), 'Support')) from executablesSearch import isExecutableOfToolAvailable test = TestSCons.TestSCons() _obj = TestSCons._obj if not isExecutableOfToolAvailable(test, 'dmd'): test.skip_test("Could not find 'dmd'; skipping test.\n") test.subdir(['p']) test.write('SConstruct', """ env = Environment() env.Program('test1.d') env.Program('test2.d') """) test.write(['test1.d'], """\ import module1; import module2; import module3; import p.submodule1; import p.submodule2; int main() { return 0; } """) test.write(['test2.d'], """\ import module1, module2, module3; import p.submodule1, p.submodule2; int main() { return 0; } """) test.write(['ignored.d'], """\ module ignored; int something; """) test.write(['module1.d'], """\ module module1; int something; """) test.write(['module2.d'], """\ module module2; int something; """) test.write(['module3.di'], """\ module module3; int something; """) test.write(['p', 'ignored.d'], """\ module p.ignored; int something; """) test.write(['p', 'submodule1.d'], """\ module p.submodule1; int something; """) test.write(['p', 'submodule2.d'], """\ module p.submodule2; int something; """) arguments = 'test1%(_obj)s test2%(_obj)s' % locals() test.run(arguments = arguments) test.up_to_date(arguments = arguments) test.write(['module2.d'], """\ module module2; int something_else; """) test.not_up_to_date(arguments = arguments) test.up_to_date(arguments = arguments) test.write(['p', 'submodule2.d'], """\ module p.submodule2; int something_else; """) test.not_up_to_date(arguments = arguments) test.up_to_date(arguments = arguments) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
the-stack_0_4405
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Wishart distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from tensorflow.contrib.distributions.python.ops import distribution from tensorflow.contrib.distributions.python.ops import operator_pd_cholesky from tensorflow.contrib.distributions.python.ops import operator_pd_full from tensorflow.contrib.framework.python.framework import tensor_util as contrib_tensor_util from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops class _WishartOperatorPD(distribution.Distribution): """The matrix Wishart distribution on positive definite matrices. This distribution is defined by a scalar number of degrees of freedom `df` and an instance of `OperatorPDBase`, which provides matrix-free access to a symmetric positive definite operator, which defines the scale matrix. #### Mathematical details. The PDF of this distribution is, ``` f(X) = det(X)^(0.5 (df-k-1)) exp(-0.5 tr[inv(scale) X]) / B(scale, df) ``` where `df >= k` denotes the degrees of freedom, `scale` is a symmetric, pd, `k x k` matrix, and the normalizing constant `B(scale, df)` is given by: ``` B(scale, df) = 2^(0.5 df k) |det(scale)|^(0.5 df) Gamma_k(0.5 df) ``` where `Gamma_k` is the multivariate Gamma function. #### Examples See `WishartFull`, `WishartCholesky` for examples of initializing and using this class. """ def __init__(self, df, scale_operator_pd, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name=None): """Construct Wishart distributions. Args: df: `float` or `double` tensor, the degrees of freedom of the distribution(s). `df` must be greater than or equal to `k`. scale_operator_pd: `float` or `double` instance of `OperatorPDBase`. cholesky_input_output_matrices: `Boolean`. Any function which whose input or output is a matrix assumes the input is Cholesky and returns a Cholesky factored matrix. Example`log_pdf` input takes a Cholesky and `sample_n` returns a Cholesky when `cholesky_input_output_matrices=True`. validate_args: `Boolean`, default `False`. Whether to validate input with asserts. If `validate_args` is `False`, and the inputs are invalid, correct behavior is not guaranteed. allow_nan_stats: `Boolean`, default `True`. If `False`, raise an exception if a statistic (e.g., mean, mode) is undefined for any batch member. If True, batch members with valid parameters leading to undefined statistics will return `NaN` for this statistic. name: The name to give Ops created by the initializer. Raises: TypeError: if scale is not floating-type TypeError: if scale.dtype != df.dtype ValueError: if df < k, where scale operator event shape is `(k, k)` """ self._cholesky_input_output_matrices = cholesky_input_output_matrices with ops.name_scope(name) as ns: with ops.name_scope("init", values=[df, scale_operator_pd]): if not scale_operator_pd.dtype.is_floating: raise TypeError( "scale_operator_pd.dtype=%s is not a floating-point type" % scale_operator_pd.dtype) self._scale_operator_pd = scale_operator_pd self._df = ops.convert_to_tensor( df, dtype=scale_operator_pd.dtype, name="df") contrib_tensor_util.assert_same_float_dtype( (self._df, self._scale_operator_pd)) if (self._scale_operator_pd.get_shape().ndims is None or self._scale_operator_pd.get_shape()[-1].value is None): self._dimension = math_ops.cast( self._scale_operator_pd.vector_space_dimension(), dtype=self._scale_operator_pd.dtype, name="dimension") else: self._dimension = ops.convert_to_tensor( self._scale_operator_pd.get_shape()[-1].value, dtype=self._scale_operator_pd.dtype, name="dimension") df_val = tensor_util.constant_value(self._df) dim_val = tensor_util.constant_value(self._dimension) if df_val is not None and dim_val is not None: df_val = np.asarray(df_val) if not df_val.shape: df_val = (df_val,) if any(df_val < dim_val): raise ValueError( "Degrees of freedom (df = %s) cannot be less than dimension of " "scale matrix (scale.dimension = %s)" % (df_val, dim_val)) elif validate_args: assertions = check_ops.assert_less_equal( self._dimension, self._df, message=("Degrees of freedom (df = %s) cannot be less than " "dimension of scale matrix (scale.dimension = %s)" % (self._dimension, self._df))) self._df = control_flow_ops.with_dependencies([assertions], self._df) super(_WishartOperatorPD, self).__init__( dtype=self._scale_operator_pd.dtype, parameters={"df": self._df, "scale_operator_pd": self._scale_operator_pd, "dimension": self._dimension}, validate_args=validate_args, allow_nan_stats=allow_nan_stats, is_continuous=True, is_reparameterized=True, name=ns) @property def df(self): """Wishart distribution degree(s) of freedom.""" return self._df def scale(self): """Wishart distribution scale matrix.""" if self._cholesky_input_output_matrices: return self.scale_operator_pd.sqrt_to_dense() else: return self.scale_operator_pd.to_dense() @property def scale_operator_pd(self): """Wishart distribution scale matrix as an OperatorPD.""" return self._scale_operator_pd @property def cholesky_input_output_matrices(self): """Boolean indicating if `Tensor` input/outputs are Cholesky factorized.""" return self._cholesky_input_output_matrices @property def dimension(self): """Dimension of underlying vector space. The `p` in `R^(p*p)`.""" return self._dimension def _event_shape(self): s = self.scale_operator_pd.shape() return array_ops.slice(s, array_ops.shape(s) - 2, [2]) def _get_event_shape(self): return self.scale_operator_pd.get_shape()[-2:] def _batch_shape(self): return self.scale_operator_pd.batch_shape() def _get_batch_shape(self): return self.scale_operator_pd.get_batch_shape() def _sample_n(self, n, seed): batch_shape = self.batch_shape() event_shape = self.event_shape() batch_ndims = array_ops.shape(batch_shape)[0] ndims = batch_ndims + 3 # sample_ndims=1, event_ndims=2 shape = array_ops.concat(0, ((n,), batch_shape, event_shape)) # Complexity: O(nbk^2) x = random_ops.random_normal(shape=shape, mean=0., stddev=1., dtype=self.dtype, seed=seed) # Complexity: O(nbk) # This parametrization is equivalent to Chi2, i.e., # ChiSquared(k) == Gamma(alpha=k/2, beta=1/2) g = random_ops.random_gamma(shape=(n,), alpha=self._multi_gamma_sequence( 0.5 * self.df, self.dimension), beta=0.5, dtype=self.dtype, seed=seed) # Complexity: O(nbk^2) x = array_ops.batch_matrix_band_part(x, -1, 0) # Tri-lower. # Complexity: O(nbk) x = array_ops.batch_matrix_set_diag(x, math_ops.sqrt(g)) # Make batch-op ready. # Complexity: O(nbk^2) perm = array_ops.concat(0, (math_ops.range(1, ndims), (0,))) x = array_ops.transpose(x, perm) shape = array_ops.concat(0, (batch_shape, (event_shape[0], -1))) x = array_ops.reshape(x, shape) # Complexity: O(nbM) where M is the complexity of the operator solving a # vector system. E.g., for OperatorPDDiag, each matmul is O(k^2), so # this complexity is O(nbk^2). For OperatorPDCholesky, each matmul is # O(k^3) so this step has complexity O(nbk^3). x = self.scale_operator_pd.sqrt_matmul(x) # Undo make batch-op ready. # Complexity: O(nbk^2) shape = array_ops.concat(0, (batch_shape, event_shape, (n,))) x = array_ops.reshape(x, shape) perm = array_ops.concat(0, ((ndims-1,), math_ops.range(0, ndims-1))) x = array_ops.transpose(x, perm) if not self.cholesky_input_output_matrices: # Complexity: O(nbk^3) x = math_ops.batch_matmul(x, x, adj_y=True) return x def _log_prob(self, x): if self.cholesky_input_output_matrices: x_sqrt = x else: # Complexity: O(nbk^3) x_sqrt = linalg_ops.cholesky(x) batch_shape = self.batch_shape() event_shape = self.event_shape() ndims = array_ops.rank(x_sqrt) # sample_ndims = ndims - batch_ndims - event_ndims sample_ndims = ndims - array_ops.shape(batch_shape)[0] - 2 sample_shape = array_ops.slice( array_ops.shape(x_sqrt), [0], [sample_ndims]) # We need to be able to pre-multiply each matrix by its corresponding # batch scale matrix. Since a Distribution Tensor supports multiple # samples per batch, this means we need to reshape the input matrix `x` # so that the first b dimensions are batch dimensions and the last two # are of shape [dimension, dimensions*number_of_samples]. Doing these # gymnastics allows us to do a batch_solve. # # After we're done with sqrt_solve (the batch operation) we need to undo # this reshaping so what we're left with is a Tensor partitionable by # sample, batch, event dimensions. # Complexity: O(nbk^2) since transpose must access every element. scale_sqrt_inv_x_sqrt = x_sqrt perm = array_ops.concat(0, (math_ops.range(sample_ndims, ndims), math_ops.range(0, sample_ndims))) scale_sqrt_inv_x_sqrt = array_ops.transpose(scale_sqrt_inv_x_sqrt, perm) shape = array_ops.concat( 0, (batch_shape, (math_ops.cast(self.dimension, dtype=dtypes.int32), -1))) scale_sqrt_inv_x_sqrt = array_ops.reshape(scale_sqrt_inv_x_sqrt, shape) # Complexity: O(nbM*k) where M is the complexity of the operator solving # a vector system. E.g., for OperatorPDDiag, each solve is O(k), so # this complexity is O(nbk^2). For OperatorPDCholesky, each solve is # O(k^2) so this step has complexity O(nbk^3). scale_sqrt_inv_x_sqrt = self.scale_operator_pd.sqrt_solve( scale_sqrt_inv_x_sqrt) # Undo make batch-op ready. # Complexity: O(nbk^2) shape = array_ops.concat(0, (batch_shape, event_shape, sample_shape)) scale_sqrt_inv_x_sqrt = array_ops.reshape(scale_sqrt_inv_x_sqrt, shape) perm = array_ops.concat(0, (math_ops.range(ndims - sample_ndims, ndims), math_ops.range(0, ndims - sample_ndims))) scale_sqrt_inv_x_sqrt = array_ops.transpose(scale_sqrt_inv_x_sqrt, perm) # Write V = SS', X = LL'. Then: # tr[inv(V) X] = tr[inv(S)' inv(S) L L'] # = tr[inv(S) L L' inv(S)'] # = tr[(inv(S) L) (inv(S) L)'] # = sum_{ik} (inv(S) L)_{ik}^2 # The second equality follows from the cyclic permutation property. # Complexity: O(nbk^2) trace_scale_inv_x = math_ops.reduce_sum( math_ops.square(scale_sqrt_inv_x_sqrt), reduction_indices=[-2, -1]) # Complexity: O(nbk) half_log_det_x = math_ops.reduce_sum( math_ops.log(array_ops.batch_matrix_diag_part(x_sqrt)), reduction_indices=[-1]) # Complexity: O(nbk^2) log_prob = ((self.df - self.dimension - 1.) * half_log_det_x - 0.5 * trace_scale_inv_x - self.log_normalizing_constant()) # Set shape hints. # Try to merge what we know from the input then what we know from the # parameters of this distribution. if x.get_shape().ndims is not None: log_prob.set_shape(x.get_shape()[:-2]) if (log_prob.get_shape().ndims is not None and self.get_batch_shape().ndims is not None and self.get_batch_shape().ndims > 0): log_prob.get_shape()[-self.get_batch_shape().ndims:].merge_with( self.get_batch_shape()) return log_prob def _prob(self, x): return math_ops.exp(self._log_prob(x)) def _entropy(self): half_dp1 = 0.5 * self.dimension + 0.5 half_df = 0.5 * self.df return (self.dimension * (half_df + half_dp1 * math.log(2.)) + half_dp1 * self.scale_operator_pd.log_det() + self._multi_lgamma(half_df, self.dimension) + (half_dp1 - half_df) * self._multi_digamma(half_df, self.dimension)) def _mean(self): if self.cholesky_input_output_matrices: return math_ops.sqrt(self.df) * self.scale_operator_pd.sqrt_to_dense() return self.df * self.scale_operator_pd.to_dense() def _variance(self): x = math_ops.sqrt(self.df) * self.scale_operator_pd.to_dense() d = array_ops.expand_dims(array_ops.batch_matrix_diag_part(x), -1) v = math_ops.square(x) + math_ops.batch_matmul(d, d, adj_y=True) if self.cholesky_input_output_matrices: return linalg_ops.cholesky(v) return v def _std(self): if self.cholesky_input_output_matrices: raise ValueError( "Computing std. dev. when is cholesky_input_output_matrices=True " "does not make sense.") return linalg_ops.cholesky(self.variance()) def _mode(self): s = self.df - self.dimension - 1. s = math_ops.select( math_ops.less(s, 0.), constant_op.constant(float("NaN"), dtype=self.dtype, name="nan"), s) if self.cholesky_input_output_matrices: return math_ops.sqrt(s) * self.scale_operator_pd.sqrt_to_dense() return s * self.scale_operator_pd.to_dense() def mean_log_det(self, name="mean_log_det"): """Computes E[log(det(X))] under this Wishart distribution.""" with self._name_scope(name): return (self._multi_digamma(0.5 * self.df, self.dimension) + self.dimension * math.log(2.) + self.scale_operator_pd.log_det()) def log_normalizing_constant(self, name="log_normalizing_constant"): """Computes the log normalizing constant, log(Z).""" with self._name_scope(name): return (self.df * self.scale_operator_pd.sqrt_log_det() + 0.5 * self.df * self.dimension * math.log(2.) + self._multi_lgamma(0.5 * self.df, self.dimension)) def _multi_gamma_sequence(self, a, p, name="multi_gamma_sequence"): """Creates sequence used in multivariate (di)gamma; shape = shape(a)+[p].""" with self._name_scope(name, values=[a, p]): # Linspace only takes scalars, so we'll add in the offset afterwards. seq = math_ops.linspace( constant_op.constant(0., dtype=self.dtype), 0.5 - 0.5 * p, math_ops.cast(p, dtypes.int32)) return seq + array_ops.expand_dims(a, [-1]) def _multi_lgamma(self, a, p, name="multi_lgamma"): """Computes the log multivariate gamma function; log(Gamma_p(a)).""" with self._name_scope(name, values=[a, p]): seq = self._multi_gamma_sequence(a, p) return (0.25 * p * (p - 1.) * math.log(math.pi) + math_ops.reduce_sum(math_ops.lgamma(seq), reduction_indices=(-1,))) def _multi_digamma(self, a, p, name="multi_digamma"): """Computes the multivariate digamma function; Psi_p(a).""" with self._name_scope(name, values=[a, p]): seq = self._multi_gamma_sequence(a, p) return math_ops.reduce_sum(math_ops.digamma(seq), reduction_indices=(-1,)) class WishartCholesky(_WishartOperatorPD): """The matrix Wishart distribution on positive definite matrices. This distribution is defined by a scalar degrees of freedom `df` and a lower, triangular Cholesky factor which characterizes the scale matrix. Using WishartCholesky is a constant-time improvement over WishartFull. It saves an O(nbk^3) operation, i.e., a matrix-product operation for sampling and a Cholesky factorization in log_prob. For most use-cases it often saves another O(nbk^3) operation since most uses of Wishart will also use the Cholesky factorization. #### Mathematical details. The PDF of this distribution is, ``` f(X) = det(X)^(0.5 (df-k-1)) exp(-0.5 tr[inv(scale) X]) / B(scale, df) ``` where `df >= k` denotes the degrees of freedom, `scale` is a symmetric, pd, `k x k` matrix, and the normalizing constant `B(scale, df)` is given by: ``` B(scale, df) = 2^(0.5 df k) |det(scale)|^(0.5 df) Gamma_k(0.5 df) ``` where `Gamma_k` is the multivariate Gamma function. #### Examples ```python # Initialize a single 3x3 Wishart with Cholesky factored scale matrix and 5 # degrees-of-freedom.(*) df = 5 chol_scale = tf.cholesky(...) # Shape is [3, 3]. dist = tf.contrib.distributions.WishartCholesky(df=df, scale=chol_scale) # Evaluate this on an observation in R^3, returning a scalar. x = ... # A 3x3 positive definite matrix. dist.pdf(x) # Shape is [], a scalar. # Evaluate this on a two observations, each in R^{3x3}, returning a length two # Tensor. x = [x0, x1] # Shape is [2, 3, 3]. dist.pdf(x) # Shape is [2]. # Initialize two 3x3 Wisharts with Cholesky factored scale matrices. df = [5, 4] chol_scale = tf.cholesky(...) # Shape is [2, 3, 3]. dist = tf.contrib.distributions.WishartCholesky(df=df, scale=chol_scale) # Evaluate this on four observations. x = [[x0, x1], [x2, x3]] # Shape is [2, 2, 3, 3]. dist.pdf(x) # Shape is [2, 2]. # (*) - To efficiently create a trainable covariance matrix, see the example # in tf.contrib.distributions.batch_matrix_diag_transform. ``` """ def __init__(self, df, scale, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name="WishartCholesky"): """Construct Wishart distributions. Args: df: `float` or `double` `Tensor`. Degrees of freedom, must be greater than or equal to dimension of the scale matrix. scale: `float` or `double` `Tensor`. The Cholesky factorization of the symmetric positive definite scale matrix of the distribution. cholesky_input_output_matrices: `Boolean`. Any function which whose input or output is a matrix assumes the input is Cholesky and returns a Cholesky factored matrix. Example`log_pdf` input takes a Cholesky and `sample_n` returns a Cholesky when `cholesky_input_output_matrices=True`. validate_args: `Boolean`, default `False`. Whether to validate input with asserts. If `validate_args` is `False`, and the inputs are invalid, correct behavior is not guaranteed. allow_nan_stats: `Boolean`, default `True`. If `False`, raise an exception if a statistic (e.g., mean, mode) is undefined for any batch member. If True, batch members with valid parameters leading to undefined statistics will return `NaN` for this statistic. name: The name scope to give class member ops. """ super(WishartCholesky, self).__init__( df=df, scale_operator_pd=operator_pd_cholesky.OperatorPDCholesky( scale, verify_pd=validate_args), cholesky_input_output_matrices=cholesky_input_output_matrices, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) class WishartFull(_WishartOperatorPD): """The matrix Wishart distribution on positive definite matrices. This distribution is defined by a scalar degrees of freedom `df` and a symmetric, positive definite scale matrix. Evaluation of the pdf, determinant, and sampling are all `O(k^3)` operations where `(k, k)` is the event space shape. #### Mathematical details. The PDF of this distribution is, ``` f(X) = det(X)^(0.5 (df-k-1)) exp(-0.5 tr[inv(scale) X]) / B(scale, df) ``` where `df >= k` denotes the degrees of freedom, `scale` is a symmetric, pd, `k x k` matrix, and the normalizing constant `B(scale, df)` is given by: ``` B(scale, df) = 2^(0.5 df k) |det(scale)|^(0.5 df) Gamma_k(0.5 df) ``` where `Gamma_k` is the multivariate Gamma function. #### Examples ```python # Initialize a single 3x3 Wishart with Full factored scale matrix and 5 # degrees-of-freedom.(*) df = 5 scale = ... # Shape is [3, 3]; positive definite. dist = tf.contrib.distributions.WishartFull(df=df, scale=scale) # Evaluate this on an observation in R^3, returning a scalar. x = ... # A 3x3 positive definite matrix. dist.pdf(x) # Shape is [], a scalar. # Evaluate this on a two observations, each in R^{3x3}, returning a length two # Tensor. x = [x0, x1] # Shape is [2, 3, 3]. dist.pdf(x) # Shape is [2]. # Initialize two 3x3 Wisharts with Full factored scale matrices. df = [5, 4] scale = ... # Shape is [2, 3, 3]. dist = tf.contrib.distributions.WishartFull(df=df, scale=scale) # Evaluate this on four observations. x = [[x0, x1], [x2, x3]] # Shape is [2, 2, 3, 3]; xi is positive definite. dist.pdf(x) # Shape is [2, 2]. # (*) - To efficiently create a trainable covariance matrix, see the example # in tf.contrib.distributions.batch_matrix_diag_transform. ``` """ def __init__(self, df, scale, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name="WishartFull"): """Construct Wishart distributions. Args: df: `float` or `double` `Tensor`. Degrees of freedom, must be greater than or equal to dimension of the scale matrix. scale: `float` or `double` `Tensor`. The symmetric positive definite scale matrix of the distribution. cholesky_input_output_matrices: `Boolean`. Any function which whose input or output is a matrix assumes the input is Cholesky and returns a Cholesky factored matrix. Example`log_pdf` input takes a Cholesky and `sample_n` returns a Cholesky when `cholesky_input_output_matrices=True`. validate_args: `Boolean`, default `False`. Whether to validate input with asserts. If `validate_args` is `False`, and the inputs are invalid, correct behavior is not guaranteed. allow_nan_stats: `Boolean`, default `True`. If `False`, raise an exception if a statistic (e.g., mean, mode) is undefined for any batch member. If True, batch members with valid parameters leading to undefined statistics will return `NaN` for this statistic. name: The name scope to give class member ops. """ super(WishartFull, self).__init__( df=df, scale_operator_pd=operator_pd_full.OperatorPDFull( scale, verify_pd=validate_args), cholesky_input_output_matrices=cholesky_input_output_matrices, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name)
the-stack_0_4406
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 21 11:05:24 2017 The oil and sugar separation (pretreatment) section for the baseline lipid cane biorefinery is defined here as System objects. The systems include all streams and units starting from enzyme treatment to purification of the sugar solution and the oil stream. @author: Yoel """ import numpy as np from biosteam import System, Stream from biosteam.units import Mixer, EnzymeTreatment, CrushingMill, \ HXutility, RVF, SplitFlash, VibratingScreen, \ MagneticSeparator, Clarifier, MixTank, \ Shredder, ConveyingBelt, Splitter, \ SplitCentrifuge_LLE, Pump, StorageTank from biorefineries.lipidcane.species import pretreatment_species from biorefineries.lipidcane.process_settings import price __all__ = ('pretreatment_sys', 'lipid_cane', 'lipidcane', 'area_100', 'area_200') # %% Species Stream.species = pretreatment_species psp = ('Ash', 'CaO', 'Cellulose', 'Ethanol', 'Flocculant', 'Glucose', 'Hemicellulose', 'Lignin', 'Lipid', 'Solids', 'H3PO4', 'Sucrose', 'Water') psp1 = ('Ash', 'Cellulose', 'Glucose', 'Hemicellulose', 'Lignin', 'Lipid', 'Solids', 'Sucrose', 'Water') psp2 = ('Ash', 'CaO', 'Cellulose', 'Flocculant', 'Glucose', 'Hemicellulose', 'Lignin', 'Lipid', 'H3PO4', 'Sucrose', 'Water') # %% Streams f1 = (2000.042, 26986.69 , 2007.067, 15922.734, 14459.241, 10035.334, 5017.667, 22746.761, 234157.798) lipidcane = lipid_cane = Stream('lipid_cane', f1, psp1, units='kg/hr', price=price['Lipid cane']) enzyme = Stream('enzyme', Cellulose=100, Water=900, units='kg/hr', price=price['Protease']) imbibition_water = Stream('imbibition_water', Water=87023.35, T = 338.15, units='kg/hr') H3PO4 = Stream('H3PO4', H3PO4=74.23, Water=13.10, units='kg/hr', price=price['H3PO4']) # to T203 lime = Stream('lime', CaO=333.00, Water=2200.00, units='kg/hr', price=price['Lime']) # to P5 polymer = Stream('polymer', Flocculant=0.83, units='kg/hr', price=price['Polymer']) # to T205 rvf_wash_water = Stream('rvf_wash_water', Water=16770, units='kg/hr', T=363.15) # to C202 oil_wash_water = Stream('oil_wash_water', Water=1350, units='kg/hr', T=358.15) # to T207 # %% Units Stream.default_ID = 'd' Stream.default_ID_number = 0 # Stream.default_ID_number = 100 # Feed the shredder U101 = ConveyingBelt('U101', ins=lipid_cane) U101.cost_items['Conveying belt'].ub = 2500 # Separate metals U102 = MagneticSeparator('U102', ins=U101.outs) # Shredded cane U103 = Shredder('U103', ins=U102.outs) # Stream.default_ID_number = 200 # Hydrolyze starch T201 = EnzymeTreatment('T201', T=323.15) # T=50 # Finely crush lipid cane U201 = CrushingMill('U201', split=(0.92, 0.92, 0.04, 0.92, 0.92, 0.04, 0.1, 1), order=('Ash', 'Cellulose', 'Glucose', 'Hemicellulose', 'Lignin', 'Sucrose', 'Lipid', 'Solids'), moisture_content=0.5) # Convey out bagasse U202 = ConveyingBelt('U202', ins=U201.outs[0], outs='Bagasse') # Mix in water M201 = Mixer('M201') # Screen out fibers S201 = VibratingScreen('S201', split=(0.35, 0.35, 0.88, 0.35, 0.35, 0.88, 0, 0.88, 0.88), order=psp1) # Store juice before treatment T202 = StorageTank('T202') T202.tau = 12 # Heat up before adding acid H201 = HXutility('H201', T=343.15) # Mix in acid T203 = MixTank('T203') # Pump acid solution P201 = Pump('P201') # Mix lime solution T204 = MixTank('T204') T204.tau = 1 P202 = Pump('P202') # Blend acid lipid solution with lime T205 = MixTank('T205') # Mix recycle M202 = Mixer('M202') # Heat before adding flocculant H202 = HXutility('H202', T=372.15) # Mix in flocculant T206 = MixTank('T206') T206.tau = 1/4 # Separate residual solids C201 = Clarifier('C201', split=(0, 0, 0, 0.522, 0.522, 0, 0, 0.98, 0.522, 0.522, 0.522), order=psp2) # Remove solids as filter cake C202 = RVF('C202', outs=('filte_cake', ''), moisture_content=0.80, split=(0.85, 0.85, 0.85, 0.01, 0.85, 0.85, 0.01), order=('Ash', 'CaO', 'Cellulose', 'Glucose', 'Hemicellulose', 'Lignin', 'Sucrose')) P203 = Pump('P203') # Separate oil and sugar T207 = MixTank('T207', outs=('', '')) split = np.zeros(len(pretreatment_species), float) index = pretreatment_species.indices(('Lipid', 'Water')) split[index] = (1, 0.0001) T207._split = split T207._run = lambda : Splitter._run(T207) del split, index # Cool the oil H203 = HXutility('H203', T=343.15) # Screen out small fibers from sugar stream S202 = VibratingScreen('S202', outs=('', 'fiber_fines'), split=1-np.array((0, 0, 0, 1, 0.002, 0, 0,0, 0, 0.002, 0.002)), order=psp2) sugar = S202-0 S202.mesh_opening = 2 # Add distilled water to wash lipid T208 = MixTank('T208') T208.tau = 2 # Centrifuge out water C203 = SplitCentrifuge_LLE('C203', split=(0.99, 0.01), order=('Lipid', 'Water')) # Vacume out water F201 = SplitFlash('F201', T=347.15, P=2026.5, split=(0.0001, 0.999), order=('Lipid', 'Water')) lipid = F201.outs[1] # %% Process specifications # Specifications dependent on lipid cane flow rate _enzyme_mass = enzyme.mass[[9, 12]] _CaO_Water_mass = lime.mass[[7, 12]] _H3PO4_Water_mass = H3PO4.mass[[1, 12]] last_lipidcane_massnet = int(lipid_cane.massnet) def correct_flows(): global last_lipidcane_massnet massnet = lipid_cane.massnet if int(massnet) != last_lipidcane_massnet: # correct enzyme, lime, phosphoric acid, and imbibition water _enzyme_mass[:] = 0.003 * massnet * np.array([0.1, 0.9]) _CaO_Water_mass[:] = 0.001 * massnet * np.array([0.046, 0.954]) _H3PO4_Water_mass[:] = 0.00025 * massnet imbibition_water_mass.value = 0.25* massnet last_lipidcane_massnet = int(massnet) # Specifications within a system def correct_lipid_wash_water(): oil_wash_water.mol[12] = H202.outs[0].mol[-2]*100/11 solids_index = Stream.indices(['Ash', 'CaO', 'Cellulose', 'Hemicellulose', 'Lignin']) def correct_wash_water(): solids = solidsmol[solids_index].sum() rvf_wash_water.mol[12] = 0.0574*solids imbibition_water_mass = imbibition_water.mass.item(12) # %% Pretreatment system set-up (U103-0, enzyme)-T201 (T201-0, M201-0)-U201-1-S201-0-T202 (S201-1, imbibition_water)-M201 crushing_mill_recycle_sys = System('crushing_mill_recycle_sys', network=(U201, S201, M201), recycle=M201-0) T202-0-H201 (H201-0, H3PO4)-T203-P201 (P201-0, lime-T204-0)-T205-P202 (P202-0, P203-0)-M202-H202 (H202-0, polymer)-T206-C201 (C201-1, rvf_wash_water)-C202-1-P203 clarification_recycle_sys = System('clarification_recycle_sys', network=(M202, H202, T206, C201, C202, P203), recycle=C202-1) C201-0-T207-0-H203 (H203-0, oil_wash_water)-T208-C203-0-F201 T207-1-S202 pretreatment_sys = System('pretreatment_sys', network=(U101, U102, U103, correct_flows, T201, crushing_mill_recycle_sys, U202, T202, H201, T203, P201, T204, T205, P202, correct_wash_water, clarification_recycle_sys, T207, H203, S202, correct_lipid_wash_water, T208, C203, F201,)) solidsmol = P202.outs[0].mol area_100 = System('area_100', network=(U101, U102, U103)) units = pretreatment_sys.units.copy() for i in area_100.network: units.discard(i) area_200_network = sorted(units, key=lambda x: x.ID) area_200 = System('area_200', network=area_200_network)
the-stack_0_4409
#!/usr/bin/python3 class Rectangle(): number_of_instances = 0 print_symbol = "#" def __init__(self, width=0, height=0): self.height = height self.width = width Rectangle.number_of_instances += 1 def area(self): return self.__height * self.__width def perimeter(self): if self.width == 0 or self.height == 0: Perimeter = 0 else: Perimeter = self.__height * 2 + self.__width * 2 return Perimeter @property def width(self): return self.__width @width.setter def width(self, value): if not isinstance(value, int): raise TypeError('width must be an integer') if value < 0: raise TypeError('width must be >= 0') self.__width = value @property def height(self): return self.__height @height.setter def height(self, value): if not isinstance(value, int): raise TypeError('height must be an integer') if value < 0: raise TypeError('height must be >= 0') self.__height = value def __str__(self): rectangle_string = "" if self.__width == 0 or self.__height == 0: return rectangle_string for row in range(self.__height): for column in range(self.__width): rectangle_string += str(self.print_symbol) if row != self.__height: rectangle_string += "\n" rectangle_string = rectangle_string[:-1] str(column) return rectangle_string def __repr__(self): return 'Rectangle({}, {})'.format(self.width, self.height) def __del__(self): print('Bye rectangle...') Rectangle.number_of_instances -= 1
the-stack_0_4411
# -*- coding: utf-8 -*- """ Interpolation ============= Defines the classes and definitions for interpolating variables. - :class:`colour.KernelInterpolator`: 1-D function generic interpolation with arbitrary kernel. - :class:`colour.NearestNeighbourInterpolator`: 1-D function nearest-neighbour interpolation. - :class:`colour.LinearInterpolator`: 1-D function linear interpolation. - :class:`colour.SpragueInterpolator`: 1-D function fifth-order polynomial interpolation using *Sprague (1880)* method. - :class:`colour.CubicSplineInterpolator`: 1-D function cubic spline interpolation. - :class:`colour.PchipInterpolator`: 1-D function piecewise cube Hermite interpolation. - :class:`colour.NullInterpolator`: 1-D function null interpolation. - :func:`colour.lagrange_coefficients`: Computation of *Lagrange Coefficients*. - :func:`colour.algebra.table_interpolation_trilinear`: Trilinear interpolation with table. - :func:`colour.algebra.table_interpolation_tetrahedral`: Tetrahedral interpolation with table. - :attr:`colour.TABLE_INTERPOLATION_METHODS`: Supported table interpolation methods. - :func:`colour.table_interpolation`: Interpolation with table using given method. References ---------- - :cite:`Bourkeb` : Bourke, P. (n.d.). Trilinear Interpolation. Retrieved January 13, 2018, from http://paulbourke.net/miscellaneous/interpolation/ - :cite:`Burger2009b` : Burger, W., & Burge, M. J. (2009). Principles of Digital Image Processing. Springer London. doi:10.1007/978-1-84800-195-4 - :cite:`CIETC1-382005f` : CIE TC 1-38. (2005). 9.2.4 Method of interpolation for uniformly spaced independent variable. In CIE 167:2005 Recommended Practice for Tabulating Spectral Data for Use in Colour Computations (pp. 1-27). ISBN:978-3-901906-41-1 - :cite:`CIETC1-382005h` : CIE TC 1-38. (2005). Table V. Values of the c-coefficients of Equ.s 6 and 7. In CIE 167:2005 Recommended Practice for Tabulating Spectral Data for Use in Colour Computations (p. 19). ISBN:978-3-901906-41-1 - :cite:`Fairman1985b` : Fairman, H. S. (1985). The calculation of weight factors for tristimulus integration. Color Research & Application, 10(4), 199-203. doi:10.1002/col.5080100407 - :cite:`Kirk2006` : Kirk, R. (2006). Truelight Software Library 2.0. Retrieved July 8, 2017, from https://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf - :cite:`Westland2012h` : Westland, S., Ripamonti, C., & Cheung, V. (2012). Interpolation Methods. In Computational Colour Science Using MATLAB (2nd ed., pp. 29-37). ISBN:978-0-470-66569-5 - :cite:`Wikipedia2003a` : Wikipedia. (2003). Lagrange polynomial - Definition. Retrieved January 20, 2016, from https://en.wikipedia.org/wiki/Lagrange_polynomial#Definition - :cite:`Wikipedia2005b` : Wikipedia. (2005). Lanczos resampling. Retrieved October 14, 2017, from https://en.wikipedia.org/wiki/Lanczos_resampling """ import itertools import numpy as np import scipy.interpolate from collections import OrderedDict from collections.abc import Mapping from functools import reduce from colour.constants import DEFAULT_FLOAT_DTYPE, DEFAULT_INT_DTYPE from colour.utilities import ( CaseInsensitiveMapping, as_float_array, as_float, closest_indexes, interval, is_integer, is_numeric, runtime_warning, tsplit, validate_method) __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2021 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '[email protected]' __status__ = 'Production' __all__ = [ 'kernel_nearest_neighbour', 'kernel_linear', 'kernel_sinc', 'kernel_lanczos', 'kernel_cardinal_spline', 'KernelInterpolator', 'NearestNeighbourInterpolator', 'LinearInterpolator', 'SpragueInterpolator', 'CubicSplineInterpolator', 'PchipInterpolator', 'NullInterpolator', 'lagrange_coefficients', 'vertices_and_relative_coordinates', 'table_interpolation_trilinear', 'table_interpolation_tetrahedral', 'TABLE_INTERPOLATION_METHODS', 'table_interpolation' ] def kernel_nearest_neighbour(x): """ Returns the *nearest-neighbour* kernel evaluated at given samples. Parameters ---------- x : array_like Samples at which to evaluate the *nearest-neighbour* kernel. Returns ------- ndarray The *nearest-neighbour* kernel evaluated at given samples. References ---------- :cite:`Burger2009b` Examples -------- >>> kernel_nearest_neighbour(np.linspace(0, 1, 10)) array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) """ return np.where(np.abs(x) < 0.5, 1, 0) def kernel_linear(x): """ Returns the *linear* kernel evaluated at given samples. Parameters ---------- x : array_like Samples at which to evaluate the *linear* kernel. Returns ------- ndarray The *linear* kernel evaluated at given samples. References ---------- :cite:`Burger2009b` Examples -------- >>> kernel_linear(np.linspace(0, 1, 10)) # doctest: +ELLIPSIS array([ 1. , 0.8888888..., 0.7777777..., \ 0.6666666..., 0.5555555..., 0.4444444..., 0.3333333..., 0.2222222..., \ 0.1111111..., 0. ]) """ return np.where(np.abs(x) < 1, 1 - np.abs(x), 0) def kernel_sinc(x, a=3): """ Returns the *sinc* kernel evaluated at given samples. Parameters ---------- x : array_like Samples at which to evaluate the *sinc* kernel. a : int, optional Size of the *sinc* kernel. Returns ------- ndarray The *sinc* kernel evaluated at given samples. References ---------- :cite:`Burger2009b` Examples -------- >>> kernel_sinc(np.linspace(0, 1, 10)) # doctest: +ELLIPSIS array([ 1.0000000...e+00, 9.7981553...e-01, 9.2072542...e-01, 8.2699334...e-01, 7.0531659...e-01, 5.6425327...e-01, 4.1349667...e-01, 2.6306440...e-01, 1.2247694...e-01, 3.8981718...e-17]) """ assert a >= 1, '"a" must be equal or superior to 1!' return np.where(np.abs(x) < a, np.sinc(x), 0) def kernel_lanczos(x, a=3): """ Returns the *lanczos* kernel evaluated at given samples. Parameters ---------- x : array_like Samples at which to evaluate the *lanczos* kernel. a : int, optional Size of the *lanczos* kernel. Returns ------- ndarray The *lanczos* kernel evaluated at given samples. References ---------- :cite:`Wikipedia2005b` Examples -------- >>> kernel_lanczos(np.linspace(0, 1, 10)) # doctest: +ELLIPSIS array([ 1.0000000...e+00, 9.7760615...e-01, 9.1243770...e-01, 8.1030092...e-01, 6.8012706...e-01, 5.3295773...e-01, 3.8071690...e-01, 2.3492839...e-01, 1.0554054...e-01, 3.2237621...e-17]) """ assert a >= 1, '"a" must be equal or superior to 1!' return np.where(np.abs(x) < a, np.sinc(x) * np.sinc(x / a), 0) def kernel_cardinal_spline(x, a=0.5, b=0.0): """ Returns the *cardinal spline* kernel evaluated at given samples. Notable *cardinal spline* :math:`a` and :math:`b` parameterizations: - *Catmull-Rom*: :math:`(a=0.5, b=0)` - *Cubic B-Spline*: :math:`(a=0, b=1)` - *Mitchell-Netravalli*: :math:`(a=\\cfrac{1}{3}, b=\\cfrac{1}{3})` Parameters ---------- x : array_like Samples at which to evaluate the *cardinal spline* kernel. a : int, optional :math:`a` control parameter. b : int, optional :math:`b` control parameter. Returns ------- ndarray The *cardinal spline* kernel evaluated at given samples. References ---------- :cite:`Burger2009b` Examples -------- >>> kernel_cardinal_spline(np.linspace(0, 1, 10)) # doctest: +ELLIPSIS array([ 1. , 0.9711934..., 0.8930041..., \ 0.7777777..., 0.6378600..., 0.4855967..., 0.3333333..., 0.1934156..., \ 0.0781893..., 0. ]) """ x_abs = np.abs(x) y = np.where( x_abs < 1, (-6 * a - 9 * b + 12) * x_abs ** 3 + (6 * a + 12 * b - 18) * x_abs ** 2 - 2 * b + 6, (-6 * a - b) * x_abs ** 3 + (30 * a + 6 * b) * x_abs ** 2 + (-48 * a - 12 * b) * x_abs + 24 * a + 8 * b, ) y[x_abs >= 2] = 0 return 1 / 6 * y class KernelInterpolator: """ Kernel based interpolation of a 1-D function. The reconstruction of a continuous signal can be described as a linear convolution operation. Interpolation can be expressed as a convolution of the given discrete function :math:`g(x)` with some continuous interpolation kernel :math:`k(w)`: :math:`\\hat{g}(w_0) = [k * g](w_0) = \ \\sum_{x=-\\infty}^{\\infty}k(w_0 - x)\\cdot g(x)` Parameters ---------- x : array_like Independent :math:`x` variable values corresponding with :math:`y` variable. y : array_like Dependent and already known :math:`y` variable values to interpolate. window : int, optional Width of the window in samples on each side. kernel : callable, optional Kernel to use for interpolation. kernel_kwargs : dict, optional Arguments to use when calling the kernel. padding_kwargs : dict, optional Arguments to use when padding :math:`y` variable values with the :func:`np.pad` definition. dtype : type Data type used for internal conversions. Attributes ---------- - :attr:`~colour.KernelInterpolator.x` - :attr:`~colour.KernelInterpolator.y` - :attr:`~colour.KernelInterpolator.window` - :attr:`~colour.KernelInterpolator.kernel` - :attr:`~colour.KernelInterpolator.kernel_kwargs` - :attr:`~colour.KernelInterpolator.padding_kwargs` Methods ------- - :meth:`~colour.KernelInterpolator.__init__` - :meth:`~colour.KernelInterpolator.__call__` References ---------- :cite:`Burger2009b`, :cite:`Wikipedia2005b` Examples -------- Interpolating a single numeric variable: >>> y = np.array([5.9200, 9.3700, 10.8135, 4.5100, ... 69.5900, 27.8007, 86.0500]) >>> x = np.arange(len(y)) >>> f = KernelInterpolator(x, y) >>> f(0.5) # doctest: +ELLIPSIS 6.9411400... Interpolating an *array_like* variable: >>> f([0.25, 0.75]) # doctest: +ELLIPSIS array([ 6.1806208..., 8.0823848...]) Using a different *lanczos* kernel: >>> f = KernelInterpolator(x, y, kernel=kernel_sinc) >>> f([0.25, 0.75]) # doctest: +ELLIPSIS array([ 6.5147317..., 8.3965466...]) Using a different window size: >>> f = KernelInterpolator( ... x, ... y, ... window=16, ... kernel=kernel_lanczos, ... kernel_kwargs={'a': 16}) >>> f([0.25, 0.75]) # doctest: +ELLIPSIS array([ 5.3961792..., 5.6521093...]) """ def __init__(self, x, y, window=3, kernel=kernel_lanczos, kernel_kwargs=None, padding_kwargs=None, dtype=None): if dtype is None: dtype = DEFAULT_FLOAT_DTYPE self._x_p = None self._y_p = None self._x = None self._y = None self._window = None self._padding_kwargs = { 'pad_width': (window, window), 'mode': 'reflect' } self._dtype = dtype self.x = x self.y = y self.window = window self.padding_kwargs = padding_kwargs self._kernel = None self.kernel = kernel self._kernel_kwargs = {} self.kernel_kwargs = kernel_kwargs self._validate_dimensions() @property def x(self): """ Getter and setter property for the independent :math:`x` variable. Parameters ---------- value : array_like Value to set the independent :math:`x` variable with. Returns ------- array_like Independent :math:`x` variable. """ return self._x @x.setter def x(self, value): """ Setter for the **self.x** property. """ if value is not None: value = np.atleast_1d(value).astype(self._dtype) assert value.ndim == 1, ( '"x" independent variable must have exactly one dimension!') value_interval = interval(value) if value_interval.size != 1: runtime_warning('"x" independent variable is not uniform, ' 'unpredictable results may occur!') self._x = value if self._window is not None: self._x_p = np.pad( self._x, (self._window, self._window), 'linear_ramp', end_values=( np.min(self._x) - self._window * value_interval[0], np.max(self._x) + self._window * value_interval[0])) @property def y(self): """ Getter and setter property for the dependent and already known :math:`y` variable. Parameters ---------- value : array_like Value to set the dependent and already known :math:`y` variable with. Returns ------- array_like Dependent and already known :math:`y` variable. """ return self._y @y.setter def y(self, value): """ Setter for the **self.y** property. """ if value is not None: value = np.atleast_1d(value).astype(self._dtype) assert value.ndim == 1, ( '"y" dependent variable must have exactly one dimension!') self._y = value if self._window is not None: self._y_p = np.pad(self._y, **self._padding_kwargs) @property def window(self): """ Getter and setter property for the window. Parameters ---------- value : int Value to set the window with. Returns ------- int Window. """ return self._window @window.setter def window(self, value): """ Setter for the **self.window** property. """ if value is not None: assert is_integer(value), '"window" must be an integer!' assert value >= 1, ( '"window" must be equal to or or greater than 1!') self._window = value # Triggering "self._x_p" update. if self._x is not None: self.x = self._x # Triggering "self._y_p" update. if self._y is not None: self.y = self._y @property def kernel(self): """ Getter and setter property for the kernel callable. Parameters ---------- value : callable Value to set the kernel callable. Returns ------- callable Kernel callable. """ return self._kernel @kernel.setter def kernel(self, value): """ Setter for the **self.kernel** property. """ if value is not None: assert hasattr( value, '__call__'), ('"{0}" attribute: "{1}" is not callable!'.format( 'kernel', value)) self._kernel = value @property def kernel_kwargs(self): """ Getter and setter property for the kernel call time arguments. Parameters ---------- value : dict Value to call the interpolation kernel with. Returns ------- dict Kernel call time arguments. """ return self._kernel_kwargs @kernel_kwargs.setter def kernel_kwargs(self, value): """ Setter for the **self.kernel_kwargs** property. """ if value is not None: assert isinstance(value, (dict, OrderedDict)), ( '"{0}" attribute: "{1}" type is not "dict" or "OrderedDict"!' ).format('kernel_kwargs', value) self._kernel_kwargs = value @property def padding_kwargs(self): """ Getter and setter property for the kernel call time arguments. Parameters ---------- value : dict Value to call the interpolation kernel with. Returns ------- dict Kernel call time arguments. """ return self._padding_kwargs @padding_kwargs.setter def padding_kwargs(self, value): """ Setter for the **self.padding_kwargs** property. """ if value is not None: assert isinstance(value, Mapping), ( '"{0}" attribute: "{1}" type is not a "Mapping" instance!' ).format('padding_kwargs', value) self._padding_kwargs = value # Triggering "self._y_p" update. if self._y is not None: self.y = self._y def __call__(self, x): """ Evaluates the interpolator at given point(s). Parameters ---------- x : numeric or array_like Point(s) to evaluate the interpolant at. Returns ------- float or ndarray Interpolated value(s). """ x = np.atleast_1d(x).astype(self._dtype) xi = as_float(self._evaluate(x)) return xi def _evaluate(self, x): """ Performs the interpolator evaluation at given points. Parameters ---------- x : ndarray Points to evaluate the interpolant at. Returns ------- ndarray Interpolated points values. """ self._validate_dimensions() self._validate_interpolation_range(x) x_interval = interval(self._x)[0] x_f = np.floor(x / x_interval) windows = (x_f[:, np.newaxis] + np.arange(-self._window + 1, self._window + 1)) clip_l = min(self._x_p) / x_interval clip_h = max(self._x_p) / x_interval windows = np.clip(windows, clip_l, clip_h) - clip_l windows = np.around(windows).astype(DEFAULT_INT_DTYPE) return np.sum( self._y_p[windows] * self._kernel( x[:, np.newaxis] / x_interval - windows - min(self._x_p) / x_interval, **self._kernel_kwargs), axis=-1) def _validate_dimensions(self): """ Validates variables dimensions to be the same. """ if len(self._x) != len(self._y): raise ValueError( ('"x" independent and "y" dependent variables have different ' 'dimensions: "{0}", "{1}"').format( len(self._x), len(self._y))) def _validate_interpolation_range(self, x): """ Validates given point to be in interpolation range. """ below_interpolation_range = x < self._x[0] above_interpolation_range = x > self._x[-1] if below_interpolation_range.any(): raise ValueError('"{0}" is below interpolation range.'.format(x)) if above_interpolation_range.any(): raise ValueError('"{0}" is above interpolation range.'.format(x)) class NearestNeighbourInterpolator(KernelInterpolator): """ A nearest-neighbour interpolator. Other Parameters ---------------- x : array_like Independent :math:`x` variable values corresponding with :math:`y` variable. y : array_like Dependent and already known :math:`y` variable values to interpolate. window : int, optional Width of the window in samples on each side. padding_kwargs : dict, optional Arguments to use when padding :math:`y` variable values with the :func:`np.pad` definition. dtype : type Data type used for internal conversions. Methods ------- - :meth:`~colour.NearestNeighbourInterpolator.__init__` """ def __init__(self, *args, **kwargs): kwargs['kernel'] = kernel_nearest_neighbour if 'kernel_kwargs' in kwargs: del kwargs['kernel_kwargs'] super(NearestNeighbourInterpolator, self).__init__(*args, **kwargs) class LinearInterpolator: """ Linearly interpolates a 1-D function. Parameters ---------- x : array_like Independent :math:`x` variable values corresponding with :math:`y` variable. y : array_like Dependent and already known :math:`y` variable values to interpolate. dtype : type Data type used for internal conversions. Attributes ---------- - :attr:`~colour.LinearInterpolator.x` - :attr:`~colour.LinearInterpolator.y` Methods ------- - :meth:`~colour.LinearInterpolator.__init__` - :meth:`~colour.LinearInterpolator.__call__` Notes ----- - This class is a wrapper around *numpy.interp* definition. Examples -------- Interpolating a single numeric variable: >>> y = np.array([5.9200, 9.3700, 10.8135, 4.5100, ... 69.5900, 27.8007, 86.0500]) >>> x = np.arange(len(y)) >>> f = LinearInterpolator(x, y) >>> f(0.5) # doctest: +ELLIPSIS 7.64... Interpolating an *array_like* variable: >>> f([0.25, 0.75]) array([ 6.7825, 8.5075]) """ def __init__(self, x, y, dtype=None): if dtype is None: dtype = DEFAULT_FLOAT_DTYPE self._x = None self._y = None self._dtype = dtype self.x = x self.y = y self._validate_dimensions() @property def x(self): """ Getter and setter property for the independent :math:`x` variable. Parameters ---------- value : array_like Value to set the independent :math:`x` variable with. Returns ------- array_like Independent :math:`x` variable. """ return self._x @x.setter def x(self, value): """ Setter for the **self.x** property. """ if value is not None: value = np.atleast_1d(value).astype(self._dtype) assert value.ndim == 1, ( '"x" independent variable must have exactly one dimension!') self._x = value @property def y(self): """ Getter and setter property for the dependent and already known :math:`y` variable. Parameters ---------- value : array_like Value to set the dependent and already known :math:`y` variable with. Returns ------- array_like Dependent and already known :math:`y` variable. """ return self._y @y.setter def y(self, value): """ Setter for the **self.y** property. """ if value is not None: value = np.atleast_1d(value).astype(self._dtype) assert value.ndim == 1, ( '"y" dependent variable must have exactly one dimension!') self._y = value def __call__(self, x): """ Evaluates the interpolating polynomial at given point(s). Parameters ---------- x : numeric or array_like Point(s) to evaluate the interpolant at. Returns ------- float or ndarray Interpolated value(s). """ x = np.atleast_1d(x).astype(self._dtype) xi = as_float(self._evaluate(x)) return xi def _evaluate(self, x): """ Performs the interpolating polynomial evaluation at given points. Parameters ---------- x : ndarray Points to evaluate the interpolant at. Returns ------- ndarray Interpolated points values. """ self._validate_dimensions() self._validate_interpolation_range(x) return np.interp(x, self._x, self._y) def _validate_dimensions(self): """ Validates variables dimensions to be the same. """ if len(self._x) != len(self._y): raise ValueError( ('"x" independent and "y" dependent variables have different ' 'dimensions: "{0}", "{1}"').format( len(self._x), len(self._y))) def _validate_interpolation_range(self, x): """ Validates given point to be in interpolation range. """ below_interpolation_range = x < self._x[0] above_interpolation_range = x > self._x[-1] if below_interpolation_range.any(): raise ValueError('"{0}" is below interpolation range.'.format(x)) if above_interpolation_range.any(): raise ValueError('"{0}" is above interpolation range.'.format(x)) class SpragueInterpolator: """ Constructs a fifth-order polynomial that passes through :math:`y` dependent variable. *Sprague (1880)* method is recommended by the *CIE* for interpolating functions having a uniformly spaced independent variable. Parameters ---------- x : array_like Independent :math:`x` variable values corresponding with :math:`y` variable. y : array_like Dependent and already known :math:`y` variable values to interpolate. dtype : type Data type used for internal conversions. Attributes ---------- - :attr:`~colour.SpragueInterpolator.x` - :attr:`~colour.SpragueInterpolator.y` Methods ------- - :meth:`~colour.SpragueInterpolator.__init__` - :meth:`~colour.SpragueInterpolator.__call__` Notes ----- - The minimum number :math:`k` of data points required along the interpolation axis is :math:`k=6`. References ---------- :cite:`CIETC1-382005f`, :cite:`Westland2012h` Examples -------- Interpolating a single numeric variable: >>> y = np.array([5.9200, 9.3700, 10.8135, 4.5100, ... 69.5900, 27.8007, 86.0500]) >>> x = np.arange(len(y)) >>> f = SpragueInterpolator(x, y) >>> f(0.5) # doctest: +ELLIPSIS 7.2185025... Interpolating an *array_like* variable: >>> f([0.25, 0.75]) # doctest: +ELLIPSIS array([ 6.7295161..., 7.8140625...]) """ SPRAGUE_C_COEFFICIENTS = np.array([ [884, -1960, 3033, -2648, 1080, -180], [508, -540, 488, -367, 144, -24], [-24, 144, -367, 488, -540, 508], [-180, 1080, -2648, 3033, -1960, 884], ]) """ Defines the coefficients used to generate extra points for boundaries interpolation. SPRAGUE_C_COEFFICIENTS : array_like, (4, 6) References ---------- :cite:`CIETC1-382005h` """ def __init__(self, x, y, dtype=None): if dtype is None: dtype = DEFAULT_FLOAT_DTYPE self._xp = None self._yp = None self._x = None self._y = None self._dtype = dtype self.x = x self.y = y self._validate_dimensions() @property def x(self): """ Getter and setter property for the independent :math:`x` variable. Parameters ---------- value : array_like Value to set the independent :math:`x` variable with. Returns ------- array_like Independent :math:`x` variable. """ return self._x @x.setter def x(self, value): """ Setter for the **self.x** property. """ if value is not None: value = np.atleast_1d(value).astype(self._dtype) assert value.ndim == 1, ( '"x" independent variable must have exactly one dimension!') value_interval = interval(value)[0] xp1 = value[0] - value_interval * 2 xp2 = value[0] - value_interval xp3 = value[-1] + value_interval xp4 = value[-1] + value_interval * 2 self._xp = np.concatenate(((xp1, xp2), value, (xp3, xp4))) self._x = value @property def y(self): """ Getter and setter property for the dependent and already known :math:`y` variable. Parameters ---------- value : array_like Value to set the dependent and already known :math:`y` variable with. Returns ------- array_like Dependent and already known :math:`y` variable. """ return self._y @y.setter def y(self, value): """ Setter for the **self.y** property. """ if value is not None: value = np.atleast_1d(value).astype(self._dtype) assert value.ndim == 1, ( '"y" dependent variable must have exactly one dimension!') assert len(value) >= 6, ( '"y" dependent variable values count must be equal to or ' 'greater than 6!') yp1 = np.ravel( (np.dot(self.SPRAGUE_C_COEFFICIENTS[0], np.array(value[0:6]).reshape([6, 1]))) / 209)[0] yp2 = np.ravel( (np.dot(self.SPRAGUE_C_COEFFICIENTS[1], np.array(value[0:6]).reshape([6, 1]))) / 209)[0] yp3 = np.ravel( (np.dot(self.SPRAGUE_C_COEFFICIENTS[2], np.array(value[-6:]).reshape([6, 1]))) / 209)[0] yp4 = np.ravel( (np.dot(self.SPRAGUE_C_COEFFICIENTS[3], np.array(value[-6:]).reshape([6, 1]))) / 209)[0] self._yp = np.concatenate(((yp1, yp2), value, (yp3, yp4))) self._y = value def __call__(self, x): """ Evaluates the interpolating polynomial at given point(s). Parameters ---------- x : numeric or array_like Point(s) to evaluate the interpolant at. Returns ------- numeric or ndarray Interpolated value(s). """ return self._evaluate(x) def _evaluate(self, x): """ Performs the interpolating polynomial evaluation at given point. Parameters ---------- x : numeric Point to evaluate the interpolant at. Returns ------- float Interpolated point values. """ x = as_float_array(x) self._validate_dimensions() self._validate_interpolation_range(x) i = np.searchsorted(self._xp, x) - 1 X = (x - self._xp[i]) / (self._xp[i + 1] - self._xp[i]) r = self._yp a0p = r[i] a1p = ((2 * r[i - 2] - 16 * r[i - 1] + 16 * r[i + 1] - 2 * r[i + 2]) / 24) # yapf: disable a2p = ((-r[i - 2] + 16 * r[i - 1] - 30 * r[i] + 16 * r[i + 1] - r[i + 2]) / 24) # yapf: disable a3p = ((-9 * r[i - 2] + 39 * r[i - 1] - 70 * r[i] + 66 * r[i + 1] - 33 * r[i + 2] + 7 * r[i + 3]) / 24) a4p = ((13 * r[i - 2] - 64 * r[i - 1] + 126 * r[i] - 124 * r[i + 1] + 61 * r[i + 2] - 12 * r[i + 3]) / 24) a5p = ((-5 * r[i - 2] + 25 * r[i - 1] - 50 * r[i] + 50 * r[i + 1] - 25 * r[i + 2] + 5 * r[i + 3]) / 24) y = (a0p + a1p * X + a2p * X ** 2 + a3p * X ** 3 + a4p * X ** 4 + a5p * X ** 5) return y def _validate_dimensions(self): """ Validates variables dimensions to be the same. """ if len(self._x) != len(self._y): raise ValueError( ('"x" independent and "y" dependent variables have different ' 'dimensions: "{0}", "{1}"').format( len(self._x), len(self._y))) def _validate_interpolation_range(self, x): """ Validates given point to be in interpolation range. """ below_interpolation_range = x < self._x[0] above_interpolation_range = x > self._x[-1] if below_interpolation_range.any(): raise ValueError('"{0}" is below interpolation range.'.format(x)) if above_interpolation_range.any(): raise ValueError('"{0}" is above interpolation range.'.format(x)) class CubicSplineInterpolator(scipy.interpolate.interp1d): """ Interpolates a 1-D function using cubic spline interpolation. Methods ------- - :meth:`~colour.CubicSplineInterpolator.__init__` Notes ----- - This class is a wrapper around *scipy.interpolate.interp1d* class. """ def __init__(self, *args, **kwargs): super(CubicSplineInterpolator, self).__init__( kind='cubic', *args, **kwargs) class PchipInterpolator(scipy.interpolate.PchipInterpolator): """ Interpolates a 1-D function using Piecewise Cubic Hermite Interpolating Polynomial interpolation. Attributes ---------- - :attr:`~colour.PchipInterpolator.y` Methods ------- - :meth:`~colour.PchipInterpolator.__init__` Notes ----- - This class is a wrapper around *scipy.interpolate.PchipInterpolator* class. """ def __init__(self, x, y, *args, **kwargs): super(PchipInterpolator, self).__init__(x, y, *args, **kwargs) self._y = y @property def y(self): """ Getter property for the dependent and already known :math:`y` variable. Returns ------- array_like Dependent and already known :math:`y` variable. """ return self._y class NullInterpolator: """ Performs 1-D function null interpolation, i.e. a call within given tolerances will return existing :math:`y` variable values and ``default`` if outside tolerances. Parameters ---------- x : ndarray Independent :math:`x` variable values corresponding with :math:`y` variable. y : ndarray Dependent and already known :math:`y` variable values to interpolate. absolute_tolerance : numeric, optional Absolute tolerance. relative_tolerance : numeric, optional Relative tolerance. default : numeric, optional Default value for interpolation outside tolerances. dtype : type Data type used for internal conversions. Attributes ---------- - :attr:`~colour.NullInterpolator.x` - :attr:`~colour.NullInterpolator.y` - :attr:`~colour.NullInterpolator.relative_tolerance` - :attr:`~colour.NullInterpolator.absolute_tolerance` - :attr:`~colour.NullInterpolator.default` Methods ------- - :meth:`~colour.NullInterpolator.__init__` - :meth:`~colour.NullInterpolator.__call__` Examples -------- >>> y = np.array([5.9200, 9.3700, 10.8135, 4.5100, ... 69.5900, 27.8007, 86.0500]) >>> x = np.arange(len(y)) >>> f = NullInterpolator(x, y) >>> f(0.5) nan >>> f(1.0) # doctest: +ELLIPSIS 9.3699999... >>> f = NullInterpolator(x, y, absolute_tolerance=0.01) >>> f(1.01) # doctest: +ELLIPSIS 9.3699999... """ def __init__(self, x, y, absolute_tolerance=10e-7, relative_tolerance=10e-7, default=np.nan, dtype=None): if dtype is None: dtype = DEFAULT_FLOAT_DTYPE self._x = None self._y = None self._absolute_tolerance = None self._relative_tolerance = None self._default = None self._dtype = dtype self.x = x self.y = y self.absolute_tolerance = absolute_tolerance self.relative_tolerance = relative_tolerance self.default = default self._validate_dimensions() @property def x(self): """ Getter and setter property for the independent :math:`x` variable. Parameters ---------- value : array_like Value to set the independent :math:`x` variable with. Returns ------- array_like Independent :math:`x` variable. """ return self._x @x.setter def x(self, value): """ Setter for the **self.x** property. """ if value is not None: value = np.atleast_1d(value).astype(self._dtype) assert value.ndim == 1, ( '"x" independent variable must have exactly one dimension!') self._x = value @property def y(self): """ Getter and setter property for the dependent and already known :math:`y` variable. Parameters ---------- value : array_like Value to set the dependent and already known :math:`y` variable with. Returns ------- array_like Dependent and already known :math:`y` variable. """ return self._y @y.setter def y(self, value): """ Setter for the **self.y** property. """ if value is not None: value = np.atleast_1d(value).astype(self._dtype) assert value.ndim == 1, ( '"y" dependent variable must have exactly one dimension!') self._y = value @property def relative_tolerance(self): """ Getter and setter property for the relative tolerance. Parameters ---------- value : numeric Value to set the relative tolerance with. Returns ------- numeric Relative tolerance. """ return self._relative_tolerance @relative_tolerance.setter def relative_tolerance(self, value): """ Setter for the **self.relative_tolerance** property. """ if value is not None: assert is_numeric(value), ( '"relative_tolerance" variable must be a "numeric"!') self._relative_tolerance = value @property def absolute_tolerance(self): """ Getter and setter property for the absolute tolerance. Parameters ---------- value : numeric Value to set the absolute tolerance with. Returns ------- numeric Absolute tolerance. """ return self._absolute_tolerance @absolute_tolerance.setter def absolute_tolerance(self, value): """ Setter for the **self.absolute_tolerance** property. """ if value is not None: assert is_numeric(value), ( '"absolute_tolerance" variable must be a "numeric"!') self._absolute_tolerance = value @property def default(self): """ Getter and setter property for the default value for call outside tolerances. Parameters ---------- value : numeric Value to set the default value with. Returns ------- numeric Default value. """ return self._default @default.setter def default(self, value): """ Setter for the **self.default** property. """ if value is not None: assert is_numeric(value), ( '"default" variable must be a "numeric"!') self._default = value def __call__(self, x): """ Evaluates the interpolator at given point(s). Parameters ---------- x : numeric or array_like Point(s) to evaluate the interpolant at. Returns ------- float or ndarray Interpolated value(s). """ x = np.atleast_1d(x).astype(self._dtype) xi = as_float(self._evaluate(x)) return xi def _evaluate(self, x): """ Performs the interpolator evaluation at given points. Parameters ---------- x : ndarray Points to evaluate the interpolant at. Returns ------- ndarray Interpolated points values. """ self._validate_dimensions() self._validate_interpolation_range(x) indexes = closest_indexes(self._x, x) values = self._y[indexes] values[~np.isclose( self._x[indexes], x, rtol=self._absolute_tolerance, atol=self._relative_tolerance)] = self._default return values def _validate_dimensions(self): """ Validates variables dimensions to be the same. """ if len(self._x) != len(self._y): raise ValueError( ('"x" independent and "y" dependent variables have different ' 'dimensions: "{0}", "{1}"').format( len(self._x), len(self._y))) def _validate_interpolation_range(self, x): """ Validates given point to be in interpolation range. """ below_interpolation_range = x < self._x[0] above_interpolation_range = x > self._x[-1] if below_interpolation_range.any(): raise ValueError('"{0}" is below interpolation range.'.format(x)) if above_interpolation_range.any(): raise ValueError('"{0}" is above interpolation range.'.format(x)) def lagrange_coefficients(r, n=4): """ Computes the *Lagrange Coefficients* at given point :math:`r` for degree :math:`n`. Parameters ---------- r : numeric Point to get the *Lagrange Coefficients* at. n : int, optional Degree of the *Lagrange Coefficients* being calculated. Returns ------- ndarray References ---------- :cite:`Fairman1985b`, :cite:`Wikipedia2003a` Examples -------- >>> lagrange_coefficients(0.1) array([ 0.8265, 0.2755, -0.1305, 0.0285]) """ r_i = np.arange(n) L_n = [] for j in range(len(r_i)): basis = [(r - r_i[i]) / (r_i[j] - r_i[i]) for i in range(len(r_i)) if i != j] L_n.append(reduce(lambda x, y: x * y, basis)) # noqa return np.array(L_n) def vertices_and_relative_coordinates(V_xyz, table): """ Computes the vertices coordinates and indexes relative :math:`V_{xyzr}` coordinates from given :math:`V_{xyzr}` values and interpolation table. Parameters ---------- V_xyz : array_like :math:`V_{xyz}` values to transform to indexes relative :math:`V_{xyzr}` values. table : array_like 4-Dimensional (NxNxNx3) interpolation table. Returns ------- tuple Vertices coordinates and indexes relative :math:`V_{xyzr}` coordinates. Examples -------- >>> import os >>> import colour >>> path = os.path.join( ... os.path.dirname(__file__),'..', 'io', 'luts', 'tests', 'resources', ... 'iridas_cube', 'Colour_Correct.cube') >>> LUT = colour.read_LUT(path) >>> table = LUT.table >>> prng = np.random.RandomState(4) >>> V_xyz = colour.algebra.random_triplet_generator(3, random_state=prng) >>> print(V_xyz) # doctest: +ELLIPSIS [[ 0.9670298... 0.7148159... 0.9762744...] [ 0.5472322... 0.6977288... 0.0062302...] [ 0.9726843... 0.2160895... 0.2529823...]] >>> vertices, V_xyzr = vertices_and_relative_coordinates(V_xyz, table) >>> print(vertices) [[[ 0.833311 0.833311 0.833311] [ 0.349416 0.657749 0.041083] [ 0.797894 -0.035412 -0.035412]] <BLANKLINE> [[ 0.833311 0.833311 1.249963] [ 0.340435 0.743769 0.340435] [ 0.752767 -0.028479 0.362144]] <BLANKLINE> [[ 0.707102 1.110435 0.707102] [ 0.344991 1.050213 -0.007621] [ 0.633333 0.316667 0. ]] <BLANKLINE> [[ 0.519714 0.744729 0.744729] [ 0.314204 1.120871 0.314204] [ 0.732278 0.315626 0.315626]] <BLANKLINE> [[ 1.06561 0.648957 0.648957] [ 0.589195 0.589195 0.139164] [ 1.196841 -0.053117 -0.053117]] <BLANKLINE> [[ 1. 0.666667 1. ] [ 0.594601 0.594601 0.369586] [ 1.162588 -0.050372 0.353948]] <BLANKLINE> [[ 0.894606 0.894606 0.66959 ] [ 0.663432 0.930188 0.12992 ] [ 1.038439 0.310899 -0.05287 ]] <BLANKLINE> [[ 1.249966 1.249966 1.249966] [ 0.682749 0.991082 0.374416] [ 1.131225 0.29792 0.29792 ]]] >>> print(V_xyzr) # doctest: +ELLIPSIS [[ 0.9010895... 0.1444479... 0.9288233...] [ 0.6416967... 0.0931864... 0.0186907...] [ 0.9180530... 0.6482684... 0.7589470...]] """ V_xyz = np.clip(V_xyz, 0, 1) table = as_float_array(table) V_xyz = np.reshape(V_xyz, (-1, 3)) # Indexes computations where ``i_m`` is the maximum index value on a given # table axis, ``i_f`` and ``i_c`` respectively the floor and ceiling # indexes encompassing a given V_xyz value. i_m = np.array(table.shape[0:-1]) - 1 i_f = np.floor(V_xyz * i_m).astype(DEFAULT_INT_DTYPE) i_c = np.clip(i_f + 1, 0, i_m) # Relative to indexes ``V_xyz`` values. V_xyzr = i_m * V_xyz - i_f i_f_c = i_f, i_c # Vertices computations by indexing ``table`` with the ``i_f`` and ``i_c`` # indexes. 8 encompassing vertices are computed for a given V_xyz value # forming a cube around it: vertices = np.array([ table[i_f_c[i[0]][..., 0], i_f_c[i[1]][..., 1], i_f_c[i[2]][..., 2]] for i in itertools.product(*zip([0, 0, 0], [1, 1, 1])) ]) return vertices, V_xyzr def table_interpolation_trilinear(V_xyz, table): """ Performs trilinear interpolation of given :math:`V_{xyz}` values using given interpolation table. Parameters ---------- V_xyz : array_like :math:`V_{xyz}` values to interpolate. table : array_like 4-Dimensional (NxNxNx3) interpolation table. Returns ------- ndarray Interpolated :math:`V_{xyz}` values. References ---------- :cite:`Bourkeb` Examples -------- >>> import os >>> import colour >>> path = os.path.join( ... os.path.dirname(__file__),'..', 'io', 'luts', 'tests', 'resources', ... 'iridas_cube', 'Colour_Correct.cube') >>> LUT = colour.read_LUT(path) >>> table = LUT.table >>> prng = np.random.RandomState(4) >>> V_xyz = colour.algebra.random_triplet_generator(3, random_state=prng) >>> print(V_xyz) # doctest: +ELLIPSIS [[ 0.9670298... 0.7148159... 0.9762744...] [ 0.5472322... 0.6977288... 0.0062302...] [ 0.9726843... 0.2160895... 0.2529823...]] >>> table_interpolation_trilinear(V_xyz, table) # doctest: +ELLIPSIS array([[ 1.0120664..., 0.7539146..., 1.0228540...], [ 0.5075794..., 0.6479459..., 0.1066404...], [ 1.0976519..., 0.1785998..., 0.2299897...]]) """ V_xyz = as_float_array(V_xyz) vertices, V_xyzr = vertices_and_relative_coordinates(V_xyz, table) vertices = np.moveaxis(vertices, 0, 1) x, y, z = [f[:, np.newaxis] for f in tsplit(V_xyzr)] weights = np.moveaxis( np.transpose( [(1 - x) * (1 - y) * (1 - z), (1 - x) * (1 - y) * z, (1 - x) * y * (1 - z), (1 - x) * y * z, x * (1 - y) * (1 - z), x * (1 - y) * z, x * y * (1 - z), x * y * z]), 0, -1) xyz_o = np.reshape(np.sum(vertices * weights, 1), V_xyz.shape) return xyz_o def table_interpolation_tetrahedral(V_xyz, table): """ Performs tetrahedral interpolation of given :math:`V_{xyz}` values using given interpolation table. Parameters ---------- V_xyz : array_like :math:`V_{xyz}` values to interpolate. table : array_like 4-Dimensional (NxNxNx3) interpolation table. Returns ------- ndarray Interpolated :math:`V_{xyz}` values. References ---------- :cite:`Kirk2006` Examples -------- >>> import os >>> import colour >>> path = os.path.join( ... os.path.dirname(__file__),'..', 'io', 'luts', 'tests', 'resources', ... 'iridas_cube', 'Colour_Correct.cube') >>> LUT = colour.read_LUT(path) >>> table = LUT.table >>> prng = np.random.RandomState(4) >>> V_xyz = colour.algebra.random_triplet_generator(3, random_state=prng) >>> print(V_xyz) # doctest: +ELLIPSIS [[ 0.9670298... 0.7148159... 0.9762744...] [ 0.5472322... 0.6977288... 0.0062302...] [ 0.9726843... 0.2160895... 0.2529823...]] >>> table_interpolation_tetrahedral(V_xyz, table) # doctest: +ELLIPSIS array([[ 1.0196197..., 0.7674062..., 1.0311751...], [ 0.5105603..., 0.6466722..., 0.1077296...], [ 1.1178206..., 0.1762039..., 0.2209534...]]) """ V_xyz = as_float_array(V_xyz) vertices, V_xyzr = vertices_and_relative_coordinates(V_xyz, table) vertices = np.moveaxis(vertices, 0, -1) V000, V001, V010, V011, V100, V101, V110, V111 = tsplit(vertices) x, y, z = [r[:, np.newaxis] for r in tsplit(V_xyzr)] xyz_o = np.select([ np.logical_and(x > y, y > z), np.logical_and(x > y, x > z), np.logical_and(x > y, np.logical_and(y <= z, x <= z)), np.logical_and(x <= y, z > y), np.logical_and(x <= y, z > x), np.logical_and(x <= y, np.logical_and(z <= y, z <= x)), ], [ (1 - x) * V000 + (x - y) * V100 + (y - z) * V110 + z * V111, (1 - x) * V000 + (x - z) * V100 + (z - y) * V101 + y * V111, (1 - z) * V000 + (z - x) * V001 + (x - y) * V101 + y * V111, (1 - z) * V000 + (z - y) * V001 + (y - x) * V011 + x * V111, (1 - y) * V000 + (y - z) * V010 + (z - x) * V011 + x * V111, (1 - y) * V000 + (y - x) * V010 + (x - z) * V110 + z * V111, ]) xyz_o = np.reshape(xyz_o, V_xyz.shape) return xyz_o TABLE_INTERPOLATION_METHODS = CaseInsensitiveMapping({ 'Trilinear': table_interpolation_trilinear, 'Tetrahedral': table_interpolation_tetrahedral, }) TABLE_INTERPOLATION_METHODS.__doc__ = """ Supported table interpolation methods. References ---------- :cite:`Bourkeb`, :cite:`Kirk2006` TABLE_INTERPOLATION_METHODS : CaseInsensitiveMapping **{'Trilinear', 'Tetrahedral'}** """ def table_interpolation(V_xyz, table, method='Trilinear'): """ Performs interpolation of given :math:`V_{xyz}` values using given interpolation table. Parameters ---------- V_xyz : array_like :math:`V_{xyz}` values to interpolate. table : array_like 4-Dimensional (NxNxNx3) interpolation table. method : unicode, optional **{'Trilinear', 'Tetrahedral'}**, Interpolation method. Returns ------- ndarray Interpolated :math:`V_{xyz}` values. References ---------- :cite:`Bourkeb`, :cite:`Kirk2006` Examples -------- >>> import os >>> import colour >>> path = os.path.join( ... os.path.dirname(__file__),'..', 'io', 'luts', 'tests', 'resources', ... 'iridas_cube', 'Colour_Correct.cube') >>> LUT = colour.read_LUT(path) >>> table = LUT.table >>> prng = np.random.RandomState(4) >>> V_xyz = colour.algebra.random_triplet_generator(3, random_state=prng) >>> print(V_xyz) # doctest: +ELLIPSIS [[ 0.9670298... 0.7148159... 0.9762744...] [ 0.5472322... 0.6977288... 0.0062302...] [ 0.9726843... 0.2160895... 0.2529823...]] >>> table_interpolation(V_xyz, table) # doctest: +ELLIPSIS array([[ 1.0120664..., 0.7539146..., 1.0228540...], [ 0.5075794..., 0.6479459..., 0.1066404...], [ 1.0976519..., 0.1785998..., 0.2299897...]]) >>> table_interpolation(V_xyz, table, method='Tetrahedral') ... # doctest: +ELLIPSIS array([[ 1.0196197..., 0.7674062..., 1.0311751...], [ 0.5105603..., 0.6466722..., 0.1077296...], [ 1.1178206..., 0.1762039..., 0.2209534...]]) """ method = validate_method(method, TABLE_INTERPOLATION_METHODS) return TABLE_INTERPOLATION_METHODS[method](V_xyz, table)
the-stack_0_4413
import os import numpy as np from shapely import geometry, affinity from pyquaternion import Quaternion from shapely.geometry import Point from nuscenes.eval.detection.utils import category_to_detection_name from nuscenes.eval.detection.constants import DETECTION_NAMES from nuscenes.utils.data_classes import LidarPointCloud import logging from src.data.utils import transform_polygon, render_polygon, transform import cv2 import time CAMERA_NAMES = ['CAM_FRONT'] # CAMERA_NAMES = ['CAM_FRONT', 'CAM_FRONT_LEFT', 'CAM_FRONT_RIGHT', # 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT', 'CAM_BACK'] NUSCENES_CLASS_NAMES = [ 'drivable_area', 'ped_crossing', 'walkway', 'carpark', 'car', 'truck', 'bus', 'trailer', 'construction_vehicle', 'pedestrian', 'motorcycle', 'bicycle', 'traffic_cone', 'barrier' ] # NUSCENES_CLASS_NAMES = [ # 'drivable_area', 'ped_crossing', 'walkway', 'carpark'] STATIC_CLASSES = ['drivable_area', 'ped_crossing', 'walkway', 'carpark_area'] LOCATIONS = ['boston-seaport', 'singapore-onenorth', 'singapore-queenstown', 'singapore-hollandvillage'] def iterate_samples(nuscenes, start_token): sample_token = start_token while sample_token != '': sample = nuscenes.get('sample', sample_token) yield sample sample_token = sample['next'] def get_map_masks(nuscenes, map_data, sample_data, extents, resolution): # Render each layer sequentially layers = [get_layer_mask(nuscenes, polys, sample_data, extents, resolution) for layer, polys in map_data.items()] return np.stack(layers, axis=0) def get_layer_mask(nuscenes, polygons, sample_data, extents, resolution): # Get the 2D affine transform from bev coords to map coords tfm = get_sensor_transform(nuscenes, sample_data)[[0, 1, 3]][:, [0, 2, 3]] inv_tfm = np.linalg.inv(tfm) # Create a patch representing the birds-eye-view region in map coordinates map_patch = geometry.box(*extents) map_patch = transform_polygon(map_patch, tfm) # Initialise the map mask x1, z1, x2, z2 = extents mask = np.zeros((int((z2 - z1) / resolution), int((x2 - x1) / resolution)), dtype=np.uint8) # Find all polygons which intersect with the area of interest for polygon in polygons.query(map_patch): polygon = polygon.intersection(map_patch) # Transform into map coordinates polygon = transform_polygon(polygon, inv_tfm) # Render the polygon to the mask render_shapely_polygon(mask, polygon, extents, resolution) return mask.astype(np.bool) def get_object_masks(nuscenes, sample_data, extents, resolution): # Initialize object masks nclass = len(DETECTION_NAMES) + 1 grid_width = int((extents[2] - extents[0]) / resolution) grid_height = int((extents[3] - extents[1]) / resolution) masks = np.zeros((nclass, grid_height, grid_width), dtype=np.uint8) # Get the 2D affine transform from bev coords to map coords tfm = get_sensor_transform(nuscenes, sample_data)[[0, 1, 3]][:, [0, 2, 3]] inv_tfm = np.linalg.inv(tfm) obj_list=[] for box in nuscenes.get_boxes(sample_data['token']): # Get the index of the class det_name = category_to_detection_name(box.name) if det_name not in DETECTION_NAMES: class_id = -1 else: class_id = DETECTION_NAMES.index(det_name) # Get bounding box coordinates in the grid coordinate frame bbox = box.bottom_corners()[:2] local_bbox = np.dot(inv_tfm[:2, :2], bbox).T + inv_tfm[:2, 2] temp_ar = np.squeeze(np.zeros((9,1),np.float32)) temp_ar[:8] = np.float32(local_bbox).flatten() temp_ar[-1] = class_id obj_list.append(np.copy(temp_ar)) # Render the rotated bounding box to the mask render_polygon(masks[class_id], local_bbox, extents, resolution) return np.array(obj_list), masks # #def get_object_masks(nuscenes, sample_data, extents, resolution): # # # Initialize object masks # nclass = len(DETECTION_NAMES) + 2 # grid_width = int((extents[2] - extents[0]) / resolution) # grid_height = int((extents[3] - extents[1]) / resolution) # masks = np.zeros((nclass, grid_height, grid_width), dtype=np.uint8) # # # Get the 2D affine transform from bev coords to map coords # tfm = get_sensor_transform(nuscenes, sample_data)[[0, 1, 3]][:, [0, 2, 3]] # inv_tfm = np.linalg.inv(tfm) # # for box in nuscenes.get_boxes(sample_data['token']): # # # Get the index of the class # det_name = category_to_detection_name(box.name) # if det_name not in DETECTION_NAMES: # class_id = -1 # else: # class_id = DETECTION_NAMES.index(det_name) # # # Get bounding box coordinates in the grid coordinate frame # bbox = box.bottom_corners()[:2] # local_bbox = np.dot(inv_tfm[:2, :2], bbox).T + inv_tfm[:2, 2] # # # Render the rotated bounding box to the mask # render_polygon(masks[class_id], local_bbox, extents, resolution) # # return masks.astype(np.bool) def get_sensor_transform(nuscenes, sample_data): # Load sensor transform data sensor = nuscenes.get( 'calibrated_sensor', sample_data['calibrated_sensor_token']) sensor_tfm = make_transform_matrix(sensor) # Load ego pose data pose = nuscenes.get('ego_pose', sample_data['ego_pose_token']) pose_tfm = make_transform_matrix(pose) return np.dot(pose_tfm, sensor_tfm) def load_point_cloud(nuscenes, sample_data): # Load point cloud lidar_path = os.path.join(nuscenes.dataroot, sample_data['filename']) pcl = LidarPointCloud.from_file(lidar_path) return pcl.points[:3, :].T def make_transform_matrix(record): """ Create a 4x4 transform matrix from a calibrated_sensor or ego_pose record """ my_transform = np.eye(4) my_transform[:3, :3] = Quaternion(record['rotation']).rotation_matrix my_transform[:3, 3] = np.array(record['translation']) return my_transform def render_shapely_polygon(mask, polygon, extents, resolution): if polygon.geom_type == 'Polygon': # Render exteriors # logging.error('POLYGON ' + str(polygon.exterior.coords)) # time.sleep(1) render_polygon(mask, polygon.exterior.coords, extents, resolution, 1) # Render interiors for hole in polygon.interiors: render_polygon(mask, hole.coords, extents, resolution, 0) # Handle the case of compound shapes else: for poly in polygon: render_shapely_polygon(mask, poly, extents, resolution) def render_point(mask, polygon, extents, resolution,value): # Render exteriors # logging.error('POLYGON ' + str(polygon.coords)) # logging.error('EXTENTS ' + str(np.array(extents[:2]))) polygon = (polygon - np.array(extents[:2])) / resolution polygon = np.ascontiguousarray(polygon).round().astype(np.int32) cv2.fillConvexPoly(mask, polygon, value) render_polygon(mask, polygon.coords, extents, resolution, value) #def render_centerlines(map_api,resolution_meters=0.5, # figsize: Union[None, float, Tuple[float, float]] = None, # bitmap: Optional[BitMap] = None) -> Tuple[Figure, Axes]: # """ # Render the centerlines of all lanes and lane connectors. # :param resolution_meters: How finely to discretize the lane. Smaller values ensure curved # lanes are properly represented. # :param figsize: Size of the figure. # :param bitmap: Optional BitMap object to render below the other map layers. # """ # # Discretize all lanes and lane connectors. # pose_lists = map_api.discretize_centerlines(resolution_meters) # # # # # Render connectivity lines. # fig = plt.figure(figsize=self._get_figsize(figsize)) # ax = fig.add_axes([0, 0, 1, 1 / self.canvas_aspect_ratio]) # # if bitmap is not None: # bitmap.render(self.map_api.canvas_edge, ax) # # for pose_list in pose_lists: # if len(pose_list) > 0: # plt.plot(pose_list[:, 0], pose_list[:, 1]) # # return fig, ax def view_points(points, view, normalize=True): """ This is a helper class that maps 3d points to a 2d plane. It can be used to implement both perspective and orthographic projections. It first applies the dot product between the points and the view. By convention, the view should be such that the data is projected onto the first 2 axis. It then optionally applies a normalization along the third dimension. For a perspective projection the view should be a 3x3 camera matrix, and normalize=True For an orthographic projection with translation the view is a 3x4 matrix and normalize=False For an orthographic projection without translation the view is a 3x3 matrix (optionally 3x4 with last columns all zeros) and normalize=False :param points: <np.float32: 3, n> Matrix of points, where each point (x, y, z) is along each column. :param view: <np.float32: n, n>. Defines an arbitrary projection (n <= 4). The projection should be such that the corners are projected onto the first 2 axis. :param normalize: Whether to normalize the remaining coordinate (along the third axis). :return: <np.float32: 3, n>. Mapped point. If normalize=False, the third coordinate is the height. """ assert view.shape[0] <= 4 assert view.shape[1] <= 4 assert points.shape[0] == 3 viewpad = np.eye(4) viewpad[:view.shape[0], :view.shape[1]] = view nbr_points = points.shape[1] # Do operation in homogenous coordinates. points = np.concatenate((points, np.ones((1, nbr_points)))) points = np.dot(viewpad, points) points = points[:3, :] norm_const = points[2:3, :] if normalize: points = points / points[2:3, :].repeat(3, 0).reshape(3, nbr_points) return points,norm_const # def check_visible(polygon, vis_mask): def get_centerlines(nuscenes, new_ar, sample_data, extents, resolution, vis_mask, already_found=None): tfm = get_sensor_transform(nuscenes, sample_data)[[0, 1, 3]][:, [0, 2, 3]] my_thresh = 100 my_x = tfm[0,-1] my_y = tfm[1,-1] road_ind_ar = np.arange(len(new_ar)) selecteds = np.abs(new_ar[:,:,0] - my_x) + np.abs(new_ar[:,:,1] - my_y) < my_thresh selected_lines = np.any(selecteds, axis=-1) logging.error('FOUND ' + str(np.sum(selected_lines)) + ' LINES') my_road_ar = road_ind_ar[selected_lines] my_lines = new_ar[selected_lines] my_sel_points = selecteds[selected_lines] inv_tfm = np.linalg.inv(tfm) # Create a patch representing the birds-eye-view region in map coordinates map_patch = geometry.box(*extents) map_patch = transform_polygon(map_patch, tfm) # Initialise the map mask x1, z1, x2, z2 = extents mask = np.zeros((int((z2 - z1) / resolution), int((x2 - x1) / resolution)), dtype=np.uint16) # Find all polygons which intersect with the area of interest loc_array = np.zeros((len(new_ar),2,2),np.uint8) for road_id in range(len(my_lines)): cons_points = my_lines[road_id][my_sel_points[road_id]] cur_min = False cur_last = (None,None) for p in range(len(cons_points)): cur = cons_points[p][:2] cur_point = Point(cur) cont = map_patch.contains(cur_point) if cont: # # Transform into map coordinates polygon = transform_polygon(cur_point, inv_tfm) if len(polygon.coords) > 0: polygon = (polygon.coords[0]- np.array(extents[:2])) / resolution polygon = np.ascontiguousarray(polygon).round().astype(np.int32) if ((polygon[0] >= 0) & (polygon[1] >= 0)): if ((polygon[0] < mask.shape[1]) & (polygon[1] < mask.shape[0])): mask[polygon[1],polygon[0]] = my_road_ar[road_id] + 1 # if vis_mask[polygon[1],polygon[0]] > 0.5: if not cur_min: # # loc_array[my_road_ar[road_id],0,0] = np.int32(polygon[1]) loc_array[my_road_ar[road_id],0,1] = np.int32(polygon[0]) cur_min = True # cur_last = (np.int32(polygon[1]),np.int32(polygon[0])) # if cur_last[0] != None: # loc_array[my_road_ar[road_id],1,0] = np.int32(cur_last[0]) loc_array[my_road_ar[road_id],1,1] = np.int32(cur_last[1]) else: loc_array[my_road_ar[road_id],1,0] = 255 loc_array[my_road_ar[road_id],1,1] = 255 if not cur_min: loc_array[my_road_ar[road_id],0,0] = 255 loc_array[my_road_ar[road_id],0,1] = 255 return mask, loc_array # #def get_centerlines(nuscenes, centers, sample_data, extents, resolution, vis_mask, already_found=None): # # # Get the 2D affine transform from bev coords to map coords # tfm = get_sensor_transform(nuscenes, sample_data)[[0, 1, 3]][:, [0, 2, 3]] # # tfm[1,-1] = tfm[1,-1] # # # inv_tfm = np.linalg.inv(tfm) # # # Create a patch representing the birds-eye-view region in map coordinates # map_patch = geometry.box(*extents) # map_patch = transform_polygon(map_patch, tfm) # # # Initialise the map mask # x1, z1, x2, z2 = extents # # # mask = np.zeros((int((z2 - z1) / resolution), int((x2 - x1) / resolution)), # dtype=np.uint16) # # # Find all polygons which intersect with the area of interest # # loc_array = np.zeros((len(centers),2,2),np.uint8) # # for road_id in range(len(centers)): # # cur_min = False # cur_last = (None,None) # # for p in range(len(centers[road_id])): # cur = centers[road_id][p][:2] # cur_point = Point(cur) # cont = map_patch.contains(cur_point) # # if cont: # ## # Transform into map coordinates # polygon = transform_polygon(cur_point, inv_tfm) # if len(polygon.coords) > 0: # polygon = (polygon.coords[0]- np.array(extents[:2])) / resolution # polygon = np.ascontiguousarray(polygon).round().astype(np.int32) # if ((polygon[0] >= 0) & (polygon[1] >= 0)): # if ((polygon[0] < mask.shape[1]) & (polygon[1] < mask.shape[0])): # mask[polygon[1],polygon[0]] = road_id + 1 # # # if vis_mask[polygon[1],polygon[0]] > 0.5: # # if not cur_min: # # # # # loc_array[road_id,0,0] = np.uint8(polygon[1]) # loc_array[road_id,0,1] = np.uint8(polygon[0]) # cur_min = True # # # cur_last = (polygon[1],polygon[0]) ## # if cur_last[0] != None: ## # loc_array[road_id,1,0] = np.uint8(cur_last[0]) # loc_array[road_id,1,1] = np.uint8(cur_last[1]) # else: # loc_array[road_id,1,0] = 255 # loc_array[road_id,1,1] = 255 # # if not cur_min: # loc_array[road_id,0,0] = 255 # loc_array[road_id,0,1] = 255 # # return mask, loc_array def get_moved_centerlines(nuscenes, centers, sample_data, extents, resolution, vis_mask, beta, already_found): start_point_base = 5000 end_point_base = 10000 # Get the 2D affine transform from bev coords to map coords tfm = get_sensor_transform(nuscenes, sample_data)[[0, 1, 3]][:, [0, 2, 3]] tfm[1,-1] = tfm[1,-1] - beta inv_tfm = np.linalg.inv(tfm) # Create a patch representing the birds-eye-view region in map coordinates map_patch = geometry.box(*extents) map_patch = transform_polygon(map_patch, tfm) # Initialise the map mask x1, z1, x2, z2 = extents mask = np.zeros((int((z2 - z1) / resolution), int((x2 - x1) / resolution)), dtype=np.uint16) # Find all polygons which intersect with the area of interest # selected_roads=[] # found=False loc_array = np.zeros((len(centers),2,2),np.uint8) road_ids = list(np.int64(np.unique(already_found)[1:] - 1)) for road_id in road_ids: # temp_mask = np.zeros((int((z2 - z1) / resolution), int((x2 - x1) / resolution)), # dtype=np.uint16) # per_road_check = False cur_min = False cur_last = (None,None) for p in range(len(centers[road_id])): cur = centers[road_id][p][:2] cur_point = Point(cur) cont = map_patch.contains(cur_point) if cont: # logging.error('road_id ' + str(road_id)) # logging.error('point ' + str(p)) # found=True # break # # Transform into map coordinates polygon = transform_polygon(cur_point, inv_tfm) if len(polygon.coords) > 0: polygon = (polygon.coords[0]- np.array(extents[:2])) / resolution polygon = np.ascontiguousarray(polygon).round().astype(np.int32) if ((polygon[0] >= 0) & (polygon[1] >= 0)): if ((polygon[0] < mask.shape[1]) & (polygon[1] < mask.shape[0])): mask[polygon[1],polygon[0]] = road_id + 1 # if vis_mask[polygon[1],polygon[0]] > 0.5: if not cur_min: # # if mask[polygon[1],polygon[0]] > start_point_base: # # if mask[polygon[1],polygon[0]] > end_point_base: # # rel_id = mask[polygon[1],polygon[0]] - end_point_base - 1 # logging.error('START OF ROAD '+ str(road_id) + ' and END OF '+ str(rel_id)) # # else: # rel_id = mask[polygon[1],polygon[0]] - start_point_base - 1 # # logging.error('START OF ROAD '+ str(road_id) + ' and START OF '+ str(rel_id)) # loc_array[road_id,0,0] = np.uint8(polygon[1]) loc_array[road_id,0,1] = np.uint8(polygon[0]) cur_min = True # cur_last = (polygon[1],polygon[0]) # # # Render the polygon to the mask # logging.error('POLYGON ' + str(polygon.coords[1])) # logging.error('EXTENTS ' + str(np.array(extents[:2]))) # polygon = (polygon - np.array(extents[:2])) / resolution # polygon = np.ascontiguousarray(polygon).round().astype(np.int32) # cv2.fillConvexPoly(mask, polygon, road_id) # render_point(mask, polygon, extents, resolution,road_id) # if found: # break if cur_last[0] != None: # if mask[cur_last[0],cur_last[1]] > 25000: # logging.error('ENDPOITNS COLLIDED IN ROAD '+ str(road_id) + ' and '+ str(np.float32(mask[cur_last[0],cur_last[1]])//10)) # mask[cur_last[0],cur_last[1]] = (road_id + 1)*10 + 1 loc_array[road_id,1,0] = np.uint8(cur_last[0]) loc_array[road_id,1,1] = np.uint8(cur_last[1]) else: loc_array[road_id,1,0] = 255 loc_array[road_id,1,1] = 255 if not cur_min: loc_array[road_id,0,0] = 255 loc_array[road_id,0,1] = 255 return mask, loc_array def zoom_augment_grids(image_shape, intrinsics, cs, beta): image = np.zeros(image_shape) col_ar2 = np.arange(image.shape[1]) row_ar2 = np.arange(image.shape[0]) mesh2_col, mesh2_row = np.meshgrid(col_ar2, row_ar2) write_col = np.copy(mesh2_col) write_row = np.copy(mesh2_row) col_ar1 = np.arange(image.shape[1]) row_ar1 = np.arange(image.shape[0]) mesh1_col, mesh1_row = np.meshgrid(col_ar1, row_ar1) x_center = intrinsics[0,-1] y_center = intrinsics[1,-1] f = intrinsics[0,0] Y = -cs[-1] for m in range(mesh1_row.shape[0]): for n in range(mesh1_row.shape[1]): write_col[m,n] = int((mesh2_col[m,n] - x_center)*f*Y/(f*Y - beta*mesh2_row[m,n] + beta*y_center) + x_center) write_row[m,n] = int(f*Y*(mesh2_row[m,n] - y_center)/(f*Y - beta*mesh2_row[m,n] + beta*y_center) + y_center) total_mask = np.ones_like(write_col) total_mask[write_col < 0] = 0 total_mask[write_col > (image.shape[1]-1)] = 0 total_mask[write_row < 0] = 0 total_mask[write_row > (image.shape[0]-1)] = 0 write_col[write_col < 0] = 0 write_col[write_col > (image.shape[1]-1)] = 0 write_row[write_row < 0] = 0 write_row[write_row > (image.shape[0]-1)] = 0 return write_row, write_col, total_mask
the-stack_0_4414
import ast import contextlib import json import os import re import sys import threading from datetime import timedelta import pytest import retrying from six.moves.BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer from dcos import constants from dcoscli.test.common import (assert_command, assert_lines, exec_command, popen_tty, update_config) from dcoscli.test.marathon import (app, list_apps, list_deployments, show_app, start_app, watch_all_deployments, watch_deployment) _ZERO_INSTANCE_APP_ID = 'zero-instance-app' _ZERO_INSTANCE_APP_INSTANCES = 100 def test_help(): with open('tests/data/marathon/help.txt') as content: assert_command(['dcos', 'marathon', '--help'], stdout=content.read().encode('utf-8')) def test_version(): assert_command(['dcos', 'marathon', '--version'], stdout=b'dcos-marathon version SNAPSHOT\n') def test_info(): assert_command(['dcos', 'marathon', '--info'], stdout=b'Deploy and manage applications to DC/OS\n') def test_about(): returncode, stdout, stderr = exec_command(['dcos', 'marathon', 'about']) assert returncode == 0 assert stderr == b'' result = json.loads(stdout.decode('utf-8')) assert result['name'] == "marathon" @pytest.fixture def env(): r = os.environ.copy() r.update({constants.PATH_ENV: os.environ[constants.PATH_ENV]}) return r def test_empty_list(): list_apps() def test_add_app_through_http(): with _zero_instance_app_through_http(): list_apps('zero-instance-app') def test_add_app_bad_resource(): stderr = (b'Error: can\'t read from resource: bad_resource. Please check that it exists\n') assert_command(['dcos', 'marathon', 'app', 'add', 'bad_resource'], returncode=1, stderr=stderr) def test_remove_app(): with _zero_instance_app(): pass list_apps() def test_add_bad_json_app(): with open('tests/data/marathon/apps/bad.json') as fd: returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'add'], stdin=fd) assert returncode == 1 assert stdout == b'' assert stderr.decode('utf-8').startswith('Error: error loading JSON: ') def test_add_existing_app(): with _zero_instance_app(): app_path = 'tests/data/marathon/apps/zero_instance_sleep_v2.json' with open(app_path) as fd: stderr = b"Error: Application '/zero-instance-app' already exists\n" assert_command(['dcos', 'marathon', 'app', 'add'], returncode=1, stderr=stderr, stdin=fd) def test_show_absolute_app_version(): with _zero_instance_app(): _update_app( 'zero-instance-app', 'tests/data/marathon/apps/update_zero_instance_sleep.json') result = show_app('zero-instance-app') show_app('zero-instance-app', result['version']) def test_show_relative_app_version(): with _zero_instance_app(): _update_app( 'zero-instance-app', 'tests/data/marathon/apps/update_zero_instance_sleep.json') show_app('zero-instance-app', "-1") def test_show_missing_relative_app_version(): app_id = _ZERO_INSTANCE_APP_ID with _zero_instance_app(): _update_app( app_id, 'tests/data/marathon/apps/update_zero_instance_sleep.json') # Marathon persists app versions indefinitely by ID, so pick a large # index here in case the history is long cmd = ['dcos', 'marathon', 'app', 'show', '--app-version=-200', app_id] returncode, stdout, stderr = exec_command(cmd) assert returncode == 1 assert stdout == b'' pattern = ("Error: application 'zero-instance-app' only has " "[1-9][0-9]* version\\(s\\)\n") assert re.fullmatch(pattern, stderr.decode('utf-8'), flags=re.DOTALL) def test_show_missing_absolute_app_version(): with _zero_instance_app(): _update_app( 'zero-instance-app', 'tests/data/marathon/apps/update_zero_instance_sleep.json') returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'show', '--app-version=2000-02-11T20:39:32.972Z', 'zero-instance-app']) assert returncode == 1 assert stdout == b'' assert stderr.decode('utf-8').startswith( "Error: app '/zero-instance-app' does not exist") def test_show_bad_app_version(): with _zero_instance_app(): _update_app( 'zero-instance-app', 'tests/data/marathon/apps/update_zero_instance_sleep.json') returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'show', '--app-version=20:39:32.972Z', 'zero-instance-app']) assert returncode == 1 assert stdout == b'' assert stderr.startswith(b'Error: invalid timestamp provided') def test_show_bad_relative_app_version(): with _zero_instance_app(): _update_app( 'zero-instance-app', 'tests/data/marathon/apps/update_zero_instance_sleep.json') assert_command( ['dcos', 'marathon', 'app', 'show', '--app-version=2', 'zero-instance-app'], returncode=1, stderr=b"Error: relative versions must be negative: 2\n") def test_start_missing_app(): assert_command( ['dcos', 'marathon', 'app', 'start', 'missing-id'], returncode=1, stderr=b"Error: app '/missing-id' does not exist\n") def test_start_already_started_app(): with _zero_instance_app(): start_app('zero-instance-app') stderr = (b"Error: application 'zero-instance-app' already " b"started: 1 instances\n") assert_command( ['dcos', 'marathon', 'app', 'start', 'zero-instance-app'], returncode=1, stderr=stderr) def test_stop_missing_app(): assert_command(['dcos', 'marathon', 'app', 'stop', 'missing-id'], returncode=1, stderr=b"Error: app '/missing-id' does not exist\n") def test_stop_app(): with _zero_instance_app(): start_app('zero-instance-app', 3) watch_all_deployments() returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'stop', 'zero-instance-app']) assert returncode == 0 assert stdout.decode().startswith('Created deployment ') assert stderr == b'' def test_stop_already_stopped_app(): with _zero_instance_app(): stderr = (b"Error: app '/zero-instance-app' already " b"stopped: 0 instances\n") assert_command( ['dcos', 'marathon', 'app', 'stop', 'zero-instance-app'], returncode=1, stderr=stderr) def test_update_missing_app(): assert_command(['dcos', 'marathon', 'app', 'update', 'missing-id'], stderr=b"Error: App '/missing-id' does not exist\n", returncode=1) def test_update_bad_type(): with _zero_instance_app(): returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'update', 'zero-instance-app', 'cpus="a string"']) stderr_end = b"""{"message":"Invalid JSON","details":[{"path":"/cpus","errors":["error.expected.jsnumber"]}]}""" # noqa: E501 assert returncode == 1 assert stderr_end in stderr assert stdout == b'' def test_update_invalid_request(): returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'update', '{', 'instances']) assert returncode == 1 assert stdout == b'' stderr = stderr.decode() # TODO (tamar): this becomes 'Error: App '/{' does not exist\n"' # in Marathon 0.11.0 assert stderr.startswith('Error on request') assert stderr.endswith('HTTP 400: Bad Request\n') def test_app_add_invalid_request(): path = os.path.join( 'tests', 'data', 'marathon', 'apps', 'app_add_400.json') returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'add', path]) stderr_end = b"Invalid JSON (path: '/container/docker/network' errors: error.unknown.enum.literal)" # noqa: E501 assert returncode == 1 assert stderr_end in stderr assert stdout == b'' def test_update_app(): with _zero_instance_app(): returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'update', 'zero-instance-app', 'cpus=1', 'mem=20', "cmd='sleep 100'"]) assert returncode == 0 assert stdout.decode().startswith('Created deployment ') assert stderr == b'' def test_update_app_json(): with _zero_instance_app(): returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'update', 'zero-instance-app', "env='{\"key\":\"/value\"}'"]) assert returncode == 0 assert stdout.decode().startswith('Created deployment ') assert stderr == b'' def test_update_app_from_stdin(): with _zero_instance_app(): _update_app( 'zero-instance-app', 'tests/data/marathon/apps/update_zero_instance_sleep.json') def test_restarting_stopped_app(): with _zero_instance_app(): stderr = (b"Error: unable to perform rolling restart of application '" b"/zero-instance-app' because it has no running tasks\n") assert_command( ['dcos', 'marathon', 'app', 'restart', 'zero-instance-app'], returncode=1, stderr=stderr) def test_restarting_missing_app(): assert_command(['dcos', 'marathon', 'app', 'restart', 'missing-id'], returncode=1, stderr=b"Error: app '/missing-id' does not exist\n") def test_killing_app(): with _zero_instance_app(): start_app('zero-instance-app', 3) watch_all_deployments() returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'kill', 'zero-instance-app']) assert returncode == 0 assert stderr == b'' out = stdout.decode() assert out.startswith('Killed tasks: ') out = out.strip('Killed tasks: ') dictout = ast.literal_eval(out) assert len(dictout) == 3 def test_killing_scaling_app(): with _zero_instance_app(): start_app('zero-instance-app', 3) watch_all_deployments() _list_tasks(3) command = ['dcos', 'marathon', 'app', 'kill', '--scale', 'zero-instance-app'] returncode, stdout, stderr = exec_command(command) assert returncode == 0 assert stdout.decode().startswith('Started deployment: ') assert stdout.decode().find('version') > -1 assert stdout.decode().find('deploymentId') > -1 assert stderr == b'' watch_all_deployments() _list_tasks(0) def test_killing_with_host_app(): with _zero_instance_app(): start_app('zero-instance-app', 3) watch_all_deployments() existing_tasks = _list_tasks(3, 'zero-instance-app') task_hosts = set([task['host'] for task in existing_tasks]) if len(task_hosts) <= 1: pytest.skip('test needs 2 or more agents to succeed, ' 'only {} agents available'.format(len(task_hosts))) assert len(task_hosts) > 1 kill_host = list(task_hosts)[0] expected_to_be_killed = set([task['id'] for task in existing_tasks if task['host'] == kill_host]) not_to_be_killed = set([task['id'] for task in existing_tasks if task['host'] != kill_host]) assert len(not_to_be_killed) > 0 assert len(expected_to_be_killed) > 0 command = ['dcos', 'marathon', 'app', 'kill', '--host', kill_host, 'zero-instance-app'] returncode, stdout, stderr = exec_command(command) assert stdout.decode().startswith('Killed tasks: ') assert stderr == b'' new_tasks = set([task['id'] for task in _list_tasks()]) assert not_to_be_killed.intersection(new_tasks) == not_to_be_killed assert len(expected_to_be_killed.intersection(new_tasks)) == 0 def test_kill_stopped_app(): with _zero_instance_app(): returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'kill', 'zero-instance-app']) assert returncode == 0 assert stdout.decode().startswith('Killed tasks: []') def test_kill_missing_app(): returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'kill', 'app']) assert returncode == 1 assert stdout.decode() == '' stderr_expected = "Error: app '/app' does not exist" assert stderr.decode().strip() == stderr_expected def test_list_version_missing_app(): assert_command( ['dcos', 'marathon', 'app', 'version', 'list', 'missing-id'], returncode=1, stderr=b"Error: Marathon API error: App '/missing-id' does not exist\n") def test_list_version_negative_max_count(): assert_command(['dcos', 'marathon', 'app', 'version', 'list', 'missing-id', '--max-count=-1'], returncode=1, stderr=b'Error: maximum count must be a positive number\n') def test_list_version_app(): app_id = _ZERO_INSTANCE_APP_ID with _zero_instance_app(): _list_versions(app_id, 1) _update_app( app_id, 'tests/data/marathon/apps/update_zero_instance_sleep.json') _list_versions(app_id, 2) def test_list_version_max_count(): app_id = _ZERO_INSTANCE_APP_ID with _zero_instance_app(): _update_app( app_id, 'tests/data/marathon/apps/update_zero_instance_sleep.json') _list_versions(app_id, 1, 1) _list_versions(app_id, 2, 2) _list_versions(app_id, 2, 3) def test_list_empty_deployment(): list_deployments(0) def test_list_deployment(): with _zero_instance_app(): start_app('zero-instance-app', _ZERO_INSTANCE_APP_INSTANCES) list_deployments(1) def test_list_deployment_table(): """Simple sanity check for listing deployments with a table output. The more specific testing is done in unit tests. """ with _zero_instance_app(): start_app('zero-instance-app', _ZERO_INSTANCE_APP_INSTANCES) assert_lines(['dcos', 'marathon', 'deployment', 'list'], 2) def test_list_deployment_missing_app(): with _zero_instance_app(): start_app('zero-instance-app') list_deployments(0, 'missing-id') def test_list_deployment_app(): with _zero_instance_app(): start_app('zero-instance-app', _ZERO_INSTANCE_APP_INSTANCES) list_deployments(1, 'zero-instance-app') def test_rollback_missing_deployment(): assert_command( ['dcos', 'marathon', 'deployment', 'rollback', 'missing-deployment'], returncode=1, stderr=b'Error: DeploymentPlan missing-deployment does not exist\n') def test_rollback_deployment(): with _zero_instance_app(): start_app('zero-instance-app', _ZERO_INSTANCE_APP_INSTANCES) result = list_deployments(1, 'zero-instance-app') returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'deployment', 'rollback', result[0]['id']]) result = json.loads(stdout.decode('utf-8')) assert returncode == 0 assert 'deploymentId' in result assert 'version' in result assert stderr == b'' watch_all_deployments() list_deployments(0) def test_stop_deployment(): with _zero_instance_app(): start_app('zero-instance-app', _ZERO_INSTANCE_APP_INSTANCES) result = list_deployments(1, 'zero-instance-app') assert_command( ['dcos', 'marathon', 'deployment', 'stop', result[0]['id']]) list_deployments(0) def test_watching_missing_deployment(): watch_deployment('missing-deployment', 1) def test_watching_deployment(): with _zero_instance_app(): start_app('zero-instance-app', _ZERO_INSTANCE_APP_INSTANCES) result = list_deployments(1, 'zero-instance-app') watch_deployment(result[0]['id'], 60) assert_command( ['dcos', 'marathon', 'deployment', 'stop', result[0]['id']]) list_deployments(0, 'zero-instance-app') def test_list_empty_task(): _list_tasks(0) def test_list_empty_task_not_running_app(): with _zero_instance_app(): _list_tasks(0) def test_list_tasks(): with _zero_instance_app(): start_app('zero-instance-app', 3) watch_all_deployments() _list_tasks(3) def test_list_tasks_table(): with _zero_instance_app(): start_app('zero-instance-app', 3) watch_all_deployments() assert_lines(['dcos', 'marathon', 'task', 'list'], 4) def test_list_app_tasks(): with _zero_instance_app(): start_app('zero-instance-app', 3) watch_all_deployments() _list_tasks(3, 'zero-instance-app') def test_list_missing_app_tasks(): with _zero_instance_app(): start_app('zero-instance-app', 3) watch_all_deployments() _list_tasks(0, 'missing-id') def test_show_missing_task(): returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'task', 'show', 'missing-id']) stderr = stderr.decode('utf-8') assert returncode == 1 assert stdout == b'' assert stderr.startswith("Task '") assert stderr.endswith("' does not exist\n") def test_show_task(): with _zero_instance_app(): start_app('zero-instance-app', 3) watch_all_deployments() result = _list_tasks(3, 'zero-instance-app') returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'task', 'show', result[0]['id']]) result = json.loads(stdout.decode('utf-8')) assert returncode == 0 assert result['appId'] == '/zero-instance-app' assert stderr == b'' def test_stop_task(): with _zero_instance_app(): start_app('zero-instance-app', 1) watch_all_deployments() task_list = _list_tasks(1, 'zero-instance-app') task_id = task_list[0]['id'] _stop_task(task_id) def test_stop_task_wipe(): with _zero_instance_app(): start_app('zero-instance-app', 1) watch_all_deployments() task_list = _list_tasks(1, 'zero-instance-app') task_id = task_list[0]['id'] _stop_task(task_id, '--wipe') def test_kill_one_task(): with _zero_instance_app(): start_app('zero-instance-app', 1) watch_all_deployments() task_list = _list_tasks(1, 'zero-instance-app') task_id = [task_list[0]['id']] _kill_task(task_id) def test_kill_two_tasks(): with _zero_instance_app(): start_app('zero-instance-app', 2) watch_all_deployments() task_list = _list_tasks(2, 'zero-instance-app') task_ids = [task['id'] for task in task_list] _kill_task(task_ids) def test_kill_and_scale_task(): with _zero_instance_app(): start_app('zero-instance-app', 2) watch_all_deployments() task_list = _list_tasks(2, 'zero-instance-app') task_id = [task_list[0]['id']] _kill_task(task_id, scale=True) task_list = _list_tasks(1, 'zero-instance-app') def test_kill_unknown_task(): with _zero_instance_app(): start_app('zero-instance-app') watch_all_deployments() task_id = ['unknown-task-id'] _kill_task(task_id, expect_success=False) def test_kill_task_wipe(): with _zero_instance_app(): start_app('zero-instance-app', 1) watch_all_deployments() task_list = _list_tasks(1, 'zero-instance-app') task_id = [task_list[0]['id']] _kill_task(task_id, wipe=True) def test_stop_unknown_task(): with _zero_instance_app(): start_app('zero-instance-app') watch_all_deployments() task_id = 'unknown-task-id' _stop_task(task_id, expect_success=False) def test_stop_unknown_task_wipe(): with _zero_instance_app(): start_app('zero-instance-app') watch_all_deployments() task_id = 'unknown-task-id' _stop_task(task_id, '--wipe', expect_success=False) def test_bad_configuration(env): with update_config('marathon.url', 'http://localhost:88888', env): returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'about'], env=env) assert returncode == 1 def test_app_locked_error(): with app('tests/data/marathon/apps/sleep_many_instances.json', '/sleep-many-instances', wait=False): stderr = (b'Error: changes blocked: deployment ' b'already in progress for app\n') assert_command( ['dcos', 'marathon', 'app', 'stop', 'sleep-many-instances'], returncode=1, stderr=stderr) def test_ping(): assert_command(['dcos', 'marathon', 'ping'], stdout=b'Marathon ping response[1x]: "pong"\n') def test_leader_show(): returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'leader', 'show', '--json']) result = json.loads(stdout.decode('utf-8')) assert returncode == 0 assert stderr == b'' assert result['host'] == "marathon.mesos." assert 'ip' in result def ignore_exception(exc): return isinstance(exc, Exception) @pytest.fixture def marathon_up(): yield check_marathon_up() @retrying.retry(stop_max_delay=timedelta(minutes=5).total_seconds() * 1000, retry_on_exception=ignore_exception, wait_fixed=1000) def check_marathon_up(): # testing to see if marathon is up and can talk through the gateway # ignore the exception until we have a successful reponse. returncode, _, _ = exec_command(['dcos', 'marathon', 'app', 'list']) assert returncode == 0 @retrying.retry(stop_max_delay=timedelta(minutes=5).total_seconds() * 1000, retry_on_exception=ignore_exception) def wait_marathon_down(): returncode, _, _ = exec_command(['dcos', 'marathon', 'app', 'list']) assert returncode != 0 def test_leader_delete(marathon_up): assert_command(['dcos', 'marathon', 'leader', 'delete'], stdout=b'Leadership abdicated\n') # There might be a slight delay until marathon shows itself as down, # so marathon_up() might succeed directly and the next tests would # run with an unhealthy marathon. Explicitly wait for marathon to # go down before waiting for it to become healthy again. wait_marathon_down() check_marathon_up() def _update_app(app_id, file_path): with open(file_path) as fd: returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'update', app_id], stdin=fd) assert returncode == 0 assert stdout.decode().startswith('Created deployment ') assert stderr == b'' def _list_versions(app_id, expected_min_count, max_count=None): cmd = ['dcos', 'marathon', 'app', 'version', 'list', app_id] if max_count is not None: cmd.append('--max-count={}'.format(max_count)) returncode, stdout, stderr = exec_command(cmd) result = json.loads(stdout.decode('utf-8')) assert returncode == 0 assert isinstance(result, list) assert stderr == b'' # Marathon persists app versions indefinitely by ID, so there may be extras assert len(result) >= expected_min_count if max_count is not None: assert len(result) <= max_count def _list_tasks(expected_count=None, app_id=None): cmd = ['dcos', 'marathon', 'task', 'list', '--json'] if app_id is not None: cmd.append(app_id) returncode, stdout, stderr = exec_command(cmd) result = json.loads(stdout.decode('utf-8')) assert returncode == 0 if expected_count: assert len(result) == expected_count assert stderr == b'' return result def _stop_task(task_id, wipe=None, expect_success=True): cmd = ['dcos', 'marathon', 'task', 'stop', task_id] if wipe is not None: cmd.append('--wipe') returncode, stdout, stderr = exec_command(cmd) if expect_success: assert returncode == 0 assert stderr == b'' result = json.loads(stdout.decode('utf-8')) assert result['id'] == task_id else: assert returncode == 1 def _kill_task(task_ids, scale=None, wipe=None, expect_success=True): cmd = ['dcos', 'marathon', 'task', 'kill', '--json'] + task_ids if scale: cmd.append('--scale') if wipe: cmd.append('--wipe') returncode, stdout, stderr = exec_command(cmd) if expect_success: assert returncode == 0 assert stderr == b'' result = json.loads(stdout.decode('utf-8')) if scale: assert 'deploymentId' in result else: assert sorted( [task['id'] for task in result['tasks']]) == sorted(task_ids) else: assert returncode == 1 @contextlib.contextmanager def _zero_instance_app(): with app('tests/data/marathon/apps/zero_instance_sleep.json', 'zero-instance-app'): yield @contextlib.contextmanager def _zero_instance_app_through_http(): class JSONRequestHandler (BaseHTTPRequestHandler): def do_GET(self): # noqa: N802 self.send_response(200) self.send_header("Content-type", "application/json") self.end_headers() self.wfile.write(open( 'tests/data/marathon/apps/zero_instance_sleep.json', 'rb').read()) host = 'localhost' port = 12345 server = HTTPServer((host, port), JSONRequestHandler) thread = threading.Thread(target=server.serve_forever) thread.setDaemon(True) thread.start() with app('http://{}:{}'.format(host, port), 'zero-instance-app'): try: yield finally: server.shutdown()
the-stack_0_4415
import unittest, traceback from subprocess import TimeoutExpired class TestcaseError(BaseException): pass class TestResult(unittest.TextTestResult): def __init__(self, stream=None, descriptions=None, verbosity=0): super(TestResult, self).__init__(stream, descriptions, verbosity) self.success_count = 0 self.failures_count = 0 self.errors_count = 0 self.result = [] def addError(self, test, error): self.errors_count += 1 self.saveTestCaseResult(test, "errored", error) return super(TestResult, self).addError(test, error) def addFailure(self, test, error): self.failures_count += 1 self.saveTestCaseResult(test, "failed", error) return super(TestResult, self).addFailure(test, error) def addSuccess(self, test): self.success_count += 1 self.saveTestCaseResult(test, "passed") return super(TestResult, self).addSuccess(test) def saveTestCaseResult(self, test, status, error=None): result = { "uid": test.testcase["uid"], "stdin": repr(test.testcase["stdin"]), "stdout": repr(test.stdout), "stderr": test.response.stderr, "generated_stdout": repr(test.response.stdout), "status": status, } if error: error = "".join(traceback.format_exception_only(error[0], error[1])).strip() result["error"] = error self.result.append(result) class TestCase(unittest.TestCase): def __init__(self, module, testcase, timeout=None): unittest.TestCase.__init__(self) self.module = module self.testcase = testcase self.timeout = timeout def runTest(self): self.stdout = str(self.testcase["expected_stdout"]).strip() self.response = self.module.runTest( stdin=self.testcase["stdin"], timeout=self.timeout ) if self.response.returncode: raise TestcaseError(self.response.stderr) self.generated_stdout = self.response.stdout.strip() if self.generated_stdout != self.stdout: raise AssertionError( "{} != {}".format(repr(self.generated_stdout), repr(self.stdout)) ) class Judger: def __init__(self): self.testresult = TestResult() self.testsuite = unittest.TestSuite() def _create_testsuite(self, module, testcases, timeout): for testcase in testcases: obj = TestCase(module=module, testcase=testcase, timeout=timeout) self.testsuite.addTest(obj) def judge(self, module, sourcefile, testcases, timeout=10): self.result = {"tests": [], "compiler": {}, "summary": {}} if hasattr(module, "compile"): compiler = module.compile(sourcefile, timeout=timeout) self.result["compiler"] = { "returncode": compiler.returncode, "error": compiler.stderr, } if compiler.returncode: self.result["summary"]["status"] = "Compiler Error" return self._create_testsuite(module=module, testcases=testcases, timeout=timeout) self.testsuite.run(self.testresult) status = ( "Failed" if (self.testresult.failures_count or self.testresult.errors_count) else "Passed" ) self.result.update( { "tests": self.testresult.result, "summary": { "success": self.testresult.success_count, "failures": self.testresult.failures_count, "errors": self.testresult.errors_count, "status": status, }, } )
the-stack_0_4416
from __future__ import print_function, division import scipy import torch.nn as nn import torch.nn.functional as F import torch import functools import datetime import matplotlib.pyplot as plt import sys from data_loader import InMemoryDataLoader import numpy as np import pandas as pd import os import random import argparse import os import time import torch import torchvision import tqdm import warnings import argparse from sklearn.metrics import accuracy_score from models_gan_pytorch_2_bottlenec5x5 import * from utils import * # reproducibility torch.manual_seed(777) np.random.seed(777) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class C_CC_GAN(): def __init__(self, root_data_path, train_size=-1, img_rows = 112,img_cols = 112,channels = 3, AU_num=35, lambda_cl=1,lambda_cyc=1, loss_type='loss_nonsaturating', adam_lr=0.0002,adam_beta_1=0.5,adam_beta_2=0.999): # paths self.root_data_path = root_data_path # Input shape self.img_rows = img_rows self.img_cols = img_cols self.channels = channels self.img_shape = (self.channels,self.img_rows, self.img_cols) self.AU_num = AU_num # Loss weights self.lambda_cl = lambda_cl self.lambda_cyc = lambda_cyc # loss type self.loss_type = loss_type # optmizer params self.adam_lr = adam_lr self.adam_beta_1 = adam_beta_1 self.adam_beta_2 = adam_beta_2 # Configure data loader self.data_loader = InMemoryDataLoader(dataset_name='EmotioNet', img_res=(self.img_rows, self.img_cols,self.channels), root_data_path=self.root_data_path, normalize=True, csv_columns = ['frame', "AU01_c" , "AU02_c" , "AU04_c", "AU05_c", "AU06_c", "AU07_c", "AU09_c", "AU10_c", "AU12_c", "AU14_c", "AU15_c", "AU17_c" , "AU20_c" , "AU23_c", "AU25_c", "AU26_c" , "AU45_c"], max_images=train_size) #optimizer = Adam(self.adam_lr, self.adam_beta_1, self.adam_beta_2) # Build and compile the discriminators self.d = Discriminator(img_shape=self.img_shape,df=64,AU_num=self.AU_num).to(device) #self.d.init_weights() print("******** Discriminator/Classifier ********") print(self.d) # Build the generators self.g = Generator(img_shape=(3,112,112),gf=64,AU_num=self.AU_num).to(device) #xself.g.init_weights() print("******** Generator ********") print(self.g) ## self.g_optimizer = torch.optim.Adam(self.g.parameters(), self.adam_lr, betas=(self.adam_beta_1, self.adam_beta_2)) self.d_optimizer = torch.optim.Adam(self.d.parameters(), self.adam_lr, betas=(self.adam_beta_1, self.adam_beta_2)) def train(self, epochs, batch_size=1, sample_interval=50 , d_g_ratio=5): start_time = datetime.datetime.now() # logs epoch_history, batch_i_history, = [] , [] d_gan_loss_history, d_au_loss_history = [], [], g_gan_loss_history, g_au_loss_history = [] , [] reconstr_history = [] ## self.g.train() self.d.train() for epoch in range(epochs): for batch_i, (labels0 , imgs) in enumerate(self.data_loader.load_batch(batch_size=batch_size)): imgs = np.transpose(imgs,(0,3,1,2)) dtype = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor labels0, imgs = torch.tensor(labels0).to(device).type(dtype), torch.tensor(imgs).to(device).type(dtype) if self.loss_type == 'loss_nonsaturating': d_loss , d_loss_dict , g_loss, g_loss_dict = loss_nonsaturating(self.g, self.d, imgs, labels0, self.lambda_cl, self.lambda_cyc, self.data_loader, device, train_generator=(batch_i % d_g_ratio == 0)) ## opt. discr. self.d_optimizer.zero_grad() d_loss.backward(retain_graph=True) self.d_optimizer.step() ## opt. gen. if g_loss is not None: self.g_optimizer.zero_grad() g_loss.backward() self.g_optimizer.step() elif self.loss_type == 'loss_wasserstein_gp': # train critic d_loss_dict = train_D_wasserstein_gp(self.g, self.d, imgs, labels0, self.lambda_cl, self.lambda_cyc, self.data_loader, device,self.d_optimizer) # train generator if batch_i % d_g_ratio == 0: g_loss_dict = train_G_wasserstein_gp(self.g, self.d, imgs, labels0, self.lambda_cl, self.lambda_cyc, self.data_loader, device,self.g_optimizer) else: raise Exception("Unknown loss type::"+str(self.loss_type)) torch.cuda.empty_cache() elapsed_time = datetime.datetime.now() - start_time try: if batch_i % d_g_ratio == 0: print ("[Epoch %d/%d] [Batch %d/%d] [D_gan loss: %f, D_AU_loss: %f] [G_gan loss: %05f, G_AU_loss: %05f, recon: %05f] time: %s " \ % ( epoch, epochs, batch_i, self.data_loader.n_batches, d_loss_dict['d_adv_loss'], d_loss_dict['d_cl_loss'], g_loss_dict['g_adv_loss'],g_loss_dict['g_cl_loss'], g_loss_dict['rec_loss'], elapsed_time)) else: print ("[Epoch %d/%d] [Batch %d/%d] [D_gan loss: %f, D_AU_loss: %f] time: %s " \ % ( epoch, epochs, batch_i, self.data_loader.n_batches, d_loss_dict['d_adv_loss'], d_loss_dict['d_cl_loss'], elapsed_time)) except: print("*** problem to log ***") # log if batch_i % d_g_ratio == 0: epoch_history.append(epoch) batch_i_history.append(batch_i) d_gan_loss_history.append(d_loss_dict['d_adv_loss'].cpu().detach().numpy()) d_au_loss_history.append(d_loss_dict['d_cl_loss'].cpu().detach().numpy()) g_gan_loss_history.append(g_loss_dict['g_adv_loss'].cpu().detach().numpy()) g_au_loss_history.append(g_loss_dict['g_cl_loss'].cpu().detach().numpy()) reconstr_history.append(g_loss_dict['rec_loss'].cpu().detach().numpy()) # If at save interval => save generated image samples if batch_i % sample_interval == 0: with torch.no_grad(): self.g.eval() self.sample_images(epoch, batch_i) #self.sample_images(epoch, batch_i,use_leo=True) self.g.train() train_history = pd.DataFrame({ 'epoch': epoch_history, 'batch': batch_i_history, 'd_gan_loss': d_gan_loss_history, 'd_AU_loss': d_au_loss_history, 'g_gan_loss': g_gan_loss_history, 'g_AU_loss': g_au_loss_history, 'reconstr_loss': reconstr_history }) train_history.to_csv(str(sys.argv[0]).split('.')[0]+'_train_log.csv',index=False) def sample_images(self, epoch, batch_i): for labels0 , imgs in self.data_loader.load_batch(batch_size=1): ## disc imgs_d = np.transpose(imgs,(0,3,1,2)) dtype = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor labels0_d, imgs_d = torch.tensor(labels0).to(device).type(dtype), torch.tensor(imgs_d).to(device).type(dtype) #gan_pred_prob,au_prob = self.d(imgs_d) #des_au_1 = torch.tensor(self.data_loader.gen_rand_cond(batch_size=1)).to(device).type(dtype) des_au_1 = torch.tensor(self.data_loader.gen_rand_cond_for_binary_au(labels0)).to(device).type(dtype)[0] # Translate images zs = self.g.encode(imgs_d) # Reconstruct image reconstr_ = self.g.translate_decode(zs,labels0_d) # Transl. image transl_ = self.g.translate_decode(zs,des_au_1) ## save reconstraction if not os.path.exists('log_images'): os.makedirs('log_images') #plot reconstr_ reconstr_ = reconstr_.cpu() reconstr_ = np.transpose(reconstr_.detach().numpy(),(0,2,3,1)) with warnings.catch_warnings(): warnings.simplefilter("ignore") plot_grid(np.concatenate([imgs, reconstr_]), row_titles=None, col_titles=["Orig.[ep:%d]" % (epoch),'Reconstr.'], nrow = 1,ncol = 2, save_filename="log_images/reconstr_%d_%d.png" % (epoch, batch_i)) #plot transl_ transl_ = transl_.cpu() transl_ = np.transpose(transl_.detach().numpy(),(0,2,3,1)) with warnings.catch_warnings(): warnings.simplefilter("ignore") plot_grid(np.concatenate([imgs, transl_]), row_titles=None, col_titles=["Orig.[ep:%d]" % (epoch),'Transl.'], nrow = 1,ncol = 2, save_filename="log_images/translat_%d_%d.png" % (epoch, batch_i)) #### n_row = 4 # alpha n_col = 9 # AUs col_names = ['AU1_r','AU2_r','AU4_r','AU5_r','AU10_r', 'AU12_r','AU15_r','AU25_r','AU45_r'] col_idx = [0,1,2,3,7,8,10,14,16] assert len(col_names) == len(col_idx) alphas = [0,.33,.66,1] au_grid = np.repeat(labels0,n_row*n_col,axis=0) img_tens = np.repeat(imgs,n_row*n_col,axis=0) n = 0 for r in range(n_row): for c in range(n_col): au_n = au_grid[[n],:] au_n[0,col_idx[c]] = alphas[r] au_n = torch.tensor(au_n).to(device).type(dtype) # act_au = self.g.translate_decode(zs,au_n) act_au = act_au.cpu() act_au = np.transpose(act_au.detach().numpy(),(0,2,3,1)) act_au = act_au img_tens[n,:] = act_au n += 1 #plot col_names_plot = ['AU1','AU2','AU4','AU5','AU10','AU12','AU15','AU25','AU45'] with warnings.catch_warnings(): warnings.simplefilter("ignore") plot_grid(img_tens, row_titles=alphas, col_titles=col_names_plot, nrow = n_row,ncol = n_col, save_filename="log_images/au_edition_%d_%d.png" % (epoch, batch_i)) break if __name__ == '__main__': parser = argparse.ArgumentParser(description='Train') parser.add_argument('-lambda_cl', help='loss weight for cond. regress. loss', dest='lambda_cl', type=float, default=100) parser.add_argument('-lambda_cyc', help='reconstr. loss weight', dest='lambda_cyc', type=float, default=10) parser.add_argument('-loss_type', help='loss type [loss_nonsaturating] ', dest='loss_type', type=str, default='loss_wasserstein_gp') parser.add_argument('-d_g_ratio', help='# train iterations of critic per each train iteration of generator', dest='d_g_ratio', type=int, default=1) parser.add_argument('-adam_lr', help='Adam l.r.', dest='adam_lr', type=float, default=0.0002) parser.add_argument('-adam_beta_1', help='Adam beta-1', dest='adam_beta_1', type=float, default=0.5) parser.add_argument('-adam_beta_2', help='Adam beta-2', dest='adam_beta_2', type=float, default=0.999) parser.add_argument('-epochs', help='N. epochs', dest='epochs', type=int, default=170) parser.add_argument('-batch_size', help='batch size', dest='batch_size', type=int, default=32) parser.add_argument('-sample_interval', help='sample interval', dest='sample_interval', type=int, default=1000) parser.add_argument('-root_data_path', help='base file path', dest='root_data_path', type=str, default='datasets') parser.add_argument('-train_size', help='train size [-1 for all train data]', dest='train_size', type=int, default=-1) args = parser.parse_args() # print parameters print('-' * 30) print('Parameters .') print('-' * 30) for key, value in vars(args).items(): print('{:<20} := {}'.format(key, value)) print('-' * 30) # GAN root_data_path = args.root_data_path gan = C_CC_GAN( root_data_path = root_data_path, train_size = args.train_size, AU_num=17, lambda_cl=args.lambda_cl,lambda_cyc=args.lambda_cyc, loss_type=args.loss_type, adam_lr=args.adam_lr,adam_beta_1=args.adam_beta_1,adam_beta_2=args.adam_beta_2) gan.train(epochs=args.epochs, batch_size=args.batch_size, sample_interval=args.sample_interval, d_g_ratio=args.d_g_ratio)
the-stack_0_4418
# ---------------------------------------------------------------------------- # Copyright (c) 2020, Franck Lejzerowicz. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import re, ast from setuptools import find_packages, setup classes = """ License :: OSI Approved :: BSD License Topic :: Scientific/Engineering Topic :: Scientific/Engineering :: Bio-Informatics Programming Language :: Python :: 3.5 Programming Language :: Python :: 3 :: Only Operating System :: Unix Operating System :: POSIX Operating System :: MacOS :: MacOS X """ classifiers = [s.strip() for s in classes.split('\n') if s] description = ( "" ) with open("README.md") as f: long_description = f.read() _version_re = re.compile(r"__version__\s+=\s+(.*)") with open("Xmmvec/__init__.py", "rb") as f: hit = _version_re.search(f.read().decode("utf-8")).group(1) version = str(ast.literal_eval(hit)) standalone = ['Xmmvec=Xmmvec.scripts._standalone_xmmvec:standalone_xmmvec'] setup( name="Xmmvec", version=version, license="BSD", description=description, long_description=long_description, long_description_content_type="text/markdown", author="Franck Lejzerowicz", author_email="[email protected]", maintainer="Franck Lejzerowicz", maintainer_email="[email protected]", url="https://github.com/FranckLejzerowicz/Xmmvec", packages=find_packages(), install_requires=[ "click >= 6.7", 'pandas >= 0.19.0', 'numpy >= 1.12.1', 'altair >= 4.1.0', ], classifiers=classifiers, entry_points={'console_scripts': standalone}, package_data={}, python_requires='>=3.5', )
the-stack_0_4419
from typing import Dict from dbnd import parameter from dbnd._core.settings import EngineConfig from dbnd_docker.docker_ctrl import DockerRunCtrl class AwsBatchConfig(EngineConfig): """Amazon Web Services Batch""" _conf__task_family = "aws_batch" job_definition = parameter(description="the job definition name on AWS Batch").none[ str ] overrides = parameter( empty_default=True, description="the same parameter that boto3 will receive on containerOverrides (templated)" " http://boto3.readthedocs.io/en/latest/reference/services/batch.html#submit_job", )[Dict[str, str]] job_queue = parameter(description="the queue name on AWS Batch")[str] max_retries = parameter( description="exponential backoff retries while waiter is not merged, 4200 = 48 hours" )[int] def get_docker_ctrl(self, task_run): return AWSBatchCtrl(task_run=task_run) class AWSBatchCtrl(DockerRunCtrl): """ Execute a job on AWS Batch Service """ def __init__(self, **kwargs): super(AWSBatchCtrl, self).__init__(**kwargs) self.runner_op = None @property def aws_batch_config(self): # type: (AWSBatchCtrl) -> AwsBatchConfig return self.task.docker_engine def docker_run(self): dc = self.aws_batch_config if dc.job_definition is None: raise Exception("Please define aws batch definition first") from airflow.contrib.operators.awsbatch_operator import AWSBatchOperator cloud_config = self.task.task_env self.runner_op = AWSBatchOperator( task_id=self.task_id, job_name=self.job.job_id, # per task settings job_definition=dc.job_definition, overrides=dc.overrides, # more global job_queue=dc.job_queue, max_retries=dc.max_retries, aws_conn_id=cloud_config.conn_id, region_name=cloud_config.region_name, ) self.runner_op.execute(context=None) def on_kill(self): if self.runner_op is not None: self.runner_op.on_kill()
the-stack_0_4420
import os import sys import numpy as np import importlib from dataclasses import dataclass from loguru import logger from tqdm import tqdm import psutil __all__ = [ 'sanitize_filename', 'get_tqdm', 'show_docstring', 'Results', ] def _is_ipython_notebook(): # pragma: no cover try: shell = get_ipython().__class__.__name__ if shell == 'ZMQInteractiveShell': return True # Jupyter notebook or qtconsole if shell == 'TerminalInteractiveShell': return False # Terminal running IPython return False # Other type (?) except NameError: return False # Probably standard Python interpreter def config_logger(fmt, loglevel): # pragma: no cover r""" Configures loguru logger with the given format and log level. Parameters ---------- fmt : str loguru-compatible format used to format logger messages. loglevel : str Determines what messages to get printed in console. Options are: "TRACE", "DEBUG", "INFO", "SUCCESS", "WARNING", "ERROR", "CRITICAL" Returns ------- None. """ logger.remove() logger.add(lambda msg: tqdm.write(msg, end=""), level=loglevel, format=fmt, colorize=True) @dataclass class Settings: # pragma: no cover r""" A dataclass for use at the module level to store settings. This class is defined as a Singleton so now matter how or where it gets instantiated the same object is returned, containing all existing settings. Parameters ---------- notebook : boolean Is automatically determined upon initialization of PoreSpy, and is ``True`` if running within a Jupyter notebook and ``False`` otherwise. This is used by the ``porespy.tools.get_tqdm`` function to determine whether a standard or a notebook version of the progress bar should be used. tqdm : dict This dictionary is passed directly to the the ``tqdm`` function throughout PoreSpy (``for i in tqdm(range(N), **settings.tqdm)``). To see a list of available options visit the tqdm website. Probably the most important is ``'disable'`` which when set to ``True`` will silence the progress bars. It's also possible to adjust the formatting such as ``'colour'`` and ``'ncols'``, which controls width. logger_fmt : str luguru-compatible format used to format the logger messages. loglevel : str, or int Determines what messages to get printed in console. Options are: "TRACE" (5), "DEBUG" (10), "INFO" (20), "SUCCESS" (25), "WARNING" (30), "ERROR" (40), "CRITICAL" (50) """ __instance__ = None # Might need to add 'file': sys.stdout to tqdm dict tqdm = {'disable': False, 'colour': None, 'ncols': None, 'leave': False, 'file': sys.stdout} _logger_fmt = '<green>{time:YYYY-MM-DD HH:mm:ss}</green> | ' \ '<level>{level: <8}</level> | ' \ '<cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan>' \ '\n--> <level>{message}</level>' _loglevel = "ERROR" if _is_ipython_notebook() else "WARNING" config_logger(_logger_fmt, _loglevel) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._notebook = None self._ncores = psutil.cpu_count() @property def logger_fmt(self): return self._logger_fmt @property def loglevel(self): return self._loglevel @logger_fmt.setter def logger_fmt(self, value): self._logger_fmt = value config_logger(fmt=value, loglevel=self.loglevel) @loglevel.setter def loglevel(self, value): if isinstance(value, int): options = {5: "TRACE", 10: "DEBUG", 20: "INFO", 25: "SUCESS", 30: "WARNING", 40: "ERROR", 50: "CRITICAL"} value = options[value] self._loglevel = value os.environ["LOGURU_LEVEL"] = value config_logger(fmt=self.logger_fmt, loglevel=value) def __new__(cls): if Settings.__instance__ is None: Settings.__instance__ = super().__new__(cls) return Settings.__instance__ def __repr__(self): indent = 0 for item in self.__dir__(): if not item.startswith('_'): indent = max(indent, len(item) + 1) s = '' for item in self.__dir__(): if not item.startswith('_'): s += ''.join((item, ':', ' '*(indent-len(item)))) attr = getattr(self, item) temp = ''.join((attr.__repr__(), '\n')) if isinstance(attr, dict): temp = temp.replace(',', '\n' + ' '*(indent + 1)) s += temp return s def _get_ncores(self): if self._ncores is None: self._ncores = psutil.cpu_count() return self._ncores def _set_ncores(self, val): if val is None: val = psutil.cpu_count() elif val > psutil.cpu_count(): logger.error('Value is more than the available number of cores') val = psutil.cpu_count() self._ncores = val ncores = property(fget=_get_ncores, fset=_set_ncores) def _get_notebook(self): if self._notebook is None: self._notebook = _is_ipython_notebook() return self._notebook def _set_notebook(self, val): logger.error('This value is determined automatically at runtime') notebook = property(fget=_get_notebook, fset=_set_notebook) def get_tqdm(): # pragma: no cover r""" Fetches a version of ``tqdm`` function that depends on the environment. Either text-based for the IPython console or gui-based for Jupyter notebooks. Returns ------- tqdm : function handle The function to use when wrapping an iterator (i.e. tqdm(range(n))) """ if Settings().notebook is True: tqdm = importlib.import_module('tqdm.notebook') else: tqdm = importlib.import_module('tqdm') return tqdm.tqdm def show_docstring(func): # pragma: no cover r""" Fetches the docstring for a function and returns it in markdown format. Useful for printing in a Jupyter notebook. Parameters ---------- func : object Function handle to function whose docstring is desired Returns ------- md : str A string with the markdown syntax included, suitable for printing in a Jupyter notebook using the ``IPython.display.Markdown`` function. """ title = f'---\n ## Documentation for ``{func.__name__}``\n ---\n' try: from npdoc_to_md import render_md_from_obj_docstring txt = render_md_from_obj_docstring(obj=func, obj_namespace=func.__name__) except ModuleNotFoundError: txt = func.__doc__ return title + txt + '\n---' def sanitize_filename(filename, ext, exclude_ext=False): r""" Returns a sanitized string in the form of name.extension Parameters ---------- filename : str Unsanitized filename, could be 'test.vtk' or just 'test' ext : str Extension of the file, could be 'vtk' exclude_ext : bool If True, the returned string doesn't have the extension Returns ------- sanitized : str Sanitized filename in form of name.extension """ ext.strip(".") if filename.endswith(f".{ext}"): name = ".".join(filename.split(".")[:-1]) else: name = filename filename_formatted = f"{name}" if exclude_ext else f"{name}.{ext}" return filename_formatted class Results: r""" A minimal class for use when returning multiple values from a function This class supports dict-like assignment and retrieval (``obj['im'] = im``), namedtuple-like attribute look-ups (``obj.im``), and generic class-like object assignment (``obj.im = im``) """ _value = "Description" _key = "Item" def __iter__(self): for item in self.__dict__.values(): yield item def __getitem__(self, key): return getattr(self, key) def __setitem__(self, key, value): self.__dict__[key] = value def __str__(self): header = "―" * 78 lines = [header, "{0:<25s} {1}".format(self._key, self._value), header] for item in list(self.__dict__.keys()): if item.startswith('_'): continue if (isinstance(self[item], np.ndarray)): s = np.shape(self[item]) if (self[item].ndim > 1): lines.append("{0:<25s} Image of size {1}".format(item, s)) else: lines.append("{0:<25s} Array of size {1}".format(item, s)) else: lines.append("{0:<25s} {1}".format(item, self[item])) lines.append(header) return "\n".join(lines)
the-stack_0_4421
import ezdxf import random # needed for random placing points def get_random_point(): """Creates random x, y coordinates.""" x = random.randint(-100, 100) y = random.randint(-100, 100) return x, y # Create a new drawing in the DXF format of AutoCAD 2010 dwg = ezdxf.new('ac1024') # Create a block with the name 'FLAG' flag = dwg.blocks.new(name='FLAG') # Add DXF entities to the block 'FLAG'. # The default base point (= insertion point) of the block is (0, 0). flag.add_polyline2d([(0, 0), (0, 5), (4, 3), (0, 3)]) # the flag as 2D polyline flag.add_circle((0, 0), .4, dxfattribs={'color': 2}) # mark the base point with a circle flag.add_linear_dim((1, 3), (0, 3), (4, 3), dxfattribs={'color': 2}) # Get the modelspace of the drawing. modelspace = dwg.modelspace() # Get 50 random placing points. placing_points = [get_random_point() for _ in range(50)] for point in placing_points: # Every flag has a different scaling and a rotation of -15 deg. random_scale = 0.5 + random.random() * 2.0 # Add a block reference to the block named 'FLAG' at the coordinates 'point'. modelspace.add_blockref('FLAG', point, dxfattribs={ 'xscale': random_scale, 'yscale': random_scale, 'rotation': -15 }) # Save the drawing. dwg.saveas("/home/ebi/blockref_tutorial.dxf")
the-stack_0_4424
from typing import Optional, Tuple import torch import torch.nn as nn from torch.distributions import Categorical, Normal class BasePolicy(nn.Module): """ Basic implementation of a general Policy :param state_dim: State dimensions of the environment :param action_dim: Action dimensions of the environment :param hidden: Sizes of hidden layers :param discrete: True if action space is discrete, else False :type state_dim: int :type action_dim: int :type hidden: tuple or list :type discrete: bool """ def __init__( self, state_dim: int, action_dim: int, hidden: Tuple, discrete: bool, **kwargs ): super(BasePolicy, self).__init__() self.state_dim = state_dim self.action_dim = action_dim self.hidden = hidden self.discrete = discrete self.action_lim = kwargs["action_lim"] if "action_lim" in kwargs else 1.0 self.action_var = kwargs["action_var"] if "action_var" in kwargs else 0.1 self.sac = kwargs["sac"] if "sac" in kwargs else False if self.sac: self.fc_mean = nn.Linear(self.hidden[-1], self.action_dim) self.fc_std = nn.Linear(self.hidden[-1], self.action_dim) self.model = None def forward( self, state: torch.Tensor ) -> (Tuple[torch.Tensor, Optional[torch.Tensor]]): """ Defines the computation performed at every call. :param state: The state being passed as input to the policy :type state: Tensor """ state = self.model.forward(state) if self.sac: state = nn.ReLU()(state) mean = self.fc_mean(state) log_std = self.fc_std(state) log_std = torch.clamp(log_std, min=-20.0, max=2.0) return mean, log_std return state def get_action( self, state: torch.Tensor, deterministic: bool = False ) -> torch.Tensor: """ Get action from policy based on input :param state: The state being passed as input to the policy :param deterministic: (True if the action space is deterministic, else False) :type state: Tensor :type deterministic: boolean :returns: action """ action_probs = self.forward(state) if self.discrete: action_probs = nn.Softmax(dim=-1)(action_probs) if deterministic: action = (torch.argmax(action_probs, dim=-1), None) else: distribution = Categorical(probs=action_probs) action = (distribution.sample(), distribution) else: action_probs = nn.Tanh()(action_probs) * self.action_lim if deterministic: action = (action_probs, None) else: distribution = Normal(action_probs, self.action_var) action = (distribution.sample(), distribution) return action class BaseValue(nn.Module): """ Basic implementation of a general Value function """ def __init__(self, state_dim: int, action_dim: int): super(BaseValue, self).__init__() self.state_dim = state_dim self.action_dim = action_dim self.model = None def forward(self, state: torch.Tensor) -> torch.Tensor: """ Defines the computation performed at every call. :param state: Input to value function :type state: Tensor """ return self.model.forward(state) def get_value(self, state: torch.Tensor) -> torch.Tensor: """ Get value from value function based on input :param state: Input to value function :type state: Tensor :returns: Value """ return self.forward(state).squeeze(-1) class BaseActorCritic(nn.Module): """ Basic implementation of a general Actor Critic """ def __init__(self): super(BaseActorCritic, self).__init__() self.actor = None self.critic = None def get_action( self, state: torch.Tensor, deterministic: bool = False ) -> torch.Tensor: """ Get action from the Actor based on input :param state: The state being passed as input to the Actor :param deterministic: (True if the action space is deterministic, else False) :type state: Tensor :type deterministic: boolean :returns: action """ state = torch.as_tensor(state).float() return self.actor.get_action(state, deterministic=deterministic) def get_value(self, state: torch.Tensor) -> torch.Tensor: """ Get value from the Critic based on input :param state: Input to the Critic :type state: Tensor :returns: value """ state = torch.as_tensor(state).float() return self.critic.get_value(state)
the-stack_0_4426
from diff_prof.diffusion_profiles import DiffusionProfiles from msi.msi import MSI import os import numpy as np def test_diffusion_profiles(ref_dp_file_path, calculated_dp_file_path): # Saved # this is loading the reference directory dp_saved = DiffusionProfiles(alpha=None, max_iter=None, tol=None, weights=None, num_cores=None, save_load_file_path=ref_dp_file_path) msi_saved = MSI() msi_saved.load() msi_saved.load_saved_node_idx_mapping_and_nodelist( dp_saved.save_load_file_path) dp_saved.load_diffusion_profiles( msi_saved.drugs_in_graph + msi_saved.indications_in_graph) # Calculated dp_calculated = DiffusionProfiles(alpha=None, max_iter=None, tol=None, weights=None, num_cores=None, save_load_file_path=calculated_dp_file_path) msi_calculated = MSI() msi_calculated.load() msi_calculated.load_saved_node_idx_mapping_and_nodelist( dp_calculated.save_load_file_path) dp_calculated.load_diffusion_profiles( msi_calculated.drugs_in_graph + msi_calculated.indications_in_graph) # Compare # Make sure have diffusion profiles for the same drugs and indications assert(set(dp_saved.drug_or_indication2diffusion_profile.keys()) == set(dp_calculated.drug_or_indication2diffusion_profile.keys())) # Reorder calculated diffusion profile for consistency with saved diffusion profile calculated_reorder_idxs = [msi_calculated.node2idx[node] for node in msi_saved.nodelist] for drug_or_indication, saved_diffusion_profile in dp_saved.drug_or_indication2diffusion_profile.items(): calculated_diffusion_profile = dp_calculated.drug_or_indication2diffusion_profile[ drug_or_indication] # Reorder calculated diffusion_profile according to saved calculated_diffusion_profile = calculated_diffusion_profile[calculated_reorder_idxs] # Ensure close enough assert(np.allclose(saved_diffusion_profile, calculated_diffusion_profile))
the-stack_0_4427
# -*- coding: utf-8 -*- from __future__ import print_function import sys import os import codecs import numpy as np import hashlib import random import preprocess class Preparation(object): '''Convert dataset of different text matching tasks into a unified format as the input of deep matching modules. Users provide datasets contain pairs of texts along with their labels, and the module produces the following files: * Word Dictionary: this file records the mapping from each word to a unique identifier. * Corpus File: this file records the mapping from each text to a unique identifiers, along with a sequence of word identifiers contained in text. * Relation File: this file records the relationship between two texts, each line containing the label and a pair of ids. ''' def __init__(self): pass def get_text_id(self, hashid, text, idtag='T'): hash_obj = hashlib.sha1(text.encode('utf8')) # if the text are the same, then the hash_code are also the same hex_dig = hash_obj.hexdigest() if hex_dig in hashid: return hashid[hex_dig] else: tid = idtag + str(len(hashid)) # start from 0, 1, 2, ... hashid[hex_dig] = tid return tid def parse_line(self, line, delimiter='\t'): subs = line.split(delimiter) # print('subs: ', len(subs)) if 3 != len(subs): raise ValueError('format of data file wrong, should be \'label,text1,text2\'.') else: return subs[0], subs[1], subs[2] def parse_line_for_quora(self, line, delimiter='","'): subs = line.split(delimiter) #print('subs: ', len(subs)) # if subs[1]=="qid1": # return if 6 != len(subs): # print( "line__not satisfied",line) # raise ValueError('format of data file wrong, should be \'label,text1,text2\'.') return 0, 0, 0, 0, 0 else: return subs[1], subs[2], subs[3], subs[4], subs[5][0] def run_with_one_corpus_for_quora(self, file_path): # hashid = {} corpus = {} rels = [] f = codecs.open(file_path, 'r', encoding='utf8') next(f) for line in f: # print("", i) # print("", i) # line = line.decode('utf8') line = line.strip() qid1, qid2, q1, q2, label = self.parse_line_for_quora(line, "\t") if q1 != 0: corpus[qid1] = q1 corpus[qid2] = q2 rels.append((label, qid1, qid2)) f.close() return corpus, rels def run_with_one_corpus(self, file_path): hashid = {} corpus = {} rels = [] f = codecs.open(file_path, 'r', encoding='utf8') for line in f: line = line line = line.strip() label, t1, t2 = self.parse_line(line) id1 = self.get_text_id(hashid, t1, 'T') id2 = self.get_text_id(hashid, t2, 'T') corpus[id1] = t1 corpus[id2] = t2 rels.append((label, id1, id2)) f.close() return corpus, rels def run_with_two_corpus(self, file_path): hashid_q = {} hashid_d = {} corpus_q = {} corpus_d = {} rels = [] f = codecs.open(file_path, 'r', encoding='utf8') for line in f: line = line line = line.strip() label, t1, t2 = self.parse_line(line) id1 = self.get_text_id(hashid_q, t1, 'Q') id2 = self.get_text_id(hashid_d, t2, 'D') corpus_q[id1] = t1 corpus_d[id2] = t2 rels.append((label, id1, id2)) f.close() return corpus_q, corpus_d, rels def run_with_train_valid_test_corpus(self, train_file, valid_file, test_file): ''' Run with pre-splited train_file, valid_file, test_file The input format should be label \t text1 \t text2 The query ids can't be duplicated. For the same query id, the document ids can't be duplicated. Note that if we make queries with unique id (fixed 10 candidates for a single query), then it is possible that multiple queries have different query ids, but with the same text (in rare cases) :param train_file: train file :param valid_file: valid file :param test_file: test file :return: corpus, rels_train, rels_valid, rels_test ''' hashid = {} corpus = {} rels = [] rels_train = [] rels_valid = [] rels_test = [] # merge corpus files, but return rels for train/valid/test seperately curQ = 'init' curQid = 0 for file_path in list([train_file, valid_file, test_file]): if file_path == train_file: rels = rels_train elif file_path == valid_file: rels = rels_valid if file_path == test_file: rels = rels_test f = codecs.open(file_path, 'r', encoding='utf8') for line in f: line = line line = line.strip() label, t1, t2 = self.parse_line(line) id2 = self.get_text_id(hashid, t2, 'D') # generate unique query ids if t1 == curQ: # same query id1 = 'Q' + str(curQid) else: # new query curQid += 1 id1 = 'Q' + str(curQid) curQ = t1 corpus[id1] = t1 corpus[id2] = t2 rels.append((label, id1, id2)) f.close() return corpus, rels_train, rels_valid, rels_test @staticmethod def save_corpus(file_path, corpus): f = codecs.open(file_path, 'w', encoding='utf8') for qid, text in corpus.items(): f.write('%s %s\n' % (qid, text)) f.close() @staticmethod def merge_corpus(train_corpus, valid_corpus, test_corpus): # cat train valid test > corpus.txt # cat corpus_train.txt corpus_valid.txt corpus_test.txt > corpus.txt os.system('cat ' + train_corpus + ' ' + valid_corpus + ' ' + test_corpus + ' > corpus.txt') @staticmethod def save_relation(file_path, relations): f = open(file_path, 'w') for rel in relations: f.write('%s %s %s\n' % (rel)) f.close() @staticmethod def check_filter_query_with_dup_doc(input_file): """ Filter queries with duplicated doc ids in the relation files :param input_file: input file, which could be the relation file for train/valid/test data The format is "label qid did" :return: """ with open(input_file) as f_in, open(input_file + '.fd', 'w') as f_out: cur_qid = 'init' cache_did_set = set() cache_q_lines = [] found_dup_doc = False for l in f_in: tokens = l.split() if tokens[1] == cur_qid: # same qid cache_q_lines.append(l) if tokens[2] in cache_did_set: found_dup_doc = True else: cache_did_set.add(tokens[2]) else: # new qid if not found_dup_doc: f_out.write(''.join(cache_q_lines)) else: print('found qid with duplicated doc id/text: ', ''.join(cache_q_lines)) print('filtered... continue') cache_q_lines = [] cache_q_lines.append(l) found_dup_doc = False cache_did_set.clear() cur_qid = tokens[1] cache_did_set.add(tokens[2]) # the last query # print len(cache_q_lines), len(cache_did_set) if len(cache_q_lines) != 0 and len(cache_q_lines) == len(cache_did_set): f_out.write(''.join(cache_q_lines)) print('write the last query... done: ', ''.join(cache_q_lines)) @staticmethod def split_train_valid_test(relations, ratio=(0.8, 0.1, 0.1)): random.shuffle(relations) total_rel = len(relations) num_train = int(total_rel * ratio[0]) num_valid = int(total_rel * ratio[1]) valid_end = num_train + num_valid rel_train = relations[: num_train] rel_valid = relations[num_train: valid_end] rel_test = relations[valid_end:] return rel_train, rel_valid, rel_test @staticmethod def split_train_valid_test_for_ranking(relations, ratio=(0.8, 0.1, 0.1)): qid_group = set() for r, q, d in relations: qid_group.add(q) qid_group = list(qid_group) random.shuffle(qid_group) total_rel = len(qid_group) num_train = int(total_rel * ratio[0]) num_valid = int(total_rel * ratio[1]) valid_end = num_train + num_valid qid_train = qid_group[: num_train] qid_valid = qid_group[num_train: valid_end] qid_test = qid_group[valid_end:] def select_rel_by_qids(qids): rels = [] qids = set(qids) for r, q, d in relations: if q in qids: rels.append((r, q, d)) return rels rel_train = select_rel_by_qids(qid_train) rel_valid = select_rel_by_qids(qid_valid) rel_test = select_rel_by_qids(qid_test) return rel_train, rel_valid, rel_test if __name__ == '__main__': prepare = Preparation() basedir = '/home/wtt/Code/MatchZoo/data/InsuranceQA/'#'../../data/example/ranking/' corpus, rels = prepare.run_with_one_corpus(basedir + 'sample.txt') print('total corpus : %d ...' % (len(corpus))) print('total relations : %d ...' % (len(rels))) prepare.save_corpus(basedir + 'corpus.txt', corpus) # rel_train, rel_valid, rel_test = prepare.split_train_valid_test(rels, (0.8, 0.1, 0.1)) corpus, rel_train = prepare.run_with_one_corpus(basedir + 'trainsample.txt') corpus, rel_valid = prepare.run_with_one_corpus(basedir + 'validsample.txt') corpus, rel_test = prepare.run_with_one_corpus(basedir + 'testsample.txt') prepare.save_relation(basedir + 'relation_train.txt', rel_train) prepare.save_relation(basedir + 'relation_valid.txt', rel_valid) prepare.save_relation(basedir + 'relation_test.txt', rel_test) print('Done ...')
the-stack_0_4429
import copy import logging import random from typing import Any, Callable, Dict, List, Optional, Tuple from generator import ( DefinitionDataset, InteractiveGoal, ObjectDefinition, RetrievalGoal, SceneException, base_objects, containers, geometry, materials, specific_objects, structures, tags, util, ) from generator.separating_axis_theorem import sat_entry from .hypercubes import ( Hypercube, HypercubeFactory, update_floor_and_walls, update_scene_objects, ) from .interactive_plans import ( InteractivePlan, ObjectLocationPlan, ObjectPlan, create_container_hypercube_plan_list, create_eval_4_container_hypercube_plan_list, create_obstacle_hypercube_plan_list, create_occluder_hypercube_plan_list, ) from .object_data import ( ObjectData, ReceptacleData, TargetData, identify_larger_definition, ) ROOM_DIMENSIONS = geometry.DEFAULT_ROOM_DIMENSIONS # Add or subtract the performer width to ensure it can move behind any object. ROOM_X_MIN = -(ROOM_DIMENSIONS['x'] / 2.0) + util.PERFORMER_WIDTH ROOM_Z_MIN = -(ROOM_DIMENSIONS['x'] / 2.0) + util.PERFORMER_WIDTH ROOM_X_MAX = (ROOM_DIMENSIONS['x'] / 2.0) - util.PERFORMER_WIDTH ROOM_Z_MAX = (ROOM_DIMENSIONS['x'] / 2.0) - util.PERFORMER_WIDTH LAST_STEP = 2500 SMALL_CONTEXT_OBJECT_CHOICES = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] SMALL_CONTEXT_OBJECT_WEIGHTS = [5, 5, 10, 10, 12.5, 15, 12.5, 10, 10, 5, 5] WALL_CHOICES = [0, 1, 2, 3] WALL_WEIGHTS = [40, 30, 20, 10] WALL_MAX_WIDTH = 4 WALL_MIN_WIDTH = 1 WALL_HEIGHT = 3 WALL_DEPTH = 0.1 WALL_SEPARATION = 1 def retrieve_template_list(object_data: ObjectData) -> List[Dict[str, Any]]: return [object_data.trained_template, object_data.untrained_template] class InteractiveHypercube(Hypercube): """A hypercube of interactive scenes that each have the same goals, targets, distractors, walls, materials, and performer starts, except for specific differences detailed in its plan.""" def __init__( self, body_template: Dict[str, Any], goal: InteractiveGoal, role_to_type: Dict[str, str], plan_name: str, plan_list: List[InteractivePlan], training=False ) -> None: self._goal = goal self._plan_list = plan_list self._role_to_type = role_to_type self._initialize_object_data() self._validate_object_plan() super().__init__( goal.get_name() + ((' ' + plan_name) if plan_name else ''), body_template, goal.get_goal_template(), training=training ) def _initialize_object_data(self) -> None: # Save each possible object's plans across all scenes. self._data = { 'target': [TargetData(self._plan_list[0].target_plan, 0)], 'confusor': [ ObjectData(tags.ROLES.CONFUSOR, object_plan) for object_plan in self._plan_list[0].confusor_plan_list ], 'large_container': [ ReceptacleData(tags.ROLES.CONTAINER, object_plan) for object_plan in self._plan_list[0].large_container_plan_list ], 'obstacle': [ ReceptacleData(tags.ROLES.OBSTACLE, object_plan) for object_plan in self._plan_list[0].obstacle_plan_list ], 'occluder': [ ReceptacleData(tags.ROLES.OCCLUDER, object_plan) for object_plan in self._plan_list[0].occluder_plan_list ], 'small_container': [ ReceptacleData(tags.ROLES.CONTAINER, object_plan) for object_plan in self._plan_list[0].small_container_plan_list ] } # Assume that each object has a plan in each scene. An object that does # not appear in a scene should be given a NONE location plan. for scene_plan in self._plan_list[1:]: for role, object_plan_list in scene_plan.object_plans().items(): for index, object_plan in enumerate(object_plan_list): self._data[role][index].append_object_plan(object_plan) # Assume only one target plan, and always use the index 0 target. self._target_data = self._data['target'][0] # Assume only zero or one confusor plan. self._confusor_data = ( self._data['confusor'][0] if len(self._data['confusor']) > 0 else None ) def _validate_object_plan(self) -> None: if any([ scene_plan.target_plan.definition != self._target_data.original_definition for scene_plan in self._plan_list ]): raise SceneException( 'Interactive hypercubes cannot currently handle a target with ' 'different definitions across scenes') if any(self._target_data.untrained_plan_list): raise SceneException( 'Interactive hypercubes cannot currently handle a target with ' 'a randomly chosen (not pre-defined) untrained shape') # Update _assign_each_object_location to handle new location plans. for object_data in self._data['target']: if ( object_data.is_between() or object_data.is_far() ): raise SceneException( 'Interactive hypercubes cannot currently handle the ' 'target location plans: BETWEEN, FAR') for object_data in self._data['confusor']: if ( object_data.is_between() or object_data.is_random() ): raise SceneException( 'Interactive hypercubes cannot currently handle the ' 'confusor location plans: BETWEEN, RANDOM') for object_data in ( self._data['large_container'] + self._data['small_container'] ): if ( object_data.is_back() or object_data.is_between() or object_data.is_close() or object_data.is_far() or object_data.is_front() or object_data.is_inside() ): raise SceneException( 'Interactive hypercubes cannot currently handle the ' 'container location plans: BACK, BETWEEN, CLOSE, FAR, ' 'FRONT, INSIDE') for object_data in (self._data['obstacle'] + self._data['occluder']): if ( object_data.is_back() or object_data.is_far() or object_data.is_front() or object_data.is_inside() ): raise SceneException( 'Interactive hypercubes cannot currently handle the ' 'obstacle or occluder location plans: BACK, FAR, FRONT, ' 'INSIDE') # Override def _create_scenes( self, body_template: Dict[str, Any], goal_template: Dict[str, Any] ) -> List[Dict[str, Any]]: tries = 0 while True: tries += 1 try: logging.debug( f'\n\n{self.get_name()} initialize scenes try {tries}\n') # Reset the half-finished scenes, all of their objects, and # their other properties on each try. scenes = [ copy.deepcopy(body_template) for _ in range(len(self._plan_list)) ] for object_data_list in self._data.values(): for object_data in object_data_list: object_data.reset_all_properties() # Save the bounds of each object in each of its possible # locations across all the scenes to detect collisions with # any subsequently positioned objects. self._bounds_list = [] # Save the targets used in the hypercube that are not defined # by the plan, if the goal has multiple targets. self._common_target_list = [] # Save the interior walls used in the hypercube. self._interior_wall_list = [] # Save the performer's start location in the hypercube. self._performer_start = self._generate_performer_start() # Save the small context objects used in the hypercube. self._small_context_object_list = [] # Initialize all of the objects in all of the scenes. self._initialize_each_hypercube_object() # Update each scene's template with its corresponding objects, # goal, tags, and other specific properties. for index, scene in enumerate(scenes): self._update_scene_at_index(scene, index, goal_template) logging.debug( f'\n\n{self.get_name()} initialize scenes is done\n ') scenes = update_floor_and_walls( body_template, self._data, retrieve_template_list, scenes ) break except SceneException: logging.exception( f'{self.get_name()} _initialize_each_hypercube_object') if tries >= util.MAX_TRIES: raise SceneException( f'{self.get_name()} cannot successfully initialize scenes ' f'-- please redo.') return scenes # Override def _get_training_scenes(self) -> List[Dict[str, Any]]: return [ scene for scene in self._scenes if not scene['debug']['evaluationOnly'] ] def _assign_confusor_obstacle_occluder_location( self, target_data: TargetData, target_or_receptacle_definition: ObjectDefinition, confusor_data: Optional[ObjectData], obstacle_occluder_data_list: List[ObjectData], large_container_data_list: List[ReceptacleData], goal: InteractiveGoal, performer_start: Dict[str, Dict[str, float]], bounds_list: List[List[Dict[str, float]]], plans_to_locations: Dict[ObjectLocationPlan, List[Dict[str, Any]]] ) -> None: """Generate and assign locations to the given confusor, obstacle, and occluder objects, if needed. Will update the given bounds_list.""" # Objects positioned relative to the target (confusors, obstacles, and # occluders) must each choose new locations for each of the target's # distinct locations (or its receptacle's locations) across scenes. target_locations_with_indexes = ( target_data.locations_with_indexes(large_container_data_list) ) # Next, choose a location for an obstacle/occluder either between the # performer's start location and the target or behind the target (if # needed). Assume only one obstacle or occluder is ever "in between" # OR "close" in a single scene. for target_location_plan, indexes in target_locations_with_indexes: for object_data in obstacle_occluder_data_list: is_obstacle = (object_data.role == tags.ROLES.OBSTACLE) if object_data.is_between(): # Use the same location for the object across scenes in # which the target is in this specific location. self._assign_single_obstacle_occluder_location( object_data, target_or_receptacle_definition, plans_to_locations[target_location_plan], performer_start, bounds_list, 'between', object_data.assign_location_between, indexes, obstruct=(not is_obstacle), unreachable=is_obstacle ) if object_data.is_close(): # Use the same location for the object across scenes in # which the target is in this specific location. self._assign_single_obstacle_occluder_location( object_data, target_or_receptacle_definition, plans_to_locations[target_location_plan], performer_start, bounds_list, 'behind', object_data.assign_location_close, indexes, behind=True ) if object_data.is_random(): # Use the same location for the object across scenes in # which the target is in this specific location. location = self._generate_random_location( object_data.trained_definition, goal, performer_start, bounds_list, target_location=( plans_to_locations[target_location_plan] ), second_definition=object_data.untrained_definition ) logging.debug( f'{self.get_name()} obstacle/occluder location ' f'randomly chosen but not obstructing target: ' f'{location}') bounds = object_data.assign_location_random(location) bounds_list.extend(bounds) # Next, choose a location for the confusor, close to or far from the # target (if needed). if confusor_data: for target_location_plan, indexes in target_locations_with_indexes: if confusor_data.is_close(): # Use the same location for the object across scenes in # which the target is in this specific location. location = self._generate_close_to( confusor_data.larger_definition(), target_or_receptacle_definition, plans_to_locations[target_location_plan], performer_start, bounds_list, adjacent=True ) logging.debug( f'{self.get_name()} confusor location close to: ' f'{location}') bounds = confusor_data.assign_location_close( location, indexes ) bounds_list.extend(bounds) if confusor_data.is_far(): # Use the same location for the object across scenes in # which the target is in this specific location. location = self._generate_far_from( confusor_data.larger_definition(), plans_to_locations[target_location_plan], performer_start, bounds_list ) logging.debug( f'{self.get_name()} confusor location far from: ' f'{location}') bounds = confusor_data.assign_location_far( location, indexes ) bounds_list.extend(bounds) def _assign_container_location( self, container_data_list: List[ReceptacleData], goal: InteractiveGoal, performer_start: Dict[str, Dict[str, float]], bounds_list: List[List[Dict[str, float]]] ) -> None: """Generate and assign locations to the given container receptacle objects, if needed. Will update the given bounds_list.""" # Next, choose the locations for the remaining containers (if needed). for container_data in container_data_list: if container_data.is_random(): # Use the same location for the object across scenes in which # the object is randomly positioned. location = self._generate_random_location( container_data.larger_definition(), goal, performer_start, bounds_list ) logging.debug( f'{self.get_name()} container location randomly chosen: ' f'{location}') bounds = container_data.assign_location_random(location) bounds_list.extend(bounds) def _assign_front_and_back_location( self, target_data: TargetData, target_or_receptacle_definition: ObjectDefinition, confusor_data_list: List[ObjectData], bounds_list: List[List[Dict[str, float]]] ) -> Dict[ObjectLocationPlan, List[Dict[str, Any]]]: """Generate and assign front and back locations to the given target and confusor objects, if needed. Will update the given bounds_list. Return the target's location corresponding to each unique location plan.""" # Save the target's location corresponding to each location plan. plans_to_locations = {} front_and_back_object_data_list = [target_data] + confusor_data_list if any([ (object_data.is_front() or object_data.is_back()) for object_data in front_and_back_object_data_list ]): # Assume only one object is ever "in front" and only one object # is ever "in back" in a single scene, so use the same front and # back locations on each relevant object. location_front, location_back = self._generate_front_and_back( target_or_receptacle_definition, target_data.choice ) logging.debug( f'{self.get_name()} location in front of performer start:' f'{location_front}') logging.debug( f'{self.get_name()} location in back of performer start:' f'{location_back}') for object_data in front_and_back_object_data_list: bounds = object_data.assign_location_front(location_front) bounds_list.extend(bounds) bounds = object_data.assign_location_back(location_back) bounds_list.extend(bounds) plans_to_locations[ObjectLocationPlan.FRONT] = location_front plans_to_locations[ObjectLocationPlan.BACK] = location_back # We assume the performer_start won't be modified past here. logging.debug( f'{self.get_name()} performer start: {self._performer_start}') return plans_to_locations def _assign_object_location_inside_container( self, target_data: TargetData, confusor_data: Optional[ObjectData], large_container_data_list: List[ReceptacleData] ) -> None: """Generate and assign locations to the given target and confusor objects inside the given container objects, if needed. Will update the given bounds_list.""" target_contained_indexes = target_data.contained_indexes( large_container_data_list, confusor_data ) # Finally, position the target and confusor inside containers. for index, container_data, confusor_data in target_contained_indexes: # Create a new instance of each object to use in this scene. target_instance = copy.deepcopy(target_data.trained_template) containment = ( container_data.untrained_containment if container_data.untrained_plan_list[index] else container_data.trained_containment ) # If confusor_data is None, put just the target in the container. if not confusor_data: containers.put_object_in_container( target_instance, container_data.instance_list[index], containment.area_index, containment.target_angle ) # Else, put both the target and confusor together in the container. else: confusor_instance = copy.deepcopy( confusor_data.untrained_template if confusor_data.untrained_plan_list[index] else confusor_data.trained_template ) containers.put_objects_in_container( target_instance, confusor_instance, container_data.instance_list[index], containment.area_index, containment.orientation, containment.target_angle, containment.confusor_angle ) # Save the confusor instance in the hypercube data. confusor_data.instance_list[index] = confusor_instance # Save the target instance in the hypercube data. target_data.instance_list[index] = target_instance confusor_contained_indexes = confusor_data.contained_indexes( large_container_data_list, target_data ) if confusor_data else [] for index, container_data, target_data in confusor_contained_indexes: # Create a new instance of each object to use in this scene. confusor_instance = copy.deepcopy( confusor_data.untrained_template if confusor_data.untrained_plan_list[index] else confusor_data.trained_template ) # If target_data is None, put just the confusor in the container. if not target_data: containers.put_object_in_container( confusor_instance, container_data.instance_list[index], container_data.area_index, container_data.confusor_angle ) # Save the confusor instance in the hypercube data. confusor_data.instance_list[index] = confusor_instance # Else, we already put both objects together in a container, above. def _assign_single_obstacle_occluder_location( self, obstacle_occluder_data: ObjectData, target_or_receptacle_definition: ObjectDefinition, target_location: Dict[str, Any], performer_start: Dict[str, Dict[str, float]], bounds_list: List[List[Dict[str, float]]], debug_label: str, location_function: Callable, indexes: List[float], behind: bool = False, obstruct: bool = False, unreachable: bool = False ) -> None: """Generate and assign new locations to a single given obstacle or occluder using the given function either obstructing or behind the target. Find separate locations for both the trained and the untrained definitions because each must be able to obstruct the target.""" trained_location = self._generate_close_to( obstacle_occluder_data.trained_definition, target_or_receptacle_definition, target_location, performer_start, bounds_list, behind=behind, obstruct=obstruct, unreachable=unreachable ) logging.debug( f'{self.get_name()} trained obstacle/occluder location ' f'{debug_label} target and performer start: {trained_location}') untrained_location = self._generate_close_to( obstacle_occluder_data.untrained_definition, target_or_receptacle_definition, target_location, performer_start, bounds_list, behind=behind, obstruct=obstruct, unreachable=unreachable ) logging.debug( f'{self.get_name()} untrained obstacle/occluder location ' f'{debug_label} target and performer start: {untrained_location}') bounds_trained = location_function(trained_location, [ index for index in indexes if not obstacle_occluder_data.untrained_plan_list[index] ]) bounds_list.extend(bounds_trained) bounds_untrained = location_function(untrained_location, [ index for index in indexes if obstacle_occluder_data.untrained_plan_list[index] ]) bounds_list.extend(bounds_untrained) def _assign_target_location( self, target_data: TargetData, target_or_receptacle_definition: ObjectDefinition, container_data: Optional[ReceptacleData], confusor_data_list: List[ObjectData], goal: InteractiveGoal, performer_start: Dict[str, Dict[str, float]], bounds_list: List[List[Dict[str, float]]] ) -> Dict[ObjectLocationPlan, List[Dict[str, Any]]]: """Generate and assign locations to the given target, as well as the given target's receptacle and confusor objects if needed. Will update the given bounds_list. Return the target's location corresponding to each unique location plan.""" # First, choose the locations for the objects positioned relative to # the performer's start location (if needed), both in front of it and # in back of it. Do FIRST because it may change performer_start. plans_to_locations = self._assign_front_and_back_location( target_data, target_or_receptacle_definition, confusor_data_list, bounds_list ) # Next, choose the locations for the target's container (if needed). target_container_location = None if container_data and container_data.is_random(): # Use the same location for the object across scenes in which # the object is randomly positioned. target_container_location = self._generate_random_location( container_data.larger_definition(), goal, performer_start, bounds_list ) logging.debug( f'{self.get_name()} container location randomly chosen: ' f'{target_container_location}') bounds = container_data.assign_location_random( target_container_location ) bounds_list.extend(bounds) # Next, choose a location close to the target's container (if any). # Assume a "close" target is always close to its container. if target_data.is_close(): target_definition = target_data.larger_definition() # If the target was turned sideways, revert it for the location # close to the target's container. if target_definition.notSideways: target_definition = copy.deepcopy(target_definition) target_definition.dimensions = ( target_definition.notSideways['dimensions'] ) target_definition.offset = ( target_definition.notSideways['offset'] ) target_definition.positionY = ( target_definition.notSideways['positionY'] ) target_definition.rotation = ( target_definition.notSideways['rotation'] ) location = self._generate_close_to( target_definition, container_data.larger_definition(), target_container_location, performer_start, bounds_list ) logging.debug( f'{self.get_name()} target location close to the first ' f'large container: {location}') bounds = target_data.assign_location_close( location, None ) bounds_list.extend(bounds) plans_to_locations[ObjectLocationPlan.CLOSE] = location # Next, handle the remaining cases for choosing the target's location. if target_data.is_random(): # Use the same location for the target across scenes in which the # target is positioned randomly. location = self._generate_random_location( target_or_receptacle_definition, goal, performer_start, bounds_list, target_choice=target_data.choice ) logging.debug( f'{self.get_name()} target location randomly chosen: ' f'{location}') bounds = target_data.assign_location_random(location) bounds_list.extend(bounds) plans_to_locations[ObjectLocationPlan.RANDOM] = location return plans_to_locations def _assign_each_object_location(self) -> None: """Assign each object's final location in all of the scenes by creating separate instances of them to use in each individual scene.""" # Use the larger definition of the target or its receptacle in any # scene to save a big enough area for all objects. larger_target_definition = self._target_data.larger_definition_of( self._data['large_container'], self._confusor_data ) logging.debug( f'{self.get_name()} larger definition of trained/untrained ' f'target/confusor/container: {larger_target_definition}') # Save the target's location corresponding to each location plan. target_location_plans_to_locations = self._assign_target_location( self._target_data, larger_target_definition, # Assume the 1st large container may have the target inside of it. self._data['large_container'][0] if len(self._data['large_container']) > 0 else None, self._data['confusor'], self._goal, self._performer_start, self._bounds_list ) self._assign_confusor_obstacle_occluder_location( self._target_data, larger_target_definition, self._confusor_data, self._data['obstacle'] + self._data['occluder'], self._data['large_container'], self._goal, self._performer_start, self._bounds_list, target_location_plans_to_locations ) self._assign_container_location( # Assume the 1st large container may have the target inside of it, # and thus it will have been positioned previously, but the other # containers will not have any objects inside of them. self._data['large_container'][1:] + self._data['small_container'], self._goal, self._performer_start, self._bounds_list ) self._assign_object_location_inside_container( self._target_data, self._confusor_data, self._data['large_container'] ) def _assign_confusor_definition( self, confusor_data: Optional[ObjectData], target_definition: ObjectDefinition ) -> None: """Update the given confusor data with its object definition using the given target data.""" if not confusor_data: return dataset = specific_objects.get_interactable_definition_dataset() trained_dataset = dataset.filter_on_trained() untrained_dataset = dataset.filter_on_untrained( tags.SCENE.UNTRAINED_SHAPE ) if not confusor_data.trained_definition: confusor_data.trained_definition = util.get_similar_definition( target_definition, trained_dataset ) if not confusor_data.trained_definition: raise SceneException( f'{self.get_name()} cannot find trained confusor ' f'size={trained_dataset.size()} ' f'target={target_definition}') if not confusor_data.untrained_definition: confusor_data.untrained_definition = util.get_similar_definition( target_definition, untrained_dataset ) if not confusor_data.untrained_definition: raise SceneException( f'{self.get_name()} cannot find untrained confusor ' f'size={untrained_dataset.size()} ' f'target={target_definition}') logging.debug( f'{self.get_name()} confusor definition: ' f'trained={confusor_data.trained_definition}' f'untrained={confusor_data.untrained_definition}') def _choose_small_context_definition( self, target_confusor_data_list: List[ObjectData] ) -> Dict[str, Any]: """Choose and return a small context object definition for the given target and confusor objects from the given definition list.""" return util.choose_distractor_definition([ object_data.trained_definition.shape for object_data in target_confusor_data_list ] + [ object_data.untrained_definition.shape for object_data in target_confusor_data_list if object_data.untrained_definition ]) def _assign_obstacle_or_occluder_definition( self, object_data: ObjectData, target_definition: ObjectDefinition, is_occluder: bool ) -> None: """Update the given obstacle or occluder data with its object definition using the given target data.""" dataset = ( specific_objects.get_occluder_definition_dataset() if is_occluder else specific_objects.get_obstacle_definition_dataset() ) trained_dataset = dataset.filter_on_trained() untrained_dataset = dataset.filter_on_untrained( tags.SCENE.UNTRAINED_SHAPE ) if not object_data.trained_definition: object_data.trained_definition = ( self._choose_obstacle_or_occluder_definition( target_definition, trained_dataset, is_occluder ) ) if not object_data.untrained_definition: object_data.untrained_definition = ( self._choose_obstacle_or_occluder_definition( target_definition, untrained_dataset, is_occluder ) ) logging.debug( f'{self.get_name()} {"occluder" if is_occluder else "obstacle"} ' f'definition: trained={object_data.trained_definition} ' f'untrained={object_data.untrained_definition}') def _choose_obstacle_or_occluder_definition( self, target_definition: ObjectDefinition, definition_dataset: DefinitionDataset, is_occluder: bool ) -> Dict[str, Any]: """Choose and return an obstacle or occluder definition for the given target object from the given definition list.""" obstacle_occluder_definition_list = ( geometry.retrieve_obstacle_occluder_definition_list( target_definition, definition_dataset, is_occluder ) ) if not obstacle_occluder_definition_list: raise SceneException( f'{self.get_name()} cannot find ' f'{"occluder" if is_occluder else "obstacle"} ' f'size={definition_dataset.size()} ' f'target={target_definition}') definition, angle = random.choice(obstacle_occluder_definition_list) # Note that this rotation must be also modified with the final # performer start Y. definition.rotation.y += angle return definition def _assign_container_definition( self, container_data: ReceptacleData, target_data: TargetData, confusor_data: Optional[ObjectData], find_invalid_container: bool = False ) -> None: """Update the given container data with its object definition using the given target and confusor data and whether it should be a valid or an invalid size to fit either or both of the objects inside of it.""" dataset = specific_objects.get_container_definition_dataset() trained_dataset = dataset.filter_on_trained() untrained_dataset = dataset.filter_on_untrained( tags.SCENE.UNTRAINED_SHAPE ) if not container_data.trained_definition: ( definition, area_index, orientation, target_angle, confusor_angle ) = self._choose_container_definition( target_data, confusor_data, confusor_data.trained_definition if confusor_data else None, trained_dataset, find_invalid_container ) container_data.trained_definition = definition container_data.trained_containment.area_index = area_index container_data.trained_containment.orientation = orientation container_data.trained_containment.target_angle = target_angle container_data.trained_containment.confusor_angle = confusor_angle if not container_data.untrained_definition: ( definition, area_index, orientation, target_angle, confusor_angle ) = self._choose_container_definition( target_data, confusor_data, confusor_data.untrained_definition if confusor_data else None, untrained_dataset, find_invalid_container ) container_data.untrained_definition = definition container_data.untrained_containment.area_index = area_index container_data.untrained_containment.orientation = orientation container_data.untrained_containment.target_angle = target_angle container_data.untrained_containment.confusor_angle = ( confusor_angle ) logging.debug( f'{self.get_name()} container definition: ' f'trained={container_data.trained_definition} ' f'untrained={container_data.untrained_definition}') def _choose_container_definition( self, target_data: TargetData, confusor_data: Optional[ObjectData], confusor_definition: Optional[ObjectDefinition], definition_dataset: DefinitionDataset, find_invalid_container: bool = False, ) -> Tuple[Dict[str, Any], int, containers.Orientation, float, float]: """Choose and return a valid or an invalid container definition for the given target and confusor objects from the given definition list.""" container_definition = None area_index = None orientation = None target_angle = None confusor_angle = None target_definition_list = [target_data.trained_definition] # Also try the target definition's sideways option if it exists. if target_data.trained_definition.sideways: sideways_definition = copy.deepcopy(target_data.trained_definition) # Save the original properties. sideways_definition.notSideways = { 'dimensions': sideways_definition.dimensions, 'offset': sideways_definition.offset, 'positionY': sideways_definition.positionY, 'rotation': sideways_definition.rotation } # Override the original properties with the sideways properties. sideways_definition.dimensions = ( sideways_definition.sideways['dimensions'] ) sideways_definition.offset = ( sideways_definition.sideways['offset'] ) sideways_definition.positionY = ( sideways_definition.sideways['positionY'] ) sideways_definition.rotation = ( sideways_definition.sideways['rotation'] ) sideways_definition.sideways = None target_definition_list.append(sideways_definition) # If needed, find an enclosable container that can hold both the # target and the confusor together. if target_data.containerize_with(confusor_data): for definition in definition_dataset.definitions(): for target_definition in target_definition_list: valid_containment = containers.can_contain_both( definition, target_definition, confusor_definition ) if valid_containment and not find_invalid_container: target_data.trained_definition = target_definition container_definition = definition area_index, angles, orientation = valid_containment target_angle = angles[0] confusor_angle = angles[1] break elif not valid_containment and find_invalid_container: target_data.trained_definition = target_definition container_definition = definition break # Else, find an enclosable container that can hold either the target # or confusor individually. else: confusor_definition_or_none = ( confusor_definition if confusor_data and confusor_data.is_inside() else None ) if not target_data.is_inside(): target_definition_list = [None] for definition in definition_dataset.definitions(): for target_definition in target_definition_list: valid_containment = containers.can_contain( definition, target_definition, confusor_definition_or_none ) if valid_containment and not find_invalid_container: if target_definition: target_data.trained_definition = ( target_definition ) container_definition = definition area_index, angles = valid_containment target_angle = angles[0] confusor_angle = angles[1] break elif not valid_containment and find_invalid_container: if target_definition: target_data.trained_definition = ( target_definition ) container_definition = definition break if not container_definition: raise SceneException( f'{self.get_name()} cannot create ' f'{"small" if find_invalid_container else "large"} ' f'container size={definition_dataset.size()} ' f'target={target_data.trained_definition}\n' f'confusor={confusor_definition}') return ( container_definition, area_index, orientation, target_angle, confusor_angle ) def _assign_target_definition( self, target_data: TargetData, goal: InteractiveGoal ) -> None: """Update the given target data with its object definition using the given interactive goal.""" if not target_data.trained_definition: target_data.trained_definition = goal.choose_target_definition( target_data.choice ) logging.debug( f'{self.get_name()} target definition: ' f'{target_data.trained_definition}') def _create_interior_wall( self, wall_material: str, wall_colors: List[str], performer_start: Dict[str, Dict[str, float]], bounds_list: List[List[Dict[str, float]]], keep_unobstructed_list: List[Dict[str, Any]] = None ) -> Optional[Dict[str, Any]]: """Create and return a randomly positioned interior wall with the given material and colors. If keep_unobstructed_list is not None, the wall won't obstruct the line between the performer_start and the objects in keep_unobstructed_list.""" tries = 0 performer_rect = geometry.find_performer_rect( performer_start['position'] ) performer_poly = geometry.rect_to_poly(performer_rect) while tries < util.MAX_TRIES: rotation = random.choice((0, 90, 180, 270)) x_position = geometry.random_position_x(ROOM_DIMENSIONS) z_position = geometry.random_position_z(ROOM_DIMENSIONS) x_width = round( random.uniform(WALL_MIN_WIDTH, WALL_MAX_WIDTH), geometry.POSITION_DIGITS ) # Ensure the wall is not too close to the room's parallel walls. if ( (rotation == 0 or rotation == 180) and ( z_position < (ROOM_Z_MIN + WALL_SEPARATION) or z_position > (ROOM_Z_MAX - WALL_SEPARATION) ) ) or ( (rotation == 90 or rotation == 270) and ( x_position < (ROOM_X_MIN + WALL_SEPARATION) or x_position > (ROOM_X_MAX - WALL_SEPARATION) ) ): continue wall_rect = geometry.calc_obj_coords( x_position, z_position, x_width / 2.0, WALL_DEPTH / 2.0, 0, 0, rotation ) wall_poly = geometry.rect_to_poly(wall_rect) # Ensure parallel walls are not too close one another. boundary_rect = geometry.calc_obj_coords( x_position, z_position, (x_width + WALL_SEPARATION) / 2.0, (WALL_DEPTH + WALL_SEPARATION) / 2.0, 0, 0, rotation ) is_too_close = any( sat_entry(boundary_rect, bounds) for bounds in bounds_list ) is_ok = ( not wall_poly.intersects(performer_poly) and geometry.rect_within_room(wall_rect, ROOM_DIMENSIONS) and not is_too_close ) if is_ok and keep_unobstructed_list: for instance in keep_unobstructed_list: if ( 'locationParent' not in instance and geometry.does_fully_obstruct_target( performer_start['position'], instance, wall_poly ) ): is_ok = False break if is_ok: break tries += 1 if tries < util.MAX_TRIES: interior_wall = structures.create_interior_wall( x_position, z_position, rotation, x_width, WALL_HEIGHT, materials.MaterialTuple(wall_material, wall_colors), thickness=WALL_DEPTH, bounding_rect=wall_rect ) return interior_wall return None def _create_target_list( self, goal: InteractiveGoal, performer_start: Dict[str, float], existing_bounds_list: List[List[Dict[str, float]]], target_validation_list: List[Dict[str, float]], start_index: int = None, end_index: int = None ) -> Tuple[List[Dict[str, Any]], List[List[Dict[str, float]]]]: """Create and return each of the goal's targets between the start_index and the end_index. Used if the goal needs more targets than are defined by the hypercube's plan. Changes the bounds_list.""" valid_start_index = 0 if start_index is None else start_index # Only create targets up to the given index, or create each of the # targets if no end_index was given. Keep each existing target. valid_end_index = ( goal.get_target_count() if end_index is None else end_index ) if valid_start_index >= valid_end_index: return [], existing_bounds_list target_list = [] bounds_list = existing_bounds_list for i in range(valid_start_index, valid_end_index): definition = goal.choose_target_definition(i) for _ in range(util.MAX_TRIES): location, possible_bounds_list = goal.choose_location( definition, performer_start, existing_bounds_list, is_target=True, room_dimensions=ROOM_DIMENSIONS ) if goal.validate_target_location( i, location, target_validation_list, performer_start ): break location = None if not location: raise SceneException( f'{self.get_name()} cannot find suitable location ' f'target={definition}') bounds_list = possible_bounds_list instance = util.instantiate_object(definition, location) target_list.append(instance) return target_list, bounds_list def _generate_front_and_back( self, definition: ObjectDefinition, target_choice: int = None ) -> Tuple[Dict[str, Any], Dict[str, Any]]: """Generate a location in front of and (if needed) in back of the performer's start location. May change the global performer_start if it's needed to generate the two locations. Return the front and back locations.""" location_front = None location_back = None for _ in range(util.MAX_TRIES): location_front = self._identify_front( self._goal, self._performer_start, definition, target_choice ) if location_front: location_back = self._identify_back( self._goal, self._performer_start, definition, target_choice ) if location_back: break location_front = None location_back = None self._performer_start = self._generate_performer_start() if not location_front or not location_back: raise SceneException( f'{self.get_name()} cannot position performer start in ' f'front of and in back of object={definition}') return location_front, location_back def _generate_close_to( self, object_definition: ObjectDefinition, existing_definition: ObjectDefinition, existing_location: Dict[str, Any], performer_start: Dict[str, Dict[str, float]], bounds_list: List[List[Dict[str, float]]], adjacent: bool = False, behind: bool = False, obstruct: bool = False, unreachable: bool = False ) -> Dict[str, Any]: """Generate and return a new location for the given object very close to the given previously-positioned object and its given location.""" location_close = geometry.generate_location_in_line_with_object( object_definition, existing_definition, existing_location, performer_start, bounds_list, adjacent=adjacent, behind=behind, obstruct=obstruct, unreachable=unreachable, room_dimensions=ROOM_DIMENSIONS ) if not location_close: if adjacent: raise SceneException( f'{self.get_name()} cannot position object adjacent to ' f'existing:\nperformer_start={performer_start}\n' f'object={object_definition}\n' f'existing={existing_definition}\n' f'location={existing_location}\nbounds={bounds_list}') elif behind: raise SceneException( f'{self.get_name()} cannot position object directly in ' f'back of existing:\nperformer_start={performer_start}\n' f'object={object_definition}\n' f'existing={existing_definition}\n' f'location={existing_location}\nbounds={bounds_list}') raise SceneException( f'{self.get_name()} cannot position object directly in ' f'front of existing:\nperformer_start={performer_start}\n' f'object={object_definition}\n' f'existing={existing_definition}\n' f'location={existing_location}\nbounds={bounds_list}') return location_close def _generate_far_from( self, object_definition: ObjectDefinition, existing_location: Dict[str, Any], performer_start: Dict[str, Dict[str, float]], bounds_list: List[List[Dict[str, float]]] ) -> Dict[str, Any]: """Generate and return a new location for the given object far away from the given location.""" for _ in range(util.MAX_TRIES): bounds_list_copy = copy.deepcopy(bounds_list) location_far = geometry.calc_obj_pos( performer_start['position'], bounds_list_copy, object_definition, room_dimensions=ROOM_DIMENSIONS ) if not geometry.are_adjacent( existing_location, location_far, distance=geometry.MIN_OBJECTS_SEPARATION_DISTANCE ): break location_far = None if not location_far: raise SceneException( f'{self.get_name()} cannot position object far from existing: ' f'object={object_definition}\nexisting={existing_location}') return location_far def _generate_performer_start(self) -> Dict[str, Dict[str, float]]: """Generate and return the performer's start location dict.""" return { 'position': { 'x': round( random.uniform(ROOM_X_MIN, ROOM_X_MAX), geometry.POSITION_DIGITS ), 'y': 0, 'z': round( random.uniform(ROOM_Z_MIN, ROOM_Z_MAX), geometry.POSITION_DIGITS ) }, 'rotation': { 'x': 0, 'y': geometry.random_rotation(), 'z': 0 } } def _generate_random_location( self, definition: ObjectDefinition, goal: InteractiveGoal, performer_start: Dict[str, float], bounds_list: List[List[Dict[str, float]]], target_choice: int = None, target_location: Dict[str, Any] = None, second_definition: ObjectDefinition = None ) -> Dict[str, Any]: """Generate a random location and return it twice.""" for _ in range(util.MAX_TRIES): location_random, _ = goal.choose_location( identify_larger_definition(definition, second_definition) if second_definition else definition, performer_start, bounds_list, is_target=(target_choice is not None), room_dimensions=ROOM_DIMENSIONS ) if location_random: # If generating a location for the target object... if target_choice: if goal.validate_target_location( target_choice, location_random, bounds_list, performer_start ): # Successful break # If generating a location that must ensure the visibility of # this object, the target object, and other critical objects to # the performer's start location... elif target_location: # Assume that all of the bounds that have been set by now # will only be for critical objects (specifically targets, # confusors, containers, obstacles, occluders). for bounds in bounds_list: bounds_poly = geometry.get_bounding_polygon({ 'boundingBox': bounds }) # Also validate the second object definition, if given. second_rect = geometry.generate_object_bounds( vars(second_definition.dimensions), vars(second_definition.offset), location_random['position'], location_random['rotation'] ) # This location should not completely obstruct or be # obstructed by any critical object's location. if geometry.does_fully_obstruct_target( performer_start['position'], location_random, bounds_poly ) or geometry.does_fully_obstruct_target( performer_start['position'], {'boundingBox': bounds}, geometry.get_bounding_polygon(location_random) ) or geometry.does_fully_obstruct_target( performer_start['position'], {'boundingBox': second_rect}, bounds_poly ) or geometry.does_fully_obstruct_target( performer_start['position'], {'boundingBox': bounds}, geometry.get_bounding_polygon({ 'boundingBox': second_rect }) ): # Failed location_random = None break if location_random: # This location should not partly obstruct the target # object's location. if not geometry.does_partly_obstruct_target( self._performer_start['position'], target_location, geometry.get_bounding_polygon(location_random) ): # Successful break # Otherwise... else: # Successful break # Failed location_random = None if not location_random: raise SceneException( f'{self.get_name()} cannot randomly position ' f'target={definition}') return location_random def _identify_front( self, goal: InteractiveGoal, performer_start: Dict[str, float], definition: ObjectDefinition, target_choice: int = None ) -> Dict[str, Any]: """Find and return a location in front of the given performer_start.""" def rotation_func(): return performer_start['rotation']['y'] for _ in range(util.MAX_TRIES): location_front = geometry.get_location_in_front_of_performer( performer_start, definition, rotation_func=rotation_func, room_dimensions=ROOM_DIMENSIONS ) # If we've found a valid location... if location_front: # If this is a target location, ensure it's valid for the goal. if target_choice is None or goal.validate_target_location( target_choice, location_front, [], performer_start ): break # Else, find a new location. location_front = None return location_front def _identify_back( self, goal: InteractiveGoal, performer_start: Dict[str, float], definition: ObjectDefinition, target_choice: int = None ) -> Dict[str, Any]: """Find and return a location in back of the given performer_start.""" def rotation_func(): return performer_start['rotation']['y'] for _ in range(util.MAX_TRIES): location_back = geometry.get_location_in_back_of_performer( performer_start, definition, rotation_func, room_dimensions=ROOM_DIMENSIONS ) # If we've found a valid location... if location_back: # If this is a target location, ensure it's valid for the goal. if target_choice is None or goal.validate_target_location( target_choice, location_back, [], performer_start ): break # Else, find a new location. location_back = None return location_back def _initialize_context_objects(self) -> None: """Create this hypercube's small context objects.""" critical_object_data_list = ( self._data['target'] + self._data['confusor'] + self._data['obstacle'] + self._data['occluder'] ) context_count = random.choices( SMALL_CONTEXT_OBJECT_CHOICES, weights=SMALL_CONTEXT_OBJECT_WEIGHTS, k=1 )[0] for _ in range(context_count): definition = self._choose_small_context_definition( critical_object_data_list ) for _ in range(util.MAX_TRIES): location, bounds_list = self._goal.choose_location( definition, self._performer_start, self._bounds_list, room_dimensions=ROOM_DIMENSIONS ) successful = True if successful: for object_data in critical_object_data_list: for instance in object_data.instance_list: if not instance: continue if geometry.does_fully_obstruct_target( self._performer_start['position'], instance, geometry.get_bounding_polygon(location) ): successful = False break if not successful: break if successful: break location = False if not location: raise SceneException( f'{self.get_name()} cannot find suitable location ' f'small context object {definition}') self._bounds_list = bounds_list instance = util.instantiate_object(definition, location) self._small_context_object_list.append(instance) def _initialize_interior_walls(self) -> None: """Create this hypercube's interior walls. Changes the interior_wall_list and the bounds_list.""" # All scenes will have the same room wall material/colors. room_wall_material_name = self._scene_1['wallMaterial'] room_wall_colors = self._scene_1['debug']['wallColors'] keep_unobstructed_list = [self._target_data.trained_definition] if self._confusor_data: keep_unobstructed_list.extend([ self._confusor_data.trained_definition, self._confusor_data.untrained_definition ]) number = random.choices(WALL_CHOICES, weights=WALL_WEIGHTS, k=1)[0] logging.debug(f'{self.get_name()} {number} interior walls') for _ in range(number + 1): wall = self._create_interior_wall( room_wall_material_name, room_wall_colors, self._performer_start, self._bounds_list, keep_unobstructed_list ) if wall: self._interior_wall_list.append(wall) self._bounds_list.append(wall['shows'][0]['boundingBox']) def _choose_each_object_definition(self) -> None: """Choose each object's definition to use across scenes.""" # Create all targets in the hypercube that the goal must make before # the target chosen by the plan, if the goal has multiple targets. self._common_target_list, self._bounds_list = self._create_target_list( self._goal, self._performer_start, self._bounds_list, [], end_index=self._target_data.choice ) self._assign_target_definition(self._target_data, self._goal) self._assign_confusor_definition( self._confusor_data, self._target_data.trained_definition ) for container in self._data['large_container']: self._assign_container_definition( container, self._target_data, self._confusor_data ) for container in self._data['small_container']: self._assign_container_definition( container, self._target_data, self._confusor_data, find_invalid_container=True ) larger_target_definition = self._target_data.larger_definition_of( self._data['large_container'], self._confusor_data ) for obstacle in self._data['obstacle']: self._assign_obstacle_or_occluder_definition( obstacle, larger_target_definition, is_occluder=False ) for occluder in self._data['occluder']: self._assign_obstacle_or_occluder_definition( occluder, larger_target_definition, is_occluder=True ) def _create_each_object_template(self) -> None: """Create each object's template at a base location, since later we'll move them to their final locations in all of the scenes.""" for object_data_list in self._data.values(): for object_data in object_data_list: object_data.recreate_both_templates() # Reset object's half-finished instances in all scenes. object_data.reset_all_instances() def _initialize_each_hypercube_object(self) -> None: """ Initialize this hypercube's objects: - 1. Create objects that may change in each scene (like targets). - 2. Containerize objects as needed by this hypercube's plan. - 3. Move objects into locations specific to each scene. - 4. Save objects specific to each scene. - 5. Create all other objects shared by both scenes (like distractors). """ self._choose_each_object_definition() tries = 0 while True: tries += 1 # Reset the bounds_list on each new try. self._bounds_list = [] self._create_each_object_template() try: self._assign_each_object_location() for i, instance in enumerate(self._target_data.instance_list): if not instance: raise SceneException( f'{self.get_name()} did not successfully create a ' f'target instance in scene {i} (uh-oh)! ' f'target_location_plan=' f'{self._target_data.location_plan_list[i]}') break except SceneException: logging.exception( f'{self.get_name()} _assign_each_object_location') if tries >= util.MAX_TRIES: raise SceneException( f'{self.get_name()} cannot successfully assign each ' f'object to a location -- please redo.') for object_data_list in self._data.values(): for object_data in object_data_list: self._log_debug_object_data(object_data) # Create other targets in the hypercube that the goal must make after # the target chosen by the plan, if the goal has multiple targets. common_target_list, self._bounds_list = self._create_target_list( self._goal, self._performer_start, self._bounds_list, self._common_target_list + [ instance for instance in self._target_data.instance_list if instance ], start_index=(len(self._common_target_list) + 1) ) self._common_target_list.extend(common_target_list) self._initialize_context_objects() # Add the canContainTarget tag to each container in each scene. for container_data in self._data['large_container']: for instance in container_data.instance_list: if instance: instance['canContainTarget'] = True for container_data in self._data['small_container']: for instance in container_data.instance_list: if instance: instance['canContainTarget'] = False def _log_debug_object_data(self, object_data: ObjectData) -> None: """Log debug info for the given object data.""" for scene_index, instance in enumerate(object_data.instance_list): if instance: logging.info( f'{self.get_name()} ' f'{object_data.role}_{scene_index} ' f'{instance["type"]} {instance["id"]} ' f'parent={instance.get("locationParent", None)}') else: logging.info( f'{self.get_name()} ' f'{object_data.role}_{scene_index} None') def _move_distractor_into_receptacle( self, object_instance: Dict[str, Any], performer_start: Dict[str, Dict[str, float]], bounds_list: List[List[Dict[str, float]]] ) -> Dict[str, Any]: """Create and return a receptacle object, moving the given object into the new receptacle. Changes the bounds_list.""" # Only a pickupable object can be positioned inside a receptacle. if not object_instance.get('pickupable', False): return None # Please note that an enclosable receptacle (that can have objects # positioned inside of it) may also be called a "container". dataset = specific_objects.get_container_definition_dataset() for receptacle_definition in dataset.definitions(): valid_containment = containers.can_contain( receptacle_definition, object_instance ) if valid_containment: location = geometry.calc_obj_pos( performer_start['position'], bounds_list, receptacle_definition, room_dimensions=ROOM_DIMENSIONS ) if location: receptacle_instance = util.instantiate_object( receptacle_definition, location ) area, angles = valid_containment containers.put_object_in_container( object_instance, receptacle_instance, area, angles[0] ) return receptacle_instance return None def _move_distractor_onto_receptacle( self, object_instance: Dict[str, Any], performer_start: Dict[str, Dict[str, float]], bounds_list: List[List[Dict[str, float]]] ) -> Dict[str, Any]: """Create and return a receptacle object, moving the given object onto the new receptacle. Changes the bounds_list.""" # TODO MCS-146 Position objects on top of receptacles. return None def _update_scene_at_index( self, scene: Dict[str, Any], scene_index: int, goal_template: Dict[str, Any] ) -> None: """Update the given scene with its metadata like all of its objects.""" scene_plan = self._plan_list[scene_index] scene['performerStart'] = self._performer_start scene['debug']['evaluationOnly'] = any([ object_plan.untrained for object_plan_list in scene_plan.object_plans().values() for object_plan in object_plan_list ]) scene['goal'] = copy.deepcopy(goal_template) scene['goal'] = self._goal.update_goal_template( scene['goal'], [self._target_data.instance_list[scene_index]] ) scene['goal']['last_step'] = LAST_STEP role_to_object_list = {} role_to_object_list[tags.ROLES.TARGET] = [ object_data.instance_list[scene_index] for object_data in self._data['target'] if object_data.instance_list[scene_index] ] + self._common_target_list role_to_object_list[tags.ROLES.CONFUSOR] = [ object_data.instance_list[scene_index] for object_data in self._data['confusor'] if object_data.instance_list[scene_index] ] role_to_object_list[tags.ROLES.CONTAINER] = [ object_data.instance_list[scene_index] for object_data in (self._data['large_container'] + self._data['small_container']) if object_data.instance_list[scene_index] ] role_to_object_list[tags.ROLES.CONTEXT] = ( self._small_context_object_list ) role_to_object_list[tags.ROLES.OBSTACLE] = [ object_data.instance_list[scene_index] for object_data in self._data['obstacle'] if object_data.instance_list[scene_index] ] role_to_object_list[tags.ROLES.OCCLUDER] = [ object_data.instance_list[scene_index] for object_data in self._data['occluder'] if object_data.instance_list[scene_index] ] role_to_object_list[tags.ROLES.WALL] = self._interior_wall_list update_scene_objects(scene, role_to_object_list) scene['goal']['sceneInfo'][tags.SCENE.ID] = [ scene_plan.scene_id.upper() ] scene['goal']['sceneInfo'][tags.SCENE.SLICES] = [] for tag, value in scene_plan.slice_tags.items(): scene['goal']['sceneInfo'][tag] = value scene['goal']['sceneInfo'][tags.SCENE.SLICES].append( tags.tag_to_label(tag) + ' ' + str(value) ) class InteractiveSingleSceneFactory(HypercubeFactory): def __init__(self, goal: InteractiveGoal) -> None: super().__init__( goal.get_name().replace(' ', '').capitalize(), training=True ) self.goal = goal def _build( self, body_template: Dict[str, Any], role_to_type: Dict[str, str] ) -> Hypercube: target_object_plan = ObjectPlan( ObjectLocationPlan.RANDOM, definition=base_objects.create_soccer_ball() ) return InteractiveHypercube( body_template, self.goal, role_to_type, '', [InteractivePlan('', {}, target_object_plan)], training=self.training ) class InteractiveContainerTrainingHypercubeFactory(HypercubeFactory): def __init__(self, goal: InteractiveGoal) -> None: super().__init__( 'Container' + goal.get_name().replace(' ', '').capitalize() + 'Training', training=True ) self.goal = goal def _build( self, body_template: Dict[str, Any], role_to_type: Dict[str, str] ) -> Hypercube: return InteractiveHypercube( body_template, self.goal, role_to_type, 'container', create_container_hypercube_plan_list(), training=self.training ) class InteractiveObstacleTrainingHypercubeFactory(HypercubeFactory): def __init__(self, goal: InteractiveGoal) -> None: super().__init__( 'Obstacle' + goal.get_name().replace(' ', '').capitalize() + 'Training', training=True ) self.goal = goal def _build( self, body_template: Dict[str, Any], role_to_type: Dict[str, str] ) -> Hypercube: return InteractiveHypercube( body_template, self.goal, role_to_type, 'obstacle', create_obstacle_hypercube_plan_list(), training=self.training ) class InteractiveOccluderTrainingHypercubeFactory(HypercubeFactory): def __init__(self, goal: InteractiveGoal) -> None: super().__init__( 'Occluder' + goal.get_name().replace(' ', '').capitalize() + 'Training', training=True ) self.goal = goal def _build( self, body_template: Dict[str, Any], role_to_type: Dict[str, str] ) -> Hypercube: return InteractiveHypercube( body_template, self.goal, role_to_type, 'occluder', create_occluder_hypercube_plan_list(), training=self.training ) class InteractiveContainerEvaluationHypercubeFactory(HypercubeFactory): def __init__(self, goal: InteractiveGoal) -> None: super().__init__( 'Container' + goal.get_name().replace(' ', '').capitalize() + 'Evaluation', training=False ) self.goal = goal def _build( self, body_template: Dict[str, Any], role_to_type: Dict[str, str] ) -> Hypercube: return InteractiveHypercube( body_template, self.goal, role_to_type, 'container', create_container_hypercube_plan_list(), training=self.training ) class InteractiveContainerEvaluation4HypercubeFactory(HypercubeFactory): def __init__(self, goal: InteractiveGoal) -> None: super().__init__( 'Container' + goal.get_name().replace(' ', '').capitalize() + 'Evaluation4', training=False ) self.goal = goal def _build( self, body_template: Dict[str, Any], role_to_type: Dict[str, str] ) -> Hypercube: return InteractiveHypercube( body_template, self.goal, role_to_type, 'container', create_eval_4_container_hypercube_plan_list(), training=self.training ) class InteractiveObstacleEvaluationHypercubeFactory(HypercubeFactory): def __init__(self, goal: InteractiveGoal) -> None: super().__init__( 'Obstacle' + goal.get_name().replace(' ', '').capitalize() + 'Evaluation', training=False ) self.goal = goal def _build( self, body_template: Dict[str, Any], role_to_type: Dict[str, str] ) -> Hypercube: return InteractiveHypercube( body_template, self.goal, role_to_type, 'obstacle', create_obstacle_hypercube_plan_list(), training=self.training ) class InteractiveOccluderEvaluationHypercubeFactory(HypercubeFactory): def __init__(self, goal: InteractiveGoal) -> None: super().__init__( 'Occluder' + goal.get_name().replace(' ', '').capitalize() + 'Evaluation', training=False ) self.goal = goal def _build( self, body_template: Dict[str, Any], role_to_type: Dict[str, str] ) -> Hypercube: return InteractiveHypercube( body_template, self.goal, role_to_type, 'occluder', create_occluder_hypercube_plan_list(), training=self.training ) INTERACTIVE_TRAINING_HYPERCUBE_LIST = [ InteractiveSingleSceneFactory(RetrievalGoal('retrieval')), InteractiveContainerTrainingHypercubeFactory(RetrievalGoal('container')), InteractiveObstacleTrainingHypercubeFactory(RetrievalGoal('obstacle')), InteractiveOccluderTrainingHypercubeFactory(RetrievalGoal('occluder')) ] INTERACTIVE_EVALUATION_HYPERCUBE_LIST = [ InteractiveContainerEvaluationHypercubeFactory(RetrievalGoal('container')), InteractiveObstacleEvaluationHypercubeFactory(RetrievalGoal('obstacle')), InteractiveOccluderEvaluationHypercubeFactory(RetrievalGoal('occluder')), InteractiveContainerEvaluation4HypercubeFactory(RetrievalGoal('container')) ]
the-stack_0_4433
import collections from nltk import NaiveBayesClassifier, DecisionTreeClassifier from nltk.metrics import precision, recall, f_measure from nltk.classify import apply_features, accuracy from nltk.classify.scikitlearn import SklearnClassifier from prueba_paquete.utils import clean_html_tags, shuffled, tokenize_and_stem from prueba_paquete.concept_extraction import ConceptExtractor from sklearn.svm import LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction import DictVectorizer class DocumentClassifier(): ''' Train a classifier with labeled documents and classify new documents into one of the labeled clases. We call 'dev docs' to the documents set provided for training the classifier. These 'dev docs' are splitted into two sub sets: 'train docs' and 'test docs' that would be used to train and test the machine learning model respectively. Parameters ---------- train_p : float, 0.8 by default The proportion of the 'dev docs' used as 'train docs' Use values greater than 0 and lower than 1. The remaining docs will be using as 'test docs' eq_label_num : boolean, True by default If true, 'train docs' will have equal number of documents for each class. This number will be the lowest label count. complete_p : boolean, True by default Used when eq_label_num is True, but the lowest label count is not enough for getting the train_p proportion of 'train docs'. If this attribute is True, more documents from 'test docs' will be moved to 'train docs' until we get train_p n_folds : integer, 10 by default Number of folds to be used in k-fold cross validation technique for choosing different sets as 'train docs' vocab_size : integer, 500 by default This is the size of the vocabulary set that will be used for extracting features out of the docs t_classifier : string, 'NB' by default This is the type of classifier model used. Available types are 'NB' (Naive Bayes), 'DT' (decision tree), 'RF' (Random Forest), and 'SVM' (Support Vector Machine) language: string, 'english'; by default Language on which documents are written ''' def __init__(self, train_p=0.8, eq_label_num=True, complete_p=True, n_folds=10, vocab_size=250, t_classifier="NB", language="english", stem=False): self.train_p = train_p self.eq_label_num = eq_label_num self.complete_p = complete_p self.n_folds = n_folds self.vocab_size = vocab_size self.t_classifier = t_classifier self.language = language self.stem = stem self._vocab = [] self._classified_docs = [] self._classifier = None self._accuracy = 0 self._precision = {} self._recall = {} self._f_measure = {} self._train_docs = [] self._test_docs = [] def split_train_and_test(self, docs): ''' Split the 'dev docs' set into the 'train docs' and 'test docs' subsets Parameters ---------- docs: iterable An iterable which yields a list of strings ''' categories_count = self.count_categories(docs) label_limit = min([c for (k,c) in categories_count.items()]) labeled_docs = {} train_docs = [] test_docs = [] # Split docs by label for (cat,count) in categories_count.items(): labeled_docs[cat] = shuffled([t for (t,k) in docs if k == cat]) if self.eq_label_num: # Select the same number of doc for all labels for cat, cat_docs in labeled_docs.items(): cat_limit = label_limit cat_train_docs = cat_docs[:cat_limit] cat_test_docs = cat_docs[cat_limit:] train_docs += [(doc, cat) for doc in cat_train_docs] test_docs += [(doc, cat) for doc in cat_test_docs] l_train = len(train_docs) l_docs = len(docs) l_test = len(test_docs) actual_p = l_train / l_docs # If the training proportion is not if self.complete_p == True and actual_p < self.train_p: shuffled_extra = shuffled(test_docs) extra_i = 0 while(actual_p < self.train_p and extra_i < l_test): aux_l_train = l_train + extra_i actual_p = aux_l_train / l_docs extra_i += 1 train_docs += shuffled_extra[:extra_i] test_docs = shuffled_extra[extra_i:] else: label_limit = int(self.train_p * len(docs)) shuffled_docs = shuffled(docs) train_docs = shuffled_docs[:label_limit] test_docs = shuffled_docs[label_limit:] self._train_docs = train_docs self._test_docs = test_docs def cross_validation_train(self, dev_docs): ''' Applies k-fold cross validation technique to split the docs into different pairs of training and testing sets. For each pair, it trains and evals the a classifier, choosing the one with the best accuracy Parameters ---------- dev_docs: iterable An iterable which yields a list of strings ''' dev_docs = shuffled(dev_docs) accuracies = [] best_accuracy = 0 subset_size = int(len(dev_docs)/self.n_folds) for i in range(self.n_folds): classifier_list = [] train_docs = (dev_docs[(i + 1) * subset_size:] + \ dev_docs[:i * subset_size]) test_docs = dev_docs[i * subset_size:(i + 1) * subset_size] train_set = apply_features(self.get_doc_features, train_docs) if self.t_classifier == "NB": classifier = NaiveBayesClassifier.train(train_set) elif self.t_classifier == "DT": classifier = DecisionTreeClassifier.train(train_set) elif self.t_classifier == "RF": classifier = SklearnClassifier(RandomForestClassifier())\ .train(train_set) elif self.t_classifier == "SVM": classifier = SklearnClassifier(LinearSVC(), sparse=False)\ .train(train_set) classifier_list.append(classifier) test_set = apply_features(self.get_doc_features, test_docs, True) accuracies.append((accuracy(classifier, test_set)) * 100) if accuracies[-1] > best_accuracy: best_accuracy = accuracies[-1] self._classifier = classifier self._train_docs = train_docs self._test_docs = test_docs def equitative_class_train(self, dev_docs): categories_count = self.count_categories(dev_docs) labeled_docs = {} for (cat,count) in categories_count.items(): labeled_docs[cat] = shuffled([t for (t,k) in dev_docs if k == cat]) train_docs = [] test_docs = [] for cat, l in labeled_docs.items(): cat_limit = int(self.train_p * len(l)) train_docs += [(t, cat) for t in l[:cat_limit]] test_docs += [(t, cat) for t in l[cat_limit:]] self._train_docs = train_docs self._test_docs = test_docs # print("len dev docs", len(dev_docs)) # print("categories count", categories_count) # print("count train", self.count_categories(train_docs)) # print("count test", self.count_categories(test_docs)) # split dev docs and create traning and test set # self.split_train_and_test(dev_docs) train_set = apply_features(self.get_doc_features, self._train_docs) # create and train the classification model according to t_classifier if self.t_classifier == "NB": self._classifier = NaiveBayesClassifier.train(train_set) elif self.t_classifier == "DT": self._classifier = DecisionTreeClassifier.train(train_set) elif self.t_classifier == "RF": self._classifier = SklearnClassifier(RandomForestClassifier())\ .train(train_set) elif self.t_classifier == "SVM": self._classifier = SklearnClassifier(LinearSVC(), sparse=False)\ .train(train_set) def count_categories(self, docs): ''' Count how many documents of each class are in the 'dev docs' set Parameters ---------- docs: iterable An iterable which yields a list of strings Returns ------- counters: dictionary A dictiionary where each item is the number of docs for a class ''' categories = set([c for (t,c) in docs]) counters = {} for cat in categories: counters[cat] = 0 for (text, cat) in docs: counters[cat] += 1 self._categories = sorted(categories) return counters def get_doc_features(self, doc): ''' Extract features of a document, checking the presence of the words in the vocabulary Parameters ---------- doc: string The doc from which features will be extracted Returns ------- features: dictionary A dictionary where each item indicates the presence of a word from the vocabulary in the input doc ''' features = {} for word in self._vocab: features['contains({})'.format(word)] = (word in doc) return features def train_classifier(self, dev_docs): ''' Create the features vocabulary from 'dev docs', Split 'dev docs', train the classifier with 'train docs', Evaluate accuracy with 'test docs' Parameters ---------- dev_docs: iterable An iterable which yields a list of strings ''' # create vocabulary for feature extraction ce = ConceptExtractor(num_concepts=self.vocab_size, language=self.language) ce.extract_concepts([t for (t,c) in dev_docs]) self._vocab = sorted([c for (c,f) in ce.common_concepts], key=str.lower) if (self.stem): self._vocab = [tokenize_and_stem(w, language=self.language)[0] \ for w in self._vocab] # self.cross_validation_train(dev_docs) self.equitative_class_train(dev_docs) def eval_classifier(self): ''' Test the model and calculates the metrics of accuracy, precision, recall and f-measure ''' test_set = apply_features(self.get_doc_features, self._test_docs, True) self._accuracy = accuracy(self._classifier, test_set) refsets = collections.defaultdict(set) testsets = collections.defaultdict(set) for i, (feats, label) in enumerate(test_set): refsets[label].add(i) observed = self._classifier.classify(feats) testsets[observed].add(i) self.count_categories(self._train_docs) for cat in self._categories: self._precision[cat] = precision(refsets[cat], testsets[cat]) self._recall[cat] = recall(refsets[cat], testsets[cat]) self._f_measure[cat] = f_measure(refsets[cat], testsets[cat]) def classify_docs(self, docs): ''' First train the classifier with the labeled data. Then classifies the unlabeled data. Parameters ---------- docs: iterable An iterable which yields a list of strings ''' dev_docs = [(t, c) for (t, c) in docs if c!=""] unlabeled_docs = [t for (t, c) in docs if c==""] self.train_classifier(dev_docs) self.eval_classifier() results = [] for doc in unlabeled_docs: doc_feats = self.get_doc_features(doc) result = self._classifier.classify(doc_feats) results.append((doc, result)) self._classified_docs = results self._final_cat_count = self.count_categories(dev_docs+results) @property def classified_docs(self): return self._classified_docs @property def accuracy(self): return self._accuracy @property def precision(self): return self._precision @property def recall(self): return self._recall @property def f_measure(self): return self._f_measure @property def category_count(self): return self._final_cat_count
the-stack_0_4435
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import socket import threading from PyQt6 import QtCore class Socket_server(): """ A class for creating and listening the socket server that connect errors messages from device modules and a dedicated text box in the main window of the programm. """ def start_messenger_server(self, helper): """ A function to create a socket server. This function should be run in another thread in order to not block the execution of the main programm. """ sock = socket.socket() sock.bind(('', 9091)) sock.listen(2) while True: client, addr = sock.accept() client_handler = threading.Thread(target=self.message, args=(helper, client), daemon = True).start() def message(self, helper, client): """ A function to read a message from clients and emit a special signal with the message to a helper class and finally to a dedicated text box in the main window of the programm. This function should be run in another thread in order to not block the execution of the main programm. """ data = client.recv(1024).decode() helper.changedSignal.emit(data) #print(data) class Helper(QtCore.QObject): """ A helper class to connect an event in another thread to a function in the main thread. """ changedSignal = QtCore.pyqtSignal(str) if __name__ == "__main__": main()
the-stack_0_4436
#!/usr/bin/env python3 """ Functions for finding and killing processes """ import os import psutil import signal import time def process_exists(pid): """ Determine if process 'pid' exists. """ try: os.kill(pid, 0) except ProcessLookupError: return False # Doesn't exist except PermissionError: pass # Exists but not ours return True def kill_processes(first_args, orphaned_only=False, send_signal=signal.SIGINT, wait=2.0, retry=0.25 ): """ Find all processes whose arguments begin with the list 'first_args' and kill them off, first with 'send_signal' for up to 'wait' seconds and retrying every 'retry' seconds. If, after that time, any processes are left, send them a SIGKILL. If 'orphaned_only' is True, only kill processes with a PPID of 1. """ if not isinstance(first_args,list): raise ValueError("Program arguments must be in a list") len_first_args = len(first_args) if len_first_args < 1: raise ValueError("Must have at least one argument to match.") pids = [] for process_item in psutil.process_iter(): process = process_item.as_dict() if (process["cmdline"][0:len_first_args] == first_args) \ and ((not orphaned_only) or (process["ppid"] == 1)): pids.append(process["pid"]) times = (wait / retry) while times: existing = 0 # Do the kills in parallel to make things more predictable # time-wise. for pid in pids: if process_exists(pid): existing += 1 os.kill(pid, send_signal) if existing == 0: return # Awww. Ran out of PIDdies. time.sleep(retry) times -= 1 # Last resort for pid in pids: if process_exists(pid): os.kill(pid, signal.SIGKILL)
the-stack_0_4437
from __future__ import absolute_import, division, print_function import pytest import numpy as np from glue.core import Data from glue.tests.helpers import requires_h5py from ..hdf5 import hdf5_writer DTYPES = [np.int16, np.int32, np.int64, np.float32, np.float64] @requires_h5py @pytest.mark.parametrize('dtype', DTYPES) def test_hdf5_writer_data(tmpdir, dtype): filename = tmpdir.join('test1.hdf5').strpath data = Data(x=np.arange(6).reshape(2, 3).astype(dtype), y=(np.arange(6) * 2).reshape(2, 3).astype(dtype)) hdf5_writer(filename, data) from h5py import File f = File(filename) assert len(f) == 2 np.testing.assert_equal(f['x'][()], data['x']) np.testing.assert_equal(f['y'][()], data['y']) assert f['x'][()].dtype == dtype assert f['y'][()].dtype == dtype f.close() # Only write out some components filename = tmpdir.join('test2.hdf5').strpath hdf5_writer(filename, data, components=[data.id['x']]) f = File(filename) assert len(f) == 1 np.testing.assert_equal(f['x'][()], data['x']) f.close() @requires_h5py @pytest.mark.parametrize('dtype', DTYPES) def test_hdf5_writer_subset(tmpdir, dtype): filename = tmpdir.join('test').strpath data = Data(x=np.arange(6).reshape(2, 3).astype(dtype), y=(np.arange(6) * 2).reshape(2, 3).astype(dtype)) subset = data.new_subset() subset.subset_state = data.id['x'] > 2 hdf5_writer(filename, subset) from h5py import File f = File(filename) if np.dtype(dtype).kind == 'f': assert np.all(np.isnan(f['x'][0])) assert np.all(np.isnan(f['y'][0])) else: np.testing.assert_equal(f['x'][0], 0) np.testing.assert_equal(f['y'][0], 0) np.testing.assert_equal(f['x'][1], data['x'][1]) np.testing.assert_equal(f['y'][1], data['y'][1]) assert f['x'][()].dtype == dtype assert f['y'][()].dtype == dtype f.close()
the-stack_0_4438
import torch import torch.nn as nn from torchvision import models class BaseModel_scratch(nn.Module): def __init__(self, model_name, eps=3, num_classes=200, init_weights=True): super().__init__() if model_name == 'vgg16bn': backbone = nn.Sequential(*list(models.vgg16_bn(pretrained=False).features.children())[:-4]) last_conv = nn.Sequential( nn.Conv2d(512, num_classes * eps, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(num_classes * eps), nn.ReLU(True), nn.AvgPool2d(kernel_size=1, stride=1, padding=0) ) else: backbone = None last_conv = None self.backbone = backbone self.last_conv = last_conv self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) if init_weights: self._initialize_weights() def forward(self, x): feat = self.backbone(x) feat = self.last_conv(feat) out = self.maxpool(feat) out = out.view(out.size(0), -1) return feat, out def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) if __name__ == '__main__': model = BaseModel_scratch('vgg16bn') print(model) inp = torch.randn((3, 3, 224, 224)) a, b = model(inp) print(a.size()) print(b.size())
the-stack_0_4439
# -*- coding: utf-8 -*- # Copyright 2013-2021 CERN # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: # - Vincent Garonne <[email protected]>, 2013-2016 # - Cedric Serfon <[email protected]>, 2014-2019 # - Thomas Beermann <[email protected]>, 2014 # - Mario Lassnig <[email protected]>, 2017-2019 # - Hannes Hansen <[email protected]>, 2018-2019 # - Martin Barisits <[email protected]>, 2019-2021 # - Andrew Lister <[email protected]>, 2019 # - Ilija Vukotic <[email protected]>, 2020 # - Luc Goossens <[email protected]>, 2020 # - Patrick Austin <[email protected]>, 2020 # - Eric Vaandering <[email protected]>, 2020 # - Benedikt Ziemons <[email protected]>, 2020 # - James Perry <[email protected]>, 2020 # - Radu Carpa <[email protected]>, 2021 from rucio.api import permission from rucio.db.sqla.constants import BadFilesStatus from rucio.core import replica from rucio.core.rse import get_rse_id, get_rse_name from rucio.common import exception from rucio.common.schema import validate_schema from rucio.common.types import InternalAccount, InternalScope from rucio.common.utils import api_update_return_dict def get_bad_replicas_summary(rse_expression=None, from_date=None, to_date=None, vo='def'): """ List the bad file replicas summary. Method used by the rucio-ui. :param rse_expression: The RSE expression. :param from_date: The start date. :param to_date: The end date. :param vo: the VO to act on. """ replicas = replica.get_bad_replicas_summary(rse_expression=rse_expression, from_date=from_date, to_date=to_date, filter_={'vo': vo}) return [api_update_return_dict(r) for r in replicas] def list_bad_replicas_status(state=BadFilesStatus.BAD, rse=None, younger_than=None, older_than=None, limit=None, list_pfns=False, vo='def'): """ List the bad file replicas history states. Method used by the rucio-ui. :param state: The state of the file (SUSPICIOUS or BAD). :param rse: The RSE name. :param younger_than: datetime object to select bad replicas younger than this date. :param older_than: datetime object to select bad replicas older than this date. :param limit: The maximum number of replicas returned. :param vo: The VO to act on. """ rse_id = None if rse is not None: rse_id = get_rse_id(rse=rse, vo=vo) replicas = replica.list_bad_replicas_status(state=state, rse_id=rse_id, younger_than=younger_than, older_than=older_than, limit=limit, list_pfns=list_pfns, vo=vo) return [api_update_return_dict(r) for r in replicas] def declare_bad_file_replicas(pfns, reason, issuer, vo='def'): """ Declare a list of bad replicas. :param pfns: The list of PFNs. :param reason: The reason of the loss. :param issuer: The issuer account. :param vo: The VO to act on. """ kwargs = {} if not permission.has_permission(issuer=issuer, vo=vo, action='declare_bad_file_replicas', kwargs=kwargs): raise exception.AccessDenied('Account %s can not declare bad replicas' % (issuer)) issuer = InternalAccount(issuer, vo=vo) replicas = replica.declare_bad_file_replicas(pfns=pfns, reason=reason, issuer=issuer, status=BadFilesStatus.BAD) for k in list(replicas): try: rse = get_rse_name(rse_id=k) replicas[rse] = replicas.pop(k) except exception.RSENotFound: pass return replicas def declare_suspicious_file_replicas(pfns, reason, issuer, vo='def'): """ Declare a list of bad replicas. :param pfns: The list of PFNs. :param reason: The reason of the loss. :param issuer: The issuer account. :param vo: The VO to act on. """ kwargs = {} if not permission.has_permission(issuer=issuer, vo=vo, action='declare_suspicious_file_replicas', kwargs=kwargs): raise exception.AccessDenied('Account %s can not declare suspicious replicas' % (issuer)) issuer = InternalAccount(issuer, vo=vo) replicas = replica.declare_bad_file_replicas(pfns=pfns, reason=reason, issuer=issuer, status=BadFilesStatus.SUSPICIOUS) for k in list(replicas): try: rse = get_rse_name(rse_id=k) replicas[rse] = replicas.pop(k) except exception.RSENotFound: pass return replicas def get_did_from_pfns(pfns, rse, vo='def'): """ Get the DIDs associated to a PFN on one given RSE :param pfns: The list of PFNs. :param rse: The RSE name. :param vo: The VO to act on. :returns: A dictionary {pfn: {'scope': scope, 'name': name}} """ rse_id = get_rse_id(rse=rse, vo=vo) replicas = replica.get_did_from_pfns(pfns=pfns, rse_id=rse_id, vo=vo) for r in replicas: for k in r.keys(): r[k]['scope'] = r[k]['scope'].external yield r def list_replicas(dids, schemes=None, unavailable=False, request_id=None, ignore_availability=True, all_states=False, rse_expression=None, client_location=None, domain=None, signature_lifetime=None, resolve_archives=True, resolve_parents=False, nrandom=None, updated_after=None, issuer=None, vo='def'): """ List file replicas for a list of data identifiers. :param dids: The list of data identifiers (DIDs). :param schemes: A list of schemes to filter the replicas. (e.g. file, http, ...) :param unavailable: (deprecated) Also include unavailable replicas in the list. :param request_id: ID associated with the request for debugging. :param all_states: Return all replicas whatever state they are in. Adds an extra 'states' entry in the result dictionary. :param rse_expression: The RSE expression to restrict replicas on a set of RSEs. :param client_location: Client location dictionary for PFN modification {'ip', 'fqdn', 'site', 'latitude', 'longitude'} :param domain: The network domain for the call, either None, 'wan' or 'lan'. Compatibility fallback: None falls back to 'wan'. :param signature_lifetime: If supported, in seconds, restrict the lifetime of the signed PFN. :param resolve_archives: When set to True, find archives which contain the replicas. :param resolve_parents: When set to True, find all parent datasets which contain the replicas. :param updated_after: datetime object (UTC time), only return replicas updated after this time :param issuer: The issuer account. :param vo: The VO to act on. """ validate_schema(name='r_dids', obj=dids, vo=vo) # Allow selected authenticated users to retrieve signed URLs. # Unauthenticated users, or permission-less users will get the raw URL without the signature. sign_urls = False if permission.has_permission(issuer=issuer, vo=vo, action='get_signed_url', kwargs={}): sign_urls = True for d in dids: d['scope'] = InternalScope(d['scope'], vo=vo) replicas = replica.list_replicas(dids=dids, schemes=schemes, unavailable=unavailable, request_id=request_id, ignore_availability=ignore_availability, all_states=all_states, rse_expression=rse_expression, client_location=client_location, domain=domain, sign_urls=sign_urls, signature_lifetime=signature_lifetime, resolve_archives=resolve_archives, resolve_parents=resolve_parents, nrandom=nrandom, updated_after=updated_after) for rep in replicas: # 'rses' and 'states' use rse_id as the key. This needs updating to be rse. keys = ['rses', 'states'] for k in keys: old_dict = rep.get(k, None) if old_dict is not None: new_dict = {} for rse_id in old_dict: rse = get_rse_name(rse_id=rse_id) if rse_id is not None else None new_dict[rse] = old_dict[rse_id] rep[k] = new_dict rep['scope'] = rep['scope'].external if 'parents' in rep: new_parents = [] for p in rep['parents']: scope, name = p.split(':') scope = InternalScope(scope, fromExternal=False).external new_parents.append('{}:{}'.format(scope, name)) rep['parents'] = new_parents yield rep def add_replicas(rse, files, issuer, ignore_availability=False, vo='def'): """ Bulk add file replicas. :param rse: The RSE name. :param files: The list of files. :param issuer: The issuer account. :param ignore_availability: Ignore blocked RSEs. :param vo: The VO to act on. :returns: True is successful, False otherwise """ for v_file in files: v_file.update({"type": "FILE"}) # Make sure DIDs are identified as files for checking validate_schema(name='dids', obj=files, vo=vo) rse_id = get_rse_id(rse=rse, vo=vo) kwargs = {'rse': rse, 'rse_id': rse_id} if not permission.has_permission(issuer=issuer, vo=vo, action='add_replicas', kwargs=kwargs): raise exception.AccessDenied('Account %s can not add file replicas on %s' % (issuer, rse)) if not permission.has_permission(issuer=issuer, vo=vo, action='skip_availability_check', kwargs=kwargs): ignore_availability = False issuer = InternalAccount(issuer, vo=vo) for f in files: f['scope'] = InternalScope(f['scope'], vo=vo) if 'account' in f: f['account'] = InternalAccount(f['account'], vo=vo) replica.add_replicas(rse_id=rse_id, files=files, account=issuer, ignore_availability=ignore_availability) def delete_replicas(rse, files, issuer, ignore_availability=False, vo='def'): """ Bulk delete file replicas. :param rse: The RSE name. :param files: The list of files. :param issuer: The issuer account. :param ignore_availability: Ignore blocked RSEs. :param vo: The VO to act on. :returns: True is successful, False otherwise """ validate_schema(name='r_dids', obj=files, vo=vo) rse_id = get_rse_id(rse=rse, vo=vo) kwargs = {'rse': rse, 'rse_id': rse_id} if not permission.has_permission(issuer=issuer, vo=vo, action='delete_replicas', kwargs=kwargs): raise exception.AccessDenied('Account %s can not delete file replicas on %s' % (issuer, rse)) if not permission.has_permission(issuer=issuer, vo=vo, action='skip_availability_check', kwargs=kwargs): ignore_availability = False for f in files: f['scope'] = InternalScope(f['scope'], vo=vo) replica.delete_replicas(rse_id=rse_id, files=files, ignore_availability=ignore_availability) def update_replicas_states(rse, files, issuer, vo='def'): """ Update File replica information and state. :param rse: The RSE name. :param files: The list of files. :param issuer: The issuer account. :param vo: The VO to act on. """ for v_file in files: v_file.update({"type": "FILE"}) # Make sure DIDs are identified as files for checking validate_schema(name='dids', obj=files, vo=vo) rse_id = get_rse_id(rse=rse, vo=vo) kwargs = {'rse': rse, 'rse_id': rse_id} if not permission.has_permission(issuer=issuer, vo=vo, action='update_replicas_states', kwargs=kwargs): raise exception.AccessDenied('Account %s can not update file replicas state on %s' % (issuer, rse)) replicas = [] for file in files: rep = file rep['rse_id'] = rse_id rep['scope'] = InternalScope(rep['scope'], vo=vo) replicas.append(rep) replica.update_replicas_states(replicas=replicas) def list_dataset_replicas(scope, name, deep=False, vo='def'): """ :param scope: The scope of the dataset. :param name: The name of the dataset. :param deep: Lookup at the file level. :param vo: The VO to act on. :returns: A list of dict dataset replicas """ scope = InternalScope(scope, vo=vo) replicas = replica.list_dataset_replicas(scope=scope, name=name, deep=deep) for r in replicas: r['scope'] = r['scope'].external yield r def list_dataset_replicas_bulk(dids, vo='def'): """ :param dids: The list of did dictionaries with scope and name. :param vo: The VO to act on. :returns: A list of dict dataset replicas """ validate_schema(name='r_dids', obj=dids, vo=vo) names_by_scope = dict() for d in dids: if d['scope'] in names_by_scope: names_by_scope[d['scope']].append(d['name']) else: names_by_scope[d['scope']] = [d['name'], ] names_by_intscope = dict() for scope in names_by_scope: internal_scope = InternalScope(scope, vo=vo) names_by_intscope[internal_scope] = names_by_scope[scope] replicas = replica.list_dataset_replicas_bulk(names_by_intscope) for r in replicas: yield api_update_return_dict(r) def list_dataset_replicas_vp(scope, name, deep=False, vo='def'): """ :param scope: The scope of the dataset. :param name: The name of the dataset. :param deep: Lookup at the file level. :param vo: The vo to act on. :returns: If VP exists a list of dicts of sites, otherwise nothing NOTICE: This is an RnD function and might change or go away at any time. """ scope = InternalScope(scope, vo=vo) for r in replica.list_dataset_replicas_vp(scope=scope, name=name, deep=deep): yield api_update_return_dict(r) def list_datasets_per_rse(rse, filters={}, limit=None, vo='def'): """ :param scope: The scope of the dataset. :param name: The name of the dataset. :param filters: dictionary of attributes by which the results should be filtered. :param limit: limit number. :param session: Database session to use. :param vo: The VO to act on. :returns: A list of dict dataset replicas """ rse_id = get_rse_id(rse=rse, vo=vo) if 'scope' in filters: filters['scope'] = InternalScope(filters['scope'], vo=vo) for r in replica.list_datasets_per_rse(rse_id, filters=filters, limit=limit): yield api_update_return_dict(r) def add_bad_pfns(pfns, issuer, state, reason=None, expires_at=None, vo='def'): """ Add bad PFNs. :param pfns: the list of new files. :param issuer: The issuer account. :param state: One of the possible states : BAD, SUSPICIOUS, TEMPORARY_UNAVAILABLE. :param reason: A string describing the reason of the loss. :param expires_at: Specify a timeout for the TEMPORARY_UNAVAILABLE replicas. None for BAD files. :param vo: The VO to act on. :param session: The database session in use. :returns: True is successful. """ kwargs = {'state': state} if not permission.has_permission(issuer=issuer, vo=vo, action='add_bad_pfns', kwargs=kwargs): raise exception.AccessDenied('Account %s can not declare bad PFNs' % (issuer)) issuer = InternalAccount(issuer, vo=vo) return replica.add_bad_pfns(pfns=pfns, account=issuer, state=state, reason=reason, expires_at=expires_at) def add_bad_dids(dids, rse, issuer, state, reason=None, expires_at=None, vo='def'): """ Add bad replica entries for DIDs. :param dids: the list of dids with bad replicas at rse. :param rse: the rse with the bad replicas. :param issuer: The issuer account. :param state: One of the possible states : BAD :param reason: A string describing the reason of the loss. :param expires_at: None :param vo: The VO to act on. :returns: The list of replicas not declared bad """ kwargs = {'state': state} if not permission.has_permission(issuer=issuer, vo=vo, action='add_bad_pfns', kwargs=kwargs): raise exception.AccessDenied('Account %s can not declare bad PFN or DIDs' % issuer) issuer = InternalAccount(issuer, vo=vo) rse_id = get_rse_id(rse=rse) return replica.add_bad_dids(dids=dids, rse_id=rse_id, reason=reason, issuer=issuer, state=state) def get_suspicious_files(rse_expression, younger_than=None, nattempts=None, vo='def'): """ List the list of suspicious files on a list of RSEs :param rse_expression: The RSE expression where the suspicious files are located :param younger_than: datetime object to select the suspicious replicas younger than this date. :param nattempts: The number of time the replicas have been declared suspicious :param vo: The VO to act on. """ replicas = replica.get_suspicious_files(rse_expression=rse_expression, younger_than=younger_than, nattempts=nattempts, filter_={'vo': vo}) return [api_update_return_dict(r) for r in replicas] def set_tombstone(rse, scope, name, issuer, vo='def'): """ Sets a tombstone on one replica. :param rse: name of the RSE. :param scope: scope of the replica DID. :param name: name of the replica DID. :param issuer: The issuer account :param vo: The VO to act on. """ rse_id = get_rse_id(rse, vo=vo) if not permission.has_permission(issuer=issuer, vo=vo, action='set_tombstone', kwargs={}): raise exception.AccessDenied('Account %s can not set tombstones' % (issuer)) scope = InternalScope(scope, vo=vo) replica.set_tombstone(rse_id, scope, name)
the-stack_0_4440
# Copyright (C) 2020 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Test Access Control roles propagation.""" from ggrc.models import all_models, get_model from integration.ggrc import TestCase from integration.ggrc.models import factories from integration.ggrc_basic_permissions.models \ import factories as rbac_factories class TestACLPropagation(TestCase): """TestACLPropagation base class.""" GLOBAL_ROLES = ["Creator", "Reader", "Editor", "Administrator"] SUCCESS = 200 SUCCESS_CREATED = 201 FORBIDDEN = 403 ACCESS_ERROR = ("Response for current operation has wrong status. {} " "expected, {} received.") ACCESS_QUERY_API_ERROR = ("Current operation has wrong result. {} " "expected, {} received. ({} count={})") CAN_NOT_READ_ERROR = ("{} objects weren't read. Non-zero object count " "expected.") CAN_READ_ERROR = "Some {} objects were read. No objects expected." READ_COLLECTION_OPERATIONS = ["read_revisions", "get_latest_version"] QUERY_API_OPERATIONS = ["read_comments", "read_document_comments"] def setup_people(self): """Setup people with global roles.""" # pylint: disable=attribute-defined-outside-init roles_query = all_models.Role.query.filter( all_models.Role.name.in_(self.GLOBAL_ROLES) ) global_roles = {role.name: role for role in roles_query} self.people = {} with factories.single_commit(): for role_name in self.GLOBAL_ROLES: user = factories.PersonFactory() self.people[role_name] = user rbac_factories.UserRoleFactory( role=global_roles[role_name], person=user ) def assert_read_collection(self, response, expected_res, model): """Check collection read operation. Args: response(TestResponse): Received operation response. expected_res: Boolean flag showing if objects should be read or not. model: Model name. """ self.assertStatus(response, self.SUCCESS) table_plural = get_model(model)._inflector.table_plural response_data = response.json.get("{}_collection".format(table_plural), {}) assert_raises = False if isinstance(expected_res, tuple): expected_res, assert_raises = expected_res if expected_res: err = self.CAN_NOT_READ_ERROR.format(model) else: err = self.CAN_READ_ERROR.format(model) if assert_raises == "unimplemented": with self.assertRaises(AssertionError): self.assertEqual( bool(response_data.get(table_plural)), expected_res, err, ) else: self.assertEqual( bool(response_data.get(table_plural)), expected_res, err, ) def assert_status(self, response, expected_res): """Check correctness of response status. Args: response: Response instance. expected_res: Boolean flag. If True 200/201 status expected, if False 403 status expected. """ assert_raises = False if isinstance(expected_res, tuple): expected_res, assert_raises = expected_res success_statuses = [self.SUCCESS, self.SUCCESS_CREATED] exp_statuses = success_statuses if expected_res else [self.FORBIDDEN] if assert_raises: with self.assertRaises(AssertionError): self.assertIn( response.status_code, exp_statuses, self.ACCESS_ERROR.format(exp_statuses[0], response.status_code) ) else: self.assertIn( response.status_code, exp_statuses, self.ACCESS_ERROR.format(exp_statuses[0], response.status_code) ) def assert_query_api_response(self, response, expected_res): """Check correctness of query API response. Args: response: query api result of action execution. expected_res: Boolean flag. """ for resp_item in response.json: for obj, resp in resp_item.iteritems(): res = bool(resp['count']) self.assertEqual(res, expected_res, self.ACCESS_QUERY_API_ERROR.format(expected_res, res, obj, resp['count'])) def assert_result(self, response, expected_res, operation, model): """Check correctness of response result. Args: response: Response instance. expected_res: Boolean flag that show if response should be succeeded. operation: Action name. model: Model name. """ # Snapshot is a special case. All operation with it # is done through Revisions. model = "Revision" if model == "Snapshot" else model # Some operations based on several requests and responses, # need to verify all of these responses responses = response if isinstance(response, list) else [response] for res in responses: if operation in self.READ_COLLECTION_OPERATIONS: self.assert_read_collection(res, expected_res, model) elif operation in self.QUERY_API_OPERATIONS: self.assert_query_api_response(res, expected_res) else: self.assert_status(res, expected_res) def runtest(self, role, model, action_name, expected_result, **kwargs): """Run integration RBAC test. Args: role: Global user role (Creator/Reader/Editor). model: Model that should be tested (Audit/Assessment/...). action_name: Action that should be tested (read/update/delete/...). expected_result: Boolean expected result of action. """ model_name, parent = model, None if " " in model: model_name, parent = model.split(" ") rbac_factory = self.init_factory(role, model_name, parent, **kwargs) if not rbac_factory: raise Exception("There is no factory for model '{}'".format(model_name)) action = getattr(rbac_factory, action_name, None) if not action: raise NotImplementedError( "Action {} is not implemented for this test.".format(action_name) ) response = action() self.assert_result(response, expected_result, action_name, model_name)
the-stack_0_4441
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Constructs model, inputs, and training environment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import functools import os import tensorflow as tf from object_detection import eval_util from object_detection import exporter as exporter_lib from object_detection import inputs from object_detection.builders import graph_rewriter_builder from object_detection.builders import model_builder from object_detection.builders import optimizer_builder from object_detection.core import standard_fields as fields from object_detection.utils import config_util from object_detection.utils import label_map_util from object_detection.utils import ops from object_detection.utils import shape_utils from object_detection.utils import variables_helper from object_detection.utils import visualization_utils as vis_utils # A map of names to methods that help build the model. MODEL_BUILD_UTIL_MAP = { 'get_configs_from_pipeline_file': config_util.get_configs_from_pipeline_file, 'create_pipeline_proto_from_configs': config_util.create_pipeline_proto_from_configs, 'merge_external_params_with_configs': config_util.merge_external_params_with_configs, 'create_train_input_fn': inputs.create_train_input_fn, 'create_eval_input_fn': inputs.create_eval_input_fn, 'create_predict_input_fn': inputs.create_predict_input_fn, 'detection_model_fn_base': model_builder.build, } def _prepare_groundtruth_for_eval(detection_model, class_agnostic, max_number_of_boxes): """Extracts groundtruth data from detection_model and prepares it for eval. Args: detection_model: A `DetectionModel` object. class_agnostic: Whether the detections are class_agnostic. max_number_of_boxes: Max number of groundtruth boxes. Returns: A tuple of: groundtruth: Dictionary with the following fields: 'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes, in normalized coordinates. 'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed classes. 'groundtruth_masks': 4D float32 tensor of instance masks (if provided in groundtruth) 'groundtruth_is_crowd': [batch_size, num_boxes] bool tensor indicating is_crowd annotations (if provided in groundtruth). 'num_groundtruth_boxes': [batch_size] tensor containing the maximum number of groundtruth boxes per image.. class_agnostic: Boolean indicating whether detections are class agnostic. """ input_data_fields = fields.InputDataFields() groundtruth_boxes = tf.stack( detection_model.groundtruth_lists(fields.BoxListFields.boxes)) groundtruth_boxes_shape = tf.shape(groundtruth_boxes) # For class-agnostic models, groundtruth one-hot encodings collapse to all # ones. if class_agnostic: groundtruth_classes_one_hot = tf.ones( [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1]) else: groundtruth_classes_one_hot = tf.stack( detection_model.groundtruth_lists(fields.BoxListFields.classes)) label_id_offset = 1 # Applying label id offset (b/63711816) groundtruth_classes = ( tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset) groundtruth = { input_data_fields.groundtruth_boxes: groundtruth_boxes, input_data_fields.groundtruth_classes: groundtruth_classes } if detection_model.groundtruth_has_field(fields.BoxListFields.masks): groundtruth[input_data_fields.groundtruth_instance_masks] = tf.stack( detection_model.groundtruth_lists(fields.BoxListFields.masks)) if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd): groundtruth[input_data_fields.groundtruth_is_crowd] = tf.stack( detection_model.groundtruth_lists(fields.BoxListFields.is_crowd)) groundtruth[input_data_fields.num_groundtruth_boxes] = ( tf.tile([max_number_of_boxes], multiples=[groundtruth_boxes_shape[0]])) return groundtruth def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True): """Unstacks all tensors in `tensor_dict` along 0th dimension. Unstacks tensor from the tensor dict along 0th dimension and returns a tensor_dict containing values that are lists of unstacked, unpadded tensors. Tensors in the `tensor_dict` are expected to be of one of the three shapes: 1. [batch_size] 2. [batch_size, height, width, channels] 3. [batch_size, num_boxes, d1, d2, ... dn] When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3 above are sliced along the `num_boxes` dimension using the value in tensor field.InputDataFields.num_groundtruth_boxes. Note that this function has a static list of input data fields and has to be kept in sync with the InputDataFields defined in core/standard_fields.py Args: tensor_dict: A dictionary of batched groundtruth tensors. unpad_groundtruth_tensors: Whether to remove padding along `num_boxes` dimension of the groundtruth tensors. Returns: A dictionary where the keys are from fields.InputDataFields and values are a list of unstacked (optionally unpadded) tensors. Raises: ValueError: If unpad_tensors is True and `tensor_dict` does not contain `num_groundtruth_boxes` tensor. """ unbatched_tensor_dict = { key: tf.unstack(tensor) for key, tensor in tensor_dict.items() } if unpad_groundtruth_tensors: if (fields.InputDataFields.num_groundtruth_boxes not in unbatched_tensor_dict): raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. ' 'Keys available: {}'.format( unbatched_tensor_dict.keys())) unbatched_unpadded_tensor_dict = {} unpad_keys = set([ # List of input data fields that are padded along the num_boxes # dimension. This list has to be kept in sync with InputDataFields in # standard_fields.py. fields.InputDataFields.groundtruth_instance_masks, fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_keypoints, fields.InputDataFields.groundtruth_group_of, fields.InputDataFields.groundtruth_difficult, fields.InputDataFields.groundtruth_is_crowd, fields.InputDataFields.groundtruth_area, fields.InputDataFields.groundtruth_weights ]).intersection(set(unbatched_tensor_dict.keys())) for key in unpad_keys: unpadded_tensor_list = [] for num_gt, padded_tensor in zip( unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes], unbatched_tensor_dict[key]): tensor_shape = shape_utils.combined_static_and_dynamic_shape( padded_tensor) slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32) slice_size = tf.stack( [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]]) unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size) unpadded_tensor_list.append(unpadded_tensor) unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict) return unbatched_tensor_dict def provide_groundtruth(model, labels): """Provides the labels to a model as groundtruth. This helper function extracts the corresponding boxes, classes, keypoints, weights, masks, etc. from the labels, and provides it as groundtruth to the models. Args: model: The detection model to provide groundtruth to. labels: The labels for the training or evaluation inputs. """ gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes] gt_classes_list = labels[fields.InputDataFields.groundtruth_classes] gt_masks_list = None if fields.InputDataFields.groundtruth_instance_masks in labels: gt_masks_list = labels[ fields.InputDataFields.groundtruth_instance_masks] gt_keypoints_list = None if fields.InputDataFields.groundtruth_keypoints in labels: gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints] gt_weights_list = None if fields.InputDataFields.groundtruth_weights in labels: gt_weights_list = labels[fields.InputDataFields.groundtruth_weights] gt_confidences_list = None if fields.InputDataFields.groundtruth_confidences in labels: gt_confidences_list = labels[ fields.InputDataFields.groundtruth_confidences] gt_is_crowd_list = None if fields.InputDataFields.groundtruth_is_crowd in labels: gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd] model.provide_groundtruth( groundtruth_boxes_list=gt_boxes_list, groundtruth_classes_list=gt_classes_list, groundtruth_confidences_list=gt_confidences_list, groundtruth_masks_list=gt_masks_list, groundtruth_keypoints_list=gt_keypoints_list, groundtruth_weights_list=gt_weights_list, groundtruth_is_crowd_list=gt_is_crowd_list) def create_model_fn(detection_model_fn, configs, hparams, use_tpu=False, postprocess_on_cpu=False): """Creates a model function for `Estimator`. Args: detection_model_fn: Function that returns a `DetectionModel` instance. configs: Dictionary of pipeline config objects. hparams: `HParams` object. use_tpu: Boolean indicating whether model should be constructed for use on TPU. postprocess_on_cpu: When use_tpu and postprocess_on_cpu is true, postprocess is scheduled on the host cpu. Returns: `model_fn` for `Estimator`. """ train_config = configs['train_config'] eval_input_config = configs['eval_input_config'] eval_config = configs['eval_config'] def model_fn(features, labels, mode, params=None): """Constructs the object detection model. Args: features: Dictionary of feature tensors, returned from `input_fn`. labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL, otherwise None. mode: Mode key from tf.estimator.ModeKeys. params: Parameter dictionary passed from the estimator. Returns: An `EstimatorSpec` that encapsulates the model and its serving configurations. """ params = params or {} total_loss, train_op, detections, export_outputs = None, None, None, None is_training = mode == tf.estimator.ModeKeys.TRAIN # Make sure to set the Keras learning phase. True during training, # False for inference. tf.keras.backend.set_learning_phase(is_training) detection_model = detection_model_fn( is_training=is_training, add_summaries=(not use_tpu)) scaffold_fn = None if mode == tf.estimator.ModeKeys.TRAIN: labels = unstack_batch( labels, unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors) elif mode == tf.estimator.ModeKeys.EVAL: # For evaling on train data, it is necessary to check whether groundtruth # must be unpadded. boxes_shape = ( labels[fields.InputDataFields.groundtruth_boxes].get_shape() .as_list()) unpad_groundtruth_tensors = boxes_shape[1] is not None and not use_tpu labels = unstack_batch( labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors) if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL): provide_groundtruth(detection_model, labels) preprocessed_images = features[fields.InputDataFields.image] if use_tpu and train_config.use_bfloat16: with tf.contrib.tpu.bfloat16_scope(): prediction_dict = detection_model.predict( preprocessed_images, features[fields.InputDataFields.true_image_shape]) prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict) else: prediction_dict = detection_model.predict( preprocessed_images, features[fields.InputDataFields.true_image_shape]) def postprocess_wrapper(args): return detection_model.postprocess(args[0], args[1]) if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT): if use_tpu and postprocess_on_cpu: detections = tf.contrib.tpu.outside_compilation( postprocess_wrapper, (prediction_dict, features[fields.InputDataFields.true_image_shape])) else: detections = postprocess_wrapper(( prediction_dict, features[fields.InputDataFields.true_image_shape])) if mode == tf.estimator.ModeKeys.TRAIN: if train_config.fine_tune_checkpoint and hparams.load_pretrained: if not train_config.fine_tune_checkpoint_type: # train_config.from_detection_checkpoint field is deprecated. For # backward compatibility, set train_config.fine_tune_checkpoint_type # based on train_config.from_detection_checkpoint. if train_config.from_detection_checkpoint: train_config.fine_tune_checkpoint_type = 'detection' else: train_config.fine_tune_checkpoint_type = 'classification' asg_map = detection_model.restore_map( fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type, load_all_detection_checkpoint_vars=( train_config.load_all_detection_checkpoint_vars)) available_var_map = ( variables_helper.get_variables_available_in_checkpoint( asg_map, train_config.fine_tune_checkpoint, include_global_step=False)) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint, available_var_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint, available_var_map) if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL): losses_dict = detection_model.loss( prediction_dict, features[fields.InputDataFields.true_image_shape]) losses = [loss_tensor for loss_tensor in losses_dict.values()] if train_config.add_regularization_loss: regularization_losses = detection_model.regularization_losses() if use_tpu and train_config.use_bfloat16: regularization_losses = ops.bfloat16_to_float32_nested( regularization_losses) if regularization_losses: regularization_loss = tf.add_n( regularization_losses, name='regularization_loss') losses.append(regularization_loss) losses_dict['Loss/regularization_loss'] = regularization_loss total_loss = tf.add_n(losses, name='total_loss') losses_dict['Loss/total_loss'] = total_loss if 'graph_rewriter_config' in configs: graph_rewriter_fn = graph_rewriter_builder.build( configs['graph_rewriter_config'], is_training=is_training) graph_rewriter_fn() # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we # can write learning rate summaries on TPU without host calls. global_step = tf.train.get_or_create_global_step() training_optimizer, optimizer_summary_vars = optimizer_builder.build( train_config.optimizer) if mode == tf.estimator.ModeKeys.TRAIN: if use_tpu: training_optimizer = tf.contrib.tpu.CrossShardOptimizer( training_optimizer) # Optionally freeze some layers by setting their gradients to be zero. trainable_variables = None include_variables = ( train_config.update_trainable_variables if train_config.update_trainable_variables else None) exclude_variables = ( train_config.freeze_variables if train_config.freeze_variables else None) trainable_variables = tf.contrib.framework.filter_variables( tf.trainable_variables(), include_patterns=include_variables, exclude_patterns=exclude_variables) clip_gradients_value = None if train_config.gradient_clipping_by_norm > 0: clip_gradients_value = train_config.gradient_clipping_by_norm if not use_tpu: for var in optimizer_summary_vars: tf.summary.scalar(var.op.name, var) summaries = [] if use_tpu else None if train_config.summarize_gradients: summaries = ['gradients', 'gradient_norm', 'global_gradient_norm'] train_op = tf.contrib.layers.optimize_loss( loss=total_loss, global_step=global_step, learning_rate=None, clip_gradients=clip_gradients_value, optimizer=training_optimizer, update_ops=detection_model.updates(), variables=trainable_variables, summaries=summaries, name='') # Preventing scope prefix on all variables. if mode == tf.estimator.ModeKeys.PREDICT: exported_output = exporter_lib.add_output_tensor_nodes(detections) export_outputs = { tf.saved_model.signature_constants.PREDICT_METHOD_NAME: tf.estimator.export.PredictOutput(exported_output) } eval_metric_ops = None scaffold = None if mode == tf.estimator.ModeKeys.EVAL: class_agnostic = ( fields.DetectionResultFields.detection_classes not in detections) groundtruth = _prepare_groundtruth_for_eval( detection_model, class_agnostic, eval_input_config.max_number_of_boxes) use_original_images = fields.InputDataFields.original_image in features if use_original_images: eval_images = features[fields.InputDataFields.original_image] true_image_shapes = tf.slice( features[fields.InputDataFields.true_image_shape], [0, 0], [-1, 3]) original_image_spatial_shapes = features[fields.InputDataFields .original_image_spatial_shape] else: eval_images = features[fields.InputDataFields.image] true_image_shapes = None original_image_spatial_shapes = None eval_dict = eval_util.result_dict_for_batched_example( eval_images, features[inputs.HASH_KEY], detections, groundtruth, class_agnostic=class_agnostic, scale_to_absolute=True, original_image_spatial_shapes=original_image_spatial_shapes, true_image_shapes=true_image_shapes) if class_agnostic: category_index = label_map_util.create_class_agnostic_category_index() else: category_index = label_map_util.create_category_index_from_labelmap( eval_input_config.label_map_path) vis_metric_ops = None if not use_tpu and use_original_images: eval_metric_op_vis = vis_utils.VisualizeSingleFrameDetections( category_index, max_examples_to_draw=eval_config.num_visualizations, max_boxes_to_draw=eval_config.max_num_boxes_to_visualize, min_score_thresh=eval_config.min_score_threshold, use_normalized_coordinates=False) vis_metric_ops = eval_metric_op_vis.get_estimator_eval_metric_ops( eval_dict) # Eval metrics on a single example. eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators( eval_config, list(category_index.values()), eval_dict) for loss_key, loss_tensor in iter(losses_dict.items()): eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor) for var in optimizer_summary_vars: eval_metric_ops[var.op.name] = (var, tf.no_op()) if vis_metric_ops is not None: eval_metric_ops.update(vis_metric_ops) eval_metric_ops = {str(k): v for k, v in eval_metric_ops.items()} if eval_config.use_moving_averages: variable_averages = tf.train.ExponentialMovingAverage(0.0) variables_to_restore = variable_averages.variables_to_restore() keep_checkpoint_every_n_hours = ( train_config.keep_checkpoint_every_n_hours) saver = tf.train.Saver( variables_to_restore, keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours) scaffold = tf.train.Scaffold(saver=saver) # EVAL executes on CPU, so use regular non-TPU EstimatorSpec. if use_tpu and mode != tf.estimator.ModeKeys.EVAL: return tf.contrib.tpu.TPUEstimatorSpec( mode=mode, scaffold_fn=scaffold_fn, predictions=detections, loss=total_loss, train_op=train_op, eval_metrics=eval_metric_ops, export_outputs=export_outputs) else: if scaffold is None: keep_checkpoint_every_n_hours = ( train_config.keep_checkpoint_every_n_hours) saver = tf.train.Saver( sharded=True, keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours, save_relative_paths=True) tf.add_to_collection(tf.GraphKeys.SAVERS, saver) scaffold = tf.train.Scaffold(saver=saver) return tf.estimator.EstimatorSpec( mode=mode, predictions=detections, loss=total_loss, train_op=train_op, eval_metric_ops=eval_metric_ops, export_outputs=export_outputs, scaffold=scaffold) return model_fn def create_estimator_and_inputs(run_config, hparams, pipeline_config_path, config_override=None, train_steps=None, sample_1_of_n_eval_examples=None, sample_1_of_n_eval_on_train_examples=1, model_fn_creator=create_model_fn, use_tpu_estimator=False, use_tpu=False, num_shards=1, params=None, override_eval_num_epochs=True, save_final_config=False, postprocess_on_cpu=False, export_to_tpu=None, **kwargs): """Creates `Estimator`, input functions, and steps. Args: run_config: A `RunConfig`. hparams: A `HParams`. pipeline_config_path: A path to a pipeline config file. config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to override the config from `pipeline_config_path`. train_steps: Number of training steps. If None, the number of training steps is set from the `TrainConfig` proto. sample_1_of_n_eval_examples: Integer representing how often an eval example should be sampled. If 1, will sample all examples. sample_1_of_n_eval_on_train_examples: Similar to `sample_1_of_n_eval_examples`, except controls the sampling of training data for evaluation. model_fn_creator: A function that creates a `model_fn` for `Estimator`. Follows the signature: * Args: * `detection_model_fn`: Function that returns `DetectionModel` instance. * `configs`: Dictionary of pipeline config objects. * `hparams`: `HParams` object. * Returns: `model_fn` for `Estimator`. use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False, an `Estimator` will be returned. use_tpu: Boolean, whether training and evaluation should run on TPU. Only used if `use_tpu_estimator` is True. num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator` is True. params: Parameter dictionary passed from the estimator. Only used if `use_tpu_estimator` is True. override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for eval_input. save_final_config: Whether to save final config (obtained after applying overrides) to `estimator.model_dir`. postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true, postprocess is scheduled on the host cpu. export_to_tpu: When use_tpu and export_to_tpu are true, `export_savedmodel()` exports a metagraph for serving on TPU besides the one on CPU. **kwargs: Additional keyword arguments for configuration override. Returns: A dictionary with the following fields: 'estimator': An `Estimator` or `TPUEstimator`. 'train_input_fn': A training input function. 'eval_input_fns': A list of all evaluation input functions. 'eval_input_names': A list of names for each evaluation input. 'eval_on_train_input_fn': An evaluation-on-train input function. 'predict_input_fn': A prediction input function. 'train_steps': Number of training steps. Either directly from input or from configuration. """ get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[ 'get_configs_from_pipeline_file'] merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[ 'merge_external_params_with_configs'] create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[ 'create_pipeline_proto_from_configs'] create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn'] create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn'] create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn'] detection_model_fn_base = MODEL_BUILD_UTIL_MAP['detection_model_fn_base'] configs = get_configs_from_pipeline_file( pipeline_config_path, config_override=config_override) kwargs.update({ 'train_steps': train_steps, 'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu }) if sample_1_of_n_eval_examples >= 1: kwargs.update({ 'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples }) if override_eval_num_epochs: kwargs.update({'eval_num_epochs': 1}) tf.logging.warning( 'Forced number of epochs for all eval validations to be 1.') configs = merge_external_params_with_configs( configs, hparams, kwargs_dict=kwargs) model_config = configs['model'] train_config = configs['train_config'] train_input_config = configs['train_input_config'] eval_config = configs['eval_config'] eval_input_configs = configs['eval_input_configs'] eval_on_train_input_config = copy.deepcopy(train_input_config) eval_on_train_input_config.sample_1_of_n_examples = ( sample_1_of_n_eval_on_train_examples) if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1: tf.logging.warning('Expected number of evaluation epochs is 1, but ' 'instead encountered `eval_on_train_input_config' '.num_epochs` = ' '{}. Overwriting `num_epochs` to 1.'.format( eval_on_train_input_config.num_epochs)) eval_on_train_input_config.num_epochs = 1 # update train_steps from config but only when non-zero value is provided if train_steps is None and train_config.num_steps != 0: train_steps = train_config.num_steps detection_model_fn = functools.partial( detection_model_fn_base, model_config=model_config) # Create the input functions for TRAIN/EVAL/PREDICT. train_input_fn = create_train_input_fn( train_config=train_config, train_input_config=train_input_config, model_config=model_config) eval_input_fns = [ create_eval_input_fn( eval_config=eval_config, eval_input_config=eval_input_config, model_config=model_config) for eval_input_config in eval_input_configs ] eval_input_names = [ eval_input_config.name for eval_input_config in eval_input_configs ] eval_on_train_input_fn = create_eval_input_fn( eval_config=eval_config, eval_input_config=eval_on_train_input_config, model_config=model_config) predict_input_fn = create_predict_input_fn( model_config=model_config, predict_input_config=eval_input_configs[0]) # Read export_to_tpu from hparams if not passed. if export_to_tpu is None: export_to_tpu = hparams.get('export_to_tpu', False) tf.logging.info('create_estimator_and_inputs: use_tpu %s, export_to_tpu %s', use_tpu, export_to_tpu) model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu, postprocess_on_cpu) if use_tpu_estimator: estimator = tf.contrib.tpu.TPUEstimator( model_fn=model_fn, train_batch_size=train_config.batch_size, # For each core, only batch size 1 is supported for eval. eval_batch_size=num_shards * 1 if use_tpu else 1, use_tpu=use_tpu, config=run_config, export_to_tpu=export_to_tpu, eval_on_tpu=False, # Eval runs on CPU, so disable eval on TPU params=params if params else {}) else: estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config) # Write the as-run pipeline config to disk. if run_config.is_chief and save_final_config: pipeline_config_final = create_pipeline_proto_from_configs(configs) config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir) eval_interval_secs = eval_config.eval_interval_secs return dict( estimator=estimator, train_input_fn=train_input_fn, eval_input_fns=eval_input_fns, eval_input_names=eval_input_names, eval_on_train_input_fn=eval_on_train_input_fn, predict_input_fn=predict_input_fn, train_steps=train_steps, eval_interval_secs = eval_interval_secs) def create_train_and_eval_specs(train_input_fn, eval_input_fns, eval_on_train_input_fn, predict_input_fn, train_steps, eval_on_train_data=False, eval_interval_secs=300, final_exporter_name='Servo', eval_spec_names=None): """Creates a `TrainSpec` and `EvalSpec`s. Args: train_input_fn: Function that produces features and labels on train data. eval_input_fns: A list of functions that produce features and labels on eval data. eval_on_train_input_fn: Function that produces features and labels for evaluation on train data. predict_input_fn: Function that produces features for inference. train_steps: Number of training steps. eval_on_train_data: Whether to evaluate model on training data. Default is False. final_exporter_name: String name given to `FinalExporter`. eval_spec_names: A list of string names for each `EvalSpec`. Returns: Tuple of `TrainSpec` and list of `EvalSpecs`. If `eval_on_train_data` is True, the last `EvalSpec` in the list will correspond to training data. The rest EvalSpecs in the list are evaluation datas. """ train_spec = tf.estimator.TrainSpec( input_fn=train_input_fn, max_steps=train_steps) if eval_spec_names is None: eval_spec_names = [str(i) for i in range(len(eval_input_fns))] eval_specs = [] for index, (eval_spec_name, eval_input_fn) in enumerate( zip(eval_spec_names, eval_input_fns)): # Uses final_exporter_name as exporter_name for the first eval spec for # backward compatibility. if index == 0: exporter_name = final_exporter_name else: exporter_name = '{}_{}'.format(final_exporter_name, eval_spec_name) exporter = tf.estimator.FinalExporter( name=exporter_name, serving_input_receiver_fn=predict_input_fn) eval_specs.append( tf.estimator.EvalSpec( name=eval_spec_name, input_fn=eval_input_fn, steps=None, exporters=exporter, throttle_secs=eval_interval_secs)) if eval_on_train_data: eval_specs.append( tf.estimator.EvalSpec( name='eval_on_train', input_fn=eval_on_train_input_fn, steps=None)) return train_spec, eval_specs def continuous_eval(estimator, model_dir, input_fn, train_steps, name): """Perform continuous evaluation on checkpoints written to a model directory. Args: estimator: Estimator object to use for evaluation. model_dir: Model directory to read checkpoints for continuous evaluation. input_fn: Input function to use for evaluation. train_steps: Number of training steps. This is used to infer the last checkpoint and stop evaluation loop. name: Namescope for eval summary. """ def terminate_eval(): tf.logging.info('Terminating eval after 180 seconds of no checkpoints') return True for ckpt in tf.contrib.training.checkpoints_iterator( model_dir, min_interval_secs=180, timeout=None, timeout_fn=terminate_eval): tf.logging.info('Starting Evaluation.') try: eval_results = estimator.evaluate( input_fn=input_fn, steps=None, checkpoint_path=ckpt, name=name) tf.logging.info('Eval results: %s' % eval_results) # Terminate eval job when final checkpoint is reached current_step = int(os.path.basename(ckpt).split('-')[1]) if current_step >= train_steps: tf.logging.info( 'Evaluation finished after training step %d' % current_step) break except tf.errors.NotFoundError: tf.logging.info( 'Checkpoint %s no longer exists, skipping checkpoint' % ckpt) def populate_experiment(run_config, hparams, pipeline_config_path, train_steps=None, eval_steps=None, model_fn_creator=create_model_fn, **kwargs): """Populates an `Experiment` object. EXPERIMENT CLASS IS DEPRECATED. Please switch to tf.estimator.train_and_evaluate. As an example, see model_main.py. Args: run_config: A `RunConfig`. hparams: A `HParams`. pipeline_config_path: A path to a pipeline config file. train_steps: Number of training steps. If None, the number of training steps is set from the `TrainConfig` proto. eval_steps: Number of evaluation steps per evaluation cycle. If None, the number of evaluation steps is set from the `EvalConfig` proto. model_fn_creator: A function that creates a `model_fn` for `Estimator`. Follows the signature: * Args: * `detection_model_fn`: Function that returns `DetectionModel` instance. * `configs`: Dictionary of pipeline config objects. * `hparams`: `HParams` object. * Returns: `model_fn` for `Estimator`. **kwargs: Additional keyword arguments for configuration override. Returns: An `Experiment` that defines all aspects of training, evaluation, and export. """ tf.logging.warning('Experiment is being deprecated. Please use ' 'tf.estimator.train_and_evaluate(). See model_main.py for ' 'an example.') train_and_eval_dict = create_estimator_and_inputs( run_config, hparams, pipeline_config_path, train_steps=train_steps, eval_steps=eval_steps, model_fn_creator=model_fn_creator, save_final_config=True, **kwargs) estimator = train_and_eval_dict['estimator'] train_input_fn = train_and_eval_dict['train_input_fn'] eval_input_fns = train_and_eval_dict['eval_input_fns'] predict_input_fn = train_and_eval_dict['predict_input_fn'] train_steps = train_and_eval_dict['train_steps'] export_strategies = [ tf.contrib.learn.utils.saved_model_export_utils.make_export_strategy( serving_input_fn=predict_input_fn) ] return tf.contrib.learn.Experiment( estimator=estimator, train_input_fn=train_input_fn, eval_input_fn=eval_input_fns[0], train_steps=train_steps, eval_steps=None, export_strategies=export_strategies, eval_delay_secs=120, )
the-stack_0_4443
import datetime from casexml.apps.case.models import CommCareCaseAction from corehq.apps.reports.standard.cases.basic import CaseListReport from corehq.apps.api.es import ReportCaseES from corehq.apps.reports.generic import GenericTabularReport from corehq.apps.reports.basic import BasicTabularReport, Column from corehq.apps.reports.standard import (DatespanMixin, ProjectReportParametersMixin, CustomProjectReport) from corehq.apps.reports.standard.cases.data_sources import CaseDisplay from corehq.apps.reports.datatables import DataTablesHeader, DataTablesColumn from corehq.pillows.base import restore_property_dict from hsph.reports import HSPHSiteDataMixin from hsph.fields import NameOfCATIField, AllocatedToFilter from corehq.apps.reports.filters.users import UserTypeFilter from corehq.apps.reports.filters.dates import DatespanFilter from couchdbkit_aggregate.fn import mean, unique_count from casexml.apps.case import const from dimagi.utils.decorators.memoized import memoized from dimagi.utils.couch.database import get_db def short_date_format(date): return date.strftime('%d-%b') def username(key, report): return report.usernames[key[0]] def datestring_minus_days(datestring, days): date = datetime.datetime.strptime(datestring[:10], '%Y-%m-%d') return (date - datetime.timedelta(days=days)).isoformat() def date_minus_11_days(couchkey): return couchkey + [datestring_minus_days(couchkey[0], 11)] def date_minus_14_days(couchkey): return couchkey + [datestring_minus_days(couchkey[0], 14)] class CATIPerformanceReport(CustomProjectReport, ProjectReportParametersMixin, DatespanMixin, BasicTabularReport): name = "CATI Performance Report" slug = "cati_performance" field_classes = (UserTypeFilter, DatespanFilter, NameOfCATIField) filter_group_name = "CATI" couch_view = "hsph/cati_performance_report_old" default_column_order = ( 'catiName', 'followedUp', 'noFollowUpAfter4Days', 'transferredToManager', 'transferredToField', 'notClosedOrTransferredAfter13Days', 'workingDaysUniqueCount', 'followUpTime', 'followUpTimeMean' ) catiName = Column( "Name of CATI", calculate_fn=username) followedUp = Column( "No. of Births Followed Up", key='followedUp') noFollowUpAfter4Days = Column( "No. of Cases with No Follow Up for 4 Days", key='noFollowUpAfter4Days', endkey_fn=date_minus_11_days) transferredToManager = Column( "Transferred to Call Center Manager", key='transferredToManager') transferredToField = Column( "Transferred to Field", key='transferredToField') notClosedOrTransferredAfter13Days = Column( "CATI Timed Out", key='notClosedOrTransferredAfter13Days', endkey_fn=date_minus_14_days) workingDaysUniqueCount = Column( "No. of Working Days", key='workingDays', reduce_fn=unique_count) followUpTime = Column( "Total Follow Up Time", key='followUpTime') followUpTimeMean = Column( "Average Follow Up Time", key='followUpTime', reduce_fn=mean) @property def start_and_end_keys(self): return ([self.datespan.startdate_param_utc], [self.datespan.enddate_param_utc]) @property def keys(self): for user in self.users: yield [user['user_id']] class HSPHCaseDisplay(CaseDisplay): @property def region(self): try: return self.report.get_region_name(self.case['region_id']) except AttributeError: return "" @property def district(self): try: return self.report.get_district_name( self.case['region_id'], self.case['district_id']) except AttributeError: return "" @property def site(self): try: return self.report.get_site_name( self.case['region_id'], self.case['district_id'], self.case['site_number']) except AttributeError: return "" @property def patient_id(self): try: return self.case.patient_id except AttributeError: return "" @property def status(self): return "Closed" if self.case['closed'] else "Open" @property def mother_name(self): return self.case.get('name_mother', '') @property def filter_date(self): return self.case.get('filter_date', '') @property def address(self): return self.case.get('house_address', '') @property @memoized def allocated_to(self): if self.status == "Closed": close_action = [CommCareCaseAction.wrap(a) for a in self.case['actions'] if a['action_type'] == const.CASE_ACTION_CLOSE][0] CATI_FOLLOW_UP_FORMS = ( "http://openrosa.org/formdesigner/A5B08D8F-139D-46C6-9FDF-B1AD176EAE1F", ) if close_action.xform.xmlns in CATI_FOLLOW_UP_FORMS: return 'CATI' else: return 'Field' else: follow_up_type = self.case.get('follow_up_type', '') house_number = self.case.get('phone_house_number', '') husband_number = self.case.get('phone_husband_number', '') mother_number = self.case.get('phone_mother_number', '') asha_number = self.case.get('phone_asha_number', '') if follow_up_type != 'field_follow_up' and (house_number or husband_number or mother_number or asha_number): return 'CATI' else: return 'Field' @property def allocated_start(self): try: delta = datetime.timedelta(days=8 if self.allocated_to == 'CATI' else 13) return short_date_format(self.parse_date(self.case['filter_date']) + delta) except AttributeError: return "" @property def allocated_end(self): try: delta = datetime.timedelta(days=13 if self.allocated_to == 'CATI' else 23) return short_date_format(self.parse_date(self.case['filter_date']) + delta) except AttributeError: return "" @property def outside_allocated_period(self): if not ('filter_date' in self.case and isinstance(self.parse_date(self.case['filter_date']), datetime.datetime)): return "" if self.case['closed_on']: compare_date = self.parse_date(self.case['closed_on']).date() else: compare_date = datetime.date.today() return 'Yes' if (compare_date - self.parse_date(self.case['filter_date']).date()).days > 23 else 'No' class CaseReport(CaseListReport, CustomProjectReport, HSPHSiteDataMixin, DatespanMixin): name = 'Case Report' slug = 'case_report' fields = ( 'corehq.apps.reports.filters.users.UserTypeFilter', 'corehq.apps.reports.filters.dates.DatespanFilter', 'hsph.fields.SiteField', #'hsph.fields.AllocatedToFilter', 'corehq.apps.reports.filters.select.SelectOpenCloseFilter', ) default_case_type = 'birth' @property @memoized def case_es(self): return ReportCaseES(self.domain) @property def headers(self): headers = DataTablesHeader( DataTablesColumn("Region"), DataTablesColumn("District"), DataTablesColumn("Site"), DataTablesColumn("Patient ID"), DataTablesColumn("Status"), DataTablesColumn("Mother Name"), DataTablesColumn("Date of Delivery or Admission"), DataTablesColumn("Address of Patient"), DataTablesColumn("Allocated To"), DataTablesColumn("Allocated Start"), DataTablesColumn("Allocated End"), DataTablesColumn("Outside Allocated Period") ) headers.no_sort = True return headers @property def case_filter(self): #allocated_to = self.request_params.get(AllocatedToFilter.slug, '') region_id = self.request_params.get('hsph_region', '') district_id = self.request_params.get('hsph_district', '') site_num = str(self.request_params.get('hsph_site', '')) filters = [{ 'range': { 'opened_on': { "from": self.datespan.startdate_param_utc, "to": self.datespan.enddate_param_utc } } }] #if allocated_to: #filters.append({'term': {'allocated_to': allocated_to}}) if site_num: filters.append({'term': {'site_number.#value': site_num.lower()}}) if district_id: filters.append({'term': {'district_id.#value': district_id.lower()}}) if region_id: filters.append({'term': {'region_id.#value': region_id.lower()}}) return {'and': filters} if filters else {} #def allocated_to(self): #if self.status == "Closed": #close_action = [a for a in self.case.actions if a.action_type == #const.CASE_ACTION_CLOSE][0] #CATI_FOLLOW_UP_FORMS = ( #"http://openrosa.org/formdesigner/A5B08D8F-139D-46C6-9FDF-B1AD176EAE1F", #) #if close_action.xform.xmlns in CATI_FOLLOW_UP_FORMS: #return 'CATI' #else: #return 'Field' #else: #follow_up_type = getattr(self.case, 'follow_up_type', '') #house_number = getattr(self.case, 'phone_house_number', '') #husband_number = getattr(self.case, 'phone_husband_number', '') #mother_number = getattr(self.case, 'phone_mother_number', '') #asha_number = getattr(self.case, 'phone_asha_number', '') #if follow_up_type != 'field_follow_up' and (house_number or #husband_number or mother_number or asha_number): #return 'CATI' #else: #return 'Field' @property def shared_pagination_GET_params(self): params = super(CaseReport, self).shared_pagination_GET_params slugs = [ AllocatedToFilter.slug, 'hsph_region', 'hsph_district', 'hsph_site', 'startdate', 'enddate' ] for slug in slugs: params.append({ 'name': slug, 'value': self.request_params.get(slug, '') }) return params @property def rows(self): case_displays = (HSPHCaseDisplay(self, restore_property_dict(self.get_case(case))) for case in self.es_results['hits'].get('hits', [])) for disp in case_displays: yield [ disp.region, disp.district, disp.site, disp.patient_id, disp.status, disp.case_link, disp.filter_date, disp.address, disp.allocated_to, disp.allocated_start, disp.allocated_end, disp.outside_allocated_period ] class CallCenterFollowUpSummaryReport(GenericTabularReport, CustomProjectReport, ProjectReportParametersMixin, DatespanMixin, HSPHSiteDataMixin): name = "Call Center Follow Up Summary" slug = "hsph_dcc_followup_summary" fields = ['corehq.apps.reports.filters.dates.DatespanFilter', 'hsph.fields.SiteField'] @property def headers(self): return DataTablesHeader(DataTablesColumn("Region"), DataTablesColumn("District"), DataTablesColumn("Site"), DataTablesColumn("Total Number of Birth events with contact details"), DataTablesColumn("Total number of births followed up"), DataTablesColumn("Number of cases followed up at day 8th"), DataTablesColumn("Number of cases followed up between day 9th to 13th"), DataTablesColumn("Number of cases with contact details open at day 14th"), DataTablesColumn("Number of cases with contact details transferred to Field management for home Visits"), DataTablesColumn("Number of cases where no out comes could be recorded")) @property def rows(self): db = get_db() rows = [] if not self.selected_site_map: self._selected_site_map = self.site_map keys = self.generate_keys() for key in keys: data = db.view("hsph/dcc_followup_summary_old", reduce=True, startkey=key+[self.datespan.startdate_param_utc], endkey=key+[self.datespan.enddate_param_utc] ).all() for item in data: item = item.get('value') if item: region, district, site = self.get_site_table_values(key) now = self.datespan.enddate day14 = now-datetime.timedelta(days=14) day14 = day14.strftime("%Y-%m-%d") day14_data = db.view("hsph/cases_by_birth_date_old", reduce=True, startkey=key, endkey=key+[day14] ).first() still_open_at_day14 = day14_data.get('value', 0) if day14_data else 0 rows.append([ region, district, site, item.get('totalBirthsWithContact', 0), item.get('totalBirths', 0), item.get('numCasesFollowedUpByDay8', 0), item.get('numCasesFollowedUpBetweenDays9and13', 0), still_open_at_day14, item.get('numCasesWithContactTransferredToField', 0), item.get('numCasesWithNoOutcomes', 0) ]) return rows
the-stack_0_4444
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .sub_resource import SubResource class IPConfiguration(SubResource): """IPConfiguration. :param id: Resource ID. :type id: str :param private_ip_address: The private IP address of the IP configuration. :type private_ip_address: str :param private_ip_allocation_method: The private IP allocation method. Possible values are 'Static' and 'Dynamic'. Possible values include: 'Static', 'Dynamic' :type private_ip_allocation_method: str or ~azure.mgmt.network.v2016_09_01.models.IPAllocationMethod :param subnet: The reference of the subnet resource. :type subnet: ~azure.mgmt.network.v2016_09_01.models.Subnet :param public_ip_address: The reference of the public IP resource. :type public_ip_address: ~azure.mgmt.network.v2016_09_01.models.PublicIPAddress :param provisioning_state: Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :type provisioning_state: str :param name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :type name: str :param etag: A unique read-only string that changes whenever the resource is updated. :type etag: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'private_ip_address': {'key': 'properties.privateIPAddress', 'type': 'str'}, 'private_ip_allocation_method': {'key': 'properties.privateIPAllocationMethod', 'type': 'str'}, 'subnet': {'key': 'properties.subnet', 'type': 'Subnet'}, 'public_ip_address': {'key': 'properties.publicIPAddress', 'type': 'PublicIPAddress'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, } def __init__(self, id=None, private_ip_address=None, private_ip_allocation_method=None, subnet=None, public_ip_address=None, provisioning_state=None, name=None, etag=None): super(IPConfiguration, self).__init__(id=id) self.private_ip_address = private_ip_address self.private_ip_allocation_method = private_ip_allocation_method self.subnet = subnet self.public_ip_address = public_ip_address self.provisioning_state = provisioning_state self.name = name self.etag = etag
the-stack_0_4445
""" ViP training and evaluating script This script is modified from pytorch-image-models by Ross Wightman (https://github.com/rwightman/pytorch-image-models/) It was started from an early version of the PyTorch ImageNet example (https://github.com/pytorch/examples/tree/master/imagenet) """ import argparse import time import yaml import os import logging from collections import OrderedDict from contextlib import suppress from datetime import datetime import models import torch import torch.nn as nn import torchvision.utils from torch.nn.parallel import DistributedDataParallel as NativeDDP from timm.data import create_dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset from timm.models import load_checkpoint, create_model, resume_checkpoint, convert_splitbn_model from timm.utils import * from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy, JsdCrossEntropy from timm.optim import create_optimizer from timm.scheduler import create_scheduler from timm.utils import ApexScaler, NativeScaler torch.backends.cudnn.benchmark = True _logger = logging.getLogger('train') # The first arg parser parses out only the --config argument, this argument is used to # load a yaml file containing key-values that override the defaults for the main parser below config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False) parser.add_argument('-c', '--config', default='', type=str, metavar='FILE', help='YAML config file specifying default arguments') parser = argparse.ArgumentParser(description='ViP Training and Evaluating') # Dataset / Model parameters parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('--dataset', '-d', metavar='NAME', default='', help='dataset type (default: ImageFolder/ImageTar if empty)') parser.add_argument('--train-split', metavar='NAME', default='train', help='dataset train split (default: train)') parser.add_argument('--val-split', metavar='NAME', default='validation', help='dataset validation split (default: validation)') parser.add_argument('--model', default='vip_s7', type=str, metavar='MODEL', help='Name of model to train (default: "countception"') parser.add_argument('--pretrained', action='store_true', default=False, help='Start with pretrained version of specified network (if avail)') parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH', help='Initialize model from this checkpoint (default: none)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='Resume full model and optimizer state from checkpoint (default: none)') parser.add_argument('--eval_checkpoint', default='', type=str, metavar='PATH', help='path to eval checkpoint (default: none)') parser.add_argument('--no-resume-opt', action='store_true', default=False, help='prevent resume of optimizer state when resuming model') parser.add_argument('--num-classes', type=int, default=1000, metavar='N', help='number of label classes (default: 1000)') parser.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') parser.add_argument('--img-size', type=int, default=224, metavar='N', help='Image patch size (default: None => model default)') parser.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop percent (for validation only)') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('-b', '--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('-vb', '--validation-batch-size-multiplier', type=int, default=1, metavar='N', help='ratio of validation batch size to training batch size (default: 1)') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: None, use opt default)') parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='Optimizer momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=0.05, help='weight decay (default: 0.005 for adamw)') parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') # Learning rate schedule parameters parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER', help='LR scheduler (default: "cosine"') parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT', help='learning rate cycle len multiplier (default: 1.0)') parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N', help='learning rate cycle limit') parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 0.0001)') parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--epochs', type=int, default=300, metavar='N', help='number of epochs to train (default: 2)') parser.add_argument('--start-epoch', default=None, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--decay-epochs', type=float, default=30, metavar='N', help='epoch interval to decay LR') parser.add_argument('--warmup-epochs', type=int, default=10, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') parser.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10') parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') # Augmentation & regularization parameters parser.add_argument('--no-aug', action='store_true', default=False, help='Disable all training augmentation, override other train aug args') parser.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT', help='Random resize scale (default: 0.08 1.0)') parser.add_argument('--ratio', type=float, nargs='+', default=[3./4., 4./3.], metavar='RATIO', help='Random resize aspect ratio (default: 0.75 1.33)') parser.add_argument('--hflip', type=float, default=0.5, help='Horizontal flip training aug probability') parser.add_argument('--vflip', type=float, default=0., help='Vertical flip training aug probability') parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". (default: None)'), parser.add_argument('--aug-splits', type=int, default=0, help='Number of augmentation splits (default: 0, valid: 0 or >=2)') parser.add_argument('--jsd', action='store_true', default=False, help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.') parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "const")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') parser.add_argument('--mixup', type=float, default=0.8, help='mixup alpha, mixup enabled if > 0. (default: 0.)') parser.add_argument('--cutmix', type=float, default=1.0, help='cutmix alpha, cutmix enabled if > 0. (default: 0.)') parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup-prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup-switch-prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup-mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') parser.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N', help='Turn off mixup after this epoch, disabled if 0 (default: 0)') parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train-interpolation', type=str, default='random', help='Training interpolation (random, bilinear, bicubic default: "random")') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.0)') parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT', help='Drop connect rate, DEPRECATED, use drop-path (default: None)') parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: None)') parser.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') # Batch norm parameters (only works with gen_efficientnet based models currently) parser.add_argument('--bn-tf', action='store_true', default=False, help='Use Tensorflow BatchNorm defaults for models that support it (default: False)') parser.add_argument('--bn-momentum', type=float, default=None, help='BatchNorm momentum override (if not None)') parser.add_argument('--bn-eps', type=float, default=None, help='BatchNorm epsilon override (if not None)') parser.add_argument('--sync-bn', action='store_true', help='Enable NVIDIA Apex or Torch synchronized BatchNorm.') parser.add_argument('--dist-bn', type=str, default='', help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")') parser.add_argument('--split-bn', action='store_true', help='Enable separate BN layers per augmentation split.') # Model Exponential Moving Average parser.add_argument('--model-ema', action='store_true', default=False, help='Enable tracking moving average of model weights') parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.') parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='decay factor for model weights moving average (default: 0.9998)') # Misc parser.add_argument('--seed', type=int, default=42, metavar='S', help='random seed (default: 42)') parser.add_argument('--log-interval', type=int, default=50, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--recovery-interval', type=int, default=0, metavar='N', help='how many batches to wait before writing recovery checkpoint') parser.add_argument('-j', '--workers', type=int, default=8, metavar='N', help='how many training processes to use (default: 1)') parser.add_argument('--num-gpu', type=int, default=1, help='Number of GPUS to use') parser.add_argument('--save-images', action='store_true', default=False, help='save images of input bathes every log interval for debugging') parser.add_argument('--amp', action='store_true', default=False, help='use NVIDIA Apex AMP or Native AMP for mixed precision training') parser.add_argument('--apex-amp', action='store_true', default=False, help='Use NVIDIA Apex AMP mixed precision') parser.add_argument('--native-amp', action='store_true', default=False, help='Use Native Torch AMP mixed precision') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') parser.add_argument('--output', default='', type=str, metavar='PATH', help='path to output folder (default: none, current dir)') parser.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC', help='Best metric (default: "top1"') parser.add_argument('--tta', type=int, default=0, metavar='N', help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)') parser.add_argument("--local_rank", default=0, type=int) parser.add_argument('--use-multi-epochs-loader', action='store_true', default=False, help='use the multi-epochs-loader to save time at the beginning of every epoch') try: from apex import amp from apex.parallel import DistributedDataParallel as ApexDDP from apex.parallel import convert_syncbn_model has_apex = True except ImportError: has_apex = False has_native_amp = False try: if getattr(torch.cuda.amp, 'autocast') is not None: has_native_amp = True except AttributeError: pass def _parse_args(): # Do we have a config file to parse? args_config, remaining = config_parser.parse_known_args() if args_config.config: with open(args_config.config, 'r') as f: cfg = yaml.safe_load(f) parser.set_defaults(**cfg) # The main arg parser parses the rest of the args, the usual # defaults will have been overridden if config file specified. args = parser.parse_args(remaining) # Cache the args as a text string to save them in the output dir later args_text = yaml.safe_dump(args.__dict__, default_flow_style=False) return args, args_text def main(): setup_default_logging() args, args_text = _parse_args() args.prefetcher = not args.no_prefetcher args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 if args.distributed and args.num_gpu > 1: _logger.warning( 'Using more than one GPU per process in distributed mode is not allowed.Setting num_gpu to 1.') args.num_gpu = 1 args.device = 'cuda:0' args.world_size = 1 args.rank = 0 # global rank if args.distributed: args.num_gpu = 1 args.device = 'cuda:%d' % args.local_rank torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') args.world_size = torch.distributed.get_world_size() args.rank = torch.distributed.get_rank() assert args.rank >= 0 if args.distributed: _logger.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.' % (args.rank, args.world_size)) else: _logger.info('Training with a single process on %d GPUs.' % args.num_gpu) torch.manual_seed(args.seed + args.rank) model = create_model( args.model, pretrained=args.pretrained, num_classes=args.num_classes, drop_rate=args.drop, drop_connect_rate=args.drop_connect, # DEPRECATED, use drop_path drop_path_rate=args.drop_path, drop_block_rate=args.drop_block, global_pool=args.gp, bn_tf=args.bn_tf, bn_momentum=args.bn_momentum, bn_eps=args.bn_eps, checkpoint_path=args.initial_checkpoint, img_size=args.img_size) if args.local_rank == 0: _logger.info('Model %s created, param count: %d' % (args.model, sum([m.numel() for m in model.parameters()]))) data_config = resolve_data_config(vars(args), model=model, verbose=args.local_rank == 0) num_aug_splits = 0 if args.aug_splits > 0: assert args.aug_splits > 1, 'A split of 1 makes no sense' num_aug_splits = args.aug_splits if args.split_bn: assert num_aug_splits > 1 or args.resplit model = convert_splitbn_model(model, max(num_aug_splits, 2)) use_amp = None if args.amp: # for backwards compat, `--amp` arg tries apex before native amp if has_apex: args.apex_amp = True elif has_native_amp: args.native_amp = True if args.apex_amp and has_apex: use_amp = 'apex' elif args.native_amp and has_native_amp: use_amp = 'native' elif args.apex_amp or args.native_amp: _logger.warning("Neither APEX or native Torch AMP is available, using float32. " "Install NVIDA apex or upgrade to PyTorch 1.6") if args.num_gpu > 1: if use_amp == 'apex': _logger.warning( 'Apex AMP does not work well with nn.DataParallel, disabling. Use DDP or Torch AMP.') use_amp = None model = nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda() assert not args.channels_last, "Channels last not supported with DP, use DDP." else: model.cuda() if args.channels_last: model = model.to(memory_format=torch.channels_last) optimizer = create_optimizer(args, model) amp_autocast = suppress # do nothing loss_scaler = None if use_amp == 'apex': model, optimizer = amp.initialize(model, optimizer, opt_level='O1') loss_scaler = ApexScaler() if args.local_rank == 0: _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.') elif use_amp == 'native': amp_autocast = torch.cuda.amp.autocast loss_scaler = NativeScaler() if args.local_rank == 0: _logger.info('Using native Torch AMP. Training in mixed precision.') else: if args.local_rank == 0: _logger.info('AMP not enabled. Training in float32.') # optionally resume from a checkpoint resume_epoch = None if args.resume: resume_epoch = resume_checkpoint( model, args.resume, optimizer=None if args.no_resume_opt else optimizer, loss_scaler=None if args.no_resume_opt else loss_scaler, log_info=args.local_rank == 0) model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper model_ema = ModelEma( model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else '', resume=args.resume) if args.distributed: if args.sync_bn: assert not args.split_bn try: if has_apex and use_amp != 'native': # Apex SyncBN preferred unless native amp is activated model = convert_syncbn_model(model) else: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) if args.local_rank == 0: _logger.info( 'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using ' 'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.') except Exception as e: _logger.error('Failed to enable Synchronized BatchNorm. Install Apex or Torch >= 1.1') if has_apex and use_amp != 'native': # Apex DDP preferred unless native amp is activated if args.local_rank == 0: _logger.info("Using NVIDIA APEX DistributedDataParallel.") model = ApexDDP(model, delay_allreduce=True) else: if args.local_rank == 0: _logger.info("Using native Torch DistributedDataParallel.") model = NativeDDP(model, device_ids=[args.local_rank]) # can use device str in Torch >= 1.1 # NOTE: EMA model does not need to be wrapped by DDP lr_scheduler, num_epochs = create_scheduler(args, optimizer) start_epoch = 0 if args.start_epoch is not None: # a specified start_epoch will always override the resume epoch start_epoch = args.start_epoch elif resume_epoch is not None: start_epoch = resume_epoch if lr_scheduler is not None and start_epoch > 0: lr_scheduler.step(start_epoch) if args.local_rank == 0: _logger.info('Scheduled epochs: {}'.format(num_epochs)) dataset_train = create_dataset( args.dataset, root=args.data, split=args.train_split, is_training=True, batch_size=args.batch_size) dataset_eval = create_dataset( args.dataset, root=args.data, split=args.val_split, is_training=False, batch_size=args.batch_size) collate_fn = None mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: mixup_args = dict( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.num_classes) if args.prefetcher: assert not num_aug_splits # collate conflict (need to support deinterleaving in collate mixup) collate_fn = FastCollateMixup(**mixup_args) else: mixup_fn = Mixup(**mixup_args) if num_aug_splits > 1: dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits) train_interpolation = args.train_interpolation if args.no_aug or not train_interpolation: train_interpolation = data_config['interpolation'] loader_train = create_loader( dataset_train, input_size=data_config['input_size'], batch_size=args.batch_size, is_training=True, use_prefetcher=args.prefetcher, no_aug=args.no_aug, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, re_split=args.resplit, scale=args.scale, ratio=args.ratio, hflip=args.hflip, vflip=args.vflip, color_jitter=args.color_jitter, auto_augment=args.aa, num_aug_splits=num_aug_splits, interpolation=train_interpolation, mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, distributed=args.distributed, collate_fn=collate_fn, pin_memory=args.pin_mem, use_multi_epochs_loader=args.use_multi_epochs_loader ) loader_eval = create_loader( dataset_eval, input_size=data_config['input_size'], batch_size=args.validation_batch_size_multiplier * args.batch_size, is_training=False, use_prefetcher=args.prefetcher, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, distributed=args.distributed, crop_pct=data_config['crop_pct'], pin_memory=args.pin_mem, ) if args.jsd: assert num_aug_splits > 1 # JSD only valid with aug splits set train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing).cuda() elif mixup_active: # smoothing is handled with mixup target transform train_loss_fn = SoftTargetCrossEntropy().cuda() elif args.smoothing: train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing).cuda() else: train_loss_fn = nn.CrossEntropyLoss().cuda() validate_loss_fn = nn.CrossEntropyLoss().cuda() eval_metric = args.eval_metric best_metric = None best_epoch = None if args.eval_checkpoint: # evaluate the model load_checkpoint(model, args.eval_checkpoint, args.model_ema) val_metrics = validate(model, loader_eval, validate_loss_fn, args) print(f"Top-1 accuracy of the model is: {val_metrics['top1']:.1f}%") return saver = None output_dir = '' if args.local_rank == 0: output_base = args.output if args.output else './output' exp_name = '-'.join([ datetime.now().strftime("%Y%m%d-%H%M%S"), args.model, str(data_config['input_size'][-1]) ]) output_dir = get_outdir(output_base, 'train', exp_name) decreasing = True if eval_metric == 'loss' else False saver = CheckpointSaver( model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler, checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing) with open(os.path.join(output_dir, 'args.yaml'), 'w') as f: f.write(args_text) try: # train the model for epoch in range(start_epoch, num_epochs): if args.distributed: loader_train.sampler.set_epoch(epoch) train_metrics = train_epoch( epoch, model, loader_train, optimizer, train_loss_fn, args, lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir, amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn) if args.distributed and args.dist_bn in ('broadcast', 'reduce'): if args.local_rank == 0: _logger.info("Distributing BatchNorm running means and vars") distribute_bn(model, args.world_size, args.dist_bn == 'reduce') eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast) if model_ema is not None and not args.model_ema_force_cpu: if args.distributed and args.dist_bn in ('broadcast', 'reduce'): distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce') ema_eval_metrics = validate( model_ema.ema, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)') eval_metrics = ema_eval_metrics if lr_scheduler is not None: # step LR for next epoch lr_scheduler.step(epoch + 1, eval_metrics[eval_metric]) update_summary( epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'), write_header=best_metric is None) if saver is not None: # save proper checkpoint with eval metric save_metric = eval_metrics[eval_metric] best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric) except KeyboardInterrupt: pass if best_metric is not None: _logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch)) def train_epoch( epoch, model, loader, optimizer, loss_fn, args, lr_scheduler=None, saver=None, output_dir='', amp_autocast=suppress, loss_scaler=None, model_ema=None, mixup_fn=None): if args.mixup_off_epoch and epoch >= args.mixup_off_epoch: if args.prefetcher and loader.mixup_enabled: loader.mixup_enabled = False elif mixup_fn is not None: mixup_fn.mixup_enabled = False second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order batch_time_m = AverageMeter() data_time_m = AverageMeter() losses_m = AverageMeter() top1_m = AverageMeter() top5_m = AverageMeter() model.train() end = time.time() last_idx = len(loader) - 1 num_updates = epoch * len(loader) for batch_idx, (input, target) in enumerate(loader): last_batch = batch_idx == last_idx data_time_m.update(time.time() - end) if not args.prefetcher: input, target = input.cuda(), target.cuda() if mixup_fn is not None: input, target = mixup_fn(input, target) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) with amp_autocast(): output = model(input) loss = loss_fn(output, target) if not args.distributed: losses_m.update(loss.item(), input.size(0)) optimizer.zero_grad() if loss_scaler is not None: loss_scaler( loss, optimizer, clip_grad=args.clip_grad, parameters=model.parameters(), create_graph=second_order) else: loss.backward(create_graph=second_order) if args.clip_grad is not None: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad) optimizer.step() torch.cuda.synchronize() if model_ema is not None: model_ema.update(model) num_updates += 1 batch_time_m.update(time.time() - end) if last_batch or batch_idx % args.log_interval == 0: lrl = [param_group['lr'] for param_group in optimizer.param_groups] lr = sum(lrl) / len(lrl) if args.distributed: reduced_loss = reduce_tensor(loss.data, args.world_size) losses_m.update(reduced_loss.item(), input.size(0)) if args.local_rank == 0: _logger.info( 'Train: {} [{:>4d}/{} ({:>3.0f}%)] ' 'Loss: {loss.val:>9.6f} ({loss.avg:>6.4f}) ' 'Time: {batch_time.val:.3f}s, {rate:>7.2f}/s ' '({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) ' 'LR: {lr:.3e} ' 'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format( epoch, batch_idx, len(loader), 100. * batch_idx / last_idx, loss=losses_m, batch_time=batch_time_m, rate=input.size(0) * args.world_size / batch_time_m.val, rate_avg=input.size(0) * args.world_size / batch_time_m.avg, lr=lr, data_time=data_time_m)) if args.save_images and output_dir: torchvision.utils.save_image( input, os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx), padding=0, normalize=True) if saver is not None and args.recovery_interval and ( last_batch or (batch_idx + 1) % args.recovery_interval == 0): saver.save_recovery(epoch, batch_idx=batch_idx) if lr_scheduler is not None: lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg) end = time.time() # end for if hasattr(optimizer, 'sync_lookahead'): optimizer.sync_lookahead() return OrderedDict([('loss', losses_m.avg)]) def validate(model, loader, loss_fn, args, amp_autocast=suppress, log_suffix=''): batch_time_m = AverageMeter() losses_m = AverageMeter() top1_m = AverageMeter() top5_m = AverageMeter() model.eval() end = time.time() last_idx = len(loader) - 1 with torch.no_grad(): for batch_idx, (input, target) in enumerate(loader): last_batch = batch_idx == last_idx if not args.prefetcher: input = input.cuda() target = target.cuda() if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) with amp_autocast(): output = model(input) if isinstance(output, (tuple, list)): output = output[0] # augmentation reduction reduce_factor = args.tta if reduce_factor > 1: output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2) target = target[0:target.size(0):reduce_factor] loss = loss_fn(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) if args.distributed: reduced_loss = reduce_tensor(loss.data, args.world_size) acc1 = reduce_tensor(acc1, args.world_size) acc5 = reduce_tensor(acc5, args.world_size) else: reduced_loss = loss.data torch.cuda.synchronize() losses_m.update(reduced_loss.item(), input.size(0)) top1_m.update(acc1.item(), output.size(0)) top5_m.update(acc5.item(), output.size(0)) batch_time_m.update(time.time() - end) end = time.time() if args.local_rank == 0 and (last_batch or batch_idx % args.log_interval == 0): log_name = 'Test' + log_suffix _logger.info( '{0}: [{1:>4d}/{2}] ' 'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) ' 'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) ' 'Acc@1: {top1.val:>7.4f} ({top1.avg:>7.4f}) ' 'Acc@5: {top5.val:>7.4f} ({top5.avg:>7.4f})'.format( log_name, batch_idx, last_idx, batch_time=batch_time_m, loss=losses_m, top1=top1_m, top5=top5_m)) metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg)]) return metrics if __name__ == '__main__': main()
the-stack_0_4446
#!/usr/bin/python """ (C) Copyright 2020-2021 Intel Corporation. SPDX-License-Identifier: BSD-2-Clause-Patent """ import re from apricot import TestWithServers from daos_perf_utils import DaosPerfCommand from command_utils_base import CommandFailure class DaosPerfBase(TestWithServers): """Base test cases for the daos_perf command. Test Class Description: Tests daos_perf with different configurations. :avocado: recursive """ def run_daos_perf(self): """Run the daos_perf command.""" # Create pool self.add_pool() # Create container self.add_container(self.pool) # Obtain the number of processes listed with the daos_perf options processes = self.params.get("processes", "/run/daos_perf/*") # Use the dmg_control yaml dmg_config_file = self.get_dmg_command().yaml.filename # Create the daos_perf command from the test yaml file daos_perf = DaosPerfCommand(self.bin) daos_perf.get_params(self) daos_perf.pool_uuid.update(self.pool.uuid) daos_perf.cont_uuid.update(self.container.uuid) daos_perf.dmg_config_file.update(dmg_config_file) self.log.info("daos_perf command: %s", str(daos_perf)) daos_perf_env = daos_perf.get_environment(self.server_managers[0]) # Create the orterun command self.job_manager.assign_hosts(self.hostlist_clients, self.workdir, None) self.job_manager.assign_processes(processes) self.job_manager.assign_environment(daos_perf_env) self.job_manager.job = daos_perf self.log.info("orterun command: %s", str(self.job_manager)) # Run the daos_perf command and check for errors try: return self.job_manager.run() except CommandFailure as error: self.log.error("DAOS PERF Failed: %s", str(error)) self.fail("Test was expected to pass but it failed.\n")
the-stack_0_4447
import numpy as np from random import shuffle from scipy.sparse import csr_matrix class SVM: def __init__(self, learning_rate=1, regularization_loss_tradeoff=1): self.learning_rate = learning_rate self.regularization_loss_tradeoff = regularization_loss_tradeoff def train(self, train, labels, epochs): w = csr_matrix((1, train[0].shape[1]), dtype=np.float128) for _ in range(epochs): [w] = self.train_one_epoch(train, labels, w) return w def train_one_epoch(self, train, labels, w): lr = self.learning_rate tradeoff = self.regularization_loss_tradeoff order = [i for i in range(train.shape[0])] shuffle(order) w_transpose = w.transpose() for i in order: x = train[i] y = labels.toarray()[0][i] if (x.dot(w_transpose) * y)[0, 0] <= 1: w = w * (1 - lr) + x * (lr * tradeoff * y) else: w = w * (1 - lr) w_transpose = w.transpose() return [w] class SVMPredictor: def __init__(self, w): self.w = w.transpose() def predict(self, x): if x.dot(self.w)[0, 0] < 0: return -1 else: return 1
the-stack_0_4449
from dataclasses import dataclass, field from typing import List __NAMESPACE__ = "NISTSchema-SV-IV-list-negativeInteger-maxLength-2-NS" @dataclass class NistschemaSvIvListNegativeIntegerMaxLength2: class Meta: name = "NISTSchema-SV-IV-list-negativeInteger-maxLength-2" namespace = "NISTSchema-SV-IV-list-negativeInteger-maxLength-2-NS" value: List[int] = field( default_factory=list, metadata={ "max_length": 6, "tokens": True, } )
the-stack_0_4453
import pygame import random import os pygame.init() win = pygame.display.set_mode((700, 700)) pygame.display.set_caption("Falling Blocks") script_dir = os.path.dirname('Obstacles') rel_path = r"/Users/alecdewulf/Desktop/Falling-Blocks/Images/Obstacles" abs_file_path = os.path.join(script_dir, rel_path) # loading objects current_file = r"/finalboulder.png" boulderimg = pygame.image.load(abs_file_path + current_file) current_file = r"/betterball.png" snowballimg = pygame.image.load(abs_file_path + current_file) current_file = r"/bestrock.png" rockimg = pygame.image.load(abs_file_path + current_file) rel_path = r"/Users/alecdewulf/Desktop/Falling-Blocks/Images/Powerups" script_dir = os.path.dirname('Powerups') abs_file_path = os.path.join(script_dir, rel_path) # loading powerups current_file = r"/resizedheart.png" heartimg = pygame.image.load(abs_file_path + current_file) current_file = r"/bestgun.png" gunimg = pygame.image.load(abs_file_path + current_file) current_file = r'/better_small.png' side_gun = pygame.image.load(abs_file_path + current_file) #loading background abs_file_path = os.path.join('Backgrounds',r"/Users/alecdewulf/Desktop/Falling-Blocks/Images/Backgrounds") bg = pygame.image.load(abs_file_path + r"/background.jpg") rel_path = r"/Users/alecdewulf/Desktop/Falling-Blocks/Images/Player" script_dir = os.path.dirname('Player') abs_file_path = os.path.join(script_dir, rel_path) # character char = pygame.image.load(abs_file_path + r'/standing.png') walkRight = [pygame.image.load(abs_file_path + r'/R1.png'), pygame.image.load(abs_file_path + r'/R2.png'), pygame.image.load(abs_file_path + r'/R3.png'), pygame.image.load(abs_file_path + r'/R4.png'),\ pygame.image.load(abs_file_path + r'/R5.png'), pygame.image.load(abs_file_path + r'/R6.png'), pygame.image.load(abs_file_path + r'/R7.png'), pygame.image.load(abs_file_path + r'/R8.png'), pygame.image.load(abs_file_path + r'/R9.png')] walkLeft = [pygame.image.load(abs_file_path + r'/L1.png'), pygame.image.load(abs_file_path + r'/L2.png'), pygame.image.load(abs_file_path + r'/L3.png'), pygame.image.load(abs_file_path + r'/L4.png'),\ pygame.image.load(abs_file_path + r'/L5.png'), pygame.image.load(abs_file_path + r'/L6.png'), pygame.image.load(abs_file_path + r'/L7.png'), pygame.image.load(abs_file_path + r'/L8.png'), pygame.image.load(abs_file_path + r'/L9.png')] clock = pygame.time.Clock() class Character(object): def __init__(self, x, y, width, height): self.x = x self.y = y self.width = width self.height = height self.v = 5 self.left, self.right = False, False self.standing = True self.walkCount = 0 self.health = 10 self.hitbox = (self.x + 17, self.y + 11, 29, 52) self.alive = True self.shooting = False def draw(self, win): if self.alive: # reset image cycle if self.walkCount + 1 >= 9: self.walkCount = 0 # moving if not(self.standing): # drawing left walking images if self.left: win.blit(walkLeft[self.walkCount], (self.x, self.y)) self.walkCount += 1 elif self.right: win.blit(walkRight[self.walkCount], (self.x, self.y)) self.walkCount += 1 # not moving else: if self.right: win.blit(walkRight[0], (self.x, self.y)) else: win.blit(walkLeft[0], (self.x, self.y)) #hitbox # hitbox[0], hitbox[1] are the coords of the top left of the hitbox self.hitbox = (self.x + 17, self.y + 11, 29, 52) #pygame.draw.rect(win, (255, 0, 0), self.hitbox, 2) #health bar pygame.draw.rect(win, (255,0,0), (self.hitbox[0], self.hitbox[1] - 20, 50, 10)) pygame.draw.rect(win, (0,128,0), (self.hitbox[0], self.hitbox[1] - 20, 50 - ( 5* (10-self.health)), 10)) # gun if self.shooting: win.blit(side_gun, (self.x + 20, self.y + 40)) # circle at start of rect # pygame.draw.circle(win, (255,0,0), (self.hitbox[0], self.hitbox[1]), 20) else: #game over font = pygame.font.SysFont('comicsans', 30, True) over = font.render('GAME OVER', 1, (0,0,0)) win.blit(over, (290, 350)) # abstract block class class Block(object): def __init__(self, x, y): self.x = x self.y = y self.v = 10 self.falling = True def draw(self, win): # not off the screen if self.y < 700: win.blit(self.image, (self.x, self.y)) self.y += self.v else: self.falling = False class Rock(Block): def __init__(self, x, y): Block.__init__(self, x, y) self.v = 10 self.image = rockimg self.hitbox = (self.x, self.y + 10, 90, 60) self.id = "rock" def draw(self, win): Block.draw(self,win) # hitbox self.hitbox = (self.x, self.y + 10, 90, 60) #pygame.draw.rect(win, (255,0,0), self.hitbox, 2) class Snowball(Block): def __init__(self, x, y): Block.__init__(self, x, y) self.v = 20 self.image = snowballimg self.hitbox = (self.x, self.y - 10, 15, 15) self.id = "snowball" def draw(self,win): Block.draw(self, win) self.hitbox = (self.x, self.y - 10, 30, 30) # pygame.draw.rect(win, (255,0,0), self.hitbox, 2) class Boulder(Block): def __init__(self, x, y): Block.__init__(self, x, y) self.v = 5 self.image = boulderimg self.hitbox = (self.x, self.y - 20, 200 ,200) self.id = "boulder" def draw(self, win): Block.draw(self, win) self.hitbox = (self.x, self.y - 5, 135, 135) #pygame.draw.rect(win, (255,0,0), self.hitbox, 2) class Powerup(object): def __init__(self, x): self.x = x self.y = 635 self.image = None self.time = 270 self.appear = True def draw(self, win): if self.appear: if self.time > 0: win.blit(self.image, (self.x, self.y)) else: self.appear = False self.time -= 1 class Heart(Powerup): def __init__(self, x): Powerup.__init__(self, x) self.increase = 1 self.image = heartimg self.id = "heart" self.hitbox = (self.x, self.y, 30, 30) def draw(self, win): Powerup.draw(self, win) self.hitbox = (self.x, self.y, 30, 30) #pygame.draw.rect(win, (255,0,0), self.hitbox, 2) class Gun(Powerup): def __init__(self, x): Powerup.__init__(self, x) self.image = gunimg self.id = "gun" self.hitbox = (self.x, self.y, 30, 30) def draw(self, win): Powerup.draw(self, win) self.hitbox = (self.x, self.y, 30, 30) #pygame.draw.rect(win, (255,0,0), self.hitbox, 2) class Bullet(object): def __init__(self, x, y): self.x = x self.y = y self.hitbox = (self.x, self.y, 30, 30) self.appear = True self.v = 8 def draw(self, win): if self.appear: pygame.draw.circle(win, (0,0,0), (self.x, self.y), 7) self.hitbox = (self.x - 10, self.y - 10, 20, 20) #pygame.draw.rect(win, (255,0,0), self.hitbox, 2) def drawWindow(): win.blit(bg, (0,0)) man.draw(win) # drawing falling blocks if man.alive: for o in objects: o.draw(win) for p in powerups: p.draw(win) for b in bullets: b.draw(win) # displaying score font = pygame.font.SysFont('comicsans', 30, True) text = font.render('Score: ' + str(score), 1, (0,0,0)) win.blit(text, (550, 10)) else: # draw the score font = pygame.font.SysFont('comicsans', 30, True) text = font.render('Score: ' + str(score), 1, (0,0,0)) win.blit(text, (290, 400)) # update the display pygame.display.update() man = Character(300, 600, 64, 64) gun = Gun(400) print(type(man)) objects, powerups, bullets = [], [gun] , [] run, hit = True, False max_length, rounds, score, cooldown, interval = 0, 0, 0, 0, 27 shoot_cooldown, shoot_time = 0, 0 while run and man.alive: # set fps clock.tick(27) # find the center of the man center_x = (man.hitbox[0] + (man.hitbox[0] + man.hitbox[2]))//2 center_y = (man.hitbox[1] + (man.hitbox[1] + man.hitbox[3]))//2 # screen being closed for e in pygame.event.get(): if e.type == pygame.QUIT: run = False # keys list keys = pygame.key.get_pressed() # moving left if keys[pygame.K_LEFT] and man.x > 0: man.x -= man.v man.left, man.right = True, False man.standing = False # moving right elif keys[pygame.K_RIGHT] and man.x < 700 - man.width: man.x += man.v man.right, man.left = True, False man.standing = False # standing else: man.standing = True man.walkCount = 0 #shooting controls if man.shooting and keys[pygame.K_SPACE] and len(bullets) <= 5 and shoot_cooldown >= 10: shoot_cooldown = 0 new_bullet = Bullet(man.x + 30, man.y) bullets.append(new_bullet) # change bullet position or delete them for bullet in bullets: if bullet.y > 0: bullet.y -= bullet.v else: bullets.pop(bullets.index(bullet)) # check for bullet collisions for bullet in bullets: for o in objects: if bullet.x >= o.hitbox[0] and bullet.x <= o.hitbox[0] + o.hitbox[2]: # check the y if bullet.y >= o.hitbox[1] and bullet.y <= o.hitbox[1] + o.hitbox[3]: objects.pop(objects.index(o)) bullets.pop(bullets.index(bullet)) #check rocks for o in objects: if o.falling == False: objects.pop(objects.index(o)) score += 1 # check powerups for p in powerups: if p.appear == False: powerups.pop(powerups.index(p)) #check for a collision for r in objects: # check the x if center_x >= r.hitbox[0] and center_x <= r.hitbox[0] + r.hitbox[2]: # check the y if center_y >= r.hitbox[1] and center_y <= r.hitbox[1] + r.hitbox[3]: if r.id == "boulder": if man.health - 2 <= 0: man.alive = False else: print("HIT") r.falling = False man.health -= 2 # not a boulder elif man.health - 1 == 0: man.alive = False else: print('hit') r.falling = False man.health -= 1 # generate new objects x = random.randint(1,10) if x >= 5 and len(objects) < 5 + max_length and cooldown >= 20: x = random.randint(1, 21) xpos = random.randint(0, 700) if x == 10 or x == 15: new_snowball = Snowball(xpos, 0) objects.append(new_snowball) elif x == 20: new_boulder = Boulder(xpos, 0) objects.append(new_boulder) else: newrock = Rock(xpos, 0) objects.append(newrock) cooldown = 0 # generate new powerups x = random.randint(1, 100) if score > 50 and x == 25 and len(powerups) == 0: choice = random.randint(1, 100) xpos = random.randint(0,700) if choice >= 50: newheart = Heart(xpos) powerups.append(newheart) else: newgun = Gun(xpos) powerups.append(newgun) # check for picking up powerup for p in powerups: if center_x >= p.hitbox[0] and center_x <= p.hitbox[0] + p.hitbox[2]: # check the y if center_y >= p.hitbox[1] and center_y <= p.hitbox[1] + p.hitbox[3]: if p.id == "heart": if man.health < 10: man.health += 1 elif p.id == "gun": man.shooting = True # reset the shoot time shoot_time = 135 # picked up an powerup p.appear = False # check for the gun being use up if shoot_time == 0: man.shooting = False # draw the scene drawWindow() # increment the cooldown by a tenth of the score after 10 objects # so that difficulty increases over time if score < 10: cooldown += 1 else: cooldown += int(score * 0.1) # add to the amount of allowed objects as time goes on if rounds == 100 and max_length <= 10: max_length += 1 rounds = 0 # increment varaibles interval += 1 shoot_cooldown += 1 shoot_time -= 1 rounds += 1 rel_path = r"C:\Users\Owner\Desktop\Falling-Blocks\Textfiles" script_dir = os.path.dirname("Textfiles") abs_file_path = os.path.join(script_dir, rel_path) # print higscores highscores = open(abs_file_path + r'\highscores.txt', 'r') top = int(highscores.read()) print("Current highscore is ", top) highscores.close() hs = open(abs_file_path + r'\highscores.txt', 'w') if score > top: print("Congratulations! You have the new highscore") hs.write(str(score)) hs.close() run = True # game over screen while run and not(man.alive): # screen being closed for e in pygame.event.get(): if e.type == pygame.QUIT: run = False drawWindow() pygame.quit()
the-stack_0_4454
"""Handle presentation exchange information interface with non-secrets storage.""" from marshmallow import fields from ....messaging.models.base_record import BaseRecord, BaseRecordSchema class PresentationExchange(BaseRecord): """Represents a presentation exchange.""" class Meta: """PresentationExchange metadata.""" schema_class = "PresentationExchangeSchema" RECORD_TYPE = "presentation_exchange" RECORD_ID_NAME = "presentation_exchange_id" WEBHOOK_TOPIC = "presentations" LOG_STATE_FLAG = "debug.presentations" TAG_NAMES = {"thread_id"} INITIATOR_SELF = "self" INITIATOR_EXTERNAL = "external" STATE_REQUEST_SENT = "request_sent" STATE_REQUEST_RECEIVED = "request_received" STATE_PRESENTATION_SENT = "presentation_sent" STATE_PRESENTATION_RECEIVED = "presentation_received" STATE_VERIFIED = "verified" def __init__( self, *, presentation_exchange_id: str = None, connection_id: str = None, thread_id: str = None, initiator: str = None, state: str = None, presentation_request: dict = None, presentation: dict = None, verified: str = None, error_msg: str = None, **kwargs ): """Initialize a new PresentationExchange.""" super().__init__(presentation_exchange_id, state, **kwargs) self.connection_id = connection_id self.thread_id = thread_id self.initiator = initiator self.state = state self.presentation_request = presentation_request self.presentation = presentation self.verified = verified self.error_msg = error_msg @property def presentation_exchange_id(self) -> str: """Accessor for the ID associated with this exchange.""" return self._id @property def record_value(self) -> dict: """Accessor for JSON record value generated for this presentation exchange.""" return { prop: getattr(self, prop) for prop in ( "connection_id", "initiator", "presentation_request", "presentation", "error_msg", "verified", "state", ) } class PresentationExchangeSchema(BaseRecordSchema): """Schema for serialization/deserialization of presentation exchange records.""" class Meta: """PresentationExchangeSchema metadata.""" model_class = PresentationExchange presentation_exchange_id = fields.Str(required=False) connection_id = fields.Str(required=False) thread_id = fields.Str(required=False) initiator = fields.Str(required=False) state = fields.Str(required=False) presentation_request = fields.Dict(required=False) presentation = fields.Dict(required=False) verified = fields.Str(required=False) error_msg = fields.Str(required=False)
the-stack_0_4455
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle.fluid import core, unique_name from functools import reduce from paddle.distributed.fleet.meta_optimizers.common import is_loss_grad_op, is_backward_op, is_optimizer_op from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY import re import os def check_broadcast(block): """ if a var is broadcasted, it should have a sync_comm before this var is used, if not, raise error. if the broadcasted var has a fill_constant op, the fill_constant op should stay forward before the broadcast op, and before a sync_calc op. Otherwise, raise error. should ignore and skip broadcast_op of inner_parallelism (e.g. Megatron) """ broadcast_vars = {} for idx, op in enumerate(block.ops): if op.type == "c_broadcast": if op.all_attrs()["use_calc_stream"] == False: var_name = op.desc.input_arg_names()[0] if "@BroadCast" in var_name: if var_name in broadcast_vars: raise ValueError("var_name areadly exist: {}" "the old pos is {}, the new pos is {}". format(var_name, broadcast_vars[ var_name]["broadcast_pos"], idx)) broadcast_vars[var_name] = { "fill_constant_pos": -1, "broadcast_pos": idx, } for idx, op in enumerate(block.ops): if op.type == "fill_constant": var_name = op.desc.output_arg_names()[0] if var_name in broadcast_vars: broadcast_vars[var_name]["fill_constant_pos"] = idx continue last_sync_comm_op_idx = -1 last_sync_calc_op_idx = -1 for idx, op in enumerate(block.ops): if op.type == "c_sync_comm_stream": last_sync_comm_op_idx = idx continue if op.type == "c_sync_calc_stream": last_sync_calc_op_idx = idx continue if op.type == "c_broadcast": if op.all_attrs()["use_calc_stream"] == False: var_name = op.desc.input_arg_names()[0] if "@BroadCast" in var_name: if broadcast_vars[var_name]["fill_constant_pos"] != -1: assert (last_sync_calc_op_idx != -1) assert (broadcast_vars[var_name]["fill_constant_pos"] < last_sync_calc_op_idx) assert (last_sync_calc_op_idx < idx) continue for input_name in op.desc.input_arg_names(): if input_name in broadcast_vars: assert (broadcast_vars[input_name]["broadcast_pos"] != -1) assert (broadcast_vars[input_name]["broadcast_pos"] < last_sync_comm_op_idx) assert (last_sync_comm_op_idx < idx) return def check_allreduce_sum(block, shard, sharding_ring_id, dp_ring_id=-1): """ the op order should be: grad: - 0: op that generate Var - 1: sync_calc - 2: reduce_sum_sharding (allreduce --> reduce) - 3: sync_comm - 4: allreuce_sum_dp (dp_grads) - 5: sync_comm (dp_grads) - 6: op that use Var (dp_grads & sum) should ignore and skip allreduce_op of inner_parallelism (e.g. Megatron) """ vars_status = {} dp_grads_status = {} idx_last_grad_allreduce = -1 idx_amp_allreduce = -1 idx_gradient_clip_allreduce = -1 for idx, op in enumerate(block.ops): # sharding use both allreduce and reduce to sync grad if op.type == "c_allreduce_sum" or op.type == "c_reduce_sum": if op.all_attrs()["use_calc_stream"] == False: ring_id = op.desc.attr("ring_id") var_name = op.desc.input_arg_names()[0] param = var_name.split("@")[0] assert 'sum' in var_name or ("@GRAD" in var_name) if 'sum' in var_name or (not shard.has_param(param)): vars_status[var_name] = -1 else: dp_grads_status[var_name] = -1 if ring_id != sharding_ring_id: assert shard.has_param(param) assert ring_id == dp_ring_id if "sum" in var_name: idx_amp_allreduce = idx elif "@GRAD": idx_last_grad_allreduce = idx if op.type == "c_allreduce_max": idx_gradient_clip_allreduce = idx for op in block.ops: if op.type == "c_sync_calc_stream": for var_name in vars_status: if var_name in vars_status and vars_status[var_name] == 0: vars_status[var_name] = 1 for var_name in dp_grads_status: if var_name in dp_grads_status and dp_grads_status[ var_name] == 0: dp_grads_status[var_name] = 1 # check sharding allreduce and reduce but skip megatron allreduce elif op.type == "c_allreduce_sum" or op.type == "c_reduce_sum": if op.all_attrs()["use_calc_stream"] == False: var_name = op.desc.input_arg_names()[0] ring_id = op.desc.attr("ring_id") if ring_id == sharding_ring_id: assert op.type == "c_reduce_sum", "Grad in Sharding group should be reduce rather than allreduce" if var_name in vars_status: _status = vars_status[var_name] else: _status = dp_grads_status[var_name] if _status == -1: raise ValueError("{} is not generated, but you are" "trying to all-reduce it".format( var_name)) if _status == 0: raise ValueError("There should be a sync_calc op " "after generate Var: {} and before the" "c_allreduce_sum op".format(var_name)) assert (_status == 1) if var_name in vars_status: vars_status[var_name] = 2 else: dp_grads_status[var_name] = 2 else: assert ring_id == dp_ring_id param = var_name.split("@")[0] assert shard.has_param(param) assert dp_grads_status[var_name] == 3 dp_grads_status[var_name] = 4 elif op.type == "c_sync_comm_stream": var_name = op.desc.input_arg_names()[0] ring_id = op.desc.attr("ring_id") if ring_id == sharding_ring_id: for var_name in op.desc.input_arg_names(): if var_name in vars_status: assert vars_status[var_name] == 2 vars_status[var_name] = 3 elif var_name in dp_grads_status: assert dp_grads_status[var_name] == 2 dp_grads_status[var_name] = 3 else: for var_name in op.desc.input_arg_names(): param = var_name.split("@")[0] assert ring_id == dp_ring_id assert shard.has_param(param) assert dp_grads_status[var_name] == 4 dp_grads_status[var_name] = 5 else: for input_name in op.desc.input_arg_names(): if input_name in vars_status: if vars_status[input_name] != 3: raise ValueError("There should be a sync_comm op " "after allreduce the Var: {}".format( input_name)) raise ValueError( "The reduce output grad [{}] should NOT be be used in Non-root rank.". format(input_name)) if input_name in dp_grads_status: if dp_ring_id == -1: if dp_grads_status[input_name] != 3: raise ValueError("There should be a sync_comm op " "after allreduce the Var: {}". format(input_name)) else: if dp_grads_status[input_name] != 5: raise ValueError( "The grad in shard should be allreduce and sync" "twice before usage {}".format(input_name)) for output_name in op.desc.output_arg_names(): if output_name in vars_status and \ vars_status[output_name] == -1: vars_status[output_name] = 0 if output_name in dp_grads_status and \ dp_grads_status[output_name] == -1: dp_grads_status[output_name] = 0 # check sharding with amp if idx_amp_allreduce != -1: assert idx_amp_allreduce > idx_last_grad_allreduce # check sharding with gradient_clip_by_global_norm if idx_gradient_clip_allreduce != -1: assert idx_gradient_clip_allreduce > idx_last_grad_allreduce return def get_valid_op_role(block, insert_idx): """ return OpRole.Forward or OpRole.Backward """ op_role = block.ops[insert_idx].attr('op_role') if (insert_idx >= len(block.ops)) or ( op_role in [int(OpRole.Backward), int(OpRole.Optimize)]): return OpRole.Backward if op_role in [int(OpRole.Forward), int(OpRole.Loss)]: return OpRole.Forward return get_valid_op_role(block, insert_idx + 1) def insert_sync_calc_op(block, insert_idx, calc_dep_vars): """ _insert_sync_calc_op """ op_role = get_valid_op_role(block, insert_idx) block._insert_op_without_sync( insert_idx, type='c_sync_calc_stream', inputs={'X': calc_dep_vars}, outputs={'Out': calc_dep_vars}, attrs={OP_ROLE_KEY: op_role}) return def insert_sync_comm_op(block, insert_idx, ring_id, comm_dep_vars): """ insert sync_comm_op for single var """ op_role = get_valid_op_role(block, insert_idx) block._insert_op_without_sync( insert_idx, type='c_sync_comm_stream', inputs={'X': comm_dep_vars}, outputs={'Out': comm_dep_vars}, attrs={'ring_id': ring_id, OP_ROLE_KEY: op_role}) return 1 def insert_sync_comm_ops(block, insert_idx, ring_id, comm_dep_vars): """ insert sync_comm_op for vars """ # NOTE (JZ-LIANG) to be check, may result undefined case if len(comm_dep_vars) == 0: return 0 op_role = get_valid_op_role(block, insert_idx) block._insert_op_without_sync( insert_idx, type='c_sync_comm_stream', inputs={'X': comm_dep_vars}, outputs={'Out': comm_dep_vars}, attrs={'ring_id': int(ring_id), OP_ROLE_KEY: op_role}) return 1 def insert_fill_constant_ops(block, insert_idx, fill_constant_vars): """ _add_fill_constant_ops """ op_role = get_valid_op_role(block, insert_idx) for broadcast_name in fill_constant_vars: broadcast_var = block.var(broadcast_name) block._insert_op_without_sync( insert_idx, type="fill_constant", outputs={"Out": broadcast_var.name}, attrs={ "shape": broadcast_var.shape, "dtype": broadcast_var.dtype, "value": 0.0, OP_ROLE_KEY: op_role }) return def insert_cast_ops(block, insert_idx, cast_ops): """ _add_cast_ops """ op_role = get_valid_op_role(block, insert_idx) for fp16_name, fp32_name in cast_ops.items(): block._insert_op_without_sync( insert_idx, type="cast", inputs={"X": fp32_name}, outputs={"Out": fp16_name}, attrs={ "in_dtype": core.VarDesc.VarType.FP32, "out_dtype": core.VarDesc.VarType.FP16, OP_ROLE_KEY: op_role }) return def insert_allreduce_ops(block, insert_idx, ring_id, allreduce_vars, op_role=OpRole.Backward, use_calc_stream=False, user_defined_strategy=None): """ _add_allreduce_ops """ if len(allreduce_vars) == 0: return if user_defined_strategy and \ user_defined_strategy.fuse_all_reduce_ops and \ not user_defined_strategy.fuse_grad_merge: # If fuse_grad_merge is enable, the grad vars have already been fused during # gradient merge pass, therefore, those vars are not need to be fused here insert_fused_allreduce_ops(block, insert_idx, ring_id, allreduce_vars, op_role, use_calc_stream, user_defined_strategy.fuse_grad_size_in_MB) else: for var in allreduce_vars: block._insert_op_without_sync( insert_idx, type='c_allreduce_sum', inputs={'X': var}, outputs={'Out': var}, attrs={ 'ring_id': ring_id, 'use_calc_stream': use_calc_stream, OP_ROLE_KEY: op_role }) return class FuseHelper(object): @staticmethod def sort_vars_by_dtype(block, vars_name): fp32_vars = [] fp16_vars = [] other_vars = [] for var in vars_name: dtype = block.var(var).dtype if dtype == paddle.float32: fp32_vars.append(var) elif dtype == paddle.float16: fp16_vars.append(var) else: other_vars.append(var) assert len(other_vars) == 0, "only support fp32/fp16 vars for fuse" fp32_vars.extend(fp16_vars) return fp32_vars @staticmethod def get_fused_groups(block, vars_name, fuse_size=32.): """ coalesce tensor, get fused group """ groups = [] cur_size = 0. last_dtype = None for var_name in vars_name: real_var = block.var(var_name) var_size = get_var_size(real_var) if cur_size + var_size > fuse_size \ or len(groups) == 0 \ or real_var.dtype != last_dtype: groups.append([real_var]) cur_size = var_size last_dtype = real_var.dtype else: groups[-1].append(real_var) cur_size += var_size return groups @staticmethod def insert_coalesce_tensor(block, index, groups, op_role=OpRole.Backward, prefix="Output"): fused_vars = [] insert_num = 0 for group in groups: assert len(group) >= 1 if len(group) == 1: # no need fuse fused_vars.append(group[0]) continue fused_var = block.create_var( name=unique_name.generate('Fused{}_{}'.format(prefix, group[0] .name)), dtype=group[0].dtype, persistable=False, stop_gradient=True) fused_vars.append(fused_var) block._insert_op_without_sync( index, type="coalesce_tensor", inputs={"Input": group}, outputs={"Output": group, "FusedOutput": fused_var}, attrs={ "copy_data": True, "use_align": True, "dtype": group[0].dtype, OP_ROLE_KEY: op_role }) insert_num += 1 return fused_vars, insert_num def insert_fused_allreduce_ops(block, insert_idx, ring_id, allreduce_vars, op_role=OpRole.Backward, use_calc_stream=False, fuse_grad_size_in_MB=32): groups = FuseHelper.get_fused_groups(block, allreduce_vars, fuse_grad_size_in_MB) fused_vars, insert_num = FuseHelper.insert_coalesce_tensor( block, insert_idx, groups, op_role, prefix="Grad") for fused_var in fused_vars: block._insert_op_without_sync( insert_idx + insert_num, type='c_allreduce_sum', inputs={'X': fused_var}, outputs={'Out': fused_var}, attrs={ 'ring_id': ring_id, 'use_calc_stream': use_calc_stream, OP_ROLE_KEY: op_role }) if not use_calc_stream: block._insert_op_without_sync( insert_idx + insert_num, type='c_sync_calc_stream', inputs={'X': fused_var}, outputs={'Out': fused_var}, attrs={OP_ROLE_KEY: op_role}) def insert_fused_reduce_ops(block, insert_idx, ring_id, reduce_vars, shard, op_role=OpRole.Backward, use_calc_stream=False, rank=None, fuse_grad_size=32): nranks = shard.worker_num device_to_vars = [[] for _ in range(nranks)] for var in reduce_vars: root_id = get_grad_device(var, shard) assert 0 <= root_id < nranks, "root_id should >=0 and < nranks, " \ "but now nranks={}, the root_id of var={} is {}"\ .format(nranks, var, root_id) device_to_vars[root_id].append(var) for root_id, vars_name in enumerate(device_to_vars): groups = FuseHelper.get_fused_groups(block, vars_name, fuse_grad_size) fused_vars, insert_num = FuseHelper.insert_coalesce_tensor( block, insert_idx, groups, op_role, prefix="Grad") for fused_var in fused_vars: block._insert_op_without_sync( insert_idx + insert_num, type='c_reduce_sum', inputs={'X': fused_var}, outputs={'Out': fused_var}, attrs={ 'ring_id': ring_id, 'root_id': root_id, 'use_calc_stream': use_calc_stream, OP_ROLE_KEY: op_role }) if not use_calc_stream: block._insert_op_without_sync( insert_idx + insert_num, type='c_sync_calc_stream', inputs={'X': fused_var}, outputs={'Out': fused_var}, attrs={OP_ROLE_KEY: op_role}) return [] if rank is None else device_to_vars[rank] def insert_reduce_ops(block, insert_idx, ring_id, reduce_vars, shard, op_role=OpRole.Backward, use_calc_stream=False, rank=None, strategy=None): """ _add_reduce_ops """ if strategy and strategy.fuse_all_reduce_ops and \ not strategy.fuse_grad_merge: return insert_fused_reduce_ops(block, insert_idx, ring_id, reduce_vars, shard, op_role, use_calc_stream, rank, strategy.fuse_grad_size_in_MB) grad_in_this_device = [] for var in reduce_vars: grad_var = var if strategy and strategy.fuse_all_reduce_ops and \ strategy.fuse_grad_merge: # TODO(wangxi): if support fp16_allreduce, need be # 'FusedMergedGrad.cast_fp16._' grad_var = var.replace('FusedMergedGrad_', '') root_id = get_grad_device(grad_var, shard) assert root_id >= 0, "root id should be a positive int, but now root id is {}".format( root_id) if rank is not None and rank == root_id: grad_in_this_device.append(var) block._insert_op_without_sync( insert_idx, type='c_reduce_sum', inputs={'X': var}, outputs={'Out': var}, attrs={ 'ring_id': ring_id, 'root_id': root_id, 'use_calc_stream': use_calc_stream, OP_ROLE_KEY: op_role }) return grad_in_this_device def insert_fused_broadcast_param_ops(block, insert_idx, ring_id, params, shard, op_role=OpRole.Optimize, use_calc_stream=False, rank=None, fuse_size=32): nranks = shard.worker_num device_to_vars = [[] for _ in range(nranks)] for var in params: root_id = shard.device(var) assert 0 <= root_id < nranks, "root_id should >=0 and < nranks, " \ "but now nranks={}, the root_id of var={} is {}"\ .format(nranks, var, root_id) device_to_vars[root_id].append(var) for root_id, vars_name in enumerate(device_to_vars): groups = FuseHelper.get_fused_groups(block, vars_name, fuse_size) fused_vars, insert_num = FuseHelper.insert_coalesce_tensor( block, insert_idx, groups, op_role, prefix="Param") for fused_var in fused_vars: block._insert_op_without_sync( insert_idx + insert_num, type='c_broadcast', inputs={'X': fused_var}, outputs={'Out': fused_var}, attrs={ 'ring_id': ring_id, 'root': root_id, 'use_calc_stream': use_calc_stream, OP_ROLE_KEY: op_role }) if not use_calc_stream: block._insert_op_without_sync( insert_idx + insert_num, type='c_sync_calc_stream', inputs={'X': fused_var}, outputs={'Out': fused_var}, attrs={OP_ROLE_KEY: op_role}) return [] if rank is None else device_to_vars[rank] def insert_broadcast_param_ops(block, insert_idx, ring_id, params, shard, op_role=OpRole.Optimize, use_calc_stream=False, rank=None, strategy=None): """ add broadcast param ops """ if strategy and strategy.fuse_all_reduce_ops: # TODO(wangxi): put fused var in startup_program, only need exec once return insert_fused_broadcast_param_ops( block, insert_idx, ring_id, params, shard, op_role, use_calc_stream, rank, strategy.fuse_grad_size_in_MB) param_in_this_device = [] for param in params: root_id = shard.device(param) assert root_id >= 0, "root id should be a positive int, but now root id is {}".format( root_id) if rank is not None and rank == root_id: param_in_this_device.append(param) block._insert_op_without_sync( insert_idx, type='c_broadcast', inputs={'X': param}, outputs={'Out': param}, attrs={ 'ring_id': ring_id, 'root': root_id, 'use_calc_stream': use_calc_stream, OP_ROLE_KEY: op_role }) return param_in_this_device def fuse_opt_broadcast_param_ops(block, ring_id, shard, op_role=OpRole.Optimize, strategy=None): """ fuse optimizer sharding broadcast param ops """ if strategy is None or not strategy.fuse_all_reduce_ops: return fuse_size = strategy.fuse_grad_size_in_MB nranks = shard.worker_num device_to_vars = [[] for _ in range(nranks)] for idx, op in reversed(list(enumerate(block.ops))): if not is_optimizer_op(op) or op.type != 'c_broadcast': break var = op.input_arg_names[0] root_id = op.attr('root') device_to_vars[root_id].insert(0, var) block._remove_op(idx, sync=False) insert_idx = idx + 1 for root_id, vars_name in enumerate(device_to_vars): vars_name = FuseHelper.sort_vars_by_dtype(block, vars_name) groups = FuseHelper.get_fused_groups(block, vars_name, fuse_size) fused_vars, insert_num = FuseHelper.insert_coalesce_tensor( block, insert_idx, groups, op_role, prefix="Param") for fused_var in fused_vars: block._insert_op_without_sync( insert_idx + insert_num, type='c_broadcast', inputs={'X': fused_var}, outputs={'Out': fused_var}, attrs={ 'ring_id': ring_id, 'root': root_id, 'use_calc_stream': True, OP_ROLE_KEY: op_role }) block._sync_with_cpp() def get_grad_device(grad_name, shard): assert "@GRAD" in grad_name, "[{}] should be a grad variable.".format( grad_name) base_name = None # NOTE: mind the traversal order possible_suffixes = [ # sharding gm '.cast_fp16@GRAD@MERGED', '.cast_fp16@GRAD', # pipeline '@GRAD@MERGED@FP16', '@GRAD@MERGED', '@GRAD', ] for suffix in possible_suffixes: if suffix in grad_name: base_name = re.sub(suffix, '', grad_name) break assert base_name in shard.global_param2device, "[{}] should be a param variable.".format( base_name) return shard.global_param2device[base_name] def get_first_check_finite_and_unscale_op_idx(block, raise_error=True): for idx, op in enumerate(block.ops): if op.type == "check_finite_and_unscale": return idx if raise_error: raise ValueError( "amp is turned on but check_finite_and_unscale op does not exist in main block" ) return -1 def get_first_optimize_op_idx(block): first_opt_op_idx = None for index, op in reversed(tuple(enumerate(block.ops))): if is_backward_op(op) and first_opt_op_idx is None: first_opt_op_idx = index + 1 break return first_opt_op_idx def insert_broadcast_ops(block, insert_idx, ring_id, broadcast2root): """ _add_broadcast_ops """ op_role = get_valid_op_role(block, insert_idx) for broadcast_name, root_device in broadcast2root: block._insert_op_without_sync( insert_idx, type='c_broadcast', inputs={'X': broadcast_name}, outputs={'Out': broadcast_name}, attrs={ 'ring_id': ring_id, 'root': root_device, OP_ROLE_KEY: op_role }) return DtypeToSize = { core.VarDesc.VarType.FP16: 2, core.VarDesc.VarType.FP32: 4, core.VarDesc.VarType.FP64: 8, core.VarDesc.VarType.INT16: 2, core.VarDesc.VarType.INT32: 4, core.VarDesc.VarType.INT64: 8, core.VarDesc.VarType.BOOL: 1, core.VarDesc.VarType.UINT8: 1, } def get_var_size(param): """ input: - param: var return: var size in MB """ assert -1 not in param.shape return reduce(lambda x, y: x * y, param.shape) * DtypeToSize[param.dtype] / 1024.0 / 1024.0 def insert_scale_loss_grad_ops(block, scale=1.0): ''' In order to keep the learning rate consistent in different numbers of training workers, we scale the loss grad by the number of workers ''' for idx, op in reversed(list(enumerate(block.ops))): if is_loss_grad_op(op): assert op.type == 'fill_constant', \ "loss_grad_op must be fill_constant op, " \ "but this op is {}".format(op.type) assert op.has_attr('value') loss_scale = float(op.attr('value')) loss_scale = loss_scale / scale op._set_attr('value', loss_scale) break def comm_analyse(main_program): """ Analyse the parameter size that need to be broadcast/allreduce during sharding training """ reduce_vars = {} broadcast_vars = {} block = main_program.global_block() for op in block.ops: if op.type == "c_broadcast": var_name = op.desc.input_arg_names()[0] # convert MB to KB broadcast_vars[var_name] = get_var_size(block.var( var_name)) * 1024.0 elif op.type == "c_allreduce_sum": var_name = op.desc.input_arg_names()[0] reduce_vars[var_name] = get_var_size(block.var(var_name)) * 1024.0 varsize_count = {} gap = 1 for k, v in broadcast_vars.items(): print("broadcast: {}: {} KB".format(k, v)) if (int(v / gap) in varsize_count): varsize_count[int(v / gap)] += 1 else: varsize_count[int(v / gap)] = 1 for k, v in reduce_vars.items(): print("allreduce: {}: {} KB".format(k, v)) if (int(v / gap) in varsize_count): varsize_count[int(v / gap)] += 1 else: varsize_count[int(v / gap)] = 1 with open("nccl_size.txt", 'w') as f: sorted_varsize = sorted(varsize_count.items(), key=lambda x: x[0]) for varsize, count in sorted_varsize: print("NCCL size {}~{} KB: {}".format(varsize, varsize + 1, count)) f.write("NCCL size {}~{} KB: {}\n".format(varsize, varsize + 1, count)) def add_sync_comm(program, sharding_ring_id): """ When clone a test prog by clone from the sharding main prog, part of the sync_comm op maybe be pruned by mistake, this function add the sync_comm op for the test prog. """ #NOTE (liangjianzhong): only support one comm stream by now, use more than one # comm streams will cause error. should be revise in future. assert sharding_ring_id >= 0, "sharding_ring_id should larger than zero" block = program.global_block() not_sync_vars = set([]) for op in block.ops: if op.type in ["c_broadcast", "c_allreduce"]: for input_name in op.desc.input_arg_names(): not_sync_vars.add(input_name) if op.type == "c_sync_comm_stream": for input_name in op.desc.input_arg_names(): not_sync_vars.remove(input_name) if not_sync_vars: block.append_op( type='c_sync_comm_stream', inputs={'X': list(not_sync_vars)}, outputs={'Out': list(not_sync_vars)}, attrs={ 'ring_id': sharding_ring_id, 'op_role': core.op_proto_and_checker_maker.OpRole.Forward }) return def save_persistables(exe, dirname, main_program, filename=None): """ When use sharding, part of persistable vars are unique and are partitioned in different ranks, and part of persistable vars are duplicated and exist in all the ranks with different values. This function handles the model saving for sharding training. """ # TODO (JZ-LIANG) revise this for uniform mixed parallelism if main_program._pipeline_opt: main_program = main_program._pipeline_opt['section_program'] def is_opt_vars(var): # NOTE(JZ-LIANG): The checks should be updated when add new compatible optimizer # now only Momentum and adam are compatible with sharding, # support EMA optimizer with '_ema_0', # support offload with '@offload_0' and '.cast_fp16' checks = [ "_moment1_0", "_moment2_0", "_beta1_pow_acc_0", "_beta2_pow_acc_0", "_velocity_0", "_ema_0", "@offload_0", ".cast_fp16" ] for check in checks: if var.name.endswith(check) and var.persistable: return True return False def is_gradient_merge_vars(var): # NOTE(JZ-LIANG): to revise save/load logic in framework instead of write this naive rule return var.name.endswith("@GradiantMerge") def is_trainable(var): return isinstance(var, paddle.fluid.framework.Parameter) and var.trainable def sharding_predicate(var): return is_trainable(var) or is_opt_vars(var) or is_gradient_merge_vars( var) if int(os.environ.get('PADDLE_TRAINER_ID', 0)) == 0: paddle.fluid.io.save_persistables( exe, dirname, main_program=main_program, filename=None) else: paddle.fluid.io.save_vars( exe, dirname, main_program=main_program, predicate=sharding_predicate, filename=None) return def append_naive_sync(block, sync_var, ring_id): # NOTE (JZ-LIANG) update this to use barrier sync for more elegent logic # sync within global block.append_op( type="fill_constant", outputs={"Out": sync_var}, attrs={ "shape": sync_var.shape, "dtype": sync_var.dtype, "value": int(1), }) block.append_op( type='c_allreduce_sum', inputs={'X': sync_var}, outputs={'Out': sync_var}, attrs={ 'ring_id': ring_id, 'use_calc_stream': True, OP_ROLE_KEY: OpRole.Forward }) block.append_op( type='c_sync_calc_stream', inputs={'X': [sync_var]}, outputs={'Out': [sync_var]}, attrs={OP_ROLE_KEY: OpRole.Forward})
the-stack_0_4457
"""Module to define main fnet model wrapper class.""" from pathlib import Path from typing import Callable, Iterator, List, Optional, Sequence, Tuple, Union import logging import math import os from scipy.ndimage import zoom import numpy as np import tifffile import torch from fnet.metrics import corr_coef from fnet.predict_piecewise import predict_piecewise as _predict_piecewise_fn from fnet.transforms import flip_y, flip_x, norm_around_center from fnet.utils.general_utils import get_args, retry_if_oserror, str_to_object from fnet.utils.model_utils import move_optim logger = logging.getLogger(__name__) def _weights_init(m): classname = m.__class__.__name__ if classname.startswith("Conv"): m.weight.data.normal_(0.0, 0.02) elif classname.find("BatchNorm") != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def get_per_param_options(module, wd): """Returns list of per parameter group options. Applies the specified weight decay (wd) to parameters except parameters within batch norm layers and bias parameters. """ if wd == 0: return module.parameters() with_decay = list() without_decay = list() for idx_m, (name_m, module_sub) in enumerate(module.named_modules()): if list(module_sub.named_children()): continue # Skip "container" modules if isinstance(module_sub, torch.nn.modules.batchnorm._BatchNorm): for param in module_sub.parameters(): without_decay.append(param) continue for name_param, param in module_sub.named_parameters(): if "weight" in name_param: with_decay.append(param) elif "bias" in name_param: without_decay.append(param) # Check that no parameters were missed or duplicated n_param_module = len(list(module.parameters())) n_param_lists = len(with_decay) + len(without_decay) n_elem_module = sum([p.numel() for p in module.parameters()]) n_elem_lists = sum([p.numel() for p in with_decay + without_decay]) assert n_param_module == n_param_lists assert n_elem_module == n_elem_lists per_param_options = [ {"params": with_decay, "weight_decay": wd}, {"params": without_decay, "weight_decay": 0.0}, ] return per_param_options class Model: """Class that encompasses a pytorch network and its optimizer. """ def __init__( self, betas=(0.5, 0.999), criterion_class="fnet.losses.WeightedMSE", init_weights=True, lr=0.001, nn_class="fnet.nn_modules.fnet_nn_3d.Net", nn_kwargs={}, scheduler=None, weight_decay=0, gpu_ids=-1, ): self.betas = betas self.criterion = str_to_object(criterion_class)() self.gpu_ids = [gpu_ids] if isinstance(gpu_ids, int) else gpu_ids self.init_weights = init_weights self.lr = lr self.nn_class = nn_class self.nn_kwargs = nn_kwargs self.scheduler = scheduler self.weight_decay = weight_decay self.count_iter = 0 self.device = ( torch.device("cuda", self.gpu_ids[0]) if self.gpu_ids[0] >= 0 else torch.device("cpu") ) self.optimizer = None self._init_model() self.fnet_model_kwargs, self.fnet_model_posargs = get_args() self.fnet_model_kwargs.pop("self") def _init_model(self): self.net = str_to_object(self.nn_class)(**self.nn_kwargs) if self.init_weights: self.net.apply(_weights_init) self.net.to(self.device) self.optimizer = torch.optim.Adam( get_per_param_options(self.net, wd=self.weight_decay), lr=self.lr, betas=self.betas, ) if self.scheduler is not None: if self.scheduler[0] == "snapshot": period = self.scheduler[1] self.scheduler = torch.optim.lr_scheduler.LambdaLR( self.optimizer, lambda x: ( 0.01 + (1 - 0.01) * (0.5 + 0.5 * math.cos(math.pi * (x % period) / period)) ), ) elif self.scheduler[0] == "step": step_size = self.scheduler[1] self.scheduler = torch.optim.lr_scheduler.StepLR( self.optimizer, step_size ) else: raise NotImplementedError def __str__(self): out_str = [ f"*** {self.__class__.__name__} ***", f"{self.nn_class}(**{self.nn_kwargs})", f"iter: {self.count_iter}", f"gpu: {self.gpu_ids}", ] return os.linesep.join(out_str) def get_state(self): return { "fnet_model_class": (self.__module__ + "." + self.__class__.__qualname__), "fnet_model_kwargs": self.fnet_model_kwargs, "fnet_model_posargs": self.fnet_model_posargs, "nn_state": self.net.state_dict(), "optimizer_state": self.optimizer.state_dict(), "count_iter": self.count_iter, } def to_gpu(self, gpu_ids: Union[int, List[int]]) -> None: """Move network to specified GPU(s). Parameters ---------- gpu_ids GPU(s) on which to perform training or prediction. """ if isinstance(gpu_ids, int): gpu_ids = [gpu_ids] self.gpu_ids = gpu_ids self.device = ( torch.device("cuda", self.gpu_ids[0]) if self.gpu_ids[0] >= 0 else torch.device("cpu") ) self.net.to(self.device) if self.optimizer is not None: move_optim(self.optimizer, self.device) def save(self, path_save: str): """Saves model to disk. Parameters ---------- path_save Filename to which model is saved. """ dirname = os.path.dirname(path_save) if not os.path.exists(dirname): os.makedirs(dirname) logger.info(f"Created: {dirname}") curr_gpu_ids = self.gpu_ids self.to_gpu(-1) retry_if_oserror(torch.save)(self.get_state(), path_save) self.to_gpu(curr_gpu_ids) def load_state(self, state: dict, no_optim: bool = False): self.count_iter = state["count_iter"] self.net.load_state_dict(state["nn_state"]) if no_optim: self.optimizer = None return self.optimizer.load_state_dict(state["optimizer_state"]) def train_on_batch( self, x_batch: torch.Tensor, y_batch: torch.Tensor, weight_map_batch: Optional[torch.Tensor] = None, ) -> float: """Update model using a batch of inputs and targets. Parameters ---------- x_batch Batched input. y_batch Batched target. weight_map_batch Optional batched weight map. Returns ------- float Loss as determined by self.criterion. """ if self.scheduler is not None: self.scheduler.step() self.net.train() x_batch = x_batch.to(dtype=torch.float32, device=self.device) y_batch = y_batch.to(dtype=torch.float32, device=self.device) if len(self.gpu_ids) > 1: module = torch.nn.DataParallel(self.net, device_ids=self.gpu_ids) else: module = self.net self.optimizer.zero_grad() y_hat_batch = module(x_batch) args = [y_hat_batch, y_batch] if weight_map_batch is not None: args.append(weight_map_batch) loss = self.criterion(*args) loss.backward() self.optimizer.step() self.count_iter += 1 return loss.item() def _predict_on_batch_tta(self, x_batch: torch.Tensor) -> torch.Tensor: """Performs model prediction using test-time augmentation.""" augs = [None, [flip_y], [flip_x], [flip_y, flip_x]] x_batch = x_batch.numpy() y_hat_batch_mean = None for aug in augs: x_batch_aug = x_batch.copy() if aug is not None: for trans in aug: x_batch_aug = trans(x_batch_aug) y_hat_batch = self.predict_on_batch(x_batch_aug.copy()).numpy() if aug is not None: for trans in aug: y_hat_batch = trans(y_hat_batch) if y_hat_batch_mean is None: y_hat_batch_mean = np.zeros(y_hat_batch.shape, dtype=np.float32) y_hat_batch_mean += y_hat_batch y_hat_batch_mean /= len(augs) return torch.tensor( y_hat_batch_mean, dtype=torch.float32, device=torch.device("cpu") ) def predict_on_batch(self, x_batch: torch.Tensor) -> torch.Tensor: """Performs model prediction on a batch of data. Parameters ---------- x_batch Batch of input data. Returns ------- torch.Tensor Batch of model predictions. """ x_batch = torch.tensor(x_batch, dtype=torch.float32, device=self.device) if len(self.gpu_ids) > 1: network = torch.nn.DataParallel(self.net, device_ids=self.gpu_ids) else: network = self.net network.eval() with torch.no_grad(): y_hat_batch = network(x_batch).cpu() network.train() return y_hat_batch def predict( self, x: Union[torch.Tensor, np.ndarray], tta: bool = False ) -> torch.Tensor: """Performs model prediction on a single example. Parameters ---------- x Input data. piecewise Set to perform piecewise predictions. i.e., predict on patches of the input and stitch together the predictions. tta Set to use test-time augmentation. Returns ------- torch.Tensor Model prediction. """ x_batch = torch.unsqueeze(torch.tensor(x), 0) if tta: return self._predict_on_batch_tta(x_batch).squeeze(0) return self.predict_on_batch(x_batch).squeeze(0) def predict_piecewise( self, x: Union[torch.Tensor, np.ndarray], **predict_kwargs ) -> torch.Tensor: """Performs model prediction piecewise on a single example. Predicts on patches of the input and stitchs together the predictions. Parameters ---------- x Input data. **predict_kwargs Kwargs to pass to predict method. Returns ------- torch.Tensor Model prediction. """ if isinstance(x, np.ndarray): x = torch.from_numpy(x) if len(x.size()) == 4: dims_max = [None, 32, 512, 512] elif len(x.size()) == 3: dims_max = [None, 1024, 1024] y_hat = _predict_piecewise_fn( self, x, dims_max=dims_max, overlaps=16, **predict_kwargs ) return y_hat def test_on_batch( self, x_batch: torch.Tensor, y_batch: torch.Tensor, weight_map_batch: Optional[torch.Tensor] = None, ) -> float: """Test model on a batch of inputs and targets. Parameters ---------- x_batch Batched input. y_batch Batched target. weight_map_batch Optional batched weight map. Returns ------- float Loss as evaluated by self.criterion. """ y_hat_batch = self.predict_on_batch(x_batch) args = [y_hat_batch, y_batch] if weight_map_batch is not None: args.append(weight_map_batch) loss = self.criterion(*args) return loss.item() def test_on_iterator(self, iterator: Iterator, **kwargs: dict) -> float: """Test model on iterator which has items to be passed to test_on_batch. Parameters ---------- iterator Iterator that generates items to be passed to test_on_batch. kwargs Additional keyword arguments to be passed to test_on_batch. Returns ------- float Mean loss for items in iterable. """ loss_sum = 0 for item in iterator: loss_sum += self.test_on_batch(*item, **kwargs) return loss_sum / len(iterator) def evaluate( self, x: torch.Tensor, y: torch.Tensor, metric: Optional = None, piecewise: bool = False, **kwargs, ) -> Tuple[float, torch.Tensor]: """Evaluates model output using a metric function. Parameters ---------- x Input data. y Target data. metric Metric function. If None, uses fnet.metrics.corr_coef. piecewise Set to perform predictions piecewise. **kwargs Additional kwargs to be passed to predict() method. Returns ------- float Evaluation as determined by metric function. torch.Tensor Model prediction. """ if metric is None: metric = corr_coef if piecewise: y_hat = self.predict_piecewise(x, **kwargs) else: y_hat = self.predict(x, **kwargs) if y is None: return None, y_hat evaluation = metric(y, y_hat) return evaluation, y_hat def apply_on_single_zstack( self, input_img: Optional[np.ndarray] = None, filename: Optional[Union[Path, str]] = None, inputCh: Optional[int] = None, normalization: Optional[Callable] = None, already_normalized: bool = False, ResizeRatio: Optional[Sequence[float]] = None, cutoff: Optional[float] = None, ) -> np.ndarray: """Applies model to a single z-stack input. This assumes the loaded network architecture can receive 3d grayscale images as input. Parameters ---------- input_img 3d or 4d image with shape (Z, Y, X) or (C, Z, Y, X) respectively. filename Path to input image. Ignored if input_img is supplied. inputCh Selected channel if filename is a path to a 4d image. normalization Input image normalization function. already_normalized Set to skip input normalization. ResizeRatio Resizes each dimension of the the input image by the specified factor if specified. cutoff If specified, converts the output to a binary image with cutoff as threshold value. Returns ------- np.ndarray Predicted image with shape (Z, Y, X). If cutoff is set, dtype will be numpy.uint8. Otherwise, dtype will be numpy.float. Raises ------ ValueError If parameters are invalid. FileNotFoundError If specified file does not exist. IndexError If inputCh is invalid. """ if input_img is None: if filename is None: raise ValueError("input_img or filename must be specified") input_img = tifffile.imread(str(filename)) if inputCh is not None: if input_img.ndim != 4: raise ValueError("input_img must be 4d if inputCh specified") input_img = input_img[inputCh,] if input_img.ndim != 3: raise ValueError("input_img must be 3d") normalization = normalization or norm_around_center if not already_normalized: input_img = normalization(input_img) if ResizeRatio is not None: if len(ResizeRatio) != 3: raise ValueError("ResizeRatio must be length 3") input_img = zoom(input_img, zoom=ResizeRatio, mode="nearest") yhat = ( self.predict_piecewise(input_img[np.newaxis,], tta=True) .squeeze(dim=0) .numpy() ) if cutoff is not None: yhat = (yhat >= cutoff).astype(np.uint8) * 255 return yhat
the-stack_0_4462
# Copyright (c) 2012-2017 Snowflake Computing Inc. All rights reserved. """ test_tokens.py - This defines a series of tests to ascertain that we are capable of renewing JWT tokens """ from snowflake.ingest.utils import SecurityManager from snowflake.ingest.error import IngestClientError from snowflake.ingest.errorcode import ERR_INVALID_PRIVATE_KEY from datetime import timedelta from time import sleep import os import pytest def test_same_token(test_util): """ Tests that we aren't immediately regenerating the key after each request """ private_key, _ = test_util.generate_key_pair() sec_man = SecurityManager("testaccount", "snowman", private_key, renewal_delay=timedelta(seconds=3)) assert sec_man.get_token() == sec_man.get_token() def test_regenerate_token(test_util): """ Tests that the security manager generates new tokens after we cross the set renewal threshold """ private_key, _ = test_util.generate_key_pair() sec_man = SecurityManager("testaccount", "snowman", private_key, renewal_delay=timedelta(seconds=3)) old_token = sec_man.get_token() sleep(5) assert old_token != sec_man.get_token() def test_calculate_public_key_fingerprint(test_util): with open(os.path.join(test_util.get_data_dir(), 'test_rsa_key'), 'r') as key_file: private_key = key_file.read() sec_man = SecurityManager("testaccount", "snowman", private_key, renewal_delay=timedelta(minutes=3)) public_key_fingerprint = sec_man.calculate_public_key_fingerprint(private_key) assert public_key_fingerprint == 'SHA256:QKX8hnXHVAVXp7mLdCAF+vjU2A8RBuRSpgdRjPHhVWY=' def test_invalid_private_key(): sec_man = SecurityManager("testaccount", "snowman", 'invalid_private_key', renewal_delay=timedelta(minutes=3)) with pytest.raises(IngestClientError) as client_error: sec_man.get_token() assert client_error.value.code == ERR_INVALID_PRIVATE_KEY
the-stack_0_4463
""" Ethereum Virtual Machine (EVM) Keccak Instructions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. contents:: Table of Contents :backlinks: none :local: Introduction ------------ Implementations of the EVM keccak instructions. """ from ethereum.base_types import U256, Uint from ethereum.crypto.hash import keccak256 from ethereum.utils.numeric import ceil32 from ethereum.utils.safe_arithmetic import u256_safe_add, u256_safe_multiply from ...vm.error import OutOfGasError from .. import Evm from ..gas import ( GAS_KECCAK256, GAS_KECCAK256_WORD, calculate_gas_extend_memory, subtract_gas, ) from ..memory import extend_memory, memory_read_bytes from ..stack import pop, push def keccak(evm: Evm) -> None: """ Pushes to the stack the Keccak-256 hash of a region of memory. This also expands the memory, in case the memory is insufficient to access the data's memory location. Parameters ---------- evm : The current EVM frame. Raises ------ :py:class:`~ethereum.dao_fork.vm.error.StackUnderflowError` If `len(stack)` is less than `2`. """ # Converting memory_start_index to Uint as memory_end_index can # overflow U256. memory_start_index = Uint(pop(evm.stack)) size = pop(evm.stack) words = ceil32(Uint(size)) // 32 word_gas_cost = u256_safe_multiply( GAS_KECCAK256_WORD, words, exception_type=OutOfGasError, ) memory_extend_gas_cost = calculate_gas_extend_memory( evm.memory, memory_start_index, size ) total_gas_cost = u256_safe_add( GAS_KECCAK256, word_gas_cost, memory_extend_gas_cost, exception_type=OutOfGasError, ) evm.gas_left = subtract_gas(evm.gas_left, total_gas_cost) extend_memory(evm.memory, memory_start_index, size) data = memory_read_bytes(evm.memory, memory_start_index, size) hash = keccak256(data) push(evm.stack, U256.from_be_bytes(hash)) evm.pc += 1
the-stack_0_4464
from typing import Any, Dict, Optional, Union from uuid import uuid4 from sqlalchemy.orm import Session from app.crud.base import CRUDBase from app.crud.crud_user import user from app.models.login_link import LoginLink from app.schemas.login_link import LoginLinkCreate, LoginLinkUpdate class CRUDLoginLink(CRUDBase[LoginLink, LoginLinkCreate, LoginLinkUpdate]): def get_by_code(self, db: Session, *, code: str) -> Optional[LoginLink]: return db.query(LoginLink).filter(LoginLink.code == code).first() def create(self, db: Session, *, obj_in: LoginLinkCreate) -> LoginLink: code = str(uuid4())[:8] link = self.get_by_code(db, code=code) while link: code = str(uuid4())[:8] link = self.get_by_code(db, code=code) found_user = user.get(db, id=obj_in.user.id) assert found_user is not None db_obj = LoginLink(code=code.upper(), user_id=found_user.id) db.add(db_obj) db.commit() db.refresh(db_obj) return db_obj def update( self, db: Session, *, db_obj: LoginLink, obj_in: Union[LoginLinkUpdate, Dict[str, Any]] ) -> LoginLink: if isinstance(obj_in, dict): update_data = obj_in else: update_data = obj_in.dict(exclude_unset=True) return super().update(db, db_obj=db_obj, obj_in=update_data) def is_active(self, db_obj: LoginLink) -> bool: return db_obj.active def disable(self, db: Session, *, db_obj: LoginLink) -> bool: setattr(db_obj, "active", False) db.add(db_obj) db.commit() db.refresh(db_obj) return db_obj.active login_link = CRUDLoginLink(LoginLink)
the-stack_0_4466
import random import torch import sys import torch.nn as nn import torchaudio import bz2 import pickle import torchvision.transforms as transforms import cv2 import math import os import numpy as np from torch.utils.data import Dataset, DataLoader from logging import Logger from torchvision.transforms.transforms import Lambda try: from datasets import MelSpectrogram, align_and_crop_face except: sys.path.extend(['..']) from spectograms import MelSpectrogram from face_utils import align_and_crop_face def av_speech_collate_fn_pad(batch): lower_faces, speeches, melspecs, face_crop = zip(*batch) max_frames_in_batch = max([l.shape[0] for l in lower_faces]) max_samples_in_batch = max([s.shape[1] for s in speeches]) max_melspec_samples_in_batch = max([m.shape[1] for m in melspecs]) padded_lower_faces = torch.zeros(len(lower_faces), max_frames_in_batch, *tuple(lower_faces[0].shape[1:])) padded_speeches = torch.zeros(len(speeches), 1, max_samples_in_batch) padded_melspecs = torch.zeros(len(melspecs), melspecs[0].shape[0], max_melspec_samples_in_batch) mel_gate_padded = torch.zeros(len(melspecs), max_melspec_samples_in_batch) video_lengths = list() audio_lengths = list() melspec_lengths = list() for idx, (lower_face, speech, melspec) in enumerate(zip(lower_faces, speeches, melspecs)): T = lower_face.shape[0] video_lengths.append(T) padded_lower_faces[idx, :T, :, :, :] = lower_face S = speech.shape[-1] audio_lengths.append(S) padded_speeches[idx, :, :S] = speech M = melspec.shape[-1] melspec_lengths.append(M) padded_melspecs[idx, :, :M] = melspec mel_gate_padded[idx, M-1:] = 1.0 face_crop_tensor = torch.cat([f.unsqueeze(0) for f in face_crop], dim=0) padded_lower_faces = padded_lower_faces.permute(0, 2, 1, 3, 4) padded_speeches = padded_speeches.squeeze(1) video_lengths = torch.tensor(video_lengths) audio_lengths = torch.tensor(audio_lengths) melspec_lengths = torch.tensor(melspec_lengths) return (padded_lower_faces, video_lengths), (padded_speeches, audio_lengths), (padded_melspecs, melspec_lengths, mel_gate_padded), face_crop_tensor def x_round(x): return math.floor(x * 4) / 4 def loadframes(filename): with bz2.BZ2File(filename, 'r') as f: data = pickle.load(f) return [cv2.cvtColor(cv2.imdecode(imn, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB) for imn in data] class WILD(Dataset): def __init__(self, rootpth, face_size=(96, 96), mode='train', demo=False, duration=1, face_augmentation=None, *args, **kwargs): super(WILD, self).__init__(*args, **kwargs) assert mode in ('train', 'test') self.rootpth = rootpth self.face_recog_resize = transforms.Compose([ transforms.Resize((160, 160)), transforms.Lambda(lambda im: (im.float() - 127.5) / 128.0), ]) self.face_size = face_size self.face_resize = transforms.Compose([ transforms.Resize(face_size), transforms.Lambda(lambda im: im.float() / 255.0), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) if face_augmentation is None: self.face_augmentation = nn.Identity() else: self.face_augmentation = face_augmentation self.mode = mode self.demo = demo self.items = dict() index = 0 for root, _, filenames in os.walk(self.rootpth): for filename in filenames: if filename.endswith(('.mp4', '.mov', '.mpg')): if filename.endswith('.mov'): format = '.mov' elif filename.endswith('.mpg'): format = '.mpg' elif filename.endswith('.mp4'): format = '.mp4' video_path = os.path.join(root, filename) audio_path = os.path.join(root, filename.replace(format, '.wav')) frame_info_path = os.path.join(root, filename.replace(format, '.json')) spec_path = os.path.join(root, filename.replace(format, '.npz')) face_path = video_path[:-4] + '_face.npz' if os.path.isfile(audio_path) and os.path.isfile(frame_info_path) and os.path.isfile(spec_path): self.items[index] = [video_path, audio_path, spec_path, face_path, frame_info_path] index += 1 self.len = len(self.items) self.duration = duration print(f'Size of {type(self).__name__}: {self.len}') random.shuffle(self.items) def __len__(self): return self.len def __getitem__(self, idx): video_path, audio_path, spec_path, face_path, frame_info_path = self.items[idx] speech, sampling_rate = torchaudio.load(audio_path, normalize=True, format='wav') melspec = torch.from_numpy(np.load(spec_path)['data']) melspec = melspec.squeeze(0) faces = [torch.from_numpy(face).permute(2, 0, 1) for face in loadframes(face_path)] faces = self.face_augmentation(faces) face_indices = (torch.rand(2) * len(faces)).int() face_crop = torch.cat([self.face_recog_resize(faces[f_id]).unsqueeze(0) for f_id in face_indices], dim=0) lower_faces = list() for face in faces: C, H, W = face.shape lower_face = face[:, H//2:, :] lower_faces.append(self.face_resize(lower_face).unsqueeze(0)) lower_faces = torch.cat(lower_faces, dim=0) if self.demo: return lower_faces, speech, melspec, face_crop, audio_path return lower_faces, speech, melspec, face_crop def main(): ds = WILD('/media/ssd/christen-rnd/Experiments/Lip2Speech/Datasets/WILD', mode='test', duration=1) dl = DataLoader(ds, batch_size=8, shuffle=False, num_workers=0, pin_memory=False, drop_last=True, collate_fn=av_speech_collate_fn_pad) from IPython.display import Audio, display for bdx, batch in enumerate(dl): (video, video_lengths), (speeches, audio_lengths), (melspecs, melspec_lengths, mel_gates), faces = batch frames = video print('video.shape', video.shape) print('faces.shape ', faces.shape) print('frames[0][0].shape ', frames[0][0].shape) print('melspecs.shape ', melspecs.shape) # print('speech.shape ', speech.shape) # continue B, C, T, H, W = video.shape for k in range(B): face = faces[k, 0, :, :, :].permute(1, 2, 0).numpy() face = ((face * 128.0) + 127.5).astype(dtype=np.uint8) cv2.imshow('face', face[:, :, :: -1]) for i in range(T): image = frames[k, :, i, :, :].permute(1, 2, 0).numpy() image = image * np.array([0.229, 0.224, 0.225]) + np.array([0.485, 0.456, 0.406]) print(k, i, image.shape) cv2.imshow('image', image[:, :, :: -1]) if ord('q') == cv2.waitKey(16): exit() # sample_rate = 16000 # effects = [ # ["lowpass", "-1", "700"], # apply single-pole lowpass filter # # ["speed", "0.8"], # reduce the speed # # This only changes sample rate, so it is necessary to # # add `rate` effect with original sample rate after this. # # ["rate", f"{sample_rate}"], # # ["reverb", "-w"], # Reverbration gives some dramatic feeling # ] # aug_speech, sample_rate2 = torchaudio.sox_effects.apply_effects_tensor( # speech[0], sample_rate, effects) # torchaudio.save('test.wav', speech[0], 16000) # torchaudio.save('aug_speech.wav', aug_speech, 16000) # plot_waveform(waveform, sample_rate) # plot_specgram(waveform, sample_rate) # play_audio(waveform, sample_rate) # images = images.numpy() # lb = lb.numpy() # for image, label in zip(images, lb): # label = ds.vis_label(label) # print(torch.unique(label)) # print(img.shape, label.shape) if __name__ == "__main__": main()
the-stack_0_4470
from distutils import log from weaverbird.backends.sql_translator.steps.utils.query_transformation import ( build_selection_query, ) from weaverbird.backends.sql_translator.types import ( SQLPipelineTranslator, SQLQuery, SQLQueryDescriber, SQLQueryExecutor, SQLQueryRetriever, ) from weaverbird.pipeline.steps import ReplaceStep def translate_replace( step: ReplaceStep, query: SQLQuery, index: int, sql_query_retriever: SQLQueryRetriever = None, sql_query_describer: SQLQueryDescriber = None, sql_query_executor: SQLQueryExecutor = None, sql_translate_pipeline: SQLPipelineTranslator = None, subcall_from_other_pipeline_count: int = None, ) -> SQLQuery: query_name = f'REPLACE_STEP_{index}' log.debug( '############################################################' f'query_name: {query_name}\n' '------------------------------------------------------------' f'step.name: {step.name}\n' f'step.search_column: {step.search_column}\n' f'step.to_replace: {step.to_replace}\n' f'query.transformed_query: {query.transformed_query}\n' f'query.metadata_manager.query_metadata: {query.metadata_manager.retrieve_query_metadata()}\n' ) def _clean_str(value): if not isinstance(value, float) and not isinstance(value, int): value = value.strip('"').strip("'").replace('"', "\'").replace("'", "\\'") return f'\'{value}\'' return value compiled_query: str = 'CASE ' for element_to_replace in step.to_replace: from_value, to_value = element_to_replace compiled_query += ( f'WHEN {step.search_column}={_clean_str(from_value)} THEN {_clean_str(to_value)} ' ) compiled_query += f'ELSE {step.search_column} END AS {step.search_column}' completed_fields = query.metadata_manager.retrieve_query_metadata_columns_as_str( columns_filter=[step.search_column] ) new_query = SQLQuery( query_name=query_name, transformed_query=f"""{query.transformed_query}, {query_name} AS""" f""" (SELECT {completed_fields},""" f""" {compiled_query}""" f""" FROM {query.query_name})""", selection_query=build_selection_query( query.metadata_manager.retrieve_query_metadata_columns(), query_name ), metadata_manager=query.metadata_manager, ) log.debug( '------------------------------------------------------------' f'SQLquery: {new_query.transformed_query}' '############################################################' ) return new_query
the-stack_0_4474
# 深海棲艦の装備一覧のURL from typing import Dict, Tuple, List import lxml.html import requests from model.weapon import Weapon from model.weapon_type import WeaponType ENEMY_WEAPON_DATA_URL = 'https://kancolle.fandom.com/wiki/List_of_equipment_used_by_the_enemy' # 装備種テキストと装備種との対応表 WEAPON_TYPE_DICT: Dict[str, WeaponType] = { 'Small Caliber Main Gun': WeaponType.SCMG, 'Medium Caliber Main Gun': WeaponType.MCMG, 'Large Caliber Main Gun': WeaponType.LCMG, 'Secondary Gun': WeaponType.SG, 'Torpedo': WeaponType.TORPEDO, 'Midget Submarine': WeaponType.MS, 'Carrier-based Fighter Aircraft': WeaponType.CFA, 'Carrier-based Dive Bomber': WeaponType.CDB, 'Seaplane Bomber': WeaponType.SB, 'Carrier-based Torpedo Bomber': WeaponType.CTB, 'Reconnaissance Seaplane': WeaponType.MS, 'Small Radar': WeaponType.SR, 'Large Radar': WeaponType.LR, 'Engine Improvement': WeaponType.EI, 'Anti-Aircraft Shell': WeaponType.AAS, 'Armor Piercing Shell': WeaponType.APS, 'Anti-Aircraft Gun': WeaponType.AAG, 'Depth Charge': WeaponType.DC, 'Sonar': WeaponType.SONAR, 'Searchlight': WeaponType.S_LIGHT, } def read_weapon_name(td_tag: lxml.html.HtmlElement) -> str: """装備名を算出する Parameters ---------- td_tag: lxml.html.HtmlElement TDタグの中身 Returns ------- 装備名 """ link_name: str = td_tag.cssselect('a')[0].text name = td_tag.text_content().replace(link_name, '', 1) return name.strip() def read_weapon_parameters(td_tag: lxml.html.HtmlElement) -> Dict[str, int]: """装備のパラメーターを読み取る Parameters ---------- td_tag: lxml.html.HtmlElement TDタグの中身 Returns ------- 装備のパラメーター """ # アイコン情報と値情報を読み取る # 値情報は、各要素が必ず「+」「-」「特定の文字列」で区切れていることを利用した分割 icon_list = [x.get('title', '') for x in td_tag.cssselect('a')] value_list = td_tag.text_content().replace('+', '\n+').replace('-', '\n+') \ .replace('Very Long', '\nVL').replace('Short', '\nShort')\ .replace('Medium', '\nMedium').replace('Long', '\nLong') \ .replace('VL', 'Very Long').split('\n') value_list = [x for x in value_list if x != ''] # 読み取った情報を連想配列に代入する parameters: Dict[str, int] = {} for icon, value in zip(icon_list, value_list): if icon == 'Range': continue parameters[icon] = int(value) return parameters def get_enemy_weapon_list() -> Tuple[List[Weapon], Dict[str, int]]: """深海棲艦の装備の一覧を取得する Returns ------- weapon_list[index] = 装備情報 weapon_url_dict[装備URL] = 装備ID """ # URLを読み取り、HTMLをパースする response = requests.get(ENEMY_WEAPON_DATA_URL) dom: lxml.html.HtmlElement = lxml.html.fromstring(response.text) # テーブルの各行を読み取り、装備データとしてweapon_dictに代入する weapon_list: List[Weapon] = [Weapon( id=0, name='', type=WeaponType.NONE, attack=0, torpedo=0, bomber=0, anti_air=0, anti_sub=0)] weapon_url_dict: Dict[str, int] = {} for tr_tag in dom.cssselect('table.wikitable tr'): # テーブルなので列毎にバラせる tr_tag: lxml.html.HtmlElement = tr_tag td_tag_list: List[lxml.html.HtmlElement] = tr_tag.cssselect('td') if len(td_tag_list) < 6: continue # 装備IDを読み取る weapon_id = int(td_tag_list[0].text) # 装備名を読み取る weapon_name = read_weapon_name(td_tag_list[2]) # 装備URLを読み取る weapon_url = td_tag_list[2].cssselect('a')[0].get('href', '') weapon_url_dict[weapon_url] = weapon_id # 装備種を読み取る raw_weapon_type = td_tag_list[3].text.strip() weapon_type = WEAPON_TYPE_DICT.get(raw_weapon_type, WeaponType.NONE) # 他のパラメーターを読み取る parameters = read_weapon_parameters(td_tag_list[4]) weapon_attack = parameters.get('Firepower', 0) weapon_torpedo = parameters.get('Torpedo', 0) weapon_bomber = parameters.get('Bombing', 0) weapon_antiair = parameters.get('AA', 0) weapon_anti_sub = parameters.get('ASW', 0) # 装備情報を作成し、代入する weapon = Weapon( id=weapon_id, name=weapon_name, type=weapon_type, attack=weapon_attack, torpedo=weapon_torpedo, bomber=weapon_bomber, anti_air=weapon_antiair, anti_sub=weapon_anti_sub) weapon_list.append(weapon) return weapon_list, weapon_url_dict
the-stack_0_4475
from django.db import models from django.utils.translation import ugettext_lazy as _ from foundation_tenant.models.base.abstract_thing import AbstractThing class TagManager(models.Manager): def delete_all(self): items = Tag.objects.all() for item in items.all(): item.delete() class Tag(models.Model): class Meta: app_label = 'foundation_tenant' db_table = 'smeg_tags' verbose_name = _('Tag') verbose_name_plural = _('Tags') objects = TagManager() name = models.CharField( _("Name"), max_length=127, help_text=_('The name of the Tag item.'), unique=True, ) is_program = models.BooleanField( _("Is program"), help_text=_('Indicates if this Tag is to be used for programs.'), default=False, blank=True, ) # DEVELOPERS NOTES: # - These fields should be set in a ETL. entrepreneurs_count = models.PositiveSmallIntegerField( _("entrepreneurs_count"), help_text=_('Keep track of how many entrepreneurs that are assigned to this tag.'), default=0, null=True ) entrepreneurs_average_stage_num = models.FloatField( _("Entrepreneurs Average Stage"), help_text=_('Keep track of the average stage number that most entrepeneurs that belong this tag fall under.'), default=0, null=True ) def __str__(self): return str(self.name)
the-stack_0_4477
from fasteve import Fasteve, BaseSchema, Resource, ObjectID, SubResource from fasteve.utils import Unique, DataRelation from typing import Optional, List, NewType, Union, Any from pydantic import EmailStr, SecretStr, Field, BaseModel from datetime import datetime from time import sleep class Data(BaseSchema): date: datetime # datetime.date not supported by mongo confirmed: int deaths: int recovered: int country_id: ObjectID data = Resource( schema=Data, resource_methods=["GET", "POST", "DELETE"], item_name="datum" ) class Leader(BaseSchema): name: str age: int leader = Resource(schema=Leader, resource_methods=["GET", "POST", "DELETE"]) class Countries(BaseSchema): name: Unique[str] # leader: DataRelation = leader data_sub_resource = SubResource(resource=data, id_field="country_id", name="data") countries = Resource( schema=Countries, resource_methods=["GET", "POST", "DELETE"], item_name="country", alt_id="name", sub_resources=[data_sub_resource], # GET /countries/<country_id|name>/data ) resources = [countries, leader, data] app = Fasteve(resources=resources, cors_origins=["*"]) @app.repeat_every(seconds=60 * 60 * 24) # every day async def count_countries_in_db() -> None: data, count = await app.data.find(countries) print(f"There are {count} countries in the database!") @app.get("/custom_endpoint") def custom_endpoint(): return {"custom": "endpoint"}
the-stack_0_4479
import json from os import urandom import urllib import urlparse import flask import requests from requests_oauthlib import OAuth1 as OAuth1Manager from oauthlib.oauth1.rfc5849 import SIGNATURE_HMAC, SIGNATURE_TYPE_AUTH_HEADER from oauthlib.oauth2.draft25 import tokens from werkzeug.urls import url_decode from foauth import OAuthError BEARER = 'BEARER' BEARER_HEADER = 'HEADER' BEARER_BODY = 'BODY' BEARER_URI = 'URI' BEARER_TYPES = (BEARER_HEADER, BEARER_BODY, BEARER_URI) class Bearer(object): def __init__(self, token, bearer_type=BEARER_HEADER): self.token = token if bearer_type in BEARER_TYPES or callable(bearer_type): self.bearer_type = bearer_type else: raise ValueError('Unknown bearer type %s' % bearer_type) def __call__(self, r): if self.bearer_type == BEARER_HEADER: r.headers = tokens.prepare_bearer_headers(self.token, r.headers) elif self.bearer_type == BEARER_BODY: r.data = tokens.prepare_bearer_body(self.token, r.data) elif self.bearer_type == BEARER_URI: r.url = tokens.prepare_bearer_uri(self.token, r.url) elif callable(self.bearer_type): r = self.bearer_type(self.token, r) return r class OAuthMeta(type): def __init__(cls, name, bases, attrs): if 'alias' not in attrs: cls.alias = cls.__name__.lower() if 'api_domain' in attrs and 'api_domains' not in attrs: cls.api_domains = [cls.api_domain] if 'provider_url' in attrs and 'favicon_url' not in attrs: # Use a favicon service when no favicon is supplied primary = 'https://getfavicon.appspot.com/%s' % cls.provider_url domain = urlparse.urlparse(cls.provider_url).netloc backup = 'https://www.google.com/s2/favicons?domain=%s' % domain cls.favicon_url = '%s?defaulticon=%s' % (primary, urllib.quote(backup)) if 'name' not in attrs: cls.name = cls.__name__ class OAuth(object): __metaclass__ = OAuthMeta https = True verify = True signature_method = SIGNATURE_HMAC signature_type = SIGNATURE_TYPE_AUTH_HEADER permissions_widget = 'checkbox' description = '' disclaimer = '' def __init__(self, client_id, client_secret): self.client_id = client_id self.client_secret = client_secret def get_request_token_url(self): return self.request_token_url def get_access_token_url(self): return self.access_token_url def get_scope_string(self, scopes): return '' def get_authorize_url(self, redirect_uri, scopes): params = self.get_authorize_params(redirect_uri=redirect_uri, scopes=scopes) req = requests.Request(url=self.authorize_url, params=params) return req.prepare().url def get_login_uri(self, redirect_uri): params = self.get_authorize_params(redirect_uri=redirect_uri, scopes=[]) req = requests.Request(url=self.authorize_url, params=params) return req.prepare().url # The remainder of the API must be implemented for each flavor of OAuth def callback(self, data, redirect_uri): """ Receives the full callback from the service and returns a 2-tuple containing the user token and user secret (if applicable). """ raise NotImplementedError("callback() must be defined in a subclass") def api(self, key, domain, path, method='GET', params=None, data=None): """ Passes along an API request to the service and returns the response. """ raise NotImplementedError("api() must be defined in a subclass") class OAuth1(OAuth): returns_token = True def parse_token(self, content): content = url_decode(content) return { 'access_token': content['oauth_token'], 'secret': content['oauth_token_secret'], } def get_request_token_params(self, redirect_uri, scopes): return {} def get_request_token_response(self, redirect_uri, scopes): auth = OAuth1Manager(client_key=self.client_id, client_secret=self.client_secret, callback_uri=redirect_uri, signature_method=self.signature_method, signature_type=self.signature_type) return requests.post(self.get_request_token_url(), auth=auth, params=self.get_request_token_params(redirect_uri, scopes), verify=self.verify) def get_authorize_params(self, redirect_uri, scopes): resp = self.get_request_token_response(redirect_uri, scopes) try: data = self.parse_token(resp.content) except Exception: raise OAuthError('Unable to parse access token') flask.session['%s_temp_secret' % self.alias] = data['secret'] if not self.returns_token: redirect_uri += ('?oauth_token=%s' % data['access_token']) return { 'oauth_token': data['access_token'], 'oauth_callback': redirect_uri, } def get_access_token_response(self, token, secret, verifier=None): auth = OAuth1Manager(client_key=self.client_id, client_secret=self.client_secret, resource_owner_key=token, resource_owner_secret=secret, verifier=verifier, signature_method=self.signature_method, signature_type=self.signature_type) return requests.post(self.get_access_token_url(), auth=auth, verify=self.verify) def callback(self, data, redirect_uri): token = data['oauth_token'] verifier = data.get('oauth_verifier', None) secret = flask.session['%s_temp_secret' % self.alias] del flask.session['%s_temp_secret' % self.alias] resp = self.get_access_token_response(token, secret, verifier) try: return self.parse_token(resp.content) except Exception: raise OAuthError('Unable to parse access token') def api(self, key, domain, path, method='GET', params=None, data=None, headers=None): protocol = self.https and 'https' or 'http' url = '%s://%s%s' % (protocol, domain, path) auth = OAuth1Manager(client_key=self.client_id, client_secret=self.client_secret, resource_owner_key=key.access_token, resource_owner_secret=key.secret, signature_method=self.signature_method, signature_type=self.signature_type) return requests.request(method, url, auth=auth, params=params or {}, data=data or {}, headers=headers or {}, verify=self.verify, stream=True) class OAuth2(OAuth): token_type = BEARER bearer_type = BEARER_HEADER supports_state = True auth = None def parse_token(self, content): return json.loads(content) def get_scope_string(self, scopes): return ' '.join(scopes) def get_authorize_params(self, redirect_uri, scopes): state = ''.join('%02x' % ord(x) for x in urandom(16)) flask.session['%s_state' % self.alias] = state if not self.supports_state: redirect_uri += ('?state=%s' % state) params = { 'client_id': self.client_id, 'response_type': 'code', 'redirect_uri': redirect_uri, 'state': state, } if any(scopes): params['scope'] = self.get_scope_string(scopes) return params def get_access_token_response(self, redirect_uri, data): return requests.post(self.get_access_token_url(), { 'client_id': self.client_id, 'client_secret': self.client_secret, 'grant_type': 'authorization_code', 'code': data['code'], 'redirect_uri': redirect_uri }, verify=self.verify, auth=self.auth) def callback(self, data, redirect_uri): state = flask.session['%s_state' % self.alias] if 'state' in data and state != data['state']: flask.abort(403) del flask.session['%s_state' % self.alias] if not self.supports_state: redirect_uri += ('?state=%s' % state) resp = self.get_access_token_response(redirect_uri, data) return self.parse_token(resp.content) def refresh_token(self, token): resp = requests.post(self.get_access_token_url(), { 'client_id': self.client_id, 'client_secret': self.client_secret, 'grant_type': 'refresh_token', 'refresh_token': token }, verify=self.verify, auth=self.auth) return self.parse_token(resp.content) def api(self, key, domain, path, method='GET', params=None, data=None, headers=None): protocol = self.https and 'https' or 'http' url = '%s://%s%s' % (protocol, domain, path) if self.token_type == BEARER: auth = Bearer(key.access_token, bearer_type=self.bearer_type) return requests.request(method, url, auth=auth, params=params or {}, data=data or {}, headers=headers or {}, verify=self.verify, stream=True)
the-stack_0_4480
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import pandas as pd from tensorflow.python.keras import Sequential from tensorflow.python.keras.layers import Dense from tensorflow.keras.optimizers import Adam from replay_buffer import ReplayBuffer def DeepQNetwork(lr, num_actions, input_dims, fc1, fc2): q_net = Sequential() q_net.add(Dense(fc1, input_dim=input_dims, activation='relu')) q_net.add(Dense(fc2, activation='relu')) q_net.add(Dense(num_actions, activation=None)) q_net.compile(optimizer=Adam(learning_rate=lr), loss='mse') return q_net class Agent: def __init__(self, lr, discount_factor, num_actions, epsilon, batch_size, input_dims): self.action_space = [i for i in range(num_actions)] self.discount_factor = discount_factor self.epsilon = epsilon self.batch_size = batch_size self.epsilon_decay = 0.001 self.epsilon_final = 0.01 self.update_rate = 100 self.step_counter = 0 self.buffer = ReplayBuffer(1000000, input_dims) self.q_net = DeepQNetwork(lr, num_actions, input_dims, 256, 256) self.q_target_net = DeepQNetwork(lr, num_actions, input_dims, 256, 256) def store_tuple(self, state, action, reward, new_state, done): self.buffer.store_tuples(state, action, reward, new_state, done) def policy(self, observation): if np.random.random() < self.epsilon: action = np.random.choice(self.action_space) else: state = np.array([observation]) actions = self.q_net(state) action = tf.math.argmax(actions, axis=1).numpy()[0] return action def train(self): if self.buffer.counter < self.batch_size: return if self.step_counter % self.update_rate == 0: self.q_target_net.set_weights(self.q_net.get_weights()) state_batch, action_batch, reward_batch, new_state_batch, done_batch = \ self.buffer.sample_buffer(self.batch_size) q_predicted = self.q_net(state_batch) q_next = self.q_target_net(new_state_batch) q_max_next = tf.math.reduce_max(q_next, axis=1, keepdims=True).numpy() q_target = np.copy(q_predicted) for idx in range(done_batch.shape[0]): target_q_val = reward_batch[idx] if not done_batch[idx]: target_q_val += self.discount_factor*q_max_next[idx] q_target[idx, action_batch[idx]] = target_q_val self.q_net.train_on_batch(state_batch, q_target) self.epsilon = self.epsilon - self.epsilon_decay if self.epsilon > self.epsilon_final else self.epsilon_final self.step_counter += 1 def train_model(self, env, num_episodes, graph): scores, episodes, avg_scores, obj = [], [], [], [] goal = -110 f = 0 txt = open("saved_networks.txt", "w") for i in range(num_episodes): done = False score = 0.0 state = env.reset() while not done: action = self.policy(state) new_state, reward, done, _ = env.step(action) score += reward self.store_tuple(state, action, reward, new_state, done) state = new_state self.train() scores.append(score) obj.append(goal) episodes.append(i) avg_score = np.mean(scores[-100:]) avg_scores.append(avg_score) print("Episode {0}/{1}, Score: {2} ({3}), AVG Score: {4}".format(i, num_episodes, score, self.epsilon, avg_score)) if avg_score >= -110 and score >= -108: self.q_net.save(("saved_networks/dqn_model{0}".format(f))) self.q_net.save_weights(("saved_networks/dqn_model{0}/net_weights{0}.h5".format(f))) txt.write("Save {0} - Episode {1}/{2}, Score: {3} ({4}), AVG Score: {5}\n".format(f, i, num_episodes, score, self.epsilon, avg_score)) f += 1 print("Network saved") txt.close() if graph: df = pd.DataFrame({'x': episodes, 'Score': scores, 'Average Score': avg_scores, 'Solved Requirement': obj}) plt.plot('x', 'Score', data=df, marker='', color='blue', linewidth=2, label='Score') plt.plot('x', 'Average Score', data=df, marker='', color='orange', linewidth=2, linestyle='dashed', label='AverageScore') plt.plot('x', 'Solved Requirement', data=df, marker='', color='red', linewidth=2, linestyle='dashed', label='Solved Requirement') plt.legend() plt.savefig('MountainCar_Train.png') def test(self, env, num_episodes, file_type, file, graph): if file_type == 'tf': self.q_net = tf.keras.models.load_model(file) elif file_type == 'h5': self.train_model(env, 5, False) self.q_net.load_weights(file) self.epsilon = 0.0 scores, episodes, avg_scores, obj = [], [], [], [] goal = -110 score = 0.0 for i in range(num_episodes): state = env.reset() done = False episode_score = 0.0 while not done: env.render() action = self.policy(state) new_state, reward, done, _ = env.step(action) episode_score += reward state = new_state score += episode_score scores.append(episode_score) obj.append(goal) episodes.append(i) avg_score = np.mean(scores[-100:]) avg_scores.append(avg_score) if graph: df = pd.DataFrame({'x': episodes, 'Score': scores, 'Average Score': avg_scores, 'Solved Requirement': obj}) plt.plot('x', 'Score', data=df, marker='', color='blue', linewidth=2, label='Score') plt.plot('x', 'Average Score', data=df, marker='', color='orange', linewidth=2, linestyle='dashed', label='AverageScore') plt.plot('x', 'Solved Requirement', data=df, marker='', color='red', linewidth=2, linestyle='dashed', label='Solved Requirement') plt.legend() plt.savefig('MountainCar_Test.png') env.close()
the-stack_0_4481
import re from lxml import etree from pyramid.settings import asbool from .exception import ConfigurationError def clean_oai_settings(settings): """Parse and validate OAI app settings in a dictionary. Check that the settings required by the OAI app are in the settings dictionary and have valid values. Convert them to correct types. Required settings are: admin_emails deleted_records item_list_limit logging_config repository_descriptions repository_name sqlalchemy.url Parameters ---------- settings: dict from str to str The settings dictionary. Raises ------ ConfigurationError: If some setting is missing or has an invalid value. """ cleaners = { 'admin_emails': _clean_admin_emails, 'deleted_records': _clean_deleted_records, 'item_list_limit': _clean_item_list_limit, 'logging_config': _clean_unicode, 'repository_descriptions': _load_repository_descriptions, 'repository_name': _clean_unicode, 'sqlalchemy.url': _clean_unicode, } _clean_settings(settings, cleaners) def clean_importer_settings(settings): """Parse and validate metadata importer settings in a dictionary. Check that the settings required by the metadata importer are in the settings dictionary and have valid values. Convert them to correct types. Required settings are: deleted_records dry_run force_update logging_config sqlalchemy.url timestamp_file metadata_provider_class metadata_provider_args Parameters ---------- settings: dict from str to str The settings dictionary. Raises ------ ConfigurationError: If some setting is missing or has an invalid value. """ cleaners = { 'deleted_records': _clean_deleted_records, 'dry_run': _clean_boolean, 'force_update': _clean_boolean, 'logging_config': _clean_unicode, 'sqlalchemy.url': _clean_unicode, 'timestamp_file': _clean_unicode, 'metadata_provider_args': _clean_unicode, 'metadata_provider_class': _clean_provider_class, } return _clean_settings(settings, cleaners) def _clean_settings(settings, cleaners): """Check that settings are ok. The parameter `cleaners` is a dict from setting names to functions. Each cleaner function is called with the value of the corresponding setting. The cleaners should raise an exception if the value is invalid and otherwise return a cleaned value. The old value gets replaced by the cleaned value. Parameters ---------- settings: dict from str to str The settings dictionary. cleaners: dict from str to callable Mapping from setting names to cleaner functions. Raises ------ ConfigurationError: If any setting is missing or invalid. """ for name, func in cleaners.items(): if name not in settings: raise ConfigurationError('missing setting {0}'.format(name)) try: cleaned = func(settings[name]) settings[name] = cleaned except Exception as error: raise ConfigurationError( 'invalid {0} setting: {1}'.format(name, error) ) def _clean_admin_emails(value): """Check that the value is a list of valid email addresses.""" # email regex pattern defined in the OAI-PMH XML schema pattern = re.compile(r'^\S+@(\S+\.)+\S+$', flags=re.UNICODE) emails = _clean_unicode(value).split() if not emails: raise ValueError('no emails') for email in emails: if re.match(pattern, email) is None: raise ValueError( 'invalid email address: {0}' ''.format(repr(email)) ) return emails def _clean_deleted_records(value): """Check that value is one of "no", "transient", "persistent".""" allowed_values = ['no', 'transient', 'persistent'] if value not in allowed_values: raise ValueError('deleted_records must be one of {0}'.format( allowed_values )) return str(value) def _clean_boolean(value): """Return the value as a bool.""" return asbool(value) def _clean_item_list_limit(value): """Check that value is a positive integer.""" int_value = int(value) if int_value <= 0: raise ValueError('item_list_limit must be positive') return int_value def _clean_unicode(value): """Return the value as a unicode.""" if isinstance(value, bytes): return value.decode('utf-8') else: return str(value) def _clean_provider_class(value): """Split the value to module name and classname.""" modulename, classname = value.split(':') if len(modulename) == 0: raise ValueError('empty module name') if len(classname) == 0: raise ValueError('empty class name') return (modulename, classname) def _load_repository_descriptions(value): """Load XML fragments from files.""" def load_description(path): """Load a single description.""" with open(path, 'r') as file_: contents = file_.read() try: doc = etree.fromstring(contents.encode('utf-8')) except Exception as error: raise ValueError( 'ill-formed XML in repository description {0}: ' '{1}'.format(repr(path), error) ) xsi_ns = 'http://www.w3.org/2001/XMLSchema-instance' if doc.get('{{{0}}}schemaLocation'.format(xsi_ns)) is None: raise ValueError('no schema location') return contents paths = value.split() return list(map(load_description, paths))
the-stack_0_4482
import pygame.font class Button(): """Basic button, since pygame doesn't have it built-in""" def __init__(self, ai_game, message): """Initialize button attributes""" self.screen = ai_game.screen self.screen_rect = self.screen.get_rect() self.width, self.height = 200, 50 self.button_color = (0, 255, 0) self.text_color = (255, 255, 255) self.font = pygame.font.SysFont(None, 48) self.rect = pygame.Rect(0, 0, self.width, self.height) self.rect.center = self.screen_rect.center self._render_message(message) def _render_message(self, message): """Turn message into a rendered image on center of the button""" self.message_image = self.font.render( message, True, self.text_color, self.button_color) self.message_image_rect = self.message_image.get_rect() self.message_image_rect.center = self.rect.center def draw(self): """Draw button with message""" self.screen.fill(self.button_color, self.rect) self.screen.blit(self.message_image, self.message_image_rect)
the-stack_0_4483
#! /usr/bin/python import argparse import glob import os import sys import tarfile def parse_args(): parser = argparse.ArgumentParser() products = ["rdn", "obs_ort", "loc", "igm", "glt"] formats = ["envi", "hdf"] parser.add_argument("-p", "--product", help=("Choose one of the following product types: " + ", ".join(products))) parser.add_argument("-f", "--format", help=("Choose one of the following formats: " + ", ".join(formats))) args = parser.parse_args() if args.product: if args.product not in products: print("ERROR: Product \"%s\" is not a valid product choice." % args.product) sys.exit(1) if args.format: if args.format not in formats: print("ERROR: Format \"%s\" is not a valid format choice." % f) sys.exit(1) return args def main(): args = parse_args() # Unzip and untar granules input_dir = "input" granule_paths = glob.glob(os.path.join(input_dir, "*.tar.gz")) for g in granule_paths: tar_file = tarfile.open(g) tar_file.extractall(input_dir) tar_file.close() os.remove(g) dirs = [d for d in os.listdir(input_dir) if os.path.isdir(os.path.join(input_dir, d))] instrument = "PRISMA" if dirs[0][:3] == "PRS" else "AVIRIS" # Get paths based on product type file matching paths = [] if instrument == "PRISMA": if args.product == "rdn": paths = glob.glob(os.path.join(input_dir, "*", "*rdn_prj")) elif args.product == "obs_ort": paths = glob.glob(os.path.join(input_dir, "*", "*obs_prj")) elif args.product == "loc": paths = glob.glob(os.path.join(input_dir, "*", "*loc_prj")) elif instrument == "AVIRIS": if args.product == "rdn": paths = glob.glob(os.path.join(input_dir, "*rdn*", "*rdn*img")) elif args.product == "obs_ort": paths = glob.glob(os.path.join(input_dir, "*rdn*", "*obs_ort")) elif args.product == "loc": paths = glob.glob(os.path.join(input_dir, "*rdn*", "*loc")) elif args.product == "igm": paths = glob.glob(os.path.join(input_dir, "*rdn*", "*igm")) elif args.product == "glt": paths = glob.glob(os.path.join(input_dir, "*rdn*", "*glt")) print(",".join(paths)) if __name__ == "__main__": main()
the-stack_0_4484
import logging import os from pythonjsonlogger import jsonlogger def setup_logging(log_level): logger = logging.getLogger() logger.setLevel(log_level) handler = logging.StreamHandler() handler.setFormatter( jsonlogger.JsonFormatter( fmt='%(asctime)s %(levelname)s %(lambda)s %(message)s' ) ) logger.addHandler(handler) logger.removeHandler(logger.handlers[0]) def get_logger(): logger = logging.getLogger() logger = logging.LoggerAdapter( logger, {'lambda': os.environ.get('AWS_LAMBDA_FUNCTION_NAME', '')} ) return logger
the-stack_0_4485
import speech_recognition import re name = re.compile(r'(name is | nome é)(.*)', re.IGNORECASE) goodbye = re.compile(r'(.*)(goodbye)(.*)', re.IGNORECASE) recognizer = speech_recognition.Recognizer() with speech_recognition.Microphone() as source: print("Say something!") audio = recognizer.listen(source) print("Google Speech Recognition thinks you said:") print(recognizer.recognize_google(audio)) words = recognizer.recognize_google(audio) if mo := name.search(words): print(f"Hello, {mo.group(2)}") elif mo := goodbye.search(words): print(f"{mo.group(2)} to you!")
the-stack_0_4487
""" :ref:`chainladder.methods<methods>`.MackChainladder =================================================== :ref:`MackChainladder<mack>` produces the same IBNR results as the deterministic approach, but ldf selection happens in a regression framework that allows for the calculation of prediction errors. The Mack Chainladder technique is the OG stochastic method. """ import numpy as np import pandas as pd import copy from chainladder.methods import Chainladder class MackChainladder(Chainladder): """ Basic stochastic chainladder method popularized by Thomas Mack Parameters ---------- None Attributes ---------- triangle returns **X** ultimate_ The ultimate losses per the method ibnr_ The IBNR per the method full_expectation_ The ultimates back-filled to each development period in **X** replacing the known data full_triangle_ The ultimates back-filled to each development period in **X** retaining the known data summary_ summary of the model full_std_err_ The full standard error total_process_risk_ The total process error total_parameter_risk_ The total parameter error mack_std_err_ The total prediction error by origin period total_mack_std_err_ The total prediction error across all origin periods """ def fit(self, X, y=None, sample_weight=None): """Fit the model with X. Parameters ---------- X : Triangle-like Data to which the model will be applied. y : Ignored sample_weight : Ignored Returns ------- self : object Returns the instance itself. """ super().fit(X, y, sample_weight) self._mack_recursion('param_risk') self._mack_recursion('process_risk') self._mack_recursion('total_param_risk') return self @property def full_std_err_(self): obj = copy.deepcopy(self.X_) tri_array = self.full_triangle_.triangle weight_dict = {'regression': 2, 'volume': 1, 'simple': 0} val = np.array([weight_dict.get(item.lower(), 2) for item in list(self.average_) + ['volume']]) for i in [2, 1, 0]: val = np.repeat(np.expand_dims(val, 0), tri_array.shape[i], axis=0) k, v, o, d = val.shape weight = np.sqrt(tri_array[..., :len(self.X_.ddims)]**(2-val)) weight[weight == 0] = np.nan obj.triangle = self.X_.sigma_.triangle / weight w = np.concatenate((self.X_.w_, np.ones((k, v, o, 1))*np.nan), axis=3) w[np.isnan(w)] = 1 obj.triangle = np.nan_to_num(obj.triangle) * w obj.nan_override = True return obj @property def total_process_risk_(self): obj = copy.deepcopy(self.process_risk_) obj.triangle = np.sqrt(np.nansum(self.process_risk_.triangle**2, 2)) obj.triangle = np.expand_dims(obj.triangle, 2) obj.odims = ['tot_proc_risk'] return obj def _mack_recursion(self, est): obj = copy.deepcopy(self.X_) # replace this with nan_x_latest nans = np.expand_dims(np.expand_dims(self.X_.nan_triangle(), 0), 0) k, v, o, d = self.X_.shape nans = nans * np.ones((k, v, o, d)) nans = np.concatenate((nans, np.ones((k, v, o, 1))*np.nan), 3) nans = 1-np.nan_to_num(nans) properties = self.full_triangle_ obj.ddims, obj.valuation = properties.ddims, properties.valuation obj.nan_override = True risk_arr = np.zeros((k, v, o, 1)) if est == 'param_risk': obj.triangle = self._get_risk(nans, risk_arr, obj.std_err_.triangle) self.parameter_risk_ = obj elif est == 'process_risk': obj.triangle = self._get_risk(nans, risk_arr, self.full_std_err_.triangle) self.process_risk_ = obj else: risk_arr = risk_arr[..., 0:1, :] obj.triangle = self._get_tot_param_risk(risk_arr) obj.odims = ['Total param risk'] self.total_parameter_risk_ = obj def _get_risk(self, nans, risk_arr, std_err): full_tri = self.full_triangle_.triangle[..., :len(self.X_.ddims)] t1_t = (full_tri * std_err)**2 extend = self.X_.ldf_.shape[-1]-self.X_.shape[-1]+1 ldf = self.X_.ldf_.triangle[..., :len(self.X_.ddims)-1] ldf = np.concatenate( (ldf, np.prod(self.X_.ldf_.triangle[..., -extend:], -1, keepdims=True)), -1) for i in range(len(self.X_.ddims)): t1 = t1_t[..., i:i+1] t2 = (ldf[..., i:i+1] * risk_arr[..., i:i+1])**2 t_tot = np.sqrt(t1+t2)*nans[..., i+1:i+2] risk_arr = np.concatenate((risk_arr, t_tot), 3) return risk_arr def _get_tot_param_risk(self, risk_arr): """ This assumes triangle symmertry """ t1 = self.full_triangle_.triangle[..., :len(self.X_.ddims)] - \ np.nan_to_num(self.X_.triangle) + \ np.nan_to_num(self.X_.get_latest_diagonal(False).triangle) t1 = np.expand_dims(np.sum(t1*self.X_.std_err_.triangle, 2), 2) extend = self.X_.ldf_.shape[-1]-self.X_.shape[-1]+1 ldf = self.X_.ldf_.triangle[..., :len(self.X_.ddims)-1] ldf = np.concatenate( (ldf, np.prod(self.X_.ldf_.triangle[..., -extend:], -1, keepdims=True)), -1) ldf = np.unique(ldf, axis=-2) for i in range(self.full_triangle_.shape[-1]-1): t_tot = np.sqrt((t1[..., i:i+1])**2 + (ldf[..., i:i+1] * risk_arr[..., -1:])**2) risk_arr = np.concatenate((risk_arr, t_tot), -1) return risk_arr @property def mack_std_err_(self): obj = copy.deepcopy(self.parameter_risk_) obj.triangle = np.sqrt(self.parameter_risk_.triangle**2 + self.process_risk_.triangle**2) return obj @property def total_mack_std_err_(self): # This might be better as a dataframe obj = copy.deepcopy(self.X_.latest_diagonal) obj.triangle = np.sqrt(self.total_process_risk_.triangle**2 + self.total_parameter_risk_.triangle**2) obj.triangle = obj.triangle[..., -1:] obj.ddims = ['Total Mack Std Err'] obj.odims = ['Total'] return obj @property def summary_(self): # This might be better as a dataframe obj = copy.deepcopy(self.X_) obj.triangle = np.concatenate( (self.X_.latest_diagonal.triangle, self.ibnr_.triangle, self.ultimate_.triangle, self.mack_std_err_.triangle[..., -1:]), 3) obj.ddims = ['Latest', 'IBNR', 'Ultimate', 'Mack Std Err'] obj.nan_override = True return obj
the-stack_0_4488
""" pygments.cmdline ~~~~~~~~~~~~~~~~ Command line interface. :copyright: Copyright 2006-2021 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import os import sys import getopt from textwrap import dedent from pygments import __version__, highlight from pygments.util import ClassNotFound, OptionError, docstring_headline, \ guess_decode, guess_decode_from_terminal, terminal_encoding, \ UnclosingTextIOWrapper from pygments.lexers import get_all_lexers, get_lexer_by_name, guess_lexer, \ load_lexer_from_file, get_lexer_for_filename, find_lexer_class_for_filename from pygments.lexers.special import TextLexer from pygments.formatters.latex import LatexEmbeddedLexer, LatexFormatter from pygments.formatters import get_all_formatters, get_formatter_by_name, \ load_formatter_from_file, get_formatter_for_filename, find_formatter_class from pygments.formatters.terminal import TerminalFormatter from pygments.formatters.terminal256 import Terminal256Formatter from pygments.filters import get_all_filters, find_filter_class from pygments.styles import get_all_styles, get_style_by_name USAGE = """\ Usage: %s [-l <lexer> | -g] [-F <filter>[:<options>]] [-f <formatter>] [-O <options>] [-P <option=value>] [-s] [-v] [-x] [-o <outfile>] [<infile>] %s -S <style> -f <formatter> [-a <arg>] [-O <options>] [-P <option=value>] %s -L [<which> ...] %s -N <filename> %s -C %s -H <type> <name> %s -h | -V Highlight the input file and write the result to <outfile>. If no input file is given, use stdin, if -o is not given, use stdout. If -s is passed, lexing will be done in "streaming" mode, reading and highlighting one line at a time. This will only work properly with lexers that have no constructs spanning multiple lines! <lexer> is a lexer name (query all lexer names with -L). If -l is not given, the lexer is guessed from the extension of the input file name (this obviously doesn't work if the input is stdin). If -g is passed, attempt to guess the lexer from the file contents, or pass through as plain text if this fails (this can work for stdin). Likewise, <formatter> is a formatter name, and will be guessed from the extension of the output file name. If no output file is given, the terminal formatter will be used by default. The additional option -x allows custom lexers and formatters to be loaded from a .py file relative to the current working directory. For example, ``-l ./customlexer.py -x``. By default, this option expects a file with a class named CustomLexer or CustomFormatter; you can also specify your own class name with a colon (``-l ./lexer.py:MyLexer``). Users should be very careful not to use this option with untrusted files, because it will import and run them. With the -O option, you can give the lexer and formatter a comma- separated list of options, e.g. ``-O bg=light,python=cool``. The -P option adds lexer and formatter options like the -O option, but you can only give one option per -P. That way, the option value may contain commas and equals signs, which it can't with -O, e.g. ``-P "heading=Pygments, the Python highlighter". With the -F option, you can add filters to the token stream, you can give options in the same way as for -O after a colon (note: there must not be spaces around the colon). The -O, -P and -F options can be given multiple times. With the -S option, print out style definitions for style <style> for formatter <formatter>. The argument given by -a is formatter dependent. The -L option lists lexers, formatters, styles or filters -- set `which` to the thing you want to list (e.g. "styles"), or omit it to list everything. The -N option guesses and prints out a lexer name based solely on the given filename. It does not take input or highlight anything. If no specific lexer can be determined "text" is returned. The -C option is like -N, but prints out a lexer name based solely on a given content from standard input. The -H option prints detailed help for the object <name> of type <type>, where <type> is one of "lexer", "formatter" or "filter". The -s option processes lines one at a time until EOF, rather than waiting to process the entire file. This only works for stdin, and is intended for streaming input such as you get from 'tail -f'. Example usage: "tail -f sql.log | pygmentize -s -l sql" The -v option prints a detailed traceback on unhandled exceptions, which is useful for debugging and bug reports. The -h option prints this help. The -V option prints the package version. """ def _parse_options(o_strs): opts = {} if not o_strs: return opts for o_str in o_strs: if not o_str.strip(): continue o_args = o_str.split(',') for o_arg in o_args: o_arg = o_arg.strip() try: o_key, o_val = o_arg.split('=', 1) o_key = o_key.strip() o_val = o_val.strip() except ValueError: opts[o_arg] = True else: opts[o_key] = o_val return opts def _parse_filters(f_strs): filters = [] if not f_strs: return filters for f_str in f_strs: if ':' in f_str: fname, fopts = f_str.split(':', 1) filters.append((fname, _parse_options([fopts]))) else: filters.append((f_str, {})) return filters def _print_help(what, name): try: if what == 'lexer': cls = get_lexer_by_name(name) print("Help on the %s lexer:" % cls.name) print(dedent(cls.__doc__)) elif what == 'formatter': cls = find_formatter_class(name) print("Help on the %s formatter:" % cls.name) print(dedent(cls.__doc__)) elif what == 'filter': cls = find_filter_class(name) print("Help on the %s filter:" % name) print(dedent(cls.__doc__)) return 0 except (AttributeError, ValueError): print("%s not found!" % what, file=sys.stderr) return 1 def _print_list(what): if what == 'lexer': print() print("Lexers:") print("~~~~~~~") info = [] for fullname, names, exts, _ in get_all_lexers(): tup = (', '.join(names)+':', fullname, exts and '(filenames ' + ', '.join(exts) + ')' or '') info.append(tup) info.sort() for i in info: print(('* %s\n %s %s') % i) elif what == 'formatter': print() print("Formatters:") print("~~~~~~~~~~~") info = [] for cls in get_all_formatters(): doc = docstring_headline(cls) tup = (', '.join(cls.aliases) + ':', doc, cls.filenames and '(filenames ' + ', '.join(cls.filenames) + ')' or '') info.append(tup) info.sort() for i in info: print(('* %s\n %s %s') % i) elif what == 'filter': print() print("Filters:") print("~~~~~~~~") for name in get_all_filters(): cls = find_filter_class(name) print("* " + name + ':') print(" %s" % docstring_headline(cls)) elif what == 'style': print() print("Styles:") print("~~~~~~~") for name in get_all_styles(): cls = get_style_by_name(name) print("* " + name + ':') print(" %s" % docstring_headline(cls)) def main_inner(popts, args, usage): opts = {} O_opts = [] P_opts = [] F_opts = [] for opt, arg in popts: if opt == '-O': O_opts.append(arg) elif opt == '-P': P_opts.append(arg) elif opt == '-F': F_opts.append(arg) opts[opt] = arg if opts.pop('-h', None) is not None: print(usage) return 0 if opts.pop('-V', None) is not None: print('Pygments version %s, (c) 2006-2021 by Georg Brandl.' % __version__) return 0 # handle ``pygmentize -L`` L_opt = opts.pop('-L', None) if L_opt is not None: if opts: print(usage, file=sys.stderr) return 2 # print version main(['', '-V']) if not args: args = ['lexer', 'formatter', 'filter', 'style'] for arg in args: _print_list(arg.rstrip('s')) return 0 # handle ``pygmentize -H`` H_opt = opts.pop('-H', None) if H_opt is not None: if opts or len(args) != 2: print(usage, file=sys.stderr) return 2 what, name = args # pylint: disable=unbalanced-tuple-unpacking if what not in ('lexer', 'formatter', 'filter'): print(usage, file=sys.stderr) return 2 return _print_help(what, name) # parse -O options parsed_opts = _parse_options(O_opts) opts.pop('-O', None) # parse -P options for p_opt in P_opts: try: name, value = p_opt.split('=', 1) except ValueError: parsed_opts[p_opt] = True else: parsed_opts[name] = value opts.pop('-P', None) # encodings inencoding = parsed_opts.get('inencoding', parsed_opts.get('encoding')) outencoding = parsed_opts.get('outencoding', parsed_opts.get('encoding')) # handle ``pygmentize -N`` infn = opts.pop('-N', None) if infn is not None: lexer = find_lexer_class_for_filename(infn) if lexer is None: lexer = TextLexer print(lexer.aliases[0]) return 0 # handle ``pygmentize -C`` infc = opts.pop('-C', None) if infc is not None: inp = sys.stdin.buffer.read() try: lexer = guess_lexer(inp, inencoding=inencoding) except ClassNotFound: lexer = TextLexer print(lexer.aliases[0]) return 0 # handle ``pygmentize -S`` S_opt = opts.pop('-S', None) a_opt = opts.pop('-a', None) if S_opt is not None: f_opt = opts.pop('-f', None) if not f_opt: print(usage, file=sys.stderr) return 2 if opts or args: print(usage, file=sys.stderr) return 2 try: parsed_opts['style'] = S_opt fmter = get_formatter_by_name(f_opt, **parsed_opts) except ClassNotFound as err: print(err, file=sys.stderr) return 1 print(fmter.get_style_defs(a_opt or '')) return 0 # if no -S is given, -a is not allowed if a_opt is not None: print(usage, file=sys.stderr) return 2 # parse -F options F_opts = _parse_filters(F_opts) opts.pop('-F', None) allow_custom_lexer_formatter = False # -x: allow custom (eXternal) lexers and formatters if opts.pop('-x', None) is not None: allow_custom_lexer_formatter = True # select lexer lexer = None # given by name? lexername = opts.pop('-l', None) if lexername: # custom lexer, located relative to user's cwd if allow_custom_lexer_formatter and '.py' in lexername: try: filename = None name = None if ':' in lexername: filename, name = lexername.rsplit(':', 1) if '.py' in name: # This can happen on Windows: If the lexername is # C:\lexer.py -- return to normal load path in that case name = None if filename and name: lexer = load_lexer_from_file(filename, name, **parsed_opts) else: lexer = load_lexer_from_file(lexername, **parsed_opts) except ClassNotFound as err: print('Error:', err, file=sys.stderr) return 1 else: try: lexer = get_lexer_by_name(lexername, **parsed_opts) except (OptionError, ClassNotFound) as err: print('Error:', err, file=sys.stderr) return 1 # read input code code = None if args: if len(args) > 1: print(usage, file=sys.stderr) return 2 if '-s' in opts: print('Error: -s option not usable when input file specified', file=sys.stderr) return 2 infn = args[0] try: with open(infn, 'rb') as infp: code = infp.read() except Exception as err: print('Error: cannot read infile:', err, file=sys.stderr) return 1 if not inencoding: code, inencoding = guess_decode(code) # do we have to guess the lexer? if not lexer: try: lexer = get_lexer_for_filename(infn, code, **parsed_opts) except ClassNotFound as err: if '-g' in opts: try: lexer = guess_lexer(code, **parsed_opts) except ClassNotFound: lexer = TextLexer(**parsed_opts) else: print('Error:', err, file=sys.stderr) return 1 except OptionError as err: print('Error:', err, file=sys.stderr) return 1 elif '-s' not in opts: # treat stdin as full file (-s support is later) # read code from terminal, always in binary mode since we want to # decode ourselves and be tolerant with it code = sys.stdin.buffer.read() # use .buffer to get a binary stream if not inencoding: code, inencoding = guess_decode_from_terminal(code, sys.stdin) # else the lexer will do the decoding if not lexer: try: lexer = guess_lexer(code, **parsed_opts) except ClassNotFound: lexer = TextLexer(**parsed_opts) else: # -s option needs a lexer with -l if not lexer: print('Error: when using -s a lexer has to be selected with -l', file=sys.stderr) return 2 # process filters for fname, fopts in F_opts: try: lexer.add_filter(fname, **fopts) except ClassNotFound as err: print('Error:', err, file=sys.stderr) return 1 # select formatter outfn = opts.pop('-o', None) fmter = opts.pop('-f', None) if fmter: # custom formatter, located relative to user's cwd if allow_custom_lexer_formatter and '.py' in fmter: try: filename = None name = None if ':' in fmter: # Same logic as above for custom lexer filename, name = fmter.rsplit(':', 1) if '.py' in name: name = None if filename and name: fmter = load_formatter_from_file(filename, name, **parsed_opts) else: fmter = load_formatter_from_file(fmter, **parsed_opts) except ClassNotFound as err: print('Error:', err, file=sys.stderr) return 1 else: try: fmter = get_formatter_by_name(fmter, **parsed_opts) except (OptionError, ClassNotFound) as err: print('Error:', err, file=sys.stderr) return 1 if outfn: if not fmter: try: fmter = get_formatter_for_filename(outfn, **parsed_opts) except (OptionError, ClassNotFound) as err: print('Error:', err, file=sys.stderr) return 1 try: outfile = open(outfn, 'wb') except Exception as err: print('Error: cannot open outfile:', err, file=sys.stderr) return 1 else: if not fmter: if '256' in os.environ.get('TERM', ''): fmter = Terminal256Formatter(**parsed_opts) else: fmter = TerminalFormatter(**parsed_opts) outfile = sys.stdout.buffer # determine output encoding if not explicitly selected if not outencoding: if outfn: # output file? use lexer encoding for now (can still be None) fmter.encoding = inencoding else: # else use terminal encoding fmter.encoding = terminal_encoding(sys.stdout) # provide coloring under Windows, if possible if not outfn and sys.platform in ('win32', 'cygwin') and \ fmter.name in ('Terminal', 'Terminal256'): # pragma: no cover # unfortunately colorama doesn't support binary streams on Py3 outfile = UnclosingTextIOWrapper(outfile, encoding=fmter.encoding) fmter.encoding = None try: import colorama.initialise except ImportError: pass else: outfile = colorama.initialise.wrap_stream( outfile, convert=None, strip=None, autoreset=False, wrap=True) # When using the LaTeX formatter and the option `escapeinside` is # specified, we need a special lexer which collects escaped text # before running the chosen language lexer. escapeinside = parsed_opts.get('escapeinside', '') if len(escapeinside) == 2 and isinstance(fmter, LatexFormatter): left = escapeinside[0] right = escapeinside[1] lexer = LatexEmbeddedLexer(left, right, lexer) # ... and do it! if '-s' not in opts: # process whole input as per normal... try: highlight(code, lexer, fmter, outfile) finally: if outfn: outfile.close() return 0 else: # line by line processing of stdin (eg: for 'tail -f')... try: while 1: line = sys.stdin.buffer.readline() if not line: break if not inencoding: line = guess_decode_from_terminal(line, sys.stdin)[0] highlight(line, lexer, fmter, outfile) if hasattr(outfile, 'flush'): outfile.flush() return 0 except KeyboardInterrupt: # pragma: no cover return 0 finally: if outfn: outfile.close() def main(args=sys.argv): """ Main command line entry point. """ usage = USAGE % ((args[0],) * 7) try: popts, args = getopt.getopt(args[1:], "l:f:F:o:O:P:LS:a:N:CvhVHgsx") except getopt.GetoptError: print(usage, file=sys.stderr) return 2 try: return main_inner(popts, args, usage) except Exception: if '-v' in dict(popts): print(file=sys.stderr) print('*' * 65, file=sys.stderr) print('An unhandled exception occurred while highlighting.', file=sys.stderr) print('Please report the whole traceback to the issue tracker at', file=sys.stderr) print('<https://github.com/pygments/pygments/issues>.', file=sys.stderr) print('*' * 65, file=sys.stderr) print(file=sys.stderr) raise import traceback info = traceback.format_exception(*sys.exc_info()) msg = info[-1].strip() if len(info) >= 3: # extract relevant file and position info msg += '\n (f%s)' % info[-2].split('\n')[0].strip()[1:] print(file=sys.stderr) print('*** Error while highlighting:', file=sys.stderr) print(msg, file=sys.stderr) print('*** If this is a bug you want to report, please rerun with -v.', file=sys.stderr) return 1
the-stack_0_4489
# Copyright 2019 Open End AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import py.test import os from bson.objectid import ObjectId from pytransact import commit, context from pytransact.contextbroker import ContextBroker from pytransact.testsupport import ContextTests blmdir = os.path.join(os.path.dirname(__file__), 'blm') import blm def setup_module(module): global blm from pytransact import blm blm.addBlmPath(blmdir) from blm import fundamental, testcommit def teardown_module(module): blm.removeBlmPath(blmdir) blm.clear() class FakeUser(object): @classmethod def _create(cls, user): return user class TestContext(ContextTests): def setup_method(self, method): super(TestContext, self).setup_method(method) self.user = blm.fundamental.AccessHolder() def test_createQuery(self): query = self.ctx.createQuery(blm.testcommit.Test, {'name': 'test'}) assert isinstance(query, context.ServiceQuery) def test_query_invisible(self): toi = blm.testcommit.Test(name=['test']) self.sync() cctx = self.pushnewctx(user=self.user) r = blm.testcommit.Test._query(name='test').run() assert r == [] q = blm.testcommit.Test._query() q.clear() r = q.run() assert r == [] def test_query_visible(self): toi = blm.testcommit.Test(name=['test'], allowRead=[self.user]) self.sync() cctx = self.pushnewctx(user=self.user) r = blm.testcommit.Test._query(name='test').run() assert r == [toi] assert not r[0]._phantom def test_query_with_data_fetching(self): blm.testcommit.Test(name=['test'], reorder=['foo', 'bar'], unique=['baz']) self.sync() cctx = self.pushnewctx() query = blm.testcommit.Test._query(name='test') query.attrList = {'name', 'reorder', 'toirefmap'} toi, = query.run() assert toi._attrData == {'name': ['test'], 'reorder': ['foo', 'bar'], 'toirefmap': {}} assert not toi._phantom query = blm.testcommit.Test._query(name='test') query.attrList = {'unique'} toi, = query.run() assert toi._attrData == {'name': ['test'], 'reorder': ['foo', 'bar'], 'toirefmap': {}, 'unique': ['baz']} # test that we don't explode on non existing attributes in attrlist query = blm.testcommit.Test._query(name='test') query.attrList = {'doesnotexist'} toi, = query.run() # don't explode assert toi._attrData == {'name': ['test'], 'reorder': ['foo', 'bar'], 'toirefmap': {}, 'unique': ['baz']} def test_clearTois(self): toi = blm.testcommit.Test(name=['test']) assert 'name' in toi._attrData self.ctx.clearTois() assert toi._attrData == {} def test_clone(self): clone = self.ctx.clone() assert id(clone) != id(self.ctx) assert type(clone) == type(self.ctx) assert clone.user == self.ctx.user assert clone.database == self.ctx.database class OtherContext(context.ReadonlyContext): pass clone = OtherContext.clone() assert type(clone) == OtherContext assert clone.user == self.ctx.user assert clone.database == self.ctx.database clone = OtherContext.clone(self.ctx) assert type(clone) == OtherContext assert clone.user == self.ctx.user assert clone.database == self.ctx.database clone = OtherContext.clone(self.ctx, user=self.user) assert type(clone) == OtherContext assert clone.user == self.user assert clone.database == self.ctx.database def test_requestAttribute(self): toi = blm.testcommit.Test(name=['foo'], reorder=['bar'], unique=['baz']) id = toi.id[0] self.sync() ctx = self.pushnewctx() toi = blm.testcommit.Test._create(id) assert toi._phantom # toi is not known yet assert toi.name == ['foo'] assert toi.toirefmap == {} # default for maps is a dict, not a list assert not toi._phantom # toi is known # toi not in the db and not newly created toi = blm.testcommit.Test._create(ObjectId()) assert toi._phantom # toi is not known yet assert toi.name == [] assert toi._phantom # toi is still not known def test_requestAttribute_copy_default(self): toi1 = blm.testcommit.Test() toi2 = blm.testcommit.Test() id1, id2 = toi1.id[0], toi2.id[0] self.sync() ctx = self.pushnewctx() toi1, = blm.testcommit.Test._query(id=id1).run() name = toi1.name.value name.append('foo') toi1.name = name assert toi1.name == ['foo'] # sanity toi2, = blm.testcommit.Test._query(id=id2).run() # if we are not careful with *copying* the default value above # we may end up with toi2.name == ['foo'] assert toi2.name == [] def test_preload(self): toi = blm.testcommit.Test(name=['foo'], reorder=['bar'], unique=['baz']) id = toi.id[0] self.sync() ctx = self.pushnewctx() toi, = blm.testcommit.Test._query(id=id).run() assert not toi._attrData toi._preload(['reorder', 'unique']) assert not toi._attrData assert toi.name.value # load assert toi._attrData == { 'name': ['foo'], 'reorder': ['bar'], 'unique': ['baz'], } def test_setUser(self): # Make sure contexts have user objects that are reliable from # within the context itself: # context.user should give you a TO which is equivalent to the # one you'd get from a blm.User query # Specifically, we do not want any stale data from an outdated # context to linger in the object. # Thus, we make sure to always create a fresh, context specific # copy of the user TO in setUser(). user = blm.testcommit.User(name=['foo']) user.allowRead = [user] self.sync() ctx = self.pushnewctx(ContextClass=commit.CommitContext, user=user) user = ctx.user user.name = ['not commited!'] with self.pushnewctx(user=user) as newctx: assert newctx.user.id == user.id assert newctx.user is not user assert newctx.user.name == ['foo'] assert newctx.user.name != ['not commited!'] assert newctx.user in newctx.__instances__ class TestMaybeWithContext(object): def test_with_no_context(self): py.test.raises(Exception, lambda: ContextBroker().context) # sanity database = object() @context.maybe_with_context() def foo(arg): assert isinstance(ContextBroker().context, context.ReadonlyContext) assert ContextBroker().context.database is database return arg obj = object() assert foo(obj, database=database) is obj def test_with_factory(self): class MyContext(context.ReadonlyContext): pass @context.maybe_with_context(MyContext) def foo(): assert isinstance(ContextBroker().context, MyContext) foo(database=object()) def test_with_correct_context_class(self): @context.maybe_with_context() def foo(): return ContextBroker().context with context.ReadonlyContext(object()) as ctx: assert foo() is ctx class MyContext(context.ReadonlyContext): pass with MyContext(object()) as ctx: assert foo() is ctx class WeirdContext(object): database = object() user = FakeUser() def __enter__(self): ContextBroker().pushContext(self) return self def __exit__(self, exc_type, exc_val, exc_tb): assert ContextBroker().context == self ContextBroker().popContext() with WeirdContext(): ctx = foo() assert isinstance(ctx, context.ReadonlyContext) assert ctx.database is WeirdContext.database def test_with_custom_context_class(self): class MyContext(context.ReadonlyContext): pass database = object() user = FakeUser() @context.maybe_with_context(MyContext) def foo(): return ContextBroker().context with context.ReadonlyContext(database, user): ctx = foo() assert isinstance(ctx, MyContext) assert ctx.database is database assert ctx.user is user def test_no_database(self): @context.maybe_with_context() def foo(): return ContextBroker().context py.test.raises(ValueError, foo)
the-stack_0_4490
""" A stress-test of sorts for LLDB's handling of threads in the inferior. This test sets a breakpoint in the main thread where test parameters (numbers of threads) can be adjusted, runs the inferior to that point, and modifies the locals that control the event thread counts. This test also sets a breakpoint in breakpoint_func (the function executed by each 'breakpoint' thread) and a watchpoint on a global modified in watchpoint_func. The inferior is continued until exit or a crash takes place, and the number of events seen by LLDB is verified to match the expected number of events. """ from __future__ import print_function import unittest2 import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class ConcurrentEventsBase(TestBase): # Concurrency is the primary test factor here, not debug info variants. NO_DEBUG_INFO_TESTCASE = True def setUp(self): # Call super's setUp(). super(ConcurrentEventsBase, self).setUp() # Find the line number for our breakpoint. self.filename = 'main.cpp' self.thread_breakpoint_line = line_number( self.filename, '// Set breakpoint here') self.setup_breakpoint_line = line_number( self.filename, '// Break here and adjust num') self.finish_breakpoint_line = line_number( self.filename, '// Break here and verify one thread is active') def describe_threads(self): ret = [] for x in self.inferior_process: id = x.GetIndexID() reason = x.GetStopReason() status = "stopped" if x.IsStopped() else "running" reason_str = lldbutil.stop_reason_to_str(reason) if reason == lldb.eStopReasonBreakpoint: bpid = x.GetStopReasonDataAtIndex(0) bp = self.inferior_target.FindBreakpointByID(bpid) reason_str = "%s hit %d times" % ( lldbutil.get_description(bp), bp.GetHitCount()) elif reason == lldb.eStopReasonWatchpoint: watchid = x.GetStopReasonDataAtIndex(0) watch = self.inferior_target.FindWatchpointByID(watchid) reason_str = "%s hit %d times" % ( lldbutil.get_description(watch), watch.GetHitCount()) elif reason == lldb.eStopReasonSignal: signals = self.inferior_process.GetUnixSignals() signal_name = signals.GetSignalAsCString( x.GetStopReasonDataAtIndex(0)) reason_str = "signal %s" % signal_name location = "\t".join([lldbutil.get_description( x.GetFrameAtIndex(i)) for i in range(x.GetNumFrames())]) ret.append( "thread %d %s due to %s at\n\t%s" % (id, status, reason_str, location)) return ret def add_breakpoint(self, line, descriptions): """ Adds a breakpoint at self.filename:line and appends its description to descriptions, and returns the LLDB SBBreakpoint object. """ bpno = lldbutil.run_break_set_by_file_and_line( self, self.filename, line, num_expected_locations=-1) bp = self.inferior_target.FindBreakpointByID(bpno) descriptions.append( ": file = 'main.cpp', line = %d" % self.finish_breakpoint_line) return bp def inferior_done(self): """ Returns true if the inferior is done executing all the event threads (and is stopped at self.finish_breakpoint, or has terminated execution. """ return self.finish_breakpoint.GetHitCount() > 0 or \ self.crash_count > 0 or \ self.inferior_process.GetState() == lldb.eStateExited def count_signaled_threads(self): count = 0 for thread in self.inferior_process: if thread.GetStopReason() == lldb.eStopReasonSignal and thread.GetStopReasonDataAtIndex( 0) == self.inferior_process.GetUnixSignals().GetSignalNumberFromName('SIGUSR1'): count += 1 return count def do_thread_actions(self, num_breakpoint_threads=0, num_signal_threads=0, num_watchpoint_threads=0, num_crash_threads=0, num_delay_breakpoint_threads=0, num_delay_signal_threads=0, num_delay_watchpoint_threads=0, num_delay_crash_threads=0): """ Sets a breakpoint in the main thread where test parameters (numbers of threads) can be adjusted, runs the inferior to that point, and modifies the locals that control the event thread counts. Also sets a breakpoint in breakpoint_func (the function executed by each 'breakpoint' thread) and a watchpoint on a global modified in watchpoint_func. The inferior is continued until exit or a crash takes place, and the number of events seen by LLDB is verified to match the expected number of events. """ exe = self.getBuildArtifact("a.out") self.runCmd("file " + exe, CURRENT_EXECUTABLE_SET) # Get the target self.inferior_target = self.dbg.GetSelectedTarget() expected_bps = [] # Initialize all the breakpoints (main thread/aux thread) self.setup_breakpoint = self.add_breakpoint( self.setup_breakpoint_line, expected_bps) self.finish_breakpoint = self.add_breakpoint( self.finish_breakpoint_line, expected_bps) # Set the thread breakpoint if num_breakpoint_threads + num_delay_breakpoint_threads > 0: self.thread_breakpoint = self.add_breakpoint( self.thread_breakpoint_line, expected_bps) # Verify breakpoints self.expect( "breakpoint list -f", "Breakpoint locations shown correctly", substrs=expected_bps) # Run the program. self.runCmd("run", RUN_SUCCEEDED) # Check we are at line self.setup_breakpoint self.expect("thread backtrace", STOPPED_DUE_TO_BREAKPOINT, substrs=["stop reason = breakpoint 1."]) # Initialize the (single) watchpoint on the global variable (g_watchme) if num_watchpoint_threads + num_delay_watchpoint_threads > 0: self.runCmd("watchpoint set variable g_watchme") for w in self.inferior_target.watchpoint_iter(): self.thread_watchpoint = w self.assertTrue( "g_watchme" in str( self.thread_watchpoint), "Watchpoint location not shown correctly") # Get the process self.inferior_process = self.inferior_target.GetProcess() # We should be stopped at the setup site where we can set the number of # threads doing each action (break/crash/signal/watch) self.assertEqual( self.inferior_process.GetNumThreads(), 1, 'Expected to stop before any additional threads are spawned.') self.runCmd("expr num_breakpoint_threads=%d" % num_breakpoint_threads) self.runCmd("expr num_crash_threads=%d" % num_crash_threads) self.runCmd("expr num_signal_threads=%d" % num_signal_threads) self.runCmd("expr num_watchpoint_threads=%d" % num_watchpoint_threads) self.runCmd( "expr num_delay_breakpoint_threads=%d" % num_delay_breakpoint_threads) self.runCmd( "expr num_delay_crash_threads=%d" % num_delay_crash_threads) self.runCmd( "expr num_delay_signal_threads=%d" % num_delay_signal_threads) self.runCmd( "expr num_delay_watchpoint_threads=%d" % num_delay_watchpoint_threads) # Continue the inferior so threads are spawned self.runCmd("continue") # Make sure we see all the threads. The inferior program's threads all synchronize with a pseudo-barrier; that is, # the inferior program ensures all threads are started and running # before any thread triggers its 'event'. num_threads = self.inferior_process.GetNumThreads() expected_num_threads = num_breakpoint_threads + num_delay_breakpoint_threads \ + num_signal_threads + num_delay_signal_threads \ + num_watchpoint_threads + num_delay_watchpoint_threads \ + num_crash_threads + num_delay_crash_threads + 1 self.assertEqual( num_threads, expected_num_threads, 'Expected to see %d threads, but seeing %d. Details:\n%s' % (expected_num_threads, num_threads, "\n\t".join( self.describe_threads()))) self.signal_count = self.count_signaled_threads() self.crash_count = len( lldbutil.get_crashed_threads( self, self.inferior_process)) # Run to completion (or crash) while not self.inferior_done(): if self.TraceOn(): self.runCmd("thread backtrace all") self.runCmd("continue") self.signal_count += self.count_signaled_threads() self.crash_count += len( lldbutil.get_crashed_threads( self, self.inferior_process)) if num_crash_threads > 0 or num_delay_crash_threads > 0: # Expecting a crash self.assertTrue( self.crash_count > 0, "Expecting at least one thread to crash. Details: %s" % "\t\n".join( self.describe_threads())) # Ensure the zombie process is reaped self.runCmd("process kill") elif num_crash_threads == 0 and num_delay_crash_threads == 0: # There should be a single active thread (the main one) which hit # the breakpoint after joining self.assertEqual( 1, self.finish_breakpoint.GetHitCount(), "Expected main thread (finish) breakpoint to be hit once") num_threads = self.inferior_process.GetNumThreads() self.assertEqual( 1, num_threads, "Expecting 1 thread but seeing %d. Details:%s" % (num_threads, "\n\t".join( self.describe_threads()))) self.runCmd("continue") # The inferior process should have exited without crashing self.assertEqual( 0, self.crash_count, "Unexpected thread(s) in crashed state") self.assertEqual( self.inferior_process.GetState(), lldb.eStateExited, PROCESS_EXITED) # Verify the number of actions took place matches expected numbers expected_breakpoint_threads = num_delay_breakpoint_threads + num_breakpoint_threads breakpoint_hit_count = self.thread_breakpoint.GetHitCount( ) if expected_breakpoint_threads > 0 else 0 self.assertEqual( expected_breakpoint_threads, breakpoint_hit_count, "Expected %d breakpoint hits, but got %d" % (expected_breakpoint_threads, breakpoint_hit_count)) expected_signal_threads = num_delay_signal_threads + num_signal_threads self.assertEqual( expected_signal_threads, self.signal_count, "Expected %d stops due to signal delivery, but got %d" % (expected_signal_threads, self.signal_count)) expected_watchpoint_threads = num_delay_watchpoint_threads + num_watchpoint_threads watchpoint_hit_count = self.thread_watchpoint.GetHitCount( ) if expected_watchpoint_threads > 0 else 0 self.assertEqual( expected_watchpoint_threads, watchpoint_hit_count, "Expected %d watchpoint hits, got %d" % (expected_watchpoint_threads, watchpoint_hit_count))
the-stack_0_4491
import socket host = '127.0.0.1' port = 4000 client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect((host, port)) client.send(b'Hello! Is there anybody in there?!') response = client.recv(4096) print(response)
the-stack_0_4496
import argparse import datetime import logging import requests import rdflib import sys import tempfile import time import urllib import xml.etree.ElementTree as ET def run(): parser = argparse.ArgumentParser(description='Finds vocabulary concepts (identifying them by a namespace) in a triplestore and enriches the triplestore with full concept definitions fetched from their URIs (assuming requesting concept\'s URI with HTTP Accept text/turtle header will provide concept\'s data in the turtle format)') parser.add_argument('sparqlUrl', help="Triplestore's SPARQL endpoint URL") parser.add_argument('conceptsNamespace', help="URI namespace of RDF nodes to be processed") parser.add_argument('--sparqlUser', help='HTTP basic auth user name to be used when communicating with the triplestore') parser.add_argument('--sparqlPswd', help='HTTP basic auth password to be used when communicating with the triplestore') parser.add_argument('--sparqlGraph', help='Process only a given triplestore graph') parser.add_argument('--verbose', action='store_true') args = parser.parse_args() logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("requests").setLevel(logging.WARNING) logging.basicConfig(stream=sys.stdout, level=logging.DEBUG if args.verbose else logging.INFO) harvester = VocabularyHarvester(args) harvester.harvest() class VocabularyHarvester: sparqlUrl = None sparqlAuth = None sparqlGraph = None conceptsNmsp = None def __init__(self, args): self.sparqlUrl = args.sparqlUrl if args.sparqlGraph: self.sparqlGraph = rdflib.term.URIRef(args.sparqlGraph).n3() self.conceptsNmsp = rdflib.term.Literal(args.conceptsNamespace).n3() if args.sparqlUser != '' and args.sparqlPswd != '': self.sparqlAuth = requests.auth.HTTPBasicAuth(args.sparqlUser, args.sparqlPswd) def harvest(self): fromGraph = "from named %s" % self.sparqlGraph if self.sparqlGraph else '' query = """ select distinct ?g ?o %s where { graph ?g { ?s ?p ?o filter strstarts(str(?o), %s) } } """ % (fromGraph, self.conceptsNmsp) response = requests.post(self.sparqlUrl, data={"query": query}, headers={"Accept": "application/json"}, auth=self.sparqlAuth) if response.status_code != 200: logging.error("Failed to find concepts in the triplestore with status code %d and response body: %s" % (response.status_code, response.text)) data = response.json() for i in data['results']['bindings']: logging.info("Fetching concept %s" % i['o']['value']) try: conceptGraph = self.fetchConcept(i['o']['value']) #print(conceptGraph.serialize(format='turtle')) self.updateTriplestore(conceptGraph, i['g']['value']) except Exception as e: logging.warning("Failed to fetch data for concept %s:\n %s" % (i['o']['value'], str(e))) def fetchConcept(self, url): response = requests.get(url, headers={"Accept": "text/turtle"}) graph = rdflib.Graph() graph.parse(data=response.text, format='turtle') return graph def updateTriplestore(self, conceptGraph, graph): graph = rdflib.term.URIRef(graph).n3() query = "INSERT DATA { GRAPH " + graph + " { " + conceptGraph.serialize(format='nt') + " } }" response = requests.post(self.sparqlUrl, data={'update': query}, auth=self.sparqlAuth) if response.status_code != 200: raise Exception("Sending data to the triplestore failed with code %d and response body: %s" % (response.status_code, response.text))
the-stack_0_4497
# stdlib from typing import Any from typing import Optional # third party from torch import device # relative from ...core.common.serde.serializable import serializable from ...proto.lib.torch.device_pb2 import Device as Device_PB # use -2 to represent index=None INDEX_NONE = -2 def object2proto(obj: device) -> "Device_PB": proto = Device_PB() proto.type = obj.type proto.index = INDEX_NONE if obj.index is None else obj.index return proto def proto2object(proto: "Device_PB") -> Any: device_type = proto.type index: Optional[int] = None if proto.index == INDEX_NONE else proto.index obj = device(device_type, index) return obj serializable(generate_wrapper=True)( wrapped_type=device, import_path="torch.device", protobuf_scheme=Device_PB, type_object2proto=object2proto, type_proto2object=proto2object, )
the-stack_0_4500
from base64 import b64encode from base64 import b64decode from threading import local import boto3 import six __all__ = [ '_as_bytes', 'b64_str', 'from_b64_str', '_get_client', '_prefix_alias', ] thread_local = local() thread_local.sessions = {} def _as_bytes(value): if isinstance(value, six.string_types): value = value.encode('utf-8') return value def b64_str(value: bytes): return b64encode(value).decode('utf-8') def from_b64_str(value: str): value = value.encode('utf-8') return b64decode(value) def _get_client(region: str = None, profile: str = None): key = f'{region}-{profile}' client = thread_local.sessions.get(key) if not client: session = boto3.Session(region_name=region, profile_name=profile) client = session.client('kms') thread_local.sessions[key] = client return client def _prefix_alias(alias: str): if not alias.startswith('alias/'): alias = f'alias/{alias}' return alias
the-stack_0_4502
#! /usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import math import unittest import torch from botorch import fit_gpytorch_model from botorch.models import SingleTaskGP from botorch.optim.fit import ( OptimizationIteration, fit_gpytorch_scipy, fit_gpytorch_torch, ) from gpytorch.mlls.exact_marginal_log_likelihood import ExactMarginalLogLikelihood NOISE = [0.127, -0.113, -0.345, -0.034, -0.069, -0.272, 0.013, 0.056, 0.087, -0.081] class TestFitGPyTorchModel(unittest.TestCase): def _getModel(self, double=False, cuda=False): device = torch.device("cuda") if cuda else torch.device("cpu") dtype = torch.double if double else torch.float train_x = torch.linspace(0, 1, 10, device=device, dtype=dtype).unsqueeze(-1) noise = torch.tensor(NOISE, device=device, dtype=dtype) train_y = torch.sin(train_x.view(-1) * (2 * math.pi)) + noise model = SingleTaskGP(train_x, train_y) mll = ExactMarginalLogLikelihood(model.likelihood, model) return mll.to(device=device, dtype=dtype) def test_fit_gpytorch_model(self, cuda=False, optimizer=fit_gpytorch_scipy): options = {"disp": False, "maxiter": 5} for double in (False, True): mll = self._getModel(double=double, cuda=cuda) mll = fit_gpytorch_model(mll, optimizer=optimizer, options=options) model = mll.model # Make sure all of the parameters changed self.assertGreater(model.likelihood.raw_noise.abs().item(), 1e-3) self.assertLess(model.mean_module.constant.abs().item(), 0.1) self.assertGreater( model.covar_module.base_kernel.raw_lengthscale.abs().item(), 0.1 ) self.assertGreater(model.covar_module.raw_outputscale.abs().item(), 1e-3) # test overriding the default bounds with user supplied bounds mll = self._getModel(double=double, cuda=cuda) mll = fit_gpytorch_model( mll, optimizer=optimizer, options=options, bounds={"likelihood.noise_covar.raw_noise": (1e-1, None)}, ) model = mll.model self.assertGreaterEqual(model.likelihood.raw_noise.abs().item(), 1e-1) self.assertLess(model.mean_module.constant.abs().item(), 0.1) self.assertGreater( model.covar_module.base_kernel.raw_lengthscale.abs().item(), 0.1 ) self.assertGreater(model.covar_module.raw_outputscale.abs().item(), 1e-3) # test tracking iterations mll = self._getModel(double=double, cuda=cuda) if optimizer is fit_gpytorch_torch: options["disp"] = True mll, iterations = optimizer(mll, options=options, track_iterations=True) self.assertEqual(len(iterations), options["maxiter"]) self.assertIsInstance(iterations[0], OptimizationIteration) # test extra param that does not affect loss options["disp"] = False mll = self._getModel(double=double, cuda=cuda) mll.register_parameter( "dummy_param", torch.nn.Parameter( torch.tensor( [5.0], dtype=torch.double if double else torch.float, device=torch.device("cuda" if cuda else "cpu"), ) ), ) mll = fit_gpytorch_model(mll, optimizer=optimizer, options=options) self.assertTrue(mll.dummy_param.grad is None) def test_fit_gpytorch_model_scipy_cuda(self): if torch.cuda.is_available(): self.test_fit_gpytorch_model(cuda=True) def test_fit_gpytorch_model_torch(self, cuda=False): self.test_fit_gpytorch_model(cuda=cuda, optimizer=fit_gpytorch_torch) def test_fit_gpytorch_model_torch_cuda(self): if torch.cuda.is_available(): self.test_fit_gpytorch_model_torch(cuda=True)
the-stack_0_4503
# SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2015, ARM Limited, Google and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re import os import logging from time import sleep from target_script import TargetScript from android import Screen, System from android.workload import Workload class CameraStartup(Workload): """ Android CameraStartup workload This workload is intended to be used to collect traces of the camera starting up to debug issues related to camera startup. For this reason, the camera app is started after sleeping for 3 seconds after tracingStart. For this same reason, energy cannot be collected since that disconnects USB. """ # Package required by this workload package = 'com.google.android.GoogleCamera' action = 'android.intent.action.MAIN' def __init__(self, test_env): super(CameraStartup, self).__init__(test_env) self._log = logging.getLogger('CameraStartup') self._log.debug('Workload created') def run(self, out_dir, duration_s=10, collect='systrace'): """ Run a camera startup workload :param out_dir: Path to experiment directory where to store results. :type out_dir: str :param duration_s: Duration of test :type duration_s: int :param collect: Specifies what to collect. Possible values: - 'energy' - 'systrace' - 'ftrace' - any combination of the above :type collect: list(str) """ if 'energy' in collect: raise RuntimeError('CameraStartup cannot do energy collection as app is started after tracingStart') self._log.info("Running CameraStartup for {}s and collecting {}".format(duration_s, collect)) # Keep track of mandatory parameters self.out_dir = out_dir self.collect = collect # Unlock device screen (assume no password required) Screen.unlock(self._target) # Set airplane mode System.set_airplane_mode(self._target, on=True) # Set min brightness Screen.set_brightness(self._target, auto=False, percent=0) # Force screen in PORTRAIT mode Screen.set_orientation(self._target, portrait=True) sleep(1) self.tracingStart() # Wait for a few seconds so that you can clear see start of trace and start of camera app sleep(3) # Use the monkey tool to start CameraStartup System.monkey(self._target, self.package) sleep(duration_s) self.tracingStop() # Close the app without clearing the local data to # avoid the dialog to select the account at next start System.force_stop(self._target, self.package, clear=False) # Go back to home screen System.home(self._target) # Set brightness back to auto Screen.set_brightness(self._target, auto=True) # Switch back to screen auto rotation Screen.set_orientation(self._target, auto=True) # Switch off airplane mode System.set_airplane_mode(self._target, on=False)
the-stack_0_4504
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # # # RMG - Reaction Mechanism Generator # # # # Copyright (c) 2002-2018 Prof. William H. Green ([email protected]), # # Prof. Richard H. West ([email protected]) and the RMG Team ([email protected]) # # # # Permission is hereby granted, free of charge, to any person obtaining a # # copy of this software and associated documentation files (the 'Software'), # # to deal in the Software without restriction, including without limitation # # the rights to use, copy, modify, merge, publish, distribute, sublicense, # # and/or sell copies of the Software, and to permit persons to whom the # # Software is furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in # # all copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # # DEALINGS IN THE SOFTWARE. # # # ############################################################################### import os import numpy as np import logging import shutil from copy import deepcopy import rmgpy from rmgpy.rmg.main import RMG from rmgpy.rmg.model import CoreEdgeReactionModel from rmgpy.data.rmg import getDB from rmgpy.exceptions import InputError ################################################################################ class ExplorerJob(object): def __init__(self, source, pdepjob, explore_tol, energy_tol=np.inf, flux_tol=0.0, bathGas=None, maximumRadicalElectrons=np.inf): self.source = source self.explore_tol = explore_tol self.energy_tol = energy_tol self.flux_tol = flux_tol self.maximumRadicalElectrons = maximumRadicalElectrons self.pdepjob = pdepjob if not hasattr(self.pdepjob,'outputFile'): self.pdepjob.outputFile = None if bathGas: self.bathGas = bathGas elif self.pdepjob.network and self.pdepjob.network.bathGas: self.bathGas = self.pdepjob.network.bathGas else: raise InputError('bathGas not specified in explorer block') def copy(self): """ Return a copy of the explorer job. """ return ExplorerJob( source=deepcopy(self.source), pdepjob=self.pdepjob, explore_tol=self.explore_tol, energy_tol=self.energy_tol, flux_tol=self.flux_tol ) def execute(self, outputFile, plot, format='pdf', print_summary=True, speciesList=None, thermoLibrary=None, kineticsLibrary=None): logging.info('Exploring network...') rmg = RMG() rmg.speciesConstraints = {'allowed' : ['input species', 'seed mechanisms', 'reaction libraries'], 'maximumRadicalElectrons' : self.maximumRadicalElectrons, 'explicitlyAllowedMolecules': []} rmgpy.rmg.input.rmg = rmg reaction_model = CoreEdgeReactionModel() reaction_model.pressureDependence = self.pdepjob reaction_model.pressureDependence.rmgmode = True if outputFile: reaction_model.pressureDependence.outputFile = os.path.dirname(outputFile) kineticsDatabase = getDB('kinetics') thermoDatabase = getDB('thermo') thermoDatabase.libraries['thermojobs'] = thermoLibrary thermoDatabase.libraryOrder.insert(0,'thermojobs') kineticsDatabase.libraries['kineticsjobs'] = kineticsLibrary kineticsDatabase.libraryOrder.insert(0,('kineticsjobs','Reaction Library')) jobRxns = [rxn for rxn in reaction_model.core.reactions] self.jobRxns = jobRxns if outputFile is not None: if not os.path.exists(os.path.join(reaction_model.pressureDependence.outputFile,'pdep')): os.mkdir(os.path.join(reaction_model.pressureDependence.outputFile,'pdep')) else: shutil.rmtree(os.path.join(reaction_model.pressureDependence.outputFile,'pdep')) os.mkdir(os.path.join(reaction_model.pressureDependence.outputFile,'pdep')) # get the molecular formula for the network mmol = None for spc in self.source: if mmol: mmol.merge(spc.molecule[0]) else: mmol = spc.molecule[0] form = mmol.getFormula() for spec in self.bathGas.keys()+self.source: nspec,isNew = reaction_model.makeNewSpecies(spec,reactive=False) flags = np.array([s.molecule[0].getFormula()==form for s in reaction_model.core.species]) reaction_model.enlarge(nspec,reactEdge=False,unimolecularReact=flags, bimolecularReact=np.zeros((len(reaction_model.core.species),len(reaction_model.core.species)))) reaction_model.addSeedMechanismToCore('kineticsjobs') for lib in kineticsDatabase.libraryOrder: if lib[0] != 'kineticsjobs': reaction_model.addReactionLibraryToEdge(lib[0]) for spc in reaction_model.core.species: for i,item in enumerate(self.source): if spc.isIsomorphic(item): self.source[i] = spc # react initial species flags = np.array([s.molecule[0].getFormula()==form for s in reaction_model.core.species]) reaction_model.enlarge(reactEdge=True,unimolecularReact=flags, bimolecularReact=np.zeros((len(reaction_model.core.species),len(reaction_model.core.species)))) # find the network we're interested in for nwk in reaction_model.networkList: if set(nwk.source) == set(self.source): self.source = nwk.source network = nwk break else: raise ValueError('Did not generate a network with the requested source. This usually means no unimolecular' 'reactions were generated for the source. Note that library reactions that are not' ' properly flagged as elementary_high_p can replace RMG generated reactions that would' ' otherwise be part of networks.') network.bathGas = self.bathGas self.network = network # determine T and P combinations if self.pdepjob.Tlist: Tlist = self.pdepjob.Tlist.value_si else: Tlist = np.linspace(self.pdepjob.Tmin.value_si,self.pdepjob.Tmax.value_si,self.pdepjob.Tcount) if self.pdepjob.Plist: Plist = self.pdepjob.Plist.value_si else: Plist = np.linspace(self.pdepjob.Pmin.value_si,self.pdepjob.Pmax.value_si,self.pdepjob.Pcount) # generate the network forbiddenStructures = getDB('forbidden') incomplete = True while incomplete: incomplete = False for T in Tlist: for P in Plist: if network.getLeakCoefficient(T=T,P=P) > self.explore_tol: incomplete = True spc = network.getMaximumLeakSpecies(T=T,P=P) if forbiddenStructures.isMoleculeForbidden(spc.molecule[0]): reaction_model.removeSpeciesFromEdge(reaction_model.reactionSystems,spc) reaction_model.removeEmptyPdepNetworks() logging.error(spc.label) else: logging.info('adding new isomer {0} to network'.format(spc)) flags = np.array([s.molecule[0].getFormula()==form for s in reaction_model.core.species]) reaction_model.enlarge((network,spc),reactEdge=False,unimolecularReact=flags, bimolecularReact=np.zeros((len(reaction_model.core.species),len(reaction_model.core.species)))) flags = np.array([s.molecule[0].getFormula()==form for s in reaction_model.core.species]) reaction_model.enlarge(reactEdge=True,unimolecularReact=flags, bimolecularReact=np.zeros((len(reaction_model.core.species),len(reaction_model.core.species)))) rmRxns = [] for rxn in network.pathReactions: # remove reactions with forbidden species for r in rxn.reactants+rxn.products: if forbiddenStructures.isMoleculeForbidden(r.molecule[0]): rmRxns.append(rxn) for rxn in rmRxns: logging.info('Removing forbidden reaction: {0}'.format(rxn)) network.pathReactions.remove(rxn) # clean up output files if outputFile is not None: path = os.path.join(reaction_model.pressureDependence.outputFile,'pdep') for name in os.listdir(path): if name.endswith('.py') and '_' in name: if name.split('_')[-1].split('.')[0] != str(len(network.isomers)): os.remove(os.path.join(path,name)) else: os.rename(os.path.join(path,name),os.path.join(path,'network_full.py')) warns = [] for rxn in jobRxns: if rxn not in network.pathReactions: warns.append('Reaction {0} in the input file was not explored during network expansion and was not included in the full network. This is likely because your explore_tol value is too high.'.format(rxn)) # reduction process if self.energy_tol != np.inf or self.flux_tol != 0.0: rxnSet = None for T in Tlist: if self.energy_tol != np.inf: rxns = network.get_energy_filtered_reactions(T,self.energy_tol) if rxnSet is not None: rxnSet &= set(rxns) else: rxnSet = set(rxns) for P in Plist: if self.flux_tol != 0.0: rxns = network.get_rate_filtered_reactions(T,P,self.flux_tol) if rxnSet is not None: rxnSet &= set(rxns) else: rxnSet = set(rxns) logging.info('removing reactions during reduction:') for rxn in rxnSet: logging.info(rxn) network.remove_reactions(reaction_model,list(rxnSet)) for rxn in jobRxns: if rxn not in network.pathReactions: warns.append('Reaction {0} in the input file was not included in the reduced model.'.format(rxn)) self.network = network self.pdepjob.network = network self.pdepjob.execute(outputFile, plot, format='pdf', print_summary=True) if warns != []: logging.info('\nOUTPUT WARNINGS:\n') for w in warns: logging.warning(w)
the-stack_0_4505
import psycopg2 import psycopg2.extras from ..sql import SqlMinqlClient class PostgresqlMinqlClient(SqlMinqlClient): def __init__(self, address, name, user, password, *args, **kwargs): url, port = address.split(':') params = "dbname='%s' user='%s' password='%s' host='%s' port='%s'" % (name, user, password, url, port) self.connection = psycopg2.connect(params) self.print_values_query = False super(PostgresqlMinqlClient, self).__init__(*args, **kwargs) # TODO find out how to do the same in hyperdex # and add it to the interface? def get_tables(): cur = self.connection.cursor() cur.execute("""SELECT datname from pg_database""") rows = cur.fetchall() tables = [] for row in rows: tables.append(row[0]) return tables def create_table(self, table_name, schema): print('Creating PostgreSQL table %s' % table_name) attrs = [] for key, value in schema.iteritems(): attr = '"%s" ' % key if value['type'] == 'string': attr += 'VARCHAR(500)' elif value['type'] == 'float': attr += 'REAL' elif value['type'] == 'int': attr += 'INT' elif value['type'] == 'text': attr += 'TEXT' else: raise NotImplementedError if value['required']: attr += ' NOT NULL' attrs.append(attr) query = ''' CREATE TABLE "%s" ( id VARCHAR(100) PRIMARY KEY NOT NULL''' % table_name if attrs: query += ', \n' + ', \n'.join(attrs) query += ');' cur = self.connection.cursor() print(query) cur.execute(query) self.connection.commit() for key, value in schema.iteritems(): if 'index' in value and value['index']: query = 'CREATE INDEX "%s_%s_index" ON "%s" ("%s");' % ( table_name, key, table_name, key) print(query) cur = self.connection.cursor() cur.execute(query) self.connection.commit() # TODO postgres doesn't drop tables def _drop_table(self, table_name): print('postgres drop table', table_name) query = 'DROP TABLE IF EXISTS "%s"' % table_name print(query) cur = self.connection.cursor() self.connection.set_isolation_level(0) # cur.execute('ALTER TABLE "%s" DROP CONSTRAINT "%s"' % ( # table_name, table_name)) cur.execute(query) self.connection.commit() def get_criteria_string(self, criteria): if criteria: crit = [] for attr, value in criteria.iteritems(): if type(value) is dict: # TODO replace 'ge' with '>=' everywhere if 'ge' in value: criterion = '%s >= %s' % (attr, str(value['ge'])) if 'le' in value: criterion = '%s <= %s' % (attr, str(value['le'])) if 'gt' in value: criterion = '%s > %s' % (attr, str(value['gt'])) if 'lt' in value: criterion = '%s < %s' % (attr, str(value['lt'])) elif isinstance(value, basestring): criterion = "%s = '%s'" % (attr, value) else: criterion = '%s = %s' % (attr, str(value)) crit.append(criterion) return ' where ' + ' and '.join(crit) else: return '' def search(self, table_name, criteria={}): cur = self.connection.cursor(cursor_factory=psycopg2.extras.RealDictCursor) query = 'SELECT * from "%s"' % table_name query += self.get_criteria_string(criteria) print(query) cur.execute(query) return cur.fetchall() def delete(self, table_name, criteria): cur = self.connection.cursor(cursor_factory=psycopg2.extras.RealDictCursor) query = 'DELETE FROM "%s"' % table_name query += self.get_criteria_string(criteria) print(query) cur.execute(query) def update(self, table_name, row): assert 'id' in row and row['id'], 'The row needs an id field.' cur = self.connection.cursor() updates = [] for key, value in row.iteritems(): if key != 'id': if isinstance(value, basestring): val = "'%s'" % value else: val = str(value) updates.append('%s = %s' % (key, val) ) prequery = 'UPDATE "%s"' % table_name query = '%s SET %s' % ( prequery, ', '.join(updates)) postquery = " where id = '%s'" % row['id'] query += postquery if self.print_values_query: print(query) else: print(prequery, postquery) cur.execute(query) self.connection.commit() return row def insert(self, table_name, row): cur = self.connection.cursor() values = [] for value in row.values(): if isinstance(value, basestring): values.append( "'%s'" % value ) else: values.append( str(value) ) query = 'INSERT INTO "%s" (%s)' % ( table_name, ', '.join(row.keys()), ) print(query) query = '%s VALUES (%s)' % ( query, ', '.join(values) ) if self.print_values_query: print(query) cur.execute(query) self.connection.commit() return row def _get(self, table_name, id): cur = self.connection.cursor(cursor_factory=psycopg2.extras.RealDictCursor) query = 'SELECT * from "%s"' % table_name query += " where id = '%s'" % id print(query) cur.execute(query) return cur.fetchone()
the-stack_0_4506
import random from models import model def create_room(room_type, room_name, dojo): """ input : room_type -> string represent type of room_type room_name -> string represent name of room_name output : returns -> return Room with name -> room_name Raises -> TypeError if room_name exists 'Invalid name ' if room_name exists """ # remove excess white charcters room_name_stripped = room_name.strip() room_type_stripped = room_type.strip() if len(room_type_stripped) == 0: raise TypeError room_type_cleaned = room_type_stripped if len(room_name_stripped) == 0 or not room_name_stripped.isalnum(): return 'Invalid name' room_name_cleaned = room_name_stripped # map room_type to respective data type datatype = {'office': model.Office, 'livingspace': model.LivingSpace} if not room_type_cleaned.lower() in datatype: raise TypeError if room_name_cleaned in dojo.takken_names: return 'duplicates' return datatype[room_type_cleaned.lower()](room_name_cleaned) def add_person(names, person_type, wants_livingspace='N'): """ input: firstname lastname Fellow/Staff [Y] """ # validate fields data types if not isinstance(names, tuple) or not isinstance(person_type, str) or\ not isinstance(wants_livingspace, str): raise TypeError # validate person_type person_type = person_type.lower().strip() if person_type not in ["fellow", "staff"]: raise TypeError # validate name name1 = names[0].strip().lower() name2 = names[1].strip().lower() if not name1.isalnum() or not name2.isalnum(): return "Invalid name" name = name1 + " " + name2 # validate wants_livingspace wants_livingspace = wants_livingspace.strip().lower() if wants_livingspace not in 'yn' and person_type == "fellow": return "Invalid choice" choice = True if wants_livingspace == 'y' else False if person_type == 'staff': new_person = model.Staff(name) new_person.office = False else: new_person = model.Fellow(name, choice) new_person.livingspace = False new_person.office = False new_person.wants_living = False if choice: new_person.wants_living = True return new_person def allocate_room(new_person, dojo): """ allocates a room to new_person Returns a dictionary of status messages about success of adding to rooms """ status_messages = {'office': None, 'livingspace': None} if new_person == 'Invalid name': status_messages['status'] = 'Invalid name' return status_messages elif new_person == "Invalid choice": status_messages['status'] = 'Invalid choice' return status_messages elif isinstance(new_person, model.Fellow): if new_person.wants_living: status_messages['livingspace'] = allocate_livingspace(new_person, dojo=dojo) dojo.add_fellow(new_person) status_messages['person_type'] = 'fellow' else: dojo.add_staff(new_person) status_messages['person_type'] = 'staff' status_messages['office'] = allocate_office(new_person, dojo=dojo) return status_messages def allocate_office(new_person, dojo, name_office=None): ''' allocates office to new person_type Returns name of office if added else None ''' if not name_office: name_office = choose_office_random(dojo) office = dojo.get_office(name_office) if name_office != "NoRoomException" and not office.is_full(): dojo.add_person_office(name_office, new_person) new_person.office = True name_office = office.name else: name_office = None return name_office def allocate_livingspace(new_person, dojo, name_livingspace=None): ''' allocates livingspace to new_person Returns name of living space if added else None ''' if not name_livingspace: name_livingspace = choose_living_space_random(dojo) livingspace = dojo.get_livingspace(name_livingspace) if name_livingspace == "NoRoomException" or livingspace.is_full(): name_livingspace = None elif new_person.wants_living: dojo.add_fellow_living(name_livingspace, new_person) new_person.livingspace = True name_livingspace = livingspace.name else: name_livingspace = None return name_livingspace def choose_office_random(dojo): """ choose an office at random """ number_of_offices = len(dojo.office) if number_of_offices > 0: index = random.randrange(number_of_offices) else: return "NoRoomException" list_offices = list(dojo.office) return list_offices[index].name def choose_living_space_random(dojo): """ choose a livingspace at random """ number_of_livingspace = len(dojo.livingspace) if number_of_livingspace > 0: index = random.randrange(number_of_livingspace) else: return "NoRoomException" list_livingspace = list(dojo.livingspace) return list_livingspace[index].name class NoRoomException(Exception): pass def save_data_text(file_name, data, mode='wt'): if file_name[len(file_name) - 4:] != '.txt': file_name = file_name + '.txt' file_out = open(file_name, mode) for name in data: print(name, file=file_out) file_out.close() def load_data_text(file_name): data = [] raw_data = open(file_name, 'rt') while True: line = raw_data.readline() if not line: break data.append(line.split()) return data def deallocate_person(room_type, person, office=None, livingspace=None): deallocation = None if room_type == 'O' and office: deallocation = deallocate_office(person, office) elif room_type == 'L' and livingspace: deallocation = deallocate_livingspace(person, livingspace) elif room_type == 'L' and isinstance(person, model.Staff): deallocation = 'Invalid Operation' return deallocation def get_roomname_type(room_name, dojo): status_messages = {} room_name = room_name.strip().lower() if room_name not in dojo.takken_names: status_messages['status'] = "Room not found" else: office = dojo.get_office(room_name.strip().lower()) livingspace = dojo.get_livingspace(room_name.strip().lower()) # we can only reallocate one room at a time office or livingspace status_messages['in'] = (office, 'O') if office else (livingspace, 'L') status_messages['status'] = 'ok' return status_messages def deallocate_livingspace(person, room): if isinstance(person, model.Staff): return 'Invalid Operation' if person.is_allocated_living() and person.wants_living: room.remove_occupant(person) person.livingspace = False elif not person.wants_living: return 'Invalid Operation' return 'Done' def deallocate_office(person, room): room.remove_occupant(person) person.office = False return 'Done'
the-stack_0_4507
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os from dataclasses import dataclass from typing import Any, Dict, List, Optional, Type import pytorch_lightning as pl # type: ignore from d2go.config import CfgNode, temp_defrost, auto_scale_world_size from d2go.runner import create_runner from d2go.runner.callbacks.quantization import ( QuantizationAwareTraining, ) from d2go.runner.lightning_task import GeneralizedRCNNTask from d2go.setup import basic_argument_parser from d2go.utils.misc import dump_trained_model_configs from detectron2.utils.events import EventStorage from detectron2.utils.file_io import PathManager from pytorch_lightning.callbacks import Callback from pytorch_lightning.callbacks import LearningRateMonitor from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint from pytorch_lightning.loggers import TensorBoardLogger from torch.distributed import get_rank logging.basicConfig(level=logging.INFO) logger = logging.getLogger("detectron2go.lightning.train_net") FINAL_MODEL_CKPT = f"model_final{ModelCheckpoint.FILE_EXTENSION}" @dataclass class TrainOutput: output_dir: str accuracy: Optional[Dict[str, Any]] = None tensorboard_log_dir: Optional[str] = None model_configs: Optional[Dict[str, str]] = None def maybe_override_output_dir(cfg: CfgNode, output_dir: Optional[str]) -> None: """Overrides the output directory if `output_dir` is not None. """ if output_dir is not None and output_dir != cfg.OUTPUT_DIR: cfg.OUTPUT_DIR = output_dir logger.warning( f"Override cfg.OUTPUT_DIR ({cfg.OUTPUT_DIR}) to be the same as " f"output_dir {output_dir}" ) def _get_trainer_callbacks(cfg: CfgNode) -> List[Callback]: """Gets the trainer callbacks based on the given D2Go Config. Args: cfg: The normalized ConfigNode for this D2Go Task. Returns: A list of configured Callbacks to be used by the Lightning Trainer. """ callbacks: List[Callback] = [ LearningRateMonitor(logging_interval="step"), ModelCheckpoint( dirpath=cfg.OUTPUT_DIR, save_last=True, ), ] if cfg.QUANTIZATION.QAT.ENABLED: callbacks.append(QuantizationAwareTraining.from_config(cfg)) return callbacks def _get_accelerator(use_cpu: bool) -> str: return "ddp_cpu" if use_cpu else "ddp" def get_trainer_params(cfg: CfgNode, num_machines: int, num_processes: int) -> Dict[str, Any]: use_cpu = cfg.MODEL.DEVICE.lower() == "cpu" return { # training loop is bounded by max steps, use a large max_epochs to make # sure max_steps is met first "max_epochs": 10 ** 8, "max_steps": cfg.SOLVER.MAX_ITER, "val_check_interval": cfg.TEST.EVAL_PERIOD if cfg.TEST.EVAL_PERIOD > 0 else cfg.SOLVER.MAX_ITER, "num_nodes": num_machines, "gpus": None if use_cpu else num_processes, "num_processes": num_processes, "accelerator": _get_accelerator(use_cpu), "callbacks": _get_trainer_callbacks(cfg), "logger": TensorBoardLogger(save_dir=cfg.OUTPUT_DIR), "num_sanity_val_steps": 0, "progress_bar_refresh_rate": 10, "terminate_on_nan": True, "replace_sampler_ddp": False, } def do_train( cfg: CfgNode, trainer: pl.Trainer, task: GeneralizedRCNNTask ) -> Dict[str, str]: """Runs the training loop with given trainer and task. Args: cfg: The normalized ConfigNode for this D2Go Task. trainer: PyTorch Lightning trainer. task: Lightning module instance. Returns: A map of model name to trained model config path. """ with EventStorage() as storage: task.storage = storage trainer.fit(task) final_ckpt = os.path.join(cfg.OUTPUT_DIR, FINAL_MODEL_CKPT) trainer.save_checkpoint(final_ckpt) # for validation monitor trained_cfg = cfg.clone() with temp_defrost(trained_cfg): trained_cfg.MODEL.WEIGHTS = final_ckpt model_configs = dump_trained_model_configs( cfg.OUTPUT_DIR, {"model_final": trained_cfg} ) return model_configs def do_test(trainer: pl.Trainer, task: GeneralizedRCNNTask): """Runs the evaluation with a pre-trained model. Args: cfg: The normalized ConfigNode for this D2Go Task. trainer: PyTorch Lightning trainer. task: Lightning module instance. """ with EventStorage() as storage: task.storage = storage trainer.test(task) def main( cfg: CfgNode, output_dir: Optional[str] = None, task_cls: Type[GeneralizedRCNNTask] = GeneralizedRCNNTask, eval_only: bool = False, num_machines: int = 1, num_processes: int = 1, ) -> TrainOutput: """Main function for launching a training with lightning trainer Args: cfg: D2go config node num_machines: Number of nodes used for distributed training num_processes: Number of processes on each node. eval_only: True if run evaluation only. """ auto_scale_world_size(cfg, num_machines * num_processes) maybe_override_output_dir(cfg, output_dir) task = task_cls.from_config(cfg, eval_only) trainer_params = get_trainer_params(cfg, num_machines, num_processes) last_checkpoint = os.path.join(cfg.OUTPUT_DIR, "last.ckpt") if PathManager.exists(last_checkpoint): # resume training from checkpoint trainer_params["resume_from_checkpoint"] = last_checkpoint logger.info(f"Resuming training from checkpoint: {last_checkpoint}.") trainer = pl.Trainer(**trainer_params) model_configs = None if eval_only: do_test(trainer, task) else: model_configs = do_train(cfg, trainer, task) return TrainOutput( output_dir=cfg.OUTPUT_DIR, tensorboard_log_dir=trainer_params["logger"].log_dir, accuracy=task.eval_res, model_configs=model_configs, ) def build_config( config_file: str, task_cls: Type[GeneralizedRCNNTask], opts: Optional[List[str]] = None, ) -> CfgNode: """Build config node from config file Args: config_file: Path to a D2go config file output_dir: When given, this will override the OUTPUT_DIR in the config opts: A list of config overrides. e.g. ["SOLVER.IMS_PER_BATCH", "2"] """ cfg = task_cls.get_default_cfg() cfg.merge_from_file(config_file) if opts: cfg.merge_from_list(opts) return cfg def argument_parser(): parser = basic_argument_parser(distributed=True, requires_output_dir=False) parser.add_argument( "--num-gpus", type=int, default=0, help="number of GPUs per machine" ) return parser if __name__ == "__main__": args = argument_parser().parse_args() task_cls = create_runner(args.runner) if args.runner else GeneralizedRCNNTask cfg = build_config(args.config_file, task_cls, args.opts) ret = main( cfg, args.output_dir, task_cls, eval_only=False, # eval_only num_machines=args.num_machines, num_processes=args.num_processes, ) if get_rank() == 0: print(ret)
the-stack_0_4509
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tests.helpers.pipelines as tpipes import tests.helpers.utils as tutils from pytorch_lightning.callbacks import EarlyStopping from pytorch_lightning.trainer import Trainer from pytorch_lightning.utilities import memory from tests.helpers import BoringModel from tests.helpers.datamodules import ClassifDataModule from tests.helpers.runif import RunIf from tests.helpers.simple_models import ClassificationModel @RunIf(min_gpus=2) def test_multi_gpu_early_stop_ddp_spawn(tmpdir): tutils.set_random_main_port() trainer_options = dict( default_root_dir=tmpdir, callbacks=[EarlyStopping(monitor="train_acc")], max_epochs=50, limit_train_batches=10, limit_val_batches=10, gpus=[0, 1], strategy="ddp_spawn", ) dm = ClassifDataModule() model = ClassificationModel() tpipes.run_model_test(trainer_options, model, dm) @RunIf(min_gpus=2) def test_multi_gpu_model_ddp_spawn(tmpdir): tutils.set_random_main_port() trainer_options = dict( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=10, limit_val_batches=10, gpus=[0, 1], strategy="ddp_spawn", enable_progress_bar=False, ) model = BoringModel() tpipes.run_model_test(trainer_options, model) # test memory helper functions memory.get_memory_profile("min_max") @RunIf(min_gpus=2) def test_ddp_all_dataloaders_passed_to_fit(tmpdir): """Make sure DDP works with dataloaders passed to fit()""" tutils.set_random_main_port() model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, enable_progress_bar=False, max_epochs=1, limit_train_batches=0.2, limit_val_batches=0.2, gpus=[0, 1], strategy="ddp_spawn", ) trainer.fit(model, train_dataloaders=model.train_dataloader(), val_dataloaders=model.val_dataloader()) assert trainer.state.finished, "DDP doesn't work with dataloaders passed to fit()."
the-stack_0_4510
import numpy as np import pandas as pd from hamcrest import assert_that, has_item import cifrum as lib from conftest import decimal_places from cifrum._settings import _MONTHS_PER_YEAR __asset_name = 'index/OKID10' def test__present_in_available_names(): sym_ids = [x.fin_sym_id.format() for x in lib.available_names(namespace='index')] assert_that(sym_ids, has_item(__asset_name)) def test__have_valid_max_period_range(): okid10 = lib.portfolio_asset(name=__asset_name) cbr_top10 = lib.information(name='cbr/TOP_rates') assert okid10.close().start_period == cbr_top10.start_period + _MONTHS_PER_YEAR assert (cbr_top10.end_period - okid10.close().end_period).n < 2 def test__have_valid_selected_period_range(): start_period = pd.Period('2013-1', freq='M') end_period = pd.Period('2015-3', freq='M') okid10 = lib.portfolio_asset(name=__asset_name, start_period=str(start_period), end_period=str(end_period)) assert okid10.close().start_period == start_period assert okid10.close().end_period == end_period def test__have_correct_values(): okid10 = lib.portfolio_asset(name=__asset_name, end_period='2018-12') np.testing.assert_almost_equal(okid10.close()[:5].values, [100., 100.9854, 101.9356, 102.8515, 103.7328], decimal_places) np.testing.assert_almost_equal(okid10.close()[-5:].values, [212.0694, 213.2737, 214.4767, 215.6832, 216.8961], decimal_places) def test__compute_correctly_in_other_currencies(): okid10_usd = lib.portfolio_asset(name=__asset_name, end_period='2018-12', currency='usd') okid10_rub = lib.portfolio_asset(name=__asset_name, end_period='2018-12', currency='rub') okid10_currency_rate = okid10_usd.close() / okid10_rub.close() vs_rub = lib.portfolio_asset(name='cbr/RUB', start_period=okid10_currency_rate.start_period, end_period=okid10_currency_rate.end_period, currency='usd').close() np.testing.assert_almost_equal(okid10_currency_rate.values, vs_rub.values, decimal_places)
the-stack_0_4516
#!/usr/bin/env python from __future__ import print_function import thread import socket import argparse import sys, time, os, glob, shutil, math, datetime from tmuxsend import TmuxSend def run_server(port): # Create a TCP/IP socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) #sock.settimeout(3) # Bind the socket to the port server_address = ('', port) sock.bind(server_address) sock.listen(1) print("Speech server started on port %d ..." %port) print("Speech server commands available [@audio, @audiokill]") print("Example: echo \"@audio\" | netcat -w 1 localhost %d" %port) print("TTS command: echo \"TTS[en] hello!\" | netcat -w 1 localhost 9001") tmux = TmuxSend('bringup', ['audio server','cmd']) connected = False dorun = True while dorun: if not connected: print("-- Waiting for connection ...") while (dorun and not connected): try: # Wait for a connection connection, client_address = sock.accept() connected = True print ('-- Connection from %s' %client_address[0]) except KeyboardInterrupt: print("User interrupt (quit)") dorun = False except Exception as e: print(e) pass # keep listening if not dorun: return # print("-- Waiting for data...") data = None while dorun and connected and data is None: # receive data try: #connection.settimeout(3) # timeout when listening (exit with CTRL+C) data = connection.recv(320) # blocking data = data.strip() except KeyboardInterrupt: print("User interrupt (quit)") dorun = False except socket.timeout: data = None print("socket timeout") if data is not None: if len(data)==0: connected = False else: print(data) folder = "~/src/marrtino_apps/audio" if data=='@audio': tmux.cmd(0,'cd %s' %folder) tmux.cmd(0,'python audio_server.py') elif data=='@audiokill': tmux.Cc(0) else: print('Unknown command %s') if __name__ == '__main__': default_port = 9239 parser = argparse.ArgumentParser(description='speech bringup') parser.add_argument('-server_port', type=int, default=default_port, help='server port') args = parser.parse_args() run_server(args.server_port)
the-stack_0_4517
#!/usr/bin/env python import click import json import os import shutil import subprocess import uuid LOGISTICIAN_ROOT = os.path.dirname(os.path.abspath(__file__)) CONFIG_PATH = os.path.expanduser("~/.logistician/") def random_id(): return str(uuid.uuid4()).split("-")[0] def write_to_file(path, contents): f = open(path, "w") f.write(contents) f.close() def from_template_file(template_file, vars): f = open(template_file, "r") template = f.read() f.close() return template % vars def create_config_directory(): if not os.path.exists(CONFIG_PATH): os.makedirs(CONFIG_PATH) def load_params(experiment_path): params_filename = os.path.join(experiment_path, "parameters.json") g = open(params_filename) params = json.load(g) g.close() return params def echo_command_string(s): click.secho(s, fg='green') def verbose_call(cmd): echo_command_string(subprocess.list2cmdline(cmd)) subprocess.call(cmd) def local_docker_command(params): return params.get("local_docker_command", "docker") def remote_docker_command(params): return params.get("remote_docker_command", "docker") def config(): """ Interactively create config file """ create_config_directory() docker_username = click.prompt("Please enter your Docker Hub username") docker_repository = click.prompt("Please enter your preferred Docker repository name", "experiments") aws_access_key = click.prompt("Please enter your AWS access key (e.g., AKIAIOSFODNN7EXAMPLE)") aws_secret_key = click.prompt("Please enter your AWS secret key (e.g., wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY)") configuration = { "aws_access_key": aws_access_key, "aws_secret_key": aws_secret_key, "docker_username": docker_username, "docker_repository": docker_repository } f = open(os.path.join(CONFIG_PATH, "config.json"), "w") json.dump(configuration, f) f.close() def create_ssh_key(): """ Create and store SSH key """ create_config_directory() private_key_path = os.path.join(CONFIG_PATH, "ssh-key") if os.path.exists(private_key_path): click.echo("File already exists at {0}".format(private_key_path)) else: verbose_call(["ssh-keygen", "-t", "rsa", "-b", "4096", "-f", private_key_path, "-P", ""]) def build(experiment_path): """ Build Docker image for experiment """ params = load_params(experiment_path) experiment_name = params["experiment_name"] click.echo("Building Docker image for {0}".format(experiment_name)) verbose_call([local_docker_command(params), "build", "-t", experiment_name, experiment_path]) click.echo("Docker build done.") def get_project_path(file_path): cmd = "cd '{0}' && git rev-parse --show-toplevel".format(file_path) echo_command_string(cmd) p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) p.wait() return p.stdout.read().strip() ExperimentPathType = click.Path(exists=True, file_okay=False, dir_okay=True, writable=True, readable=True, resolve_path=True) @click.group() def cli(): pass @click.command() @click.pass_context def setup(ctx): """ Run initial interactive setup for Logistician """ click.echo("This is the interactive setup for Logistician.") config() create_ssh_key() click.echo("Configuration done.") @click.command() @click.argument('experiment_path', type=ExperimentPathType, default=lambda: os.getcwd()) def sync(experiment_path): """ Sync all data from cloud to local machine """ # Load IP addresses machines_filename = os.path.join(experiment_path, "machines.txt") if not os.path.exists(machines_filename): click.echo("Machine file {0} does not exist. Can't sync.".format(machines_filename)) return f = open(machines_filename) machines = [line.strip().split(", ") for line in f.read().strip().split("\n")] f.close() # Load AWS AMI user params = load_params(experiment_path) aws_ami_user = params["aws_ami_user"] # Create data folder if it doesn't exist verbose_call(["mkdir", "-p", os.path.join(experiment_path, "data/")]) docker_command = remote_docker_command(params) for (ip, condition) in machines: remote_address = "{0}@{1}".format(aws_ami_user, ip) local_path = os.path.join(experiment_path, "data/", condition) click.echo("Syncing {0} to {1}".format(remote_address, local_path)) # Copy latest Docker logs to remote data directory verbose_call(["ssh", "-o", "StrictHostKeyChecking no", "-i", "~/.logistician/ssh-key", remote_address, "sudo bash -c '" + docker_command + " logs `" + docker_command + " ps -aq | head -n 1` > /data/logs/docker.txt'"]) # Retrieve remote data directory verbose_call(["rsync", "-azvv", "-e", "ssh -i ~/.logistician/ssh-key", "{0}:/data/".format(remote_address), local_path]) click.echo("Syncing done.") @click.command() @click.option('--options', '-o', help='Options to pass to experiment script', default='') @click.option('--data_readonly', help='Data folder to read from (optional)', type=click.Path(exists=True, file_okay=False, dir_okay=True, writable=False, readable=True, resolve_path=True), default=None) @click.option('--clone/--no-clone', help='Clone from remote repo, don\'t use project folder', default=False) @click.argument('experiment_path', type=ExperimentPathType, default=lambda: os.getcwd()) def run(experiment_path, clone, options, data_readonly): """ Run experiment locally """ build(experiment_path) params = load_params(experiment_path) experiment_name = params["experiment_name"] click.echo("Running {0} with options '{1}'".format(experiment_name, options)) if clone: # If we don't mount project volume, it will be cloned clone_args = [] else: project_path = get_project_path(experiment_path) clone_args = ["-v", "{0}:/project".format(project_path)] if data_readonly: data_args = ["-v", "{0}:/data:ro".format(data_readonly)] else: data_args = [] cmd = [local_docker_command(params), "run"] + clone_args + data_args + ["-e", "OPTIONS={0}".format(options), "-it", experiment_name] verbose_call(cmd) click.echo("Experiment done.") @click.command() @click.option('--volume/--no-volume', help='Mount project folder as /project volume in Docker', default=True) @click.argument('experiment_path', type=ExperimentPathType, default=lambda: os.getcwd()) def shell(experiment_path, volume=True): """ Open shell in experiment environment """ build(experiment_path) params = load_params(experiment_path) experiment_name = params["experiment_name"] docker_command = local_docker_command(params) click.echo("Opening shell for {0}".format(experiment_name)) if volume: project_path = get_project_path(experiment_path) verbose_call([docker_command, "run", "-v", "{0}:/project".format(project_path), "-it", experiment_name, "bash", "-c", "cd /project && bash"]) else: verbose_call([docker_command, "run", "-it", experiment_name, "bash"]) click.echo("Shell exited.") @click.command() @click.argument('experiment_path', type=ExperimentPathType, default=lambda: os.getcwd()) def deploy(experiment_path): """ Run experiment in the cloud """ build(experiment_path) click.echo("Deploying {0} to cloud".format(experiment_path)) params_file = os.path.join(experiment_path, "parameters.json") config_file = os.path.join(CONFIG_PATH, "config.json") terraform_aws_path = os.path.join(LOGISTICIAN_ROOT, "terraform/aws") verbose_call(["terraform", "apply", '-var-file={0}'.format(params_file), '-var-file={0}'.format(config_file), terraform_aws_path]) click.echo("Deployment done.") @click.command() @click.argument('experiment_path', type=ExperimentPathType, default=lambda: os.getcwd()) def status(experiment_path): """ Show deployment status """ verbose_call(["terraform", "show", os.path.join(experiment_path, "terraform.tfstate")]) @click.command() @click.argument('experiment_path', type=ExperimentPathType, default=lambda: os.getcwd()) def terminate(experiment_path): """ Terminate cloud experiment """ click.echo("Terminating {0} in cloud".format(experiment_path)) params_file = os.path.join(experiment_path, "parameters.json") config_file = os.path.join(CONFIG_PATH, "config.json") terraform_aws_path = os.path.join(LOGISTICIAN_ROOT, "terraform/aws") verbose_call(["terraform", "destroy", '-var-file={0}'.format(params_file), '-var-file={0}'.format(config_file), terraform_aws_path]) click.echo("Experiment terminated.") @click.command() @click.option('--base', help='Path to previous experiment used as base (optional)', type=click.Path(exists=True, file_okay=False, dir_okay=True, readable=True, resolve_path=True), default=None) @click.argument('experiment_path', type=click.Path(exists=False), default=lambda: None) def create(experiment_path, base): """ Run interactive setup for a new experiment """ if not experiment_path: experiment_path = click.prompt("Path for new experiment", default=os.path.join(os.getcwd(), random_id())) if os.path.exists(experiment_path): click.echo("Experiment path should not exist") return click.echo("This script will interactively create a new experiment stored at:") click.echo(os.path.abspath(experiment_path) + "\n") # Create folder for new experiment os.makedirs(experiment_path) # Get experiment name dirname = os.path.basename(os.path.dirname(os.path.join(experiment_path, ''))) experiment_name = click.prompt("Globally unique experiment name", default=dirname) if base: create_derived_experiment(experiment_path, experiment_name, base) else: create_fresh_experiment(experiment_path, experiment_name) def create_derived_experiment(experiment_path, experiment_name, base): # Copy over Dockerfile dockerfile_path = os.path.join(experiment_path, "Dockerfile") shutil.copyfile(os.path.join(base, "Dockerfile"), dockerfile_path); # Copy over parameter.json, replacing experiment_name with new one f = open(os.path.join(base, "parameters.json")) params = json.load(f) f.close() params["experiment_name"] = experiment_name parameters_path = os.path.join(experiment_path, "parameters.json") f = open(parameters_path, "w") json.dump(params, f, indent=2, sort_keys=True) f.close() show_experiment_info(experiment_path, dockerfile_path, parameters_path) def create_fresh_experiment(experiment_path, experiment_name): git_remote_url = subprocess.check_output(["git", "config", "--get", "remote.origin.url"]).strip() project_git_url = click.prompt("Remote Git URL", default=git_remote_url) experiment_cmd = click.prompt("Experiment command (relative to project root)") settings = { "experiment_name": experiment_name, "project_git_url": project_git_url, "experiment_cmd": experiment_cmd } # Create Dockerfile dockerfile_template_path = os.path.join(LOGISTICIAN_ROOT, "templates/experiment/Dockerfile") dockerfile_contents = from_template_file(dockerfile_template_path, settings) dockerfile_path = os.path.join(experiment_path, "Dockerfile") write_to_file(dockerfile_path, dockerfile_contents) # Create parameters.json parameters_template_path = os.path.join(LOGISTICIAN_ROOT, "templates/experiment/parameters.json") parameters_contents = from_template_file(parameters_template_path, settings) parameters_path = os.path.join(experiment_path, "parameters.json") write_to_file(parameters_path, parameters_contents) show_experiment_info(experiment_path, dockerfile_path, parameters_path) def show_experiment_info(experiment_path, dockerfile_path, parameters_path): # Instruct user to edit Dockerfile click.echo("\nExperiment created.") click.echo("\nYou can now edit the Dockerfile and parameters:") click.echo("Dockerfile: {0}".format(dockerfile_path)) click.echo("Parameters: {0}".format(parameters_path)) click.echo("\nOnce done editing, you can run your experiment:") click.echo("logistician run {0}".format(os.path.relpath(experiment_path))) cli.add_command(create) cli.add_command(deploy) cli.add_command(run) cli.add_command(setup) cli.add_command(shell) cli.add_command(status) cli.add_command(sync) cli.add_command(terminate)
the-stack_0_4519
""" This script takes a pre-trained Spatial Transformer and applies it to an unaligned dataset to create an aligned and filtered dataset in an unsupervised fashion. By default, this script will only use the similarity transformation portion of the Spatial Transformer (rotation + crop) to avoid introducing warping artifacts. """ import os import sys sys.path.insert(1, os.path.dirname(sys.path[0])) import torch import numpy as np from PIL import Image from tqdm import tqdm from prepare_data import create_dataset, border_pad from models import ComposedSTN from models.spatial_transformers.warping_heads import SimilarityHead from applications import base_eval_argparse, load_stn, determine_flips from applications.flow_scores import filter_dataset from utils.distributed import setup_distributed, primary, get_rank, all_gatherv, synchronize, get_world_size from datasets import MultiResolutionDataset def apply_congealing(args, dataset, stn, stn_full, out_path, device, rank, n_processes, **stn_args): def prepro(x, from_np=False): if from_np: x = np.asarray(x) return torch.from_numpy(x).float().div_(255.0).add_(-0.5).mul_(2.0).permute(2, 0, 1).unsqueeze_(0).to(device) total = 0 prefix = chr(ord('a') + rank) print(f'({rank}) Using prefix {prefix}') pbar = tqdm if rank == 0 else lambda x: x indices = torch.arange(rank, len(dataset), n_processes) one_hot = torch.tensor([[[0, 0, 1]]], dtype=torch.float, device=device) used_indices = [] for i in pbar(indices): with torch.no_grad(): x = dataset[i.item()] # (1, C, H, W) w, h = x.size size = max(w, h) x_big = prepro(border_pad(x, size, resize=False, to_pil=False)) # (1, C, size, size) x_in = prepro(border_pad(x, args.flow_size, to_pil=False)) # (1, C, flow_size, flow_size) x_in, flip_indices, warp_policy = determine_flips(args, stn_full, None, x_in) x_big = torch.where(flip_indices.view(-1, 1, 1, 1), x_big.flip(3,), x_big) image_bounds = torch.tensor([[h, w]], dtype=torch.float, device='cuda') try: aligned, M, oob = stn(x_in, return_flow=True, return_out_of_bounds=True, input_img_for_sampling=x_big, output_resolution=args.output_resolution, image_bounds=image_bounds, **stn_args) except RuntimeError: print(f'Rank {rank}: WARNING: Ran out of GPU memory, skipping...') continue # The scale of the similarity transform can be extracted from our affine matrix # by taking the square-root of its determinant: M = torch.cat([M, one_hot], 1) scale = torch.det(M).sqrt_() too_low_res = (scale.item() * min(w, h)) < args.min_effective_resolution # We don't want to include images that can only be aligned by extrapolating a significant number of pixels # beyond the image boundary: if not (too_low_res or oob.item()): used_indices.append(i) write_image_batch(aligned, out_path, start_index=total, prefix=prefix) total += aligned.size(0) print(f'({rank}) Saved {total} images') used_indices = torch.stack(used_indices).to(device) return used_indices def write_image_batch(images, out_path, start_index=0, prefix=''): def norm(img, min, max): img.clamp_(min=min, max=max) img.add_(-min).div_(max - min) norm(images, -1, 1) ndarr = images.mul(255).add_(0.5).clamp_(0, 255).permute(0, 2, 3, 1).to('cpu', torch.uint8).numpy() for i in range(ndarr.shape[0]): index = i + start_index Image.fromarray(ndarr[i]).save(f'{out_path}/{prefix}{index:07}.png') def align_and_filter_dataset(args, t): # The aligned + filtered images will be saved directly as pngs to temp_folder below: temp_folder = f'{args.out}_imagefolder' if primary(): os.makedirs(temp_folder, exist_ok=True) os.makedirs(args.out, exist_ok=True) # Step 1: Apply the STN to every image in the dataset dataset = MultiResolutionDataset(args.real_data_path, resolution=args.real_size, transform=None) if args.flow_scores is not None: # Filter the dataset based on flow scores: dataset = filter_dataset(dataset, args.flow_scores, args.fraction_retained) if isinstance(t, ComposedSTN): t_sim = t.stns[0] # Only use the similarity transformation else: t_sim = t assert isinstance(t_sim.warp_head, SimilarityHead), 'Currently only similarity transformations are supported ' \ 'for this script' used_indices = apply_congealing(args, dataset, t_sim, t, temp_folder, 'cuda', get_rank(), get_world_size(), iters=args.iters, padding_mode=args.padding_mode) synchronize() used_indices = all_gatherv(used_indices) # Step 2: Create an lmdb from temp_folder: if primary(): create_dataset(args.out, temp_folder, size=args.output_resolution, format='png') used_indices = used_indices.sort().values.cpu() print(f'Saving indices of images (size={used_indices.size(0)})') torch.save(used_indices, f'{args.out}/dataset_indices.pt') print('Done.') if __name__ == '__main__': parser = base_eval_argparse() # Dataset congealing + creation hyperparameters: parser.add_argument("--out", type=str, help='Directory to save output aligned dataset', required=True) parser.add_argument("--output_resolution", type=int, default=256, help='Resolution of output aligned images') parser.add_argument("--flow_scores", default=None, type=str, help='Path to pre-computed flow scores to filter dataset (see flow_scores.py for more info)') parser.add_argument("--fraction_retained", default=1.0, type=float, help='Fraction of dataset images to retain based on flow scores') # Also see --fraction_retained in base_eval_argparse() parser.add_argument("--min_effective_resolution", type=int, default=192, help='Some images will have small objects that the STN successfully aligns. But, you may not ' 'want these aligned images in your dataset because the STN will have produced a large ' 'zoom that yields a low resolution image when resized to output_resolution. Any aligned ' 'image with size less than min_effective_resolution will be excluded from the output ' 'dataset.') args = parser.parse_args() assert args.num_heads == 1, 'Clustering not currently supported for congeal_dataset.py' args.distributed = setup_distributed(args.local_rank) t_ema = load_stn(args) align_and_filter_dataset(args, t_ema)
the-stack_0_4521
from glob import glob import pandas as pd import process_trial import json, os from tqdm import tqdm print(os.getcwd()) print('Process testset') for test_group in tqdm(glob('data/raw/*/metrics_*.csv')): try: platform = test_group.split('/')[2] df = pd.read_csv(test_group) df['init_time'] = pd.to_datetime(df['init_time']) df.reset_index(inplace=True) for index, row in df.iterrows(): row['times'] = json.loads(row['times']) hw_log = test_group.replace('metrics_', 'hardware_log_') process_trial.compute(row, hw_log, index, platform) except: print(f'ERROR: {test_group}') print('Process testset completed')
the-stack_0_4523
#!/usr/bin/env python3 # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4 import argparse import os import platform import shutil import subprocess import sys import time from vmstat import capture_sample from vmstat import plot_output from vmstat import print_output_to_file def main(): args = parse_args() ret = os.system(f"cd ../examples && b2 release {args.toolset} stage_client_test stage_connection_tester") save_dir = args.directory print(f"save dir: {save_dir}") if ret != 0: print('ERROR: build failed: %d' % ret) sys.exit(1) rm_file_or_dir(".ses_state") rm_file_or_dir(".resume") if not os.path.exists('checking_benchmark.torrent'): ret = os.system('../examples/connection_tester gen-torrent -s 10000 -n 15 -t checking_benchmark.torrent') if ret != 0: print('ERROR: connection_tester failed: %d' % ret) sys.exit(1) if not os.path.exists(f"{save_dir}/checking_benchmark"): cmd_line = f'../examples/connection_tester gen-data -t checking_benchmark.torrent -P {save_dir}' print(cmd_line) ret = os.system(cmd_line) if ret != 0: print('ERROR: connection_tester failed: %d' % ret) sys.exit(1) for threads in [1, 2, 4, 8, 16, 32, 64]: print("drop caches now. e.g. \"echo 1 | sudo tee /proc/sys/vm/drop_caches\"") input("Press Enter to continue...") run_test(f"{threads}", f"--hashing_threads={threads}", save_dir) def run_test(name, client_arg, save_dir: str): output_dir = 'logs_checking_%s' % name timing_path = os.path.join(output_dir, 'timing.txt') if os.path.exists(timing_path): print('file "{path}" exists, skipping test "{name}"'.format(path=timing_path, name=name)) return rm_file_or_dir(output_dir) try: os.mkdir(output_dir) except Exception: pass rm_file_or_dir(f"{save_dir}/.resume") client_cmd = ('../examples/client_test checking_benchmark.torrent ' '--enable_dht=0 --enable_lsd=0 --enable_upnp=0 --enable_natpmp=0 ' f'-1 {client_arg} -s {save_dir} -f {output_dir}/events.log --alert_mask=all') client_out = open('%s/client.out' % output_dir, 'w+') print('client_cmd: "{cmd}"'.format(cmd=client_cmd)) c = subprocess.Popen(client_cmd.split(' '), stdout=client_out, stderr=client_out, stdin=subprocess.PIPE) start = time.monotonic() if platform.system() == "Linux": out = {} while c.returncode is None: capture_sample(c.pid, start, out) time.sleep(0.1) c.poll() stats_filename = f"{output_dir}/memory_stats.log" keys = print_output_to_file(out, stats_filename) plot_output(stats_filename, keys) else: c.wait() client_out.close() start_time = 0 end_time = 0 for l in open('%s/events.log' % output_dir, 'r'): if 'checking_benchmark: start_checking, m_checking_piece: ' in l \ and start_time == 0: start_time = int(l.split(' ')[0][1:-1]) if 'state changed to: finished' in l \ and start_time != 0: end_time = int(l.split(' ')[0][1:-1]) print('%s: %d' % (name, end_time - start_time)) with open('%s/timing.txt' % output_dir, 'w+') as f: f.write('%s: %d\n' % (name, end_time - start_time)) def rm_file_or_dir(path): """ Attempt to remove file or directory at path """ try: shutil.rmtree(path) except Exception: pass try: os.remove(path) except Exception: pass def parse_args(): p = argparse.ArgumentParser() p.add_argument('--toolset', default="") p.add_argument('--directory', default=".") return p.parse_args() if __name__ == '__main__': main()
the-stack_0_4525
import json from contextlib import contextmanager from datetime import datetime, timedelta from xml.sax.saxutils import unescape from mock import patch from casexml.apps.case.models import CommCareCase from casexml.apps.case.sharedmodels import CommCareCaseIndex from corehq.apps.domain.shortcuts import create_domain from corehq.apps.tzmigration.timezonemigration import MISSING from corehq.form_processor.backends.couch.dbaccessors import CaseAccessorCouch from corehq.form_processor.interfaces.dbaccessors import FormAccessors from corehq.form_processor.models import CommCareCaseIndexSQL from corehq.form_processor.utils.general import ( clear_local_domain_sql_backend_override, ) from corehq.util.dates import iso_string_to_datetime from corehq.util.test_utils import capture_log_output from .test_migration import BaseMigrationTestCase, Diff, IGNORE, make_test_form from .. import casediff from .. import casedifftool as mod from ..diffrule import ANY from ..statedb import open_state_db class TestCouchSqlDiff(BaseMigrationTestCase): def test_diff(self): self.submit_form(make_test_form("form-1", case_id="case-1")) self.do_migration(case_diff="none") clear_local_domain_sql_backend_override(self.domain_name) with self.augmented_couch_case("case-1") as case: case.age = '35' case.save() self.do_case_diffs() self.compare_diffs([ Diff('case-1', 'diff', ['age'], old='35', new='27'), ]) self.do_migration(forms="missing", case_diff="patch") def test_diff_specific_case(self): self.submit_form(make_test_form("form-1", case_id="case-1")) self.do_migration(case_diff="none") clear_local_domain_sql_backend_override(self.domain_name) with self.augmented_couch_case("case-1") as case: case.age = '35' case.save() self.do_case_diffs(cases="case-1") self.compare_diffs([ Diff('case-1', 'diff', ['age'], old='35', new='27'), ]) def test_pending_diff(self): def diff_none(case_ids, log_cases=None): return casediff.DiffData([]) self.submit_form(make_test_form("form-1", case_id="case-1")) self.do_migration(case_diff='none') clear_local_domain_sql_backend_override(self.domain_name) with self.augmented_couch_case("case-1") as case: case.age = '35' case.save() with patch("corehq.apps.couch_sql_migration.casedifftool.diff_cases", diff_none): result = self.do_case_diffs() self.assertEqual(result, mod.PENDING_WARNING) self.do_case_diffs(cases="pending") self.compare_diffs([ Diff('case-1', 'diff', ['age'], old='35', new='27'), ]) def test_live_diff(self): # do not diff case modified since most recent case created in SQL self.submit_form(make_test_form("form-1", case_id="case-1"), timedelta(minutes=-90)) self.submit_form(make_test_form("form-2", case_id="case-1", age=35)) self.do_migration(live=True, chunk_size=1, case_diff="none") self.assert_backend("sql") case = self._get_case("case-1") self.assertEqual(case.dynamic_case_properties()["age"], '27') self.do_case_diffs() self.compare_diffs(ignore_fail=True) def test_failed_diff(self): self.pool_mock.stop() self.addCleanup(self.pool_mock.start) self.submit_form(make_test_form("form-1", case_id="case-1")) self.do_migration(case_diff="none") # patch init_worker to make subprocesses use the same database # connections as this process (which is operating in a transaction) init_worker_path = "corehq.apps.couch_sql_migration.casedifftool.init_worker" with patch(init_worker_path, mod.global_diff_state), \ patch("corehq.apps.couch_sql_migration.casediff.diff_case") as mock, \ capture_log_output("corehq.apps.couch_sql_migration.parallel") as log: mock.side_effect = Exception("diff failed!") self.do_case_diffs() logs = log.get_output() self.assertIn("error processing item in worker", logs) self.assertIn("Exception: diff failed!", logs) self.compare_diffs() db = open_state_db(self.domain_name, self.state_dir) self.assertEqual(list(db.iter_undiffed_case_ids()), ["case-1"]) def test_reconcile_transaction_order(self): from ..rebuildcase import SortTransactionsRebuild form1 = make_test_form("form-1", age="33", date="2016-08-04T18:25:56.656Z") form2 = make_test_form("form-2", age="32", date="2015-08-04T18:25:56.656Z") self.submit_form(form1) self.submit_form(form2) self.assertEqual(self._get_case("test-case").age, "33") with self.diff_without_rebuild(): self.do_migration() self.compare_diffs([ Diff('test-case', 'diff', ['age'], old='33', new='32'), ]) clear_local_domain_sql_backend_override(self.domain_name) self.do_case_diffs(cases="with-diffs") sql_case = self._get_case("test-case") self.assertEqual(sql_case.dynamic_case_properties()["age"], "33") self.compare_diffs() details = sql_case.transactions[-1].details self.assertEqual(details["reason"], SortTransactionsRebuild._REASON) server_dates = details["original_server_dates"] self.assertEqual(len(server_dates), 1, server_dates) def test_couch_with_missing_forms(self): form1 = make_test_form("form-1", age="33", date="2016-08-04T18:25:56.656Z") form2 = make_test_form("form-2", age="32", date="2015-08-04T18:25:56.656Z") self.submit_form(THING_FORM) self.submit_form(form1) self.submit_form(form2) case = self._get_case("test-case") self.assertEqual(case.age, "33") self.assertEqual(case.thing, "1") del case.thing case.actions = [a for a in case.actions if a.form_id != "thing-form"] case.save() with self.assertRaises(AttributeError): self._get_case("test-case").thing with self.diff_without_rebuild(): self.do_migration() self.compare_diffs([ Diff('test-case', 'diff', ['age'], old='33', new='32'), Diff('test-case', 'missing', ['thing'], old=MISSING, new='1'), ]) clear_local_domain_sql_backend_override(self.domain_name) self.do_case_diffs(cases="with-diffs") sql_case = self._get_case("test-case") self.assertEqual(sql_case.dynamic_case_properties()["age"], "33") self.compare_diffs(changes=[ Diff('test-case', 'missing', ['thing'], old=MISSING, new='1', reason='rebuild case'), ]) self.do_migration(patch=True, diffs=[]) def test_couch_missing_create_case(self): with self.skip_case_and_ledger_updates("thing-form"): self.submit_form(THING_FORM) self.submit_form(UPDATE_FORM) case = self._get_case("test-case") # simulate null properties seen in the wild object.__setattr__(case, "name", None) object.__setattr__(case, "type", None) case.save() with self.diff_without_rebuild(): self.do_migration() self.compare_diffs([ Diff('test-case', 'missing', ['thing'], old=MISSING, new='1'), Diff('test-case', 'set_mismatch', ['xform_ids', '[*]'], old='', new='thing-form'), Diff('test-case', 'type', ['name'], old=None, new='Thing'), Diff('test-case', 'type', ['type'], old=None, new='testing'), ]) self.do_migration(patch=True, diffs=[]) case = self._get_case("test-case") self.assertEqual(case.name, "") self.assertEqual(case.type, "") self.assertEqual(case.dynamic_case_properties()["thing"], "") self.assertEqual(case.xform_ids, ['thing-form', 'update-form', ANY]) def test_case_with_deleted_form(self): # form state=normal / deleted -> missing case one = self.submit_form(make_test_form("one", age=27)) FormAccessors(self.domain_name).soft_delete_forms( [one.form_id], datetime.utcnow(), 'test-deletion') self.do_migration() self.compare_diffs(changes=[ Diff('test-case', 'missing', ['*'], old='*', new=MISSING, reason="deleted forms"), ]) def test_diff_case_with_wrong_domain(self): wrong_domain = create_domain("wrong") self.addCleanup(wrong_domain.delete) self.submit_form(make_test_form("form-1"), domain="wrong") self.do_migration(case_diff="none", domain="wrong") self.do_migration(case_diff="none") clear_local_domain_sql_backend_override(self.domain_name) with capture_log_output("corehq.apps.couch_sql_migration") as log, \ self.augmented_couch_case("test-case") as case: # modify case so it would have a diff (if it were diffed) case.age = '35' case.save() # try to diff case in wrong domain self.do_case_diffs(cases="test-case") self.compare_diffs([ Diff('test-case', 'diff', ['domain'], old='wrong', new=self.domain_name), ]) logs = log.get_output() self.assertIn("couch case test-case has wrong domain: wrong", logs) def test_ledger_dup_transaction_diff(self): product_id = self.create_form_with_duplicate_stock_transaction() self.do_migration(case_diff='none') self.compare_diffs(ignore_fail=True) clear_local_domain_sql_backend_override(self.domain_name) self.do_case_diffs() self.compare_diffs(changes=[Diff( f"test-case/things/{product_id}", reason="duplicate stock transaction", type="diff", path=["balance"], old=2, new=1, kind="stock state", )]) def test_patch_known_properties(self): self.submit_form(make_test_form("form-1", case_id="case-1")) self.do_migration(case_diff="none") clear_local_domain_sql_backend_override(self.domain_name) open_date = datetime(2010, 9, 8) with self.augmented_couch_case("case-1") as case: case.name = "Zena" case.type = "old-type" case.user_id = "old-user" case.owner_id = "old-owner" case.opened_on = open_date case.save() self.do_case_diffs() self.compare_diffs([ Diff('case-1', 'diff', ['name'], old='Zena', new='Xeenax'), Diff('case-1', 'diff', ['owner_id'], old='old-owner', new='3fae4ea4af440efaa53441b5'), Diff('case-1', 'diff', ['type'], old='old-type', new='testing'), Diff('case-1', 'diff', ['user_id'], old='old-user', new='3fae4ea4af440efaa53441b5'), ]) self.do_migration(forms="missing", case_diff="patch") self.assertEqual(self._get_case("case-1").opened_on, open_date) def test_unpatchable_properties(self): date1 = "2018-07-13T11:20:11.381000Z" self.submit_form(make_test_form("form-1", case_id="case-1")) case = self._get_case("case-1") user = case.user_id case.closed = True case.closed_by = "someone" case.closed_on = iso_string_to_datetime(date1) case.external_id = "ext" case.name = "Zena" case.opened_by = "someone" case.server_modified_on = iso_string_to_datetime(date1) case.user_id = "person" case.save() self.do_migration(diffs=[ Diff('case-1', 'diff', ['closed'], old=True, new=False), Diff('case-1', 'diff', ['closed_by'], old='someone', new=''), Diff('case-1', 'diff', ['external_id'], old='ext', new=''), Diff('case-1', 'diff', ['name'], old='Zena', new='Xeenax'), Diff('case-1', 'diff', ['opened_by'], old='someone', new=user), Diff('case-1', 'diff', ['user_id'], old='person', new=user), Diff('case-1', 'type', ['closed_on'], old=date1, new=None), ]) self.do_migration(patch=True, diffs=[]) close2 = iso_string_to_datetime("2015-08-04T18:25:56.656Z") case = self._get_case("case-1") self.assertEqual(case.closed, True) # patched self.assertEqual(case.closed_by, "person") # unpatched self.assertEqual(case.closed_on, close2) # unpatched self.assertEqual(case.external_id, 'ext') # patched, not sure how/why self.assertEqual(case.name, "Zena") # patched self.assertEqual(case.opened_by, user) # unpatched self.assertEqual(case.user_id, "person") # patched self.assertNotEqual(case.server_modified_on, iso_string_to_datetime(date1)) # unpatched form = self._get_form(case.xform_ids[-1]) diffs = json.loads(unescape(form.form_data["diff"])) self.assertEqual(diffs, { "case_id": "case-1", "diffs": [ {"path": ["closed"], "old": True, "new": False, "patch": True}, {"path": ["closed_by"], "old": "someone", "new": "", "patch": False}, {"path": ["closed_on"], "old": date1, "new": None, "patch": False}, {"path": ["external_id"], "old": "ext", "new": "", "patch": False}, {"path": ["name"], "old": "Zena", "new": "Xeenax", "patch": True}, {"path": ["opened_by"], "old": "someone", "new": user, "patch": False}, {"path": ["user_id"], "old": "person", "new": user, "patch": True}, ], }) def test_patch_closed_case(self): from casexml.apps.case.cleanup import close_case self.submit_form(make_test_form("form-1", case_id="case-1")) close_case("case-1", self.domain_name, "system", "test") self.do_migration(case_diff="none") clear_local_domain_sql_backend_override(self.domain_name) with self.augmented_couch_case("case-1") as case: case.name = "Zena" case.save() self.do_case_diffs() self.compare_diffs([ Diff('case-1', 'diff', ['name'], old='Zena', new='Xeenax'), ]) self.do_migration(forms="missing", case_diff="patch") self.assertEqual(self._get_case("case-1").closed, True) self.assert_patched_cases(["case-1"]) def test_patch_case_needing_sql_rebuild(self): with self.skip_case_and_ledger_updates("form-1"): self.submit_form(make_test_form("form-1", age=30)) self.submit_form(make_test_form("form-2")) with self.diff_without_rebuild(): self.do_migration() with patch.object(mod.CaseDiffTool, "diff_cases"): self.do_case_patch() self.compare_diffs([ Diff('test-case', 'set_mismatch', ['xform_ids', '[*]'], old='', new='form-1'), ]) case = self._get_case("test-case") case.case_json["age"] = "30" # diff -> reubild SQL case case.save() self.do_case_diffs("pending") self.compare_diffs([]) self.assert_patched_cases(["test-case"]) def test_cannot_patch_case_missing_in_couch(self): self.submit_form(make_test_form("form-1", case_id="case-1")) self.do_migration(case_diff="none") CommCareCase.get_db().delete_doc("case-1") self.do_migration(forms="missing", case_diff="patch", diffs=[ Diff('case-1', 'missing', ['*'], old=MISSING, new='present'), ]) self.assert_patched_cases() def test_convert_error_form_for_case_missing_in_couch(self): def find_forms(case_id): return ["form-1"] self.submit_form(make_test_form("form-1", case_id="case-1")) self.do_migration(case_diff="none") CommCareCase.get_db().delete_doc("case-1") clear_local_domain_sql_backend_override(self.domain_name) form = self._get_form("form-1") form.problem = "something went wrong" form.save() self.do_case_diffs("pending") self.compare_diffs([ Diff('case-1', 'missing', ['*'], old=MISSING, new='present'), ]) with patch.object(casediff, "find_form_ids_updating_case", find_forms): self.do_migration(forms="missing", diffs=[]) def test_patch_case_closed_in_couch_not_sql(self): self.submit_form(make_test_form("form-1", case_id="case-1")) self.do_migration(case_diff="none") with self.augmented_couch_case("case-1") as case: case.closed = True case.closed_by = "system" case.closed_on = datetime(2010, 9, 8, 7, 6, 5) case.user_id = "system" case.save() self.do_case_diffs() self.compare_diffs([ Diff('case-1', 'diff', ['closed'], old=True, new=False), Diff('case-1', 'diff', ['user_id'], old='system', new='3fae4ea4af440efaa53441b5'), Diff('case-1', 'type', ['closed_by'], old='system', new=None), Diff('case-1', 'type', ['closed_on'], old='2010-09-08T07:06:05.000000Z', new=None), ]) self.do_case_patch() self.compare_diffs() self.assert_patched_cases(["case-1"]) def test_patch_case_index(self): self.submit_form(make_test_form("form-1", case_id="case-1")) self.do_migration(case_diff="none") index = { "doc_type": "CommCareCaseIndex", "identifier": "parent", "referenced_type": "household", "referenced_id": "a53346d5", "relationship": "child", } with self.augmented_couch_case("case-1") as case: case.indices = [CommCareCaseIndex.wrap(index)] case.save() self.do_case_diffs() self.compare_diffs([ Diff('case-1', 'missing', ['indices', '[*]'], old=index, new=MISSING), ]) self.do_case_patch() self.compare_diffs() self.assert_patched_cases(["case-1"]) def test_patch_missing_case_index(self): self.submit_form(make_test_form("form-1", case_id="case-1")) self.do_migration(case_diff="none") CommCareCaseIndexSQL( domain=self.domain_name, case_id="case-1", identifier="parent", referenced_id="a53346d5", referenced_type="household", relationship_id=CommCareCaseIndexSQL.CHILD, ).save() with self.diff_without_rebuild(): self.do_case_diffs() index = { "case_id": "case-1", "identifier": "parent", "referenced_id": "a53346d5", "referenced_type": "household", "relationship": "child", } self.compare_diffs([ Diff('case-1', 'missing', ['indices', '[*]'], old=MISSING, new=index), ]) with self.diff_without_rebuild(): self.do_case_patch() self.compare_diffs() self.assert_patched_cases(["case-1"]) def test_patch_missing_case_with_index(self): self.submit_form(make_test_form("form-1", case_id="case-1")) case = CaseAccessorCouch.get_case("case-1") case.indices = [CommCareCaseIndex.wrap({ "doc_type": "CommCareCaseIndex", "identifier": "parent", "referenced_type": "household", "referenced_id": "a53346d5", "relationship": "child", })] case.save() FormAccessors(self.domain_name).soft_delete_forms( ['form-1'], datetime.utcnow(), 'test-deletion') self.do_migration(diffs=IGNORE) self.compare_diffs(changes=[ Diff('case-1', 'missing', ['*'], old='*', new=MISSING, reason="deleted forms"), ]) self.do_case_patch() self.compare_diffs() self.assert_patched_cases(["case-1"]) def test_patch_cases_with_diffs(self): self.do_migration_with_diffs_and_changes() self.do_case_patch(cases="with-diffs") self.assert_patched_cases(["diff-case"]) self.compare_diffs(changes=[ Diff('change-case', 'missing', ['*'], old='*', new=MISSING, reason="deleted forms"), ]) def test_patch_cases_with_changes(self): self.do_migration_with_diffs_and_changes() self.do_case_patch(cases="with-changes") self.assert_patched_cases(["change-case"]) self.compare_diffs([ Diff('diff-case', 'diff', ['age'], old='30', new='27'), Diff('diff-case', 'set_mismatch', ['xform_ids', '[*]'], old='one', new=''), ]) def do_migration_with_diffs_and_changes(self): self.submit_form(make_test_form("zero", case_id="diff-case", age=27)) one = self.submit_form(make_test_form("one", case_id="diff-case", age=30)) one.initial_processing_complete = False one.save() two = self.submit_form(make_test_form("two", case_id="change-case", age=27)) FormAccessors(self.domain_name).soft_delete_forms( [two.form_id], datetime.utcnow(), 'test-deletion') self.do_migration(diffs=IGNORE) self.compare_diffs(diffs=[ Diff('diff-case', 'diff', ['age'], old='30', new='27'), Diff('diff-case', 'set_mismatch', ['xform_ids', '[*]'], old='one', new=''), ], changes=[ Diff('change-case', 'missing', ['*'], old='*', new=MISSING, reason="deleted forms"), ]) def create_form_with_duplicate_stock_transaction(self): from corehq.apps.commtrack.helpers import make_product from corehq.apps.commtrack.processing import process_stock thing1 = make_product(self.domain_name, 'thing-1', 'thing-1') self.submit_form(LEDGER_FORM.replace("thing-1", thing1._id)) stock_result = process_stock([self._get_form("ledger-form")]) stock_result.populate_models() for model in stock_result.models_to_save: model.save() return thing1._id def do_migration(self, *args, **kw): if kw.get("case_diff") != "patch": kw.setdefault("diffs", IGNORE) return super().do_migration(*args, **kw) def do_case_diffs(self, cases=None, stop=False): self.migration_success = True # clear migration failure on diff cases migrator = mod.get_migrator(self.domain_name, self.state_dir) return mod.do_case_diffs(migrator, cases, stop=stop, batch_size=100) def do_case_patch(self, cases=None, stop=False): self.migration_success = True # clear migration failure on diff cases migrator = mod.get_migrator(self.domain_name, self.state_dir) return mod.do_case_patch(migrator, cases, stop=stop, batch_size=100) @contextmanager def augmented_couch_case(self, case_id): case = CaseAccessorCouch.get_case(case_id) with self.diff_without_rebuild(): yield case def assert_patched_cases(self, case_ids=None): statedb = open_state_db(self.domain_name, self.state_dir) self.assertEqual(list(statedb.iter_patched_case_ids()), case_ids or []) self.assertFalse(list(statedb.iter_undiffed_case_ids())) THING_FORM = """ <?xml version="1.0" ?> <data name="Thing" uiVersion="1" version="11" xmlns="http://openrosa.org/formdesigner/thing-form" xmlns:jrm="http://dev.commcarehq.org/jr/xforms" > <thing>1</thing> <n0:case case_id="test-case" date_modified="2014-08-04T18:25:56.656Z" user_id="a362027f228d" xmlns:n0="http://commcarehq.org/case/transaction/v2" > <n0:create> <n0:case_name>Thing</n0:case_name> <n0:owner_id>a362027f228d</n0:owner_id> <n0:case_type>testing</n0:case_type> </n0:create> <n0:update> <n0:thing>1</n0:thing> </n0:update> </n0:case> <n1:meta xmlns:n1="http://openrosa.org/jr/xforms"> <n1:deviceID>cloudcare</n1:deviceID> <n1:timeStart>2014-07-13T11:20:11.381Z</n1:timeStart> <n1:timeEnd>2014-08-04T18:25:56.656Z</n1:timeEnd> <n1:username>thing</n1:username> <n1:userID>a362027f228d</n1:userID> <n1:instanceID>thing-form</n1:instanceID> <n2:appVersion xmlns:n2="http://commcarehq.org/xforms">2.0</n2:appVersion> </n1:meta> </data> """.strip() UPDATE_FORM = """ <?xml version="1.0" ?> <data name="Update" uiVersion="1" version="11" xmlns="http://openrosa.org/formdesigner/update-form" xmlns:jrm="http://dev.commcarehq.org/jr/xforms" > <age>27</age> <n0:case case_id="test-case" date_modified="2015-08-04T18:25:56.656Z" user_id="3fae4ea4af440efaa53441b5" xmlns:n0="http://commcarehq.org/case/transaction/v2" > <n0:update> <n0:age>27</n0:age> </n0:update> </n0:case> <n1:meta xmlns:n1="http://openrosa.org/jr/xforms"> <n1:deviceID>cloudcare</n1:deviceID> <n1:timeStart>2015-07-13T11:20:11.381Z</n1:timeStart> <n1:timeEnd>2015-08-04T18:25:56.656Z</n1:timeEnd> <n1:username>jeremy</n1:username> <n1:userID>3fae4ea4af440efaa53441b5</n1:userID> <n1:instanceID>update-form</n1:instanceID> <n2:appVersion xmlns:n2="http://commcarehq.org/xforms">2.0</n2:appVersion> </n1:meta> </data> """.strip() LEDGER_FORM = """ <?xml version="1.0" ?> <data name="Ledger" uiVersion="1" version="11" xmlns="http://openrosa.org/formdesigner/ledger-form" xmlns:jrm="http://dev.commcarehq.org/jr/xforms" > <thing>1</thing> <n2:transfer date="2014-08-04" dest="test-case" section-id="things" type="write_things_to_ledger" xmlns:n2="http://commcarehq.org/ledger/v1" > <n2:entry id="thing-1" quantity="1"/> </n2:transfer> <n0:case case_id="test-case" date_modified="2014-08-04T18:25:56.656Z" user_id="a362027f228d" xmlns:n0="http://commcarehq.org/case/transaction/v2" > <n0:create> <n0:case_name>Ledger</n0:case_name> <n0:owner_id>a362027f228d</n0:owner_id> <n0:case_type>testing</n0:case_type> </n0:create> <n0:update> <n0:thing>1</n0:thing> </n0:update> </n0:case> <n1:meta xmlns:n1="http://openrosa.org/jr/xforms"> <n1:deviceID>cloudcare</n1:deviceID> <n1:timeStart>2014-07-13T11:20:11.381Z</n1:timeStart> <n1:timeEnd>2014-08-04T18:25:56.656Z</n1:timeEnd> <n1:username>thing</n1:username> <n1:userID>a362027f228d</n1:userID> <n1:instanceID>ledger-form</n1:instanceID> <n2:appVersion xmlns:n2="http://commcarehq.org/xforms">2.0</n2:appVersion> </n1:meta> </data> """.strip()
the-stack_0_4528
import http.server class MyHandler(http.server.SimpleHTTPRequestHandler): def do_GET(self): if self.path == "good": self.send_response(200) self.send_header("Content-type", "text/plain") self.end_headers() self.wfile.write(b"A good request") return self.send_response(400) self.send_header("Content-type", "text/plain") self.end_headers() self.wfile.write(b"A bad request") http.server.HTTPServer(('', 8000), MyHandler).serve_forever()
the-stack_0_4531
import argparse import logging from dvc.command.base import CmdBase, append_doc_link from dvc.exceptions import DvcException logger = logging.getLogger(__name__) class CmdRun(CmdBase): def run(self): if not any( [ self.args.deps, self.args.outs, self.args.outs_no_cache, self.args.metrics, self.args.metrics_no_cache, self.args.plots, self.args.plots_no_cache, self.args.outs_persist, self.args.outs_persist_no_cache, self.args.params, self.args.command, ] ): # pragma: no cover logger.error( "too few arguments. Specify at least one: `-d`, `-o`, `-O`, " "`-m`, `-M`, `-p`, `--plots`, `--plots-no-cache`, " "`--outs-persist`, `--outs-persist-no-cache`, `command`." ) return 1 try: self.repo.run( cmd=self._parsed_cmd(), outs=self.args.outs, outs_no_cache=self.args.outs_no_cache, metrics=self.args.metrics, metrics_no_cache=self.args.metrics_no_cache, plots=self.args.plots, plots_no_cache=self.args.plots_no_cache, deps=self.args.deps, params=self.args.params, fname=self.args.file, wdir=self.args.wdir, no_exec=self.args.no_exec, force=self.args.force, run_cache=not self.args.no_run_cache, no_commit=self.args.no_commit, outs_persist=self.args.outs_persist, outs_persist_no_cache=self.args.outs_persist_no_cache, always_changed=self.args.always_changed, name=self.args.name, single_stage=self.args.single_stage, external=self.args.external, ) except DvcException: logger.exception("") return 1 return 0 def _parsed_cmd(self): """ We need to take into account two cases: - ['python code.py foo bar']: Used mainly with dvc as a library - ['echo', 'foo bar']: List of arguments received from the CLI The second case would need quoting, as it was passed through: dvc run echo "foo bar" """ if len(self.args.command) < 2: return " ".join(self.args.command) return " ".join(self._quote_argument(arg) for arg in self.args.command) def _quote_argument(self, argument): if " " not in argument or '"' in argument: return argument return f'"{argument}"' def add_parser(subparsers, parent_parser): RUN_HELP = "Generate a stage file from a command and execute the command." run_parser = subparsers.add_parser( "run", parents=[parent_parser], description=append_doc_link(RUN_HELP, "run"), help=RUN_HELP, formatter_class=argparse.RawDescriptionHelpFormatter, ) run_parser.add_argument( "-d", "--deps", action="append", default=[], help="Declare dependencies for reproducible cmd.", metavar="<path>", ) run_parser.add_argument( "-n", "--name", help="Stage name.", ) run_parser.add_argument( "-o", "--outs", action="append", default=[], help="Declare output file or directory.", metavar="<filename>", ) run_parser.add_argument( "-O", "--outs-no-cache", action="append", default=[], help="Declare output file or directory " "(do not put into DVC cache).", metavar="<filename>", ) run_parser.add_argument( "-p", "--params", action="append", default=[], help="Declare parameter to use as additional dependency.", metavar="[<filename>:]<params_list>", ) run_parser.add_argument( "-m", "--metrics", action="append", default=[], help="Declare output metric file.", metavar="<path>", ) run_parser.add_argument( "-M", "--metrics-no-cache", action="append", default=[], help="Declare output metric file (do not put into DVC cache).", metavar="<path>", ) run_parser.add_argument( "--plots", action="append", default=[], help="Declare output plot file.", metavar="<path>", ) run_parser.add_argument( "--plots-no-cache", action="append", default=[], help="Declare output plot file (do not put into DVC cache).", metavar="<path>", ) run_parser.add_argument( "--file", help="Specify name of the DVC-file this command will generate.", metavar="<filename>", ) run_parser.add_argument( "-w", "--wdir", help="Directory within your repo to run your command in.", metavar="<path>", ) run_parser.add_argument( "--no-exec", action="store_true", default=False, help="Only create stage file without actually running it.", ) run_parser.add_argument( "-f", "--force", action="store_true", default=False, help="Overwrite existing stage", ) run_parser.add_argument( "--no-run-cache", action="store_true", default=False, help=( "Execute the command even if this stage has already been run " "with the same command/dependencies/outputs/etc before." ), ) run_parser.add_argument( "--no-commit", action="store_true", default=False, help="Don't put files/directories into cache.", ) run_parser.add_argument( "--outs-persist", action="append", default=[], help="Declare output file or directory that will not be " "removed upon repro.", metavar="<filename>", ) run_parser.add_argument( "--outs-persist-no-cache", action="append", default=[], help="Declare output file or directory that will not be " "removed upon repro (do not put into DVC cache).", metavar="<filename>", ) run_parser.add_argument( "--always-changed", action="store_true", default=False, help="Always consider this DVC-file as changed.", ) run_parser.add_argument( "--single-stage", action="store_true", default=False, help=argparse.SUPPRESS, ) run_parser.add_argument( "--external", action="store_true", default=False, help="Allow outputs that are outside of the DVC repository.", ) run_parser.add_argument( "command", nargs=argparse.REMAINDER, help="Command to execute." ) run_parser.set_defaults(func=CmdRun)
the-stack_0_4532
from functools import lru_cache as memoized import os from os import path import sys import yaml import geopandas as gpd from mapshader.colors import colors from mapshader.io import load_raster from mapshader.io import load_vector from mapshader.transforms import get_transform_by_name import spatialpandas class MapSource(object): def __init__(self, name=None, description=None, filepath=None, legend=None, config_path=None, data=None, geometry_type=None, key=None, text=None, fields=None, span=None, route=None, geometry_field='geometry', xfield='geometry', yfield='geometry', zfield=None, agg_func=None, raster_interpolate='linear', shade_how='linear', cmap=colors['viridis'], color_key=None, dynspread=None, extras=None, raster_padding=0, service_types=None, full_extent=None, default_extent=None, default_height=256, default_width=256, overviews=None, transforms=None, attrs=None, preload=False): if fields is None and isinstance(data, (gpd.GeoDataFrame)): fields = [geometry_field] if zfield: fields.append(zfield) if extras is None: extras = [] if transforms is None: transforms = [] if overviews is None: overviews = {} if service_types is None: service_types = ('tile', 'image', 'wms', 'geojson') if span == 'min/max' and zfield is None and geometry_type != 'raster': raise ValueError('You must include a zfield for min/max scan calculation') if legend is not None and geometry_type == 'raster': if legend[0].get('value') is not None: cmap = {} for leg in legend: cor = leg['color'] val = leg['value'] if isinstance(val, (list, tuple)): val = tuple(val) cmap[val] = cor val = 20037508.3427892 if default_extent is None: default_extent = [-val, -val, val, val] self.name = name self.description = description self.filepath = filepath self.config_path = config_path self.geometry_type = geometry_type self.key = key self.text = text self.legend = legend self.fields = fields self.span = span self.route = route self.xfield = xfield self.raster_padding = 0 self.yfield = yfield self.zfield = zfield self.agg_func = agg_func self.overviews = overviews self.raster_agg_func = raster_interpolate self.shade_how = shade_how self.cmap = cmap self.color_key = color_key self.dynspread = dynspread self.extras = extras self.service_types = service_types self.transforms = transforms self.default_extent = default_extent self.default_width = default_width self.default_height = default_height self.preload = preload self.geometry_field = geometry_field self.is_loaded = False self.data = data # autoload if overviews are present contains_overviews = bool(len([t for t in transforms if 'overviews' in t['name']])) if self.preload or contains_overviews: self.load() @property def load_func(self): raise NotImplementedError() def get_full_extent(self): raise NotImplementedError() def load(self): if self.is_loaded: return self if self.data is None: if self.config_path: ogcwd = os.getcwd() config_dir = path.abspath(path.dirname(self.config_path)) os.chdir(config_dir) try: data_path = path.abspath(path.expanduser(self.filepath)) finally: os.chdir(ogcwd) elif self.filepath.startswith('zip'): print('Zipfile Path', file=sys.stdout) data_path = self.filepath elif not path.isabs(self.filepath): print('Not Absolute', file=sys.stdout) data_path = path.abspath(path.expanduser(self.filepath)) else: print('Using Given Filepath unmodified: config{self.config_file}', file=sys.stdout) data_path = self.filepath data = self.load_func(data_path) else: data = self.data if self.fields: data = data[self.fields] self.data = data self._finish_load() return self def _finish_load(self): if self.is_loaded: return self self._apply_transforms() self.is_loaded = True def _apply_transforms(self): print('# ----------------------', file=sys.stdout) print(f'# APPLYING TRANSFORMS {self.name}', file=sys.stdout) print('# ----------------------', file=sys.stdout) for trans in self.transforms: transform_name = trans['name'] print(f'\tApplying {transform_name}', file=sys.stdout) func = get_transform_by_name(transform_name) args = trans.get('args', {}) if 'overviews' in transform_name: self.overviews = func(self.data, **args) else: self.data = func(self.data, **args) # apply transforms to overviews if they exist for level, overview_data in self.overviews.items(): self.overviews[level] = func(overview_data, **args) return self @staticmethod def from_obj(obj: dict): transforms = obj.get('transforms') if transforms and isinstance(transforms, (list, tuple)): n = 'raster_to_categorical_points' has_to_vector = len([t for t in transforms if t['name'] == n]) else: has_to_vector = False if obj['geometry_type'] == 'raster' or has_to_vector: return RasterSource(**obj) else: return VectorSource(**obj) class RasterSource(MapSource): @property def load_func(self): return load_raster @property @memoized() def full_extent(self): return (self.data.coords['x'].min().compute().item(), self.data.coords['y'].min().compute().item(), self.data.coords['x'].max().compute().item(), self.data.coords['y'].max().compute().item()) class VectorSource(MapSource): @property def load_func(self): return load_vector @property @memoized() def full_extent(self): if isinstance(self.data, spatialpandas.GeoDataFrame): return self.data.to_geopandas()[self.geometry_field].total_bounds else: return self.data[self.geometry_field].total_bounds class MapService(): def __init__(self, source: MapSource, renderers=[]): self.source = source self.renderers = renderers @property def key(self): return f'{self.source.key}-{self.service_type}' @property def name(self): return f'{self.source.name} {self.service_type}' @property def legend_name(self): return f'{self.name}-legend' @property def default_extent(self): return self.source.default_extent @property def default_width(self): return self.source.default_width @property def default_height(self): return self.source.default_height @property def service_page_url(self): return f'/{self.key}' @property def legend_url(self): return f'/{self.key}/legend' @property def service_page_name(self): return f'/{self.key}-{self.service_type}' @property def service_url(self): raise NotImplementedError() @property def client_url(self): raise NotImplementedError() @property def default_url(self): raise NotImplementedError() @property def service_type(self): raise NotImplementedError() class TileService(MapService): @property def service_url(self): return f'/{self.key}' + '/tile/<z>/<x>/<y>' @property def client_url(self): return f'/{self.key}' + '/tile/{z}/{x}/{y}' @property def default_url(self): return f'/{self.key}' + '/tile/0/0/0' @property def service_type(self): return 'tile' class ImageService(MapService): @property def service_url(self): url = (f'/{self.key}' '/image' '/<xmin>/<ymin>/<xmax>/<ymax>' '/<width>/<height>') return url @property def client_url(self): return f'/{self.key}' + '/image/{XMIN}/{YMIN}/{XMAX}/{YMAX}/{width}/{height}' @property def default_url(self): xmin = self.default_extent[0] ymin = self.default_extent[1] xmax = self.default_extent[2] ymax = self.default_extent[3] width = self.default_width height = self.default_height return f'/{self.key}/image/{xmin}/{ymin}/{xmax}/{ymax}/{width}/{height}' @property def service_type(self): return 'image' class WMSService(MapService): @property def service_url(self): url = f'/{self.key}/wms' return url @property def client_url(self, width=256, height=256): url = f'/{self.key}' url += '?bbox={XMIN},{YMIN},{XMAX},{YMAX}' url += f'&width={width}&height={height}' return url @property def default_url(self): xmin = self.default_extent[0] ymin = self.default_extent[1] xmax = self.default_extent[2] ymax = self.default_extent[3] width = self.default_width height = self.default_height return f'/{self.key}?bbox={xmin},{ymin},{xmax},{ymax}&width={width}&height={height}' @property def service_type(self): return 'wms' class GeoJSONService(MapService): @property def service_url(self): url = f'/{self.key}/geojson' return url @property def client_url(self): url = f'/{self.key}/geojson' return url @property def default_url(self): return f'/{self.key}/geojson' @property def service_type(self): return 'geojson' # ---------------------------------------------------------------------------- # DEFAULT MAP SOURCES # ---------------------------------------------------------------------------- def world_countries_source(): # construct transforms select_by_attrs_transform = dict(name='select_by_attributes', args=dict(field='name', value=['Antarctica', 'Fr. S. Antarctic Lands'], operator='NOT IN')) reproject_transform = dict(name='reproject_vector', args=dict(epsg=3857)) sp_transform = dict(name='to_spatialpandas', args=dict(geometry_field='geometry')) overviews_transform = dict(name='build_vector_overviews', args=dict(levels={'0': 10000, '1': 2500, '2': 1250, '3': 650, '4': 300, '5': 150, '6': 75, '7': 32, '8': 20, '9': 10, '10': 5}, geometry_field='geometry')) transforms = [select_by_attrs_transform, reproject_transform, overviews_transform, sp_transform] # construct value obj source_obj = dict() source_obj['name'] = 'World Countries' source_obj['key'] = 'world-countries' source_obj['text'] = 'World Countries' source_obj['description'] = 'World Country Polygons' source_obj['geometry_type'] = 'polygon' source_obj['agg_func'] = 'max' source_obj['shade_how'] = 'linear' source_obj['span'] = 'min/max' source_obj['raster_interpolate'] = 'linear' source_obj['xfield'] = 'x' source_obj['yfield'] = 'y' source_obj['zfield'] = 'pop_est' source_obj['filepath'] = gpd.datasets.get_path('naturalearth_lowres') source_obj['transforms'] = transforms source_obj['service_types'] = ['tile', 'wms', 'image', 'geojson'] return source_obj def world_boundaries_source(): # construct transforms select_by_attrs_transform = dict(name='select_by_attributes', args=dict(field='name', value=['Antarctica', 'Fr. S. Antarctic Lands'], operator='NOT IN')) reproject_transform = dict(name='reproject_vector', args=dict(epsg=3857)) polygon_to_line_transform = dict(name='polygon_to_line', args=dict(geometry_field='geometry')) sp_transform = dict(name='to_spatialpandas', args=dict(geometry_field='geometry')) transforms = [select_by_attrs_transform, polygon_to_line_transform, reproject_transform, sp_transform] # construct value obj source_obj = dict() source_obj['name'] = 'World Boundaries' source_obj['key'] = 'world-boundaries' source_obj['text'] = 'World Boundaries' source_obj['description'] = 'World Country Boundaries' source_obj['geometry_type'] = 'line' source_obj['agg_func'] = 'max' source_obj['shade_how'] = 'linear' source_obj['cmap'] = ['aqua', 'aqua'] source_obj['raster_interpolate'] = 'linear' source_obj['xfield'] = 'x' source_obj['yfield'] = 'y' source_obj['filepath'] = gpd.datasets.get_path('naturalearth_lowres') source_obj['transforms'] = transforms source_obj['service_types'] = ['tile', 'wms', 'image', 'geojson'] return source_obj def world_cities_source(): # construct transforms reproject_transform = dict(name='reproject_vector', args=dict(epsg=3857)) add_xy_fields_transform = dict(name='add_xy_fields', args=dict(geometry_field='geometry')) sp_transform = dict(name='to_spatialpandas', args=dict(geometry_field='geometry')) transforms = [reproject_transform, add_xy_fields_transform, sp_transform] # construct value obj source_obj = dict() source_obj['name'] = 'World Cities' source_obj['key'] = 'world-cities' source_obj['text'] = 'World Cities' source_obj['description'] = 'World Cities Point Locations' source_obj['geometry_type'] = 'point' source_obj['agg_func'] = 'max' source_obj['cmap'] = ['aqua', 'aqua'] source_obj['shade_how'] = 'linear' source_obj['dynspread'] = 2 source_obj['raster_interpolate'] = 'linear' source_obj['xfield'] = 'X' source_obj['yfield'] = 'Y' source_obj['filepath'] = gpd.datasets.get_path('naturalearth_cities') source_obj['transforms'] = transforms source_obj['service_types'] = ['tile', 'wms', 'image', 'geojson'] return source_obj def nybb_source(): # construct transforms reproject_transform = dict(name='reproject_vector', args=dict(epsg=3857)) sp_transform = dict(name='to_spatialpandas', args=dict(geometry_field='geometry')) transforms = [reproject_transform, sp_transform] # construct value obj source_obj = dict() source_obj['name'] = 'NYC Admin' source_obj['key'] = 'nyc-boroughs' source_obj['text'] = 'NYC Boroughs' source_obj['description'] = 'New York City Boroughs' source_obj['geometry_type'] = 'polygon' source_obj['agg_func'] = 'max' source_obj['shade_how'] = 'linear' source_obj['span'] = 'min/max' source_obj['dynspread'] = None source_obj['raster_interpolate'] = 'linear' source_obj['xfield'] = 'geometry' source_obj['yfield'] = 'geometry' source_obj['zfield'] = 'BoroCode' source_obj['filepath'] = gpd.datasets.get_path('nybb') source_obj['transforms'] = transforms source_obj['service_types'] = ['tile', 'wms', 'image', 'geojson'] return source_obj def elevation_source(): # find data path HERE = path.abspath(path.dirname(__file__)) FIXTURES_DIR = path.join(HERE, 'tests', 'fixtures') elevation_path = path.join(FIXTURES_DIR, 'elevation.tif') # construct transforms squeeze_transform = dict(name='squeeze', args=dict(dim='band')) cast_transform = dict(name='cast', args=dict(dtype='float64')) orient_transform = dict(name='orient_array') flip_transform = dict(name='flip_coords', args=dict(dim='y')) reproject_transform = dict(name='reproject_raster', args=dict(epsg=3857)) transforms = [squeeze_transform, cast_transform, orient_transform, flip_transform, reproject_transform] # construct value obj source_obj = dict() source_obj['name'] = 'Elevation' source_obj['key'] = 'elevation' source_obj['text'] = 'Elevation' source_obj['description'] = 'Global Elevation Dataset' source_obj['geometry_type'] = 'raster' source_obj['shade_how'] = 'linear' source_obj['cmap'] = ['white', 'black'] source_obj['span'] = (58, 248) source_obj['raster_padding'] = 0 source_obj['raster_interpolate'] = 'linear' source_obj['xfield'] = 'geometry' source_obj['yfield'] = 'geometry' source_obj['filepath'] = elevation_path source_obj['transforms'] = transforms source_obj['service_types'] = ['tile', 'wms', 'image', 'geojson'] return source_obj def elevation_source_netcdf(): # find data path HERE = path.abspath(path.dirname(__file__)) FIXTURES_DIR = path.join(HERE, 'tests', 'fixtures') elevation_path = path.join(FIXTURES_DIR, 'elevation.nc') # construct transforms transforms = [] # construct value obj source_obj = dict() source_obj['name'] = 'Elevation NetCDF' source_obj['key'] = 'elevation-netcdf' source_obj['text'] = 'Elevation NetCDF' source_obj['description'] = 'Global Elevation Dataset (NetCDF)' source_obj['geometry_type'] = 'raster' source_obj['shade_how'] = 'linear' source_obj['cmap'] = ['white', 'black'] source_obj['span'] = (58, 248) source_obj['raster_padding'] = 0 source_obj['raster_interpolate'] = 'linear' source_obj['xfield'] = 'geometry' source_obj['yfield'] = 'geometry' source_obj['filepath'] = elevation_path source_obj['transforms'] = transforms source_obj['service_types'] = ['tile', 'wms', 'image', 'geojson'] return source_obj def parse_sources(source_objs, config_path=None, contains=None): service_classes = { 'tile': TileService, 'wms': WMSService, 'image': ImageService, 'geojson': GeoJSONService, } for source in source_objs: for service_type in source['service_types']: source['config_path'] = config_path if contains and contains not in source.get('key'): continue # create sources source_obj = MapSource.from_obj(source) # create services ServiceKlass = service_classes[service_type] # TODO: add renderers here... yield ServiceKlass(source=source_obj) def get_services(config_path=None, include_default=True, contains=None, sources=None): source_objs = None if sources is not None: source_objs = sources elif config_path is None: print('No Config Found...using default services...', file=sys.stdout) source_objs = [world_countries_source(), world_boundaries_source(), world_cities_source(), nybb_source(), elevation_source(), elevation_source_netcdf()] else: with open(config_path, 'r') as f: content = f.read() config_obj = yaml.load(content) source_objs = config_obj['sources'] if include_default: source_objs += [world_countries_source(), world_boundaries_source(), world_cities_source(), nybb_source(), elevation_source()] for service in parse_sources(source_objs, config_path=config_path, contains=contains): yield service
the-stack_0_4535
# Copyright 2002 by Andrew Dalke. All rights reserved. # Revisions 2007-2016 copyright by Peter Cock. All rights reserved. # Revisions 2008-2009 copyright by Cymon J. Cox. All rights reserved. # # This file is part of the Biopython distribution and governed by your # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". # Please see the LICENSE file that should have been included as part of this # package. # # Note that BioSQL (including the database schema and scripts) is # available and licensed separately. Please consult www.biosql.org """Implementations of Biopython-like Seq objects on top of BioSQL. This allows retrival of items stored in a BioSQL database using a biopython-like SeqRecord and Seq interface. Note: Currently we do not support recording per-letter-annotations (like quality scores) in BioSQL. """ from Bio.Seq import Seq, UnknownSeq from Bio.SeqRecord import SeqRecord, _RestrictedDict from Bio import SeqFeature class DBSeq(Seq): """BioSQL equivalent of the Biopython Seq object.""" def __init__(self, primary_id, adaptor, alphabet=None, start=0, length=0): """Create a new DBSeq object referring to a BioSQL entry. You wouldn't normally create a DBSeq object yourself, this is done for you when retrieving a DBSeqRecord object from the database. """ if alphabet is not None: raise ValueError("The alphabet argument is no longer supported") self.primary_id = primary_id self.adaptor = adaptor self._length = length self.start = start def __len__(self): """Return the length of the sequence.""" return self._length def __getitem__(self, index): # Seq API requirement """Return a subsequence or single letter.""" if isinstance(index, int): # Return a single letter as a string i = index if i < 0: if -i > self._length: raise IndexError(i) i = i + self._length elif i >= self._length: raise IndexError(i) return self.adaptor.get_subseq_as_string( self.primary_id, self.start + i, self.start + i + 1 ) if not isinstance(index, slice): raise TypeError("Unexpected index type") # Return the (sub)sequence as another DBSeq or Seq object # (see the Seq obect's __getitem__ method) if index.start is None: i = 0 else: i = index.start if i < 0: # Map to equavilent positive index if -i > self._length: raise IndexError(i) i = i + self._length elif i >= self._length: # Trivial case, should return empty string! i = self._length if index.stop is None: j = self._length else: j = index.stop if j < 0: # Map to equavilent positive index if -j > self._length: raise IndexError(j) j = j + self._length elif j >= self._length: j = self._length if i >= j: # Trivial case, empty string. return Seq("") elif index.step is None or index.step == 1: # Easy case - can return a DBSeq with the start and end adjusted return self.__class__( self.primary_id, self.adaptor, None, self.start + i, j - i ) else: # Tricky. Will have to create a Seq object because of the stride full = self.adaptor.get_subseq_as_string( self.primary_id, self.start + i, self.start + j ) return Seq(full[:: index.step]) def tostring(self): """Return the full sequence as a python string (DEPRECATED). You are now encouraged to use str(my_seq) instead of my_seq.tostring(). """ import warnings warnings.warn( "This method is obsolete; please use str(my_seq) " "instead of my_seq.tostring().", PendingDeprecationWarning, ) return self.adaptor.get_subseq_as_string( self.primary_id, self.start, self.start + self._length ) def __str__(self): """Return the full sequence as a python string.""" return self.adaptor.get_subseq_as_string( self.primary_id, self.start, self.start + self._length ) data = property(tostring, doc="Sequence as string (DEPRECATED)") def toseq(self): """Return the full sequence as a Seq object.""" # Note - the method name copies that of the MutableSeq object return Seq(str(self)) def __add__(self, other): """Add another sequence or string to this sequence. The sequence is first converted to a Seq object before the addition. The returned object is a Seq object, not a DBSeq object. """ return self.toseq() + other def __radd__(self, other): """Add another sequence or string to the left. The sequence is first converted to a Seq object before the addition. The returned object is a Seq object, not a DBSeq object. """ return other + self.toseq() def __mul__(self, other): """Multiply sequence by an integer. The sequence is first converted to a Seq object before multiplication. The returned object is a Seq object, not a DBSeq object. """ return self.toseq() * other def __rmul__(self, other): """Multiply integer by a sequence. The sequence is first converted to a Seq object before multiplication. The returned object is a Seq object, not a DBSeq object. """ return other * self.toseq() def __imul__(self, other): """Multiply sequence by integer in-place. The sequence is first converted to a Seq object before multiplication. The returned object is a Seq object, not a DBSeq object. """ return self.toseq() * other def _retrieve_seq_len(adaptor, primary_id): # The database schema ensures there will be only one matching row seqs = adaptor.execute_and_fetchall( "SELECT length FROM biosequence WHERE bioentry_id = %s", (primary_id,) ) if not seqs: return None assert len(seqs) == 1 (given_length,) = seqs[0] return int(given_length) def _retrieve_seq(adaptor, primary_id): # The database schema ensures there will be only one matching # row in the table. # If an UnknownSeq was recorded, seq will be NULL, # but length will be populated. This means length(seq) # will return None. seqs = adaptor.execute_and_fetchall( "SELECT alphabet, length, length(seq) FROM biosequence WHERE bioentry_id = %s", (primary_id,), ) if not seqs: return assert len(seqs) == 1 moltype, given_length, length = seqs[0] try: length = int(length) given_length = int(length) assert length == given_length have_seq = True except TypeError: assert length is None seqs = adaptor.execute_and_fetchall( "SELECT alphabet, length, seq FROM biosequence WHERE bioentry_id = %s", (primary_id,), ) assert len(seqs) == 1 moltype, given_length, seq = seqs[0] assert seq is None or seq == "" length = int(given_length) have_seq = False del seq del given_length if have_seq: return DBSeq(primary_id, adaptor, alphabet=None, start=0, length=int(length)) else: if moltype in ("dna", "rna"): character = "N" elif moltype == "protein": character = "X" else: character = "?" return UnknownSeq(length, character=character) def _retrieve_dbxrefs(adaptor, primary_id): """Retrieve the database cross references for the sequence (PRIVATE).""" _dbxrefs = [] dbxrefs = adaptor.execute_and_fetchall( "SELECT dbname, accession, version" " FROM bioentry_dbxref join dbxref using (dbxref_id)" " WHERE bioentry_id = %s" ' ORDER BY "rank"', (primary_id,), ) for dbname, accession, version in dbxrefs: if version and version != "0": v = "%s.%s" % (accession, version) else: v = accession _dbxrefs.append("%s:%s" % (dbname, v)) return _dbxrefs def _retrieve_features(adaptor, primary_id): sql = ( 'SELECT seqfeature_id, type.name, "rank"' " FROM seqfeature join term type on (type_term_id = type.term_id)" " WHERE bioentry_id = %s" ' ORDER BY "rank"' ) results = adaptor.execute_and_fetchall(sql, (primary_id,)) seq_feature_list = [] for seqfeature_id, seqfeature_type, seqfeature_rank in results: # Get qualifiers [except for db_xref which is stored separately] qvs = adaptor.execute_and_fetchall( "SELECT name, value" " FROM seqfeature_qualifier_value join term using (term_id)" " WHERE seqfeature_id = %s" ' ORDER BY "rank"', (seqfeature_id,), ) qualifiers = {} for qv_name, qv_value in qvs: qualifiers.setdefault(qv_name, []).append(qv_value) # Get db_xrefs [special case of qualifiers] qvs = adaptor.execute_and_fetchall( "SELECT dbxref.dbname, dbxref.accession" " FROM dbxref join seqfeature_dbxref using (dbxref_id)" " WHERE seqfeature_dbxref.seqfeature_id = %s" ' ORDER BY "rank"', (seqfeature_id,), ) for qv_name, qv_value in qvs: value = "%s:%s" % (qv_name, qv_value) qualifiers.setdefault("db_xref", []).append(value) # Get locations results = adaptor.execute_and_fetchall( "SELECT location_id, start_pos, end_pos, strand" " FROM location" " WHERE seqfeature_id = %s" ' ORDER BY "rank"', (seqfeature_id,), ) locations = [] # convert to Python standard form # Convert strand = 0 to strand = None # re: comment in Loader.py: # Biopython uses None when we don't know strand information but # BioSQL requires something (non null) and sets this as zero # So we'll use the strand or 0 if Biopython spits out None for location_id, start, end, strand in results: if start: start -= 1 if strand == 0: strand = None if strand not in (+1, -1, None): raise ValueError( "Invalid strand %s found in database for " "seqfeature_id %s" % (strand, seqfeature_id) ) if start is not None and end is not None and end < start: import warnings from Bio import BiopythonWarning warnings.warn( "Inverted location start/end (%i and %i) for " "seqfeature_id %s" % (start, end, seqfeature_id), BiopythonWarning, ) # For SwissProt unknown positions (?) if start is None: start = SeqFeature.UnknownPosition() if end is None: end = SeqFeature.UnknownPosition() locations.append((location_id, start, end, strand)) # Get possible remote reference information remote_results = adaptor.execute_and_fetchall( "SELECT location_id, dbname, accession, version" " FROM location join dbxref using (dbxref_id)" " WHERE seqfeature_id = %s", (seqfeature_id,), ) lookup = {} for location_id, dbname, accession, version in remote_results: if version and version != "0": v = "%s.%s" % (accession, version) else: v = accession # subfeature remote location db_ref are stored as a empty string # when not present if dbname == "": dbname = None lookup[location_id] = (dbname, v) feature = SeqFeature.SeqFeature(type=seqfeature_type) # Store the key as a private property feature._seqfeature_id = seqfeature_id feature.qualifiers = qualifiers if len(locations) == 0: pass elif len(locations) == 1: location_id, start, end, strand = locations[0] # See Bug 2677, we currently don't record the location_operator # For consistency with older versions Biopython, default to "". feature.location_operator = _retrieve_location_qualifier_value( adaptor, location_id ) dbname, version = lookup.get(location_id, (None, None)) feature.location = SeqFeature.FeatureLocation(start, end) feature.strand = strand feature.ref_db = dbname feature.ref = version else: locs = [] for location in locations: location_id, start, end, strand = location dbname, version = lookup.get(location_id, (None, None)) locs.append( SeqFeature.FeatureLocation( start, end, strand=strand, ref=version, ref_db=dbname ) ) # Locations are typically in biological in order (see negative # strands below), but because of remote locations for # sub-features they are not necessarily in numerical order: strands = {l.strand for l in locs} if len(strands) == 1 and -1 in strands: # Evil hack time for backwards compatibility # TODO - Check if BioPerl and (old) Biopython did the same, # we may have an existing incompatibility lurking here... locs = locs[::-1] feature.location = SeqFeature.CompoundLocation(locs, "join") # TODO - See Bug 2677 - we don't yet record location operator, # so for consistency with older versions of Biopython default # to assuming its a join. seq_feature_list.append(feature) return seq_feature_list def _retrieve_location_qualifier_value(adaptor, location_id): value = adaptor.execute_and_fetch_col0( "SELECT value FROM location_qualifier_value WHERE location_id = %s", (location_id,), ) try: return value[0] except IndexError: return "" def _retrieve_annotations(adaptor, primary_id, taxon_id): annotations = {} annotations.update(_retrieve_alphabet(adaptor, primary_id)) annotations.update(_retrieve_qualifier_value(adaptor, primary_id)) annotations.update(_retrieve_reference(adaptor, primary_id)) annotations.update(_retrieve_taxon(adaptor, primary_id, taxon_id)) annotations.update(_retrieve_comment(adaptor, primary_id)) # Convert values into strings in cases of unicode from the database. # BioSQL could eventually be expanded to be unicode aware. str_anns = {} for key, val in annotations.items(): if isinstance(val, list): val = [_make_unicode_into_string(x) for x in val] elif isinstance(val, str): val = str(val) str_anns[key] = val return str_anns def _make_unicode_into_string(text): if isinstance(text, str): return str(text) else: return text def _retrieve_alphabet(adaptor, primary_id): results = adaptor.execute_and_fetchall( "SELECT alphabet FROM biosequence WHERE bioentry_id = %s", (primary_id,), ) assert len(results) == 1 alphabets = results[0] assert len(alphabets) == 1 alphabet = alphabets[0] if alphabet == "dna": molecule_type = "DNA" elif alphabet == "rna": molecule_type = "RNA" elif alphabet == "protein": molecule_type = "protein" else: molecule_type = None if molecule_type is not None: return {"molecule_type": molecule_type} else: return {} def _retrieve_qualifier_value(adaptor, primary_id): qvs = adaptor.execute_and_fetchall( "SELECT name, value" " FROM bioentry_qualifier_value JOIN term USING (term_id)" " WHERE bioentry_id = %s" ' ORDER BY "rank"', (primary_id,), ) qualifiers = {} for name, value in qvs: if name == "keyword": name = "keywords" # See handling of "date" in Loader.py elif name == "date_changed": name = "date" elif name == "secondary_accession": name = "accessions" qualifiers.setdefault(name, []).append(value) return qualifiers def _retrieve_reference(adaptor, primary_id): # XXX dbxref_qualifier_value refs = adaptor.execute_and_fetchall( "SELECT start_pos, end_pos, " " location, title, authors," " dbname, accession" " FROM bioentry_reference" " JOIN reference USING (reference_id)" " LEFT JOIN dbxref USING (dbxref_id)" " WHERE bioentry_id = %s" ' ORDER BY "rank"', (primary_id,), ) references = [] for start, end, location, title, authors, dbname, accession in refs: reference = SeqFeature.Reference() # If the start/end are missing, reference.location is an empty list if (start is not None) or (end is not None): if start is not None: start -= 1 # python counting reference.location = [SeqFeature.FeatureLocation(start, end)] # Don't replace the default "" with None. if authors: reference.authors = authors if title: reference.title = title reference.journal = location if dbname == "PUBMED": reference.pubmed_id = accession elif dbname == "MEDLINE": reference.medline_id = accession references.append(reference) if references: return {"references": references} else: return {} def _retrieve_taxon(adaptor, primary_id, taxon_id): a = {} common_names = adaptor.execute_and_fetch_col0( "SELECT name FROM taxon_name WHERE taxon_id = %s" " AND name_class = 'genbank common name'", (taxon_id,), ) if common_names: a["source"] = common_names[0] scientific_names = adaptor.execute_and_fetch_col0( "SELECT name FROM taxon_name WHERE taxon_id = %s" " AND name_class = 'scientific name'", (taxon_id,), ) if scientific_names: a["organism"] = scientific_names[0] ncbi_taxids = adaptor.execute_and_fetch_col0( "SELECT ncbi_taxon_id FROM taxon WHERE taxon_id = %s", (taxon_id,) ) if ncbi_taxids and ncbi_taxids[0] and ncbi_taxids[0] != "0": a["ncbi_taxid"] = ncbi_taxids[0] # Old code used the left/right values in the taxon table to get the # taxonomy lineage in one SQL command. This was actually very slow, # and would fail if the (optional) left/right values were missing. # # The following code is based on a contribution from Eric Gibert, and # relies on the taxon table's parent_taxon_id field only (ignoring the # optional left/right values). This means that it has to make a # separate SQL query for each entry in the lineage, but it does still # appear to be *much* faster. See Bug 2494. taxonomy = [] while taxon_id: name, rank, parent_taxon_id = adaptor.execute_one( "SELECT taxon_name.name, taxon.node_rank, taxon.parent_taxon_id" " FROM taxon, taxon_name" " WHERE taxon.taxon_id=taxon_name.taxon_id" " AND taxon_name.name_class='scientific name'" " AND taxon.taxon_id = %s", (taxon_id,), ) if taxon_id == parent_taxon_id: # If the taxon table has been populated by the BioSQL script # load_ncbi_taxonomy.pl this is how top parent nodes are stored. # Personally, I would have used a NULL parent_taxon_id here. break taxonomy.insert(0, name) taxon_id = parent_taxon_id if taxonomy: a["taxonomy"] = taxonomy return a def _retrieve_comment(adaptor, primary_id): qvs = adaptor.execute_and_fetchall( 'SELECT comment_text FROM comment WHERE bioentry_id=%s ORDER BY "rank"', (primary_id,), ) comments = [comm[0] for comm in qvs] # Don't want to add an empty list... if comments: return {"comment": comments} else: return {} class DBSeqRecord(SeqRecord): """BioSQL equivalent of the Biopython SeqRecord object.""" def __init__(self, adaptor, primary_id): """Create a DBSeqRecord object. Arguments: - adaptor - A BioSQL.BioSeqDatabase.Adaptor object - primary_id - An internal integer ID used by BioSQL You wouldn't normally create a DBSeqRecord object yourself, this is done for you when using a BioSeqDatabase object """ self._adaptor = adaptor self._primary_id = primary_id ( self._biodatabase_id, self._taxon_id, self.name, accession, version, self._identifier, self._division, self.description, ) = self._adaptor.execute_one( "SELECT biodatabase_id, taxon_id, name, accession, version," " identifier, division, description" " FROM bioentry" " WHERE bioentry_id = %s", (self._primary_id,), ) if version and version != "0": self.id = "%s.%s" % (accession, version) else: self.id = accession # We don't yet record any per-letter-annotations in the # BioSQL database, but we should set this property up # for completeness (and the __str__ method). # We do NOT want to load the sequence from the DB here! length = _retrieve_seq_len(adaptor, primary_id) self._per_letter_annotations = _RestrictedDict(length=length) def __get_seq(self): if not hasattr(self, "_seq"): self._seq = _retrieve_seq(self._adaptor, self._primary_id) return self._seq def __set_seq(self, seq): # TODO - Check consistent with self._per_letter_annotations self._seq = seq def __del_seq(self): del self._seq seq = property(__get_seq, __set_seq, __del_seq, "Seq object") def __get_dbxrefs(self): if not hasattr(self, "_dbxrefs"): self._dbxrefs = _retrieve_dbxrefs(self._adaptor, self._primary_id) return self._dbxrefs def __set_dbxrefs(self, dbxrefs): self._dbxrefs = dbxrefs def __del_dbxrefs(self): del self._dbxrefs dbxrefs = property( __get_dbxrefs, __set_dbxrefs, __del_dbxrefs, "Database cross references" ) def __get_features(self): if not hasattr(self, "_features"): self._features = _retrieve_features(self._adaptor, self._primary_id) return self._features def __set_features(self, features): self._features = features def __del_features(self): del self._features features = property(__get_features, __set_features, __del_features, "Features") def __get_annotations(self): if not hasattr(self, "_annotations"): self._annotations = _retrieve_annotations( self._adaptor, self._primary_id, self._taxon_id ) if self._identifier: self._annotations["gi"] = self._identifier if self._division: self._annotations["data_file_division"] = self._division return self._annotations def __set_annotations(self, annotations): self._annotations = annotations def __del_annotations(self): del self._annotations annotations = property( __get_annotations, __set_annotations, __del_annotations, "Annotations" )
the-stack_0_4536
# coding: utf-8 """ Module containing various definitions of Stores. Stores are a default access pattern to data and provide various utilities """ import json import yaml from itertools import chain, groupby from socket import socket from typing import Any, Dict, Iterator, List, Optional, Tuple, Union import mongomock from monty.dev import deprecated from monty.io import zopen from monty.json import MSONable, jsanitize from monty.serialization import loadfn from pydash import get, has, set_ from pymongo import MongoClient, ReplaceOne, uri_parser from pymongo.errors import ConfigurationError, DocumentTooLarge, OperationFailure from sshtunnel import SSHTunnelForwarder from maggma.core import Sort, Store, StoreError from maggma.utils import confirm_field_index class SSHTunnel(MSONable): __TUNNELS: Dict[str, SSHTunnelForwarder] = {} def __init__( self, tunnel_server_address: str, remote_server_address: str, username: Optional[str] = None, password: Optional[str] = None, private_key: Optional[str] = None, **kwargs, ): """ Args: tunnel_server_address: string address with port for the SSH tunnel server remote_server_address: string address with port for the server to connect to username: optional username for the ssh tunnel server password: optional password for the ssh tunnel server; If a private_key is supplied this password is assumed to be the private key password private_key: ssh private key to authenticate to the tunnel server kwargs: any extra args passed to the SSHTunnelForwarder """ self.tunnel_server_address = tunnel_server_address self.remote_server_address = remote_server_address self.username = username self.password = password self.private_key = private_key self.kwargs = kwargs if remote_server_address in SSHTunnel.__TUNNELS: self.tunnel = SSHTunnel.__TUNNELS[remote_server_address] else: open_port = _find_free_port("127.0.0.1") local_bind_address = ("127.0.0.1", open_port) ssh_address, ssh_port = tunnel_server_address.split(":") ssh_port = int(ssh_port) # type: ignore remote_bind_address, remote_bind_port = remote_server_address.split(":") remote_bind_port = int(remote_bind_port) # type: ignore if private_key is not None: ssh_password = None ssh_private_key_password = password else: ssh_password = password ssh_private_key_password = None self.tunnel = SSHTunnelForwarder( ssh_address_or_host=(ssh_address, ssh_port), local_bind_address=local_bind_address, remote_bind_address=(remote_bind_address, remote_bind_port), ssh_username=username, ssh_password=ssh_password, ssh_private_key_password=ssh_private_key_password, ssh_pkey=private_key, **kwargs, ) def start(self): if not self.tunnel.is_active: self.tunnel.start() def stop(self): if self.tunnel.tunnel_is_up: self.tunnel.stop() @property def local_address(self) -> Tuple[str, int]: return self.tunnel.local_bind_address class MongoStore(Store): """ A Store that connects to a Mongo collection """ def __init__( self, database: str, collection_name: str, host: str = "localhost", port: int = 27017, username: str = "", password: str = "", ssh_tunnel: Optional[SSHTunnel] = None, safe_update: bool = False, **kwargs, ): """ Args: database: The database name collection_name: The collection name host: Hostname for the database port: TCP port to connect to username: Username for the collection password: Password to connect with safe_update: fail gracefully on DocumentTooLarge errors on update """ self.database = database self.collection_name = collection_name self.host = host self.port = port self.username = username self.password = password self.ssh_tunnel = ssh_tunnel self.safe_update = safe_update self._collection = None # type: Any self.kwargs = kwargs super().__init__(**kwargs) @property def name(self) -> str: """ Return a string representing this data source """ return f"mongo://{self.host}/{self.database}/{self.collection_name}" def connect(self, force_reset: bool = False): """ Connect to the source data """ if not self._collection or force_reset: if self.ssh_tunnel is None: conn = MongoClient(self.host, self.port) else: self.ssh_tunnel.start() host, port = self.ssh_tunnel.local_address conn = MongoClient(host=host, port=port) db = conn[self.database] if self.username != "": db.authenticate(self.username, self.password) self._collection = db[self.collection_name] def __hash__(self) -> int: """Hash for MongoStore""" return hash((self.database, self.collection_name, self.last_updated_field)) @classmethod def from_db_file(cls, filename: str): """ Convenience method to construct MongoStore from db_file from old QueryEngine format """ kwargs = loadfn(filename) if "collection" in kwargs: kwargs["collection_name"] = kwargs.pop("collection") # Get rid of aliases from traditional query engine db docs kwargs.pop("aliases", None) return cls(**kwargs) @classmethod def from_launchpad_file(cls, lp_file, collection_name): """ Convenience method to construct MongoStore from a launchpad file Note: A launchpad file is a special formatted yaml file used in fireworks Returns: """ with open(lp_file, 'r') as f: lp_creds = yaml.load(f, Loader=None) db_creds = lp_creds.copy() db_creds['database'] = db_creds['name'] for key in list(db_creds.keys()): if key not in ['database', 'host', 'port', 'username', 'password']: db_creds.pop(key) db_creds['collection_name'] = collection_name return cls(**db_creds) def distinct( self, field: str, criteria: Optional[Dict] = None, all_exist: bool = False ) -> List: """ Get all distinct values for a field Args: field: the field(s) to get distinct values for criteria: PyMongo filter for documents to search in """ criteria = criteria or {} try: distinct_vals = self._collection.distinct(field, criteria) except (OperationFailure, DocumentTooLarge): distinct_vals = [ d["_id"] for d in self._collection.aggregate( [{"$match": criteria}, {"$group": {"_id": f"${field}"}}] ) ] if all(isinstance(d, list) for d in filter(None, distinct_vals)): # type: ignore distinct_vals = list(chain.from_iterable(filter(None, distinct_vals))) return distinct_vals if distinct_vals is not None else [] def groupby( self, keys: Union[List[str], str], criteria: Optional[Dict] = None, properties: Union[Dict, List, None] = None, sort: Optional[Dict[str, Union[Sort, int]]] = None, skip: int = 0, limit: int = 0, ) -> Iterator[Tuple[Dict, List[Dict]]]: """ Simple grouping function that will group documents by keys. Args: keys: fields to group documents criteria: PyMongo filter for documents to search in properties: properties to return in grouped documents sort: Dictionary of sort order for fields. Keys are field names and values are 1 for ascending or -1 for descending. skip: number documents to skip limit: limit on total number of documents returned Returns: generator returning tuples of (key, list of docs) """ pipeline = [] if isinstance(keys, str): keys = [keys] if properties is None: properties = [] if isinstance(properties, dict): properties = list(properties.keys()) if criteria is not None: pipeline.append({"$match": criteria}) if len(properties) > 0: pipeline.append({"$project": {p: 1 for p in properties + keys}}) alpha = "abcdefghijklmnopqrstuvwxyz" group_id = {letter: f"${key}" for letter, key in zip(alpha, keys)} pipeline.append({"$group": {"_id": group_id, "docs": {"$push": "$$ROOT"}}}) for d in self._collection.aggregate(pipeline, allowDiskUse=True): id_doc = {} # type: Dict[str,Any] for letter, key in group_id.items(): if has(d["_id"], letter): set_(id_doc, key[1:], d["_id"][letter]) yield (id_doc, d["docs"]) @classmethod def from_collection(cls, collection): """ Generates a MongoStore from a pymongo collection object This is not a fully safe operation as it gives dummy information to the MongoStore As a result, this will not serialize and can not reset its connection Args: collection: the PyMongo collection to create a MongoStore around """ # TODO: How do we make this safer? coll_name = collection.name db_name = collection.database.name store = cls(db_name, coll_name) store._collection = collection return store @property # type: ignore @deprecated(message="This will be removed in the future") def collection(self): """Property referring to underlying pymongo collection""" if self._collection is None: raise StoreError("Must connect Mongo-like store before attemping to use it") return self._collection def count(self, criteria: Optional[Dict] = None) -> int: """ Counts the number of documents matching the query criteria Args: criteria: PyMongo filter for documents to count in """ criteria = criteria if criteria else {} return self._collection.find(filter=criteria).count() def query( self, criteria: Optional[Dict] = None, properties: Union[Dict, List, None] = None, sort: Optional[Dict[str, Union[Sort, int]]] = None, skip: int = 0, limit: int = 0, ) -> Iterator[Dict]: """ Queries the Store for a set of documents Args: criteria: PyMongo filter for documents to search in properties: properties to return in grouped documents sort: Dictionary of sort order for fields. Keys are field names and values are 1 for ascending or -1 for descending. skip: number documents to skip limit: limit on total number of documents returned """ if isinstance(properties, list): properties = {p: 1 for p in properties} sort_list = ( [ (k, Sort(v).value) if isinstance(v, int) else (k, v.value) for k, v in sort.items() ] if sort else None ) for d in self._collection.find( filter=criteria, projection=properties, skip=skip, limit=limit, sort=sort_list, ): yield d def ensure_index(self, key: str, unique: Optional[bool] = False) -> bool: """ Tries to create an index and return true if it suceeded Args: key: single key to index unique: Whether or not this index contains only unique keys Returns: bool indicating if the index exists/was created """ if confirm_field_index(self._collection, key): return True else: try: self._collection.create_index(key, unique=unique, background=True) return True except Exception: return False def update(self, docs: Union[List[Dict], Dict], key: Union[List, str, None] = None): """ Update documents into the Store Args: docs: the document or list of documents to update key: field name(s) to determine uniqueness for a document, can be a list of multiple fields, a single field, or None if the Store's key field is to be used """ requests = [] if not isinstance(docs, list): docs = [docs] for d in docs: d = jsanitize(d, allow_bson=True) # document-level validation is optional validates = True if self.validator: validates = self.validator.is_valid(d) if not validates: if self.validator.strict: raise ValueError(self.validator.validation_errors(d)) else: self.logger.error(self.validator.validation_errors(d)) if validates: key = key or self.key if isinstance(key, list): search_doc = {k: d[k] for k in key} else: search_doc = {key: d[key]} requests.append(ReplaceOne(search_doc, d, upsert=True)) if len(requests) > 0: try: self._collection.bulk_write(requests, ordered=False) except (OperationFailure, DocumentTooLarge) as e: if self.safe_update: for req in requests: req._filter try: self._collection.bulk_write([req], ordered=False) except (OperationFailure, DocumentTooLarge): self.logger.error( f"Could not upload document for {req._filter} as it was too large for Mongo" ) else: raise e def remove_docs(self, criteria: Dict): """ Remove docs matching the query dictionary Args: criteria: query dictionary to match """ self._collection.delete_many(filter=criteria) def close(self): """Close up all collections""" self._collection.database.client.close() if self.ssh_tunnel is not None: self.ssh_tunnel.stop() def __eq__(self, other: object) -> bool: """ Check equality for MongoStore other: other mongostore to compare with """ if not isinstance(other, MongoStore): return False fields = ["database", "collection_name", "host", "port", "last_updated_field"] return all(getattr(self, f) == getattr(other, f) for f in fields) class MongoURIStore(MongoStore): """ A Store that connects to a Mongo collection via a URI This is expected to be a special mongodb+srv:// URIs that include client parameters via TXT records """ def __init__( self, uri: str, collection_name: str, database: str = None, ssh_tunnel: Optional[SSHTunnel] = None, **kwargs, ): """ Args: uri: MongoDB+SRV URI database: database to connect to collection_name: The collection name """ self.uri = uri self.ssh_tunnel = ssh_tunnel # parse the dbname from the uri if database is None: d_uri = uri_parser.parse_uri(uri) if d_uri["database"] is None: raise ConfigurationError( "If database name is not supplied, a database must be set in the uri" ) self.database = d_uri["database"] else: self.database = database self.collection_name = collection_name self.kwargs = kwargs self._collection = None super(MongoStore, self).__init__(**kwargs) # lgtm @property def name(self) -> str: """ Return a string representing this data source """ # TODO: This is not very safe since it exposes the username/password info return self.uri def connect(self, force_reset: bool = False): """ Connect to the source data """ if not self._collection or force_reset: conn = MongoClient(self.uri) db = conn[self.database] self._collection = db[self.collection_name] class MemoryStore(MongoStore): """ An in-memory Store that functions similarly to a MongoStore """ def __init__(self, collection_name: str = "memory_db", **kwargs): """ Initializes the Memory Store Args: collection_name: name for the collection in memory """ self.collection_name = collection_name self._collection = None self.ssh_tunnel = None # This is to fix issues with the tunnel on close self.kwargs = kwargs super(MongoStore, self).__init__(**kwargs) # noqa def connect(self, force_reset: bool = False): """ Connect to the source data """ if not self._collection or force_reset: self._collection = mongomock.MongoClient().db[self.name] @property def name(self): """Name for the store""" return f"mem://{self.collection_name}" def __hash__(self): """Hash for the store""" return hash((self.name, self.last_updated_field)) def groupby( self, keys: Union[List[str], str], criteria: Optional[Dict] = None, properties: Union[Dict, List, None] = None, sort: Optional[Dict[str, Union[Sort, int]]] = None, skip: int = 0, limit: int = 0, ) -> Iterator[Tuple[Dict, List[Dict]]]: """ Simple grouping function that will group documents by keys. Args: keys: fields to group documents criteria: PyMongo filter for documents to search in properties: properties to return in grouped documents sort: Dictionary of sort order for fields. Keys are field names and values are 1 for ascending or -1 for descending. skip: number documents to skip limit: limit on total number of documents returned Returns: generator returning tuples of (key, list of elemnts) """ keys = keys if isinstance(keys, list) else [keys] data = [ doc for doc in self.query(properties=keys, criteria=criteria) if all(has(doc, k) for k in keys) ] def grouping_keys(doc): return tuple(get(doc, k) for k in keys) for vals, group in groupby(sorted(data, key=grouping_keys), key=grouping_keys): doc = {} # type: Dict[Any,Any] for k, v in zip(keys, vals): set_(doc, k, v) yield doc, list(group) def __eq__(self, other: object) -> bool: """ Check equality for MemoryStore other: other MemoryStore to compare with """ if not isinstance(other, MemoryStore): return False fields = ["collection_name", "last_updated_field"] return all(getattr(self, f) == getattr(other, f) for f in fields) class JSONStore(MemoryStore): """ A Store for access to a single or multiple JSON files """ def __init__(self, paths: Union[str, List[str]], **kwargs): """ Args: paths: paths for json files to turn into a Store """ paths = paths if isinstance(paths, (list, tuple)) else [paths] self.paths = paths self.kwargs = kwargs super().__init__(collection_name="collection", **kwargs) def connect(self, force_reset=False): """ Loads the files into the collection in memory """ super().connect(force_reset=force_reset) for path in self.paths: with zopen(path) as f: data = f.read() data = data.decode() if isinstance(data, bytes) else data objects = json.loads(data) objects = [objects] if not isinstance(objects, list) else objects self.update(objects) def __hash__(self): return hash((*self.paths, self.last_updated_field)) def __eq__(self, other: object) -> bool: """ Check equality for JSONStore Args: other: other JSONStore to compare with """ if not isinstance(other, JSONStore): return False fields = ["paths", "last_updated_field"] return all(getattr(self, f) == getattr(other, f) for f in fields) def _find_free_port(address="0.0.0.0"): s = socket() s.bind((address, 0)) # Bind to a free port provided by the host. return s.getsockname()[1] # Return the port number assigned.
the-stack_0_4538
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from django import forms from django.contrib.auth import get_user_model from django.forms.utils import ErrorDict from django.utils.translation import ugettext_lazy as _ from shop.conf import app_settings as shop_settings from shop.modifiers.pool import cart_modifiers_pool from shopit.conf import app_settings from shopit.forms.account import AccountDetailsForm, CleanEmailMixin from shopit.models.address import ISO_3166_CODES, BillingAddress, ShippingAddress from shopit.models.cart import CartDiscountCode from shopit.models.customer import Customer from shopit.models.modifier import DiscountCode from shopit.utils import get_error_message as em class CartDiscountCodeForm(forms.ModelForm): """ Form that handles entering a cart modifier code. """ _discount_code = None class Meta: model = CartDiscountCode fields = ['code'] def __init__(self, *args, **kwargs): self.cart = kwargs.pop('cart') kwargs['instance'] = CartDiscountCode(cart=self.cart) super(CartDiscountCodeForm, self).__init__(*args, **kwargs) self.fields['code'].required = False self.fields['code'].label = _('Discount code') def clean_code(self): code = self.cleaned_data.get('code', None) if code: cart_codes = self.cart.get_discount_codes().values_list('code', flat=True) if code in cart_codes: raise forms.ValidationError(em('cart_discount_code_exists')) try: dc = DiscountCode.objects.valid().get(code=code) except DiscountCode.DoesNotExist: raise forms.ValidationError(em('cart_discount_code_invalid')) if dc.customer and code not in self.cart.customer.get_discount_codes().values_list('code', flat=True): raise forms.ValidationError(em('cart_discount_code_wrong_customer')) self._discount_code = dc return code def save(self, commit=True): if self._discount_code is not None: self._discount_code.use() # increment `num_uses` field on DiscountCode. return super(CartDiscountCodeForm, self).save(commit) class CheckoutFormMixin(object): """ Checkout form mixin ensures request and cart are passed in. """ def __init__(self, *args, **kwargs): self.request = kwargs.pop('request') self.cart = kwargs.pop('cart') super(CheckoutFormMixin, self).__init__(*args, **kwargs) class CustomerForm(CheckoutFormMixin, AccountDetailsForm): def __init__(self, *args, **kwargs): self.cart = kwargs.pop('cart') return AccountDetailsForm.__init__(self, *args, **kwargs) def save(self, commit=True): self.instance.recognize_as_registered() return super(CustomerForm, self).save(commit) class GuestForm(CheckoutFormMixin, CleanEmailMixin, forms.ModelForm): email = forms.EmailField(label=_('Email address')) phone_number = forms.CharField(label=_('Phone number')) class Meta: model = get_user_model() fields = ['email'] def __init__(self, *args, **kwargs): super(GuestForm, self).__init__(*args, **kwargs) self.customer = Customer.objects.get_from_request(self.request) self.instance = self.customer.user self.fields['email'].initial = self.instance.email self.fields['phone_number'].initial = self.customer.phone_number self.fields['phone_number'].required = app_settings.PHONE_NUMBER_REQUIRED def save(self, commit=True): self.customer.recognize_as_guest() self.instance.is_active = shop_settings.SHOP_GUEST_IS_ACTIVE_USER if self.instance.is_active: password = get_user_model().objects.make_random_password(length=30) self.instance.set_password(password) self.customer.phone_number = self.cleaned_data.get('phone_number', '') self.customer.save() return super(GuestForm, self).save(commit) class AddressForm(CheckoutFormMixin, forms.ModelForm): priority = forms.IntegerField( required=False, widget=forms.HiddenInput, ) existant = forms.ModelChoiceField( required=False, queryset=None, label=_('Use existant address'), ) # Field decides if a primary address should be used instead. # Primary address is set to either 'shipping' or 'billing' using `PRIMARY_ADDRESS` setting. use_primary_address = forms.BooleanField( required=False, initial=True, ) class Meta: exclude = ['customer'] def __init__(self, *args, **kwargs): self.field_order = ['existant'] # Place `existant` field at the top. super(AddressForm, self).__init__(*args, **kwargs) self.customer = Customer.objects.get_from_request(self.request) # Set existant addresses choices. addresses = self.Meta.model.objects.filter(customer=self.customer).order_by('-priority') self.fields['existant'].queryset = addresses if not addresses.exists(): self.fields['existant'].widget = forms.HiddenInput() # Set country choices based on `ADDRESS_COUNTRIES` setting. if app_settings.ADDRESS_COUNTRIES: countries = [('', '---------')] + [x for x in ISO_3166_CODES if x in app_settings.ADDRESS_COUNTRIES] self.fields['country'].widget = forms.Select(choices=countries) self.fields['country'].choices = countries if self.is_primary: self.fields.pop('use_primary_address') # remove field from primary address. else: self.fields['use_primary_address'].initial = \ getattr(self.cart, '%s_address' % self.address_type, None) is None if hasattr(self, 'use_primary_address_label'): self.fields['use_primary_address'].label = self.use_primary_address_label # If current address is set to the cart, use it as existant one. cart_address = getattr(self.cart, '%s_address' % self.address_type, None) if cart_address: self.fields['existant'].initial = cart_address for fname in [f.name for f in cart_address._meta.get_fields() if f.name in self.fields]: self.fields[fname].initial = getattr(cart_address, fname, '') def full_clean(self): super(AddressForm, self).full_clean() if not self.is_primary: if self.is_bound and self['use_primary_address'].value(): self._errors = ErrorDict() def is_valid(self): if not self.is_primary: return self['use_primary_address'].value() or super(AddressForm, self).is_valid() return super(AddressForm, self).is_valid() def clean(self): existant = self.cleaned_data['existant'] if existant: self.instance = existant # Set existant as an instance if selected. self.cleaned_data['priority'] = existant.priority # Populate missing fields in `cleaned_data` with existant data and skip validation. for field in [x for x in self.fields if x not in self.cleaned_data]: self.cleaned_data[field] = getattr(existant, field) del self._errors[field] else: self.cleaned_data['priority'] = self.Meta.model.objects.get_max_priority(self.customer) + 1 return super(AddressForm, self).clean() def save(self, commit=True): if self.is_primary or not self['use_primary_address'].value(): instance = super(AddressForm, self).save(commit=False) instance.customer = self.customer instance.priority = self.cleaned_data['priority'] instance.save() return instance @property def address_type(self): return self.Meta.model.__name__.lower().rstrip('address') @property def is_primary(self): return app_settings.PRIMARY_ADDRESS == self.address_type class ShippingAddressForm(AddressForm): use_primary_address_label = _('Use billing address for shipping') class Meta(AddressForm.Meta): model = ShippingAddress class BillingAddressForm(AddressForm): use_primary_address_label = _('Use shipping address for billing') class Meta(AddressForm.Meta): model = BillingAddress class PaymentMethodForm(CheckoutFormMixin, forms.Form): payment_modifier = forms.ChoiceField( label=_('Payment method'), widget=forms.RadioSelect, ) def __init__(self, *args, **kwargs): super(PaymentMethodForm, self).__init__(*args, **kwargs) choices = [x.get_choice() for x in cart_modifiers_pool.get_payment_modifiers() if not x.is_disabled(self.cart)] self.fields['payment_modifier'].choices = choices if len(choices) == 1: self.fields['payment_modifier'].initial = choices[0][0] class DeliveryMethodForm(CheckoutFormMixin, forms.Form): shipping_modifier = forms.ChoiceField( label=_('Delivery method'), widget=forms.RadioSelect, ) def __init__(self, *args, **kwargs): super(DeliveryMethodForm, self).__init__(*args, **kwargs) choices = [x.get_choice() for x in cart_modifiers_pool.get_shipping_modifiers() if not x.is_disabled(self.cart)] self.fields['shipping_modifier'].choices = choices if len(choices) == 1: self.fields['shipping_modifier'].initial = choices[0][0] class ExtraAnnotationForm(CheckoutFormMixin, forms.Form): annotation = forms.CharField( label=_('Extra annotation for this order'), required=False, widget=forms.Textarea, ) class AcceptConditionForm(CheckoutFormMixin, forms.Form): accept = forms.BooleanField( label=_('Accept'), required=True, widget=forms.CheckboxInput, )